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Bu ¢alismada, tiyofen temelli yedi tane (1, 2, 3, 4, 5, 6, 7) yeni Schiff bazi tiirevinin
ChemDraw, Chem3D, GaussView ve Gaussian programlart yardimiyla teorik
hesaplamalar1 yapilmistir. Hesaplamasi yapilacak olan her bir molekiil 6nce ChemDraw
programinda ¢izilerek Chem3D programina aktarildi. Chem3D programinda dihedral
aclya bagli konformasyon analizi -180°-180° araliginda 30°’lik adimlarla yapilarak en
diisiik enerjili konformasyon Chem3D programinda minimize edilerek teorik
hesaplamalarda kullanilmak tizere segildi. Segilen konformasyon geometrisi optimize
edildi. Optimize edilmis molekiiler geometrinin teorik sonuglarini incelemek igin
Yogunluk Fonksiyonel Teorisi DFT/B3LYP/6-31G(d) hesaplama yontemi kullanildi.
Biitiin molekiillerin gaz, su, DMSO, asetonitril, etanol, metanol, THF ve diklorometan
fazinda, dipol momentleri, toplam enerjileri HOMO-LUMO enerjileri, molekiiler
elektrostatik potansiyel (MEP) haritasi, ¢oziicii erisilebilirlik yilizeyi (SAS) sekilleri ve

UV-Goriiniir bolge spektrum sonuglart hesaplandi.

Anahtar Sozciikler: Dipol Moment, Schiff bazlari, Spektroskopi, Tiyofen, Yogunluk
fonksiyonu teorisi (DFT).



ABSTRACT

CONFORMATION ANALYSIS AND THEORETICAL INVESTIGATION OF THE
SPECTROSCOPIC CHARACTERISTICS OF THIOPHEN-BASED SCHIFF BASE
MOLECULES WITH DFT

Hakan UNAL

Department of Chemistry
Programme in Organic Chemistry
Eskisehir Technical University, Institute of Graduate Programs, April 2021
Supervisor: Asst. Prof. Dr. Dilek ELMALI
(Co-Supervisor: Assoc. Prof. Derya TOPKAYA TASKIRAN)

In this study, theoretical calculations of seven (1, 2, 3, 4, 5, 6, 7) new Schiff base
derivatives based on thiophene were made with the help of ChemDraw, Chem3D,
GaussView and Gaussian programs. Each molecule to be calculated was first drawn in
the ChemDraw program and transferred to the Chem3D program. Conformation analysis
based on dihedral angle in Chem3D program was performed in 30° steps in the range of
-180°-180°, and the lowest energy conformation was minimized in Chem3D program and
selected for theoretical calculations. The chosen conformation geometry has been
optimized. The Density Functional Theory DFT/B3LYP/6-31G(d) calculation method
was used to examine the theoretical results of optimized molecular geometry. Dipole
moments, total energies of all molecules in gas, water, DMSO, acetonitrile, ethanol,
methanol, THF and dichloromethane phases, HOMO-LUMO energies, molecular
electrostatic potential (MEP) map, solvent accessibility surface (SAS) shapes and UV-

Visible region spectrum results were calculated.

Keywords: Density functional theory (DFT), Dipole moment, Schiff bases,
Spectroscopy, Thiophene.
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Universitesi tarafindan kullanilan “bilimsel intihal tespit programi”yla tarandigini ve
higbir sekilde “intihal icermedigini” beyan ederim. Herhangi bir zamanda, ¢aligmamla
ilgili yaptigim bu beyana aykir1 bir durumun saptanmasi durumunda, ortaya ¢ikacak tiim

ahlaki ve hukuki sonuglar1 kabul ettigimi bildiririm.

Hakan UNAL
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1. GIRIS
Schiff bazlar1 birincil aminler ve karbonil bilesiklerinin kondensasyon iiriinleridir
ve 1864’te Alman kimyaci Nobel Odiilii sahibi Hugo Schiff tarafindan kesfedilmistir [1].
Yapisal olarak Schiff bazi (imin veya azometin olarak da bilinir), karbonil
grubunun (C=0) bir imin veya azometin grubu ile degistirildigi bir keton veya aldehit
tirevidir (Sekil 1.1) [2].

RL RS
_/
C—N
/
R2

RY, R% velveya R3=alkil veya aril

Sekil 1.1. Schiff bazlarimin genel yapuisi [3]

Schiff bazlar1 en yaygin olarak kullanilan organik bilesiklerin 6nemli bir sinifini
olustururlar ve analitik, biyolojik ve inorganik kimya dahil birgok alanda ¢ok gesitli
uygulamalara sahiptirler. Schiff bazlar, anti-inflamatuar [4-7], analjezik [5-8],
antimikrobiyal [9, 10], antikonviilsan [11], antitiiberkiiler [12], antikanser [13, 14],
antioksidan [15], antelmintik [16] vb. gibi biyolojik aktivitelerin genis kullanim alanlar1
nedeniyle tibbi ve farmasotik alanlarda 6nem kazanmiglardir. Azometinin azot atomu,
hiicre bilesenlerinin aktif merkezleri ile bir hidrojen baginin olusumunda rol oynayabilir
ve normal hiicre islemlerine miidahale eder [17, 18]. Biyolojik aktivitelerin yani sira
Schiff bazlar1 ayrica katalizorler, organik sentezde ara maddeler, boyalar, pigmentler,
polimer stabilizatorleri [19] ve korozyon inhibitorleri [20] olarak kullanilirlar. Caligmalar
metal komplekslerinin serbest organik bilesiklerden daha fazla biyolojik aktivite
gosterdigini aydmlatmistir [21]. Biyolojik aktivitenin artisi gecis metallerinin Schiff
bazlarina uygulanmasiyla rapor edilmistir [22]. Schiff bazlar1 koordinasyon kimyasinin
gelisiminde etkili bir rol oynamis ve inorganik biyokimya ve optik materyallerin
gelisiminde kilit nokta olarak yer almistir [23]. Schiff bazlari, formazanlar, 4-
tiyazolidinonlar, benzoksazinler ve benzerleri gibi bir dizi endiistriyel ve biyolojik olarak
aktif bilesigin hazirlanmasinda halka kapanmasi, siklokatilma ve yer degistirme
reaksiyonlart yoluyla sentonlar olarak kullanilmistir [24]. Yeni ¢evre dostu teknolojinin
gelistirilmesi i¢in ¢esitli siireglerdeki Schiff baz tiirevleri, yeni heterosiklik/aril Schiff

bazlarinin tasarlanmasi i¢in arastirmacilari tesvik etmistir [25].



Biyolojik aktivitelerinin yaninda Schiff bazlarinin foto- ve termokromik 6zellikleri
onlart modern teknolojide uygulanabilir kilmaktadir. Bunlarin yani sira optik
bilgisayarlarda radyasyonun yogunlugunu 6lgmek ve kontrol etmek ig¢in, goriintiileme
sistemlerinde, molekiiler bellek depolamada, biyolojik sistemlerde geri doniisiimlii optik
belleklerde ve fotodetektdrlerde organik materyaller olarak kullanilmaktadirlar [26, 27].

Schiff bilesikleri fotokromik ozellikleri nedeniyle, foto stabilizatorler, giines
kolektorleri ig¢in boyalar, giines filtreleri gibi davranabilirler. Optik ses kayit
teknolojisinde de kullanilirlar. Diger taraftan, Schiff bazlari, ultraviyole 1518 etkisi
altinda oksidatif halka kapanmasi ile alian kinolin ve izokinolinin polisiklik tiirevleri
reaksiyonlarinin onciileridirler. Ayrica kriptatlar, koronatlar ve podatlar gibi asiklik ve
makrosiklik bilesiklerin hazirlanmasinda da kullanilirlar [26].

Bunlarin yaninda, Schiff bazlarina iliskin 6zelliklerden ilgiye deger olanlar: sivi
kristal 6zellikleri [28], selatlama yetenegi [29], termal kararlilik [30], optik dogrusalsizlik
[31] ve proton transferi igin elektriksel 6zellikleri kullanan yeni bir molekiiler iletken yap1
olusturma yetenekleridir [32]. Termal stabilitesi nedeniyle Schiff bazlar1 gaz
kromatografisinde sabit faz olarak kullanilabilirler [30]. Bu bilesiklerin optik
dogrusalsizligi, onlar1 elektronik malzemeler, opto-elektronik (optik anahtarlarda) ve
fotonik bilesenler olarak kullanmamizi saglarlar [31].

Schiff baz molekiillerindeki imin grubu, aromatik halkanin elektron bulutu ve
elektronegatif azot, oksijen ve kiikiirt atomlariin varligi nedeniyle, bu bilesikler asidik
ortamda yumusak celik, bakir, aliiminyum ve ¢inkonun korozyonunu etkili bir sekilde
onlerler [33].

Bu bilesikler, Ruhemann moru (bir amino asit ve ninhidrin arasindaki reaksiyon)
olusumuna yol agarlar, bu da parmak izlerinin saptanmasina ve tespit edilmesine yardimci
olur [34].

Imin tiirevleri iletken polimerler elde etmek icin kullanilabilirler. Elektrik
iletkenleri  olarak  Schiff bazlar1 ¢esitli  kullamim alanlarina  sahiptirler:
fotoelektrokimyasal islemlerde katalizorler olarak, elektrot malzemeleri ve mikro-
elektronik ekipmanlar, organik piller veya elektrokromik goriintiileme cihazlar: (grafik
¢ikis cihazlari) [35].

Ayrica diyabet ve AIDS tedavisinde de kullanilirlar. Biyolojik modeller olarak,
canli organizmalarda olugan biyomolekiillerin ve biyolojik olaylarin yapisini anlamaya

yardimci olurlar. Bunlarin yani sira organizmalarda fotosentez ve oksijen taginmasina
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katilirlar. Kanser ilaci direncinin tedavisinde yer alirlar ve genellikle antimalaryal olarak
test edilirler. Ayni1 zamanda enzimlerin immobilizasyonu igin de kullanilabilirler [36, 37].

Schiff bazlari, sentez ve kimyasal analizde ¢ok sik kullanilan organik ara madde
gruplaridir. Ilag {iretimi ve zirai ila¢ endiistrisinde kullamlirlar. Hidrojen siyaniir ile
reaksiyonda Schiff bazlari a-amino asit onciileri olusturabilirler (Strecker sentezi).
Dahasi, kiral Schiff bazlari, a-amino asitlerin asimetrik sentezi i¢in baslangi¢ substratlari
olarak ve asimetrik sentezde katalizorler olarak kullanmilirlar. Buna ek olarak,
arilaminlerin ve karbonil bilesiklerinin kondensasyon reaksiyonu ile elde edilen iminler,
onemli bilesiklerin (arendiazonyum nitratlar, N-arilaren karboksamitler, uygun aminler
ve siyanamitler, p-laktamlar) hazirlanmasinda kullanilan ara {riin  grubunu

belirlemislerdir [38].



2. SCHIiFF BAZI| SENTEZi

Schiff bazlari bir aromatik amin ve bir karbonil bilesiginden bir hemiaminal
olusturan niikleofilik katilma ve ardindan bir imin olusturmak i¢in dehidrasyonla
sentezlenebilirler. Tipik bir reaksiyonda, 4,4’-diamino difenil eter o-vanilin ile reaksiyona
girer [39] (Sekil 2.1).

OCH,
0 OH
+
HoN NH, CHO
4 4'-diamino difenil eter 2-hidroksi-3-metoksi-benzaldehit
o
=
Y N
OH HO

OCHg Schiff base OCHjz

Sekil 2.1. Schiff baz sentezi

2.1. Aldehitler ve Ketonlardan Schiff Bazimin Sentezi

Mekanizmanin ilk adimi bir karbokatyon olusumudur. Aldehit/keton, amin azotu
tizerindeki ortaklasmamis elektron gifti ile reaksiyona girer. Bu asamanin kararsiz tirtind,
asagida gosterildigi gibi bir Schiff bazi olusturmak tizere molekiilden esdeger bir su kaybi
ile kararl1 hale gelir (Sekil 2.2 ve 2.3). Aslinda imin fonksiyonel grubu i¢in bagka bir isim,
biyokimyada Schiff bazi, amin grubunun bir aldehit veya ketonun karbonil grubu ile
kondensasyonu yoluyla olusturulur. Olusan bagin azotu bazik karaktere sahip oldugu i¢in
(Sekil 2.4°te azot atomu lizerinde agik¢a gosterilen ortaklasmamus ¢ift ile belirtilir), Schiff
bazinin konjuge asidini veya protonlanmis Schiff bazini olusturmak igin bir proton
alabilir. Schiff bazinin olusumu ve islevselligi, aldolaz ve aminotransferazlar gibi,

kofaktor olarak piridoksal fosfat kullanan bir dizi enzimin mekanizmasinda 6nemlidir.



Ry Ry
Rs—N + O=—C —> R;—N—C +  HO
R, R,

1%Amin Aldehit veya keton Schiff bazi

Sekil 2.2. Aldehitler ve ketonlardan Schiff bazinin sentezi

Adim-1
Ry R; R, Ry
_ [H] \ . \ - \o
C—0 ——>» C=—0Q —> C=—Q0—H—> C—O0—H
/ + / 4D
R2 R, k" H R, Ry
Adim-2
Ry Tl
@ .
>C—O—H Rz—(|:—_c_)—H
Rz V> Rg—@T—H
N
Rg/ | \H H
H
Adim-3
R, Ry Ry Ry
. |~ . e
R,—C—O0—H ——> RZ—C—_(_)—H + H ——— || + H,0
® |f'\ |‘> N
Rg——N—H PG |
| R3 H Rs
H
Schiff bazi
Sekil 2.3. Reaksiyonun mekanizmasi
R R1
R;—N + O0=¢C —> R;—N—C + H0
R, Rz
1°Amin Aldehit veya keton Schiff bazi
A
R3_ :C
® N\
R2

Protonlanmis Schiff bazi
(Konjuge asit)

Sekil 2.4. Protonlanmus Schiff bazinin sentezi



Genel olarak, birincil amin bir lizin kalintisinin amino grubudur. Schiff bazinin
biyolojik fonksiyonunun bir bagka 6nemli 6rnegi, 1sikla ¢alisan bir proton pompasi olan
bakteriyorodopsin tarafindan saglanir. Schiff bazinin tersinir protonasyonu, bu dikkate
deger enerji transdiiksiyon molekiiliiniin proton pompalama mekanizmasinin
merkezindedir. Asagidaki (Sekil 2.5), bir enzimin aktif bolgesi baglaminda bir Schiff bazi
olusumu i¢in makul bir semay1 géstermektedir. Enzim tizerindeki bazik gruplar B-Enz ve
asidik gruplar +HB-Enz olarak temsil edilir. Bu mekanizmadaki aminin, elektrofilik
karbonil karbonuna saldiran niikleofil oldugu i¢in protonlanmamis, bazik formda olmasi
onemlidir. Protonlanmis bir amin, bir niikleofil olarak islev gérmez. Ik asamada iiretilen
ara Uriine bir karbinolamin denir. Ayrica semanin, Schiff bazinin protonlanmis formunun

dogrudan tiretimi ile sonuglandigin1 gésterdigine dikkat edin [40].

R, H Ry
TN "/NH—é —Enz | |
R3——NH, C=o0 2 — > Ry;—=N—FTC—OH :(B;—Enz
A bt
/ °
Rz > o H R H—B,—Enz
1°Amin ( 2 2
: By Enz : By—Enz
H R1 .
| / :O—H :B3—Enz
Ry~ N=¢C |
\R H :B,—/Enz

2

Protonlanmis Schiff bazi H— él—Enz

Sekil 2.5. Schiff bazi olusumu, genel asit-baz katalizi.



3. SCHIFF BAZLARI ILE ILGILI YAPILMIS CALISMALAR

3.1. Hidroksil Siibstitiieli Schiff Bazlarinin Antioksidan ve Antiproliferatif
Aktiviteleri

2010 yilinda Li-Xia Cheng, Jiang-Jiang Tang, Hui Luo, Xiao-Ling Jin, Fang Dai,
Jie Yang, Yi-Ping Qian, Xiu-Zhuang Li, Bo Zhou isimli arastirmacilar, hidroksil
stibstitlieli Schiff bazlarimin antioksidan ve antiproliferatif aktiviteleri baglikli sentez
calismalarinda asagidaki bilesigi sentezlemisler ve yapi-aktivite iliskisi analizi, aromatik
A halkasi tizerindeki 0-dihidroksil gruplarinin ve aromatik B halkasina bagli 4-hidroksil
grubunun antioksidan ve antiproliferatif aktivitelere kritik katkida bulundugunu

gosterdigini bildirmislerdir [41].

. 1.R'=0H,R?=H,R%=H,R*=H
R 2 Rl= H, R%= H, R%= OH, Ré= H
o b 1 egdeger /O/ 3.R!=H, R*=H,R%= H, R*= OH
Ré 4.R'=H, R?= OCHj, R®= OH, R*=H
5.R!=H, R%= H, R%= OH, R*= OCH3
6. R’= H, R*= H, R3= OH, R*= OH
- su veya metanolde 7.R= H, R%= OH, R%= OH, R*= H

8 R!=H, R?= OH, R3= OH, R*= OH

Sekil 3.1. Hidroksil siibstitiieli Schiff bazlarinin (1-8) tiretimi i¢in sentetik sema ve bilesiklerin kimyasal

yapulart arastirildr. [41]

3.2. Toksik Olmayan Antioksidanlar Olarak Heterosiklik Schiff Bazlari: Coziicii
Etkisi, Yap1 Aktivite iligkisi ve Etki Mekanizmasi

2018 yilinda Angamaly Antony Shanty ve Puzhavoorparambil Velayudhan
Mohanan isimli aragtirmacilar, toksik olmayan antioksidanlar olarak heterosiklik Schiff
bazlari: ¢oziicli etkisi, yapr aktivite iligkisi ve etki mekanizmasi baslikli sentez
calismalarinda tiyofen-2-karboksaldehit ve pirol-2-karboksaldehitten fenolik heterosiklik
imin bazli Schiff bazlarini sentezlemis ve yeni antioksidanlar olarak karakterize ettiklerini
bildirmislerdir [42].



NH, OH

N
OH
CHO
X metanol N
—_—
\ / + reflux

TA, X=S

TNA, X=S, R=NO,
TMA, X=S, R=CHs
PA, X=NH

PNA, X=NH, R=NO,
PMA, X=NH, R=CHj

Sekil 3.2. Schiff bazlarinin hazirlanmasi [42]

3.3. Benzer Atom Zinciri Tasiyan Bazi Schiff Bazi Bilesiklerinin Korozyon Onleme

Potansiyelleri Uzerine Sentez ve Karsilastirmal Calisma

2019 yilinda Elias E. Elemike, Henry U. Nwankwo ve Damian C. Onwudiwe isimli
arastirmacilar agagidaki bilesikleri sentezlemisler ve bu bilesiklerin korozyon Onleyici

giiclerini karsilastirmali olarak arastirdiklarini bildirmislerdir [43].

NH, HC OH
reflux, etanol //
—_— N

2 saat, 90°C

- OH (E)-4-((p-tolilimino)metil)fenol
p-toluidin 4-hidroksibenzaldehit

CHO
HC OH

H,C H,C——N
reflux, etanol
+ _ >
2 saat, 90°C

OH
fenilmetanamin 4-hidroksibenzaldehit (E)-4-((p-benzilimino)metil)fenol

CHO OH

NH,

reflux, etanol HC
+ —_— //
2 saat, 90°C

anilin OH
4-hidroksibenzaldehit
(E)-4-((p-fenilimino)metil)fenol

Sekil 3.3. (a) BMPOL, (b) TMPOL, ve (c) PMPOL 'nin sentezi igin sentetik yol [43]



3.4. Fenol Grubu Iceren Yeni Bir Schiff Baz Polimerinin Sentezi,
Karakterizasyonu ve Molekiil Agirhgi Gézleme: Termal Kararhlik, Iletkenlik ve

Antimikrobiyal Ozellikler

2017 yilinda Nuray Yilmaz Baran ve Mehmet Sagak isimli arastirmacilar fenol
grubu igeren yeni bir Schiff baz polimeri, P(3-DBAP)’yi sentezlemisler, ayrica monomer
ve polimerin antibakteriyel ve antifungal aktivitelerini Sarcina lutea, Enterobacter
aerogenes, Escherichia coli, Enterococcus Feacalis, Klebsiella pneumoniae, Bacillus
subtilis bakterileri ve Candida albicans, Saccharomyces cerevisiac mantarlarina karsi

analiz ettiklerini bildirmislerdir [44].

H3C\ Ol 4@ _MeoH O O
/

H3C
3-DBAP

KOH(suda)
NaOCl

P(3-DBAP)

Sekil 3.4. 3-DBAP ve P(3-DBAP) 'nin sentezi. [44]

3.5. Potansiyel Antiviral Ajanlar Olarak Bir Schiff Baz Parcasi iceren Pirazolo
[3,4-d] Pirimidin Tiirevleri

2018 yilinda Yan-Yan Wang, Fang-Zhou Xu, Yun-Ying Zhu, Baoan Song, Dexia
Luo, Gang Yu, Shunhong Chen, Wei Xue ve Jian Wu isimli arastirmacilar Schiff bazi
kismu1 igeren bir dizi pirazolo[3,4-d]pirimidin tiirevini sentezleyip tiitiin mozaik viriisiine
(TMV) karst aktiviteleri agisindan degerlendirmislerdir. Biyolojik deneyler, bazi
tirevlerin TMV’ye karst onemli aktivite sergiledigini, Schiff bazi igeren pirazolo[3,4-

d]pirimidin tiirevlerinin potansiyel antiviral ajanlar olabilecegini bildirmislerdir [45].
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R o) 4a-4d 5a-5z, 5aa-5ah
s
4a: R=H, R=H: 4b: R=H, R'=Me; 4c: R=Me, R'=H; 4d: R=Me, R'=Me;
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N
S - A r\@ . p=piln Z 5h: R=H, Rl=Me Ar=‘/_£°\'\> .
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i R=H Rl= N 5j:R=H,RI=H, Ar= @ . 5k:R=H,RlzH, Ar= @ . 5l:R=H, R1:H,Ar:z© .
5i: R=H, R*=Me, Ar .‘?_O : ) o ; o on ; o
. L :R=Me, R'=Me, Ar=_f, - 50: R=Me, Ri=H, Ar = @ . 5p:R=Me, R'=Me, Ar:%@ .
5m: R=Me, R'=H, Ar S 5n: R=Me, R'=Me, Ar=,N_ o : p :
5q: R=Me, R1=H,Ar=?\J\> . 5r:R=Me, Rl=Me, Ar= 9§ . 5s:R=Me,Rl=Me,Ar= [LS . 5t:R=Me, R1:H,Ar:%@5 ;
o= s o
‘R= 1 = SN . :R= 1 =S . ‘R= 1 SHNT 5'R:MeR1:MeAr:®;
5u: R=Me, RI=H, Ar 51,';> . 5v:R=Me, Rl=Me, Ar "z,‘;> . 5w:R=Me, R'=H, Ar ‘1,‘;> x: R=Me, , <

Br

N
5y: R=Me, R'=Me, Ar :‘jé ; 5z:R=H,R!=H, Ar =‘§:\> : 5aa: R=Me, R'=H, Ar :“j:\> . 5ab: R=Me, R':=Me, Ar:))_ﬁ\/j/ .
Br Br
- R= - N7 X N N
5ac: R=Me, Ri=Me, Ar={ ). 5ad: R=Me, Ri=H, A=), see:R=Me,Ri=H, A= [ . 5af:R=Me,R'=Me, Ar= [ ) -
< z - g’

5ag: R=Me, R1=H, Ar = QN . 5ah: R=Me, R'=Me, Ar = QN .
M2 cl ke Cl

Sekil 3.5. Reaktifler ve kosullar. (a) reflux, Ac;0; (b) 40% metilhidrazin, EtOH, 80°C; (c) trietoksietan,
reflux; (d) 80%N,H4.H,0, EtOH, r.t; (e) 1,1-dimetoksi-N,N-dimetilmetanamin/aromatik aldehit,
asetik asit, reflux. [45]

3.6. Antikanser Ajanlar Olarak "Yar1 Sandvi¢" Schiff-Baz Ir (111) Kompleksleri

2017 yilinda Ze-dong Mou, Ning Deng, Feng Zhang, Jiaying Zhang, Juan Cen ve
Xia Zhang isimli arastirmacilar bir dizi "yarim sandvi¢" Schiff-baz Ir (111) kompleksi
sentezlemisler ve l6semi K562 hiicre hattina karsi in vitro aktiviteleri agisindan
arastirmiglardir. Bu bilesikler, ICso degerleri 0.26-4.77 uM olan K562 hiicrelerine karsi
antiproliferatif (hiicre biiyiimesini engelleyen) etkinlik gdstermistir. Ozellikle, bilesik
10c, bes kanser hiicre hattina/alt hattina karsi sitotoksisite ve K562, K562/A02, MCF-7,
MCF-7/ADM ve A549 hiicrelerinde cis platinden daha gii¢lii aktiviteler gosterdigini
bildirmislerdir [46].
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| #
Et3N TiCly /O [Cp*erlz]z ‘
Cl—1I
DCM, 0- 25°C NaOAc DCM ]
rt,24h

[Cp*IrCl;], Pentametilsiklopentadienil iridyum dikloriir dimeri
Sekil 3.6. Ir (111) kompleksleri 10a-0 ’ya sentetik yol [46]

3.7. Sert Poli (Vinil Kloriir) i¢in Organik Termal Stabilizatérler ve Ko-
Stabilizatorler Olarak Vanillin-Schiff Bazlarn

2009 yilinda Magdy W. Sabaa, Riham R. Mohamed ve Emad H. Oraby isimli
aragtirmacilar Vanilin-Schiff bazi1 (VSB) tiirevlerini, 180°C’de havada sert poli (vinil
kloriir) (PVC) igin termal stabilizatorler ve ko-stabilizatorler olarak incelendiklerini, bu
tirevleri ve VSB’nin Ni** ve Co?" komplekslerini farkli oranlarda referans
stabilizatorlerle harmanlamanin, termal stabiliteyi artirdigint ve PVC’nin renk

bozulmasini biiytik 6l¢iide uzattigini bildirmislerdir [47].

H H Hz Hz
N PPN /NW_,NW/\ /\@/\/“’W
°|H C|H g 180°C | ioe g
cl
Cl Cl (A)
PVvC
C/> 4<\:/>\X ' CI - 4@\
HO CH
HaCO VSB tirevleri HsCO

[X=-H, -OCHa, -NO,]

NW/\/\/

e sa

Sekil 3.7. PV C'nin termal bozunmasi sirasinda incelenen stabilizatérlerin stabilize edici etkinligi igin olasi

A + (B)

bir iyonik mekanizma [47]
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3.8. Bir Anti-Enflamatuar, Analjezik ve Antipiretik Ajan Olarak 4-
Aminofenazonun Schiff Bazlarinin Sentezi ve Biyolojik Degerlendirmesi

2014 yilinda Shahzad Murtaza, Muhammad Shoaib Akhtar, Farina Kanwal, Aadil
Abbas, Shoaib Ashiq ve Saima Shamim isimli arastirmacilar, farkli aldehitler i¢eren bir
dizi 4-aminofenazon (4APZ-1,5-dimetil-2-fenil-1,2-dihidro-3H-pirazol-3-on) Schiff bazi
tirevleri sentezlemisler ve sentetik bilesiklerin, anti-enflamatuar, analjezik ve antipiretik

aktiviteleri acisindan inceledikledini bildirmislerdir [48].

RZ
o R2 o
N
NH N
2 \ﬁ Rl

N | + OHC Rl ——— > N\ |

\N .

/ CHs / CHg

HsC HsC

1- R'= N(CHy),, R?= H; (4APZAB) 3- R!=Cl, R%*= H; (4APZCB)
2- Rl=Br, R%= H; (4APZBB) 4- R'=OH, R’= OCHj; (4APZVn)

Sekil 3.8. 4-Aminofenazonun Schiff bazlarinin sentezi [48]

3.9. Laktitin Halka Acilimi Polimerizasyonu i¢cin Katalizérler Olarak
Mononiikleer Cinko (I1) Schiff Bazi Kompleksleri

2019 yilinda Martin Fuchs, Sebastian Schmitz, Pascal M. Schafer, Tim Secker,
Angela Metz, Agnieszka N. Ksiazkiewicz, Andrij Pich, Paul Kaogerler, Kirill Yu.
Monakhov ve Sonja Herres-Pawlis isimli arastirmacilar kolay sentez sunan ve aerobik
kosullar altinda islenebilen dort yeni homoleptik ¢inko Schiff bazi kompleks
sentezlediklerini, bu saglam, tetra koordineli komplekslerin, laktitin halka agilimi
polimerizasyonu (ROP) igin katalizorler olarak test ettiklerini ve endiistriyel olarak ilgili

kosullar altinda ¢ok uygun olduklarini bildirmislerdir [49].
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/O

Ry

organik ¢oziicl Cl: [Zn(L1),]
o EtOH, reflux reflux

+ H—’O> / N R, L C2: [Zn(L2)2]
i R +Zn(ClO),6H,0  C3: [Zn(L3)y]

i (C1, C3 ve C4)
" o o ezncl, Ca: [Zn(L)g

: 3 (C2) EtOH
HL

HoN

HL1: R, = R,=H, Ry= SCH,
HL2: R, = OCH3, R, = H, Ry = SCH,
HL3: Ry = H, R, = SCH3, Ry = H

HL4:R;=R,=H, Ry=F

Sekil 3.9. Mononiikleer [Zn(L);] kompleksleri C1 - C4 sentezinin sematik gosterimi. [49]

3.10. izoniazidin Yeni Schiff Bazlarinin in Vitro ve In Vivo Hazirlanmasi ve

Antitiiberkiiloz Aktiviteleri

2009 yilinda Michael J. Hearn, Michael H. Cynamon, Michaeline F. Chen, Rebecca
Coppins, Jessica Davis, Helen Joo-On Kang, Abigail Noble, Becky Tu-Sekine, Marianne
S. Terrot, Daniella Trombino, Minh Thai, Eleanor R. Webster ve Rebecca Wilson isimli
arastirmacilar asagidaki bilesik sinifin1 sentezlemisler, bu bilesiklerin in vitro ve
tiiberkiiloz ile enfekte olmus makrofajlarda Mycobacterium tuberculosis’e kars1 yiiksek
aktivite seviyeleri gosterdigini, tiiberkiiloz ile enfekte olmus farelerde giiclii koruma

sagladigini ve diisiik toksisiteye sahip olduklarini bildirmislerdir [50].

CONHNH, CONHN=CR;R,
R1COR2 +
/ /
N N

Sekil 3.10. Karbonil onciilerinden Schiff bazlarimin hazirlanmasi. [50]
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3.11. Biyo-Onemli Antipirin Tiirevli Schiff Bazlar1 ve Gecis Metal Kompleksleri:
Sentez, Spektroskopik Karakterizasyon, Antimikrobiyal, Antelmintik Ve DNA

Boliinme Arastirmasi

2016 yilinda M. Manjunath, Ajaykumar D. Kulkarni, Gangadhar B. Bagihalli,
Shridhar Malladi ve Sangamesh A. Patil isimli arastirmacilar asagidaki Schiff bazi
bilesiklerini ve metal komplekslerini sentezlemisler, metal komplekslerinin
antibakteriyel (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa ve
Salmonella typhi), antifungal (Aspergillus niger, Aspergillus flavus ve Cladosporium) ve
DNA bolinme 6zelliklerini arastirmislardir. Sonuglarin, sentezlenen bilesiklerin
bazilarinin potansiyel antimikrobiyaller olduklarint gosterdigini, antelmintik aktiviteleri
icin test edildigini ve Co" ve Ni'"' komplekslerinin iyi antelmintik 6zellikler sergilediginin

bulundugunu bildirmislerdir [51].

H,oN CH
CH, 2 3
X N Reflux, 4-5 h
+ O S TCH,
N EtOH
Kons. HCI 2-3 damla
HO O (@)
CHO (©) O OH
8-formil-7-hidroksi-4-metil kumarin
4-aminoantipirin X
CHj Schiff baz1 - 1
CHs
H3C
CHO HoN CH3 3
HO. \
N Reflux, 4-5 h
. o S TSCHy —
N EtOH
Kons. HCI 2-3 damla
(@) (@]
5-formil-6-hidroksi kumarin HO \
4-aminoantipirin
o (@)

Schiff baz1 - I1

Sekil 3.11. Schiff Bazlari SB-1 ve SB-1I'nin sentez semasi ve yapist. [51]
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3.12. Boyaya Duyarh Giines Pili Uygulamasi i¢in 4-Nitro-Fenilendiamin Schiff Baz
Ligandi iceren Cift Baglantii Rutenyum (I1) Duyarhlastirici

2019 yilinda Subramaniam Kamalesu, Athanas Anish Babu ve Kalaiyar
Swarnalatha isimli aragtirmacilar yeni heteroleptik ¢ift baglantili Rutenyum(Il)
duyarlilastirici (RNPDA), ligand (NPD-PC) olarak 4-Nitro-fenilendiamin Schiff bazi
kullanilarak sentezlendigini, optik ve elektrokimyasal 6zelliklerinin arastirildigini, TiO2
substratlar: tizerinde etkileyici arayiizey fenomenlerinin yani sira duyarlilik davranisi
gosterdigini, yeni rutenyum boyasinin DSSC uygulamalari i¢in 1518a duyarlilastiric

olarak kullanildigini bildirmislerdir [52].

NO,

ﬁj MeOH 1:1
Reflux 6h
N/ | X

NH, N
NPD-PC

— _ —

NN | N
NO, | N N| _
N \ /”\Rlu/
MeOH 1:1 T
/ 7 Reflux 7h e T \N =
NA@ N |
/ | N X
NH, N

%j

AN

Sekil 3.12. NPD-PC ve RNPDA 'nin sentetik yolu. [52]

3.13. Schiff Bazlarinin Sulu Ortamda Sentezi: Etkili Kiitle Verimi ve Yiiksek
Reaksiyon Hizlari ile Yesil Bir Alternatif Yaklasim

2010 yilinda V. Koteswara Rao, S. Subba Reddy, B. Satheesh Krishna, K. Reddi
Mohan, Naidu, C. Naga Raju ve S.K. Ghosh isimli aragtirmacilar 1,2-diaminobenzeni
¢Oziicli olarak suda ¢esitli aromatik aldehitler ile karistirarak, muhtelif Schiff bazlarinin
“yesil sentez” ine izin veren yeni ¢evre dostu kondensasyon reaksiyonu yontemini
bildirmislerdir. Bu yontem deneysel olarak basit, temiz, yliksek verimli, yesildir ve

reaksiyon siireleri kisalmistir [53].
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Ry

Rs R
H,N
Ry R,
Ry
=0
-
H,0, RT
—N NH,
Rs Ra
AT R44Q:Rl
=0

Ry R; Ry R,
X=N-H, S
—N N—

R, =H, OH, CI, Br

Sekil 3.13. Schiff’in iislerinin genel yesil sentetik yolu. [53]
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4. TEORIK CALISMALAR

Hesaplamali kimya yontemleriyle molekiiler geometrileri, hizlar1 ve dengeleri,
spektrumlart ve diger fiziksel 6zellikleri hesaplayabilirsiniz: molekiiler mekanik, ab
initio, yart deneysel ve yogunluk fonksiyonel yontemler ve molekiiler dinamik.
Hesaplamali kimya, farmasoétik endiistrisinde, 6rnegin bir aday ilact bir enzimin aktif
bolgesine yerlestirerek, biyomolekiiller ile potansiyel ilaglarin etkilesimlerini kesfetmek
icin yaygin olarak kullanilmaktadir. Malzeme biliminde katilarin (6rnegin plastikler)
Ozelliklerini arastirmak ve laboratuvarda ve endiistride nemli reaksiyonlarda katalizi
incelemek i¢in kullanilir. Doga hakkindaki ger¢ekligin nihai belirleyicisi olmayi siirdiiren
deneyin yerini almaz.

Molekiiler geometri: Molekiillerin sekilleri-bag uzunluklari, agilar1 ve dihedralleri.

Molekiillerin enerjileri ve ge¢is durumlari: Bu bize dengede hangi izomerin tercih
edildigini ve (gecis durumu ve reaktan enerjilerinden) bir reaksiyonun ne kadar hizl
gitmesi gerektigini soyler.

Kimyasal reaktivite: Ornegin, elektronlarm nerede yogunlastigini (niikleofilik
bolgeler) ve nereye gitmek istediklerini (elektrofilik bolgeler) bilmek, gesitli reaktif
tiirlerinin bir molekiile nerede saldiracagini tahmin etmemize yardimci olur. Bunun
ozellikle yararl bir uygulamasi, gelistirilmis versiyonlara yol agabilecek katalizorlerin
muhtemel etki tarzini aydinlatmaktir.

IR, UV ve NMR spektrumlari: Bunlar hesaplanabilir ve eger molekiil bilinmiyorsa,
molekiillerin karakterizasyonunu belirlemede yon gosterir.

Bir substratin bir enzimle etkilesimi: Bir molekiiliin bir enzimin aktif bdlgesine
nasil yerlestigini gormek, daha iyi ilaglarin tasarlanmasina yonelik bir yaklagimdir.

Maddelerin fiziksel Ozellikleri: Bunlar, tek tek molekiillerin 6zelliklerine ve
molekiillerin biiyiik hacimli maddede nasil etkilesime girdigine baglidir. Ornegin, bir
polimerin (6rnegin bir plastik) dayaniklilig1 ve erime noktasi, molekiillerin birbirine ne
kadar iyi uyduguna ve aralarindaki kuvvetlerin ne kadar gii¢lii olduguna baglidir. Bu tiir
seyleri arastiran kisiler malzeme bilimi alaninda ¢aligir.

Cok biiylik molekiiller genellikle sadece molekiiler mekanikle incelenir, ¢linkii
diger yontemler (Schrodinger denklemine dayanan kuantum mekaniksel yontemler: yar1
deneysel, ab initio ve DFT) ¢ok uzun siirer. Olagandis1 yapilara sahip yeni molekiiller, en
iyi ab initio veya muhtemelen DFT hesaplamalartyla arastirilir, ¢iinkii MM veya yari

deneysel yontemlerde bulunan parametrelendirme, onlar1 parametrelendirmede

17



kullanilanlardan ¢ok farkli molekiiller i¢in giivenilmez kilar. DFT, ab initio ve yari
deneysel yontemlerden daha yenidir ve siirlamalar1 ve olanaklar1 diger yontemlerden
daha az aciktir.

Yogunluk fonksiyonel hesaplamalar1 (genellikle DFT hesaplamalari, yogunluk
fonksiyonel teorisi olarak adlandirilir; fonksiyonel, bir fonksiyonla ilgili matematiksel bir
varliktir), Schrodinger denklemine dayanan ab initio ve yar1 deneysel hesaplamalar
gibidir. Bununla birlikte, diger iki yontemden farkli olarak, DFT bir dalga fonksiyonunu
hesaplamaz, bunun yerine dogrudan elektron dagilimini (elektron yogunlugu fonksiyonu)
tiiretir. Yogunluk fonksiyonel hesaplamalari genellikle ab initio’dan daha hizlidir, ancak
yar1 deneyselden daha yavastir. DFT biraz yenidir: kimyasal olarak kullamigli DFT
hesaplamali kimya 1980’lere kadar uzanirken, “ciddi” hesaplamali kimya 1970’lerde ab
initio yontemiyle ve 1950’lerde yar1 deneysel yaklasimlarla yapiliyordu [39].

B3LYP fonksiyoneli, bagil agirliklart deneysel termokimyasal verilere gore segilen
birka¢ bilesenin bir hibritidir. Molekiiler geometrileri ve titresim frekanslarini tahmin
etmedeki bu tiir melez fonksiyonellerin dogruluklari heniiz tam olarak karakterize
edilmemistir [40].

B3LYP fonksiyoneli, toplamda tam olarak sekiz ampirik parametreye sahiptir.
B3LYP cilginca popiiler olmustur: Sousa ve arkadaslart [41] 2007’ deki makalelerinde
2002’den 2006’ya kadar her y1l fonksiyonellerin adlarinin dergi makaleleri ve 6zetlerinin
yaklasik %80’ini olusturdugunu, bu popiilerligin, agik¢a, hemen hemen her 06zel
uygulama i¢in daha iyi bir fonksiyonelin bulunabilecegi gercegine ragmen, Sousa ve
arkadaglar1 [41], 2007 dolaylarinda, “B3LYP’nin ‘ortalama’ kuantum kimyasi problemi

icin hala gecerli ve 6zellikle verimli bir alternatif olmaya devam ettigini” soylediler [39].

4.1. imidazole Dayah Schiff Bazinin Sentezi, Kristal Yapisi, DFT Hesaplamalari,
Hirshfeld Yiizeyleri ve Antibakteriyel Aktiviteleri

2019 yilinda Siham Slassi, Mohammed Aarjane, Khalid Yamni ve Amina Amine
isimli arastirmacilar yeni bir Schiff bazi (2) sentezlemisler, 2’nin yapisal parametreleri ve
elektronik absorpsiyon 6zelliklerinin de Yogunluk Fonksiyonel Teorisi (DFT) ve Zamana
Bagli Yogunluk Fonksiyonel Teorisi (TD-DFT) kullanilarak incelendigini ve Schiff bazi
(2)’nin, dort patojenik tiire karst (Staphylococcus aureus, Pseudomonas putida,
Klebsiella pneumoniae ve Escherichia coli) in vitro antibakteriyel aktiviteleri agisindan
degerlendirdiklerini bildirmislerdir [57].
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NH, OH
NaNO,, HCl N
+ osc |
0-5°C
N
CHO

OH

Sekil 4.1. Schiff bazi 2 nin sentezi [57]

4.2. Tiyofen Halkasi iceren Yeni Schiff Bazinin Sentezi, Spektroskopik

Karakterizasyonu ve DFT Hesaplamalari

2017 yilinda Emel Ermis isimli arastirmaci bir tiyofen halkasi ve N, O verici
gruplarina sahip yeni bir Schiff bazi tiirevi (5) sentezlemis, optimize edilmis molekiiler
geometri, titresim frekanslar;, *H ve *C NMR kimyasal kaymalari, UV-Gériiniir 151k
Ozelliklerini incelemek i¢in Yogunluk Fonksiyonel Teorisi (DFT/B3LYP/6-311+G (d, p))
hesaplama yonteminin kullanildigini, (5) bilesiginin spektroskopik parametrelerinin,
HOMO-LUMO enerjileri, molekiiler elektrostatik potansiyel (MEP) haritas1 ve teorik
sonuglarmin deneysel verilerle karsilagtirildigini, ayrica 6-311+G(d, p) temel seti B3LYP
metodu kullanilarak ¢oziicli ortaminda elektronik ve termal serbest enerji toplami
(SETFE), atomik yiikler, dipol momenti gibi enerji davraniglarinin aragtirildigini, elde
edilen deneysel ve teorik sonuglarin birbiriyle uyumlu oldugunu ve sentezlenen Schiff

bazi tiirevi (5) i¢in Onerilen molekiiler yapinin desteklendigini bildirmistir [58].
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EtOH reflux

Sekil 4.2. 5’in sentezi [58]

4.3. 2-((4-(dimetilamino)benziliden)amino)-4-metilfenol ve Sitotoksisitesinin Teorik

ve Deneysel Elektronik Geg¢is Davranisi Calismasi

2020 yilinda Ulkii Dilek Uysal, Dila Ercengiz, Oguzhan Karaosmanoglu, Burak
Berber, Hiilya Sivas ve Halil Berber isimli arastirmacilar bir Schiff bazi (7S2)
sentezlediklerini, Schiff bazinin elektronik geg¢is davranisinin UV-Goriiniir 151k
spektroskopisi ile sekiz farkl ¢oziiciide arastirildigini, 7S2’nin kararli geometrisinin DFT
(B3LYP/6-311G(2d, p)) yontemi ile belirlendigini, farmakokinetik o6zelliklere ve
sitotoksik aktivitelere gore, 7S2’nin bir antikanser ilag potansiyeline sahip olabilecegini

diistindiiklerini bildirmislerdir [59].

(:H3

Etll alkol \O\
CHO +

4-(dimetilamino)benzaldehit

H3C
H;C

2-amino-4-metilfenol CHg

(E)-2-((4-(dimetilamino)benziliden)amino)-4-metilfenol (7S2)

Sekil 4.3. 752 nin sentezi [59]
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4.4. 2-Hidroksinaftaldehit’ten Tiiretilen Bir Schiff Bazinin Sentezi, DFT
Hesaplamalari ve Antimikrobiyal Aktivitesi: Dikkat Cekici Coziicii Etkisi

2020 y1linda Melek Tercan, Namik Ozdemir, Fethi Ahmet Ozdemir, Zafer Serbetci,
Digdem Erdener, Bekir Cetinkaya ve Osman Dayan isimli arastirmacilar stilfonamid
grubu tasiyan yeni bir Schiff bazi sentezlediklerini, spektroskopik 6zellikleri teorik olarak
Yogunluk Fonksiyonel Teorisi (DFT/B3LYP) yontemi, 6-311++G(d, p) temel seti ile
incelendigini, zwitteriyon = enol tautomerizasyonu IEF-PCM yaklasimi1 kullanilarak
calisildigin1 ve enol formunun zwitteriyonik forma gore baskin oldugu ¢ozeltinin tim
bakteri tiirleri i¢in daha fazla antimikrobiyal etkinlige sahip oldugunu gosterdigini

bildirmislerdir [60].

O—S——0
0O—S—0

7z

0O—S—0

o |
NH |
| NH
OH
NH
+ —_— -~
NH* [e}
| N OH
NH, |
1 ‘

2a: Zwitteriyon
(kat: halde, 2b: Enol-imin
ve polar ¢oziicti) apolar ¢oziictlerde

Sekil 4.4. 2a-b bilesiginin olusumu [60]

4.5. Sikloheksandiamin’den Tiiretilen Schiff Bazinin Yapisal Karakterizasyonu,
DFT, Hirshfeld Yiizey Analizi ve Antibakteriyel Aktivitesi

2021 yilinda Nur Husnina Nasaruddin, Shahrul Nizam Ahmad, Siti Syaida Sirat,
Tan Kong Wai, Nurul Aili Zakaria ve Hadariah Bahron isimli arastirmacilar
sikloheksandiamin ve 3-metilsalisilaldehitten tiiretilen yeni bir Schiff bazi elde ettiklerini,
B3LYP yo6nteminin, molekiiliin optimize edilmis yapisini, 6-311G++(d, p) temel seti
kullanilarak Yogunluk Fonksiyonel Teorisi (DFT) araciligiyla hesaplamak igin
kullanildigini, konformasyon analizi sonuglarinin, X-isim1 tek kristal kirmimi ile

belirlenen kristal yapi ile iyi bir uyum i¢inde oldugunu, ek olarak, AD2Me’nin molekiiler
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elektrostatik potansiyeli, sinir molekiiler orbitalleri ve kimyasal reaktivite
tanimlayicilarinin, bilesigin elektronik 6zelliklerini agiga ¢ikaran DFT kullanilarak daha
da arastirildigini ve bilesigin Staphylococcus aureus alt tiirii aureus Rosenbach (ATCC
6538) ve Streptococcus mutans Clarke’a (ATCC 700610) karsi 6nemli bir aktivite
gostermedigini bildirmislerdir [61].

10

0 8
2
EtOH —N
oH + 2h reflux
OH
CH; H,oN NH,

CH3

Sekil 4.5. AD2Me 'nin sentezi [61]
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5. TIYOFEN TEMELLI SCHiFF BAZI MOLEKULLERININ
KONFORMASYON ANALIZLERI VE SPEKTROSKOPIK OZELLIKLERININ
DFT iLE TEORIK OLARAK iNCELENMESI

5.1. Malzeme ve Yontem

Hesaplamasi yapilacak olan her bir molekiil 5nce ChemDraw programinda gizilerek
Chem3D programina aktarildi. Chem3D programinda dihedral a¢iya bagli konformasyon
analizi 6nce C10-N8-C7-C4 dihedral agisinin fonksiyonu olarak C7-C4 grubu N8-C7
baginin etrafinda, sonra N§-C7-C4-S5 dihedral agisinin fonksiyonu olarak C4-S5 grubu
C7-C4 baginin etrafinda ve daha sonra N8-C7-C4-C3 dihedral agisinin fonksiyonu olarak
C4-C3 grubu C7-C4 baginin etrafinda -180° ile 180° araliginda 30 adimlarla
degistirilerek yapildi ve elde edilen veriler grafige gecirildi. Olusan en diisiik enerjili
konformasyon Chem3D Ultra 8.0 programinda minimize edilerek mol uzantili olarak
kaydedildi ve mol uzantili dosya Gaussian programinda DFT-B3LYP metodu ve 6-
31G(d) temel setinde optimize edildi. Optimize edilen molekiillerin out dosyasindan TD-
DFT B3LYP/6-31G(d)’de gaz, su, DMSO, asetonitril, ctanol, metanol, THF ve
diklorometan fazinda toplam enerji ve dipol moment degerleri ile HOMO-LUMO
sekilleri ve enerji degerleri hesaplandi. Daha sonra molekiillerin UV ve goriiniir 151k
absorpsiyon spektroskopisi ile Molekiiler Elektrostatik Potansiyel (MEP) ve Coziicii
Erisilebilirlik Yiizeyi (SAS) sonuglart alindi.

5.2. (E)-N-((5-(E-(fenilimino)metil)tiyofen-2-il)metilen)benzenamin (1)

Molekiiliiniin Teorik Hesaplamalari

Sekil 5.1. [ molekiiliiniin ChemDraw géosterimi
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Sekil 5.2. 1 molekiiliiniin Chem3D gosterimi

5.2.1. Teorik konformasyon hesaplamalari

1 molekiiliiniin en diistik enerjili konformasyonunu bulmak i¢in Chem3D
programinda dihedral agiya bagli konformasyon analizi 6énce C10-N8-C7-C4 dihedral
acisiin fonksiyonu olarak C7-C4 grubu N8-C7 bagimin etrafinda, sonra N8-C7-C4-S5
dihedral agisinin fonksiyonu olarak C4-S5 grubu C7-C4 baginin etrafinda ve daha sonra
N8-C7-C4-C3 dihedral agisinin fonksiyonu olarak C4-C3 grubu C7-C4 baginin etrafinda
-180° ile 180° araliginda 30 adimlarla degistirilerek yapildi ve elde edilen veriler grafige
gecirilerek Sekil 5.3, 5.4 ve 5.5’te verildi. Ik analizde -120"’de bir minimum (187,56
kcal/mol) ve 0°’de bir maksimum (264 1,13 kcal/mol), ikinci analizde 0°’de bir minimum
(187,56 kcal/mol) ve -90°’de bir maksimum (238,92 kcal/mol), tiglincii analizde -180° ve
180°’de iki minimum (187,56 kcal/mol) ve 90°’de bir maksimum (238,92 kcal/mol)
degerleri bulundu. Hesaplamalarda kullanmak i¢in en diisiik enerjili konformasyon
(187,56 kcal/mol) secildi ve Chem3D Ultra 8.0 programinda minimize edildi. Minimize
enerji degeri 12,7704 kcal/mol olarak hesaplandi. Daha sonra minimize edilen

konformasyon geometrisi optimize edildi.
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Sekil 5.3. 1 molekiiliiniin C10-N8-C7-C4 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi
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Sekil 5.4. [ molekiiliiniin N§8-C7-CA4-S5 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi
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Sekil 5.5. 1 molekiiliiniin N§-C7-C4-C3 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi

5.2.2. Toplam enerji ve dipol moment hesaplamalari

1 molekiiliiniin gaz fazi ve ¢esitli ¢oziicii fazlarinda toplam enerji ve dipol moment
degerleri hesaplandi ve sonuglar Tablo 5.1°de verildi. Toplam enerji degerleri ¢oziicii
fazlarinda birbirine ¢ok yakin degerler alirken gaz fazinda daha yiiksek bir deger aldig:
goriildii (1 a.u. = 627,5 kcal/mol). Bu nedenle 1 molekiiliiniin ¢oziicii fazinda daha kararl
oldugu, gaz fazinda ise en kararsiz oldugu diisiiniilebilir. 1 molekiiliiniin dipol moment
degerleri genel olarak tiim ¢oziiciilerde yiiksekti, bu da bilesigin polar ¢oziiciiler iginde
iyi ¢Oziinebilecegini gosterir. 1 molekiiliiniin benzer polar 6zelliklere sahip merkezlerle

etkilesime girebilecegi de sdylenebilir [59].
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Tablo 5.1. 1 molekiiliiniin toplam enerji ve dipol moment degerleri

Bilesik Toplam enerji (kcal/mol) Dipol moment (Debye)
Gaz faz -754264,2168 3,0032
Su faz1 -754270,9413 4,7762
DMSO fazi -754270,8188 4,7385
Asetonitril faz -754270,7255 4,7100
Etanol faz1 -754270,5581 4,6589
Metanol faz1 -754270,6889 4,6988
THF faz1 -754269,4050 4,3174
Diklorometan fazi -754269,6614 4,3919

Olusan tabloya gore fazlarin toplam enerji siralamasi su sekildedir: Su < DMSO <
Asetonitril < Metanol < Etanol < Diklorometan < THF < Gaz. Su fazindan gaz fazina
dogru toplam enerji artarken kararlilik azalmaktadir.

Dipol moment siralamast ise su sekildedir: Gaz < THF < Diklorometan < Etanol <
Metanol < Asetonitril < DMSO < Su.

Coziicli fazindaki molekiiliin gaz fazindaki molekiile kiyasla delokalize yiikiin
artmasi nedeniyle dipol momentinin arttig1 goriilmektedir. Ayrica molekiiliin su fazinda
en yliksek dipol moment degerine sahip olmasi 1 molekiilii ile su molekiilii arasinda

olusan dipol dipol ve hidrojen baglarindan kaynaklandig1 sdylenebilir [62].

5.2.3. Uyarilmus enerji ve HOMO-LUMO hesaplamalari

1 molekiilii i¢in gesitli ¢oziiclilerde teorik hesaplanan HOMO, LUMO ve AE
degerleri (Sekil 5.7) ile UV-Goriiniir 151k spektrumlart (Sekil 5.6) dalga boyu degerleri
gaz faz1 ve cesitli ¢oziicli ortamlarinda hesaplandi ve sonuglar Tablo 5.2°de verildi. AE
degerinin her fazda 3,35 eV civarinda oldugu hesaplandi (1 a.u. = 27,211 eV). Yiiksek
AE degerleri bilesigin kararli yapida ve yalitkan 6zellikte oldugunu gostermektedir [63].
Uyarilmis enerji dalga boyu degerlerinin gaz fazinda 409,33 nm’de, ¢oziicii fazlarinda ise
419,28-421,6 nm araliginda hesaplandigi goriildii. Bu nedenle molekiiliin ¢oziicii fazinda
olmasi gaz fazina gore batokromik kaymaya neden olmaktadir [64].

Olusan tabloya gore fazlarin AE siralamasi su sekildedir: DMSO < Su = Etanol =

THF < Asetonitril = Metanol < Diklorometan < Gaz.
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Amax siralamasi ise su sekildedir: Gaz < Metanol < Su < Asetonitril < Etanol < THF

< DMSO < Diklorometan.

Tablo 5.2. I molekiiliiniin EHOMO| ELUMQ, AE (ELUMO'EHOMO) Ve Amax degerleri

Bilesik Enomo (eV) ELumo (eV) AE (ELUMO'EHOMO) (eV) Amax (nm)
Gaz faz1 -5,6806 -2,3274 3,3532 409,33
Su faza -5,8343 -2,4841 3,3502 419,28
DMSO fazi -5,8312 -2,4811 3,3501 421,25
Asetonitril fazi -5,8289 -2,4786 3,3503 419,58
Etanol faza -5,8248 -2,4746 3,3502 420,02
Metanol fazi -5,8281 -2,4778 3,3503 419,21
THF faz -5,8294 -2,4792 3,3502 421,23
Diklorometan faz1  -5,8027 -2,4523 3,3504 421,6
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Sekil 5.6. 1 molekiiliiniin farkl ¢oziiciiler icin teorik hesaplanan UV-Gdriiniir stk spektrumlari
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Sekil 5.7. 1 molekiiliiniin ¢esitli fazlardaki sinr molekiiler orbitallerinin atomik orbital yapis
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5.2.4. Molekiiler elektrostatik potansiyel yiizey analizi

Gaz fazindaki 1 molekiiliinin MEP yiizey sekli incelendiginde kirmizi renkli
bolgelerin (negatif) azot atomlar1 etrafinda lokalize oldugunu ve elektrofilik bir saldirinin
bu bolgelere olma ihtimalinin en yliksek oldugu bolgeleri gosterir. Mavi renkli bolgelerin
(pozitif) hidrojen atomlar1 etrafinda lokalize oldugunu ve niikleofilik bir saldirinin bu
bolgelere olma ihtimalinin en yiiksek oldugu bolgeleri gosterir. Sar1 ve yesil renkli
bolgeler ise elektronca daha zayif olan ara potansiyel bolgeleri gosterir. Bu bolgeler,

¢ozlinen ve ¢oziicli molekiilii arasindaki etkilesimde rol oynayabilir [65].
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Sekil 5.8. Gaz fazindaki 1 molekiiliiniin Molekiiler Elektrostatik Potansiyel (MEP) yiizey sekli

5.2.5. Coziicii erisilebilirlik yiizeyi analizi

1 molekiiliniin ¢6ziicii erisilebilirlik yiizey sekli incelendiginde mavi renkli
bolgeler azot atomlarinin ¢6ziicii molekiilii ile etkilesim bolgelerini, sar1 renkli bolge
kiikiirt atomunun ¢dziicii molekiilii ile etkilesim bolgesini, agik gri ve koyu gri renkli
bolgeler ise sirasiyla hidrojen ve karbon atomlarinin ¢oziicii ile etkilesim bolgelerini
gosterir. SAS seklinden goriildiigii gibi molekiiliin en giiglii etkilesim bolgelerinin azot
ve kiikiirt atomlar etrafinda oldugu sdylenebilir. Bu nedenle, polar protik ve aprotik
¢oziicliler, bilesigin azot ve kiikiirt atomlar ile etkilesime girerken, apolar ¢oziiciiler

karbon ve hidrojen atomlari ile etkilesime girecektir [66].
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Sekil 5.9. 1 molekiiliiniin Céziicii Erisilebilirlik Yiizeyi (SAS) sekli

5.3. (E)-4-nitro-N-((5-((E)-(4-nitrofenilimino)metil)tiyofen-2-il)metilen)benzenamin

(2) Molekiiliiniin Teorik Hesaplamalari

Z2—=—0

Sekil 5.10. 2 molekiiliiniin ChemDraw gdsterimi
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Sekil 5.11. 2 molekiiliiniin Chem3D gosterimi

5.3.1. Teorik konformasyon hesaplamalari

2 molekiiliiniin en diisiik enerjili konformasyonunu bulmak i¢in Chem3D
programinda dihedral agiya bagli konformasyon analizi 6énce C10-N8-C7-C4 dihedral
acisiin fonksiyonu olarak C7-C4 grubu N8-C7 bagimin etrafinda, sonra N8-C7-C4-S5
dihedral agisinin fonksiyonu olarak C4-S5 grubu C7-C4 baginin etrafinda ve daha sonra
N8-C7-C4-C3 dihedral agisinin fonksiyonu olarak C4-C3 grubu C7-C4 baginin etrafinda
-180° ile 180° araliginda 30 adimlarla degistirilerek yapildi ve elde edilen veriler grafige
gegirilerek Sekil 5.12, 5.13 ve 5.14’te verildi. {1k analizde -120°’de bir minimum (199,06
kcal/mol) ve 0”’de bir maksimum (2666,75 kcal/mol), ikinci analizde -180° ve 1807’ de
iki minimum (196,43 kcal/mol) ve 90°’de bir maksimum (253,16 kcal/mol), iiglincii
analizde 0°’de bir minimum (196,43 kcal/mol) ve -90°’de bir maksimum (253,16
kcal/mol) degerleri bulundu. Hesaplamalarda kullanmak icin en diisiik enerjili
konformasyon (196,43 kcal/mol) secildi ve Chem3D Ultra 8.0 programinda minimize
edildi. Minimize enerji degeri -29,0283 kcal/mol olarak hesaplandi. Daha sonra minimize

edilen konformasyon geometrisi optimize edildi.
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Sekil 5.12. 2 molekiiliiniin C10-N8-C7-C4 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi
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Sekil 5.13. 2 molekiiliiniin N§-C7-C4-S5 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi
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Sekil 5.14. 2 molekiiliiniin N§-C7-C4-C3 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi

5.3.2. Toplam enerji ve dipol moment hesaplamalari

2 molekiiliinlin gaz faz1 ve ¢esitli ¢oziicii fazlarinda toplam enerji ve dipol moment
degerleri hesaplandi ve sonuglar Tablo 5.3’te verildi. Toplam enerji degerleri ¢oziicii
fazlarinda birbirine ¢ok yakin degerler alirken gaz fazinda daha yiiksek bir deger aldig:
goriildii. Bu nedenle 2 molekiiliiniin ¢oziicii fazinda daha kararli oldugu, gaz fazinda ise
en kararsiz oldugu diisiiniilebilir. 2 molekiiliiniin dipol moment degerleri genel olarak tiim
coziiciilerde yiiksekti, bu da bilesigin polar ¢oziiciiler i¢inde iyi ¢oziinebilecegini gosterir.
2 molekiiliiniin benzer polar 6zelliklere sahip merkezlerle etkilesime girebilecegi de
sOylenebilir.

Olusan tabloya gore fazlarin toplam enerji siralamasi su sekildedir: Su < DMSO <
Asetonitril < Metanol < Etanol < Diklorometan < THF < Gaz. Su fazindan gaz fazina
dogru toplam enerji artarken kararlilik azalmaktadir.

Dipol moment siralamasi ise su sekildedir: Gaz < THF < Diklorometan < Etanol <
Metanol < Asetonitril < DMSO < Su.

Coziicii fazindaki molekiiliin gaz fazindaki molekiile kiyasla delokalize ytikiin
artmasi nedeniyle dipol momentinin arttig1 goriilmektedir. Ayrica molekiiliin su fazinda
en yliksek dipol moment degerine sahip olmasi 2 molekiilii ile su molekiilii arasinda

olusan dipol dipol ve hidrojen baglarindan kaynaklandig1 sdylenebilir.
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Tablo 5.3. 2 molekiiliiniin toplam enerji ve dipol moment degerleri

Bilesik Toplam enerji (kcal/mol) Dipol moment (Debye)
Gaz fan -1010908,6581 2,2163
Su fazi -1010920,2198 2,6103
DMSO fazi -1010920,0529 2,6100
Asetonitril faz -1010919,9249 2,6096
Etanol faz1 -1010919,6935 2,6087
Metanol faz1 -1010919,8746 2,6094
THF faz1 -1010918,0322 2,5911
Diklorometan fazi -1010918,4122 2,5968

5.3.3. Uyarilmis enerji ve HOMO-LUMO hesaplamalari

2 molekiili i¢in cesitli ¢oziiclilerde teorik hesaplanan HOMO, LUMO ve AE
degerleri (Sekil 5.16) ile UV-Goriiniir 151k spektrumlari (Sekil 5.15) dalga boyu degerleri
gaz faz1 ve cesitli ¢oziicli ortamlarinda hesaplandi ve sonuglar Tablo 4.4°de verildi. AE
degerinin her fazda 3,60 eV civarinda oldugu hesaplandi. Yiiksek AE degerleri bilesigin
kararli yapida ve yalitkan 6zellikte oldugunu gostermektedir. Uyarilmis enerji dalga boyu
degerlerinin gaz fazinda 383,44 nm’de, ¢0ziicii fazlarinda ise 394,15-395,6 nm araliginda
hesaplandig1 goriildii. Bu nedenle molekiiliin ¢6ziicii fazinda olmas1 gaz fazina gore
batokromik kaymaya neden olmaktadir.

Olusan tabloya gore fazlarin AE siralamasi su sekildedir: Su < DMSO < Asetonitril
< Metanol < Etanol < THF < Diklorometan < Gaz.

Amax siralamasi ise su sekildedir: Gaz < Metanol < Su < Asetonitril < THF < Etanol

< Diklorometan < DMSO.

35



Tablo 5.4. 2 molekiiliiniin EHOMO, ELUMO, AE (ELUMO'EHOMO) V€ Amax degerleri

Bilegik EHOMO (EV) ELUMO (eV) AE (ELUMO'EHOMO) (eV) )hmax (nm)
Gaz fan -6,7979 -3,1957 3,6022 383,44
Su faz1 -6,4743 -2,9072 3,5671 394,15
DMSO faz1 -6,4787 -2,9099 3,5688 395,60
Asetonitril faz1 -6,4817 -2,9118 3,5699 394,20
Etanol faza -6,4876 -2,9157 3,5719 394,39
Metanol faz1 -6,4830 -2,9127 3,5703 393,86
THF faz -6,5306 -2,9459 3,5847 394,34
Diklorometan faz1  -6,5206 -2,9276 3,5930 394,86
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Sekil 5.15. 2 molekiiliiniin farkl ¢oziiciiler icin teorik hesaplanan UV-Gériiniir 151k spektrumlart
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Sekil 5.16. 2 molekiiliiniin ¢esitli fazlardaki sinwr molekiiler orbitallerinin atomik orbital yapisi
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5.3.4. Molekiiler elektrostatik potansiyel yiizey analizi

Gaz fazindaki 2 molekiiliiniin MEP yiizey sekli incelendiginde kirmizi renkli
bolgelerin (negatif) oksijen atomlar1 etrafinda lokalize oldugunu ve elektrofilik bir
saldirinin bu bolgelere olma ihtimalinin en yiiksek oldugu bolgeleri gosterir. Mavi renkli
bolgelerin (pozitif) hidrojen atomlar1 etrafinda lokalize oldugunu ve niikleofilik bir
saldirinin bu bolgelere olma ihtimalinin en yiiksek oldugu bolgeleri gosterir. Sar ve yesil
renkli bolgeler ise elektronca daha zayif olan ara potansiyel bolgeleri gosterir. Bu

bolgeler, ¢oziinen ve ¢oziicli molekiilii arasindaki etkilesimde rol oynayabilir.

472 D B

Sekil 5.17. Gaz fazindaki 2 molekiiliiniin Molekiiler Elektrostatik Potansiyel (MEP) yiizey sekli

5.3.5. Coziicii erisilebilirlik yiizeyi analizi

2 molekiiliiniin ¢oziicii erisilebilirlik ylizey sekli incelendiginde kirmizi renkli
bolgeler oksijen atomlarinin ¢oziicii molekiilii ile etkilesim bolgelerini, mavi renkli
bolgeler azot atomlarinin ¢oziicii molekiilii ile etkilesim bolgelerini, sar1 renkli bolge
kiikiirt atomunun ¢oziici molekiilii ile etkilesim bolgesini, agik gri ve koyu gri renkli
bolgeler ise sirasiyla hidrojen ve karbon atomlarinin ¢oziicii ile etkilesim bolgelerini
gosterir. SAS seklinden goriildiigii gibi molekiiliin en gii¢lii etkilesim bolgelerinin
oksijen, azot ve kiikiirt atomlar1 etrafinda oldugu sdylenebilir. Bu nedenle, polar protik
ve aprotik ¢oziiciiler, bilesigin oksijen, azot ve kiikiirt atomlar ile etkilesime girerken,

apolar ¢oziiciiler karbon ve hidrojen atomlari ile etkilesime girecektir.
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Sekil 5.18. 2 molekiiliiniin Coziicii Evisilebilirlik Yiizeyi (SAS) sekli

5.4. (E)-4-kloro-N-((5-((E)-(4-klorofenilimino)metil)tiyofen-2-
il)metilen)benzenamin (3) Molekiiliiniin Teorik Hesaplamalari

Cl

Cl

Sekil 5.19. 3 molekiiliiniin ChemDraw gésterimi
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Sekil 5.20. 3 molekiiliiniin Chem3D gosterimi

5.4.1. Teorik konformasyon hesaplamalari

3 molekiiliiniin en diisiik enerjili konformasyonunu bulmak i¢in Chem3D
programinda dihedral agiya bagli konformasyon analizi 6nce C9-N8-C6-C4 dihedral
acisiin fonksiyonu olarak C6-C4 grubu N8-C6 baginin etrafinda, sonra N8-C6-C4-S5
dihedral ag¢isinin fonksiyonu olarak C4-S5 grubu C6-C4 baginin etrafinda ve daha sonra
N8-C6-C4-C3 dihedral agisinin fonksiyonu olarak C4-C3 grubu C6-C4 baginin etrafinda
-180° ile 180° araliginda 30 adimlarla degistirilerek yapildi ve elde edilen veriler grafige
gecirilerek Sekil 5.21, 5.22 ve 5.23’te verildi. i1k analizde -120°’de bir minimum (188,61
kcal/mol) ve 0°’de bir maksimum (2641,23 kcal/mol), ikinci analizde 0°’de bir minimum
(188,61 kcal/mol) ve -90°’de bir maksimum (240,10 kcal/mol), iiglincii analizde -180° ve
180°’de iki minimum (188,61 kcal/mol) ve 90°’de bir maksimum (240,10 kcal/mol)
degerleri bulundu. Hesaplamalarda kullanmak i¢in en diislik enerjili konformasyon
(188,61 kcal/mol) secildi ve Chem3D Ultra 8.0 programinda minimize edildi. Minimize
enerji degeri 13,4079 kcal/mol olarak hesaplandi. Daha sonra minimize edilen

konformasyon geometrisi optimize edildi.
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Sekil 5.21. 3 molekiiliiniin C9-N8-C6-C4 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi
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Sekil 5.22. 3 molekiiliiniin N§-C6-C4-S5 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi
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Sekil 5.23. 3 molekiiliiniin N8-C6-C4-C3 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi

5.4.2. Toplam enerji ve dipol moment hesaplamalari

3 molekiiliiniin gaz faz1 ve ¢esitli ¢oziicli fazlarinda toplam enerji ve dipol moment
degerleri hesaplandi ve sonuglar Tablo 5.5’te verildi. Toplam enerji degerleri ¢oziicii
fazlarinda birbirine ¢ok yakin degerler alirken gaz fazinda daha yiiksek bir deger aldig:
goriildii. Bu nedenle 3 molekiiliiniin ¢oziicii fazinda daha kararli oldugu, gaz fazinda ise
en kararsiz oldugu diisiiniilebilir. 3 molekiiliiniin dipol moment degerleri genel olarak tiim
coziiciilerde yiiksekti, bu da bilesigin polar ¢oziiciiler i¢inde iyi ¢oziinebilecegini gosterir.
3 molekiiliinlin benzer polar 6zelliklere sahip merkezlerle etkilesime girebilecegi de
sOylenebilir.

Olusan tabloya gore fazlarin toplam enerji siralamasi su sekildedir: Su < DMSO <
Asetonitril < Metanol < Etanol < Diklorometan < THF < Gaz. Su fazindan gaz fazina
dogru toplam enerji artarken kararlilik azalmaktadir.

Dipol moment siralamast ise su sekildedir: Gaz < THF < Diklorometan < Etanol <
Metanol < Asetonitril < DMSO < Su.

(Coziicii fazindaki molekiiliin gaz fazindaki molekiile kiyasla delokalize ytikiin
artmasi nedeniyle dipol momentinin arttig1 goriilmektedir. Ayrica molekiiliin su fazinda
en yiiksek dipol moment degerine sahip olmasi 3 molekiilii ile su molekiilii arasinda

olusan dipol dipol ve hidrojen baglarindan kaynaklandigi sdylenebilir.
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Tablo 5.5. 3 molekiiliiniin toplam enerji ve dipol moment degerleri

Bilesik Toplam enerji (kcal/mol) Dipol moment (Debye)
Gaz fan -1331057,0849 4,1697
Su fazi -1331064,1323 6,2620
DMSO fazi -1331064,0123 6,2207
Asetonitril faz -1331063,9207 6,1893
Etanol faz1 -1331063,7560 6,1332
Metanol faz1 -1331063,8847 6,1771
THF faz1 -1331062,6098 5,7525
Diklorometan fazi -1331062,8801 5,8666

5.4.3. Uyarilmis enerji ve HOMO-LUMO hesaplamalari

3 molekiilii i¢in c¢esitli ¢oziiclilerde teorik hesaplanan HOMO, LUMO ve AE
degerleri (Sekil 5.25) ile UV-Goriiniir 151k spektrumlari (Sekil 5.24) dalga boyu degerleri
gaz faz1 ve cesitli ¢oziicli ortamlarinda hesaplandi ve sonuglar Tablo 5.6°da verildi. AE
degerinin her fazda 3,30 eV civarinda oldugu hesaplandi. Yiiksek AE degerleri bilesigin
kararli yapida ve yalitkan 6zellikte oldugunu gostermektedir. Uyarilmis enerji dalga boyu
degerlerinin gaz fazinda 421,55 nm’de, ¢oOzilicii fazlarinda ise 427,01-429,96 nm
araliginda hesaplandigi goriildii. Bu nedenle molekiiliin ¢6ziicii fazinda olmasi gaz fazina
gore batokromik kaymaya neden olmaktadir.

Olusan tabloya gore fazlarin AE siralamasi su sekildedir: Gaz < THF <

Diklorometan < Etanol < Metanol < Asetonitril < DMSO < Su.

Amax Siralamasi ise su sekildedir: Gaz < Su < Metanol < Asetonitril < Etanol <

DMSO < THF < Diklorometan.
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Tablo 5.6. 3 molekiiliiniin EHOMO, ELUMO, AE (ELUMO'EHOMO) V€ Amax degerleri

Bilegik Enomo (EV) ELumo (eV) AE (ELUMO'EHOMO) (eV) Amax (nm)
Gaz fan -5,8705 -2,6008 3,2697 421,55
Su faz1 -5,8925 -2,5924 3,3001 427,01
DMSO fazi -5,8912 -2,5916 3,2996 429,03
Asetonitril faz1 -5,8904 -2,5910 3,2994 427,42
Etanol faza -5,8887 -2,5899 3,2988 427,93
Metanol faz1 -5,8901 -2,5908 3,2993 427,06
THF faz -5,8789 -2,5840 3,2949 429,73
Diklorometan faz1  -5,8808 -2,5850 3,2958 429,96
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Sekil 5.24. 3 molekiiliiniin farkli ¢oziiciiler icin teorik hesaplanan UV-Goriiniir 151k spektrumlari
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Sekil 5.25. 3 molekiiliiniin ¢egitli fazlardaki sinir molekiiler orbitallerinin atomik orbital yapist
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5.4.4. Molekiiler elektrostatik potansiyel yiizey analizi

Gaz fazindaki 3 molekiiliniin MEP yiizey sekli incelendiginde kirmizi renkli
bolgelerin (negatif) azot atomlari etrafinda lokalize oldugunu ve elektrofilik bir saldirinin
bu bolgelere olma ihtimalinin en yiiksek oldugu bolgeleri gosterir. Mavi renkli bolgelerin
(pozitif) hidrojen atomlar etrafinda lokalize oldugunu ve niikleofilik bir saldirinin bu
bolgelere olma ihtimalinin en yiiksek oldugu bolgeleri gosterir. Sar1 ve yesil renkli

bolgeler ise elektronca daha zayif olan ara potansiyel bolgeleri gosterir.

asxe2 I | T  c3e-2

Sekil 5.26. Gaz fazindaki 3 molekiiltiniin Molekiiler Elektrostatik Potansiyel (MEP) yiizey sekli

5.4.5. Coziicii erisilebilirlik yiizeyi analizi

3 molekiiliiniin ¢6ziicti erisilebilirlik yiizey sekli incelendiginde yesil renkli
bolgeler klor atomlarinin ¢oziicii molekiilii ile etkilesim bolgelerini, mavi renkli bolgeler
azot atomlarinin ¢oziicii molekiilii ile etkilesim bolgelerini, sar1 renkli bolge kiikiirt
atomunun ¢oziicli molekiilii ile etkilesim bolgesini, agik gri ve koyu gri renkli bolgeler
ise sirastyla hidrojen ve karbon atomlarinin ¢oziicii ile etkilesim bolgelerini gosterir. SAS
seklinden goriildiigii gibi molekiiliin en giiglii etkilesim bdlgelerinin klor, azot ve kiikiirt
atomlar1 etrafinda oldugu sdylenebilir. Bu nedenle, polar protik ve aprotik ¢oziiciiler,
bilesigin Klor, azot ve kiikiirt atomlar ile etkilesime girerken, apolar ¢oziiciiler karbon ve

hidrojen atomlari ile etkilesime girecektir.
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Sekil 5.27. 3 molekiiliiniin Coziicii Evisilebilirlik Yiizeyi (SAS) sekli

5.5. (Z2)-2-nitro-N-((5-((E)-(2-nitrofenilimino)metil)tiyofen-2-il)metilen)benzenamin

(4) Molekiiliiniin Teorik Hesaplamalari
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Sekil 5.28. 4 molekiiliiniin ChemDraw gésterimi
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Sekil 5.29. 4 molekiiliiniin Chem3D gosterimi

5.5.1. Teorik konformasyon hesaplamalari

4 molekiiliiniin en diisiik enerjili konformasyonunu bulmak i¢in Chem3D
programinda dihedral agiya bagli konformasyon analizi 6nce C9-N8-C7-C4 dihedral
acisinin fonksiyonu olarak C7-C4 grubu N8-C7 bagmin etrafinda, sonra N8-C7-C4-S5
dihedral agisinin fonksiyonu olarak C4-S5 grubu C7-C4 baginin etrafinda ve daha sonra
N8-C7-C4-C3 dihedral agisinin fonksiyonu olarak C4-C3 grubu C7-C4 baginin etrafinda
-180° ile 180° araliginda 30" adimlarla degistirilerek yapildi ve elde edilen veriler grafige
gecirilerek Sekil 5.30, 5.31 ve 5.32°de verildi. Ilk analizde -120°’de bir minimum (285,8
kcal/mol) ve 0°’de bir maksimum (2729,96 kcal/mol), ikinci analizde -180° ve 180°’de
iki minimum (282,24 kcal/mol) ve -90°’de bir maksimum (340,32 kcal/mol), iigiincii
analizde 0”’de bir minimum (282,24 kcal/mol) ve 907’de bir maksimum (340,32
kcal/mol) degerleri bulundu. Hesaplamalarda kullanmak i¢in en diisiik enerjili
konformasyon (282,24 kcal/mol) secildi ve Chem3D Ultra 8.0 programinda minimize
edildi. Minimize enerji degeri -33,9971 kcal/mol olarak hesaplandi. Daha sonra minimize

edilen konformasyon geometrisi optimize edildi.
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Sekil 5.30. 4 molekiiliiniin C9-N8-C7-C4 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi
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Sekil 5.31. 4 molekiiliiniin N§-C7-C4-S5 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi
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Sekil 5.32. 4 molekiiliiniin N8-C7-C4-C3 dihedral agisinn fonksiyonu olarak potansiyel enerji egrisi

5.5.2. Toplam enerji ve dipol moment hesaplamalari

4 molekiiliinlin gaz faz1 ve ¢esitli ¢oziicii fazlarinda toplam enerji ve dipol moment
degerleri hesaplandi ve sonuglar Tablo 5.7°de verildi. Toplam enerji degerleri ¢oziicii
fazlarinda birbirine ¢ok yakin degerler alirken gaz fazinda daha yiiksek bir deger aldig:
goriildii. Bu nedenle 4 molekiiliiniin ¢oziicii fazinda daha kararli oldugu, gaz fazinda ise
en kararsiz oldugu diisiiniilebilir. 4 molekiiliiniin dipol moment degerleri genel olarak tiim
coziiciilerde yiiksekti, bu da bilesigin polar ¢oziiciiler i¢inde iyi ¢oziinebilecegini gosterir.
4 molekiiliiniin benzer polar 6zelliklere sahip merkezlerle etkilesime girebilecegi de
sOylenebilir.

Olusan tabloya gore fazlarin toplam enerji siralamasi su sekildedir: Su < DMSO <
Asetonitril < Metanol < Etanol < Diklorometan < THF < Gaz. Su fazindan gaz fazina
dogru toplam enerji artarken kararlilik azalmaktadir.

Dipol moment siralamasi ise su sekildedir: Gaz < THF < Diklorometan < Etanol <
Metanol < Asetonitril < DMSO < Su.

(Coziicii fazindaki molekiiliin gaz fazindaki molekiile kiyasla delokalize yiikiin
artmasi nedeniyle dipol momentinin artti§1 goriilmektedir. Ayrica molekiiliin su fazinda
en yliksek dipol moment degerine sahip olmasi 4 molekiilii ile su molekiilii arasinda

olusan dipol dipol ve hidrojen baglarindan kaynaklandigi sdylenebilir.
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Tablo 5.7. 4 molekiiliiniin toplam enerji ve dipol moment degerleri

Bilesik Toplam enerji (kcal/mol) Dipol moment (Debye)
Gaz fan -1010898,3337 6,3432
Su fazi -1010910,4535 8,4849
DMSO fazi -1010910,2668 8,4449
Asetonitril faz1 -1010910,1240 8,4146
Etanol faz1 -1010909,8666 8,3604
Metanol faz1 -1010910,0679 8,4028
THF faz1 -1010908,0446 7,9909
Diklorometan fazi -1010908,4575 8,0726

5.5.3. Uyarilmis enerji ve HOMO-LUMO hesaplamalari

4 molekiili i¢in cesitli ¢oziiclilerde teorik hesaplanan HOMO, LUMO ve AE
degerleri (Sekil 5.34) ile UV-Goriiniir 151k spektrumlari (Sekil 5.33) dalga boyu degerleri
gaz faz1 ve cesitli ¢oziicli ortamlarinda hesaplandi ve sonuglar Tablo 5.8’de verildi. AE
degerinin her fazda 3,70 eV civarinda oldugu hesaplandi. Yiiksek AE degerleri bilesigin
kararli yapida ve yalitkan 6zellikte oldugunu gostermektedir. Uyarilmis enerji dalga boyu
degerlerinin gaz fazinda 374,34 nm’de, ¢oOziicii fazlarinda ise 381,76-383,24 nm
araliginda hesaplandig goriildii. Bu nedenle molekiiliin ¢6ziicii fazinda olmasi gaz fazina
gore batokromik kaymaya neden olmaktadir.

Olusan tabloya gore fazlarin AE siralamasi su sekildedir: Su < DMSO < Asetonitril
< Metanol < Etanol < Diklorometan < THF < Gaz.

Amax siralamasi ise su sekildedir: Metanol < Su < Asetonitril < Etanol < DMSO <

THF < Diklorometan < Gaz.
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Tablo 5.8. 4 molekiiliiniin Erowmo, ELUMO, AE (ELUMO'EHOMO) V€ Amax degerleri

Bilesik Enomo (V)  ELumo (eV) AE (ELumo-Eromo) (8V)  Amax (nm)
Gaz fazn -6,4754 -2,7570 3,7184 374,34
Su fazi -6,3889 -2,6822 3,7067 382,79
DMSO faz -6,3894 -2,6816 3,7078 383,24
Asetonitril faz1 -6,3900 -2,6816 3,7084 382,64
Etanol fazi -6,3908 -2,6814 3,7094 382,59
Metanol faz1 -6,3900 -2,6814 3,7086 382,48
THF fazx -6,3976 -2,6814 3,7162 381,76
Diklorometan faz1  -6,3957 -2,6811 3,7146 382,14
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Sekil 5.33. 4 molekiiliiniin farkl ¢oziiciiler icin teorik hesaplanan UV-Gériiniir 151k spektrumlart
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ELumo =-2,7570 eV ELumo =-2,6822 eV ELumo = -2,6816 eV

Gaz Su DMSO

AE =3,7184 eV AE =3,7067 eV AE =3,7078 eV
Enomo = -6,4754 eV Enomo = -6,3889 eV Enomo = -6,3894 eV

et T TS
% St

9
ELUMO = -2,6816 eV ELUMO = -2,6814 eV ELUMO = -2,6814 eV
Asetonitril Etanol Metanol
AE =3,7084 eV AE =3,7094 eV AE =3,7086 eV
Eromo = -6,3900 eV Eromo = -6,3908 eV Eromo = -6,3900 eV

Eiumo =-2,6814 eV ELumo =-2,6811 eV
THF Diklorometan
AE =3,7162 eV AE =3,7146 eV
Enomo = -6,3976 eV Enomo = -6,3957 eV

Y2

Sekil 5.34. 4 molekiiliiniin ¢esitli fazlardaki sinir molekiiler orbitallerinin atomik orbital yapisi

53



5.5.4. Molekiiler elektrostatik potansiyel yiizey analizi

Gaz fazindaki 4 molekiiliniin MEP yiizey sekli incelendiginde kirmizi renkli
bolgelerin (negatif) oksijen atomlar1 etrafinda lokalize oldugunu ve elektrofilik bir
saldirmin bu bolgelere olma ihtimalinin en yiliksek oldugu bolgeleri gosterir. Mavi renkli
bolgelerin (pozitif) hidrojen atomlar1 etrafinda lokalize oldugunu ve niikleofilik bir
saldirinin bu bolgelere olma ihtimalinin en yiiksek oldugu bolgeleri gosterir. Sar ve yesil
renkli bolgeler ise elektronca daha zayif olan ara potansiyel bolgeleri gosterir. Bu

bolgeler, ¢oziinen ve ¢oziicii molekiilii arasindaki etkilesimde rol oynayabilir.

m N : 070-2

Sekil 5.35. Gaz fazindaki 4 molekiiliiniin Molekiiler Elektrostatik Potansiyel (MEP) yiizey sekli

5.5.5. Coziicii erisilebilirlik yiizeyi analizi

4 molekiiliiniin ¢oziicii erigilebilirlik yiizey sekli incelendiginde kirmizi renkli
bolgeler oksijen atomlarinin ¢oziicii molekiilii ile etkilesim bolgelerini, mavi renkli
bolgeler azot atomlarinin ¢6ziicti molekiili ile etkilesim bolgelerini, sar1 renkli bolge
kiikiirt atomunun ¢6ziicii molekiilii ile etkilesim bolgesini, agik gri ve koyu gri renkli
bolgeler ise sirasiyla hidrojen ve karbon atomlarinin ¢oziicii ile etkilesim bolgelerini
gosterir. SAS seklinden goriildiigi gibi molekiiliin en giicli etkilesim bdlgelerinin
oksijen, azot ve kiikiirt atomlar1 etrafinda oldugu sdylenebilir. Bu nedenle, polar protik
ve aprotik ¢oziiciiler, bilesigin oksijen, azot ve kiikiirt atomlar ile etkilesime girerken,

apolar ¢oziiciiler karbon ve hidrojen atomlart ile etkilesime girecektir.
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Sekil 5.36. 4 molekiiliiniin Coziicii Evisilebilirlik Yiizeyi (SAS) sekli

5.6. (E)-2-kloro-N-((5-((E)-(2-klorofenilimino)metil)tiyofen-2-
il)metilen)benzenamin (5) Molekiiliiniin Teorik Hesaplamalari

Cl

Cl

Sekil 5.37. 5 molekiiliiniin ChemDraw gosterimi
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Sekil 5.38. 5 molekiiliiniin Chem3D gosterimi

5.6.1. Teorik konformasyon hesaplamalari

5 molekiiliiniin en diisiik enerjili konformasyonunu bulmak i¢in Chem3D
programinda dihedral agiya bagh konformasyon analizi dnce C10-N9-C6-C4 dihedral
acisinin fonksiyonu olarak C6-C4 grubu N9-C6 bagmin etrafinda, sonra N9-C6-C4-S5
dihedral agisinin fonksiyonu olarak C4-S5 grubu C6-C4 baginin etrafinda ve daha sonra
N9-C6-C4-C3 dihedral agisinin fonksiyonu olarak C4-C3 grubu C6-C4 baginin etrafinda
-180° ile 180° araliginda 30 adimlarla degistirilerek yapildi ve elde edilen veriler grafige
gecirilerek Sekil 5.39, 5.40 ve 5.41°de verildi. i1k analizde -120°*de bir minimum (396,81
kcal/mol) ve 0°’de bir maksimum (2854,41 kcal/mol), ikinci analizde 0°’de bir minimum
(396,81 kcal/mol) ve 90°’de bir maksimum (449,70 kcal/mol), tiglincii analizde -180° ve
180°’de iki minimum (396,81 kcal/mol) ve -90”’de bir maksimum (449,70 kcal/mol)
degerleri bulundu. Hesaplamalarda kullanmak i¢in en diisiik enerjili konformasyon
(396,81 kcal/mol) secildi ve Chem3D Ultra 8.0 programinda minimize edildi. Minimize
enerji degeri 20,0180 kcal/mol olarak hesaplandi. Daha sonra minimize edilen

konformasyon geometrisi optimize edildi.
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Sekil 5.39. 5 molekiiliiniin C10-N9-C6-C4 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi
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Sekil 5.40. 5 molekiiliiniin N9-C6-C4-S5 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi
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Sekil 5.41. 5 molekiiliiniin N9-C6-C4-C3 dihedral agisun fonksiyonu olarak potansiyel enerji egrisi

5.6.2. Toplam enerji ve dipol moment hesaplamalar:

5 molekiiliiniin gaz faz1 ve gesitli ¢oziicli fazlarinda toplam enerji ve dipol moment
degerleri hesaplandi ve sonuglar Tablo 5.9’da verildi. Toplam enerji degerleri ¢6ziicii
fazlarinda birbirine ¢ok yakin degerler alirken gaz fazinda daha yiiksek bir deger aldig:
goriildii. Bu nedenle 5 molekiiliiniin ¢6ziicli fazinda daha kararli oldugu, gaz fazinda ise
en kararsiz oldugu diisiiniilebilir. 5 molekiiliiniin dipol moment degerleri genel olarak tiim
¢oziiclilerde yiiksekti, bu da bilesigin polar ¢oziiciiler i¢cinde iyi ¢oziinebilecegini gdsterir.
5 molekiiliiniin benzer polar 6zelliklere sahip merkezlerle etkilesime girebilecegi de
sOylenebilir.

Olusan tabloya gore fazlarin toplam enerji siralamast su sekildedir: Su < DMSO <
Asetonitril < Metanol < Etanol < Diklorometan < THF < Gaz. Su fazindan gaz fazina
dogru toplam enerji artarken kararlilik azalmaktadir.

Dipol moment siralamasi ise su sekildedir: Gaz < THF < Diklorometan < Etanol <
Metanol < Asetonitril < DMSO < Su.

Coziicli fazindaki molekiiliin gaz fazindaki molekiile kiyasla delokalize yiikiin
artmasi nedeniyle dipol momentinin arttig1 goriilmektedir. Ayrica molekiiliin su fazinda
en yliksek dipol moment degerine sahip olmasi 5 molekiilii ile su molekiilii arasinda

olusan dipol dipol ve hidrojen baglarindan kaynaklandig1 sdylenebilir.
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Tablo 5.9. 5 molekiiliiniin toplam enerji ve dipol moment degerleri

Bilesik Toplam enerji (kcal/mol) Dipol moment (Debye)
Gaz fan -1331051,9278 3,3493
Su faz1 -1331059,4303 5,1225
DMSO fazi -1331059,2936 5,0840
Asetonitril faz -1331059,1896 5,0549
Etanol faz1 -1331059,0032 5,0030
Metanol faz1 -1331059,1488 5,0435
THF faz1 -1331057,7247 4,6585
Diklorometan fazi -1331058,0083 4,7332

5.6.3. Uyarilmis enerji ve HOMO-LUMO hesaplamalari

5 molekiilii i¢in c¢esitli ¢oziiclilerde teorik hesaplanan HOMO, LUMO ve AE
degerleri (Sekil 5.43) ile UV-Goriiniir 151k spektrumlari (Sekil 5.42) dalga boyu degerleri
gaz faz1 ve gesitli ¢oziicli ortamlarinda hesaplandi ve sonuglar Tablo 5.10°da verildi. AE
degerinin her fazda 3,45 eV civarinda oldugu hesaplandi. Yiiksek AE degerleri bilesigin
kararli yapida ve yalitkan 6zellikte oldugunu gostermektedir. Uyarilmis enerji dalga boyu
degerlerinin gaz fazinda 413,96 nm’de, ¢oOziicii fazlarinda ise 417,38-419,29 nm
araliginda hesaplandigi goriildii. Bu nedenle molekiiliin ¢6ziicii fazinda olmasi gaz fazina
gore batokromik kaymaya neden olmaktadir.

Olusan tabloya gore fazlarin AE siralamasi su sekildedir: Gaz < THF =
Diklorometan = Etanol = Metanol = Asetonitril = DMSO = Su.

Amax siralamasi ise su sekildedir: Gaz < Su < Metanol < Asetonitril < Etanol <

DMSO < THF < Diklorometan.
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Tablo 5.10. 5 molekiiliiniin Evowmo, ELUMO, AE (ELUMO'EHOMO) V€ Amax degerleri

Bilegik Enomo (EV) ELumo (eV) AE (ELUMO'EHOMO) (eV) Amax (nm)
Gaz fazn -5,9247 -2,4822 3,4425 413,96
Su faz1 -6,0452 -2,5943 3,4509 417,38
DMSO fazi -6,0422 -2,5913 3,4509 418,77
Asetonitril faz1 -6,0400 -2,5891 3,4509 417,64
Etanol faz1 -6,0362 -2,5853 3,4509 417,98
Metanol faz1 -6,0392 -2,5883 3,4509 417,39
THF fazx -6,0098 -2,5589 3,4509 419,11
Diklorometan faz1  -6,0155 -2,5646 3,4509 419,29
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Sekil 5.42. 5 molekiiliiniin farkli ¢oziiciiler icin teorik hesaplanan UV-Goriiniir 151k spektrumlari

60




ELumo = -2,4822 eV ELumo = -2,5943 eV ELumo = -2,5916 eV

Gaz Su DMSO
AE =3,4425 eV AE =3,4509 eV AE =3,4509 eV
EHOMO = -5,9247 eV EHOMO =- ,0452 eV EHOMO = -5,8912 eV

ELumo =-2,5910 eV ELumo = -2,5899 eV ELumo = -2,5908 eV
Asetonitril Etanol Metanol
AE =3,4509 eV AE =3,4509 eV AE =3,4509 eV
Enomo = -5,8904 eV Enomo = -5,8887 eV Enomo = -5,8901 eV

ELumo =-2,5840 eV ELumo = -2,5850 eV
THF Diklorometan
AE =3,4509 eV AE =3,4509 eV
Enomo = -5,8789 eV Enomo = -5,8808 eV

?’wfb ?’qp

Sekil 5.43. 5 molekiiliiniin ¢esitli fazindaki sinir molekiiler orbitallerinin atomik orbital yapist

61



5.6.4. Molekiiler elektrostatik potansiyel yiizey analizi

Gaz fazindaki 5 molekiiliiniin MEP yiizey sekli incelendiginde kirmizi renkli
bolgelerin (negatif) azot atomlari etrafinda lokalize oldugunu ve elektrofilik bir saldirinin
bu bolgelere olma ihtimalinin en yliksek oldugu bolgeleri gosterir. Mavi renkli bolgelerin
(pozitif) hidrojen atomlar etrafinda lokalize oldugunu ve niikleofilik bir saldirinin bu
bolgelere olma ihtimalinin en yiiksek oldugu bolgeleri gosterir. Sar1 ve yesil renkli

bolgeler ise elektronca daha zayif olan ara potansiyel bolgeleri gosterir.

43302 D B - o:o-

Sekil 5.44. Gaz fazindaki 5 molekiiliiniin Molekiiler Elektrostatik Potansiyel (MEP) yiizey sekli

5.6.5. Coziicii erisilebilirlik yiizeyi analizi

5 molekiiliniin ¢oziicti erisilebilirlik ylizey sekli incelendiginde yesil renkli
bolgeler klor atomlariin ¢oziicii molekiilii ile etkilesim bolgelerini, mavi renkli bolgeler
azot atomlarinin ¢oziicii molekiilii ile etkilesim bolgelerini, sar1 renkli bolge kiikiirt
atomunun ¢oziicli molekiili ile etkilesim bolgesini, agik gri ve koyu gri renkli bolgeler
ise sirastyla hidrojen ve karbon atomlarinin ¢6ziicii ile etkilesim bolgelerini gosterir. SAS
seklinden goriildiigii gibi molekiiliin en giiglii etkilesim bolgelerinin klor, azot ve kiikiirt
atomlar1 etrafinda oldugu sdylenebilir. Bu nedenle, polar protik ve aprotik ¢oziiciiler,
bilesigin Klor, azot ve kiikiirt atomlart ile etkilesime girerken, apolar ¢oziiciiler karbon ve

hidrojen atomlari ile etkilesime girecektir.
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Sekil 5.45. 5 molekiiliiniin Coziicii Evisilebilirlik Yiizeyi (SAS) sekli

5.7. (E)-3-nitro-N-((5-((E)-(3-nitrofenilimino)metil)tiyofen-2-il)metilen)benzenamin

(6) Molekiiliiniin Teorik Hesaplamalari

Sekil 5.46. 6 molekiiliiniin ChemDraw gésterimi
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Sekil 5.47. 6 molekiiliiniin Chem3D gosterimi

5.7.1. Teorik konformasyon hesaplamalar:

6 molekiiliiniin en diisiik enerjili konformasyonunu bulmak i¢in Chem3D
programinda dihedral agiya bagl konformasyon analizi 6nce C11-N10-C6-C4 dihedral
acisinin fonksiyonu olarak C6-C4 grubu N10-C7 baginin etrafinda, sonra N10-C6-C4-S5
dihedral agisinin fonksiyonu olarak C4-S5 grubu C6-C4 baginin etrafinda ve daha sonra
N10-C6-C4-C3 dihedral agisinin fonksiyonu olarak C4-C3 grubu C6-C4 baginin
etrafinda -180° ile 180° araliginda 30 adimlarla degistirilerek yapildi ve elde edilen
veriler grafige gegirilerek Sekil 5.48, 5.49 ve 5.50°de verildi. Ik analizde -120°’de bir
minimum (205,07 kcal/mol) ve 0°’de bir maksimum (2663,86 kcal/mol), ikinci analizde
-180° ve 180°’de iki minimum (192,98 kcal/mol) ve 90°’de bir maksimum (251,53
kcal/mol), ii¢lincii analizde 0°’de bir minimum (192,98 kcal/mol) ve -90°’de bir
maksimum (251,53 kcal/mol) degerleri bulundu. Hesaplamalarda kullanmak i¢in en
diistik enerjili konformasyon (192,98 kcal/mol) se¢ildi ve Chem3D Ultra 8.0 programinda
minimize edildi. Minimize enerji degeri -33,2455 kcal/mol olarak hesaplandi. Daha sonra

minimize edilen konformasyon geometrisi optimize edildi.
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Sekil 5.48. 6 molekiiliiniin C11-N10-C6-C4 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi
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Sekil 5.49. 6 molekiiliiniin N10-C6-C4-S5 dihedral agisimin fonksiyonu olarak potansiyel enerji egrisi
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Sekil 5.50. 6 molekiiliiniin N10-C6-C4-C3 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi

5.7.2. Toplam enerji ve dipol moment hesaplamalari

6 molekiiliiniin gaz faz1 ve ¢esitli ¢oziicli fazlarinda toplam enerji ve dipol moment
degerleri hesaplandi ve sonuglar Tablo 5.11°de verildi. Toplam enerji degerleri ¢oziicii
fazlarinda birbirine ¢ok yakin degerler alirken gaz fazinda daha yiiksek bir deger aldig:
goriildii. Bu nedenle 6 molekiiliiniin ¢oziicii fazinda daha kararli oldugu, gaz fazinda ise
en kararsiz oldugu diistiniilebilir. 6 molekiiliiniin dipol moment degerleri genel olarak tim
coziiciilerde yiiksekti, bu da bilesigin polar ¢oziiciiler i¢inde iyi ¢oziinebilecegini gosterir.
6 molekiiliiniin benzer polar 6zelliklere sahip merkezlerle etkilesime girebilecegi de
sOylenebilir.

Olusan tabloya gore fazlarin toplam enerji siralamasi su sekildedir: Su < DMSO <
Asetonitril < Metanol < Etanol < Diklorometan < THF < Gaz. Su fazindan gaz fazina
dogru toplam enerji artarken kararlilik azalmaktadir.

Dipol moment siralamasi ise su sekildedir: Gaz < THF < Diklorometan < Etanol <
Metanol < Asetonitril < DMSO < Su.

(Coziicii fazindaki molekiiliin gaz fazindaki molekiile kiyasla delokalize yiikiin
artmasi nedeniyle dipol momentinin artti§1 goriilmektedir. Ayrica molekiiliin su fazinda
en yliksek dipol moment degerine sahip olmasi 6 molekiilii ile su molekiilii arasinda

olusan dipol dipol ve hidrojen baglarindan kaynaklandig1 sdylenebilir.
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Tablo 5.11. 6 molekiiliiniin toplam enerji ve dipol moment degerleri

Bilesik Toplam enerji (kcal/mol) Dipol moment (Debye)
Gaz faz1 -1010906,6036 6,7892
Su fazi -1010917,2656 8,2279
DMSO fazi -1010917,1117 8,2100
Asetonitril faz -1010916,9937 8,1962
Etanol faz1 -1010916,7803 8,1711
Metanol faz1 -1010916,9472 8,1908
THF fazx -1010915,2491 7,9862
Diklorometan fazi -1010915,5992 8,0292

5.7.3. Uyarilmis enerji ve HOMO-LUMO hesaplamalari

6 molekiilii i¢in cesitli ¢dziiclilerde teorik hesaplanan HOMO, LUMO ve AE
degerleri (Sekil 5.52) ile UV-Goriiniir 151k spektrumlari (Sekil 5.51) dalga boyu degerleri
gaz fazi1 ve ¢esitli ¢oziicli ortamlarinda hesaplandi ve sonuglar Tablo 5.12°de verildi. AE
degerinin her fazda 3,70 eV civarinda oldugu hesaplandi. Yiiksek AE degerleri bilesigin
kararli yapida ve yalitkan 6zellikte oldugunu gostermektedir. Uyarilmis enerji dalga boyu
degerlerinin gaz fazinda 369,82 nm’de, ¢oOziicii fazlarinda ise 376,02-377,07 nm
araliginda hesaplandigi goriildii. Bu nedenle molekiiliin ¢6ziicii fazinda olmasi gaz fazina
gore batokromik kaymaya neden olmaktadir.

Olusan tabloya gore fazlarin AE siralamasi su sekildedir: Gaz < Su < DMSO <
Asetonitril < Metanol < Etanol < Diklorometan < THF.

Amax siralamasi ise su sekildedir: Gaz < Metanol < Etanol < Asetonitril < THF < Su

< Diklorometan < DMSO.
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Tablo 5.12. 6 molekiiliiniin Evowmo, ELUMO, AE (ELUMQ-EHomo) V€ Amax degerleri

Bilegik EHOMO (EV) ELUMO (eV) AE (ELUMO'EHOMO) (EV) xmax (nm)
Gaz fan -6,6398 -2,9510 3,6888 369,82
Su faz1 -6,3788 -2,6743 3,7045 376,43
DMSO fazi -6,3818 -2,6765 3,7053 377,07
Asetonitril faz1 -6,3842 -2,6784 3,7058 376,23
Etanol faza -6,3886 -2,6816 3,7070 376,20
Metanol faz1 -6,3851 -2,6789 3,7062 376,02
THF fazx -6,4213 -2,7099 3,7114 376,25
Diklorometan faz1  -6,4136 -2,7029 3,7107 376,55
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Sekil 5.51. 6 molekiiliiniin farkl ¢oziiciiler icin teorik hesaplanan UV-Gériiniir 151k spektrumlart
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Sekil 5.52. 6 molekiiliiniin ¢esitli fazlardaki sinir molekiiler orbitallerinin atomik orbital yapisi
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5.7.4. Molekiiler elektrostatik potansiyel yiizey analizi

Gaz fazindaki 6 molekiiliniin MEP yiizey sekli incelendiginde kirmizi renkli
bolgelerin (negatif) oksijen atomlar1 etrafinda lokalize oldugunu ve elektrofilik bir
saldirinin bu bolgelere olma ihtimalinin en yiiksek oldugu bolgeleri gosterir. Mavi renkli
bolgelerin (pozitif) hidrojen atomlar1 etrafinda lokalize oldugunu ve niikleofilik bir
saldirinin bu bolgelere olma ihtimalinin en yiiksek oldugu bolgeleri gosterir. Sar1 ve yesil
renkli bolgeler ise elektronca daha zayif olan ara potansiyel bolgeleri gosterir. Bu

bolgeler, ¢oziinen ve ¢oziicli molekiilii arasindaki etkilesimde rol oynayabilir.
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Sekil 5.53. Gaz fazindaki 6 molekiiliiniin Molekiiler Elektrostatik Potansiyel (MEP) yiizey sekli

5.7.5. Coziicii erisilebilirlik yiizeyi analizi

6 molekiiliiniin ¢6ziicli erisilebilirlik yiizey sekli incelendiginde kirmizi renkli
bolgeler oksijen atomlarinin ¢6ziicii molekiilii ile etkilesim bolgelerini, mavi renkli
bolgeler azot atomlarinin ¢oziicii molekiilii ile etkilesim bolgelerini, sar1 renkli bolge
kiikiirt atomunun ¢oziicii molekiilii ile etkilesim bolgesini, agik gri ve koyu gri renkli
bolgeler ise sirasiyla hidrojen ve karbon atomlarinin ¢oziicii ile etkilesim bolgelerini
gosterir. SAS seklinden goriildiigii gibi molekiiliin en giiclii etkilesim bdlgelerinin
oksijen, azot ve kiikiirt atomlar1 etrafinda oldugu sdylenebilir. Bu nedenle, polar protik
ve aprotik ¢oziiciiler, bilesigin oksijen, azot ve kiikiirt atomlar ile etkilesime girerken,

apolar ¢oziiciiler karbon ve hidrojen atomlari ile etkilesime girecektir.
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Sekil 5.54. 6 molekiiliiniin Coziicii Evisilebilirlik Yiizeyi (SAS) sekli

5.8. (E)-3-kloro-N-((5-((E)-(3-klorofenilimino)metil)tiyofen-2-
il)metilen)benzenamin (7) Molekiiliiniin Teorik Hesaplamalari

Cl

Cl

Sekil 5.55. 7 molekiiliiniin ChemDraw gosterimi
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Sekil 5.56. 7 molekiiliiniin Chem3D géosterimi

5.8.1. Teorik konformasyon hesaplamalar:

7 molekiiliiniin en diisiik enerjili konformasyonunu bulmak i¢in Chem3D
programinda dihedral agiya bagh konformasyon analizi 6nce C11-N10-C6-C4 dihedral
acisinin fonksiyonu olarak C6-C4 grubu N10-C6 baginin etrafinda, sonra N10-C6-C4-S5
dihedral agisinin fonksiyonu olarak C4-S5 grubu C6-C4 baginin etrafinda ve daha sonra
N10-C6-C4-C3 dihedral agisinin fonksiyonu olarak C4-C3 grubu C6-C4 baginin
etrafinda -180° ile 180° araliginda 30 adimlarla degistirilerek yapildi ve elde edilen
veriler grafige gecirilerek Sekil 5.57, 5.58 ve 5.59°da verildi. Ik analizde -120°’de bir
minimum (188,62 kcal/mol) ve 0°’de bir maksimum (2641,62 kcal/mol), ikinci analizde
0°’de bir minimum (188,62 kcal/mol) ve -90°’de bir maksimum (240,11 kcal/mol),
iciinci analizde -180° ve 180°’de iki minimum (188,62 kcal/mol) ve 90°’de bir
maksimum (240,11 kcal/mol) degerleri bulundu. Hesaplamalarda kullanmak i¢in en
diistik enerjili konformasyon (188,62 kcal/mol) se¢ildi ve Chem3D Ultra 8.0 programinda
minimize edildi. Minimize enerji degeri 13,5474 kcal/mol olarak hesaplandi. Daha sonra

minimize edilen konformasyon geometrisi optimize edildi.
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Sekil 5.57. 7 molekiiliiniin C11-N10-C6-C4 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi
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Sekil 5.58. 7 molekiiliiniin N10-C6-C4-S5 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi
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Sekil 5.59. 7 molekiiliiniin N10-C6-C4-C3 dihedral agisinin fonksiyonu olarak potansiyel enerji egrisi

5.8.2. Toplam enerji ve dipol moment hesaplamalari

7 molekiiliiniin gaz faz1 ve gesitli ¢oziicli fazlarinda toplam enerji ve dipol moment
degerleri hesaplandi ve sonuglar Tablo 5.13’de verildi. Toplam enerji degerleri ¢oziicli
fazlarinda birbirine ¢ok yakin degerler alirken gaz fazinda daha yiiksek bir deger aldig
goriildii. Bu nedenle 7 molekiiliiniin ¢6ziicli fazinda daha kararli oldugu, gaz fazinda ise
en kararsiz oldugu diistiniilebilir. 7 molekiiliiniin dipol moment degerleri genel olarak tim
¢oziiclilerde yiiksekti, bu da bilesigin polar ¢dziiciiler i¢cinde iyi ¢oziinebilecegini gdsterir.
7 molekiiliinliin benzer polar Ozelliklere sahip merkezlerle etkilesime girebilecegi de
sOylenebilir.

Olusan tabloya gore fazlarin toplam enerji siralamast su sekildedir: Su < DMSO <
Asetonitril < Metanol < Etanol < Diklorometan < THF < Gaz. Su fazindan gaz fazina
dogru toplam enerji artarken kararlilik azalmaktadir.

Dipol moment siralamast ise su sekildedir: Gaz < THF < Diklorometan < Etanol <
Metanol < Asetonitril < DMSO < Su.

(Coziicli fazindaki molekiiliin gaz fazindaki molekiile kiyasla delokalize yiikiin
artmasi nedeniyle dipol momentinin arttig1 goriilmektedir. Ayrica molekiiliin su fazinda
en ylksek dipol moment degerine sahip olmasi 7 molekiilii ile su molekiilii arasinda

olusan dipol dipol ve hidrojen baglarindan kaynaklandigi sdylenebilir.
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Tablo 5.13. 7 molekiiliiniin toplam enerji ve dipol moment degerleri

Bilesik Toplam enerji (kcal/mol) Dipol moment (Debye)
Gaz faz1 -1331056,9638 3,8500
Su fazi -1331063,9625 5,8140
DMSO fazi -1331063,8418 57737
Asetonitril faz -1331063,7499 5,7430
Etanol faz1 -1331063,5847 5,6884
Metanol fazi -1331063,7138 5,7311
THF faz1 -1331062,4394 5,3215
Diklorometan fazi -1331062,6954 5,4016

5.8.3. Uyarilmis enerji ve HOMO-LUMO hesaplamalari

7 molekiilii i¢in c¢esitli ¢oziiciilerde teorik hesaplanan HOMO, LUMO ve AE
degerleri (Sekil 5.61) ile UV-Goriiniir 151k spektrumlari (Sekil 5.60) dalga boyu degerleri
gaz fazi1 ve gesitli ¢oziicli ortamlarinda hesaplandi ve sonuglar Tablo 5.14’°te verildi. AE
degerinin her fazda 3,40 eV civarinda oldugu hesaplandi. Yiiksek AE degerleri bilesigin
kararli yapida ve yalitkan 6zellikte oldugunu gostermektedir. Uyarilmis enerji dalga boyu
degerlerinin gaz fazinda 406,77 nm’de, ¢Ozilicii fazlarinda ise 413,20-415,76 nm
araliginda hesaplandigi goriildii. Bu nedenle molekiiliin ¢6ziicii fazinda olmasi gaz fazina
gore batokromik kaymaya neden olmaktadir.

Olusan tabloya gore fazlarin AE siralamasi su sekildedir: Gaz < Asetonitril < THF
< Diklorometan < Etanol < Metanol < DMSO < Su.

Amax siralamasi ise su sekildedir: Gaz < Su < Metanol < Asetonitril < Etanol <

DMSO < THF < Diklorometan.

75



Tablo 5.14. 7 molekiiliiniin Evowmo, ELUMO, AE (ELUMO'EHOMO) V€ Amax degerleri

Bilesik Enomo (eV) ELumo (eV) AE (ELumo-Erowmo) (V) Amax (M)
Gaz fazi -6,0060 -2,6237 3,3823 406,77
Su faz1 -6,0158 -2,6172 3,3986 413,20
DMSO fazi -6,0147 -2,6163 3,3984 415,07
Asetonitril faz -6,0139 -2,6158 3,3951 413,55
Etanol fazn -6,0125 -2,6147 3,3978 414,00
Metanol faz1 -6,0136 -2,6155 3,3981 413,21
THF faz1 -6,0038 -2,6079 3,3959 415,49
Diklorometan fazi  -6,0057 -2,6093 3,3964 415,76
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Sekil 5.60. 7 molekiiliiniin farkli ¢oziiciiler icin teorik hesaplanan UV-Goriiniir 151k spektrumlari
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Sekil 5.61. 7 molekiiliiniin ¢esitli fazlardaki sinwr molekiiler orbitallerinin atomik orbital yapisi
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5.8.4. Molekiiler elektrostatik potansiyel yiizey analizi

Gaz fazindaki 7 molekiiliinin MEP yiizey sekli incelendiginde kirmizi renkli
bolgelerin (negatif) azot atomlar1 etrafinda lokalize oldugunu ve elektrofilik bir saldirinin
bu bolgelere olma ihtimalinin en yiiksek oldugu bolgeleri gosterir. Mavi renkli bolgelerin
(pozitif) hidrojen atomlar1 etrafinda lokalize oldugunu ve niikleofilik bir saldirinin bu
bolgelere olma ihtimalinin en yiiksek oldugu bolgeleri gosterir. Sar1 ve yesil renkli

bolgeler ise elektronca daha zayif olan ara potansiyel bolgeleri gosterir.

3702 D B -

_

Sekil 5.62. Gaz fazindaki 7 molekiiliiniin Molekiiler Elektrostatik Potansiyel (MEP) yiizey sekli

5.8.5. Coziicii erisilebilirlik yiizeyi analizi

7 molekiiliiniin ¢oziicii erisilebilirlik yilizey sekli incelendiginde yesil renkli
bolgeler klor atomlarinin ¢oziicli molekiilii ile etkilesim bolgelerini, mavi renkli bolgeler
azot atomlarinin ¢oziicii molekiilii ile etkilesim bdlgelerini, sar1 renkli bolge kikiirt
atomunun ¢oziicii molekiilii ile etkilesim bolgesini, acik gri ve koyu gri renkli bolgeler
ise sirasiyla hidrojen ve karbon atomlarinin ¢oziicii ile etkilesim bolgelerini gosterir. SAS
seklinden goriildigii gibi molekiiliin en giiglii etkilesim bolgelerinin klor, azot ve kiikiirt
atomlar1 etrafinda oldugu sdylenebilir. Bu nedenle, polar protik ve aprotik ¢dziiciiler,
bilesigin klor, azot ve kiikiirt atomlart ile etkilesime girerken, apolar ¢oziiciiler karbon ve

hidrojen atomlari ile etkilesime girecektir.
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Sekil 5.63. 7 molekiiliiniin Coziicii Evisilebilirlik Yiizeyi (SAS) sekli
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6. SONUC

Bu ¢alismada, tiyofen temelli 7 tane yeni Schiff bazi bilesigi (1, 2, 3, 4, 5, 6, 7)
teorik olarak incelenmistir. ilk olarak Chem3D 16.0 programinda dihedral aciya bagl
konformasyon analizi yapildi. Dihedral agiya bagli konformasyon analizinde en diisiik
enerjili konformasyon Chem3D Ultra 8.0 programinda minimize edilerek Gaussian09W
programinda DFT-B3LYP metodu ve 6-31G(d) temel setinde optimize edildi. Optimize
edilen molekiillerin TD-DFT B3LYP/6-31G(d)’de gaz, su, DMSO, asetonitril, etanol,
metanol, THF ve diklorometan fazinda toplam enerji ve dipol moment degerleri ile
HOMO-LUMO sekilleri ve enerji degerleri hesaplandi. Molekiillerin AE (ELumo-EHomo)
enerji boslugu 3.27-3,70 eV araliginda hesaplandi. Bu da molekiillerin yalitkan 6zellikte
oldugunu gostermektedir [63]. Ayrica molekiillerin UV ve goriiniir 151k absorpsiyon
spektroskopisi sonuglart NO2 grubu igeren molekiillerde 400 nm altinda degerler alirken
diger molekiillerde 400 nm iistiinde degerler aldigi goriildii. Bunun nedeninin NO:2
grubunun elektron ¢ekici oOzelliginden kaynaklandigr soylenebilir. Daha sonra
molekiillerin Molekiiler Elektrostatik Potansiyel (MEP) ve Coziicii Erisilebilirlik Yiizeyi
(SAS) sonuglar1 alindi. Sonug olarak, bu arastirmanin yeni malzemelerin tasarimi, sentezi

ve ¢esitli uygulamalari i¢in faydali olmasi beklenmektedir.
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