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OZET
Yiiksek Lisans Tezi

DIFERANSIYEL DENKLEM VE DIFERANSIYEL DENKLEM SISTEMLERI
ICIN LIE SIMETRI ANALIZI

Mehmet KOCABIYIK

Siileyman Demirel Universitesi
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Damsman: Do¢. Dr. Mevliide YAKIT ONGUN

Bu tez calismasinda diferansiyel denklem ve diferansiyel denklem sistemlerinin
cOziimleri i¢in Lie simetri analizi yapildi.

Tez beg ana boliimden olugsmaktadir. Birinci boliimde konuya kisa bir giris yapilmagtir.
Ikinci boliimde, bir parametreli Lie gruplari, sonsuzkiiciik doniisiimler ve iiretegler,
Lie grup operatoriiniin iirettigi doniisiim grubu tanitilarak, adi mertebeden diferansiyel
denklemler, kesirli mertebeden diferansiyel denklemler ve kismi tiirevli diferansiyel
denklemlerde metodun uygulanilmasina deginilmistir.

Ucgiincii boliimde ise diferansiyel denklem sistemlerinden olusan bazi modeller igin
coziimler yapilmig ve grafikler cizilmistir.

Dordiincii boliimde arastirma bulgularina ve son boliim olan besinci boliimde ise sonug
ve Onerilere yer verilmistir.

Anahtar Kelimeler: Lie simetri analizi, hanta-viriis modeli, graniil hiicre iiretimi,
diferansiyel denklemler.
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1. GIRIS

Diferansiyel denklem, bir bilinmeyen fonksiyonu ve bu fonksiyonun bazi tiirevlerini
iceren denklemlere denir. Eger boyle bir diferansiyel denklemdeki bilinmeyen
fonksiyon yalniz bir bagimsiz degiskene sahip ise bu tip diferansiyel denkleme adi
diferansiyel denklem denir.

Bir diferansiyel denklemde her bagimli degisken ve her mertebeden tiirevler birinci
dereceden ise ve aym1 zamanda bagimli degiskenler veya tiirevler ¢carpim halinde
yer almiyorlarsa boyle denklemlere dogrusal (lineer) aksi halde dogrusal olmayan
(nonlineer) diferansiyel denklemler denir.

18.ytizyilin sonunda kadar bu sekilde ki adi diferansiyel denklemlerin analitik ve
niimerik ¢oztimleri icin bir¢ok metod gelistirilmistir. Ancak Modern Cebir yardimiyla
lineer ve lineer olmayan adi diferansiyel denklemlerin ¢6ziimiine ait ilk ¢alismalar
Sophus Lie, Felix Klein, David Hilbert gibi bircok iinlii matematik¢ininde katkisiyla
baglamustir.

Lie gruplari, Norvecli iinlii matematik¢i Sophus Lie tarafindan 1888-1896 yillar
arasindaki ¢aligmalar1 sonrasinda ortaya ¢ikti. Sophus Lie ayn1 zamanda bu ¢aligsmalari
sayesinde matematik¢iler arasinda Lie gruplari olarak bilinen modern teorinin
ortaya ¢cikmasi i¢in Onemli etkene sahip olan doniisiim teorisinin kurucusu olarak da
bilinmektedir.

Sophus Lie, siirekli bir parametreli grup yapilarini incelemis ve grup teorisi ile bazi
diferansiyel denklemlerin integre edilebilecegini gostermistir. Bu sayede Lie gruplari
fen ve muhendislik gibi bilim dallar {izerinde 6nemli bir ¢alisma ve uygulama alani
ortaya ¢ikarmigtir. Lie, bu ¢alismalar1 ile bir adi diferansiyel denklemin siirekli
bir parametreli bir doniisiim grubu altinda invaryant(degismez) kalmas1 durumunda
denklemin mertebesinin bir derece diisiirebilecegini de gdstermistir.

Lie’ nin calismalarinin 6nemi, 1960 1 yillarda doga bilimlerinde ki matematiksel
modellerin iirettigi diferansiyel denklemlere, Lie teorisinin uygulanmasiyla daha da
fazla ortaya cikmugtir.

20.ylizyillda doniisiim gruplarinin uygulamalar1 bir¢ok arastirmaci tarafindan
calistimistir. Ornegin, baz1 arastirmacilar ise matematiksel fizik modelleri ile ilgilenmis

ve cebir metodlarin1 bu modellere uygulamiglardir.



Bu bilim adamlarindan L.Ovsiannikov(1982), P.J.Oliver(1986), W.G.Bluman
(1989) ve N.ibragimov (1994;2001) bu alanda 6nemli calismalara imza atmiglardir. Bu
alanda Tiirkiye deki calismalar ise son zamanlarda 6zellikle tez ¢alismas1 anlaminda
artig gostermistir. Bu yonde caligmalar yapan arastirmacilar M. Ozceylan (2006) ve
F.A. Kiraz (2007) bu konunun daha ¢ok diferansiyel denklemlere uygulanisi ile ilgili
calismalarda bulunmusglardir.

Kisaca son olarak bir diferansiyel denklemin simetri grubu hakkinda da bilgi vermek
istersek, bir diferansiyel denklemin simetri grubu coziimlerinden olusan kiimeyi
invaryant birakan bagimli ve bagimsiz degiskenlerin doniisiimlerinden olusan bir
gruptur. Bu nedenden dolay: simetri grubu elde edilen bir diferansiyel denklemin,

bulunan bu ¢oziimleri yardimiyla yeni ¢éziimleri elde edilebilir.



2. TEMEL KAVRAM VE TANIMLAR
2.1. Bir Parametreli Lie Gruplari
2.1.1. Doniisiimler grubu

H bostan farkli bir kiime ve " * " sembolii de H iizerinde tanimlanmais bir ikili iglemi
ifade etsin, (H, ) ikilisine agagidaki kosullari saglamasi durumunda bir grup denir.
lI.Vx,ye Hicinxxy € H ,
2.Vx,y,z€ Higin (x*xy)xz=xx(y*z) €H,
3. Her x € H icin x x e = e xx = x Ozelligini saglayan e € H vardir,

1_ -1

4. Her x € H icin x+xx~! = x~! xx = e olacak sekilde x~! € H vardir.

Her ¢ € R i¢in,

0:R2xt—R, y:R°xr—R 2.1.1)

fonksiyonlar1 x , y degiskenleri ve ¢ parametresinin iki analitik fonksiyonu olsun.

u(x,y,t) =x1, v(x,y,t) =y (2.1.2)
olmak lizere 7 R 5 R2
(x,9) = Zi(x,y) = (u(x,y,1),v(x,y,1)) = (x1,1) (2.1.3)
doniisiimil yazilarak ,
H=[7] teR] (2.1.4)

kiimesi tanimlansin.

Eger (2.1.4) kiimesi tizerinde bir ikili islem o : H x H — H ile yukarida verilen grup
aksiyomlarini saglamakta ise bu ifade bir parametreli Lie Grubu olarak adlandirilir
(Page, 1897; Cohen, 1911; Oliver, 1986).

Bir parametreli Lie grubunun elde edilmesini saglayan u ve v fonksiyonlarina grubun
sonlu doniigiimleri denir. Parametrenin sonsuz kiiciik artisinda degismesi durumunda
(x,y) ile verilen nokta da sonsuz kiiciikk miktarda yer degistirerek (xj,y;) noktasina

doniisecektir.



Burada x ve y ’ nin x; ve y; degiskenlerine gore ¢oziilebilecegini garantilemek icin
(2.1.2) Lie grubundaki u ve v fonksiyonlarinin x ve y degiskenlerine gore bagimsiz
olduklarin1 kabul edip, yani % Jakobiyenin sifira 6zdes olmadigini varsaymaliy1z.
Bir parametreli Lie gruplarina drnekler;

i)Dikey Oteleme: x| = x, yj =y+a

ii)Olgekleme: x| = e%x, y; = e%y

iii) Rotasyon: x| = xcosa — ysina, y; = xsina + ycosa

iv)Yatay Oteleme: x| =x+a, y; =y

olarak verilebilir (Oliver, 1986; Ozceylan, 2006).

2.1.2. Sonsuzkiiciik doniisiimler ve sonsuzkiiciik iiretecler

(2.1.2) ile verilen Lie grubu taniminda ki u# ve v fonksiyonlar1 grubun sonlu formu
(global formu, kapali formu) olarak isimlendirilir. Bu Lie grubu tanimindaki u ve v

fonksiyonlarini a = 0O civarinda Taylor serisine agabiliriz ki bu durumda ifade,

x| = x—f—a(%)a:o +0(a?)

i =y+a(%).o+0(a?)

halini alacaktir.

Simdi burada,
0
§r3) = (57 a0
0
n(x,y) = (%)azo (2.1.5)

seklinde & (x,y) ve n(x,y) fonksiyonlar: tanimlanirsa bu durumda,

x; =x+a&(x,y) +0(a2)

yi =y+an(x,y)+0(a*) (2.1.6)

elde edilir ki buna da Lie Grubunun sonsuzkiiciik formu (doniisiimii) denir (Oliver,
1986).
(2.1.2) Lie grubunu ve bu gruba karsilik gelen (2.1.6) sonsuz kiiciik grubunu goz oniine

alalim.



Sonsuz kii¢iik doniigiim altinda diizgiin bir w(x,y) fonksiyonundaki

Sw =w(xr,y1) —wlx,y) = w((x+af), (x+an)) —w(x,y)

degisimini gozlemleyelim. Simdi, ®(a) = w(x + a&,y+ an) fonksiyonunu a = 0
civarinda Taylor serisine (Maclaurin Serisine) agacak olursak,

dd a* d*®
P(a) = P(0) +a(%)a:0 + g(ﬁ)azo

olup burada

(oamo = (o )+ (52 ) = a6 52+ 5
oldugundan
5w:a(§aa—:+naa—;v)+...
olarak elde edilir. L diferansiyel operatoriinii
L=E(x) 3+ ()5 @17

bi¢iminde tanimlarsak, bu durumda 0w nin L operatorii cinsinden,

2

3
ow =aL(w)+ a—Lz(w) +L

3
Bl 3!L (w)+...

olacak sekilde yazilabilecegi aciktir.Buradaki L diferansiyel operatoriine Lie grubunun
sonsuz kiiciik iireteci veya Lie operatorii denir (Cohen, 1911; Oliver, 1986; Page,

1897; Ozceylan, 2006).

Sonu¢ 2.1 Her sonsuzkiiciik doniisiim sonsuzkiiciik iireteci tarafindan tam olarak

belirlenir. Ote yandan Lx = £ ve Ly = 1 oldugundan

dw aw
Lw = an + Lyé?_y

olacag1 gozlenir.



(2.1.2) Lie grubunun (x,y) noktasini (xj,y;) noktasina doniistiirdiigiinii goz Oniine
alacak olursak
0 ow

w
Lw(xy,y1) = Lxlé‘_xl +Ly18_y1

elde edilir (Oliver,1986; Torrisi ve Nucci, 2001; Gazizov v.d.,2011).
2.1.3. Lie operatoriiniin iirettigi doniisiim grubu

Boliim 2.1.2 de grubun sonsuz kii¢iik doniisiimiiniin bulunmasi i¢in Taylor seri agilimi
metodu kullanildi. Bunun tersi miimkiindiir, yani sonsuzkiiciik doniisiim bilindiginde bir
parametreli grubun sonlu doniisiimleri de elde edilebilmektedir. Sonsuzkii¢iik doniisiim
(x,y) noktasint (x4 a&,y+ an) pozisyonuna tasidigi bilinmektedir. Bu doniisiimiin

sonsuz defa tekrarlanmasi sonucu nokta tam olarak (x,y) noktasindan gecen ve

dx1

d
%:5(961&1), %Zn(m,yl) (2.1.8)

diferansiyel denklem sisteminin integral egrisi olan bir egri boyunca taginir. Bu islemin
belli bir asamasinda x ve y noktalari sirasi ile x; ve y; noktalarina doniisiir ve boylece
(2.1.8) icin doniisiim formiilii ,

dx; dyi da

- = 2.19
g(-xhyl) Tl<x1;y1) 1 ( )

denklem sisteminin ¢oziimleri ile verilir ve burada a = 0 i¢in x| ve y; , sirasiyla x ve y
ye indirgenir.

" n
a

a = 01iken x; = x ve y; =y oldugundan dolay1 (2.1.9) deki esitliklerin dan bagimsiz

olan ilk iki denklem ¢oziimii

r(x1,y1) = sabit = r(x,y) (2.1.10)

seklinde yazilabilen bir diferansiyel denklem formuna indirgenir. Bu da (x,y) noktasina

karsilik gelen yoriinge denklemi olarak adlandirilir.



r(x1,y1) = c esitligini degiskenlere gore ¢ozdiigtimiizde, drnegin x; = p(y;,c) elde

edilip 1 de yerine yazdigimizda, elde edilen diferansiyel denklem,

— da (2.1.11)

seklindedir.

Son olarak x; ve y;’ e bagi olan ¢ degeri yerine yazildiginda ¢oziim,
s(x1,y1) —a = sbt = s(x,y) (2.1.12)

formuna girer.
Sonugta (2.1.8) ve (2.1.9) nin ¢oziimii olarak x; , y; degiskenlerinin belirledigi ve a =0

icin x ve y ye indirgenen denklem sistemi,

r(xi,y1) = r(x,y), s(xi,y1) = s(x,y) +a (2.1.13)

seklinde elde edilir.

Burada a nin biitiin degerlerine karsilik gelen tiim (2.1.13) doniisiimleri, Boliim 2.1.1
de tanimlanan bir parametreli Lie grubu yapisini olusturur. Bu grup Lie operatorii
tarafindan iiretilen doniisiim grubu olarak adlandirilir (Cohen, 1911; Oliver, 1986;

Page, 1897; C)zceylan, 2006).

2.1.4. Lie serisi

. dP a’ d*®
®(a) =w(x+a&,y+an) fonksiyonunun ®(a) = ®(0) —i—a(%)azo + E(W)a:()

seklindeki Maclaurin serisinde, (2.1.7) diferansiyel operatorii yerine yazilirsa
w(xg,y1) = w(x,y) +al(w) + ”2’—2!L2(w) + ‘3’—3,L3 (w) + ... olur ve buradan da

©0 n

wixy) = Y L () (2.1.14)
n=0""

serisi elde edilir ki buna w fonksiyonunun (x,y) noktasi civarinda Lie Serisi denir

(Bluman ve Kumei, 1989; Oliver, 1986).



Sonuc¢ 2.2 Lie grubunun sonlu formunu Lie serisi yardimiyla sonsuzkiiciik gruptan
hesaplamak miimkiindiir. (2.1.2) Lie grubunu ve bu gruba karsilik gelen (2.1.7) son-
suzkiiciik tiretecini géz Oniine alinirsa, x1 ve y; koordinatlar1 grup aksiyomlart ile x ve
y koordinatlarindan elde edilmis olan koordinatlar olmak iizere eger a *nin her degeri
icin O(xy,y;) = O(x,y) oluyorsa ®(x,y) fonsiyonuna grup etkisi altinda invaryant-
tir(degismezdir) veya grubun invaryantidir denir, ki bu ifade ile de asagidaki teorem
ifade ediilir (Bluman ve Kumei, 1989; Bluman, 1990).

Teorem 2.1 O(x,y) fonksiyonunun invaryant olmast igin gerek ve yeter kosul L(®) =0
olmasidir (Bluman ve Kumei, 1989).

Sonu¢ 2.3 Bir gruba ait invaryanti bulmak i¢in (2.1.7) L diferansiyel operatorii

yardimiyla,

_,00 90

L(@)— g‘l‘na—y—

0 (2.1.15)

birinci mertebeden lineer kismi diferansiyel denkleminin ¢oziilmesi gerekir. Dolayisiyla

z = 0(x,y) fonksiyonu

dz dz
— — =0 2.1.16
§8x+n8y (2.1.16)
denkleminin bir ¢oziimiinii ve sonug olarak, c¢; keyfi sabit olmak iizere,

O(x,y) = c; egrileri de (2.1.16) denklemine karsilik gelen,
e (2.1.17)

adi diferansiyel denkleminin ¢6ziim egrileri olacaktir (Oliver, 1986; Bluman ve Kumesi,
1989; Bluman, 1990; Ibragimov ve Nucci, 1994; Hyden, 2000; Ibragimov, 2001;
Bluman ve Anco, 2002). Lie grubu ve simetrileri ile ilgili bilgisayar programu ile tanjant
vektorlerinin elde edilmesi ve ¢oziime ulasilmak istenirse Cheviakov (2007), Cheviakov

(2010a) ve Cheviakov (2010b) kaynaklarina bakilabilir.
2.1.5. Kanonik form ve degiskenler

Bir parametreli Lie grubunun operatriinii istenen bir yapiya indirgeyen degisken

doniistimii bulmak, teoride her zaman miimkiindiir.



Bu amacla operatorii

of

e (2.1.18)

d
L= v

seklinde elde etmek i¢in, (2.1.19) denklemi ile verilen denklemlerin bagimsiz ¢6ziim-

lerinin uygun ikilisi, yeni x ve y degiskenleri olarak alinabilir.

Lx = é(x,y)%—l—n(x,y)g—); =&i(x,y)

d d
Ly =800 50+ 106050 = M%) (2.1.19)

Ozellikle, operatérii y ekseni dogrultusunda ki 6telemelerden birine indirgemek icin,

d
yani operatoriin L = — formunu almasim saglamak icin, integrallenecek denklemler,

dy

%_}.%-0
ox dy
dy dy
£+8_y_1 (2.1.20)

seklinde olacaktir.
Bu denklemlerden ilki, Boliim 2.1.4 deki (2.1.15) formiiliidiir ki, bu da x bir parametreli
bir grubun r(x,y) seklindeki uygun bir degismezi olarak alinabilinecegini ifade eder.

Ikinci denklemi ¢6zmek icin ise Boliim 2.1.3 deki (2.1.9) formiiliinde oldugu gibi,

d d d
ax _ 4y _ 4y (2.1.21)
s n 1
seklinde bulunan adi diferansiyel denklem sistemi kullanilarak Lagrange Metodu uygu-
dx d
lanir. Burada gx = Fy nin ¢6ziimii olan r(x,y) = sabit kullanilarak, yukaridaki ifadeden

y elde edilir.

d
Burada L=— forumuna sahip Lie operatoriine , Kanonik Formdaki operator ve

dy

operatorii bu forma indirgeyen degiskenlerede Kanonik Degiskenler denir. Her Lie

d
operatorii L=— seklindeki kanonik forma indirgenebilir.

dy



Kanonik degiskenleri bulmak icin,
- == (2.1.22)

birinci dereceden diferansiyel denklemi ¢6zmek ve bu ¢oziim yardimi ile (2.1.20)

ifadesindeki denklemleri ¢c6zmek gerekir (Cohen, 1911; Oliver, 1986).
2.1.6. Lie gruplarmin diferansiyel denklemlere uygulanisi

Eger bir diferansiyel denklemi invaryant yani degismez birakan bir grup bulabilinirse,
grup invaryant 6zelligini ile orjinal denklemi daha kolay ¢oziimlenebilir bir denkleme

d
doniistiirebiliriz. Bunu ifade etmek icin birinci mertebeden genel bir, p = el olmak

ox
tizere, F(x,y,p)=0 adi diferansiyeldenklemini g6z oniine alalim ve bu denklemin son-
0 0 0
suzkiiciik grubundan LWw = ﬁa—w +1n a_w +¢ a_w grubu altinda invaryant kaldigim
X y z

kabul edelim. O halde, invaryant olma 6zelliginden dolay1, L())w = 0 olmalidir.

Bu durumda

ow ow ow
£ 0+ (5 =0 (2.1.23)

denklemini ¢6zmek gerekecektir. Bu kismi diferansiyel denklemin, iizerinde w(x,y, p)

fonksiyonunun sabit kalacagi ¢oziim egrileri ise,

- =—"=—0=— (2.1.24)
& n ¢ 0
sistemine ait iki bagimsiz ¢oziimdiir. Burada,
d d
D (2.1.25)

denkleminin bir ¢oziimii r(x,y) = ¢ ve diger bagimsiz bir ¢oziimii de s(x,y, p) = ¢
olarak alinirsa, H(r) , r 'nin keyfi bir fonksiyonu olmak iizere, bu durumda f = s— H (u)
fonksiyonu L(V)w = 0 denklemini saglayacaktir, yani L") (s — H(x)) = 0 dir. Sonug
olarak s — H(r) = 0 denklemi L) grubu altinda invaryant kalan birinci mertebeden adi

diferansiyel denklemin en genel hali olacaktir.
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Bu ifadeler ile birinci mertebe adi diferansiyel denklemi invaryant birakan gruplar: belir-
d
lemek istenirse, bunun igin d_y = F(x,y) diferansiyel denklemini ve (2.1.6) sonsuzkiigiik
x

grubunu goz Oniine alalim. Bu durumda

D _d o) e @y g
dx e TEMet (=& — 607+ 0(e7) (2.1.26)

. d
olacaktir. Ote yandan denklem grup altinda invaryant kaldigindan d—yl = F(x1,y;) olup

X1
JdF JF )
F =F — — 2.1.2
(xlayl) (X,y)+8(§ Ox +1n ay)+0(8 ) ( 7)
oldugu da bilindiginden, sonug olarak
JoF JoF )
€§+na—y—nx+(ny—€x)F—€yF (2.1.28)

birinci mertebeden kismi diferansiyel denklemini elde edilmis olur.

Boylece temel problem; F(x,y) fonksiyonu verildiginde, bu kismi diferansiyel denklemi
saglayan & (x,y) ve n(x,y) fonksiyonlarini belirlemek olacaktir. Bu problemin tek
¢6ziimii olmadigindan, denklemi sagladiklari ve n = F& oldugu siirece, & (x,y) ve
1 (x,y) fonksiyonlar1 tamamen istege bagh segilebilir (Gazizov v.d, 2011; Hyden, 2000).
Ornek 2.1:

Bir parametreli Lie grubu:

G=[T,|T,: fo7y) — R%

X1:)1 )
kiimesinin bir parametreli Lie grubu olusturdugunu gosterelim.

I)

T,(x,y) = (xcosa — ysina,xsina + ycosa) ve Ty(x,y) = (xcosb — ysinb, xsinb + ycosb)

, X] = Xxcosa— ysina, y| = xsina+ ycosa, a € R|

esitlikleri ile yazilan V7,, T}, € G i¢in

(T, + Tp) (x,y) = Ty[(xcosb — ysinb, xsinb + ycosb)]

(T, * Tp)(x,y) = ([xcosa — ysina]cosb — [xsina + ycosa|sinb, [xcosa — ysinalsinb +
[xsina + ycosa]cosb)

(T, +Tp) (x,y) = (xcos(a+b) —ysin(a+ b),xsin(a+b) + ycos(a+ b))

elde edilir. Burada a 4 b = ¢ € R aldigimizda

(T, +Tp) (x,y) = Te(x,y) islemi sonucunda T, (x,y) elde edilir ve 7. € G dir.
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i)

Yukaridaki islemler yardimiyla 7; * 7}, isleminin kuralt 7, * T, = T(,,;) seklinde ortaya
ciktigindan VT, T, T, € G icin

(Ta*Tp) * Te = Tiayp) * Te = Ty (pe) Ta * Tpscy = Tax (Tp + T2

elde edilir.

iii )

Simdi T, x Ty, = Ty, * T, = T, esitliklerini saglayan V7, € G i¢in saglayan 37, € G
nin varhiim aragtiralim. 75 % Ty = Ty 4p) = Tay * Ta = T(4y4q) 1fadeleri i¢in ag = 0
aldigimuzda T, 7o = Tig 0y = Ta ve Tox Ty = T(g4q4) = T, elde ederiz.

Burada ap = 0 parametresi ile belirlenen doniisiimiin kendisi

To(x,y) = (xcos0 — ysin0, xsin0 + ycos0) = (x,y)

seklindedir ve diizlemdeki biitiin noktalar1 degismez birakan doniisiimdiir. Boylelikle
elde ettig§imiz doniisiim 6zdeslik doniisiimiidiir ve Ty € G dir.

iv)

VT, € Gigin T, ' T, = T,* T, ! = T,, saglayan 3T,"! € G nin oldugunu aragtiralim.
Bu elemanin 7", parametresi ile belirlenecegi agiktir.Ciinkti, 7, % T = T (_q) = T
ve T_q Ty = T _4) 44 = Tp olur.Burada T ' =T, yazildiginda T, ! € G elde edilir.
Sonsuz Kiiciik Doniisiim:

Sonlu dontisiimleri ¢ (x,y,a) = xcosa — ysina, Y(x,y,a) = xsina+ ycosa

seklinde olan bir parametreli grubun (2.1.6) sonsuz kiiciik doniistimlerini kullanarak,

d
§(6.3) = (32 )amo = (~asina — yeosala—o) = —

nx,y) = (g—z/)a:o = (xcosa — ysinala—o) = x

formunda bulunur.

Sonsuz Kiiciik Urete¢ (Lie Operatorii):

Sonlu doniisiimleri ¢ ve v, doniisiim grubu da & ve 7 bulunan operatorler oldugundan
+xi formundadir.

_y_
dx dy
Lie Operatoriiniin iirettigi Doniisiim Grubu:

sonsuzkiiciik iirete¢ L =

L=— Y5y + x—=— operatOriiniin irettigi grubu bulalim.

dy
(2.1.9), (2.1.10) ve (2.1.11) denklemleri kullanilarak,

dx d

—yl = % — x1dx; = —y1dy; :>x%+y% =C :x2+y
-1 1

elde edilir. Boylece u(x,y1) = x7 +y? = x> +y* olur.

2
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d dt
an T ve x; = 4/cq —y% oldugundan,
X1

d
/ Y1 e

A/ €1 — )’1

integralinde y; = /cysin6 alindiginda,
0 = ¢ + k bulunur. Burada 0 yerine esiti yazildiginda

—1 )1 —1/Y
t —)—t=cy=t =
an (Xl ) ¢y =tan <x)
ifadesi elde edilir.
v(x1,y1) = tan™! (&) =tan~! ()—)) +1

X1 X

Elde edilen iki ¢oziimden sonlu doniisiimler x; = xcost — ysint, y| = xsint + ycost
bulunur.

Grup Operatorii Altinda Invaryant Fonksiyon:
d

-V
dx dy
Bunun i¢in Sonug 2.3 yardlmlyla elde edilen (2.1.17) denklemi kullanilirsa,

d d
elde edelir. Boylece,

L= + x— operatorii altinda invaryant olan fonksiyonun genel tipini bulalim.

u(x,y) =x>+y*=c

olur. O halde grubun invaryantlar1 F(u(x,y)) = F(x* 4 y?) fonksiyonlar1 olacaktir
(Cohen, 1911; Oliver, 1986; Page, 1897; Ozceylan, 2006).

2.2. Birinci Mertebeden Diferansiyel Denklemler icin Lie Simetri Analizi

2.2.1. Birinci mertebeden adi diferansiyel denklemler icin simetri sarti

Birinci mertebeden adi diferansiyel denklemler i¢cin genel anlamda simetri sartini

bulmak ic¢in,

y = f(x,y) (2.2.1)

formundaki adi diferansiyel denklemi goz oniine alalim. Onceki boliimde gosterildigi
gibi simetri doniisiimleri diferansiyel denklemin ¢6ziim ailelerini yeni koordinatlarda

degismeden birakir.

13



Yani,

H : (x,y)—>(xl,y1)=(x1(x,y,8), yl(%)’,g)), eeR (222)

seklinde bir doniisiim, (2.2.1) denklemi icin simetri olarak kabul edilirse, bu durumda

d
d—ii = f(x1,01) (2.2.3)

olur ve buna (2.2.1) denklemi i¢in simetri sart1 denir. Bu sart1 biraz daha kullanigh hale

getirmek icin D, , x yoniindeki total (toplam) tiirevi gostermek iizere
Dy =0 +yd,+y"dy + ...

olarak alinirsa; y ,x in bir fonksiyonu ve xj ile y; ise x ve y nin fonksiyonu olmak iizere,

D, total tiirev operatorii kullanilarak,

dyi _ Doy Yty
dx;  Dyxi xi,+Yxiy

olarak yazilabilir. Boylece (2.2.1) denklemi icin simetri sarti

YietYyiy

X, 224
X1x+Y'x1y o) (@24

seklinde elde edilir. Bu sart bazi1 basit adi diferansiyel denklemler icin kolayca
coziilebilir hale gelebiliyorsa da, genel olarak karmasik yapida kismi tiirevli difer-
ansiyel denklemdir ve dolayisiyla ¢6ziimii oldukca zordur.

Bu zorlugun iistesinden gelebilmek i¢in Boliim 2.1 de kullanilan bir parametreli Lie
gruplarinin Taylor seri agilimindan yararlanilir. Ancak buna dogrudan ge¢cmeden hem
acilimda kullanilan hem de ¢6ziim icin kilit dneme sahip bir kavrami vermek adina
diizlemdeki noktalar iizerinde, simetrilerin bir parametreli Lie grubu etkisine bakilir.
Bir Lie simetri grubu, diizlem iizerinde simetri altinda invaryant olmayan bir (x,y)
noktasi boyunca bir yoriinge olusturur. (x,y) boyunca yoriinge iizerindeki noktalarin ko-
ordinatlart (x; (x,y,0),y1(x,y,0)) = (x,y) olmak iizere (x1,y;) = (x1(x,y,€),y1(x,5,€))
seklindedir.

Bir Lie grubunun etkisi, bir yoriinge tizerindeki her bir noktay1 ayni yoriinge iizerindeki

bir noktaya bire bir egler. Dolayisiyla yoriinge, Lie grubunun etkisi altinda invaryanttir.
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Simdi invaryant olmayan bir (x,y) noktasi boyunca yoriinge goz Oniine alinirsa, (x;,y;)

noktasindaki yoriinge i¢in tanjant vektorii

dx|

d
Ezé(xlayl)7£:n(xl,yl> (2.2.5)

olmak iizere
(& (1, 31), M (x1,31))
seklindedir. Ozel olarak (x,y) noktasindaki tanjant vektorii ise;

dxy
de

d
Je—o (2 )eo) (2.2.6)

() m(0) = (( 2

olur. Boylece Lie grubunun etkisi ile x; ve y; icin (2.1.6) Taylor seri acilimlar (2.2.4)

ile verilen simetri sart1 altinda y' = f(x,y) ile birlikte yazilirsa,

f+eme+ fny) +0(2)
[+e(E+f&,)+0(e)

elde edilir. Simdi bu ifadenin her iki tarafi € = 0O civarinda Taylor serisine agilir ve

= f(x+€&(x,y) +0(€?),y+£n(x,y) +0(e?))

fonksiyolarin analitik olduklar1 goz 6niine alinirsa,

fHeMmet+(my—&)f =& +0(e?) = f+ e[ fe+nfy] +0(?)

sonucuna ulagilir.
Buradan 0(g?) terimlerin karsihkli esitlenmesi ve gerekli sadelestirmelerin yapil-

mastyla,

Net+(y—E)f =& =Efc+1fy (2.2.7)

bulunur. Bu sarta (2.2.1) adi diferansiyel denkleminin lineerlestirilmis simetri sarti

denir (Bluman ve Kumei, 1989; Hyden, 2000).

Ornek 2.2: y = y(x), k = k(x) ve c keyfi bir sabit olmak iizere birinci mertebeden
/
(%)2 +y? = c diferansiyel denklemini goz iiniine alalim. Bu denklem y' = f(x,y)

formuna cevrilirse ¢ > y olmak iizere f = Fk+/c — y* bicimindedir.
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(2.2.7) simetri sart1 altinda f fonksiyonunun f = Fk+/c — y* degeri yerine yazilirsa,
Fhy

Mo+ (My — &) (Fhv/c —3%) = & (Fhy/c —y2)* = E(FK Ve —y?)x +1( \/—2)
c—y

elde edilir. Simdi y den bagimsiz bir & ile y ye gore lineer bir 1 nin varhigina bakalim.

Buna gore a, B ve y sonradan belirlenecek fonksiyonlar olmak iizere

§=oax), n=PBxy+7rx)

olarak alinsin. Bu doniisiimler denklemde yerine yazilirsa

By+YF(B—a)ky/c—y*=Fak'\/c—y>F(By+7) /ckiyz'

bulunur. Burada +/c — y? nin kuvvetlerine gére ayristirma yapilirsa

B=y=0ve dk+ok' =0
elde edilir. Tkinci denklemden
1

(ock)’:O:Hx:E

olup, boylece

(&.1)=(.0)

biciminde tanjant vektorlerine ulasilir. Ancak ¢6ziim icin bu yeterli degildir.Bunun i¢in
simetrilerin Lie grubu vasitasiyla ulasacagimiz ¢oziimii kolaylastirict koordinatlarin

tanimlanmasina ihtiyag¢ vardir (Bluman ve Kumei, 1989; Hyden, 2000; Acil, 2013).
2.2.2. Kanonik koordinatlar

(2.2.1) ile verilen adi diferansiyel denklemine ait simetrilerin bulunabilecegi ve bu
simetrilerin sadece y- yoniindeki (x1,y;) = (x,y+ €) 6telemelerinin Lie grubu icerdigini

varsayalim. Bu durumda tanjant vektorler

(&,m)=(0,1) (2.2.8)

seklide olup, (2.2.7) ile verilen lineerlestirilmis simetri sart1 altinda bu degerler yerine
yazilirsa f, = O bulunur. Bundan dolay1 y- yoniindeki dtelemelerin Lie grubuna sahip
olan adi diferansiyel denklemler, y’ = f(x) formunda olmalidir ve bu formda olmasi

sebebiyle bu tip denklemlerin genel ¢6ziimii ¢ integral sabiti olmak iizere,

y=Jfx)dx+c

seklinde elde edilir.
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Bu tip simetrilere ait sonuclardan faydalanarak, birinci mertebeden adi diferansiyel
denklemler uygun koordinat doniisiimleri ile kolaylikla ¢oziilebilirler.

Bu koordinatlarin elde edilmesindeki temel hedef, (2.2.1) formunda ki diferansiyel
denklemlerin sahip olduklar1 simetri doniisiimleri araciligi ile bu diferansiyel denklemi
yalnizca bagimli degisken yoniinde Gtelemelerini iceren yeni bir diferansiyel denkleme
doniistiirecek koordinatlara tagimak olacaktir. Bu koordinatlara ise Kanonik Koordi-

natlar denilmektedir. Bu iglemler altinda yeni koordinatlar

(r.s) = (r(x,y),5(x,y)), resy—rysx #0

ile gosterilirse goz Oniine alinan yeni koordinatlarda adi diferansiyel denklemin sahip

oldugu simetrilerin bir parametreli Lie grubu olan

(r1,81) = (r(x1,31),8(x1,51)) = (1,5 + €)

formunda olur. Boylece (r,s) noktasindaki tanjant vektorler,

(Cems=0, (S)emy=
bicimindedir.
Burada zincir kuralinin uygulanmasiyla
dx; dy; dxy dy;

(g g lem0= 0 (sn 5z +an ) leo=

elde edilir. Bu denklemler, (2.2.6) denklemi ile birlikte gbz Oniine alinirsa,

g(xa)’)rx+77(x7)’)ry:0a §<X7Y)Sx‘|‘n(xa)’)sy: 1 (229)

bulunur. Burada (r,s) kanonik koordinatlari (&,17) nin durumlarina gore asagidaki gibi
elde edilir.
i) Eger & # 0 ise r’nin,

dy _1(xy)

dx  &(x,y)

diferansiyel denkleminin bir integrali oldugu gosterilebilir. Boylece yukaridaki adi

diferansiyel denklem i¢in ilk integral ¢ (x,y) =c¢, ¢y #0
biciminde olup buradan ¢dziim asagidaki gibi bulunur;

dx

x7y(x7 r

r=¢(x,y) Ves:(fé( ))> |r=r(x,y)
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ii) Eger & = 0 ise (2.2.9) nin ilk denkleminde ry, = 0 oldugu goriiliir. Buradan basitce,

dy
n(ny)

r=xves= ([

) |r=x)

seklindeki kanonik koordinatlara ulagsilir.
(r,s) kanonik koordinatlari bulunduktan sonra (2.2.1) denklemi bu koordinatlar cinsin-
den

@ _ Dys sk +ylsy - Sx+f(xay)sy
dr  Dir re+Y'ry e+ flxy)ry

(2.2.10)

seklinde yazilir. (2.2.10) denkleminin sag tarafi » ve s nin bir fonksiyonu olarak ifade

edilirse (2.2.1) ile ifade edilen adi diferansiyel denklem doniistiiriilmiis koordinatlarda

ds_

E—Q(}",S)

olmalidir.
Ancak (r1,s1) = (r,s + €) 6telemelerinin bir parametreli Lie grubuna sahip oldugunda

Q) = 0 olmasi nedeni ile yukaridaki adi diferansiyel denklem

ds
220
dr (r)
formunda olup bunun genel ¢oziimii
s=[Q(r)dr+-c
seklindedir. Boylece (orjinal) adi diferansiyel denklemin genel ¢oziimii

s(x,y) — fr(x’y) Q(r)dr+c¢=0

olarak elde edilir (Bluman ve Kumei,1989; Hyden, 2000). Asagida daha once Ornek
2.2 de tanjant vektoriiniin belirlendigi denklem i¢in kanonik koordinatlar kullanilarak

coziime ulagilmaya calisilmigtir.

.. 1

Ornek 2.3: k = k(x) ve ¢ >y olmak iizere (§,n) = (%,O) seklindeki tanjant vektoriine
/

sahip (%)2 +y? = ¢ adi diferansiyel denklemini goz 6niine alalim.
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d
Burada & # 0 oldugundan d_y = — = 0 yazilir ve dolayisiyla y = ¢ olup,bdylece
X

n
§

r=y,s=s—— E( ) |r:r(x7y): J k(x)dx

X y(x r))

bulunur. Diger taraftan

ds Dys  sy+y'sy  k(x)

k 1 1
dr Dy re+y'ry y +ky/c—)? /e —y2 N

diferansiyel denkleminin integrali alinarak

ij\/_\/i

cOziimii elde edilir. Burada r ve s nin orjinal degiskenler cinsinden karsiliklar1 yazilip

r .
= +arcsin(—=) + ¢y, ¢| = sabit

%

diizenlenirse

y = ++/csin[ [ k(x)dx — ci]
biciminde genel ¢6ziimii bulunur (Bluman ve Kumei,1989; Acil, 2013).

o e’

Ornek 2.4: y/ = — +y diferansiyel denkleminin ¢6ziimiinii simetri sartin1 kullanarak
y

bulalim. Baslangi¢ olarak denklemi lineerlestirilmis simetri sart1 altinda yerine yazalim.

Bu durumda

X X

—@(?w)ﬂ(m—@)(?+y>—§<§>+n<1—j—2>

|
o

bulunur. Burada iglem kolaylig1 a¢isindan £ = 1 ve n = n(y) olarak ele alip simetri
sartinda yerine yazalirsa,
e* e* e*
ny(; +y) - (;) +n(1- y_2) =0
bulunur. Burada bazi terimlerin sadece y ye bagli oldugu gz 6niinde bulundurulursa

yNy — N = 0 olur ve 1 = ¢y bulunur.
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Kalan terimler yazilirsa 1, + n_ 1 =0olur ve n = cyile de ¢ nin 1/2 ye esit oldugu
y

goriiliir. Boylece tanjant vektorii

(&,m) = (1,y/2)

seklinde bulunur.

x/2

d
& # 0 olmasindan dolay1 d—y = %] olup buradan ¢ = ye /< elde edilir. Bu durumda,
X

r=c=ye /2

dx
S_(fé( ) ’r:r(x,y):fT:x

x y(x )

Yani kanonik koordinati (r,s) = (ye */2, x) seklinde elde edilmis olur. Diger yandan
ds  Dyis  sy+y's, 1 1

- —x/2 —1,x/2
_1/2ye~/2 +yefx/2(y+f) 1/2ye=/2 +y—1ev/
y

1
1/2ye—x/2 _i_yflex/Z
yeni degerleri cinsinden yazilirsa,
ds r
dr r?/2+1
bulunur. Diferansiyel denklemin integrali alinarak

dr D.r - re+y'ry -

diferansiyel denkleminde yerinerve snin simetri sart1 ile bulunan

s=1In(r?/2+1)+c, c=sbt
¢Oziimii elde edilir. Burada r ve s nin orjinal de8iskenler cinsinden kargsiliklar1 yazip

diizenlenirsey = ++v/ce* — 2¢* bigiminde genel ¢dziimii bulunur (Starrett, 2007).

xy '
diferansiyel denklemini goz iiniine alalim. Ilk olarak denklemi, simetri sart1 altinda

e 1
Ornek2.5: y =1+

yerine yazalim. Ancak bundan 6nce y den bagimsiz bir & ile y ye gore lineer bir 1 nin
varhigina bakalim. Buna gore «, B ve ¥ sonradan belirlenecek fonksiyonlar olmak iizere

& =a(x),n=PBx)y+7rx)

olarak alinsin. Bu doniisiimler yardimiyla lineerlestirilmis simetri sart1 yazilirsa

Y _
Brev+@-a)0+ ) =al o ran Y

)

bulunur.
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Burada asagidaki gibi y terimlerinin katsayilar1 yardimiyla,

Ny 2:y=0

)y~ (B-a)/x=—a/x*—B/x

3y p=o

olur, burada y = 0 ve o + ¢¢/x = 0 elde edilir. Bu denklemin ¢6ziimii ile o = <

X
bulunur. Bu sonucun 3 kosulunda yerine yazilmasiyla f = _—2C oldugu aciktir. Boylece
X

Em=Cy=)
biciminde tanjant vektorlerine ulagilir.
& # 0 oldugundan g = —; olup buradan ¢ = xy olur.
Bu durumda ,
r=c=2xy
dx dx 1

s=([———=) | _ = [— = —x% dir.
(fg(x,y(x,r))) ’rfr(x,y) fc/x 2 d

1
Yani kanonik koordinati (7,s) = (xy, Exz) seklinde bulunur.

Diger yandan
ds  Dys  sy+y's, x+0
dr Dy ro+yr, 1—y2—
IR
Xy
. : . x+0 . . .
diferansiyel denkleminde — yerine r ve s nin bulunan degerleri cinsin-
Yy Xy
y+x(——)
Xy
den yazarsak,
ds r
dr  1+r

bulunur. Diferansiyel denklemin integrali alinarak

s=r—In(14+r)+c, c=sbt

¢Oziimii elde edilir. Burada r ve s nin orjinal degiskenler cinsinden karsiliklar1 yazip
diizenlenirse

%xz =xy—In(l+xy)+c
denklemi elde edilir. Burada y nin ¢oziimlenmesi ile x’e baglh olmak iizere denklemin

genel ¢oziimii elde edilir (Starrett, 2007).
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Ornek 2.6: y = ay — by’ Lojistik diferansiyel denkleminin ¢oziimiinii simetri sartini
kullanarak bulalim. Burada a, b sabitlerdir. Ik &nce lineerlestirilmis simetri sart1 altinda
denklem yerine yazilarak simetri denklemi bu simetri sart1 yardimiyla;

Me+ (My = &) (ay — by?) — &y(ay — by?)> —n(a —2by) =0

seklinde elde edilir. Burada 17 = 0 segersek simetri sarti yardimiyla & nin bir sabite esit
oldugunu yani 1 olarak segebilecegimizi goriiriiz. Bu durumda tanjant vektorii

(&,m) = (1,0)

seklinde bulunur.

& # 0 oldugundan % = 0 olup buradan ¢ =y olur. Bu durumda,

r=c=y

dx dx
ol (fm) lr=r(ay)= fT =X

Yani kanonik koordinati (r,s) = (y,x) seklinde bulunur.
Diger yandan

ds  Dyis  sy+y's, 1

dr  Dyr  ret+yr, ay—by?

diferansiyel denkleminde ay — by?> yerine r ve s nin bulunan degerleri cinsinden

d 1
yazarsak d—i =2 bulunur.

Diferansiyel denklemin integrali alinarak

1 r
= -]
S a n(ar—br2

¢Oziimii elde edilir. Burada r ve s nin orjinal de8iskenler cinsinden kargsiliklar1 yazip

)+c,c=sbt

diizenlenirse

a(x+c) — Y
¢ a—by
denklemi elde edilir.

Burada y nin ¢dziimlenmesi ile

ea(x—i—c)a
y= 1+bea(x+c)

seklinde Lojistik diferansiyel denklemin genel ¢oziimii bulunur.
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2.3. Ikinci Mertebeden Diferansiyel Denklemler icin Lie Simetri Analizi
2.3.1. ikinci mertebeden adi diferansiyel denklemler icin simetri sart:

Genel ikinci mertebeden,

Yy =w(x,yy) (2.3.1)

formunda olan adi diferansiyel denklemi goz Oniine alinirsa, 6ncelikle bu formdaki
denklemler icin simetri sart1 belirlenir. Ancak burada 6nceki boliimden farkli olarak,
birinci mertebeyi de kapsayacak sekilde lineerlestirilmis simetri sartin1 bulunmas: daha
kolaydir. Bu simetri sartin1 bulmak i¢in Boliim 2.2° de buluna (&, n) tanjant vektorleri
ile,
d d
L= — — 232

ﬁ(x,y)aern(x,y)&y (2.32)

ile gosterilen L sonsuzkiiciik tiretecinin kullanilmasi gerekir. Bu verilen ifadeler yardimi

ile,
n® =pn* _y®p £ k=1,2,.. (2.3.3)

olmak iizere L sonsuzkiiciik iireteci,

d d d d

ady’ ay" dy(n)

seklinde uzanimli form olarak adlandirilan hale getirilebilir. Buna gore ikinci mertebe-

den adi diferansiyel denklemler i¢in lineerlestirilmig simetri sarti,
LOG" —w(x,y,y)) =0 (2.3.5)
olarak ortaya cikar. Buradan,
n® = Ewe+nwy+nVwy (2.3.6)

oldugu goriiliir.

23



(2.3.3) denklemi ile verilen formiiliin burada kullanilmasiyla

N =+ (ny =&)Y — &

N@ =N+ (2N — &x)Y + (Myy — 260)y> = E )y + (1, — 28 — 3&,Y)y”
bulunur. Bu degerlerin (2.3.1) denklemi goz 6niinde bulundurularak (2.3.6) denkleminde
yerine yazilmasiyla, ikinci mertebeden adi diferansiyel denklemler i¢in lineerlestirilmis

simetri sart1

N + 21y — )y + (Myy — Zéxy)ylz — éyyyl3 +(my =28 -3y )w=
Ewx+ Nwy+ (e + (1y — &)Y — &) wy (2.3.7)

seklinde elde edilir.

Ikinci mertebeden adi diferansiyel denklemler igin simetri sartinin birinci mertebeye
gore farki y nin tiirevlerini icermesidir. Bu fark ile lineerlestirilmis simetri sarti
altinda % in kuvvetlerine gore ayristirma yapilabilmektedir. Bu sekilde ortaya c¢ikacak
denklem sistemine belirleme denklemleri denir (Bluman ve Kumei, 1989; Hyden,
2000).

Ornek 2.7: y" = sin(y'*) + 1

Ikinci mertebeden adi diferansiyel denklemini goz oniine alarak Boliim 2.3.1 de
belirtilen adimlari sirasiyla uygulayalim.

Oncelikle bu denklem i¢in w fonksiyonu ve tiirevleri,

V' =w(x,y,y') = sin(y?) +1

wy =20

wy =0

wy = 2y/cos(y'?)

seklindedir. Denklem (2.3.7) ile verilen lineerlestirilmis simetri sart1 altinda bu degerler
yerine yazilirsa,

Mee + 21y — &)y’ + (Myy = 280)y% = &y + (My — 2& = 38,y) (sin(y?) + 1) =
(Me+ (1y = &)y’ — £y/%) (2¥/cos (7))

elde edilir. Burada tiirevli ifadelerin katsayilar1 ayristirilirsa,

& =0,8x=0

MNe=0,1m—&&=0

My =0,1My-26=0

belirleme denklemlerine ulasilir.
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Boylece bulunan kismi diferansiyel denklemin sistemi ¢oziilerek, c; ve ¢, sabitler olmak
uizere

§:C1, n=c

doniisiimleri bulunur. Buradan tanjant vektorler,

(&1,m) = (1,0), (G2,m2) = (0,1)

olup dolayisiyla,
L= o L, = J

biciminde sonsuzkiiciik iireteclere ulagilir (Bluman ve Kumei, 1989; Hyden, 2000; Acil,
2013).
Sonsuzkiiciik iiretegler elde edildkten sonra tipki birinci mertebede yapildig: gibi in-

dirgeme islemleri yapilir.
2.3.2. Kanonik koordinatlar kullamilarak mertebe indirgenmesi

Yiiksek mertebeden adi diferansiyel denklemlerin ¢6ziimiinde de mertebesi kii¢iik olan

diferansiyel denklemlerde yapildig1 gibi kanonik koordinatlardan faydalanilir. Simdi,

Yy =w(x,y,y)

formundaki diferansiyel denklemini g6z Oniine alalim. Bu diferansiyel denklemin

L = = = d, seklinde bir sonsuzkii¢iik doniisiime sahip oldugunu diisiinelim. Onceki

dy

boliimden ikinci mertebeden diferansiyel denklemler i¢in simetri kogulunun,
LU —w(x,y,)) =0
seklinde oldugu goz Oniine alinirsa,
n® =p k- _yKpE k=1,2,..
olmak tlizere,
L =9,

yazilir ve dolayisiyla lineerlestirilmig simetri sart1 ile wy, = 0 sonucuna ulagilir. Bu

nedenle de diferansiyel denklemin yeni formu asagidaki gibi olur:

Y =w(x,y)

25



Dolayistyla y'(x) = v(x) doniisiimii ile

vV =w(x,y)

indirgenmis diferansiyel denklemi elde edilir. Elde edilen bu diferansiyel denklemin

coziilebildigi ve bu denklemin genel ¢oziimiiniin de

v=f(x,c1)

oldugu varsayilirsa bu takdirde (2.3.1) diferansiyel denklemi,

Y =flxc)

halini alir ve bu ifadenin genel ¢oziimii ise

y=[f(xc1)+ec

seklindedir (Bluman ve Kumei, 1989; Hyden, 2000).

3 2
ZL + 2y diferansiyel denklemi L = 9, tarafindan
y

Ornek 2.8: Ikinci mertebeden y"’ =
iretilen bir parametreli simetrilerin bir tek-parametreli ailesine sahiptir. Bu iiretecten
(£,m) = (1,0) olup (r,s) kanonik koordinatlari,

r=y,s=x

olarak yazilir ve buradan

d 1 d>s dr  —y' -3 3t

2=, - 2y———( +2r33)

dr Y d2  dr Y3 2y B 2r

bulunur. Mertebe indirgemesi i¢in v(r) = ¢(r) esitligi kullanilirsa,birinci mertebeden
-3

V= —2rv — 233

denklemi elde edilir. Bu diferansiyel denklemin ¢oziimlerini elde etmek i¢in, 6nce
tanjant vektorleri
(E™,n™) =(0,rV%)

biciminde bulunur. Buradan yeni kanonik koordinatlar
—1
232

~ ~

r~=r,
olur. Boylece
d 3 v

dsw—l/z( 5 +257) =2

seklinde olup ¢| = sbt olmak tizere s~ = ¢y —2r™ dir.

26



O halde (r,v) kanonik koordinatlar cinsinden denklem
1

2r3(2r—cy)
olup buradan diferansiyel denklemin genel ¢coziimii

v="TF

d 232 —C1
x:q:/ & fo=gVBma),
2y3(2y—cy) cry

olarak elde edilir (Bluman ve Kumei, 1989; Hyden, 2000; Acil, 2013).

2

e . 1

Ornek 2.9: Ikinci mertebeden y” = Yy (y— —)y' diferansiyel denklemi L = 9, tarafin-
y 2

dan iiretilen bir parametreli simetrilerin bir tek-parametreli ailesine sahiptir. Bu aile
yardimiyla diferansiyel denklemi simetri metodu yardimiyla ¢ozelim.

Verilen aile yardimiyla denklemin tanjant vektorii (§,1) = (1,0) olarak bulunur. Bu-
radan denklemin kanonik koordinatlarini & = 0 oldugundan r =y , s = x olarak bulabil-

iriz ve buradan
2 1

Ly Ly
ds 1 d2S dv _y// ( y + (y y)y ) ( 1 ) Y
—:V:—’—:—: = = (——r)jy- — —
dr y dr:  dr YB3 y3 r r
bulunur. Mertebe indirgemesi i¢in u(r) = v(r) esitligi kullanilirsa,birinci mertebeden

1 u
I (- 2~
u (r r)u ;.

denklemi elde edilir. Bu diferansiyel denklemin ¢oziimlerini elde etmek icin, 6nce
tanjant vektorleri (6~,1™~) = (0, u?r) biciminde bulunur. Buradan yeni kanonik koordi-

natlar
—1

ur

~

olur. Boylece ifadeleri I~ de yerine yazip integral alinirsa ¢; = sbt olmak tizere (r,u)
r

kanonik koordinatlar cinsinden denklem
1

N 2
cir—r-—1
olup buradan diferansiyel denklemin genel ¢coziimii asagidaki gibi elde edilir (Bluman

ve Kumei, 1989; Hyden, 2000; Acil, 2013);

u =

1
x= [ ———+0
/ cry—y*—1

27



2.4. Kesirli Mertebeden Diferansiyel Denklemler icin Lie Simetri Analizi

Genel kesirli mertebeden

DYy(x) = f(x,y) (2.4.1)

formunda, mertebesi & olan diferansiyel denklemi goz oniine alalim. Burada o, n € N
olmak iizere n — 1 < o < n araligindadir.
Burada kullanilan D%y(x), operatorii Riemann-Liouville kesirli tiirev operatorii olmak

uzere

DY) = 1 L 5 % /O ' (xy_(tt))adt (2.42)

seklinde tanimlanir. Burada I'(.), Gamma fonksiyonudur.

Kesirli mertebe i¢in genellestirilmis Leibnitz Kurali ise
(04 —
Dy (f(x)g(x)) = Y (D" f(x)g"(x), & >0 (2.4.3)

seklindedir (Oldham ve Spainer, 1974; Samko vd., 1993; Podlubny, 1999; Kilbas, 2006;
Gazizov v.d,2007).
Lie grup teorisi diisiincesi 15181nda sonsuzkiiciik doniisiimiin n. mertebeden ve o mer-

tebeden genisletilmesiyle

x; = x+a&(x,y) +0(a?) (2.4.4)

y1 =y+an(x,y)+0(a?) (2.4.5)

Y =y"x) +an"(x,y)+0(c) (2.4.6)
D%y = D% +an"(x,y) +0(a?) (2.4.7)

seklinde sonsuzkii¢iik doniisiimler elde edilir.
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Bu esitliklerin kullanilmasiyla n. mertebeden genisletilmis sonsuzkiiciik ireteg
n"=D(n""")—y"D(§) (24.8)

olup buradaki D, adi mertebeden diferamsiyel denklemler de tanimlandig: gibi total

tiirev operatoriidiir. (2.4.8) denklemi ile verilen ifadeye Prolongation formiilii de
n

Y. .
o ifadesi yardimiyla,

denilmektedir. Bu ifade D total tiirev tanimi1 ve y" =

n" =D"(n —EyV) 4 &yt (2.4.9)

seklinde de tanimlanabilir. (2.4.9) esitligi ile verilen tanim yardimiyla o¢ mertebe kesirli

denklemler i¢in Prolongation formiilii
n® = D)(C“)(n — gy 4 ept (a+1),, (2.4.10)

seklinde bulunur. Prolongation formiilii & mertebeden kesirli denklemler icin kolayca

su sekilde genellestirilebilir (Ovsiannikov,1982; Hyden, 2000):
n% =D +DF(Du(§)y) +EDFy— DI (8y) 2.4.11)

Basta verdigimiz x;, y; sonsuzkii¢iik iiretecleri ve kesirli mertebeden diferansiyel den-
klemin simetri grup doniisiimiiniin D%y; = f(x;,y;) oldugu g6z 6niinde bulundurulursa,
kesirli mertebeden diferansiyel denklemler i¢in simetri sart1

8f€ af

(%= 5.8 = 5y Mlbgs=siey) =0 (24.12)

seklinde tanimlanabilir. Burada ki n% ile verilen Prolongation formiilii olup (2.4.3) de

verdigimiz genellestirilmis Leibnitz Kurali ile bu ifade

n® D“n+z ( ) ”+?D§j‘ nypHlE (2.4.13)

seklinde de ifade edilebilir (Gaziziov, 2007). Kesirli diferansiyel denklemlerin simetri-
leri lizerine daha fazla bilgi edinmek istenirse, Oldham ve Spainer (1974), Samko v.d.

(1993) ve Baleanu (2012) calismalarina bakilabilir.
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2.5. Kismi Diferansiyel Denklemler icin Lie Simetri Analizi

Genel formu

F(t,x,u,uy,uy,...) =0 (2.5.1)

olan n. mertebeden bir kismi diferansiyel denklemee ait bir parametreli Lie grup
doniisiimii,
f=t+ud(t,x,u)
x=x+u&(t,x,u)
u=u+un(t,x,u)
uj = uj + Pni(t,x, u,u1)

Uikl = Uij. . Kk + uni,j,...,k(tax7 u,uy,..., l/tk)

seklindedir. Burada u 6nceki boliimlerde tanimlandigi gibi grup parametresidir.

Elde edilen bu doniisiime karsilik gelen Lie diferansiyel operatorii,

L:S(I,x,u)i—i—é(t,x,u)i—I—T[(t,x,u)i (2.5.2)

ot ox u

seklinde ifade edilir. Burada,

ar

(ﬁ)uzo = 6(t,x,u)
ax

(%)uzo =& (t,x,u)
ou

(@)uzo =n(,x,u)

tanjant vektorleri tanimlanabilir. Lie diferansiyel operatoriin taniminin kullanilmasiyla,
L'=L+ ni(t,x,u)a%i +o ANk x uu ) a”ii....,k

olarak elde edilir. Burada kullanilacak sonsuzkiiciik iiretegler onceki boliimde tanim-

lanan D total tiirev operatorii yardimiyla,
Ni = Din — (Di6)u; — (D& ) ux

seklinde tanimlanir.
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Burada birkag ifadenin yerine yazilmasiyla,

M = Di(n) — uDy(8) — uxD ()

= N+ (M — &)ty — Ertae — 8, (ur)? — Euttyiay

M2 = Dx(N) — uDx(8) — uxDx(5)

= M+ (M — 8x)utx — Sty — éu(u) — Oyltgty

M1 = Dy(M) — uuDy(8) — Dy ()

= Mo + (20w — 8 )tr + (Muw — 280) (e)* = Sy ()> — 38,4511 — Gyet — 2Eu0u10 —
28115 — Guuta(r)* — Guttxttry — 28 ust

M22 = Dx(M2) — u1xDx(8) — uxxDx(&)

= M + (2N — &)t — Buatty + (M — 280 )t — 280t + (M — 26u) (2)* —

26xuutux - guu(ux)3 - uuut(ux) = 3§uuxuxx - Suutuxx a 25uuxutx

seklinde ¢oziim i¢in gerekli ifadeler bulunur. Burada, 6rnegin u; = u,, denklemi i¢in
2. mertebeden genisletilmig Lie operatorii L ile 11 = ny esitligi elde edilip, ¢6ziim
icin simetriler bulunur. Bu simetriler bulunduktan sonra ise, 6,& ve 1 yardimiyla
kismi mertabeden diferansiyel denklemi simetri ¢oziimii ile adi diferansiyel denkleme
asagidaki gibi indirgeyebiliriz.

dt dx du

S(t,x,u)  E(t,x,u)  M(t,x,u)

Bu sistemden elde edilen iki integralin ¢coziilmesiyle elde edilen ifadeleri v ve z olarak

adlandirirsak indirgeme islemi i¢in w(z) = v aliir. Bu ifadenin verilen kismi difer-
ansiyel denklemde yerine yazilmasiyla denklem adi diferansiyel denkleme indirgenir
sonrasinda bu adi diferansiyel denklemin w ¢6ziimii kismi diferansiyel denklemin
¢Oziimii olarak elde edilir (Clarksonz ve Elizabeth, 1994; Gbetoula, 2011; Verna vd.,
2014; Kiraz, 2007).
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3. DIFERANSIYEL DENKLEM SISTEMLERININ LIiE SIMETRI ANALIZI
ILE GENEL COZUMLERI

Bu boliimde, Lie simetri analizi ile bazi diferansiyel denklem sistemlerinin ¢dziimlerinin
bulunmasi ele alicaktir. Ik olarak Hanta-viriis model sistemi ele alinip, adi mertebeden,
kesirli mertebeden ve kismi mertebeden tiirevli halleri i¢in genel ¢coziim arastirilacaktir.
Daha sonrasinda ise Graniil hiicre iiretimi modeli ele alinip, farkli (z) durumlarina

karsilik gelen ¢oziimleri arastirilacaktir.
3.1. Hanta-viriis Sistemi icin Lie Simetri Analizi

Hanta-viriisii aslinda farelerden bulasan ve viriislerin genetik olarak tek zincirli RNA
icermesi sebebi ile 6zellikle 6ldiiriicii olabilen bir hastaliktir. 11k kez Giiney Kore’deki
Hanta Nehri’nde kesfedilen viriisiin cesitli tiirleri vardir. Hanta-viriis dinamiklerini
daha iyi anlamak ve analiz etmek i¢cin Abramson vd.(2002 ) tarafindan 6nerilen ve
bu tez ¢alismasinda incelenecek olan matematiksel model, Abramson-Kenkre modeli
olarak da bilinir. Allen vd.(2003) de Hanta-viriis enfeksiyonu icin bir adi diferansiyel
denklem modeli onerdi. Allen vd. (2006) da, disi ve erkek kemirgenlerdeki hanta-
viriis enfeksiyonu icin iki yeni model daha gelistirmistir. Abramson-Kenkre modeli
infecte(hastalikli) fareden susceptible(duyarli) fareye viriis gecisini tanimlayan bir lineer
olmayan diferansiyel denklem sistemidir.

Abramson vd. (2003) de kismi diferansiyel denklemi ile tanimlanan model, tiim fare
(mice) popiilasyounu duyarli ve hastalikli olmak iizere iki gruba ayirmustir.

Adi mertebeden tiireve sahip Hanta-viriis modeli Abramson vd.(2002) de asagidaki

sekilde tanimlanmugtir:

dM, M(My + M;
S = b(My+ M;) — cM — My (M; + M) — aMM; (3.1.1)
dt K
dM, Mi(My+M;
D —epg, - MO pgu, (3.12)
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Lineer olmayan bu diferansiyel denklem sisteminde,

M;: Hasta olmayan farelerin niifusunu

M;: Hastalikli farelerin niifusunu

a: Bulagsma oranini,

b: Dogum oranini,

c: Oliim oranim

K: Cevre tasima kapasitesini gostermektedir.

Bu modelde yayilma siireci olarak fare hareketi goz ardi edilmis ve tiim niifus duyarl
ve hastalikli fareler olmak iizere iki durumdan olugmustur.

(3.1.1)-(3.1.2) diferansiyel denklem sisteminin taraf taraf toplanmasi ile elde edilen

Lojistik diferansiyel denklem,
M
—=b-cM—— 3.1.3
(b— )M~ (3.13)

seklindedir. Burada M = M, + M; toplam niifusu gosterir. Bundan sonraki agamalarda,
Lojistik diferansiyel denklemin Lie simetri metodu ile genel ¢éziimden yararlanilarak,
geriye yerine yerlestirme yapilip M ve M; niifuslar1 hesaplanacaktir.

Ayrica kesirli mertebeden tiireve sahip Hanta-viriis modeli ise;

M (M + M;
DzaMs :b(Mv +Mi)_CM€_%_anMi (314)
M;(M, + M;
D*M; = —cM; — % + aMM; (3.1.5)

seklinde tanimlanir, burada tanimlanan D¢ kesirli tiirev operatoriidiir ve Riemann Li-
ouville tanimina gore kullamilmistir. Kesirli tiirev, ekosistemlerde homojen olmayan
karakterleri tanmimlamak icin kullanilir. Ancak burada kesirli tiirev kullanilirken rakip
tiirtin varlifina da dikkat edilir. & parametresi buradan rakip tiiriin yogunluguna karsilik
gelmektedir (Abdullah ve Ismail, 2011; Rida vd., 2012).

Bilindigi iizere lineer olmayan diferansiyel denklemlerin ve denklem sistemlerinin genel
¢Oziimiinii bulmak olduk¢a zordur. Bu sorun bazi problemlerde Lie simetri metodu
yontemi ile ortadan kaldirilabilir. Detayh literatiir taramasi yapildiginda Hanta-viriis
modelinin genel ¢coziimiine rastlanmamis olup, bazi niimerik yontemlerle yaklasik
coziimler elde edilmeye ¢alisilmistir (Chen ve Clemence, 2006a; Chen ve Clemence,
2006b; Allen v.d, 2006; Wesley,2008; Goh vd.,2009; Ruan ve Jianghong, 2009; Gokdo-
gan v.d, 2012; Ding vd.,2013; Yuzbas1 ve Sezer, 2013; Karadem ve Ongun, 2016).
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Son olarak ise Kismi mertebeden tiireve sahip Hanta-viriis sistemi ise Abramson

(2003)’de,

oM,  9*M, M (M + M;)

= +b(MS+M,~)—cMS—T—aMsM,~ (3.1.6)
oM; M, M;(M;+ M;)
= g M aM M, (3.1.7)

seklinde tanimlanmustir.

Hanta-viriis sisteminin kismi haline ait denklemlerinin taraf tarafa toplanmas: ile elde
edilen Lojistik denklem 6zel olarak Fisher-Kolmogorov denklemi olarak adlandirilir.
Literatiir calismalarina bakildiginda bu denkleme ait ¢oziimlerin elde edilmesinde farkli
yontemlerle ¢alisildig1 goriilmiistiir (Ablowitz ve Anthony, 1979; Kaushal vd., 2006).
Bu boliimiin son baslig1 altinda ise bu Fisher-Kolmogorov denkleminin Lie simetri ile
cOziimleri arastirilacaktir.

Hanta-viriis sistemi i¢in bu tez calismasi boyunca analitik ¢oziimlerin hesaplanmasi
ve sabitlerin bulunmasinda kullanilmasi icina = 0.1, b = 1, ¢ = 0.5 ve K = 20 olarak
alinmistir. Bu verilen ifadelere iligkin sabitler hem adi kem kesirli hem de kismi

mertebeden hanta-viriis sitemlerinde ayn1 alinmistir (Abramson ve Kenkre, 2002).
3.1.1. Adi mertebeden hanta-viriis sistemi
Denklem (3.1.1) ve (3.1.2) ile verilen Hanta viriis modelinde taraf tarafa toplama islemi

yapilip M = M, + M;, olarak alinirsa yeni denklem

am M?

—=b-cM—— 3.1.8

=M - (3.18)
seklinde Lojistik diferansiyel denkleme doniisiir. Denklem (3.1.8) denkleminin lineer-

lestirilmis simetri sart1 altinda yerine yazilmasiyla tanjant vektorleri (&,1) = (1,0)

olarak elde edilir.
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Sonrasinda £ # 0 olmasi nedeniyle ve kanonik koordinatlar yardimiyla;
r=c ve s=x

d
seklinde bulunur. Daha sonra bulunan bu kanonik koordinatlarda d_s ile ifade edilen adi
r

diferansiyel deklem ¢oziilerek,

K(b _ c)e(Clb—Cl c+br—ct)

M= — 1+ e(C1b—Cietbt—ct) (3.1.9)

coziimii elde edilir. Burada C; keyfi sabittir.
(3.1.8) denkleminden M — M; = M; seklinde c¢ekilip, (3.1.9) denklemi ile genel ¢oziimii

bulunan M degeri ile (3.1.2) denklemi tekrar yazilirsa, bu denklemin yeni hali;

K(b . C)e(Clb—Cl c+bt—ct)

dM; l(( —1 + e(C1b—Cletbi—ct) i i
y 1.1
dt CM; e 4 3 0
K(b— c)e(Clb—Cl c+bt—ct)
( —1 4+ e(C1b=Cictbt—ct) _Mi)Mi

seklinde birinci mertebeden adi diferansiyel denklem olur. (3.1.10) denklemini lineer-
lestirilmis simetri sart1 altinda yerine yazarsak Maple 18 paket programi yardimiyla bu

denklemin tanjant vektorleri;

(g,n) _ (0, _(e(tc) N e(Clb—Clc—i-bt))(—aK)MiZ(e(tc(aK—i—l))) N e(acKt(Clb—Clc—i-bt)))

olarak elde edilir. Boylece M; denkleminin ¢6ziimii,

Cic(_ A ,—CicaK
 Cbab Creqe . [a€(=Ae”™19)
A=¢e"17 —elcec,l—/ — dt
olmak tizere
( A )aKeClc
M= € G.1.11)
eaCK’A(I—f-Cz)

seklinde elde edilir. Burada C; ve C; keyfi sabitlerdir.
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(3.1.11) denklemindeki M; ¢6ziimii ve (3.1.9) de verilen M denklemi ¢6ziimil yardimiyla

M denkleminin ¢oziimii

A
K(b — C)e(Clb—C1c+bt—cz) (ﬁ)“’(eclc
VT —lelGbCetba) T KA 4Cy) (3.1.12)

seklinde bulunur.

(3.1.1) - (3.1.2) adi mertebeden diferansiyel denklem sisteminin (3.1.11) ve (3.1.12)
denklemleri ile verilen ¢oziimlerinde boliim basinda verilen degerlerin yerine yazil-
mastyla M; ve M, ¢oziimleri kolayca elde edilir. M;(0) = 25 ve M;(0) = 15 baslangi¢

kosullarinin kullanilmas: ile Cy ve C, sabitleri;
C1 =0.5753641449 C, =—-0.1777777778

seklinde bulunur (Ongun ve Kocabiyik, 2017). Bu tez calismasinda tiim niimerik
hesaplamalar ve simiilasyonlar Maple 18 paket programi kullanilarak yapilmistir.
Asagida adi mertebeden ve kesirli mertebeden ¢oziimlere ait bazi grafiklere yer ver-
ilmistir. Sekil 3.1 de; adi mertebeden sistem i¢in faz portesi ¢izimine, Sekil 3.3 de ise;
hastalikli ve duyarl niifuslara ait bulunan ¢6ziim grafigine yer verilmistir.

Bu cizimlerde b > ¢, K < icin denge noktast (K (b — ¢),0) asimptotik karali

b
a(b—c)
oldugu goriilmektedir. Eger b > ¢, K >

durumu ele alinirsa ayni islem-
a(b—c)

lerle, (g JK(b—c)— Z) seklinde elde edilen denge noktasinin asimptotik kararli oldugu
gorilir.

Sekil 3.2 te ise; (3.1.8) ile elde edilen Lojistik diferasiyel denkleminin ¢6ztimiindeki
keyfi sabit M;(0) + M;(0) = M(0) = 40 olmak iizere C; = 0.5753641449 olarak alin-
mistir (Ongun ve Kocabuyik, 2017).
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3.1.2. Kaesirli mertebeden hanta-viriis sistemi

(3.1.4) -(3.1.5) denklemleri ile verilen kesirli mertebeden tiirev iceren Hanta-viriis

modelinde, 6nceki boliimlerde verilen benzer islemler yapilarak
2

M
DIM = (b—c)M — =~ (3.1.13)

seklinde kesirli mertebeden Lojistik diferansiyel denkleme ulasilir. Burada M = M; 4 M

dir. (3.1.13) ile verilen kesirli mertebeden diferasiyel denklem icin simetri kosulu,
o 2
n —n((b—c)—EM):O (3.1.14)

seklindedir. Burada & = &(¢) ve 1 = p(¢t)M + q(¢) olarak secilip n% yerinede (2.4.13)
ile verilen Leibnitz kurali uygulanarak, gerekli baz1 uzun islemler sonucunda, belirleme

denklemleri;
D1: Df*q(t) = (b—c)q(t)
D2 ————q(r) = £'(1)

D3: —ag'(t) = p(1)

—a
D4: p"(t) + n—e

n+1é:(n+1)(t) -0

seklinde elde edilir. Burada n € N dir. D1 denklemi Kilbas v.d. (2006) dan faydalinarak

coziiliirse,
q(t) =1 Eq,a((b—c)t*)C3

olarak elde edilir. Burada Eq «(.) iki prametreli Mittag-Leffler fonksiyonu ve C3 keyfi

sabittir. Iki parametreli Mittag-Leffler fonksiyonunun tanimi agagidaki gibidir,

Fes) = L Tk )
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Burada Mittag-Leffler fonksiyonu iistel fonksiyonun bir genisletilmesi yani uzantisidir.
o = 1 oldugunda, ¢(¢) denklemi (b —c)e’ seklindeki denkleme indirgenir. D2 ifadesinin

¢6ziimii i¢in ise D1’ de bulunan ¢(¢) nin integralinin alinmasiyla,

2

é(t)zc3m

taEa7a+1((b - C)ta) +C4

seklinde bulunur. Burada C3 ve Cy4 keyfi integral sabitleridir. D3 denkleminde, &' ()
tiirevi yerine yazilarak,

-2

mta_lEma((b—c)ta)

p(t)=GC;

seklinde elde edilir. D4 denkleminin, elde edilen p(¢) ve &(¢) nin yerine yazilmast ile
sagland1g1 aciktir.

Boylece L sonsuzkiigiik iireteci,

_ 2 RV PR
L_[CSKOC(]?—C)I Ea7a+1((b C)l )+C4]at

+[C3 ta_lEa7a((b - C)ta)M+C3ta_1Ea7a((b - C)ta)] a

K(b—c) oM

olarak bulunur. Bu diferansiyel operator ve simetri sartinda verilen denklemin kullanil-
mast ile genel ¢oziim i¢in,

dt

1*Eq,a+1((b—c)t%)

Ko(b—c)

dM

Kooy Eaalb— )M + 1% Eqa((b—c)®)

ifadelerinin birbirine esitlenmesiyle M ¢oziimii,

[((“Eg.a+1((b—c)t%)"%) —1]
—2/(K(b—c))

M =

+GCs (3.1.15)

olarak elde elde edilir. Burada Cs keyfi sabittir.
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Elde edilen bu ifadenin ¢6ziimii ve M — M; = M, alinmasiyla, (3.1.5) denkleminin yeni

hali,

[(t"Eqa1((b—c)t%) ") —1]

M;( +Cs)
DEM; = —cM; — —2/(1((11;— <)) : + (3.1.16)
(B (b= )=

af
—2/(K(b—c))
seklinde olur. Bu denklem icin de simetri kosulu uygulanip, belirleme denklemleri
coziiliirse tanjant vektoril,

- ~1
(&,n) = ((C+%I—aM)F,((c—i—%I—aM)F_](M’—aM')Mi) (3.1.17)

olarak bulunur. Burada M, (3.1.13) denklemi ile verilen kesirli mertebeden Lojistik
diferansiyel denklemin (3.1.15) ile verilen ¢oziimiidiir. Buradan kanonik degiskenler

kullanilarak M; ¢oziimii ,

[(t“Eqa1((b—c)t%) %) —1]

M= (er— 2IER—0)

+Cs

— (3.1.18)

[(t"Eq.a1((b—c)t%)"%) —1]
—2/(K(b—c))

seklinde elde edilir. Burada Cg keyfi sabittir. (3.1.18) denkemi ve (3.1.15) denklemi

a( +Cs))+Cs

yardimiyla My ¢oziimii,

[((®Eq.a41((b—c)t®)"%) —1]

_ [t®Ea,q41((b—c)r®) %) — 1] —2/(K(b—c)) S
Ms_ jZ/(K(b—C)) +C5_<C+ X i
(3.1.19)
[(t“Eq,a1((b—c)t%) %) —1] +Cs)) +Cs.

af
—2/(K(b—c))
olarak elde edilir. Sekil 3.4 ve Sekil 3.5 te ise (3.1.5) ve (3.1.4) ile verilen kesirli
mertebeden diferansiyel denklemin farkli o degerleri icin M ve M; ¢oziim grafikleri ve

density plot ¢izimleri verilmistir (Ongun ve Kocabiyik, 2017).
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3.1.3. Kismi hanta-viriis sistemi

(3.1.6)-(3.1.7) denklemleri ile verilen kismi Hanta-viriis sisteminin taraf tarafa toplan-
masl, yine diger alt boliimlerde oldugu gibi M = M; + M, fadesinin kullanilmasiyla bu
sistem,

oM *M M

5 = 52 T(—oM[1- (3.1.20)

seklindeki Fisher tipi Lojistik diferansiyel denklem halini alir. Kolaylik acisindan bu

denklemi,
U = Uy +A.u— B.u?

olarak ifade edelim, burada A = (b —c¢) ve B = % seklinde alinmig ve M ifadesi ise u
ile gosterilmistir. Yani daha genel bir ifade ile u;, = uy, + f(u) olarak gosterilebilir.
Boliim 2.5 te verilen ikinci mertebeden genisletilmis Lie operatorii olan L operatoriiniin

kullanilmasi ile elde edilen Fisher denkleminin Lie simetri ¢6ziimii icin,

—Nfut+tMm—NM2n=0 (3.1.21)

ifadesinin ¢oziilmesi gereklidir. 17 ve 1y, esitliklerinin yerine yazilmasi ile (3.1.21)

denklemi,

_nfu +n+ (nu - 61‘)”1? - étux - 5u(ut)2 _éu”t”x — Nx + (_znxu + gxx)ux + 5xxut+
(_nu + zéx)uxx + 26xutx + (—Tluu + Zéxu) (ux>2
+25xuutux + &uu(ux)3 + 5uu(ux)2ut + 3§uuxuxx +6uutuxx + 25uuxutx =0

seklini alir. Basta verilen u; = uy, + f(u) ifadesi ile uy, yerine u, — f(u) yazilmasiyla

kismi diferansiyel denklem asagidaki hale doniisiir;

(=1 fu = (=M +280) f () + 1t — N
[ — & + G+ (=M +28x) — 6uf (u)]us
=8+ 8] () 4+ [ Eu 4 280+ 3Eu]uruy

=& — 20+ G — 38 ()it + [Gua] ()
[ M+ 28] () + [Scl e + [SuJunttrx
+[ S (”x)zut =0

42



u ya gore biitiin mertebeden tiirevlerin katsayilarinin sifira esitlenmesiyle agsagidaki

sistem elde edilir.

sbt - =1 fu— (—Mu+2E) () + M — N =0
Up 2 My — O+ Gex + (—Mu +26¢) — Guf (u) =0
(u)*: =8, +8,=0

Uity : =&y +208u, +38, =0

=& — 2N+ Eex — 38uf (1) = 0

()% : =N+ 26 =0

() : & =0

ux:0, =0

usx 0, =0

(ux)zu, :6u=0

Buradan ifadelerin ¢oziimlenmesiyle,
5:C17 é =4q, M =0
elde edilir. C; ve g keyfi sabitlerdir. Bu durumda,

d d d
L= 50#@”)5+§(t7x7u)$+n(tuxau)£

d
diferansiyel operatorii ile elde edilen simetriler L; = > ve Ly = > olarak bulunur.
x
Burada C; = 1 alinirsa grup indirgeme yardimiyla kismi diferansiyel denklemin ¢oziimii
i¢in,

di_dx_du

adl ¢ 0
ifadesinin ¢oziilmesi gerekir. z = x — ¢t olmak iizere, iki integral ¢oziimii ile w(z) = u

seklinde, ifadelerin u ¢6ziimii bulunur. Burada w keyfi bir fonksiyondur.
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Elde edilen w ¢6ziimiiniin, Fisher tipi Lojistik denklemde yerine yazilmasiyla kismi

diferansiyel denklem,
W +qw +Aw—Bw? =0 (3.1.22)

seklinde adi diferansiyel denkleme indirgenmis olur. Fisher tipi diferansiyel denklem-
inin ¢Oziimi hakkinda ¢alismalar icin, Ablowitz ve Anthony (1979), Clarksonz ve
Elizabeth (1994), Gbetoula (2011) ve Verna v.d. (2014) calismalarina bakilabilir. Bu
diferansiyel denklemin ¢6ziimii olduk¢a zordur bununla ilgili ansatz metodu yardimiyla

genel ¢6ziim Kaushal vd. (2006) ¢alismasiyla,

4 ([1 £ tanh(d(x —q1))])? (3.1.23)

M(X,t) = E

A
seklinde elde edilir ki burada q ve d keyfi sabitlerdir, ¢6ziim icin ise g = j:S\/; ve

[ A ..
d=+ o olarak secilmistir. Ozel olarak A = B alinirsa, elde edilecek diferansiyel

denklem 3 = A = B olmak iizere;
w +qw +Bw(l—w)=0 (3.1.24)

seklinde elde edilir. Bu diferansiyel denklemin ¢oziimii olduk¢a zordur, ancak Ablowitz

ve Anthony (1979) ve Verna vd. ( 2014) daki ¢aligmalar sonucunda g = —54 /%

secilmesiyle genel ¢coziim,

M) = § — 5tanh(—ey + <= /6B (x—ar)) + g (tanh(c) + /6B (x—g1)))’

12
(3.1.25)

| =

1
4

olarak, c; keyfi sabit olmak iizere elde edilir.

(3.1.6) ve (3.1.7) ile verilen Hanta-viriis sistemi yardimiyla bulunan Lojistik Fisher-
Kolmogorov denklemi icin boliim girisinde verilen degerlerin secilmesi durumunda
A=b—c=0.5ve B=1/20 olarak elde edilir. Genel ¢6ziim icin ise , ¢ = 51/0.5//6
ve d = 1/0.5//24 degerleri bulunur.
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Bu kogullar altinda Fisher-Kolmogorov denkleminin genel ¢oziimii,
M(x,t) = 0.5/(4/20)([1 £ tanh(v/0.5/v/24(x — /0.5 //61))])?

olarak elde edilir bu ¢6ziim diizenlenirse,

1 5
4\/§)(x_ 2\/§I)

M(x,t) =5/2([1 + tanh( )?

seklinde elde edilir. Sekil 3.6 da analitik ¢6ziimiin K = 20 icin grafigi verilmistir. Eger
K =40 secilirse bu durumda denkleme ait genel ¢oziim,

1 5
7))

M(x,t) = 5([1 £ tanh(

halini alir. K =40 i¢in genel ¢6ziime ait grafik ise sekil 3.7 de verilmigtir. Eger yine

farkli olarak A = B olmasi i¢in K = 2 secilirse bu durumda analitik ¢6ziim,

M) = /4 tanh (=) (s~ > \5/§t))])2

1
4/3
seklinde elde edilir. Bu ¢oziime ait grafikler ise Sekil 3.8 ve Sekil 3.9 ile asagidaki
gibidir.

Sekil 3.6. K=20 i¢in Fisher-Kolmogorov Denkleminin Analitik Coziim Grafigi
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Sekil 3.7. K=40 i¢in Fisher-Kolmogorov Denkleminin Analitik Coziim Grafigi

Sekil 3.8. Ozel durum, K=2 icin Fisher-Kolmogorov Denkleminin Analitik C6ziim
Grafigi
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Sekil 3.9. K=2 i¢in Fisher-Kolmogorov Denkleminin Farkli Aralikta Analitik Coziim
Grafigi

3.2. Graniil Hiicre Uretimi Sistemi icin Lie Simetri Analizi

Beyin gelisiminin farkli donemlerinde sinir hiicreleri arasindaki ¢ogalma ve farklilasma
dengesinin kurulumu cok onemlidir. Bu bolimde, bu dengenin kurulumu i¢in
matematiksel olarak Leffler vd. (2016) taratindan ortaya konulan ve farelerde beyincik
gelisimi hakkkinda bilgi veren graniil hiicre sistemi olarak adlandirilan sistemin Lie
simetri ¢Oziimii arastirilacaktir. Ayni zamanda bu model tanimlanirlen dis graniil
katmanindaki (EGL) hiicresel davraniglar da goz 6niinde bulundurulmustur.

Hiicresel davranislarin modellenmesinde, baz1 6nemli etkenler vardir ki bunlardan ilki,
EGL nin dis katmanindaki (0EGL) Oncii graniil hiicreleri (gcps) tarafindan iiretilen
cogalmada ki degisiklik ve digeri ise EGL nin i¢ katmanindaki (iEGL) farklilasan
graniil hiicre sayisindaki farkliliktir.

Leffler vd. (2016) tarafindan 6nerilen bu modelin kullanilmasiyla fare beyinciklerinde
bilgi edinmenin artmasi ve bu bilgiler ile beyincik gelisiminde fayda saglanmasi
amaclanmaktadir. Aslinda hiicresel diizeyde, farelerde ki oncii graniil hiicreler ve
graniil hiicreleri konular1 50 yila yakindir calisilmaktadir. Bu caligmalardan bazilar
Haddara ve Nooreddin (1966), Fujita (1967), Mares ve Lodin (1970), Seil vd. (1970),
Goldowitz vd. (1997), Hatten vd. (1981), Espinosa vd. (2008), Legue vd. (2015), Szulc
vd. (2015), Leffler vd.(2016) seklinde orneklendirilebilir.
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Son donemdeki Espinosa vd. (2008) ve Legue vd. (2015) tarafindan yapilan ¢alismalar
ile klonal analiz hakkinda yeni ve dnemli bilgiler saglamistir.
EGL deki graniil hiicre tiretimine ait sistemi Leffler vd. (2016) tarafindan verilen sekilde

asagidaki gibi tamimlansin:

— a, (1 — 8)N, — N, (3.2.1)
L~ 20,,6N, — 0N (3.2.2)

dt

burada,

N,(t) : oEGL deki hiicre sayisi,

N;(t) : iEGL deki hiicre sayist ,

oy geps deki hiz sabiti i¢in sinir degeri,

Q. EGL den ¢ikan graniil hiicrelerinde ki sinir sabiti,

8(t): Oncii graniil hiicresinin boliinerek 6liimciil iki graniil hiicre olusturma olasiligidur.
(3.2.1) -(3.2.2) denklem sistemi ile fare beyincik gelisimi sirasinda graniil hiicrelerinin
tiretimini ve beklenen ortalama klon bir bireyin Oncii graniil hiicresi biiyiikliigii tahmin
edilmektedir. Bu modeli kanser de dahil insan nérogelisimindeki fare modellerinde
hiicre 6zelliklerine bagli degisimin anormal {iretimlerindeki yiikselisini ¢alismak i¢in
oldukca kullanighdir.

Eger bu sistemde 6 bir sabit olarak alinirsa Denklem (3.2.1) ve Denklem (3.2.2) ile
verilen ifadelerin ¢oziimleri kolaylikla elde edilir.

Fakli 0 degerleri g6z oniine alinir ise, Leffler vd. (2016) calismalarinin 1g181 altinda N,
1n davraniglarinin belirlenmesi fazla zor olmamaktadir,

i) 0 < 6 <1/2i¢in N,(t) zamana bagli artan iistel bir fonksiyon,

ii) 6 = 1/2 igin N, (t) sabit,

iii) 1/2 < 6 < 1igin N,(t) zamana bagl azalan ustel bir fonksiyondur.

Bu davraniglarin hi¢biri dogal gézlemler altinda kararli degildir, bu nedenle Leffler vd.
(2016) calismasinda 6 nin zamana bagli fonksiyon olmasi gerektigi sonucuna ulagmistir.
Bu sebeple asagidaki kosulu saglayan farkli 6 fonksiyonlari segilmistir:

“ 0(t) basglangicta 1/2 den az olmalidir, ve sonrasinda bazi zamanlarda 1/2 den fazla
olmalidir. Oncii graniil hiicrelerinin, graniil hiicrelerine doniismeden 6nceki zaman tam

olarak # = 0 aninda oldugu i¢in §(¢) = 0 varsayilmaktadir. " (Leffler vd., 2016)
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Bu nedenlerden dolay1 verilen graniil hiicre tiretimi sisteminde, bu kosulu saglayan ii¢
farkli 8(¢) olasilik fonksiyonu ¢aligilmigtir. Bu olasilik fonksiyonlart ise lineer, rasyonel
ve listel olarak siniflandirilmistir.

Ik olarak Denklem (3.2.1) ile verilen N,(¢) ye ait sistemin ¢6ziimii arastirilmis ve
sonrasinda bulunan bu ¢6ziimiin (3.2.2) denkleminde yerine yazilmasiyla N;(z) ye ait
sistemin genel ¢oziimiine ulagilmistir.

Graniil hiicre iiretimi modeli ile bulunan ve EGL deki hiicre sayilarini veren N, (t) ve
N;(t) zamana bagl fonksiyonlarinin yardimi ile, doku bolgesindeki degisimi bulmak
icin asagidaki kolay formiil kullanilabilir.

Bu formiilde A,(z), oEGL bolgesindeki degisimi ifade etmek tizere su sekilde ifade

edilir,

Ao(t) = (3.2.3)

Ai(t) = (3.2.4)

Burada v, graniil hiicrenin siddetidir ve 300-um? olarak kabul edilmektedir. Bu
formiillerdeki L ise beyincigin orta lobunun genigligidir ve 775-um (F%?20) olarak
Olciilmiistiir ( Leffler vd., 2016). Simdi bu formiil ve 6l¢iim degerlerinin kullanilmasiyla
doku bolgesinde ki degisimi incelemek amaciyla bazi grafikler verilecektir. Burada
baglangic kosulu olarak A,(0) icin asagida verilen degerler ve A;(0) = 0 olarak
kullanilacaktir. Asagida tabloda verilen ve burada kullanilacak degerler farkli biyolojik

gozlemler ile elde edilmistir (Leffler vd., 2016).

Cizelge 3.1. EGL Modeli i¢in Ol¢iim Degerleri

8(t)Fonksiyonu Lineer Rasyonel Ustel

o, 0.0348 0.0558  0.0443
0t 0.0387 0.0588  0.0474
a 0.0029 0.0059  0.0041
A,(0) 1994 1005 1411
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3.2.1. Lineer §(¢) durumu

Bu boliimde 6(¢)’ nin lineer olmast durumu ele alinacaktir. Burada a, §(¢) nin baglangi¢
egimi olmak iizere & () = at alinmasi ile bu ifadenin (3.2.1)-(3.2.2) sisteminde yerine

yazilmasiyla, bu duruma ait graniil hiicre iiretimi sistemi,

dz ® = ay(1—at)N, — apatN, (3.2.5)

dN;
dt

= 2apatN, — . N; (3.2.6)

olur. Oncelikle denklem (3.2.5) ele alinip, bu denklem lineerlestirilmis simetri sart1
altinda yerine yazilirsa, (3.2.5) denklemine ait tanjant vektorleri (§,1) = (0,N,) olarak
elde edilir.

Boylece bu denklem icin & = 0 oldugundan kanonik koordinatlar yardimiyla, r =t ve
s= [ a olarak elde edilir ve bu ¢oziimler ile N, i¢in analitik ¢oziim,

o
e®'cy

N,(t) = (3.2.7)

ear*ap
olarak bulunur. Burada c; keyfi sabittir. Bulunan bu ¢6ziimiin (3.2.6) denkleminde

yerine yazilmasiyla,

dN; e®'c
L = ZOtpat !
dt

— a,N;. (3.2.8)

ear*ap

seklinde N; ye ait adi mertebeden diferansiyel denklem elde edilir. Benzer sekilde, bu
dt

o~ el

adi diferansiyel denkleme lineerlestirilmis simetri sart: uygulanirsa, r =7 ve s = [
kanonik koordinatlar elde edilir. Bu kanonik koordinatlarin kullanilmasiyla N; ifadesine
ait genel ¢oziim,

1 et opt(optae)t

Ni(t) = [2c1a06p(7 act, (3.2.9)
1 (0 + O‘e)z
4  aa 1 (0, + )
o, + o e P er aol,t — ———
+1( 4 e)\/_ f( 14 2 \/m )
4 ady./ad,
+ca] /e

olarak bulunur. Burada c; keyfi sabittir.
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Burada verilen lineer durum i¢in tablo ifadelerinin (3.2.7) ve (3.2.9) denklemlerinde

yerine yazilmastyla sabitler,

c1 =11797, ¢ =11797.

olarak bulunur.

3.2.2. Rasyonel 4 (¢) durumu

Bu boliimde ise 6 () nin rasyonel bir fonksiyon olarak alinmasi durumunda ¢dziimiin

1
nasil olacag aragtirilmigtir. Bu sebeple 8(¢) = 1 j_ ” olarak secilirse, (3.2.1)-(3.2.2)
a
diferansiyel denklem sisteminin yeni hali,
dN, at at
=0op(1 — N, —« N, 3.2.10
2 = 0y (1 = (Lo )N = Oyl N (3210
dN; at
=20,(——)N, — Q,.N;. 3.2.11
dt a 1 —l—at) ? S ( )

olarak bulunur. Bir 6nceki durumda oldugu gibi, yine ilk olarak (3.2.10) denklemine
lineerlestirilmis simetri sarti uygulanirsa tanjant vektorler (&, 1) = (0, N, ) seklinde elde

edilir. Kananik koordinatlar tanimlarinin kullanilmasiyla N,’ a ait genel ¢6ziim,
(%)2
(at+1) a
No(t) = e (3.2.12)

eapt(e a )2

biciminde bulunur. Burada c3 keyfi sabittir. Bulunan bu analitik ¢oziimiin denklem

(3.2.11) de yerine yazilmasiyla, N; i¢in adi mertebeden diferansiyel denklem,
(%)2
dN; at (at+1) a
— =20
dt p(1+at)( (“pc3)
ea,,t (e a )2

) — 0N, (3.2.13)

olarak bulunur. Simetri sartinda ifadelerin yerine yazilmasiyla (&,n) = (0,e~%") olarak

bulunur ve (r,s) kanonik koordinatlarin kullanilmasiyla ,
20,
2on,at (at + 1)(7_1)6(0‘6’)
J( a3 | )dt +c4

(apt)
Nilt) = e a ) (3.2.14)

eloet)

olacak sekilde NV; nin genel ¢oziimii elde edilir, burada ¢4 yine bir keyfi sabittir.
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Tabloda dlciilen degerler kullanilarak rasyonel durum ¢oziimleri (3.2.12) ve (3.2.14)

ifadelerinin ¢oziilmesiyle,

c3 = —0.4594, c4 =298.5502.

olarak bulunur.
3.2.3. Ustel 5(¢) durumu

Uciincii ve son durumda ise &(¢) nin iistel bir ifade segilmesi durumunda yani §(t) =
1 — (=) olarak alinmasiyla olusan analitik ¢oziimler aragtirilmistir. Ustel ifadenin

yerine yazilmasiyla (3.2.1)-(3.2.2) ile verilen graniil hiicre iiretimi sisteminin yeni hali

asagidaki gibi olur.
dN, B y
— = a,(1— (1= e, — a, (1 — e "N, (3.2.15)
dN;
dt’ = 20,(1 —e=*)N, — a.N; (3.2.16)

Diger durumlarda oldugu gibi yine ayni islemler uygulanirsa,

N,(1) = ;ze<—af> (3.2.17)
e(ol) (e( a ))2
ve, _atzoceta—i—atocp +2ape(_‘”))
Ni(r) = / (—2¢s0pe a (3.2.18)
—Qta+atoy, +20pe )
+2cs500pe - a dt +cg)] /e %")

olarak genel ¢coziimler elde edilir. Burada c5 ve cg keyfi sabitlerdir. Diger durumlarda
oldugu gibi, benzer islemlerle tanjant vektorler N, i¢in (0,N,) ve N; i¢in (0,e~ %)

seklinde bulunmustur. Yine tablo degerlerinin iistel ¢oziimlerde yerine yazilmasiyla ,

cs = 0.202572398410'*, ¢ = 0.

sabitleri elde edilir.
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Sekil 3.10 da A, ()’ a ait ii¢ farkli duruma ait ¢oziimler i¢in grafik verilmigtir. Daha
sonrasinda ise Sekil 3.11 de bu ¢oziimlere ait density plot ¢izimlerine yer verilmistir.
Sekil 3.12 de ise A;(t) genel ¢oziimiine ait grafik ifade edilmistir. Yine ayn1 seklide Sekil
3.13 de ise li¢ tip durum i¢in de ¢oziimlerine ait density plot ifadelerine yer verilmistir.
Sonrasinda o, nin tablo degerindeki degisim ile (&, = 1.5 x 0.0348) graniil hiicre
sayisinin degisimi hakkinda bilgi edinmek ic¢in Sekil 3.14 ve Sekil 3.15 ile bu degisime
ait bilgileri iceren grafikler verilmistir.

En son olarak da, o, degiskeninin de8isimi ile (o, = 0.5 x 0.0387) elde edilen grafikler
Sekil 3.16 ve Sekil 3.17 ile elde edilmistir.
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Sekil 3.11.  A,(¢) i¢in Density Plot Cizimleri. Lineer, rasyonel ve iistel durum.
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Sekil 3.12. iEGL Doku Bolgesi igin Graniil Hiicre Uretimi C6ziimleri
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Sekil 3.13. A;(¢) i¢in Density Plot Cizimleri. Lineer, rasyonel ve tistel durum.
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Sekil 3.14. 0EGL ve iEGL Doku Bolgesi Graniil Hiicre Uretimi Coziimleri .
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Sekil 3.15. Density Plot Cizimi de8isen o, deeri i¢in.
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Sekil 3.16. 0EGL ve iEGL Doku Bolgesi Graniil Hiicre Uretimi Coziimleri.
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Sekil 3.17. Density Plot Cizimi degisen ¢, degeri i¢in.
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4. ARASTIRMA BULGULARI VE TARTISMA

Bu boliimde, ilk olarak tez calismasi i¢inde verilen lineer ve lineer olmayan bazi
orneklere dair Maple paket programlarina yer verilmisgtir.

Daha sonrasinda ise Lie simetri metodu ile Hanta-viriis sistemi ve Graniil hiicre iiretimi
sistemine ait denklem sistemlerinin genel ¢oziimleri hesaplanmasinda kullanilan Maple
paket programina yer verilmistir. Bulunan bu ¢6ziimlerin Maple 18 yardimiyla grafik

ve simiilasyonlar1 elde edilmisgtir.

Hanta-viriis sisteminde ii¢ tip durum icin Maple ile ¢oziimler hesaplandi. Bu durumlar
adi, kesirli ve kismi tiirevli diferansiyel denklem sistemi olarak belirtildi. Burada
coziimlerin elde edilmesinde ise gerekli basit islemler ile bulunan Lojistik diferansiyel

denklemin ifadesi kullanilmustir.

Graniil hiicre iiretimi sisteminde ise denklem igerisindeki d(z) bagimli degiskeninin

lineer, rasyonel ve iistel durumlari icin elde edilen sistemin genel ¢éziimleri hesaplandi.

Elde edilen genel ¢oziimler 1s181inda goriildii ki, lineer ve lineer olmayan diferansiyel
denklem sistemlerin genel ¢oziimiinde, Lie simetri metodunun bazi durumlarda oldukca
kullanigh oldugu ve paket program yardimi ile de genel ¢oziime ulastirdig1 gozlemlendi.
Asagida Boliim 2 ve Boliim 3 de kullanilan hesaplamalara ait programlardan bazilari
verilmistir.

Ornek 2.4’ e ait Maple paket programu:

> restart : with(DEtools) :

> ODE :=diff(y(x),x) = e);ig) +y(x);
ODE = %y(x) = ey)c);(i;c) +y(x)

> sku := symgen(ODE);

sku:=[§ =1,1=y/2|

> czm = dsolve(ODE can’);

czm = y(x) = £4/Cre? —2¢*
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Ornek 2.6 icin Maple paket programi:
> restart : with(DEtools) :
> ODE :=dif f(y(x),x) = a*xy(x) —bxy(x)%;

ODE = 3(x) = ay(x) ~ by(x)’

> sku := symgen(ODE);
sku:=[&=1,1=0]

> czm := dsolve(ODE can’);
o(Clatax)
czm = y(x) = 15 belClatad)
Ornek 2.8’ e ait Maple paket programa:
> restart : with(DEtools) :
> ODE :=dif f(y(x),x,x) = 3/2x dif f (y(x), x)? /y(x) + 25 y(x)*;
2 42

_ 4 _3/y-dx
ODE = Ey(x) =21 V() +2y(x)?

> sku := symgen(ODE);

sku = [é =1n :0]7[5 =X :y]’[é :_x2/27n :yx]

> czm = dsolve(ODE, gon2);

B 4C1
C16C12 —(C22 —2C2x —x2

czm = y(x)
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Boliim 3.1.1° e ait ¢oziimlerin bulunmasinda kullanilan Maple programa:

1 T

VVVVVVVYV

>
[>

restart:

with(plots):

with (DEtools) :

ODE:=(diff (u(t),t)=u(t)*((b-c)-(1/k)*u(t))):

sku:=symgen (ODE) :

czm:=dsolve (ODE, 'can') :

ODE2:=diff (y (t) ,t)=-c*y (t) - (y (t) *2/k) - ((1-a*k) /k) * (czm-y (t) ) *y (t
) :

ODE3:=diff (y(t),t)=

- (-a*k+1) /k*y (t) * (k* (b-c) / (-1+exp (_Cl*b-_Cl*c+b*t-c*t)) *exp(_Cl*
b—_Cl*c+b*t—c*t)—y(t))—y(t)‘2/k—c*y(t):

sku:=symgen (ODE3) :

czm2 :=dsolve (ODE3, 'can') :
Il:=(-(exp(_Cl*b) *exp (t*b)-exp(_Cl*c) *exp (t*c))/exp(_Cl*c))" (a*k
)*exp(_Cl*c)*a*(exp(a*c*k*t)*exp(_Cl*b)A3/exp(_¢1*c)*exp(t*b)‘3/
exp (t*c) -3*exp (a*c*k*t) *exp (_Cl*b) *2*exp (t*b) “2+3*exp (a*c*k*t) *e
xp (_C1*b) *exp (_Cl*c) *exp (t*b) *exp (t*c) -exp (a*c*k*t) *exp (_Cl*c) "2
*exp (t*c) *2) / (exp (_C1l*b) *exp (t*b) —exp (_Cl*c) *exp (t*c)) / (-exp (a*c
*k*t)*exp(_pl*b)*exp(t*b)+exp(a*c*k*t)*exp(_Cl*c)*exp(t*c))“2/(—
l+exp(_Cl*b) /exp(_Cl*c) *exp (t*b) /exp(t*c)):

I2:=factor(Il):

I3:=int(I2,t):

czm3:=- ((exp(_Cl*c) *exp (t*c) -exp (_Cl*b) *exp (t*b)) /exp (_Cl*c))*(a
*k)*exp(_Cl*c)/(—I3*exp(a*c*k*t)*exp(_Cl*b)*exp(t*b)—_CZ*exp(a*c
*k*t) *exp (_C1l*b) *exp (t*b) +I3*exp (a*c*k*t) *exp (_Cl*c) *exp (t*c)+_C
2*exp (a*c*k*t) *exp (_Cl*c) *exp (t*c)) :

a:=0.1:

b:=1:

c:=0.5:

k:=20:

czm3:

y:=czm3:

X=czm-y:

X2:=
10.0/(-1+exp(.5*_Cl+.5*t)) *exp(.5* _Cl+.5*t)+((exp(.5*_Cl)*exp(.5
*t)-exp(_C1l) *exp(t))/exp(.5*_Cl))*2.0*exp(.5*_C1l)/(-.1000000000/
exp (.5000000000*_C1)* (exp(_C1) *t+2.*exp(-.5000000000*t+.50000000
00*_C1))*exp(1.00*t) *exp (_C1) *exp (t) -_C2*exp (1.00*t) *exp (_C1) *ex
p(t)+.1000000000/exp (.5000000000* C1) * (exp(_C1) *t+2.*exp (-.50000
00000*t+.5000000000*_C1)) *exp(1.00*t) *exp(.5*%_Cl) *exp(.5%t)+_C2*
exp (1.00*t) *exp (.5*_Cl1) *exp(.5*t)) :

t:=0:
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[>
(>

[>

t:=0:

y:

x2:

solve ({y=15,x2=25},{_Cl, C2});

{_CI1=0.5753641449, C2=-0.1777777778}

> restart;

with(plots):
with (DEtools) :
_Cl:= .5753641449;

CI:=0.5753641449

_C2:= -.1777777778;

~C2:=-0.1777777778
y:=-((exp(.5*_Cl) *exp(.5*t)-exp(_C1) *exp(t)) /exp (. 5% Cl))~2.0%ex
p(.5*_C1)/(-.1000000000/exp(.5000000000* C1) * (exp(_C1) *t+2.*exp (
-.5000000000*t+.5000000000*_C1)) *exp (1.00*t) *exp (_Cl) *exp(t)-_C2
*exp (1.00*t) *exp (_C1) *exp(t)+.1000000000/exp (.5000000000*_C1) * (e
xp(_Cl) *t+2.*exp (-.5000000000*t+.5000000000* C1)) *exp(1.00*t) *ex
p(.5*_Cl)*exp(.5*t)+ _C2*exp(1.00*t) *exp(.5*_C1) *exp(.5*t));

(0.51) , 20
:=—1.333333333 (1.000000000 e —1.333333334 ¢') / (

(~0.5000000000 7 +0.2876820724)  (1.00¢)
—0.1333333334 (1.777777778 t + 2. e )e e

(1.000)
+0.3160493828 e e

(~0.5000000000 ¢+ 0.2876820724)  (1.00¢) (0.5¢)
+0.1000000000 (1.777777778 t + 2. e )e e
(1.007) (0.51)
—0.2370370370 e e b

x:=10.0/ (-1+exp(.5*_Cl+.5*t)) *exp(.5* Cl+.5%t)+((exp(.5*_Cl) *exp
(.5*t)-exp(_Cl)*exp(t))/exp(.5*_Cl))”*2.0*exp(.5* _C1)/(-.10000000
00/exp (.5000000000* C1) * (exp(_C1) *t+2.*exp(-.5000000000*t+.50000
00000*_C1)) *exp(1.00*t) *exp (_Cl) *exp (t)-_C2*exp (1.00*t) *exp (_C1)
*exp (t)+.1000000000/exp (. 5000000000*_C1) * (exp(_C1) *t+2.*exp (-.50
00000000*t+.5000000000*_C1)) *exp (1.00*t) *exp (.5*_Cl) *exp (.5*t)+_
C2*exp (1.00*t) *exp (.5*_C1) *exp(.5*t)) ;

(0.2876820724 + 0.5 1)
10.0 e

2.0
(0.51) ;
= +1.333333333 (1.000000000 e —1.333333334 ¢') / (

(0.2876820724 + 0.5 1)
-1+e

(~0.5000000000 1 +0.2876820724)  (1.001)

—0.1333333334 (1.777777778 t + 2. e )e e
(1.001)

+0.3160493828 e e

+0.1000000000 (1.777777778 t + 2. e
(1.004) (0.517)
e

(~0.5000000000 ¢ + 02876820724)) (1.001) (0.51)
e e

—0.2370370370 e

61



"\ 111
vV Vv

vVVVY

I
v v

v VVVVVVVY

v

VVVVVVVVVVVVYVY

Adi mertebeden Lojistik diferansiyel denklemin programau:

restart;

czm:=

k*(b-c)/(1+exp(_Cl*b-_pl*c+b*t-c*t))*exp(_pl*b—_pl*c+b*t—c*t):
( Cib- Clc+bt—ci)

k(b-c)e
A Cerb= Clesbr=ct)
+e

=l
=015
k:=20:
czm:
t:=0:
czm:

solve(czm=40,{_p1});
{ CI1=0.5753641449 + 6.283185307 I}

Farkli o mertebeleri icin M., in ¢oziim programu:

restart;

with (DEtools) :

with(plots):

a:=0.1:

b:=1:

c:=0.5:

K:=20:
mittagl:=sum((((b-c)*x"(0.4))*k)/(GAMMA(0.4+1+0.4%k)) ,k=0..infin
i 3,70 i
mittag2:=sum((((b-c)*x*(0.6))"k)/(GAMMA(0.6+1+0.6*k)) ,k=0..infin
b i g B
mittag3:=sum((((b-c)*x*(0.8))"k)/(GAMMA(0.8+1+0.8%*k)) ,k=0..infin
Ty

mittagd :=sum((((b-c)*x*(1))~k)/ (GAMMA (1+1+1*k)) ,k=0..infinity) :
M1l:=(x*(0.4)* (mittagl)~(=-0.4)=-1)/(-2/(K* (b-c)))+35:
M2:=(x"(0.6)* (m1ttag2)~ (-0.6)=-1)/(=2/(K* (b-c)))+35:
M3:=(x"(0.8)* (mrttag3)~(-0.8)-1)/(-2/(K* (b-c)))+35:

M4:=(x"(1)* (mittag4d)*(-1)-1)/(-2/(K* (b-c)))+35:

M il:=(16.5)+(c+(ML1/K)-(a*Ml)):

M i2:=(16.5)+(c+(M2/K) - (a*M2)) :

M i3:=(16.5)+(c+(M3/K) - (a*M3)):

M i4:=(16.5)+(c+(M4/K) - (a*M4)) :

M s1:=M1-M il:

M s2:=M2-M i2:

M s3:=M3-M i3:

M s4:=M4-M id4:

plot({M s1,M s2,M s3,M s4},x=0..25);
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Farkly o mertebeleri icin M; nin ¢oziim program:

restart;

with (DEtools) :
with(plots):
ar=0.1:

b:=1:

ci=0_5"

K:=20:

mittagl:=sum((((b-c)*x"(0.4))"k)/(GAMMA (0.4+1+0.4%k)) ,k=0..infin

1xy) ¢

mittag2:=sum((((b-c)*x~(0.6))"k)/(GAMMA (0.6+1+0.6%k)) ,k=0..1infin

Ty

mittag3:=sum((((b-c)*x*(0.8))"k)/(GAMMA (0.8+1+0.8%k)) ,k=0..infin

1ty):

mittagd:=sum( (((b-c)*x*(1))*k)/(GAMMA (1+1+1*k)) ,k=0..infinity):

Ml:=(x*(0.4)* (m1ttagl)*(-0.4)-1)/(-2/(K*(b-c)))+35:
M2:=(x*(0.6)* (m1ttag2)*(-0.6)=-1)/(=-2/(K* (b=c)))+35:
M3:=(x*(0.8)* (m1ttag3)*(-0.8)=-1)/(-2/(K*(b-c)))+35:
M4:=(x* (1) * (mittag4) ~(-1)-1)/ (-2/ (K* (b-c)) ) +35:

M il:=(16.5)+(c+(M1/K)-(a*Ml)):

M i2:=(16.5)+(c+(M2/K)-(a*M2)):

M i3:=(16.5)+(c+(M3/K)-(a*M3)):

M i4:=(16.5)+(c+(M4/K)-(a*M4)):

M sl:=M1-M il:

M s2:=M2-M i2:

M s3:=M3-M i3:

M s4:=M4-M i4:

plot({M s1,M s2,M s3,M s4},x=0..25);

Lineer EGL sisteminin ¢0ziim programu:

restart;

with (DEtools) :

ode:=diff (N[o] (t) ,t)-alpha[pl*N[eo] (t)+2*alpha[p]*a*t*N[o] (t)=0:
sku:=symgen (ode) :

czm:=dsolve (ode, 'can') :

N[o] (t) := 1/exp(a*t“2*alpha[p]}*exp(alpha[p]*t)*_pl:

ode2:=diff (N[i] (t) ,t)-2*alpha[pl*(a*t) *(1/exp(a*t*2*alphalp]) *ex

p(alpha[p]*t)*_C1)+alpha[e]*N[i](t)=0:
sku2:=symgen (ode2) :
czm?2 :=dsolve (ode2, 'can') :
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Rasyonel EGL sisteminin ¢oziim programau:

[ > restart;
[ > with (DEtools) :

1 T

> ode:=diff (N[o] (t),t)=-alpha[p]*N[o] (t)+2*alpha[p]*((a*t)/ (1+a*t))

*N[o] (t)=0:
> sku:=symgen (ode) :
> czm:=dsolve (ode, 'can') :
> N[o] (t) =

1/exp(alpha[pl*t)* ((a*t+l)~(alpha[pl/a))“2/exp(alphalpl/a*_Cl)"2

> ode2:=diff (N[i] (t) ,t)-2*alpha[p]l*((a*t)/ (1+a*t))* (1/exp(alphalp]

*t)* ((a*t+1l)~ (alphalpl/a))"~2/exp(alpha[p]/a*_Cl)“2)+alphale] *N[i
1(t)=0:

> sku2:=symgen(ode2) :

[ > czm2:=dsolve(ode2, 'can') :

Ustel EGL sisteminin ¢éziim programu:

restart;

with (DEtools) :

ode:=diff (N[o] (t),t)-alpha[p]l*N[o] (t)+2*alpha[p]* (1-exp(-a*t)) *N
[o] (E)=0:

sku:=symgen (ode) :

czm:=dsolve (ode, 'can') :

N[o]l (t) = 1/exp(alpha[p]l*t)/exp(1l/a*alpha[p]*exp(-a*t))"2* Cl1:
ode2:=diff (N[i] (t) ,t)-2*alpha[p]l*(l-exp(-a*t))* (1/exp(alpha[p]l*t
)/exp(l/a*alpha[p]*exp(-a*t))“2*_p1)+ (alpha[e]*N[i] (t))=0:

sku2 :=symgen (ode2) :

czm?2 :=dsolve (ode2, 'can'):
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5. SONUC VE ONERILER

Bu tez ¢alismasinda, diferansiyel denklemlerin ve diferansiyel denklem sistemlerinin
genel coziimiiniin Lie simetri analizi yapilarak nasil bulunacagi tizerine odaklanilmustir.
Ayr1 ayn alt baghiklar altinda, adi diferansiyel denklemler, kesirli diferansiyel
denklemler ve kismi diferansiyel denklemlere yontemin uygulamasi gosterilmistir. Bu
bakis acisi ile, diferansiyel denklem sistemlerine uygulanmasi olarak da, iki model ve

bu modellerin ¢oziimleri tartisiimagtir.

Tez ¢aligmasinin ilk kisminda da anlasilacagi iizere, adi diferansiyel denklem sisteminin
Lie simetri ¢coziimleri tanjant vektorleri kullanimiyla elde edillir. Ornek model igin,
kolayca ilk olarak Lojistik diferansiyel denklemin ¢6ziimiine oradan da Hanta-viriis

sisteminin ¢coziimleri elde edilmistir.

Fakat kesirli diferansiyel denklem veya denklem sistemlerinin Lie simetri ¢dziimlerinin
Mittag-Lefler fonksiyonunu icermesinden dolayi, keyfi sabitlerin secimi olduk¢a Gnemli
ve zordur. Bu keyfi sabitlerin se¢ciminde baslangi¢ kosulllarina bagh pozitif ¢oziimleri
garantilemek i¢in uygunluk olduk¢a 6nemlidir. Bundan dolayi, verilen baska kosullar

altinda negatif ¢6ziime kars1 sabitlerin se¢imine dikkat edilmelidir.

En son durumda ise Hanta-viriis modeli olarak verilen lineer olmayan bir kismi diferan-
siyel denklem sisteminin genel ¢oziimii icin Lie simetri metodundan yararlanilmistir.
Toplam fare niifusunun Fisher-Kolmogorov denklemi olarak elde edilmesinden sonra,
bu denklemin ¢oziimii i¢in Lie simetrilerinin bulunmasindaki gii¢liik sebebi ile bazi

sabit degerlerin 6zel se¢cimleri gerekmistir.

Bir diger sistem olan Graniil hiicre iiretimi sisteminde ise beyincik graniil hiicrelerinin
dis katmandaki degisikligi ile elde edilen zamana bagli fonksiyonlarin genel ¢oziimleri
Lie analizi ile elde edilmistir. {1k olarak (3.2.1) ile verilen EGL nin dis katmanindaki
hiicre sayisinin veren N,(¢) ¢oziimiine ulagilmig ve sonrasinda bu ¢oziim ile (3.2.2) ile
verilen N;(¢) ¢6ztiimii yani EGL nin i¢ katmanindaki hiicre sayis1 zamana bagli olarak

elde edilmistir.
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Daha sonra bu genel ¢oziimler ile doku bolgesindeki degisiklige ait A,(r) ve A;(t)
zamana bagl fonksiyonlar elde edilmis ve aylik periyotlar halinde grafikleri ¢izilmistir.
Bu ¢oziimler ve ¢izimler sirasinda 0 (¢) ye ait ii¢ farkli durum ele alimmisgtir. Elde edilen
bu sonuglar ile sinir hastaliklar icin ortaya konulan yeni bakis agisinin grafikleri ve

density plot ¢izimleri kullanilmustir.
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