

TÜRKİYE CUMHURİYETİ

ANKARA ÜNİVERSİTESİ

SAĞLIK BİLİMLERİ ENSTİTÜSÜ

KÖŞE YAZILARINDA YAZARLIK ANALİZİNİN

ADLİ BİLİŞİME KATKISI

Cemre KOÇYİĞİT

DİSİPLİNLERARASI ADLİ BİLİMLER ANABİLİM DALI

ADLİ BİLİŞİM

YÜKSEK LİSANS TEZİ

DANIŞMAN

Dr.Öğr.Üyesi Bülent TUĞRUL

ANKARA

2022

TÜRKİYE CUMHURİYETİ

ANKARA ÜNİVERSİTESİ

SAĞLIK BİLİMLERİ ENSTİTÜSÜ

KÖŞE YAZILARINDA YAZARLIK ANALİZİNİN

ADLİ BİLİŞİME KATKISI

Cemre KOÇYİĞİT

DİSİPLİNLERARASI ADLİ BİLİMLER ANABİLİM DALI

ADLİ BİLİŞİM

YÜKSEK LİSANS TEZİ

DANIŞMAN

Dr.Öğr.Üyesi Bülent TUĞRUL

ANKARA

2022

ii

 ETİK BEYAN

Ankara Üniversitesi

Sağlık Bilimleri Enstitüsü Müdürlüğü’ne,

Yüksek Lisans tezi olarak hazırlayıp sunduğum “Köşe Yazılarında Yazarlık

Analizinin Adli Bilişime Katkısı” başlıklı tez; bilimsel ahlak ve değerlere uygun

olarak tarafımdan yazılmıştır. Tezimin fikir/hipotezi tümüyle tez danışmanım ve

bana aittir. Tezde yer alan deneysel çalışma/araştırma tarafımdan yapılmış olup, tüm

cümleler, yorumlar bana aittir.

Yukarıda belirtilen hususların doğruluğunu beyan ederim.

Öğrencinin Adı Soyadı: Cemre KOÇYİĞİT

Tarih: 06.01.2022

İmza:

iii

KABUL VE ONAY

Ankara Üniversitesi Sağlık Bilimleri Enstitüsü

Disiplinlerarası Adli Bilimler Anabilim Dalında

Cemre KOÇYİĞİT tarafından hazırlanan

“Köşe Yazılarında Yazarlık Analizinin Adli Bilişime Katkısı” adlı tez çalışması

aşağıdaki jüri tarafından YÜKSEK LİSANS TEZİ olarak OY BİRLİĞİ/OY

ÇOKLUĞU ile kabul edilmiştir.

Tez Savunma Tarihi:

24/01/2022

Prof.Dr. Süleyman TOSUN

Hacettepe Üniversitesi

Jüri Başkanı

Dr.Öğr.Üyesi Yılmaz AR Dr.Öğr.Üyesi Bülent TUĞRUL

 Ankara Üniversitesi Ankara Üniversitesi

 Üye Mühendislik Fakültesi

 (Tez Danışmanı)

Tez hakkında alınan jüri kararı, Ankara Üniversitesi Sağlık Bilimleri Enstitüsü

Yönetim Kurulu tarafından onaylanmıştır.

Prof. Dr. Fügen AKTAN

Sağlık Bilimleri Enstitüsü Müdürü

iv

İÇİNDEKİLER

Etik Beyan ii

Kabul ve Onay iii

İçindekiler iv

Önsöz vi

Simgeler ve Kısaltmalar vii

Şekiller viii

Çizelgeler xi

1. GİRİŞ 1

1.1. Problem ve Önlem 1

1.2. Araştırmanın Amacı ve Önemi 3

1.3. Sınırlılıklar 4

1.4. Literatür Özeti 4

1.4.1. Bilişim 4

1.4.2. Adli Bilişim 4

1.4.2.1. Adli Bilişimin Tarihi 5

1.4.3. Adli Dilbilim 7

1.4.4. Yazarlık Analizi 8

1.4.4.1. “Idiosyncratic Alışkanlıklar” nedir? 8

1.4.4.2. Stilistik özellikler (Stylometric features) 9

1.4.5. Doğal Dil İşleme 10

1.4.5.1. Metin Madenciliğinde Python İşlevselliği 14

1.4.5.2. Tez Çalışmasında Kullanılan Python Kütüphaneleri 15

1.4.6. Makine Öğrenmesi 18

1.4.6.1. Derin Öğrenme 21

1.4.6.2. Tez Çalışmasında ML için Kullanılan Metotlar 21

1.4.6.3. Tez Çalışmasında Kullanılan ML Algoritmaları 25

1.4.7. Yazarlık Analizi Yapılmış Çalışma Örnekleri 32

2. GEREÇ VE YÖNTEM 37

2.1. Verilerin Toplanması 37

2.1.1. Birinci Aşama 37

v

2.1.2. İkinci Aşama 37

2.1.3. Üçüncü Aşama 40

2.1.4. Dördüncü Aşama 43

2.1.4.1. TF-IDF Vektorizer ile Kosinüs Benzerliği Uygulaması 46

2.1.4.2. CountVektorizer ile Öklid Mesafesi Uygulaması 49

2.1.4.3. KNN Algoritması Uygulaması 51

2.1.4.4. Naive Bayes Algoritması Uygulaması 52

2.1.4.5. SVM Algoritması Uygulaması 53

2.1.4.6. Decision Tree Classifier ve MLP Algoritmaları Uygulamaları 54

2.1.4.7. LSTM Algoritması Uygulaması 54

3. BULGULAR 59

3.1. Verilerin Analizi 59

3.1.1. TF-IDF Vektorizer ile Kosinüs Benzerliği Analizi 59

3.1.2. CountVektorizer ile Öklid Mesafesi Analizi 60

3.1.3. KNN Algoritması Analizi 61

3.1.4. Naive Bayes Algoritması Analizi 62

3.1.5. SVM Algoritması Analizi 64

3.1.6. Decision Tree Classifier ve MLP Algoritmaları Analizleri 65

3.1.7. LSTM Algoritması Analizi 66

4. TARTIŞMA 68

5. SONUÇ VE ÖNERİLER 69

ÖZET 70

SUMMARY 71

KAYNAKLAR 72

EKLER 79

Ek-1: 2.1.2. İkinci Aşama Kodları 79

Ek-2: 2.1.3. Üçüncü Aşama Kodları 80

Ek-3: 2.1.4. Dördüncü Aşama Kodları 81

Ek-4: 3.1. Verilerin Analizi Kodları 91

ÖZGEÇMİŞ 92

vi

ÖNSÖZ

Teknolojinin gelişimi ile birlikte bilişim suçlarının arttığı göz ardı edilemez bir

gerçektir. Özelleştirildiğinde ise intihal bu suçlar arasında en yaygın bilişim

suçlarından birisidir. Bu çalışma vasıtasıyla bilişim sistemleri kullanılarak en

basitinden intihali tespit etme ve engelleme amaçlanacaktır. Bu hedefe ulaşmada

Doğal Dil İşleme ve makine öğrenme algoritmaları sonucuna göre araştırmanın

başarılı olup olmadığı hususunda gözlemler yapılmıştır.

Cumhuriyet tarihi boyunca öncelikle bir kadın olarak ilimle bu günlere

gelmemizi; dolayısıyla bu çalışmayı yapabilmemi sağlayan ilk olarak başöğretmen

Mustafa Kemal ATATÜRK’e minnetlerimi sunar, bu tez çalışmasını yürütmede

yardımlarını ve katkılarını hiçbir zaman esirgemeyen danışman hocam, Dr.Öğr.Üyesi

Bülent TUĞRUL’a ve her koşulda beni destekleyen, yanımda olan sevgili aile

fertlerime ve arkadaşlarıma teşekkür ederim.

vii

SİMGELER VE KISALTMALAR

AI Artificial İntelligence (Yapay Zekâ)

API Application Programming Interface

 (Uygulama Programlama Ara yüzü)

CPU Central Processing Unit (Merkezi İşlem Birimi)

SRI Scientific Research Institute (Bilimsel Araştırma Kurumu)

DDİ Doğal Dil İşleme

EDM Euclidean Distance Matrix (Öklid Uzaklık Matrisi)

GPU Graphics Processing Unit (Grafik İşlem Birimi)

KNN K-Nearest Neighbours (En yakın K Komşu)

LSTM Long Short Term Memory (Uzun Kısa Süreli Bellek)

MDS Multidimensional Scaling (Çok boyutlu Ölçekleme)

ML Machine Learning (Makine Öğrenme)

MLP Multi-Layer Perceptron (Çok Katmanlı Algılayıcı)

NB Naive Bayes

NER Named Entity Recognition (Adlandırılmış Varlık Tanıma)

NLP Natural Language Processing

NLTK Natural Language Toolkit (Doğal Dil Araç Takımı)

RNN Recurrent Neural Networks (Tekrarlayan Sinir Ağları)

SVC Support Vector Classifier (Destek Vektör Sınıflandırıcısı)

SVM Suppor Vector Machines (Destek Vektör Makineleri)

TF-IDF Term Frequency- Inverse Document Frequency

 (Terim Frekansı- Ters Metin Frekansı)

VSC Visual Studio Code

viii

ŞEKİLLER

Şekil 1.1. Türkçe dilinde her simge/sözcük için tür belirleme örneği 12

Şekil 1.2. Türkçe dilinde metin kök çözümleme örneği 12

Şekil 1.3. Türkçe dilinde durduran ifadeleri belirleme örneği 13

Şekil 1.4. Türkçe dilinde bağımlı ayrıştırma örneği 13

Şekil 1.5. Türkçe dilinde isim öbeklerini bulma örneği 13

Şekil 1.6. Türkçe dilinde adlandırılmış varlık teşhisi örneği 14

Şekil 1.7. Makine öğrenimi modelinin görsel bir örneği 19

Şekil 1.8. Makine Öğrenme sınıflandırması 19

Şekil 1.9. Bir girdiyi sayısal değerlere dönüştürme örneği 22

Şekil 1.10. İki girdiyi sayısal değerlere dönüştürme örneği 22

Şekil 1.11. TF-IDF Vectorizer kullanılan denklemler 23

Şekil 1.12. Vektörleri standartlaştırma örneği 23

Şekil 1.13. Kosinüs Benzerliği Örneği 24

Şekil 1.14. Şarap örneğinde kırmızı ve beyaz kadehlerin mirisetin ve rutin

seviyelerine göre ayrımı grafiği 30

Şekil 1.15. Yeni bir kadeh şarabın KNN algoritmasına göre sınıflandırılması 30

Şekil 1.16. Karar Ağacı Örneği 31

Şekil 2.1. Web sitesinden çekilen bir metin örneği 38

Şekil 2.2. Web sitelerinden çekilen linkler örneği 39

Şekil 2.3. Web sitelerinden çekilen linkler + metinlerin örnekleri 39

Şekil 2.4. Web sitelerinden çekilen metinlerde bozuk kısımların ve simgelerin

çıkarıldığı ‘.txt’ örneği 39

Şekil 2.5. Lemmatization işlemi sonrası çıktı örneği 41

ix

Şekil 2.6. ‘nltk’ kütüphanesinden durduran ifadeler (stop-words) çıkarma

işlemi çıktı örneği 42

Şekil 2.7. ‘Nltk’ kütüphanesinden sayıların ve noktalama işaretlerinin

çıkarılması ve kelimelerdeki bazı harflerin değişimi çıktı örneği 42

Şekil 2.8. Her bir köşe yazısı için lemmaların ayrı dosyalara

kaydolduğunu gösteren bir örnek 43

Şekil 2.9. Ayrı dosyalara kaydolmuş bir metinde bulunan lemma örnekleri 43

Şekil 2.10. ‘lemmas.zip’ dosyası ‘.zip’ uzantısından kurtarma ve

dosyaları çıkarma örneği 44

Şekil 2.11. Tüm köşe yazarları için ne kadar lemma metni bulunduğu

ve metinlerin isimlerinin olduğu kod çıktısı 44

Şekil 2.12. Köşe yazarlarının köşe yazısı başına düşen lemma adetleri

ve lemma başına düşen karakter adetleri kod çıktısı 45

Şekil 2.13. Köşe yazarlarının köşe yazısı başına düşen lemma adetleri

ve lemma başına düşen karakter adetleri grafik gösterimi 45

Şekil 2.14. Tek yazara ait köşe yazılarının ve etiketleme örneği çıktısı 46

Şekil 2.15. Köşe yazılarının “articles” ve bağlı etiketlerinin

“labels” olarak ayrı ayrı toplanması 46

Şekil 2.16. TfidfVectorizer ile lemmaları vektörlere çevirme ve dizilişleri 47

Şekil 2.17. CountVectorizer ile lemmaları vektörlere çevirme ve dizilişleri 49

Şekil 2.18. Metinlerin eğitim ve test verilerine bölünmesi;

CountVectorizer/TfidfVectorizer uygulanması 51

Şekil 2.19. KNN Skorları 52

Şekil 2.20. Naive Bayes Skorları 53

Şekil 2.21. SVM Skorları 53

Şekil 2.22. MLP ve DecisionTree Skorları 54

Şekil 2.23. LSTM Algoritmasının kurulumu ve yazılan değerler 55

x

Şekil 2.24. Eğitim ve test kümelerinin boyutu; eğitim kümesinin

ilk öğesinin ve yazarının çıktısı 55

Şekil 2.25. Eğitim makalelerinde sözcük dizini atanması ve

bu dizinin diziliş çıktısı 56

Şekil 2.26. Test makalelerinde sözcük dizini atanması ve bu dizinin diziliş çıktısı 56

Şekil 2.27. Eğitim makalelerinin bağlı olduğu eğitim etiketlerine

dizin atanması ve sıralanması 56

Şekil 2.28. Test makalelerinin bağlı olduğu test etiketlerine dizin atanması ve

sıralanması 57

Şekil 3.1. Yazılar arası TfidfVectorizer ile açısal mesafelerin görsel matrisi 60

Şekil 3.2. Yazılar arası CountVectorizer ile Öklid mesafelerin görsel matrisi 61

Şekil 3.3. CountVectorizer/TfidfVectorizer ile k-değeri için hata grafiği

ve skorları 62

Şekil 3.4. Naive Bayes hata matrisi 63

Şekil 3.5. SVM hata matrisi 65

Şekil 3.6. LSTM Algoritması sonucu çıktısı 67

Şekil 3.7. LSTM Algoritması sonucu çıktısının grafik gösterimi 67

xi

ÇİZELGELER

Çizelge 2.1. Yazarların seçilen köşe yazısı adetleri ve köşe yazılarında bulunan

karakter/kelime adetleri 40

Çizelge 2.2. Matris gösterimi için yazarların toplam yazı aralıkları ve

bağlı renkleri 47

Çizelge 2.3. Seçilen yazıların TfidfVectorizer ile açısal mesafeleri 48

Çizelge 2.4. Seçilen yazıların CountVectorizer ile Öklid Mesafeleri 50

Çizelge 2.5. Ardışık modelin eklenen katmanlar sonrası çıkan özeti 58

Çizelge 3.1. Sklearn algoritmalarının toplam ortalama skorları 66

1

1. GİRİŞ

1.1. Problem ve Önlem

Bilişim sistemleri teknolojinin gelişmesiyle hayatımızın her alanında var

olmuştur ve olmaktadır. Yeni suç türleri kendini göstermekte, suçlular teknolojiye

ulaşarak yasa dışı faaliyetlerine devam etmektedirler. İncelediğinde özellikle bilişim

sistemlerini kullanarak suç işlemede büyük bir artış bulunmuş; Türkiye'de de

dünyada olduğu gibi, bilişim sistemlerine karşı ve bilişim sistemleri kullanarak suç

işleme, kolluk ve yargı mercilerinin hemen her gün yüz yüze geldiği suç türleri

içinde yer almaktadır. Bilişim suçları üç başlıkla gruplandırılır;

1. Hedef Olarak Bilişim Sistemleri: Yetki olmadan erişim sağlama, servis dışı

bırakma, verilere zarar verme, vb.,

2. Bilişim Bağlantılı Suçlar: Kredi kartı ve internet bankacılığı dolandırıcılığı,

telif hakları ihlali vb.,

3. Bilişim Vasıtalı Normal Suçlar: Uyuşturucu trafiği, kara para aklama, hakaret,

terör propagandası, vb.dir (Ekizer, 2014).

Günümüz bilgi teknolojisi çağında, herhangi bir bilgiye erişim o kadar zor

olmamaktadır. Kullanıcı, bilgiye dünyanın her yerinden 7/24 ulaşabilir. Ancak

bilginin kullanımıyla birlikte kötüye kullanımı da arttığından, bazı yazarlar diğer

yazarların eserlerini küçük değişikliklerle kendi adlarıyla yayınlamaktadır (Soni,

2018). Böylece dijital teknoloji ile metin üzerinde intihal (plagiarism), artan bir sorun

haline gelmektedir (Björnson, 2019).

Aslen intihal, birçok kişi tarafından diğer insanların araştırmalarını kopyalamak

ya da özgün fikirlerini ödünç almak olarak düşünülür. Ancak “kopyalama” ve

“ödünç alma” gibi ifadelerle bu suçun ciddiyeti kamufle edilmiş olabilir: Merriam-

Webster çevrimiçi sözlüğünde, “intihal” şu şekilde tanımlanmıştır; (başkasının

fikirlerini veya sözlerini) çalmak ve kendisine aitmiş gibi sunmak, (başka bir

2

kimsenin eserini) atıfta bulunmadan kullanmak, edebi hırsızlık yapmak, var olan bir

kaynaktan türetilen bir fikri ya da ürünü yeni ve özgünmüş gibi yansıtmak, vb.

anlamlarına gelir. Diğer bir söylemle, intihal dolandırıcılık içeren bir fiildir. Sadece

başka bir kimsenin ürününü çalmayı değil, aynı zamanda bu konuda sonradan yalan

söylemeyi kapsar (Tupa, 2017).

“Kansu (1994) intihali, bilimsel yanıltma (scientific misconduct) adı altında üç

madde ile gruplamaktadır. Bilimsel yanıltmanın üç unsuru aşağıda verilmiştir;

1. Bilimsel korsanlık (piracy): Araştırmacının izni olmadan diğer çalışmalardaki

verilerin alınması.

2. İntihal (plagiarism): Başkalarının fikirlerini, yazılarını ve eserlerini çalmak ve

bunları uygun bir atıf olmaksızın kendisininmiş gibi sunmak.

3. Saptırma (fabrication, desk-research, dry-lab): Verilerin çarpıtılması ya da var

olmayan bilgilerin/verilerin oluşturulmasıdır (s.72).

Bu sınıflandırmadan da anlaşıldığı üzere birçok bilimsel yanıltma ya da etik

olmayan eylem örneği bulunmaktadır. İntihali diğerlerinden farklı kılan temel

özelliği atfın bilimsel intihalin merkezinde konumlandırılmasıdır. Atfın asıl işlevi,

atıf yapılan belge ile atıf yapan belge arasında bir bağlantı kurmak olarak tanımlanır

(Smith, 1981, s.84, aktaran Al ve Coştur, 2007, s.144). Ayrıca kaynağa göre kaynak

göstermeden yapılan veya kaynak göstererek yapılan intihaller de vardır.

İntihal, internette bulunan erişilebilir bilgilerin artmasıyla farklı bir boyutta

görülmektedir. İntihali artıran bir diğer önemli faktör ise internetteki bilgilerin “kamu

malı” olduğu yargısıdır (Uçak & Birinci, 2008). İntihali saptamak için birçok sistem

geliştirilmiştir ancak bu sistemlerin tamamı gelişen ve değişen teknoloji ile güvenilir

nitelikte olmamaktadır (Björnson, 2019).

3

İntihali belirlemede kullanılan programlarda benzerlik yüzdesinin tamamı

mutlaka intihal olmayabilir. Çıkan raporun doğru bir şekilde incelenmesi gerekir

çünkü benzer metodolojiyi veya yaygın objektif terimleri açıklayan metinlerin

birbirine benzemesi muhtemeldir. Ayrıca, değerlendirmeyi yapan kişinin alıntıları ve

kaynak dizinini hariç tutmak için manuel müdahaleye ihtiyacı vardır. Bu nedenle, bir

yazı için “kabul edilebilir benzerlik yüzdesi” üzerinde hakemlik yapmak, eleştirel

analiz gerektirir (Kadam, 2018). Dolayısıyla metinler üzerinde yazarlık analizi

yöntemi, diğer yöntemlerin yanı sıra metin üzerindeki intihali belirlemede yardımcı

olabilir.

1.2. Araştırmanın Amacı ve Önemi

Bu çalışmada köşe yazıları üzerinden yazarlık analizi yapılacağından intihali

belirlemede önemli bir yer tutabilir. Köşe yazılarını online ortamdan elde edip, Doğal

Dil İşleme adımlarından geçirdikten sonra Makine Öğrenme Algoritmalarına

başvurulmuştur. Elde edilen sonuçlara göre köşe yazılarının yazdığı yazara ait olup

olunmadığı tartışılmıştır. Dolayısıyla bu çalışmanın başta intihal olmak üzere bilişim

suçlarını önlemede bir etken olacağı düşünülmüş ve Adli Bilişim bilimine katkı

sağlanması hedeflenmiştir.

Adli yazarlık analizleri Adli Bilimler içerisinde önemli bir yer tutmaktadır.

Yazarlık analizi içinde olan yazar tanıma alanına ise metin ve olası yazar sayısı

birden fazla olduğunda başvurulur. Metinler vasiyetnameler, tehdit mektupları,

intihar notları vb. içerebilir, ancak son on yılda e-postaları, metin mesajlarını ve en

son tweet’leri, Facebook ve WhatsApp mesajlarını içeren analizlerde büyük bir artış

yaşanmaktadır. Bu analizler sadece plagiarismi önlemede değil aynı zamanda siber

suçları önlemede de önemli bir konuma sahiptir (Coulthard ve ark., 2009).

4

1.3. Sınırlılıklar

 Tez çalışması 6 yazarın toplamda 900’ü aşkın köşe yazısı üzerinden yapılmıştır.

Bu konu itibariyle çalışma sınırlı tutulmuştur. Ayrıca bu 6 köşe yazarının yazdığı

konular da sayıdan dolayı sınırlı tutulmuştur. Ancak yine de çalışma sonunda elde

edilen verilerle genel geçer bir açıklama yapılmaya çalışılmıştır.

1.4. Literatür Özeti

1.4.1. Bilişim

 Edinburgh Üniversitesi’nin (2016) yaptığı açıklamaya göre, bilişim, doğal ve

tasarlanmış sayısal sistemlerin yapısı, davranışı ve etkileşimlerinin incelenmesidir.

Sayısal, bilişsel ve sosyal yönleri içinde barındırır. Ana fikir, ister hesaplama ister

iletişim, ister organizmalar ister yapay nesneler tarafından olsun, bilginin

dönüştürülmesidir. Bilişimin birçok yönü vardır ve yapay zekâ, bilişsel bilim ve

bilgisayar bilimi gibi bir dizi mevcut akademik disiplini kapsar. Her biri kendi doğal

alanı olarak bilişimin bir parçasını alır: geniş anlamda, bilişsel bilim, doğal

sistemlerin incelenmesiyle ilgilidir; bilgisayar bilimi, hesaplama analizi ve bilgisayar

sistemlerinin tasarımı ile ilgilidir; yapay zekâ, doğada bulunanları taklit eden

sistemler tasarlayarak bağlayıcı bir rol oynar. Bilişim ayrıca matematik, elektronik,

biyoloji, dilbilim ve psikoloji gibi diğer disiplinleri etkiler ve onlar tarafından da

etkilenir.

1.4.2. Adli Bilişim

 Dr. H. B. Wolfe’ye göre, adli bilişim, bir mahkemede tutarlı ve anlamlı bir

formatta sunulabilecek, programlama ekipmanından ve çeşitli depolama

cihazlarından ve dijital medyadan kanıt toplamak için sistemli bir dizi teknik ve

prosedürü içinde barındırır. Adli bilişimi daha ayrıntılı olarak tanımlarsak, dijital

5

kanıtların toplanması, analizi ve mahkemeye sunulması prosedürüdür. Adli bilişimin

kapsamı yalnızca bir suçu soruşturmakla sınırlı değildir; ayrıca veri kurtarma, sistem

günlüğü (log) izleme, (kullanımdan kaldırılmış veya hasar görmüş cihazlardan) veri

toplama ve uyumluluk ihtiyaçlarını karşılama durumlarıyla da iç içedir (Shakeel,

2003).

 Genel olarak adli bilişim, herhangi bir suçun veya yasaklı aktivitenin olup

olmadığına karar vermek için bilişim sistemleri ve depolama birimleri üzerinde

yapılan bütün çalışmaları içermektedir (Kılıç, 2019).

1.4.2.1. Adli Bilişimin Tarihi

“İnsanlar bilgisayar merkezine girdiklerinde

ahlaki değerlerini kapıda bıraktılar.”

(Donn B. Parker, 1968)

 Bilgisayarlar ilk olarak 1940’ların ortalarında ortaya çıktı ve bu teknolojinin

hızlı gelişimini kısa sürede çeşitli bilişim suçları izledi. 1960’ların ortalarında, SRI

International’dan Donn Parker, bilişim suçları ve etik olmayan bilgisayarla işlenmiş

faaliyetler hakkında araştırma yapmaya başladı ve ‘insanların bilgisayar merkezine

girdiklerinde ahlaki değerlerini kapıda bıraktıklarını’ fark etti (Bynum, 2001).

Parker’ın çalışmaları önümüzdeki yirmi yıl boyunca devam etti ve bilgisayar etiği

tarihinde bir dönüm noktası olarak kabul edildi. Bilişim suçuyla ilgili ilk kovuşturma

vakası 1966’da ABD’nin Teksas eyaletinde kaydedildi (Dierks, 1993) ve beş yıl

hapis cezasıyla sonuçlandı. 1970’lerde ve 1980’lerde kişisel bilgisayarlar hem evde

hem de işyerinde yaygınlaştı; daha sonra emniyet teşkilatı yeni bir suç sınıfının

ortaya çıktığını fark etti: bu da bilişim suçuydu (Overill, 1998). Tüm suçlar gibi, bu

yeni sınıf da başarılı kovuşturmalar için güvenilir kanıtlar gerektiriyordu. Böylece

bilişim suçlarını çözmeyi, belgelemeyi ve kovuşturmayı mümkün kılmayı amaçlayan

adli bilişim disiplini ortaya çıktı (Bern ve ark., 2008).

6

 Wikipedia’ya göre adli bilişim, 1980’lerin ortalarından beri ceza hukukunda

kanıt olarak kullanılmıştır, bazı dikkate değer örnekler şunlardır:

1. BTK Katili: Dennis Rader, on altı yıl boyunca meydana gelen bir dizi seri

cinayetten hüküm giymişti. Bu sürenin sonuna doğru Rader bir disket

üzerinde polise mektuplar gönderdi. Belgelerdeki meta veriler, “Christ

Lutheran Kilisesi”nde “Dennis” adlı bir yazarla ilgiliydi; bu kanıt Rader'in

tutuklanmasına yardımcı oldu.

2. Joseph Edward Duncan: Duncan’ın bilgisayarından alınan bir elektronik

çizelge, onun suçlarını planladığını gösteren kanıtlar içeriyordu. Savcılar

bunu kasıtlı olarak göstermek ve ölüm cezasını güvence altına almak için

kullandılar.

3. Sharon Lopatka: Lopatka’nın bilgisayarındaki yüzlerce e-posta,

araştırmacıları katili Robert Glass’a yönlendirmişti.

4. Corcoran Grup: Bu dava, dava açıldığında veya makul bir şekilde

beklendiğinde tarafların dijital kanıtları koruma vazifeleri olduğu durumunda

kesinleşmişti. Sabit diskler, sanıklara ait olması gereken ilgili e-postaları

bulamayan bir adli bilişim uzmanı tarafından analiz edildi. Uzman, sabit

disklerde silme kanıtı bulamamış olsa da sanıkların e-postaları kasıtlı olarak

imha ettikleri, maddi gerçekleri davacılara ve mahkemeye ifşa etmede

başarısız oldukları ve yanlış bilgi verdikleri hususlarında kanıtlar ortaya çıktı.

5. Conrad Murray: Merhum Michael Jackson’ın doktoru Dr. Conrad Murray,

bilgisayarındaki dijital kanıtlarla kısmen mahkûm edilmişti. Bu kanıt,

öldürücü miktarlarda propofol gösteren tıbbi belgeleri kapsamaktaydı.

 1990’lara gelindiğinde, teknolojik olarak gelişmiş her ülkedeki kolluk kuvvetleri

bilişim suçlarının farkındaydı, soruşturma ve kovuşturması için bir sisteme sahipti.

Birçok bilimsel araştırma merkezi de kuruldu ve yazılım endüstrisi, bilişim suçlarının

araştırılmasına yardımcı olmak için çeşitli özel araçlar sunmaya başladı (Noblett ve

ark., 2000) (Bem ve ark., 2008).

7

1.4.3. Adli Dilbilim

 Olsson’a (2008) göre adli dilbilim ise, dilbilimin yasal konulara uygulanmasıdır.

En geniş anlamıyla adli dilbilim dil, suç ve hukuk arasındaki ara yüzdür. Genel

olarak yaşam için dil kullanımının ve özellikle de hukukun merkezi olduğu

düşünüldüğünde, parmak izi tanımlama ve ayakkabı izi analizi gibi diğer disiplinlere

göre adli dilbilimin arenaya göreceli olarak yeni olması yargı süreçlerinde köklü bir

varlığa sahip olduğundan belki biraz şaşırtıcıdır. Dilbilimsel yöntemlerin hukuki

sorunlara uygulanması, adli dilbilimin bir bilimin uygulaması olduğu anlamlardan

yalnızca bir tanesidir, çünkü bir araştırmadaki dil örneklerinin analizine çeşitli

dilbilim teorileri uygulanabilir. Bu nedenle adli dilbilimci, dil ve hafıza çalışmaları,

konuşma analizi, söylem analizi, dilbilgisi teorisi, bilişsel dilbilim, konuşma yasası

teorisi vb. gibi çok çeşitli alanlarda yürütülen araştırmalardan gözlemlerini

alıntılayabilir. Dilbilimsel alanların geniş yelpazesine olan bu güvenin nedeni şöyle

açıklanabilir: Dilbilimcinin analiz için aldığı veriler, ortalama bir kişinin dili nasıl

hatırladığı, konuşmaların nasıl kurulduğu, konuşmacıların/yazarların konuşma/metin

boyunca nasıl davrandıkları ya da bir mahkemeye ifade veya cümle yapılarının hangi

yönlerinin yansıtılması gerektiği hakkında bilgi sunabilir.

 Adli dilbilim araştırmaları diğer birçok alanla bağlantılı olabilir. Örneğin, adli

dilbilim alanı bilişim alanında çeşitli çalışmalara öncü olmuştur. Daha özelleştirmek

gerekirse, siber suç araştırmalarında adli dilbilim büyük bir önem arz etmektedir.

Çünkü günümüzde neredeyse her suç dijital iz bırakabileceğinden, internette ceza

soruşturmaları giderek önem kazanmıştır (Tropina ve ark., 2017).

 Bu çalışma da birçok yazarlık analizi çalışmaları gibi disiplinler arası adli

bilişim ve adli dilbilim alanlarını birleştirir niteliktedir. Yazarlık analizi yapılırken bu

iki bilime başvurulmuştur.

8

1.4.4. Yazarlık Analizi

 Adli dilbilimin doğuşuyla birlikte, herkesin dili benzersiz bir şekilde kullandığı

ve dil kullanımındaki farklılıklar parmak izi kadar kolay gözlenebileceği anlamına

gelen “adli parmak izi” kavramını ortaya çıkardı (Coulthard, 2004; Olsson, 2008).

Yazarlık analizinde potansiyel olarak geçerli ayırt edici belirteçler sunan, bilinçaltı

dil alışkanlıklarıdır. Bu da yazarların dil kullanımlarında farklılıklar göstermiştir.

İnsanlar sözlü veya yazılı dil kullandıklarında, belirli sözlük-dilbilgisi (lexico-

grammatical) yapılarını diğerlerinden daha sık seçme ve belirli bir şekilde birleştirme

alışkanlığı vardır. Bu tür alışkanlıkların dil kullanımının yazara özgü özellikleri

olduğu söylenir ve genellikle sorgulanan bir metnin yazarını tanımlamak için adli dil

analizinde uygulanır (Coulthard, 2004; Coulthard & Johnson, 2010).

1.4.4.1. “Idiosyncratic Alışkanlıklar” nedir?

Son yıllarda bir metnin yazarlığını doğrulamak veya tartışmak için kullanılan

yöntemlerden bazıları stilometri, korpus analizi (Coulthard, 2004) ve dilbilimsel

analizi (Coulthard & Johnson 2010) içerir. Stylometrics, öncelikle, dilin kelime veya

cümle uzunluğu, sözlüksel zenginlik, tempo, hapax legomena (metinde yalnızca bir

kez kullanılan kelime öğeleri) ve benzeri gibi teknik yönlerinin ölçülmesi ile ilgilidir

(McMenamin, 2002; Coulthard & Johnson, 2010).

 Öte yandan, korpus analizi, bu tür dizelerin diğer yazarlar tarafından kullanılma

olasılığını belirlemek için, belirli bir kelime öğesinin veya kelime dizgisinin büyük

bir toplulukta tartışmalı metinden sıklığını aramayı içerir. Son olarak, dilbilimsel

analiz sözdizimi, dilbilgisi, hatalar vb. gibi kendine özgü dil kullanımının

(idiosyncratic alışkanlıklar) çeşitli yönlerinin analiz edilmesini içerebilir (Coulthard

& Johnson, 2010) (Tomić, 2019).

9

 Yazarlık analizi yapılırken, her biri farklı bir amaca hizmet eden üç farklı alt

araştırma dalı bulunmaktadır. Bu üç alt dal, yazarlığı tanıma, yazarlığı sınıflandırma

ve benzerliği tespit etmekten oluşmaktadır.

1. Yazarlık tanıma (bkz. yazarlık özniteliği): Belirli bir kişi tarafından o kişiden

gelen diğer yazıları inceleyerek bir yazı parçasının üretilme olasılığını

belirlemek için kullanılır.

2. Yazarlık sınıflandırma: Bir yazarın cinsiyet, yaş, eğitim düzeyi veya kültür

geçmişi gibi kişisel niteliklerini, o yazara ait mevcut yazıları kullanarak

belirlemek için kullanılan bir tekniktir.

3. Benzerlik tespiti: Farklı yazı parçalarını karşılaştırır ve aynı kişi tarafından

üretilip üretilmediğini belirler. Bu tekniğin en popüler kullanımı intihal

tespitidir.

1.4.4.2. Stilistik özellikler (Stylometric features)

 Yazarlık tanıma araştırmasını kolaylaştırabilecek yazı stili özellikleri dört farklı

kategoriye ayrılmaktadır; bunlar sözcüksel (lexical) özellikler, yapısal (structural)

özellikler, içeriğe özgü (content specific) özellikler ve sözdizimsel (syntactic)

özelliklerdir.

1. Sözcüksel özellikler, sözcük ve karakter tabanlı analizlerle desteklenir.

Kelime bazlı analiz ile bir kişinin özelliği, yazılarındaki kelime zenginliği,

cümle başına ortalama kelime sayısı veya bir metindeki toplam kelime sayısı

gibi diğer ölçümlerle birleştirilerek anlatılabilir. Karakter bazlı analiz ile

toplam karakter sayısı, cümle başına düşen ortalama karakter sayısı, kelime

başına düşen karakter veya tek tek harflerin kullanım sıklığı gibi bazı

özellikler belirli bir kişinin yazma alışkanlıklarını ortaya çıkarmaya yardımcı

olur.

10

2. Yapısal özellikler, metnin düzenini ve planını analiz etmeye odaklanır.

Yazının uzunluğu diğer analiz özellikleri için yeterli olmadığında, yazılar

arasındaki farklılıkları ayırt etmek için yapısal özellikler önemli bir rol oynar.

3. Sözdizimsel özellikler, cümleleri oluşturmak için kullanılan yazma

modellerini araştırma ve analiz etmeyle ilgilenir. Sözdizimsel özellikler,

cümleleri düzenlemede insanların farklı alışkanlıklarından türetildikleri için

sözdizimsel özelliklerin ayırt edici gücünden yola çıkarak farklı kişileri ayırt

etmek için Türkçe’deki noktalama ve işlev (function) kelimeleri gibi yaygın

kelimelerin kullanımını analiz etmeye odaklanır.

4. İçeriğe özgü özellikler ise, belirli bir konu alanıyla ilgili olan sözcükleri ifade

eder (Dinh, 2014).

 Bu çalışmada yazarlık tanıma ve benzerlik tespiti çalışma alanlarından

yararlanılmıştır. Çalışma, köşe yazılarında yazarlık analizi içermekte olup ilk adım

olan stilometrik özellikler üzerinden yazarlık tanıma yapılmıştır. Daha sonra

benzerlik tespit çalışmasına göre yazılarının belirtilen yazarlara ait olup olmadığı

elde edilen verilere göre tartışılacaktır. Yazarlık tanıması yapılırken veri seti Doğal

Dil İşleme (Natural Language Processing) uygulama alanından geçirilmiş, benzerlik

tespiti yapılırken de makine öğrenme (machine learning) metotları ve algoritmalarına

başvurulmuştur.

1.4.5. Doğal Dil İşleme

 Doğal dil, insanlar tarafından birbirleriyle iletişim kurmak için kullanılan dili

ifade eder. Bu iletişim sözlü veya yazılı olabilir. Örneğin, yüz yüze görüşmeler,

tweetler, bloglar, e-postalar, web siteleri, SMS mesajları, hepsi doğal dil içerir.

 Ancak, insanlardan farklı olarak bilgisayarlar doğal dili kolayca anlayamazlar.

Doğal dili bilgisayarların anlayabileceği bir biçime çevirmek için gelişmiş teknikler

ve yöntemler gereklidir. Doğal Dil İşleme (NLP), bu hedefe ulaşılmasına yardımcı

olan uygulama alanıdır (Robinson, 2017).

11

 Wikipedia’ya göre NLP, dilbilim, bilgisayar bilimi ve yapay zekanın bir alt

alanıdır. NLP, bilgisayarlar ve insan dili arasındaki etkileşimlerin yanı sıra, özellikle

bilgisayarların büyük miktarda doğal dil verisini işlemesi ve analiz etmesi için nasıl

programlanacağı ile ilgilenir. Belgelerdeki dilin bağlamsal nüansları da dahil, sonuç,

belgelerin içeriklerini “anlayabilen” bir bilgisayardır. Teknoloji, belgeleri kendi

başına sınıflandırmanın ve düzenlemenin yanı sıra, belgelerde yer alan bilgileri ve iç

görüleri daha sonra doğru bir şekilde çıkarabilir.

 NLP, doğal dillerin kurallı yapısını analiz ederek anlamayı ya da yeniden

üretmeyi amaçlar. Bu analizin insanlara sağlayacağı kolaylıklar, soru-cevap

makineleri, yazılı belgelerin otomatik tercümesi, bilgi sağlama, otomatik konuşma ve

komut anlama, konuşma üretme, oluşturma ve sentezi, otomatik metin özetleme gibi

birçok konuyla toparlanabilir. Mesela, birer imla düzeltme aracı tüm kelime işlem

yazılımlarında bulunur. Bu araçlar aslında yazılı metni analiz eden ve dil kurallarını

kontrol eden doğal dil işleme yazılımlarıdır. NLP, bilgisayarların insan dilini

algılaması gereken her yerde kullanılabilir, olası uygulama alanları şu şekildedir:

1. İnternet ortamında git gide artan dokümanların değerlendirilmesinde,

2. Uluslararası çalışan şirketlerin müşteri profilini belirlemede,

3. Elektronik ticarette,

4. Savunma ve istihbarat alanlarında (Güvenlik ve suçlu teşhisinde),

5. Yabancı dil öğretiminde,

6. Makine çevirisinde,

7. Elektronik sözlüklerde,

8. İmla hatalarının otomatik düzeltilmesinde,

9. Film ve sinema alanında,

10. Mobil telefonların konuşma algılama sistemlerinde,

11. Otomatik özet çıkarmada,

12. Bilgi aramada,

13. Görme engellilerin bilgisayar kullanmalarındadır (Tarcan & Çakar, 2008).

12

 NLP, bilgisayarların insan dillerini anlamasını ve işlemesini sağlamaya

odaklanan yapay zekanın (AI) alt alanı olduğunu gösteren aşamalardan oluşmaktadır.

Python kullanarak ham metinden bilgi çıkarabilecek programların nasıl yazılacağının

adımları sistematik bir şekildedir. Adım adım NLP süreçleri şu şekilde

incelenmektedir:

1. Cümlelere Bölme: Verilen bir paragraf öncelikle cümlelere bölünür.

2. Kelime ve Simgelere Ayırma: Bölünen cümleler, kelimeler ve simgelere

ayrılır.

Ankara, Türkiye’nin başkentidir.

 “Ankara”, “, ”, “Türkiye’nin”, “başkentidir”, “. ”

3. Her Simge/Sözcük İçin Tür Belirleme: Söz konusu sözcük isim, fiil, sıfat vb.

olabilir. Böylece cümledeki her kelimenin rolü öğrenilir. (Şekil 1.1.)

Şekil 1.1. Türkçe dilinde her simge/sözcük için tür belirleme örneği.

4. Metin Kök Çözümlemesi: Her sözcüğün kökü (temel formu) çıkarılır

(Geitgey, 2018). (Şekil 1.2.)

Şekil 1.2. Türkçe dilinde metin kök çözümleme örneği (Kuzucular, 2014).

5. Durduran İfadeleri Belirleme: Metin üzerinde istatistik yaparken, bu ifadeler

çok fazla engel çıkarır, çünkü diğer kelimelere göre çok daha sık görünürler.

(Şekil 1.3.)

13

 Şekil 1.3. Türkçe dilinde durduran ifadeleri belirleme örneği.

6. Bağımlı Ayrıştırma: Amaç, cümledeki her kelimeye tek bir ana kelime atayan

bir ağaç oluşturmaktır. Ağacın kökü cümlenin ana fiili olmalıdır. (Şekil 1.4.)

Şekil 1.4. Türkçe dilinde bağımlı ayrıştırma örneği.

 6b. İsim Öbeklerini Bulma: Aynı varlıktan bahseden kelimeleri otomatik olarak

 gruplandırmak için bağımlı ayrıştırma ağacındaki bilgileri kullanabiliriz.

 (Şekil 1.5.)

Şekil 1.5. Türkçe dilinde isim öbeklerini bulma örneği.

7. Adlandırılmış Varlık Tanıma (NER): NER’in amacı, bu isimleri temsil

ettikleri gerçek dünya kavramlarıyla tespit etmek ve etiketlemektir.

(Şekil 1.6.)

14

Şekil 1.6. Türkçe dilinde adlandırılmış varlık teşhisi örneği.

 Tipik bir NER sisteminin etiketleyebileceği bazı nesne türleri şunlardır:

 İnsan isimleri,

 Şirket isimleri,

 Coğrafi konumlar (hem fiziksel hem de politik),

 Ürün isimleri,

 Tarihler ve saatler,

 Para miktarları,

 Etkinlik isimleridir.

8. Eşgönderge Çözümlemesi: Bu adımın amacı cümlelerdeki zamirleri veya o

ismin yerine kullanılan öbekleri takip ederek aynı eşlemeyi bulmaktır

(Geitgey,l2018).

 Ankara, Türkiye’nin başkentidir. Ankara’nın başkent ilan edilmesinin

ardından (13 Ekim 1923) şehir hızla gelişmiş ve Türkiye’nin ikinci en

kalabalık ili olmuştur (Vikipedi).

 1.4.5.1. Metin Madenciliğinde Python İşlevselliği

 Yukarıda da görüldüğü üzere Python’da Kodlama yaparken NLP Boru Hattı

genel haliyle bu şekildedir (Geitgey, 2018). Python metin madenciliği paketi, birçok

kullanışlı işlevler içerir. Temelde istatistiksel metin madenciliğine odaklanır ve bir

doküman koleksiyonundan bir özet doküman oluşturmaya yardımcı olur. Bu matris

daha sonra başka analizler için istatistiksel pakette incelenebilir. Paket, koleksiyon

bulmada, kelime arasındaki düzen mesafesini hesaplamada ve uzun bir dokümanı

daha küçük parçalara dönüştürmede faydalı araçlar sağlamaktadır. Model, Google,

15

Twitter, Wikipedia API, DOM ayrıştırıcı ve NLP veri madenciliği için araçlar

sağlayan Python programlama dili için web madenciliği modülüdür (Zende ve ark.,

2016). Bu çalışmada da Python’da metin madenciliği kodla çağrılan Python

kütüphaneleri aracılığıyla NLP adımlarıyla yapılmıştır.

 1.4.5.2. Tez Çalışmasında Kullanılan Python Kütüphaneleri

 Bu tez çalışmasında metin madenciliği yapılırken ve veri makine öğrenme (ML)

algoritmalara sokulurken birçok Python kütüphanesinden faydalanılmıştır. Bu

kütüphaneler kısaca şunlardır:

1. Urllib ve BeautifulSoup Kütüphaneleri: Urllib standart bir Python

kütüphanesidir ve web üzerinden veri istemi oluşturmak, çerezleri işlemek ve

hatta başlıklar ve kullanıcı araç gibi meta verileri değiştirmek için işlevler

içerir. Örneğin, ‘urlopen’ işlevi, bir ağ üzerinden uzaktaki bir nesneyi açmak

ve onu okumak için kullanılır. Oldukça genel bir kütüphane olduğu için

HTML dosyalarını, görüntü dosyalarını veya diğer dosya akışlarını kolaylıkla

okuyabilir. BeautifulSoup ise, anlamsız olanı anlamlandırmaya çalışır;

düzensiz HTML’yi düzelterek ve XML yapılarını temsil eden, kolay geçişli

Python nesneleri sunarak dağınık web’i biçimlendirmeye ve düzenlemeye

yardımcı olur. (O’Reilly Media, 2015). Dolayısıyla Python modülü

‘urllib.request’, benzer kaynak konumlayıcıları (URL’leri) çıkarmaya yardım

ederken, Python modülü Beautifulsoup, Python’daki HTML ve XML

dosyalarından veri çıkarmaya yardımcı olur (Wingate, 2020).

2. NLTK (Natural Language Toolkit) Kütüphanesi: Doğal Dil Araç Takımı

(NLTK) paketi, sözcük türü seçme, bölümleme ve sınıflandırma gibi çok

sayıda NLP yöntemlerini içerir. NLTK, python programlama dili için

istatistiksel doğal dil işlemeye yönelik bir kütüphane ve program paketidir.

Sınıflandırma, bölme ve ayrıştırma için metin işleme kütüphaneleri için ara

yüz kullanımını kolaylaştırır. NLTK, Windows, MAC OS X ve Linux

yazılımlarında bulunmaktadır (Zende ve ark., 2016).

16

3. Stanza Kütüphanesi: Stanza web sitesine göre, Stanza, birçok dilin dilbilimsel

analizi için doğru ve verimli araçlardan oluşan bir koleksiyondur. Ham

metinden sözdizimsel analiz ve varlık tanımaya kadar Stanza, en gelişmiş

NLP modellerini seçilen dillere getirir. Araç takımı, Evrensel Bağımlılıklar

(Universal Dependencies) biçimini kullanarak 70’ten fazla dil arasında

paralel olacak şekilde tasarlanmıştır. Stanza, simgeleştirme (tokenization),

çok sözcüklü simge (multi-word token) genişletme, kök çözümleme

(lemmatization), sözcük türü (part-of-speech) ve biçembilimsel

(morphological) özellikler etiketleme, bağımlılık ayrıştırma ve NER dahil

olmak üzere tam sinir ağı boru hattı sağlamaktadır.

4. TensorFlow Kütüphanesi: TensorFlow, sayısal hesaplamada veri akışı

grafiklerini kullanan açık kaynaklı bir yazılım kütüphanesidir (Unruh, 2017).

Makine öğrenimi için uygulamalar oluşturur ve derin sinir ağlarının (deep

neural networks) eğitimi ve çıkarımına odaklanır. Örneğin, Google

TensorFlow’u arama motorunda arama yaparken bir kelime yazıldığında

başka öneriler sunarak var olan aramayı genişletir. TensorFlow, verilerin bir

grafikte nasıl hareket ettiğini tanımlamada veri akışı grafikleri ve yapıların

oluşturulmasına yardım eder, akış şeması oluşturur. TensorFlow yapısı 3

bölümde çalışır; veri önişlemi, modeli oluşturma ve modeli eğitip, tahmin

etmedir (Johnson, 2021).

5. Keras Kütüphanesi: Keras ise, derin öğrenme modelleri oluşturmak için

TensorFlow, Theano vb. gibi popüler derin öğrenme kütüphanelerinin üzerine

inşa edilmiş en güçlü ve kullanımı kolay Python kütüphanelerinden biridir.

Keras, üst düzey sinir ağı uygulama programlama ara yüzünü (API) daha

kolay ve daha performanslı hale getirmek için çeşitli optimizasyon

tekniklerinden yararlanır. Keras, birtakım özellikleri destekler. Bunlar:

 Tutarlı, basit ve genişletilebilir API,

 Minimal yapı (herhangi bir ayrıntı olmadan sonuca ulaşmak kolaydır),

 Çoklu platform ve arka uç,

 Hem merkezi işlem birimi (CPU) hem de grafik işlem birimi (GPU)

üzerinde çalışan kullanıcı dostu bir sistem,

17

 Hesaplamanın yüksek düzeyde ölçeklenebilirliğidir (Tutorials Point (I)

Pvt. Ltd. - Keras, 2019, s.:1).

6. NumPy ve Pandas Kütüphaneleri: ‘NumPy’, açılım olarak “Numerical

Python (Sayısal Python)” anlamına gelir. Dizinler ve matrisler üzerinde hızlı

matematiksel hesaplama sağlayan açık kaynaklı bir Python modülüdür.

Dizinler ve matrisler, Makine Öğrenimi ekosisteminin önemli bir parçası

olduğu için NumPy; Scikit-learn, Pandas, Matplotlib, TensorFlow vb. gibi

Makine Öğrenimi modülleriyle birlikte Python Makine Öğrenimi

Ekosistemini tamamlar. NumPy, tamsayılar, dize veya (homojen) karakterler

içeren aynı tip elementlere sahip bir çizelgedir. NumPy’de boyutlara eksen

(axes) adı verilir. Eksen sayısına da dizi (rank) denir. NumPy’ye benzer

şekilde Pandas, veri biliminde en yaygın kullanılan python kütüphanelerinden

biridir. Yüksek performans, kullanımı kolay yapılar ve veri analiz araçları

sağlar. Çok boyutlu dizinler için nesneler sağlayan NumPy kütüphanesinden

farklı olarak Pandas, veri çerçevesi adlı bellek içi iki boyutlu (2D) çizelge

nesnesi sağlar. Sütun adları ve satır etiketleri içeren bir hesap çizelgesi gibidir.

Pandas’da yaygın olarak kullanılan bazı veri yapıları şunlardır:

 Seri nesneler: Bir boyutlu (1D) dizin – hesap çizelgesindeki bir

sütuna benzer,

 Veri çerçevesi nesneleri: İki boyutlu (2D) tablo – hesap çizelgesine

benzer,

 Panel nesneleri: Veri çerçevesi Sözlüğü – MS Excel'deki sayfaya

benzer (Pratik, 2017).

7. Scikit-Learn (Sklearn) Kütüphanesi: Python’da makine öğrenimi için en

kullanışlı ve güçlü kütüphanedir. Python’da bir tutarlık ara yüzü aracılığıyla

sınıflandırma, regresyon, kümeleme ve boyutluluk azaltma içeren makine

öğrenimi ve istatistiksel modelleme için verimli araçları ayırır (Tutorials

Point (I) Pvt. Ltd. - Scikit-Learn, 2019, s.:1).

8. Matplotlib Kütüphanesi: Matplotlib 2 ve 3 boyutlu grafikler çizen Python

kütüphanesidir. Matplotlib kullanılarak, çizgi grafiği, histogram, çubuk

grafiği, pasta grafiği, dağılım grafikleri, alan çizimleri, hata çizelgeleri, güç

izgesi vb. çizilebilir. Veri analizi model geliştirmenin bir parçası olduğundan

18

sadece sayısal veriye bakılarak doğru sonuçlar elde edilmeyebilir. O yüzden

veriyi kullanarak grafiklerin çizilmesi bir sonraki işlemler için karar vermede

en iyi yoldur. Veri görselleştirme, veri temizleme işleminden sonra yapılan

bir işlemdir. Matplotlib, NumPy gibi bazı üçüncü taraf Python

kütüphanelerine bağlıdır (Indian AI Production, 2019).

 1.4.6. Makine Öğrenmesi (ML)

 Wikipedia’ya göre makine öğrenimi (ML), deneyim ve veri kullanımı yoluyla

otomatik olarak iyileştirilebilen bilgisayar algoritmalarının incelenmesidir. ML,

yapay zekanın (AI) bir bölümü olarak görülmektedir. Makine öğrenimi algoritmaları,

açık bir şekilde programlanma yapmadan tahminlerde bulunmak ya da kararlar

almak için “eğitim verileri” olarak bilinen örnek verilere uygun bir model yaratır.

Makine öğrenimi algoritmaları, gerekli olan görevleri yerine getirmek için geleneksel

algoritmalar geliştirmenin zor veya imkânsız olduğu tıp bilimi, e-posta filtreleme,

konuşma tanıma ve bilgisayar görüntüsü gibi çok çeşitli uygulamalarda

kullanılmaktadır. Makine öğreniminin bir alt kümesi, bilgisayarları kullanarak

tahminler yapmaya odaklanan hesaplama istatistikleriyle yakından ilişkilidir; ancak

bütün makine öğrenimi istatistiksel öğrenme olarak sayılmamaktadır.

 Makine öğreniminin genel fikri, herhangi bir konudaki geçmiş verilerden

eğilimleri öğrenmek için bir model elde etmek ve bu eğilimleri gelecekte

karşılaştırılabilir veriler üzerinde yeniden üretebilmektir (Şekil 1.7.). Aşağıdaki

grafik, geçmiş verilere uyan bir makine öğrenimi modelinin görsel bir temsilidir.

Solda üç değişkenli (yükseklik, genişlik ve şekil) orijinal gözlemler vardır. Şekiller,

yıldızlar, çarpılar ve üçgenlerden oluşmaktadır. Şekiller grafiğin farklı alanlarına

yerleştirilmiştir. Sağ tarafta, bu orijinal gözlemlerin bir karar kuralına nasıl çevrildiği

gösterilmektedir. Yeni bir gözlemde, hangi kareye düştüğünü belirlemek için

genişliği ve yüksekliği bilinmelidir. Düştüğü kare, hangi şekle sahip olma

olasılığının en yüksek olduğunu tanımlar. Temel makine öğrenimi süreci bu şekilde

özetlenmektedir (Korstanje, 2021).

19

Şekil 1.7. Makine öğrenimi modelinin görsel bir örneği.

Şekil 1.8. Makine Öğrenme sınıflandırması (Sakal, 2020).

 Sakal’a (2020) göre “Makine öğrenme algoritmaları makine öğrenme

bulmacasının sadece bir parçasıdır. Algoritma seçimine (manuel veya otomatik) ek

olarak, optimize ediciler, veri temizleme, özellik seçimi, özellik normalizasyonu ve

(isteğe bağlı olarak) hiperparametre ayarlarıyla ilgilenmek gerekir” (Şekil 1.8). Dört

genel makine öğrenimi yöntemi vardır: Bunlar; (1) denetimli, (2) denetimsiz, (3) yarı

denetimli ve (4) pekiştirmeli öğrenmelerdir.

1. Denetimli Öğrenme (Supervised Learning): Bu öğrenmede hedef, etiketlenen

eğitim verilerinden bir fonksiyon veya eşleştirme çıkarmaktır. Bu çıkarım

regresyon ve sınıflandırma ile gerçekleşir.

20

2. Denetimsiz Öğrenme (Unsupervised Learning): Bu öğrenmede sahip olunan

tek şey etiketlenmemiş verilerdir. Amaç, bu verilerde gizli bir yapı bulmaktır

çünkü eğitim verileri burada yer almazlar. Sayısız veri toplama cihazıyla veri,

benzeri görülmemiş bir oranda toplanır ve sınıflandırılmaz.

3. Yarı Denetimli Öğrenme: Bu tür öğrenmede, veriler sınıflandırılmış ve

sınıflandırılmamış verilerin bir karışımıdır. Etiketli ve etiketsiz verilerin bu

kombinasyonu, verilerin sınıflandırılmasında uygun bir model geliştirmek

için kullanılır. Çoğu durumda, etiketlenmiş veriler az, etiketlenmemiş veriler

bol miktarda bulunur. Yarı denetimli sınıflandırmanın hedefi, yalnızca

etiketlenmiş veriler kullanılarak geliştirilen modeldense, gelecekteki test

verilerinin sınıflarını daha iyi tahmin edecek bir model öğrenmektir

(Mohammed ve ark., 2016, s.:7-10).

4. Pekiştirmeli Öğrenme: Wikipedia’ya göre bu öğrenmede, bir bilgisayar

programı, belirli bir amacı gerçekleştirmesi gereken (araç sürmek veya bir

rakibe karşı oyun oynamak gibi) dinamik bir ortamla etkileşime girer. Sorun

alanında gezinirken, programa, en üst düzeye çıkarmaya çalıştığı, ödüllere

benzer bir geri bildirim sağlanır.

 Bu öğrenmeler sadece görüntü ve ses verilerinde değil aynı zamanda metin

verilerinde de kullanır. Burada veri, metin madenciliği adı altında toplanır. Metin

verilerini elde etmek için birçok mecraya başvurulabilir. Sosyal medya, metin

verilerinin üretimini benzeri görülmemiş bir düzeyde görebileceğimiz yerdir. Metin

madenciliği, birçok uygulamada yardımcı olur. Bunlar;

 Ticari istihbarat,

 Ulusal güvenlik,

 Fen bilimleri,

 Duygu sınıflandırmasıyla ilgili olanlar,

 Otomatik reklam yerleştirme,

 Haber makalelerinin otomatik sınıflandırılması,

 Sosyal medya takibi,

 İstenmeyen posta filtresidir (Mohammed ve ark., 2016, s.:23-24).

21

 Bu çalışmada metin madenciliği yapılırken denetimli öğrenme algoritmalarından

yararlanılmıştır. Bu algoritmalar yine Python kodlamaları ile gerçekleştirilmiştir.

 1.4.6.1. Derin Öğrenme

 Derin öğrenme (Deep learning), bir hiyerarşi içinde düzenlenmiş birçok

seviyeden oluşan yapay sinir ağı kullanarak makine öğrenimi sürecini gerçekleştirir.

Ağ, hiyerarşide ilk seviyede basit bir şey öğrenir ve ardından bu bilgiyi bir sonraki

seviyeye gönderir. Bir sonraki seviye bu basit bilgiyi alır, onu biraz daha karmaşık

bir şeyle birleştirir ve üçüncü seviyeye iletir. Bu süreç, hiyerarşideki her bir seviye

önceki seviyeden aldığı girdiden daha karmaşık bir aşama inşa edene dek devam eder.

 Derin öğrenme ağları, bilgi keşfi, bilgi uygulaması ve bilgiye dayalı tahmin için

büyük verilere başarıyla uygulanabilir. Başka bir deyişle, derin öğrenme, işlemeye

uygun sonuçlar üretmek için güçlü bir motor olabilir (Murnane, 2016).

 1.4.6.2. Tez Çalışmasında ML için Kullanılan Metotlar

 Makine Öğrenimi algoritmaları metinleri değil sayıları anlar. Bu nedenle,

algoritma için anlaşılır hale getirmek için tüm “metin” sütunları “sayısal” sütunlara

dönüştürülmelidir. Etiketlerin veya kategorik/metin değerlerinin sayılara veya sayısal

değerlere dönüştürülmesi ile gerçekleştirilir (Gurav, 2020). Bu tez çalışmasında veri

setini ML algoritmalarına hazırlayan bu tür bazı metotlar kullanılmıştır. Bu metotlar

aşağıda sıralanmaktadır:

1. CountVectorizer: Makineler, karakter ve kelimeleri anlayamadığından metin

verilerinin üstesinden gelebilmek için sayısal değerlere dönüştürülmesi

gerekmektedir. CountVectorizer metni sayısal veriye dönüştürmede bir metot

olarak kullanılmaktadır. Örnek vermek gerekişe Şekil 1.9.’da metin

CountVectorizer ile seyrek bir matrise (sparse matrix) dönüştürülür; metinde

22

6 benzersiz sözcük bulunmaktadır, o yüzden matriste her bir benzersiz

sözcüğü temsil eden 6 farklı sütun vardır. Satırda ise sözcük sayısı temsil

edilir. ‘Benim’ kelimesi iki kez tekrarlandığı için bu kelime 2, diğer kelimeler

ise 1 kez tekrarlandığı için 1 değeri almıştır. CountVectorizer, metin verileri

için doğrudan makine öğrenimi ve metin sınıflandırma gibi derin öğrenme

modellerinde kullanılmasını kolaylaştırır.

 Şekil 1.9. Bir girdiyi sayısal değerlere dönüştürme örneği.

Eğer girdi 1’den fazla ise (Şekil 1.10.); her bir girdi önişlemden geçirilir,

simgeleştirilir (tokenization) ve seyrek bir matris olarak sunulur. Varsayılan

olarak, CountVectorizer metni küçük harfe dönüştürür ve sözcük düzeyinde

simgeleştirmeyi kullanır. Kod yazarken matrisi görselleştirmek için Pandas

kütüphanesi, vektörleştirmeyi gerçekleştirmek için bir Sklearn kütüphanesi

olan ‘sklearn.feature_extraction.text’ kullanılır (Jain, 2021). Bu iki cümleye

bakıldığında çıktı bölmesinde her bir cümle için var olan kelimeye 1,

olmayan kelimeye ise 0 değeri atanır ve böylece cümlelerin ve kelimelerin

vektörleri elde edilmiş olur.

Şekil 1.10. İki girdiyi sayısal değerlere dönüştürme örneği.

TfidfVectorizer: CountVectorizer, özellik oluşturmak için kelime sayısını

dikkate alır, bu nedenle cümle yapısını ve sırasını dikkate almaz ve semantik

anlam olarak eksiktir. Ayrıca, büyük bir seyrek matris ile sonuçlanır. Bu

durumda TF-IDF kullanılmalıdır (Kaul, 2021). TF-IDF (Term Frequency -

Inverse Document Frequency), “Terim Frekansı - Ters Metin Frekansı”

anlamına gelir. TF-IDF, bir dokümandaki kelimenin önemini ölçen sayısal

23

bir istatistiktir. Terim Frekansı, bir kelimenin metinde görüntülenme sayısı

iken, Ters Metin Frekansı, metinde nadir veya yaygın olan kelimeyi ölçer

(Kanani, 2019). TF-IDF, bağlamı okumak yerine anlamaya çalışır ve

Sklearn kütüphanesini kullanır. TF için metinde belli bir terim fazla

kullanılmışsa o terim önemlidir. IDF ise ilgili terimlere odaklanır, metinde

durduran ifadeler fazla kullanılmışsa bile görmezden gelerek çalışır. Şekil

1.11.’deki denklemleri kullanırlar (Kaul, 2021). TfidfVectorizer, işlenmemiş

dokümanların koleksiyonunu bir TF-IDF özellik matrisine dönüştürür.

Metin analizi, makine öğrenimi algoritmalarında önemli bir uygulama

alanıdır. Metin öncelikle sayısal özellik vektörlerine dönüştürülmelidir

çünkü bilgisayar sayısal verileri işler (Tracy, 2021).

Şekil 1.11. TF-IDF Vectorizer kullanılan denklemler (Kaul, 2021).

2. Vektörleri Standartlaştırma (Normalization): Bir vektörün büyüklüğünü

hesaplamak sadece başlangıçtır. Vektörlere bakıldığında, standart bir

vektörün uzunluğunun bir olduğunu varsayarsak, bir vektörü standart hale

getirmek, herhangi bir uzunlukta bir vektörü almak ve onu aynı yöne

bakacak şekilde, uzunluğunu bir birime değiştirerek birim vektör (unit

vector) olarak adlandırılan olguya dönüştürmektir (Shiffman, 2012) (Şekil

1.12.).

Şekil 1.12. Vektörleri standartlaştırma örneği.

24

3. Öklid Uzaklık Matrisi (Euclidean Distance Matrix (EDM)): Bu matris,

satırların “kaynak”, sütunların “hedef” varlıklar olduğu ve üzerinde (Öklid

tarzında) bir mesafe hesaplanabilen tabloyu temsil eder. Örneğin, A

noktasından B noktasına iki boyuttaki mesafeyi hesaplarken, A ve B

vektörünün iki boyut ekseni üzerindeki izdüşümleri hesaplanmaktadır.

Formül şu şekildedir:

√(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2

Ancak, bir tarafında binlerce satır ve yüzlerce “özellik” (n-boyutlu uzay)

içeren veri tablolarını düşünüldüğünde, bu basit formül bile kolayca çok

daha karmaşık hale gelebilir (Grianti, 2020).

4. Kosinüs Benzerliği (Cosine Similarity): EDM’de metnin boyutundan dolayı

iki benzer metin birbirine uzak görülebilir. Böylece Kosinüs Benzerliği

metriği ile boyutuna bakmaksızın dokümanların ne kadar benzediğine karar

verilebilir. Matematiksel olarak, çok boyutlu bir uzayda yansıtılan iki vektör

arasındaki açının kosinüsünü ölçer. Bu iki vektör arasındaki açısal mesafe

(angular distance) ne kadar düşükse benzerlik o kadar yüksektir. Ayrıca

semantik anlam dikkate alınır (Şekil 1.13.) ve buna göre anlam bakımından

benzer kelimeler de benzer olarak ele alınmalıdır (Prabhakaran, 2018).

Şekil 1.13. Kosinüs Benzerliği Örneği.

5. MDS (Multidimensional Scaling), “çok boyutlu ölçekleme” olarak

adlandırılır. Scikit Learn’e göre MDS, mesafelerin orijinal yüksek boyutlu

uzaydaki uzaklıklara iyi bir şekilde uyan verilerin düşük boyutlu bir

gösterimini araştırır. MDS, benzerlik ve farklılık verilerini analiz etmede

25

kullanılan bir tekniktir. Benzerlik veya farklılık verilerini geometrik

uzaylarda mesafeler olarak modellemeye çalışır. MDS metodunun metrik ve

metrik olmayan şeklinde iki türü vardır. Metrik MDS’de, girdi olan

benzerlik matrisi bir ölçümden doğar (ve böylece üçgen eşitsizliğine uyar).

İki nokta çıktısı arasındaki mesafeler daha sonra benzerlik veya farklılık

verilerine mümkün olduğunca yakın olacak şekilde ayarlanır. Metrik

olmayan versiyonda ise, algoritmalar mesafelerin sırasını korumaya

çalışacak ve bu nedenle gömülü uzaydaki mesafeler ile

benzerlikler/farklılıklar arasında tekdüze bir ilişki arayacaktır.

 1.4.6.3. Tez Çalışmasında Kullanılan ML Algoritmaları

 Bu tez çalışmasında köşe yazıları üzerinden yazar tanıma yapılabilmesi için ML

algoritmalarına başvurulmuştur. Çıkan sonuçlar ve analizi 3. Bölüm’de

anlatılmaktadır. Faydalanılan ML algoritmaları aşağıda verilmiştir:

1. LSTM, sinir ağları tabanlı Uzun Kısa Süreli Bellek (Long Short Term

Memory), NLP alanında önemli bir role sahiptir. Ayrıca, ardışık (sequence)

modelleme için yaygın olarak kullanılmıştır. LSTM’lerin kullanımı yaygındır

çünkü model, örnekler ilerlerken kendisine geri döner ve böylece herhangi

yeni bir örnek için tahmin yapılırken önceki tahminler tarafından oluşturulan

bağlamdan yararlanır. Tensorflow ve Keras kütüphanelerinden faydalanır.

(Versloot, 2021).

LSTM, uzun süreli belleği tekrarlayan sinir ağlarına (Recurrent Neural

Networks - RNN) tanıtır. Bir ünite içinde üç tip geçit vardır; girdi geçidi,

girdiyi hücreye ölçekler (yazma); çıktı geçidi, çıktıyı hücreye ölçekler

(okuma); unutma geçidi ise, eski hücre değerini ölçekler (resetleme). Her

geçit, okuma/yazmayı kontrol eden ve böylece uzun süreli hafıza

fonksiyonunu modele dahil eden bir anahtar gibidir. LSTM’in el yazısı

tanıma, zaman serisi anomali tespiti, konuşma tanıma, dilbilgisi öğrenme,

müzik besteleme, vb. gibi kullanılabileceği birçok yol vardır (Gall, 2018).

26

LSTM veri seti üzerinden uygulanırken, bilinmesi gereken birçok noktası

bulunmaktadır. Bu çalışmada LSTM algoritmasından yararlanılırken

aşağıdaki kavramlar kullanılmıştır.

Simgeleştirme (Tokenize): Bu, LSTM ağı için bir katman değil,

kelimelerimizi simgelere (tamsayılara) dönüştürmek için zorunlu bir adımdır

(Agrawal, 2019). Simgeleştirme sınıfı için bazı değişkenler olmalıdır. Bu

değişkenler aşağıda gösterilmiştir:

 Kelime sayıları (num_words): Kelime sıklığına bağlı olarak

tutulacak maksimum kelime sayısıdır ve yalnızca en yaygın

kelimeler tutulmaktadır.

 Kelime kümesi dışındaki simgeler (Oov_tokens): Sözcük dağarcığı

dışındaki kelimeleri etiketlemek için kullanılır.

 Sözcük dizini (word_index): Sıralarına/dizinlerine göre kelimeleri

eşleyen adlandırılmış listedir. Yalnızca tokenizer’da

“fit_text_tokenizer()” çağrıldıktan sonra ayarlanır (Kalinowski ve

ark.).

 Veri işlenirken “sequence.pad_sequences” kullanımı şekil içeren

girdi verilerinin listesini (veriyi) iki boyutlu NumPy şekil dizisine

(veri, zaman aralıklarına) dönüştürür. Temel olarak, verilere zaman

aralıkları kavramını ekler. Uzunluğun zaman aralıklarını (maxlen)

üretir (Tutorials Point (I) Pvt. Ltd. - Keras, 2019, s.:85).

 Keras web sitesine göre Blok dizileri (pad_sequences) aynı

uzunlukta olmalıdır. Doldurma (padding) veya kesmenin (truncation)

gerçekleştiği konum, sırasıyla doldurma ve kesme bağımsız

değişkenleri tarafından belirlenir. Dizinin başlangıcındaki değerleri

önden (pre) doldurma veya kesme varsayılan seçenektir.

 Doldurma / Kesme (Padding / Truncating) İşlemi: Hem kısa hem de

uzun metinlerle başa çıkmak için belirli bir uzunluğa göre metni

doldurur (padding); ya da baştan/sondan metni keser (truncating). Bu

uzunluk dizi uzunluğu (sequence length) olarak tanımlanır.

27

 Veriler iyi bir şekle sokulduğunda, eğitim ve test setlerine ayrılabilir

(Agrawal, 2019). Keras’a göre metin verisi önişleme bağımsız değişkenleri

şunlardır:

 Küme boyutu (batch_size): Veri gruplarının boyutudur. Varsayılan

değer 32’dir.

 Maksimum uzunluk (max_length): Bir metin dizesinin maksimum

boyutu. Bundan daha uzun metinler maksimum uzunluğa göre

kısaltılacaktır.

 Karıştırma (shuffle): Verilerin karıştırılıp karıştırılmayacağıdır.

Varsayılan değeri “Doğru” dur.

 Kaynak (seed): Karıştırma ve dönüşümler için isteğe bağlı rastgele

kaynak sunar.

 Ardışık (Sequential) model, her bir katmanın tam olarak bir girdi ve çıktı

tensörüne sahip olduğu düz bir katman yığını için uygundur. Ardışık model

ekle “add()” metoduyla oluşturulabilir. Model inşa edilir edilmez, özet

“summary()” metoduyla içerik görüntülenebilir (Chollet, 2020). Daha sonra

LSTM katmanları (layers) eklenebilir. Tez çalışmasında kullanılan katmanlar

aşağıda yer almaktadır:

a. LSTM Katmanı: gizli konum boyutları ve katman sayısıyla

tanımlanır.

b. Gömme (Embedding) Katmanı: kelime simgelerini (tamsayıları)

belirli boyutta bir yerleşime dönüştürür.

c. Aktivasyon Katmanı: Tüm çıktı değerlerini 0 ile 1 arasında bir

değere çevirir.

d. Yoğun (Dense) Katman: Tam bağlantı oluşturur ve LSTM

katmanının çıktısını istenen çıktı boyutuna eşler (Agrawal, 2019).

Keras’a göre Yoğun katmanın bir değişkeni olarak softmax

kullanılabilir. Softmax, değerler vektörünü bir olasılık dağılımına

dönüştürür. Sonuç bir olasılık dağılımı olarak

yorumlanabileceğinden, Softmax genellikle bir sınıflandırma ağının

son katmanı için aktivasyon olarak kullanılır.

28

e. Bırakma (Dropout) Katmanı: Eğitim süresi boyunca her adımda bir

oran frekansı ile girdi birimlerini rastgele 0’a ayarlar, bu da aşırı

öğrenmeyi önlemeye yardımcı olur. Oranı 0 ile 1 arasında reel sayı

olmalıdır.

f. Düzleştirme (Flatten) Katmanı: Girdiyi düzleştirir. Küme

büyüklüğünü (batch size) etkilemez.

g. Çift Yönlü (Bidirectional) Katman: RNN’ler için çift yönlü modül

oluşturur. Girdi hem sağdan sola hem de soldan sağa okunur.

En iyileştiriciler (Optimizers): Keras modelini derlemek için gereken iki

bağımsız değişkenden biridir: “compile()” (derleme) veya “fit()” (uydurma)

gibi. Optimizer için aşağıdaki gibi varsayılan parametreler kullanılabilir.

  “model.compile(loss=‘categorical_crossentropy’, optimizer=‘adam’)”

Adam, optimizer için bir yöntemdir ve sadece az bellek ihtiyacı ile birinci

derece eğimler gerektiren verimli bir tahmin sağlar. Yöntem, eğimlerin birinci

ve ikinci kuvvetlerinin tahminlerinden farklı parametreler için bireysel

uyarlanabilir öğrenme oranlarını hesaplar. İsmen “Adam”, “adaptive moment

estimation (uyarlanabilir kuvvet tahmini)” dan türetilmiştir (Kingma & Ba,

2015). Keras’a göre Adam öğrenme oranı çok yüksek olmamalıdır, yoksa

girdi aşırı öğrenmiş olur, o yüzden varsayılan değer 0.001 olarak

geçmektedir. Bozunma oranı (decay rate) 1. kuvvet tahminleri varsayılan

olarak 0.9, 2. kuvvet tahminlerinde ise varsayılan olarak 0.999 olarak

kullanılmaktadır. Sayısal tutarlılık için sabit bir katsayı, sıfıra çok yakın olan

değer (epsilon) varsayımı da ‘1e-7’ olarak ifade edilmektedir.

Optimizer’da model derlenirken kayıp (loss) fonksiyonu da kullanılabilir.

Kayıp fonksiyonlarının amacı, bir modelin eğitim sırasında en aza indirmeye

çalışması gereken miktarı hesaplamaktır. Loss fonksiyonu seyrek kategorik

çapraz etkinlik ölçümü (sparse categorical crossentropy) olarak seçilebilir. Bu

değişken etiketler ve tahminler arasındaki çapraz etkinlik ölçüm kaybını

hesaplar. İki veya daha fazla etiket sınıflarında kullanılır. Etiketlerin tamsayı

olarak getirilmesi beklenir.

29

Yine Optimizer’da metrik fonksiyonu da seçilebilir. Metrik, modelin

performansını değerlendirmek için kullanılan bir işlevdir. Metrik işlevleri, bir

metriğin değerlendirilmesinden elde edilen sonuçların model eğitilirken

kullanılmaması dışında kayıp işlevlerine benzer. Herhangi bir kayıp işlevi

metrik olarak da kullanılabilir. Doğruluk (accuracy) metriği seçildiğinde,

tahminlerin etiketlere ne sıklıkta eşit olduğunu hesaplanır. Bu sıklığı

hesaplarken toplam (total) ve sayı (count) olmak üzere iki yerel değişken

oluşturur.

En son, eğitim sırasında toplanan tüm bilgileri içeren bir geçmiş (history)

nesnesi üzerinde model uydurma yapılırken “model.fit()” birçok değişken

belirlenmelidir:

 x: Vektör, matris veya eğitim verisi dizisidir.

 y: Vektör, matris veya etiket veri dizisidir.

 Devir (Epoch): modelin eğitilmesindeki devir sayısıdır.

 Ayrıntı (Verbose): Ayrıntı modudur (0 = sessiz, 1 = ilerleme

çubuğu, 2 = devir başına bir satır).

 Validation data (Doğrulama verileri): her devrin sonunda kaybın ve

herhangi bir model ölçümünün değerlendirileceği verilerdir. Model

bu verilerde eğitilmeyecektir.

KNN (K-Nearest Neighbours), “en yakın k komşu” anlamına gelmektedir ve

mevcut tüm durumları depolayan ve yeni verileri veya durumu bir benzerlik

ölçüsüne göre sınıflandıran basit bir algoritmadır. Çoğunlukla komşularının

nasıl sınıflandırıldığına dayandırılmış bir veri noktasını sınıflandırmak için

kullanılır. KNN’deki ‘k’, veri noktasının nerede sınıflandırılacağına karar

vermek amaçlı en yakın komşuların sayısını ifade eden bir parametredir.

Şarap örneğine bakıldığında, kırmızı ve beyaz şaraptaki Mirisetin ve Rutin

kimyasal bileşen seviyelerine bakılmış, seviye ne kadar ise ona göre kırmızı

ve beyaz şarap kadehlerini ayıran bir sınıflandırma yapılmıştır (Şekil 1.15.).

Buna göre yeni gelen bir kadeh şarabın hangi sınıfta olduğuna karar

verilmelidir. KNN algoritmasında ‘k’ değeri 5 ise, en yakın 5 kadehe

bakılması gerekir. En yakın 5 kadehe bakıldığında; 4’ü kırmızı, 1’i beyaz

çıkmıştır, böylece yeni gelen kadehte kırmızı şarap vardır tahmini yapılmıştır

30

(Şekil 1.16.). KNN algoritmasında ‘k’, öznitelik benzerliğine dayalıdır ve

doğru ‘k’ değerini seçmek, daha iyi bir doğruluk için önemlidir. ‘k’ değeri

deneme yanılma yöntemiyle doğru bir seçime ulaşır (Subramanian, 2019).

Şekil 1.14. Şarap örneğinde kırmızı ve beyaz kadehlerin

mirisetin ve rutin seviyelerine göre ayrımı grafiği.

Şekil 1.15. Yeni bir kadeh şarabın KNN algoritmasına göre sınıflandırılması.

2. Decision Tree Classifier, “Karar Ağacı Sınıflandırıcısı” olarak geçmektedir

ve Wikipedia’ya göre daha çok sınıflandırma problemlerinde kullanılır.

Sadece ayrık değil aynı zamanda sürekli bağımlı değişkenler için de

çalıştırılabilir. Bu algoritma veriyi iki ya da daha fazla homojen setlere ayırır.

Mümkün olduğunca farklı gruplar oluşturmak için en önemli özniteliklere

bakarak bu ayırmayı gerçekleştirir. Karar ağaçları hem sınıflandırma hem de

regresyonu kapsayan makine öğreniminde yaygın olarak kullanılmaktadır.

Karar analizinde, kararları ve karar vermeyi görsel ve açık bir şekilde temsil

etmek için bir karar ağacı kullanılır. Bu karar ağacı, aslında ağaç benzeri bir

karar modelidir. Kökü üstte, dalları altta olacak şekilde bir karar ağacı çizilir.

Şekil 1.16’da Titanik veri seti örneğine bakıldığında yolcuların ölüp

ölmediğini tahmin edilmeye çalışılmaktadır. Model, cinsiyet, yaş ve eş/çocuk

31

olmak üzere 3 özniteliği/sütunu kullanmaktadır. Buna göre ölen ve hayatta

kalan yolcuların oranları kırmızı ve yeşil renklerde gösterilmiştir.

Şekil 1.16. Karar Ağacı Örneği.

3. Suppor Vector Machines (SVM) “Destek Vektör Makineleri” olarak

adlandırılır ve Tutorialspoint’e göre veriyi farklı kategorilere ayıran iyi

bilinen denetimli sınıflandırma algoritmasıdır. Vektörler hattı en iyi hale

getirerek sınıflandırılır böylece grupların her birindeki en yakın nokta

birbirinden en uzak nokta olacaktır. Sklearn’e göre SVM için sınıflandırıcı

olan SVC (Support Vector Classifier) kullanılır. SVC birden fazla sınıflar için

kullanılabilir. Parametreleri arasında çekirdek (kernel) parametresi varsayılan

olarak “rbf”dir (radyal temelli fonksiyon), ancak “linear” (doğrusal), “poly”

(çoklu), “sigmoid” veya “precomputed” (önceden hesaplanmış) de seçilebilir.

Yine de yaygın kullanılanların seçilmesi önerilmektedir.

4. Naive Bayes, Tutorialspoint’e göre, tahmin değişkenlerinin bağımsız olduğu

varsayımıyla Bayes teoremine dayalı bir sınıflandırma tekniğidir. Özetle, bir

Naive Bayes (NB) sınıflandırıcısı, bir sınıftaki belli bir özelliğin varlığının

başka herhangi bir özelliğin varlığı ile ilgili olmadığını varsayar. Naive

Bayesian modelini uygulamak kolaydır ve çok büyük veri kümelerinde

oldukça kullanışlıdır. Basit olmaktan ziyade, son derece gelişmiş

sınıflandırma yöntemlerinden bile daha iyi bir performans gösterir. Metin

sınıflandırmalarında kullanılması yaygındır. Sklearn’e göre Naive Bayes 5

adet sınıflandırıcısı bulunmaktadır:

a. Katlıterim (Multinomial) NB, katlı çok terimli modeller için bir

sınıflandırıcıdır ve ayrık özelliklere sahip sınıflandırma için uygundur

32

(örneğin, metin sınıflandırması için kelime sayıları gibi). Katlıterim

dağılımı normalde tamsayı özellik sayımlarını gerektirir ancak

uygulamada TF-IDF gibi kesirli sayımlar da işe yarayabilir.

b. Bernoulli NB, çok değişkenli modeller için bir sınıflandırıcıdır ve

ayrık veriler için uygundur. İkili (binary) özellikler için tasarlanmıştır.

c. Kategorik (Categorical) NB, kategorik özellikler için kullanılan bir

sınıflandırıcıdır. Kategorik olarak dağıtılmış ayrık özelliklere sahip

sınıflandırmaya uygundur.

d. Tümleyici (Complement) NB, standart Katlıterim (Multinomial) NB

tarafından yapılan “keskin varsayımları” düzeltmek için tasarlanmıştır

ve özellikle dengeli olmayan veri setleri için uygundur.

e. Gaussian NB’de, özelliklerin olasılıkları Gaussian olarak tahmin edilir.

5. Multi-layer Perceptron (MLP) Classifier “Çok Katmanlı Algılayan

Sınıflandırıcı” anlamına gelmektedir ve sinir ağlarına dayalı bir

sınıflandırıcıdır. Wikipedia’ya göre MLP üç katman devresinden oluşur; girdi

katmanı, gizi katman ve çıktı katmanıdır. MLP’ler, problemleri olasılıksal

olarak çözme yetenekleri nedeniyle araştırmalarda faydalıdır. MLP’ler,

konuşma tanıma, görüntü tanıma ve makine çevirisi yazılımı gibi çeşitli

alanlarda uygulanmıştır.

 1.4.7. Yazarlık Analizi Yapılmış Çalışma Örnekleri

 Bu tez çalışması için yazarlık analizi yapılmış birçok çalışma incelenmiştir. Bu

tez çalışmasına en yakın bazı çalışmaların, bu çalışmayla olan benzerlikleri ve

farklılıkları aşağıda tartışılmıştır.

1. Adli Yazarlık Analizinde Ayırt Edici Göstergeler Olan Kanıtsallık Stratejileri

adlı çalışma kanıtsallık stratejilerinin sıklığının yazara özgü olup olmadığı ve

İngilizce dilinde sözlük-dilbilgisel ifadelerin yazarlık analizinde ayırt edici

göstergeleri açığa çıkarıp çıkarmadığını incelemektedir. Bu araştırma 5

yazardan gelen 19 örnek ile oluşturulmuştur. Araştırmanın nitel yönü, verilen

33

ifadelerin kullanımında yazara özgü belirli eğilimlerin tanınmasının yanı sıra,

kanıtsallığı belirtmek için kullanılan sözlük-dilbilgisel ifadelerin saptaması ve

sınıflandırılmasını göstermektedir. Çalışma sonucunda kanıtsallık ve

sözlüksel-dilbilgisel kanıtsal ifade türlerinin seçiminde yazara özgü belirli

alışkanlıklar gözlemlenmiştir (Tomić, 2019). Bu araştırma yazarlık analizi

içerdiğinden bahsi geçen tez çalışmasına benzemektedir ancak tez çalışması

kodlar aracılığıyla gerçekleştirildiği ve bilişim alanını da bünyesine kattığı

için bu çalışmadan ayrı tutulabilir.

2. Öznitelik Madenciliğiyle Türkçe Metinlerin Yazar Atıfları adlı çalışma Yıldız

Teknik Üniversitesi tarafından yapılan Yazarlık Analizi çalışmalarından

biridir. Yıldız Teknik Üniversitesi Yazarlık Analizi içeren birçok çalışma

yürütmüştürllvellyürütmektedir.

“http://www.kemik.yildiz.edu.tr/yayinlarimiz.html”..sitesi incelendiğinde

yapılan çalışmalar görülmektedir. Öznitelik Madenciliğiyle Türkçe

Metinlerin Yazar Atıfları çalışması ise WEKA uygulaması üzerinden metin

madenciliği yapmaktadır. Yazarların belirlenmesi amaçlanan dokümanlardan

yazarlık özniteliklerinden, n-gramlarından ve bu öznitelik vektörlerinin çeşitli

kombinasyonlarından on farklı öznitelik vektörü elde edilir. Naive Bayes,

SVM, k-NN, RF ve MLP sınıflandırma yöntemleri uygulanarak her öznitelik

vektörünün karşılaştırmalı performansı analiz edilir. Çalışmanın sonucunda

göre en başarılı sınıflandırıcılar MLP ve SVM’dir (Türkoğlu ve ark., 2007).

Bu çalışma tez çalışmasına Yazarlık Analizi ve uygulanan algoritmalar

açısından benzer, ancak tez çalışması Yazarlık Analizini WEKA yerine

Python üzerinden uygulamaktadır.

3. Twitter’da İntihar İçerikli İletişimin Makine Sınıflandırması ve Analizi adlı

çalışma İngilizce dilinde Twitter’da intihar içerikli metinleri sınıflandırmak

için oluşturulmuş bir dizi makine sınıflandırıcılarını rapor etmek ve ciddi

olmayanları belirlemektir. Twitter gönderilerinden çıkarılan sözcüksel,

yapısal, duygusal ve psikolojik özellikleri kullanarak bir takım temel

sınıflandırıcı oluşturulmuştur. Bu analizden yola çıkılarak online intihar

içerikli tartışma forumlarından ve diğer mikroblog web sitelerinden alınan

sözcük listelerinin ve düzenli ifadelerin hem tek sözcükler, n-gramlar (kelime

34

listeleri) hem de daha karmaşık kalıplar açısından ilgili dil ‘ipuçlarını’

yakalayabildiğini gözlemlenmiştir (Burnap ve ark., 2015). Bu tez

çalışmasında da bahsi geçen çalışmadaki gibi makine sınıflandırıcıları

kullanılmıştır ve veri seti online içerikten toplanmıştır.

4. Online Metinlerde Yazar Tanıma adlı yüksek lisans tezi İngilizce yazar

tanıma araştırma alanında kullanılan yöntem ve teknikleri araştırmış;

ardından bunları uygulanabilir bir prototip haline getirmeyi amaçlamıştır.

Veri setleri e-postalar ve yazılardan oluşan hazır 2 corpustan çekilmiştir.

Daha sonra uygulanan prototip, nitel (verilen metinlerin orijinal yazarlarını

belirlemedeki doğruluk düzeyi) ve nicel (prototipin uygulama süresi)

nitelikleri açısından incelenmiş ve değerlendirilmiştir. Çalışma sonucunda

denetimli öğrenme tekniklerinin yanı sıra denetimsiz öğrenme tekniklerinin

de mevcut yöntem ve tekniklerin performansını geliştirmeye yardımcı

olabileceğini göstermektedir (Dinh, 2014). Mevcut tez çalışması, bu tez

çalışması ile karşılaştırıldığında denetimli öğrenme tekniklerinin kullanılması

açısından birbirine benzemektedirler, ancak veri seti köşe yazılarından

oluşmaktadır.

5. Elektronik Postaların Adli Analizinde Yazar Analizi Tekniklerinin

Kullanılması adlı yüksek lisans tez çalışması Türkçe dilinde

gerçekleştirilmiştir. Bu çalışmada, mesaj birimine dayalı elektronik postaların

güvenliğini artırabilecek ve 5 yazardan gelen 250 mesaj için elektronik

postaların bilinen sahibi yerine gerçek sahibini bulabilecek bir uygulama,

elektronik postaların yazarlarını adli bilimler ve veri seti olarak elektronik

posta ile aynı özelliği taşıyan forum mesajları açısından belirlemek amacıyla

gerçekleştirilmiştir. Yöntemlerin başarı oranları arasındaki farkın temel

nedeni seçilen veri setine, çıkarılan metin özelliklerine, ön işleme adımlarına

ve algoritma parametrelerine bağlıdır. Sonuç olarak yazarlık tespiti, gerçek

suçluları tespit etmede oldukça başarılı bir yöntemdir ve adli bilimler

alanında çalışan bilim insanları için faydalıdır (Ekinci, 2013). Bu tez

çalışması, mevcut tez çalışması ile adli bilimlere sunmuş olduğu katkı

benzerdir, ancak kullanılan algoritmalar farklı konumdadırlar. Benzer olarak

35

karar ağacı, Naive Bayes, Bagging sınıflandırma algoritmaları kullanılmış,

sonuçlar da benzer yöntemlerle elde edilmiştir.

6. Online Sosyal Platformlarda Yazar Tanıma yüksek lisans tez çalışması

Türkçe dilinde “bir sosyal platformda engellenen kullanıcıların farklı kimlikle

geri dönmesi durumunda kimliğinin tespit edilmesi ya da sahte hesapların

ardındaki kişilerin ortaya çıkarılmasını” amaçlamaktadır. Veriler Ekşisözlük

ve COPA isimli online bir oyun platformunda ikiden fazla kişinin online grup

sohbetlerinden toplanmıştır. Bu çalışma sonucunda örneğe dayalı yazar

atıflama yöntemi, iyi yapılandırılmış resmi metinsel verilerde daha iyi

performans gösterirken profil tabanlı yaklaşım, resmi olmayan veri setlerinde

yazar atıfları için daha iyi olduğunu göstermektedir. Sorgu metni az olsa bile

yazar tanıma yine de mümkün olmuştur (Kuzu, 2010). Mevcut tez çalışması

bu tez çalışmasına denetimli algoritmalar kullanması açısından benzerlik

göstermektedir. Ancak bu tez çalışması ayrıca İngilizce ve Portekizce

dillerinde veri setleri de bulundurmuştur.

7. Metin Madenciliği Yöntemleri ile Yazar Tanıma: Divan Edebiyatı Örneği

adlı tez çalışması ise yine Türkçe dilinde gerçekleştirilmiştir. Bu çalışmada

Divan Edebiyatına ait 25 şiir eserinin yazarlarını belirlemek için bir yapı

geliştirilmiştir. Bu sistemde metin madenciliğinin metin sınıflandırma

algoritmaları kullanılıp kelimeler çözümlenmiştir. 20 farklı model her

parametrenin olası değerleri için kurulmuştur. Bu araştırmanın, bilinmeyen

eserlerin yazarlarının belirlenmesine dair tahminleri uzun vadede

destekleyebileceği varsayılmaktadır. Sonuç olarak, divan edebiyatı eserleri

için kelime bazlı yaklaşımla metin sınıflandırma işlemi başarılı olarak

kaydedilmiştir (Bilgin, 2018). Bu tez çalışması mevcut tez çalışmasına yazar

tanıma açısından benzemektedir, ancak mevcut tez çalışmasının veri setleri

köşe yazılarından seçilmişken bu tez çalışması şiirleri içermektedir.

36

 Bütün bu açıklanan kavramlardan hareketle yazarlık analizinin ana fikri aslında

bir yazarın kendine özgü özelliklerin çıkarılması olduğu savunulabilir. Bu stilistik

özellikler NLP adımları ile elde edilecek olup, makine öğrenme algoritmalarına hazır

haline getirildikten sonra bahsi geçen algoritmalardan geçirilecektir. Algoritma

sonuçlarından elde edilecek verilerle bu çalışmanın amacı sadece söz konusu köşe

yazılarının bağlı oldukları yazarlara ait olup olmadığını göstermekle kalmayıp, aynı

zamanda bilişim suçlarının en yaygını olan intihali önleme bir öncü olması

hedeflenmiştir. Ayrıca sosyal medya gibi bilişim ortamlarında yazarı belli olmadığı

düşünülen herhangi bir paylaşımı tespit etmede de yardımcı olacağı düşünülmektedir.

37

2. GEREÇ VE YÖNTEM

 2.1. Verilerin Toplanması

 Bu çalışma; yazarları ve köşe yazılarını seçme, köşe yazılarını web sitelerinden

çekme, bu yazıları önişlemden geçirme ve önişlemden geçirilmiş köşe yazılarını

algoritmalara sokma olarak 4 aşamadan oluşmaktadır. Yazarlar ve köşe yazıları

Ağustos 2021 tarihinde seçilmiş ve yazılan kodlar aracılığıyla bağlı oldukları web

sitelerinden çekilmişlerdir. Eylül 2021 tarihinde ise bu yazılar önişlem adımlarından

geçirilmiştir. Ekim 2021 tarihinde ise önişlemden geçirilen yazılar algoritmalara

sokulup sonuçları not edilmiştir.

 2.1.1. Birinci Aşama

 Köşe yazılarında yazarlık analizi yapmadan önce 6 köşe yazarı seçilmiştir. Bu

köşe yazarları “https://www.hurriyet.com.tr/yazarlar/tum-yazarlar/” web sitesinden

seçilmiştir. Yazarlar farklı alanlardan olmak üzere rastgele seçilmiştir. Tarih ve

edebiyat konularında Doğan HIZLAN ve İlber ORTAYLI; mutfak konularında Müge

AKGÜN ve Vedat MİLOR, sosyal konularda Melike KARAKARTAL ve Yaşar

SÖKMENSÜER seçilmiştir. Her yazardan 160’şar yazı seçilmiştir. Toplamda 960

metin üzerinde çalışılmıştır ve her yazardan daha fazla metnin algoritmalara

sokulabilmesi için yazılar eşit tutulmuştur. 960 metin, yazarlık analizi yapmak üzere

sınırlı olsa da diğer çalışmalara nazaran elde edilen verilere göre yeterli görülebilir.

 2.1.2. İkinci Aşama

 Çalışmanın bu aşamasında kodlar, Visual Studio Code (VSC) uygulaması

aracılığıyla yazılmıştır. Visual Studio Code, Vikipedi’ye göre “Microsoft tarafından

Windows, Linux ve MacOS için geliştirilen bir kaynak kodu düzenleyicisidir.

Gömülü Git kontrolü, hata ayıklama, sözdizimi vurgulama, akıllı kod tamamlama,

38

snippetler ve kod yeniden yapılandırma desteği içerir. Ayrıca VSC özelleştirilebilir,

böylece kullanıcılar klavye kısa yollarını, tercihlerini ve editörün temasını

değiştirebilir. Resmi indirme işlemi tescilli bir lisans altında olsa da ücretsiz ve açık

kaynaktır.”

 VSC’a entegre edilen Python 3.9.7 aracılığı ile, öncelikle yazarların bağlı olduğu

web sitelerinden metin çekme işlemi belirli kodlarla getirilmiştir. Metinleri web

sitelerinden çıkarma işlemi için urllib ve BeautifulSoup kütüphanelerinden

yararlanılmıştır. Tek bir metin çıktısı Şekil 2.1.’de gösterilmektedir.

Şekil 2.1. Web sitesinden çekilen bir metin örneği.

 Tek bir metin örneği çalıştıktan sonra bir yazarın bütün yazıları ve bağlı

oldukları linklerin çıkarılması ve .txt uzantılı belgelere kaydedilmesi isin kodlar

yazılmıştır. Yazılan kodlarda, web sitesi inceleme bölümlerinden tam metin(ler)in

içerildiği sınıf (class) “article-content news-text”, “highlighted-box mb20” bölmeleri

koda yazılarak gerçekleştirilmiştir. Linkler (Şekil 2.2.) ayrı, linkler ve bağlı oldukları

köşe yazıları (Şekil 2.3.) ayrı bir .txt dosyasına kaydedilmiştir. Verilen örneklerde

seçilen köşe yazarlarından olan Doğan HIZLAN yazıları ve linkleri bulunmaktadır.

Diğer yazarların köşe yazıları da aynı yöntemle web sitelerinden çekilmiştir.

Kaydedilen .txt uzantılı dosyalar kontrol edildiğinde bazı metinlerin bozuk çıktığı ve

metin içerisinde makine tarafından okunamayacağı düşünülen bazı simgeler

görülmüştür. Bu kısımlar da metinden çıkarılmış böylece önişlem adımına uygun

hale getirilmiştir (Şekil 2.4.).

39

Şekil 2.2. Web sitelerinden çekilen linkler örneği.

Şekil 2.3. Web sitelerinden çekilen linkler + metinlerin örnekleri.

Şekil 2.4. Web sitelerinden çekilen metinlerde bozuk kısımların ve simgelerin çıkarıldığı ‘.txt’ örneği.

40

 2.1.3. Üçüncü Aşama

 Web sitelerinden çekilen her yazarın köşe yazıları ayrı ‘.txt’ uzantılı dosyalara

kaydedilmiştir ve hepsi “author_n_columns” adlı bir dosyada tutulmuştur. Dosya

önişleme sokulmadan önce her yazarın karakter, kelime ve köşe yazısı adetlerine

kodlarla bakılmıştır (Çizelge 2.1.).

Çizelge 2.1. Yazarların seçilen köşe yazısı adetleri ve köşe yazılarında bulunan

 karakter/kelime adetleri.

 Daha sonra bu dosyalar kodlar aracılığıyla Python üzerinden önişlemden

geçirilmiştir. Önişlem adımları uygulanırken “nltk” ve “stanza” kütüphanelerinden

yararlanılmıştır. Bu kütüphanelerden faydalanırken, önişlem kodlaması 3 adımdan

oluşmuştur. Köşe yazılarında bulunan kelimeler kök haline getirilmiş (lemmaları

bulunmuş), metinler küçük harflere dönüştürülmüş, durduran ifadeler (stop-words),

sayılar ve noktalama işaretlerinden ayıklanmıştır. Bu işlem 6 yazar için de aynı

şekilde gerçekleştirilmiştir.

 Önişlemin ilk adımı, köşe yazılarında bulunan kelimeleri kök haline getirme

(lemmatization) işlemidir. Bu adımda ‘stanza’ kütüphanesinden faydalanılmıştır; dili

Türkçe seçilmiş, işlem birimi, girdi sınıflandırma (tokenization), çoklu kelime

göstergesi (multi-word token), sözcük türü (part-of-speech) ve lemma (kök)

seçilmiştir. Bu işlemde öncelikle köşe yazılarındaki cümleler kelimelere bölünmüş,

Türkçe dilinde kullanılan alfabe yazılarak Türkçe dilinde olmayan kelimeler ve özel

isimler çıkarılmaya çalışılmıştır. Ayrıca ‘stanza’ kütüphanesinde mevcut, evrensel

41

sözcük türleri (universal part-of-speech) olan yardımcı fiiller (auxiliary), ön ek ve

sok ek (adpositions), sayı (number) ve noktalama ifadeleri (punctuation) de

çıkarılmaya çalışılmıştır. Kelimelerin uzunluğu da 1’den fazlaysa o kelimeler

tutulmuş, diğerleri de atılmıştır. Son olarak elde edilen lemmalar küçük harflere

dönüştürülmüştür (Şekil 2.5.).

Şekil 2.5. Lemmatization işlemi sonrası çıktı örneği.

 Şekil 2.5.’daki çıktı örneğine bakıldığında bazı durduran ifadelerin, noktalama

işaretlerinin, sayıların hala var olduğu görülmektedir. Bir sonraki adımda, bu kez

‘nltk’ kütüphanesi aracılığıyla durduran ifadeler (Şekil 2.6.), sayılar ve noktalama

işaretlerinden (Şekil 2.7.) kurtulmak istenmiştir. Ayrıca Türkçe dilinde olmayan bazı

harfler (‘â’ gibi) standart alfabedeki harflere dönüştürülmüştür. Kelimelerin harf

sayısı da 1’den küçük ve 1’e eşitse tekrar veri kümesinden çıkarılmıştır (Şekil 2.7.).

Köşe yazılarından elde edilen önişlemden geçirilmiş lemmalar algoritmalara

sokulmak üzere her bir köşe yazısı için ayrı ‘.txt’ uzantılı dosyalara

kaydedilmişlerdir (Şekil 2.8.). Şekil 2.9.’da dosyaların içeriği gösterilmiştir.

42

Şekil 2.6. ‘nltk’ kütüphanesinden durduran ifadeler (stop-words) çıkarma işlemi çıktı örneği.

Şekil 2.7. ‘Nltk’ kütüphanesinden sayıların ve noktalama işaretlerinin çıkarılması ve kelimelerdeki bazı harflerin

değişimi çıktı örneği.

43

Şekil 2.8. Her bir köşe yazısı için lemmaların ayrı dosyalara kaydolduğunu gösteren bir örnek.

Şekil 2.9. Ayrı dosyalara kaydolmuş bir metinde bulunan lemma örnekleri.

 2.1.4. Dördüncü Aşama

 Bu veri seti dosyası çalışmanın tamamlanması için makine öğrenme

algoritmalarına sokulmalıdır. Veri seti büyük olduğu ve algoritmaların daha başarılı

yürütülmesi için online kod işleten Google Colaboratory uygulaması çalışmanın

devamı için kullanılmıştır. Google Colaboratory, Jupyter Notebook’un bulut

sürümüdür. Hatta site için Jupyter’in önceki adı olan IPython Notebook (.ipynb)

dosyalarını kullanır. Kod yazma ve çalıştırma, ilgili belgeleri oluşturma ve grafikleri

görüntüleme gibi birçok görevi gerçekleştirmek için Colaboratory kullanılabilir.

Colaboratory bir dizi çevrimiçi depolama seçeneğini destekler, böylece Colaboratory

Python kodu oluştururken çevrimiçi olarak kullanılabilir (Mueller & Massaron,

2019).

44

 Öncelikle ziplenmiş lemmalar dosyası (Şekil 2.8.) Colaboratory’ye yüklenmiş

ve ‘.zip’ dosyasından kurtarılmıştır (Şekil 2.10). Daha sonra her köşe yazarı için ne

kadar lemma metni olduğu kontrol edilmiş ve metin dosyaları isimleri çıkarılmıştır

(Şekil 2.11.). Ayrıca bu lemmalar dosyasında köşe yazarlarının köşe yazısı başına

düşen lemma adetleri ve lemma başına düşen karakter adetleri de istatistiksel iceleme

açısından elde edilmiştir (Şekil 2.12.). Şekil 2.13.’e bakıldığında yazarların lemma

başına düşen ortalama karakter adetlerinin birbirine yakın olduğu; köşe yazısı başına

düşen ortalama lemma adetlerinde de farklılıklar olduğu görülmüştür. İlber

ORTAYLI ve Müge AKGÜN’ün köşe yazıları başına düşen ortalama lemma adetleri

diğer yazarlara nazaran daha fazladır. Bunun nedeninin işlenmemiş köşe yazılarına

bakıldığında İlber ORTAYLI ve Müge AKGÜN’ün yazılarının diğer yazarlara

nazaran daha uzun olmasıdır.

Şekil 2.10. ‘lemmas.zip’ dosyası ‘.zip’ uzantısından kurtarma ve dosyaları çıkarma örneği.

Şekil 2.11. Tüm köşe yazarları için ne kadar lemma metni bulunduğu ve metinlerin isimlerinin olduğu kod çıktısı.

45

Şekil 2.12. Köşe yazarlarının köşe yazısı başına düşen lemma adetleri ve

lemma başına düşen karakter adetleri kod çıktısı.

Şekil 2.13. Köşe yazarlarının köşe yazısı başına düşen lemma adetleri ve

lemma başına düşen karakter adetleri grafik gösterimi.

 Ortalama lemma ve karakter adetleri incelendiktem sonra ‘.zip’ uzantılı

dosyadan çıkarılan her köşe yazarına ait lemma dosyaları Şekil 2.14.’de Doğan

HIZLAN için yapıldığı gibi her yazar için çıkarılmış ve her lemma dosyası bağlı

olduğu köşe yazarı ismi ile etiketlenmiştir. Yazarları ile daha önceden etiketlenen

köşe yazıları, köşe yazıları (articles) ve etiketler/yazarlar (labels) olarak ayrı ayrı

toplanmıştır (Şekil 2.15.). Veri seti algoritmalara sokulmadan önce vektörlerini

bulmak için CountVectorizer ve TfidfVectorizer kullanılmıştır. Daha sonra buna

bağlı Öklid mesafesi ve kosinüs benzerliğine bakılmıştır.

46

Şekil 2.14. Tek yazara ait köşe yazılarının ve etiketleme örneği çıktısı.

Şekil 2.15. Köşe yazılarının “articles” ve bağlı etiketlerinin “labels” olarak ayrı ayrı toplanması.

 2.1.4.1. TF-IDF Vektorizer ile Kosinüs Benzerliği Uygulaması

 Sklearn kütüphanesinden öznitelik çıkarımı olan TfidfVectorizer ile yazılarda

(articles) bulunan tüm lemmalara (Şekil 2.15.) vektör yüklenmiştir ve bu lemmaların

dizilişi sağlanmıştır (Şekil 2.16.). Vektörler standartlaştırıldıktan sonra her yazar için

yazı aralıkları (Çizelge 2.2.) 50’şer olmak üzere yazılar getirilmiştir. Çekilen yazı

aralıkları sorgu yazı (query) aralıklarından farklı olmak üzere Kosinüs benzerliğine

(açısal mesafelere) bakmak için her yazarın 50 yazısı için her bir yazarın 7 sorgu

yazısı ortalamalarına bakılmış ve birbirine olan açısal mesafeleri çıkarılmıştır

(Çizelge 2.3.). Bu mesafelerin 2 boyutlu uzayda gösterilmesi için MDS kullanılmıştır.

TfidfVectorizer ile önceden ölçüm yapıldığı için de matris gösterimi buna göre

gerçekleştirilmiştir. Matris gösterimi için her yazarın 50 yazısı gösterimine bir renk

eklenmiş (Çizelge 2.2.), sorgu yazıları da siyah (black) renkle belirtilmiştir. Yazı

aralıkları (50) ve sorgu yazıları (7) sınırlı tutulmuştur çünkü görsel çıktıda fazla

örnek fazla renk anlamına gelmektedir, bu da gösterimden sonuç çıkarmayı verimsiz

hale getirecektir. Her renk bir yazarı simgelediğinden yazı aralıkları da kodda

renklerin bulunduğu kısımlara yazılmıştır.

47

Şekil 2.16. TfidfVectorizer ile lemmaları vektörlere çevirme ve dizilişleri.

Çizelge 2.2. Matris gösterimi için yazarların toplam yazı aralıkları ve bağlı renkleri.

48

Çizelge 2.3. Seçilen yazıların TfidfVectorizer ile açısal mesafeleri.

49

 2.1.4.2. CountVektorizer ile Öklid Mesafesi Uygulaması

 CountVectorizer da TfidfVectorizer gibi Sklearn kütüphanesinde olan bir

öznitelik çıkarımıdır ve TfidfVectorizer’ın yerine yazılarak çalıştırılabilir. Bu kez

CountVectorizer ile yazılarda (articles) bulunan tüm lemmalara (Şekil 2.15.) vektör

yüklenmiştir ve bu lemmaların dizilişi sağlanmıştır (Şekil 2.17.). Bir önceki bölümde

olduğu gibi Öklid mesafelerine bakmak için Çizelge 2.2.’deki yazı aralıklarından

aynı aralıklar seçilmiştir ve Öklid mesafeleri çıkarılmıştır (Çizelge 2.4.).

CountVectorizer’a göre yine MDS’de matris gösterimi sağlanmıştır. Bu gösterimde

de renkler bir önceki adımla kıyaslanabilmesi için aynı tutulmuştur.

Şekil 2.17. CountVectorizer ile lemmaları vektörlere çevirme ve dizilişleri

50

Çizelge 2.4. Seçilen yazıların CountVectorizer ile Öklid Mesafeleri.

51

 2.1.4.3. KNN Algoritması Uygulaması

 Şekil 2.15.’te köşe yazıları ve bağlı olduğu etiketler test ve eğitim verisi olarak

bölünmüştür. Yazıların %20’si test, %80’i eğitim verileri olarak alınmıştır (Şekil

2.18.). Yani algoritma yazıların %80’i ile eğitilip, diğer %20’si ile test edilecektir ve

buna göre bir sonuca varılacaktır. Öncelikle en yakın ‘k’ komşu algoritması

uygulanmıştır. Bu algoritma uygulanırken ‘sklearn’ kütüphanesinden faydalanılmıştır.

Metinlerin hem CountVektorizer hem de TfidfVectorizer ile vektörleri bulunmuştur.

Bu algoritmada ‘k’ değeri sırasıyla ‘1, 5, 10’ olarak seçilmiştir. Dolayısıyla

metinlerde en yakın vektör olarak çevresinde sırasıyla ‘1, 5, 10’ vektöre bakılmış ona

göre bir karar verilmiştir. Karar verme aşamasında CountVectorizer ve

TfidfVectorizer için doğruluk (accuracy), hassasiyet (recall) ve kesinlik (precision)

skorları çıkarılmıştır (Şekil 2.19.). Daha sonra 20’ye kadar olan her ‘k’ değeri ve iki

Vectorizer için hata oranına ve doğruluk skoruna bakılmıştır (Şekil 3.3.).

Şekil 2.18. Metinlerin eğitim ve test verilerine bölünmesi; CountVectorizer/TfidfVectorizer uygulanması.

52

Şekil 2.19. KNN Skorları.

 2.1.4.4. Naive Bayes Algoritması Uygulaması

 Şekil 2.18.’de bölünmüş veriler bu kez Naive Bayes (NB) algoritmasına

sokulmuştur. Bu algoritma kullanılırken sklearn kütüphanesinden Katlıterim

(Multinomial) NB, Bernoulli NB, Tümleyici (Complement) NB sınıflarından

yararlanılmıştır. Kategorik ve Gaussian NB sınıfları kodda hata verdiği

kullanılamamıştır. Daha sonra KNN algoritmasında olduğu gibi CountVectorizer ve

TfidfVectorizer için ve seçilen Naive Bayes sınıfları için doğruluk (accuracy),

hassasiyet (recall) ve kesinlik (precision) skorları çıkarılmış (Şekil 2.20.), en son da

kaç hata olduğunda dair hata matrisine bakılmıştır (Şekil 3.4.).

53

Şekil 2.20. Naive Bayes Skorları.

 2.1.4.5. SVM Algoritması Uygulaması

 Eğitim ve test olarak ayrılan veriler (Şekil 2.18.) sklearn kütüphanesinden SVM

algoritmasına sokulmuştur. SVC olan sınıflandırıcısıyla çekirdek (kernel)

parametresi hem doğrusal (linear) hem de varsayılan olan radyal temelli fonksiyon

(rbf) seçilmiştir. Bu her iki parametrede CountVectorizer ve TfidfVectorizer için

sınıflandırıcının doğruluk (accuracy), hassasiyet (recall) ve kesinlik (precision)

skorlarına bakılmıştır (Şekil 2.21). Daha sonra hata matrisi düzenlenmiştir (Şekil

3.5.).

Şekil 2.21. SVM Skorları.

54

 2.1.4.6. Decision Tree Classifier ve MLP Algoritmaları Uygulamaları

 Son olarak Şekil 2.18.’deki veriler sklearn kütüphanesinden MLP ve

DecisionTree algoritmalarına sokulmuştur. Her iki algoritmada da CountVectorizer

ve TfidfVectorizer kullanılmış, daha sonra doğruluk (accuracy), hassasiyet (recall) ve

kesinlik (precision) skorlarına bakılmıştır (Şekil 2.22.).

Şekil 2.22. MLP ve DecisionTree Skorları.

 2.1.4.7. LSTM Algoritması Uygulaması

 Bir derin öğrenme algoritması olan LSTM algoritması kullanılırken ise

tensorflow, numpy ve keras kütüphanelerinden yararlanılmıştır. Öncelikle LSTM

için zorunlu bir adım olan Tokenizer (Simgeleştirici) sınıfı metinleri tamsayılara

çevirmek için getirilmiştir. Daha sonra Ardışık (Sequential) modeli içerisinden

Dense (Yoğun), Flatten (Düzleştirme), LSTM, Dropout (Bırakma), Activation

(Aktivasyon), Embedding (Gömme), Bidirectional (Çift Yönlü) katmanları

getirilmiştir. En iyileştirici (Optimizer) olarak da Adam seçilmiştir. Kelime

büyüklüğü (vocab_size) 5000 olarak seçilmiş, veri seti içerisinde en yaygın

kullanılan 5000 kelime hedeflenmiştir. Gömme boyutu (embedding_dim) 256

seçilmiş, köşe yazısı başına düşen ortalama lemma adedi (max_length) 500

seçilmiştir. Metinleri kesme (truncation) ve doldurma (padding) işlemi sondan (post)

55

olacak şekilde seçilmiştir. Kelime listesi dışındaki simgeler “OOV” şeklinde

gösterilecektir. Veri setinin %80’i eğitim verisine verilip eğitilmiştir

(training_portion). Bırakma oranı (dropout_rate) ise %90 seçilmiştir, böylece veri

seti sürekli incelendiğinde veri setinin %90’ı her defasında bırakılacaktır ve aynı

veriler üzerinde çalışılmayacaktır. 6 yazar olduğu için de sınıf sayısı da (num_classes)

6 olarak not edilmiştir. Verilerin başta not edilmesinin amacı LSTM verileri üzerinde

değişiklik yapılacaksa tek bir blokta yapılmasını sağlamaktır (Şekil 2.23.).

 Etiketler (labels) bağlı oldukları yazılar (articles) ile değiştirilmeden birbiriyle

karıştırılmıştır, böylece LSTM algoritması uygulandığında yazarların sırası her 160

yazıda sabit olarak kalmayacaktır. Karıştırılan yazılar eğitim (%80) ve test verileri

(%20) olarak bölünmüştür. Eğitim büyüklüğü (train_size) yazıların %80’ini

miktarına kadar eğitim makaleleri (train_articles), %80’ininden sonraki miktar ise

test makaleleri (test_articles) olarak belirlenmiştir. Aynı durum eğitim ve test

yazılarının bağlı olduğu etiketler (yazar isimleri) için de gerçekleştirilmiştir. Şekil

2.24.’de eğitim kümesinin boyutu 768, test kümesinin boyutu da 192 olarak çıkmıştır.

Ayrıca kontrol amaçlı eğitim makalelerinin ve eğitim etiketlerinin ilki (0’ıncısı) da

yazdırılmıştır.

Şekil 2.23. LSTM Algoritmasının kurulumu ve yazılan değerler.

Şekil 2.24. Eğitim ve test kümelerinin boyutu; eğitim kümesinin ilk öğesinin ve yazarının çıktısı.

56

 Şekil 2.25. ve Şekil 2.26’da en sık geçen 5000 kelime ve bunlar dışındaki

kelimeler (OOV) eğitim ve test makalelerinde işaretlenmiş ve sözcük dizinleri

(word_index) verilmiştir. Ayrıca bu dizinlerin dizilişi doldurma, kesme ve

maksimum uzunluk değerlerine (Şekil 2.15.) göre çıkarılmıştır. Aynı durum eğitim

ve test yazılarının bağlı olduğu eğitim ve test etiketleri (yazarlar) için de yapılmıştır;

hepsine birer dizin atanmıştır (Şekil 2.27.; Şekil 2.28.). 6 yazar olsa da ilk dizin [0]

ile son dizin [5] ile gösterilmiştir.

Şekil 2.25. Eğitim makalelerinde sözcük dizini atanması ve bu dizinin diziliş çıktısı.

Şekil 2.26. Test makalelerinde sözcük dizini atanması ve bu dizinin diziliş çıktısı.

Şekil 2.27. Eğitim makalelerinin bağlı olduğu eğitim etiketlerine dizin atanması ve sıralanması.

57

Şekil 2.28. Test makalelerinin bağlı olduğu test etiketlerine dizin atanması ve sıralanması.

 Ardışık (Sequential) model uygulanırken 4 katman değerleri verilmiştir. Bu

katmanlar “add()” fonksiyonuyla getirilmiştir. Gömme (Embedding) katmanında

5000 kelime için gömme boyutu (embedding_dim) 256 olarak seçilmiştir. Bırakma

(Dropout) katmanında bırakma oranı (%90) verilmiş, çift yönlü katman 256 gömme

boyutuyla eklenmiştir. Yoğun (Dense) katmanda ise 6 yazar olduğundan sınıf sayısı

(num_classes) 6 seçilmiş, aktivasyon ise olasılık dağılımının görülmesi için “softmax”

fonksiyonu getirilmiştir. Katmanların eklendiği model özetlenince

“model.summary()” çıktı şekli (output shape) ve parametreler Çizelge 2.5.’te

gösterilmiştir. Gömme (Embedding) katmanında 256 boyutta eğitilen parametreler

1.280.000, bırakma (dropout) katmanında 0 olarak not edilmiştir. Çift yönlü

(Bidirectional) katmanda ise girdi hem sağdan sola hem de soldan sağa okunduğu

için 256 boyutu ikiye katlanmış, 512 boyutta 1.050.624 parametre eğitilmiştir.

Yoğun (Dense) katmanda da 6 sınıf için 3078 parametre eğitilmiştir. Toplamda

2.333.702 parametre eğitilmiş, eğitilmeyen parametre bulunmamaktadır.

58

Çizelge 2.5. Ardışık modelin eklenen katmanlar sonrası çıkan özeti.

 Optimizer olarak Adam kullanılmıştır ve Adam’da öğrenme hızı (learning_rate)

varsayılan değer 0.001 olarak seçilmiş, bozunma oranı (decay) ise varsayılan değere

yakın ‘1e-6’ (0,0000001) olarak kullanılmıştır. Model derlenirken de kayıp (loss)

fonsiyonu 2’den fazla sınıf olduğu için “sparse_categorical_crossentropy” (seyrek

kategorik çapraz etkinlik ölçümü) olarak seçilmiş, metrik doğruluk (accuracy) olarak

getirilmiştir.

 Geçmiş nesnesi üzerinde “model.fit()” yapılırken x değişkeni eğitim verisinin

dizilişi (train_padded), y değişkeni eğitim verilerinin bağlı olduğu etiket verilerinin

dizilişidir. Devir sayısı (num_epochs) 20 olarak belirlenmiştir, yani veri 20 kez

eğitilecektir. Doğrulama verisi (validation_data) ise test verisinin dizilişi ve bağlı

olduğu etiket sırası olarak verilmiştir. Ayrıntı (Verbose), 2 değerinde getirilmiştir,

böylece çıktıda devir başına bir satır gösterimi sağlanmıştır.

59

3. BULGULAR

 3.1. Verilerin Analizi

 Bu bölümde uygulanan tüm algoritma ve parametrelerin analizleri ve yorumları

yapılmıştır. Hepsinden çıkan sonuçlarla bir genelleme yapılmaya çalışılmıştır.

 3.1.1. TF-IDF Vektorizer ile Kosinüs Benzerliği Analizi

 Çizelge 2.3.’te TfidfVectorizer ile metinler arasında açısal mesafelere

bakıldığında yazar kendi yazıları ile kıyaslandığında açısal mesafenin, diğer

yazarların yazılarına göre daha düşük olduğu gözlemlenmiştir. Bu durum tüm

yazarlar için aynıdır. O halde her bir sorgu yazısının her bir yazarın yazılarıyla

kıyaslanması ile yazıların düşük olan açısal mesafeleri için bu yazılar birbirine

yakındır çıkarımı yapılabilir. Şekil 3.1.’e bakıldığında her bir yazarın hem kendisi

hem de diğer yazarlarla karşılaştırılmasıyla görsel bir çıktı elde edilmiştir. Buna göre

yazılar arası ayırt edici bir durum söz konusu değildir çünkü açısal mesafeler düşük

olsa da diğer yazarların yazılarıyla olan açısal mesafeler arasında keskin bir değer

görülmemektedir.

60

Şekil 3.1. Yazılar arası TfidfVectorizer ile açısal mesafelerin görsel matrisi.

 3.1.2. CountVektorizer ile Öklid Mesafesi Analizi

 Bir önceki adımda olduğu gibi bu kez Çizelge 2.4.’de CountVectorizer ile

yazıların Öklid mesafelerine bakılmıştır. Öklid mesafelerinin açısal mesafelere göre

daha düşük olduğu görülmektedir. Her yazarın kendi yazılarıyla olan Öklid

mesafeleri diğer yazarların yazılarına göre burada da daha düşük olmuştur. Aynı olgu

TfidfVectorier ile açısal mesafelerde de yer aldığı için tesadüfi bir durum olarak

görülmeyebilir. Burdan hareketle yazılar arasında Öklid ve açısal mesafeler doğru

orantılı olarak düşük olduğundan, söz konusu yazılar birbirine benzer çıkarımı

yapılabilir. Şekil 3.2.’de Öklid mesafelerin görsel matrisi bulunmaktadır. Nokta

dağılımları bu matriste Şekil 3.1.’deki matrise göre bir nebze daha ayırt edici olabilir

çünkü noktalar çok belirgin olmasa da belli bölgelerde yığılmışlardır.

61

Şekil 3.2. Yazılar arası CountVectorizer ile Öklid mesafelerin görsel matrisi.

 3.1.3. KNN Algoritması Analizi

 Şekil 2.19.’daki KNN algoritması skorlarına göre, “k=1, 5, 10” olduğunda

TfidfVectorizer ile çıkarılan vektörlerde doğruluk, hassasiyet ve kesinlik skoru

CountVectorizer ile çıkarılan vektörlerin skorlarına oranla daha yüksek çıkmıştır. O

halde TfidfVectorizer ile KNN algoritması daha iyi performans göstermiştir denebilir.

Ayrıca “k” değeri arttıkça bu skorlar da doğru orantılı olarak artmıştır. Şekil 3.3.’e

göre “k” değeri 1’den 20’ye kadar arttıkça eğitim ve test verisindeki hata minimum

oranlarda görülmektedir. Test verisindeki hata oranı TfidfVectorizer’da gittikçe

azalırken, CountVectorizer’da bu hata oranı %30- %35 aralığındadır. Bu grafiğe göre

doğruluk, hassasiyet ve kesinlik skorları da belirlenmiş, bütün bu skorlar

CountVectorizer’a göre TfidfVectorizer’da fazla olduğu tespit edilmiştir.

62

Şekil 3.3. CountVectorizer/TfidfVectorizer ile k-değeri için hata grafiği ve skorları.

 3.1.4. Naive Bayes Algoritması Analizi

 Şekil 2.20.’deki skorlara göre BernoulliNB ve ComplementNB sınıflarında

CountVectorizer ve TfidfVectorizer doğruluk, hassasiyet ve kesinlik skorları

birbirine oldukça yakındır ve yüksek çıkmıştır. MultinomialNB sınıfında ise

CountVectorizer skorları TfidfVectorizer skorlarından daha yüksek çıkmıştır.

MultinomialNB sınıfında CountVectorizer ile çalışmak daha iyi bir fikir olabilir.

Algoritma skorları sonucunda 3 Naive Bayes (BernoulliNB, MultinomialNB,

ComplementNB) sınıfı dahil olmak üzere hem CountVectorizer hem de

TfidfVectorizer için Şekil 3.4.’de hata matrisi düzenlenmiştir. Buna göre

MultinomialNB sınıfı CountVectorizer ile test verisi (192 veri) üzerinde en az hatayı

(3 hata) yapmıştır. Tfidfvectorizer ile MultinomialNB ve ComplementNB sınıfı test

verisi üzerinde aynı ölçüde tahmine sahiptir. BernoulliNB sınıfında ise diğer sınıflara

göre hata sayısı artmıştır. Sonuç olarak bu matris tüm sınıfların çok az hata ile gayet

iyi bir tahmine sahip olduklarını göstermektedir. O halde bu algoritma başarılı

olmuştur denebilir.

63

Şekil 3.4. Naive Bayes hata matrisi.

64

 3.1.5. SVM Algoritması Analizi

 Şekil 2.21.’deki skorlara bakıldığında, SVC çekirdeği doğrusal (kernel=“linear”)

seçildiğinde çekirdeğin varsayılan değerinden (kernel=“rbf”) daha yüksek bir

doğruluk, hassasiyet ve kesinlik skoru vermektedir. Ayrıca her iki çekirdek

fonksiyonunda da CountVectorizer ve TfidfVectorizer kullanımı skorlar açısından

büyük bir fark yaratmamıştır. İki çekirdek fonksiyonunda da TfidfVectorizer skorları

daha yüksek çıkmıştır. SVM sonucunda çekirdek (kernel) fonksiyonu için 2,

Vectorizer’lar için 2 olmak üzere 4 farklı faktör için hata matrisine bakılmıştır (Şekil

3.5.). TfidfVectorizer ile çekirdek “linear” veya “rbf” olarak seçildiğinde test

verisinde daha az veri yanlış tahmin edilmiştir, yani CountVectorizer’a göre

TfidfVectorizer daha iyi bir sonuç vermiştir. Çekirdeğin “linear” olarak seçilmesi,

“rbf” olarak seçilmesinden daha iyi bir sonuç çıkarmıştır çünkü test verisinde

TfidfVectorizer için ‘kernel=“linear”’ olması sadece 3 veriyi yanlış; 189 veriyi doğru

tahmin etmiştir.

65

Şekil 3.5. SVM hata matrisi.

 3.1.6. Decision Tree Classifier ve MLP Algoritmaları Analizleri

 Şekil 2.22.’deki skorlar incelendiğinde Karar Ağaçları sınıflandırıcısı

CountVectorizer için TfidfVectorizer’dan daha yüksek doğruluk, hassasiyet ve

kesinlik skoru vermiştir. MLP algoritması ise her iki Vectorizer için birbirine yakın

doğruluk, hassasiyet ve kesinlik skoru vermiştir. Karar Ağaçlarına göre MLP skorları

oldukça yüksektir. Buna göre MLP algoritması Karar Ağaçları sınıflandırıcısından

çok daha iyi çalışmıştır.

Uygulanan bütün sklearn algoritmalarına bakıldığında performansın bu veri seti

için oldukça yüksek olduğu söylenebilir (Çizelge 3.1.). “random_state”in 1’den 11’e

kadar seçilmesi ile doğruluk, hassasiyet ve kesinlik skorları 10 kez yenilenmiştir ve

her bir algoritma ve varsa fonksiyonları için bu 10 değerin ortalaması alınmıştır.

Böylece kullanılan tüm sklearn algoritmalarının nihai doğruluk, hassasiyet ve

66

kesinlik skorları çıkarılmıştır. Bu skorlar incelendiğinde doğruluk ve hassasiyet

skorlarının birbirine eşit ve kesinlik skorlarına oldukça yakın oldukları saptanmıştır.

Doğruluk/hassasiyet ve kesinlik skorları en yüksek MLP algoritmasında çıkmıştır.

Daha sonra SVM algoritmasının doğrusal fonksiyonu 2. yüksek skorlara sahiptir. 3.

yüksek skorlar ise Naive Bayes algoritması Bernoulli sınıfı tarafından çıkarılmıştır.

Algoritmalar arasından en düşük skorlar ise KNN ve Karar Ağaçları algoritmaları

sonucunda çıkmıştır. KNN algoritmasında yine “k” değeri arttıkça skorlar da

artmıştır ve diğer algoritmalara nazaran kesinlik skorları doğruluk/hassasiyet

skorlarından oldukça yüksektir. İki farklı vectorizer kullanımı da skorları etkileyen

bir diğer unsurdur. TfidfVectorizer KNN, SVM ve MLP algoritmalarında daha

yüksek skorlara sahipken, CountVectorizer Naive Bayes ve Karar Ağacı

algoritmalarında daha yüksek skorlara sahip olmuştur.

Çizelge 3.1. Sklearn algoritmalarının toplam ortalama skorları.

 3.1.7. LSTM Algoritması Analizi

 LSTM algoritması sonucundaki çıktıya bakıldığında (Şekil 3.6.), 20 devir

sonunda dereceli olarak, kayıp (loss) %3’e yakın olacak şekilde azalmış, doğruluk

(accuracy) %99’a kadar artmış, doğrulama verisi kaybı (val_loss) %50’ye kadar

azalmış ve doğrulama verisinin doğruluğu %85’e kadar artmıştır. Bu da LSTM

algoritmasının veri seti üzerinde oldukça iyi çalıştığını göstermektedir. Şekil

67

3.7.’deki grafiğe bakıldığında doğruluk arttıkça, doğrulama verisinin doğruluğu da

artmış; kayıp azaldıkça da doğrulama verisinin kaybı azalmaktadır.

Şekil 3.6. LSTM Algoritması sonucu çıktısı.

Şekil 3.7. LSTM Algoritması sonucu çıktısının grafik gösterimi.

68

4. TARTIŞMA

 Bu çalışmanın bulgularında her sklearn algoritmasının sonucu doğruluk,

hassasiyet ve kesinlik skorlarının fazla olması algoritmanın ezbere sonuç verip

vermediği hususunda şüphe doğurmuştur. O nedenle her algoritma 10 kere denenip

10 sonucun ortalamasıyla tekrar değerlendirilmiştir. Ancak yine de elde edilen

sonuçlar oldukça yüksektir. O yüzden derin öğrenme algoritması olan LSTM

algoritması kullanılmıştır. LSTM algoritması başarılı görünse de algoritmaya verilen

veriler yani 6 yazarın 160’ar yazı veri seti bir derin öğrenme algoritması için yeterli

görünmeyebilir.

 Çalışmanın ilk adımlarından olan önişlemde ise Türkçe dili birçok engele sebep

olmaktadır. İngilizce dili için bulunan Python kütüphaneleri Türkçe dili için

yeterince zengin değillerdir. Türkçe’de kelimeleri kök haline getirme, durduran

ifadeleri çıkarma, ön ek ve son ek çıkarma işlemleri veri setinde %100 başarılı

çalışmaması durumu algoritmalarda çıkan sonuçları da etkilemiş olabilir.

69

5. SONUÇ VE ÖNERİLER

 Bu çalışmanın sonucunda seçilen 6 yazarın da yazıları test verileri üzerinden

sorgulandığında, doğru yazar ile eşleştiği görülmektedir. Bu eşleşme yapılan önişlem

adımlarına, yazıların vektörlerine ayrılıp algoritmalara sokulmasıyla elde edilmiştir.

En başarılı algoritma %98 skorlarıyla MLP iken LSTM algoritmasında doğrulama

verisinin skoru %85 olarak not edilmiştir. Genel olarak bakılacak olursa elde edilen

ML algoritma skorlarının test verisi için oldukça yüksek olması çalışmayı başarılı

kılmaktadır.

 Kurulan bu yapı ile bu çalışma daha da genişletilebilir ve her koşulda test

edilebilir bir konumdadır. Yeni bir yazar ve yazıları eklendiğinde de çalışabilirliğini

sürdürmesi beklenen bir yapı oluşturulmuştur. O halde bu yapı ile yazıların hangi

yazara ait olabileceği bulunabilirken intihali önleme hususuna katkı sağlayacağı

savunulmaktadır. Üstelik sadece intihal değil ayrıca bir takım siber suçları

engellemede de yardımcı olabilir. Bunun nedeni yazılan bir yazının o yazara ait olup

olmadığı gösteren bir sistem olmasıdır. Dolayısıyla Bilişim sistemleri kullanımı

içerip özellikle Türkçe dilinde Adli konular üzerinde hizmet edeceği düşünülmekte

ve disiplinler arası Adli Bilişim bölümüne katkı sağlaması beklenmektedir.

70

ÖZET

Köşe Yazılarında Yazarlık Analizinin Adli Bilişim’e Katkısı

 Bu araştırma, farklı konularda 6 yazarın 160’ar köşe yazısı üzerinden yazarlık

analizini kapsamaktadır. Her yazarın kendine özgü yazı alışkanlığı olduğunu

gösteren bu çalışma öncelikle Doğal Dil İşleme yöntemiyle tüm yazıların önişlemden

geçirilmesini ve daha sonra derin öğrenme de olmak üzere makine öğrenme

algoritmalarına sokulmasını içermektedir. Ayrılan eğitim ve test verileri üzerinden

yazıların yazarlara ait olup olmadığı tartışılmış, algoritmalar sonucu çıkan doğruluk,

hassasiyet ve kesinlik skorları ile çalışmanın başarılı olduğu görülmüştür. En başarılı

algoritma %98 skorlarla MLP'dir. Bir derin öğrenme algoritması olan LSTM

algoritmasında ise doğrulama verisinin skoru %85 olarak not edilmiştir. Çıkarılan

verilere göre online metinler üzerinden yazarlık analizinin Adli Bilişim’e katkısı

olacağının yanı sıra intihali ve yazarlık analizi içeren bilişim suçlarını engellemede

yardımcı olacağı öngörülmektedir.

Anahtar Sözcükler: Adli Bilişim, Adli Dilbilim, Doğal Dil İşleme (DDİ), İntihal,

Makine Öğrenme, Yazarlık Analizi.

71

SUMMARY

Contribution of Authorship Analysis to Computer Forensics in Columns

 This research includes the analysis of authorship over 160 columns of 6 authors

on different subjects. This study, which shows that each writer has an idiosyncratic

writing habit, firstly includes a preprocessing step of all texts with Natural Language

Processing method and then inserting them into machine learning algorithms,

including deep learning. It was discussed whether the articles belonged to the authors,

based on the training and test data allocated, and it was observed that the study was

successful with the accuracy, recall and precision scores obtained as a result of the

algorithms. The most successful algorithm is MLP with 98% scores. In the LSTM

algorithm, which is a deep learning algorithm, the score of the validation data was

noted as 85%. According to the data obtained, it has been predicted that the analysis

of authorship over online texts will contribute to Computer Forensics, as well as

helping to prevent plagiarism and cybercrimes including authorship analysis.

Key Words: Authorship Analysis, Computer Forensics, Forensic Linguistics,

Machine Learning, Natural Language Processing (NLP), Plagiarism.

72

KAYNAKLAR

AGRAWAL S (2019). Sentiment Analysis Using LSTM (Step-By-Step Tutorial).

 Erişim Adresi: [https://towardsdatascience.com/sentiment-analysis-using-lstm-step-by-

 step-50d074f09948]. Erişim Tarihi: 11/10/2021.

BEM D, FELD F, HUEBNER E, BEM O (2008). Computer forensics-past, present and

 future. Journal of Information Science and Technology. 5: 43-59.

BİLGİN AO (2018). Metin Madenciliği Yöntemleri ile Yazar Tanıma: Divan Edebiyatı

 Örneği. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Türkiye.

BJÖRNSON E (2019). Is Plagiarism an Increasing Problem?. Erişim Adresi:

 [https://ma-mimo.ellintech.se/2019/01/01/is-plagiarism-an-increasing-problem].

 Erişim Tarihi: 5/9/2021.

BURNAP P, COLOMBO G, SCOURFIELD J (2015). Machine classification and analysis of

 suicide-related communication on twitter. Proceedings of the 26th ACM conference on

 hypertext & social media. 75-84.

CHOLLET F (2020). The Sequential Model. Erişim Adresi:

 [https://keras.io/guides/sequential_model/]. Erişim Tarihi: 11/10/2021.

COULTHARD M, GRANT T, KREDENS K (2009). Forensic Linguistics. 1-7.

DINH TL (2014). Authorship Identification for Online Texts. Yüksek Lisans Tezi, University

 of Groningen, Netherlands.

EDUREKA (2020). What is String in Python: Everything You Need to Know. Erişim Adresi:

 [https://www.edureka.co/blog/what-is-string-in-python/]. Erişim Tarihi: 9/9/2021.

EKİNCİ E (2013). Elektronik Postaların Adli Analizinde Yazar Analizi Tekniklerinin

 Kullanılması. Yüksek Lisans Tezi, Gebze Yüksek Teknoloji Enstitüsü, Türkiye.

EKIZER AH (2014). Bilişim Suçları (Siber Suçlar). Erişim Adresi:

 [https://www.ekizer.net/bilisimsuclari-sibersuclar/]. Erişim Tarihi: 5/9/2021.

GALL R (2018). What is LSTM?. Erişim Adresi: [https://hub.packtpub.com/what-is-lstm/].

 Erişim Tarihi: 11/10/2021.

73

GEITGEY A (2018). Natural Language Processing is Fun!. Erişim Adresi:

 [https://medium.com/@ageitgey/natural-language-processing-is-fun-9a0bff37854e].

 Erişim Tarihi: 20/9/2021.

GRIANTI A (2020). Euclidean Distance Matrix. Erişim Adresi:

 [https://medium.com/swlh/euclidean-distance-matrix-4c3e1378d87f].

 Erişim Tarihi: 20/9/2021.

GURAV S (2020). Label Encoder and OneHot Encoder in Python. Erişim Adresi:

 [https://towardsdatascience.com/label-encoder-and-onehot-encoder-in-python-

 83d32288b592]. Erişim Tarihi: 20/9/2021.

INDIAN AI PRODUCTION (2019). Python Matplotlib Tutorial - Mastery In Matplotlib

 Library. Erişim Adresi: [https://indianaiproduction.com/python-matplotlib-tutorial/].

 Erişim Tarihi: 5/9/2021.

JAIN P (2021). Basics of CountVectorizer. Erişim Adresi:

 [https://towardsdatascience.com/basics-of-countvectorizer-e26677900f9c]. Erişim

 Tarihi: 5/9/2021.

JOHNSON D (2021). What is TensorFlow? How it Works? Introduction & Architecture.

 Erişim Adresi: [https://www.guru99.com/what-is-tensorflow.html]. Erişim Tarihi:

 5/9/2021.

KADAM D. (2018). Academic integrity and plagiarism: The new regulations in India.

 Indian Journal of Plastic Surgery. 51: 109-110.

KALINOWSKI T, ALLAIRE JJ, CHOLLET F. Text Tokenization Utility. Erişim Adresi:

 [https://keras.rstudio.com/reference/text_tokenizer.html]. Erişim Tarihi: 5/9/2021.

KANANI B (2019). TfidfVectorizer for Text Classification. Erişim Adresi:

 [https://studymachinelearning.com/tfidfvectorizer-for-text-classification/].

 Erişim Tarihi: 9/10/2021.

KAUL S (2021). Text Feature Extraction (2/3): TF-IDF Model. Erişim Adresi:

 [https://medium.com/geekculture/text-feature-extraction-2-3-tf-idf-model-

 c3a8f7a92bc9]. Erişim Tarihi: 9/10/2021.

KERAS- Accuracy Metrics. Erişim Adresi:

 [https://keras.io/api/metrics/accuracy_metrics/#accuracy-class]. Erişim Tarihi: 5/9/2021.

74

KERAS- Adam. Erişim Adresi: [https://keras.io/api/optimizers/adam/].

 Erişim Tarihi: 5/9/2021.

KERAS- Bidirectional Layer. Erişim Adresi:

 [https://keras.io/api/layers/recurrent_layers/bidirectional/]. Erişim Tarihi: 5/9/2021.

KERAS- Dropout Layer. Erişim Adresi:

 [https://keras.io/api/layers/regularization_layers/dropout/]. Erişim Tarihi: 5/9/2021.

KERAS - Flatten Layer. Erişim Adresi: [https://keras.io/api/layers/reshaping_layers/flatten/].

 Erişim Tarihi: 5/9/2021.

KERAS- Layer Activation Functions. Erişim Adresi:

 [https://keras.io/api/layers/activations/#softmax-function]. Erişim Tarihi: 5/9/2021.

KERAS- Losses. Erişim Adresi: [https://keras.io/api/losses/]. Erişim Tarihi: 5/9/2021.

KERAS- Metrics. Erişim Adresi: [https://keras.io/api/metrics/]. Erişim Tarihi: 5/9/2021.

KERAS- Optimizers. Erişim Adresi: [https://keras.io/api/optimizers/].

 Erişim Tarihi: 5/9/2021.

KERAS- Sparse Categorical Crossentropy Class. Erişim Adresi:

 [https://keras.io/api/losses/probabilistic_losses/#sparsecategoricalcrossentropy-class].

 Erişim Tarihi: 5/9/2021.

KERAS- Text Data Preprocessing. Erişim Adresi: [https://keras.io/api/preprocessing/text/].

 Erişim Tarihi: 5/9/2021.

KERAS- Timeseries Data Preprocessing. Erişim Adresi:

 [https://keras.io/api/preprocessing/timeseries/]. Erişim Tarihi: 5/9/2021.

KILIÇ S (2019). Adli Bilişim Nedir?. Erişim Adresi: [https://kernelblog.org/2019/11/adli-

 bilisim-nedir/]. Erişim Tarihi: 5/9/2021.

KINGMA DP, BA JL (2015). Adam: A method for stochastic optimization. ICLR 2015. 1-15.

KORSTANJE J (2021). The K-Nearest Neighbors (KNN) Algorithm in Python.

 Erişim Adresi: [https://realpython.com/knn-python/]. Erişim Tarihi: 9/10/2021.

KUZU RS (2010). Authorship Recognition in Online Social Platforms. Yüksek Lisans Tezi,

 Boğaziçi Üniversitesi, Türkiye.

75

KUZUCULAR Ş (2014). Türkçe’nin Ekleri ve Özellikleri. Erişim Adresi:

 [https://edebiyatvesanatakademisi.com/yazim-imla-ses-kelime/turkce-nin-ekleri-ve-

 ozellikleri/1103]. Erişim Tarihi: 9/10/2021.

MOHAMMED M, KHAN MB, BASHIER EBM (2016). Machine Learning: Algorithms and

 Applications. Crc Press.

MUELLER JP, MASSARON L (2019). What is Google Colaboratory?. Erişim Adresi:

 [https://www.dummies.com/programming/python/what-is-google-colaboratory/].

 Erişim Tarihi: 9/10/2021.

MURNANE K (2016). What is Deep Learning and How is it Useful?. Erişim Adresi:

 [https://www.forbes.com/sites/kevinmurnane/2016/04/01/what-is-deep-learning-and-

 how-is-it-useful/?sh=33fea86bd547]. Erişim Tarihi: 9/10/2021.

OLSSON J. (2008). Forensic linguistics: An introduction to language, crime, and the law.

2nd Ed. Chapter 1.

O'REILLY MEDIA, INC. (2015). Web Scraping with Python. Erişim Adresi:

 [https://www.oreilly.com/library/view/web-scraping-with/9781491910283/ch01.html].

 Erişim Tarihi: 5/9/2021.

PRABHAKARAN S (2018). Cosine Similarity - Understanding the Math and How it Works

 (With Python Codes). Erişim Adresi:

 [https://www.machinelearningplus.com/nlp/cosine-similarity/]. Erişim Tarihi: 5/9/2021.

PRATIK (2017). NumPy and Pandas Tutorial - Data Analysis with Python. Erişim Adresi:

 [https://cloudxlab.com/blog/numpy-pandas-introduction/]. Erişim Tarihi: 5/9/2021.

ROBINSON S (2017). What is Natural Language Processing?. Erişim Adresi:

 [https://stackabuse.com/what-is-natural-language-processing/]. Erişim Tarihi: 5/9/2021.

RSTUDIO- Train a Keras Model. Erişim Adresi:

 [https://keras.rstudio.com/reference/fit.html#see-also]. Erişim Tarihi: 21/10/2021.

SAKAL M (2020). Makine Öğrenmesi Algoritmaları Kısa Açıklamaları. Erişim Adresi:

 [http://muratsakal.com/?p=230]. Erişim Tarihi: 5/9/2021.

SCIKIT- LEARN. Multi-Dimensional Scaling (MDS). Erişim Adresi:

 [https://scikit- learn.org/stable/modules/manifold.html#multidimensional-scaling].

 Erişim Tarihi: 5/9/2021.

76

SCIKIT- LEARN. Support Vector Machines, Decision Trees, Naïve Bayes, MLP Classifier.

 Erişim Adresi: [https://scikit-learn.org/stable/modules/classes.html].

 Erişim Tarihi: 5/9/2021.

SHAKEEL I (2003). Introduction to Computer Forensics & Digital Investigation. InfoSec

 Institute. 1-79.

SHIFFMAN D (2012). The Nature of Code: Simulating Natural Systems with Processing.

 s.: 43-44.

SONI GK (2018). Plagiarism Detection and Prevention: A Study. International Journal of

 Library & Information Science (IJLIS). 7: 1-6.

STANZA- A Python NLP Package for Many Human Languages. Erişim Adresi:

 [https://stanfordnlp.github.io/stanza/]. Erişim Tarihi: 5/9/2021.

SUBRAMANIAN D (2019). A Simple Introduction to K-Nearest Neighbors Algorithm.

 Erişim Adresi: [https://towardsdatascience.com/a-simple-introduction-to-k-nearest-

 neighbors-algorithm-b3519ed98e]. Erişim Tarihi: 5/9/2021.

TARCAN A, ÇAKAR F (2008). Bilgisayarlı Dil Tanımlamada Dilbilimsel Yaklaşımlar ve

 Bir Yazılım Denemesi. Elektronik Sosyal Bilimler Dergisi. 7: 64-70.

TOMIĆ KD (2019). Evidentiality Strategies as Distinguishing Markers in Forensic

 Authorship Analysis. Анали Филолошког факултета. 31: 161-190.

TRACY R (2021). How to Compare Two Strings Using Sklearn’s TfidfVectorizer and

 Cosine Similarity. Erişim Adresi: [https://medium.com/geekculture/how-to-compare-

 two-strings-using-sklearns-tdidfvectorizer-and-cosine-similarity-21e8b42371be].

 Erişim Tarihi: 5/9/2021.

TROPINA T, BOYD MS (2017). Unit 1 Introduction to the Language of Cybercrime:

 Definitions and Discussion, EJTN and Cybercrime Investigations Capacity Building.

 Handbook: The Language of Cybercrime.

TUPA S (2017). What is Plagiarism?. Erişim Adresi:

 [https://www.plagiarism.org/article/what-is-plagiarism]. Erişim Tarihi: 9/10/2021.

TUTORIALSPOINT- Machine Learning with Python Algorithms. Erişim Adresi:

 [https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_wit

 h_python_algorithms.htm]. Erişim Tarihi: 9/10/2021.

77

TUTORIALS POINT (I) PVT. LTD. (2019). Keras. s.: 1

TUTORIALS POINT (I) PVT. LTD. (2019). Scikit-Learn. s.:1

TÜRKOĞLU F, DIRI B, AMASYALI FM (2007). Author attribution of Turkish texts by

 feature mining. International Conference on Intelligent Computing. 1086-1093.

UÇAK NÖ, BIRINCI HG (2008). Bilimsel Etik ve İntihal. Türk Kütüphaneciliği.

 22: 187-204.

UNIVERSITY OF EDINBURGH (2016). What Is Informatics?. Erişim Adresi:

 [https://www.ed.ac.uk/files/atoms/files/what20is20informatics.pdf].

 Erişim Tarihi: 21/9/2021.

UNRUH A (2017). What is the TensorFlow Machine Intelligence Platform?. Erişim Adresi:

 [https://opensource.com/article/17/11/intro-tensorflow]. Erişim Tarihi: 5/9/2021.

VERSLOOT C (2021). Build An LSTM Model with TensorFlow 2.0 and Keras.

 Erişim Adresi: [https://www.machinecurve.com/index.php/2021/01/07/build-an-lstm-

 model-with-tensorflow-and-keras/]. Erişim Tarihi: 5/9/2021.

VİKİPEDİ- Ankara. Erişim Adresi: [https://tr.wikipedia.org/wiki/Ankara].

 Erişim Tarihi: 5/9/2021.

VIKIPEDI- Visual Studio Code. Erişim Adresi:

 [https://tr.wikipedia.org/wiki/Visual_Studio_Code]. Erişim Tarihi: 5/9/2021.

WIKIPEDIA- Computer Forensics. Erişim Adresi:

 [https://en.wikipedia.org/wiki/Computer_forensics]. Erişim Tarihi: 5/9/2021.

WIKIPEDIA- Decision Tree Learning. Erişim Adresi:

 [https://en.wikipedia.org/w/index.php?title=Decision_tree_learning&oldid=950332127].

 Erişim Tarihi: 5/9/2021.

WIKIPEDIA- Machine Learning. Erişim Adresi:

 [https://en.wikipedia.org/wiki/Machine_learning]. Erişim Tarihi: 5/9/2021.

WIKIPEDIA- Multilayer Perceptron. Erişim Adresi:

 [https://en.wikipedia.org/wiki/Multilayer_perceptron]. Erişim Tarihi: 5/9/2021.

WIKIPEDIA- Natural Language Processing. Erişim Adresi:

 [https:/f/en.wikipedia.org/wiki/Natural_language_processing]. Erişim Tarihi: 5/9/2021.

78

WINGATE J (2020). NLP Tutorial Using Python Nltk, Urllib and BeautifulSoup.

 Erişim Adresi: [https://www.engineeringbigdata.com/nlp-using-python-example-with-

 urllib-and-beautifulsoup/]. Erişim Tarihi: 9/10/2021.

ZENDE MA, TUPLONDHE MB, WALUNJ SB, PARULEKAR SV (2016). Text Mining

 Using Python. International Journal of Current Engineering and Scientific Research

 (IJCESR). 3: 54-56.

79

EKLER

(Bu bölümde çalışmaya dair kodlar sıralanmış olup 2.1. Verilerin Toplanması ve 3.1.

Verilerin Analizi bölümlerini kapsamaktadır.)

Ek-1: 2.1.2. İkinci Aşama Kodları

80

Ek-2: 2.1.3. Üçüncü Aşama Kodları

81

Ek-3: 2.1.4. Dördüncü Aşama Kodları

82

83

84

85

86

87

88

89

90

91

Ek-4: 3.1. Verilerin Analizi Kodları

