

REPUBLIC OF TURKEY

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

GRAMMATICAL GENETIC PROGRAMMING ON HETEROGENEOUS
COMPUTING PLATFORMS

HAKAN AYRAL

Ph.D. THESIS
DEPARTMENT OF COMPUTER ENGINEERING

PROGRAM OF COMPUTER ENGINEERING

ADVISER
ASSOC. PROF. DR. SONGÜL ALBAYRAK

İSTANBUL, 2017

İSTANBUL, 2011

REPUBLIC OF TURKEY

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

GRAMMATICAL GENETIC PROGRAMMING ON HETEROGENEOUS
COMPUTING PLATFORMS

A thesis submitted by Hakan AYRAL in partial fulfillment of the requirements for the
degree of DOCTOR OF PHILOSOPHY is approved by the committee on 15.08.2017 in
Department of Computer Engineering, Computer Engineering Program.

Thesis Adviser

Assoc. Prof. Dr. Songül ALBAYRAK

Yıldız Technical University

Approved By the Examining Committee

Assoc. Prof. Dr. Songül ALBAYRAK

Yıldız Technical University _____________________

Assoc. Prof. Dr. M. Fatih AMASYALI

Yıldız Technical University _____________________

Asst. Prof. Dr. Murat Can GANİZ

Marmara University _____________________

Assoc. Prof. Dr. A. Gökhan YAVUZ

Yıldız Technical University _____________________

Prof. Dr. A. Muhammed ULUDAĞ

Galatasaray University _____________________

This work was supported in part by Turkcell Academy.

ACKNOWLEDGEMENTS

First and foremost, I want to thank my family for their constant support during the

years this work took, and many more before that.

I’m grateful to Assoc. Prof. Songül Albayrak for accepting me as a graduate student at

an unexpected time. Her continuous support, guidance and planning kept this work on
track.

I’m in debt to late Prof. Ahmet Coşkun Sönmez for encouraging and accepting me to
pursue a doctoral degree. Our shared interests from many domains of science have
been an inspiration since my undergraduate years.

I’m thankful to Assoc. Prof. M. Fatih Amasyalı and Asst. Prof. Murat Can Ganiz for the
support and the time they spared for this thesis over many years.

Last but not least, I want to thank Prof. A. Muhammed Uludağ for including me in his
research and collaborations which was invaluable for the realization of this work.

Dedicated to the memory of Professor Ahmet Coşkun Sönmez.

August, 2017

Hakan AYRAL

v

TABLE OF CONTENTS

Page

LIST OF ABBREVIATIONS ...viii

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

ABSTRACT ...xii

ÖZET ..xiv

CHAPTER 1

INTRODUCTION ... 1

1.1 Genetic Programming on a Broader Context .. 1

1.1.1 Evolutionary Computation and Evolutionary Algorithms..................... 1

1.1.2 Genetic Programming ... 3

1.1.3 Terminology Borrowed From Biology... 3

1.1.4 Fitness Function in GP... 7

1.2 Grammatical Evolution .. 8

1.2.1 Backus-Naur Form (BNF)... 8

1.2.2 Genotype-Phenotype Mapping in Grammatical Evolution 9

1.2.3 Unbounded Expansion on General Grammars 9

1.2.4 Expansion Order ... 12

1.2.5 Setting Limits on Expansion .. 12

1.3 Heterogeneous Computing.. 13

1.4 Genetic Programming on GPU... 14

1.5 Literature Review... 15

1.5.1 An Overview of Genetic Programming Literature 15

1.5.2 Prior Work on Grammatical Genetic Programming 16

1.5.3 Prior Work on Genetic Programming Running on GPU...................... 18

1.6 Objective of the Thesis .. 21

1.7 Hypothesis ... 22

vi

CHAPTER 2

BENCHMARKING GRAMMATICAL GENETIC PROGRAMMING .. 24

2.1 Subtleties of Benchmarking Genetic Programming 24

2.2 Grammatical Genetic Programming and General Program Synthesis 25

2.3 A New Benchmark Problem... 26

2.4 Other Benchmark Problems .. 30

2.4.1 Keijzer-6 Regression.. 30

2.4.2 5-Bit Multiplier .. 31

CHAPTER 3

EFFECTS OF POPULATION SIZE, NUMBER OF GENERATIONS AND NUMBER OF TEST

CASES... 33

3.1 Experiments ... 33

3.1.1 Baseline Experiment ... 33

3.1.2 More Populations, Less Generations, Same Wall-Clock Time 35

3.1.3 Less Test Cases.. 37

3.2 Motivation for Parallelization .. 38

CHAPTER 4

COMPILATION OF INDIVIDUALS FOR GENETIC PROGRAMMING ON GPU 40

4.1 Development and Experiment Setup .. 40

4.1.1 Hardware Platform ... 40

4.1.2 Development Environment .. 41

4.1.3 Experiment Parameters .. 41

4.2 Conventional Compilation as Baseline .. 42

4.3 In-process Compilation .. 44

4.4 Parallelizing In-process Compilation.. 49

4.4.1 Infeasibility of parallelization with threads .. 49

4.4.2 Parallelization with Daemon Processes .. 50

4.4.3 Cost of Parallelization ... 52

4.4.4 Speedup Achieved with Parallel Compilation..................................... 53

CHAPTER 5

INTERPRETER FOR GENERAL PROGRAM SYNTHESIS WITH GENETIC PROGRAMMING ON

GPU ... 58

5.1 Implementation Options for Genetic Programming on GPU 58

5.1.1 Compiled Approach .. 58

5.1.2 Direct Generation of Assembly or Machine Code 59

5.1.3 Interpretation Approach... 60

5.2 Implementation ... 60

vii

5.2.1 Interpreter .. 60

5.2.2 Base Grammar .. 63

5.3 Performance .. 63

CHAPTER 6

RESULTS AND DISCUSSION.. 67

REFERENCES .. 69

CURRICULUM VITAE .. 74

viii

LIST OF ABBREVIATIONS

BNF Backus-Naur Form
CUBIN CUDA Binary
FPGA Field Programmable Gate Array
GE Grammatical Evolution
GP Genetic Programming
GPU Graphics Processing Unit
IPC Inter-process communication
JIT Just-in-time (as in JIT compilation)
LNCS Lecture Notes on Computer Science
MIMD Multiple Instruction Multiple Data

NaN Not a Number
NVCC NVidia CUDA Compiler

PBIL Population Based Incremental Learning
RMSE Root Mean Squared Error

SIMD Single Instruction Multiple Data
SoC System on a Chip

TLB Translation Look-aside Buffer

ix

LIST OF FIGURES

Page

Figure 1.1 Antenna Evolved for NASA Space Flight .. 2

Figure 1.2 An infinite non-terminal branch .. 10

Figure 1.3 Two derivation trees with infinite depth expansion branches 11

Figure 1.4 Incorporating depth information by duplication of expansion rules 13

Figure 1.5 Selection probability distributions on a 3 choice expansion without

introns (left) using 2 bits from genome (right) using 3 bits of genome 16

Figure 3.1 Fitness traces of best individuals of 50 populations for 500 generations . 34

Figure 3.2 Fitness average of failed populations’ best individuals............................. 35

Figure 3.3 Fitness trace of best individuals for 250 population over 50 generations 36

Figure 3.4 Fitness trace of best individuals for 50 populations using only half of the
test cases.. 37

Figure 3.5 Fitness average of failed populations’ best individuals............................. 38

Figure 4.1 Nvcc compile times by population size (per individual time).................... 43

Figure 4.2 Nvcc compile times by population size (total time) 43

Figure 4.3 In-process and out of process compilation times by population size, for
Search Problem (per individual) .. 45

Figure 4.4 In-process and out of process compilation times by population size, for
Search Problem (total) ... 45

Figure 4.5 In-process and out of process compilation times by population size, for
Keijzer-6 Regression(per individual) .. 46

Figure 4.6 In-process and out of process compilation times by population size, for
Keijzer-6 Regression (total).. 47

Figure 4.7 In-process and out of process compilation times by population size, for
5-bit Multiplier (per individual) ... 47

Figure 4.8 In-process and out of process compilation times by population size, for

5-bit Multiplier (total) .. 48

Figure 4.9 Compile time speedup ratios between conventional and in-process

compilation by problem... 48

Figure 4.10 NVRTC library serializing calls from multiple threads 49

Figure 4.11 Sequence Diagram for creation of a compilation daemon process and
related inter-process communication primitives 51

Figure 4.12 Sequence Diagram for compilation on daemon process and related inter-
process communication... 52

x

Figure 4.13 Nvcc compilation times for Search Problem by number of servicing
resident processes. (left) per individual (right) total................................. 56

Figure 4.14 Nvcc compilation times for Keijzer-6 regression by number of servicing
resident processes. (left) per individual (right) total................................. 56

Figure 4.15 Nvcc compilation times for 5-Bit Multiplier by number of servicing
resident processes. (left) per individual (right) total................................. 56

Figure 4.16 Parallelization speedup ratios on Search problem (left) vs conventional
compilation (right) vs in-process compilation ... 57

Figure 4.17 Parallelization speedup ratios on Keijzer-6 regression (left) vs
conventional compilation (right) vs in-process compilation 57

Figure 4.18 Parallelization speedup ratios on 5-Bit multiplier (left) vs conventional
compilation (right) vs in-process compilation ... 57

Figure 5.1 GPU interpretation time per generation for 100 individual population ... 64

Figure 5.2 GPU interpretation time per generation for 200 individual population ... 65

Figure 5.3 Performance profiling result of 100 invocation of GPU interpreter each

corresponding to a generation .. 65

Figure 5.4 Performance profile close-up of five generations 66

xi

LIST OF TABLES

Page

Table 3.1 Problem domains used on papers published in EuroGP and GECCO GP
conferences between 2009-2012 .. 25

Table 4.1 Compilation Times by Compilation Methods for Search Problem with
300 individuals ... 54

Table 4.2 Compilation Times by Compilation Methods for Keijzer-6 Regression with
300 individuals ... 55

Table 4.3 Compilation Times by Compilation Methods for 5-bit Multiplier Problem
with 300 individuals ... 55

xii

ABSTRACT

GRAMMATICAL GENETIC PROGRAMMING ON HETEROGENOUS
COMPUTING PLATFORMS

Hakan AYRAL

Department of Computer Engineering

Ph.D. Thesis

Adviser: Assoc. Prof. Dr. Songül ALBAYRAK

Genetic programming is a population based, stochastic global optimization algorithm
which aims to find “programs” fulfilling certain behavioral specifications provided as

test cases. The programs may be as simple as arithmetic expressions on some variables
or complex as a complete function involving state variables, loops and conditionals.

Grammatical genetic programming (a.k.a. grammatical evolution) is a grammar based
variant of genetic programming where the search space and methodology is modified
to limit the search space to members of a language defined by a formal grammar. This
approach provides the benefit of having a smaller search space, and of all the
candidates having a valid syntactic form in respect to defined grammar. Grammars
used are generally customized to the program at hand, but they can be more generic
when the form of the solution is not obvious, which usually is the case with general
program synthesis, in contrast to categorical problems like regression, classification,
path finding and boolean problems.

Conventional computing platforms consist of homogenous processor hardware, like
the case of a computer with multi-core multi-processor setup, where each core is

identical to others. On the other hand a heterogeneous computing platform
simultaneously uses multiple types of processing elements each with their own unique

architecture and strengths. The most prevalent example today is the combined use of
CPU and GPU, where CPU provides high frequency, high complexity processing cores

xiii

with deep pipelining and large local cache per core, while the GPU provides vast
numbers (in the order of thousands) of simpler cores with lower frequency each

consisting of some ALU and register file for state keeping, but missing per core cache
or control units, which have to be shared by groups of 32 cores.

The aim of this dissertation is to investigate and propose new methods to accelerate
grammatical genetic programming by parallelization on mentioned types of computing
platforms.

In this dissertation we first present an overview of a recent shift in benchmarking
practices for genetic programming and propose a new benchmark problem targeting
general program synthesis. Then we investigate the interaction of some evolutionary
parameters which ultimately affect the parallelization design for grammatical genetic
programming. Afterwards we present a new technique which first brings the GPU
compilation of individuals in-process, then further parallelizes this compilation. The
method we present achieves an order of magnitude faster compilation speed over
prior work on literature. Lastly we present a GPU based interpreter for grammatical

genetic programming with arbitrary grammars in order to target general program
synthesis; this is the first work in literature to present grammatical evolution on GPU

with a general purpose interpreter to accommodate arbitrary grammars.

Keywords: Genetic programming, grammatical evolution, heterogeneous computing,
gpu, parallel computing

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

xiv

ÖZET

HETEROJEN HESAPLAMA PLATFORMLARI İÇİN GRAMER YÖNLENDİRMELİ

GENETİK PROGRAMLAMA

Hakan AYRAL

Bilgisayar Mühendisliği Anabilim Dalı

Doktora Tezi

Tez Danışmanı: Doç. Dr. Songül ALBAYRAK

Genetik programlama nüfus tabanlı, stokastik bir küresel optimizasyon algoritması
olup, test-vakaları şeklinde temsil edilmiş davranış spesifikasyonlarını gerçekleyen
"programlar" bulmayı amaçlamaktadır. Programlar, değişkenler ve sabitler kullanan bir

aritmetik ifade kadar basit olabilir, veya durum değişkenleri, döngüler ve koşullar
içeren tam bir fonksiyon kadar karmaşık olabilir. Gramer yönlendirmeli genetik
programlama, genetik programlamanın gramer temelli bir alt türüdür; burada arama
uzayı ve arama metodolojisi, arama uzayını formel bir gramer tarafından tanımlanan
dilin üyeleri ile sınırlandıracak şekildedir. Bu yaklaşım, arama uzayının küçültülmesini
ve tüm adayların, yazımsal (syntactic) açıdan geçerli bir sözdizimsel biçimine sahip
olmasını sağlar. Kullanılan formel gramer cevabı evrimleştirilmek istenen soruya özel
olarak tasarlanır, ancak aranan cevabın şeklinin yeterince bilinmediği problemlerde
daha genel bir gramer kullanılabilir; bu durumla benzetim, sınıflandırma, yol bulma ve
ikilik fonksiyonlar gibi kategorik problemlerin aksine daha çok genel amaçlı program

sentezi ile ilgili problemlerde karşılaşılır.

Konvansiyonel hesap platformları, her çekirdeğin diğerleriyle aynı olduğu, çok
çekirdekli ve çok işlemcili bilgisayarlar gibi homojen bir hesap donanımına dayanır. Öte

xv

yandan, heterojen bir hesap platformu, her biri kendi mimarisi ve avantajlarıyla birlikte
birden çok hesaplama elemanı kullanır. Bunun en yaygın örneği CPU’ların her biri derin

bir pipeline mimarisi ve büyük cache’lere sahip yüksek karmaşıklık ve yüksek saat
hızlarında çalışan çekirdekleri ile, GPU’nun çok sayıda (binler mertebesinde) ama daha

düşük saat hızında ve daha basit, sadece sınırlı miktarda ALU ve register içeren, kontrol
ünitesi ve önbelleği 32’li gruplar halinde paylaşmak zorunda olduğu çekirdeklerin bir

arada kullanılmasıdır.

Bu tezin temel amacı, bahsedilen tür heterojen hesap platformlarında paralelleştirme
yoluyla gramer genetik programlamanın hızlandırılması için yeni yöntemler araştırmak
ve önermektir.

Bu tez çalışmasında öncelikle genetik programlama için benchmark uygulamalarında
yakın zamanda yaşanan bir kaymaya genel bir bakış sunuyoruz, ve genel amaçlı
program sentezi sınıfında yeni bir benchmark problemi öneriyoruz. Ardından, gramer
genetik programlama için paralelleştirme tasarımını etkileyen bazı evrimsel
parametrelerin bağımlılıklarını ve etkileşimlerini değerlendiriyoruz. Daha sonra, genetik

programlama bireylerinin GPU için derlenmesini önce işleç içine çeken ve ardından
bunu da paralelleştirmeye dayanan yeni bir yöntem sunuyoruz. Sunduğumuz bu

yöntemin literatürdeki önceki çalışmalara kıyasla bir mertebe daha yüksek derleme
hızları sağladığı görülmektedir. Son olarak önceden sabitlenmemiş bir gramer ile

gramer tabanlı genetik programlama gerçekleştirebilmek ve bu sayede genel amaçlı
program sentezi problemlerinde GPU’yu daha verimli kullanabilmek için, GPU üstünde
çalışan genel amaçlı bir yorumlayıcı sunuyoruz; bu, literatürde GPU üstünde gramer
tabanlı evrim için yorumlama yöntemini önceden sabitlenmemiş herhangi bir gramer
ile kullanabilen ilk çalışma olma özelliğini taşımaktadır.

Anahtar Kelimeler: Genetik programlama, gramer yönlendirmeli evrim, heterojen

hesaplama, gpu, paralel hesaplama

YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

1

CHAPTER 1

INTRODUCTION

1.1 Genetic Programming on a Broader Context

Genetic programming is an evolutionary computation technique consisting of multiple

evolutionary algorithms, where the objective is to find a “program” (i.e. a simple

expression, a sequence of statements, or a full-scale function) that satisfy a behavioral

specification expressed in terms of test-cases along with expected outputs. To put GP

on perspective, let us briefly present evolutionary computation.

1.1.1 Evolutionary Computation and Evolutionary Algorithms

Evolutionary computation is a family of global optimization algorithms based on how

biological evolution works. It is considered part of soft computing and artificial

intelligence. Algorithms belonging to evolutionary computation are population based

and stochastic in nature. Like other population based techniques, evolutionary

computation tracks multiple solution candidates simultaneously; these candidates are

modified and replaced with each iteration which is called a generation. At each

generation, candidate solutions with low fitness are stochastically removed, and new

candidates to replace them are produced, using specific methods to combine parts of

high fitness candidates along with small random perturbations. Fitness is a problem

specific function which is defined to measure the distance to the correct solution,

similar to a heuristic.

2

Most evolutionary algorithms which are part of evolutionary computing are easy to

implement but exhibit behaviors complex to analyze. Evolutionary search algorithms

are driven towards the solution by the problem’s fitness function; it provides guidance

to the search in a heuristic way, such that it measures the closeness to the solution but

doesn’t necessarily provide information on how to get closer.

Evolutionary computation not only deals with the evolution of soft solutions like the

parameter sets, configurations, or software code (in the case of GP), but it’s also used

to evolve hardware in form of digital or analog circuits, which is the sub-field called

evolutionary hardware design, also known as evolvable hardware. One of the most

popular example of evolutionarily designed hardware are the antennas evolved for

NASA's Space Technology 5 mission, which were produced and flown in 2005

(Figure2.1). This is the first evolved hardware ever launched to space; the design was

competitive to the human-designed model and outperformed it in metrics such as

mass and cost.

Figure 1.1 Antenna Evolved for NASA Space Flight1

Most evolvable hardware projects focus on optimization of digital circuits like digital

filters[1], fault tolerant circuits [2]–[4], adders, multipliers and multiplexers [5]–[7]; but

it is employed to evolve analog circuits[8] too.

1
 Historical web page: https://www.nasa.gov/centers/ames/research/technology-

onepagers/evolvable_systems.html

3

1.1.2 Genetic Programming

Genetic programming is an evolutionary computation technique; where the objective

is to find a “program” that satisfy a behavioral specification expressed as a set of test

cases where each member is a (test-case, expected result) pair. Specifically it is a

population based evolutionary search algorithm, and the evolved objects may belong

to different scopes and scales (i.e. a simple expression, a sequence of statements, a

decision tree, or a full-scale function).

1.1.3 Terminology Borrowed From Biology

Genetic programming and evolutionary computing in general borrow heavily from

terminology pertaining to biological evolution. Some of these terms along with their

meaning in genetic programming context are as follows.

1.1.3.1 Individual & Population

Like most evolutionary algorithms, genetic programming is a population based global

optimization technique. Therefore at any point multiple possible solution candidates

are pursued. Each candidate is called an individual and the set of all individuals is called

the population.

1.1.3.2 Genome/Genotype

Analogous to the genetic material in living organisms, every GP individual posses a

finite length binary string, from which all structural and behavioral features of the

individual are derived. This binary string is called the genome of the individual; it may

be stored in packed form as a list of bytes or integers for ease of use and modification.

The terms genome and genotype are used interchangeably in GP context, term

“genotype” is preferred in statements making comparison to phenotype. Evolutionary

operators mutation and crossover act directly on genotype, effects of these operators

on the phenotype are indirect results, carried from genotype by translation.

There are implementation variants with exceptions, where individuals do not have

genomes of their own, like Population Based Incremental Learning (PBIL). PBIL is not a

4

genetic programming algorithm; it’s an estimation of distribution algorithm, which is

an evolutionary algorithm more suitable for multi dimensional parameter

optimization. PBIL represents the whole population as a single probability distribution,

from which individuals are instantiated by sampling the distribution as needed, and

modifications are merged back to a single distribution once again, at the end of each

generation.

1.1.3.3 Phenotype

Phenotype is the manifestation of a feature or a property, on the final form of an

individual. In the case of genetic programming this is the program represented by an

individual. Phenotype is derived from genotype through a specific translation process

which depends on type of GP employed. (i.e. for grammatical GP translation is guided

by the grammar) Translation process doesn’t necessarily use all the genotypic material ;

some regions of genotype are not used, these regions are called non-coding regions or

introns. A modification on genotype may or may not cause a change on phenotype, as

different genotypes may (and most of time do) map to same phenotype, or the change

on genotype may have occured on a non-coding region.

1.1.3.4 Codon

In biology the smallest unit of genetic material is the nucleotide, but it isn’t the

smallest meaningful unit; the smallest meaningful units of generic material are

constant length blocks of nucleotides. For example, human DNA consists of 4 types of

nucleotides (Adenosine, Cytosine, Guanine, Thymine), but only triplets of nucleotides

encode amino acids. A triplet of nucleotides is called a codon, and the mapping from

nucleotide triplets to amino acids is called the standard codon table. The codon table is

almost exactly the same among all living organisms and it is represented using a table

with 43=64 entries. This 64 entries redundantly encode the 20 amino acids , and the

STOP code which is redundantly represented as 3 different entries (UAA, UAG, UGA).

Evolutionary algorithms employ very similar mechanisms; genome of an individual

which is a random bit string, is commonly stored and used in constant length blocks of

5

bits, such as bytes or integers. The byte/integer representation is the genetic

programming analog of biologic codon.

1.1.3.5 Generation

For evolutionary algorithms where the evaluation, selection, and other evolutionary

operator applications are performed each time over the whole population, one

complete cycle of these phases is called a generation. Not all evolutionary algorithms

are generation based, there exist algorithms updating only a few individuals every

cycle; these are called steady state algorithms. For genetic programming, generational

approach is the accepted standard in the literature.

1.1.3.6 Selection

Both in biology and computer science, evolution is based on the survival of the fittest.

Selection is the phase of a generation where the individuals which will survive to the

next generation are selected. There are many selection methods employed by

evolutionary algorithms. Most commonly used selection methods are Roulette Wheel

Selection, and Tournament Selection.

Roulette Wheel Selection method is based on dividing an interval to partitions

proportional in size to fitnesses of the associated individuals; then a random number is

picked from a uniform distribution on this interval. The selected individual is the one

associated to the partition in which the picked random number is included. This way a

discrete random variable with probability distribution proportional to fitness values is

constructed over a continuous random variable with uniform distribution. This process

is repeated to choose each individual of the new population; some individuals

(especially those with high fitness) may be selected multiple times, creating multiple

copies of the individual, and some (those with low fitness) do not get selected at all.

Tournament Selection on the other hand starts with the selection of a fixed number of

individuals randomly; number of individuals selected (generally 2 or 3) is called the

tournament size. Individual with highest fitness in a tournament proceeds to the new

population. For each individual of the new population, an independent tournament is

6

performed. Once again, some individuals may be selected multiple times and some

may never be selected. There are two advantages of tournament selection over

roulette wheel selection. One is, it conserves the diversity of the population by giving

low fitness individuals a higher selection chance compared to roulette wheel selection.

The other is, it doesn’t require to sum and normalize the fitness values of all

individuals, or keep track of partition intervals , because the fitness comparisons are

local to the tournament participants.

1.1.3.7 Crossover

After the selection of individuals for the population of next generation, evolutionary

operators are applied. Crossover is an evolutionary operator where two individuals

exchange parts of their genetic material. There are three types of crossover, of which

the most common being the One Point Crossover. It is applied as follows; first two

individuals are picked randomly and a random variable with uniform distribution over

unit interval is sampled. If the sampled value is greater than the crossover probability,

the individuals are transferred to new population unchanged; if it is lesser than the

crossover probability, a random integer up to genome size is picked and the tails of

genomes of the individuals are exchanged starting from the position indicated by the

random integer.

Another crossover type is Two Point Crossover; this time two random integers up to

genome size are picked, and the section residing between the two positions indicated

by these numbers are exchanged between the individuals; it works the same as one

point crossover in all other aspects.

Final type of crossover is Uniform Crossover. It is applied at gene level (be it bit, byte or

integer), the genes of same position on the two genomes are exchanged with

probability equal to crossover probability; this is applied independently for each

genome position.

7

1.1.3.8 Mutation

Mutation is another evolutionary operator; it can be performed before or after the

application of crossover. Each gene of each individual is subjected to mutation

independently, with a set probability called mutation rate. If the genes are bits they

are simply flipped when mutated, if the genes are bytes or integers , a new random

byte or integer overwrites the old one. The limit behavior of evolutionary search is

equivalent to random search as the mutation probability approaches 1.

1.1.3.9 Intron

The size of functional parts of human DNA is assessed to be between 8 to 15%,

interspersed through the remaining 85 to 92% consisting of junk DNA which is not

coding anything [9]; this non-coding parts are called introns. Similarly in evolutionary

algorithms some parts of the genome might left unused (i.e. in grammatical GP every

individual use different amount of genotype till they achieve a complete construction)

or have no effect on the phenotype even when used (i.e. when a byte is used to make

a choice but the number of alternatives to choose from is 1), and sometimes non-

coding parts are deliberately incorporated to the encoding of individuals in order to

introduce robustness. The same term “intron” is used to describe this non-coding

regions in evolutionary algorithms.

1.1.4 Fitness Function in GP

In the case of genetic programming, fitness functions are used as metrics to define

distance between pairs of outputs produced by different programs given the same

input. It is used to measure the difference of the output of an individual from the

expected output for a test case; hence the minimization of the sum of fitness values

over all test cases, is equivalent to approaching a complete solution. Fitness function

for a single test case associated with the set of all possible output values defines a

metric space over possible outputs. The sum of metrics of all test cases of a problem,

give us another metric function which is defined over the set of all possible programs

for the test cases. Using this new metric, we can construct a metric space over the set

of valid programs for a problem defined by its test cases.

8

The fitness landscape is the co-domain of the fitness function of a such space. For GP

and especially grammatical GP fitness landscape is not smooth or derivable, thus

analytical methods like gradient ascend/descent are inapplicable for these.

Fitness functions can be designed in different ways; when evolving functions with

continuous outputs, the fitness can be defined as the difference between the current

output and desired output. Instead of summing or averaging the differences for each

test case, total fitness can be defined as the Root Mean Squared Error (RMSE).

1.2 Grammatical Evolution

Grammatical Evolution (a.k.a. Grammatical GP, grammar guided GP) is a form of

genetic programming where the search space is restricted to a formal language

defined as a BNF grammar, thus ensuring all individuals to be syntactically valid. Such

exclusion of syntactically invalid programs dramatically reduces the search space.

While still being infinite, it has lower dimensionality. On the other hand a syntactically

valid program is not necessarily semantically meaningful too; as a matter of fact most

of them are not.

Grammatical evolution uses context free grammars expressed in Backus-Naur Form;

but we show on section 1.2.4 that we can hide some context information into the

grammar by duplication of rules.

1.2.1 Backus-Naur Form (BNF)

A grammar in BNF form consists of a 4-tuple {N,T,P,S} such that N and T are sets of

non-terminals and terminals respectively, and S∈N is the designated start symbol. P is

the set of production rules, it associates every non-terminal to one or more strings of

symbols belonging to N∪T.

A derivation tree for a BNF grammar is a tree having the S as the root node, and each

node with a symbol belonging to N has child nodes corresponding to each symbol from

the string of symbols for the selected production rule to expand that node. By this

construction a derivation tree can either be finite, with all leaf nodes belonging to T, or

infinite such that some branches go infinitely deeper by solely using symbols from N.

9

1.2.2 Genotype-Phenotype Mapping in Grammatical Evolution

The most common method used for genotype-phenotype mapping in grammatical

evolution is the Modulo Mapping Rule. It maps a codon to a choice of expansion rule

by selecting the expansion option with position current codon value modulo number

of expansion options for current non-terminal:

Even though the modulo operator maps the uniform distribution of codon values

homogenously to available expansion options, when the number of options is small

and maximum codon value is not divisible to number of options, a selection bias in

favor of options at smaller numbered positions occur. This happens due to last codon

values being mapped to some of the options from the start without being able to cover

till the end.

Alternative mapping functions has been proposed like the Bucket Rule which divides

the codon value to product of all numbers of expansion options for all non-terminals of

grammar:

1.2.3 Unbounded Expansion on General Grammars

A BNF grammar defines a language, which is the set of all strings of terminal symbols

where a valid derivation tree exists having those symbols as leaf nodes in same order.

In the case of an unconstrained grammar the language defined has infinitely many

elements, as you can write infinitely many different programs which are valid in the

defined language.

When expanding the derivation tree, we start with the start symbol of the grammar as

the root node. At any point, any leaf node with a non-terminal token is expanded by

choosing one of the production rules of the non-terminal. Leaf nodes with terminal

tokens are not expanded (as production rules are only defined for non-terminals), they

represent literal strings that we will concatenate in depth-first traversal order to

produce the result of the derivation. If a non-terminal token contains itself in one of its

10

expansion rules, or a loop can be constructed by cycling through a set of non-terminals

referring each other in their expansions, then it means that some infinite expansions

are also part of the language. Of course in actual implementation such an infinite

expansion would lead to stack overflow, by exhausting the stack as each successive

recursive call to rule expansion function allocating a new stack frame.

Figure 1.2 An infinite non-terminal branch

Such infinite trees do not represent any program as some branches never reach

terminal tokens, but each different subset of non-terminals which can produce such a

loop represent an independent orthogonal dimension for the defined language, along

which a program can expand infinitely.

A first example comes from the allowed number of statements in a code block; on an

unconstrained grammar this can be expressed with a recursive expansion rule, such as

<statements> ::= <statement> | <statement><statements>

The statements token above has 50% chance to get expanded to itself followed by a

statement token. Even though the expected value of the number of statement tokens

generated by this rule is

 , the distribution of it has a long tail; therefore

arbitrarily large numbers of consecutive statements can be observed, but with

exponentially decaying probabilities.

The real cause of complication is that, the source of randomness used to choose from

possible expansion rules is provided by the finite length genome string of individual,

which is a random list of integers with length in the order of hundreds. When a request

11

to obtain next random value exhaust the unused values on the genotype of individual,

common practice is to recycle the genotype by using it again from the start. This is the

most common solution called wrap around in the literature, but it has the risk of

picking up periodic correlations on the stream of values, obtained by the

concatenations of genotype with itself. When hundreds of individuals over hundreds of

generations are considered, a periodicity due to size of the genome, and some

periodicities that may arise as possible cyclic arrangements of non-terminal expansion

rules, may coincide on a common period and form an infinite expansion loop without

ever reaching a terminal rule. This is a known phenomenon; some alternatives to

wrap-around reuse of genotype has been studied and proposed in [10] and [11].

The number of statements growing unbounded is one of the dimensions a general

grammar can go expanding indefinitely; two other examples are the number of nested

code blocks and expression length, as shown on Fig.1.3. In the ideal case of genotypes

with no periodicity (i.e. infinitely long random genotype) expansion trees are expected

to stop eventually before diverging to infinity, as the probability of having the same

non-terminal expansion sequence decays exponentially at each step.

Figure 1.3 Two derivation trees with infinite depth expansion branches

12

1.2.4 Expansion Order

Another implementation decision about applying expansion rules is how to select the

next non-terminal to expand when there is more than one. Obviously a depth first

selection will always expand the left-most non-terminal node. A breadth first traversal

order is possible but tricky, because each expansion also modifies the tree. It can be

implemented by tracking all non-terminal child nodes in a FIFO queue to impose an

order, with new non-terminals added to the end of the queue, and the next non-

terminal to expand is retrieved from the front; when the queue becomes empty it

means that all leaf nodes of the tree are terminal nodes.

Independent of how we choose the next non-terminal leaf to expand, it is impossible

to limit unbounded expansion, without some extra information about our current

depth on derivation tree.

1.2.5 Setting Limits on Expansion

A way to provide depth information at expansion time is to introduce redundant

copies of expansion rules to the BNF differentiated by their depth. Let’s consider the

expansion rule

<expr> ::= <expr> <bi-op> <expr> | <int> | <var>

with possible infinite expansions as illustrated on Fig.1.3(b). Its first production rule is

both left-recursive and right-recursive. To exclude infinite expansions of this type from

the language, and to limit the maximum depth up to a constant K, we can replace this

rule with multiple depth annotated copies of the form:

<expr-N> ::= <expr-N+1> <bi-op> <expr-N+1> | <int> | <var>

for each , and a last rule of form:

<expr-K> ::= <int> | <var>

which omits the recursive part. This new set of K rules allows expressions consisting of

an integer, a variable, or a combination of those with up to K-1 binary operators.

13

The same annotated duplication can be extended to bound the expansion depth of

cyclical self-references involving sequences of different non-terminals as illustrated on

Fig.1.4.

Static bounding by duplication of rules with counters allows embedding depth tracking

and limiting on a derivation branch involving multiple types of non-terminals, but it

requires a consistent numbering across duplicates of all types of tokens involved.

Figure 1.4 Incorporating depth information by duplication of expansion rules

1.3 Heterogeneous Computing

Heterogeneous computing is defined as the use of more than one kind of processors

simultaneously on the same hardware platform. It differs from parallel computing such

that parallel computing involves multiple identical cores or processors; while the

heterogeneous computing employ dissimilar coprocessors each with different

capabilities, architecture and processing characteristics.

The most common example is the simultaneous use of CPU and GPU, and it’s not

limited to desktop or server class personal computers; today even entry level mobile

devices (smart phones, tablets, ARM based Raspberry Pi and clones) come with

integrated multi-core CPU and multi-core GPU.

Second most common heterogeneous computing platform example is CPU+FPGA

platforms. One form of CPU-FPGA cooperation is achieved by interfacing the FPGA as

an add-on coprocessor card with onboard RAM through PCI-E bus; the FPGA on the

14

card is configured at runtime as a coprocessor with desired specialization and

characteristics. The acquisition of FPGA manufacturer Altera by Intel in 2015 for $16.7

billion1 is an indicator that CPU+FPGA cooperation may be more prevalent in near

future.

Another form of CPU, FPGA cooperation is observed on FPGA based SoC

implementations. A soft-core processor is surrounded with specialized computation

blocks, facilitating the integration by keeping the buses inside the FPGA. As this is a

popular approach FPGA vendors provide very configurable and scalable soft-core

processor generators with their EDA tools; specifically Xilinx provide Microblaze and

PicoBlaze, while Altera provide Nios and Nios II soft-processors. Because of the

increasing popularity of ARM development and platform support, along with

decreased licensing costs, recently FPGA vendors started to incorporate hard ARM

cores on the same die as their FPGA. This allows users to have the same SoC approach

without sacrificing logic elements from FPGA fabric, and it frees the vendor from

maintaining a proprietary development tool chain for their custom soft-processor.

1.4 Genetic Programming on GPU

Processing power provided by graphic processing units make them an attractive

platform for evolutionary computation due to the inherently parallelizable nature of

the latter.

Just like in the CPU case, genetic programming on GPU requires the code represented

by individuals to be rendered to an executable form; this can achieved by compilation

to an executable binary object, by conversion to an intermediate representation of a

custom interpreter developed to run on GPU, or by directly generating machine-code

for the GPU architecture. Compilation of individuals' codes for GPU is known to have a

prohibitive overhead that is hard to offset with the gains from the GPU acceleration.

Compiled approach for genetic programming on GPU is especially important for

grammatical genetic programming; the representation of individuals for Linear GP and

1
 https://newsroom.intel.com/press-kits/intel-acquisition-of-altera/

15

Cartesian GP are inherently suitable for simple implementation on a GPU. On the other

hand grammatical genetic programming aims to make higher level constructs and

structures representable, by using individuals that represent strings of tokens

belonging to a language defined by a grammar. Unfortunately execution of a program

belonging to a such language is non-trivial, and sooner or later requires some form of

compilation or complex interpretation.

1.5 Literature Review

1.5.1 An Overview of Genetic Programming Literature

Although there have been some earlier works dealing with application of evolutionary

techniques for code generation purposes, the consensus of the researchers on the

field is that the work upon which genetic programming has been separated as a

distinct field is a series of books by Koza starting with [12], where he provides a

detailed description of what genetic programming is, some introductory examples, and

implementations of those in LISP. The use of LISP expressions as default representation

of individuals for GP by Koza, made the tree based representation (the natural

topology of LISP expressions) up to today even though LISP itself is rarely used

anymore. This is the most cited work on the subject with over seventeen thousand

citations; the series is continued with three more books [13]–[15], of which the last

two was written by Koza together with multiple co-authors.

Another influential early book which provided wide dissemination of the field is [16]; it

contributed to the presentation of alternative forms and representations on genetic

programming, such as linear and grammatical GP, multi-objective GP, and distributed

GP, along with some sample applications.

The “Genetic Programming” series has been part of LNCS since year 2000, where each

issue contains proceedings of that year’s EuroGP conference; and the “Genetic

Programming Theory and Practice” book series [17]–[29] is being published annually

since 2003.

16

1.5.2 Prior Work on Grammatical Genetic Programming

Grammatical genetic programming is first proposed by C.Ryan, J.Collins, and M.O’Neill

in [30]; in that article they present the working principles and genotype to phenotype

translation procedure we mention on section 1.2. In [31] O’Neill and Ryan apply

grammatical evolution to Santa Fe ant trail problem and successfully evolve a function

that guides a virtual ant on a grid to gather food.

In [32] O’Neill, Ryan and Nicolau investigate the effect of incorporating introns to

grammatical evolution. They achieve this by introducing some non-terminal expansion

rules with label “intron”, and which does nothing if selected, leaving the parent non-

terminal in its former state. Number of production rules not being a power of 2

introduces a selection bias especially in the common case where the number of rules is

small (see Fig.1.5). Padding the production rules with introns up to a number which is a

power of 2 allows uniform selection probability among options. Another way to

balance the selection probability without using introns, is to use more bits than

necessary from the genome at the expense of wasting limited genome string (see

Fig.1.5).

Figure 1.5 Selection probability distributions on a 3 choice expansion without introns

(left) using 2 bits from genome (right) using 3 bits of genome1

Keijzer, O’Neill, Ryan and Cattolico present an alternative method to map the genotype

to phenotype called the Bucket Rule in [33]. The results presented on the paper show

1
 As presented in [32]

17

that 8 out of 18 comparisons are statistically insignificant, and others exhibit a

marginal improvement for some test cases, while causing regression on others.

In [34] O’Neill, Ryan, Keijzer and Cattolico propose a new crossover operator called

Ripple Crossover for grammatical evolution, and compare it to conventional sub-tree

crossover operator.

In [35] O’Neill, Brabazon, Nicolau, Garraghy and Keenan propose a position

independent genotype-phenotype mapping called π-Grammatical Evolution. When

two individuals exchange parts of their genome through crossover, the exchanged

codons are used for the mapping of different non-terminals compared to their original

use; this completely change the meaning of codon values in their new context, and the

same happens to all following codons in chain. π-GE propose to provide some degree

of position independence by encoding each codon as a byte pair, where fist byte

decides which non-terminal to expand next, and the second byte is used to choose an

expansion rule for the non-terminal via modulo rule as usual. This way when a codon is

moved to an arbitrary position on a new individual, it doesn’t necessarily expand the

left-most non-terminal on tree, but it can bring along the decision of which non-

terminal to expand next.

A meta-grammatical evolution approach has been proposed by O’Neill and Ryan in

[36], where GE is used to evolve some BNF grammars containing some predefined

terminals. The evolved grammar is in turn used to evolve individuals which map to

concrete implementations stemming from the said terminals.

In [37] Karpuzcu present a grammar describing a small subset of Verilog hardware

definition language, and evolve a full adder using open source Icarus Verilog software

as simulator.

In [38] O’Neill, Nicolau, and Agapitos propose two grammar one with multiple loops in

sequential order and another allowing nested loops, to evolve a general purpose

integer sort algorithm for lists of arbitrary length. They showed that it was not possible

to evolve a general sort algorithm without adding swap functionality as an intrinsic

function to grammar. The grammar we propose in section 2.3 is inspired in part by this

work.

18

Byrne, Fenton, Hemberg, McDermott and O’Neill propose a shape grammar for the

evolution of complex pylon structure using GE in [39]. They use SLFFEA as an open

source finite element analysis software for structural analysis of evolved pylons.

In [40] Fagan, Fenton and O’Neill investigate a position independent initialization

method for GE based on derivation tree shape and slope; they compare it to random

initialization, ramped half-and-half initialization, anf sensible initialization.

Recently Fenton, McDermott, Fagan, Forstenlechter, O’Neill and Hemberg put [41] on

arXiv, where they present the second version of their python based grammatical

genetic programming tool PonyGE2. One implementation decision in PonyGE2 which

differ from conventional grammatical GP is the issue of codon consumption for unit

production rules. When an expansion rule consists of a single option, the accepted

implementation is not to waste a codon from genome as there isn’t really a choice; but

PonyGE2 do consume a codon for unit productions too. The explanation provided is

that this helps prevent the ripple caused by mismatch in genome position and tree

position for linear tree operations.

1.5.3 Prior Work on Genetic Programming Running on GPU

Acceleration of genetic programming by use of graphic processing hardware has been

first proposed in 2007 independently by Harding and Banzhaf [42], and by Chitty [43].

At that time the two main languages providing access to GPU for general purpose

programming were either not yet released (OpenCL V1.0 was released in 2009) or just

recently released (CUDA V1.0 was released in June 2007). [43] access the GPU for

custom computation through non-conventional use fragment shader programs;

fragment shaders are small programs running on the GPU cores which compute the

final color of a pixel, modern GPU hardware run an independent copy of the related

fragment shader for every pixel of every textured surface1. [13] too uses fragment

shaders, but through a C# library called Accelerator which hides the graphics pipeline

1
 Therefore the number of pixels computed is always much higher than the number of pixels available

on screen. Techniques like occlusion culling, stenciling and z-buffer rejection allow the hardware to

identify if a pixel will be visible before fragment shading, and discard those which won’t be visible; but
the fragment shader invocations still remain much higher than pixel count of screen.

19

abuse needed for the redirection of computation results back to memory instead of

painting to screen as intended with shaders.

In [44] Langdon and Banzhaf present a SIMD interpreter for GP that runs on GPU. They

use Mackey-Glass regression problem which is a chaotic time series along with RMSE

fitness. They employ RapidMind library to use the GPU for general computation, and

report a 7 times speedup using GPU compared to CPU.

Wilson and Bazhaf present the first genetic programming implementation running on

a game console (Xbox 360 release date 2005) and on a portable media player (Zune 2nd

gen) in [45]. While the game console implementation benefit from the GPU

acceleration of the device, portable media player implementation uses CPU due to lack

of graphics processor. When compared to GPU accelerated GP on a PC, game console

is observed to run almost 3 times faster; this can be attributed to the early adoption of

next generation GPU hardware by console manufacturers before they become

available to consumer use for keeping up on competition between PC gaming vs

console gaming.

[46] deals with the compilation overhead of individuals for genetic programming on

GPU using CUDA. Article proposes a distributed compilation s cheme where a cluster of

around 16 computers compile different individuals in parallel; and states the need for

large number of fitness cases to offset the compilation overhead. It correctly predicts

that this mismatch will get worse with increasing number of cores on GPUs, but also

states that "a large number of classic benchmark GP problems fit into this category".

Based on figure 5 of the article it can be computed that for a population size of 256,

authors required 25 ms/individual in total (including network traffic, XO, mutation,

processing on GPU, and compilation).

The first genetic programming implementation for GPU benefiting from the guidance

of a grammar was presented in 2010 by Langdon and Harman[47]. It uses GP to evolve

better string matching problem solutions, in order to improve GZip compression

performance. It employs a grammar constructed from fragments of the string

matching code sample distributed as part of CUDA SDK. The evolutionary algorithm

used is similar to conventional grammatical genetic programming, but differs in some

20

aspects, such as the arity of all production rules to be less than 3 and all terminals

being a reference to a complete line of a human programmed code. Figure 11 of the

accompanying technical report[10] shows that a population of 1000 individuals (10

kernels of 100 individuals each) takes around 50 seconds to compile using NVCC from

CUDA v2.3 SDK, which puts the average compilation time to approximately 50

ms/individual.

Dietz and Young present a MIMD interpreter for genetic programming in [48], which is

implemented using CUDA to run on GPU. They investigate the causes of overhead of

interpretation method on GPU, and point to divergence of execution and divergence of

memory access between different individuals.

In [49] an overview of genetic programming on GPU hardware is provided, along with a

brief presentation and comparison of compiled and interpreted approaches. As part of

the comparison it underlines the trade-off between the speed of compiled code versus

the overhead of compilation, and states that the command line CUDA compiler was

especially slow, hence why interpreted approach is usually preferred.

the first work which implemented standardized grammatical evolution running on GPU

was by Pospichal, Murphy and O’Neill in 2011[50].

[50] investigates the acceleration of grammatical evolution by use of GPUs . It analyzes

the performance impact of different design decisions like thread/block granularity,

different types of memory on GPU, host-device memory transactions. As part of the

article, compilation to PTX form and then JIT compiling the PTX on driver level, is

compared with direct compilation to CUBIN object and loading to GPU without further

JIT compilation. For a kernel containing 90 individuals , it takes 540ms to compile to

CUBIN with sub-millisecond upload time to GPU, vs 450ms for compilation to PTX and

80ms for JIT compilation and upload to GPU by using NVCC compiler from CUDA v3.2

SDK. Thus PTX+JIT case which is the faster of the two, achieves an average compilation

time of 5.88 ms/individual.

[51] proposes an approach for improving compilation times of individuals for genetic

programming on GPU, where common statements on similar locations are aligned as

much as possible across individuals. After alignment individuals with overlaps are

21

merged to common kernels such that aligned statements become a single statement,

and diverging statements are enclosed with conditionals to make them part of the

code path only if the value of individual ID parameter matches an individual having

that divergent statements. Authors state that in exchange for faster compilation times,

they get slightly slower GPU runtime with merged kernels as all individuals need to

evaluate every condition at the entry of each divergent code block coming from

different individuals. In results it is stated that for individuals with 300 instructions,

compile time is 347 ms/individual if it's unaligned, and 72 ms/individual if it's aligned

(time for alignment itself not included) with NVCC compiler from CUDA v3.2 SDK.

[52] provides a comparison of compilation, interpretation and direct generation of

machine code methods for genetic programming on GPUs. Five benchmark problems

consisting of Mexican Hat and Salutowicz regressions, Mackey-Glass time series

forecast, Sobel Filter and 20-bit Multiplexer are used to measure the comparative

speed of the three mentioned methods. It is stated that compilation method uses

NVCC compiler from CUDA V5.5 SDK. Compilation time breakdown is only provided for

Mexican Hat regression benchmark on Table 6, where it is stated that total NVCC

compilation time took 135,027 seconds and total JIT compilation took 106,458

seconds. Table 5 states that Mexican Hat problem uses 400K generations and a

population size of 36. Therefore we can say that an average compilation time of

(135,027+106,458)/36×400,000 = 16.76 ms/individual is achieved.

1.6 Objective of the Thesis

In this work we aim to investigate and improve upon the acceleration of grammar

based genetic programming through use of heterogeneous platforms where

computing powers of CPU and GPU hardware are used simultaneously according to the

advantages of their respective architectures.

In Chapter 2 we review previous works on benchmarking of problem solving ability for

genetic programming implementations; then we propose a new benchmark problem

of our own, targeting general program synthesis, and designed primarily for being

solved with grammatical evolution.

22

In Chapter 3 we compare the effect of certain evolutionary parameters like population

size, maximum number of generations allowed and number of test cases employed.

Population and test cases are the two bases to which data-parallelism and instruction-

parallelism correspond; and the number of generations corresponds to the time axis.

Any tradeoff between these three directly affects the parallelization scheme to be

employed and the speed at which solutions are obtained.

In Chapter 4 we present an improvement for the compiled approach to grammatical

genetic programming. First, we propose an in-process compilation method to reclaim

the time wasted on spawning a new compilation process at each generation and on

disk based inter process communication. In-process compilation method we present

first compile to an intermediate representation (PTX) in memory using a shared library,

the compile to final machine code using the driver API of the GPU. Then we present a

non-trivial parallelization scheme, which allows multiple instances of in-process

compilation to work in parallel on multiple-cores of CPU, using memory-mapped data

transfer between processes and OS level IPC primitives.

In Chapter 5 we present a new interpreter for genetic programming on GPU. It is

designed primarily for grammatical GP; it has a grammatical evolution engine, a

translator to turn the grammatically produced individual to the intermediate

representation of our interpreter, and the interpreter running on GPU implemented

with CUDA. It makes use of some new hardware extensions of recent GPUs , and

provides a general purpose grammatical GP platform running on GPU without relying

on compilation.

Chapter 6 consists of concluding remarks about the results presented and their

significance on how to improve grammatical genetic programming performance for

especially on a general program synthesis context.

1.7 Hypothesis

The dissertation presented here is an analytical and argumentative one. We analyze

the factors contributing to the speed and accuracy of grammatical genetic

programming technique; especially when CPU and GPU are used together for tasks

23

suitable to their respective architecture. Then we hypothesize and argument that

modern GPU hardware can be used in more efficient ways, by which they yield higher

computation power for grammatical genetic programming, especially when applied to

general program synthesis tasks.

24

CHAPTER 2

BENCHMARKING GRAMMATICAL GENETIC PROGRAMMING

In all scientific endeavors, it is necessary to have some benchmark to compare against,

in order to talk of comparative improvement in quality or quantity. This is especially

true if the claimed improvement is related to methodology and not to a particular

application, as the new method must produce the same improvement on different

applications, which necessitates a benchmark suite consisting of multiple benchmarks

for applications to diverse domains.

Genetic Programming is no exception, and the importance of the case has been

brought to attention in [53], where it is argued that some of the benchmarks problems

widely employed in GP articles are popular only because of historical reasons, and that

even though articles on applications of genetic programming focus on domain-specific

non-trivial problems, the articles on comparison and analysis of methodology uses

benchmark problems that are often too simple.

2.1 Subtleties of Benchmarking Genetic Programming

[53] which is published as part of proceedings of GECCO 2012 conference, underlines

the repeated use of ancient benchmarks providing low quality comparisons, and

makes a call to GP community to establish better benchmarks. A survey on this subject

has been conducted with conference participants subsequently, and the results are

published later same year [54].

25

Table 2.1 Problem domains used on papers published in EuroGP and GECCO GP
conferences between 2009-20121

[54] contains the results of the mentioned survey, along with some statistics on classes

of benchmark problems employed on genetic programming articles published in the

last four years (see Table3.1). It provides an in-depth analysis of grouping of subjects

observed on these papers, followed by some remarks and propositions like which

benchmark problems to avoid and which problems to employ in the future. It is stated

that, of the papers published in EuroGP and GECCO GP conferences between years

2009-2012, 36.2 percent employed symbolic regression problems, 21.1 percent

employed classification problems, 20.7 percent employed path finding problems and

17.4 percent employed Boolean function (i.e. parity, multiplexers) problems.

2.2 Grammatical Genetic Programming and General Program Synthesis

While the programs represented by individuals in Linear Genetic Programming

resemble most to the linear machine code, those represented by Cartesian Genetic

Programming mostly resemble to digital circuits or neural networks, and the ones

represented by tree based genetic programming resemble (non-surprisingly) to trees.

1
 as presented on survey [54]. Notice that some articles present problems from more than one category.

26

On the other hand the programs represented in Grammatical GP, not only res emble

but are literally pieces of structured source code.

Therefore even though grammatical GP can be used to evolve simple arithmetic or

boolean expressions, which can also be represented with tree based GP, linear GP and

cartesian GP. General program synthesis problems (described as “True Programming”

in [54]) which involve arbitrary conditionals, loops, state variables and nesting can only

be represented with grammatical GP in a natural and human readable way. General

program synthesis can be achieved with linear GP too, but the evolved solutions will be

black box solutions to some degree, instead of structured source code which is more

easily understandable and modifiable by humans.

In fact the individuals evolved with grammatical GP can be compiled to an equivalent

linear GP representation (which we present in Chapter 5). Still, the set of programs that

a grammar defines as a language is a strict subset of set of programs belonging to a

minimal linear representation covering that language, as long as they are compared

under the same linearised size bound.

The proof for this assertion is trivial; the grammatical GP is designed to exclude

programs from a set when they are syntactically invalid according to a grammar, but it

does not add new members to the set. Therefore you can always find an individual

which is a valid linear program, but isn’t a member of the language defined by the

grammar. The same mismatch is observed with real world compilers all the time,

where some raw assembly code (or byte code for JITed languages like Python, Java, C#)

is inserted in the middle of a high level source code to perform some computation

faster (or in small space) which is impossible with the sole use of high level grammar.

2.3 A New Benchmark Problem

Here we propose a new benchmark problem for genetic programming, which consists

of identifying whether a given search value is present in an integer list. We propose

two variants of this problem, first variant requires the evolved function to return true

if the searched value is present in the list, or false if it isn’t. This is a question with a

27

binary answer; from GP point of view it is interesting for its use of both integer and

boolean values.

The second variant requires the function to return the position of the searched value

in the list, or -1 if the value is not present. We first proposed this problem as a general

program synthesis benchmark in [55]. The grammar for the problem is inspired by [38],

and it bears some similarity to problems presented in [56] based on the generality of

its use case and simplicity of its implementation.

Even though Search Problem is parametric, such that the minimum/maximum length

of integer lists and the range from which the list elements are chosen can be adjusted,

different values of these parameters do not affect the difficulty of the problem, they

only determine the generality of test cases. In out experiments we used test cases with

lists of random integers from the range (0, 50), and list lengths varied between 3 and

20. Test cases are randomly generated but half of them are ensured to contain the

value searched, and others ensured not to contain.

We employed a binary fitness function, which returns 1 if the returned result is correct

or 0 if it's not correct; hence the fitness of an individual is the sum of its fitnesses over

all test cases, which evolutionary engine tries to maximize.

<expr> ::= <expr> <bi-op> <expr> | <const>

 | <var-read> | <var-indexed>

<var-read> ::= tmp | i | OUTPUT | SEARCH | LENINPUT

<var-indexed> ::= INPUT[<var-read> % LENINPUT]

<var-write> ::= tmp | OUTPUT

<bi-op> ::= + | -

<const> ::= 1 | 2 | (-1)

<statement> ::= <assignment> | <if> | <loop>

<loop> ::= for(i=0;i “<” <var-read>;i++){<statements>}

<if> ::= if (<cond-expr>) { <statements> }

<cond-expr> ::= <expr> <comp-op> <expr>

<comp-op> ::= “>” | “<” | == | !=

<assignement> ::= <var-write> = <expr>;

<statements> ::= <statement> | <statement><statements>

<start> ::= <preamble> <statements> <post-amble>

Listing 2.1 – BNF grammar for Search Problem

28

The general BNF grammar for the problem is shown on Listing 2.1. where terminal

nodes are C keywords and expressions, thus the grammar define a valid subset of C

programming language. The same grammar bounded for expression length, number of

consecutive statements and number of nested code blocks is shown on Listing 2.2. The

start rule of both grammars is “<start>”.

The generated code is surrounded by a preamble and post-amble to setup the local

variables and return the value of OUTPUT which is the same for all individuals. The

pre/postamble can be made part of the grammar by adding them as terminals before

and after the expansion of start token; or they can be added outside of evolutionary

code generation when grammar expansion for the individual is finished. The preamble

and post-amble can be seen on Listing 2.3 as the non-italic lines at the beginning and

at the end.

<expr> ::= <expr2> <bi-op> <expr2> | <expr2>

<expr2> ::= <int> | <var-read> | <var-indexed>

<var-read> ::= tmp | i | OUTPUT | SEARCH | LENINPUT

<var-indexed> ::= INPUT[<var-read> % LENINPUT]

<var-write> ::= tmp | OUTPUT

<bi-op> ::= + | -

<int> ::= 1 | 2 | (-1)

<statement> ::= <assignment> | <if> | <loop>

<statement2> ::= <assignment> | <if2>

<statement3> ::= <assignment>

<loop> ::= for(i=0;i “<” <var-read>;i++){<statements2>}

<if> ::= if (<cond-expr>) { <statements2> }

<if2> ::= if (<cond-expr>) { <statements3> }

<cond-expr> ::= <expr> <comp-op> <expr>

<comp-op> ::= “>” | “<” | == | !=

<assignement> ::= <var-write> = <expr>;

<statements> ::= <statement> | <statement><statement>

 | <statement><statement><statement>

<statements2> ::= <statement2> | <statement2><statement2>

 | <statement2><statement2><statement2>

<statements3> ::= <statement3> | <statement3><statement3>

 | <statement3><statement3><statement3>

<start> ::= <preamble> <statements> <post-amble>

Listing 2.2 – A depth bounded version of the grammar for Search Problem

We will be referring to this problem as “Search Problem” in the following chapters.

Simplest correct solution evolvable with this grammar is presented in Listing 2.3; the

29

code generated by the non-static part which corresponds to the expansion of

<statements> token are the lines printed in italic typeface.

void func0(int* INPUT,int SEARCH,int LENINPUT){

 int tmp=0;

 int i=0;

 int OUTPUT=0;

 OUTPUT = -1;

 for(i=0;I < LENINPUT;i++) {

 if (INPUT[i % LENINPUT] == SEARCH) {

 OUTPUT = I;

 }

 }

 return OUTPUT;

}

Listing 2.3 – Simplest correct solution evolvable with grammar for Search Problem

The solutions obtained by GP almost always contain some junk code with no effect. An

actual solution obtained by evolution is presented in Listing 2.4, notice the mentioned

junk code with no final effect; only three lines of evolved code contribute to desired

output. By definition junk code does not affect the behavior of a solution, but to

minimize compilation overhead and for clarity purposes, evolved solutions with junk

code caused by introns can be “cleaned up” by dead code removal techniques.

void func0(int* INPUT,int SEARCH,int LENINPUT){

 int tmp=0;

 int i=0;

 int OUTPUT=0;

 if ((-1) + SEARCH != tmp-i) {

 if (1 > i) {

 i = 1+i;

 tmp = 2+OUTPUT;

 }

 }

 if (SEARCH == v - OUTPUT) {

 if (OUTPUT+SEARCH == 1) {

 i = SEARCH;

 OUTPUT = 2;

 }

 OUTPUT = SEARCH-OUTPUT;

 }

 for(i=0;i < LENINPUT;i++){

 if (SEARCH == INPUT[i % LENINPUT]) {

30

 OUTPUT = SEARCH;

 OUTPUT = i;

 }

 }

 return OUTPUT;

}

Listing 2.4 – An actual correct solution evolved for Search Problem containing Junk

code

2.4 Other Benchmark Problems

In addition to the presented Search Problem, we also use on the following chapters

some other benchmark problems recommended as replacements to older ones in [54].

2.4.1 Keijzer-6 Regression

Keijzer-6 function proposed as a regression benchmark and introduced in [57], is the

function

 which maps a single integer parameter to the partial sum of

harmonic series with number of terms indicated by the parameter. Regression of

Keijzer-6 function is one of the recommended alternatives in [54] to replace simpler

symbolic regression problems like quartic polynomial regression.

For this problem we used the root mean squared error as fitness function which is the

accepted practice for this problem, and a modified version of the grammar given in

[58] and [40]. The only two modification of ours is the increase of token ratio of

constants and variables, to promote terminal tokens as the expression nesting gets

deeper (the bold expansion options on listing); and replacement of the C terminals

with CUDA C floating point math functions (see Listing 2.5). Duplication of some

expansion options is a common method in grammar generic programming to assign

different selection probabilities to different expansion options; in our modification, x is

a terminal token and <c> always expands to a terminal in one expansion, therefore

their duplication increase the probability of expansion to a terminal node instead of a

non-terminal.

<e> ::= <e2> + <e2> | <e2> - <e2> | <e2> * <e2> | <e2> / <e2>

 | sqrtf(fabsf(<e2>)) | sinf(<e2>) | tanhf(<e2>)

 | expf(<e2>) | logf(fabsf(<e2>)+1)

 | x | x | x | x

31

 | <c><c>.<c><c> | <c><c>.<c><c> | <c><c>.<c><c>

 | <c><c>.<c><c>

<e2> ::= <e3> + <e3> | <e3> - <e3> | <e3> * <e3> | <e3> / <e3>

 | sqrtf(fabsf(<e3>)) | sinf(<e3>) | tanhf(<e3>)

 | expf(<e3>) | logf(fabsf(<e3>)+1)

 | x | x | x | x | x | x

 | <c><c>.<c><c> | <c><c>.<c><c> | <c><c>.<c><c>

 | <c><c>.<c><c> | <c><c>.<c><c> | <c><c>.<c><c>

<e3> ::= <e3> + <e3> | <e3> - <e3> | <e3> * <e3> | <e3> / <e3>

 | sqrtf(fabsf(<e3>)) | sinf(<e3>) | tanhf(<e3>)

 | expf(<e3>) | logf(fabsf(<e3>)+1)

 | x | x | x | x | x | x | x | x

 | <c><c>.<c><c> | <c><c>.<c><c> | <c><c>.<c><c>

 | <c><c>.<c><c> | <c><c>.<c><c> | <c><c>.<c><c>

 | <c><c>.<c><c> | <c><c>.<c><c>

<c> ::= 0|1|2|3|4|5|6|7|8|9

Listing 2.5 – Modified BNF grammar for Keijzer-6 regression problem

2.4.2 5-Bit Multiplier

5-bit multiplier problem consists of finding a boolean relation that takes 10 binary

inputs to 10 binary outputs. Two groups of 5 inputs each represent an integer up to

 in binary, and the output represents a single integer up to 210−1, such that the

output is the multiplication of the two input numbers. This problem can be attacked as

10 independent binary regression problems, with each bit of the output is separately

evolved as a circuit or boolean function; this means not bothering to exploit any

possible correlation or shared structure there may be between different bits of the

output, for the sake of implementation simplicity.

It’s easy to show that the number of n-bit input m-bit output binary relations is ,

which grows exponentially on m and super-exponentially on n. Multi-output multiplier

is the recommended alternative to Multiplexer and Parity problems in [54].

We transfer input to and output from GPU with bits packed as a 32bit integer; hence

there is a code preamble before first individual to unpack the input bits, and a post-

amble after each individual to pack the 10 bits computed by evolved expressions as an

integer.

32

The fitness function we used for 5-bit multiplier is the number of different bits

between the individual’s response and the correct answer, computed as the pop count

of individual’s response exclusive-or correct answer.

<start> ::= o0=<expr>;o1=<expr>;o2=<expr>;o3=<expr>;o4=<expr>;

 o5=<expr>;o6=<expr>;o7=<expr>;o8=<expr>;o9=<expr>;

<expr> ::= (<expr2> <bi-op> <expr2>) | <var> | (~ <var>)

<expr2> ::= (<expr2> <bi-op> <expr2>) | <var> | (~ <var>)

 | <var> | (~ <var>)

<var> ::= a0 | a1 | a2 | a3 | a4 | b0 | b1 | b2 | b3 | b4

<bi-op> ::= & | #or#

Listing 2.6 – BNF grammar for 5-bit Multiplier problem

33

CHAPTER 3

EFFECTS OF POPULATION SIZE, NUMBER OF GENERATIONS AND

NUMBER OF TEST CASES

In this chapter we investigate the effects of modifying three evolutionary parameters,

namely (i) the maximum number of generations allowed, (ii) size of population in

terms of individuals, and (iii) the number of test cases used, on the number and time

distribution of solutions found in the context of Search Problem; on the other hand the

results presented in this chapter can be generalized to other grammatical genetic

programming problems targeting general program synthesis.

3.1 Experiments

We performed three experiments; first one serves as a baseline for the others, and the

second trades off number of generations for a larger population while maintaining

same computation time, in order to compare the distribution of fitness traces against

baseline. The last employs only half of the test cases, to investigate the effects of

trading off generalization accuracy for decreased computation time.

3.1.1 Baseline Experiment

As a baseline measurement, we evolved 50 independent populations using Search

Problem grammar. We used a population size of 100 individuals per population. There

were 40 test cases with only half of them containing the searched integer; lists had

length varying from 3 to 7 integers. Same test cases have been used for all

populations; crossover and mutation rates were both set to 0.7. We employed elitism

and two way tournament selection on all experiments.

34

It can be seen on Fig.3.1 that 12 out of 50 populations managed to evolve a successful

individual that return the position of the searched value or -1 in case it isn’t in the list.

On this experiment we expressed “fitness” as error (number of test cases failed) where

lower error on plots meaning higher fitness. Fig.3.1 consists of two plots with fitness

traces for each population; plot below shows the trace of fitness of best individuals for

successful populations (those who managed to evolve an individual with zero error

before 500 generation limit), and plot above show the same for failed populations.

This separation is purely to better portray the difference of shape in distributions of

fitness traces, between successful and unsuccessful populations. Each trace line

corresponds to a population, and values attained by a line are the fitness values of the

best individual of that population for the indicated generation. Therefore vertical

jumps correspond to the evolution of a new best individual having lower error than

previous best for that population; and horizontal segments correspond to generations

where the population couldn’t evolve any better individuals, so the best from previous

generation has been preserved by elitism.

Figure 3.1 Fitness traces of best individuals of 50 populations for 500 generations

35

The average fitness of best individuals is only meaningful for the failed populations;

successful populations leave the process when a zero error individual is evolved,

causing the number of populations to average over to be different on different parts of

the horizontal axis. This makes the same plot of average for successful populations

hard to interpret. Fig.3.2 shows the mentioned average fitness of best individuals of

“failed” populations; jagged traces can be seen to converge to a smoother curve upon

averaging. We use the term “failed” loosely here, because any of the remaining

individuals might still converge to a successful solution if the evolution was allowed to

continue with more generations; this is further indicated by the decreasing average

error by generations.

Figure 3.2 Fitness average of failed populations’ best individuals

3.1.2 More Populations, Less Generations, Same Wall-Clock Time

The distribution of the points where traces of successful populations intersect the

horizontal axis on Fig.3.1 hints that conditional probability of a population to succeed

at a given generation decreases with each generation, under the condition that it will

eventually succeed. Thus, we repeated the experiment with the same settings, except

limiting the maximum number of generations five-fold (from 500 to 100). To maintain

an equal amount of computation (hence equal computation time), we also increased

the number of populations five-fold (from 50 to 250). Fig.3.3 shows the fitness traces

of the experiment, where 32 out of 250 populations managed to produce an error free

individual. Although the success rate drops to 0.128 (32/250) from previous 0.24

(12/50), trying more independent populations for shorter times yielded 2.66 (32/12)

times more error free individuals for the same amount of computation. Notice that the

points where populations reach an error free individual are distributed more

36

homogeneously across the first 100 generations, in contrast to previous experiment.

Yet, the points at which error free individuals emerge don’t get more frequent at left

edge of horizontal axis neither; to the contrary on the first 15 generations no error free

individual is observed, in stark contrast to the generation range 15-100.

Figure 3.3 Fitness trace of best individuals for 250 population over 50 generations

Cumulative density of the truncated probability distribution of having an error free

individual in terms of number of generations is the mathematical counterpart of this

intuition. It can be used to minimize the computation time needed to obtain a

solution, by optimizing the number of generations allowed per population. As the

number of generations allowed per population change, the expected value of solutions

obtained per generation change too. It can be estimated with regression fitting, but

this requires computing large numbers of fitness traces to smooth the empirical

cumulative density from which the probability distribution can be extracted after curve

fitting. The extreme case of allowing only one generation is equivalent to random

search, as the individuals don't get a chance to cooperate through crossover across

generations.

37

3.1.3 Less Test Cases

We conducted a third set of experiments, with the same settings as the first one, but

this time decreasing the number of test cases from 40 to 20, which halves the

computation time in exchange for an increased risk of false positives labeled as

successful. Figures Fig.3.4 and Fig.3.5 show the traces of best individuals of

populations, and the average of best individuals from unsuccessful populations. The

success rate became 0.26 (13/50) with an increase of 2% success rate, which is

statistically insignificant to attribute to false pos itives which may stem from a lack of

test cases.

The traces for successful populations on figure Fig.3.4 shows that 38% (5/13) of

solutions are concentrated in the narrow range of first 25 generations. It can be

conjectured that the decreased number of test cases contributed to early success of

evolution in contrast to previous experiment setups. (notice that on Fig3.4 and Fig3.5

the vertical axis for failed populations do not start from 0)

Figure 3.4 Fitness trace of best individuals for 50 populations using only half of the test
cases

38

The ratio of number of test cases to false positives is a parameter that can be used to

tune the performance of evolution. As the number of test cases affect the

computation time linearly (i.e. doubling the test cases doubles the computation time),

it may be beneficial to use minimum indicative number of test cases ; we expect this

number to be very dependent on the problem. Total computation time can be

minimized by allowing a higher false positive rate and thoroughly checking the

individual solutions later, instead of thoroughly checking the whole population earlier.

Figure 3.5 Fitness average of failed populations’ best individuals

3.2 Motivation for Parallelization

Population size (number of individuals), number of generations evolution is allowed to

run for, and number of test cases employed, are three important evolutionary

parameters which affect the probability and frequency of obtaining successful

individuals. Increase in any of those three parameters, increase the probability of

obtaining a successful individual, and decrease the expected value of number of

generations till the next successful individual; but it also increase the computation

time linearly. For the tradeoffs between these parameters that preserve the amount of

computation, we expect there to be a Pareto front of optimality where multiple

configurations of parameters can yield the same optimal behavior in terms of

expectancy of computation amount required to obtain a solution.

On a serialized computation model, each of these three parameters contribute to total

time complexity as a multiplicative factor; hence a unit increase in any one of those

increase the time cost by an amount equal to multiplication of other two. On the

other hand only generations have a time based data dependency between them;

39

individuals and test cases are neither temporally dependent, nor inter-dependent.

Therefore all (individual,testcase) pairs can be evaluated in parallel, only to be

synchronized between generations for the consolidation of fitness data and creation of

next population.

40

CHAPTER 4

COMPILATION OF INDIVIDUALS FOR GENETIC PROGRAMMING ON GPU

In this chapter we investigate methods to accelerate compilation of individuals for

genetic programming on GPU hardware. We compare the conventional out-of-process

compilation with an in-process compilation strategy that we propose to minimize the

compilation overhead at each generation. Then we investigate ways to parallelize in-

process compilation; in-process compilation doesn't lend itself to trivial parallelization

with threads, we propose a multi-process parallelization using memory sharing and

operating system’s inter-process communication primitives. With parallelized

compilation we achieve further reductions on compilation overhead.

4.1 Development and Experiment Setup

4.1.1 Hardware Platform

All experiments have been conducted on a dual Xeon E5-2670 (8 physical 16 logical

cores per CPU, 32 cores in total) platform running at 2.6Ghz equipped with 60GB RAM,

along with dual SSD storage and four NVidia GRID K520 GPUs. Each GPU itself consists

of 1536 cores spread through 8 multiprocessors running at 800Mhz, along with 4GB

GDDR5 RAM and is able to sustain 2 teraflops of single precision operations (in total

6144 cores and 16GB GDDR5 VRAM which can theoretically sustain 8 teraflops single

precision computation assuming no other bottlenecks)1. GPUs are accessed for

1
 see validation of hardware used for experiment: http://www.techpowerup.com/gpuz/details/7u5xd/

41

computation through NVidia CUDA v8 API and libraries, running on top of Windows

Server 2012 R2 operating system.

4.1.2 Development Environment

Codes related to grammar generation, parsing, derivation, genetic programming,

evolution, fitness computation and GPU access has been implemented in C#, using

managedCuda1 for CUDA API bindings and NVRTC interface, along with CUDAfy.NET2

for interfacing to NVCC command line compiler. The grammars for the problems have

been prepared such that, the languages they define are valid subsets of CUDA C

language with specialization towards the respective problems.

4.1.3 Experiment Parameters

We ran each experiment with population sizes starting from 20 individual per

population going up to 300, with increments of 20. As the subject of interest is

compilation times and not fitness, we measured the following three parameters to

evaluate compilation speed:

 ptx : CUDA source code to PTX compilation time per individual

 jit : PTX to Cubin object compilation time per individual

 other : All remaining operations a GP cycle requires (i.e. uploading compiled

individuals to run on GPU, downloading produced results, computing fitness

values, evolutionary selection, cross over, mutation, etc.)

We have measured the value of other to be always at sub-millisecond level, in all

experiments, all problems and for all population sizes; therefore it does not appear on

plots. For all practical purposes ptx + jit can be considered as the total time cost of a

complete cycle for a generation, with an error margin of 1ms/pop.size.

Each data point on plots correspond to the average of one of those three types of

measurements for a given (population size; measurement type; experiment) triple.

1
 https://kunzmi.github.io/managedCuda/

2
 https://cudafy.codeplex.com/

42

Each average is computed over the measurement values obtained for the first 10

generations of 15 different populations with given size (thus effectively the compile

times of 150 generations averaged). The reason for not directly using 150 generations

of a single population is that a population gains bias towards a certain type of

individuals after certain number of generations, and stops representing the inherent

unbiased distribution of grammar.

The number of test cases used is dependent to the nature of problem; on the other

hand as each test case is run as a GPU thread, it is desirable that the number of test

cases are a multiple of 32 on any problem, as finest granularity for task scheduling on

modern GPUs is a group of 32 threads which is called a Warp. For non multiple of 32

test cases, GPU transparently rounds up the number to nearest multiple of 32 and

allocate cores accordingly, with some threads from the last warp work on cores with

output disabled. The number of test cases we used during experiments were 32 for

Search Problem, 64 for regression of Keijzer-6 function and 1024 (= 2(5+5)) for 5-bit

Binary Multiplier Problem. For all experiments both mutation and crossover rate was

set to 0.7; these rates do not affect the compilation times.

4.2 Conventional Compilation as Baseline

NVCC is the default compiler of CUDA platform, it is available as a command line

application distributed with CUDA SDK. In addition to compilation of CUDA C source

code, it performs tasks such as the separation of source code as host code and device

code, calling the underlying host compiler (GCC or Visual C compiler) for host part of

source code, and linking compiled host and device object files.

43

Figure 4.1 Nvcc compile times by population size (per individual time)

Figure 4.2 Nvcc compile times by population size (total time)

Figure 4.1 shows that compilation times level out at 11.2 ms/individual for Search

Problem, at 7.62 ms/individual for Keijzer-6 regression, and at 17.2 ms/individual for 5-

bit multiplier problem. It can be seen on Figure 4.2 that, even though not obvious, the

total compilation time does not increase linearly, which is most observable on trace of

44

5-bit multiplier problem. As NVCC is a separate process, it isn't possible to measure the

distribution of compilation time between source to PTX, PTX to CUBIN, and all other

setup work (i.e. process launch overhead, disk I/O); therefore it is not possible to

pinpoint the source of nonlinearity on total compilation time.

The need for successive invocations of NVCC application, and all data transfers being

handled over disk files are the main drawbacks of NVCC use in a real time context,

which is the case in genetic programming. Even though the repeated creation and

teardown of NVCC process most probably guarantees that the application stays on disk

cache, this still prevents it to stay cached on processor L1/L2 caches.

4.3 In-process Compilation

NVRTC is a runtime compilation library for CUDA C, it was first released as part of v7 of

CUDA platform in 2015. NVRTC accepts CUDA source code and compiles it to PTX in-

memory. The PTX string generated by NVRTC can be further compiled to device

dependent CUBIN object file and loaded to GPU with CUDA Driver API, still without

persisting it to a disk file. This provides optimizations and performance not possible in

off-line static compilation.

Without NVRTC, for each compilation a separate process needs to be spawned to

execute NVCC at runtime. This has significant overhead, NVRTC addresses this by

providing a library interface that eliminates overhead of spawning separate processes,

and extra disk I/O. On the other hand NVRTC performs only the first part of the

compilation which is converting the CUDA source to PTX form; in order to use

compiled PTX code a second round of compilation must be performed either with

NVCC (which would defeat the purpose) or with the CUDA Driver API which

incorporates a light JIT compiler that can compile PTX to CUBIN binary form executable

on GPU.

45

Figure 4.3 In-process and out of process compilation times by population size, for

Search Problem (per individual)

Figure 4.4 In-process and out of process compilation times by population size, for
Search Problem (total)

On figures 4.3-4.8 it can be seen that in-process compilation of individuals not only

provides reduced compilation times for all problems on all population sizes, it also

allows to reach asymptotically optimal per individual compilation time with much

46

smaller populations. The fastest compilation times achieved with in-process

compilation is 4.14 ms/individual for Keijzer-6 regression (at 300

individuals/population), 10.88 ms/individual for 5-bit multiplier problem (at 100

individuals/population1), and 6.89 ms/individual for Search Problem (at 280

individuals/population2). The total compilation time speed ups are measured to be in

the order of 261% to 176% for the K6 regression problem, 288% to 124% for the 5-bit

multiplier problem, and 272% to 143% for the Search Problem, depending on

population size (see Fig.4.9).

Figure 4.5 In-process and out of process compilation times by population size, for
Keijzer-6 Regression(per individual)

1
 compilation speed at 300 individuals/population is 13.29 ms/individual for 5-bit Multiplier

2
 compilation speed at 300 individuals/population is 7.76 ms/individual for Search Problem

47

Figure 4.6 In-process and out of process compilation times by population size, for
Keijzer-6 Regression (total)

Figure 4.7 In-process and out of process compilation times by population size, for 5-bit

Multiplier (per individual)

48

Figure 4.8 In-process and out of process compilation times by population size, for 5-bit
Multiplier (total)

Figure 4.9 Compile time speedup ratios between conventional and in-process

compilation by problem

49

4.4 Parallelizing In-process Compilation

4.4.1 Infeasibility of parallelization with threads

The natural approach to parallelize in-process compilation comes to mind as, to

partition the individuals and spawn multiple threads that will compile each partition in

parallel through NVRTC library. Unfortunately it turns out that NVRTC library is not

designed for multi-threaded use; we noticed that when multiple compilation calls are

made from different threads at the same time, the execution is automatically

serialized.

Stack trace in Fig.4.10 shows nvrtc64_80.dll calling OS kernel's EnterCriticalSection

function to block for exclusive execution of a code block, and gets unblocked by

another thread which also runs a block from same library, 853ms later via the release

of the related lock. The pattern of green blocks on three threads in addition to main

thread in Fig.4.10 shows that calls are perfectly serialized one after anothe r, despite

being called at the same time which is hinted by the red synchronization blocks

preceding them.

Figure 4.10 NVRTC library serializing calls from multiple threads

50

Although NVRTC compiles CUDA source to PTX with a single call, the presence of

compiler options setup function which affects the following compilation call, and use

of critical sections at function entries, show that apparently this is a stateful API.

Furthermore, unlike CUDA APIs' design, mentioned state is most likely not stored in

thread local storage (TLS), but stored on the private heap of the dynamic loading

library, making it impossible for us to trivially parallelize this closed source library using

threads, as moving the kept state to TLS requires source level modifications.

4.4.2 Parallelization with Daemon Processes

Therefore as a second approach we implemented a daemon process which stays

resident. It is launched from command line with a unique ID as command line

parameter to allow multiple instances. Instances of daemon are launched as many

times as the wanted level of parallelism and each instance identifies itself with the ID

received as parameter. Each launched process register two named synchronization

events with the operating system, for signaling the state transitions of a simple state

machine consisting of {starting, available, processing} states which represent the state

of that instance. Main process also has copies of same state machines for each

instance to track the states of daemons. Thus both processes (main and daemon) keep

a consistent view of the mirrored state machine by monitoring the named events

which allows state transitions to be performed in lock step. State transition can be

initiated by both processes, specifically (starting → available) and (processing →

available) is triggered by the daemon, and (available → processing) is triggered by the

main process.

The communication between the main process and compilation daemons are handled

via shared views to memory maps. Each daemon register a named memory map and

create a memory view, onto which main process also creates a view to after the

daemon signals state transition from starting to available. (see Fig.4.11) CUDA source

is passed through this shared memory, and compiled device dependent CUBIN object

file is also returned through the same. To signal the state transition (starting →

available) daemon process signals the first event and starts waiting for the second

51

event at the same time. Once a daemon leaves the starting state, it never returns back

to it.

Figure 4.11 Sequence Diagram for creation of a compilation daemon process and
related inter-process communication primitives

When the main process generates a new population to be compiled it partitions the

individuals in a balanced way, such that the difference of number of individuals

between any pair of partitions is never more than one. Once the individuals are

partitioned, the generated CUDA codes for each partition are passed to the daemon

processes. Each daemon waits in the blocked state till main process wakes that specific

daemon for a new batch of source to compile by signaling the second named event of

that process (see Fig.4.12). Main process signals all daemons asynchronously to start

compiling; then starts waiting for the completion of daemon processes' work. To

prevent the UI thread of main process getting blocked too, main process maintains a

separate thread for each daemon process it communicates with, therefore while

waiting for daemon processes to finish their jobs only those threads of main process

are blocked. Main process signaling the second event and daemon process unblocking

as a result, corresponds to the state transition (available → processing).

52

Figure 4.12 Sequence Diagram for compilation on daemon process and related inter-
process communication

When a daemon process arrives to processing state, it reads the CUDA source code

from the shared view of the memory map related to its ID, and compiles the code

using NVRTC library.

Once a daemon finishes compiling and writes the Cubin object to shared memory, it

signals the first event to unblock the related thread in main process and starts to wait

for the second event once again. This signaling, blocking pair corresponds to the state

transition (processing → available).

4.4.3 Cost of Parallelization

The parallelization approach we propose is virtually overhead free when compared to

a hypothetical parallelization scenario using threads. As the daemon processes are

already resident and waiting in the memory along with the loaded NVRTC library, the

overhead of both parallelization approaches is limited to the time cost of memory

53

moves from/to shared memory and synchronization by named events 1. The only

difference between the two is, in a context switch between threads of same process,

processor keeps the Translation Look Aside Buffer (TLB), but in case of a context switch

to another process TLB is flushed as processor transitions to a new virtual address

space; we conjecture that the impact would be negligible.

About the memory cost, all modern operating systems recognize when an executable

binary or shared library gets loaded multiple times; OS keeps a single copy of the

related memory pages on physical memory, and separately maps those to virtual

address spaces of each process using those. This not only s aves physical RAM, but also

allows better space locality for L2/L3 processor caches. Hence the memory

consumption of multiple instances of our daemon processes, each loading NVRTC

library (nvrtc64 80.dll is almost 15MB) to their own address space, is almost the same

as the consumption of a single instance.

4.4.4 Speedup Achieved with Parallel Compilation

At the end of each batch of experiments main application dumps the collected raw

measurements to a file. We imported this data to Matlab filtered by experiment and

measurement types, and aggregated the experiment values for each population size to

produce the Tables 4.1-4.3, and to create the Figures 4.13-4.15 which illustrate the

parallelized compilation times and speed-up ratios achieved.

It can be seen that parallelized in-process compilation of genetic programming

individuals is faster for all problems and population sizes when compared to in-process

compilation without parallelization; furthermore in-process compilation without

parallelization itself was shown to be faster than regular command line nvcc

compilation on previous section.

Parallel compilation brought the per individual compilation time to 2.17 ms/individual

for 5-bit Multiplier, to 2.20 ms/individual for Keijzer-6 regression and to 2.13

ms/individual for the Search Problem; these are almost an order of magnitude faster

1
 on Windows operating system named events is the fastest IPC primitive, upon which all others (i.e.

mutex, semaphore) are implemented

54

than previous published results. Also we measured a compilation speedup of ×3.45 for

regression problem, ×5.26 for search problem, and ×7.60 for multiplication problem,

when compared to the latest Nvcc V8 compiler, without requiring any code

modification, and without any runtime performance penalty.

Notice that our experiment platform consisted of dual Xeon E5-2670 processors

running at 2.6Ghz; for compute bound tasks increase on processor frequency almost

directly translates to performance improvement at an equal rate 1. Therefore we can

conjecture that to be able to compile a population of 300 individuals at sub-

millisecond durations, the required processor frequency is around 2.6 × 2.13 =

5.54Ghz2 which is currently available.

Table 4.1 Compilation Times by Compilation Methods for Search Problem with 300
individuals

Compilation

Method

Compilation Time Speedup Ratio

Per Individual Total
In-process

compilation

NVCC

compilation

NVCC 11.20 ms 3.36 sec - 1.00

In-process 7.76 ms 2.33 sec 1.00 1.44

2 daemons 3.81 ms 1.14 sec 2.04 2.93

4 daemons 2.53 ms 0.76 sec 3.07 4.41

6 daemons 2.23 ms 0.67 sec 3.48 5.01

8 daemons 2.13 ms 0.64 sec 3.65 5.26

1
 Assuming all other things being equal

2
 once again, under assumption of all other things being equal. 2.13 is the compilation time of Search

Problem with 8 daemons

55

Table 4.2 Compilation Times by Compilation Methods for Keijzer-6 Regression with 300
individuals

Compilation

Method

Compilation Time Speedup Ratio

Per Individual Total
In-process

compilation

NVCC

compilation

NVCC 7.63 ms 2.29 sec - 1.00

In-process 4.14 ms 1.24 sec 1.00 1.83

2 daemons 2.92 ms 0.88 sec 1.42 2.60

4 daemons 2.45 ms 0.73 sec 1.69 3.10

6 daemons 2.20 ms 0.66 sec 1.88 3.45

8 daemons 2.25 ms 0.67 sec 1.84 3.37

Table 4.3 Compilation Times by Compilation Methods for 5-bit Multiplier Problem with
300 individuals

Compilation

Method

Compilation Time Speedup Ratio

Per Individual Total
In-process

compilation

NVCC

compilation

NVCC 17.20 ms 5.16 sec - 1.00

In-process 13.29 ms 3.99 sec 1.00 1.24

2 daemons 6.15 ms 1.85 sec 2.16 2.69

4 daemons 3.23 ms 0.97 sec 4.12 5.12

6 daemons 2.42 ms 0.73 sec 5.49 6.82

8 daemons 2.17 ms 0.65 sec 6.11 7.60

56

Figure 4.13 Nvcc compilation times for Search Problem by number of servicing resident
processes. (left) per individual (right) total

Figure 4.14 Nvcc compilation times for Keijzer-6 regression by number of servicing

resident processes. (left) per individual (right) total

Figure 4.15 Nvcc compilation times for 5-Bit Multiplier by number of servicing resident

processes. (left) per individual (right) total

57

Figure 4.16 Parallelization speedup ratios on Search problem (left) vs conventional
compilation (right) vs in-process compilation

Figure 4.17 Parallelization speedup ratios on Keijzer-6 regression (left) vs conventional

compilation (right) vs in-process compilation

Figure 4.18 Parallelization speedup ratios on 5-Bit multiplier (left) vs conventional

compilation (right) vs in-process compilation

58

 CHAPTER 5

INTERPRETER FOR GENERAL PROGRAM SYNTHESIS WITH GENETIC

PROGRAMMING ON GPU

In this chapter we present a new general purpose interpreter for grammatical genetic

programming designed to support arbitrary grammars. We implemented it both for

GPU using CUDA and for CPU using C#. We further implemented a byte-code generator

for the opcodes exposed by the interpreter, and integrated it to our grammatical

evolution engine as terminal tokens. Any grammar with terminal tokens consisting of

these opcodes, produce derivations which are valid sequences of opcodes by gathering

the terminals in depth first order and replacing each one with the respective opcode;

such opcode sequences can be directly executed on our interpreter,

5.1 Implementation Options for Genetic Programming on GPU

There exists three implementation approaches for genetic programming on GPU; these

are compilation, interpretation and direct generation of machine code.

5.1.1 Compiled Approach

In the compiled approach, individuals from population are compiled on the CPU to

specific GPU machine code, and the resulting binary is uploaded to GPU where they

run in parallel. The problem with compiled approach is that, it is known to have a

prohibitive overhead compared to other two, which is the subject addressed on

previous chapter.

59

5.1.2 Direct Generation of Assembly or Machine Code

The direct generation of machine code approach has two variants; fi rst one involves

directly generating PTX level assembly for individuals, which still requires a second

level compilation to be able to run on GPU, and the second one involves direct

generation of final machine code. Both variants involve implementing a mechanism

which takes the behavior defined by the genome of individual and translate it to one of

the vendor specific executable formats; these are pretty much equivalent to

implementing a stripped down compiler on its own.

5.1.2.1 Direct Generation of PTX Followed by JIT Compilation

PTX is an intermediate representation used by NVidia which is architecture agnostic

across their different lines of GPU hardware; it acts as a backward/forward

compatibility layer, through which old compiled codes run on new hardware, and

newly compiled codes run on older hardware. Naturally the cost for this abstraction is

the need for a second level of compilation to the actual architecture specific machine

code of GPU. This second layer compiles PTX code to a CUBIN object. It is available as

part of the NVCC command line compiler, but a lighter JIT version of it resides as part

of graphics driver and can be accessed through CUDA Driver API.

Direct generation of PTX involves two things; first implementing a code generator that

translates individuals to PTX (which is a non-trivial implementation equivalent to

implementing a crude PTX compiler), and second compiling the generated PTX with JIT

compiler on driver API. JIT compilation has an overhead of its own, but it is negligible

compared to full compilation with command line NVCC compiler.

5.1.2.2 Direct Generation of CUBIN

The technique for direct generation of CUBIN objects is called GMGP (GPU Machine

Code Genetic Programming) and it is proposed in [52]. CUBIN objects are in an

undocumented, architecture specific, machine code binary format. GMGP generate

CUBIN objects with information obtained by byte level comparative analysis of many

60

small compiled binaries, and combining these fragments in a specific way. Authors

present how they extract the machine code information from CUBIN fragments in a

semi-automatic way, as the format is a little bit different for every generation of

graphics hardware and prone to further changes even by new driver versions.

5.1.3 Interpretation Approach

A compromise between compilation and machine code generation is the

interpretation approach; it consists of implementing an application on the target

computing platform, that accepts a sequence of opcodes in a specific encoding, and

performs the corresponding computation as a proxy. During an interpreter session the

only code that is executed on the processor is that of interpreter itself; the memory

region containing the opcodes is read as data and never reach the hardware processor

directly.

In our case the target platform is the GPU, therefore we implemented a CUDA

application which takes a device side buffer as the code memory, and decodes the

byte sequences as variable size opcodes.

5.2 Implementation

Our implementation consists of two interpreters (one on GPU and other on CPU) with

identical behavior, a set of opcodes that map the functionality exposed by the

interpreter to terminal tokens of the grammar, and a base grammar that sequences

these tokens as expected by the interpreter and expose the sequences as non-

terminals.

5.2.1 Interpreter

We created two identical implementations of our interpreter; one in CUDA targeting

GPU, and other in C# targeting CPU. A byte sequence produce the same result when

run on any of the implementation, as the opcode side effects (i.e. change in state

variables) for each opcode is exactly the same.

61

This twin implementation even includes replication of unexpected behaviors due to

platform differences; one example that was hard to track down is the behavioral

difference between CPU and GPU when an arithmetic operation producing NaN or Inf

is executed (i.e. division by zero). In such case normally a CPU raise an exception while

a GPU will not, but other than that both platforms signal the situation in conformance

to the IEEE 754 spec, which is not very interesting. What’s interesting is what happens

when a NaN (or Inf) gets typecast to an int. Basically what should happen is defined as

“undefined behavior” by IEEE 754 spec, thus all hardware and compilers are free to

resolve the situation in any way they see fit. We encountered this particular mismatch

of behavior, when the looplimit assignment on line 16 of Listing 5.1 receive a NaN or

Inf from interpret_expression() function, which gets cast to different int values on GPU

and CPU, resulting in different numbers of loop executions. We eliminated this

mismatch by adding a finiteness check before that assignment, and assigning 0 to

looplimit for non-finite values.1

Our interpreter implementations consist of three functions only. The entry point is the

interpret_statements() function which runs a sequence of statements sequentially (see

Listing 5.1).

1 while ¬(opcode1 = <eos>)
2 IP ← IP+1
3 opcode ← code[IP]
4 switch opcode1
5 case <assign-var>
6 vars[opcode2] ← interpret_expression()
7
8 case <assign-output>
9 outputs[opcode2] ← interpret_expression()
10
11 case <if>
12 if interpret_bool_expression()
13 interpret_statements()
14
15 case <for>
16 looplimit ← interpret_expression()
17 codeBlockStart ← IP

1
 The reason turns out to be DirectX compatibility; ints being devoid of Inf signaling capabilities like

floats, CUDA returns a pattern of all bits set when you divide an int by zero or try to cast an Inf to int:
https://devtalk.nvidia.com/default/topic/822614/cuda -6-0-const-int-warning-division-by-zero/?offset=5

62

18 loopdepth ← loopdepth + 1
19 for loopvar[loopdepth] ∈ (0,looplimit)
20 IP = codeBlockStart
21 interpret_statements()
22 loopdepth ← loopdepth - 1
23
24 case <exit>
25 halt()

Listing 5.1 – Pseudo-code of interpret_statements() function

On Listing 5.1 the sub-indices on opcode1 and opcode2 refer to first and second bytes

of the integer encoding the opcode, where first byte is the least significant byte. To

emulate nested loops, an array of loop indices is kept along all other state of an

individual.

The complete state kept by the interpreter for an individual running on a test case

consists of a base pointer to the beginning of memory region containing the opcodes

of current individual, an instruction pointer used as increments over base, a flag to

signal halted state, a pointer to the memory region containing the input data for the

specific test case this instance of individual is working on, a pointer to memory region

reserved for the storage of the outputs by this individual, an array to hold local

variables, an array to hold loop variables and an integer to indicate the level of loop

nesting at current IP. Sizes of mentioned arrays in state can be adjusted at initialization

of interpreter.

1 switch opcode1
2 case <lt>
3 return interpret_expression() < interpret_expression()
4
5 case <gt>
6 return interpret_expression() > interpret_expression()
7
8 case <eq>
9 return interpret_expression() = interpret_expression()
10
11 case <not>
12 return ¬interpret_bool_expression()
13
14 case <and>
15 l ← interpret_bool_expression()
16 r ← interpret_bool_expression()
17 return l ∧ r
18
19 case <or>

63

20 l ← interpret_bool_expression()
21 r ← interpret_bool_expression()
22 return l ∨ r

Listing 5.2 – Pseudo-code of interpret_bool_expression() function

5.2.2 Base Grammar

In its universal form the BNF grammar for interpreter consists of a mixture of terminal

tokens corresponding to an opcode with a concrete implementation on the interpreter

(tokens indicated with bold on Listing 5.3), and non-terminal tokens with the purpose

of creating valid sequences of opcodes.

<expr> ::= <bi-op><expr><expr2> | <const> | <var> | <input>

 | <loop-index> | <input-length> | <output-length>

 | <output>

<bool-expr> ::= <bi-comp-op><expr><expr> | <not><bool-expr>

 | <bi-bool-op><bool-expr><bool-expr>

<bi-op> ::= <add> | <sub> | <mul> | <div>

<bi-comp-op> ::= <lt> | <gt> | <eq>

<bi-bool-op> ::= <and> | <or>

<statement> ::= <assign-var><expr> | <assign-output><expr>

 | <if><bool-expr><statements>

 | <for><expr><statements> | <exit>

<statements> ::= <statement><eos>

 | <statement><statement><eos>

 | <statement><statement><statement><eos>

Listing 5.3 – Universal Grammar for Interpreter

This is the most general form of the grammar where all interpreter functionality is

exposed and no restriction is imposed (other than grouping token sequences as

expected by interpreter). Starting from this base new grammars biased or specialized

towards specific problems can be constructed by introducing additional rules defining

constructs with complex structure, or imposing further restrictions.

5.3 Performance

To measure the performance of our GPU interpreter, we used the Keijzer-6 regression

using the previously listed grammar. For all experiments we used a Maxwell class GPU

64

running at 1.1Ghz with 2GB RAM. For a population of 100 individuals, we measured

that GPU interpretation takes 190.7 µsecs/generation on average; and for 200

individuals we measured 423.8 µsecs/generation mean interpretation time. Figure 5.1

and 5.2 show the distribution of interpreter times over 100 generations.

Figure 5.1 GPU interpretation time per generation for 100 individual population

As the GPU process all (individual,test case) pairs in parallel, the reported

measurements are for the evaluation of a whole population for a single generation. Of

course the parallel processing capability of the GPU is limited by the number of cores

available, but a GPU with 1000+ cores can process 100 individuals on 10 test cases

simultaneously, by launching an independent interpreter instance for each. On the

other hand, evaluation of a single individual with a single test case would take a very

similar time on the GPU, because a single core would be processing the pair at the

same speed as before, while all remaining cores just idle.

65

Figure 5.2 GPU interpretation time per generation for 200 individual population

These measured timings only consist of the interpreter activity on the GPU which

correspond to the evaluation phase of GP; they do not include selection, genetic

operators, phenotype mapping with grammar which happen on CPU, or data

upload/download between CPU and GPU over PCI-E bus.

Figure 5.3 Performance profiling result of 100 invocation of GPU interpreter each

corresponding to a generation

As it can be seen on Figure 5.3, 100 generation of evolution with GPU interpreter takes

almost a second (after removing the profiling overhead indicated by red part) for a

population size of 100 individuals; furthermore half of this is time spent on CUDA

context setup to initialize the GPU. As a result it is shown that 100 generations with

66

100 individuals take only 0.5 second, which corresponds to 500ms/100gen = 5ms per

generation.

Figure 5.4 Performance profile close-up of five generations

On the other hand upon closer inspection (see Fig 5.4) it can be seen that the actual

time spent on GPU is very sparse; this confirms the previous two measurements which

states that every generation takes approximately 5ms but time spent on GPU

interpretation is 190.7 µsecs/generation on average; hence we can say that only

 of processing time is used by the GPU, while 96.2% is used by CPU or

spent waiting a memory/IO operation to complete.

67

CHAPTER 6

RESULTS AND DISCUSSION

In this dissertation we analyzed the grammatical genetic programming in a

performance context and investigated the acceleration options available through the

use of heterogeneous computing and parallelization. Evaluation phase of genetic

programming is known to benefit from parallelization especially on GPU, but we show

that compilation of individuals can also be parallelized on CPU simultaneously to

parallel evaluation. Prior work on genetic programming on GPU identified, and we

confirmed that, compilation itself is the single most time consuming phase with

compilation times ranging from 15 to 70 ms per individual.

Our main contribution is a new parallel and in-process compilation method which

consistently achieves compilation times around 2 ms/individual, measured with three

different problems on a dual 2.6Ghz Xeon processor based platform. As an increase in

processor frequency translates to performance almost linearly for compute bound

tasks independent of parallelizability, we conjecture that the method we propose can

easily achieve sub-millisecond compilation times per individual at 3.5+ Ghz clock

speeds, assuming all other things being equal with no new bottlenecks introduced.

Another contribution we present is a new benchmark problem for grammar genetic

programming, with an emphasis on general program synthesis domain. It proves to be

easier than the integer sorting problem (as there is no published work evolving an

integer sort implementation without invoking high level structures like swap) but

obviously harder than the Minimum/Maximum Problem. For this benchmark we

investigated how the convergence to a solution is affected by parameters like

population size, maximum number of generations explored and number of test cases

68

employed. We used this problem along with other community recommended

benchmarks on our subsequent experiments.

Our final contribution is a general purpose interpreter running on GPU. It provides a

small set of universal computation primitives that can be mapped to arbitrary

grammars. The ability to target arbitrary grammars is paramount for general program

synthesis problems. It is the first implementation of grammatical evolution on GPU

with an interpreter.

In our compiler and interpreter experiments we always observed the CPU to be the

bottleneck, even when working with very capable hardware setups. Therefore a

promising line of future investigation is moving all phases (i.e. evaluation, selection,

crossover, mutation, genotype-phenotype mapping with grammar) of grammatical

genetic programming to GPU side eliminating most, if not all, roundtrips to CPU.

Another approach which may be worthy of investigation is implementation of a very

small soft-core processor on FPGA, which implements the computation primitives of

the interpreter we propose in hardware. Multiple instances of this core running in

parallel on the same FPGA fabric, combined with another general purpose processor to

handle the evolutionary operations and scheduling of individuals to mentioned GP

cores.

69

REFERENCES

[1] Miller, J. F., (1999). “Digital Filter Design at Gate-level using Evolutionary
Algorithms”, Proceedings of The Genetic and Evolutionary Computation
Conference-GECCO, 13-17 July 1999, Orlando, Florida.

[2] Frode, M. H., Hartmann, M., Eskelund, F., Haddow, P. C., and Miller J. F., (2002).
“Evolving Fault Tolerance on an Unreliable Technology Platform”, Proceedings
of The Genetic and Evolutionary Computation Conference-GECCO, 9-13 July
2002, New York, USA, 171–177.

[3] Canham, R. and Tyrrell, A., (2002). “Evolved fault tolerance in evolvable

hardware”, Proceedings of the Congress on Evolutionary Computation CEC’02,
2002, (2):1267–1271.

[4] Schnier, T. and Yao, X., (2003). “Using negative correlation to evolve fault-
tolerant circuits”, Evolvable Systems From Biology to Hardware, 35–46.

[5] Nassar, K., (2002). “Automatic Creation of Digital Fast Adder Circuits by Means

of Genetic Programming”, Genetic Algorithms and Genetic Programming at
Stanford, 2002, 187–194.

[6] Aguirre, A. H., and Coello, C. A. C., (2004). “Using Genetic Programming and
Multiplexers for the Synthesis of Logic Circuits”, Engineering Optimization,

(36):491–511.

[7] Helmuth, T. and Spector, L., (2013). “Evolving a digital multiplier with the
pushgp genetic programming system”, Proceedings of The Genetic and
Evolutionary Computation Conference-GECCO, 6-10 July 2013, Amsterdam,
Netherlands, 1627.

[8] Sapargaliyev, Y. A. and Kalganova, T. G. (2012). “Open-ended evolution to
discover analogue circuits for beyond conventional applications”, Genet.
Program. Evolvable Mach., 4(13):411–443.

[9] Ponting, C. P. and Hardison, R. C., (2011). “What fraction of the human genome
is functional?”, Genome Res., 11(21):1769–1776.

[10] Hugosson, J., Hemberg, E., Brabazon, A. and O’Neill, M., (2010). “Genotype
representations in grammatical evolution,” Appl. Soft Comput., 1(10):36–43.

[11] Nicolau, M, O’Neill, M. and Brabazon, A., (2012). “Termination in Grammatical

Evolution: grammar design, wrapping, and tails”, 2012 IEEE Congress on
Evolutionary Computation, 2012, 1–8.

70

[12] Koza, J. R., (1993). Genetic Programming: On the Programming of Computers by
Means of Natural Selection (Complex Adaptive Systems). MIT Press.

[13] Koza, J. R., (1994). Genetic Programming II: Automatic discovery of reusable
programs. MIT Press.

[14] Koza, J. R., Andre, D., Bennett, F. H. and Keane, M. A., (1999). Genetic
Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann
Publishing.

[15] Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J. and Lanza, G.,

(2003). Genetic programming IV: Routine human-competitive machine
intelligence, (5). Kluwer Academic Publishers.

[16] Poli, R. and Langdon, W. B., (2008). A Field Guide to Genetic Programming, (1).
Lulu Press.

[17] Worzel, W. P., Riolo, R., Kotanchek, M., and Kordon, A., (2016). Genetic
Programming Theory and Practice XIII. Springer International Publishing, Cham.

[18] Riolo, R., Worzel, W. P. and Kotanchek, M., (2014). Workshop on Genetic

Programming, Genetic Programming Theory and Practice XII. Springer
International Publishing, Cham.

[19] Moore, J. H., Riolo, R., and Kotanchek, M., (2014). Genetic Programming Theory
and Practice XI. Springer Publishing, New York, NY.

[20] Riolo, R., (2013). Genetic Programming Theory and Practice X. Springer
Publishing, New York, NY.

[21] Riolo, R., Vladislavleva, E. and Moore, J. H. (9th : 2011 : A. A. Workshop on
Genetic Programming, Genetic programming theory and practice IX. Springer

Publishing, New York, NY.

[22] Riolo, R., McConaghy, T. and Vladislavleva, E., (2011). Genetic programming

theory and practice VIII. Springer Publishing, New York, NY.

[23] O’Reilly, U.M., Riolo, R. and McConaghy, T., (2010). Genetic Programming

Theory and Practice VII. Springer Publishing US, Boston, MA.

[24] Riolo, R., Soule, T. and Worzel, B., (2009). Genetic Programming Theory and
Practice VI. Springer Publishing, New York, NY.

[25] Soule, T., Worzel, B. and Riolo, R., (2008). Genetic Programming Theory and
Practice V. Springer Publishing.

[26] Riolo, R., Soule, T. and Worzel, B., (2007). Genetic Programming Theory and
Practice IV. Springer Publishing US, Boston, MA.

[27] Yu, T., Riolo, R. and Worzel, B., (2006). Genetic programming theory and
practice III. Springer Publishing.

[28] O’Reilly, U. M., (2005). Genetic programming theory and practice II. Springer
Science+Business Media.

[29] Riolo, R. and Worzel, B., (2003). Genetic programming theory and practice.
Kluwer Academic.

71

[30] Ryan, C., Collins, J. and O'Neill, M., (1998). “Grammatical evolution: Evolving
programs for an arbitrary language”, Lecture Notes in Computer Science,

(1391):83–96.

[31] O'Neill, M. and Ryan, C., (2000). “Grammar based function definition in
Grammatical Evolution”, Proceedings of Genetic and Evolutionary Computing
Conference, 3:485–490.

[32] O'Neill, M., Ryan, C., and Nicolau, M., (2001). “Grammar Defined Introns: An
Investigation Into Grammars, Introns, and Bias in Grammatical Evolution”,
Proceedings of The Genetic and Evolutionary Computation Conference-GECCO,
2001, San Fr. California, USA, 7-11, July, 2001, 97–103.

[33] Keijzer, M., O'Neill, M., Ryan, C., and Cattolico, M., (2002). “Grammatical
Evolution Rules: The mod and the Bucket Rule”, Proceedings of 5th European

Conference on Genetic Programming EuroGP, 3-5 April 2002, Kinsale, Ireland,
123–130.

[34] O'Neill, M., Ryan, C., Keijzer, M., and Cattolico, M., (2003). “Crossover in
Grammatical Evolution”, Genetic Programming and Evolvable Machines,
1(4):67–93.

[35] O'Neill, M., Brabazon, A., Nicolau, M., Garraghy, S. M. and Keenan, P., (2004).
“πGrammatical Evolution”, Proceedings of The Genetic and Evolutionary

Computation Conference-GECCO, 26-30 June 2004, Seattle, Washington, 617–
629.

[36] O'Neill, M. and Ryan, C., (2004). “Grammatical evolution by grammatical
evolution: The evolution of grammar and genetic code”, Proceedings of the

Seventh European Conference on Genetic Programming EuroGP, 2004, 138–149.

[37] Karpuzcu, U. R., (2005). “Automatic verilog code generation through
grammatical evolution”, Proceedings of The Genetic and Evolutionary
Computation Conference-GECCO, 25-29 June 2005, Washington D.C., USA, 394.

[38] O'Neill, M., Nicolau, M., and Agapitos, A., (2014). “Experiments in program
synthesis with grammatical evolution: A focus on Integer Sorting”, Proceedings
of IEEE Congress on Evolutionary Computation CEC, 6-11 Jul 2014, Beijing, China,
1504–1511.

[39] Byrne, J., Fenton, M., Hemberg, E., McDermott, J., and O'Neill, M., (2015).
“Optimising Complex Pylon Structures with Grammatical Evolution”,
Information Sciences, (316):582–597.

[40] Fagan, D., Fenton, M., and O'Neill, M., (2016). “Exploring Position Independent
Initialisation in Grammatical Evolution”, Proceedings of 2016 IEEE Congress on
Evolutionary Computation CEC, 24-29 July 2016, Vancouver, Canada, 5060–
5067.

[41] Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., M. O’Neill, and
Hemberg, E., (2017). “PonyGE2 : Grammatical Evolution in Python”, arXiv

Preprint

[42] Harding, S. and Banzhaf, W., (2007). “Fast Genetic Programming on GPUs”, in

72

Proceedings of the 10th European Conference on Genetic Programming EuroGP,
11-13 April 2007, Valencia, Spain, (4445):90–101.

[43] Chitty, D.M., (2007). “A data parallel approach to genetic programming using
programmable graphics hardware”, Proceedings of Conference on Genetic and
Evolutionary Computing, 2007, 1566–1573.

[44] Langdon, W.B. and Banzhaf, W., (2008). “A SIMD Interpreter for Genetic
Programming on GPU Graphics Cards”, Genetic Programming, 73–85.

[45] Wilson, G. and Banzhaf, W., (2009). “Deployment of CPU and GPU-based genetic

programming on heterogeneous devices”, Proceedings of The Genetic and
Evolutionary Computation Conference-GECCO, 8-12 July 2009, Montréal,

Canada, 2531.

[46] Harding, S.L. and Banzhaf, W., (2009). “Distributed genetic programming on

GPUs using CUDA”, Workshop on Parallel Architectures and Bioinspired
Algorithms, 2009, 1–10.

[47] Langdon, W.B. and Harman, M., (2010). “Evolving a CUDA kernel from an nVidia

template,”, IEEE Congress on Evolutionary Computation, 2010, 1–8.

[48] Dietz, H. and Young, B., (2010). “MIMD Interpretation on a GPU” Lang. Compil.

Parallel Computing, 65–79.

[49] Langdon, W.B., (2011). “Graphics processing units and genetic programming: an
overview”, Soft Computing - A Fusion of Foundation Methodology and
Application, 8(15):1657–1669.

[50] Pospichal, P., Murphy, E., O’Neill, M., Schwarz, J. and Jaros, J., (2011).
“Acceleration of Grammatical Evolution Using Graphics Processing Units”,
Proceedings of The Genetic and Evolutionary Computation Conference-GECCO,
12-16 July 2011, Dublin, Ireland, 431–438.

[51] Lewis, T.E. and Magoulas, G.D., (2011). “Identifying similarities in TMBL
programs with alignment to quicken their compilation for GPUs”, Proceedings of

The Genetic and Evolutionary Computation Conference-GECCO, 12-16 July 2011,
Dublin, Ireland, 447.

[52] da Silva, C.P., Dias, D.M., Bentes, C., Pacheco, M.A.C. and Cupertino, L.F., (2015).
“Evolving GPU machine code”, Journal of Machine Learning Research,

1(16):673–712.

[53] McDermott, J., De Jong, K., O’Reilly, U.M., White, D.R., Luke, S., Manzoni, L.,
Castelli, M., Vanneschi, L., Jaskowski, W., Krawiec, K. and Harper, R., (2012).

“Genetic programming needs better benchmarks”, Proceedings of The Genetic
and Evolutionary Computation Conference-GECCO, 07-11 July 2012,

Philedelphia, USA, 791.

[54] White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W.,

Kronberger, G., Jaśkowski, W., O’Reilly, U.M., and Luke, S., (2012). “Better GP
benchmarks: community survey results and proposals”, Genetic Programming

and Evolvable Machines, 1(14):3–29.

73

[55] Ayral, H. and Albayrak, S. (2017). “Effects of Population, Generation and Test
Case Count on Grammatical Genetic Programming for Integer Lists”, Journal of

Software, 12(5):483-492.

[56] Helmuth, T. and Spector, L., (2015). “General Program Synthesis Benchmark
Suite”, Proceedings of The Genetic and Evolutionary Computation Conference-
GECCO, 2015, 1039–1046.

[57] Keijzer, M., (2003). “Improving Symbolic Regression with Interval Arithmetic and
Linear Scaling”, Proceedings of EuroGP, 2003, 70–82.

[58] Nicolau, M. and Fenton, M., (2016). “Managing Repetition in Grammar-Based
Genetic Programming”, Proceedings of The Genetic and Evolutionary

Computation Conference-GECCO, 2016, 765–772.

74

CURRICULUM VITAE

PERSONAL INFORMATION

Name Surname : Hakan AYRAL

Date of birth and place : 1980, İstanbul

Foreign Languages : French, English

E-mail : hayral@gmail.com

EDUCATION

Degree Department University Date of
Graduation

MSc. Computer Eng. Galatasaray University 2008

BSc. Computer Eng. Kadir Has University 2005

High School Lycée de Galatasaray 1999

WORK EXPERIENCE

Year Corporation/Institute Enrollment

2008-ongoing Galatasaray University

Mathematics Department

Guest Lecturer

2005-2008 Moorestephens Turkey CIO

75

PUBLICATIONS

Papers

1. Ayral, H. and Albayrak S., (2017). “Effects of Population, Generation and Test
Case Count on Grammatical Genetic Programming for Integer Lists”, Journal of

Software, 12(5):483-492.

2. Ayral, H. and Albayrak S., (2017). “Parallel and in-process compilation of

individuals for genetic programming on GPU”, (inreview).

Preprints

1. Uludağ, A. M. and Ayral, H., (2017). “Dynamics of a family of continued fraction
maps,” , arXiv preprint.

2. Zeytin, A. and Ayral, H. and Uludağ, A. M., (2017). “InfoMod: A visual and
computational approach to Gauss’ binary quadratic forms,”, arXiv preprint.

3. Uludağ, A. M. and Ayral, H., (2016). “A subtle symmetry of Lebesgue’s
measure,” , arXiv preprint.

4. Uludağ, A. M. and Ayral, H., (2016). “On the involution of the real line induced

by Dyer’s outer automorphism of PGL(2,Z),” , arXiv preprint.

Conference Papers

1. Ayral, H. and Yavuz, S., (2011). “An automated domain specific stop word
generation method for natural language text classification”, International

Symposium on Innovations in Intelligent Systems and Applications, 15-18 June
2011, İstanbul.

Book Chapters

1. Uludağ, A.M.,(appendix by Ayral, H.) (2015). “Actions of the Modular Group”,

appeared in: Handbook of Group Actions, Athanase Papadopoulos, Lizhen Ji
and S.-T. Yau (editors) International Press, 2015.

Projects

1. Participated to Tubitak 3501 project “Infographics of the modular group, class
number problems and carks: InfoMod” Project No 113R017 .

2. Participated to Tubitak 1001 project “Hypergeometric Galois Actions (GAL-

ACT)” Project No 110T690.

CERTIFICATES

Microsoft Certified System Engineer (MCSE)

MEMBERSHIPS

Hakan AYRAL is a member of American Mathematical Society (AMS).

