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ABSTRACT

HIERARCHICAL TEMPORAL MEMORY BASED AUTONOMOUS AGENT
FOR PARTIALLY OBSERVABLE VIDEO GAME ENVIRONMENTS

Sungur, Ali Kaan

M.Sc., Department of Multimedia Informatics

Supervisor : Asst. Prof. Dr. Elif Sürer

August 2017, 103 pages

Believable non-player characters (NPC) can have a profound impact on the experi-
ence that a video game provides. This thesis presents an online, unsupervised and
lifelong learning autonomous agent that the player can interact with. It has an ar-
chitecture utilizing a combination of Hierarchical Temporal Memory and Temporal
Difference Learning Lambda with the guidance of neurobiological research. The
agent has a visual sensor with an online data stream. Input from this sensor feeds
the architecture to model the surrounding environment. The goal of the agent is to
learn rewarding sequences of behavior based on the stimulation it receives caused by
its actions. It navigates in a procedurally generated three-dimensional environment
and is in a continuous learning state adapting the synapses of its neural connectome.
The architecture is also capable of being stored and loaded at any point allowing for
persistent learning through multiple simulation sessions. The study presents the learn-
ing characteristics of the agent on a video game related learning task. We compared
the data collected from the experiments with varying parameters along with provid-
ing the runtime and serialization performance. The proposed methodology results
in an autonomous NPC that can learn rewarding behaviors without any supervision.
Moreover, it is also capable of learning specific action sequences via player guid-
ance. The result is a promising and novel NPC architecture that is also relatively
open to incremental improvements through the relevant neurobiological studies and
the advancements on the theory of Hierarchical Temporal Memory.

Keywords: hierarchical temporal memory, autonomous agent, reinforcement learn-
ing, temporal difference learning, lifelong learning
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ÖZ

KISMEN GÖZLEMLENEBİLİR SANAL OYUN ORTAMLARI İÇİN
HİYERARŞİK ZAMANSAL HAFIZA TABANLI OTONOM AJAN

Sungur, Ali Kaan

Yüksek Lisans, Çokluortam Bilişimi

Tez Danışmanı : Yrd. Doç. Dr. Elif Sürer

Ağustos 2017, 103 sayfa

Bir oyunun sunduğu tecrübede bilgisayar kontrollü karakterlerin inandırıcı olması
ciddi bir önem arz etmektedir. Bu tezde gerçek zamanlı, gözetimsiz, hayat boyu
öğrenme kabiliyetleri olan ve kullanıcıların etkileşimde bulunabileceği bir otonom
ajan mimarisi sunuyoruz. Hiyerarşik Zamansal Hafıza ve Zamansal Farklılık Öğren-
mesi algoritmalarını, sinir bilim ve biyoloji araştırmaları doğrultusunda bir arada kul-
landık. Ajan gerçek zamanlı veri akışına sahip görsel sensörü aracılığı ile çevresinin
bir modelini oluşturur. Ajanın temel amacı aksiyonları neticesinde aldığı ödüller
doğrultusunda ardışık aksiyonlardan oluşan davranışlar öğrenmektir. Yöntemsel ola-
rak oluşturulmuş, üç boyutlu ortamlarda hareket eden ajan, sürekli öğrenme halinde
olup sinir ağını güncellemektedir. Ajanın sinir ağı herhangi bir anda kaydedile-
bilir ve geri yüklenebilir. Dolayısıyla farklı simülasyon seanslarında bile kaldığı
yerden öğrenmeye devam edebilir. Farklı parametrelerle yapılan oyun içi öğrenme
seanslarından derlenen veriler ile çalışma hızı, saklama, geri yükleme ve öğrenme ka-
biliyetleri ölçülmüştür. Önerilen yöntem doğrultusunda denetime ihtiyaç duymaksızın
ödül getiren davranışları öğrenme yeteneğine sahip, bilgisayar kontrollü bir karakter
oluşturulmuştur. Karakter buna ek olarak kullanıcı yönlendirmeleri ile öğrenmeyi
de desteklemektedir. Sonuç olarak, bu çalışmada yeni bir yaklaşım aracılığıyla bil-
gisayar kontrollü karakterler için gelecek vaat eden bir mimari sunulmuştur. Sinir
bilim ve biyolojik kaynaklar doğrultusunda Hiyerarşik Zamansal Hafıza teorisine
dayandırılarak oluşturulan bu mimari, kademeli geliştirmeye de gayet açıktır.

Anahtar Kelimeler: hiyerarşik zamansal hafıza, otonom ajan, destekli öğrenme, za-
mansal farklılık öğrenmesi, hayat boyu öğrenme
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CHAPTER 1

INTRODUCTION

Non-player characters are important components of video games, even sometimes
taking the spotlight on games such as Thief (1998), Fear (2005) and Stalker (2007).
Believable characters that provide high levels of interactivity have an undeniable im-
pact on the overall experience. The NPCs can have varying roles ranging from pets,
companions, community members, assistants, mentors to evaluators, opponents and
enemies. Some games such as Black and White (2001) takes one more step and
builds the experience around its NPC by putting the player in control of guiding it.
It utilizes a hybrid system by containing belief-desire-intention models, rule-based
systems, decision trees and perceptron neural networks. However, designing games
around its non-player characters and in general, artificial intelligence (AI) compo-
nents requires the developer to craft the underlying engine accordingly. While the
modern game engines such as Cry Engine, Unreal and Unity have advanced tools for
building believable agents, these engines introduce constraints on the development
due to their resource management and architectural limitations. Although they pro-
vide robust AI facilities such as behavior toolkits, pathfinding methods, conditional
logic utilizing decision trees, they are not designed around the intelligence compo-
nent itself. So, it is challenging to apply the state of the art advancements on machine
learning (ML) and artificial intelligence in these modern game engines. AI centric
experimental engines and platforms are essential for the industry to incorporate these
advancements and provide experiences that utilize the latest methodology. Computer
controlled video game agents are powerful platforms to communicate the capabilities
of the most recent findings on AI and ML because they also provide scenarios that
require active participation from the player.

In this thesis, a novel autonomous agent architecture is developed along with the nec-
essary platform to test it in terms of suitability for video games, specifically as an NPC
intelligence. Aim of the study is to provide an interactive agent that is capable of pro-
ducing its own life cycle based on the reward stimulation from its surroundings and
based on the player guidance. The study presents relevant neurobiological research to
support the architecture and it utilizes a cortical computation approach - Hierarchical
Temporal Memory (HTM). HTM is an unsupervised, continuous and online learn-
ing method for modeling spatiotemporal patterns and variable order Markov (VOM)
sequences. The agent navigates a three dimensional and procedurally generated en-
vironment via online visual information stream. Therefore, it is a partially observing
agent and the problem at hand can be classified as partially observable Markov deci-
sion process (POMDP). It is important to note that we decided to use HTM because
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of its neurobiological relevancy and its potential to provide continuous learning in
real-time. The traditional machine learning approaches to model partially observable
environments, such as convolutional neural networks (CNN), deep learning (DL),
long short-term memory (LSTM) are not viable contenders because of insufficient
neurobiological evidence supporting them. In addition, real-time applications as well
as continuous online learning are not their strong suit considering the required com-
putational power. The data hungry nature of DL and its variations do not provide the
best facility for an NPC because the input data is limited in real-time learning tasks.
The objective is to create a lifelong learning NPC that functions in real-time which
proves to be difficult to solve, especially with DL. On top of this, interaction with
the player necessitates the model to allow for manipulation, which is again a problem
considering the black box nature of the overmentioned method.

Hierarchical Temporal Memory attempts to build an abstracted version of the uni-
versal computation happening among the neocortex based on the six layer, mini and
macro-column theories in neuroscience. As a result, it satisfies the neurobiological
concerns of this study. While doing so, it also attempts to model the cortical com-
putation at a functional level which allows for better under the hood transparency
and opens up possibilities for in-depth visualizations as implemented in this study.
The computational requirements of HTM allow for a real time implementation which
is embedded into the custom game engine utilized for this thesis. Considering all,
HTM theory enables a starting point for an autonomous agent that has a neurobio-
logical base along with online, lifelong learning and interaction capabilities. Having
a neurobiological base allows for universal incremental advances by taking the rel-
evant research as the reference point. This study couples HTM with Temporal Dif-
ference Learning Lambda (TD(λ)) along with necessary additional features for an
autonomous agent. The results are promising for the proposed methodology to be
utilized as an NPC intelligence.

This thesis starts with presenting background on HTM, TD(λ) and the relevant neu-
robiological research in Chapter 2. In Chapter 3, problem, agent and the platform
constraints are laid out to specify the scope of the study. We described the agent archi-
tecture from a mechanistic point of view in Chapter 4 along with the supplementary
visual material. Chapter 5 focuses on the reproducibility of this study by present-
ing details about implementation and additional features necessary for an HTM and
TD(λ) based autonomous agent. Study concludes after presenting results and provid-
ing relevant discussion in Chapters 6 and 7.

1.1 Scope of This Thesis

The thesis aims to model an autonomous architecture specifically for a video game
NPC, not a general purpose agent. For this reason, the current environment is limited
to video game worlds and to be specific; procedurally generated three-dimensional
environments. One of the primary constraints on the scope emerges from neurobi-
ological concerns. The functionality of cortical layers and computational models of
basal ganglia are reference points for the architecture. This approach facilitates a
starting point that is open to incremental improvements through the relevant neurobi-
ological research. More research with this perspective may yield biology backed uni-
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versal solutions and an incremental approach towards general intelligence while imi-
tating the biological intelligence. Model transparency, serialization capability, player
interaction and real-time performance are the constraints on the scope of this study.
We designed the agent architecture and the testing scenario around these constraints
which rather limit the problems that the agent can currently solve. In summary, we
specify the scope as producing an unsupervised autonomous agent with real-time per-
formance and neurobiological basis, in a lifelong learning video game scenario which
includes player interaction.

1.2 Contributions

Up to the time of this study, there are no publications on HTM and TD(λ) based
autonomous agents. The only relevant works on this topic were done by Otahal [1]
for his MSc thesis and Gomez [2] in his BSc project report. The former argued
about the design of a system combining HTM with reinforcement learning (RL) for
a biologically plausible agent while providing some implementation notes. The latter
combined HTM with RL and compared it to Q-Learning under a Markov Decision
Process (MDP) setting. One of the strong suits of HTM is functioning well under
noisy environments which is lacking in an MDP setting that was used by Gomez.

In 2016, Sungur and Surer [3] proposed an architecture by extending the HTM theory
for producing voluntary behavior based on recent neuroscience findings. We realized
the proposition in this thesis with results on a video game environment. Therefore,
this study is novel in being the first publication on HTM based partially observing
autonomous agents with learning results on a real task. It also presents the neuro-
science material that directs the architecture which includes computational models of
basal ganglia and research on cortical layer functionalities. The study provides the
first findings on combining HTM with TD(λ) through learning tasks. Moreover, we
propose extensions to the existing HTM implementation to allow for real-time func-
tionality and present an implementation guideline for the whole architecture. Among
the current HTM implementations, this thesis houses the only published real-time im-
plementation of HTM algorithms in a continuous learning setting. As a result, this
study is also the only platform realizing a lifelong learning NPC based on HTM via
its serialization and player guidance capabilities.
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CHAPTER 2

BACKGROUND

2.1 Background on Hierarchical Temporal Memory

The foundations of Hierarchical Temporal Memory date back to work done by P.
Kanerva [4] on Sparse Distributed Memory. He argued about the sparse distributed
representations being the underlying long term human memory model denoting both
the data and the address. This memory model is one of the key concepts behind
HTM. A neuroscience institute founded in 2002, Califonia, kick-started the research
on the theory behind Hierarchical Temporal Memory. The mission of a non-profit or-
ganization, Redwood Neuroscience Institute, was to study biologically accurate and
mathematically well founded, theoretical, large scale memory models. Kanerva was
also a research affiliate for the institute. One of the key figures of the institute, Jeff

Hawkins, went on to publish a book named On Intelligence about their memory pre-
diction framework [5]. Together with Dileep George, they co-founded Numenta Inc.
in 2005 following this publication. The goal was to advance the research based on
the computational principles of the neocortex via experimental models. The paper by
George and Hawkins [6] describes the basis of HTM and the underlying hierarchical
Bayesian inference model. It describes the HTM node as a combination of Markov
chain and coincidence detector. They went on to use their experimental model in
the industry under the name Grok. It is a commercial algorithm focused on finding
anomalies in data and utilized in predictions of IT analytics. The company Corti-
cal.io also used this product for natural language processing problems. Since 2013,
Numenta decided to publicize their model through an open source implementation
which they called Nupic.

George was more focused on the mathematical background of the research [7] and as
a result, the co-founders of Numenta split. He found another company under the name
Vicarious which consists of impactful researchers within the field. However, unlike
Numenta, Vicarious did not publish their model as of this study. Thus, Hierarchi-
cal Temporal Memory is one of the only applicable computational models of cortical
learning at a functional level in machine learning supported by neurobiological evi-
dence. The work done by Rinkus [8] links the sparse distributed coding models to
the mini and macrocolumn theories of neuroscience which forms the basis of HTM
along with the six layer theory of the neocortex. The HTM neuron model concurs
with this study which states that neurons of macrocolumns have the same receptive
fields while sparsely representing their input patterns through minicolumns (around
70). Neurons of a minicolumn (around 20) represent similar features and enforce
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sparsity. Mumford presents a computational view of the six layer theory. He also
describes the specialized functionalities of the cortical layers in his publications [9]
[10]. HTM theory incorporates the functional principles of these layers.

On the side of traditional machine learning approaches, Marblestone et al. [11] argue
about the integration of neuroscience to the theory of deep learning by comparing
the current backpropagation implementations with the proposed biologically plausi-
ble ones. They concluded the default approach to be biologically implausible even
if the brain is assumed to be doing backpropagation. It is important to note that the
fundamental difference between HTM and other conventional neural networks based
approaches is that HTM is built around neuroscience research while popular methods
such as DL try to integrate it afterwards. Studies questioning the biological plausibil-
ity of backpropagation date back decades. For example, the paper by Mazzoni et al.
[12] concludes it to be biologically implausible. The HTM theory does cortical com-
putations without a backpropagation mechanism outlined in Y. Cui et al [13]. This
paper dwells on the fundamentals of HTM sequence memory and compares it with
statistical models, feedforward and recurrent neural networks on real world problems
with continuous data streams. Hawkins and Ahmad present the underlying neurobi-
ological evidence of the HTM theory in their publication [14]. They argue about the
number of synapses a neuron needs for sequence learning and its implication in the
context of cortical learning. Ahmad et al. also published a work [15] showing the
unsupervised real-time anomaly detection performance of HTM.

2.1.1 Background on HTM and RL Coupling

The literature on combining HTM with reinforcement learning (RL) is fairly weak,
an expected outcome considering its recency. We were only able to find two attempts
on such online publications consisting of a Master’s thesis by Otahal in 2014 [1] and a
Bachelor’s project by Gomez in 2016 [2]. Otahal’s work explains how such a system
works from a design perspective while providing some implementation guidelines.
He conducts learning tests on a 2D grid world where the HTM is extended with -in
his words- emotional guidance to result in a task based HTM agent. On the other
hand, Gomez treats the HTM as the reinforcement learning itself and compares it to
Q-Learning [2]. His agent model runs as a Markov Decision Process without being
partially observing. However, one of the strong suits of HTM is being able to run
on noisy environments with partial observation thanks to its noise robustness. HTM
neuron uses its dendrites as coincidence detectors functioning in an all-or-nothing
principle discarding activations under a set threshold. This mechanism allows HTM
to be highly robust to noise. While providing the first valuable attempts at an HTM
based agent, both studies do not share any supporting neurobiological evidence on
their HTM and reinforcement learning coupling.

2.2 Related Neuroscience Research

This study aims to provide relevant neurobiological research along with the com-
ponent explanations of the proposed architecture. The current HTM theory mainly
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imitates the functionality of cortical layers 2/3. These layers are hypothesized to be
doing variable order sequence learning [14], [13]. The recent HTM research areas
include sensorimotor integration through extending the theory with layers 4, 5 and
6. There is especially an interest in layer 6 which is hypothesized by Numenta re-
searchers to be doing transformations between world space inputs and object space
inputs.

Regarding the proposed methodology in this study, research on cortical layers 1, 4
and 5 are significant in extending the current HTM theory to allow sensorimotor in-
ference. The second area of interest is the computational models of basal ganglia.
This subcortical structure interplays with the frontal cortex to generate actions.

2.2.1 Cortical Layers

Regions of neocortex such as V1 (visual cortex), S1 (somatosensory cortex) and M1
(motor cortex) constitute of six layers with differing functionalities. These layers are
positioned on top of each other with layer 6 at the bottom and layer 1 at the top. The
primary input layer of a region is layer 4 [16]. This layer integrates information from
a variety of subcortical structures and other cortical regions gated by the thalamus.
The input is specialized according to the cortical region type. For example, sensory
thalamic input and motor activity information make up a portion of the information
coming to M1 layer 4 [17]. The computational order of the six layers is still a debate
among neuroscientists. The classical assumption states that the information travels
to layers 2/3 after layer 4 and continues to layers 5/6 from there [18], [19]. The
findings of Constantinople and Bruno [20] also suggest that layers 2/3 project to layer
5. However, this projection is modulatory and layers 5/6 cannot be driven by layers
2/3 because layers 5/6 are activated slightly before 2/3 according to their results.
Moreover, layers 5/6 take direct excitatory thalamic input and the activity is not driven
by layer 4. So they suggest that there are two seperate feedforward pathways in
cortex: L4→L2/3 and L5→L6. On the other hand, the work by Schubert et. al. [21]
states that layer 5a cells take excitatory input from layer 4 cells. According to the
research presented in this section, Figure 2.1 shows the cortical computational flow
assumed in this study.

Ramaswamy and Markram present the anatomy and physiology of the layer 5 pyrami-
dal neuron in their work [22]. Their findings suggest that a layer 5 neuron integrates
information across all cortical layers. Layer 5 also serves as the principal pathway for
output among the region. It supplies information flow to motor areas and other sub-
cortical structures such as basal ganglia as also stated by Naka and Adesnik [23]. In
[24], Hosp and Loft experimented with teaching rats to reach a pellet. They found that
pyramidal neurons (PMN) in layer 2,3 and 5 had enlarged dendritic fields after learn-
ing sessions. There was an increase in the synapses of layer 5 neurons promoting the
idea that learning increases synaptogenesis. This finding is linked to the association
by learning mechanism between layer 5 and motor neurons in our architecture.

In [25], Garcia-Munoz and Arbuthnot analyzed the structural composition of layer 1
and its effect on other cortical layers. They found layer 1 to be containing inhibitory
neurons which influence layers 2, 3 and 5. Layer 1 is the terminal for the informa-
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Figure 2.1: The abstracted computational flow of the cortical layers.

tion originating at basal ganglia and going through the thalamus. The modulation of
the superficial layer 1 on other layers concurs with the findings of Gao and Zheng
[26]. According to Kim [27], stimulating layer 1 yielded activity on apical dendrites
of layer 5 cells. Functionally, layer 1 resolves the conflicting alternative responses
of layer 5 ensuring the continuation of cortical function as stated by Edelman and
Gally [28]. These findings form the foundation for the abstraction of layer 1 in our
architecture.

Although layer 6 cells make up a significant portion of the cortical layers, their func-
tionality is still not completely understood. Lee and Sherman [29] present their find-
ings on layer 6 neurons having a modulatory role for layer 4 from an organizational
perspective. The study also points out the possibility of tall pyramidal neurons of
layer 6 exerting influence on the output of layer 5 which reaches thalamus, striatum
and other subcortical structures as stated in [30] by Morishima and Kawaguchi. In
another the study, layer 6 is found to have excitatory influence on layer 5a activations
in mouse visual and somatosensory cortices [31].

2.2.2 Computational Models of Basal Ganglia

The neuroanatomy of basal ganglia presented in the publication by Lanciego et al.
[32] shows the refined information flow through basal ganglia back to the cortex.
They describe the afferents and efferents of the nuclei of basal ganglia: striatum,
globus pallidus internal (GPi) and external (GPe), substantia nigra pars reticulata
(SNr), substantia nigra pars compacta (SNc). They also present relevant material
describing the direct pathway neurons of striatum which are D1 dopamine recep-
tive medium spiny neurons (MSNs) and the indirect pathway neurons which are
D2 dopamine receptive MSNs. According to another study, basal ganglia provides
the main functionality of reward circuitry and controls the learning of behaviors via
dopamine receptive cells [33].

The study by Helie et al. [34] compares 19 computational models of basal ganglia
that are actuated by convolutional neural networks (CNN). It presents the limitations
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of the existing models which had their functional schemes of basal ganglia. The
comparison concludes that all the computational models agree on the functionality of
direct pathway which is activating specific cortical representations. On the other hand,
the models interpret hyperdirect and indirect pathways with major differences. The
study conducted by Brown et al. [35] presents the mechanics of the interplay between
frontal cortex and basal ganglia through the differences between planned and reactive
saccades. They argue that plan execution is possible through the direct pathway of the
ganglia. The book published by Prescott et al. on modeling natural action selection
[36] describes the impact of dopamine changes on learning in Go (direct) and No-
Go (indirect) pathways. The dips in dopamine indirectly excite D2 receptive cells
and therefore supports learning in No-Go pathway. The burst of dopamine leads to
the excitation of D1 receptive cells resulting in learning in the Go pathway. The
competition between Go and No-Go pathways generate behavior, so any imbalance
results in behavioral inconsistencies such as Parkinson’s Disease and attention-deficit
hyperactivity disorder [37]. Figure 2.2 shows the functional scheme of basal ganglia
along with the direct and indirect pathways. The research related to these pathways
constitute the reasoning behind the abstracted reward circuitry of the agent.

Figure 2.2: Functional scheme showcasing basal ganglia pathways.

• Direct (GO) Pathway : Striatum→ GPi.

• Indirect (NO-GO) Pathway : Striatum→ GPe→ GPi.

• Hyperdirect Pathway : Cortex→ STN→ GPi.

Tewari et al. [38] present the differing functionality of basal ganglia input structures:
subthalamic nucleus (STN) and striatum. They compare these structures in terms of
their roles in motor excitation and inhibition. STN contributes to the global inhibition
of all actions through the hyperdirect pathway until output conflicts are resolved. It
states that STN increases the response thresholds to inhibit impulsive actions while
the striatum does the opposite and decreases response thresholds for quicker activa-
tion of previously learned actions. Accordingly, ganglia are used less when a decision
has been made. The study also states that striatum can make comparisons between
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estimated reward and the reward during acting. Striatum neurons can encode both
positive and negative results of action selection. Zavala et al. [39] present their find-
ings on STN which is the main component of the hyperdirect pathway. They hypoth-
esize that directly activating the STN causes the inhibition of all responses until the
competition between cortico-striatal activation (direct pathway) and cortico-striatal
inhibition (indirect pathway) results in the correct response. This behavior suppres-
sion mechanism is incorporated in one of the well known basal ganglia computational
models by Frank et al. [40]. According to [41], the inhibition by STN allows striatum
to integrate information from other cortical regions to resolve conflictions and output
the correct response. We currently neglect the functionality of hyperdirect pathway
because our architecture consists of a single cortical region in its current state.

In [42], Haber analyzes the communication of midbrain dopamine neurons and stria-
tum. The study concludes that midbrain dopamine neurons output mainly to the stria-
tum. It also states that thalamocortical pathway which receives the output of ganglia
may be a simple one-way relay to cortical regions. The thalamus is currently not in-
cluded in our architecture, and this assumption decreases the importance of thalamus
on the communication between cortex and basal ganglia. The direct projection of
layer 5 onto basal ganglia and the responding output of ganglia which terminates on
the superficial cortical layer 1, forms the basis of reward circuitry loop. Other cor-
tical layers are then modulated by layer 1 through their apical dendrites. Haber also
suggests that dopamine cells may receive direct sensory input which is how our study
integrates dopamine into the model.

2.3 Hierarchical Temporal Memory

Hierarchical Temporal Memory is a continuous, online and unsupervised neural com-
putation method. It achieves learning via adapting the synaptic connectome of vol-
umetric neural layers where connections form and decay continuously. Mini and
macrocolumn theories [8] direct the structural composition of HTM layers. The ac-
tivation of an HTM layer is a sparse distributed representation which describes the
state. The general goal of HTM is variable order sequence modeling and generating
predictions from this model [14]. It can model the change in streaming input pat-
terns with temporal dependency. Depending on the current state and input, it outputs
a prediction about the following state on each iteration. The learning mechanism
imitates the functional principles of the cortical layers in the six layer theory of the
neocortex, specifically layers 2 and 3. HTM neurons are capable of predicting their
feature activity by learning the activations happen before them. At each iteration, the
current activation forms connections with the previous activations. Every activation
stimulates the possible following activations through these formed synapses. These
stimulations depolarize neurons that represent the activations on the next step, and
these neurons are prioritized to fire. If the feedforward input at the following iteration
matches with the prediction, the neural activation becomes sparse. Due to this mech-
anism, the resulting active neurons represent the feedforward input in the context of
previous activations. In short, HTM layers are capable of predicting their future state
as in Figure 2.3, depending on the current state and the context.
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Figure 2.3: Activation and the prediction of an HTM layer. Red = unpredicted acti-
vation, green = successfully predicted activation and blue = predictive.

2.3.1 Structural Composition and HTM Neuron

The research in neuroscience identifies a similar arrangement of neurons in mam-
malian neocortex. According to the mini and macrocolumn theory of Rinkus [8],
a minicolumn is a group of cells that are receptive to a similar feedforward input.
The minicolumns form a macrocolumn that is represented by one or more cortical
layers. The macrocolumn is a sparse distributed representation of the input via ac-
tive minicolumns. The neurons of minicolumns function in a winner-take-all (WTA)
fashion where an active neuron inhibits the rest. Minicolumns ensure sparsity among
the macrocolumn while also representing the context via their active neurons. As a
result, the neurons of HTM layer form a grid of minicolumns which represent the
macrocolumn shown in Figure 2.4. All the neurons of a minicolumn share a similar
synaptic receptive field which is called proximal dendrite. The individual neurons
of minicolumns have synapse segments that are unique to them which are called the
distal and apical dendrites. These provide the neurons with contextual information.

Figure 2.4: HTM layer composition; a single layer macrocolumn constituting mini-
columns.

Guided by the neurobiology, the HTM neuron model has more functionalities com-
pared to point neurons seen in conventional neural networks. The HTM neuron is an
abstraction of the pyramidal neurons that make up the majority of the cells in cortical
layers [43]. The dendrites incorporate the biological functionality of proximal and
distal dendrites which have separate effects on the cell body. These dendrites have
different activation processes and connection rules [14]. Figure 2.5 describes the
HTM neuron model.

The HTM neuron has a single proximal dendrite, and all the neurons throughout a

11



Figure 2.5: HTM neuron model. Proximal synapses are shared among all the neurons
of a minicolumn and these synapses activate minicolumns. Distal and apical synapses
carry contextual information and determine which neurons to fire among an activated
minicolumn.

minicolumn share it. The synapses of the proximal dendrite have a pre-defined recep-
tive field on the input data. This receptive field can represent any form of topology
based on the position of the minicolumn. The input to an HTM layer is a binary
representation of any type of data, including the activation of another layer. Given
a minicolumn, the inputs falling inside its receptive field are the potential synapse
locations of its proximal dendrite. Synapses of this potential pool are modified con-
tinuously by the source activity. Details about this adaptation process are explained
in the Spatial Pooler algorithm in Section 2.3.2. Figure 2.6 shows the proximal
dendrite visualization of two minicolumns with random and topological connections.

(a) Proximal dendrite with random sampling. (b) Proximal dendrite with local sampling.

Figure 2.6: A proximal dendrite with no topology is on the left while another with a
positional topology is on the right.

A single neuron can recognize a multitude of activation patterns through its distal
dendrites due to its nonlinear properties [13]. The cell develops dedicated segments
for each pattern on its distal dendrites. If one of these patterns occur, the complemen-
tary distal dendrite is activated, and this puts the parent cell in a depolarized/predictive
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state. These segments function in an all-or-nothing fashion: they ignore any activity if
it does not stimulate the number of synapses required by the set threshold. Input over-
laps below the threshold are treated as noise. Temporal Memory algorithm explains
the details of this process in Section 2.3.3. In Figure 2.7, a single distal segment of
a cell is chosen among many, and its synapses are visualized with their permanence
(strength) values.

Figure 2.7: Distal segment of a cell sampling from neighboring neurons.

Apical dendrites are functionally similar to distal dendrite which depolarize their par-
ent cells and provide context to the HTM activation. However, apical dendrites sam-
ple from further sources and they provide contextual information from higher cortical
layers and subcortical structures such as basal ganglia. Distal segments lead to distal
depolarization while the apical segments lead to apical depolarization. Figure 2.8
visualizes an apical segment of a neuron sampling from a distant source.

Figure 2.8: Apical segment of a cell sampling from reward circuitry layers of our
architecture.

HTM computations are carried out via two main interleaving phases: Spatial Pooler
(SP) and Temporal Memory (TM). Spatial Pooler decides which columns spatially
represent the input. On the other hand, Temporal Memory activates neurons among
these active columns based on temporal context.

2.3.2 Spatial Pooler

The first computational stage of HTM involves representing the input spatially. Every
input pattern is represented by a set of active columns depending on the overlap be-
tween their proximal dendrites and the pattern. As stated earlier, all neurons share the
same proximal connections among the minicolumn. Each column has a single feed-
forward proximal dendrite. In each HTM cycle, Spatial Pooler algorithm sequentially
iterates the three phases explained below.
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2.3.2.1 Phase 1 - Calculating Overlaps

The first phase calculates the overlap of proximal dendrites with the active inputs.
Algorithm iterates over all the connected proximal synapses of columns. A synapse
is connected when its permanence is above the connection threshold. Overlap of a
column is incremented if the proximally connected input is active. The boost factor
calculated in Phase 4 scales the final overlap to ensure that every column is utilized
over time. Algorithm 1 presents the Phase 1 pseudocode and Figure 2.9 shows
the calculated overlaps of all the columns for an HTM layer. stimulationThreshold
denotes the threshold for treating the input overlap as noise.

Algorithm 1: SP - Phase 1
1 foreach col ∈ layer.columns do
2 col.overlap← 0;
3 foreach syn ∈ col.proxDend.connectedS ynapses do
4 col.overlap← col.overlap + syn.active;

5 if col.overlap < stimulusThreshold then
6 col.overlap← 0;
7 else
8 col.overlap← col.overlap · col.boost;

Figure 2.9: Calculated overlaps between the proximal dendrites of the columns and
the input.

2.3.2.2 Phase 2 - Inhibition

There is competition among the columns to become active because the number of
active columns is fixed at any time, and these active columns inhibit the rest. This
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mechanism ensures that the input is converted into a sparse distributed representation.
The inhibition can be carried out in a global fashion meaning all the columns of a
layer is compared with each other, or it can be local within a columnar neighborhood.
However, local inhibition severely impacts the performance, so the global inhibition
is preferred in this study for real-time functionality. Algorithm 2 presents the Phase
2 pseudocode and Figure 2.10 shows the resulting active columns after applying
global inhibition on the activation at Phase 1. k maxOverlap function takes all the
columns as input and calculates the minimum overlap among the highest overlapping
k columns. k denotes the number of active columns at a time and is calculated by
multiplying the column count with sparsity.

Algorithm 2: SP - Phase 2
1 foreach col ∈ layer.columns do
2 if col.overlap > k maxOverlap(layer.columns) then
3 col.active← true;
4 else
5 col.overlap← 0;

(a) Active columns before inhibition.

(b) Active columns after inhibition.

Figure 2.10: Resulting columns after applying WTA inhibition to the activation at
Figure 2.9

2.3.2.3 Phase 3 - Synaptic Adaptation

In this phase, the proximal synapses of the active columns resulting after the inhibi-
tion are adapted according to the input to imitate the synaptic plasticity of pyramidal
cells. It is important to note that the algorithm only adjusts the synapses of active
columns and the rest remains the same. For all the potential synapses of a column,
the synaptic permanence is incremented if the source input bit is active. Permanence
is decremented otherwise. This phase introduces synaptic plasticity that biases the
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proximal synapses onto occurring inputs. It ensures that columns specialize to a group
of input patterns over time. There are bumping and boosting mechanisms to imitate
neural homeostasis. These provide a more uniform activation distribution among the
layer.

• Bumping : All the proximal synapse permanences are incremented for the
columns with lesser input overlap (overlapdutycycle). Thus, these columns are
reinforced to have more connected synapses that can contribute to their overlap.

• Boosting : This mechanism scales the overlap score of every column with
the column’s boost value. This value depends on the activation frequency of
the column (activedutycycle). Therefore, frequently activated columns have a
lower boost value while lesser used columns have a higher boost value.

The activation (adc) and overlap duty cycles (odc) of a column are updated during this
phase to bump the proximal synapses of the columns and compute the boost values
for the next iteration’s SP - Phase 1. Algorithm 3 presents the Phase 3 pseudocode
and Figure 2.11 shows the synaptic adaptation of a proximal dendrite. period repre-
sents the moving average window of duty cycles with respect to iteration count. The
function minOdc calculates the minimum overlap duty cycle among all the columns.
Boost calculation had a recent update on the open source HTM implementation -
Nupic. The up-to-date computation is an exponential function to provide a more uni-
form activation frequency distribution among the HTM layer. boostS trength controls
the intensity of leveling this distribution.

Algorithm 3: SP - Phase 3
1 foreach col ∈ layer.columns do
2 foreach syn ∈ col.proxDend.potentialS ynapses do
3 if syn.active then
4 syn.permanence←

min(maxPermanence, syn.permanence + increment);
5 else
6 syn.permanence← max(0, syn.permanence − increment);

7 col.odc← (col.odc · (period − 1) + col.overlap)/period;
8 if col.odc < minOdc(layer.columns) then
9 foreach syn ∈ col.proxDend.potentialS ynapses do

10 syn.permanence← syn.permanence + increment · 0.1;

11 col.adc← (col.adc · (period − 1) + col.active)/period;
12 col.boost ← exp(−boostS trength · (col.adc − localAreaDensity));
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(a) Proximal dendrite before adaptation. (b) Proximal dendrite after adaptation.

Figure 2.11: A proximal dendrite adaptation example that results in substantial
change in connected synapses.

2.3.3 Temporal Memory

This stage picks which neurons to fire after computing the activated columns via the
Spatial Pooler algorithm. By default, the distal dendrites of neurons potentially con-
nect to the neighboring neurons of the same layer. These dendrites allow neurons to
predict their activation by growing synapses to the previously active neurons. There-
fore, a neuron is depolarized and put in a predictive state if its distal dendrites detect
the activation that occurs before itself. The depolarized neurons are primed to fire
in the following iteration if the feedforward columnar activation includes those neu-
rons. If a depolarized neuron becomes active, it inhibits the rest of the neurons in the
same minicolumn. All the neurons become active if there is no depolarization. The
resulting neural activation computed on this stage represents the contextual informa-
tion of the columnar activation. As a result, the same columnar activations may have
different active neurons based on the previous activations. There are four Temporal
Memory phases explained above that run sequentially in an HTM iteration.

2.3.3.1 Phase 1 - Neural Burst and Sparsification

The first phase would activate all the cells of a column if that column did not have any
depolarized cells from the previous iteration (bursting). If there are any depolarized
cells of an active column, only those cells get activated, and the rest of the column
is inhibited. Algorithm 4 presents the TM - Phase 1 pseudocode and Figure 2.12
shows the bursting and sparse neural activations.

Algorithm 4: TM - Phase 1
1 foreach cell ∈ layer.predictiveCells do
2 if cell.parentCol.active then
3 cell.active← true;
4 cell.parentCol.predicted ← true;

5 foreach col ∈ layer.activeColumns do
6 if !col.predicted then
7 foreach cell ∈ col.neurons do
8 cell.active← true;

17



(a) Bursting columns.

(b) Activation of depolarized columns.

Figure 2.12: Visualization of bursting and sparse neural activations.

2.3.3.2 Phase 2 - Learning Segments Assignment

The main objective of this phase is to assign learning segments to active cells. A
learning segment is a flagged segment which is allowed for synaptic adaptation on
TM - Phase 3. All the previously active segments of successfully predicted neu-
rons are flagged for learning. For the bursting cells, the algorithm checks whether
they have any matching segments. If the input overlap of the potential synapses
(all synapses including unconnected ones) of a distal segment is over a set thresh-
old with the previous neural activation, it is referred as a matching segment. This
check is there to prevent creating new segments to learn on when there are segments
with unconnected synapses that match with the input. For a given cell, the function
bestMatchingS egment finds the matching segment that has the highest overlap with
the previous activation. The resulting segment is chosen as the learning segment for
that bursting cell. If there are no matching segments, a new empty segment is created
via createS egment function and set as the learning segment. Algorithm 5 presents
the TM - Phase 2 pseudocode and Figure 2.13 shows a matching segment flagged for
learning which does not have any connected synapses.

Figure 2.13: A learning matching segment that does not have any connected synapses.
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Algorithm 5: TM - Phase 2
1 foreach cell ∈ layer.predictedCells do
2 foreach seg ∈ cell.segments do
3 if seg.prevActive
4 seg.learning← true;

5 foreach cell ∈ layer.burstingCells do
6 bestS eg← bestMatchingS egment(cell);
7 if bestS eg
8 bestS eg.learning← true;
9 else

10 newS eg← cell.createS egment();
11 newS eg.learning← true;

2.3.3.3 Phase 3 - Segment Adaptation

The synapses of the learning segments are adapted using the same logic in SP - Phase
3 with a single difference; the synapses sample the previous input activity, not the
current activity. Therefore, a synapse is strengthened if the source was active in the
previous iteration and weakened otherwise. Temporal Memory has its own perma-
nence increment and decrement parameters that are different from Spatial Pooler.
This phase also creates new synapses on the learning segments depending on the
already sampling previously active inputs (alreadyS ampled) and the allowed num-
ber of new synapses per Temporal Memory iteration (maxNewS ynapses). Among
the unsampled previous active sources (candidates), random sources are picked via
popRandom function and new synapses are formed on the segment sampling from
these sources. Algorithm 6 presents the TM - Phase 3 pseudocode.

Algorithm 6: TM - Phase 3
1 foreach seg ∈ layer.learningS egments do
2 foreach syn ∈ seg.potentialS ynapses do
3 if syn.prevActive then
4 syn.permanence←

min(maxPermanence, syn.permanence + increment);
5 else
6 syn.permanence← max(0, syn.permanence − increment);

7 candidates← di f f erence(previouslyActive, alreadyS ampled);
8 creationAmount ← min(candidateS ynapses.size(),maxNewS ynapses);
9 for i← 0 to creationAmount do

10 seg.createS ynapse(candidates.popRandom());
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2.3.3.4 Phase 4 - Depolarization

This is the phase where the HTM layer outputs its prediction. The active neurons
resulting from TM - Phase 1 stimulate all their postsynaptic targets. Every neuron
of the HTM layer is iterated to check whether it can predict its own activity on the
following iteration using the current neural activation. A neuron is depolarized if it
has a distal segment with an input overlap that exceeds the activationThreshold. The
depolarized cells represent the union of all neural activations that may happen at the
next iteration based on the temporal context. Algorithm 7 presents the TM - Phase
4 pseudocode and Figure 2.3 visualizes the active cells and the resulting depolarized
cells stimulated by them.

Algorithm 7: TM - Phase 4
1 foreach col ∈ layer.columns do
2 foreach cell ∈ col.neurons do
3 foreach seg ∈ cell.segments do
4 foreach syn ∈ seg.connectedS ynapses do
5 seg.overlap← seg.overlap + syn.active;

6 if seg.overlap >= activationThreshold
7 seg.active← true;
8 seg.parentCell.predictive← true;

2.4 Temporal Difference Learning

In order to produce an autonomous HTM agent, the predictions of a layer need to
be utilized in choosing the next behavior among many options. The majority of the
basal ganglia computational models incorporate reinforcement learning methods at
some level [34], [44]. Work by Samson et al. [45] presents the neurobiological ba-
sis of TD reinforcement learning methods through a review of neuro-computational
models. The error between the expected long term reward and the real long term re-
ward calculated by TD learning shows correlations with dopamine secretion of basal
ganglia. In addition, according to [38], striatum has the ability to compare estimated
reward and the actual reward when the action is performed.

TD can be described as an umbrella of algorithms that utilizes temporal difference to
rewards when modifying the existing model. Sutton describes it as the combination of
Monte Carlo and Dynamic programming ideas [46]. It does not need an exact model
of the environment dynamics as Dynamic Programming and it can learn online with-
out waiting for the episode to end as Monte Carlo methods. In the popular variations
of TD, namely Q-Learning and Sarsa, the rewards are computed through the state-
action couples which implicate states and actions are separate. However, research on
cortical layers indicates that the output of a region is the state (neural activation) of
layer 5 [22]. Therefore, it can be argued that the state is the action itself. It is highly
unlikely for cortical regions to decouple actions from states. In addition, neurobio-
logical studies linking reinforcement learning and dopamine modulation are focused
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on the correlations with on-policy methods. As a result, the reinforcement learning
algorithm decision is narrowed down to the on-policy versions where the states and
actions are not decoupled, namely Temporal Difference (λ) which utilizes eligibility
traces.

In TD(λ), each state has an eligibility trace based on its occurence recency. The decay
of this trace is controlled by the λ parameter. The difference between the expected
long term reward at time step t and the actual long term reward calculated at time t+1
represents the error signal in TD learning. This error is used for corrections on the
state values based on their activation recency - eligibility traces. There have been a
variety of improvements on online TD learning approaches. Initially, the traces were
accumulative meaning that the trace of a state grew in accordance with its occurrence
frequency. A further refinement [47] proposed the eligibility traces to be replacing.
Whenever a state occurs, the algorithm sets its trace to 1; essentially replacing it.
The results suggest that this refinement provides a faster and more reliable learning.
Among the many proposed improvements, Van Seijen and Sutton [48] submitted their
own in 2014 containing small modifications to the update rules and eligibility traces.
They called this updated version True Online TD(λ). According to the paper, it pro-
vided better results in all cases compared to classical TD(λ) while still having the
same computational complexity. Moreover, they presented further empirical results
in their 2016 publication [49]. However, True Online TD(λ) is based on the theoret-
ical forward view which is not practical for real learning applications compared to
the backward view where updates are made on each iteration [48]. Thus, this study
implements backward (mechanistic) view of TD(λ) with replacing traces.

2.4.1 TD(λ) Backward View with Replacing Traces

According to TD learning, every state has a value which represents a long term reward
prediction. These state values are updated using the error between reward prediction
at time t and the calculated reward value on t + 1. Equation 2.1 shows the error δ
calculation for time step t + 1 where Vt(s) is the value of state s at time t, rt+1 is the
actual stimulated reward at t + 1 and γ is the discount factor on the rewards. The
discount factor makes the temporally further rewards less important and indirectly
limits the maximum temporal distance that the agent considers.

δt+1 = (rt+1 + Vt(s) − γVt+1(s)) (2.1)

If only the previous state value is updated, it would take multiple episodes for the
reward to propagate backward in time. TD(λ) introduces an eligibility trace for every
state in order to update all the recent states in a single iteration. The trace of a state
is incremented every time it occurs and slowly decays over time otherwise. The λ
parameter controls the eligibility trace decay. For example, TD(0) means that there is
no decay on state traces. The updates are carried out for all of the states that occurred
in the current learning episode. In other words, TD(0) behaves like Monte Carlo
on every iteration. On the other hand, TD(1) only updates the previous state value
because the traces decay completely in a single iteration as if there were no eligibility
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traces. Equation 2.2 shows the update rule for the state traces et+1(s) where γ is the
discount factor. Trace of a state is replaced with 1 if that state was the previous state
and it is decayed otherwise.

et+1(s) =

γλet(s) if s , st

1 if s = st
(2.2)

State updates are scaled with their respective eligibility traces e(s), the learning rate
α and the error signal δt as in Equation 2.3.

Vt(s) = Vt(s) + αδte(s) (2.3)

It is important to note that this section presented TD(λ) with the backward view in
mind, which is also referred as the mechanistic view. The forward view describes
it from a theoretical standpoint which is not practical for most implementation pur-
poses.
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CHAPTER 3

THE PLATFORM

3.1 The Problem

The objective of this study is to build a non-player character that could learn the sur-
rounding three-dimensional environment by exploring and experiencing positive or
negative rewards, similar to what a player does. Again similar to a player, online data
from the environment is streamed into the limited sensors of the agent. The envi-
ronment can be described as a Hidden Markov Model (HMM) from the perspective
of the agent. The agent models the environment from the resulting visual output,
not from the exact environment state itself. However, the agent has a limited control
over the environment, therefore it runs similar to a partially observable Markov deci-
sion process (POMDP). On the other hand, HTM models sequences as variable order
Markov (VOM) chains by encoding the temporal context in each neural activation. So
the environment model of the agent constitutes of high order sequences. The limited
sensor is utilized to observe the environment and to decide on the state transitions
that optimize temporal distance to rewards. The learning scenario in this study is an
example of navigating from point A to point B where point A is randomized each
time the agent arrives at point B. There is a portal in the learning environment that
the agent needs to find. Figure 3.1 showcases the scenario environment including the
terrain topology and the target portal. The agent is stimulated with a positive reward
signal when it goes through the portal and negative reward when it goes out of the
pre-defined area. As this is an NPC architecture for a video game, player interac-
tion is a critical component. We especially want the agent model to allow for player
guidance in learning specific behavior sequences. For the learning to persist through
multiple gaming sessions, it is necessary for the agent to be stored and loaded through
serialization. The approach of Hierarchical Temporal Memory emphasizes the guid-
ance of related neurobiological research. This study also shares this perspective and
neurobiological research is a constraint for the problem at hand.
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Figure 3.1: A learning scenario where the agent needs to get to the portal and
respawns on a blue colored cell on success. The agent learns rewarding behavior
sequences via modeling the environment through its visual sensor. Motor actions are
produced based on the predictions of the model.

To summarize, below are the priorities of this thesis in building the NPC architecture:

• Online, continuous and lifelong learning

• Serializable architecture

• Real-time performance

• Supervisable by the player

• Directed by relevant neurobiological research

3.2 The Engine

The learning capabilities of the agent is observed in real-time in a three-dimensional
virtual environment. The learning platform is generated through an in-house game
engine that supports real-time physics, 3D graphics and has been designed around
its artificial intelligence component from the ground up. The engine is written in
C++ with Boost Library 1.63 and it uses Nvidia PhysX for its physical computations
including particle physics. The rendering system utilizes DirectX11 and is entirely
handwritten. AntTweakBar GUI library is used for real-time modification of general
gameplay, terrain, artificial intelligence, animation, camera, rendering, and physics
variables. A custom user interface is designed on top of rendering to precisely visu-
alize a functioning HTM in real-time, and it is referenced as Core in this study. The
Core communicates the state of HTM, shows synaptic connectivity, has behavioral
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statistics for the agent, allows player interaction, has playback options and most im-
portantly every single column, cell, segment and synapse can be visually debugged
through it. Therefore, it is a real-time debugger for HTM and it is a core part of this
study which is shown in Figure 3.2.

Figure 3.2: Visualization interface of the architecture - Core.

3.2.1 Virtual Environment

The agent traverses a terrain mesh constructed from random polygons which are gen-
erated procedurally from a Voronoi diagram. A Voronoi diagram creates a polygonal
mesh from a set of random points [50] on a plane which is shown in Figure 3.3a.
C++ Boost library is capable of generating a diagram out of given random points and
allows the developer to access all the Voronoi cells and their edges. The resulting
cells and edges are then converted into custom structures for compatibility with en-
gine processing, game loop, rendering, and physics. The diagram is post-processed
by Lloyd’s Relaxation [51] to get rid of irregular polygons and relax the cells to create
a more uniform look. The method moves the initial random points towards the center
of mass of their corresponding Voronoi polygons. The Voronoi diagram is updated
by these new points, and the relaxation can be done iteratively until the results are
acceptable. In our study, the relaxation is applied iteratively four times on a newly
generated Voronoi diagram. The relaxed diagram is shown in Figure 3.3b.

The polygons of this diagram can be sculpted to create any terrain structure, and Fig-
ure 3.4a shows an example. Nvidia PhysX takes the resulting polygons and creates
a terrain mesh that collides with the agents. The physics geometry is a replica of the
relaxed and sculpted Voronoi diagram. The terrain can even be tessellated afterwards
for further smoothness as in Figure 3.4b.

The engine allows additional procedurally generated structures and resources on top
of the Voronoi cells depending on the scenario. For example, in the environment
shown in Figure 3.5, the agent can use the additional structures as visual landmarks
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(a) Voronoi Diagram. (b) Lloyd’s Relaxation.

Figure 3.3: A Voronoi Diagram is generated on the left. Polygons are colored ran-
domly for easier separation. It is processed by Lloyd’s Relaxation aftewards which is
presented on the right.

(a) Sculpted Terrain. (b) Tessellation.

Figure 3.4: The height data of the Voronoi polygons are modified to sculpt the ter-
rain which is presented on the left. The terrain is tessellated afterwards for further
smoothness as shown in the right figure.

while modeling the environment or as dedicated spawn points after task success or
failure.

Figure 3.5: Tesellated terrain with additional structures on top.
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3.2.2 Agent Body and Motion

The physical body of the agent consists of spheres with spring joints. Although the
body formation is not directly related to the scenarios, five spheres correspond to the
body parts of the agent as in Figure 3.6a. The spheres have spring joints between
them to hold up a pre-defined shape while allowing the body shape to get affected by
the motion of the agent. These spheres collide with the terrain. The agent navigates
the terrain as if it is floating on top of it. The transparent 3D model of the agent
deforms according to the movement of these spheres via a technique called vertex
skinning shown in Figure 3.6b. The publication by Lewis et al. [52] forms the basis
of vertex skinning which they call Skeleton-Subspace Deformation in their work. The
agent also emits particles in real-time from its 3D model. The direction and velocity
of the particles depend on a virtual wind fluctuation calculated by Perlin noise which
was introduced by Perlin [53].

(a) Physical Agent Body. (b) Visual Agent Model.

Figure 3.6: On the left, the physical body is presented which consists of spheres with
spring joints. On the right, the transparent visual model of the agent is deformed
according to these spheres via the vertex skinning technique.

As the agent moves through the terrain mesh, it is stimulated with positive or negative
rewards according to the collided geometry. If the agent collides with the spherical
rigid body of the portal, it gets a positive reward and respawns on top of a random
or pre-defined traversable Voronoi cell. The traversable cells and the goal portal are
presented in Figure 3.1 as an example. If the agent leaves the area consisting of blue
Voronoi cells, it is simulated by negative reward and respawns on a traversable cell.

The actual motor output of the agent is interpreted in 10 different ways by the physics
engine: saccade left, saccade right, saccade up, saccade down, stay, move forward,
turn behind, pickup, drop and use. The first seven motor actions allow the agent to
navigate the environment. The last three enable the agent to interact with its inventory
and the terrain. It can pick resources if there are any available on the focused Voronoi
cell. It can also drop what is at hand or use what is at hand. Three motor neurons
represent every action resulting in 30 motor neurons in total. The physics engine
samples the activity of these neurons to decide on the motor action for that game
frame.

In Figure 3.7 The motor neurons are represented as a vector, and the rows represent
different states of the same motor neurons via coloring. The first row indicates the
voluntary activity, the second row indicates the winning motor neurons (the neurons
resulting in physical activity), and the third row shows the motor action and agent
state mapping. A learned agent has the same activation on the third row and bottom
row which indicates the neurons that were previously activated by the physics engine.
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Figure 3.7: Motor neuron array on top and visual sensor image below. The top 4 rows
of circles above the visual image represent the states of motor neurons via coloring.
Circles on the same column (neurons on the same index of their row) are different
colorings of the same neuron.

In this study, the agent is only capable of jumping from cell center to cell center
depending on the facing direction. This type of movement in a Voronoi diagram
results in variable navigational directions depending on the edge count of the current
cell as opposed to fixed directions on a grid. So, this architecture can function on
any type of terrain formation such as hexagonal, octagonal formations or polygonal
meshes. The formation is there to limit the agent motion and to restrict the variety
of incoming visual data that the agent learns on. There are no further constraints on
agent navigation other than the terrain formation. The agent can rotate in a discrete
fashion iterating over the neighboring Voronoi cells in both directions. It can go
forward to the center of the adjacent cell in the facing direction. In Figure 3.8, the
agent goes forward on frame 1, and it rotates left on frame 2. Then, it traverses to the
center of the faced cell on frame 3 that it turned to on frame 2. Frame 4 shows the
resulting position of the agent.

3.2.3 Online Data Stream

One of the advantages of HTM is that it learns continuously from an ongoing data
stream, again functionally similar to neocortex [54]. The biological plausibility of the
encoded information on the stream is currently out of the scope of HTM. For practical
purposes, the majority of HTM research is conducted on n dimensional binary data
streams.

3.2.3.1 Visual Sensor

The partial observations of the agent come through its real-time visual sensor. Con-
tinuous and online learning is central for neocortex [54], so the visual sensor updates
itself in every game loop iteration. The visual information is generated through ray-
casting the virtual environment from the point of view (POV) of the agent as seen in
Figure 3.9.

By default, there are 20 vertical and 40 horizontal rays covering 60 degrees of verti-
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(a) Frame 1, forward. (b) Frame 2, rotate left.

(c) Frame 3, forward. (d) Frame 4.

Figure 3.8: Sequential frames showcasing cellular movement. The agent jumps from
cell center to cell center depending on the facing direction denoted by the blue line.

(a) Raycasting seen from head on. (b) Raycasting seen from side.

Figure 3.9: Raycasting from agent’s point of view. 48x24 rays covering 120 degrees
of horizontal and 60 degrees of vertical field of view. A transparent version of the
constructed image is on top of the agent icon.

cal field of view (VFOV) and 120 degrees of horizontal field of view (HFOV). These
parameters are fully adjustable, and the default values are chosen according to the de-
fault column size of an HTM layer which is 20x40. Nvidia PhysX raycasting function
provides the color information on the points of intersection between the rays and the
environment. The color values are then mapped onto a two-dimensional plane for the
image construction. Every pixel of this image corresponds to a point of intersection
between a ray and a triangle belonging to the game geometry. The exact color infor-
mation is the average color of the three vertices owned by the triangle that the ray is
intersecting with. In Figure 3.10, the same scene is raycast with varying resolutions,
and resulting images are presented.

The resulting picture is a low-resolution rendering taken from the POV of the agent.
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(a) Raycasted 32x16 image. (b) Raycasted 64x32 image.

Figure 3.10: Constructed visual sensor images from raycasting with varying resolu-
tions.

Although this method has major aliasing problems when coupled with low ray den-
sity, it is sufficient for the learning scenario covered in this study. The resolution of
this sensor is increased by casting more rays if the task at hand requires it. However,
HTM uses the information encoded from this image, so the dimensions of the visual
sensor affect the speed of learning and size growth of the synaptic connectome. The
default image dimensions map to the size of an HTM layer for simplicity, but there is
no dependency between the sensor dimensions and HTM layer size.

HTM layers take their inputs from proximal dendrites of their columns. The Spatial
Pooler algorithm carries out this process as explained in Section 2.3.2. The algo-
rithm accepts input in n dimensional binary encoding for implementation practicality.
Therefore, the color values of the pixels are converted into binary volumetric color
channels as seen in Figure 3.11. For general compatibility with digital environments,
there are three color channels - red, green and blue. For example, red color channel
layer visualizes the red intensity for every pixel in the sensor. The constructed im-
age of visual sensor and color channel layers on top are visualized topologically for
clarity. The height of the pixels in color channels represents the intensity of the color
value at the respective position in constructed image.

Figure 3.11: Volumetric red, green and blue color channel representations of the
raycasted image.

The volumetric channel layers encode the color values into a binary format with dis-
crete steps. Currently, intensity values are within the interval [0.0, 1.0] and have a
step size of 0.2. Therefore, there are five intensity steps, three color channels and ev-
ery color channel has 20*40 pixels resulting in 24000 possible color patterns on the
visual sensor. Capacity and fidelity of the visual sensor can be adjusted for the tasks
that require it. However, the topological properties of the potential fields belonging to
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the layer 4 proximal dendrites are also crucial for interpreting the information on the
visual sensor. Figure 3.12 shows an example topological connection between color
channels and layer 4. To summarize, the color values of the sensor get updated in real
time, encoded into binary and used as input for the feedforward proximal dendrites
of layer 4 in every iteration. The information provided by the visual sensor is the
primary cause for any columnar activity and the resulting neural activity. Therefore,
all the activity in HTM diminishes in time after the stream at the visual sensor stops
depending on the pooling parameters of HTM layers. The layer 4 does not have any
input pooling, so the columnar activity is directly linked to the activity of the stream.
In time, proximal dendrites of layer 4 specialize in specific patterns that occur in color
channels via Spatial Pooler algorithm.

Figure 3.12: The topology between layer 4 and color channels. The layer 4 mini-
columns sample the visual data according to their position among the layer.

3.2.3.2 Haptic Sensor

One of the experimental scenarios shown in Figure 3.13 involves interacting with
the virtual environment by extracting the resource from a particular Voronoi cell and
consuming it to get a reward. This task requires the agent to have an inventory and a
simple strategy to sense what is at hand and what is on the ground. For this reason,
various types of haptic sensors are implemented to sense the resources and relevant
entities nearby to interact with them.

Experiments are conducted through various haptic sensor structures. We attempted
to topologically stream information from neighboring cells (Figure 3.14a), cascad-
ing the information based on proximity and direction, and collision based data access.
While each sensor type has its advantages, the fundamental problem with the scenario
is coupling the separate HTM regions dedicated to haptic and visual sensors. This in-
troduced further complexities on voluntary actions since the addition of a new sensor
allows additional actions from the combinatorial sensor. It is problematic to make
both of the separate regions shown in Figure 3.14b function simultaneously with the
reward circuitry - the mechanism deciding which representations to learn and which
ones to invoke given an HTM state.

In its current state, the architecture is not mature enough to handle a separate haptic
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Figure 3.13: The experimental scenario that requires the agent to gather green re-
sources.

(a) Haptic Sensor. (b) Dedicated Sensory Regions.

Figure 3.14: A custom haptic sensor streaming data from adjacent cells is presented
on the left. The dedicated haptic and visual HTM layers are shown on the right.

region. The dedicated region solution is suspended until it is suitable for simultane-
ous regions. A better strategy for the current architecture might be to embed visual
information about the agent inventory to the existing visual sensor, similar to a video
game heads-up display (HUD).

3.3 The Core

The scope of the study requires a real-time visual debugger for the agent architecture
and in particular the Hierarchical Temporal Memory state. The debugger is built as
a user interface on top of the rendering system, and it is the core of this study, hence
the name. Implementation-wise it consists of a bitmap font system, circle sprites,
and lines. The primary goal of the Core is to visualize the state of the HTM in real-
time and in 3D where the layers can be rotated, zoomed and translated via mouse
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commands. Figure 3.15 visualizes the proximal synapses that activate their targets
along with the distal and apical synapses that depolarize theirs. The Core can show
the synaptic connectome of all the layers or a selected layer. There are options to
filter specific dendrites among apical, proximal and distal types for clarity. The actual
game world is still rendered onto a small circular space at the left side of the interface
to keep track of what the agent is doing.

Figure 3.15: The synaptic connectome visualization via Core.

The activity visualization has two main composition types shown in Figure 3.16:
columnar and neural. The columnar view represents a higher level and cleaner view
of the layers by just drawing a single circle for each minicolumn of neurons. On
the other hand, neural composition allows communicating the finer details through
debugging activity at a neural level.

(a) Columnar view. (b) Neural view.

Figure 3.16: Visual composition types of the core. Columnar view represents all the
neurons of a minicolumn as a single circle while neural view shows every neuron.

Core is capable of visualizing the properties of every synaptic node (column or neu-
ron) in real-time by a selection mechanism as in Figure 3.17. It can represent all the
dendrites belonging to the selected synaptic node. In Figure 3.18, there are various
coloring templates to showcase activity, distal depolarization, apical depolarization,
voluntary depolarization, and prediction results including false positives, false nega-
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tives, true positives. Furthermore, it can visualize not only the synapses of a selected
node but also the synapses that sample from that particular node. In other words,
the Core is capable of visualizing all the incoming and outgoing synapses to every
synaptic node including to display their permanence (connection strength).

(a) An active distal segment of a layer 2 neuron
sampling from nearby neurons.

(b) The proximal dendrite of a layer 5 column
sampling from layer 4.

Figure 3.17: Synaptic node and dendrite visualizations.

(a) False predictions scheme. (b) Depolarizations and voluntary activations.

(c) Apical depolarization scheme. (d) Pooled (recent) activation coloring.

Figure 3.18: Core information colorizations. Green = successful prediction, yellow
= false prediction, red = unpredicted activation, blue = predictive, purple = apically
predictive, cyan = go voluntary active, orange = nogo voluntary active, white = neu-
rons with nonzero eligibility traces.

The debugger also has playback capabilities that allow pausing, single iteration, con-
tinuous learning and breaking on triggered events such as rewards. The Core also
computes real-time information about the architecture regarding segment and synapse
counts including their connectivities which are displayed at the left bottom corner of
the interface as in Figure 3.2. Additionally, it has a testing mechanism to iden-
tify duplicate and invalid synapses via the validate button by crossreferencing all the
incoming connections with outgoing mirror connections. This testing is crucial to
validate the architecture while it is running and also after serialization. There are also
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behavioral statistics about the agent presented with data related to the characteristics
of the recent voluntary behavior and with a moving average reward graph. At the
bottom of the Core interface, the motor neurons, the visual and haptic sensors are
displayed.

3.4 Serialization

In video games, non-player characters are either generated newly or loaded from
the stored save files when initializing a level. For an NPC to be persistent between
gaming sessions, it has to be serialized into files. The agents in our study can learn
behavior sequences in an unsupervised fashion. Players can also teach them specific
actions. Including both cases, the agent adapts its synaptic connectome throughout
its lifetime. Serialization capability allows the agent to be stored and restored with
that same learned synaptic connectome at any time which removes the limitations
imposed by program lifetime. As a result, lifelong learning without time limitations
is made possible.

Boost Serialization library with the binary stream configuration is utilized to serialize
the HTM at any given time. The connectome of HTM may be stored or the agent may
be loaded with a different HTM at any time and anywhere through the AntTweakBar
UI, as in Figure 3.19.

Figure 3.19: Architecture save and load user interface.

It is important to note that the serialized file does not store the columnar and neural
activations. Any temporal activation would be invalid unless the agent is restored at
the same spot and looking at the same direction while ensuring the environment is also
in the same state. Not including any activity in the file also improves the save/load
speeds. Moreover, the file becomes more compact because of the reduction in data
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which is necessary to encode synaptic nodes and synapses. Synaptic information
takes up the majority of the file size. This information is compressed rather than
being stored as an exact copy to reduce the file size. Below is the compressed synapse
structure with a size of 4 MBytes:

• unsigned short sourceIndex : The index to the presynaptic target (source).

• unsigned short shortPerm : The permanence of the connection which is con-
verted to a floating point value when loading.

The compression ruleset is the following:

• Serialization discards any temporal and spatial activity.

• Serialization stores only the independent variables that cannot be generated
from other data.

• The source and target addresses of a synapse that are stored in synaptic point-
ers are converted to numerical indices with a custom logic. This results in a
pointer free synapse serialization which prevents further performance overhead
and minimizes memory footprint.

• Some floating point variables such as synaptic permanences are stored on 1-
byte char or 2 byte short data types rather than as is. The library is significantly
slower on serializing floating point values.

The serialization measurements on file size and execution times with respect to synapse
counts and varying HTM layer sizes are presented on Chapter 6.
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CHAPTER 4

AUTONOMOUS AGENT

4.1 General Overview

The previous chapters introduced the main algorithmic components of the agent and
the platform it interacts with. This chapter focuses on the internal design of the agent
utilizing its sensors to navigate and model the environment. Information is presented
in a top-down fashion expanding the details of the agent incrementally. The exact
implementational details are laid out in the next chapter as this one is more about the
mechanistic explanation. The agent framework is a simple computational cycle at its
core which is presented in Figure 4.1. Partial environment state is fed into the sensor
and then a suitable action according to the sensory information is executed. As a
result, the incoming data into the sensor changes to something that the agent prefers
more in terms of temporal distance to rewards.

Figure 4.1: Computational cycle of the agent.

The following sections describe the incremental stages of building an autonomous
agent. The outline is below:

• Introducing sensory motion to facilitate learning
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• Representing states

• Generating predictions based on the environmental model constructed from the
sensory stream

• Associating actions with states

• Assigning values to states

• Using the state values to bias predictions

• Generating the required actions to realize the biased predictions

4.2 Sensory Motion

The first stage is to create sensory motion to facilitate learning. Learning in our study
refers to the agent altering its synaptic connections to capture and control the change
in its sensors. Unless there is motion in the environment other than the agent itself,
the data on the visual sensor are static, and there is nothing to learn. Therefore, the
agent needs to have some motion to encounter any sensorial change and to learn the
changes it prefers. Biological mechanism of homeostatic plasticity allows neurons
to stay at a useful activity level by modulating the activation thresholds [55]. This
modulation provides spontaneous activations that may result in noisy motor activity.
Thus, we introduced random movement for the exploration to start and sensory data to
change. The mammalian neocortex starts learning sensory patterns even before birth
[56]. Sensory changes due to the environment and due to the motion of the mother
allow learning to happen at the neocortex. Therefore, the biological starting point
for the neocortex learning is fuzzy, but the learning is facilitated by sensory change.
The agent behaves randomly unless overridden by any voluntary actions in our study.
The excited motor neurons that produce action are represented with dark blue (motor
neurons, second row in Figure 4.2). In the absence of a voluntary excitation or
inhibition of motor neurons (second row in Figure 4.2), random ones are excited to
generate motion.

Regarding the initial connectome, the layers start with random topological proximal
synapses between them to facilitate feedforward columnar activation. On the other
hand, the agent has no distal and apical synapses which modulate the neural activity
at the start. Therefore, all the neurons of active columns burst in the first learning
cycle as in Figure 4.2.
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(a) Bursting cells of the first frame. (b) Initialized proximal synapses for columns.

Figure 4.2: On the left image, we enabled the visualization of apical and distal
synapses but there aren’t any in the first learning frame. On the right, all the synapses
are visualized including the proximal ones. The connection points of proximal den-
drites are at the top of the columns.

4.3 Agent State

The state of the agent is represented by the cellular and columnar activations of the
layers at a given time. Although the activation of every layer contributes to the state
of the agent, the layer 5 alone defines the state as in Figure 4.3. A single layer has
a finite capacity for state representation. The equation 4.1 represents the capacity
of a layer R, based on the column count c, neurons per column n and the activation
sparsity s.

R(c, n, s) =

(
c × n

c × n × s

)
(4.1)

(a) Columnar activation. Each minicolumn of neurons is represented with a single circle.

(b) Neural activation showing all the neurons.

Figure 4.3: Activation representing the current state of layer 5.

In this framework, layer 5 encapsulates all the information from the other cortical and
striatum layers through its proximal, distal and apical connections [22]. Layer 5 is the
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primary output layer of a cortical region sending information to other subcortical and
motor regions [20], [23]. Moreover, there is a learning mechanism in our architecture
which associates the activity of layer 5 with motor neurons by growing synapses be-
tween them. This process indirectly maps layer 5 states onto agent actions. Therefore,
layer 5 activity represents both the state and the action [24]. The agent architecture is
presented in Figure 4.4.

Figure 4.4: Information flow of our agent architecture. Layer 5 integrates information
from most of the cortical layers.

4.4 Predictions On Sensory Stream

To change the current state to a preferable one, the agent needs to have a model of the
environment. From the perspective of the agent, temporal and spatial patterns on the
sensor are the environment itself. Control over these patterns is only possible through
predicting which sensory patterns may occur in the following operation cycles. In
other words, it is necessary for the agent to predict its potential next states and this
is the premise of Hierarchical Temporal Memory. For every state, HTM can flag the
next possible states by depolarizing the cells representing those states as explained in
Section 2.3.3 Temporal Memory algorithm. HTM layer builds up a sequential model
of the streaming data by sampling the previous activation and connecting it with the
current activation through forming synapses. Activation at time step t depolarizes the
potential activations at time step t + 1 and these depolarizations constitute the pool of
the possible states that can happen in the following iteration as shown in Figure 4.5.
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Figure 4.5: Current activation along with the predictive (depolarized) neurons of layer
5. Green = active, blue = depolarized.

4.5 Motor Learning by Association

Modeling the environment also includes capturing the relationship between motor
actions and the sensory change. In our framework, layer 5 is the output of a region and
it represents both the state and the action. Biologically, this output reaches to motor
areas, even down to spinal cord [23] as well as the basal ganglia via corticostriatal
connections and other subcortical structures. Therefore, at a high level, layer 5 maps
the states to actions and it does so by learning by association. When a particular layer
5 activation happens, it forms connections with the motor neurons that led to this
particular activation. In other words, the state maps itself to the action that results in
itself. This mechanism allows indirectly invoking the necessary motor behavior via
activating the target state. The agent can just invoke that particular state which causes
the necessary motor activation. Motor neurons associating themselves to layer 5 state
through apical connections are presented in Figure 4.6.

Figure 4.6: Through its apical denrites, the motor neuron at the 13th index of the row
associates its activation with the current layer 5 activation above.

In Figure 4.6, the motor activity that is mapped to the current layer 5 state is repre-
sented in the third row (green coloring) and the motor neuron activity required for the
previous action is represented in the fourth row (white coloring). The previous action
of the agent (white) and the layer 5 associated action (green) overlap with two motor
neurons which show the association completeness. In other words, the overlap repre-
sents how the learning by association fits the actual action. The individual neurons of
layer 5 are connected to the individual motor neurons. This is a many-to-many con-
nection type because different actions may be mapped to similar states and similar
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actions may be mapped to the same states during learning. A single neuron of layer 5
is part of multiple agent states, so a single layer 5 activation may be associated with
multiple motor actions as seen in the Figure 4.7. It is important to note that as the
learning continues and the agent experiences more, representations of layer 5 become
more stable and specialized leading to a better separation of associated actions.

Figure 4.7: Current layer 5 activation is associated with 9 different motor neurons
represented by white in the 3rd row.

4.6 Reward Circuitry

Producing behavior is possible through manipulating the activity at layer 5 in our
framework, which is directly connected to motor neurons. The reward circuitry layers
D1 and D2 in Figure 4.4 have the ability to depolarize neuron groups and indirectly
cause activations on layer 5, which lead to the corresponding motor behavior. Bio-
logically, the activity of layer 5 is modulated through its apical tufts reaching layer
1. A cortical region is influenced by basal ganglia through its layer 1 via direct (Go),
indirect (No-Go) and hyperdirect pathways [25]. Figure 2.2 shows the pathways
interconnecting thalamus, frontal cortex and basal ganglia.

The studies indicate that basal ganglia specialize in action selection, conflict reso-
lution [32] and it is the main component of the reward circuitry through dopamine
receptive cells which control learning of behaviors [33]. Basal ganglia work in con-
junction with thalamus and cortical layers to regulate the motor activity. The direct
pathway described as Go increases the motor activity while the indirect pathway de-
scribed as No − Go suppresses it. There is a third pathway outlined on some of the
computational models [34] called the hyperdirect pathway, which suppresses all the
motor activity until appropriate action is resolved [40], [39], [38]. During this sup-
pression, the striatum is influenced by information from other cortical regions [41].
Since there is a single cortical region in our architecture, the functionality of hyperdi-
rect pathway is currently not included. The studies show that the imbalance between
these two pathways lead to inconsistencies in behavior such as Parkinson’s Disease
and attention-deficit hyperactivity disorder [37], [38] because motor actions result
from the competition between these pathways.

In our framework, there are two primary layers influencing layer 5. These are called
D1, D2 layers and they are named after the striatal neurons that have specialized
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receptors detecting D1 and D2 dopamine levels [22]. D1 dopamine receptive cells
take part in the Go circuitry reinforcing the actions while the D2 dopamine receptive
cells take part in the No-Go circuitry suppressing actions. D1 and D2 layers sample
from layer 5 through their distal and proximal dendrites shown in Figure 4.4. In other
words, both these layers do spatial and temporal classification on layer 5 activations to
generate predictions. Therefore, the depolarized cells of layers D1 and D2 correspond
to activations of layer 5 that might occur in the next cycle.

The computational models suggest that the Go pathway inhibits the inhibitory neu-
rons at thalamus which increases motor excitation indirectly. On the other hand, No-
Go pathway excites the inhibitory neurons of thalamus acting on the cortical regions
and motor areas to suppress behavior [34]. In our framework, layers representing the
D1 and D2 receptive neurons function in competition with opposite learning rules as
suggested by Prescott et. al. in [36]. As explained in Temporal Difference Learning
Section 2.4, the difference between the expected state value from time t and the actual
long term reward value at time t + 1 is the error signal. This signal controls the adap-
tation of apical dendrites of layer 5 sampling from D1 and D2. In practice, this means
that layer 5 apical dendrites sampling from D1 are strengthened when the error sig-
nal is positive (unexpected positive reward difference) and weakened when negative.
For D2, synapses are strengthened when the error is negative (unexpected negative
reward difference). In short, layers D1 and D2 have opposite error signs. Equations
4.2 and 4.3 denote the increment and decrement formulas for layer 5 apical synapses
sampling from D1 and D2.

ApicalAdaptInc(type) =

error × T D LEARNING RAT E if type is D1
−error × T D LEARNING RAT E if type is D2

(4.2)

ApicalAdaptDec = |error| × T D LEARNING RAT E × 2.0 (4.3)

There is a cyclic information flow between layer 5 and layers D1, D2 in our architec-
ture as seen in Figure 4.8. Outline of this flow is given below:

• D1 and D2 are stimulated through distal and proximal dendrites with the current
layer 5 activation.

• Through Spatial Pooler and Temporal memory algorithms outlined in HTM
Section 2.3, proximal and distal dendrites are adapted accordingly to predict
and classify layer 5 activations better.

• The apical dendrites of layer 5 adjusts to the previous D1 and D2 activations
according to the error signal. This adaptation allows the layer 5 apical dendrites
to learn the D1 and D2 activations which result in a difference between expected
and the actual reward.
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Figure 4.8: Abstract reward circuitry pathways in our framework. Note that all the
connections between layer 5 and striatum layers are excitatory. Layer 5 inhibits and
excites motor neurons depending on those excitations.

First, layer 5 stimulates D1 and D2, then D1 and D2 modulate the depolarization of
layer 5 through its apical dendrites. At the end of each cycle, there are two types of
depolarized neurons at layer 5 showcased in Figure 4.9. The first group is depolarized
by distal dendrites originating from layers 2/3 and 4. This group represents the pos-
sible layer 5 activations at the next cycle due to current layer 2/3 and 4 activations.
The second group is depolarized by apical dendrites sampling from layers D1 and
D2. This group represents the possible salient layer 5 activations that are learned by
reward circuitry layers D1 and D2 based on the error signal. In other words, the latter
group represents the union of wanted and to be avoided layer 5 activations which are
utilized in producing voluntary behavior explained in the following section.

Figure 4.9: Orange and cyan colored layer 5 cells are activated by D1 and D2 layers.
Activation of orange cells originate from D2 and these cells are inhibitory on the
motor neurons. The cyan cells are excitatory on motor neurons and their activation
originates from D1.

Layer 1 of a cortical region is the central hub for information coming from higher
cortical regions of the hierarchy and other subcortical structures including basal gan-
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glia [25]. There is only a single region in this study and a single structure managing
this region, so layer 1 and the apical dendrites of layer 5 sampling from layer 1 [27]
are not modeled explicitly. The framework assumes that apical dendrites of layer 5
have direct connections with striatum - as a result, D1 and D2 layers. This direct con-
nection imitates the influence of basal ganglia over layer 5 and also neglects the role
of thalamus which is hypothesized to be doing a simple one-way relay to the cortical
regions [42].

4.7 State Value

At the lowest level, the state representation allows the agent to differentiate between
sensory patterns. Some of these states are more rewarding for the agent than oth-
ers depending on the environment at hand. Preference among states is necessary for
the agent to produce behavior; otherwise, all the states have the same value for the
agent and there is nothing to learn. The temporal distance to the positive and negative
rewards dictates this preference. The value of a state is calculated by Temporal Dif-
ference Learning using the long term rewards. The neural activation represents the
state of a layer. Therefore, the state value is the combination of values computed sep-
arately for every neuron as shown in Figure 4.10. Although layer 5 activation defines
the agent state and the resulting state value, higher level layers D1 and D2 are in place
to sample from and classify the activations of layer 5 spatially and temporally. Values
of the layer 5 activations are stored in layers D1 and D2 which control learning and
producing voluntary behaviors.

Figure 4.10: State values of the active and depolarized neurons of layer D1. Com-
bined state value is 0.582 while the error with the previous value expectation is 0.490.

4.8 Producing Voluntary Action

The framework stages explained until this point are capable of modeling the envi-
ronment, mapping motor actions to states and learning salient state transitions for a
given state. Layers 4 and 5 classify sensory patterns based on their temporal context
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via HTM algorithms. The layer 5 states are then mapped to the motor commands
leading to themselves via learning by association mechanism between layer 5 and
motor neurons. Layers D1 and D2 assign state values to the layer 5 activations. D1
forms connections to layer 5 states that produce a positive error signal. D2 makes
the exact opposite and forms connections with layer 5 states that produce a negative
error signal. Up to this point, the agent knows the state it is in, the potential next
states and the state transitions that cause an error in reward expectations. The last
step to produce voluntary behavior involves an actual activation modulation in layer
5. The distally depolarized cells of layer 5 denote the union of potential next activa-
tions while the apically depolarized ones represent the salient next activations. In our
framework, combined distal and apical depolarizations cause voluntary activations.

The work by Larkum et al. [57] states that distal apical depolarizations can cause
neural activations on layer 5 neurons without needing feedforward proximal stimula-
tion. In practice, this means that a cell can fire if it exceeds an amount of distal apical
depolarization. In our framework, layer 5 columns are activated by the proximal in-
put from layer 4 activation which concurs with [21] and conflicts with [20] which
states that layer 5 is activated by thalamic input. This decision is made because of
organizational simplicity since layer 6 is neglected and there is a single region which
takes sensory input directly. Neurons among these columns are activated based on
the distal input from layer 2/3 and 4 cells along with the apical input from layers D1
and D2. In our architecture, if a cell is depolarized by both distal and apical presy-
naptic targets, that neuron stimulates the motor neurons connected to it. There are
two types of voluntary motor neuron stimulations caused by layer 5; Go and No-Go
stimuli originating from D1 and D2 layers respectively. The motor neurons have a
base level of constant excitation which produces random behavior if there is no other
influence. Go stimulations increase a particular neuron’s excitation level while the
No-Go stimulation inhibits the neuron. Therefore, the motor behavior is modulated
by these voluntary stimulations. To simplify the action selection process, only the top
three most excited neurons are allowed to fire and the rest is inhibited in our architec-
ture. This winner-take-all mechanism is functionally the same as the inhibition phase
of Spatial Pooler algorithm in Section 2.3.2.2. In Figure 4.9, the orange coloring
of the neurons in the third row indicates No-Go stimulation while the cyan coloring
indicates Go stimulation. The intensity of the coloring scales with the intensity of the
stimulation. The figure also shows the synaptic pathways leading to these stimula-
tions originating at reward circuitry layers D1 and D2.

The actual agent behavior is produced by the physics engine based on the motor
neuron activation. Every agent action is mapped to three sequential motor neurons as
outlined in Section 3.2.2. The physics engine activates the action that has the most
active motor neurons. The motor activity frames of a simple seven step behavior
sequence are given in Figure 4.12. The produced voluntary behavior results in the
agent reaching sensory patterns that have better state values. In other words, the
agent navigates within the possible states while preferring the ones with better long
term rewards. A video demonstration for this process is also available in Appendix
B.
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Figure 4.11: Visualized Go and No-Go pathways stimulating motor neurons.
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(a) Frame 1, rotate right. (b) Frame 2, stay.

(c) Frame 3, go forward. (d) Frame 4, rotate left.

(e) Frame 5, stay. (f) Frame 6, go forward.

(g) Frame 7, success.

Figure 4.12: A learned behavior sequence involving 7 motor actions.
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4.9 Player Interaction

The mechanisms explained above allow the agent to learn rewarding behaviors with-
out any supervision. Our architecture also provides a player guidance mechanism for
the agent. The player selects an agent via its icon in the game world. This selection
establishes a sensorimotor feed from the player towards the agent. The architecture
of the agent adapts its synapses based on the visual information the player gets and
the motor actions that the player provides. It is just as if the agent is sensing the
world through the player and navigating the world via the body of the player. During
this process, the agent is motionless and the player can demonstrate any sequence
of action. The HTM layers learn the environment model involving the demonstrated
sequence of action. However, the agent only learns behaviors based on the rewards
stimulated to the player which the sensorimotor feed also includes. The reward cir-
cuitry connectome of the agent is modified by the reward signals of the player. There-
fore, the agent models all the relevant sensory patterns, but only learns the behaviors
that are rewarding. In other words, the agent may learn the visual patterns but not the
associated behavior depending on the previously learned rewarding behaviors.

For a sequence to be completely learned, multiple episodes of that movement are re-
quired for the synapses to form connections. The necessity of multiple trials is due
to the tweaked learning speed that sustains a level of stability among the synaptic
connectome. Figure 4.13 showcases a seven step player taught behavior which is
unlikely for the unsupervised agent to learn because of its inefficiency concerning
rewards. The sequence involves the agent rotating around itself and then moving to
the portal rather than going towards it onsight. Learning of the sequence is com-
plete when the agent can predict the states of all the involving steps and when it can
produce all the necessary voluntary activations to realize the behavior. As soon as
the sensorimotor feed disconnects, the architecture switches to taking input from the
agent’s own sensor and the body. The synaptic modifications related to the inter-
action process persist and the agent proceeds the unsupervised learning on the new
connectome. This mechanism allows the player to interfere with the agent at any time
during the unsupervised learning and guide the process. However, a taught sequence
involves only a fraction of the agent’s environment model. It is very vulnerable to
representational change caused by the following unsupervised learning of the agent.
Therefore, the impact of a taught behavior on the agent’s learning process is depen-
dent on the representational stability of the HTM layers at the time of interaction and
the significance of that particular sequence regarding rewards.
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(a) Enable sensorimotor feed. (b) Frame 1, rotate right.

(c) Frame 2, rotate right. (d) Frame 3, rotate right.

(e) Frame 4, rotate right. (f) Frame 5, rotate right.

(g) Frame 6, go forward. (h) Frame 7, success.

Figure 4.13: Above is a taught behavior sequence involving 7 motor actions where
the player icon is purple and the agent icon is yellow. At the first encounter with
the portal, the agent does a full rotation towards right and faces the portal again. The
agent then proceeds to the portal at this second encounter. This behavior is unlikely to
form via unsupervised learning because of its inefficiency in terms of reward. After 10
demonstrations, the HTM layers are able to predict the state of every following step
of the behavior. Successfully predicted neurons are represented by green neurons. In
addition, the agent is able to excite the correct voluntary activations for every step
represented by cyan neuron coloring. Notice the green smile icon at the top of the
agent on Frame 7 caused by the positive reward stimulated to the player.
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CHAPTER 5

IMPLEMENTATION AND ARCHITECTURE FEATURES

5.1 Overview

The game engine that is used as the platform is designed around the autonomous
agent. During this study, it became incrementally refined both algorithmically and
performance-wise. Embedded inside the engine are the Hierarchical Temporal Mem-
ory and Temporal Difference Learning implementations with the extended features
that realize the architecture. In Chapter 2, the up-to-date version of the vanilla HTM
theory along with TD(λ) is presented. Chapter 3 describes the surrounding environ-
ment which constitutes constraints on the agent such as terrain formation, sensors,
agent body, and motion. The proposed agent architecture for this environment is
outlined mechanistically in Chapter 4. Although this study shares the same vanilla
HTM algorithms at its core, there are implementational differences due to platform
and performance constraints in addition to the necessary additions required by the
player interaction and serialization systems. This chapter aims to address implemen-
tation specifications to ensure that this study is reproducible. Moreover, additional
architectural features are presented at the end of the chapter.

There are four subsystems of the engine that are directly related to the HTM imple-
mentation: Cortical System, Old Brain System, User Interface System and PhysX
System. Figure 5.1 shows the game engine loop for the exact order of computation.
Cortical System is the one where the interplay of HTM and TD(λ) implementation
subsists. Old Brain System calculates the visual and haptic sensor data. It also han-
dles player interaction functionality that is explained in Section 4.9. The architecture
visualization, Core, is a major part of the User Interface System. The actual motion
computations of the agent are carried out in PhysX System. Old Brain System and
Cortical System provide the main functionality together which take up to 7500 lines
of code.
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Figure 5.1: The computational ordering of engine systems related to this study start-
ing with Input System.

5.2 Old Brain System

Visual sensor update constitutes the majority of this system. The general mechanism
of this update is laid out in Section 3.2.3.1, so this section aims to clarify the imple-
mentation details. Below is the pseudocode of the Old Brain System.

Algorithm 8: Old Brain System Update Pseudocode
1 StimulateRetina(agent, player);
2 StimulateHaptics(agent);
3 SensoriMotorOverride(agent, player);
55 Function StimulateRetina(agent):
6 horAngleS tep← HFOV / S ENS OR WIDT H;
7 verAngleS tep← VFOV / S ENS OR HEIGHT ;
8 for i← 0 to S ENS OR WIDT H do
9 for j← 0 to S ENS OR HEIGHT do

10 visualS ensor[i · j + j]←
Raycast(agentDir, i · horAngleS tep, j · verAngleS tep);

11 Function SensoriMotorOverride(agent, player):
12 agent.visualS ensor ← player.visualS ensor;
13 agent.hapticS ensor ← player.hapticS ensor;
14 agent.motorAction← player.motorAction;

As explained earlier, there are three color channels that the agent can sense - red,
green, blue. The image sensed by the agent is stored in separate bit vectors per color.
The visual data is cleared on every frame at the start of computation. Then, depending
on the horizontal and vertical facing direction of the agent, the system calculates the
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corresponding Voronoi cell that the agent looks at. This step allows the agent to
interact with a particular Voronoi cell which is of particular importance for future
experiments involving terrain interactions. This cell is brightened in the visual sensor
along with the resources on top of it to achieve identifiable change in the image as in
Figure 5.2.

(a) Focused cell on terrain. (b) Focused cell on visual sensor.

Figure 5.2: Focused cell visualization. This is the Voronoi cell that the agent is facing
depending on the agent’s vertical and horizontal looking direction.

The image is constructed by casting rays from the agent towards the environment
geometry. The direction of the central ray - the exact facing direction - is calculated
using the agent’s eye position as the origin and the looking direction which combines
the vertical saccade offset with the horizontal direction of the agent. The other rays
are created by rotating the central ray around the origin using fixed amount of degrees
on both vertical and horizontal axes via a nested computation loop as in line 10. The
resulting group of rays cover a preset horizontal and vertical field of view. For every
ray, the intersection color, distance, and hit status are retrieved from the environment
geometry using the functionality provided by PhysX. The color value is black if that
particular ray does not intersect with the environment. Pixels are then brightened
according to the normals of intersecting triangles to represent the lighting. Then, the
color value is divided into five intervals to store the image in binary. The last step
is to fill out the color channel bit vectors representing the image that the rays are
mapped onto. Every ray corresponds to a position in the 2D image and has discrete
color values as seen in Figure reffig:rayMap. Core visualizes the color bit vectors via
volumetric layers per color.

Old Brain System also handles player interaction by having a mode called Sensori-
motor Feed. In this mode, the motor activity and sensory information of the player
are directly fed to a specified agent in line 3. This mechanism allows the agent to
learn from the behavior of the player. In each frame, the agent’s visual sensor data and
motor activity data are replaced with the player data before the HTM iteration. The
agent learns directly from the visual sensor and motion of the player which allows
teaching specific movement patterns that may or may not lead to reward. Once the
sensorimotor feed disconnects, the agent resumes sensing the environment through
its own visual sensor and navigating via its own body, but the synaptic connections
of the HTM layers have been altered by the experience provided by the player. The
player interaction requirement has a major influence on the implementation.
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Figure 5.3: Raycasting visualization where the agent looks down. Constructed image
is at the top of the agent icon.

Figure 5.4: Player (purple icon) is streaming its sensorimotor information for the
agent (blue icon) to learn on.

5.3 Cortical System

The functionality of Cortical System is the backbone of this study as it facilitates
real-time HTM in conjunction with TD(λ). This section expands on the architecture
implementation to provide the mechanisms presented in Chapter 4. Algorithm 9
shows the pseudocode for the Cortical System update per agent.
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Algorithm 9: Cortical System Update Pseudocode
1 if !initialized
2 InitializeLayers(allLayers);
3 InitializeConnectome(allLayers);
4 if reset
5 ResetActivity(allLayers);
6 UpdateSensoryLayer(visualSensor);
7 RefreshDepolarization(layer4,motorLayer);
8 foreach layer ∈ layers{layer4, layer3, layer2, layer5} do
9 SpatialPooler(layer);

10 TemporalMemory(layer);
11 UpdateStatistics(layer);

12 foreach layer ∈ striatum{layerD1, layerD2} do
13 SpatialPooler(layer);
14 TemporalMemory(layer);
15 DecayTraces(layer.pooledNeurons);
16 CalculateAverageValue(layer);
17 CalculateAverageError(layer);
18 RefreshTraces(layer.pooledNeurons);
19 UpdateStateValues(layer.pooledNeurons);
20 UpdateStatistics(layer);

21 if !segmentTraces
22 DecayTraces(layer5.pooledSegments);
23 AdaptPooledSegments(layer5.pooledSegments);
24 ApicalTemporalMemory(layer5);
25 if !segmentTraces
26 RefreshTraces(layer5.pooledSegments);
27 ApicalTemporalMemory(motorLayer);
28 VoluntaryExcitation(layer5);
29 GenerateBehavior(motorLayer);
30 foreach layer ∈

allLayers{layer4, layer3, layer2, layer5, layerD1, layerD2,motorLayer} do
31 SegmentDecay(layer);
32 CleanUpSegments(layer);

33 UpdateArchitectureStatisticsAndValidation();
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5.3.1 Layer Creation and Connection

The algorithm checks whether the layers are created and connected as in line 1. It
creates the layer by taking column count and neurons per column as the constructor
arguments. The proximal, distal and if there are, apical sources of a layer must also be
defined for the connection stage. The other required information is whether the layer
uses neural or columnar activity of its sources as the input. After the creation of all
layers, the connectivity is initialized by mapping layers to their sources. Below is the
layer creation parameters with some discussion as to why. The layers have dedicated
learning parameters depending on the type as presented in Appendix A.

Layer 4

• Proximal Sources: Sensory Layer

• Proximal Input Type: Neural Activation

• Distal Sources: Motor Layer

• Distal Input Type: Neural Activations

Research on layer 4 states that it is the input layer of a region among the six layers
[18], [19], [16]. According to the studies, input originates from the interplay between
thalamus, other cortical regions, and subcortical structures. The thalamus acts as the
gating mechanism feeding information to layer 4 while also possibly transforming
the input. Therefore, layer 4 is proximally connected to the sensory layer. It is also
known that motor activity information is utilized by the layers in motor cortex (M1).
The sensory thalamic input constitutes only a portion of the information that the layer
4 of M1 and S1 regions get [17]. Therefore, the motor activity is also fed through
the layer 4 in our framework. The information can be supplied through proximal
dendrite along the sensory information or from the distal dendrite. For simplicity,
sensory information and motor information are decoupled. Distal dendrites of layer 4
only sample from motor activation. In practice, this means that layer 4 does sensory
pattern classification through columnar activity and puts it into motor activity context
through its neural activation. In other words, the resulting neural activity represents
the sensory pattern in the context of motor activity which helps mapping required
motor actions to respective sensory patterns as argued in Section 4.5. On the other
hand, mixing motor and sensory information through both proximal and distal den-
drites is still functionally feasible. The structural composition of sensory and motor
layers consists only of neurons rather than columns of neurons which simplifies the
implementation. As a result, the input type of layer 4 is neural activation which sam-
ples from sensory and motor layers.

Layer 3

• Proximal Sources: Layer 4

• Proximal Input Type: Columnar Activation
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• Distal Sources: Layer 3

• Distal Input Type: Neural Activation

Layer 2

• Proximal Sources: Layer 3

• Proximal Input Type: Columnar Activation

• Distal Sources: Layer 2

• Distal Input Type: Neural Activation

Layer 3 and 2 are the primary focus of HTM theory, and they are hypothesized to be
doing variable order sequence modeling [14]. For example, if a sequence ABCD is
learned and the sequence EBCD occurs, The B appearing after A is represented with
different neurons than the B appearing after E. As a result, the representations of C
and D are different for both sequences since they are dependent on the context which
is also different. This is the higher level functionality of Temporal Memory algo-
rithm explained in Section 2.3.3. In our architecture, layers 3 and 2 are increasingly
higher level, slower changing, more stable temporal and spatial abstractions of layer
4. Temporal pooling mechanism is enabled for these layers to represent temporal ab-
stractions as explained in Section 5.4.2 at the end of this chapter.

Layer 5

• Proximal Sources: Layer 4

• Proximal Input Type: Neural Activation

• Distal Sources: Layers 4 and 2

• Distal Input Type: Neural Activation

• Apical Sources: Layers D1 and D2

• Apical Input Type: Neural Activation

As explained in Reward Circuitry Section 4.6, the apical tufts of layer 5 integrates
input originating at basal ganglia through layer 1 [25], [27]. Therefore, the apical
sources of layer 5 are reward circuitry layers D1 and D2 in our framework.

The canonical microcircuit theory of cortical layers indicates that information flows
in L4→L3/2→L5/6 [18], [19]. However, the work by Constantinople and Bruno [20]
challenge this classical assumption with their findings stating that layers 5/6 are not
being driven by layers 2/3. In fact, they show that layers 5/6 may even be getting
activated slightly before layers 2/3 due to thalamic input. Work by Ramaswamy and
Makram [22] states that layer 5 integrates information from all cortical layers. More-
over, publication by Schubert et. al. suggests that layer 4 has excitatory influence on
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layer 5. According to another study, layer 6 modulates and even activates some of
the representations at layer 5 [31] which is the primary output pathway of the region.
However, layer 6 is not explicitly modeled in our framework because its mechanistic
functionality is not yet clear in neurobiological studies [58], [29].

In our framework, we integrate input to layer 5 from both layer 4 which gets senso-
rimotor input and layer 2 which has higher level spatiotemporal representations. The
proximal input of layer 5 comes from layer 4 neural activation because the neural
activation of layer 4 represents the sensory information in the context of the motor
action. Layer 5 takes its distal input from both layer 4 and layer 2. Neuroscience
studies show that the layer 3/2 also projects to layer 5 [18], [19], [20]. Temporally
and spatially abstract representations of layer 2/3 are hypothesized to help with layer
5 predictions in our framework.

Striatum D1

• Proximal Sources: Layer 5

• Proximal Input Type: Columnar Activation

• Distal Sources: Layer 5

• Distal Input Type: Neural Activation

Striatum D2

• Proximal Sources: Layer 5

• Proximal Input Type: Columnar Activation

• Distal Sources: Layer 5

• Distal Input Type: Neural Activation

Based on the relevant neurobiological research presented in Section 4.6, the reward
circuitry layers proximally sample the columnar activation of layer 5 which represents
the agent state via integrating information from layers 4 and 2. In practice, layer D1
and D2 make first order predictions on layer 5 activations. Therefore, these layers
predict their next activation by distally sampling from the current activation of layer 5
in our framework. The distal input type is a neural activation because it also includes
the contextual information of layer 5 which is denoted by its neurons.

Motor Layer

• Motor Layer

• Apical Sources: Layer 5

• Apical Input Type: Neural Activation
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The output of a region originates at layer 5 and propagates indirectly to motor areas,
mid brain and even down to spinal cords [23]. In our framework, the only input of
motor layer comes directly from layer 5. The motor neurons take this input through
their apical dendrites because the learning by association mechanism explained in
Section 4.5 is carried out via the Temporal Memory algorithm on apical dendrites.

5.3.2 Reset

Uninterrupted continuous learning is one of the differentiating factors of this imple-
mentation from vanilla HTM. In default HTM, there is a reset tag on the input stream
that signifies the end of a sequence to keep the length of the learned sequences in
check. This implementation supports both non-reset learning and resets on important
events such as deaths or task completions as in line 4. The architecture clears all the
temporal activity after a reset, treating the next input as the first one in a sequence
without any context. The first input after a reset results in all the columns bursting.
Bursting means that a layer activates all the contextual neurons representing that input
which are the neurons inside the active columns. The bursting also results in the de-
polarization of all the next activations among all the sequences involving the current
input.

Resetting also prevents the layers from modeling multiple task completions as a sin-
gle sequence. Treating multiple trials as a single sequence means representing the
patterns of the second task in terms of the first task. Therefore, if the patterns of the
second task appear after a different first task, it needs to learn the second task in the
context of the newly encountered first task. In short, not resetting leads to a deeper
contextual learning but slower learning and lower generalizing capability. Resetting
provides a faster learning if the tasks are independent. On the other hand, having a
reset mechanism is difficult to justify concerning neurobiology. It can be argued that
it is a higher level abstraction for novelty detection functionality that separates se-
quences via an end signal. However, additional neurobiological evidence is required
to justify this ad-hoc reset mechanism of vanilla HTM.

5.3.3 Sensory Layer Update and Layer 4 Depolarization Refresh

The implementation treats the columns and neurons as synaptic nodes that can either
be presynaptic or postsynaptic targets of synapses. However, the sensory data consists
of bit vectors which are not synaptic targets. So, the sensory bit vectors are fed to a
hidden sensory layer in this stage where every bit is treated as a synaptic node. As
a result, layer 4 can function as if sampling from the activity of another layer. The
hidden sensory layer update in line 6 serves as an interface for the cortical layers to
take inputs as if they are sampling from synaptic nodes.

By default, distal synapses sample the previous activity of their presynaptic targets.
Neurons that represent the prediction of the next step are depolarized through these
distal synapses. The distal source of layer 4 is the previous activity of the motor neu-
rons. However, the depolarized cells of the current time step are based on the current
motor activation which is decided at the end of the architecture iteration. Therefore,
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the depolarization stage of layer 4 belonging to time step t is redone at the start of
next iteration at t + 1 as in line 7, when the motor activation of time step t is known.
This is an implementational workaround for an architectural inadequacy which will
be improved in the future. At the moment, the predictive neurons of layer 4 represent
all the potential states caused by all the possible motor actions in Core. Figure 5.5
shows a large amount of depolarized cells displayed in visualization. These depolar-
ized cells are sparsified according to the produced motor action at the start of the next
iteration.

Figure 5.5: Layer 4 depolarization showing all the possible activations at the end of an
HTM iteration. The depolarization gets sparsified at the start of the following HTM
iteration using the last motor action as context.

5.3.4 Cortical Layers Actuation

This part of the algorithm in line 8 carries out the HTM calculations for cortical lay-
ers in the order: layer 4, layer 3, layer 2 and layer 5. For each layer, Spatial Pooler
and Temporal Memory algorithms are sequentially actuated as explained in Section
2.3. The order of layers is due to the input dependencies between the cortical lay-
ers. Decoupling the dependency between the layers is a future research direction that
would allow for a better parallelization if attempted. Every layer takes its proximal
input and activates the columns that have the best overlap with that proximal input via
Spatial Pooler algorithm. Proximal dendrites of these active columns are then adapted
to the input that caused the activation. Among the neurons of these columns, the ones
that have been depolarized/predictive from the previous iteration are chosen as the
active and learning cells via Temporal Memory algorithm. The distal segments that
caused the depolarization are then adapted to the input that caused the depolarization.
If there are no depolarizations among an active column, the column bursts and every
neuron becomes active to learn.

The Spatial Pooler implementation in this study has a modification to the bumping and
boosting mechanisms which facilitate competition among the columns as explained
in Section 2.3.2.3. At the time of implementation, this modification was proposed
to HTM community and got positive encouragement to be researched on. Vanilla
Spatial Pooler has a synapse strength bumping mechanism for the columns that have
lower input overlap frequencies among the layer. Periodically, an overlap duty cycle
variable is calculated for every column which represents its recent input overlap fre-
quency. The proximal dendrite of a column is then strengthened if the overlap duty
cycle is lower than the majority of the columns. Boosting mechanism, on the other
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hand, calculates a boost value for every column depending on its activation frequency.
The overlap of columns are scaled with this value and this results in a more uniform
usage among the layer because lesser used columns have higher boost values.

In vanilla Spatial Pooler, boosting and bumping are carried out with separate calcu-
lations. In this study, bumping mechanism is carried out by the boost value rather
than calculating a separate overlap duty cycle variable. In our implementation, there
is a base synaptic increment value for all the columns, so the proximal dendrites of
all the columns are continuously strengthened rather than the ones with lower input
overlap frequency. This base increment value is then scaled with the individual boost
value calculated for every column. This method simplifies and merges the boosting
and bumping mechanism to use the same boost value rather than an additional one
for overlap frequencies. In our experiments, some columns did not ever get used even
with the bumping mechanism of vanilla Spatial Pooler because the input overlaps of
those columns were not below the threshold for strengthening the proximal dendrite.

5.3.5 Reward Circuitry Layers Actuation

The actuation of layers D1 and D2 in line 12 provide the functionality of Temporal
Difference Learning for the architecture. It is important to note that all the steps
of this subsection are applied to both D1 and D2 layers. The actuation starts off

with HTM calculations: Spatial Pooler and Temporal Memory algorithms for both
layers. The resulting activation on both layers is the spatiotemporal classification of
the activation in layer 5. The active neurons have a pooling value that represents the
respective eligibility traces for TDλ as in Figure 5.6. The eligibility traces of all the
pooled neurons are decayed just after the HTM calculations with respect to the decay
and discount parameters as in Equation 5.1.

Figure 5.6: Pooled (nonzero eligibility traces) neurons of layer D2 with visualized
trace values.

Tracei = Tracei × T D DIS COUNT RAT E × T D TRACE DECAY (5.1)

As in TD(λ), the next step is to calculate the current state value to compare it with
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the expected value from the previous time step. Current state value is the weighted
average of the state values of all active neurons depending on prediction. If the cell
is active because it is burst (failed prediction), the weight is 1. Otherwise, if the cell
is a successfully predicted cell, the weight is 10. The reasoning behind the weighting
is to sustain stability when the resulting activations of D1 and D2 consist of a mix of
burst and predicted cells. The computation is as in Equation 5.2 where n is the size
of the current neural activation, Valuei is the state value of neuron i and Weighti is
the weight for neuron i.

AvgValue =

n∑
i=1

Valuei ×Weighti

n
(5.2)

The difference between the actual state value at time t + 1 and the expected value
from time t guides the learning in TDλ. To calculate this error, the state value that
is already computed is used in conjunction with the expected value of the previous
activation, discount parameter, and the actual reward. The exact calculation is shown
in Equation 5.3 where R is the actual reward stimulation, n is the size of the previous
neural activation, Valuei is the state value of neuron i and AvgValue is the calculated
average value.

AvgError =

n∑
i=1

R + T D DIS COUNT RAT E × AvgValue − Valuei

n
(5.3)

The implementation then increases the eligibility traces of the neurons according to
TD(λ) with replacing traces [47]. The traces of the previously active cells are set to 1
as in Equation 5.4.

Tracei(Neuroni) =

1 if Neuroni was active in previous iteration.
Tracei else

(5.4)

The error signal computed by the layers D1 and D2 are used for adapting the layer 5
apical dendrites sampling from these layers. As explained in Reward Circuitry Sec-
tion 4.6, D1 and D2 functions in competition with opposite learning rules presented
in Equation 4.2. The apical dendrites of layer 5 adapt to the neural activation of D1
if the error is positive. In practice, this means that layer 5 learns the behaviors that
provide a positive error through adapting to layer D1. On the other hand, the apical
dendrites adapt to D2 activation when the error is negative. Through this mecha-
nism, whenever a learned layer 5 activation occurs, layers D1 and D2 depolarize the
associated Go and No-Go activations on layer 5 through its apical dendrites. These
competing depolarizations form the basis of generating the voluntary behavior.

The last stage involves updating the state values of neurons according to the error
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AvgError, eligibility traces Tracei and the learning rate T D LEARNING RAT E as
in Equation 5.5.

Valuei = Valuei + T D LEARNING RAT E × AvgError × Tracei (5.5)

5.3.6 Layer 5 Apical Temporal Memory

This phase is required for layer 5 activations to learn the D1 and D2 activations.
Algorithmically, the computation in line 24 is identical to Temporal Memory, but the
adaptation happens on the apical dendrites and the adaptation itself is dependent on
reward signals. The connections formed in this phase are the backbone of voluntary
motor actions because layers D1 and D2 depolarize layer 5 neurons through these
apical synapses. If the segment eligibility traces feature in Section 5.4.1 are enabled,
the traces of active apical segments are replaced with 1 in this phase.

5.3.7 Learning by Association For Motor Neurons

The activations of layer 5 are mapped to the necessary motor commands leading to
their own activation. The phase in line 27 provides this mapping with an identical
algorithm to Temporal Memory with a small difference: the synapses are apical and
they learn the current activation of the source, not the previous activation. Learning
by association can be achieved with a variety of strategies. Implementation-wise, a
Temporal Memory modification was the simplest solution for our framework. Ad-
ditional modifications, as well as a computational reordering of Temporal Memory
algorithm, are required. This mechanism allows exciting or inhibiting motor neurons
via the stimulation caused by voluntary activations of layer 5.

5.3.8 Voluntary Excitation by Combined Depolarization

Motor neurons need to be stimulated by the layer 5 activation to produce voluntary
actions and override random behavior. The depolarization of layer 5 happens through
both distal and apical dendrites. The former is caused by the layer 5 distal input
layers 4 and 2 while the latter is caused by apical input layers D1 and D2. If a cell
is both distally and apically depolarized, it gets activated without proximal input in
our framework based on the relevant neurobiological research presented in Producing
Voluntary Action Section 4.8. Activation is either suppressive on motor neurons if it
belongs to No-Go circuitry originating from D2 or it is generative if it belongs to the
Go circuitry originating from D1. This phase in line 28 calculates voluntary spikes
for all cells by summing distal and apical depolarization levels.
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5.3.9 Generating Behavior

Through their apical dendrites, motor neurons learn the layer 5 states that are active
via learning by association. The voluntary activity of layer 5 stimulates the corre-
sponding motor neurons to fire. The firing type is dependent on the stimulation type
resulting in either inhibition of the neuron or the excitation of the neuron. Layer 5
activations may cause the same motor neurons to get excited and inhibited simulta-
neously. The total stimulation from the competing negative (inhibitory) and positive
(excitatory) sources determines the resulting motor neuron state in line 29. Among
all the calculated stimulation values, the algorithm picks the highest three motor neu-
rons. These top neurons are then forwarded to the PhysX System of the engine at the
next game cycle.

5.3.10 Global Apical and Distal Segment Decay

The size of the synaptic connectome grows as the agent learns continuously. In time,
the same patterns may get represented by different activations which render some
groups of segments obsolete. In some cases, these obsolete segments never get ac-
tivated again and as a result, never get updated. Architecture slowly fills up with
these outdated and unused segments that do not participate in learning. This situation
becomes worse over time leading to unnecessary memory consumption and perfor-
mance overhead. Therefore, a global synapse decay mechanism is implemented in
line 31 to get rid of never used segments by slowly decrementing their permanences.
For a complete decay to happen, a particular segment should never get activated for
around 20000 iterations which take around 10 minutes in real-time. The decay is
faster for apical dendrites of motor and layer 5 neurons because those require a higher
level of plasticity and more efficient use of capacity. These apical dendrites are under
constant change based on the error signal produced by layers D1 and D2.

5.3.11 Segment CleanUp, Validation and Architecture Statistics

As an interesting observation during the study, some segments that are created with
different synapses converge on the same connectivity. A significant amount of dupli-
cate segments emerge when the simulation runs for a while. These duplicates have
the same functionality but fill up both memory and the segment capacity of neurons.
This phase does routine checks on segments to detect duplicates and flag them. Also,
segments do not get deleted during an iteration because of pointer references scat-
tered on some synaptic nodes. For runtime safety, duplicate and deleted segments are
removed at the end of an architecture cycle in line 32. There is also a feature of the
architecture that allows validating synapses by crosschecking pre and postsynaptic
targets to ensure that all synapses are valid. This feature is crucial for serialization
operations. The data about synapse counts and connection percentages are updated in
real-time in line 33 and presented as the architecture statistics in Core.
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5.4 Architecture Features

5.4.1 Segment Eligibility Trace

This phase in line 21 actuates only when the segment eligibility traces feature is
enabled. The initial implementation of HTM and TD(λ) combination updated the
neural state values based on the neural segment traces and only adapted the active
apical synapses of layer 5 from the previous iteration as in Figure 5.7a, according to
the error signal. Introducing eligibility traces for the segments allows the architecture
to adapt all the recently active synapses as visualized in Figure 5.7b based on the
activation recency. With this feature, apical segments of layer 5 neurons have their
own eligibility traces used in the adaptation based on the error. This is an additional
feature that is not required, but it improves the plasticity of the architecture in theory.
It enables the adaptation of up to 10 times more apical synapses in one iteration as
shown in Figure 5.7b.

When this feature is activated, the first step is to decay the traces of the segments.
The formula for segment trace decay is the same with the trace decay of neurons as in
Equation 5.1, but it is calculated using the activation of the segments. Then, all the
synapses of recently active segments are adapted according to their eligibility traces
using the synaptic increment and decrement values computed by reward circuitry
layers D1 and D2. The last step involves replacing the eligibility traces of the active
segments and it is done after Apical Temporal Memory computation of layer 5.

(a) Active layer 5 apical synapses from the previous iteration: 459

(b) Recently active layer 5 apical synapses with nonzero segment eligibility traces: 5514

Figure 5.7: Comparison of the number of adapting apical synapses with respect to the
segment eligibility traces feature. It is disabled in the upper figure and enabled in the
lower one.

5.4.2 Temporal Pooling

Layers 2 and 3 in our architecture represent input patterns with temporal abstraction
via temporal pooling. A single activation on these layers encodes multiple temporal
input patterns. Therefore, their activations are not only spatially but also temporally
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abstract representations of their input. Along with the distal depolarization from layer
4, layer 5 is also depolarized distally by layers 2/3 which have more stable activations
that result in a better prediction. The slower changing and temporally abstract context
is utilized in the predictions of the following agent states especially when the layer 4
depolarization is not sufficient for a prediction in layer 5.

The term temporal pooling is also referred as union pooling in Nupic research imple-
mentations. It allows the spatial activation of an HTM layer to represent sequential
input data. A stable activation sampling from temporally changing inputs allows that
activation to encode multiple sequential inputs. In other words, the stable activation
represents the temporal abstraction of the changing inputs. This mechanism can be
implemented via a variety of strategies involving modifications to the Spatial Pooler
algorithm. This implementation achieves temporal pooling by introducing an overlap
accumulation mechanism to the input overlap calculations of Spatial Pooler algo-
rithm. The overlap of a column with the input accumulates and decays over time.
Equation 5.6 shows the accumulation rule where Overlapi is the newly calculated
overlap, PrevOverlapi is the previous overlap of the column i and the Overlap Decay
is the overlap decay factor which is set to 0.9 in our study.

Overlapi = (PrevOverlapi + Overlapi) × Overlap Decay (5.6)

The slower change of overlaps allows the active columns to stay active longer than
their overlapping inputs. As a result, these columns adapt not only to the input that
caused the activation but also to the following input patterns. This creates a more sta-
ble layer with slowly changing activations which also provides smoother state transi-
tions. Figure 5.8 shows the more stable activations of layers 2 and 3 compared to the
layer 4 on sequential frames.

(a) Frame 1. (b) Frame 2.

Figure 5.8: Layer 2 and 3 representations that are more stable and with smoother
transitions compared to layer 4 on sequential frames.

5.4.3 Mirror Synapses Optimization

The open source implementation of HTM - Nupic - checks the input overlap of the
proximal, distal and apical dendrites by iterating the whole layer. For example, the
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proximal dendrite of every column is iterated when calculating the input overlap of
those columns. However, only some of the input sources are active at a given time.
Vanilla computation method iterates over all the proximal synapses of the layer check-
ing whether the source is active or not, which is a top-down check as in Figure 5.9a.
This creates a substantial amount of redundant computation because the active input
sources are known beforehand. So, if the algorithm has a way to iterate only the
synapses which have active sources, it reduces the amount of computation to calcu-
late the input overlaps. To do this, there are mirror synapses in this implementation
that originate from the input sources which hold references to the actual proximal
synapses. The mirror synapses provide a bottom up strategy as in Figure 5.9b by
allowing the iteration of synapses that sample from active input bits.

(a) Default proximal dendrite visualization of an
L2 column sampling from L3 columns.

(b) Mirror dendrite showing proximal propoga-
tion of an L3 column to L2 columns.

Figure 5.9: Top-down and bottom up synaptic visualization.

The same optimization strategy is utilized for all the dendrites including distal and
apical types. For some cases, this optimization results in up to 20 times shorter ex-
ecution times on the HTM implementation. Figure 5.10 showcases the significant
difference between the iterated synapses on vanilla Spatial Pooler algorithm and the
mirror synapses optimization. The vanilla Spatial Pooler iterates 13933 synapses for
the overlap input calculation on the proximal dendrites of layer 2. On the other hand,
mirror synapses optimization only iterate 582 proximal synapses for the same com-
putation. These results underline the importance of this optimization regarding the
real-time performance.

(a) 13933 synapses iterated on vanilla Spatial
Pooler.

(b) 582 synapses iterated on mirror synapses op-
timization.

Figure 5.10: Impact of the optimization on the number of proximal synapses iterated
for input overlap calculations. L3 columnar activation is the input for the proximal
dendrites of L2 columns in this figure.
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CHAPTER 6

RESULTS

This chapter presents the results of the testing scenario along with the parameters and
hardware.

6.1 Testing Platform and Parameter Initialization

Parameter initializations and their explanations are in Appendix A. The implementa-
tion is tested on a mid-level laptop with the following specifications:

• Intel Core i7-3632QM CPU @ 2.20GHz with 3.20GHz Boost Mode

• 12 GB 1600MHz CL 11-11-11-28 DDR3 RAM

• Nvidia GT645M GPU

• Samsung 850 Pro 256 GB SSD

6.2 Scenario Results

The results are obtained from the scenario shown in Figure 6.1. To recap the scenario,
the agent respawns on a random cell and with a random direction whenever it reaches
the portal or dies because it went out of bounds. A positive reward is given whenever
the agent accomplishes the task. If the agent traverses out of the valid area outlined
by the blue Voronoi cell coloring, it is stimulated with negative reward.
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Figure 6.1: This figure shows the learning scenario. The agent is stimulated by posi-
tive reward when it navigates to the portal. Negative reward is given if it traverses out
of bounds. After each trial, the agent respawns at a random Voronoi cell. The agent
starts with random movement and learns better behaviors in terms of reward during
the scenario.

6.2.1 Serialization Results

Figures 6.2, 6.3, 6.4 present the serialization performance with respect to the
synapse count and variable layer sizes. All the figures displayed in this section
belong to the same test run and as a result share the same iterations. Exact data
on serialization is presented on Table 6.1. The architecture is in a non-reset, non-
pooled segments configuration with parameters lambda = 0.6, learningrate = 0.5,
discountrate = 0.95 and 800x8layersizes; 800 columns per layer and 8 neurons per
column.
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Table 6.1: The exact results from serialization measurements.

Iteration Proximal Distal Apical Total Save Load Size
0 6.24 · 106 0 0 6.24 · 106 1.46 1.47 27.75

1,000 6.24 · 106 5.3 · 105 1.67 · 105 6.93 · 106 1.75 1.73 30.92
2,000 6.24 · 106 9.74 · 105 2.72 · 105 7.48 · 106 1.87 1.94 33.43
3,000 6.24 · 106 1.35 · 106 3.42 · 105 7.93 · 106 2 2.1 35.47
4,000 6.24 · 106 1.72 · 106 4.17 · 105 8.38 · 106 2.08 2.28 37.49
5,000 6.24 · 106 2.06 · 106 4.74 · 105 8.77 · 106 2.18 2.41 39.27
6,000 6.24 · 106 2.35 · 106 5.23 · 105 9.11 · 106 2.29 2.63 40.82
7,000 6.24 · 106 2.68 · 106 5.71 · 105 9.49 · 106 2.39 2.71 42.55
8,000 6.24 · 106 2.99 · 106 6.08 · 105 9.84 · 106 2.49 2.79 44.13
9,000 6.24 · 106 3.27 · 106 6.34 · 105 1.01 · 107 2.56 2.91 45.52

10,000 6.24 · 106 3.55 · 106 6.69 · 105 1.05 · 107 2.64 3.03 46.95
11,000 6.24 · 106 3.82 · 106 7.03 · 105 1.08 · 107 2.71 3.14 48.38
12,000 6.24 · 106 3.96 · 106 7.29 · 105 1.09 · 107 2.76 3.21 49.2
13,000 6.24 · 106 3.95 · 106 7.43 · 105 1.09 · 107 2.77 3.24 49.21
14,000 6.24 · 106 3.93 · 106 7.68 · 105 1.09 · 107 2.79 3.28 49.27
15,000 6.24 · 106 3.96 · 106 7.85 · 105 1.1 · 107 2.79 3.25 49.47
16,000 6.24 · 106 3.96 · 106 7.98 · 105 1.1 · 107 2.78 3.28 49.57
17,000 6.24 · 106 3.99 · 106 8.05 · 105 1.1 · 107 2.81 3.29 49.76
18,000 6.24 · 106 4 · 106 8.21 · 105 1.11 · 107 2.81 3.32 49.89
19,000 6.24 · 106 4.02 · 106 8.31 · 105 1.11 · 107 2.8 3.32 50.02
20,000 6.24 · 106 4.04 · 106 8.41 · 105 1.11 · 107 2.88 3.33 50.18
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Figure 6.2: Synapse count increase with respect to iterations.
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Figure 6.3: Serialization size growth with respect to iterations.
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Figure 6.4: Serialization timings due to synapse count.
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6.2.2 Runtime Results

The execution times of the individual algorithmic phases of Cortical System are pre-
sented in Figure 6.5. The impact of layer sizes on real-time performance is in Figure
6.6.
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Figure 6.5: Execution timings of the modifications to proximal synapses (Spatial
Pooler), distal synapses (Temporal Memory) and apical synapses (Apical Tempo-
ral Memory). The timings show the total cost for all HTM layers of the architec-
ture. Non-reset, non-pooled segments configuration with parameters lambda = 0.6,
learningrate = 0.5, discountrate = 0.95 and 800x8layersizes.
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Figure 6.6: Total Cortical System measurements due to layer sizes of the architec-
ture. Non-reset, non-pooled segments configuration with parameters lambda = 0.6,
learningrate = 0.5 and discountrate = 0.95.
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6.2.3 Learning Results

Learning convergence results depending on the lambda parameter of TD(λ) are pre-
sented in Figure 6.7 using Mean Absolute Value and actual reward averages as met-
rics. The average reward graph represents the task completion efficiency because the
positive reward is only stimulated on task completion and the agent is stimulated by
negative reward when it traverses to an invalid Voronoi cell. The impact of layer size
is shown in Figure 6.8. Data points of the graphs are smoothed out by Bezier curves
for more comprehensible plots. Plots generated by raw data is in Appendix B.
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(a) The impact of lambda on MAE.
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(b) The impact of lambda on reward mean.

Figure 6.7: The impact of lambda parameter on learning measurements. Non-
reset, non-pooled segments configuration with parameters learningrate = 0.5,
discountrate = 0.95 and 800x8layersizes.
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(a) The impact of layer size on MAE measurements.
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Figure 6.8: The impact of layer size on learning performance. Non-reset, non-
pooled segments configuration with parameters lambda = 0.6, learningrate = 0.5
and discountrate = 0.95.

6.2.4 Results for Reset and Segment Eligibility Trace Features

The spatial and temporal activities of the architecture can be reset when the agent
respawns which indirectly ends the currently learned sequence. The practical differ-
ence of the reset mechanism and the eligibility trace based adaptation for segments
feature (Section 5.4.1) are presented in the Figures 6.9 and 6.10.
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(a) Reset mechanism impact on MAE.
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(b) Reset mechanism impact on reward averages.

Figure 6.9: Reset mechanism comparison for non-pooled segments configuration
with parameters lambda = 0.6, learningrate = 0.5, discountrate = 0.95 and
800x8layersizes.
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(a) The impact of segment eligibility traces feature on MAE.
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(b) The impact of segment eligibility traces feature on reward average.

Figure 6.10: Pooled segment adaptation mechanism comparison for non-reset config-
uration with parameters lambda = 0.6, learningrate = 0.5, discountrate = 0.95 and
800x8layersizes.
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CHAPTER 7

DISCUSSION

7.1 Parameter Tweak Remarks

The default architecture parameters are presented in Appendix A. This section pro-
vides the reader with remarks on important parameters of the architecture.

7.1.1 Spatial Pooler

The most important Spatial Pooler parameters are as follows:

• Local Area Density (Sparsity)

• Boost Strength

• Permanence Increment

• Permanence Decrement

An HTM layer has a fixed level of activation sparsity representing the input pat-
terns. This sparsity is usually set to 2% in the open source implementation of HTM -
Nupic. Moreover, in a publication by Hawkins et al. [14] arguing about the theory of
sequence memory in the neocortex, sparsity is set to 2% for some of the HTM layer
examples. Numenta claims that values around 0.05% and 4% provide the best capac-
ity utilization while not undermining the ability to show similarities and differences
between different representations. Layers can learn quickly on lower sparsity such
as 10%, but the system suffers from spatiotemporal capacity according to Numenta.

Booststrength controls how strong the lesser used neurons are reinforced via artifi-
cial overlap scaling and the permanence increments applied every frame. A value of 4
provides adequate reinforcement to allow a more uniform usage among the columns.
Higher values provide better uniformity but also cause greater instability while learn-
ing because of the frequent representational changes.

The increment and decrement values control the specialization degree of columns
onto spatial patterns. If the increment is lower than the decrement, the columns tend
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to specialize on one or two input patterns depending on the ratio between these val-
ues. If the ratio between increment and decrement increases, the columns can pre-
serve synapses representing different input patterns. As a result, these values also
control the degree of columnar representation overlap on different input patterns. The
representational overlap between differing inputs is proportional to the ratio between
synaptic increment and decrement. Therefore, setting the increment value higher than
decrement value allows the columns to participate in the representation of multiple
patterns resulting in the competition mechanism of Spatial Pooler to work as intended
which activates the best overlapping columns.

7.1.2 Temporal Memory and Apical Temporal Memory

The most critical Temporal Memory parameters are as follows:

• Activation Threshold

• Matching Threshold

• Maximum New Synapses

• Permanence Increment

• Permanence Decrement

Parameters of Temporal Memory are adjusted based on the minimum and maximum
active cells for a given HTM layer. Spatial Pooler dictates the number of active
columns at a given time for an HTM layer according to sparsity. The number of
active cells at a given time is at least equal to the active column count (sparse activa-
tion) and at most equal to the active column count times neurons per column (bursting
activation). As an example, a layer with 2% sparsity and 2048 columns with 16 neu-
rons per column would result in 40 active cells on sparse activation and 640 active
cells on bursting activation. For a distal segment to learn and adapt its synapses, it
has to be a matching segment at least. In other words, the activity on its synapses
should exceed the matchingthreshold. Therefore, the matchingthreshold cannot be
set higher than active cells at a sparse activation because any created segment would
not get activated on a sparse activation. Setting the matchingthreshold to 40% of the
sparse activation provides the results in this study.

If the activity on a distal segment exceeds activationthreshold, the segment becomes
active and as a result, the neuron owning that segment becomes depolarized. There-
fore, this value also needs to be lower than a sparse activation cell count for a segment
to become active on a sparse activation. On the other hand, this parameter should be
set above the matchingthreshold which flags a segment when it has the potential to
match an activation. In that case, the segment adapts to that activation without the
need for creating a new one. As a result, activationthreshold should be set higher
than matchingthreshold to work as intended. This study sets activationthreshold
around 60% of the sparse activation.
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Distal segments are meant to subsample their sources to create synaptic variety. In
other words, the segments grow synapses to only a group of active cells from the pre-
vious activation. This mechanism prevents all the learning segments of the same time
step from forming the same synapses. Moreover, it introduces better synaptic vari-
ety when learning temporal patterns of activation. Therefore, maximumnewsynapses
should be lower than a sparse activation to result in subsampling. This study sets the
value around 70% of sparse activation.

Synaptic increment and decrement values control the specialization degree of a seg-
ment to its receptive input pattern. Similar to Spatial Pooler parameters, setting the
increment value higher than the decrement value results in a single segment encapsu-
lating multiple input activations. However, Temporal Memory does not have a com-
petition mechanism like Spatial Pooler, so having higher increment values leads to
underfitting to the temporal patterns. This study sets increment value lower than the
decrement value to result in segments that have high specialization on their receptive
input patterns.

7.2 Results Evaluation

7.2.1 Serialization

The autonomous agent in this study is intended to be applied to virtual environments
in real-time, particularly as a non-player character in a video game. Thus, serial-
ization capabilities are required for the agent to store and callback itself between
simulation sessions. The performance and size of the serialization are also crucial
for providing an interactive experience and for managing the storage constraints of a
video game. The results are promising in these departments for the agent to function
as an NPC.

The results presented in Figure 6.2 show the synapse counts with respect to learn-
ing iterations. As seen from the figure, the proximal synapses have a fixed quantity
throughout the learning due to the Spatial Pooler algorithm. They make up almost
half of the total synapses even at the later stages of learning, around iteration 200000.
On the other hand, the distal and apical synapses show a logarithmic increase in quan-
tity and they are almost equal in numbers to proximal synapses at the end of the test
run. Distal synapses encode the temporal patterns of the neural activations via the
Temporal Memory algorithm. So, the architecture forms more distal synapses as it
encounters new activation transitions. This is why there is a significant increase on
the number of distal synapses during learning.

Figure 6.3 presents the size footprint of the serialization. Naturally, the size increase
is proportional to synapse count increase as the synapse data take the most amount of
space in the serialization file. The size increase slows over time and stabilizes around
20000 iterations to 50 Mbytes which is a reasonable storage size for an NPC. The
serialization ruleset and the stored synapse structure is explained in Section 3.4.

Figure 6.4 shows the relation between save/load times and synapse counts. After
starting with similar execution times, loading becomes slower to carry out. They are
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both around 3 seconds even at 10 million synapses. It is important to note that the
test hardware utilizes a Solid State Disk which is considerably faster than a traditional
Hard Disk. Still, the results on save/load execution times are promising for an NPC
with 10 million synapses.

7.2.2 Runtime

Functionality in real-time is crucial for an interactive system, especially an NPC. Fig-
ure 6.5 measures the execution times of three main algorithmic components of the
architecture: Spatial Pooler, Temporal Memory, and Apical Temporal Memory. The
results show that the majority of processing power is taken by the distal synapses,
Temporal Memory. It runs just under 20ms on layer sizes of 800 columns and 8
neurons per column which is acceptable at best for real-time performance. The ex-
ecution time of Apical Temporal Memory increases as the connectome grows more
apical synapses, but compared to Temporal Memory, it does not have a large impact
with 4ms. One interesting finding is that the execution time of Spatial Pooler actually
decreases over time and converges to a stable value of 2ms. Proximal synapses have
fixed quantities unlike the apical and distal synapses which increase over time. Prox-
imal dendrites of columns represent and specialize in multiple input patterns. Fewer
modifications on proximal synapses are required as the HTM layers adapt to their
proximal inputs which explains the decrease in execution times.

Figure 6.6 compares the execution times of different layer sizes. The obvious take-
away from the graph is that the performance does not scale linearly with respect to the
column and neuron counts. At the last iteration of the test run, 800x8 layer size takes
24ms to execute while the 512x8 layer takes 10ms. 1512x12 layer takes around 75ms
to execute which is around 7.5 times the computational cost of a 512x8 layer. In a
book about the organization of the brain [59], Llinas and Pare state that the processing
of sensory information is in discrete time steps with a lower bound of 12ms based on
their experimental observations. The runtime performance of our architecture is not
far with a range of 10ms to 75ms depending on the layer size. The 24ms execution
time of the default layer size is relatively close to their observations. The black line
in the graph indicates the execution time of Old Brain System which updates the vi-
sual sensor of the agent by raycasting the environment. However, it is negligible with
around 1ms of execution time with 40x20 rays, and it is constant as expected.

The runtime results show that an agent with 512x8 layer size is viable for real-time
performance at this stage of the study. On the other hand, the default layer size of
the architecture is 800x8 because it can still run in the range of interactive frames
per second (FPS). This layer size configuration also provides a better capacity for
learning patterns as shown in the Learning Section sec:learningResults of the results.

7.2.3 Learning

The primary goal of the agent is to model its environment via its visual sensor to
learn rewarding behaviors. The figures presenting the learning characteristics suggest
that the architecture is capable of modeling the environment while minimizing the
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prediction errors and increasing the task completion rates. The agent becomes more
efficient at reaching the portal as it learns. The number of actions it does for task
completion decreases in time because actions that result in quicker reward are en-
couraged by the architecture. So, the agent finds more optimal action sequences that
lead to the reward. In addition, the agent moves in a random-walk fashion prior to any
learning. As a result, the initial values of all the graphs represent the random-walk
measurements for comparison. It is important to remember that the graphs presented
in this Section 6.2.3 are smoothed out for comprehension. Appendix B includes the
raw plots of the data points.

Mean Absolute Value is a standard metric to measure the accuracy of models that
incorporate Temporal Difference Learning (λ). It shows how much the predictions
about the upcoming state values differ from the actual state values. Among all the
parameter combinations tested, MAE decreases as the agent models its environment.
Figure 6.7 presents the learning capability with respect to the λ parameter by mea-
suring the MAE and average actual reward with a variety of parameter values. For
all cases, MAE initially increases because the agent explores the states that were pre-
viously not encountered. For all λ values, the MAE measurements start to decrease
at some point and the decrease slows over time. The best λ value regarding MAE
is 0.3 from the graph with 0.6 and 0.0 resulting in a similar MAE at the end of the
run. A λ value of 0.9 provided significantly worse MAE compared to the rest. On the
other hand, average reward graph representing the task efficiency declares 0.6 and 0.3
values to be the best in our test runs. Considering both graphs, it is safe to say that a
λ of 0.6 and 0.3 performs reasonably similar to each other. They also provide better
learning than the 0.0 and 0.9 values.

Figure 6.8 shows the impact of layer sizes on learning. In terms of MAE, a layer with
size 800x8 starts of much worse compared to the others. However, all layer sizes end
up with similar MAE after 200000 iterations. In terms of average reward, 800x8
layer is the best configuration which performs 50% better than 512x8 and 1152x12
layer sizes. It should be noted that although the architecture parameters are initialized
according to layer sizes, much of the experiments are conducted on 800x8 layers.
The performance difference in reward averages may be due to tweaking the system at
800x8 layer configuration most of the time.

7.2.4 Reset and Segment Eligibility Trace Features

Vanilla HTM runs on input data that include manual reset points to help with the
sequence learning. This study runs HTM in a non-reset configuration, but comparison
with a reset configuration is provided nonetheless. In the reset configuration, all the
spatiotemporal activity of the HTM layers are cleared after the agent respawns on a
random Voronoi cell caused by task completion or going out of bounds.

Figure 6.9 presents the results for comparison between the reset and non-reset con-
figurations. There is a substantial difference between the MAE measurements. Reset
configuration yields 600% better performance compared to non-reset configuration.
This makes sense considering that the states belonging to different task sequences
are modeled in isolation using manual resets. Without manual resets, the states of
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a previous task trial may get updated with the errors from the current task behavior.
However, non-reset configuration provides a significantly better reward mean in the
long run compared to the reset configuration. This may be due to the agent having
a deeper temporal model which also encapsulates the transitions between different
trials. Non-reset agent models sequences that include multiple trials and random
respawns. However, this results in more expected value error. Therefore, it is difficult
to decide on a clear winner configuration in the current state of the study. Non-reset
configuration has a reward mean of almost three times the reset configuration. On
another note, the default configuration of the architecture is non-reset because it pro-
vides a more rewarding agent life cycle supported by Figure 6.9.

The last Figure 6.10 compares the default architecture with a feature that allows
segment adaptations based on eligibility traces. The errors on state values propagate
back in time to recently activated neurons in TD(λ). This feature allows the reward
to adapt the synapses that caused those recent activations. Moreover, the number
of adapted synapses per iteration is over 10 times more with this feature enabled.
Neurons essentially have a history of active segments that are pooled and adapted
using the errors calculated by TD(λ). However, the results strongly suggest that this
feature needs improvements to provide learning at the level of default settings. Both
MAE and reward average results show inferior performance with the pooled segments
feature enabled. Improvement on this feature may provide better results, but the initial
tests suggest that learning without this feature is objectively better in its current form.

7.3 Mechanisms With Inadequate Neurobiological Evidence

The proposed architecture constitutes of mechanisms that have supporting neurobi-
ological research, and these are presented along with the mechanism explanations.
However, to ensure functionality, there is a high level of abstraction when interpret-
ing the related research. There are still some components that are lacking relevant
biological evidence. This section aims to present some of the known issues regarding
these.

7.3.1 Inhibition in HTM

One of the fundamental but lacking features of HTM is the inhibitory neurons. With-
out any inhibition the biological neural regions would always be encouraged for acti-
vation, leading to a chain reaction of all the neurons firing if the stimulation resources
allow it. Inhibitory circuits play a crucial role in cortical layers. For example, the
work by Naka [23] suggests that inhibitory circuits within layer 5 play a fundamental
role in controlling the cortical output.

HTM layers do not have any explicit inhibitory neurons that affect other groups of
neurons. However, there are inhibition mechanisms both at the columnar and neural
level to ensure sparsity in activations. There is an inhibition phase in Spatial Pooler
algorithm in Section 2.3.2.2 that guarantees a fixed number of active columns at
all times. This inhibition process among the mini columns is attributed to the func-
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tionality of chandelier cells which provide feedforward proximal inhibition for the
pyramidal cells [60]. The inhibition process among the neurons of the individual
minicolumns is carried out via the Temporal Memory. According to the algorithm,
if a mini column is activated and if there is an already depolarized cell among the
mini column, this depolarized cell gets activated while inhibiting the rest of the non-
depolarized neurons. This functionality is based on the fast-spiking basket cells that
have inhibitory influence among the neurons of a mini column [61], [14]. Despite
the relevant neurobiological evidence, the inhibition aspect of cortical microcircuits
is still an abstraction in HTM theory at this state.

7.3.2 Excitatory and Inhibitory Influence on Different Postsynaptic Targets

There is no biological evidence suggesting that the same presynaptic cortical neuron
can have both excitatory (GABAergic) and inhibitory (glutamatergic) influence on
different postsynaptic targets. The inhibitory neurons provide same inhibitory influ-
ence to all of its targets while excitatory neurons excite all of its postsynaptic targets.
In 1954, Eccles et al. proposed this pattern in their work [62] attributing it to the
neuroscientist Henry Hallet Dale. Since then, this pattern is referred to as Dale’s
principle. There are exceptions to this pattern in the vertebrate nervous system [63]
and on D1, D2 modulatory dopamine cells [64] which positively and negatively affect
their targets. However, there are no known exceptions about cortical neurons in neu-
robiological literature, especially layer 5 pyramidal neurons. In spite of this, for the
sake of simplicity, a single layer 5 neuron in our architecture can do both depending
on the origin of its activation: Go and No-Go pathways as shown in Figure 4.8. It
can have an inhibitory and excitatory influence on its postsynaptic targets which are
motor neurons.

7.3.3 Abstraction of Voluntary Activations

There are voluntary activations excited on layer 5 through its apical dendrites that are
stimulated by layers D1 and D2. For the intended functionality of our architecture,
this voluntary activation type is ignored by all the layers except motor neurons. So,
there are two different activations types in layer 5 happening simultaneously:

• Normal Activation : These are activations caused by proximal feedforward
input along with the distal and apical depolarization.

• Voluntary Activation : These are activations caused by the combined distal
apical depolarization reaching a certain threshold. This activation does not need
proximal feedforward input and is detected only by the motor neurons.

According to the neural firing rate models, it is known that the regularity and the rate
of a neuron’s responsive firing are dependent on its synaptic input [65]. It can be
argued that the voluntary activated neurons which are stimulated by Go and No-Go
pathways have firing characteristics which only the motor neurons are receptive to. In
addition, the findings of Fields [66] suggest that the neurons are capable of modifying
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conductance delays for computational purposes. This may explain how a layer can
selectively pick specific activations among its source for computation while delaying
its response to others. There is currently little neurobiological evidence that supports
the simultaneous existence of normal and voluntary activations. However, this func-
tionality is an abstraction for the interplay between layer 5 and motor neurons which
involve additional components such as layer 6 neurons, thalamus, cerebellum and
spinal cord. Ideally, the voluntary activation should inhibit any feedforward proximal
activation and as a result, other layers should sample from the overridden voluntary
activation. However, this is a profound change that requires further research and
modifications to HTM while ensuring a similar motor functionality.
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CHAPTER 8

CONCLUSION

This thesis presented the current state of the Hierarchical Temporal Memory theory
along with Temporal Difference Learning (λ) with replacing traces. It provided the
relevant neurobiological research on the cortical layers and the computational mod-
els of basal ganglia. We mechanistically described an autonomous agent architecture
based on these methods along with supplementary neurobiological evidence. In our
framework, HTM is combined with TD(λ) in a way that abstracts the functionality of
layer 5 and its interplay with basal ganglia to generate voluntary behavior. A custom
game engine is used as the platform for testing the unsupervised, online and con-
tinuous learning architecture on a video game learning task. The agent navigates a
three-dimensional and procedurally generated environment where it is punished for
going out of the specified area and rewarded for reaching the target portal within the
viewing distance of its online visual sensor. Results on this test scenario are presented
via Mean Absolute Error (MAE) and moving average of reward with respect to vari-
ous architecture parameters. The proposed methodology is capable of modeling and
navigating spatiotemporal patterns with low complexity which is the current limita-
tion of the architecture. Improvements in hardware may enable real-time functionality
of larger HTM layer sizes which would provide better learning, but key features such
as attention and temporal abstractions are still lacking. On the other hand, for tasks
with low complexity, the agent successfully learns rewarding behavior sequences as
demonstrated via the audio-visual material in Appendix B. Moreover, the proposed
architecture meets the criteria of this study consisting; real-time performance, serial-
ization capability, player interaction capability, continuous, online and lifelong learn-
ing capabilities. Results suggest that the proposed method is promising to function as
an autonomous agent intelligence, specifically for a non-player character.

8.1 Future Works

The agent is currently capable of learning navigational tasks that utilize its visual
sensor. One of the main future directions is to expand its capability to include terrain
interactions. It possibly involves crude haptic sensors that are experimented with
during this study. The current movement system of the agent is a rather limited motion
type that jumps from point to point. Extending movement capability to result in a
more refined motion type and in the long run, learning from the continuous movement
are other research directions. In addition, comparison with vanilla HTM on the same
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domain is also one of the priorities for reference. The end goal is to complete tasks
that require the agent to learn temporal abstractions. This mechanism is referred as
temporal pooling/union pooling in HTM theory and is a hot research topic.
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APPENDIX A

Appendix A

A.1 Parameter Initialization

This section presents the important initialization parameters for all layers actuating
Spatial Pooler, Temporal Memory and Apical Temporal Memory phases of HTM-
TD(λ) implementation. The specialized parameters for different layers are given after
the default initialization values. Parameter descriptions are at the end of this section.

Spatial Pooler

• spike type = activation

• synapse maximum permanence = 1

• synapse connection permanence = 0.2

• synapse permanence increment = 0.04

• synapse permanence decrement = 0.004

• base permanence increment = 0.0004

• global potential = true

• potential field percentage = 0.5

• connection percentage = 0.15

• boost strength = 4

• active boost = false

Temporal Memory

• spike type = activation

• synapse maximum permanence = 10

• synapse connection permanence = 0.2
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• synapse initial permanence = 0.2

• synapse permanence increment = 0.04

• synapse permanence decrement = 0.08

• inactive decrement = 0.0008

• synaptic decay = 0.000001

• maximum segment count = 128

• maximum new synapses = 12

• activation threshold = 9

• matching threshold = 6

• random distal connections = true

• single cell learning = true

Apical Temporal Memory

• spike type = activation

• synapse maximum permanence = 10

• synapse connection permanence = 0.2

• synapse initial permanence = 0.2

• synapse permanence increment = 0.04

• synapse permanence decrement = 0.08

• inactive decrement = 0.004

• synaptic decay = 0.000001

• maximum segment count = 128

• maximum new synapses = 12

• activation threshold = 9

• matching threshold = 6

• random distal connections = true

• single cell learning = true
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A.2 Layer Specific Values

Below are the overridden parameters for specific layers:

Layer 2, Layer 3, Layer 5, D1 and D2

• spatial pooler — spike type = weighted

Layer 4

• spatial pooler — permanence increment = 0.02

• spatial pooler — permanence decrement = 0.02

• spatial pooler — potential percentage = 0.25

• temporal memory — maximum new synapses = 3

• temporal memory — activation threshold = 2

• temporal memory — matching threshold = 1

• temporal memory — random distal connections = false

Motor Layer

• apical temporal memory — inactive decrement = 0.02

A.3 Parameter Descriptions

• spike type: Controls which state of the sources to sample. Options include
active, predicted and weighted. In weighted setting, predicted sources have a
higher weight than active sources

• maximum synapse permanence: Limit of synaptic connection strength

• initial permanence: The starting connection strength of created synapses

• connection permanence: Threshold controlling whether a synapse is con-
nected or not

• permanence increment: Permanence increase amount when the source is ac-
tive

• permanence decrement: Permanence decrease amount when the source is in-
active

• inactive decrement: This variable controls the decay amount of the distal and
apical synapses that caused a false positive; a predictive neuron not becoming
active on the next iteration
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• synaptic decay: The amount of global decay applied to all distal and apical
synapses

• maximum new synapses: The maximum number of new connections that can
form onto a segment per iteration

• maximum segment count: A cap to the number of segments a neuron can
have, for performance reasons

• activation threshold: The amount of synaptic activity required for a segment
to become active. Similar to stimulus threshold of Spatial Pooler

• matching threshold: The amount of potential activity required for a segment
to become matching. Unconnected synapses are taken into account to calculate
if the segment would become active when they are connected

• random connections: Depending on this variable, neurons prefer forming
connections onto closer sources or random sources among the previous active
sources

• single cell learning: Only a single neuron is chosen for learning among the
active neurons of a column

• base permanence increment: Global growth amount for proximal synapses.
It is scaled with the boost value of columns

• local area density: This is the sparsity of the activation; ratio of active columns
to total columns

• stimulus threshold: Controls the threshold for treating the input coming from
the proximal dendrite as noise. Any overlap below this threshold is neglected

• boost strength: The base value controlling the intensity of columnar competi-
tion mechanisms: bumping and boosting. An increase in this variable results in
a more uniform activation distribution among the columns but less stability

• active boost: It controls whether there is artificial overlap boost on columns
based on their usage

• potential percentage: Percentage of the total input field that determines the
size of a column’s receptive field

• connection percentage: The percentage of randomly connected synapses at
start among the column’s receptive field

• global potential: Variable controlling whether the columnar receptive fields
among the input are topological with respect to the column positions within the
layer. Global means no topology
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APPENDIX B

Appendix B

B.1 Video Demonstration

Below is the link for an in-game footage consisting of agent learning demonstration
and real-time architecture visualization:
https://youtu.be/pX7DVm50qLY

B.2 Results with Raw Plots

The following are the plots generated from the raw data points of the learning ses-
sions.

B.2.1 Learning Results
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(a) The impact of lambda on MAE.
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(b) The impact of lambda on reward mean.

Figure B.1: The impact of lambda parameter on learning measurements. Non-reset,
non-pooled segments configuration. Learning Rate = 0.5, discount rate = 0.95 and
800x8 layer sizes.
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(a) The impact of layer size on MAE measurements.
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(b) The impact of layer size on reward measurements.

Figure B.2: The impact of layer size on learning performance. Non-reset, non-pooled
segments configuration. Lambda = 0.6, learning rate = 0.5 and discount rate = 0.95.
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B.2.2 Results for Reset and Segment Eligibility Trace Features
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(a) Reset mechanism impact on MAE.
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(b) Reset mechanism impact on reward averages.

Figure B.3: Reset mechanism comparison for non-pooled segments configuration.
Lambda = 0.6, learning rate = 0.5, discount rate = 0.95 and 800x8 layer sizes.
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(a) The impact of segment eligibility traces feature on MAE.
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(b) The impact of segment eligibility traces feature on reward average.

Figure B.4: Pooled segment adaptation mechanism comparison for non-reset config-
uration. Lambda = 0.6, learning rate = 0.5, discount rate = 0.95 and 800x8 layer
sizes.
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