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ABSTRACT

BOUNDARY ELEMENT SOLUTION OF
MAGNETOHYDRODYNAMIC FLOW

Erdonmez, Cengiz
M.Sc., Department of Mathematics

Supervisor: Prof. Dr. Miinevver Tezer

June 2001, 69 pages

In this thesis, first off all, interpolation using Radial Basis Functions
(RBF) are explained. Several types of radial basis functions are tested in an
example. The Dual Reciprocity Boundary Element Method (DRBEM) using RBF
interpolation is given for Poisson’s equations of the forms V?u = b(z,y,u) and
V2?u = b(z,y,u;). Then the DRBEM is applied to Magnetohydrodynamic (MHD)
Channel Flow problem with homogeneous boundary conditions which can be put
in these two types of Poisson’s equations. Boundary Element Method is used
with constant and linear elements.

Computations are carried out for several values of Hartmann number, for
different types of radial basis functions which are used in the interpolation of right
hand side functions. The two forms of right hand side function are compared and
we conclude that the derivative form V2u = b(z,y, u;) with constant boundary
elements gives very well agreement with the exact solution.

The velocity and the induced magnetic field values which are obtained show
the well known characteristics of MHD Flow.

Keywords: Interpolation, Radial basis functions, MHD flow, Dual reciprocity
boundary element method.
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Oz
MAGNETOHIDRODINAMIK AKIMIN SINIR DEGER GOZUMU

Erdénmez, Cengiz
Yiiksek Lisans, Matematik Boliimii

Tez Yoneticisi: Prof. Dr. Miinevver Tezer

Haziran 2001, 69 sayfa

Bu tezde 6ncelikle, Radyal Baz Fonksiyonlar1 (RBF) kullanilarak yapilan
enterpolasyon anlatilmaktadir. Bir 6rnek iizerinde, bir ka¢ tip radyal baz
fonksiyonu test edilmektedir. Radyal baz fonksiyonlar1 kullanilarak yapilan
karsilikli sinir elemant metodu (DRBEM) Poisson denkleminin V2u = b(z,y, u)
ve V2u = b(z,y, u,) formlari igin verilmistir. Daha sonra karsilikli sinir elemani
metodu, Poisson denkleminin her iki formuna da konulabilinen magnetohidrodi-
namik kanal akim problemine homojen sinir degerleri igin uygulanmaktadir. Sinir
elemani metodu sabit ve lineer elemanlar ile kullanmilmistir.

Hesaplamalar, Hartmann sayisinin bir kag degeri ve sag taraf fonksiyonunun
enterpolasyonunda kullanilan radyal baz fonksiyonlarimin degisik formlar: icin
yapilmistir. Sag taraf fonksiyonunun her iki formu igin elde edilen sonuglar
karsilastirildiginda, tiirevli formun, sabit sinir elemanlar: ile kullaniminin teorik
¢Oziim ile mukayese anlaminda, daha iyi oldugu goriilmektedir.

Elde edilen hiz ve indiiklenmis manyetik alan degerleri, magnetohidrodi-

namik akimin iyi bilinen karakteristik 6zelliklerini gostermektedir.

Anahtar Kelimeler : Enterpolasyon, Radyal baz fonksiyonlari, MHD akim,
Karsilikh sinir elemani metodu.
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CHAPTER 1

INTRODUCTION

The method used in this thesis which is now a well-established numerical
technique for solving boundary-value problems is called the Boundary Element
Method (BEM). Boundary Element Method has emerged as a powerful alternative
to Finite Element Method, particularly in cases where better accuracy is required
(Brebbia, Dominguez (1989)). The main aim of the Boundary Element Method is
to transform the given differential equation to an equivalent integral equation and
solve it on the boundary using discretization procedures. Boundary discretization
is the only necessity for homogeneous Partial Differential Equations (PDE).
This provides reduction in the dimension of the problem which permits accurate
solutions to be obtained very efficiently. This is the main advantage of the BEM
approach (Yamada, Wrobel(1993)).

The first book on Boundary Element Method was published by
Brebbia(1978) and it was proven that the BEM, like Finite Element Method
(FEM) and many other numerical methods, can be obtained as a special case of
the general weighted residual statement.

The textbook of Banerjee and Butterfield(1981), represents the first
comprehensive work on the BEM and its applications in the various fields
of engineering science. The more recent textbook of Brebbia, Telles and
Wrobel(1984) is another comprehensive and general work on the same subject.
The boundary elements literature is recently becoming richer and richer in
textbooks devoted to specialized subjects, such as creep and fracture problems
on solid mechanics, fluid mechanics, inelastic problems, the potential theory,
electromagnetics, and magnetohydrodynamic problems.

There are basically two kinds of approachs in BEM, the indirect and the
direct ones. In the indirect approach the discretized integral equations are first
solved for the density of the singular solutions over the boundary surface and

then the remaining boundary quantities are computed in terms of these densities




which have no physical significance. In the direct approach the discretized integral
equations are formulated with the help of certain fundamental integral theorems
and connect directly the unknown with the known boundary quantities. Even
though it has been shown by Brebbia and Butterfield(1978) that the indirect and
direct BEMs are formally equivalent, more emphasis is usually given to direct
BEM because it is more appealing to scientists and engineers. In addition, direct
BEM appears to be, at least so far, more easily amenable to improvements of the
FEM with indirect form of BEM (Beskos (1987)).

Applications of the BEM abound in many areas of engineering such
as general potential theory, potential fluid flow, acoustics, torsion of shafts,
electric and magnetic field theory, elastostatics, elastodynamics, plates and
shells, transient heat conduction, viscoelasticity, fracture, plasticity, water waves,
viscous fluid flow, ground water flow, Navier-Stokes equations, wave propagation,
thermoelasticity and other time dependent problems (Brebbia (1981)).

In the application of the BEM on an inhomogeneous partial differential
equation, the integral equation involves a domain integral, and the reduction
in dimension therefore the advantage of BEM is apparently lost. Among
various methods which have been proposed to deal with this problem, the
most successful one is the so-called Dual Reciprocity Method(DRM) (Partridge,
Brebbia and Wrobel (1992), Wrobel and Brebbia (1987), Partridge (1997)). This
method divides the solution into two parts: a known particular solution of the
inhomogeneous partial differential equation plus a complementary solution of its
homogeneous counterpart. Since particular solutions to complex problems are
very difficult or impossible to obtain, the inhomogeneity is normally represented
by a series expansion in terms of simpler functions for which particular solutions
can be easily determined.

The crucial point in the DRM formulation is the choice of the approximating
functions in the series, since this will dictate the accuracy and efficiency of the
solution. The most widely used functions are of the type r+c, with r representing
the distance between fixed and generic points and c a constant. These functions
have been empirically chosen and demonstrated to work well for a variety of
problems. Recently, a proof of convergence has been derived by Yamada(1993)




where the fairly local behaviour of the interpolation functions resulting radial
basis function approximation is demonstrated.

The above function forms part of a more general class known as Radial
Basis Functions (RBF) which have some established properties and are popular
for multivariate interpolation. The RBF interpolation was first introduced by
Hardy(1971), and Harder and Desmarais(1972), Powell(1987) and the procedure
leads to the DRM for the solution of Poisson-type equations and was first
suggested by Nardini and Brebbia(1983).

In this thesis we present an interpolation scheme using radial basis
functions. Several radial basis functions (polynomials, exponentials, rationals and
logarithmic functions) are used and tested on the interpolation of a function.
Then we will use this interpolation technique in the solution of Poisson’s equation
with Dual Reciprocity Boundary Element Method(DRBEM). Applications are
carried out to nonlinear Poisson’s equation of the form V?u = b(z,y, u, us, uy)
which permits to solve magnetohydrodynamic channel flow equations.

The magnetohydrodynamic(MHD) flow finds a lot of applications in various
branches of science and technology such as MHD generator, pumps, accelerators,
flowmeters, space propulsion, astrophysics and geophysics. Hartmann(1937)
investigated for the first time the MHD flow of a viscous, incompressible,
electrically conducting fluid between two parallel planes in the presence of a
transverse magnetic field. Since then a number of researchers have investigated
the flow of an electrically conducting fluid through channels. Due to the coupling
of the equations of fluid mechanics and electrodynamics, analytical solutions are
not available or not practical to use. Therefore, it is desirable to explore more
efficient numerical methods for accurate numerical solutions.

Singh and Lal(1982,1984) presented finite element method(FEM) solution
to solve MHD channel flow problems for arbitrary wall conductivity and for small
Hartmann number M < 5. Later Tezer-Sezgin and Ko6ksal(1989) improved the
FEM results for high Hartmann numbers. Gardner and Gardner(1995) employed
bi-cubic B-spline elements in FEM. Sezgin, Aggarwala and Ariel(1988) solved
MHD channel flow problems taking into account various electomagnetic boundary
conditions. The application of the boundary element method(BEM) to the MHD



flow in a cylindrical duct for small Hartmann numbers was given by Carabineanu,
Dinu and Oprea(1995). Tezer-Sezgin and Dost(1994) , Singh and Agarwal(1984)
applied BEM to solve MHD flow problems by transforming the problem into
integral equations.

This thesis gives dual reciprocity boundary element method (DRBEM)
application to solve MHD flow problem in a rectangular channel. The coupled
velocity and magnetic field equations are firstly transformed into decoupled
nonlinear Poisson equations where the right-hand side functions are appoximated
by a series of radial basis functions.

The decoupled nonlinear Poisson equations obtained are of the two types,
ie. V2u = b(z,y,u) and V?u = b(z,y,u;). The computations are carried out
for Hartmann number M < 15 using both constant and linear (discontinuous)
boundary elements. Comparisons for two types of formulations of Poisson
equation are made and it is found that V?u = b(z,y,u,) formulations gives
better results. All the results obtained are also in good agreement with the exact
solution of the MHD Channel Flow problem.

1.1 Plan of the Thesis

In Chapter 2, first we introduce Radial Basis Functions and then
interpolation using Radial Basis Functions is given with a test function using
several radial basis functions.

In Chapter 3, the theory of the Boundary Element Method together
with Dual Reciprocity procedure is given. The DRBEM using Radial Basis
Functions for the cases V2u = b(z,y), V?u = b(z,y,u) and for the general
case VZu = b(z,y, u, ug, u,) are respectively presented. Also the computational
algorithms for all the cases are derived. In Section 3.5 magnetohydrodynamic
channel flow problem is introduced and the Dual Reciprocity Boundary Element
Method application for this problem is given.

Chapter 4 presents applications of DRBEM on Poisson’s equations of the
types V2u = b(z,y,u) and V?u = b(x,y,u,;) which are the basic equations in
MHD flow. These two forms are used in the solution of MHD channel flow

problem. The solutions are compared with the exact solution and the efficiency



of the solutions are indicated in terms of graphics. Solutions are obtained for
several values of Hartmann number with constant and linear boundary elements.
Finally, conclusion provides some comparisons for the solution of the MHD

channel flow problems written in the form of VZu = b(z, y, u) or V?u = b(z, y, us)-



CHAPTER 2

INTERPOLATION USING RADIAL BASIS FUNCTIONS

This Chapter contains interpolation of functions defined in two dimensions.

The interpolating functions used are taken as radial basis functions.

2.1 Radial Basis Functions

Radial basis functions belong to a class of functions where the distance from
a fixed point to a variable field point is used as the independent variable. For

this purpose, the Euclidean distance function 7 is defined in 2D as

T = Tk(Z, Y; Ty Yk) = \/(33 —zx)® + (y — yx)? (2.1)

where = and y are the positional coordinates of a variable field point, and z;
and y, correspond to the coordinates of the k** interpolation point. Similar
definitions hold for higher dimensions. Functions using rx as the independent
variable are then referred as the Radial Basis Functions(RBF). Several researchers
(Franke(1982), Powell(1987), Kansa(1990), Carlson and Foley(1991)) have
used them in the context of multivariate interpolation. Powell(1987) has
written a special chapter about radial basis function interpolation in his book
for approximation. Zheng, Coleman and Phan-Thien(1991) used radial basis
functions to find approximate solutions for nonhomogeneous potential problems.

Thus, the interpolation of a function b is represented as



k=1

where ®; belongs to a class of RBI’s. In equation (2.2), P represents the location
of any variable field point. The number of interpolation points are denoted by
N+L, where N usually represents the number of points on the boundary of the
domain and L the number of internal interpolation points. The interpolating
coefficients oy are computed by satisfying the interpolation condition at N+L
points,

N+L
(P =b=)Y Puyox,i=1,...,N+1L (2.3)
k=1

where ®;; represents the value of ®; at the point (z;,y;) and b; is the function
value at this point.

The interpolation using RBF involves a single independent variable r; as
opposed to the use of multiple spatial variables, regardless of the dimension of
the problem. Hence, it is clear that the RBF interpolation is most useful when
the domain of the function can not be expressed as simple product domains of
lower dimensions. The RBF interpolation was first introduced by Hardy(1971)
and Harder and Desmarais(1972). Subsequently, a wide variety of RBF have
been used for the interpolation and some of the common types of RBF as follows

(Ramachandran and Karur (1998)).
1. Linear function : &, =1+ 14
2. Duchon radial cubics : & = r}
3. Radial quadratic plus cubic : ®, =1+ 72+ 713

4. Thin plate splines : & = riinr



5. Hardy multiquadrics : ®; = (r7 + C?)™2 with C being a user specified

constant and n being a positive integer.

6. Inverse multiquadrics : & = 1/(;/r? + C?)
7. Gaussian : ®; =exp(—r2/C?)

8. &, = (1+T%)—3/2 .

The radial basis functions are now being used increasingly in
many areas. In neural networks (Pottmann and Henson(1997)), kinetic
modeling (Venkatesh(1997)), Scattered data interpolation (Dubal(1992)),
solution of differential equations (Kansa(1990)), solution of integral equations
(Makraoglu(1992)). A bibliography of many applications of RBF in various
fields of engineering and physics has been recently published by Golberg and
Chen(1994).

2.2 Radial Basis Function Interpolation

Assuming the function b(z, y) is given in a domain {2, it can be interpolated

as

N4+L
bo(z,y) = Z Qi (P)a (2.4)

where the function b(x,y) is defined at every point in the domain and the
functional values can be calculated exactly. N represents the number of
interpolation points chosen on the boundary of the domain and L represents the
number of interpolation points chosen in the domain. ®; is the arbitrarily chosen

function from the class of radial basis function which is defined at interpolation



points. P represents the coordinates of interpolation points. And oy’s are
unknown interpolation coefficients.

In order to calculate ay’s, we use the functional values at interpolation
points and the values of the chosen radial basis function at these points in the

following equation:

N+L
b,:b(:v,,yz)z Z‘I’ikak,i’:—l,...,N-i-L (25)
k=1

where (z;,y;) is the i*® interpolation point used as variable field point and

(pik = @(ZE,” Yis -'L'k,'yk)-

Open form of the equations are written explicitly as follows:

bl = @1,101 +--- 4+ (I’l,NCYN + .-+ q—’l,N+LaN+L
by = Py +---+ @ynyan + -+ Py NiraNgL
bvyr = @y + -+ @npnvony oo+ PnpinvirOniL
bvir = P®nyipaon + -+ Oyyrnon o+ Pnin N4LON4L-

The corresponding system of equations can be written in the matrix form

as follows:




r W r 3 ( 3
Q0 0 Py 0 Dyngr o) by
On1 - DPun o OnNtL oN bn
< P =4 P (2.6)
Pyitr o Pvpy 0 Pagingr aN+1 bnt1
| Owiry ot Ongrn ot @Nwrnen || oNeL | | by |

which can be represented as [®]{a:}={b}. When the interpolation coefficients are
calculated then the functional value at any point (z,y) in the domain can be

calculated as

N+L

b(z,y) = Y Pu(x, y; Tk, Yi) - (2.7)
k=1

The interpolation points are selected with the distance 7, such that

. (z;, yi; Tk, yx) will form a nonsingular matrix ® therefore it can be inverted.

The effect of the radial basis functions used in the approximations will be
analyzed on the test function b(x,y)=sin(#x)sin(ry). The following radial basis

functions are used:
1 =1+r2+1}
2. & = rilnr,
3. <I>£3) =exp(—712)
4. 8 = (1 +1)1?

5. 80 = (r2 +1)71/2

10



6. @ = (r2 +1)73/?

The results are given in the following table comparing with the exact values

at several points to seven digits accuracy.

Interpolation of b(x,y)=sin(nx)sin(7ry) with different radial basis

functions
x y 9, P, o Py o7 Pg Exact
.500 .000 | .0000003 | -.0013681 | .00G00C00 | -.0002882 | -.0000250 | .0000085 | .0000000
.600 100 | .2923740 | .2907650 | .2892651 | .2935859 | .2939028 | .2938865 | .2938926
.800 | .500 | 5906507 | .5869771 | .5876026 | .5886373 | .5879930 | .5883617 | .5877849
300 [ 700 | .6545056 | .6511268 | .6545084 | .6550757 | .6543935 | .6545206 | .6545084
.800 .800 | .3445975 | .3495130 | .3454702 | .3447119 | .3457959 | .3459712 | .3454911
1.000 | 1.000 | -.0490655 | .0019755 | -.0884074 } -.0000757 | -.0015637 | -.0028692 | .0000000

From the table, it is seen that even the polynomial choice gives better

results. Rational or exponential radial basis functions give quite accurate values

too.

11




CHAPTER 3

DUAL RECIPROCITY BOUNDARY ELEMENT METHOD FOR
POISSON TYPE EQUATIONS

In this thesis, our interest in Radial Basis Function(RBF) interpolation is
in the context of its application in the Dual Reciprocity (DR) boundary element
method (BEM) for the solution of the equations of the type

Viu = b(z,y, u, ug, uy) (3.1)

where (x,y) represents the spatial coordinates and u is the dependent variable.
Also the thesis aims to solve magnetohydrodynamic (MHD) channel flow problem
in a rectangular duct with insulating walls. This problem can be transformed to

the Poisson’s type equations of the forms

V?u = b(z,y,u)

(3.2)
V2u = b(z, y, us),

therefore the dual reciprocity boundary element method solution of these
equations will automatically solve the MHD channel flow problem. This solution
will be given in Section 3.5.

The direct boundary element method is difficult for the problem on the
equation (3.1) due to the presence of the nonhomogeneous term b in the right hand

side of equation, and involves the evaluation of a domain integral corresponding

12



to the right hand side. One way to circumvent the problem is to find an
approximate particular solution to the nonhomogeneous term. For this purpose,
the nonhomogeneous term b can be expanded in terms of a set of a basis functions

&, as in equation (2.2). If additional auxiliary functions fj are defined such that

Vify, = @, (3.3)

then it is possible to transfer the domain integrals to the boundary integrals.
This procedure leads to the Dual Reciprocity Method (DRM) for the solution of
Poisson type equations and was first suggested by Nardini and Brebbia (1983)
and then established as a book by Partridge, Brebbia and Wrobel(1992).

3.1 Boundary Element Method for V?u = 0 and V?u = b(z, y)
Consider the Laplace equation first
Viu=0 in Q (3.4)
with the following boundary conditions:

(i) ”Essential” conditions of type w=a on I}

(ii) "Natural” conditions such as q¢=0u/dn=q§ on I

where n is the outward normal to the boundary I' = I'y + ['; and the
bars indicate known values.
In principle, the errors introduced in the above equations if the exact (but

unknown) values of u and q are replaced by an approximate solution can be
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minimized by orthogonalizing them with respect to a weight function u*, the
normal derivative of which along the boundary is ¢* = du*/dn.
In other words, if € defines the residuals, the following equations are

obtained:

ca=Viu#0 in Q
ee=u—4#0 on I, (3.5)
&2=¢—7#0 on T,
where u and g are approximate values.
These residuals can be weighted by using weight functions u* and ¢* on
the equations in (3.5) respectively for obtaining method of weighted residual

statement (Brebbia and Dominguez (1989))

/ equ*dQd + / erg*dly — / exu*dTy = 0. (3.6)
Q r Ty

The objective of this procedure is to force the residuals to be zero in an
average sense. The sign of the different terms will become clear during the process

of integration by parts.
2, ,0,% P APE . A x —
/QV uu*dQ + /1‘1 (u — @)g*dl, /1‘2 (g — g)u*dly = 0. (3.7)

According to the Green’s Identity

20— [ 2% 490
/Q BV2)dQ) = /a _05-don /Q VOVhdQ (3.8)

we rewrite the equation (3.7) as

ou
—u” - Vu*dQ) — Ma* — A\ x -0. .
/I‘1+I‘26n dr /QVu u*d +/I‘1(u #)q*dl'; /Pz(q g)u*dls = 0. (3.9)
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Applying the Green’s Identity to the second integral, we obtain

*d 2yrd— *dI‘/ — @) dT— [ (g — q)yurdls = 0.
/1"1+r2qu F+/QuVu uq +F1(u w)q*dly /1“2((1 Pudly =0

(3.10)

T1472
In equation (3.10) we choose weight function u* such that
/ uViurdQ = —cu;

Q

where ¢; = ¢(z;,y;) is a coefficient whose value depends on the position of the
point P; = (z;, ;) and u; = u(z;, y;). Substitution of the above equation into the
equation (3.10) and making use of the boundary conditions in equation (3.4) we
finally obtain

s — [ (qur—ag")dls — [ (qu" —ug)dl> = 0. (3.11)
1 2

The weight function «* is also called the fundamental solution of the given

differential equation which is the Laplace equation in this thesis.

The equation (3.11) applies to a concentrated source at the point
P; = (z;,v:) and consequently the values of u* and ¢* are those corresponding
to that particular point. For each different point a new integral equation is

obtained.

3.1.1 Fundamental Solution

The fundamental solution u* represents the field generated by a
concentrated unit source acting at a point FP;. The effect of this source is
propagated from P; = (z;,y;) to infinity without any consideration of boundary

conditions. Because of this u* satisfies the following Poisson equation,

15



Viu* +A; =0 (3.12)

where A; represents a Dirac delta function which becomes infinity at the point
P; = (z;,:) and is equal to zero elsewhere. The integral of A; over the domain
is equal to one. The use of Dirac delta function is an elegant way of representing
unit concentrated sources and forces when dealing with differential equations.

Integral property of Dirac delta function gives
2, % — — . —_ .-
/QuV u*dQ = /Qu( A;)dQ Ci;

3 (my) el
1 (xi,yz-) e Q.

where v = u(z;,y;) and ¢; =

For an isotropic two-dimensional medium the fundamental solution of

equation (3.12) is (Federico and José, (1997))

1 1
"= —In(= :
U= o n(r) (3.13)

and for three-dimensional isotropic medium

1
= 14
YT (3:-14)

In order to make some simplification on the equation (3.11) introduce the

following notations:

£t
Ii

and
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g on I}

St
Il

g on Iy

where % is the known value of the u and ¢ is the known value of q.

Therefore final form of the equation (3.11) becomes

I O R S
CiU; — % A‘ (q In ‘T‘ T,,I - um(r Tz)n)d].—‘ =0 (315)

where 7= (z,y) and 7; = (z;,;) are the free and fixed(source) points.

3.1.2 Discretization of the Boundary

We consider now how the equation (3.15) can be discretized to find
the system of equations from which the boundary values are calculated. The
boundary of our two dimensional region is divided into N segments or elements.
The points where the unknown values are considered are called "nodes”. The
number of nodes on an element is equal to the number of unknowns of the
approximate solution for this element.

In general case we can write discretization form,

zqm m)1n|r—n|dr+ z . (3 G TZ)‘?dFez—.o
" m (3.16)

czuz-———Z/

r

where #%,, and ¢, are the function and normal derivative values at node m
respectively, IV,,, is the trial(shape) function for element e, E is the number of

elements on the boundary and #e is the number of nodes on element e.
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3.1.3 Constant Element Formulation

The boundary is assumed to be divided into N elements. In this case the
values of u and q are assumed to be constant over each element and equal to the
value at the mid-element node. The points at the extremes of the elements are
used only for defining the geometry of the problem. Note that for this type of
element (constant) the boundary is always "smooth” at the nodes as these are
located at the center of the elements, hence the ¢; constant is —21~ Also the shape
functions N,,’s for each element is equal to 1 in constant element method. Hence,

the equation ( 3.16 ) for constant element method becomes:

1 N N
=%+ Y Hijij — Y Gig; =0 (3.17)
27 = =1
where
_ (r 75).78
4 I E— ~———-dl; (3.18)
Gy = — / In|7 — 7]dT; (3.19)
1'.7 271_ 3 .

and r; = (z;, ¥:), 7 = (z, y) are both varying on the boundary nodes, r(z,y) being
on the j** element.

If we define

55 (3.20)

where § is the Kronecker delta, in such a way that the % value is summed to H
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when i = 7, then the equation (3.17) can now be written as

N N
> Hytl; =3 Gy (3.21)
j=1 j=1
If it is now assumed that the position of node 7 also varies from 1 to N, i.e.
one assumes that the fundamental solution is applied at each node successively, a
system of equations is obtained resulting from the application of equation (3.21)
to each boundary point in turn.

This set of equations can be expressed in matrix form as

[H} {u} =[G]{q} (3.22)

where H and G are two NxN matrices and « and ¢ are vectors of length N.
Notice that N; values of v and N, values of ¢ are known on I'; and I'y
respectively (N; + Ny = N), hence there are only N unknowns in the system of
equations (3.22). To introduce these boundary conditions into equation (3.22)
one has to rearrange the system by moving columns of H and G from one side

to the other. When all unknowns are passed to the left-hand side, we can write

[A{z} = {y} (3.23)

where z is a vector of unknown boundary values of u and ¢, and y is found by
multiplying the corresponding columns of H or G by the known values of u or
g. It is interesting to point out that the unknowns are now a mixture of the
potential and its normal derivative, rather than the potential only as in finite
element method. This is a consequence of the boundary element method being a
"mixed” formulation, and constitutes an important advantage over finite element

method.
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Equation (3.23) can now be solved and all the boundary values will then
be known. Once this is done it is possible to calculate internal values of u. The

values of u are calculated at any internal point i using the following formula:

% = / Gurdl — / g dT. (3.24)

r r
Notice that now the fundamental solution is considered to be acting on an
internal point ¢ and that all values of u and ¢ are already known. The process is

then one of direct integration. The same discretization is used for the boundary

integrals, i.e.

N N
U =Y GG — > Hijft. (3.25)
j=1 j=1
The coeflicients G;; and I:I,-,- have to be calculated now for each different internal
point.

The coefficients G;; and H;; can be calculated using numerical integration
such as Gauss quadrature formula for the case 7 # 7. In the case 1 = j the
singularity of the fundamental solution requires a more accurate integration
scheme. For these integrals it is recommended to use higher-order integration
rules or a special formula such as logarithmic integration. For constant element
case G;; and I:I,-j can be calculated analytically. H;; = 0 since 7.7 = 0. The Gj;

integrals are

Ga= o-{in(3) +1) (3.26)

where [ is the length of the element.
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3.1.4 Linear Element Formulation

Now we consider linear variation of u and g over an element for which the
nodes are located at the ends of the element.
After discretizing the boundary into series of N elements, equation can be

written as

I - 2 Z 737
ciui————Z/ Z Din|7 — r3|dL; +—Z/ Z —j—fydI‘j:O.
271— e=1 j=1 = I Til

(3.27) -

The integrals in this equation are more difficult to evaluate than those for

the constant element as u and ¢ vary linearly over each element I'; and hence it
is not possible to take them out of the integrals.

The values of u and ¢ at any point on the element can be defined in terms

of their nodal values and two linear interpolation functions /Ny and N,, which are

given in terms of the homogeneous coordinate £ as:

Uy
u(€) = Nyup + Naug = [ N, N, ] }
U2

(3.28)

q(&) = Mgy + Naga = [Nl Nz] [% } .
g2

The dimensionless coordinate & varies from —1 to 1 for an element of length

| and the two interpolating functions are (Beskos(1987), Brebbia(1981))

Ni(§) = ';‘(1 - &) (3'29)

Ny(§) = 3(1+ ).
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Let us now consider the integrals over an element j. The second integral in

equation (3.27) can be written as:

/'awr—/ hv N] rqr | —[hth] h
Fj 9 - Fj 1 2 q - if i

Ug U2

where, for each element 7, we have the two terms

By = [ Nigtar
¥

and
2 __
%—AMMF
Similarly, the first integral in equation (3.27) gives
L; L L 7
a2 g2
where
1 .
%_ANMW
and

g?j =/ Nou*dT'.
T

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

When the boundary of the region is discretized into linear elements, node 2

of element 7 is the same point as node 1 of element j + 1. So, the entries .FL'J' are

equal to the h}; term of element j plus the h?, , term of element j — 1. To take
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into account the possibility of the flux at node 1 of the next element, the fluxes

can be arranged in a 2/V array. Hence the assembled equation for node 7 is

N 2N
ciui + ) Hijuj =3 Gijq
j=1

j=1

which becomes
N 2N
> Hijuj =3 Gijg
j=1 =1
and the whole set in matrix form becomes
[H]{u} - [G]{q} = {0}

We next consider the Poisson’s equation V?u = b(z,y) where the BEM
formulation differs from V?u = 0 because of the term b(z,y). BEM formulation
leaves domain integral of b(z,y) which is not wanted, thus we deal with the

methods which transform this domain integral to a boundary integral.

3.1.5 Boundary Element Formulation for V2u = b(z,y)

Consider the problem

Viu=b(z,y) in Q (3.36)

where b(z,y) is assumed to be a known function of position. We can apply
weighted residual formulation similar to Laplace equation in order to deduce the

basic integral equations. Similar to equation (3.15) we get the following equation

1 r 1 1
ot~ g [ @in 7=l = o (P )AL = o [ () |7 — a0,

|7
(3.37)
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Notice that although the b function is known and consequently the integral
in the domain do not introduce any new unknown, the problem has been changed
in character as we need now to carry out a domain integral as well as the boundary
integrals.

There are different methods for computation of this domain integral. One
may subdivide the region into subregions on which a numerical integration can be
applied (Cell integration approach); By taking random integration points, Monte
Carlo method can also be applied; If b(z,y) is a harmonic function, application
of Green’s theorem transforms the domain integral to boundary integral (The
Galerkin vector approach); The use of particular solutions which split the solution
into the particular solution and the homogeneous solution can also be used in
which BEM is applied again to Laplace equation only; Finally, the dual reciprocity
method can be used to get rid of the domain integral by computing a series of
approximate particular solutions. We give the details of the dual reciprocity

method since we are going to use in this thesis.

3.2 Dual Reciprocity Boundary Element Method for V?u = b(z, y)

In early BEM applications there was always a requirement that a
fundamental solution for the problem under consideration had to be available.
This fundamental solution had to take into account all the terms in the governing
equation in order to avoid domain integrals in the formulation of the boundary
integral equation, otherwise internal cells had to be defined and evaluation of
these integrals increases the amount of data needed to run the program and
hence the method loses some of its attraction to other techniques.

The Dual Reciprocity Method (DRM) was proposed in 1982 and may be
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used with any type of fundamental solution. It does not need internal cells,
however it permits the definition of internal nodes if needed.
The Dual Reciprocity Method (DRM) is explained with reference to

the Poisson equation

Viu=1b (3.38)

where b = b(z,y) is considered to be a known function of position.
The solution to equation (3.38) can be expressed as the sum of the solution

of a homogeneous Laplace’s equation and a particular solution 4 such that

Vi =b. (3.39)
It is generally difficult to find a solution 4 that satisfies the above equation.
The Dual Reciprocity Method proposes the use of a series of particular solutions
#; instead of a single function 4. The number of #; used is equal to the total
number of nodes in the problem. If there are N boundary nodes and L internal
nodes, there will be N + L values of ;.
The following approximation for b is proposed

N+L

b= Z Oljfj (340)

i=1
where «; are a set of initially unknown coeflicients and f; are approximating

functions. The particular solutions 7, and the approximating functions f; are

linked through the relation

Vi, = f;. (3.41)

Substituting the equation (3.41) into the equation (3.40) gives
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N+L
b= Y o;(V*Qy). (3.42)

ij=1
Then equation (3.42) can be substituted in the original equation (3.38) to
get
N+L

Vi =Y o (V). (3.43)

=1
Now we apply boundary element method to this equation by multiplying

the equation (3.43) by fundamental solution and integrate over the domain

N+L
/Q (Via)ud = 3 o /ﬂ (V?4;)u*d2. (3.44)
i=1
Integrating terms similar to previous section produces the following integral

equation for each source node ¢,

N+L
citis+ [ Ggdl - [ qudl = 3 a(eiiy + [ #gar - [Lgurdr).  (3.45)
i=1
The term § in equation (3.45) is defined as §; = 34;/0n where 7 is the unit

outward normal to I and can be expanded to

6= oo+ S, (3.46)
Note that equation (3.45) involves no domain integral. The source term b
has been substituted by equivalent boundary integrals.
Now writing the equation (3.45) in discretized form, with summations over

the boundary elements replacing the integrals gives for a source node ¢ the

expression
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N N
i+, [ dgtdte =Y [ qudle =
k=1"T% k=17Tk
N+L N N
Y ag(ety+ 3 [ grdle— 3 / Grutdly). (3.47)
j=1 k=1"T% =1Lk
When f is defined, i; and §; will be known. Performing the integrations

over each segment I'y with the substitution of fundamental solution u* and its

normal derivative ¢* from equation (3.13) we get

N N N+L N N
c;u; + Z H u, — Z GG = Z o # (Ci'&ij + Z Hik'&kj — Z Gikdkj) (3.48)
k=1 k=1 j=1 k=1 k=1

and this equation can be written in the matrix form as

N+L

[H{@} - [GHa} = 3. os((HNa;} - [G1{4;}) (3.49)

j=1
where H and G matrices are the same as obtained in Section 3.1. (equations

(3.18) and (3.19)).
If each of vectors 4; and g; is considered to be one column of the matrices U
and Q respectively then equation (3.49) may be written without the summation

in the final form as

[Hl{a} - [GH@} = (H][U] - [GlQ){a} (3.50)

where « is the vector containing the unknown coefficients «;.

3.2.1 Interior Computation

Equation (3.50) contains only boundary nodes. When the system is

arranged in Az = b form and is solved, all the values % and § will be known
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on the boundary. Then redefining the H and G matrices in the equation (3.48)
to contain the point F; as an interior point one can calculate % at internal nodes.

When interior nodes are defined, each one is independently placed, and they
do not form part of any element or cell, thus only the coordinates are needed as

input data. Hence, these nodes may be defined in any order.

3.2.2 The Vector

According to the equation (3.40) b is approximated as

N+L

b~ Y of; (3.51)

j=1
by taking the value of b at (IV + L) different points , a set of equations is obtained

and may be expressed in matrix form as

{6} = [Fl{o} (3-52)
where each column of F' consists of a vector f; containing the values of the

function f;.

Therefore o may be obtained as

{o} =[F~']{b} (3.53)

and when it is substituted back into equation (3.50) we get the system

[H]{u} — [Gl{g} = (H][0] - [GlQNIF~]{b}.

This system now can be solved for unknown values of u and ¢ with the

procedure mentioned in Section 3.1.
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3.3 Dual Reciprocity Boundary Element Method for V?u = b(z, y, u)

We consider the problem

Viu = b(z,y,u) (3.54)

and split the right hand side as

b(z,y,u) = bi(z,y) + bau (3.55)
where by is a constant.

Approximation of b(z,y, u) in terms of basis functions f;’s as

N+L
b(SL', yau) - bl(xv y) + bg’LL = Z ajfj (356)

7=1
will give

a=F'b +bFlu

where F is the same (N + L) x (N + L) position matrix consisting of the values
of f; at the N + L points and b, is the column vector containing bi(z,y) at the
N + L points. This equation can be written again in vector notation taking the

unknown as u

{o} = {S} + [Sul{T@} (3.57)

where {S;} = {F~1b:} and [S,] = [bF"].
Application of DRBEM will give now

[H){@} - [G{@} = (H]I0] - [ClQD{a} (3-58)
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where

{o} = [F7{bi} + [b2F~'){@}. (3.59)

Since the function b contains unknown values of @ at boundary and internal
nodes, a vector can not be calculated explicitly. Therefore during the solution
procedure we have to carry « vector (at least some part) as unknown.

For the solution of the boundary values we have

HYit; — Gy = (HGU® — G4Q")a (3.60)

and for internal nodes

Hiuj — GLg; = (IU' + HLU® — GLQ"a (3.61)

where superscript b refers to the boundary nodes and superscript ¢ to the internal
nodes.
Combining these equations together at one step one can get the following

system of equations

#H 0| % e olfal|_
H' T ; Gi 0 0|
H 0| O Gt o] @
~ a b (3.62
(Hil U G"O[O}){}( )
in short
(H|{a} - [GI{7} = [M'){o}. (3.63)
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where
Gt 0

G 0

H® 0 Ut

H I

M =
f]i

vl

Therefore equation (3.63) is rewritten as using equation (3.50)

([H] ~ M8 {E} - [GI{a} = [M]{S}, (3.64)

when this system is arranged to Az = y form after applying boundary conditions
and solved, all the unknowns on the boundary and internal values of % are
calculated. This Az = y form is an (N + L) x (N + L) system, z contains

N boundary values of u or g plus L interior values of u.

3.4 Dual Reciprocity Boundary Element Method for VZu =

b(z,y, u, Ug, Uy)

When the function b contains derivatives of the unknown function u, the

function u(z,y) is also approximated in the form

u=Fp (3.65)

for some unknown vector 8 # «a (containing unknown coefficients S;.)

Differentiating both sides of the equation with respect to z we get

ou_oF
dr Oz

and in equation (3.65) leaving 8 alone, substituting in above equation we get

(3.66)

ou aFF'lu.

= (3.67)
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Similarly
ou OF
— =1
Jdy 0oy

Writing the function b as (assuming b is a linear function of u, ug, u,)

U. (3.68)

b(z, Y, U, Uz, uy) = b1(z, y) + bou + byug + by, (3.69)

where by, by, by are constants and approximating in the form

N+L
b(Z, Y, U U, uy) = Y, a;f;,
j=1
« vector becomes
a=F"'b +bFla+ bgF‘la—ﬁF“lﬂ + b4F‘1%F—F‘1ﬂ (3.70)
oz oy
in matrix-vector form
{o} = {So} + ([Sul + [Sa] + [S,]) {ai} (3.71)
where
_,OF __ _LOF __
{So} = [F'|{b1}, [Su] = [b2F 1], [Se] = [BsF l—a;F Yy [Sy] = [baF 1-5—?; .

When we substitute {a} in equation (3.63) we obtain

((H] — [M([Su) + [S:) + [S,D){E} - [Gla} = IM{S:}  (3.72)

which can be solved for {u#} and {g}.

3.5 Dual Reciprocity Boundary Element Method for Magnetohydro-
dynamic Channel Flow (MHD Flow)

In this example we will deal with the well known Maxwell equations of

electromagnetism and the basic equations of fluid mechanics which lead to the
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coupled system of equations in the velocity and magnetic field. These equations
of steady laminar, fully developed flow of viscous, incompressible and electrically
conducting fluid in a rectangular duct €2, subjected to a constant and uniform

applied magnetic field By, can be put in the following non-dimensional form

V2V 4+ M2 = 1

in Q (3.73)
V2B + M3, =0
with the boundary conditions
V=B=0 on 09 (3.74)

where the boundaries of the duct are assumed to be insulating.

¥
IRCED
o0
0,0
By @) 0,0
—p — X
('1 70) (1 70)

(0>'1)

Figure 3.1: MHD Flow problem

V(z,y), B(z,y) are the velocity and the induced magnetic field respectively,
M is the Hartmann number. Here it is assumed that the applied magnetic field
By is parallel to x-axis, V(z,y), B(z,y) are in the z-direction which is the axis of
the duct, and the fluid is driven down the duct by means of a constant pressure

gradient.
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Equations (3.73) may be decoupled by the change of variables

uy=V+B,uy=V-B (3.75)
as
V2'LL1 + M%%_L =-1 .
in Q (3.76)
V2UQ - M%’i; =-1
with the boundary conditions
u=us=0 on O (3.77)

Both of the equations in (3.76) are of the type

Viu = b(z,y, Z—Z) in (3.78)
with
u=0 on 99 (3.79)
where
Ou du
b(z,y, B_x) =—-1- M-é—:;
and
Ou Ou
b(z,y, 6_x) =-1+ Ma_:c (3.80)

respectively for the first and second equations. So, we can solve the
equation (3.78) with boundary condition (3.79) for wu; first and then
uz(z, y; M) = ui(z, y; —M).

Furthermore, if we define a transformation

U, = e%zul
(3.81)

M
U, =e 2%y,
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equations (3.76) become

ViU, = MU, —e5e
o . in O (3.82)
V2U2 = TUQ —e 2"
with

Uy=Uy=0 on 00 (3.83)

Again both of the equations in (3.82) are of the form

VU =b(z,y,U) in Q (3.84)

with
U=0 on 09 (3.85)

where
2
b(l': Y, U) o —Ai—U - e%”—a:
and
2

b(z,y,U) = MTU —e ¥ in 0 (3.86)

for the first and second equations respectively. Thus, solution of equation (3.84)
- (3.85) with +M will lead Ui(z,y) and Us(z,y; M) = Uy (z,y; —M).
We will consider the dual reciprocity boundary element method solution of

the Poisson type equations

VU = b(z,y,U) (3.87)
and
oU
217 —
VAU = b(z,y, 3:1:) (3.88)

for the solution of MHD flow equations of these forms with homogeneous

boundary conditions. In either case, it is possible to go back to the original
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unknowns V(z,y) and B(z,y), through the equations (3.81) and (3.75) from the

solution of equation (3.84) and through the equation (3.75) from the solution of

equation (3.78). Calculated results of V(z,y) and B(z,y) with DRBEM using

Radial Basis function interpolation are compared with the Shercliff’s(1953) exact

solution which may be written as

sinh my cosh maz + sinh my cosh myz
sinh(m; + my)

1 00
V = —(mz—y2)—— ZA"’
2 k=1

B i A, sinh m; sinh.mzx — sinh my sinh my z coswyy
= sinh(m; + my)
where
a=M/2
and
my = -+l , Mp=a+
2k —1
W = ( = )™ ’ ,uk=(0f2+w2)1/2
16 2 -1 k+1
4, 16m* (1)

w3 (2k —1)3
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CHAPTER 4

RESULTS AND DISCUSSIONS

In this Chapter, the solution of magnetohydrodynamic channel flow
problem which is introduced in Section 3.5 is given for several values of Hartmann
numbers, different forms of Poisson’s equations and constant and linear elements.
The problem in which the equations can be transformed either to the form
Viu = b(z,y,u) or Vu = b(z,y,u,) will be solved using DRBEM. Solutions
which are obtained using constant boundary elements for both of the forms
V2u = b(z,y,u) and V2u = b(z, y, u,) will be given for several values of Hartmann
number and f-expansions and then compared. Later the solution is obtained
by using linear boundary elements for the derivative form V?u = b(z,y, us).
Computer programs are written in Fortran language (Brebbia (1978)), and run

in PC platform. All the graphics are obtained by using MATLAB package.

4.1 Solutions using constant boundary elements for VZu = b(z,y,u)

form

In this formulation MHD equations are solved which are given in equation
(3.82) with homogeneous boundary conditions. The Poisson’s equation here is
in the form of V2u = b(z,y,u). MHD flow solution then can be obtained going
back through equations (3.81) and (3.75).

In the computations, domain is defined by |z| < 1, |y] < 1 taking the

origin at the center of the section and axes parallel to the sides. In the DRBEM
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we choose 11 x 11 uniform mesh (h = 0.2) i.e. 40 constant boundary elements
and 81 internal collocation points are used. The values of the velocity V(z,y)
and the induced magnetic field B(z,y) are obtained as a result of DRBEM at
the interior points. Radial basis function interpolations are used for the right
hand side function b(z,y,«) and b(z,y,u,). In general polynomial radial basis
functions are used since they give quite good approximations and easy to use.
In Figures (4.1) and (4.2) we see the velocity V(0,y) with f-expansions
f=14+7r f=1+r+r7%+1r® respectively for Hartmann numbers M=2, 5
and 10. Since the induced magnetic field B(0,y)=0 (see equation (3.90)) there
is no need to present B(0,y) curves. Figures (4.3) and (4.4) give V(x,0) curves
again for linear and cubic f-expansions and for Hartmann numbers M=2 and 5.
Corresponding B(x,0) curves for the same f-expansions and Hartmann numbers

are presented in Figures (4.5) and (4.6).
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Different degree of polynomials in radial basis function (f-expansions) are
carried for Hartmann number M=2. The velocity V(x,0) - induced magnetic

field B(x,0) curves are plotted in Figures (4.7) and (4.8) respectively.

In Figures (4.9)-(4.10) and (4.11)-(4.12) we give velocity and magnetic field
contours (equal velocity lines and current lines) with different f-expansions and
exact solution for Hartmann numbers M=2 and M=5 respectively. From these
contours we notice the flattening tendency for velocity values and boundary layer
formation for both velocity and induced magnetic field as the Hartmann number

increases. This is the well-known behaviour of MHD channel flow problems.
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4.2 Solutions using constant boundary elements for VZu = b(z,y, u;)

form

The equations to be solved here are given in equation (3.76) with
homogeneous boundary conditions. The Poisson’s equation is in the form of
V2u = b(z,y, u;). Again velocity V and induced magnetic field B can be obtained
back by using equation (3.75).

Computations are carried out with the same domain and discretization for
the boundary and the interior of the domain as in Section 4.1.

Figures (4.13) and (4.14) show the velocity V(0,y) for Hartmann numbers
M=2, 5,10 and 15 with f = 1+r and f = 1+r+r? respectively. Again B(0,y)=0.
V(x,0) curves are given for the same f-expansions (linear and quadratic) and
for M=2, 5 and 10 in Figures (4.15) and (4.16). Induced magnetic field B(x,0)

curves are presented in Figures (4.17) and (4.18) with the same f-expansions.

Again in f-expansions polynomial radial basis functions with different
orders are tested in terms of V(x,0) and B(x,0) for Hartmann number M=2 in

Figures (4.19) and (4.20).

Figures (4.21)-(4.22) and (4.23)-(4.24) present equal velocity lines and
current lines for Hartmann numbers M=2 and M=5 respectively. Boundary layer

formation is quite remarkable for Hartmann number M=5 for both V(x,y) and

B(x,y).
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4.3 Comparisons of the solutions for V?u = b(z,y,u) with V?u =

b(z,y,u,;) using constant boundary elements

In this Section, solutions of the MHD channel flow problem are compared
in the two forms as VZu = b(z,y,u) and V2u = b(z,y, u;). We can see that the
solutions with VZu = b(z,y, u,) form give better results. Since the derivative
form contains more information this result was expected mathematically too.

We compare the two formulations for MHD flow equations in terms of
V(x,0), B(x,0) curves and V-B contours. From the previous Sections 4.1 and
4.2 we notice that f-expansion using quadratic radial basis function was suitable
for Hartmann numbers at most M=5. This is why we don’t continue with the
cubic radial basis functions. Figures (4.25)-(4.26) give the comparison for M=2
and Figures (4.27)-(4.28) for M=5 respectively. Especially for M=5 we can see
that derivative formulation V2u = b(z, v, u) gives better results when the curves
are compared with exact solution.

In this Section all the graphics which compare the two forms
V2u = b(z,y,u) and V?u = b(z,y, u,) contain legends for the Laplace operator
as V2u, since MATLAB graphic package doesn’t contain V2u operator.

The equal velocity lines and current lines are given for the two formulations
in Figures (4.29)-(4.30) and (4.31)-(4.32) for M=2 and M=5 respectively. One
can easily see that the derivative formulation V*u = b(z,y,u,) is better when

the contours are compared with the exact solution.
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4.4 Solutions using linear boundary elements for V?u = b(z, y, u,) form

This Section represents solutions obtained from V2u = b(z, y, u;) form by
using linear boundary elements. We choose 11 x 11 uniform mesh (h=0.2) for
the same domain |z| < 1, |y| < 1 using 44 linear boundary elements and 81
interior nodes. Close to the corners of the channel two nodes are placed as the
end points of the elements on both boundaries. This way of handling corner
points is called discontinuous linear elements. Since from the constant element
graphs it is understood that the derivative form V*u = b(z,y, u,) gives better
results so, we continue to the linear case only with the derivative formulation.

Figure (4.33) gives variation of Hartmann numbers for V(0,y) curves with
quadratic f-expansion. Figures (4.34) and (4.35) present V(x,0)-B(x,0) curves
for M=2 and for linear and quadratic f-expansions. In Figures (4.36)-(4.37)
we compare constant and linear BEM formulations for M=2 with quadratic
f-expansion. From B(x,0) curves we see that linear approximation results are
much closer to the exact solution.

Finally we present comparisons of constant-linear BEM approximations for
Hartmann numbers M=2 and M=5 in Figures (4.38)-(4.39) and (4.40)-(4.41)
respectively using linear boundary elements with quadratic f-expansion. For equal
velocity lines linear approximation looks like giving better results in the sense of
closeness to the exact solution. But this improvement is not observed in the
current lines. As a result, we conclude that even constant approximation can be
used all over the computations.

Again V? represents V? in Figures (4.33)-(4.41), because of the legend
problem in MATLAB graphic package for V2-operator.
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Figure 4.33: V(0,y) for f =1+7+71% 0 <y <1, V2u=b(z,y,us)
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Figure 4.36: V(x,0) for f=1+7+7%, M=2,0<z<1
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Figure 4.37: B(x,0) for f =1+4+7+7% M=2,0<z <1
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Figure 4.38: V(x,y) for f =1+7+7%, M=2
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Figure 4.39: B(x,y) for f =1+r+7%, M=2
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Figure 4.40: V(x,y) for f =1+ 7, M=5
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Figure 4.41: B(x,y) for f =147, M=5
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CHAPTER 5

CONCLUSION

In this thesis, we deal with the Dual Reciprocity Boundary Element
Method (DRBEM) solution of Magnetohydrodynamic Channel Flow problem
using Radial Basis Function (RBF) interpolation. We interpolated a function
which is b(x,y)=sin(nx)sin(my) using several radial basis functions and therefore
we introduced them first. While solving MHD Channel Flow problem the right
hand side function is either of the form, VZu = b(z,y,u) or VZu = b(z,y,us),
therefore we apply the radial basis function interpolation to these two forms.
Since the Boundary Element Method is connected to the interpolation of the
right hand side functions of these two forms, in the interpolation N values from
the boundary and L values from the interior part of the domain are used.

The theory of DRBEM for Poisson type equation of the forms,
V2u = b(z, y,u) and V?u = b(z, y, u,), using the RBF interpolation for b function
is given. Then the computations are carried out for these two forms and for linear
and constant boundary elements.

We deal with the well known Maxwell equations of electromagnetism and the
basic equations of fluid mechanics which lead to the coupled system of equations in
the velocity and magnetic field. They can be put in the forms of V2u = b(z, y, u)
and V?u = b(z,y,u;). Solution of the MHD Channel Flow problem for several
Hartmann numbers and different f-expansions are presented by using constant
and linear boundary element methods separately.

We present solutions of MHD Channel Flow problem in terms of graphics
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by using constant boundary elements for V?u = b(z,y,u) and V?u = b(z, y, u,)
forms. From the results of these two forms, we conclude that V?u = b(z,y, u,)
form gives better results than V2u = b(z,y,u) form. The results agree well with
the exact solution even by using polynomial RBF interpolations for b(z,y, u,)
function. Also the well known behaviour of MHD flow which is the boundary
layer formation for increasing Hartmann number, and very well agreement with
the exact solution is obtained.

We continued with linear boundary elements for the derivative
V?u = b(z,y,u,) form. Solutions of both constant and linear BEM
approximations for several Hartmann numbers are compared. For equal velocity
lines, linear boundary approximation looks like giving better results in the sense
of closeness to the exact solution. But this improvement is not observed in the
current lines. As a result, we conclude that constant BEM approximation for
V2u = b(z, y, u;) form can be used all over the computations.

Further studies should be carried out for large values of Hartmann number

and for different combinations of boundary values of the channel.
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