
T.C.

SÜLEYMAN DEMİREL ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

WEB SİTESİ ÜZERİNDEKİ ZAFİYETLERİN ANALİZİ,

KAYNAKLANMA NEDENLERİ VE ÇÖZÜM ÖNERİLERİ

Ehssan Salman Obaid AL-JANABI

Danışman

Yrd. Doç. Dr. Arif KOYUN

YÜKSEK LİSANS TEZİ

BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI

ISPARTA, 2017

© 2017 [Ehssan Salman Obaid AL-JANABI]

i

İÇİNDEKİLER

Sayfa

İÇİNDEKİLER ... i

ÖZET... ii

ABSTRACT .. iii

TEŞEKKÜR .. iv

ŞEKİLLER DİZİNİ ... v

ÇİZELGELER DİZİNİ ... viıi

SİMGELER VE KISALTMALAR DİZİNİ ... vii

1. GİRİŞ .. 1

2. KAYNAK ÖZETLERİ ... 8

3. MATERYAL VE METOD ... 11

3.1. Siteler Arası Kod Yazma (XSS) .. 12

3.1.1. Yansıtılan xss saldırıları .. 13

3.1.2. Depolanan/saklanan xss saldırıları .. 18

3.1.3. Belge nesnesi modeli (DOM) xss saldırıları 21

3.2. Müşteri No. Bilgi İfşası ... 21

3.3. CAPTCHA Bypass .. 23

3.4. Müşteri Girişi Form Tabanlı Brute Force Saldırısı 28

3.5. HTTP Parametre Kirliliği .. 31

3.6. Robots .txt dosyası ... 36

3.7. PhpMyAdmin Bilgi İfşası ... 38

3.8. Yapılandırılmış Sorgu Dili (SQL) Enjeksiyonu 40

3.8.1. Zaman tabanlı SQL enjeksiyonu ... 41

3.8.2. Hata tabanlı SQL enjeksiyonu ... 44

3.9. Dosya Ekleme Güvenlik Açığı .. 46

3.9.1. Yerel dosya yükleme (LFI) ... 47

3.9.2. Uzak dosya yükleme (RFI) ... 49

4. ARAŞTIRMA BULGULARI ... 50

4.1. Karşılaştırma Çalışmaları .. 50

4.1.1. Web uygulamaları programlama dilleri .. 50

4.1.2. Web uygulaması güvenlik açıkları .. 51

4.2. Etkili Çözümler ... 59

4.2.1. Önleme enjeksiyon saldırıları .. 59

4.2.2. Müşteri no bilgin ifşa edilmesini önlememesi 61

4.2.3. Captcha uygulaması zayıflığını önleme .. 61

4.2.4. Robots.txt dosyasından bilgi ifşası önleme 61

4.2.5. PhpMyAdmin’den bilgi ifşası önleme .. 61

5. SONUÇLAR ... 62

KAYNAKLAR ... 64

ÖZGEÇMİŞ .. 74

ii

ÖZET

Yüksek Lisans Tezi

WEB SİTESİ ÜZERİNDEKİ ZAFİYETLERİN ANALİZİ, KAYNAKLANMA

NEDENLERİ VE ÇÖZÜM ÖNERİLERİ

Ehssan Salman Obaid AL-JANABI

Süleyman Demirel Üniversitesi

Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Yrd.Doç.Dr. Arif KOYUN

İnternetin bize pek çok olası iş kolaylığı sağladığı bir dünyada yaşıyoruz.

Günümüzde tüm büyük bankalar mobil bankacılık hizmeti sunmaktadır. Ayrıca bilet

satın alabiliyor ve çevrimiçi alışveriş yapabiliyoruz. Bugün, tüm işlemler internetle

ve dolayısıyla web uygulamaları ile bağlantılıdır. Sonuç olarak, insanlar arasında

internet kullanımı her geçen gün daha da artmakta, bu web uygulamaları sayısını da

arttırmaktadır. Çok sayıda web uygulaması hayatımızı kolaylaştırırken, bu

uygulamaların birçoğu bilgisayar korsanlarının sistemimizi kesmesini veya virüs ve

solucan bulaştırmasına sebep olmaktadır. Bu olaylardan dolayı da özel hayatımız ve

ticari yaşamlarımız kötü şekilde etkilenebilmektedir.

Günümüzde web uygulamaları genelde uygulamanın sadece sunucusu üzerinde değil

kullanıcının cihazında da çalıştırılımaktadır. Bu web uygulamaları kullanıcılarına çok

sayıda hizmet sunarken aynı zamanda işlevsellik, etkileşim ve kullanım kolaylığı

sağlamaktadır. Bu nedenle, en basit web uygulaması bile birçok farklı HTTP

parametresini işler. Bu durum manipüle edilmeye açık birçok zafiyet bulundurma

olasılığını artırmaktadır.

Son yirmi yılda, güvenlik açıkları, web uygulamalarının muazzam çoğalmasayla

birlikte artış göstermektedir. Web güvenliği sadece bir güvenlik duvarı kurmanın ve

ana makinelerin güncellenmiş yazılım kullanmasını sağlaması problemi değildir.

Sistemdeki ve yazılım bileşenleri arasındaki güvenilir ve güvenilmez sayılan

mesajlar, komutlar ve veri değişimi gibi uygulamada küçük veya büyük olan her şeyi

incelemek gerekir. Bu güvenlik derecesi ile web uygulamalarında güvenlik açıklarını

gidermek için çok sayıda derinlemesine araştırma yapılmıştır. Ancak bu güvenlik

açıklarını gidermek için önceden tespit edilmesi önem taşımaktadır.

Web uygulamaları güvenliğini test etmenin bir yolu olarak, kuruluşlar, güvenlik

açıklarını belirlemek için denetlenen bir ortamdaki bir saldırganın davranışını taklit

eden Penetrasyon testi (Pentest) gerçekleştirmektedir. Bu tezde bir Penetrasyon testi

gerçekleştirerek bazı güvenlik açıklıkları ve web uygulaması hakkında ayrıntılı bir

çalışma sunulmuştur. Ayrıca, web uygulamaları alanındaki mevcut çalışmaları

izlemek ve mevcut güvenlik açıklıklarını gidermek için etkili çözüm önerileri

sunulmaktadır.

2017, 74 Sayfa

iii

ABSTRACT

M.Sc. Thesis

ANALYSIS OF VULNERABILITIES IN WEB SITES, ITS CAUSES AND

PROPOSED SOLUTIONS

Ehssan Salman Obaid AL-JANABI

SüleymanDemirel University

Graduate School of Natural and Applied Sciences

Department of Computer Engineering

Supervisor: Asst. Prof. Dr. Arif KOYUN

We live in a world where the Internet provides us many possible chores. All major

banks offer mobile banking services. Also we purchase tickets and do shopping

online. Today all the processes is linked to the Internet and hence with web

applications. As a result, the usage of the internet among people is increasing day by

day, which also increases the number of web applications. Despite that huge number

of web applications makes life easier for us, but most of these applications have

some vulnerability that allows hackers to hack our systems or infect them with

viruses and worms and thus affect our private and commercial lives.

Nowadays, web applications are usually run on the user's device, not just on the

server of the application. These web applications provide a multitude of services to

users, while at the same time it need to be consistent with functionality, interactivity,

and ease of use. For this reason, even the simplest web application process may need

a plethora of different HTTP parameters. This could increases the likelihood of

producing many varieties of vulnerabilities that are vulnerable to manipulation.

In last two decades, security vulnerabilities have grown with the enormous growth of

web applications. Web security is no longer simply a question of installing a firewall

and ensuring that hosts have updated software. It is a matter of scrutinizing

everything small or large in the application such as messages, commands, and data

exchanged between systems and software components deemed trusted and

untrustworthy. With this maturity of security, a large number of empirical studies

have been conducted to address vulnerabilities in web applications. But to overcome

these vulnerabilities, it is important to detect first the problem before preventing it.

As a way to test security in web applications, organizations have been performing

penetration testing (pentest) which simulates an attacker's behavior in a controlled

environment in order to identify applications vulnerabilities. This thesis is submitted

a detailed study on some vulnerabilities in web application through conduct a

penetration testing. Also, monitor existing studies in web applications area and come

up with effective solutions to address existing security vulnerabilities.

2017, 74 Pages

iv

TEŞEKKÜR

Bu çalışma Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar

Mühendisliği Anabilim Dalı’nda Yüksek Lisans Tezi olarak gerçekleştirilmiştir.

Tez çalışmasını sürdürdüğüm dönemde, bana daima destek olan, çalışma disiplini

aşılayan, fedakârlıktan kaçınmayan, yapıcı öneri ve düzenlemeleriyle çalışmanın

içerik ve sunumundaki zenginliğine büyük katkıda bulunan tez yöneticisi, saygıdeğer

danışman hocam, Sayın Yrd.Doç.Dr. Arif KOYUN’a sonsuz teşekkürlerimi sunarım.

Ayrıca, maddi ve manevi desteğini benden hiçbir zaman esirgemeyen aileme en içten

duygularımla teşekkür eder, şükranlarımı sunarım.

Ehssan Salman Obaid AL-JANABI

 Isparta,2017

v

ŞEKİLLER DİZİNİ

Sayfa

Şekil 1.1. Üç-Katmanlı Web Uygulama Mimarisi .. 4

Şekil 3.1. Yansıtılan XSS saldırısının tipik senaryosu .. 14

Şekil 3.2. Arama sonuçları sayfası (Aradığınız Kayıt Bulunmadı) 15

Şekil 3.3. Arama sonuçları sayfası (Hata Oluştu) ... 16

Şekil 3.4. R-XSS güvenlik açığı arama kutusunda mevcuttur 16

Şekil 3.5. Internet Explorer'ı kullanarak R-XSS güvenlik açığı 17

Şekil 3.6. Depolanmış (XSS) saldırının tipik senaryosu 18

Şekil 3.7. Ziyaretçi Defteri sayfası .. 19

Şekil 3.8. Girilen Başarı Mesajı .. 20

Şekil 3.9. Ziyaretçi Defteri sayfasında S-XSS güvenlik açığı bulunmaktadır 20

Şekil 3.10. Mesajlar veritabanına kaydedilir... 20

Şekil 3.11. Şifremi Kurtarma Paneli ... 22

Şekil 3.12. Kayıtlı Müşteri No Bulunamamıştır sayfası 22

Şekil 3.13. Mail Adresi Müşteri No İle İlişkili Değil sayfası 23

Şekil 3.14. Müşteri Giriş denemeler ve captcha göstermak 24

Şekil 3.15. Kullanıcı Aracısı Değiştirici ... 25

Şekil 3.16. Müşteri Giriş deneme, captcha çıkatmaz .. 25

Şekil 3.17. Müşteri Girişi captchanın Peneli ... 26

Şekil 3.18. Yönetici Girişi Sayfasının Peneli .. 26

Şekil 3.19. İletişim Sayfası Captcha Kontrolü .. 27

Şekil 3.20. Burp Suite Intruder Payload Belirleme ... 28

Şekil 3.21. Burp Suite Intruder sonuç ... 28

Şekil 3.22. Intruder Payload Belirleme ... 30

Şekil 3.23. Intruder Payload sonuç ... 30

Şekil 3.24. Saldırılar sonuçları .. 31

Şekil 3.25. Burp paketini HTTP isteklerini tanımlamak için kullanımı 35

Şekil 3.26. HPP saldırısı başarısı .. 35

Şekil 3.27. Robots.txt Bilgi İfşası ... 38

Şekil 3.28. PhpMyAdmin Ana Sayfası ... 39

Şekil 3.29. Bir SQL hata mesajı .. 42

Şekil 3.30. Zamana dayalı SQL Enjeksiyonu ... 43

Şekil 3.31. Union Select İfadeleri ... 45

Şekil 3.32. Hata Tabanlı SQL Enjeksiyon Saldırısı .. 45

Şekil 3.33. (hello) için arama kutusu sonucu .. 47

Şekil 3.34. Yerel Dosya Ekleme güvenlik açığı (/etc/passwd) 48

Şekil 3.35. Yerel Dosya Ekleme güvenlik açığı (hosts)...................................... 48

Şekil 4.1. Güvenlik açıklarının türleri ve güvenlik açıklarını sömüren

saldırılar .. 52

Şekil 4.2. Önerilen Beyaz Liste ... 60

vi

ÇİZELGELER DİZİNİ

Sayfa

Çizelge 3.1. Bazı Arama motorunun kullanıcı aracısı 37

Çizelge 4.1. Çeşitli Programlama Dilleri türleri ... 50

Çizelge 4.2. Güvenlik Açığı dile göre sınıf (yüzde) ... 51

Çizelge 4.3. SQL Enjeksiyon Algılama / Engelleme makalelerinin özeti 54

Çizelge 4.4.a. XSS ile ilgili makalelerin özeti .. 55

Çizelge 4.4.b. XSS ile ilgili makalelerin özeti .. 56

Çizelge 4.5. SQL Enjeksiyon ve XSS Algılama / Engelleme makalelerinin

özeti 57

Çizelge 4.6. Ticari ve açık kaynaklı tarayıcıların listesi ve yetenekleri 58

vii

SİMGELER VE KISALTMALAR DİZİNİ

ACPs Erişim Kontrol Politikaları

AJAX Eşzamansız JavaScript ve XML

API Uygulama Programlama Arabirimi

BGA Bilgi Güvenlği Akademisi

CSS Basamaklı Stil Sayfaları

CWE Genel Zayıflık Numaralandırması

DB Veritabanları

DBMS Veritabanı Yönetim sistemi

DOM Belge Nesnesi Modeli

EPDG Genişletilmiş Program Bağımlılığı Grafiği

FPI Flash Parametre Enjeksiyonu

GA Güvenlik Açığı

HOY Hizmet Olarak Yazılım

HPF HTTP Parametre Parçalanması

HPP HTTP Parametre Kirliliği

HTML Hiper Metin Biçimlendirme Dili

HTTP Hiper Metin Transfer Protokolü

ISECOM Güvenlik ve Açık Metodolojiler Enstitüsü

ISMS Bilgi Güvenliği Yönetim Sistemi

LFI Yerel Dosya Eklerme

PL Programlama dili

QoS Hizmet kalitesi

REP Robotlar Hariç Tutma Protokolü

RFI Uzak Dosya Eklerme

SDLC Yazılım Geliştirme Yaşam Döngüsü

SQL Yapılandırılmış Sorgu Dili

URL Tekdüzen Kaynak bulmayı

WAF Web Uygulaması Güvenlik Duvarı

WAPL Web Uygulamaları Programlama Dilleri

XHTML eXtensible HyperText Markup Language

XML Genişletilebilir İşaretleme Dili

XSS Siteler Arası Kod Yazma

1

1. GİRİŞ

Son yirmi yılda, Web uygulamaları büyük bir gelişme gösterilmiştir, günümüzde en

yaygın kurumsal uygulama türü haline gelmiştir. Web uygulamaları, özel ve ticari

iletişimde günlük rutinin bir parçası haline gelmiştir. Günlük hayatta birçok işlemin

internet üzerinden yapılması ve internetin yaygınlaşması ile birlikte her gün çeşitli

güvenlik açıklıkları keşfedilmektedir. Bu, web uygulamalarına karşı birçok farklı

saldırının uygulanması olasılığı anlamına gelir, Web uygulamalarının çalıştırıldığı

işletim sistemi veya web sunucuları yerine web uygulamalarının güvenlik

açıklıklarının sömürülmesine odaklanılır.

Web Uygulaması, internet veya intranet gibi bir ağ üzerinden bir web tarayıcısı

üzerinden erişilen uygulamadır (Flex Orbits, 2013) (Das, 2015) (Devi, 2015)

(StackOverflow, 2017). Ayrıca, tarayıcı tarafından desteklenen bir dilde (HTML,

Java komut dosyası, Java, ASP, PHP vb.) Kodlanmış ve uygulamayı çalıştırılabilir

hale getirmek için ortak bir web tarayıcısına bağımlı bir yazılım uygulamasıdır.

Muniz ve Lakhani gibi bazı araştırmacılar, web uygulamasının bir tarayıcıyı istemci

olarak kullanan herhangi bir uygulama olduğunu belirttiler. Ayrıca, web hizmetlerine

erişimi kolaylaştıran ve çoklu istemci hizmeti verebilen bir sistemin merkezi

yönetimini temel alan web uygulamalarının popülerliğine değindiler. Ayrıca, bir web

uygulamasının erişme gereksinimleri hem servis sağlayıcıların hem de istemcilerin

beklentilerini basitleştiren endüstri web tarayıcı istemci standartlarını takip edebilir.

(Muniz ve Lakhani, 2013). Web uygulamaları çevrimiçi hizmetlere erişim sağlamak

için etkin bir yol haline geldi ancak her geçen gün web uygulaması zafiyetleri

keşfediliyor ve endişe verici bir oranda açığa vuruluyor. Bu durum web

uygulamalarının geniş sosyal etkileri nedeniyle, saldırganlar web uygulamalarının

kullanımında farklı amaçlar hedeflemişlerdir. Saldırganlar mantıksal olarak sisteme

girmekte ve sistemin normal çalışmasını bozmaktadırlar. Akıllı telefon ve tabletlere

bakılırsa, bu cihazların çoğu uygulaması web uygulamaları olduğunu görebilirsiniz.

Bu durum güvenlik uzmanları ve saldırganlar için yeni ve geniş olan

oloşturmaktadır.

2

Güvenlik açıkları, çeşitli aşamalardaki uygulamalara dahil edilebilir Geleneksel

yazılım geliştirme yaşam döngüsünde (SDLC) Yazılım geliştirme ya da kusur

nedeniyle veya dağıtım sırasında yapılandırma sorunlarını giderme (Davis, 2013)

(Konrad ve diğerleri, 2014) (Linked In, 2017) (what is, 2017). Ayrıca, web

uygulamaları geliştikçe ve yeni teknolojiler benimsenirken, yeni teknolojilerin

istenmeyen eksikleri veya geliştiricilerin yeni teknolojileri kullanırken yaptıkları

hatalardan dolayı yeni güvenlik açıklıkları ve saldırı vektörleri ortaya çıkmaktadır.

Bunun anlamı her gün yeni bir güvenlik açığı keşfedilebilir ve bu güvenlik açıkları

sayesinde saldırganlar iç ağa erişebilir, birçok kritik öneme sahip bilgi elde edebilir.

Web uygulama saldırıları, birçok uygulamanın en önemli güvenlik kaygılarından biri

olmaktadır. Web uygulama geliştiricilerinin tek endişesi, uygulama güvenliğini

sağlamak ve son kullanıcıya sağlanan hizmette kolaylık, etkinlik ve verimlilik

sağlamaktır. Bunun yanında yüksek güvenlik gerektiren sağlık, bankacılık ve e-

ticaret işlemleri yapılan web uygulamalarında kolaylık, etkinlik ve verimlilik dışında

daha çok güvenlik büyük önem taşımaktadır. Son yıllarda, web sitelerindeki güvenlik

açıklıkları nedeniyle sık sık hassas bilgiler elde edilmiştir. Ancak bu güvenlik

açıklıkları tespit edilebilir ve web sitelerinin güvenliği güçlendirilebilir. Bu nedenle,

web sistemlerinin zayıf yönlerini keşfetmek, bu zayıflıkların nedenlerini araştırmak

ve çözüm üretmek önem kazanmıştır. Sızma testleri, güvenlik açıklıklarını

belirlemek için endüstride yaygın şekilde kullanılmaktadır.

Bu tezin amacı, web uygulamaları hakkında kapsamlı ve eksiksiz bir genel bakış

sağlayarak web uygulamaları güvenliği üzerinde çalışmak isteyenlere ışık tutmaktır.

Örnek web sitemiz içerisinde bulunan güvenlik açıklıklarını tespit ederek güvenlik

önlemlerini artırmanın yanında sebeplerini de inceleyerek etkili bir çözüm üretmeye

çalışacağız. Saldırganların bakış açılarından saldırılara karşı birden fazla girişimi

taklit eden bir penetrasyon testi gerçekleştirerek, belirli güvenlik açıklarını ortaya

çıkarmak için kara kutu yaklaşımını kullanarak. Web hizmetleri ortamında üçüncü

parti testler için özellikle yararlıdır, çünkü testçinin statik analiz bulgulaması yaptığı

gibi kaynak koda erişiminin olmasını gerektirmez. Böylece web uygulamaları

güvenliğinde çalışmak isteyenlerin güvenlikle ilgili tespitlere erişmesini, sorunlarını,

ve çözüm önerileri üretmesini sağlayacaktır.

3

Bu tezde kullanılan yöntem, kötü niyetli bilgisayar korsanlarının yaptığı gibi örnek

sitemizde yer alan zafiyetlere saldırmaktır. Amaç sistemde hangi zafiyetlerin

olduğunu kanıtlamaktır. En etkili sızma testleri, çok spesifik bir sistem ile spesifik

bir hedef (Örneğimiz gibi) hedefleyen testler olduğunu belirtmek gerekir. bunun için

bu örneği verdik. Öncelikle varolan güvenlik açıkları hakkında tam bir açıklama

getirdik. Sonra zayıflıkların varlığını ispatlamak için basit kodlarla saldırmanın basit

ve kolay bir yolunu kullandık. Inancıyla, geleneksel (basit) kodla bir zayıflık kırarsa,

bileşik kodla kesmek kolaydır. Güvenlik açıklıklarını ortaya çıkartmak için black-

box yaklaşımını kullanarak bir sızma testi gerçekleştirilecek. Black-box yaklaşımı,

web hizmetleri ortamında çok faydalı ve ideal bir yaklaşımdır, çünkü kaynak koda

erişimi olmayan bir hacker gibi davranarak sistem analiz edilir. ardından güvenlik

açıklığının belirtilen nedenleri ve etrafındaki mevcut çalışmalar dikkate alınarak

uygun çözümler sunuldu. Bu tezin okuyucusu değerleri hedefleri seçerek bunu

bulacaktır.Tüm güvenlik altyapısını ve değerli bir varlık için ilişkili riski

belirleyebiliriz.

Web uygulamaları sunucu-istemci mimarisi üzerine kurulmuştur ve genel internet

protokolleri ve teknolojileri üzerinde çalışırlar. Kullanılan protokoller ve teknolojiler,

teknolojilerin kusurları veya geliştiricilerin web uygulamaları geliştirme sırasında

teknolojileri uygularken yaptıkları hatalar güvenlik açıklarına neden olabilir

(Kalman, 2013). Uygulamalar genellikle 'katmanlar' olarak adlandırılan ve

katmanlara rol atanan mantıksal parçalara bölünür. Geleneksel uygulamaların

yalnızca istemci tarafında bulunan 1 katmandan oluşmasına rağmen birçok

varyasyonu mevcuttur. En yaygın kullanılan yapı 3 katmanlı yapıdır. Bu katmanları

sunum, uygulama mantığı ve depolama olarak adlandırılır. Web tarayıcılar birinci

katman olan sunum katmanını oluşturmaktadırlar. Web hizmetinin içeriği ve çalışma

mantığı ikinci katman olan uygulama mantığı katmanını oluşturur. Web hizmetinin

arka yüzündeki verilerin depolandığı veri tabanı kısmı ise son katmanımız olan

depolama katmanını oluşturmaktadır. Web tarayıcıları, istemcilere ait verileri, veri

tabanına göndermek için istemci istekleri kullanıcı arabirimi olarak hizmet veren

ikinci katmana gönderir. (Stanek, 2014)

4

Şekil 1.1. Üç-Katmanlı Web Uygulama Mimarisi

Web uygulamalarının mimarisinde derinlemesine bakmak isteyen kişi şu gerçeği

bulacaktır: Karmaşık uygulamalar için, uygulama mantığı katmanını kırmanın en

büyük yararı olan n katmanlı bir yaklaşım kullanmak faydalı olabilir. Başka bir

yararı ise verilere erişmek için kullanımı kolay bir arabirim sağlayarak veri

katmanını diğer katmanlardan ayıran bir entegrasyon katmanı ekleme de olabilir.

Ancak, katman sayısının artmasının, her bir katmanın kendi açık güvenlik açıklarına

ve saldırganlardan korunması gereken arabirimlere sahip olduğu yeni bir dizi

güvenlik endişesi yarattığı belirtilmelidir. Ayrıca, saldırganlar istemci üzerinde tam

denetime sahiptir, dolayısıyla saldırıları genellikle istemci üzerinden başlatır ve

mimaride bir katmandan bir giriş noktasından diğer katmandaki gerçek hedefe saldırı

sağlamak için katmanlar arasındaki etkileşimleri gelişmiş yöntemlerle kullanır.

Web uygulamaları, (Tarayıcılar, Tekdüzen Kaynak bulmayı (URL), Hiper Metin

Biçimlendirme Dili (HTML), Veri tabanları (DB), Protokoller, Basamaklı Stil

Sayfaları (CSS), Kütüphaneler, Çerçeveler, Uygulama Programlama Arabirimi

(API), Veri biçimleri, AJAX, Belge Nesnesi Modeli (DOM), Aynı Kaynak İlkesi,

Karakter Kodlama Sistemi, vb.) gibi işlevlerini yerine getirmek için sayısız teknoloji

kullanan bir piramit üzerine kurulmuştur. Birçok yazar (Flynn, 2015) gibi web

teknolojileri hakkında yazmıştır, bu tekniklerin çoğu gizli değil, ve kolayca

erişilebilir olmasına rağmen. Bu teknolojilerin özelliklerinin anlaşılması kolay ve

web uygulamalarına karşı etkili saldırılar gerçekleştirmenin anahtarıdır.

5

Web uygulamalarında işlevsellik sunmak için sayısız teknoloji kullanılır. İşlevsel

olan herhangi bir uygulama, sunucu ve istemci bileşenlerinde düzinelerce farklı

teknolojiyi kullanabilir (Stuttard ve Pinto, 2011). Bu işlevlerin uygulanması tarayıcı,

web sunucusu, hizmetler ve veritabanı gibi bir web uygulama mimarisinin tüm

bileşenlerini etkileyebilir. Ayrıca coğrafi olarak ve organizasyonel olarak dağılmış

olabilirler, çünkü her bileşen coğrafi olarak ayrı olan sunucularda bulunabilir ve

işleme alınma mantığında farklı organizasyonlar sorumlu olabilir. Saldırgan bir web

uygulamasına karşı ciddi bir saldırı gerçekleştirmeden önce web uygulamasında

kullanılan işlevselliklerin nasıl uygulandığını ve kullanılan teknolojilerin nasıl

davranış göstereceğini gözlemleyerek zayıf noktaların uygulama üzerinde hangi

noktalarda bulunabileceğine dair temel bir fikir edinmeye çalışır. Web uygulamaları

işlevleri iki kategoriye ayrılabilir:

a. Sunucu Taraflı Fonksiyonlar

İlk World Wide Web tamamen statik içerik içeriyordu. Web siteleri, sadece bir web

sunucusu yüklenen ve bunları talep eden herhangi bir kullanıcıya teslim edilen

HTML sayfaları ve resimler gibi çeşitli kaynaklardan oluşuyordu. Belirli bir kaynak

için gönderilen her istekte sunucu aynı içerik ile yanıt verirdi. Günümüz web

uygulamalarında oldukça fazla statik kaynak kullanmaktadır. Ancak, kullanıcılara

sundukları içeriğin büyük bir kısmı dinamik olarak oluşturulur. Bir kullanıcı dinamik

bir kaynak istediğinde, sunucunun yanıtı anında oluşturulur ve her kullanıcı

kendisine özel içeriği alabilir. Dinamik içerik, komut dosyaları veya sunucu üzerinde

çalışan diğer kodlar tarafından oluşturulur. Bu senaryolar kendi başlarına bilgisayar

programlarına benzer. Bunların çeşitli girdileri vardır ve bunlar üzerinde işlem

gerçekleştirir, ve çıktılarını kullanıcıya döndürür. Bir kullanıcı tarayıcısı dinamik bir

kaynak istediğinde normal olarak bu kaynağın bir kopyasını istemez. Genel olarak,

istek dahilinde çeşitli parametreleri de gönderir. Sunucu tarafı uygulamasının, tek tek

kullanıcıya özel içerik üretmesini sağlayan yapı bu parametrelerdir.

6

b. İstemci Taraflı Fonksiyonlar

Sunucu tarafı uygulaması kullanıcının girdi ve eylemlerini almasının ardından

sonuçları kullanıcıya sunabilmesi için istemci taraflı kullanıcı arabirimi sağlamalıdır.

Tüm web uygulamalarına bir web tarayıcısı üzerinden erişildiğinden, bu arayüzlerin

hepsi ortak bir teknoloji çekirdeğini paylaşır. Bununla birlikte, bunlar çeşitli

şekillerde oluşturulmuş ve uygulamaların istemci tarafındaki teknolojiyi kullanmanın

yolları son yıllarda hızla gelişmeye devam etmiştir.

Yeni teknolojilerin ortaya çıkması, yeni güvenlik açıklıklarının ortaya çıkma

olasılığını ortaya çıkarmaktadır. Yeni güvenlik açıklıkları bulunmasının yanında en

sık görülen zafiyetler zamanla gelişim gösterdi. Böylece, mevcut uygulamalar

geliştirildiğinde dikkate alınmayan yeni saldırılar düşünülmüştür. Bazı sorunlar

gittikçe daha yaygın hale gelmiştir çünkü bunların farkındalığı artmış ve buna ek

olarak teknolojilerdeki bazı eksiklikler web tarayıcı yazılımında yapılan değişiklikler

sonucunda büyük oranda azaltılmıştır. Web uygulamalarında işlenen bilgilerin

büyük çoğunluğu özel ve son derece gizlidir. Bu nedenle güvenlik web

uygulamalarının geliştirilmesinde önemli bir husustur. İnternetteki kötü niyetli

saldırılara karşı açık mimarisi ve karmaşık iş mantığına sahip web uygulamalarının

gittikçe daha savunmasız olduğu bilinmektedir. Web uygulama güvenliği bir çok

yazılım geliştirme disiplini, teknolojisi ve tasarım kavramlarını içine alan geniş bir

konudur. Web uygulamalarına yönelik en ciddi saldırılar, hassas verileri göstermek

veya uygulamanın arka planında çalıştırılan sistemlerde sınırsız erişime sahip

olmaktır. Bu türden yüksek profilli saldırılar sık sık görülmektedir. saldırı için yeni

olanaklar sunan yeni teknolojiler geliştirildi. Bu nedenle, Web uygulamaları

güvenliği gerekiyor.

Penetrasyon testi, web uygulaması güvenliğini test etmek için endüstride yaygın

olarak kullanılmaktadır. Uygulama hizmetlerine yapılan saldırıların önlenmesi için

güvenlik açığı değerlendirmesi ve penetrasyon testi uygulanmaktadır (Sachin ve

diğerleri, 2011). Güvenlik açığı değerlendirmesi, tehditlerin keşfedildiği ağ geçidi

konumundadır. Penetrasyon testi, güvenlik açıklarını keşfetmek için web

uygulamalarına gerçek saldırıyı taklit eden bir güvenlik değerlendirme sürecidir.

7

Değerlendirme, web uygulamalarının gerçek ve beklenen davranışlarının

karşılaştırılmasına dayalı olarak yapılır. (Farah ve diğerleri, 2015). Penetrasyon testi,

bir ağda bulunan test uygulamalarında "bilinen" güvenlik açıklarını belirlemek için

kullanılabilir veya özel hazırlanmış web uygulamalarında "bilinmeyen" güvenlik

açıklarını keşfetmek için kullanılabilir. Tezimiz öncelikle ilki ile ilgilidir, ancak her

iki türünü de anlamak çok daha önemlidir.

Penetrasyon testi için çeşitli yöntemler vardır. Başarılı bir test için bir metodolojinin

izlenmesi gereklidir (Mirjalili ve diğerleri, 2014). Test metodolojisinin isimleri ve

dizilişi farklı olmakla birlikte, temel süreçler tüm yöntemler için aynıdır (Olson,

2010). Bir testi yapan kişiye bu testi yapma süreci boyunca rehberlik eden, tipik bir

metodoloji ISECOM Açık Kaynak Güvenliği Test Metodolojisi El Kitabı (ISECOM

OSSTMM Ana Sayfası, 2017) olan bir dizi metodoloji oluşturulmuştur. Özel olarak

hazırlanmış bir web uygulamasında asla tespit edilmemiş güvenlik açıklarını

keşfetmek için penetrasyon testi genellikle güvenlik uzmanları tarafından uygulama

için güvenlik değerlendirmesi yöntemi olarak yapılır.

8

2. KAYNAK ÖZETLERİ

Stepien ve diğerleri (2012): Bu çalışma, web penetrasyon testi çalışmaları oluşturma

sürecini kolaylaştırmak için test şartnamesi dili TTCN-3'ün doğal soyutlama

özelliklerini güçlendiren bir yaklaşımla sunulmuştur. Özellikle web güvenlik

açıklarının ayrı modellerini ve web uygulama işlevlerini, genel bir web soyutlama

modeli ve TTCN-3 test framework modeliyle birleştirmenin avantajlarını gösterir.

Uskov (2013): Bu makale, bilgisayar bilimleri ve bilgisayar bilgi sistemleri

öğrencileri için yazılım ve web uygulamaları güvenliğinde tasarlanmış ve

geliştirilmiş en son teknoloji ders yazılımı ve uygun öğrenme paradigması üzerine

odaklanmıştır. Geliştirilen müfredatın ana konuları, yazılım ve web sistemlerinde

saldırganların motivasyonu, modern teknikler ve güvenlik açıkları, bilgisayar

saldırıları kategorileri, bilgisayar saldırıları çeşitleri, bilgisayar korsanlığı araçları,

koruma ve savunma mekanizmaları, yazılım ve web sistemlerinin geliştirilmesi için

güvenli programlama yöntemlerini içerir. Öğrencinin geri bildirimine ve öğrencinin

akademik performansına ve çoklu uygulama egzersizleri ile eğitimin öğrenme

paradigmasının bir kombinasyonuna dayanır.

Antunes ve Vieira (2014): Bu çalışma, yaygın olarak kullanılan birkaç otomatik

penetrasyon testi aracının analizini amaçlamaktadır. Sonuçlar, web hizmetleri

güvenlik testleri için performansların çok etkileyici olmadığını gösteriyordu. Bu

nedenle araştırmacılar ve uygulayıcılar için gelecekte web hizmetleri için daha iyi

güvenlik sağlayacak zayıf noktaların ve metodolojilerin tespit edilmesinin

verimliliğini artırmak için yeni araçlar ve teknikler geliştirmenin yolunu açacak bu

araçlar hakkında açık bir görüş imkanı verdi.

Yılmaz (2014): Bu makale, bilgi güvenliğinin önemini vurgulamak, kurumlarda bilgi

güvenliğini tehdit eden unsurları ve bunlara karşı alınan tedbirleri belirlemek ve Bilgi

Güvenliği Yönetim Sistemini (ISMS) TS ISO / IEC 27001 Standardı ve risklerin

analizi hakkında bir çalışma içermektedir.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Alexander%20V.%20Uskov.QT.&newsearch=true

9

Kasture ve diğerleri (2015): Bu makale, web hizmetlerine internet üzerinden

erişirken veritabanında gerçekleştirilen her işlemle ilgili çerezleri yeniden yazarak

bazı saldırıları önlemeyi ve algılamayı amaçlamaktadır. Önerilen sistem ayrıca, bazı

verileri saldırganlardan korumak için XSS ve SQL enjeksiyonu gibi saldırıları algılar

ve bunları engeller.

Saleh ve diğerleri (2015): Bu çalışma, Boyer-Moore Dizge Eşleştirme Algoritmasını

kullanarak web uygulama açıklarını saptamak için bir algılama yöntemi geliştirerek

web uygulaması sorunlarını çözmek için bir teknik önerdi. Performansını

değerlendirmek için sayısız deney yapılmıştır. Sonuç, önerilen yöntemin sahte

sorgulara dayalı açıklıkları doğru bir şekilde tespit etme ve düşük işlem süresi ile

saldırganların sorgularını önleme açısından iyi bir performansa sahip olduğunu

göstermektedir.

Rafique (2015): Bu makale, web uygulamaları güvenlik açıkları algılama

yaklaşımları alanında bildirilen ampirik araştırmanın sentezlenmesi için haritalama

çalışmasının bir tanımını sağlamayı amaçlamaktadır. Önerilen çözümler, çözümün

önerildiği yazılım geliştirme aşamaları ve OWASP tarafından en yaygın 10 güvenlik

açıklığı listesine göre web uygulaması güvenlik açıkları eşleştirmesine karşı

oluşturulmuştur.

Prokhorenko ve diğerleri (2016): Bu makale, varolan yaklaşımları bütünsel bir büyük

resimde sistemleştirmeyi amaçlayan web uygulaması koruma tekniklerini inceler. Ve

kapsanan bazı teknikler (örn. Statik Kod Analizi) her türlü uygulamaya uygulanacak

kadar genel olsa da, çeşitli web uygulama koruma tekniklerine odaklanıldığı

görülmüştür. Bu makalenin temel katkısı, kapsamlı bir web uygulama koruma

tekniği sınıflandırması sağlamaktır.

El-Hajj ve diğerleri (2016): Bu çalışma, web uygulamalarında güvenliği zorlayan bir

framework olarak önerildi. Geliştiricinin yalnızca bir güvenlik sınıfıyla veritabanı

özniteliklerine açıklama ihtiyacı duyması nedeniyle, minimum geliştirici çabası

gerekiyordu. Web uygulama kodu daha sonra Genişletilmiş Program Bağımlılığı

Grafiği (EPDG) olarak adlandırılan bir aracı temsil haline dönüştürüldü. EPDG'yi

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sajjad%20Rafique.QT.&newsearch=true

10

kullanarak, verilen açıklamalar, uygulama koduna aktarıldı ve güvensiz bilgi

akışlarının ortaya çıktıklarında tespit edilmesi için özenle tasarlanmış genel güvenlik

uygulama kurallarına karşı yürütüldü. Sonuç olarak, verilerin gizlilik veya dürüstlük

politikalarında bir çok ihlal bildirildi.

Vieira ve Serrão (2016): Bu makale, web uygulamaları güvenlik seviyesini

değerlendirmek için bir kurumdan birkaç finansal web uygulamasında yapılan

otomatik denetim araçları yardımıyla yapılan güvenlik denetim sonuçlarının

analizine odaklanmaktadır.

Perera ve diğerleri (2016): Bu araştırmanın amacı, (saldırı tespit sistemi) IDS / IPS

(Saldırı Önleme Sistemi) veya WAF (Bir web uygulama güvenlik duvarı) gibi

güvenlik katmanlarını atlatabilen kehanet modellerini analiz etmek ve keşif işlemine

engel olmadan halledebilecek bir çözüm sağlamaktır. Önerilen çözüm, bilinen bir

PHP frameworkü için eklenti olarak gösterildi.

Osman ve diğerleri (2017): Bu çalışmada, internet uygulamalarının güvenlik ve

servis korumasını, belirtilen erişim kontrollerini, kriptorolojileri, çerezleri ve oturum

yönetimlerini, savunma programlama uygulamalarını, gelişim ömrü boyunca

saldırılardan korunmayı, erişim denetiminde donanım kimlik doğrulama tekniklerini

kullanan basit bir güvenlik modeli önerdi. Daha sonra MD5'i Based64 ile karıştırarak

şifreleme yaklaşımını önererek oturum ve çerez türlerini güvence altına almanın

yollarını göz önünde bulundurdu. Buna ek olarak, bu uygulamalar en önemli web

güvenliği güvenlik açığı ve erişim kontrolü zayıflığını ve bu zayıflıkların üstesinden

nasıl gelinebileceğini tartışıldı ve güvenlik standartlarını ISO 25010 kalite belgesine

göre bir Likert ölçeği kullanarak ölçmek, analiz etmek ve değerlendirmek için bir

yaklaşım önerdi. Bu çalışmanın gayesi, güvenliklerini korumak için her web

uygulaması geliştirme sürecinde uygulanması gereken bir takım teknik ve ipuçlarını

göstermektir.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Tiago%20Vieira.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Carlos%20Serr.AND..HSH.x00E3;o.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ashan%20Chulanga%20Perera.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Aiman%20M.%20Osman.QT.&newsearch=true

11

3. MATERYAL VE METOD

Bu bölümde, bilinen güvenlik açıklıklarına karşı Penetrasyon testini black-box

yaklaşımı kullanılarak güvenlik açıkları ayrı ayrı incelenecektir. Bir hesabı açmaya

ve bankadaki müşterilerin hesabına saldırmaya gerek kalmadan dışardan gelen bir

tehlikeye ele alacağımızı dikkate alarak. İzlenilecek yol haritası hakkında

Penetrasyon testine başlanacaktır.

Bilgi Güvenlği Akademisi (BGA) Bank, eğitimlerde kullanılmak üzere zafiyetli web

uygulaması hizmeti sağlayan bir uygulamadır. Bu uygulama, internet bankacılığı

sistemlerinde var olan güvenlik zayıflıkları içeren internet bankacılığından ibarettir.

Sistem düzenli olarak sıfırlanır ve kullanıcıların bu güvenlik açıklıklarını bulması

beklenir. (Bgabank.com, 2016)

Bu modeli seçmemizin sebebi tasarım açısından gerçek dünyadaki örneklere

(bankalar) benzediği gibi Internet'te hizmet veren tüm bankalar güvenlik duvarı da

içeriyor. Banka modelini seçmenin nedeni, bazı çevrimiçi bankaların (veya diğer

güvenlik açısından kritik uygulamaların) az sayıda başarısız oturum açma işleminden

(üç defa) sonra bir hesabı devre dışı bırakmasıdır. Ayrıca, hesap sahibinin, müşteriyi

telefonla aramak ve bir dizi güvenlik sorusunu cevaplamak gibi, hesabı yeniden

etkinleştirmek için çeşitli çevrim dışı adımları atmasını isterler. Bu politikanın

dezavantajları, bir saldırganın, hesapları sürekli olarak devre dışı bırakarak ve hesap

kurtarma hizmeti sağlama maliyetini kullanarak meşru kullanıcılara hizmet

vermesini engellemesine izin verir. Az miktarda başarısız oturum açma girişiminden

sonra (üç defa) kısa bir süre (30 dakika) hesapları askıya almak, güvenlik bilinciyle

çalışan uygulamaların çoğu için daha dengeli bir politika olması gerekir. Bu hizmet

reddi saldırıları riskini azaltarak ve çağrı merkezi yoğunluğunu minimuma indirerek

parola saldırılarını büyük ölçüde yavaşlatır. Bu, sistemimizin kusurları içerdiği

anlamına gelmez, ancak bankacılık uygulamalarının internet üzerindeki öneminin bir

açıklamasıdır. Şimdi, mevcut güvenlik açıklarını tek tek incelemeye devam edelim.

12

3.1. Siteler Arası Kod Yazma (XSS)

Tanım:

Bilgisayar korsanlarının bugün kullandıkları Web uygulamalarına yönelik birçok

saldırı arasında en yaygın ve ciddi saldırılardan biridir. Bu saldırıların kontrolü ve

önlenmesi zorluğu nedeniyle günümüzde büyük bir sorun olarak görülmektedir. İki

taraf içeren çoğu saldırıdan farklı olarak: saldırgan, web sitesi veya saldırgan ve

mağdur müşteri olarak XSS saldırısı üç taraf içerir: saldırgan, bir istemci ve web

sitesi (Klein 2006). Kötü amaçlı komut dizilerinin yararlı ve güvenilir web sitelerine

enjekte edildiği bir enjeksiyon türüdür ve bu kötü niyetli içerik sıklıkla bir JavaScript

bölümü alır. Ancak HTML, Flash veya tarayıcının kullandığı başka herhangi bir kod

türünü de içerebilir (OWASP 2016).

Kaynaklanma nedenleri:

Bu güvenlik açığı, bir web uygulaması ve web sayfalarındaki kullanıcılardan alınan

girdileri düzgün bir şekilde kontrol etmeden, kullanıldığında ortaya çıkar (Shar ve

Tan 2012). Bu, bir saldırganın ziyaretçinin bilgisi olmadan bir ziyaretçinin

tarayıcısında çalışan ve dolayısıyla saldırganın hassas kullanıcı verilerine (Yusof ve

Pathan 2016) erişmesine olanak tanıyan bir web sitesine kötü niyetli komut dosyası

yerleştirmesine olanak tanır.

Saldırı hedefleri:

XSS saldırısının amacı, istemci çerezlerini veya diğer hassas bilgileri çalmaktır;

saldırganlar, istemciyi web sitesi ile tanımlayabilir veya kimlik hırsızlığı, anahtar

kayıtları, kimlik avı, kullanıcı kimliğine bürünme ve web kamerası gibi çeşitli kötü

niyetli işlemleri yapabilir. Bu komut dosyalarının HTML sayfasının içeriğini bile

yeniden yazılabilir.

13

Saldırının önemi ve Gerçek dünya örnekleri:

Bu zafiyet, hacker (bilgisayar korsanı) çevrelerinde çok popülerdir ve etkileri,

güvenlik açığından etkilenen site tarafından işlenen verilerin hassaslığına ve sitenin

sahibi tarafından uygulanan herhangi bir güvenlik azalmasının doğasına bağlı olarak,

küçük bir sıkıntıdan önemli bir güvenlik riskine kadar değişebilir. Göz ardı

edilmemelidir. Ek dosya eylemi nedeniyle XSS saldırısı CWE Cyber Security (Siber

Güvenlik)’e bildirildi (CWE 2013). Web sitesi güvenliği istatistiklerine göre

(Industry Benchmarks 2010), hedefli XSS saldırılarında, apache.org'u içeren ve

parolaların ele geçirildiği önemli bir olay da dahil olmak üzere bir artış meydana

geldi (Das ve diğerleri 2015). Facebook, Google, PayPal ve Twitter gibi büyük

uygulama hizmetleri bile, 2003 Acil Müdahale Ekibi danışma belgesinde ilk kez

rapor edildiğinden bu yana endişe verici derecede artan XSS saldırıları geçirdi. Açık

Web Uygulaması Güvenlik Projesi (OWASP), XSS'yi, en yaygın 10 Web güvenlik

açıkları listesinde yer alan 2017 listesinde üçüncü sırada yer alarak "en yaygın Web

uygulaması güvenlik açığı" olarak nitelendirdi (OWASP 2017). WhiteHat

Security'nin Mayıs 2013 Web Güvenliği İstatistikleri Raporu, XSS müdahalelerinin

yaygın riskinin altını çizerek, Web uygulamalarının yüzde 43'ünün bu tür saldırılara

karşı savunmasız olduğunu kaydetti. (Yusof ve Pathan 2016)

Türleri:

Bunlardan bir tanesi DOM temelli saldırılar olan örneğimizin dışındaki üç farklı XSS

saldırısı sınıfı vardır ve bunlardan bazıları şunlardır: Yansıyan saldırılar ve Saklanan

saldırılar.

3.1.1. Yansıtılan xss saldırıları

Tanım: Yansıyan (Reflected) XSS, web açıklarının en yaygın türüdür. Yansıyan bir

saldırıda, enjekte edilen komut, hata mesajında, arama sonucunda veya isteğin bir

parçası olarak sunucuya gönderilen girdinin tamamını veya bir kısmını içeren

herhangi bir yanıt gibi web sunucusundan yansır. Dolayısıyla, bu saldırı yükü tek bir

istek ve yanıt yoluyla iletilir ve yürütülür. Potansiyel bir vektörün klasik bir örneği

14

bir site arama motorudur: bir dize ararsa, arama dizesi genellikle sonuç sayfasında

neyin arandığı belirtilmek üzere tekrar gösterilir. Yansıtılmış XSS'ye bazen Sürekli

Olmayan veya Tip-II XSS adı verilir.

Kaynaklanma nedenleri: Yansıyan saldırı, web sitesi veya web uygulaması

kullanıcı girişini, yanıt sonuçlarının bir parçası olarak düzgün bir şekilde sanitize

edilmeden kullandığında ortaya çıkar.

Saldırının senaryosu: Genellikle bir saldırgan URL'deki kötü amaçlı komut

dosyalarını gizler ve genel olarak kurbanlarına bir e-posta iletisinde olduğu gibi

başka bir yolla veya başka bir tarafsız web sitesinde gönderilir. Bir kullanıcı kötü

niyetli bir bağlantıyı tıklattığında, özel hazırlanmış bir form gönderirken veya

yalnızca kötü niyetli bir siteye göz attığında, enjekte edilen kod savunmasız web

sitesine gider ve kurbanın tarayıcısına tekrar yansıtılır. Tarayıcı daha sonra isteği

sağlıklı hale getirmeden zararlı komut dosyasını yürütür ve "güvenilir" bir sunucudan

geldiğinden saldırganın kimliği doğrulanmış çerezleri veya verileri çalmasına izin

verir. Şekil 3.1’de, mağdurların savunmasız bölgede kendilerini doğruladıklarını

varsayıyoruz.

Şekil 3.1. Yansıtılan XSS saldırısının tipik senaryosu

15

Yansıtılan bir xss güvenlik açığını denetleme:

Sistemimizin yansıtılan XSS'yi vardığını ispatlamak için, XSS güvenlik açıkları için

tüm kullanıcı girdilerini kontrol etmeliyiz. Zafiyet bilgileri aşağıdaki belirtilmiştir.

Saldırı adımları

1. Bu zafiyeti istismar etmeden önce normal bir arama yapılır. "XSS" kayıtını

aratıldığında "Aradığınız Kayıt Bulunamadı” hatası dönmektedir. Bu durum Şekil

3.2'de gösterilmiştir.

Şekil 3.2. Arama sonuçları sayfası (Aradığınız Kayıt Bulunmadı)

Şekil 3.2'de gösterildiği gibi, arama sonuçları sayfası orijinal girdiyi (XSS)

sonuçların bir parçası olarak yazdırır.

2. Daha sonra çeşitli payloadlar denenebilir. En sık kullanılan payloadlardan

<script>alert(123)</script> denendiğinde, sonuç Şekil 3.3.teki gibidir.

Araç: Kali Linux tarayıcısını (Iceweasel); Internet Explorer

URL: http://isube.bgabank.com/?sayfa=arama.

HTTP Talep Turu: GET

Parametre: s1 veya s2

Payload: <Script> prompt (BGA) </Script>

 <Script>prompt(document.cookie);</Script>

16

Şekil 3.3. Arama sonuçları sayfası (Hata Oluştu)

Şekil 3.3'te gösterildiği gibi, arama sonuçları sayfası yanlış bir mesaj yazdırmaktadır,

bu da uygulamadaki bir güvenlik duvarı anlamına vardır.

Şimdi, uygulamada güvenlik duvarı olmadığına veya Internet Explorer'da veya başka

bir tarayıcıda böyle bir kod girmeye çalışırsanız, açılır pencere görünmeyecektir ve

tarayıcı otomatik olarak açık XSS saldırılarını engelleyecektir. "Internet Explorer, bu

sayfayı çapraz site komut dosyalarını önlemeye yardımcı olmak için değiştirdi"

iletisini gösterebilir. Bunun nedeni, tarayıcıların son sürümlerinde kullanıcıları

yansıyan XSS güvenlik açıklarına karşı korumak için tasarlanmış yerleşik bir

mekanizma içeriyor olmasıdır. Ve Iceweasel böyle bir tarayıcıdır. Bu örnekleri test

etmek isterseniz, bu korumayı kullanmayan farklı bir tarayıcı deneyebilirsiniz veya

şu adımlara giderek XSS filtresini devre dışı bırakabilirsiniz: Araçlar - Ayarlar -

Gelişmiş ayarları göster - Ağ - Proxy ayarını değiştir - Güvenlik - Özel Düzey - XSS

filtresini etkinleştir altında, Devre dışı bırak'ı seçin.

3. Bu engeli atlatmak için en basit yöntemlerden biri script kelimesini büyük‐ küçük

harf kullanarak yazmaktır. Şekil 3.4.te <Script> prompt (BGA) </Script> payloadı

denenmiştir ve sonuç başarılıdır.

Şekil 3.4. R-XSS güvenlik açığı arama kutusunda mevcuttur

17

Şekil 3.4 gösterildiği gibi, açılır pencerenin komut dosyası çalıştırılır. Bu, XSS'de bir

güvenlik açığı bulunduğunu ve kullanıcının, test kullanıcısının bağlantısını tıklarsa,

kullanıcının herhangi bir tarayıcısında kendi istediği kodu çalıştırabileceği anlamına

gelir.

4. Bu payload haricinde, başka bir tarayıcı kullanarak (Internet Explorer gibi) ile

farklı payload <Script>prompt(document.cookie);</Script> çalıştırılabilir. Elde

edilen sonuç Şekil 3.5 'te verilmiştir.

Şekil 3.5. Internet Explorer'ı kullanarak R-XSS güvenlik açığı

Kullanıcı, çerçevenin orijinal sayfanın bir parçası olduğunu düşünebilir ve kimlik

bilgilerini girerek saldırgana sahadan gönderilir.

3.1.2. Depolanan/saklanan xss saldırıları

Tanım: Saklanan saldırı türü, komut dosyası veritabanında, mesaj forumunda,

ziyaretçi günlüğünde, yorum alanında vb. depolayan bir web sitesine kötü niyetli

komut dosyası yerleştirmeyi içerir ve çapraz site komut diziminin en tehlikeli ve en

yıkıcı biçimidir. Saklanan XSS'ye bazen Sürekli veya Tip-I XSS denir.

Kaynaklanma nedenleri: Kullanıcıların verileri saklamasına izin veren Web

uygulamaları potansiyel olarak bu tür saldırılara maruz kalmaktadır. Komut dosyası

doğru filtrelenmezse, web uygulamasının bir parçası gibi görünür ve uygulamanın

ayrıcalıkları altında bir kullanıcının tarayıcısında çalışır.

18

Saldırının ciddiyet: Saklanan XSS, kullanıcının verdiği veriler sunucu tarafından

kaydedildiğinde, kötü niyetli komut dosyası otomatik olarak oluşturulduğu için

algılanması zor olur ve kullanılmaya başlanacak kötü amaçlı bir bağlantıya ihtiyaç

yoktur. Sonuç olarak, saldırganlar etkinliklerini kolayca gizleyebilir; Örneğin, bir

blogda, durumu görünüşte zararsız bir yoruma gömebilirler.

Saldırının senaryosu: Bu saldırında, kötü niyetli komut dosyası veritabanında

yerleştiriliyor, web uygulamasının bir parçası gibi görünür, ve kullanılmaya

başlanacak kötü amaçlı bir bağlantıya ihtiyaç yoktur. Bir kullanıcı, depolanmış bir

XSS içeren bir sayfayı ziyaret ettiğinde başarılı bir uygulama meydana gelir. Şekil

3.6 daki Depolanan XSS saldırının senaryosu gösterilmiştir. Enjeksiyon yöntemleri

büyük farklılıklar gösterebilir; bazı durumlarda, saldırganın böyle bir deliği

kullanmak için doğrudan web işlevselliği ile etkileşime girmesi gerekmeyebilir. Bir

saldırgan tarafından denetlenebilen web uygulaması tarafından alınan herhangi bir

veri (e-posta, sistem günlükleri, IM vb.), bir enjeksiyon vektörü haline gelebilir.

Şekil 3.6. Depolanmış (XSS) saldırının tipik senaryosu

Saklanan bir xss güvenlik açığını denetleme:

Saklanan XSS güvenlik açıklarını test etmenin en iyi yolu, 'Ziyaretçi defteri'

bölümüne kodu enjekte etmektir. Çünkü veritabanında kaydedilecek, ve sayfa ne

zaman ziyaret edilirse yükü çalışacaktır. Zafiyet bilgileri aşağıdaki belirtilmiştir.

19

Saldırı adımları

1. Ziyaretçi defteri sayfasında yer alan "Mesajınız" sekmesinde Şekil 3.7 gibi

doldurma formuna yazılır.

Şekil 3.9. Ziyaretçi Defteri sayfası

2. Gönder’e bastıktan sonra girişin başarılı olduğunu onaylayan aşağıdaki mesaj 3.8

Şeklinde görünecektir:

Araç: Iceweasel

URL: http://isube.bgabank.com/ziyaretcidef.aspx

HTTP Talep Turu: POST

Parametre: k4

Payload: <Script>prompt(document.cookie);</Script>

20

Şekil 3.8. Girilen Başarı Mesajı

Ardından yük yüklenecektir Şekil 3.9, mesaj diğer mesajlarla birlikte veritabanında

saklanır Şekil 3.10, ve sayfa her ziyaret edildiğinde yükü tekrar çalışacaktır.

Şekil 3.9. Ziyaretçi Defteri sayfasında S-XSS güvenlik açığı bulunmaktadır

Şekil 3.10. Mesajlar veritabanına kaydedilir

21

3.1.3. Belge nesnesi modeli (DOM) xss saldırıları

DOM tabanlı bir XSS saldırısı en gelişmiş tiptir ve iyi bilinmemektedir. Gerçekten

de, bu saldırı türündeki güvenlik açığının büyük kısmı, Web uygulama

geliştiricilerinin nasıl çalıştığını tam olarak anlamamış olmasından

kaynaklanmaktadır. DOM tabanlı veya Tip 0, XSS saldırısı, yansıtılan XSS saldırısı

ile aynı şekilde yürütülür.

DOM tabanlı bir saldırıda, sunucunun kötü amaçlı yükü HTTP yanıtında taşımasına

değil, bir URL'de kötü amaçlı bir değeri kodlayan ve mağdura gönderen bir DOM

tabanlı saldırıdadır. Saldırı, kurbanın tarayıcısı değiştirilmiş DOM'dan gelen kötü

amaçlı kodu çalıştığında ortaya çıkar. İstemci tarafında, HTTP yanıtı değişmez,

ancak komut dosyası kötü amaçla yürütülür. Bu açıklama yalnızca tarayıcı URL

karakterlerini değiştirmezse kullanılabilir. (Yusof ve Pathan, 2014)

3.2. Müşteri No. Bilgi İfşası

Tüm sistemlerde oturum açma işlevleri, bir saldırganın kullanıcı adlarını ve

parolalarını tahmin etmeye çalışması için açık davetiye sunar, ve bu nedenle de

uygulamaya yetkisiz erişim sağlamaya yönelik açık bir kapı bırakır. Uygulama, bir

saldırganın doğru parolayı tahmin edinceye kadar farklı şifrelerle tekrarlanan giriş

denemeleri yapmasına izin verirse, bu son derece savunmasız olduğunu

göstermektedir. Farklı parolalar ile tekrarlanan giriş denemeleri yapmak isteyen

saldırgan kaba kuvvet saldırıları denemek zorundadır. Ancak saldırganın bir saldırıya

başlamadan önce bir veya daha fazla belirli kullanıcı adlarını keşfetmesi gerektiğini

belirtmek gerekir. Başka bir deyişle, kullanıcı adı yoksa kaba kuvvet saldırısı da

yoktur.

Müşteri No. bilgi ifşası güvenlik açığını denetleme:

Sistemimizde bir müşteri numara üzerinden bilgi sızdırma ile ilgili güvenlik açığı

bulunmaktadır. Bu yüzden saldırganın kaba kuvvet saldırıları uygulamasına izin

22

vermektedir. Zafiyet bilgileri ve müşteri numara bilgisi aşağıdakileri yaparak

belirtilmiştir:

Saldırı adımları

1. Müşteri Giriş Paneli web sayfasında Şifremi Unuttum üzerine basarak aşağıdaki

Şekil 3.11’de web sayfası gösterilecektir:

Şekil 3.11. Şifremi Kurtarma Paneli

2. Şimdi, yanlış bir Müşteri No. ve e-posta girilirse, ''Kayıtlı Müşteri No

Bulunamamıştır '' sonuç mesajı Şekil 3.12’de gibi gösterilir:

Şekil 3.12. Kayıtlı Müşteri No Bulunamamıştır sayfası

Araç: Iceweasel

URL: http://isube.bgabank.com/giris.aspx

HTTP Talep Turu: POST

23

3. Ancak doğru bir Müşteri No. girilirse ve bir e-posta girilirse, sonuç mesajı ‘‘Mail

Adresi Müşteri No İle İlişkili Değil.’’ sonuç mesajı Şekil 3.13’te gösterilir.

Şekil 3.13. Mail Adresi Müşteri No İle İlişkili Değil sayfası

Bu Müşteri No.'un var olduğunu gösterir. Bu nedenle kaba kuvvet saldırıları, güçlü

bir CAPTCHA yoksa yürütülebilir.

3.3. CAPTCHA Bypass

CAPTCHA, Tamamen Otomatik Genel Testi anlamına gelir. İnsanları

bilgisayarlardan ayırmak için kullanılan zorunlu bir yanıt testidir (Bypass Captcha

Ana Sayfa, 2017). Bu prosedür, özellikle günlük işlerin okunması zor olan

çarpıtılmış kelimelerle yavaşladığını hisseden insanlardan bir çok eleştiri almıştır.

Genellikle güvenlik nedenleriyle kullanıldığında, CAPTCHA'lar ayrıca yapay zekâ

teknolojileri için bir kriter görevi görür (Savinkin, 2013). Bazen captcha üreten

yazılımın bir kısmı istemci tarafındaysa doğrulama bir sunucuda yapılır ancak

kullanıcılara istemci değişkenini göstermek için captca değiştirilebilir.

Bazı CAPTCHA sistemleri, istemci tarafında depolanan MD5 özetlerini kullanılır.

Bu durum captcha'yı kaba kuvvet saldırısına karşı savunmasız bırakabilir.

Sistemimizde CAPTCHA üç problemi içeriyor:

24

Kullanıcı aracı bilgisi değiştirerek (Mobil Giriş) captcha atlatmayını denetleme:

Sistemizde, müşteri girişi panelinde, Şekil 3.14 gibi eger Müşteri No veya parola dört

kez yanlış giriş denemesine maruz kaldığında kaba kuvvet saldırısını engellemek için

captcha çıkmaktadır. Zafiyet bilgileri aşağıdakileri yaparak belirtilmiştir:

a: Birinci Giriş Deneme b: Ikinci Giriş Deneme c: Uçuncu Giriş Deneme

d: Dördüncü Giriş Deneme e: Captcha Panel

Şekil 3.14. Müşteri Giriş denemeler ve captcha göstermak

Fakat mobil cihazla girildiğinde captcha çıkmamaktadır. Iceweasel tarayıcısı

kullanılarak, tarayıcıda user­agent bilgisi değiştirildikten sonra mobil cihaz gibi

siteye giriş yapılabiliriz. Bu durum Şekil 3.15’te gösterilmektedir.

Araç: Iceweasel

URL: http://isube.bgabank.com/giris.aspx

25

Şekil 3.15. Kullanıcı Aracısı Değiştirici

Bu durumdayken “User Agent Switcher” ile cihaz iPhone olarak ayarlanır ve yanlış

veriler girilip “Giriş Yap” butonuna tıklandığında Captcha ‘nın kaybolduğu

görülecektir. Elde edilen sonuç Şekil 3.16'da verilmiştir.

a: Birinci Giriş Deneme b: Ikinci Giriş Deneme c: Uçuncu Giriş Deneme

d: Dördüncü Giriş Deneme c: Beşinci Giriş Deneme d: Altıncı Giriş Deneme

Şekil 3.16. Müşteri Giriş deneme, captcha çıkatmaz.

Çalışmayan captcha uygulaması zayıflığını denetleme:

Müşteri giriş panelinde captcha'ya baktığımızda ilk karakter giriliyor ve enter tuşuna

basılmaya çalışılıyor. Captcha'nın şu hata mesajını verdiğini göreceğiz: ‘Captcha

26

Alanına Doğru Giriniz!’. Bu durum Şekil 3.17 ‘de gösterilmiştir. Zafiyet bilgileri

aşağıdakileri yaparak belirtilmiştir:

Şekil 3.17. Müşteri Girişi captchanın Paneli

Ancak, captcha'nın çalışmadığı ve yalnızca boş olarak kontrol edildiği yönetici giriş

sayfasında bu olmamıştır. Aşağıdaki Şekil 3.18'de gösterilmiştir.

Şekil 3.18. Yönetici Girişi Sayfasının Paneli

CAPTCHA'nın başarısızlığı kaba kuvvet saldırılarının yönetici verileri elde etmek

için oluşturulabileceğini gösterir. Ancak saldırganın bir yönetici kullanıcı adı bilgisi

elde etmesiyle bu durum mümkündür.

Araç: Iceweasel

URL: http://isube.bgabank.com/administrator.aspx

27

Captcha atlatarak brute force saldırısı gerçekleştirmesi denetleme:

İletişim web sayfasında captcha iyi çalışmasına rağmen tek bir CAPTCHA ile birçok

GET isteği gönderilir. Bu GET istekleri müdahale edilerek gönderilebilir, dolayısıyla

kaba kuvvet saldırılarına olanak verir. Bu durum Şekil 3.19 da gösterilmiştir. Zafiyet

bilgileri aşağıdakileri yaparak belirtilmiştir:

Şekil 3.19. İletişim Sayfası Captcha Kontrolü

Burp Suite kullanılarak, GET isteği yakalanabilir ve yapmak istediğimiz, örneğin e-

posta adresini değiştirme ve aynı Captcha ile yeniden istek gönderme gibi

değişiklikler yapabiliriz. Elde edilen sonuçlar Şekiller 3.20, 3.21 de verilmiştir.

Araç: Iceweasel; Burp Suite

URL: http://isube.bgabank.com/iletisim.aspx

28

Şekil 3.20. Burp Suite Intruder Payload Belirleme

Şekil 3.21. Burp Suite Intruder sonuç

3.4. Müşteri Girişi Form Tabanlı Brute Force Saldırısı

Tabii ki, her saldırı metodu birbirini tamamlayabilir. Çok tehlikeli bir güvenlik açığı,

burada meydana gelen iki küçük güvenlik açığından kaynaklanıyor olabilir. Kısım

3.2'den birkaç Müşteri Numaraları çıkarabildik, böylece başarılı bir kaba kuvvet

saldırısı için ilk adım elde edildi. Ayrıca, Bölüm 3.3 'te "Kullanıcı Aracısı

29

Değiştirici" ni değiştirerek Capcha'yı geçmeyi başardık ve bu, her hesap için şifreyi

elde etmek için kaba kuvvet saldırısı yapabilmemizi sağlıyor.

Müşteri Girişi Form Tabanlı Brute Force Saldırısı Denetleme

Müşteri giriş panelinde 3.3 başlıkta anlatılan mobil giriş captcha atlatma tekniği

kullanılarak, form brute force saldırısına açık hale getirilir. Zafiyet bilgileri

aşağıdakileri yaparak belirtilmiştir:

Saldırı adımları

1. Burp Suite ile bölüm 3.2 'den saptanan (10000150) Müşteri Numarası için istek

yakalanarak, intruder’e gönderilir.

2. Pozisyonlar düzenlenir ve ilk parametreden sonraki parametreler silinir.

3. Wordlist yüklemek için Payloads sekmesine gidilir. Ardından Payload type

kısmından Custom Iterator seçilir.

4. Payload Options bölümünden her pozisyon için gerekli kelime listeleri yüklenir.

5. Seperator for Position 1 için silinen ikinci parametre değeri (&b_password=)

girilir.

Yük miktarı Şekil 3.22'de gösterilmiştir.

Araç: Iceweasel; Burp Suite

URL: http://isube.bgabank.com/giris.aspx

HTTP Talep Turu: POST

Parametre: b_musterino

30

Şekil 3.22. Intruder Payload Belirleme

Saldırı başlatılı ve sonuçlar gözlemlenir. Şekil 23. te görüldüğü gibi 20. istekte,

cevap olarak diğerlerinden farklı length ve status değerleri dönmüştür. Yani

10000150 numaralı müşterinin şifresi hacked olarak saptanmıştır.

Şekil 3.23. Intruder Payload sonuç

31

Böylece saldırı başarıyla gerçekleştirildi ve hesap şifresi belirlendi ve hesap açıldı.

Ayrıca (10000151) Müşteri Numarası için aynı yöntemi kullanırken saldırı, Şekil

3.24'te gösterildiği gibi başarıyla yürütülecektir.

10000150 Müşteri Numarası 10000151 Müşteri Numarası

Şekil 3.24. Saldırılar sonuçları

3.5. HTTP Parametre Kirliliği

Tanım:

Bir web uygulamasında istenen davranışları manipüle etmenin bir diğer yöntemi de

HPP (HTTP Parametre Kirliliği)'dir. HPP, web uygulamasının istenen davranışından

farklı olarak belirli bir kötü amaçlı görev veya saldırı gerçekleştirmek için bir web

uygulamasının HTTP parametrelerini kirletir. Bu güvenlik açığı basit ve oldukça

etkilidir. İlk olarak 2009 yılında tespit edilmiştir. (Carettoni ve di Paola, 2009)

Kaynaklanma nedenleri:

Bu saldırının temel nedeni, aynı isime sahip birden fazla HTTP parametresi

almasıdır. Girdinin kontrol edilmemesi HPP var olan veya başka HTTP

parametrelerinde (GET / POST / Çerez gibi) kodlanmış sorgular dizesi doğrudan

32

parametrelere yeni bir parametre eklemesine neden olur. Bu saldırı ister istemci

tarafından ister sunucu tarafından olsun, tüm web teknolojilerini etkiler.

Saldırı hedefleri:

HPP güvenlik açıkları, var olan kodlanmış HTTP parametrelerinin yerini almak,

amaçlanan davranışı ya da normal uygulama davranışını değiştirmek veya doğru

şekilde kontrol edilmeyen değişkenlere erişmek ve potansiyel olarak bunları kötüye

kullanmak ve WAF kurallarını atlamak veya girdi doğrulama mekanizmalarını

kullanmak için kullanılabilir. Bu nedenle, bir web uygulaması HPP saldırılarına

açıksa, web uygulamasının güvenliği tehlikeye girerek bir saldırgana kötü amaçlı

veya yasa dışı faaliyetler gerçekleştirmenin kolay bir yolunu sağlar. (Daniel, 2017)

Saldırının önemi:

HPP'nin yerçekimi, WAF bypass söz konusu olduğunda ortaya çıkmaktadır; Sorun,

WAF'nin sunucu teknolojisinin HTTP uygulamasını taklit edememesi ve bir

empedans uyumsuzluğuna neden olmasıdır. Dmitriy Evteev'in yöntemi, empedans

uyuşmazlığını veya HTTP uygulamasının zayıflığını kullanmaz. Bunun yerine, yükü

WAF tarafından filtrelenemez, ancak sunucu tarafından işlem yapılacak şekilde

paylaştırarak spesifik bir SQL önleme hassasiyetini (aynı sorguda iki savunmasız

parametrenin bulunduğu) sömüren akıllı bir yöntemdir (Evteev, 2009). Burada,

saldırı vektörünü göre birisi fark edebilir, HTTP Parametre Kirliliği (HPP) HTTP

Parametre Parçalanmasına (HPF) çok benzer. Ancak iki farklı alanda zayıf noktaları

istismar ederler. HPP uygulaması, HPF'nin aksine uygulama ortamını hedef alan,

web uygulamasındaki güvenlik açığının kullanılması içindir. Dolayısıyla, her iki

saldırı vektörü de birbirini tamamlayabilir.

Türleri:

HTTP, aynı parametrelerin birden fazla kez gönderilmesini sağlar (Unity Sec, 2014).

Şimdiki HTTP standartları, aynı isime sahip birden çok giriş parametresinin nasıl

yorumlanacağı konusunda rehberlik içermez. Her parametre değerinin

33

manipülasyonu, her web teknolojisinin bu parametrelerin nasıl ayrıştırdığına bağlıdır

(Singh, 2011). Bazı web teknolojileri, parametrenin ilk veya son durumunu ayrıştırır,

bazıları tüm girdileri birleştirir ve diğerleri bir dizi parametre oluşturur (Daniel,

2017). OWASP (OWASP, 2017) Her web teknolojisinin sunucu tarafında aynı

parametrelerin farklı değerlerini nasıl işlendiğini gösteren ayrıntılı bir tablo

yayınladı. Her teknolojideki parametrelerin çözümlenmesindeki bu fark, farklı

saldırılarla gerçekleştirilebilir. Bu, tetiklendiği şekle bağlı olarak istemci tarafında

veya sunucu tarafında saldırılara neden olur. Her durumda parametreler, web

uygulamasının istemci veya sunucu saldırısı gerçekleştirmek üzere ataklar

gerçekleştirir. HPP, istemci taraflı ve sunucu taraflı olmak üzere 2 kategoriye

ayrılmaktadır.

a. Client Side HPP

HPP İstemci tarafı saldırıları kullanıcı işlemlerinin (bir tarayıcıdaki bağlantıya

erişmek gibi) etkilenip kullanıcı bilgisi olmadan istenmeyen işlemleri

tetikleyebileceği, istemci veya kullanıcı ile ilgilidir. HPP İstemci tarafı saldırıları

Yansıtılan HPP olabilir (URL bağlantılarına ve / veya diğer src özniteliklerine ek

parametrelerin eklenmesi gibi), saklanan HPP olabilir (Veri, src ve href öznitelikleri

ile tüm etiketler üzerinde işlev gösterebilen). POST yöntemiyle oluşturulan, ve DOM

tabanlı saldırı, çoğunlukla beklenmedik parametrelerin çözümlenmesine ve istemci

tarafı HPP'nin JavaScript'i kullanarak gerçekleştirilmesine bağlıdır. Açıkçası,

enjeksiyonun kabiliyeti veya kapasitesi bağlantı niteliğine ve işlevlerine bağlıdır.

Bununla birlikte, asıl amaç müşteri tarafından HPP saldırıları oluşturmaktır.

b. Sunucu Tarafı HPP

Bu saldırı tipi sunucu ortamını etkiler. Saldırgan, HPP'yi bir web uygulamasının

veritabanına erişmek için tetikler ve zafiyetli bir web uygulamasının işlevlerini

kullanarak saldırılar gerçekleştirir. Bununla birlikte web uygulama güvenlik duvarı

(WAF) kurallarını atlamak için de kullanılabilir. Bazı WAF'ler yalnızca ilk veya

sonuncusu gibi tek bir parametre oluşumunu doğrulamaktadır. Bazıları tüm girdileri

birleştirir ve diğerleri de bir dizi parametre oluşturur. Ardından bir saldırgan kötü

amaçlı kodu bu oluşumlara bölebilir ve böylece güvenlik mekanizmasını veya web

34

uygulama güvenlik duvarı kurallarını atlayabilir. HPP Sunucu tarafı saldırıları,

çapraz kanal kirliliği ve CSRF belirteçlerini atlamak için de kullanılabilir.

HTTP Parametre Kirliliği Zayıflığını Denetleme

HTTP Parametre Kirliliği (HPP) güvenlik açıklarını test etmek için, sağlanan

girdilere izin veren ve kullanıcıya yapılan bu girdinin bir sonucunu gösteren herhangi

bir formu veya eylemi tanımlamamız gerekir. Kullanıcılara geçersiz bir kullanıcı adı

göstermeyebileceği için çalışmayan bir giriş kutusunun aksine, bir arama kutusu

idealdir. Bu nedenle arama kutusu kullanılacaktır. Zafiyet bilgileri aşağıdakileri

yaparak belirtilmiştir:

Saldırı adımları

Form işlemi HTTP GET isteklerinde veri gönderirse, tarayıcının gezinme çubuğunda

müdahale etmek çok kolay olmaktadır. Ancak, form eylemi POST aracılığıyla veri

gönderirse, sunucuya gönderilen POST verilerini değiştirmek için bir proxy

kullanmak gerekebilir.

1. Arama kutusunda (123) ile arama yapacağız.

2. Burp Suit kullanarak istek yakalanarak, sistemimizin aşağıdaki şekil 3.25'te

gösterildiği gibi GET isteği yoluyla veri gönderdiğini göreceğiz:

Araç: Burp Suite; Iceweasel

URL: http://isube.bgabank.com/?sayfa=arama.

HTTP Talep Turu: GET

Parametre: s1 ve s2

Payload: arama.phpves1=<Script>alves2=ert(123)</Script>

35

Şekil 3.25. Burp paketini HTTP isteklerini tanımlamak için kullanımı

3. Dolayısıyla tarayıcının gezinti çubuğuna Dmitriy Evteev'in yöntemine göre

arama.phpves1=<Script>alves2=ert(123)</Script> kodu doğrudan gireceğiz.

Sonuç şekil 3.26 da gösterilecektir:

Şekil 3.26. HPP saldırısının başarısı

Buradaki yaşanmış olan gerçeği bilmek istermiyiz? Peki neden güvenlik duvarı bu

kodu engellemedi? XSS'de incelendiğinde daha önce devre dışı bırakılmış olmasına

rağmen. WAF'ın parametre oluşumunu enjeksiyon saldırıları kurallarına karşı ayrı

ayrı kontrol edebildiğini bilmeliyiz. Sonuç olarak, web uygulama güvenlik duvarı,

zararlı bir yük olmadığı için, enjeksiyon saldırı kurallarından hiç biriyle

uyuşmayacak olan S1 = < Script >al ilk parametresini kontrol edecektir. Ardından S2

= ert (123) </ Script> 'e eşit ikinci parametre için benzer kontrol

36

gerçekleştirmektedir. Bu tehlikeli, bir saldırı olarak kabul edilmez ve herhangi bir

uyarı mesajı göstermez. Bununla birlikte, daha önce belirtildiği gibi, bu değerler

teknolojinin bu oluşumları nasıl ayrıştırdığı ve XSS saldırısı yürütülmesine bağlı

olarak bitiştirilir.

3.6. Robots .txt dosyası

Arama motoru tarayıcılarının (örümcek - spider) erişmesini istemeyen kısımları

gösteren, sitenin kökündeki bir dosyadır. Dosya, web tarayıcıları ve diğer web

robotları ile iletişim kurmak için web siteleri tarafından kullanılabilen küçük bir

komut kümesiyle bir protokol olan Robot Hariç Tutma Protokolünü (REP)

kullanıyor.

Bir robots.txt dosyası, bilgisayar tarafından okunabilir olması nedeniyle yüksek

standartlara sahip sıkı bir söz dizimini izleyen bir metin dosyasıdır. Standart web

robotunun web sitesinin hangi alanlarında işlenip taranmayacağı konusunda bilgi

vermeyi ve bir robots.txt dosyasının gerçekten robots.txt olarak adlandırılmasının

önemini belirtir. Adı büyük / küçük harfe duyarlıdır ve içinde herhangi bir hata

içerirse işe yaramayacaktır. Dosya sadece bir metin dosyasıdır, yani not defterini

veya başka herhangi bir düz metin düzenleyiciyi kullanarak bir tane yapılabilir.

Onları bir kod düzenleyicisinde veya hatta, "kopyalayıp yapıştır" şeklinde yapılabilir.

Arama motorları, örümceklerle web sayfalarını dizine ekler. Siteden siteye, sonra

başka bir siteye gitmek için bağlantıları izlerler. Bir arama motoru daha önce

karşılaşmadığı herhangi bir sayfayı örümceklerden önce robots.txt alanlarında açar.

Robots.txt dosyası, arama motoruna o sitede hangi URL'lerin listelenmesine izin

verildiğini belirtir. (yoast, 2017).

Robotlar genellikle arama motorları tarafından web sitelerini önbellek olarak

robots.txt içeriğini sınıflandırmak için kullanır. Ancak genellikle günde birkaç kez

yenileyecektir. Dolayısıyla değişiklikler oldukça hızlı bir şekilde yansıtılacaktır. Tüm

robotlar standartla işbirliği yapmaz; Güvenlik açıklarını tarayan e-posta

biçerdöverleri, spambotlar, kötü amaçlı yazılımlar ve robotlar, web sitesinin dışında

37

kalmak için söylendiği bölümlerle bile başlatılabilir. Çizelge (3-1) Arama motorunun

bazıları için kullanıcı aracısını ve alanlarını gösteriyor.

Çizelge 3.1. Bazı Arama motorunun kullanıcı aracısı

Arama motoru Alan Kullanıcı aracısı

Google Genel Googlebot

Yahoo Genel slurp

Bing Genel msnbot

Bing Genel bingbot

Baidu Genel baiduspider

Yandex Genel yandex

Tarama, belirli bir web sitesinin yapısı hakkında bilgi toplamak için gerçekleştirilen

bir işlemdir. Robots.txt dosyası taramayı kontrol eder, ancak dizine ekleme yapmaz.

Bu ikisi ayrı olarak gerçekleştirilen tamamen farklı eylemlerdir. Bazı sayfalar

taranabilir, ancak dizine eklenemez. Taranmamış sayfaya bağlantı, Google

dizinleyiciyi takip etmesini sağlayacak diğer web sitelerinde bulunabilir ve dizine

eklemeye çalışabilir. (Stack over flow, 2017)

REP'e göre, robots.txt dosyası web sitesi geliştiricileri tarafından siteleri hakkında

dizin oluşturma web robotlarına talimat vermek için kullanılmaktadır. Bu nedenle,

bir robots.txt dosyası olmadığında, arama motoru robotlarının sitemize tam erişime

sahip olmaları kaçınılmazdır. Çok yaygın basit bir yöntemdir. Ancak elimizde

bulunursa, robot web sitesini araştırır ve robots.txt dosyasının varlığını kontrol

edebilir; ‘izin ver’ ve ‘izin verme’ parametreleri bulundurabilir. Bu parametreler

bazen bir saldırgan için yararlı bilgiler içerebilir. Buna ek olarak, dosya bilinen bir

konumdadır ve herkese (saldırganlar dahil olmak üzere) gizlemek istediğimiz şeyi

görmelerini kolaylaştırır.

İki yaygın yanılgı vardır; Robots.txt'in bir şekilde erişim denetimi mekanizması

olarak hareket ettiğini ve bu içeriğin yalnızca insanlar tarafından değil arama

motorları tarafından okunacağını belirtir. Sistem yöneticileri, robots.txt dosyalarının

saldırganlara karşı korumaya çalıştıkları dizinler hakkında ipucu vererek potansiyel

38

hedefler hakkında değerli bilgiler verebileceği konusunda uyarılmalıdır. (The

Register, 2017)

Robots.txt Bilgi İfşasını Denetleme:

Bu zafiyet bilgileri aşağıdakileri yaparak belirtilmiştir:

Iceweasel tarayıcıyı kullanarak internet şubesi sayfasının URL'inde

http://isube.bgabank.com/robots.txt URL'i yazacağız. Sonuç 3.27 numaralı şekilde

gösterecektir.

Şekil 3.27. Robots.txt Bilgi İfşası

3.7. PhpMyAdmin Bilgi İfşası

PhpMyAdmin, bir yönetici tarafından bir web tarayıcısı kullanarak kendi MySQL

veya Maria DB veri tabanları ile etkileşim kurmasını sağlayan ücretsiz bir yazılım ve

açık kaynak kodlu bir araçtır. MySQL yönetimini ele almak ve veri tabanları,

Araç:Iceweasel

URL: http://isube.bgabank.com/robots.txt

39

tablolar, sütunlar, ilişkiler, indeksler, kullanıcılar, izinler vb. işlemleri web üzerinden

desteklemek için tasarlanmıştır. Site yöneticisinin herhangi bir SQL deyimini

doğrudan yürütme yetkisi vardır.

PhpMyAdmin programı, tablolardaki veritabanı sorgularını gerçekleştirmek, bilgileri

yedeklemek ve düzenlemek için kullanışlıdır (Word Press, 2017). Fakat

PhpMyAdmin uygulamasının giriş sayfası farklı kullanıcılara açık olmamalıdır.

Saldırganların, uygulama zayıflıkları varsa veya güçlü bir şifre yoksa kaba kuvvet

saldırıları ile veritabanına erişebilmektedir.

PhpMyAdmin Bilgi İfşası Denetleme

Şekil 3.29'ya tekrar baktığımızda gördüğümüz ilk şey /pma/ PhpMyAdmin

kısaltmasıdır. Bu parametre web sitesinin saklanması gereken MySQL veritabanını

yönetmek için kullanılır. Ayrıca saldırgan için en önemli bilgilerden biri olarak kabul

edilir. Bu zafiyet bilgileri aşağıdakileri yaparak belirtilmiştir:

İnternet Şubesi sayfasının URL'ine http://isube.bgabank.com/pma URL'i yazacağız.

Sonuç Şekil 3.28 de gösterilmektedir.

Şekil 3.28. PhpMyAdmin Ana Sayfası

Araç: Iceweasel

URL: http://isube.bgabank.com/pma/

40

3.8. Yapılandırılmış Sorgu Dili (SQL) Enjeksiyon

Tanım:

SQL enjeksiyon saldırıları, saldırganın bir veritabanı sunucusunda veritabanı sorgu

ifadeleri çalıştırmasına izin vermektedir. SQL komutlarının istemciden uygulamaya

girdiği verileri web sitelerine saldırmak için sıkça kullanılan bir enjeksiyon türüdür.

Modern web uygulamaları, veritabanının herhangi bir uygulamadaki en değerli varlık

olan üçüncü kutba yerleştirildiği üç katmanlı mimariden oluşur. SQL enjeksiyon

girdileri ile oluşturulan SQL deyimleri üzerinden bir veritabanına erişen herhangi bir

web uygulamasında bulunabilir. SQL enjeksiyon zafiyetleri yaygın bulunmaktadır.

SQL, MySQL, Oracle ve SQL Server dahil olmak üzere birçok veritabanı

sunucusuna erişmek için kullanılan standart dil olduğundan hemen hemen tüm web

uygulamalarını etkiler.

Kaynaklanma nedenleri:

SQL güvenlik açıkları, web uygulamaları kullanıcılarından veri kabul ettiğinde,

verileri düzgün şekilde doğrulayamadığında ve filtreleme işleminde başarısız

olduğunda ortaya çıkar. Saldırgan bu verileri destekleyen veritabanına dinamik SQL

sorgusu göndermek için bu verileri kullanır. Web programlama dilleri (Java,

ASP.NET ve PHP gibi), SQL deyimlerini oluşturup yürütmek için çeşitli yöntemler

sağlamaktadır. Ancak uygulama geliştiricileri eğitim ve geliştirme deneyiminin

olmamasından dolayı bu yöntemleri genellikle kötüye kullanır ve bu da SQL

enjeksiyon zafiyetiyle sonuçlanır.

Saldırı hedefleri:

SQL enjeksiyon zayıflığı içinde veritabanı sunucusu belirli girdileri hazırlayarak veri

kaybına, veri bozulmasına veya yetkisiz erişime neden olabilecek kötü amaçlı sorgu

işlemleri yürütmeye çalışılmaktadır.

41

Saldırının önemi:

Bu saldırı çeşidi web uygulamalarını tehdit etmektedir. Bir saldırgan doğrudan veri

tabanından bilgi ifşa edebilir. Bu nedenle SQL Enjeksiyon Saldırısı, Open Web

Application Security Project tarafından belirtildiği gibi ilk on zafiyet sıralamasında

birinci sırada yer alıyor.

Türleri:

Birçok farklı SQL enjeksiyon yöntemi vardır, ancak sistemimizde mevcut

olduğundan Hata Tabanlı ve Zaman Tabanlı SQL enjeksiyon saldırıları ile

ilgileneceğiz.

3.8.1. Zaman Tabanlı SQL Enjeksiyon

Tanım: Zaman tabanlı SQL enjeksiyonu, belirli bir süre bekletilen veritabanı

sorgularına dayanır ve sonuçların başarılı SQL sorgusunun yürütülmekte olduğunu

belirten bir sonuç dönderir. Bu tür teknikler, veritabanı sunucusundan bilgi almanın

başka bir yolu olmadığında doğru sorgulara ulaşmak için sıklıkla kullanılır. Sunucu /

uygulama herhangi bir hata göstermediğinden bazen saldırgan sorgu yürütme

başarısını tanımlayamayabilir. Dolayısıyla saldırgan, sorgu yürütme başarısının bir

göstergesini almak için bu tekniği kullanmaktadır. Uygulamanın yanıtlama süresini

ölçerek, saldırgan, sorgunun başarıyla yürütülüp yürütülmediğini veya sorgu yürütme

işleminin başarısız olduğunu belirleyebilir. (Clarke, 2012)

Saldırının senaryosu: Zaman tabanlı SQL enjeksiyon saldırısı, belirli bir DBMS

(Veritabanı Yönetim sistemi) işlevi veya bir zaman gecikmesi oluşturan ağır sorgu

içeren bir SQL sorgusu enjekte eder. Sunucu yanıtını almak için gereken süreye bağlı

olarak, bazı bilgileri düşürmek mümkündür. Bu tür çıkarım yaklaşımı Blind SQL

enjeksiyon saldırıları için özellikle yararlıdır (SQL Enjeksiyon Ana Sayfası, 2017).

Zayıf noktaları belirlemek, zamana dayalı saldırıların tek yolu değildir. Zaman

geciktirmesi koşullu bir ifadeye entegre edildiğinde, saldırgan veri tabanından bilgi

alabilir ve verileri irdeleyebilir. Bu teknik, saldırganın veritabanına evet / hayır

42

sorgusu gönderebileceği sorguya koşullu bir zaman gecikmesi uygulayarak çıkarım

yapabilmektedir. Durum doğrulanıp doğrulatılmadığına bağlı olarak, zaman

gecikmesi uygulanacak ve sunucu cevabı anormal derecede uzun olacak. Bu

saldırganın durumun doğru veya yanlış olup olmadığını anlamasına izin verir.

Zamana Tabanlı SQL Enjeksiyon Güvenlik Açığını Denetleme:

Sistemimizde, Zaman tabanlı SQL Enjeksiyonların varlığını doğrulayabildiğimiz

birkaç yer var. Zafiyet bilgileri aşağıdaki belirtilmiştir.

Saldırı adımları

1. Arama kutusuna bir işaret (çift tırnak işareti) yazacağız. Sonuç şekil 3.29'da

olduğu gibi gösterecektir.

Şekil 3.29. SQL hata mesajı

Araç: Iceweasel

URL: http://isube.bgabank.com/?sayfa=arama.

HTTP Talep Turu: GET

Parametre: s1 veya s2

Payload: " and sleep (5) and 1=1;

43

Web sayfasında normal bir hata mesajı görülmelidir (örneğin Şekil 3.2). Görüldüğü

gibi bir SQL hata mesajı görüntüleniyor. Bu nedenle sistemin SQL Enjeksiyon

zafiyeti bulunmaktadır. Görüntülenen web sayfası boş bir içeriği gösterecek şekilde

değişirse sistemde de SQL açıkları olduğu tespit edilir.

2. Şimdi " and sleep (5) and 1=1; kodu arama kutusunda olduğu gibi girelim.

Burdadaki kodun sistemimizdeki MYSQL veri tabanıyla uyuşması için

seçildiğinden ve eğer veri tabanının başka bir türden olması durumunda başka bir

kodun kullanılması gerektiği belirtilmelidir. Sonuç aşağıdaki Şekil 3.30'da

gösterilecektir:

Şekil 3.30. Zamana dayalı SQL Enjeksiyonu.

Yukarıdaki şekilde, 5 saniyelik bir gecikme fark edeceğiz ki bu, sistemimizin Zaman

Tabanlı SQL enjeksiyonundan etkilendiğini gösteriyor. 5 saniye kullandık çünkü hız

ve güvenilirlik arasında makul bir denge var. Kısa bir değer bize daha hızlı yanıt

verebilir, ancak beklenmedik ağ gecikmelerinde veya uzak sunucudaki tepe

noktalarının yüklenmesi durumunda daha yavaş doğrulama yapılabilir. Elbette,

parantezler arasındaki durumu değiştirerek veri tabanındaki diğer bilgiler için de aynı

yaklaşımı farklı periyotlarla çoğaltabiliriz.

44

3.8.2. Hata Tabanlı SQL Enjeksiyon

Tanım: Hata tabanlı SQL enjeksiyonu, saldırganın hata arayan ve veri tabanının

kullanıcı arabirimine hatalar atmasına neden olarak sistem açıklarını belirleyen bir

tekniktir.

Kaynaklanma nedenleri: Hata tabanlı SQL enjeksiyon, bir uygulamada zayıf hata

kullanımlarından kaynaklanır.

Saldırı hedefleri: Bu hataları analiz ederek saldırgan veritabanı, veritabanı sürümü,

işletim sistemi vb. gibi sistem bilgilerini öğrenir.

Saldırının senaryosu: Uygulama MySQL hatası döndürdüğünde, hatada MYSQL

tarafından döndürülen ilginç verileri almak içinde bir yol var. Hata tetiklemek için

bir hataya neden olacak bir durum enjekte edilmelidir. Herhangi bir hata

kullanılabilirken, çıkarılmak istenen verilerin değerlendirilmesi önemlidir. Hata

tabanlı SQL enjeksiyonu, çıktının gösterilmediği bir sorguyu çalıştıran bir sayfa

olduğunda yararlıdır. Bir veritabanı hatası görüntülenir ise bunu Blind SQL

Enjeksiyonu ‘nu kullanarak da yararlanılabilirken hataya dayalı hata çıktısı zafiyeti

sömürme sürecinde büyük bir hız artışı sunuyor.

Hataya Tabanlı SQL Enjeksiyon Güvenlik Açığını Denetleme:

Hata Tabanlı SQL Enjeksiyon güvenlik açıklarını test etme sürecinde Zaman Tabanlı

SQL Enjeksiyon açıklanan işleme benzemektedir. Zafiyet bilgileri aşağıdaki

belirtilmiştir.

Araç: Iceweasel

URL: http://isube.bgabank.com/?sayfa=arama.

HTTP Talep Turu: GET

Parametre: s1 veya s2

Payload: "union select 1,2,3,4,5,6,7,8,9,10

45

Saldırı adımları

1. Arama kutusunda "union select 1,2,3,4,5 kodu girelim. Burdaki kod, veritabanı

tablosundaki savunmasız sütunların sayısını bulmak için kullanılan bir sorgudur.

Şekil 3.31'deki sonuç göstergesi.

Şekil 3.31. Union Select İfadeleri

2. Sonuç, sütun sayısının farklı olduğunu ifade etmektedir. Bu nedenle gösterildiği

gibi sütun sayısını 10'a kadar artırırız. Kod öyle olacak "union select

1,2,3,4,5,6,7,8,9,10. Şekil 3.32 Sonucu saldırılarımızın başarılı olduğunu gösterdi:

Şekil 3.32. Hata Tabanlı SQL Enjeksiyon Saldırısı

46

3.9. Dosya Yükleme Güvenlik Açığı

Tanım:

Dosya içeriği görüntüleme güvenlik açığı, bir komut dosyası çalıştırma süresine

dayanan web uygulamalarını etkiliyor. Saldırganın web sunucusunda bulunan

yetkisiz veya hassas dosyalara erişmesine ve dosyaları çalıştırmasına izin verir.

Şimdi bir "içerik görüntüleme" ifadesinin işleyişini kısaca anlatalım. Basit olarak

include komutu, belirtilen dosyada bulunan tüm içeriği alır ve include deyimini

içeren dosyaya kopyalar. Aynı kod ifadelerini tekrar yazmayı önlemek ve yeniden

kullanılabilirliği elde etmek için dosyaya erişmede dahili yöntemler kullanılır.

Geliştiriciler uygulamadaki dosyaların çoğu için ortak olan verileri eklemek için

include ifadeleri de kullanabilirler. Include ifadesinin en yaygın kullanımı altbilgiler,

üstbilgiler, menü dosyaları vb. yapılar için kullanılır. (InfoSec, 2016)

Kaynaklanma nedenleri:

Bu güvenlik açığı, esasen web uygulamasının giriş doğrulama mekanizmasından

kaynaklanmaktadır. Burada kullanıcı girişi doğru onaylama olmaksızın okunabilir.

Bu, bir uygulamanın yürütülebilir koda, saldırgan tarafından denetlenen bir değişkeni

kullanarak, saldırganın hangi dosyanın çalışma zamanında yürütülebileceğini

denetleyebileceği bir yol oluşturmasına sebep olur.

Saldırı hedefleri:

Bu güvenlik açığının etkisi sunucuda zararlı kod çalıştırılmasına veya hassas

dosyalarda mevcut verilerin ortaya çıkarılmasına neden olabilir.

Türleri:

İki tür dosya görüntüleme açıklığı vardır:

47

3.9.1. Yerel Dosya Yükleme (LFI)

Yerel içerik görüntüleme güvenlik açıklığı, bir saldırganın sunucuda bulunan yerel

dosyalara web uygulamasını kullanarak erişmesi gereken uygulamadan veya dosya

sisteminin hassas dosyalarını okuyabilmesine olanak vermektedir.

Bilgi teknolojisinde en popüler saldırılardan biridir. Kullanıcı girişi doğruluğu

olmadan dahil edilmesi gereken dosyanın yolunu içerdiğinde gerçekleşir. Örnekler

yerel dosya ekleme noktasına işaret etmesine rağmen güvenlik açığı PHP betikleri

olmakla birlikte, JSP, ASP ve benzeri diğer teknolojilerde de vardır.

Yerel Dosya Yükleme Güvenlik Açığını Denetleme:

Zafiyet bilgileri aşağıdaki belirtilmiştir.

Saldırı adımları

1. Sistem ana sayfamızda arama kutusundaki herhangi bir kelimeyi araştırıyoruz

("hello"). Sonuç şekil 3.33'te gibi görünecektir.

Şekil 3.33. (hello) için arama kutusu sonucu

Araç: Iceweasel

URL: http://isube.bgabank.com/?sayfa=arama.

HTTP Talep Turu: GET

Parametre: s1 veya s2

Payload: ../../../../../../../../../../../etc/passwd

../../../../../../../../../../../etc/hosts

48

2. Şimdi oturum açma sayfası URL'ini silerek (arama.php ve s1 = hello ve s2 =) ve

bunun yerine şunu yazacağız:

http://isube.bgabank.com/?sayfa=../../../../../../../../../../../etc/passwd

Aşağıdaki Şekil 3.34 sonucunda, sistemimizin yerel dosya görüntüleme güvenlik

açığı barındırdığı tespit ediliyor.

Şekil 3.34. Yerel Dosya Ekleme güvenlik açığı (/etc/passwd)

Burada tek nokta'nın aynı dizini temsil ettiğini ve çift nokta'nın hem Linux hem de

Windows'da bir üst dizini temsil ettiğini hatırlatmamız gerekir. (/ etc/passwd)

dosyası bazı kullanıcı bilgilerini depolar ve herkes tarafından okunabilir.

3. Bu kumote da yazaılır:

http://isube.bgabank.com/?sayfa=../../../../../../../../../../../etc/hosts. Sonuç, Şekil

3.35'te gibi görünecektir.

Şekil 3.35. Yerel Dosya Ekleme güvenlik açığı (host)

Bu bilgileri kullanarak, bu dosya sistemdeki bir okuma hatası yerel dosyadan

görüntülenebilir.

49

3.9.2. Uzak Dosya Yükleme

Uzak Dosya Yükleme (RFI), saldırıya uğramış bir web sitesini görüntüleyen en

güçlü zayıflıklardan birisidir. Yazılımda güvenlik açığı, bir hacker'ın bir dosyadan

veya web sitesini bir sunucudan başka bir sunucuya getirmesini sağlar. PHP kodu

sitede bulunur ve GET işlevini kullanarak oluşur. Bu işlev, bir dosyayı veya belirli

bir sayfayı çağırmak için kullanılır ve saldırgan, herhangi bir dosyayı veya herhangi

bir sunucudan istediği sayfayı arayabilir ve kullanabilir.

Bu güvenlik açığı, 2004'te piyasaya sürülen PHP5'in başka bir sunucudan dosya

erişim sürecini engellediği için neredeyse yok olmuştur. Bu nedenle Uzak Dosya

Görüntüleme zafiyeti mevcut değildir. Yerel Dosya Görüntüleme ve uzak dosya

dahil etme arasındaki temel fark, uzak dosya başka bir sunucuda bir dosyaya

sahipken yerel dosyanın aynı sunucuda bir dosyayı tutmaktadır.

Uzak Dosya Yükleme Güvenlik Açığını Denetleme:

Sistemimiz RFI güvenlik açığı olsa da doğrulaması yapılmayacaktır. Bu güvenlik

açığı, bahsettiğimiz gibi, 2004'te piyasaya sürülen PHP5 vesiyonundan sonra

kapatılmış bir zafiyettir. Buna ek olarak, RFI güvenlik açığının doğrulanması,

sisteme zarar verebileceği gibi kabuk kodları yüklemeyi ve çalıştırmayı gerektirir ve

bu hiç kimsenin istemediği bir şeydir.

50

4. ARAŞTIRMA BULGULARI VE TARTIŞMA

4.1. Karşılaştırma Çalışmaları

4.1.1. Web Uygulamaları Programlama Dilleri

Web Uygulamaları Programlama Dilleri (WAPL), onlara ne yapmaları gerektiğini

söyleyerek bilgisayarlarla iletişim kurmanın yollarıdır. Bilişim dünyasında birçok

farklı programlama dili mevcuttur. Çizelge 4.1’de bazı programlama dilleri hakkında

kısa bilgiler paylaşılmıştır.

Çizelge 4.1. Çeşitli Programlama Dilleri türleri.

WAPL Açıklama

JavaScript Tüm web tarayıcıları, Meteor ve diğer pek çok çerçeve tarafından kullanılır

Coffee

script

JavaScript'in bir çeşit "lehçesi". Geliştirici olarak gözlerinizde daha basit ve

kolay görünür ancak JavaScript'e uyumludur (dönüştürür)

Python
Django framework tarafından ve bir çok matematiksel hesaplamalarda

kullanılır.

Ruby Ruby on Rails framework'u tarafından kullanılır.

PHP Wordpress tarafından kullanılır.

Go Yeni bir dili Hız için inşa edilmiştir.

Objective-

C

Apple tarafından geliştirilen IOS cihazların yazılımının arkasındaki

programala dili

Swift Apple’ın en yeni programlama dili

Java Android (Google) ve bir çok masaüstü uygulaması tarafından kullanılır.

Programlama diline olan aşinalık, varsayılan olarak güvenli olacak şekilde

tasarlanmış, doğru yapılandırılmış olup olmaması ya da güvenlikle alakalı çeşitli

programların bulunması yada bulunmaması güvenlik sonucunu büyük ölçüde

etkileyebilir. Yine de araştırmalar en popüler modern dillerin (Ticari ve açık kaynak)

genel bir güvenlik söz konusu olduğunda benzer şekilde uygulandığını öne sürüyor.

WhiteHat security 2014 yılında 'Web Sitesi Güvenlik İstatistikleri' ile ilgili rapor

gönderen, programlama dili başına tehdit prevalansını incelemeyi amaçlıyor. Web

sitesinin güvenlik açığı değerlendirme sonuçlarını analiz ederek Çizelge 4.2. de

güvenlik açığı sınıfının yüzdesi diline göre açıklanmaktadır:

https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://coffeescript.org/
http://coffeescript.org/
https://www.python.org/
https://www.ruby-lang.org/en/
http://php.net/
https://golang.org/
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/swift/
https://www.java.com/en/about/

51

Çizelge 4.2. Güvenlik Açığı dile göre sınıf (yüzde)

Güvenlik Açığı ASP ColdFusion .NET Java Perl PHP

XSS 49 46 35 57 67 56

Bilgi Sızıntısı 29 24 44 15 11 17

İçerik Spoofing 5 4 5 8 6 7

SQL Enjeksiyon 8 11 6 1 3 6

CSRF 2 2 2 4 4 2

Yetersiz Taşıma Katmanı

Koruması
0.8 1 0.9 1 0.3 4

İşlevsellik kötüye kullanımı 0.3 6 0.3 0.9 0.5 0.2

HTTP Yanıt Bölme 0.9 3 0.8 2 0.8 0.3

Öngörülebilir Kaynak

Konumu
0.1 0.1 0.0 0.2 0.1 1

Brute Force 0.7 0.3 1 2 0.8 1

URL Yönlendiricisi Kötüye

Kullanım
0.7 0.4 0.5 1 1 0.9

Yetersiz Yetkilendirme 0.2 0.3 0.5 0.9 1 0.2

Parmak İzi 0.3 0.1 0.5 0.6 0.3 0.1

Oturum Sabitleme 0.2 0.3 0.2 0.6 0.1 0.3

Dizin Dizinleme - - 0.0 0.0 - 0.3

4.1.2. Web Uygulaması Güvenlik Açıkları

a. Güvenlik açıklarının sınıflandırılması

Güvenlik açığı, kodlama kusurlarından kaynaklanan ve kullanımdan sonra

uygulamada ciddi hasarlara neden olan bir kusurdur. Bu güvenlik açıkları, kullanıcı

tarafından uygulamayla etkileşime kullanılabilir. Saldırıların çoğunluğu aşağıdaki

uygulama kusurları nedeniyle mümkündür:

 Hatalı girdi doğrulama, uygulamanın kullanıcı ara birimi aracılığıyla bir

kullanıcı tarafından sağlanan giriş doğrulamasının veya hatalı doğrulamanın

bulunmadığı anlamına gelir. Bu uygulama kusurları, saldırganın SQL / XML

sorgusunun, XSS, OS komutunun vb. Söz dizimsel yapısını ihlal eden kötü

amaçlı komutları içermektedir. Bunlara Enjeksiyon açıklıkları denir.

 Hatalı kimlik doğrulama ve etkilendirme mekanizmaları, kimlik

doğrulama işlevlerinin hatalı uygulanmasına ve Erişim Kontrol Politikaları'na

52

(ACP'ler) atıfta bulunur. Zafiyetler, saldırganın gizli web sayfalarına

erişmesini ve uygulamada yetkisiz işlemleri gerçekleştirmesini sağlar.

 Mantığın hatalı uygulanması, uygulamanın amaçlanandan farklı bir şekilde

davranmasına ve (maddi kayıp, bilgi sızıntısı, Hizmet Kalitesi (QoS))

bozulmasına neden olan mantık kusurlarını ifade eder.

Şekil 4.1. Güvenlik açıklarının türleri ve güvenlik açıklarını sömüren saldırılar

b. Enjeksiyon zayıflıklarına karşı web uygulamalarını güvence altına almaya

yönelik savunma strajeleri:

Geçmişte enjeksiyon zayıflıklarını gidermek için alternatif öneriler yazmış yazarlar

olmasına rağmen, kullanılan çeşitli yaklaşımlar üç kategoriye ayrılabilir:

i- Güvenli programlama: geliştiricinin uygulamanın geliştirilmesi sırasında

güvenlik uygulamalarını takip etmesini sağlar. Güvenli kodlama

uygulamaları, kullanıcı girdisinin uygun şekilde sağlamlaştırılması ve

kodlanması, girdinin veri türünün denetlenmesi, sorguları parametrelendirme,

saklı programlar vb. içerir.

53

ii- Zafiyet: 3 alt kategoride incelenir:

 Tespit, yaklaşımları ve uygulamanın kaynak kodunun incelenmesi, hatalı

biçimlendirilmiş verilerin girdileri ve uygulamanın içinde girdilerin zayıf

noktalarının tespiti ve belirlenmesi üzerine yoğunlaşmaktadır.

 Önleme, koddaki savunmasız girdilerin, saldırıları önlemek için otomatik

olarak değiştirmek üzere tanımlanmasını sağlamaktır.

 Tahmin, web uygulamalarında güvenlik açıklarını tahmin etmek için girdi

filetreleme modellerinde makine öğrenme teknikleri kullanılır. Kullanıcı

girdilerinin yayılımını belirlemek için kaynak kodun analiz edildiği yer.

iii- Saldırı: 2 kategoriye ayrılmıştır:

 Saldırı tespit, saldırı algılama yaklaşımları, statik, dinamik ve bileşik

analiz tespit etmek için herhangi bir girdiye bağlıdır. HTTP girdisini

önceden belirlenmiş bir değer ile karşılaştırdıktan sonra çevrilen değerleri

veya '=' sembolü vb. Izleyen değerleri kaldırdıktan sonra çalışma zamanı

sırasında saldırılar tespit edilebilir. Bu yaklaşımın avantajı algoritmanın

saldırıları sabit olarak algılama yeteneğine sahip olmasını sağlar.

 Saldırı önleme, kötü amaçlı girdilerin uygulama tarafından yürütülmesini

tanımlamak ve önlemekle ilgilidir.

Sınıflamamıza göre, (SQL ve XSS) güvenlik açıklarının saptanmasına ve bu

saldırıların en yaygın türü olarak önlenmesine odaklanan mevcut çalışmaların

çoğunun bir özetini veren son altı yıllık süre (2012-2017) üzerine odaklanmıştır.

Toplamda, 360'dan fazla yayın incelenmiş ve 68 yayın ilgili çizelgelerde (4.3, 4.4.a,

4.4.b, ve 4.5) ayrıntılı olarak tanımlanmıştır. SQLI ile ilgili 26 makale, XSS ile ilgili

29 makale ve her iki hatayla ilgili 13 makalede tezin içerisinde tartışılmaktadır.

Çizelgeler, ortak hata tespit yöntemlerinin şunları içerdiğini açıkladı: güvenli

programlama, statik analiz, dinamik analiz, çalışma zamanı koruması ve makine

öğrenimi. Statik analiz dinamik analiz ile karşılaştırıldı. Buna ek olarak, bu açıkları

önleyen bazı frameworklerin Çizelgesi (4.6).

54

Çizelge (4.3) yazarların makalelerinde SQL Injection'a yönelik çeşitli yaklaşımları özetlemektedir.

Çizelge 4.3. SQL Enjeksiyon Algılama / Engelleme makalelerinin özeti

Yazar Yıl Alet İsmi

Odak Alanı Analiz Türü

GA

Algılama

GA

Engelleme

Saldırı

Algılama

Saldırı

Engelleme

GA

Tahmini

Güvenli

programlama

Statik

Analiz

Dinamik

Analiz

Çalışma

Zamanı

Koruması

Makine

öğrenme

Shahriar ve Zulkernine 2012 -   

Lee vd. 2012 -   

Lashkaripour ve

Bafghi
2013 -    

Prabakar vd. 2013 Aho-Corasick   

Djuric 2013 SQLIVDT  

Kulkarni ve Kulkarni 2013 -   

Mantoro vd. 2013 -   

Shar ve Tan 2013 -    

Makiou vd. 2014 -  

Delamore ve Ko 2014 Escrow  

Sathyanarayan vd. 2014 SQLR   

Djanali vd. 2014 Honeypot    

Jang ve Choi 2014 -  

Shar vd. 2015 -    

Masri ve Sleiman 2015 SQLPIL    

Wang vd. 2015 -    

Hanmanthu vd. 2015 Decision Tree  

Afooshteh vd. 2015 Joza    

Wang ve Hou 2016 -   

Ping vd. 2016 ISR   

Chenyu ve Fan 2016 -   

Uwagbole vd. 2016 NETsQlIA   

Kar vd. 2016 HMM   

Kamtuo ve Soomlek 2016 -    

Ceccato vd. 2016 SOFIA   

Bossi vd. 2017 DetAnom   

55

Çizelge (4.4.a) Yazarların makalelerinde XSS güvenlik açığı ve XSS saldırılarını ele

almak için kullandıkları çeşitli yaklaşımlara bir özet sağlar.

Çizelge 4.4.a. XSS ile ilgili makalelerin özeti

(R - Yansıtılan XSS, S - Saklanan XSS, D - DOM Tabanlı XSS,  – Yetenekli.)

Yazar Yıl Alet İsmi
Odak Alanı

GA

Algılama

GA

Engelleme

Saldırı

Algılama

Saldırı

Engelleme

GA

Tahmini

Shar ve Tan 2012 - 

Van Acker vd. 2012 Flashover 

Grabowski vd. 2012 - 

Van Gundy ve Chen 2012 Noncespaces 

Scholte vd. 2012 - 

Lekies vd. 2013 - 

Doupé vd. 2013 deDacota  

Shar ve Tan 2013 - 

Shahriar vd. 2013 Anti-XSS 

Ruse ve Basu 2013 Concolic  

Baojiang vd. 2014 -  

Mewara vd. 2014 - 

Duchene vd. 2014 Kameleonfuzz 

Stock vd. 2014 - 

Shahriar vd. 2014 - 

Rocha ve Souto 2014 ETSS Detector 

Liu vd. 2015 - 

Xiao vd. 2015 -  

Gupta vd. 2015 - 

Gupta vd. 2015 -  

Suju ve Gandhi 2015 XSS Chaser 

Gupta vd. 2015 XSSDM  

Nguyen Hwang 2016 - 

Rao vd. 2016 XBuster  

Pan ve Mao 2016 DomXssMicro 

Shrivastava vd. 2016 XTrap 

Mohammadi vd. 2016 - 

Zalbina vd. 2017 - 

Thomé vd. 2017 - 

56

Çizelge (4.4.b) yazarların makalelerinde XSS analizine ve XSS türlerine göre

kullandıkları çeşitli yaklaşımlara bir özet sağlar.

Çizelge 4.4.b. XSS ile ilgili makalelerin özeti

(R - Yansıtılan XSS, S - Saklanan XSS, D - DOM Tabanlı XSS,  – Yetenekli,

*- Makalede belirtilmemiş.)

Yazar Yıl Alet İsmi
Analiz Türü XSS Türü

Güvenli

programlama

Statik

Analiz

Dinamik

Analiz

Modelleme

tabanlı
R S D

Shar ve Tan 2012 -  

Van Acker vd. 2012 Flashover   * * *

Grabowski vd. 2012 -  

Van Gundy ve Chen 2012 Noncespaces  

Scholte vd. 2012 -  * * *

Shar ve Tan 2012 -   * * *

Lekies vd. 2013 -  

Doupé vd. 2013 deDacota   

Shahriar vd. 2013 Anti-XSS  * * *

Ruse ve Basu 2013 Concolic   * * *

Baojiang vd. 2014 -  * * *

Mewara vd. 2014 -  

Duchene vd. 2014 Kameleonfuzz  

Stock vd. 2014 -  

Shahriar vd. 2014 -  * * *

Rocha ve Souto 2014 ETSS Detector  * * *

Liu vd. 2015 -  * * *

Xiao vd. 2015 -  * * *

Gupta vd. 2015 -  * * *

Gupta vd. 2015 -  * * *

Suju ve Gandhi 2015 XSS Chaser  * * *

Gupta vd. 2015 XSSDM  * * *

Nguyen ve Hwang 2016 -  

Rao vd. 2016 XBuster    

Pan ve Mao 2016 DomXssMicro  

Shrivastava vd. 2016 XTrap   

Mohammadi vd. 2016 -   

Zalbina vd. 2017 -  * * *

Thomé vd. 2017 -  * * *

57

Çizelge (4.5) yazarların makalelerinde SQL Injection ve XSS'a yönelik çeşitli yaklaşımları özetlemektedir.

Çizelge 4.5. SQL Enjeksiyon ve XSS Algılama / Engelleme makalelerinin özeti

 Yazar Yıl Alet İsmi

Odak Alanı Type of Analysis

GA

Algılama

GA

Engelleme

Saldırı

Algılama

Saldırı

Engelleme

GA

Tahmini

Güvenli

programlama

Statik

Analiz

Dinamik

Analiz

Çalışma

Zamanı

Koruması

Makine

öğrenme

Scholte vd. 2012 -   

Shar ve Tan 2013 -  

Qu vd. 2013 -  

Shar vd. 2013 -   

Huang vd. 2013 CRAXweb   

Saxena vd. 2013 TRAP  

Gupta vd. 2014 -  

Han vd. 2015 -    

Sonewar ve Mhetre 2015 -     

Sonewar ve Thosar 2016 -    

Zhao vd. 2016 -   

El Hajj vd. 2016 MAS  

Backes vd. 2017 Interprocedural  

58

Çizelge (4.6) Ticari ve açık kaynaklı tarayıcılara ve SQL enjeksiyonunu ve XSS'yi

ele alma becerilerini özetliyor.

Çizelge 4.6. Ticari ve açık kaynaklı tarayıcıların listesi ve yetenekleri

(SQLI – SQL Enjeksiyonu, R – Yansıtılan XSS, S – Saklanan XSS, D – DOM-
tabanlı XSS,  – Yetenekli, × – Aciz.)

Şirket Taraman
Tür

SQL

I

XSS

R S D
Ticari Taramanlar

Acunetix WVS
Bağımsız ve

HOY
   

HP WebInspect
Bağımsız ve

HOY
   

IBM AppScan Bağımsız    

N-Stalker QA Edition Bağımsız    ×

Qualys QualysGuard HOY    ×

Cenzic HailStorm
Bağımsız ve

HOY
   ×

PortSwigger
Burp Suite

(1.6.18)
Proxy    ×

NTObjectives NTOSpider Bağımsız    

MileScan
ParasPro Proxy    ×

Powerfuzzer HOY    ×

NetSparker NetSparker
Bağımsız ve

HOY
   

Açık Kaynaklı Taramanlar

Nicolas Surribas Wapiti (2.3.0) Bağımsız
   ×

Michal Zalewski Skipfish Bağımsız    ×

Andres Riancho W3Af Bağımsız    ×

Marcin Kozlowski Powerfuzzer Bağımsız    ×

David Byrne Grendel-Scan Bağımsız    ×

Genel hata tespit yöntemleri statik analiz ve dinamik analizi kapsamaktadır. Dinamik

analiz süreci, programın davranışıyla, yani programın girdisini, programın

davranışını ve çıktısını değiştirmesiyle ilgilidir. Kısaca "Girdinin merkez olarak

59

alınması" analizidir. Statik analiz süreci ise programın yapısıyla, yani soyut program

yapısı yardımıyla metoda ilişkin hataları analiz etmekle ilgilidir. Analiz "merkez

olarak program" dır. Buna karşılık, dinamik analizin sonuçları daha doğrudur ve

statik analiz sonuçları daha yüksek yanlış pozitif oran içerir. Bunun nedeni, statik

analizin programın verimliliğini ve etkinliğini sağlamak için program bilgisini

soyutlamasıdır; programın yükünü azaltır, ancak yanlış alarm oranını arttırır.

2017'deki WhiteHat Security raporunda, her uygulamanın statik analizi ve dinamik

analizi yapılarak bu konudan sıklıkla bahsediliyordu. 2015 ve 2016 yıllarındaki

raporların aksine, göz ardı edildi. (WhiteHat Güvenlik raporları, 2015; 2016; 2017)

4.2. Etkili Çözümler

4.2.1. Enjeksiyon Saldırılarının önlemesi

Enjeksiyon saldırılarının en büyük nedeni girdi filtreleme işlevlerinin hatalı

uygulanması olmasına rağmen birkaç web uygulaması zararlı karakterleri filtrelemek

için hazır girdi filtreleri içermez. Bu nedenle enjeksiyon saldırılarının çoğu yanlış

filtrelemeden ziyade filtreleme eksikliğinden kaynaklanmaktadır. Sistemimizde bir

güvenlik duvarı mevcut olmasına rağmen ve teknik olarak güvenlik duvarları tüm

girdi yöntemlerini (yol ve HTTP üstbilgileri dahil olmak üzere) genel bir yöntemle

kapsayabilir ancak doğru karakter kodlaması olan XSS güvenlik açıklarını

önlemedeki birincil zorluklardan birine dikkat edin. Bu, web uygulamasının bazı

karakter kodlamalarını filtreleyemediği anlamına gelir. Bu yüzden çözümün

aşağıdaki konulara dayandığına inanıyoruz:

 Web uygulama güvenlik duvarı dikkatli seçilmeli ve web uygulamasında

kullanılan teknolojilerin yanında dile de uygun olmalıdır.

 Kullanıcılardan alınan tüm değişkenler analiz edilmelidir. Bunlar arasında

(gönderim URL'i, sorgu anahtar kelimeleri, yayın verileri vb.) yerlerde sadece

meşru karakterlerin kullanılmasına izin verilmeli ve buna ek olarak önceden

belirlenmiş bir uzunluk aralığında kabul edilmelidir.

 Girdi karakteri makul uzunluklarda sınırlamalı, her alan için veri türü

sınırlandırılmalıdır.

60

 URL ve tüm girdi, dinamik giriş sayfaları ve dinamik çıkış sayfaları için

kodlama yapılmalıdır.

 Son olarak, veritabanına girmeden önce, karakterler uygun formatta olmalıdır,

ve başka şeylerin engellenmesi, filtrelenmesi veya görmezden gelinmelidir.

Ayrıca olası tüm giriş kaynaklarını (sorgu parametreleri, POST isteğinin

gövde parametreleri, HTTP üstbilgileri) kapsar. Bunun için dinamik bir beyaz

liste oluşturabilir, Şekil 4.2'de gösterildiği gibi veri tabanından önce

koyabilir:

Şekil 4.2. Önerilen Beyaz Liste.

Her saldırı ile ilgili olarak aşağıdaki eylemler dahil edilebilir:

1. XSS Saldırıları

Arama sonuçları sayfaları orijinal girdiyi sonuçların bir parçası olarak

yazdırmamalı. Bunun yerine tüm arama kutuları için tek bir cevap olması

yeterlidir.

2. SQL Enjeksiyon Saldırıları

Hata sayfası genel olmalıdır. Genel sayfalar, hatanın niteliği veya sunucuyu

döndüren sunucu hakkında hiçbir bilgi içermemelidir. Dolayısıyla iç mantık veya

mimari hakkında hiçbir bilgi görüntülenmez.

3. HTTP Parametre Kirliliği Saldırıları

Bu tip saldırılara karşı koruma sağlamak için web geliştiricisi bir parametrenin

birden çok kez oluştuğunun farkında olmalı ve sıkı bir düzenli ifade

kullanmalıdır.

61

4. Dosya Ekleme Saldırıları

Uzak Dosya Görüntüleme ‘yi engellemek İçin PHP5 veya daha yeni bir

sürümünü kullanabilir. Yerel Dosya Görüntüleme için istek içermeyen bir

dosyada rastgele giriş verilerini hiçbir zaman kullanmamalı.

4.2.2. Müşteri No Bilgin İfşa edilmesini önlememesi

Bu güvenlik açığından önlemek için, hata mesajını ('Müşteri Numarası veya Posta

Adresi hatalıdır. Lütfen kontrol ediniz' gibi) genel olmalıdır. Dolayısıyla saldırgan

müşteri numarasının doğru olup olmadığını ayırt edemez.

4.2.3. Captcha Uygulaması Zayıflığını Önleme

Mevcut CAPTCHA sorunlarının üstesinden gelmek için en iyi çözüm facebook,

twitter ve CNN gibi kullanılan tüm sitelerde etkili olduğunu kanıtlayan

reCAPTCHA'yı kullanmaktır. Ayrıca tek bir reCAPTCHA ile birçok GET isteği

göndermekten kaçınılmalıdır.

4.2.4. Robots.txt dosyasından Bilgi İfşası Önleme

İnsanlara robots.txt dosyasının içeriğini okumasını önlemek için daha iyi bir çözüm

olarak 301 yönlendirme sayfası tavsiye edilmektedir. Bu nedenle

http://isube.bgabank.com/robots.txt sayfasını "http://isube.bgabank.com/giris.aspx

adresine yönlendirebiliriz. Veya 404 HTTP hata kodu ile cevap verilmelidir.

Ziyaretçilerin, robots.txt dosyası gibi istemediğimiz gizli sayfaları görüntülemelerini

önlemek için daha güvenli bir yaklaşım olan şifre koruma protokolleri kullanmak en

basit ve en etkili yolu olmaktadır.

4.2.5. PhpMyAdmin’den Bilgi İfşası Önleme

Bu sorunu, erişim türünü özel olarak ayarlayarak PhpMyAdmin'i internet için

kullanılamayacak şekilde ayarlayarak konfigurasyon dosyasından çözebilirsiniz.

62

5. SONUÇLAR

Web uygulamalarının yaygın olması, uygulamaların güvenli, doğru ve verimli

olmasını sağlama zorunluluğu getirmektedir. Artık web uygulamalarını güvence

altına alınmalı, basitçe bir güvenlik duvarı yüklemek ve ana makinelerin

güncellenmiş yazılımlara sahip olmasını sağlamak gerekir. Bu nedenle, web

uygulamalarında bilgisayar korsanlarının sistemimizi kesmesine veya virüslere ve

solucanlara bulaşmasına izin veren güvenlik açıklarının bulunmamasını sağlamalıdır.

Bu tez, kara kutu yaklaşımını kullanarak bir penetrasyon testi gerçekleştirerek web

uygulamasındaki bazı zayıflıkları ayrıntılı olarak incelemiştir. Web uygulamalarında

belirli bir sistemde dikkatle seçilen bazı güvenlik açıklarını kapsamlı bir şekilde

incelemektedir (www.bgabank.com).

Başlangıçta, her güvenlik açığı için kısa bir tanım (örneklerde mevcut) sunuldu. Bu

güvenlik açığının nedenleri ve ona karşı yapılan saldırı teknikleri açıklandı. Daha

sonra saldırının amacı ve tehlikesi açıklanarak eğer varsa saldırının türü belirlendi.

Bu adımlardan sonra güvenlik açığının varlığını ispatlamak için bir penetrasyon testi

yapılarak doğrulandı. Ayrıca Web Uygulamaları Programlama Dilleri (WAPL)

kavramının kısa bir özeti ek olarak verilmiştir. Çeşitli WAPL türlerini açıklayarak,

bir programlama diline aşinalık "güvenlik" sonucunu büyük ölçüde etkileyebileceği

belirtildi. Sonra, 2014 yılında bir 'Whitehat Security' raporunda, 'Web Sitesi

Güvenlik İstatistikleri' hakkında, programlama dili başına tehdit prevalansını

incelemeyi amaçlayan bir başvuru yapılmıştır. Bundan sonra, güvenlik açıkları

tanımlandı ve sebeplerine göre üç kategoriye ayrıldı: yanlış girdi doğrulama,

uygunsuz kimlik doğrulama ve yetkilendirme mekanizmaları ve mantığın uygunsuz

uygulanması. Daha sonra web uygulamalarını güvenlik açıklarına karşı koruma

amaçlı savunma stratejilerindeki son gelişmeler, bu alandaki mevcut çalışmaları

izleyerek ve savunma stratejileri, güvenli programlama, güvenlik açığı tespit ve

önleme ve saldırı tespit ve önleme olmak üzere üç boyutta kategorize edildi. Bu tez,

(SQL ve XSS) güvenlik açıklarının saptanmasına ve bu saldırıların en yaygın türü

olarak önlenmesine odaklanan mevcut çalışmaların çoğunun bir özetini veren son altı

yıllık süre (2012-2017) üzerine odaklanmıştır.

63

Bu tezin, web uygulamaları sağlama alanına katkıları aşağıda maddeler halinde

verilmiştir:

1. Örneğimizde (www.bgabank.com) bulunan, büyük ilgi gerektiren çeşitli zayıf

noktaları tartışmak.

2. Her güvenlik açığının kısa bir tanımını sağlayın. Nedenlerini ve web

uygulamaları üzerindeki etkisini inceleyin.

3. Her savunmasızlık için saldırı tekniklerini açıklayabilir ve saldırıların

ciddiyeti ve türleri ile web uygulamaları üzerindeki etkilerini açıklar.

4. Web uygulamalarının (SQL ve XSS) saldırılara karşı korunması alanındaki

mevcut inceleme makalelerinin altını çizme.

5. Uygulamanın güvenlik açıklarını önlemek için önerilen yaklaşımların

örneklenmesi.

6. Web uygulamalarını değerlendirmek için kullanılabilen güvenlik açığı

tarayıcılarının kısıtlamasını vurgulamak.

7. Mevcut güvenlik açıklarını gidermek için etkili çözümler üretme.

64

KAYNAKLAR

Afooshteh, A., Tuong, A., Marzijarani, M., Hiser, J., ve Davidson, J., 2015. Joza:

Hybrid Taint Inference for Defeating Web Application SQL Injection

Attacks, 45th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks, 172 – 183.

Antunes, N., and Vieira, M., 2014. Penetration Testing for Web Services, Published

by the IEEE Computer Society 0018-9162-2014.

Backes, M., Rieck, K., Skoruppa, M., Stock, B., ve Yamaguchi, F., 2017. Efficient

and Flexible Discovery of PHP Application Vulnerabilities, IEEE European

Symposium on Security and Privacy (EuroSveP), 334 – 349.

Baojiang, C., Baolian, L., ve Tingting, H., 2014. Reverse Analysis Method of Static

XSS Defect Detection Technique Based on Database Query Language,

Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet

Computing, 487 – 491.

Bgabank Ana Sayfası, 2016. http://www.bgabank.com/.

Bossi, L., Bertino, E., ve Hussain, S., 2017. IEEE Transactions on Software

Engineering, 43(5), 415 – 431.

Bypass Captcha Ana Sayfası, 2017. http://bypasscaptcha.com/.

Carettoni, Luca ve di Paola, Stefano, 2009. HTTP Parameter Pollution, The Open

Web Application Security Project Foundation, EU09 Poland,

https://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.p

df.

Ceccato, M., Nguyen, C., Appelt, D., ve Briand, L., 2016. SOFIA: An automated

security oracle for black-box testing of SQL-injection vulnerabilities, 31st

IEEE/ACM International Conference on Automated Software Engineering

(ASE), 167 – 177.

Chenyu, M., ve Fan, G., 2016. Defending SQL injection attacks based-on intention-

oriented detection, 11th International Conference on Computer Science ve

Education (ICCSE), 939 – 944.

Clarke, Justin, 2009. SQL Injection Attacks and Defense, Published by Elsevier Inc.,

USA.

Clarke, Justin, 2012. SQL Injection Attacks and Defense, Second Edition, Published

by Elsevier Inc., USA.

CWE, 2013. Unrestricted upload of file with dangerous type, A Community-

Developed Dictionary of Software Weakness Types, Co-sponsored by: the

office of Cybersecurity and Communications, U.S. Department of

Homeland Security, http://cwe.mitre.org/data/definitions/434.html.

65

Daniel, Chrysostomos, 2017. How to Detect HTTP Parameter Pollution Attacks,

Acunetix Home page, https://www.acunetix.com/blog/whitepaper-http-

parameter-pollution/.

Das, D., Sharma, U., and Bhattacharyya, D.K., 2015. Detection of Cross-Site

Scripting Attack under Multiple Scenarios, The Computer Journal, 58 (4).

Davis, Noopur, 2013. Secure Software Development Life Cycle Processes, United

States Computer Emergency Readiness Team (US-CERT), Erişim Tarihi:

July 31, 2013, https://www.us-cert.gov/bsi/articles/knowledge/sdlc-

process/secure-software-development-life-cycle-processes.

Delamore, B., ve Ko, R. K. L., 2014. Escrow: A Large-Scale Web Vulnerability

Assessment Tool, IEEE 13th International Conference on Trust, Security

and Privacy in Computing and Communications, 983 – 988.

Devi, S. K., and Ramaraj, E., 2015. Prevention Of Cross Site Scripting Attack Using

Filters By String Based Approach, International Journal Of Engineering

And Computer Science ISSN: 2319-7242, 4 (8), 13777-13780.

Djanali, S., Arunanto, F., Pratomo, B., Studiawan, H., ve Nugraha, S., 2014. SQL

injection detection and prevention system with raspberry Pi honeypot cluster

for trapping attacker, International Symposium on Technology Management

and Emerging Technologies, 163 – 166.

Djuric, Zoran, 2013. A black-box testing tool for detecting SQL injection

vulnerabilities, Second International Conference on Informatics ve

Applications (ICIA), 216 – 221.

Doupé, A., Cui, W., Jakubowski, M.H., Peinado, M., Kruegel, C., ve Vigna, G.,

2013. dedacota: toward preventing server-side XSS via automatic code and

data separation, in: Proceedings of the 2013 ACM SIGSAC Conference on

Computer ve; Communications Security, in: CCS ’13, ACM, New York,

USA, 1205–1216.

Duchene, F., Rawat, S., Richier, J.-L., Groz, R., 2014. Kameleonfuzz: evolutionary

fuzzing for black-box XSS detection, in: Proceedings of the 4th ACM

Conference on Data and Application Security and Privacy, in: CODASPY

’14, ACM, New York, USA, 37–48.

El Hajj, F., El Hajj, A., ve Chehade, R., 2016. Multi-agent system vulnerability

detector for a secured E-learning environment, Sixth International

Conference on Digital Information Processing and Communications

(ICDIPC), 113 – 118.

El-Hajj, W., Brahim, G., Hazem Hajj, H., Haidar, Safa, H., and Adaimy, R., 2016.

Security-by-construction in web applications development via database

annotations, Elsevier Journal, computers ve security, 59, 151–165:

http://www.sciencedirect.com/science/article/pii/S0167404815001972.

66

Evteev, Dmitri, 2009. Methods to Bypass a Web Application Firewall, Positive

Technologies: learn and secure,

https://www.slideshare.net/devteev/methods-to-bypass-a-web-application-

firewall-eng.

Farah, T., Alam, D., Kabir, A., and Bhuiyan, T., 2015. SQLi Penetration Testing of

Financial Web Applications: Investigation of Bangladesh Region, World

Congress on Internet Security, 146 – 151.

Flex Orbits, 2013. Custom Web Application Development,

http://flexorbits.com/custom_web_application_development.php.

Flynn, Colin, 2015. 14 Technologies Every Web Developer Should Be Able to

Explain, https://differential.com/insights/14-technologies-every-web-

developer-should-be-able-to-explain.

Grabowski, R., Hofmann, M., Li, M., 2012. Type-based enforcement of secure

programming guidelines code injection prevention at SAP, in: Formal

Aspects of Security and Trust, in: Lecture Notes in Computer Science,

7140, Springer Berlin Heidelberg, 182–197.

Gupta, M., Govil, M., Singh, G., ve Sharma, P., 2015. XSSDM: Towards detection

and mitigation of cross-site scripting vulnerabilities in web applications,

International Conference on Advances in Computing, Communications and

Informatics (ICACCI), 2010 – 2015.

Gupta, M., Govil, M., ve Singh, G., 2014. Static analysis approaches to detect SQL

injection and cross site scripting vulnerabilities in web applications: A

survey, International Conference on Recent Advances and Innovations in

Engineering (ICRAIE-2014), 1 – 5.

Gupta, M., Govil, M., ve Singh, G., 2015. Predicting Cross-Site Scripting (XSS)

security vulnerabilities in web applications, 12th International Joint

Conference on Computer Science and Software Engineering (JCSSE), 162 –

167.

Gupta, M., Govil, M., ve Singh, G., 2015. Text-mining based predictive model to

detect XSS vulnerable files in web applications, Annual IEEE India

Conference (INDICON), 1 – 6.

Han, L., Hou, T., Shan, S., Li, Y., ve Cui, B., 2015. The Research of Aspect-Oriented

Dynamic Analysis Based on Static Analysis, 10th International Conference

on Broadband and Wireless Computing, Communication and Applications

(BWCCA), 114 – 119.

Hanmanthu, B., Ram, B., ve Niranjan, P., 2015. SQL Injection Attack prevention

based on decision tree classification, IEEE 9th International Conference on

Intelligent Systems and Control (ISCO), 1 – 5.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.B.%20Hanmanthu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.B.%20Raghu%20Ram.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.P.%20Niranjan.QT.&newsearch=true

67

Huang, S., Lu, H., Leong, W., ve Liu, H., 2013. CRAXweb: Automatic Web

Application Testing and Attack Generation, IEEE 7th International

Conference on Software Security and Reliability, 208 – 217.

Industry Benchmarks, 2010. Website Security Statistics Report, Security Week

Internet and Enterprise Security News, Insights and Analysis, Infosec

ISLAND, Business Wire, India,

https://www.infosecisland.com/articleview/9425-Website-Security-Statistics

Report-2010-Industry-Bechmarks.html.

InfoSec Ana sayfası, 2016. File-inclusion-attacks, Information Security Institute,

http://resources.infosecinstitute.com/file-inclusion-attacks/.

ISECOM, 2017. The Open Source Security Testing Methodology Manual

OSSTMM, http://www.isecom.org/osstmm.

Jang, Y.-S., ve Choi, J.-Y., 2014. Detecting SQL injection attacks using query result

size, 44 (0), 104–118.

Kalman, Gergely, 2013. 10 Most Common Web Security Vulnerabilities, Toptal

handpicks top system security developers to suit your needs,

https://www.toptal.com/security/10-most-common-web-security-

vulnerabilities.

Kamtuo, K., ve Soomlek, C., 2016. Machine Learning for SQL injection prevention

on server-side scripting, International Computer Science and Engineering

Conference (ICSEC), 1 – 6.

Kar, D., Agarwal, K., Sahoo, A., ve Panigrahi, S., 2016. Detection of SQL injection

attacks using Hidden Markov Model, IEEE International Conference on

Engineering and Technology (ICETECH), 1 – 6.

Kasture, T., Dixit, P., Ovhal, P., Sathe, G., and Zambre, N., 2015. Multiple

Prevention Techniques for Different Attacks in Web Application,

International Journal of Science and Research (IJSR): 4 (2), 2319-7064.

Klein, A., 2006. Cross-site scripting explained, A whitepaper from Watchfire,

www.watchfire.com.

Konrad, M., Manion, A., Moore, A., Mullaney, J., Nichols, W., Orlando, M., ve

Harper, E., 2014. Data-Driven Software Assurance: A Research Study,

Technical Report, CMU/SEI-2014-TR-010, Software Solutions Division,

https://www.scribd.com/document/229244845/Data-Driven-Software-

Assurance-A-Research-Study.

Kulkarni, C. C., ve Kulkarni, S. A., 2013. Human agent knowledge transfer applied

to web security, Fourth International Conference on Computing,

Communications and Networking Technologies (ICCCNT), 1 – 4.

https://www.toptal.com/resume/gergely-kalman

68

Lashkaripour, Z., ve Bafghi, A., 2013. A security analysis tool for web application

reinforcement against SQL injection attacks (SQLIAs), 10th International

ISC Conference on Information Security and Cryptology (ISCISC), 1-8.

Lee, I., Jeong, S., Yeo, S., ve Moon, J., 2012. A novel method for SQL injection

attack detection based on removing SQL query attribute values, 55 (12), 58–

68.

Lekies, S., Stock, B., ve Johns, M., 2013. 25 million flows later: large-scale detection

of DOM-based XSS, in: Proceedings of the 2013 ACM SIGSAC

Conference on Computer ve Communications Security, in: CCS ’13, ACM,

New York, USA, 1193–1204.

Linked In, 2017. Systems Development Life Cycle, https://www.linkedin.com/topic/-

systems-development-life-cycle.

Liu, Y., Zhao, W., Wang, D., ve Fu, L., 2015. A XSS Vulnerability Detection

Approach Based on Simulating Browser Behavior, 2nd International

Conference on Information Science and Security (ICISS), 1 – 4.

Makiou, A., Begriche, Y., ve Serhrouchni, A., 2014. Improving Web Application

Firewalls to detect advanced SQL injection attacks, 10th International

Conference on Information Assurance and Security, 35 – 40.

Mantoro, T., Abdul Aziz, N., Yusoff, N., ve Talib, N., 2013. Log Visualization of

Intrusion and Prevention Reverse Proxy Server against Web Attacks,

International Conference on Informatics and Creative Multimedia, 325 –

329.

Masri, W., ve Sleiman, S., 2015. SQLPIL: SQL injection prevention by input

labeling, Security and Communication Networks 8, 2545–2560.

Mewara, B., Bairwa, S., Gajrani, J., ve Jain, V., 2014. Enhanced browser defense for

reflected Cross-Site Scripting, Enhanced browser defense for reflected

Cross-Site Scripting, 1 – 6.

Mirjalili, M., Nowroozi, A., and Alidoosti, M., 2014. A survey on web penetration

test, in International Journal in Advances in Computer Science, 3 (6), Los

Alamitos, CANADA.

Mohammadi, M., Chu, B., Lipford, H., ve Murphy-Hill, E., 2016. Automatic Web

Security Unit Testing: XSS Vulnerability Detection, IEEE/ACM 11th

International Workshop in Automation of Software Test (AST), 78 – 84.

Muniz, J., and Lakhani, A., 2013. Web Penetration Testing with Kali Linux, A

practical guide to implementing penetration testing strategies on websites,

web applications, and standard web protocols with Kali Linux, Packt

Publishing, Birmingham, UK.

69

Nguyen, T., ve Hwang, S., 2016. Large-Scale Detection of DOM-Based XSS Based

on Publisher and Subscriber Model, International Conference on

Computational Science and Computational Intelligence (CSCI), 975 – 980.

Olson, O., 2010. Penetration testing in the financial industry, Information security

reading room, SANS Institute.

Open Web Application Security Project (OWASP), 2016.

www.owasp.org/index.php.

Osman, A., Dafa-Allah, A., and Elhag, A., 2017. Proposed security model for web

based applications and services, IEEE Xplore Digital Library,

http://ieeexplore.ieee.org/document/7866696/.

Pan, J., ve Mao, X., 2016. DomXssMicro: A Micro Benchmark for Evaluating

DOM-Based Cross-Site Scripting Detection, IEEE

Trustcom/BigDataSE/ISPA, 208 – 215.

Perera, A., Kesavan, K., Bannakkotuwa, S., Liyanapathirana, C., and Rupasinghe, L.,

2016. E-commerce (WEB) Application Security: Defense against

Reconnaissance, IEEE Xplore Digital Library,

http://ieeexplore.ieee.org/document/7876413/.

PhpMyAdmin Ana Sayfası, 2017. Bringing MySQL to the web,

https://www.phpmyadmin.net/.

Ping, C., Jinshuang, W., Lin, P., ve Han, Y., 2016. Research and implementation of

SQL injection prevention method based on ISR, 2nd IEEE International

Conference on Computer and Communications (ICCC), 1153 – 1156.

Prabakar, M., KarthiKeyan, M., ve Marimuthu, K., 2013. An efficient technique for

preventing SQL injection attack using pattern matching algorithm, IEEE

International Conference ON Emerging Trends in Computing,

Communication and Nanotechnology (ICECCN), 503 – 506.

Prokhorenko, V., Choo, K., and Ashman, H., 2016. Web application protection

techniques: A taxonomy, Elsevier Journal, Journal of Network and

Computer Applications, 60, 95–112:

http://www.sciencedirect.com/science/article/pii/S1084804515002908.

Qu, B., Liang, B., Jiang, S., ve Ye, C., 2013. Design of automatic vulnerability

detection system for Web application program, IEEE 4th International

Conference on Software Engineering and Service Science, 89 – 92.

Rafique, S., Humayun, M., Hamid, B., Abbas, A., Akhtar, M., and Iqbal, K., 2015.

Web application security vulnerabilities detection approaches: A systematic

mapping study, IEEE Xplore Digital Library,

http://ieeexplore.ieee.org/document/7176244/.

70

Rao, K., Jain, N., Limaje, N., Gupta, A., Jain, M., ve Menezes, B., 2016. Two for the

price of one: A combined browser defense against XSS and clickjacking,

International Conference on Computing, Networking and Communications

(ICNC), 1 – 6.

Rocha, T. S., ve Souto, E., 2014. ETSSDetector: A Tool to Automatically Detect

Cross-Site Scripting Vulnerabilities, IEEE 13th International Symposium on

Network Computing and Applications, 306 – 309.

Ruse, M. E., ve Basu, S., 2013. Detecting Cross-Site Scripting Vulnerability Using

Concolic Testing, 10th International Conference on Information

Technology: New Generations, 633 – 638.

Sachin, U., Mandeep, K., and Govinda, G.K., 2011. Vunnerability assessment and

penetration testing, International Journal of Computer and Communication

Technology, 3 (8), 1-4.

Saleh, A., Rozali, N., Buja, A., Abdul Jalil, K., Ali, F., and Abdul Rahman, T., 2015.

A Method for Web Application Vulnerabilities Detection by Using Boyer-

Moore String Matching Algorithm, Elsevier Journal, Procedia Computer

Science, 72, 112 – 121:

Sathyanarayan, S., Qi, D., Liang, Z., ve Roychoudary, A., 2014. SQLR: Grammar-

Guided Validation of SQL Injection Sanitizers, 19th International

Conference on Engineering of Complex Computer Systems, 154 – 157.

Savinkin, Igor, 2013. 8 Best CAPTCHA Solvers, Web Scraping,

http://scraping.pro/8-best-captcha-solving-services-and-tools/.

Saxena, A., Sengupta, S., Duraisamy, P., Kaulgud, V., ve Chakraborty, A., 2013.

Detecting SOQL-injection vulnerabilities in SalesForce applications,

International Conference on Advances in Computing, Communications and

Informatics (ICACCI), 489 – 493.

Scholte, T., Robertson, W., Balzarotti, D., ve Kirda, E., 2012. Preventing input

validation vulnerabilities in web applications through automated type

analysis, in: Proceedings of the 2012 IEEE 36th Annual Computer Software

and Applications Conference (COMPSAC), 233–243.

Shahriar, H., ve Zulkernine, M., 2012. Information-theoretic detection of SQL

injection attacks, in: 2012 IEEE 14th International Symposium on High-

Assurance Systems Engineering (HASE), 40–47.

Shahriar, H., North, S., Chen, W., ve Mawangi, E., 2013. Design and development of

Anti-XSS proxy, 8th International Conference for Internet Technology and

Secured Transactions (ICITST-2013), 484 – 489.

Shahriar, H., North, S., Chen, W.-C., ve Mawangi, E., 2014. Information theoretic

XSS attack detection in web applications, International Journal Secure

Softwere Engneering 5 (3), 1–15.

71

Shar, L., ve Tan, H., 2013. Defeating SQL Injection, IEEE Journals ve Magazines

46(3), 69 – 77.

Shar, L., ve Tan, H., 2012, Defending against Cross-Site Scripting Attacks, IEEE

Software, 45(3), 55 – 62, http://ieeexplore.ieee.org/document/5999631/.

Shar, L., ve Tan, H., 2012. Automated removal of cross site scripting vulnerabilities

in web applications, Elsevier journal, Information and Software

Technology, 54, 467–478,

http://www.sciencedirect.com/science/article/pii/S0950584911002503.

Shar, L., Briand, L., ve Tan, H., 2015. Web Application Vulnerability Prediction

Using Hybrid Program Analysis and Machine Learning, IEEE Transactions

on Dependable and Secure Computing, 12(6), 688 – 707.

Shar, L., Tan, H., ve Briand, L., 2013. Mining SQL injection and cross site scripting

vulnerabilities using hybrid program analysis, 35th International Conference

on Software Engineering (ICSE), 642 – 651.

Shar, L., ve Tan, H., 2013. Predicting SQL injection and cross site scripting

vulnerabilities through mining input sanitization patterns, 55 (10), 1767–

1780.

Shrivastava, A., Verma, V., ve Shankar, V., 2016. XTrap: Trapping client and server

side XSS vulnerability, Fourth International Conference on Parallel,

Distributed and Grid Computing (PDGC), 394 – 398.

Singh, Anshuman, 2011. Protecting against HTTP Parameter Pollution (HPP),

barracuda Ana Sayfası, https://www.barracuda.com/blogs/pmblog?bid=

762#.WQWnE4iGPIW.

Sonewar, P., ve Mhetre, N., 2015. A novel approach for detection of SQL injection

and cross site scripting attacks, International Conference on Pervasive

Computing (ICPC), 1 – 4.

Sonewar, P., ve Thosar, S., 2016. Detection of SQL injection and XSS attacks in

three tier web applications, International Conference on Computing

Communication Control and automation (ICCUBEA), 1 – 4.

SQL Injection Ana Sayfası, 2017. http://www.sqlinjection.net/.

StackOverflow Ana Sayfası, 2009. robots txt,

http://stackoverflow.com/questions/390368/stop-google-from-indexing.

StackOverflow, 2017. Difference between Website and Web Application,

http://stackoverflow.com/questions/2389925/difference-between-website-

and-web application.

Stanek, William, 2014. The Personal Trainer: Web Applications Security ve

Maintenance IIS 7.0 ve IIS 7.5, USA.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Lwin%20Khin%20Shar.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Lionel%20C.%20Briand.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hee%20Beng%20Kuan%20Tan.QT.&newsearch=true
http://ieeexplore.ieee.org/document/6963442/
http://ieeexplore.ieee.org/document/6963442/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858

72

Stepien, B., Peyton, L., and Xiong, P., 2012. Using TTCN-3 as a Modeling Language

for Web Penetration Testing, IEEE, 978-1-4673-0342-2112,

http://ieeexplore.ieee.org/document/6210016/.

Stock, B., Lekies, S., Mueller, T., Spiegel, P., ve Johns, M., 2014. Precise client-side

protection against DOM-based cross-site scripting, 23. USENIX güvenlik

sempozyumunun ardından, USENIX Derneği, 655–670.

Suju, D. A., ve Gandhi, G. M., 2015. An automaton based approach for forestalling

cross site scripting attacks in web application, Seventh International

Conference on Advanced Computing (ICoAC), 1 – 6.

The Register Ana Sayfası, 2015. Robots.txt tells hackers the places you don't want

them to look, http://www.theregister.co.uk/2015/05/19/robotstxt/.

Thomé, J., Shar, L., Bianculli, D., ve Briand, L., 2017. Search-Driven String

Constraint Solving for Vulnerability Detection, IEEE/ACM 39th

International Conference on Software Engineering (ICSE), 198 – 208.

Unity Sec Ana Sayfası, 2014. How to test and exploit HTTP Parameter Pollution,

https://unitysec.wordpress.com/2014/02/28/how-to-test-and-exploit-http-

parameter-pollution/.

Uskov, Alexander V., 2013. Software and Web applications security: state-of-the-art

courseware and learning paradigm, Global Engineering Education

Conference (EDUCON), IEEE Xplore Digital Library,

http://ieeexplore.ieee.org/document/6530168/.

Uwagbole, S., Buchanan, W., ve Fan, L., 2016. Numerical encoding to Tame SQL

injection attacks, NOMS - IEEE/IFIP Network Operations and Management

Symposium, 1253 – 1256.

Van Acker, S., Nikiforakis, N., Desmet, L., Joosen, W., ve Piessens, F., 2012.

Flashover: automated discovery of cross-site scripting vulnerabilities in rich

internet applications, in: Proceedings of the 7th ACM Symposium on

Information, Computer and Communications Security, in: ASIACCS ’12,

ACM, New York, USA, 12–13.

Van Gundy, M., ve Chen, H., 2012. Noncespaces: Using randomization to defeat

cross-site scripting attacks, Elsevier journal: computers ve security, 31, 612

– 628:

http://www.sciencedirect.com/science/article/pii/S0167404811001477.

Vieira, T., ve Serrão, C., 2016. Web security in the finance sector,

IEEE Xplore Digital Library: http://ieeexplore.ieee.org/document/7856707/.

Wang, K., ve Hou, Y., 2016. Detection method of SQL injection attack in cloud

computing environment, IEEE Advanced Information Management,

Communicates, Electronic and Automation Control Conference (IMCEC),

487 – 493.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Alexander%20V.%20Uskov.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Alexander%20V.%20Uskov.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Tiago%20Vieira.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Carlos%20Serr.AND..HSH.x00E3;o.QT.&newsearch=true

73

Wang, Y., Wang, D., Zhao, W., ve Liu, Y., 2015. Detecting SQL Vulnerability

Attack Based on the Dynamic and Static Analysis Technology, IEEE 39th

Annual Computer Software and Applications Conference, 3, 604 – 607.

What is, 2017. Learn IT Software development,

http://whatis.techtarget.com/reference/Learn-IT-Software-development.

WhiteHat Security, 2014. Website Security Statistics Report, WhiteHat Security Inc.

www.whitehatsec.com/rs.

WhiteHat Security, 2015. Website Security Statistics Report, WhiteHat Security Inc.

www.whitehatsec.com/rs.

WhiteHat Security, 2016. Web Application Security Statistics Report, WhiteHat

Security Inc. https://info.whitehatsec.com/rs.

WhiteHat Security, 2017. Application Security Statistics Report, WhiteHat Security

www.whitehatsec.com/rs.

Word press Ana Sayfası, 2017. PhpMyAdmin,

https://codex.wordpress.org/phpMyAdmin.

Xiao, X., Yan, R., Ye, R., Li, Q., Peng, S., ve Jiang, Y., 2015. Detection and

Prevention of Code Injection Attacks on HTML5-Based Apps, Third

International Conference on Advanced Cloud and Big Data, 254 – 261.

Yılmaz, Hasan, 2014. TS ISO/IEC 27001 Bilgi Güvenliği Yönetimi Standardı

Kapsamında Bilgi Güvenliği Yönetim Sisteminin Kurulması ve Bilgi

Güvenliği Risk Analizi, (Kidder) Kamu Iç Denetcileri Derneği,

http://www.kidder.org.tr.

Yoast Ana Sayfası, 2017. robots.txt: ultimate guide, https://yoast.com/ultimate-

guide-robots-txt/.

Yusof, I., ve Pathan, K., 2016. Mitigating Cross-Site Scripting Attacks with a

Content Security Policy, IEEE Computer Society, 56-63.

Zalbina, M., Septian, T., Stiawan, D., Idris, M., Heryanto, A., ve Budiarto, R., 2017.

Payload recognition and detection of Cross Site Scripting attack, 2nd

International Conference on Anti-Cyber Crimes (ICACC), 172 – 176.

Zhao, J., Qi, J., Zhou, L., ve Cui, B., 2016. Dynamic Taint Tracking of Web

Application Based on Static Code Analysis, 10th International Conference

on Innovative Mobile and Internet Services in Ubiquitous Computing

(IMIS), 96 – 101.

74

ÖZGEÇMİŞ

Adı Soyadı : Ehssan Salman Obaid AL-JANABI

Doğum Yeri ve Yılı : Irak, 1983

Medeni Hali : Evli

Yabancı Dili : İngilizce, Türkçe

E-posta : salman.ehssan@gmail.com

Eğitim Durumu

Lise : Alhela Lisesi, 2002

Lisans : Bağdat Üniversitesi, Alhvarizmi MühendislikFakültesi, Bilgi

ve İletişmi Mühendisliği bölümü, 2007.

Yayınları

Koyun, A., ve Al Janabi, E., 2017. Social Engineering Attacks. Journal of

Multidisciplinary Engineering Science and Technology (JMEST), 4(6),

7533-7538.

