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1. GİRİŞ 

1.1. Problem ve Önlem 

Bilişim sistemleri teknolojinin gelişmesiyle hayatımızın her alanında var 

olmuştur ve olmaktadır. Yeni suç türleri kendini göstermekte, suçlular teknolojiye 

ulaşarak yasa dışı faaliyetlerine devam etmektedirler. İncelediğinde özellikle bilişim 

sistemlerini kullanarak suç işlemede büyük bir artış bulunmuş; Türkiye'de de 

dünyada olduğu gibi, bilişim sistemlerine karşı ve bilişim sistemleri kullanarak suç 

işleme, kolluk ve yargı mercilerinin hemen her gün yüz yüze geldiği suç türleri 

içinde yer almaktadır. Bilişim suçları üç başlıkla gruplandırılır; 

1. Hedef Olarak Bilişim Sistemleri: Yetki olmadan erişim sağlama, servis dışı 

bırakma, verilere zarar verme, vb., 

2. Bilişim Bağlantılı Suçlar: Kredi kartı ve internet bankacılığı dolandırıcılığı, 

telif hakları ihlali vb., 

3. Bilişim Vasıtalı Normal Suçlar: Uyuşturucu trafiği, kara para aklama, hakaret, 

terör propagandası, vb.dir (Ekizer, 2014). 

Günümüz bilgi teknolojisi çağında, herhangi bir bilgiye erişim o kadar zor 

olmamaktadır. Kullanıcı, bilgiye dünyanın her yerinden 7/24 ulaşabilir. Ancak 

bilginin kullanımıyla birlikte kötüye kullanımı da arttığından, bazı yazarlar diğer 

yazarların eserlerini küçük değişikliklerle kendi adlarıyla yayınlamaktadır (Soni, 

2018). Böylece dijital teknoloji ile metin üzerinde intihal (plagiarism), artan bir sorun 

haline gelmektedir (Björnson, 2019).  

Aslen intihal, birçok kişi tarafından diğer insanların araştırmalarını kopyalamak 

ya da özgün fikirlerini ödünç almak olarak düşünülür. Ancak “kopyalama” ve 

“ödünç alma” gibi ifadelerle bu suçun ciddiyeti kamufle edilmiş olabilir: Merriam-

Webster çevrimiçi sözlüğünde, “intihal” şu şekilde tanımlanmıştır; (başkasının 

fikirlerini veya sözlerini) çalmak ve kendisine aitmiş gibi sunmak, (başka bir 
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kimsenin eserini) atıfta bulunmadan kullanmak, edebi hırsızlık yapmak, var olan bir 

kaynaktan türetilen bir fikri ya da ürünü yeni ve özgünmüş gibi yansıtmak, vb. 

anlamlarına gelir. Diğer bir söylemle, intihal dolandırıcılık içeren bir fiildir. Sadece 

başka bir kimsenin ürününü çalmayı değil, aynı zamanda bu konuda sonradan yalan 

söylemeyi kapsar (Tupa, 2017). 

“Kansu (1994) intihali, bilimsel yanıltma (scientific misconduct) adı altında üç 

madde ile gruplamaktadır. Bilimsel yanıltmanın üç unsuru aşağıda verilmiştir; 

1. Bilimsel korsanlık (piracy): Araştırmacının izni olmadan diğer çalışmalardaki 

verilerin alınması. 

2. İntihal (plagiarism): Başkalarının fikirlerini, yazılarını ve eserlerini çalmak ve 

bunları uygun bir atıf olmaksızın kendisininmiş gibi sunmak. 

3. Saptırma (fabrication, desk-research, dry-lab): Verilerin çarpıtılması ya da var 

olmayan bilgilerin/verilerin oluşturulmasıdır (s.72). 

Bu sınıflandırmadan da anlaşıldığı üzere birçok bilimsel yanıltma ya da etik 

olmayan eylem örneği bulunmaktadır. İntihali diğerlerinden farklı kılan temel 

özelliği atfın bilimsel intihalin merkezinde konumlandırılmasıdır. Atfın asıl işlevi, 

atıf yapılan belge ile atıf yapan belge arasında bir bağlantı kurmak olarak tanımlanır 

(Smith, 1981, s.84, aktaran Al ve Coştur, 2007, s.144). Ayrıca kaynağa göre kaynak 

göstermeden yapılan veya kaynak göstererek yapılan intihaller de vardır.  

İntihal, internette bulunan erişilebilir bilgilerin artmasıyla farklı bir boyutta 

görülmektedir. İntihali artıran bir diğer önemli faktör ise internetteki bilgilerin “kamu 

malı” olduğu yargısıdır (Uçak & Birinci, 2008). İntihali saptamak için birçok sistem 

geliştirilmiştir ancak bu sistemlerin tamamı gelişen ve değişen teknoloji ile güvenilir 

nitelikte olmamaktadır (Björnson, 2019).  
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İntihali belirlemede kullanılan programlarda benzerlik yüzdesinin tamamı 

mutlaka intihal olmayabilir. Çıkan raporun doğru bir şekilde incelenmesi gerekir 

çünkü benzer metodolojiyi veya yaygın objektif terimleri açıklayan metinlerin 

birbirine benzemesi muhtemeldir. Ayrıca, değerlendirmeyi yapan kişinin alıntıları ve 

kaynak dizinini hariç tutmak için manuel müdahaleye ihtiyacı vardır. Bu nedenle, bir 

yazı için “kabul edilebilir benzerlik yüzdesi” üzerinde hakemlik yapmak, eleştirel 

analiz gerektirir (Kadam, 2018). Dolayısıyla metinler üzerinde yazarlık analizi 

yöntemi, diğer yöntemlerin yanı sıra metin üzerindeki intihali belirlemede yardımcı 

olabilir.  

1.2. Araştırmanın Amacı ve Önemi 

Bu çalışmada köşe yazıları üzerinden yazarlık analizi yapılacağından intihali 

belirlemede önemli bir yer tutabilir. Köşe yazılarını online ortamdan elde edip, Doğal 

Dil İşleme adımlarından geçirdikten sonra Makine Öğrenme Algoritmalarına 

başvurulmuştur. Elde edilen sonuçlara göre köşe yazılarının yazdığı yazara ait olup 

olunmadığı tartışılmıştır. Dolayısıyla bu çalışmanın başta intihal olmak üzere bilişim 

suçlarını önlemede bir etken olacağı düşünülmüş ve Adli Bilişim bilimine katkı 

sağlanması hedeflenmiştir. 

Adli yazarlık analizleri Adli Bilimler içerisinde önemli bir yer tutmaktadır. 

Yazarlık analizi içinde olan yazar tanıma alanına ise metin ve olası yazar sayısı 

birden fazla olduğunda başvurulur. Metinler vasiyetnameler, tehdit mektupları, 

intihar notları vb. içerebilir, ancak son on yılda e-postaları, metin mesajlarını ve en 

son tweet’leri, Facebook ve WhatsApp mesajlarını içeren analizlerde büyük bir artış 

yaşanmaktadır. Bu analizler sadece plagiarismi önlemede değil aynı zamanda siber 

suçları önlemede de önemli bir konuma sahiptir (Coulthard ve ark., 2009). 
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1.3. Sınırlılıklar 

    Tez çalışması 6 yazarın toplamda 900’ü aşkın köşe yazısı üzerinden yapılmıştır. 

Bu konu itibariyle çalışma sınırlı tutulmuştur. Ayrıca bu 6 köşe yazarının yazdığı 

konular da sayıdan dolayı sınırlı tutulmuştur. Ancak yine de çalışma sonunda elde 

edilen verilerle genel geçer bir açıklama yapılmaya çalışılmıştır. 

1.4. Literatür Özeti 

1.4.1. Bilişim 

    Edinburgh Üniversitesi’nin (2016) yaptığı açıklamaya göre, bilişim, doğal ve 

tasarlanmış sayısal sistemlerin yapısı, davranışı ve etkileşimlerinin incelenmesidir. 

Sayısal, bilişsel ve sosyal yönleri içinde barındırır. Ana fikir, ister hesaplama ister 

iletişim, ister organizmalar ister yapay nesneler tarafından olsun, bilginin 

dönüştürülmesidir. Bilişimin birçok yönü vardır ve yapay zekâ, bilişsel bilim ve 

bilgisayar bilimi gibi bir dizi mevcut akademik disiplini kapsar. Her biri kendi doğal 

alanı olarak bilişimin bir parçasını alır: geniş anlamda, bilişsel bilim, doğal 

sistemlerin incelenmesiyle ilgilidir; bilgisayar bilimi, hesaplama analizi ve bilgisayar 

sistemlerinin tasarımı ile ilgilidir; yapay zekâ, doğada bulunanları taklit eden 

sistemler tasarlayarak bağlayıcı bir rol oynar. Bilişim ayrıca matematik, elektronik, 

biyoloji, dilbilim ve psikoloji gibi diğer disiplinleri etkiler ve onlar tarafından da 

etkilenir. 

1.4.2. Adli Bilişim 

    Dr. H. B. Wolfe’ye göre, adli bilişim, bir mahkemede tutarlı ve anlamlı bir 

formatta sunulabilecek, programlama ekipmanından ve çeşitli depolama 

cihazlarından ve dijital medyadan kanıt toplamak için sistemli bir dizi teknik ve 

prosedürü içinde barındırır. Adli bilişimi daha ayrıntılı olarak tanımlarsak, dijital 
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kanıtların toplanması, analizi ve mahkemeye sunulması prosedürüdür. Adli bilişimin 

kapsamı yalnızca bir suçu soruşturmakla sınırlı değildir; ayrıca veri kurtarma, sistem 

günlüğü (log) izleme, (kullanımdan kaldırılmış veya hasar görmüş cihazlardan) veri 

toplama ve uyumluluk ihtiyaçlarını karşılama durumlarıyla da iç içedir (Shakeel, 

2003).  

    Genel olarak adli bilişim, herhangi bir suçun veya yasaklı aktivitenin olup 

olmadığına karar vermek için bilişim sistemleri ve depolama birimleri üzerinde 

yapılan bütün çalışmaları içermektedir (Kılıç, 2019). 

1.4.2.1. Adli Bilişimin Tarihi 

“İnsanlar bilgisayar merkezine girdiklerinde  

ahlaki değerlerini kapıda bıraktılar.”  

(Donn B. Parker, 1968) 

    Bilgisayarlar ilk olarak 1940’ların ortalarında ortaya çıktı ve bu teknolojinin 

hızlı gelişimini kısa sürede çeşitli bilişim suçları izledi. 1960’ların ortalarında, SRI 

International’dan Donn Parker, bilişim suçları ve etik olmayan bilgisayarla işlenmiş 

faaliyetler hakkında araştırma yapmaya başladı ve ‘insanların bilgisayar merkezine 

girdiklerinde ahlaki değerlerini kapıda bıraktıklarını’ fark etti (Bynum, 2001). 

Parker’ın çalışmaları önümüzdeki yirmi yıl boyunca devam etti ve bilgisayar etiği 

tarihinde bir dönüm noktası olarak kabul edildi. Bilişim suçuyla ilgili ilk kovuşturma 

vakası 1966’da ABD’nin Teksas eyaletinde kaydedildi (Dierks, 1993) ve beş yıl 

hapis cezasıyla sonuçlandı. 1970’lerde ve 1980’lerde kişisel bilgisayarlar hem evde 

hem de işyerinde yaygınlaştı; daha sonra emniyet teşkilatı yeni bir suç sınıfının 

ortaya çıktığını fark etti: bu da bilişim suçuydu (Overill, 1998). Tüm suçlar gibi, bu 

yeni sınıf da başarılı kovuşturmalar için güvenilir kanıtlar gerektiriyordu. Böylece 

bilişim suçlarını çözmeyi, belgelemeyi ve kovuşturmayı mümkün kılmayı amaçlayan 

adli bilişim disiplini ortaya çıktı (Bern ve ark., 2008). 
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    Wikipedia’ya göre adli bilişim, 1980’lerin ortalarından beri ceza hukukunda 

kanıt olarak kullanılmıştır, bazı dikkate değer örnekler şunlardır: 

1. BTK Katili: Dennis Rader, on altı yıl boyunca meydana gelen bir dizi seri 

cinayetten hüküm giymişti. Bu sürenin sonuna doğru Rader bir disket 

üzerinde polise mektuplar gönderdi. Belgelerdeki meta veriler, “Christ 

Lutheran Kilisesi”nde “Dennis” adlı bir yazarla ilgiliydi; bu kanıt Rader'in 

tutuklanmasına yardımcı oldu. 

2. Joseph Edward Duncan: Duncan’ın bilgisayarından alınan bir elektronik 

çizelge, onun suçlarını planladığını gösteren kanıtlar içeriyordu. Savcılar 

bunu kasıtlı olarak göstermek ve ölüm cezasını güvence altına almak için 

kullandılar. 

3. Sharon Lopatka: Lopatka’nın bilgisayarındaki yüzlerce e-posta, 

araştırmacıları katili Robert Glass’a yönlendirmişti. 

4. Corcoran Grup: Bu dava, dava açıldığında veya makul bir şekilde 

beklendiğinde tarafların dijital kanıtları koruma vazifeleri olduğu durumunda 

kesinleşmişti. Sabit diskler, sanıklara ait olması gereken ilgili e-postaları 

bulamayan bir adli bilişim uzmanı tarafından analiz edildi. Uzman, sabit 

disklerde silme kanıtı bulamamış olsa da sanıkların e-postaları kasıtlı olarak 

imha ettikleri, maddi gerçekleri davacılara ve mahkemeye ifşa etmede 

başarısız oldukları ve yanlış bilgi verdikleri hususlarında kanıtlar ortaya çıktı. 

5. Conrad Murray: Merhum Michael Jackson’ın doktoru Dr. Conrad Murray, 

bilgisayarındaki dijital kanıtlarla kısmen mahkûm edilmişti. Bu kanıt, 

öldürücü miktarlarda propofol gösteren tıbbi belgeleri kapsamaktaydı. 

    1990’lara gelindiğinde, teknolojik olarak gelişmiş her ülkedeki kolluk kuvvetleri 

bilişim suçlarının farkındaydı, soruşturma ve kovuşturması için bir sisteme sahipti. 

Birçok bilimsel araştırma merkezi de kuruldu ve yazılım endüstrisi, bilişim suçlarının 

araştırılmasına yardımcı olmak için çeşitli özel araçlar sunmaya başladı (Noblett ve 

ark., 2000) (Bem ve ark., 2008). 
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1.4.3. Adli Dilbilim 

    Olsson’a (2008) göre adli dilbilim ise, dilbilimin yasal konulara uygulanmasıdır. 

En geniş anlamıyla adli dilbilim dil, suç ve hukuk arasındaki ara yüzdür. Genel 

olarak yaşam için dil kullanımının ve özellikle de hukukun merkezi olduğu 

düşünüldüğünde, parmak izi tanımlama ve ayakkabı izi analizi gibi diğer disiplinlere 

göre adli dilbilimin arenaya göreceli olarak yeni olması yargı süreçlerinde köklü bir 

varlığa sahip olduğundan belki biraz şaşırtıcıdır. Dilbilimsel yöntemlerin hukuki 

sorunlara uygulanması, adli dilbilimin bir bilimin uygulaması olduğu anlamlardan 

yalnızca bir tanesidir, çünkü bir araştırmadaki dil örneklerinin analizine çeşitli 

dilbilim teorileri uygulanabilir. Bu nedenle adli dilbilimci, dil ve hafıza çalışmaları, 

konuşma analizi, söylem analizi, dilbilgisi teorisi, bilişsel dilbilim, konuşma yasası 

teorisi vb. gibi çok çeşitli alanlarda yürütülen araştırmalardan gözlemlerini 

alıntılayabilir. Dilbilimsel alanların geniş yelpazesine olan bu güvenin nedeni şöyle 

açıklanabilir: Dilbilimcinin analiz için aldığı veriler, ortalama bir kişinin dili nasıl 

hatırladığı, konuşmaların nasıl kurulduğu, konuşmacıların/yazarların konuşma/metin 

boyunca nasıl davrandıkları ya da bir mahkemeye ifade veya cümle yapılarının hangi 

yönlerinin yansıtılması gerektiği hakkında bilgi sunabilir.  

    Adli dilbilim araştırmaları diğer birçok alanla bağlantılı olabilir. Örneğin, adli 

dilbilim alanı bilişim alanında çeşitli çalışmalara öncü olmuştur. Daha özelleştirmek 

gerekirse, siber suç araştırmalarında adli dilbilim büyük bir önem arz etmektedir. 

Çünkü günümüzde neredeyse her suç dijital iz bırakabileceğinden, internette ceza 

soruşturmaları giderek önem kazanmıştır (Tropina ve ark., 2017). 

    Bu çalışma da birçok yazarlık analizi çalışmaları gibi disiplinler arası adli 

bilişim ve adli dilbilim alanlarını birleştirir niteliktedir. Yazarlık analizi yapılırken bu 

iki bilime başvurulmuştur.  
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1.4.4. Yazarlık Analizi 

    Adli dilbilimin doğuşuyla birlikte, herkesin dili benzersiz bir şekilde kullandığı 

ve dil kullanımındaki farklılıklar parmak izi kadar kolay gözlenebileceği anlamına 

gelen “adli parmak izi” kavramını ortaya çıkardı (Coulthard, 2004; Olsson, 2008). 

Yazarlık analizinde potansiyel olarak geçerli ayırt edici belirteçler sunan, bilinçaltı 

dil alışkanlıklarıdır. Bu da yazarların dil kullanımlarında farklılıklar göstermiştir. 

İnsanlar sözlü veya yazılı dil kullandıklarında, belirli sözlük-dilbilgisi (lexico-

grammatical) yapılarını diğerlerinden daha sık seçme ve belirli bir şekilde birleştirme 

alışkanlığı vardır. Bu tür alışkanlıkların dil kullanımının yazara özgü özellikleri 

olduğu söylenir ve genellikle sorgulanan bir metnin yazarını tanımlamak için adli dil 

analizinde uygulanır (Coulthard, 2004; Coulthard & Johnson, 2010). 

1.4.4.1. “Idiosyncratic Alışkanlıklar” nedir? 

Son yıllarda bir metnin yazarlığını doğrulamak veya tartışmak için kullanılan 

yöntemlerden bazıları stilometri, korpus analizi (Coulthard, 2004) ve dilbilimsel 

analizi (Coulthard & Johnson 2010) içerir. Stylometrics, öncelikle, dilin kelime veya 

cümle uzunluğu, sözlüksel zenginlik, tempo, hapax legomena (metinde yalnızca bir 

kez kullanılan kelime öğeleri) ve benzeri gibi teknik yönlerinin ölçülmesi ile ilgilidir 

(McMenamin, 2002; Coulthard & Johnson, 2010). 

    Öte yandan, korpus analizi, bu tür dizelerin diğer yazarlar tarafından kullanılma 

olasılığını belirlemek için, belirli bir kelime öğesinin veya kelime dizgisinin büyük 

bir toplulukta tartışmalı metinden sıklığını aramayı içerir. Son olarak, dilbilimsel 

analiz sözdizimi, dilbilgisi, hatalar vb. gibi kendine özgü dil kullanımının 

(idiosyncratic alışkanlıklar) çeşitli yönlerinin analiz edilmesini içerebilir (Coulthard 

& Johnson, 2010) (Tomić, 2019). 
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    Yazarlık analizi yapılırken, her biri farklı bir amaca hizmet eden üç farklı alt 

araştırma dalı bulunmaktadır. Bu üç alt dal, yazarlığı tanıma, yazarlığı sınıflandırma 

ve benzerliği tespit etmekten oluşmaktadır.  

1. Yazarlık tanıma (bkz. yazarlık özniteliği): Belirli bir kişi tarafından o kişiden 

gelen diğer yazıları inceleyerek bir yazı parçasının üretilme olasılığını 

belirlemek için kullanılır. 

2. Yazarlık sınıflandırma: Bir yazarın cinsiyet, yaş, eğitim düzeyi veya kültür 

geçmişi gibi kişisel niteliklerini, o yazara ait mevcut yazıları kullanarak 

belirlemek için kullanılan bir tekniktir. 

3. Benzerlik tespiti: Farklı yazı parçalarını karşılaştırır ve aynı kişi tarafından 

üretilip üretilmediğini belirler. Bu tekniğin en popüler kullanımı intihal 

tespitidir. 

1.4.4.2. Stilistik özellikler (Stylometric features) 

    Yazarlık tanıma araştırmasını kolaylaştırabilecek yazı stili özellikleri dört farklı 

kategoriye ayrılmaktadır; bunlar sözcüksel (lexical) özellikler, yapısal (structural) 

özellikler, içeriğe özgü (content specific) özellikler ve sözdizimsel (syntactic) 

özelliklerdir. 

1. Sözcüksel özellikler, sözcük ve karakter tabanlı analizlerle desteklenir. 

Kelime bazlı analiz ile bir kişinin özelliği, yazılarındaki kelime zenginliği, 

cümle başına ortalama kelime sayısı veya bir metindeki toplam kelime sayısı 

gibi diğer ölçümlerle birleştirilerek anlatılabilir. Karakter bazlı analiz ile 

toplam karakter sayısı, cümle başına düşen ortalama karakter sayısı, kelime 

başına düşen karakter veya tek tek harflerin kullanım sıklığı gibi bazı 

özellikler belirli bir kişinin yazma alışkanlıklarını ortaya çıkarmaya yardımcı 

olur. 
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2. Yapısal özellikler, metnin düzenini ve planını analiz etmeye odaklanır. 

Yazının uzunluğu diğer analiz özellikleri için yeterli olmadığında, yazılar 

arasındaki farklılıkları ayırt etmek için yapısal özellikler önemli bir rol oynar. 

3. Sözdizimsel özellikler, cümleleri oluşturmak için kullanılan yazma 

modellerini araştırma ve analiz etmeyle ilgilenir. Sözdizimsel özellikler, 

cümleleri düzenlemede insanların farklı alışkanlıklarından türetildikleri için 

sözdizimsel özelliklerin ayırt edici gücünden yola çıkarak farklı kişileri ayırt 

etmek için Türkçe’deki noktalama ve işlev (function) kelimeleri gibi yaygın 

kelimelerin kullanımını analiz etmeye odaklanır. 

4. İçeriğe özgü özellikler ise, belirli bir konu alanıyla ilgili olan sözcükleri ifade 

eder (Dinh, 2014). 

    Bu çalışmada yazarlık tanıma ve benzerlik tespiti çalışma alanlarından 

yararlanılmıştır. Çalışma, köşe yazılarında yazarlık analizi içermekte olup ilk adım 

olan stilometrik özellikler üzerinden yazarlık tanıma yapılmıştır. Daha sonra 

benzerlik tespit çalışmasına göre yazılarının belirtilen yazarlara ait olup olmadığı 

elde edilen verilere göre tartışılacaktır. Yazarlık tanıması yapılırken veri seti Doğal 

Dil İşleme (Natural Language Processing) uygulama alanından geçirilmiş, benzerlik 

tespiti yapılırken de makine öğrenme (machine learning) metotları ve algoritmalarına 

başvurulmuştur. 

1.4.5. Doğal Dil İşleme 

    Doğal dil, insanlar tarafından birbirleriyle iletişim kurmak için kullanılan dili 

ifade eder. Bu iletişim sözlü veya yazılı olabilir. Örneğin, yüz yüze görüşmeler, 

tweetler, bloglar, e-postalar, web siteleri, SMS mesajları, hepsi doğal dil içerir. 

    Ancak, insanlardan farklı olarak bilgisayarlar doğal dili kolayca anlayamazlar. 

Doğal dili bilgisayarların anlayabileceği bir biçime çevirmek için gelişmiş teknikler 

ve yöntemler gereklidir. Doğal Dil İşleme (NLP), bu hedefe ulaşılmasına yardımcı 

olan uygulama alanıdır (Robinson, 2017).  
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 Wikipedia’ya göre NLP, dilbilim, bilgisayar bilimi ve yapay zekanın bir alt 

alanıdır. NLP, bilgisayarlar ve insan dili arasındaki etkileşimlerin yanı sıra, özellikle 

bilgisayarların büyük miktarda doğal dil verisini işlemesi ve analiz etmesi için nasıl 

programlanacağı ile ilgilenir. Belgelerdeki dilin bağlamsal nüansları da dahil, sonuç, 

belgelerin içeriklerini “anlayabilen” bir bilgisayardır. Teknoloji, belgeleri kendi 

başına sınıflandırmanın ve düzenlemenin yanı sıra, belgelerde yer alan bilgileri ve iç 

görüleri daha sonra doğru bir şekilde çıkarabilir. 

 NLP, doğal dillerin kurallı yapısını analiz ederek anlamayı ya da yeniden 

üretmeyi amaçlar. Bu analizin insanlara sağlayacağı kolaylıklar, soru-cevap 

makineleri, yazılı belgelerin otomatik tercümesi, bilgi sağlama, otomatik konuşma ve 

komut anlama, konuşma üretme, oluşturma ve sentezi, otomatik metin özetleme gibi 

birçok konuyla toparlanabilir. Mesela, birer imla düzeltme aracı tüm kelime işlem 

yazılımlarında bulunur. Bu araçlar aslında yazılı metni analiz eden ve dil kurallarını 

kontrol eden doğal dil işleme yazılımlarıdır. NLP, bilgisayarların insan dilini 

algılaması gereken her yerde kullanılabilir, olası uygulama alanları şu şekildedir: 

1. İnternet ortamında git gide artan dokümanların değerlendirilmesinde,  

2. Uluslararası çalışan şirketlerin müşteri profilini belirlemede, 

3. Elektronik ticarette, 

4. Savunma ve istihbarat alanlarında (Güvenlik ve suçlu teşhisinde), 

5. Yabancı dil öğretiminde, 

6. Makine çevirisinde, 

7. Elektronik sözlüklerde,  

8. İmla hatalarının otomatik düzeltilmesinde, 

9. Film ve sinema alanında, 

10. Mobil telefonların konuşma algılama sistemlerinde, 

11. Otomatik özet çıkarmada, 

12. Bilgi aramada, 

13. Görme engellilerin bilgisayar kullanmalarındadır (Tarcan & Çakar, 2008). 
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    NLP, bilgisayarların insan dillerini anlamasını ve işlemesini sağlamaya 

odaklanan yapay zekanın (AI) alt alanı olduğunu gösteren aşamalardan oluşmaktadır. 

Python kullanarak ham metinden bilgi çıkarabilecek programların nasıl yazılacağının 

adımları sistematik bir şekildedir. Adım adım NLP süreçleri şu şekilde 

incelenmektedir: 

1. Cümlelere Bölme: Verilen bir paragraf öncelikle cümlelere bölünür. 

2. Kelime ve Simgelere Ayırma: Bölünen cümleler, kelimeler ve simgelere 

ayrılır. 

Ankara, Türkiye’nin başkentidir. 

  “Ankara”, “, ”, “Türkiye’nin”, “başkentidir”, “. ” 

3. Her Simge/Sözcük İçin Tür Belirleme: Söz konusu sözcük isim, fiil, sıfat vb. 

olabilir. Böylece cümledeki her kelimenin rolü öğrenilir. (Şekil 1.1.) 

 

Şekil 1.1. Türkçe dilinde her simge/sözcük için tür belirleme örneği. 

4. Metin Kök Çözümlemesi: Her sözcüğün kökü (temel formu) çıkarılır 

(Geitgey, 2018). (Şekil 1.2.) 

Şekil 1.2. Türkçe dilinde metin kök çözümleme örneği (Kuzucular, 2014). 

5. Durduran İfadeleri Belirleme: Metin üzerinde istatistik yaparken, bu ifadeler 

çok fazla engel çıkarır, çünkü diğer kelimelere göre çok daha sık görünürler. 

(Şekil 1.3.) 
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           Şekil 1.3. Türkçe dilinde durduran ifadeleri belirleme örneği. 

6. Bağımlı Ayrıştırma: Amaç, cümledeki her kelimeye tek bir ana kelime atayan 

bir ağaç oluşturmaktır. Ağacın kökü cümlenin ana fiili olmalıdır. (Şekil 1.4.) 

Şekil 1.4. Türkçe dilinde bağımlı ayrıştırma örneği. 

   6b. İsim Öbeklerini Bulma: Aynı varlıktan bahseden kelimeleri otomatik olarak   

 gruplandırmak için bağımlı ayrıştırma ağacındaki bilgileri kullanabiliriz.   

 (Şekil 1.5.) 

 

Şekil 1.5. Türkçe dilinde isim öbeklerini bulma örneği. 

7. Adlandırılmış Varlık Tanıma (NER): NER’in amacı, bu isimleri temsil 

ettikleri gerçek dünya kavramlarıyla tespit etmek ve etiketlemektir.  

(Şekil 1.6.) 
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Şekil 1.6. Türkçe dilinde adlandırılmış varlık teşhisi örneği. 

      Tipik bir NER sisteminin etiketleyebileceği bazı nesne türleri şunlardır: 

 İnsan isimleri, 

 Şirket isimleri, 

 Coğrafi konumlar (hem fiziksel hem de politik), 

 Ürün isimleri, 

 Tarihler ve saatler, 

 Para miktarları, 

 Etkinlik isimleridir. 

8. Eşgönderge Çözümlemesi: Bu adımın amacı cümlelerdeki zamirleri veya o 

ismin yerine kullanılan öbekleri takip ederek aynı eşlemeyi bulmaktır 

(Geitgey,l2018).  

 Ankara, Türkiye’nin başkentidir. Ankara’nın başkent ilan edilmesinin 

ardından (13 Ekim 1923) şehir hızla gelişmiş ve Türkiye’nin ikinci en 

kalabalık ili olmuştur (Vikipedi). 

 1.4.5.1. Metin Madenciliğinde Python İşlevselliği 

 Yukarıda da görüldüğü üzere Python’da Kodlama yaparken NLP Boru Hattı 

genel haliyle bu şekildedir (Geitgey, 2018). Python metin madenciliği paketi, birçok 

kullanışlı işlevler içerir. Temelde istatistiksel metin madenciliğine odaklanır ve bir 

doküman koleksiyonundan bir özet doküman oluşturmaya yardımcı olur. Bu matris 

daha sonra başka analizler için istatistiksel pakette incelenebilir. Paket, koleksiyon 

bulmada, kelime arasındaki düzen mesafesini hesaplamada ve uzun bir dokümanı 

daha küçük parçalara dönüştürmede faydalı araçlar sağlamaktadır. Model, Google, 
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Twitter, Wikipedia API, DOM ayrıştırıcı ve NLP veri madenciliği için araçlar 

sağlayan Python programlama dili için web madenciliği modülüdür (Zende ve ark., 

2016). Bu çalışmada da Python’da metin madenciliği kodla çağrılan Python 

kütüphaneleri aracılığıyla NLP adımlarıyla yapılmıştır. 

 1.4.5.2. Tez Çalışmasında Kullanılan Python Kütüphaneleri 

 Bu tez çalışmasında metin madenciliği yapılırken ve veri makine öğrenme (ML) 

algoritmalara sokulurken birçok Python kütüphanesinden faydalanılmıştır. Bu 

kütüphaneler kısaca şunlardır: 

1. Urllib ve BeautifulSoup Kütüphaneleri: Urllib standart bir Python 

kütüphanesidir ve web üzerinden veri istemi oluşturmak, çerezleri işlemek ve 

hatta başlıklar ve kullanıcı araç gibi meta verileri değiştirmek için işlevler 

içerir. Örneğin, ‘urlopen’ işlevi, bir ağ üzerinden uzaktaki bir nesneyi açmak 

ve onu okumak için kullanılır. Oldukça genel bir kütüphane olduğu için 

HTML dosyalarını, görüntü dosyalarını veya diğer dosya akışlarını kolaylıkla 

okuyabilir. BeautifulSoup ise, anlamsız olanı anlamlandırmaya çalışır; 

düzensiz HTML’yi düzelterek ve XML yapılarını temsil eden, kolay geçişli 

Python nesneleri sunarak dağınık web’i biçimlendirmeye ve düzenlemeye 

yardımcı olur. (O’Reilly Media, 2015). Dolayısıyla Python modülü 

‘urllib.request’, benzer kaynak konumlayıcıları (URL’leri) çıkarmaya yardım 

ederken, Python modülü Beautifulsoup, Python’daki HTML ve XML 

dosyalarından veri çıkarmaya yardımcı olur (Wingate, 2020). 

2. NLTK (Natural Language Toolkit) Kütüphanesi: Doğal Dil Araç Takımı 

(NLTK) paketi, sözcük türü seçme, bölümleme ve sınıflandırma gibi çok 

sayıda NLP yöntemlerini içerir. NLTK, python programlama dili için 

istatistiksel doğal dil işlemeye yönelik bir kütüphane ve program paketidir. 

Sınıflandırma, bölme ve ayrıştırma için metin işleme kütüphaneleri için ara 

yüz kullanımını kolaylaştırır. NLTK, Windows, MAC OS X ve Linux 

yazılımlarında bulunmaktadır (Zende ve ark., 2016). 
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3. Stanza Kütüphanesi: Stanza web sitesine göre, Stanza, birçok dilin dilbilimsel 

analizi için doğru ve verimli araçlardan oluşan bir koleksiyondur. Ham 

metinden sözdizimsel analiz ve varlık tanımaya kadar Stanza, en gelişmiş 

NLP modellerini seçilen dillere getirir. Araç takımı, Evrensel Bağımlılıklar 

(Universal Dependencies) biçimini kullanarak 70’ten fazla dil arasında 

paralel olacak şekilde tasarlanmıştır. Stanza, simgeleştirme (tokenization), 

çok sözcüklü simge (multi-word token) genişletme, kök çözümleme 

(lemmatization), sözcük türü (part-of-speech) ve biçembilimsel 

(morphological) özellikler etiketleme, bağımlılık ayrıştırma ve NER dahil 

olmak üzere tam sinir ağı boru hattı sağlamaktadır. 

4. TensorFlow Kütüphanesi: TensorFlow, sayısal hesaplamada veri akışı 

grafiklerini kullanan açık kaynaklı bir yazılım kütüphanesidir (Unruh, 2017). 

Makine öğrenimi için uygulamalar oluşturur ve derin sinir ağlarının (deep 

neural networks) eğitimi ve çıkarımına odaklanır. Örneğin, Google 

TensorFlow’u arama motorunda arama yaparken bir kelime yazıldığında 

başka öneriler sunarak var olan aramayı genişletir. TensorFlow, verilerin bir 

grafikte nasıl hareket ettiğini tanımlamada veri akışı grafikleri ve yapıların 

oluşturulmasına yardım eder, akış şeması oluşturur. TensorFlow yapısı 3 

bölümde çalışır; veri önişlemi, modeli oluşturma ve modeli eğitip, tahmin 

etmedir (Johnson, 2021). 

5. Keras Kütüphanesi: Keras ise, derin öğrenme modelleri oluşturmak için 

TensorFlow, Theano vb. gibi popüler derin öğrenme kütüphanelerinin üzerine 

inşa edilmiş en güçlü ve kullanımı kolay Python kütüphanelerinden biridir. 

Keras, üst düzey sinir ağı uygulama programlama ara yüzünü (API) daha 

kolay ve daha performanslı hale getirmek için çeşitli optimizasyon 

tekniklerinden yararlanır. Keras, birtakım özellikleri destekler. Bunlar:  

 Tutarlı, basit ve genişletilebilir API, 

 Minimal yapı (herhangi bir ayrıntı olmadan sonuca ulaşmak kolaydır), 

 Çoklu platform ve arka uç, 

 Hem merkezi işlem birimi (CPU) hem de grafik işlem birimi (GPU) 

üzerinde çalışan kullanıcı dostu bir sistem, 
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 Hesaplamanın yüksek düzeyde ölçeklenebilirliğidir (Tutorials Point (I) 

Pvt. Ltd. - Keras, 2019, s.:1). 

6. NumPy ve Pandas Kütüphaneleri: ‘NumPy’, açılım olarak “Numerical 

Python (Sayısal Python)” anlamına gelir. Dizinler ve matrisler üzerinde hızlı 

matematiksel hesaplama sağlayan açık kaynaklı bir Python modülüdür. 

Dizinler ve matrisler, Makine Öğrenimi ekosisteminin önemli bir parçası 

olduğu için NumPy; Scikit-learn, Pandas, Matplotlib, TensorFlow vb. gibi 

Makine Öğrenimi modülleriyle birlikte Python Makine Öğrenimi 

Ekosistemini tamamlar. NumPy, tamsayılar, dize veya (homojen) karakterler 

içeren aynı tip elementlere sahip bir çizelgedir. NumPy’de boyutlara eksen 

(axes) adı verilir. Eksen sayısına da dizi (rank) denir. NumPy’ye benzer 

şekilde Pandas, veri biliminde en yaygın kullanılan python kütüphanelerinden 

biridir. Yüksek performans, kullanımı kolay yapılar ve veri analiz araçları 

sağlar. Çok boyutlu dizinler için nesneler sağlayan NumPy kütüphanesinden 

farklı olarak Pandas, veri çerçevesi adlı bellek içi iki boyutlu (2D) çizelge 

nesnesi sağlar. Sütun adları ve satır etiketleri içeren bir hesap çizelgesi gibidir. 

Pandas’da yaygın olarak kullanılan bazı veri yapıları şunlardır: 

 Seri nesneler: Bir boyutlu (1D) dizin – hesap çizelgesindeki bir 

sütuna benzer,  

 Veri çerçevesi nesneleri: İki boyutlu (2D) tablo – hesap çizelgesine 

benzer, 

 Panel nesneleri: Veri çerçevesi Sözlüğü – MS Excel'deki sayfaya 

benzer (Pratik, 2017). 

7. Scikit-Learn (Sklearn) Kütüphanesi: Python’da makine öğrenimi için en 

kullanışlı ve güçlü kütüphanedir. Python’da bir tutarlık ara yüzü aracılığıyla 

sınıflandırma, regresyon, kümeleme ve boyutluluk azaltma içeren makine 

öğrenimi ve istatistiksel modelleme için verimli araçları ayırır (Tutorials 

Point (I) Pvt. Ltd. - Scikit-Learn, 2019, s.:1). 

8. Matplotlib Kütüphanesi: Matplotlib 2 ve 3 boyutlu grafikler çizen Python 

kütüphanesidir. Matplotlib kullanılarak, çizgi grafiği, histogram, çubuk 

grafiği, pasta grafiği, dağılım grafikleri, alan çizimleri, hata çizelgeleri, güç 

izgesi vb. çizilebilir. Veri analizi model geliştirmenin bir parçası olduğundan 
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sadece sayısal veriye bakılarak doğru sonuçlar elde edilmeyebilir. O yüzden 

veriyi kullanarak grafiklerin çizilmesi bir sonraki işlemler için karar vermede 

en iyi yoldur. Veri görselleştirme, veri temizleme işleminden sonra yapılan 

bir işlemdir. Matplotlib, NumPy gibi bazı üçüncü taraf Python 

kütüphanelerine bağlıdır (Indian AI Production, 2019). 

 1.4.6. Makine Öğrenmesi (ML) 

 Wikipedia’ya göre makine öğrenimi (ML), deneyim ve veri kullanımı yoluyla 

otomatik olarak iyileştirilebilen bilgisayar algoritmalarının incelenmesidir. ML, 

yapay zekanın (AI) bir bölümü olarak görülmektedir. Makine öğrenimi algoritmaları, 

açık bir şekilde programlanma yapmadan tahminlerde bulunmak ya da kararlar 

almak için “eğitim verileri” olarak bilinen örnek verilere uygun bir model yaratır. 

Makine öğrenimi algoritmaları, gerekli olan görevleri yerine getirmek için geleneksel 

algoritmalar geliştirmenin zor veya imkânsız olduğu tıp bilimi, e-posta filtreleme, 

konuşma tanıma ve bilgisayar görüntüsü gibi çok çeşitli uygulamalarda 

kullanılmaktadır. Makine öğreniminin bir alt kümesi, bilgisayarları kullanarak 

tahminler yapmaya odaklanan hesaplama istatistikleriyle yakından ilişkilidir; ancak 

bütün makine öğrenimi istatistiksel öğrenme olarak sayılmamaktadır.  

 Makine öğreniminin genel fikri, herhangi bir konudaki geçmiş verilerden 

eğilimleri öğrenmek için bir model elde etmek ve bu eğilimleri gelecekte 

karşılaştırılabilir veriler üzerinde yeniden üretebilmektir (Şekil 1.7.). Aşağıdaki 

grafik, geçmiş verilere uyan bir makine öğrenimi modelinin görsel bir temsilidir. 

Solda üç değişkenli (yükseklik, genişlik ve şekil) orijinal gözlemler vardır. Şekiller, 

yıldızlar, çarpılar ve üçgenlerden oluşmaktadır. Şekiller grafiğin farklı alanlarına 

yerleştirilmiştir. Sağ tarafta, bu orijinal gözlemlerin bir karar kuralına nasıl çevrildiği 

gösterilmektedir. Yeni bir gözlemde, hangi kareye düştüğünü belirlemek için 

genişliği ve yüksekliği bilinmelidir. Düştüğü kare, hangi şekle sahip olma 

olasılığının en yüksek olduğunu tanımlar. Temel makine öğrenimi süreci bu şekilde 

özetlenmektedir (Korstanje, 2021). 



19 

 

 

Şekil 1.7. Makine öğrenimi modelinin görsel bir örneği. 

 

 

Şekil 1.8. Makine Öğrenme sınıflandırması (Sakal, 2020). 

 Sakal’a (2020) göre “Makine öğrenme algoritmaları makine öğrenme 

bulmacasının sadece bir parçasıdır. Algoritma seçimine (manuel veya otomatik) ek 

olarak, optimize ediciler, veri temizleme, özellik seçimi, özellik normalizasyonu ve 

(isteğe bağlı olarak) hiperparametre ayarlarıyla ilgilenmek gerekir” (Şekil 1.8). Dört 

genel makine öğrenimi yöntemi vardır: Bunlar; (1) denetimli, (2) denetimsiz, (3) yarı 

denetimli ve (4) pekiştirmeli öğrenmelerdir. 

1. Denetimli Öğrenme (Supervised Learning): Bu öğrenmede hedef, etiketlenen 

eğitim verilerinden bir fonksiyon veya eşleştirme çıkarmaktır. Bu çıkarım 

regresyon ve sınıflandırma ile gerçekleşir. 
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2. Denetimsiz Öğrenme (Unsupervised Learning): Bu öğrenmede sahip olunan 

tek şey etiketlenmemiş verilerdir. Amaç, bu verilerde gizli bir yapı bulmaktır 

çünkü eğitim verileri burada yer almazlar. Sayısız veri toplama cihazıyla veri, 

benzeri görülmemiş bir oranda toplanır ve sınıflandırılmaz. 

3. Yarı Denetimli Öğrenme: Bu tür öğrenmede, veriler sınıflandırılmış ve 

sınıflandırılmamış verilerin bir karışımıdır. Etiketli ve etiketsiz verilerin bu 

kombinasyonu, verilerin sınıflandırılmasında uygun bir model geliştirmek 

için kullanılır. Çoğu durumda, etiketlenmiş veriler az, etiketlenmemiş veriler 

bol miktarda bulunur. Yarı denetimli sınıflandırmanın hedefi, yalnızca 

etiketlenmiş veriler kullanılarak geliştirilen modeldense, gelecekteki test 

verilerinin sınıflarını daha iyi tahmin edecek bir model öğrenmektir 

(Mohammed ve ark., 2016, s.:7-10). 

4. Pekiştirmeli Öğrenme: Wikipedia’ya göre bu öğrenmede, bir bilgisayar 

programı, belirli bir amacı gerçekleştirmesi gereken (araç sürmek veya bir 

rakibe karşı oyun oynamak gibi) dinamik bir ortamla etkileşime girer. Sorun 

alanında gezinirken, programa, en üst düzeye çıkarmaya çalıştığı, ödüllere 

benzer bir geri bildirim sağlanır. 

 Bu öğrenmeler sadece görüntü ve ses verilerinde değil aynı zamanda metin 

verilerinde de kullanır. Burada veri, metin madenciliği adı altında toplanır. Metin 

verilerini elde etmek için birçok mecraya başvurulabilir. Sosyal medya, metin 

verilerinin üretimini benzeri görülmemiş bir düzeyde görebileceğimiz yerdir. Metin 

madenciliği, birçok uygulamada yardımcı olur. Bunlar; 

 Ticari istihbarat, 

 Ulusal güvenlik, 

 Fen bilimleri, 

 Duygu sınıflandırmasıyla ilgili olanlar, 

 Otomatik reklam yerleştirme, 

 Haber makalelerinin otomatik sınıflandırılması, 

 Sosyal medya takibi, 

 İstenmeyen posta filtresidir (Mohammed ve ark., 2016, s.:23-24). 
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 Bu çalışmada metin madenciliği yapılırken denetimli öğrenme algoritmalarından 

yararlanılmıştır. Bu algoritmalar yine Python kodlamaları ile gerçekleştirilmiştir. 

 1.4.6.1. Derin Öğrenme 

 Derin öğrenme (Deep learning), bir hiyerarşi içinde düzenlenmiş birçok 

seviyeden oluşan yapay sinir ağı kullanarak makine öğrenimi sürecini gerçekleştirir. 

Ağ, hiyerarşide ilk seviyede basit bir şey öğrenir ve ardından bu bilgiyi bir sonraki 

seviyeye gönderir. Bir sonraki seviye bu basit bilgiyi alır, onu biraz daha karmaşık 

bir şeyle birleştirir ve üçüncü seviyeye iletir. Bu süreç, hiyerarşideki her bir seviye 

önceki seviyeden aldığı girdiden daha karmaşık bir aşama inşa edene dek devam eder. 

 Derin öğrenme ağları, bilgi keşfi, bilgi uygulaması ve bilgiye dayalı tahmin için 

büyük verilere başarıyla uygulanabilir. Başka bir deyişle, derin öğrenme, işlemeye 

uygun sonuçlar üretmek için güçlü bir motor olabilir (Murnane, 2016). 

 1.4.6.2. Tez Çalışmasında ML için Kullanılan Metotlar 

 Makine Öğrenimi algoritmaları metinleri değil sayıları anlar. Bu nedenle, 

algoritma için anlaşılır hale getirmek için tüm “metin” sütunları “sayısal” sütunlara 

dönüştürülmelidir. Etiketlerin veya kategorik/metin değerlerinin sayılara veya sayısal 

değerlere dönüştürülmesi ile gerçekleştirilir (Gurav, 2020). Bu tez çalışmasında veri 

setini ML algoritmalarına hazırlayan bu tür bazı metotlar kullanılmıştır. Bu metotlar 

aşağıda sıralanmaktadır: 

1. CountVectorizer: Makineler, karakter ve kelimeleri anlayamadığından metin 

verilerinin üstesinden gelebilmek için sayısal değerlere dönüştürülmesi 

gerekmektedir. CountVectorizer metni sayısal veriye dönüştürmede bir metot 

olarak kullanılmaktadır. Örnek vermek gerekişe Şekil 1.9.’da metin 

CountVectorizer ile seyrek bir matrise (sparse matrix) dönüştürülür; metinde 
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6 benzersiz sözcük bulunmaktadır, o yüzden matriste her bir benzersiz 

sözcüğü temsil eden 6 farklı sütun vardır. Satırda ise sözcük sayısı temsil 

edilir. ‘Benim’ kelimesi iki kez tekrarlandığı için bu kelime 2, diğer kelimeler 

ise 1 kez tekrarlandığı için 1 değeri almıştır. CountVectorizer, metin verileri 

için doğrudan makine öğrenimi ve metin sınıflandırma gibi derin öğrenme 

modellerinde kullanılmasını kolaylaştırır. 

 

      Şekil 1.9. Bir girdiyi sayısal değerlere dönüştürme örneği. 

Eğer girdi 1’den fazla ise (Şekil 1.10.); her bir girdi önişlemden geçirilir, 

simgeleştirilir (tokenization) ve seyrek bir matris olarak sunulur. Varsayılan 

olarak, CountVectorizer metni küçük harfe dönüştürür ve sözcük düzeyinde 

simgeleştirmeyi kullanır. Kod yazarken matrisi görselleştirmek için Pandas 

kütüphanesi, vektörleştirmeyi gerçekleştirmek için bir Sklearn kütüphanesi 

olan ‘sklearn.feature_extraction.text’ kullanılır (Jain, 2021). Bu iki cümleye 

bakıldığında çıktı bölmesinde her bir cümle için var olan kelimeye 1, 

olmayan kelimeye ise 0 değeri atanır ve böylece cümlelerin ve kelimelerin 

vektörleri elde edilmiş olur. 

 

Şekil 1.10. İki girdiyi sayısal değerlere dönüştürme örneği. 

TfidfVectorizer: CountVectorizer, özellik oluşturmak için kelime sayısını 

dikkate alır, bu nedenle cümle yapısını ve sırasını dikkate almaz ve semantik 

anlam olarak eksiktir. Ayrıca, büyük bir seyrek matris ile sonuçlanır. Bu 

durumda TF-IDF kullanılmalıdır (Kaul, 2021). TF-IDF (Term Frequency - 

Inverse Document Frequency), “Terim Frekansı - Ters Metin Frekansı” 

anlamına gelir. TF-IDF, bir dokümandaki kelimenin önemini ölçen sayısal 
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bir istatistiktir. Terim Frekansı, bir kelimenin metinde görüntülenme sayısı 

iken, Ters Metin Frekansı, metinde nadir veya yaygın olan kelimeyi ölçer 

(Kanani, 2019). TF-IDF, bağlamı okumak yerine anlamaya çalışır ve 

Sklearn kütüphanesini kullanır. TF için metinde belli bir terim fazla 

kullanılmışsa o terim önemlidir. IDF ise ilgili terimlere odaklanır, metinde 

durduran ifadeler fazla kullanılmışsa bile görmezden gelerek çalışır. Şekil 

1.11.’deki denklemleri kullanırlar (Kaul, 2021). TfidfVectorizer, işlenmemiş 

dokümanların koleksiyonunu bir TF-IDF özellik matrisine dönüştürür. 

Metin analizi, makine öğrenimi algoritmalarında önemli bir uygulama 

alanıdır. Metin öncelikle sayısal özellik vektörlerine dönüştürülmelidir 

çünkü bilgisayar sayısal verileri işler (Tracy, 2021). 

 

Şekil 1.11. TF-IDF Vectorizer kullanılan denklemler (Kaul, 2021). 

2. Vektörleri Standartlaştırma (Normalization): Bir vektörün büyüklüğünü 

hesaplamak sadece başlangıçtır. Vektörlere bakıldığında, standart bir 

vektörün uzunluğunun bir olduğunu varsayarsak, bir vektörü standart hale 

getirmek, herhangi bir uzunlukta bir vektörü almak ve onu aynı yöne 

bakacak şekilde, uzunluğunu bir birime değiştirerek birim vektör (unit 

vector) olarak adlandırılan olguya dönüştürmektir (Shiffman, 2012) (Şekil 

1.12.). 

 

Şekil 1.12. Vektörleri standartlaştırma örneği. 
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3. Öklid Uzaklık Matrisi (Euclidean Distance Matrix (EDM)): Bu matris, 

satırların “kaynak”, sütunların “hedef” varlıklar olduğu ve üzerinde (Öklid 

tarzında) bir mesafe hesaplanabilen tabloyu temsil eder. Örneğin, A 

noktasından B noktasına iki boyuttaki mesafeyi hesaplarken, A ve B 

vektörünün iki boyut ekseni üzerindeki izdüşümleri hesaplanmaktadır. 

Formül şu şekildedir: 

√(𝑥2 − 𝑥1)2 +  (𝑦2 − 𝑦1)2 

Ancak, bir tarafında binlerce satır ve yüzlerce “özellik” (n-boyutlu uzay) 

içeren veri tablolarını düşünüldüğünde, bu basit formül bile kolayca çok 

daha karmaşık hale gelebilir (Grianti, 2020). 

4. Kosinüs Benzerliği (Cosine Similarity): EDM’de metnin boyutundan dolayı 

iki benzer metin birbirine uzak görülebilir. Böylece Kosinüs Benzerliği 

metriği ile boyutuna bakmaksızın dokümanların ne kadar benzediğine karar 

verilebilir. Matematiksel olarak, çok boyutlu bir uzayda yansıtılan iki vektör 

arasındaki açının kosinüsünü ölçer. Bu iki vektör arasındaki açısal mesafe 

(angular distance) ne kadar düşükse benzerlik o kadar yüksektir. Ayrıca 

semantik anlam dikkate alınır (Şekil 1.13.) ve buna göre anlam bakımından 

benzer kelimeler de benzer olarak ele alınmalıdır (Prabhakaran, 2018). 

 

Şekil 1.13. Kosinüs Benzerliği Örneği. 

5. MDS (Multidimensional Scaling), “çok boyutlu ölçekleme” olarak 

adlandırılır. Scikit Learn’e göre MDS, mesafelerin orijinal yüksek boyutlu 

uzaydaki uzaklıklara iyi bir şekilde uyan verilerin düşük boyutlu bir 

gösterimini araştırır. MDS, benzerlik ve farklılık verilerini analiz etmede 
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kullanılan bir tekniktir. Benzerlik veya farklılık verilerini geometrik 

uzaylarda mesafeler olarak modellemeye çalışır. MDS metodunun metrik ve 

metrik olmayan şeklinde iki türü vardır. Metrik MDS’de, girdi olan 

benzerlik matrisi bir ölçümden doğar (ve böylece üçgen eşitsizliğine uyar). 

İki nokta çıktısı arasındaki mesafeler daha sonra benzerlik veya farklılık 

verilerine mümkün olduğunca yakın olacak şekilde ayarlanır. Metrik 

olmayan versiyonda ise, algoritmalar mesafelerin sırasını korumaya 

çalışacak ve bu nedenle gömülü uzaydaki mesafeler ile 

benzerlikler/farklılıklar arasında tekdüze bir ilişki arayacaktır. 

 1.4.6.3. Tez Çalışmasında Kullanılan ML Algoritmaları 

 Bu tez çalışmasında köşe yazıları üzerinden yazar tanıma yapılabilmesi için ML 

algoritmalarına başvurulmuştur. Çıkan sonuçlar ve analizi 3. Bölüm’de 

anlatılmaktadır. Faydalanılan ML algoritmaları aşağıda verilmiştir: 

1. LSTM, sinir ağları tabanlı Uzun Kısa Süreli Bellek (Long Short Term 

Memory), NLP alanında önemli bir role sahiptir. Ayrıca, ardışık (sequence) 

modelleme için yaygın olarak kullanılmıştır. LSTM’lerin kullanımı yaygındır 

çünkü model, örnekler ilerlerken kendisine geri döner ve böylece herhangi 

yeni bir örnek için tahmin yapılırken önceki tahminler tarafından oluşturulan 

bağlamdan yararlanır. Tensorflow ve Keras kütüphanelerinden faydalanır. 

(Versloot, 2021).  

LSTM, uzun süreli belleği tekrarlayan sinir ağlarına (Recurrent Neural 

Networks - RNN) tanıtır. Bir ünite içinde üç tip geçit vardır; girdi geçidi, 

girdiyi hücreye ölçekler (yazma); çıktı geçidi, çıktıyı hücreye ölçekler 

(okuma); unutma geçidi ise, eski hücre değerini ölçekler (resetleme). Her 

geçit, okuma/yazmayı kontrol eden ve böylece uzun süreli hafıza 

fonksiyonunu modele dahil eden bir anahtar gibidir. LSTM’in el yazısı 

tanıma, zaman serisi anomali tespiti, konuşma tanıma, dilbilgisi öğrenme, 

müzik besteleme, vb. gibi kullanılabileceği birçok yol vardır (Gall, 2018). 
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LSTM veri seti üzerinden uygulanırken, bilinmesi gereken birçok noktası 

bulunmaktadır. Bu çalışmada LSTM algoritmasından yararlanılırken 

aşağıdaki kavramlar kullanılmıştır. 

Simgeleştirme (Tokenize): Bu, LSTM ağı için bir katman değil, 

kelimelerimizi simgelere (tamsayılara) dönüştürmek için zorunlu bir adımdır 

(Agrawal, 2019). Simgeleştirme sınıfı için bazı değişkenler olmalıdır. Bu 

değişkenler aşağıda gösterilmiştir: 

 Kelime sayıları (num_words): Kelime sıklığına bağlı olarak 

tutulacak maksimum kelime sayısıdır ve yalnızca en yaygın 

kelimeler tutulmaktadır. 

 Kelime kümesi dışındaki simgeler (Oov_tokens): Sözcük dağarcığı 

dışındaki kelimeleri etiketlemek için kullanılır. 

 Sözcük dizini (word_index): Sıralarına/dizinlerine göre kelimeleri 

eşleyen adlandırılmış listedir. Yalnızca tokenizer’da 

“fit_text_tokenizer()” çağrıldıktan sonra ayarlanır (Kalinowski ve 

ark.). 

 Veri işlenirken “sequence.pad_sequences” kullanımı şekil içeren 

girdi verilerinin listesini (veriyi) iki boyutlu NumPy şekil dizisine 

(veri, zaman aralıklarına) dönüştürür. Temel olarak, verilere zaman 

aralıkları kavramını ekler. Uzunluğun zaman aralıklarını (maxlen) 

üretir (Tutorials Point (I) Pvt. Ltd. - Keras, 2019, s.:85). 

 Keras web sitesine göre Blok dizileri (pad_sequences) aynı 

uzunlukta olmalıdır. Doldurma (padding) veya kesmenin (truncation) 

gerçekleştiği konum, sırasıyla doldurma ve kesme bağımsız 

değişkenleri tarafından belirlenir. Dizinin başlangıcındaki değerleri 

önden (pre) doldurma veya kesme varsayılan seçenektir. 

 Doldurma / Kesme (Padding / Truncating) İşlemi: Hem kısa hem de 

uzun metinlerle başa çıkmak için belirli bir uzunluğa göre metni 

doldurur (padding); ya da baştan/sondan metni keser (truncating). Bu 

uzunluk dizi uzunluğu (sequence length) olarak tanımlanır. 
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 Veriler iyi bir şekle sokulduğunda, eğitim ve test setlerine ayrılabilir 

(Agrawal, 2019). Keras’a göre metin verisi önişleme bağımsız değişkenleri 

şunlardır: 

 Küme boyutu (batch_size): Veri gruplarının boyutudur. Varsayılan 

değer 32’dir. 

 Maksimum uzunluk (max_length): Bir metin dizesinin maksimum 

boyutu. Bundan daha uzun metinler maksimum uzunluğa göre 

kısaltılacaktır. 

 Karıştırma (shuffle): Verilerin karıştırılıp karıştırılmayacağıdır. 

Varsayılan değeri “Doğru” dur. 

 Kaynak (seed): Karıştırma ve dönüşümler için isteğe bağlı rastgele 

kaynak sunar. 

 Ardışık (Sequential) model, her bir katmanın tam olarak bir girdi ve çıktı 

tensörüne sahip olduğu düz bir katman yığını için uygundur. Ardışık model 

ekle “add()” metoduyla oluşturulabilir. Model inşa edilir edilmez, özet 

“summary()” metoduyla içerik görüntülenebilir (Chollet, 2020). Daha sonra 

LSTM katmanları (layers) eklenebilir. Tez çalışmasında kullanılan katmanlar 

aşağıda yer almaktadır: 

a. LSTM Katmanı: gizli konum boyutları ve katman sayısıyla 

tanımlanır. 

b. Gömme (Embedding) Katmanı: kelime simgelerini (tamsayıları) 

belirli boyutta bir yerleşime dönüştürür. 

c. Aktivasyon Katmanı: Tüm çıktı değerlerini 0 ile 1 arasında bir 

değere çevirir. 

d. Yoğun (Dense) Katman: Tam bağlantı oluşturur ve LSTM 

katmanının çıktısını istenen çıktı boyutuna eşler (Agrawal, 2019). 

Keras’a göre Yoğun katmanın bir değişkeni olarak softmax 

kullanılabilir. Softmax, değerler vektörünü bir olasılık dağılımına 

dönüştürür. Sonuç bir olasılık dağılımı olarak 

yorumlanabileceğinden, Softmax genellikle bir sınıflandırma ağının 

son katmanı için aktivasyon olarak kullanılır. 



28 

 

e. Bırakma (Dropout) Katmanı: Eğitim süresi boyunca her adımda bir 

oran frekansı ile girdi birimlerini rastgele 0’a ayarlar, bu da aşırı 

öğrenmeyi önlemeye yardımcı olur. Oranı 0 ile 1 arasında reel sayı 

olmalıdır. 

f. Düzleştirme (Flatten) Katmanı: Girdiyi düzleştirir. Küme 

büyüklüğünü (batch size) etkilemez. 

g. Çift Yönlü (Bidirectional) Katman: RNN’ler için çift yönlü modül 

oluşturur. Girdi hem sağdan sola hem de soldan sağa okunur. 

En iyileştiriciler (Optimizers): Keras modelini derlemek için gereken iki 

bağımsız değişkenden biridir: “compile()” (derleme) veya “fit()” (uydurma) 

gibi. Optimizer için aşağıdaki gibi varsayılan parametreler kullanılabilir. 

   “model.compile(loss=‘categorical_crossentropy’, optimizer=‘adam’)” 

Adam, optimizer için bir yöntemdir ve sadece az bellek ihtiyacı ile birinci 

derece eğimler gerektiren verimli bir tahmin sağlar. Yöntem, eğimlerin birinci 

ve ikinci kuvvetlerinin tahminlerinden farklı parametreler için bireysel 

uyarlanabilir öğrenme oranlarını hesaplar. İsmen “Adam”, “adaptive moment 

estimation (uyarlanabilir kuvvet tahmini)” dan türetilmiştir (Kingma & Ba, 

2015). Keras’a göre Adam öğrenme oranı çok yüksek olmamalıdır, yoksa 

girdi aşırı öğrenmiş olur, o yüzden varsayılan değer 0.001 olarak 

geçmektedir. Bozunma oranı (decay rate) 1. kuvvet tahminleri varsayılan 

olarak 0.9, 2. kuvvet tahminlerinde ise varsayılan olarak 0.999 olarak 

kullanılmaktadır. Sayısal tutarlılık için sabit bir katsayı, sıfıra çok yakın olan 

değer (epsilon) varsayımı da ‘1e-7’ olarak ifade edilmektedir. 

Optimizer’da model derlenirken kayıp (loss) fonksiyonu da kullanılabilir. 

Kayıp fonksiyonlarının amacı, bir modelin eğitim sırasında en aza indirmeye 

çalışması gereken miktarı hesaplamaktır. Loss fonksiyonu seyrek kategorik 

çapraz etkinlik ölçümü (sparse categorical crossentropy) olarak seçilebilir. Bu 

değişken etiketler ve tahminler arasındaki çapraz etkinlik ölçüm kaybını 

hesaplar. İki veya daha fazla etiket sınıflarında kullanılır. Etiketlerin tamsayı 

olarak getirilmesi beklenir. 
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Yine Optimizer’da metrik fonksiyonu da seçilebilir. Metrik, modelin 

performansını değerlendirmek için kullanılan bir işlevdir. Metrik işlevleri, bir 

metriğin değerlendirilmesinden elde edilen sonuçların model eğitilirken 

kullanılmaması dışında kayıp işlevlerine benzer. Herhangi bir kayıp işlevi 

metrik olarak da kullanılabilir. Doğruluk (accuracy) metriği seçildiğinde, 

tahminlerin etiketlere ne sıklıkta eşit olduğunu hesaplanır. Bu sıklığı 

hesaplarken toplam (total) ve sayı (count) olmak üzere iki yerel değişken 

oluşturur. 

En son, eğitim sırasında toplanan tüm bilgileri içeren bir geçmiş (history) 

nesnesi üzerinde model uydurma yapılırken “model.fit()” birçok değişken 

belirlenmelidir: 

 x: Vektör, matris veya eğitim verisi dizisidir. 

 y: Vektör, matris veya etiket veri dizisidir. 

 Devir (Epoch): modelin eğitilmesindeki devir sayısıdır. 

 Ayrıntı (Verbose): Ayrıntı modudur (0 = sessiz, 1 = ilerleme 

çubuğu, 2 = devir başına bir satır). 

 Validation data (Doğrulama verileri): her devrin sonunda kaybın ve 

herhangi bir model ölçümünün değerlendirileceği verilerdir. Model 

bu verilerde eğitilmeyecektir. 

KNN (K-Nearest Neighbours), “en yakın k komşu” anlamına gelmektedir ve 

mevcut tüm durumları depolayan ve yeni verileri veya durumu bir benzerlik 

ölçüsüne göre sınıflandıran basit bir algoritmadır. Çoğunlukla komşularının 

nasıl sınıflandırıldığına dayandırılmış bir veri noktasını sınıflandırmak için 

kullanılır. KNN’deki ‘k’, veri noktasının nerede sınıflandırılacağına karar 

vermek amaçlı en yakın komşuların sayısını ifade eden bir parametredir. 

Şarap örneğine bakıldığında, kırmızı ve beyaz şaraptaki Mirisetin ve Rutin 

kimyasal bileşen seviyelerine bakılmış, seviye ne kadar ise ona göre kırmızı 

ve beyaz şarap kadehlerini ayıran bir sınıflandırma yapılmıştır (Şekil 1.15.). 

Buna göre yeni gelen bir kadeh şarabın hangi sınıfta olduğuna karar 

verilmelidir. KNN algoritmasında ‘k’ değeri 5 ise, en yakın 5 kadehe 

bakılması gerekir. En yakın 5 kadehe bakıldığında; 4’ü kırmızı, 1’i beyaz 

çıkmıştır, böylece yeni gelen kadehte kırmızı şarap vardır tahmini yapılmıştır 
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(Şekil 1.16.). KNN algoritmasında ‘k’, öznitelik benzerliğine dayalıdır ve 

doğru ‘k’ değerini seçmek, daha iyi bir doğruluk için önemlidir. ‘k’ değeri 

deneme yanılma yöntemiyle doğru bir seçime ulaşır (Subramanian, 2019). 

 

Şekil 1.14. Şarap örneğinde kırmızı ve beyaz kadehlerin  

mirisetin ve rutin seviyelerine göre ayrımı grafiği. 

 

Şekil 1.15. Yeni bir kadeh şarabın KNN algoritmasına göre sınıflandırılması. 

2. Decision Tree Classifier, “Karar Ağacı Sınıflandırıcısı” olarak geçmektedir 

ve Wikipedia’ya göre daha çok sınıflandırma problemlerinde kullanılır. 

Sadece ayrık değil aynı zamanda sürekli bağımlı değişkenler için de 

çalıştırılabilir. Bu algoritma veriyi iki ya da daha fazla homojen setlere ayırır. 

Mümkün olduğunca farklı gruplar oluşturmak için en önemli özniteliklere 

bakarak bu ayırmayı gerçekleştirir. Karar ağaçları hem sınıflandırma hem de 

regresyonu kapsayan makine öğreniminde yaygın olarak kullanılmaktadır. 

Karar analizinde, kararları ve karar vermeyi görsel ve açık bir şekilde temsil 

etmek için bir karar ağacı kullanılır. Bu karar ağacı, aslında ağaç benzeri bir 

karar modelidir. Kökü üstte, dalları altta olacak şekilde bir karar ağacı çizilir. 

Şekil 1.16’da Titanik veri seti örneğine bakıldığında yolcuların ölüp 

ölmediğini tahmin edilmeye çalışılmaktadır. Model, cinsiyet, yaş ve eş/çocuk 
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olmak üzere 3 özniteliği/sütunu kullanmaktadır. Buna göre ölen ve hayatta 

kalan yolcuların oranları kırmızı ve yeşil renklerde gösterilmiştir.  

 

Şekil 1.16. Karar Ağacı Örneği. 

3. Suppor Vector Machines (SVM) “Destek Vektör Makineleri” olarak 

adlandırılır ve Tutorialspoint’e göre veriyi farklı kategorilere ayıran iyi 

bilinen denetimli sınıflandırma algoritmasıdır. Vektörler hattı en iyi hale 

getirerek sınıflandırılır böylece grupların her birindeki en yakın nokta 

birbirinden en uzak nokta olacaktır. Sklearn’e göre SVM için sınıflandırıcı 

olan SVC (Support Vector Classifier) kullanılır. SVC birden fazla sınıflar için 

kullanılabilir. Parametreleri arasında çekirdek (kernel) parametresi varsayılan 

olarak “rbf”dir (radyal temelli fonksiyon), ancak “linear” (doğrusal), “poly” 

(çoklu), “sigmoid” veya “precomputed” (önceden hesaplanmış) de seçilebilir. 

Yine de yaygın kullanılanların seçilmesi önerilmektedir. 

4. Naive Bayes, Tutorialspoint’e göre, tahmin değişkenlerinin bağımsız olduğu 

varsayımıyla Bayes teoremine dayalı bir sınıflandırma tekniğidir. Özetle, bir 

Naive Bayes (NB) sınıflandırıcısı, bir sınıftaki belli bir özelliğin varlığının 

başka herhangi bir özelliğin varlığı ile ilgili olmadığını varsayar. Naive 

Bayesian modelini uygulamak kolaydır ve çok büyük veri kümelerinde 

oldukça kullanışlıdır. Basit olmaktan ziyade, son derece gelişmiş 

sınıflandırma yöntemlerinden bile daha iyi bir performans gösterir. Metin 

sınıflandırmalarında kullanılması yaygındır. Sklearn’e göre Naive Bayes 5 

adet sınıflandırıcısı bulunmaktadır: 

a. Katlıterim (Multinomial) NB, katlı çok terimli modeller için bir 

sınıflandırıcıdır ve ayrık özelliklere sahip sınıflandırma için uygundur 
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(örneğin, metin sınıflandırması için kelime sayıları gibi). Katlıterim 

dağılımı normalde tamsayı özellik sayımlarını gerektirir ancak 

uygulamada TF-IDF gibi kesirli sayımlar da işe yarayabilir. 

b. Bernoulli NB, çok değişkenli modeller için bir sınıflandırıcıdır ve 

ayrık veriler için uygundur. İkili (binary) özellikler için tasarlanmıştır. 

c. Kategorik (Categorical) NB, kategorik özellikler için kullanılan bir 

sınıflandırıcıdır. Kategorik olarak dağıtılmış ayrık özelliklere sahip 

sınıflandırmaya uygundur. 

d. Tümleyici (Complement) NB, standart Katlıterim (Multinomial) NB 

tarafından yapılan “keskin varsayımları” düzeltmek için tasarlanmıştır 

ve özellikle dengeli olmayan veri setleri için uygundur. 

e. Gaussian NB’de, özelliklerin olasılıkları Gaussian olarak tahmin edilir. 

5. Multi-layer Perceptron (MLP) Classifier “Çok Katmanlı Algılayan 

Sınıflandırıcı” anlamına gelmektedir ve sinir ağlarına dayalı bir 

sınıflandırıcıdır. Wikipedia’ya göre MLP üç katman devresinden oluşur; girdi 

katmanı, gizi katman ve çıktı katmanıdır. MLP’ler, problemleri olasılıksal 

olarak çözme yetenekleri nedeniyle araştırmalarda faydalıdır. MLP’ler, 

konuşma tanıma, görüntü tanıma ve makine çevirisi yazılımı gibi çeşitli 

alanlarda uygulanmıştır. 

 1.4.7. Yazarlık Analizi Yapılmış Çalışma Örnekleri 

 Bu tez çalışması için yazarlık analizi yapılmış birçok çalışma incelenmiştir. Bu 

tez çalışmasına en yakın bazı çalışmaların, bu çalışmayla olan benzerlikleri ve 

farklılıkları aşağıda tartışılmıştır. 

1. Adli Yazarlık Analizinde Ayırt Edici Göstergeler Olan Kanıtsallık Stratejileri 

adlı çalışma kanıtsallık stratejilerinin sıklığının yazara özgü olup olmadığı ve 

İngilizce dilinde sözlük-dilbilgisel ifadelerin yazarlık analizinde ayırt edici 

göstergeleri açığa çıkarıp çıkarmadığını incelemektedir. Bu araştırma 5 

yazardan gelen 19 örnek ile oluşturulmuştur. Araştırmanın nitel yönü, verilen 
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ifadelerin kullanımında yazara özgü belirli eğilimlerin tanınmasının yanı sıra, 

kanıtsallığı belirtmek için kullanılan sözlük-dilbilgisel ifadelerin saptaması ve 

sınıflandırılmasını göstermektedir. Çalışma sonucunda kanıtsallık ve 

sözlüksel-dilbilgisel kanıtsal ifade türlerinin seçiminde yazara özgü belirli 

alışkanlıklar gözlemlenmiştir (Tomić, 2019). Bu araştırma yazarlık analizi 

içerdiğinden bahsi geçen tez çalışmasına benzemektedir ancak tez çalışması 

kodlar aracılığıyla gerçekleştirildiği ve bilişim alanını da bünyesine kattığı 

için bu çalışmadan ayrı tutulabilir. 

2. Öznitelik Madenciliğiyle Türkçe Metinlerin Yazar Atıfları adlı çalışma Yıldız 

Teknik Üniversitesi tarafından yapılan Yazarlık Analizi çalışmalarından 

biridir. Yıldız Teknik Üniversitesi Yazarlık Analizi içeren birçok çalışma 

yürütmüştürllvellyürütmektedir. 

“http://www.kemik.yildiz.edu.tr/yayinlarimiz.html”..sitesi incelendiğinde 

yapılan çalışmalar görülmektedir. Öznitelik Madenciliğiyle Türkçe 

Metinlerin Yazar Atıfları çalışması ise WEKA uygulaması üzerinden metin 

madenciliği yapmaktadır. Yazarların belirlenmesi amaçlanan dokümanlardan 

yazarlık özniteliklerinden, n-gramlarından ve bu öznitelik vektörlerinin çeşitli 

kombinasyonlarından on farklı öznitelik vektörü elde edilir. Naive Bayes, 

SVM, k-NN, RF ve MLP sınıflandırma yöntemleri uygulanarak her öznitelik 

vektörünün karşılaştırmalı performansı analiz edilir. Çalışmanın sonucunda 

göre en başarılı sınıflandırıcılar MLP ve SVM’dir (Türkoğlu ve ark., 2007). 

Bu çalışma tez çalışmasına Yazarlık Analizi ve uygulanan algoritmalar 

açısından benzer, ancak tez çalışması Yazarlık Analizini WEKA yerine 

Python üzerinden uygulamaktadır. 

3. Twitter’da İntihar İçerikli İletişimin Makine Sınıflandırması ve Analizi adlı 

çalışma İngilizce dilinde Twitter’da intihar içerikli metinleri sınıflandırmak 

için oluşturulmuş bir dizi makine sınıflandırıcılarını rapor etmek ve ciddi 

olmayanları belirlemektir. Twitter gönderilerinden çıkarılan sözcüksel, 

yapısal, duygusal ve psikolojik özellikleri kullanarak bir takım temel 

sınıflandırıcı oluşturulmuştur. Bu analizden yola çıkılarak online intihar 

içerikli tartışma forumlarından ve diğer mikroblog web sitelerinden alınan 

sözcük listelerinin ve düzenli ifadelerin hem tek sözcükler, n-gramlar (kelime 
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listeleri) hem de daha karmaşık kalıplar açısından ilgili dil ‘ipuçlarını’ 

yakalayabildiğini gözlemlenmiştir (Burnap ve ark., 2015). Bu tez 

çalışmasında da bahsi geçen çalışmadaki gibi makine sınıflandırıcıları 

kullanılmıştır ve veri seti online içerikten toplanmıştır. 

4. Online Metinlerde Yazar Tanıma adlı yüksek lisans tezi İngilizce yazar 

tanıma araştırma alanında kullanılan yöntem ve teknikleri araştırmış; 

ardından bunları uygulanabilir bir prototip haline getirmeyi amaçlamıştır. 

Veri setleri e-postalar ve yazılardan oluşan hazır 2 corpustan çekilmiştir. 

Daha sonra uygulanan prototip, nitel (verilen metinlerin orijinal yazarlarını 

belirlemedeki doğruluk düzeyi) ve nicel (prototipin uygulama süresi) 

nitelikleri açısından incelenmiş ve değerlendirilmiştir. Çalışma sonucunda 

denetimli öğrenme tekniklerinin yanı sıra denetimsiz öğrenme tekniklerinin 

de mevcut yöntem ve tekniklerin performansını geliştirmeye yardımcı 

olabileceğini göstermektedir (Dinh, 2014). Mevcut tez çalışması, bu tez 

çalışması ile karşılaştırıldığında denetimli öğrenme tekniklerinin kullanılması 

açısından birbirine benzemektedirler, ancak veri seti köşe yazılarından 

oluşmaktadır. 

5. Elektronik Postaların Adli Analizinde Yazar Analizi Tekniklerinin 

Kullanılması adlı yüksek lisans tez çalışması Türkçe dilinde 

gerçekleştirilmiştir. Bu çalışmada, mesaj birimine dayalı elektronik postaların 

güvenliğini artırabilecek ve 5 yazardan gelen 250 mesaj için elektronik 

postaların bilinen sahibi yerine gerçek sahibini bulabilecek bir uygulama, 

elektronik postaların yazarlarını adli bilimler ve veri seti olarak elektronik 

posta ile aynı özelliği taşıyan forum mesajları açısından belirlemek amacıyla 

gerçekleştirilmiştir. Yöntemlerin başarı oranları arasındaki farkın temel 

nedeni seçilen veri setine, çıkarılan metin özelliklerine, ön işleme adımlarına 

ve algoritma parametrelerine bağlıdır. Sonuç olarak yazarlık tespiti, gerçek 

suçluları tespit etmede oldukça başarılı bir yöntemdir ve adli bilimler 

alanında çalışan bilim insanları için faydalıdır (Ekinci, 2013). Bu tez 

çalışması, mevcut tez çalışması ile adli bilimlere sunmuş olduğu katkı 

benzerdir, ancak kullanılan algoritmalar farklı konumdadırlar. Benzer olarak 
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karar ağacı, Naive Bayes, Bagging sınıflandırma algoritmaları kullanılmış, 

sonuçlar da benzer yöntemlerle elde edilmiştir. 

6. Online Sosyal Platformlarda Yazar Tanıma yüksek lisans tez çalışması 

Türkçe dilinde “bir sosyal platformda engellenen kullanıcıların farklı kimlikle 

geri dönmesi durumunda kimliğinin tespit edilmesi ya da sahte hesapların 

ardındaki kişilerin ortaya çıkarılmasını” amaçlamaktadır. Veriler Ekşisözlük 

ve COPA isimli online bir oyun platformunda ikiden fazla kişinin online grup 

sohbetlerinden toplanmıştır. Bu çalışma sonucunda örneğe dayalı yazar 

atıflama yöntemi, iyi yapılandırılmış resmi metinsel verilerde daha iyi 

performans gösterirken profil tabanlı yaklaşım, resmi olmayan veri setlerinde 

yazar atıfları için daha iyi olduğunu göstermektedir. Sorgu metni az olsa bile 

yazar tanıma yine de mümkün olmuştur (Kuzu, 2010). Mevcut tez çalışması 

bu tez çalışmasına denetimli algoritmalar kullanması açısından benzerlik 

göstermektedir. Ancak bu tez çalışması ayrıca İngilizce ve Portekizce 

dillerinde veri setleri de bulundurmuştur. 

7. Metin Madenciliği Yöntemleri ile Yazar Tanıma: Divan Edebiyatı Örneği 

adlı tez çalışması ise yine Türkçe dilinde gerçekleştirilmiştir. Bu çalışmada 

Divan Edebiyatına ait 25 şiir eserinin yazarlarını belirlemek için bir yapı 

geliştirilmiştir. Bu sistemde metin madenciliğinin metin sınıflandırma 

algoritmaları kullanılıp kelimeler çözümlenmiştir. 20 farklı model her 

parametrenin olası değerleri için kurulmuştur. Bu araştırmanın, bilinmeyen 

eserlerin yazarlarının belirlenmesine dair tahminleri uzun vadede 

destekleyebileceği varsayılmaktadır. Sonuç olarak, divan edebiyatı eserleri 

için kelime bazlı yaklaşımla metin sınıflandırma işlemi başarılı olarak 

kaydedilmiştir (Bilgin, 2018). Bu tez çalışması mevcut tez çalışmasına yazar 

tanıma açısından benzemektedir, ancak mevcut tez çalışmasının veri setleri 

köşe yazılarından seçilmişken bu tez çalışması şiirleri içermektedir. 

 

 



36 

 

 

 Bütün bu açıklanan kavramlardan hareketle yazarlık analizinin ana fikri aslında 

bir yazarın kendine özgü özelliklerin çıkarılması olduğu savunulabilir. Bu stilistik 

özellikler NLP adımları ile elde edilecek olup, makine öğrenme algoritmalarına hazır 

haline getirildikten sonra bahsi geçen algoritmalardan geçirilecektir. Algoritma 

sonuçlarından elde edilecek verilerle bu çalışmanın amacı sadece söz konusu köşe 

yazılarının bağlı oldukları yazarlara ait olup olmadığını göstermekle kalmayıp, aynı 

zamanda bilişim suçlarının en yaygını olan intihali önleme bir öncü olması 

hedeflenmiştir. Ayrıca sosyal medya gibi bilişim ortamlarında yazarı belli olmadığı 

düşünülen herhangi bir paylaşımı tespit etmede de yardımcı olacağı düşünülmektedir. 
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2. GEREÇ VE YÖNTEM 

 2.1. Verilerin Toplanması 

 Bu çalışma; yazarları ve köşe yazılarını seçme, köşe yazılarını web sitelerinden 

çekme, bu yazıları önişlemden geçirme ve önişlemden geçirilmiş köşe yazılarını 

algoritmalara sokma olarak 4 aşamadan oluşmaktadır. Yazarlar ve köşe yazıları 

Ağustos 2021 tarihinde seçilmiş ve yazılan kodlar aracılığıyla bağlı oldukları web 

sitelerinden çekilmişlerdir. Eylül 2021 tarihinde ise bu yazılar önişlem adımlarından 

geçirilmiştir. Ekim 2021 tarihinde ise önişlemden geçirilen yazılar algoritmalara 

sokulup sonuçları not edilmiştir. 

 2.1.1. Birinci Aşama 

 Köşe yazılarında yazarlık analizi yapmadan önce 6 köşe yazarı seçilmiştir. Bu 

köşe yazarları “https://www.hurriyet.com.tr/yazarlar/tum-yazarlar/” web sitesinden 

seçilmiştir. Yazarlar farklı alanlardan olmak üzere rastgele seçilmiştir. Tarih ve 

edebiyat konularında Doğan HIZLAN ve İlber ORTAYLI; mutfak konularında Müge 

AKGÜN ve Vedat MİLOR, sosyal konularda Melike KARAKARTAL ve Yaşar 

SÖKMENSÜER seçilmiştir. Her yazardan 160’şar yazı seçilmiştir. Toplamda 960 

metin üzerinde çalışılmıştır ve her yazardan daha fazla metnin algoritmalara 

sokulabilmesi için yazılar eşit tutulmuştur. 960 metin, yazarlık analizi yapmak üzere 

sınırlı olsa da diğer çalışmalara nazaran elde edilen verilere göre yeterli görülebilir. 

 2.1.2. İkinci Aşama 

 Çalışmanın bu aşamasında kodlar, Visual Studio Code (VSC) uygulaması 

aracılığıyla yazılmıştır. Visual Studio Code, Vikipedi’ye göre “Microsoft tarafından 

Windows, Linux ve MacOS için geliştirilen bir kaynak kodu düzenleyicisidir. 

Gömülü Git kontrolü, hata ayıklama, sözdizimi vurgulama, akıllı kod tamamlama, 
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snippetler ve kod yeniden yapılandırma desteği içerir. Ayrıca VSC özelleştirilebilir, 

böylece kullanıcılar klavye kısa yollarını, tercihlerini ve editörün temasını 

değiştirebilir. Resmi indirme işlemi tescilli bir lisans altında olsa da ücretsiz ve açık 

kaynaktır.” 

 VSC’a entegre edilen Python 3.9.7 aracılığı ile, öncelikle yazarların bağlı olduğu 

web sitelerinden metin çekme işlemi belirli kodlarla getirilmiştir. Metinleri web 

sitelerinden çıkarma işlemi için urllib ve BeautifulSoup kütüphanelerinden 

yararlanılmıştır. Tek bir metin çıktısı Şekil 2.1.’de gösterilmektedir.  

Şekil 2.1. Web sitesinden çekilen bir metin örneği. 

 Tek bir metin örneği çalıştıktan sonra bir yazarın bütün yazıları ve bağlı 

oldukları linklerin çıkarılması ve .txt uzantılı belgelere kaydedilmesi isin kodlar 

yazılmıştır. Yazılan kodlarda, web sitesi inceleme bölümlerinden tam metin(ler)in 

içerildiği sınıf (class) “article-content news-text”, “highlighted-box mb20” bölmeleri 

koda yazılarak gerçekleştirilmiştir. Linkler (Şekil 2.2.) ayrı, linkler ve bağlı oldukları 

köşe yazıları (Şekil 2.3.) ayrı bir .txt dosyasına kaydedilmiştir. Verilen örneklerde 

seçilen köşe yazarlarından olan Doğan HIZLAN yazıları ve linkleri bulunmaktadır. 

Diğer yazarların köşe yazıları da aynı yöntemle web sitelerinden çekilmiştir. 

Kaydedilen .txt uzantılı dosyalar kontrol edildiğinde bazı metinlerin bozuk çıktığı ve 

metin içerisinde makine tarafından okunamayacağı düşünülen bazı simgeler 

görülmüştür. Bu kısımlar da metinden çıkarılmış böylece önişlem adımına uygun 

hale getirilmiştir (Şekil 2.4.). 
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Şekil 2.2. Web sitelerinden çekilen linkler örneği. 

Şekil 2.3. Web sitelerinden çekilen linkler + metinlerin örnekleri. 

Şekil 2.4. Web sitelerinden çekilen metinlerde bozuk kısımların ve simgelerin çıkarıldığı ‘.txt’ örneği. 
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 2.1.3. Üçüncü Aşama 

 Web sitelerinden çekilen her yazarın köşe yazıları ayrı ‘.txt’ uzantılı dosyalara 

kaydedilmiştir ve hepsi “author_n_columns” adlı bir dosyada tutulmuştur. Dosya 

önişleme sokulmadan önce her yazarın karakter, kelime ve köşe yazısı adetlerine 

kodlarla bakılmıştır (Çizelge 2.1.). 

Çizelge 2.1. Yazarların seçilen köşe yazısı adetleri ve köşe yazılarında bulunan 

 karakter/kelime adetleri. 

 

 Daha sonra bu dosyalar kodlar aracılığıyla Python üzerinden önişlemden 

geçirilmiştir. Önişlem adımları uygulanırken “nltk” ve “stanza” kütüphanelerinden 

yararlanılmıştır. Bu kütüphanelerden faydalanırken, önişlem kodlaması 3 adımdan 

oluşmuştur. Köşe yazılarında bulunan kelimeler kök haline getirilmiş (lemmaları 

bulunmuş), metinler küçük harflere dönüştürülmüş, durduran ifadeler (stop-words), 

sayılar ve noktalama işaretlerinden ayıklanmıştır. Bu işlem 6 yazar için de aynı 

şekilde gerçekleştirilmiştir. 

 Önişlemin ilk adımı, köşe yazılarında bulunan kelimeleri kök haline getirme 

(lemmatization) işlemidir. Bu adımda ‘stanza’ kütüphanesinden faydalanılmıştır; dili 

Türkçe seçilmiş, işlem birimi, girdi sınıflandırma (tokenization), çoklu kelime 

göstergesi (multi-word token), sözcük türü (part-of-speech) ve lemma (kök) 

seçilmiştir. Bu işlemde öncelikle köşe yazılarındaki cümleler kelimelere bölünmüş, 

Türkçe dilinde kullanılan alfabe yazılarak Türkçe dilinde olmayan kelimeler ve özel 

isimler çıkarılmaya çalışılmıştır. Ayrıca ‘stanza’ kütüphanesinde mevcut, evrensel 
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sözcük türleri (universal part-of-speech) olan yardımcı fiiller (auxiliary), ön ek ve 

sok ek (adpositions), sayı (number) ve noktalama ifadeleri (punctuation) de 

çıkarılmaya çalışılmıştır. Kelimelerin uzunluğu da 1’den fazlaysa o kelimeler 

tutulmuş, diğerleri de atılmıştır. Son olarak elde edilen lemmalar küçük harflere 

dönüştürülmüştür (Şekil 2.5.). 

Şekil 2.5. Lemmatization işlemi sonrası çıktı örneği. 

 Şekil 2.5.’daki çıktı örneğine bakıldığında bazı durduran ifadelerin, noktalama 

işaretlerinin, sayıların hala var olduğu görülmektedir. Bir sonraki adımda, bu kez 

‘nltk’ kütüphanesi aracılığıyla durduran ifadeler (Şekil 2.6.), sayılar ve noktalama 

işaretlerinden (Şekil 2.7.) kurtulmak istenmiştir. Ayrıca Türkçe dilinde olmayan bazı 

harfler (‘â’ gibi) standart alfabedeki harflere dönüştürülmüştür. Kelimelerin harf 

sayısı da 1’den küçük ve 1’e eşitse tekrar veri kümesinden çıkarılmıştır (Şekil 2.7.). 

Köşe yazılarından elde edilen önişlemden geçirilmiş lemmalar algoritmalara 

sokulmak üzere her bir köşe yazısı için ayrı ‘.txt’ uzantılı dosyalara 

kaydedilmişlerdir (Şekil 2.8.). Şekil 2.9.’da dosyaların içeriği gösterilmiştir. 
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Şekil 2.6. ‘nltk’ kütüphanesinden durduran ifadeler (stop-words) çıkarma işlemi çıktı örneği. 

Şekil 2.7. ‘Nltk’ kütüphanesinden sayıların ve noktalama işaretlerinin çıkarılması ve kelimelerdeki bazı harflerin 

değişimi çıktı örneği. 
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Şekil 2.8. Her bir köşe yazısı için lemmaların ayrı dosyalara kaydolduğunu gösteren bir örnek. 

Şekil 2.9. Ayrı dosyalara kaydolmuş bir metinde bulunan lemma örnekleri. 

 2.1.4. Dördüncü Aşama 

 Bu veri seti dosyası çalışmanın tamamlanması için makine öğrenme 

algoritmalarına sokulmalıdır. Veri seti büyük olduğu ve algoritmaların daha başarılı 

yürütülmesi için online kod işleten Google Colaboratory uygulaması çalışmanın 

devamı için kullanılmıştır. Google Colaboratory, Jupyter Notebook’un bulut 

sürümüdür. Hatta site için Jupyter’in önceki adı olan IPython Notebook (.ipynb) 

dosyalarını kullanır. Kod yazma ve çalıştırma, ilgili belgeleri oluşturma ve grafikleri 

görüntüleme gibi birçok görevi gerçekleştirmek için Colaboratory kullanılabilir. 

Colaboratory bir dizi çevrimiçi depolama seçeneğini destekler, böylece Colaboratory 

Python kodu oluştururken çevrimiçi olarak kullanılabilir (Mueller & Massaron, 

2019).  
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 Öncelikle ziplenmiş lemmalar dosyası (Şekil 2.8.) Colaboratory’ye yüklenmiş 

ve ‘.zip’ dosyasından kurtarılmıştır (Şekil 2.10). Daha sonra her köşe yazarı için ne 

kadar lemma metni olduğu kontrol edilmiş ve metin dosyaları isimleri çıkarılmıştır 

(Şekil 2.11.). Ayrıca bu lemmalar dosyasında köşe yazarlarının köşe yazısı başına 

düşen lemma adetleri ve lemma başına düşen karakter adetleri de istatistiksel iceleme 

açısından elde edilmiştir (Şekil 2.12.). Şekil 2.13.’e bakıldığında yazarların lemma 

başına düşen ortalama karakter adetlerinin birbirine yakın olduğu; köşe yazısı başına 

düşen ortalama lemma adetlerinde de farklılıklar olduğu görülmüştür. İlber 

ORTAYLI ve Müge AKGÜN’ün köşe yazıları başına düşen ortalama lemma adetleri 

diğer yazarlara nazaran daha fazladır. Bunun nedeninin işlenmemiş köşe yazılarına 

bakıldığında İlber ORTAYLI ve Müge AKGÜN’ün yazılarının diğer yazarlara 

nazaran daha uzun olmasıdır. 

 

Şekil 2.10. ‘lemmas.zip’ dosyası ‘.zip’ uzantısından kurtarma ve dosyaları çıkarma örneği. 

Şekil 2.11. Tüm köşe yazarları için ne kadar lemma metni bulunduğu ve metinlerin isimlerinin olduğu kod çıktısı. 
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Şekil 2.12. Köşe yazarlarının köşe yazısı başına düşen lemma adetleri ve  

lemma başına düşen karakter adetleri kod çıktısı. 

Şekil 2.13. Köşe yazarlarının köşe yazısı başına düşen lemma adetleri ve  

lemma başına düşen karakter adetleri grafik gösterimi. 

 Ortalama lemma ve karakter adetleri incelendiktem sonra ‘.zip’ uzantılı 

dosyadan çıkarılan her köşe yazarına ait lemma dosyaları Şekil 2.14.’de Doğan 

HIZLAN için yapıldığı gibi her yazar için çıkarılmış ve her lemma dosyası bağlı 

olduğu köşe yazarı ismi ile etiketlenmiştir. Yazarları ile daha önceden etiketlenen 

köşe yazıları, köşe yazıları (articles) ve etiketler/yazarlar (labels) olarak ayrı ayrı 

toplanmıştır (Şekil 2.15.). Veri seti algoritmalara sokulmadan önce vektörlerini 

bulmak için CountVectorizer ve TfidfVectorizer kullanılmıştır. Daha sonra buna 

bağlı Öklid mesafesi ve kosinüs benzerliğine bakılmıştır. 
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Şekil 2.14. Tek yazara ait köşe yazılarının ve etiketleme örneği çıktısı. 

Şekil 2.15. Köşe yazılarının “articles” ve bağlı etiketlerinin “labels” olarak ayrı ayrı toplanması. 

 2.1.4.1. TF-IDF Vektorizer ile Kosinüs Benzerliği Uygulaması 

 Sklearn kütüphanesinden öznitelik çıkarımı olan TfidfVectorizer ile yazılarda 

(articles) bulunan tüm lemmalara (Şekil 2.15.) vektör yüklenmiştir ve bu lemmaların 

dizilişi sağlanmıştır (Şekil 2.16.). Vektörler standartlaştırıldıktan sonra her yazar için 

yazı aralıkları (Çizelge 2.2.) 50’şer olmak üzere yazılar getirilmiştir. Çekilen yazı 

aralıkları sorgu yazı (query) aralıklarından farklı olmak üzere Kosinüs benzerliğine 

(açısal mesafelere) bakmak için her yazarın 50 yazısı için her bir yazarın 7 sorgu 

yazısı ortalamalarına bakılmış ve birbirine olan açısal mesafeleri çıkarılmıştır 

(Çizelge 2.3.). Bu mesafelerin 2 boyutlu uzayda gösterilmesi için MDS kullanılmıştır. 

TfidfVectorizer ile önceden ölçüm yapıldığı için de matris gösterimi buna göre 

gerçekleştirilmiştir. Matris gösterimi için her yazarın 50 yazısı gösterimine bir renk 

eklenmiş (Çizelge 2.2.), sorgu yazıları da siyah (black) renkle belirtilmiştir. Yazı 

aralıkları (50) ve sorgu yazıları (7) sınırlı tutulmuştur çünkü görsel çıktıda fazla 

örnek fazla renk anlamına gelmektedir, bu da gösterimden sonuç çıkarmayı verimsiz 

hale getirecektir. Her renk bir yazarı simgelediğinden yazı aralıkları da kodda 

renklerin bulunduğu kısımlara yazılmıştır. 
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Şekil 2.16. TfidfVectorizer ile lemmaları vektörlere çevirme ve dizilişleri. 

Çizelge 2.2. Matris gösterimi için yazarların toplam yazı aralıkları ve bağlı renkleri.
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Çizelge 2.3. Seçilen yazıların TfidfVectorizer ile açısal mesafeleri.
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 2.1.4.2. CountVektorizer ile Öklid Mesafesi Uygulaması 

 CountVectorizer da TfidfVectorizer gibi Sklearn kütüphanesinde olan bir 

öznitelik çıkarımıdır ve TfidfVectorizer’ın yerine yazılarak çalıştırılabilir. Bu kez 

CountVectorizer ile yazılarda (articles) bulunan tüm lemmalara (Şekil 2.15.) vektör 

yüklenmiştir ve bu lemmaların dizilişi sağlanmıştır (Şekil 2.17.). Bir önceki bölümde 

olduğu gibi Öklid mesafelerine bakmak için Çizelge 2.2.’deki yazı aralıklarından 

aynı aralıklar seçilmiştir ve Öklid mesafeleri çıkarılmıştır (Çizelge 2.4.). 

CountVectorizer’a göre yine MDS’de matris gösterimi sağlanmıştır. Bu gösterimde 

de renkler bir önceki adımla kıyaslanabilmesi için aynı tutulmuştur. 

 

Şekil 2.17. CountVectorizer ile lemmaları vektörlere çevirme ve dizilişleri 
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Çizelge 2.4. Seçilen yazıların CountVectorizer ile Öklid Mesafeleri.
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 2.1.4.3. KNN Algoritması Uygulaması 

 Şekil 2.15.’te köşe yazıları ve bağlı olduğu etiketler test ve eğitim verisi olarak 

bölünmüştür. Yazıların %20’si test, %80’i eğitim verileri olarak alınmıştır (Şekil 

2.18.). Yani algoritma yazıların %80’i ile eğitilip, diğer %20’si ile test edilecektir ve 

buna göre bir sonuca varılacaktır. Öncelikle en yakın ‘k’ komşu algoritması 

uygulanmıştır. Bu algoritma uygulanırken ‘sklearn’ kütüphanesinden faydalanılmıştır. 

Metinlerin hem CountVektorizer hem de TfidfVectorizer ile vektörleri bulunmuştur. 

Bu algoritmada ‘k’ değeri sırasıyla ‘1, 5, 10’ olarak seçilmiştir. Dolayısıyla 

metinlerde en yakın vektör olarak çevresinde sırasıyla ‘1, 5, 10’ vektöre bakılmış ona 

göre bir karar verilmiştir. Karar verme aşamasında CountVectorizer ve 

TfidfVectorizer için doğruluk (accuracy), hassasiyet (recall) ve kesinlik (precision) 

skorları çıkarılmıştır (Şekil 2.19.). Daha sonra 20’ye kadar olan her ‘k’ değeri ve iki 

Vectorizer için hata oranına ve doğruluk skoruna bakılmıştır (Şekil 3.3.). 

 

Şekil 2.18. Metinlerin eğitim ve test verilerine bölünmesi; CountVectorizer/TfidfVectorizer uygulanması. 
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Şekil 2.19. KNN Skorları. 

 2.1.4.4. Naive Bayes Algoritması Uygulaması 

 Şekil 2.18.’de bölünmüş veriler bu kez Naive Bayes (NB) algoritmasına 

sokulmuştur. Bu algoritma kullanılırken sklearn kütüphanesinden Katlıterim 

(Multinomial) NB, Bernoulli NB, Tümleyici (Complement) NB sınıflarından 

yararlanılmıştır. Kategorik ve Gaussian NB sınıfları kodda hata verdiği 

kullanılamamıştır. Daha sonra KNN algoritmasında olduğu gibi CountVectorizer ve 

TfidfVectorizer için ve seçilen Naive Bayes sınıfları için doğruluk (accuracy), 

hassasiyet (recall) ve kesinlik (precision) skorları çıkarılmış (Şekil 2.20.), en son da 

kaç hata olduğunda dair hata matrisine bakılmıştır (Şekil 3.4.).  
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Şekil 2.20. Naive Bayes Skorları. 

 2.1.4.5. SVM Algoritması Uygulaması 

 Eğitim ve test olarak ayrılan veriler (Şekil 2.18.) sklearn kütüphanesinden SVM 

algoritmasına sokulmuştur. SVC olan sınıflandırıcısıyla çekirdek (kernel) 

parametresi hem doğrusal (linear) hem de varsayılan olan radyal temelli fonksiyon 

(rbf) seçilmiştir. Bu her iki parametrede CountVectorizer ve TfidfVectorizer için 

sınıflandırıcının doğruluk (accuracy), hassasiyet (recall) ve kesinlik (precision) 

skorlarına bakılmıştır (Şekil 2.21). Daha sonra hata matrisi düzenlenmiştir (Şekil 

3.5.). 

 

Şekil 2.21. SVM Skorları. 
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 2.1.4.6. Decision Tree Classifier ve MLP Algoritmaları Uygulamaları 

 Son olarak Şekil 2.18.’deki veriler sklearn kütüphanesinden MLP ve 

DecisionTree algoritmalarına sokulmuştur. Her iki algoritmada da CountVectorizer 

ve TfidfVectorizer kullanılmış, daha sonra doğruluk (accuracy), hassasiyet (recall) ve 

kesinlik (precision) skorlarına bakılmıştır (Şekil 2.22.). 

 

Şekil 2.22. MLP ve DecisionTree Skorları. 

 2.1.4.7. LSTM Algoritması Uygulaması 

 Bir derin öğrenme algoritması olan LSTM algoritması kullanılırken ise 

tensorflow, numpy ve keras kütüphanelerinden yararlanılmıştır. Öncelikle LSTM 

için zorunlu bir adım olan Tokenizer (Simgeleştirici) sınıfı metinleri tamsayılara 

çevirmek için getirilmiştir. Daha sonra Ardışık (Sequential) modeli içerisinden 

Dense (Yoğun), Flatten (Düzleştirme), LSTM, Dropout (Bırakma), Activation 

(Aktivasyon), Embedding (Gömme), Bidirectional (Çift Yönlü) katmanları 

getirilmiştir. En iyileştirici (Optimizer) olarak da Adam seçilmiştir. Kelime 

büyüklüğü (vocab_size) 5000 olarak seçilmiş, veri seti içerisinde en yaygın 

kullanılan 5000 kelime hedeflenmiştir. Gömme boyutu (embedding_dim) 256 

seçilmiş, köşe yazısı başına düşen ortalama lemma adedi (max_length) 500 

seçilmiştir. Metinleri kesme (truncation) ve doldurma (padding) işlemi sondan (post) 
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olacak şekilde seçilmiştir. Kelime listesi dışındaki simgeler “OOV” şeklinde 

gösterilecektir. Veri setinin %80’i eğitim verisine verilip eğitilmiştir 

(training_portion). Bırakma oranı (dropout_rate) ise %90 seçilmiştir, böylece veri 

seti sürekli incelendiğinde veri setinin %90’ı her defasında bırakılacaktır ve aynı 

veriler üzerinde çalışılmayacaktır. 6 yazar olduğu için de sınıf sayısı da (num_classes) 

6 olarak not edilmiştir. Verilerin başta not edilmesinin amacı LSTM verileri üzerinde 

değişiklik yapılacaksa tek bir blokta yapılmasını sağlamaktır (Şekil 2.23.).  

 Etiketler (labels) bağlı oldukları yazılar (articles) ile değiştirilmeden birbiriyle 

karıştırılmıştır, böylece LSTM algoritması uygulandığında yazarların sırası her 160 

yazıda sabit olarak kalmayacaktır. Karıştırılan yazılar eğitim (%80) ve test verileri 

(%20) olarak bölünmüştür. Eğitim büyüklüğü (train_size) yazıların %80’ini 

miktarına kadar eğitim makaleleri (train_articles), %80’ininden sonraki miktar ise 

test makaleleri (test_articles) olarak belirlenmiştir. Aynı durum eğitim ve test 

yazılarının bağlı olduğu etiketler (yazar isimleri) için de gerçekleştirilmiştir. Şekil 

2.24.’de eğitim kümesinin boyutu 768, test kümesinin boyutu da 192 olarak çıkmıştır. 

Ayrıca kontrol amaçlı eğitim makalelerinin ve eğitim etiketlerinin ilki (0’ıncısı) da 

yazdırılmıştır. 

 

Şekil 2.23. LSTM Algoritmasının kurulumu ve yazılan değerler. 

 

Şekil 2.24. Eğitim ve test kümelerinin boyutu; eğitim kümesinin ilk öğesinin ve yazarının çıktısı. 
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 Şekil 2.25. ve Şekil 2.26’da en sık geçen 5000 kelime ve bunlar dışındaki 

kelimeler (OOV) eğitim ve test makalelerinde işaretlenmiş ve sözcük dizinleri 

(word_index) verilmiştir. Ayrıca bu dizinlerin dizilişi doldurma, kesme ve 

maksimum uzunluk değerlerine (Şekil 2.15.) göre çıkarılmıştır. Aynı durum eğitim 

ve test yazılarının bağlı olduğu eğitim ve test etiketleri (yazarlar) için de yapılmıştır; 

hepsine birer dizin atanmıştır (Şekil 2.27.; Şekil 2.28.). 6 yazar olsa da ilk dizin [0] 

ile son dizin [5] ile gösterilmiştir. 

Şekil 2.25. Eğitim makalelerinde sözcük dizini atanması ve bu dizinin diziliş çıktısı. 

 

Şekil 2.26. Test makalelerinde sözcük dizini atanması ve bu dizinin diziliş çıktısı. 

 

 

Şekil 2.27. Eğitim makalelerinin bağlı olduğu eğitim etiketlerine dizin atanması ve sıralanması. 
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Şekil 2.28. Test makalelerinin bağlı olduğu test etiketlerine dizin atanması ve sıralanması. 

 Ardışık (Sequential) model uygulanırken 4 katman değerleri verilmiştir. Bu 

katmanlar “add()” fonksiyonuyla getirilmiştir. Gömme (Embedding) katmanında 

5000 kelime için gömme boyutu (embedding_dim) 256 olarak seçilmiştir. Bırakma 

(Dropout) katmanında bırakma oranı (%90) verilmiş, çift yönlü katman 256 gömme 

boyutuyla eklenmiştir. Yoğun (Dense) katmanda ise 6 yazar olduğundan sınıf sayısı 

(num_classes) 6 seçilmiş, aktivasyon ise olasılık dağılımının görülmesi için “softmax” 

fonksiyonu getirilmiştir. Katmanların eklendiği model özetlenince 

“model.summary()” çıktı şekli (output shape) ve parametreler Çizelge 2.5.’te 

gösterilmiştir. Gömme (Embedding) katmanında 256 boyutta eğitilen parametreler 

1.280.000, bırakma (dropout) katmanında 0 olarak not edilmiştir. Çift yönlü 

(Bidirectional) katmanda ise girdi hem sağdan sola hem de soldan sağa okunduğu 

için 256 boyutu ikiye katlanmış, 512 boyutta 1.050.624 parametre eğitilmiştir. 

Yoğun (Dense) katmanda da 6 sınıf için 3078 parametre eğitilmiştir. Toplamda 

2.333.702 parametre eğitilmiş, eğitilmeyen parametre bulunmamaktadır. 
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Çizelge 2.5. Ardışık modelin eklenen katmanlar sonrası çıkan özeti.

 

 Optimizer olarak Adam kullanılmıştır ve Adam’da öğrenme hızı (learning_rate) 

varsayılan değer 0.001 olarak seçilmiş, bozunma oranı (decay) ise varsayılan değere 

yakın ‘1e-6’ (0,0000001) olarak kullanılmıştır. Model derlenirken de kayıp (loss) 

fonsiyonu 2’den fazla sınıf olduğu için “sparse_categorical_crossentropy” (seyrek 

kategorik çapraz etkinlik ölçümü) olarak seçilmiş, metrik doğruluk (accuracy) olarak 

getirilmiştir. 

 Geçmiş nesnesi üzerinde “model.fit()” yapılırken x değişkeni eğitim verisinin 

dizilişi (train_padded), y değişkeni eğitim verilerinin bağlı olduğu etiket verilerinin 

dizilişidir. Devir sayısı (num_epochs) 20 olarak belirlenmiştir, yani veri 20 kez 

eğitilecektir. Doğrulama verisi (validation_data) ise test verisinin dizilişi ve bağlı 

olduğu etiket sırası olarak verilmiştir. Ayrıntı (Verbose), 2 değerinde getirilmiştir, 

böylece çıktıda devir başına bir satır gösterimi sağlanmıştır. 
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3. BULGULAR 

 3.1. Verilerin Analizi 

 Bu bölümde uygulanan tüm algoritma ve parametrelerin analizleri ve yorumları 

yapılmıştır. Hepsinden çıkan sonuçlarla bir genelleme yapılmaya çalışılmıştır. 

 3.1.1. TF-IDF Vektorizer ile Kosinüs Benzerliği Analizi 

 Çizelge 2.3.’te TfidfVectorizer ile metinler arasında açısal mesafelere 

bakıldığında yazar kendi yazıları ile kıyaslandığında açısal mesafenin, diğer 

yazarların yazılarına göre daha düşük olduğu gözlemlenmiştir. Bu durum tüm 

yazarlar için aynıdır. O halde her bir sorgu yazısının her bir yazarın yazılarıyla 

kıyaslanması ile yazıların düşük olan açısal mesafeleri için bu yazılar birbirine 

yakındır çıkarımı yapılabilir. Şekil 3.1.’e bakıldığında her bir yazarın hem kendisi 

hem de diğer yazarlarla karşılaştırılmasıyla görsel bir çıktı elde edilmiştir. Buna göre 

yazılar arası ayırt edici bir durum söz konusu değildir çünkü açısal mesafeler düşük 

olsa da diğer yazarların yazılarıyla olan açısal mesafeler arasında keskin bir değer 

görülmemektedir. 
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Şekil 3.1. Yazılar arası TfidfVectorizer ile açısal mesafelerin görsel matrisi. 

 3.1.2. CountVektorizer ile Öklid Mesafesi Analizi 

 Bir önceki adımda olduğu gibi bu kez Çizelge 2.4.’de CountVectorizer ile 

yazıların Öklid mesafelerine bakılmıştır. Öklid mesafelerinin açısal mesafelere göre 

daha düşük olduğu görülmektedir. Her yazarın kendi yazılarıyla olan Öklid 

mesafeleri diğer yazarların yazılarına göre burada da daha düşük olmuştur. Aynı olgu 

TfidfVectorier ile açısal mesafelerde de yer aldığı için tesadüfi bir durum olarak 

görülmeyebilir. Burdan hareketle yazılar arasında Öklid ve açısal mesafeler doğru 

orantılı olarak düşük olduğundan, söz konusu yazılar birbirine benzer çıkarımı 

yapılabilir. Şekil 3.2.’de Öklid mesafelerin görsel matrisi bulunmaktadır. Nokta 

dağılımları bu matriste Şekil 3.1.’deki matrise göre bir nebze daha ayırt edici olabilir 

çünkü noktalar çok belirgin olmasa da belli bölgelerde yığılmışlardır. 
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Şekil 3.2. Yazılar arası CountVectorizer ile Öklid mesafelerin görsel matrisi. 

 3.1.3. KNN Algoritması Analizi 

 Şekil 2.19.’daki KNN algoritması skorlarına göre, “k=1, 5, 10” olduğunda 

TfidfVectorizer ile çıkarılan vektörlerde doğruluk, hassasiyet ve kesinlik skoru 

CountVectorizer ile çıkarılan vektörlerin skorlarına oranla daha yüksek çıkmıştır. O 

halde TfidfVectorizer ile KNN algoritması daha iyi performans göstermiştir denebilir. 

Ayrıca “k” değeri arttıkça bu skorlar da doğru orantılı olarak artmıştır. Şekil 3.3.’e 

göre “k” değeri 1’den 20’ye kadar arttıkça eğitim ve test verisindeki hata minimum 

oranlarda görülmektedir. Test verisindeki hata oranı TfidfVectorizer’da gittikçe 

azalırken, CountVectorizer’da bu hata oranı %30- %35 aralığındadır. Bu grafiğe göre 

doğruluk, hassasiyet ve kesinlik skorları da belirlenmiş, bütün bu skorlar 

CountVectorizer’a göre TfidfVectorizer’da fazla olduğu tespit edilmiştir. 
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Şekil 3.3. CountVectorizer/TfidfVectorizer ile k-değeri için hata grafiği ve skorları. 

 3.1.4. Naive Bayes Algoritması Analizi 

 Şekil 2.20.’deki skorlara göre BernoulliNB ve ComplementNB sınıflarında 

CountVectorizer ve TfidfVectorizer doğruluk, hassasiyet ve kesinlik skorları 

birbirine oldukça yakındır ve yüksek çıkmıştır. MultinomialNB sınıfında ise 

CountVectorizer skorları TfidfVectorizer skorlarından daha yüksek çıkmıştır. 

MultinomialNB sınıfında CountVectorizer ile çalışmak daha iyi bir fikir olabilir. 

Algoritma skorları sonucunda 3 Naive Bayes (BernoulliNB, MultinomialNB, 

ComplementNB) sınıfı dahil olmak üzere hem CountVectorizer hem de 

TfidfVectorizer için Şekil 3.4.’de hata matrisi düzenlenmiştir. Buna göre 

MultinomialNB sınıfı CountVectorizer ile test verisi (192 veri) üzerinde en az hatayı 

(3 hata) yapmıştır. Tfidfvectorizer ile MultinomialNB ve ComplementNB sınıfı test 

verisi üzerinde aynı ölçüde tahmine sahiptir. BernoulliNB sınıfında ise diğer sınıflara 

göre hata sayısı artmıştır. Sonuç olarak bu matris tüm sınıfların çok az hata ile gayet 

iyi bir tahmine sahip olduklarını göstermektedir. O halde bu algoritma başarılı 

olmuştur denebilir. 
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Şekil 3.4. Naive Bayes hata matrisi. 
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 3.1.5. SVM Algoritması Analizi 

 Şekil 2.21.’deki skorlara bakıldığında, SVC çekirdeği doğrusal (kernel=“linear”) 

seçildiğinde çekirdeğin varsayılan değerinden (kernel=“rbf”) daha yüksek bir 

doğruluk, hassasiyet ve kesinlik skoru vermektedir. Ayrıca her iki çekirdek 

fonksiyonunda da CountVectorizer ve TfidfVectorizer kullanımı skorlar açısından 

büyük bir fark yaratmamıştır. İki çekirdek fonksiyonunda da TfidfVectorizer skorları 

daha yüksek çıkmıştır. SVM sonucunda çekirdek (kernel) fonksiyonu için 2, 

Vectorizer’lar için 2 olmak üzere 4 farklı faktör için hata matrisine bakılmıştır (Şekil 

3.5.). TfidfVectorizer ile çekirdek “linear” veya “rbf” olarak seçildiğinde test 

verisinde daha az veri yanlış tahmin edilmiştir, yani CountVectorizer’a göre 

TfidfVectorizer daha iyi bir sonuç vermiştir. Çekirdeğin “linear” olarak seçilmesi, 

“rbf” olarak seçilmesinden daha iyi bir sonuç çıkarmıştır çünkü test verisinde 

TfidfVectorizer için ‘kernel=“linear”’ olması sadece 3 veriyi yanlış; 189 veriyi doğru 

tahmin etmiştir. 
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Şekil 3.5. SVM hata matrisi. 

 3.1.6. Decision Tree Classifier ve MLP Algoritmaları Analizleri 

 Şekil 2.22.’deki skorlar incelendiğinde Karar Ağaçları sınıflandırıcısı 

CountVectorizer için TfidfVectorizer’dan daha yüksek doğruluk, hassasiyet ve 

kesinlik skoru vermiştir. MLP algoritması ise her iki Vectorizer için birbirine yakın 

doğruluk, hassasiyet ve kesinlik skoru vermiştir. Karar Ağaçlarına göre MLP skorları 

oldukça yüksektir. Buna göre MLP algoritması Karar Ağaçları sınıflandırıcısından 

çok daha iyi çalışmıştır. 

Uygulanan bütün sklearn algoritmalarına bakıldığında performansın bu veri seti 

için oldukça yüksek olduğu söylenebilir (Çizelge 3.1.). “random_state”in 1’den 11’e 

kadar seçilmesi ile doğruluk, hassasiyet ve kesinlik skorları 10 kez yenilenmiştir ve 

her bir algoritma ve varsa fonksiyonları için bu 10 değerin ortalaması alınmıştır. 

Böylece kullanılan tüm sklearn algoritmalarının nihai doğruluk, hassasiyet ve 
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kesinlik skorları çıkarılmıştır. Bu skorlar incelendiğinde doğruluk ve hassasiyet 

skorlarının birbirine eşit ve kesinlik skorlarına oldukça yakın oldukları saptanmıştır. 

Doğruluk/hassasiyet ve kesinlik skorları en yüksek MLP algoritmasında çıkmıştır. 

Daha sonra SVM algoritmasının doğrusal fonksiyonu 2. yüksek skorlara sahiptir. 3. 

yüksek skorlar ise Naive Bayes algoritması Bernoulli sınıfı tarafından çıkarılmıştır. 

Algoritmalar arasından en düşük skorlar ise KNN ve Karar Ağaçları algoritmaları 

sonucunda çıkmıştır. KNN algoritmasında yine “k” değeri arttıkça skorlar da 

artmıştır ve diğer algoritmalara nazaran kesinlik skorları doğruluk/hassasiyet 

skorlarından oldukça yüksektir. İki farklı vectorizer kullanımı da skorları etkileyen 

bir diğer unsurdur. TfidfVectorizer KNN, SVM ve MLP algoritmalarında daha 

yüksek skorlara sahipken, CountVectorizer Naive Bayes ve Karar Ağacı 

algoritmalarında daha yüksek skorlara sahip olmuştur. 

Çizelge 3.1. Sklearn algoritmalarının toplam ortalama skorları.

 

 3.1.7. LSTM Algoritması Analizi 

 LSTM algoritması sonucundaki çıktıya bakıldığında (Şekil 3.6.), 20 devir 

sonunda dereceli olarak, kayıp (loss) %3’e yakın olacak şekilde azalmış, doğruluk 

(accuracy) %99’a kadar artmış, doğrulama verisi kaybı (val_loss) %50’ye kadar 

azalmış ve doğrulama verisinin doğruluğu %85’e kadar artmıştır. Bu da LSTM 

algoritmasının veri seti üzerinde oldukça iyi çalıştığını göstermektedir. Şekil 
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3.7.’deki grafiğe bakıldığında doğruluk arttıkça, doğrulama verisinin doğruluğu da 

artmış; kayıp azaldıkça da doğrulama verisinin kaybı azalmaktadır. 

Şekil 3.6. LSTM Algoritması sonucu çıktısı. 

Şekil 3.7. LSTM Algoritması sonucu çıktısının grafik gösterimi. 
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4. TARTIŞMA 

 Bu çalışmanın bulgularında her sklearn algoritmasının sonucu doğruluk, 

hassasiyet ve kesinlik skorlarının fazla olması algoritmanın ezbere sonuç verip 

vermediği hususunda şüphe doğurmuştur. O nedenle her algoritma 10 kere denenip 

10 sonucun ortalamasıyla tekrar değerlendirilmiştir. Ancak yine de elde edilen 

sonuçlar oldukça yüksektir. O yüzden derin öğrenme algoritması olan LSTM 

algoritması kullanılmıştır. LSTM algoritması başarılı görünse de algoritmaya verilen 

veriler yani 6 yazarın 160’ar yazı veri seti bir derin öğrenme algoritması için yeterli 

görünmeyebilir. 

 Çalışmanın ilk adımlarından olan önişlemde ise Türkçe dili birçok engele sebep 

olmaktadır. İngilizce dili için bulunan Python kütüphaneleri Türkçe dili için 

yeterince zengin değillerdir. Türkçe’de kelimeleri kök haline getirme, durduran 

ifadeleri çıkarma, ön ek ve son ek çıkarma işlemleri veri setinde %100 başarılı 

çalışmaması durumu algoritmalarda çıkan sonuçları da etkilemiş olabilir.  
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5. SONUÇ VE ÖNERİLER 

 Bu çalışmanın sonucunda seçilen 6 yazarın da yazıları test verileri üzerinden 

sorgulandığında, doğru yazar ile eşleştiği görülmektedir. Bu eşleşme yapılan önişlem 

adımlarına, yazıların vektörlerine ayrılıp algoritmalara sokulmasıyla elde edilmiştir. 

En başarılı algoritma %98 skorlarıyla MLP iken LSTM algoritmasında doğrulama 

verisinin skoru %85 olarak not edilmiştir. Genel olarak bakılacak olursa elde edilen 

ML algoritma skorlarının test verisi için oldukça yüksek olması çalışmayı başarılı 

kılmaktadır. 

 Kurulan bu yapı ile bu çalışma daha da genişletilebilir ve her koşulda test 

edilebilir bir konumdadır. Yeni bir yazar ve yazıları eklendiğinde de çalışabilirliğini 

sürdürmesi beklenen bir yapı oluşturulmuştur. O halde bu yapı ile yazıların hangi 

yazara ait olabileceği bulunabilirken intihali önleme hususuna katkı sağlayacağı 

savunulmaktadır. Üstelik sadece intihal değil ayrıca bir takım siber suçları 

engellemede de yardımcı olabilir. Bunun nedeni yazılan bir yazının o yazara ait olup 

olmadığı gösteren bir sistem olmasıdır. Dolayısıyla Bilişim sistemleri kullanımı 

içerip özellikle Türkçe dilinde Adli konular üzerinde hizmet edeceği düşünülmekte 

ve disiplinler arası Adli Bilişim bölümüne katkı sağlaması beklenmektedir. 
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ÖZET 

Köşe Yazılarında Yazarlık Analizinin Adli Bilişim’e Katkısı 

 Bu araştırma, farklı konularda 6 yazarın 160’ar köşe yazısı üzerinden yazarlık 

analizini kapsamaktadır. Her yazarın kendine özgü yazı alışkanlığı olduğunu 

gösteren bu çalışma öncelikle Doğal Dil İşleme yöntemiyle tüm yazıların önişlemden 

geçirilmesini ve daha sonra derin öğrenme de olmak üzere makine öğrenme 

algoritmalarına sokulmasını içermektedir. Ayrılan eğitim ve test verileri üzerinden 

yazıların yazarlara ait olup olmadığı tartışılmış, algoritmalar sonucu çıkan doğruluk, 

hassasiyet ve kesinlik skorları ile çalışmanın başarılı olduğu görülmüştür. En başarılı 

algoritma %98 skorlarla MLP'dir. Bir derin öğrenme algoritması olan LSTM 

algoritmasında ise doğrulama verisinin skoru %85 olarak not edilmiştir. Çıkarılan 

verilere göre online metinler üzerinden yazarlık analizinin Adli Bilişim’e katkısı 

olacağının yanı sıra intihali ve yazarlık analizi içeren bilişim suçlarını engellemede 

yardımcı olacağı öngörülmektedir. 

Anahtar Sözcükler: Adli Bilişim, Adli Dilbilim, Doğal Dil İşleme (DDİ), İntihal, 

Makine Öğrenme, Yazarlık Analizi. 
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SUMMARY 

Contribution of Authorship Analysis to Computer Forensics in Columns 

 This research includes the analysis of authorship over 160 columns of 6 authors 

on different subjects. This study, which shows that each writer has an idiosyncratic 

writing habit, firstly includes a preprocessing step of all texts with Natural Language 

Processing method and then inserting them into machine learning algorithms, 

including deep learning. It was discussed whether the articles belonged to the authors, 

based on the training and test data allocated, and it was observed that the study was 

successful with the accuracy, recall and precision scores obtained as a result of the 

algorithms. The most successful algorithm is MLP with 98% scores. In the LSTM 

algorithm, which is a deep learning algorithm, the score of the validation data was 

noted as 85%. According to the data obtained, it has been predicted that the analysis 

of authorship over online texts will contribute to Computer Forensics, as well as 

helping to prevent plagiarism and cybercrimes including authorship analysis. 

Key Words: Authorship Analysis, Computer Forensics, Forensic Linguistics, 

Machine Learning, Natural Language Processing (NLP), Plagiarism. 
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EKLER 

(Bu bölümde çalışmaya dair kodlar sıralanmış olup 2.1. Verilerin Toplanması ve 3.1. 

Verilerin Analizi bölümlerini kapsamaktadır.) 

Ek-1: 2.1.2. İkinci Aşama Kodları 
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Ek-2: 2.1.3. Üçüncü Aşama Kodları 
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Ek-3: 2.1.4. Dördüncü Aşama Kodları 
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Ek-4: 3.1. Verilerin Analizi Kodları 

 

 


