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ISPARTA - 2017



© 2017 [Mehmet KOCABIYIK]
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1. GİRİŞ ........................................................................................................................................... 1
2. TEMEL KAVRAM VE TANIMLAR ............................................................................. 3

2.1. Bir Parametreli Lie Grupları.................................................................................... 3
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2.2. Birinci Mertebeden Diferansiyel Denklemler için Lie Simetri Analizi.. 13
2.2.1. Birinci mertebeden adi diferansiyel denklemler için simetri şartı ........ 13
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ÖZET

Yüksek Lisans Tezi

DİFERANSİYEL DENKLEM VE DİFERANSİYEL DENKLEM SİSTEMLERİ
İÇİN LİE SİMETRİ ANALİZİ

Mehmet KOCABIYIK

Süleyman Demirel Üniversitesi
Fen Bilimleri Enstitüsü

Matematik Anabilim Dalı

Danışman: Doç. Dr. Mevlüde YAKIT ONGUN

Bu tez çalışmasında diferansiyel denklem ve diferansiyel denklem sistemlerinin
çözümleri için Lie simetri analizi yapıldı.

Tez beş ana bölümden oluşmaktadır. Birinci bölümde konuya kısa bir giriş yapılmıştır.
İkinci bölümde, bir parametreli Lie grupları, sonsuzküçük dönüşümler ve üreteçler,
Lie grup operatörünün ürettiği dönüşüm grubu tanıtılarak, adi mertebeden diferansiyel
denklemler, kesirli mertebeden diferansiyel denklemler ve kısmi türevli diferansiyel
denklemlerde metodun uygulanılmasına değinilmiştir.

Üçüncü bölümde ise diferansiyel denklem sistemlerinden oluşan bazı modeller için
çözümler yapılmış ve grafikler çizilmiştir.

Dördüncü bölümde araştırma bulgularına ve son bölüm olan beşinci bölümde ise sonuç
ve önerilere yer verilmiştir.

Anahtar Kelimeler: Lie simetri analizi, hanta-virüs modeli, granül hücre üretimi,
diferansiyel denklemler.

2017, 73 sayfa
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ABSTRACT
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In this thesis, we have done Lie symmetry analysis for the solutions of differential
equations and differential equation systems.

Thesis has five main part. In first part, there is a short enterence to subject.
In the second part, there will be introduce for Lie groups with one parameter,
infinitesimal transformations and generators, transformation groups which produced by
Lie group operator, then there are refers to apply the methods for ordinary differential
equation, fractional differential equation and partial differential equation.

In the third part, there are graphics drawn and solutions done for some differential
equation system models.

In the fourth part, there are some research findings and in the final part fifth part, there
are conclusion and suggestions.
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antial equations
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Sayfa
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......................................................................................................................................... 46
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Çözüm Grafiği .......................................................................................................... 46
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1. GİRİŞ

Diferansiyel denklem, bir bilinmeyen fonksiyonu ve bu fonksiyonun bazı türevlerini

içeren denklemlere denir. Eğer böyle bir diferansiyel denklemdeki bilinmeyen

fonksiyon yalnız bir bağımsız değişkene sahip ise bu tip diferansiyel denkleme adi

diferansiyel denklem denir.

Bir diferansiyel denklemde her bağımlı değişken ve her mertebeden türevler birinci

dereceden ise ve aynı zamanda bağımlı değişkenler veya türevler çarpım halinde

yer almıyorlarsa böyle denklemlere doğrusal (lineer) aksi halde doğrusal olmayan

(nonlineer) diferansiyel denklemler denir.

18.yüzyılın sonunda kadar bu şekilde ki adi diferansiyel denklemlerin analitik ve

nümerik çözümleri için birçok metod geliştirilmiştir. Ancak Modern Cebir yardımıyla

lineer ve lineer olmayan adi diferansiyel denklemlerin çözümüne ait ilk çalışmalar

Sophus Lie, Felix Klein, David Hilbert gibi birçok ünlü matematikçininde katkısıyla

başlamıştır.

Lie grupları, Norveçli ünlü matematikçi Sophus Lie tarafından 1888-1896 yılları

arasındaki çalışmaları sonrasında ortaya çıktı. Sophus Lie aynı zamanda bu çalışmaları

sayesinde matematikçiler arasında Lie grupları olarak bilinen modern teorinin

ortaya çıkması için önemli etkene sahip olan dönüşüm teorisinin kurucusu olarak da

bilinmektedir.

Sophus Lie, sürekli bir parametreli grup yapılarını incelemiş ve grup teorisi ile bazı

diferansiyel denklemlerin integre edilebileceğini göstermiştir. Bu sayede Lie grupları

fen ve muhendislik gibi bilim dalları üzerinde önemli bir çalışma ve uygulama alanı

ortaya çıkarmıştır. Lie, bu çalışmaları ile bir adi diferansiyel denklemin sürekli

bir parametreli bir dönüşüm grubu altında invaryant(değişmez) kalması durumunda

denklemin mertebesinin bir derece düşürebileceğini de göstermiştir.

Lie’ nin çalışmalarının önemi, 1960 lı yıllarda doğa bilimlerinde ki matematiksel

modellerin ürettiği diferansiyel denklemlere, Lie teorisinin uygulanmasıyla daha da

fazla ortaya çıkmıştır.

20.yüzyılda dönüşüm gruplarının uygulamaları birçok araştırmacı tarafından

çalışılmıştır. Örneğin, bazı araştırmacılar ise matematiksel fizik modelleri ile ilgilenmiş

ve cebir metodlarını bu modellere uygulamışlardır.
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Bu bilim adamlarından L.Ovsiannikov(1982), P.J.Oliver(1986), W.G.Bluman

(1989) ve N.İbragimov (1994;2001) bu alanda önemli çalışmalara imza atmışlardır. Bu

alanda Türkiye deki çalışmalar ise son zamanlarda özellikle tez çalışması anlamında

artış göstermiştir. Bu yönde çalışmalar yapan araştırmacılar M. Özceylan (2006) ve

F.A. Kiraz (2007) bu konunun daha çok diferansiyel denklemlere uygulanışı ile ilgili

çalışmalarda bulunmuşlardır.

Kısaca son olarak bir diferansiyel denklemin simetri grubu hakkında da bilgi vermek

istersek, bir diferansiyel denklemin simetri grubu çözümlerinden oluşan kümeyi

invaryant bırakan bağımlı ve bağımsız değişkenlerin dönüşümlerinden oluşan bir

gruptur. Bu nedenden dolayı simetri grubu elde edilen bir diferansiyel denklemin,

bulunan bu çözümleri yardımıyla yeni çözümleri elde edilebilir.
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2. TEMEL KAVRAM VE TANIMLAR

2.1. Bir Parametreli Lie Grupları

2.1.1. Dönüşümler grubu

H boştan farklı bir küme ve " * " sembolü de H üzerinde tanımlanmış bir ikili işlemi

ifade etsin, (H,∗) ikilisine aşağıdaki koşulları sağlaması durumunda bir grup denir.

1. ∀x,y ∈ H için x∗ y ∈ H ,

2. ∀x,y,z ∈ H için (x∗ y)∗ z = x∗ (y∗ z) ∈ H ,

3. Her x ∈ H için x∗ e = e∗ x = x özelliğini sağlayan e ∈ H vardır,

4. Her x ∈ H için x∗ x−1 = x−1 ∗ x = e olacak şekilde x−1 ∈ H vardır.

Her t ∈ R için,

φ : R2× t→ R, ψ : R2× t→ R (2.1.1)

fonksiyonları x , y değişkenleri ve t parametresinin iki analitik fonksiyonu olsun.

u(x,y, t) = x1, v(x,y, t) = y1 (2.1.2)

olmak üzere
Zt : R2→ R2

(x,y)→ Zt(x,y) = (u(x,y, t),v(x,y, t)) = (x1,y1) (2.1.3)

dönüşümü yazılarak ,

H = [Zt | t ∈ R] (2.1.4)

kümesi tanımlansın.

Eğer (2.1.4) kümesi üzerinde bir ikili işlem o : H×H→ H ile yukarıda verilen grup

aksiyomlarını sağlamakta ise bu ifade bir parametreli Lie Grubu olarak adlandırılır

(Page, 1897; Cohen, 1911; Oliver, 1986).

Bir parametreli Lie grubunun elde edilmesini sağlayan u ve v fonksiyonlarına grubun

sonlu dönüşümleri denir. Parametrenin sonsuz küçük artışında değişmesi durumunda

(x,y) ile verilen nokta da sonsuz küçük miktarda yer değiştirerek (x1,y1) noktasına

dönüşecektir.
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Burada x ve y ’ nin x1 ve y1 değişkenlerine göre çözülebileceğini garantilemek için

(2.1.2) Lie grubundaki u ve v fonksiyonlarının x ve y değişkenlerine göre bağımsız

olduklarını kabul edip, yani ∂ (φ ,ψ)
∂ (x,y) Jakobiyenin sıfıra özdeş olmadığını varsaymalıyız.

Bir parametreli Lie gruplarına örnekler;

i)Dikey Öteleme: x1 = x, y1 = y+a

ii)Ölçekleme: x1 = eax, y1 = eay

iii) Rotasyon: x1 = xcosa− ysina, y1 = xsina+ ycosa

iv)Yatay Öteleme: x1 = x+a, y1 = y

olarak verilebilir (Oliver, 1986; Özceylan, 2006).

2.1.2. Sonsuzküçük dönüşümler ve sonsuzküçük üreteçler

(2.1.2) ile verilen Lie grubu tanımında ki u ve v fonksiyonları grubun sonlu formu

(global formu, kapalı formu) olarak isimlendirilir. Bu Lie grubu tanımındaki u ve v

fonksiyonlarını a = 0 civarında Taylor serisine açabiliriz ki bu durumda ifade,

x1 = x+a(∂x1
∂a )a=0 +0(a2)

y1 = y+a(∂y1
∂a )a=0 +0(a2)

halini alacaktır.

Şimdi burada,

ξ (x,y) = (
∂x1

∂a
)a=0

η(x,y) = (
∂y1

∂a
)a=0 (2.1.5)

şeklinde ξ (x,y) ve η(x,y) fonksiyonları tanımlanırsa bu durumda,

x1 = x+aξ (x,y)+0(a2)

y1 = y+aη(x,y)+0(a2) (2.1.6)

elde edilir ki buna da Lie Grubunun sonsuzküçük formu (dönüşümü) denir (Oliver,

1986).

(2.1.2) Lie grubunu ve bu gruba karşılık gelen (2.1.6) sonsuz küçük grubunu göz önüne

alalım.
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Sonsuz küçük dönüşüm altında düzgün bir w(x,y) fonksiyonundaki

δw = w(x1,y1)−w(x,y) = w((x+aξ ),(x+aη))−w(x,y)

değişimini gözlemleyelim. Şimdi, Φ(a) = w(x + aξ ,y + aη) fonksiyonunu a = 0

civarında Taylor serisine (Maclaurin Serisine) açacak olursak,

Φ(a) = Φ(0)+a(
dΦ

da
)a=0 +

a2

2!
(
d2Φ

da2 )a=0

olup burada

(
dΦ

da
)a=0 = ((

dΦ

dx1
.
dx1

da
)+(

dΦ

dy1
.
dy1

da
))a=0 = a(ξ

∂w
∂x

+η
∂w
∂y

)

olduğundan

δw = a(ξ
∂w
∂x

+η
∂w
∂y

)+ ...

olarak elde edilir. L diferansiyel operatörünü

L = ξ (x,y)
∂

∂x
+η(x,y)

∂

∂y
(2.1.7)

biçiminde tanımlarsak, bu durumda δw nin L operatörü cinsinden,

δw = aL(w)+
a2

2!
L2(w)+

a3

3!
L3(w)+ ...

olacak şekilde yazılabileceği açıktır.Buradaki L diferansiyel operatörüne Lie grubunun

sonsuz küçük üreteci veya Lie operatörü denir (Cohen, 1911; Oliver, 1986; Page,

1897; Özceylan, 2006).

Sonuç 2.1 Her sonsuzküçük dönüşüm sonsuzküçük üreteci tarafından tam olarak

belirlenir. Öte yandan Lx = ξ ve Ly = η olduğundan

Lw = Lx
∂w
∂x

+Ly
∂w
∂y

olacağı gözlenir.
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(2.1.2) Lie grubunun (x,y) noktasını (x1,y1) noktasına dönüştürdüğünü göz önüne

alacak olursak

Lw(x1,y1) = Lx1
∂w
∂x1

+Ly1
∂w
∂y1

elde edilir (Oliver,1986; Torrisi ve Nucci, 2001; Gazizov v.d.,2011).

2.1.3. Lie operatörünün ürettiği dönüşüm grubu

Bölüm 2.1.2 de grubun sonsuz küçük dönüşümünün bulunması için Taylor seri açılımı

metodu kullanıldı. Bunun tersi mümkündür, yani sonsuzküçük dönüşüm bilindiğinde bir

parametreli grubun sonlu dönüşümleri de elde edilebilmektedir. Sonsuzküçük dönüşüm

(x,y) noktasını (x+ aξ ,y+ aη) pozisyonuna taşıdığı bilinmektedir. Bu dönüşümün

sonsuz defa tekrarlanması sonucu nokta tam olarak (x,y) noktasından geçen ve

dx1

da
= ξ (x1,y1),

dy1

da
= η(x1,y1) (2.1.8)

diferansiyel denklem sisteminin integral eğrisi olan bir eğri boyunca taşınır. Bu işlemin

belli bir aşamasında x ve y noktaları sırası ile x1 ve y1 noktalarına dönüşür ve böylece

(2.1.8) için dönüşüm formülü ,

dx1

ξ (x1,y1)
=

dy1

η(x1,y1)
=

da
1

(2.1.9)

denklem sisteminin çözümleri ile verilir ve burada a = 0 için x1 ve y1 , sırasıyla x ve y

ye indirgenir.

a = 0 iken x1 = x ve y1 = y olduğundan dolayı (2.1.9) deki eşitliklerin ′′a′′ dan bağımsız

olan ilk iki denklem çözümü

r(x1,y1) = sabit = r(x,y) (2.1.10)

şeklinde yazılabilen bir diferansiyel denklem formuna indirgenir. Bu da (x,y) noktasına

karşılık gelen yörünge denklemi olarak adlandırılır.
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r(x1,y1) = c eşitliğini değişkenlere göre çözdüğümüzde, örneğin x1 = p(y1,c) elde

edilip η de yerine yazdığımızda, elde edilen diferansiyel denklem,

dy1

η [p(y1,c),y1]
= da (2.1.11)

şeklindedir.

Son olarak x1 ve y1’ e bağı olan c değeri yerine yazıldığında çözüm,

s(x1,y1)−a = sbt = s(x,y) (2.1.12)

formuna girer.

Sonuçta (2.1.8) ve (2.1.9) nin çözümü olarak x1 , y1 değişkenlerinin belirlediği ve a = 0

için x ve y ye indirgenen denklem sistemi,

r(x1,y1) = r(x,y), s(x1,y1) = s(x,y)+a (2.1.13)

şeklinde elde edilir.

Burada a nın bütün değerlerine karşılık gelen tüm (2.1.13) dönüşümleri, Bölüm 2.1.1

de tanımlanan bir parametreli Lie grubu yapısını oluşturur. Bu grup Lie operatörü

tarafından üretilen dönüşüm grubu olarak adlandırılır (Cohen, 1911; Oliver, 1986;

Page, 1897; Özceylan, 2006).

2.1.4. Lie serisi

Φ(a) = w(x+aξ ,y+aη) fonksiyonunun Φ(a) = Φ(0)+a(
dΦ

da
)a=0+

a2

2!
(
d2Φ

da2 )a=0 ...

şeklindeki Maclaurin serisinde, (2.1.7) diferansiyel operatörü yerine yazılırsa

w(x1,y1) = w(x,y)+aL(w)+ a2

2! L2(w)+ a3

3! L3(w)+ ... olur ve buradan da

w(x1,y1) =
∞

∑
n=0

an

n!
Ln(w) (2.1.14)

serisi elde edilir ki buna w fonksiyonunun (x,y) noktası civarında Lie Serisi denir

(Bluman ve Kumei, 1989; Oliver, 1986).
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Sonuç 2.2 Lie grubunun sonlu formunu Lie serisi yardımıyla sonsuzküçük gruptan

hesaplamak mümkündür. (2.1.2) Lie grubunu ve bu gruba karşılık gelen (2.1.7) son-

suzküçük üretecini göz önüne alınırsa, x1 ve y1 koordinatları grup aksiyomları ile x ve

y koordinatlarından elde edilmiş olan koordinatlar olmak üzere eğer a ’nın her değeri

için Θ(x1,y1) = Θ(x,y) oluyorsa Θ(x,y) fonsiyonuna grup etkisi altında invaryant-

tır(değişmezdir) veya grubun invaryantıdır denir, ki bu ifade ile de aşağıdaki teorem

ifade ediilir (Bluman ve Kumei, 1989; Bluman, 1990).

Teorem 2.1 Θ(x,y) fonksiyonunun invaryant olması için gerek ve yeter koşul L(Θ) = 0

olmasıdır (Bluman ve Kumei, 1989).

Sonuç 2.3 Bir gruba ait invaryantı bulmak için (2.1.7) L diferansiyel operatörü

yardımıyla,

L(Θ) = ξ
∂Θ

∂x
+η

∂Θ

∂y
= 0 (2.1.15)

birinci mertebeden lineer kısmi diferansiyel denkleminin çözülmesi gerekir. Dolayısıyla

z = Θ(x,y) fonksiyonu

ξ
∂ z
∂x

+η
∂ z
∂y

= 0 (2.1.16)

denkleminin bir çözümünü ve sonuç olarak, c1 keyfi sabit olmak üzere,

Θ(x,y) = c1 eğrileri de (2.1.16) denklemine karşılık gelen,

dx
ξ

=
dy
η

(2.1.17)

adi diferansiyel denkleminin çözüm eğrileri olacaktır (Oliver, 1986; Bluman ve Kumei,

1989; Bluman, 1990; Ibragimov ve Nucci, 1994; Hyden, 2000; Ibragimov, 2001;

Bluman ve Anco, 2002). Lie grubu ve simetrileri ile ilgili bilgisayar programı ile tanjant

vektörlerinin elde edilmesi ve çözüme ulaşılmak istenirse Cheviakov (2007), Cheviakov

(2010a) ve Cheviakov (2010b) kaynaklarına bakılabilir.

2.1.5. Kanonik form ve değişkenler

Bir parametreli Lie grubunun operatörünü istenen bir yapıya indirgeyen değişken

dönüşümü bulmak, teoride her zaman mümkündür.
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Bu amaçla operatörü

L f = ξ1
∂ f
∂x

+η1
∂ f
∂y

(2.1.18)

şeklinde elde etmek için, (2.1.19) denklemi ile verilen denklemlerin bağımsız çözüm-

lerinin uygun ikilisi, yeni x ve y değişkenleri olarak alınabilir.

Lx = ξ (x,y)
∂x
∂x

+η(x,y)
∂x
∂y

= ξ1(x,y)

Ly = ξ (x,y)
∂y
∂x

+η(x,y)
∂y
∂y

= η1(x,y) (2.1.19)

Özellikle, operatörü y ekseni doğrultusunda ki ötelemelerden birine indirgemek için,

yani operatörün L =
∂

∂y
formunu almasını sağlamak için, integrallenecek denklemler,

ξ
∂x
∂x

+
∂x
∂y

= 0

ξ
∂y
∂x

+
∂y
∂y

= 1 (2.1.20)

şeklinde olacaktır.

Bu denklemlerden ilki, Bölüm 2.1.4 deki (2.1.15) formülüdür ki, bu da x bir parametreli

bir grubun r(x,y) şeklindeki uygun bir değişmezi olarak alınabilineceğini ifade eder.

İkinci denklemi çözmek için ise Bölüm 2.1.3 deki (2.1.9) formülünde olduğu gibi,

dx
ξ

=
dy
η

=
dy
1

(2.1.21)

şeklinde bulunan adi diferansiyel denklem sistemi kullanılarak Lagrange Metodu uygu-

lanır. Burada
dx
ξ

=
dy
η

nin çözümü olan r(x,y) = sabit kullanılarak, yukarıdaki ifadeden

y elde edilir.

Burada L=
∂

∂y
forumuna sahip Lie operatörüne , Kanonik Formdaki operatör ve

operatörü bu forma indirgeyen değişkenlerede Kanonik Değişkenler denir. Her Lie

operatörü L=
∂

∂y
şeklindeki kanonik forma indirgenebilir.
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Kanonik değişkenleri bulmak için,

dx
ξ

=
dy
η

(2.1.22)

birinci dereceden diferansiyel denklemi çözmek ve bu çözüm yardımı ile (2.1.20)

ifadesindeki denklemleri çözmek gerekir (Cohen, 1911; Oliver, 1986).

2.1.6. Lie gruplarının diferansiyel denklemlere uygulanışı

Eğer bir diferansiyel denklemi invaryant yani değişmez bırakan bir grup bulabilinirse,

grup invaryant özelliğini ile orjinal denklemi daha kolay çözümlenebilir bir denkleme

dönüştürebiliriz. Bunu ifade etmek için birinci mertebeden genel bir, p =
∂y
∂x

olmak

üzere, F(x,y,p)=0 adi diferansiyeldenklemini göz önüne alalım ve bu denklemin son-

suzküçük grubundan L(1)w = ξ
∂w
∂x

+η
∂w
∂y

+ζ
∂w
∂ z

grubu altında invaryant kaldığını

kabul edelim. O halde, invaryant olma özelliğinden dolayı, L(1)w = 0 olmalıdır.

Bu durumda

ξ
∂w
∂x

+η
∂w
∂y

+ζ
∂w
∂ p

= 0 (2.1.23)

denklemini çözmek gerekecektir. Bu kısmi diferansiyel denklemin, üzerinde w(x,y, p)

fonksiyonunun sabit kalacağı çözüm eğrileri ise,

dx
ξ

=
dy
η

=
d p
ζ

=
dϕ

0
(2.1.24)

sistemine ait iki bağımsız çözümdür. Burada,

dx
ξ

=
dy
η

(2.1.25)

denkleminin bir çözümü r(x,y) = c1 ve diğer bağımsız bir çözümü de s(x,y, p) = c2

olarak alınırsa, H(r) , r ’nin keyfi bir fonksiyonu olmak üzere, bu durumda f = s−H(u)

fonksiyonu L(1)w = 0 denklemini sağlayacaktır, yani L(1)(s−H(u)) = 0 dır. Sonuç

olarak s−H(r) = 0 denklemi L(1) grubu altında invaryant kalan birinci mertebeden adi

diferansiyel denklemin en genel hali olacaktır.
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Bu ifadeler ile birinci mertebe adi diferansiyel denklemi invaryant bırakan grupları belir-

lemek istenirse, bunun için
dy
dx

=F(x,y) diferansiyel denklemini ve (2.1.6) sonsuzküçük

grubunu göz önüne alalım. Bu durumda

dy1

dx1
=

dy
dx

+ ε[ηx +(ηy−ξx)
dy
dx
−ξy(

dy
dx

)2]+0(ε2) (2.1.26)

olacaktır. Öte yandan denklem grup altında invaryant kaldığından
dy1

dx1
= F(x1,y1) olup

F(x1,y1) = F(x,y)+ ε(ξ
∂F
∂x

+η
∂F
∂y

)+0(ε2) (2.1.27)

olduğu da bilindiğinden, sonuç olarak

ξ
∂F
∂x

+η
∂F
∂y

= ηx +(ηy−ξx)F−ξyF2 (2.1.28)

birinci mertebeden kısmi diferansiyel denklemini elde edilmiş olur.

Böylece temel problem; F(x,y) fonksiyonu verildiğinde, bu kısmi diferansiyel denklemi

sağlayan ξ (x,y) ve η(x,y) fonksiyonlarını belirlemek olacaktır. Bu problemin tek

çözümü olmadığından, denklemi sağladıkları ve η = Fξ olduğu sürece, ξ (x,y) ve

η(x,y) fonksiyonları tamamen isteğe bağlı seçilebilir (Gazizov v.d, 2011; Hyden, 2000).

Örnek 2.1:

Bir parametreli Lie grubu:

G = [Ta|Ta : R2
(x,y)→ R2

(x1,y1)
, x1 = xcosa− ysina, y1 = xsina+ ycosa, a ∈ R]

kümesinin bir parametreli Lie grubu oluşturduğunu gösterelim.

i )

Ta(x,y) = (xcosa− ysina,xsina+ ycosa) ve Tb(x,y) = (xcosb− ysinb,xsinb+ ycosb)

eşitlikleri ile yazılan ∀Ta,Tb ∈ G için

(Ta ∗Tb)(x,y) = Ta[(xcosb− ysinb,xsinb+ ycosb)]

(Ta ∗ Tb)(x,y) = ([xcosa − ysina]cosb − [xsina + ycosa]sinb, [xcosa − ysina]sinb +

[xsina+ ycosa]cosb)

(Ta ∗Tb)(x,y) = (xcos(a+b)− ysin(a+b),xsin(a+b)+ ycos(a+b))

elde edilir. Burada a+b = c ∈ R aldığımızda

(Ta ∗Tb)(x,y) = Tc(x,y) işlemi sonucunda Tc(x,y) elde edilir ve Tc ∈ G dir.
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ii )

Yukarıdaki işlemler yardımıyla Ta ∗Tb işleminin kuralı Ta ∗Tb = T(a+b) şeklinde ortaya

çıktığından ∀Ta,Tb,Tc ∈ G için

(Ta ∗Tb)∗Tc = T(a+b) ∗Tc = Ta+(b+c)Ta ∗T(b+c) = Ta ∗ (Tb ∗Tc)

elde edilir.

iii )

Şimdi Ta ∗Ta0 = Ta0 ∗Ta = Ta eşitliklerini sağlayan ∀Ta ∈ G için sağlayan ∃Ta0 ∈ G

nin varlığını araştıralım. Ta ∗Ta0 = T(a+a0) = Ta0 ∗Ta = T(a0+a) ifadeleri için a0 = 0

aldığımızda Ta ∗T0 = T(a+0) = Ta ve T0 ∗Ta = T(0+a) = Ta elde ederiz.

Burada a0 = 0 parametresi ile belirlenen dönüşümün kendisi

T0(x,y) = (xcos0− ysin0,xsin0+ ycos0) = (x,y)

şeklindedir ve düzlemdeki bütün noktaları değişmez bırakan dönüşümdür. Böylelikle

elde ettiğimiz dönüşüm özdeşlik dönüşümüdür ve T0 ∈ G dir.

iv )

∀Ta ∈ G için T−1
a ∗Ta = Ta ∗T−1

a = Ta0 sağlayan ∃T−1
a ∈ G nin olduğunu araştıralım.

Bu elemanın T−a parametresi ile belirleneceği açıktır.Çünkü, Ta ∗T−a = Ta+(−a) = T0

ve T−a ∗Ta = T(−a)+a = T0 olur.Burada T−1
a = T−a yazıldığında T−1

a ∈ G elde edilir.

Sonsuz Küçük Dönüşüm:

Sonlu dönüşümleri φ(x,y,a) = xcosa− ysina, ψ(x,y,a) = xsina+ ycosa

şeklinde olan bir parametreli grubun (2.1.6) sonsuz küçük dönüşümlerini kullanarak,

ξ (x,y) = (
∂φ

∂a
)a=0 = (−xsina− ycosa|a=0) =−y

η(x,y) = (
∂ψ

∂a
)a=0 = (xcosa− ysina|a=0) = x

formunda bulunur.

Sonsuz Küçük Üreteç (Lie Operatörü):

Sonlu dönüşümleri φ ve ψ , dönüşüm grubu da ξ ve η bulunan operatörler olduğundan

sonsuzküçük üreteç L =−y
∂

∂x
+ x

∂

∂y
formundadır.

Lie Operatörünün ürettiği Dönüşüm Grubu:

L=−y
∂

∂x
+ x

∂

∂y
operatörünün ürettiği grubu bulalım.

(2.1.9), (2.1.10) ve (2.1.11) denklemleri kullanılarak,
dx1

−y1
=

dy1

x1
=⇒ x1dx1 =−y1dy1 =⇒ x2

1 + y2
1 = c1 = x2 + y2

elde edilir. Böylece u(x1,y1) = x2
1 + y2

1 = x2 + y2 olur.
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dy1

x1
=

dt
1

ve x1 =
√

c1− y2
1 olduğundan,

∫ dy1√
c1− y2

1

= t + c2

integralinde y1 =
√

c1sinθ alındığında,

θ = c2 + k bulunur. Burada θ yerine eşiti yazıldığında

tan−1(
y1

x1
)− t = c2 = tan−1(

y
x
)

ifadesi elde edilir.

v(x1,y1) = tan−1(
y1

x1
) = tan−1(

y
x
)+ t

Elde edilen iki çözümden sonlu dönüşümler x1 = xcost− ysint, y1 = xsint + ycost

bulunur.

Grup Operatörü Altında İnvaryant Fonksiyon:

L=−y
∂

∂x
+ x

∂

∂y
operatörü altında invaryant olan fonksiyonun genel tipini bulalım.

Bunun için Sonuç 2.3 yardımıyla elde edilen (2.1.17) denklemi kullanılırsa,
dx
−y

=
dy
x

=⇒ xdx =−ydy =⇒ x2 + y2 = c

elde edelir. Böylece,

u(x,y) = x2 + y2 = c

olur. O halde grubun invaryantları F(u(x,y)) = F(x2 + y2) fonksiyonları olacaktır

(Cohen, 1911; Oliver, 1986; Page, 1897; Özceylan, 2006).

2.2. Birinci Mertebeden Diferansiyel Denklemler için Lie Simetri Analizi

2.2.1. Birinci mertebeden adi diferansiyel denklemler için simetri şartı

Birinci mertebeden adi diferansiyel denklemler için genel anlamda simetri şartını

bulmak için,

y′ = f (x,y) (2.2.1)

formundaki adi diferansiyel denklemi göz önüne alalım. Önceki bölümde gösterildiği

gibi simetri dönüşümleri diferansiyel denklemin çözüm ailelerini yeni koordinatlarda

değişmeden bırakır.
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Yani,

Hε : (x,y)→ (x1,y1) = (x1(x,y,ε), y1(x,y,ε)), ε ∈ R (2.2.2)

şeklinde bir dönüşüm, (2.2.1) denklemi için simetri olarak kabul edilirse, bu durumda

dy1

dx1
= f (x1,y1) (2.2.3)

olur ve buna (2.2.1) denklemi için simetri şartı denir. Bu şartı biraz daha kullanışlı hale

getirmek için Dx , x yönündeki total (toplam) türevi göstermek üzere

Dx = ∂x + y′∂y + y′′∂y′+ ...

olarak alınırsa; y ,x in bir fonksiyonu ve x1 ile y1 ise x ve y nin fonksiyonu olmak üzere,

Dx total türev operatörü kullanılarak,

dy1

dx1
=

Dxy1

Dxx1
=

y1x + y′y1y

x1x + y′x1y

olarak yazılabilir. Böylece (2.2.1) denklemi için simetri şartı

y1x + y′y1y

x1x + y′x1y
= f (x1,y1) (2.2.4)

şeklinde elde edilir. Bu şart bazı basit adi diferansiyel denklemler için kolayca

çözülebilir hale gelebiliyorsa da, genel olarak karmaşık yapıda kısmi türevli difer-

ansiyel denklemdir ve dolayısıyla çözümü oldukça zordur.

Bu zorluğun üstesinden gelebilmek için Bölüm 2.1 de kullanılan bir parametreli Lie

gruplarının Taylor seri açılımından yararlanılır. Ancak buna doğrudan geçmeden hem

açılımda kullanılan hem de çözüm için kilit öneme sahip bir kavramı vermek adına

düzlemdeki noktalar üzerinde, simetrilerin bir parametreli Lie grubu etkisine bakılır.

Bir Lie simetri grubu, düzlem üzerinde simetri altında invaryant olmayan bir (x,y)

noktası boyunca bir yörünge oluşturur. (x,y) boyunca yörünge üzerindeki noktaların ko-

ordinatları (x1(x,y,0),y1(x,y,0)) = (x,y) olmak üzere (x1,y1) = (x1(x,y,ε),y1(x,y,ε))

şeklindedir.

Bir Lie grubunun etkisi, bir yörünge üzerindeki her bir noktayı aynı yörünge üzerindeki

bir noktaya bire bir eşler. Dolayısıyla yörünge, Lie grubunun etkisi altında invaryanttır.
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Şimdi invaryant olmayan bir (x,y) noktası boyunca yörünge göz önüne alınırsa, (x1,y1)

noktasındaki yörünge için tanjant vektörü

dx1

dε
= ξ (x1,y1),

dy1

dε
= η(x1,y1) (2.2.5)

olmak üzere

(ξ (x1,y1),η(x1,y1))

şeklindedir. Özel olarak (x,y) noktasındaki tanjant vektörü ise;

(ξ (x,y),η(x,y)) = ((
dx1

dε
)ε=0,(

dy1

dε
)ε=0) (2.2.6)

olur. Böylece Lie grubunun etkisi ile x1 ve y1 için (2.1.6) Taylor seri açılımları (2.2.4)

ile verilen simetri şartı altında y′ = f (x,y) ile birlikte yazılırsa,

f + ε(ηx + f ηy)+0(ε2)

1+ ε(ξx + f ξy)+0(ε2)
= f (x+ εξ (x,y)+0(ε2),y+ εη(x,y)+0(ε2))

elde edilir. Şimdi bu ifadenin her iki tarafı ε = 0 civarında Taylor serisine açılır ve

fonksiyoların analitik oldukları göz önüne alınırsa,

f + ε[ηx +(ηy−ξx) f −ξy f 2]+0(ε2) = f + ε[ξ fx +η fy]+0(ε2)

sonucuna ulaşılır.

Buradan 0(ε2) terimlerin karşılıklı eşitlenmesi ve gerekli sadeleştirmelerin yapıl-

masıyla,

ηx +(ηy−ξx) f −ξy f 2 = ξ fx +η fy (2.2.7)

bulunur. Bu şarta (2.2.1) adi diferansiyel denkleminin lineerleştirilmiş simetri şartı

denir (Bluman ve Kumei, 1989; Hyden, 2000).

Örnek 2.2: y = y(x), k = k(x) ve c keyfi bir sabit olmak üzere birinci mertebeden

(
y′

k
)2 + y2 = c diferansiyel denklemini göz ününe alalım. Bu denklem y′ = f (x,y)

formuna çevrilirse c > y olmak üzere f =∓k
√

c− y2 biçimindedir.
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(2.2.7) simetri şartı altında f fonksiyonunun f =∓k
√

c− y2 değeri yerine yazılırsa,

ηx +(ηy−ξx)(∓k
√

c− y2)−ξy(∓k
√

c− y2)2 = ξ (∓k′
√

c− y2)x +η(
∓ky√
c− y2

)

elde edilir. Şimdi y den bağımsız bir ξ ile y ye göre lineer bir η nın varlığına bakalım.

Buna göre α,β ve γ sonradan belirlenecek fonksiyonlar olmak üzere

ξ = α(x), η = β (x)y+ γ(x)

olarak alınsın. Bu dönüşümler denklemde yerine yazılırsa

β ′y+ γ ′∓ (β −α ′)k
√

c− y2 =∓αk′
√

c− y2∓ (βy+ γ)
ky√
c− y2

bulunur. Burada
√

c− y2 nin kuvvetlerine göre ayrıştırma yapılırsa

β = γ = 0 ve α ′k+αk′ = 0

elde edilir. İkinci denklemden

(αk)′ = 0⇒ α =
c1

k
olup, böylece

(ξ ,η) = (
1
k
,0)

biçiminde tanjant vektörlerine ulaşılır. Ancak çözüm için bu yeterli değildir.Bunun için

simetrilerin Lie grubu vasıtasıyla ulaşacağımız çözümü kolaylaştırıcı koordinatların

tanımlanmasına ihtiyaç vardır (Bluman ve Kumei, 1989; Hyden, 2000; Açil, 2013).

2.2.2. Kanonik koordinatlar

(2.2.1) ile verilen adi diferansiyel denklemine ait simetrilerin bulunabileceği ve bu

simetrilerin sadece y- yönündeki (x1,y1) = (x,y+ε) ötelemelerinin Lie grubu içerdiğini

varsayalım. Bu durumda tanjant vektörler

(ξ ,η) = (0,1) (2.2.8)

şeklide olup, (2.2.7) ile verilen lineerleştirilmiş simetri şartı altında bu değerler yerine

yazılırsa fy = 0 bulunur. Bundan dolayı y- yönündeki ötelemelerin Lie grubuna sahip

olan adi diferansiyel denklemler, y′ = f (x) formunda olmalıdır ve bu formda olması

sebebiyle bu tip denklemlerin genel çözümü c integral sabiti olmak üzere,

y =
∫

f (x)dx+ c

şeklinde elde edilir.
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Bu tip simetrilere ait sonuçlardan faydalanarak, birinci mertebeden adi diferansiyel

denklemler uygun koordinat dönüşümleri ile kolaylıkla çözülebilirler.

Bu koordinatların elde edilmesindeki temel hedef, (2.2.1) formunda ki diferansiyel

denklemlerin sahip oldukları simetri dönüşümleri aracılığı ile bu diferansiyel denklemi

yalnızca bağımlı değişken yönünde ötelemelerini içeren yeni bir diferansiyel denkleme

dönüştürecek koordinatlara taşımak olacaktır. Bu koordinatlara ise Kanonik Koordi-

natlar denilmektedir. Bu işlemler altında yeni koordinatlar

(r,s) = (r(x,y),s(x,y)), rxsy− rysx 6= 0

ile gösterilirse göz önüne alınan yeni koordinatlarda adi diferansiyel denklemin sahip

olduğu simetrilerin bir parametreli Lie grubu olan

(r1,s1) = (r(x1,y1),s(x1,y1)) = (r,s+ ε)

formunda olur. Böylece (r,s) noktasındaki tanjant vektörler,

(
dr1

dε
)ε=0 = 0, (

ds1

dε
)ε=0 = 1

biçimindedir.

Burada zincir kuralının uygulanmasıyla

(rx1

dx1

dε
+ ry1

dy1

dε
) |ε=0= 0, (sx1

dx1

dε
+ sy1

dy1

dε
) |ε=0= 1

elde edilir. Bu denklemler, (2.2.6) denklemi ile birlikte göz önüne alınırsa,

ξ (x,y)rx +η(x,y)ry = 0, ξ (x,y)sx +η(x,y)sy = 1 (2.2.9)

bulunur. Burada (r,s) kanonik koordinatları (ξ ,η) nın durumlarına göre aşağıdaki gibi

elde edilir.

i) Eğer ξ 6= 0 ise r’nin,

dy
dx

=
η(x,y)
ξ (x,y)

diferansiyel denkleminin bir integrali olduğu gösterilebilir. Böylece yukarıdaki adi

diferansiyel denklem için ilk integral φ(x,y) = c, φy 6= 0

biçiminde olup buradan çözüm aşağıdaki gibi bulunur;

r = φ(x,y) ve s = (
∫ dx

ξ (x,y(x,r))
) |r=r(x,y)
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ii) Eğer ξ = 0 ise (2.2.9) nin ilk denkleminde ry = 0 olduğu görülür. Buradan basitçe,

r = x ve s = (
∫ dy

η(r,y)
) |r=x)

şeklindeki kanonik koordinatlara ulaşılır.

(r,s) kanonik koordinatları bulunduktan sonra (2.2.1) denklemi bu koordinatlar cinsin-

den

ds
dr

=
Dxs
Dxr

=
sx + y′sy

rx + y′ry
=

sx + f (x,y)sy

rx + f (x,y)ry
(2.2.10)

şeklinde yazılır. (2.2.10) denkleminin sağ tarafı r ve s nin bir fonksiyonu olarak ifade

edilirse (2.2.1) ile ifade edilen adi diferansiyel denklem dönüştürülmüş koordinatlarda

ds
dr

= Ω(r,s)

olmalıdır.

Ancak (r1,s1) = (r,s+ ε) ötelemelerinin bir parametreli Lie grubuna sahip olduğunda

Ωs = 0 olması nedeni ile yukarıdaki adi diferansiyel denklem

ds
dr

= Ω(r)

formunda olup bunun genel çözümü

s =
∫

Ω(r)dr+ c

şeklindedir. Böylece (orjinal) adi diferansiyel denklemin genel çözümü

s(x,y)−
∫ r(x,y)

Ω(r)dr+ c = 0

olarak elde edilir (Bluman ve Kumei,1989; Hyden, 2000). Aşağıda daha önce Örnek

2.2 de tanjant vektörünün belirlendiği denklem için kanonik koordinatlar kullanılarak

çözüme ulaşılmaya çalışılmıştır.

Örnek 2.3: k = k(x) ve c > y olmak üzere (ξ ,η) = (
1
k
,0) şeklindeki tanjant vektörüne

sahip (
y′

k
)2 + y2 = c adi diferansiyel denklemini göz önüne alalım.
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Burada ξ 6= 0 olduğundan
dy
dx

=
η

ξ
= 0 yazılır ve dolayısıyla y = c olup,böylece

r = y, s = (
∫ dx

ξ (x,y(x,r))
) |r=r(x,y)=

∫
k(x)dx

bulunur. Diğer taraftan

ds
dr

=
Dxs
Dxr

=
sx + y′sy

rx + y′ry
=

k(x)
y′

=
k

±k
√

c− y2
=± 1√

c− y2
=± 1√

c− r2

diferansiyel denkleminin integrali alınarak

s =±
∫ 1√

c
dr√

1− (
r√
c
)2

=±arcsin(
r√
c
)+ c1, c1 = sabit

çözümü elde edilir. Burada r ve s nin orjinal değişkenler cinsinden karşılıkları yazılıp

düzenlenirse

y =±
√

csin[
∫

k(x)dx− c1]

biçiminde genel çözümü bulunur (Bluman ve Kumei,1989; Açil, 2013).

Örnek 2.4: y′ =
ex

y
+ y diferansiyel denkleminin çözümünü simetri şartını kullanarak

bulalım. Başlangıç olarak denklemi lineerleştirilmiş simetri şartı altında yerine yazalım.

Bu durumda

ηx−ξy(
ex

y
+ y)2 +(ηy−ξx)(

ex

y
+ y)−ξ (

ex

y
)+η(1− ex

y2 ) = 0

bulunur. Burada işlem kolaylığı açısından ξ = 1 ve η = η(y) olarak ele alıp simetri

şartında yerine yazalırsa,

ηy(
ex

y
+ y)− (

ex

y
)+η(1− ex

y2 ) = 0

bulunur. Burada bazı terimlerin sadece y ye bağlı olduğu göz önünde bulundurulursa

yηy−η = 0 olur ve η = cy bulunur.
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Kalan terimler yazılırsa ηy +
η

y
−1 = 0 olur ve η = cy ile de c nin 1/2 ye eşit olduğu

görülür. Böylece tanjant vektörü

(ξ ,η) = (1,y/2)

şeklinde bulunur.

ξ 6= 0 olmasından dolayı
dy
dx

=
y
2

olup buradan c = ye−x/2 elde edilir. Bu durumda,

r = c = ye−x/2

s = (
∫ dx

ξ (x,y(x,r))
) |r=r(x,y)=

∫ dx
1

= x

Yani kanonik koordinatı (r,s) = (ye−x/2,x) şeklinde elde edilmiş olur. Diğer yandan
ds
dr

=
Dxs
Dxr

=
sx + y′sy

rx + y′ry
=

1

−1/2ye−x/2 + ye−x/2(y+
ex

y
)

=
1

1/2ye−x/2 + y−1ex/2

diferansiyel denkleminde
1

1/2ye−x/2 + y−1ex/2 yerinerve snin simetri şartı ile bulunan

yeni değerleri cinsinden yazılırsa,
ds
dr

=
r

r2/2+1
bulunur. Diferansiyel denklemin integrali alınarak

s = ln(r2/2+1)+ c, c = sbt

çözümü elde edilir. Burada r ve s nin orjinal değişkenler cinsinden karşılıkları yazıp

düzenlenirsey =±
√

ce2x−2ex biçiminde genel çözümü bulunur (Starrett, 2007).

Örnek2.5: y′ = 1+
1− y2

xy
diferansiyel denklemini göz ününe alalım. İlk olarak denklemi, simetri şartı altında

yerine yazalım. Ancak bundan önce y den bağımsız bir ξ ile y ye göre lineer bir η nın

varlığına bakalım. Buna göre α,β ve γ sonradan belirlenecek fonksiyonlar olmak üzere

ξ = α(x), η = β (x)y+ γ(x)

olarak alınsın. Bu dönüşümler yardımıyla lineerleştirilmiş simetri şartı yazılırsa

β ′y+ γ ′+(β −α ′)(1+
1− y2

xy
) = α(

y2−1
x2y

)− (βy+ γ)(
1+ y2

xy2 )

bulunur.
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Burada aşağıdaki gibi y terimlerinin katsayıları yardımıyla,

1) y−2 : γ = 0

2) y−1 : (β −α ′)/x =−α/x2−β/x

3) y0 : β = α ′

olur, burada γ = 0 ve α +α/x = 0 elde edilir. Bu denklemin çözümü ile α =
c
x

bulunur. Bu sonucun 3 koşulunda yerine yazılmasıyla β =
−c
x2 olduğu açıktır. Böylece

(ξ ,η) = (
c
x
,y
−c
x2 )

biçiminde tanjant vektörlerine ulaşılır.

ξ 6= 0 olduğundan
dy
dx

=−y
x

olup buradan c = xy olur.

Bu durumda ,

r = c = xy

s = (
∫ dx

ξ (x,y(x,r))
) |r=r(x,y)=

∫ dx
c/x

=
1
2

x2 dir.

Yani kanonik koordinatı (r,s) = (xy,
1
2

x2) şeklinde bulunur.

Diğer yandan

ds
dr

=
Dxs
Dxr

=
sx + y′sy

rx + y′ry
=

x+0

y+ x(
1− y2− xy

xy
)

diferansiyel denkleminde
x+0

y+ x(
1− y2− xy

xy
)

yerine r ve s nin bulunan değerleri cinsin-

den yazarsak,
ds
dr

=
r

1+ r
bulunur. Diferansiyel denklemin integrali alınarak

s = r− ln(1+ r)+ c, c = sbt

çözümü elde edilir. Burada r ve s nin orjinal değişkenler cinsinden karşılıkları yazıp

düzenlenirse
1
2

x2 = xy− ln(1+ xy)+ c

denklemi elde edilir. Burada y nin çözümlenmesi ile x’e bağlı olmak üzere denklemin

genel çözümü elde edilir (Starrett, 2007).
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Örnek 2.6: y′ = ay−by2 Lojistik diferansiyel denkleminin çözümünü simetri şartını

kullanarak bulalım. Burada a,b sabitlerdir. İlk önce lineerleştirilmiş simetri şartı altında

denklem yerine yazılarak simetri denklemi bu simetri şartı yardımıyla;

ηx +(ηy−ξx)(ay−by2)−ξy(ay−by2)2−η(a−2by) = 0

şeklinde elde edilir. Burada η = 0 seçersek simetri şartı yardımıyla ξ nin bir sabite eşit

olduğunu yani 1 olarak seçebileceğimizi görürüz. Bu durumda tanjant vektörü

(ξ ,η) = (1,0)

şeklinde bulunur.

ξ 6= 0 olduğundan
dy
dx

= 0 olup buradan c = y olur. Bu durumda ,

r = c = y

s = (
∫ dx

ξ (x,y(x,r))
) |r=r(x,y)=

∫ dx
1

= x

Yani kanonik koordinatı (r,s) = (y,x) şeklinde bulunur.

Diğer yandan
ds
dr

=
Dxs
Dxr

=
sx + y′sy

rx + y′ry
=

1
ay−by2

diferansiyel denkleminde ay− by2 yerine r ve s nin bulunan değerleri cinsinden

yazarsak
ds
dr

=
1

ar−br2 bulunur.

Diferansiyel denklemin integrali alınarak

s =
1
a

ln(
r

ar−br2 )+ c , c = sbt

çözümü elde edilir. Burada r ve s nin orjinal değişkenler cinsinden karşılıkları yazıp

düzenlenirse

ea(x+c) =
y

a−by
denklemi elde edilir.

Burada y nin çözümlenmesi ile

y =
ea(x+c)a

1+bea(x+c)

şeklinde Lojistik diferansiyel denklemin genel çözümü bulunur.
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2.3. İkinci Mertebeden Diferansiyel Denklemler için Lie Simetri Analizi

2.3.1. İkinci mertebeden adi diferansiyel denklemler için simetri şartı

Genel ikinci mertebeden,

y′′ = w(x,y,y′) (2.3.1)

formunda olan adi diferansiyel denklemi göz önüne alınırsa, öncelikle bu formdaki

denklemler için simetri şartı belirlenir. Ancak burada önceki bölümden farklı olarak,

birinci mertebeyi de kapsayacak şekilde lineerleştirilmiş simetri şartını bulunması daha

kolaydır. Bu simetri şartını bulmak için Bölüm 2.2’ de buluna (ξ ,η) tanjant vektörleri

ile,

L = ξ (x,y)
∂

∂x
+η(x,y)

∂

∂y
(2.3.2)

ile gösterilen L sonsuzküçük üretecinin kullanılması gerekir. Bu verilen ifadeler yardımı

ile,

η
(k) = Dxη

(k−1)− y(k)Dxξ ,k = 1,2, ... (2.3.3)

olmak üzere L sonsuzküçük üreteci,

L(n) = ξ
∂

∂x
+η

∂

∂y
+η

(1) ∂

∂y′
+η

(2) ∂

∂y′′
+ ...+η

(n) ∂

∂y(n)
(2.3.4)

şeklinde uzanımlı form olarak adlandırılan hale getirilebilir. Buna göre ikinci mertebe-

den adi diferansiyel denklemler için lineerleştirilmiş simetri şartı,

L(2)(y′′−w(x,y,y′)) = 0 (2.3.5)

olarak ortaya çıkar. Buradan,

η
(2) = ξ wx +ηwy +η

(1)wy′ (2.3.6)

olduğu görülür.
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(2.3.3) denklemi ile verilen formülün burada kullanılmasıyla

η(1) = ηx +(ηy−ξx)y′−ξyy′2

η(2) = ηxx +(2ηxy−ξxx)y′+(ηyy−2ξxy)y′2−ξ (yy)y′3 +(ηy−2ξx−3ξyy′)y′′

bulunur. Bu değerlerin (2.3.1) denklemi göz önünde bulundurularak (2.3.6) denkleminde

yerine yazılmasıyla, ikinci mertebeden adi diferansiyel denklemler için lineerleştirilmiş

simetri şartı

ηxx +(2ηxy−ξxx)y′+(ηyy−2ξxy)y′2−ξyyy′3 +(ηy−2ξx−3ξyy′)w =

ξ wx +ηwy +(ηx +(ηy−ξx)y′−ξyy′2)wy′ (2.3.7)

şeklinde elde edilir.

İkinci mertebeden adi diferansiyel denklemler için simetri şartının birinci mertebeye

göre farkı y nin türevlerini içermesidir. Bu fark ile lineerleştirilmiş simetri şartı

altında dy
dx in kuvvetlerine göre ayrıştırma yapılabilmektedir. Bu şekilde ortaya çıkacak

denklem sistemine belirleme denklemleri denir (Bluman ve Kumei, 1989; Hyden,

2000).

Örnek 2.7: y′′ = sin(y′2)+1

İkinci mertebeden adi diferansiyel denklemini göz önüne alarak Bölüm 2.3.1 de

belirtilen adımları sırasıyla uygulayalım.

Öncelikle bu denklem için w fonksiyonu ve türevleri,

y′′ = w(x,y,y′) = sin(y′2)+1

wx = 0

wy = 0

wy′ = 2y′cos(y′2)

şeklindedir. Denklem (2.3.7) ile verilen lineerleştirilmiş simetri şartı altında bu değerler

yerine yazılırsa,

ηxx + (2ηxy − ξxx)y′ + (ηyy − 2ξxy)y′2 − ξyyy′3 + (ηy − 2ξx − 3ξyy′)(sin(y′2) + 1) =

(ηx +(ηy−ξx)y′−ξyy′2)(2y′cos(y′2))

elde edilir. Burada türevli ifadelerin katsayıları ayrıştırılırsa,

ξy = 0 , ξxx = 0

ηx = 0 , ηy−ξx = 0

ηyy = 0 , ηy−2ξx = 0

belirleme denklemlerine ulaşılır.
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Böylece bulunan kısmi diferansiyel denklemin sistemi çözülerek, c1 ve c2 sabitler olmak

üzere

ξ = c1, η = c2

dönüşümleri bulunur. Buradan tanjant vektörler,

(ξ1,η1) = (1,0) , (ξ2,η2) = (0,1)

olup dolayısıyla,

L1 =
∂

∂x
, L2 =

∂

∂y
biçiminde sonsuzküçük üreteçlere ulaşılır (Bluman ve Kumei, 1989; Hyden, 2000; Açil,

2013).

Sonsuzküçük üreteçler elde edildkten sonra tıpkı birinci mertebede yapıldığı gibi in-

dirgeme işlemleri yapılır.

2.3.2. Kanonik koordinatlar kullanılarak mertebe indirgenmesi

Yüksek mertebeden adi diferansiyel denklemlerin çözümünde de mertebesi küçük olan

diferansiyel denklemlerde yapıldığı gibi kanonik koordinatlardan faydalanılır. Şimdi,

y′′ = w(x,y,y′)

formundaki diferansiyel denklemini göz önüne alalım. Bu diferansiyel denklemin

L =
∂

∂y
= ∂y şeklinde bir sonsuzküçük dönüşüme sahip olduğunu düşünelim. Önceki

bölümden ikinci mertebeden diferansiyel denklemler için simetri koşulunun,

L(n)(y′′−w(x,y,y′)) = 0

şeklinde olduğu göz önüne alınırsa,

η(k) = Dxη(k−1)− y(k)Dxξ , k = 1,2, ...

olmak üzere,

L(n) = ∂y

yazılır ve dolayısıyla lineerleştirilmiş simetri şartı ile wy = 0 sonucuna ulaşılır. Bu

nedenle de diferansiyel denklemin yeni formu aşağıdaki gibi olur:

y′′ = w(x,y′)
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Dolayısıyla y′(x) = v(x) dönüşümü ile

v′ = w(x,y)

indirgenmiş diferansiyel denklemi elde edilir. Elde edilen bu diferansiyel denklemin

çözülebildiği ve bu denklemin genel çözümünün de

v = f (x,c1)

olduğu varsayılırsa bu takdirde (2.3.1) diferansiyel denklemi,

y′ = f (x,c1)

halini alır ve bu ifadenin genel çözümü ise

y =
∫

f (x,c1)+ c2

şeklindedir (Bluman ve Kumei, 1989; Hyden, 2000).

Örnek 2.8: İkinci mertebeden y′′ =
3y′2

2y
+2y3 diferansiyel denklemi L = ∂x tarafından

üretilen bir parametreli simetrilerin bir tek-parametreli ailesine sahiptir. Bu üreteçten

(ξ ,η) = (1,0) olup (r,s) kanonik koordinatları,

r = y , s = x

olarak yazılır ve buradan
ds
dr

= t =
1
y′

,
d2s
dr2 =

dt
dr

=
−y′′

y′3
=
−3
2yy′
−2

y3

y′3
=−(3t

2r
+2r3t3)

bulunur. Mertebe indirgemesi için v(r) = t(r) eşitliği kullanılırsa,birinci mertebeden

v′ =
−3v
2r
−2r3v3

denklemi elde edilir. Bu diferansiyel denklemin çözümlerini elde etmek için, önce

tanjant vektörleri

(ξ∼,η∼) = (0,r3v3)

biçiminde bulunur. Buradan yeni kanonik koordinatlar

r∼ = r, s∼ =
−1

2r3v2

olur. Böylece
ds∼

dr∼
= 1/2(

3
r4v2 +2

v′

r3v3 ) =−2

şeklinde olup c1 = sbt olmak üzere s∼ = c1−2r∼ dir.
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O halde (r,v) kanonik koordinatlar cinsinden denklem

v =∓
√

1
2r3(2r− c1)

olup buradan diferansiyel denklemin genel çözümü

x =∓
∫ dy√

2y3(2y− c1)
+ c2 =∓

√
2y3(2y− c1)

c1y2 + c2

olarak elde edilir (Bluman ve Kumei, 1989; Hyden, 2000; Açil, 2013).

Örnek 2.9: İkinci mertebeden y′′ =
y′2

y
+(y− 1

y
)y′ diferansiyel denklemi L = ∂x tarafın-

dan üretilen bir parametreli simetrilerin bir tek-parametreli ailesine sahiptir. Bu aile

yardımıyla diferansiyel denklemi simetri metodu yardımıyla çözelim.

Verilen aile yardımıyla denklemin tanjant vektörü (ξ ,η) = (1,0) olarak bulunur. Bu-

radan denklemin kanonik koordinatlarını ξ = 0 olduğundan r = y , s = x olarak bulabil-

iriz ve buradan

ds
dr

= v =
1
y′

,
d2s
dr2 =

dv
dr

=
−y′′

y′3
=

−(y′2

y
+(y− 1

y
)y′)

y′3
= (

1
r
− r)v2− v

r
bulunur. Mertebe indirgemesi için u(r) = v(r) eşitliği kullanılırsa,birinci mertebeden

u′ = (
1
r
− r)u2− u

r
denklemi elde edilir. Bu diferansiyel denklemin çözümlerini elde etmek için, önce

tanjant vektörleri (ξ∼,η∼) = (0,u2r) biçiminde bulunur. Buradan yeni kanonik koordi-

natlar

r∼ = r, s∼ =
−1
ur

olur. Böylece ifadeleri
ds∼

dr∼
de yerine yazıp integral alınırsa c1 = sbt olmak üzere (r,u)

kanonik koordinatlar cinsinden denklem

u =− 1
c1r− r2−1

olup buradan diferansiyel denklemin genel çözümü aşağıdaki gibi elde edilir (Bluman

ve Kumei, 1989; Hyden, 2000; Açil, 2013);

x =
∫
− 1

c1y− y2−1
+ c2
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2.4. Kesirli Mertebeden Diferansiyel Denklemler için Lie Simetri Analizi

Genel kesirli mertebeden

Dα
x y(x) = f (x,y) (2.4.1)

formunda, mertebesi α olan diferansiyel denklemi göz önüne alalım. Burada α , n ∈ N

olmak üzere n−1≤ α < n aralığındadır.

Burada kullanılan Dα
x y(x), operatörü Riemann-Liouville kesirli türev operatörü olmak

üzere

Dα
x y(x) =

1
Γ(1−α)

d
dx

∫ x

0

y(t)
(x− t)α

dt (2.4.2)

şeklinde tanımlanır. Burada Γ(.), Gamma fonksiyonudur.

Kesirli mertebe için genelleştirilmiş Leibnitz Kuralı ise

Dα
x ( f (x)g(x)) =

∞

∑
n=0

(
α

n
)Dα−n

x f (x)gn(x), α > 0 (2.4.3)

şeklindedir (Oldham ve Spainer, 1974; Samko vd., 1993; Podlubny, 1999; Kilbas, 2006;

Gazizov v.d,2007).

Lie grup teorisi düşüncesi ışığında sonsuzküçük dönüşümün n. mertebeden ve α mer-

tebeden genişletilmesiyle

x1 = x+aξ (x,y)+0(a2) (2.4.4)

y1 = y+aη(x,y)+0(a2) (2.4.5)

yn
1 = yn(x)+aη

n(x,y)+0(a2) (2.4.6)

Dα
x y1 = Dα

x y+aη
n(x,y)+0(a2) (2.4.7)

şeklinde sonsuzküçük dönüşümler elde edilir.
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Bu eşitliklerin kullanılmasıyla n. mertebeden genişletilmiş sonsuzküçük üreteç

η
n = D(η(n−1))− y(n)D(ξ ) (2.4.8)

olup buradaki D, adi mertebeden diferamsiyel denklemler de tanımlandığı gibi total

türev operatörüdür. (2.4.8) denklemi ile verilen ifadeye Prolongation formülü de

denilmektedir. Bu ifade D total türev tanımı ve yn =
dny
dxn ifadesi yardımıyla,

η
n = Dn(η−ξ y(1))+ξ y(n+1) (2.4.9)

şeklinde de tanımlanabilir. (2.4.9) eşitliği ile verilen tanım yardımıyla α mertebe kesirli

denklemler için Prolongation formülü

η
(n) = D(α)

x (η−ξ y(1))+ξ D(α+1)
x y (2.4.10)

şeklinde bulunur. Prolongation formülü α mertebeden kesirli denklemler için kolayca

şu şekilde genelleştirilebilir (Ovsiannikov,1982; Hyden, 2000):

η
α = Dα

x η +Dα
x (Dx(ξ )y)+ξ Dα+1

x y−Dα+1
x (ξ y) (2.4.11)

Başta verdiğimiz x1, y1 sonsuzküçük üreteçleri ve kesirli mertebeden diferansiyel den-

klemin simetri grup dönüşümünün Dα
x y1 = f (x1,y1) olduğu göz önünde bulundurulursa,

kesirli mertebeden diferansiyel denklemler için simetri şartı

(ηα − ∂ f
∂x

ξ − ∂ f
∂y

η)|Dα
x y= f (x,y) = 0 (2.4.12)

şeklinde tanımlanabilir. Burada ki ηα ile verilen Prolongation formülü olup (2.4.3) de

verdiğimiz genelleştirilmiş Leibnitz Kuralı ile bu ifade

η
α = Dα

x η +
∞

∑
n=0

(

(
α

n

)
)
n−α

n+1
Dα−n

x yDn+1
x ξ (2.4.13)

şeklinde de ifade edilebilir (Gaziziov, 2007). Kesirli diferansiyel denklemlerin simetri-

leri üzerine daha fazla bilgi edinmek istenirse, Oldham ve Spainer (1974), Samko v.d.

(1993) ve Baleanu (2012) çalışmalarına bakılabilir.
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2.5. Kısmi Diferansiyel Denklemler için Lie Simetri Analizi

Genel formu

F(t,x,u,ux,ut , . . . ) = 0 (2.5.1)

olan n. mertebeden bir kısmi diferansiyel denklemee ait bir parametreli Lie grup

dönüşümü,

t = t +µδ (t,x,u)

x = x+µξ (t,x,u)

u = u+µη(t,x,u)

ui = ui +µηi(t,x,u,u1)

...

ui, j,...,kl = ui, j,...,k +µηi, j,...,k(t,x,u,u1, ...,uk)

şeklindedir. Burada µ önceki bölümlerde tanımlandığı gibi grup parametresidir.

Elde edilen bu dönüşüme karşılık gelen Lie diferansiyel operatörü,

L = δ (t,x,u)
∂

∂ t
+ξ (t,x,u)

∂

∂x
+η(t,x,u)

∂

∂u
(2.5.2)

şeklinde ifade edilir. Burada,

(
∂ t
∂ µ

)µ=0 = δ (t,x,u)

(
∂x
∂ µ

)µ=0 = ξ (t,x,u)

(
∂u
∂ µ

)µ=0 = η(t,x,u)

tanjant vektörleri tanımlanabilir. Lie diferansiyel operatörün tanımının kullanılmasıyla,

Ln = L+ηi(t,x,u) ∂

∂ui
+ ... +ηi, j,...,k(t,x,u,u1, ...,uk)

∂

∂ui, j,...,k

olarak elde edilir. Burada kullanılacak sonsuzküçük üreteçler önceki bölümde tanım-

lanan D total türev operatörü yardımıyla,

ηi = Diη− (Diδ )ut− (Diξ )ux

şeklinde tanımlanır.
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Burada birkaç ifadenin yerine yazılmasıyla,

η1 = Dt(η)−utDt(δ )−uxDt(ξ )

= ηt +(ηu−δt)ut−ξtux−δu(ut)
2−ξuutux

η2 = Dx(η)−utDx(δ )−uxDx(ξ )

= ηx +(ηu−δx)ux−δxut−ξu(ux)
2−δuutux

η11 = Dt(η1)−uttDt(δ )−utxDt(ξ )

= ηtt + (2ηtu − δtt)ut + (ηuu − 2δtu)(ut)
2 − δuu(ut)

3 − 3δuututt − ξttux − 2ξututux −

2ξtutx−ξuuux(ut)
2−ξuuxutt−2ξuutuxt

η22 = Dx(η2)−utxDx(δ )−uxxDx(ξ )

= ηxx + (2ηxu − ξxx)ux − δxxut + (ηu − 2ξx)uxx − 2δxutx + (ηuu − 2ξxu)(ux)
2 −

2δxuutux−ξuu(ux)
3−δuuut(ux)

2−3ξuuxuxx−δuutuxx−2δuuxutx

şeklinde çözüm için gerekli ifadeler bulunur. Burada, örneğin ut = uxx denklemi için

2. mertebeden genişletilmiş Lie operatörü L ile η1 = η22 eşitliği elde edilip, çözüm

için simetriler bulunur. Bu simetriler bulunduktan sonra ise, δ ,ξ ve η yardımıyla

kısmi mertabeden diferansiyel denklemi simetri çözümü ile adi diferansiyel denkleme

aşağıdaki gibi indirgeyebiliriz.

dt
δ (t,x,u)

=
dx

ξ (t,x,u)
=

du
η(t,x,u)

Bu sistemden elde edilen iki integralin çözülmesiyle elde edilen ifadeleri v ve z olarak

adlandırırsak indirgeme işlemi için w(z) = v alınır. Bu ifadenin verilen kısmi difer-

ansiyel denklemde yerine yazılmasıyla denklem adi diferansiyel denkleme indirgenir

sonrasında bu adi diferansiyel denklemin w çözümü kısmi diferansiyel denklemin

çözümü olarak elde edilir (Clarksonz ve Elizabeth, 1994; Gbetoula, 2011; Verna vd.,

2014; Kiraz, 2007).
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3. DİFERANSİYEL DENKLEM SİSTEMLERİNİN LİE SİMETRİ ANALİZİ

İLE GENEL ÇÖZÜMLERİ

Bu bölümde, Lie simetri analizi ile bazı diferansiyel denklem sistemlerinin çözümlerinin

bulunması ele alıcaktır. İlk olarak Hanta-virüs model sistemi ele alınıp, adi mertebeden,

kesirli mertebeden ve kısmi mertebeden türevli halleri için genel çözüm araştırılacaktır.

Daha sonrasında ise Granül hücre üretimi modeli ele alınıp, farklı δ (t) durumlarına

karşılık gelen çözümleri araştırılacaktır.

3.1. Hanta-virüs Sistemi için Lie Simetri Analizi

Hanta-virüsü aslında farelerden bulaşan ve virüslerin genetik olarak tek zincirli RNA

içermesi sebebi ile özellikle öldürücü olabilen bir hastalıktır. İlk kez Güney Kore’deki

Hanta Nehri’nde keşfedilen virüsün çeşitli türleri vardır. Hanta-virüs dinamiklerini

daha iyi anlamak ve analiz etmek için Abramson vd.(2002 ) tarafından önerilen ve

bu tez çalışmasında incelenecek olan matematiksel model, Abramson-Kenkre modeli

olarak da bilinir. Allen vd.(2003) de Hanta-virüs enfeksiyonu için bir adi diferansiyel

denklem modeli önerdi. Allen vd. (2006) da, dişi ve erkek kemirgenlerdeki hanta-

virüs enfeksiyonu için iki yeni model daha geliştirmiştir. Abramson-Kenkre modeli

infecte(hastalıklı) fareden susceptible(duyarlı) fareye virüs geçişini tanımlayan bir lineer

olmayan diferansiyel denklem sistemidir.

Abramson vd. (2003) de kısmi diferansiyel denklemi ile tanımlanan model, tüm fare

(mice) popülasyounu duyarlı ve hastalıklı olmak üzere iki gruba ayırmıştır.

Adi mertebeden türeve sahip Hanta-virüs modeli Abramson vd.(2002) de aşağıdaki

şekilde tanımlanmıştır:

dMs

dt
= b(Ms +Mi)− cMs−

Ms(Ms +Mi)

K
−aMsMi (3.1.1)

dMi

dt
=−cMi−

Mi(Ms +Mi)

K
+aMsMi (3.1.2)
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Lineer olmayan bu diferansiyel denklem sisteminde,

Ms: Hasta olmayan farelerin nüfusunu

Mi: Hastalıklı farelerin nüfusunu

a: Bulaşma oranını,

b: Doğum oranını,

c: Ölüm oranını

K: Çevre taşıma kapasitesini göstermektedir.

Bu modelde yayılma süreci olarak fare hareketi göz ardı edilmiş ve tüm nüfus duyarlı

ve hastalıklı fareler olmak üzere iki durumdan oluşmuştur.

(3.1.1)-(3.1.2) diferansiyel denklem sisteminin taraf taraf toplanması ile elde edilen

Lojistik diferansiyel denklem,

dM
dt

= (b− c)M−M2

K
(3.1.3)

şeklindedir. Burada M = Ms +Mi toplam nüfusu gösterir. Bundan sonraki aşamalarda,

Lojistik diferansiyel denklemin Lie simetri metodu ile genel çözümden yararlanılarak,

geriye yerine yerleştirme yapılıp Ms ve Mi nüfusları hesaplanacaktır.

Ayrıca kesirli mertebeden türeve sahip Hanta-virüs modeli ise;

Dα
t Ms = b(Ms +Mi)− cMs−

Ms(Ms +Mi)

K
−aMsMi (3.1.4)

Dα
t Mi =−cMi−

Mi(Ms +Mi)

K
+aMsMi (3.1.5)

şeklinde tanımlanır, burada tanımlanan Dα
t kesirli türev operatörüdür ve Riemann Li-

ouville tanımına göre kullanılmıştır. Kesirli türev, ekosistemlerde homojen olmayan

karakterleri tanımlamak için kullanılır. Ancak burada kesirli türev kullanılırken rakip

türün varlığına da dikkat edilir. α parametresi buradan rakip türün yoğunluğuna karşılık

gelmektedir (Abdullah ve Ismail, 2011; Rida vd., 2012).

Bilindiği üzere lineer olmayan diferansiyel denklemlerin ve denklem sistemlerinin genel

çözümünü bulmak oldukça zordur. Bu sorun bazı problemlerde Lie simetri metodu

yöntemi ile ortadan kaldırılabilir. Detaylı literatür taraması yapıldığında Hanta-virüs

modelinin genel çözümüne rastlanmamış olup, bazı nümerik yöntemlerle yaklaşık

çözümler elde edilmeye çalışılmıştır (Chen ve Clemence, 2006a; Chen ve Clemence,

2006b; Allen v.d, 2006; Wesley,2008; Goh vd.,2009; Ruan ve Jianghong, 2009; Gokdo-

gan v.d, 2012; Ding vd.,2013; Yuzbaşı ve Sezer, 2013; Karadem ve Ongun, 2016).

33



Son olarak ise Kısmi mertebeden türeve sahip Hanta-virüs sistemi ise Abramson

(2003)’de,

∂Ms

dt
=

∂ 2Ms

∂x2 +b(Ms +Mi)− cMs−
Ms(Ms +Mi)

K
−aMsMi (3.1.6)

∂Mi

dt
=

∂ 2Mi

∂x2 − cMi−
Mi(Ms +Mi)

K
+aMsMi (3.1.7)

şeklinde tanımlanmıştır.

Hanta-virüs sisteminin kısmi haline ait denklemlerinin taraf tarafa toplanması ile elde

edilen Lojistik denklem özel olarak Fisher-Kolmogorov denklemi olarak adlandırılır.

Literatür çalışmalarına bakıldığında bu denkleme ait çözümlerin elde edilmesinde farklı

yöntemlerle çalışıldığı görülmüştür (Ablowitz ve Anthony, 1979; Kaushal vd., 2006).

Bu bölümün son başlığı altında ise bu Fisher-Kolmogorov denkleminin Lie simetri ile

çözümleri araştırılacaktır.

Hanta-virüs sistemi için bu tez çalışması boyunca analitik çözümlerin hesaplanması

ve sabitlerin bulunmasında kullanılması için a = 0.1, b = 1, c = 0.5 ve K = 20 olarak

alınmıştır. Bu verilen ifadelere ilişkin sabitler hem adi kem kesirli hem de kısmi

mertebeden hanta-virüs sitemlerinde aynı alınmıştır (Abramson ve Kenkre, 2002).

3.1.1. Adi mertebeden hanta-virüs sistemi

Denklem (3.1.1) ve (3.1.2) ile verilen Hanta virüs modelinde taraf tarafa toplama işlemi

yapılıp M = Ms +Mi, olarak alınırsa yeni denklem

dM
dt

= (b− c)M−M2

K
(3.1.8)

şeklinde Lojistik diferansiyel denkleme dönüşür. Denklem (3.1.8) denkleminin lineer-

leştirilmiş simetri şartı altında yerine yazılmasıyla tanjant vektörleri (ξ ,η) = (1,0)

olarak elde edilir.
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Sonrasında ξ 6= 0 olması nedeniyle ve kanonik koordinatlar yardımıyla;

r = c ve s = x

şeklinde bulunur. Daha sonra bulunan bu kanonik koordinatlarda
ds
dr

ile ifade edilen adi

diferansiyel deklem çözülerek,

M =
K(b− c)e(C1b−C1c+bt−ct)

−1+ e(C1b−C1c+bt−ct)
(3.1.9)

çözümü elde edilir. Burada C1 keyfi sabittir.

(3.1.8) denkleminden M−Mi = Ms şeklinde çekilip, (3.1.9) denklemi ile genel çözümü

bulunan M değeri ile (3.1.2) denklemi tekrar yazılırsa, bu denklemin yeni hali;

dMi

dt
=−cMi−

Mi((
K(b− c)e(C1b−C1c+bt−ct)

−1+ e(C1b−C1c+bt−ct)
−Mi)+Mi)

K
+ (3.1.10)

a(
K(b− c)e(C1b−C1c+bt−ct)

−1+ e(C1b−C1c+bt−ct)
−Mi)Mi

şeklinde birinci mertebeden adi diferansiyel denklem olur. (3.1.10) denklemini lineer-

leştirilmiş simetri şartı altında yerine yazarsak Maple 18 paket programı yardımıyla bu

denklemin tanjant vektörleri;

(ξ ,η) = (0,−(e(tc)− e(C1b−C1c+bt))(−aK)M2
i (e

(tc(aK+1)))− e(acKt(C1b−C1c+bt)))

olarak elde edilir. Böylece Mi denkleminin çözümü,

A = eC1betb− eC1cetc, I =
∫ aeC1c(−Ae−C1c)aK

eacKt dt

olmak üzere

Mi =
(

A
eC1c )

aKeC1c

eacKtA(I +C2)
(3.1.11)

şeklinde elde edilir. Burada C1 ve C2 keyfi sabitlerdir.
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(3.1.11) denklemindeki Mi çözümü ve (3.1.9) de verilen M denklemi çözümü yardımıyla

Ms denkleminin çözümü

Ms =
K(b− c)e(C1b−C1c+bt−ct)

−1+ e(C1b−C1c+bt−ct)
−

(
A

eC1c )
aKeC1c

eacKtA(I +C2)
(3.1.12)

şeklinde bulunur.

(3.1.1) - (3.1.2) adi mertebeden diferansiyel denklem sisteminin (3.1.11) ve (3.1.12)

denklemleri ile verilen çözümlerinde bölüm başında verilen değerlerin yerine yazıl-

masıyla Mi ve Ms çözümleri kolayca elde edilir. Ms(0) = 25 ve Mi(0) = 15 başlangıç

koşullarının kullanılması ile C1 ve C2 sabitleri;

C1 = 0.5753641449 C2 =−0.1777777778

şeklinde bulunur (Ongun ve Kocabıyık, 2017). Bu tez çalışmasında tüm nümerik

hesaplamalar ve simülasyonlar Maple 18 paket programı kullanılarak yapılmıştır.

Aşağıda adi mertebeden ve kesirli mertebeden çözümlere ait bazı grafiklere yer ver-

ilmiştir. Şekil 3.1 de; adi mertebeden sistem için faz portesi çizimine, Şekil 3.3 de ise;

hastalıklı ve duyarlı nüfuslara ait bulunan çözüm grafiğine yer verilmiştir.

Bu çizimlerde b > c, K 6
b

a(b− c)
için denge noktası (K(b− c),0) asimptotik karalı

olduğu görülmektedir. Eğer b > c, K >
b

a(b− c)
durumu ele alınırsa aynı işlem-

lerle, (
b
a
,K(b−c)− b

a
) şeklinde elde edilen denge noktasının asimptotik kararlı olduğu

görülür.

Şekil 3.2 te ise; (3.1.8) ile elde edilen Lojistik diferasiyel denkleminin çözümündeki

keyfi sabit Ms(0)+Mi(0) = M(0) = 40 olmak üzere C1 ∼= 0.5753641449 olarak alın-

mıştır (Ongun ve Kocabıyık, 2017).
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Şekil 3.1. (3.1.1) - (3.1.2) sistemi için Faz düzlemi

Şekil 3.2. Denklem (3.1.8) ile verilen Lojistik diferansiyel denklemin çözümü

Şekil 3.3. Denklem (3.1.1) ve (3.1.2) ile verilen Ms ve Mi çözümleri
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3.1.2. Kesirli mertebeden hanta-virüs sistemi

(3.1.4) -(3.1.5) denklemleri ile verilen kesirli mertebeden türev içeren Hanta-virüs

modelinde, önceki bölümlerde verilen benzer işlemler yapılarak

Dα
t M = (b− c)M−M2

K
(3.1.13)

şeklinde kesirli mertebeden Lojistik diferansiyel denkleme ulaşılır. Burada M =Mi+Ms

dir. (3.1.13) ile verilen kesirli mertebeden diferasiyel denklem için simetri koşulu,

η
α −η((b− c)− 2

K
M) = 0 (3.1.14)

şeklindedir. Burada ξ = ξ (t) ve η = p(t)M+q(t) olarak şeçilip ηα yerinede (2.4.13)

ile verilen Leibnitz kuralı uygulanarak, gerekli bazı uzun işlemler sonucunda, belirleme

denklemleri;

D1: Dα
t q(t) = (b− c)q(t)

D2:
2

α(b− c)K
q(t) = ξ ′(t)

D3: −αξ ′(t) = p(t)

D4: pn(t)+
n−α

n+1
ξ (n+1)(t) = 0

şeklinde elde edilir. Burada n ∈N dir. D1 denklemi Kilbas v.d. (2006) dan faydalınarak

çözülürse,

q(t) = tα−1Eα,α((b− c)tα)C3

olarak elde edilir. Burada Eα,α(.) iki prametreli Mittag-Leffler fonksiyonu ve C3 keyfi

sabittir. İki parametreli Mittag-Leffler fonksiyonunun tanımı aşağıdaki gibidir,

Eα,β (t
α) =

∞

∑
k=0

tαk

Γ(αk+β )
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Burada Mittag-Leffler fonksiyonu üstel fonksiyonun bir genişletilmesi yani uzantısıdır.

α = 1 olduğunda, q(t) denklemi (b−c)et şeklindeki denkleme indirgenir. D2 ifadesinin

çözümü için ise D1’ de bulunan q(t) nin integralinin alınmasıyla,

ξ (t) =C3
2

Kα(b− c)
tαEα,α+1((b− c)tα)+C4

şeklinde bulunur. Burada C3 ve C4 keyfi integral sabitleridir. D3 denkleminde, ξ ′(t)

türevi yerine yazılarak,

p(t) =C3
−2

K(b− c)
tα−1Eα,α((b− c)tα)

şeklinde elde edilir. D4 denkleminin, elde edilen p(t) ve ξ (t) nin yerine yazılması ile

sağlandığı açıktır.

Böylece L sonsuzküçük üreteci,

L = [C3
2

Kα(b− c)
tαEα,α+1((b− c)tα)+C4]

∂

∂ t

+[C3
−2

K(b− c)
tα−1Eα,α((b− c)tα)M+C3tα−1Eα,α((b− c)tα)]

∂

∂M

olarak bulunur. Bu diferansiyel operatör ve simetri şartında verilen denklemin kullanıl-

ması ile genel çözüm için,

dt
2

Kα(b− c)
tαEα,α+1((b− c)tα)

dM
−2

K(b− c)
tα−1Eα,α((b− c)tα)M+ tα−1Eα,α((b− c)tα)

ifadelerinin birbirine eşitlenmesiyle M çözümü,

M =
[(tαEα,α+1((b− c)tα)−α)−1]

−2/(K(b− c))
+C5 (3.1.15)

olarak elde elde edilir. Burada C5 keyfi sabittir.
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Elde edilen bu ifadenin çözümü ve M−Mi = Ms alınmasıyla, (3.1.5) denkleminin yeni

hali,

Dα
t Mi =−cMi−

Mi(
[(tαEα,α+1((b− c)tα)−α)−1]

−2/(K(b− c))
+C5)

K
+ (3.1.16)

a(
[(tαEα,α+1((b− c)tα)−α)−1]

−2/(K(b− c))
+C5−Mi)Mi

şeklinde olur. Bu denklem için de simetri koşulu uygulanıp, belirleme denklemleri

çözülürse tanjant vektörü,

(ξ ,η) = ((c+
M
K
−aM)

−1
α ,((c+

M
K
−aM)

−1
α
−1
(M′−aM′)Mi) (3.1.17)

olarak bulunur. Burada M, (3.1.13) denklemi ile verilen kesirli mertebeden Lojistik

diferansiyel denklemin (3.1.15) ile verilen çözümüdür. Buradan kanonik değişkenler

kullanılarak Mi çözümü ,

Mi = (c+

[(tαEα,α+1((b− c)tα)−α)−1]
−2/(K(b− c))

+C5

K
− (3.1.18)

a(
[(tαEα,α+1((b− c)tα)−α)−1]

−2/(K(b− c))
+C5))+C6

şeklinde elde edilir. Burada C6 keyfi sabittir. (3.1.18) denkemi ve (3.1.15) denklemi

yardımıyla Ms çözümü,

Ms =
[(tαEα,α+1((b− c)tα)−α)−1]

−2/(K(b− c))
+C5− (c+

[(tαEα,α+1((b− c)tα)−α)−1]
−2/(K(b− c))

+C5

K
−

(3.1.19)

a(
[(tαEα,α+1((b− c)tα)−α)−1]

−2/(K(b− c))
+C5))+C6.

olarak elde edilir. Şekil 3.4 ve Şekil 3.5 te ise (3.1.5) ve (3.1.4) ile verilen kesirli

mertebeden diferansiyel denklemin farklı α değerleri için Ms ve Mi çözüm grafikleri ve

density plot çizimleri verilmiştir (Ongun ve Kocabıyık, 2017).
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Şekil 3.4. Density Plot (sol) ve farklı α değerleri için Mi Çözümleri.(sağ)

Şekil 3.5. Density Plot (sol) ve farklı α değerleri için Ms Çözümleri.(sağ)
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3.1.3. Kısmi hanta-virüs sistemi

(3.1.6)-(3.1.7) denklemleri ile verilen kısmi Hanta-virüs sisteminin taraf tarafa toplan-

ması, yine diğer alt bölümlerde olduğu gibi M = Mi +Ms fadesinin kullanılmasıyla bu

sistem,

∂M
∂ t

=
∂ 2M
∂x2 +(b− c)M[1− M

(b− c)K
] (3.1.20)

şeklindeki Fisher tipi Lojistik diferansiyel denklem halini alır. Kolaylık açısından bu

denklemi,

ut = uxx +A.u−B.u2

olarak ifade edelim, burada A = (b− c) ve B = 1
K şeklinde alınmış ve M ifadesi ise u

ile gösterilmiştir. Yani daha genel bir ifade ile ut = uxx + f (u) olarak gösterilebilir.

Bölüm 2.5 te verilen ikinci mertebeden genişletilmiş Lie operatörü olan L operatörünün

kullanılması ile elde edilen Fisher denkleminin Lie simetri çözümü için,

−η fu +η1−η22 = 0 (3.1.21)

ifadesinin çözülmesi gereklidir. η1 ve η22 eşitliklerinin yerine yazılması ile (3.1.21)

denklemi,

−η fu +ηt +(ηu−δt)ut−ξtux−δu(ut)
2 −ξuutux−ηxx +(−2ηxu +ξxx)ux +δxxut+

(−ηu +2ξx)uxx +2δxutx +(−ηuu +2ξxu)(ux)
2

+2δxuutux +ξuu(ux)
3 +δuu(ux)

2ut +3ξuuxuxx +δuutuxx +2δuuxutx = 0

şeklini alır. Başta verilen ut = uxx + f (u) ifadesi ile uxx yerine ut− f (u) yazılmasıyla

kısmi diferansiyel denklem aşağıdaki hale dönüşür;

[−η fu− (−ηu +2ξx) f (u)+ηt−ηxx]

+[ηu−ξt +ξxx +(−ηu +2ξx)−δu f (u)]ut

+[−δu +δu](ut)
2 +[−ξu +2δxu +3ξu]utux

+[−ξt−2ηxu +ξxx−3ξu f (u)]ux +[ξuu](ux)
3

+[−ηuu +2ξxu](ux)
2 +[δx]utx +[δu]uxutx

+[δuu](ux)
2ut = 0
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u ya göre bütün mertebeden türevlerin katsayılarının sıfıra eşitlenmesiyle aşağıdaki

sistem elde edilir.

sbt :−η fu− (−ηu +2ξx) f (u)+ηt−ηxx = 0

ut : ηu−δt +δxx +(−ηu +2ξx)−δu f (u) = 0

(ut)
2 :−δu +δu = 0

utux :−ξu +2δxu +3ξu = 0

ux :−ξt−2ηxu +ξxx−3ξu f (u) = 0

(ux)
2 :−ηuu +2ξxu = 0

(ux)
3 : ξuu = 0

utx : δx = 0

uxutx : δu = 0

(ux)
2ut : δuu = 0

Buradan ifadelerin çözümlenmesiyle,

δ =C1, ξ = q, η = 0

elde edilir. C1 ve q keyfi sabitlerdir. Bu durumda,

L = δ (t,x,u)
∂

∂ t
+ξ (t,x,u)

∂

∂x
+η(t,x,u)

∂

∂u

diferansiyel operatörü ile elde edilen simetriler L1 =
∂

∂ t
ve L2 =

∂

∂x
olarak bulunur.

Burada C1 = 1 alınırsa grup indirgeme yardımıyla kısmi diferansiyel denklemin çözümü

için,

dt
∂1

=
dx
q

=
du
0

ifadesinin çözülmesi gerekir. z = x−qt olmak üzere, iki integral çözümü ile w(z) = u

şeklinde, ifadelerin u çözümü bulunur. Burada w keyfi bir fonksiyondur.
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Elde edilen w çözümünün, Fisher tipi Lojistik denklemde yerine yazılmasıyla kısmi

diferansiyel denklem,

w
′′
+qw

′
+Aw−Bw2 = 0 (3.1.22)

şeklinde adi diferansiyel denkleme indirgenmiş olur. Fisher tipi diferansiyel denklem-

inin çözümü hakkında çalışmalar için, Ablowitz ve Anthony (1979), Clarksonz ve

Elizabeth (1994), Gbetoula (2011) ve Verna v.d. (2014) çalışmalarına bakılabilir. Bu

diferansiyel denklemin çözümü oldukça zordur bununla ilgili ansatz metodu yardımıyla

genel çözüm Kaushal vd. (2006) çalışmasıyla,

M(x, t) =
A
4B

([1± tanh(d(x−qt))])2 (3.1.23)

şeklinde elde edilir ki burada q ve d keyfi sabitlerdir, çözüm için ise q = ±5

√
A
6

ve

d =±
√

A
24

olarak seçilmiştir. Özel olarak A = B alınırsa, elde edilecek diferansiyel

denklem β = A = B olmak üzere;

w
′′
+qw

′
+βw(1−w) = 0 (3.1.24)

şeklinde elde edilir. Bu diferansiyel denklemin çözümü oldukça zordur, ancak Ablowitz

ve Anthony (1979) ve Verna vd. ( 2014) daki çalışmalar sonucunda q = −5

√
β

6
seçilmesiyle genel çözüm,

M(x, t) =
1
4
− 1

2
tanh(−c1 +

1
12

√
6β (x−qt))+

1
4
(tanh(c1 +

1
12

√
6β (x−qt)))2

(3.1.25)

olarak, c1 keyfi sabit olmak üzere elde edilir.

(3.1.6) ve (3.1.7) ile verilen Hanta-virüs sistemi yardımıyla bulunan Lojistik Fisher-

Kolmogorov denklemi için bölüm girişinde verilen değerlerin seçilmesi durumunda

A = b− c = 0.5 ve B = 1/20 olarak elde edilir. Genel çözüm için ise , q = 5
√

0.5/
√

6

ve d =
√

0.5/
√

24 değerleri bulunur.
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Bu koşullar altında Fisher-Kolmogorov denkleminin genel çözümü,

M(x, t) = 0.5/(4/20)([1± tanh(
√

0.5/
√

24(x−
√

0.5/
√

6t))])2

olarak elde edilir bu çözüm düzenlenirse,

M(x, t) = 5/2([1± tanh(
1

4
√

3
)(x− 5

2
√

3
t))])2

şeklinde elde edilir. Şekil 3.6 da analitik çözümün K = 20 için grafiği verilmiştir. Eğer

K = 40 seçilirse bu durumda denkleme ait genel çözüm,

M(x, t) = 5([1± tanh(
1

4
√

3
)(x− 5

2
√

3
t))])2

halini alır. K = 40 için genel çözüme ait grafik ise şekil 3.7 de verilmiştir. Eğer yine

farklı olarak A = B olması için K = 2 seçilirse bu durumda analitik çözüm,

M(x, t) = 1/4([1± tanh(
1

4
√

3
)(x− 5

2
√

3
t))])2

şeklinde elde edilir. Bu çözüme ait grafikler ise Şekil 3.8 ve Şekil 3.9 ile aşağıdaki

gibidir.

Şekil 3.6. K=20 için Fisher-Kolmogorov Denkleminin Analitik Çözüm Grafiği
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Şekil 3.7. K=40 için Fisher-Kolmogorov Denkleminin Analitik Çözüm Grafiği

Şekil 3.8. Özel durum, K=2 için Fisher-Kolmogorov Denkleminin Analitik Çözüm
Grafiği
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Şekil 3.9. K=2 için Fisher-Kolmogorov Denkleminin Farklı Aralıkta Analitik Çözüm
Grafiği

3.2. Granül Hücre Üretimi Sistemi için Lie Simetri Analizi

Beyin gelişiminin farklı dönemlerinde sinir hücreleri arasındaki çoğalma ve farklılaşma

dengesinin kurulumu çok önemlidir. Bu bölümde, bu dengenin kurulumu için

matematiksel olarak Leffler vd. (2016) tarafından ortaya konulan ve farelerde beyincik

gelişimi hakkkında bilgi veren granül hücre sistemi olarak adlandırılan sistemin Lie

simetri çözümü araştırılacaktır. Aynı zamanda bu model tanımlanırlen dış granül

katmanındaki (EGL) hücresel davranışlar da göz önünde bulundurulmuştur.

Hücresel davranışların modellenmesinde, bazı önemli etkenler vardır ki bunlardan ilki,

EGL nin dış katmanındaki (oEGL) öncü granül hücreleri (gcps) tarafından üretilen

çoğalmada ki değişiklik ve diğeri ise EGL nin iç katmanındaki (iEGL) farklılaşan

granül hücre sayısındaki farklılıktır.

Leffler vd. (2016) tarafından önerilen bu modelin kullanılmasıyla fare beyinciklerinde

bilgi edinmenin artması ve bu bilgiler ile beyincik gelişiminde fayda sağlanması

amaçlanmaktadır. Aslında hücresel düzeyde, farelerde ki öncü granül hücreler ve

granül hücreleri konuları 50 yıla yakındır çalışılmaktadır. Bu çalışmalardan bazıları

Haddara ve Nooreddin (1966), Fujita (1967), Mares ve Lodin (1970), Seil vd. (1970),

Goldowitz vd. (1997), Hatten vd. (1981), Espinosa vd. (2008), Legue vd. (2015), Szulc

vd. (2015), Leffler vd.(2016) şeklinde örneklendirilebilir.
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Son dönemdeki Espinosa vd. (2008) ve Legue vd. (2015) tarafından yapılan çalışmalar

ile klonal analiz hakkında yeni ve önemli bilgiler sağlamıştır.

EGL deki granül hücre üretimine ait sistemi Leffler vd. (2016) tarafından verilen şekilde

aşağıdaki gibi tanımlansın:

dNo

dt
= αp(1−δ )No−αpδNo (3.2.1)

dNi

dt
= 2αpδNo−αeNi (3.2.2)

burada,

No(t) : oEGL deki hücre sayısı ,

Ni(t) : iEGL deki hücre sayısı ,

αp: gcps deki hız sabiti için sınır değeri,

αe: EGL den çıkan granül hücrelerinde ki sınır sabiti,

δ (t): Öncü granül hücresinin bölünerek ölümcül iki granül hücre oluşturma olasılığıdır.

(3.2.1) -(3.2.2) denklem sistemi ile fare beyincik gelişimi sırasında granül hücrelerinin

üretimini ve beklenen ortalama klon bir bireyin öncü granül hücresi büyüklüğü tahmin

edilmektedir. Bu modeli kanser de dahil insan nörogelişimindeki fare modellerinde

hücre özelliklerine bağlı değişimin anormal üretimlerindeki yükselişini çalışmak için

oldukça kullanışlıdır.

Eğer bu sistemde δ bir sabit olarak alınırsa Denklem (3.2.1) ve Denklem (3.2.2) ile

verilen ifadelerin çözümleri kolaylıkla elde edilir.

Faklı δ değerleri göz önüne alınır ise, Leffler vd. (2016) çalışmalarının ışığı altında No

ın davranışlarının belirlenmesi fazla zor olmamaktadır,

i) 0≤ δ ≤ 1/2 için No(t) zamana bağlı artan üstel bir fonksiyon,

ii) δ = 1/2 için No(t) sabit,

iii) 1/2≤ δ ≤ 1 için No(t) zamana bağlı azalan üstel bir fonksiyondur.

Bu davranışların hiçbiri doğal gözlemler altında kararlı değildir, bu nedenle Leffler vd.

(2016) çalışmasında δ nin zamana bağlı fonksiyon olması gerektiği sonucuna ulaşmıştır.

Bu sebeple aşağıdaki koşulu sağlayan farklı δ fonksiyonları seçilmiştir:

“ δ (t) başlangıçta 1/2 den az olmalıdır, ve sonrasında bazı zamanlarda 1/2 den fazla

olmalıdır. Öncü granül hücrelerinin, granül hücrelerine dönüşmeden önceki zaman tam

olarak t = 0 anında olduğu için δ (t) = 0 varsayılmaktadır. " (Leffler vd., 2016)
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Bu nedenlerden dolayı verilen granül hücre üretimi sisteminde, bu koşulu sağlayan üç

farklı δ (t) olasılık fonksiyonu çalışılmıştır. Bu olasılık fonksiyonları ise lineer, rasyonel

ve üstel olarak sınıflandırılmıştır.

İlk olarak Denklem (3.2.1) ile verilen No(t) ye ait sistemin çözümü araştırılmış ve

sonrasında bulunan bu çözümün (3.2.2) denkleminde yerine yazılmasıyla Ni(t) ye ait

sistemin genel çözümüne ulaşılmıştır.

Granül hücre üretimi modeli ile bulunan ve EGL deki hücre sayılarını veren No(t) ve

Ni(t) zamana bağlı fonksiyonlarının yardımı ile, doku bölgesindeki değişimi bulmak

için aşağıdaki kolay formül kullanılabilir.

Bu formülde Ao(t), oEGL bölgesindeki değişimi ifade etmek üzere şu şekilde ifade

edilir,

Ao(t) =
vcNo(t)

L
(3.2.3)

Ai(t) ise iEGL bölgesindeki değişime karşılık gelir ve tanımı aşağıdaki gibidir,

Ai(t) =
vcNi(t)

L
(3.2.4)

Burada vc granül hücrenin şiddetidir ve 300-µm3 olarak kabul edilmektedir. Bu

formüllerdeki L ise beyinciğin orta lobunun genişliğidir ve 775-µm (∓%20) olarak

ölçülmüştür ( Leffler vd., 2016). Şimdi bu formül ve ölçüm değerlerinin kullanılmasıyla

doku bölgesinde ki değişimi incelemek amacıyla bazı grafikler verilecektir. Burada

başlangıç koşulu olarak Ao(0) için aşağıda verilen değerler ve Ai(0) = 0 olarak

kullanılacaktır. Aşağıda tabloda verilen ve burada kullanılacak değerler farklı biyolojik

gözlemler ile elde edilmiştir (Leffler vd., 2016).

Çizelge 3.1. EGL Modeli için Ölçüm Değerleri

δ (t)Fonksiyonu Lineer Rasyonel Üstel
αp 0.0348 0.0558 0.0443
αe 0.0387 0.0588 0.0474
a 0.0029 0.0059 0.0041
Ao(0) 1994 1005 1411
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3.2.1. Lineer δ (t) durumu

Bu bölümde δ (t)’ nin lineer olması durumu ele alınacaktır. Burada a, δ (t) nin başlangıç

eğimi olmak üzere δ (t) = at alınması ile bu ifadenin (3.2.1)-(3.2.2) sisteminde yerine

yazılmasıyla, bu duruma ait granül hücre üretimi sistemi,
dNo

dt
= αp(1−at)No−αpatNo (3.2.5)

dNi

dt
= 2αpatNo−αeNi (3.2.6)

olur. Öncelikle denklem (3.2.5) ele alınıp, bu denklem lineerleştirilmiş simetri şartı

altında yerine yazılırsa, (3.2.5) denklemine ait tanjant vektörleri (ξ ,η) = (0,No) olarak

elde edilir.

Böylece bu denklem için ξ = 0 olduğundan kanonik koordinatlar yardımıyla, r = t ve

s =
∫ dt

No
olarak elde edilir ve bu çözümler ile No için analitik çözüm,

No(t) =
eαptc1

eat2α p
(3.2.7)

olarak bulunur. Burada c1 keyfi sabittir. Bulunan bu çözümün (3.2.6) denkleminde

yerine yazılmasıyla,

dNi

dt
= 2αpat

eαptc1

eat2α p
−αeNi. (3.2.8)

şeklinde Ni ye ait adi mertebeden diferansiyel denklem elde edilir. Benzer şekilde, bu

adi diferansiyel denkleme lineerleştirilmiş simetri şartı uygulanırsa, r = t ve s =
∫ dt

e−αet

kanonik koordinatlar elde edilir. Bu kanonik koordinatların kullanılmasıyla Ni ifadesine

ait genel çözüm,

Ni(t) = [2c1aαp(
−1
2

e−at2αp+(αp+αe)t

aαp
(3.2.9)

+
1
4

(αp +αe)
√

πe

1
4
(αp +αe)

2

aαp er f (
√

aαpt− 1
2
(αp +αe)√

aαp
)

aαp
√

aαp

+c2]/eαet

olarak bulunur. Burada c2 keyfi sabittir.

50



Burada verilen lineer durum için tablo ifadelerinin (3.2.7) ve (3.2.9) denklemlerinde

yerine yazılmasıyla sabitler,

c1 = 11797, c2 = 11797.

olarak bulunur.

3.2.2. Rasyonel δ (t) durumu

Bu bölümde ise δ (t) nin rasyonel bir fonksiyon olarak alınması durumunda çözümün

nasıl olacağı araştırılmıştır. Bu sebeple δ (t) =
at

1+at
olarak seçilirse, (3.2.1)-(3.2.2)

diferansiyel denklem sisteminin yeni hali,
dNo

dt
= αp(1− (

at
1+at

))No−αp(
at

1+at
)No (3.2.10)

dNi

dt
= 2αp(

at
1+at

)No−αeNi. (3.2.11)

olarak bulunur. Bir önceki durumda olduğu gibi, yine ilk olarak (3.2.10) denklemine

lineerleştirilmiş simetri şartı uygulanırsa tanjant vektörler (ξ ,η) = (0,No) şeklinde elde

edilir. Kananik koordinatlar tanımlarının kullanılmasıyla No’ a ait genel çözüm,

No(t) =
(at +1)

(
αp

a
)2

eαpt(e
(
αpc3

a
)
)2

(3.2.12)

biçiminde bulunur. Burada c3 keyfi sabittir. Bulunan bu analitik çözümün denklem

(3.2.11) de yerine yazılmasıyla, Ni için adi mertebeden diferansiyel denklem,

dNi

dt
= 2αp(

at
1+at

)(
(at +1)

(
αp

a
)2

eαpt(e
(
αpc3

a
)
)2

)−αeNi (3.2.13)

olarak bulunur. Simetri şartında ifadelerin yerine yazılmasıyla (ξ ,η) = (0,e−αet) olarak

bulunur ve (r,s) kanonik koordinatların kullanılmasıyla ,

Ni(t) =

∫
(
2αpat(at +1)

(
2αp

a
−1)

e(αet)

e(αpt)(e
(
αpc3

a
)
)2

)dt + c4

e(αet)
(3.2.14)

olacak şekilde Ni nin genel çözümü elde edilir, burada c4 yine bir keyfi sabittir.
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Tabloda ölçülen değerler kullanılarak rasyonel durum çözümleri (3.2.12) ve (3.2.14)

ifadelerinin çözülmesiyle,

c3 =−0.4594, c4 = 298.5502.

olarak bulunur.

3.2.3. Üstel δ (t) durumu

Üçüncü ve son durumda ise δ (t) nin üstel bir ifade seçilmesi durumunda yani δ (t) =

1− e(−at) olarak alınmasıyla oluşan analitik çözümler araştırılmıştır. Üstel ifadenin

yerine yazılmasıyla (3.2.1)-(3.2.2) ile verilen granül hücre üretimi sisteminin yeni hali

aşağıdaki gibi olur.
dNo

dt
= αp(1− (1− e(−at)))No−αp(1− e(−at))No (3.2.15)

dNi

dt
= 2αp(1− e(−at))No−αeNi (3.2.16)

Diğer durumlarda olduğu gibi yine aynı işlemler uygulanırsa,

No(t) =
c5

e(αpt)(e
(
αpe(−at)

a
)
)2

(3.2.17)

ve,
Ni(t) = [

∫
(−2c5αpe

(−
at2αeta+atαp +2αpe(−at)

a
)

(3.2.18)

+2c5αpe
(−
−αeta+atαp +2αpe(−at)

a
)
dt + c6)]/e(αet)

olarak genel çözümler elde edilir. Burada c5 ve c6 keyfi sabitlerdir. Diğer durumlarda

olduğu gibi, benzer işlemlerle tanjant vektörler No için (0,No) ve Ni için (0,e−αet)

şeklinde bulunmuştur. Yine tablo değerlerinin üstel çözümlerde yerine yazılmasıyla ,

c5 = 0.20257239841014, c6 = 0.

sabitleri elde edilir.
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Şekil 3.10 da Ao(t)’ a ait üç farklı duruma ait çözümler için grafik verilmiştir. Daha

sonrasında ise Şekil 3.11 de bu çözümlere ait density plot çizimlerine yer verilmiştir.

Şekil 3.12 de ise Ai(t) genel çözümüne ait grafik ifade edilmiştir. Yine aynı şeklide Şekil

3.13 de ise üç tip durum için de çözümlerine ait density plot ifadelerine yer verilmiştir.

Sonrasında αp nin tablo değerindeki değişim ile (αp = 1.5× 0.0348) granül hücre

sayısının değişimi hakkında bilgi edinmek için Şekil 3.14 ve Şekil 3.15 ile bu değişime

ait bilgileri içeren grafikler verilmiştir.

En son olarak da, αe değişkeninin değişimi ile (αe = 0.5×0.0387) elde edilen grafikler

Şekil 3.16 ve Şekil 3.17 ile elde edilmiştir.
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Şekil 3.10. oEGL Doku Bölgesi için Granül Hücre Üretimi Çözümleri

Şekil 3.11. Ao(t) için Density Plot Çizimleri. Lineer, rasyonel ve üstel durum.
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Şekil 3.12. iEGL Doku Bölgesi için Granül Hücre Üretimi Çözümleri

Şekil 3.13. Ai(t) için Density Plot Çizimleri. Lineer, rasyonel ve üstel durum.
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Şekil 3.14. oEGL ve iEGL Doku Bölgesi Granül Hücre Üretimi Çözümleri .

Şekil 3.15. Density Plot Çizimi değişen αp değeri için.
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Şekil 3.16. oEGL ve iEGL Doku Bölgesi Granül Hücre Üretimi Çözümleri.

Şekil 3.17. Density Plot Çizimi değişen αe değeri için.
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4. ARAŞTIRMA BULGULARI VE TARTIŞMA

Bu bölümde, ilk olarak tez çalışması içinde verilen lineer ve lineer olmayan bazı

örneklere dair Maple paket programlarına yer verilmiştir.

Daha sonrasında ise Lie simetri metodu ile Hanta-virüs sistemi ve Granül hücre üretimi

sistemine ait denklem sistemlerinin genel çözümleri hesaplanmasında kullanılan Maple

paket programına yer verilmiştir. Bulunan bu çözümlerin Maple 18 yardımıyla grafik

ve simülasyonları elde edilmiştir.

Hanta-virüs sisteminde üç tip durum için Maple ile çözümler hesaplandı. Bu durumlar

adi, kesirli ve kısmi türevli diferansiyel denklem sistemi olarak belirtildi. Burada

çözümlerin elde edilmesinde ise gerekli basit işlemler ile bulunan Lojistik diferansiyel

denklemin ifadesi kullanılmıştır.

Granül hücre üretimi sisteminde ise denklem içerisindeki δ (t) bağımlı değişkeninin

lineer, rasyonel ve üstel durumları için elde edilen sistemin genel çözümleri hesaplandı.

Elde edilen genel çözümler ışığında görüldü ki, lineer ve lineer olmayan diferansiyel

denklem sistemlerin genel çözümünde, Lie simetri metodunun bazı durumlarda oldukça

kullanışlı olduğu ve paket program yardımı ile de genel çözüme ulaştırdığı gözlemlendi.

Aşağıda Bölüm 2 ve Bölüm 3 de kullanılan hesaplamalara ait programlardan bazıları

verilmiştir.

Örnek 2.4’ e ait Maple paket programı:

> restart : with(DEtools) :

> ODE := di f f (y(x),x) =
exp(x)

y(x)
+ y(x);

ODE :=
d
dx

y(x) =
exp(x)

y(x)
+ y(x)

> sku := symgen(ODE);

sku := [ξ = 1,η = y/2]

> czm := dsolve(ODE,′ can′);

czm := y(x) =±
√

C1e2x−2ex

58



Örnek 2.6 için Maple paket programı:

> restart : with(DEtools) :

> ODE := di f f (y(x),x) = a∗ y(x)−b∗ y(x)2;

ODE :=
d
dx

y(x) = ay(x)−by(x)2

> sku := symgen(ODE);

sku := [ξ = 1,η = 0]

> czm := dsolve(ODE,′ can′);

czm := y(x) =
e(C1a+ax)a

1+be(C1a+ax)

Örnek 2.8’ e ait Maple paket programı:

> restart : with(DEtools) :

> ODE := di f f (y(x),x,x) = 3/2∗di f f (y(x),x)2/y(x)+2∗ y(x)3;

ODE :=
d2

dx2 y(x) = 3/2
(

d
dx

)2

y(x)
+2y(x)3

> sku := symgen(ODE);

sku := [ξ = 1,η = 0], [ξ =−x,η = y], [ξ =−x2/2,η = yx]

> czm := dsolve(ODE,gon2);

czm := y(x) =
4C1

16C12−C22−2C2x− x2
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Bölüm 3.1.1’ e ait çözümlerin bulunmasında kullanılan Maple programı:

> restart:
> with(plots):
> with(DEtools):
> ODE:=(diff(u(t),t)=u(t)*((b-c)-(1/k)*u(t))):
> sku:=symgen(ODE):
> czm:=dsolve(ODE,'can'):
> ODE2:=diff(y(t),t)=-c*y(t)-(y(t)^2/k)-((1-a*k)/k)*(czm-y(t))*y(t
):

> ODE3:=diff(y(t),t)= 
-(-a*k+1)/k*y(t)*(k*(b-c)/(-1+exp(_C1*b-_C1*c+b*t-c*t))*exp(_C1*
b-_C1*c+b*t-c*t)-y(t))-y(t)^2/k-c*y(t):

> sku:=symgen(ODE3):
> czm2:=dsolve(ODE3,'can'):
> I1:=(-(exp(_C1*b)*exp(t*b)-exp(_C1*c)*exp(t*c))/exp(_C1*c))^(a*k
)*exp(_C1*c)*a*(exp(a*c*k*t)*exp(_C1*b)^3/exp(_C1*c)*exp(t*b)^3/
exp(t*c)-3*exp(a*c*k*t)*exp(_C1*b)^2*exp(t*b)^2+3*exp(a*c*k*t)*e
xp(_C1*b)*exp(_C1*c)*exp(t*b)*exp(t*c)-exp(a*c*k*t)*exp(_C1*c)^2
*exp(t*c)^2)/(exp(_C1*b)*exp(t*b)-exp(_C1*c)*exp(t*c))/(-exp(a*c
*k*t)*exp(_C1*b)*exp(t*b)+exp(a*c*k*t)*exp(_C1*c)*exp(t*c))^2/(-
1+exp(_C1*b)/exp(_C1*c)*exp(t*b)/exp(t*c)):

> I2:=factor(I1):
> I3:=int(I2,t):
> czm3:=-((exp(_C1*c)*exp(t*c)-exp(_C1*b)*exp(t*b))/exp(_C1*c))^(a
*k)*exp(_C1*c)/(-I3*exp(a*c*k*t)*exp(_C1*b)*exp(t*b)-_C2*exp(a*c
*k*t)*exp(_C1*b)*exp(t*b)+I3*exp(a*c*k*t)*exp(_C1*c)*exp(t*c)+_C
2*exp(a*c*k*t)*exp(_C1*c)*exp(t*c)):

> a:=0.1:
> b:=1:
> c:=0.5:
> k:=20:
> czm3:
> y:=czm3:
> x=czm-y:
> x2:= 
10.0/(-1+exp(.5*_C1+.5*t))*exp(.5*_C1+.5*t)+((exp(.5*_C1)*exp(.5
*t)-exp(_C1)*exp(t))/exp(.5*_C1))^2.0*exp(.5*_C1)/(-.1000000000/
exp(.5000000000*_C1)*(exp(_C1)*t+2.*exp(-.5000000000*t+.50000000
00*_C1))*exp(1.00*t)*exp(_C1)*exp(t)-_C2*exp(1.00*t)*exp(_C1)*ex
p(t)+.1000000000/exp(.5000000000*_C1)*(exp(_C1)*t+2.*exp(-.50000
00000*t+.5000000000*_C1))*exp(1.00*t)*exp(.5*_C1)*exp(.5*t)+_C2*
exp(1.00*t)*exp(.5*_C1)*exp(.5*t)):

> t:=0:
> 
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> t:=0:
> y:
> x2:
> solve({y=15,x2=25},{_C1,_C2});

{ },_C1 0.5753641449 _C2 -0.1777777778
> restart;
> with(plots):
> with(DEtools):
> _C1:= .5753641449;

 := _C1 0.5753641449
> _C2:= -.1777777778;

 := _C2 -0.1777777778
> y:=-((exp(.5*_C1)*exp(.5*t)-exp(_C1)*exp(t))/exp(.5*_C1))^2.0*ex
p(.5*_C1)/(-.1000000000/exp(.5000000000*_C1)*(exp(_C1)*t+2.*exp(
-.5000000000*t+.5000000000*_C1))*exp(1.00*t)*exp(_C1)*exp(t)-_C2
*exp(1.00*t)*exp(_C1)*exp(t)+.1000000000/exp(.5000000000*_C1)*(e
xp(_C1)*t+2.*exp(-.5000000000*t+.5000000000*_C1))*exp(1.00*t)*ex
p(.5*_C1)*exp(.5*t)+_C2*exp(1.00*t)*exp(.5*_C1)*exp(.5*t));

y 1.333333333 ( )1.000000000 e
( )0.5 t

1.333333334 et
2.0

( := 

0.1333333334 ( )1.777777778 t 2. e
( ) 0.5000000000 t 0.2876820724

e
( )1.00 t

et

0.3160493828 e
( )1.00 t

et

0.1000000000 ( )1.777777778 t 2. e
( ) 0.5000000000 t 0.2876820724

e
( )1.00 t

e
( )0.5 t



0.2370370370 e
( )1.00 t

e
( )0.5 t

 )
> x:=10.0/(-1+exp(.5*_C1+.5*t))*exp(.5*_C1+.5*t)+((exp(.5*_C1)*exp
(.5*t)-exp(_C1)*exp(t))/exp(.5*_C1))^2.0*exp(.5*_C1)/(-.10000000
00/exp(.5000000000*_C1)*(exp(_C1)*t+2.*exp(-.5000000000*t+.50000
00000*_C1))*exp(1.00*t)*exp(_C1)*exp(t)-_C2*exp(1.00*t)*exp(_C1)
*exp(t)+.1000000000/exp(.5000000000*_C1)*(exp(_C1)*t+2.*exp(-.50
00000000*t+.5000000000*_C1))*exp(1.00*t)*exp(.5*_C1)*exp(.5*t)+_
C2*exp(1.00*t)*exp(.5*_C1)*exp(.5*t));

x
10.0 e

( )0.2876820724 0.5 t

 1 e
( )0.2876820724 0.5 t

1.333333333 ( )1.000000000 e
( )0.5 t

1.333333334 et
2.0

( := 

0.1333333334 ( )1.777777778 t 2. e
( ) 0.5000000000 t 0.2876820724

e
( )1.00 t

et

0.3160493828 e
( )1.00 t

et

0.1000000000 ( )1.777777778 t 2. e
( ) 0.5000000000 t 0.2876820724

e
( )1.00 t

e
( )0.5 t



0.2370370370 e
( )1.00 t

e
( )0.5 t

 )
> 
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Adi mertebeden Lojistik diferansiyel denklemin programı:

Farklı α mertebeleri için M′s in çözüm programı:
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Farklı α mertebeleri için M′i nin çözüm programı:

Lineer EGL sisteminin çözüm programı:
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Rasyonel EGL sisteminin çözüm programı:

Üstel EGL sisteminin çözüm programı:
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5. SONUÇ VE ÖNERİLER

Bu tez çalışmasında, diferansiyel denklemlerin ve diferansiyel denklem sistemlerinin

genel çözümünün Lie simetri analizi yapılarak nasıl bulunacağı üzerine odaklanılmıştır.

Ayrı ayrı alt başlıklar altında, adi diferansiyel denklemler, kesirli diferansiyel

denklemler ve kısmi diferansiyel denklemlere yöntemin uygulaması gösterilmiştir. Bu

bakış açısı ile, diferansiyel denklem sistemlerine uygulanması olarak da, iki model ve

bu modellerin çözümleri tartışılmıştır.

Tez çalışmasının ilk kısmında da anlaşılacağı üzere, adi diferansiyel denklem sisteminin

Lie simetri çözümleri tanjant vektörleri kullanımıyla elde edillir. Örnek model için,

kolayca ilk olarak Lojistik diferansiyel denklemin çözümüne oradan da Hanta-virüs

sisteminin çözümleri elde edilmiştir.

Fakat kesirli diferansiyel denklem veya denklem sistemlerinin Lie simetri çözümlerinin

Mittag-Lefler fonksiyonunu içermesinden dolayı, keyfi sabitlerin seçimi oldukça önemli

ve zordur. Bu keyfi sabitlerin seçiminde başlangıç koşulllarına bağlı pozitif çözümleri

garantilemek için uygunluk oldukça önemlidir. Bundan dolayı, verilen başka koşullar

altında negatif çözüme karşı sabitlerin seçimine dikkat edilmelidir.

En son durumda ise Hanta-virüs modeli olarak verilen lineer olmayan bir kısmi diferan-

siyel denklem sisteminin genel çözümü için Lie simetri metodundan yararlanılmıştır.

Toplam fare nüfusunun Fisher-Kolmogorov denklemi olarak elde edilmesinden sonra,

bu denklemin çözümü için Lie simetrilerinin bulunmasındaki güçlük sebebi ile bazı

sabit değerlerin özel seçimleri gerekmiştir.

Bir diğer sistem olan Granül hücre üretimi sisteminde ise beyincik granül hücrelerinin

dış katmandaki değişikliği ile elde edilen zamana bağlı fonksiyonların genel çözümleri

Lie analizi ile elde edilmiştir. İlk olarak (3.2.1) ile verilen EGL nin dış katmanındaki

hücre sayısının veren No(t) çözümüne ulaşılmış ve sonrasında bu çözüm ile (3.2.2) ile

verilen Ni(t) çözümü yani EGL nin iç katmanındaki hücre sayısı zamana bağlı olarak

elde edilmiştir.
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Daha sonra bu genel çözümler ile doku bölgesindeki değişikliğe ait Ao(t) ve Ai(t)

zamana bağlı fonksiyonları elde edilmiş ve aylık periyotlar halinde grafikleri çizilmiştir.

Bu çözümler ve çizimler sırasında δ (t) ye ait üç farklı durum ele alınmıştır. Elde edilen

bu sonuçlar ile sinir hastalıkları için ortaya konulan yeni bakış açısının grafikleri ve

density plot çizimleri kullanılmıştır.
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1. Akademik Personel ve Lisansüstü Eğitim Sınavı (ALES) : 96,38 (2016-Sonbahar)

2. Yabancı Dil Sınavı(YDS) :73,75 (2014-Sonbahar)

3. Mezuniyet Not Ortalaması :3,91 (YÖK Dönüşüm Tablosuna Göre 97,90)
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