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ABSTRACT

Yasin Ozkan (Master of Science in Petroleum Engineering)

Fractal and Anomalous Diffusion Models for Analyzing Well Test Data from Liquid Dominated
and Vapor Dominated Geothermal Reservoirs

Directed by Mustafa Onur
166 pp., Chapter 5: Summary and Conclusions
(467 words)

The importance of geothermal reservoirs is rising day by day because of the world’s
enormous energy demand. Now, governments give special emphasis to renewable energy sources
like geothermal energy more than fossil fuels since these renewable energy sources are considered
environmentally friendly and sustainable. On the other hand, one of the most challenging tasks of
geothermal reservoirs is to model these reservoirs for resource evaluation and performance
analysis because geothermal reservoirs are quite heterogeneous and include complex network of
fractures and faults.

Appropriate modeling of geothermal reservoirs is crucial for determining appropriate
production strategies. For instance, the effects of production and/or injection wells, and the
locations of those wells on reservoir performance are assessed by the reservoir model. In addition
to these, enhanced recovery production, injection wells operations, production rate prediction, and
feasibility analysis of given field are determined by considering reservoir models. Hence, reservoir

models are extremely important for companies. Well testing is applied to reservoirs to investigate



the efficiency of the wells by companies. They characterize well performance and reservoirs by
utilizing well-test data.

The objective of this study is to apply fractal and anomalous diffusion models to
geothermal reservoirs to analyze the well-test pressure data acquired from such reservoirs. These
models are applied to well-test data to find reservoir parameters governing the resource potential
and production rate performance, such as porosity and permeability.

In this study, the diffusivity equations based on the fractal and anomalous diffusion
concepts were solved by considering three different production boundary conditions; specified
constant rate production, specified constant bottomhole pressure production, and variable
rate/variable bottomhole pressure conditions. For all cases, the reservoir is assumed to be infinite
acting. For each production boundary condition, the initial value problem (IBVP) was solved by
using the Laplace transformation method and the Laplace space solutions were converted to the
real time domain by numerical inversion using Stehfest’s inversion algorithm. Both dimensional
and dimensionless solutions were presented for each condition and model. These solutions are
compared, and the differences were determined and presented for each condition. Then, the
solutions based on the fractal and anomalous diffusion models were applied to analyze well-test
data from the Kizildere geothermal field in Turkey and the Kamojang geothermal field from
Indonesia. Each geothermal field is examined to estimate the reservoir parameters by applying
automated history matching based on the ensemble smoother with multiple data assimilation (ES-
MDA) method. The main conclusion is that fractal parameters have a remarkable effect on the
reservoir characteristics. Changing fractal parameters results in different reservoir characteristics.
Fractal parameters cannot be interpreted from well test data, so the box-counting method is

extremely important. Furthermore, fractal model achieves very good results for both the liquid-



dominated and vapor-dominated reservoirs. On the other side of the coin, the Raghavan anomalous

model’s performance should not be ignored for vapor-dominated reservoirs.
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CHAPTER 1

INTRODUCTION

Global energy demand has risen significantly in the 20" century especially due to the two
world wars. Inevitably, energy demand continues to increase dramatically in the 21% century due
to uncontrolled population growth, advanced technology, and industrialization. Because of that,
each country that has geothermal sources pays attention to geothermal energy.

Geothermal is a type of thermal energy. The geothermal energy originated from the Greek
words: geo (earth) and thermal (thermos). In other words, it is thermal energy that produced and
stored by the earth. Geothermal energy is the internal heat of the earth and this heat diffuses from
the magma which is the hot zone in the center towards the earth’s surface. This heat sometimes
reaches the earth surface by following cracks under the earth’s crust, for example, volcanic
eruption. Geothermal energy comes to the surface by the radiation, convection, and conduction
heat transfer mechanisms. However, this heat is sometimes kept under a cover rock. Thanks to this
holding mechanism, the heat warms up the water. After the drilling operation, that energy comes
to the surface as hot water or steam. Most importantly, the energy provided in the geothermal
system is not produced from water. On the contrary, it is the energy obtained as a result of
converting underground heat energy into electrical energy. Water and steam that serve as heat
carrier carry the energy to the ground (Duffield and Sass, 2003).

Geothermal energy is not a new resource on the contrary to what many people think. It is
one of the oldest types of energy used by humans. Archaeological evidence shows that Paleo —

Indians used hot springs directly for cleaning, bathing, and cooking 10,000 years ago (History of



geothermal energy, 2020). On the other side of the continent, the peoples of ancient Greece and
Rome used hot water for healing in Europe and Anatolia (Geothermal Energy throughout the Ages,
2020). But now, geothermal energy is mostly used to produce electricity. Geothermal power
generation in the world yielded 92.7 TWH in 2018 (IEA,2020). The first geothermal electric power
plant is located in Larderello. In 1904, Italian scientist Piero Ginori Conti used to steam to produce
power (History of geothermal energy, 2020). After the Second World War, the United States gave
much weight to a geothermal power plant because the Mayacamas Mountains north of San
Francisco has a huge potential for geothermal energy thanks to the geysers. The San Andreas Fault
runs through California from the Imperial Valley to the San Francisco area, and there is a
geothermal activity.

The installed capacity of geothermal energy in the world reached 13.9 gigawatts in 2019.
Geothermal power generation went up by 3.7% in 2019. The United States has the highest installed
geothermal power capacity (2.6 GW) in the world. It is nearly 18% of the world’s total. Indonesia
(2.1 GW), the Philippines (1.9 GW) and the Republic of Turkey (1.5 GW) are the countries that

follow the United States in this regard.
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Figure 1.1 San Andreas Fault (Lynch D. K., 2006).
The Republic of Turkey is making a remarkable investment in the geothermal field. The
Republic of Turkey installed the most geothermal capacity additions both at 219 megawatts (MW)
in 2018 (S6nnichsen, 2020), and 232 MW in 2019. (BP, 2020). Figure 1.2 demonstrates that global

geothermal installed capacity goes up substantially.
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Figure 1.2 Geothermal Energy Capacity in the world between 2019 and 2019 (S6nnichsen,
2020).
The total number of geothermal wells drilled for power projects is 1,159 from 2015 to
2020, and 10,367 million $US was spent on those projects. The world total installed capacity
would be 19,361 MWe in 2025 (Huttrer, 2020). In addition, the International Energy Agency (IEA)

expects that geothermal power generation will be 162 TWh in 2025 and 282 TWh in 2030.
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Figure 1.3 Geothermal power generation in the sustainable development scenario (IEA, 2019).

Geothermal energy has a lot of advantages. The first and most important advantage is that
it is renewable energy. The produced hot water can be used to generate electricity. Then, the colder
water can be pumped through the injection well, so this process provides sustainability. Sustainable
geothermal energy systems impact poverty, health, education, demographics, natural hazards,
atmosphere, land, freshwater, biodiversity, economic development, etc. (Shortall et al., 2015).
Geothermal energy is baseload. That is, geothermal power plants can generate electricity 24 hours
per day / 7 days per week. They are not affected by severe weather conditions. Furthermore,
geothermal energy has a smaller footprint than other energy types. Geothermal power plants use
less land per GWh (404 m?) than coal (3642 m?), wind (1335 m?), or solar PV (3237 m?). In

addition, geothermal is clean energy. Geothermal power plants emit no greenhouse gasses



(Geothermal Basics, 2020). Moreover, geothermal energy has a lot of direct use applications. It is
used for swimming, bathing, balneology, space heating, and cooling. Furthermore, there are
agriculture applications; for example, greenhouse heating to get maximum production for fruit and
vegetable products and fishpond and raceway heating. Thanks to these benefits, people tend to use
geothermal energy much more year by year. Figure 1.4 depicts that there is an increasing trend for

direct use applications.
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Figure 1.4 Comparison of worldwide direct use of geothermal energy in TJ/yr from 1995, 2000,
2005, 2010, 2015 and 2020 (Lund and Toth, 2020).
After drilling a geothermal well, well testing and reservoir characterization are required.

While the main purpose of reservoir characterization is to characterize the lithology, fractures, and



stress, well test analysis provides to evaluate well properties such as maximum production or
injection flow rate. Gamma — ray logs and spectral gamma — ray help to identify petroleum and
geothermal reservoir lithology. On the other side of the coin, well testing supplies the estimation
of reservoir hydraulic parameters, for example, well productivity or injectivity index, average
reservoir pressure, well skin factor, reservoir permeability, and reservoir boundaries. It is obvious
that wells cannot be produced efficiently without modeling the reservoir. Well test analysis is
extremely important to evaluate the dynamic data because the derived models may match the
observed data. There will be one correct answer and more than a few probable answers. Thanks to
this good match, well test analysis provides estimate of permeability and porosity under in — situ
flow conditions, estimates of well performance, and estimates of distances to boundaries. As a
result, the production lifetime of the well could be extended, and human beings get a chance to
benefit more from this energy. Thus, well test analysis is non — negligible to the petroleum and
geothermal industry. Well testing and reservoir characterization play a key role to understand how
fluid and heat energy are transferred. Applying history matching on pressure data helps to
understand well characteristics. For instance, possible barriers and faults/fractures in vertical

directions can be interpreted.

1.1 Geothermal Systems and Power Plants
The geothermal reservoirs consist of porous and fractured rocks where are fed with rain,
snow, sea, and magmatic waters. When rising hot water or steam is trapped in those rocks under
an impermeable rock (cover or cap rock), it can form a geothermal reservoir. Those reservoirs exist
in the location where the volcanic activity occurs. Because of tectonic movement, the earth’s crust

is broken into plates. Magma drives the plates in three different ways: divergent, convergent, and



transform. While a divergent boundary means when two plates are moving apart from each other,
the convergent boundary is when two plates are pushed into each other. A transform boundary is
that two plates slide past one another. Furthermore, the most tectonic activity is seen in the Ring

of Fire where most earthquakes and volcanic eruptions occur.
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Figure 1.5 World Plate Boundaries: divergent, convergent and transform (Geology.com, 2020).

There are six types of geothermal resources: magma, hydrothermal, geopressured, hot dry
rock (HDR), enhanced (or engineered) geothermal systems (EGS), and waste heat systems.
Magma is the largest geothermal resource. The heat from magma diffusive through the fracture
and heat the cold water. Hydrothermal resources require three components: a heat source, an
aquifer, and an impermeable rock. These systems convey heat to the surface as steam or hot water.
On the other hand, hot dry rock systems have either dry aquifer or low permeable rock. These
systems can be activated both creating artificial fractures and injecting water. Geopressured

systems contain hot brine saturated with methane. These systems have deep aquifers under high



pressure. Moreover, geothermal systems can be called enhanced geothermal systems when the heat
is produced in an economical way from low permeability and/or porosity rock. Therefore, these
systems are also called engineered geothermal systems because these type of rocks needs
stimulation or enhancement operations. Finally, the waste heat system is different than others.
These systems can be seen at the hydrocarbon reservoirs. After many years of production, some
hydrocarbon reservoirs exposed to water floating. Hence, hydrocarbon production may be
uneconomical. Then, these systems can be used as artificial geothermal systems because the heat
can be carried by water circulation (Falcone et al. 2011).

There are three types of geothermal power plants: dry steam, flash steam, and binary cycle.
Dry steam power plants pull underground resources of the steam directly to generate electricity.
The steam is directed into a turbine or generator unit. The dry steam power plant is suitable in case
steam is not mixed with water. These geothermal systems temperatures are between 180 — 350 °C.

The first example of the dry steam power plant is located at Larderello, Italy (1904).

Dry steam powvrer plant
Laad

Turbine Generator

Production
well

Figure 1.6 Dry steam power plant (EIA, 2019).



Flash steam plants are different than dry steam plants. High pressure hot water flows up
through wells with its own pressure. During this process, the pressure decreases and some of the
hot water boils into steam. Then, the steam is directed to turbines and electricity is produced. After
this process, the steam cools, and it condenses to water. Thus, the water is separated and is injected
back into the ground since this water can be used again. Flash steam power plants are used with

the temperature greater than 182 °C.

Flash steam power plant

Flash Load
tank Turbine Generator
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Figure 1.7 Flash steam power plant (EIA, 2019).
Binary cycle power plants are used at lower temperatures of geothermal systems (100 —
182 °C). In these geothermal systems, the steam cannot be used directly due to low temperature.
Hence, another liquid is used to generate electricity. To put it another way, the heat is taken from

the hot water and is transferred to working fluid by using a heat exchanger. The main goal is to
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vaporize the working fluid and sent to it the turbine to produce electricity. It is important that the

working fluid boiling point should be lower than the water boiling point.

Hillﬂl’]\' T.:]\'T.:'E powvirer [I'HIIt Load
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Praduction ~E Injection
well TR well

Figure 1.8 Binary cycle power plant (EIA, 2019).

1.2 Literature Review
In this study, the focus is on the analysis and interpretation of well test data from
hydrothermal geothermal reservoir by considering fractal and anomalous diffusion models. As
mentioned before, geothermal reservoirs are quite heterogeneous with complex networks of
fractures and faults. After the 1950s, fractured and unconventional reservoirs have got remarkable
attention in the geothermal, oil, and gas field industry because traditional modeling which is
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applied to homogeneous reservoirs has some drawbacks against fractured reservoirs. In 1963,
Warren and Root studied the naturally fractured reservoirs by applying two — scale (fracture —
matrix). This study has significantly influenced today’s studies and formed the background.

In 1983, Gefen et al. described the mean square displacement as:

2
r2(t) ~ Zt2+e (1.1)

or

2
r2(t) ~ Ztw (1.2)

where Z is a diffusion coefficient, and d,, is called Fickian value, and it is equal to 2 + 6. Before
Gefen et al. Fickian value is accepted as d,, = 2. However, they proved that d,, can be 2 if the
reservoir is homogeneous. In other words, when 6 = 0, the diffusion is called normal diffusion.

On the other hand, if 6>0 or 6<0, then the diffusion process is called anomalous diffusion.

Furthermore, Gefen et al. claimed that the mean square displacement should be shown as tﬁ
rather than t because of heterogeneous geometry. Although percolating cluster geometry is
heterogeneous, there is a self-similarity. In addition to this, Gefen et al., introduced the hydraulic
diffusivity n for a fractal network as
n~r°, (1.3)

where 6 is the topology of the network (conductivity index). This means that the diffusivity goes
down with a distance (6 > 0). Actually, this variation explains the anomalous diffusion effect. In
other words, when the fractal network consists of a highly tortuous path (6 > 0), the diffusion is
slower than normal diffusion, and this process is called subdiffusion. On the other side of the coin,
as the fractal network contains a less tortuous path (6 < 0), the diffusion is faster than normal

diffusion, so it is called superdiffusion.

12



In 1984 and 1985, O’Shaughnessy and Procaccia studied analytical solutions for diffusion
on fractal objects. Then, they worked for diffusion fractals in 1985. They showed that the
generalization of the diffusion equation is proposed for Euclidean lattices which have the case of
lattices of noninteger dimension. Diffusion on fractals is presented based on scaling argument for
conductivity and supported by a renormalization group analysis and numerical solutions. They
proved that anomalous diffusion and scaling of conductivity proceed from 6. The conservation of
probability equation is defined as a change in probability (M) at time ¢t is equal to change in net
radial current within the shell.

oM (r,t) 0J(r,t)

= 14
ot ar (14)

By using this relationship, the diffusion equation is proposed for the spherically symmetric shell

op(r,t)
or > ’

ap(r,t) 1 i(K(r)rD‘l

ot  rP-19r

(1.5)

where K(r) = Kr~?, and K is constant, D is defined as fractal dimension and @ is the anomalous
diffusion coefficient.

In 1990, Chang and Yortsos introduced fractals to petroleum (fractal media) reservoirs
successfully. Chang and Yortsos developed the study for O’Shaughnessy and Procaccia’s (1985).
O’Shaughnessy and Procaccia defined the permeability using the fractal distribution. On the other
hand, Chang and Yortsos (1990) extended their formulation and apply one example. Then, Beier
(1994) explained both permeability and porosity using fractal distribution. Chang and Yortsos
proposed a diffusivity equation for single phase flow in a system where the fractal object embedded

into a Euclidean matrix. The diffusivity equation derived by Chang and Yortsos (1990) is

op(r,t) m 1 0 ( Bap(r,t))

“Tot T urvtar\"  or (1.6)
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They developed a model (fractal model) that has a disconnected matrix, but it might get in
contact with the fracture network. This provides that fluid from to and from wells occurs through
the connected fracture. In addition, they worked on pressure transient response in two cases:

contribution of matrix participation and when both the fracture network and the matrix participate.

e

Figure 1.10 Flow across a differential shell (Chang and Yortsos, 1990).
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Figure 1.9 depicts the model of porous media. Dash lines represent the fractal fracture
network which has a fractal property. The rest of the space is occupied by the Euclidean matrix.
In Figure 1.10, radial r refers to the Euclidean distance from the origin. Chang and Yortsos
presented the flow in fracture networks and diffusivity equation by using this model. Their
mathematical model is based on the flow of slightly compressible fluid in a fractal reservoir and
is examined both the matrix and the network participate in the flow. Consequently, they found out
that either porosity well logs or another transient test should be used in order to determine the
fractal parameters.

In 1990 and 1994, Beier improved the study of Chang and Yortsos. While Chang and
Yortsos solved the diffusivity equations by assuming finite wellbore condition, Beier solved the
governing equation based upon line source well with radial symmetry. Furthermore, Beier
expected that the fractal dimension (df) should be 2 or slightly less in oil in place calculations. In
addition to that, Beier applied fractal theory to field pressure test examples and got fair enough
results for the pressure transient behavior of a fractal reservoir. As a result, he observed that there
is a power — law behavior for the linear and radial flow.

In 1994, Metzler et al. introduced the new model which is called the anomalous model.
Metzler et al. (1994) claimed that the anomalous model is different than the fractal model. They
believed that anomalous diffusion cannot be described by the fractal model because the diffusion
process of fractal (fractured) reservoirs is history dependent. They proposed the new diffusivity
equation, which is quite similar to the fractal model, but it includes the temporal fractional

derivative. The diffusivity equation proposed by Metzler et al. (1994) is

lapa(r,t)_ 1 0 ( B(’)p(r,t)>’ (1.7)

7 ot r&lor or
where a is the anomalous diffusion exponent.
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In 1995, Acuna et al. indicated that porosity and permeability of any region of radial
distance are scale dependent as a power law. They obtained pretty good results for pressure
transient responses from well in the geothermal field. They found out that wellbore pressure

change has a power law relationship according to time. The topology of the network is indicated
as archaeological 0 < 6 < 0.5. They also stated that 0.6 < Z—f < 0.86 depend on their evaluation

of field examples. Moreover, Acuna and Yortsos (1995) mentioned the box-counting method
which has been used to characterize the fractal properties of real networks. For instance, Serpen
(2000) determined the topology of the network and fractal dimension by using box-counting

method.

Flamenco — Lopez and Camacho — Velazquez (2001) states that 0.47 < Z—f < 0.67 depends

on the fractal reservoir in Mexico. Moreover, Flamenco — Lopez and Camacho — Velazquez (2003)
showed that the fractal parameters can be found by using a fractal model which is Chang and
Yortsos vertical well model when the transient flow and boundary dominated flow exists.
Flamenco — Lopez and Camacho — Velazquez found that the determination of the four parameters
of a fractal model requires the utilization of boundary dominated flow information because the
single well transient test cannot define the fractal parameters. In addition, they showed an
analytical solution for matrix blocks and fractal fracture contribution during transient and pseudo
steady state flow period.

Camacho — Velazquez et al. (2008) evaluated the naturally fractured reservoirs and
compared the fractal model and Metzler anomalous model. While they mentioned O’Shaughnessy
and Procaccia (1985) and Chang and Yortsos (1990) study for the fractal model, they paid attention
to Metzler work for the anomalous model. The main difference is that Metzler proposed a

diffusivity equation involving time fractional fractal diffusion. Moreover, Camacho — Velazquez
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et al. (2008) referred OP expression for O’Shaughnessy and Procaccia (1985) and Chang and
Yortsos (1990) study, and also, called MGN expression for Metzler et al. (1994). They investigated
diffusion on a vertical well in a closed reservoir and an infinite reservoir. Both methods are applied
with a dimensionless variable in Laplace space based on the constant wellbore pressure condition
and the finite wellbore case. The main purpose of this study is to observe the production decline
behavior in naturally fractured reservoirs consisting of single and double porosity with fractal
networks of fractures. Camacho et al. recognized that when a = 1 for suggested by Metzler, it is
the same as that proposed by Chang and Yortsos (1990).

In 2011, Camacho et al. applied the Metzler method to analyze interference tests in actual
field cases. The analysis of interference tests in single porosity naturally fractured fractal reservoirs
are examined by using the Metzler anomalous method since this method includes memory through
a fractional temporal derivative.

Raghavan (2011) looked at the anomalous diffusion from another point of view. Raghavan
(2011) introduced a new flux definition different than Chang and Yortsos (1990) and Metzler et
al. (1994) because Chang and Yortsos and Metzler et al. used the conventional form of Darcy’s
law and they did not change the continuity equation. Indeed, they used the convolved form of the
continuity equation. Hence, Raghavan claimed that here is no way to obtain a differential equation
involving fractional derivative by using conventional Darcy law and standard continuity equation.
He proposed that either flux law or continuity equation should be changed for a fractional operator
to result. Therefore, Raghavan (2011) changed the flux law. Moreover, Raghavan established new
dimensionless pressure, flow rate, and time equations. Then, Raghavan (2011) solved the
differential equation in radial symmetry both production at a constant rate by assuming a line

source well and production at a constant pressure by considering finite wellbore case.
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In 2012, Raghavan studied to figure out linear trends over exceedingly long-time frames
without considering geometrical configurations. Raghavan considered two different types of
fractional operators: Riemann — Liouville and Caputo. He preferred using Caputo fractional
operator since Riemann — Liouville fractional operator does not pay regard to the use of physically
interpretable initial conditions.

Then, Raghavan and Chen (2013a) applied the time fractional fractal model to the single
vertical fracture model. They solved the equation using a Laplace transformation and derived the
asymptotic solutions. These solutions are important, especially for numerical computations.
Solutions are presented considering the constant terminal rate case and the constant terminal
pressure case. In the same year, Raghavan and Chen (2013b) combined the analytical solution for
transient linear flow under subdiffusion with a finite conductivity fracture.

In 2015, Raghavan and Chen introduced a new flux equation involving both time fractional
derivative and spatial fractional derivative. They worked on the transient behavior in a linear
reservoir. While time fractional derivative refers to subdiffusion, spatial fractional derivative refers
to superdiffusion. In other words, they mentioned highly conductive paths with superdiffusion
(spatial fractional derivative) and impediments to flow with subdiffusion (time fractional

derivative).

1.3 Problem Statement
Humankind absolutely needs energy in order to survive on earth. Therefore, maximum
efficiency, low-cost investment, and sustainability must be ensured when producing energy.
Unfortunately, hydrocarbon reservoirs cannot provide this comfort zone at the same time. Because

of unsustainable hydrocarbon reservoirs, governments and companies tend to utilize geothermal
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energy more these days. However, geothermal reservoirs are different than conventional
hydrocarbon reservoirs. Thus, appropriate reservoir models are developed to investigate
heterogenous reservoirs. In the literature, some of the reservoir models are used to analyze the
heterogeneous reservoirs. Each model provides appropriate matches with real field data. However,
these models have not been compared and applied to the same field case. In addition, the effect of
each fractal parameter has not been shown for each reservoir model in the same study. Because of
the different diffusivity equations, it is expected that solutions of each model and the effect of the

fractal parameters should be different.

1.4 Objective and Scope of the Study

The main purpose of this study is to derive analytical solutions to model heterogeneous
reservoirs and apply the reservoir models into the real fields by considering fractal and anomalous
diffusion models. Another important objective of the study is to compare the responses from these
two models for different inner boundary conditions such as constant-rate production and constant
bottomhole pressure (BHP) and then to apply each of these model to analyze real pressure data
sets by using a history matching method based on the ES-MDA method to characterize and
estimate the models parameters for the geothermal reservoir system under consideration. This
thesis is organized as follows. In chapter 2, the basic definition of fractal and the theory of fractal
model and anomalous models are presented in detail. This part answers the definition of fractal,
description of reservoir rock properties using fractal distributions, definition, and type of
anomalous diffusion, and proposed anomalous diffusion models. In chapter 3, fractal and
anomalous models are solved analytically by considering the constant rate, constant bottomhole

pressure and variable rate — variable bottomhole pressure. The details for each solution are given
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in the appendix. In chapter 4, the analysis of interference pressure data from Kizildere (Liquid —
dominated) and Kamojang (Vapor — dominated) geothermal fields are analyzed by using models.
Nonlinear regression analysis (ES-MDA\) is presented and used for analysis purposes. Finally, we

state the main conclusions of this thesis.
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CHAPTER 2

BASICS OF FRACTAL AND ANOMALOUS DIFFUSION MODELS

In this chapter, we describe basics of fractal and anomalous diffusion models, and present

diffusivity equations for fractal model and anomalous models.

2.1 Fractal Diffusion Model
Firstly, the definition of a fractal is explained. Then, the fractal model which was derived

by Chang and Yortsos (1990) is discussed.

2.1.1 Definition of fractal

In the 1970’°s, Mandelbrot was firstly introduced the term ““fractal”. Fractals comes from
the Latin “fractus”. The meaning is an irregular surface like a broken stone. Fractals could be
regular or non — regular geometric shape that has a complex pattern. Although fractals are very
complex, they consist of similar patterns and looks like self — similar with respect to different
scales. To put it another way, while scale decreases or increases, the general overview looks like
the same. Therefore, fractals can be thought that fractal is never ending pattern and forms the
infinite loop.

Fractals have three fundamental characteristics: self — similarity, power law expression and
noninteger dimension. Fern leaves are good examples for the fractals since a fern pattern is
repeated across the different scales. As you can see in Figure 2.1, the fern leaf has a repeated

pattern. Even though the smallest scale is reached, the shape of leaf has an exact replication of the
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overall leaf. Thus, the most obvious feature of the fractal is that the object has the similarity at

different scales (Hardy and Beier, 1994).

Figure 2.1 Fern leaf (Hardy and Beier, 1994).
One of the most typical characteristic properties of the fractal is to have a positive
noninteger dimension. People are familiar with 1D, 2D and 3D, but this is not applicable for the
fractals because the dimension of the fractal is not an integer such as 1.8 or 2.4. Sierpinski Carpet

is one of the best examples for this issue. Following figures demonstrates the Sierpinski Carpets.
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Figure 2.2 5 steps of a Sierpinski Carpet derived by MATLAB.
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Figure 2.2 depicts 5 steps of the Sierpinski Carpet. In the first step, it starts one square with
a square hole in its center, and then, this pattern is repeated with a smaller scale. If hole sides are
1/3 of the entire square and this condition is repeated in each of the four corners and sides of the
large squares, the second step of Figure 2.2 is obtained. After repeating this process, third, fourth
and fifth steps are achieved. To conclude, the dimension of the second step of the Sierpinski Carpet
in Figure 2.2 is 1.893, if the first step of the Sierpinski Carpet has a length 3. The dimension is
calculated by the following area formula:

A=clb, (2.1)

where A is area, b and c are constants and L is length.

Table 2.1 b and c variables with respect to different shapes.

Square 1 2

. . 3
Equilateral triangle Z 2

T
Half circle 2 2
Cube 1 3

4
Sphere 3 3

1
Pyramid 6 3

Sierpinski Carpet (Figure 2.2) 1 1.893
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2.1.2 Fractal model

A pressure transient model based on fractals was developed by Chang and Yortsos in 1990.
They extended the study for O’shaughnessy and Procaccia’s (1985). The main idea of this model
is to express the fracture network (k and ¢) as fractals. This model only can be applied to the
subdiffusion condition (see Section 2.2 for definition of subdiffusion). In other words, fractal
network is highly tortuous path, so topology of the network (6) has to be bigger than zero.
Although O’shaughnessy and Procaccia define the permeability as a fractal, Chang and Yortsos
(1990) and Beier (1994) identified both permeability and porosity as a fractal. The porosity and

permeability are presented depending on the position.

de—d
#0) =0 (1) 22)
and
de—d—6
k(r) = ko (:—O) ! , (2.3)

where d is the Euclidean dimension, k, is reference permeability at r,, r radius, r, is reference
radius, and ¢, is reference porosity at r,. It is note that while Euclidean dimension (d) is an integer
number, fractal dimension (d;) is noninteger. Euclidean dimension d = 1,2,3 for rectilinear,
cylindrical, and spherical geometry, respectively. Moreover, porosity and permeability at wellbore

radius can be described as

b () = by (:—:)df_d 2.4)
and
k(r,) = kq (:—“:)df_d_e (2.5)

As a result, the porosity and permeability at any point r can be written as
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$(r) = (1) (%)df_d 2.6)

and

k() = k() ( 2.7)

T
The classical diffusivity equation for a cylindrical system (d = 2)

op ¢ 10 dp
at d)(r)ctu;a(k(r)ra_r)’ (28)

where ¢; = 1 in Sl unit, and ¢; = 2.637x10~* in oil field unit. Using Egs. 2.6 and 2.7, the

diffusivity equation for the fractal diffusion model is described as:

op ck(r)ny 1 0 (rdf—e—1 a_p)

e _ - 2.9
ot  ¢(ry)cn rér~tor or (29)

In addition, the diffusivity equation for the fractal diffusion model can be written as

dimensionless by using the following dimensionless radius, time, and pressure,

_ r

rD—rW, (2.10)
c k(r,)t
= Wit 2.11
D= Br)en @11)
and

k(r,)h
= . — 2.12
Po = Bn (pi —p) (2.12)

where ¢, = 21 in Sl unit and ¢, = 141.2 in oil field units. As a result, the dimensionless

diffusivity equation for fractal diffusion model is

dpp 1 0 ( B(’)pD>

0ty 1 ary \"° 9, (2.13)
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where f = dy — 6 — 1. Furthermore, Raghavan (2011) redisplayed the fractal model in a different

notation. He showed that Chang and Yortsos described the diffusivity equation for flow of a

slightly compressible fluid in a fractal network in dimensional coordinate system:

1dp(r,t) 1 0 dap(r,t)
Z — — (B
n ot rdr=1or (T or )’ (2.14)
where
oom
n= (2.15)

ol
where m is fracture network parameter in the fractal system, c; is compressibility, p is viscosity.

_ Ky
¢f

m (2.16)

where k; and ¢, are permeability and porosity in the fracture, respectively.

2.2 Anomalous Diffusion Models
Firstly, we explain the definition of anomalous diffusion. Then, the anomalous diffusion
model which is derived by Metzler is presented. Finally, another anomalous diffusion model

which is introduced by Raghavan is shown.

2.2.1 Definition of anomalous diffusion
In statistic, the position of the particles which depends on time have a relationship between
mean — square displacement (MSD) of the particle and time. The MSD in fractal (heterogenous)
media can be shown as
r? ~ tv. (2.17)
When the exponent y is equal to 1, Eq. 2.17 refers normal (conventional) diffusion in the

matrix and natural fracture regions. In other words, the MSD of the particle and time has a linear
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relationship. Normal diffusion is usually valid for homogeneous porous media. In this case,
Brownian motion of individual particles behaves Gaussian distribution. On the other hand, if a is
not equal to 1, the process is anomalous diffusion. This means that the diffusion process is either
slower or faster. The anomalous diffusion is displayed in disordered and heterogeneous reservoirs.

y=1 Normal Dif fusion

y#1 Anomalous Dif fusion

(2.18)
y<l1 Subdif fusion
y>1 Superdif fusion
It can be seen that diffusion has a power law relationship, and fluid particles obey a

Continuous Time Random Walk (CTRW) behavior (Raghavan, 2011). In CTRW model, the fluid
particles change the position between two points. If there is an impediment or obstacle for flux,
the diffusion process goes slower. As a result, the diffusion process is called subdiffusion. On the
other side of the coin, if particles change their position in a smaller time scale or jump longer than
normal displacement, this process is called superdiffusion. For example, highly conductive and

well-connected paths supply longer jump for particles. For instance, Redner (1989) presented the

superdiffusion model, and Cloot and Botha (2006) studied on extremely conductive paths.

2.2.2 Anomalous diffusion model proposed by Metzler

In 1994, Metzler et al. proposed new diffusion equation for the fluid flow in fractal porous
media. The main difference is that Metzler et al. introduced fractional calculus for the behavior of
transport process in fractal porous media. Park et al. (2000) explained the main idea of Metzler’s

study. That is, the root idea is that Chang and Yortsos’s study fails to capture the history of the
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diffusion process and the nonlocality. Hence, Metzler incorporates the memory effect by applying
the fractional derivative. The mass balance for the differential shell (Figure 2.3) is that:

{Amount of }_ { Amount of } _ {Increment of Mass C ontent}

Mass Input Mass Output of Fractal loops in matrix (2.19)

The diffusivity equation in the dimensionless domain can be expressed by the above mass

balance:
0“pp (1p, tp) _ 1 0 ( dp-6-1 GPD(TD:tD))
oty r;f_l orp \ P a1y (2.20)
or
aapD y 1 d (rﬁapD) 531
oty T;f‘l orp \ P orp /)’ (2.21)

where a = ﬁ, « is the anomalous diffusion exponent, and rp, t;, and pp are given in Egs. 2.10,

2.11 and 2.12, respectively.

Figure 2.3 Flow across from backbone fracture to the fractal loops and to the production well

(Park et al., 2000).
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Metzler et al. used the same dimensionless radius, time, and pressure with Chang and
Yortsos. In dimensional coordinate system, the diffusivity equation for flow of a slightly

compressible fluid in a fractured network is given (Raghavan, 2011):

10p%(r,t) 1 0 dp(r,t)
Z — — (B
7 ate  riior (T ar ) (2:22)
where
G ™M 2.23
T TA = @A cen (2.23)
and
6+2\ 21
Aa=<”ctrw > . (2.24)
m

2.2.3 Anomalous diffusion model proposed by Raghavan

In 2011, Raghavan compared Chang and Yortsos’s study and Metzler’s study. Raghavan
partially agreed with Metzler’s study. However, he claimed that Metzler’s approaches partially
correct because Metzler derived the diffusivity equation (Eq. 2.22) by using conventional form of

Darcy’s law which is
_ k_
q(x,t) = —EVp(x, t). (2.25)

In addition, Metzler did not change the convolved form of the continuity equation.
Therefore, Raghavan asserted that it is not possible to obtain Eq. 2.22 by using conventional Darcy
law and convolved form of the continuity equation. Either flux term or continuity equation has to

be modified. Therefore, Raghavan (2011) proposed a new flux term:

a

_ ke d [t , 1 _
q(x,t) = —IEJ‘ dt m Vp(x, t). (226)
0
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Then, Raghavan updated the flux term in 2013.
1-«a

atl a

q(x,t) = — [Vp(x,t)]. (2.27)

Eq. 2.26 and Eq. 2.27 are the same and serve for the same purpose. He just changed the
notation. Furthermore, Raghavan prefer using Caputo (1967) fractional operator to take the

Laplace transform of fractional derivative. The Caputo fractional operator is

EDEx(t) = f de'(t —tH)n-e-1 il —f(t) . (2.28)

dt'm
The Laplace transform of Caputo fractional operator is (Liang et al., 2015):
f e=StEDE F(B)dt = s%f(s) — sE1£(0), (2.29)
0
where 0 < a < 1. Therefore, Laplace transform of Eq. 2.26 with respect to t is
L ke . _
q(x,s) = —sl™@ m Vp(x,s). (2.30)

It is fact that the Laplace transform of Eq. 2.27 is also equal to Eqg. 2.30. Moreover,
Raghavan derived the diffusivity equation for the flow of a slightly compressible liquid to a well
in the radial coordinate system by using the conservation equation given by:

dq(r,t) _  dp(rt)

= 2.31
or ot (2:31)
Then, taking the Laplace transform of Eq. 2.31 with respect to t gives
ag(r,s

T:5)  gelsp(r,s) — plr,t = Ol 232)
Next, putting Eq. 2.30 into Eq. 2.32 gives us
0 si-aKa k, _

P 2 50r,9) | = deulsplr,s) ~ plr,t = 0) (2.33)

or
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9]

k, 0
Skﬂar< p( 9>==¢Qkﬁﬁs)—p03t=0ﬂ- (2.34)

Divide left and right-hand side with s*~¢, so

0 [ky O _ ¢clsp(r,s) —p(r,t = 0)]
ar< p( )) = i a (2.35)
or
0 (kg O
6r< 5P S)) = ¢csp(r,s) —s* p(r,t = 0)]. (2.36)

Taking the inverse Laplace transform of Eq. 2.36 provides the diffusivity equation for the

anomalous diffusion model proposed by Raghavan.

0 (ky 0 0@
6r< pmdG t)) bc: gg b (2.37)
or
kg B 0%(r,t)
4 (I Vp(r, t)) = ¢CtT (2.38)
or
VA Tp(r, O] = pe, D) (2.39)

ot '
where A(r) = 1,779 = %"‘r‘e. In addition, Raghavan showed that Eq. 2.39 can be written as

1 0 dp(r,t) 2%p(r,t)

TL 10 n 1/‘{( ) r ¢Ct ata (2'40)

Eq. 2.27 is applicable for subdiffusion. Therefore, Chen and Raghavan (2015) modified

the flux term in order to solve superdiffusion condition.

kogp 0179 [ 0P
w ot (gxh
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or

91 [ 9P
aCet) = ~dep3ra a[a el t)] (2.42)

Chen and Raghavan (2015) presented the subdiffusion flow with a time fractional
derivative and described the superdiffusion flow with a space fractional derivative. Therefore, they

defined both time fractional derivative and space fractional derivative with Caputo fractional

operator
¢ d
FrA f dt'(t =)™ 5 f (&) (2.43)
and
L i ,
M—ﬁf(x)—F(l_ﬁ)j dx'(x = x')F — ,f(x) (2.44)

where 0 < @ < 1 and 0 < § < 1. In conclusion, we study with subdiffusion in this thesis, so we

assume B = 1, and a is changed in the given range.
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CHAPTER 3

SOLUTIONS OF DIFFUSIVITY EQUATIONS FOR PRESSURE TRANSIENT WELL
TESTS BASED ON FRACTAL AND ANOMALOUS DIFFUSION MODELS

In this chapter, we present analytical solutions of diffusivity equations for fractal and
anomalous diffusion models. We describe the initial boundary value problem (IBVP) for each of
the models. The solution of each model is presented for constant rate, constant pressure, and
variable rate/variable bottomhole pressure in the Laplace space. Then, the fractal model and
Metzler anomalous diffusion models are compared when 6 = 0. After that, the effect of fractal
dimension and topology of the network are investigated for each model. Next, the dimensionless

pressure response in the reservoir is analyzed. Finally, the influence of fractal dimension d, for

Metzler anomalous model and n for Raghavan anomalous model is studied.

3.1 Fractal Model
In this part, constant rate, constant bottomhole pressure, and variable rate/variable
bottomhole pressure are solved for an entirely fractal reservoir by using fractal model. Firstly, the
initial condition, inner boundary condition, and outer boundary condition are given in
dimensionless. The diffusivity equation is already given in Chapter 2. Laplace space analytical
solutions are found in dimensionless coordinate. Finally, the solution is converted from

dimensionless to dimensional by using scaling property.
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3.1.1 Constant rate

In this section, the solution of the diffusivity equation is solved for constant rate condition.

The diffusivity equation is given in Section 2.

dpp _ 1 0 ( ﬁapD)
0ty T arp \"P 9ry) (2.13)
where g = dy — 6 — 1. The initial condition is,
pp(rp, tp =0) =0. (3.1)
The inner boundary condition for a finite wellbore is
dp
B-ED —
(TD E>r Y -1 (3.2)
The outer boundary condition is
r}}gnw o (rp, tp) = 0. (3.3)

Let us start with taking the Laplace transform of the diffusivity equation, and applying the

initial condition:

551 5) = g — (8 d%)- (3.4)
er er er
The above equation can be written as
1 d dpp
— _ g 4Pp
Polp. ) = rD[“e drp (rD er>' (3.5)
Next, the Laplace transform of the inner boundary condition is
0Pp 1
B D) _
D S =—--, 3.6
( Pory/, 4 s (3.6)
and the outer boundary condition in the Laplace domain is
Jim 5 (rp, s) = 0. (3.7)
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Before, applying the outer and inner boundary conditions, Eq. 3.4 is rearranged to find a

general solution,

d pD dpD 0+2

TD dr? >+ B DE_TD spp(rp,s) = 0. (3.8)

The details of this section are given in Appendix A. The general solution of Eq. 3.8 is

o+2 2.5 6r2 25 6r2
p_D(TD,S) =T‘D2 {AI\, IQ_HTDZ l +BK 9+2 DZ l}, (39)

where v = o ﬁ . Next, the inner and outer boundary conditions are applied to find A and B. While

A is equal to zero because of the infinite-acting outer boundary condition given by Eq. 3.7, B is

then determined by applying the inner boundary condition given by Eq. 3.6 as

1

B = .
V5K, <92f2> (3.10)

Consequently, the result is

K, [25 e
9+2 o+2

2vs |
sVs Ky [e—+2

Pp(rp,s) = (3.11)

or

K 2\/— 9+2
13 9+2D

svs K,_4 lz_\/g .

pp(rp,s) =1, (3.12)

0 +2

Next, pressure change, Ap, is found by using Egs. 2.11 and 2.12 in the Sl unit.

k(r, )t

= Scnrd (211)

and
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B k(r,)h
~ 2mqBu

;i —p)

Po ~ 2mqBu

EQ. 2.11 can be written as
tp =1t
where

L kG
T = st ez

Then, Eqg. 2.12 in the Laplace space is given by,

Ap(r,s),

pp(s) = 2mqBu

B k(‘r‘,‘,)hA

(2.12)

(3.13)

(3.14)

(3.15)

where B, (s) is the Laplace transform of p,, (t,) with respect to time ¢, and Ap(s) represents the

Laplace transform of Ap(t) with respect to t. Applying scaling property helps us to find 7, (s),

K, 2

9+2}

O+2D
0+2
== =2’
pD(rD'S) = T'D
S
5 2
sl K12

(3.16)

The details of scaling property operation are given in Appendix B. As a result, A=p(s) is

found as:

[2 /i* e+2]
KI n r 2 |
SEEYAL
— 2mqBp 212, l J
Ap(r,s) = ——1p° =
2 /—*
s Ui
s K-1l572
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3.1.2 Constant bottomhole pressure
In this section, the solution of the diffusivity equation of the fractal model is solved for
constant bottomhole pressure condition. The details of the derivation are given in Appendix C.
The diffusivity equation is given Eg. 2.13, in Section 2. Moreover, the same initial and outer
boundary condition is used for this section. On the other hand, the inner boundary condition is
changed as:
po(rp = 1,¢p) = 1. (3.18)

The Laplace transform of inner boundary condition is

1
pp(rp =1,5) =—. (3.19)

Note that dimensionless time and dimensionless radius are defined in Egs. 2.10 and 2.11.

On the other hand, dimensionless pressure is defined differently for constant bottomhole pressure:

pi—p _ Ap(rt)
Di —Pwr  Apws

Pp = (3.20)

After taking the Laplace transform of the diffusivity equation and applying derivation, we

obtain the general solution which is the same as the constant rate solution.

ﬂ 2 w 2 0+2
pp(rp,s) =1, 2 {AI [0 ;/__2 T, l BK, [6 \-I{_Z T, 2 l} (3.9)

As we consider an infinite-acting reservoir, the outer boundary condition is the same with
the constant rate solution, which is given by Eq. 3.7. Thus, A must be zero due to the outer
boundary condition given by Eq. 3.7, but B should not be zero. As a result, the general solution

reduces to

6+2

pD(TDlS) 2 BK l

2Vs ¥l (3.21)

0+2 'p

The inner boundary condition in the Laplace space is applied to Eq. 3.21 to find B,
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1

s | (3.22)
sKy [e—+sz

Consequently, the dimensionless pressure in the Laplace domain is

2vs %2
o2, Kvig 2™
v, (rp,s) =1, 2 3.23
pp(rp,s) =1, N (3.23)
sKvlg+z
or
ﬂKVleurDz
—— _ 2
pD(rDJS)_TD & 2\/5 (324)
vig+2

Next, the pressure change, Ap, is found by using Egs. 3.13 and 3.14. The details of

derivation are given in Appendix D. Taking the Laplace transform of Eq. 3.20 yields

Pp(s) = Ap(7, ). (3.25)

pr f

Applying the scaling property helps us find

2 ni 0+2
Klgrzm’
- o+2,
o) = Lilpo Ol =7, " e (3.26)
2 =
1
SKvll9+2|

Finally, pressure change in the Laplace space with respect to t is
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2 |7 ex2
Klgrzn’
. ap,; o2
Ap(s) = ’;Wf rz" — | (3.27)
2 |—=
k|
o2

3.1.3 Variable rate/Variable bottomhole pressure

In this section, we present production at a specified variable rate and bottomhole pressure.
Up to this section, we found the constant rate and bottomhole pressure solution for fractal model.
Now, we use these solutions in this section. Firstly, we explain the solution of variable rate case.
Pressure change is explained by using a superposition equation assuming a piecewise step rate

function in each time interval.

N
p; —p(r,t) = Z(Qj — qj_1)0py(r e —t;_4), (3.28)
=

where N means the total number of flow rate steps. Note that g, = 0 and t, = 0. Pressure is

described as

_ (pw(r,t) forr=rn,,
p(rt) = {pow(r, t) forrm,<r<r,, (3.29)

where p,, and p,,,, are the pressure response at the well and inside the reservoir, respectively. Next,

Ap,,, (1, t) forr =m,,

Apowu (1, t)  forr, <r <, (3.30)

Apy(r,t) = {

where Ap,,,, (7, t) and Ap,,,.. (7, t) is the unite rate pressure change solution at r is at the well, and
outside of the well, respectively. We previously presented the constant rate solution Eq. 3.17 in

Section 3.1.1. When gB = 1, the solutions provide the unit rate pressure solutions (Ap,,,, (1, t) and
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Apowu (1, t)). Furthermore, to take the inverse Laplace transform, we use Stehfest algorithm

(Stehfest, 1970) with Ng¢.r = 12.

Secondly, we show how to find specified variable bottomhole pressure. In this case, the
pressure change is described by using superposition equation considering piecewise step

bottomhole pressure function in each time interval.

N

p; —p(r,t) = Z(prf,j — APy jm1 ) AP epu (1, € — 1), (3.31)

j=1
where N means the total number of bottomhole pressure change steps. Note that q, = 0 and

to = 0. Pressure is described as

_ (pw(r,t) forr =r,
p(rt) = {pow(r, t) forr,<r<r, (3:32)

and

Apcp,wu (r,t) forr =m,,

3.33
Apcp,owu (r,t) form, <r<r, ( )

Apcp,u (r,t) = {

where Apcpwy (1, t) and Apcy 0wy (7, t) symbolize the unit pressure change solutions at r is the
well and inside the reservoir, respectively. We previously presented the constant bottomhole
pressure solution Eq. 3.27 in Section 3.1.2. if Ap,, = 1, then the unit pressure change solutions

(Apcpwu (T, t) and Apgy, oy (1, t) ) are found.

3.2 Anomalous Models
In this part, constant rate, constant bottomhole pressure, and variable rate/variable
bottomhole pressure are solved for anomalous models. As mentioned before, there are two
anomalous models. The first one is proposed by Metzler et al. (1994), and the second one is

introduced by Raghavan (2011). In this part, it is assumed that subdiffusion exists, and space
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fractional exponent (B) is equal to 1. Firstly, we derive the analytical solution of Metzler
anomalous model for dimensionless pressure in Laplace space. Then, dimensionless pressure is
converted to pressure change in Laplace space by using scaling property. Next, we present
Raghavan’s anomalous model for pressure change solution in the SI unit. After, we convert the
solution from pressure change to dimensionless pressure in the Laplace domain. In addition, the
initial condition, inner boundary condition, and outer boundary condition are given separately for
both Metzler anomalous model and Raghavan anomalous model. Each solution is presented

individually in Laplace space.

3.2.1 Constant rate for Metzler anomalous model

In this part, the solution of diffusivity equation for Metzler anomalous model is solved for
constant rate condition. Dimensionless variables are defined in Egs. 2.10, 2.11 and 2.12. The
details of derivation are expressed in Appendix E. Previously, the diffusivity equation is already

given in Section 2:

2%pp 1 0 ( ﬁapD>

= 1,
atg rdf_l arD b aT‘D
D

(2.21)
where a = ﬁ. The same initial condition, inner and outer boundary conditions (Egs. 3.1, 3.2 and

3.3, respectively) are used in this section. Initially, we take the Laplace transform of the diffusivity

equation.

1 d dpp
Sa%(rDl S) - Sa—lpD (TD, tD = 0) e ( ﬁ pD).

=, " ar, (334

After applying the initial condition, and the derivation part, Eq. 3.34 is equal to
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1 d%p; B dpy
— — %P (rp,s) = 0.
ry drg  rftldn s“Po(1p,5)

(3.35)
The general solution of above equation is found as
e+2 24/s% w 24/5% e+2
= 3.36
pD(rDlS) T {AI [9+2 D BK [6"‘2 D l}l ( )
where v =22 As you can see the order (v) is the same with fractal model. After applying outer

and inner boundary conditions, respectively, we obtain that while A must be zero, B is equal to

1
B = .
2V/s% 3.37
K, [9—{5_2 (337)

Consequently, the dimensionless pressure is found as

2\/'— 9+2
oz, |42 N
pp(rp,s) =

= (3.38)
e

Next, scaling property is used to find pressure change in the Laplace space. The derivation
process is given in Appendix F. Eq. 3.15 is used to find pressure change (Ap(r, s)). As you know

Pp (s) is the Laplace transform of pj, (tp) with respect to time t, and p, (s) can be described as

_ 1
o (s) = Lpp(°t)] = F%( s ) (3.39)
So,

|[
Ky le T2 J
0+2

pp(s) =1,2 = | (3.40)
se 2\/;
s = K,
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As a consequence, the pressure change is equal to

SC(

2|7 oxz
Klgrzh’
— 2mqBp 2*2,
Ap(rp,s) = o T, 2 =1 | (3.41)
AT
Synm B1le+2

3.2.2 Constant bottomhole pressure for Metzler anomalous model

In this part, the solution of the diffusivity equation for Metzler anomalous model is solved
for constant bottomhole pressure condition. The details of derivation are expressed in Appendix
G. The diffusivity equation is already given in Eg. 2.21, in Section 2. Furthermore, the same initial
and outer boundary conditions are utilized to calculate the analytical solution of Metzler
anomalous model for constant bottomhole pressure conditions. However, we change the inner
boundary condition. It is given in Section 3.1.2:

po(rp =1,tp) = 1. (3.18)

The Laplace transform of the inner boundary condition is also given in Section 3.1.2,

1
pp(p=1,5) = 5 (3.19)

It is note that dimensionless pressure for constant bottomhole pressure is defined in
Eq. 3.20. Then, the Laplace transform of the diffusivity equation of Metzler anomalous model is

taken, and the general solution is given previously,

w Vs@ o4z 2/s@ 212
2 3.36
pp(1p, s) = {AI I9+2 T + BK, I6+2 T, l}, ( )
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where v = %. It is clearly seen that the same general solution and order are obtained in Metzler

anomalous model for constant rate condition. Next, the outer and inner boundary conditions are
applied to general solution, respectively. As a result of calculation process, it is found that A is
zero, and B is

1

B 25| (3.42)
sKy le )

Consequently, Eq. 3.36 develops into

or2, Kvig 2™

[2\/5_“ 5
p—D(TD; S) = TD z =
sk, lZ\/S_

(3.43)

0 +2

Next, we find pressure change (Ap(r, s)) by applying scaling rule. The details of solution

procedure are given in Appendix H.

a
2 ;— o+2
Klgrzh’
J— Ap f wv
Ap(1p,s) = SW T2 = (3.44)
2
KleF2

3.2.3 Constant rate for Raghavan anomalous model
In this part, the analytical solution of Raghavan anomalous model is studied for constant
rate condition. The main purpose of this part is to find pressure change in Laplace space. Therefore,

we use different initial condition, inner and outer boundary conditions. The details of derivation
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are explained in Appendix I. As you know, the diffusivity equation for Raghavan anomalous model
IS

0
n-1
rn=19r [T A(r)

dp(r,t) d%p(r,t)
e R (2.40)

where A(r) = 1,779 = %"‘r‘e. The above equation can be rewritten as for pressure change

Tn—l_lg(rn-l-% aa#) = ¢, a%;f(;,@_ (3.45)
The initial condition is
Ap(r,t =0) =0. (3.46)
The outer boundary condition is
lim Ap(r,t) =0, (3.47)
and the inner boundary condition for a finite wellbore case
s L 00) et

Next, Laplace transform of diffusivity equation with respect to t is found, and initial

boundary condition is applied to get the general solution,

1 0 0Ap\ pc,
— | rm-1-9 —> =—5%p(r,s). 3.49
rn-1 6r< ar Ag p (3.49)

Note that 1, is constant. To simply the equation, let us define new variables,

B=n—1-—06 (3.50)
and
_ta (3.51)
T’l ¢Ct' .

So, the diffusivity equation develops into
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1 d( .dip\ 1 __
- B_ = — a
B0 dr (7‘ Ir > - s*Ap(r,s). (3.52)

The general solution of the above equation is

Sa Sa
— _o+2 ZJE 0+2 2 ez
Ap(r,s) =12 CI, 012" 2 |+ DK, 12" z |r, (3.53)

where C and D are the arbitrary constants to be determine from the outer and inner boundary

conditions. Note that
V=ro—1="——. (3.54)

Observe that, the order of Bessel I and Bessel K function is different than Chang and
Yortsos and Metzler’s solution,
v=—-Vv. (3.55)
The negative reflection rule says that K, (z) = K_,(2), s0 K, (z) = K,/(z). Hence, there
is no difference between the orders. After applying outer and inner boundary conditions, it is found

that when C = 0

p__ 9B Vi

a 1 I
ApAghs®™2 dyr+1) a [ plw \2 (3.56)
2 K. 2s2 w__
Tw v+t |45%\ .2

S

where a,, = ;(an) and n = 2. In conclusion, the diffusivity equation for Raghavan’s anomalous

2

model in the Laplace space is
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1
_ B ; dw a [ riw \2
ApAghs®™Z dwr+1) a(,rdw >E Ni%w (3.57)

2 > w
n Ky 41252 1,42
Lw

w

After, we find the dimensionless pressure. The dimensionless pressure is introduced by

Raghavan (2011),

ankah
T, tp) = Ap(r,t), 3.58
pp(rp,tp) Tsepll p ( )
where
—1 1
w=(g) < (359)
n;d3 W

where § = di. Moreover, dimensionless time is expressed as

w

ty = erw £, (3.60)

Taking Laplace transform of Eq. 3.58 supplies to

_ apkgh —
=———Ap(r,s) 3.61
Pp = GecaynB (3.61)
or
— _ QscQphB__
Ap(r,s) = —ankah 7y (3.62)

where p,, (7, s) is the Laplace transform of p, (1, tp) with respect to t. Equalizing Eq. 3.57 and

Eq. 3.62 develops into
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qscqp HB —

akoh PP
4 1
i dy w \ 2 .
o BB Vi 2V, 25%<r 2) . (3:63)
apAghs? 2 w a Tvgw 7 idy
T Ky 41 |252 ndZ
Lw

Consequently, dimensionless pressure is equal to

1 1
pp(r,s) = T -
L\ al)
T]'dz TW 1
Lw a ,rdw 2
- dy K, |252 . 3.64
Vi —r 2" b <77id\%1> (3.64)
rdw(;""l) & ZS% Tv‘:w 2
v pred nidy

3.2.4 Constant bottomhole pressure for Raghavan anomalous model
In this part, we present the analytical solution of Raghavan anomalous model for constant
bottomhole pressure condition. The details of derivation are given in Appendix J. Initially, the
same PDE, initial condition and outer boundary condition (Egs. 3.45, 3.46 and 3.47) are used. The
new inner boundary condition is introduced as
Ap(r =r,,t) = Ap,, = constant. (3.65)
The Laplace transform of the inner boundary condition is

_ A
Ap(r =r1,,s) = % : (3.66)

After taking the Laplace transform of the diffusivity equation, and applying the outer and

inner boundary conditions, respectively, we obtain that the general solution is
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Y dw
K, | 2s2 (r_)

da
Wy,

Apy, 12

Ap(r=r1,,s) = (3.67)

d
T y({r "
w K, | 2s2 <—m"‘;l‘%}>

3.2.5 Variable rate/Variable bottomhole pressure for anomalous models

In this section, the analytical solution of a specified variable rate and bottomhole pressure
is presented. The constant rate and the constant bottomhole pressure solution for Metzler
anomalous model and Raghavan anomalous model are expressed in previous sections. Let us start
with variable rate case. Pressure change is explained by using superposition equation assuming

piecewise step rate function in each time interval.

N
p; —p(r,t) = Z(Qj —q;_1)Apu(r t —tj_1), (3.68)

j=1
where N means the total number of flow rate steps. Note that g, = 0 and t, = 0. Pressure is

described as

p(rt) = {pw(r, t) forr=rn,,

Pow(r, t) form, <r<r, (3.69)

where p,, and p,,,, are the pressure response at the well and inside the reservoir, respectively. Next,

— Apyy (1, 1) forr=m,
Apy(r,t) = {Apowu(r' t) formn, <r<r,

(3.70)
where Ap,,,, (1, t) and Ap,,,..(r, t) is the unit rate pressure change solution at r is at the well, and
outside of the well, respectively. This part is also shown in Section 3.1.3. However, the constant

rate solution for Metzler anomalous model (Eg. 3.41) and Raghavan anomalous model (3.57) are

different than fractal model. Therefore, when gB = 1, the solutions provide the different unit rate
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pressure solutions (Ap,,, (r,t) and Ap,,., (r,t)). In addition, we use Stehfest algorithm (Stehfest,
1970) with Ng.., = 12 to take the inverse Laplace transform.

Next, the specified variable bottomhole pressure solution is found. In this case, the pressure
change is described by using superposition equation considering piecewise step bottomhole

pressure function in each time interval.

N

p; —p(r,t) = Z(prf,j — APy jm1 ) AP epu (1, € — 1), (3.71)

j=1
where N means the total number of bottomhole pressure change steps. Note that g, = 0 and ¢, =

0. Pressure is described as

_ (pw(r,t) forr =r,
p(rt) = {pow(r, t) forr,<r<r, (3.72)

and

Apcp,wu (r,t) forr =m,,

3.73
Apcp,owu (r,t) form, <r<r, ( )

Apcp,u (r,t) = {

where Apcpwy (1, t) and Apcy 0wy (7, t) symbolize the unit pressure change solutions at r is the
well and inside the reservoir, respectively. If Ap,,» = 1, then the unit pressure change solutions
(Apcpwu (7, t) and Apg, 0wy (1, t)) are found. The unit pressure change solution can be calculated

by using Eq. 3.44 for Metzler anomalous model and Eq. 3.67 for Raghavan anomalous model.

3.3 Verification for Fractal and Anomalous Models
In this part, we present the relationship between fractal and anomalous models. In other
words, we prove that fractal model is a special case of anomalous models. Furthermore, we show

the effect of the topology of the network and fractal dimension for each model. Then, the pressure
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responses with respect to different distance are demonstrated for each model and compared

between the models.

3.3.1 Relationship between fractal and anomalous model
In this part, we validate that the fractal model is a special case for Metzler anomalous
model. Previously, the governing equation is given for both fractal model and Metzler anomalous

model in Section 2. The PDE of fractal model is

dpp 1 0 ( ﬁapD>

0ty o 1amp \"° 9y (2.13)
and Metzler anomalous model diffusivity equation is

“%pp 1 0 ( ﬁapD)

oty _def_l orp > ory /) (2.21)

Camacho (2008) claims that if « = 1, the diffusivity equation for Metzler model is the
same as fractal model. Camacho (2008) studied constant bottomhole pressure condition. In this
section, we firstly look at the constant rate condition. Then, we examine the constant bottomhole
pressure case. Initially, we draw a graph for « = 1 and 6 = 0 for different fractal dimension at
the wellbore (r = r,,) and in the reservoir (r = 1007,) to show the behavior of the models. We
use Stehfest algorithm (Stehfest, 1970) with Ny, = 12 to take the inverse Laplace transform of

dimensionless pressure.
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Figure 3.1 Fractal Model vs Metzler Anomalous Model dimensionless pressure responses for

a=1andatr =r, case.
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6=0and r,=100
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Figure 3.2 Fractal Model vs Metzler Anomalous Model dimensionless pressure responses for
a = 1andatr = 100r,, case.

Figures 3.1 and 3.2 are derived by using constant rate solution. It is clearly seen that
although the fractal dimension and dimensionless radius change, the dimensionless pressure
response of the fractal model is the same as Metzler anomalous model. Furthermore, the fractal
dimension affects the dimensionless pressure. As the fractal dimension approaches 2, the
dimensionless pressure value decreases significantly. Dimensionless radius also influences the
dimensionless pressure. As dimensionless radius increases, the dimensionless pressure reduces. In

addition, we check the derivative response of for both methods at the wellbore (r = ,,) and in the

reservoir (r = 100r,,).
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Figure 3.3 Fractal Model vs Metzler Anomalous Model dimensionless pressure derivative

responses for ¢« = 1 and at r = r,, case.
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Figure 3.4 Fractal Model vs Metzler Anomalous Model dimensionless pressure derivative
responses for « = 1 and at r = 100r,, case.

Figures 3.3 and 3.4 are derived by using constant rate solution. It is obvious that there is a
perfect match between the fractal and Metzler anomalous model derivative responses for constant
rate case. Hence, we confirm Camacho’s (2008) assertion that the fractal model is the special case
of Metzler anomalous model for constant rate condition. Furthermore, dimensionless pressure
responses decrease when the fractal dimensions increase. Dimensionless pressure responses at
r = 1007, are smaller than dimensionless pressure in the wellbore.

Next, we look at the dimensionless pressure and dimensionless pressure derivative

behaviors for both the fractal model and Metzler anomalous model at the constant bottomhole

56



pressure case when r = 100r,,. Note that we do not analyze for r = ,, because dimensionless

pressure response is equal to 1 at the wellbore.
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Figure 3.5 Fractal Model vs Metzler Anomalous Model dimensionless pressure responses at the

constant bottomhole pressure condition for « = 1 and at r = 100r,, case.
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Figure 3.6 Fractal Model vs Metzler Anomalous Model dimensionless pressure derivative
responses at the constant bottomhole pressure condition for « = 1 and at r = 100r;,, case.
Figures 3.5 and 3.6 refer constant bottomhole pressure condition. As the fractal dimension
changes, both the fractal model and Metzler anomalous model generate the same dimensionless

pressure and dimensionless pressure derivative. To conclude, fractal model is the special case of

Metzler anomalous model.
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3.3.2 Effect of d; for fractal model and Metzler anomalous model

In this section, we observe effect of fractal dimension d, for fractal model and Metzler
anomalous model. We cannot include Raghavan anomalous model because that model uses n
(integer number) instead of d (noninteger number). We study on three different fractal dimensions
(1.50, 1.75 and 2.00), and two different topologies of the network (6 = 0.25 and 0.50). Stehfest
algorithm (Stehfest, 1970) with Ny, = 12 is used to take the inverse Laplace transform. Firstly,
dimensionless pressure responses are observed, and then, dimensionless pressure derivative

responses are investigated with respect to dimensionless time.
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Figure 3.7 Fractal Model vs Metzler Anomalous Model dimensionless pressure responses at the
wellbore for constant rate solution when 6 = 0.25.
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Figure 3.8 Fractal Model vs Metzler Anomalous Model dimensionless pressure responses at the

wellbore for constant rate solution when 6 = 0.50.
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Figure 3.9 Fractal Model vs Metzler Anomalous Model dimensionless pressure derivative

responses at the wellbore for constant rate solution when 6 = 0.25.
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Figure 3.10 Fractal Model vs Metzler Anomalous Model dimensionless pressure derivative
responses at the wellbore for constant rate solution when 6 = 0.50.

Initially, we compare the effect of fractal dimension for each model in itself. According to
Figure 3.7, as the fractal dimension increases, the fractal model generates less dimensionless
pressure at the wellbore for the constant & = 0.25. Moreover, Metzler anomalous model behaves
the same, too. Secondly, we compare the behavior of the models. Fractal model causes higher
dimensionless pressure than Metzler anomalous model when fractal dimension and topology of
the network are constant. In other words, it is obvious that the Metzler anomalous model generates

less dimensionless pressure than fractal model for each d¢. According to Figure 3.8, it is seen that
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as the topology of the network rises, the difference between the fractal model and Metzler
anomalous model goes up. For example, the fractal model dimensionless pressure response for
ds = 1.75 is nearly same as the Metzler anomalous model pressure response for d = 1.50 at the
late dimensionless time. Another example is that the fractal model for d; = 2.00 generates
approximately the same as Metzler anomalous model for dr = 1.75 at the early dimensionless

time. The similar conclusions are applicable for the dimensionless pressure derivative responses.

3.3.3 Effect of O for fractal model and anomalous models
In this section, we observe the effect of fractal dimension 6 for the fractal model and
anomalous models at the constant rate condition. It is note that Raghavan anomalous model defines

the dimensionless time different than fractal model and Metzler anomalous model.

ty = r’Z;W £ (3.60)

where d, =246 and a = ﬁ. In this part, we use Eq. 3.64 to find dimensionless pressure

solution for Raghavan anomalous method. Most importantly, when we use Stehfest algorithm to
find the inverse Laplace transform of Raghavan anomalous model solution, we take the inverse
Laplace transform with respect to time t because of Eq. 3.64 definition. However, the graph is
drawn with respect to dimensionless time t,, in the x axis. Consequently, we consider both time
and dimensionless time for Raghavan anomalous model. On the other hand, we only calculate
dimensionless time for fractal model (Eg. 3.12) and Metzler anomalous model (Eqg. 3.38).
Furthermore, we examine three different topologies of the network 6 = 0.25,0.50 and 0.75 for

each method.
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Figure 3.11 Fractal Model vs Metzler Anomalous Model vs Raghavan Anomalous model for
constant rate solution when 6 = 0.25and r =r,,.
Figure 3.11 is derived for each method at the constant rate solution, and finite wellbore
case is considered. Figure 3.11 depicts for both dimensionless pressure and dimensionless pressure

derivative responses. Fractal dimension d; is assumed 2 for the fractal model and Metzler

anomalous model. On the other hand, n is equal to 2 for Raghavan anomalous model. 6 is assumed
0.25 for all model. As you can see all the methods behave similarly at the early time. However, as
dimensionless time goes up, the difference between Raghavan anomalous model and others raises
tremendously. In addition, when we compare fractal and Metzler anomalous model at the early

time, Metzler anomalous model generates a slightly higher dimensionless pressure response than
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fractal model. Nevertheless, dimensionless pressure for fractal model overtakes Metzler
anomalous model after early dimensionless time. While dimensionless time rises, the difference
between fractal and anomalous model increases gradually. Furthermore, if we compare
dimensionless pressure derivative responses for all methods, they are nearly the same at the initial
dimensionless time. While dimensionless time is increasing, difference between the Raghavan
anomalous model and others goes up noticeably. On the other hand, the difference between the
fractal model and Metzler anomalous model for dimensionless pressure derivative responses grows
slightly when 6 = 0.25.
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Figure 3.12 Fractal Model vs Metzler Anomalous Model vs Raghavan Anomalous model for

constant rate solution when 6 = 0.50 and r = 7;,,.
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Figure 3.12 is derived by assuming 6 is assumed 0.50. When we compare Figure 3.11 and
3.12, the dimensionless pressure and dimensionless pressure derivative responses are almost the
same at the early time. Nonetheless, while the dimensionless time rises, the difference between the
models grows markedly for both dimensionless pressure and dimensionless pressure derivative.
Again, Metzler anomalous model generates a slightly higher dimensionless pressure response than
fractal model at the early dimensionless time. However, fractal model overtakes Metzler
anomalous model after early dimensionless time and generates the higher difference than 6 =
0.25. Moreover, the difference between fractal model and Metzler anomalous model for

dimensionless pressure derivative is slightly higher than 6 = 0.25.
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Figure 3.13 Fractal Model vs Metzler Anomalous Model vs Raghavan Anomalous model for
constant rate solution when 6 = 0.75 and r = r,,.

Figure 3.13 is formed by assuming 6 is assumed 0.75. When we compare Figure 3.13 with
Figures 3.11 and 3.12, it is seen that each model forms a steeper line for both dimensionless
pressure and dimensionless pressure derivative because of higher 6. Moreover, the fractal model
forms minimally less dimensionless pressure than Metzler anomalous model at the early
dimensionless time. In addition to that, dimensionless pressure derivative responses are quite
similar at the initial dimensionless time like 6 = 0.25 and 0.50. Then, while dimensionless time

goes up, the difference between models rises dramatically. To sum up, as the topology of the
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network and dimensionless time increase, the dimensionless pressure and dimensionless pressure
derivative responses difference grow remarkably. While Raghavan anomalous model always
creates higher dimensionless pressure than other models, Metzler anomalous model usually
generates less dimensionless pressure response. As the topology of the network increases, each
model generates higher dimensionless pressure and dimensionless pressure derivative responses

at the late dimensionless time.

3.3.4 Dimensionless pressure and dimensionless pressure derivative response in the reservoir for
fractal model and anomalous models

In this section, we analyze the dimensionless pressure response in the reservoir for each
model. Fractal dimension and n are assumed 2, and topology of the network is used as 0.25. We
investigate the dimensionless pressure and dimensionless pressure derivative response at
dimensionless radius 7, is equal to 10 and 100. It is important to say that we calculate the

dimensionless time for Raghavan anomalous model individually for each .
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Figure 3.14 Fractal Model vs Metzler Anomalous Model vs Raghavan Anomalous model for

constant rate solution when 6 = 0.25 and r = 10r,,.
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Figure 3.15 Fractal Model vs Metzler Anomalous Model vs Raghavan Anomalous model for
constant rate solution when 6 = 0.25 and r = 100r,,.

Figures 3.14 and 3.15 are derived for constant 6, and different dimensionless radiuses.
According to these figures, Raghavan anomalous model generates dimensionless pressure and
dimensionless pressure derivative responses earlier than fractal model and Metzler anomalous
model. In addition, as the dimensionless radius increases, the difference between the models rises

significantly.
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3.3.5 Verification of n value for Raghavan (2011) anomalous model

In this section, we study on Raghavan (2011) paperwork. He compared the production at
the constant bottomhole pressure for both Metzler anomalous model and his model. He took as a
reference Camacho (2008) study for the Metzler anomalous model. In Figure 3.16, Raghavan drew

a graph for dimensionless rate (q,,p) at the wellbore vs dimensionless time (tp).
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Figure 3.16 Well response for constant pressure production. The top two lines correspond to that

of Camacho — Velazquez et al. (Raghavan, 2011).
Raghavan (2011) described y as ﬁ. Hence, y is equal to « in this thesis. Raghavan drew

Figure 3.16 for y = 0.909 and 0.714 which means topologies of the network is equal to 6 =
0.20 and 0.80, respectively. To draw Figure 3.16, we firstly need to derive dimensionless rate.

The details of derivation for dimensionless flow rate are given in Appendix K.
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qp(rp,s) = d, 1, — T (3.74)
Tlidw « wa 3
K.|2s2 | X2~
v <77idw>
At the wellbore (r = 1), dimensionless flow rate is
1
11 K 25% r‘g‘” i
T‘dw [ v mdﬁz
Quwp(s) = dw< - 2> s 2 T (3.75)
77L'dw

Furthermore, Camacho found the dimensionless flow rate at the wellbore for constant

bottomhole pressure condition by using Duhamel’s principle,

2Vs%| @ 2157
—v(6 + 2)K, [9_\/:_2 +52Kyis [e—‘f_z
Twp(s) = 3.76
qwp (S) NG (3.76)
K 1o+ 2

As you can see Raghavan compared his method with Camacho study which demonstrates
Metzler anomalous model. Raghavan claims that he drew the Figure 3.16 by assuming n = 2 and

d; = 1.65. To check his study, we reproduce Figure 3.16 by assuming the same n and d.
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Figure 3.17 Camacho et al. vs Raghavan for constant bottomhole pressure when n = 2 and
dr = 1.65.
It is clearly seen that Figure 3.17 is different than Figure 3.16. Although we draw the same
Camacho et al. lines, Raghavan lines are different. In other words, Raghavan anomalous model
generates higher flow rate at the wellbore when n = 2. This is what we expect. To draw the same

Figure 3.16, we use the same d, but we change the n value. It is assumed that d; and n are 1.65.
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di=1.65 and n=1.65 and rp=1
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Figure 3.18 Camacho et al. vs Raghavan for constant bottomhole pressure when n = 1.65 and
dr = 1.65.

It is obvious that Figure 3.16 and Figure 3.18 are the same. Even though Raghavan
emphasized n = 2, he used n = 1.65 to draw the Figure 3.16. On the other hand, Raghavan (2011
and 2012) asserted that n is the integer and cannot be noninteger value. To conclude, Raghavan
anomalous model cannot be compared with Metzler anomalous model unless n and df are equal.
In addition to this analysis, dimensionless flow rate derivative responses are observed for both
n =2 and n = 1.65. Again, d is equal to 1.65 for Camacho’s study. It is important to say that
dimensionless rate derivative values are negative because of production decline. Therefore, the

absolute values of dimensionless rate derivative are used to draw the following graphs.
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Figure 3.19 Comparison for dimensionless flow rate derivative for constant bottomhole pressure

when n = 2.00 and df = 1.65.
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Figure 3.20 Comparison for dimensionless flow rate derivative for constant bottomhole pressure
whenn = 1.65 and df = 1.65.

According to Figures 3.19 and 3.20, it is clearly seen that dimensionless flow rate

derivative for Camacho’s study are the same because of the same dy. On the other hand, the

dimensionless flow rate derivatives for Raghavan anomalous model are quite different due to the

different n values. As the n value increases, higher dimensionless flow rate derivatives are

obtained for both y = a = ﬁ. Moreover, although dimensionless flow rate derivatives for

Camacho’s study are slightly lower than dimensionless flow rate derivatives produced by
Raghavan anomalous model at the initial dimensionless time, Camacho’s study generates higher

dimensionless flow rate derivative responses at the higher dimensionless time.
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CHAPTER 4

EXAMPLE FIELD DATA APPLICATIONS

In this chapter, we apply fractal model and anomalous models to real field well-test data.
The main goal is to solve the reservoir history — matching problem. We analyze pressure changes
to obtain reservoir characteristics (kh and ¢c,h) for two different fields: Kizildere, in Turkey and
Kamojang, in Indonesia. Therefore, the ensemble smoother with multiple data assimilation

(ES-MDA) is used for both fields.

4.1 The Ensemble Smoother with Multiple Data Assimilation (ES — MDA)

History matching is kind of changing the uncertain parameters in the assimilation process.
Ensemble — based methods have been used in the last two decades for history matching
applications. In this chapter, we use the ensemble smoother with multiple data assimilation
(ES — MDA), which is developed by Emerick and Reynolds (2013), is one of the most popular for
history-matching applications. ES — MDA is used for nonlinear problems to estimate the
parameters. This method assimilates parameters in multiple steps at the same time and iterative

methods are used to improve the assimilation.
o = mI 4 Clp[Chp + aiCp ™ (di — ) 4.1
m;" =nyt + wn[Chp + @iCp]  (di, ) (4.1)

where j =1,2,..,N, and i = 1,2,..., N,. While N, is the number of ensemble members, N,

represents the total number of data assimilation steps. m; (N,, X N,) is referred as model

parameters matrix. That is, this matrix consists of uncertain model parameters. dLin(Nd X N,) is
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a sample from the normal distribution N(d,s, a;Cp) where d,,s(1 X N;) is the observed data
vector. d;(Ng X N,) is the simulated data matrix. In addition, « is the inflation factor. The main
drawback of ES — MDA is the determining inflation factor. Therefore, we choose the inflation
factors (a; = N,) to simplify the process. Furthermore, Cj, is the covariance of the measurement
errors. When the data are uncorrelated, C;, should be diagonal matrix:

o .. 0

Cp = [0 0] , (4.2)

0 0 o NgxNg

where ¢ is the standard deviation. C,;p is the cross — covariance matrix (N,, X N;) between the

parameters, and Cpp, IS the auto — covariance matrix (N; X Ny) for the simulated data. While N,,, is

the number of model parameters, N; denotes the number of data. C,,p, and Cp, are described as

Cup = AMi(ADY) (4.3)
and
Cop = ADI(ADY), (4.4)
AM and AD are defined as
M = ﬁ[m{ ], ey, — ] (45)
and

AD! = ~dl,...d, - d] (4.6)

#[df
JN, =1

mf =Ly mfanddf = Ly gqf
where m Nezjzlmjandd Nezj=1df'
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4.2 Kizildere Geothermal Field, Well KD — 21 Interference Test

Kizildere is located in Saraykoy, which is located west part of Denizli, Turkey. The
Kizildere geothermal field is placed in the east part of the Buyuk Menderes graben, where it

intersects the Gediz and Cukursu grabens (Onur et al, 2003). Kizildere geothermal field is an active

region in terms of tectonic movements. This field temperature is between 195 and 240 °C and it is

a liquid-dominated geothermal field.
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Figure 4.3 Fracture patterns in the Kizildere geothermal field (Onur et al., 2003).
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There are many wells drilled to produce geothermal energy. In this thesis, KD — 21 well is
analyzed by using pressure transient test. KD — 21 has a depth of 898 m. A maximum temperature
of this well was recorded up to 205 °C. The interference test between wells KD — 21 (observation
well) and KD — 22 was conducted in 1988 (Onur et al., 2003), and KD — 22 was the active well
which produced at a constant rate of 87 t/h hot water. The interference test took 43.5 hours. The
required well, reservoir, and fluid property data are given in the following table.

Table 4.1 KD — 21 and KD — 22 well, reservoir, and fluid property data

for the interference test.

Flow rate (gB) 87 t/h
Reservoir thickness (h) 350 m
Fluid Viscosity () 1.5x10* Pa's
Wellbore radius (r;,) 0.108 m
Bottomhole Temperature (T) 205 °C
Distance between wells (1) 200 m

In this section, KD — 21 well is examined for fractal model and anomalous models. We
analyze each model in two cases. In the first case, it is assumed that the exponent related to the
topology of the network, 6 = 2.33 and the fractal dimension, dr = 1.3. These values are
determined by Onur et al. (2003) who used the fractal dimension data provided Babadagli et al.
(1997) and a log — log plot of pressure change and derivative of interference pressure test data
versus time (see Fig. 4.4). Babadagli et al. (1997) determined the fractal dimension range
1.25 < dy < 1.57 from outcrop and satellite studies using the box-counting method. According

to Figure 4.4, log — log plots of the pressure and derivative data demonstrates almost the same
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slope value of 0.7, especially between 2.5 and 31.5 h. In addition, the separation distance between
the straight lines is 0.16. The slope and separation values show that the reservoir consists of fractal

(fracture network) system with 6 < 1 (i.e.,df < 2 + 0) because that slope cannot be explained
with commonly used homogeneous models. Furthermore, the slope value of 0.7 yields § = 0.3
because slope is equal to 1 — & and indicates that d, < 2 for reported values of 6 in the literature.
Note that § = df/2 + 6 (Zeybek, 2000). In addition, there are other values of dr and 6 that can
satisfy & value obtained from log — log plot of Figure 4.4. For instance, & = 0.50 and d; = 0.75
or 8 = 1.78 and d; = 1.14, respectively. The main purpose of this section is to determine kh and

¢c.h for each diffusion model by using ES — MDA. The Stehfest algorithm is used to take the
inverse Laplace transform of the general solution, and the algorithm is implemented in MATLAB.

Moreover, the pressure changes with time for KD — 21 interference test is:
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Table 4.2 Pressure change for the interference test in KD — 21 well.

0.499 2.986

1.000 5.962

1.504 8.972

2.501 16.407
3.500 17.860
4.515 22.326
5.520 27.473
6.499 30.000
7.509 32.352
8.487 36.456
9.532 38.944
10.471 43.337
11.437 44.441
12.527 47.473
13.550 50.554
16.515 58.419
19.566 65.624
22.536 73.487
25.472 78.997
28.521 86.265
31.536 91.000
34.327 97.517
37.599 104.499
40.926 111.630
43.716 121.518
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Figure 4.4 Pressure Change and Pressure Change Derivative with time for KD — 21 interference
test.
According to the given information, the required data for ES — MDA can be interpreted as for

both case 1 (6=2.33 and dy=1.3) and case 2 (6=0.5 and d;=0.75).

Table 4.3 ES — MDA input for KD — 21 well.

Nm 2
Na 8
Ng 25
Ne 100
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4.2.1 Kizildere Geothermal Field Nonlinear Regression for 6=2.33 and dy=1.3

After the applying ES — MDA, kh and ¢c.h is found for the given minimum and maximum
value. n is 2 for Raghavan anomalous model. For Raghavan anomalous model, n represent
Euclidean dimension. Thus, n should be used as an integer. The goal is to get the smallest Root
Mean Square (RMS). The following table shows kh and ¢ c.h matching result, and the following
figures demonstrate both prior and assimilated results. It is important to note that the unit of kh
for Raghavan’s anomalous model is different than fractal and Metzler’s anomalous model.
Raghavan describes the dimensionless time in Eq. 3.60 different than the others. According to Eq.
3.60, the unit of k,, is L2*®T1~%, In addition, Raghavan anomalous model describes the mobility
at any point r in the reservoir,

Alr) = 2,770 = &:) = k—:r‘e, (4.7)

where the unit of k(r) is L2T1~%, As a result, the unit of kh for Raghavan anomalous model is

L3T1~% in the following table. Note that o = ﬁ.

Table 4.4 Nonlinear Regression Result for 6=2.33 and dy=1.3.

Metzler Anomalous Raghavan
S [l Model Anomalous Model
8.67x10! 4.76x101 7.97x10° *
(2.9x10 — 1.4x10°%9) (2x101% — 8x10%3) (7x10° — 9x107°)
3.64x108 1.55x10710 5.31x10®
(2.2x108 - 3.7x10%) | (1.1x10%°—2.2x1019) (4x10® — 6x108)
1.238 2.617 3.838

* The unit is L3T1~¢,
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RMS is defined as

Ng

1
RMS = N_dZ(APmeasured - APmodel)z- (48)
i=1

It is important to note that RMS represents the root mean square of the ensemble mean in

the Table 4.4 and following tables.
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Figure 4.5 Fractal Model for Prior Results.
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Figure 4.6 Fractal Model for Assimilated Results.
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Figure 4.7 Metzler Anomalous Model for Prior Results.
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Figure 4.8 Metzler Anomalous Model for Assimilated Results.
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Figure 4.9 Raghavan Anomalous Model for Prior Results.
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Figure 4.10 Raghavan Anomalous Model for Assimilated Results.

According to Table 4.4 and the figures above, fractal model obtains the best match and the
least RMS. In other words, the ensemble mean of fractal model approaches to measured pressure
change data so closely. Although Metzler anomalous model’s RMS is smaller than Raghavan
anomalous model’s RMS, Raghavan anomalous model assimilates better than Metzler anomalous
model. Perhaps, Raghavan anomalous model fits better than others if the given range is changed.
Moreover, fractal model gets along with both early time and late time. On the other hand, Metzler
anomalous model suits very well at the early time. Nevertheless, as time goes on, Metzler
anomalous model’s result moves away from the measured data at the late time. In addition, while
Raghavan anomalous model underestimates at the early time, it overestimates at the late time. To
conclude, each model finds different results. Raghavan anomalous model and fractal model get

approximately the same result for ¢pc.h. Metzler anomalous model results for both kh and ¢c.h
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are the smallest values. We cannot compare kh result for Raghavan anomalous model with other

models because of the definition.

4.2.2 Kizildere Geothermal Field Nonlinear Regression for 6=0.50 and dy=0.75

In this part, Kizildere geothermal field is examined using another topology of the network
and fractal dimension value. These values are taken from Onur et al. (2003). kh and ¢c;h are
analyzed by using ES — MDA. n is 2 for Raghavan anomalous model. The main aim is to get the
best match. Hence, acquiring the smallest RMS is the most important criteria. Table 4.5
demonstrates the ranges and the nonlinear regression result for the Case 2.

Table 4.5 Nonlinear Regression Result for 6=0.5 and d¢=0.75.

Metzler Anomalous Raghavan
S b Ee3 Model Anomalous Model
1.47x101° 1.26x10° 7.34x101 *
(4.9x101t — 2.4x10°19) (6x1012 — 2x10°1) (6x101 — 9x10'M)
2.13x10°8 4.62x10°° 5.43x10°8
(1.3x10% - 2.2x10%) (3x10° — 6x10°) (4x10°8 — 7x108)
1.212 2.111 2.579

* The unit is L3T1~ 2,
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Figure 4.13 Metzler Anomalous Model for Prior Results.
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Figure 4.14 Metzler Anomalous Model for Assimilated Results.
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Figure 4.15 Raghavan Anomalous Model for Prior Results.
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Figure 4.16 Raghavan Anomalous Model for Assimilated Results.
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According to Table 4.5 and the figures above, fractal model again performs better than
other models. On the other hand, Raghavan anomalous model fits better than Case 1. If we compare
Case 1 and Case 2 results, it is clearly seen that each model obtain different outcomes for each
case. Therefore, we can say that topology of the network and fractal dimension influence
remarkably. Consequently, the box-counting method is critically important to determine fractal
parameters. Fractal model fits perfectly both at early and late time. On the other side of the coin,
Metzler anomalous model performs very well at the early time. However, this is not applicable for
the late time response. Furthermore, Raghavan anomalous model underestimates at the early time.
Nevertheless, this model fits very good as time increases. Then, the model results moves away
from the measured data. In addition, Metzler anomalous model disperses more than other models
for prior results for both cases. However, this model acquires less errors than Raghavan anomalous

model. The reason may be because of the difference between d and n. In other words, even though
d; values 0.75 and 1.3 are used for fractal model and Metzler anomalous model, n value 2 is used

for Raghavan for both cases. This may cause a difference. To sum up, the fractal model shows

better performance than other models and gathers close to the measured data pretty good.

4.3 Kamojang Geothermal Field, Well KMJ - 40 Interference Test
Kamojang is in Indonesia. The Kamojang reservoir is vapor-dominated. Two separate
interference test was run. The first interference test is that KMJ — 37 is the signal well, and KMJ —
28 and KMJ — 33 are the monitor wells. In the second interference test, while KMJ — 46 is the
signal well, KMJ — 40 is the monitor well (Aprilian et al., 1993). In this section, we focus on the
second interference test. The pressure transient test data is analyzed with the fractal model and

anomalous models in this study. Aprilian et al. (1993) examined the field by using fractal model.
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Furthermore, Camacho et al. (2011) analyzed the interference data using with Metzler anomalous
model. In this section, we reanalyze the field for both method, and investigate with Raghavan
anomalous model, and then compare the results. We analyze each model in two cases. In the first

case, itis assumed 6 = 0.50 and df = 1.6. These values are taken from Camacho et al. (2011). In
the second case, © and dy are assumed as 0.25 and 1.575, respectively. The second case values

can be found in Aprilian et al. (1993).

A N

- Observed
,} Well

\ - \S-"'-\J‘ ‘\)

Figure 4.17 Schematic of Interference test in Kamojang Geothermal Field (Aprilian et al., 1993).
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Figure 4.18 A structural map of Kamojang geothermal field (Irhas, 1996).
The duration of the interference test was 864 hours. A maximum temperature of this well
was recorded up to 235 °C. KMJ — 46 well was produced at the constant rate of 41 t/h. The

required well, reservoir and fluid property data are given the following table.
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Table 4.6 KMJ — 46 and KMJ — 40 well, reservoir, and fluid property data

for the interference test.

I -
Flow rate (¢B) 41 t/h
Reservoir thickness (h) 100 m
Fluid Viscosity (u) 1.7x10° Pa's
Wellbore radius () 0.164 m
Bottomhole Temperature (T) 235 °C
Distance between wells (13,) 360 m

The required data for ES — MDA is used as for both case 1 (6=0.50 and d;=1.6) and case 2

(6=0.25 and d;=1.575).

Table 4.7 ES — MDA input for KMJ — 40 well.

Nm 2
Na 8
Ng 36
Ne 100
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The pressure response in the observation well (KMJ — 40) is given in the following figure
and table,

Table 4.8 Pressure change for the interference test in KMJ — 40 well.

Pressure Changes Pressure Changes

(kPa) (kPa)

0 456 1.999

48 0 480 2.199
72 0 504 2.496
96 0.097 528 2.537
120 0.296 552 2.599
144 0.296 576 2.682
168 0.400 600 2.799
192 0.400 624 2.999
216 0.800 643 2.999
240 0.800 672 2.896
264 1.000 696 3.096
288 1.096 720 3.296
312 1.296 744 3.496
336 1.400 768 3.696
360 1.400 792 3.399
384 1.496 816 3.799
408 1.496 840 3.799
432 1.600 864 3.999
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Figure 4.19 Pressure Change and Pressure Change Derivative with time for KMJ — 40

interference test.

4.3.1 Kamojang Geothermal Field Nonlinear Regression for 6=0.50 and d;=1.6

In this section, kh and ¢pc.h are determined by using nonlinear regression ES — MDA
method. 6 and d are assumed 0.50 and 1.6, respectively. Camacho et al. (2011) studied with these
assumption for Metzler anomalous model. After all required information is inputted into
ES — MDA, RMS, kh and ¢c,h are found. n is 2 for Raghavan anomalous model. The outcomes
for kh and ¢pc.h are shown in the following table. Then, the prior and assimilated results are

demonstrated in the following figures.
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Table 4.9 Nonlinear Regression Result for 6=0.50 and dy=1.6.

Fractal Model

Metzler Anomalous
Model

Raghavan Anomalous
Model

5.65x1012
(4x1012 - 7x101?)

6.76x10*3
(5x10 — 8x10°)

5.36x1071 *
(3x101 — 7x101h)

7.47x10°®
(6x10° — 9x10°®)

2.88x1077
(1x107 — 4x107)

7.91x10°
(6x10°° — 9x10°9)

0.155 0.351 0.126
* The unit is L3T1~%.
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Figure 4.20 Fractal Model for Prior Results.
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Figure 4.21 Fractal Model for Assimilated Results.
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Figure 4.22 Metzler Anomalous Model for Prior Results.
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Figure 4.23 Metzler Anomalous Model for Assimilated Results.
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Figure 4.24 Raghavan Anomalous Model for Prior Results.
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Figure 4.25 Raghavan Anomalous Model for Assimilated Results.

According to Table 4.9 and figures above, it is undeniable that each model performs very
well. Although Raghavan anomalous model gets the lowest RMS, the fractal model achieves good
match. In addition to that, even though Metzler anomalous model obtains good match both at the
early time and late time, it underestimates at the middle time. Fractal model and Raghavan
anomalous model behaves similar both early and late time outcomes. Moreover, Raghavan
anomalous model and fractal model obtain nearly the same ¢c,.h outcomes. If we compare fractal
model and Metzler anomalous model, it is seen that Metzler anomalous model obtains roughly 10
times less than for kh and 25 times less than for ¢c,h fractal model. Raghavan anomalous model
cannot compare with other models for kh because of the definition of kh. To conclude, every
model works pretty well in this case. Raghavan anomalous model obtains the best match and the

results should be compared with field outcrops.
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4.3.2 Kamojang Geothermal Field Nonlinear Regression for 6=0.25 and d;=1.575

In this part, Kamojang Geothermal Field is analyzed using another fractal dimension and
topology of the network. The assumed values are taken from Aprilian et al. (1993). Aprilian et al.
studied with these assumption for fractal model. Nevertheless, we consider all methods for these
assumptions. n is 2 for Raghavan anomalous model. The main purpose is to find kh and ¢c.h by

using nonlinear regression ES — MDA. Table 4.10 and the following figures show prior and

assimilated outcomes.

Table 4.10 Nonlinear Regression Result for 6=0.25 and dy=1.575.

Metzler Anomalous Raghavan Anomalous
Fractal Model Model Model
5.70x1071? 2.68x1012 2.04x10 *
(4x1012 — 7x10°%?) (1x1012 — 4x10°%?) (1x101 — 3x10'M)
7.43x10° 1.45x10°° 8.00x10°
(6x10° — 9x10°®) (9x107 — 2x10°®) (6x10°° — 9x10°%)
0.155 0.176 0.173

* The unit is L3T1~%.
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Figure 4.26 Fractal Model for Prior Results.
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Figure 4.27 Fractal Model for Assimilated Results.
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Figure 4.29 Metzler Anomalous Model for Assimilated Results.
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Figure 4.30 Raghavan Anomalous Model for Prior Results.
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Figure 4.31 Raghavan Anomalous Model for Assimilated Results.
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According to Table 4.10 and figures from Figure 4.26 to Figure 4.31, it is seen that all
methods works very well. If we compare Case 1 and Case 2 for Kamojang geothermal field, fractal
model behaves almost the same. In addition, Raghavan anomalous model gets the similar results.
However, the range and outcome are changed for Metzler anomalous model. Perhaps, the reason

is that Metzler anomalous model affected far more by 6 and d¢. To put it another way, fractal

model does not have time fractional derivative. Therefore, topology of the network may not affect
more. Moreover, Raghavan anomalous model does not use fractal dimension. Hence, n is used as
2. Consequently, the results are quite similar for fractal model and Raghavan anomalous model

because the assumed 6 and d are so close when we compare Case 1 and Case 2. Although the

smallest RMS is obtained by fractal model, anomalous models’ performance should not be
ignored. There is a good match at the early time for fractal model. Nonetheless, as test times get
larger, the fractal model generates lower than measured value. Furthermore, Metzler anomalous
model is the most dispersed model for the prior result. Thus, this model cannot gather the
assimilated ensemble member easily. If some of the ensemble members are ignored, the smallest
RMS may be obtained by Metzler anomalous model. In addition, Raghavan anomalous model
acquires pretty good results at the early time. However, the outcomes are underestimated after time
is 450 hours. Maybe, ignoring some of the ensemble members supplies better match for Raghavan

anomalous model.
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CHAPTER 5

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

5.1 Summary and Conclusions

In this study, analytical solutions of fractal model and anomalous models were presented
for different cases. Naturally fractured reservoirs such as geothermal and unconventional
reservoirs can be modeled by using these models. Each model was examined for constant rate,
constant bottomhole pressure and variable rate/variable pressure condition. Firstly, the solutions
were obtained for dimensionless pressure in the Laplace domain for fractal model and Metzler
anomalous model. Then, pressure change in the Laplace space was calculated by using scaling
property for those models. In other words, dimensionless pressure in the Laplace space was
converted to pressure change in the Laplace domain. In addition, Raghavan anomalous model was
solved for constant rate and constant bottomhole pressure conditions separately for pressure
change in the Laplace domain. After, dimensionless pressure solution for constant rate and
dimensionless flow rate solution for constant bottomhole pressure conditions were presented
individually. Furthermore, variable rate/variable bottomhole pressure was derived by utilizing
constant rate and constant bottomhole pressure solutions because of unit rate pressure change and
unit pressure change solution. Next, all models were applied to both liquid-dominated, and vapor-
dominated geothermal reservoirs. Fractal reservoirs were analyzed by using nonlinear regression
for every models. Note that the interference test was run in the constant rate for both Kizildere and
Kamojang geothermal field. Nonlinear regression ES — MDA was used to determine reservoir

characteristics (kh and ¢c.h). The Stehfest algorithm was used to invert each solution to real time
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space. Each field is implemented for two different topologies of the network values and fractal
dimension values. The main purpose is to show effects of fractal parameters on nonlinear
regression.

The following conclusions are obtained from this thesis study, and can be stated,

e The flow regimes exhibited by the well-test data can be identified by plotting pressure
response and derivative response vs time on a log — log plot.

e The analytical solutions of fractal model and Metzler anomalous model for constant rate,
constant bottomhole pressure and variable rate/variable bottomhole pressure condition are
quite similar. The only difference is that the Laplace variable s in Metzler anomalous model
has an exponent 6. The reason is that Metzler and Chang and Yortsos derived the
diffusivity equation using the same continuity equation and flux term. However, Metzler
considered the history of the diffusion process.

e Raghavan used the convolved form of the continuity equation. However, he did not use
conventional Darcy law. Thus, he modified the flux term by applying fractional derivative.
He preferred Caputo fractional operator instead of Riemann — Liouville fractional operator
because Riemann — Liouville does not let to use physically interpretable initial conditions.

e |t is shown that the fractal model is the special case of the Metzler anomalous model
because when 6 = 0, both models behaves the same for dimensionless pressure response
and dimensionless pressure derivative response without depending on the location.

e Although the fractal and Metzler anomalous models describe the permeability and porosity
as a function of location r, the Raghavan anomalous model only introduces the
permeability depending upon the location. In addition to that, the basic dimension of

permeability for the fractal model and Metzler anomalous model is L?, while the basic
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dimension of “permeability” for the Raghavan anomalous model is L>*°T*~¢ for k, and
L>T*= for k(r).

Fractal dimension d, can affect fractal model and Metzler anomalous model behaviors.
Raghavan anomalous model does not consider fractal dimension and uses n which is
integer. To put it another way, n is 1,2 and 3 for linear, radial, and spherical flow,
respectively. Fractal model generates higher dimensionless pressure response than Metzler
anomalous model for the same d;. As the fractal dimension decreases, the pressure
response difference between models goes up. In addition, if the topology of the network is
double, the dimensionless pressure difference between models rises much more for the
same fractal dimension.

Effect of the topology of the network is undeniable for all methods. As the higher topology
of the network exists, the Raghavan anomalous model produces far higher dimensionless
pressure response. It is worth to note that effect of the topology of the network can be seen
clearly after early times.

Dimensionless pressure response in the reservoir varies according to models. Raghavan
anomalous model generates higher dimensionless response than others. Moreover, Metzler
anomalous model always produces the less dimensionless pressure response for different
dimensionless radius and topology of the network.

According to the field studies, fractal model performs very well for liquid-dominated field,
Kizildere. On the other hand, every method acquires good match for the vapor-dominated
field, Kamojang.

For Kizildere geothermal field, even though the fractal model obtains the lowest RMS,

Raghavan anomalous model assimilates the ensemble member better. Perhaps, a better
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match can be achieved by Raghavan anomalous model if the minimum and maximum
assumed values for kh and ¢c;h are changed.

e |t is observed that if the assumed minimum and maximum value range for kh and ¢c:h
are high, the dispersion of the ensemble member in the prior is extended. As a result,
models cannot assimilate the ensemble member successfully.

e For both Kizildere and Kamojang geothermal field, it is proved that fractal dimension and
the topology of the network influence the performance of nonlinear regression ES — MDA.

This means that the box-counting method is crucially important.

5.2 Recommendations for a Future Study
To interpret the naturally fractured reservoirs, the following suggestions may help for
future work.
e Analytical solutions given in this study for single-well active well-test could be applied to
real field active well-test data.
e Analytical solutions of every model can be extended considering skin and wellbore storage
effect for both active and observation well.
e Sensitivity analysis of skin and wellbore storage effect for every method can be examined.
e New field study can be worked for the highly conductive and well — connected path
geothermal field. Consequently, superdiffusion can be inferred better for both active and

observation well.
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NOMENCULATURE

A = area, [L?]

B = formation volume factor, [L3/L3]
¢, = compressibility, [L T?/M]

d = Euclidean dimension

d, = fractal dimension

d,,= Fickian value

h = thickness of the reservoir, [L]

k = permeability, [L?]

m = fracture network parameter, [L*?]
n =dimension, 1, 2 or 3

p = pressure, [M/L/T?]

pp = dimensionless pressure

p; = initial pressure, [M/L/T?]

pwys = flowing bottomhole pressure, [M/L/T?]
q = flow rate, [L3/T]

qp = dimensionless flow rate

r = radial distance, [L]

rp = dimensionless radius

1, = wellbore radius, [L]
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o = reference radius, [L]

s = Laplace transform variable

t =time, [T]

tp = dimensionless time

a = 1. Anomalous diffusion exponent, 2. Time fractional exponent
B = 1. Constant, 2. Space fractional exponent
y = diffusion exponent

Ap = pressure change, [M/L/T?]

n = diffusivity, [L?/T]

O = anomalous diffusion coefficient

6 = topology of the network

A =mobility, [L T/M]

u = viscosity, [M/L/T]

¢ = porosity

o = reference porosity
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APPENDIX A

ANALYTICAL SOLUTION OF FRACTAL DIFFUSION MODEL AT CONSTANT
RATE

In this appendix, we present the analytical solution of fractal diffusion model for constant

rate condition. The initial boundary value problem for the fractal model is defined as follows:

dpp 1 0 ( ﬁapD>

Aty R T ™ G (A.1)
where g = dr — 6 — 1. The initial condition is
pp(rp, tp = 0) = 0. (A.2)
The inner boundary condition for a finite wellbore is
dp
B D) _
(r -— =-1. A3
D arD - ( )
The outer boundary condition is described as
rEan pp (1, tp) = 0. (A.4)
To begin with, taking the Laplace transform of PDE with respect to ¢,
1 d dpp
[ _ _ 5 D
sPp (1p,s) — pp (rp, tp = 0) = r;f_l drp (TD er>. (A.5)
Applying the initial condition into the above equation,
spp (rp,s) = a1—1 ’ (rf dﬁ) (A.6)
er drp drp

or
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1 d dpp
— _ g APp
SpD(TD' S) - T'DB+G er ( D er)- (A?)
Then, Eqg. A.7 can be expanded by applying derivation to find a general solution,
1 _,dpp d*pp
— _ p-194Pp B
spp(1rp, S) wa( 7 ar + 1y ar? >, (A.8)
T3 ) = L T2 L 4T 9
Pp\Tp, 2t dry, P drg’
Let us rearrange the Eq. A.9
1d’pp . B dpp
TDQ erz TD6+1 dTD SpD(rD S) ( )
Multiply with r9*2,
1 d*pp B dpp
rptt— 7 a2 — +rg*? FE —19%2sp, (1p,s) = 0. (A.11)
So,
, d? dpp
B2 gy CP2 0% oy, 5) = 0. (A12)
dry drp
Eqg. A.12 has a general solution of
ﬂ 2+/s &f2 2s &2
pp(rp,s) =1, ? {AI [9+zDzl BK, [9+2D2 (A.13)
where v = ——. Before applying the inner and outer boundary conditions, we need to take the

Laplace transform of them. The Laplace transform of the inner and outer boundary conditions are

found respectively,

and
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r})iinw pp (rp,s) = 0. (A.15)

Next, apply the outer boundary condition to Eq. A.13

o ez, N 25 or2
Aim B (rp, s) = lim 7, * rL‘L“m{AI 9+2D2 l+BK l9+202 l}:o. (A19)

When 1}, goes to infinity, Bessel | function approaches to infinity, and Bessel K function goes to

zero. Hence, A must be zero, but B cannot be zero. As a result, Eq. A.16 reduces to

6+2
2+/s 812
0+2 |

9+2

pp(rp,s) =7,2 ' BK, [ (A.17)

Let us say € = % and y = ;f Then, we apply inner boundary condition. Firstly, taking

derivative of Eq. A.17 with respect to rp,

Z%—Z = B(ev)rg' 'K, [yr] + Brg’ dE‘T)rD]' (A.18)
To apply a chain rule,
dK, _ dK, dz, (A19)
drp dz drp
where
z=yr§ (A.20)
and
dz et
E = yerg . (A.21)
So, Eqg. A.18 can be rewritten as
Do _ plevyrg K lyrg] + Brg 20 (yerg) (A22)

drp dz

or
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4Py _ B(ev)r§ 'K, [yr§] + Br§" d(yn, [YZL))] (yers™) (A.23)

drp
or
dpp K, [yr5]
— = (eV)rfV 1K, [yrg] + BrEvtes 1ys A.24
ar, &5l a0 (A.24)
where dg(“[y:l)’] = —K,_1[yrg] — = K,[yrg]. As aresult, Eq. A.24 is equal to
WBo _ geyrg=1K,[yr] + Byers*s=t | —K, i [yrg] — < K, [yr A.25
- D \Y YTD YETD v—1[yrD] £ V[YTD] ( ' )
drp Y1p
or

dovp \Y
&Po _ B(ev)rg' K, [yrE] — ByergV ¢ 1 K,_,[yrj] — Byerg'*te1 FKv[yrg]. (A.26)
D

drp

So, Eq. A.26 is equal to

-
d—i;) = B(ev)rf' 'K [yr§] — Bye r5V e K, [yrE] — B(ev) r5V™1 K [yr]l.  (A.27)
Then, multiply Eq. A.27 with rDﬁ,
d svFB-1 € evte—1+f8 e
d_ = B(ev)m, Kylyrs] = Byep K, 1[yrs]
(A.28)
—B(ew) 1, T K [yr]
or
B dpp evte—1+4f8
D d_TD = —Bye, K,_1[yr5]. (A.29)
So, atrp =1,
dpp 1
(T'f d_rD> = —Bye Kyalvl = -5 (A.30)
D rp=1

Consequently,
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1
~ syeK, oyl

Finally, Eq. A.17 is equal to

9+2
0+2 (K [92\/_ l
6+2 +2'p

Pl ) =1, \ syeKy,—1[v] /

Let us change € and v,

p—D(TDl S) — rD 2

To conclude, the result is

0+2
o2, ( Ky [szzrnz l \
%(rD'S) = rD 2 \/— /

2vs
\S\/E Ky [9 2

or

K 2\/— 9+2
16 EvA
%(rDIS) :TDZ

Eemea)
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APPENDIX B

FRACTAL DIFFUSION MODEL AT A CONSTANT RATE CONVERSION FROM
DIMENSIONLESS TO DIMENSIONAL

In this appendix, we convert the analytical solution of fractal model at a constant rate from
dimensionless to dimensional coordinate in the SI unit by using scaling property. The

dimensionless pressure and time are given by,

Vi Ap(t) B.1
Po = 2raBntP (B.1)
and
k(r,)t
th = ———. B.2
P = Bocnrs ®2
Dimensionless time can be expressed as
tp = 1"t (B.3)
where
k
. (1) (B.4)

T = o) ez

Taking the Laplace transform of Eq. B.1,

Po(s) = g Bp(r.), (8.5)

where pp, (s) is the Laplace transform of p,, (t,) with respect to time t, and Azp(r, s) represents the
Laplace transform of Ap(t) with respect to t. Furthermore, the solution of fractal diffusion model

for finite wellbore and constant rate is
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lzx/E ?l

ovz, Kvig3a™
p_D(rD'S) = 7"DZ 2\/; ) (86)
$Vs Kua [e—+2

where p,, (1p, s) represents the Laplace transform of p,, (tp) with respect to t,. Then, by applying

scaling property, pp (s) can be represented as:

- 1 _ /s
Po(s) = Llpo(r'D] = -7 (1) ®7)
So,
2\/,7?—* o+2
Klgrzh’
_ o+2,
Do(s) = L[pp(*D)] = =1, 2 (B.8)
7 ] JE
s [s n*
R R
or
2 ni o+2
Klgrzhn’
_ 9+z,
Po(s) = Lpp(m* )] =1, = | (B.9)
2 =
S Ui
sfF K-1|la2

Equalizing Eg. B.5 and B.9 provides:
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O0+2

Ap(r,s) =, 2

D

2ntqBp

Consequently, Ap(r, s) is equal to

9+2V
2

2nqBp
kh P

Ap(r,s) =

-
where 1, = —.

w

=
*
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APPENDIX C

ANALYTICAL SOLUTION OF FRACTAL MODEL AT CONSTANT BOTTOMHOLE
PRESSURE

In this appendix, we present the analytical solution of fractal diffusion model for constant
bottomhole pressure condition. The initial boundary value problem for the fractal model is defined

as follows:

opp 1 0 (ﬁapD)

atD - T;f_l arD rD arD (Cl)
where g = dr — 6@ — 1. The initial condition is
pD(rDl tD = 0) = 0 (C2)
The inner boundary condition for a finite wellbore is
po(p =1,tp) = 1. (C.3)
The outer boundary condition is described as
r})iinoo po(rp, tp) = 0. (C.4)
To begin with, taking the Laplace transform of PDE with respect to ¢,
1 d dpp
— _ — 0 — g 4Pp
sPp (rp,s) — pp(rp, tp = 0) def—1 drp (TD er>. (C.5)
Using the initial condition into the above equation,
_ 1 d/ pdpp
SPp (TD,S) - def—l dT'D (TD dT'D> (C6)

or
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Sp_D(TD' S) =

Next, the Laplace transform of the inner and outer boundaries are, respectively

1 d

B+6
TD dr,

1
pp(rp=1,5) = 3

and

lim pp(rp,s) = 0.
TD—)CD

Then, Eq. C.7 can be written as,

dpvp
B D)
T .
D ( b er

1 _.dpp d*pp
— _ B-12FD B
SpD (TD, S) — TDﬁ+e <ﬁTD er + rD erZ )J
$Tp(1p,5) = o 22 4 - L P
S ttdry, 12 drg’
Let us rearrange the Eq. C.11 to find a general solution,
idzﬁ B_dpo _ spp(rp,s) =0
ry drz  rtldr PpiTp: '
Multiply with r9*2,
1 d*pp B dpp
O6+2 0+2 0+2
— ,5) = 0.
"p rg dr? "p 2+ drp 5 “spp (1p, S)

So,

, d? dpp

3 pD + Brp Po_ r5*2spp(rp, s) = 0.

dry drp

The general solution of Eq. C.14 is
842, 25 or2 245 @32
P (1p,s) =12 {A’ 6127 l+BKv I9—+2
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where v = =2 Next, apply the outer boundary condition in the Laplace space to the general

solution
o S N 25 0t2 25 02
tm 7o) = im i {ah [ |4k g =0, €9

When 1}, goes to infinity, Bessel | function approaches to infinity, and Bessel K function goes to

zero. Hence, A must be zero, but B cannot be zero. Consequently, Eqg. C.16 reduces to

6+2 2\/_ 0+2
pp(rp,s) =1, z BK l9+2 T, 2 l (C.17)
Next, apply the inner boundary condition (1, = 1),
2v/s | 1
pp(rp = 1,5) = BK, | & G (C.18)
So,
1
B=——F——.
2+/s (C.19)
Ky |52
In conclusion, dimensionless pressure is equal to
2vs 7
9;2 K, 0+2
pp(1p,s) = 7 (C.20)
Ky [e +2
or
2\/— 9+2
1-p Ko Ie 2"
pp(rp,s) = 2 N (C.21)
Ky Ie +2
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APPENDIX D

FRACTAL DIFFUSION MODEL AT A CONSTANT BOTTOMHOLE PRESSURE
CONVERSION FROM DIMENSIONLESS TO DIMENSIONAL

In this appendix, we convert the analytical solution of fractal model at a constant
bottomhole pressure from dimensionless to dimensional coordinate in the SI unit by using scaling
property. The dimensionless pressure and time are

pi—p _ Ap(r0)

= = D.1
Pp Pi —Pwr  Abwr (-1
and
k(r,)t
th) =——7——. D.2
D= Grch (2
Dimensionless time can be expressed as
where
k(ry)
e D.4
T = S e 4
Taking the Laplace transform of Eq. D.1,
Pp(s) = 7—12p(r,s), (D.5)

prf
where pp (s) is the Laplace transform of p,, (t,) with respect to time t, and Azp(r, s) represents the
Laplace transform of Ap(r, t) with respect to t. In addition, the solution of fractal model for finite

wellbore and constant bottomhole pressure is
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X lZ\/E f%zl
o+2 vl +727
p_D(TD' S) = TD 2 2\/; ) (D6)
sKy [e—+2

where p,, (1p, s) represents the Laplace transform of p,, (tp) with respect to t,. Then, by applying

scaling property, pp (s) can be represented as:

- 1 /s
Fo(s) = Llpo(r'0] = 75 (1) ©.7)
So,
2 ni o+2
Klgrzhn’
_ osz,
po(s) = Lpp (D)) = =1, 2 (D.8)
1 3 \/E
s n*
& o2
or
2 ni o+2
Klgszm’
_ orz,
Po(s) = Lpp(n*t)] = 1,2 = : (D.9)
2 |=
n
sKvlg2

Equalizing Eg. D.5 and D.9 give us:
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O0+2

Ap(r,s) =1,?

As a result, Ap(s) is defined as:

-
where 1, = —.

w

Ap(r,s) =

6+2

D

A ore
prr 2
S
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APPENDIX E

ANALYTICAL SOLUTION OF METZLER ANOMALOUS DIFFUSION MODEL AT
CONSTANT RATE

In this appendix, we present the analytical solution of Metzler anomalous model for

constant rate condition. The PDE of Metzler anomalous model is given as:

“pp 1 0 (ﬁapD)

oty T;f‘l orp b orp (E.1)
where f =df — 6 —land a = —2_ The initial condition is
6+2
pp(rp, tp = 0) = 0. (E.2)
The inner boundary condition for a finite wellbore is
dap
B D) _
T —— = -1. E3
(43%) €3
The outer boundary condition is described as
Aim_pp (1, tp) = 0. (E4)
To begin with, the Laplace transform of Eq. E.1 with respect to ¢,
1 d dpp
- _ -1 _ _ 5 D
s*Pp(1p,s) = s*'pp(rp, tp = 0) = r;f_l drp (TD er)- (E.5)
Because of the initial condition, Eq. E.5 is rewritten as:
1 d dpp
am— — BZED
S”Pp (TD,S) def—l er (rD dT'D> (E6)

or
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ez ) = 1 d (ﬁdp_D)
> PpD:S _rfmdru b dry )

Next, applying derivation to inside the parentheses, Eq. E.7 is equal to

1 oAby, d%g
N _ p-1 D B D
SapD (TDl S) - TDﬁ+e < TD er + rD erz >J

o _ B dppy  1dpp
S pD(TD;S) _Tgﬂ dT'D % erz .

Let us rewrite the Eq. E.9

1d’p, B dpp
P drz  rftldn

— 5%, (rp,s) = 0.

Multiply with r9*2,

1 dzPD p dpp
6+2 6+2 6+2 . _
— — ,s) = 0.
o rD er D rD9+1d ™ 15 " 2s%pp (1p, S)
So,
dZPD dpp
T'g erz + Brp drp _7"D9+2 apD(rD:S) = 0.

Eq. E.12 has the general solution of

0+2 2\/5—(1 w 24/5@ e+2
5o 5]

0+2 'p

where v = g. Then, take the Laplace transform of the inner boundary condition,

(-t
D or, s

rp=1
Next, the outer boundary condition in the Laplace space can be written as

lim p,(rp,s) = 0.
rp—©

The outer boundary condition is used to find the general solution coefficients.

136

(E.7)

(E.8)

(E.9)

(E.10)

(E.11)

(E.12)

(E.13)

(E.14)

(E.15)



6+2

]} = 0. (E.16)

a 9+2]

O0+2
2" lim Al
g 0+27P

o ) 2 s“
lim pp(rp,s) = lim 1,
TD—)OO TD—)OO T'D—)(X)

As 1, goes to infinity, Bessel | function approaches to infinity, and Bessel K function goes to zero

Thus, A must be zero, but B cannot be zero. As a consequence, Eg. E.13 is equal to

o+2 257 02
pp(rp,s) =1, oz BK l6+2 T, l (E.17)

Before applying inner boundary condition, let us introduce new variables to do operation easily
(E.18)

Pp(rp,s) = 15" BK, [yr5],

where € = % andy = NS_“.
dpp r
L B(ev)rsV 1K, [yrE] + Brg" fuly D]. (E.19)
dTD dr I'p
Let us apply the chain rule,
dK, _ dK, dz (E.20)
drp dz drp’ '
where
z=vyr§ (E.21)
and
dz
e = yerg™? (E.22)
So, Eq. E.19 can be rewritten as
dpp K, |z
90 _ Blevyrg ik, lyrs) + Brs? S0 (yerg ) €29
D
or
dpp _ ev—1 £ gv [YT‘D] e—1
—— = B(ev)r5 'K, [yr5] + Brj ——— (yer5 ™) (E.24)
dTD d( D)
or
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Ky (E.25)

dpp
— = (eV)rfV K, [yrE] + BrEvte 1ye
drp P P d(yrg) '’
where dg(“y[l’:l)’] = —K,_1[yrg] — = K,[yrg]. Under the circumstances, Eq. E.25 is equal to
D
dp_D ev—1 & ev+e—1
_dr = B(EV)TD K, [YTD] + Byery K,_ 1[YrD] - [YrD] (E.26)
D D
or
dp_D — ev—1 Ev+e—1 ev+e—1 v £
— = B(ev)r§V 'K, [yr§] — Byers K,_,[yr§] — Byer} Y_TE K,[yr§l. (E.27)
D

drp

So, Eq. E.27 is equal to

-
d_iD = B(ev)r§" 'K, [yr§] — Bye r§V ¥ 1 K, [yr5] — B(ev) r§' ™t K, [yrg]. (E.28)
D
Then, multiply Eq. E.28 with 7,7,
ﬁdp ev+p— 1 evt+e—1+p0 €
rD = = B(ev)r, K,[yr§]l = Byer, Ky_1lyrs5l
(E.29)
— B(ev) 1y, ev+p-1 K, [yr5]
or
-
) <P2 = —Bye s K, [y (E.30)
p
So,atrp, =1,
dpp 1
B D) _ _
rf222) = —ByeK,_,[y]l = -~ E.31
(D er - Y v—1LlY s ( )
As a consequence,
1
(E.32)

- syeK, [yl

Finally, dimensionless pressure comes to
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o@ 9+2
0+2 /K lg +

P ) =1, \ syeKy,—1[y] /

2\/— 9+2
9+2V K 9 + 2 D
- 2
Pp (TD' S) = TD

Let us change € and v,

0+2 2 0+2

To conclude, the result is

2\/'— 9+2 \

o (K o+
Pp\"p,S —T'
2v/s
\S\/s_“Kv-1[9—_|_2U

or

K 2\/— 9+2
18 6+2D

pp(rp,s) =1, — |
e
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APPENDIX F

METZLER ANOMALOUS DIFFUSION MODEL AT A CONSTANT RATE
CONVERSION FROM DIMENSIONLESS TO DIMENSIONAL

In this appendix, we convert the analytical solution of Metzler anomalous model at a
constant rate condition from dimensionless to dimensional coordinate in the SI unit by using

scaling property. The dimensionless pressure and time are given by

V i Ap(t) F.1
Po = 2Bt P (F.1)
and
k(r,)t
th = ———. F.2
D= Sr)cn F.2)
Dimensionless time can be written as
tp, = n't, (F.3)
where
k(ry,)
fe— F.4
"= e F4)
Taking the Laplace transform of Eq. F.1,
Po(s) = Ap(s), (F.5)

2mgBp
where pp (s) is the Laplace transform of p, (t,) with respect to time t, and Azp(s) represents the
Laplace transform of Ap(t) with respect to t. In addition, the solution of Metzler Anomalous

diffusion model for finite wellbore and constant rate is
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257 %3
KV[9+2TDZ

o+2
pp(rp,s) =1, 2

(F.6)

2vse |

where p,, (1p, s) represents the Laplace transform of p, (tp) with respect to t,. After, by applying

scaling property, pp (s) can be represented as:

- 1 /s
Po(s) = Llpo (0] = 275 (). (F.7)
So,
a
2 ;— o+2
Klgrzh’
- 042,
Po) = Lilpo 0] = 1, 9 G
s [s* 2 n*
nr\nt V6 + 2
or
a
2 |5 o2
Klgrzhn’
o 042,
Fo(s) = Llpp (o)) = 1,2 - (F.9)
2 -
s% n*
s Kv-1lo 12

Make equal to Eqg. F.5 and F.9 supplies:
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-
where 1, = —.

2ntqBp

Consequently, Ap(s) is equal to

= . 2mqBp

Ap(s) =

w

Ap(s) =

0+2

D

6+2

——V
2
TD
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APPENDIX G

ANALYTICAL SOLUTION OF METZLER ANOMALOUS MODEL AT CONSTANT
BOTTOMHOLE PRESSURE

In this appendix, the analytical solution of Metzler anomalous diffusion model is presented
for constant bottomhole pressure condition. The initial boundary value problem for the fractal

model is defined as follows:

0%pp 1 0 ( ﬁapD)

oty 4 T;f‘l orp 'p orp (G1)
where f =df — 6 —land a = ﬁ. Initial condition is given as
pD(T'D, tD = 0) = 0 (G2)
The inner boundary condition for a finite wellbore is described as
po(p=1,tp) = 1. (G.3)
The outer boundary condition is described as
rginw pp (p, tp) = 0. (G.4)
To begin with, taking the Laplace transform of PDE with respect to ¢,
1 d dpp
- -1 _ _ 5 D
s*Pp(rp,s) —s*pp(rp, tp = 0) = r;f_l drp (TD er)- (G.5)
Applying the initial condition into the above equation,
1 d dpp
am— — B~ED
S”Pp (TD,S) def—l er ( D dT'D> (Gﬁ)

or

143



1 d (ﬁdp_D)

s“pp(rp, s) =T£+9 aro\> ar, ) (G.7)
Next, Laplace transform of inner and outer boundaries are, respectively
1
pp(rp =1,5) =~ (G.8)
and
Jim P (rp, ) = 0. (G.9)
Then, Eq. G.7 develops into,
1 _,dpp d*pp
ap— — B-17FD B
s“pp(rp, s) TDﬁJ,Q (ﬁrD dry + 1 r? >, (G.10)
y— _ B dpp 1 d*p, (G.11)
S pD(TD;S) - TD9+1 er % erZ .
Let us rearrange the Eq. G.11 to find a general solution,
1d*p, B dpp
— — s%%p (rp,s) = 0. G.12
rDe erz rD9+1 er S pD(rD S) ( )
Multiply with r9*2,
1 d*pp B dpp
6+2 6+2 ZfD _ ,6+24a s) =0. G.13
Tp rg dr2 D o1 dr, D pp(1p, S) ( )
So,
d’pp dpp
r5— 7+ Bro o — 1825 Pp(rp, 5) = 0. (G.14)
D
The general solution of Eq. G.14 is
ﬂ 24/5% e+2 24/5% e+2
pp(1p,s) = rD {AI le ) D + BK, le n T l}, (G.15)

where v = g. Next, apply the outer boundary condition in Laplace space to the general solution
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%\) 2 sa 9+2
T})lgloopD(rD,s) = lim 7, lim {AI l6+2 T l BK,

Tp— 00 rp—>®

lz all Ml}:o. (G.16)

When 1}, goes to infinity, Bessel | function approaches to infinity, and Bessel K function goes to

zero. Hence, A must be zero, but B cannot be zero. Consequently, Eg. G.16 reduces to

6+2 2\/S_a 9+2
pp(rp,s) =1, oz BK [9 5 l (G.17)
Next, apply the inner boundary condition (1, = 1),
2Vs¥| 1
= - G.18
Po(ro = 1,5) = BK, | 5= = = (G.18)
So,
1
B=——F+—-
P 24/s% (G.19)
e +2
To sum up, dimensionless pressure is equal to
2\/— 9+2
9+2 K, 0+2 D
pp(rp,s) = (G.20)
24/s¢
SKy [e +2
or
K 2\/— 9+2
— ) 1-5 0+2 D Gl
,S) = .
bp\rp 25E ( )
Ky 1o+ 2
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APPENDIX H

METZLER ANOMALOUS DIFFUSION MODEL AT A CONSTANT BOTTOMHOLE
PRESSURE CONVERSION FROM DIMENSIONLESS TO DIMENSIONAL

In this appendix, the analytical solution of Metzler anomalous model at a constant
bottomhole pressure is converted from dimensionless to dimensional coordinate in the SI unit by
using scaling property. The dimensionless pressure and time are given by,

pi—p _ Ap(r0)

= = H.1
Pp Pi —Pwr  Abwr (HD)
and
k(r,)t
th =—————. H.2
D= S (H.2)
Dimensionless time can be written as
where
k(ry,)
e — H.4
"= e (H4)
Laplace transform of Eg. H.1 is equal to
Do (s) = ——Ap(r,s), (H.5)

prf
where P, (s) is the Laplace transform of p, (t;) with respect to time t, and Azp(s) represents the
Laplace transform of Ap(t) with respect to t. Moreover, the solution of Metzler anomalous

diffusion model for finite wellbore and constant bottomhole pressure is
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K [205% =
I i
D\'D» — D )

2+/s%
SKV[9+2

where pp, (1p, s) represents the Laplace transform of p,, (tp) with respect to ¢,

scaling property, pp (s) can be represented as:

Pp(s) = Le[pp(n*t)]

So,

0+2

Po(s) = Le[pp(™t)] = 7 ?

or

0+2

Po(s) = Llpp ()l =7, 2

=7 ()
r’*pD 7,’* "

\Y

2 |[— e6+2

Klgrzhn’

S|«
* R

Make equal to Eg. H.5 and H.9 supplies:
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sk,

0+2

(H.6)

. After, by applying

(H.7)

(H.8)

(H.9)



1 — 8+2V
——Ap(rp,s) =1, 2
prf P b
Consequently, Ap(s) is equal to:
L A 6+2
Bp(rp,s) = L7, 2"

-
where 1, = —.

w

24
2/5—*w
K, | oYL 2

6+2D

a

%)

sK,

0 +2

NIE

2 |= o+2
UrT
6+2D

K,

N

KV

0+2
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APPENDIX |

ANALYTICAL SOLUTION OF RAGHAVAN ANOMALOUS DIFFUSION MODEL AT
CONSTANT RATE

In this appendix, we present the analytical solution of Raghavan anomalous diffusion

model for constant rate condition. The diffusivity equation of this model is

1 0 0Ap d%Ap(r,t)
n—-1-6 — — - 4 1.1
rn-1 9y (T Aq P ) ofeh T (1.1)
where @ = —— and Ao = Y& The initial condition is
2+6 u
Ap(r,t =0) = 0. (1.2)

The inner boundary condition for finite wellbore is

lim <r”‘1‘9

o1y

01~ 9A B

“9hp) | dscB (13
att=¢ or apAzh
an

where a,, = m and n = 2. The outer boundary condition is defined as,

2
lim Ap(r,t) = 0. (1.4)
T—00

Taking Laplace transform of PDE with respect to t gives

! i(r”‘l‘el 6#) = ¢pc {s*Ap(r,s) —s* Ap(r,t = 0)}. (1.5)

Apply the initial condition into the above equation,

1 0 0Ap\ e,
— |10 —> =——5%p(r,s). 1.6
rn-1 6r< ar Ag p (16)

Let us rearrange the Eq. 1.6
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f=n-1-6 (1.7)

and
Aq
P y I.8
T]l ¢Ct ( )
so, the PDE can be rewritten as,
1 d dip\ 1
) = e
—Fve dr(r dr) is Ap(r,s). (1.9)
Left hand side of Eg. 1.9 can be expanded as,
1 _dAp d?Ap\ 1
rB+0 <ﬂrﬁ 17+Tﬁ dr2 > =ESaAP(7":S) (1.10)
or
rftdAp P d*Ap 1 __
B+ dr +rﬁ+6 dr? ZESQAP(T:S) (1.11)
or
f dAp 1d?Ap 1 y—
— =— . 1.12
r®+1 dr  rf dr? ms Ap(r,s) (112)
Multiply Eq. 1.12 with r9+2, and rearrange it
d?Ap dAp s¥__
2 _ 0422 =0. 1.13
s + Br 7 o Ap(r,s) =0 (1.13)

The general solution of Eq. 1.13 is equal to

[, 52 ] [, 52 ]
6+2 | n; 6+2| I n; 6+2|
z V' <{Cl, “z |+ DK, 2 |7, (1.14)

_ I
Ap(r,s) =12 [9+2r 2 l—6+2r Z J}

where C and D are the arbitrary constants, and these constants can be determined from the outer

and inner boundary conditions. The order of the above equation,
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V=a—l="—o, (1.15)

where
dy =6+ 2. (1.16)
First, take the Laplace transform of the outer boundary, and then apply into the Eq. 1.14,
rh_)rg Ap(r,s) = 0. (1.17)
Applying outer boundary gives result that C must be zero because I,, is unbounded as the argument

r goes to infinity for any v'. Therefore, Eq. 1.14 reduces to:

Sa
Ap Dr— 7V K r i 032 (1.18)
= 2 —_— 2 .
p(r,s) = Dr vlg 2"
or
1
_ _dw,, a(riw 2
Ap(r,s) =Dr 2" K, |2s2 = |- (1.19)
77L'dw

To determine the constant D, we use the inner boundary condition given by Eq. 1.3. Initially, we

take the Laplace transform of Eq. 1.3,

017% dAp qscB
. n—-1-60 - - _ sc
rlirrr\}v Ir Le <6t1‘“ or >l apAy hs’ (1.20)
where
0% dAp dAp(r,s)
200 1
t(@tl‘“ 6r> > ar (121)
So,
dA_p(r, s) qscB
: n—-1-60 .1-a —
Jim [T S dr l apAghs (122)
or
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llm rn_l_g dA_p(T'S) - _ qSCB
apA hs?—@

To apply inner boundary condition, firstly take the derivative of Eq. 1.19

1
dAp(r,s) dy , 4w, _ a (riw\2
T=—D7WVT 2" le 2s2

The derivative of Bessel K function is equal to

KD Yy )~ Ko )
dr Z

and the chain rule is

dK,(z) - dK,(z) dz
dr ~  dz dr

Therefore,

or
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{ V' \ a [ riw >‘z <rdw_1> [« < rdw >1/2 (1.28)
=| — || s2 — | K,, | 252
rdw %/ <77id3v mdw ) VT \midd

a ’r‘dw_l a T-dw 2
— 2 K./ 252
y (mdw> [ <ldﬁ,>
or
1
a rdw 2
dKy | 252 (mdﬁ)
dr
vd, a [ rdw \"? (1.29)
= K, |2s2
2r nldl%/
dy, 1
a T‘T_l a ‘rdw 2
— 2 K.r 252
° 2 v n;dy
n;
Hence, Eq. 1.24 develops into
_ 4 1
dAp(r,s) d, , _dw,,_ a [riw \2
—:_D_l 2V’ 1K,22
dr 2 VT v |48 n;d2
1
—dww V'dw a rdw 2
Dr 2 K. |2s2
+ Dr o v |4S n.d2 (1.30)
dw 1
arz2 ! a < 7w >2
—| s2 K. 252
% vt n;dg
n;

or
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As a result of simplifying gives,

dAp(r, s) B
dr N

Multiply both sides of Eq. 1.32 by

Hence, Eq. 1.32 comes into

dAp(r,s) dw S a [ riw \2
dyv+1 "7~ 77 - 2 (vi+1) — |K 252 .
r dr " 12 v |2 g
Take the limit as r goes to r,, provides,
_ a a
lim rdW"“dAp—(r'S) = —Di lim rdTW(V’H)K "+1 257 (L -
r-Tw dr \/ET—’TW v nid\%v
or
. a g2
lim Tn_l_e —dAp(T, S) = — i dTW(V,+1)K ’ 25% < rWW >2
5 d -w v +1 .d?2 '
=Ty r \/E niay

Equalizing Eqg. 1.23 and 1.36,
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dw
n-d‘%>

alr
Kv’+1 252

N =

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)



—D—r,
\/E w

As a consequence, D is equal to

or

D =

)
a,Aghs” 2 dw, ,
n‘a 2(v+1)

Tw

Finally, pressure change in the Laplace space is found as

Ap(r,s)
qscB

Vi

apAghs®”

a

2

dTW(\)'+1)
w

e r‘:fw
Kyryq|252 mdz
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1=

(04 T.dW E
K./ 255 w__
b <7h'd51>

_Aw,, x |2 afr
2 2
i n:idg

a 1
s2 dTW(v'+1)K 25% rvf,i‘” 2 _ GscB
vt Thdﬁz an/lahsz_a.
_ qyB Jni
 a, A hs?-a 1
nta % dTW(V,+1)K 5 % rvaiw 2
S R
qscB e

dw

j

| =

(1.37)

(1.38)

(1.39)

(1.40)



APPENDIXJ

ANALYTICAL SOLUTION OF RAGHAVAN ANOMALOUS DIFFUSION MODEL AT
CONSTANT BOTTOMHOLE PRESSURE

In this appendix, the analytical solution of Raghavan anomalous model at the constant

bottomhole pressure is showed. The diffusivity equation is

1 0 dAp 0%Ap(r,t)
— [4m-1-69 ") _ i - J.1
rn=19r (T A ) A (1)
where a = ﬁ and 4, = %"‘ The initial condition is given by
Ap(r,t =0) = 0. (J.2)
The inner boundary condition for finite wellbore case
Ap(r =r,,t) = Ap,, = constant. (J.3)
The outer boundary condition is defined as
lim Ap(r,t) = 0. (J.4)
T—00
Taking the Laplace transform of PDE is equal to
1 0 dAp —
_ n—-1-6 DL a _ -1 —
19y (T Aa 752 > pce{s“Ap(r,s) —s* Ap(r,t = 0)}. (.5)
Use the initial condition and rearrange the above equation develop into
1 d dAp oc,
. n—-1-6 —rrt.a
rn—l dr <r dr > /1a S Ap(r: S)' (\]6)
Eqg. J.6 can be written as
1 d dAp 1
— [P )= g
i (r Ir > is Ap(r,s), J.7)
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wheref=n—-—1—-6andn; = ;—“ Then, left hand side of Eq. J.7 can be rewritten as,

Ct.

1 dAp d?Ap\ 1
(B0 e ) = T ©8)
L

or

B dAp 1d?Ap 1

— =—s%p ) J.9
r*l dr  r? dr? ms p(s) (:9)
Expand Eq. J.9 with +2 and rewrite it
d?Ap dAp &
9 _
r? 772 + Br 7 7 +2EAp(r,s) =0. (J.10)
The solution of Eg. J.10 is equal to
a a
0+2 2 S_ 2} 2 S_
v -1z, n 8+2 n 82
Ap(r,s) =r" 2 Cl, B2 2 |+ DK, el z |r, (J.11)

where C and D are the arbitrary constants, and these constants can be determined from the outer

and inner boundary conditions. The order of the Bessel functions,

LRt 112
V=4, Te+z (3.12)

where
d, =6 +2. (3.13)

Next, the Laplace transform of outer boundary condition is found to determine C and D constants.
lim Ap(r,s) = 0. (3.14)
T—>00

Applying the outer boundary condition into Eq. J.11 results in C must be zero because I,/ is

unbounded when r goes to infinity. As a consequence, Eg. J.11 is equal to
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Ap(r,s)

or

Ap(r,s) = Dr~ 2 'K, |2s2 (

=1r

O0+2

2 VDK,

\Y

A
Ap(r=r,,s) = pw
Using Eq. J.17 in Eqg. J.16 gives
A W I a
Ap(r=1,,s) = v 4 D 2 K,, 257<
So, the constant D is equal to
A 1
D =D —.
S a4 dw \ 2
v LA
T, K., 252< -d2>
Lw

1
2

rdw >_
2
idw

To find the constant D, the inner boundary condition in the Laplace space is used
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APPENDIX K

ANALYTICAL SOLUTION OF DIMENSIONLESS RATE FOR RAGHAVAN
ANOMALOUS DIFFUSION MODEL AT CONSTANT BOTTOMHOLE PRESSURE

In this appendix, the analytical solution of dimensionless rate is presented by using
Raghavan anomalous model at the constant bottomhole pressure. Dimensionless rate is found by
using the following equation.

0'"“ ddp _ qs(r,t)B
otl-@ or apd h

n-1-6

(K.1)

r

where Ap is constant and g (7, t) changes with time and location. Taking the Laplace transform

of Eq. K.1 develops into

0% 9Ap qsc(r,t)B
n-1-6 = SC\
r Le <6t1‘“ or > Lt( apdsh ) (K-2)
or
017% dAp B
n—-1-6 —_ | = -
r Ly <at1_“ or > anAath(q“(r’ t)) (K.3)
or
dAp B
n—-1-60 .1-a — —_—
{r s I } a Ak Goc(1,5), (K.4)
where
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a ( piw
—d—ww Kw 25 (Thd\%})
— Ap,, T 2
Ap(r,s) = ———4; - e (K.5)
-7

where n; = % = % ,and Ap,, is the well pressure, and Ap(r,s) is the Laplace transform of

Ap(r, t) with respect to t. Next, taking the derivative of Eq. K.5 with respect to r comes into

( 4 11
a w 2
K, ZSE(T 2)
A ’r'_dTWw Th'dw
d{=Pwl _ a4
s _%w,, F (K.6)
T 2 a .r.dw 2
w Kw 252 W—Z
dAp(r,s)  \ i ik 1/
dr 4 dr
or
a TdW %
dir 2"k, 25?( .dZ)
dAp(r,s) Ap e
= - ; - (K.7)
dr dr

A ey
ST v | 252 >
w 77L'dw

Let us focus on the second term of Eq. K.7

\%

1
dw. s a dw \2
dir—2VK. 255(;—>

idi . " o [ pdw \3
» = 5 virTz " 'K, | 252 <m>
(K.8)
a(rdw z
. ’dK\,, 252 (m>
+r 2" ™

Let us assume
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1
a dw \2
7= 25 (; dz) . (K.9)

The chain rule is applied for derivative of Bessel K function,

dK,,(z) B dK,,(z)dz

: (K.10)
dr dz dr
Derivative of Eq. K.9 with respect to r
d - dy—1
dz afrw\ 2 riw=
— =<s52 —. K.11
ar =" (m%) {dw mdsv} (1D

Then, derivative of Bessel K function is equal to

dK,(z) _V' Ko (2) — Kopos (2). (K.12)
dz z

So, Eq. K.12 can be written as

1 1
dK,(z) v v | %<rdw >§ K ) %(‘I"dw >7
= , S — ! S .
dz @ [ pdy 7 nids v nidy (K.13)
253 (a7
y nids
As a result, Eq. K.10 develops into
PN
dK,,(z v a [ riw \2
(@) _ X, 252( 2)
dT‘ L a wa 2 nldW
252 (—)
nidy,
(K.14)

or
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1

dK,, 'd a [ riw \2 a [ riw
Y (Z) = Y hw KVI 252 — 52
dr 2r T’Ld\%/ T]lda,

N| -

d, aflr 2
(T) K, ,,]252 2 . (K.15)

Apply Eqg. K.15 into Eqg. K.8,

1
dw_ 1 dw \2
d{r 2" K, ng(r—>2
\Y ndz 1
LW d / a [ riw \2
w ——WV -1 =
= \Y) 2 KV 252 <—2>
dr n;ds
1
b Gy V’dWK 5 %<rdw >2 (K.16)
T l S
2r v ld‘%,

or
I
a w \2
dir 2" K, 257(r'd2>
Lw
dr
4 1
d w a [ row \2
=——Vr 2" K, |2s2
2 nids

(K.17)

So, Eq. K.17 is equal to
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n;dz
dr (K.18)
dw \ 2 d \ 2
dw 1 (d a (row \2 a (row \2
—r 2" (—W)52< ) K, 257< > .
r nidy v nidy
As a consequence, Eqg. K.7 develops into
dAp(r, s)
dr
dw \Z dw \2
A dw i (d a (riw \2 a (row \2 K.19
__ Pw - (_w)57<_2> K., 252( 2) (K.19)
dw,), a [ 74w \2 r n;dg n;dg
st. 2K, |2s2 =X
v Y ( id3v>
or
1
a ( rdw \2
- dw, 1 Koy 252(77.7)
dAp(r,s) Ap, r 2" [r%w\24d, W
d =TT, @ 4 2 | 17 ° (K.20)
r -7 -y nds) T dy \3
T Ky |2s7 (e
v« g
Use Eqg. K. 20 into Eq. K.4
( 1
a rdw 2
w1 d 5 Kyiy|2s2 (Uid\?v)
Ap, v 2 [r%w\2d
_< rn_l_esl_a pM(; d < 2> _W 1 }
si77, v \mdi) T =
T, afr"W
w Kw 252 <WT>
\ Niw ) (K.21)
B B

—m%c(r. s)
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or

( 1)
a ( pdw \2
dy 1 Ky |252 (U'dz)
_1-APw r 2" (rfw\2d, Y B __
_<rn a d 2 - 1 > =_—qsc(rls)'
s2 r_TWV, T]idw r a 'rdW 5 anlah
w K\)’ ZS7 <T]W7>
L W)
Note that, dimensionless rate is described as
a'pB
)t = — DEEWY_ lt )
qD (TD D) an/lahApW qSC(T )
where dimensionless time
t, = TZ; ta
and
n
212
a, = n
r(3)
and

p =

where & = di and n = 2. Taking the Laplace transform of Eq. K.23 with respect to t

_ a,B

qp(rp,s) = mqsc(ﬂ s)
or

. a,A,hlAp,,

QSC(T" S) = %QD(T'D,S).

p

Consequently, Eqg. K.22 can be rewritten as
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(K.23)

(K.24)

(K.25)

(K.26)

(K.27)

(K.28)



( 17
a ( pdw \2
dy 1 Kyryq|2s2 (n-dz)
an/la_,h< n-1-6 Ap,, r2" <wa >2d_w iaw |
B S% _dz v\ndz) r o/ i %
w K,, 257< "‘;l2>
L w J (K.29)
anAqhApy,
=——FpF ® (1p, ).
14
Simplifying Eqg. K.29 comes into
( 11
a rdw 2
d 1 Ky 252( dz)
1r 2" [ rdw 24, b 1
52,72V \Mi%w o [ 7w \2 P
w 5 w
Ky |2s2 <77id\%z>
\ J
Applying the a,, and ¢ into the above equation comes up to
( A
@ [ rlw 2
Koo 255 (220)
1 dw 1 v +1 ,dZ
L\ @d) | g L2 (v i, e
( dZ) Tw \" @ _Aw. .d2 T 1 }
n;ay s2 2 vV niay r dw \ 2
T afr
w K, |252 [ %
\ nidi (K.31)
=qp(1p,S),

wheren—1-6=d,v'+1landa = di. As a result, the dimensionless rate is equal to

w

165



—, (K.31)

a 2 a
. w —_
0o (rp,s) = d,, (m d%) s 2 (K.32)
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