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GRAMMATICAL GENETIC PROGRAMMING ON HETEROGENOUS 
COMPUTING PLATFORMS 

 

Hakan AYRAL 

 

Department of Computer Engineering  

Ph.D. Thesis 

 

Adviser: Assoc. Prof. Dr. Songül ALBAYRAK 

 

 

Genetic programming is a population based, stochastic global optimization algorithm 
which aims to find “programs” fulfilling certain behavioral specifications provided as 

test cases. The programs may be as simple as arithmetic expressions on some variables 
or complex as a complete function involving state variables, loops and conditionals. 

Grammatical genetic programming (a.k.a. grammatical evolution) is a grammar based 
variant of genetic programming where the search space and methodology is modified 
to limit the search space to members of a language defined by a formal grammar. This 
approach provides the benefit of having a smaller search space, and of all the 
candidates having a valid syntactic form in respect to defined grammar. Grammars 
used are generally customized to the program at hand, but they can be more generic 
when the form of the solution is not obvious, which usually is the case with general 
program synthesis, in contrast to categorical problems like regression, classification, 
path finding and boolean problems. 

Conventional computing platforms consist of homogenous processor hardware, like 
the case of a computer with multi-core multi-processor setup, where each core is 

identical to others. On the other hand a heterogeneous computing platform 
simultaneously uses multiple types of processing elements each with their own unique 

architecture and strengths. The most prevalent example today is the combined use of 
CPU and GPU, where CPU provides high frequency, high complexity processing cores 
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with deep pipelining and large local cache per core, while the GPU provides vast 
numbers (in the order of thousands) of simpler cores with lower frequency each 

consisting of some ALU and register file for state keeping, but missing per core cache 
or control units, which have to be shared by groups of 32 cores. 

The aim of this dissertation is to investigate and propose new methods to accelerate 
grammatical genetic programming by parallelization on mentioned types of computing 
platforms. 

In this dissertation we first present an overview of a recent shift in benchmarking 
practices for genetic programming and propose a new benchmark problem targeting 
general program synthesis. Then we investigate the interaction of some evolutionary 
parameters which ultimately affect the parallelization design for grammatical genetic 
programming. Afterwards we present a new technique which first brings the GPU 
compilation of individuals in-process, then further parallelizes this compilation. The 
method we present achieves an order of magnitude faster compilation speed over 
prior work on literature. Lastly we present a GPU based interpreter for grammatical 

genetic programming with arbitrary grammars in order to target general program 
synthesis; this is the first work in literature to present grammatical evolution on GPU 

with a general purpose interpreter to accommodate arbitrary grammars. 

 

Keywords: Genetic programming, grammatical evolution, heterogeneous computing, 
gpu, parallel computing  
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HETEROJEN HESAPLAMA PLATFORMLARI İÇİN GRAMER YÖNLENDİRMELİ 

GENETİK PROGRAMLAMA 

 

Hakan AYRAL 

 

Bilgisayar Mühendisliği Anabilim Dalı 

Doktora Tezi 

 

Tez Danışmanı: Doç. Dr. Songül ALBAYRAK 

 

 

 

Genetik programlama nüfus tabanlı, stokastik bir küresel optimizasyon algoritması 
olup, test-vakaları şeklinde temsil edilmiş davranış spesifikasyonlarını gerçekleyen 
"programlar" bulmayı amaçlamaktadır. Programlar, değişkenler ve sabitler kullanan bir  

aritmetik ifade kadar basit olabilir, veya durum değişkenleri, döngüler ve koşullar 
içeren tam bir fonksiyon kadar karmaşık olabilir. Gramer yönlendirmeli genetik 
programlama, genetik programlamanın gramer temelli bir alt türüdür; burada arama 
uzayı ve arama metodolojisi, arama uzayını formel bir gramer tarafından tanımlanan 
dilin üyeleri ile sınırlandıracak şekildedir. Bu yaklaşım, arama uzayının küçültülmesini 
ve tüm adayların, yazımsal (syntactic) açıdan geçerli bir sözdizimsel biçimine sahip 
olmasını sağlar. Kullanılan formel gramer cevabı evrimleştirilmek istenen soruya özel 
olarak tasarlanır, ancak aranan cevabın şeklinin yeterince bilinmediği  problemlerde  
daha genel bir gramer kullanılabilir; bu durumla benzetim, sınıflandırma, yol bulma ve 
ikilik fonksiyonlar gibi kategorik problemlerin aksine daha çok genel amaçlı program 

sentezi ile ilgili problemlerde karşılaşılır. 

Konvansiyonel hesap platformları, her çekirdeğin diğerleriyle aynı olduğu, çok 
çekirdekli ve çok işlemcili bilgisayarlar gibi homojen bir hesap donanımına dayanır. Öte 
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yandan, heterojen bir hesap platformu, her biri kendi mimarisi ve avantajlarıyla birlikte 
birden çok hesaplama elemanı kullanır. Bunun en yaygın örneği CPU’ların her biri derin 

bir pipeline mimarisi ve büyük cache’lere sahip yüksek karmaşıklık ve yüksek saat 
hızlarında çalışan çekirdekleri ile, GPU’nun çok sayıda (binler mertebesinde) ama daha 

düşük saat hızında ve daha basit, sadece sınırlı miktarda ALU ve register içeren, kontrol 
ünitesi ve önbelleği 32’li gruplar halinde paylaşmak zorunda olduğu çekirdeklerin bir 

arada kullanılmasıdır.   

Bu tezin temel amacı, bahsedilen tür heterojen hesap platformlarında paralelleştirme 
yoluyla gramer genetik programlamanın hızlandırılması için yeni yöntemler araştırmak 
ve önermektir. 

Bu tez çalışmasında öncelikle genetik programlama için benchmark uygulamalarında 
yakın zamanda yaşanan bir kaymaya genel bir bakış sunuyoruz, ve genel amaçlı 
program sentezi sınıfında yeni bir benchmark problemi öneriyoruz. Ardından, gramer 
genetik programlama için paralelleştirme tasarımını etkileyen bazı evrimsel 
parametrelerin bağımlılıklarını ve etkileşimlerini değerlendiriyoruz. Daha sonra, genetik 

programlama bireylerinin GPU için derlenmesini önce işleç içine çeken ve ardından 
bunu da paralelleştirmeye dayanan yeni bir yöntem sunuyoruz. Sunduğumuz bu 

yöntemin literatürdeki önceki çalışmalara kıyasla bir mertebe daha yüksek derleme 
hızları sağladığı görülmektedir. Son olarak önceden sabitlenmemiş bir gramer ile 

gramer tabanlı genetik programlama gerçekleştirebilmek ve bu sayede genel amaçlı 
program sentezi problemlerinde GPU’yu daha verimli kullanabilmek için,  GPU üstünde 
çalışan genel amaçlı bir yorumlayıcı sunuyoruz; bu, literatürde GPU üstünde gramer 
tabanlı evrim için yorumlama yöntemini önceden sabitlenmemiş herhangi bir gramer 
ile kullanabilen ilk çalışma olma özelliğini taşımaktadır. 

 

  

Anahtar Kelimeler: Genetik programlama, gramer yönlendirmeli evrim, heterojen 

hesaplama, gpu, paralel hesaplama 
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CHAPTER 1 

INTRODUCTION 

1.1  Genetic Programming on a Broader Context 

Genetic programming is an evolutionary computation technique consisting of multiple 

evolutionary algorithms, where the objective is to find a “program” (i.e. a simple 

expression, a sequence of statements, or a full-scale function) that satisfy a behavioral 

specification expressed in terms of test-cases along with expected outputs. To put GP 

on perspective, let us briefly present evolutionary computation.  

1.1.1 Evolutionary Computation and Evolutionary Algorithms 

Evolutionary computation is a family of global optimization algorithms based on how 

biological evolution works. It is considered part of soft computing and artificial 

intelligence. Algorithms belonging to evolutionary computation are population based 

and stochastic in nature. Like other population based techniques, evolutionary 

computation tracks multiple solution candidates simultaneously; these candidates are 

modified and replaced with each iteration which is called a generation. At each 

generation, candidate solutions with low fitness are stochastically removed, and new 

candidates to replace them are produced, using specific methods to combine parts of 

high fitness candidates along with small random perturbations. Fitness is a problem 

specific function which is defined to measure the distance to the correct solution, 

similar to a heuristic. 
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Most evolutionary algorithms which are part of evolutionary computing are easy to 

implement but exhibit behaviors complex to analyze. Evolutionary search algorithms 

are driven towards the solution by the problem’s fitness function; it provides guidance 

to the search in a heuristic way, such that it measures the closeness to the solution but 

doesn’t necessarily provide information on how to get closer.  

Evolutionary computation not only deals with the evolution of soft solutions like the 

parameter sets, configurations, or software code (in the case of GP), but it’s also used 

to evolve hardware in form of digital or analog circuits, which is the sub-field called 

evolutionary hardware design, also known as evolvable hardware.  One of the most 

popular example of evolutionarily designed hardware are the antennas evolved for 

NASA's Space Technology 5 mission, which were produced and flown in 2005 

(Figure2.1). This is the first evolved hardware ever launched to space; the design was 

competitive to the human-designed model and outperformed it in metrics such as 

mass and cost. 

 

Figure 1.1 Antenna Evolved for NASA Space Flight1 

Most evolvable hardware projects focus on optimization of digital circuits  like digital 

filters[1], fault tolerant circuits [2]–[4], adders, multipliers and multiplexers [5]–[7]; but 

it is employed to evolve analog circuits[8] too. 

                                                 

1
 Historical web page: https://www.nasa.gov/centers/ames/research/technology-

onepagers/evolvable_systems.html  



3 

 

1.1.2 Genetic Programming 

Genetic programming is an evolutionary computation technique; where the objective 

is to find a “program” that satisfy a behavioral specification expressed as  a set of test 

cases where each member is a (test-case, expected result) pair. Specifically it is a 

population based evolutionary search algorithm, and the evolved objects may belong 

to different scopes and scales (i.e. a simple expression, a sequence of statements, a 

decision tree, or a full-scale function). 

1.1.3  Terminology Borrowed From Biology 

Genetic programming and evolutionary computing in general borrow heavily from 

terminology pertaining to biological evolution. Some of these terms along with their 

meaning in genetic programming context are as follows. 

1.1.3.1 Individual & Population 

Like most evolutionary algorithms, genetic programming is a population based global 

optimization technique. Therefore at any point multiple possible solution candidates 

are pursued. Each candidate is called an individual and the set of all individuals is called 

the population. 

1.1.3.2 Genome/Genotype 

Analogous to the genetic material in living organisms, every GP individual posses a 

finite length binary string, from which all structural and behavioral features of the 

individual are derived. This binary string is called the genome of the individual; it may 

be stored in packed form as a list of bytes or integers for ease of use and modification. 

The terms genome and genotype are used interchangeably in GP context, term 

“genotype” is preferred in statements making comparison to phenotype. Evolutionary 

operators mutation and crossover act directly on genotype, effects of these operators 

on the phenotype are indirect results, carried from genotype by translation.  

There are implementation variants with exceptions, where individuals do not have 

genomes of their own, like Population Based Incremental Learning (PBIL). PBIL is not a 
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genetic programming algorithm; it’s an estimation of distribution algorithm, which is 

an evolutionary algorithm more suitable for multi dimensional parameter 

optimization. PBIL represents the whole population as a single probability distribution, 

from which individuals are instantiated by sampling the distribution as needed, and 

modifications are merged back to a single distribution once again, at the end of each 

generation. 

1.1.3.3 Phenotype 

Phenotype is the manifestation of a feature or a property, on the final form of an 

individual. In the case of genetic programming this is the program represented by an 

individual. Phenotype is derived from genotype through a specific translation process 

which depends on type of GP employed. (i.e. for grammatical GP translation is guided 

by the grammar) Translation process doesn’t necessarily use all the genotypic material ; 

some regions of genotype are not used, these regions are called non-coding regions or 

introns. A modification on genotype may or may not cause a change on phenotype, as 

different genotypes may (and most of time do) map to same phenotype, or the change 

on genotype may have occured on a non-coding region. 

1.1.3.4 Codon 

In biology the smallest unit of genetic material is the nucleotide, but it isn’t the 

smallest meaningful unit; the smallest meaningful units of generic material are 

constant length blocks of nucleotides. For example, human DNA consists of 4 types of 

nucleotides (Adenosine, Cytosine, Guanine, Thymine), but only triplets of nucleotides 

encode amino acids. A triplet of nucleotides is called a codon, and the mapping from 

nucleotide triplets to amino acids is called the standard codon table. The codon table is 

almost exactly the same among all living organisms and it is represented using a table 

with 43=64 entries. This 64 entries redundantly encode the 20 amino acids , and the 

STOP code which is redundantly represented as 3 different entries (UAA, UAG, UGA). 

Evolutionary algorithms employ very similar mechanisms; genome of an individual 

which is a random bit string, is commonly stored and used in constant length blocks of 
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bits, such as bytes or integers. The byte/integer representation is the genetic 

programming analog of biologic codon. 

1.1.3.5 Generation 

For evolutionary algorithms where the evaluation, selection, and other evolutionary 

operator applications are performed each time over the whole population, one 

complete cycle of these phases is called a generation. Not all evolutionary algorithms 

are generation based, there exist algorithms updating only a few individuals every 

cycle; these are called steady state algorithms. For genetic programming, generational 

approach is the accepted standard in the literature.  

1.1.3.6 Selection 

Both in biology and computer science, evolution is based on the survival of the fittest. 

Selection is the phase of a generation where the individuals which will survive to the 

next generation are selected. There are many selection methods employed by 

evolutionary algorithms. Most commonly used selection methods are Roulette Wheel 

Selection, and Tournament Selection. 

Roulette Wheel Selection method is based on dividing an interval to partitions 

proportional in size to fitnesses of the associated individuals; then a random number is 

picked from a uniform distribution on this interval. The selected individual is the one 

associated to the partition in which the picked random number is included. This way a 

discrete random variable with probability distribution proportional to fitness values is 

constructed over a continuous random variable with uniform distribution.  This process 

is repeated to choose each individual of the new population; some individuals 

(especially those with high fitness) may be selected multiple times, creating multiple 

copies of the individual, and some (those with low fitness) do not get selected at all. 

Tournament Selection on the other hand starts with the selection of a fixed number of  

individuals randomly; number of individuals selected (generally 2 or 3) is called the 

tournament size. Individual with highest fitness in a tournament proceeds to the new 

population. For each individual of the new population, an independent tournament is 
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performed. Once again, some individuals may be selected multiple times and some 

may never be selected. There are two advantages of tournament selection over 

roulette wheel selection. One is, it conserves the diversity of the population by giving 

low fitness individuals a higher selection chance compared to roulette wheel selection. 

The other is, it doesn’t require to sum and normalize the fitness values of all 

individuals, or keep track of partition intervals , because the fitness comparisons are 

local to the tournament participants. 

1.1.3.7 Crossover 

After the selection of individuals for the population of next generation, evolutionary 

operators are applied. Crossover is an evolutionary operator where two individuals 

exchange parts of their genetic material. There are three types of crossover, of which 

the most common being the One Point Crossover. It is applied as follows; first two 

individuals are picked randomly and a random variable with uniform distribution over 

unit interval is sampled. If the sampled value is greater than the crossover probability, 

the individuals are transferred to new population unchanged; if it is lesser than the 

crossover probability, a random integer up to genome size is picked and the tails of 

genomes of the individuals are exchanged starting from the position indicated by the 

random integer. 

Another crossover type is Two Point Crossover; this time two random integers up to 

genome size are picked, and the section residing between the two positions indicated 

by these numbers are exchanged between the individuals; it works the same as one 

point crossover in all other aspects. 

Final type of crossover is Uniform Crossover. It is applied at gene level (be it bit, byte or 

integer), the genes of same position on the two genomes are exchanged with 

probability equal to crossover probability;  this is applied independently for each 

genome position.   
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1.1.3.8 Mutation 

Mutation is another evolutionary operator; it can be performed before or after the 

application of crossover. Each gene of each individual is subjected to mutation 

independently, with a set probability called mutation rate. If the genes are bits they 

are simply flipped when mutated, if the genes are bytes or integers , a new random 

byte or integer overwrites the old one. The limit behavior of evolutionary search is 

equivalent to random search as the mutation probability approaches 1. 

1.1.3.9 Intron 

The size of functional parts of human DNA is assessed to be between 8 to 15%, 

interspersed through the remaining 85 to 92% consisting of junk DNA which is not 

coding anything [9]; this non-coding parts are called introns. Similarly in evolutionary 

algorithms some parts of the genome might left unused (i.e. in grammatical GP every 

individual use different amount of genotype till they achieve a complete construction) 

or have no effect on the phenotype even when used (i.e. when a byte is used to make 

a choice but the number of alternatives to choose from is 1), and sometimes non-

coding parts are deliberately incorporated to the encoding of individuals in order to 

introduce robustness. The same term “intron” is used to describe this non-coding 

regions in evolutionary algorithms.  

1.1.4 Fitness Function in GP 

In the case of genetic programming, fitness functions are used as metrics to define 

distance between pairs of outputs produced by different programs given the same 

input. It is used to measure the difference of the output of an individual from the 

expected output for a test case; hence the minimization of the sum of fitness values 

over all test cases, is equivalent to approaching a complete solution. Fitness function 

for a single test case associated with the set of all possible output values defines a 

metric space over possible outputs. The sum of metrics of all test cases of a problem, 

give us another metric function which is defined over the set of all possible programs 

for the test cases. Using this new metric, we can construct a metric space over the set 

of valid programs for a problem defined by its test cases. 
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The fitness landscape is the co-domain of the fitness function of a such space. For GP 

and especially grammatical GP fitness landscape is not smooth or derivable, thus 

analytical methods like gradient ascend/descent are inapplicable for these. 

Fitness functions can be designed in different ways; when evolving functions with 

continuous outputs, the fitness can be defined as the difference between the current 

output and desired output. Instead of summing or averaging the differences for each 

test case, total fitness can be defined as the Root Mean Squared Error (RMSE).  

1.2 Grammatical Evolution 

Grammatical Evolution (a.k.a. Grammatical GP, grammar guided GP) is a form of 

genetic programming where the search space is restricted to a formal language 

defined as a BNF grammar, thus ensuring all individuals to be syntactically valid.  Such 

exclusion of syntactically invalid programs dramatically reduces the search space. 

While still being infinite, it has lower dimensionality. On the other hand a syntactically 

valid program is not necessarily semantically meaningful too; as a matter of fact most 

of them are not. 

Grammatical evolution uses context free grammars expressed in Backus-Naur Form; 

but we show on section 1.2.4 that we can hide some context information into the 

grammar by duplication of rules. 

1.2.1 Backus-Naur Form (BNF) 

A grammar in BNF form consists of a 4-tuple {N,T,P,S} such that N and T are sets of 

non-terminals and terminals respectively, and S∈N is the designated start symbol. P is 

the set of production rules, it associates every non-terminal to one or more strings of 

symbols belonging to N∪T. 

A derivation tree for a BNF grammar is a tree having the S as the root node, and each 

node with a symbol belonging to N has child nodes corresponding to each symbol from 

the string of symbols for the selected production rule to expand that node. By this 

construction a derivation tree can either be finite, with all leaf nodes belonging to T, or 

infinite such that some branches go infinitely deeper by solely using symbols from N. 
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1.2.2 Genotype-Phenotype Mapping in Grammatical Evolution 

The most common method used for genotype-phenotype mapping in grammatical 

evolution is the Modulo Mapping Rule. It maps a codon to a choice of expansion rule 

by selecting the expansion option with position current codon value modulo number 

of expansion options for current non-terminal: 

                                                      

Even though the modulo operator maps the uniform distribution of codon values 

homogenously to available expansion options, when the number of options is small 

and maximum codon value is not divisible to number of options, a selection bias in 

favor of options at smaller numbered positions occur. This happens due to last codon 

values being mapped to some of the options from the start without being able to cover 

till the end. 

Alternative mapping functions has been proposed like the Bucket Rule which divides 

the codon value to product of all numbers of expansion options for all non-terminals of 

grammar: 

          
           

                     
     

   

                                  

1.2.3 Unbounded Expansion on General Grammars 

A BNF grammar defines a language, which is the set of all strings of terminal symbols 

where a valid derivation tree exists having those symbols as leaf nodes in same order. 

In the case of an unconstrained grammar the language defined has infinitely many 

elements, as you can write infinitely many different programs which are  valid in the 

defined language. 

When expanding the derivation tree, we start with the start symbol of the grammar as 

the root node. At any point, any leaf node with a non-terminal token is expanded by 

choosing one of the production rules of the non-terminal. Leaf nodes with terminal 

tokens are not expanded (as production rules are only defined for non-terminals), they 

represent literal strings that we will concatenate in depth-first traversal order to 

produce the result of the derivation. If a non-terminal token contains itself in one of its 
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expansion rules, or a loop can be constructed by cycling through a set of non-terminals 

referring each other in their expansions, then it means that some infinite expansions 

are also part of the language. Of course in actual implementation such an infinite 

expansion would lead to stack overflow, by exhausting the stack as each successive 

recursive call to rule expansion function allocating a new stack frame. 

 

Figure 1.2 An infinite non-terminal branch 

Such infinite trees do not represent any program as some branches never reach 

terminal tokens, but each different subset of non-terminals which can produce such a 

loop represent an independent orthogonal dimension for the defined language, along 

which a program can expand infinitely. 

A first example comes from the allowed number of statements in a code block; on an 

unconstrained grammar this can be expressed with a recursive expansion rule, such as  

<statements> ::= <statement> | <statement><statements>  

The statements token above has 50% chance to get expanded to itself followed by a 

statement token. Even though the expected value of the number of statement tokens 

generated by this rule is   
 

  
 
     , the distribution of it has a long tail; therefore 

arbitrarily large numbers of consecutive statements can be observed, but with 

exponentially decaying probabilities. 

The real cause of complication is that, the source of randomness used to choose from 

possible expansion rules is provided by the finite length genome string of individual, 

which is a random list of integers with length in the order of hundreds. When a request 
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to obtain next random value exhaust the unused values on the genotype of individual, 

common practice is to recycle the genotype by using it again from the start. This is the 

most common solution called wrap around in the literature, but it has the risk of 

picking up periodic correlations on the stream of values, obtained by the 

concatenations of genotype with itself. When hundreds of individuals over hundreds of 

generations are considered, a periodicity due to size of the genome, and some 

periodicities that may arise as possible cyclic arrangements of non-terminal expansion 

rules, may coincide on a common period and form an infinite expansion loop without 

ever reaching a terminal rule. This is a known phenomenon; some alternatives to 

wrap-around reuse of genotype has been studied and proposed in [10] and [11]. 

The number of statements growing unbounded is one of the dimensions a general 

grammar can go expanding indefinitely; two other examples are the number of nested 

code blocks and expression length, as shown on Fig.1.3. In the ideal case of genotypes 

with no periodicity (i.e. infinitely long random genotype) expansion trees are expected 

to stop eventually before diverging to infinity, as the probability of having the same 

non-terminal expansion sequence decays exponentially at each step. 

 

Figure 1.3 Two derivation trees with infinite depth expansion branches  
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1.2.4 Expansion Order 

Another implementation decision about applying expansion rules is how to select the 

next non-terminal to expand when there is more than one. Obviously a depth first 

selection will always expand the left-most non-terminal node. A breadth first traversal 

order is possible but tricky, because each expansion also modifies the tree. It can be 

implemented by tracking all non-terminal child nodes in a FIFO queue to impose an 

order, with new non-terminals added to the end of the queue, and the next non-

terminal to expand is retrieved from the front; when the queue becomes empty it 

means that all leaf nodes of the tree are terminal nodes.  

Independent of how we choose the next non-terminal leaf to expand, it is impossible 

to limit unbounded expansion, without some extra information about our current 

depth on derivation tree. 

1.2.5 Setting Limits on Expansion 

A way to provide depth information at expansion time is to introduce redundant 

copies of expansion rules to the BNF differentiated by their depth. Let’s consider the 

expansion rule 

<expr> ::= <expr> <bi-op> <expr> | <int> | <var> 

with possible infinite expansions as illustrated on Fig.1.3(b). Its first production rule is 

both left-recursive and right-recursive. To exclude infinite expansions of this type from 

the language, and to limit the maximum depth up to a constant K, we can replace this 

rule with multiple depth annotated copies of the form: 

<expr-N> ::= <expr-N+1> <bi-op> <expr-N+1> | <int> | <var>  

for each              , and a last rule of form: 

<expr-K> ::= <int> | <var>  

which omits the recursive part. This new set of K rules allows expressions consisting of 

an integer, a variable, or a combination of those with up to K-1 binary operators. 
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The same annotated duplication can be extended to bound the expansion depth of 

cyclical self-references involving sequences of different non-terminals as illustrated on 

Fig.1.4. 

Static bounding by duplication of rules with counters allows embedding depth tracking 

and limiting on a derivation branch involving multiple types of non-terminals, but it 

requires a consistent numbering across duplicates of all types of tokens involved.  

 

Figure 1.4 Incorporating depth information by duplication of expansion rules  

1.3 Heterogeneous Computing 

Heterogeneous computing is defined as the use of more than one kind of processors 

simultaneously on the same hardware platform. It differs from parallel computing such 

that parallel computing involves multiple identical cores or processors; while the 

heterogeneous computing employ dissimilar coprocessors each with different 

capabilities, architecture and processing characteristics. 

The most common example is the simultaneous use of CPU and GPU, and it’s not 

limited to desktop or server class personal computers; today even entry level mobile 

devices (smart phones, tablets, ARM based Raspberry Pi and clones) come with  

integrated multi-core CPU and multi-core GPU. 

Second most common heterogeneous computing platform example is CPU+FPGA 

platforms. One form of CPU-FPGA cooperation is achieved by interfacing the FPGA as 

an add-on coprocessor card with onboard RAM through PCI-E bus; the FPGA on the 
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card is configured at runtime as a coprocessor with desired specialization and 

characteristics. The acquisition of FPGA manufacturer Altera by Intel in 2015 for $16.7 

billion1 is an indicator that CPU+FPGA cooperation may be more prevalent in near 

future. 

Another form of CPU, FPGA cooperation is observed on FPGA based SoC 

implementations. A soft-core processor is surrounded with specialized computation 

blocks, facilitating the integration by keeping the buses inside the FPGA. As this is a 

popular approach FPGA vendors provide very configurable and scalable soft-core 

processor generators with their EDA tools; specifically Xilinx provide Microblaze and 

PicoBlaze, while Altera provide Nios and Nios II soft-processors. Because of the 

increasing popularity of ARM development and platform support, along with 

decreased licensing costs, recently FPGA vendors started to incorporate hard ARM 

cores on the same die as their FPGA. This allows users to have the same SoC approach 

without sacrificing logic elements from FPGA fabric, and it frees the vendor from 

maintaining a proprietary development tool chain for their custom soft-processor. 

1.4 Genetic Programming on GPU  

Processing power provided by graphic processing units make them an attractive 

platform for evolutionary computation due to the inherently parallelizable nature of 

the latter.  

Just like in the CPU case, genetic programming on GPU requires the code represented 

by individuals to be rendered to an executable form; this can achieved by compilation 

to an executable binary object, by conversion to an intermediate representation of a 

custom interpreter developed to run on GPU, or by directly generating machine-code 

for the GPU architecture. Compilation of individuals' codes for GPU is known to have a 

prohibitive overhead that is hard to offset with the gains from the GPU acceleration.  

Compiled approach for genetic programming on GPU is especially important for 

grammatical genetic programming; the representation of individuals for Linear GP and 

                                                 
1
 https://newsroom.intel.com/press-kits/intel-acquisition-of-altera/ 
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Cartesian GP are inherently suitable for simple implementation on a GPU. On the other 

hand grammatical genetic programming aims to make higher level constructs and 

structures representable, by using individuals that represent strings of tokens 

belonging to a language defined by a grammar. Unfortunately execution of a program 

belonging to a such language is non-trivial, and sooner or later requires some form of 

compilation or complex interpretation.  

1.5 Literature Review 

1.5.1 An Overview of Genetic Programming Literature 

Although there have been some earlier works dealing with application of evolutionary 

techniques for code generation purposes, the consensus of the researchers on the 

field is that the work upon which genetic programming has been separated as a 

distinct field is a series of books by Koza starting with [12], where he provides a 

detailed description of what genetic programming is, some introductory examples, and 

implementations of those in LISP. The use of LISP expressions as default representation 

of individuals for GP by Koza, made the tree based representation (the natural 

topology of LISP expressions) up to today even though LISP itself is rarely used 

anymore. This is the most cited work on the subject with over seventeen thousand 

citations; the series is continued with three more books [13]–[15], of which the last 

two was written by Koza together with multiple co-authors. 

Another influential early book which provided wide dissemination of the field is [16]; it 

contributed to the presentation of alternative forms and representations on genetic 

programming, such as linear and grammatical GP, multi-objective GP, and distributed 

GP, along with some sample applications. 

The “Genetic Programming” series has been part of LNCS since year 2000, where each 

issue contains proceedings of that year’s EuroGP conference; and the “Genetic 

Programming Theory and Practice” book series [17]–[29] is being published annually 

since 2003. 
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1.5.2 Prior Work on Grammatical Genetic Programming 

Grammatical genetic programming is first proposed by C.Ryan, J.Collins, and M.O’Neill 

in [30]; in that article they present the working principles and genotype to phenotype 

translation procedure we mention on section 1.2. In [31] O’Neill and Ryan apply 

grammatical evolution to Santa Fe ant trail problem and successfully evolve a function 

that guides a virtual ant on a grid to gather food.  

In [32] O’Neill, Ryan and Nicolau investigate the effect of incorporating introns to 

grammatical evolution. They achieve this by introducing some non-terminal expansion 

rules with label “intron”, and which does nothing if selected, leaving the parent non-

terminal in its former state. Number of production rules not being a power of 2 

introduces a selection bias especially in the common case where the number of rules is 

small (see Fig.1.5). Padding the production rules with introns up to a number which is a 

power of 2 allows uniform selection probability among options. Another way to 

balance the selection probability without using introns, is to use more bits than 

necessary from the genome at the expense of wasting limited genome string (see 

Fig.1.5). 

 

Figure 1.5 Selection probability distributions on a 3 choice expansion without introns 

(left) using 2 bits from genome (right) using 3 bits of genome1 

Keijzer, O’Neill, Ryan and Cattolico present an alternative method to map the genotype  

to phenotype called the Bucket Rule in [33]. The results presented on the paper show 

                                                 
1
 As presented in [32] 
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that 8 out of 18 comparisons are statistically insignificant, and others exhibit a 

marginal improvement for some test cases, while causing regression on others.   

In [34] O’Neill, Ryan, Keijzer and Cattolico propose a new crossover operator called 

Ripple Crossover for grammatical evolution, and compare it to conventional sub-tree 

crossover operator. 

In [35] O’Neill, Brabazon, Nicolau, Garraghy and Keenan propose a position 

independent genotype-phenotype mapping called π-Grammatical Evolution. When 

two individuals exchange parts of their genome through crossover, the exchanged 

codons are used for the mapping of different non-terminals compared to their original 

use; this completely change the meaning of codon values in their new context, and the 

same happens to all following codons in chain. π-GE propose to provide some degree 

of position independence by encoding each codon as a byte pair, where fist byte 

decides which non-terminal to expand next, and the second byte is used to choose an 

expansion rule for the non-terminal via modulo rule as usual. This way when a codon is 

moved to an arbitrary position on a new individual, it doesn’t necessarily expand the 

left-most non-terminal on tree, but it can bring along the decision of which non-

terminal to expand next.  

A meta-grammatical evolution approach has been proposed by O’Neill and Ryan in 

[36], where GE is used to evolve some BNF grammars containing some predefined 

terminals. The evolved grammar is in turn used to evolve individuals which map to 

concrete implementations stemming from the said terminals. 

In [37] Karpuzcu present a grammar describing a small subset of Verilog hardware 

definition language, and evolve a full adder using open source Icarus Verilog software 

as  simulator. 

In [38] O’Neill, Nicolau, and Agapitos propose two grammar one with multiple loops in 

sequential order and another allowing nested loops, to evolve a general purpose 

integer sort algorithm for lists of arbitrary length. They showed that it was not possible 

to evolve a general sort algorithm without adding swap functionality as an intrinsic 

function to grammar. The grammar we propose in section 2.3 is inspired in part by this 

work. 
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Byrne, Fenton, Hemberg, McDermott and O’Neill propose a shape grammar for the  

evolution of complex pylon structure using GE in [39]. They use SLFFEA as an open 

source finite element analysis software for structural analysis of evolved pylons.  

In [40] Fagan, Fenton and O’Neill investigate a position independent initialization 

method for GE based on derivation tree shape and slope; they compare it to random 

initialization, ramped half-and-half initialization, anf sensible initialization. 

Recently Fenton, McDermott, Fagan, Forstenlechter, O’Neill and Hemberg put [41] on 

arXiv, where they present the second version of their python based grammatical 

genetic programming tool PonyGE2. One implementation decision in PonyGE2 which 

differ from conventional grammatical GP is the issue of codon consumption for unit 

production rules. When an expansion rule consists of a single option, the accepted 

implementation is not to waste a codon from genome as there isn’t really a choice; but 

PonyGE2 do consume a codon for unit productions too. The explanation provided is 

that this helps prevent the ripple caused by mismatch in genome position and tree 

position for linear tree operations. 

1.5.3 Prior Work on Genetic Programming Running on GPU 

Acceleration of genetic programming by use of graphic processing hardware has been 

first proposed in 2007 independently by Harding and Banzhaf  [42], and by Chitty [43]. 

At that time the two main languages providing access to GPU for general purpose 

programming were either not yet released (OpenCL V1.0 was released in 2009) or just 

recently released (CUDA V1.0 was released in June 2007). [43] access the GPU for 

custom computation through non-conventional use fragment shader programs; 

fragment shaders are small programs running on the GPU cores which compute the 

final color of a pixel, modern GPU hardware run an independent copy of the related 

fragment shader for every pixel of every textured surface1. [13] too uses fragment 

shaders, but through a C# library called Accelerator which hides the graphics pipeline 

                                                 
1
 Therefore the number of pixels computed is always much higher than the number of pixels available 

on screen. Techniques like occlusion culling, stenciling and z-buffer rejection allow the hardware to 

identify if a pixel will  be visible before fragment shading, and discard those which won’t be visible; but 
the fragment shader invocations still  remain much higher than pixel count of screen. 
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abuse needed for the redirection of computation results back to memory instead of 

painting to screen as intended with shaders.  

In [44] Langdon and Banzhaf present a SIMD interpreter for GP that runs on GPU. They 

use Mackey-Glass regression problem which is a chaotic time series  along with RMSE 

fitness. They employ RapidMind library to use the GPU for general computation, and 

report a 7 times speedup using GPU compared to CPU. 

Wilson and Bazhaf present the first genetic programming  implementation running on 

a game console (Xbox 360 release date 2005) and on a portable media player (Zune 2nd 

gen) in [45]. While the game console implementation benefit from the GPU 

acceleration of the device, portable media player implementation uses CPU due to lack 

of graphics processor. When compared to GPU accelerated GP on a PC, game console 

is observed to run almost 3 times faster; this can be attributed to the early adoption of 

next generation GPU hardware by console manufacturers before they become 

available to consumer use for keeping up on competition between PC gaming vs 

console gaming. 

[46] deals with the compilation overhead of individuals for genetic programming on 

GPU using CUDA. Article proposes a distributed compilation s cheme where a cluster of 

around 16 computers compile different individuals in parallel; and states the need for 

large number of fitness cases to offset the compilation overhead. It correctly predicts 

that this mismatch will get worse with increasing number of cores on GPUs, but also 

states that "a large number of classic benchmark GP problems fit into this category". 

Based on figure 5 of the article it can be computed that for a population size of 256, 

authors required 25 ms/individual in total (including network traffic, XO, mutation, 

processing on GPU, and compilation). 

The first genetic programming implementation for GPU benefiting from the guidance 

of a grammar was presented in 2010 by Langdon and Harman[47].  It uses GP to evolve 

better string matching problem solutions, in order to improve GZip compression 

performance. It employs a grammar constructed from fragments of the string 

matching code sample distributed as part of CUDA SDK. The evolutionary algorithm 

used is similar to conventional grammatical genetic programming, but differs in some 
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aspects, such as the arity of all production rules to be less than 3 and all terminals 

being a reference to a complete line of a human programmed code. Figure 11 of the 

accompanying technical report[10] shows that a population of 1000 individuals (10 

kernels of 100 individuals each) takes around 50 seconds to compile using NVCC from 

CUDA v2.3 SDK, which puts the average compilation time to approximately 50 

ms/individual. 

Dietz and Young present a MIMD interpreter for genetic programming in [48], which is  

implemented using CUDA to run on GPU. They investigate the causes of overhead of 

interpretation method on GPU, and point to divergence of execution and divergence of 

memory access between different individuals. 

In [49] an overview of genetic programming on GPU hardware is provided, along with a 

brief presentation and comparison of compiled and interpreted approaches. As part of 

the comparison it underlines the trade-off between the speed of compiled code versus 

the overhead of compilation, and states that the command line CUDA compiler was 

especially slow, hence why interpreted approach is usually preferred.  

the first work which implemented standardized grammatical evolution running on GPU 

was by Pospichal, Murphy and O’Neill in 2011[50]. 

[50] investigates the acceleration of grammatical evolution by use of GPUs . It analyzes 

the performance impact of different design decisions like thread/block granularity, 

different types of memory on GPU, host-device memory transactions. As part of the 

article, compilation to PTX form and then JIT compiling the PTX on driver level, is 

compared with direct compilation to CUBIN object and loading to GPU without further 

JIT compilation. For a kernel containing 90 individuals , it takes 540ms to compile to 

CUBIN with sub-millisecond upload time to GPU, vs 450ms for compilation to PTX and 

80ms for JIT compilation and upload to GPU by using NVCC compiler from CUDA v3.2 

SDK. Thus PTX+JIT case which is the faster of the two, achieves an average compilation 

time of 5.88 ms/individual. 

[51] proposes an approach for improving compilation times of individuals for genetic 

programming on GPU, where common statements on similar locations are aligned as 

much as possible across individuals. After alignment individuals with overlaps are 
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merged to common kernels such that aligned statements become a single statement, 

and diverging statements are enclosed with conditionals to make them part of the 

code path only if the value of individual ID parameter matches an individual having 

that divergent statements. Authors state that in exchange for faster compilation times, 

they get slightly slower GPU runtime with merged kernels as all individuals need to 

evaluate every condition at the entry of each divergent code block coming from 

different individuals. In results it is stated that for individuals with 300 instructions, 

compile time is 347 ms/individual if it's unaligned, and 72 ms/individual if it's aligned 

(time for alignment itself not included) with NVCC compiler from CUDA v3.2 SDK. 

[52] provides a comparison of compilation, interpretation and direct generation of 

machine code methods for genetic programming on GPUs. Five benchmark problems 

consisting of Mexican Hat and Salutowicz regressions, Mackey-Glass time series 

forecast, Sobel Filter and 20-bit Multiplexer are used to measure the comparative 

speed of the three mentioned methods. It is stated that compilation method uses 

NVCC compiler from CUDA V5.5 SDK. Compilation time breakdown is only provided for 

Mexican Hat regression benchmark on Table 6, where it is stated that total NVCC 

compilation time took 135,027 seconds and total JIT compilation took 106,458 

seconds. Table 5 states that Mexican Hat problem uses 400K generations and a 

population size of 36. Therefore we can say that an average compilation time of 

(135,027+106,458)/36×400,000 = 16.76 ms/individual is achieved.  

1.6 Objective of the Thesis 

In this work we aim to investigate and improve upon the acceleration of grammar 

based genetic programming through use of heterogeneous platforms where 

computing powers of CPU and GPU hardware are used simultaneously according to the 

advantages of their respective architectures. 

In Chapter 2 we review previous works on benchmarking of problem solving ability for 

genetic programming implementations; then we propose a new benchmark problem 

of our own, targeting general program synthesis, and designed primarily for being 

solved with grammatical evolution.  



22 

 

In Chapter 3 we compare the effect of certain evolutionary parameters like population 

size, maximum number of generations allowed and number of test cases employed. 

Population and test cases are the two bases to which data-parallelism and instruction-

parallelism correspond; and the number of generations corresponds to the time axis.  

Any tradeoff between these three directly affects the parallelization scheme to be 

employed and the speed at which solutions are obtained.  

In Chapter 4 we present an improvement for the compiled approach to grammatical 

genetic programming. First, we propose an in-process compilation method to reclaim 

the time wasted on spawning a new compilation process at each generation and on 

disk based inter process communication. In-process compilation method we present 

first compile to an intermediate representation (PTX) in memory using a shared library, 

the compile to final machine code using the driver API of the GPU. Then we present a 

non-trivial parallelization scheme, which allows multiple instances of in-process 

compilation to work in parallel on multiple-cores of CPU, using memory-mapped data 

transfer between processes and OS level IPC primitives. 

In Chapter 5 we present a new interpreter for genetic programming on GPU. It is 

designed primarily for grammatical GP; it has a grammatical evolution engine, a 

translator to turn the grammatically produced individual to the intermediate 

representation of our interpreter, and the interpreter running on GPU implemented 

with CUDA. It makes use of some new hardware extensions of recent GPUs , and 

provides a general purpose grammatical GP platform running on GPU without relying 

on compilation. 

Chapter 6 consists of concluding remarks about the results presented and their 

significance on how to improve grammatical genetic programming performance for 

especially on a general program synthesis context. 

1.7 Hypothesis 

The dissertation presented here is an analytical and argumentative one. We analyze 

the factors contributing to the speed and accuracy of grammatical genetic 

programming technique; especially when CPU and GPU are used together for tasks 
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suitable to their respective architecture. Then we hypothesize and argument that 

modern GPU hardware can be used in more efficient ways, by which they yield higher 

computation power for grammatical genetic programming, especially when applied to 

general program synthesis tasks. 
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CHAPTER 2 

BENCHMARKING GRAMMATICAL GENETIC PROGRAMMING 

In all scientific endeavors, it is necessary to have some benchmark to compare against, 

in order to talk of comparative improvement in quality or quantity. This is especially 

true if the claimed improvement is related to methodology and not to a particular 

application, as the new method must produce the same improvement on different 

applications, which necessitates a benchmark suite consisting of multiple benchmarks 

for applications to diverse domains. 

Genetic Programming is no exception, and the importance of the case has been 

brought to attention in [53], where it is argued that some of the benchmarks problems 

widely employed in GP articles are popular only because of historical reasons, and that 

even though articles on applications of genetic programming focus on domain-specific 

non-trivial problems, the articles on comparison and analysis of methodology uses 

benchmark problems that are often too simple.  

2.1 Subtleties of Benchmarking Genetic Programming 

[53] which is published as part of proceedings of GECCO 2012 conference, underlines 

the repeated use of ancient benchmarks providing low quality comparisons, and 

makes a call to GP community to establish better benchmarks. A survey on this subject 

has been conducted with conference participants  subsequently, and the results are 

published later same year [54]. 
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Table 2.1 Problem domains used on papers published in EuroGP and GECCO GP 
conferences between 2009-20121 

 

[54] contains the results of the mentioned survey, along with some statistics on classes 

of benchmark problems employed on genetic programming articles published in the 

last four years (see Table3.1). It provides an in-depth analysis of grouping of subjects 

observed on these papers, followed by some remarks and propositions like which 

benchmark problems to avoid and which problems to employ in the future. It is stated 

that, of the papers published in EuroGP and GECCO GP conferences between years 

2009-2012, 36.2 percent employed symbolic regression problems, 21.1 percent 

employed classification problems, 20.7 percent employed path finding problems and 

17.4 percent employed Boolean function (i.e. parity, multiplexers) problems.  

2.2 Grammatical Genetic Programming and General Program Synthesis 

While the programs represented by individuals in Linear Genetic Programming 

resemble most to the linear machine code, those represented by Cartesian Genetic 

Programming mostly resemble to digital circuits or neural networks, and the ones 

represented by tree based genetic programming resemble (non-surprisingly) to trees. 

                                                 
1
 as presented on survey [54]. Notice that some articles present problems from more than one category.  
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On the other hand the programs represented in Grammatical GP, not only res emble 

but are literally pieces of structured source code.  

Therefore even though grammatical GP can be used to evolve simple arithmetic or 

boolean expressions, which can also be represented with tree based GP, linear GP and 

cartesian GP. General program synthesis problems (described as “True Programming” 

in [54]) which involve arbitrary conditionals, loops, state variables and nesting can only 

be represented with grammatical GP in a natural and human readable way. General 

program synthesis can be achieved with linear GP too, but the evolved solutions will be 

black box solutions to some degree, instead of structured source code which is more 

easily understandable and modifiable by humans. 

In fact the individuals evolved with grammatical GP can be compiled to an equivalent 

linear GP representation (which we present in Chapter 5). Still, the set of programs that 

a grammar defines as a language is a strict subset of set of programs belonging to a 

minimal linear representation covering that language, as long as they are compared 

under the same linearised size bound. 

The proof for this assertion is trivial; the grammatical GP is designed to exclude 

programs from a set when they are syntactically invalid according to a grammar, but it 

does not add new members to the set. Therefore you can always find an individual 

which is a valid linear program, but isn’t a member of the language defined by the 

grammar. The same mismatch is observed with real world compilers all the time,  

where some raw assembly code (or byte code for JITed languages like Python, Java, C#) 

is inserted in the middle of a high level source code to perform some computation 

faster (or in small space) which is impossible with the sole use of high level grammar.  

2.3 A New Benchmark Problem 

Here we propose a new benchmark problem for genetic programming, which consists 

of identifying whether a given search value is present in an integer list. We propose 

two variants of this problem, first variant requires the evolved function to return true 

if the searched value is present in the list, or false if it isn’t. This is a question with a 
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binary answer; from GP point of view it is interesting for its use of both integer and 

boolean values. 

The second variant requires the function to return the position of the searched value 

in the list, or -1 if the value is not present. We first proposed this problem as a general 

program synthesis benchmark in [55]. The grammar for the problem is inspired by [38], 

and it bears some similarity to problems presented in [56] based on the generality of 

its use case and simplicity of its implementation.  

Even though Search Problem is parametric, such that the minimum/maximum length 

of integer lists and the range from which the list elements are chosen can be adjusted, 

different values of these parameters do not affect the difficulty of the problem, they 

only determine the generality of test cases. In out experiments we used test cases with 

lists of random integers from the range (0, 50), and list lengths varied between 3 and 

20. Test cases are randomly generated but half of them are ensured to contain the 

value searched, and others ensured not to contain.  

We employed a binary fitness function, which returns 1 if the returned result is correct 

or 0 if it's not correct; hence the fitness of an individual is the sum of its fitnesses over 

all test cases, which evolutionary engine tries to maximize.  

<expr>        ::= <expr> <bi-op> <expr> | <const> 

                  | <var-read> | <var-indexed> 

<var-read>    ::= tmp | i | OUTPUT | SEARCH | LENINPUT 

<var-indexed> ::= INPUT[<var-read> % LENINPUT] 

<var-write>   ::= tmp | OUTPUT 

<bi-op>       ::= + | - 

<const>       ::= 1 | 2 | (-1) 

<statement>   ::= <assignment> | <if> | <loop> 

<loop>        ::= for(i=0;i “<” <var-read>;i++){<statements>} 

<if>          ::= if ( <cond-expr> ) { <statements> } 

<cond-expr>   ::= <expr> <comp-op> <expr> 

<comp-op>     ::= “>” | “<” | == | != 

<assignement> ::= <var-write> = <expr>; 

<statements>  ::= <statement> | <statement><statements>  

<start>       ::= <preamble> <statements> <post-amble> 

Listing 2.1 – BNF grammar for Search Problem 
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The general BNF grammar for the problem is shown on Listing 2.1. where terminal 

nodes are C keywords and expressions, thus the grammar define a valid subset of C 

programming language. The same grammar bounded for expression length, number of 

consecutive statements and number of nested code blocks is shown on Listing 2.2. The 

start rule of both grammars is “<start>”. 

The generated code is surrounded by a preamble and post-amble to setup the local 

variables and return the value of OUTPUT which is the same for all individuals. The 

pre/postamble can be made part of the grammar by adding them as terminals before 

and after the expansion of start token; or they can be added outside of evolutionary 

code generation when grammar expansion for the individual is finished. The preamble 

and post-amble can be seen on Listing 2.3  as the non-italic lines at the beginning and 

at the end. 

<expr>        ::= <expr2> <bi-op> <expr2> | <expr2> 

<expr2>       ::= <int> | <var-read> | <var-indexed> 

<var-read>    ::= tmp | i | OUTPUT | SEARCH | LENINPUT 

<var-indexed> ::= INPUT[<var-read> % LENINPUT] 

<var-write>   ::= tmp | OUTPUT 

<bi-op>       ::= + | - 

<int>         ::= 1 | 2 | (-1) 

<statement>   ::= <assignment> | <if> | <loop> 

<statement2>  ::= <assignment> | <if2> 

<statement3>  ::= <assignment> 

<loop>        ::= for(i=0;i “<” <var-read>;i++){<statements2>} 

<if>          ::= if ( <cond-expr> ) { <statements2> } 

<if2>         ::= if ( <cond-expr> ) { <statements3> } 

<cond-expr>   ::= <expr> <comp-op> <expr> 

<comp-op>     ::= “>” | “<” | == | != 

<assignement> ::= <var-write> = <expr>; 

<statements>  ::= <statement> | <statement><statement>  

                  | <statement><statement><statement> 

<statements2> ::= <statement2> | <statement2><statement2> 

                  | <statement2><statement2><statement2> 

<statements3> ::= <statement3> | <statement3><statement3> 

                  | <statement3><statement3><statement3> 

<start>       ::= <preamble> <statements> <post-amble> 

Listing 2.2 – A depth bounded version of the grammar for Search Problem 

We will be referring to this problem as “Search Problem” in the following chapters. 

Simplest correct solution evolvable with this grammar is presented in Listing 2.3; the 
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code generated by the non-static part which corresponds to the expansion of 

<statements> token are the lines printed in italic typeface.   

void func0(int* INPUT,int SEARCH,int LENINPUT){ 

  int tmp=0; 

  int i=0; 

  int OUTPUT=0; 

  OUTPUT = -1; 

  for(i=0;I < LENINPUT;i++) { 

    if (INPUT[i % LENINPUT] == SEARCH) { 

      OUTPUT = I; 

    } 

  } 

  return OUTPUT; 

} 

Listing 2.3 – Simplest correct solution evolvable with grammar for Search Problem 

The solutions obtained by GP almost always contain some junk code with no effect. An 

actual solution obtained by evolution is presented in Listing 2.4, notice the mentioned 

junk code with no final effect; only three lines of evolved code contribute to desired 

output. By definition junk code does not affect the behavior of a solution, but to 

minimize compilation overhead and for clarity purposes, evolved solutions with junk 

code caused by introns can be “cleaned up” by dead code removal techniques.  

void func0(int* INPUT,int SEARCH,int LENINPUT){ 

  int tmp=0; 

  int i=0; 

  int OUTPUT=0; 

  if ((-1) + SEARCH != tmp-i) { 

    if (1 > i) { 

      i = 1+i; 

      tmp = 2+OUTPUT; 

    } 

  } 

  if (SEARCH == v - OUTPUT) { 

    if (OUTPUT+SEARCH == 1) { 

      i = SEARCH; 

      OUTPUT = 2; 

    } 

    OUTPUT = SEARCH-OUTPUT; 

  } 

  for(i=0;i < LENINPUT;i++){ 

    if (SEARCH == INPUT[i % LENINPUT]) { 
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      OUTPUT = SEARCH; 

      OUTPUT = i; 

    } 

  } 

  return OUTPUT; 

} 

Listing 2.4 – An actual correct solution evolved for Search Problem containing Junk 

code 

2.4 Other Benchmark Problems 

In addition to the presented Search Problem, we also use on the following chapters 

some other benchmark problems recommended as replacements to older ones in [54]. 

2.4.1 Keijzer-6 Regression 

Keijzer-6 function proposed as a regression benchmark and introduced in [57], is the 

function         

 

 
    which maps a single integer parameter to the partial sum of 

harmonic series with number of terms indicated by the parameter. Regression of 

Keijzer-6 function is one of the recommended alternatives in  [54] to replace simpler 

symbolic regression problems like quartic polynomial regression. 

For this problem we used the root mean squared error as fitness function which is the 

accepted practice for this problem, and a modified version of the grammar given in 

[58] and [40]. The only two modification of ours is the increase of token ratio of 

constants and variables, to promote terminal tokens as the expression nesting gets 

deeper (the bold expansion options on listing); and replacement of the C terminals 

with CUDA C floating point math functions (see Listing 2.5). Duplication of some 

expansion options is a common method in grammar generic programming to assign 

different selection probabilities to different expansion options; in our modification, x is 

a terminal token and <c> always expands to a terminal in one expansion, therefore 

their duplication increase the probability of expansion to a terminal node instead of a 

non-terminal. 

<e>  ::= <e2> + <e2> | <e2> - <e2> | <e2> * <e2> | <e2> / <e2> 

         | sqrtf(fabsf(<e2>)) | sinf(<e2>) | tanhf(<e2>) 

         | expf(<e2>) | logf(fabsf(<e2>)+1) 

         | x | x | x | x 
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         | <c><c>.<c><c> | <c><c>.<c><c> | <c><c>.<c><c> 

         | <c><c>.<c><c> 

          

<e2> ::= <e3> + <e3> | <e3> - <e3> | <e3> * <e3> | <e3> / <e3> 

         | sqrtf(fabsf(<e3>)) | sinf(<e3>) | tanhf(<e3>) 

         | expf(<e3>) | logf(fabsf(<e3>)+1) 

         | x | x | x | x | x | x 

         | <c><c>.<c><c> | <c><c>.<c><c> | <c><c>.<c><c> 

         | <c><c>.<c><c> | <c><c>.<c><c> | <c><c>.<c><c> 

          

<e3> ::= <e3> + <e3> | <e3> - <e3> | <e3> * <e3> | <e3> / <e3> 

         | sqrtf(fabsf(<e3>)) | sinf(<e3>) | tanhf(<e3>) 

         | expf(<e3>) | logf(fabsf(<e3>)+1) 

         | x | x | x | x | x | x | x | x 

         | <c><c>.<c><c> | <c><c>.<c><c> | <c><c>.<c><c> 

         | <c><c>.<c><c> | <c><c>.<c><c> | <c><c>.<c><c> 

         | <c><c>.<c><c> | <c><c>.<c><c> 

          

<c>  ::= 0|1|2|3|4|5|6|7|8|9 

Listing 2.5 – Modified BNF grammar for Keijzer-6 regression problem 

2.4.2 5-Bit Multiplier 

5-bit multiplier problem consists of finding a boolean relation that takes 10 binary 

inputs to 10 binary outputs. Two groups of 5 inputs each represent an integer up to 

     in binary, and the output represents a single integer up to 210−1, such that the 

output is the multiplication of the two input numbers. This problem can be attacked as 

10 independent binary regression problems, with each bit of the output is separately 

evolved as a circuit or boolean function; this means not bothering to exploit any 

possible correlation or shared structure there may be between different bits of the 

output, for the sake of implementation simplicity. 

It’s easy to show that the number of n-bit input m-bit output binary relations is       , 

which grows exponentially on m and super-exponentially on n. Multi-output multiplier 

is the recommended alternative to Multiplexer and Parity problems in [54]. 

We transfer input to and output from GPU with bits packed as a 32bit integer; hence 

there is a code preamble before first individual to unpack the input bits, and a post-

amble after each individual to pack the 10 bits computed by evolved expressions as an 

integer.  
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The fitness function we used for 5-bit multiplier is the number of different bits 

between the individual’s response and the correct answer, computed as the pop count 

of individual’s response exclusive-or correct answer. 

<start> ::= o0=<expr>;o1=<expr>;o2=<expr>;o3=<expr>;o4=<expr>; 

            o5=<expr>;o6=<expr>;o7=<expr>;o8=<expr>;o9=<expr>; 

<expr>  ::= (<expr2> <bi-op> <expr2>) | <var> | (~ <var>) 

<expr2> ::= (<expr2> <bi-op> <expr2>) | <var> | (~ <var>) 

            | <var> | (~ <var>) 

<var>   ::= a0 | a1 | a2 | a3 | a4 | b0 | b1 | b2 | b3 | b4 

<bi-op> ::= & | #or# 

Listing 2.6 – BNF grammar for 5-bit Multiplier problem 
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CHAPTER 3 

EFFECTS OF POPULATION SIZE, NUMBER OF GENERATIONS AND 

NUMBER OF TEST CASES 

In this chapter we investigate the effects of modifying three evolutionary parameters, 

namely (i) the maximum number of generations allowed, (ii) size of population in 

terms of individuals, and (iii) the number of test cases used, on the number and time 

distribution of solutions found in the context of Search Problem; on the other hand the 

results presented in this chapter can be generalized to other grammatical genetic 

programming problems targeting general program synthesis.  

3.1 Experiments 

We performed three experiments; first one serves as a baseline for the others, and the 

second trades off number of generations for a larger population while maintaining 

same computation time, in order to compare the distribution of fitness traces against 

baseline. The last employs only half of the test cases, to investigate the effects of 

trading off generalization accuracy for decreased computation time. 

3.1.1 Baseline Experiment 

As a baseline measurement, we evolved 50 independent populations using Search 

Problem grammar. We used a population size of 100 individuals per population. There 

were 40 test cases with only half of them containing the searched integer; lists had 

length varying from 3 to 7 integers. Same test cases have been used for all 

populations; crossover and mutation rates were both set to 0.7. We employed elitism 

and two way tournament selection on all experiments.  
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It can be seen on Fig.3.1 that 12 out of 50 populations managed to evolve a successful 

individual that return the position of the searched value or -1 in case it isn’t in the list. 

On this experiment we expressed “fitness” as error (number of test cases failed) where 

lower error on plots meaning higher fitness. Fig.3.1 consists of two plots with fitness 

traces for each population; plot below shows the trace of fitness of best individuals for 

successful populations (those who managed to evolve an individual with zero error 

before 500 generation limit), and plot above show the same for failed populations. 

This separation is purely to better portray the difference of shape in distributions of 

fitness traces, between successful and unsuccessful populations. Each trace line 

corresponds to a population, and values attained by a line are the fitness values of the 

best individual of that population for the indicated generation. Therefore vertical 

jumps correspond to the evolution of a new best individual having lower error than 

previous best for that population; and horizontal segments correspond to generations 

where the population couldn’t evolve any better individuals, so the best from previous 

generation has been preserved by elitism. 

 

Figure 3.1 Fitness traces of best individuals of 50 populations for 500 generations 
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The average fitness of best individuals is only meaningful for the failed populations; 

successful populations leave the process when a zero error individual is evolved, 

causing the number of populations to average over to be different on different parts of 

the horizontal axis. This makes the same plot of average for successful populations 

hard to interpret. Fig.3.2 shows the mentioned average fitness of best individuals of 

“failed” populations; jagged traces can be seen to converge to a smoother curve upon 

averaging. We use the term “failed” loosely here, because any of the remaining 

individuals might still converge to a successful solution if the evolution was allowed to 

continue with more generations; this is further indicated by the decreasing average 

error by generations. 

 

Figure 3.2 Fitness average of failed populations’ best individuals 

3.1.2 More Populations, Less Generations, Same Wall-Clock Time 

The distribution of the points where traces of successful populations intersect the 

horizontal axis on Fig.3.1 hints that conditional probability of a population to succeed 

at a given generation decreases with each generation, under the condition that it will 

eventually succeed. Thus, we repeated the experiment with the same settings, except 

limiting the maximum number of generations five-fold (from 500 to 100). To maintain 

an equal amount of computation (hence equal computation time), we also increased 

the number of populations five-fold (from 50 to 250). Fig.3.3 shows the fitness traces 

of the experiment, where 32 out of 250 populations managed to produce an error free  

individual. Although the success rate drops to 0.128 (32/250) from previous 0.24 

(12/50), trying more independent populations for shorter times yielded 2.66 (32/12) 

times more error free individuals for the same amount of computation. Notice that the 

points where populations reach an error free individual are distributed more 
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homogeneously across the first 100 generations, in contrast to previous experiment. 

Yet, the points at which error free individuals emerge don’t get more frequent at left 

edge of horizontal axis neither; to the contrary on the first 15 generations no error free 

individual is observed, in stark contrast to the generation range 15-100. 

 

 

Figure 3.3 Fitness trace of best individuals for 250 population over 50 generations  

Cumulative density of the truncated probability distribution of having an error free 

individual in terms of number of generations is the mathematical counterpart of this 

intuition. It can be used to minimize the computation time needed to obtain a 

solution, by optimizing the number of generations allowed per population. As the 

number of generations allowed per population change, the expected value of solutions 

obtained per generation change too. It can be estimated with regression fitting, but 

this requires computing large numbers of fitness traces to smooth the empirical 

cumulative density from which the probability distribution can be extracted after curve 

fitting. The extreme case of allowing only one generation is equivalent to random 

search, as the individuals don't get a chance to cooperate through crossover across 

generations.  
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3.1.3 Less Test Cases 

We conducted a third set of experiments, with the same settings as the first one, but 

this time decreasing the number of test cases from 40 to 20, which halves the 

computation time in exchange for an increased risk of false positives labeled as 

successful. Figures Fig.3.4 and Fig.3.5 show the traces of best individuals of 

populations, and the average of best individuals from unsuccessful populations. The 

success rate became 0.26 (13/50) with an increase of 2% success rate, which is 

statistically insignificant to attribute to false pos itives which may stem from a lack of 

test cases. 

The traces for successful populations on figure Fig.3.4 shows that 38% (5/13) of 

solutions are concentrated in the narrow range of first 25 generations. It can be 

conjectured that the decreased number of test cases contributed to early success of 

evolution in contrast to previous experiment setups. (notice that on Fig3.4 and Fig3.5 

the vertical axis for failed populations do not  start from 0) 

 

Figure 3.4 Fitness trace of best individuals for 50 populations using only half of the test 
cases 
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The ratio of number of test cases to false positives is a parameter that can be used to 

tune the performance of evolution. As the number of test cases affect the 

computation time linearly (i.e. doubling the test cases doubles the computation time), 

it may be beneficial to use minimum indicative number of test cases ; we expect this 

number to be very dependent on the problem. Total computation time can be 

minimized by allowing a higher false positive rate and thoroughly checking the 

individual solutions later, instead of thoroughly checking the whole population earlier.  

 

Figure 3.5 Fitness average of failed populations’ best individuals 

3.2 Motivation for Parallelization 

Population size (number of individuals), number of generations evolution is allowed to 

run for, and number of test cases employed, are three important evolutionary 

parameters which affect the probability and frequency of obtaining successful 

individuals. Increase in any of those three parameters, increase the probability of 

obtaining a successful individual, and decrease the expected value of number of 

generations till the next successful individual; but it also increase the computation 

time linearly. For the tradeoffs between these parameters that preserve the amount of 

computation, we expect there to be a Pareto front of optimality where multiple 

configurations of parameters can yield the same optimal behavior in terms of 

expectancy of computation amount required to obtain a solution.  

On a serialized computation model, each of these three parameters contribute to total 

time complexity as a multiplicative factor; hence a unit increase in any one of those 

increase the time cost by an amount equal to multiplication of other two.   On the 

other hand only generations have a time based data dependency between them; 
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individuals and test cases are neither temporally dependent, nor inter-dependent. 

Therefore all (individual,testcase) pairs can be evaluated in parallel, only to be 

synchronized between generations for the consolidation of fitness data and creation of 

next population. 
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CHAPTER 4 

COMPILATION OF INDIVIDUALS FOR GENETIC PROGRAMMING ON GPU 

In this chapter we investigate methods to accelerate compilation of individuals for 

genetic programming on GPU hardware. We compare the conventional out-of-process 

compilation with an in-process compilation strategy that we propose to minimize the 

compilation overhead at each generation. Then we investigate ways to parallelize in-

process compilation; in-process compilation doesn't lend itself to trivial parallelization 

with threads, we propose a multi-process parallelization using memory sharing and 

operating system’s inter-process communication primitives. With parallelized 

compilation we achieve further reductions on compilation overhead. 

4.1 Development and Experiment Setup  

4.1.1 Hardware Platform 

All experiments have been conducted on a dual Xeon E5-2670 (8 physical 16 logical 

cores per CPU, 32 cores in total) platform running at 2.6Ghz equipped with 60GB RAM, 

along with dual SSD storage and four NVidia GRID K520 GPUs. Each GPU itself consists 

of 1536 cores spread through 8 multiprocessors running at 800Mhz, along with 4GB 

GDDR5 RAM and is able to sustain 2 teraflops of single precision operations (in total 

6144 cores and 16GB GDDR5 VRAM which can theoretically sustain 8 teraflops single 

precision computation assuming no other bottlenecks)1. GPUs are accessed for 

                                                 
1
 see validation of hardware used for experiment: http://www.techpowerup.com/gpuz/details/7u5xd/ 
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computation through NVidia CUDA v8 API and libraries, running on top of Windows 

Server 2012 R2 operating system. 

4.1.2 Development Environment 

Codes related to grammar generation, parsing, derivation, genetic programming, 

evolution, fitness computation and GPU access has been implemented in C#, using 

managedCuda1 for CUDA API bindings and NVRTC interface, along with CUDAfy.NET2 

for interfacing to NVCC command line compiler. The grammars for the problems have 

been prepared such that, the languages they define are valid subsets of CUDA C 

language with specialization towards the respective problems. 

4.1.3 Experiment Parameters 

We ran each experiment with population sizes starting from 20 individual per 

population going up to 300, with increments of 20. As the subject of interest is 

compilation times and not fitness, we measured the following three parameters to 

evaluate compilation speed: 

 ptx : CUDA source code to PTX compilation time per individual 

 jit : PTX to Cubin object compilation time per individual 

 other : All remaining operations a GP cycle requires (i.e. uploading compiled 

individuals to run on GPU, downloading produced results, computing fitness 

values, evolutionary selection, cross over, mutation, etc.)  

We have measured the value of other to be always at sub-millisecond level, in all 

experiments, all problems and for all population sizes; therefore it does not appear on 

plots. For all practical purposes ptx + jit can be considered as the total time cost of a 

complete cycle for a generation, with an error margin of 1ms/pop.size. 

Each data point on plots correspond to the average of one of those three types of 

measurements for a given (population size; measurement type; experiment) triple. 

                                                 
1
 https://kunzmi.github.io/managedCuda/ 

2
 https://cudafy.codeplex.com/  
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Each average is computed over the measurement values obtained for the first 10 

generations of 15 different populations with given size (thus effectively the compile 

times of 150 generations averaged). The reason for not directly using 150 generations 

of a single population is that a population gains bias towards a certain type of  

individuals after certain number of generations, and stops representing the inherent 

unbiased distribution of grammar.  

The number of test cases used is dependent to the nature of problem; on the other 

hand as each test case is run as a GPU thread, it is desirable that the number of test 

cases are a multiple of 32 on any problem, as finest granularity for task scheduling on 

modern GPUs is a group of 32 threads which is called a Warp. For non multiple of 32 

test cases, GPU transparently rounds up the number to nearest multiple of 32 and 

allocate cores accordingly, with some threads from the last warp work on cores with 

output disabled. The number of test cases we used during experiments were 32 for 

Search Problem, 64 for regression of Keijzer-6 function and 1024 (= 2(5+5)) for 5-bit 

Binary Multiplier Problem. For all experiments both mutation and crossover rate was 

set to 0.7; these rates do not affect the compilation times.  

4.2 Conventional Compilation as Baseline 

NVCC is the default compiler of CUDA platform, it is available as a command line 

application distributed with CUDA SDK. In addition to compilation of CUDA C source 

code, it performs tasks such as the separation of source code as host code and device 

code, calling the underlying host compiler (GCC or Visual C compiler) for host part of 

source code, and linking compiled host and device object files. 
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Figure 4.1 Nvcc compile times by population size (per individual time) 

 

Figure 4.2 Nvcc compile times by population size (total time) 

Figure 4.1 shows that compilation times level out at 11.2 ms/individual for Search 

Problem, at 7.62 ms/individual for Keijzer-6 regression, and at 17.2 ms/individual for 5-

bit multiplier problem. It can be seen on Figure 4.2 that, even though not obvious, the 

total compilation time does not increase linearly, which is most observable on trace of 
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5-bit multiplier problem. As NVCC is a separate process, it isn't possible to measure the 

distribution of compilation time between source to PTX, PTX to CUBIN, and all other 

setup work (i.e. process launch overhead, disk I/O); therefore it is not possible to 

pinpoint the source of nonlinearity on total compilation time.  

The need for successive invocations of NVCC application, and all data transfers being 

handled over disk files are the main drawbacks of NVCC use in a real time  context, 

which is the case in genetic programming. Even though the repeated creation and 

teardown of NVCC process most probably guarantees that the application stays on disk 

cache, this still prevents it to stay cached on processor L1/L2 caches. 

4.3 In-process Compilation 

NVRTC is a runtime compilation library for CUDA C, it was first released as part of v7 of 

CUDA platform in 2015. NVRTC accepts CUDA source code and compiles it to PTX in-

memory. The PTX string generated by NVRTC can be further compiled to device 

dependent CUBIN object file and loaded to GPU with CUDA Driver API, still without 

persisting it to a disk file. This provides optimizations and performance not possible in 

off-line static compilation. 

Without NVRTC, for each compilation a separate process needs to be spawned to 

execute NVCC at runtime. This has significant overhead, NVRTC addresses this by 

providing a library interface that eliminates overhead of spawning separate processes, 

and extra disk I/O. On the other hand NVRTC performs only the first part of the 

compilation which is converting the CUDA source to PTX form; in order to use 

compiled PTX code a second round of compilation must be performed either with 

NVCC (which would defeat the purpose) or with the CUDA Driver API which 

incorporates a light JIT compiler that can compile PTX to CUBIN binary form executable 

on GPU. 
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Figure 4.3 In-process and out of process compilation times by population size, for 

Search Problem (per individual)  

 

Figure 4.4 In-process and out of process compilation times by population size, for 
Search Problem (total) 

On figures 4.3-4.8 it can be seen that in-process compilation of individuals not only 

provides reduced compilation times for all problems on all population sizes, it also 

allows to reach asymptotically optimal per individual compilation time with much 
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smaller populations. The fastest compilation times achieved with in-process 

compilation is 4.14 ms/individual for Keijzer-6 regression (at 300 

individuals/population), 10.88 ms/individual for 5-bit multiplier problem (at 100 

individuals/population1), and 6.89 ms/individual for Search Problem (at 280 

individuals/population2). The total compilation time speed ups are measured to be in 

the order of 261% to 176% for the K6 regression problem, 288% to 124% for the 5-bit 

multiplier problem, and 272% to 143% for the Search Problem, depending on 

population size (see Fig.4.9). 

 

 

Figure 4.5 In-process and out of process compilation times by population size, for 
Keijzer-6 Regression(per individual)  

                                                 
1
 compilation speed at 300 individuals/population is 13.29 ms/individual for 5-bit Multiplier 

2
 compilation speed at 300 individuals/population is 7.76 ms/individual for Search Problem 
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Figure 4.6 In-process and out of process compilation times by population size, for 
Keijzer-6 Regression (total) 

 

Figure 4.7 In-process and out of process compilation times by population size, for 5-bit 

Multiplier (per individual) 
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Figure 4.8 In-process and out of process compilation times by population size, for 5-bit 
Multiplier (total) 

 

Figure 4.9 Compile time speedup ratios between conventional and in-process 

compilation by problem 
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4.4 Parallelizing In-process Compilation 

4.4.1 Infeasibility of parallelization with threads 

The natural approach to parallelize in-process compilation comes to mind as, to 

partition the individuals and spawn multiple threads that will compile each partition in 

parallel through NVRTC library. Unfortunately it turns out that NVRTC library is not 

designed for multi-threaded use; we noticed that when multiple compilation calls are 

made from different threads at the same time, the execution is automatically 

serialized. 

Stack trace in Fig.4.10 shows nvrtc64_80.dll calling OS kernel's EnterCriticalSection 

function to block for exclusive execution of a code block, and gets unblocked by 

another thread which also runs a block from same library, 853ms later via the release 

of the related lock. The pattern of green blocks on three threads in addition to main 

thread in Fig.4.10 shows that calls are perfectly serialized one after anothe r, despite 

being called at the same time which is hinted by the red synchronization blocks 

preceding them. 

 

Figure 4.10 NVRTC library serializing calls from multiple threads  
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Although NVRTC compiles CUDA source to PTX with a single call, the presence of 

compiler options setup function which affects the following compilation call, and use 

of critical sections at function entries, show that apparently this is a stateful API. 

Furthermore, unlike CUDA APIs' design, mentioned state is most likely not stored in 

thread local storage (TLS), but stored on the private heap of the dynamic loading 

library, making it impossible for us to trivially parallelize this closed source library using 

threads, as moving the kept state to TLS requires source level modifications. 

4.4.2 Parallelization with Daemon Processes 

Therefore as a second approach we implemented a daemon process which stays 

resident. It is launched from command line with a unique ID as command line 

parameter to allow multiple instances. Instances of daemon are launched as many 

times as the wanted level of parallelism and each instance identifies itself with the ID 

received as parameter. Each launched process register two named synchronization 

events with the operating system, for signaling the state transitions of a simple state 

machine consisting of {starting, available, processing} states which represent the state 

of that instance. Main process also has copies of same state machines for each 

instance to track the states of daemons. Thus both processes (main and daemon) keep 

a consistent view of the mirrored state machine by monitoring the named events 

which allows state transitions to be performed in lock step. State transition can be 

initiated by both processes, specifically (starting → available) and (processing → 

available) is triggered by the daemon, and (available → processing) is triggered by the 

main process. 

The communication between the main process and compilation daemons are handled 

via shared views to memory maps. Each daemon register a named memory map and 

create a memory view, onto which main process also creates a view to after the 

daemon signals state transition from starting to available. (see Fig.4.11) CUDA source 

is passed through this shared memory, and compiled device dependent CUBIN object 

file is also returned through the same. To signal the state transition (starting → 

available) daemon process signals the first event and starts waiting for the second 
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event at the same time. Once a daemon leaves the starting state, it never returns back 

to it. 

 

Figure 4.11 Sequence Diagram for creation of a compilation daemon process and 
related inter-process communication primitives 

When the main process generates a new population to be compiled it partitions the 

individuals in a balanced way, such that the difference of number of individuals 

between any pair of partitions is never more than one. Once the individuals are 

partitioned, the generated CUDA codes for each partition are passed to the daemon 

processes. Each daemon waits in the blocked state till main process wakes that specific 

daemon for a new batch of source to compile by signaling the second named event of 

that process (see Fig.4.12). Main process signals all daemons asynchronously to start 

compiling; then starts waiting for the completion of daemon processes' work. To 

prevent the UI thread of main process getting blocked too, main process maintains a 

separate thread for each daemon process it communicates with, therefore while 

waiting for daemon processes to finish their jobs only those threads of main process 

are blocked. Main process signaling the second event and daemon process unblocking 

as a result, corresponds to the state transition (available → processing). 
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Figure 4.12 Sequence Diagram for compilation on daemon process and related inter-
process communication 

When a daemon process arrives to processing state, it reads the CUDA source code 

from the shared view of the memory map related to its ID, and compiles the code 

using NVRTC library. 

Once a daemon finishes compiling and writes the Cubin object to shared memory, it 

signals the first event to unblock the related thread in main process and starts to wait 

for the second event once again. This signaling, blocking pair corresponds to the state 

transition (processing → available). 

4.4.3 Cost of Parallelization 

The parallelization approach we propose is virtually overhead free when compared to 

a hypothetical parallelization scenario using threads. As the daemon processes are 

already resident and waiting in the memory along with the loaded NVRTC library, the 

overhead of both parallelization approaches is limited to the time cost of memory 



53 

 

moves from/to shared memory and synchronization by named events 1. The only 

difference between the two is, in a context switch between threads of same process, 

processor keeps the Translation Look Aside Buffer (TLB), but in case of a context switch 

to another process TLB is flushed as processor transitions to a new virtual address 

space; we conjecture that the impact would be negligible. 

About the memory cost, all modern operating systems recognize when an executable 

binary or shared library gets loaded multiple times; OS keeps a single copy of the 

related memory pages on physical memory, and separately maps those to virtual 

address spaces of each process using those. This not only s aves physical RAM, but also 

allows better space locality for L2/L3 processor caches. Hence the memory 

consumption of multiple instances of our daemon processes, each loading NVRTC 

library (nvrtc64 80.dll is almost 15MB) to their own address space, is almost the same 

as the consumption of a single instance. 

4.4.4 Speedup Achieved with Parallel Compilation 

At the end of each batch of experiments main application dumps the collected raw 

measurements to a file. We imported this data to Matlab filtered by experiment and 

measurement types, and aggregated the experiment values for each population size to 

produce the Tables 4.1-4.3, and to create the Figures 4.13-4.15 which illustrate the 

parallelized compilation times and speed-up ratios achieved. 

It can be seen that parallelized in-process compilation of genetic programming 

individuals is faster for all problems and population sizes when compared to in-process 

compilation without parallelization; furthermore in-process compilation without 

parallelization itself was shown to be faster than regular command line nvcc 

compilation on previous section. 

Parallel compilation brought the per individual compilation time to 2.17 ms/individual 

for 5-bit Multiplier, to 2.20 ms/individual for Keijzer-6 regression and to 2.13 

ms/individual for the Search Problem; these are almost an order of magnitude faster 

                                                 
1
 on Windows operating system named events is the fastest IPC primitive, upon which all  others (i.e. 

mutex, semaphore) are implemented  



54 

 

than previous published results. Also we measured a compilation speedup of ×3.45 for 

regression problem, ×5.26 for search problem, and ×7.60 for multiplication problem, 

when compared to the latest Nvcc V8 compiler, without requiring any code 

modification, and without any runtime performance penalty.  

Notice that our experiment platform consisted of dual Xeon E5-2670 processors 

running at 2.6Ghz; for compute bound tasks increase on processor frequency almost 

directly translates to performance improvement at an equal rate 1. Therefore we can 

conjecture that to be able to compile a population of 300 individuals at sub-

millisecond durations, the required processor frequency is around 2.6 × 2.13 = 

5.54Ghz2 which is currently available. 

Table 4.1 Compilation Times by Compilation Methods for Search Problem with 300 
individuals 

Compilation 

Method 

Compilation Time Speedup Ratio 

Per Individual Total 
In-process 

compilation 

NVCC 

compilation 

NVCC 11.20 ms 3.36 sec - 1.00 

In-process 7.76 ms 2.33 sec 1.00 1.44 

2 daemons  3.81 ms 1.14 sec 2.04 2.93 

4 daemons  2.53 ms 0.76 sec 3.07 4.41 

6 daemons  2.23 ms 0.67 sec 3.48 5.01 

8 daemons  2.13 ms 0.64 sec 3.65 5.26 

  

                                                 
1
 Assuming all  other things being equal 

2
 once again, under assumption of all  other things being equal. 2.13 is the compilation time of Search 

Problem with 8 daemons 
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Table 4.2 Compilation Times by Compilation Methods for Keijzer-6 Regression with 300 
individuals 

Compilation 

Method 

Compilation Time Speedup Ratio 

Per Individual Total 
In-process 

compilation 

NVCC 

compilation 

NVCC 7.63 ms 2.29 sec - 1.00 

In-process 4.14 ms 1.24 sec 1.00 1.83 

2 daemons  2.92 ms 0.88 sec 1.42 2.60 

4 daemons  2.45 ms 0.73 sec 1.69 3.10 

6 daemons  2.20 ms 0.66 sec 1.88 3.45 

8 daemons  2.25 ms 0.67 sec 1.84 3.37 

Table 4.3 Compilation Times by Compilation Methods for 5-bit Multiplier Problem with 
300 individuals 

Compilation 

Method 

Compilation Time Speedup Ratio 

Per Individual Total 
In-process 

compilation 

NVCC 

compilation 

NVCC 17.20 ms 5.16 sec - 1.00 

In-process 13.29 ms 3.99 sec 1.00 1.24 

2 daemons  6.15 ms 1.85 sec 2.16 2.69 

4 daemons  3.23 ms 0.97 sec 4.12 5.12 

6 daemons  2.42 ms 0.73 sec 5.49 6.82 

8 daemons  2.17 ms 0.65 sec 6.11 7.60 
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Figure 4.13 Nvcc compilation times for Search Problem by number of servicing resident 
processes. (left) per individual (right) total 

 

Figure 4.14 Nvcc compilation times for Keijzer-6 regression by number of servicing 

resident processes. (left) per individual (right) total 

 

Figure 4.15 Nvcc compilation times for 5-Bit Multiplier by number of servicing resident 

processes. (left) per individual (right) total 
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Figure 4.16 Parallelization speedup ratios on Search problem (left) vs conventional 
compilation (right) vs in-process compilation 

 

Figure 4.17 Parallelization speedup ratios on Keijzer-6 regression (left) vs conventional 

compilation (right) vs in-process compilation 

 

Figure 4.18 Parallelization speedup ratios on 5-Bit multiplier (left) vs conventional 

compilation (right) vs in-process compilation 
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 CHAPTER 5 

INTERPRETER FOR GENERAL PROGRAM SYNTHESIS WITH GENETIC 

PROGRAMMING ON GPU 

In this chapter we present a new general purpose interpreter for grammatical genetic 

programming designed to support arbitrary grammars. We implemented it both for 

GPU using CUDA and for CPU using C#. We further implemented a byte-code generator 

for the opcodes exposed by the interpreter, and integrated it to our grammatical 

evolution engine as terminal tokens. Any grammar with terminal tokens consisting of 

these opcodes, produce derivations which are valid sequences of opcodes by gathering 

the terminals in depth first order and replacing each one with the respective opcode; 

such opcode sequences can be directly executed on our interpreter,  

5.1 Implementation Options for Genetic Programming on GPU 

There exists three implementation approaches for genetic programming on GPU; these 

are compilation, interpretation and direct generation of machine code.  

5.1.1 Compiled Approach 

In the compiled approach, individuals from population are compiled on the CPU to 

specific GPU machine code, and the resulting binary is uploaded to GPU where they 

run in parallel. The problem with compiled approach is that, it is known to have a 

prohibitive overhead compared to other two, which is the subject addressed on 

previous chapter. 
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5.1.2 Direct Generation of Assembly or Machine Code 

 

The direct generation of machine code approach has two variants; fi rst one involves 

directly generating PTX level assembly for individuals, which still requires a second 

level compilation to be able to run on GPU, and the second one involves direct 

generation of final machine code. Both variants involve implementing a mechanism 

which takes the behavior defined by the genome of individual and translate it to one of 

the vendor specific executable formats; these are pretty much equivalent to 

implementing a stripped down compiler on its own.  

5.1.2.1 Direct Generation of PTX Followed by JIT Compilation 

PTX is an intermediate representation used by NVidia which is architecture agnostic 

across their different lines of GPU hardware; it acts as a backward/forward 

compatibility layer, through which old compiled codes run on new hardware, and 

newly compiled codes run on older hardware. Naturally the cost for this abstraction is 

the need for a second level of compilation to the actual architecture specific machine 

code of GPU. This second layer compiles PTX code to a CUBIN object. It is available as 

part of the NVCC command line compiler, but a lighter JIT version of it resides as part 

of graphics driver and can be accessed through CUDA Driver API.  

Direct generation of PTX involves two things; first implementing a code generator that 

translates individuals to PTX (which is a non-trivial implementation equivalent to 

implementing a crude PTX compiler), and second compiling the generated PTX with JIT 

compiler on driver API. JIT compilation has an overhead of its own, but it is negligible 

compared to full compilation with command line NVCC compiler. 

5.1.2.2 Direct Generation of CUBIN 

The technique for direct generation of CUBIN objects  is called GMGP (GPU Machine 

Code Genetic Programming) and it is proposed in [52]. CUBIN objects are in an 

undocumented, architecture specific, machine code binary format. GMGP generate 

CUBIN objects with information obtained by byte level comparative analysis of many 
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small compiled binaries, and combining these fragments in a specific way. Authors 

present how they extract the machine code information from CUBIN fragments in a 

semi-automatic way, as the format is a little bit different for every generation of 

graphics hardware and prone to further changes even by new driver versions. 

5.1.3 Interpretation Approach 

A compromise between compilation and machine code generation is the 

interpretation approach; it consists of implementing an application on the target 

computing platform, that accepts a sequence of opcodes in a specific encoding, and 

performs the corresponding computation as a proxy. During an interpreter session the 

only code that is executed on the processor is that of interpreter itself; the memory 

region containing the opcodes is read as data and never reach the hardware processor 

directly. 

In our case the target platform is the GPU, therefore we implemented a CUDA 

application which takes a device side buffer as the code memory, and decodes the 

byte sequences as variable size opcodes. 

5.2 Implementation  

Our implementation consists of two interpreters (one on GPU and other on CPU)  with 

identical behavior, a set of opcodes that map the functionality exposed by the 

interpreter to terminal tokens of the grammar, and a base grammar that sequences 

these tokens as expected by the interpreter and expose the sequences as non-

terminals. 

5.2.1 Interpreter 

We created two identical implementations of our interpreter; one in CUDA targeting 

GPU, and other in C# targeting CPU. A byte sequence produce the same result when 

run on any of the implementation, as the opcode side effects (i.e. change in state 

variables) for each opcode is exactly the same. 
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This twin implementation even includes replication of unexpected behaviors due to 

platform differences; one example that was hard to track down is the behavioral 

difference between CPU and GPU when an arithmetic operation producing NaN or Inf 

is executed (i.e. division by zero). In such case normally a CPU raise an exception while 

a GPU will not, but other than that both platforms signal the situation in conformance 

to the IEEE 754 spec, which is not very interesting. What’s interesting is what happens 

when a NaN (or Inf) gets typecast to an int. Basically what should happen is defined as 

“undefined behavior” by IEEE 754 spec, thus all hardware and compilers are free to 

resolve the situation in any way they see fit. We encountered this particular mismatch 

of behavior, when the looplimit assignment on line 16 of Listing 5.1 receive a NaN or 

Inf from interpret_expression() function, which gets cast to different int values on GPU 

and CPU, resulting in different numbers of loop executions. We eliminated this 

mismatch by adding a finiteness check before that assignment, and assigning 0 to 

looplimit for non-finite values.1 

Our interpreter implementations consist of three functions only. The entry point is the 

interpret_statements() function which runs a sequence of statements sequentially (see 

Listing 5.1). 

 
1     while ¬(opcode1 = <eos>) 
2         IP ← IP+1 
3         opcode ← code[IP] 
4         switch opcode1 
5             case <assign-var> 
6                   vars[opcode2] ← interpret_expression() 
7      
8             case <assign-output>    
9                   outputs[opcode2] ← interpret_expression() 
10 
11            case <if>   
12                  if interpret_bool_expression() 
13                      interpret_statements() 
14 
15            case <for>   
16                  looplimit ← interpret_expression()  
17                  codeBlockStart ← IP 

                                                 
1
 The reason turns out to be DirectX compatibility; ints being devoid of Inf signaling capabilities like 

floats, CUDA returns a pattern of all  bits set when you divide an int by zero or try to cast an Inf to int: 
https://devtalk.nvidia.com/default/topic/822614/cuda -6-0-const-int-warning-division-by-zero/?offset=5  
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18                  loopdepth ← loopdepth + 1 
19                  for loopvar[loopdepth] ∈ (0,looplimit) 
20                       IP = codeBlockStart 
21                       interpret_statements() 
22                  loopdepth ← loopdepth - 1 
23 
24            case <exit>  
25                  halt() 

Listing 5.1 – Pseudo-code of interpret_statements() function 

On Listing 5.1 the sub-indices on opcode1 and opcode2 refer to first and second bytes 

of the integer encoding the opcode, where first byte is the least significant byte. To 

emulate nested loops, an array of loop indices is kept along all other state of an 

individual. 

The complete state kept by the interpreter for an individual running on a test case 

consists of a base pointer to the beginning of memory region containing the opcodes 

of current individual, an instruction pointer used as increments over base, a flag to 

signal halted state, a pointer to the memory region containing the input data for the 

specific test case this instance of individual is working on, a pointer to memory region 

reserved for the storage of the outputs by this individual, an array to hold local 

variables, an array to hold loop variables and an integer to indicate the level of loop 

nesting at current IP. Sizes of mentioned arrays in state can be adjusted at initialization 

of interpreter. 

1   switch opcode1 
2       case <lt> 
3           return interpret_expression() < interpret_expression() 
4 
5       case <gt> 
6           return interpret_expression() > interpret_expression() 
7 
8       case <eq> 
9           return interpret_expression() = interpret_expression() 
10 
11      case <not> 
12          return ¬interpret_bool_expression() 
13 
14      case <and> 
15          l ← interpret_bool_expression() 
16          r ← interpret_bool_expression() 
17          return l ∧ r 
18 
19      case <or> 
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20          l ← interpret_bool_expression()  
21          r ← interpret_bool_expression() 
22          return l ∨ r 

Listing 5.2 – Pseudo-code of interpret_bool_expression() function 

5.2.2 Base Grammar 

In its universal form the BNF grammar for interpreter consists of a mixture of terminal 

tokens corresponding to an opcode with a concrete implementation on the interpreter 

(tokens indicated with bold on Listing 5.3), and non-terminal tokens with the purpose 

of creating valid sequences of opcodes. 

<expr>       ::= <bi-op><expr><expr2> | <const> | <var> | <input> 

                 | <loop-index> | <input-length> | <output-length> 

                 | <output> 

<bool-expr>  ::= <bi-comp-op><expr><expr> | <not><bool-expr> 

                 | <bi-bool-op><bool-expr><bool-expr> 

<bi-op>      ::= <add> | <sub> | <mul> | <div> 

<bi-comp-op> ::= <lt> | <gt> | <eq> 

<bi-bool-op> ::= <and> | <or> 

<statement>  ::= <assign-var><expr> | <assign-output><expr> 

                 | <if><bool-expr><statements> 

                 | <for><expr><statements>  | <exit> 

<statements> ::= <statement><eos> 

                 | <statement><statement><eos> 

                 | <statement><statement><statement><eos> 

Listing 5.3 – Universal Grammar for Interpreter 

This is the most general form of the grammar where all interpreter functionality is 

exposed and no restriction is imposed (other than grouping token sequences as 

expected by interpreter). Starting from this base new grammars biased or specialized 

towards specific problems can be constructed by introducing additional rules defining 

constructs with complex structure, or imposing further restrictions. 

5.3 Performance 

To measure the performance of our GPU interpreter, we used the Keijzer-6 regression 

using the previously listed grammar.  For all experiments we used a Maxwell class GPU 
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running at 1.1Ghz with 2GB RAM. For a population of 100 individuals, we measured 

that GPU interpretation takes 190.7 µsecs/generation on average; and for 200 

individuals we measured 423.8 µsecs/generation mean interpretation time. Figure 5.1 

and 5.2 show the distribution of interpreter times over 100 generations.  

 

Figure 5.1 GPU interpretation time per generation for 100 individual population  

As the GPU process all (individual,test case) pairs  in parallel, the reported 

measurements are for the evaluation of a whole population for a single generation. Of 

course the parallel processing capability of the GPU is limited by the number of cores 

available, but a GPU with 1000+ cores can process 100 individuals on 10 test cases 

simultaneously, by launching an independent interpreter instance for each. On the 

other hand, evaluation of a single individual with a single test case would take a very 

similar time on the GPU, because a single core would be processing the pair at the 

same speed as before, while all remaining cores just idle. 
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Figure 5.2 GPU interpretation time per generation for 200 individual population  

These measured timings only consist of the interpreter activity on the GPU which 

correspond to the evaluation phase of GP; they do not include selection, genetic 

operators, phenotype mapping with grammar which happen on CPU, or data 

upload/download between CPU and GPU over PCI-E bus. 

 

Figure 5.3 Performance profiling result of 100 invocation of GPU interpreter each 

corresponding to a generation 

As it can be seen on Figure 5.3, 100 generation of evolution with GPU interpreter takes 

almost a second (after removing the profiling overhead indicated by red part) for a 

population size of 100 individuals; furthermore half of this is time spent on CUDA 

context setup to initialize the GPU. As a result it is shown that 100 generations with 
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100 individuals take only 0.5 second, which corresponds to 500ms/100gen = 5ms per 

generation. 

 

Figure 5.4 Performance profile close-up of five generations 

On the other hand upon closer inspection (see Fig 5.4) it can be seen that the actual 

time spent on GPU is very sparse; this confirms the previous two measurements which 

states that every generation takes approximately 5ms but time spent on GPU 

interpretation is 190.7 µsecs/generation on average; hence we can say that only 

       

        
      of processing time is used by the GPU, while 96.2% is used by CPU or 

spent waiting a memory/IO operation to complete. 
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CHAPTER 6 

RESULTS AND DISCUSSION 

In this dissertation we analyzed the grammatical genetic programming in a 

performance context and investigated the acceleration options available through the 

use of heterogeneous computing and parallelization. Evaluation phase of genetic 

programming is known to benefit from parallelization especially on GPU, but we show 

that compilation of individuals can also be parallelized on CPU simultaneously to 

parallel evaluation. Prior work on genetic programming on GPU identified, and we 

confirmed that, compilation itself is the single most time consuming phase with 

compilation times ranging from 15 to 70 ms per individual. 

Our main contribution is a new parallel and in-process compilation method which 

consistently achieves compilation times around 2 ms/individual, measured with three 

different problems on a dual 2.6Ghz Xeon processor based platform. As an increase in 

processor frequency translates to performance almost linearly for compute bound 

tasks independent of parallelizability, we conjecture that the method we propose can 

easily achieve sub-millisecond compilation times per individual at 3.5+ Ghz clock 

speeds, assuming all other things being equal with no new bottlenecks introduced. 

Another contribution we present is a new benchmark problem for grammar genetic 

programming, with an emphasis on general program synthesis domain. It proves to be 

easier than the integer sorting problem (as there is no published work evolving an 

integer sort implementation without invoking high level structures like swap) but 

obviously harder than the Minimum/Maximum Problem. For this benchmark we 

investigated how the convergence to a solution is affected by parameters like 

population size, maximum number of generations explored and number of test cases 
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employed. We used this problem along with other community recommended 

benchmarks on our subsequent experiments.  

Our final contribution is a general purpose interpreter running on GPU. It provides a 

small set of universal computation primitives that can be mapped to arbitrary 

grammars. The ability to target arbitrary grammars is paramount for general program 

synthesis problems. It is the first implementation of grammatical evolution on GPU 

with an interpreter.  

In our compiler and interpreter experiments we always observed the CPU to be the 

bottleneck, even when working with very capable hardware setups. Therefore a 

promising line of future investigation is moving all phases (i.e. evaluation, selection, 

crossover, mutation, genotype-phenotype mapping with grammar) of grammatical 

genetic programming to GPU side eliminating most, if not all, roundtrips to CPU.  

Another approach which may be worthy of investigation is implementation of a very 

small soft-core processor on FPGA, which implements the computation primitives of 

the interpreter we propose in hardware. Multiple instances of this core running in 

parallel on the same FPGA fabric, combined with another general purpose processor to 

handle the evolutionary operations and scheduling of individuals to mentioned GP 

cores. 
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