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The importance of geothermal reservoirs is rising day by day because of the world’s 

enormous energy demand. Now, governments give special emphasis to renewable energy sources 

like geothermal energy more than fossil fuels since these renewable energy sources are considered 

environmentally friendly and sustainable. On the other hand, one of the most challenging tasks of 

geothermal reservoirs is to model these reservoirs for resource evaluation and performance 

analysis because geothermal reservoirs are quite heterogeneous and include complex network of 

fractures and faults. 

Appropriate modeling of geothermal reservoirs is crucial for determining appropriate 

production strategies. For instance, the effects of production and/or injection wells, and the 

locations of those wells on reservoir performance are assessed by the reservoir model. In addition 

to these, enhanced recovery production, injection wells operations, production rate prediction, and 

feasibility analysis of given field are determined by considering reservoir models. Hence, reservoir 

models are extremely important for companies. Well testing is applied to reservoirs to investigate 
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the efficiency of the wells by companies. They characterize well performance and reservoirs by 

utilizing well-test data. 

The objective of this study is to apply fractal and anomalous diffusion models to 

geothermal reservoirs to analyze the well-test pressure data acquired from such reservoirs. These 

models are applied to well-test data to find reservoir parameters governing the resource potential 

and production rate performance, such as porosity and permeability. 

In this study, the diffusivity equations based on the fractal and anomalous diffusion 

concepts were solved by considering three different production boundary conditions; specified 

constant rate production, specified constant bottomhole pressure production, and variable 

rate/variable bottomhole pressure conditions. For all cases, the reservoir is assumed to be infinite 

acting.  For each production boundary condition, the initial value problem (IBVP) was solved by 

using the Laplace transformation method and the Laplace space solutions were converted to the 

real time domain by numerical inversion using Stehfest’s inversion algorithm. Both dimensional 

and dimensionless solutions were presented for each condition and model. These solutions are 

compared, and the differences were determined and presented for each condition. Then, the 

solutions based on the fractal and anomalous diffusion models were applied to analyze well-test 

data from the Kizildere geothermal field in Turkey and the Kamojang geothermal field from 

Indonesia. Each geothermal field is examined to estimate the reservoir parameters by applying 

automated history matching based on the ensemble smoother with multiple data assimilation (ES-

MDA) method. The main conclusion is that fractal parameters have a remarkable effect on the 

reservoir characteristics. Changing fractal parameters results in different reservoir characteristics. 

Fractal parameters cannot be interpreted from well test data, so the box-counting method is 

extremely important. Furthermore, fractal model achieves very good results for both the liquid-
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dominated and vapor-dominated reservoirs. On the other side of the coin, the Raghavan anomalous 

model’s performance should not be ignored for vapor-dominated reservoirs. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

Global energy demand has risen significantly in the 20th century especially due to the two 

world wars. Inevitably, energy demand continues to increase dramatically in the 21st century due 

to uncontrolled population growth, advanced technology, and industrialization. Because of that, 

each country that has geothermal sources pays attention to geothermal energy. 

Geothermal is a type of thermal energy. The geothermal energy originated from the Greek 

words: geo (earth) and thermal (thermos). In other words, it is thermal energy that produced and 

stored by the earth. Geothermal energy is the internal heat of the earth and this heat diffuses from 

the magma which is the hot zone in the center towards the earth’s surface. This heat sometimes 

reaches the earth surface by following cracks under the earth’s crust, for example, volcanic 

eruption. Geothermal energy comes to the surface by the radiation, convection, and conduction 

heat transfer mechanisms. However, this heat is sometimes kept under a cover rock. Thanks to this 

holding mechanism, the heat warms up the water. After the drilling operation, that energy comes 

to the surface as hot water or steam. Most importantly, the energy provided in the geothermal 

system is not produced from water. On the contrary, it is the energy obtained as a result of 

converting underground heat energy into electrical energy. Water and steam that serve as heat 

carrier carry the energy to the ground (Duffield and Sass, 2003). 

Geothermal energy is not a new resource on the contrary to what many people think. It is 

one of the oldest types of energy used by humans. Archaeological evidence shows that Paleo – 

Indians used hot springs directly for cleaning, bathing, and cooking 10,000 years ago (History of 
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geothermal energy, 2020). On the other side of the continent, the peoples of ancient Greece and 

Rome used hot water for healing in Europe and Anatolia (Geothermal Energy throughout the Ages, 

2020). But now, geothermal energy is mostly used to produce electricity. Geothermal power 

generation in the world yielded 92.7 TWH in 2018 (IEA,2020). The first geothermal electric power 

plant is located in Larderello. In 1904, Italian scientist Piero Ginori Conti used to steam to produce 

power (History of geothermal energy, 2020). After the Second World War, the United States gave 

much weight to a geothermal power plant because the Mayacamas Mountains north of San 

Francisco has a huge potential for geothermal energy thanks to the geysers. The San Andreas Fault 

runs through California from the Imperial Valley to the San Francisco area, and there is a 

geothermal activity. 

The installed capacity of geothermal energy in the world reached 13.9 gigawatts in 2019. 

Geothermal power generation went up by 3.7% in 2019. The United States has the highest installed 

geothermal power capacity (2.6 GW) in the world. It is nearly 18% of the world’s total. Indonesia 

(2.1 GW), the Philippines (1.9 GW) and the Republic of Turkey (1.5 GW) are the countries that 

follow the United States in this regard.  
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Figure 1.1 San Andreas Fault (Lynch D. K., 2006). 

The Republic of Turkey is making a remarkable investment in the geothermal field. The 

Republic of Turkey installed the most geothermal capacity additions both at 219 megawatts (MW) 

in 2018 (Sönnichsen, 2020), and 232 MW in 2019. (BP, 2020). Figure 1.2 demonstrates that global 

geothermal installed capacity goes up substantially. 
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Figure 1.2 Geothermal Energy Capacity in the world between 2019 and 2019 (Sönnichsen, 

2020). 

The total number of geothermal wells drilled for power projects is 1,159 from 2015 to 

2020, and 10,367 million $US was spent on those projects. The world total installed capacity 

would be 19,361 MWe in 2025 (Huttrer, 2020). In addition, the International Energy Agency (IEA) 

expects that geothermal power generation will be 162 TWh in 2025 and 282 TWh in 2030. 
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Figure 1.3 Geothermal power generation in the sustainable development scenario (IEA, 2019). 

Geothermal energy has a lot of advantages. The first and most important advantage is that 

it is renewable energy. The produced hot water can be used to generate electricity. Then, the colder 

water can be pumped through the injection well, so this process provides sustainability. Sustainable 

geothermal energy systems impact poverty, health, education, demographics, natural hazards, 

atmosphere, land, freshwater, biodiversity, economic development, etc. (Shortall et al., 2015). 

Geothermal energy is baseload. That is, geothermal power plants can generate electricity 24 hours 

per day / 7 days per week. They are not affected by severe weather conditions. Furthermore, 

geothermal energy has a smaller footprint than other energy types. Geothermal power plants use 

less land per GWh (404 𝑚2) than coal (3642 𝑚2), wind (1335 𝑚2), or solar PV (3237 𝑚2). In 

addition, geothermal is clean energy. Geothermal power plants emit no greenhouse gasses 
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(Geothermal Basics, 2020). Moreover, geothermal energy has a lot of direct use applications. It is 

used for swimming, bathing, balneology, space heating, and cooling. Furthermore, there are 

agriculture applications; for example, greenhouse heating to get maximum production for fruit and 

vegetable products and fishpond and raceway heating. Thanks to these benefits, people tend to use 

geothermal energy much more year by year. Figure 1.4 depicts that there is an increasing trend for 

direct use applications. 

 

Figure 1.4 Comparison of worldwide direct use of geothermal energy in TJ/yr from 1995, 2000, 

2005, 2010, 2015 and 2020 (Lund and Toth, 2020). 

After drilling a geothermal well, well testing and reservoir characterization are required. 

While the main purpose of reservoir characterization is to characterize the lithology, fractures, and 



7 

 

stress, well test analysis provides to evaluate well properties such as maximum production or 

injection flow rate. Gamma – ray logs and spectral gamma – ray help to identify petroleum and 

geothermal reservoir lithology. On the other side of the coin, well testing supplies the estimation 

of reservoir hydraulic parameters, for example, well productivity or injectivity index, average 

reservoir pressure, well skin factor, reservoir permeability, and reservoir boundaries. It is obvious 

that wells cannot be produced efficiently without modeling the reservoir. Well test analysis is 

extremely important to evaluate the dynamic data because the derived models may match the 

observed data. There will be one correct answer and more than a few probable answers. Thanks to 

this good match, well test analysis provides estimate of permeability and porosity under in – situ 

flow conditions, estimates of well performance, and estimates of distances to boundaries. As a 

result, the production lifetime of the well could be extended, and human beings get a chance to 

benefit more from this energy. Thus, well test analysis is non – negligible to the petroleum and 

geothermal industry. Well testing and reservoir characterization play a key role to understand how 

fluid and heat energy are transferred. Applying history matching on pressure data helps to 

understand well characteristics. For instance, possible barriers and faults/fractures in vertical 

directions can be interpreted. 

 

1.1 Geothermal Systems and Power Plants 

The geothermal reservoirs consist of porous and fractured rocks where are fed with rain, 

snow, sea, and magmatic waters. When rising hot water or steam is trapped in those rocks under 

an impermeable rock (cover or cap rock), it can form a geothermal reservoir. Those reservoirs exist 

in the location where the volcanic activity occurs. Because of tectonic movement, the earth’s crust 

is broken into plates. Magma drives the plates in three different ways: divergent, convergent, and 
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transform. While a divergent boundary means when two plates are moving apart from each other, 

the convergent boundary is when two plates are pushed into each other. A transform boundary is 

that two plates slide past one another. Furthermore, the most tectonic activity is seen in the Ring 

of Fire where most earthquakes and volcanic eruptions occur. 

  

Figure 1.5 World Plate Boundaries: divergent, convergent and transform (Geology.com, 2020). 

There are six types of geothermal resources: magma, hydrothermal, geopressured, hot dry 

rock (HDR), enhanced (or engineered) geothermal systems (EGS), and waste heat systems. 

Magma is the largest geothermal resource. The heat from magma diffusive through the fracture 

and heat the cold water. Hydrothermal resources require three components: a heat source, an 

aquifer, and an impermeable rock. These systems convey heat to the surface as steam or hot water. 

On the other hand, hot dry rock systems have either dry aquifer or low permeable rock. These 

systems can be activated both creating artificial fractures and injecting water. Geopressured 

systems contain hot brine saturated with methane. These systems have deep aquifers under high 
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pressure. Moreover, geothermal systems can be called enhanced geothermal systems when the heat 

is produced in an economical way from low permeability and/or porosity rock. Therefore, these 

systems are also called engineered geothermal systems because these type of rocks needs 

stimulation or enhancement operations. Finally, the waste heat system is different than others. 

These systems can be seen at the hydrocarbon reservoirs. After many years of production, some 

hydrocarbon reservoirs exposed to water floating. Hence, hydrocarbon production may be 

uneconomical. Then, these systems can be used as artificial geothermal systems because the heat 

can be carried by water circulation (Falcone et al. 2011). 

There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. 

Dry steam power plants pull underground resources of the steam directly to generate electricity. 

The steam is directed into a turbine or generator unit. The dry steam power plant is suitable in case 

steam is not mixed with water. These geothermal systems temperatures are between 180 – 350 °C. 

The first example of the dry steam power plant is located at Larderello, Italy (1904).  

   

Figure 1.6 Dry steam power plant (EIA, 2019). 
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Flash steam plants are different than dry steam plants. High pressure hot water flows up 

through wells with its own pressure. During this process, the pressure decreases and some of the 

hot water boils into steam. Then, the steam is directed to turbines and electricity is produced. After 

this process, the steam cools, and it condenses to water. Thus, the water is separated and is injected 

back into the ground since this water can be used again. Flash steam power plants are used with 

the temperature greater than 182 °C. 

   

Figure 1.7 Flash steam power plant (EIA, 2019). 

Binary cycle power plants are used at lower temperatures of geothermal systems (100 – 

182 °C). In these geothermal systems, the steam cannot be used directly due to low temperature. 

Hence, another liquid is used to generate electricity. To put it another way, the heat is taken from 

the hot water and is transferred to working fluid by using a heat exchanger. The main goal is to 
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vaporize the working fluid and sent to it the turbine to produce electricity. It is important that the 

working fluid boiling point should be lower than the water boiling point.  

   

Figure 1.8 Binary cycle power plant (EIA, 2019). 

 

 

1.2 Literature Review 

In this study, the focus is on the analysis and interpretation of well test data from 

hydrothermal geothermal reservoir by considering fractal and anomalous diffusion models. As 

mentioned before, geothermal reservoirs are quite heterogeneous with complex networks of 

fractures and faults. After the 1950s, fractured and unconventional reservoirs have got remarkable 

attention in the geothermal, oil, and gas field industry because traditional modeling which is 
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applied to homogeneous reservoirs has some drawbacks against fractured reservoirs. In 1963, 

Warren and Root studied the naturally fractured reservoirs by applying two – scale (fracture – 

matrix). This study has significantly influenced today’s studies and formed the background. 

In 1983, Gefen et al. described the mean square displacement as: 

 𝑟2(𝑡) ⁓ 𝑍𝑡
2

2+𝛳 (1.1) 

or 

 𝑟2(𝑡) ⁓ 𝑍𝑡
2
𝑑𝑤  , (1.2) 

where Z is a diffusion coefficient, and 𝑑𝑤 is called Fickian value, and it is equal to 2 + 𝛳. Before 

Gefen et al. Fickian value is accepted as 𝑑𝑤 = 2. However, they proved that 𝑑𝑤 can be 2 if the 

reservoir is homogeneous. In other words, when 𝛳 = 0, the diffusion is called normal diffusion. 

On the other hand, if 𝛳>0 or 𝛳<0, then the diffusion process is called anomalous diffusion. 

Furthermore, Gefen et al. claimed that the mean square displacement should be shown as 𝑡
2

2+𝛳 

rather than 𝑡 because of heterogeneous geometry. Although percolating cluster geometry is 

heterogeneous, there is a self-similarity. In addition to this, Gefen et al., introduced the hydraulic 

diffusivity 𝜂 for a fractal network as 

 𝜂  ⁓ 𝑟−𝛳  , (1.3) 

where 𝛳 is the topology of the network (conductivity index). This means that the diffusivity goes 

down with a distance (𝛳 > 0). Actually, this variation explains the anomalous diffusion effect. In 

other words, when the fractal network consists of a highly tortuous path (𝛳 > 0), the diffusion is 

slower than normal diffusion, and this process is called subdiffusion. On the other side of the coin, 

as the fractal network contains a less tortuous path (𝛳 < 0), the diffusion is faster than normal 

diffusion, so it is called superdiffusion. 
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In 1984 and 1985, O’Shaughnessy and Procaccia studied analytical solutions for diffusion 

on fractal objects. Then, they worked for diffusion fractals in 1985. They showed that the 

generalization of the diffusion equation is proposed for Euclidean lattices which have the case of 

lattices of noninteger dimension. Diffusion on fractals is presented based on scaling argument for 

conductivity and supported by a renormalization group analysis and numerical solutions. They 

proved that anomalous diffusion and scaling of conductivity proceed from 𝛳. The conservation of 

probability equation is defined as a change in probability (𝑀) at time 𝑡 is equal to change in net 

radial current within the shell. 

 
𝜕𝑀(𝑟, 𝑡)

𝜕𝑡
=
𝜕𝐽(𝑟, 𝑡)

𝜕𝑟
 . (1.4) 

By using this relationship, the diffusion equation is proposed for the spherically symmetric shell 

 
𝜕𝑝(𝑟, 𝑡)

𝜕𝑡
=  

1

𝑟𝐷−1
𝜕

𝜕𝑟
(𝐾(𝑟)𝑟𝐷−1

𝜕𝑝(𝑟, 𝑡)

𝜕𝑟
) , (1.5) 

where 𝐾(𝑟) = 𝐾𝑟−𝛩, and K is constant, D is defined as fractal dimension and 𝛩 is the anomalous 

diffusion coefficient.  

In 1990, Chang and Yortsos introduced fractals to petroleum (fractal media) reservoirs 

successfully. Chang and Yortsos developed the study for O’Shaughnessy and Procaccia’s (1985). 

O’Shaughnessy and Procaccia defined the permeability using the fractal distribution. On the other 

hand, Chang and Yortsos (1990) extended their formulation and apply one example. Then, Beier 

(1994) explained both permeability and porosity using fractal distribution. Chang and Yortsos 

proposed a diffusivity equation for single phase flow in a system where the fractal object embedded 

into a Euclidean matrix. The diffusivity equation derived by Chang and Yortsos (1990)  is  

 𝑐𝑡
𝜕𝑝(𝑟, 𝑡)

𝜕𝑡
=
𝑚

µ

1

𝑟𝑑𝑓−1
𝜕

𝜕𝑟
(𝑟𝛽

𝜕𝑝(𝑟, 𝑡)

𝜕𝑟
). (1.6) 



14 

 

 They developed a model (fractal model) that has a disconnected matrix, but it might get in 

contact with the fracture network. This provides that fluid from to and from wells occurs through 

the connected fracture. In addition, they worked on pressure transient response in two cases: 

contribution of matrix participation and when both the fracture network and the matrix participate. 

   

Figure 1.9 Porous media (Chang and Yortsos, 1990). 

   

Figure 1.10 Flow across a differential shell (Chang and Yortsos, 1990). 
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 Figure 1.9 depicts the model of porous media. Dash lines represent the fractal fracture 

network which has a fractal property. The rest of the space is occupied by the Euclidean matrix. 

In Figure 1.10, radial r refers to the Euclidean distance from the origin. Chang and Yortsos 

presented the flow in fracture networks and diffusivity equation by using this model. Their 

mathematical model is based on the flow of slightly compressible fluid in a fractal reservoir and 

is examined both the matrix and the network participate in the flow. Consequently, they found out 

that either porosity well logs or another transient test should be used in order to determine the 

fractal parameters. 

In 1990 and 1994, Beier improved the study of Chang and Yortsos. While Chang and 

Yortsos solved the diffusivity equations by assuming finite wellbore condition, Beier solved the 

governing equation based upon line source well with radial symmetry. Furthermore, Beier 

expected that the fractal dimension (𝑑𝑓) should be 2 or slightly less in oil in place calculations. In 

addition to that, Beier applied fractal theory to field pressure test examples and got fair enough 

results for the pressure transient behavior of a fractal reservoir. As a result, he observed that there 

is a power – law behavior for the linear and radial flow. 

In 1994, Metzler et al. introduced the new model which is called the anomalous model. 

Metzler et al. (1994) claimed that the anomalous model is different than the fractal model. They 

believed that anomalous diffusion cannot be described by the fractal model because the diffusion 

process of fractal (fractured) reservoirs is history dependent. They proposed the new diffusivity 

equation, which is quite similar to the fractal model, but it includes the temporal fractional 

derivative. The diffusivity equation proposed by Metzler et al. (1994) is 

 
1

𝜂̃

𝜕𝑝𝛼(𝑟, 𝑡)

𝜕𝑡𝛼
=

1

𝑟𝑑𝑓−1
𝜕

𝜕𝑟
(𝑟𝛽

𝜕𝑝(𝑟, 𝑡)

𝜕𝑟
), (1.7) 

where 𝛼  is the anomalous diffusion exponent. 
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In 1995, Acuna et al. indicated that porosity and permeability of any region of radial 

distance are scale dependent as a power law. They obtained pretty good results for pressure 

transient responses from well in the geothermal field. They found out that wellbore pressure 

change has a power law relationship according to time. The topology of the network is indicated 

as archaeological 0 < 𝛳 < 0.5. They also stated that 0.6 <
𝑑𝑓

𝑑𝑤
< 0.86 depend on their evaluation 

of field examples. Moreover, Acuna and Yortsos (1995) mentioned the box-counting method 

which has been used to characterize the fractal properties of real networks. For instance, Serpen 

(2000) determined the topology of the network and fractal dimension by using box-counting 

method. 

Flamenco – Lopez and Camacho – Velazquez (2001) states that 0.47 <
𝑑𝑓

𝑑𝑤
< 0.67 depends 

on the fractal reservoir in Mexico. Moreover, Flamenco – Lopez and Camacho – Velazquez (2003) 

showed that the fractal parameters can be found by using a fractal model which is Chang and 

Yortsos vertical well model when the transient flow and boundary dominated flow exists. 

Flamenco – Lopez and Camacho – Velazquez found that the determination of the four parameters 

of a fractal model requires the utilization of boundary dominated flow information because the 

single well transient test cannot define the fractal parameters. In addition, they showed an 

analytical solution for matrix blocks and fractal fracture contribution during transient and pseudo 

steady state flow period. 

Camacho – Velazquez et al. (2008) evaluated the naturally fractured reservoirs and 

compared the fractal model and Metzler anomalous model. While they mentioned O’Shaughnessy 

and Procaccia (1985) and Chang and Yortsos (1990) study for the fractal model, they paid attention 

to Metzler work for the anomalous model. The main difference is that Metzler proposed a 

diffusivity equation involving time fractional fractal diffusion. Moreover, Camacho – Velazquez 
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et al. (2008) referred OP expression for O’Shaughnessy and Procaccia (1985) and Chang and 

Yortsos (1990) study, and also, called MGN expression for Metzler et al. (1994). They investigated 

diffusion on a vertical well in a closed reservoir and an infinite reservoir. Both methods are applied 

with a dimensionless variable in Laplace space based on the constant wellbore pressure condition 

and the finite wellbore case. The main purpose of this study is to observe the production decline 

behavior in naturally fractured reservoirs consisting of single and double porosity with fractal 

networks of fractures. Camacho et al. recognized that when 𝛼 = 1 for suggested by Metzler, it is 

the same as that proposed by Chang and Yortsos (1990). 

In 2011, Camacho et al. applied the Metzler method to analyze interference tests in actual 

field cases. The analysis of interference tests in single porosity naturally fractured fractal reservoirs 

are examined by using the Metzler anomalous method since this method includes memory through 

a fractional temporal derivative. 

Raghavan (2011) looked at the anomalous diffusion from another point of view. Raghavan 

(2011) introduced a new flux definition different than Chang and Yortsos (1990) and Metzler et 

al. (1994) because Chang and Yortsos and Metzler et al. used the conventional form of Darcy’s 

law and they did not change the continuity equation. Indeed, they used the convolved form of the 

continuity equation. Hence, Raghavan claimed that here is no way to obtain a differential equation 

involving fractional derivative by using conventional Darcy law and standard continuity equation. 

He proposed that either flux law or continuity equation should be changed for a fractional operator 

to result. Therefore, Raghavan (2011) changed the flux law. Moreover, Raghavan established new 

dimensionless pressure, flow rate, and time equations. Then, Raghavan (2011) solved the 

differential equation in radial symmetry both production at a constant rate by assuming a line 

source well and production at a constant pressure by considering finite wellbore case. 
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In 2012, Raghavan studied to figure out linear trends over exceedingly long-time frames 

without considering geometrical configurations. Raghavan considered two different types of 

fractional operators: Riemann – Liouville and Caputo. He preferred using Caputo fractional 

operator since Riemann – Liouville fractional operator does not pay regard to the use of physically 

interpretable initial conditions. 

Then, Raghavan and Chen (2013a) applied the time fractional fractal model to the single 

vertical fracture model. They solved the equation using a Laplace transformation and derived the 

asymptotic solutions. These solutions are important, especially for numerical computations. 

Solutions are presented considering the constant terminal rate case and the constant terminal 

pressure case. In the same year, Raghavan and Chen (2013b) combined the analytical solution for 

transient linear flow under subdiffusion with a finite conductivity fracture. 

In 2015, Raghavan and Chen introduced a new flux equation involving both time fractional 

derivative and spatial fractional derivative. They worked on the transient behavior in a linear 

reservoir. While time fractional derivative refers to subdiffusion, spatial fractional derivative refers 

to superdiffusion. In other words, they mentioned highly conductive paths with superdiffusion 

(spatial fractional derivative) and impediments to flow with subdiffusion (time fractional 

derivative). 

 

1.3 Problem Statement 

Humankind absolutely needs energy in order to survive on earth. Therefore, maximum 

efficiency, low-cost investment, and sustainability must be ensured when producing energy. 

Unfortunately, hydrocarbon reservoirs cannot provide this comfort zone at the same time. Because 

of unsustainable hydrocarbon reservoirs, governments and companies tend to utilize geothermal 
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energy more these days. However, geothermal reservoirs are different than conventional 

hydrocarbon reservoirs. Thus, appropriate reservoir models are developed to investigate 

heterogenous reservoirs. In the literature, some of the reservoir models are used to analyze the 

heterogeneous reservoirs. Each model provides appropriate matches with real field data. However, 

these models have not been compared and applied to the same field case. In addition, the effect of 

each fractal parameter has not been shown for each reservoir model in the same study. Because of 

the different diffusivity equations, it is expected that solutions of each model and the effect of the 

fractal parameters should be different. 

 

1.4 Objective and Scope of the Study 

The main purpose of this study is to derive analytical solutions to model heterogeneous 

reservoirs and apply the reservoir models into the real fields by considering fractal and anomalous 

diffusion models. Another important objective of the study is to compare the responses from these 

two models for different inner boundary conditions such as constant-rate production and constant 

bottomhole pressure (BHP) and then to apply each of these model to analyze real pressure data 

sets by using a history matching method based on the ES-MDA method to characterize and 

estimate the models parameters for the geothermal reservoir system under consideration. This 

thesis is organized as follows. In chapter 2, the basic definition of fractal and the theory of fractal 

model and anomalous models are presented in detail. This part answers the definition of fractal, 

description of reservoir rock properties using fractal distributions, definition, and type of 

anomalous diffusion, and proposed anomalous diffusion models. In chapter 3, fractal and 

anomalous models are solved analytically by considering the constant rate, constant bottomhole 

pressure and variable rate – variable bottomhole pressure. The details for each solution are given 
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in the appendix. In chapter 4, the analysis of interference pressure data from Kizildere (Liquid – 

dominated) and Kamojang (Vapor – dominated) geothermal fields are analyzed by using models. 

Nonlinear regression analysis (ES-MDA) is presented and used for analysis purposes. Finally, we 

state the main conclusions of this thesis. 
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CHAPTER 2  

 

BASICS OF FRACTAL AND ANOMALOUS DIFFUSION MODELS 

 

 

 

In this chapter, we describe basics of fractal and anomalous diffusion models, and present 

diffusivity equations for fractal model and anomalous models. 

 

2.1 Fractal Diffusion Model 

 Firstly, the definition of a fractal is explained. Then, the fractal model which was derived 

by Chang and Yortsos (1990) is discussed. 

 

2.1.1 Definition of fractal 

In the 1970’s, Mandelbrot was firstly introduced the term “fractal”. Fractals comes from 

the Latin “fractus”. The meaning is an irregular surface like a broken stone. Fractals could be 

regular or non – regular geometric shape that has a complex pattern. Although fractals are very 

complex, they consist of similar patterns and looks like self – similar with respect to different 

scales. To put it another way, while scale decreases or increases, the general overview looks like 

the same. Therefore, fractals can be thought that fractal is never ending pattern and forms the 

infinite loop. 

Fractals have three fundamental characteristics: self – similarity, power law expression and 

noninteger dimension. Fern leaves are good examples for the fractals since a fern pattern is 

repeated across the different scales. As you can see in Figure 2.1, the fern leaf has a repeated 

pattern. Even though the smallest scale is reached, the shape of leaf has an exact replication of the 
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overall leaf. Thus, the most obvious feature of the fractal is that the object has the similarity at 

different scales (Hardy and Beier, 1994). 

 

Figure 2.1 Fern leaf (Hardy and Beier, 1994). 

One of the most typical characteristic properties of the fractal is to have a positive 

noninteger dimension. People are familiar with 1D, 2D and 3D, but this is not applicable for the 

fractals because the dimension of the fractal is not an integer such as 1.8 or 2.4. Sierpinski Carpet 

is one of the best examples for this issue. Following figures demonstrates the Sierpinski Carpets. 
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Figure 2.2 5 steps of a Sierpinski Carpet derived by MATLAB. 
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Figure 2.2 depicts 5 steps of the Sierpinski Carpet. In the first step, it starts one square with 

a square hole in its center, and then, this pattern is repeated with a smaller scale. If hole sides are 

1/3 of the entire square and this condition is repeated in each of the four corners and sides of the 

large squares, the second step of Figure 2.2 is obtained. After repeating this process, third, fourth 

and fifth steps are achieved. To conclude, the dimension of the second step of the Sierpinski Carpet 

in Figure 2.2 is 1.893, if the first step of the Sierpinski Carpet has a length 3. The dimension is 

calculated by the following area formula: 

 𝐴 = 𝑐𝐿𝑏 , (2.1) 

where A is area, b and c are constants and L is length. 

Table 2.1 b and c variables with respect to different shapes. 

Shape c b (refers dimension) 

Square 1 2 

Equilateral triangle √
3

4
 2 

Half circle 

𝜋

2
 2 

Cube 1 3 

Sphere 

4

3
 3 

Pyramid 

1

6
 3 

Sierpinski Carpet (Figure 2.2) 1 1.893 
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2.1.2 Fractal model 

A pressure transient model based on fractals was developed by Chang and Yortsos in 1990. 

They extended the study for O’shaughnessy and Procaccia’s (1985). The main idea of this model 

is to express the fracture network (𝑘 𝑎𝑛𝑑 𝜙) as fractals. This model only can be applied to the 

subdiffusion condition (see Section 2.2 for definition of subdiffusion). In other words, fractal 

network is highly tortuous path, so topology of the network (𝛳) has to be bigger than zero. 

Although O’shaughnessy and Procaccia define the permeability as a fractal, Chang and Yortsos 

(1990) and Beier (1994) identified both permeability and porosity as a fractal. The porosity and 

permeability are presented depending on the position. 

 
𝜙(𝑟) = 𝜙0 (

𝑟

𝑟0
)
𝑑𝑓−𝑑

  (2.2) 

and 

 
𝑘(𝑟) = 𝑘0 (

𝑟

𝑟0
)
𝑑𝑓−𝑑−𝛳

 , (2.3) 

where 𝑑 is the Euclidean dimension, 𝑘0 is reference permeability at 𝑟0, 𝑟 radius, 𝑟0 is reference 

radius, and 𝜙0 is reference porosity at 𝑟0. It is note that while Euclidean dimension (𝑑) is an integer 

number, fractal dimension (𝑑𝑓) is noninteger. Euclidean dimension 𝑑 = 1,2,3 for rectilinear, 

cylindrical, and spherical geometry, respectively. Moreover, porosity and permeability at wellbore 

radius can be described as 

 
𝜙(𝑟𝑤) = 𝜙0 (

𝑟𝑤
𝑟0
)
𝑑𝑓−𝑑

  (2.4) 

and 

 
𝑘(𝑟𝑤) = 𝑘0 (

𝑟𝑤
𝑟0
)
𝑑𝑓−𝑑−𝛳

. (2.5) 

As a result, the porosity and permeability at any point r can be written as 
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𝜙(𝑟) = 𝜙(𝑟𝑤) (

𝑟

𝑟𝑤
)
𝑑𝑓−𝑑

 (2.6) 

and 

 
𝑘(𝑟) = 𝑘(𝑟𝑤) (

𝑟

𝑟𝑤
)
𝑑𝑓−𝑑−𝛳

. (2.7) 

 The classical diffusivity equation for a cylindrical system (𝑑 = 2) 

 𝜕𝑝

𝜕𝑡
=

𝑐1
𝜙(𝑟)𝑐𝑡µ

1

𝑟

𝜕

𝜕𝑟
(𝑘(𝑟)𝑟

𝜕𝑝

𝜕𝑟
), (2.8) 

where 𝑐1 = 1 in SI unit, and 𝑐1 = 2.637𝑥10
−4 in oil field unit. Using Eqs. 2.6 and 2.7, the 

diffusivity equation for the fractal diffusion model is described as: 

 𝜕𝑝

𝜕𝑡
=
𝑐1𝑘(𝑟𝑤)𝑟𝑤

𝛳

𝜙(𝑟𝑤)𝑐𝑡µ

1

𝑟𝑑𝑓−1
𝜕

𝜕𝑟
(𝑟𝑑𝑓−𝛳−1

𝜕𝑝

𝜕𝑟
). (2.9) 

In addition, the diffusivity equation for the fractal diffusion model can be written as 

dimensionless by using the following dimensionless radius, time, and pressure, 

 𝑟𝐷 =
𝑟

𝑟𝑤
, (2.10) 

 
𝑡𝐷 =

𝑐1𝑘(𝑟𝑤)𝑡

𝜙(𝑟𝑤)𝑐𝑡µ 𝑟𝑤2
, (2.11) 

and 

 
𝑝𝐷 =

𝑘(𝑟𝑤)ℎ

𝑐2𝑞𝐵µ
(𝑝𝑖 − 𝑝), (2.12) 

where 𝑐2 = 2π in SI unit and 𝑐2 = 141.2 in oil field units. As a result, the dimensionless 

diffusivity equation for fractal diffusion model is 

 𝜕𝑝𝐷
𝜕𝑡𝐷

=
1

𝑟𝐷
𝑑𝑓−1

𝜕

𝜕𝑟𝐷
(𝑟𝐷

𝛽 𝜕𝑝𝐷
𝜕𝑟𝐷

), (2.13) 
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where 𝛽 = 𝑑𝑓 −𝛳 − 1. Furthermore, Raghavan (2011) redisplayed the fractal model in a different 

notation. He showed that Chang and Yortsos described the diffusivity equation for flow of a 

slightly compressible fluid in a fractal network in dimensional coordinate system: 

 1

𝜂̇

𝜕𝑝(𝑟, 𝑡)

𝜕𝑡
=

1

𝑟𝑑𝑓−1
𝜕

𝜕𝑟
(𝑟𝛽

𝜕𝑝(𝑟, 𝑡)

𝜕𝑟
), (2.14) 

where 

 𝜂̇ =
𝑚

𝑐𝑡µ
, (2.15) 

where 𝑚 is fracture network parameter in the fractal system, 𝑐𝑡 is compressibility, µ is viscosity. 

 
𝑚 =

𝑘𝑓
𝜙𝑓
, (2.16) 

where 𝑘𝑓 and 𝜙𝑓 are permeability and porosity in the fracture, respectively. 

 

2.2 Anomalous Diffusion Models 

 Firstly, we explain the definition of anomalous diffusion. Then, the anomalous diffusion 

model which is derived by Metzler is presented. Finally, another anomalous diffusion model 

which is introduced by Raghavan is shown. 

 

2.2.1 Definition of anomalous diffusion 

 In statistic, the position of the particles which depends on time have a relationship between 

mean – square displacement (MSD) of the particle and time. The MSD in fractal (heterogenous) 

media can be shown as 

 𝑟2 ~  𝑡𝛾 . (2.17) 

When the exponent 𝛾 is equal to 1, Eq. 2.17 refers normal (conventional) diffusion in the 

matrix and natural fracture regions. In other words, the MSD of the particle and time has a linear 
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relationship. Normal diffusion is usually valid for homogeneous porous media. In this case, 

Brownian motion of individual particles behaves Gaussian distribution. On the other hand, if 𝛼 is 

not equal to 1, the process is anomalous diffusion. This means that the diffusion process is either 

slower or faster. The anomalous diffusion is displayed in disordered and heterogeneous reservoirs. 

 𝛾 = 1        𝑁𝑜𝑟𝑚𝑎𝑙 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 

     𝛾 ≠ 1       𝐴𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 

𝛾 < 1            𝑆𝑢𝑏𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛        

𝛾 > 1         𝑆𝑢𝑝𝑒𝑟𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛      

(2.18) 

It can be seen that diffusion has a power law relationship, and fluid particles obey a 

Continuous Time Random Walk (CTRW) behavior (Raghavan, 2011). In CTRW model, the fluid 

particles change the position between two points. If there is an impediment or obstacle for flux, 

the diffusion process goes slower. As a result, the diffusion process is called subdiffusion. On the 

other side of the coin, if particles change their position in a smaller time scale or jump longer than 

normal displacement, this process is called superdiffusion. For example, highly conductive and 

well-connected paths supply longer jump for particles. For instance, Redner (1989) presented the 

superdiffusion model, and Cloot and Botha (2006) studied on extremely conductive paths. 

 

2.2.2 Anomalous diffusion model proposed by Metzler 

 In 1994, Metzler et al. proposed new diffusion equation for the fluid flow in fractal porous 

media. The main difference is that Metzler et al. introduced fractional calculus for the behavior of 

transport process in fractal porous media. Park et al. (2000) explained the main idea of Metzler’s 

study. That is, the root idea is that Chang and Yortsos’s study fails to capture the history of the 
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diffusion process and the nonlocality. Hence, Metzler incorporates the memory effect by applying 

the fractional derivative. The mass balance for the differential shell (Figure 2.3) is that: 

 
{
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓
𝑀𝑎𝑠𝑠 𝐼𝑛𝑝𝑢𝑡

 } − {
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓
𝑀𝑎𝑠𝑠 𝑂𝑢𝑡𝑝𝑢𝑡

} = {
𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑀𝑎𝑠𝑠 𝐶𝑜𝑛𝑡𝑒𝑛𝑡
𝑜𝑓 𝐹𝑟𝑎𝑐𝑡𝑎𝑙 𝑙𝑜𝑜𝑝𝑠 𝑖𝑛 𝑚𝑎𝑡𝑟𝑖𝑥

} (2.19) 

 The diffusivity equation in the dimensionless domain can be expressed by the above mass 

balance: 

 𝜕𝛼𝑝𝐷(𝑟𝐷, 𝑡𝐷)

𝜕𝑡𝐷
𝛼 =

1

𝑟𝐷
𝑑𝑓−1

𝜕

𝜕𝑟𝐷
(𝑟𝐷

𝑑𝑓−𝛳−1 𝜕𝑝𝐷(𝑟𝐷, 𝑡𝐷)

𝜕𝑟𝐷
) (2.20) 

or 

 𝜕𝛼𝑝𝐷
𝜕𝑡𝐷

𝛼 =
1

𝑟𝐷
𝑑𝑓−1

𝜕

𝜕𝑟𝐷
(𝑟𝐷

𝛽 𝜕𝑝𝐷
𝜕𝑟𝐷

), (2.21) 

where 𝛼 =
2

2+𝛳
, 𝛼 is the anomalous diffusion exponent, and 𝑟𝐷, 𝑡𝐷 and 𝑝𝐷  are given in Eqs. 2.10, 

2.11 and 2.12, respectively. 

 

Figure 2.3 Flow across from backbone fracture to the fractal loops and to the production well 

(Park et al., 2000). 
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Metzler et al. used the same dimensionless radius, time, and pressure with Chang and 

Yortsos. In dimensional coordinate system, the diffusivity equation for flow of a slightly 

compressible fluid in a fractured network is given (Raghavan, 2011): 

 1

𝜂̃

𝜕𝑝𝛼(𝑟, 𝑡)

𝜕𝑡𝛼
=

1

𝑟𝑑𝑓−1
𝜕

𝜕𝑟
(𝑟𝛽

𝜕𝑝(𝑟, 𝑡)

𝜕𝑟
), (2.22) 

where 

 
𝜂̃ =

1

𝛤(1 − 𝛼)𝐴𝛼

𝑚

𝑐𝑡µ
 (2.23) 

and 

 
𝐴𝛼 = (

µ𝑐𝑡𝑟𝑤
𝛳+2

𝑚
)

𝛼−1

. (2.24) 

 

2.2.3 Anomalous diffusion model proposed by Raghavan 

 In 2011, Raghavan compared Chang and Yortsos’s study and Metzler’s study. Raghavan 

partially agreed with Metzler’s study. However, he claimed that Metzler’s approaches partially 

correct because Metzler derived the diffusivity equation (Eq. 2.22) by using conventional form of 

Darcy’s law which is 

  
𝑞(𝑥̅, 𝑡) = −

𝑘

µ
𝛻𝑝(𝑥̅, 𝑡). (2.25) 

 In addition, Metzler did not change the convolved form of the continuity equation. 

Therefore, Raghavan asserted that it is not possible to obtain Eq. 2.22 by using conventional Darcy 

law and convolved form of the continuity equation. Either flux term or continuity equation has to 

be modified. Therefore, Raghavan (2011) proposed a new flux term: 

 
𝑞(𝑥̅, 𝑡) = −

𝑘𝛼
µ

𝑑

𝑑𝑡
∫ 𝑑𝑡′

1

(𝑡 − 𝑡′)1−𝛼
 𝛻𝑝(𝑥̅, 𝑡)

𝑡

0

. (2.26) 
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 Then, Raghavan updated the flux term in 2013. 

 
𝑞(𝑥̅, 𝑡) = −

𝑘𝛼
µ

𝜕1−𝛼

𝜕𝑡1−𝛼
[𝛻𝑝(𝑥̅, 𝑡)]. (2.27) 

 Eq. 2.26 and Eq. 2.27 are the same and serve for the same purpose. He just changed the 

notation. Furthermore, Raghavan prefer using Caputo (1967) fractional operator to take the 

Laplace transform of fractional derivative. The Caputo fractional operator is 

 
𝐷𝑡
𝛼𝑥(𝑡)0

𝑐 =
1

𝛤(𝑛 − 𝛼)
∫ 𝑑𝑡′(𝑡 − 𝑡′)𝑛−𝛼−1

𝑑𝑛

𝑑𝑡′𝑛
𝑓(𝑡′)

𝑡

0

  . (2.28) 

 The Laplace transform of Caputo fractional operator is (Liang et al., 2015): 

 
∫ 𝑒−𝑠𝑡 𝐷𝑡

𝛼𝑓(𝑡)𝑑𝑡0
𝑐

∞

0

= 𝑠𝛼𝑓(𝑠) − 𝑠𝛼−1𝑓(0),   (2.29) 

where 0 ≤  𝛼 < 1. Therefore, Laplace transform of Eq. 2.26 with respect to 𝑡 is 

 
𝑞̅(𝑥̅, 𝑠) = −𝑠1−𝛼

𝑘𝛼
µ
𝛻𝑝̅(𝑥̅, 𝑠).   (2.30) 

 It is fact that the Laplace transform of Eq. 2.27 is also equal to Eq. 2.30. Moreover, 

Raghavan derived the diffusivity equation for the flow of a slightly compressible liquid to a well 

in the radial coordinate system by using the conservation equation given by: 

 𝜕𝑞(𝑟, 𝑡)

𝜕𝑟
= 𝜙𝑐𝑡

𝜕𝑝(𝑟, 𝑡)

𝜕𝑡
.   (2.31) 

 Then, taking the Laplace transform of Eq. 2.31 with respect to 𝑡 gives 

 𝜕𝑞̅(𝑟, 𝑠)

𝜕𝑟
= 𝜙𝑐𝑡[𝑠𝑝̅(𝑟, 𝑠) − 𝑝(𝑟, 𝑡 = 0)].   (2.32) 

Next, putting Eq. 2.30 into Eq. 2.32 gives us 

 𝜕

𝜕𝑟
(𝑠1−𝛼

𝑘𝛼
µ

𝜕

𝜕𝑟
𝑝̅(𝑟, 𝑠)) = 𝜙𝑐𝑡[𝑠𝑝̅(𝑟, 𝑠) − 𝑝(𝑟, 𝑡 = 0)]  (2.33) 

or 
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𝑠1−𝛼

𝜕

𝜕𝑟
(
𝑘𝛼
µ

𝜕

𝜕𝑟
𝑝̅(𝑟, 𝑠)) = 𝜙𝑐𝑡[𝑠𝑝̅(𝑟, 𝑠) − 𝑝(𝑟, 𝑡 = 0)].   (2.34) 

 Divide left and right-hand side with 𝑠1−𝛼, so 

 𝜕

𝜕𝑟
(
𝑘𝛼
µ

𝜕

𝜕𝑟
𝑝̅(𝑟, 𝑠)) =

𝜙𝑐𝑡[𝑠𝑝̅(𝑟, 𝑠) − 𝑝(𝑟, 𝑡 = 0)]

𝑠1−𝛼
   (2.35) 

or 

 𝜕

𝜕𝑟
(
𝑘𝛼
µ

𝜕

𝜕𝑟
𝑝̅(𝑟, 𝑠)) = 𝜙𝑐𝑡[𝑠

𝛼𝑝̅(𝑟, 𝑠) − 𝑠𝛼−1𝑝(𝑟, 𝑡 = 0)].   (2.36) 

 Taking the inverse Laplace transform of Eq. 2.36 provides the diffusivity equation for the 

anomalous diffusion model proposed by Raghavan. 

 𝜕

𝜕𝑟
(
𝑘𝛼
µ

𝜕

𝜕𝑟
𝑝(𝑟, 𝑡)) = 𝜙𝑐𝑡

𝜕𝛼𝑝(𝑟, 𝑡)

𝜕𝑡𝛼
  (2.37) 

or 

 
𝛻 (

𝑘𝛼
µ
𝛻𝑝(𝑟, 𝑡)) = 𝜙𝑐𝑡

𝜕𝛼𝑝(𝑟, 𝑡)

𝜕𝑡𝛼
   (2.38) 

or 

 
𝛻[𝜆(𝑟)𝛻𝑝(𝑟, 𝑡)] = 𝜙𝑐𝑡

𝜕𝛼𝑝(𝑟, 𝑡)

𝜕𝑡𝛼
,   (2.39) 

where 𝜆(𝑟) = 𝜆𝛼𝑟
−𝛳 =

𝑘𝛼

µ
𝑟−𝛳. In addition, Raghavan showed that Eq. 2.39 can be written as 

 1

𝑟𝑛−1
𝜕

𝜕𝑟
[𝑟𝑛−1𝜆(𝑟)

𝜕𝑝(𝑟, 𝑡)

𝜕𝑟
] = 𝜙𝑐𝑡

𝜕𝛼𝑝(𝑟, 𝑡)

𝜕𝑡𝛼
.   (2.40) 

 Eq. 2.27 is applicable for subdiffusion. Therefore, Chen and Raghavan (2015) modified 

the flux term in order to solve superdiffusion condition. 

 
𝑞(𝑥, 𝑡) = −

𝑘𝛼,𝛽

µ

𝜕1−𝛼

𝜕𝑡1−𝛼
[
𝜕𝛽

𝜕𝑥𝛽
𝑝(𝑥, 𝑡)] (2.41) 
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or 

 
𝑞(𝑥, 𝑡) = −𝜆𝛼,𝛽

𝜕1−𝛼

𝜕𝑡1−𝛼
[
𝜕𝛽

𝜕𝑥𝛽
𝑝(𝑥, 𝑡)]. (2.42) 

 Chen and Raghavan (2015) presented the subdiffusion flow with a time fractional 

derivative and described the superdiffusion flow with a space fractional derivative. Therefore, they 

defined both time fractional derivative and space fractional derivative with Caputo fractional 

operator 

 𝜕𝛼

𝜕𝑡𝛼
𝑓(𝑡) =

1

𝛤(1 − 𝛼)
∫ 𝑑𝑡′(𝑡 − 𝑡′)−𝛼

𝑑

𝑑𝑡′
𝑓(𝑡′)

𝑡

0

 (2.43) 

and 

 𝜕𝛽

𝜕𝑥𝛽
𝑓(𝑥) =

1

𝛤(1 − 𝛽)
∫ 𝑑𝑥′(𝑥 − 𝑥′)−𝛽

𝑑

𝑑𝑥′
𝑓(𝑥′)

𝑥

0

, (2.44) 

where 0 < 𝛼 < 1 and 0 < 𝛽 < 1. In conclusion, we study with subdiffusion in this thesis, so we 

assume 𝛽 = 1, and α is changed in the given range. 
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CHAPTER 3 

 

SOLUTIONS OF DIFFUSIVITY EQUATIONS FOR PRESSURE TRANSIENT WELL 

TESTS BASED ON FRACTAL AND ANOMALOUS DIFFUSION MODELS 

 

 

 

In this chapter, we present analytical solutions of diffusivity equations for fractal and 

anomalous diffusion models. We describe the initial boundary value problem (IBVP) for each of 

the models. The solution of each model is presented for constant rate, constant pressure, and 

variable rate/variable bottomhole pressure in the Laplace space. Then, the fractal model and 

Metzler anomalous diffusion models are compared when 𝛳 = 0. After that, the effect of fractal 

dimension and topology of the network are investigated for each model. Next, the dimensionless 

pressure response in the reservoir is analyzed. Finally, the influence of fractal dimension 𝑑𝑓 for 

Metzler anomalous model and 𝑛 for Raghavan anomalous model is studied. 

 

3.1 Fractal Model 

 In this part, constant rate, constant bottomhole pressure, and variable rate/variable 

bottomhole pressure are solved for an entirely fractal reservoir by using fractal model. Firstly, the 

initial condition, inner boundary condition, and outer boundary condition are given in 

dimensionless. The diffusivity equation is already given in Chapter 2. Laplace space analytical 

solutions are found in dimensionless coordinate. Finally, the solution is converted from 

dimensionless to dimensional by using scaling property. 
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3.1.1 Constant rate 

In this section, the solution of the diffusivity equation is solved for constant rate condition. 

The diffusivity equation is given in Section 2. 

 𝜕𝑝𝐷
𝜕𝑡𝐷

=
1

𝑟𝐷
𝑑𝑓−1

𝜕

𝜕𝑟𝐷
(𝑟𝐷

𝛽 𝜕𝑝𝐷
𝜕𝑟𝐷

), (2.13) 

where 𝛽 = 𝑑𝑓 −𝛳 − 1. The initial condition is, 

 𝑝𝐷(𝑟𝐷, 𝑡𝐷 = 0) = 0.  (3.1) 

The inner boundary condition for a finite wellbore is 

 (𝑟𝐷
𝛽 𝜕𝑝𝐷
𝜕𝑟𝐷

)
𝑟𝐷=1

= −1.  (3.2) 

The outer boundary condition is 

 lim
𝑟𝐷→∞

𝑝𝐷(𝑟𝐷, 𝑡𝐷) = 0. (3.3) 

Let us start with taking the Laplace transform of the diffusivity equation, and applying the 

initial condition: 

 𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =
1

𝑟𝐷
𝑑𝑓−1

𝑑

𝑑𝑟𝐷
(𝑟𝐷

𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
). (3.4) 

 The above equation can be written as 

 𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =
1

𝑟𝐷
𝛽+𝛳

𝑑

𝑑𝑟𝐷
(𝑟𝐷

𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
). (3.5) 

 Next, the Laplace transform of the inner boundary condition is 

 (𝑟𝐷
𝛽 𝜕𝑝𝐷̅̅ ̅

𝜕𝑟𝐷
)
𝑟𝐷=1

= −
1

𝑠
 , (3.6) 

and the outer boundary condition in the Laplace domain is 

 lim
𝑟𝐷→∞

𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (3.7) 
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 Before, applying the outer and inner boundary conditions, Eq. 3.4 is rearranged to find a 

general solution, 

 𝑟𝐷
2
𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 + 𝛽𝑟𝐷

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
− 𝑟𝐷

𝛳+2𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (3.8) 

The details of this section are given in Appendix A. The general solution of Eq. 3.8 is 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
{𝐴𝐼ν [

2√𝑠

𝛳 + 2
𝑟𝐷

𝛳+2
2 ] + 𝐵𝐾ν [

2√𝑠

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]}, (3.9) 

where ν =
1−𝛽

𝛳+2
. Next, the inner and outer boundary conditions are applied to find 𝐴 and 𝐵. While 

A is equal to zero because of the infinite-acting outer boundary condition given by Eq. 3.7, B is 

then determined by applying the inner boundary condition given by Eq. 3.6 as 

 
𝐵 =

1

𝑠√𝑠𝐾ν−1 (
2√𝑠
𝛳 + 2)

. 
(3.10) 

 Consequently, the result is 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
𝐾ν [

2√𝑠
𝛳 + 2 𝑟𝐷

𝛳+2
2 ]

𝑠√𝑠  𝐾ν−1 [
2√𝑠
𝛳 + 2

]

, (3.11) 

or 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

1−𝛽
2
 
𝐾ν [

2√𝑠
𝛳 + 2 𝑟𝐷

𝛳+2
2 ]

𝑠√𝑠  𝐾ν−1 [
2√𝑠
𝛳 + 2

]

. (3.12) 

 Next, pressure change, Δ𝑝, is found by using Eqs. 2.11 and 2.12 in the SI unit. 

 
𝑡𝐷 =

𝑘(𝑟𝑤)𝑡

𝜙(𝑟𝑤)𝑐𝑡µ 𝑟𝑤2
 (2.11) 

and 
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𝑝𝐷 =

𝑘(𝑟𝑤)ℎ

2π𝑞𝐵µ
(𝑝𝑖 − 𝑝) =

𝑘(𝑟𝑤)ℎ

2π𝑞𝐵µ
Δ𝑝. (2.12) 

 Eq. 2.11 can be written as 

 𝑡𝐷 = 𝜂
∗𝑡, (3.13) 

where 

 
𝜂∗ =

𝑘(𝑟𝑤)

𝜙(𝑟𝑤)𝑐𝑡µ𝑟𝑤2
. (3.14) 

 Then, Eq. 2.12 in the Laplace space is given by, 

 
𝑝𝐷̿̿ ̿(𝑠) =

𝑘ℎ

2π𝑞𝐵µ
Δ𝑝̿̿̿̿ (𝑟, 𝑠), (3.15) 

where 𝑝𝐷̿̿ ̿(𝑠) is the Laplace transform of 𝑝𝐷(𝑡𝐷) with respect to time 𝑡, and Δ𝑝̿̿̿̿ (𝑠) represents the 

Laplace transform of Δ𝑝(𝑡) with respect to 𝑡. Applying scaling property helps us to find 𝑝𝐷̿̿ ̿(𝑠), 

 

𝑝𝐷̿̿ ̿(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠√
𝑠
𝜂∗   𝐾ν−1

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

. (3.16) 

 The details of scaling property operation are given in Appendix B. As a result, Δ𝑝̿̿̿̿ (𝑠) is 

found as: 

 

Δ𝑝̿̿̿̿ (𝑟, 𝑠) =
2𝜋𝑞𝐵µ

𝑘ℎ
𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠√
𝑠
𝜂∗   𝐾ν−1

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

. (3.17) 
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3.1.2 Constant bottomhole pressure 

In this section, the solution of the diffusivity equation of the fractal model is solved for 

constant bottomhole pressure condition. The details of the derivation are given in Appendix C. 

The diffusivity equation is given Eq. 2.13, in Section 2. Moreover, the same initial and outer 

boundary condition is used for this section. On the other hand, the inner boundary condition is 

changed as: 

 𝑝𝐷(𝑟𝐷 = 1, 𝑡𝐷) = 1.  (3.18) 

The Laplace transform of inner boundary condition is 

 𝑝𝐷̅̅ ̅(𝑟𝐷 = 1, 𝑠) =
1

𝑠
.  (3.19) 

Note that dimensionless time and dimensionless radius are defined in Eqs. 2.10 and 2.11. 

On the other hand, dimensionless pressure is defined differently for constant bottomhole pressure: 

 
𝑝𝐷 =

𝑝𝑖 − 𝑝

𝑝𝑖 − 𝑝𝑤𝑓
=
Δ𝑝(𝑟, 𝑡)

Δ𝑝𝑤𝑓
. (3.20) 

After taking the Laplace transform of the diffusivity equation and applying derivation, we 

obtain the general solution which is the same as the constant rate solution. 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
{𝐴𝐼ν [

2√𝑠

𝛳 + 2
𝑟𝐷

𝛳+2
2 ] + 𝐵𝐾ν [

2√𝑠

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]}. (3.9) 

As we consider an infinite-acting reservoir, the outer boundary condition is the same with 

the constant rate solution, which is given by Eq. 3.7. Thus, 𝐴 must be zero due to the outer 

boundary condition given by Eq. 3.7, but 𝐵 should not be zero. As a result, the general solution 

reduces to 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
𝐵𝐾ν [

2√𝑠

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]. (3.21) 

The inner boundary condition in the Laplace space is applied to Eq. 3.21 to find B, 
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𝐵 =

1

𝑠𝐾ν [
2√𝑠
𝛳 + 2

]

.. 
(3.22) 

 Consequently, the dimensionless pressure in the Laplace domain is 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
𝐾ν [

2√𝑠
𝛳 + 2 𝑟𝐷

𝛳+2
2 ]

𝑠𝐾ν [
2√𝑠
𝛳 + 2

]

 (3.23) 

or 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

1−𝛽
2
 
𝐾ν [

2√𝑠
𝛳 + 2 𝑟𝐷

𝛳+2
2 ]

𝑠𝐾ν [
2√𝑠
𝛳 + 2

]

.. (3.24) 

 Next, the pressure change, Δ𝑝, is found by using Eqs. 3.13 and 3.14. The details of 

derivation are given in Appendix D. Taking the Laplace transform of Eq. 3.20 yields 

 
𝑝𝐷̿̿ ̿(𝑠) =

1

Δ𝑝𝑤𝑓
Δ𝑝̿̿̿̿ (𝑟, 𝑠). (3.25) 

Applying the scaling property helps us find 

 𝑝𝐷̿̿ ̿(𝑠) = ℒ𝑡[𝑝𝐷(𝜂
∗𝑡)] = 𝑟𝐷

𝛳+2
2
ν 

𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2

]
 
 
 

.. (3.26) 

 Finally, pressure change in the Laplace space with respect to 𝑡 is 
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 Δ𝑝̿̿̿̿ (𝑠) =
Δ𝑝𝑤𝑓
𝑠

𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2 𝑟𝐷

𝛳+2
2

]
 
 
 

𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

. (3.27) 

 

3.1.3 Variable rate/Variable bottomhole pressure 

In this section, we present production at a specified variable rate and bottomhole pressure. 

Up to this section, we found the constant rate and bottomhole pressure solution for fractal model. 

Now, we use these solutions in this section. Firstly, we explain the solution of variable rate case. 

Pressure change is explained by using a superposition equation assuming a piecewise step rate 

function in each time interval. 

 𝑝𝑖 − 𝑝(𝑟, 𝑡) =∑(𝑞𝑗 − 𝑞𝑗−1)∆𝑝𝑢(𝑟, 𝑡 − 𝑡𝑗−1)

𝑁

𝑗=1

, (3.28) 

where N means the total number of flow rate steps. Note that 𝑞0 = 0 and 𝑡0 = 0. Pressure is 

described as 

 𝑝(𝑟, 𝑡)  = {
𝑝𝑤(𝑟, 𝑡) 𝑓𝑜𝑟 𝑟 = 𝑟𝑤 ,
𝑝𝑜𝑤(𝑟, 𝑡) 𝑓𝑜𝑟 𝑟𝑤 < 𝑟 < 𝑟𝑒,

 (3.29) 

where 𝑝𝑤 and 𝑝𝑜𝑤 are the pressure response at the well and inside the reservoir, respectively. Next, 

 ∆𝑝𝑢(𝑟, 𝑡) = {
∆𝑝𝑤𝑢(𝑟, 𝑡) 𝑓𝑜𝑟 𝑟 = 𝑟𝑤 ,

∆𝑝𝑜𝑤𝑢(𝑟, 𝑡) 𝑓𝑜𝑟 𝑟𝑤 < 𝑟 < 𝑟𝑒,
 (3.30) 

where ∆𝑝𝑤𝑢(𝑟, 𝑡) and ∆𝑝𝑜𝑤𝑢(𝑟, 𝑡) is the unite rate pressure change solution at 𝑟 is at the well, and 

outside of the well, respectively.  We previously presented the constant rate solution Eq. 3.17 in 

Section 3.1.1. When 𝑞𝐵 = 1, the solutions provide the unit rate pressure solutions (∆𝑝𝑤𝑢(𝑟, 𝑡)  and 
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∆𝑝𝑜𝑤𝑢(𝑟, 𝑡)). Furthermore, to take the inverse Laplace transform, we use Stehfest algorithm 

(Stehfest, 1970) with 𝑁𝑆𝑡𝑒𝑓 = 12. 

 Secondly, we show how to find specified variable bottomhole pressure. In this case, the 

pressure change is described by using superposition equation considering piecewise step 

bottomhole pressure function in each time interval. 

 𝑝𝑖 − 𝑝(𝑟, 𝑡) =∑(∆𝑝𝑤𝑓,𝑗 − ∆𝑝𝑤𝑓,𝑗−1)∆𝑝𝑐𝑝,𝑢(𝑟, 𝑡 − 𝑡𝑗−1)

𝑁

𝑗=1

, (3.31) 

where N means the total number of bottomhole pressure change steps. Note that 𝑞0 = 0 and       

𝑡0 = 0. Pressure is described as 

 𝑝(𝑟, 𝑡)  = {
𝑝𝑤(𝑟, 𝑡) 𝑓𝑜𝑟 𝑟 = 𝑟𝑤
𝑝𝑜𝑤(𝑟, 𝑡) 𝑓𝑜𝑟 𝑟𝑤 < 𝑟 < 𝑟𝑒

 (3.32) 

and 

 ∆𝑝𝑐𝑝,𝑢(𝑟, 𝑡) = {
∆𝑝𝑐𝑝,𝑤𝑢(𝑟, 𝑡) 𝑓𝑜𝑟 𝑟 = 𝑟𝑤 ,

∆𝑝𝑐𝑝,𝑜𝑤𝑢(𝑟, 𝑡) 𝑓𝑜𝑟 𝑟𝑤 < 𝑟 < 𝑟𝑒,
 (3.33) 

where ∆𝑝𝑐𝑝,𝑤𝑢(𝑟, 𝑡) and ∆𝑝𝑐𝑝,𝑜𝑤𝑢(𝑟, 𝑡) symbolize the unit pressure change solutions at r is the 

well and inside the reservoir, respectively. We previously presented the constant bottomhole 

pressure solution Eq. 3.27 in Section 3.1.2. if ∆𝑝𝑤𝑓 = 1, then the unit pressure change solutions 

(∆𝑝𝑐𝑝,𝑤𝑢(𝑟, 𝑡)  and ∆𝑝𝑐𝑝,𝑜𝑤𝑢(𝑟, 𝑡) ) are found. 

 

3.2 Anomalous Models 

 In this part, constant rate, constant bottomhole pressure, and variable rate/variable 

bottomhole pressure are solved for anomalous models. As mentioned before, there are two 

anomalous models. The first one is proposed by Metzler et al. (1994), and the second one is 

introduced by Raghavan (2011). In this part, it is assumed that subdiffusion exists, and space 
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fractional exponent (𝛽) is equal to 1. Firstly, we derive the analytical solution of Metzler 

anomalous model for dimensionless pressure in Laplace space. Then, dimensionless pressure is 

converted to pressure change in Laplace space by using scaling property. Next, we present 

Raghavan’s anomalous model for pressure change solution in the SI unit. After, we convert the 

solution from pressure change to dimensionless pressure in the Laplace domain. In addition, the 

initial condition, inner boundary condition, and outer boundary condition are given separately for 

both Metzler anomalous model and Raghavan anomalous model. Each solution is presented 

individually in Laplace space.  

 

3.2.1 Constant rate for Metzler anomalous model 

In this part, the solution of diffusivity equation for Metzler anomalous model is solved for 

constant rate condition. Dimensionless variables are defined in Eqs. 2.10, 2.11 and 2.12. The 

details of derivation are expressed in Appendix E. Previously, the diffusivity equation is already 

given in Section 2: 

 𝜕𝛼𝑝𝐷
𝜕𝑡𝐷

𝛼 =
1

𝑟𝐷
𝑑𝑓−1

𝜕

𝜕𝑟𝐷
(𝑟𝐷

𝛽 𝜕𝑝𝐷
𝜕𝑟𝐷

), (2.21) 

where 𝛼 =
2

2+𝛳
. The same initial condition, inner and outer boundary conditions (Eqs. 3.1, 3.2 and 

3.3, respectively) are used in this section. Initially, we take the Laplace transform of the diffusivity 

equation. 

 𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) − 𝑠
𝛼−1𝑝𝐷(𝑟𝐷, 𝑡𝐷 = 0) =

1

𝑟𝐷
𝑑𝑓−1

𝑑

𝑑𝑟𝐷
(𝑟𝐷

𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
). (3.34) 

After applying the initial condition, and the derivation part, Eq. 3.34 is equal to 
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1

𝑟𝐷
𝛳

𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 +

𝛽

𝑟𝐷
𝛳+1

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
− 𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (3.35) 

 The general solution of above equation is found as, 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
{𝐴𝐼ν [

2√𝑠𝛼

𝛳 + 2
𝑟𝐷

𝛳+2
2 ] + 𝐵𝐾ν [

2√𝑠𝛼

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]}, (3.36) 

where ν =
1−𝛽

𝛳+2
. As you can see the order (ν) is the same with fractal model. After applying outer 

and inner boundary conditions, respectively, we obtain that while 𝐴 must be zero, 𝐵 is equal to 

 
𝐵 =

1

𝑠√𝑠𝛼𝐾ν−1 [
2√𝑠𝛼

𝛳 + 2
]

. 
(3.37) 

 Consequently, the dimensionless pressure is found as 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 

𝐾ν [
2√𝑠𝛼

𝛳 + 2𝑟𝐷

𝛳+2
2 ]

𝑠√𝑠𝛼   𝐾ν−1 [
2√𝑠𝛼

𝛳 + 2
]

. (3.38) 

 Next, scaling property is used to find pressure change in the Laplace space. The derivation 

process is given in Appendix F. Eq. 3.15 is used to find pressure change (∆𝑝(𝑟, 𝑠)). As you know 

𝑝𝐷̿̿ ̿(𝑠) is the Laplace transform of 𝑝𝐷(𝑡𝐷) with respect to time 𝑡, and 𝑝𝐷̿̿ ̿(𝑠) can be described as 

 𝑝𝐷̿̿ ̿(𝑠) = ℒ𝑡[𝑝𝐷(𝜂
∗𝑡)] =

1

𝜂∗
𝑝𝐷̅̅ ̅ (

𝑠

𝜂∗
). (3.39) 

So, 

 𝑝𝐷̿̿ ̿(𝑠) = 𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠√
𝑠𝛼

𝜂∗   𝐾ν−1

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

. (3.40) 
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As a consequence, the pressure change is equal to 

 Δ𝑝̿̿̿̿ (𝑟𝐷, 𝑠) =
2𝜋𝑞𝐵µ

𝑘ℎ
𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠√
𝑠𝛼

𝜂∗   𝐾ν−1

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

. (3.41) 

 

3.2.2 Constant bottomhole pressure for Metzler anomalous model 

In this part, the solution of the diffusivity equation for Metzler anomalous model is solved 

for constant bottomhole pressure condition. The details of derivation are expressed in Appendix 

G. The diffusivity equation is already given in Eq. 2.21, in Section 2. Furthermore, the same initial 

and outer boundary conditions are utilized to calculate the analytical solution of Metzler 

anomalous model for constant bottomhole pressure conditions. However, we change the inner 

boundary condition. It is given in Section 3.1.2: 

 𝑝𝐷(𝑟𝐷 = 1, 𝑡𝐷) = 1.  (3.18) 

The Laplace transform of the inner boundary condition is also given in Section 3.1.2, 

 𝑝𝐷̅̅ ̅(𝑟𝐷 = 1, 𝑠) =
1

𝑠
.  (3.19) 

It is note that dimensionless pressure for constant bottomhole pressure is defined in            

Eq. 3.20. Then, the Laplace transform of the diffusivity equation of Metzler anomalous model is 

taken, and the general solution is given previously, 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
{𝐴𝐼ν [

2√𝑠𝛼

𝛳 + 2
𝑟𝐷

𝛳+2
2 ] + 𝐵𝐾ν [

2√𝑠𝛼

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]}, (3.36) 
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where ν =
1−𝛽

𝛳+2
. It is clearly seen that the same general solution and order are obtained in Metzler 

anomalous model for constant rate condition. Next, the outer and inner boundary conditions are 

applied to general solution, respectively. As a result of calculation process, it is found that 𝐴 is 

zero, and 𝐵 is 

 
𝐵 =

1

𝑠𝐾ν [
2√𝑠𝛼

𝛳 + 2
]

. 
(3.42) 

Consequently, Eq. 3.36 develops into 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
𝐾ν [

2√𝑠𝛼

𝛳 + 2𝑟𝐷

𝛳+2
2 ]

𝑠𝐾ν [
2√𝑠𝛼

𝛳 + 2
]

. (3.43) 

 Next, we find pressure change (∆𝑝(𝑟, 𝑠)) by applying scaling rule. The details of solution 

procedure are given in Appendix H. 

 Δ𝑝̿̿̿̿ (𝑟𝐷, 𝑠) =
Δ𝑝𝑤𝑓
𝑠

𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2𝑟𝐷

𝛳+2
2

]
 
 
 

𝐾ν

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

. (3.44) 

 

3.2.3 Constant rate for Raghavan anomalous model 

In this part, the analytical solution of Raghavan anomalous model is studied for constant 

rate condition. The main purpose of this part is to find pressure change in Laplace space. Therefore, 

we use different initial condition, inner and outer boundary conditions. The details of derivation 
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are explained in Appendix I. As you know, the diffusivity equation for Raghavan anomalous model 

is 

 
1

𝑟𝑛−1
𝜕

𝜕𝑟
[𝑟𝑛−1𝜆(𝑟)

𝜕𝑝(𝑟, 𝑡)

𝜕𝑟
] = 𝜙𝑐𝑡

𝜕𝛼𝑝(𝑟, 𝑡)

𝜕𝑡𝛼
, (2.40) 

where 𝜆(𝑟) = 𝜆𝛼𝑟
−𝛳 =

𝑘𝛼

µ
𝑟−𝛳. The above equation can be rewritten as for pressure change 

 
1

𝑟𝑛−1
𝜕

𝜕𝑟
(𝑟𝑛−1−𝜃𝜆𝛼

𝜕Δ𝑝

𝜕𝑟
) = 𝜙𝑐𝑡

𝜕𝛼Δ𝑝(𝑟, 𝑡)

𝜕𝑡𝛼
. (3.45) 

The initial condition is 

 Δ𝑝(𝑟, 𝑡 = 0) = 0. (3.46) 

The outer boundary condition is 

 lim
𝑟→∞

Δ𝑝(𝑟, 𝑡) = 0, (3.47) 

and the inner boundary condition for a finite wellbore case 

 lim
𝑟→𝑟𝑤

(𝑟𝑛−1−𝜃
𝜕1−𝛼

𝜕𝑡1−𝛼
𝜕Δ𝑝

𝜕𝑟
) = −

𝑞𝑠𝑐𝐵

𝛼𝑛𝜆𝛼ℎ
. (3.48) 

Next, Laplace transform of diffusivity equation with respect to 𝑡 is found, and initial 

boundary condition is applied to get the general solution, 

 
1

𝑟𝑛−1
𝜕

𝜕𝑟
(𝑟𝑛−1−𝜃

𝜕Δ𝑝̅̅̅̅

𝜕𝑟
) =

𝜙𝑐𝑡
𝜆𝛼

𝑠𝛼Δ𝑝̅̅̅̅ (𝑟, 𝑠). (3.49) 

Note that 𝜆𝛼 is constant. To simply the equation, let us define new variables, 

 𝛽 = 𝑛 − 1 − 𝜃 (3.50) 

and 

 𝜂𝑖 =
𝜆𝛼
𝜙𝑐𝑡

. (3.51) 

So, the diffusivity equation develops into 
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1

𝑟𝛽+𝜃
𝑑

𝑑𝑟
(𝑟𝛽

𝑑Δ𝑝̅̅̅̅

𝑑𝑟
) =

1

𝜂𝑖
𝑠𝛼Δ𝑝̅̅̅̅ (𝑟, 𝑠). (3.52) 

The general solution of the above equation is 

 Δ𝑝̅̅̅̅ (𝑟, 𝑠) = 𝑟−
𝛳+2
2
ν 

{
 

 

𝐶𝐼ν′

[
 
 
 2√

𝑠𝛼

𝜂𝑖
𝛳 + 2

𝑟
𝛳+2
2

]
 
 
 

+ 𝐷𝐾ν′

[
 
 
 2√

𝑠𝛼

𝜂𝑖
𝛳 + 2

𝑟
𝛳+2
2

]
 
 
 

}
 

 

, (3.53) 

where 𝐶 and 𝐷 are the arbitrary constants to be determine from the outer and inner boundary 

conditions. Note that 

 ν′ =
𝑛

𝑑𝑤
− 1 =

𝛽 − 1

𝛳 + 2

 

. (3.54) 

 Observe that, the order of Bessel 𝐼 and Bessel 𝐾 function is different than Chang and 

Yortsos and Metzler’s solution, 

 ν = −ν′ . (3.55) 

 The negative reflection rule says that 𝐾ν(𝑧) =  K−ν(𝑧), so 𝐾ν(𝑧) =  Kν′(𝑧). Hence, there 

is no difference between the orders. After applying outer and inner boundary conditions, it is found 

that when 𝐶 = 0  

 

𝐷 =
𝑞𝑠𝑐𝐵

𝛼𝑛𝜆𝛼ℎ𝑠
2−
𝛼
2

√𝜂𝑖

𝑟𝑤

𝑑𝑤(𝜈′+1)
2 𝐾𝜈′+1 [2𝑠

𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤
2 )

1
2

]

  
 

, 

(3.56) 

where 𝛼𝑛 =
2𝜋

𝑛
2

𝛤(
𝑛

2
)
 and 𝑛 = 2. In conclusion, the diffusivity equation for Raghavan’s anomalous 

model in the Laplace space is 
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Δ𝑝̅̅̅̅ (𝑟, 𝑠) =

𝑞𝑠𝑐𝐵

𝛼𝑛𝜆𝛼ℎ𝑠
2−
𝛼
2

√𝜂𝑖

𝑟𝑤

𝑑𝑤(𝜈′+1)
2 𝐾𝜈′+1 [2𝑠

𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

𝑟−
𝑑𝑤
2
ν′ 𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

  

. 
(3.57) 

 After, we find the dimensionless pressure. The dimensionless pressure is introduced by 

Raghavan (2011), 

 𝑝𝐷(𝑟𝐷, 𝑡𝐷) =
𝛼𝑛𝑘𝛼ℎ

𝑞𝑠𝑐𝛼𝑝µ
Δ𝑝(𝑟, 𝑡), (3.58) 

where  

 𝛼𝑝 = (
1

𝜂𝑖𝑑𝑤2
)

1
𝛼
−1

𝑟𝑤
𝑑𝑤(

1
𝛼
−𝜉)
, (3.59) 

where 𝜉 =
𝑛

𝑑𝑤
. Moreover, dimensionless time is expressed as 

 𝑡𝐷 =
𝜂𝑖
𝑟𝑑𝑤

𝑡𝛼. (3.60) 

Taking Laplace transform of Eq. 3.58 supplies to  

 𝑝𝐷̅̅ ̅ =
𝛼𝑛𝑘𝛼ℎ

𝑞𝑠𝑐𝛼𝑝µ𝐵
Δ𝑝̅̅̅̅ (𝑟, 𝑠) (3.61) 

or 

 Δ𝑝̅̅̅̅ (𝑟, 𝑠) =
𝑞𝑠𝑐𝛼𝑝µ𝐵

𝛼𝑛𝑘𝛼ℎ
𝑝𝐷̅̅ ̅, (3.62) 

where 𝑝𝐷̅̅ ̅(𝑟, 𝑠) is the Laplace transform of 𝑝𝐷(𝑟𝐷, 𝑡𝐷) with respect to 𝑡. Equalizing Eq. 3.57 and 

Eq. 3.62 develops into 
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𝑞𝑠𝑐𝛼𝑝µ𝐵

𝛼𝑛𝑘𝛼ℎ
𝑝𝐷̅̅ ̅

=
𝑞𝑠𝑐𝐵

𝛼𝑛𝜆𝛼ℎ𝑠
2−
𝛼
2

√𝜂𝑖

𝑟𝑤

𝑑𝑤(𝜈′+1)
2 𝐾𝜈′+1 [2𝑠

𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

𝑟−
𝑑𝑤
2
ν′ 𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

 

. 
(3.63) 

Consequently, dimensionless pressure is equal to 

 

𝑝𝐷̅̅ ̅(𝑟, 𝑠) =
1

(
1

𝜂𝑖𝑑𝑤2
)

1
𝛼
−1

𝑟𝑤
𝑑𝑤(

1
𝛼
−𝜉)

1

𝑠2−
𝛼
2

√𝜂𝑖

𝑟𝑤

𝑑𝑤(𝜈′+1)
2 𝐾𝜈′+1 [2𝑠

𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

𝑟−
𝑑𝑤
2
ν′

 

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]. (3.64) 

 

3.2.4 Constant bottomhole pressure for Raghavan anomalous model 

In this part, we present the analytical solution of Raghavan anomalous model for constant 

bottomhole pressure condition. The details of derivation are given in Appendix J. Initially, the 

same PDE, initial condition and outer boundary condition (Eqs. 3.45, 3.46 and 3.47) are used. The 

new inner boundary condition is introduced as 

 Δ𝑝(𝑟 = 𝑟𝑤 , 𝑡) = Δ𝑝𝑤 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (3.65) 

 The Laplace transform of the inner boundary condition is 

 Δ𝑝̅̅̅̅ (𝑟 = 𝑟𝑤 , 𝑠) =
Δ𝑝𝑤
𝑠
  . (3.66) 

After taking the Laplace transform of the diffusivity equation, and applying the outer and 

inner boundary conditions, respectively, we obtain that the general solution is 
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 Δ𝑝̅̅̅̅ (𝑟 = 𝑟𝑤 , 𝑠) =
Δ𝑝𝑤
𝑠

𝑟−
𝑑𝑤
2
ν′ 

𝑟𝑤
−
𝑑𝑤
2
ν′ 

𝐾ν′ (2𝑠
𝛾
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
)

𝐾ν′ (2𝑠
𝛾
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

)

. (3.67) 

 

3.2.5 Variable rate/Variable bottomhole pressure for anomalous models 

In this section, the analytical solution of a specified variable rate and bottomhole pressure 

is presented. The constant rate and the constant bottomhole pressure solution for Metzler 

anomalous model and Raghavan anomalous model are expressed in previous sections. Let us start 

with variable rate case. Pressure change is explained by using superposition equation assuming 

piecewise step rate function in each time interval. 

 𝑝𝑖 − 𝑝(𝑟, 𝑡) =∑(𝑞𝑗 − 𝑞𝑗−1)∆𝑝𝑢(𝑟, 𝑡 − 𝑡𝑗−1)

𝑁

𝑗=1

, (3.68) 

where N means the total number of flow rate steps. Note that 𝑞0 = 0 and 𝑡0 = 0. Pressure is 

described as 

 𝑝(𝑟, 𝑡)  = {
𝑝𝑤(𝑟, 𝑡) 𝑓𝑜𝑟 𝑟 = 𝑟𝑤 ,
𝑝𝑜𝑤(𝑟, 𝑡) 𝑓𝑜𝑟 𝑟𝑤 < 𝑟 < 𝑟𝑒,

 (3.69) 

where 𝑝𝑤 and 𝑝𝑜𝑤 are the pressure response at the well and inside the reservoir, respectively. Next, 

 ∆𝑝𝑢(𝑟, 𝑡)  = {
∆𝑝𝑤𝑢(𝑟, 𝑡) 𝑓𝑜𝑟 𝑟 = 𝑟𝑤 ,
∆𝑝𝑜𝑤𝑢(𝑟, 𝑡) 𝑓𝑜𝑟 𝑟𝑤 < 𝑟 < 𝑟𝑒,

 (3.70) 

where ∆𝑝𝑤𝑢(𝑟, 𝑡) and ∆𝑝𝑜𝑤𝑢(𝑟, 𝑡) is the unit rate pressure change solution at 𝑟 is at the well, and 

outside of the well, respectively. This part is also shown in Section 3.1.3.  However, the constant 

rate solution for Metzler anomalous model (Eq. 3.41) and Raghavan anomalous model (3.57) are 

different than fractal model. Therefore, when 𝑞𝐵 = 1, the solutions provide the different unit rate 
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pressure solutions (∆𝑝𝑤𝑢(𝑟, 𝑡)  and ∆𝑝𝑜𝑤𝑢(𝑟, 𝑡)). In addition, we use Stehfest algorithm (Stehfest, 

1970) with 𝑁𝑆𝑡𝑒𝑓 = 12 to take the inverse Laplace transform. 

 Next, the specified variable bottomhole pressure solution is found. In this case, the pressure 

change is described by using superposition equation considering piecewise step bottomhole 

pressure function in each time interval. 

 𝑝𝑖 − 𝑝(𝑟, 𝑡) =∑(∆𝑝𝑤𝑓,𝑗 − ∆𝑝𝑤𝑓,𝑗−1)∆𝑝𝑐𝑝,𝑢(𝑟, 𝑡 − 𝑡𝑗−1)

𝑁

𝑗=1

, (3.71) 

where N means the total number of bottomhole pressure change steps. Note that 𝑞0 = 0 and 𝑡0 =

0. Pressure is described as 

 𝑝(𝑟, 𝑡)  = {
𝑝𝑤(𝑟, 𝑡) 𝑓𝑜𝑟 𝑟 = 𝑟𝑤
𝑝𝑜𝑤(𝑟, 𝑡) 𝑓𝑜𝑟 𝑟𝑤 < 𝑟 < 𝑟𝑒

 (3.72) 

and 

 ∆𝑝𝑐𝑝,𝑢(𝑟, 𝑡) = {
∆𝑝𝑐𝑝,𝑤𝑢(𝑟, 𝑡) 𝑓𝑜𝑟 𝑟 = 𝑟𝑤 ,

∆𝑝𝑐𝑝,𝑜𝑤𝑢(𝑟, 𝑡) 𝑓𝑜𝑟 𝑟𝑤 < 𝑟 < 𝑟𝑒,
 (3.73) 

where ∆𝑝𝑐𝑝,𝑤𝑢(𝑟, 𝑡) and ∆𝑝𝑐𝑝,𝑜𝑤𝑢(𝑟, 𝑡) symbolize the unit pressure change solutions at r is the 

well and inside the reservoir, respectively. If ∆𝑝𝑤𝑓 = 1, then the unit pressure change solutions 

(∆𝑝𝑐𝑝,𝑤𝑢(𝑟, 𝑡) and ∆𝑝𝑐𝑝,𝑜𝑤𝑢(𝑟, 𝑡)) are found. The unit pressure change solution can be calculated 

by using Eq. 3.44 for Metzler anomalous model and Eq. 3.67 for Raghavan anomalous model. 

 

3.3 Verification for Fractal and Anomalous Models 

In this part, we present the relationship between fractal and anomalous models. In other 

words, we prove that fractal model is a special case of anomalous models. Furthermore, we show 

the effect of the topology of the network and fractal dimension for each model. Then, the pressure 
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responses with respect to different distance are demonstrated for each model and compared 

between the models. 

 

3.3.1 Relationship between fractal and anomalous model 

In this part, we validate that the fractal model is a special case for Metzler anomalous 

model. Previously, the governing equation is given for both fractal model and Metzler anomalous 

model in Section 2. The PDE of fractal model is 

 𝜕𝑝𝐷
𝜕𝑡𝐷

=
1

𝑟𝐷
𝑑𝑓−1

𝜕

𝜕𝑟𝐷
(𝑟𝐷

𝛽 𝜕𝑝𝐷
𝜕𝑟𝐷

), (2.13) 

and Metzler anomalous model diffusivity equation is 

 𝜕𝛼𝑝𝐷
𝜕𝑡𝐷

𝛼 =
1

𝑟𝐷
𝑑𝑓−1

𝜕

𝜕𝑟𝐷
(𝑟𝐷

𝛽 𝜕𝑝𝐷
𝜕𝑟𝐷

). (2.21) 

 Camacho (2008) claims that if 𝛼 = 1, the diffusivity equation for Metzler model is the 

same as fractal model. Camacho (2008) studied constant bottomhole pressure condition. In this 

section, we firstly look at the constant rate condition. Then, we examine the constant bottomhole 

pressure case. Initially, we draw a graph for 𝛼 = 1 and 𝛳 = 0 for different fractal dimension at 

the wellbore (𝑟 = 𝑟𝑤) and in the reservoir (𝑟 = 100𝑟𝑤)  to show the behavior of the models. We 

use Stehfest algorithm (Stehfest, 1970) with 𝑁𝑆𝑡𝑒𝑓 = 12 to take the inverse Laplace transform of 

dimensionless pressure. 
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Figure 3.1 Fractal Model vs Metzler Anomalous Model dimensionless pressure responses for  

𝛼 = 1 and at 𝑟 = 𝑟𝑤 case. 
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Figure 3.2 Fractal Model vs Metzler Anomalous Model dimensionless pressure responses for  

𝛼 = 1 and at 𝑟 = 100𝑟𝑤 case. 

Figures 3.1 and 3.2 are derived by using constant rate solution. It is clearly seen that 

although the fractal dimension and dimensionless radius change, the dimensionless pressure 

response of the fractal model is the same as Metzler anomalous model. Furthermore, the fractal 

dimension affects the dimensionless pressure. As the fractal dimension approaches 2, the 

dimensionless pressure value decreases significantly. Dimensionless radius also influences the 

dimensionless pressure. As dimensionless radius increases, the dimensionless pressure reduces. In 

addition, we check the derivative response of for both methods at the wellbore (𝑟 = 𝑟𝑤) and in the 

reservoir (𝑟 = 100𝑟𝑤). 
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Figure 3.3 Fractal Model vs Metzler Anomalous Model dimensionless pressure derivative 

responses for 𝛼 = 1 and at 𝑟 = 𝑟𝑤 case. 
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Figure 3.4 Fractal Model vs Metzler Anomalous Model dimensionless pressure derivative 

responses for 𝛼 = 1 and at 𝑟 = 100𝑟𝑤 case. 

Figures 3.3 and 3.4 are derived by using constant rate solution. It is obvious that there is a 

perfect match between the fractal and Metzler anomalous model derivative responses for constant 

rate case. Hence, we confirm Camacho’s (2008) assertion that the fractal model is the special case 

of Metzler anomalous model for constant rate condition. Furthermore, dimensionless pressure 

responses decrease when the fractal dimensions increase. Dimensionless pressure responses at     

𝑟 = 100𝑟𝑤 are smaller than dimensionless pressure in the wellbore.  

Next, we look at the dimensionless pressure and dimensionless pressure derivative 

behaviors for both the fractal model and Metzler anomalous model at the constant bottomhole 
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pressure case when  𝑟 = 100𝑟𝑤. Note that we do not analyze for 𝑟 = 𝑟𝑤 because dimensionless 

pressure response is equal to 1 at the wellbore. 

 

Figure 3.5 Fractal Model vs Metzler Anomalous Model dimensionless pressure responses at the 

constant bottomhole pressure condition for 𝛼 = 1 and at 𝑟 = 100𝑟𝑤 case. 
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Figure 3.6 Fractal Model vs Metzler Anomalous Model dimensionless pressure derivative 

responses at the constant bottomhole pressure condition for 𝛼 = 1 and at 𝑟 = 100𝑟𝑤 case. 

 Figures 3.5 and 3.6 refer constant bottomhole pressure condition. As the fractal dimension 

changes, both the fractal model and Metzler anomalous model generate the same dimensionless 

pressure and dimensionless pressure derivative. To conclude, fractal model is the special case of 

Metzler anomalous model. 
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3.3.2 Effect of 𝑑𝑓 for fractal model and Metzler anomalous model 

In this section, we observe effect of fractal dimension 𝑑𝑓 for fractal model and Metzler 

anomalous model. We cannot include Raghavan anomalous model because that model uses 𝑛 

(integer number) instead of 𝑑𝑓 (noninteger number). We study on three different fractal dimensions 

(1.50, 1.75 and 2.00), and two different topologies of the network (𝛳 = 0.25 𝑎𝑛𝑑 0.50). Stehfest 

algorithm (Stehfest, 1970) with 𝑁𝑆𝑡𝑒𝑓 = 12 is used to take the inverse Laplace transform. Firstly, 

dimensionless pressure responses are observed, and then, dimensionless pressure derivative 

responses are investigated with respect to dimensionless time. 

 

Figure 3.7 Fractal Model vs Metzler Anomalous Model dimensionless pressure responses at the 

wellbore for constant rate solution when 𝛳 = 0.25. 
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Figure 3.8 Fractal Model vs Metzler Anomalous Model dimensionless pressure responses at the 

wellbore for constant rate solution when 𝛳 = 0.50. 
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Figure 3.9 Fractal Model vs Metzler Anomalous Model dimensionless pressure derivative 

responses at the wellbore for constant rate solution when 𝛳 = 0.25. 
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Figure 3.10 Fractal Model vs Metzler Anomalous Model dimensionless pressure derivative 

responses at the wellbore for constant rate solution when 𝛳 = 0.50. 

Initially, we compare the effect of fractal dimension for each model in itself. According to 

Figure 3.7, as the fractal dimension increases, the fractal model generates less dimensionless 

pressure at the wellbore for the constant 𝛳 = 0.25. Moreover, Metzler anomalous model behaves 

the same, too. Secondly, we compare the behavior of the models. Fractal model causes higher 

dimensionless pressure than Metzler anomalous model when fractal dimension and topology of 

the network are constant. In other words, it is obvious that the Metzler anomalous model generates 

less dimensionless pressure than fractal model for each 𝑑𝑓. According to Figure 3.8, it is seen that 
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as the topology of the network rises, the difference between the fractal model and Metzler 

anomalous model goes up. For example, the fractal model dimensionless pressure response for 

𝑑𝑓 = 1.75 is nearly same as the Metzler anomalous model pressure response for 𝑑𝑓 = 1.50 at the 

late dimensionless time. Another example is that the fractal model for 𝑑𝑓 = 2.00 generates 

approximately the same as Metzler anomalous model for 𝑑𝑓 = 1.75 at the early dimensionless 

time. The similar conclusions are applicable for the dimensionless pressure derivative responses. 

 

3.3.3 Effect of 𝛳 for fractal model and anomalous models 

In this section, we observe the effect of fractal dimension 𝛳 for the fractal model and 

anomalous models at the constant rate condition. It is note that Raghavan anomalous model defines 

the dimensionless time different than fractal model and Metzler anomalous model. 

 𝑡𝐷 =
𝜂𝑖
𝑟𝑑𝑤

𝑡𝛼, (3.60) 

where 𝑑𝑤 = 2 + 𝛳 and 𝛼 =
2

2+𝛳
. In this part, we use Eq. 3.64 to find dimensionless pressure 

solution for Raghavan anomalous method. Most importantly, when we use Stehfest algorithm to 

find the inverse Laplace transform of Raghavan anomalous model solution, we take the inverse 

Laplace transform with respect to time 𝑡 because of Eq. 3.64 definition. However, the graph is 

drawn with respect to dimensionless time 𝑡𝐷 in the x axis. Consequently, we consider both time 

and dimensionless time for Raghavan anomalous model. On the other hand, we only calculate 

dimensionless time for fractal model (Eq. 3.12) and Metzler anomalous model (Eq. 3.38). 

Furthermore, we examine three different topologies of the network 𝛳 = 0.25, 0.50 and 0.75 for 

each method. 
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Figure 3.11 Fractal Model vs Metzler Anomalous Model vs Raghavan Anomalous model for 

constant rate solution when 𝛳 = 0.25 and 𝑟 = 𝑟𝑤. 

 Figure 3.11 is derived for each method at the constant rate solution, and finite wellbore 

case is considered. Figure 3.11 depicts for both dimensionless pressure and dimensionless pressure 

derivative responses. Fractal dimension 𝑑𝑓 is assumed 2 for the fractal model and Metzler 

anomalous model. On the other hand, 𝑛 is equal to 2 for Raghavan anomalous model. 𝛳 is assumed 

0.25 for all model. As you can see all the methods behave similarly at the early time. However, as 

dimensionless time goes up, the difference between Raghavan anomalous model and others raises 

tremendously.  In addition, when we compare fractal and Metzler anomalous model at the early 

time, Metzler anomalous model generates a slightly higher dimensionless pressure response than 



65 

 

fractal model. Nevertheless, dimensionless pressure for fractal model overtakes Metzler 

anomalous model after early dimensionless time. While dimensionless time rises, the difference 

between fractal and anomalous model increases gradually. Furthermore, if we compare 

dimensionless pressure derivative responses for all methods, they are nearly the same at the initial 

dimensionless time. While dimensionless time is increasing, difference between the Raghavan 

anomalous model and others goes up noticeably. On the other hand, the difference between the 

fractal model and Metzler anomalous model for dimensionless pressure derivative responses grows 

slightly when 𝛳 = 0.25. 

 

Figure 3.12 Fractal Model vs Metzler Anomalous Model vs Raghavan Anomalous model for 

constant rate solution when 𝛳 = 0.50 and 𝑟 = 𝑟𝑤. 
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Figure 3.12 is derived by assuming 𝛳 is assumed 0.50.  When we compare Figure 3.11 and 

3.12, the dimensionless pressure and dimensionless pressure derivative responses are almost the 

same at the early time. Nonetheless, while the dimensionless time rises, the difference between the 

models grows markedly for both dimensionless pressure and dimensionless pressure derivative. 

Again, Metzler anomalous model generates a slightly higher dimensionless pressure response than 

fractal model at the early dimensionless time. However, fractal model overtakes Metzler 

anomalous model after early dimensionless time and generates the higher difference than 𝛳 =

0.25. Moreover, the difference between fractal model and Metzler anomalous model for 

dimensionless pressure derivative is slightly higher than  𝛳 = 0.25. 
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Figure 3.13 Fractal Model vs Metzler Anomalous Model vs Raghavan Anomalous model for 

constant rate solution when 𝛳 = 0.75 and 𝑟 = 𝑟𝑤. 

Figure 3.13 is formed by assuming 𝛳 is assumed 0.75.  When we compare Figure 3.13 with 

Figures 3.11 and 3.12, it is seen that each model forms a steeper line for both dimensionless 

pressure and dimensionless pressure derivative because of higher 𝛳. Moreover, the fractal model 

forms minimally less dimensionless pressure than Metzler anomalous model at the early 

dimensionless time. In addition to that, dimensionless pressure derivative responses are quite 

similar at the initial dimensionless time like 𝛳 = 0.25 𝑎𝑛𝑑 0.50. Then, while dimensionless time 

goes up, the difference between models rises dramatically. To sum up, as the topology of the 
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network and dimensionless time increase, the dimensionless pressure and dimensionless pressure 

derivative responses difference grow remarkably. While Raghavan anomalous model always 

creates higher dimensionless pressure than other models, Metzler anomalous model usually 

generates less dimensionless pressure response. As the topology of the network increases, each 

model generates higher dimensionless pressure and dimensionless pressure derivative responses 

at the late dimensionless time. 

 

3.3.4 Dimensionless pressure and dimensionless pressure derivative response in the reservoir for 

fractal model and anomalous models 

In this section, we analyze the dimensionless pressure response in the reservoir for each 

model. Fractal dimension and 𝑛 are assumed 2, and topology of the network is used as 0.25. We 

investigate the dimensionless pressure and dimensionless pressure derivative response at 

dimensionless radius 𝑟𝐷 is equal to 10 and 100. It is important to say that we calculate the 

dimensionless time for Raghavan anomalous model individually for each 𝑟𝐷. 
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Figure 3.14 Fractal Model vs Metzler Anomalous Model vs Raghavan Anomalous model for 

constant rate solution when 𝛳 = 0.25 and 𝑟 = 10𝑟𝑤. 
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Figure 3.15 Fractal Model vs Metzler Anomalous Model vs Raghavan Anomalous model for 

constant rate solution when 𝛳 = 0.25 and 𝑟 = 100𝑟𝑤. 

Figures 3.14 and 3.15 are derived for constant 𝛳, and different dimensionless radiuses. 

According to these figures, Raghavan anomalous model generates dimensionless pressure and 

dimensionless pressure derivative responses earlier than fractal model and Metzler anomalous 

model. In addition, as the dimensionless radius increases, the difference between the models rises 

significantly. 
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3.3.5 Verification of n value for Raghavan (2011) anomalous model 

In this section, we study on Raghavan (2011) paperwork. He compared the production at 

the constant bottomhole pressure for both Metzler anomalous model and his model. He took as a 

reference Camacho (2008) study for the Metzler anomalous model. In Figure 3.16, Raghavan drew 

a graph for dimensionless rate (𝑞𝑤𝐷) at the wellbore vs dimensionless time (𝑡𝐷). 

 

Figure 3.16 Well response for constant pressure production. The top two lines correspond to that 

of Camacho – Velazquez et al. (Raghavan, 2011). 

Raghavan (2011) described 𝛾 as 
2

2+𝛳
. Hence, 𝛾 is equal to 𝛼 in this thesis. Raghavan drew 

Figure 3.16 for 𝛾 = 0.909 and 0.714 which means topologies of the network is equal to 𝛳 =

0.20 and 0.80, respectively. To draw Figure 3.16, we firstly need to derive dimensionless rate. 

The details of derivation for dimensionless flow rate are given in Appendix K.  
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 𝑞𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑑𝑤𝑟𝐷
−𝑑𝑤(

1
𝛼
−
1+𝜉
2 )

(
𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
𝛼
−
1
2

𝑠−
𝛼
2

𝐾ν′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

. (3.74) 

At the wellbore (𝑟 = 𝑟𝑤), dimensionless flow rate is 

 𝑞𝑤𝐷̅̅ ̅̅ ̅(𝑠) = 𝑑𝑤 (
𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
𝛼
−
1
2

𝑠−
𝛼
2

𝐾ν′+1 [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

. (3.75) 

Furthermore, Camacho found the dimensionless flow rate at the wellbore for constant 

bottomhole pressure condition by using Duhamel’s principle, 

 𝑞𝑤𝐷̅̅ ̅̅ ̅(𝑠) =

−ν(ϴ + 2)𝐾ν [
2√𝑠𝛼

𝛳 + 2
] + 𝑠

𝛼
2𝐾ν+1 [

2√𝑠𝛼

𝛳 + 2
]

𝑠𝐾ν [
2√𝑠𝛼

𝛳 + 2
]

. (3.76) 

As you can see Raghavan compared his method with Camacho study which demonstrates 

Metzler anomalous model. Raghavan claims that he drew the Figure 3.16 by assuming 𝑛 = 2 and 

𝑑𝑓 = 1.65.  To check his study, we reproduce Figure 3.16 by assuming the same 𝑛 and 𝑑𝑓. 
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Figure 3.17 Camacho et al. vs Raghavan for constant bottomhole pressure when 𝑛 = 2 and   

𝑑𝑓 = 1.65. 

It is clearly seen that Figure 3.17 is different than Figure 3.16. Although we draw the same 

Camacho et al. lines, Raghavan lines are different. In other words, Raghavan anomalous model 

generates higher flow rate at the wellbore when 𝑛 = 2. This is what we expect. To draw the same 

Figure 3.16, we use the same 𝑑𝑓, but we change the 𝑛 value. It is assumed that 𝑑𝑓 and 𝑛 are 1.65. 
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Figure 3.18 Camacho et al. vs Raghavan for constant bottomhole pressure when 𝑛 = 1.65 and   

𝑑𝑓 = 1.65. 

It is obvious that Figure 3.16 and Figure 3.18 are the same.  Even though Raghavan 

emphasized 𝑛 = 2, he used 𝑛 = 1.65 to draw the Figure 3.16. On the other hand, Raghavan (2011 

and 2012) asserted that 𝑛 is the integer and cannot be noninteger value. To conclude, Raghavan 

anomalous model cannot be compared with Metzler anomalous model unless 𝑛 and 𝑑𝑓 are equal. 

In addition to this analysis, dimensionless flow rate derivative responses are observed for both  

𝑛 = 2 and 𝑛 = 1.65. Again, 𝑑𝑓 is equal to 1.65 for Camacho’s study. It is important to say that 

dimensionless rate derivative values are negative because of production decline. Therefore, the 

absolute values of dimensionless rate derivative are used to draw the following graphs. 
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Figure 3.19 Comparison for dimensionless flow rate derivative for constant bottomhole pressure 

when 𝑛 = 2.00 and 𝑑𝑓 = 1.65. 
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Figure 3.20 Comparison for dimensionless flow rate derivative for constant bottomhole pressure 

when 𝑛 = 1.65 and 𝑑𝑓 = 1.65. 

 According to Figures 3.19 and 3.20, it is clearly seen that dimensionless flow rate 

derivative for Camacho’s study are the same because of the same 𝑑𝑓. On the other hand, the 

dimensionless flow rate derivatives for Raghavan anomalous model are quite different due to the 

different 𝑛 values. As the 𝑛 value increases, higher dimensionless flow rate derivatives are 

obtained for both 𝛾 = 𝛼 =
2

2+𝛳
. Moreover, although dimensionless flow rate derivatives for 

Camacho’s study are slightly lower than dimensionless flow rate derivatives produced by 

Raghavan anomalous model at the initial dimensionless time, Camacho’s study generates higher 

dimensionless flow rate derivative responses at the higher dimensionless time. 
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CHAPTER 4 

 

EXAMPLE FIELD DATA APPLICATIONS 

 

 

 

In this chapter, we apply fractal model and anomalous models to real field well-test data. 

The main goal is to solve the reservoir history – matching problem. We analyze pressure changes 

to obtain reservoir characteristics (𝑘ℎ and 𝜙𝑐𝑡ℎ) for two different fields: Kizildere, in Turkey and 

Kamojang, in Indonesia. Therefore, the ensemble smoother with multiple data assimilation        

(ES-MDA) is used for both fields.  

 

4.1 The Ensemble Smoother with Multiple Data Assimilation (ES – MDA) 

History matching is kind of changing the uncertain parameters in the assimilation process. 

Ensemble – based methods have been used in the last two decades for history matching 

applications. In this chapter, we use the ensemble smoother with multiple data assimilation          

(ES – MDA), which is developed by Emerick and Reynolds (2013), is one of the most popular for 

history-matching applications. ES – MDA is used for nonlinear problems to estimate the 

parameters. This method assimilates parameters in multiple steps at the same time and iterative 

methods are used to improve the assimilation. 

 𝑚𝑗
𝑎,𝑖 = 𝑚𝑗

𝑓,𝑖
+ 𝐶𝑀𝐷

𝑖 [𝐶𝐷𝐷
𝑖 + 𝛼𝑖𝐶𝐷]

−1
(𝑑𝑢𝑐,𝑗

𝑖 − 𝑑𝑗
𝑓,𝑖
), (4.1) 

where 𝑗 = 1,2,… ,𝑁𝑒  and 𝑖 = 1,2,… , 𝑁𝑎. While 𝑁𝑒 is the number of ensemble members, 𝑁𝑎 

represents the total number of data assimilation steps. 𝑚𝑗 (𝑁𝑚 × 𝑁𝑒) is referred as model 

parameters matrix. That is, this matrix consists of uncertain model parameters. 𝑑𝑢𝑐,𝑗
𝑖 (𝑁𝑑 × 𝑁𝑒)  is 
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a sample from the normal distribution 𝑁(𝑑𝑜𝑏𝑠 , 𝛼𝑖𝐶𝐷) where 𝑑𝑜𝑏𝑠(1 × 𝑁𝑑)  is the observed data 

vector. 𝑑𝑗(𝑁𝑑 ×𝑁𝑒) is the simulated data matrix. In addition, 𝛼 is the inflation factor. The main 

drawback of ES – MDA is the determining inflation factor. Therefore, we choose the inflation 

factors (𝛼𝑖 = 𝑁𝑎) to simplify the process. Furthermore, 𝐶𝐷 is the covariance of the measurement 

errors. When the data are uncorrelated, 𝐶𝐷 should be diagonal matrix: 

 
𝐶𝐷 = [

𝜎 … 0
0 ⋱ 0
0 0 𝜎

]

𝑁𝑑×𝑁𝑑

, (4.2) 

where 𝜎 is the standard deviation. 𝐶𝑀𝐷 is the cross – covariance matrix (𝑁𝑚 × 𝑁𝑑) between the 

parameters, and 𝐶𝐷𝐷  is the auto – covariance matrix (𝑁𝑑 ×𝑁𝑑)  for the simulated data. While 𝑁𝑚 is 

the number of model parameters, 𝑁𝑑 denotes the number of data. 𝐶𝑀𝐷 and 𝐶𝐷𝐷  are described as 

 𝐶𝑀𝐷 = ∆𝑀𝑖(∆𝐷𝑖)
𝑇
 (4.3) 

and 

 𝐶𝐷𝐷 = ∆𝐷𝑖(∆𝐷𝑖)
𝑇
, (4.4) 

∆𝑀 and ∆𝐷 are defined as 

 
∆𝑀𝑖 =

1

√𝑁𝑒 − 1
[𝑚1

𝑓
− 𝑚̅1

𝑓
, … ,𝑚𝑁𝑒

𝑓
− 𝑚̅1

𝑓] (4.5) 

and 

 
∆𝐷𝑖 =

1

√𝑁𝑒 − 1
[𝑑1

𝑓
− 𝑑1̅

𝑓
, … , 𝑑𝑁𝑒

𝑓
− 𝑑1̅

𝑓], (4.6) 

where 𝑚̅𝑓 =
1

𝑁𝑒
∑ 𝑚𝑗

𝑓𝑁𝑒
𝑗=1 and 𝑑̅𝑓 =

1

𝑁𝑒
∑ 𝑑𝑗

𝑓𝑁𝑒
𝑗=1 .  
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4.2 Kizildere Geothermal Field, Well KD – 21 Interference Test 

Kizildere is located in Saraykoy, which is located west part of Denizli, Turkey. The 

Kizildere geothermal field is placed in the east part of the Buyuk Menderes graben, where it 

intersects the Gediz and Cukursu grabens (Onur et al, 2003). Kizildere geothermal field is an active 

region in terms of tectonic movements. This field temperature is between 195 and 240 °C and it is 

a liquid-dominated geothermal field.  

 

Figure 4.1 Kizildere Geothermal Field (Onur et al., 2003). 
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Figure 4.2 Main fault lines Saraykoy – Buldan area (Onur et al., 2003). 

 

Figure 4.3 Fracture patterns in the Kizildere geothermal field (Onur et al., 2003). 
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There are many wells drilled to produce geothermal energy. In this thesis, KD – 21 well is 

analyzed by using pressure transient test. KD – 21 has a depth of 898 m. A maximum temperature 

of this well was recorded up to 205 °C. The interference test between wells KD – 21 (observation 

well) and KD – 22 was conducted in 1988 (Onur et al., 2003), and KD – 22 was the active well 

which produced at a constant rate of 87 𝑡/ℎ hot water. The interference test took 43.5 hours. The 

required well, reservoir, and fluid property data are given in the following table. 

Table 4.1 KD – 21 and KD – 22 well, reservoir, and fluid property data  

for the interference test. 

 

 

 In this section, KD – 21 well is examined for fractal model and anomalous models. We 

analyze each model in two cases. In the first case, it is assumed that the exponent related to the 

topology of the network, 𝛳 = 2.33 and the fractal dimension, 𝑑𝑓 = 1.3. These values are 

determined by Onur et al. (2003) who used the fractal dimension data provided Babadagli et al. 

(1997) and a log – log plot of pressure change and derivative of interference pressure test data 

versus time (see Fig. 4.4). Babadagli et al. (1997) determined the fractal dimension range          

1.25 ≤ 𝑑𝑓 ≤ 1.57 from outcrop and satellite studies using the box-counting method. According 

to Figure 4.4, log – log plots of the pressure and derivative data demonstrates almost the same 

Parameter Value  

Flow rate (𝑞𝐵) 87 t/h 

Reservoir thickness (ℎ) 350 m 

Fluid Viscosity (µ) 1.5x10-4 Pa s 

Wellbore radius (𝑟𝑤) 0.108 m 

Bottomhole Temperature (𝑇) 205 °C 

Distance between wells (𝑟𝑏) 200 m 
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slope value of 0.7, especially between 2.5 and 31.5 h. In addition, the separation distance between 

the straight lines is 0.16. The slope and separation values show that the reservoir consists of fractal 

(fracture network) system with 𝛿 < 1 (𝑖. 𝑒. , 𝑑𝑓 < 2+ 𝛳) because that slope cannot be explained 

with commonly used homogeneous models. Furthermore, the slope value of 0.7 yields 𝛿 = 0.3 

because slope is equal to 1 − 𝛿 and indicates that 𝑑𝑓 < 2 for reported values of 𝛳 in the literature. 

Note that 𝛿 = 𝑑𝑓/2 + 𝛳  (Zeybek, 2000). In addition, there are other values of 𝑑𝑓 and 𝛳 that can 

satisfy 𝛿 value obtained from log – log plot of Figure 4.4. For instance, 𝛳 = 0.50 and 𝑑𝑓 = 0.75 

or 𝛳 = 1.78 and 𝑑𝑓 = 1.14, respectively. The main purpose of this section is to determine 𝑘ℎ and 

𝜙𝑐𝑡ℎ for each diffusion model by using ES – MDA. The Stehfest algorithm is used to take the 

inverse Laplace transform of the general solution, and the algorithm is implemented in MATLAB. 

Moreover, the pressure changes with time for KD – 21 interference test is: 

  



83 

 

Table 4.2 Pressure change for the interference test in KD – 21 well. 

 

 

Time (hours) Pressure Changes (kPa) 

0.499 2.986 

1.000 5.962 

1.504 8.972 

2.501 16.407 

3.500 17.860 

4.515 22.326 

5.520 27.473 

6.499 30.000 

7.509 32.352 

8.487 36.456 

9.532 38.944 

10.471 43.337 

11.437 44.441 

12.527 47.473 

13.550 50.554 

16.515 58.419 

19.566 65.624 

22.536 73.487 

25.472 78.997 

28.521 86.265 

31.536 91.000 

34.327 97.517 

37.599 104.499 

40.926 111.630 

43.716 121.518 
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Figure 4.4 Pressure Change and Pressure Change Derivative with time for KD – 21 interference 

test. 

According to the given information, the required data for ES – MDA can be interpreted as for 

both case 1 (𝛳=2.33 and 𝑑𝑓=1.3) and case 2 (𝛳=0.5 and 𝑑𝑓=0.75). 

Table 4.3 ES – MDA input for KD – 21 well. 

 

  

Input Value  

Nm 2 

Na 8  

Nd 25 

Ne 100 
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4.2.1 Kizildere Geothermal Field Nonlinear Regression for 𝛳=2.33 and 𝑑𝑓=1.3 

After the applying ES – MDA, 𝑘ℎ and 𝜙𝑐𝑡ℎ is found for the given minimum and maximum 

value. 𝑛 is 2 for Raghavan anomalous model. For Raghavan anomalous model, 𝑛 represent 

Euclidean dimension. Thus, 𝑛 should be used as an integer. The goal is to get the smallest Root 

Mean Square (RMS). The following table shows 𝑘ℎ and 𝜙𝑐𝑡ℎ matching result, and the following 

figures demonstrate both prior and assimilated results. It is important to note that the unit of 𝑘ℎ 

for Raghavan’s anomalous model is different than fractal and Metzler’s anomalous model. 

Raghavan describes the dimensionless time in Eq. 3.60 different than the others. According to Eq. 

3.60, the unit of 𝑘𝛼 is 𝐿2+𝛳𝑇1−𝛼.  In addition, Raghavan anomalous model describes the mobility 

at any point r in the reservoir, 

 
𝜆(𝑟) = 𝜆𝛼𝑟

−𝛳 =
𝑘(𝑟)

µ
=
𝑘𝛼
µ
𝑟−𝛳, (4.7) 

where the unit of 𝑘(𝑟) is 𝐿2𝑇1−𝛼 . As a result, the unit of 𝑘ℎ for Raghavan anomalous model is  

𝐿3𝑇1−𝛼 in the following table. Note that 𝛼 =
2

2+𝛳
. 

Table 4.4 Nonlinear Regression Result for 𝛳=2.33 and 𝑑𝑓=1.3. 

* The unit is 𝐿3𝑇1−𝛼. 

 

Fractal Model  

Metzler Anomalous 

Model  

Raghavan 

Anomalous Model  

𝒌𝒉, m3 
8.67x10-11 

(2.9x10-11 – 1.4x10-10) 

4.76x10-13 

(2x10-13 – 8x10-13) 

7.97x10-9 * 

(7x10-9 – 9x10-9) 

𝜙𝒄𝒕𝒉, 

m/Pa 

3.64x10-8  

(2.2x10-8 – 3.7x10-8)  

1.55x10-10  

(1.1x10-10 – 2.2x10-10) 

5.31x10-8  

(4x10-8 – 6x10-8)  

RMS, 

kPa 
1.238 2.617 3.838 
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 RMS is defined as 

 

𝑅𝑀𝑆 = √
1

𝑁𝑑
∑(∆𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − ∆𝑃𝑚𝑜𝑑𝑒𝑙)2

𝑁𝑑

𝑖=1

. (4.8) 

 It is important to note that RMS represents the root mean square of the ensemble mean in 

the Table 4.4 and following tables. 

 

Figure 4.5 Fractal Model for Prior Results. 
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Figure 4.6 Fractal Model for Assimilated Results. 

 

Figure 4.7 Metzler Anomalous Model for Prior Results. 
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Figure 4.8 Metzler Anomalous Model for Assimilated Results. 

 

Figure 4.9 Raghavan Anomalous Model for Prior Results. 
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Figure 4.10 Raghavan Anomalous Model for Assimilated Results. 

According to Table 4.4 and the figures above, fractal model obtains the best match and the 

least RMS. In other words, the ensemble mean of fractal model approaches to measured pressure 

change data so closely. Although Metzler anomalous model’s RMS is smaller than Raghavan 

anomalous model’s RMS, Raghavan anomalous model assimilates better than Metzler anomalous 

model. Perhaps, Raghavan anomalous model fits better than others if the given range is changed. 

Moreover, fractal model gets along with both early time and late time. On the other hand, Metzler 

anomalous model suits very well at the early time. Nevertheless, as time goes on, Metzler 

anomalous model’s result moves away from the measured data at the late time. In addition, while 

Raghavan anomalous model underestimates at the early time, it overestimates at the late time. To 

conclude, each model finds different results. Raghavan anomalous model and fractal model get 

approximately the same result for 𝜙𝑐𝑡ℎ. Metzler anomalous model results for both 𝑘ℎ and 𝜙𝑐𝑡ℎ 
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are the smallest values. We cannot compare 𝑘ℎ result for Raghavan anomalous model with other 

models because of the definition. 

 

4.2.2 Kizildere Geothermal Field Nonlinear Regression for 𝛳=0.50 and 𝑑𝑓=0.75 

In this part, Kizildere geothermal field is examined using another topology of the network 

and fractal dimension value. These values are taken from Onur et al. (2003). 𝑘ℎ and 𝜙𝑐𝑡ℎ are 

analyzed by using ES – MDA. 𝑛 is 2 for Raghavan anomalous model. The main aim is to get the 

best match. Hence, acquiring the smallest RMS is the most important criteria. Table 4.5 

demonstrates the ranges and the nonlinear regression result for the Case 2. 

Table 4.5 Nonlinear Regression Result for 𝛳=0.5 and 𝑑𝑓=0.75. 

* The unit is 𝐿3𝑇1−𝛼. 

 

 

Fractal Model  

Metzler Anomalous 

Model  

Raghavan 

Anomalous Model  

𝒌𝒉, m3 
1.47x10-10 

(4.9x10-11 – 2.4x10-10) 

1.26x10-11 

(6x10-12 – 2x10-11) 

7.34x10-11 * 

(6x10-11 – 9x10-11) 

𝜙𝒄𝒕𝒉, 

m/Pa 

2.13x10-8  

(1.3x10-8 – 2.2x10-8)  

4.62x10-9  

(3x10-9 – 6x10-9) 

5.43x10-8  

(4x10-8 – 7x10-8)  

RMS, kPa 1.212 2.111 2.579 
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Figure 4.11 Fractal Model for Prior Results. 

 

Figure 4.12 Fractal Model for Assimilated Results. 
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Figure 4.13 Metzler Anomalous Model for Prior Results. 

 

Figure 4.14 Metzler Anomalous Model for Assimilated Results. 
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Figure 4.15 Raghavan Anomalous Model for Prior Results. 

 

Figure 4.16 Raghavan Anomalous Model for Assimilated Results. 
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According to Table 4.5 and the figures above, fractal model again performs better than 

other models. On the other hand, Raghavan anomalous model fits better than Case 1. If we compare 

Case 1 and Case 2 results, it is clearly seen that each model obtain different outcomes for each 

case. Therefore, we can say that topology of the network and fractal dimension influence 

remarkably. Consequently, the box-counting method is critically important to determine fractal 

parameters. Fractal model fits perfectly both at early and late time. On the other side of the coin, 

Metzler anomalous model performs very well at the early time. However, this is not applicable for 

the late time response. Furthermore, Raghavan anomalous model underestimates at the early time. 

Nevertheless, this model fits very good as time increases. Then, the model results moves away 

from the measured data. In addition, Metzler anomalous model disperses more than other models 

for prior results for both cases. However, this model acquires less errors than Raghavan anomalous 

model. The reason may be because of the difference between 𝑑𝑓 and 𝑛. In other words, even though 

𝑑𝑓 values 0.75 and 1.3 are used for fractal model and Metzler anomalous model, 𝑛 value 2 is used 

for Raghavan for both cases. This may cause a difference. To sum up, the fractal model shows 

better performance than other models and gathers close to the measured data pretty good. 

 

4.3 Kamojang Geothermal Field, Well KMJ – 40 Interference Test 

Kamojang is in Indonesia. The Kamojang reservoir is vapor-dominated. Two separate 

interference test was run. The first interference test is that KMJ – 37 is the signal well, and KMJ – 

28 and KMJ – 33 are the monitor wells. In the second interference test, while KMJ – 46 is the 

signal well, KMJ – 40 is the monitor well (Aprilian et al., 1993). In this section, we focus on the 

second interference test. The pressure transient test data is analyzed with the fractal model and 

anomalous models in this study. Aprilian et al. (1993) examined the field by using fractal model. 
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Furthermore, Camacho et al. (2011) analyzed the interference data using with Metzler anomalous 

model. In this section, we reanalyze the field for both method, and investigate with Raghavan 

anomalous model, and then compare the results. We analyze each model in two cases. In the first 

case, it is assumed 𝛳 = 0.50 and 𝑑𝑓 = 1.6. These values are taken from Camacho et al. (2011). In 

the second case, 𝛳 and 𝑑𝑓 are assumed as 0.25 and 1.575, respectively. The second case values 

can be found in Aprilian et al. (1993). 

 

Figure 4.17 Schematic of Interference test in Kamojang Geothermal Field (Aprilian et al., 1993). 
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Figure 4.18 A structural map of Kamojang geothermal field (Irhas, 1996). 

 The duration of the interference test was 864 hours. A maximum temperature of this well 

was recorded up to 235 °C. KMJ – 46 well was produced at the constant rate of 41 𝑡/ℎ. The 

required well, reservoir and fluid property data are given the following table. 
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Table 4.6 KMJ – 46 and KMJ – 40 well, reservoir, and fluid property data  

for the interference test. 

 

 

The required data for ES – MDA is used as for both case 1 (𝛳=0.50 and 𝑑𝑓=1.6) and case 2 

(𝛳=0.25 and 𝑑𝑓=1.575). 

Table 4.7 ES – MDA input for KMJ – 40 well. 

 

 

  

Parameter Value  

Flow rate (𝑞𝐵) 41 t/h 

Reservoir thickness (ℎ) 100 m  

Fluid Viscosity (µ) 1.7x10-5 Pa s 

Wellbore radius (𝑟𝑤) 0.164 m 

Bottomhole Temperature (𝑇) 235 °C 

Distance between wells (𝑟𝑏) 360 m 

Input Value  

Nm 2 

Na 8  

Nd 36 

Ne 100 
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The pressure response in the observation well (KMJ – 40) is given in the following figure 

and table, 

Table 4.8 Pressure change for the interference test in KMJ – 40 well. 

Time (hours) Pressure Changes 

(kPa) 

 

Time (hours) 

 

Pressure Changes 

(kPa) 

24 0 456 1.999 

48 0 
480 2.199 

72 0 
504 2.496 

96 0.097 
528 2.537 

120 0.296 
552 2.599 

144 0.296 576 2.682 

168 0.400 
600 2.799 

192 0.400 
624 2.999 

216 0.800 
648 2.999 

240 0.800 
672 2.896 

264 1.000 696 3.096 

288 1.096 720 3.296 

312 1.296 
744 3.496 

336 1.400 
768 3.696 

360 1.400 
792 3.399 

384 1.496 
816 3.799 

408 1.496 840 3.799 

432 1.600 864 3.999 
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Figure 4.19 Pressure Change and Pressure Change Derivative with time for KMJ – 40 

interference test. 

 

4.3.1 Kamojang Geothermal Field Nonlinear Regression for 𝛳=0.50 and 𝑑𝑓=1.6 

In this section, 𝑘ℎ and 𝜙𝑐𝑡ℎ are determined by using nonlinear regression ES – MDA 

method. 𝛳 and 𝑑𝑓 are assumed 0.50 and 1.6, respectively. Camacho et al. (2011) studied with these 

assumption for Metzler anomalous model. After all required information is inputted into                  

ES – MDA, RMS, 𝑘ℎ and 𝜙𝑐𝑡ℎ are found. 𝑛 is 2 for Raghavan anomalous model. The outcomes 

for 𝑘ℎ and 𝜙𝑐𝑡ℎ are shown in the following table. Then, the prior and assimilated results are 

demonstrated in the following figures. 
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Table 4.9 Nonlinear Regression Result for 𝛳=0.50 and 𝑑𝑓=1.6. 

* The unit is 𝐿3𝑇1−𝛼. 

 

Figure 4.20 Fractal Model for Prior Results. 

 

Fractal Model  

Metzler Anomalous 

Model  

Raghavan Anomalous 

Model  

𝒌𝒉, m3 
5.65x10-12 

(4x10-12 – 7x10-12) 

6.76x10-13 

(5x10-13 – 8x10-13) 

5.36x10-11 * 

(3x10-11 – 7x10-11) 

𝜙𝒄𝒕𝒉, 

m/Pa 

7.47x10-6  

(6x10-6 – 9x10-6)  

2.88x10-7  

(1x10-7 – 4x10-7) 

7.91x10-6  

(6x10-6 – 9x10-6)  

RMS, kPa 0.155 0.351 0.126 
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Figure 4.21 Fractal Model for Assimilated Results. 

 

Figure 4.22 Metzler Anomalous Model for Prior Results. 
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Figure 4.23 Metzler Anomalous Model for Assimilated Results. 

 

Figure 4.24 Raghavan Anomalous Model for Prior Results. 
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Figure 4.25 Raghavan Anomalous Model for Assimilated Results. 

According to Table 4.9 and figures above, it is undeniable that each model performs very 

well. Although Raghavan anomalous model gets the lowest RMS, the fractal model achieves good 

match. In addition to that, even though Metzler anomalous model obtains good match both at the 

early time and late time, it underestimates at the middle time. Fractal model and Raghavan 

anomalous model behaves similar both early and late time outcomes. Moreover, Raghavan 

anomalous model and fractal model obtain nearly the same 𝜙𝑐𝑡ℎ outcomes. If we compare fractal 

model and Metzler anomalous model, it is seen that Metzler anomalous model obtains roughly 10 

times less than for 𝑘ℎ and 25 times less than for 𝜙𝑐𝑡ℎ fractal model. Raghavan anomalous model 

cannot compare with other models for 𝑘ℎ because of the definition of 𝑘ℎ. To conclude, every 

model works pretty well in this case. Raghavan anomalous model obtains the best match and the 

results should be compared with field outcrops. 
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4.3.2 Kamojang Geothermal Field Nonlinear Regression for 𝛳=0.25 and 𝑑𝑓=1.575 

In this part, Kamojang Geothermal Field is analyzed using another fractal dimension and 

topology of the network. The assumed values are taken from Aprilian et al. (1993). Aprilian et al. 

studied with these assumption for fractal model. Nevertheless, we consider all methods for these 

assumptions. 𝑛 is 2 for Raghavan anomalous model. The main purpose is to find 𝑘ℎ and 𝜙𝑐𝑡ℎ by 

using nonlinear regression ES – MDA. Table 4.10 and the following figures show prior and 

assimilated outcomes. 

Table 4.10 Nonlinear Regression Result for 𝛳=0.25 and 𝑑𝑓=1.575. 

* The unit is 𝐿3𝑇1−𝛼. 

 

Fractal Model  

Metzler Anomalous 

Model  

Raghavan Anomalous 

Model  

𝒌𝒉, m3 
5.70x10-12 

(4x10-12 – 7x10-12) 

2.68x10-12 

(1x10-12 – 4x10-12) 

2.04x10-11 * 

(1x10-11 – 3x10-11) 

𝜙𝒄𝒕𝒉, 

m/Pa 

7.43x10-6  

(6x10-6 – 9x10-6)  

1.45x10-6  

(9x10-7 – 2x10-6) 

8.00x10-6  

(6x10-6 – 9x10-6)  

RMS, kPa 0.155 0.176 0.173 
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Figure 4.26 Fractal Model for Prior Results. 

 

Figure 4.27 Fractal Model for Assimilated Results. 
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Figure 4.28 Metzler Anomalous Model for Prior Results. 

 

Figure 4.29 Metzler Anomalous Model for Assimilated Results. 
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Figure 4.30 Raghavan Anomalous Model for Prior Results. 

 

Figure 4.31 Raghavan Anomalous Model for Assimilated Results. 
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According to Table 4.10 and figures from Figure 4.26 to Figure 4.31, it is seen that all 

methods works very well. If we compare Case 1 and Case 2 for Kamojang geothermal field, fractal 

model behaves almost the same. In addition, Raghavan anomalous model gets the similar results. 

However, the range and outcome are changed for Metzler anomalous model. Perhaps, the reason 

is that Metzler anomalous model affected far more by 𝛳 and 𝑑𝑓. To put it another way, fractal 

model does not have time fractional derivative. Therefore, topology of the network may not affect 

more. Moreover, Raghavan anomalous model does not use fractal dimension. Hence, 𝑛 is used as 

2. Consequently, the results are quite similar for fractal model and Raghavan anomalous model 

because the assumed 𝛳 and 𝑑𝑓 are so close when we compare Case 1 and Case 2. Although the 

smallest RMS is obtained by fractal model, anomalous models’ performance should not be 

ignored. There is a good match at the early time for fractal model. Nonetheless, as test times get 

larger, the fractal model generates lower than measured value. Furthermore, Metzler anomalous 

model is the most dispersed model for the prior result. Thus, this model cannot gather the 

assimilated ensemble member easily. If some of the ensemble members are ignored, the smallest 

RMS may be obtained by Metzler anomalous model. In addition, Raghavan anomalous model 

acquires pretty good results at the early time. However, the outcomes are underestimated after time 

is 450 hours. Maybe, ignoring some of the ensemble members supplies better match for Raghavan 

anomalous model.  
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CHAPTER 5 

 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS  

 

 

 

5.1 Summary and Conclusions 

In this study, analytical solutions of fractal model and anomalous models were presented 

for different cases. Naturally fractured reservoirs such as geothermal and unconventional 

reservoirs can be modeled by using these models. Each model was examined for constant rate, 

constant bottomhole pressure and variable rate/variable pressure condition. Firstly, the solutions 

were obtained for dimensionless pressure in the Laplace domain for fractal model and Metzler 

anomalous model. Then, pressure change in the Laplace space was calculated by using scaling 

property for those models. In other words, dimensionless pressure in the Laplace space was 

converted to pressure change in the Laplace domain. In addition, Raghavan anomalous model was 

solved for constant rate and constant bottomhole pressure conditions separately for pressure 

change in the Laplace domain. After, dimensionless pressure solution for constant rate and 

dimensionless flow rate solution for constant bottomhole pressure conditions were presented 

individually. Furthermore, variable rate/variable bottomhole pressure was derived by utilizing 

constant rate and constant bottomhole pressure solutions because of unit rate pressure change and 

unit pressure change solution. Next, all models were applied to both liquid-dominated, and vapor-

dominated geothermal reservoirs. Fractal reservoirs were analyzed by using nonlinear regression 

for every models. Note that the interference test was run in the constant rate for both Kizildere and 

Kamojang geothermal field. Nonlinear regression ES – MDA was used to determine reservoir 

characteristics (𝑘ℎ and 𝜙𝑐𝑡ℎ). The Stehfest algorithm was used to invert each solution to real time 
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space. Each field is implemented for two different topologies of the network values and fractal 

dimension values. The main purpose is to show effects of fractal parameters on nonlinear 

regression. 

The following conclusions are obtained from this thesis study, and can be stated, 

• The flow regimes exhibited by the well-test data can be identified by plotting pressure 

response and derivative response vs time on a log – log plot. 

• The analytical solutions of fractal model and Metzler anomalous model for constant rate, 

constant bottomhole pressure and variable rate/variable bottomhole pressure condition are 

quite similar. The only difference is that the Laplace variable s in Metzler anomalous model 

has an exponent 𝛳. The reason is that Metzler and Chang and Yortsos derived the 

diffusivity equation using the same continuity equation and flux term. However, Metzler 

considered the history of the diffusion process. 

• Raghavan used the convolved form of the continuity equation. However, he did not use 

conventional Darcy law. Thus, he modified the flux term by applying fractional derivative. 

He preferred Caputo fractional operator instead of Riemann – Liouville fractional operator 

because Riemann – Liouville does not let to use physically interpretable initial conditions. 

• It is shown that the fractal model is the special case of the Metzler anomalous model 

because when 𝛳 = 0, both models behaves the same for dimensionless pressure response 

and dimensionless pressure derivative response without depending on the location. 

• Although the fractal and Metzler anomalous models describe the permeability and porosity 

as a function of location 𝑟, the Raghavan anomalous model only introduces the 

permeability depending upon the location. In addition to that, the basic dimension of 

permeability for the fractal model and Metzler anomalous model is 𝐿2, while the basic 
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dimension of “permeability” for the Raghavan anomalous model is 𝐿2+𝛳𝑇1−𝛼  for 𝑘𝛼 and 

𝐿2𝑇1−𝛼 for 𝑘(𝑟). 

• Fractal dimension 𝑑𝑓 can affect fractal model and Metzler anomalous model behaviors. 

Raghavan anomalous model does not consider fractal dimension and uses 𝑛 which is 

integer. To put it another way, 𝑛 is 1,2 and 3 for linear, radial, and spherical flow, 

respectively. Fractal model generates higher dimensionless pressure response than Metzler 

anomalous model for the same 𝑑𝑓. As the fractal dimension decreases, the pressure 

response difference between models goes up. In addition, if the topology of the network is 

double, the dimensionless pressure difference between models rises much more for the 

same fractal dimension. 

• Effect of the topology of the network is undeniable for all methods. As the higher topology 

of the network exists, the Raghavan anomalous model produces far higher dimensionless 

pressure response. It is worth to note that effect of the topology of the network can be seen 

clearly after early times. 

• Dimensionless pressure response in the reservoir varies according to models. Raghavan 

anomalous model generates higher dimensionless response than others. Moreover, Metzler 

anomalous model always produces the less dimensionless pressure response for different 

dimensionless radius and topology of the network. 

• According to the field studies, fractal model performs very well for liquid-dominated field, 

Kizildere. On the other hand, every method acquires good match for the vapor-dominated 

field, Kamojang.  

• For Kizildere geothermal field, even though the fractal model obtains the lowest RMS, 

Raghavan anomalous model assimilates the ensemble member better. Perhaps, a better 
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match can be achieved by Raghavan anomalous model if the minimum and maximum 

assumed values for 𝑘ℎ and 𝜙𝑐𝑡ℎ are changed. 

• It is observed that if the assumed minimum and maximum value range for 𝑘ℎ and 𝜙𝑐𝑡ℎ 

are high, the dispersion of the ensemble member in the prior is extended. As a result, 

models cannot assimilate the ensemble member successfully. 

• For both Kizildere and Kamojang geothermal field, it is proved that fractal dimension and 

the topology of the network influence the performance of nonlinear regression ES – MDA. 

This means that the box-counting method is crucially important. 

 

5.2 Recommendations for a Future Study 

To interpret the naturally fractured reservoirs, the following suggestions may help for 

future work. 

• Analytical solutions given in this study for single-well active well-test could be applied to 

real field active well-test data. 

• Analytical solutions of every model can be extended considering skin and wellbore storage 

effect for both active and observation well. 

• Sensitivity analysis of skin and wellbore storage effect for every method can be examined. 

• New field study can be worked for the highly conductive and well – connected path 

geothermal field. Consequently, superdiffusion can be inferred better for both active and 

observation well. 
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NOMENCULATURE 

 

 

 

𝐴 = area, [𝐿2] 

𝐵 = formation volume factor, [𝐿3/𝐿3] 

𝑐𝑡 = compressibility, [𝐿 𝑇2/𝑀] 

𝑑 = Euclidean dimension 

𝑑𝑓 = fractal dimension 

𝑑𝑤= Fickian value 

ℎ = thickness of the reservoir, [𝐿] 

𝑘 = permeability, [𝐿2] 

𝑚 = fracture network parameter, [𝐿𝛳+2] 

𝑛 = dimension, 1, 2 or 3 

𝑝 = pressure, [𝑀/𝐿/𝑇2] 

𝑝𝐷  = dimensionless pressure 

𝑝𝑖 = initial pressure, [𝑀/𝐿/𝑇2] 

𝑝𝑤𝑓  = flowing bottomhole pressure, [𝑀/𝐿/𝑇2] 

𝑞 = flow rate, [𝐿3/𝑇] 

𝑞𝐷 = dimensionless flow rate 

𝑟 = radial distance, [𝐿] 

𝑟𝐷 = dimensionless radius 

𝑟𝑤 = wellbore radius, [𝐿] 
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𝑟0 = reference radius, [𝐿] 

𝑠 = Laplace transform variable 

𝑡 = time, [𝑇] 

𝑡𝐷 = dimensionless time 

𝛼 = 1. Anomalous diffusion exponent, 2. Time fractional exponent 

𝛽 = 1. Constant, 2. Space fractional exponent 

𝛾 = diffusion exponent 

∆𝑝 = pressure change, [𝑀/𝐿/𝑇2] 

𝜂 = diffusivity, [𝐿2/𝑇] 

𝛩 = anomalous diffusion coefficient 

𝛳 = topology of the network 

𝜆 = mobility, [𝐿 𝑇/𝑀] 

µ = viscosity, [𝑀/𝐿/𝑇] 

𝜙 = porosity 

𝜙0 = reference porosity 
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APPENDIX A 

 

ANALYTICAL SOLUTION OF FRACTAL DIFFUSION MODEL AT CONSTANT 

RATE  

 

 

 

In this appendix, we present the analytical solution of fractal diffusion model for constant 

rate condition. The initial boundary value problem for the fractal model is defined as follows: 

 𝜕𝑝𝐷
𝜕𝑡𝐷

=
1

𝑟𝐷
𝑑𝑓−1

𝜕

𝜕𝑟𝐷
(𝑟𝐷

𝛽 𝜕𝑝𝐷
𝜕𝑟𝐷

) , (A.1) 

where 𝛽 = 𝑑𝑓 −𝛳 − 1. The initial condition is 

 𝑝𝐷(𝑟𝐷, 𝑡𝐷 = 0) = 0.  (A.2) 

The inner boundary condition for a finite wellbore is 

 (𝑟𝐷
𝛽 𝜕𝑝𝐷
𝜕𝑟𝐷

)
𝑟𝐷=1

= −1.  (A.3) 

The outer boundary condition is described as 

 lim
𝑟𝐷→∞

𝑝𝐷(𝑟𝐷, 𝑡𝐷) = 0. (A.4) 

To begin with, taking the Laplace transform of PDE with respect to 𝑡𝐷, 

 𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) − 𝑝𝐷(𝑟𝐷, 𝑡𝐷 = 0) =
1

𝑟𝐷
𝑑𝑓−1

𝑑

𝑑𝑟𝐷
(𝑟𝐷

𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
). (A.5) 

Applying the initial condition into the above equation, 

 𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =
1

𝑟𝐷
𝑑𝑓−1

𝑑

𝑑𝑟𝐷
(𝑟𝐷

𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
) (A.6) 

or 
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 𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =
1

𝑟𝐷
𝛽+𝛳

𝑑

𝑑𝑟𝐷
(𝑟𝐷

𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
). (A.7) 

Then, Eq. A.7 can be expanded by applying derivation to find a general solution, 

 𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =
1

𝑟𝐷
𝛽+𝛳

(𝛽𝑟𝐷
𝛽−1 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
+ 𝑟𝐷

𝛽 𝑑
2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2  ), (A.8) 

 
𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =

𝛽

𝑟𝐷
𝛳+1

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
+
1

𝑟𝐷
𝛳

𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 . 

(A.9) 

Let us rearrange the Eq. A.9 

 
1

𝑟𝐷
𝛳

𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 +

𝛽

𝑟𝐷
𝛳+1

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
− 𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (A.10) 

Multiply with r𝐷
ϴ+2, 

 𝑟𝐷
𝛳+2

1

𝑟𝐷
𝛳

𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 + 𝑟𝐷

𝛳+2
𝛽

𝑟𝐷
𝛳+1

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
− 𝑟𝐷

𝛳+2𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (A.11) 

So, 

 𝑟𝐷
2
𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 + 𝛽𝑟𝐷

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
− 𝑟𝐷

𝛳+2𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (A.12) 

Eq. A.12 has a general solution of 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
{𝐴𝐼ν [

2√𝑠

𝛳 + 2
𝑟𝐷

𝛳+2
2 ] + 𝐵𝐾ν [

2√𝑠

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]}, (A.13) 

where ν =
1−𝛽

𝛳+2
. Before applying the inner and outer boundary conditions, we need to take the 

Laplace transform of them. The Laplace transform of the inner and outer boundary conditions are 

found respectively, 

 (𝑟𝐷
𝛽 𝜕𝑝𝐷̅̅ ̅

𝜕𝑟𝐷
)
𝑟𝐷=1

= −
1

𝑠
 (A.14) 

and 
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 lim
𝑟𝐷→∞

𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (A.15) 

Next, apply the outer boundary condition to Eq. A.13 

 lim
𝑟𝐷→∞

𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = lim
𝑟𝐷→∞

𝑟𝐷

𝛳+2
2
ν 
 lim
𝑟𝐷→∞

{𝐴𝐼ν [
2√𝑠

𝛳 + 2
𝑟𝐷

𝛳+2
2 ] + 𝐵𝐾ν [

2√𝑠

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]} = 0. (A.16) 

When 𝑟𝐷 goes to infinity, Bessel I function approaches to infinity, and Bessel K function goes to 

zero. Hence, A must be zero, but B cannot be zero. As a result, Eq. A.16 reduces to 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
𝐵𝐾ν [

2√𝑠

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]. (A.17) 

Let us say 𝜀 =
𝛳+2

2
 and γ =

2√𝑠

𝛳+2
. Then, we apply inner boundary condition. Firstly, taking 

derivative of Eq. A.17 with respect to 𝑟𝐷, 

  
𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= 𝐵(𝜀ν)𝑟𝐷

𝜀ν−1𝐾ν[γ𝑟𝐷
𝜀] + 𝐵𝑟𝐷

𝜀ν 
𝑑𝐾ν[γ𝑟𝐷

𝜀]

𝑑rD
. (A.18) 

To apply a chain rule, 

 
𝑑𝐾ν
𝑑𝑟𝐷

= 
𝑑𝐾ν
𝑑𝑧

𝑑𝑧

𝑑𝑟𝐷
, (A.19) 

where 

 𝑧 = γ𝑟𝐷
𝜀 (A.20) 

and 

 
𝑑𝑧

𝑑𝑟𝐷
= γ𝜀𝑟𝐷

𝜀−1. (A.21) 

So, Eq. A.18 can be rewritten as 

 
𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= 𝐵(𝜀ν)𝑟𝐷

𝜀ν−1𝐾ν[γ𝑟𝐷
𝜀] + 𝐵𝑟𝐷

𝜀ν 
𝑑𝐾ν[𝑧]

𝑑z
(γ𝜀𝑟𝐷

𝜀−1) (A.22) 

or 
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𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= 𝐵(𝜀ν)𝑟𝐷

𝜀ν−1𝐾ν[γ𝑟𝐷
𝜀] + 𝐵𝑟𝐷

𝜀ν 
𝑑𝐾ν[γ𝑟𝐷

𝜀]

𝑑(γ𝑟𝐷
𝜀)

(γ𝜀𝑟𝐷
𝜀−1) (A.23) 

or 

 
𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= (𝜀ν)𝑟𝐷

𝜀ν−1𝐾ν[γ𝑟𝐷
𝜀] + 𝐵𝑟𝐷

𝜀ν+𝜀−1 γ𝜀
𝑑𝐾ν[γ𝑟𝐷

𝜀]

𝑑(γ𝑟𝐷
𝜀)
, (A.24) 

where 
𝑑𝐾ν[γ𝑟𝐷

𝜀]

𝑑(γ𝑟𝐷
𝜀)
= −𝐾ν−1[γ𝑟𝐷

𝜀] −
ν

γ𝑟𝐷
𝜀 𝐾ν[γ𝑟𝐷

𝜀]. As a result, Eq. A.24 is equal to 

 
𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= 𝐵(𝜀ν)𝑟𝐷

𝜀ν−1𝐾ν[γ𝑟𝐷
𝜀] + 𝐵γ𝜀𝑟𝐷

𝜀ν+𝜀−1 {−𝐾ν−1[γ𝑟𝐷
𝜀] −

ν

γ𝑟𝐷
𝜀 𝐾ν[γ𝑟𝐷

𝜀]} (A.25) 

or 

 
𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= 𝐵(𝜀ν)𝑟𝐷

𝜀ν−1𝐾ν[γ𝑟𝐷
𝜀] − 𝐵γ𝜀𝑟𝐷

𝜀ν+𝜀−1 𝐾ν−1[γ𝑟𝐷
𝜀] − 𝐵γ𝜀𝑟𝐷

𝜀ν+𝜀−1 
ν

γ𝑟𝐷
𝜀 𝐾ν[γ𝑟𝐷

𝜀]. (A.26) 

So, Eq. A.26 is equal to 

 
𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= 𝐵(𝜀ν)𝑟𝐷

𝜀ν−1𝐾ν[γ𝑟𝐷
𝜀] − 𝐵γ𝜀 𝑟𝐷

𝜀ν+𝜀−1 𝐾ν−1[γ𝑟𝐷
𝜀] − 𝐵(𝜀ν) 𝑟𝐷

𝜀ν−1  𝐾ν[γ𝑟𝐷
𝜀]. (A.27) 

Then, multiply Eq. A.27 with 𝑟𝐷
𝛽

, 

 

𝑟𝐷
𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= 𝐵(𝜀ν)𝑟𝐷

𝜀ν+β−1
𝐾ν[γ𝑟𝐷

𝜀] − 𝐵γ𝜀 𝑟𝐷
𝜀ν+𝜀−1+𝛽

𝐾ν−1[γ𝑟𝐷
𝜀]

− 𝐵(𝜀ν) 𝑟𝐷
𝜀ν+β−1 

 𝐾ν[γ𝑟𝐷
𝜀] 

(A.28) 

or 

 𝑟𝐷
𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= −𝐵γ𝜀 𝑟𝐷

𝜀ν+𝜀−1+𝛽
𝐾ν−1[γ𝑟𝐷

𝜀]. (A.29) 

So, at 𝑟𝐷 = 1, 

 (𝑟𝐷
𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
)
𝑟𝐷=1

= −𝐵γ𝜀 𝐾ν−1[γ] = −
1

𝑠
. (A.30) 

Consequently, 
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 𝐵 =
1

𝑠γ𝜀𝐾ν−1[γ]
. (A.31) 

Finally, Eq. A.17 is equal to 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 

(

 
 
𝐾ν [

2√𝑠
𝛳 + 2 𝑟𝐷

𝛳+2
2 ]

𝑠γ𝜀𝐾ν−1[γ]

)

 
 
. (A.32) 

Let us change 𝜀 and γ, 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 

(

 
 

𝐾ν [
2√𝑠
𝛳 + 2 𝑟𝐷

𝛳+2
2 ]

𝑠
2√𝑠
𝛳 + 2 

𝛳 + 2
2  𝐾ν−1 [

2√𝑠
𝛳 + 2

]
)

 
 
. (A.33) 

To conclude, the result is  

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 

(

 
 
𝐾ν [

2√𝑠
𝛳 + 2 𝑟𝐷

𝛳+2
2 ]

𝑠√𝑠  𝐾ν−1 [
2√𝑠
𝛳 + 2

]
)

 
 

 (A.34) 

or 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

1−𝛽
2
 

(

 
 
𝐾ν [

2√𝑠
𝛳 + 2 𝑟𝐷

𝛳+2
2 ]

𝑠√𝑠  𝐾ν−1 [
2√𝑠
𝛳 + 2

]
)

 
 
. (A.35) 
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APPENDIX B 

 

FRACTAL DIFFUSION MODEL AT A CONSTANT RATE CONVERSION FROM 

DIMENSIONLESS TO DIMENSIONAL 

 

 

 

In this appendix, we convert the analytical solution of fractal model at a constant rate from 

dimensionless to dimensional coordinate in the SI unit by using scaling property. The 

dimensionless pressure and time are given by, 

 𝑝𝐷 =
𝑘ℎ

2π𝑞𝐵µ
Δ𝑝(𝑡) (B.1) 

and 

 𝑡𝐷 =
𝑘(𝑟𝑤)𝑡

𝜙(𝑟𝑤)𝑐𝑡µ 𝑟𝑤2
. (B.2) 

Dimensionless time can be expressed as 

 𝑡𝐷 = 𝜂∗𝑡, (B.3) 

where 

 𝜂∗ =
𝑘(𝑟𝑤)

𝜙(𝑟𝑤)𝑐𝑡µ𝑟𝑤2
. (B.4) 

Taking the Laplace transform of Eq. B.1, 

 𝑝𝐷̿̿ ̿(𝑠) =
𝑘ℎ

2π𝑞𝐵µ
Δ𝑝̿̿̿̿ (𝑟, 𝑠), (B.5) 

where 𝑝𝐷̿̿ ̿(𝑠) is the Laplace transform of 𝑝𝐷(𝑡𝐷) with respect to time 𝑡, and Δ𝑝̿̿̿̿ (𝑟, 𝑠) represents the 

Laplace transform of Δ𝑝(𝑡) with respect to 𝑡. Furthermore, the solution of fractal diffusion model 

for finite wellbore and constant rate is 



127 

 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
𝐾ν [

2√𝑠
𝛳 + 2 𝑟𝐷

𝛳+2
2 ]

𝑠√𝑠  𝐾ν−1 [
2√𝑠
𝛳 + 2

]

, (B.6) 

where 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) represents the Laplace transform of 𝑝𝐷(𝑡𝐷) with respect to 𝑡𝐷. Then, by applying 

scaling property, 𝑝𝐷̿̿ ̿(𝑠) can be represented as: 

 𝑝𝐷̿̿ ̿(𝑠) = ℒ𝑡[𝑝𝐷(𝜂
∗𝑡)] =

1

𝜂∗
𝑝𝐷̅̅ ̅ (

𝑠

𝜂∗
). (B.7) 

So, 

 𝑝𝐷̿̿ ̿(𝑠) = ℒ𝑡[𝑝𝐷(𝜂
∗𝑡)] =

1

𝜂∗
𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠
𝜂∗√

𝑠
𝜂∗
  𝐾ν−1

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

 (B.8) 

or 

 𝑝𝐷̿̿ ̿(𝑠) = ℒ𝑡[𝑝𝐷(𝜂
∗𝑡)] = 𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠√
𝑠
𝜂∗   𝐾ν−1

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

. (B.9) 

Equalizing Eq. B.5 and B.9 provides: 
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𝑘ℎ

2π𝑞𝐵µ
Δ𝑝̿̿̿̿ (𝑟, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠√
𝑠
𝜂∗   𝐾ν−1

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

. (B.10) 

Consequently, Δ𝑝̿̿̿̿ (𝑟, 𝑠) is equal to 

 Δ𝑝̿̿̿̿ (𝑟, 𝑠) =
2𝜋𝑞𝐵µ

𝑘ℎ
𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠√
𝑠
𝜂∗   𝐾ν−1

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

, (B.11) 

where 𝑟𝐷 =
𝑟

𝑟𝑤
. 
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APPENDIX C 

 

ANALYTICAL SOLUTION OF FRACTAL MODEL AT CONSTANT BOTTOMHOLE 

PRESSURE  

 

 

 

In this appendix, we present the analytical solution of fractal diffusion model for constant 

bottomhole pressure condition. The initial boundary value problem for the fractal model is defined 

as follows:  

 𝜕𝑝𝐷
𝜕𝑡𝐷

=
1

𝑟𝐷
𝑑𝑓−1

𝜕

𝜕𝑟𝐷
(𝑟𝐷

𝛽 𝜕𝑝𝐷
𝜕𝑟𝐷

) , (C.1) 

where 𝛽 = 𝑑𝑓 −𝛳 − 1. The initial condition is 

 𝑝𝐷(𝑟𝐷, 𝑡𝐷 = 0) = 0.  (C.2) 

The inner boundary condition for a finite wellbore is 

 𝑝𝐷(𝑟𝐷 = 1, 𝑡𝐷) = 1.  (C.3) 

The outer boundary condition is described as 

 lim
𝑟𝐷→∞

𝑝𝐷(𝑟𝐷, 𝑡𝐷) = 0. (C.4) 

To begin with, taking the Laplace transform of PDE with respect to 𝑡𝐷, 

 𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) − 𝑝𝐷(𝑟𝐷, 𝑡𝐷 = 0) =
1

𝑟𝐷
𝑑𝑓−1

𝑑

𝑑𝑟𝐷
(𝑟𝐷

𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
). (C.5) 

Using the initial condition into the above equation, 

 𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =
1

𝑟𝐷
𝑑𝑓−1

𝑑

𝑑𝑟𝐷
(𝑟𝐷

𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
) (C.6) 

or 
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 𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =
1

𝑟𝐷
𝛽+𝛳

𝑑

𝑑𝑟𝐷
(𝑟𝐷

𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
). (C.7) 

Next, the Laplace transform of the inner and outer boundaries are, respectively 

 𝑝𝐷̅̅ ̅(𝑟𝐷 = 1, 𝑠) =
1

𝑠
 (C.8) 

and 

 lim
𝑟𝐷→∞

𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (C.9) 

Then, Eq. C.7 can be written as, 

 𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =
1

𝑟𝐷
𝛽+𝛳

(𝛽𝑟𝐷
𝛽−1 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
+ 𝑟𝐷

𝛽 𝑑
2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2  ), (C.10) 

 
𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =

𝛽

𝑟𝐷
𝛳+1

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
+
1

𝑟𝐷
𝛳

𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 . 

(C.11) 

Let us rearrange the Eq. C.11 to find a general solution, 

 
1

𝑟𝐷
𝛳

𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 +

𝛽

𝑟𝐷
𝛳+1

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
− 𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (C.12) 

Multiply with r𝐷
ϴ+2, 

 𝑟𝐷
𝛳+2

1

𝑟𝐷
𝛳

𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 + 𝑟𝐷

𝛳+2
𝛽

𝑟𝐷
𝛳+1

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
− 𝑟𝐷

𝛳+2𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (C.13) 

So, 

 𝑟𝐷
2
𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 + 𝛽𝑟𝐷

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
− 𝑟𝐷

𝛳+2𝑠𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (C.14) 

The general solution of Eq. C.14 is 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
{𝐴𝐼ν [

2√𝑠

𝛳 + 2
𝑟𝐷

𝛳+2
2 ] + 𝐵𝐾ν [

2√𝑠

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]}, (C.15) 
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where ν =
1−𝛽

𝛳+2
. Next, apply the outer boundary condition in the Laplace space to the general 

solution 

 lim
𝑟𝐷→∞

𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = lim
𝑟𝐷→∞

𝑟𝐷

𝛳+2
2
ν 
 lim
𝑟𝐷→∞

{𝐴𝐼ν [
2√𝑠

𝛳 + 2
𝑟𝐷

𝛳+2
2 ] + 𝐵𝐾ν [

2√𝑠

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]} = 0. (C.16) 

When 𝑟𝐷 goes to infinity, Bessel I function approaches to infinity, and Bessel K function goes to 

zero. Hence, A must be zero, but B cannot be zero. Consequently, Eq. C.16 reduces to 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
𝐵𝐾ν [

2√𝑠

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]. (C.17) 

Next, apply the inner boundary condition (𝑟𝐷 = 1), 

 𝑝𝐷̅̅ ̅(𝑟𝐷 = 1, 𝑠) = 𝐵𝐾ν [
2√𝑠

𝛳 + 2
] =

1

𝑠
. (C.18) 

So, 

 
𝐵 =

1

𝑠𝐾ν [
2√𝑠
𝛳 + 2

]

. 
(C.19) 

In conclusion, dimensionless pressure is equal to 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
𝐾ν [

2√𝑠
𝛳 + 2 𝑟𝐷

𝛳+2
2 ]

𝑠𝐾ν [
2√𝑠
𝛳 + 2

]

 (C.20) 

or 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

1−𝛽
2
 
𝐾ν [

2√𝑠
𝛳 + 2 𝑟𝐷

𝛳+2
2 ]

𝑠𝐾ν [
2√𝑠
𝛳 + 2

]

. (C.21) 
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APPENDIX D 

 

FRACTAL DIFFUSION MODEL AT A CONSTANT BOTTOMHOLE PRESSURE 

CONVERSION FROM DIMENSIONLESS TO DIMENSIONAL 

 

 

 

In this appendix, we convert the analytical solution of fractal model at a constant 

bottomhole pressure from dimensionless to dimensional coordinate in the SI unit by using scaling 

property. The dimensionless pressure and time are 

 𝑝𝐷 =
𝑝𝑖 − 𝑝

𝑝𝑖 − 𝑝𝑤𝑓
=
Δ𝑝(𝑟, 𝑡)

Δ𝑝𝑤𝑓
 (D.1) 

and 

 𝑡𝐷 =
𝑘(𝑟𝑤)𝑡

𝜙(𝑟𝑤)𝑐𝑡µ 𝑟𝑤2
. (D.2) 

Dimensionless time can be expressed as 

 𝑡𝐷 = 𝜂
∗𝑡, (D.3) 

where 

 𝜂∗ =
𝑘(𝑟𝑤)

𝜙(𝑟𝑤)𝑐𝑡µ𝑟𝑤2
. (D.4) 

Taking the Laplace transform of Eq. D.1, 

 𝑝𝐷̿̿ ̿(𝑠) =
1

Δ𝑝𝑤𝑓
Δ𝑝̿̿̿̿ (𝑟, 𝑠), (D.5) 

where 𝑝𝐷̿̿ ̿(𝑠) is the Laplace transform of 𝑝𝐷(𝑡𝐷) with respect to time 𝑡, and Δ𝑝̿̿̿̿ (𝑟, 𝑠) represents the 

Laplace transform of Δ𝑝(𝑟, 𝑡) with respect to 𝑡. In addition, the solution of fractal model for finite 

wellbore and constant bottomhole pressure is 
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 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
𝐾ν [

2√𝑠
𝛳 + 2 𝑟𝐷

𝛳+2
2 ]

𝑠𝐾ν [
2√𝑠
𝛳 + 2

]

, (D.6) 

where 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) represents the Laplace transform of 𝑝𝐷(𝑡𝐷) with respect to 𝑡𝐷. Then, by applying 

scaling property, 𝑝𝐷̿̿ ̿(𝑠) can be represented as: 

 𝑝𝐷̿̿ ̿(𝑠) = ℒ𝑡[𝑝𝐷(𝜂
∗𝑡)] =

1

𝜂∗
𝑝𝐷̅̅ ̅ (

𝑠

𝜂∗
). (D.7) 

So, 

 𝑝𝐷̿̿ ̿(𝑠) = ℒ𝑡[𝑝𝐷(𝜂
∗𝑡)] =

1

𝜂∗
𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠
𝜂∗
𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

 (D.8) 

or 

 𝑝𝐷̿̿ ̿(𝑠) = ℒ𝑡[𝑝𝐷(𝜂
∗𝑡)] = 𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

. (D.9) 

Equalizing Eq. D.5 and D.9 give us: 
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1

Δ𝑝𝑤𝑓
Δ𝑝̿̿̿̿ (𝑟, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2 𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

. (D.10) 

As a result, Δ𝑝̿̿̿̿ (𝑠) is defined as: 

 Δ𝑝̿̿̿̿ (𝑟, 𝑠) =
Δ𝑝𝑤𝑓
𝑠

𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2 𝑟𝐷

𝛳+2
2

]
 
 
 

𝐾ν

[
 
 
 2√

𝑠
𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

, (D.11) 

where 𝑟𝐷 =
𝑟

𝑟𝑤
. 
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APPENDIX E 

 

ANALYTICAL SOLUTION OF METZLER ANOMALOUS DIFFUSION MODEL AT 

CONSTANT RATE  

 

 

 

In this appendix, we present the analytical solution of Metzler anomalous model for 

constant rate condition. The PDE of Metzler anomalous model is given as:  

 𝜕𝛼𝑝𝐷
𝜕𝑡𝐷

𝛼 =
1

𝑟𝐷
𝑑𝑓−1

𝜕

𝜕𝑟𝐷
(𝑟𝐷

𝛽 𝜕𝑝𝐷
𝜕𝑟𝐷

) , (E.1) 

where 𝛽 = 𝑑𝑓 −𝛳 − 1 and α =
2

𝛳+2
. The initial condition is 

 𝑝𝐷(𝑟𝐷, 𝑡𝐷 = 0) = 0.  (E.2) 

The inner boundary condition for a finite wellbore is 

 (𝑟𝐷
𝛽 𝜕𝑝𝐷
𝜕𝑟𝐷

)
𝑟𝐷=1

= −1.  (E.3) 

The outer boundary condition is described as 

 lim
𝑟𝐷→∞

𝑝𝐷(𝑟𝐷, 𝑡𝐷) = 0. (E.4) 

To begin with, the Laplace transform of Eq. E.1 with respect to 𝑡𝐷, 

 𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) − 𝑠
𝛼−1𝑝𝐷(𝑟𝐷, 𝑡𝐷 = 0) =

1

𝑟𝐷
𝑑𝑓−1

𝑑

𝑑𝑟𝐷
(𝑟𝐷

𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
). (E.5) 

Because of the initial condition, Eq. E.5 is rewritten as: 

 𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =
1

𝑟𝐷
𝑑𝑓−1

𝑑

𝑑𝑟𝐷
(𝑟𝐷

𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
) (E.6) 

or 



136 

 

 𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =
1

𝑟𝐷
𝛽+𝛳

𝑑

𝑑𝑟𝐷
(𝑟𝐷

𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
). (E.7) 

Next, applying derivation to inside the parentheses, Eq. E.7 is equal to 

 𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =
1

𝑟𝐷
𝛽+𝛳

(𝛽𝑟𝐷
𝛽−1 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
+ 𝑟𝐷

𝛽 𝑑
2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2  ), (E.8) 

 
𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =

𝛽

𝑟𝐷
𝛳+1

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
+
1

𝑟𝐷
𝛳

𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 . 

(E.9) 

Let us rewrite the Eq. E.9 

 
1

𝑟𝐷
𝛳

𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 +

𝛽

𝑟𝐷
𝛳+1

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
− 𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (E.10) 

Multiply with r𝐷
ϴ+2, 

 𝑟𝐷
𝛳+2

1

𝑟𝐷
𝛳

𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 + 𝑟𝐷

𝛳+2
𝛽

𝑟𝐷
𝛳+1

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
− 𝑟𝐷

𝛳+2𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (E.11) 

So, 

 𝑟𝐷
2
𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 + 𝛽𝑟𝐷

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
− 𝑟𝐷

𝛳+2𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (E.12) 

Eq. E.12 has the general solution of 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
{𝐴𝐼ν [

2√𝑠𝛼

𝛳 + 2
𝑟𝐷

𝛳+2
2 ] + 𝐵𝐾ν [

2√𝑠𝛼

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]}, (E.13) 

where ν =
1−𝛽

𝛳+2
. Then, take the Laplace transform of the inner boundary condition, 

 (𝑟𝐷
𝛽 𝜕𝑝𝐷̅̅ ̅

𝜕𝑟𝐷
)
𝑟𝐷=1

= −
1

𝑠
. (E.14) 

Next, the outer boundary condition in the Laplace space can be written as 

 lim
𝑟𝐷→∞

𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (E.15) 

The outer boundary condition is used to find the general solution coefficients. 
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 lim
𝑟𝐷→∞

𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = lim
𝑟𝐷→∞

𝑟𝐷

𝛳+2
2
ν 
 lim
𝑟𝐷→∞

{𝐴𝐼ν [
2√𝑠𝛼

𝛳 + 2
𝑟𝐷

𝛳+2
2 ] + 𝐵𝐾ν [

2√𝑠𝛼

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]} = 0. (E.16) 

As 𝑟𝐷 goes to infinity, Bessel I function approaches to infinity, and Bessel K function goes to zero. 

Thus, A must be zero, but B cannot be zero. As a consequence, Eq. E.13 is equal to 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
𝐵𝐾ν [

2√𝑠𝛼

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]. (E.17) 

Before applying inner boundary condition, let us introduce new variables to do operation easily.  

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷
𝜀ν 𝐵𝐾ν[γ𝑟𝐷

𝜀], (E.18) 

where 𝜀 =
𝛳+2

2
 and γ =

2√𝑠𝛼

𝛳+2
. Take the derivative of Eq. E.18 with respect to 𝑟𝐷, 

  
𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= 𝐵(𝜀ν)𝑟𝐷

𝜀ν−1𝐾ν[γ𝑟𝐷
𝜀] + 𝐵𝑟𝐷

𝜀ν 
𝑑𝐾ν[γ𝑟𝐷

𝜀]

𝑑rD
. (E.19) 

Let us apply the chain rule, 

 
𝑑𝐾ν
𝑑𝑟𝐷

=  
𝑑𝐾ν
𝑑𝑧

𝑑𝑧

𝑑𝑟𝐷
, (E.20) 

where 

 𝑧 = γ𝑟𝐷
𝜀 (E.21) 

and 

 
𝑑𝑧

𝑑𝑟𝐷
= γ𝜀𝑟𝐷

𝜀−1. (E.22) 

So, Eq. E.19 can be rewritten as 

 
𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= 𝐵(𝜀ν)𝑟𝐷

𝜀ν−1𝐾ν[γ𝑟𝐷
𝜀] + 𝐵𝑟𝐷

𝜀ν 
𝑑𝐾ν[𝑧]

𝑑z
(γ𝜀𝑟𝐷

𝜀−1) (E.23) 

or 

 
𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= 𝐵(𝜀ν)𝑟𝐷

𝜀ν−1𝐾ν[γ𝑟𝐷
𝜀] + 𝐵𝑟𝐷

𝜀ν 
𝑑𝐾ν[γ𝑟𝐷

𝜀]

𝑑(γ𝑟𝐷
𝜀)

(γ𝜀𝑟𝐷
𝜀−1) (E.24) 

or 
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𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= (𝜀ν)𝑟𝐷

𝜀ν−1𝐾ν[γ𝑟𝐷
𝜀] + 𝐵𝑟𝐷

𝜀ν+𝜀−1 γ𝜀
𝑑𝐾ν[γ𝑟𝐷

𝜀]

𝑑(γ𝑟𝐷
𝜀)
, (E.25) 

where 
𝑑𝐾ν[γ𝑟𝐷

𝜀]

𝑑(γ𝑟𝐷
𝜀)
= −𝐾ν−1[γ𝑟𝐷

𝜀] −
ν

γ𝑟𝐷
𝜀 𝐾ν[γ𝑟𝐷

𝜀]. Under the circumstances, Eq. E.25 is equal to 

 
𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= 𝐵(𝜀ν)𝑟𝐷

𝜀ν−1𝐾ν[γ𝑟𝐷
𝜀] + 𝐵γ𝜀𝑟𝐷

𝜀ν+𝜀−1 {−𝐾ν−1[γ𝑟𝐷
𝜀] −

ν

γ𝑟𝐷
𝜀 𝐾ν[γ𝑟𝐷

𝜀]} (E.26) 

or 

 
𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= 𝐵(𝜀ν)𝑟𝐷

𝜀ν−1𝐾ν[γ𝑟𝐷
𝜀] − 𝐵γ𝜀𝑟𝐷

𝜀ν+𝜀−1 𝐾ν−1[γ𝑟𝐷
𝜀] − 𝐵γ𝜀𝑟𝐷

𝜀ν+𝜀−1 
ν

γ𝑟𝐷
𝜀 𝐾ν[γ𝑟𝐷

𝜀]. (E.27) 

So, Eq. E.27 is equal to 

 
𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= 𝐵(𝜀ν)𝑟𝐷

𝜀ν−1𝐾ν[γ𝑟𝐷
𝜀] − 𝐵γ𝜀 𝑟𝐷

𝜀ν+𝜀−1 𝐾ν−1[γ𝑟𝐷
𝜀] − 𝐵(𝜀ν) 𝑟𝐷

𝜀ν−1  𝐾ν[γ𝑟𝐷
𝜀]. (E.28) 

Then, multiply Eq. E.28 with 𝑟𝐷
𝛽

, 

 

𝑟𝐷
𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= 𝐵(𝜀ν)𝑟𝐷

𝜀ν+β−1
𝐾ν[γ𝑟𝐷

𝜀] − 𝐵γ𝜀 𝑟𝐷
𝜀ν+𝜀−1+𝛽

𝐾ν−1[γ𝑟𝐷
𝜀]

− 𝐵(𝜀ν) 𝑟𝐷
𝜀ν+β−1 

 𝐾ν[γ𝑟𝐷
𝜀] 

(E.29) 

or 

 𝑟𝐷
𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
= −𝐵γ𝜀 𝑟𝐷

𝜀ν+𝜀−1+𝛽
𝐾ν−1[γ𝑟𝐷

𝜀]. (E.30) 

So, at 𝑟𝐷 = 1, 

 (𝑟𝐷
𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
)
𝑟𝐷=1

= −𝐵γ𝜀 𝐾ν−1[γ] = −
1

𝑠
. (E.31) 

As a consequence, 

 𝐵 =
1

𝑠γ𝜀𝐾ν−1[γ]
. (E.32) 

Finally, dimensionless pressure comes to 
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 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 

(

 
 
𝐾ν [

2√𝑠𝛼

𝛳 + 2𝑟𝐷

𝛳+2
2 ]

𝑠γ𝜀𝐾ν−1[γ]

)

 
 
. (E.33) 

Let us change 𝜀 and γ, 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 

(

 
 

𝐾ν [
2√𝑠𝛼

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]

𝑠
2√𝑠𝛼

𝛳 + 2 
𝛳 + 2
2  𝐾ν−1 [

2√𝑠𝛼

𝛳 + 2
]
)

 
 
. (E.34) 

To conclude, the result is  

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 

(

 
 

𝐾ν [
2√𝑠𝛼

𝛳 + 2𝑟𝐷

𝛳+2
2 ]

𝑠√𝑠𝛼   𝐾ν−1 [
2√𝑠𝛼

𝛳 + 2
]
)

 
 

 (E.35) 

or 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

1−𝛽
2
 

(

 
 

𝐾ν [
2√𝑠𝛼

𝛳 + 2𝑟𝐷

𝛳+2
2 ]

𝑠√𝑠𝛼   𝐾ν−1 [
2√𝑠𝛼

𝛳 + 2
]
)

 
 
. (E.36) 
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APPENDIX F 

 

METZLER ANOMALOUS DIFFUSION MODEL AT A CONSTANT RATE 

CONVERSION FROM DIMENSIONLESS TO DIMENSIONAL 

 

 

 

In this appendix, we convert the analytical solution of Metzler anomalous model at a 

constant rate condition from dimensionless to dimensional coordinate in the SI unit by using 

scaling property. The dimensionless pressure and time are given by 

 𝑝𝐷 =
𝑘ℎ

2π𝑞𝐵µ
Δ𝑝(𝑡) (F.1) 

and 

 𝑡𝐷 =
𝑘(𝑟𝑤)𝑡

𝜙(𝑟𝑤)𝑐𝑡µ 𝑟𝑤2
. (F.2) 

Dimensionless time can be written as 

 𝑡𝐷 = 𝜂
∗𝑡, (F.3) 

where 

 𝜂∗ =
𝑘(𝑟𝑤)

𝜙(𝑟𝑤)𝑐𝑡µ𝑟𝑤2
. (F.4) 

Taking the Laplace transform of Eq. F.1, 

 𝑝𝐷̿̿ ̿(𝑠) =
𝑘ℎ

2π𝑞𝐵µ
Δ𝑝̿̿̿̿ (𝑠), (F.5) 

where 𝑝𝐷̿̿ ̿(𝑠) is the Laplace transform of 𝑝𝐷(𝑡𝐷) with respect to time 𝑡, and Δ𝑝̿̿̿̿ (𝑠) represents the 

Laplace transform of Δ𝑝(𝑡) with respect to 𝑡. In addition, the solution of Metzler Anomalous 

diffusion model for finite wellbore and constant rate is 



141 

 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
𝐾ν [

2√𝑠𝛼

𝛳 + 2𝑟𝐷

𝛳+2
2 ]

𝑠√𝑠𝛼  𝐾ν−1 [
2√𝑠𝛼

𝛳 + 2
]

, (F.6) 

where 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) represents the Laplace transform of 𝑝𝐷(𝑡𝐷) with respect to 𝑡𝐷. After, by applying 

scaling property, 𝑝𝐷̿̿ ̿(𝑠) can be represented as: 

 𝑝𝐷̿̿ ̿(𝑠) = ℒ𝑡[𝑝𝐷(𝜂
∗𝑡)] =

1

𝜂∗
𝑝𝐷̅̅ ̅ (

𝑠

𝜂∗
). (F.7) 

So, 

 𝑝𝐷̿̿ ̿(𝑠) = ℒ𝑡[𝑝𝐷(𝜂
∗𝑡)] =

1

𝜂∗
𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠
𝜂∗
√
𝑠𝛼

𝜂∗
  𝐾ν−1

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

 (F.8) 

or 

 𝑝𝐷̿̿ ̿(𝑠) = ℒ𝑡[𝑝𝐷(𝜂
∗𝑡)] = 𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠√
𝑠𝛼

𝜂∗   𝐾ν−1

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

. (F.9) 

Make equal to Eq. F.5 and F.9 supplies: 
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𝑘ℎ

2π𝑞𝐵µ
Δ𝑝̿̿̿̿ (𝑠) = 𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2 𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠√
𝑠𝛼

𝜂∗   𝐾ν−1

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

. (F.10) 

Consequently, Δ𝑝̿̿̿̿ (𝑠) is equal to 

 Δ𝑝̿̿̿̿ (𝑠) =
2𝜋𝑞𝐵µ

𝑘ℎ
𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2 𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠√
𝑠𝛼

𝜂∗   𝐾ν−1

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

, (F.11) 

where 𝑟𝐷 =
𝑟

𝑟𝑤
. 
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APPENDIX G 

 

ANALYTICAL SOLUTION OF METZLER ANOMALOUS MODEL AT CONSTANT 

BOTTOMHOLE PRESSURE  

 

 

 

In this appendix, the analytical solution of Metzler anomalous diffusion model is presented 

for constant bottomhole pressure condition. The initial boundary value problem for the fractal 

model is defined as follows:  

 𝜕𝛼𝑝𝐷
𝜕𝑡𝐷

𝛼 =
1

𝑟𝐷
𝑑𝑓−1

𝜕

𝜕𝑟𝐷
(𝑟𝐷

𝛽 𝜕𝑝𝐷
𝜕𝑟𝐷

) , (G.1) 

where 𝛽 = 𝑑𝑓 −𝛳 − 1 and α =
2

𝛳+2
. Initial condition is given as 

 𝑝𝐷(𝑟𝐷, 𝑡𝐷 = 0) = 0.  (G.2) 

The inner boundary condition for a finite wellbore is described as 

 𝑝𝐷(𝑟𝐷 = 1, 𝑡𝐷) = 1.  (G.3) 

The outer boundary condition is described as 

 lim
𝑟𝐷→∞

𝑝𝐷(𝑟𝐷, 𝑡𝐷) = 0. (G.4) 

To begin with, taking the Laplace transform of PDE with respect to 𝑡𝐷, 

 𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) − 𝑠
𝛼−1𝑝𝐷(𝑟𝐷, 𝑡𝐷 = 0) =

1

𝑟𝐷
𝑑𝑓−1

𝑑

𝑑𝑟𝐷
(𝑟𝐷

𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
). (G.5) 

Applying the initial condition into the above equation, 

 𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =
1

𝑟𝐷
𝑑𝑓−1

𝑑

𝑑𝑟𝐷
(𝑟𝐷

𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
) (G.6) 

or 
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 𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =
1

𝑟𝐷
𝛽+𝛳

𝑑

𝑑𝑟𝐷
(𝑟𝐷

𝛽 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
). (G.7) 

Next, Laplace transform of inner and outer boundaries are, respectively 

 𝑝𝐷̅̅ ̅(𝑟𝐷 = 1, 𝑠) =
1

𝑠
 (G.8) 

and 

 lim
𝑟𝐷→∞

𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (G.9) 

Then, Eq. G.7 develops into, 

 𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =
1

𝑟𝐷
𝛽+𝛳

(𝛽𝑟𝐷
𝛽−1 𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
+ 𝑟𝐷

𝛽 𝑑
2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2  ), (G.10) 

 
𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) =

𝛽

𝑟𝐷
𝛳+1

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
+
1

𝑟𝐷
𝛳

𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 . 

(G.11) 

Let us rearrange the Eq. G.11 to find a general solution, 

 
1

𝑟𝐷
𝛳

𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 +

𝛽

𝑟𝐷
𝛳+1

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
− 𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (G.12) 

Multiply with r𝐷
ϴ+2, 

 𝑟𝐷
𝛳+2

1

𝑟𝐷
𝛳

𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 + 𝑟𝐷

𝛳+2
𝛽

𝑟𝐷
𝛳+1

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
− 𝑟𝐷

𝛳+2𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (G.13) 

So, 

 𝑟𝐷
2
𝑑2𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
2 + 𝛽𝑟𝐷

𝑑𝑝𝐷̅̅ ̅

𝑑𝑟𝐷
− 𝑟𝐷

𝛳+2𝑠𝛼𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 0. (G.14) 

The general solution of Eq. G.14 is 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
{𝐴𝐼ν [

2√𝑠𝛼

𝛳 + 2
𝑟𝐷

𝛳+2
2 ] + 𝐵𝐾ν [

2√𝑠𝛼

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]}, (G.15) 

where ν =
1−𝛽

𝛳+2
. Next, apply the outer boundary condition in Laplace space to the general solution 
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 lim
𝑟𝐷→∞

𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = lim
𝑟𝐷→∞

𝑟𝐷

𝛳+2
2
ν 
 lim
𝑟𝐷→∞

{𝐴𝐼ν [
2√𝑠𝛼

𝛳 + 2
𝑟𝐷

𝛳+2
2 ] + 𝐵𝐾ν [

2√𝑠𝛼

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]} = 0. (G.16) 

When 𝑟𝐷 goes to infinity, Bessel I function approaches to infinity, and Bessel K function goes to 

zero. Hence, A must be zero, but B cannot be zero. Consequently, Eq. G.16 reduces to 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
𝐵𝐾ν [

2√𝑠𝛼

𝛳 + 2
𝑟𝐷

𝛳+2
2 ]. (G.17) 

Next, apply the inner boundary condition (𝑟𝐷 = 1), 

 𝑝𝐷̅̅ ̅(𝑟𝐷 = 1, 𝑠) = 𝐵𝐾ν [
2√𝑠𝛼

𝛳 + 2
] =

1

𝑠
. (G.18) 

So, 

 
𝐵 =

1

𝑠𝐾ν [
2√𝑠𝛼

𝛳 + 2
]

. 
(G.19) 

To sum up, dimensionless pressure is equal to 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
𝐾ν [

2√𝑠𝛼

𝛳 + 2𝑟𝐷

𝛳+2
2 ]

𝑠𝐾ν [
2√𝑠𝛼

𝛳 + 2
]

 (G.20) 

or 

 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

1−𝛽
2
 
𝐾ν [

2√𝑠𝛼

𝛳 + 2𝑟𝐷

𝛳+2
2 ]

𝑠𝐾ν [
2√𝑠𝛼

𝛳 + 2
]

. (G.21) 
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APPENDIX H 

 

METZLER ANOMALOUS DIFFUSION MODEL AT A CONSTANT BOTTOMHOLE 

PRESSURE CONVERSION FROM DIMENSIONLESS TO DIMENSIONAL 

 

 

 

In this appendix, the analytical solution of Metzler anomalous model at a constant 

bottomhole pressure is converted from dimensionless to dimensional coordinate in the SI unit by 

using scaling property. The dimensionless pressure and time are given by, 

 𝑝𝐷 =
𝑝𝑖 − 𝑝

𝑝𝑖 − 𝑝𝑤𝑓
=
Δ𝑝(𝑟, 𝑡)

Δ𝑝𝑤𝑓
 (H.1) 

and 

 𝑡𝐷 =
𝑘(𝑟𝑤)𝑡

𝜙(𝑟𝑤)𝑐𝑡µ 𝑟𝑤2
. (H.2) 

Dimensionless time can be written as 

 𝑡𝐷 = 𝜂
∗𝑡, (H.3) 

where 

 𝜂∗ =
𝑘(𝑟𝑤)

𝜙(𝑟𝑤)𝑐𝑡µ𝑟𝑤2
. (H.4) 

Laplace transform of Eq. H.1 is equal to 

 𝑝𝐷̿̿ ̿(𝑠) =
1

Δ𝑝𝑤𝑓
Δ𝑝̿̿̿̿ (𝑟, 𝑠), (H.5) 

where 𝑝𝐷̿̿ ̿(𝑠) is the Laplace transform of 𝑝𝐷(𝑡𝐷) with respect to time 𝑡, and Δ𝑝̿̿̿̿ (𝑠) represents the 

Laplace transform of Δ𝑝(𝑡) with respect to 𝑡. Moreover, the solution of Metzler anomalous 

diffusion model for finite wellbore and constant bottomhole pressure is 
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 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 
𝐾ν [

2√𝑠𝛼

𝛳 + 2𝑟𝐷

𝛳+2
2 ]

𝑠𝐾ν [
2√𝑠𝛼

𝛳 + 2
]

, (H.6) 

where 𝑝𝐷̅̅ ̅(𝑟𝐷, 𝑠) represents the Laplace transform of 𝑝𝐷(𝑡𝐷) with respect to 𝑡𝐷. After, by applying 

scaling property, 𝑝𝐷̿̿ ̿(𝑠) can be represented as: 

 𝑝𝐷̿̿ ̿(𝑠) = ℒ𝑡[𝑝𝐷(𝜂
∗𝑡)] =

1

𝜂∗
𝑝𝐷̅̅ ̅ (

𝑠

𝜂∗
). (H.7) 

So, 

 𝑝𝐷̿̿ ̿(𝑠) = ℒ𝑡[𝑝𝐷(𝜂
∗𝑡)] =

1

𝜂∗
𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠
𝜂∗
 𝐾ν

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

 (H.8) 

or 

 𝑝𝐷̿̿ ̿(𝑠) = ℒ𝑡[𝑝𝐷(𝜂
∗𝑡)] = 𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠𝐾ν

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

. (H.9) 

Make equal to Eq. H.5 and H.9 supplies: 
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1

Δ𝑝𝑤𝑓
Δ𝑝̿̿̿̿ (𝑟𝐷, 𝑠) = 𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2 𝑟𝐷

𝛳+2
2

]
 
 
 

𝑠𝐾ν

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

. (H.10) 

Consequently, Δ𝑝̿̿̿̿ (𝑠) is equal to: 

 Δ𝑝̿̿̿̿ (𝑟𝐷, 𝑠) =
Δ𝑝𝑤𝑓
𝑠

𝑟𝐷

𝛳+2
2
ν 

(

 
 
 
 
 
 𝐾ν

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2 𝑟𝐷

𝛳+2
2

]
 
 
 

𝐾ν

[
 
 
 2√

𝑠𝛼

𝜂∗

𝛳 + 2

]
 
 
 

)

 
 
 
 
 
 

, (H.11) 

where 𝑟𝐷 =
𝑟

𝑟𝑤
. 
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APPENDIX I 

 

ANALYTICAL SOLUTION OF RAGHAVAN ANOMALOUS DIFFUSION MODEL AT 

CONSTANT RATE  

 

 

 

In this appendix, we present the analytical solution of Raghavan anomalous diffusion 

model for constant rate condition. The diffusivity equation of this model is 

 
1

𝑟𝑛−1
𝜕

𝜕𝑟
(𝑟𝑛−1−𝜃𝜆𝛼

𝜕Δ𝑝

𝜕𝑟
) = 𝜙𝑐𝑡

𝜕𝛼Δ𝑝(𝑟, 𝑡)

𝜕𝑡𝛼
, (I.1) 

where 𝛼 =
2

2+𝛳
 and 𝜆𝛼 =

𝑘𝛼

µ
. The initial condition is 

 Δ𝑝(𝑟, 𝑡 = 0) = 0. (I.2) 

The inner boundary condition for finite wellbore is 

 lim
𝑟→𝑟𝑤

(𝑟𝑛−1−𝜃
𝜕1−𝛼

𝜕𝑡1−𝛼
𝜕Δ𝑝

𝜕𝑟
) = −

𝑞𝑠𝑐𝐵

𝛼𝑛𝜆𝛼ℎ
, (I.3) 

where 𝛼𝑛 =
2𝜋

𝑛
2

𝛤(
𝑛

2
)
, and 𝑛 = 2. The outer boundary condition is defined as, 

 lim
𝑟→∞

Δ𝑝(𝑟, 𝑡) = 0. (I.4) 

Taking Laplace transform of PDE with respect to 𝑡 gives 

 
1

𝑟𝑛−1
𝜕

𝜕𝑟
(𝑟𝑛−1−𝜃𝜆𝛼

𝜕Δ𝑝̅̅̅̅

𝜕𝑟
) = 𝜙𝑐𝑡{𝑠

𝛼Δ𝑝̅̅̅̅ (𝑟, 𝑠) − 𝑠𝛼−1Δ𝑝(𝑟, 𝑡 = 0)}. (I.5) 

Apply the initial condition into the above equation, 

 
1

𝑟𝑛−1
𝜕

𝜕𝑟
(𝑟𝑛−1−𝜃

𝜕Δ𝑝̅̅̅̅

𝜕𝑟
) =

𝜙𝑐𝑡
𝜆𝛼

𝑠𝛼Δ𝑝̅̅̅̅ (𝑟, 𝑠). (I.6) 

Let us rearrange the Eq. I.6 
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 𝛽 = 𝑛 − 1 − 𝜃 (I.7) 

and 

 𝜂𝑖 =
𝜆𝛼
𝜙𝑐𝑡

, (I.8) 

so, the PDE can be rewritten as, 

 
1

𝑟𝛽+𝜃
𝑑

𝑑𝑟
(𝑟𝛽

𝑑Δ𝑝̅̅̅̅

𝑑𝑟
) =

1

𝜂𝑖
𝑠𝛼Δ𝑝̅̅̅̅ (𝑟, 𝑠). (I.9) 

Left hand side of Eq. I.9 can be expanded as, 

 
1

𝑟𝛽+𝜃
(𝛽𝑟𝛽−1

𝑑Δ𝑝̅̅̅̅

𝑑𝑟
+ 𝑟𝛽

𝑑2Δ𝑝̅̅̅̅

𝑑𝑟2
) =

1

𝜂𝑖
𝑠𝛼Δ𝑝̅̅̅̅ (𝑟, 𝑠) (I.10) 

or 

 𝛽
𝑟𝛽−1

𝑟𝛽+𝜃
𝑑Δ𝑝̅̅̅̅

𝑑𝑟
+

𝑟𝛽

𝑟𝛽+𝜃
𝑑2Δ𝑝̅̅̅̅

𝑑𝑟2
=
1

𝜂𝑖
𝑠𝛼Δ𝑝̅̅̅̅ (𝑟, 𝑠) (I.11) 

or 

 
𝛽

𝑟𝜃+1
𝑑Δ𝑝̅̅̅̅

𝑑𝑟
+
1

𝑟𝜃
𝑑2Δ𝑝̅̅̅̅

𝑑𝑟2
=
1

𝜂𝑖
𝑠𝛼Δ𝑝̅̅̅̅ (𝑟, 𝑠). (I.12) 

Multiply Eq. I.12 with 𝑟𝜃+2, and rearrange it 

 𝑟2
𝑑2Δ𝑝̅̅̅̅

𝑑𝑟2
+ 𝛽𝑟

𝑑Δ𝑝̅̅̅̅

𝑑𝑟
− 𝑟𝜃+2

𝑠𝛼

𝜂𝑖
Δ𝑝̅̅̅̅ (𝑟, 𝑠) = 0. (I.13) 

The general solution of Eq. I.13 is equal to 

 Δ𝑝̅̅̅̅ (𝑟, 𝑠) = 𝑟−
𝛳+2
2
ν′ 

{
 

 

𝐶𝐼ν′

[
 
 
 2√

𝑠𝛼

𝜂𝑖
𝛳 + 2

𝑟
𝛳+2
2

]
 
 
 

+ 𝐷𝐾ν′

[
 
 
 2√

𝑠𝛼

𝜂𝑖
𝛳 + 2

𝑟
𝛳+2
2

]
 
 
 

}
 

 

, (I.14) 

where C and D are the arbitrary constants, and these constants can be determined from the outer 

and inner boundary conditions. The order of the above equation, 
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 ν′ =
𝑛

𝑑𝑤
− 1 =

𝛽 − 1

𝛳 + 2

 

, (I.15) 

where 

 dw = 𝛳 + 2
 . (I.16) 

First, take the Laplace transform of the outer boundary, and then apply into the Eq. I.14, 

 lim
𝑟→∞

Δ𝑝̅̅̅̅ (𝑟, 𝑠) = 0. (I.17) 

Applying outer boundary gives result that C must be zero because 𝐼ν′ is unbounded as the argument 

r goes to infinity for any ν′. Therefore, Eq. I.14 reduces to: 

 Δ𝑝̅̅̅̅ (𝑟, 𝑠) = 𝐷𝑟−
𝛳+2
2
ν′ 𝐾ν′

[
 
 
 2√

𝑠𝛼

𝜂𝑖
𝛳 + 2

𝑟
𝛳+2
2

]
 
 
 

 (I.18) 

or 

 Δ𝑝̅̅̅̅ (𝑟, 𝑠) = 𝐷𝑟−
𝑑𝑤
2
ν′ 𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]. (I.19) 

To determine the constant D, we use the inner boundary condition given by Eq. I.3. Initially, we 

take the Laplace transform of Eq. I.3, 

 lim
𝑟→𝑟𝑤

[𝑟𝑛−1−𝜃ℒ𝑡 (
𝜕1−𝛼

𝜕𝑡1−𝛼
𝜕Δ𝑝

𝜕𝑟
)] = −

𝑞𝑠𝑐𝐵

𝛼𝑛𝜆𝛼ℎ𝑠
, (I.20) 

where  

 ℒ𝑡 (
𝜕1−𝛼

𝜕𝑡1−𝛼
𝜕Δ𝑝

𝜕𝑟
) = 𝑠1−𝛼

𝑑Δ𝑝̅̅̅̅ (𝑟, 𝑠)

𝑑𝑟
. (I.21) 

So, 

 lim
𝑟→𝑟𝑤

[𝑟𝑛−1−𝜃𝑠1−𝛼
𝑑Δ𝑝̅̅̅̅ (𝑟, 𝑠)

𝑑𝑟
] = −

𝑞𝑠𝑐𝐵

𝛼𝑛𝜆𝛼ℎ𝑠
 (I.22) 

or 
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 lim
𝑟→𝑟𝑤

[𝑟𝑛−1−𝜃
𝑑Δ𝑝̅̅̅̅ (𝑟, 𝑠)

𝑑𝑟
] = −

𝑞𝑠𝑐𝐵

𝛼𝑛𝜆𝛼ℎ𝑠2−𝛼
. (I.23) 

To apply inner boundary condition, firstly take the derivative of Eq. I.19 

 

𝑑Δ𝑝̅̅̅̅ (𝑟, 𝑠)

𝑑𝑟
= −𝐷

𝑑𝑤
2
ν′𝑟−

𝑑𝑤
2
ν′−1 𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

+ 𝐷𝑟−
𝑑𝑤
2
ν′ 

𝑑𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]

𝑑𝑟
. 

(I.24) 

The derivative of Bessel K function is equal to 

 
𝑑𝐾ν(𝑧)

𝑑𝑟
=
ν

z
𝐾ν(𝑧) − 𝐾ν+1(𝑧) (I.25) 

and the chain rule is 

 𝑑𝐾ν(𝑧)

𝑑𝑟
=
𝑑𝐾ν(𝑧)

𝑑𝑧

𝑑𝑧

𝑑𝑟
. 

(I.26) 

Therefore, 

 

𝑑𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]

𝑑𝑟

=

{
 
 

 
 

(

 
 𝜈′

2𝑠
𝛾
2 (
𝑟𝑑𝑤

𝜂𝑖𝑑𝑤
2 )

1
2

)

 
 
𝐾𝜈′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤
2
)

1
2

]

− 𝐾𝜈′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

}
 
 

 
 

(2𝑠
𝛼
2 (
1

2
) (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

−
1
2

)(𝑑𝑤
𝑟𝑑𝑤−1

𝜂𝑖𝑑𝑤2
) 

(I.27) 

or 
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𝑑𝐾ν′ (2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
)

𝑑𝑟

=

(

 
 𝜈′

2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤
2 )

1
2

)

 
 
(𝑠

𝛼
2  (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

−
1
2

)(
𝑟𝑑𝑤−1

𝜂𝑖𝑑𝑤
)𝐾𝜈′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1/2

]

− (𝑠
𝛼
2  (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

−
1
2

)(
𝑟𝑑𝑤−1

𝜂𝑖𝑑𝑤
)𝐾𝜈′+1 [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

] 

(I.28) 

or 

 

𝑑𝐾ν′ (2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
)

𝑑𝑟

= (
𝜈′𝑑𝑤
2𝑟

)𝐾𝜈′ [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1/2

]

− (𝑠
𝛼
2  
𝑟
𝑑𝑤
2
−1

𝜂
𝑖

1
2

)𝐾𝜈′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]. 

(I.29) 

Hence, Eq. I.24 develops into 

 

𝑑Δ𝑝̅̅̅̅ (𝑟, 𝑠)

𝑑𝑟
= −𝐷

𝑑𝑤
2
ν′𝑟−

𝑑𝑤
2
ν′−1 𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

+ 𝐷𝑟−
𝑑𝑤
2
ν′ {(

𝜈′𝑑𝑤

2𝑟
)𝐾𝜈′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

− (𝑠
𝛼
2  
𝑟
𝑑𝑤
2
−1

𝜂
𝑖

1
2

)𝐾𝜈′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤
2
)

1
2

]} 

(I.30) 

or 
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𝑑Δ𝑝̅̅̅̅ (𝑟, 𝑠)

𝑑𝑟
= −𝐷

𝑑𝑤
2
ν′𝑟−

𝑑𝑤
2
ν′−1 𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

+ 𝐷𝑟−
𝑑𝑤
2
ν′ (

𝜈′𝑑𝑤

2𝑟
)𝐾𝜈′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

− 𝐷𝑟−
𝑑𝑤
2
ν′ (𝑠

𝛼
2  
𝑟
𝑑𝑤
2
−1

𝜂
𝑖

1
2

)𝐾𝜈′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]. 

(I.31) 

As a result of simplifying gives, 

 
𝑑Δ𝑝̅̅̅̅ (𝑟, 𝑠)

𝑑𝑟
= −𝐷𝑟−

𝑑𝑤
2
ν′ (𝑠

𝛼
2  
𝑟
𝑑𝑤
2
−1

𝜂
𝑖

1
2

)𝐾𝜈′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]. (I.32) 

Multiply both sides of Eq. I.32 by 

 −𝑟𝑛−1−𝜃 = 𝑟𝑑𝑤𝜈+1. (I.33) 

Hence, Eq. I.32 comes into 

 𝑟𝑑𝑤𝜈+1
𝑑Δ𝑝̅̅̅̅ (𝑟, 𝑠)

𝑑𝑟
= −𝐷𝑟

𝑑𝑤
2
(ν′+1) ( 

𝑠
𝛼
2

𝜂𝑖
1/2
)𝐾𝜈′+1 [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]. (I.34) 

Take the limit as r goes to 𝑟𝑤 provides, 

 
lim
𝑟→𝑟𝑤

𝑟𝑑𝑤𝜈+1
𝑑Δ𝑝̅̅̅̅ (𝑟, 𝑠)

𝑑𝑟
= −𝐷

𝑠
𝛼
2

√𝜂𝑖
lim
𝑟→𝑟𝑤

𝑟
𝑑𝑤
2
(ν′+1)𝐾𝜈′+1 [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

] 
(I.35) 

or 

 
lim
𝑟→𝑟𝑤

𝑟𝑛−1−𝜃
𝑑Δ𝑝̅̅̅̅ (𝑟, 𝑠)

𝑑𝑟
= −𝐷

𝑠
𝛼
2

√𝜂𝑖
𝑟𝑤

𝑑𝑤
2
(ν′+1)

𝐾𝜈′+1 [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]. 
(I.36) 

Equalizing Eq. I.23 and I.36, 



155 

 

 
−𝐷

𝑠
𝛼
2

√𝜂𝑖
𝑟𝑤

𝑑𝑤
2
(ν′+1)

𝐾𝜈′+1 [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

] = −
𝑞𝑠𝑐𝐵

𝛼𝑛𝜆𝛼ℎ𝑠2−𝛼
. 

(I.37) 

As a consequence, D is equal to 

 
𝐷 =

𝑞𝑠𝑐𝐵

𝛼𝑛𝜆𝛼ℎ𝑠2−𝛼
√𝜂𝑖

𝑠
𝛼
2𝑟𝑤

𝑑𝑤
2
(ν′+1)

𝐾𝜈′+1 [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤
2 )

1
2

]

 
(I.38) 

or 

 
𝐷 =

𝑞𝑠𝑐𝐵

𝛼𝑛𝜆𝛼ℎ𝑠
2−
𝛼
2

√𝜂𝑖

𝑟𝑤

𝑑𝑤
2
(ν′+1)

𝐾𝜈′+1 [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

. 
(I.39) 

Finally, pressure change in the Laplace space is found as 

 

Δ𝑝̅̅̅̅ (𝑟, 𝑠)

=
𝑞𝑠𝑐𝐵

𝛼𝑛𝜆𝛼ℎ𝑠
2−
𝛼
2

√𝜂𝑖

𝑟𝑤

𝑑𝑤
2
(ν′+1)

𝐾𝜈′+1 [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

𝑟−
𝑑𝑤
2
ν′ 𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]. (I.40) 
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APPENDIX J 

 

ANALYTICAL SOLUTION OF RAGHAVAN ANOMALOUS DIFFUSION MODEL AT 

CONSTANT BOTTOMHOLE PRESSURE  

 

 

 

In this appendix, the analytical solution of Raghavan anomalous model at the constant 

bottomhole pressure is showed. The diffusivity equation is 

 
1

𝑟𝑛−1
𝜕

𝜕𝑟
(𝑟𝑛−1−𝜃𝜆𝛼

𝜕Δ𝑝

𝜕𝑟
) = 𝜙𝑐𝑡

𝜕𝛼Δ𝑝(𝑟, 𝑡)

𝜕𝑡𝛼
, (J.1) 

where 𝛼 =
2

2+𝛳
 and 𝜆𝛼 =

𝑘𝛼

µ
. The initial condition is given by 

 Δ𝑝(𝑟, 𝑡 = 0) = 0. (J.2) 

The inner boundary condition for finite wellbore case 

 Δ𝑝(𝑟 = 𝑟𝑤 , 𝑡) = Δ𝑝𝑤 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (J.3) 

The outer boundary condition is defined as 

 lim
𝑟→∞

Δ𝑝(𝑟, 𝑡) = 0. (J.4) 

Taking the Laplace transform of PDE is equal to 

 
1

𝑟𝑛−1
𝜕

𝜕𝑟
(𝑟𝑛−1−𝜃𝜆𝛼

𝜕Δ𝑝̅̅̅̅

𝜕𝑟
) = 𝜙𝑐𝑡{𝑠

𝛼Δ𝑝̅̅̅̅ (𝑟, 𝑠) − 𝑠𝛼−1Δ𝑝(𝑟, 𝑡 = 0)}. (J.5) 

Use the initial condition and rearrange the above equation develop into 

 
1

𝑟𝑛−1
𝑑

𝑑𝑟
(𝑟𝑛−1−𝜃

𝑑Δ𝑝̅̅̅̅

𝑑𝑟
) =

𝜙𝑐𝑡
𝜆𝛼

𝑠𝛼Δ𝑝̅̅̅̅ (𝑟, 𝑠). (J.6) 

Eq. J.6 can be written as 

 
1

𝑟𝛽+𝜃
𝑑

𝑑𝑟
(𝑟𝛽

𝑑Δ𝑝̅̅̅̅

𝑑𝑟
) =

1

𝜂𝑖
𝑠𝛼Δ𝑝̅̅̅̅ (𝑟, 𝑠), (J.7) 
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where 𝛽 = 𝑛 − 1 − 𝜃 and 𝜂𝑖 =
𝜆𝛼

𝜙𝑐𝑡
. Then, left hand side of Eq. J.7 can be rewritten as, 

 
1

𝑟𝛽+𝜃
(𝛽𝑟𝛽−1

𝑑Δ𝑝̅̅̅̅

𝑑𝑟
+ 𝑟𝛽

𝑑2Δ𝑝̅̅̅̅

𝑑𝑟2
) =

1

𝜂𝑖
𝑠𝛼Δ𝑝̅̅̅̅ (𝑟, 𝑠) (J.8) 

or 

 
𝛽

𝑟𝜃+1
𝑑Δ𝑝̅̅̅̅

𝑑𝑟
+
1

𝑟𝜃
𝑑2Δ𝑝̅̅̅̅

𝑑𝑟2
=
1

𝜂𝑖
𝑠𝛼Δ𝑝̅̅̅̅ (𝑟, 𝑠). (J.9) 

Expand Eq. J.9 with 𝑟𝜃+2, and rewrite it 

 𝑟2
𝑑2Δ𝑝̅̅̅̅

𝑑𝑟2
+ 𝛽𝑟

𝑑Δ𝑝̅̅̅̅

𝑑𝑟
− 𝑟𝜃+2

𝑠𝛼

𝜂𝑖
Δ𝑝̅̅̅̅ (𝑟, 𝑠) = 0. (J.10) 

The solution of Eq. J.10 is equal to 

 Δ𝑝̅̅̅̅ (𝑟, 𝑠) = 𝑟−
𝛳+2
2
ν′ 

{
 

 

𝐶𝐼ν′

[
 
 
 2√

𝑠𝛼

𝜂𝑖
𝛳 + 2

𝑟
𝛳+2
2

]
 
 
 

+ 𝐷𝐾ν′

[
 
 
 2√

𝑠𝛼

𝜂𝑖
𝛳 + 2

𝑟
𝛳+2
2

]
 
 
 

}
 

 

, (J.11) 

where C and D are the arbitrary constants, and these constants can be determined from the outer 

and inner boundary conditions. The order of the Bessel functions, 

 ν′ =
𝑛

𝑑𝑤
− 1 =

𝛽 − 1

𝛳 + 2

 

, (J.12) 

where 

 dw = 𝛳 + 2
 . (J.13) 

Next, the Laplace transform of outer boundary condition is found to determine C and D constants. 

 lim
𝑟→∞

Δ𝑝̅̅̅̅ (𝑟, 𝑠) = 0 . (J.14) 

Applying the outer boundary condition into Eq. J.11 results in C must be zero because 𝐼ν′ is 

unbounded when r goes to infinity. As a consequence, Eq. J.11 is equal to 
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 Δ𝑝̅̅̅̅ (𝑟, 𝑠) = 𝑟−
𝛳+2
2
ν 𝐷𝐾ν′

[
 
 
 2√

𝑠𝛼

𝜂𝑖
𝛳 + 2

𝑟
𝛳+2
2

]
 
 
 

 (J.15) 

or 

 Δ𝑝̅̅̅̅ (𝑟, 𝑠) = 𝐷𝑟−
𝑑𝑤
2
ν′ 𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤
2
)

1
2

]. (J.16) 

To find the constant D, the inner boundary condition in the Laplace space is used 

 Δ𝑝̅̅̅̅ (𝑟 = 𝑟𝑤 , 𝑠) =
Δ𝑝𝑤
𝑠
. (J.17) 

Using Eq. J.17 in Eq. J.16 gives 

 Δ𝑝̅̅̅̅ (𝑟 = 𝑟𝑤 , 𝑠) =
Δ𝑝𝑤
𝑠

= 𝐷𝑟𝑤
−
𝑑𝑤
2
ν′
  𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]. (J.18) 

So, the constant D is equal to 

 

D =
Δ𝑝𝑤
𝑠

1

𝑟𝑤
−
𝑑𝑤
2
ν′
𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

.  

(J.19) 

Finally, pressure change is expressed as 

 Δ𝑝̅̅̅̅ (𝑟, 𝑠) =
Δ𝑝𝑤
𝑠

𝑟−
𝑑𝑤
2
ν′

𝑟𝑤
−
𝑑𝑤
2
ν′

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

 

. (J.20) 
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APPENDIX K 

 

ANALYTICAL SOLUTION OF DIMENSIONLESS RATE FOR RAGHAVAN 

ANOMALOUS DIFFUSION MODEL AT CONSTANT BOTTOMHOLE PRESSURE  

 

 

 

In this appendix, the analytical solution of dimensionless rate is presented by using 

Raghavan anomalous model at the constant bottomhole pressure. Dimensionless rate is found by 

using the following equation. 

 𝑟𝑛−1−𝜃
𝜕1−𝛼

𝜕𝑡1−𝛼
𝜕Δ𝑝

𝜕𝑟
 = −

𝑞𝑠𝑐(𝑟, 𝑡)𝐵

𝛼𝑛𝜆𝛼ℎ

 

. (K.1) 

where Δ𝑝 is constant and 𝑞𝑠𝑐(𝑟, 𝑡) changes with time and location. Taking the Laplace transform 

of Eq. K.1 develops into 

 𝑟𝑛−1−𝜃 ℒ𝑡 (
𝜕1−𝛼

𝜕𝑡1−𝛼
𝜕Δ𝑝

𝜕𝑟
) = −ℒ𝑡 (

𝑞𝑠𝑐(𝑟, 𝑡)𝐵

𝛼𝑛𝜆𝛼ℎ
 )

 

 (K.2) 

or 

 𝑟𝑛−1−𝜃 ℒ𝑡 (
𝜕1−𝛼

𝜕𝑡1−𝛼
𝜕Δ𝑝

𝜕𝑟
) = −

𝐵

𝛼𝑛𝜆𝛼ℎ
ℒ𝑡(𝑞𝑠𝑐(𝑟, 𝑡))

  (K.3) 

or 

 {𝑟𝑛−1−𝜃𝑠1−𝛼
dΔ𝑝̅̅̅̅

𝑑𝑟
}  = −

𝐵

𝛼𝑛𝜆𝛼ℎ
𝑞𝑠𝑐̅̅ ̅̅ (𝑟, 𝑠),

 

 

 (K.4) 

where  
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 Δ𝑝̅̅̅̅ (𝑟, 𝑠) =
Δ𝑝𝑤
𝑠

𝑟−
𝑑𝑤
2
ν′

𝑟𝑤
−
𝑑𝑤
2
ν′

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

, (K.5) 

where 𝜂𝑖 =
𝜙𝑐

𝜆
=

𝜙𝑐µ

𝑘
 ,and Δ𝑝𝑤 is the well pressure, and Δ𝑝̅̅̅̅ (𝑟, 𝑠) is the Laplace transform of 

Δ𝑝(𝑟, 𝑡) with respect to 𝑡. Next, taking the derivative of Eq. K.5 with respect to r comes into 

 

𝑑Δ𝑝̅̅̅̅ (𝑟, 𝑠)

𝑑𝑟
=

𝑑

{
  
 

  
 

Δ𝑝𝑤
𝑠
𝑟−

𝑑𝑤
2
ν′

𝑟𝑤
−
𝑑𝑤
2
ν′

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤
2 )

1
2

]

}
  
 

  
 

𝑑𝑟
   

(K.6) 

or 

 
𝑑Δ𝑝̅̅̅̅ (𝑟, 𝑠)

𝑑𝑟
=

Δ𝑝𝑤

𝑠𝑟𝑤
−
𝑑𝑤
2
ν′
𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

𝑑 {𝑟−
𝑑𝑤
2
ν′𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]}

𝑑𝑟
  . (K.7) 

Let us focus on the second term of Eq. K.7 

 

𝑑 {𝑟−
𝑑𝑤
2
ν′𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]}

𝑑𝑟
= (−

𝑑𝑤
2
ν′𝑟−

𝑑𝑤
2
ν′−1𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

])

+ 𝑟−
𝑑𝑤
2
ν′

𝑑𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]

𝑑𝑟
. 

(K.8) 

Let us assume 
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 𝑧 = 2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

. (K.9) 

The chain rule is applied for derivative of Bessel K function, 

 
𝑑𝐾ν′(𝑧)

𝑑𝑟
=
𝑑𝐾ν′(𝑧)

𝑑𝑧

𝑑𝑧

𝑑𝑟
. (K.10) 

Derivative of Eq. K.9 with respect to r 

 
𝑑𝑧

𝑑𝑟
= {𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

−
1
2

} {𝑑𝑤
𝑟𝑑𝑤−1

𝜂𝑖𝑑𝑤2
}. (K.11) 

Then, derivative of Bessel K function is equal to 

 
𝑑𝐾ν(𝑧)

𝑑𝑧
=
ν′

𝑧
𝐾ν′(𝑧) − 𝐾ν′+1(𝑧). (K.12) 

So, Eq. K.12 can be written as 

 

𝑑𝐾ν(𝑧)

𝑑𝑧
=

ν′

2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤
2 )

1
2

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

] − 𝐾ν′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]. 
(K.13) 

As a result, Eq. K.10 develops into 

 

𝑑𝐾ν′(𝑧)

𝑑𝑟
=

{
 
 

 
 

ν′

2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤
2 )

1
2

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

− 𝐾ν′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

}
 
 

 
 

{𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

−
1
2

𝑑𝑤
𝑟𝑑𝑤−1

𝜂𝑖𝑑𝑤2
} 

(K.14) 

or 



162 

 

 
𝑑𝐾ν′(𝑧)

𝑑𝑟
= {

ν′𝑑𝑤
2𝑟

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

] − 𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

(
𝑑𝑤
𝑟
) 𝐾ν′+1 [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]}. (K.15) 

Apply Eq. K.15 into Eq. K.8, 

 

𝑑 {𝑟−
𝑑𝑤
2
ν′𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]}

𝑑𝑟
= (−

𝑑𝑤
2
ν′𝑟−

𝑑𝑤
2
ν′−1𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

])

+ 𝑟−
𝑑𝑤
2
ν′ {

ν′𝑑𝑤
2𝑟

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

− 𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

(
𝑑𝑤
𝑟
) 𝐾ν′+1 [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]} 

(K.16) 

or 

 

𝑑 {𝑟−
𝑑𝑤
2
ν′𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]}

𝑑𝑟

= −
𝑑𝑤
2
ν′𝑟−

𝑑𝑤
2
ν′−1𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

+
𝑑𝑤
2
ν′𝑟−

𝑑𝑤
2
ν′−1𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

− 𝑟−
𝑑𝑤
2
ν′ (

𝑑𝑤
𝑟
) 𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤
2
)

1
2

 𝐾ν′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤
2
)

1
2

]. 

(K.17) 

So, Eq. K.17 is equal to 
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𝑑 {𝑟−
𝑑𝑤
2
ν′𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]}

𝑑𝑟
= 

− 𝑟−
𝑑𝑤
2
ν′ (

𝑑𝑤
𝑟
) 𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

 𝐾ν′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]. 

(K.18) 

As a consequence, Eq. K.7 develops into 

 

𝑑Δ𝑝̅̅̅̅ (𝑟, 𝑠)

𝑑𝑟

= −
Δ𝑝𝑤

𝑠𝑟𝑤
−
𝑑𝑤
2
ν′
𝐾ν′ [2𝑠

𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

{𝑟−
𝑑𝑤
2
ν′ (
𝑑𝑤
𝑟
) 𝑠

𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

 𝐾ν′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]} 
(K.19) 

or 

 
𝑑Δ𝑝̅̅̅̅ (𝑟, 𝑠)

𝑑𝑟
= −

Δ𝑝𝑤

𝑠1−
𝛼
2

𝑟−
𝑑𝑤
2
ν′

𝑟𝑤
−
𝑑𝑤
2
ν′
(
𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2 𝑑𝑤
𝑟

𝐾ν′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

. (K.20) 

Use Eq. K. 20 into Eq. K.4 

 

−

{
  
 

  
 

𝑟𝑛−1−𝜃𝑠1−𝛼
Δ𝑝𝑤

𝑠1−
𝛼
2

𝑟−
𝑑𝑤
2
ν′

𝑟𝑤
−
𝑑𝑤
2
ν′
(
𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2 𝑑𝑤
𝑟

𝐾ν′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

}
  
 

  
 

 

= −
𝐵

𝛼𝑛𝜆𝛼ℎ
𝑞𝑠𝑐̅̅ ̅̅ (𝑟, 𝑠)

 
 

 

(K.21) 
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or 

 −

{
  
 

  
 

𝑟𝑛−1−𝜃
Δ𝑝𝑤

𝑠
𝛼
2

𝑟−
𝑑𝑤
2
ν′

𝑟𝑤
−
𝑑𝑤
2
ν′
(
𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2 𝑑𝑤
𝑟

𝐾ν′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

}
  
 

  
 

 = −
𝐵

𝛼𝑛𝜆𝛼ℎ
𝑞𝑠𝑐̅̅ ̅̅ (𝑟, 𝑠).

 

 

 (K.22) 

Note that, dimensionless rate is described as 

 𝑞𝐷(𝑟𝐷, 𝑡𝐷) =  
𝛼𝑝𝐵

𝛼𝑛𝜆𝛼ℎΔ𝑝𝑤
𝑞𝑠𝑐(𝑟, 𝑡), (K.23) 

where dimensionless time 

 𝑡𝐷 =
𝜂𝑖
𝑟𝑑𝑤

𝑡𝛼 (K.24) 

and 

 𝛼𝑛 =
2𝜋

𝑛
2

𝛤 (
𝑛
2)

 (K.25) 

and 

 𝛼𝑝 = (
1

𝜂𝑖𝑑𝑤2
)

1
𝛾
−1

𝑟𝑤
𝑑𝑤(

1
𝛾
−𝜉)

, (K.26) 

where 𝜉 =
𝑛

𝑑𝑤
 and 𝑛 = 2. Taking the Laplace transform of Eq. K.23 with respect to 𝑡 

 𝑞𝐷̅̅ ̅(𝑟𝐷, 𝑠) =  
𝛼𝑝𝐵

𝛼𝑛𝜆𝛼ℎΔ𝑝𝑤
𝑞𝑠𝑐̅̅ ̅̅ (𝑟, 𝑠) (K.27) 

or 

 𝑞𝑠𝑐̅̅ ̅̅ (𝑟, 𝑠) =
𝛼𝑛𝜆𝛼ℎΔ𝑝𝑤
𝛼𝑝𝐵

𝑞𝐷̅̅ ̅(𝑟𝐷, 𝑠).  (K.28) 

Consequently, Eq. K.22 can be rewritten as 
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𝛼𝑛𝜆𝛼ℎ

𝐵

{
  
 

  
 

𝑟𝑛−1−𝜃
Δ𝑝𝑤

𝑠
𝛼
2

𝑟−
𝑑𝑤
2
ν′

𝑟𝑤
−
𝑑𝑤
2
ν′
(
𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2 𝑑𝑤
𝑟

𝐾ν′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

}
  
 

  
 

 

=
𝛼𝑛𝜆𝛼ℎΔ𝑝𝑤
𝛼𝑝𝐵

𝑞𝐷̅̅ ̅(𝑟𝐷, 𝑠).
 

 

 

(K.29) 

Simplifying Eq. K.29 comes into 

 

{
  
 

  
 

𝑟𝑛−1−𝜃
1

𝑠
𝛼
2

𝑟−
𝑑𝑤
2
ν′

𝑟𝑤
−
𝑑𝑤
2
ν′
(
𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2 𝑑𝑤
𝑟

𝐾ν′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

}
  
 

  
 

 =
1

𝛼𝑝
𝑞𝐷̅̅ ̅(𝑟𝐷, 𝑠).

 

 

 (K.30) 

Applying the 𝛼𝑝 and 𝜉 into the above equation comes up to 

 

(
1

𝜂𝑖𝑑𝑤2
)

1
𝛼
−1

𝑟𝑤
𝑑𝑤(

1
𝛼
−
𝑛
𝑑𝑤

)

{
  
 

  
 

𝑟𝑛−1−𝜃
1

𝑠
𝛼
2

𝑟−
𝑑𝑤
2
ν′

𝑟𝑤
−
𝑑𝑤
2
ν′
(
𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2 𝑑𝑤
𝑟

𝐾ν′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤
2 )

1
2
]

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

}
  
 

  
 

 

= 𝑞𝐷̅̅ ̅(𝑟𝐷, 𝑠),
   

(K.31) 

where 𝑛 − 1 − 𝛳 = 𝑑𝑤ν
′ + 1 and 𝛼 =

2

𝑑𝑤
. As a result, the dimensionless rate is equal to 
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 𝑞𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑑𝑤𝑟𝐷
−𝑑𝑤(

1
𝛼
−
1+𝜉
2 )

(
𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
𝛼
−
1
2

𝑠−
𝛼
2

𝐾ν′+1 [2𝑠
𝛼
2 (

𝑟𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2
]

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

, (K.31) 

where 𝑟𝐷 =
𝑟

𝑟𝑤
. At the wellbore (𝑟𝐷 = 1). The well response is 

 𝑞𝐷̅̅ ̅(𝑟𝐷, 𝑠) = 𝑑𝑤 (
𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
𝛼
−
1
2

𝑠−
𝛼
2

𝐾ν′+1 [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

𝐾ν′ [2𝑠
𝛼
2 (

𝑟𝑤
𝑑𝑤

𝜂𝑖𝑑𝑤2
)

1
2

]

. (K.32) 

 

 


