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ABSTRACT

A NONCOOPERATIVE DYNAMIC GAME MODEL OF
OPINION DYNAMICS IN MULTILAYER SOCIAL
NETWORKS

Muhammad Umar B. Niazi
M.S. in Electrical and Electronics Engineering
Advisor: Arif Biilent Ozgiiler
August 2017

How do people living in a society form their opinions on daily or prevalent topics?
A noncooperative differential (dynamic) game model of opinion dynamics, where
the agents’ motives are shaped by how susceptible they are to others’ influence,
how stubborn they are, and how quick they are willing to change their opinions
on socially prevalent issues is considered here. The agents connected through a
multilayer network interact with each other on a set of issues (layers) for a finite
time duration. They express their opinions, listen to others’ and, hence, mutually
influence each other. The tendency of agents to interact with people of similar
traits, known as homophily, restricts them in their own localities, which may cor-
respond to ethnicity but may as well be the ideological ones. This governs their
interpersonal influences and is the cause of clustering in the network. As the
agents build their biases, they also create conceptions about the correlation be-
tween the issues. As a result, antagonistic interactions arise if the agents see each
other as holding inconsistent opinions on the issues according to their individual
conceptions. This way the interpersonal influence becomes ineffective leading to
conflict and disagreement between the agents. The dynamic game formulated

here takes these subtle issues into account.

The game is proved to admit a unique Nash equilibrium under a mild necessary
and sufficient condition. This condition is argued to be fulfilled if there is some
harmony of views among the agents in the network. The harmony may be in
the form of similarity in pairwise conceptions about the issues but may also be a
collective agreement on the status of a leader in the network.

Since the agents do not seek any social motive in the game but their own

individual motives, the existence of a Nash equilibrium can be interpreted as an

il
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emergent collective behavior out of the noncooperative actions of the agents.

Keywords: Social networks, Dynamic game theory, Opinion dynamics, Optimal

control.



OZET

COK KATMANLI SOSYAL AGLARDA OLUSAN
GORUSLERIN BIR ISBIRLIKSIZ DINAMIK OYUN
OLARAK MODELLENMESI

Muhammad Umar B. Niazi
Elektric ve Elektronik Miihendisligi, Yiiksek Lisans
Tez Damsmani: Arif Biilent Ozgiiler
Agustos 2017

Bir topluluk i¢inde yasayan kisiler giincel veya giindemde olan konulardaki fikir-
lerini nasil olustururlar? Burada, diger kisilerden ne miktarda etkilenecekleri,
ne kadar inat¢i olduklari ve kendi fikirlerini ne hizda degistireceklerinden olusan
giidiilerini dikkate alan, igbirliksiz tiirevsel bir oyun, sosyal aglarda goriis (fikir) di-
namiginin bir modeli olarak sunulmaktadir. Bu topluluktaki bireyler cok katmanh
bir sosyal agla birbirleriyle iletigsimdedirler ve sonlu bir zaman arahiginda fikir
beyan eder, birbirlerinin fikirlerini dinler, goriig aligverisi yapar ve boylece bir-
birlerini kargilikli etkilerler. Kisilerin kendi goriiglerine yakin insanlarla daha ¢ok
temasta bulunmalari, belki etnik kimlik belki de ideoloji nedeniyle olusan insani-
yakinlk, kendilerini bir miktar tagralagtirir. Bu onlarin karsilikli etkilesimininde
baskin 6ge olabilir ve hiziplesmelere yol agabilir. Kigiler kendi yanl goriislerini
bu sekilde olustururken, ayni zamanda giindem konularimin aralarinda ne kadar
ortiigtiigi, bunlarin birbiriyle ilgisi, korelasyonu, hakkinda da algilar edinirler.
Eger komgularinda bu kisisel algilarinin tersine bir yaklagim tespit ederlerse, bu
sefer komsgularinmi kendilerine bir rakip olarak gérmeye baglayabilirler. Bu sekilde,
kisiler arasi etkilesim sosyal ag i¢inde anlagmazliklar ve ¢atigmalara yol acabilir.
Bu tezde sunulan oyun, toplumsal etkilegsimdeki tiim bu karmagik noktalar1 da
g6z Ooniine almaktadir.

Sunulan dinamik oyunun tek bir Nash dengesi olmas i¢in gerek ve yeter bir
kosul verilmektedir. Gereken kogulun makul durumlarda genellikle saglandigi da
gosterilmektedir ve esas olarak gereken, toplulukta bir tiir ahenk bulunmasidir.
Bu ahenk karsilikhi fikir benzerligi olabilecegi gibi lider olarak taninan tek bir
kisiyle uyusma (itaat) seklinde de olusabilir.



vi

Burada incelenen tiirden bir topluluk i¢inde toplumsal bir giidii olmadigi, her
kiginin giidiisii bireysel oldugu, icin ortaya c¢iktigi gosterilen bu Nash dengesi
igbirliksiz bir ortamda kendiliginden dogan bir ortak eylem gibi yorumlanabilir.

Anahtar sozcikler: Sosyal aglar, Dinamik oyun teorisi, Fikir dinamigi, En iyi

denetim.
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Chapter 1

Introduction

The models describing opinion dynamics are quite helpful in explaining the situ-
ations of conflict and conformity in a society. These models, in addition to those
in social sciences and economics, also find a variety of applications in the fields of
engineering and computer science, [48] — [52]. Some of the applications include
PageRank computation, [27], distributed optimization, [39], [55], formation con-
trol, [49], and power control, [47]. They have thus attracted a diverse community
of researchers in different fields as evidenced by [1], [28], [34], and [35], in which
several such models are surveyed. The earlier ones, like DeGroot’s model, |13],
describe how agents reach a consensus on some issue by averaging their opinions
with others’ via repeated interactions. But, a total consensus is hardly reached
in reality and it may be claimed that the situations of disagreements are more
common in a society, [31]. The social influence model by Friedkin and Johnsen
(FJ), |19], and bounded confidence models like those of Hegselmann and Krause
(HK), [22], and Deffuant et al. (DW), [12], explain disagreements in the form
of network clustering and polarization. Several variations of these models with
different convergence results have been presented in (7], |16], [37], [38], and [44].
When agents interact with each other on multiple issues, they change their opin-
ions based on how they view each other’s opinions on those issues, [54]. In the
following, we brief describe some of these matters that arise during the interac-

tions.



1.1 Consensus Models

The earliest models of opinion dynamics — like DeGroot’s model [13] and Lehrer
and Wagner’s model [33], describe how a group of agents in a network reach an
agreement and form a common subjective opinion on some issue. The agents
iteratively interact with each other, express their individual opinions, and update
them at the end of each interaction. They choose the opinion which is a weighted
average of the initial opinions expressed at the beginning of each interaction by
the group. The group reaches a consensus if the interaction graph is connected,
i.e., every node (or agent) in the graph is reachable by every other node in finite
steps. In other words, all the recurrent states of the Markov chain communicate

with each other and are aperiodic, [13].

It is not possible to judge which agents are closer to the truth than others in
these models. It is because of the assumption that no information, instruction,
or observation from outside is available. Hence, the question that whether the

agents converge to a true value is beyond the realm of these models.

Consensus formation is a desirable outcome in a kind of interactions described
in these models. But if we follow a realistic approach and observe the world
around us, we may arrive at a conclusion that the situations which lead to conflicts
and disagreements are more common in a society. As pointed out in [26], any
model of consensus formation must also be at the same time capable of providing
a satisfactory conditions for disagreement. Therefore, the importance to study

models of disagreements becomes coherent.

1.2 Social Influence Network Theory

One of the earliest models to describe disagreements along with consensus is
Friedkin-Johnsen (FJ) model, [19]. When agents interact, they perform cogni-

tive weighted averaging of opinions with their neighbors in the network; where



the weights are determined by the influence of others and by their own suscep-
tibilities to interpersonal influence. A social structure then emerges out of these
interactions, which determines the pattern and strengths of interpersonal influ-

ences among the agents of the network.

In a social network, agents interact with each other on a set of prevalent is-
sues for a finite time duration. They express their opinions, listen to others’
and, hence, mutually influence each other. Sometimes the influence is one-sided
when the interaction is based on passive observation. This interpersonal influ-
ence may arise due to the personal biases and prejudices of agents, who make
their judgments based on their local information. The locality may refer to the
geographical location of the agents in the network, but the role of this factor is
reduced with the advent of online social networks, media, and telecommunication.
Instead, it would be more appropriate to consider the ideological and ethnic close-
ness as important factors that incite interpersonal influences among agents. All
these characteristic similarities forge a tendency in them to bond with each other,
known as homophily, |28], which is the foundation of Axelrod’s dissemination of
culture model, [4], and the bounded confidence models, |12] and [22].

Due to homophily, the frequency of interaction is higher between the agents
who are characteristically similar to each other. Hence, agents usually tend to
appreciate and get influenced by those who are similar to them in ethnicity, re-
ligion, political ideology, etc. Moreover, the agents also assent to each other’s
opinions based on ideological similarity, which is characterized by their bounded
confidences. When the agents are positively influenced by each other, they may
reach a consensus. But in the case of negative influences, [23], they have antag-
onistic interactions, [3], [45], [53], where they try to move away from each other
in opinions. By moving away from each other, they can defend their positions or

mind set more robustly and receive lesser influence from each other.



1.3 Bounded Confidence Models

The models of opinion dynamics under bounded confidence have been presented
by Deffuant et al., [12], and Hegselmann and Krause, [22]. In these models, an
agent holds opinions on the issues from a certain opinion space and interacts with
only those agents whose opinions are sufficiently close to his opinions. That is,
the agent will consider making consensus with only those agents whose opinions
are e-close to his opinions. The threshold value ¢; of some agent 7 is known as

his bounded confidence.

The DW and HK models are similar in a sense that whenever the agents inter-
act they perform repeated averaging under their bounded confidences. However,
the models follow a different approach on how agents communicate with each
other. In DW model, which is partly inspired by Axelrod’s model [4], agents
meet in random pairwise encounters after which they decide whether to make
consensus or not, based on their bounded confidences. On the other hand, agents
move towards the average value of their bounded confidence neighborhoods in
the HK model.

1.4 Consistency Theory and Cognitive Disso-

naince

We propose to study opinion dynamics on several prevalent issues that might be
correlated with each other. This correlation affects the opinions of agents on the
issues and may give rise to antagonistic interactions among the agents. In our
model, agents interact antagonistically if they find each other to be unreasonable
or inconsistent. The assumption we adopt is that an agent will boycott those who
hold inconsistent opinions, as he perceives, on correlated issues. If two issues are
positively correlated with each other according to the conception of some agent 7,
then he expects others to hold similar kind of opinions on the issues. For instance,

in the case where the issues are such that one can either support or oppose the
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issues, agent ¢ is willing to positively interact with only those who either support
both issues or oppose both of them. In other scenarios, when some agent j
supports one issue and opposes the other; agent i finds him unreasonable and
interacts antagonistically, in which case he will move away from him. Hence,
agents approve or boycott based on how they view the opinions of others, |54,

and whether or not the opinions of others are consistent.

In [44], a multidimensional extension of FJ model, [19], along with the con-
ditions of stability and convergence is presented. The agents are assumed to be
consistent in their belief system, and hence avoid cognitive dissonance, |18]. Peo-
ple are sensitive to inconsistencies in their actions and beliefs, and the recognition
of this will cause dissonance, which they will try to resolve is a basic assumption
of the theory of cognitive dissonance. We recognize the role of cognitive disso-
nance in two places in forming the motive of a person. First, a person may be
more prone to or less open to influence by people whom he believes are consistent
in their beliefs. Second, he may make an effort to be consistent in his beliefs on
correlated issues and this effort may be contra to his stubbornness. This way,
stubborn agents are reluctant to change their opinions on the issues, [2], hence
they try to avoid minimizing their own inconsistencies on the correlated issues.
In this way, they play a role in shaping the opinions of the community, much like

the éminence grise of 9.

1.5 Main Contributions of the Thesis

We present a noncooperative differential (dynamic) game model of opinion dy-
namics in a society, where the agents’ motives are shaped by how susceptible they
are to get influenced by others, how stubborn they are, and how quick they are
willing to change their opinions on a set of issues in a prescribed time interval.
We can think of the society envisaged here as a multilayer network, where each
layer represents a prevalent issue. The layers representing two correlated issues
are connected through interlayer edges. And, for uncorrelated issues, the layers

of the network are disconnected. Each agent is assumed to control the rate of
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change of his opinion on each issue. In Chapter [3 we give a problem definition
and propose a procedure to determine the weight matrices and incorporate them
in a cost functional that constitutes the model of agents’ motives. The motives
depict their social and psychological dispositions — to compromise fairly on their
personal biases in order to achieve conformity with their neighbors in the net-
work. Also, we define the problem in the framework of linear quadratic (LQ)
differential games. There is a wide literature on LQ games which can be used
to analyze the game of opinion dynamics. But we find it easier to use our own
framework to obtain the results in Chapter

The main objective of the investigation is to determine under what conditions
on the motives and network structure a Nash equilibrium of the game exists, and
whether or not it is unique. There are of course many notions of equilibrium in
games along with Nash equilibrium. An interpretation in [42] for static games
suggests that if a game is played several times without any strategic links be-
tween consecutive plays, then a Nash equilibrium is most likely reached. Nash
equilibrium is a useful construct whenever the objective is to probe under what
conditions a pattern of collective behavior emerges from independent motives of

agents.

We prove the existence of a unique Nash equilibrium under mild conditions on
the social influence in the network. We investigate the situations where the agents
disagree with each other, which is the case when they interact antagonistically,
or where they cannot arrive at a certain decision when their opinions do not
converge and undergo persistent oscillations. The results for finite time horizon
can be extended to infinite time horizon and it can be seen that the control input
always remains bounded. As a corollary, we also prove that when there is a
single prevalent issue, then Nash equilibrium surely exists and is unique, and the

opinion dynamics always converge to some value.

In the game of opinion dynamics, we argue that a unique Nash equilibrium
always exists if there is some harmonious view among the agents in the network.
The harmony may be in the form of similarity in pairwise conceptions about the

issues but may also be a collective agreement on the status of a “leader” in the



network. We determine the best response function of the Nash equilibrium and
the resulting opinion trajectories for each agent, by making suitable assumptions
on the network topology and the nature of the influence and stubbornness param-
eters. As mentioned above, the theory developed here for one-stage, finite time
interval game can also be applied to infinite time interval as well as to games
with multiple stages. As applications, we investigate two hybrid (continuous and
discrete) games of multiple stages in Chapter |5, where the agents interact with
each other randomly with some probability [15], and they change their opinions
according to the influences of others that are dependent on their heterogeneous

bounded confidences.

The construction of the motives of agents in our game is similar to that of [20],
in which an optimal update scheme based on the best response dynamics of a
static single-issue game is presented and the question of convergence is exam-
ined. Similar game theoretic models include [6], [17], and [21], in which repeated
averaging is interpreted as a best-response dynamics and the convergence to equi-
librium is studied. In [6], a bound for the cost of disagreement in the network
relative to the social optimum is given and a design to reduce this cost by adding
extra edges in the network is presented. The work in [17] is the extension of [6]
in a sense that they also incorporate the rationality of the agents by assuming a
noisy version of the best-response dynamics, called logit dynamics. The dynamic
game here is also inspired by the foraging swarm models in [43], [56], [57]. We
study a similar swarming behavior in the scenario of opinion dynamics in social

networks.

1.6 Organization of the Thesis

In Chapter [2, we provide some preliminaries from graph theory, matrix analysis,
and noncooperative differential games. Chapter |3| contains problem definition of
a differential game of opinion dynamics. We also discuss a procedure to choose
weight matrices which makes them suitable for the reasoning of social influence

and consistency theories. The main results of existence and uniqueness of Nash
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equilibrium are given in Chapter First, we investigate the game in a gen-
eral multilayer network, and then we make some topological assumptions on the
network to find the explicit Nash equilibrium trajectories. We investigate the
examples of two hybrid games of multiple stages in Chapter [, where the game
is played repeatedly. Finally, we dedicate Chapter [6] for conclusions and possible

future works.

1.7 Notation and Terminology

Vectors are denoted by bold lowercase letters and matrices, by uppercase letters.
The set of real numbers and nonnegative real numbers are denoted by R and R,
respectively. The set A\ B denotes those elements of set A that are not in set B.
For any set A, |A| denotes its cardinality. The n x 1 vector of all ones and the
identity matrix of size n x n are 1,, and I,,, respectively; whereas [ is the identity
matrix of appropriate dimension. The set of eigenvalues of matrix A is denoted
by eig(A). The transpose of a matrix A is denoted by A’. A symmetric positive
definite (respectively, semidefinite) matrix A is denoted as A = 0 (A = 0). A
positive (respectively, nonnegative) matrix A, i.e., a matrix with all its entries
positive (respectively, nonnegative), is written as A > 0 (A > 0). The operator ®
denotes the Kronecker product and .#, the Laplace transform. A (block) diagonal

matrix with matrices A, ..., Z at its diagonal is written as diag[A, ..., Z].



Chapter 2

Preliminaries

This chapter briefly describes the basics of graph theory and some results from
matrix analysis, which are used to obtain the results in Chapter 4 We also
provide a general framework of noncooperative open loop differential (dynamic)
games and state the necessary conditions for the existence of Nash equilibrium.
We also discuss the existence and uniqueness of Nash equilibrium in the case of

linear quadratic differential games.

2.1 Graph Theory and Multilayer Networks

A graph G(N,E) consists of the set of nodes, N = {1,...,n}, and the edges,
E = {(i,7) : 4,7 € N and w;; > 0}; where w;; is the weight of the edge from ¢
to j. For undirected graphs, the set E consists of unordered pairs and w;; = wj;,
for i, 7 € N. On the other hand, the weights w;; and w;; in directed graphs may
not be equal. The adjacency matrix of the graph G is defined as

0 W12 ... Winp
W21 0 e Wop
A= ,
Wp1 Wp2 ... 0




Layer 1 O/\n/‘>"
Layer 2 R/JXS%L/’“
Layer 3 &«'&.,

Figure 2.1: A multilayer network with three layers

where the entries w;; > 0; and the degree matrix D := diag|d,, ..., d,], where

n
di: E wij>

j

J#i

is the degree of node 7. Then the Laplacian matrix is given by

dy —Wi2 —Win
— W2 dy —Wap
L= '
—Wnp1 —Wp2 dn

Consider a matrix W = diagfwyy, . .

nodes at its diagonal. Then, we define a matrix Q) := L+ W

., Wpy], which contains the self-weights of

my —Wi2 —Win
Q — W21 mo —Wanp
—Wp1 —Wp2 mp

where m; = d; + wy, Vi € N.

A multilayer network, denoted by M(G,C), consists of the family of graphs
G = {G(N,Ey); Exp C N XN, k € D} at all the layers, and the set of crossed
layer edges, C = {Ey C N xN; k1 € D, k #1}. Here, D ={1,...,d} is the set
of d layers, Ey; is the set of intralayer edges of G, and Ey; is the set of interlayer
edges between Gy, and Gy, [8] and [29]. The Figure 2.1/ shows a multilayer network

10



with three layers; where the solid edges represent intralayer edges and dotted

ones, interlayer edges. We define the matrix Q € R™ for multilayer networks as

M, Wiy ... =Wy,
—Wo M, . =W,
—Wp W .. M,,
n
where M; = ©_ | W;; and
Wij11 W12 -+ Wijd
Wij21 Wijo2 ... Wij2d o
Wij = 9 VZ,,] S N,
Wijd1 Wijd2 --. Wijdd

with w;; being the weight of the edge from node 7 at G; to node j at G;, for
k,l € D and k # [. Here, we assume that w;; ; = w;;; so that W;; = WZ’]

2.2 M-matrices and P-matrices

Let us denote the space of all real matrices of size n x n by M, (R), and a matrix
Q = [q;j] € M,,(R), where i,j = 1,...,n. Then, consider the following definitions
(see [24] and [25]):

Definition 2.1: The set Z, C M,(R) is defined as
Zn ={Q = [q5) € Mp(R) : qi; <0ifi # jydi,5=1,...,n}.

Definition 2.2: A matrix ) = [¢;] € Z, is called M-matrix if Re(\) > 0,
VA € eig(Q).

Definition 2.3: A matrix @ € M,(R) is called a P-matrix if all its principal

minors are positive.

Lemma 2.2.1: If () is an M-matrix, then one can always write Q = mI — R

with m = max{¢g; : i =1,...,n} and R > 0 (i.e., a nonnegative matrix).

11



Proof: For a detailed proof, see Section 2.5 of [25].

Lemma 2.2.2: If () is a P-matrix, then every real eigenvalue of () is positive.

Proof: For a detailed proof, see Section 2.5 of |25].

Theorem 2.1: (GerSgorin Theorem) Let Q) = [¢;;] € M,(R) and ;(Q) =
Zj i |gij|, for i = 1,...,n, denote the absolute row sum of nondiagonal entries

of i-th row of (), and consider the n Gersgorin discs
{zeC:|lz—qui| <ri(Q)}, i=1,... n.

The eigenvalues of () are in the union of Gersgorin discs

n

GQ) = J{zeC: |z —al <r(Q)}. (2.2)

i=1

Proof: Let A € eig(Q) and v = [v; ... v,]" € R" be the corresponding eigenvector
such that |v,,| = max(|v1],...,|v,|) for some m € {1,...,n}. Consider the m-th
row of (). By the fact that Qv = A\v, we have

Z qmjiV; = /\Um — dmmUm-
j7m

Taking the absolute value and using the triangle inequality,

ZQijm < Z |Qmjvj| < |Um| Z |qmj|

j#m j#m i#m

|UmH)‘ - Qmm| =

Since |v,,| # 0, we have the inequality |\ — ¢pm| < rm(Q) for all A € eig(Q). O

Definition 2.4: A matrix Q € M, (R) is called strictly row diagonally dominant

(respectively, strictly column diagonally dominant) if
|qii| > Z |qi;|  (respectively, |gi;| > Z 1953
i i
for every i,5 € {1,...,n} and j # i.
Theorem 2.2: (Levy-Desplanques Theorem) A strictly diagonally dominant

matrix is nonsingular.
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Proof: Let @ € M,(R) be a strictly diagonally dominant matrix. Suppose
det(Q)=0, then Qv = 0 for some v = [v;...v,] € R" such that |v,| =
max(|vi],...,|v,|) for some m € {1,...,n}. Consider the m-th row of @ and
the fact that Qv = 0, we have

Z qmjvj =0.
j=1

Take ¢,,mv,, to the other side and consider the absolute value, we have

ZQijj < Z |Qmjvj| < |Um| Z |Qmj|'

Jj#Em J#EmM J#m

|Qmm||vm| =

Since |v,| # 0, we have |@mnm| < 7, (Q), which is a contradiction because @ is

assumed to be a strictly diagonally dominant matrix. 0

2.3 Matrix Square Root and Hyperbolic Func-

tions

Given a real matrix @@ € R™ ™ a (complex) square root of Q) is H € C™*™
satisfying Q = H?. The conditions for the existence of a square root are given
in [25], Chapter 6. A square root always exists for a nonsingular @) and a real
square root of a nonsingular () exists if and only if () has an even number of Jordan
blocks of each size for every negative eigenvalue. It is also well known that a real
positive (nonnegative) definite matrix has a unique real positive (nonnegative)
definite square root (see [24], Theorem 7.2.6), which will be denoted by Q2. Let

t2k

f@t) = ;Q’“ o8

t2k+1

9(Qt) = ; ka7

t2k+2

h(Qt) = g ka7

which converge for all () since they are the inverse Laplace transforms of rational
matrices s(s*I — Q)7!, (8?1 — Q)7!, and s7(s*I — Q)7 !, respectively. If H is

13



any square root of @, then, in (2.3), f(Qt) = cosh(Ht), Hg(Qt) = sinh(Ht),
and f(Qt) = I + Qh(Qt). Moreover, cosh(Ht) and H sinh(Ht) are functions
of @) and are independent of the choice of the square root matrix H, whereas
exp(+Ht) = cosh(Ht) £ sinh(Ht) is dependent on its choice.

Lemma 2.3.1: The matrix f(QT) is singular if and only if @) has a real negative

(2k+1)m

5 for a nonnegative integer k.
I

eigenvalue —r%,r > 0, and T =

Proof: Let Jo = P7'QP be the (complex) Jordan normal form of @ for a
nonsingular (complex) P. If T' = @ for some eigenvalue —r? of ), then
a Jordan block J,. of any size associated with this negative eigenvalue can be
written as —K?2, where K, has r at its diagonal, —(2r)~! at its upper diag-
onal, and zeros elsewhere. The corresponding Jordan block of f(QT) is then
F(LT) = 3000 (=1)'KXT* /(2i)! = cos(K.,T), the diagonal entries of which are
zero if and only if 7" is an odd multiple of 7/2. If @ is singular, then let J
be a Jordan block associated with the eigenvalue zero, and note by its series ex-
pression that f(Jy7) has ones at its diagonal, i.e., nonsingular. Similarly, any
other eigenvalue A of () is nonreal or positive so that a Jordan block J, has a
nonsingular square root Hy and f(J,T') = cosh(H,T') has eigenvalues all nonzero,

i.e., nonsingular. 0

2.4 Noncooperative Open-loop Differential Game

Consider a set of agents (or players) represented by the nodes in N = {1,...,n},

each described by a dynamic state equation
x;(t) = fi(t,x(t),ui(t),...,u,(t)); x;(0) = by, (2.3)

where x;(t) € R? is the state vector of agent i, u;(t) € R is the control input, and
x(t) := [x)(t)...x(t)] is the state vector of the network. Let b := [b}...b/]

and the time ¢ € [0,7], where T is the terminal time. The cost functional for

some ¢ € N is given by

Ji(ay, ... u,) = q¢x(T)) + /0 gi(t,x(t),uy(t), ..., u,(t))dt. (2.4)

14



The objective of each agent is to minimize this cost by choosing appropriate
controls u; in . This defines an n-agent dynamic game. The game is nonco-
operative since each agent minimizes his own cost and does not cooperate. Denote
the information and strategy set of agent ¢ by n; and S;, respectively, then the

actions (or controls) are determined by
w; = (7)), wherei€ N,v; €8,

In the case of open-loop games, the information set n; := {(¢,b) : t € [0,T], b €
R™}. Then, v; : [0,T] x R"™ — R?. The following is based on Chapter 5 and 6
of [5].

Definition 2.5: A set of permissible control actions {uj,...,u}}, where u} :=
vE(n:), Yi € N, constitute a Nash equilibrium of the n-agent game if, for all
permissible {uy, ..., u,}, it holds that

* * * * * * * * * *
JE=Ti(ui, .. 0wy, ,uy) < i, w,ul g, ., ),

where u? is the best response input of agent ¢ and J; is the optimal cost obtained

with u] when everyone else play their best strategies.

Assumption 2.1: Let fi(t,-,ui(t),...,w,(t)), g:(t,-,ui(¢),...,u,(t)), and ()

be continuously differentiable on R¢.

Theorem 2.3: Consider a noncooperative dynamic game played by n agents in
a prescribed duration [0, 7). Then, if {7} (n;) =: u}; i € N} provide an open-loop
Nash equilibrium solution with {x}(¢) : ¢ € N,t¢ € [0,T]} be the corresponding
state trajectories, there exist n costate functions p; : [0, 7] — R? such that the

following relations hold:

X (t) = filt;x(t),ui(t), ..., w,(1)); %(0) = by,

u(t) = arg uIiIéiIEI{ld Hi(t, pi(t),x" (1), w1 (t), ..., u,(t)), (2.5)
Pil) = o (1 i), X (1), 1),
piT) = a%qi(x*m),
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where t € [0,T], i € N, and

Hi(t, pi(t), x (), ws(t), ..., u,(2)) £ gi(t, x(t), wi(t), ..., un(t))
+ () fi(t,x(t),uy(t), ..., u,(t)).

Proof: The proof is given in Chapter 5 of [30]. O

2.5 Linear Quadratic (LQ) Differential Game

This section is based on Chapter 7 of [14]. Consider a linear differential equation

z(t) + Z Bju,(t); z(0) = z, (2.6)

where z(t) € R™ is the state vector, w;(t) € R? is the control input of agent i,

1 € N. The cost functional that each agent aims to minimize is
T

Ji(uy, ... up) =2 (T)Girz(T) + / )+ Zu JRiju;(t)]dt, (2.7)

0

where the matrices G;, R;j, for ¢ # j, are symmetric positive semi-definite and

R;; is symmetric positive definite. Then, the Hamiltonian in (2.5)) becomes
M= +ZUZWM-WMWW+Z%M% (2.9

where p;(t) are the costate functions. This gives

w () = — Ry Bipi(t), (2.9)

where
pi(t) = —Giz(t) — A'Pi(t),
with p;(T") = G;rz(T). Moreover,

a(t) = Az(t) = Y S;p;(1),
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with z(0) = z,, where S, := BjRj_le;. Then, according to Theorem , the game
defined by (2.6 and ([2.7) admits a Nash equilibrium if the following differential

equation has a solution:
y(t) = My(t); Xy(0)+Yy(T)=[z0 ... 0], (2.10)

where y(t) = [Z'(t) pi(t) ... P,,(1)],

A =5 ... =85,
-G, A
M = . ,
-G, —A
and ~ _ _ -
0 0O ... 0
-G I
¥ v = ' 1T

00 ... 0 —Gar I

Theorem 2.4: Let the solutions K;(-) of the n Riccati differential equations,
Ki(t) = —A'Ki(t) — Ki(t) A+ Ki(t)SiKi(t) — Gi; Ki(T) = Gir, i € N,

be symmetric on [0,7]. Then, the linear quadratic differential game defined in
(2.6) and (2.7) has a unique Nash equilibrium if and only if

F(T):=[10...0e™IQ, .. Q..
is invertible.

Proof: For a detailed proof, see Chapter 7 of [14]. O
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Chapter 3

A Game of Opinion Dynamics on

Multiple Issues

A noncooperative open-loop dynamic game is defined below for a scenario where
the agents form opinions on multiple prevailing issues. We discuss a procedure to
determine weight matrices corresponding to the weights of a multilayer network
and incorporate them in a cost functional. The cost functional describes the
motive of an agent, which encapsulates his social and psychological dispositions.
This choice of weight matrices is then linked with the consistency theory, [54].
We then mold our setup in the framework of linear quadratic (LQ) differential

games.

3.1 Problem Definition

Consider a social network M(G,C) where n agents interact, discuss, and form
opinions on d prevailing issues in a set D. The agents are represented by the
nodes N = {1,...,n} of the network. Here, M(G,C) is a multilayer network as
defined in Section of Chapter 2] Every agent in the network has some initial

biases b; = [b;1...b; 4] € R% i € N, on the issues. Here, we let b, assume any
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number in R = (—o0, 00) ranging from strong refusal to complete support, with
value zero indicating neutrality or lack of opinion. We define the neighborhood
of agent ¢ by N; := {j € N : w;; i # 0 for some k,l € D}, and let |N;| = m,.
Thus, any agent with whom agent ¢ does not interact in any layer of the network
is left out and others are collected in IN; as neighbors. Agents may update their
initial opinions in a time interval [0, 7], where the terminal time 7" > 0 may also

tend to infinity in which case the game played will be of infinite horizon.

Let x;(t) = [zi1(t) ... 7;:.4(t)] € R? denote the vector of opinions of agent i at
time ¢ € [0, 7] on d issues. Thus, x;(0) = b,;. The vector x(t) = [x|(t)...x,(t)]" €
R™ is the opinion profile of the network at t € [0, T).

The motive that compels agent ¢ to update his opinions can be described by

postulating a cost functional that takes into account the cumulative costs of

(i) rapid changes in one’s opinions,
(ii) the tendency to preserve his mind set, and

(iii) holding distinct opinions from one’s neighbors.

The model here puts forward that every agent has a motive that may eventually
dictate his opinion dynamics and that such a motive, if not consciously held,
looms at the background in shaping his opinions. Thus, the cost functional of
agent i given by
1 [T
Fxbw) = [ (132 (50 W))W b
JEN;

(3.1)

represents his motive, in which the matrices W;;, W;; € R4 respectively, weigh
the costs in (iii) and (ii) above. The third term penalizes (i) as w;(t) := X;(t), Vi €
N, i.e., it is the instantaneous rate of change of opinions of agent ¢ on d issues
and represents the cumulative control effort of agent ¢« when integrated in .
It should be understood that x;(¢,7") and wu;(t,T") are functions of time ¢ as well
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as the terminal time 7', and that we suppress the dependence on T for the sake

of brevity. We adopt the following throughout the paper.

Assumption 3.1: W, is symmetric positive definite and W;j, for ¢ # 7, is sym-

metric nonnegative definite, Vi, 7 € N. O

The first term in the cost functional requires agent ¢ to cooperate with his
neighbors, the second term to preserve his own biases and the third term to
reduce the overall control effort. By Assumption [3.1] the weight associated with
the control effort, normalized to identity in rather than allowing it to be
a positive definite weight matrix, is without loss of generality as we show in
Remark below. The agents interact with their neighbors for a finite duration
[0,7] and, due to an integral cost, every agent penalizes the cumulative effect of
each of the three terms in the integrand during that duration. For instance,
the first term does not penalize the instantaneous differences but the sum total
of divergence from the opinions of the neighbors. Note that the opinions x;(7")
at terminal time T are not specified and left free. Thus, each agent minimizes
his cost under free terminal conditions, |30]. A noncooperative, continuous-time,

open-loop, infinite dynamic game (see [5], Section 5.3) is then played by n agents:

min{J;} subject to x;(t) = w;(t), Vi € N. (3.2)

This game is noncooperative because the agents seek their own individual motives
and there is no prevailing “social motive” to be sought in the network. The
main purpose of this setup is to examine under what circumstances, a pattern
of collective behavior emerges. The information set of agent ¢ is defined as 7, :=
{(t,bn,) : t €[0,T], b, € R™%}, where by, is the vector containing the initial
biases of agent i’s neighbors. We assume that the control u;(t) € S;, V¢ € [0,T],
and define S; to be a class of all permissible strategies of agent ¢, which are all

continuously differentiable functions ; : [0, 7] x R™¢ — R¢.

Remark 3.1.1: The cost functional (3.1)) is a simplified version of the following
cost functional, in which fZZ € R¥™? is symmetric positive definite and I/T/iﬁ I/T/u €

R%? are symmetric nonnegative and positive definite matrices, respectively, for
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all 7,57 € N:

o>

. 1 (T . . R R
0

JEN;
This is without any loss of generality. Notice that R, = N!N; for some nonsingular
N; and consider the transformation 0; = Ni_lui and x; = Ni_lxi, where VAVij =
N/W;;N;, W = N!W;;N;. 1t is easy to see that the control input u} is optimal
for (3.1) with the trajectory x* if and only if the control input @ is optimal with

the trajectory x*. A

Definition 3.1: We will say that a full consensus is reached on some issue k at
terminal time 7" if @y 4(T") = - -+ = 2, (7). On the other hand, if the opinions of

agent ¢ and agent j on some issue k are such that
|2k (T) — 2j1(T)] <é,

for some small € > 0. Then, we say that agent ¢ and agent j have reached a

partial consensus on issue k.

If there is only one issue (d = 1) under consideration, then (3.2)) is the game
considered in [40]. Similarly, if the matrices W;; and W;; are diagonal, then (3.1
will be minimum if and only if the d functionals obtained by its decomposition
are minimum. In other words, the game then decomposes into d independently
played games on every issue separately. We now make an attempt to justify the

considerably more sophisticated game obtained in the non-diagonal W;; cases.

3.2 On the Choice of Weight Matrices and Con-
sistency Theory

The rationale in the choice of the weight matrices W;;, Vi,5 € N, by agent ¢
is encouraged by the role of attributes and by the notion of bounded confidence
outlined in [35], [22], and [12], also being cognizant of the fact that in some cases

similar attributes may lead to competition, [46]. We also take into account that
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a person’s opinion on an issue is a function of the amount of information he has
on that issue, [54]. The interpretation in terms of the reflexive property “consis-
tency on two issues” for the off-diagonal entries of the influence and stubbornness
weight matrices given below justifies the assumption of “symmetry” adopted by
Assumption [3.1]

Let us first consider the influence weights and let W;; = Vg, 7 € N;, where
| Viji1 Vg2 .- Uijid (
‘/z'j = Uij:,Ql Uij:722 .‘ .. ' Uij:,2d ) with Vij kl = Vijlk \V/k,l c D,
i Vijdi Vijd2 --- Vijdd ]

so that the nonnegative definiteness of W; is ensured. Suppose each agent 7 in the
network possesses ‘a’ attributes such as social status, area of expertise, religious
and ethnic identity, etc., which can be defined in some set A. Then, a possible

choice, for « € N and j € N;, is given by

bije(ai,a;), if |big — bjxl < e,

0, otherwise;

Vij kk =

where ¢;;, : A X A — R and g; > 0 is the bounded confidence threshold of

agent i. The off-diagonal entries of matrices V;;, V4,7 € N, can be chosen by

CiTigts  ifvij e 7 0 or v # 0,
Vij,kl =
0, otherwise;
where r; 5, € [—1,1] is the correlation coefficient between issue k and issue [
according to the conception of agent 7, and ¢; € R, is a proportionality constant
that can be chosen dependent on the attributes a; and a;. The positive (or
negative) value of r;j; indicates the positive (or negative) correlation between

the issues k and [. Then, Vi, j € N, the diagonal entries of W;; are given as

d
wlj,kk - Uij,klv
=1
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where the symmetry v;; 1 = v, is ensured; and the off-diagonal entries of W,
for k # [, are

d
Wikt = Vijt(Vij ke + Viju) + Z Vij,mkVij,mi-
o
In order to see the effect of such choices in the cost function of agent i, consider
the case of three issues, where the (1, 2)-entry of W;; in terms of v;; is wij12 =
Vij12(Vij11 F0ij22) +0ij13Vi5.23. The second term v;;13v;; 23 shows that if issue 1 and
issue 2 are separately correlated with issue 3, then opinions on issue 3 will also
affect the opinions on issue 1 and issue 2. Also, if the product (z;1—x;1)(%;2—x;2)
and w;;12 have opposite signs, then the multiple of these terms will act as a
repulsion term in . So agent ¢, in this case, will restrict himself to make
consensus with agent j because, according to agent i, agent j does not hold

reasonable opinions.

The choice of entries of a stubbornness weight matrix W;; follows an entirely
similar rationale, by simply replacing the agent j in the narrative above by the
initial belief of the agent ¢. The stubbornness on an issue is penalized by the

diagonal entries and the self-consistency on two issues by the off-diagonal entries.

Example 3.2.1: Consider a dyad, a network of two agents, interacting on two
positively correlated issues, with initial biases by = [0.3 0.3)" and by = [0.5 —0.5]".
And suppose agent 1 has a one-way interaction with agent 2, while agent 2 does
not interact with agent 1 (i.e., Woy = 0,Wsy = I), such that vy 4, = 0.1 and

vigpe = 1, for k = 1,2; and vyj,12 = 71,12, for j = 1,2, resulting in

2 2
W12 _ [ 1 1,12 ] , WH _ [ 0.1 1,12 ] '

r1,12 1 1,12 0.1

Figure 3.1| (a) shows the opinion trajectories on issue 1 and issue 2 when ry 12 = 0
(no correlation) and Figure (b), when 71 15 = 1. In this case, agent 1 makes
consensus with agent 2 because of his influence. But in latter case, since issue 1
and issue 2 are positively correlated according to agent 1, and agent 2 holds
contradictory beliefs as agent 1 is aware of by, it can be seen that agent 1 moves

away from agent 2 on issue 1. But as he changes his opinion on issue 1, he also
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Figure 3.1: Antagonistic interaction

needs to change his opinion on issue 2, towards that of agent 2, to minimize his

own inconsistency.

A

3.3 The Framework of LQ Differential Game

Let us first observe that the cost functional (3.1)) is a linear quadratic cost func-

tional since it can be written in the form

1 /T
‘Z(Z, ui) = 5 / (Z,Giz + ugui) dt,
0
where z = [z),...,2.] € RV z, = [A], ..., A1y Ay Ay -

with A’L] =X — Xy, for j 7é i, and A” =X; — bi, V’L,j € N. AISO,

24

(3.3)

ALY € R



where H; € {0,1}"*" is a zero matrix with (¢,)-entry equal to 1, and K; =
diag[Wi, ..., Wy, € R>*nd, The differential equation of the network is given by

z=Y Bju, (3.4)
=1
where B; € {0,1}"?*? is a matrix of ones and zeros,

[ —hj®[d-

Bj: 1n®Id

[ —hj®1q |
Here, h; € {0,1}" is a zero vector whose jth-entry is equal to 1, and note that
the matrix 1,, ® I is the jth block of B;.

Defining the Hamiltonian as in ‘) and S; 1= BijT, we obtain
$(t) = My(t); Xy(0)+Yy(T) = [z0 ... 0],

where y(t) = [Z/'(¢) pi(t) ... P,(1)],

[0 —s, ... -8, |
-Gy 0 ... 0
M = . . . )
-G, 0 0
and ~ _ ~ _
00
0
X: 7Y:
00 ... 0 00 ... I

Then, for the existence of Nash equilibrium, as in Theorem [2.4] we need to check

the invertibility of the following function of a matrix:

o T2k
F(T) = [[(SG)T] := ;wmk "R

where S =[S ... Sy]and G =[G] ... G!].
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Chapter 4

Existence and Uniqueness of a

Nash Equilibrium

We first investigate the existence and uniqueness of Nash equilibrium in a general
multilayer network. The game defined in Chapter [3| happens to admit a unique
Nash equilibrium under mild conditions on the matrix @ in (2.1). In a single
issue case, the Nash equilibrium always exists and the opinion trajectories always
converge to some value. Also, in multi-issue case, a unique Nash equilibrium
exists if agents hold some harmonious view among themselves. The harmony
may refer to the similarity in pairwise conceptions about the issues but may also
be an agreement on the status of some leader in the network. We then give

explicit opinion trajectories at Nash equilibrium for these harmonious networks.

4.1 Nash Equilibrium in a General Multilayer
Network

We present the existence and uniqueness results for the game (3.2)) in this section.
We first focus on the Nash equilibrium of the game in its most generality. In
Proposition , we show, under mild conditions on weight matrices, that ({3.2)
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has a unique Nash equilibrium.

Consider the cost functional (3.1]), and let W := diag[Wiy, ..., W,,] and the

matrix

M1 —W12 e _Wln
—W21 M2 “e _WQn
Q= . . . . ) (4'1)
| —Vvnl —VVn2 ... Mn ]

with
M; =Y W, VieN.
jEN
Note that W;; = 0 in (4.1) whenever j ¢ N;. Also, by Assumption [3.1] the
block diagonal W is positive definite. Whether () is symmetric, nonsingular,
nonnegative, or positive definite, etc., depends on the choice of weight matrices

as well as the network structure.

Proposition 4.1: Let Assumption [3.1] hold. Then,

(i) A unique Nash equilibrium (uf,...,u}) of the game (3.2)) exists in the

n

interval [0, 7] if and only if the matrix f(QT') is nonsingular, in which case the
Nash solution in ¢ € [0, 7] is given by

u'(t) = Qh(Q) f(QT) + g(Qt)g(QT)f(QT)™(Q — W)b, (4.2)

where b := [b] ... b, u*(t) := [uj(¢)’ ... u}(¢)"]', and the resulting opinion profile

n

in this Nash equilibrium is given by

x'(t) = {1 + [MQ1) /(QT) + g(Qt)g(QT) F(QT) (@ — W)}b, (4.3)

where x*(t) := [x](¢) ... x%(t)].

(ii) If @ is nonsingular and H is a square root of @), then the Nash solution

and its opinion dynamics can be expressed as

u*(t) = Hsinh[H(T — t)] cosh(HT) (I — Q" 'W)b, (4.4)

x*(t) = {Q "W + cosh[H (T — t)] cosh(HT) ' (I — Q" 'W)}b. (4.5)
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(iii) If @ is nonsingular with a real negative eigenvalue —r?, then x*(¢) has

)

sustained oscillations for T # (21%1 and

lim x*(t) = £oo
T*)(Qk;;l)ﬂ'

for every nonnegative integer k.

(iv) If @ is nonsingular with no real negative eigenvalue, then the opinion
dynamics (4.5)) in infinite horizon is given by

lim x*(t) = [Q7'W + exp(—H,t) (I — Q~'W)]b, (4.6)

T—o00

where H, € R">"? is a positive stable matrix.

Proof: To show that there exists u}(¢) which provides a Nash equilibrium, we can

write (3.1)) as
T
Ji= / (Hi — pi%i)dt, (4.7)
0

where H; and p; are the Hamiltonian and the costate function, respectively,

defined in (2.5). Notice that

T T
t/p%ﬁZEGkﬂﬁ—mmm—/ﬁwMa
0 0

where b; = x;(0). Then,

Z:A(%+mmﬁ—WUMUHmmmr (48)

Assuming that u}

is the optimal control path, we perturb it around its ‘small’
neighborhood with some continuous function q;(¢) so that we have its neighboring

control paths
w;(t) = uj(t) + eq;(t),

where € is a ‘small’ scalar. Then, x;(¢, €) are the neighboring state trajectories of

*

X

(t), and the cost functional J;(€) is the corresponding cost. By the assumption
that u} is optimal, J;(¢) has a minimum at ¢ = 0. And it can be easily verified

that %6(6) = 0 when the necessary conditions l) are satisfied and

d*Ji(e) :/OT[ LA } [ (X jen, Wij) + Wi 0] [ F ]dt>0

de? de v 0 I q;
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because W;; > 0 and W;; > 0. Therefore, u;(#) minimizes J;. And since H; is

strictly convex in (x,u;) Vt € [0, 7], we conclude that u} is unique [36].

The combined state and costate equations from (2.5)) give

HEEHINEENIN]

which has the solution of the form

A=

-Q 0
Note that

O(t) =L H(sI - A"} (4.10)
. { S(ST= Q) —(s2 = Q) }
—Q(s* I — Q)7 s(s*T— Q)7
The state transition matrix ®(¢) and the matrix ¥(¢) are calculated using the

formal power series in s~! of each block in (4.10) and, with (2.3) in view, are

given by
B(t) i Gu(t) bi2(t) ] _ [ f(Qt)  —g(Q1) ]
on(t) () | | —Qe(@Q1) f(Q1) |
W(t) = | Yu(t) Pra(t) ] _ i g(Qt)  —h(Qt) ] .
| Uan(t) Yaa(t) | | —QR(QT)  g(Q1)

From (4.9)), we have

x(t) = [p11(t) + Y12(t)W]b + ¢12(t)Po,
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and,
P(t) = [P21(t) + a2 (t)W]b + das(t)Po.

Evaluating at ¢ = T and employing the boundary condition p(7") = 0, we have
022(T)p(0) = —[p21(T') + Yo2(T)W]b. In order to be able to solve for py for any
initial state b, it is necessary and sufficient that ¢0(7) = f(QT) is invertible.
We then obtain

Po = —b22(T) 21 (T) + 122 (T) Wb,

and

x(t) = {¢11(t) + Y12(O)W + ¢12(t) (1) ' [Q12(T) — d12(T)W]}b

by using that ¢o; = Q@12 and 19 = —@1o. Substituting the expressions in terms
of f(Qt),g(Qt), h(Qt) above, and noting that functions of () commute, it is not
difficult to arrive at and (4.2), where u(¢) = %(¢). This establishes the
necessity and sufficiency of the condition that f(QT) is nonsingular for a Nash

equilibrium to exist and proves Proposition (i).

Whenever () is nonsingular, at least one square root H of () exists. Then,

f(Qt) = Qh(Qt) + I = cosh(Ht)

and

Hg(Qt) = sinh(Ht),
which are independent of H, so that (4.2)) and (4.3 result in (4.4) and (4.5)),
proving Proposition [4.1} (ii).

To prove Proposition (iii), let H be any square root of ) and let J be its
Jordan normal form so that H = PJP~! for P as in the proof of Lemma 1. If Q
has a negative eigenvalue, say —r?, then as in Fact 1, there are Jordan block(s)
J. = V/—1K, associated with that eigenvalue for which cosh(J,t) = cos(K,t) for
t > 0. Then, the corresponding block in

P~ cosh[H(T — t)] cosh(HT) ' P = cosh[J(T — t)] cosh(JT)!
has the expression
cos[K,(T — t)] cos(K,T) ™' = cos(K,t) + sin(K,t) tan( K, T),
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which is unbounded as t approaches T' = (2k + 1)w/2r, for every nonnegative
integer k, which results in unbounded for all initial values b (except when
everyone starts at full consensus; where all b;, Vi € N, are same). For any
other value of T', tan(K,T") will have a finite value and there will be oscillations
of finite (but possibly large) amplitudes in all trajectories associated with the d
issues. This proves the claims in Proposition [4.1}(ii).

If @ is free of any ‘real’ negative eigenvalue, then it has real square roots H,
all of which have eigenvalues with nonzero real parts including a square root
H, with eigenvalues of all positive real parts. Note that any square root H of
Q can be written as H = H, + H_, where H, = PJ, P!, H. = PJ_P7!,
and J = J; + J_ is a decomposition of J into two matrices having blocks that
correspond to eigenvalues of positive and negative real parts, respectively. It is
now straightforward to show, using this decomposition, that if H is any square
root of @), then

711_{1;0 cosh[H (T —t)] cosh(HT) ™" = exp(—H,t)
for every t > 0, where H, = H, — H_. Note that this limit remains bounded for
every t € [0,00) and goes to zero as ¢ — co. This proves Proposition [1.1}(iv). O

The existence of a Nash equilibrium is guaranteed only if the choices of in-
fluence and stubbornness matrices and terminal time 7" result in a nonsingular
f(QT). This requirement is always met when d = 1 since ) can be shown to
have positive real eigenvalues in this single issue case. The weight matrices in

this case are scalars, i.e., W;; = w;; > 0 for 4,7 € N. Then,

mq —Wi2 ... —Wip
w m w n
— W21 2 s —Wap
Q= . . . . ;o my = E Wiy, (4-11)
: : .. : =1
—Wnp1 —Wp2 ... my,

and note that w;; > 0 for i = j.

Lemma 4.1.1: The matrix @ in (4.11]) is an M-matrix.

Proof: First note that () is a P-matrix since all its principal minors are positive.
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That is, every real eigenvalue of () is positive, see Lemma[2.2.2] Furthermore, let
ri(Q) =2, i Wij. Then, from GerSgorin theorem we know that all the eigenvalues
of @ lie in the union of all Gersgorin discs, G(Q), defined in (2.2). Since @ is
strictly diagonally dominant of its row entries, i.e., m; —1;(Q) = wy; > 0, Vi € N,
therefore G(Q) lies in the right half plane of C. Hence, the matrix @ is positive

stable, i.e., all its eigenvalues lie strictly in the right half plane.

Let m = max{m,; : ¢ € N}, then Q = mI — R, where R is a nonnegative

matrix given by

m — mq W12 Win,
Wa1 m — Mo Wap,
R =
Wp1 Wn2 m — my

The matrix R is nonnegative since m —m; > 0, Vi € N. Hence, the result follows
by Lemma [2.2.1 O

Corollary 4.1.1: For a single issue case, the following hold:
(i) The game (3.2) has a unique Nash equilibrium.

(ii) The opinions always converge to a partial consensus and there are no

sustained oscillations.

Proof: The matrix @) is strictly row diagonally dominant, therefore its square root
exists. By Lemma above, the matrix @) in (4.11]) is positive stable. Then
by Proposition [4.1} a unique Nash equilibrium exists and the opinion trajectory

of every agent i always converges to a partial consensus. 0

Example 4.1.1: Consider a network with two leaders and one issue as shown
in Figure (a). Total population equals 10, and suppose that half of the
followers (four each) support each leader. The followers of leader-1 can be named
as followers-1, and of leader-10 as followers-10. The followers also have influence
among themselves in a society, but a follower is assumed to receive more influence

from his fellow followers than the opponents. We set w; = 0.2, 7 = 1,...,10.
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Figure 4.1: A network with two leaders (agent 1 and agent 10)

Suppose that wy; = w,; = 0, where n = 10 and ¢ = 2,...,9. In Figure (b),
we assume that the influences of leader-1 and leader-10 on their followers is 10;
the social impact of followers-1 and followers-10 among themselves is 2; the cross
impact of followers-1 on followers-10, and vice versa, is 0.2; and the influence
that followers take from other leader is 10 times less than their own leader’s
influence. In this case, agents are more likely going to follow their respective
leaders. However, if we assume that followers-1 are more loyal to their leader
and they run a good campaign in order to attract the followers-10, then they
are able to steal followers-10 from their leader. For Figure (c), we increase
the influence of leader-1 to 20 and the cross impact of followers-1 on followers-10
to 10, while all other parameters are the same. It can be seen that rather than

following leader-10, followers-10 tend to follow followers-1. This is due to social
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Figure 4.2: Oscillating and divergent opinion trajectories
impact of followers-1 on followers-10. A

For d > 1, the matrix () may have negative real eigenvalues. In Example [4.1.2
below, a nonsingular ) having a negative eigenvalue results in a singular f(QT)
for a particular value of T" and, hence, in a lack of Nash equilibrium. The expecta-
tion that a Nash equilibrium fails to exist whenever the agents have inconsistent
views towards each other is only partly true. In fact, in Theorem [4.2}(i) and in

Theorem below, it exists in two somewhat diametrically opposite cases.

Example 4.1.2: By Proposition [4.1] if @ has a real negative eigenvalue, then
a Nash equilibrium fails to exist for some critical values of T" and has persistent

oscillations for other values of T'. Consider a dyad with

[ 05 —1 125 —1
Wi = ) Wis =

1 25 | -1 125

[ 2 25 [ 2 15
W = s Wy =

| 2.5 3.25 15 1.25

for which eig(Q) = {8.3611,4.9858, 0.8372, —0.1840}. Let

T——" 36619

2+/0.184

so that (2k +1)3.6619 are the critical values of T at which Nash equilibrium fails
to exist. In fact with by = [-0.5 0.5, by = [1 1], and k£ = 1, the opinion
trajectories diverge to infinity as 7' — 3(3.6619) as shown in Figure (b) and

34



has oscillations for a value less than but close to this critical one in Figure |4.2| (a).
Figure shows the trajectories for only issue 2 but those for issue 1 have the
same features. Divergence will actually be obtained for all initial biases except
that of full consensus. A main factor that causes () to have a negative eigenvalue
is that the off-diagonal entries of the weight matrices of agent 1 and agent 2 have
different signs, i.e., the agents have opposite conceptions about the correlation of

the two issues. A

Remark 4.1.1: (a) The assumption that ) is nonsingular is convenient in ob-
taining compact expressions for u*(t) and x*(¢). It is also practical, without loss

of generality, since almost all matrices are nonsingular.

(b) Observe that the opinion profile in consists of two parts. The constant
part QWb can be viewed as a “weighted average opinion in the network.” The
time dependent part, on the other hand, represents the evolution of the dynamics
dependent on the difference between the opinions of agents from that average.
The evolution itself is dictated by the eigenvalues of @) in (4.3) and in ,
see [b1].

(c) If Q is symmetric, then the matrix H, in Proposition [4.1}(iv) is the unique
positive definite square root of (positive definite) Q. A

If the agents initially hold same opinions on the issues, then they don’t change
their opinions in [0,7]. This reinforces that the game is indeed a model
of consensus in opinion dynamics. On the other hand, as we will demonstrate,
this constant dynamics is the only possible instance of full consensus because the

motive of stubbornness is incorporated into the model.

Corollary 4.1.2: If b; = b;, Vi,j € N, then x*(t) = b, Vt € [0, 7.

Proof: In (4.3) and (4.5), if b; = b; for all 4,5 € N, then b is in the null space
of ) — W. This is because ) — W is a matrix without self-weights of the nodes.

In this case, the row sum of @@ — W is zero. Therefore, x}(t) = b;, V¢ € [0,T].

Hence, an initial full consensus is preserved in the whole interval. 0
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Corollary 4.1.3: In case of infinite time horizon, the opinion vector in the long
run, converges to the weighted average of the initial opinions,, i.e.,

lim lim x*(t) = Q'Wh.

t—oo0 T'— o0

Proof: The result is a direct consequence of Proposition [L.1}(iv). [

Corollary 4.1.4: The control input u*(¢) in (4.4) remains bounded for ¢t € [0, T
forall T >0 and as T — oo.

Proof: Note that the cosh(HT) is invertible because Q = H? is assumed to have
no negative real eigenvalues. Therefore, for any finite 7" > 0, the control input
u*(t) remains bounded. When 7" — oo,

lim u(t) = Th_rélo H{exp[H(T —t)] — exp[—H(T —t)]} X

T—o00

lexp(HT) + exp(—HT)| (I — Q~'W)b,
= Th_rgo H{exp[2H(T —t)] — I} exp[—H(T —t)]x

exp(HT)[exp(2HT) + I]7*(I — Q"'W)b,
= —Hexp(Ht)(I — Q 'W)b,

where H is a matrix with eigenvalues in right half plane. O

Using the expression , one can also obtain the best response dynamics
x;(t) for every agent i. It is, however, possible to display the individual opinion
dynamics of each agent more explicitly to allow easier interpretations. We now
consider two specializations of the result of Proposition First, where agents
have pairwise similar views and second, where all the agents are only connected
to one agent that will be called a leader. These two cases come from two extreme
assumptions on the structure of the networks and lead to an explicit opinion

trajectory expression for each agent.
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4.2 Pairwise Similar Views

In the special case of agents having pairwise identical influence weights, i.e.,
undirected network, the existence of a Nash equilibrium is ensured. Since an
influence weight matrix is allowed to be a zero matrix, pairwise similarity requires
that if agent i leaves agent j out of N;, then agent j reciprocates and leaves him
out of N;. This assumption may be justified for instance in a small community
without much external influence. Since stubbornness weights may be distinct,
the individuality of agents is still there. This section pursues the consequences of

this type of a harmony existing in a network.

Lemma 4.2.1: Consider an undirected multilayer network M(G,C). Then, the

matrix () is positive definite.

Proof: Here, the matrix @ is given by

_W12 M2 :
Q= _
_W(n—l)n
| _Wln o _W(nfl)n Mn ]

For any y; € R™, i € N, computing [y} ...y.|Qly}...y.], we get
/ / / /
yiWuyr + - + vy, Wanyn + Z (vi —y)Wii(yi —y;) > 0,
Vi, jEN,i#j
where we used the expression in (4.1)) for A;’s and the hypothesis that W;; is

nonnegative definite for ¢ # j and positive definite for i = j. O

Theorem 4.2: (i) If W;; = Wj;, Vi,5 € N, then a Nash equilibrium exists and
is unique. The resulting opinion profile is given by (4.5)).

(ii) In a complete network, if W;; = F' and W;; = G, Vi,j € N, i # j, then

the unique Nash equilibrium opinion trajectory of agent ¢ is given by

x;(t) = % zn: b; + (F+nG) Y F +cosh[H(T —t)] cosh(HT) "'nG} (b; — % zn: b;),

(4.12)
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where H := (F+ nG)% is the real positive definite square root of F' 4+ nG.
(iii) The opinion dynamics (4.12)) in infinite horizon satisfies

. I . . 1
Tll_r)go x;(t) = - ;bj + (F +nG) " [F + exp(—Ht)nG|(b; — - ;bj) (4.13)

with H = (F +nG)z.

Proof: Using the result from Lemma [1.2.1] it follows by Proposition [£.1}(i) that

a unique Nash equilibrium exists, proving (i).

To see (ii), note by hypothesis that, the matrix @ simplifies to @ = [, ®
(F +nG) —Z ® G, where T is the n x n matrix of all 1’'s. It can be verified
that Q = P~'DP, where D := diag[F + nG, ..., F + nG, F], in which F' + nG is

repeated n — 1 times and the matrices P, P! are

1 - 1 1
P=(-IT-K)®l,;, P = ® 14,
n _In—l ]—n—l

where K € {0, 1}™*" is a nilpotent matrix with ones at (¢,7+ 1) locations for i =
1,...,(n—1). It follows that Q2 = P~'D2 P and cosh(Qzt) = P! cosh(Dz2t)P.
It is again a straightforward computation that yields (4.12]), which proves
(ii). And the limit in (iii) follows by
jlg]go cosh[H (T — t)] cosh(HT) ™ = exp(—Ht). O
The hypothesis in (ii) is that all agents have identical influence and identical
stubbornness weight matrices and, in effect, means that the agents have “identi-
cal” views of influence from each other. If G # 0, then every agent is connected
to every other agent at each layer of the network, i.e. complete multilayer net-
work. These “unrealistic” assumptions portray an ideal situation against which

the results obtained in more realistic situations can be compared.

Remark 4.2.1: (a) Observe from (4.12)) that the two terms that comprise the
opinion trajectory are the constant vector of average initial opinions in the net-
work and the time dependent term which updates the difference of opinion of

agent ¢ on each issue against the average opinion.
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(b) A full consensus is never reached on any issue for finite 7. It is reached as
T — oo and t — oo on all issues if and only if the stubbornness matrix tends to

zero, in which case the consensus is on the average initial opinion in the network.

(c) In pairwise similar views, one expects a partial consensus. A full consensus
is never reached due to the stubbornness matrix F. It is because, by (4.12)), we

have
x;(t) —x;(t) = (F +nG) Y F+cosh[H(T —t)] cosh(HT) 'nG}(b; — b;), (4.14)
for i # j,

lim [x,(t) — x;(t)] = (F 4+ nG) " [F + exp(—Ht)nG](b; — b;),

T—o00

and
lim lim [x;(t) — x,(¢)] = (F + nG)*lF(bi —bj).

t—T T—o0

(d) From this one can conclude that faster convergence to a ‘partial’ consensus
requires the real positive definite square root H having all its eigenvalues “large”.

This is same as the matrix F' 4+ nG having large singular values.

(e) In the case of infinite horizon, we have

1 & 1 &
lim lim x;(t) = Eij—i—(F%—nG)_lF(bi—Eij),
j=1 j=1

t—o00 T—o00

= (F—I—nG)_l(F%—nG)%Zn:bj + (F 4+ nG) 'F(b; — % ij),

j=1 j=1
= (F+nG) ' (Fbi+G> b;).
j=1

That is, in the long run, agent ¢ reaches at a “convex combination” of his own

opinion and the average opinion in the network. A

Example 4.2.1: The difference between opinions, (4.14)), does not vary mono-
tonically with time even in the uniform weights situation of Theorem #.2}(ii).

We illustrate this in the simple case of n = 2 and d = 2 with the two positively
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Figure 4.3: The effect of initial biases

correlated issues. Let the initial biases of agents be same as in Example [3.2.1

and suppose v kx = 1 and v;512 = 0.5, for 4,5 € {1,2} and k = 1,2 so that
V3 V3/2
V3/2 V3|

The derivative of the first component of (4.14) vanishes at ¢* = \/Lg In(22) ~ 0.36,

which gives a maximum for the opinion distance on issue 1, i.e., |21 1(t) — 221 (t)].

5/4 1
1 5/4

F=G=

| (F+2G) = [

From Figure (a), it can be seen that agent 1 and agent 2 move away from
each other on issue 1 at the start because of the antagonistic interaction, but
eventually move towards each other. Also agent 2, by choosing opposite opinions
on the issues initially, [9], manipulates agent 1 to hold contrary opinions even

though agent 1 regards the issues to be positively correlated. A

Corollary 4.2.1: If there is only one prevailing issue, i.e., d = 1, and G = g,
F = f, x; = z;, b; = b; are scalars, then for ¢ € N and ¢ € [0,7] the opinion

trajectory in a Nash equilibrium is given by

where A = f + ng.

Proof: Note that the matrices in (4.1)) can be written as: W = fI and

Q=[f+n—-1)gll —g(Z—-1)=(f+ng)l—gT.
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The eigenvalues of @) are \y = f + ng with multiplicity n — 1 and Ay = f
with multiplicity 1. Computing the corresponding eigenvectors, we obtain ) =
PDP™' where D = diag[\y, ..., A\;, Xo] and

P:[pl pz], Pilz

P

Here, we need to note that Py=1,and P, = %1;, because they are, respectively,
right and left eigenvectors of ) associated with As. Since ]51151 + pQPQ =1 and
ngQ — %I, we have ﬁ’lf’l =1 — %I. Then,

. 4 h(AP)] 0
cosh(Ht) = [P P cosh(A7?) 1
0 cosh(A3t)

Py
1 1 1 1
= cosh(Aft)I + —[cosh(A3t) — cosh(A\?t)|Z,
n
Substituting this in (4.5 and noting that A\; = A, one arrives at (4.15)). O

Remark 4.2.2: In an undirected complete network with one issue and identical
weights, the opinion of agent ¢ converges to a convex combination of his opinion
and the initial average opinion in the network, which is given by

o fbi+92?:1bj

’.Ill—EIc}o 1511—I>r71“ xz(t) o f+ng ' A

Example 4.2.2: Consider a complete network, Figure (a), where every pair
of distinct nodes is connected through a unique edge. We choose similar edge
weights for all the pairs of agents (nodes in the network); i.e., w;; = 2, i # j, and
wy; = 0.2, V4,5 =1,...,10. The opinion trajectories are shown in Figure (b).
We want to observe the rate of convergence to a partial consensus. Therefore,
if we decrease the values of w;; and w;; by a same proportion; for instance, by
a factor of 10, we obtain the trajectories shown in Figure (c). Note that
this parameter penalizes the control effort u(¢) in the cost functional, which we
removed without any loss of generality as mentioned in Remark [3.1.1] A
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Figure 4.4: A complete network

4.3 A Network with One Leader

Consider a network where all the agents are only influenced by one agent, called

the leader. The leader endures to his own opinions on the issues, which are

not influenced by other agents throughout the interval [0, T]. The neighborhood

of the leader (agent 1) is N; = ) and the neighborhood of all other agents is
N; ={1},Vie N\ {1} and k € D. It follows that, in this special case, we have

Wll
_W21

nl

, (4.16)



in which all entries left blank are zero matrices and M; = W;;+W;, Vi € N\ {1}.

Definition 4.1: Let A =[a; ... a,] € R™*", with a; denoting its i-th column.
The vec(A) € R™ is defined as the vector formed by stacking the columns of A

on top of each other, i.e., vec(A) :=[a] ... a]]".

Lemma 4.3.1: Consider a matrix

Q_Wlo_fowlo I 0
Wy Wy -X T 0 We || X I|

where Wy = Wy, € R W, = diag[Way + Wa, ..., Wyi + Wya] € R™™,
Wy = [Why,..., W] € R™ with m = (n — 1)d. And if W; and W, have no

common eigenvalue, then X € R™*? is determined by the following Sylvester

equation:
XWy — WoX = W, (4.17)
Moreover, the positive definite square root of () is given by
L1
2
gi=r | " YR
0 Wy

Proof: The proof follows from the fact that the lower block triangular @) is non-
singular with positive eigenvalues by positive definiteness of its diagonal blocks.
Note that one can write (4.17)) as

(W1 ® I, — I; @ Wa)vec(X) = vec(Ws).

The unique solution of this equation exists if and only if Wl Q L, — I; ® Wg
is nonsingular, [32]. It is nonsingular if it doesn’t have any zero eigenvalue.
Its eigenvalues are in the form A; — u;, where \; € eig(Wl), i=1,...,d, and

i € eig(Wg), j=1,...,m. Hence, the result follows. O

Theorem 4.3: (i) For a network where all the agents are only influenced by

agent 1, a unique Nash equilibrium exists with the resulting opinion profile given

by .

(ii) If W3, has no common eigenvalue with any W;; +W;;, for i € N\ {1}, then,

in the unique Nash equilibrium that results, the opinion profile of each agent for
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t € [0,T] is given by x;(t) = by and for i € N\ {1}

Xz(t) = (VV” —|— VVZl)_l{VVMbZ + I/Vz‘lbl —f-COSh[HZ‘ (T — t)] COSh(ﬁiT)_IVViI(bZ‘ — bl)},
(4.18)
where H; := (Wi + I/Vﬂ)% is the real positive definite square root.

(iii) In the infinite horizon case, we have

llm Xi(t) = (VVM + Wﬂ)_l[VV“bz + W,;lbl —+ exp(—I:Il-t)Wﬂ (bz — bl)],

T—o00
in which
t—oo T'—o0o
Proof: From Lemmal4.3.1, f(QT) is nonsingular and (i) holds by Proposition

(i). By the hypothesis in (ii), a solution X to the Sylvester equation (4.17)) exists.
It follows that

i
Q% = R_l Wl AOL Ra
0 Wy

is a real positive definite square root, which gives an expression for cosh(Q%t) in

terms of H; = (Wi;+Wi)2 for i = 2, ..., n. This proves (i) by Proposition(ii).
A1 i

Limits in (iii) easily follow by the expression (4.18]). The square root W> = W},

which appears in Q%, cancels out in the final expressions (4.18|). |

Remark 4.3.1: (a) The sufficient condition of Theorem [4.3}(ii) is satisfied for
almost all choices of weight matrices. This condition ensures that a real positive
definite square root of (4.16]) exists.

(b) The expression ([4.18)) has again two parts. The constant first part (W;; +
Wi1) "1 (Wyb; + Wiiby) can be viewed as a weighted convex combination of the
initial opinion vectors of the leader and agent 7. The dynamic second part updates

their difference in opinions in the interval [0, T7].

(c) By Theorem |4.3}(iii), the opinion reached in the limit by agent ¢ thus turns
out to be a convex combination of his own opinions (opinion vector) and those of

the leader.
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(d) We have, Vi € N\ {1},
x;(t) — x1(t) = (Wi; + Win) ™Y Wi; + cosh[H;(T — t)] cosh(H;T) " 'Wi }(b; — by)
and

T—00
Agent i will be of the same opinion as the leader in the long run if and only if
he is not at all stubborn, i.e., W;; — 0. The larger all eigenvalues of H; are, the

faster will be the partial consensus that will be reached on the issues. A

Corollary 4.3.1: If there is only one prevailing issue, i.e., d = 1, and W;; = w;q,
Wi = w;;, x; = x; and b; = b; are scalars V¢ € N, then a Nash equilibrium for a
network with one leader exists and is unique. The opinion dynamics of agents in
this Nash equilibrium for ¢ € [0, 7] is given by x;(¢) = b; and for i € N\ {1},

Wb + wiby L cosh[)\i% (T —1)]
Ai Ai COSh()\Z-%T)

;(t) (bi = br),

where \; := wy; + w;.

Proof: In a scalar case of one leader network, we have

W11

—Wy1 Wa1 + Waz

—Wn1 Wn1 + Wnn

The eigenvalues are \; = wy; and for ¢ € N\ {1}, \; = w;; + w;;. Then,
we can write @ = PDP~! where D = diag[\;,...,\,] and the matrix with

corresponding eigenvectors is given as

V21 1

P(Uﬂ) =

Uni 1

Here, P = P(v;) and P~! = P(—v;;) with vy = wy/(wi + wy — wiy). Then,
it is easy to calculate cosh(Q%t). Also, since w;; > 0, the eigenvalues of ) are
positive and real. Using these in (4.5)), we arrive at the result. O
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Figure 4.5: A network with one leader (agent 1)

Remark 4.3.2: In a network with one leader and one issue, the opinion of agent ¢

converges to a convex combination of his and the leader’s initial opinions, i.e.,

lim lim x;(t) = M A
t—T T—o0 )\l

Example 4.3.1: Consider a network with one leader and one issue, Fig-
ure (a). Selecting the weights as in Example , we obtain the opinion
trajectories as shown in Figure [4.5) (b) and (c). Again we note the fact that if we
increase the value of the parameter that penalizes control effort, we obtain the
opinion trajectories with slower convergence rate. This parameter desensitizes
the opinion dynamics in a sense that agents take more time to get convinced by
the leader. A
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Chapter 5

Numerical Examples — Games
with Multiple Stages

We now investigate two hybrid (continuous and discrete) games of multiple stages.
In these networks, the agents interact with each other with some probability and
the interaction network at each stage is generated accordingly, [15]. When the
agents interact with each other, they determine their influence matrices depending
on their bounded confidence, as given in Section [3.2]

Example 5.0.1: Consider a social network that contains two political parties
(party-A and party-B), their supporters, and a group of neutral people. Suppose
the size of the community is n = 102, including the two leaders of the parties.
The leader of each party forms his opinions on issues according to the party’s
motto. The party-A claims to be “tough on crime” and party-B, confronting

party-A, claims to be an advocate for “human rights.”

The current debates are about two positively correlated issues. Issue 1 is
eradication of death penalty and issue 2, private ownership of guns. Suppose
rii2 = 0.5, Vi € N, so that people agree that the two issues are well-correlated.
Party-A, since it is “tough on crime,” holds negative opinions on both issues,

i.e., death penalty should not be eradicated and private ownership of guns should
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O PartyA O PartyA
+ PatyB ] 15 + PartyB i
—— Supporters of A —— Supporters of A
—— Supporters of B —— Supporters of B
Neutral People | - Neutral People | -

Opinion dynamics on Issue-1
Opinion dynamics on Issue-2

Figure 5.1: Opinion trajectories of the community with two political parties.

not be allowed. So, we can represent the initial opinion of party-A by a vector
b; = [-1 — 1]'. However, party-B differs from party-A on both issues and holds
the opinions that death penalty should be eradicated and private ownership of
guns should be allowed for self-defensive purposes. Therefore, the initial opinions
of party-B can be represented by by = [1 1)'. We assume both parties propose
reasonable arguments in support of their opinions so that they have almost same
number of supporters. Then we have N = P,UPgUPNU{1} U{2}; where P4,
Pg and Py are the sets of party-A supporters, party-B supporters and neutral
people, respectively. And suppose |P 4| = |Pg| = 25 and |Py| = 50.

Members of the community discuss the issues with each other and form their
opinions every day. During normal circumstances, the number of people that each
member interacts with depends on how sociable the members of the community
are, which can be roughly described by the probability p;; that some agent ¢
interacts with agent j. Suppose the game is played five times and at the
beginning of each game, the probabilities p;; are used to generate a two-layered
network, which is considered as an interaction network throughout the game.
Suppose p;; = 0.2, and the initial opinions of P4, Pp and Py are uniformly
distributed in the intervals [—1.5,—0.5], [0.5,1.5] and (—0.5,0.5), respectively.
The final opinions of the agents in each game are considered as their initial
opinions for the next game, and suppose T = 5 is the duration of each game.
Also, for simplicity, consider only one attribute, i.e., social status, for every agent.

And say a; = 1 if agent i is a leader, otherwise a; = 0.
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We assume that party-A supporters do a propaganda about the issues. For
instance, they can increase their publicity by getting more media coverage or by
starting a social media campaign. By doing so, it is almost certain that neutral
people interact with (passively observe) party-A supporters, i.e., p;; — 1, for
1€Pyn,j€Py.

When agent 7 interacts with agent j, the entries of V;; are determined as

2a; + 0.5, if [big — bjk| <&
Vij,kk =

0, otherwise;
where the bounded confidence ¢; = 0.5, Vi € N\ {1,2}; and ¢, = 0.1, for
i € {1,2}. Also, suppose v;; 1 = a; + 0.1, Vi € N and k € {1,2}, so that the
leaders are more stubborn. And v;12 = ;12 = 0.5, Vi,j € N. The opinion
trajectories are obtained by , and are shown in Figure Because of the
propaganda, the agents in Py mostly interact with those who are in P4, and
seldom interact with those in Pg. Therefore, they conform their opinions with
P 4. And as the agents in P g interact with the agents in Py, they get influenced
because some agents in Py lie in the bounded confidence of agents in Pg. Hence,
they change their opinions by moving towards negative side on both issues. And
with them moves along the party-B leader, since he cannot attract the followers

if his opinions are dissimilar to the society’s opinion.

Example 5.0.2: Again consider two prevailing issues with n = 50, T" = 5, and
suppose the game is played in 10 stages. At each stage, agent 7 interacts with
agent j with some probability p;; € [0.3,0.7], and

0.8, if by — bjx| < e

Vij,kk =

0, otherwise,
where ¢; € [0,1] is a bounded confidence for agent i. Notice that the agents,
unlike in Example [5.0.1] are heterogeneous since their bounded confidences are
different. Also, suppose v;; kx = 0.1 and vy = 712, Vi,7 € N, k,l € {1,2}, and
k # 1. The opinion trajectories, when r; 15 = 1, Vi € N, are shown in Figure
(a), whereas the trajectories when r; 1o = 1, for ¢ € {1,...,25}, and ;12 = —1,
for j € {26,...,50}, are shown in Figure (b). The purpose of this example is

49



Opinion dynamics on Issue-1
Opinion dynamics on Issue-1

Opinion dynamics on Issue-2
Opinion dynamics Issue-2

Figure 5.2: Consensus formation

to show that when the game is repeated several times, the agents move towards
(partial) consensus. That is, repetition of the interactions eventually leads to a
consensus, [10], even when the agents have different conceptions about the issues,
as in the case of Figure (b).

20



Chapter 6

Conclusions

The model of opinion dynamics here has a number of features that puts it apart

from those in the literature:

1. It is a game theoretic model played by the members in a society but a

dynamic game as opposed to static.

2. Tt is a noncooperative game and our focus is on a Nash equilibrium as a
solution that has the feature that if a player uses his best response strategy,

then he is not worse off even when all the others play their best strategies.

3. In a multiple issue game, a Nash equilibrium may not exist in certain in-
formation structures and/or certain values for the weights used in forming

the costs.

4. The model concludes that from individual motives of the agents, a collective
behavior results. In a wide range of information structures, this collective

behavior can be considered as a partial consensus in the network.

5. The existence condition for a Nash equilibrium turns out to be some kind
of harmony in a society. But this harmony can arise from diametrically
opposite characteristics of individuals — similarity in views or assenting to

authorities in a society.
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6. Games of multiple issues result in much more intricate dynamics than those
on a single issue. The most prominent difference comes from being able
to incorporate a penalization of inconsistency of an agent’s neighbors on

correlated issues.

The obvious future direction for research along similar lines would be to con-
sider more sophisticated motives (cost functionals), also allowing the possibility
of having non-uniform motives in a society, like, non-quadratic ones along with
quadratic cost functionals. In several applications — for instance, in IoT (Internet-
of-Things), the nature of entities (agents) of the network are different from each
other and they may hold different motives. Also in social networks, not everyone
is a passive observer but there are politicians, éminence grise, and activists who
hold different motives and contend with each other to influence the masses. An-
other direction will be to consider the networks where the agents hold imperfect

(or noisy) information about others.
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