

 EGE UNIVERSITY

E
U

 G
R

A
D

U
A

T
E

 S
C

H
O

O
L

 O
F

 N
A

T
U

R
A

L
 A

N
D

 A
P

P
L

IE
D

 S
C

IE
N

C
E

PhD THESIS

OPTIMIZATION METHODS FOR LARGE-SCALE

DISTRIBUTED QUERY PROCESSING ON LINKED DATA

Damla OĞUZ

Supervisor: Assoc. Prof. Dr. Belgin ERGENÇ BOSTANOĞLU

Supervisor: Prof. Dr. Abdelkader HAMEURLAIN

Computer Science and Engineering Department

Presentation Date: 18.07.2017

Bornova-İZMİR
2017

EGE UNIVERSITY GRADUATE SCHOOL OF NATURAL AND
APPLIED SCIENCE

(PHD THESIS)

OPTIMIZATION METHODS FOR LARGE-SCALE

DISTRIBUTED QUERY PROCESSING ON

LINKED DATA

Damla OĞUZ

Supervisor: Assoc. Prof. Dr. Belgin ERGENÇ BOSTANOĞLU

Supervisor: Prof. Dr. Abdelkader HAMEURLAIN

Co-Supervisor: Prof. Dr. Oğuz DİKENELLİ

Computer Science and Engineering Department

Presentation Date : 18.07.2017

Bornova-İZMİR
2017

vii

ÖZET

BÜYÜK ÖLÇEKLİ DAĞITIK BAĞLI VERİ ÜZERİNDE SORGU
İŞLEME İÇİN ENİYİLEME YÖNTEMLERİ

OĞUZ, Damla

Doktora Tezi, Bilgisayar Bilimleri ve Mühendisliği Anabilim Dalı
Tez Danışmanı: Doç. Dr. Belgin ERGENÇ BOSTANOĞLU
Tez Danışmanı: Prof. Dr. Abdelkader HAMEURLAIN

İkinci Danışmanı: Prof. Dr. Oğuz DİKENELLİ
Temmuz 2017, 98 sayfa

Bağlı Veri sağlayıcılarının sayısı arttıkça, Veb büyük bir küresel veri uzayı
haline gelmektedir. Sorgu federasyonu, bu dağıtılmış veri uzayını sorgulamak için
kullanılan yaklaşımlardan biridir. Bu yaklaşımdaki sorgu eniyileme, yanıt süresini
ve servis süresini en aza indirgemeyi hedeflemektedir. Yanıt süresi ilk sonuç kaydını
oluşturmak için geçen zaman anlamına gelirken, servis süresi tüm sonuç kayıtlarını
sağlamak için geçen zamana karşılık gelmektedir. Sorgu federasyonunda sorgu en-
iyileme ile ilgili çalışmaların çoğu, yürütmeden önce sorgu planları oluşturan ve
istatistiklere ihtiyaç duyan statik sorgu eniyilemeye odaklanmaktadır. Bununla bir-
likte, Bağlı Veri ortamının öngörülemeyen veri geliş hızları ve güvenilmez istatis-
tikler gibi çeşitli zorlukları bulunmaktadır. Sonuç olarak, statik sorgu eniyileme
verimsiz yürütme planlarına neden olabilmektedir. Bu kısıtlamalar, Bağlı Veri üze-
rinde sorgu federasyonu için uyarlanabilir sorgu eniyileme kullanılması gerektiğini
göstermektedir. Bu tezde ilk olarak SPARQL uç noktaları üzerinden gerçekleştirilen
sorgu federasyonu için yanıt süresini ve servis süresini en aza indirmeyi hedefleyen
bir uyarlanabilir birleştirme operatörü önerilmiştir. İkinci olarak, servis süresini
daha da azaltmak amacıyla ilk öneri geliştirilmiştir. Her iki öneri de uyarlana-
bilir sorgu eniyileme kullanarak yürütme sırasında birleştirme yöntemini ve bir-
leştirme sırasını değiştirebilmektedir. Önerilen operatörler, ilişkilerin farklı veri
geliş hızlarıyla ve ilgili istatistiklerin eksiklikleriyle başa çıkabilmektedirler. Bu
tezin performans değerlendirmesi, önerilen operatörlerin yanıt süresi ile servis süresi
arasında en iyi dengeyi sağladığını göstermektedir. Temel amaç farklı veri geliş hız-
larının üstesinden gelmek olsa da performans değerlendirmesi önerilerin hem sabit
hem de farklı veri geliş hızlarında başarılı olduklarını ortaya koymaktadır.

Anahtar sözcükler: Dağıtık sorgu işleme, sorgu eniyileme, uyarlanabilir sor-
gu eniyileme, bağlı veri, sorgu federasyonu, performans değerlendirmesi

ix

ABSTRACT

OPTIMIZATION METHODS FOR LARGE-SCALE DISTRIBUTED
QUERY PROCESSING ON LINKED DATA

OĞUZ, Damla

PhD in Computer Science and Engineering Department
Supervisor: Assoc. Prof. Dr. Belgin ERGENÇ BOSTANOĞLU

Supervisor: Prof. Dr. Abdelkader HAMEURLAIN
Co-Supervisor: Prof. Dr. Oğuz DİKENELLİ

July 2017, 98 pages

As the number of Linked Data providers increases, the Web becomes a huge
global data space. Query federation is one of the approaches for querying this dis-
tributed data space. Query optimization in this approach aims to minimize the re-
sponse time and the completion time. Response time is the time to generate the
first result tuple, whereas completion time refers to the time to provide all result
tuples. Most of the studies of query optimization in query federation focus on static
query optimization which generates the query plans before the execution and needs
statistics. However, the environment of Linked Data has several difficulties such
as unpredictable data arrival rates and unreliable statistics. As a consequence, static
query optimization can cause inefficient execution plans. These constraints show
that adaptive query optimization should be used for federated query processing on
Linked Data. In this thesis, we first propose an adaptive join operator which aims
to minimize the response time and the completion time for federated queries over
SPARQL endpoints. Second, we extend our first proposal to further reduce the com-
pletion time. Both proposals can change the join method and the join order during
the execution by using adaptive query optimization. The proposed operators can
handle different data arrival rates of relations and the lack of statistics about them.
The performance evaluation of this thesis shows that the proposed adaptive operators
provide the best trade-off between the response time and the completion time. Even
though the main objective is to manage different data arrival rates of relations, the
performance evaluation reveals that they are successful in both fixed and different
data arrival rates.

Keywords: Distributed query processing, query optimization, adaptive query
optimization, linked data, query federation, performance evaluation

xi

ACKNOWLEDGEMENT

PhD is a long and challenging period. I believe that this period has been a
rewarding experience thanks to the people I had the opportunity to work with. I
would like to express my sincere gratitude to my advisors Assoc. Prof. Dr. Belgin
ERGENÇ BOSTANOĞLU and Prof. Dr. Abdelkader HAMEURLAIN for their
continuous support, patience, and guidance. I would like to thank my co-advisor on
the Turkish side, Prof. Dr. Oğuz DİKENELLİ for his valuable contributions to the
thesis. I would also like to give my special thanks to my co-advisor on the French
side, Dr. Shaoyi YIN for her endless and priceless support, patience, and help in
every step of this thesis. I am privileged to acquire the guidance of the mentioned
distinguished advisors.

I would like to expressmy gratitude to the reviewers of this thesis, Assoc. Prof.
Dr. Adil ALPKOÇAK, Assoc. Prof. Dr. Mehmet Süleyman ÜNLÜTÜRK, Asst.
Prof. Dr. Şebnem BORA, and Asst. Prof. Dr. Tolga AYAV for their invaluable
remarks.

I would like to thank The Scientific and Technological Research Council of
Turkey (TÜBİTAK) for the financial support of 2214/B International Joint PhD Fel-
lowship Programme which made this joint thesis possible.

I would like to thank Burak YÖNYÜL and Emrah İNAN for their support
in my studies. I would like to extend my gratitude to my friends, colleagues, and
professors at Izmir Institute of Technology, Ege University, and IRIT Laboratory. It
has been a true pleasure to work in such a friendly environment.

I would like to thank all my family, starting with my mother Ayşenur DEMİR-
TAŞ, my father Erkan DEMİRTAŞ, and my twin sister Duygu DEMİRTAŞGÜNER
for supporting me throughout my whole life as well as in my graduate studies. I feel
very lucky to have a family like them.

Finally, I would like to especially thank my husband Kaya OĞUZ for his love,
patience, and encouragement in every aspect of my life. His everlasting support
made this work possible.

xiii

TABLE OF CONTENTS

Page

ÖZET . vii

ABSTRACT . ix

ACKNOWLEDGEMENT . xi

LIST OF FIGURES . xvi

LIST OF TABLES . xvii

1. INTRODUCTION . 1

1.1 Context . 1

1.2 Query Federation . 3

1.3 Problem Position . 5

1.4 Contributions . 6

1.5 Thesis Organization . 7

2. STATE OF THE ART . 8

2.1 Introduction . 8

2.2 Federated Query Processing On Linked Data . 10

2.2.1 Data Source Selection . 10

2.2.2 Join Methods . 14

2.2.3 Query Optimization . 18

xiv

TABLE OF CONTENTS (continued)

Page

2.2.4 Discussion on Query Federation on Linked Data . 26

2.2.5 Challenges of Query Federation on Linked Data . 28

2.3 Adaptive Query Optimization . 31

2.3.1 Adaptive Query Optimization for Relational Databases 31

2.3.2 Adaptive Query Optimization for Query Federation on Linked Data . . 32

2.4 Conclusion . 35

3. OPTIMIZATIONMETHODSFORQUERYFEDERATIONONLINKED
DATA . 37

3.1 Introduction . 37

3.2 Adaptive Join Operator For Federated Queries . 38

3.2.1 Adaptive Join Operator for Single Join Queries . 40

3.2.2 Adaptive Join Operator for Multi-Join Queries . 43

3.3 Extended Adaptive Join Operator For Federated Queries 46

3.3.1 Background . 46

3.3.2 Extended Adaptive Join Operator for Single Join Queries 48

3.3.3 Extended Adaptive Join Operator for Multi-Join Queries 51

3.4 Conclusion . 55

4. PERFORMANCE EVALUATION . 57

xv

TABLE OF CONTENTS (continued)

Page

4.1 Introduction . 57

4.2 Performance Evaluation Of Adaptive Join Operator . 58

4.2.1 Performance Evaluation for Single Join Queries . 58

4.2.2 Performance Evaluation for Multi-Join Queries . 62

4.3 Performance Evaluation Of Extended Adaptive Join Operator 67

4.3.1 Performance Evaluation for Single Join Queries . 67

4.3.2 Performance Evaluation for Multi-Join Queries . 76

4.4 Conclusion . 81

5. CONCLUSION AND FUTURE WORK . 83

5.1 Thesis Review . 83

5.2 Future Work . 85

REFERENCES . 87

CURRICULUM VITAE . 97

xvi

LIST OF FIGURES

Figure Page

1.1 Federated query processing . 4

3.1 Adaptive join operator for single join queries . 41

3.2 Adaptive join operator for multi-join queries . 44

4.1 AJO: Impact of data sizes for single join queries . 59

4.2 AJO: Impact of data arrival rates when card(R1)≪ card(R2) 60

4.3 AJO: Impact of data arrival rates when card(R1)≫ card(R2) 61

4.4 AJO: Impact of data sizes for multi-join queries . 64

4.5 AJO: Impact of data sizes when card(R1)≪ card(R2) = card(R3) 65

4.6 AJO: Impact of data arrival rates when card(R1) = card(R2) ≫
card(R3) . 66

4.7 EAJO: Impact of data sizes for single join queries . 69

4.8 EAJO: Impact of data arrival rates when card(R1)≪ card(R2) 70

4.9 EAJO: Impact of data arrival rates when card(R1)≫ card(R2) 72

4.10 EAJO: Impact of bit vector size . 75

4.11 EAJO: Impact of data sizes for multi-join queries . 77

4.12 EAJO: Impact of data arrival rates when card(R1) ≪ card(R2) =

card(R3) . 79

4.13 EAJO: Impact of data arrival rates when card(R1) = card(R2) ≫
card(R3) . 80

xvii

LIST OF TABLES

Table Page

2.1 Data source selection methods in query federation . 14

2.2 Join methods in query federation . 18

2.3 Subquery building methods in query federation . 21

2.4 Join ordering and join method selection in query federation 26

2.5 Comparison of Query Federation Engines . 28

2.6 Comparison of adaptive query optimization in query federation 34

3.1 Intermediate results of Listing 3.1 . 47

3.2 Example relations Ri and Rj . 50

4.1 Speedup of EAJO compared to AJO when card(R1)≪ card(R2) and
the data arrival rate of R1 is 2 Mbps . 71

4.2 Speedup of EAJO compared to AJO when card(R1)≪ card(R2) and
the data arrival rate of R1 is 0.5 Mbps . 71

4.3 Speedup of EAJO compared to AJO when card(R1)≫ card(R2) and
the data arrival rate of R1 is 2 Mbps . 73

4.4 Speedup of EAJO compared to AJO when card(R1)≫ card(R2) and
the data arrival rate of R1 is 0.5 Mbps . 73

4.5 Them/n and k combinations used for bloom filter . 74

4.6 Speedup of EAJO compared to AJO when data arrival rates are fixed 78

1

1. INTRODUCTION

This chapter introduces the context and motivations of the work presented in
this thesis. We start with describing the context and then we explain our problem
position. We present our proposals to the mentioned problem and discuss our con-
tributions. Finally, we present the structure of the thesis.

1.1 Context

The Web, which was proposed by Tim Berners-Lee, is one of the most impor-
tant developments of 90s. Although the Web is an information space for humans,
it is meaningless for machines since it consists of documents. In the early 2000s,
Berners-Lee et al. (2001) proposed the Semantic Web in which information is given
a well-defined meaning. In other words, the Semantic Web is an extended version
of the Web which provides a data space for both humans and machines. It is often
referred to as the Web of Data. In order to create such a global data space, the data
should be opened, published, and related to one another according to some rules
which are defined by Berners-Lee (2006). Publishing and connecting structured
data on the Web in this way is defined as Linked Data. It also refers to the collection
of interrelated data sources on the Web. In brief, the Semantic Web is the goal of
providing both human-readable and machine-readable data, whereas Linked Data
provides the means to reach that goal (Bizer et al., 2009).

As stated above, LinkedDatamakes theWeb as a huge global data spacewhich
is referred to as the Semantic Web. Querying this distributed data space is one of
the most important research problems. Therefore, we mainly focus on distributed
query processing on Linked Data in this thesis.

Linked Data query processing infrastructure can be categorized as central re-
pository and distributed repository, according to the data source location (Rakhma-
wati et al., 2013). In central repository infrastructure, all data from different data
sources are aggregated in a single repository before query processing. In distributed
repository infrastructure, the query is executed on the distributed data sources. Al-
though central repository infrastructure provides efficient query processing, data
is not always up-to-date and adding a new data source is difficult. On the other
hand, data is more up-to-date in distributed repository infrastructure. There are two
main approaches for query processing based on distributed repository infrastruc-
ture which are link traversal (Hartig et al., 2009a) and query federation (Görlitz and
Staab, 2011a).

2

Link traversal, also called follow-your-nose, can be simply defined as discov-
ering potentially relevant data by following the links between data. Related data
sources are discovered during the query execution without any data knowledge.
One of the well-known examples of link traversal approach is SQUIN (Hartig et
al., 2009b; Hartig, 2013). The data sources are RDF documents in this concept and
the intermediate results are augmented with bindings for the common variables. The
major advantage of link traversal is providing up-to-date results and using the po-
tential of the Web by discovering data sources at run-time. However, this approach
has some remarkable weaknesses. The results can change according to the start-
ing point and a wrong starting point can increase intermediate results (Rakhmawati
et al., 2013). Although some heuristic query planning methods are employed by
Hartig (2011), the mentioned weaknesses cannot be solved. In other words, this ap-
proach cannot guarantee finding all results because the relevant data sources change
according to the starting point.

The second approach for distributed repository infrastructure, query federa-
tion, is based on dividing a query into its subqueries and distributing them to the
related data sources. These processes are performed with a federated query engine.
The infrastructure is similar to mediation system architecture (Wiederhold, 1992),
and thus the engine can also be called the mediator. There are two main advantages
of query federation. The first one is providing up-to-date results and the other one
is the capability of guaranteeing finding all results. On the other hand, queries are
executed over SPARQL endpoints. For this reason, SPARQL endpoints of each rel-
evant data source are required in order to execute a query. This can be accepted
as a shortcoming of this approach. However, (Rakhmawati et al., 2013) remarked
that 68.14% of data sources provide their SPARQL endpoints and we think that this
number is increasing day by day.

The common advantage of link traversal and query federation is providing up-
to-date results due to executing queries on the actual data sources. However, link
traversal does not guarantee complete results and has some performance problems.
Because of these reasons, we turn our attention to the second approach.

In this chapter, we first introduce the query federation approach in Section 2.
Then, in Section 3, we discuss the position of the problem that motivated us for the
work presented in this thesis. In Section 4 and Section 5, we state the contributions
of this thesis and we present the organization of the thesis, respectively.

3

1.2 Query Federation

Before presenting the query federation approach, we briefly introduce some
main concepts of Linked Data which are used several times in the thesis.

• Resource Description Framework (RDF) is defined as a standard model for
data interchange on the Web by W3 Consortium. RDF is also called as triple
model since it has a subject–predicate–object structure. The data model for
Linked Data is RDF.

• Triple patterns are similar to RDF triples except that each of subject, predicate,
and object may be a variable.1 Let s, p, o1 denote a certain subject, predicate,
and object respectively, and ?o2 is a variable object. tp1 = (s, p, o1) is a RDF
triple, whereas tp2 = (s, p, ?o2) is a triple pattern. tp1 is a triple pattern with
certainty, which does not contain any variables.

• A subquery is a set of triple patterns. Listing 1.1 shows a query which finds
the director and the genre of movies directed by Italians (Haase et al., 2010).
⟨?film dbpedia-owl:director ?director⟩ is a triple pattern since ?film and ?di-
rector are variables. The federated query engine decides the set of triple pat-
terns that composes each subquery.

• SPARQL is the query language for Linked Data.

• SPARQL endpoint is an HTTP based query processing service which enables
both humans and machines to query a data source via SPARQL language.

Listing 1.1. Query example

The main idea of query federation is quite similar to mediator-wrapper archi-
tecture (Wiederhold, 1992). In mediator-wrapper architecture, firstly the relevant
data sources are selected, secondly the query is divided into its subqueries, thirdly
subqueries are executed on the distributed data sources through their wrappers, and
finally the results of the subqueries are combined by a mediator. Thus, a wrapper

1https://www.w3.org/TR/rdf-sparql-query/

4

Figure 1.1. Federated query processing

for each data source and a mediator are needed in this architecture. The architecture
of query federation is similar to the mediator-wrapper architecture in integrating the
information from different data sources via a mediator. However, they are different
from each other in accessing the data sources. In the mediator-wrapper architec-
ture, wrappers are used to access the datasets due to the heterogeneous data models,
whereas SPARQL endpoints are used to access the data sources without wrappers
due to the common data model (RDF) in query federation. Each query is decom-
posed into subqueries and directed to the SPARQL endpoints of the selected data
sources to be executed. The results of the subqueries are aggregated and finally
returned to the user.

Figure 1.1 summarizes theworking principal of a federated query enginewhich
includes three main tasks as follows: i) data source selection, ii) query optimization,
and iii) query execution. In data source selection, the relevant data sources for each
triple pattern or set of triple patterns of a query are determined. The subqueries and
intermediate results are transmitted over the Web of Data. Thus, query optimization
is substantially important in query federation. The fundamental responsibilities of
query optimization are grouping the triple patterns, deciding the join strategy, and
ordering the triple patterns. Query execution part is dedicated to the execution of
the query operators defined by the optimizer and preparation of the result set.

5

1.3 Problem Position

In the beginning of the thesis, we survey query processing approaches used
in Linked Data and we turn our attention to query federation which is one of these
approaches. It provides up-to-date results and has the capability of guaranteeing to
find all results. As mentioned previously, query federation is performed with a fed-
erated query engine which has three basic steps as data source selection, query opti-
mization, and query execution. Since the first step is data source selection, initially
researchers have mainly focused on data source selection. We aim to contribute to
the subject of query optimization for query federation in this thesis.

There are naive studies about query optimization that generally focus on tra-
ditional query optimization, also called static query optimization (Selinger et al.,
1979). It generates query plans before the execution and needs statistics to estimate
the size of intermediate results. However, federated query processing is done on the
distributed data sources on the Web which causes unpredictable data arrival rates.
In addition, most of the statistics are missing or unreliable. For these reasons, we
think that adaptive query optimization (Deshpande et al., 2007) should be used in
this unpredictable environment.

The objective of query optimization in federated query engines is to minimize
both the response time and the completion time. Response time refers to the time
to generate the first result tuple, whereas completion time refers to the time to pro-
vide all result tuples. Response time and completion time include communication
time, I/O time, and CPU time. Since the communication time dominates other costs
in distributed environments, the main objective of federated query engines can be
stated as to minimize the communication cost. These facts also show the importance
of adaptive query optimization for query federation over Linked Data.

In conclusion, adaptive query optimization deals with unforeseen variations of
run-time environment. In our domain, the run-time environment is the Web of Data,
and the main objective is to minimize the response time and the completion time.
Thus, adaptive query optimization is a need to manage unpredictable data arrival
rates and missing statistics to minimize the response time and the completion time.
Acosta et al. (2011) and Lynden et al. (2011) have shown that response time and
completion time can be decreased 5-6 times and in average by using adaptive query
optimization. These results show the significance of the problem. For these reasons,
in this thesis, we focus on query optimization problem, more specifically, adaptive
query optimization in query federation on Linked Data.

6

1.4 Contributions

We begin this thesis by surveying query processing approaches used in Linked
Data and focus on query federation which is one of these approaches. Following this
survey, we first propose a join operator which uses adaptive query optimization for
federated queries over SPARQL endpoints. Second, we present an extended version
of our first join operator. We present these operators for both single join and multi-
join queries. The contributions of this thesis are listed as follows:

• A literature survey about federated query processing on Linked Data (Oguz et
al., 2015): We synthesize the data source selection, join methods, and query
optimization methods of existing query federation engines. We also present
the major challenges of federated query processing on Linked Data.

• Adaptive Join Operator (Oguz et al., 2016): As explained in the previous
section, the objective of query optimization in federated query engines is to
minimize the response time and the completion time. The first one is the time
to provide the first result tuple, while the second one is the time to provide
all result tuples. Adaptive join operator aims to manage different data arrival
rates of relations in order to minimize both the response time and the comple-
tion time. It is able to change the join method during the execution according
to remaining time estimations. Thus, it manages different data arrival rates of
relations. To the best of our knowledge, there is not any study that proposes
an adaptive join operator which aims to reduce both the response time and the
completion time for federated queries over SPARQL endpoints. The results
of the performance evaluation show that adaptive join operator provides both
optimal response time and completion time for single join queries and multi-
join queries. The proposed operator provides the best trade-off between the
response time and the completion time in both fixed and different data arrival
rates.

• ExtendedAdaptive Join Operator (Oguz et al., In press): Communication time
has the highest effect on response time and completion time in distributed
environments. Thus, we can say that the main goal of query optimization in
query federation engines is to minimize the communication cost. To further
reduce the communication time in completion time, we propose an extended
version of the adaptive join operator through adding another join method to
our candidate join methods. The new candidate join method employs a space
efficient data structure to minimize the communication cost. In conclusion,

7

we improve our previous proposal in order to further reduce the completion
time. Performance evaluation shows that the extended join operator provides
optimal response time. Furthermore, the proposed operator further reduces
the completion time and it has the adaptation ability to different data arrival
rates.

1.5 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 presents the steps
in federated query processing, gives a detailed synthesis of studies related to query
federation approach and discusses the major challenges of federated query process-
ing on Linked Data. This chapter also analyzes the studies in relational databases
and query federation which use adaptive query optimization. In Chapter 3, we con-
centrate on the adaptive query optimization problem in query federation which is
one of the mentioned challenges in the previous chapter. We first propose an adap-
tive join operator for single join queries and multi-join queries for federated queries
over SPARQL endpoints. Then, we extend our previous proposal to further reduce
the completion time. Chapter 4 covers the results and discussions on performance
evaluation of the work presented in the previous chapter. Finally, conclusions and
future work are discussed in Chapter 5.

8

2. STATE OF THE ART

This chapter provides the literature survey about query processing on Linked
Data. We initially give an overview of query processing approaches on Linked Data
and then focus on the query federation approach. We introduce the main steps in
this approach, and provide a detailed insight on them by comparing the current fed-
erated query engines. Furthermore, we present a qualitative comparison of these
engines and discuss the major challenges of federated query processing on Linked
Data. Then, we continue with the literature review of adaptive query optimization
for relational databases. Finally, we focus on adaptive query optimization in query
federation.

2.1 Introduction

Bizer et al. (2009) defines Linked Data as a set of best practices for publishing
and connecting structured data on the Web. These practices are known as Linked
Data principles. In order to contribute to the Semantic Web, the data should be
published and connected to others according to the Linked Data principles. The
resulting form of the Web data is also referred to as Linked Data (Hartig, 2014).
The Linked Data principles defined by Berners-Lee (2006) are as follows:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the stan-
dards (RDF, SPARQL).

4. Include links to other URIs, so that they can discover more things.

These principles clearly show that UniformResource Identifier (URI) (Berners-
Lee et al., 2005), Hypertext Transfer Protocol (HTTP) (Fielding et al., 1999), Re-
source Description Framework (RDF) (Klyne and Carroll, 2004), and RDF Query
Language (SPARQL) (Harris et al., 2013) are the building stones of Linked Data.
The first and the second rules declare that an entity should be identified via an HTTP
URI scheme in order to be served as a globally unique identifier, and in order to pro-
vide access to a structured data representation of it. The third rule presents the data
model of Linked Data and the query language for this data model which are RDF
and SPARQL, respectively. RDF provides a graph-based data model that describes

9

things including their relationships with other things. They are represented as a
number of triples and each triple has three parts which are subject, predicate, and
object. Thus, RDF is referred to as triple model. Finally, the fourth rule enforces to
connect data with others in order to create Web of Data (Berners-Lee, 2006; Bizer
et al., 2009; Hartig and Langegger, 2010).

Linking Open Data project1 is the most known performer of the Linked Data
principles (Bizer et al., 2009). Its goal is to extend the Web of Data by identifying
the existing open data sources as RDF and setting RDF links between the data items
from different data sources. The number of data sources related to that project have
been increased from 12 to 1,139 as of May 2007 to January 20172. There are well-
known organizations among the participants, such as BBC (Kobilarov et al., 2009),
the New York Times3, the UK government (Shadbolt et al., 2012), and the Library
of Congress (Ford, 2013). DBpedia (Auer et al., 2007), Linked Movie Database
(Hassanzadeh and Consens, 2009), and MusicBrainz (Swartz, 2002) are also some
of the important participants.

To conclude, a large number of data providers publish and connect their struc-
tured data on the Web as Linked Data. Thus, the Web of Data becomes a global data
space. In other words, Linked Data creates a global and distributed data space on
theWeb. Querying this huge data space is one of the important research questions in
this research topic. Link traversal and query federation are the two approaches for
querying this huge data space on the distributed data sources. Link traversal (Har-
tig et al., 2009b) finds the related data sources during the query execution, whereas
query federation (Görlitz and Staab, 2011a) selects the related data sources before
the execution. Link traversal has the disadvantage of not guaranteeing complete
results. For this reason, we concentrate on query federation.

In this chapter, we review the literature of query federation in detail to under-
stand the state of the art in this approach. In Section 2.2, we introduce the query
federation approach and synthesize the existing data source selection methods, join
methods, and query optimization methods in federated query processing through
surveying the promising federated query engines. We also provide a qualitative com-
parison of these studies. In addition, we discuss the challenges of federated query
processing on Linked Data. In Section 2.3, we focus on adaptive query optimiza-
tion (Deshpande et al., 2007) which is one the challenges mentioned in the previous

1https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
2http://lod-cloud.net/
3http://data.nytimes.com/

10

section. We first review adaptive query optimization for relational databases. Then,
we focus on the studies in Linked Data which use adaptive query optimization. Fi-
nally in Section 2.4, we present our conclusions about the literature survey and we
introduce the ideas motivating the work presented in Chapter 3.

2.2 Federated Query Processing On Linked Data

Federated query processing, which is also called query federation, is based
on dividing a query into its subqueries and distributing the query execution of them
over the SPARQL endpoints of the selected data sources. The intermediate results
from the data sources are aggregated and the final results are generated. These pro-
cesses are performed with a federated query engine. The engine performs three
main steps which are data source selection, query optimization, and query execu-
tion. Data source selection selects the relevant data sources for each triple pattern of
a query. Query optimization is responsible for grouping the triple patterns, deciding
the join method, and ordering the triple patterns. Query optimization is substantially
important in query federation, because the subqueries and the intermediate results
are transmitted over the Web of Data. The last step, query execution, is dedicated
to the execution of the query operators defined by the optimizer and preparation of
the result set.

In the following subsections, we synthesize data source selection methods,
joinmethods, and query optimization in query federation by surveying the promising
engines in the literature.

2.2.1 Data Source Selection

We classify the data source selection methods as follows: (i) predicate-based
selection, (ii) type-based selection, (iii) rule-based selection, and (iv) SPARQLASK
queries. All these methods except the last method need metadata catalogs. For this
reason, we first discuss the metadata catalogs in query federation and then propose
our classification.

Metadata catalogs can be defined as SPARQL endpoint descriptions that de-
scribe various properties about the data source belonging to this endpoint. The ex-
isting query federation engines use three types of metadata catalogs: (i) service de-
scriptions (Quilitz and Leser, 2008), (ii) VoID (Vocabulary of Interlinked Datasets)
descriptions (Alexander and Hausenblas, 2009), and (iii) list of predicates. We want
to remark that dataset and data source are used interchangeably.

11

• Service descriptions: A service description provides metadata about the RDF
data and cover some statistical information such as total triples and number
of triples with a predicate. In other words, a service description specifies the
information about the data source, which means a set of RDF triples, that is
published by a single provider.

• VoID descriptions: VoID descriptions are similar to service descriptions that
are used to provide metadata about the RDF data and cover some statistics
about it. Furthermore, there is another concept in VoID descriptions which
is called linkset. A linkset describes a set of RDF triples where all subjects
refer to one dataset and all objects belong to another dataset (Alexander and
Hausenblas, 2009). Thus, VoID descriptions can be used to describe the meta-
data of RDF datasets with the interlinking to other datasets. Moreover, statis-
tics about the datasets can be defined in VoID descriptions as in service de-
scriptions. Number of triples and number of instances of a class or property
are some examples of the statistics here. Cyganiak et al. (2011) proposed a
VoID guide to data publishers and consumers. Besides, Charalambidis et al.
(2015a) proposed an extension of VoID descriptions which introduces new
concepts in order to provide more detailed descriptions.

• List of predicates: List of predicates is also used as a metadata catalog. Al-
though they are useful in order to decide the relevant data sources of a query,
they do not include statistical information about the data.

As mentioned in the beginning of this section, according to our classification,
the data source selection methods in query federation are divided into four basic cat-
egories: predicate-based selection, type-based selection, rule-based selection, and
SPARQL ASK queries.

• Predicate-based selection: It is based on selecting the relevant data sources
of a triple pattern by matching its predicate with the covered predicates in the
metadata catalog.

• Type-based selection: This type of data source selection uses the type defi-
nitions (rdf:type) in the metadata catalogs in order to select the relevant data
sources.

• Rule-based selection: This method selects the relevant data sources according
to defined rules which are generated by analyzing the relations between the

12

triple patterns of a query. First two categories and this category are not mutu-
ally disjoint, as rule-based selection includes predicate-based and type-based
selections.

• SPARQL ASK queries: A SPARQL ASK query returns a boolean indicating
whether a query pattern matches or not4. Thus, data sources of a query can
be selected by sending SPARQL ASK queries to the candidate endpoints. If
the result of the query is TRUE, this data source is selected as a relevant data
source.

DARQ (Quilitz and Leser, 2008) uses service descriptions as metadata cat-
alogs which must be generated before the query execution. The engine employs
predicate-based data source selection. Hence it compares the predicate of a triple
pattern with the defined predicates of each service description. Therefore, the engine
cannot support unbound predicate triple patterns.

SPLENDID (Görlitz and Staab, 2011b) uses VoID descriptions as metadata
catalogs in data source selection. Data sources are indexed for every predicate and
type by using VoID statistics. However, the statistics in VoID descriptions can be
insufficient to select a triple pattern’s relevant data source or data sources. This situa-
tion exists especially for the triples with common predicates such as rdfs:label. Since
almost all datasets use this predicate, SPLENDID sends SPARQL ASK queries for
the triple patterns with bound variables which are not covered in VoID descriptions.
All data sources are selected for the triple patterns which have unbound predicates.
Semagrow (Charalambidis et al., 2015b) uses VoID descriptions and SPARQL ASK
queries in data source selection. The authors stated that Semagrow’s data source
selection is pattern-wise like SPLENDID without detailed explanation. For this rea-
son, we accept that its data source selection method is the same with SPLENDID’s.

LHD (Wang et al., 2013) is another query engine that uses VoID descriptions
together with SPARQL ASK queries in data source selection. It first uses VoID de-
scriptions and then sends SPARQL ASK queries to refine the selected data sources.
Its data source selection is based on predicates as DARQ. However, it can support
unbound predicates without eliminating irrelevant data sources as SPLENDID.

WoDQA (Akar et al., 2012; Yönyül, 2014) also uses VoID descriptions and
SPARQLASK queries in data source selection. Akar et al. (2012) proposed different
rules based on query pattern analysis, because they think that predicate-based and

4https://www.w3.org/TR/rdf-sparql-query/

13

type-based selections are not enough in order to eliminate all irrelevant data sources
due to having common predicates or types. These rules include three perspectives
which are IRI-based analysis, linking analysis, and shared variable analysis. IRI-
based analysis selects the relevant data sources by matching the IRIs in the triple
pattern with the void:uriSpace and void:vocabulary properties of VoID descriptions.
Therefore, IRI-based analysis includes the predicate-based and type-based selection
methods. By this means, WoDQA does not only selects the data sources according
to the predicates or types involved in a query, it considers all the IRIs in a query.
In linking analysis, WoDQA takes into consideration the linkset definitions in the
VoID descriptions. Lastly, in the shared variables analysis, WoDQA considers that
triple patterns with shared variables can affect their related data sources. In other
words, shared variables analysis aims to eliminate the irrelevant data sources.

List of predicates can also be used as a metadata catalog, as stated previously.
ANAPSID (Acosta et al., 2011) keeps a list of predicates, the execution timeout
property of the endpoint, and the statistics as a metadata catalog. The endpoints’
execution timeouts and statistics are collected by an adaptive sampling technique
(Blanco et al., 2012; Vidal et al., 2010) or they can be collected during the query ex-
ecution. ANAPSID uses predicate-based selection and chooses the endpoints whose
timeouts are longer than the estimated execution time of triple patterns. However,
the details are not given in their publication so it is not clear how ANAPSID esti-
mates the triple patterns’ execution times. ADERIS (Lynden et al., 2010, 2011) also
uses list of predicates as metadata catalogs and employs predicate-based selection.
It sends SPARQL SELECT queries with DISTINCT keyword to each endpoint to
find out the unique predicates. Besides, ADERIS adds data sources manually when
it is impossible to do that automatically5.

FedX (Schwarte et al., 2011) sends SPARQL ASK queries for each triple pat-
tern of a query in order to decide if it can be answered by the endpoint or not. It
also caches the relevance of each triple pattern with each data source in order to
minimize the SPARQL ASK queries.

Table 2.1 shows the data source selection methods in the existing federated
query engines. FedX (Schwarte et al., 2011) just sends SPARQL ASK queries in
order to select the data sources. Although SPLENDID (Görlitz and Staab, 2011b)
uses VoID descriptions to select the data sources based on predicates and types, it
sends SPARQL ASK queries when the descriptions cannot help to select the rele-
vant data sources. DARQ (Quilitz and Leser, 2008) selects the data sources based

5http://code.google.com/p/sparql-aderis/

14

Table 2.1. Data source selection methods in query federation

Predicate-based
selection

Type-based
selection

Rule-based
selection

SPARQL ASK
queries

DARQ !
FedX !
SPLENDID ! ! !
ANAPSID !
ADERIS !
LHD ! !
WoDQA ! !
Semagrow ! ! !

on predicates by using service descriptions. However, it does not send SPARQL
ASK queries when the service description fail to select the related data sources.
LHD (Wang et al., 2013) employs predicate-based selection via VoID descriptions
and sends SPARQL ASK queries in order to eliminate the irrelevant data sources.
ANAPSID (Acosta et al., 2011) and ADERIS (Lynden et al., 2010, 2011) use pre-
dicate-based selection as DARQ. However, ANAPSID also considers the execution
timeout information of endpoints as well. Different from other engines, WoDQA
(Akar et al., 2012; Yönyül, 2014) aims to eliminate all irrelevant data sources and
employs rule-based selection which includes predicate-based and type-based selec-
tions. It also uses SPARQL ASK queries.

In conclusion, data source selection is a difficult task without metadata cat-
alogs. In this case, SPARQL ASK queries are used in order to select the relevant
data sources. In addition, Saleem et al. (2016) stated that caching the results of the
SPARQL ASK queries greatly reduces the data source selection time.

2.2.2 Join Methods

The second step in federated query processing is query optimization which
covers subquery building, join method selection, and join ordering. In order to im-
prove the coherence of the thesis, we present the join methods in this subsection and
we will discuss the query optimization in the following subsection.

Join methods in the existing engines can be categorized as follows: (i) bind
join, (ii) nested loop join, (iii) merge join, (iv) hash join, (v) symmetric hash join,
and (vi) multiple hash join.

15

Bind Join

Bind join (Haas et al., 1997) passes the bindings of the intermediate results of
the outer relation to the inner relation in order to filter the result set. It is substantially
efficient when the intermediate results are small.

Bind join, which is also called bound join, is commonly used by federated
query engines. Schwarte et al. (2011) proposed a bind join technique for FedXwhich
uses SPARQL UNION6 constructs to group a set of mappings in a subquery to be
sent to the relevant data sources in a single remote request. WoDQA (Akar et al.,
2012; Yönyül, 2014) uses bind join as well. Different from FedX, WoDQA em-
ploys bind join method with SPARQL FILTER7 expression. In addition, SPARQL
1.1 Query Language8 proposes SERVICE9 keyword to explicitly execute certain
subqueries on different SPARQL endpoints, and WoDQA takes the advantage of
SERVICE keyword in its bind join. Charalambidis et al. (2015b) tested bind join
with both UNION and VALUES10 expressions for Semagrow. Although bind join
with UNION expression requires additional processing in order to map the binding
variables and their original names, the authors stated that it provides faster comple-
tion time than VALUES expression with the query they tested. Semagrow employs
UNION expressions in a parallel fashion.

DARQ (Quilitz and Leser, 2008), ANAPSID (Acosta et al., 2011), ADERIS
(Lynden et al., 2011), SPLENDID (Görlitz and Staab, 2011b), and LHD (Wang et
al., 2013) use bind join as well. We will discuss their usage later. Different from
others, DARQ employs bind join when the data sources have limitations on access
patterns (Florescu et al., 1999). Data sources with limited access patterns need some
variables in a query to be bound in order to answer the query (Quilitz and Leser,
2008). For this reason, DARQ keeps the definition of limitations on access patterns
in service descriptions.

Nested Loop Join

Nested loop join, as understood from its name, performs two nested loops over
the relations. The inner relation is scanned for every binding in the outer relation
while the bindingswhich provide the join condition are included in the result. Nested

6https://www.w3.org/TR/rdf-sparql-query/#alternatives
7https://www.w3.org/TR/sparql11-query/#expressions
8https://www.w3.org/TR/sparql11-query/
9https://www.w3.org/TR/2013/REC-sparql11-service-description-20130321/
10https://www.w3.org/TR/sparql11-query/#inline-data

16

loop join is used by DARQ (Quilitz and Leser, 2008) when there is no limitation on
access patterns. ADERIS (Lynden et al., 2010, 2011) applies index nested loop join
method in query execution which uses an index on join attributes. Hence it provides
an efficient access path for the inner relation.

As mentioned previously, WoDQA (Akar et al., 2012; Yönyül, 2014) uses
bind join. However, it employs nested loop join in order to join the intermediate
results of the relations locally. In other words, WoDQA uses nested loop join as a
complementary part of bind join.

Merge Join

Merge join is based on merging two sorted relations on the join attribute.
Hence this method needs both relations sorted and the join type should be an equi-
join that uses only equality comparisons on the join attribute. Consider two relations
with n1 and n1 tuples, respectively. The cost of nested loop join is proportional to
n1 ∗ n2, while the cost of merge join is proportional to n1 + n2. Besides, the cost
of sorting n pages is proportional to n log n. As a result, merge join is useful when
there is an equi-join and when the relations are previously sorted. In general, sorting
the relations and employingmerge join is efficient when the cardinalities of relations
are high (Ozsu and Valduriez, 2011). Semagrow (Charalambidis et al., 2015b) can
employ merge join method besides bind join. It calculates the costs of both join
methods and chooses the method with the lower cost.

Hash Join

Hash join is another join method used in federated query processing. It con-
sists two phases. A hash table of one of the relations, generally the relation with
the lower cardinality, is created in the first phase. In the second phase, the other
relation’s tuples are read, hashed and compared with the values in the hash table.
These phases are also referred to as build phase and probe phase, respectively. A
result tuple is generated when a match is found.

SPLENDID (Görlitz and Staab, 2011b) and LHD (Wang et al., 2013) use hash
join which requests the results of the join argument in parallel and joins them locally.
Although hash join is a symmetric join method conceptually, it is asymmetric in its
operands (Wilschut and Apers, 1991).

17

Symmetric Hash Join

Symmetric hash join (Wilschut and Apers, 1991) is one of the earliest sym-
metric join algorithms. It supports pipelining in parallel database systems by main-
taining a hash table for each relation. In other words, symmetric hash join creates
two hash tables instead of generating single hash table as in hash join method. Thus,
symmetric hash join is a non-blocking join method which produces the output of tu-
ples as early as possible. When a tuple arrives from a relation, it is probed in the
other relation’s hash table. Besides, the tuple is added to its own hash table to be
used later in the process.

Double pipelined hash join (Ives et al., 1999) and XJoin (Urhan and Franklin,
2000) are the extended versions of symmetric hash join. Different from symmetric
hash join, double pipelined hash join adapts its execution when the memory is in-
sufficient and XJoin moves some parts of hash tables to the secondary storage when
the memory is full.

Acosta et al. (2011) proposed a non-blocking join method, called adaptive
group join (agjoin), which is based on symmetric hash join and XJoin. By this
means, ANAPSID can produce results even when an endpoint becomes blocked
and can hide delays from users. The authors also proposed another join method
called adaptive dependent join (adjoin) which is an extended version of dependent
join (Florescu et al., 1999). It sends requests to the data sources in an asynchronous
fashion and hides delays from the user. In other words, it sends the request to the
second data source when tuples from the first source are received. Therefore, adjoin
can be accepted as bind join, because it needs the bindings in order to answer the
query. Both agjoin and adjoin flush to the secondary memory when the memory is
full as XJoin does.

Multiple Hash Join

LHD (Wang et al., 2013) uses multiple hash tables in order to integrate sub-
queries in parallel. The result of a relation is stored in its hash table and it is probed
against the hash tables of other relations. Although using multiple hash tables is
similar to multi-way symmetric hash join (Viglas et al., 2003), their operations are
different. LHD uses these hash tables in order to execute the subqueries in a parallel
fashion. Multi-way symmetric hash join creates and uses them as the tuples from
the relations arrive.

18

Table 2.2. Join methods in query federation

Bind join Nested
loop join

Merge
join

Hash join Symmetric
hash join

Multiple
hash join

DARQ ! !
FedX !
SPLENDID ! !
ANAPSID ! !
ADERIS ! !
LHD ! !
WoDQA !
Semagrow ! !

Besides, LHD employs bind join when pre-computed bindings are used. It
separates the input bindings via a hash table on the dependent variable. If there is
only one binding in the query, the variables in the query is replaced by the values of
the binding. Otherwise, the bindings are specified with VALUES11 syntax.

Table 2.2 shows the join methods used by federated query engines. As the
table shows, bind join is the most popular join method among the federated query
engines. Different from others, ANAPSID (Acosta et al., 2011) uses a non-blocking
join method which is an extended version of symmetric hash join and XJoin. How-
ever, it uses its own data structure instead of hash tables.

2.2.3 Query Optimization

In this subsection we will discuss the query optimization methods in query
federation. The goal of query optimization in federated query processing is to mini-
mize the response time and the completion time which include communication time,
I/O time, and CPU time. The communication time dominates the others and it is di-
rectly proportional to the amount of intermediate results. Join method and join order
affect the number of intermediate results. Therefore, join method selection and join
ordering are the two essential parts of query optimization in federated query pro-
cessing. In addition, the number of sent HTTP requests to the SPARQL endpoints
affects the communication time as well. For this reason, grouping the appropriate
triple patterns and sending them together to the related endpoint is important in order
to reduce the communication time.

11https://www.w3.org/TR/sparql11-query/#inline-data

19

Consequently, query optimizer of a federated query engine covers three main
decisions which are subquery building, join method selection, and join ordering.
Following the query optimization, the last step in federated query processing is the
query execution in which subqueries are executed over the SPARQL endpoints of
the selected data sources according to the decisions made in query optimization. In
the following of this section, we will discuss these decisions.

Subquery Building

A subquery of a SPARQL query comprises a set of triple patterns. Subquery
building refers to grouping the triple patterns of a query in order to decrease the num-
ber of HTTP requests and intermediate results. We classify the subquery building
methods used in federated query engines as follows: (i) exclusive grouping, (ii) ex-
clusive grouping considering shared variables, and (iii) owl:sameAs grouping. We
first define these methods and then explain their roles in the existing engines.

• Exclusive grouping: Exclusive grouping is a heuristic which groups the triple
patterns if they have one and only one relevant data source. The grouped
triple patterns are called exclusive groups. In other words, the triple patterns
in an exclusive group must refer to a single data source. This heuristic aims
to reduce both the HTTP requests and the intermediate results.

• Exclusive grouping considering shared variables: This heuristic is an ex-
tended version of exclusive grouping. It creates different exclusive groups
for the triple patterns without shared variables. Exclusive grouping method
can group triple patterns which do not have shared variables, hence it causes
redundant intermediate results.

• owl:sameAs grouping: Consider <tp1 = ?x foaf:knows ?y .> and <tp2 = ?y
owl:sameAs ?z> (Schwarte et al., 2011). This method creates a subquery for
the triple pattern which has owl:sameAs predicate with an unbound subject
variable (tp2) and the triple pattern with the same unbound variable (tp1). It
is used when there is an assumption that this predicate is used in order to
indicate the internal resources of a dataset.

The idea behind the exclusive grouping was proposed by Quilitz and Leser
(2008) for DARQ.However, themethodwas titled as exclusive grouping by Schwarte
et al. (2011) for FedX. Although ANAPSID (Acosta et al., 2011) does not use the
name of exclusive grouping, it groups the triple patterns which refer to the same

20

endpoint. SPLENDID (Görlitz and Staab, 2011b) uses both exclusive grouping and
owl:sameAs grouping. The assumption about the owl:sameAs grouping here is that
all data sources describe owl:sameAs links for their data. This grouping can be em-
ployed when third party datasets with external owl:sameAs links do not exist in the
federation. Although Semagrow (Charalambidis et al., 2015b) uses exclusive group-
ing as well, it is a configuration option which can be disabled. WoDQA (Akar et al.,
2012; Yönyül, 2014) is the only engine which uses exclusive grouping considering
shared variables.

As presented in data source selection, ADERIS (Lynden et al., 2010, 2011)
generatesmetadata catalogswhich cover distinct predicate values of each data source.
ADERIS utilizes from them in subquery building. It groups the subqueries if their
predicates are covered in the same data source. The main idea of this grouping is
the same with exclusive grouping.

In conclusion, there are three methods for subquery building which are ex-
clusive grouping, exclusive grouping considering shared variables and owl:sameAs
grouping. Although some engines group the triple patterns which refer to the same
data source, they do not name this method as exclusive grouping. On the other hand,
owl:sameAs grouping is used when there is an assumption that this predicate is used
for the resources of one dataset. Each triple pattern of a query is accepted as a sub-
query without using these methods.

Table 2.3 shows the subquery building methods in query federation. In order
to decrease the HTTP requests, DARQ (Quilitz and Leser, 2008), FedX (Schwarte et
al., 2011), SPLENDID (Görlitz and Staab, 2011b), ANAPSID (Acosta et al., 2011),
ADERIS (Lynden et al., 2010, 2011), and Semagrow (Charalambidis et al., 2015b)
use exclusive grouping, whereas WoDQA (Akar et al., 2012; Yönyül, 2014) em-
ploys exclusive grouping considering shared variables with the aim of decreasing
the redundant intermediate results as well. SPLENDID (Görlitz and Staab, 2011b)
uses owl:sameAs grouping and exclusive grouping together. However, owl:sameAs
grouping cannot be usedwhen other datasets use owl:sameAs predicate to define that
the resource in their datasets indicates to the same resource in other datasets. LHD
(Wang et al., 2013) does not group the triple patterns, it sends them in a parallel
fashion.

21

Table 2.3. Subquery building methods in query federation

Exclusive grouping Exclusive grouping
shared variables

owl:sameAs grouping

DARQ !
FedX !
SPLENDID ! !
ANAPSID !
ADERIS !
WoDQA !
Semagrow !

Join Ordering

Ibaraki and Kameda (1984) stated that finding an optimization cost for a query
is admitted as computationally intractable. Starting from this point of view, Gardarin
and Valduriez (1990) specified that heuristics are necessary for optimizing the cost
functions. Due to huge and distributed data space, query processing on Linked Data
is a difficult task. Thus, using heuristic methods for join ordering in federated query
processing is an expected case. FedX (Schwarte et al., 2011) and WoDQA (Akar
et al., 2012; Yönyül, 2014) employ various heuristics for join ordering. We name
these heuristics as follows:

• Free variables heuristic (FVH):Considers the number of free and bound vari-
ables. The number of free variables of triple patterns and groups are counted
with considering the already bound variables from the earlier iterations. In
other words, the free variables which have become bound from the earlier
iterations are accepted as bound variables.

• Exclusive group priority heuristic (EGPH):Gives priority to exclusive groups
which are presented in Section 2.2.3.1.

• Position and type based selectivity heuristic (PTSH): Calculates the heuristic
selectivity value of each triple pattern as multiplying the calculated coeffi-
cients of each node according to their positions with the calculated coefficients
of each node according to their types.

• Shared variables heuristic (SVH): Reorders the join order by considering the
shared variables between triples patterns.

22

FedX (Schwarte et al., 2011) orders both triple patterns and groups of triple
patterns by using free variables heuristic and exclusive group priority heuristic.
Triple patterns and groups are chosen with the lowest cost iteratively. WoDQA
(Akar et al., 2012; Yönyül, 2014) orders the triple patterns of each query by using
position and type based selectivity heuristic after creating the exclusive groups of
each query. The coefficient of position and types are assigned according to their se-
lectivities. It considers that subjects are more selective than objects, and objects are
more selective than predicates. A similar strategy is used by Stocker et al. (2008) for
the Jena ARQ optimizer in which they categorize this estimation as heuristics with-
out pre-computed statistics. Although (Stocker et al., 2008) state that there are more
triples matching with a predicate than a subject or an object in a typical data source,
they specify that making a distinction between subject and object is more difficult.
On the other hand, WodQA orders the selectivities of types as URIs, literals, and
variables.

After ordering the triple patterns in an exclusive group by employing position
and type based selectivity heuristic, WoDQA employs shared variables heuristic
for ordering exclusive groups. The triple patterns which do not have shared vari-
ables, are changed with the next triple pattern to process the related joins as early
as possible. After ordering the triple patterns of each exclusive group, WoDQA or-
ders the exclusive groups. It calculates the mean selectivity of each group by using
position and type based selectivity heuristic. Lastly, this order is updated by em-
ploying shared variables heuristic for exclusive groups. The exclusive group which
has more shared variables than the consequent group, moves up in the order of ex-
clusive groups. The aim of ordering the exclusive groups is to decrease intermediate
results as well.

DARQ (Quilitz and Leser, 2008), SPLENDID (Görlitz and Staab, 2011b),
ADERIS (Lynden et al., 2010, 2011), LHD (Wang et al., 2013), and Semagrow
(Charalambidis et al., 2015b) use cost-based methods for join ordering. DARQ,
SPLENDID, LHD, and Semagrow use dynamic programming (DP), whereas ADE-
RIS employs greedy algorithm (GA) for the search strategy. Dynamic programming
is breadth-first, while greedy algorithm is depth-first. Hence dynamic programming
builds all possible plans before choosing the best one, whereas greedy algorithm
builds only one plan (Ozsu and Valduriez, 2011). The cost functions of DARQ,
SPLENDID, and LHD are explained in the following subsection. All these engines
consider the cardinality estimations, cost for sending a triple pattern and cost for
receiving a result. Although Semagrow considers the cardinality estimations and
communication costs, it assigns a unique communication cost factor to each data

23

source such as 10%. Charalambidis et al. (2015b) stated that different communi-
cation cost factors can be employed assuming that this information is available in
the metadata catalogs. DARQ estimates the cardinalities by using the statistics in
the service descriptions. On the other hand, SPLENDID, LHD, and Semagrow use
VoID statistics in order to estimate the cardinalities.

LHD classifies the execution of joins as follows: (i) joins which do not require
input bindings (plain access plan) and (ii) joins which require pre-computed bindings
(dependent access plan). The joins in the first class can be executed in a parallel
fashion, whereas the second one should be executed in a sequence due to the need
of bindings. LHD uses plain access plans for the triple patterns which have concrete
subject or object. We refer to that heuristic as concrete subject or object heuristic
(CSOH). Therefore, it first executes these triple patterns and then uses dynamic
programming. Secondly, it determines the actual order of triple patterns to execute
them in parallel by considering the type of access plans, bound variables, and the
already bound variables from the previous iterations. It executes the triple patterns
with plain access plan concurrently, while the triple patterns with the dependent
access are executed as soon as its bindings are ready.

The first version of ADERIS (Lynden et al., 2010) builds predicate tables and
adaptively joins two tables as they become complete while the other predicate tables
are being generated. The second version of ADERIS (Lynden et al., 2011) uses
an adaptive cost model for query optimization. Equation 2.1 (Lynden et al., 2011)
shows the cost model of ADERIS where incard is the estimated input cardinality
for each iteration, lookupT ime refers to the average time taken to probe a given
table t and R is the remaining set of tables that need to be joined to the current plan.
Furthermore, join ordering is based on a greedy algorithm. The engine estimates
cardinality at each stage for join ordering. In brief, ADERIS supports adaptive query
processing.

cost(t) = incard · lookupT ime(t) ·
∑

i∈R

lookupT ime(i) · cardEst(t) (2.1)

Join Method Selection

As stated in Section 2.2.2, DARQ, SPLENDID, ANAPSID, ADERIS, LHD,
and Semagrow implement two different join methods. We classify join method se-
lection methods as follows: (i) binding limitation-based, (ii) cost-based, and (iii)

24

time constrained-based.

ANAPSID (Acosta et al., 2011) employs bind join when a binding is required
by a data source, while DARQ (Quilitz and Leser, 2008) uses bind join when the
data sources have limitations on access patterns. We refer to this method as bind-
ing limitation-based (BLB). However, DARQ uses cost models for join method
selection when there is no binding limitation. We refer to this selection method as
cost-based (CB).

SPLENDID (Görlitz and Staab, 2011b) uses cost models for join method se-
lection as DARQ. Equation 2.2 (Quilitz and Leser, 2008) and Equation 2.3 (Quilitz
and Leser, 2008) are the cost functions of DARQ for nested loop join and bind join,
respectively, where q and p are the relations, R(q) is the result size of q, ct is the
transfer cost for one tuple, and cr is the transfer cost for one query. q′2 is the rela-
tion with the bindings of q1. SPLENDID uses the same cost functions (Equation
2.2 and Equation 2.3) for hash join and bind join, respectively. Although DARQ
and SPLENDID consider transfer costs, they ignore the different data arrival rates
of relations.

cost(q1 ✶NLJ q2) = |R(q1)| · ct + |R(q2)| · ct + 2 · cr (2.2)

cost(q1 ✶BJ q2) = |R(q1)| · ct + |R(q1)| · cr + |R(q2
′)| · ct (2.3)

As mentioned previously, Semagrow can employ merge join and bind join.
When the join type is equi-join, it calculates their costs and chooses the join method
that has a lower cost. The engine estimates these cost by using the statistics in the
VoID descriptions. Hence the join method selection of Semagrow is cost-based, too.

LHD is yet another federated query engine which selects the join method ac-
cording to the cost functions. It proposes two different plans according to the usage
of bindings in query execution, which are plain access plan and dependent access
plan. The plain access plan of a triple pattern executes the triple pattern directly.
Therefore, these joins, such as hash join and nested loop join, do not need precom-
puted bindings. The dependent access plan uses the intermediate bindings in order
to execute the triple pattern. Bind join is an example of these type of joins. Equa-
tions 2.4, 2.5, 2.6, and 2.7 (Wang et al., 2013) show the cost functions where a plain

25

access plan of triple pattern t is denoted as acc(t), and dependent access plan with
bindings of q is represented as acc(q, t). Also rtq is the time of sending a triple pat-
tern or a precomputed result to a data source, and rtt is the time of receiving a result.
These cost functions are quite similar to the cost models of DARQ and SPLENDID.

After data source selection, ADERIS generates predicate tables for each pred-
icate in the query where the tables include subject and object values as the columns.
These predicate tables are joined by using index nested loop join. A predicate ta-
ble can be missing when an endpoint may refuse to answer the queries due to the
timeouts. In that case, the engine sends a subquery with bindings for the subject or
object values to the corresponding endpoint, hence the join method becomes bind
join. We refer to this selection method as time constrained-based (TCB).

cost(q ✶ p) = maximum(cost(q), cost(p)) (2.4)

cost(q ✶B p) = cost(q) + cost(acc(card(q), t)) (2.5)

cost(acc(t)) = rtq + card(t) · rtt (2.6)

cost(acc(q, t)) = card(q) · rtq + card(q ✶ t) · rtt (2.7)

Table 2.4 shows the join method selection and join ordering methods in query
federation which are substantially related with each other. FedX (Schwarte et al.,
2011) andWoDQA (Akar et al., 2012; Yönyül, 2014) use heuristics, whereas DARQ
(Quilitz and Leser, 2008), SPLENDID (Görlitz and Staab, 2011b), ADERIS (Lyn-
den et al., 2011), LHD (Wang et al., 2013), and Semagrow (Charalambidis et al.,
2015b) propose cost functions for join ordering. FedX orders the joins by using
free variable heuristic (FVH) and exclusive grouping priority heuristic (EGPH).
WoDQA first orders the triple patterns by using position and type based selectiv-
ity heuristic (PTSH) and shared variable heuristic (SVH). Second, it orders the
exclusive groups by SVH. DARQ, SPLENDID, and Semagrow (Charalambidis et
al., 2015b) use cost-based (CB) method and dynamic programming (DP) for join
method selection and join ordering, respectively. DARQ also uses binding limita-
tion-based (BLB)method for join method selection. ANAPSID (Acosta et al., 2011)

26

Table 2.4. Join ordering and join method selection in query federation

Join ordering Join method selection

FVH EPGH PTSH SVH CSOH DP GA BLB TCB CB

DARQ ! ! !
FedX ! !
SPLENDID ! !
ANAPSID !
ADERIS ! !
LHD ! ! !
WoDQA ! !
Semagrow ! !

selects the join method by employing BLB as well. LHD uses concrete subject or
object heuristic (CSOH) and employs dynamic programming for join ordering. It
uses CBmethod for join method selection. ADERIS uses greedy algorithm (GA) for
join ordering and employs time constrained-based (TCB) method for join method
selection.

2.2.4 Discussion on Query Federation on Linked Data

In this section, we summarize the main results from the previous section with
a qualitative comparison and we state the challenges in query federation.

We compare the federated query engines qualitatively according to the follow-
ing criteria:

• No preprocessing per query: Data source selection without using a metadata
catalog might cause some performance problems due to the need of prepro-
cessing for each query.

• Unbound predicate queries: Predicates are less selective than subjects and
objects in a typical data source (Stocker et al., 2008). Therefore, selecting
the data source of a query with an unbound predicate is difficult. However,
the data source selection methods of some engines are based on predicates.
These engines might have some problems to handle queries with unbound
predicates.

• Parallelisation: Parallelisation is another fact which improves the perfor-

27

mances of engines due to the concurrent query processing. It can be achieved
in two forms which are inter-operator parallelism and intra-operator paral-
lelism. More than one operations of a query are executed concurrently in
inter-operator parallelism, whereas a single operator is executed by multiple
processors in intra-operator parallelism.

• Adaptive query processing: Adaptive query processing (Deshpande et al.,
2007) is a form of dynamic query processing which reacts to unforeseen vari-
ations of run-time environment (Ozsu and Valduriez, 2011). Since federated
query processing is done on the Web, adaptive query processing is required in
order to manage the changing conditions such as different data arrival rates,
endpoint unavailability, and timeouts.

Table 2.5 shows the qualitative comparison of the engines with the mentioned
criteria. All engines use metadata catalogs in the data source selection except FedX
(Schwarte et al., 2011). For this reason, it needs preprocessing per query before
query processing. It sends SPARQL ASK queries to data sources for each query.
However, it caches these results to be used later. Other engines primarily employ
metadata catalogs. Actually, ADERIS (Lynden et al., 2010, 2011) sends SELECT
DISTINCT queries to decide which predicates are covered by each data source.
However, it does not send individual SPARQL ASK queries for each triple pattern
in the query.

DARQ (Quilitz and Leser, 2008), ANAPSID (Acosta et al., 2011), and Sema-
grow(Charalambidis et al., 2015b) cannot manage unbound predicate queries, be-
cause their data source selection methods are predicate based only. Although data
selection methods of ADERIS, SPLENDID (Görlitz and Staab, 2011b), and LHD
(Wang et al., 2013) are based on predicates as well, they handle queries with un-
bound predicates by selecting all available data sources. They might cause some
performance problems but the queries with unbound predicates can be supported by
this way.

FedX, ANAPSID, LHD, and Semagrow execute the triple patterns in a par-
allel fashion. FedX integrates a parallelisation infrastructure to execute subqueries
at different endpoints concurrently and uses a pipelining approach to send interme-
diate results to the next operator as they are ready. ANAPSID executes the triple
patterns in parallel by proposing a join method based on symmetric hash join and
XJoin. LHD separates the query plans and the communication with data sources for
parallelisation. Several threads are used for sending triple patterns to a data source

28

Table 2.5. Comparison of Query Federation Engines

No prepro-
cessing per
query

Unbound
predicate
queries

Parallelisation Adaptive
query

processing
Inter-

operator
Intra-
operator

DARQ !
FedX ! !
SPLENDID ! !
ANAPSID ! ! !
ADERIS ! ! !
LHD ! ! ! !
WoDQA ! !
Semagrow ! !

and for receiving results from a data source. It also considers the type of access
plans, bound variables and the already bound variables from the previous iterations
to adopt parallelisation. Furthermore, it uses multiple hash joins. FedX and Sema-
grow provide inter-operator parallelism, whereas ANAPSID employs intra-operator
parallelism. LHD affords both inter-operator and intra-operator parallelism.

Only ANAPSID and ADERIS employ adaptive query processing. ANAP-
SID proposes a non-blocking join method, whereas ADERIS changes the join order
dynamically. Besides, Semagrow uses reactive paradigm for union operators, in
which the basic idea is based on notifying the operators when the data is available.
Although it provides a kind of adaptivity, it can be accepted as a pipelining approach.

2.2.5 Challenges of Query Federation on Linked Data

During surveying the studies in query federation on Linked Data, we have
noticed that there are some challenges and open research issues in this field, which
are metadata management, caching results, and adaptive query processing. In this
subsection, we state the first two challenges and suggest some ideas to handle them.
We will discuss the third challenge in the following section in detail.

Metadata Management

Metadata catalogs are useful in data source selection in query federation. As
mentioned previously, service descriptions, VoID descriptions, and predicate lists

29

are the examples of metadata catalogs used by the federated query engines. Service
descriptions were presented by Quilitz and Leser (2008) for DARQ and VoID de-
scriptions were proposed by Cyganiak et al. (2011) as a vocabulary which allows
to define linked RDF datasets. In other words, VoID descriptions aim to provide a
standard metadata publishing approach for RDF data. In addition, statistics about
the entire dataset or the linkset can be expressed in the VoID descriptions and these
statistics can be used in query optimization. Therefore, VoID descriptions are more
appropriate for generating metadata catalogs due to providing the metadata of the
data sources and their relations with the other data sources. However, there are some
open research questions as follows. How is this metadata catalog generated? How
often is this metadata catalog updated? More generally, how is metadata manage-
ment supported?

A few number of data sources provide their metadata descriptions in prac-
tice, although most of the engines use metadata catalogs for data source selection.
Thus, existing engines should generate these descriptions before query processing.
Actually, VoID descriptions provide a standardized vocabulary to express the meta-
data about the dataset or the linkset and the statistics about the dataset. However,
how are the metadata information and the statistics obtained? In addition, just gen-
erating a metadata catalog is not enough in practice. Keeping it up-to-date is an
important aspect to be considered. The changes in the datasets should be covered
in the catalogs as well. To conclude, there are two main challenges in metadata
catalog usage. The first one is generating the metadata catalogs. The other one is
keeping the metadata catalogs up-to-date. In order to overcome these challenges, a
metadata catalog management framework should be generated which can perform
the following tasks: (i) gathering and expressing the metadata of the datasets and
maybe the statistics with VoID descriptions, (ii) monitoring the changes in datasets,
and (iii) updating the metadata catalogs according to these changes. Thus, an up-to-
date, standardized metadata catalog management can be provided and it can be both
used in data source selection and query optimization in federated query processing.

Caching Results

Caching has an important role in improving the performance in distributed
query processing. Adali et al. (1996) proposed a query result caching mechanism
by using the invariants which define the certain relationships between two different
queries. When a query is covered by another query, the results of the covered query
can be found from the cache by employing the invariants. The invariants should be
decided through the knowledge about the data sources in the queries. Another option

30

is employing quite general invariants with few information about the data source.
Adali et al. (1996) stated that caching provides savings in time, and invariants is
useful when the query is not explicitly cached. Caching is also employed by search
engines to improve the response time as well. Gan and Suel (2009) discussed the
studies for caching in search engines and Cambazoglu et al. (2012) classified the
methods of caching as result, similarity, semantic, and rank caching.

Martin et al. (2010) proposed an approach as a proxy layer between Semantic
Web applications and the SPARQL endpoints for caching. When the query is sent by
the user, the cache is checked and if the results of this query exists in the cache, the
answer is returned without executing it over the endpoint. If the query is not cached
previously, it is executed over its endpoint and then cached. Another proposal for
caching of Linked Data was presented by Williams and Weaver (2011), which uses
the last modification date information and the up-to-dateness in the HTTP headings.
Although these studies (Martin et al., 2010; Williams and Weaver, 2011) provide
caching results for the same queries, they cannot manage queries with small varia-
tions.

Lorey and Naumann (2013) proposed another caching approach for SPARQL
queries with assuming that similar queries are executed over a SPARQL endpoint.
For this reason, its strategy is based on prefetching which allows to gather data that
is potentially useful for subsequent queries. In other words, this approach caches the
results of query patterns to be used later. However, when the query pattern is too
general, prefetching can be inefficient on large-scale datasets due to gathering large
amount of data (Yönyül, 2014). Also, this approach cannot find all candidate sub-
graph matches of a SPARQL query (Papailiou et al., 2015). In our literature survey
(Oguz et al., 2015), we stated that combining caching results and live query results
can decrease the query processing time of query federation engines as in distributed
mediator systems. We also remarked that this caching mechanism should cover the
subsets of a query and should have an updating strategy in order to make federated
query processingmore efficient. Besides, we discussed the usage of caching and live
querying by employing hybrid query processing, which was used for link traversal
(Umbrich et al., 2012a,b).

Papailiou et al. (2015) proposed an approach for adaptive indexing and ca-
ching frequent query patterns by monitoring the workload queries. It uses a canon-
ical labeling technique for SPARQL queries without apriori knowledge about the
dataset and the workload queries. The queries with different triple pattern orders
or variables have the same canonical label which is used a key for the cached re-

31

sults. Moreover, Papailiou et al. (2015) stated that their approach is applicable to all
systems.

FedX (Schwarte et al., 2011) caches the results of the SPARQL ASK queries
in the data source selection. WoDQA (Yönyül, 2014) caches the results of queries
without considering subquerymacthing. AVALANCHE (Basca andBernstein, 2014),
which is a technique for querying Web of Data, caches partial results of a query dur-
ing the execution which can be used for the same subquery. We think that federated
query engines should extend their caching mechanism in order to minimize their
response and completion times.

2.3 Adaptive Query Optimization

In this section, we discuss the research on adaptive query optimization in both
relational databases and query federation over Linked Data.

2.3.1 Adaptive Query Optimization for Relational Databases

Query optimization, which is performed by a query optimizer, refers to the
process of generating an execution plan for the query. Therefore, the query optimizer
is essential for a database management system engine. The query optimizer consists
three components: a search space, a cost model, and a search strategy. The search
space refers to the possible execution plans for the query. The cost model estimates
the cost of a given execution plan. The search strategy explores the search space
and selects the best plan with respect to the cost model. In other words, the query
optimizer selects the execution plan which has the lowest cost according to the cost
model (Ozsu and Valduriez, 2011; Yin et al., 2015).

Traditional query optimization (Selinger et al., 1979) can be inefficient in dis-
tributed systems due to the strong variations in the environment. Different from tra-
ditional query processing, adaptive query processing covers monitoring, assessing,
and reacting activities in order to handle unforeseen variations of run-time condi-
tions. Therefore, adaptive query processing has a feedback loop between the exe-
cution environment and the query optimizer (Ozsu and Valduriez, 2011). Adaptive
query processing and adaptive query optimization are often used interchangeably.

Adaptive query processing for relational databases has been studied in detail
by the database community. There are various degrees of adaptivity from evolu-
tionary methods to revolutionary methods (Laddhad, 2006). Evolutionary meth-

32

ods focus on generating plans that can be switched during the execution accord-
ing to delays or estimation errors. Their level of modification is inter-operator in
which the feedback is collected from different physical operators (Gounaris et al.,
2002). Some known examples of evolutionary methods are query scrambling (Am-
saleg et al., 1998), mid-query re-optimization (Kabra and DeWitt, 1998), Tukwilla
/ ECA rules (Ives et al., 1999), proactive re-optimization (Babu et al., 2005), and
progressive query optimization (Han et al., 2007; Markl et al., 2004; Kache et al.,
2006). Revolutionary methods are more recent and their level of modification is
intra-operator in which the feedback is collected during the evaluation of a physical
operator (Gounaris et al., 2002). First group of intra-operator methods are adap-
tive operators like double pipelined hash join (Ives et al., 1999), XJoin (Urhan and
Franklin, 2000), and mobile join (Arcangeli et al., 2004; Ozakar et al., 2005). The
operators in this group is able to adapt its execution according to the variations dur-
ing the execution. Second group of intra-operator methods come up with the in-
vention of eddies which enable researchers to optimize the query processing from
fine-grained to tuple-level (Avnur and Hellerstein, 2000; Raman et al., 2003; Desh-
pande, 2004; Deshpande and Hellerstein, 2004; Bizarro et al., 2005; Zhou et al.,
2005).

2.3.2 AdaptiveQueryOptimization forQuery Federation onLinked
Data

Query federation over Linked Data is done on the distributed data sources on
the Web. Hence data arrival rates of relations are unpredictable and most of the
statistics are missing or unreliable. Therefore, we think that adaptive query op-
timization (Deshpande et al., 2007) is a necessity in order to handle such strong
variations of this environment.

ANAPSID (Acosta et al., 2011) and ADERIS (Lynden et al., 2010, 2011)
are the two federated query engines which use adaptive query optimization over
SPARQL endpoints. ANAPSID proposes a non-blocking joinmethod based on sym-
metric hash join (Wilschut and Apers, 1991) and Xjoin (Urhan and Franklin, 2000).
ADERIS (Lynden et al., 2010) joins two predicate tables as they become complete,
whereas ADERIS (Lynden et al., 2011) uses a cost model for dynamically changing
the join order. Also, AVALANCHE (Basca and Bernstein, 2010, 2014) considers
adaptivity. It collects statistical information about relevant data sources and then
generates its execution plan to provide the first k tuples. The proposals of this the-
sis, namely AJO (Oguz et al., 2016) and EAJO (Oguz et al., 2016), also consider
adaptive query optimization.

33

Table 2.6 shows the comparison of adaptive query optimization in query fed-
eration depending on the following criteria:

• Server (S): Indicates the type of the server for publication and querying of
Linked Data. SPARQL endpoints (se) and triple pattern fragment servers
(tpfs) are the possible values. A triple pattern fragment (Verborgh et al., 2014)
is a Linked Data Fragment with three components which are selector, count
metadata, and controls. A selector is a single triple pattern, count metadata
refers to as metadata with total triple count, and controls provide retrieving
any other triple pattern fragment of the same dataset.

• Join Method (JM): Shows the used join methods in the studies which are cate-
gorized as nested loop join (nlj), index nested loop join (inlj), symmetric hash
join (shj), bind join (bj), and bind-bloom join (bbj).

• Type of Statistics (ToS): States of the collection time of statistics which has
the following values: run-time (rt) and metadata (md).

• Frequency of Feedback (FoF): Shows the level of modification and has two
possible values: inter-operator (inter) and intra-operator (intra).

• Type of Event (ToE): Shows the case triggering the decision and has two values
which are data arrival rates (dar) and any.

• Logical Plan (LP): Displays the query plan modifications at the logical level
and are categorized as reformulation of the remaining plan (rf), operator re-
ordering (op_ro), and no effects (no) for adaptive query optimization in rela-
tional databases by Gounaris et al. (2002). Reformulation of the remaining
plan includes the operator reordering.

• Physical Plan (PP): Represents the query plan modifications at the physical
level and are categorized as usage of adaptive operators (uao), operator re-
placement (op_rep), and no effects (no) for relational databases by Gounaris
et al. (2002).

• Type of Modification (ToM): Can be employed as rescheduling (rs), dynamic
operator (do), and rescheduling and replacement (rs & rp).

As shown in Table 2.6, ADERIS (Lynden et al., 2011), ANAPSID (Acosta et
al., 2011), AVALANCHE (Basca and Bernstein, 2014), AJO (Oguz et al., 2016), and
EAJO (Oguz et al., 2016) use adaptive query optimization for queries over SPARQL

34

Table 2.6. Comparison of adaptive query optimization in query federation

S JM ToS FoF ToE LP PP ToM
ADERIS se inlj/bj rt inter any op_ro uao rs
ANAPSID se shj/bj rt intra dar no uao do
AVALANCHE se bj/bbj rt inter dar op_ro no rs
nLDE tpfs shj/nlj md intra any op_ro no rs
AJO se shj/bj rt intra dar rf op_rep rs&rp
EAJO se shj/bj/bbj rt intra dar rf op_rep rs&rp

endpoints. On the other hand, nLDE (Acosta and Vidal, 2015) proposes a client-side
engine against triple pattern fragment servers which is similar to distributed eddies
(Tian and DeWitt, 2003). Hence nLDE uses adaptive query optimization for queries
over triple pattern fragments.

The proposals for SPARQL endpoints prefer to collect the statistics in run-
time due to unreliable or missing statistics. Therefore, up-to-dateness of statistics is
provided. On the other hand, nLDE uses metadata catalogs for the statistical infor-
mation because triple pattern fragments contain both data, metadata, and controls.
The second parameter in Table 2.6 is the join method. Bind join is used by all the
studies, except nLDE, and nested loop join is employed by ADERIS and nLDE.
ANAPSID proposes two join methods which are agjoin and adjoin. The first one is
a non-blocking join method which is based on symmetric hash join and XJoin. The
second one is an extended version of dependent join (Florescu et al., 1999) which
sends the request to the second data source when tuples from the first source are
received. Adjoin can be accepted as a bind join because it needs the bindings. As
illustrated in Table 2.6, ANAPSID, AJO, nLDE and EAJO have the opportunity to
produce results incrementally since they use symmetric hash join. AVALANCHE
defines its join method as distributed join and it employs bloom filter optimised
joins to reduce communication cost. The difference between distributed join and
bind join is not explained in their papers. We categorize its join methods as bind
join and bind-bloom join. AVALANCHE and EAJO, in brief, can use bind-bloom
join which has the advantage of decrease the completion time.

The third parameter for the comparison is the frequency of feedback. The stud-
ies in inter-operator level collect feedback from different physical operators and re-
act to the execution of them according to the feedback. On the other hand, feedback
is collected during the processing of the physical operator in the intra-operator level.
The limit of collection can vary from a single tuple to a block of tuples (Gounaris et

35

al., 2002). ADERIS and AVALANCHE have the inter-operator feedback frequency,
whereas ANAPSID, nLDE, AJO and EAJO have the intra-operator one. ANAP-
SID’s feedback belongs to using an adaptive operator. The difference between the
intra-operator of nLDE and our proposals (AJO and EAJO) is based on the amount
of accumulated data before reacting. Although nLDE checks the feedback for each
tuple, AJO and EAJO do it when all tuples of a relation arrive. The next parameter is
the type of event. ANAPSID, AVALANCHE, AJO and EAJO focus on data arrival
rates, whereas ADERIS and nLDE check their decisions at each step.

AJO and EAJO distinguish from others when we consider the sixth and sev-
enth parameters in Table 2.6, namely logical plan and physical plan. Different from
others, AJO and EAJO provide reformulation of the remaining plan at the logical
level, and operator replacement at the physical level by the ability of changing both
the join order and the join method.

The last comparison parameter is the type of modification. ANAPSID’s type
of modification belongs to a dynamic operator, whereas the types of modification of
ADERIS, AVALANCHE and nLDE are rescheduling due to changing the join order
for the rest of the query. AJO and EAJO, besides rescheduling, cover replacement
which has the meaning of changing the join method.

2.4 Conclusion

In the first section of this chapter, we have analyzed and synthesized the funda-
mental components of federated query processing which are data source selection,
join methods, and query optimization. We have compared the existing federated
query engines according to our proposed classifications. We have also stated the
major challenges in federated query processing which are metadata management,
caching results, and adaptive query processing; and we have discussed the first two
challenges. Since we believe that the third challenge is the most crucial one, we
have discussed it separately in the second section.

Linked Data environment has strong difficulties such as unpredictable data
arrival rates and unreliable statistics. Most of the studies of query optimization in
query federation focus on static query optimization (Selinger et al., 1979) which
generates query execution plans before the execution and needs statistics (Quilitz
and Leser, 2008; Schwarte et al., 2011; Görlitz and Staab, 2011b; Wang et al., 2013;
Charalambidis et al., 2015b). However, static query optimization can cause ineffi-
cient execution plans. We think that adaptive query optimization (Deshpande et al.,

36

2007) can handle the mentioned difficulties of Linked Data environment.

ANAPSID (Acosta et al., 2011) and ADERIS (Lynden et al., 2010, 2011) use
adaptive query optimization for federated queries over SPARQL endpoints. ANAP-
SID aims to minimize the response time, while ADERIS intends to minimize the
completion time. However, to the best of our knowledge, there is not any study
that aims to minimize both the response and the completion times when the query
is executed over SPARQL endpoints.

In this thesis, we propose adaptive join operators which aim to minimize the
response time and the completion time for federated queries over SPARQL end-
points. Both of our proposals can change the join method and the join order during
the execution by using adaptive query optimization. Different from other studies
which consider adaptive query optimization in query federation, our proposals can
reformulate the remaining plan by replacing the join operator or changing the join
order.

In the following chapter, we first present our operators which aim to handle
the variations of Linked Data environment with considering the main goal of query
optimization in federated query processing.

37

3. OPTIMIZATIONMETHODSFORQUERYFEDERATIONON
LINKED DATA

In this chapter, we present two proposals which aim to contribute to the query
optimization of federated query processing on Linked Data. Since the objective of
query optimization in federated query engines is to minimize the response time and
the completion time, we first propose an adaptive join operator for federated queries
over SPARQL endpoints with this goal. The proposed operator can change the join
method during the execution by using adaptive query optimization. The operator
can also change the join order in order to minimize the completion time. It can
handle unexpected data arrival rates of relations and missing statistics. To the best
of our knowledge, adaptive join operator is the first study which aims to minimize
both the response time and the completion time for federated queries over SPARQL
endpoints. Second, we propose an extension of the adaptive join operator, namely
extended adaptive join operator, which aims to further reduce the completion time
by employing an additional join method.

3.1 Introduction

So far, we have presented the context, the position of the problem that moti-
vated us for the work in this thesis, and the current state of the art. As mentioned
in the previous chapters, federated query processing is performed with a federated
query engine which distributes the subqueries to the SPARQL endpoints of the se-
lected data sources to execute and then integrates the results of the subqueries to
generate the final result set. The objective of query optimization in these engines is
to minimize the response and the completion times. Response time refers to the time
to produce the first result tuple, while completion time refers to the time to provide
all result tuples. Communication cost is the dominant cost in both response time and
completion time. Thus, the main goal of federated query engines can be stated as to
minimize the communication cost.

To summarize the existing studies, Schwarte et al. (2011) use heuristics in
query optimization, whereas Quilitz and Leser (2008), Görlitz and Staab (2011a)
and Wang et al. (2013) concentrate on static query optimization which produces an
execution plan at query compilation time and uses statistics to estimate the cardi-
nality of the intermediate results. However, federated query processing is done on
the distributed data sources on the Web, and due to this, data arrival rates are un-
predictable. In addition, most of the statistics are missing or unreliable. For these
reasons, we think that adaptive query optimization (Deshpande et al., 2007) is a need

38

in this unpredictable environment. However, there are only two engines, ANAPSID
(Acosta et al., 2011) and ADERIS (Lynden et al., 2010, 2011) which consider adap-
tive query optimization for query federation. Acosta et al. (2011) proposed a non-
blocking join method based on symmetric hash join (Wilschut and Apers, 1991) and
Xjoin (Urhan and Franklin, 2000) to minimize the response time, whereas Lynden
et al. (2011) proposed a cost model for dynamically changing the join order to min-
imize the completion time. In addition to these federated query engines, Basca and
Bernstein (2010, 2014) proposed a technique called AVALANCHE which gathers
statistics on the fly before query execution and produces only the first k results with
the aim of minimizing the response time. To the best of our knowledge, there is not
any study that exploits an adaptive join operator that aims to minimize both the re-
sponse time and the completion time for federated queries over SPARQL endpoints.
In addition, communication time has the highest effect on overall cost as mentioned
earlier. Therefore, join method has an important role in query optimization. How-
ever, there is not any study which changes the join method during the execution
according to the data arrival rates.

The contribution of this chapter is as follows. First, we propose an adaptive
join operator for federated query processing on Linked Data which can change the
join method during the execution by using adaptive query optimization. Second, we
propose an extended version of our previous operator, called extended adaptive join
operator, which aims to further reduce the completion time.

In Section 3.2, we propose the adaptive join operator and present the algo-
rithms for single join queries and multi-join queries in detail. In Section 3.3, we
introduce the extended adaptive join operator and its algorithms for both single and
multi-join queries.

3.2 Adaptive Join Operator For Federated Queries

Join method selection plays an important role in query optimization. Symmet-
ric hash join (Wilschut and Apers, 1991) is a join method which maintains a hash
table for each relation. Therefore, it is defined as a non-blocking join method and
produces the first result tuple as early as possible. Bind join (Haas et al., 1997),
which is the most popular join method among the federated query engines (Oguz
et al., 2015), passes the bindings of the intermediate results of the outer relation to
the inner relation in order to filter the result set. In brief, symmetric hash join pro-
vides short response time, whereas bind join provides short completion time when
the cardinality of the intermediate results is low.

39

Equation 3.1 and Equation 3.2 are the cost functions of symmetric hash join
and bind join, respectively. Equation 3.2 is a variation of the formula used by
(Quilitz and Leser, 2008) in which they assume that the transfer costs of different
relations are the same. However, we consider different transfer costs of relations.
Ri andRj are the relations while card(R) is the number of tuples inR. The transfer
costs ofRi andRj for one result tuple are cti and ctj , respectively. Rj

′ is the relation
with the bindings of Ri. Actually, card(Rj

′)means card(Ri✶Rj) when we assume
that the common attribute values are unique.

cost(Ri ✶SHJ Rj) = max
((

card(Ri) · cti
)
,
(
card(Rj) · ctj

))
(3.1)

cost(Ri ✶BJ Rj) = card(Ri) · cti + card(Ri) · ctj + card(Rj
′) · ctj (3.2)

Static query optimization decides the join method before the query execution
and thus it can cause inefficient query plans due to unpredictable data arrival rates
and missing statistics. The join cardinality, card(Ri✶Rj), and the data arrival rates
of relations are unknown before the query execution. Using bind join can cause
response time problem if the data arrival rate of the first relation is slow. On the
other hand, symmetric hash join can produce the first result tuple as soon as there
is a match between Ri and Rj , without waiting for all tuples of Ri to arrive. How-
ever, if the cardinality of Rj is very high while the join cardinality is low, the query
completion time of symmetric hash join can be longer than the completion time of
bind join.

Since the data arrival rates of relations are known after a short time of ex-
ecution, the remaining completion times can be estimated. For these reasons, we
propose to set the join method as symmetric hash join in the beginning in order
to minimize the response time, and to use cost functions after having information
about the data arrival rates of endpoints to minimize the completion time. We decide
whether to change the join method to bind join according to the cost estimations. In
order to learn the cardinalities of relations, we send count queries in the beginning
of the execution. As mentioned before, the communication time dominates the I/O
time and CPU time. Hence the costs of count queries are negligible. In brief, our
approach is based on the idea of changing the join method during the query exe-
cution according to the data arrival rates and the join cardinalities with the aim of
minimizing both the response time and the completion time.

40

3.2.1 Adaptive Join Operator for Single Join Queries

In this subsection, we first present the algorithm of the adaptive join operator
for single join queries. Second, we propose the join cardinality estimation formula
and the cost estimations for symmetric hash join and bind join.

Figure 3.1 summarizes the adaptive join operator for single join queries. Our
operator always begins with symmetric hash join and it calculates the estimated
remaining times for both join methods when all the tuples of a relation arrive. It
changes the join method to bind join if the remaining time of bind join is less than
the remaining time of symmetric hash join. Adaptive join operator not only can
change the join method, but also has the ability to change the join order.

The algorithm of the adaptive join operator for single join queries is depicted
in Algorithm 1. Firstly, the adaptive operator sends count queries to the SPARQL
endpoints of data sourcesRi andRj in order to learn their cardinalities. The operator
always begins with symmetric hash join in order to produce the first result tuple as
early as possible. In other words, it always sets the join method as symmetric hash
join in the beginning in order to minimize the response time. During the execution,
when all the tuples from one data source arrive and the tuples from the other data
source continue to arrive, the adaptive join operator estimates the remaining time of
continuing with symmetric hash join and the remaining time of switching to bind
join. It selects the join method according to these cost estimations. If the operator
switches to bind join, it emits the duplicate results of symmetric hash join and bind
join. The cardinality estimation formula and the remaining time estimation formulas
will be presented in the following of this subsection. We use the term “cardinality”
instead of “number of triple patterns” in the rest of the paper.

Cardinality and Remaining Time Estimations

In this subsection, we explain our cardinality and remaining time estimations
which are used in the decision of the join method for the rest of the execution. These
estimates are calculated when all the tuples of a relation arrive from its SPARQL
endpoint.

Equation 3.3 shows the cost function of bind join where Ri and Rj are rela-
tions, |R| is the number of tuples in R, cti is the transfer cost of Ri for one result
tuple, and ctj is the transfer cost of Rj for one result tuple. Rj

′ is the relation with
the bindings of Ri. Hence |Rj

′| is the cardinality of Rj which is reduced by the

41

Figure 3.1. Adaptive join operator for single join queries

42

Algorithm 1: Adaptive join operator for single join queries
1 |Ri|←− cardinality of Ri received from the COUNT query

2 |Rj |←− cardinality of Rj received from the COUNT query

3 |Ri_arrived|←− cardinality of arrived Ri tuples

4 |Rj_arrived|←− cardinality of arrived Rj tuples

5 Set JOIN method as Symmetric Hash Join (SHJ)
6 while (|Ri_arrived| < |Ri| or |Rj_arrived| < |Rj |) do
7 if (|Ri_arrived| == |Ri| and |Rj_arrived| < |Rj | or

|Rj_arrived| == |Rj | and |Ri_arrived| < |Ri|) then
8 ERTSHJ ←− estimated remaining time if continued using SHJ

9 ERTBJ ←−
estimated remaining time if switched to Bind Join (BJ)

10 if (ERTSHJ > ERTBJ) then
11 Set JOIN method as BJ
12 Emit the duplicate results of SHJ and BJ
13 end
14 end
15 end

bindings of Ri. |Rj
′| is equal to the join cardinality, |Ri✶Rj|, when we assume that

the common attribute values are unique.

cost(Ri ✶BJ Rj) = |Ri| · cti + |Ri| · ctj + |Rj
′| · ctj (3.3)

Equation 3.4 is the cardinality estimation formula for the second relation re-
duced with the bindings of the first relation. |Ri✶Rj_arrived| is the cardinality of
Ri✶Rj_arrived, |Rj| is the cardinality of Rj , and |Rj_arrived| is the cardinality of ar-
rived tuples ofRj . We use this formula in order to calculate the estimated cardinality
of Rj

′ when all the tuples of Ri arrive. We expect that there is a directional propor-
tion between the join cardinality and the number of tuples of Rj .

|Rj_estimation′| = |Ri✶Rj_arrived| · |Rj|
|Rj_arrived|

(3.4)

As stated earlier, when all the tuples of Ri arrive, the algorithm estimates the
remaining time if the adaptive join operator continues with symmetric hash join
and the remaining time if it changes the join method to bind join. We have an idea
about the data arrival rate of Rj during the execution, so the estimation is possible.
Equation 3.5 shows the estimated remaining time if the adaptive operator continues

43

with symmetric hash join, ERTSHJ , where |Rj| is the cardinality of Rj , |Rj_arrived|
is the cardinality of arrived tuples of Rj , and tRj_arrived is the time for Rj_arrived

tuples to arrive.

ERTSHJ =
(|Rj|−|Rj_arrived|) · tRj_arrived

|Rj_arrived|
(3.5)

Equation 3.6 shows the estimated remaining time if the algorithm switches to
bind join, ERTBJ , where |Ri| is the cardinality of Ri, tST is the time for sending
one result tuple to the SPARQL endpoint of Rj (≈ tRj_arrived

|Rj_arrived|
), |Rj_estimation′| is

the estimated cardinality ofRj
′, |Rj_arrived| is the cardinality of arrived tuples ofRj ,

and tRj_arrived is the time for Rj_arrived tuples to arrive. The estimated remaining
time for bind join includes sending all tuples of Ri to the endpoint of Rj , and the
retrieving time of Rj

′ from the endpoint of Rj .

ERTBJ = (|Ri| · tST) +
|Rj_estimation′| · tRj_arrived

|Rj_arrived|
(3.6)

3.2.2 Adaptive Join Operator for Multi-Join Queries

In this subsection, we introduce the adaptive join operator for multi-join que-
ries which means there are more than two relations in the query. In other words, the
query is comprised of more than two subqueries.

Figure 3.2 and Algorithm 2 explain the working principle of the adaptive join
operator for multi-join queries. The operator uses multi-way symmetric hash join
(Viglas et al., 2003) in the beginning instead of symmetric hash join since there
are more than two relations to be joined. When all the tuples of a relation arrive,
called Ri, the algorithm estimates the remaining time if the adaptive join operator
switches to bind join for each relation which has a common attribute with Ri. The
algorithm chooses the relation with minimum estimated bind join cost, called Rj ,
and compares the following costs: i) estimated remaining time if it changes the
join method to bind join for Ri and Rj and continues with multi-way symmetric
hash join for other relations, ii) estimated remaining time if the operator continues
with multi-way symmetric hash join for all relations. The adaptive join operator
chooses the minimum cost and the above procedure is repeated every time a relation
is completely received.

44

Figure 3.2. Adaptive join operator for multi-join queries

Cardinality and Remaining Time Estimations

LetR1,R2, . . . andRn are the relations of the query. When all tuples of a rela-
tion, calledRi arrive, we calculate the estimated remaining times if the adaptive join
operator changes the join method to bind join for each relation which has a common
attribute with Ri. Let Rj is the relation to be joined with Ri. We use Equation 3.7
for the estimated cardinality of the second relation which is reduced by the bindings
of the first relation, called Rj

′ |Ri✶Rj_arrived| is the cardinality of Ri✶Rj_arrived,
|Rj| is the cardinality of Rj , and |Rj_arrived| is the cardinality of arrived tuples of
Rj . We use this formula in order to calculate the estimated cardinality of Rj

′ when
all the tuples ofRi arrive. We need this estimation in order to calculate the estimated
remaining time whether the adaptive join operator switches to bind join for Ri and
Rj or it continues with multi-way symmetric hash join for all relations. In fact, we
use the same cardinality estimation for single join queries and multi-join queries.

|Rj_estimation′| = |Ri✶Rj_arrived| · |Rj|
|Rj_arrived|

(3.7)

45

Algorithm 2: Adaptive join operator for multi-join queries
1 S ←− {R1, R2, R3, . . . , Rn}
2 MIN_ERTBJ ←−∞
3 BJ_Candidate←− Φ

4 StartMSHJ(S)

5 while (S is not empty) do
6 if (all the tuples of Ri arrive) then
7 ERTMSHJ ←− ERT if continued with MSHJ

8 foreach Rj having a common attribute with Ri do
9 ERTBJ_Rij ←− ERT if switched to BJ for Ri and Rj

10 if (ERTBJ_Rij < MIN_ERTBJ) then
11 MIN_ERTBJ ←− ERTBJ_Rij

12 BJ_Candidate←− {Ri, Rj}
13 end
14 end
15 if (MIN_ERTBJ <= ERTMSHJ) then
16 Ŕi ←− BJ(Ri, Rj)

17 S ←− S −BJ_Candidate+ {Ŕi}
18 RunMSHJ(S) and eliminate duplicate results
19 end
20 end
21 end

The estimated remaining time for multi-way symmetric hash join is shown
in Equation 3.8, where |Rk| is the cardinality of Rk, |Rk_arrived| is the cardinality
of arrived tuples of Rk, and tRk_arrived is the time for Rk_arrived tuples to arrive.
The completion time of multi-way symmetric hash join is equal to the maximum
completion time of the relations which are involved in the query.

ERTMSHJ = max
((|Rk|− |Rk_arrived|) · tRk_arrived

|Rk_arrived|
)
where k ∈ [1, . . . , n] (3.8)

Equation 3.9 shows the estimated remaining time if the adaptive join opera-
tor uses bind join for Ri and Rj , and employs multi-way symmetric hash join for
the other relations of the query. |Ri| is the cardinality of Ri, tST is the time for
sending one query to the SPARQL endpoint of Rj(≈ tRj_arrived

|Rj_arrived|
), |Ri✶Rj| is the es-

timated cardinality of Ri✶Rj , |Rj_arrived| is the cardinality of arrived tuples of Rj ,
and tRj_arrived is the time for Rj_arrived tuples to arrive. ERTrest is the estimated
remaining time for the rest of other relations to arrive as shown in Equation 3.10
where k ∈ [1, . . . , n], k ̸= i and k ̸= j.

46

ERTBJ_Rij = max
(
(|Ri| · tST +

|Ri✶Rj| · tRj_arrived

|Rj_arrived|
), ERTrest

)
(3.9)

ERTrest = max
((|Rk|− |Rk_arrived|) · tRk_arrived

|Rk_arrived|

)
(3.10)

3.3 Extended Adaptive Join Operator For Federated Queries

In this section, we propose an extended version of the adaptive join operator
which is improved with bind-bloom join (Basca and Bernstein, 2014; Groppe et al.,
2015) to further reduce the communication time and, consequently, to minimize the
completion time.

We first summarize the symmetric hash join and the bind join which are ex-
plained in the previous sections and then we explain the principles of bloom filter
and bind-bloom join. Second, we present the extended adaptive join operator for
single join queries and multi-join queries.

3.3.1 Background

We have explained the principles of symmetric hash join and bind join, and we
have introduced their cost functions in the previous sections. Symmetric hash join
provides short response time since it operates the subqueries in a parallel fashion.
On the other hand, bind join passes the intermediate results of the first relation to
the second relation in order to filter the result set. Hence bind join is successful
with respect to completion time when the cardinalities of the first relation and the
intermediate results are low.

As mentioned earlier, communication cost is the dominant cost in distributed
environments. In order to reduce the communication cost, a space efficient data
structure called bloom filter (Bloom, 1970) is widely used in relational databases
(Mackert and Lohman, 1986; Mullin, 1990; Michael et al., 2007; Ives and Taylor,
2008). It is utilized in different Linked Data subjects such as identity reasoning
(Williams, 2008) and data source selection (Hose and Schenkel, 2012). Bloom filter
is also used to reduce the communication cost in two studies of Linked Data (Basca
and Bernstein, 2014; Groppe et al., 2015). We briefly explain the bloom filter before
presenting our proposal which uses it in order to reduce the communication cost.

47

Bloom filter (Bloom, 1970) is a data structure which represents a set of ele-
ments in a bit vector with a low rate of false positives. The idea is to represent a set
S = {e1, e2,…, en} of n elements in a vector v ofm bits. Initially all the bits are set
to 0. Then, k independent hash functions, h1, h2, …, hk, with range {1,…,m} are
used. For each element ei ∈ S, the bits at positions h1(e1), h2(e1), …, hk(e1) in v

are set to 1. Given a query for ej , the bits at positions h1(ej), h2(ej), …, hk(ej) are
checked. If any of them is 0, certainly ej is not in set S. Otherwise, ej is accepted
as a member of set S, although there is a probability that it is not a member (Fan et
al., 2000). Independent of the size of the elements, less than 10 bits per element are
required for a 1% false positive probability (Bonomi et al., 2006).

We propose to use b bits per each element and k hash functions in order to
minimize the false positive rate (Fan et al., 2000). We propose a custom SPARQL
function CheckBloom(?commonAttribute, ?bitVector) which returns true if the po-
sitions corresponding to h1(?commonAttribute), . . . , hk(?commonAttribute) are set
to 1 in bloom filter ?bitV ector.

Listing 3.1. Federated query example

Table 3.1. Intermediate results

Line student

1 student_1
... ...
n student_n

Listing 3.2. Bind query Listing 3.3. Bind query with bloom filter

We explain the advantage of using a bloom filter in bind join by using the
federated query example in Listing 3.1. Initially, the first subquery is executed on
:service1, and then the second subquery is executed on :service2with the bindings of
the first subquery as shown in Listing 3.2. The intermediate results from :service1
are shown in Table 3.1. Query size is proportional to the number of intermediate
results and the communication cost increases as the number of intermediate results
increases. In order to decrease this cost, bind join can be employed by using a bloom
filter as shown in Listing 3.3 where BloomFilter is a bit array whose length in bits is
equal to multiplication of the number of distinct common attribute values and b bits.
Since our proposal uses b bits per each intermediate result, the size of the bloom
filter in bits is equal to multiplication of the number of distinct common attribute

48

values and b bits. As a result, bloom filter decreases the size of the intermediate
results.

Although bind-bloom join reduces the size of sent data to the second relation,
bind join can be more efficient than bind-bloom join in some cases according to the
number of false positives and the size of the result set. For this reason, our proposal
estimates the remaining times of bind join and bind-bloom join when the tuples of
a relation all arrive. We will present the extended adaptive join operator for single
join queries and multi-join queries in the following of this section.

3.3.2 Extended Adaptive Join Operator for Single Join Queries

Algorithm 3 shows the pseudo code of the extended adaptive join operator for
single join queries. Firstly, we send count queries to the endpoints of data sources
R1 and R2 in order to learn their cardinalities. We always begin with symmetric
hash join in order to minimize the response time. During the execution, when all the
tuples from a data source arrive and the tuples from the other data source continue
to arrive, we estimate the remaining times of continuing with symmetric hash join,
switching to bind join, and switching to bind-bloom join. We decide the join method
according to these cost estimations. If we switch to bind join or bind-bloom join, we
emit the duplicate results of symmetric hash join with bind join or bind-bloom join.
The cardinality estimation formula and the remaining time estimation formulas are
presented in the following of this subsection.

Cardinality and Remaining Time Estimations

Equation 3.11 shows the cost function of bind join where Ri and Rj are rela-
tions, |R| is the number of tuples in R, and ct is the transfer cost of R for one result
tuple. Rj

′ is the relation with the bindings of Ri. In order to estimate the remaining
times of bind join and bind-bloom join, we need the estimated cardinality of the sec-
ond relation which is reduced by the bindings of the first relation, namelyRj

′. In the
adaptive join operator, we assume that the common attribute values are unique. In
this case, we consider the possibility of including duplicate values on the common
attributes of the relations.

cost(Ri ✶BJ Rj) = |Ri| · cti + |Ri| · ctj + |Rj
′| · ctj (3.11)

Before presenting our cardinality and remaining time estimations, we want to

49

Algorithm 3: Extended adaptive join operator for single join queries
1 |R1|←− cardinality of R1 received from the COUNT query
2 |R2|←− cardinality of R2 received from the COUNT query
3 |R1arrived|←− cardinality of arrived R1 tuples
4 |R2arrived|←− cardinality of arrived R2 tuples
5 Set JOIN method as Symmetric Hash Join (SHJ)
6 while (|R1arrived| < |R1| or |R2arrived| < |R2|) do
7 if (|R1arrived| == |R1| and |R2arrived| < |R2| or

|R2arrived| == |R2| and |R1arrived| < |R1|) then
8 ERTSHJ ←−

estimated remaining time (ERT) if continued with SHJ
9 ERTBJ ←− ERT if switched to Bind Join (BJ)
10 ERTBBJ ←− ERT if switched to Bind−Bloom Join (BBJ)
11 SetMIN_ERT to the minimum among ERTSHJ , ERTBJ and ERTBBJ

12 if (MIN_ERT == ERTBJ) then
13 Set JOIN method as BJ
14 Emit the duplicate results of SHJ and BJ
15 end
16 if (MIN_ERT == ERTBBJ) then
17 Set JOIN method as BBJ
18 Emit the duplicate results of SHJ and BBJ
19 end
20 end
21 end

clarify and define the average duplication factor of a relation. Let Ri and Rj are the
two relations which have a common attribute. Average duplication factor of Ri on
Rj , ADF (Ri, Rj), is the average duplication factor value of Ri on each common
attribute value of Ri and Rj . The formula for ADF (Ri, Rj) is depicted in Equation
3.12where |Ri| is the cardinality ofRi and |Ri_uca| is the is the cardinality of unique
common attribute values in Ri. We define an average duplication factor since we
cannot guarantee a constant duplication factor for each attribute.

ADF (Ri, Rj) =
|Ri|

|Ri_uca|
(3.12)

Assume that the relations, namely Ri and Rj , contains the attribute values
which are shown in Table 3.2. The common attribute between Ri and Rj is a as
indicated in the table. ADF (Ri, Rj) calculation for the example relations can be
seen below:

ADF (Ri, Rj) =
|Ri|

|Ri_uca|
=

7

4
= 1.75

50

Table 3.2. Example relations Ri and Rj

Ri

a b

a1 b1
a1 b2
a2 b3
a2 b4
a3 b5
a4 b6
a4 b7

Rj

a c

a1 c1
a2 c2
a5 c3
a6 c4
a7 c5
a8 c6
a9 c7

Equation 3.13 is used to estimate the cardinality of the second relation which
is reduced by the bindings of the first relation. |Ri✶Rj_arrived| is the cardinality
of Ri✶Rj_arrived, |Rj| is the cardinality of Rj , |Rj_arrived| is the cardinality of ar-
rived tuples ofRj , andADF (Ri, Rj) is the average duplication factor ofRi on each
common attribute value of Ri and Rj . The extended adaptive join operator uses the
estimated cardinality in order to estimate the remaining times of bind join and bind-
bloom join. In other words, the operator employs Equation 3.13 in order to calculate
the estimated cardinality ofRj

′ when all the tuples ofRi arrive. We expect that there
is a directional proportion between the join cardinality and the number of tuples of
Rj .

|Rj_estimation′| = |Ri✶Rj_arrived| · |Rj|
|Rj_arrived|

/
ADF (Ri, Rj) (3.13)

As stated in the beginning of this subsection, when all the tuples of Ri arrive,
the algorithm estimates three remaining times as follows: (i) the remaining time
if the extended adaptive join operator continues with symmetric hash join, (ii) the
remaining time if it changes the join method to bind join, and (iii) the remaining time
if it changes the join method to bind-bloom join. During the execution, we have an
idea about the data arrival rate of Rj , and thus the estimation is possible. Equation
3.14 shows the estimated remaining time for symmetric hash join, ERTSHJ , where
|Rj| is the cardinality of Rj , |Rj_arrived| is the cardinality of arrived tuples of Rj ,
and tRj_arrived is the time for Rj_arrived tuples to arrive.

51

ERTSHJ =

(
|Rj|−|Rj_arrived|

)
· tRj_arrived

|Rj_arrived|
(3.14)

Equation 3.15 shows the estimated remaining time if the algorithm switches
to bind join, namely ERTBJ . |Ri_uca| is the is the cardinality of unique common
attribute values in Ri, tST is the time for sending one result tuple to the SPARQL
endpoint of Rj (≈ tRj_arrived

|Rj_arrived|
), and |Rj_estimation′| is the estimated cardinality of

Rj which is reduced by the bindings of Ri. |Rj_arrived| is the cardinality of arrived
tuples of Rj , and tRj_arrived is the time for Rj_arrived tuples to arrive. The estimated
remaining time for bind join includes sending all tuples of Ri_uca to the endpoint
of Rj , and the retrieving time of Rj

′ from the endpoint of Rj .

ERTBJ =
(
|Ri_uca| · tST

)
+

|Rj_estimation′| · tRj_arrived

|Rj_arrived|
(3.15)

Equation 3.16 shows the estimated remaining time if the algorithm switches
to bind-bloom join, namely ERTBBJ , where b is the number of bits per each el-
ement, |Ri_uca| is the cardinality of unique common attribute values in Ri, drj
is the data arrival rate (in bits/seconds) of the SPARQL endpoint (≈ s(|Rj_arrived|)

|Rj_arrived|
,

where s(|Rj_arrived|) is the size of Rj_arrived tuples in bits), |Rj_estimation′| is the
estimated cardinality of Rj reduced by the bindings of Ri, |fp| is the estimated car-
dinality of false positives, |Rj_arrived| is the cardinality of arrived tuples of Rj , and
tRj_arrived is the time for Rj_arrived tuples to arrive. The estimated remaining time
for bind-bloom join includes sending unique common tuples of Ri in a bloom filter
to the endpoint of Rj , and the retrieving time of Rj

′ from the endpoint of Rj .

ERTBBJ =
b · |Ri_uca|

drj
+

(
|Rj_estimation′|+ |fp|

)
· tRj_arrived

|Rj_arrived|
(3.16)

3.3.3 Extended Adaptive Join Operator for Multi-Join Queries

In multi-join queries, we begin with a non-blocking join method in order to
minimize the response time as in single join queries. In this case, we use multi-way
symmetric hash join (Viglas et al., 2003) since there aremore than two relations. The
algorithm of the extended operator for multi-join queries is depicted in Algorithm
4. When all the tuples from a relation arrive, called Ri, the algorithm estimates the

52

remaining times if the extended adaptive join operator switches to bind join or bind-
bloom join for each relation which has a common attribute with Ri. The algorithm
chooses the relation with the minimum estimated bind join cost and the minimum
estimated bind-bloom cost, called Rj . Then, the algorithm compares the following
estimated times: (i) the remaining time if the operator continues with multi-way
symmetric hash join for all relations belonging to the query, (ii) the remaining time
if the operator changes the join method to bind join for Ri✶Rj and uses multi-way
symmetric hash join for the other relations, (ii) the remaining time if the operator
changes the join method to bind-bloom join for Ri✶Rj and uses multi-way sym-
metric hash join for the other relations. The above procedure is repeated every time
a relation is completely received.

Cardinality and Remaining Time Estimations

We use the same formula for single join queries and multi-join queries to esti-
mate the cardinality of the second relation reduced by the bindings of the first rela-
tion. Therefore, we use Equation 3.13 which is shown in Section 3.3.2 for multi-join
queries as well. We need this estimation in order to calculate the estimated remain-
ing times for the following cases: (i) if the operator switches to bind join forRi✶Rj ,
(ii) if the operator switches to bind-bloom join for Ri✶Rj , and (ii) if the operator
continues with multi-way symmetric hash join.

Equation 3.17 shows the estimated remaining time if the extended adaptive
join operator continues with multi-way symmetric hash join. Completion time is
equal to the maximum completion time of the relations belonging to the query.

ERTMSHJ = max
((|Rk|− |Rk_arrived|) · tRk_arrived

|Rk_arrived|

)
where k ∈ [1, . . . , n]

(3.17)

Equation 3.18 shows the estimated remaining time if the extended adaptive
join operator employs bind join for Ri and Rj , and uses multi-way symmetric hash
join for the other relations belonging to the query. It is equal to the maximum time
between ETBJ_Rij and ERTrest. ETBJ_Rij is the estimated time if the operator
employs bind join for Ri and Rj . ERTrest is the estimated remaining time for the
rest of other relations to arrive. ETBJ_Rij is shown in Equation 3.19. |Ri_uca| is
the cardinality of unique common attribute values in Ri, tST is the time for sending
one result tuple to the SPARQL endpoint (≈ tRj_arrived

|Rj_arrived|
), and |Rj_estimation′| is

the estimated cardinality of Rj which is reduced by the bindings of Ri. |Rj_arrived|

53

Algorithm 4: Extended adaptive join operator for multi-join queries
1 S ←− {R1, R2, . . . , Rn}
2 Send COUNT queries to the endpoints of R1, R2, . . . , Rn

3 MIN_ERTBJ = MIN_ERTBBJ ←−∞
4 MIN_ETBJ = MIN_ETBBJ ←−∞
5 BJ_Candidate = BBJ_Candidate←− Φ
6 StartMSHJ(S)
7 while (S is not empty) do
8 if (all the tuples of Ri arrive) then
9 ERTMSHJ ←− ERT if continued with MSHJ
10 foreach Rj having a common attribute with Ri do
11 ERTBJ_Rij ←− ERT if switched to BJ for Ri and Rj

ERTBBJ_Rij ←− ERT if switched to BBJ for Ri and Rj

ETBJ_Rij ←− estimated time for BJ between Ri and Rj

ETBBJ_Rij ←− estimated time for BBJ between Ri and Rj

12 if (ERTBJ_Rij < MIN_ERTBJ) then
13 MIN_ERTBJ ←− ERTBJ_Rij

14 MIN_ETBJ ←− ETBJ_Rij

15 BJ_Candidate←− {Ri, Rj}
16 end
17 if (ERTBBJ_Rij < MIN_ERTBBJ) then
18 MIN_ERTBBJ ←− ERTBBJ_Rij

19 MIN_ETBBJ ←− ETBBJ_Rij

20 BBJ_Candidate←− {Ri, Rj}
21 end
22 end
23 if (MIN_ERTBJ <= ERTMSHJ) then
24 if (ETBBJ_Rij < ETBJ_Rij) then
25 Ŕi ←− BBJ(Ri, Rj)

26 S ←− S −BBJ_Candidate+ {Ŕi}
27 RunMSHJ(S) and eliminate duplicate results
28 end
29 Ŕi ←− BJ(Ri, Rj)

30 S ←− S −BJ_Candidate+ {Ŕi}
31 RunMSHJ(S) and eliminate duplicate results
32 end
33 end
34 end

54

is the cardinality of arrived tuples of Rj , |Rj_arrived| is the cardinality of arrived
tuples of Rj , and tRj_arrived is the time for Rj_arrived tuples to arrive. ERTrest

is calculated by using Equation 3.20 where k ∈ [1, . . . , n], k ̸= i and k ̸= j. |Rk|
is the cardinality of Rk, |Rk_arrived| is the cardinality of arrived tuples of Rk, and
tRk_arrived is the time for Rk_arrived tuples to arrive.

ERTBJ_Rij = max(ETBJ_Rij , ERTrest) (3.18)

ETBJ_Rij = (|Ri_uca| · tST) +
|Rj_estimation′| · tRj_arrived

|Rj_arrived|
(3.19)

ERTrest = max
((|Rk|− |Rk_arrived|

)
· tRk_arrived

|Rk_arrived|

)
(3.20)

Equation 3.21 shows the estimated remaining time if the extended operator
switches to bind-bloom join for Ri and Rj , and uses multi-way symmetric hash
join for the other relations belonging to the query. It is equal to the maximum time
between ETBBJ_Rij and ERTrest. ETBBJ_Rij is the estimated time if the operator
employs bind-bloom join forRi andRj . ERTrest is the estimated remaining time for
the rest of other relations to arrive. ETBBJ_Rij is calculated by using Equation 3.22.
b is the number of bits per each element, |Ri_uca| is the cardinality of Ri, and drj

is the data arrival rate (in bits/seconds) of the SPARQL endpoint (≈ s(|Rj_arrived|)
|Rj_arrived|

,
where s(|Rj_arrived|) is the size of Rj_arrived tuples in bits). |Rj_estimation′| is
the estimated cardinality of Rj reduced by the bindings of Ri, |fp| is the estimated
cardinality of false positives, and tRj_arrived is the time forRj_arrived tuples to arrive.
We use Equation 3.13 and Equation 3.20 in order to calculate |Rj_estimation′| and
ERTrest, respectively.

ERTBBJ_Rij = max
(
ETBBJ_Rij , ERTrest

)
(3.21)

ETBBJ_Rij =
b · |Ri_uca|

drj
+

(
|Rj_estimation′|+ |fp|

)
· tRj_arrived

|Rj_arrived|
(3.22)

55

3.4 Conclusion

Query optimization in query federation aims to minimize the response time
and the completion time. Query federation distributes the subqueries of a query to
the relevant SPARQL endpoints to be executed and then aggregates their results.
However, the data arrival rates of relations are unpredictable since the execution is
done on the distributed data sources on theWeb. Moreover, the most of the statistics
are missing. These constraints show that adaptive query optimization (Deshpande
et al., 2007) is a need for query federation over SPARQL endpoints.

In this chapter, we presented two proposals which use adaptive query opti-
mization for SPARQL query federation in order to minimize both the response time
and the completion time. Since the communication cost mainly dominates the other
costs in distributed environments, we focused on the minimization of the communi-
cation cost.

First proposal, namely adaptive join operator, initially sends count queries to
the endpoints of relations in order to learn their cardinalities. The operator always
begins with symmetric hash join and multi-way symmetric hash join for single join
queries and multi-join queries, respectively, with the aim of minimization of the
response time. The data arrival rates of relations are known after a short time of
execution. For single join queries, the operator estimates the remaining times for
symmetric hash join and bind join when all the tuples of a relation arrive. Different
from single join queries, the operator chooses the minimum bind join cost between
the received relation and the relationwhich has a common attribute with this relation.
Then, the operator compares the following cases: i) remaining time of continuing
with multi-way symmetrich hash join for all relations, and ii) the remamining time
of using bind join for the relations with the minimum bind join cost and using multi-
way symmetric hash join for the rest of the relations. According to the remaining
time estimations, the operator decides whether to change the join method to bind
join or not.

In the second study, we proposed the extended adaptive join operator which
is the improved version of our previous proposal. We aimed to further reduce the
communication cost. For this reason, we included the bind-bloom join, which is a
kind of bind join enhanced with bloom filter, to the candidate join methods. Since
a bloom filter can contain a low rate of false positives, we keep bind join in our
candidate join methods. The extended join operator again begins with symmetric
hash join and multi-way symmetric hash join for single and multi-join queries, re-

56

spectively. When all the tuples of a relation arrive, the remaining time estimations
are calculated for symmetric hash join (or multi-way hash join), bind join and bind-
bloom join.

The goal of the proposed operators are as follows: i) minimization of both
the response time and the completion time, ii) managing with different data arrival
rates, iii) handling the problem of missing statistics. The proposed adaptive join
operators use a non-blocking join method in the beginning and they can change the
join method during the execution to minimize the completion time. Moreover, both
operators can change the join order as well. Therefore, both of our proposals aim to
provide the best trade-off between the response time and the completion time.

57

4. PERFORMANCE EVALUATION

This section provides the performance evaluations of our proposals, namely
adaptive join operator and extended adaptive join operator. We use response time
and completion time as evaluation metrics. First, we evaluate and discuss the perfor-
mance evaluation of the adaptive join operator for single join queries and multi-join
queries. We compare the proposed operator with symmetric hash join and bind join.
We discuss the impact of data sizes and the data arrival rates. Second, we present
the results and discussions on the performance evaluation of the extended adaptive
join operator for single join queries and multi-join queries. We evaluate the perfor-
mances of the extended operator, symmetric hash join, bind join, bind-bloom join,
and adaptive join operator. We again discuss the impact of data sizes and the data
arrival rates. In addition, we show the impact of bit vector size for the extended
adaptive join operator. We also present the speedup of the extended adaptive join
operator compared to the adaptive join operator with respect to the completion time.

4.1 Introduction

This chapter includes two main sections as follows. Section 4.2 presents the
performance evaluation of adaptive join operator and Section 4.3 provides the per-
formance evaluation of extended adaptive join operator. The performances of both
operators are evaluated for single join queries and multi-join queries. There are two
relations in single join queries, while there are three relations in multi-join queries.

As stated in the previous chapters, the goal of query optimization in query fed-
eration is to minimize the response time and the completion time. For this reason,
we used them as evaluation metrics. Both of them include communication time, I/O
time, and CPU time. We mentioned earlier that query cost in distributed environ-
ments is mainly defined by the communication cost. In order to simulate the real
network conditions and consider only the communication cost, we conducted our
experiments in the network simulator ns-31.

We analyze sample result sizes and consequently we assume that the size of all
queries is the same and each result tuple is considered to have the same size as well.
Each query size is accepted as 500 bytes, whereas each result tuple size is employed
as 250 bytes. Each count query size is assumed as 750 bytes and the message size is
set to 100 tuples. Each selectivity factor is 0.5/

(
max(cardinality of R1, cardinality

ofR2)
)
(Shekita et al., 1993). We set the low, medium, and high cardinality as 1000

1https://www.nsnam.org/

58

tuples, 5000 tuples, and 10000 tuples, respectively. We analyze the data arrival rates
of 28 endpoints to assign the range of data arrival rates of relations in simulations.
We conducted the simulations with different data arrival rates as explained in the
following sections, however we always fixed their delays to 10 ms.

4.2 Performance Evaluation Of Adaptive Join Operator

In this section, we present the evaluation results on the performances of sym-
metric hash join (or multi-way symmetric hash join), bind join, and adaptive join
operator for single join queries and multi-join queries. The reason of comparing our
proposal with symmetric hash join and bind join is as follows. Symmetric hash join
provides efficient response time by being a non-blocking join method. Bind join
provides efficient completion time under some conditions, as mentioned in previ-
ous chapters. Besides, it is the most popular join method among the query federation
engines.

4.2.1 Performance Evaluation for Single Join Queries

In this subsection, we compare adaptive join operator (AJO) with symmetric
hash join (SHJ), and bind join (BJ) in two cases. We aim to show the impact of data
sizes and data arrival rates in the first and the second case, respectively.

Impact of Data Sizes

In this case, we fixed the data arrival rates of both endpoints to 0.5 Mbps. In
order to analyze the impact of data sizes on the behaviours of SHJ, BJ, and AJO,
we calculated their response times and completion times when the data sizes of R1

andR2 were low-low (LL), low-medium (LM), low-high (LH), medium-low (ML),
medium-medium (MM), medium-high (MH), high-low (HL), high-medium (HM),
and high-high (HH), respectively.

Figure 4.1 depicts the behaviours of SHJ, BJ, and AJO with different data
size conditions while the data arrival rates of both relations are fixed. As shown in
Figure 4.1.a, BJ has the worst response time for all conditions, while SHJ and AJO
behave similar to each other. As the data size of R1 increases, the response time of
BJ increases as well due to waiting for the arrival of all tuples of R1 and sending
them to the endpoint of R2. On the other hand, SHJ and AJO can generate the first
result tuple as soon as there is a match between R1 and R2, without waiting for all
tuples of R1 to arrive.

59

(a) Response time (b) Completion time

(c) Speedup of AJO compared to SHJ (d) Speedup of AJO compared to BJ

Figure 4.1. Data arrival rates of R1 and R2 are fixed

Completion time of BJ is shorter than others when the cardinality of R1 is
low and the cardinality of R2 is medium or high, as shown in Figure 4.1.b. On the
other hand, SHJ and AJO perform better than BJ in seven of nine conditions. AJO’s
completion time is the best when the cardinality of R1 is medium or high, and the
cardinality ofR2 is low. Also, AJO’s completion time is faster than SHJ’s when the
cardinality of R1 is low and the cardinality of R2 is medium or high.

The speedup2 values between AJO and SHJ can be seen in Figure 4.1.c. Al-
though they have almost the same response time for all cases, the completion time
of AJO is 3 times as fast compared to SHJ when one of the relation’s cardinality
is high and the other one’s is low. As Figure 4.1.d displays, compared to BJ, AJO
provides speedup in response time from 5.9 times to 45.5 times. AJO also provides
speedup in completion time up to 6 times except two cases.

Impact of Data Arrival Rates

In this case, we fixed the data arrival rate of R1 to 2 Mbps and changed the
data arrival rate of R2. We conducted the simulations for two different cardinality
options: i) low cardinality of R1 and high cardinality of R2; ii) high cardinality of
R1 and low cardinality of R2.

2Speedup of x compared to y (response time) = response time of y / response time of x
Speedup of x compared to y (completion time) = completion time of y / completion time of x

60

(a) Response time (b) Completion time

(c) Speedup of AJO compared to SHJ (d) Speedup of AJO compared to BJ

Figure 4.2. Data sizes of R1 and R2 are fixed with card(R1)≪ card(R2)

Low Cardinality of R1 and High Cardinality of R2

As Figure 4.2.a shows, SHJ and AJO provide almost the same response time.
On the other hand, the response time of BJ is always longer than SHJ’s and AJO’s.
The gap between the response times of BJ and the others increases when the data
arrival rate of R2 gets slower.

Figure 4.2.b displays the completion times of SHJ, BJ, and AJO. BJ provides
shorter completion times than others in all data arrival rate conditions because the
first relation’s cardinality is low. However, AJO always provides shorter completion
time than SHJ due to changing the join method as BJ during the execution. As the
data arrival rate of the second relation gets faster, the difference between BJ and
others decreases.

As shown in Figure 4.2.c, compared to SHJ, AJO has almost the same response
time, however it can provide speedup in completion time up to 3.4 times. Although
the speedup decreases while the second relation’s data arrival rate increases, we
expect it to be nearly 1 in the worst case. The reason of this is based on the working
principal of AJO. It changes the join method to BJ when it estimates that BJ is more
efficient than SHJ. Otherwise, AJO does not change the join method; it continues
with SHJ. Compared to BJ, AJO degrades completion time up to 0.8 times, however
it can improve the response time up to 4.9 times, as illustrated in Figure 4.2.d.

61

(a) Response time (b) Completion time

(c) Speedup of AJO compared to SHJ (d) Speedup of AJO compared to BJ

Figure 4.3. Data sizes of R1 and R2 are fixed with card(R1)≫ card(R2)

High Cardinality of R1 and Low Cardinality of R2

The results observed from Figure 4.3.a are similar to the results in Figure 4.2.a.
Since the cardinality of the first relation is high in this case, the response time of BJ
is dramatically longer than SHJ’s and AJO’s. The response times of SHJ and AJO
are nearly the same.

As shown in Figure 4.3.b, the completion times of SHJ and AJO are shorter
than the completion time of BJ in all of the conditions because the first relation’s
cardinality is high. AJO performs better than SHJ in all data arrival rate conditions.
It changes the join method to BJ and the join order when all the tuples of the second
relation arrive.

Compared to SHJ, AJO has almost the same response time, however the speedup
in completion time varies from 1.4 times to 2.2 times as illustrated in Figure 4.3.c.
Compared to BJ, AJO improves both the response time and the completion time as
displayed in 4.3.d. The speedup in response time increases from 11 times to 34.3
times while the speedup in completion time varies from 2.8 to 6.2 times.

62

Discussion on the Performance Evaluation

Simulation results showed that SHJ performs the best response time because it
can generate the first result tuple as soon as possible. AJO has the same advantage in
response time since it always uses SHJ in the beginning. BJ provides longer response
time because it has the disadvantage of waiting the results of the first relation. As the
cardinality of the first relation increases, this disadvantage becomes more evident.

BJ can provide shorter completion time when the cardinality of the first rela-
tion is low. The gap between SHJ and BJ increases as the cardinality of the other
relation increases. On the other hand, AJO can change the join method to BJ in these
cases.

To conclude, SHJ provides the shortest response time, whereas the owner of
the best performance in completion time is changed according to the cardinalities
of relations and data arrival rates. AJO provides optimal response time due to be-
ginning with SHJ. On the other hand, AJO can change the join method to BJ if it
decides that it provides shorter completion time than SHJ. It can also change the
join order in order to minimize the completion time. In brief, AJO provides optimal
response time and completion time for single join queries.

4.2.2 Performance Evaluation for Multi-Join Queries

In this subsection, we analyze the performances of multi-way symmetric hash
join (MSHJ), BJ and AJO when there are three relations in the query.

Listing 4.1 displays a query example that we use in our experiments. R1

(service1) andR2 (service2) have a common attribute, ?student,R2 andR3 (service3)
have a common attribute, ?course.

Listing 4.1. Query example

63

Impact of Data Sizes

In order to show the impact of data sizes on the behaviours of MSHJ, BJ, and
AJO, we fixed the data arrival rates of all relations to 0.5 Mbps. We conducted
our experiments when the data sizes of R1, R2, R3 were low-low-low (LLL), low-
medium-high (LMH), low-high-high (LHH), high-medium-low (HML), high-high-
low (HHL), and high-high-high (HHH).

As Figure 4.4.a shows, the response times of MSHJ and AJO are almost the
same, whereas BJ’s response time is substantially longer in cardinality conditions.
On the other hand, as illustrated in Figure 4.4.b, BJ provides the best completion time
when the first relation’s cardinality is low. However, AJO’s completion time is quite
similar because it can change the join method to bind join in these conditions. When
the first relation’s cardinality is high, BJ’s completion time becomes substantially
longer while AJO has the best performance due to changing the join order.

As shown in Figure 4.4.c, compared to MSHJ, AJO has almost the same re-
sponse time, however it can provide speedup in completion time up to 2.2 times.
Speedup comparison between AJO and BJ is displayed in Figure 4.4.d. Compared
to BJ, AJO degrades completion time 0.85 times when the cardinalities are LMH
and LHH, however it provides speedup in completion times in other conditions.
The speedup value differs from 2.62 times to 6.56 times. In addition, AJO provides
speedup in response time in all conditions, which is between 5.75 and 47.38 times.

Impact of Data Arrival Rates

Our aim in this case is to show the effect of different data arrival rates on the
performances of MSHJ, BJ, and AJO. For this reason, we fixed the data arrival rates
of R1 and R3 to 2 Mbps and changed the data arrival rate of R2

We conducted the simulations for two different cardinality options: i) low
cardinality ofR1, high cardinality ofR2, and high cardinality ofR3 (LHH); ii) high
cardinality of R1, high cardinality of R2 and low cardinality of R3 (HHL).

LowCardinality ofR1, HighCardinality ofR2, andHighCardinality
of R3

In this case, as displayed in Figure 4.5.a, BJ has the worst response time in all
data arrival rates of R2, while MSHJ and AJO have almost the same response time.
However, as shown in Figure 4.5.b, BJ’s completion time is shorter than MSHJ’s

64

(a) Response time (b) Completion time

(c) Speedup of AJO compared to MSHJ (d) Speedup of AJO compared to BJ

Figure 4.4. Data arrival rates of R1, R2 and R3 are fixed

completion time which has the disadvantage of waiting all the tuples of R2 and R3.
On the other hand, AJO performs much better than MSHJ. Its completion time is
close to BJ’s completion time because it changes the join method to BJ for R1 and
R2, and (R1✶R2) and R3 during the execution. The reason of the success of BJ in
completion time is related to the low cardinality of the first relation.

Figure 4.5.c illustrates the speedup of AJO compared to MSHJ with respect to
the response time and the completion time. MSHJ’s completion time is related to the
time of the latest arrival of the relation. Hence MSHJ’s completion time is related
to the arrival times ofR2 andR3 because the data arrival rates ofR1 andR2 are the
same (2 Mbps), while the cardinalities of them are low and high, respectively. Its
completion time does not change when the data arrival ofR2 is equal or faster than 2
Mbps. In other words, the completion time ofMSHJ remains the same after this data
arrival rate of R2 because the tuples of R3 arrive lastly. On the other hand, AJO’s
completion time decreases as the data arrival of R2 increases. Compared to MSHJ,
AJO has almost the same response time but it can provide speedup in completion
time up to 3.4 times.

As Figure 4.5.d shows, compared to BJ, AJO degrades the completion time up
to 0.8 times, it can improve the response time up to 3.9 times. Although BJ provides
shorter completion time since the first relation cardinality is low, AJO can decide to
change the join method to BJ during the execution.

65

(a) Response time (b) Completion time

(c) Speedup of AJO compared to MSHJ (d) Speedup of AJO compared to BJ

Figure 4.5. Data sizes of R1, R2, R3 are fixed with card(R1)≪ card(R2) = card(R3)

HighCardinality ofR1, HighCardinality ofR2, andLowCardinality
of R3

The results observed from Figure 4.6.a are similar to the results in Figure 4.5.a.
BJ performs the worst response time again, whereas MSHJ and AJO have almost
the same response time. However, the gap between the response times of BJ and
the others’ are dramatically high because the first relation’s cardinality is high. As
the data arrival rate of the second relation increases, response times of all of them
decreases.

Figure 4.6.b compares performances of MSHJ, BJ, and AJO with respect to
their completion times. AJO has the best completion time in all conditions. The
completion times of AJO and BJ decreases as the data arrival rate of R2 increases.
On the other hand, the completion time of MSHJ remains constant when the data
arrival rate of R2 is more than 2 Mbps since R1’s cardinality is high and its data
arrival rate is 2 Mbps.

Compared toMSHJ, AJO has almost the same response time but it can provide
speedup in completion time up to 3.4 times as shown in Figure 4.6.c. Compared to
BJ, AJO improves both the response time and the completion time up to 43.9 times
and 6.5 times, respectively, as illustrated in Figure 4.6.d.

66

(a) Response time (b) Completion time

(c) Speedup of AJO compared to MSHJ (d) Speedup of AJO compared to BJ

Figure 4.6. Data sizes of R1, R2, R3 are fixed with card(R1) = card(R2)≫ card(R3)

Discussion on the Performance Evaluation

We analyzed the impact of cardinalities and data arrival rates of relations in
this subsection. Simulation results showed that MSHJ provides the best response
time in all cases and AJO has almost the same response time due to beginning with
MSHJ. The response time of BJ is mostly affected by the first relation’s cardinality.

When we focus on the completion time, we see that MSHJ’s completion time
depends on the data arrival rate of the relation which has the highest cardinality. BJ’s
completion time is the best when the first relation’s cardinality is low, however it
performs the worst completion time when the first relation’s cardinality is high. On
the other hand, AJO has the closest completion time to BJ when the first relation’s
cardinality is low. AJO can provide the best completion time when the first rela-
tion’s cardinality is high since it can change the join order and the join method. In
both cardinality cases, completion times of both BJ and AJO decrease as the second
relation’s data arrival gets faster.

In conclusion, AJO provides both optimal response time and completion time
for multi-join queries due to beginning with MSHJ and having the ability to change
the join method during the execution. The adaptive join operator can also change
the join order.

67

4.3 Performance EvaluationOf ExtendedAdaptive JoinOperator

In this section, we analyze and evaluate performances of symmetric hash join
(or multi-way symmetric hash join), bind join, bind-bloom join, adaptive join op-
erator, and extended adaptive join operator for single join queries and multi-join
queries. Focus of the evaluation is on their performances with respect to the re-
sponse time and the completion time since the goal of query optimization in query
federation is to minimize them both. Speedup3 comparison between our previous
proposal, adaptive join operator (Oguz et al., 2016), and extended adaptive join op-
erator is also presented to be self-contained and to show the contribution of our new
proposal.

Although we assume that the common attribute values are unique in the per-
formance evaluation of the adaptive join operator in Section 4.2, we consider the
possibility of including duplicate values on the common attributes of relations in
the performance evaluation of the extended adaptive join operator. Average dupli-
cation factors on the common attributes of relations are assigned randomly between
1 and 5, both inclusive. Average duplication factor = 1 means that there are not any
duplicates, whereas average duplication factor = 5 means that there are 5 duplicates
per value in average on the common attributes of the relations. For this reason, we
ran each test 100 times when we assigned the duplication factors randomly. In some
cases, we fixed the average duplication factors in order to understand the impact of
the duplication factors as well. We used 8 bits per each element and 6 hash functions
for bind-bloom join.

4.3.1 Performance Evaluation for Single Join Queries

In this subsection, we compare extended adaptive join operator (EAJO) with
symmetric hash join (SHJ), bind join (BJ), bind-bloom join (BBJ), and adaptive join
operator (AJO) in two cases. Our aim is to show the impact of data sizes in the first
case, while we focus on the effect of different data arrival rates in the second case.

In addition, we compare AJO and EAJO with different m/n values and k

independent hash functions where m refers to the number of bits in the bit vector,
and n refers to the number of elements in the set. The aim in this case is to show the
impact of bit vector size for the extended adaptive join operator.

3Speedup of x compared to y (%) = (completion time of y - completion time of x) / (completion
time of y) * 100

68

Impact of Data Sizes

The behaviours of the SHJ, BJ, BBJ, AJO, and EAJO were analyzed when the
data arrival rates of both endpoints were fixed to 0.5Mbps while the data sizes ofR1

andR2were changed. In order to analyze all conditions, we calculated the response
times and the completion timeswhen the data sizes ofR1 andR2were low-low (LL),
low-medium (LM), low-high (LH), medium-low (ML), medium-medium (MM),
medium-high (MH), high-low (HL), high-medium (HM), and high-high (HH), re-
spectively. Average duplication factors on the common attributes of relations were
given randomly between 1 and 5, both inclusive.

As Figure 4.7.a shows, for all conditions, BJ and BBJ have longer response
times than SHJ, AJO, and EAJO which behave similarly. As the data size of R1

increases, the response times of BJ and BBJ increase as well, due to waiting for the
arrival of all results ofR1 and sending the unique common attributes to the endpoint
of R2. As a result of using a bloom filter for sending the common attributes in BBJ,
it provides a slightly better response time than BJ. SHJ, AJO, and EAJO can generate
the first result tuple as soon as there is a match betweenR1 andR2, without waiting
for all tuples of R1 to arrive.

BBJ’s completion time is always shorter than BJ’s due to the bloom filter us-
age as illustrated in 4.7.b. For this reason, we consider the completion times of BBJ
instead of BJ’s for comparing with others. When the cardinalities are low-medium,
low-high and medium-high, (i.e., |R1| < |R2|), BBJ’s completion time is the short-
est. However, EAJO’s completion time is quite similar to BBJ’s because it changes
the join method to BBJ when it decides that it is more efficient than SHJ or BJ. EAJO
performs the best when the cardinalities of relations are medium-low, high-low and
high-medium (i.e., |R1| > |R2|), respectively. When the cardinalities ofR1 andR2

are the same, low-low, medium-medium, high-high, SHJ, AJO, and EAJO provide
the best performance in completion time at the same time. The data arrival rates and
the cardinalities of the relations are the same in these cases. As a result, all the tuples
of both relations arrive at the same time. SHJ is the most efficient join method for
these cases. Both AJO and EAJO, therefore, decide to continue with SHJ in such
cases. To conclude the comparison of completion times, we can say that EAJO has
the capability to choose the most efficient join method during the execution. For
this reason, it provides or shares the best completion time in six of nine conditions.
Also, it has themost similar completion time to the best join method in the remaining
three conditions.

69

(a) Response time (b) Completion time

(c) Speedup of EAJO compared to AJO

Figure 4.7. Data arrival rates of R1 and R2 are fixed

Figure 4.7.c shows the achieved speedup in completion time by EAJO com-
pared to AJO. As shown in the figure, EAJO provides speedup between 17.8% and
19.4% when the cardinalities of relations are different. The reason of the differ-
ence between the speedup percentages is based on the different average duplication
factors. We can say the speedup of EAJO compared to AJO is 18.2% in average.
EAJO does not provide speedup when the cardinalities of relations are the same,
because both AJO and EAJO decide to continue with SHJ for the reasons explained
previously.

Impact of Data Arrival Rates

In this case, we fixed the data arrival rate of R1 and changed the data arrival
rate of R2. We conducted the simulations for two different cardinality options: i)
low cardinality of R1 and high cardinality of R2; ii) high cardinality of R1 and
low cardinality of R2. Average duplication factors on the common attributes of
relations were given randomly between 1 and 5, both inclusive. However, we fixed
the average duplication factors in speedup comparison between EAJO and AJO in
order to understand the impact of the duplication factors as well.

Low Cardinality of R1 and High Cardinality of R2

We conducted the simulations for two different conditions: i) when the data
arrival rate of R1 was fixed to 2 Mbps, and ii) when the data arrival rate of R1 was

70

(a) Response time when data arrival rate ofR1 is fixed to
2 Mbps and data arrival rate of R2 is changed

(b) Response time when data arrival rate ofR1 is fixed to
0.5 Mbps and data arrival rate of R2 is changed

(c) Completion time when data arrival rate ofR1 is fixed
to 2 Mbps and data arrival rate of R2 is changed

(d) Completion time when data arrival rate ofR1 is fixed
to 0.5 Mbps and data arrival rate of R2 is changed

Figure 4.8. Data sizes of R1 and R2 are fixed with card(R1)≪ card(R2)

fixed to 0.5 Mbps. As Figures 4.8.a and 4.8.b show, BJ’s and BBJ’s response times
are always longer than the response times of SHJ, AJO, and EAJO. The gap between
the response times of BJ and BBJ; and the others increases when the data arrival rate
of R2 gets slower. SHJ provides the shortest response time in both conditions. AJO
and EAJO provide almost the same response time due to beginning with SHJ. Thus,
SHJ, AJO, and EAJO are the best in terms of response time at the same time.

As displayed in Figure 4.8.c, BBJ’s completion time is always shorter than
BJ’s due to the usage of bloom filter. For this reason, we consider the completion
time of BBJ instead of the completion time of BJ when we compare the completion
times of operators. BBJ provides the shortest completion time in all conditions,
because the first relation’s cardinality is low and its data arrival rate is relatively
fast. As the data arrival rate of the second relation gets faster, EAJO provides similar
completion time with BBJ. The completion time of EAJO is always faster than SHJ
and AJO.

Figure 4.8.d shows the completion time comparison when the first relation’s
data arrival rate is fixed to 0.5Mbps. BBJ provides the shortest completion time until
the second relation’s data arrival rate is 4.5 Mbps. However, EAJO has almost the
same completion time with BBJ because it has the ability to change the join method
to BBJ during the execution. When the second relation’s data arrival rate is faster or

71

Table 4.1. Speedup of EAJO compared to AJO when card(R1) ≪ card(R2) and the data arrival
rate of R1 is 2 Mbps

Data arrival rate
of R2 in Mbps

Average duplication factors

1 2 5

35.28% 22.53% 11.57%
25.65% 13.99% 7.07%
20.39% 10.71% 5.70%
15.99% 8.47% 4.80%
12.51% 7.44% 4.47%
10.55% 6.81% 4.32%
9.64% 6.37% 4.24%

Table 4.2. Speedup of EAJO compared to AJO when card(R1) ≪ card(R2) and the data arrival
rate of R1 is 0.5 Mbps

Data arrival rate
of R2 in Mbps

Average duplication factors

1 2 5

30.61% 18.62% 9.16%
17.29% 8.72% 4.20%
12.41% 6.08% 3.12%
9.75% 4.91% 2.71%
− 4.27% 2.51%

equal to 5.5 Mbps, SHJ provides the shortest completion time. In these cases, AJO
and EAJO have the same completion time due to changing the join method to SHJ.
In brief, the winner of the completion time is changed according to the data arrival
rates. However, EAJO can choose the best join method during the execution.

Table 4.1 shows the speedup in completion time of EAJO compared to AJO
when the data arrival rate of R1 is fixed to 2 Mbps and the data arrival rate of R2

is changed from 0.5 Mbps to 6.5 Mbps. The used average duplication factors are
1, 2 and 5, respectively where 1 means there are not any duplicates. For each data
arrival rate of R2, AJO and EAJO change the join method to BJ and BBJ, respec-
tively. Although EAJO provides speedup in all cases, due to decreasing the data
size of unique common attributes by using a bloom filter, the speedup decreases as
the second relation’s data arrival rate increases. The reason of this decrease in the
speedup is because of the effect of the decrease in the size of the sent data as the net-
work speed increases. Another key point to remember is that the speedup remains
quite similar after a certain point due to the same reason.

72

(a) Response time when data arrival rate ofR1 is fixed to
2 Mbps and data arrival rate of R2 is changed

(b) Response time when data arrival rate ofR1 is fixed to
0.5 Mbps and data arrival rate of R2 is changed

(c) Completion time when data arrival rate ofR1 is fixed
to 2 Mbps and data arrival rate of R2 is changed

(d) Completion time when data arrival rate ofR1 is fixed
to 0.5 Mbps and data arrival rate of R2 is changed

Figure 4.9. Data sizes of R1 and R2 are fixed with card(R1)≫ card(R2)

Table 4.2 shows the speedup gained by EAJO when the first relation’s data
arrival rate is fixed to 0.5 Mbps. In this case, EAJO provides speedup until the
second relation’s data arrival rate is equal or faster than 4.5 Mbps, because both
AJO and EAJO decide to continue with SHJ after this data arrival rate. As shown
in both Table 4.1 and Table 4.2, the speedup decreases as the average duplication
factors increase.

High Cardinality of R1 and Low Cardinality of R2

We again conducted the simulations for two different conditions: i) when the
data arrival rate of R1 is fixed to 2 Mbps, and ii) when the data arrival rate of R1 is
fixed to 0.5 Mbps.

The results observed from Figure 4.9.a and Figure 4.9.b are similar to the
results in Figure 4.8.a and Figure 4.8.b, respectively. Since the cardinality of the
first relation is high in this case, response times of BJ and BBJ are substantially
longer than SHJ and also longer than AJO and EAJO as expected. The response
times of SHJ, AJO, and EAJO are nearly the same.

As illustrated in Figure 4.9.c, EAJO provides the best completion time in all
data arrival rates of the second relation. SHJ, BJ, and BBJ should wait the arrival

73

Table 4.3. Speedup of EAJO compared to AJO when card(R1) ≫ card(R2) and the data arrival
rate of R1 is 2 Mbps

Data arrival rate
of R2 in Mbps

Average duplication factors

1 2 5

14.47% 7.12% 3.53%
20.92% 10.89% 5.58%
22.80% 12.08% 6.26%
23.24% 12.37% 6.42%
23.24% 12.37% 6.42%
23.24% 12.37% 6.42%

Table 4.4. Speedup of EAJO compared to AJO when card(R1) ≫ card(R2) and the data arrival
rate of R1 is 0.5 Mbps

Data arrival rate
of R2 in Mbps

Average duplication factors

1 2 5

30.61% 18.62% 9.16%
33.51% 21.00% 10.60%
35.28% 22.53% 11.57%
37.37% 24.40% 12.81%
37.37% 24.40% 12.81%
39.80% 26.69% 14.39%
39.80% 26.69% 14.39%

of all tuples related to the first relation whose cardinality is high. However, AJO
and EAJO can change the join method and the join order when the second relation’s
tuples all arrive. Compared to AJO, EAJO has the advantage of changing the join
method to BBJ. Figure 4.9.d compares the completion times when the first relation’s
data arrival rate is fixed to 0.5 Mbps. The results are similar to the previous one.
EAJO provides the shortest completion time once again. The gap between EAJO
and the others is even higher.

Table 4.3 and Table 4.4 show the gained speedup in completion time by EAJO
compared to AJO. In all conditions, both AJO and EAJO change the join order as
R2 ✶ R1. Actually, the gained time of EAJO compared to AJO remains the same,
because the unique common attributes are sent to the endpoint of R1, and its data
arrival rate is fixed. However, overall time decreases up to a certain value as the data
arrival rate ofR2 increases. For this reason, the speedup increases up to that certain
value for both conditions as the data arrival rate of R2 increases. The speedup also

74

increases as the average duplication factors decrease.

Impact of Bit Vector Size

As explained in Section 3.3.1, a bloom filter represents a setS = {e1, e2,…, en}
of n elements in a vector v ofm bits. Initially all the bits are set to 0. Then, k inde-
pendent hash functions, h1, h2, …, hk, with range {1,…,m} are used. In this part,
we aim to analyze the impact ofm/n by changing it between 2 and 22. In eachm/n

value, we used the number of hash functions, k, which minimizes the false positive
rate (Fan et al., 2000). Table 4.5 shows the m/n and k combinations used in our
experiments. In order to analyze the impact of the bit vector size, we set different
m/n values while we fixed the data arrival rates of both endpoints to 2 Mbps, and
the cardinalities of relations to low and high, respectively.

Since AJO does not use a bloom filter, its completion time remained the same
in all cases. In other words, we compared the completion times of AJO and EAJO
when the data arrival rates of both relations and the cardinalities of relations were
fixed, while differentm/n values were used in EAJO. First, the average duplication
factors on the common attribute of relations were given randomly between 1 and 5,
both inclusive. Second, the average duplication factors were set to 2.

Table 4.5. Them/n and k combinations used for bloom filter

m/n k

2 1
4 3
6 4
8 6
10 7
12 8
14 10
16 11
18 12
20 14
22 15

Figure 4.10.a shows the achieved speedup in completion time by EAJO com-
pared to AJO in differentm/n values when the average duplication factors are given
randomly. The results observed from the experiment appears to suggest that the
gained speedup is not affected by them/n value when it is between 6 and 20, inclu-
sively. The best performance is provided when them/n is equal to 8.

75

(a) Random average duplication factors (b) Fixed average duplication factors

Figure 4.10. Speedup of EAJO compared to AJO when them/n and k combinations used

Figure 4.10.b shows the gained speedup in completion time by EAJO when
the average duplication factors are equal to 2. The results are similar to the results
in Figure 4.10.a. The speedup values are almost the same when them/n is between
8 and 16.

Discussion on the Performance Evaluation

The simulation results demonstrated that SHJ provides the best response time
in all conditions since it is a non-blocking join operator. It produces the first re-
sult tuple as early as possible. Our previous and current proposals, namely AJO
and EAJO, provide almost the same response time with SHJ, due to setting the join
method as SHJ in the beginning. The response times of BJ and BBJ are dramati-
cally longer because of waiting for all tuples of the first relation to arrive. On the
other hand, BJ or BBJ can provide better completion times when the first relation’s
cardinality is low and the second relation’s cardinality is high. However, AJO can
change the join method to BJ, and EAJO can change the join method to BJ or BBJ
in this condition.

EAJO provides the best completion time when the first relation’s cardinality
is high and the second relation’s cardinality is low. This conclusion is valid in all
data arrival combinations that we tested.

To conclude, SHJ is the most successful join method with respect to response
time. However, the best join method in completion time can differ according to the
cardinalities and the data arrival rates of relations. In addition, the results showed
that BBJ provides better completion times than BJ in all conditions. Our proposal,
EAJO, provides an optimal response time by beginning with SHJ. It provides an
optimal completion time by changing the join method or join order during the ex-
ecution. In brief, EAJO gives the best trade-off between the response time and the

76

completion time. Another key fact to remember is that EAJO always provides better
completion time than AJO.

4.3.2 Performance Evaluation for Multi-Join Queries

In this subsection, we compare EAJO with multi-way symmetric hash join
(MSHJ), BJ, BBJ, and AJO when there are three relations in the query. We use the
same example query in our experiments which is given in Section 4.2.2.

We have conducted our experiments in two main cases. Our aim in the first
case is to show the impact of data sizes, while we want to show the impact of data
arrival rates in the second case.

Impact of Data Sizes

Since our aim in this case is to show the impact of data sizes, we fixed the
data arrival rates of all relations to 0.5 Mbps. We conducted our experiments when
the data sizes of R1, R2, R3 were low-low-low (LLL), low-medium-high (LMH),
low-high-high (LHH), high-medium-low (HML), high-high-low (HHL), and high-
high-high (HHH).

Figure 4.11.a, Figure 4.11.b and Figure 4.11.c compare the response times of
MSHJ, BJ, BJBF, AJO, and EAJO when the average duplication factors are 1, 2 and
5, respectively. In all average duplication factors, MSHJ, AJO, and EAJO provide
the best response time, whereas BJ performs the worst one and BBJ follows it. When
the cardinality of the first relation is high, the response times of BJ and BBJ become
dramatically longer due to waiting for the arrival of all results of the first relation.
As the duplication factor increases, the response times of BJ and BBJ shorten due to
the decrease in the number of unique common attribute values. In other words, the
number of attribute values to send to the other endpoints is decreased as the average
duplication factor increases. Although the response times of BJ and BBJ decrease
as the average duplication factor increases, their response times are dramatically
longer than MSHJ, AJO, and EAJO.

Figures 4.11.d, 4.11.e and 4.11.f show the completion times of MSHJ, BJ,
BBJ, AJO, and EAJO.When the cardinalities are HML or HHL, EAJO performs the
best completion time and AJO has the closest completion time to it. The difference
between EAJO and others, except AJO, is substantially high. When the cardinalities
of all relations are the same, namely LLL or HHH, MSHJ, AJO, and EAJO share

77

(a) Response time when average duplication factors are 1 (b) Response time when average duplication factors are 2

(c) Response time when average duplication factors are 5 (d) Completion time when average duplication factors
are 1

(e) Completion time when average duplication factors
are 2

(f) Completion time when average duplication factors
are 5

Figure 4.11. Data arrival rates of R1, R2 and R3 are fixed

the best completion time, whereas BJ performs the worst. When the cardinalities are
LMH or LHH, BBJ performs the shortest completion time. EAJO’s completion time
is the second best when the average duplication factors are 1. BJ performs slightly
better than EAJO when the average duplication factors are 2 or 5. To conclude,
EAJO performs or shares the best completion time in four of six cases due to having
the adaptation ability.

Table 4.6 displays the speedup in completion time of EAJO compared to AJO
when the data arrival rates of R1, R2 and R3 are fixed. As shown in the table,
when the cardinalities of relations are different, EAJO provides speedup from 6.40%
to 31.33%. Although the speedup is not affected by the cardinalities of relations,
it increases as the average duplication factors decrease. EAJO does not provide
speedup when the cardinalities of relations are the same, because both AJO and
EAJO decide to continue with MSHJ.

78

Table 4.6. Speedup of EAJO compared to AJO when data arrival rates are fixed

Data sizes of R1,
R2 and R3

Average duplication factors

1 2 5

31.33% 16.55% 6.40%
31.33% 16.55% 6.40%
31.33% 16.55% 6.40%
31.33% 16.55% 6.40%

Impact of Data Arrival Rates

In this case, we fixed the data arrival rates of R1 and R3 to 2 Mbps, and
changed the data arrival rate of R2 in order to show the impact of data arrival rates
on MSHJ, BJ, BBJ, AJO, and EAJO. We conducted the simulations for two differ-
ent cardinality options: i) low cardinality of R1, high cardinality of R2, and high
cardinality of R3 (LHH); ii) high cardinality of R1, high cardinality of R2, and low
cardinality of R3 (HHL). LHH and HHL are chosen because EAJO performs the
worst and the best completion times among their results with other combinations
in the previous section. Since we showed the effect of average duplication factors
previously, we fixed the average duplication factors to 2 in these experiments.

LowCardinality of R1, High Cardinality of R2, High Cardinality of
R3

Figure 4.12.a shows the response times of MSHJ, BJ, BBJ, AJO, and EAJO
when the cardinalities of relations are low, high and high, respectively. As shown
in the figure, response times of MSHJ, AJO, and EAJO are almost the same, while
BJ’s and BBJ’s response times are highly longer than them.

Figure 4.12.b indicates that the completion times in ascending order are of
BBJ, BJ, EAJO, AJO, and MSHJ. When the first relation’s cardinality is low and
its data arrival is relatively fast, BBJ and BJ provide better completion times. The
completion time ofMSHJ is the worst one in all cases due to having the disadvantage
of waiting all the tuples of R2 and R3. However, AJO and EAJO change their join
methods to BJ and BBJ, respectively, when the tuples of the first relation all arrive.
Therefore, EAJO performs almost the same completion time with BJ, and provides
slightly worse completion time than BBJ. BBJ’s and BJ’s both response times and
completion times would increase, if the first relation’s cardinality were medium or
high.

79

(a) Response time (b) Completion time

(c) Speedup of EAJO compared to AJO

Figure 4.12. Data sizes of R1, R2 and R3 are fixed with card(R1)≪ card(R2) = card(R3)

Figure 4.12.c shows the speedup in completion time of EAJO compared to
AJO when the data arrival rate of R1 is fixed to 2 Mbps and the data arrival rate of
R2 is changed, with card(R1)≪ card(R2) = card(R3). The speedup decreases as
the second relation’s data arrival rate increases, because the impact of the decrease in
the size of the sent data over the network decreases as the network speed increases.

High Cardinality of R1, High Cardinality of R2, Low Cardinality of
R3

The results observed from Figure 4.13.a are similar to the results in Figure
4.12.a. BJ and BBJ provide the worst response time again, whereas MSHJ, AJO,
and EAJO have almost the same response time. Since the cardinality of the first
relation is high in this case, response times of BJ and BBJ are dramatically longer
than others.

EAJO provides the best completion time in all cases as shown in Figure 4.13.b.
The completion times in ascending order are of EAJO, AJO, MSHJ, BBJ, and BJ
when the second relation’s data arrival rate is equal or faster than 1.5 Mbps. EAJO
and AJO have the advantage of using BJ or BBJ when the tuples of R3 all arrive,
whose cardinality is low. EAJO outperforms AJO in all cases due to the usage of
bloom filter for sending the common attributes.

Figure 4.13.c illustrates the speedup in completion time of EAJO compared to

80

(a) Response time (b) Completion time

(c) Speedup of EAJO compared to AJO

Figure 4.13. Data sizes of R1, R2 and R3 are fixed with card(R1) = card(R2)≫ card(R3)

AJO when the data arrival rate of R1 is fixed to 2 Mbps and the data arrival rate of
R2 is changed, with card(R1) = card(R2)≫ card(R3). Compared to AJO, EAJO
provides speedup in completion time due to the usage of bloom filter. It sends less
data size through the network. The speedup decreases while the second relation’s
data arrival rate increases, because the effect of the decrease in the size of the sent
data decreases as the network speed increases. The results are the same with the
results in Figure 4.12.c. The cardinalities of R1, R2 and R3 are low-high-high and
high-high-low in these cases, respectively. The common attributes exist between
R1 - R2; and R2 - R3. In the first case, when the cardinalities are low-high-high,
the tuples of R1 all arrive firstly, and AJO and EAJO change the join method for
R1 and R2 to BJ or BBJ, respectively. In the second case, when the cardinalities
are high-high-low, the tuples of R3 all arrive firstly. As a result, AJO and EAJO
change the join method for R3 and R2 to BJ or BBJ, respectively. For this reason,
the achieved speedups are the same in both cases.

Discussion on the Performance Evaluation

The simulation results showed thatMSHJ, which is a non-blocking joinmethod,
provides the best response time in all conditions. AJO and EAJO have almost the
same response timewithMSHJ, due to setting the join method asMSHJ at the begin-
ning. The response times of BJ and BBJ are dramatically longer because of waiting
the arrival of all tuples belonging to the first relation.

81

The results also demonstrated that BBJ provides the best completion time
when the first relation’s cardinality is low and the other relations’ cardinalities are
medium or high. However, EAJO can change the join method to BBJ in these con-
ditions. On the other hand, EAJO provides the best completion time when the first
relation’s cardinality is high. This conclusion is valid in all data arrival combinations
that we tested.

In conclusion, MSHJ is the best join method in response time. However, the
best join method in completion time differs according to the relations’ cardinalities
and data arrival rates. EAJO provides an optimal response time by beginning with
MSHJ and an optimal completion time by changing the join method or join order
during the execution. We can conclude that EAJO gives the best trade-off between
the response time and the completion time. We also emphasize that EAJO always
provides better completion time than AJO.

4.4 Conclusion

In this chapter, we presented and discussed the performance evaluations of
adaptive join operator and extended adaptive join operator for single join and multi-
join queries.

The results of the performance evaluation showed the efficiency of the pro-
posed operators. Both of them have almost the same response time with symmetric
hash join and multi-way symmetric hash join, but they can provide faster comple-
tion times. Compared to bind join, adaptive join operator performs substantially
better with respect to the response time and can also improve the completion time.
Extended adaptive join operator performs substantially better with respect to the re-
sponse time than both bind join and bind-bloom join, and it can also improve the
completion time. Moreover, both operators have the adaptation ability to different
data arrival rates.

Extended adaptive join operator has the same response time with adaptive join
operator. However, it provides faster completion times in all conditions, because it
utilizes the bloom filter for sending the common attributes to the other endpoint.
Experimental results also showed that bind-bloom join provides better completion
times than bind join in all conditions. These results allow us to suggest that using
bloom filters in bind join.

In conclusion, adaptive join operator provides optimal response time and com-

82

pletion time for single join queries and multi-join queries. Furthermore, the ex-
tended version of the adaptive join operator succeeds to further reduce the comple-
tion time.

83

5. CONCLUSION AND FUTUREWORK

In this chapter, we review the presented work in this thesis, highlighting the
proposed methods and our contributions. We discuss the performance evaluation
and finally we conclude the thesis by presenting possible future work.

5.1 Thesis Review

Linked Data, which is the fundamental part of the Web of Data, evolves the
current Web into a huge global data space. Since this data space is distributed on
the Web, query optimization is one of the most important research topics in feder-
ated query processing on Linked Data. The objective of query optimization is to
minimize the response time and the completion time. Response time is the time to
generate the first result tuple, while completion time is the time to provide all result
tuples. The communication cost is the dominant cost in them both, hence the goal
of query optimization in federated query processing can be described as to minimize
the communication cost. For this reason, this thesis focuses on minimizing the com-
munication time belonging to the response time and the completion time for query
federation.

Federated queries are executed over the SPARQL endpoints of the Linked
Data sources on the Web. There are various challenges in this distributed envi-
ronment such as inaccurate or missing statistics, and different data arrival rates of
relations. We think that adaptive query optimization (Deshpande et al., 2007) should
be used in order to manage these challenges. Although there are various federated
query engines which use static query optimization (Quilitz and Leser, 2008; Gör-
litz and Staab, 2011b; Schwarte et al., 2011; Akar et al., 2012; Wang et al., 2013;
Yönyül, 2014), there are a few engines which consider adaptive query optimiza-
tion (Acosta et al., 2011; Lynden et al., 2010, 2011). There is another study which
considers adaptive query optimization in some way, called AVALANCHE (Basca
and Bernstein, 2010, 2014). Some of these adaptive studies aim to minimize the
response time (Acosta et al., 2011; Basca and Bernstein, 2010, 2014), whereas the
others aim to minimize the completion time (Lynden et al., 2010, 2011). To the best
of our knowledge, the work in this thesis is the first study in query federation over
SPARQL endpoints that aims to minimize them both.

In this thesis, we first surveyed the literature of federated query processing on
Linked Data and presented the major challenges in this research topic (Oguz et al.,
2015). We believe that this survey contributes to the existing literature and we hope

84

that it will be useful for future research in this area.

Second, we focused on adaptive query optimization, which is one of the chal-
lenges mentioned in the literature survey. We proposed an adaptive join operator
(AJO) (Oguz et al., 2016) in order to minimize both the response time and the com-
pletion time. This operator handles different data arrival rates of relations and miss-
ing statistics. AJO begins with symmetric hash join (SHJ) (Wilschut and Apers,
1991) in order to minimize the response time. It considers changing the join method
to bind join (BJ) (Haas et al., 1997) when all the tuples of a relation arrive. Hence it
can change the join order and the join method during the execution. Moreover, our
proposal works without requiring the predefined statistics.

Finally, we proposed an extended version of adaptive join operator (EAJO)
(Oguz et al., In press) which aims to further reduce the completion time by em-
ploying bind-bloom join (BBJ) (Basca and Bernstein, 2014; Groppe et al., 2015) to
minimize the communication time. We presented both our proposals for single join
and multi-join queries.

In the performance evaluation of this thesis, we compared AJO with SHJ and
BJ with respect to the response time and the completion time. The reason of com-
paring AJO with SHJ and BJ is as follows. SHJ is a non-blocking join operator,
hence it minimizes the response time. On the other hand, BJ can minimize the com-
pletion time in some conditions and also it is the most popular join method among
the federated query engines.

We included BBJ and AJO to the compared methods in the performance study
of EAJO. Response time and completion time were once again chosen as evaluation
metrics to show success in query optimization. We evaluated the mentioned rival
operators in different cases in order to show the impact of data sizes and the impact
of data arrival rates on their performances.

The performance evaluation of this thesis showed the efficiency of the pro-
posed operators. Since SHJ and MSHJ are non-blocking join methods, they provide
the shortest response times for single and multi-join queries, respectively. AJO and
EAJO have almost the same response time with SHJ orMSHJ because of using these
join methods in the beginning. The response times of BJ and BBJ are mostly af-
fected by the cardinality and the data arrival rate of the first relation. Their response
times are dramatically longer because of waiting the arrival of all tuples belonging
to the first relation. As the cardinality of the first relation increases or as the data

85

arrival rate of the first relation decreases, this disadvantage becomes more evident.
The most successful join method in completion time can differ according to the car-
dinalities and the data arrival rates of relations. BJ and BBJ can provide shorter
completion times when the cardinality of the first relation is low. The gap between
them and SHJ or MSHJ increases as the cardinality of the other relation increases.
In addition, BBJ provides shorter completion times than BJ in all conditions.

AJO and EAJO provide almost the same response time with SHJ and MSHJ,
and they can provide faster completion times. Compared to BJ, our proposals per-
form substantially better with respect to the response time and can provide faster
completion times. In addition, EAJO provides substantially faster response time
than BBJ and can improve the completion time as well. Moreover, EAJO provides
faster completion times than AJO in all conditions.

In conclusion, the proposed operators provide the best trade-off between the
response time and the completion time. The performance evaluation revealed that
they are successful in both fixed and different data arrival rates, even though our
main objective is to manage different data arrival rates of relations.

5.2 Future Work

As a future work, we are motivated to consider the case where a relation is
distributed over multiple sources. In this case, we should not only deal with the dif-
ferent data arrival rates of SPARQL endpoints belonging to the relations, but also the
different data arrival rates of SPARQL endpoints belonging to the multiple sources
of each relation.

Our current adaptive join operator calculates the remaining times for possible
join methods when all the tuples of a relation arrive. We plan to extend it with
additional feedback such as changes in the data arrival rates of relations during the
execution. In the current study, we consider the data arrival rates of relations when
a SPARQL endpoint completes the data transfer. By this extension, we can improve
the frequency of feedback of our operator and consider the changes in the data arrival
rates of all relations.

Other possible perspectives are to focus onmetadata management and caching
results which are the other presented challenges in federated query processing on
Linked Data discussed in Section 2.2.5.

86

Verborgh et al. (2014) proposed triple pattern fragments which provide a new
way of publishing Linked Data on the Web. A triple pattern fragment is defined as
a Linked Data Fragment with a triple pattern as selector, count metadata, and the
controls to retrieve other triple pattern fragments of the dataset1. The authors stated
that client-side query processing using triple pattern fragments provides live data
as query processing over SPARQL endpoints. They also remarked that it handles
some challenges of the endpoints such as low bandwidth and high server cost. It
could be an interesting future research topic to study query optimization for queries
over triple pattern fragments.

1http://linkeddatafragments.org/in-depth/#tpf

87

REFERENCES

Acosta, M. and Vidal, M.E., 2015. The Semantic Web - ISWC 2015: 14th Interna-
tional Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015,
Proceedings, Part I, Springer International Publishing, chapter Networks of
Linked Data Eddies: An Adaptive Web Query Processing Engine for RDF
Data, p. 111–127.

Acosta, M., Vidal, M.E., Lampo, T., Castillo, J. and Ruckhaus, E., 2011. ANAP-
SID: An Adaptive Query Processing Engine for SPARQL Endpoints. In The
Semantic Web – ISWC 2011, Springer Berlin Heidelberg, volume 7031 of
Lecture Notes in Computer Science, p. 18–34.

Adali, S., Candan, K.S., Papakonstantinou, Y. and Subrahmanian, V.S., 1996.
Query Caching and Optimization in Distributed Mediator Systems. SIGMOD
Rec., 25(2):137–146.

Akar, Z., Halaç, T.G., Ekinci, E.E. and Dikenelli, O., 2012. Querying the Web
of Interlinked Datasets using VOID Descriptions. In Linked Data on the Web
(LDOW2012).

Alexander, K. andHausenblas,M., 2009. Describing LinkedDatasets - On theDe-
sign and Usage of voiD, the ”Vocabulary of Interlinked Datasets”. In WWW
2009 Workshop: Linked Data on the Web (LDOW2009).

Amsaleg, L., Franklin, M.J. and Tomasic, A., 1998. Dynamic Query Oper-
ator Scheduling for Wide-Area Remote Access. Distributed and Parallel
Databases, 6(3):217–246.

Arcangeli, J., Hameurlain, A., Migeon, F. and Morvan, F., 2004. Mobile Agent
Based Self-Adaptive Join for Wide-Area Distributed Query Processing. Jour-
nal of Database Management (JDM), 15(4):25–44.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R. and Ives, Z., 2007.
DBpedia: A Nucleus for a Web of Open Data. In Proceedings of the 6th
International The SemanticWeb and 2ndAsian Conference onAsian Semantic
Web Conference. Springer-Verlag, Berlin, Heidelberg, ISWC’07/ASWC’07,
p. 722–735.

Avnur, R. and Hellerstein, J.M., 2000. Eddies: Continuously Adaptive Query
Processing. SIGMOD Rec., 29(2):261–272.

Babu, S., Bizarro, P. and DeWitt, D., 2005. Proactive Re-optimization. In Pro-
ceedings of the 2005 ACM SIGMOD International Conference on Manage-
ment of Data. ACM, New York, NY, USA, SIGMOD’05, p. 107–118.

88

REFERENCES (continued)

Basca, C. and Bernstein, A., 2010. Avalanche: Putting the Spirit of the Web Back
into Semantic Web Querying. In Proceedings of the 2010 International Con-
ference on Posters & Demonstrations Track - Volume 658. CEUR-WS.org,
Aachen, Germany, Germany, ISWC-PD’10, p. 177–180.

Basca, C. and Bernstein, A., 2014. Querying a messy web of data with Avalanche.
J. Web Sem., 26:1–28.

Berners-Lee, T., 2006. Linked Data - Design Issues.
. Online, accessed 2017-02-07.

Berners-Lee, T., Fielding, R. and Masinter, L., 2005. Uniform Resource Identi-
fier (URI): Generic Syntax. RFC 3986.

. Online, accessed 2017-04-04.

Berners-Lee, T., Hendler, J. and Lassila, O., 2001. The Semantic Web. Scientific
American, 284(5):34–43.

Bizarro, P., Babu, S., DeWitt, D. and Widom, J., 2005. Content-Based Rout-
ing: Different Plans for Different Data. In Proceedings of the 31st Interna-
tional Conference on Very Large Data Bases. VLDB Endowment, VLDB’05,
p. 757–768.

Bizer, C., Heath, T. and Berners-Lee, T., 2009. Linked Data - The Story So Far.
Int. J. Semantic Web Inf. Syst., 5(3):1–22.

Blanco, E., Cardinale, Y. and Vidal, M.E., 2012. Experiences of sampling-based
approaches for estimating QoS parameters in the Web Service composition
problem. IJWGS, 8(1):1–30.

Bloom, B.H., 1970. Space/Time Trade-offs in Hash Coding with Allowable Errors.
Commun. ACM, 13(7):422–426.

Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S. and Varghese, G.,
2006. An Improved Construction for Counting Bloom Filters, Springer Berlin
Heidelberg, Berlin, Heidelberg, p. 684–695.

Cambazoglu, B.B., Altingovde, I.S., Ozcan, R. and Ulusoy, O., 2012. Cache-
Based Query Processing for Search Engines. ACM Transactions on the Web
(TWEB), 6(4):14.

Charalambidis, A., Konstantopoulos, S. and Karkaletsis, V., 2015a. Dataset
Descriptions for Optimizing Federated Querying. In Proceedings of the 24th
International Conference on World Wide Web. ACM, New York, NY, USA,
WWW’15 Companion, p. 17–18.

89

REFERENCES (continued)

Charalambidis, A., Troumpoukis, A. and Konstantopoulos, S., 2015b. Sema-
Grow: Optimizing Federated SPARQL Queries. In Proceedings of the 11th
International Conference on Semantic Systems. ACM, New York, NY, USA,
SEMANTICS’15, p. 121–128.

Cyganiak, R., Zhao, J., Alexander, K. and Hausenblas, M., 2011. Describing
Linked Datasets with the VoID Vocabulary. .
Online, accessed 2017-04-04.

Deshpande, A., 2004. An Initial Study of Overheads of Eddies. SIGMOD Rec.,
33(1):44–49.

Deshpande, A. and Hellerstein, J.M., 2004. Lifting the Burden of History from
Adaptive Query Processing. In Proceedings of the Thirtieth International Con-
ference onVery LargeData Bases - Volume 30. VLDBEndowment, VLDB’04,
p. 948–959.

Deshpande, A., Ives, Z. andRaman, V., 2007. Adaptive Query Processing. Found.
Trends databases, 1(1):1–140.

Fan, L., Cao, P., Almeida, J. andBroder, A.Z., 2000. Summary Cache: A Scalable
Wide-area Web Cache Sharing Protocol. IEEE/ACM Trans. Netw., 8(3):281–
293.

Fielding, R., Gettys, J., Mogul, J.C., Frystyk, H., Masinter, L., Leach, P.J. and
Berners-Lee, T., 1999. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616.

. Online, accessed 2017-04-04.

Florescu, D., Levy, A., Manolescu, I. and Suciu, D., 1999. Query Optimization in
the Presence of Limited Access Patterns. SIGMOD Rec., 28(2):311–322.

Ford, K., 2013. LC Classification as Linked Data. Italian Journal of Library and
Information Science, 4(1):161–175.

Gan, Q. and Suel, T., 2009. Improved Techniques for Result Caching in Web
Search Engines. In Proceedings of the 18th International Conference onWorld
Wide Web. ACM, WWW’09, p. 431–440.

Gardarin, G. andValduriez, P., 1990. Relational Databases andKnowledge Bases.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Görlitz, O. and Staab, S., 2011a. Federated Data Management and Query Opti-
mization for Linked Open Data. In New Directions in Web Data Management
1, A. Vakali and L.C. Jain, eds., Springer Berlin Heidelberg, volume 331 of
Studies in Computational Intelligence, p. 109–137.

90

REFERENCES (continued)

Görlitz, O. and Staab, S., 2011b. SPLENDID: SPARQL Endpoint Federation Ex-
ploitingVOIDDescriptions. In Proceedings of the Second InternationalWork-
shop on Consuming Linked Data (COLD2011), Bonn, Germany, October 23,
2011. CEUR-WS.org, volume 782 of CEUR Workshop Proceedings.

Gounaris, A., Paton, N.W., Fernandes, A.A.A. and Sakellariou, R., 2002. Adap-
tive Query Processing: A Survey, Springer Berlin Heidelberg, Berlin, Heidel-
berg, p. 11–25.

Groppe, S., Heinrich, D. and Werner, S., 2015. Distributed join approaches for
W3C-conform SPARQL endpoints. Open Journal of Semantic Web (OJSW),
2(1):30–52.

Haas, L.M., Kossmann, D., Wimmers, E.L. and Yang, J., 1997. Optimizing
Queries Across Diverse Data Sources. In Proceedings of the 23rd International
Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc.,
VLDB’97, p. 276–285.

Haase, P., Mathäß, T. and Ziller, M., 2010. An Evaluation of Approaches to
Federated Query Processing over Linked Data. In Proceedings of the 6th In-
ternational Conference on Semantic Systems. ACM, New York, NY, USA,
I-SEMANTICS ’10, p. 5:1–5:9.

Han, W.S., Ng, J., Markl, V., Kache, H. and Kandil, M., 2007. Progressive Op-
timization in a Shared-nothing Parallel Database. In Proceedings of the 2007
ACM SIGMOD International Conference on Management of Data. ACM,
New York, NY, USA, SIGMOD’07, p. 809–820.

Harris, S., Seaborne, A. and Prud’hommeaux, E., 2013. SPARQL 1.1 Query
Language. W3C Recommendation.

. Online, accessed 2017-04-04.

Hartig, O., 2011. Zero-knowledge Query Planning for an Iterator Implementation
of Link Traversal Based Query Execution. In Proceedings of the 8th Extended
Semantic Web Conference on The Semantic Web: Research and Applications
- Volume Part I. Springer-Verlag, Berlin, Heidelberg, ESWC’11, p. 154–169.

Hartig, O., 2013. SQUIN: A Traversal Based Query Execution System for the Web
of LinkedData. In Proceedings of the 2013ACMSIGMOD International Con-
ference on Management of Data. ACM, New York, NY, USA, SIGMOD’13,
p. 1081–1084.

91

REFERENCES (continued)

Hartig, O., 2014. Querying a Web of Linked Data: Foundations and Query Execu-
tion. PhD dissertation, Humboldt-Universität zu Berlin, Germany.

Hartig, O., Bizer, C. and Freytag, J.C., 2009a. Executing SPARQL Queries over
the Web of Linked Data. In The Semantic Web - ISWC 2009, A. Bernstein,
D.Karger, T. Heath, L. Feigenbaum, D.Maynard, E.Motta andK. Thirunarayan,
eds., Springer Berlin Heidelberg, volume 5823 of Lecture Notes in Computer
Science, p. 293–309.

Hartig, O., Bizer, C. and Freytag, J.C., 2009b. Executing SPARQL Queries over
the Web of Linked Data. In The Semantic Web - ISWC 2009, A. Bernstein,
D.Karger, T. Heath, L. Feigenbaum, D.Maynard, E.Motta andK. Thirunarayan,
eds., Springer Berlin Heidelberg, volume 5823 of Lecture Notes in Computer
Science, p. 293–309.

Hartig, O. and Langegger, A., 2010. A database perspective on consuming linked
data on the web. Datenbank-Spektrum, 10(2):57–66.

Hassanzadeh, O. and Consens, M., 2009. Linked Movie Data Base. In Proceed-
ings of the 2nd Linked Data on the Web Workshop (LDOW).

Hose, K. and Schenkel, R., 2012. Towards Benefit-based RDF Source Selec-
tion for SPARQL Queries. In Proceedings of the 4th International Workshop
on Semantic Web Information Management. ACM, New York, NY, USA,
SWIM’12, p. 2:1–2:8.

Ibaraki, T. and Kameda, T., 1984. On the Optimal Nesting Order for Computing
N-relational Joins. ACM Trans. Database Syst., 9(3):482–502.

Ives, Z.G., Florescu, D., Friedman,M., Levy, A. andWeld, D.S., 1999. An Adap-
tive Query Execution System for Data Integration. SIGMODRec., 28(2):299–
310.

Ives, Z.G. and Taylor, N.E., 2008. Sideways Information Passing for Push-Style
Query Processing. In 2008 IEEE 24th International Conference on Data En-
gineering. p. 774–783.

Kabra, N. and DeWitt, D.J., 1998. Efficient Mid-query Re-optimization of Sub-
optimal Query Execution Plans. SIGMOD Rec., 27(2):106–117.

Kache, H., Han, W.S., Markl, V., Raman, V. and Ewen, S., 2006. POP/FED:
Progressive Query Optimization for Federated Queries in DB2. In Proceed-
ings of the 32nd International Conference on Very Large Data Bases. VLDB
Endowment, VLDB’06, p. 1175–1178.

92

REFERENCES (continued)

Klyne, G. and Carroll, J.J., 2004. Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. W3C Recommendation.

. Online, accessed 2017-04-04.

Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M.,
Bizer, C. and Lee, R., 2009. Media Meets Semantic Web — How the BBC
Uses DBpedia and Linked Data to Make Connections. In Proceedings of the
6th European SemanticWeb Conference on The SemanticWeb: Research and
Applications. Springer-Verlag, Berlin, Heidelberg, ESWC 2009 Heraklion, p.
723–737.

Laddhad, K., 2006. Adaptive query processing. Technical Report 05329014, Kan-
wal Rekhi School of Information Technology, Indian Institute of Technology,
Bombay Mumbai.

Lorey, J. andNaumann, F., 2013. Caching and Prefetching Strategies for SPARQL
Queries. In The Semantic Web: ESWC 2013 Satellite Events, P. Cimiano,
M. Fernández, V. Lopez, S. Schlobach and J. Völker, eds., Springer Berlin
Heidelberg, volume 7955 of Lecture Notes in Computer Science, p. 46–65.

Lynden, S., Kojima, I., Matono, A. and Tanimura, Y., 2010. Adaptive Inte-
gration of Distributed Semantic Web Data. In Proceedings of the 6th Interna-
tional Conference on Databases in Networked Information Systems. Springer-
Verlag, DNIS’10, p. 174–193.

Lynden, S., Kojima, I., Matono, A. and Tanimura, Y., 2011. ADERIS: An Adap-
tive Query Processor for Joining Federated SPARQL Endpoints. In Proceed-
ings of the 2011th Confederated International Conference on On the Move to
Meaningful Internet Systems - Volume Part II. Springer-Verlag, OTM’11, p.
808–817.

Mackert, L.F. and Lohman, G.M., 1986. R* Optimizer Validation and Perfor-
mance Evaluation for Local Queries. SIGMOD Rec., 15(2):84–95.

Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh, H. and Cilimdzic,
M., 2004. Robust Query Processing Through Progressive Optimization. In
Proceedings of the 2004 ACM SIGMOD International Conference on Man-
agement of Data. ACM, New York, NY, USA, SIGMOD’04, p. 659–670.

Martin, M., Unbehauen, J. and Auer, S., 2010. Improving the Performance of
Semantic Web Applications with SPARQL Query Caching. In Proceedings of
the 7th International Conference on The Semantic Web: Research and Appli-
cations - Volume Part II. Springer-Verlag, ESWC’10, p. 304–318.

93

REFERENCES (continued)

Michael, L., Nejdl, W., Papapetrou, O. and Siberski, W., 2007. Improving dis-
tributed join efficiency with extended bloom filter operations. In 21st Inter-
national Conference on Advanced Information Networking and Applications
(AINA’07). p. 187–194.

Mullin, J.K., 1990. Optimal semijoins for distributed database systems. IEEE
Transactions on Software Engineering, 16(5):558–560.

Oguz, D., Ergenc, B., Yin, S., Dikenelli, O. and Hameurlain, A., 2015. Federated
query processing on linked data: a qualitative survey and open challenges.
Knowledge Eng. Review, 30(5):545–563.

Oguz, D., Yin, S., Ergenc, B., Hameurlain, A. and Dikenelli, O., In press. Ex-
tended Adaptive Join Operator with Bind-Bloom Join for Federated SPARQL
Queries. International Journal of Data Warehousing and Mining (IJDWM).

Oguz, D., Yin, S., Hameurlain, A., Ergenc, B. and Dikenelli, O., 2016. Adap-
tive Join Operator for Federated Queries over Linked Data Endpoints. In Ad-
vances in Databases and Information Systems: 20th East European Confer-
ence, ADBIS 2016, Prague, Czech Republic, August 28-31, 2016, Proceed-
ings. Springer International Publishing, Cham, p. 275–290.

Ozakar, B., Morvan, F. and Hameurlain, A., 2005. Mobile Join Operators for
Restricted Sources. Mob. Inf. Syst., 1(3):167–184.

Ozsu, M.T. and Valduriez, P., 2011. Principles of Distributed Database Systems.
Springer, New York.

Papailiou, N., Tsoumakos, D., Karras, P. and Koziris, N., 2015. Graph-Aware,
Workload-Adaptive SPARQL Query Caching. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data. ACM,
New York, NY, USA, SIGMOD’15, p. 1777–1792.

Quilitz, B. and Leser, U., 2008. Querying Distributed RDF Data Sources with
SPARQL. In Proceedings of the 5th European Semantic Web Conference on
The Semantic Web: Research and Applications. Springer-Verlag, ESWC’08,
p. 524–538.

Rakhmawati, N.A., Umbrich, J., Karnstedt, M., Hasnain, A. and Hausenblas,
M., 2013. Querying over Federated SPARQL Endpoints - A State of the Art
Survey. CoRR, abs/1306.1723.

94

REFERENCES (continued)

Raman, V., Deshpande, A. and Hellerstein, J.M., 2003. Using State Modules for
Adaptive Query Processing. In Proceedings of the 19th International Confer-
ence on Data Engineering, March 5-8, 2003, Bangalore, India. p. 353–364.

Saleem, M., Khan, Y., Hasnain, A., Ermilov, I. and Ngonga Ngomo, A.C., 2016.
A Fine-Grained Evaluation of Sparql Endpoint Federation Systems. Semantic
Web Journal, 7(5):493–518.

Schwarte, A., Haase, P., Hose, K., Schenkel, R. and Schmidt, M., 2011. FedX:
Optimization Techniques for Federated Query Processing on Linked Data. In
The Semantic Web - ISWC 2011 - 10th International Semantic Web Confer-
ence, Bonn, Germany, October 23-27, 2011, Proceedings, Part I. p. 601–616.

Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A. and Price, T.G.,
1979. Access Path Selection in a Relational Database Management System.
In Proceedings of the 1979 ACMSIGMOD International Conference onMan-
agement of Data. ACM, New York, NY, USA, SIGMOD’79, p. 23–34.

Shadbolt, N., O’Hara, K., Berners-Lee, T., Gibbins, N., Glaser, H., Hall, W.
and m. c. Schraefel, 2012. Linked Open Government Data: Lessons from
Data.gov.uk. IEEE Intelligent Systems, 27(3):16–24.

Shekita, E.J., Young, H.C. andTan, K.L., 1993. Multi-Join Optimization for Sym-
metric Multiprocessors. In Proceedings of the 19th International Conference
on Very Large Data Bases. Morgan Kaufmann Publishers Inc., VLDB’93, p.
479–492.

Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C. and Reynolds, D., 2008.
SPARQL Basic Graph Pattern Optimization Using Selectivity Estimation. In
Proceedings of the 17th International Conference onWorldWideWeb,WWW
2008, Beijing, China, April 21-25, 2008. p. 595–604.

Swartz, A., 2002. MusicBrainz: A Semantic Web Service. IEEE Intelligent Sys-
tems, 17(1):76–77.

Tian, F. and DeWitt, D.J., 2003. Tuple Routing Strategies for Distributed Eddies.
In Proceedings of the 29th International Conference on Very Large Data Bases
- Volume 29. VLDB Endowment, VLDB’03, p. 333–344.

95

REFERENCES (continued)

Umbrich, J., Karnstedt, M., Hogan, A. and Parreira, J.X., 2012a. Freshening
up while Staying Fast: Towards Hybrid SPARQL Queries. In Knowledge
Engineering and Knowledge Management - 18th International Conference,
EKAW 2012, Galway City, Ireland, October 8-12, 2012. Proceedings. p. 164–
174.

Umbrich, J., Karnstedt,M., Hogan, A. andParreira, J.X., 2012b. Hybrid SPARQL
Queries: Fresh vs. Fast Results. In The Semantic Web - ISWC 2012 - 11th In-
ternational Semantic Web Conference, Boston, MA, USA, November 11-15,
2012, Proceedings, Part I. p. 608–624.

Urhan, T. and Franklin, M.J., 2000. XJoin: A Reactively-Scheduled Pipelined
Join Operator. IEEE Data Eng. Bull., 23(2):27–33.

Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G., De Vocht, L., Van-
der Sande, M., Cyganiak, R., Colpaert, P., Mannens, E. and Van deWalle,
R., 2014. Querying Datasets on the Web with High Availability, Springer In-
ternational Publishing, Cham, p. 180–196.

Vidal, M., Ruckhaus, E., Lampo, T., Martínez, A., Sierra, J. and Polleres, A.,
2010. Efficiently Joining Group Patterns in SPARQL Queries. In The Seman-
ticWeb: Research and Applications, 7th Extended SemanticWeb Conference,
ESWC 2010, Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceedings,
Part I. p. 228–242.

Viglas, S.D., Naughton, J.F. and Burger, J., 2003. Maximizing the Output Rate of
Multi-way Join Queries over Streaming Information Sources. In Proceedings
of the 29th International Conference on Very Large Data Bases - Volume 29.
VLDB Endowment, VLDB’03, p. 285–296.

Wang, X., Tiropanis, T. and Davis, H.C., 2013. LHD: Optimising Linked Data
Query Processing Using Parallelisation. In Proceedings of the WWW2013
Workshop on Linked Data on the Web, Rio de Janeiro, Brazil, 14 May, 2013.

Wiederhold, G., 1992. Mediators in the Architecture of Future Information Sys-
tems. IEEE Computer, 25(3):38–49.

Williams, G.T., 2008. Supporting identity reasoning in SPARQL using bloom fil-
ters. Advancing Reasoning on the Web: Scalability and Commonsense (ARea
2008).

96

REFERENCES (continued)

Williams, G.T. and Weaver, J., 2011. Enabling Fine-Grained HTTP Caching of
SPARQL Query Results. In The Semantic Web - ISWC 2011 - 10th Inter-
national Semantic Web Conference, Bonn, Germany, October 23-27, 2011,
Proceedings, Part I. p. 762–777.

Wilschut, A.N. and Apers, P.M.G., 1991. Dataflow Query Execution in a Par-
allel Main-Memory Environment. In Proceedings of the First International
Conference on Parallel and Distributed Information Systems. IEEE Computer
Society Press, PDIS’91, p. 68–77.

Yin, S., Hameurlain, A. andMorvan, F., 2015. Robust Query Optimization Meth-
ods With Respect to Estimation Errors: A Survey. SIGMOD Rec., 44(3):25–
36.

Yönyül, B., 2014. PerformanceManagement on Linked Data Query Engines. Mas-
ter’s thesis, Ege University, Turkey.

Zhou, Y., Ooi, B.C., Tan, K. and Tok, W.H., 2005. An adaptable distributed query
processing architecture. Data Knowl. Eng., 53(3):283–309.

97

CURRICULUM VITAE

Damla OĞUZ

Address: Izmir Institute of Technology, Department of Computer Engineering, Izmir,
TURKEY
Phone: (+90) 232 750 7869
E-mail:damlaoguz@iyte.edu.tr

Personal Information
Nationality: Turkish
Birth Place and Date: Izmir, 24.02.1986

Education
M.Sc.: 2009-2012, Izmir Institute of Technology, Computer Engineering
B.Sc. (Double Major): 2004-2009, Izmir University of Economics, Industrial Sys-
tems Engineering
B.Sc.: 2004-2008, Izmir University of Economics, Software Engineering

Foreign Languages
Turkish : First Language
English : Advanced
Italian: Beginner

Research Interests
DistributedDatabases, QueryOptimization in Large-scaleDistributed Environments,
Linked Data, Data Mining

98

Publications

Damla Oguz, Shaoyi Yin, Belgin Ergenc, Abdelkader Hameurlain, and Oguz
Dikenelli., 2017. Extended Adaptive Join Operator with Bind-Bloom Join
for Federated SPARQL Queries. International Journal of Data Warehousing
and Mining (IJDWM), 13(3):47–72.

Damla Oguz, Shaoyi Yin, Abdelkader Hameurlain, Belgin Ergenc, and Oguz
Dikenelli., 2016. Adaptive Join Operator for Federated Queries over Linked
Data Endpoints. Advances in Databases and Information Systems - 20th East
European Conference, ADBIS 2016, Prague, Czech Republic, August 28-31,
2016, Proceedings, volume 9809 of Lecture Notes in Computer Science, pages
275–290. Springer.

Damla Oguz, Belgin Ergenc, Shaoyi Yin, Oguz Dikenelli, and Abdelkader Ha-
meurlain., 2015. Federated query processing on linked data: a qualitative
survey and open challenges. Knowledge Engineering Review, 30(5):545–563.

Damla Oguz, Baris Yildiz, and Belgin Ergenc., 2013. DMA: Matrix Based Dy-
namic Itemset Mining Algorithm. International Journal of DataWarehousing
and Mining (IJDWM), 9(4):62–75.

Tayfun Gökmen Halaç, Bahtiyar Erden, Emrah Inan, Damla Oguz, Pinar Gö-
çebe, and Oguz Dikenelli., 2013. Publishing and linking university data
considering the dynamism of datasources. I-SEMANTICS 2013 - 9th Interna-
tional Conference on Semantic Systems, ISEM ’13, Graz, Austria, September
4-6, 2013, pages 140–145. ACM.

Tayfun Gökmen Halaç, Emrah Inan, Damla Oguz, Bahtiyar Erden, Pinar Gö-
çebe, and Oguz Dikenelli., 2013. Bağlı Veri Teknolojileri Kullanılarak
Üniversite Verisinin Bütünleştirilmesi ve Yayınlanması. Proceedings of the
7th National Software Engineering Symposium, İzmir, Turkey, September, 26,
2013., volume 1072 of CEUR Workshop Proceedings. CEUR-WS.org.

Damla Oguz and Belgin Ergenc, 2012. Incremental Itemset Mining Based on
Matrix Apriori Algorithm. Data Warehousing and Knowledge Discovery -
14th International Conference, DaWaK 2012, Vienna, Austria, September 3-
6, 2012. Proceedings, volume 7448 of Lecture Notes in Computer Science,
pages 192–204. Springer.

