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Boğaziçi University

2017



ii

ON THE EVOLUTIONARY COUPLING AND ITS MEASUREMENT

APPROVED BY:
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ABSTRACT

ON THE EVOLUTIONARY COUPLING AND ITS

MEASUREMENT

Evolutionary Coupling (EC) is the implicit relationship between the artifacts or

parts of the software system that are frequently changed together during evolution of a

system. Understanding the EC in software systems is important, as it has been shown

to provide insight into architectural problems, cross-cutting concerns, software defects

and the impact of change. Today, the increasing size and coupling within and between

software increases the importance of work on EC.

In the first part of this thesis we analyse large commercial systems which have

rarely been empirically studied to understand the relation between EC and defects. We

explore the reasons for the contradicting results in the literature about the relationship

between EC and defects. No studies exist to explain these contradictory findings. Our

results show that the explanatory power of EC measures varies depending on defect

types and module features such as size and developer activity.

In the second part of the thesis we develop EC measurement evaluation criteria

by using measurement theory and metrology principles. We show the weaknesses and

strengths of current EC measures based on measurement theory principles. We provide

recommendations for practitioners and researchers about what EC measure to use and

not to use as well as when to use these measures. Furthermore, we develop a meta-

model for EC concepts, which are essential in understanding how the measure is derived

and how to interpret it. To the best of our knowledge, this is the first work that applies

measurement theory and metrology principles to EC measurement.
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ÖZET

EVRİMSEL BAĞLAŞIM VE ÖLÇÜMÜ ÜZERİNE

Evrimsel Bağlaşım (EB), bir sistemin gelişimi sırasında birlikte sıkça değişen

yazılım sisteminin parçaları (artifact) arasındaki örtülü ilişkidir. Yazılım sistemlerinde

EB’yi anlamak önemlidir çünkü mimari problemler, çapraz kesim, yazılım hataları ve

etki analizi hakkında bilgi verir. Günümüzde, yazılım içindeki ve yazılımlar arasındaki

artan boyut ve bağlaşım, EB üzerinde çalışmanın önemini arttırmaktadır.

Bu tezin ilk bölümünde, evrimsel bağlaşım ile yazılım hataları arasındaki ilişkiyi

anlamak için ampirik olarak nadiren incelenmiş olan büyük endüstriyel yazılım sis-

temlerini analiz ettik. EB ile hatalar arasındaki ilişki hakkında literatürdeki çelişkili

sonuçların nedenlerini araştırdık. Sonuçlarımız, EB ölçülerinin açıklayıcı gücünün,

yazılım boyutu ve yazılım geliştirici faaliyetleri gibi hata tiplerine ve modül özelliklerine

bağlı olarak değiştiğini göstermektedir.

Tezin ikinci bölümünde ölçüm teorisi ve metroloji ilkelerini kullanarak EB ölçme

değerlendirme kriterleri geliştirdik. Mevcut EB ölçütlerinin zayıf yönlerini ve güçlü yan-

larını, ölçüm teorisi ilkelerine dayanarak gösterdik. Uygulayıcılara ve araştırmacılara,

hangi EB ölçütlerini ne zaman kullanmaları gerektiği konusunda tavsiyeler sunduk.

Ayrıca, EB ölçütlerinin nasıl türetildiğini ve nasıl yorumlanacağını anlamak için gerekli

olan EB kavramları için bir meta model geliştirdik. Bu tez ölçüm teorisi ve metroloji

ilkelerini EB ölçümlemesine uygulayan ilk çalışmadır.
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1. INTRODUCTION

Today software is inevitable part of our lives. We depend on software systems

in various domains such as air traffic control, finance, power, telecommunication and

many others. Software systems are dynamic and they change due to several factors

including competition, innovation, cost reduction and regulations. In other words, they

should evolve to respond the changing environment and to maintain user satisfaction.

Software repositories keep the details of these changes on evolving software systems.

Software configuration management tools (SCM) and bug/issue tracking systems are

now considered fundamental for software development life cycle (SDLC). Therefore it

is now possible to answer various questions easily such as Five Ws: What happened?,

Who is involved?, Where did it take place?, When did it take place?, Why did that

happen?.

A new concept emerging from this new software development environment is

evolutionary coupling (EC) 1 . EC is the implicit relationship between the artifacts or

parts of the software system that are frequently changed together during evolution of a

system. Understanding the EC in software systems is important, as it has been shown

to provide insight into architectural problems [6–10], cross-cutting concerns [11–13],

software defects [14–19] and the impact of change [20, 21]. Today, the increasing size

and coupling within and between software increases the importance of work on EC.

EC information is generally extracted from the commit history of SCM tools. It

is based on the assumption that artifacts committed together are logically coupled.

This makes EC relatively simple to calculate compared to other types of coupling. For

example, structural [22] and semantic [23] coupling are both measured based on the

static and text analysis of source code. Often this source code is difficult to obtain

from closed source developers. Dynamic coupling [24] analyses execution traces and

so requires the software to be executed. EC requires access to only the version control

system and is thus a relatively easy way to measure coupling, particularly for industrial

1Evolutionary coupling is also known as change coupling or logical coupling.
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closed source systems.

EC has previously been shown to indicate architectural and design problems. Gall

et al. [7,8] showed that EC can discover design flaws such as God classes or Spaghetti

code, without analysing the source code. Gall et al.’s results also identified architec-

tural weaknesses such as poorly designed inheritance hierarchies and blurred interfaces

between modules and submodules. Breu and Zimmermann [11] showed that EC in-

formation and data mining techniques could detect cross-cutting concerns in software

systems. Such cross-cutting concerns emerging over time may contain functionality

which does not align with its architecture. Furthermore, Eaddy et al. [12] argued that

cross-cutting concerns made implementation and code change diffucult as multiple lo-

cations in the source code had to be found and updated simultaneously. Their study

suggested that increased cross-cutting concerns may actually cause or contribute to

defects. Our own previous study of EC in a banking system [3] suggested that EC does

impact defects. In the first part of this dissertation, we present a detailed background

about EC and its measurement.

Conversely, Graves et al. [18] showed that module level EC measures were a poor

predictor of defect-proneness. Knab et al. [19] also found that EC did not predict

defects in the Mozilla project; no studies exist to explain these contradictory findings.

In the second part of this dissertation, we explore the reasons for these contradicting

results of EC studies by analysing the role of the context and defect types. We have

performed empirical studies on two large industrial systems: a legacy financial system

and a modern telecommunications system. We investigated the effect of EC on the

defect-proneness of large industrial software systems and explain why the effects vary.

We collected historical data for 7 years from 5 different software repositories contain-

ing 176 thousand files. We applied correlation and regression analysis to explore the

relationship between EC and software defects and we analysed defect types, size and

process metrics to explain different effects of EC on defects through correlation.

While performing these empirical studies we have also spotted problems about

EC measurement, which can also cause contradictory and unreliable results. Although
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there has been considerable work in establishing a measurement theory basis for soft-

ware measurement [25–28], it is not clear that these measurement principles have been

used in EC measurement. Measures that do not adhere to these principles may be

flawed. Empirical results obtained using flawed measures are likely to be unreliable

and decisions and conclusions based on these results could be misleading. Such results

lead to waste of time, money and resources as well as to the generation of contami-

nated scientific knowledge. This problem has been addressed in the third part of this

dissertation. We evaluate the measurement of EC in software artefacts from a mea-

surement theory perspective. We define 19 evaluation criteria based on the principles

of measurement theory and metrology. We evaluate previously published EC measures

by applying these criteria.

1.1. Our Thesis

The goal of our thesis work is to create an EC evaluation approach that supports

EC measurement and its use in empirical studies.

First we investigate the effect of EC on defect proneness of a large legacy soft-

ware in an industrial software development environment. We analysed the correlations

between EC measures and defect measures such as the number of defects and defect

density. We also used EC measures in regression models to explain defects. Module

characteristics and defect types are used to explain why different results are reported

by different studies in the literature.

Second we analyse measurement of EC. EC is measured based on the co-changes

of software artefacts in the version history. There are a variety of different co-change

characteristics such as locality and change type. One flaw of current EC measures

is treating these different characteristics as equivalent during the aggregation of co-

change measurement results. For example; in terms of locality the distance between

co-changes, specifically cross-system vs. within-system co-changes, there is evidence

[16] that a cross-system EC is not equal to a within-system EC in the context of

defect prediction. In particular cross-system co-changes are more valuable for defect
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prediction. Unreliable results are possible where EC measurement does not take such

characteristics into account, and the validity of these measures is difficult to establish.

In addition, there is no consistent definition of EC with studies using a variety of

different measures. This is problematic as it means that the phenomenon that one study

is reporting as EC may be very different from another study. Some studies [7, 17, 20]

require a minimum number of evolutionary coupled artefacts while others [6, 21, 29]

do not. This inconsistency is problematic because it is hard to compare the results of

different studies.

In this dissertation we define EC measurement evaluation criteria. We use mea-

surement theory and metrology principles in the development of our criteria. We survey

the state of the art in software measurement and metrology. Based on the survey, we

extract five principles for EC measurement in Table 1.1. Measurement must start with

an objective [26, 28, 30, 31]. Objectives put measurement in a context and determine

the design of measures and interpretation of the measurement results. So by follow-

ing this basic principal of the measurement theory we first find the objectives of EC

measurement. This constitutes our first principle shown in Table 1.1. Measurement

captures information about attributes of entities [26,28,31]. So both the entity and the

attribute to be measured should be identified clearly. This basic principle [26, 28, 31]

is the base of our second principle in Table 1.1. We characterise the concept of EC by

specifying the entities to be measured and the characteristics (attributes) that should

be taken into account. We develop a meta-model of EC and its sub-concepts includ-

ing the relationships across them as suggested by Abran [28]. In order to be valid, a

measurement method must satisfy the representation condition of measurement the-

ory [25,26,31]. Based on this principle and the meta-model developed in the previous

step, we define the empirical relations and concerns to be considered in establishing a

sound empirical relation system, which captures all generally accepted ideas about EC.

We formulate our third principle in Table 1.1 based on this principle of measurement

theory. We check whether EC measures preserve the empirical relations while mapping

the empirical relation system into the numerical one. Abran in his software metrology

work [28] points out that mature engineering disciplines have well established mea-
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surement methods and detailed procedures with a large international consensus. For

example, the World Meteorological Organization (WMO) defines the temperature mea-

surement setup in a very detailed and quantitative manner such as that thermometers

should be positioned between 1.25m and 2m above the ground. Well-defined, standard

and detailed measurement method and procedures are mandatory to ensure the accu-

racy, repeatability, and repetitiveness of measurement results. Based on this principle,

we formulate our fourth principle to cover the detailed procedures and practicalities

of EC measurement. Determining the scale type of measures and doing mathematical

validation are also one of the basic practices of measurement. Scale types are very im-

portant to determine the limitations on the kind of mathematical manipulations that

can be performed on measurement results. This forms our fifth principle.

We evaluate current EC measures based on these principles and criteria for-

mulated. We reveal the picture of existing EC measurement practices and provide

recommendations to be used in future uses of EC measurement.

Table 1.1. Software measurement requirements.

No Principle

1 Identify Measurement Objectives

2 Identify Entities and Attributes to be Measured

3 Construct Sound Empirical Relation Systems

4 Define Measurement Method and Procedures

5 Use Right Scale Types and Validate Mathematically

1.2. Contributions

The contributions of this dissertation can be classified in two categories: empirical

studies & tools and measurement.
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1.2.1. Empirical Studies and Tools (first published in [1–4])

(i) We analyse large commercial systems which have rarely been empirically studied

to understand the relation between EC and defects. Most previous studies are

based on the analysis of open source systems.

(ii) We explore the reasons for the contradicting results in the literature about the

relationship between EC and defects. No studies exist to explain these contra-

dictory findings.

(iii) The explanatory power of EC measures varies depending on defect types and

module features such as size and developer activity.

(iv) We implemented a novel MSR tool to mine various software repositories such as

SCM, issue tracking and HR systems and to detect EC.

1.2.2. Measurement (first published in [5])

(i) We show the weaknesses and strengths of current EC measures based on mea-

surement theory principles.

(ii) We provide recommendations for practitioners and researchers about what EC

measure to use and not to use as well as when to use these measures.

(iii) We develop a meta-model for EC concepts, which are essential in understanding

how the measure is derived and how to interpret the behaviour of the numerical

values when returned to the real world.

(iv) To the best of our knowledge, this is the first work that applies measurement

theory and metrology principles to EC measurement.

1.3. Organization

The roadmap of our work can be found in Figure 1.1. The chapters in this

dissertation and our publications are also provided in this roadmap.

This dissertation is organised as follows: In the next chapter, we summarise

background. Chapter 3 presents the empirical study regarding the relationship between
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Figure 1.1. The roadmap of our work.

EC and defects. In Chapter 4, we present our methodology for study selection and EC

measurement evaluation. Chapter 5 shows the results of applying our methodology to

the EC measures. Chapter 6 summarises the related work. Finally, in Chapter 7, we

summarise and present our conclusions.
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2. BACKGROUND

In this chapter, we present some background information on EC, software mea-

surement and EC measurement. We rely on this background information to explain

our EC empirical studies and measurement evaluation in the thesis.

2.1. Evolutionary Coupling (EC)

Evolutionary coupling is the implicit dependency between two or more software

artifacts that have been observed to frequently change together during the evolution of

a system. It is also called change or logical coupling. This concept was first introduced

in 1997 by Ball and Eick [6]. They presented a visualisation of co-changed classes as a

graph. They applied a clustering algorithm to calculate the relative distances between

these evolutionary coupled classes. They suggested that classes in the same cluster

were semantically related. EC is one of the four coupling types, which are structural

coupling, semantic coupling and dynamic coupling.

2.1.1. Other Types of Couplings

Definition 2.1. (Structural coupling): It is the first coupling type introduced in the

software measurement literature in 1974 by Stevens et al. [32]. Most of the coupling

measures are structural, which captures the relations between software artefacts such

as method calls, inheritance, data sharing and access, etc. Coupling Between Objects

(CBO) and Response for a Class (RFC) are two object-oriented (OO) coupling metrics

of Chidamber and Kemerer (CK) metrics suite [33]. Shyam R Chidamber and Chris F.

Kemerer proposed the first and most commonly used OO metrics in 1994. Definitions

of two coupling metrics of the CK suite are provided below:

Definition 2.2. (Coupling between Objects): CBO is a count of the number of

classes that are coupled to a particular class through method calls or variable accesses



9

of the other. CBO is the size of the set of classes that a class references and those

classes that reference this class.

Definition 2.3. (Response for Class): RFC is the size of the response set of a class.

Chidamber and Kemerer define the response set of a class as the set of methods that

can potentially be executed in response to a message received by an object of that

class.

Definition 2.4. (Semantic/Conceptual coupling): It is used to measure semantic

similarity between software artefacts. In semantically coupled artefacts, same or se-

mantically similar terms are present in their comments, identifiers, etc. This coupling

type was introduced by Poshyvanyk et al. [34] in 2006. Information Retrieval (IR) tech-

niques are used on the source code lexicon to calculate semantic coupling. Let us take

two classes c1 and c2 with the following methods: c1 = {m1,m2}, c2 = {m3,m4,m5}.

Semantic similarity (SemSim) between classes c1 and c2 is computed as the aver-

age of semantic similarities between methods of c1 and all other methods in class

c2: SemSim(c1, c2) = (SemSim(m1, c2) + (SemSim(m2, c2))/2. Semantic similarity

between the method m1 and the class c2 is calculated as:

SemSim(m1, c2) = (SemSim(m1,m3) + SemSim(m1,m4) + SemSim(m1,m5))/3

Semantic similarity between two methods takes a value between zero and one. One

indicates perfect similarity whereas zero indicates no similarity. Parts of identifiers and

comments in two methods are compared based on their similarity.

Definition 2.5. (Dynamic coupling): It calculates the coupling between software

artefacts based on the call relationships occurring during program execution. This

coupling type was introduced in 2004 by Arisholm et al. [24]. For example, let object

x be an instance of class X, which is inherited from ancestor Y and object a be an

instance of class A, which is inherited from ancestor B. Furthermore, Y implements
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the method mY and B implements mB. When object x sends the message mB to object

a, this causes a dynamic coupling between classes X and A.

There are also two coupling measures for software package which were proposed

by Robert Cecil Martin [35]:

Definition 2.6. (Afferent couplings): It is a measure which indicates a package’s

responsibility in a software system. It is the count of classes in other packages which

depend on classes within the package measured. Afferent couplings signal inward.

Definition 2.7. (Efferent couplings): It is a measure which indicates a package’s

dependence on other packages. It is the count of classes in other packages which are

referenced by classes of the package under measurement. Efferent couplings signal

outward.

2.1.2. Concepts for understanding Evolutionary Coupling

Below we are providing descriptions of the concepts that are necessary to explain

details of EC:

Definition 2.8. (Module): A module is part of a software system. A software system

is composed of one or more independently developed modules. Similar functionality

is contained within the same module and a module is generally composed of many

source files. A module is generally owned by a specific team and the team members are

responsible for its development and maintenance. In the systems analysed in this study,

modules are also part of subsystems. There is a one-to-many relationship between

subsystems and modules. A module can be part of only one subsystem and a subsystem

may have many modules.
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Definition 2.9. (Software Configuration Management): SCM is an essetial part of

software development to track and control changes in the software [36]. It includes

practices such as version control and creating baselines. SCM makes it possible to

know all changes made to software, change details, traceability to requirements as well

as people involved, etc.

Definition 2.10. (Version Control / Revision Control): A component of software

configuration management. It is the management of changes to software and its docu-

mentation by creating and saving revisions [36].

Definition 2.11. (Commit): Commit is an atomic operation in version control sys-

tems. With a commit operation, a group of changes is made final and these changes

become available to all users.

Definition 2.12. (Transaction): A transaction is an atomic SCM operation which

involves commit of a set of files to a version control system together. Most of the

modern version control systems such as Git and SVN keep track of transactions. Some

version control systems such as CVS save each commit separately and does not keep

transactions.

Definition 2.13. (Modification Request): A MR represents a conceptual software

change which includes modification of one or more source code files by one or more

software developers. These changes can be defect fixes or enhancements. Any changes

made to the source code are generally made based on modification requests (MR).

Changes without an associated MR may be performed as part of refactoring.

Definition 2.14. (Co-change): This term is used for changes performed together on

two or more software artefacts in the scope of a commit or a modification request.
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Definition 2.15. (Mining Software Repositories): MSR field analyses the rich data

available in software repositories such as version control and issue tracking systems to

uncover interesting and actionable information about software systems and projects.

Figure 2.1. Identifying evolutionary coupling: An example.

2.1.3. Identifying Evolutionary Coupling

Two source code files File1 and File2 of a software project are evolutionary cou-

pled if and only if they are committed together in a transaction at least once. Figure 2.1

presents a simple example. Ellipses represent commit transactions of a version control

system. There are three commit transactions in our example and they are named as

T1, T2 and T3.’File’s in ellipses represent files changed in the scope of this particular

commit. As illustrated by a bidirectional arrow in Figure 2.1, File1 and File2 are evolu-

tionary coupled as they appear together in two commit transactions T1 and T2. Files
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File3, File4 and File5 are also evolutionary coupled as they are changed together in the

scope of commit transaction T3, although the strength of the coupling would be lower

compared to the File1-File2 coupling. Strength here quantifies association established

by a co-change from one file to another. The stronger the coupling between files, the

more inter-related they are. Strength is calculated by using frequency of co-changes.

2.1.4. Association Rule Learning/Mining

Association Rule Mining (ARM, also known as Association Rule Learning) is

used to calculate EC measures Support and Confidence, which are considered as the

most popular EC measures [20, 21]. ARM is a rule-based machine learning method to

discover relations between variables in large databases [37]. ARM was introduced by

Agrawal et al. [37] in 1993. Let us apply ARM to the example illustrated in Figure

2.1 to explain ARM. The commit transactions in Figure 2.1 are first expressed as a set

of items (Table 2.1). Each row in the table corresponds to a version control commit

transaction, which has a unique identifier and a set of files changed in this commit

transaction.

Table 2.1. Example transactions for applying association rule mining.

Transaction ID Items

T1 {File1, File2}

T2 {File1, File2}

T3 {File3, File4, File5}

ARM is intended to uncover relationships between items and to represent them

as association rules. For example, the following association rule can be extracted from

our example: {File1} ⇒ {File2}. {File1} and {File2} are item-sets, ⇒ represents

an association rule. This rule suggests a strong relationship between File1 and File2.

Whenever File1 is changed in the scope of a commit transaction, it is very likely that

File2 will also be changed in the same commit transaction. This can be regarded as

the consequence of the analysis.
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2.1.5. Evolutionary Coupling Measures

The two measures calculated with association rules are explained below:

Definition 2.16. (Support): The number of transactions the rule has been derived

from. In other words, this is the total number of transactions, in which both files are

committed.

In our example File1 was changed in two commit transactions. Both commit

transactions also included changes of File2. So the support for the above rule is two.

Definition 2.17. (Confidence): It is the strength of the consequence of the rule.

In the above example, it determines how frequently File2 appears in transactions

that contain File1. There are two commit transactions that contain File1. Two out

of these two commit transactions contain also File2. The confidence for this rule

is 2/2 = 1. In other words, the confidence is 100%. The confidence of the rule is

calculated by dividing the support count of {File1,File2} by the support count of

{File1}.

Some studies use Modification Requests (MRs) instead of transactions to group

files and find EC. In this case, files changed in different transactions can still be found

as evolutionary coupled if these different transactions are commited in the scope of the

same MR. Based on this definition, we can use the following formula to calculate EC.

Let MR denote the set of modification requests, mr denote a specific modification

request in MR, and f denote a source code file changed in the scope of mr. Based on

these definitions, we calculate evolutionary coupled files and EC measures as follows:

Definition 2.18. (SECF): The set of Evolutionary Coupled Files of a file f is the set

of files (except f) which are co-changed together with f in the scope of at least one
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same MR. We provide its formal definition below:

SECF (f) = {fi|mr ∈MR ∧ fi ∈ mr ∧ f ∈ mr ∧ fi 6= f}

Definition 2.19. (NoECF): The total number of Evolutionary Coupled Files of a file

f is defined as:

NoECF (f) = |SECF (f)|

Definition 2.20. (SECFMR): Set of Evolutionary Coupled Files of a file f in the

scope of a modification request mr is defined as:

SECFMR(f,mr) = {fi|fi ∈ mr ∧ f ∈ mr ∧ fi 6= f}

Definition 2.21. (NoECFMR): Sum of the number of Evolutionary Coupled Files of

a file f for all mr’s in MR:

NoECFMR(f) =
n∑

i=0

|SECFMR(f,mri)|

NoECF counts a coupling between two files as one even if they are coupled in

the scope of multiple MRs. NoECFMR is different from NoECF in this respect. If two

files are co-changed in the scope of five MRs, NoECFMR is calculated as five, whereas

NoECF is calculated as one. NoECFMR considers the number of MRs, in which two

files are coupled. We aim to use NoECFMR alongside NoECF to consider multiple

MR co-changes, which may lead to stronger EC.

2.2. Software Measurement and Metrology

Fenton and Bieman [31] provide information about measurement fundamentals,

data collection and data analysis as well as the mathematical and statistical background
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of software measurement. Measurement is based on the following two concepts [31]:

(i) Entity: An object or an event in the real world such as a program, a building,

maintenance phase of a program.

(ii) Attribute: A property or characteristic of an entity such as size of a program,

age of a building, cost of maintenance phase of a program.

Measurement captures information about attributes of entities. Both the entity

and the attribute to be measured should be specified for measurement, entities or

attributes should not be used alone. There are three categories of entities which are

commonly used in software measurement:

(i) Processes: Collections of software-related activities such as code review, testing

and coding

(ii) Products: Any deliverables, artifacts or documents that are created in a process

activity

(iii) Resources: Entities utilised by a process activity such as people

Within each category, there are two types of attributes:

(i) Internal Attributes: These are attributes which can be measured only by using

the product, process or resource entity itself.

(ii) External Attributes: These are attributes of an entity that depend on the entity’s

context for measurement. For example, we need to involve users of software to

measure usability of a software.

Fenton and Bieman [31] differentiate these two types of measurement:

(i) Direct (Base) Measurement: A direct quantification of an attribute of an entity

such as the height or the weight of a person. No other attribute or entity is

involved in the measurement.
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(ii) Indirect (or Derived) Measurement: Direct measurement results are combined

into a quantified item that reflects some the attribute of the entity to be measured.

For example; velocity of an object can be measured only indirectly by using

distance and time measurement. So base measurements of distance and time

attributes are used to quantify velocity of the object.

Zuse [26] also contributed to the use of measurement theory in the area of soft-

ware measurement. He extended classic measurement theory to the needs of software

measurement [26]. Both Fenton and Zuse used the Representational Measurement

Theory (RMT) approach. RMT [38] is a formal way to represent the empirical world

of entities and their attributes and to capture their mathematics. Empirical relational

system (ERS) captures the empirical knowledge. On the other hand, numerical re-

lational system (NRS) captures the quantitative knowledge. Set algebra is used for

both ERS and NRS. A measure is a link between ERS and NRS. These links should

not cause inconsistencies. Representation Condition (RC) formalises this condition. In

other words, RC asserts that a numerical model must always make sense in terms of

the real world (empirical) model it is attempting to describe. For example, intuition

about the weight of an object is quantified by different measures in kilograms, grams,

pounds, ounces, etc.

We also use the software metrology perspective proposed by Abran [28]. Abran

[28] discusses the software measurement from a measurement method point of view.

Metrology is the science of measurement and includes all theoretical and practical

aspects of measurement according to the definition by the International Bureau of

Weights and Measures (BIPM) [39]. His work is complementary to the previous work

on the measurement theory [26, 31]. Abran suggests the following steps for designing

a measurement method [28]:

(i) Determination of the measurement objectives.

(ii) Characterization of the concept to be measured by specifying the entities to be

measured and the characteristics (attributes) to take into account.
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(iii) The setting up of the measurable construct, or of the meta - model, including the

relationships across the concept to be measured (entity and attribute).

(iv) Definition of the numerical assignment rules.

Abran [28] indicates that not all software measures have strong designs and ex-

plains the quality criteria that should be expected from software measures. He describes

what to look for when analysing a software measurement method. Cheikhi et al. [40]

applies the metrology concepts to the Chidamber and Kemerer (CK) measures suite.

They investigate how well CK measures address the metrology principles. They analyse

all CK measures from metrology perspectives and provide their mapping to the metrol-

ogy concepts. In this way it identifies which metrology concepts are not addressed by

CK measures, which can guide improvement of the CK measures.

2.2.1. Measurement of Size

Size measurement is the most commonly used software measurement. It is used

also for normalising derived measures besides quantifying size attribute of software. In

the scope of this work we also measure software size and defects as well as measuring

EC. Lines of Code (LOC) was chosen for size measurement. We used LOC to detect

outliers in the data as well as to investigate file size as a possible confounding factor.

We check for correlation between LOC and other measures.

2.2.2. Other Process Measures

EC measures are process measures. In this study we have also used some other

process measures to investigate how unique the knowledge embedded in EC measures

is compared to the other process measures. We used two basic process measures: num-

ber of commits (NoCommits) and number of developers (NoDevs). NoCommits is the

total number of all commits in which a particular file is included. Similarly, NoDevs is

the total number of all developers who changed a particular file.
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In the scope of this work we also measure defects. Defect (or bug) is defined as

a problem in a software product which does not meet a software requirement or end-

user expectations [41]. We use the following measures for defects: Number of defects

reported for a file (NoD) and Defect Density (DD). Defect Density is the number of

defects found in software/module during a specific period of operation or development

divided by the size of the software/module. Using defect density as normalised measure

in our study mitigates the risk of size as a possible confounding factor. We employ the

following formula for calculating defect density:

DD = NoD/LOC

2.3. Software Maintenance and Evolution

The concept of software evolution was first introduced by Manny Lehman in the

1970s. Along with research on IBM’s OS 360 and OS 370 operating systems, he began

to build eight commonly accepted laws known as Software Evolution Laws [42]. These

laws are general observations for E-type systems, but not absolute laws like nature

laws. E-type systems are written to perform some real-world activity. Their behaviour

is strongly linked to the environment in which it runs. Furthermore it needs to adapt

to varying requirements and circumstances in that environment. According to the

classification of Lehman and Belady [42], the E-type systems are a part of the real

world and they work integrated with it and therefore they are in constant change.

The E-type system and its environment bring together an evolving feedback system.

Eight laws that Lehman revealed are provided in Table 2.2 with the publication dates.

According to these laws, software systems are subject to continuous changes to adapt

to new and changing requirements. This leads to software ageing in the long term.

In other words, the size and the complexity of systems increase, while their quality

decreases.

Lehman used the term Software Evolution to emphasize the difference with the

post-deployment activity of software maintenance. The ISO Standard 12207 (2008)
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Table 2.2. Lehman’s laws of software evolution.

No Date Software Evolution

Law

Description

1 1974 Continuing Change E-type systems should constantly adapt to

changing environmental conditions otherwise

they become progressively less satisfactory

2 1974 Increasing Complexity Complexity increases over time as long as no

work is done to maintain or reduce the com-

plexity of the E-type systems

3 1980 Self Regulation The evolution process of E-type systems is

self-regulating with the distribution of prod-

uct and process measures close to normal

4 1978 Conservation of Or-

ganisational Stability

(invariant work rate)

The average net efficiency ratio during the

evolution of an E-type system does not

change over the life of the product

5 1978 Conservation of Fa-

miliarity

Throughout the evolution of the E-type sys-

tem, all individuals involved must maintain

the mastery of its content and behaviour for

successful evolution.

6 1991 Continuing Growth In order to maintain user satisfaction, the

functional size of E-type systems must be con-

stantly increased during their lifetime

7 1996 Declining Quality The quality of E-type systems tends to de-

crease as long as the E-type systems are not

adapted to the changes of the operational en-

vironment

8 1996 Feedback System The evolutionary processes of E-type systems

constitute multi-layered, multi-agent, multi-

loop feedback systems
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(Systems and software engineering — Software life cycle processes) [43] defines main-

tenance as follows: Software product undergoes modification to code and associated

documentation due to a problem or the need for improvement. The objective of soft-

ware maintenance is to modify the existing software while preserving its integrity.

According to the 14764-2006 - IEEE ISO/IEC 14764:2006 [44] (Standard for Software

Engineering - Software Life Cycle Processes - Maintenance), software maintenance in-

volves any modification of a software product after its delivery to fix defects, to improve

performance or other attributes, or to adapt the software to a changing environment.

Lientz and Swanson subdivided maintenance activities into four categories [45]:

Corrective maintenance is any modification of a software product after its delivery to

correct reported faults. This type of maintenance activity is reactive. On the other

hand if a modification is performed for improving the software after its delivery, it is

categorised as perfective maintenance. This type of activity is proactive. Sometimes we

need to modify software because the environment in which the software runs changes.

This type of maintenance is called adaptive maintenance. The last maintenance cat-

egory is preventive maintenance. They are any software modifications performed to

prevent problems before they emerge. This is also a proactive activity.

2.4. Statistical Methods for Empirical Research

In this subsection we provide background about some statistical methods which

are used in our empirical research in this dissertation.

2.4.1. Correlation Analysis

Correlation analysis is commonly used to uncover relationship between two vari-

ables. It is very useful as it can be exploited in practice for predictions. Spearman

and Pearson are two correlation analysis methods widely used in the scientific studies.

Pearson correlation analysis requires normally distributed data. Since the data was

not normally distributed in our study, we used Spearman’s rank correlation analysis.

Spearman correlation analysis was used to find the relationship between EC and defect
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measures. Spearman’s rank correlation analysis is a non-parametric test of correlation

and assesses how well a monotonic function describes the association between vari-

ables. This is done by ranking the sample data separately for each variable. We used

the Shapiro-Wilk test [46] to check for normality of the data. This test has the follow-

ing null-hypothesis: the population is normally distributed. The p-value is checked to

reject or accept the null-hypothesis. We reject the null-hypothesis if the p-value is less

than the chosen alpha level (0.05). In other words, this suggests that the data tested

is not normally distributed. Razali et al. [47] report that Shapiro-Wilk is the most

powerful normality test.

We set the p-value (significance level) for Spearman correlation analysis to 0.05.

If the data from the study results in a p-value of less than 0.05, we conclude that the

correlation is significant. The correlation coefficient or correlation strength is repre-

sented by ρ (rho). It expresses the relationship between EC and software defects by

a value between -1 and 1. ρ (rho) values of 1 or -1 indicate perfect positive or nega-

tive correlation, respectively. Values close to 0 indicate absence of correlation between

measures. We considered ρ (rho) values less than 0.1 to be trivial, between 0.1 and

0.3 as low, between 0.3 and 0.5 as moderate, between 0.5 and 0.7 as high, between 0.7

and 0.9 as very high, and above 0.9 as almost perfect, as suggested by various studies

in the literature [48,49].

2.4.2. Multivariate Logistic Regression

Binary logistic model is used to estimate the probability of a binary dependent

variable based on one or more independent variables. In our study, multivariate re-

gression analysis is used to explore the relationship between EC (independent variable)

and defects (dependent variable) to understand how helpful EC measures are in defect

analysis compared to other process metrics (we build correlation models rather than

prediction models). The following describes the steps taken to build a logistic regres-

sion model for the EC metrics, process metrics and the presence or absence of defects.

The first step is to binarise the defect count such that a data-point is labelled defective

if the defect count is greater than 0. Then we build a logistic regression model using
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all terms and no interactions. Having built the model we test for multicollinearity to

find any independent variables which are correlated. Then we build a model which

includes interaction terms and identify terms which are correlated. Finally, we build

an interaction model without correlated terms and apply stepwise reduction to remove

terms which are not significant.

By using regression models, we aim to determine whether a particular indepen-

dent variable really affects the dependent variable, and to estimate the magnitude of

that effect, if any.

We diagnose collinearity through variance inflation factor (VIF) analysis [50]. We

used 2.5 as the cut-off value for the simple model and 10 for the interaction model where

collinearity naturally occurs by default. These cut-off values are commonly used and as

a rule of thumb results greater than these cut-off values are considered as problematic.

If a VIF value is greater than the cut-off value, the metric with the largest VIF is

removed and the model re-built until all VIF values are less than the cut-off value.
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3. RELATIONSHIP BETWEEN EC AND DEFECTS

Today our daily lives depend on large industrial software systems in various do-

mains such as energy, finance, telecommunication, etc. Although it is very important

to understand these software systems and their quality, large industrial systems have

rarely been empirically studied to understand the relationship between EC and de-

fects. The previous studies on EC focused mainly on open source projects. Also, most

of these studies did not investigate large projects. Large industrial projects have very

different software development processes and culture than the open source projects.

Furthermore, they have also different quality characteristics such as low-defect density

and different defect types. Therefore it is crucial to perform more empirical studies on

large industrial systems to understand the relationship between EC and defects.

Software constantly changes for many reasons [42,51–53]. Studies have shown that

changing software may be a defect-prone activity [18,54–56]. Code that is changed most

frequently is likely to be the most defect-prone [55–58]. EC could explain some of this

defect-proneness since when code with high EC is changed, a high number of changes

must be made to related parts of the system. The locations of these related changes may

be scattered within the application or even across applications in a software ecosystem.

Correctly making related changes across these locations is likely to be challenging.

Developers may miss some locations which should have been co-changed and this may

cause unforeseen ripple effects and problems.

In this chapter, we analysed the correlation between EC measures and the num-

ber of defects and defect density in two large software systems in industrial software

development environments. Correlation analysis is performed separately for each mod-

ule. We also built logistic regression models. Multivariate regression analysis is used

to explore the relationship between EC (independent variable) and defects (dependent

variable) to understand how helpful EC measures are in defect analysis compared to

other process metrics (we build correlation models rather than prediction models). We

also analysed the relationship between EC and defect types. Our research questions
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are as follows:

• (RQ1) What is the relationship between evolutionary coupling and software de-

fects?

The results of our study showed that there was, in general, a relationship between

EC and software defects in the software maintenance / evolution phase of the industrial

software systems under study. We detected a positive correlation between EC measures

and defects. Compared to other process measures such as the number of commits

and the number of developers, EC measures seem to contain additional, sometimes

important, information about defects: for every additional evolutionary coupled file in

a module, the module is 8% more likely to be defective. However, correlation strength

varied across modules and in some modules EC and defects were not correlated. Based

on these findings, we added the following research question to our study:

• (RQ2) What factors explain why the relationship between evolutionary coupling

and software defects is different for different modules?

Modules which were small in terms of Lines of Code (LOC) and developer num-

bers tended to be less correlated with EC. Fewer defects due to EC seem to occur in

small modules. EC also appeared to be more highly correlated with some types of de-

fects such as code implementation, acceptance criteria and analysis problems. Overall,

regression analysis showed that EC may be useful for explaining defects in industrial

systems.

We first published our results on the empirical studies at a large company in [2–4].

Then we expanded our empirical study to another large software company as well as

the research scope and puslished in [1]. In particular, this chapter makes the following

contributions:
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(i) Firstly, we analyse large commercial systems which have rarely been empirically

studied to understand the relation between EC and defects.

(ii) Secondly, we show that the effect of EC on defects varies depending on the module.

(iii) Thirdly, the explanatory power of EC measures varies depending on defect types

and module features such as size and developer activity.

(iv) We implemented a novel MSR tool to mine various software repositories such as

SCM, issue tracking and HR systems and to detect ECs.

This chapter is organised as follows: In the next section, we summarise related

work. From section 3.1 to 3.5, we present our methodology including measures, data

extraction and analysis methods. Section 3.6 shows the results of applying our method-

ology to two industrial systems. The discussions and threats to validity of this study

are then addressed in sections 3.7 and 3.8, respectively. Finally, in Section 3.9, we

summarise and present our conclusions.

3.1. Study Context

We performed our study on two large industrial systems. One of the systems

was a large financial legacy system that had evolved for over 25 years to support the

back-end business processes of a large financial institution (henceforward known as

’Company 1’). Much of the code was written in PL/I and COBOL, but there were also

files written in JCL (Job Control Language), a scripting language used on mainframes

to develop a batch job. The system consisted of 20 subsystems and 274 modules. The

company started using a version control system in 2009. We analysed all subsystems

and modules between 2009 and 2013 and the total size of the system was 87 million

LOC, consisting of 150K individual files. The applications analysed in this study

are back-end banking applications. Company 1 uses a ’modified’ waterfall model for

software development.

The other system studied was a large telecommunications system written in Java

(henceforward known as ’Company 2’). The company had used a version control system

(SVN) since 2006; we analysed 4 subsystems and 11 modules between 2006 and 2013.
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Figure 3.1. Data collection overview.

Company 2 uses an agile methodology as well as Test-Driven Development (TDD). The

applications analysed in this study are web applications. Detailed information about

the systems under study is given in Table 3.1.

Table 3.1. Summary about industrial systems under study.

Company 1 Company 2

Programming Languages Cobol,PL/I,Jcl Java

Domain Finance Telecommunications

Versioning System CA SCM SVN

Defect Tracking System Developed in-house JIRA

Number of Software Sub-Systems 20 4

Number of Software Modules 274 11

Total Number of Developers 460 25

Total Software Size (LOC) 87 M 310 K

Total Number of Files 150 K 26 K

Total Number of File Versions 192 K 180 K

Total Number of Commits 50 K 24 K

Analysis Period 2009-2013 2006-2013

Percentage of Files Changed %11 %15
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3.2. Data Collection

We collected source code data from SVN and CA SCM version control systems,

defect data from JIRA and in-house developed defect repositories and the link between

source code and defects from CMDB at Company 1 and 2.

Figure 3.1 presents an overview of our approach to mine the data. We developed

adapters for the three different data sources: version control, defect repository and

CMDB. The output of adapters containing the data retrieved from the data source

for the specified period are stored in a database. For source code data, we fetch all

versions created during the specified period in the version control system and store

them in the database. We applied static code analysis on each file revision providing

method- and program-level static metrics (discussed in the next sub-section). Commit

information such as the developer id that created the version, date of creation and the

related problem/request/project id were available from the source code repository. We

applied filtering to remove large commits that may have contained logically irrelevant

changes. Commits containing more than 30 files were ignored and were not considered

while calculating EC measures.

In CMDB, each software product is defined as a separate configuration item (CI)

and each change is recorded and linked to the corresponding CI. In our study, we

collected all source-code related changes performed in the scope of defect fixing or

enhancement on the software product analysed over the defined period. In CMDB and

JIRA, two different sources for a change were defined: Problem or Request. We could

therefore distinguish between bug-fixing and enhancement.

3.3. Data Sources

3.3.1. Code Repositories:

Source code repositories are primarily used for storing and managing changes to

source code artifacts. The full history of changes, the owner of the change, date of
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the change and even the corresponding requirement or project task can be extracted.

The tool used at Company 1 for managing the source code repository was a product of

Computer Associates (CA), called CA Software Change Manager (CA SCM) [59]. CA

SCM provides change management in addition to its version control functionality. A

developer must make changes in CA SCM in a change package, similar to the notion

of “change set” in other SCM tools. A package groups and keeps all related changes

together, corresponding to the same defect fix or enhancement. The versioning system

used at Company 2 was Apache Subversion (SVN) [60]. SVN is a popular versioning

tool and is used by nearly half of all open source projects according to openhub.net 2 .

3.3.2. Defect Repositories: Company 1 (Finance):

We mined the defect repository to collect defect data reported. The defect repos-

itory at Company 1 was developed in-house by the company.

Mapping between Defects and Source Code: We followed different approaches

for the two companies for finding a mapping between defects and source code. For

Company 1, we used the Configuration Management Database (CMDB) for this pur-

pose. For both companies, we assumed that files involved in a defect fix contained the

defect. This assumption holds for most of the cases at both companies. Alternativelly,

SZZ (Sliwerski-Zimmerman-Zeller) [54] method might be used to locate fix-inducing

changes by linking version control to defect repository.

Configuration Management Database (CMDB): Many companies store informa-

tion related to components of their information system in a CMDB which contains

data describing the following entities [61]:

• managed resources such as computer systems and application software,

• process artifacts such as incident, problem and change records,

• relationships among managed resources and process artifacts.

2The Open Hub tracks more than 650,000 free and open source software (FOSS) repositories and
generates several statistics on the hosted source.
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In our study, we used the CMDB system at Company 1 to extract data about

the relationship between Modification Requests (MR) and source code. The CMDB

system was developed in-house by the company.

3.3.3. Defect Repository - Company 2 (Telecommunications):

Company 2 used JIRA [62], a proprietary defect tracking product, developed by

Atlassian.

Mapping between Defects and Source Code: For Company 2, we used the defect

IDs provided in the SVN commit comments by developers and the revision numbers

provided in JIRA issues. For both companies, we assumed that files involved in a

defect fix contained the defect. The percentage of fixed bugs linked to version control

is changed between 73% and 79% yearly. The bugs which are not linked to version

control include the defect fixes which do not require source code change and version

control commit such as database related fixes. The mappings from SVN commit to

defect and from JIRA issue to SVN commit were generally consistent.

3.4. Descriptions of Measures

Table 3.2 lists all the measures used in this study. These measures are defined in

the background chapter of this dissertation. The following sections will set the context

for this study.

3.4.1. EC Measures:

In the companies under study, any changes made to the source code were made

based on modification requests (MR). A MR represents a conceptual software change

which includes modification of one or more source code files by one or more software

developers. These changes can be defect fixes or enhancements. We used an MR-based

approach to calculate EC. In this study we used two EC measures NoECFMR and

NoECF defined in the Background chapter.
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Table 3.2. Summary of measures used in the study.

Measure Granularity Description

NoECF File level The number of unique Evolutionary Coupled Files

of a file

NoECFMR File level Sum of the number of co-changed files (in the scope

of an MR) of a file

TNEFC Module level Total Number of Evolutionary File Couplings in a

Module

NoD File level Number of defects reported for a file

DD File level Defect Density

TND Module level Total Number of Defects of a Module

NoCommits File level Number of Commits - Process Metric for compar-

ison purposes

NoDevs File level Number of Developers - Process Metric for com-

parison purposes

TNF Module level Total Number of Files in a Module

TNFR Module level Total Number of File Revisions in a Module

TNDVLP Module level Total Number of DeVeLoPers contributing to a

Module

LOC File level Lines of Code, Size measure

TFSC Module level Total File Size Change in LOC for a Module

The following three issues were considered in the calculation of EC measures:

i) the level at which measures are taken, ii) the approach for grouping files, and iii)

the boundary for finding coupled files. We calculated EC measures at file level; we

chose file level, since defects are mapped to files in the companies under study. One

approach for grouping file changes is using commit transactions of versioning systems

that are the unique commit operations of a developer. In this approach it is assumed

that developers commit logically coupled files within a transaction. The system at

Company 1 was a legacy system and developers rarely committed more than one file

in one transaction. Therefore, we found that a transaction-based approach was not
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appropriate to detect EC. We followed an MR-based approach and grouped the file

changes according to the associated MR numbers [18]. In our approach, file changes

spanning multiple transactions were grouped together if they were associated with the

same MR. The third issue considered for EC calculation was the boundary for finding

coupled files. We chose module level to find coupled files that resided in the same

module. In other words, we consider EC only within module boundaries. Alternative

module boundaries could be subsystem or system level, which considers cross module

couplings. In this study, we ignore any cross-module ECs.

3.4.2. Defect Types:

We used the defect types listed in Table 3.3 and provide their descriptions. This

defect type classification was used by Company 2 and each defect reported was tagged

by one or more defect types (the defect repository stored the defect type data for each

defect). The defect types in Table 3.3 are ordered based on the defect type codes used

by the company.

3.5. Analysis Method

3.5.1. Analysis Method for Answering RQ1:

Spearman correlation analysis was used to find the relationship between EC and

defect measures. Since the data is not normally distributed, we apply Spearman’s

rank correlation analysis. Spearman’s rank correlation analysis is a non-parametric

test of correlation and assesses how well a monotonic function describes the association

between variables. This is done by ranking the sample data separately for each variable.

We used the Shapiro-Wilk test [46] to check for normality of the data. This test has

the following null-hypothesis: the population is normally distributed. The p-value is

checked to reject or accept the null-hypothesis. We reject the null-hypothesis if the

p-value is less than the chosen alpha level (0.05). In other words, this suggests that

the data tested is not normally distributed.
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Table 3.3. Defect type list.

No Defect Root

Causes

Descriptions

1 Bad Data defects caused by invalid / unexpected data at persistence storage (databases)

2 Wrong Properties defects caused by properties set incorrectly for the application like timeout, thread

pool size, etc.

3 Default Value defects caused by default values of the deployed application

4 Process Failure defects caused by problems in software processes such as insufficient communication

between teams

5 3rd Party System de-

fect

defects caused by problems occurred at other systems running in the same environ-

ment

6 Database Upgrade

Failure

defects caused by incomplete/unsuccessful database schema updates / migrations

7 Data Fix Errata defects caused by incorrect scripts that are added to fix the data at persistence

storage as part of another defect

8 CRM defect defects caused by problems at Customer Relationship Management (CRM) system

9 Functionality Not

Implemented Yet

defects caused by API methods or functionalities which are not implemented yet or

not deployed with the existing software version

10 Unexpected Func-

tionality

defects experienced by users as an unexpected functionality such as response failures

and performance problems

11 Incorrect Environ-

ment

defects caused by non-satisfied prerequisites at the running environment of the ap-

plication

12 Acceptance Criteria

Impl

defects caused by missing / incomplete / incorrect automated acceptance tests

13 Database discon-

nect/reconnect error

defects caused by database (persistence storage) connection problems

14 Analysis defects caused by missing / incomplete/ incorrect requirements / user stories

15 Incorrect Config defects caused by incorrect application configuration such as versions of feeds /

services pointed

16 Infrastructure Issues defects caused by application infrastructure problems such as exhausted server swap

memory or incorrect load balancing

17 Acceptance Criteria defects caused by missing / incomplete / incorrect acceptance criteria

18 Missing or incom-

plete data migration

defects caused by incomplete / missing data migrations affecting a specific environ-

ment (test, qa, etc.)

19 User Error defects or unexpected behaviour due to a invalid usage of the application

20 Not An Issue defects which are not interpreted as defects (not supported scenario, no longer re-

quired behaviour, already fixed, etc.)

21 Test Implementation defects caused by missing / incomplete / incorrect automated (unit / integration)

tests

22 Code Implementa-

tion

defects caused by the defects inserted during implementation of new features or

defect fixing
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We set the p-value (significance level) for Spearman correlation analysis to 0.05.

If the data from the study results in a p-value of less than 0.05, we conclude that the

correlation is significant. The correlation coefficient or correlation strength is repre-

sented by ρ (rho). It expresses the relationship between EC and software defects by

a value between -1 and 1. ρ (rho) values of 1 or -1 indicate perfect positive or nega-

tive correlation, respectively. Values close to 0 indicate absence of correlation between

measures. We considered ρ (rho) values less than 0.1 to be trivial, between 0.1 and

0.3 as low, between 0.3 and 0.5 as moderate, between 0.5 and 0.7 as high, between 0.7

and 0.9 as very high, and above 0.9 as almost perfect, as suggested by various studies

in the literature [48,49].

Correlation analysis was applied on each module separately to obtain rho, p and

StdErr values for each. We used histograms to summarise the correlation results and

the SPSS [63] tool was used for the statistical analysis.

After correlation analysis was performed, we applied multivariate logistic regres-

sion and multicollinearity analysis with basic process metrics such as number of com-

mits, number of developers and prior number of defects as well as EC metrics. With

this analysis, we are aiming to identify the relationship between metrics, as well as

metrics that do not add any new knowledge about defects.

3.5.2. Analysis Method for Answering RQ2:

We used box plots to determine differences between the modules where significant

correlation was or was not observed. We drew box plots for the following measures:

• TNF: Total Number of Files in a Module

• TNEFC: Total Number of Evolutionary File Couplings in a Module

• TNFR: Total Number of File Revisions in a Module

• TNDVLP: Total Number of Developers contributing to a Module

• TND: Total Number of Defects of a Module

• TFSC: Total File Size Change in LOC for a Module
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These measures were chosen based on availability and their power to reflect dif-

ferent attributes of modules characterising size, developer activity and defects. Many

studies in the literature suggest that size is generally an important factor. Since EC is

dependent on developer activity, we have also added it as a factor. To check whether

the difference is statistically significant, we apply a t-test if data is parametric and a

Mann-Whitney test if non-parametric. We again take a significance level of 0.05.

To check the role of defect types, we repeated the correlation analysis between

EC and defect measures, but this time for each 22 defect type. We aimed to find defect

types that were likely to be related to EC and we checked the distribution of defect

types for each module.

Figure 3.2. Company 1: Histogram of Spearman rho values for correlation between

EC (NoECF measure) and number of defects (NoD).

3.6. Results

3.6.1. RQ1: Correlation Analysis Results

For 161 out of 274 (59%) software modules analysed at Company 1 and 6 out

of 11 software modules at Company 2, we observed significant correlation (p < 0.05)
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between the number of defects (NoD) and EC measures using Spearman’s analysis. A

Shapiro-Wilk test indicated that data distribution was not normal (p = 0.0 < 0.05)

and so consequently, we used Spearman’s analysis. For 32 out of 113 modules at

Company 1 for which no significant correlation was observed, the number of commit

values were either zero or low values (<= 10). EC measures need a lead time period

(Zimmerman et al. [21]) and sufficient version control activity (prerequisite for EC

measurement). Otherwise, they may not be useful. For Company 2, the modules for

which no significant correlation is observed were all small in size and the number of

defects were also low for these small modules.

The distribution of rho values of these 161 modules at Company 1 can be seen

in the histogram in Figure 3.2. This figure only shows the histogram of Spearman rho

values for correlation between NoECF and NoD. The histogram for correlation between

NoECFMR and NoD is very similar to the former one, which can be seen in Figure 3.3.

The correlation observed was generally low and moderate. For 21 modules, high and

very high correlation was observed. Figures 3.4(a) and 3.4(b) show the distribution of

rho values on the histogram for Company 2. The correlation values do not seem to be

high but while interpreting these results we should consider that we are only analysing

one factor among many factors, which can have a relationship with defects. From this

perspective, having 59% of modules with significant correlation and low to moderate

correlation strength is a very important result.

If we compare the analysis results of the two companies, we observe that Company

2 has relatively fewer modules with high correlation values. The practices such as

agile and TDD used by Company 2 may have affected this result. Such practices

may lead to lower coupling in systems. This result may also be due to the different

architectures used by these two systems. Company 2 used the Model-View-Controller

(MVC) architectural pattern in its projects. MVC splits software application into three

layers and separates presentation, data and flow control. Whereas the architecture in

the Company 1 systems is more ad hoc since these legacy systems have been evolved

over a long period. Organizational structure of the companies may also have impact

on the design and coupling of the systems analysed as suggested by Conway’s law [64].
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Figure 3.3. Company 1: Histogram of Spearman rho values for correlation between

EC (NoECFMR measure) and number of defects.

However, this should be investigated further.

(a) Correlation between NoECF and NoD. (b) Correlation between NoECFMR and

NoD.

Figure 3.4. Company 2: Histogram of Spearman rho values for correlation between

EC measures and number of defects (NoD).

We also applied Spearman’s analysis for EC measures and defect density (DD).

For 147 out of 274 software modules analysed at Company 1, we observed significant

correlation (p < 0.05) between DD and EC measures by using Spearman’s analysis. The

distribution of rho values can be seen in the histogram in Figure 3.5. Although there

are slightly fewer modules identified as significant compared with the previous analysis,
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Figure 3.5. Company 1: Histogram of Spearman rho values for correlation between

EC (NoECF measure) and defect density (DD).

the distribution of rho values shown in the two histograms shows great similarity. In

keeping with the previous analysis results, the correlation observed was generally low

and moderate; for a small number of modules, high correlation was observed. The

results for Company 2 were similar to the previous analysis results as shown in Figure

3.6.

(a) Correlation between NoECF and DD. (b) Correlation between NoECFMR and DD.

Figure 3.6. Company 2: Histogram of Spearman rho values for correlation between

EC measures and defect density (DD).
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We have also applied Spearman’s correlation analysis for basic process metrics

such as number of commits, number of developers and prior number of defects for

comparison purposes. Table 3.4 summarises the results. We have found only moderate

correlation (0.57) between EC measures and two process measures (NoCommits and

NoDevs). The correlation between EC measures and defects (NoD) was slighter higher

than the correlation between defects and the other two process measures (NoCommits

and NoDevs).

Table 3.4. Spearman correlation results of the process metrics.

NoECF NoECFMR NoD NoCommits

NoECFMR ρ=.99

p=.000

NoD ρ=.28 ρ=.28

p=.000 p=.000

NoCommits ρ=0.57 ρ=0.57 ρ=.24

p=.00 p=.00 p=.00

NoDevs ρ=0.57 ρ=0.57 ρ=.24 ρ=0.99

p=.00 p=.00 p=.000 p=.00

3.6.2. RQ1: Regression Analysis Results

After correlation analysis, we applied multivariate logistic regression to build

models which indicate files which are likely to be defective. First, we built a logistic

regression model using all terms and no interactions (Table 3.5).

Table 3.5. First model with all terms and no interaction.

Estimate Std. Error z value Pr(> |z|)

(Intercept) -2.9369 0.0122 -240.71 0.0000

NoECFMR 0.0287 0.0048 5.95 0.0000

NoECF 0.0274 0.0056 4.88 0.0000

NoCommits 0.0213 0.0059 3.63 0.0003

NoDevs 0.8340 0.0250 33.41 0.0000
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Having built the model we test for multicollinearity to find any independent

variables which are correlated (Table 3.6). We assess the variance inflation factors

(VIF). A VIF > 2.5 is considered problematic requiring one or more variables to be

removed. ‘NoECFMR’ and ‘NoECF’ are identified as being correlated and therefore we

remove ‘NoECFMR’ from the model (Table 3.7). Multicollinearity analysis results and

odds ratio (OR)3 effect sizes after removing ‘NoECFMR’ are also provided in Table

3.8 respectively. The odds ratio results suggest a rather low relation between EC and

defects, although slightly higher than that of the number of commits.

Table 3.6. Test for multicolinearity.

VIF

NoECFMR 21.29

NoECF 21.12

NoCommits 1.87

NoDevs 2.10

Table 3.7. Model for all terms without NoECFMR.

Estimate Std. Error z value Pr(> |z|)

(Intercept) -2.9432 0.0122 -241.67 0.0000

NoECF 0.0601 0.0014 44.02 0.0000

NoCommits 0.0247 0.0057 4.33 0.0000

NoDevs 0.8362 0.0247 33.88 0.0000

Table 3.8. Multicolinearity and odds ratio effect size (without NoECFMR).

VIF

NoECF 1.29

NoCommits 1.85

NoDevs 2.09

OR

(Intercept) 0.05

NoECF 1.06

NoCommits 1.03

NoDevs 2.31

3An Odds Ratio greater than 1.0 indicates that an increase in the variable will increase the
propensity for the file to be defective.
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Having identified individual variables which make a significant contribution to

the logistic regression model, we built a model which includes interaction terms (Table

3.9) and identify terms which are correlated (Table 3.10). Again, VIF values are highly

likely to be correlated because we are using interaction terms, therefore V IF > 10 is

considered problematic (Table 3.10). Odds ratio effect sizes for this model are provided

in Table 3.11.

Table 3.9. Model with interaction terms.

Estimate Std. Error z value Pr(> |z|)

(Intercept) -3.0191 0.0130 -232.56 0.0000

NoECF 0.0817 0.0018 46.07 0.0000

NoCommits 0.0888 0.0116 7.63 0.0000

NoDevs 1.2002 0.0310 38.74 0.0000

NoECF:NoCommits -0.0021 0.0007 -3.13 0.0017

NoECF:NoDevs -0.0356 0.0019 -18.35 0.0000

NoCommits:NoDevs -0.0576 0.0064 -8.94 0.0000

NoECF:NoCommits:NoDevs 0.0024 0.0003 7.40 0.0000

Table 3.10. Multicolinearity (with interaction terms).

VIF

NoECF 2.52

NoCommits 8.20

NoDevs 3.79

NoECF:NoCommits 10.81

NoECF:NoDevs 7.34

NoCommits:NoDevs 10.21

NoECF:NoCommits:NoDevs 14.59

Next we built an interaction model without correlated terms and applied stepwise

reduction to remove terms which were not significant (Table 3.12). The multicollinear-

ity analysis results and odds ratio effect sizes for this model are also provided in Table
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Table 3.11. Odds ratio effect size (with interaction terms).

OR 2.5 % 97.5 %

(Intercept) 0.05 0.05 0.05

NoECF 1.09 1.08 1.09

NoCommits 1.09 1.07 1.12

NoDevs 3.32 3.12 3.53

NoECF:NoCommits 1.00 1.00 1.00

NoECF:NoDevs 0.96 0.96 0.97

NoCommits:NoDevs 0.94 0.93 0.96

NoECF:NoCommits:NoDevs 1.00 1.00 1.00

3.13, respectively. This analysis shows how unique the knowledge embedded in EC

measures is compared to the other process metrics.

The final model includes the following significant terms: NoECF, NoCommits,

NoDevs and the interaction of NoECF with NoDevs. All terms apart from the interac-

tion term are greater than 1.0 showing that when the independent variable increases,

the propensity of a file to be defective increases. The interaction term (NoECF:NoDevs

0.98) is slightly less than 1.0 indicating that as both increase together the linear model

is adjusted to marginally decrease the increasing propensity of the model to predict a

file as being defective.

To check the relationship between EC measures and defect-proneness of files from

a different perspective, we drew box plots for EC measures of files with and without

defects. A separate box plot for each module was created and for some of the modules

these can be seen in Figure 3.7. 1 represents files with defects, 2 represents files without

any defects. These box plots show a clear separation between files with defects and

without defects.

We also performed manual analysis for some highly evolutionary coupled files

and their defects to show how software defects were influenced by EC. In some defect



43

Table 3.12. Reduced model with interaction terms with no collinearity.

Estimate Std. Error z value Pr(> |z|)

(Intercept) -2.9878 0.0126 -236.95 0.0000

NoECF 0.0747 0.0015 48.92 0.0000

NoCommits 0.0324 0.0054 5.95 0.0000

NoDevs 0.9823 0.0248 39.63 0.0000

NoECF:NoDevs -0.0184 0.0009 -20.27 0.0000

Table 3.13. Multicolinearity and odds ratio effect size (final model).

VIF

NoECF 1.89

NoCommits 1.94

NoDevs 2.39

NoECF:NoDevs 2.40

OR 2.5 % 97.5 %

(Intercept) 0.05 0.05 0.05

NoECF 1.08 1.07 1.08

NoCommits 1.03 1.02 1.04

NoDevs 2.67 2.54 2.80

NoECF:NoDevs 0.98 0.98 0.98

instances, a highly evolutionary coupled file was changed but this change was not

accumulated to all coupled files correctly. This was the root cause of the fault. There

was no structural or dynamic coupling between these files. We also observed similar

instances but across different modules managed by different teams. A change made in

a module was not accumulated to the evolutionary coupled modules. For some defect

instances, a previous modification to a highly evolutionary coupled file caused some

unanticipated behaviour in the coupled files.

3.6.3. RQ2: Box Plot Analysis Results

Figures 3.8, 3.9 and 3.10 show the box plots of module-level measures for modules

where correlation is and is not detected. The y-axis of box plots is represented on a

logarithmic scale and the range of measurement values in Figure 3.9 (for Company

2) is perfectly separated. Although there is overlap in the box plots for Company 1,
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(a) Module 1. (b) Module 2. (c) Module 3.

(d) Module 4. (e) Module 20. (f) Module 23.

(g) Module 38. (h) Module 55. (i) Module 64.

Figure 3.7. Box plots of EC measures for selected modules - files with defects vs. files

without defects (1: represents files with defects, 2: represents files without any

defects). Y-axis of box plots are removed to prevent revealing sensitive company data.

the difference is statistically significant (< 0.05) for both companies according to the

Mann-Whitney test. All modules for which correlation is observed have high values for

Total Number of Files (TNF), Total Number of Evolutionary File Couplings (TNEFC)

and Total Number of File Revisions (TNFR). On the other hand, we did not observe

a perfect separation of ranges for measures such as Total Number of Developers con-

tributed (Figure 3.10(a)), Total Number of Defects (Figure 3.10(b)) and Total File Size
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(a) Total number of files (TNF). (b) Total number of file cou-

plings (TNEFC).

(c) Total number of file revisions

(TNFR).

Figure 3.8. Company 1: Box plots of different measures for modules in which

correlation between EC and defects detected (Yes) and not detected (No).

(a) Total number of files (TNF). (b) Total number of file cou-

plings (TNEFC).

(c) Total number of file revisions

(TNFR).

Figure 3.9. Company 2: Box plots of different measures for modules in which

correlation between EC and defects detected (Yes) and not detected (No).

Change in LOC for both companies (Figure 3.10(c)). However, the difference is still

statistically significant (< 0.05) according to the Mann-Whitney test.
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(a) Total number of developers. (b) Total number of defects. (c) Total file size change (in

LOC).

Figure 3.10. Company 1: Box plots of different measures for modules in which

correlation between EC and defects detected (Yes) and not detected (No).

We also checked how balanced the set of modules were in terms of defects with

and without correlation and they were mostly unbalanced. There are generally more

files without defects than those with defects.

We also analysed the relationship between module size and Spearman rho values

for the correlation between EC (NoECF measure) and number of defects. The results

can be seen in Figure 3.11 and Table 3.14. The correlation analysis showed a significant

negative correlation (p=.005< 0.05 and rho=-0.218) between module size and rho

value.

Table 3.14. Spearman correlation results.

LOC

rho ρ=-0.218**

p=.005
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Figure 3.11. Module size vs. rho values of EC-defect correlation.

3.6.4. RQ2: Defect Type Analysis Results

The results of correlation analysis for each defect type are summarised in Table

3.15. The columns of the table show the Spearman correlation strength (rho values)

between two EC measures and defect measures. Rows of the table represent different

defect types. The list of defect types and their descriptions are provided in Table 3.3

in Section 3.4.2. In the table, we include only the defect types that have at least one

significant correlation result. Code Implementation is the top correlated defect type

and moderate correlation was observed here. One interpretation is that developers tend

to make coding errors while they work on source files which are highly evolutionary

coupled and they should take into account more relations with more files when coding

these files. For the defect types in the table, we observed low correlation, although

they are significant. Defect types such as Acceptance Criteria and Analysis can be

associated with external EC to other modules and applications. Involvement of more
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Table 3.15. Spearman correlation analysis results (EC measures - defect types).

NoECFMR vs NoD NoECF vs NoD

(Spearman Corr.) (Spearman Corr.)

Code Implementation ρ (rho)=.176** ρ (rho)=.182**

p=.000 p=.000

Acceptance Criteria ρ (rho)=.111** ρ (rho)=.113**

p=.000 p=.000

Functionality Not Implemented Yet ρ (rho)=.088** ρ (rho)=.091**

p=.000 p=.000

Analysis ρ (rho)=.083** ρ (rho)=.085**

p=.000 p=.000

Not An Issue ρ (rho)=.052** ρ (rho)=.045**

p=.000 p=.000

Test Implementation ρ (rho)=.060** ρ (rho)=.061**

p=.000 p=.000

3rd Party System defect ρ (rho)=.047** ρ (rho)=.045**

p=.000 p=.000

Bad Data ρ (rho)=.091** ρ (rho)=.093**

p=.000 p=.000

** Correlation is significant at the 0.01 level (2-tailed).

modules and applications may make analysis and defining acceptance test criteria more

difficult. We can interpret the correlation with Test Implementation type in a similar

way to Code Implementation. We have checked the defects of Not An Issue type with

the project members. They explained that this defect type was generally used for

deployment problems. Correlation between defects of this defect type and EC may

be explained as that deploying highly evolutionary coupled files and modules may be

more error-prone due to more dependencies to be considered and deployed together.

For the following defect types, correlation values observed were trivial and are

therefore ignored: Wrong Properties, Defect Value, Process Failure, Database Upgrade

Failure, Data Fix Errata, Unexpected Functionality, Incorrect Config, Infrastructure

Issues, Missing or Incomplete Data Migration, Acceptance Criteria Implementation.
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For the following defect types, no significant correlation was detected: Incorrect

Environment, CRM Bug, User Error, Database Disconnect-Reconnect Error.

3.7. Discussion

Our findings give insights to future researchers and practitioners on the effect of

EC on defects.

3.7.1. (RQ1) What is the relationship between evolutionary coupling and

software defects?

Our results suggest that there is, in general, a significant positive correlation

between EC measures and defects. This finding is consistent with the general opinion

that low coupling is an important principle to follow for a high quality software design

and that high coupling can be related to defects [22, 65, 66]. Fewer interconnections

between elements reduce the chance that changes in one element cause problems in

other elements. Fewer interconnections between elements is also reported to reduce

programmer time [67]. It is essential to keep the effect of a change in one element on

another element low. However, our study shows that correlation strength between EC

and defects varies across modules. Correlation strength had a wide range of values

from zero to 0.8. Furthermore, there are also modules in which EC and software

defects are not correlated. This is an important finding, since it highlights that the

effect of EC is likely to vary depending on the module analysed. It is likely that the

context of each module affects the risk that making change will create unanticipated

changes within other elements. In other words, a change made in source code may have

different manifestations on defects based on the module context (e.g., development

process characteristics). Some modules carry higher risk than others. Therefore it is

important to consider the EC - defect relationship in the context of related modules.

The contradictory findings reported by previous EC studies such as Graves et

al. [18] and Knab et al. [19] may be partially explained in terms of the different sys-

tems and modules used in these studies. As shown by existing studies [68] the context
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has an important impact on studies. We have shown that EC has different effects on

defects across different modules, because EC seems to manifest differently in different

modules. The characteristics of the modules in individual systems must be accounted

for in future studies as also suggested by existing studies [68]. This finding also pro-

vides practitioners with valuable information on detecting defects and problematic code

hotspots. However, as for all other code measures in relation to defects, EC does not

contribute to defects equally for every module in a system, so EC use is not consis-

tently helpful. We recommend that practitioners use EC for assessing the quality of

their software design but also in conjunction with other module characteristics. That

way practitioners will get the best of both worlds.

3.7.2. (RQ2) What factors explain why the relationship between evolution-

ary coupling and software defects is different for different modules?

We also tried to explain possible reasons for the different effects of EC on software

defects. We considered this issue from two perspectives: module characteristics and

defect types. We found that EC was less likely to have an effect on software defects

for modules with fewer files and where fewer developers contributed. This may be

explained by fewer defects being caused by EC in relatively small modules. Potentially,

there are fewer interconnections between elements in a small module. Let n denote the

number of files in a module. The potential number of interconnections in a module

is calculated as
n ∗ (n− 1)

2
=

n2 − n
2

. Interconnections between files in a module

can grow quadratically with the number of files. The more inter-related the files are,

the more difficult these modules are to comprehend and perform changes. This may

eventually lead to defects. An alternative explanation at least for the non-density

models would be that such files typically have fewer defects.

We also recommend that practitioners add EC measures to their metric suite for

software design evaluation. We recommend that researchers report process and size

metrics of modules in their EC studies to account for the possible effect of context

in their results. Furthermore, we found that EC may be more related to some defect

types such as Code Implementation, Acceptance Criteria, Test Implementation and
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less related to others such as Unexpected Functionality, Infrastructure Issues, Missing

or Incomplete Data Migration, Incorrect Environment, User Error.

We believe that defect types may be used to explain the contradictory findings

reported by previous EC studies in the literature. The different systems and modules

used in these studies have different defect types and EC has different relationships with

different defect types. It is more likely that high EC will cause Code Implementation

and Test Implementation defects, because a high number of changes must be made to

related parts of the system when code with high EC is changed. The locations of these

related changes may be scattered within the application or even across applications

in a software ecosystem; making related changes across these locations is likely to

be challenging and this can increase the cognitive load of developers [69]. Moreover,

developers may miss some locations which should be co-changed and this may cause

unforeseen code and test implementation problems. On the other hand, EC is unlikely

to contribute to defects whose root cause is user error or infrastructure issues.

3.8. Threats to Validity

3.8.1. Construct Validity

Threats to construct validity relate to whether we measure what we intend to

measure. When calculating EC measures, there are two ways in which to group file

revisions in the source code repository: MR-based and Transaction-based. EC mea-

sures calculated on a transaction basis for the system under study do not reflect the

coupling relations between files; therefore, we preferred a MR-based approach for their

calculation. The reason is that changes for a single MR were frequently split across

multiple commit transactions for the systems under study. In contrast to open source

systems previously analysed, in this study we had good defect linking. That enabled

us to use a MR-based approach.

Another threat is the potential overlap in knowledge of EC with existing process

metrics. To mitigate this threat, we applied multivariate regression and multicollinear-
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ity analysis to understand the overlap and the unique knowledge embedded in EC

measures.

The EC metrics used in our study do not consider the age and temporal aspects

of EC. ECs that are temporary or no longer valid due to refactorings or restructurings

could not be detected in our study. This is a limitation of the study.

We assume that any change made to source code is committed to code reposi-

tories. The software processes in both companies place check points (at compilation,

moving to test/production) to guarantee this assumption. Practitioners should be care-

ful in using EC measures, since they may not be reliable for some modules if version

control systems (VCSs) are not used by their developers (or there is a low utilisation

of VCS). EC measures make sense if the VCS is used long enough and consistently. In

this study, some modules had low utilisation for VCS and this may be an indication of

problems with VCS adaptation for some projects in the company. VCS was introduced

to some projects at Company 1 a few years ago. As a consequence, we recommend

excluding these types of modules or systems when calculating EC measures and using

EC measures in defect models.

All the files committed in a particular commit operation might not be logically

coupled. This threat is mitigated by ignoring commit transactions having more than

30 files. Therefore large transactions, which may possibly include files from more than

one MRs (e.g., the merge of a branch), are not used to calculate EC. Furthermore, we

also performed a manual analysis of randomly chosen commits and MRs and checked

the validity of this assumption. When huge commit transactions are removed, there

are very few exceptions to this assumption. Another point is that there are differences

between industrial and open source software development regarding this assumption.

Companies generally place controls on MRs in the application life cycle (e.g., manda-

tory MR numbers during check-in, allowing only files associated with an MR to move

to the production, etc.) and companies usually rigorously follow such conventions,

unlike many open source projects [70].
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3.8.2. Internal Validity

In this study, we used configuration items from the Configuration Management

Database (CMDB) (for Company 1 only) attached to problem records and related

requests (move to production, code review, move to test, etc.) with which to match

defects to source code files. Two assumptions were made at this stage:

(i) Configuration items defined at CMDB correspond to source files changed in the

scope of the resolution of a defect.

(ii) Configuration items of the source files changed in the scope of the resolution of

a defect are linked to the problem record of the defect.

The validity of these two assumptions can be guaranteed for certain record types

(move to production, code review), but in general these cannot be guaranteed, that for

each defect, all related source files are detected.

Another assumption is that developers commit source files changed in the scope

of the same MR to the same package in the code repository. This assumption is used in

the calculation of EC measures. We rely on the data collected from versioning systems

and any project which is not managed in the versioning system (or any file which is

not committed to versioning systems) are not considered in our study.

The measures and defect types chosen for answering RQ2 are not exhaustive and

do not cover all characteristics of a module and all defect types which can exist. An

exhaustive examination may have revealed other factors that have a greater effect on

defects and which may be confounding our results. In our study, we investigated file

size (LOC) as a possible confounding factor. We observed that code size correlated

with number of defects in some modules. Defect density (DD) however had either no

significant correlation or only minor negative correlation. Using defect density in our

study mitigates the risk of size as a possible confounding factor. We are planning future

investigations to explore the effect size of a large number of factors related to defects.
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3.8.3. External Validity

External validity relates to the generalisation of our study results. We only

studied two industrial software systems. These systems may not be representative of

the way developers develop systems more generally. We mitigate this risk by choosing

two systems from different domains and with different technologies. In future work, we

would like to extend this study by including more commercial systems and projects.

3.9. Conclusions

In this chapter, we presented a study on the relationship between EC and soft-

ware defects in two large industrial software systems. We reported a positive correlation

between EC and defect measures in the software maintenance / evolution phase of sys-

tems from two different companies. Our results indicated low, moderate and high level

correlation, with varied correlation strength across modules. Our regression analysis

results indicated that EC measures could be useful for explaining defects.

The box plots drawn for each module separately showed the potential of EC

measures to distinguish defective and non-defective files. We also observed that the

company using practices such as agile and TDD had relatively fewer modules with high

EC-defect correlation values. However, this finding needs to be further investigated on

more companies for generalisable conclusions.

We also tried to understand the reasons for variation of the observed effect of EC

on software defects for different modules. We found that modules which were small in

size in terms of file and developer numbers, tended to be less correlated with EC. Inter-

connections between files in a module can grow quadratically with the number of files.

Increasing number of inter-related files make a module more difficult to comprehend

and perform changes. This complexity may eventually lead to defects and this may

be one of the reasons for variation across modules. Furthermore, we observed that EC

measures showed higher correlation with some types of defects (based on root causes)

such as code implementation, acceptance criteria and analysis problems. The disper-
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sion of these defect types could be another reason for these varying effects. Different

modules have different defect types and EC has different relationships with different

defect types.

Module characteristics and defect types may also explain why different results

are reported by different studies in the literature. Different applications or modules

analysed may have different characteristics and defect types. We recommend that

researchers report characteristics and defect types of modules in their EC studies to

account for the possible effect of the context in their results. We also recommend that

practitioners add EC measures to their metric suite for software design evaluation and

consider the characteristics and defect types of their modules in their evaluation.
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4. EC MEASUREMENT EVALUATION METHODS

Although there has been considerable work in establishing a measurement theory

basis for software measurement [25–28], it is not clear that these measurement principles

have been used in EC measurement. Measures that do not adhere to these principles

may be flawed. Empirical results obtained using flawed measures are likely to be

unreliable and decisions and conclusions based on these results could be misleading.

Such results may lead to time, money and resources being waste as well as contaminated

scientific knowledge generated.

In this chapter we present EC measurement evaluation criteria. We use measure-

ment theory and metrology principles in the development of our criteria. Measurement

must start with an objective [26, 28, 30, 31]. Objectives put measurement in a context

and determine the design of measures and interpretation of the measurement results.

So by following this basic principal of the measurement theory we first find the objec-

tives of EC measurement. This constitutes our first research question (RQ1) in Table

4.1. Measurement captures information about attributes of entities [26, 28, 31]. So

both the entity and the attribute to be measured should be identified clearly. This

basic principle [26, 28, 31] is the base of our second research question (RQ2) in Table

4.1. We characterise the concept of EC by specifying the entities to be measured and

the characteristics (attributes) that should be taken into account. We develop a meta-

model of EC and its sub-concepts including the relationships across them as suggested

by Abran [28]. In order to be valid, a measurement method must satisfy the repre-

sentation condition of measurement theory [25, 26, 31]. Based on this principle and

the meta-model developed in the previous step, we define the empirical relations and

concerns to be considered in establishing a sound empirical relation system, which cap-

tures all generally accepted ideas about EC. We formulate our third question (RQ3)

in Table 4.1 based on this principle of measurement theory. We check whether EC

measures preserve the empirical relations while mapping the empirical relation sys-

tem into the numerical one. Abran in his software metrology work [28] points out

that mature engineering disciplines have well established measurement methods and
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the detailed procedures with a large international consensus. For example, the World

Meteorological Organization (WMO) defines the temperature measurement setup in a

very detailed and quantitative manner such as that thermometers should be positioned

between 1.25m and 2m above the ground. Well-defined, standard and detailed mea-

surement method and procedures are mandatory to ensure the accuracy, repeatability,

and repetitiveness of measurement results. Based on this principle, we formulate our

fourth research question (RQ4) to cover the detailed procedures and practicalities of

EC measurement. Determining the scale type of measures and doing mathematical

validation are also one of the basic practices of measurement. Scale types are very

important to determine the limitations on the types of mathematical manipulations

that can be performed on measurement results. This forms our fifth research question

(RQ5).

We evaluate current EC measures based on these research questions and cri-

teria formulated for each research question. We reveal the picture of existing EC

measurement practices and provide recommendations to be used in future uses of EC

measurement.

Table 4.1. Research questions.

No Research Question

RQ1 What are the objectives of EC measurement?

RQ2 Do existing EC studies identify entities and attributes to be mea-

sured?

RQ3 Do existing EC studies use sound empirical relation systems?

RQ4 Do existing EC studies define the measurement method and proce-

dures?

RQ5 Do existing EC studies use scale type and mathematical validation?

Our evaluation methods are based on the software measurement literature. From

the literature drawn on the principles of measurement theory [26, 31] and on soft-

ware metrology [28] we develop evaluation criteria that will allow us to answer our

research questions. Our evaluation criteria are based on established software measure-



58

ment theory (Fenton [31] and Zuse [26]) and, in particular, are based on representa-

tion conditions, the mathematical properties of the manipulation of numbers and the

proper conditions for such manipulations. Our evaluation criteria also draw on software

metrology [28] by including criteria which evaluate the measurement method.

The set of evaluation criteria that we develop are not of equal importance. Con-

sequently, we weigh the importance of each criteria using three gradations (3 or 2 or

1, from high to low). These weights have been arrived at by the authors interpreting

the literature on software measurement and applying to the measurement of EC.

We first published our results on the EC measurement evaluation methods in [5].

In particular, this chapter makes the following contributions:

(i) We develop a meta-model for EC concepts, which helps to understand how the

measure is derived and how to interpret the numerical values of measurement

results.

(ii) To the best of our knowledge, this is the first work that applies measurement

theory and metrology principles to EC measurement.

The following subsections detail the principles of measurement theory and soft-

ware metrology that we have used in the development of our evaluation criteria within

the context of our Research Questions.

4.1. Study Selection Methods

To identify the set of EC studies to evaluate we used a cut-down Systematic

Literature Review (SLR) approach based on that proposed by Kitchenham et al. [71].

SLR is a process of identifying, assessing and interpreting all available research evidence

to provide answers for particular research question. We did not include all stages of an

SLR, for example we did not include an explicit quality assessment, as the objectives

of our study did not require this. We were aiming to identify all studies that use EC

measurement, in order to evaluate that EC measurement. It could be argued that this
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evaluation is an extended quality check.

First we prepared a protocol for our literature review which defines the process

and methods to be used in our specific systematic review. Such a pre-defined protocol

reduces the possibility of researcher bias and allows validation and replication. Without

a protocol, researcher expectations are more likely to impact the study selection and

evaluation. We now summarise our protocol.

We identified previous studies of EC using the search facilities in the SCOPUS

tool. SCOPUS is a general indexing system, which indexes most of the main inter-

nationally recognised software engineering journals that regularly publish empirical

studies. The following search string is used in our searches:

(“evolutionary coupling” OR “change coupling” OR “logical coupling”) AND

(software) anywhere in study

We used these terms as our preliminary reading shows that three different terms

are used to refer to EC: Evolutionary Coupling [21], Change Coupling [17] and Logical

Coupling [7]. Our initial searches returned many false positives from other domains

such as Genetics, Molecular Biology, Electronics, etc. We added Software as a keyword

to reduce false positives from other domains. We follow Kitchenham et al.’s recommen-

dation of using fairly simple search strings based on the main topic [71]. Simple strings

are more likely to work on a variety of different digital libraries without extensive

refinement.

Our searches covered 1997 to 2014. We chose 1997 as the start date since there

is general agreement [17, 21] that EC is first introduced in 1997 by Ball et al. [6].

After obtaining the potentially relevant primary studies by digital library and manual

searches, each must be assessed for relevance. The following inclusion criteria (a paper

must be) and exclusion criteria (a paper must not be) were identified in the SLR

protocol:
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Inclusion criteria:

• A study measuring Evolutionary Coupling

• Published in English

• A Journal paper or Conference proceedings

Exclusion Criteria:

• Papers not subject to peer-review

• Grey literature such as technical reports

We assessed each candidate paper by applying the inclusion/exclusion criteria on

all primary studies found. Then a randomly selected three papers were also assessed

by the two other senior researchers, plus one other researcher. Disagreements among

assessors were resolved with a meeting. This process identified fifteen included papers.

4.2. Research Question 1: What are the objectives of EC measurement?

This research question was motivated by Abran [28] and Fenton and Bieman [31]

emphasising the importance of determining measurement objectives. It is important

to know the intended use of the measure and the intended users of the measurement

results (software user, software designer, etc.). As a measure can be very useful for

a specific measurement objective while the same measure may not be appropriate for

another measurement objective. Consequently our first evaluation criteria is:

Table 4.2. Criteria related with RQ1.

ID Criteria Category Weight RQ

C0 Objectives and Users of

Measurement

Measurement Objec-

tives

3 RQ1
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This criteria is essential to all studies and so has a weighting of 3.

4.3. Research Question 2: Do existing EC studies identify entities and

attributes to be measured?

This research question was included because to evaluate a base measure the con-

cept to be measured must be first clearly defined as stated by Fenton [31] and by

Abran [28]. An (empirical) operational definition of the entity and the attribute must

be given; that is, the concept must be characterised. The first step of the charac-

terisation is the decomposition of the concept into its sub-concepts as suggested by

Abran [28]. The definitions of sub-concepts and their relation to the concept are iden-

tified in this decomposition process. We start the decomposition by analysing the

definition of EC:

• The implicit relationship between two or more software artefacts which are fre-

quently changed together [7, 8, 17].

The sub-concepts extracted from this definition are i) “software artefact”, ii)

“relationship” and iii) “co-change” (changed together). We further decompose these

three concepts into their sub-concepts (following) and identify our detailed evaluation

criteria.

4.3.1. EC sub-concept 1: Software artefact

We decompose this sub-concept into different types of software artefact: System,

Module, Package, File, Class, Method. The granularity of software artefacts increases

from System to Method level. Different EC studies in the literature use different types

of software artefacts in their studies: System [7, 16], Module [7, 9, 16], Package [72],

File [3, 10, 20, 29, 73, 74], Class [6, 8, 11, 17, 21] and Method [11, 21]. Studies show the

importance of granularity in measuring EC. For example, [21] showed that information

on the coupling between methods (low granularity) rather than classes or modules
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(higher granularity) is more useful for developers during impact analysis. Consequently,

we add the following evaluation criterion:

• Granularity of Software Artefact: The unit of code granularity of coupled items

must be reported.

As granularity is fundamental to the interpretation of any results we assign a

high weight (3) to this criterion, as below.

Table 4.3. Criteria related with RQ2.

ID Criteria Category Weight RQ

C1 Granularity of the Entity Identifying Entities

and Attributes

3 RQ2

4.3.2. EC sub-concept 2: Co-Change

Next, we decompose the sub-concept co-change by considering various character-

istics of co-change. As these co-change characteristics are candidates for different base

measurement as discussed later in the dissertation, we assign a high weight (3) to these

criteria. The characteristics identified are:

• Grouping Characteristic: EC measurement starts with the direct measurement

of co-change of software artefact pairs. To identify pairs of software artefacts, it

must be clear how these pairs are related as this will make a difference to the

conclusion that can be drawn. Three different grouping approaches are common,

pairs based on: Modification Requests (MR), Commit Transactions or Tasks.

Using different grouping approaches can result in measuring different attributes

of entities. Consequently we introduce a criteria requiring that the grouping

approach should be reported (C2 in Table 4.4).

• Locality Characteristics: The distance between co-changes is important. Co-

changes that include files from different subsystems have been shown to result

in more bugs than co-changes that include files only from the same subsystem



63

Table 4.4. Criteria related with RQ2 and RQ3.

ID Criteria Category Weight RQ

C2 Grouping Approach -

Entity Level

Identifying Entities

and Attributes

3 RQ2

C3 Locality Aspects Sound Empirical Re-

lation Systems

3 RQ3

C4 Change Scope Sound Empirical Re-

lation Systems

3 RQ3

C5 Change Type Sound Empirical Re-

lation Systems

3 RQ3

C6 Distinct Committers Sound Empirical Re-

lation Systems

3 RQ3

C7 Temporal Aspect-

Regularity

Sound Empirical Re-

lation Systems

3 RQ3

C8 Temporal Aspect-

Recency

Sound Empirical Re-

lation Systems

3 RQ3

C9 Change Size Sound Empirical Re-

lation Systems

3 RQ3

[16]. Alali et al. [75] also show that the distance among co-changed artefacts can

increase the detection accuracy of EC, suggesting that most ECs occur within

the same sub-folder and remain localised. Consequently we include the locality

of changes in our evaluation criteria (C3 in Table 4.4).

• Change Characteristics: The reason for a change may also affect EC: bug-fix or

enhancement [76]. The process involved and the teams can be very different for

these different changes with different scope. Therefore, we distinguish the reason

for a change in our evaluation criteria (C4 in Table 4.4).

• Change Type Characteristics: There are three basic types of changes that can

be made: addition, modification and deletion. These different changes have been

shown to have impact on the results of studies. For example, [21] suggests that

different types of changes enhance the ability to predict related or missing changes
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during development. Consequently our evaluation criteria distinguish between

change types (C5 in Table 4.4).

• Committer Characteristics: Madeyski et al. [77] found out that defect predic-

tion models trained on a data set containing Number of Distinct Committers

(NDC) were significantly better than the simple models without NDC. Distinct

committers can also effect EC measures especially when they are used in defect

prediction. Consequently our evaluation criteria include distinct committers (C6

in Table 4.4).

• Temporal Characteristics: The work of Alali et al. [75] highlights the temporal

aspects in the detection of ECs. Their results show that the age of ECs can

increase the detection accuracy of EC. They pointed also the importance of re-

cency: there was a 40% chance that a pattern will occur again in a few days or

less. Furthermore, it appears that the older a coupling is, the more rooted it is.

Consequently our evaluation criteria include age, recency and regularity of EC

(C7 and C8 in Table 4.4).

• Change Size Characteristics: The size of changes involved in EC is likely to affect

the impact of that EC. Large changes are not likely to have the same impact on

EC as small changes. Consequently our evaluation criteria includes the size of

changes (C9 in Table 4.4).

4.3.3. EC sub-concept 3: Relationship

There are many different reasons for two artefacts to need changing at the same

time, this means that there are a variety of reasons for EC such as structural, dynamic

and semantic couplings. We suggest that EC is not a direct relationship between

software artefacts, but it is a representation of other types of underlying direct rela-

tionships. This is very similar to temperature measurement as we generally do not

measure air temperature directly. Instead it is measured via its effect on a fluid in

a glass thermometer. The level of the fluid represents the air temperature as the

strength of the EC represents the underlying direct couplings and relationships. We

further detail this analogy below.
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(a) Temperature measurement.

(b) Evolutionary coupling measurement.

Figure 4.1. Temperature analogy.
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Temperature measurement relies on measuring some physical property of a liquid

that changes with temperature. For example, a glass thermometer consists of a glass

tube filled with mercury or some other liquid. The fluid expands with the increasing

temperature, so we can determine the temperature by measuring the volume of the

fluid. We can read the temperature simply by observing the level of the fluid in the

thermometer. No one is interested in how many centimetres the mercury expands.

The attribute of interest is temperature here and the entity is the air. In other words,

the temperature attribute (or property) of the air is the underlying attribute to be

measured by observing the level of the liquid. This is illustrated in Figure 4.1. For

example, a two centimetre raise in the level of the liquid is mapped to two centigrades of

temperature raise. In the same way direct overall coupling is the underlying attribute of

a software artefact to be measured by calculating EC. Being co-changed is an indication

of underlying couplings between software artefacts. So the term implicit relationship

used to define EC can be replaced by explicit or direct couplings and relationships

between software artefacts which constitute underlying attributes measured such as

structural coupling, dynamic coupling, semantic coupling and cross-cutting concerns.

4.4. Research Question 3: Do existing studies use a sound empirical

relation system?

4.4.1. Establishing a Sound Empirical Relation System

In order to be valid, a measurement method must satisfy the representation con-

dition of measurement theory [25,26,31]. The representational theory of measurement

provides a way to formalize our intuition about the way the world works. In other

words, a measurement value should represent attributes of entities we observe and the

manipulation of these values should preserve empirical relationships that we observe

among entities. To map entities into numerical world and empirical relations into

numerical relations we use a measurement mapping M.

Following Fenton’s example we take the example of measuring the height of a

person. In this specific case, person is the entity and height is an attribute of the
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entity, which is to be measured. Let’s take two instances of the people entity as

Tyrion Lannister (the dwarf in the HBO series Game of Thrones) and Shaquille O’Neal

(nicknamed Shaq, a famous NBA basketball player). If we take doesn’t have the same

height as the (binary) empirical relation to compare the heights of these two people,

any measure aiming to measure the height attribute of a person entity must preserve

the empirical relation as Tyrion does not have the same height as Shaq. This empirical

relation can be mapped to the numerical relation 6=. In other words, M(Tyrion) 6=

M(Shaq) must hold whenever a measure maps these people into numbers. If we use

metre as a base measure from the International System of Units (SI), we observe that

the empirical relation is preserved: M(Tyrion) = 1.35 6= M(Shaq) = 2.16.

Table 4.5. Empirical relations and attributes applied on.
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strength

Coupling

Strength

6= ! ! ! ! !

To evaluate and compare EC measures from the empirical relation system point

of view (which is addressed by our third research question, RQ3), we defined a basic

empirical relation and its corresponding mathematical operations in Table 4.5. The

not equal in strength empirical relation covers all scale types as shown in Table 4.5.

So all existing EC measures can be covered by using this empirical relation. Users of

our criteria can decide using stronger relationships such as greater than based on their

specific measurement objectives and context. A condition holding for defect prediction

may not be true for aspect detection. Or temporal aspect - recency can be interpreted

quite differently depending on the measurement objectives. Therefore we chose to

use the not equal in strength to cover all EC possible measures and measurement

objectives. In the context of EC measurement, software artefact is the entity and

coupling strength is the attribute of the entity, which is to be measured. EC measures

are indirect measures as first co-change entity is measured and aggregated onto software



68

artefact entities. Therefore we need to focus on the direct measurement first: co-change

measurement. As we detail previously, there are different characteristics of the co-

change entity. A very important theoretical flaw of current EC measures is treating

these different characteristics as equivalent during aggregating co-change measurement

results and associating these with a software artefact. Any valid EC measure to be

used should preserve the empirical relation. Based on the characteristics we previously

describe for co-change, we similarly define the following empirical system evaluation

criteria as provided in Table 4.4:

• Locality Aspect: cross-system EC is not equal in strength to within-system EC

(C3 in Table 4.4). As discussed previously, different types of coupling may con-

tribute differently to the overall coupling measurement result and so EC measure-

ment should consider cross-module, cross-package or cross-application couplings.

• Change Scope: EC resulting from a Bug-fix is not equal in strength to EC re-

sulting from an Enhancement (C4 in Table 4.4). As discussed previously, the

relationships among files coupled through a Bug-fix can be quite different from

the relationships among files coupled through an Enhancement.

• Change Type: EC resulting from additions/deletions is not equal in strength to

EC resulting from modifications (C5 in Table 4.4). Treating addition, deletion,

and modification as equivalent can be problematic in the same way that the CBO

measure has also been said to be problematic (CBO incorrectly treats forward

and backward links as equivalent [40,78]). The relationships among files coupled

through additions can be quite different from the relationships among files coupled

through modifications.

• Distinct Committers: EC resulting from multiple distinct developers is not equal

in strength to EC resulting from a single developer (C6 in Table 4.4). Co-

changed artefacts can be changed by different committers. There are various

previous studies suggesting that the number of committers impacts on the re-

sults of analysing software. For example, Madeyski et al. [77] found out that the

defect prediction models trained on a data containing Number of Distinct Com-

mitters (NDC) were significantly better than the simple models without NDC.
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Distinct committers are also likely to affect EC measures especially when they

are used in defect prediction.

• Temporal Aspect-Regularity: EC resulting from regular changes is not equal

in strength to EC resulting from non-regular changes (C7 in Table 4.4). The

patterns of co-changes can be diverse such as short-lived, long-lived regular, and

long-lived non-regular. Mondal et al. [79] showed that couplings based on regular

co-changes can be more useful in some contexts such as impact analysis or change

prediction.

• Temporal Aspect-Recency: EC resulting from recent changes is not equal in

strength to EC resulting from non-recent changes (C8 in Table 4.4). If a project

undergoes restructuring frequently, assignment of a higher weight to recent changes

can be used to increase change prediction performance [21]. In such projects older

changes are less likely to be relevant than recent changes as the older relationships

between software artefacts may not be relevant any more.

• Change Size: EC resulting from larger change sizes is not equal in strength to EC

resulting from smaller change sizes (C9 in Table 4.4). As discussed previously, the

size of changes can be very different. For example, it can be a few LOC, hundreds

of LOC or thousands of LOC for a file. The size of the change constitutes another

concern that can affect EC measurement, as the size of changes on co-changed

software artefacts can contribute to the strength of the coupling between software

artefacts.

Which of these criteria are most important to consider will depend on the partic-

ular measurement objectives and the users of those measures. However it is important

that each criteria and possibly its weighting is explicitly considered.

4.4.2. Mapping from Empirical Relation System to Numerical System

Measurement is formally defined as a mapping from the empirical world to the

numerical world. In other words, the domain of the mapping is the real world and

its range is the mathematical world. The mapping as part of measurement assigns an



Table 4.6. Examples for empirical relation system evaluation.

No Cases for not equal in strength Em-

pirical Relation (L)

Validation Sample (Example

Scenario)

Must Hold in Measurement Ob-

jective scope

1 Coupling through co-changes of two soft-

ware artefacts residing on the same system

is not equal in strength to the one through

co-changes from different system (Locality

Aspect, Criterion 3)

Commit1: File1, File2

Commit2: File2, File3

(File1 and File2 reside in System 1)

(File3 resides in System 2)

M(File1−File2) 6= M(File2−File3)

2 Being changed by multiple developers con-

stitutes not equal coupling in strength

compared to being changed by a single

developer (Distinct Committers, Criterion

6)

Commit1: File1, File2 (Developer 1)

Commit2: File1, File2 (Developer 1)

Commit3: File4, File5 (Developer 1)

Commit4: File4, File5 (Developer 2)

M(File1−File2) 6= M(File4−File5)

3 Being changed regularly yields not

equal coupling in strength to being

changed non-regularly (Temporal Aspect-

Regularity, Criterion 7)

Commit1: File1, File2 (07/2014)

Commit2: File1, File2 (07/2014)

Commit3: File1, File2 (07/2014)

Commit4: File4, File5 (01/2014)

Commit5: File4, File5 (04/2014)

Commit6: File4, File5 (07/2014)

M(File1−File2) 6= M(File4−File5)
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entity a number or symbol to characterise an attribute. A measure must clearly define

its mapping rules, its domain and range.

The behaviour of the measures in the numerical world should represent the cor-

responding attribute of the real world entity. Entities must be mapped to numbers

and empirical relations to numerical relations via measurement mapping M so that the

mapping preserves the relation. This rule is called the representation condition [31].

Table 4.6 provides several examples for the not equal in strength empirical rela-

tion. We define at least one case for each criteria listed in Table 4.4 to be able to check

that numerical relations preserve empirical relations. One counter-example is enough

to show that the representation condition is not satisfied for a given measure. Let

us explain the first example in Table 4.6. There are two commit transactions: Com-

mit1 and Commit2. Two software artefacts (File1 and File2) have been changed in

Commit1. File2 and File3 have been changed in Commit2. If we consider only this in-

formation to measure the EC between files, the EC between File1 and File2 (expressed

as M(File1-File2)) will be the same as the EC between File2 and File3 (expressed as

M(File2-File3)). However, if we consider that File1 and File2 reside in System 1 while

File3 resides in System 2, the EC between File2 and File3 as a cross-system coupling

will be intuitively stronger compared to the EC between File1 and File2.

4.5. Research Question 4: Do existing studies define measurement method

and procedures?

In software metrology, the measurement method is generally defined as a logical

organisation of operations used in a measurement [28]. A base measurement of a specific

attribute should have its specific measurement method designed. We summarise the

EC measurement process based on the ISO 15939 measurement information model [80].

The measurement method links the attribute of an entity to a base measure. Function

Point (FP) and COSMIC-FFP are two examples of measurement methods in software

engineering used to measure the functional size of software. EC is not a base measure

and not measured directly. Co-change measurement is the direct measurement and
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co-change measures are base measures. Then, the values of two or more base measures

are used to derive EC measures by using a measurement function. Therefore EC is a

derived measure. EC as a derived measure is then used in the context of an analysis

model to explain the relationship between EC and the information needed [80].

Measurement methods should be complemented with detailed measurement pro-

cedures, which are sets of operations, described specifically, used in the performance

of particular measurements according to a given method [28]. When measurement

method and procedures are not sufficiently well defined and standardised to ensure

the accuracy, repeatability, and repetitiveness of measurement results, then, when the

same entity (software) is measured by different measurers, the results can potentially

be significantly different. By using the adapted ISO 15939 measurement information

model and our own experience in measuring EC [3, 4] on large software we identified

the following evaluation criteria as provided in Table 4.7:

• Normalisation: EC measures should be normalised for comparison with different

studies (C10 in Table 4.7). Normalisation has a considerable impact on software

measures [15,81]. In the scope of EC measurement, product size or total number

of couplings are potential candidates for normalisation of EC measurement re-

sults. A measure which is not normalised has little value out of the measurement

context. EC measures hold this risk as well. Furthermore, size of the application

can implicitly and unintentionally be included in EC measure if normalisation is

not considered.

• Grouping Approach - Temporal (Entity Level: Software Artefact Pair): The

period of time from which version history is used for measurement should be

considered (whole life of an application or part of it such as only the maintenance

phase, specific release, etc.) (C11 in Table 4.7). The commit history from version

control systems (VCS) are essential for calculating EC measures. It should be

specified which part of the commit history is or should be considered. Some EC

measures need the version control history from a long period to yield meaningful

results [21]. This type of measure will not be applicable especially in the initial
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development phases.

• Large Merge Transactions (Measurement Method): Large merge transactions

should be ignored in EC measurement as large merge transactions generally con-

tain co-changes which aren’t relevant. We may end up with EC values which do

not accurately reflect the underlying coupling among software artefacts (C12 in

Table 4.7). Development teams sometimes create different branches to implement

different features or to support maintenance of different versions of a software.

The merge from a branch to trunk may cause a single large commit transaction

in the version history. This single commit has all the changes commited into

the branch. Large merge transactions do not reflect the fine-grained relations

among files. To detect EC within transactions, large merge transactions should

be avoided. For example, some new features implemented on a branch can be

then moved (merged) all together to the trunk and all the files changed in the

scope of multiple features will be incorrectly interpreted as coupled in this merge

transaction. On the other hand, large transactions can be useful in some other

contexts such as mining cross-cutting concerns (aspect mining) [11].

• Branches - Aggregation of Base Measures (Measurement Function): Commit

transactions for the same bug-fix/enhancement on different branches should not

be considered multiple times (C13 in Table 4.7). If different versions of a prod-

uct are alive and used by its customers, bug-fixes/enhancements should gener-

ally be addressed in multiple branches. Especially bug-fixes should be done on

all live branches. The same set of files changed in the scope of the same bug-

fix/enhancement should not be counted multiple times for different branches when

calculating an EC measure. Otherwise the strength of EC among these files may

be misleadingly measured higher than the actual strength.

• Aggregation of Base Measures (Measurement Function): Being changed in the

scope of multiple MRs / Transactions should be considered (C14 in Table 4.7).

Some software artefacts can be coupled through multiple MRs / Transactions.

The number of different MRs / Transactions can be used in the measurement of

EC. In some measurement contexts, the number of different MRs / Transactions

involved can contribute to EC measurement.
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• Single Artefact Commits - Aggregation of Base Measures (Measurement Func-

tion): Are commit transactions involving only single software artefact considered?

(C15 in Table 4.7). In the scope of some commits, only one software artefact is

committed. When calculating EC measures, it should be indicated whether this

is considered or not. Previous studies show that about one third of all commits

have only one file involved. With increased granularity, this ratio will increase

even more. Involvement of single artefact commits is critical for the calculation

of some EC measures such as Confidence [21].

• Refactorings - Software Artefacts (Measurement Method): Refactorings should

be considered in the measurement (C16 in Table 4.7). Refactorings such as name

changes, moving artefacts to different folders, packages, modules, etc. should be

considered in EC measurement. It is very important especially for projects that

are frequently restructured [21].

• Prerequisite: Adequateness of Version Control (VC) History: The version his-

tory should be good and rich enough to have meaningful measures. All software

artefacts should be involved in at least one commit transaction / MR / Task

(C17 in Table 4.7). EC is an indirect measure and representation of the coupling

attribute of a software artefact. In most of its uses (analysis model [80]) it is used

to represent the coupling and complexity of a software artefact. However, EC

being a process measure we need to have enough version control (VC) activity

in order to represent coupling, which is a product measure. If we have no VC

activity for a particular software artefact, it might be wrong to conclude that it

is coupled with no other software artefacts. Therefore it is important to check

that all software artefacts are involved in at least one commit transaction, MR

or Task as this will mean that each software artefact will reveal its couplings.

• Relative Strength (Measurement Function): All transactions in the system should

be considered in the EC measurement of each software artefact (C18 in Table

4.7). Commit transaction density and co-change sizes can be different for differ-

ent systems. It can be hard to interpret the measurement results. Considering

all transactions in the calculation of individual EC calculations of each software

artefact can provide measurement results which can be comparable across stud-
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ies and projects. Considering all transactions in a system can provide a better

relative coupling strength as Beyer et al. [10, 82] proposed in their visualisation

work. It can also be used for normalisation purposes.

Table 4.7. Criteria related with RQ4.

ID Criteria Category Weight RQ

C10 Normalisation Measurement Method

and Procedure

1 RQ4

C11 Grouping Approach -

Temporal

Measurement Method

and Procedure

1 RQ4

C12 Large Merge Transac-

tions

Measurement Method

and Procedure

1 RQ4

C13 Branches Measurement Method

and Procedure

1 RQ4

C14 Aggregation of Base

Measures

Measurement Method

and Procedure

1 RQ4

C15 Single Artefact Commits

- Aggregation of Base

Measures

Measurement Method

and Procedure

1 RQ4

C16 Refactorings of Software

Artefacts

Measurement Method

and Procedure

1 RQ4

C17 Adequateness of Version

Control (VC) History

Measurement Method

and Procedure

3 RQ4

C18 Relative Strength (Mea-

surement Function)

Measurement Method

and Procedure

1 RQ4

These evaluation criteria in Table 4.7 are part of our overall EC evaluation criteria

and are used to answer our fourth research question (RQ4). The impact of these criteria

on EC is not high as the criteria identified under other categories earlier. So we assign

a lower weight (1) to these criteria. The only exception is C17. This is a prerequisite

and it is assigned a high weight (3).
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4.6. Research Question 5: Do existing studies use scale type and

mathematical validation?

As stated by Zuse [26] and Fenton [31], scale types are very important to deter-

mine which mathematical and statistical operations can be applied on measurement

results. For example, it is invalid to compute multiplication, division and ratios with

nominal, ordinal and interval scales. The scale type limits the analysis. One can per-

form only the operations which are applicable to the scale of the given measure. The

table in the online appendix [83] provides a complete list of the scale types and per-

missible operations for each type. In this study, we evaluate the scale types of EC and

its sub-components. Furthermore, we evaluate the design of the measurement methods

in terms of its scale types. If an EC measure uses incompatible scale types, numbers

produced will be flawed and meaningless. If we use these values in analysis models,

they will lead to misleading conclusions about software products and processes. For

example, Zuse [26] has identified three concurrent scale types for Cyclomatic Complex-

ity: ordinal, ratio and absolute. Typically, a measurement method should involve a

single scale type.

We add a last evaluation criterion (Criterion 19) to consider the mathematical

validation as part of research question five (RQ5). As this principle is very important

for the soundness of a EC measure, we have assigned the highest weight which is 3.

Table 4.8. Criteria related with RQ5.

ID Criteria Category Weight RQ

C19 Scale Type and Scale Type and 3 RQ5

Mathematical Validation Mathematical Validation
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5. EVALUATING EVOLUTIONARY COUPLING

MEASURES

In this chapter, we evaluated existing EC measures according to the criteria

provided in the previous chapter. We first published our evaluation results in [5]. In

particular, this chapter makes the following contributions:

(i) We show the weaknesses and strengths of current EC measures based on mea-

surement theory principles.

(ii) We provide recommendations for practitioners and researchers about what EC

measure to use and not to use as well as when to use these measures.

The following subsections provide evaluation process details and evaluation re-

sults for each RQ separately.

5.1. Applying the Evaluation Criteria

Four researchers were involved in the assessment process. One researcher eval-

uated all papers against our evaluation criteria. Then three senior researchers also

evaluated a randomly selected set of three papers independently to validate the assess-

ments made by the first author. Disagreements among assessors were resolved with

a meeting and the evaluation criteria clarified so that such disagreements could be

avoided in the future. We have followed the following steps to randomize the papers.

Papers have been assigned numbers according to the their order in the table. Then

these numbers (from 1 to 15) have been written on small pieces of papers. Three

numbers have been randomly chosen from these papers.
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5.2. RQ1: What are the objectives of the EC measurement?

Table 5.1 summarises our findings on the objectives and users of EC measures

of published studies. We have identified six different objectives in total. The most

common objectives are defect prediction and change prediction. The less common

objective is impact analysis. The intended users of EC measures are diverse covering

managers, team leaders, developers, analysts, testers and architects.

Table 5.1. Objectives and users of EC measurement (RQ1).

Measurement

Objective

Intended Users Studies

Defect Prediction Managers / Team

Leaders

Gall et al. [7,8], Beyer and Hassan [10],

D’Ambros et al. [17], Cataldo et al. [29],

Steff and Russo [14], Kouroshfar [16],

Kirbas et al. [3, 4]

Impact Analysis Analysts / Testers Pirklbauer [84]

Change Prediction Developers Ying et al. [20], Zimmermann et al. [21],

Kagdi et al. [73] [85], Zou et al. [72]

Bug Localisation Developers Tantithamthavorn et al. [15]

Visualisation Architects / Man-

agers / Team Lead-

ers

Ball et al. [6], Pinzger et al. [9], Beyer

and Hassan [10], Steff and Russo [14]

Cross-cutting con-

cern (Aspect) De-

tection

Developers Breu and Zimmermann [11], Eaddy et

al. [12], Adams et al. [13]

5.3. RQ2: Do existing EC studies identify entities and attributes to be

measured?

Table 5.2 summarises the evaluation results of criteria one and two, which are

related to RQ2. All EC measures satisfy both criteria. So the answer to this research

question is a clear Yes.
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Table 5.2. EC measurement evaluation results for research question 2 (RQ2).

Criteria B
a
ll

e
t
a
l.

[6
]

G
a
ll

e
t
a
l.

[7
]

G
a
ll

e
t
a
l.

[8
]

Y
in
g
e
t
a
l.

[2
0
]

Z
im

m
e
rm

a
n
n

e
t
a
l.

[2
1
]

P
in
z
g
e
r
e
t
a
l.

[9
]

B
re

u
e
t
a
l.

[1
1
]

B
e
y
e
r
e
t
a
l.

[1
0
,8

2
]

K
a
g
d
i
e
t
a
l.

[7
3
]

K
a
g
d
i
e
t
a
l.

[8
5
]

Z
o
u

e
t
a
l.

[7
2
]

D
’A

m
b
ro

s
e
t
a
l.

[1
7
]

C
a
ta

ld
o
e
t
a
l.

[2
9
]

K
o
u
ro

sh
fa
r
[1
6
]

M
o
n
d
a
l
e
t
a
l.

[7
9
]

S
U
M

C1. Granu-

larity of the

Entity

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 15/

15

C2. Group-

ing Ap-

proach

- Entity

Level

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 15/

15

SCORE 6/
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5.4. RQ3: Do existing EC studies use sound empirical relation systems?

Table 5.3 summarises the evaluation results of criteria from three to nine, which

are related to RQ3. The last column of the table shows the total number of studies

satisfying a criterion at each row. Each criterion is considered only by few studies

(Max: 6, Min: 0 out of 15 studies). EC studies are relatively successful in addressing

the criterion C8 (Temporal Aspect - Recency) which have been covered by 6 studies.

No study satisfies all seven criteria related to the RQ3. Furthermore, no study provides

an implicit definition of the empirical relation system and empirical relations used in

their EC measure design. These results suggest that EC measures have problems with

establishing a sound empirical relation system.
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Table 5.3. EC measurement evaluation results for research question 3 (RQ3).
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5.5. RQ4: Do existing EC studies define measurement method and

procedures?

Table 5.4 summarises the evaluation results of criteria from C10 to C18, which

are related to RQ4. Each criterion is considered only by few studies (Max: 9, Min:

0 out of 15 studies). EC studies are relatively successful in addressing criterion C11

(Grouping Approach - Temporal) which has been covered by 9 studies.

No study satisfies all nine criteria related to RQ4. Furthermore, no study provides

a detailed measurement procedure for EC measurement. These evaluation results sug-

gest that measurement method and procedures for EC measurement are not sufficiently

well-defined and standardized.

5.6. RQ5: Do existing EC studies use scale type and mathematical

validation?

Another problematic area is mathematical validation (criterion 19). No EC mea-

sure published performed an explicit mathematical validation (Table 5.5). Further-

more, all existing EC measures apply summation to different potential base units in

their EC calculations such as cross-system and within-system co-changes.

5.7. Limitations of the Study

The validity of our work is mainly related with the appropriateness of inferences

made on the basis of our assessment, specifically whether our assessment can measure

how well EC measures are currently measured. The main threats to validity arise from

the subjective nature of the criteria identification process. The criteria used are based

on our own experiences and those reported in the literature. To address this threat, we

used some SLR practices [71] (a cut-down SLR approach) to identify a comprehensive

set of studies proposing EC measures, which helps to identify a comprehensive set of

criteria. Nevertheless, there might be some other criteria which could not be identified

by this study. We hope that this will provide the foundations for further study of the



82

Table 5.4. EC measurement evaluation results for research question 4 (RQ4).
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Table 5.5. EC measurement evaluation results for research question 5 (RQ5).
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criteria expected from EC measurement.

Another threat to the validity of this study is that the studies used for formu-

lating the Criterion 18 have been themselves assessed against this criteria. Although

this is not ideal, all other criteria are driven by measurement theory and metrology

principles. The general measurement principles guiding the formulation of the cri-

teria are general. There can be also some overlap between these broad categories

defined in the paper such as numerical assignment rules and measurement method as

observed. However, most of the criteria like grouping approach (C2), locality aspects

(C3), temporal aspect-regularity (C7), large merge transactions (C12), adequateness

of VC history (C17), etc. are reflecting the EC measurement specifics. We used these

general categories to guide our criteria formulation, brain storming and to help cover

all aspects of measurement. In our criteria formulation we use measurement method

& procedure category (addressed by RQ4) to capture the practicalities of EC mea-

surement and whether EC measurement is well defined and standardised to ensure its

repeatability, accuracy and repetitiveness. On the other hand, numerical assignment
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rules are utilised in the scope of ”sound empirical relation system” category (addressed

by RQ3) to create concrete cases for the criteria to check whether numerical relations

preserve empirical relations. Although there is overlap, the focus is different and they

uncover different aspects of EC measurement.

Another threat is potential bias in the evaluation process. However we employed

a validation exercise with three senior researchers to mitigate any potential bias.

External validity relates to the generalisation of our study results. We evaluated

a number of EC measures. These may not be exhaustive and new EC measures might

be proposed in the future.

5.8. Discussion

Our EC measure evaluations suggest that EC is currently not measured well. The

particular weakness revealed by our research questions provide important information

about the quality of existing EC measures and potential areas to improve. The EC

measures of Breu & Zimmermann [11] and Zou et al. [72] are particularly worth to

highlight as they have the highest overall scores. Our evaluations suggest that there

is a need for new EC measures, which more clearly address the criteria we present.

Furthermore, the criteria we presented can be used in the future to benchmark any

newly developed measures of EC. We now discuss the answers to each of our research

questions:

5.8.1. RQ1: What are the objectives of the EC measurement?

Our results show that EC measures are used for various purposes in software

engineering research. We found six different objectives for EC measurement: Defect

prediction, impact analysis, change prediction, bug localisation, visualisation and as-

pect detection. All of these areas of research could be improved in the future if EC

measures were developed that satisfy our evaluation criteria.
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5.8.2. RQ2: Do existing EC studies identify entities and attributes to be

measured?

Our results reveal that all existing EC studies identify entities and attributes

to be measured. Both criteria C1 and C2 of RQ2 are the only criteria satisfied by all

existing studies. Existing studies do very well in this area. The level of granularity (C1)

used by the studies vary and include files, classes and methods. The main grouping

approach (C2) is VCS commits. This result provides a promising basis for improving

other aspects of EC measurement.

5.8.3. RQ3: Do existing EC studies use sound empirical relation systems?

Breu & Zimmermann [11] and Zou et al. [72] satisfy the highest score, 12 and 9

respectively, in relation to this research question. The measurement objectives of these

studies are aspect detection and change prediction respectively. Unfortunately some

RQ3 criteria were satisfied by very few studies. For example the criterion 6 (distinct

committers) is satisfied by only Breu & Zimmermann [11] and Zou et al. [72] and the

criterion 9 (co-change size) is satisfied by only Breu & Zimmermann [11].

Overall our results suggest that existing EC measures need improvement. Eval-

uation criteria related to the empirical relation system (i.e. change locality, change

scope, temporal, change size and change type) potentially lead to studies using differ-

ent base units and so are important to the reliable measurement of EC. We suggest that

practitioners and researchers measure each aspect identified in our evaluation criteria

separately and use each in their analysis models as separate parameters. None of the

studies used satisfied criterion C7. This suggests that the regularity of co-changes is

not addressed in any of the EC measures that we assessed. Again, this may mean that

the measures currently used are undermined.
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5.8.4. RQ4: Do existing EC studies define measurement method and pro-

cedures?

D’Ambros et al. [17] and Ying et al. [20] satisifed the most criteria for their

methods and procedures. In addition some criteria are satisfied by very few studies. For

example, criterion 13 (branches) is only covered by Zimmermann et al. [21]; criterion

15 (single artefact commits) is only covered by Beyer & Hassan [10] and Zou et al. [72];

criterion 17 (adequateness of version history history) is only covered by Ying et al. [20]

and D’Ambros et al. [17]; criterion 18 (relative strength) is only covered by Beyer et

al. [10,82]. However none of the studies satisfied criterion 16 in EC measurement, which

means that no study considered refactorings within or across projects is a potential

candidate for EC measurement.

The studies we evaluate highlight many areas where improvement is needed.

Overall the methods and procedures used to measure EC are not well-defined. Conse-

quently measurement results of the same entity by different measurers can potentially

be significantly different. This means that the usability and repeatability of existing EC

measures is not strong which will make it difficult to replicate EC studies. It is essential

that detailed measurement procedures should be described for EC measurement.

5.8.5. RQ5: Do existing EC studies use scale type and mathematical vali-

dation?

Our results suggest that this area is not addressed well by current EC measures.

None of the existing studies declare the scale type of their EC measures or attempt to

validate the measures mathematically. EC data is generally not normally distributed

as reported by several studies [3, 4, 7, 17]. This limits the statistical methods that can

be used on EC measures. For example, Pearson correlation as well as other parametric

methods like ANOVA (Analysis of Variance) will not apply to EC measures. Nonpara-

metric methods such as Spearman and Kendall correlations should be preferred over

parametric methods such as Pearson correlation.
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Furthermore, aggregation of different types of co-changes, especially RQ3 related

criteria such as C3 (within vs. cross system) and C5 (deletion/creation vs. modifi-

cation), may be also problematic as these can be potentially interpreted as different

base units in their EC calculations. We suggest measuring different types of co-changes

separately and aggregating them within these different types when calculating EC.

Overall our results suggest that the quality of measurement used in EC needs

significant improvement. Even the studies that score highest in our evaluations miss

important criteria. On the other hand, the criteria related to RQ1 (providing the ob-

jectives of measurement) and RQ2 (identifying entities and attributes) are satisfied by

all studies. So the results we present do show that there is a base of good measurement

practices from which EC measurement could be strengthened.
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6. RELATED WORK

6.1. Evolutionary Coupling

EC was first identified in 1997 by Ball et al. [6]. Early studies [6–9] on EC

focused on the relation between EC and architectural problems and EC was used

as an indicator of architectural weaknesses and modularity problems. Classes that

were frequently changed together during the evolution of a system were presented

visually using EC information by Ball et al. [6]. Clusters of classes were identified

according to EC measures. Ball et al. showed that classes belonging to the same cluster

were semantically relevant. EC among different clusters was used as an indicator of

ineffective class partitioning. Gall et al. analysed EC at a module-level and reported

that EC provides useful insights into system architecture [7]. They identified potential

structural shortcomings and detected modules and programs which should undergo

restructuring or even reengineering. Another study by Gall et al. analysed EC at

a class level on an industrial software system [8]. This study was important since it

demonstrated that EC could be used to identify architectural weaknesses such as poorly

designed interfaces and inheritance hierarchies. Pinzger et al. showed that candidate

modules for refactoring could be detected by showing ECs between modules on Kiviat

diagrams [9]. Beyer and Hassan explored EC data in the calculation of the distance

between two files in a version control system (VCS) and displayed results as a series of

animated panels [10]. They showed how the structure of a software system decayed or

remained stable over time.

Besides detecting architectural problems, EC has also been used to predict pos-

sible co-changes and to recommend them to developers. In a study by Ying et al., an

approach using data mining techniques was developed to recommend related source

code parts to software developers assigned modification requests (MRs) [20]. Applying

the approach to open source projects revealed important dependencies. A study by

Zimmermann et al. presented a technique which predicted the parts of source code

likely to change given the already changed parts of source code (at file, class, property,
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method levels) [21]. Association rule mining was used to detect ECs.

EC has also proven useful in detecting the cross-cutting concerns scattered across

systems. Breu et al. [11] leverage EC information to mine aspect candidates (identifying

cross-cutting concerns). Eaddy et al. [12] argued that cross-cutting concerns are harder

to implement and change consistently because multiple (possibly unrelated) locations

in the code have to be found and updated simultaneously. Their study suggested that

increased cross-cutting concerns may cause or even contribute to defects. Adams et

al. [13] developed an aspect mining technique based on co-addition or co-removal of de-

pendencies on program entities over time. They suggest that detailed knowledge about

cross-cutting concerns in the source code is crucial for the cost-effective maintenance

and successful evolution of large systems.

No study has looked at the quality of EC measurement and the way in whether

EC is measured inconsistently across studies.

6.2. Relationship between Evolutionary Coupling and Defects

EC measures have also been used in defect prediction studies. These studies are

related to our first research question (RQ1). First, we focus on the studies, which re-

ported a relation between EC and defects. Steff and Russo created sequential commit

graphs of evolutionary coupled classes [14]. They showed that the graphs could be

used for defect prediction. A study by Tantithamthavorn et al. proposed improve-

ments to existing defect localisation methods by utilising EC information [15]. The

proposed method was applied and verified on two open source projects (Eclipse SWT

and Android ZXing).

D’Ambros et al. [17] analysed three open source software systems and detected

correlation between EC and software defects. This was the first study focusing explic-

itly on the relationship between EC and software defects, which corresponds to our first

research question (RQ1). They found a positive correlation between EC and defects.

Furthermore, they reported that defects with a high severity exhibited a correlation
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with EC. This study considered only EC between classes within a project. Another

study reported by Kouroshfar concluded that cross-subsystem EC measures are more

related to defects than within-subsystem EC [16]. Kouroshfar’s findings are related

to our second research question (RQ2), as Kouroshfar proposed different kinds of EC

(between sub-systems vs. within sub-systems) as a factor affecting the relationship

between defects and EC.

Other studies using EC metrics suggest that EC does not contribute to defects

and is not useful for identifying defects. These studies could not find any relationship

between EC and defects, which is related to our RQ1. In a study conducted by Graves

et al., various statistical models were developed to assess which features of the revision

history of a module could be used for defect prediction [18]. Results from study showed

that prediction performance of the models using EC measures were lower compared

with other models. Another study by Knab et al. found that EC measures did not

give good results for predicting defects [19]. In that study, the ability of EC to predict

defect density was tested. In our previous studies of EC [3,4] we examined the effect of

EC on software defects for an industrial legacy banking system. For some modules we

observed significant correlation between EC and defect measures, whereas for others

no relation was detected. This study is different from our previous studies in terms

of companies involved and the analysis applied. In this study we analyse also a large

modern telecommunications software and used different analysis such as multivariate

regression analysis, defect type and module characteristic analysis.

The previous studies on EC focused on open source projects. Also, most of

these studies did not investigate large projects. Our study is different in the sense

that we investigate industrial projects, which have very different software development

processes and culture than the open source projects. Moreover, the size of the projects

we analysed are different to existing studies. For example, the size of the projects

studied by D’Ambros et al. [17] were between 1K and 3K (number of classes). The

size of the projects that we studied were 20K and 150K (as number of files). Large

industrial systems have rarely been empirically studied to understand the relationship

between EC and defects. This is an important contribution of our work on existing
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knowledge of EC.

In contrast to previous studies, we also show that the relationship between EC

and defects varies for different modules even in the same system. We provide the distri-

bution of numerical values for EC - defect relationship as histograms. This introduces

a more realistic and probabilistic model for the EC - defect relationship and can be

also used to explain the contradictory results reported by different studies. Further-

more, we attempt to explain factors affecting the relationship between EC measures

and defects, which has not been explicitly addressed by previous studies.

6.3. Software Measurement and Metrology

The groundwork for software measurement was established mainly in the 70s

through various studies such as modularity by Parnas [86], Yourdon [87], complex-

ity by McCabe [88] and Halstead [89], sofware metrics by Gilb [90] and Boehm [91],

function point by Albrecht [92], GQM by Basili [30]. Based on these earlier work,

measurement theory was introduced to software measurement in the 80s by Zuse, Fen-

ton. Zuse [26] contributed to the use of measurement theory in the area of software

measurement. He extended classic measurement theory to the needs of software mea-

surement [26]. Fenton [31] provided information about measurement fundamentals,

data collection and data analysis as well as the mathematical and statistical back-

ground of software measurement. Both Fenton and Zuse used the Representational

Measurement Theory (RMT) approach. Furthermore, measurement paradigms such

as GQM (Goal-Question-Metric) [30] by Basili et al. was also introduced in the mid

80s.

In the 90s, software measures on object-oriented programming (OOP) were de-

veloped by authors such as Chidamber and Kemerer, Briand, Morris, Bieman, Sharble.

OOP measures proposed by Shyam R Chidamber and Chris F. Kemerer in 1994 are

known as CK metrics. CK metrics are still the most commonly used OOP metrics.

Briand and et al. proposed coupling and cohesion measures for OOP [22,93]. In 1995

Kitchenham et al. [94] proposed a framework for validating software measurement by
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identifying the elementary components of measures and the measurement process.

In the 21st century, software measurement has seen massive standardisation effort

such as ISO/IEC 15939:2002 on software measurement process, functional size measure-

ment methods like COSMIC International Standard (ISO/IEC 19761:2011), FiSMA:

ISO/IEC 29881:2008, IFPUG: ISO/IEC 20926:2009, Mark-II: ISO/IEC 20968:2002,

NESMA: ISO/IEC 24570:2005. Another novelty was the introduction of metrology to

the software measurement area. Abran [28] took a measurement method point of view

for software measurement. Metrology is the science of measurement and includes all

theoretical and practical aspects of measurement according to the definition by the In-

ternational Bureau of Weights and Measures (BIPM) [39]. His work is complementary

to the previous work on the measurement theory [26, 31]. Cheikhi et al. [40] applied

the metrology concepts to the Chidamber and Kemerer (CK) measures suite. They

investigated how well CK measures address the metrology principles. They analyse all

CK measures from metrology perspectives and provide their mapping to the metrology

concepts.
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7. CONCLUSIONS AND FUTURE WORK

7.1. Relationship Between Evolutionary Coupling And Defects

In this dissertation, we studied the relationship between EC and software defects

in two large industrial software systems. We reported a positive correlation between

EC and defect measures in the software maintenance / evolution phase of systems

from two different companies. Our results indicated low, moderate and high level

correlation, with varied correlation strength across modules. Our regression analysis

results indicated that EC measures could be useful for explaining defects. The box plots

drawn for each module separately showed the potential of EC measures to distinguish

defective and non-defective files. We also observed that the company using practices

such as agile and TDD had relatively fewer modules with high EC-defect correlation

values. However, this finding needs to be further investigated on more companies for

generalisable conclusions.

We also studied the reasons for variation of the observed effect of EC on software

defects for different modules. We found that modules which were small in size in terms

of file and developer numbers, tended to be less correlated with EC. Interconnections

between files in a module can grow quadratically with the number of files. Increasing

number of inter-related files make a module more difficult to comprehend and perform

changes. This complexity may eventually lead to defects and this may be one of

the reasons for variation across modules. Furthermore, we observed that EC measures

showed higher correlation with some types of defects (based on root causes) such as code

implementation, acceptance criteria and analysis problems. The dispersion of these

defect types could be another reason for these varying effects. Different modules have

different defect types and EC has different relationships with different defect types. It is

more likely that high EC will cause code and test implementation defects, because of the

ripple effects due to high number of inter-related files. Module characteristics and defect

types may also explain why different results are reported by different studies in the

literature. Different applications or modules analysed may have different characteristics
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and defect types. We recommend that researchers report characteristics and defect

types of modules in their EC studies to account for the possible effect of the context in

their results. We also recommend that practitioners add EC measures to their metric

suite for software design evaluation and consider the characteristics and defect types

of their modules in their evaluation.

7.2. Evolutionary Coupling Measurement Evaluation

In this dissertation, we evaluate EC measurement from a measurement theory

perspective. We combine the software measurement ideas of Fenton, Zuse and Abran

to develop 19 EC measurement evaluation criteria. We use these criteria to evaluate

the current published studies on EC measurement. Despite the importance of EC

and the published studies of EC, our results suggest that many basic principles of

good software measurement have not been used in the measurement of EC. Scale

type and mathematical validation stands out an area not addressed by EC studies.

None of the existing EC studies declare their scale type nor attempt to validate their

measures mathematically. Our evaluation results suggest that establishing a sound

empirical relation system is also a problematic area. Existing studies fail to address

the different types of co-changes such as locality (within vs. cross system) and change

type (deletion/creation/modification). We also found that EC measurement methods

and procedures are not well reported by existing studies. In addition no EC study

presents measures that account for the temporal aspects of EC in terms of regularity

or the impact of refactorings on EC. Overall our results suggest that there is much

work to be done to put EC measurement on a firm footing that will enable the reliable

measurement of EC and the accurate replication of EC measurement.

To the best of our knowledge, this is the first work that applies measurement

theory and metrology principles to EC measurement. Although our results suggest

significant weakness in the way that EC has previously been measured, it is highly

likely that measurement in other areas of software engineering also requires significant

improvement. Indeed Cheikhi et al. [40] show such measurement weakness in their

analysis of OO metrics. We believe that the results and the criteria developed in this
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study will guide future research in EC to improve how EC is measured. Indeed the

criteria presented in this dissertation can be adapted and used in any EC related study

to ensure measurement quality.

7.3. Future Work

In future work, we would like to extend our empirical study on the relationship

between EC and defects by including more commercial systems and projects. Using

defect density in our study mitigates the risk of size as a possible confounding factor.

We are planning future investigations to explore the effect size of a large number of

factors related to defects. Furthermore we are planning future investigations to explore

the effect size of a large number of factors related to defects.

Another future direction of research can be modelling EC by using Bayesian

networks. A Bayesian network as probabilistic directed acyclic graph can be used

to model the influence of structural, semantic, dynamic couplings on EC. Given EC

values, the network can be used to compute the probabilities of the presence of various

couplings (structural, semantic, dynamic) between software artefacts.

Our evaluation on existing EC measures revealed that there are no EC measures

satisfying all 19 criteria. One possible future research would be to develop new EC

measures satisfying all or most of these criteria. The criteria developed in this study

will guide future research in EC to improve how EC is measured. This research can be

also combined with objectives. We have identified that an EC study aims one of these

six objectives: defect prediction, impact analysis, change prediction, bug localisation ,

visualisation, cross-cutting concern (aspect) detection. For each EC objective poten-

tially a new optimal EC measure can be researched. All of these areas of research could

be improved in the future if EC measures were developed that satisfy our evaluation

criteria. Furthermore, the criteria we presented can be used in the future to benchmark

any newly developed measures of EC.
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