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ABSTRACT 

 

META-ANALYSIS OF MICRORNA AND GENE SELECTION 

USING MACHINE LEARNING  

 

Elnaz PASHAEI 

 

Department of Computer Engineering 

Ph.D. Thesis 

 

Adviser: Prof. Dr. Nizamettin AYDIN 

 

The DNA microarray technology allows for monitoring and measuring the expression 

level of a great number of genes in tissue samples simultaneously. In microarray 

datasets, the number of samples is much smaller than the number of genes. The 

classification of such data resulting in the known problem of “curse of dimensionality” 

and data overfitting. For a successful disease diagnosis, it is necessary to select a small 

number of discriminating genes that are relevant for classification. Gene selection in 

microarray data analysis not only increases the classification accuracy but also 

decreases the processing time in the clinical setting. Therefore, it is quite important to 

determine a minimum subset of genes to develop a successful disease diagnostic 

system. In this thesis, two approaches for selecting highly discriminating genes in 

cancer classification based on a hybrid of nature-inspired optimization algorithms and 

different classifiers are proposed. In the first proposed approach, Black Hole Algorithm 

is, for the first time, being used to solve a feature selection (FS) problem. By applying 

the hyperbolic tangent function, a new binary version of BHA called BBHA is utilized 

to solve FS in the text, image, and biomedical data. Two classifiers (RF and NB) serve 

as the evaluators of our proposed algorithm. Experimental results show that BBHA 

wrapper-based feature selection method is superior to BPSO, GA, SA, and CFS in terms 

of all criteria. BBHA gives a significantly better performance than the BPSO and GA in 

terms of CPU Time, the number of parameters for configuring the model, and the 

number of chosen optimized features. Also, BBHA has competitive or better 

performance than the other methods in the literature. 

 In the second proposed approach, we improve the performance of Binary Particle 

Swarm Optimization (BPSO) and help it to avoid being trapped in a local optimum by 
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applying BBHA as the local optimizer for BPSO. Experimental results and statistical 

analysis on four clinical datasets demonstrate that the proposed method yields very 

small subsets of informative genes, while achieving significantly better classification 

performance than other approaches such as Firefly, ant colony, bat search, genetic 

algorithm, harmony search, Fast Correlation-Based Filter (FCBF), and Correlation-

based Feature Subset Selection (CFS). Moreover, It was also shown that applying 

BBHA as the local optimizer for BPSO can significantly improve the performance of 

BPSO and help it to avoid being trapped in a local optimum. 

Several studies on miRNA expression datasets have been conducted in prostate cancer 

recurrence. However, the results have varied among different studies. By integrating the 

individual studies the statistical power is increased and more reliable conclusions and 

new biological insights can be drawn. In this thesis, we conducted a meta-analysis on 

six available miRNA expression datasets for prostate cancer recurrence after radical 

prostatectomy and identified a potentially significant list of differentially expressed 

microRNA genes. We did gene ontology enrichment, KEGG analysis, and common 

pathway analysis to identify the molecular pathways in which the identified microRNA 

genes participate and reveal new directions for drug treatments of recurrent prostate 

cancer. 

MiR-145, an important tumor suppressor microRNA, has shown to be downregulated in 

many cancer types and has crucial roles in tumor initiation, progression, metastasis, 

invasion, recurrence, and chemoradioresistance. In this thesis by meta-analysis of eight 

GEO datasets, we investigated potential common target genes of miR-145 to help to 

understand the underlying molecular pathways of tumor pathogenesis in association 

with those common target genes. 

Keywords: Feature Selection, Black Hole Optimization Algorithm, Decision Tree 

Algorithms, Particle Swarm Optimization, Gene expression, prostate cancer recurrence, 

meta-analysis, Mir-145. 
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ÖZET 

 

MAKİNA ÖĞRENMESİ KULLANARAK MICRORNA META-

ANALİZİ VE GEN SEÇİMİ 

 

Elnaz PASHAEI 

 

Bilgisayar Mühendisliği Anabilim Dalı 

Doktora Tezi 

 

Tez Danışmanı: Prof. Dr. Nizamettin AYDIN 

 

DNA mikrodizi teknolojisi doku örneklerinde çok sayıda genin ifade düzeyini aynı anda 

izlemeyi ve ölçmeyi mümkün kılar. Mikrodizi veri setlerinde örnek sayısı gen 

sayısından çok daha azdır. Bu tür verilerin sınıflandırılması bilinen "boyutsallık belası 

(curse of dimentionality)" ve veri aşırı uyumluluk problemiyle sonuçlanır. Başarılı bir 

hastalık teşhisi için, sınıflandırma ile alakalı az sayıda ayrımcı gen seçmek gerekir. 

Mikrodizi veri analizinde gen seçimi sadece sınıflandırma doğruluğunu arttırmakla 

kalmaz, aynı zamanda klinik ortamda işleme süresini azaltır. Bu nedenle, başarılı bir 

hastalık teşhis sistemi geliştirmek için genlerin minimum bir alt kümesini belirlemek 

oldukça önemlidir. Bu tezde, melez doğadan esinlenmiş optimizasyon algoritmaların ve 

farklı sınıflayıcılara dayanan kanser sınıflandırmasında yüksek derecede ayırıcı gen 

seçimi için iki yaklaşım önerilmiştir. İlk önerilen yaklaşımda Kara Delik Algoritması, 

ilk defa bir özellik seçimi (FS) problemini çözmek için kullanılmaktadır. Hiperbolik 

teğet fonksiyonunu uygulayarak, metin, görüntü ve biyomedikal verilerin FS'sini 

çözmek için BHA'nın BBHA adlı yeni bir iki tabanlı biçimi kullanılır. İki sınıflayıcı 

(RF ve NB) önerilen algoritmamızın değerlendiricileri olarak görev yapmaktadır. 

Deneysel sonuçlar BBHA sarmalayıcı (wrapper) temelli özellik seçim yönteminin tüm 

kriterler açısından BPSO, GA, SA ve CFS'den üstün olduğunu göstermektedir. BBHA, 

CPU Zamanı, modeli yapılandırma parametrelerinin sayısı ve seçilen en iyileştirilmiş 

özelliklerin sayısı açısından BPSO ve GA'ya göre önemli ölçüde daha iyi bir 

performans sunar. Ayrıca, BBHA, literatürdeki diğer yöntemlere kıyasla rekabetçi veya 

daha iyi bir performansa sahiptir. Önerilen ikinci yaklaşımda, İkili Parçacık Sürüsü 

Optimizasyonunun (BPSO) performansını iyileştiriyoruz ve BPSO için yerel iyileştirici 

olarak BBHA uygulayarak yerel bir optimumda sıkışmayı önlemeye yardımcı oluyoruz. 

Dört klinik veri kümesindeki deneysel sonuçlar ve istatistiksel analiz, önerilen 
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yöntemin, ateş böceği, karınca koloni, yarasa arama, genetik algoritma, armoni 

araştırması, hızlı korelasyon tabanlı süzgeç ve korelasyon tabanlı özellik alt küme 

seçimi gibi yaklaşımlara göre önemli derecede daha iyi sınıflandırma performansı elde 

ederken çok küçük bilgi grubu genleri ürettiğini göstermektedir. Dahası, BPSO için 

yerel iyileştirici olarak BBHA'nın uygulanmasının BPSO'nun performansını belirgin bir 

şekilde artırabileceği ve yerel optimumda sıkışmayı önlemesine yardımcı olacağı da 

gösterildi. 

Prostat kanseri reküransında çeşitli miRNA ifade veri setleri yapılmıştır. Bununla 

birlikte, sonuçlar farklı çalışmalar arasında çeşitlilik göstermektedir. Bireysel 

çalışmaları entegre ederek istatistiksel güç artar ve daha güvenilir sonuçlar ve yeni 

biyolojik bilgiler elde edilebilir. Bu tezde, radikal prostatektomiden sonra prostat 

kanseri reküransı için altı mevcut miRNA ifade veri seti üzerinde bir meta-analiz yaptık 

ve potansiyel olarak farklı olarak eksprese edilen mikroRNA genlerinin önemli bir 

listesini tespit ettik. Tanımlanmış mikroRNA genlerinin katıldığı moleküler yolakları 

tanımlamak ve nükseden prostat kanseri üzerinde ilaç tedavileri için yeni yönergeler 

ortaya çıkarmak için gen ontolojisi zenginleştirmesi, KEGG analizi ve ortak 

yolakanalizi yaptık. 

Önemli bir tümör baskılayıcı mikroRNA olan MiR-145, birçok kanser çeşidinde 

downregüle edildiğini ve tümörün başlatılması, progresyonu, metastazı, invazyonu, 

reküransı ve kemoradyolojik direncinde önemli rollere sahip olduğunu göstermiştir. 

Sekiz GEO veri kümesinin meta-analizi ile bu tezde, ortak hedef genlerle bağlantılı 

olarak tümör patogenezinin altında yatan moleküler yolaklarının anlaşılmasına yardımcı 

olmak için, miR-145'in potansiyel ortak hedef genlerini araştırdık. 

Anahtar Kelimeler: Özellik Seçimi, Kara Delik Optimizasyonu Algoritması, Karar 

Ağacı Algoritmaları, Parçacık Swarm Optimizasyonu, Gen ifadesi, prostat kanseri 

rekürrensi, meta-analiz, Mir-145.  
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  CHAPTER 1 

INTRODUCTION 

This chapter introduces this thesis. It starts with the literature review, then outlines the 

research goals, the major contributions (hypothesis) and the organization of the thesis. 

1.   

 Literature Review 

1.1.1 Classification Algorithms 

The advance of gene expression microarrays makes it possible to take a genome wide  

approach for disease prognosis, diagnosis, and prediction of therapeutic responsiveness. 

Classification or prediction methods can be generally summarized into two branches: 

supervised learning and unsupervised learning. Here, we will focus on the supervised 

learning where the class labels are known beforehand. High dimension and small size of 

microarray samples facilitate new developments in not only gene selection techniques 

but also classifier design. With supervised learning methods for gene expression data, 

various classifiers with promising performance have been constructed. Two most 

commonly used classifiers, which will be used in this thesis, are reviewed in this 

section. They are Sparse Partial Least Squares Discriminant Analysis (SPLSDA) and 

Decision Tree (DT) classifiers including Random Forest (RF); C4.5; C5.0; Boosted 

C5.0; Bagging, Classification and Regression tree (CART). 

Sparse Partial Least Squares Discriminant Analysis (SPLSDA) 

Partial least squares (PLS) is a widely used regression method in high-dimensional 

genomic data. SPLSDA is based on PLS for discrimination analysis, but a Lasso 

penalization has been added to select features. Some significant advantage of SPLSDA, 

compared to other classifiers is that SPLSDA is statistically very efficient, 
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computationally very fast with a tunable sparsity parameter, can be applied to various 

types of data of any dimensionality (especially appropriate for small sample data with 

many genes), easy to implement, and is able to automatically perform feature selection. 

Decision Tree Classifiers (DT) 

A greedy algorithm is a basic method for DT algorithms, which are based on top-down 

recursive divide-and-conquer manner. Greedy strategies are preferred to utilize as they 

are easy and efficient to implement. At each node of the tree in DT algorithms, all 

possible splits are evaluated. Each split has own information gain. If an information 

gain of the split is highest among the others, it should be chosen as a divider of data into 

binary parts. The algorithm runs until the stop condition is met. Iterative Dichotomiser 3 

(ID3) is the first series of algorithms created by Ross Quinlan based on greedy 

strategies to generate DTs. Finding the optimal size of the final tree in a DT algorithm is 

known as the horizon effect problem. A common strategy for solving this problem is to 

grow the tree until each node contains a small number of samples then use pruning to 

replace irrelevant branches with leaf nodes. Pruning reduce the size of a DT without 

reducing predictive accuracy. It removes nodes that do not provide additional 

information.  

An ensemble of unpruned DTs using bagging and bootstrap techniques is known as RF, 

which was introduced by Leo Breiman in 2001 [1]. RF constructs multiple DTs with 

randomly selected features and samples. The final classification of RF can be obtained 

by combining the classification results from the individual DTs. No needing for pruning 

trees, automatically generation of accuracy and variable importance, being robust to 

overfitting and outliers, high speed even in prediction, are some of  the properties of RF 

[2]. As demonstrated by several bioinformatics studies, RF is well suited for high-

dimensional data and have been increasingly applied for gene selection and 

classification [3]. For instance, in [4] RF was utilized as fitness function of  GA-tuned 

PSO and was applied for prediction of o-glycosylation sites in proteins. The GA-tuned 

PSO has achieved higher classification accuracy in terms of AUC with comparison to 

PSO-RF and several tools for predicting the O-glycosylation sites in proteins. RF is 

used in [5] against nine multi-class microarray data sets as a gene selection method and 

it has yielded very small sets of genes while preserving predictive accuracy. Also, it has 

shown high performance compared to Direct Linear Discriminant Analysis (DLDA), K-

Nearest Neighbors (KNN), and SVM classifiers.  
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In [6] a new algorithm based on RF namely Balanced Iterative Random Forest (BIRF) 

is proposed to select informative genes from four imbalanced microarray data sets. 

BIRF has ability in handling the class-imbalanced data and has outperformed the 

predictive performance of SVM-Recursive Feature Elimination (SVM-RFE), Multi-

class SVM-RFE, RF and Naive Bayes (NB) classifiers. Bagging was proposed by 

Breiman in 1996 [7]. Bagging averages the predictions of classification trees over a 

group of bootstrap samples. It helps to avoid overfitting. Bagging improves stability and 

accuracy of DT methods by reducing variance. In [8] a new method based on hybrid of 

gene selection and bagging classifier namely select-bagging is proposed for 

classification of high-dimensional and balanced datasets in bioinformatics. A C4.5 DT 

is an improved form of the ID3 algorithm and was introduced in [9]. The performance 

of C4.5 is high. In main memory algorithms, training data are completely loaded into 

main memory, and are thus severely limited in the number of examples they can learn 

from. Classical tree-based models such as ID3, Classification and Regression tree 

(CART), LDA, and quadratic discriminant analysis (QDA) are some example of main 

memory algorithms. C4.5 Comparing to the main memory algorithms is quicker [10]. In 

[11] the C4.5 was used as fitness function of PSO namely PSODT on 5 small medical 

datasets from UCI Machine Learning Repository. The C4.5 classifier is also adopted as 

a fitness function of PSO for gene selection in [12] against eleven benchmark gene 

expression microarrays. By improving the algorithm of C4.5, Ross Quinlan introduced 

C5.0 [13]. Missing value and numeric attributes can be handled by C5.0. Lower error 

rate, high speed, less memory, and support for boosting can be mentioned as 

characteristics of C5.0 [14]. In BoostedC5.0, Ada-boost algorithm can be used to 

improve the accuracy of C5.0 [15]. In [16, 17] Boosted C5.0 was used as fitness 

function of PSO and was applied on small medical datasets and some benchmark 

microarrays to improve the performance of PSODT. Leo Breiman in 1984 introduced 

CART classifier [18]. It uses Gini index for node impurity, allows only binary 

outcomes, and prunes tree based on the complex model [19]. In [20] the researchers 

proposed a new approach based on CART algorithm namely Sequential CART (S-

CART) for gene selection on binary microarrays. They proved that the performance of 

S-CART is better than Stochastic Search Variable Selection (SSVS) and RF classifiers 

in terms of speed and accuracy. Previous research all indicates that DTs which are listed 

in the top 10 most influential data mining algorithms [21] in combination with 
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optimization algorithms and on their own are promising to solve the feature (gene) 

selection and classification problem. 

1.1.2 Feature Selection Algorithms 

Feature (gene) selection on high throughput biological data, such as gene expression data 

(microarrays) is a key issue in the domain of bioinformatics. Gene expression data 

usually has a small number of samples and large number of genes which most of them 

are irrelevant and redundant. Irrelevant and redundant genes deteriorate the performance 

of the learning models (classifiers). Therefore, selecting high discriminative gene subsets 

from microarray data helps to save computational costs by reducing dimensionality and 

improve the prediction accuracy of classifiers. In fact the aim of gene selection is to find 

a small fraction of gene subset that has the most discriminative power to improve 

predictive performance with robustness. This technology help physicians in clinical 

practice to have efficient diagnosing as well as effective treatments. In general, three 

types of gene selection methods have been developed; filter, embedded, and wrapper 

methods. Embedded and wrapper methods utilize gene selection as a part of training the 

learning model, whereas filter methods choose genes independently from a classification 

model. Wrapper and Embedded methods require to utilize nested cross validation and 

involve fitting more hyper parameters [22]. Decision tree approaches are the most typical 

embedded based gene selection algorithms. Ranking and space searching are two 

categories for filter based gene selection algorithm. Chi-square and 𝑡-test are commonly 

used ranking methods on microarray data. Correlation-based Feature Selection (CFS) 

and Minimum Redundancy Maximum Relevance (MRMR) are space searching based 

filter methods which have been suggested to remove the redundancy during gene 

selection.  

1.1.3 Gene Selection Using Optimization Algorithms 

Finding an optimal gene subset for a given problem with 𝑁 number of genes requires 

evaluating all 2𝑁 possible subsets. In fact, the size of search space for finding optimal 

gene subset grows exponentially with regard to the number of genes. Finding the 

optimal subset of genes is an 𝑁𝑃-hard problem. Therefore, an efficient global search 

algorithm is necessary for solving gene selection problems. Metaheuristic algorithms 

are well-known for their global search ability. These algorithms are capable of handling 
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high dimensional optimization problems with satisfactory solutions within a reasonable 

time. For solving gene selection problem and biomarker discovery many metaheuristic 

algorithms have been conducted on microarray datasets. Four most commonly used 

optimization algorithms, which will be used in this thesis, are reviewed in this section. 

They are Genetic Algorithm (GA) [23], Binary Particle Swarm Optimization (BPSO) 

[24, 12], Simulated Annealing. 

Genetic Algorithm 

FS with GA needs to consider the process of FS as an optimization problem and then 

mapping it to the genetic structure of stochastic variation and natural selection. In the 

first step of GA algorithm, a primary population of chromosomes is generated 

randomly. The chromosomes are modeled as the binary vectors. Then, fitness value of 

each chromosome is evaluated by using a classifier. Two chromosomes with the best 

fitness value are selected. Then, for these chromosomes, a split point is chosen 

randomly. In the next step the front of one chromosome is mapped to the back of the 

other (and vice versa) in order to generate two offspring chromosomes with combined 

genes. In the last step these two offspring chromosomes are mutated randomly 

according to predetermined probability. The process would end if maximum iteration 

was met.  

This algorithm works based on two genetic operators; crossover and mutation. GA has 

the ability to solve complex and non-linear problems. An important disadvantage of GA 

is its unguided mutation which is the only reason of a very slow convergence of GA. It 

also has a lot of parameters for tuning [23]. 

Binary Particle Swarm Optimization 

PSO is an evolutionary algorithm based on population which was originally introduced 

as an optimization technique for real-number spaces (Eberhart R, 1995). The binary 

version of PSO which can be used for gene selection was conducted by the same author 

in 1997. Its general steps are described as a follows. Initially, the position of each 

particle (gene subset) is initialized randomly in binary coding format; the bit value 0 

and 1 indicates the gene is discarded and is selected, respectively. Then, the fitness 

values for all particles are evaluated by predictive accuracy of specific classifier. The 

best personal memories of each particle is 𝑝𝑏𝑒𝑠𝑡𝑖𝑑
𝑜𝑙𝑑 (𝑖 is number of particles and 𝑑 is 

number of genes) and the globally best particle in the whole swarm is 𝑔𝑏𝑒𝑠𝑡𝑑
𝑜𝑙𝑑 . Each 
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particle has two parameters; velocity and position. In each iteration each particle adjusts 

its velocity and position to follow the features of 𝑝𝑏𝑒𝑠𝑡𝑖𝑑
𝑜𝑙𝑑 and 𝑔𝑏𝑒𝑠𝑡𝑑

𝑜𝑙𝑑  particles. The 

velocity and position of all particles are updated by using Eq. (1.1), (1.2), (1.3), and 

(1.4). 

 𝑣𝑖𝑑
𝑛𝑒𝑤 = 𝑤 × 𝑣𝑖𝑑

𝑜𝑙𝑑  + 𝑐1  𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖𝑑
𝑜𝑙𝑑  − 𝑥𝑖𝑑

𝑜𝑙𝑑) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡𝑑
𝑜𝑙𝑑  −  𝑥𝑖𝑑

𝑜𝑙𝑑)                 (1.1) 

İf 𝑣𝑖𝑑
𝑛𝑒𝑤 ∉ (𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥) then𝑣𝑖𝑑

𝑛𝑒𝑤 = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (𝑣𝑚𝑎𝑥, 𝑣𝑖𝑑
𝑛𝑒𝑤), 𝑣𝑚𝑖𝑛)                      (1.2) 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑣𝑖𝑑
𝑛𝑒𝑤) =

1

1+𝑒−𝑣𝑖𝑑
𝑛𝑒𝑤                                                                                        (1.3) 

if  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑣𝑖𝑑
𝑛𝑒𝑤) >   𝑟3 then     𝑥𝑖𝑑

𝑛𝑒𝑤 = 1  else    𝑥𝑖𝑑
𝑛𝑒𝑤 = 0                                       (1.4) 

𝑥𝑖𝑑
𝑛𝑒𝑤 = 𝑥𝑖𝑑

𝑜𝑙𝑑 +  𝑣𝑖𝑑
𝑛𝑒𝑤                                                                                                               (1.5) 

In these equations, 𝑤 denotes the inertia weight to control the impact of the last velocity 

to the current velocity, 𝑐1 and 𝑐2 are acceleration (learning) constants, and 𝑟1, 𝑟1, 𝑟3  ∈

𝑢𝑛𝑖𝑓𝑜𝑟𝑚 [0,1]. 𝑣𝑖𝑑
𝑛𝑒𝑤and 𝑥𝑖𝑑

𝑜𝑙𝑑 stand for the updated velocity and current position of the 

𝑖th particle. 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 are minimum and maximum velocity which are user 

specified parameters. The whole procedure is repeated until the maximum number of 

iterations is met. 

One of drawbacks of PSO algorithm in feature selection is that only considered 

classification accuracy. To solve this problems PSOPG1 algorithm which considers 

both the classification performance and the number of features was introduced by Bing 

Xue in 2013.  

PSOPG1 follows the basic steps of standard PSO in updating particle’s position. At the 

standard PSO particles update their position by using Eq. (1.5) instead of equations 

(1.3), (1.4) and a threshold 𝜃 is utilized to determine whether a feature is chosen or not. 

If 𝑥𝑖𝑑
𝑜𝑙𝑑 > 𝜃 the 𝑑th feature is selected (𝜃 = 0.6). PSOPG1 uses a new 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 

updating mechanism. In this new updating mechanism 𝑝𝑏𝑒𝑠𝑡 are refreshed (replaced by 

the particle’s new position) when the fitness value of particle’s new position is better 

than 𝑝𝑏𝑒𝑠𝑡 or fitness value of them are the same but the number of features for 

particle’s new position is smaller. After updating the 𝑝𝑏𝑒𝑠𝑡 of each particle, 𝑔𝑏𝑒𝑠𝑡 is 

updated in the same way. PSOPG1 has been applied on problems with a few hundreds 

of features and shown high performance. In chapter 3, binary version of PSOPG1 
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(BPSOPG1) which updates the position of each particle according to the Eq. (1.3) and 

(1.4) is utilized to selects gene subset from high-dimensional gene expression data. 

PSO algorithm have been utilized by several study as gene selector. Ref. [12] proposed 

a wrapper approach based on PSO and decision tree classifier (C4.5) for cancer 

classification on ten benchmark and one clinical gene expression data. In ref. [25] a 

novel hybrid framework for gene selection and classification of high-dimensional 

microarray data, which combines 𝑘-means clustering, Signal to Noise Ratio (SNR), 

PSO, and three classifiers,  has been proposed. In this framework, firstly 𝑘-means 

clustering has been used to eliminate redundant genes. Then, for each cluster SNR has 

been applied. Finally, top genes from each cluster has been gathered and used as input 

to PSO. The SVM, KNN, and Probabilistic neural network (PNN) have been adapted as 

the classifiers. Similar to this work has been done in ref. [17] which, uses Random 

Forest Ranking (RFR) instead of SNR and adopts boostedC5.0 as the classifier. It was 

tested on ten benchmark gene expression datasets. In [26] a new approach based on 

improved form of binary PSO and SVM classifier has been suggested to solves gene 

selection problem. In ref. [27] a modified PSO namely, Geometric PSO, has been 

proposed for gene selection and cancer classification of high-dimensional microarray 

data. Geometric PSO has been implemented in Waikato Environment for Knowledge 

Analysis (WEKA). 

The PSO algorithm is more likely to be caught in a local optimum. In order to overcome 

the local optimum problem, ref. [28] proposed an improved form of PSO (PSO-RG) by 

developing a new 𝑔𝑏𝑒𝑠𝑡 updating mechanisms. In PSO-RG 𝑔𝑏𝑒𝑠𝑡 will be restarted 

whenever it is not improved in a number. This simple but effective method help PSO to 

avoid being trapped in a local optimum, achieve superior classification result, and 

reduce number of selected genes. In ref. [29] an improved form of PSO-RG namely 

PSO-LSRG has been developed. In PSO-LSRG approach reset mechanism is applied to 

𝑔𝑏𝑒𝑠𝑡 to avoid stagnation in local optima and a new local search method is applied to 

𝑝𝑏𝑒𝑠𝑡 in order to exploit better solutions. 

Several studies have combined Genetic Algorithm (GA) with PSO to benefit the useful 

advantages of both of them and covered their problems. Ref. [30] proposed a gene 

selection method based on hybrid of PSO/GA and utilized SVM as the classifier. 

Another study used hybrid of PSO/GA for designing a fuzzy based expert system [31]. 

The experiments have been done on six gene expression data sets and shown high 
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performance compared to other approaches. In ref. [32] a hybrid PSO/GA algorithm and 

Artificial Neural Network (ANN) has been proposed for biomarker discovery on 

microarray datasets. Ref. [33] suggested a hybrid method of BPSO and a combat 

genetic algorithm (CGA) in order to reduce the number of genes expression and 

achieves a low classification error rate. In this method the CGA was embedded in the 

BPSO and the LOOCV classification accuracy of K-NN classifier served as a fitness 

function.  

Simulated Annealing  

The trope of SA comes from the annealing specifications in metal processing. The 

annealing process contains the control of heat and its cooling rate.  Compared to other 

optimization algorithms, SA has an advantage of being able to avoid the algorithm from 

being stuck at the local minimum. SA uses random chain in terms of Markov chain. In 

the FS based on SA, a primary solution is chosen randomly and it is supposed to be the 

optimal solution. Afterward, the value of the primary solution is calculated using the 

fitness function. Whereas heat T does not meet the end condition, a neighboring 

solution of the current optimal solution is chosen and its fitness value is calculated. If 

the fitness value of the freshly chosen neighboring solution is greater than or equal to 

the current optimal solution, the current optimal solution is substituted with a freshly 

chosen neighbor solution. If the fitness value of the neighboring solution is less than the 

current optimal solution, a random number is generated in the range of (0, 1). In this 

situation, the substitution of the optimal solution is allowed only if a generated random 

number is less than Eq. (1.6). Then the heat is reduced by Eq. (1.7). The process would 

finish if maximum iteration was met.  

𝑒−
𝑐𝑜𝑠𝑡 (neighbor solution)−𝑐𝑜𝑠𝑡(optimal  solution)

𝑇                                                                      (1.6) 

𝑇 ← 𝑟 × 𝑇                                                                                                                                 (1.7) 

GA and SA are more or less equivalent with respect to the quality of the solutions. The 

SA is not efficient in exploring large solution spaces because of randomly seeding and 

needs large number of parameters for tuning [34].  
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1.1.4 Problem Statement 

 Feature Selection 

Biological data, such as microarrays can contain many irrelevant and redundant features 

(genes). These features may cause misleading in the modeling of algorithms for cancer 

classification and overfitting with long training times. In order to obtain optimal 

performance with short training times and reduce memory requirement, the Feature 

Selection (FS) process should be considered to use as a pre-process step in machine 

learning before applying classifiers to a dataset [35]. 

There are many studies based on FS methods. The FS algorithms are broadly categorized 

into three groups: filter, wrapper, and embedded approaches. This categorization is based 

on whether or not they are combined with a specific learning algorithm (classifier).  

Filter based FS approaches consider the features independently and remove irrelevant 

features according to the statistical characteristics of the data. The 𝑡-test, chi-squared test, 

information gain, and Correlation based FS (CFS) are some well-known filter 

approaches [36, 37].  

Wrapper based FS methods apply a specific machine learning algorithm to evaluate the 

score of selected feature subsets. These methods utilize Cross-Validation (CV) schema to 

train learning algorithm [38]. Comparing the wrapper methods to the filter approaches, 

wrapper methods are more accurate than the filter approaches because of considering the 

interactions among the features. However, they are computationally more expensive and 

the performances of them strongly depend on the given learning algorithm. Embedded 

based FS methods are special cases of wrapper methods that are characterized by a 

deeper interaction between the construction of the learning algorithm and the FS. In 

these methods the FS algorithm is always regarded as a component in the learning 

model. The Decision Tree (DT) algorithms, such as C4.5 [9] and Classification and 

Regression tree (CART) [18] are known as the most typical embedded besed FS 

approaches.  

FS is known as an NP-hard and combinatorial problem. Hence, meta-heuristic methods 

are more appropriate to untie this laborious problem because of their population-based 

characteristics. Various stochastic global search algorithms have been used to solve FS 

problem on medical datasets, such as, Genetic Algorithm (GA) [23], Binary Particle 
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Swarm Optimization (BPSO) [11, 24], hybrid of GA and PSO algorithms [30], and 

Simulated Annealing (SA) [34].   

The congenital drawbacks of the mentioned optimization algorithms still puzzle 

themselves. Therefore, to better address FS problems, a simple and efficient global 

search technique is needed. The Black Hole Algorithm (BHA) is one of the newest 

meta-heuristic methods based on the swarm intelligence [39]. This algorithm was 

discovered by simulating the behavior of black hole in outer space. In the real world 

black hole is an object of extreme density with intense gravitational attraction. The 

black hole’s gravitational attraction swallows all objects if they come near enough. 

Because of BHA’s characteristics including powerful optimal performance, single 

parameter, and fast convergence, the BHA has been used for solving a number of 

problems such as clustering [39], multi-objection reactive power dispatch problem [40], 

optimization problem [41], spam detection [42], and optimal coordination of digital 

overcurrent relays problem [43]. A comprehensive study of black hole approach and its 

applications in different research fields is provided in [44]. However, to the best of our 

knowledge there is no reported research related to FS using the BHA in literature. 

 Drawbacks of BPSO 

BPSO is a population-based stochastic optimization algorithm which tries to solve the 

FS problem by simulating the social behavior of fish schooling or bird flocking. BPSO 

is more computationally efficient than GA and mostly provides better solution. The 

main disadvantage of PSO is that it is more likely to fall into local optimum. Currently, 

there is no research outcomes on hybrid of BBHA and BPSO in order to help BPSO to 

avoid being trapped in a local optimum in the field of feature (gene) selection on 

microarray datasets. 

 Meta Analysis of Recurrent PCa 

Prostate cancer (PCa) is the most diagnosed malignancy and the second most reason of 

cancer-related death for the men over the age of 50 in the western countries [45]. The 

prostate-specific antigen (PSA) is the most reliable biomarker for PCa, which is helpful 

for diagnosis, screening, and follow-up after surgery. For treatment of PCa, two 

treatment methods, radiation therapy or radical prostatectomy (RP) and hormone 

ablation therapy are used. Yet, these methods do not provide enhanced survival rates 
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and nearly 30% of patients experience a biochem¬ical recurrence with enhanced PSA 

levels after curative treatment of RP [46]. Moreover, metastatic and advanced tumors of 

PCa respond very poorly to chemotherapy [47]. All these facts emphasize the 

significance of developing early diagnostic biomarkers for PCa progression. Identifying 

effective predictors of tumor recurrence after the surgical operation to determine 

whether treatment is required or not is a main challenge in the PCa research. To predict 

biochemical recurrence (BCR) of PCa after RP and develop effective predictors of 

tumor recurrence, multiple studies have been conducted for gene expression profiling 

[48-50]. Recently, numerous studies have been published which show that the 

alterations in microRNAs are associated with PCa initiation and progression [51-53].  

The miR-1, miR-133b, miR-519d, and miR-647 are new biomarkers with prognostic 

and diagnostic value for recurrence of PCa, which have been identified through miRNA 

expression profiling [54, 55]. The miR-449b, miR-21, miR-141 and miR-221 are also 

known as putative prognostic or predictive markers in PCa recurrence after RP [56-58].  

Meta-analysis utilizes statistical methods to contrast and combines results from multiple 

studies in the hope of increasing the statistical power and reproducibility over individual 

studies and identifying patterns across studies [59]. A limited number of studies [35, 54-

58, 60, 61] has been conducted on microRNA expression profiles to distinguish 

recurrent from non-recurrent prostate tumor tissues and to identify novel biomarkers for 

prediction of PCa progression. The average differential expression level (fold change) 

and some level of significance as measured by the t-test are common procedures for 

identifying the biomarkers. These miRNA microarray data sets provide a rich resource 

for genome-wide information on PCa progression and make an ideal chance to perform 

a meta-analysis study. We assumed that a meta-analysis of some miRNA expression 

datasets of PCa progression can give a potentially significant list of co-deregulated 

miRNAs in PCa progression, which is important to specify pathways in which the 

miRNAs of interest and their target genes are involved. 

 Meta Analysis of Mir-145 Target Genes 

MiR-145 is a well-studied miRNA, which is located at 5p32 chromosomal region and 

its expression is controlled by p53 and some other transcriptional factors like RREB1, 

FoxO, and C/EBP- β [62]. Mir-145 acts as a tumor suppressor and has been shown to be 

downregulated in several cancer types including prostate, head and neck, pancreatic 
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ductal adenocarcinoma, lung, breast, colorectal, bladder, and gastric cancer. It promotes 

apoptosis in the growing cells by silencing MYC (MYC-c), PPP3CA, EGFR, NUDT1, 

TNSF10, SWAP70, DEFA, CBFB, CLINT1, and RTKN [63]. MiR-145 has been found 

to be associated with tumorigenesis via suppressing the expression of several genes 

such as Insulin-like growth factor 1 in colorectal cancer [64], c-Myc and Cyclin-

dependent kinase 6 (Cdk6) in oral squamous cell cancer [65], ER-α in breast cancer, 

SOX2 in larynx and prostate cancer, and several other genes in distinct cancer types 

[66]. However, to the best of our knowledge there is no a meta-analysis study 

investigating mir-145 targets and this is the first study, which combines and correlates 

miR-145 and mRNA microarray data in the literature. 

 Objective of the Thesis 

One of the goals of this thesis is to investigate/improve the capability of BHA for gene 

selection and propose some new wrapper approaches to the use of BHA for gene 

selection in classification problems to reduce the number of genes and achieve better 

classification performance than other optimization algorithms. Second goal of this thesis 

is to improve the performance of BPSO and help it to avoid being trapped in a local 

optimum. Third goal of this thesis is to do meta-analysis on specific disease and 

combine results from multiple studies in the hope of increasing the statistical power and 

reproducibility over individual studies and identifying patterns across studies.   

To achieve these goals, a set of research objectives have been established to guide this 

research, which can be seen as follows. 

1. Develop a Binary version of Black Hole Algorithm called BBHA for solving 

feature selection problem in biological data. 

2. Develop a new wrapper approach that hybridizes the modified version of Binary 

Particle Swarm Optimization (BPSOPG1) and the Binary Black Hole Algorithm 

(BBHA), called BPSOPG1-BBHA, for solving gene selection problem.  

3. perform a meta-analysis of 6 available miRNA expression datasets on recurrent 

PCa and identified a panel of co-deregulated miRNA genes.  

4. perform meta-analysis of 8 available microarray datasets (consider samples for 

mir-145) and identified a panel of co-deregulated genes upon mir-145 over 

expression in prostate, breast, esophageal, bladder cancer, and head and neck 

squamous cell carcinoma.  
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 Hypothesis 

This thesis makes the following major contributions. 

1. In this thesis, the BHA is, for the first time, being used to solve a feature 

selection problem. By applying the hyperbolic tangent function, a new binary 

version of BHA called BBHA is used to solve FS problem in text, image, and 

biomedical data. The BBHA is an extension of existing BHA through 

appropriate binarization. Moreover, the performances of six well-known 

decision tree classifiers (Random Forest (RF), Bagging, C5.0, C4.5, Boosted 

C5.0, and CART) are compared to employ the best one as an evaluator of 

proposed algorithm. The performance of the proposed algorithm is tested upon 

eight publicly available biological datasets and is compared with Particle Swarm 

Optimization (PSO), Genetic Algorithm (GA), Simulated Annealing (SA), and 

Correlation based Feature Selection (CFS) in terms of accuracy, sensitivity, 

specificity, Matthews’ Correlation Coefficient (MCC), and Area Under the 

receiver operating characteristic (ROC) Curve (AUC). In order to verify the 

applicability and generality of the BBHA, it was integrated with Naive Bayes 

(NB) classifier and applied on further datasets on the text and image domains.   

The experimental results confirm that the performance of RF is better than the 

other decision tree algorithms and the proposed BBHA wrapper based feature 

selection method is superior to BPSO, GA, SA, and CFS in terms of all criteria. 

BBHA gives significantly better performance than the BPSO and GA in terms of 

CPU Time, the number of parameters for configuring the model, and the number 

of chosen optimized features. Also, BBHA has competitive or better 

performance than the other methods in the literature.  

Part of this contribution has been published in: 

 

Elnaz Pashaei, Mustafa Ozen, Nizamettin Aydin, “An application of black hole 

algorithm and decision tree for medical problem”, Proceedings of 2015 IEEE 

International Conference on Bioinformatics and Bioengineering (BIBE). 

Belgrade, Serbia. 2-4 Nov 2015. IEEE Press. pp. 1-6. 
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Elnaz Pashaei, Mustafa Ozen, Nizamettin Aydin, “Biomarker discovery based 

on BHA and AdaboostM1 on microarray data for cancer classification”, 

Proceedings of 38th Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society (EMBC). Orlando, FL, USA. 16-20 Aug 2016. 

IEEE Press. pp. 3080-3083. 

 

Elnaz Pashaei, Mustafa Ozen, Nizamettin Aydin, “Gene selection and 

classification approach for microarray data based on Random Forest Ranking 

and BBHA”, Proceedings of 2016 IEEE-EMBS International Conference on 

Biomedical and Health Informatics (BHI). Las Vegas, NV, USA. 24-27 Feb 

2016. IEEE Press. pp. 308-311. 

 

Elnaz Pashaei, Nizamettin Aydin, “Binary black hole algorithm for feature 

selection and classification on biological data”, Applied Soft Computing, Vol. 

56 (2017) 94-106. 

 

2. This thesis proposes a new wrapper approach that hybridizes the modified 

version of Binary Particle Swarm Optimization (BPSOPG1) and the Binary 

Black Hole Algorithm (BBHA), called BPSOPG1-BBHA, for solving gene 

selection problem. In the proposed approach, BBHA is embedded in the 

BPSOPG1 and plays the role of a local optimizer for each iteration. Three 

classifiers including Sparse Partial Least Squares Discriminant Analysis 

(SPLSDA), ), k-nearest neighbor, and Naive Bayes methods with Leave-One-

Out-Cross-Validation (LOOCV) schema are adopted as fitness function of 

hybrid BPSOPG1-BBHA. The performance of the proposed method was 

evaluated on four clinical datasets. In addition, comparative studies were 

provided between the proposed method and eight well-known gene selection 

approaches such as firefly, ant colony, bat search, genetic algorithm, harmony 

search, Fast Correlation-Based Filter (FCBF), and Correlation-based Feature 

Subset Selection (CFS). Experimental results and statistical analysis demonstrate 

that the proposed method yields very small sub sets of informative genes while 

achieving significantly better classification performance than other approaches. 
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Part of this contribution has been published in: 

 

Elnaz Pashaei, Mustafa Ozen, Nizamettin Aydin, “A Novel Gene Selection 

Algorithm for cancer identification based on Random Forest and Particle Swarm 

Optimization”, Proceedings of 2015 IEEE Conference on Computational 

Intelligence in Bioinformatics and Computational Biology (CIBCB). Niagara 

Falls, Canada. 12-15 Aug 2015. IEEE Press. pp. 1-6. 

 

Elnaz Pashaei, Mustafa Ozen, Nizamettin Aydin, “Improving Medical Diagnosis 

Reliability Using Boosted C5.0 Decision Tree empowered by Particle Swarm 

Optimization”, Proceedings of 37th  Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society (EMBC). Milano, Italy. 25-

29 Aug 2015. IEEE Press. PP. 7230-7233. 

 

Elnaz Pashaei, Nizamettin Aydin, “Gene selection using hybrid binary black 

hole algorithm and binary particle swarm optimization”, Genomics (under 

revision). 

 

3. This thesis performs a meta-analysis on 6 available miRNA expression datasets 

for recurrent PCa and identified a panel of co-deregulated miRNA genes. Meta-

analysis of six miRNA datasets revealed miR-125A, miR-199A-3P, miR-28-5P, 

miR-301B, miR-324-5P, miR-361-5P, miR-363*, miR-449A, miR-484, miR-498, 

miR-579, miR-637, miR-720, miR-874 and miR-98  are commonly upregulated 

miRNA genes, while miR-1, miR-133A, miR-133B, miR-137, miR-221, miR-340, 

miR-370, miR-449B, miR-489, miR-492, miR-496, miR-541, miR-572, miR-583, 

miR-606, miR-624, miR-636, miR-639, miR-661, miR-760, miR-890, and miR-

939 are commonly downregulated miRNA genes in recurrent PCa samples in 

comparison to non-recurrent PCa samples. The network-based analysis showed 

that some of these miRNAs have an established prognostic significance in other 

cancers and can be actively involved in tumor growth. Gene ontology enrichment 

revealed many target genes of co-deregulated miRNAs are involved in “regulation 
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of epithelial cell proliferation” and “tissue morphogenesis”. Kyoto Encyclopedia 

of Genes and Genomes (KEGG) analysis indicated that these miRNAs regulate 

cancer pathways. The PPI hub proteins analysis identified CTNNB1 as the most 

highly ranked hub protein. Besides, common pathway analysis showed that TCF3, 

MAX, MYC, CYP26A1, and SREBF1 significantly interact with those DE 

miRNA genes. The identified genes have been known as tumor suppressors and 

biomarkers which are closely related to several cancer types, such as colorectal 

cancer, breast cancer, PCa, gastric, and hepatocellular carcinomas. Additionally, it 

was shown that the combination of DE miRNAs can assist in the more specific 

detection of the PCa and prediction of biochemical recurrence (BCR).    

 

This contribution has been published in: 

 

Elnaz Pashaei, Elham Pashaei, Maryam Ahmady, Mustafa Ozen, Nizamettin 

Aydin. “Meta-analysis of miRNA Expression Profiles for Prostate Cancer 

Recurrence following Radical Prostatectomy”, PLoS ONE. Vol. 12, Issue 6, Jun 

2017. doi:10.1371/journal.pone.0179543. 

 

4. This thesis performs a meta-analysis on 8 available microarray datasets 

(consider samples for mir-145) and identified a panel of co-deregulated genes 

upon mir-145 over expression in prostate, breast, esophageal, bladder cancer, 

and head and neck squamous cell carcinoma. Meta-analysis of different GEO 

datasets showed that UNG, FUCA2, DERA, GMFB, TF, and SNX2 were 

commonly downregulated genes, whereas MYL9 and TAGLN were found to be 

commonly upregulated upon mir-145 over expression in prostate, breast, 

esophageal, bladder cancer, and head and neck squamous cell carcinoma. 

Biological process, molecular function, and pathway analysis of these potential 

targets of mir-145 through functional enrichments in PPI network demonstrated 

that those genes are significantly involved in telomere maintenance, DNA 

binding and repair mechanisms. 

 

This contribution has been published in: 
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Elnaz Pashaei, Esra Guzel, Mete Emir Ozgurses, Goksun Demirel, Nizamettin 

Aydin, Mustafa Ozen, “A Meta-Analysis: Identification of Common Mir-145 

Target Genes that have Similar Behavior in Different GEO Datasets”, PLOS 

ONE. Vol. 11, Issue 9, September 2016. doi:10.1371/journal.pone.0161491. 

 Organization of the Thesis 

The remainder of this thesis is organized as follows. The main contributions of the 

thesis are presented in Chapters 2-5, which can be seen in Figure 1.1. Each chapter 

addresses one of the research objective. Chapter 6 concludes the thesis. 

Chapter 2 propose a Binary version of Black Hole Algorithm called BBHA for solving 

feature selection problem in biological data. 

 

Figure 1.1 The overall structure of the contributions. 

Chapter 3 proposes a new wrapper approach based on hybrid of BBHA and BPSOPG1 

to address the problem of gene selection on high-dimensional gene expression data in 

order to significantly reduce the number of genes and increase the classification 

performance. 

Cancer analysis with data mining 

Develop evolutionary approaches 
for gene selection 

Meta-analysis of miRNA and gene 

expression profiles of specific 

disease 

Mir-145 Target 
Genes (Chapter 5) 

Recurrent Prostate Cancer on 
MicroRNA Expression 

Profiles (Chapter 4) 

 

BBHA for gene 

selection and 

biomarker 

discovery(Chapter 2) 

Hybrid BPSO/BBHA 

(Chapter 3) 

 

Discussions (Chapter 6) 



18 

 

Chapter 4 analyzes miRNA expression profile in PCa progression considering 5 studies 

(6 datasets), in order to increase the probability of revealing truly significant 

deregulated miRNA genes, which should have higher potentials to be utilized as new 

biomarkers for the disease. 

Chapter 5 performs a meta-analysis on target genes of miR-145 in several cancer types 

including prostate, breast, esophageal, bladder, head, and neck squamous cell carcinoma 

cancer, in order to unravel the underlying molecular pathways associated with mir-145 

in tumor pathogenesis. 

Chapter 6 summaries the work and draws overall conclusions of the thesis. It also 

suggests some possible future research directions. 

 Benchmark and Clinical Datasets 

Throughout this thesis, the proposed algorithms are evaluated on a number of clinical 

and benchmark datasets. The datasets are summarized in Table 1.1, Table 1.2, Table 1.3 

and Table 1.4. 

Table 1.1 Benchmark datasets 

Dataset Number of  Features 
Number of  

data objects 
Number of class     Domain 

Chess 36 3196 (1669, 1527) 2 Text 

Email word subject 242 64 (35, 29) 2 Text 

WraoAR10P 2400 130 10 Image, face 

WrapPIE10P 2420 210 10 Image, face 

Wisconsin diagnostic breast cancer 31 569(357,212) 2 Life 

Parkinson’s 22 195(48,147) 2 Life 

Heart-Statlog 13 270(150,120) 2 Life 

Colon Tumor  2000 62(40,22) 2 Microarray 

Central Nervous System 7129 60(39,21) 2 Microarray 

ALL-AML (Leukemia) 7129 72(47,25) 2 Microarray 

Breast Cancer 24481 97(51,46) 2 Microarray 

Ovarian Cancer 15154 253(91,162) 2 Microarray 

 

Table 1.2  Characteristics of each gene expression datasets 

GEO Accession Type of Platform 
# of samples 

(BCR+, BCR−)* 
# of genes References 

GSE25136 GPL96 79 (40, 39) 22283 [49] 

GSE70769 GPL10558 90 (41, 49) 47323 [48] 

GSE70768 GPL10558 43 (34, 9) 47323 [48] 

GSE31684 GPL570 93 (54,39) 54675 [67] 
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Table 1.3 Characteristics of each miRNA Expression datasets 

GEO 

Accession 

Platform of 

dataset 
Type of Platform 

#of 

samples 

(BCR+, 

BCR−)* 

# of 

miRNAs 
References 

Model for generating 

expression summaries 

GSE55323 GPL10701 Agilent 
40 

(20, 20) 
15744 [54] 

log2 transformed and 

quantile normalized 

GSE26245 GPL11350 Illumina  
71 

(29, 42) 
733 [55] 

quantile-normalized 

expression signal 

GSE26247 GPL11350 Illumina  
82 

(29, 53) 
1145 [55] 

quantile-normalized 

expression signal 

GSE65061 GPL17537 

nCounter Human 

miRNA Expression 

Assay, V2 

43 

(19, 24) 
800 [61] normalized data 

GSE62610 GPL18942 
microRNA Card A+B 

Set v3.0 

36 

(22, 14) 
536 [56] normalized data 

GSE46738 GPL8786 Affymetrix  
51 

(34, 17) 
847 [58] 

log scale RMA 

generated 

Table 1.4 Summary of GEO datasets  

GEO 

Accession 
platform 

Type of 

Platform 

Samples 

Containing Mir-145 

Cancer  

Type 

GSE47657 GPL13607 Agilent 

GSM1154161(PC3), 

GSM1154163(DU145), 

GSM1154165 (LNCap) 

PCa 

GSE24782 GPL10332 

 

Agilent 

 

GSM610397(PC3), 

GSM610398(DU145) 
PCa 

GSE58295 GPL4133 Agilent 

GSM1406126 (PC3-8h), 

GSM1406127 (PC3-16h), 

GSM1406128 (PC3-24h) 

PCa 

GSE37119 GPL10332 Agilent GSM911053(HNSCC, IMC-3) 
Head and neck  squamous 

cell carcinoma 

GSE18625 GPL570 Affymetrix 
GSM462902, GSM462903, 

GSM462904, GSM462905 
Colon cancer (Exclude) 

GSE19737 GPL570 Affymetrix 
GSM492843, GSM492844, 

GSM492845 
Breast cancer 

GSE20028 GPL4133 Agilent 
GSM500946 (TE2), 

GSM500948 (TE13) 

Esophageal squamous cell 

carcinoma 

GSE19717 GPL4133 Agilent 
GSM492573 (KK47), 

GSM492575 (T24) 
Bladder cancer 
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CHAPTER 2 

BLACK HOLE ALGORITHM FOR FEATURE SELECTION 

2.   

 Introduction 

Biological data often consist of redundant and irrelevant features. These features can 

lead to misleading in modeling the algorithms and overfitting problem. Without a 

feature selection method, it is difficult for the existing models to accurately capture the 

patterns on data. The aim of feature selection is to choose a small number of relevant or 

significant features to enhance the performance of the classification. Existing feature 

selection methods suffer from the problems such as becoming stuck in local optima and 

being computationally expensive. To solve these problems, an efficient global search 

technique is needed. Black Hole Algorithm (BHA) is an efficient and new global search 

technique, inspired by the behavior of black hole, which is being applied to solve 

several optimization problems. However, the potential of BHA for feature selection has 

not been investigated yet. Therefore we proposes a Binary version of Black Hole 

Algorithm called BBHA for solving feature selection problem in biological data. 

2.1.1 Chapter Goals 

The goal of this chapter is to propose a Binary version of Black Hole Algorithm called 

BBHA for solving feature selection problem in biological data. The BBHA is an 

extension of existing BHA through appropriate binarization. Moreover, the 

performances of six well-known decision tree classifiers (Random Forest (RF), 

Bagging, C5.0, C4.5, Boosted C5.0, and CART) are compared in this chapter to employ 
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the best one as an evaluator of proposed algorithm. Specifically, the highlights of this 

chapter are: 

 We propose a binary version of the Black Hole Algorithm called BBHA based 

on hyperbolic tangent function for solving discrete problems. 

 We apply the proposed BBHA as a wrapper based feature selection method. 

 We test the effectiveness of BBHA wrapper based feature selection method with 

two classifiers, Random Forest and Naive Bayes, on twelve benchmark datasets 

from different domains (biological, text, and image).  

 We compare the performance of six popular decision tree algorithms (Random 

Forest, Bagging, C5.0, Boosted C5.0, C4.5, and CART) to select the robust and 

best of them as a fitness function of optimization algorithms. 

 We compare the performance of the proposed BBHA wrapper based approach 

with the Genetic Algorithm (GA), Binary Particle Swarm Optimization (BPSO), 

Simulated Annealing (SA), and Correlation based Feature Selection (CFS) 

algorithms in terms of eight evaluation criteria.  

 Experimental results demonstrate that Random Forest is the best decision tree 

algorithm and the proposed BBHA wrapper based feature selection approach 

outperforms the performances of BPSO, GA, SA, and CFS in terms of all 

criteria.  

 It is also shown that the proposed method performed much faster, needs single 

parameter for configuring the model, and is simple to understand. 

2.1.2 Chapter Organization 

 The remainder of this chapter is organized as follows. In section 2.2 the methods used 

are introduced. It includes continuous BHA, proposed binary version of BHA, proposed 

wrapper approach for FS based on BBHA. The characteristics of datasets, experimental 

design and setting are described in section 2.3 The experimental results on twelve 

datasets from different domains and summary of discussion are presented in section 2.4. 

Finally, section 2.5 provides a summary of this chapter. 
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 The Proposed Algorithms 

In this section, we give a detailed description of the continuous Black Hole Algorithm 

(BHA), proposed Binary Black Hole Algorithm (BBHA) and BBHA wrapper based 

approach, which is introduced for solving discrete problems including Feature Selection 

(FS).  

2.2.1 Continuous Black Hole optimization Algorithm (BHA) 

The black hole optimization algorithm is a robust stochastic optimization technique 

based on simulation of the behavior of black hole in outer space.  

The below steps explain manner of simulating BHA from black hole phenomenon: 

Step 1: Outer space is full of known and unknown stars. In real space black hole 

is formed by collapsing individual stars so BHA begins with the population of 

stars that located arbitrarily in the explore space. In BHA each star has a fitness 

value, which is evaluated by a fitness function to be optimized. The best star that 

has the best fitness value is selected as the black hole. It is called “black” 

because it absorbs all the light and reflects nothing. Figure 2.1 shows BHA 

schema. The black circle is the black hole and green circles are stars. They 

placed randomly in the search space.  

Step 2: In the real space, a black hole is an object of extreme density with an 

intense gravitational attraction. This leads to a great amount of gravitational 

force pulling stars around it. BHA has followed the same behavior. By Eq. (2.1) 

all the stars began moving toward the black hole.  

Step 3: The sphere shaped bound of a black hole in outer space is known as the 

event horizon. The event horizon radius is called as the Schwarzschild radius. 

The red circle in Figure 2.1 shows the event horizon of black hole. In the real 

space the Schwarzschild radius is computed by Eq. (2.2) and in BHA is 

computed by Eq. (2.3). 

Step 4: Because of extreme density and strong gravitational attraction of black 

hole when a star crosses the event horizon, it will be swallowed by the black 

hole and disappear. In the region of event horizon the escapee speed is 

tantamount to the speed of the light, so nothing can get away from within the 

event horizon. In BHA, the Euclidean distance between black hole and star is 
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computed. If this distance is less than Schwarzschild radius, substitute it with a 

fresh star in the random location in the search space. 

Step 5: In BHA if a star reaches a location with lower cost than the black hole, in 

that case theirs locations should be replaced [39, 68, 70]. 

𝑋𝑖 (𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟𝑎𝑛𝑑 × (𝑋𝐵𝐻 − 𝑋𝑖(𝑡))    𝑖 = 1,2, … , 𝑁                                       (2.1) 

𝑅 = 2𝐺𝑀 𝐶2⁄                                                                                                                            (2.2) 

 𝑅 =
𝑓𝐵𝐻

∑ 𝑓𝑖
𝑁
𝑖=1

                                                                                                                               (2.3) 

where 𝑋𝑖 (𝑡) and 𝑋𝑖 (𝑡 + 1) signify the locations of the 𝑖𝑡ℎ star at iterations 𝑡 and 𝑡 + 1, 

respectively. Rand indicates uniform distribution with a range from 0 to 1. 𝑁 denotes 

the number of stars. 𝑋𝐵𝐻 points the location of the black hole in the exploration space. 

𝑀, 𝐺, and C signify the mass of the black hole, the gravitational constant, and the speed 

of light respectively. 𝑓𝑖 denotes the fitness value of the 𝑖th star and 𝑓𝐵𝐻 indicates the 

fitness value of the black hole. 

 

    Figure 2.1 Black Hole Schema 

Based on the above explanation the framework of the BHA method is presented in 

Algorithm 1. 

01 Input 

02  number of stars(𝑁), number of iteration 

03 Output 

04 Black hole  

05 The fitness value of black hole 

06 Begin 

07 Initialize a population of stars    

08 For 𝑗 = 1 to numbers of stars 

09        calculate the objective function of the star(𝑗) and save in fitness array(f) 
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10 Next 𝑗 

11 The star with the most remarkable fitness value is chosen as the black hole  

12 While  (max iteration or convergence criteria is not met) do 

13            For 𝑎 = 1 to numbers of stars 

14                        𝑋𝑎
𝑛𝑒𝑤 = 𝑋𝑎

𝑜𝑙𝑑  + 𝑟𝑎𝑛𝑑 × (𝑋𝐵𝐻  −  𝑥𝑎
𝑜𝑙𝑑)     

15                       Evaluate fitness value of the star(𝑋𝑎)   

16                       if  fitness of 𝑋𝑎 >  fitness of  𝑋𝐵𝐻    Then   

17                                      𝑋𝐵𝐻 = 𝑋𝑎 

18                                End if 

19                   Replace the new fitness value of the star ( 𝑋𝑎 ) with the previous value 

20                          Update fitness array (f) and  Calculate :     𝑅 =
𝑓𝐵𝐻

∑ 𝑓𝑖
𝑁
𝑖=1

   

21                           if   √(𝑋𝐵𝐻 − 𝑋𝑎)2 <R  Then 

22                               replace  𝑋𝑎 with a new star in an optional location in the search 

scope 

23                         End if 

24             next 𝑎 

25 end while 

26 End 

Algorithm 1.  The continuous black hole algorithm 

2.2.2 The proposed Binary Black Hole Algorithm (BBHA) 

The BHA was originally developed for continuous valued spaces. But there exist a 

number of discrete combinatorial optimization problems, such as FS, in which the 

values are not continuous numbers but rather discrete binary integers. For this reason, 

we have introduced binary version of BHA and called it BBHA. Binarization techniques 

can be categorized into two groups: two steps binarization and continuous-binary 

operator transformation. Our proposed binarization technique belongs to the first group. 

In the first group without any modifications in the operators, only two steps is added 

after the continuous iteration. 

In solving FS problem the search space must be modeled as a 𝑑-dimensional Boolean 

lattice, where the 𝑖th star moves around the 𝑑-dimensional space. 

Since the problem is to select or not select of a given feature, the position of a star only 

takes the values 1 or 0. Therefore, a transfer function is needed to forces stars to move 

in a binary space. Transfer functions define the probability of changing position’s 

elements from 0 to 1 and vice versa. In the proposed approach, Hyperbolic Tangent 

function is utilized to modify the position of stars as in the Eq. (2.4) and (2.5).  
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𝑆(𝑋𝑖𝑑 (𝑡 + 1)) = 𝑎𝑏𝑠(tanh(𝑋𝑖𝑑 (𝑡 + 1)))                                                                 (2.4) 

𝑋𝑖𝑑 (𝑡 + 1) = {
1      If  𝑆(𝑋𝑖𝑑 (𝑡 + 1)) >  𝑟𝑎𝑛𝑑 

0     otherwise                             
                                                         (2.5) 

where 𝑟𝑎𝑛𝑑 is a uniform random number between 0 and 1. In Eq. (2.5), instead of 𝑟𝑎𝑛𝑑 

threshold 0.6 can also be considered.  Hyperbolic Tangent function belongs to the group 

of v-shaped transfer functions. It has been used because it shows good performance 

compared to the other transference functions such as sigmoid function [71]. In addition, 

in the proposed algorithm we may face with situation that one star with small number of 

features has the same fitness value with black hole. In this situation we should change 

their positions. 

In BBHA we only need to set number of stars. The proposed algorithm does not suffer 

from some of other optimization algorithms difficulties such as the slow convergence 

rate and adjusting several parameters. Compared with other optimization algorithms, 

BBHA is easier to implement, depend on a single parameter for configuring the model, 

requires much less memory, and converges more rapidly. 

2.2.3 The proposed wrapper approach based on BBHA for FS 

In this section, we present details on the process used to enable FS with BBHA. At the 

beginning of BBHA, the primary population of the star’s position is initialized 

randomly. Each star encodes a candidate feature subset based on a bit string. The length 

of the string is equivalent to the total number of features in the dataset of interest. In the 

binary encoding, a bit of one implies the feature is chosen and a bit of zero means that 

the feature is not chosen. Similar to other optimization algorithms, the fitness value of 

each star is calculated by using an evaluator. Here, two classifiers; RF and NB serve as 

the evaluators of our proposed algorithm. For biological data accuracy of RF classifier 

and for text and image datasets accuracy of NB classifier are used. The proposed 

wrapper approach based on integration of BBHA with RF is called BBHA-RF and 

based on combination with NB classifier is called BBHA-NB. 

In the part of evaluating fitness value of stars, when two founded stars have identical 

fitness value, the one with smaller number of features is chosen as the best star (black 

hole). 
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The procedure stops once stopping criteria (maximum number of iterations) is met. The 

parameters for BBHA specify 25 iterations of population consisting of 10 stars. At the 

end of the BBHA wrapper based FS algorithm, the star with the best performance is 

selected. The position of this star gives the selected features. By using the subset of data 

that contains these selected features, again the performance of RF or NB model is 

assessed using 10-fold-CV for five different metrics. In order to avoid producing 

random results and provide an assurance for impartial comparison of the classification 

performances, assessing the efficiency of RF or NB model for selected features by 

optimization algorithms is executed 100 times. Average across 100 times of run is 

considered as a last result of one execute of whole procedure. The whole procedure runs 

5 times for biological data and 3 times for text and image data. In each time, different 

subsets of features are selected by optimization algorithms. Average of these 5 times or 

3 times of runs for whole procedure is reported. Algorithm 2 illustrates the procedure of 

applying BBHA for FS. 

01 Input  

02 Rand, number of stars, number of iteration 

03 Output 

04 Black hole  

05 The fitness value of black hole 

06 Begin 

07 Initialize a population of stars    

08 For 𝑗 = 1 to numbers of stars 

09        Evaluate fitness value of the star(𝑗) by 10-fold-CV RF or NB and save in fitness 

array(f) 

10 Next 𝑗 

11 The star with the most remarkable fitness value is chosen as the black hole  

12 While  (max iteration or convergence criteria is not met) do 

13            For 𝑎 = 1 to numbers of stars 

14                       Evaluate fitness value of the star(𝑋𝑎)  by 10-fold-CV RF or NB 

15               if (fitness of  𝑋𝑎 > fitness of 𝑋𝐵𝐻) Then 

16                        𝑋𝐵𝐻 = 𝑋𝑎 

17              else if  ((fitness of  𝑋𝑎 == fitness of 𝑋𝐵𝐻) and (| 𝑋𝑎|< |𝑋𝐵𝐻 |)) Then 

18                                 𝑋𝐵𝐻 = 𝑋𝑎 
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19                      end if  

20 Replace the new fitness value of the star ( 𝑋𝑎 ) with the previous value 

21                          Update fitness array (f) and  Calculate :     𝑅 =
𝑓𝐵𝐻

∑ 𝑓𝑖
𝑁
𝑖=1

   

22                        if   √(𝑋𝐵𝐻 − 𝑋𝑎)2 < 𝑅  Then 

23 replace 𝑋𝑎 with a new star in an optional location in the search scope 

24                        end if 

25             next 𝑎 

26            For 𝑖 = 1 to numbers of stars 

27                   For 𝑑 = 1 to number of features 

28                                 𝑋𝑖𝑑
𝑛𝑒𝑤 = 𝑋𝑖𝑑

𝑜𝑙𝑑  + 𝑟𝑎𝑛𝑑 × (𝑋𝐵𝐻 𝑑  − 𝑥𝑖𝑑
𝑜𝑙𝑑) 

29                                     if  𝑎𝑏𝑠(𝑡𝑎𝑛ℎ( 𝑋𝑖𝑑
𝑛𝑒𝑤)) > rand  Then 

30                                                    𝑋𝑖𝑑
𝑛𝑒𝑤 = 1 

31                                         Else 

32                                                 𝑋𝑖𝑑
𝑛𝑒𝑤 = 0 

33                                    end if 

34                      next 𝑑 

35             next 𝒊 

36 end while 

37 End 

Algorithm 2.  Pseudo code of Binary BHA for FS 

 

By following this algorithm, we attempt to find optimal feature subset, which could 

improve the classification accuracy of medical data. 

 Experiments 

2.3.1 Experimental Design 

We have tested the performances of different DT algorithms to find out which of them 

has higher performance than the others on medical data sets to choose it as fitness 

function of optimization algorithms. Then, we have examined the relative performance 

of the combined BBHA and RF method (best DT algorithm as fitness function) denoted 

as BBHA-RF for true classification of medical data, with a series of repeated 10-fold-
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CV experiments (repeat for 5 times to avoid bias). We have compared the performance 

of the proposed BBHA-RF method with GA-RF, BPSO-RF, SA-RF, and CFS. The 

results are reported in terms of accuracy, sensitivity, specificity, MCC, and AUC. 

Larger values of these criteria represent good classification performance. These 

measures are defined as follows: 

 Accuracy 

Accuracy represents the percentage of correct predictions.  Let TN, TP, FN, FP denotes 

true negative, true positive, false negative and false positive, respectively. The Accuracy 

is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃)                                                             (2.6)⁄  

 Sensitivity & Specificity 

To see how the accuracy is distributed over the classes, sensitivity and specific values are 

presented. Sensitivity is the ability of the classifier to find all the positive samples. 

Specificity is the ability of the classifier to find all the negative samples. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)    ⁄                                                                                         (2.7) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 (𝑇𝑁 + 𝐹𝑃)⁄                                                                                             (2.8) 

 Matthews Correlation Coefficient 

In machine learning, the quality of unbalance binary (two-class) classifications can be 

obtained by Matthew’s correlation coefficient. If the classes are unbalanced (not equal), 

computing the MCC of classification system can be so much more appropriate than 

computing accuracy. The Matthews correlation coefficient (MCC) is:   

𝑀𝐶𝐶 =
𝑇𝑁 × 𝑇𝑃 − 𝐹𝑁 × 𝐹𝑃

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
                                               (2.9) 

The aim of Matthew’s correlation coefficient is to measure the quantity of correlation 

between predictions and real target values. The answer is bounded between the range +1 

and -1. 

The answer in the range of (0, +1] shows that predictions are positively related to the 

target values. A zero shows that the prediction is completely random. The answer in the 

range of [-1, 0) shows that predictions are negatively related to the target values. 
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 Area Under ROC Curve (AUC) 

The impact of a threshold on the false positives and false negatives (FP/FN) tradeoff can 

be visualized by Receiver Operating Characteristic (ROC) curve. The functions of the 

threshold can be described by the coordinates of ROC curve points: 

 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝜃 ∈ ℝ, here𝜃 ∈ [0,1]                                                                           (2.10) 

𝑅𝑂𝐶𝑋(𝜃) = 𝐹𝑃𝑅(𝜃) =
𝐹𝑃(𝜃)

𝐹𝑃(𝜃) + 𝑇𝑁(𝜃)
=  

𝐹𝑃(𝜃)

#𝑁
                                                     (2.11) 

𝑅𝑂𝐶𝑌(𝜃) = 𝑇𝑃𝑅(𝜃) =
𝑇𝑃(𝜃)

𝐹𝑁(𝜃) + 𝑇𝑃(𝜃)
=  

𝑇𝑃(𝜃)

#𝑃
= 1 −

𝐹𝑁(𝜃)

#𝑃

= 1 − 𝐹𝑁𝑅(𝜃)                                                                                             (2.12) 

No false positives and all true positives (FPR, TPR) = (0, 1) is the optimal point on the 

ROC curve. AUC can be achieved by computing the area of the convex shape under the 

ROC curve. When AUC reaches to 1 this means that ROC is reached to the optimal point 

of perfect prediction. 

2.3.2 Dataset 

To evaluate the performance of the proposed method twelve datasets, which belong to 

completely different domains, are employed. These domains are biological (life and 

microarray), text, and image. 

Text datasets are Chess and Email word subject which are two classes and obtained 

from UCI Machine Learning Repository at the website: http://www.ics.uci.edu/-

mlearn/MLRepository.html. Image datasets are warpAR10P and warpPIE10P which are 

multiclass and taken from the http://featureselection.asu.edu/datasets.php. The summary 

of these data sets are given in Table 1.1 on Page 18.  

For the biological datasets, three small medical datasets with a variety of complexity 

and five widely-used binary microarrays were used. Small medical datasets are 

Wisconsin diagnostic breast cancer, Parkinson’s, and Heart Statlog, which are obtained 

from UCI Machine Learning Repository. Colon Tumor, Central Nervous System, 

Leukemia, Breast Cancer and Ovarian Cancer are microarray datasets that are available 

for download at the website: http://csse.szu.edu.cn/staff/zhuzx/Datasets.html. The 

characteristics of these medical data sets are shown in Table 1.1. The datasets are 
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diverse in terms of the number of samples and features. The number of classes is two 

for all biological datasets. 

2.3.3 Experimental Setup 

Our experiment results consist of two parts. Firstly, we compared the performance of 

BBHA with BPSO, GA and CFS on the text and image datasets. We used NB classifier 

with 10-fold-CV as a fitness function and feature subset evaluator on these datasets. 

Then the performances of six well-known DT classifiers (Random Forest, Bagging, 

C5.0, Boosted C5.0, C4.5, and CART) are compared with each other to identify the best 

one of them. Finally, we considered the best DT (RF) classifier with 10-fold-CV as 

fitness function and gene subset evaluator of BBHA. Then, the proposed BBHA is 

conducted on a set of eight well-known medical datasets and compared with BPSO, 

GA, SA, and CFS.  

In the process of 10-fold-CV, the samples of data are divided into 10 equally subsets. 

Each time, 9 subsets are located next to each other to create the training set and the 

remained one subset is utilized as the test set. Then the average accuracy across all 10 

trials is calculated. Since one try of the 10-fold CV is generally biased and in order to 

have statistically meaningful conclusion we repeated 10-fold-CV for 100 times and 

reported average and standard deviation of them.  The experiments are carried out on a 

laptop with Windows 7, 2.40 GHz CPU and 4 GB of RAM, using R version 2.2.1. For 

RF classifier we used ‘randomForest’ package. For Bagging and C4.5 classifiers, 

‘RWekajars’, ‘rJava’, and ‘RWeka’ packages have been used. ‘C50’ package has been 

utilized for C5.0 classifier and Boosted C5.0 (trials=10). For CART classifier ‘rpart’ 

package, for CFS filter approach ‘FSelector’ package, and for NB classifier ‘e1071’ 

package have been employed. Also, for GA and SA optimization algorithms ‘caret’ 

package has been used.  

For all datasets, the number of particles for BPSO, the number of stars for BBHA, and 

the number of chromosomes for GA are set to 10. Most of the genes in the high 

dimensional data like microarrays are irrelevant and not useful for classification 

problems. Selection of top ranked genes as a preparation step for microarrays by 

removing a large number of irrelevant, redundant and noisy genes can provide a better 

classification accuracy [72]. We have selected 50 top ranked genes by Chi- Squared 

statistic with leave-one-out cross validation method. The parameters of Binary PSO are 
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adjusted as follow [12]; (𝑣𝑚𝑖𝑛), (𝑣𝑚𝑎𝑥), (𝑐1), (𝑐2) and (w) are set at -4, 4, 2, 2 and 0.4 

respectively. The crossover and mutation probability of GA are set to 0.8 and 0.1 

respectively. The process would stop if maximum iteration was met. Here, a maximum 

number of iteration is set at 25 because by increasing the number of iterations the 

improvement in results was insignificant. 

 Results and Analyses 

2.4.1 Experimental Results on Text and Image Datasets using NB Classifier 

The summary of four text and image datasets considered here are given in Table 1.1. 

NB classifier with 10-fold-CV was considered as a fitness function of BBHA, BPSO, 

and GA optimization algorithms and also for feature subset evaluation of CFS. The 

average classification accuracy of BBHA-NB, BPSO-NB, GA-NB and CFS on the text 

and image datasets are reported in Table 2.1. In particular, the number of selected 

features and CPU times are tabulated. Due to the stochastic nature of BBHA, GA, and 

BPSO the average FS results of them for three independent runs are reported. Here, the 

maximum iteration is set to 30 and as a pre-process step 250 top ranked features are 

chosen by Chi- Squared statistic for image datasets. In Table 2.1, among the four 

algorithms on each dataset the best average classification accuracies are highlighted in 

bold typeface. Table 2.1 shows that BBHA-NB outperforms the other three algorithms 

in terms of accuracy on all datasets except the Email word subject dataset. GA-NB 

gives better accuracy than BBHA-NB for this dataset. The accuracies of BBHA-NB and 

GA-NB are not significantly different from each other on 3 out of four datasets. BBHA-

NB performs significantly better than GA-NB only on the WraoAR10P dataset. With 

regard to the number of selected features, CFS chooses the least number of features but 

it does so at the cost of low classification accuracy. After CFS, BBHA-NB chooses 

fewer number of features but with a classification accuracy that is superior to the 

BPSO-NB, GA-NB, and CFS. CFS filter method uses less time than the other 3 wrapper 

approaches. BBHA-NB is the second approach which costs less time than BPSO-NB 

and GA-NB. 

 

 



32 

 

Table 2.1 Average accuracy, number of features, and computational efficiency of each 

wrapper method for 3 independent runs 

Dataset Criteria BPSO- NB GA-NB CFS-NB BBHA-NB 

Chess Accuracy 93.93 ± 0.04 94. 33 ± 0.03 90.42 94.66 ± 0.017 

 # of features 14 ± 1.41 14 ± 2.82 3 6 ± 1 

 CPU time 1090.22 3233.11 2.31 510.27 

      

Email word subject Accuracy 91.23 ± 4.57 93.37 ± 0.01 92.18 92.28± 4.05 

 # of features 118.5 ± 7.77 111.66 ± 3.21 2 25.66 ±7.09 

 CPU time 591.11 2102.99 6.17 127.33 

      

WraoAR10P Accuracy 74.63 ± 1.69 76.40 ± 0.44 74.93 80.46 ± 1.41 

 # of features 124 ± 1.41 93.66 ± 18.82 19 14.33 ± 2.51 

 CPU time 1091.71 3473.11 130.87 396.33 

      

WrapPIE10P Accuracy 92.32 ± 0.95 93.96 ± 0.72 91.29 94.91 ± 0.89 

 # of features 126.5 ± 6.36 120 ± 8.18 32 37 ± 2.64 

 CPU time 1282.07 3561.11 463.21 422.34 

2.4.2 Experimental Results on Biological Datasets using RF Classifier 

In order to determine which DT algorithm is more robust and has higher performance 

than the others to be used as fitness function of optimization algorithms, we have 

compared six well-known DT classifiers on eight medical datasets. The computational 

results of this experiment are shown in Table 2.2. The classification accuracy, 

sensitivity, specificity, MCC, and AUC along with standard deviations of them are 

presented in this Table. According to Table 2.2, RF classifier has higher performance in 

almost all datasets. Beside the high performance, the robustness is an important factor in 

evaluating a classifier. The standard deviation of all criteria for RF in all datasets is 

small. This shows that RF is a robust classifier.  

The Figure 2.2 displays average AUC, classification accuracy, and MCC of six DT 

classifiers on eight medical datasets, respectively. As can be seen from this figure, it is 

clearly found that the performance of RF is better than other classifiers. Therefore, we 

choose this classifier as a fitness function of four optimization algorithms (i.e. BBHA, 

BPSO, GA, and SA). After RF, Boosted C5.0 has higher performance than the others. 

Bagging, C5.0, and C4.5 are placed in the next positions, respectively. CART is the 

classifier which has worse performance than the others. 

To evaluate the effectiveness of our proposed method, we compare the results of 

BBHA-RF with BPSO-RF, GA-RF, SA-RF, and CFS. The average AUC, classification 

accuracy, sensitivity, specificity and MCC along with standard deviations of them for 

100 independent runs of the selected features in 5 executions of the whole procedure 
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and CPU time are presented in Table 2.3. In order to illustrate the good performance of 

the proposed FS method, Table 2.4 reports an average number of the selected features 

from the entire data set by BBHA-RF, BPSO-RF, GA-RF, SA-RF, and CFS.  

As can be seen from Table 2.3, the proposed BBHA-RF outperformed BPSO-RF, GA-

RF, SA-RF, and CFS in terms of all criteria. Table 2.4 demonstrates that the proposed 

approach is significantly better than all wrapper approaches and CFS filter approach in 

term of the number of selected optimized features. BBHA-RF selects features 

approximately 5 times fewer than BPSO-RF and GA-RF. Compared with SA-RF and 

CFS the proposed method selects 3 times less features. 

The computational efficiency of BBHA-RF is comparable to SA-RF and is better than 

BPSO-RF and GA-RF. BBHA-RF converges approximately 3 times faster than BPSO-

RF and approximately 6 times faster than GA-RF. For all biological datasets BBHA-RF 

can achieve high performance with least number of features in short time. 

Figure 2.3 shows the average solution quality of BBHA-RF, BPSO-RF, GA-RF, SA-

RF, and CFS on eight biological datasets. We can observe that the proposed wrapper 

approach (BBHA-RF) compared with other FS algorithms maximizes solution quality 

while using fewer features. All medical datasets except heart-statlog and breast cancer 

microarray are unbalanced. So consideration of MCC is more appropriate than 

accuracy. Average MCC of BBHA-RF is significantly better than all mentioned FS 

algorithms. Figure 2.4 displays the computational time in seconds for each of the filter 

and wrapper approaches. The speed of CFS is much higher than mentioned wrapper 

approaches. The rapidity of BBHA-RF is approximately similar to SA-RF. The 

proposed approach converges much faster than BPSO-RF and GA-RF. 

In the following, the performance of BBHA-RF on microarray datasets is compared 

with eight state-of-the-art methods from literature. Table 2.5 reports the results of 

BBHA and different feature (gene) selection methods for five microarrays. The 

classification accuracy (first value in every table cell) and the number of selected 

features (the value in parenthesis) are used as criteria for comparing the performances of 

methods. 

From the results of Table 2.5, one observed that BBHA-RF except breast cancer 

microarray gives highly competitive results compared with these reference methods. 

The most remarkable result for BBHA-RF concerns the ovarian cancer microarray. We 

obtain 99.82 % accuracy with average 2.8 genes while the previous methods reach a 

prediction rate no greater than 99.44% with at least 4 genes. 
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For Wisconsin diagnostic breast cancer dataset 97.38 % accuracy with average 6.4 

features is obtained by BBHA-RF. The proposed method outperformed the results of the 

literature in [73-75]. For this dataset 100% classification accuracy with only 3 features 

is obtained by a method based on modified correlation rough set FS and MLP classifier 

with 80-20 train-test scheme [76].  

For Parkinson’s dataset BBHA-RF obtained 94.20 % accuracy with average 4 features. 

The proposed method gave better performance than other approaches reported in [77-

79]. For this dataset the highest classification accuracy (98.12%) with 11 features is 

obtained by a method based on minimum redundancy maximum relevance FS and 

complex-valued artificial neural network classifier with 10-fold-CV scheme [80].  

For Heart-Statlog dataset, the best accuracy (89.96%) with only 3 features is obtained 

by a method which uses self-regulated learning PSO as FS and extreme learning 

machine as a classifier with 70-30 train-test scheme [81]. BBHA-RF obtained 85.40 % 

accuracy with average 4.8 features. Our proposed algorithm performs better than the 

results of the literature in [82-84]. 

Table 2.2 Solution quality of each decision tree classifier on medical data sets 

 Dataset Criteria 
RF Bagging C5.0 

Boosted 

C5.0 
C4.5 CART 

Wisconsin diagnostic 

breast cancer 
Accuracy 

96.08 ± 

0.31 

94.66 ± 

0.57 

93.71± 

0.79 

95.93 ± 

0.53 

93.39± 

0.74 

92.41± 

0.71 

Sensitivity 
93.75± 

0.67 

91.90 ± 

0.98 

90.59± 

1.42 

93.38 ± 

0.94 

90.54± 

1.42 

89.46± 

1.55 

 
Specificity 

97.48± 

0.34 

96.37± 

0.66 

95.38± 

0.80 

97.46 ± 

0.58 

95.36± 

0.92 

94.13± 

0.82 

 
MCC 

91.60± 

0.84 

88.73 ± 

1.27 

86.49± 

1.63 

91.26 ± 

1.13 

86.18± 

1.45 

83.82± 

1.54 

 
AUC(ROC) 

99.07± 

0.13 

98.51 ± 

0.28 

96.24± 

0.64 

98.97 ± 

0.25 

92.6 ± 

1.27 

93.80± 

0.87 

        

Parkinson’s disease 
Accuracy 

90.70± 

0.88 

87.73 ± 

1.45 

84.16± 

2.05 

89.61 ± 

1.49 

85.07± 

1.95 

86.13± 

2.08 

Sensitivity 
72.70± 

3.95 

65.52 ± 

5.93 

69.64± 

6.55 

71.82 ± 

4.50 

69.62± 

6.02 

65.44± 

5.89 

 
Specificity 

96.90± 

0.75 

94.88 ± 

1.35 

89.14± 

2.14 

95.73 ± 

1.26 

89.34± 

2.36 

93.63± 

1.65 

MCC 
74.16± 

3.87 

63.25 ± 

5.01 

56.55± 

5.76 

70.25 ± 

4.95 

59.39± 

4.95 

60.77± 

6.29 

 
AUC(ROC) 

96.09± 

1.92 

92.74 ± 

2.56 

82.02± 

3.68 

93.98 ± 

2.86 

80.19± 

3.74 

84.28± 

3.42 

        

Heart-Statlog 
Accuracy 82.95± 

1.02 
81 ± 1.29 

77.96± 

1.59 

79.94 ± 

1.48 

78.15± 

1.57 

80.27± 

1.57 
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  Table 2.2 (cont’d) 

        

 
Sensitivity 

77.56± 

1.34 

74.80 ± 

2.38 

73.14± 

2.68 

76.05 ± 

2.26 

72.77± 

2.74 

74.64± 

2.39 

 
Specificity 

87.53± 

1.42 

85.60 ± 

1.84 

82.41± 

2.26 

83.88 ± 

2.01 

82.01± 

2.45 

85.21± 

2.03 

 
MCC 

65.66± 

1.86 

61.45 ± 

2.86 

55.65± 

4.17 

60.25 ± 

3.31 

56.93± 

3.52 

60.01± 

3.38 

 
AUC(ROC) 

90.34± 

0.74 

88.31 ± 

1.29 

82.08± 

1.59 

87.78 ± 

1.11 

78.28± 

2.04 

82.4 ± 

1.83 

        

Colon Tumor 
Accuracy 

85.58± 

1.46 

81.35 ± 

3.96 

81.91± 

3.41 

82.08 ± 

2.63 

83.03± 

3.19 

76.09± 

3.96 

Sensitivity 
87.72± 

2.38 

90.47 ± 

4.62 

88.93± 

4.13 

88.17 ± 

3.01 

88.65± 

3.55 

84.81± 

4.84 

 
Specificity 

82.35± 

5.68 

66.03 ± 

7.76 

70.74± 

8.65 

69.73 ± 

7.47 

74.88± 

6.97 

61.97± 

8.76 

MCC 
65 ± 

7.71 

52.71 ± 

7.54 

56.73± 

10.5 

56.12 ± 

8.15 

57.87± 

9.27 

44.68± 

8.85 

 
AUC(ROC) 

86.61± 

7.29 

81.70 ± 

7.36 

75.96± 

7.97 

83.56 ± 

7.66 

76.35± 

7.84 

68.48± 

6.38 
        

Central Nervous 

System  
Accuracy 

84.86± 

1.93 

76.96 ± 

4.20 

78.93± 

4.06 

79.61± 

3.67 

74.13± 

4.31 

71.46± 

4.35 

Sensitivity 
92.49± 

2.07 

90.09 ± 

4.18 

87.30± 

6.01 

90.61 ± 

3.69 

82.85± 

5.83 

83.44± 

6.24 

 
Specificity 

71.99± 

5.93 

53.34± 

10.8 

60.78± 

10 

59.71 ± 

9.49 

57.51± 

9.88 

50.6 ± 

10.3 

MCC 
62.03± 

7.68 

44.14 ± 

10.1 

48.66± 

11.6 

48.95 ± 

10.1 

40.39± 

10.8 

30.97± 

11.1 

 AUC(ROC) 
87.61± 

6.95 

78.90 ± 

8.43 

69.40± 

7.98 

79.08 ± 

7.92 

64.13± 

7.63 

62.70± 

7.40 

        

ALL-AML 

(Leukemia  
Accuracy 

97.98± 

0.86 

94.7 ± 

1.61 

86.07± 

2.84 

92.01 ± 

2.56 

85.08± 

2.68 

83.71± 

2.60 

Sensitivity 
99.41± 

0.92 

96.68 ± 

2.32 

86.40± 

4.01 

95.12 ± 

2.93 

86.61± 

3.68 

85.71± 

3.92 

 
Specificity 

95.53± 

2.31 

90.31 ± 

5.02 

84.98± 

6.74 

87.50 ± 

5.54 

82.88± 

6.36 

80.58± 

6.16 

MCC 
91.28± 

6.58 

82.84 ± 

7.97 

67.68± 

8.22 

79.16 ± 

6.33 

65.09± 

7.13 

62.28± 

7.97 

 AUC(ROC) 
96.02± 

5.24 

95.71± 

4.86 

82.47± 

6.18 

90.28 ± 

6.44 

80.9 ± 

6.35 

78.23± 

6.43 

        

Breast Cancer 
Accuracy 

80.04± 

2.02 

74.52 ± 

3.36 

67.67± 

4.17 

75.80 ± 

3.07 

69.05± 

3.92 

65.97± 

4.21 

 
Sensitivity 

81.57± 

3.58 

76.48 ± 

4.76 

71.57± 

5.91 

76.89 ± 

5.08 

71.30± 

6.58 

68.15± 

6.11 

 
Specificity 

79.40± 

3.51 

74.54 ± 

4.95 

66.79± 

6.65 

75.34 ± 

5.29 

67.89± 

7.14 

63.50± 

7.24 

 
MCC 

60.19± 

4.72 

49.86± 

7.03 

36.97± 

8.33 

51.15 ± 

6.83 

37.86± 

9.45 

31.42± 

8.80 
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  Table 2.2 (cont’d) 

        

 AUC(ROC) 
90.07± 

3.20 

83.37 ± 

3.68 

67.92± 

5.17 

83.55 ± 

4.10 

68.47± 

5.53 

68.13± 

5.11 

        

Ovarian Cancer 
Accuracy 

99.12± 

0.40 

97.45 ± 

0.44 

98.19± 

0.43 

98.64 ± 

0.59 

98.06± 

0.65 

97.14± 

0.39 

Sensitivity 
99.54 ± 

0.45 

98.56 ± 

0.40 

98.15± 

0.74 

98.90 ± 

0.60 

97.53± 

0.67 

98.03± 

0.53 

 
Specificity 

98.20± 

0.95 

95.23 ± 

1.16 

98.01± 

1.12 

98.38 ± 

1.17 

98.86± 

1.26 

95.67± 

0.68 

MCC 
98.05± 

0.90 

94.51 ± 

1.25 

95.93± 

1.19 

97.16 ± 

1.19 

95.96± 

1.39 

93.68± 

1 

 
AUC(ROC) 

99.94 ± 

0.08 

99.18 ± 

0.55 

98.46± 

0.43 

99.40 ± 

0.43 

98.14± 

0.77 

96.86± 

0.42 

Table 2.3 Best, average solution quality and computational efficiency of each wrapper 

method for 5 independent runs 

Dataset Criteria BPSO- 

RF 

GA-RF SA-RF CFS-

RF 

BBHA-

RF 

Best 

BBHA  

(# 

features) 

Wisconsin 

diagnostic 

breast 

cancer 

Accuracy 96.92 ± 

0.39 

96.21 ± 

0.33 

95.90± 

0.30 

95.86  97.38 ± 

0.28 

97.85 

(5) 

Sensitivity 94.66 ± 

0.66 

93.65 ± 

0.65 

93.2 ± 

0.68 

93.50 95.79 ± 

0.87 

96.71 

 Specificity 98.41 ± 

0.33 

97.62 ± 

0.36 

97.43± 

0.28 

97.27 98.57 ± 

0.30 

99.421 

 MCC 93.11 ± 

0.75 

91.75 ± 

0.65 

91.25± 

0.64 

91.11 93.85 ± 

0.71 

95.53 

 AUC(ROC) 99.30 ± 

0.11 

99.08 ± 

0.13 

98.84± 

0.15 

98.93 99.47 ± 

0.09 

99.71 

 CPU Time 4212.114 6226.58 800.28 2.16 2079.33 2070 

        

Parkinson’s Accuracy 92.30 ± 

0.77 

93.37 ± 

0.86 

92.98± 

0.80 

91.20  93.91 ± 

0.77 

95.78 

(3) 

Sensitivity 78.37 ± 

2.80 

79.44 ± 

4.35 

80.54± 

3.89 

76.28 84.79 ± 

2.76 

88 

 Specificity 97.33 ± 

0.67 

98.10 ± 

0.64 

97.19± 

0.53 

96.23 97.95 ± 

1.13 

98.61 

MCC 80.27 ± 

16.27 

81.28 ± 

3.64 

79.79± 

3.36 

75.07 82.61± 

3.52 

89.89 

 AUC(ROC) 96.15 ± 

2.46 

97.08 ± 

2.07 

95.91± 

2.15 

95.19 97.22 ±  

1.80 

99.02 

 CPU Time 649.53 2401.26 115.66  1.03 373.35 320 

        

Heart-

Statlog 

Accuracy 84.44 ± 

1.03 

83.54 ± 

0.99 

83.57± 

0.95 

81.17  85.75 ± 

0.44 

86.29 

(3) 

Sensitivity 80.88 ± 

1.66 

80.19 ± 

1.29 

78.88± 

1.62 

75.13 80.74 ± 

0.65 

82.06 
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Table 2.3 (cont’d) 

 Specificity 87.67 ± 

1.44 

86.03 ± 

1.10 

87.46± 

1.26 

86.20 89.71 ± 

0.89 

91.40 

MCC 67.03 ± 

2.05 

66.55 ± 

2.04 

66.46± 

2.11 

61.92 71.09 
±1.07 

73.55 

 AUC(ROC) 90.75 ± 

0.69 

90.37 ± 

0.69 

89.25± 

0.81 

88.82 88.55 ± 

0.67  

90.23 

 CPU Time 628.69 517.4 132.46 0.36 314.34 300 

       5, 11 

Colon 

Tumor 

Accuracy 86.40 ± 

1.63 

86.56 ± 

0.92 

85.70± 

1.33 

88.08 91.41 ± 

1.3 

93.33 

(3) 

Sensitivity 87.85± 

2.11 

88.69 ± 

1.28 

89.43± 

0.99 

90.05 95.57 ± 

1.91 

100 

 

 

Specificity 83.65 ± 

3.69 

83.86 ± 

0.77 

80.18± 

3.59 

84.51 85.90 ± 

4.83 

96.29 

MCC 65.77 ± 

4.22 

66.48 ± 

2 

64.36± 

3.19 

68.39 76.68 ± 

3.97 

92.5 

 AUC(ROC) 86.71 ± 

1.43 

86.08± 

1.78 

85.34± 

1.48 
89.32 87.68 ± 

1.94 

100 

 CPU Time 361.42 776.88 76.27 2.52 114.48 102 

        

Central 

Nervous 

System 

Accuracy 90.27 ± 

1.97 

87.96 ± 

1.76 

84.47± 

4 

87.93 91.85 ± 

1.96 

93.33 

(5) 

Sensitivity 96.26 ± 

0.46 

94.93 ± 

0.52 

91.8 ± 

3.03 

96.83 96.90 ± 

1.26 

98.33 

 Specificity 80.26 ± 

4.49 

76.77 ± 

4.86 

71.72± 

6.53 

73.10 83.85 ± 

5.27 

93.51 

MCC 72.45 ± 

8.11 

66.83 ± 

5.09 

60.49± 

7.63 

66.29 75.41 ± 

7.50 

89.14 

 AUC(ROC) 89.44 ± 

2.75 

88.19 ± 

1.47 

86.24± 

3.39 

89.27 93.06 ± 

3.2 

100 

 CPU Time 333.05 1009.03 139.93 7.22 107.47 116.68 

        

ALL-AML 

(Leukemia) 

Accuracy 98.55 ± 

1.20 

98.11 ± 

0.73 

96.59± 

0.73 

98 98.61 ± 

1.23 

100 (2) 

 Sensitivity 99.93 ± 

0.37 

99.63 ± 

0.68 

99.01± 

0.72 

99.10 98.88 ± 

1.43 

100 

 Specificity 96.56 ± 

2.83 

95.29 ± 

1.18 

92.55± 

1.95 

95.47 98.77 ± 

1.99 

100 

 MCC 92.47 ± 

1.73 

91.57 ± 

1.23 

88.74± 

1.11 

91.68 92.69 ± 

1.34 

100 

 AUC(ROC) 96.30 ± 

1.44 

95.72 ± 

0.52 

96.15± 

0.49 

95.79 96.38 ± 

1.38 

100 

 CPU Time 268.39 1013.63 87.47 1.95 101.84 91.71 

         

Breast 

Cancer 

Accuracy 83.94 ± 

1.85 

83.72 ± 

0.98 

79.56± 

2.25 

84.22 87.77 ± 

1.78 

91.11 

(6) 

 Sensitivity 84.84 ± 

3.53 

86.24 ± 

2.01 

80.84± 

1.47 

87.57 87.74 ± 

3.18 

94.66 
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Table 2.3 (cont’d) 

 Specificity 83.72 ± 

3.67 

81.96 ± 

1.77 

79.60± 

3.55 

82.17 88.49 ± 

3.17 

94.66 

 MCC 68.61 ± 

2.04 

67.93 ± 

2 

59.99± 

3.90 

67.46 75.45 ± 

3.83 

83.85 

 AUC(ROC) 91.23 ± 

2.62 

90.66 ± 

1.04 

88.25± 

1.50 

92.50 93.47 ± 

2.83 

97.38 

 CPU Time 407.37 909.25 105.89 6.02 129.26 102 

        

Ovarian 

Cancer 

Accuracy 99.64 ± 

0.35 

99.52 ± 

0.11 

98.58± 

0.96 

98.63 99.82 ± 

0.34 

100 (3) 

Sensitivity 99.62 ± 

0.43 

99.66 ± 

0.20 

99.17± 

0.80 

98.77 100 ± 

0.0 

100 

 

 

Specificity 99.77 ± 

0.51 

99.31 ± 

0.68 

97.57± 

1.11 

98.30 99.58± 

0.85 

100 

MCC 99.29 ± 

0.82 

99 ± 

0.24 

96.85± 

2.01 

97.16 99.69± 

0.61 

100 

 AUC(ROC) 99.99 ± 

0.009 

99.97 ± 

0.03 

99.91± 

0.11 

99.95 100 ± 

0.0 

100 

 CPU Time 743.96 1086.28 170.17 1.99 266.60 100 

Table 2.4 Average number of selected feature 

Dataset BPSO-RF GA-RF SA-RF CFS BBHA-RF 

Wisconsin diagnostic 

breast cancer 
13.5 ± 3.53 25± 0.70 13 ± 1.41 9 ± 0.0 5.4 ± 2.40 

Parkinson’s 9±1.41 10 ± 1 5.5± 0.7 9 ± 0.0 4 ± 0.70 

Heart-Statlog 8.2± 0.83 9 ± 2.08 7 ± 2.94 6± 0.0 4.8 ± 1.78 

Colon Tumor 20.8± 1.30 18.6± 2.96 11.8 ± 1.92 14 ± 0.0 3.4 ± 0.54 

Central Nervous System 24.4± 5.45 27 ± 5.14 14.02 ± 1.92 28 ± 0.0 8.4 ± 3.20 

ALL-AML (Leukemia) 26 ± 2.16 16.4± 9.20 16 ± 1.87 7 ± 0.0 5.6 ± 2.70 

Breast Cancer 24.2 ± 2.16 22 ± 8.15 14.02 ± 1.30 26 ± 0.0 6.2 ± 1.78 

Ovarian Cancer 24.8 ± 1.92 22.5 ± 7.18 14.25 ± 4.71 9± 0.0 2.8 ± 0.44 

Table 2.5 Comparison of relevant works on cancer classification with our proposed 

method BBHA-RF 

Dataset 
BBHA-

RF 
[88] [30] [85] [89] [32] [25] [86] [87] 

Colon Tumor 
91.41 

(3.4) 
100  

(2) 

91.9 

(18.0) 

93.32 

(8) 

93.55 

(6) 

96.67 

(20) 

99.44 

(5) 

90 

(2) 

93.5 

(9) 

Central Nervous 

System 
91.85 

(8.4) 
- - - - - - 

90 

(2) 

86.6 

(7) 

ALL-

AML(Leukemia) 

98.61 

(5.6) 

97.38 

(3) 

97.2 

(18.7) 

98.61 

( 7) 

98.74 

(4) 
100 

 (17) 

99.10 

(10) 
- 

100 

(5) 

Breast Cancer 
87.77 

(6.2) 

95.86 

(4) 

93.4 

(26.9) 
- - 

96 

(12) 
100  

(20) 
- - 

Ovarian Cancer 
99.82 

(2.8) 

99.44 

(4) 
- - - - - - 

98.8 

(19) 
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BBHA-RF BPSO-RF GA-RF SA-RF CFS

AUC (ROC) 94.47 93.73 93.39 92.48 93.72

accuracy 93.31 91.55 91.12 89.66 90.63

sensitivity 92.55 90.3 90.3 87.97 89.65

specificity 92.85 90.92 89.84 87.96 89.15

MCC 83.43 79.87 78.92 75.99 77.38
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Figure 2.2 Average Classification AUC (ROC), Accuracy, and MCC of 6 Well-known 

Decision Tree Classifiers on 8 Biological Datasets 

Figure 2.3 Average Solution Quality of One Filter and Four Wrapper Approaches on 8 

Medical Datasets 

Random

Forest

Boosted

C5.0
Bagging C5.0 C4.5 CART

AUC( ROC) 93.21 89.57 89.8 81.81 79.9 79.36

Accuracy 89.66 86.7 86.04 83.57 83.24 81.64

MCC 75.99 69.28 67.18 63.08 62.45 58.45
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Figure 2.4 Computational efficiency of one filter and four wrapper approaches on 8 

medical datasets 

2.4.3 Discussion 

In summary, from the experimental results on text and image data sets it is worth noting 

that CFS selects the lowest number of features on 3/4 datasets in the least amount of 

running time but suffers in terms of classification accuracy. GA-NB and BPSO-NB 

obtains good classification accuracy but require more running time and select many 

more features. Compared to mentioned methods, BBHA with NB is able to find 

significantly least number of features and to provide better classification performance in 

a sensible CPU time. Also, the computational results on medical datasets confirmed that 

RF gives better performance compared to other five DT classifiers therefore is chosen 

as a fitness function of optimization algorithms and evaluator of feature subsets. From 

the experimental results on biological data sets, it is inferred that BBHA-RF approach 

not only improves classification accuracy of RF by selecting the most informative 

features, but also obtains better performance in terms of all eight evaluation criteria 

when compared to BPSO-RF, GA-RF, SA-RF, and CFS filter method. The eight 

evaluation criteria are classification accuracy, MCC, AUC (ROC), sensitivity, 

specificity, the number of selected features, CPU time, and robustness. Because 6/8 
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biological datasets are unbalanced, considering MCC criteria is more suitable. Average 

MCC of BBHA-RF is significantly better than all mentioned algorithms and selects 

significantly fewer feature subsets on all datasets in a reasonable time. BBHA-RF 

converges much faster than GA-RF and BPSO-RF. The speed of proposed approach is 

comparable to SA-RF. Moreover, the standard deviations of the computational results 

are relatively small, indicating that the repeated 10-fold-CV is reliable and appropriate 

for classification of medical data. The comparison of BBHA-RF with other approaches 

in the literature suggests that BBHA-RF has competitive or better performance. 

Ultimately, a summary of the best subsets of genes found for each microarray by 

BBHA-RF is listed in Table 2.6. 

Table 2.6 Best subsets of genes which found by BBHA-RF 

Dataset 
Accuracy  

(# of genes) 
Name of genes 

Colon Tumor 93.33 (3) X12671, M16937, M91463 

Central Nervous System 93.33 (5) 
S71824_at,D83542_at,AF002020_at, HG2417-

HT2513_at, U43747_s_at 

ALL-AML(Leukemia) 100 (2) L09209_s_at, M92287_at 

Breast Cancer 91.11 (6) 
Contig24311_RC,  Contig7258_RC, NM_005192,  

Contig38726_RC,  Contig14882_RC,  NM_003450 

Ovarian Cancer 100 (3) MZ2.8234234, MZ418.49538, MZ435.46452 

 Chapter Summary 

Feature selection is an important approach that used before applying classifiers to a data 

set in order to select informative features. A good FS method by selecting significant 

features helps to successfully and meaningfully modeling with low computational cost 

and high classification accuracy. During the past years, several metaheuristic algorithms 

such as GA, firefly, PSO, binary bat algorithm and ant colony algorithm make an effort 

to design the FS as a combinatorial optimization problem. However, almost all of the 

existing methods have a lot of parameters for configuring the model and are 

computationally expensive. Therefore, proposing a FS approach with a few parameters, 

high computational speed, and simplicity are necessary for classification. 

This chapter presents the first study on using the BHA for solving FS problem. By 

applying the hyperbolic tangent function, a new binary version of BHA called BBHA is 

proposed to solve FS problem in text, image, and biomedical data. Two classifiers (RF 

and NB) serve as the evaluators of our proposed algorithm. In addition, to confirm that 
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RF is the best DT classifier, the performances of six popular DT algorithms were 

compared in this chapter. 

Experimental results demonstrate that RF is the best DT algorithm and the proposed 

BBHA wrapper based FS approach outperforms the performances of BPSO, GA, SA, 

and CFS in terms of AUC, accuracy, MCC, sensitivity, specificity, and the number of 

selected optimized features. Furthermore, if the computational cost is taken into 

account, BBHA wrapper approach performs much faster than BPSO and GA. BBHA 

only needs a single parameter for configuring the model and is simple to understand.  

 

 

 

 

 

 

 



43 

 

   CHAPTER 3 

  WRAPPER BASED HYBRID APPROACH FOR GENE  

SELECTION 

3.   

 Introduction 

Gene selection from high throughput technologies, such as microarrays, which is a well-

known NP-hard problem, is a difficult task because of gene interactions and the large 

search space. Gene selection aims to find the smallest possible set of relevant genes that 

could obtain the optimal performance. Although many gene selection approaches have 

been introduced most of them still suffer from the problems of becoming stuck in local 

optima and excessive computational cost. To solve these problems an efficient global 

search technique is required. Metaheuristic approaches are powerful global search 

algorithms, which are capable of handling high dimensional optimization problems with 

satisfactory solutions within a reasonable time. Hence, we propose a new wrapper 

approach that hybridizes the modified version of Binary Particle Swarm Optimization 

(BPSOPG1) and the Binary Black Hole Algorithm (BBHA), called BPSOPG1-BBHA, 

for solving gene selection problem. In Chapter 2, we have shown that the simplicity, 

lower computational cost, fast convergence, and single parameter are some advantages 

of BBHA when compared with other meta-heuristic algorithms. Therefore, BBHA is 

embedded in the BPSO to overcome the drawbacks of PSO. Since BBHA and PSOPG1 

are easy to implement, have fewer parameters, and both of them can converge more 

quickly, hybridization of them which was assumed to make a powerful approach for 

solving gene selection problem was considered in this chapter. Combining BPSOPG1 

with BBHA has not been considered yet. 
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3.1.1 Chapter Goals 

The overall goal of this chapter is to present a new wrapper approach based on hybrid of 

BBHA and BPSOPG1 to address the problem of gene selection on high-dimensional 

gene expression data in order to significantly reduce the number of genes and increase 

the classification performance. To achieve this goal, BBHA is embedded in the 

BPSOPG1 and plays the role of a local optimizer for each iteration. The SPLSDA 

method with LOOCV schema served as fitness function of hybrid BPSOPG1/BBHA. 

SPLSDA has been found useful in handling classification tasks in the case of the high 

dimensionality and small sample data. The performance of our proposed method was 

evaluated on four Gene Expression Omnibus (GEO) datasets taken from the National 

Centers for Biotechnology Information (NCBI). In addition, the performance of our 

proposed approach was compared with three classifiers, and eight gene selection 

approaches; six well-known optimization algorithms and two filter approaches. 

Moreover, the optimal subset of genes in each GEO dataset were found and Fuzzy 

Unordered Rule Induction Algorithm (FURIA) was used to find the relation between 

candidate genes. Specifically, the highlights of this chapter are: 

 We proposed a new wrapper approach based on hybrid modified version of 

Binary Particle Swarm Optimization (BPSOPG1) and the Binary Black Hole 

Algorithm (BBHA), called BPSOPG1-BBHA, for solving gene selection 

problem. 

 We tested the effectiveness of BPSOPG1-BBHA wrapper based gene selection 

method with three classifiers, Sparse Partial Least Squares Discriminant 

Analysis (SPLSDA), k-nearest neighbor, and Naive Bayes, on four clinical 

datasets from NCBI GEO (GSE25136, GSE70769, GSE70768, and GSE31684).  

 We statistically compared the performance of the proposed BPSOPG1-BBHA 

wrapper based approach with the firefly, ant colony, bat search, genetic 

algorithm, harmony search, Fast Correlation-Based Filter (FCBF), and 

Correlation-based Feature Subset Selection (CFS) algorithms in terms of three 

evaluation criteria (number of genes, accuracy, and AUC) .  

 We found the optimal subset of genes in each GEO dataset and used Fuzzy 

Unordered Rule Induction Algorithm (FURIA) to find the relation between 

candidate genes for biological point of view 
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 The experimental results and statistical analysis have demonstrated that 

BPSOPG1-BBHA/SPLSDA compare with many other methods, leads to a better 

performance in term of accuracy, AUC, and number of selected genes. The 

obtained results indicate that the BPSOPG1-BBHA/SPLSDA is a useful tool for 

selecting marker genes in clinical datasets.   

 It was also shown that applying BBHA as the local optimizer for BPSOPG1 can 

significantly improve the performance of BPSOPG1 and help it to avoid being 

trapped in a local optimum. 

3.1.2 Chapter Organization 

The rest of this chapter is organized as follows. Section 3.2 presents algorithms of the 

proposed BPSOPG1-BBHA-SPLSDA wrapper approach for gene selection. Section 3.3 

describes the characteristics of each dataset and parameter settings. Section 3.4 

discusses the experimental results on 4 GEO datasets. Section 3.5 presents a discussion 

of the results and, finally, Section 3.6 provides a summary of this chapter. 

 Proposed Approach Based on Hybrid of BPSOPG1 and BBHA  

The main idea of hybrid BPSOPG1/BBHA algorithm is to apply BBHA as a local 

optimizer for BPSOPG1 algorithm in order to improve the performance of it and 

minimize the number of genes. Figure 3.1 shows the flowchart of the hybrid BPSOPG1-

BBHA.  

Firstly, a pre-process step based on a simple backwards selection, a.k.a. recursive 

feature selection (RFE) was done to take the advantages of it. In backwards selection 

the genes are ranked and the less important ones are sequentially eliminated prior to 

modeling. Here, random forest is selected as the model [90]. 

Then I∗D population was generated using optimal feature subset from backwards 

selection by a binary system; 𝐼 stands for the number of particles in a swarm, and D is 

the dimension of the microarray data. The LOOCV classification accuracy of a 

SPLSDA was used to measure the fitness of particles and each star. The BPSOPG1-

BBHA algorithm is presented as below: 

Step.1 Generate I∗D initial population for stars using the optimal feature subset 

from backwards selection. 
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Step.2 Perform BBHA process. Stars begin to move around black hole (best 

star) and update their positions via equations (3.1), (3.2), and (3.3).  

𝑋𝑖𝑑 (𝑡 + 1) = 𝑋𝑖𝑑(𝑡) + 𝑟𝑎𝑛𝑑 × (𝑋𝐵𝐻 − 𝑋𝑖𝑑(𝑡))    𝑖 = 1,2, … , 𝑁                     (3.1) 

𝑆(𝑋𝑖𝑑 (𝑡 + 1)) = 𝑎𝑏𝑠(tanh(𝑋𝑖𝑑 (𝑡 + 1)))                                                             (3.2 ) 

 𝑋𝑖𝑑 (𝑡 + 1) = {
1      If  𝑆(𝑋𝑖𝑑 (𝑡 + 1)) >  0.6 

0     otherwise                             
                                                 (3.3) 

 
Step.3 Check termination. If termination condition is satisfied (maximum 

number of iteration=10), go to Step 4. Otherwise go to Step 2.  

Step.4 The position of new optimized stars are passed to the BPSOPG1 process 

as population of particles. 

Step.5 Compute fitness value of all particles and update 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡. 

Step.6 Perform BPSOPG1 operators. Each particle updates its velocity and 

position according to equations (3.4), (3.5), (3.6) and (3.7). 

   𝑣𝑖𝑑
𝑛𝑒𝑤 = 𝑤 × 𝑣𝑖𝑑

𝑜𝑙𝑑  + 𝑐1  𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖𝑑
𝑜𝑙𝑑  − 𝑥𝑖𝑑

𝑜𝑙𝑑) +𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡𝑑
𝑜𝑙𝑑  −  𝑥𝑖𝑑

𝑜𝑙𝑑)        (3.4) 

   if      𝑣𝑖𝑑
𝑛𝑒𝑤 ∉ (𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥)   then  𝑣𝑖𝑑

𝑛𝑒𝑤 = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (𝑣𝑚𝑎𝑥, 𝑣𝑖𝑑
𝑛𝑒𝑤), 𝑣𝑚𝑖𝑛)     (3.5) 

    𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑣𝑖𝑑
𝑛𝑒𝑤) =

1

1+𝑒−𝑣𝑖𝑑
𝑛𝑒𝑤                                                                              (3.6) 

   if  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑣𝑖𝑑
𝑛𝑒𝑤) >   𝑟3 then     𝑥𝑖𝑑

𝑛𝑒𝑤 = 1  else    𝑥𝑖𝑑
𝑛𝑒𝑤 = 0                           (3.7) 

 

Step.7 Judge termination. If satisfied, output the final solution. Otherwise go to 

Step 2. 

 The BPSOPG1 was configured to contain 10 particles and depend on the dataset 

different number of iterations was considered as the termination criterion of it. The 

number of stars in the BBHA was equal to the number of particles. After each iteration 

of the BPSO, the BBHA was run 10 times.  
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Figure 3.1 Flowchart of Hybrid BPSOPG1/BBHA 
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 Datasets and Parameter Settings 

3.3.1 Datasets 

A set of experiments have been conducted on 4 GEO datasets from NCBI. Table 1.2 

shows a summary description of these four datasets. GSE25136 as gene expression 

profile data associated with prostate cancer (PCa) recurrence and obtained from 79 

cases, 39 of which were classified as having disease recurrence. This dataset has been 

used in the derivation of molecular signatures for recurrent PCa [49]. 

GSE70769 and GSE70768 contain expression profiling for PCa tissue samples that 

obtained from patients undergoing radical prostatectomy. These datasets include 

missing values and few labels are undetermined. We replace missing values with means 

of data and remove unlabeled column then combine these GEO datasets. Because the 

platform of these two datasets are the same there is no needing for removing batch 

effects. These datasets have been utilized in the identification of molecular profiles for 

recurrent PCa [48].   

GSE31684 is a microarray data associated with bladder cancer recurrence that obtained 

from 93 bladder cancer patients managed by radical cystectomy. This dataset has been 

utilized for prediction of survival in high risk bladder cancer [67]. All GSE series matrix 

files, platform sets, and annotations file were downloaded and parsed by GEO query 

package in Bioconductor on R. 

3.3.2 Parameter Setting 

In order to examine the performance of the proposed approach, eight gene selection 

approaches are utilized, which are firefly, ant colony, bat search, genetic algorithm, 

harmony search, FCBF, and CFS. As a wrapper approach, the proposed hybrid 

algorithm requires a classifier to evaluate the fitness of the selected gene subsets. Three 

simple and commonly used classification algorithms are used here. There are Naive 

Bayes, KNN (K=1), and SPLSDA. For Naive Bayes classifier “e1071” package and for 

KNN and SPLSDA classifiers “caret” packages on R language have been utilized. 

SPLSDA has two key tuning parameters, thresholding parameter (eta) and number of 

hidden components (K).  

For each dataset the tuning parameters for SPLSDA have been chosen by 10-fold cross-

validation. For this aim the “cv.splsda” function from “spls” package have been used. 
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Since the datasets include a small number of samples, LOOCV classification accuracy 

of a classifier is utilized as evaluator of each selected gene subset. In LOOCV schema, 

one sample is evaluated as the test set while the remaining samples are used as the train 

set. 

The experiments of firefly, ant colony, bat search, genetic algorithm, harmony search, 

FCBF, and CFS are conducted using Weka. Except number of swarms and iterations for 

optimization algorithms which are equal with proposed algorithm, all the settings are 

kept to the defaults because they can achieve good performance. The detailed settings 

are shown in Table 3.1. For each dataset, the experiments of each algorithm has been 

conducted for 10 independent runs to avoid bias. The non-parametric statistical 

significance test namely Wilcoxon test is done between the Area Under the ROC Curve 

(AUC) of different algorithms. 0.05 is chosen as the significance level (or confidence 

interval is 95%). 

 Results and Analyses 

The LOOCV classification accuracy and AUC of several classifiers by using all genes 

are summarized in Table 3.2. This table demonstrate that without using the gene 

selection approaches, classifiers are not able to capture the pattern on data. In order to 

accelerate the speed of convergence, alleviate the burden of computation, and improve 

the performance of BPSOPG1/BBHA for gene selection a pre-process step based on 

RF-RFE is done. The RF-RFE finds an optimal subset of 1100, 600, and 850 genes for 

GSE25136, (GSE70769, GSE70768) and GSE31684, respectively. Figure 3.2 shows the 

resampling results for the candidate subset sizes evaluated during the RF-RFE process. 

The performance of different classifiers on these optimal genes are shown in Table 3.3. 

From Table 3.3, it is not difficult to gain a fact that gene selection on these GEO 

datasets can improve the performance of classifiers. Then we compared the performance 

of hybrid BPSOPG1/BBHA proposed in this chapter with the single BPSOPG1 and 

single BBHA algorithms with the SPLSDA classifier. The corresponding parameter 

settings of the two algorithms are the same as the hybrid BPSOPG1/BBHA method. 

Table 3.4 shows the classification accuracy, AUC (%), and the number of genes that 

obtained by the three methods with SPLSDA classifier for the best random seed. From 

Table 3.4, we can see the perfect performance is obtained on GSE25136 and GSE31684 

using the hybrid BPSOPG1/BBHA methods. For the datset2, an accuracy of 98.49% is 
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obtained by the proposed method, which is significantly better than the results obtained 

by single BPSOPG1 or BBHA method. Also, the variation curves (number of iterations 

vs. classification accuracy and number of iterations vs. number of selected genes) of 

these three methods are described in Figure 3.3.  This figure indicates that the 

convergence speed of BPSOPG1 is slower compared with BBHA and hybrid 

BPSOPG1/BBHA for all datasets. Until the end cycle, it can only find a not excellent 

enough solution with highest number of genes. In contrast, hybrid algorithm proposed in 

this chapter rapidly converge to an excellent solution with least number of genes in the 

5th cycle for all datasets. We can draw a conclusion that BPSOPG1 algorithm with 

BBHA operators integrated in has excellent performance for gene selection compared to 

single BBHA and especially BPSOPG1. 

A summary of the best subsets of genes found for each GEO dataset by the proposed 

approach is listed in Table 3.5. Furthermore, to see the relation between founded genes 

Table 3.6 shows the AUC and extracted rules by FURIA. A Heat map of two-way 

hierarchical clustering based on correlation distance and average linkage for these 

significant genes are shown in Figure 3.4. 

 In order to illustrate the efficient performance of the proposed gene selection approach, 

Table 3.7 reports accuracy, AUC, and number of genes selected by Naive Bayes, KNN, 

and SPLSDA combined with eight well-known gene selection algorithms, which all 

using LOOCV evaluation. In Table 3.7, “T” shows the result of the Wilcoxon test, 

where “-” indicates that the classification performance (AUC) of 

BPSOPG1/BBHA/SPLSDA is significantly better than other approaches. The best result 

are shown in bold type. As shown in Table 3.7, for the GSE25136, our proposed hybrid 

algorithm achieves the perfect performance using SPLSDA with an average of 40.66 

genes. The combination of proposed hybrid approach with KNN classifier is the second 

highest ones. The BPSOPG1/BBHA hybrid approach with NB classifier yields to 

averagely 26.25 number of genes which is the least one compare to other approaches. 

For the (GSE70769, GSE70768) and GSE31684, the best performance is also obtained 

by the proposed gene selection approach with SPLSDA classifier. The combination of 

proposed approach with KNN and NB classifiers are placed in the next best ones.    

From Table 3.7, it can be seen that our proposed BPSOPG1/BBHA algorithm selects a 

smaller gene subset with better performance (LOOCV classification accuracy and AUC) 
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than many other methods in all GEO datasets. Therefore, our proposed algorithm are 

more effective for optimal gene subset selection and pattern classification. 

Table 3.1 Parameters used for experiments 

BPSO/BBHA parameters GSE25136 
(GSE70769, 

GSE70768) 
GSE31684 

Population 10 10 10 

Individual length 1100 600 850 

Termination iterations 20 30 30 

Inertia weight (𝜔) 0.4 0.4 0.4 

Acceleration constants (𝑐1 =  𝑐2) 2 2 2 

𝑘 4 7 5 

𝑒𝑡𝑎 0.1 0.1 0.1 

Table 3.2 Prediction results of the 6 well-known classifiers on data without gene 

selection 

dataset 
metric KNN 

Random 

Forest 

Naive 

Bayes 

Simple 

logistic 
SGD 

Logit 

boost 

GSE25136 accuracy 59.49 59.49 64.55 68.35 65.82 70.88 

 AUC 59.40 66.80 64.50 74.20 65.70 72.50 

        

(GSE70769, GSE70768) accuracy 57.89 69.92 59.39 64.66 66.91 63.15 

 AUC 51.70 69.8 63.20 69.60 65.70 65.20 

        

GSE31684 accuracy 51.61 60.21 55.91 44.08 54.83 40.86 

 AUC 51.90 48.80 51.40 44.10 55.10 34.90 

Table 3.3 Prediction results of the 10 well-known classifiers on selected gene subsets by 

RF-RFE 

dataset metric KNN SMO 
Random 

Forest 

Hoeffding 

Tree 

Naive 

Bayes 

Simple 

logistic 
SGD 

Logit 

boost 

Bayes 

Net 
SPLSDA 

GSE25136 accuracy 78.48 89.87 78.48 75.94 77.21 72.15 84.81 72.15 84.81 93.67 

 AUC 78.50 89.80 92.40 78.80 79.40 82.90 84.70 80.80 89.60 95.60 

            

(GSE70769, 

GSE70768) 
accuracy 69.92 83.45 83.45 56.39 59.39 74.43 86.46 76.69 63.90 81.20 

 AUC 67.10 82 85.20 67.20 73.50 77.10 85.10 83.20 79.60 87.90 

            

GSE31684 accuracy 63.44 76.34 78.49 75.26 76.34 68.81 75.26 60.21 62.36 78.49 

 AUC 61 75 85.70 80.50 80.20 78.90 73.40 63.30 64.90 90.30 
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Table 3.4 The performance of three methods with SPLSDA classifier for the best 

random seed 

Method GSE25136 (GSE70769, GSE70768) GSE31684 

 accuracy AUC #Genes accuracy AUC #Genes accuracy AUC #Genes 

Single 

BPSOPG1 

96.20 95.1 556 87.96 89.10 292 90.32 92.53 394 

Single BBHA 98.73 97.6 303 92.48 93.66 189 94.62 95.5 150 

Hybrid 

BPSOPG1/ 

BBHA 

100 100 14 98.49 98.36 42 100 100 24 

Table 3.5 The best subsets of genes/probe set IDs which found by BPSOPG1/ BBHA/ 

SPLSDA approach 

dataset 

AUC 

(#of 

genes) 

Gene symbol 

GSE25136 100 

(14) 

RS1, ZNF407, LOC101928625 /// MED21, LRRC59, EVC, 

ICAM1, HGD, IGHG1 ///MIR8071-2, MAP2K5, ZSCAN12, 

NPAP1, COX16 /// SYNJ2BP-COX16, LOC101060373 /// 

NOMO1 /// NOMO2 /// NOMO3, EMC10 

 

(GSE70769, 

GSE70768) 

98.80 

(42) 

 

 

NRN1, HP, BG214874, CACNG5, LOC100129222, RNASE6, 

RAB6A, GPBP1L1, SNX10, ATP6V0D2, TTC3, POLR1C, 

LOC100128525, NDUFA5, LOC651503, SDHALP1, KLC4, 

RPESP, APOE, FBXO42, FAM179B, SLC43A3, BID,  TJP2, 

LOC652640, LOC642342, LOC391358, TPM2, DPYSL4, 

LYSMD1, SNRK, SLC26A5, KIAA1012, AY375451, 

CD245475, TTTY17A, STXBP6, CDKN1B, LOC648695, 

LOC100127884, C16orf5, AI792205 

 

GSE31684 100 

(24) 

MPDZ, TMEM245, EPB41L3, 236041_at, LPAR2, SBNO1, 

BCAS4, YIPF1, DDX41, SOX6, SYTL4, CNIH2, ZNF395, 

CAPN13, UBE2W, LOC100505902, 210848_at, FAM115A /// 

LOC100294033, LAMP1, MAP2K5, ZMIZ2, JMJD7 /// JMJD7-

PLA2G4B, RPAP2, NDUFAF5 

Table 3.6 Extracted Rules by FURIA for the best subsets of genes  

dataset AUC Extracted Rules with FURIA 

GSE25136 80.9 1) if (RS1≤ 651.6) and (EMC10 ≥1355.8)  

and (LOC101928625(MED21) ≤ 1785.8) => class =Non-R (CF = 0.95) 

2) if (ICAM1≤ 27.6, 29.8]) and (ZSCAN12 ≥ 73.6) => class =Non-R 

(CF = 0.93) 

3) if (RS1≤ 529.5) and (MAP2K5≤ 39.7) and (LRRC59≤ 356.8) => 

class =Non-R (CF = 0.94) 

4) if (LOC101928625(MED21)≤ 1128.9) and (HGD ≥ 761.5) => class 

=Non-R (CF = 0.92) 

5) if (RS1 ≥ 660.4) and (ICAM1 ≥ 11.4) => class =R (CF = 0.96) 
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Table 3.6 (cont’d) 

(GSE70769, 

GSE70768) 
79.60 1) if (ATP6V0D2 ≤ 6.255025) and (CACNG5 ≤ 5.724875) and 

(DPYSL4 ≤ 8.592791) => class=R (CF = 0.95) 

2) if (BG214874 ≤ 6.485483) and (LOC391358 ≤ 5.804915) => 

class=R (CF = 0.93) 

3) if (KLC4 ≤ 5.684083) and (LOC100128525 ≤ 5.960904) => class=R 

(CF = 0.9) 

4) if (ATP6V0D2 > 6.268148) and (SDHALP1≤6.733884) and 

(FAM179B≤7.130155) and (RNASE6≥6.56459) => class=Non-R  (CF 

= 0.98)  

5) if (SLC43A3 ≤6.045351) and (CACNG5≥ 5.768709) and (RAB6A≥ 

6.145977) => class=Non-R (CF = 0.96) 

6) if (KLC4 ≥ 5.717375) and (NDUFA5 ≤6.091466) => class=Non-R 

(CF = 0.92) 

7) if (NRN1 ≥ 6.420847) and (DPYSL4 ≥7.825856) => class=Non-R 

(CF = 0.96) 

8) if  (LOC648695 ≤ 8.100189) and (GPBP1L1 ≤7.026667) => 

class=Non-R (CF = 0.97) 

 

GSE31684 74.70 1) if (MPDZ≤ 5.993157) and (LPAR2≤ 4.790078) and (YIPF1≤ 

8.503948) and (SBNO1≥5.080016) => class=Non-R (CF = 0.98) 

2) if (NDUFAF5≥3.908629) and (DDX41≤ 8.596171) => class= Non-

R (CF = 0.94) 

3) if (EPB41L3≤ 3.768221) and (236041_at ≥3.039413) => class= 

Non-R (CF = 0.93) 

4) if (ZMIZ2≤ 4.526462) and (BCAS4≥ 2.376569) and (YIPF1≤ 

8.082038) => class= Non-R (CF = 0.92) 

5) if (MPDZ ≥5.980839) and (NDUFAF5<3.91553) and 

(EPB41L3>3.768221) => class=R (CF = 0.94) 

6) if (EPB41L3≥6.690668) and (FAM115A(LOC100294033) ≥ 

8.021252) and (BCAS4≤ 2.521673) and (DDX41≥8.403737) => 

class=R (CF = 0.93) 

Table 3.7 The performance of eight gene selection approaches with three classifiers on 

selected gene subsets by RF-RFE 

  GSE25136 (GSE70769, GSE70768) GSE31684 

Classifier 
Selection 
algorithm 

Accuracy AUC Accuracy AUC Accuracy AUC 

  Size Best Mean SD Best Mean SD T Size Best Mean SD Best Mean SD T Size Best Mean SD Best Mean SD T 

NB Fire Fly 453.75 91.13 89.55 1.89 90.5 88.8 1.36 - 71.75 69.17 63.34 4.52 77.9 73.8 3.43 - 399.2 92.47 90.31 2.90 92.4 90.37 2.43 - 

 Ant colony 429.5 92.4 89.86 1.79 94.5 89.9 3.34 - 60.25 66.91 63.15 3.57 79.3 76.67 3.21 - 392.7 92.47 89.78 2.55 92.3 90.17 2.16 - 
 Bat search 348 91.13 88.91 1.59 91 88.75 2.46 - 57.75 66.91 63.34 3.02 80.1 75.02 4.68 - 394.7 91.39 87.89 2.68 93.8 90.22 2.80 - 

 GA 435.5 91.13 86.70 3 91.6 86.25 3.71 - 41.25 69.17 63.52 4.93 79.4 76.27 3.09 - 377 90.32 88.97 1.02 90.2 87.65 2.36 - 

 harmony search 201.25 89.87 87.97 2.19 93.4 90.25 3.13 - 25.5 70.67 67.47 2.24 78.7 76.15 3.03 - 191 91.39 86.55 3.97 95.5 89.27 4.45 - 
 Geometric PSO  347.75 91.13 89.86 1.78 92.7 90.25 2.88 - 74.5 68.42 64.28 4 79.1 76.2 3.61 - 375.7 94.62 92.73 1.61 96.6 93.75 1.94 - 

 FCBF 60 91.13   96.2   - 29 60.90   84.2   - 19 76.34   83.1   - 

 CFS  75 89.87   94.50   - 38 60.15   83.3   - 33 82.79   91.2   - 
 BPSOPG1/BBHA 26.25 97.46 95.13 1.63 97.37 95.64 2.24 - 10 82.70 78.37 3.15 81.80 78.1 2.87 - 33.5 95.69 94.34 1.02 94.1 93.61 0.49 - 

KNN Fire Fly 529 88.6 88.28 0.63 88.6 88.07 0.61 - 248 85.71 83.64 1.42 83.6 81.2 1.62 - 317.7 81.72 80.10 1.39 80 78.6 1.31 - 

(𝑘 = 1) Ant colony 509.25 88.6 88.28 0.63 88.6 88.27 0.65 - 213 84.96 80.63 3.03 83.5 78.12 3.73 - 299.5 81.72 80.91 1.03 80 79.02 0.98 - 

 Bat search 485.5 87.34 85.44 1.63 87.3 85.37 1.63 - 252.7 80.45 78.38 1.42 78 76.02 1.39 - 259 81.72 76.33 3.72 80.3 74.72 3.73 - 
 GA 513.25 89.87 88.6 1.03 89.9 88.6 1.06 - 268.7 81.95 79.88 2.40 79.8 77.62 2.51 - 267.2 80.64 78.49 1.75 78 76.42 1.93 - 

 harmony search 266 87.34 85.12 2.16 87.2 85 2.18 - 91 80.45 78.38 1.66 77.6 76.37 1.50 - 133.7 77.41 77.14 0.53 75.9 75.15 0.58 - 

 Geometric PSO  487.25 89.87 88.6 1.03 89.8 88.55 1.02 - 236.7 84.21 81.57 1.99 82.6 79.45 2.49 - 309 83.87 80.90 2.96 82.2 79.12 3.52 - 
 FCBF 60 77.20   77.21   - 29 75.93   71.8   - 19 68.81   66.4   - 

 CFS  75 79.74   79.70   - 38 75.18   70.9   - 33 73.11   70.4   - 

 BPSOPG1/BBHA 84.25 98.73 96.19 2.30 97.2 95.4 2.32 - 52.5 90.22 89.04 0.8 89.10 87.52 1.33 - 72.75 90.32 89.24 1.96 88.1 87.05 1.46 - 
SPLSDA BPSOPG1/BBHA 40.66 100 100 0 100 100 0  58 98.49 96.98 1.22 98.80 96.70 1.46  38.75 100 99.19 1.03 100 99.25 0.67  
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Figure 3.2 Choosing Size of the Signature by the RF-RFE Process 
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Figure 3.3 Variation Curves of Classification Accuracy and Number of Optimized 

Genes for BBHA, BPSOPG1, and hybrid Approach 
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Figure 3.4 Heat Map Representation with Two-Way Hierarchical Clustering Based on 

Correlation Distance and Average Linkage for Optimal Gene Subsets.  
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 Discussion 

Because of more emphasizing on presented PSOPG1/BBHA/SPLSDA hybrid 

algorithm, we perform further analysis with more details on these results. The optimal 

gene signatures generated by training with the GSE25136, (GSE70769, GSE70768) and 

GSE31684 datasets contained 14, 42, and 24 genes, respectively. In this section, we 

individually examine these genes for relevance in the diagnosis of recurrent PCa 

(GSE25136, GSE70769, and GSE70768) and recurrent bladder cancer (GSE31684).  

Of the fourteen markers of the prognostic gene signature derived from the GSE25136, 

RS1was placed on the top of ranked genes with corrected P-value <0.004 (using 

“limma” package in R). For GSE70769, GSE70768, and GSE31684, none of the genes 

were identified as differentially expression genes (DEGs).  

The role of identified optimal gene signatures in the PCa development are described as 

follows.  

The RS1gene: RS1 protein levels has been reported to increase in patients with 

recurrence PCa within 5 years, which is negatively correlated with AR expression, in 

addition a meta-analysis showed that the RS1 gene was amplified in up to 32% of 

castration-resistant prostate tumours. The ICAM1 gene: It has been reported that a 

region on chromosome 19p13.2 containing the genes ICAM1, ICAM4 and ICAM5 

influences breast and PCa risk. ICAM1 as the target gene of microRNA-296-3p 

promotes metastasis of PCa by possible enhancing survival of natural killer cell-

resistant circulating tumour cells. It is also known as a potential target for PCa therapy 

and prognosis. Suppression of IGHG1 gene expression by siRNA leads to growth 

inhibition and apoptosis induction in human PCa cell. MAP2K5 (MEK5) is known as a 

differentially methylated promoters in PCa cell lines. MEK5 overexpression is 

associated with metastatic PCa, and stimulates proliferation, MMP-9 expression and 

invasion. ZSCAN12 as the prostate tumor DNA methylation is associated with cigarette 

smoking and adverse prostate cancer outcomes . Leucine-rich repeat-containing protein 

59 (LRRC59) mediates nuclear import of cancerous inhibitor of PP2A in PCa cells . 

The expression of this gene associates with PCa recurrence, metastases, and/or PCa-

specific death after radical prostatectomy. The TJP2 gene is known as a differentially 

methylated promoter in PCa cell lines. It has been reported that rearrangement of TTC3 

gene occurs in PCa. The expression of TPM2 are downregulated in PCa and there is a 

significant negative correlation between the expression of the TPM2 and the prognosis 
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of PCa. LOC391358 has been reported as the top 500 most abundant (by RPKM) in one 

or more LuCaP in. SLC43A3, CACNG5, and HGD have been reported as DEGs in 

neuroendocrine vs adenocarcinoma LuCaPs (n=24) FDR < 0.01. The mRNA level and 

genetic polymorphism of haptoglobin (HP) is related to the prognosis of advanced 

castration-resistant PCa patients treated with peptide vaccination. Apolipoprotein E 

(APOE) gene polymorphism influences aggressive behavior in PCa cells by 

deregulating cholesterol homeostasis . BID as the anti-apoptotic member of the Bcl-2 

family proteins is overexpressed in PCa and is promising molecular target for 

modulating chemo resistance of PCa. CDKN1B also known as p27Kip1 is a useful 

prognostic marker for PCa. The use of this protein in clinical practice can improve 

prognosis prediction, disease screening and treatment response of PCa. Also, a 

polymorphism in the CDKN1B gene is associated with increased risk of hereditary PCa. 

We apply FURIA on optimal subset of genes which obtained by the introduced hybrid 

approach in Table 3.6 to use for extracting rules between them. We find 5 rules with 

80.9% AUC using LOOCV for GSE25136. In GSE25136, classification is performed 

using eight genes (RS1, EMC10, LOC101928625 (MED21), ICAM1, ZSCAN12, 

MAP2K5, LRRC59, and HGD).  

The rest of the Table 3.6 shows the rules for the (GSE70769, GSE70768) and 

GSE31684. The obtained AUC for these GEO datasets on best subset of genes are 

79.60% with 8 rules and 74.70% with 6 rules, respectively. Finally, we compared the 

performance of our predictive model derived from the 3 GEO datasets with those of the 

original studies that were previously derived from the same datasets [48, 49, 67]. For 

GSE25136, our signature performed better than the predictive nomogram (AUC: 0. 86, 

sensitivity: 90, specificity:73), genetic prognostic signature (AUC: 0. 90, sensitivity: 90, 

specificity:85) , and the hybrid predictive model (combination of genetic and nomogram 

data) (AUC: 0. 96, sensitivity: 90, specificity:95) [49], in terms of AUC, sensitivity, and 

specificity. In [49], LOOCV AUC of LDA classifier has been used. We utilized 

SPLSDA classifier and achieved (AUC: 100, sensitivity: 97.5, specificity: 100) with 

only 14 genes. None of candidate genes are common with original study. 

In original study [48] for (GSE70769, GSE70768) datasets, based on statistical analysis, 

100 discriminating genes were identified to consistently predict biochemical relapse for 

PCa. The performance of 100-gene set in predicting relapse has been reported as the log 

rank p-value (0.0330). However, we combined these two datasets and by applying soft 
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computing technique identified a high-performance signature (AUC: 98.80) consisted of 

only 42 genes. None of candidate genes are common with original study.  

In original study [67] for GSE31684 dataset, based on statistical analysis (corrected P-

value) for patients who died of bladder cancer which labeled as a (recurrence/death of 

disease), no significantly DEGs were identified to consistently predict biochemical 

relapse for bladder cancer. Therefore, the restricting were performed on samples and 

only the patients with pathologically organ-confined MI (pT2N0) tumors were 

considered for identifying DEGs in the reference paper. However, we did not perform 

any restricting on samples and reached perfect performance with only 24 genes for 

predicting recurrence of bladder cancer. The biologically relevant of these informative 

genes which are extracted by the proposed method to build high performance prediction 

model is remains unknown. 

 Chapter Summary 

Gene selection plays a crucial role in developing a successful disease diagnostic system 

for microarray data. In order to identify the most beneficial genes for classification, this 

chapter proposed a hybrid approach based on BPSOPG1 and BBHA algorithm which is 

combined with SPLSDA classifier.  

The experimental results running on four GEO datasets and statistical analysis have 

demonstrated that the proposed approach compare with many other methods, leads to a 

better performance in term of accuracy, AUC, and number of selected genes. The 

proposed method not only effectively reduced the number of genes, but also obtained a 

high classification accuracy. The obtained results indicate that the BPSOPG1-

BBHA/SPLSDA is a useful tool for selecting informative genes in clinical datasets. 

Moreover, It was also shown that applying BBHA as the local optimizer for BPSOPG1 

can significantly improve the performance of BPSOPG1 and help it to avoid being 

trapped in a local optimum. 
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CHAPTER 4 

 META ANALYSIS OF MIRNA EXPRESSION PROFILES FOR 

PROSTATE CANCER RECURRENCE 

 

4.   

 Introduction 

Prostate cancer (PCa) is a leading reason of death in men and the most diagnosed 

malignancy in the western countries at the present time. It is more widespread in older 

men (above 65 years old). After radical prostatectomy (RP), nearly 30% of men develop 

clinical recurrence with high serum prostate-specific antigen levels. An important 

challenge in PCa research is to identify effective predictors of tumor recurrence. 

Alterations in microRNAs equally contribute to PCa initiation and progression. Several 

miRNA microarray studies have been conducted in recurrence PCa, but the results 

varies among different studies.  

Meta-analysis utilizes statistical methods to contrast and combine results from multiple 

studies in the hope of increasing the statistical power and reproducibility over individual 

studies and identifying patterns across studies. Therefore, meta-analysis of some 

miRNA expression datasets of PCa progression can give a potentially significant list of 

co-deregulated miRNAs in PCa progression, which is important to specify pathways in 

which the miRNAs of interest and their target genes are involved. 

4.1.1 Chapter Goals 

The goal of this chapter is to analyze miRNA expression profile in PCa progression 

considering 5 studies (6 datasets), in order to increase the probability of revealing truly 
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significant deregulated miRNA genes, which should have higher potentials to be 

utilized as new biomarkers for the disease. This meta-analysis increases the significance 

of results. Specifically, the highlights of this chapter are: 

 We conducted a meta-analysis of 6 available miRNA expression datasets and 

identified a panel of co-deregulated miRNA genes. 

 Co-deregulated miRNAs were investigated for network interrelation by MIROB. 

 For TF and target genes of co-deregulated miRNAs Gene Ontology (GO), 

KEGG pathways, and Pathway Commons Analysis were applied. 

 A ROC test was performed for the candidate miRNAs in PCa recurrence using 

the extracted normalized expression signal values of each miRNA in each GEO 

datasets 

 The best combination of candidate co-deregulated miRNAs that predicted BCR 

of PCa after RP with very high accuracy was identified using a soft computing 

technique (PSO/ multinomial logistic regression) for each GEO dataset. 

 A comparison between expression of the co-deregulated microRNAs in 

recurrent vs. non-recurrent PCa was done by plotting boxplots 

4.1.2 Chapter Organization 

The remainder of this chapter is organized as follows. The section 4.2 presents the 

design of the experiments. The results are presented in section 4.3. The section 4.4 

presents the discussions .The section 4.5 provides a summary of this chapter. 

 Design of Experiments 

4.2.1 Literature Analysis 

There are a limited number of reports in the literature studied miRNAs in PCa 

progression. We systematically queried for these studies from PubMed database. 

The following Medical Subjective Heading (MeSH) and Embase tree were used: 

“recurrence” or “recurrence” and “prostatic neoplasms” or “prostate cancer” and 

“micrornas” or “microRNA” and “gene expression” or “expression”. In addition, 

publicly available microRNA data sets were searched by “RISmed” package in R to 

ensure no relevant studies were missed. Through database searching, a total of 24 

studies was identified. Of these, 19 studies were retained after rejecting repetition. 
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According to the title and abstract, a total of 14 studies was excluded. Review, case 

report, animal experiment, no association with PCa, and experiment on DNA 

microarray were the reasons for excluding these articles. The full-text articles were 

evaluated for the remaining 5 studies, and all of them (6 datasets) were retained in the 

final meta-analysis. These miRNA data sets were obtained from the National Centers 

for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database 

(http://www.ncbi.nlm.nih.gov/geo/). 

4.2.2 MiRNA Microarray Datasets 

In this study, a total of six microRNA datasets related to the recurrent PCa after RP 

(GSE55323 [54], GSE26245 and GSE26247 [55], GSE65061 [61], GSE62610 [56], and 

GSE46738 [58] ) met the inclusion criteria and were selected for meta-analysis.   

In the GSE55323, a total of 41 recurrent and 41 non-recurrent tumors after RP, which 

have been obtained from Baylor College of Medicine Prostate Cancer program, have 

been considered for performing miRNA profiling. Recurrence has been defined as a two 

consecutive serum PSAs greater than 0.2 ng/ml. To carry out microarray analysis, 20 

samples from each group have been profiled using miRNA microarray chips. 

In GSE26245 and GSE26247, total RNA from 71 formalin-fixed-paraffin-embedded 

(FFPE) specimens with known long-term outcome have been used for performing 

DASL expression profiling with a custom-designed panel of 522 PCa relevant genes. 

Recurrence has been defined as a two consecutive serum PSAs greater than 0.2 ng/ml. 

In the GSE26245, samples from 71 patients (29 with BCR and 42 without BCR) and in 

the GSE26247, samples from 82 patients (29 with BCR and 53 without BCR) have been 

used. In this study, the samples with unknown BCR have been removed.  

For the GSE65061, total RNA has been extracted from tumor-enriched 1mm cores from 

43 RP paraffin tissue blocks. Tissue isolated at the time of RP has been utilized for 

miRNA profiling. Thirty-six months has been considered as the cutoff, as it was near 

the median time to recurrence. From 43 patients, 19 were labeled as the samples with 

BCR (≤ 36 months) and 24 as the samples without BCR (> 36 months). 

In the GSE62610, total RNA has been taken from tumor-enriched 1.5 mm cores in 

diameter from 36 formalin fixed paraffin embedded (FFPE) specimens. Then 

biochemical failure has been defined as two consecutive measurements of PSA > 0.2 
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ng/ml. From 36 patients 22 has been classified as the samples with BCR and 14 as the 

samples without BCR. In the GSE62610 most of microRNAs have null expression. 

After excluding miRNAs with no expression in any of the samples, 536 miRNAs have 

been kept for further analysis.  

For GSE46738, total RNA has been taken from tumors from the 51 patients that 

underwent an RP by the same surgeon to treat localized PCa. In the GSE46738, the 

BCR status of samples is not mentioned explicitly. In the present study, according to the 

expression level of the miRNAs with greater statistical power, which has been reported 

in Table 3 of the study [58], tumors were divided into the positive BCR and the negative 

BCR by using clustering techniques. In GSE46738, from 51 samples, 34 were classified 

as the samples with BCR and 17 as the samples without BCR. Table 1.3 has provided 

detailed information of each dataset. 

 The microRNA microarray datasets were obtained from GEO NCBI. All GEO series 

matrix files (GSE), platform sets, and annotation files were downloaded and parsed 

using ‘GEOquery’ package of Bioconductor 3.2 in R version 3.2.2. To identify 

Differentially Expressed (DE) miRNAs in each individual dataset, moderated t-test was 

used. 

4.2.3 Statistical Analysis 

The meta-analysis was performed using the ‘MetaDE’ package in R. The moderated t-

statistic was utilized to identify DE miRNAs in each individual dataset. The Fisher and 

AW were used to combine the p-values from moderated t-test for meta-analysis. 

Fisher’s method is a summation of –log (p-value) across studies. An adjusted p-value of 

< 0.05, based on the False Discovery Rate (FDR) using the Benjamini–Hochberg 

procedure [91] was used to select DE microRNA genes. 

 Results 

4.3.1 Identification of Candidate Prostate Cancer Recurrence Markers for  

Pathway Analysis 

To identify a common DE microRNAs for PCa recurrence, six miRNA studies (Table 

4.1) were analyzed using “MetaDE” package in R. First, individual analysis was 

performed and the moderated t - test was used to calculate the p-values which frequently 

used in meta-analysis. Then, AW and Fisher's method were utilized to combine the p-



64 

 

values and find miRNAs that were differentially expressed between samples with 

recurrence and non- recurrence (+/− BCR) across all studies. From miRNA microarray 

meta-analysis, we identified a total of 37 DE miRNAs including 15 overexpressed and 

22 under expressed microRNAs across at least two datasets under the significance 

threshold of adjusted p-value < 0.05. Figure 4.1 shows the number of DE microRNAs 

against FDR obtained from individual analysis as well as meta-analysis. It is clearly 

seen that the meta-analysis has detected more candidate markers.  Figure 4.2 shows the 

heat map of those 37 microRNAs. A complete list of DE microRNAs has been provided 

in Table 4.2. The miR-449A, miR-484, and miR-579 were among the most significant 

overexpressed genes, while miR-449B, miR-1, miR-137, miR-370, miR-375 were the 

most under expressed genes across all miRNA datasets (See Table 4.2).  

4.3.2 MiRNA Genes Network 

MIROB tool was used to perform regulatory microRNA network analysis to identify 

regulators responsible for the observed patterns in miRNA meta-analysis studies. The 

interaction network was constructed between DE microRNAs, TF and target genes 

associated with the complete set of DE (Figure 4.3). Twenty four of DE miRNAs were 

found in the network. The details of those miRNA gene networks have been given in 

Table 4.3. Key targets, ontology information on target genes, TF and a descriptive 

analysis of expression of the DE miRNAs have been summarized in this table. In 

addition, it shows that DE miRNAs are highly associated with colorectal, PCa, breast, 

and gastric cancer. 

4.3.3 Further Enrichment Analysis 

We performed gene set enrichment analysis by EnrichR tool, using the complete list 

of key targets and TF of DE miRNAs. GO terms and biological pathways were 

significantly overrepresented in the gene list if they showed an adjusted p-value < 0.05. 

Results for gene ontology and enriched biological pathways (KEGG, Reactome) have 

been shown in Table 4.4, Table 4.5, and Table 4.6, respectively. DE microRNAs in 

meta-analysis results were associated with the enriched pathways with adjusted p-value 

< 0.05, including “MicroRNAs in cancer (hsa05206)”, “Pathways in cancer 

(hsa05200)”, “Proteoglycans in cancer (hsa05205)”, “PI3K-Akt signaling pathway 

(hsa04151)”, “Prostate cancer (hsa05215)” and “Signal Transduction (R-HSA-
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162582)”. The most important GO terms associated with key targets and TF of DE 

miRNA genes included “regulation of epithelial cell proliferation (GO: 0050678)”, 

“tissue morphogenesis (GO: 0048729)”, “regulation of cellular response to stress (GO: 

0080135)”, and “positive regulation of cellular component movement (GO: 0051272)”. 

To further investigate the function of DE miRNAs, we mapped them to the KEGG 

database. Eleven of them (miR-1, miR-125A, miR-133A, miR-133B, miR-137, miR-

199A, miR-221, miR-28, miR-324, miR-363 and miR-449A) were found in the 

“miRNAs in cancer” pathway (KEGG-ID: hsa05206; Figure 4.4) with adjusted P-value 

of 7.554e-15 (Table 4.5). Moreover, common pathway analysis revealed that TCF3, 

MYC, MAX, CYP26A1, and SREBF1 significantly interact with DE miRNAs (Figure 

4.5). 

4.3.4 Diagnostic Performance 

We assessed the diagnostic potential of the 37-miRNA signature identified by meta-

analysis. ROC curve analysis gave AUCs from 0.55–0.84 for miRNAs set in each GEO 

dataset (See Figure 4.6). To investigate whether a miRNA signature may increase 

diagnostic accuracy over 37-miRNA signature, we employed a soft computing 

technique (PSO/ logistic regression) and trained and tested on miRNA expression 

profiles. The best subset of DE miRNAs was identified in each GEO dataset and shown 

in Table 4.7.  

Notably, the discriminating power of the identified signatures in each GEO dataset is 

higher than the case where 37-miRNA classifier was considered. For the best subset of 

DE miRNAs in each GEO dataset, the ROC curve analysis gave AUCs from 0.75–0.97 

(See Figure 4.7). The highest diagnostic accuracy (97%) was given for GSE55323 with 

11-miRNAs. Moreover, in order to correctly classify BCR+ vs. BCR- samples, simple 

rules were extracted using a decision tree classifier (Table 4.7). Among six GEO 

datasets, rules with high diagnostic potentials were extracted for GSE46738 and 

GSE26247. 

Finally, a comparison between the expressions of co-deregulated microRNAs in BCR+ 

vs. BCR- was done by plotting boxplots (Figure 4.8). The boxplots were drawn for co-

deregulated microRNAs that are involved in the PCa pathway. 
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Table 4.1 The 37 shared significantly deregulated miRNAs identified in the meta-

analysis. 

  GSE55323 
GSE26245, 

GSE26247 
GSE65061 GSE62610 GSE46738 Merged data 

Down 

regulated 

 

 
P- 

Value 
FC P-value FC P-value FC P-value FC P-value FC 

Meta. 

Stat 

Meta. P 

value 

Meta. 

FDR 

miR-1 0.0039 
-

1.77 
0.0872 -1.2 0.0125 1.72 0.799 -1.08 0.7681 1.07 25.6944 0.0039 0.0342 

miR-133A 0.0256 
-

1.19 
0.01529 -1.22 0.02678 1.62 0.5653 -1.17 0.1863 1.35 24.066 0.00245 0.040833 

miR-133B 0.0041 
-

1.41 
0.3924 1.1 0.0188 

-

1.23 
0.9675 -1.01 0.5129 1.16 22.2085 0.0089 0.0294 

miR-137 0.3072 1.08 0.032 -1.18 0.0091 
-

2.69 
0.0129 

-

11.49 
0.1852 

-

1.08 
30.7251 0.0005 0.019 

miR-221 0.00065 
-

1.51 
0.7294 1.03 

5.40E-

05 
2.33 0.506 1.22 0.099 

-

1.29 
19.26 0.00074 0.0477 

miR-340 0.8665 1.01 0.8959 1 0.6935 
-

1.04 
0.31227 -1.31 <0.001 

-

1.89 
20.7435 0.00044 0.04 

miR-370 0.395 
-

1.12 
0.1995 -1.26 0.1671 -1.3 0.0422 -2.15 0.0037 1.85 26.1757 0.0033 0.0342 

miR-449B 0.0485 -1.2 0.2516 -1.14 NA NA 0.00318 -3.97 0.0676 1.39 22.501 0.000381 0.044 

miR-489 0.2688 
-

1.08 
0.9699 -1 0.6031 1.04 0.0164 -1.67 0.0179 

-

1.54 
19.9117 0.0074 0.0455 

miR-492 0.8683 1.11 0.0269 -1.07 0.0001 -1.4 0.8009 -7.16 0.7347 1.09 26.547 0.0012 0.025 

miR-496 0.001 
-

1.69 
0.1743 -1.17 0.6391 

-

1.05 
0.04696 -3.48 0.05464 

-

1.28 
26.5035 0.0003 0.008 

miR-541 0.4518 1.06 NA NA 0.0042 
-

1.51 
NA NA <0.001 

-

1.69 
21.215 0.00032 0.05 

miR-572 0.2212 
-

1.21 
0.2326 1.08 0.005 

-

1.31 
0.0531 -1.41 0.3638 1.25 24.4192 0.00446 0.0416 

miR-583 0.5071 1.07 0.442 1.1 0.0089 
-

1.42 
NA NA 0.00061 

-

1.51 
27.205 0.00061 0.048 

miR-606 0.3955 1.09 0.2885 -1.21 0.1067 
-

1.22 
0.9715 -1.03 0.001 

-

1.78 
22.7104 0.0042 0.05 

miR-624 0.1552 1.12 0.6498 1.07 0.05 
-

1.26 
0.0296 -1.98 0.0002 

-

1.48 
20.58 0.00039 0.038 

miR-636 0.6497 1.03 0.4884 1.05 0.8496 
-

1.03 
<0.001 -2.06 0.5493 

-

1.09 
95.9233 <0.001 <0.001 

miR-639 0.004 
-

1.16 
0.85501 1.04 0.2339 

-

1.16 
0.3246 -1.2 0.1879 1.13 19.5331 0.0082 0.0455 

miR-661 0.9746 1 0.11 -1.11 0.04517 
-

1.29 
0.00053 -1.32 0.27696 1.06 23.87 0.00125 0.028 

miR-760 0.4702 1.13 0.2285 -1.21 0.0003 
-

1.46 
0.2971 -1.3 0.1529 1.19 24.3088 0.0022 0.035 

miR-890 0.489 
-

1.14 
NA NA 0.0442 

-

1.24 
NA NA 0.0002 

-

1.86 
23.07 0.00014 0.013 

miR-939 0.8377 1.03 NA NA 0.0085 
-

1.32 
NA NA 0.0288 1.46 16.61 0.0023 0.049 

 

Up 

regulated 

 

P-value FC P-value FC P-value FC P-value FC P-value FC 
Meta. 

Stat 

 

Meta. P 

value 

 

Meta. 

FDR 

miR-125A-

5P 
0.24 

-

1.13 
0.632 1.17 0.0011 1.58 0.06081 -1.46 NA NA 22.9155 0.0028 0.038 

miR-199A-

3P 
0.7639 

-

1.05 
NA NA 0.00172 1.78 0.344 -1.3 NA NA 0.0016 0.00274 0.042 

miR-28-5P 0.6761 
-

1.05 
0.9039 -1.02 0.00041 1.47 0.3982 -1.22 NA NA 24.05 0.0024 0.04 

miR-301B 0.7513 
-

1.01 
NA NA 0.0049 1.59 0.0164 -1.76 0.717 

-

1.02 
20.0917 0.0066 0.0455 
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Table 4.1 (cont’d) 

miR-324-

5P 
0.147 

-

1.13 
0.1263 -1.13 0.0001 1.55 0.6594 -1.13 NA NA 32.2291 0.00065 0.01625 

miR-361-

5P 
0.3474 

-

1.08 
0.3478 1.21 0.00083 1.76 0.5897 -1.14 NA NA 0.00077 0.00122 0.038 

miR-363* 0.1773 1.14 0.2258 1.41 NA NA 0.00038 -1.95 NA NA 22.176 0.0005 0.044 

miR-449A 0.0332 1.35 0.5059 1.08 0.6952 1.05 0.0007 -5.43 0.2048 1.38 26.5308 0.0031 0.0342 

miR-484 0.152 1.3 0.2685 1.09 0.0049 1.19 0.1188 -1.42 0.1252 1.33 25.4578 0.0043 0.0342 

miR-498 0.7157 1.03 0.2734 1.08 0.0147 1.37 NA NA 0.0013 1.66 25.0151 0.0019 0.035 

miR-579 0.1908 -1.1 <0.001 1.38 0.0338 1.23 0.6918 -1.16 0.8592 1.01 29.3 0.00025 0.01625 

miR-637 0.5443 1.07 0.6948 1.01 0.2487 
-

1.17 
NA NA 0.0001 2.22 20.69 0.00055 0.0375 

miR-720 0.0175 
-

1.69 
NA NA 0.0008 1.76 NA NA 0.0043 1.96 25.13 7.30E-05 0.0125 

miR-874 0.1547 
-

1.18 
NA NA 0.00321 1.55 0.00017 -2.05 0.30732 1.29 34.7751 0.000178 0.0208 

miR-98 0.80911 
-

1.02 
0.6266 1.07 0.00016 1.77 NA NA 0.8112 1.03 23.903 0.0007 0.04625 

“*”, denotes the mature miRNA sequence. ‘‘-’’, represents ‘‘not available’’.  

 

 

Figure 4.1 P-value (or FDR) vs number of detected miRNAs for individual analysis as 

well as meta-analysis. In each individual dataset, moderated-t statistics was used to 

generate p-values while adaptive weight and Fisher's methods were utilized to combine 

these p-values for meta-analysis. This figure is generated using the “MetaDE” package 

in R. 
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Figure 4.2 The heat map of the actual expression profiles for the 15 up- and 22 

downregulated DE microRNAs obtained from the meta-analysis across at least two 

studies. The heat map is generated using the “MetaDE” package in R. The expression 

profiles greater than the mean are colored in red and those below the mean are colored 

in green. 0: Non-recurrence; 1: Recurrence. 

 

 

Figure 4.3 Network interrelation of DE microRNAs identified in the meta-analysis. 

Orange squares show TF. The circles show the targets of DE microRNAs. Green and 

red lozenges show up regulated and down regulated microRNAs in various types of 

diseases. The network was generated using a MIROB web tool to explore DE 

microRNAs relationships and collective functions. 
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Table 4.2 The details of 37 DE miRNAs that are involved in the interaction network, 

which has been drawn by MIROB. 

MicroRNAs 
Transcription 

Factors 
Target genes 

Disease 

influence 

(expression) 

pathogenesis of a 

disease 

miR-1 SNAI2 

FOXP1, HDAC4, PDLIM5, PIM1, 

CCND2, CXCL12, PNP, LASP1, 

SNAI2, PAX7, KLF4, MET, FN1, 

PTMA, TAGLN2, PAX3, GJA1, 

SOX6, ATP6V1B2, LARP4, 

CNN3, HSPD1, HSPA4, POGK, 

PGM2, SERP1, NETO2, Srxn1, 

CAND1, ADAR, KIF2A, G6PD, 

MEF2A, KCNJ2, PPP2R5A, 

HCN2, TWF1, HCN4, KCNE1, 

ANXA2, ETS1 

- 

Metastasis, Angiogenesis, 

growth, Proliferation, 

Invasion, migration, 

Apoptosis, cell cycle 

arrest, differentiation, 

WNT signaling. 

miR-125A NFATC1, TP53 

 RHOA, FYN, CDKN1A, EDN1, 

BAK1, ARID3B, CD34, ERBB2, 

ERBB3, NTRK3, ELAVL1, 

TNFAIP3, PDPN, KLF13, 

CLEC5A, TRAF6, RAF1, 

ZBTB7A, VEGFA 

Colorectal 

cancer 

(down) 

Proliferation, Invasion, 

migration, differentiation, 

cell cycle arrest, 

Angiogenesis, survival, 

Sorafenib resistance, 

myeloid, differentiation 

miR-133A - 

CD47, LASP1, GSTP1, FSCN1, 

ARPC5, TAGLN2,  CASP9, 

KCNH2, CACNA1C, HCN2, 

KCNQ1, EGFR,IGF1R, RFFL, 

SP1, ABCC1, FOXC1, BCL2L1 

Prostate 

Cancer 
(down) 

 

Proliferation, Invasion, 

migration, Apoptosis, cell 

cycle arrest, colony 

formation, ERK pathway 

(MAPK pathway), Liver 

metastasis, Lung 

metastasis, tumor 

growth, Adriamycin 

(Adr) resistance, 5-

fluorouracil resistance, 

cisplatin resistance 

miR-133B TP63 

BCL2L2, MCL1, FGFR1, FSCN1, 

MET, PITX3,  

IGF1R, CXCR4, UTRN, SP1, 

RHOA, MMP9, EGFR,  

TAGLN2, LASP1, SIRT1, 

PPP2R2D, FOXC1, PTBP1 

Colorectal 

cancer (up) 

Prostate 

Cancer 
(down) 

Gastric 

(down) 

Proliferation, Invasion, 

migration, Apoptosis, cell 

cycle arrest, WNT 

signaling, tumor growth, 

cisplatin resistance, Cell 

growth 

miR-137 
FOXD3, 

HMGA1 

CDK6, CDC42, SLC7A1, KDM1A, 

CSMD1, C10orf26, CACNA1C, 

TCF4, ESRRA, CTBP1, FMNL2, 

MIB1, GLIPR1, CSE1L, PTGS2, 

MITF, PXN, PTBP1, NF1, EPHA7, 

AKT2, ZBTB7A, HEY2, KLF12, 

MYO1C, CUL4A, FOXO1, CDK6. 

Colorectal 

cancer 

(down),  

Gastric 

(down) 

Metastasis, Angiogenesis, 

growth, colony formation, 

Proliferation, Invasion, 

migration, Apoptosis, 

tumor growth, Cell 

growth, cell cycle arrest, 

Stemness, cell viability, 

aerobic glycolysis, cell 

cycle 

miR-199A1 

SRF, SPI1, 

SNHG12, 

SNHG1, RELA 

ST6GAL1, HSPA5, ATF6, ERN1, 

IKBKB, CACUL1, CAV2, MTOR, 

LIF, RELA, NFKB1, ATG7, 

CLTC, NLK, CDH1, SLC27A1, 

MAP4K3, CD151, YAP1, OSCP1, 

HIF1A, VEGFA, IGF1R, IGF2, 

FLT1, KDR, HGF, MMP2, E2F3, 

ACVR1B 

- 

Proliferation, Invasion, 

migration, Apoptosis, cell 

cycle arrest, 

Angiogenesis, colony 

formation, ERK pathway 

(MAPK pathway), tumor 

growth, cisplatin 

resistance, cell viability, 

Chemoresistance,  
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Table 4.2 (cont’d) 

miR-221 

FOSL1, SNAI2, 

RELA, JUN, 

ESR1, NCOR2, 

NCOR1, TP53 

CERS2, TRPS1, DICER1, KIT, 

NOS3, BBC3, MBD2, CDKN1C, 

GJA1, ICAM1, CDKN1B, 

DIRAS3, RAB1A, HECTD2, 

TICAM1, PTPRM, MGMT, 

FOXO3, RECK, MDM2, PTEN, 

SOCS1, CASP3 

Breast 

cancer (up), 

Colorectal 

cancer (up) 

Gastric (up) 

Proliferation, Invasion, 

migration, Apoptosis, cell 

cycle arrest, Metastasis, 

Cell growth, motility, cell 

cycle progression, 

Chemoresistance, 

doxorubicin resistance, 

Radioresistance, survival, 

Sorafenib resistance 

miR-28 STAT5B 

STAT5B, CDKN1A, CCND1, 

HOXB3, NME1, N4BP1, OTUB1, 

TEX261, MAPK1, E2F6, MPL, 

BAG1, MAD2L1, RAP1B, IL34, 

IGF1 

Colorectal 

cancer 

(down)  

 

Proliferation, Invasion, 

migration, Apoptosis, cell 

cycle arrest, Metastasis, 

ERK pathway (MAPK 

pathway), P38 signaling, 

AKT signalling, PI3K 

signaling 

miR-301B - FOXF2 -  

miR-324 - SMO, GLI1, WNT2B, ETS1, SP1 - 

Proliferation, Invasion, 

migration, cell cycle 

arrest, Metastasis, 

Radioresistance 

miR-340 RELA 

RELA, MET, ROCK1, PTBP1, 

SOX2, MITF, RHOA, PLAT, 

DMD, JAK1, CCNG2 

Gastric(up) 

Proliferation, Invasion, 

migration, differentiation, 

cell cycle arrest, 

Metastasis, tumor 

growth, Cell growth, 

stemness, aerobic 

glycolysis, cell viability, 

cell cycle progression, 

Senescence, JAK/STAT 

signaling 

 

miR-361 - 
STAT6, VEGFA, TWIST1, WT1, 

SH2B1, CXCR6, SND1, PHB 
- 

Proliferation, Invasion, 

migration, Apoptosis, 

Metastasis, colony 

formation, tumor 

growth, Cell growth, 

stemness 

miR-363 - 
CDKN1A, S1PR1, BCL2L11, 

CASP3, CD276, FBXW7, MCL1 
- 

Proliferation, Apoptosis, 

cisplatin resistance, cell 

viability, 

Chemoresistance, 

survival 

miR-370 - 
CPT1A, TGFBR2, FOXM1, 

FOXO1, ENG 
Gastric(up) 

colony formation, 

Proliferation, Apoptosis 

Chemoresistance, colony  

miR-449A 

E2F1, EZH2, 

MYCN 

 

E2F3, CDC25A, MET, SIRT1, 

CDK6, BCL2, CCND1, CRHR1, 

LEF1, KLF4, NOTCH1, HDAC1, 

AR, IL6R, SOX4, CREB5, FOS, 

MYC. 

Prostate 
Cancer 

(down) 

Gastric 

(down) 

 

Metastasis colony, 

formation, Proliferation, 

Invasion, migration, 

Apoptosis, motility, 

EMT, cell cycle arrest, 

cisplatin resistance, 

differentiation,  Cell 

growth, cell viability, 

Radioresistance, 

Senescence, 

Antiapoptosis  
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Table 4.2 (cont’d) 

miR-449B E2F1, AR CDK6 CDC25A, HDAC1, SOX4 - 

Proliferation, migration 

Apoptosis, Cell growth 

colony formation, 

cell viability 

miR-489 - SMAD3, MMP7, PROX1 - 

Proliferation, Invasion, 

migration, Lung 

metastasis, Adriamycin 

(Adr) resistance, EMT 

miR-492 - BSG, SOX7 - 
Proliferation, Oxaliplatin, 

resistance 

miR-498 VDR, NCOA3 TERT, ERBB2 - 
Apoptosis, tumor 

growth, Cell growth 

miR-661 CEBPA 
 STARD10, PVRL1, MTA1, 

MCL1, MDM2, MDM4, PTEN 
- 

Proliferation, Invasion, 

migration, cell cycle 

arrest, Metastasis, tumor 

growth, motility, EMT 

miR-760 - 
CSNK2A1, HIST1H3D, 

HIST1H2AD, PHLPP2 
- 

Proliferation, colony 

formation, Senescence 

miR-874 - AQP3, PIN1, MAGEC2 
Gastric 

(down) 

Proliferation, Invasion, 

Apoptosis, colony 

formation, Cell growth, 

mTOR signaling 

miR-939 - APC2, NGFR - 
Proliferation, WNT 

signaling 

miR-98 EZH2 
ACVR1B, MMP11, EZH2, SALL4, 

IGF2BP1, CTHRC1 
Gastric(up) 

Angiogenesis, growth, 

Proliferation, Invasion, 

migration, Apoptosis, 

EMT, cell cycle arrest, 

WNT signaling, 

Table 4.3 Top enriched Gene Ontology (GO) biological process identified by functional 

analysis of the target genes and TFs of the DE microRNAs in the meta-analysis. Gene 

sets functional analysis was performed using extended libraries of the EnrichR tool 

 

GO-ID Description 
        

Overlap* 

   Adjusted P-   

value 

GO:0050678 regulation of epithelial cell proliferation 32/258 7.430E-18 

GO:0048729 tissue morphogenesis 35/358 1.191E-16 

GO:0080135 regulation of cellular response to stress 36/404 4.884E-16 

GO:0051272 positive regulation of cellular component movement 31/296 1.209E-15 

GO:0070482 response to oxygen levels 29/259 2.118E-15 

GO:2001233 regulation of apoptotic signaling pathway 33/356 2.466E-15 

GO:2000147 positive regulation of cell motility 30/287 2.699E-15 

GO:0040017 positive regulation of locomotion 30/304 1.184E-14 
* Overlap: indicates the number of hits from the meta-analysis compared to each curated gene set library. 
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Table 4.4 Top enriched KEGG pathways identified by functional analysis of the target 

genes and TFs of the DE microRNAs in the meta-analysis. Gene sets functional analysis 

was performed using extended libraries of the EnrichR tool. 

Pathway 

ID 

Name Overlap Adjusted P-

value 

hsa05206 MicroRNAs in cancer 56/297 3.476E-45 

hsa05200 Pathways in cancer 55/397 4.152E-37 

hsa05205 Proteoglycans in cancer 33/203 4.675E-24 

hsa04151 PI3K-Akt signalling pathway 38/341 7.293E-22 

hsa05215 Prostate cancer 23/89 1.259E-21 

hsa05212 Pancreatic cancer 20/66 2.252E-20 

hsa05218 Melanoma 19/71 2.982E-18 

hsa05220 Chronic myeloid leukemia 19/73 4.676E-18 

hsa04520 Adherens junction 19/74 5.524E-18 

hsa04933 
AGE-RAGE signalling pathway in diabetic 

complications 
21/101 7.221E-18 

Table 4.5 Top enriched Reactome pathways identified by functional analysis of the 

target genes and TFs of the DE microRNAs in the meta-analysis. Gene sets functional 

analysis was performed using extended libraries of the EnrichR tool. 

Pathway ID Name Overlap Adjusted P-

value 

R-HSA-162582 Signal Transduction 100/2465 4.220E-22 

R-HSA-1266738 Developmental Biology 46/786 2.574E-14 

R-HSA-1236394 Signalling by ERBB4 29/330 5.348E-13 

R-HSA-166520 Signalling by NGF 33/450 8.395E-13 

R-HSA-180292 GAB1 signalosome 19/125 1.065E-12 

R-HSA-198203 PI3K/AKT activation 19/125 1.065E-12 

R-HSA-5654695 PI-3K cascade:FGFR2 18/122 4.702E-12 

R-HSA-1257604 PIP3 activates AKT signalling 18/122 4.702E-12 
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Figure 4.4 The most significant enriched KEGG pathway for the DE microRNAs 

identified from meta-analysis. The microRNAs in the red box indicates co-deregulated 

microRNA genes in our list. The DE microRNAs identified from meta-analysis were 

mapped to “microRNAs in cancer” pathway (KEGG-ID: hsa05206) by using the KEGG 

mapper web tool 
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Figure 4.5 Common pathway analysis for DE microRNAs identified from meta-

analysis. This analysis revealed that TCF3, MYC, MAX, CYP26A1 and SREBF1 are 

significantly interacting with candidate miRNA genes. 

 

 

Figure 4.6 Receiver operating characteristics (ROC) analysis of 37-miRNA signature in 

biochemical disease recurrence vs. the non-recurrence samples using each GEO 

datasets. The DE miRNAs are depicted in Table 2. AUC; area under the ROC curve. 
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Table 4.6 Best subset, PART’s decision rules and diagnostic potentials for the DE 

microRNAs identified from meta-analysis in 6 GEO datasets. 

 Best subset  Extracted rules by PART 

PART’s 

AUC  

(95%CI↑) 

PART’s 

F-

measure 

G
S

E
5
5
3
2
3
 

miR-1, miR-221, 

miR-28-5P, miR-

301B, miR-324-

5P, miR-370, 

miR-449A, miR-

606, miR-624, 

miR-661, miR-

98 

1) IF  miR-496 > 8.13 AND  mir-1 >9.67 AND : 

BCR- (11.0) 

2) IF  miR-137 > 6.36 AND miR-449A ≤ 7.10 AND  

mir-137 ≤ 6.82: BCR- (11.0/2.0) 

 

0.75 0.72 

G
S

E
2
6
2
4
5
 miR-370, miR-

492, miR-579, 

miR-639, miR-

98 

1) IF miR-579 ≤ 9.401: AND  miR-639 ≤  9.120: 

BCR- (46.0/10.0) 

2) IF miR-324-5P > 12.032: BCR+ (17.0/1.0) 

3) IF mir-639 >9.212 : BCR- (5.0) 

0.60 0.78 

G
S

E
2
6
2
4
7
 miR-1, miR-

133A, miR-137, 

miR-363* 

1) IF miR-363* ≤ 8.89 AND miR-636 ≤ 9.34: BCR- 

(43.0/4.0) 

2) IF miR-363* > 8.44 AND miR-661 > 12.95: 

BCR+ (20.0) 

0.804 824 

G
S

E
6
5
0
6
1
 

miR-1, miR-221-

3P, miR-301B, 

miR-489, miR-

637, miR-939, 

miR-98 

1) IF miR-221-3P ≤ 6.97 AND miR-489 > 5.36 

AND miR-98 ≤ 7.84 AND miR-939> 3.87 AND 

miR-637 ≤ 4.17 : BCR- (14.0) 

2) IF miR-301B > 3.97 AND miR-221-3P > 6.029: 

BCR+ (21.0) 

3) IF miR-1 > 5.23: BCR- (6.0) 

0.734 0.744 

G
S

E
6
2
6
1
0
 

miR-449A, miR-

496, miR-636, 

miR-492 

1) IF miR-449A > 16.80 AND  miR-636 ≤ 17.73 

AND miR-496 ≤ 20.304 : BCR+ (12.0/2.0) 

2) IF miR-449A >16.804 :BCR-  (13.0/1.0) 

0.763 

 

0.833 

G
S

E
4
6
7
3
8
 

miR-340,miR-

541, miR-624 

1) IF miR-340  ≤ 2.13 AND miR-541 ≤  3.107: 

BCR+ (33.0/1.0) 

2) IF miR-541 > 1.374  : BCR- (16.0) 

0.8823 0.865 

↑ CI: confidence interval. 
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Figure 4.7 ROC analysis of the best subset of the DE miRNAs in biochemical disease 

recurrence vs. the non-recurrence samples using each GEO datasets. The best subset of 

DE miRNAs is shown in the first column of Table 3 which has been found by using soft 

computing technique (PSO/ logistic regression). 

 

 Figure 4.8 A comparison between expression of co-deregulated microRNAs in 

recurrent vs. non-recurrent PCa samples. Those miRNAs that were selected for analysis 

are depicted above the box plots (Table 3). Lines within the boxes indicate median 

values; whiskers - min and max for miRNA values. BCR+/ -, biochemical disease 

recurrence status (positive, negative). 
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 Discussion 

Various miRNAs are DE in individuals with recurrent PCa, and identifying the most 

important miRNAs and pathways associated with the disease is very important. A meta-

analysis of multiple miRNA datasets combines the generated p-values of individual 

studies, making the identification of DE microRNA genes more reliable.  

In this study, we attempted to identify common miRNAs underlying recurrent PCa 

using meta-analysis of six publicly available microRNA datasets to focus deeply on 

identifying DE microRNA genes and risk factors shared between them. 

By meta-analysis of six published miRNA expression datasets of recurrent PCa, we 

identified a common signature of a total of 37 DE microRNAs including 15 

overexpressed and 22 under expressed microRNA genes across at least two datasets 

under the significance threshold of adjusted p-value < 0.05 in recurrence compared to 

non-recurrence samples. The identified 37 microRNAs in this meta-analysis were 

discovered as DE microRNAs in at least one dataset in the prior individual analysis. Of 

the 37 DE miRNAs associated with BCR after RP (Table 4.1), all except miR-606 have 

been reported to be associated with cancer in general. Fifteen miRNAs (miR-1, miR-

133A, miR-133B, miR-449A, miR-137, miR-370, miR-221, miR-449B, miR-125A-5P, 

miR-199A-3P, miR-301B, miR-340, miR-361, miR-363, miR-98) have been previously 

linked to PCa and of those, miR-1, miR-133B, miR-449B, and miR-221 have been 

described as predictive markers in PCa recurrence after RP. 

Among the overexpressed DE microRNAs, miR-449A and miR-579 had high combined 

P-values across all studies.  

Tumor-suppressive miR-449A targets HDAC1 and induces growth arrest in Pca. It also 

causes Rb-dependent cell cycle arrest and senescence in PCa cells (Table 4.2). For a 

previously poorly characterized miRNA, namely miR-579, no PCa related functions 

have been reported. MiR-579-3p is only known as a master regulator of melanoma 

progression and drug resistance. 

Among the under expressed DE microRNAs mir-496, miR-137, miR-1, and miR-370 

had the highest combined P-values across all studies. 

MiR-496 is also a previously poorly characterized miRNA, which has no functions in 

PCa. Methylated DNA binding domain protein 2 (MBD2) is known as the only TF of 
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miR-496, which coordinately silences gene expression through activation of the miR-

496 promoter in breast cancer cell line.  

Methylated mir-137 host gene is promising diagnostic and/or prognostic biomarker of 

PCa. The epigenetic silencing of miR137 is an important event in promoting androgen 

signaling during prostate carcinogenesis and progression. MiR-137 suppresses cell 

growth in several cancers such as ovarian, colorectal, and gastric. 

MiR-1 is known as a biomarker of recurrence PCa, which is in agreement with the 

findings in present meta-analysis study. MiR-1 functions as a tumor suppressor which 

suppresses cancer cell proliferation, metastasis, angiogenesis, invasion, cell cycle arrest, 

WNT signaling and promotes apoptosis by ectopic expression. This miRNA is a 

potential prognostic biomarker of hepatocellular carcinoma (HCC) and colorectal 

cancer. The expression of miR-1 alters in several cancers such as lung, gastrointestinal, 

prostate, bladder, head and neck, and renal cancer. 

MiR-370 plays an important role in the proliferation of human PCa cells by directly 

suppressing the tumor suppressor FOXO1.  

PPI Hub Proteins analysis of the TF and target genes of DE MicroRNAs was conducted 

for prioritization of the most important hub genes using the EnrichR web tool. CTNNB1 

was the most important hub genes among TF and target genes of DE microRNAs across 

six microarray studies. 

CTNNB1 (Catenin Beta 1) functions as a Key downstream component of the canonical 

WNT signaling pathway. WNTs and their downstream effectors have crucial roles in 

the regulation of various processes that are important for cancer progression, including 

tumor growth, tumor initiation, differentiation, cell senescence, cell death, 

differentiation and metastasis. Nuclear accumulation and abnormal stabilization of 

CTNNB1 as a consequence of missense mutations occurs at a high frequency in a 

variety of epithelial cancers such as colorectal cancer, medulloblastoma, ovarian cancer, 

and pilomatrixoma. Upregulation of CTNNB1 is also associated with PCa. 

To elucidate the role of DE microRNAs obtained from the meta-analysis, we performed 

pathway analysis and gene set enrichment analysis for TF and target genes of DE 

miRNAs using the EnrichR web tool. The most enriched pathway and Gene Ontology 

(GO) term among the TF and target genes of DE miRNAs were “MicroRNAs in cancer 

(hsa05206)”, “Pathways in cancer (hsa05200)”, Signal Transduction (R-HSA-162582)”, 
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“regulation of epithelial cell proliferation (GO: 0050678)” and “tissue morphogenesis 

(GO: GO:0048729)”.  

Common pathway analysis revealed that TCF3, MYC, MAX, CYP26A1 and SREBF1 

were the most significant proteins associated with DE miRNA genes. Of note, these 

proteins were not identified as TF and target genes of DE microRNAs. 

Previous studies have reported that the diminished activity of TCF3 plays a role in 

lymphoid malignancies, and up-regulation of it is involved in the development and 

progression of colorectal cancer. TCF3 is regulated by androgens and acts as a tumor 

promoter in Pca. 

Overexpression, Mutations, translocation and rearrangement of MYC is related to 

several cancers such as breast, PCa, gastrointestinal, melanoma, and small cell lung 

cancer.  

MAX is known as a tumor suppressor in renal oncocytomas and small cell lung cancer. 

The mutation of it has been identified in gastrointestinal stromal tumors. High 

expression of CYP26A1 is associated with several cancers such as breast, head and 

neck, colorectal and ovarian. CYP26A1 is a methylation marker of PCs associated with 

ERG-positive cancers.  

Sterol regulatory element-binding protein1 (SREBP1) is a key regulatory factor that 

controls lipid homeostasis. SREBP1 is a critical link between oncogenic signaling and 

tumor metabolism. The overexpression of SREBF1 is related to a variety of cancers 

such as PCa, breast, head and neck, colorectal, endometrial, glioblastoma, pancreatic, 

and ovarian. 

To understand the association of the DE microRNAs list with the most significant target 

genes and transcription factors, we conducted a regulatory gene network analysis using 

the MIROB web tool. CDKN1A and LASP1 were amongst the most significant target 

genes associated with the DE microRNAs. 

Cyclin-dependent kinase inhibitor 1 (CDKN1A) also is known as P21 is involved in 

p53/TP53 mediated inhibition of cellular proliferation in response to DNA damage and 

its overexpression results in cell cycle arrest and autophagy cell death. The expression 

of this gene is tightly controlled by the tumor suppressor protein p53 in a human brain 

tumor cell line.  The CDKN1A genotypes CT and TT are associated with an increased 
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risk of advanced prostate carcinoma compared with the CC genotype. Elevated p21 

levels are associated with higher Gleason score, and increased PCa recurrence. 

LIM and SH3 protein 1 (LASP1), a promoter of cell proliferation and migration, play a 

significant role in cancer development and progression.  LASP-1 is involved in 

numerous biological and pathological processes. It plays an important role in the 

regulation of dynamic actin-based and cytoskeletal activities. LASP-1 is highly 

expressed in the central nervous system and contributes to the formation and 

progression of prostate cancer through a NF-KB pathway. 

RELA, SNAI2, and TP53 were among the most significant transcription factors 

associated with the DE microRNAs. 

RELA also known as NF-kappa-B is a ubiquitous transcription factor involved in many 

biological processes such as immunity, inflammation, cell growth, differentiation, 

tumorigenesis and apoptosis. Zinc finger protein (SNAI2) is known as a transcriptional 

repressor that modulates both activator-dependent and basal transcription. SNAI2 

regulates cell proliferation and invasiveness of metastatic PCa cell lines. Cellular tumor 

antigen p53 (TP53) acts as a tumor suppressor in many tumor types; induces growth 

arrest or apoptosis depending on the physiological circumstances and cell type.  

Moreover, network analysis showed that ten of the 37 DE miRNAs (miR-125A, miR-

133B, miR-137, miR-221, miR-28, miR-340, miR-370, miR-449A, miR-874, and miR-

98) have an established prognostic significance in other cancers such as colorectal, 

gastric, and breast. This network also indicated that eight of 37 DE miRNAs (miR-

133A, miR-133B, miR-137, miR-199A1, miR-340, miR-361, miR-498, and miR-661) 

can be actively involved in tumor growth. 

In this study, we also built new miRNA diagnostic classifiers in each GEO datasets 

based on best subset of DE miRNAs in the meta-analysis. These classifiers predicted 

BCR after RP with very high accuracy. The highest diagnostic accuracy (97%) was 

given for GSE55323 with 11-miRNAs. The performance of our 11-miRNA diagnostic 

classifier (97%) exceeded that of a 2-miRNA classifier (miR-1+miR-133B; AUC: 71%) 

developed earlier by Karatas et al. [54]. One miRNA (miR-1) is shared between these 

classifiers, further supporting the validity of our findings.  

Briefly, we used “MetaDE” package to perform a meta-analysis, which provides options 

for gene matching across studies, gene filtering before meta-analysis and functions for 
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conducting several major meta-analysis methods such as Fisher and AW for differential 

expression analysis. Then performed the GO enrichment analysis, pathway analysis, 

network analysis, and ROC analysis. 

In conclusion, this is the first report that provides biological insights on common 

microRNA expression signatures for recurrent PCa after RP. The candidate miRNAs are 

worthy to be validated in the wet lab. 

 Chapter summary 

The goal of this chapter was to do meta-analysis for recurrent PCa on miRNA 

expression profile in order to increase the probability of revealing truly significant 

deregulated miRNA genes, which should have higher potentials to be utilized as new 

biomarkers for the disease 

Meta-analysis of six miRNA datasets revealed miR-125A, miR-199A-3P, miR-28-

5P, miR-301B, miR-324-5P, miR-361-5P, miR-363*, miR-449A, miR-484, miR-498, 

miR-579, miR-637, miR-720, miR-874 and miR-98  are commonly upregulated miRNA 

genes, while miR-1, miR-133A, miR-133B, miR-137, miR-221, miR-340, miR-370, 

miR-449B, miR-489, miR-492, miR-496, miR-541, miR-572, miR-583, miR-606, miR-

624, miR-636, miR-639, miR-661, miR-760, miR-890, and miR-939 are commonly 

downregulated miRNA genes in recurrent PCa samples in comparison to non-recurrent 

PCa samples. The network-based analysis showed that some of these miRNAs have an 

established prognostic significance in other cancers and can be actively involved in 

tumor growth. 

Gene ontology enrichment revealed many target genes of co-deregulated miRNAs 

are involved in “regulation of epithelial cell proliferation” and “tissue morphogenesis”. 

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that these 

miRNAs regulate cancer pathways. The PPI hub proteins analysis identified CTNNB1 

as the most highly ranked hub protein. Besides, common pathway analysis showed that 

TCF3, MAX, MYC, CYP26A1, and SREBF1 significantly interact with those DE 

miRNA genes. The identified genes have been known as tumor suppressors and 

biomarkers which are closely related to several cancer types, such as colorectal cancer, 

breast cancer, PCa, gastric, and hepatocellular carcinomas. Additionally, it was shown 

that the combination of DE miRNAs can assist in the more specific detection of the PCa 

and prediction of biochemical recurrence (BCR).  
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We found that the identified miRNAs through meta-analysis are candidate predictive 

markers for recurrent PCa after radical prostatectomy. 
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CHAPTER 5 

 META ANALYSIS OF MIR145 TARGET GENES 

5.   

 Introduction 

MicroRNAs, which are small regulatory RNAs, post-transcriptionally regulate gene 

expression by binding 3'-UTR of their mRNA targets. Their deregulation has been 

shown to cause increased proliferation, migration, invasion, and apoptosis. MiR-145, an 

important tumor suppressor microRNA, has shown to be downregulated in many cancer 

types and has crucial roles in tumor initiation, progression, metastasis, invasion, 

recurrence, and chemoradioresistance. Our aim is to investigate potential common target 

genes of miR-145, and to help understanding the underlying molecular pathways of 

tumor pathogenesis in association with those common target genes. 

5.1.1 Chapter Goals 

The overall goal of this chapter is to show potential common target genes of miR-145 in 

several cancer types including prostate, breast, esophageal, bladder, head, and neck 

squamous cell carcinoma cancer, using GEO database and to unravel the underlying 

molecular pathways associated with mir-145 in tumor pathogenesis. To achieve this 

goal, eight published microarray datasets, where targets of mir-145 were investigated in 

cell lines upon mir-145 over expression, were included for meta-analysis. Inter group 

variabilities were assessed by box-plot analysis. Microarray datasets were analyzed 

using GEOquery package in Bioconductor 3.2 with R version 3.2.2 and two-way 
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Hierarchical Clustering was used for gene expression data analysis. Specifically, the 

highlights of this chapter are:  

 We conducted a meta-analysis of 8 available microarray datasets (consider 

samples for mir-145) and identified a panel of co-deregulated genes upon mir-

145 over expression in prostate, breast, esophageal, bladder cancer, and head 

and neck squamous cell carcinoma. 

 Co-deregulated miRNAs were investigated for protein-protein interaction 

network by STRING. 

 Biological process, molecular function, and pathway analysis are applied for 

identified potential targets of mir-145. These analyses demonstrated that 

identified genes are significantly involved in telomere maintenance, DNA 

binding and repair mechanisms. 

 In addition, target analysis and miRNA target prediction are performed. In silico 

analysis tools predicted the identified genes as potential targets of miR-145. 

5.1.2 Chapter Organization 

The remainder of this chapter is organized as follows. The section 5.2 presents the 

design of the experiments. The results are presented in section 5.3. The section 5.4 

presents the discussions .The section 5.5 provides a summary of this chapter. 

 Design of Experiments 

5.2.1 Literature Search  

A systematic review of the microarray literature from GEO database was documented to 

identify studies, where expression profiling was performed for miR-145 over-expressing 

cancer cell lines, published up to Jun 15, 2014.Medical subjective heading (MeSH) was 

“miR-145 in human cancer”. A total of 55 studies were identified through GEO 

database searching. Of these, 20 studies were retained after rejecting replications. A 

total of 9 articles were excluded according to the title of samples (GSMs). The reason 

for the exclusion was the following: the title of samples no association with miR-145. 

The full-text articles were evaluated for the remaining 11 studies, and 7 were recruited 

in the final meta-analysis. The other 4 investigations were excluded for these reasons: 

the median-centered across samples is not zero (not suitable for comparison) and data 
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sets are containing null values. Remained 7 microarray datasets were obtained from 

National Centers for Biotechnology Information (NCBI) Gene Expression Omnibus 

(GEO) database (http://www.ncbi.nlm.nih.gov/geo/).The entire study selection process 

for meta-analysis is shown in Figure 5.1. All GSE Series Matrix files, platform sets and 

annotations files were downloaded and parsed by GEOquery package in Bioconductor 

3.2 with R version 3.2.2. Box-plots were drawn for each selected GSE microarray data 

for visual comparison of inter-group variability in a statistical population. These box 

plots were used to display the statistical distribution of different data values of mir-145 

GSMs. 

5.2.2 Data Preparation and Statistical Analysis 

Before being able to do statistical analysis, we need to be prepared to meet the 

following requirements: raw data must be log2- scaled and all datasets must exhibit the 

same data precision. In our dataset except GSE58295 all of GSEs were in the form of 

(log) 10 (ratio), therefore, we converted them to (log) 2 (ratio) format. All GSEs have 

16 bit precision. Since the comparable data are provided, the analysis should be limited 

to genes that are expressed in all data sets. In 16 GSMs (samples) 17085 common genes 

were founded. Then, we checked for the cross platform bias (batch effect) by computing 

and plotting the Principal Components Analysis (PCA) for combined dataset. PCA plot 

(Figure 5.2, left panel) shows that sample of the each technology (GSE) clusters 

together. This means that we have batch effect in our data. We have removed batch 

effect by “removeBatchEffect” function in “limma” package. The right panel of Figure 

5.2 shows PCA plot after removing the batch effect. Note that the expression values of 

combined data will change after removing batch effect. In the next step we try to design 

and make proper contrast matrix again by “limma” package. We have five groups (each 

disease) with eight replicates in group1, one replicate in group2, three replicates in 

group3, two replicates in group 4, and two replicates in group5. In order to test the 

interaction effect of the different disease, the meaningful contrast was considered to be 

group1—group2—group3 –group4 + control. Then, differentially expressed genes with 

P-value < 0.01 were selected as potential candidates in different cancer types. 
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 Results 

The aim of this chapter was to identify common target genes of tumor suppressor miR-

145 via meta-analysis of microarray-based gene expression profiles in several human 

cancer types. In this chapter, we collected a total of 7 gene expression profile data set 

from previously published studies considering the inclusion criteria. We retrieved the 

GSE Series Matrix files, platform sets and annotations files from the Gene Expression 

Omnibus (GEO) including 16 array samples using GEOquery package in Bioconductor 

with R version. Then, did transformation on raw data, found common genes, and 

removed batch effects. Details of the each individual microarray studies are summarized 

in Table 1.4. Data set 1 (GSE47657) is obtained from a microarray analysis, which was 

performed in human prostate cancer cell lines including PC3, DU145, and LNCaP cells, 

treated with miR-145 to investigate the differentially expressed genes using Sure Print 

G3 Human GE 8×60K Microarray (Agilent Technologies, Santa Clara, CA, USA) 

containing 62,976 probes. In the data set 2 (GSE24782), The microarray analysis was 

generated from PC3 and DU145 human prostate cancer cell lines which were 

transfected withmiR-145 were using Agilent-026652Whole Human Genome Microarray 

4x44K v2 with 44,495 probes. 

Data set 3 (GSE58295) was generated from mir-145 transfected PC3 cells which were 

collected at 8, 16 and 24 hours after transfection along with un-transfected control PC3 

cells using Agilent-014850Whole Human Genome Microarray 4x44K G4112F 

containing 45,015 probes. Besides, data set 4 (GSE37119) is obtained from a 

microarray analysis which was performed in human head and neck squamous cell 

carcinoma cell lines HNSCC and IMC3 transfected with miRNA 145 utilizing Agilent-

026652Whole Human Genome Microarray 4x44K v2 to arrays spotted with 44,495 

probes. Data set 5 (GSE18625) microarray analysis was performed using DLD-1, colon 

carcinoma cell line, transfected withmiR-145 and collected 24 hours after transfection. 

Gene expressions were profiled on Affymetrix Human Genome U133 Plus 2.0 Array 

containing 54675 probes. 

Data set 6 (GSE19737) was generated from miR-145 or a negative control pre-miRNA 

Transfected MDA-MB-231 cell line which is most typical cell line with highly 

metastatic features in breast cancer using Affymetrix Human Genome U133 Plus 2.0 

Array with 54,675 probes. Data set 7 (GSE20028) identifiedmiR-145 targets in 

squamous cell carcinoma. The aim of study was to explore of miR-145 target genes 
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using Agilent-014850Whole Human Genome Microarray 4x44K G4112F which 

includes 45,015 probes. Lastly, data set 8 (GSE19717) gene expression profiles of 

bladder cancer cell line KK-47, and urinary bladder cancer cell line T24 were 

investigated upon miR-145 transfection using Agilent-014850Whole Human Genome 

Microarray 4x44K G4112F with 45,015 probes. In order to clarify whether the 

microarray data were comparable, we initially prepared the Box plots representation of 

median-centered gene expression as provided in Figure 5.3. It shows the common target 

gene expression levels for probe set over all arrays. According to the result all GSE 

datasets were centered on zero except from GSE18625 (colon cancer). Therefore, we 

excluded this data set before the statistical analyses. Expression data in all GSEs were 

converted from (log10) to (log2) to eliminate variability among the datasets and batch 

effect was removed. Then, by making proper contras matrix significantly differentially 

expressed genes were found. As a result of the meta-analysis, we found that UNG, 

FUCA2, DERA, GMFB, TF, and SNX24 are significantly downregulated, and MYL9 

and TAGLN are significantly upregulated in all 

GSM data. As a result, we found eight common target genes of mir-145 that have 

similar behavior in different GEO datasets. A heat map representation of these genes is 

demonstrated in Figure 5.4. In silico analysis tools predicted these genes as potential 

targets of miR-145 (Table 5.1). Biological process (Table 5.2), molecular function 

(Table 5.3), cellular component (Table 5.4), and KEGG pathways (Table 5.5) analysis 

of these potential targets of mir-145 through functional enrichments in PPI network, 

demonstrated that those genes are significantly involved in telomere maintenance, DNA 

binding and repair mechanisms. Besides, PPI network of commonly deregulated mir-

145 targets and pathway analysis of MYL9, UNG, TAGLN, FUCA2, DERA, GMFB, 

TF, and SNX24 are represented in Figures 5.5 and 5.6, respectively. 

Table 5.1 Representation of the potential targets of mir-145 by in-silico analysis. 

Gene EntrezID RefseqID miRWalk miRanda RNA22 Targetscan SUM 

MYL9 10398 NM_006097 0 0 1 0 1 

UNG 7374 NM_003362 1 0 1 0 2 

TAGLN 6876 NM_001001522 0 0 0 0 0 

FUCA2 2519 NM_032020 0 1 0 1 2 

DERA 51071 NM_015954 0 0 0 0 0 

GMFB 2768 XM_005267541 1 0 1 1 3 

TF 7018 NM_001063 0 0 1 0 1 

SNX24 28966 NM_014035 0 1 0 1 2 
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Figure 5.1 Flow Chart of Study Selection in the Meta-Analysis. 
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Table 5.2 Biological process (GO) of the potential targets of mir-145 by functional 

enrichments in PPI network. 

Pathway  ID pathway description 
count in 

network 
FDR 

GO:0032201 
telomere maintenance via semi-conservative 

replication 
8 1.14e-14 

GO:0000722 telomere maintenance via recombination 8 1.79e-14 

GO:0006284 base-excision repair 9 1.79e-14 

GO:0033260 nuclear DNA replication 8 1.79e-14 

GO:0006271 
DNA strand elongation involved in DNA 

replication 
8 8.3e-14 

Table 5.3 Molecular function (GO) of the potential targets of mir-145 by functional 

enrichments in PPI network. 

pathway ID pathway description 
count in 

network 
FDR 

GO:0003684 damaged DNA binding 5 5.91e-05 

GO:0015091 ferric iron transmembrane transporter activity 2 0.00248 

GO:0003689 DNA clamp loader activity 2 0.00446 

GO:0003676 nucleic acid binding 15 0.00878 

GO:0042623 ATPase activity, coupled 5 0.0109 

Table 5.4 Cellular component (GO) of the potential targets of mir-145 by functional 

enrichments in PPI network. 

pathway ID pathway description count in network FDR 

GO:0005663 DNA replication factor C complex 5 5.39e-12 

GO:0005657 replication fork 6 3.13e-08 

GO:0044427 chromosomal part 9 4.64e-05 

GO:0001725 stress fiber 4 0.000123 

GO:0005654 nucleoplasm 15 0.000123 

Table 5.5 KEGG Pathways of the potential targets of mir-145 by functional enrichments 

in PPI network. 

pathway ID pathway description count in network FDR 

03430 Mismatch repair 8 5.68e-16 

03030 DNA replication 8 1.35e-14 

03420 Nucleotide excision repair 7 1.97e-11 

03410 Base excision repair 5 5.46e-08 

04810 Regulation of actin cytoskeleton 6 1.84e-05 
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Figure 5.2 Box-plot representations of the GSM datasets. 

 

Figure 5.3 Principal Component Analysis (PCA) Plot for Combined Dataset Before (a) 

and After (b) Removing Batch Effect. 

. 

A B 
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Figure 5.4 Heat Map Representation of Commonly Deregulated genes by mir-145 

Overexpression in 5 Types of Cancer.  
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 Figure 5.5 PPI Network of Commonly Deregulated Mir-145 Targets.  

Pink: experimentally determined(known interactions), Blue: from curated databases 

(known interactions). Yellow: textmining, Green: gene neighborhood (Predicted 

interactions), Black: co-expression. The interaction score was set to high confidence 

(0.700) . 
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Figure 5.6 Pathway Analysis of MYL9, UNG, TAGLN, FUCA2, DERA, GMFB, TF, 

and SNX24. Green: control expression, Blue: controls state change. 

 Discussion 

MiRNAs are frequently located in the cancer-associated genomic regions or in fragile 

sites of the genome. In addition to in vitro and in vivo tools, bioinformatics approaches 

are of paramount importance to evaluate their roles in the pathogenesis of different 

types of cancer [92]. Expression of miR-145 has been commonly identified as 

downregulated in several human cancer types. Several studies suggested that low levels 

of miR-145 might contribute to pathogenesis and progression of human tumors [93, 94]. 

MiR-145 is a well characterized tumor suppressor in human malignancies which targets 

various oncogenes in cancer cells. Functional analyses of target genes, which are 

repressed by mir-145, are crucial to explain their roles in cancer development. The aim 
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of the present study is to investigate the commonly targeted genes by mir-145 and 

relevant pathways through evaluating publicly available microarray datasets. We 

selected miR-145 in our meta-analysis due to its well-known function as a tumor 

suppressor and since its presence has been reported in a variety of cancers including 

prostate, esophageal, head and neck, breast, bladder cancer, and squamous cell 

carcinoma [95, 96]. In this study, we extracted 7 gene expression microarray datasets 

from GEO database (1 of the min Affymetrix Array, others Agilent), which are 

generated from cell line samples. We identified six genes including UNG, FUCA2, 

DERA, GMFB, TF, and SNX24 as significantly downregulated and two genes including 

MYL9 and TAGLN as significantly upregulated upon mir-145 over-expression in 

distinct cancer types. The tumorigenic potentials of those genes have not been studied 

extensively until now. Considering our results, we suggest the most important 

contributors in tumorigenesis, which should be demonstrated in in vitro and in vivo 

studies. UNG, FUCA2, DERA, GMFB, TF, and SNX24 as significantly downregulated 

upon mir-145 over-expression, are expected to have elevated expressions in tumor 

samples considering low levels of miR-145 in several cancer types. Among those genes, 

elevated expression of UNG, an essential enzyme for post-replicative repair of uracil in 

DNA [97], has been found to be associated with pemetrexed-resistance and present in 

cell lines derived from pemetrexed-resistant histologic subtypes [98]. Besides, high 

GMFB expression was related to poor disease-free survival and overall survival in 

patients with SOC (serous ovarian cancer) [99]. In order to minimize false positives, we 

used target prediction tools, including miRwalk, TargetScan, RNA22, and miRanda. 

The significantly downregulated genes that we found as a result of ourmeta-analysis 

were predicted to be targeted by mir-145 in at least one in-silico tools out of four. 

Interestingly, biological process, molecular function, cellular component, and KEGG 

pathways analysis of these potential targets of mir-145 through functional enrichments 

in PPI network showed that UNG, FUCA2, DERA, GMFB, TF, and SNX24 are 

significantly involved in telomere maintenance, DNA binding and repair mechanisms. 

As a conclusion, our results pointed out the importance of mir-145 and its targets and 

suggested that they contribute to carcinogenesis in distinct tumor types. To the best of 

our knowledge, this is the first study retrieving gene expression data from several cancer 

types and investigating the common targets of mir-145 to help enlightening the roles of 

mir-145 in cancer pathogenesis. 
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 Chapter Summary 

The goal of this chapter was to show potential common target genes of miR-145 in 

several cancer types including prostate, breast, esophageal, bladder, head, and neck 

squamous cell carcinoma cancer, using GEO database and to unravel the underlying 

molecular pathways associated with mir-145 in tumor pathogenesis. 

This chapter shows that UNG, FUCA2, DERA, GMFB, TF, and SNX2 were commonly 

downregulated genes, whereas MYL9 and TAGLN were found to be commonly 

upregulated upon mir-145 over expression in prostate, breast, esophageal, bladder 

cancer, and head and neck squamous cell carcinoma. Biological process, molecular 

function, and pathway analysis of these potential targets of mir-145 through functional 

enrichments in PPI network demonstrated that those genes are significantly involved in 

telomere maintenance, DNA binding and repair mechanisms. 
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CHAPTER 6 

 CONCLUSION AND FEATURE WORKS 

This thesis presented new evolutionary-based FS techniques for analyzing biological 

datasets acquired via mass throughput technologies, in order to improve performance on 

selecting informative genes and increasing prediction ability. The microarray datasets 

are typically high dimensional with only a small number of samples making the task of 

their analysis especially challenging. Moreover, this thesis focuses on performing meta-

analysis for recurrent prostate cancer on miRNA expression profiles and mir-145 target 

genes in order to draw more reliable conclusions and new biological insights. 

Section 6.1 summarizes the key findings from each individual chapter and Section 6.2 

outlines suggestions for future work. 

6.   

 Conclusion 

This thesis presents the first study on using the BHA for solving FS problem (chapter 

2). By applying the hyperbolic tangent function, a new binary version of BHA called 

BBHA is proposed to solve FS problem in text, image, and biomedical data. Two 

classifiers (RF and NB) serve as the evaluators of proposed algorithm. In addition, to 

confirm that RF is the best DT classifier, the performances of six popular DT algorithms 

were compared in this chapter. 

This thesis finds that RF is the best DT algorithm and the proposed BBHA wrapper 

based FS approach outperforms the performances of BPSO, GA, SA, and CFS in terms 

of AUC, accuracy, MCC, sensitivity, specificity, and the number of selected optimized 

features. Furthermore, if the computational cost is taken into account, BBHA wrapper 
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approach performs much faster than BPSO and GA. BBHA only needs a single 

parameter for configuring the model and is simple to understand. 

In order to identify the most beneficial genes for classification, chapter 3 proposed a 

hybrid approach based on BPSOPG1 and BBHA algorithm which is combined with 

SPLSDA classifier. The study showed that the the proposed approach compare with 

many other methods, leads to a better performance in term of accuracy, AUC, and 

number of selected genes. The proposed method not only effectively reduced the 

number of genes, but also obtained a high classification accuracy. The obtained results 

indicate that the BPSOPG1-BBHA/SPLSDA is a useful tool for selecting informative 

genes in clinical datasets. Moreover, It was also shown that applying BBHA as the local 

optimizer for BPSOPG1 can significantly improve the performance of BPSOPG1 and 

help it to avoid being trapped in a local optimum. 

Meta-analysis of different miRNA datasets in chapter 4 revealed that miR-125A, miR-

199A-3P, miR-28-5P, miR-301B, miR-324-5P, miR-361-5P, miR-363*, miR-449A, 

miR-484, miR-498, miR-579, miR-637, miR-720, miR-874 and miR-98  are commonly 

upregulated miRNA genes, while miR-1, miR-133A, miR-133B, miR-137, miR-221, 

miR-340, miR-370, miR-449B, miR-489, miR-492, miR-496, miR-541, miR-572, miR-

583, miR-606, miR-624, miR-636, miR-639, miR-661, miR-760, miR-890, and miR-

939 are commonly downregulated miRNA genes in recurrent PCa samples in 

comparison to non-recurrent PCa samples. The network-based analysis showed that 

some of these miRNAs have an established prognostic significance in other cancers and 

can be actively involved in tumor growth. Gene ontology enrichment revealed many 

target genes of co-deregulated miRNAs are involved in “regulation of epithelial cell 

proliferation” and “tissue morphogenesis”. Kyoto Encyclopedia of Genes and Genomes 

(KEGG) analysis indicated that these miRNAs regulate cancer pathways. The PPI hub 

proteins analysis identified CTNNB1 as the most highly ranked hub protein. Besides, 

common pathway analysis showed that TCF3, MAX, MYC, CYP26A1, and SREBF1 

significantly interact with those DE miRNA genes. The identified genes have been 

known as tumor suppressors and biomarkers which are closely related to several cancer 

types, such as colorectal cancer, breast cancer, PCa, gastric, and hepatocellular 

carcinomas. Additionally, it was shown that the combination of DE miRNAs can assist 

in the more specific detection of the PCa and prediction of biochemical recurrence 

(BCR).  
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This thesis conducted a meta-analysis of 8 available microarray datasets (consider 

samples for mir-145) and identified a panel of co-deregulated genes upon mir-145 over 

expression in prostate, breast, esophageal, bladder cancer, and head and neck squamous 

cell carcinoma (chapter 5). 

This thesis finds that UNG, FUCA2, DERA, GMFB, TF, and SNX2 were commonly 

downregulated genes, whereas MYL9 and TAGLN were found to be commonly 

upregulated upon mir-145 over expression in prostate, breast, esophageal, bladder 

cancer, and head and neck squamous cell carcinoma. Biological process, molecular 

function, and pathway analysis of these potential targets of mir-145 through functional 

enrichments in PPI network demonstrated that those genes are significantly involved in 

telomere maintenance, DNA binding and repair mechanisms. 

 Future Work 

Future directions from this research could examine: 

 Investigations and development of gene selection techniques that combines 

BBHA and Nearest Shrunken Centroid foe solving multiclass cancer diagnostic. 

 Performing cross-platform merging and meta-analysis on Gene Expression 

profiles of recurrent prostate cancer. 
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