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ABSTRACT 
 
 

Estimation of Static and Dynamic Optimal Hedge Ratios: An Application to the 

BIST30 Index Futures 

 

Especially in recent years, due to fluctuations in both domestic and international 

financial market, investors pay more attention to control the risks exposed due to 

their positions in the markets. Various econometric methods have been developed 

to estimate the optimal hedge ratio. In the literature, some of researchers studied 

with the static models, while others used dynamics models for estimation of the 

optimal hedge ratio.  The aim of this paper is determining the optimal hedge ratio 

by providing a comparision of various econometric models. The daily closing prices 

of BIST 30 Index and BIST30 Index Futures are used for forecasting and the 

optimal hedge ratio are estimated by employing static models such as the Ordinary 

Least Squared (OLS) model, the Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) models , the Error Correction Model (ECM) and the 

Vector Error Correction Model (VECM). Also we employ the bivariate VECM-

Diag-BEKK-GARCH model to estimate dynamic hedge ratio. The hedging 

performance is measured in terms of the variance reduction provided by each 

models. According to the findings, the VECM and the GARCH models provide 

only slightly better performance than the traditional linear regression model and the 

bivariate VECM-Diag-BEKK-GARCH model fails to outperformed the static 

models. 

 

KEYWORDS: Optimal hedge ratio; Hedging effectiveness BIST30 futures index; 

GARCH Models;VECM-Diag-BEKK-GARCH Model                                               
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ÖZET 
 
 

Statik ve Dinamik Optimal Korunma Oranlarının Tahmini: BIST30 Endeks 

Vadeli Sözleşmeleri Üzerine Bir Uygulama 

 
 
Özellikle son yıllarda hem yurt içi hem de uluslararası finansal piyasalardaki 

dalgalanmalar nedeniyle yatırımcılar piyasalardaki pozisyonlarından dolayı maruz 

kaldıkları riskleri kontrol etmeye daha fazla önem vermektedirler. Optimal 

korunma oranını tahmin etmek için çeşitli ekonometrik modeller geliştirilmiştir. 

Literatürde, optimal korunma oranını tahmin etmek için hem statik hem de dinamik 

modellerin kullanıldığı birçok çalışma bulunmaktadır. Bu çalışmanın amacı, belirli 

ekonometrik modellerin karşılaştırmasını sağlayarak optimal korunma oranını 

belirlemektir. Çalışmada, analizler BIST30 hisse senedi endeks kapanış fiyatları ile 

BIST30 endeks vadeli sözleşmelerinin kapanış fiyatları üzerinden gerçekleştirilmiş 

ve optimal korunma oranının tahmini, En küçük kareler (OLS), otoregresif koşullu 

değişen varyans (GARCH), basit hata düzeltme modeli (ECM) ve vektör hata 

düzeltme modeli (VECM) gibi statik modeller kullanılarak gerçekleştirilmiştir . 

Ayrıca dinamik optimal korunma oranını tahmin etmek için iki değişkenli VECM-

Diag-BEKK-GARCH modeli kullanılmıştır. Modellerin riskten koruma 

performansı  varyans değişiminde meydana gelen azalma olarak ölçülmüştür. 

Çalışma sonuçları, VECM ve GARCH modellerinin geleneksel doğrusal regresyon 

modeline göre sınırlı olarak daha iyi performans gösterdiğini ve dinamik VECM-

Diag-BEKK-GARCH modelinin statik modellerden daha iyi performans sergileme 

konusunda yetersiz kaldığını göstermiştir. 

 

Anahtar Kelimeler: Optimal korunma oranı; Korunma etkinliği, BIST30 endeks 

vadeli sözleşmesi; GARCH Modelleri;  VECM-Diag-BEKK-GARCH Modeli



 

 

 

INTRODUCTION 
 
 
It is quite obvious that investors face a trade off between expected return and risk. 

There will always be certain risk associated with investments and realized returns 

will always be different from the expected returns. Invertors almost seek the highest 

return and the lowest risk, however, it is impossible due to uncertainty in values of 

financial variables. 

 

The unpredictable events, accordingly, fluctuations in exchange rates and interest 

rates always have existed in financial marketplaces and these factors bring about 

the risks which investors and economic units are exposed to, and risk management 

has become an important phenomenon. 

 

Hedging is very important tool in where economic fluctuation and financial risk 

exist, especially in volatile economies. In countries under volatile economic 

conditions, using derivatives instruments is play important role to hedge investors’ 

portfolio. In simple term, hedging is a techique that oftsets certain sources of risk 

and the hedge ratio is the number of hedging instruments such as derivatives 

required to offset the risk of the portfolio. 

 

Investors are only concerned with historical return of portfolio in order to predict 

future return. If there is a particular risk investors faced, they want to construct a 

hedge strategy to close to perfect as possible as. It is exactly known that perfect 

hedge is not possible, but they try to reach out the best hedging ratio they can. When 

constructing a model in order to optimal hedge ratio, behaviours of the variables 

used in the model are crucial to attain the correct results. Whether the variance is 

constant or not, and presence of autocorrelation and cointegration are important for 

the effectiveness of the model to be used in predicting future returns. If series have 

normal distribution, variance is a used for measurement of risk. However, several 

studies showed that financial series have not normal distribution and measuring risk 
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with only variance assumption would not give accurate result. Nevertheless, models 

based on this assumption are still used for comparison purposes.  

 

As for portfolio, risk is calculated based on covariance matrices containing the 

variance and covariance of the return of financial assets included in porfolio. 

Although classical variance and covariance approaches ignore the autoregressive 

relationship of squared returns, they are still used for estimates. Varios univariate 

and multivariate models have been developed by researchers. The models with 

autoregressive conditions , which was firslty presented by Engle(1982), have been 

used in finance literature, however, some of researchers showed that the model may 

not be exactly appropriate in some instance. 

 

Many studies have performed based on OLS and GARCH models to calculate the 

optimal hedge ratio and several studies show that heteroskedasticity in spot and 

futures return have an impact on the optimal hedge ratio and its effectiveness. The 

GARCH family models take into account the time varying covariance futures and 

spot return. At the same time, even though unrealistic assumptions, minimum 

variance hedge ratio estimated by OLS still provides a clear benchmark to evaluate 

hedging performance. 

 

In this study, a term of minimum variance hedge ratio is deemed as a number of 

futures contracts that should be purchased with regards to spot position held which 

is minimizes the variance of return of the hedged portfolio. We construct several 

models in order to calculate the optimal hedge ratio by using a portfolio of spot 

instrument to be hedged with the use of BIST30 index futures contracts and then 

seek to determine which model is the best to estimate the hedge ratio. 

 

This study consists of three chapters. In the first chapter, we will explain 

fundamental components of risk and risk management. In chapter two, we will 

provide backround and research developments related to hedge ratio and then, 

explain the metholodgy used in the study. Both the static and dynamic models are 
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performed in order to estimate the optimal hedge ratio. In the last chapter, empirical 

results of the models will be demonstrated and their performances will be compared 

according to both obtained variance reduction and statistical consistency of the 

model. 
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CHAPTER 1 
 
 
1.1 Definition of Volatility 
 
Value of portfolio depends on the market variables such as interest rates, exchange 

rates, equity price, etc. and it is very important for an investor to monitor volatilities 

of these market variables to protect yourselves from any financial lost. Even though 

volatility is not completely predictable, the use of several econometric measures 

help to construct occuring volatility proxies. 

 

In the simplest term, volatility of a variable is defined as the standard deviation of 

the return. When volatility is used for risk management, it is the standard deviation 

of the continuously compounded return per day. Volatility and correlation may be 

relatively high during some periods, whereas during other periods it may be 

relatively low. Hedging instrument is crucial to prevent financial risk arising from 

the volatility. 

 

For times series, a common assumption is that the change in assets returns is 

normally distributed, however, in practice, most financial variables such as 

exchange rates, interest rates, and equity prices, are more likely to experience larger 

or smaller changes than the normal distribution. It means that the returns are not 

identically distributed and have heavy tails. As a consequence, the volatility 

changes over time and is in tendency to cluster in the periods of low volatility and 

periods of large volatility. It is called autoregressive conditional heteroskadasticty. 

Also, today’s volatility of a variable may depends on the past volatility of the 

variable which shows us the autocorrelation.  

 

When it is assumed that the returns on each day are independent with a constant 

variance, the volatility of the return over N days is equal to the standart deviation 

of the return times √𝑁. If the volatility per day of a return on day n is defined as 𝜎$ 
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and the the continuously compounded return at the end of day i described as 𝑅$, 

the volatility can be defined by following formula: 

 

𝜎$& =
1
𝑚*𝛼,

-

,./

𝑅$0,& , 2𝑅, = 𝑙𝑛
𝑆,
𝑆,0/

6 

                                              

where the variable m is the most recent observation and the variable 𝑆, indicates 

the price of the variable.  

 

In equation (1), it is assumed that each of 𝑅$0,&  has the same weight. If the weight 

is taken into account consedering recency of the data, the equation is formed as: 

 

𝜎$& = 𝛾𝑉9 +*𝛼,

-

,./

𝑅$0,&  

 

Where a is the weight of return and g is the weight of the long run variance (𝑉9).  

The sum of the weights must be equals one. This term was first proposed by Engle 

(1982) and is named as ARCH (m). And also, if the most recent forecast of the 

variance is taken into account, the equation (2) will be expressed the following 

form: 

 

𝜎$& = 𝛾𝑉9+	𝛼𝑅$0/& + 𝛽𝜎$0/&  

 

Where b inidicates the weight of 𝜎$0/& , and again the sum of all weight terms is 

equals to one (a + g + b =1). The b is know as GARCH (1) and is first suggested 

by Bollerslev(1986).  

 

The autoregressive conditional heterorscedasticity (ARCH) and generalized 

autoregressive conditional heterorscedasticity (GARCH) models are widely used 

approaches to estimate financial volatility through non-linear pattern. 

(1) 

(2) 

(3) 
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1.2 Definition of Correlation  
 
Estimation of correlation between variables is very important to financial markets 

participant in order to correctly assess the risk exposure arising from the market 

volatility. If the two assests are correlated with each other, it will cause  higher 

effect on the portfolio as compared with the zero correlation. When the two assets 

have positive correlation and the price of assets are down as a result of negative 

shock in the market, the decrease in value of portfolio including these  assets will 

be huge. Conversely, if the assets have negative correlation, the decrease in 

portfolio value will be less. The correlation coefficient of assets returns is defined 

as: 

𝜌 =
𝐸(𝑟/𝑟&) − 𝐸(𝑟/)𝐸(𝑟&)

𝜎C/𝜎C&
=
𝑐𝑜𝑣(𝑟/𝑟&)
𝜎C/𝜎C&

 

 

Where 𝑐𝑜𝑣(𝑟/𝑟&) indicates the covariance between 𝑟/ and 𝑟& and is a indicator of 

relationship between the variables. A variance - covarince matrix is derived for the 

variance and covariance rates of the variables. 

 

1.3 Hedging Instruments  
 
The general view about risk is that it is beyond our control. However risk is 

unpredictable,  it can be managed and minimized by using correct financial strategy. 

If companies or individuals, or any actor of financial markets, do not want to bear 

the risk arising from fluctuation in prices, exchange rate, interest rates or any other 

unexpected market conditions, hedge the risk by using specialized financial 

products such as futures, options, forward, currency swap, etc. These products are 

collectively called as derivatives instrument and used for managing risk as well as 

speculating. Moreover, derivatives are used to predict the price of underlying assets. 

For example, the spot price of the futures can serve as estimation of price of 

underlying commodity. Derivative products are derived from another asset and 

their values are based on that underlying assets.   

 

(4) 
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Hedgers purchase derivatives insturements to offet the sensivity of their positions 

against the market risk and consider the hedge ratio, which is the number of hedging 

vehicles required to eliminate the risk of defenceless position. The most common 

types of derivatives are futures, options, forward and swaps. 

 

1.3.1 Futures Contracts 
 

Futures contract is an agreement which entitle the transaction parties to buy or sell 

an underlying asset of standardized quantitity and quality in the future at an agreed 

price. Futures contracts are traded on organized market with standardized features 

such as contract sizes, mature and underlying asset and they are not designed 

according to specific needs of investors. The contracts standardization and the 

organized market provide more liquidation rather than creating of new forward 

contract. The profit is defined as the difference between price of futures contract 

paid on deal date and the price of underlying asset at the maturity. The futures 

contract are generally traded on commodity, foreign currency, exchange rates, 

stocks and index. Trading participants have counterparty risk which is a probability 

of failure to comply with the contracts obligations. For this reason, creditworthiness 

of the traders is a vital component of financial markets. In the futures markets, 

standardized  arragements and market practices allow transactions to be more 

realibale without default  and counterparty risk is less of a concern. 

 

Futures contracts are most often used by hedgers to protect themselves against price 

movements. On the other side, for the spreculators, the futures contracts require less 

margin and provide more leverage than trading of underlying asset directly.  

 

1.3.2 Options 
 

Options give holders the right to buy or sell an asset. There are two types of options. 

A call option entitles the holder to buy an underlying asset or financial indicator for 

a certain price and amount on or before the maturity date. A put option gives the 

right to sell an underlying asset or financial indicator for a certain price and certain 
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amount on or before the maturity date. The contract price is known as the strike 

price and the maturity date is known as the expire date. The profit of option is the 

difference between value of option and the purchase price of the option. Options 

are traded both on organized market and in the OTC (over the counter market) and 

are traded on currencies, interest rates, commodities and any other products. 

 

Generally, a positive correlation exist between price of a call option and its 

underlying assets, whereas, negative correlation does exist price of a put option and 

the underlying assests. The value of call option increases if price of the underlying 

asset goes up, and the value of put option increases if the underlying goes down. 

The value of call option cannot exceed the underlying assets. However, there is no 

upper or lower boundary for put options.  

 

Option and futures contract should not be confused with each other. Option holder 

has a exercise right to buy or sell the asset, where futures contract gives a binding 

obligation to deal parties. There are unlimited variety of option strategies which 

include combination of calls and puts option and provide different payoff patterns 

such as straddle, collars and spreads etc. Options strategies can be designed 

according to specific needs of the investor. 

 

1.3.3 Forward Contracts 
 

Forward contracts are the customized futures contracts and traded in the OTC (over 

the counter market). There is no standardized maturity or underlying asset, and any 

forward contract can be written with any quantity of asset on any maturity date. 

When compared with the futures contracts, forward contracts allow more flexibility 

in managing the risk with adjustable maturity date and contract size. However, they 

are commonly traded on non organized markets and this limits  to reach transaction 

parties to each other. Generally, seller of a forward contract requests specific 

requirements and high collateral to execute the transaction and the buyer bear 

additional cost. In financial market, investors, firms as well as financial institutions 
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are commonly used to forward contracts based on currency pairs. They have short 

or long position according to expectations on economic indicator. For example, 

when the investors expect to asset price goes up, they will have long position in 

forwards, or otherwise, asset price goes down, short position will be taken.  

 

1.3.4 Swap 
 

Swap transactions allow investors to exchange the financial instruments or cash 

flows for a certain time. Interest rate swap and cross currency swap are generally 

used for managing the risk. Currency rate swaps allow agreement parties to 

exchange a series of payments in one currency for a series of payments in another 

currency. Interest rate swaps allow to exchange of series of interest payments based 

on a given interest rate for series of interest payments based on floating interest rate. 

Generally, investor who has a currency position with future dated, in order to hedge 

the currency position, buy a interest swap contract where paying a fixed rate and 

receiving on floating rate, such as EURIBOR or other rates. In this way, investor 

protect herself against fluctuations in the currency. 

 

1.4. Optimal Hedge Ratio 
 
 
The optimal hedge ratio, or minimum variance hedge ratio, is an important factor 

in hedging process and determines the optimal number of contracts to purchase to 

hedge market exposure. Hedging is considered as a position taken to prevent 

potential losses arisen from market fluctuations and is not considered as a trade for 

profit. There have been many studies on hedging strategies in the literature and 

various techiniques have been employed to estimate constant and time varying 

hedges ratio.  

 

Hedging strategies can be classified into three type: Naive or one-to-one hedge, the 

beta hedge and minimum variance hedge. Naive or one to one hedge assumes that 

futures and cash prices do move exactly together and a perfect futures contract exist 
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in the market. In the naive hedging, spot and futures positions have the same 

magnitude but in opposite direction, which means that hedge ratio is equal to -1. If 

the change in prices of spot asset and futures are the same, the change in the value 

of the spot position will be fully compensated by the reverse change in the futures 

position and a perfect hedge takes place. But the prices do not completely move 

together. 

 

Imperfect correlation between spot and futures prices was challenged and the first 

emprical model was employed by Ederington (1979). In his study, the minimum 

variance hedge ratio is expressed as the ratio of the covariance of the spot and 

forward portfolio 𝜎G,H,I over the conditional variance of the futures contract 𝜎H&: 

 

ℎI0/ = −
𝑐𝑜𝑣(𝑆, 𝐹)I
𝑣𝑎𝑟(𝐹)I

= −
𝜎G,H,I
𝜎H&

 

 

When spot and futures prices are not co-integrated and conditional variance-

covariance matrix is time invariant, simple Ordinary Least Square (OLS) approach 

can be used to calculate to optimal hedge ration. The slope coeffient from a simple 

regression model can be used to obtain a constant hedge ratio: 

 

DSt= a +  𝛽*DFt + e 

 

where b* is the optimal hedge ratio. Time varying conditional variance and the 

imperfect correlation between the series have not been taken into account by OLS. 

To deal with this problem, hedging strategies based on ARCH model families have 

been used and allowed the hedge ratio to be time varying. Also, some researchers 

pointed out that cointegration between spot and futures markets should be taken 

into consideration and an error correction term should be included in the model.  

 

In order to estimate the minimum variance hedge ratio, we will construct OLS, 

ECM, VECM and GARCH models and then compare the hedging effectiveness of 

(5) 

(6) 
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these models by comparing them with the unhedged portfolio in terms of variance 

minimization. We will generate the models where the hedge ratio will assumed to 

remain constant over time and also perform bivariate error correction GARCH 

model in order to allow time varying hedge ratios. 
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CHAPTER 2 
 

2.1 Literature Review 
 
Various studies have been performed to determine the optimal hedge ratio. Some 

of the applied studies have shown that the OLS method is sufficient in estimating 

the optimal hedge ratio and the others have used GARCH models with the concern 

that the OLS method is not an accurate approximation of the hedge ratio. 

 
In the traditional hedging theory, the position in the futures market is equal to 

position taking in the spot market with same magnitude but opposite sign in order 

to hedge the spot position. Working (1953) challenged the traditional theory and 

argued that the hedging was not only minimize the risk but rather to be a form of 

arbitrage. 

Ederington (1979) evaluated the Government National Mortgage Market as a cash 

instruments and T-Bills futures markets in order to estimate the hedge ratio. He 

argues that, the hedge ratio is less than one and the main motivation of hedgers is 

to the risk minimization. He defines the return of portfolio which consist of futures 

and spot market holdings and he proves that “cash  and futures market holding may 

even the same sign” (page 161). In that study, the slope of the ordinary least squares 

(OLS) is defined as a minimum variance hedge ratio, which is also expressed as the 

the covariance between the cash and futures price to variance of the future price. 

The hedging effectiveness is measured by percent reduction in variance when 

compared with the unhedged position. Later on, in order to estimate the hedge ratio,  

the conventional OLS model have been carried out by several researchers such as 

Figlewski (1984).  

 

The least squares model (OLS) assumes that the expected value of all error terms 

are the same at any given point when squared and are normally distributed. This 

assumption is called homoskedasticity. Another assumption of OLS is that 

dependent and independent variables are not cointegrated and the conditional 

variance is time invariant.  
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When the finance literature is examined, there are numerous evidences that 

financial time series do not meet the conditions of OLS. The spot and futures 

markets have not the same volatility and have long run relationship. It means that 

the conditional variance can be changed over the time. Ignoring of the long-term 

relationships between the series in the OLS model has been criticized by other 

researches and in order to overcome this problem, alternative models, which allow 

variance and covariance to change over time, have been proposed. 

 

ARCH model was first introduced by Engle (1982) and its extension to GARCH by 

Bollerslev (1986). Engle (1982) developed a new stochastic process and called 

autoregressive conditional heteroskedastic (ARCH) process. In order to take into 

consideration of time dependent conditional variance, the ARCH  process has been 

included in the model to strengthen the optimal hedge ratio. 

 

At the same time, the error correction model was developed by Granger (1981) and 

then extended by Engle and Granger (1987). The paper suggests that an error 

correction factor of series must be included when series are correlated.They find 

that short run and long run interest rate are cointegrated while wages and prices are 

not. 

 

The GARCH model assumes that the effects of positive shocks and negative shocks 

on the volatility are symmetrical. However, several studies show that the negative 

and positive shocks may asymmetrically affect the volatility. The EGARCH model 

developed by Nelson (1991) to solve this problem and the asymmetric factor in the 

volatility distribution is captured in the model. 

 

Autoregressive Conditional Variable Variance on Mean (ARCH-M) was studied by 

Engle, Lilien, and Robins (1987) where conditional variance was considered as an 

explanatory variable in the mean equation of ARCH model. They determine that 

the conditional variance as a indicator of risk premium is time dependent and 

changes systematically with the perception of undelying uncertainty. The ARCH-
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M model is important in testing the relationship between uncertainty and return, 

which has an important place in financial theory. 

 

Although estimation of optimal hedge ratios developed with GARCH models 

provide consistent results, they assume that the correlation between the variables 

remains constant over time. However, the correlation between the variables changes 

over time and the hedge ratio varies over time as well. Also the conventional 

regression model disregards both error correction term and the lagged changes in 

spot and futures prices. To solve this problem, dynamic hedging strategies based 

on GARCH models have been developed. 

 

The constant variance assumption was challenged by the Baillie and Myers (1991). 

They studied spot and futures prices of six different commodities and commodity 

price were modelled by using bivariate GARCH model to estimate the optimal 

hedge ratio. They underlines that the optimal hedge ratio is changed over time and 

the assumption of constant optimal rates is not appropriate. Bivariate GARCH 

models seem to fit data well and give significant time varying estimates of the 

conditional covariance matrix. Besides, Myers (1991) developed a dynamic model 

based on GARCH to estimate time varying optimal hedge ratios. He points out that 

the hedge ratio estimated by a bivariate GARCH model provides better hedging 

performance compared with the constant hedge ratio. However, he underlines that 

the performance superiority is very slight and the constant hedge ratio estimated by 

linear regression model may give better performance. 

 

Lien and Luo (1993) and then Lien (1996) studied an error correction model in 

order to reach to optimal hedge ratio. In ECM model, delayed values of both spot 

and forward returns and one delayed value of the error term obtained from the 

regression equation are added to the model in order to overcome  the 

autocorrelation. Ghosh (1993)  and Lien (1996) show that optimal hedge ratios are 

downwardly biased due to misspecification, if spot and futures are cointegrated and 

the error correction term (ECT) is not included in the regression.  
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Kroner and Sultan (1993) used a error correction terms and performed the bivariate 

error correction model with GARCH structure to consider time varying structure of 

returns and cointegrated assets prices. They used spot and futures data for six 

exchange rates: the British Pound, the Canadian Dollar, the German Mark, the 

Japanese Yen, and Swiss Franc for the period between 1985 and 1990.  They show 

that new information causes the changes in the return distribution of the assets and 

it become grounds for time varying hedge ratios. Therefore, if  the minimum 

variance hedge ratios is calculated  by using conventinal models, it may provide the 

incorrect estimation. According to both in sample and out of sample results, they 

conclude that the bivariate GARCH model provides a superior result in comparision 

with the other methods, even when the transaction cost is taken into account.  

 

Consolidated models were employed such as the the Constant Correlation (CCC-

GARCH) models and the later the Dynamic Conditional Correlation (DCC GARH) 

models. The first model of this type is the Constant Conditional Correlation (CCC) 

model employed by Bollerslev (1990). In this model, it is supposed that the 

conditional correlation is constant over time, and the conditional standard deviation 

is time-varying. Later, the DCC-GARCH model is examined by Engle and 

Sheppard (2001) which is an extension of the CCC-GARCH model and the 

conditional correlation matrix is allowed to change over the time.  

 

In a nutshell, some researchers have performed the OLS model to optimal hedge 

ratio estimation, others have offered GARCH family models by allowing time 

varying variances and considering other factors disregarded by the OLS 

assumptions. Later, in the alternatives of the conventional GARCH model have 

been suggested in recent years. The error correction term has been used to take into 

account the presence of cointegration and bivariate GARCH models are performed. 

In spite of the fact that the better hedging performance have been provided by  

alternatives model, some doubts still exist about the effectiveness of these models. 

The numerous studies support that there is no standard hedge ratios in the financial 
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literature and the major superior results are not provided as compared with the OLS 

model. 

 

2.2 Methodology 
 
In this study, we perform static and dynamic models to find the optimal hedge 

ratios. The hedge ratios derived from the models are compared with unhedged 

portfolio in terms of  reduction in variance ratio. The variance of hedged portfolio 

is defined by Kroner and Sultan (1993) as: 

 

𝑉𝑎𝑟	(𝐻) = 𝜎G& + ℎ&𝜎H& − 2ℎ∗𝜎GH 

 

Where 𝜎G and 𝜎H indicate the standard deviation of the spot and futures prices 

respectively and ℎ∗ is the optimal hedge ratio calculated from the models. We use  

the equation (7) to calculate the variance of the models and then evaluate the 

hedging effectiveness by using as the ratio of the variance of the unhedged portfolio 

minus the variance of the hedged protfolio, over the variance of the unhedged 

portfolio: 

Hedge	effectiveness =
Var(Unhedged) − Var(Hedged)

Var(Unhedged)
 

 

Percentage reduction in the variance of the hedged portfolio shows the hedging 

effectiveness. The hedge ratio of the conventional models will be obtained as the 

coefficient of the futures return in the model. While in the dynamic model, the ratio 

between the variance and the covariance of the residuals is instead used in order to 

obtain the hedge ratio. 

 

2.2.1 Unhedged Portfolio 
 
 
Unhedged potfolio has very straightforward concept; we purely assume that b is 

equal to zero in unhedged portfolio in following equation: 

(7) 

(8) 
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Rt= DSt – 𝛽*DFt 

 
Unhedged portfolio will be used as a benchmark to calculate the variance reduction. 

 
2.2.2 The conventional OLS approach 
 
 
The simplest way of approximating the minimum variance hedge ratio is by using 

OLS regression. 

 

The OLS regression is a statistical linear model for estimating the relationship 

between dependent and independent variables and has been used to calculate risk. 

The relationship between dependent and independent  variables can be represented 

in the equation (6) and the b is the minimum variance hedge ratio. 

 

The OLS model has several assumptions. One of them is, especially concerned in 

our study, the OLS assumes that expected value of all error terms are normallly 

distributed and has a constant variance which is called homoskedasticiy. Also, it 

assumes that all independent variables are uncorrelated and the observation of error 

terms are not correlated, it means that there is no seraial correlation. 

 

In despite of some shortcomings, the OLS model is more simple and less complex 

model when comparing with the dynamics model.  

 

2.2.3 ARCH and GARCH Models 

 
Many studies show that changes in prices of financial assets can be more volatile 

in financial crises and rather less volatile in steady economic environment. The 

magnitude of volatility can be different in negative and positive economic shocks. 

GARCH class of models allow time varying conditional variance and covariance. 

A conventional regression model such as the OLS model, does not take into account 

this volatility and the variation of returns is not completely reflected in the model. 

GARCH family models shed light on describing volatility in financial markets. On 

(9) 
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the contrary of classic OLS assumption, which supposes the expected value of 

residuals is the same at any given point when they are squared, GARCH family 

models pay attention to heteroskedastic process. The GARCH model, or 

Generalized Autoregressive Conditionally Heteroskedasticity is an extension of 

ARCH model and is conditionally heteroskedastic with a constant unconditional 

variance.  

 

The investigation of ARCH effects is very important to consider the situation "error 

term and recent error terms are more related to each other than the error terms of 

previous periods", which is observed in many time series and causes the estimation 

to be less effective if neglected. The ARCH LM Test, which was developed by 

Engle (1982) to determine whether ARCH effect exists in time series. 

 

In the implementation of the ARCH model, some restrictions have been placed on 

the parameters in the conditional variance equation due to the use of relatively long 

delays and the suggestion of a fixed lag structure. Generalized ARCH (GARCH) 

model based on more historical information and has a more flexible lag structure in 

order to eliminate the drawback of not meeting these restrictions and reaching 

parameter estimates with negative variances (Bollerslev, 1986). In this type of 

model, conditional volatility is defined as a function of q delays of past squared 

yields as ARCH (q) and in this way, time varying variance covariance structure is 

allowed. In addition to the ARCH (q) term, GARCH (p) term is added to model 

which represents the delays of the conditional volatility within itself. GARCH 

family models have been extensively studied and particularly employed in financial 

and econometric modelling and analysis. The most important benefit of GARCH 

framework is that it allows time dependent variance in the model. 

 

The GARCH method is similar to the ARMA model which is a model that includes 

the autoregressive process (AR) of the error term, as well as the lagged values of 

the error term variance. The first order autoregression is indicated as: 

𝑦I = 	𝛾𝑦I0/ + 𝜀I  (10) 
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where e is indicated as white noise with 𝑉(∈) = 𝜎&. The parameter 𝜎&	represents 

the conditional variance of 𝑦I while 𝜎
&
1 − 𝛾&c  represents the unconditional 

variance. Engle (1982) suggests that the forecast intervals will be better if the past 

information is taken into consideration to prediction of variance and defines the 

conditional variance as a linear function  of the previous period error term squares: 

 

𝑅I = 	𝑋I𝛿 + 𝜀I  

𝜎I& = 𝜔 +*𝛼,𝜀I0,&

g

,./

 

 

The equation (11) is the mean equation and the equation (12) is the variance 

equation of the model. In order to the conditional variance of the model to be 

positive, the parameters in the model must be positive; 𝜔 >0 and  𝛼/≥0,...,	𝛼g≥0. 

Since 𝑣I = 	 𝜀I& − 𝜎I&	, the equation can be written as the following form: 

𝜀I& = 𝜔 +*𝛼,𝜀I0,&

g

,./

+	𝑣I  

 

Bollerslev (1986) models the error terms obtained from the regression model of in 

the GARCH (p, q) process. The conditional mean equation is defined as: 

 

𝑌I = 𝑎 + 𝑏j𝑋I + 𝜀I	, 𝜀I	êYI0/ ∼ 𝑁(0, 𝜎I&) 

 

Conditionally varying variance of error terms according to the GARCH (p, q) 

model, which includes p number of delayed autoregressive squared error terms and 

number of delayed conditional variances is defined as (Bollerslev, 1986) : 

𝜎I& = 	𝜔 +	𝛼/	𝜀I0/& + . . . +  𝛼g	𝜀I0g& + 𝛽/	𝜎I0/& +. . . +𝛽m	𝜎I0m&  

(11) 

(12) 

(13) 

(14) 

(15) 



   

  
 

20 
 
 

𝜎I& = 	𝛼n	 + 	*𝛼,	𝜀I0,&

g

,./ 	

+*𝛽o	𝜎I0o&

m

o./ 	

 

ω	>	0,		a1,		a2,		.	.	.	,	ap,		b1,		b2,		.	.	.	,	bq	≥	0	

*a,

g

,./

+*bo	

m

o./

< 1	

et½It-1 ~ N (0, 𝜎I&) 

In the equation (14) and (15), Yt  and s2 represent the conditional mean and 

conditional variance respectively; et is the error term with zero mean and constant 

variance, q is the lag lenth of the conditional variance and p is the lag lenth of error 

terms, Xt is the vector of independent variable, ai and bj represent respectively the 

ARCH and GACRH effect on the conditional variance. 

 

For the conditional variance estimation at time t, the number of parameters is 

reduced by taking the error term one period before and the variance equation at t-1 

as a less current error terms. In order to secure the validity of the model, the constant 

parameters must be greater than zero and the ai and bj  must be equal to or greater 

than zero. The p must be equal to or greater than zero and also q must be greater 

than zero. At the same time, the sum of the ai and bj parameters is lower than one 

to ensure the stationary. 

 

GARCH (p,q) allows that volatility changes with time. For some periods, volatility 

is relatively high and for other periods, it is relatively low. Also, more recent data 

have greater weight than older ones. The GARCH model allows weights assigned 

to variables decrease exponentially as the data become older. If the GARCH model 

is working well, the autocorrelation should be removed in the model. GARCH 

models is helpful to evaluate expected return and risk when the returns have 

clustering volatility. If series have residuals with serially autocorrelated variance 

following an ARMA (autoregressive moving average) process, GARCH is 
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designed to this time series. The current variance is estimated by considering of 

past squared observation and past variance in GARCH models. 

 

The equation (16) is reached by modeling both the square of the delayed values of 

the error and the conditional variance with their own delayed values. Obtaining the 

OHR with the conventional GARCH (p,q) model is calculated by estimating the 

mean and variance equations where b indicates the optimal hedge ratio. 

∆𝑆I = 	𝑎 +	𝑏∆𝐹I + 𝑢I	   𝑢I	 ∽ 𝑁(0, 𝜎I&)   

𝜎I& = 	𝛼n	+𝛼/	𝑢I0/& +𝛽𝜎I0/&  

 

The conventional GARCH model does not consider  the asymmetric effects of 

negative and positive shocks on the volatility. In order to consider this restriction, 

EGARCH model has been performed in this paper. The EGARCH model 

(Nelson,1991) can be shown as: 

 

ℎI = log(𝜎I&) = 𝜔I +*𝛽olog	(𝜎I0o& ) +*𝛼,
|𝑧I0,|
𝜎I0,

m

,./

+*𝛾,
𝑧I0,
𝜎I0,

m

,./

g

o./

 

 

In the equation (17), g is a factor measuring the asymmetric effect. If the g has 

negative sign, bad news have a larger impact on the volatility than good news. If 

the g is zero, it means that the model is symmetrical and positive and negative 

shocks have the same leverage effect on the model. b is the measurement of the 

GARCH effect and a is the measurement of the ARCH effect. A significant positive 

a signalize the volatility clustering and thus, using of EGARH model may give 

better results in this kind of situation. When the sum of the a and b is lower than 

one, it can be interpreted as variance stationary. 

 

(16) 

(17) 
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Additionally, we perform the GARCH model with Generalised Error Distribution 

(GED) in order to consider the state of fat tails and non normal distribution in the 

series. The density function of GED (Nelson,1991) is given by: 

 

𝑓(𝑧) =
𝑘 ∗ 𝑒𝑥𝑝 }−12 ~

𝑧
𝜆~
�
�

𝜆2(/�
/
�)Γ

/
�

 

 

Where 0<k<¥ and k is a measurement of the thickness of tail and is also called as 

degree of freedom. When k is equal to 2, GED returns have normal distribution. If  

k is lower than 2, it has heavier tail than the normal distribution; if k is greater than 

2, it has thinner tail than the normal distribution. 

 

2.2.4 ECM and VECM 

 
To consider the cointegration and short run and long run relationship between the 

series, we use the error correction model and the vector error correction model. The 

ECM directly calculates adjustment speed of dependent variable towards to long 

run equilibrium arising from a change in independent variables and examines both 

the short run and long run dynamics of the series. It is defined as following formula: 

 

∆𝑦I = 𝛽n +*𝛽,

$

,./

∆𝑦I0, +*𝛿,

$

,.n

∆𝑥I0, + 𝜑𝑧I0/ + 𝑢I 

 

Where z is the Error Correction term and is defined as: 

 

∆𝑧I0/ = 𝐸𝐶𝑇 = 𝑦I0/ − 𝛽n − 𝛽/𝑥I0/ 

 

The coefficient of ECT, 𝜑, is measurement of the speed at which spot returns to 

equilibrium after a change in futures.  

 

(18) 

(19) 

(20) 
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Before performing the ECM and VECM, short run and long run causality should 

be examined. If there is no long run relationship despite the short run relationship, 

the ECM may not be suitable in terms of significancy of the model.  

 

Error correction model can be estimated by Engle and Granger two steps approach. 

In this context, the series should be non-stationary originally and then become 

stationary after taking first differences. If the series are cointegrated at the same 

level and then we can run the error correction model.  

 

In order to run ECM, the lag values of the spot and the futures return  and also lag 

values of error terms derived from the regression will be added to the OLS model 

(Lien, 1996). 

 

∆𝑆𝑡 = 𝑐+ 𝑏∆𝐹𝑡 + 𝜃/∆𝐹𝑡−𝑖 + 𝜙1∆𝑆𝑡−𝑖 + 𝜑𝑧𝑡−1 + 𝑢𝑡 
 

We also run the vector error correction model to take into account the cointegration.  

 The VECM model is a special condition of the Vector Autoregressive Models 

(VAR) and all variables are included as endogenous variables. Since the long-term 

relationship is thought to be lost in the VAR model, the VECM model has been 

developed. 

 

In VECM, each variables is linear function of past lags of the other variables and 

past lags of itself. Also error correction term, which represents the residuals from 

long run cointegrating regression, is included in the model.  

 

∆𝑆I = 𝛼/ +*𝜃/,

-

,./

∆𝐹I0, +*𝜙/,

$

,./

∆𝑆I0, +*𝜑/,𝑧I0/

C

,./

+ 𝑢G,I 

 

∆𝐹I = 𝛼& +*𝜃&,

-

,./

∆𝑆I0, +*𝜙&,

$

,./

∆𝐹I0, +*𝜑&,𝑧I0/

C

,./

+ 𝑢H,I 

(21) 

(22) 

(23) 
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Where 𝑢G,I and 𝑢H,I represent the error terms derived from the VECM. The hedge 

ratio can be formulated as following: 

 

𝐻𝑒𝑑𝑔𝑒	𝑅𝑎𝑡𝑖𝑜 = 𝐻𝑅���� = −
𝑐𝑜𝑣(𝑆, 𝐹)

𝜎H&
 

 

 

When we used the OLS, ECM and VECM in order to estimate the hedge ratio, it 

was assumed that the variance of residuals remained constant over time. However, 

if the variances of the residuals are varying over time, ECM-GARCH model can 

give better results. In order to consider the time varying variance, the following 

model can be used where the residuals derived from the ECM will be added in the 

variance equation of GARCH model. 

 

∆S� = c + b∆F� + θ/∆F�0� + ϕ/∆S�0� + φz�0/ + u� 

𝑢I = 𝜎I𝜀I 

σ�& = φn + φ/𝑢�0/& + β/σ�0/&  

 

Estimation of the optimal hedge ratio by performed with both traditional GARCH 

family models and ECM method is static and calculate a constant hedge ratio. The 

VECM-Diag-BEKK-GARCH model will be used to calculate dynamic hedge 

ratio, taking into account the time-dependent correlation between variables. 

 

In order to generate VECM-Diag-BEKK-GARCH model, firstly the VAR 

specification with Vector Error Correction is estimated and residuals from the 

VECM specification are saved and then draw on for modelling of conditional 

variance covariance matrix.  

The variance equation of GARCH model with BEKK parameterization, which is 

modeled by Engle and Kroner (1995), is formulated as the following form: 

 

(24) 

(25) 
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𝐻I = 	𝐶nj∗𝐶n∗ + 𝐴//j∗ 𝜀I0/𝜀I0/j 𝐴//∗ + 𝛽//j∗𝐻I0/𝛽//∗  

	

𝐶n∗ = }𝑐//
∗ 𝑐/&∗
0 𝑐&&∗

� 				𝐴//∗ = }a//
∗ a/&∗

a&/∗ a&/∗
�				𝐵//∗ = �

b//
∗ b/&

∗

b&/
∗ b&&

∗  	

 

By combining the VECM and the GARCH model with BEKK parameterization, 

we generate the following formula in order to estimate dynamic hedge ratio.  

  

∆𝑆I = 𝛼/ +*𝜃/,

-

,./

∆𝐹I0, +*𝜙/,

$

,./

∆𝑆I0, +*𝜑/,𝑧I0/

C

,./

+ 𝑢G,I 

 

∆𝐹I = 𝛼& +*𝜃&,

-

,./

∆𝑆I0, +*𝜙&,

$

,./

∆𝐹I0, +*𝜑&,𝑧I0/

C

,./

+ 𝑢H,I 

 

𝜎G,I& = 𝛼n,/,/ + ¡𝛼/,/,/¢
&
𝑢G,I0/& + ¡𝛽/,/,/¢

&
𝜎G,I0/&  

 

𝜎H,I& = 𝛼n,&,& + ¡𝛼/,&,&¢
&
𝑢H,I0/& + ¡𝛽/,&,&¢

&
𝜎H,I0/&  

 

𝜎G,H,I& = 𝛼n,/,& + 𝛼/,/,/𝑢G,I0/𝛼/,&,& + 𝛽/,/,/𝜎G,H,I0/ + 𝛽/,&,& 

 

 

2.3  Data 

 
2.3.1 Derivatives Market in Turkey 

 
In Turkey, future and option contracts are traded in Derivatives Market (Vadeli 

İşlem ve Opsiyon Piyasası-VIOP) within Borsa Istanbul. Investors who want to be 

protected from risk, can manage risk by trading on VIOP. VIOP also provides an 

opportunity to investors who want to make a profit by investing in the same amount 

of underlying assets with a lower collateral than spot markets. 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 
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Derivative products are derived from another asset based on a specific underlying 

asset and whose value is based on that underlying asset.  There are various 

derivative contract traded in VIOP. Currently, future contracts based on stock, 

index, foreign currency, energy, commodities, precious metals, foreign index, metal 

and TLREF are actively traded in VIOP while option contracts based on stock, 

index and foreign currency are traded in VIOP. 

 

Transactions in VIOP are carried out through VIOP member and investor is not 

allowed to trade directly in VIOP; they have to open an account at intermediary 

institutions and banks which are the member of VIOP. Both for futures and options 

trading, an initial margin is required in order to trade and a margin call will be 

demanded to the Investor when the collateral falls below the initial margin amount. 

Clearing and exchange fees are charged when investor buys and sells transactions 

of futures and options contracts at VIOP. For futures contracts, fees are calculated 

based on the traded value and for options, fees are calculated based on premium 

value.  Also, investor who are residents in Turkey are subject to tax on their income 

earned from future and option contracts. Besides that, investors generally pay fees 

to the institution where their accounts are located. These are referred to  transaction 

costs which are paid by investor when trading in VIOP. Investors take into account 

these costs when making investment decisions. 

 

2.3.2 BIST30 Index 
 

Indices have been created to provide an assessment and evaluation on the price and 

the return performances of group of stocks. Index is reffered to a relative indicator 

of the change in the average price levels of stocks included in the indices. 

 

The composition of BIST 30 index consists of the 30 stocks of companies traded 

on the BIST Stars Market and selected according to free float market value and the 

daily average traded value in the review period. In order to be included in the BIST 

30 indices, it is required to be traded in Borsa Istanbul for at least 60 days at the end 
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of the valuation period. On 27 July 2020, after omitting two zeros from the Turkish 

stock exchange, including  BIST30, the index value is expressed  with 1,000 point 

instead of 100,000 point and contract size is decreased from 100 to 10. The price of 

stocks did not change by removing of zeros. 

 

2.3.3 Data Selection 
 
 
We use BIST30 Index and BIST30 Index Futures between 2010 and 2017 and they 

are obtained from Borsa İstanbul Database. Non-trading days of the series are 

removed and the data between 2010 and 2017 are used to estimate the models. The 

data between 2017-2019 are used to evaluate the performance of the models as an 

out ot sample.  

 

In order to avoid spurious regression problem, the return series are obtained by 

taking the logarithmic price change. We have transformed each series into a series 

of logarithmic returns according to the following function: 

 

Δ𝑆I = 𝑙𝑜𝑔 2
𝑆
𝑆I0/

6	, Δ𝐹I = 𝑙𝑜𝑔 2
𝐹
𝐹I0/

6		 

 

Where DSt and DFt represent the daily log returns of respectively BIST30 and 

BIST30 Index Futures. The daily prices are represented in Figure 1 and Figure 2. 

As we can clearly see from the figures, the series move together and have  similar 

pattern between 2010 and 2019.  
 

 
 
 
 
 
 
 
 
 

(32) 
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Figure 1: Daily Prices of te BIST30 Index in the period from 2010 to 2019 

 

 
 
 
Figure 2: Daily Prices of the BIST30 Index Futures in the period from 2010 
to 2019 
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CHAPTER 3 
 
 

EMPRICAL RESULTS 
 
 
In this section, we will evaluate the minimum variance hedge ratios which are 

estimated from the OLS, GARCH families, ECM, VECM and lastly bivariate 

VECM-Diag-BEKK- GARCH model. First, we perform certain tests to determine 

the characteristics of the series. Table 1 exhibits the descriptive statistics of the daily 

log return of BIST30 Index (BIST30) and BIST30 Index Futures (XU030). 

Descriptive statistics give a strong evidence that the series that are being studied 

during the sample period may have time varying variance. 

 

Table 1: Descriptive Statistics of BIST30 Index and BIST30 Index Futures 
 

Descriptive Statitics BIST30 XU030 

Mean 0.0002 0.0002 

Standard Deviation 0.015 0.015 

Skewness -0.383 -0.206 

Kurtosis 5.870 5.820 

Jarque-Bera 924.035*** 850.851*** 

Prabability 0.000 0.000 

  Note: ‘***’, ‘**’, ‘*’ indicate significance at 1%, 5% and 10% respectively. 
 
 
The table 1 shows that H0 normality hypothesis cannot be accepted as the calculated 

Jarque Bera test statistics are larger than chi square table value with two degree of 

freedom and statistically significant at %1 percent level; the series are not normally 

distributed. The Histogram graphs and stats show that both series are leptokurtic 

and have fat tails as expected in financial series. 
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Figure 3: Histogram Graph of BIST30 Index  

 

 
 

Figure 4: Histogram Graph of BIST30 Index Futures  

 

 
 
 
 

To check the presence of heteroskedasticty, we model the logarithmic returns by 

using following GARCH(1,1) formula for both series separately: 
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D𝑌, = µ+ e, 

e�êW,0/	~	𝑡𝑑(0, 𝜎&)	

𝜎I& = 𝜔 + 𝛼𝜀I0/& +	bsI0/& 	

	

Estimation results are shown in table 2. All coefficient of variance equations are 

positive and significant, the sum of the ARCH and GARCH parameters is less than 

one for both series. This situation can be accepted as considering the 

heteroskadasticy gives significant results to optimal hedge ratio estimation. 

 

Table 2: Estimates of Simple GARCH Model for BIST30 Index and BIST30 
Futures Index 
 

Coefficients BIST30 XU030 

µ 0.0007 0.0006 

 
0.880 0.900 

w      0.072***      0.000*** 

 
0.000 0.000 

a      0.082***       0.063*** 

 
0.000 0.000 

 
     0.857***      0.894*** 

b 0.000 0.000 

Note: ‘***’, ‘**’, ‘*’ indicate significance at 1%, 5% and 10% respectively. 

 

Also in the following sections, we are going to test the presence of autocorrelation. 

The existence of such relationship might undermine the validity of the OLS 

approach. Besides, we check whether there exists a long run cointegration 

relationship between spot and futures prices of currencies. 

 
 
 
 
 
 

(33) 
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3.1 Stationarity Of Series 
 
Generally, most economic series are non-stationary. It is important for the research 

to test of stationarity before generalizing any relationship. Therefore we are starting 

to test for the presence of unit roots using the Augmented Dickey-Fuller (ADF) test. 

The delayed differences of the series is taken as the explanatory variable, the 

following forms can be applied: 

∆𝑦 = 𝑎n𝑦I0/ +*𝛼,∆𝑦I0, + 𝜀I

g

,./

 

 

We run ADF test with trend and intercept for each series. If the ADF test statistic 

value is bigger than the critical values of the MacKinnon test statistic, we can reject 

the null hypothesis of unit root. 

  

Table 3 shows that the ADF statistic value for the series respectively are -51.004 

and -51.499 and the associated p value is 0.000. Notice here that the ADF statistics 

are less than the critical values at the 1% percent levels so that we can reject the 

null hypothesis that there is a unit root.  

 

Table 3: The ADF Test Statistics for BIST30 Index and BIST30 Futures Index 
 
  T-Statistic   Prob. 
BIST30     
Augmented Dickey-Fuller test statistic -51.004***  0.000 
Test critical values: 1% level -3.43   
                                5% level -2.86   
                                10% level -2.56   
XU030     
Augmented Dickey-Fuller test statistic -51.499***  0.000 
Test critical values: 1% level -3.43   
                                5% level -2.86   
                                10% level -2.56   

Note: ‘***’, ‘**’, ‘*’ indicate significance at 1%, 5% and 10% respectively. 
 

(34) 
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Also, logarithmic returns of BIST30 index and BIST30 index futures are shown in 

Figure 5 and Figure 6 respectively. 

 

Figure 5: Daily Log Returns of BIST30 Index in the period from 2010 to 2016 

 

 
 
 
Figure 6: Daily Log Returns of BIST30 Index Futures in the period from 2010 

to 2016  
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Figures 5 and 6 show that the general distribution of the logaritmic return series are 

around the zero average, suggesting that the return series are stationary and both 

series do not contains unit root. Also, we clearly see that trend of both series have 

volatility clustering, periods of large changes being followed by periods of large 

changes and periods of small changes being followed by small changes. 

 

3.2 OLS Model 
 
The minimum variance hedge ratio estimated by using the OLS are static. This 

means that once estimated, the hedger uses this ratio of futures to spot during the 

entire hedging period. The estimates of the OLS model are given in table 4. As we 

can see the OLS minimum variance hedge ratio is 0.955 and it is less than the 

traditional hedge stratedy where hedge ratio is -1. 

 

Table 4: Estimates of the OLS Model 
 
Variables Coefficients Standard Error T-Statistic P-Value 

a 1.734 8.862 0.195 0.845 

b 0.955*** 0.005 169.267 0.000 

Note: ‘***’, ‘**’, ‘*’ indicate significance at 1%, 5% and 10% respectively. 
 
 

In table 4, the results show that the coefficient is statistically significant, however, 

the intercept is not statisticaly significant at level %10. It means that there is no 

linear trend in the data generation process and the estimated coefficients should be 

biased and inconsistent. This indicates that the hedge ratio estimated from OLS 

model may be biased and some diagnostic test should be performed in order to 

evaluate the performance of the regression model.  

 

The results of diagnostic tests are shown in table 5. We start with performing 

Breusch-Godfrey Serial Correlation test and Ljung-Box Q-statistics test in order to 

check whether there is serial correlation or not. Breusch-Godfrey Serial Correlation 

test is performed for 16 lags in order to check the presence of serial autocorrelation. 
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According to test results, we can reject the null hypothesis as P-value is less than 5, 

it means that, there is serial correlation at up to 16 lags. Also, we perform to Ljung-

Box to check whether the residuals have autocorrelation. The correlogram results 

are indicated in table 5 and the test statistic shows that there is serial correlation in 

the residuals. Both the Q-statistic and the Breusch-Godfrey test indicate that the 

residuals are serially correlated. 

 

Table 5: Results of Diagnotistic Tests on OLS Model 
 
Test Test Statistic P-value Conclusion 

Breusch-Godfrey 448.97*** 0.000 Reject 

Ljung-Box  

Q(5) 

Q(10) 

Q(15) 

338.35*** 

341.70*** 

356.09*** 

0.000 

0.000 

0.000 

 

Reject 

Reject 

Reject 

Jargue-Bera 385.53*** 0.000 Reject 

White's Test 67.26*** 0.000 Reject 

ARCH LM Test 73,546*** 0.000 Reject 

Note: ‘***’, ‘**’, ‘*’ indicate significance at 1%, 5% and 10% respectively. 
 

Then, we perform normality test for the residuals with using the Jargue-Bera (the 

JB) test. JB statistic measures that the series have skewness and kurtosis of normal 

distribution. Under the null hypothesis of normality, the JB is distributed as chi 

squared with two degrees of freedom. If the Jargue-Bera reported probability 

exceeds the 5% siginificance level, the hypothesis of normal distribution is 

accepted. The JB test results is indicated in table 5 and implies that residuals are 

not normally distributed. 

 

The test results sign that there may be heteroskedasticity and residuals do not 

conform with a linear pattern, they may be disposed to cluster.  The White’s Test is 

carried out to check whether there is presence of heteroskedasticity or not. White’s 

test is a test of the null hypothesis of homoskedasticity and demonstrates whether 
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there is no heteroskedasticity. White’s test statistic is asymptotically distributed as 

a chi squared with degrees of freedom equal to the number of slope coefficients 

with excluding the constant in the regression. The test statistic is shared in the table 

5 and shows that there is heteroskedasticity which means that the variance of the 

residuals in the regression model is not constant. Finally, we run the Lagrange 

multiplier (LM) test  for testing autoregressive conditional heteroskedasticity 

(ARCH) effects in the residuals. The ARCH test, which is a Lagrange multiplier 

(LM) test was developed by Engle (1982), in order to detect the presence of 

heteroskedasticity in the data. The null hypothesis represents that there is no ARCH 

up to order q in the residuals and based on following formula: 

 

𝑒I& = 𝛽n	 + ¡¤ 𝛽G𝑒I0G&𝑞

𝑠=1
¢+𝑣I	 

 
where e indicates the residuals. The ARCH LM test results is indicated in table 5. 

The P value of Chi squared (q) is less than %5 level which implies there is ARCH 

effect for up to three order in the residuals and this prove the presence of 

heteroskadasticity. Proving of presence of autocorrelation and heteroskedasticty 

bring into doubt the effectivity of using the OLS model to reach the optimal hedge 

ratio. 

 

3.3 ARCH and GARCH Models 
 
 
The statistic tests conducted for examining heteroskedasticity in the OLS regression 

model point out that GARCH approach may give better results for estimating the 

optimal hedge ratio. GARCH family models incorporate three steps: estimation of 

a best fitting model, computation the autocorrelation and lastly, testing significance 

of the model. Firstly, we will check whether there is clustering volatility and the 

ARCH effect. If there is clustering volatility, periods when large changes are 

followed by further large changes and periods when small changes are followed by 

further small changes.  

(35) 
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Figure 7: Residual Graph of the OLS  

 
 

When we look at the graph of the error terms in figure 7, it is observed that the 

volatility of the series show similarities and error terms may have conditionally 

varying variances.  As it can be clearly observed from figure 7, the return series 

exhibit volatility clustering, which is similar with the studies in the literature. 

Also,we have already test the ARCH effect by using The ARCH LM test. After 

proving of clustering volatility and also ARCH effect, so we can develop an 

GARCH family model. 

 

We perform several GARCH models and we will compare all these model to find 

out which one is the best to estimate optimal hedge ratio. Once the models are 

performed, diagnostic checking will be examined  by using some procedures. The 

preferred model(s) should have no heteroskedasticity and no serial correlations, as 

well as, have the lowest SIC and AIC value. The normality condition is ignored, 

because GARCH models by nature have fat tails and are skewed. While model 

performing, it was noticed that the GARCH(1,1) models underperformed compared 

to other GARCH (p,q) models, and therefore these models are excluded for 
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comparision of hedge ratios. The test results and the coefficient statistics are 

displayed on table 6. 

 

According to table 6, the sums of coefficients of GARCH and ARCH effects are 

lower than one except for GED-GARCH, it can be considered proof of variance 

stationary. Also, in the EGARCH model, we clearly see that the coefficient of 

asymmetric effect (g) has negative sign, it means that there is a asymmetric effect 

and bad news has a larger impact on the volatility than good news.  

 

Table 6: Estimates of the GARCH Models 
 

  

GARCH 

(1,1) 

GARCH 

(1,2) 

EGARCH 

(1,2,2) 

GED-GARCH 

(1,2) 

 
1.548 1.372 0.0003*** 9.485 

c [0.212] [0.188] [3.920] [1.312] 

  (0.831) (0.850) (0.000) (0.189) 

h 0.962*** 0.963*** 0.974*** 0.959*** 

  [260.04] [266.95] [280.75] [227.01] 

  (0.000) (0.000) (0.000) (0.000) 

αn 9.229*** 5.912 -0.195*** 5.098 

 
[11.999] [1.596] [-3.382] [1.022] 

 
(0.000) (0.110) (0.000) (0.306) 

α/ 0.311*** 0.284*** 0.429*** 0.304*** 

  [8.473] [8.223] [9.710] [6.0193] 

  (0.000) (0.000) (0.000) (0.000) 

α& 
 

-0.266*** -0.382*** 0.285*** 

  
 

[-7.642] [-8.525] [-5.627] 

  
 

(0.000) (0.000) (0.000) 

γ/ 
  

0.192*** 
 

  
  

[6.658] 
 

  
  

(0.000) 
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γ& 
  

-0.051* 
 

  
  

[-1.618] 
 

  
  

(0.105) 
 

β/ 0.067 0.978*** 0.985*** 0.978*** 

  [1.154] [177.99] [195.69] [122.32] 

  (0.248) (0.000) (0.000) (0.000) 

k 
   

1.443*** 

  
   

[26.389] 

  
   

(0.000) 

AIC -8.374 -8.391 -8.401 -8.423 

SIC -8.359 -8.373 -8.377 -8.402 

R2 0.940 0.940 0.939 0.940 

Notes: (a) T-statistic indicated in [ ] and related p-value in ( ). 
           (b) ‘***’, ‘**’, ‘*’ indicate significance at 1%, 5% and 10% respectively. 
 
 

Ljung-Box Q statistic is performed for testing the autocorrelations and partial 

autocorrelations of the squared residuals. When the p value of Q-statistic is higher 

than 5% percent level, the null hypothesis of no serial correlation is accepted, 

otherwise, the presence of autocorrelation is proven. Ljung-Box Q-statistics and 

their p-values are reported in table 7 and indicate that The Q-statistics are 

significant at all lags, which means that there is no serial correlation.  

 

 

Table 7: Results of the Diagnotistic Tests Conducted on GARCH Models 
 

Model Test 

Test 

Statistic P-value Result 

GARCH(1,1) Ljung Box       

  Q(5) 5.062 0.408 Accept 

  Q(10) 11.07 0.352 Accept 

  Q(15) 17.33 0.299 Accept 
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GARCH(1,2) Ljung Box       

  Q(5) 1.927 0.859 Accept 

  Q(10) 8.450 0.585 Accept 

  Q(15) 9.669 0.840 Accept 

EGARCH(1,2,2) Ljung Box       

  Q(5) 4.134 0.530 Accept 

  Q(10) 9.046 0.528 Accept 

  Q(15) 11.34 0.728 Accept 

GED-GARCH(1,2) Ljung Box       

  Q(5) 2.633 0.756 Accept 

  Q(10) 9.600 0.476 Accept 

  Q(15) 10.639 0.778 Accept 

Note: ‘***’, ‘**’, ‘*’ indicate significance at 1%, 5% and 10% respectively. 
 

Finally, to test if there is still heteroskedasticity, the Langrange Multiplier test for 

ARCH effects is conducted. The test results are shown in table 8. The null 

hypothesis of ARCH-LM Test is that there is no ARCH effect up to selected order  

in the residuals. According to ARCH LM test results, there is no ARCH up to 36 

order in the residuals, it means that ARCH effects are removed by using GARCH 

models. 

 

Table 8: Results of the ARCH-LM Test Conducted on GARCH Models 
 

Model 
 

ARCH Test 

Tes Statistic P-value Result 

GARCH(1,1) 0.278014 0.598 Accept 

GARCH(1,2) 0.704853 0.703 Accept 

EGARCH(1,2,2) 3.477868 0.175 Accept 

GED-GARCH(1,2) 1.353034 0.508 Accept 

Note: ‘***’, ‘**’, ‘*’ indicate significance at 1%, 5% and 10% respectively. 
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3.4 ECM and ECM-GARCH Models 
 
Herein, we generate the error correction model and the ECM-GARCH model to 

estimate the hedge ratio. First, we run the Granger Causality Test. The precondition 

of the test is that series must be non-stationary but when the series are converted 

into first difference level, then they should be stationary. We carried out the 

Augmented Dickey- Fuller Test to test existence of unit roots. The results are shown 

in table 9. According to test results, the ADF statistic values of BIST30 at level  is 

-1.707 and the associated one-sided p-value is 0.427. The ADF statistic values of 

XU030 at level  is -1.73 and the associated one-sided p-value is 0.415. For both 

series, the test statistics values are greater than the critical values so we do not reject 

the null; both series contain unit roots. When first level differences are taken, both 

series become stationary as the test statistics are less than %5 and reject the null 

hypothesis. 

 
Table 9: Results of the ADF Unit Root test 
 

 BIST30 DBIST30 XU030 DXU030 

Critical Value 

(at 1%) -3.432 -3.432 -3.432 -3.432 

Test statistics -1.707 -20.452*** -1.730 -51.499*** 

P-Value 0.427 0.000 0.415 0.000 

Result Accept Reject Accept Reject 

Notes: (a)The tests are performed based on the logarithmic prices of series. 
  (b)The null hypothesis is represented as series contains a unit root. 

            (c) ‘***’, ‘**’, ‘*’ indicate significance at 1%, 5% and 10% respectively. 
 
 
Next, we will check if the series are cointegrated. The Granger causality test shows 

evidence of causality from BIST30 to XU030. After proving the cointegration, we 

run the model by using the OLS. All parameters of the error correction model are 

statistically significant. 
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∆𝑆I = 1.84934+ 0.968914∆𝐹I + 0.601801∆𝐹I0/ + 0.345239∆𝐹I0&
+ 0.173562∆𝐹I0² − 0.60365∆𝑆I0/ − 0.345771∆𝑆I0&
− 0.180361∆𝑆I0² + 𝑢I 

 
Table 10: Estimates of the ECM 
 

Variables Coefficients T-statistic P-Value 

𝛼/ 1.849 0.278 0.780 

𝑏 0.969*** 228.18 0.000 

𝜃/ 0.601*** 30.44 0.000 

𝜃& 0.345*** 15.629 0.000 

𝜃² 0.173*** 8.750 0.000 

𝜙/ -0.603*** -30.034 0.000 

𝜙& -0.345*** -15.425 0.000 

𝜙² -0.180*** -9.015 0.000 

R-squared:0.9667  Log Likelihood: 8110.325 

AIC: -8.892  SIC: -8.865 

Note: ‘***’, ‘**’, ‘*’ indicate significance at 1%, 5% and 10% respectively. 
             
 
Lastly, selected diagnotistic test are performed. According to White’e test result, 

the statistic values of observation*R2 is 242.50 and the associated one-sided p-value 

is 0.000. The value of N*R2 is greater than the 𝜒& table value at %5 percent level, 

the null hypothesis of homoskedasticity is rejected. The Breusch-Godfrey Serial 

Correlation test is performed in order to check the presence of serial autocorrelation. 

According to test results, the N*R2 is 1506.09 and is greater than the 𝜒& table value, 

the hypothesis of no serial correlation up to order three is rejected. It means that  

the residuals are serially correlated.  

 

After performing residuals diagnotistic test, the presence of autocorrelation and also 

heteroskadasticity motivate us to respecified the model for more effective result in 
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estimating the optimal hedge ratio. For that purposed, we performed the ECM-

GARCH model.  

 

∆𝑆I = 0.0002+ 0.984634∆𝐹I + 0.78154∆𝐹I0/ + 0.470538∆𝐹I0&
+ 0.202563∆𝐹I0² − 0.78777∆𝑆I0/ − 0.476158∆𝑆I0&
+ 0.902063∆𝑆I0² + 𝑢I 

 

σ�& = 1.10371 + 0.975869𝑢�0/& + 0.001106σ�0/&  

 
Table 11: Estimates of the ECM – GARCH Model 

Note: ‘***’, ‘**’, ‘*’ indicate significance at 1%, 5% and 10% respectively. 
 
            
 

Mean Equation 

Variables Coefficients T-statistic P-Value 

𝛼/ 0.0002*** 5.8105 0.000 

𝑏 0.985*** 198.265 0.000 

𝜃/ 0.781*** 74.242 0.000 

𝜃& 0.470*** 42.512 0.000 

𝜃² 0.202*** 20.682 0.000 

𝜙/ -0.787*** -71.743 0.000 

𝜙& -0.476*** -41.306 0.000 

𝜙² 0.902*** 99.042 0.000 

Variance Equation 

Variables Coefficients T-statistic P-Value 

𝜑n 1.103*** 8.498 0.000 

𝜑/ 0.975*** 10.385 0.000 

𝛽/ 0.001 0.037 0.970 

R-squared. 0.938    AIC -9.022    SIC -8.986 



   

  
 

44 
 
 

In table 11, all parameters of ECM- GARCH (1,1) models are statistically 

significant except for a1 and b. The Ljung-Box Q-statistics are not significant with 

near 0.9 p-values. The ARCH LM test indicates that we can not reject the null 

hypothesis that there is no ARCH up to 36 order in the residuals. As this stand, 

estimation of ECM with the GARCH model eliminates the ARCH effect and time 

varying variance.  

 
Table 12: ARCH LM Test Results 
 
Heteroskedasticity Test: ARCH 

F-statistic 0.720     Prob. F(36,1749) 0.890 

Obs*R-squared 26.108     Prob. Chi-Square(36) 0.887 

Note: ‘***’, ‘**’, ‘*’ indicate significance at 1%, 5% and 10% respectively. 
 
 
3.5 VECM and VECM-GARCH Models 
 
 
In order to take into consideration the cointegration between the series, we will 

model the mean equation using VECM model and then we generate the VECM with 

the bivariate GARCH model in order to obtain dynamic minimum hedge ration. If 

the series are cointegrated or have long run relationship, then we can run restirected 

VAR, that is VECM model model. However, if the variables are not cointagrated, 

we can not run VEC model, rather unrestiricted VAR should be effective. 

 

Three steps are performed to develop a VECM model. First, we decide how many 

lag should be choosen. To determine the optimal lag length, we compare the lag 

length selection criterias. According to VAR Lag Order Selection Criteria, three lag 

order is selected. Then, the Johansen Cointegration Test is performed to determine 

the existence of cointegration. The test results are indicated in table 13: there is at 

most one cointegration between series and they move together in the log run. 
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Table 13: Unrestricted Cointegration Rank Test (Trace) 
 

Number of 

Cointegration Eigenvalue Statistic 

Critical 

Value Prob.** 

None * 0.038 101.946 15.494 0.000 

At most 1 0.001 2.907 3.841 0.088 

Notes: (a) Trace test indicates 1 cointegrating at the 0.05 level. 
            (b) * denotes rejection of the hypothesis at the 0.05 level. 
            (c) **MacKinnon-Haug-Michelis (1999) p-values. 
 

After the preconditions of Johansen Cointegration Test is ensured, we can run the 

test with linear deterministic trend. If the presence of cointegration between the 

series and heteroskedasticty are proven, we expect that the estimation of time 

varying hedge ratios with using time-varying variances and covariances provides 

better results. In this case, the residuals obtained from VECM will be saved and 

multivariate GARCH model will be estimated. 

The estimates of VECM are indicated in table 14. The coefficient of error correction 

term represents the speed of adjustment towards to equilibrium. If it has negative 

sign and is significant, then we can say that there is a long run causality from 

BIST30 Future Index to BIST30. Estimated equations and the cointegration 

equation are displayed as: 

 
∆𝐵𝐼𝑆𝑇30I = −0.03045𝑒𝑐𝑡I0/ − 0.28276𝐵𝐼𝑆𝑇30I0/ + 0.16367𝐵𝐼𝑆𝑇30I0&

+ 0.07240𝐵𝐼𝑆𝑇30I0² + 0.265927𝑋𝑈030I0/
− 0.14411𝑋𝑈030I0& − 0.04566𝑋𝑈030I0² + 0.000239 

∆𝑋𝑈030I = 0.13699𝑒𝑐𝑡I0/ + 0.14830𝐵𝐼𝑆𝑇30I0/ + 0.35119𝐵𝐼𝑆𝑇30I0&
+ 0.145687𝐵𝐼𝑆𝑇30I0² − 0.170688𝑋𝑈030I0/
− 0.34004𝑋𝑈030I0& − 0.11544𝑋𝑈030I0² + 0.000232 

𝑒𝑐𝑡I0/ = 1.0000 − 0.99072𝑋𝑈030I − 6.94528 
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Table 14: Estimates of the VECM 
 

Variables Coefficients Std. Error T-statistic P-Value 

𝛼/ 0.0002 0.000 0.661 0.477 

𝛼& 0.0002 0.000 0.630 0.246 

𝜙// -0.282 -0.125 -2.254 0.403 

𝜙/& 0.163* -0.128 1.275 0.087 

𝜙/² 0.072 -0.111 0.650 0.369 

𝜙&/ 0.148*** -0.127 1.165 0.004 

𝜙&& 0.351*** -0.130 2.696 0.006 

𝜙&² 0.145 -0.112 1.290 0.225 

𝜃// 0.265 -0.123 2.153 0.510 

𝜃/& -0.144 -0.126 -1.139 0.130 

𝜃/² -0.045 -0.110 -0.414 0.609 

𝜃&/ -0.170*** -0.125 -1.362 0.001 

𝜃&& -0.340*** -0.128 -2.649 0.009 

𝜃&² -0.115 -0.111 -1.032 0.431 

φ/ -0.030 -0.087 -0.348 0.381 

φ& 0.136* -0.088 1.544 0.102 

Note: ‘***’, ‘**’, ‘*’ indicate significance at 1%, 5% and 10% respectively. 
  
 
The coefficient of ECT is negative and it is significant with test statistic-0.348 under 

one-tailed test at %1 percent level. It proves that the long-run causality exist 

between the series. The optimal hedge ratio is calculated by the following formula: 

 

𝐻𝑒𝑑𝑔𝑒	𝑅𝑎𝑡𝑖𝑜 =
𝑐𝑜𝑣(𝑆, 𝐹)

𝜎H&
=
0.000236
0.000245 = 0.0632 

 
In order to test the validity of the model, selected residuals diagnotistic tests are 

performed. First, Portmanteau Tests for Autocorrelations is run to check if there is 

autocorrelation. The test result is showed in table 15. According to test result, there 
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is serial correlation up to four lags. Next, the VEC Residual Heteroskedasticity test 

is applied and the null hypothesis of homoskedasticty is rejected with zero p-value.  

 

Table 15: System Residual Portmanteau Tests for Autocorrelations 
 

Lags Q-Stat Prob. Adj Q-Stat Prob. df 

4 15.284*** 0.018 15.317 0.017 6 

Notes: (a) ‘***’, ‘**’, ‘*’ indicate significance at 1%, 5% and 10% respectively. 
           (b) The test is valid only for lags larger than the System lag order. 
           (c) Null Hypothesis: No residual autocorrelations up to lag h. 
 
 

Table 16: VEC Residual Heteroskedasticity Test 
 

Chi-sq df Prob. 

292.235*** 42 0.000 

Note: ‘***’, ‘**’, ‘*’ indicate significance at 1%, 5% and 10% respectively. 
 
 

When we consider the cointegration as well as the time varying variance, employing 

a multivariate GARCH model such as VECM-Diag-BEKK-GARCH model, may 

produce efficient result to estimate the optimal hedge ratio.  

 

Herein, we employ the bivariate Diag-BEKK-GARCH model with error correction 

term. We run the model with the diagonal BEKK via software package and the 

coeficients estimates are reported in table 17: 

 
Table 17: Estimates of the VEC-Diag BEKK-GARCH 
 

Variables Coefficients Std. Error T-statistic P-Value 

𝛼/     0.0005* 0.000 1.630 0.103 

𝛼&     0.0005* 0.000 1.615 0.106 

𝜙//    -0.398*** 0.117 -3.393 0.000 

𝜙/&     0.073 0.121 0.608 0.542 

𝜙/²     0.134 0.103 1.306 0.191 
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𝜙&/    -0.04 0.117 -0.343 0.731 

𝜙&&    -0.282** 0.125 -2.259 0.023 

𝜙&²    -0.185** 0.104 -1.768 0.077 

𝜃//     0.415*** 0.114 3.639 0.000 

𝜃/&    -0.073 0.122 -0.602 0.547 

𝜃/²    -0.101 0.102 -0.990 0.322 

𝜃&/     0.047 0.120 0.395 0.692 

𝜃&&     0.273** 0.122 2.227 0.025 

𝜃&²     0.217** 0.104 2.072 0.038 

φ/     0.021 0.078 0.273 0.784 

φ&     0.186** 0.081 2.279 0.022 

Note: ‘***’, ‘**’, ‘*’ indicate significance at 1%, 5% and 10% respectively. 
 
 
In order to check the presence of autocorrelation, the Portmanteau Autocorrelation 

Test is performed.  Table 18 shows that the bivariate GARCH model with diagonal 

BEKK parameterization removes the serial correlation previously detected in the 

VECM. 

 

Table 18: Estimates of the Portmanteau Autocorrelation Test for VECM-Diag-
BEKK-GARCH 
 
Lags Q-Stat Prob. Adj Q-Stat Prob. df 

1  0.370  0.984  0.370  0.984 4 

2  1.158  0.997  1.159  0.997 8 

3  6.101  0.910  6.111  0.910 12 

4  10.763  0.823  10.782  0.822 16 

5  13.641  0.848  13.668  0.846 20 

Note: (a) ‘***’, ‘**’, ‘*’ indicate significance at 1%, 5% and 10% respectively. 
          (b) Null Hypothesis: no residual autocorrelations up to lag h. 
  
 
Fgures 8 and 9 display residuals for BIST30 and XU030 respectively. 
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Figure 8: Residual Graph of BIST30 estimated form VEC-Diag BEKK-
GARCH Model 
 
 

 
 
Figure 9: Residual Graph of XU030 Estimated From VEC-Diag BEKK-
GARCH Model 
 

 
 

After extracting the conditional variance and covariance matrix from the model, we 

estimate the dynamic hedge ratio via software package. Figure 10 displays the 

dynamic hedge ratio calculated with the bivariate GARCH(1,1) model. We also add 

the hedge ratio obtained from the OLS model and show it in black line in figure 10. 

The sample mean of the dynamic hedge ratio is 0.96 and the ratio range from 0.87 

to 1.18 as clearly observed from the Figure 10. 
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Figure 10: The Plot of the Dynamic Hedge Ratio 
 

 
 
 

 
3.6 Hedging Performance 
 
In this section, we evaluate and compare the hedging effectiveness of the models.  

The evaluation of the performance is done for both in sample and out of sample 

analyses. The out of sample analysis is much more important as it indicates the real 

market situation. The hedge ratios and the variance reduction rates for in sample 

and out of sample analyses are show in table 19 and table 20 respectively.  

 

Table 19: Hedging Performances for In Sample 
 

Model Hedge Ratio Variance 

Variance 

Reduction % 

Unhedged 0.000 0.000244 - 

OLS 0.955 0.0000147 0.940 

GARCH(1,2) 0.963 0.0000147 0.940 

EGARCH(1,2,2) 0.975 0.0000148 0.939 

GED-GARCH(1,2) 0.960 0.0000147 0.940 

ECM 0.969 0.0000147 0.940 
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ECM-GARCH 0.985 0.0000149 0.939 

VECM 0.963 0.0000147 0.940 

VEC-Diag BEKK 

GARCH 0.960 0.0000147 0.940 
 

Table 20: Hedging Performances for Out of Sample 
 

Model Hedge Ratio Variance 

Variance 

Reduction % 

Unhedged 0.000 0.0001709 - 

OLS 0.884 0.0000219 0.872 

GARCH(1,2) 0.908 0.0000219 0.872 

EGARCH(1,2,2) 0.937 0.0000223 0.870 

GED-GARCH(1,2) 0.976 0.0000233 0.864 

ECM 0.907 0.0000219 0.872 

ECM-GARCH 0.916 0.0000220 0.871 

VECM 0.901 0.0000219 0.872 

VEC-Diag BEKK 

GARCH 0.889 0.0000219 0.872 

 

The hedging performance results show that in sample and out of sample analysis  

provide a smiliar picture.  All models provide a significant reduction in the variance 

of portfolio compared to the unhedged portfolio. Also, it can be see that the hedge 

ratios obtained from the GARCH models as well as the ECM and VECM, are 

greater than the OLS model. Similar to other studies, it can be inferred that the 

hedge ratio can be biased downward when the autocorrelation and the cointegration 

relationships are ignored.  

 

In sample analysis, the variance reduction associated with the all model is equal to 

the %94 except for the EGARCH and ECM-GARCH. The EGARCH and ECM-

GARCH provide the variance reduction by %93.9. In out of sample analysis, the 
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variance reduction associated with the OLS model, the GARCH model, the ECM, 

the VECM and VEC- Diag BEKK- GARCH model is %87.2 while the other models 

offering a poorer performance. Also, the VEC-Diag BEKK- GARCH model come 

second after the OLS for providing the lowest hedge ratio. 

 

All models provide a substantial risk reductions compared to the unhedged portfolio 

and it proves that the hedging with futures contracts allows for risk protection. 

However, their hedging performance are only slightly better than the OLS. It is 

cleary observed that the OLS does not underperform the other models, although it 

has some methodological drawbacks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 



   

  
 

53 
 
 

CONCLUSION 
 
 
This study has provided empirically assessment to both static and dynamic hedge 

ratios estimation by using hedging models with BIST 30 futures contract of Borsa 

Istanbul and underlines the static and dynamic methods for estimating optimal 

hedge ratios. The static hedges ratios are derived from the OLS method, GARCH  

models, ECM and VECM methods and also the dynamic hedge ratios derived from 

bivariate VECM-Diag-BEKK-GARCH model. The observation between 2010 and 

2017 are used to estimate the models and observation between 2017 and 2019 are 

saved in order to perform out of sample evalution. The model performances have 

been compared according to variance reduction as a measure. 

 

The hedging performances of the models studied in this paper are very close to each 

other and this result is in accordance with the findings of other studies. Eventhough, 

the conventional GARCH models as well as the dynamic GARCH model appear to 

fit the data well, there is no clear evidence found that they provide better hedging 

performance for BIST30 Index futures. It seems that the OLS provides the same 

hedging performance with simple practice,  but still the reliability of the model has 

always been open to discussion due to the misspecification problems. On the other 

hand, although the time varying hedging ratio seems more realistic, the VECM-

Diag-BEKK-GARCH model does not provide a superior result in comparision with 

the other models despite its complexity. It should always be taken into account that 

the hedging performance of models vary from asset to asset and it can be 

complicated to reach the unique optimal hedge ratio. For further studies, it is 

suggested to carry on more deeply study to analyse whether the GARCH models 

reflect the behaviours of the returns and the market fluctuations properly.  
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