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ABSTRACT

Estimation of Static and Dynamic Optimal Hedge Ratios: An Application to the
BIST30 Index Futures

Especially in recent years, due to fluctuations in both domestic and international
financial market, investors pay more attention to control the risks exposed due to
their positions in the markets. Various econometric methods have been developed
to estimate the optimal hedge ratio. In the literature, some of researchers studied
with the static models, while others used dynamics models for estimation of the
optimal hedge ratio. The aim of this paper is determining the optimal hedge ratio
by providing a comparision of various econometric models. The daily closing prices
of BIST 30 Index and BIST30 Index Futures are used for forecasting and the
optimal hedge ratio are estimated by employing static models such as the Ordinary
Least Squared (OLS) model, the Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) models , the Error Correction Model (ECM) and the
Vector Error Correction Model (VECM). Also we employ the bivariate VECM-
Diag-BEKK-GARCH model to estimate dynamic hedge ratio. The hedging
performance is measured in terms of the variance reduction provided by each
models. According to the findings, the VECM and the GARCH models provide
only slightly better performance than the traditional linear regression model and the
bivariate VECM-Diag-BEKK-GARCH model fails to outperformed the static

models.

KEYWORDS: Optimal hedge ratio;, Hedging effectiveness BIST30 futures index;
GARCH Models; VECM-Diag-BEKK-GARCH Model
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OZET

Statik ve Dinamik Optimal Korunma Oranlarinin Tahmini: BIST30 Endeks

Vadeli Sozlesmeleri Uzerine Bir Uygulama

Ozellikle son yillarda hem yurt i¢i hem de uluslararasi finansal piyasalardaki
dalgalanmalar nedeniyle yatirimcilar piyasalardaki pozisyonlarindan dolay1r maruz
kaldiklar1 riskleri kontrol etmeye daha fazla onem vermektedirler. Optimal
korunma oranini tahmin etmek i¢in ¢esitli ekonometrik modeller gelistirilmistir.
Literatiirde, optimal korunma oranini tahmin etmek i¢in hem statik hem de dinamik
modellerin kullanildig1 bir¢ok ¢aligma bulunmaktadir. Bu ¢aligmanin amaci, belirli
ekonometrik modellerin karsilagtirmasin1 saglayarak optimal korunma oranin
belirlemektir. Calismada, analizler BIST30 hisse senedi endeks kapanig fiyatlari ile
BIST30 endeks vadeli sozlesmelerinin kapanis fiyatlar1 tizerinden gerceklestirilmis
ve optimal korunma oraninin tahmini, En kiiciik kareler (OLS), otoregresif kosullu
degisen varyans (GARCH), basit hata diizeltme modeli (ECM) ve vektor hata
diizeltme modeli (VECM) gibi statik modeller kullanilarak gergeklestirilmistir .
Ayrica dinamik optimal korunma oranini tahmin etmek i¢in iki degiskenli VECM-
Diag-BEKK-GARCH modeli kullanilmistir. Modellerin  riskten koruma
performanst varyans degisiminde meydana gelen azalma olarak olgiilmiistiir.
Caligma sonuglari, VECM ve GARCH modellerinin geleneksel dogrusal regresyon
modeline gore sinirlt olarak daha iyi performans gosterdigini ve dinamik VECM-
Diag-BEKK-GARCH modelinin statik modellerden daha iyi performans sergileme

konusunda yetersiz kaldigini gostermistir.

Anahtar Kelimeler: Optimal korunma orani; Korunma etkinligi, BIST30 endeks
vadeli sozlesmesi;, GARCH Modelleri; VECM-Diag-BEKK-GARCH Modeli
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INTRODUCTION

It is quite obvious that investors face a trade off between expected return and risk.
There will always be certain risk associated with investments and realized returns
will always be different from the expected returns. Invertors almost seek the highest
return and the lowest risk, however, it is impossible due to uncertainty in values of

financial variables.

The unpredictable events, accordingly, fluctuations in exchange rates and interest
rates always have existed in financial marketplaces and these factors bring about
the risks which investors and economic units are exposed to, and risk management

has become an important phenomenon.

Hedging is very important tool in where economic fluctuation and financial risk
exist, especially in volatile economies. In countries under volatile economic
conditions, using derivatives instruments is play important role to hedge investors’
portfolio. In simple term, hedging is a techique that oftsets certain sources of risk
and the hedge ratio is the number of hedging instruments such as derivatives

required to offset the risk of the portfolio.

Investors are only concerned with historical return of portfolio in order to predict
future return. If there is a particular risk investors faced, they want to construct a
hedge strategy to close to perfect as possible as. It is exactly known that perfect
hedge is not possible, but they try to reach out the best hedging ratio they can. When
constructing a model in order to optimal hedge ratio, behaviours of the variables
used in the model are crucial to attain the correct results. Whether the variance is
constant or not, and presence of autocorrelation and cointegration are important for
the effectiveness of the model to be used in predicting future returns. If series have
normal distribution, variance is a used for measurement of risk. However, several

studies showed that financial series have not normal distribution and measuring risk



with only variance assumption would not give accurate result. Nevertheless, models

based on this assumption are still used for comparison purposes.

As for portfolio, risk is calculated based on covariance matrices containing the
variance and covariance of the return of financial assets included in porfolio.
Although classical variance and covariance approaches ignore the autoregressive
relationship of squared returns, they are still used for estimates. Varios univariate
and multivariate models have been developed by researchers. The models with
autoregressive conditions , which was firslty presented by Engle(1982), have been
used in finance literature, however, some of researchers showed that the model may

not be exactly appropriate in some instance.

Many studies have performed based on OLS and GARCH models to calculate the
optimal hedge ratio and several studies show that heteroskedasticity in spot and
futures return have an impact on the optimal hedge ratio and its effectiveness. The
GARCH family models take into account the time varying covariance futures and
spot return. At the same time, even though unrealistic assumptions, minimum
variance hedge ratio estimated by OLS still provides a clear benchmark to evaluate

hedging performance.

In this study, a term of minimum variance hedge ratio is deemed as a number of
futures contracts that should be purchased with regards to spot position held which
is minimizes the variance of return of the hedged portfolio. We construct several
models in order to calculate the optimal hedge ratio by using a portfolio of spot
instrument to be hedged with the use of BIST30 index futures contracts and then

seek to determine which model is the best to estimate the hedge ratio.

This study consists of three chapters. In the first chapter, we will explain
fundamental components of risk and risk management. In chapter two, we will
provide backround and research developments related to hedge ratio and then,

explain the metholodgy used in the study. Both the static and dynamic models are



performed in order to estimate the optimal hedge ratio. In the last chapter, empirical
results of the models will be demonstrated and their performances will be compared

according to both obtained variance reduction and statistical consistency of the

model.



CHAPTER 1

1.1 Definition of Volatility

Value of portfolio depends on the market variables such as interest rates, exchange
rates, equity price, etc. and it is very important for an investor to monitor volatilities
of these market variables to protect yourselves from any financial lost. Even though
volatility is not completely predictable, the use of several econometric measures

help to construct occuring volatility proxies.

In the simplest term, volatility of a variable is defined as the standard deviation of
the return. When volatility is used for risk management, it is the standard deviation
of the continuously compounded return per day. Volatility and correlation may be
relatively high during some periods, whereas during other periods it may be
relatively low. Hedging instrument is crucial to prevent financial risk arising from

the volatility.

For times series, a common assumption is that the change in assets returns is
normally distributed, however, in practice, most financial variables such as
exchange rates, interest rates, and equity prices, are more likely to experience larger
or smaller changes than the normal distribution. It means that the returns are not
identically distributed and have heavy tails. As a consequence, the volatility
changes over time and is in tendency to cluster in the periods of low volatility and
periods of large volatility. It is called autoregressive conditional heteroskadasticty.
Also, today’s volatility of a variable may depends on the past volatility of the

variable which shows us the autocorrelation.

When it is assumed that the returns on each day are independent with a constant

variance, the volatility of the return over N days is equal to the standart deviation

of the return times v/N. If the volatility per day of a return on day n is defined as o,



and the the continuously compounded return at the end of day i described as R,,,

the volatility can be defined by following formula:

1 S;
02 = — ) RZ_,, (Ri = lnS'l ) (1)

where the variable m is the most recent observation and the variable S; indicates

the price of the variable.

In equation (1), it is assumed that each of RZ_; has the same weight. If the weight

is taken into account consedering recency of the data, the equation is formed as:

m

of =yV, + Z aiRa_; 2)

i=1

Where a is the weight of return and 7y is the weight of the long run variance (V},).
The sum of the weights must be equals one. This term was first proposed by Engle
(1982) and is named as ARCH (m). And also, if the most recent forecast of the
variance is taken into account, the equation (2) will be expressed the following

form:
of =yVi+ aRi_ + fog_y 3)

Where B inidicates the weight of ¢;>_;, and again the sum of all weight terms is
equals to one (a0 + vy +  =1). The B is know as GARCH (1) and is first suggested
by Bollerslev(1986).

The autoregressive conditional heterorscedasticity (ARCH) and generalized
autoregressive conditional heterorscedasticity (GARCH) models are widely used

approaches to estimate financial volatility through non-linear pattern.



1.2 Definition of Correlation

Estimation of correlation between variables is very important to financial markets
participant in order to correctly assess the risk exposure arising from the market
volatility. If the two assests are correlated with each other, it will cause higher
effect on the portfolio as compared with the zero correlation. When the two assets
have positive correlation and the price of assets are down as a result of negative
shock in the market, the decrease in value of portfolio including these assets will
be huge. Conversely, if the assets have negative correlation, the decrease in
portfolio value will be less. The correlation coefficient of assets returns is defined

as:

0 = E(rir;) — E(r)E(r) _ cov(r113) 4)
071072 071072

Where cov(r;1,) indicates the covariance between r; and r, and is a indicator of
relationship between the variables. A variance - covarince matrix is derived for the

variance and covariance rates of the variables.

1.3 Hedging Instruments

The general view about risk is that it is beyond our control. However risk is
unpredictable, it can be managed and minimized by using correct financial strategy.
If companies or individuals, or any actor of financial markets, do not want to bear
the risk arising from fluctuation in prices, exchange rate, interest rates or any other
unexpected market conditions, hedge the risk by using specialized financial
products such as futures, options, forward, currency swap, etc. These products are
collectively called as derivatives instrument and used for managing risk as well as
speculating. Moreover, derivatives are used to predict the price of underlying assets.
For example, the spot price of the futures can serve as estimation of price of
underlying commodity. Derivative products are derived from another asset and

their values are based on that underlying assets.



Hedgers purchase derivatives insturements to offet the sensivity of their positions
against the market risk and consider the hedge ratio, which is the number of hedging
vehicles required to eliminate the risk of defenceless position. The most common

types of derivatives are futures, options, forward and swaps.

1.3.1 Futures Contracts

Futures contract is an agreement which entitle the transaction parties to buy or sell
an underlying asset of standardized quantitity and quality in the future at an agreed
price. Futures contracts are traded on organized market with standardized features
such as contract sizes, mature and underlying asset and they are not designed
according to specific needs of investors. The contracts standardization and the
organized market provide more liquidation rather than creating of new forward
contract. The profit is defined as the difference between price of futures contract
paid on deal date and the price of underlying asset at the maturity. The futures
contract are generally traded on commodity, foreign currency, exchange rates,
stocks and index. Trading participants have counterparty risk which is a probability
of failure to comply with the contracts obligations. For this reason, creditworthiness
of the traders is a vital component of financial markets. In the futures markets,
standardized arragements and market practices allow transactions to be more

realibale without default and counterparty risk is less of a concern.

Futures contracts are most often used by hedgers to protect themselves against price
movements. On the other side, for the spreculators, the futures contracts require less

margin and provide more leverage than trading of underlying asset directly.

1.3.2 Options

Options give holders the right to buy or sell an asset. There are two types of options.
A call option entitles the holder to buy an underlying asset or financial indicator for
a certain price and amount on or before the maturity date. A put option gives the

right to sell an underlying asset or financial indicator for a certain price and certain



amount on or before the maturity date. The contract price is known as the strike
price and the maturity date is known as the expire date. The profit of option is the
difference between value of option and the purchase price of the option. Options
are traded both on organized market and in the OTC (over the counter market) and

are traded on currencies, interest rates, commodities and any other products.

Generally, a positive correlation exist between price of a call option and its
underlying assets, whereas, negative correlation does exist price of a put option and
the underlying assests. The value of call option increases if price of the underlying
asset goes up, and the value of put option increases if the underlying goes down.
The value of call option cannot exceed the underlying assets. However, there is no

upper or lower boundary for put options.

Option and futures contract should not be confused with each other. Option holder
has a exercise right to buy or sell the asset, where futures contract gives a binding
obligation to deal parties. There are unlimited variety of option strategies which
include combination of calls and puts option and provide different payoff patterns
such as straddle, collars and spreads etc. Options strategies can be designed

according to specific needs of the investor.

1.3.3 Forward Contracts

Forward contracts are the customized futures contracts and traded in the OTC (over
the counter market). There is no standardized maturity or underlying asset, and any
forward contract can be written with any quantity of asset on any maturity date.
When compared with the futures contracts, forward contracts allow more flexibility
in managing the risk with adjustable maturity date and contract size. However, they
are commonly traded on non organized markets and this limits to reach transaction
parties to each other. Generally, seller of a forward contract requests specific
requirements and high collateral to execute the transaction and the buyer bear

additional cost. In financial market, investors, firms as well as financial institutions



are commonly used to forward contracts based on currency pairs. They have short
or long position according to expectations on economic indicator. For example,
when the investors expect to asset price goes up, they will have long position in

forwards, or otherwise, asset price goes down, short position will be taken.

1.3.4 Swap

Swap transactions allow investors to exchange the financial instruments or cash
flows for a certain time. Interest rate swap and cross currency swap are generally
used for managing the risk. Currency rate swaps allow agreement parties to
exchange a series of payments in one currency for a series of payments in another
currency. Interest rate swaps allow to exchange of series of interest payments based
on a given interest rate for series of interest payments based on floating interest rate.
Generally, investor who has a currency position with future dated, in order to hedge
the currency position, buy a interest swap contract where paying a fixed rate and
receiving on floating rate, such as EURIBOR or other rates. In this way, investor

protect herself against fluctuations in the currency.

1.4. Optimal Hedge Ratio

The optimal hedge ratio, or minimum variance hedge ratio, is an important factor
in hedging process and determines the optimal number of contracts to purchase to
hedge market exposure. Hedging is considered as a position taken to prevent
potential losses arisen from market fluctuations and is not considered as a trade for
profit. There have been many studies on hedging strategies in the literature and
various techiniques have been employed to estimate constant and time varying

hedges ratio.

Hedging strategies can be classified into three type: Naive or one-to-one hedge, the
beta hedge and minimum variance hedge. Naive or one to one hedge assumes that

futures and cash prices do move exactly together and a perfect futures contract exist



in the market. In the naive hedging, spot and futures positions have the same
magnitude but in opposite direction, which means that hedge ratio is equal to -1. If
the change in prices of spot asset and futures are the same, the change in the value
of the spot position will be fully compensated by the reverse change in the futures
position and a perfect hedge takes place. But the prices do not completely move

together.

Imperfect correlation between spot and futures prices was challenged and the first
emprical model was employed by Ederington (1979). In his study, the minimum
variance hedge ratio is expressed as the ratio of the covariance of the spot and

forward portfolio o ;. over the conditional variance of the futures contract afzz

b _cov(S, F)e _ _Osst (5)
' var(F); of

When spot and futures prices are not co-integrated and conditional variance-
covariance matrix is time invariant, simple Ordinary Least Square (OLS) approach
can be used to calculate to optimal hedge ration. The slope coeffient from a simple

regression model can be used to obtain a constant hedge ratio:

AS= o+ B*AF +e (6)

where B is the optimal hedge ratio. Time varying conditional variance and the
imperfect correlation between the series have not been taken into account by OLS.
To deal with this problem, hedging strategies based on ARCH model families have
been used and allowed the hedge ratio to be time varying. Also, some researchers
pointed out that cointegration between spot and futures markets should be taken

into consideration and an error correction term should be included in the model.

In order to estimate the minimum variance hedge ratio, we will construct OLS,

ECM, VECM and GARCH models and then compare the hedging effectiveness of

10



these models by comparing them with the unhedged portfolio in terms of variance
minimization. We will generate the models where the hedge ratio will assumed to
remain constant over time and also perform bivariate error correction GARCH

model in order to allow time varying hedge ratios.

11



CHAPTER 2

2.1 Literature Review

Various studies have been performed to determine the optimal hedge ratio. Some
of the applied studies have shown that the OLS method is sufficient in estimating
the optimal hedge ratio and the others have used GARCH models with the concern

that the OLS method is not an accurate approximation of the hedge ratio.

In the traditional hedging theory, the position in the futures market is equal to
position taking in the spot market with same magnitude but opposite sign in order
to hedge the spot position. Working (1953) challenged the traditional theory and
argued that the hedging was not only minimize the risk but rather to be a form of
arbitrage.

Ederington (1979) evaluated the Government National Mortgage Market as a cash
instruments and T-Bills futures markets in order to estimate the hedge ratio. He
argues that, the hedge ratio is less than one and the main motivation of hedgers is
to the risk minimization. He defines the return of portfolio which consist of futures
and spot market holdings and he proves that “cash and futures market holding may
even the same sign” (page 161). In that study, the slope of the ordinary least squares
(OLS) is defined as a minimum variance hedge ratio, which is also expressed as the
the covariance between the cash and futures price to variance of the future price.
The hedging effectiveness is measured by percent reduction in variance when
compared with the unhedged position. Later on, in order to estimate the hedge ratio,

the conventional OLS model have been carried out by several researchers such as

Figlewski (1984).

The least squares model (OLS) assumes that the expected value of all error terms
are the same at any given point when squared and are normally distributed. This
assumption is called homoskedasticity. Another assumption of OLS is that
dependent and independent variables are not cointegrated and the conditional

variance is time invariant.

12



When the finance literature is examined, there are numerous evidences that
financial time series do not meet the conditions of OLS. The spot and futures
markets have not the same volatility and have long run relationship. It means that
the conditional variance can be changed over the time. Ignoring of the long-term
relationships between the series in the OLS model has been criticized by other
researches and in order to overcome this problem, alternative models, which allow

variance and covariance to change over time, have been proposed.

ARCH model was first introduced by Engle (1982) and its extension to GARCH by
Bollerslev (1986). Engle (1982) developed a new stochastic process and called
autoregressive conditional heteroskedastic (ARCH) process. In order to take into
consideration of time dependent conditional variance, the ARCH process has been

included in the model to strengthen the optimal hedge ratio.

At the same time, the error correction model was developed by Granger (1981) and
then extended by Engle and Granger (1987). The paper suggests that an error
correction factor of series must be included when series are correlated. They find
that short run and long run interest rate are cointegrated while wages and prices are

not.

The GARCH model assumes that the effects of positive shocks and negative shocks
on the volatility are symmetrical. However, several studies show that the negative
and positive shocks may asymmetrically affect the volatility. The EGARCH model
developed by Nelson (1991) to solve this problem and the asymmetric factor in the

volatility distribution is captured in the model.

Autoregressive Conditional Variable Variance on Mean (ARCH-M) was studied by
Engle, Lilien, and Robins (1987) where conditional variance was considered as an
explanatory variable in the mean equation of ARCH model. They determine that
the conditional variance as a indicator of risk premium is time dependent and

changes systematically with the perception of undelying uncertainty. The ARCH-
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M model is important in testing the relationship between uncertainty and return,

which has an important place in financial theory.

Although estimation of optimal hedge ratios developed with GARCH models
provide consistent results, they assume that the correlation between the variables
remains constant over time. However, the correlation between the variables changes
over time and the hedge ratio varies over time as well. Also the conventional
regression model disregards both error correction term and the lagged changes in
spot and futures prices. To solve this problem, dynamic hedging strategies based

on GARCH models have been developed.

The constant variance assumption was challenged by the Baillie and Myers (1991).
They studied spot and futures prices of six different commodities and commodity
price were modelled by using bivariate GARCH model to estimate the optimal
hedge ratio. They underlines that the optimal hedge ratio is changed over time and
the assumption of constant optimal rates is not appropriate. Bivariate GARCH
models seem to fit data well and give significant time varying estimates of the
conditional covariance matrix. Besides, Myers (1991) developed a dynamic model
based on GARCH to estimate time varying optimal hedge ratios. He points out that
the hedge ratio estimated by a bivariate GARCH model provides better hedging
performance compared with the constant hedge ratio. However, he underlines that
the performance superiority is very slight and the constant hedge ratio estimated by

linear regression model may give better performance.

Lien and Luo (1993) and then Lien (1996) studied an error correction model in
order to reach to optimal hedge ratio. In ECM model, delayed values of both spot
and forward returns and one delayed value of the error term obtained from the
regression equation are added to the model in order to overcome the
autocorrelation. Ghosh (1993) and Lien (1996) show that optimal hedge ratios are
downwardly biased due to misspecification, if spot and futures are cointegrated and

the error correction term (ECT) is not included in the regression.
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Kroner and Sultan (1993) used a error correction terms and performed the bivariate
error correction model with GARCH structure to consider time varying structure of
returns and cointegrated assets prices. They used spot and futures data for six
exchange rates: the British Pound, the Canadian Dollar, the German Mark, the
Japanese Yen, and Swiss Franc for the period between 1985 and 1990. They show
that new information causes the changes in the return distribution of the assets and
it become grounds for time varying hedge ratios. Therefore, if the minimum
variance hedge ratios is calculated by using conventinal models, it may provide the
incorrect estimation. According to both in sample and out of sample results, they
conclude that the bivariate GARCH model provides a superior result in comparision

with the other methods, even when the transaction cost is taken into account.

Consolidated models were employed such as the the Constant Correlation (CCC-
GARCH) models and the later the Dynamic Conditional Correlation (DCC GARH)
models. The first model of this type is the Constant Conditional Correlation (CCC)
model employed by Bollerslev (1990). In this model, it is supposed that the
conditional correlation is constant over time, and the conditional standard deviation
is time-varying. Later, the DCC-GARCH model is examined by Engle and
Sheppard (2001) which is an extension of the CCC-GARCH model and the

conditional correlation matrix is allowed to change over the time.

In a nutshell, some researchers have performed the OLS model to optimal hedge
ratio estimation, others have offered GARCH family models by allowing time
varying variances and considering other factors disregarded by the OLS
assumptions. Later, in the alternatives of the conventional GARCH model have
been suggested in recent years. The error correction term has been used to take into
account the presence of cointegration and bivariate GARCH models are performed.
In spite of the fact that the better hedging performance have been provided by
alternatives model, some doubts still exist about the effectiveness of these models.

The numerous studies support that there is no standard hedge ratios in the financial
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literature and the major superior results are not provided as compared with the OLS

model.

2.2 Methodology

In this study, we perform static and dynamic models to find the optimal hedge
ratios. The hedge ratios derived from the models are compared with unhedged
portfolio in terms of reduction in variance ratio. The variance of hedged portfolio

is defined by Kroner and Sultan (1993) as:
Var (H) = 6 + h*cf — 2h*og (7)

Where o and oy indicate the standard deviation of the spot and futures prices

respectively and h* is the optimal hedge ratio calculated from the models. We use
the equation (7) to calculate the variance of the models and then evaluate the
hedging effectiveness by using as the ratio of the variance of the unhedged portfolio
minus the variance of the hedged protfolio, over the variance of the unhedged

portfolio:

Var(Unhedged) — Var(Hedged)

- ®)
ar(Unhedged)

Hedge effectiveness =

Percentage reduction in the variance of the hedged portfolio shows the hedging
effectiveness. The hedge ratio of the conventional models will be obtained as the
coefficient of the futures return in the model. While in the dynamic model, the ratio
between the variance and the covariance of the residuals is instead used in order to

obtain the hedge ratio.

2.2.1 Unhedged Portfolio

Unhedged potfolio has very straightforward concept; we purely assume that f3 is

equal to zero in unhedged portfolio in following equation:
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R ASi— B*AF, (9)

Unhedged portfolio will be used as a benchmark to calculate the variance reduction.

2.2.2 The conventional OLS approach

The simplest way of approximating the minimum variance hedge ratio is by using

OLS regression.

The OLS regression is a statistical linear model for estimating the relationship
between dependent and independent variables and has been used to calculate risk.
The relationship between dependent and independent variables can be represented

in the equation (6) and the [ is the minimum variance hedge ratio.

The OLS model has several assumptions. One of them is, especially concerned in
our study, the OLS assumes that expected value of all error terms are normallly
distributed and has a constant variance which is called homoskedasticiy. Also, it
assumes that all independent variables are uncorrelated and the observation of error

terms are not correlated, it means that there is no seraial correlation.

In despite of some shortcomings, the OLS model is more simple and less complex

model when comparing with the dynamics model.

2.2.3 ARCH and GARCH Models

Many studies show that changes in prices of financial assets can be more volatile
in financial crises and rather less volatile in steady economic environment. The
magnitude of volatility can be different in negative and positive economic shocks.
GARCH class of models allow time varying conditional variance and covariance.
A conventional regression model such as the OLS model, does not take into account
this volatility and the variation of returns is not completely reflected in the model.

GARCH family models shed light on describing volatility in financial markets. On

17



the contrary of classic OLS assumption, which supposes the expected value of
residuals is the same at any given point when they are squared, GARCH family
models pay attention to heteroskedastic process. The GARCH model, or
Generalized Autoregressive Conditionally Heteroskedasticity is an extension of
ARCH model and is conditionally heteroskedastic with a constant unconditional

variance.

The investigation of ARCH effects is very important to consider the situation "error
term and recent error terms are more related to each other than the error terms of
previous periods", which is observed in many time series and causes the estimation
to be less effective if neglected. The ARCH LM Test, which was developed by
Engle (1982) to determine whether ARCH effect exists in time series.

In the implementation of the ARCH model, some restrictions have been placed on
the parameters in the conditional variance equation due to the use of relatively long
delays and the suggestion of a fixed lag structure. Generalized ARCH (GARCH)
model based on more historical information and has a more flexible lag structure in
order to eliminate the drawback of not meeting these restrictions and reaching
parameter estimates with negative variances (Bollerslev, 1986). In this type of
model, conditional volatility is defined as a function of q delays of past squared
yields as ARCH (q) and in this way, time varying variance covariance structure is
allowed. In addition to the ARCH (q) term, GARCH (p) term is added to model
which represents the delays of the conditional volatility within itself. GARCH
family models have been extensively studied and particularly employed in financial
and econometric modelling and analysis. The most important benefit of GARCH

framework is that it allows time dependent variance in the model.

The GARCH method is similar to the ARMA model which is a model that includes
the autoregressive process (AR) of the error term, as well as the lagged values of

the error term variance. The first order autoregression is indicated as:

Ve = VY1t & (10)
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where ¢ is indicated as white noise with V(€) = o2. The parameter o2 represents
.. . . 2 ..
the conditional variance of y, while 7/ 1—y2 represents the unconditional

variance. Engle (1982) suggests that the forecast intervals will be better if the past
information is taken into consideration to prediction of variance and defines the

conditional variance as a linear function of the previous period error term squares:

R, = X,6+¢ (11)

-

of =w+ ) el (12)

=1

The equation (11) is the mean equation and the equation (12) is the variance
equation of the model. In order to the conditional variance of the model to be

positive, the parameters in the model must be positive; w >0 and a,>0...., a,>0.

Since v, = &2 — o/ the equation can be written as the following form:

g=w+ ) aqet i+ v, (13)

-

=1

Bollerslev (1986) models the error terms obtained from the regression model of in

the GARCH (p, q) process. The conditional mean equation is defined as:
Y,=a+b'X,+¢, &/¥_1 ~N(,0?) (14)

Conditionally varying variance of error terms according to the GARCH (p, q)
model, which includes p number of delayed autoregressive squared error terms and

number of delayed conditional variances is defined as (Bollerslev, 1986) :

0f = W+ ayef gt apef,t Brofat By 0t (15)
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p q
2 2 2
of = ay + Zaist_i +Zﬁjat_j
j=1

i=1

w>0, ag, az ..., 0op, BL Bz, ...,BqZO
14 q
S <
i=1 j=1

In the equation (14) and (15), Y: and o’ represent the conditional mean and
conditional variance respectively; € is the error term with zero mean and constant
variance, q is the lag lenth of the conditional variance and p is the lag lenth of error
terms, X is the vector of independent variable, o, and B represent respectively the

ARCH and GACRH effect on the conditional variance.

For the conditional variance estimation at time t, the number of parameters is
reduced by taking the error term one period before and the variance equation at t-1
as a less current error terms. In order to secure the validity of the model, the constant
parameters must be greater than zero and the o and ; must be equal to or greater
than zero. The p must be equal to or greater than zero and also q must be greater
than zero. At the same time, the sum of the o, and [3j parameters is lower than one

to ensure the stationary.

GARCH (p,q) allows that volatility changes with time. For some periods, volatility
is relatively high and for other periods, it is relatively low. Also, more recent data
have greater weight than older ones. The GARCH model allows weights assigned
to variables decrease exponentially as the data become older. If the GARCH model
is working well, the autocorrelation should be removed in the model. GARCH
models is helpful to evaluate expected return and risk when the returns have
clustering volatility. If series have residuals with serially autocorrelated variance

following an ARMA (autoregressive moving average) process, GARCH is
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designed to this time series. The current variance is estimated by considering of

past squared observation and past variance in GARCH models.

The equation (16) is reached by modeling both the square of the delayed values of
the error and the conditional variance with their own delayed values. Obtaining the
OHR with the conventional GARCH (p,q) model is calculated by estimating the

mean and variance equations where b indicates the optimal hedge ratio.

of = agta; ui_+tpof,

The conventional GARCH model does not consider the asymmetric effects of
negative and positive shocks on the volatility. In order to consider this restriction,
EGARCH model has been performed in this paper. The EGARCH model

(Nelson,1991) can be shown as:

q

P q
h, =log(c?) = w; + z Bjlog (atz_j) + z a; I(Z;_il + z Vi il (17)
=1

_ Or_;
i=1 t=t i=1 t=t

In the equation (17), vy is a factor measuring the asymmetric effect. If the y has
negative sign, bad news have a larger impact on the volatility than good news. If
the y is zero, it means that the model is symmetrical and positive and negative
shocks have the same leverage effect on the model.  is the measurement of the
GARCH effect and a is the measurement of the ARCH effect. A significant positive
o signalize the volatility clustering and thus, using of EGARH model may give
better results in this kind of situation. When the sum of the o and 3 is lower than

one, it can be interpreted as variance stationary.
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Additionally, we perform the GARCH model with Generalised Error Distribution
(GED) in order to consider the state of fat tails and non normal distribution in the

series. The density function of GED (Nelson,1991) is given by:

ke » exp [_%EH (18)

1 1
1200T%

f2) =

Where O<k<oo and k is a measurement of the thickness of tail and is also called as
degree of freedom. When k is equal to 2, GED returns have normal distribution. If
k is lower than 2, it has heavier tail than the normal distribution; if k is greater than

2, it has thinner tail than the normal distribution.

2.2.4 ECM and VECM

To consider the cointegration and short run and long run relationship between the
series, we use the error correction model and the vector error correction model. The
ECM directly calculates adjustment speed of dependent variable towards to long
run equilibrium arising from a change in independent variables and examines both

the short run and long run dynamics of the series. It is defined as following formula:

n n
Ay, = o + Z Bi Aye—; + Z 6 Ax_i + @z 1 + Uy (19)
i=1 i=0

Where z is the Error Correction term and is defined as:
Azy_y = ECT = yi_q — Po — P1Xt—1 (20)

The coefficient of ECT, ¢, is measurement of the speed at which spot returns to

equilibrium after a change in futures.
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Before performing the ECM and VECM, short run and long run causality should
be examined. If there is no long run relationship despite the short run relationship,

the ECM may not be suitable in terms of significancy of the model.

Error correction model can be estimated by Engle and Granger two steps approach.
In this context, the series should be non-stationary originally and then become
stationary after taking first differences. If the series are cointegrated at the same

level and then we can run the error correction model.

In order to run ECM, the lag values of the spot and the futures return and also lag
values of error terms derived from the regression will be added to the OLS model

(Lien, 1996).

AS; =c+ bAF: + 6,AF ;i + ¢ AS, i+ @z, 1 + Uy 1)
We also run the vector error correction model to take into account the cointegration.
The VECM model is a special condition of the Vector Autoregressive Models
(VAR) and all variables are included as endogenous variables. Since the long-term
relationship is thought to be lost in the VAR model, the VECM model has been
developed.

In VECM, each variables is linear function of past lags of the other variables and

past lags of itself. Also error correction term, which represents the residuals from

long run cointegrating regression, is included in the model.

m n r
AS; = aq + Z 0, AF_; + Z b1 ASp—; + Z P1iZe-1 T Ust (22)
i=1 i=1 i=1
m n r
AF, = a, + Z 0,; AS,_; + Z ¢y AF,_; + Z $2iZe-1 T U (23)
i=1 i=1 i=1
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Where ug, and ug; represent the error terms derived from the VECM. The hedge

ratio can be formulated as following:

cov(S, F)

e (24)

Hedge Ratio = HRygcy = —

When we used the OLS, ECM and VECM in order to estimate the hedge ratio, it
was assumed that the variance of residuals remained constant over time. However,
if the variances of the residuals are varying over time, ECM-GARCH model can
give better results. In order to consider the time varying variance, the following
model can be used where the residuals derived from the ECM will be added in the

variance equation of GARCH model.

ASt = C + bAFt + elAFt_l + q)lASt—l + (pZt_l + ut (25)
U = 0t&

of = Qo + @ruf4 + B10¢_4

Estimation of the optimal hedge ratio by performed with both traditional GARCH
family models and ECM method is static and calculate a constant hedge ratio. The
VECM-Diag-BEKK-GARCH model will be used to calculate dynamic hedge

ratio, taking into account the time-dependent correlation between variables.

In order to generate VECM-Diag-BEKK-GARCH model, firstly the VAR
specification with Vector Error Correction is estimated and residuals from the
VECM specification are saved and then draw on for modelling of conditional
variance covariance matrix.

The variance equation of GARCH model with BEKK parameterization, which is
modeled by Engle and Kroner (1995), is formulated as the following form:
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Hy = Cy'Co + ATy 601801 A71 + B11He—1B11 (26)

C*_[Cﬁ CIZ] A _[0‘;1 0‘12] B _lﬂ;1 /6:2]
1 11 =

0 ¢ Clagy o B By

By combining the VECM and the GARCH model with BEKK parameterization,

we generate the following formula in order to estimate dynamic hedge ratio.

m n T
ASe =+ ) B AFe i+ ) puiBSeit ) uizes + gy @n
m n T
AFe =y + ) 050Se i+ ) $ubFei+ ) Pues + e (28)
2 _ 2 2 2 2
Ost = Qg11 + (a1,1,1) Useq + (ﬁ1,1,1) Ost—1 (29)
2 _ 2 2 )
Of¢ = Up22 t+ (a1,2,2) Use 1t (ﬁ1,2,2) Oft—1 (30)
Usz,f,t =Qp12 T A11,1Ust-1A12,2 T ﬁ1,1,1Us,f,t—1 + B12,2 31
2.3 Data

2.3.1 Derivatives Market in Turkey

In Turkey, future and option contracts are traded in Derivatives Market (Vadeli
Islem ve Opsiyon Piyasasi-VIOP) within Borsa Istanbul. Investors who want to be
protected from risk, can manage risk by trading on VIOP. VIOP also provides an
opportunity to investors who want to make a profit by investing in the same amount

of underlying assets with a lower collateral than spot markets.
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Derivative products are derived from another asset based on a specific underlying
asset and whose value is based on that underlying asset. There are various
derivative contract traded in VIOP. Currently, future contracts based on stock,
index, foreign currency, energy, commodities, precious metals, foreign index, metal
and TLREF are actively traded in VIOP while option contracts based on stock,

index and foreign currency are traded in VIOP.

Transactions in VIOP are carried out through VIOP member and investor is not
allowed to trade directly in VIOP; they have to open an account at intermediary
institutions and banks which are the member of VIOP. Both for futures and options
trading, an initial margin is required in order to trade and a margin call will be
demanded to the Investor when the collateral falls below the initial margin amount.
Clearing and exchange fees are charged when investor buys and sells transactions
of futures and options contracts at VIOP. For futures contracts, fees are calculated
based on the traded value and for options, fees are calculated based on premium
value. Also, investor who are residents in Turkey are subject to tax on their income
earned from future and option contracts. Besides that, investors generally pay fees
to the institution where their accounts are located. These are referred to transaction
costs which are paid by investor when trading in VIOP. Investors take into account

these costs when making investment decisions.

2.3.2 BIST30 Index

Indices have been created to provide an assessment and evaluation on the price and
the return performances of group of stocks. Index is reffered to a relative indicator

of the change in the average price levels of stocks included in the indices.

The composition of BIST 30 index consists of the 30 stocks of companies traded
on the BIST Stars Market and selected according to free float market value and the
daily average traded value in the review period. In order to be included in the BIST

30 indices, it is required to be traded in Borsa Istanbul for at least 60 days at the end
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of the valuation period. On 27 July 2020, after omitting two zeros from the Turkish
stock exchange, including BIST30, the index value is expressed with 1,000 point
instead of 100,000 point and contract size is decreased from 100 to 10. The price of

stocks did not change by removing of zeros.

2.3.3 Data Selection

We use BIST30 Index and BIST30 Index Futures between 2010 and 2017 and they
are obtained from Borsa Istanbul Database. Non-trading days of the series are
removed and the data between 2010 and 2017 are used to estimate the models. The
data between 2017-2019 are used to evaluate the performance of the models as an

out ot sample.

In order to avoid spurious regression problem, the return series are obtained by
taking the logarithmic price change. We have transformed each series into a series

of logarithmic returns according to the following function:

S F
AS, = log (S ) , AF, = log (F ) (32)
t—-1 t—-1

Where ASt and AFt represent the daily log returns of respectively BIST30 and
BIST30 Index Futures. The daily prices are represented in Figure 1 and Figure 2.
As we can clearly see from the figures, the series move together and have similar

pattern between 2010 and 2019.
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Figure 1: Daily Prices of te BIST30 Index in the period from 2010 to 2019
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Figure 2: Daily Prices of the BIST30 Index Futures in the period from 2010
to 2019
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CHAPTER 3

EMPRICAL RESULTS

In this section, we will evaluate the minimum variance hedge ratios which are
estimated from the OLS, GARCH families, ECM, VECM and lastly bivariate
VECM-Diag-BEKK- GARCH model. First, we perform certain tests to determine
the characteristics of the series. Table 1 exhibits the descriptive statistics of the daily
log return of BIST30 Index (BIST30) and BIST30 Index Futures (XUO030).
Descriptive statistics give a strong evidence that the series that are being studied

during the sample period may have time varying variance.

Table 1: Descriptive Statistics of BIST30 Index and BIST30 Index Futures

Descriptive Statitics BIST30 XU030
Mean 0.0002 0.0002
Standard Deviation 0.015 0.015
Skewness -0.383 -0.206
Kurtosis 5.870 5.820
Jarque-Bera 924.035*** 850.851***
Prabability 0.000 0.000

Note: “***° kx> <% indicate significance at 1%, 5% and 10% respectively.

The table 1 shows that Ho normality hypothesis cannot be accepted as the calculated
Jarque Bera test statistics are larger than chi square table value with two degree of
freedom and statistically significant at %1 percent level; the series are not normally

distributed. The Histogram graphs and stats show that both series are leptokurtic

and have fat tails as expected in financial series.
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Figure 3: Histogram Graph of BIST30 Index
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Figure 4: Histogram Graph of BIST30 Index Futures
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To check the presence of heteroskedasticty, we model the logarithmic returns by

using following GARCH(1,1) formula for both series separately:
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AY, = p+e (33)

&l Q;_, ~td(0,02)

02 = w+ ag?_+ Boi_;

Estimation results are shown in table 2. All coefficient of variance equations are
positive and significant, the sum of the ARCH and GARCH parameters is less than
one for both series. This situation can be accepted as considering the

heteroskadasticy gives significant results to optimal hedge ratio estimation.

Table 2: Estimates of Simple GARCH Model for BIST30 Index and BIST30
Futures Index

Coefficients BIST30 XU030
u 0.0007 0.0006
0.880 0.900

® 0.072%** 0.000%**
0.000 0.000

o 0.082%** 0.063***
0.000 0.000

0.857%** 0.894***
B 0.000 0.000

Note: “***> x> <% indicate significance at 1%, 5% and 10% respectively.

Also in the following sections, we are going to test the presence of autocorrelation.
The existence of such relationship might undermine the validity of the OLS
approach. Besides, we check whether there exists a long run cointegration

relationship between spot and futures prices of currencies.
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3.1 Stationarity Of Series

Generally, most economic series are non-stationary. It is important for the research
to test of stationarity before generalizing any relationship. Therefore we are starting
to test for the presence of unit roots using the Augmented Dickey-Fuller (ADF) test.
The delayed differences of the series is taken as the explanatory variable, the

following forms can be applied:
p

Ay = aoyes + ) aibye i+ & (34)

i=1

We run ADF test with trend and intercept for each series. If the ADF test statistic
value is bigger than the critical values of the MacKinnon test statistic, we can reject

the null hypothesis of unit root.

Table 3 shows that the ADF statistic value for the series respectively are -51.004
and -51.499 and the associated p value is 0.000. Notice here that the ADF statistics
are less than the critical values at the 1% percent levels so that we can reject the

null hypothesis that there is a unit root.

Table 3: The ADF Test Statistics for BIST30 Index and BIST30 Futures Index

T-Statistic Prob.

BIST30
Augmented Dickey-Fuller test statistic -51.004*** | 0.000
Test critical values: 1% level -3.43

5% level -2.86

10% level -2.56
XU030
Augmented Dickey-Fuller test statistic -51.499*** | 0.000
Test critical values: 1% level -3.43

5% level -2.86

10% level -2.56

Note: “***> x> %> indicate significance at 1%, 5% and 10% respectively.
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Also, logarithmic returns of BIST30 index and BIST30 index futures are shown in

Figure 5 and Figure 6 respectively.

Figure 5: Daily Log Returns of BIST30 Index in the period from 2010 to 2016
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Figure 6: Daily Log Returns of BIST30 Index Futures in the period from 2010
to 2016
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Figures 5 and 6 show that the general distribution of the logaritmic return series are
around the zero average, suggesting that the return series are stationary and both
series do not contains unit root. Also, we clearly see that trend of both series have
volatility clustering, periods of large changes being followed by periods of large

changes and periods of small changes being followed by small changes.

3.2 OLS Model

The minimum variance hedge ratio estimated by using the OLS are static. This
means that once estimated, the hedger uses this ratio of futures to spot during the
entire hedging period. The estimates of the OLS model are given in table 4. As we
can see the OLS minimum variance hedge ratio is 0.955 and it is less than the

traditional hedge stratedy where hedge ratio is -1.

Table 4: Estimates of the OLS Model

Variables Coefficients Standard Error | T-Statistic | P-Value
o 1.734 8.862 0.195 0.845
B 0.955%** 0.005 169.267 0.000

Note: “***> x> <% indicate significance at 1%, 5% and 10% respectively.

In table 4, the results show that the coefficient is statistically significant, however,
the intercept is not statisticaly significant at level %10. It means that there is no
linear trend in the data generation process and the estimated coefficients should be
biased and inconsistent. This indicates that the hedge ratio estimated from OLS
model may be biased and some diagnostic test should be performed in order to

evaluate the performance of the regression model.

The results of diagnostic tests are shown in table 5. We start with performing
Breusch-Godfrey Serial Correlation test and Ljung-Box Q-statistics test in order to
check whether there is serial correlation or not. Breusch-Godfrey Serial Correlation

test is performed for 16 lags in order to check the presence of serial autocorrelation.
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According to test results, we can reject the null hypothesis as P-value is less than 5,
it means that, there is serial correlation at up to 16 lags. Also, we perform to Ljung-
Box to check whether the residuals have autocorrelation. The correlogram results
are indicated in table 5 and the test statistic shows that there is serial correlation in
the residuals. Both the Q-statistic and the Breusch-Godfrey test indicate that the

residuals are serially correlated.

Table S: Results of Diagnotistic Tests on OLS Model

Test Test Statistic P-value Conclusion
Breusch-Godfrey 448.97*** 0.000 Reject
Ljung-Box

Q(5) 338.35% 0.000 Reject
Q(10) 341.70%** 0.000 Reject
Q(15) 356.09%*x* 0.000 Reject
Jargue-Bera 385.53 %% 0.000 Reject
White's Test 67.26%** 0.000 Reject
ARCH LM Test 73,546%** 0.000 Reject

Note: “***> x> %> indicate significance at 1%, 5% and 10% respectively.

Then, we perform normality test for the residuals with using the Jargue-Bera (the
JB) test. JB statistic measures that the series have skewness and kurtosis of normal
distribution. Under the null hypothesis of normality, the JB is distributed as chi
squared with two degrees of freedom. If the Jargue-Bera reported probability
exceeds the 5% siginificance level, the hypothesis of normal distribution is
accepted. The JB test results is indicated in table 5 and implies that residuals are

not normally distributed.

The test results sign that there may be heteroskedasticity and residuals do not
conform with a linear pattern, they may be disposed to cluster. The White’s Test is
carried out to check whether there is presence of heteroskedasticity or not. White’s

test is a test of the null hypothesis of homoskedasticity and demonstrates whether
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there is no heteroskedasticity. White’s test statistic is asymptotically distributed as
a chi squared with degrees of freedom equal to the number of slope coefficients
with excluding the constant in the regression. The test statistic is shared in the table
5 and shows that there is heteroskedasticity which means that the variance of the
residuals in the regression model is not constant. Finally, we run the Lagrange
multiplier (LM) test for testing autoregressive conditional heteroskedasticity
(ARCH) effects in the residuals. The ARCH test, which is a Lagrange multiplier
(LM) test was developed by Engle (1982), in order to detect the presence of
heteroskedasticity in the data. The null hypothesis represents that there is no ARCH

up to order q in the residuals and based on following formula:
2 q 2
e¢ =Po + (ZS=1 Bset—s)+vt (33)

where e indicates the residuals. The ARCH LM test results is indicated in table 5.
The P value of Chi squared (q) is less than %5 level which implies there is ARCH
effect for up to three order in the residuals and this prove the presence of
heteroskadasticity. Proving of presence of autocorrelation and heteroskedasticty
bring into doubt the effectivity of using the OLS model to reach the optimal hedge

ratio.
3.3 ARCH and GARCH Models

The statistic tests conducted for examining heteroskedasticity in the OLS regression
model point out that GARCH approach may give better results for estimating the
optimal hedge ratio. GARCH family models incorporate three steps: estimation of
a best fitting model, computation the autocorrelation and lastly, testing significance
of the model. Firstly, we will check whether there is clustering volatility and the
ARCH effect. If there is clustering volatility, periods when large changes are
followed by further large changes and periods when small changes are followed by

further small changes.
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Figure 7: Residual Graph of the OLS
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When we look at the graph of the error terms in figure 7, it is observed that the
volatility of the series show similarities and error terms may have conditionally
varying variances. As it can be clearly observed from figure 7, the return series
exhibit volatility clustering, which is similar with the studies in the literature.
Also,we have already test the ARCH effect by using The ARCH LM test. After
proving of clustering volatility and also ARCH effect, so we can develop an

GARCH family model.

We perform several GARCH models and we will compare all these model to find
out which one is the best to estimate optimal hedge ratio. Once the models are
performed, diagnostic checking will be examined by using some procedures. The
preferred model(s) should have no heteroskedasticity and no serial correlations, as
well as, have the lowest SIC and AIC value. The normality condition is ignored,
because GARCH models by nature have fat tails and are skewed. While model
performing, it was noticed that the GARCH(1,1) models underperformed compared
to other GARCH (p,q) models, and therefore these models are excluded for
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comparision of hedge ratios. The test results and the coefficient statistics are

displayed on table 6.

According to table 6, the sums of coefficients of GARCH and ARCH effects are
lower than one except for GED-GARCH, it can be considered proof of variance
stationary. Also, in the EGARCH model, we clearly see that the coefficient of
asymmetric effect (y) has negative sign, it means that there is a asymmetric effect

and bad news has a larger impact on the volatility than good news.

Table 6: Estimates of the GARCH Models

GARCH GARCH EGARCH | GED-GARCH
1,1) 1,2) (1,2,2) 1,2)
1.548 1.372 0.0003%** 9.485
c [0.212] [0.188] [3.920] [1.312]
(0.831) (0.850) (0.000) (0.189)
h 0.962%** 0.963%** 0.974% %% 0.959%#*
[260.04] [266.95] [280.75] [227.01]
(0.000) (0.000) (0.000) (0.000)
o 9.229% % 5912 -0.195%%* 5.008
[11.999] [1.596] [-3.382] [1.022]
(0.000) (0.110) (0.000) (0.306)
G 0.31 %% 0.284%%* 0.420% %% 0.304% %%
[8.473] [8.223] [9.710] [6.0193]
(0.000) (0.000) (0.000) (0.000)
o -0.266%** -0.382%%* 0.285%**
[-7.642] [-8.525] [-5.627]
(0.000) (0.000) (0.000)
Vi 0.192%%*
[6.658]
(0.000)
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Y2 -0.051%
[-1.618]
(0.105)
B: 0.067 0.978%** 0.985%** 0.978%**
[1.154] [177.99] [195.69] [122.32]
(0.248) (0.000) (0.000) (0.000)
k 1.443 %%
[26.389]
(0.000)
AIC -8.374 -8.391 -8.401 -8.423
SIC -8.359 -8.373 -8.377 -8.402
R? 0.940 0.940 0.939 0.940

Notes: (a) T-statistic indicated in [ ] and related p-value in ().
(b) x> exd <% indicate significance at 1%, 5% and 10% respectively.

Ljung-Box Q statistic is performed for testing the autocorrelations and partial
autocorrelations of the squared residuals. When the p value of Q-statistic is higher
than 5% percent level, the null hypothesis of no serial correlation is accepted,
otherwise, the presence of autocorrelation is proven. Ljung-Box Q-statistics and
their p-values are reported in table 7 and indicate that The Q-statistics are

significant at all lags, which means that there is no serial correlation.

Table 7: Results of the Diagnotistic Tests Conducted on GARCH Models

Test
Model Test Statistic P-value Result
GARCH(1,1) Ljung Box
Q%) 5.062 0.408 | Accept
Q(10) 11.07 0.352 | Accept
Q(15) 17.33 0.299 | Accept
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GARCH(1,2) Ljung Box
Q(5) 1.927 0.859 | Accept
Q(10) 8.450 0.585 | Accept
Q(15) 9.669 0.840 | Accept
EGARCH(1,2,2) Ljung Box
Q(5) 4.134 0.530 | Accept
Q(10) 9.046 0.528 | Accept
Q(15) 11.34 0.728 | Accept
GED-GARCH(1,2) | Ljung Box
Q(5) 2.633 0.756 | Accept
Q(10) 9.600 0.476 | Accept
Q(15) 10.639 0.778 | Accept

Note: “***> <x*> <*° ypdjcate significance at 1%, 5% and 10% respectively.
gn Y y

Finally, to test if there is still heteroskedasticity, the Langrange Multiplier test for
ARCH effects is conducted. The test results are shown in table 8. The null
hypothesis of ARCH-LM Test is that there is no ARCH effect up to selected order
in the residuals. According to ARCH LM test results, there is no ARCH up to 36
order in the residuals, it means that ARCH effects are removed by using GARCH

models.

Table 8: Results of the ARCH-LM Test Conducted on GARCH Models

ARCH Test
Model Tes Statistic P-value Result
GARCH(1,1) 0.278014 0.598 Accept
GARCH(1,2) 0.704853 0.703 Accept
EGARCH(1,2,2) 3.477868 0.175 Accept
GED-GARCH(1,2) 1.353034 0.508 Accept

Note: “***> x> %> indicate significance at 1%, 5% and 10% respectively.
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3.4 ECM and ECM-GARCH Models

Herein, we generate the error correction model and the ECM-GARCH model to
estimate the hedge ratio. First, we run the Granger Causality Test. The precondition
of the test is that series must be non-stationary but when the series are converted
into first difference level, then they should be stationary. We carried out the
Augmented Dickey- Fuller Test to test existence of unit roots. The results are shown
in table 9. According to test results, the ADF statistic values of BIST30 at level is
-1.707 and the associated one-sided p-value is 0.427. The ADF statistic values of
XUO030 at level is -1.73 and the associated one-sided p-value is 0.415. For both
series, the test statistics values are greater than the critical values so we do not reject
the null; both series contain unit roots. When first level differences are taken, both
series become stationary as the test statistics are less than %5 and reject the null

hypothesis.

Table 9: Results of the ADF Unit Root test

BIST30 ABIST30 XU030 AXU030
Critical Value
(at 1%) -3.432 -3.432 -3.432 -3.432
Test statistics -1.707 -20.452%%* -1.730 -51.499#**
P-Value 0.427 0.000 0.415 0.000
Result Accept Reject Accept Reject

Notes: (a)The tests are performed based on the logarithmic prices of series.
b)The null hypothesis is represented as series contains a unit root.
yp prese '
¢) “FF¥ okk <% indicate significance at 1%, 5% and 10% respectively.
g 1Y y

Next, we will check if the series are cointegrated. The Granger causality test shows
evidence of causality from BIST30 to XUO030. After proving the cointegration, we
run the model by using the OLS. All parameters of the error correction model are

statistically significant.
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AS, = 1.84934 + 0.968914AF, + 0.601801AF,_, + 0.345239AF,_,
+ 0.173562AF,_5 — 0.60365AS,_, — 0.345771AS,_,
— 0.180361AS,_; + u,

Table 10: Estimates of the ECM

Variables Coefficients T-statistic P-Value

a; 1.849 0.278 0.780
b 0.969 % 228.18 0.000
0, 0.6071*** 30.44 0.000
0, 0.345%** 15.629 0.000
05 0.173 %% 8.750 0.000
b1 -0.603%** -30.034 0.000
b, -0.345%** -15.425 0.000
b3 -0.180%** -9.015 0.000

R-squared:0.9667 Log Likelihood: 8110.325

AIC: -8.892 SIC: -8.865

Note: “***> x> %> indicate significance at 1%, 5% and 10% respectively.

Lastly, selected diagnotistic test are performed. According to White’e test result,
the statistic values of observation*R? is 242.50 and the associated one-sided p-value
is 0.000. The value of N*R? is greater than the y? table value at %5 percent level,
the null hypothesis of homoskedasticity is rejected. The Breusch-Godfrey Serial
Correlation test is performed in order to check the presence of serial autocorrelation.
According to test results, the N*R? is 1506.09 and is greater than the y? table value,
the hypothesis of no serial correlation up to order three is rejected. It means that

the residuals are serially correlated.

After performing residuals diagnotistic test, the presence of autocorrelation and also

heteroskadasticity motivate us to respecified the model for more effective result in
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estimating the optimal hedge ratio. For that purposed, we performed the ECM-
GARCH model.

AS, = 0.0002 + 0.984634AF, + 0.78154AF,_, + 0.470538AF,_,
+0.202563AF,_5 — 0.78777AS,_, — 0.476158AS,_,
+0.902063AS,_5 + u;

oZ = 1.10371 + 0.975869u?_; + 0.00110607%_,

Table 11: Estimates of the ECM — GARCH Model

Mean Equation

Variables Coefficients T-statistic P-Value
a, 0.0002%** 5.8105 0.000
b 0.985%** 198.265 0.000
0, 0.781 %% 74.242 0.000
0, 0.470%** 42.512 0.000
05 0.202%** 20.682 0.000
ol -0.787%** -71.743 0.000
P -0.476%** -41.306 0.000
b3 0.902 %3 99.042 0.000

Variance Equation

Variables Coefficients T-statistic P-Value
Yo 1.103%** 8.498 0.000
¥1 0.975%** 10.385 0.000
p1 0.001 0.037 0.970

R-squared. 0.938 AIC -9.022 SIC -8.986

Note: “***> x> %> indicate significance at 1%, 5% and 10% respectively.
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In table 11, all parameters of ECM- GARCH (1,1) models are statistically
significant except for a1 and b. The Ljung-Box Q-statistics are not significant with
near 0.9 p-values. The ARCH LM test indicates that we can not reject the null
hypothesis that there is no ARCH up to 36 order in the residuals. As this stand,
estimation of ECM with the GARCH model eliminates the ARCH effect and time

varying variance.

Table 12: ARCH LM Test Results

Heteroskedasticity Test: ARCH

F-statistic 0.720 Prob. F(36,1749) 0.890

Obs*R-squared 26.108 Prob. Chi-Square(36) 0.887

Note: “***> <**> <% indicate significance at 1%, 5% and 10% respectively.

3.5 VECM and VECM-GARCH Models

In order to take into consideration the cointegration between the series, we will
model the mean equation using VECM model and then we generate the VECM with
the bivariate GARCH model in order to obtain dynamic minimum hedge ration. If
the series are cointegrated or have long run relationship, then we can run restirected
VAR, that is VECM model model. However, if the variables are not cointagrated,

we can not run VEC model, rather unrestiricted VAR should be effective.

Three steps are performed to develop a VECM model. First, we decide how many
lag should be choosen. To determine the optimal lag length, we compare the lag
length selection criterias. According to VAR Lag Order Selection Criteria, three lag
order is selected. Then, the Johansen Cointegration Test is performed to determine
the existence of cointegration. The test results are indicated in table 13: there is at

most one cointegration between series and they move together in the log run.
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Table 13: Unrestricted Cointegration Rank Test (Trace)

Number of Critical
Cointegration | Eigenvalue Statistic Value Prob.**
None * 0.038 101.946 15.494 0.000
At most 1 0.001 2.907 3.841 0.088

Notes: (a) Trace test indicates 1 cointegrating at the 0.05 level.
(b) * denotes rejection of the hypothesis at the 0.05 level.
(c) **MacKinnon-Haug-Michelis (1999) p-values.

After the preconditions of Johansen Cointegration Test is ensured, we can run the
test with linear deterministic trend. If the presence of cointegration between the
series and heteroskedasticty are proven, we expect that the estimation of time
varying hedge ratios with using time-varying variances and covariances provides
better results. In this case, the residuals obtained from VECM will be saved and
multivariate GARCH model will be estimated.

The estimates of VECM are indicated in table 14. The coefficient of error correction
term represents the speed of adjustment towards to equilibrium. If it has negative
sign and is significant, then we can say that there is a long run causality from
BIST30 Future Index to BIST30. Estimated equations and the cointegration

equation are displayed as:

ABIST30, = —0.03045ect,_, — 0.28276BIST30,_, + 0.16367BIST30,_,
+0.07240BIST30,_5 + 0.265927XU030,_,
— 0.14411XU030,_, — 0.04566XU030,_; + 0.000239
AXU030, = 0.13699ect,_, + 0.14830BIST30,_, + 0.35119BIST30,_,
+0.145687BIST30,_; — 0.170688XU030,_,
— 0.34004XU030,_, — 0.11544XU030,_; + 0.000232
ect,_, = 1.0000 — 0.99072XU030, — 6.94528
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Table 14: Estimates of the VECM

Variables Coefficients Std. Error T-statistic P-Value
a, 0.0002 0.000 0.661 0.477
a, 0.0002 0.000 0.630 0.246

b11 -0.282 -0.125 -2.254 0.403
b12 0.163* -0.128 1.275 0.087
b13 0.072 -0.111 0.650 0.369
¢21 0.148%** -0.127 1.165 0.004
b2z 0.35] %% -0.130 2.696 0.006
b3 0.145 -0.112 1.290 0.225
011 0.265 -0.123 2.153 0.510
01, -0.144 -0.126 -1.139 0.130
013 -0.045 -0.110 -0.414 0.609
0,51 -0.170%** -0.125 -1.362 0.001
0,5 -0.340%** -0.128 -2.649 0.009
0,3 -0.115 -0.111 -1.032 0.431
ON -0.030 -0.087 -0.348 0.381
OP) 0.136* -0.088 1.544 0.102

Note: “***> x> <% indicate significance at 1%, 5% and 10% respectively.

The coefficient of ECT is negative and it is significant with test statistic-0.348 under
one-tailed test at %1 percent level. It proves that the long-run causality exist

between the series. The optimal hedge ratio is calculated by the following formula:

cov(S,F) ~0.000236

af ~0.000245

= 0.0632

Hedge Ratio =

In order to test the validity of the model, selected residuals diagnotistic tests are
performed. First, Portmanteau Tests for Autocorrelations is run to check if there is

autocorrelation. The test result is showed in table 15. According to test result, there
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is serial correlation up to four lags. Next, the VEC Residual Heteroskedasticity test

is applied and the null hypothesis of homoskedasticty is rejected with zero p-value.

Table 15: System Residual Portmanteau Tests for Autocorrelations

Lags Q-Stat
4 15.284%**

Prob.
0.018

Adj Q-Stat
15.317

Prob. df
0.017 6

Notes: (a) “***°, “**° <* indicate significance at 1%, 5% and 10% respectively.
(b) The test is valid only for lags larger than the System lag order.
(c) Null Hypothesis: No residual autocorrelations up to lag h.

Table 16: VEC Residual Heteroskedasticity Test

Chi-sq df
292.235%*x* 42

Prob.
0.000

Note: “***> <**> " <*> indicate significance at 1%, 5% and 10% respectively.

When we consider the cointegration as well as the time varying variance, employing
a multivariate GARCH model such as VECM-Diag-BEKK-GARCH model, may

produce efficient result to estimate the optimal hedge ratio.

Herein, we employ the bivariate Diag-BEKK-GARCH model with error correction
term. We run the model with the diagonal BEKK via software package and the

coeficients estimates are reported in table 17:

Table 17: Estimates of the VEC-Diag BEKK-GARCH

Variables Coefficients Std. Error T-statistic P-Value
a, 0.0005* 0.000 1.630 0.103
a; 0.0005* 0.000 1.615 0.106
b11 -0.398%** 0.117 -3.393 0.000
b12 0.073 0.121 0.608 0.542
b13 0.134 0.103 1.306 0.191
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P -0.04 0.117 -0.343 0.731
P22 -0.282%* 0.125 -2.259 0.023
b3 -0.185%* 0.104 -1.768 0.077
0, 0.415%% 0.114 3.639 0.000
015 -0.073 0.122 -0.602 0.547
013 -0.101 0.102 -0.990 0.322
021 0.047 0.120 0.395 0.692
0,, 0.273%* 0.122 2.227 0.025
0,5 0.217%* 0.104 2.072 0.038
©1 0.021 0.078 0.273 0.784
©, 0.186%* 0.081 2.279 0.022

Note: “***> <+ ¥ indicate significance at 1%, 5% and 10% respectively.

In order to check the presence of autocorrelation, the Portmanteau Autocorrelation
Test is performed. Table 18 shows that the bivariate GARCH model with diagonal

BEKK parameterization removes the serial correlation previously detected in the

VECM.

Table 18: Estimates of the Portmanteau Autocorrelation Test for VECM-Diag-

BEKK-GARCH

Lags Q-Stat Prob. Adj Q-Stat | Prob. df
1] 0.370 0.984 0.370 0.984 4
2| 1.158 0.997 1.159 0.997 8
3] 6.101 0.910 6.111 0.910 12
41 10.763 0.823 10.782 0.822 16
51 13.641 0.848 13.668 0.846 20

Note: (a) “***° “**° “** indicate significance at 1%, 5% and 10% respectively.

(b) Null Hypothesis: no residual autocorrelations up to lag h.

Fgures 8 and 9 display residuals for BIST30 and XU030 respectively.
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Figure 8: Residual Graph of BIST30 estimated form VEC-Diag BEKK-
GARCH Model
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Figure 9: Residual Graph of XU030 Estimated From VEC-Diag BEKK-
GARCH Model
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After extracting the conditional variance and covariance matrix from the model, we
estimate the dynamic hedge ratio via software package. Figure 10 displays the
dynamic hedge ratio calculated with the bivariate GARCH(1,1) model. We also add
the hedge ratio obtained from the OLS model and show it in black line in figure 10.
The sample mean of the dynamic hedge ratio is 0.96 and the ratio range from 0.87

to 1.18 as clearly observed from the Figure 10.
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Figure 10: The Plot of the Dynamic Hedge Ratio
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3.6 Hedging Performance

In this section, we evaluate and compare the hedging effectiveness of the models.

The evaluation of the performance is done for both in sample and out of sample
analyses. The out of sample analysis is much more important as it indicates the real
market situation. The hedge ratios and the variance reduction rates for in sample

and out of sample analyses are show in table 19 and table 20 respectively.

Table 19: Hedging Performances for In Sample

Variance
Model Hedge Ratio Variance Reduction %
Unhedged 0.000 0.000244 -
OLS 0.955 0.0000147 0.940
GARCH(1,2) 0.963 0.0000147 0.940
EGARCH(1,2,2) 0.975 0.0000148 0.939
GED-GARCH(1,2) 0.960 0.0000147 0.940
ECM 0.969 0.0000147 0.940
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ECM-GARCH 0.985 0.0000149 0.939
VECM 0.963 0.0000147 0.940
VEC-Diag BEKK
GARCH 0.960 0.0000147 0.940
Table 20: Hedging Performances for Out of Sample
Variance
Model Hedge Ratio Variance Reduction %
Unhedged 0.000 0.0001709 -
OLS 0.884 0.0000219 0.872
GARCH(1,2) 0.908 0.0000219 0.872
EGARCH(1,2,2) 0.937 0.0000223 0.870
GED-GARCH(1,2) 0.976 0.0000233 0.864
ECM 0.907 0.0000219 0.872
ECM-GARCH 0.916 0.0000220 0.871
VECM 0.901 0.0000219 0.872
VEC-Diag BEKK
GARCH 0.889 0.0000219 0.872

The hedging performance results show that in sample and out of sample analysis
provide a smiliar picture. All models provide a significant reduction in the variance
of portfolio compared to the unhedged portfolio. Also, it can be see that the hedge
ratios obtained from the GARCH models as well as the ECM and VECM, are
greater than the OLS model. Similar to other studies, it can be inferred that the
hedge ratio can be biased downward when the autocorrelation and the cointegration

relationships are ignored.

In sample analysis, the variance reduction associated with the all model is equal to
the %94 except for the EGARCH and ECM-GARCH. The EGARCH and ECM-
GARCH provide the variance reduction by %93.9. In out of sample analysis, the
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variance reduction associated with the OLS model, the GARCH model, the ECM,
the VECM and VEC- Diag BEKK- GARCH model is %87.2 while the other models
offering a poorer performance. Also, the VEC-Diag BEKK- GARCH model come
second after the OLS for providing the lowest hedge ratio.

All models provide a substantial risk reductions compared to the unhedged portfolio
and it proves that the hedging with futures contracts allows for risk protection.
However, their hedging performance are only slightly better than the OLS. It is
cleary observed that the OLS does not underperform the other models, although it

has some methodological drawbacks.
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CONCLUSION

This study has provided empirically assessment to both static and dynamic hedge
ratios estimation by using hedging models with BIST 30 futures contract of Borsa
Istanbul and underlines the static and dynamic methods for estimating optimal
hedge ratios. The static hedges ratios are derived from the OLS method, GARCH
models, ECM and VECM methods and also the dynamic hedge ratios derived from
bivariate VECM-Diag-BEKK-GARCH model. The observation between 2010 and
2017 are used to estimate the models and observation between 2017 and 2019 are
saved in order to perform out of sample evalution. The model performances have

been compared according to variance reduction as a measure.

The hedging performances of the models studied in this paper are very close to each
other and this result is in accordance with the findings of other studies. Eventhough,
the conventional GARCH models as well as the dynamic GARCH model appear to
fit the data well, there is no clear evidence found that they provide better hedging
performance for BIST30 Index futures. It seems that the OLS provides the same
hedging performance with simple practice, but still the reliability of the model has
always been open to discussion due to the misspecification problems. On the other
hand, although the time varying hedging ratio seems more realistic, the VECM-
Diag-BEKK-GARCH model does not provide a superior result in comparision with
the other models despite its complexity. It should always be taken into account that
the hedging performance of models vary from asset to asset and it can be
complicated to reach the unique optimal hedge ratio. For further studies, it is
suggested to carry on more deeply study to analyse whether the GARCH models

reflect the behaviours of the returns and the market fluctuations properly.
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