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Bu tez calismasinda elmas kristal diizeninde karbon ve silisyum
nanoyaylar, ve bunlarin kor@kabuk seklindeki nanoyaylari tasarlanmistir. Bunlarin
bazi mekanik Ozelliklerini incelemek icin izobarik (NPT) istatistik kiime
toplulugunda molekiiler dinamik (MD) simiilasyonlar1 gerceklestirilmistir. Atomlar
aras1 etkilesimler Tersoff tipi potansiyel ile tanimlanmistir. Elastik simirlar
icerisinde potansiyel enerjinin kiiciik yerdegistirmeye karsi davranisindan
nanoyaylarin yay sabiti belirlenmistir. Zor-zorlanma bagintisindan da yaylarin
elastik modiilleri hesaplanmistir. Yay ve tel yarigaplari, yay araligi ve donme
sayilar1 gibi geometrik parametrelerin mekaniksel 6zelliklere etkisi arastirilmistir.
Kabuk kalinlig1 ve malzeme ¢esidinin SiC bazli kor@kabuk nanoyaylarin elastisite
ozelliklerine etkisi de incelenmistir. Saf C ve Si, ve C@Si nanoyaylarinin
ozellikleri ile karsilastirildiginda, SiOC kor-kabuk nanoyaylar1 elastik 6zellikleri
tyilestirdigi MD simiilasyon sonuglar1 gostermektedir. Kanonik (NVT) istatistik
toplulugu MD simiilasyon yontemi ile Si nanoyayina 1sitma islemi uygulanarak,
toplam enerji, 1s1 kapasitesi ve ¢ift dagilim fonksiyonunun davranisi tayin
edilmistir. Bu tez calismasinda elde edilen simiilasyon sonuglar1 orjinal olup,
deneysel ¢aligmalara onciiliik etme potansiyelindedir.

ANAHTAR KELIMELER: Molekiiler Dinamik Simiilasyonu, Kor-Kabuk
Nanoyay, LAMMPS Paket Programi, Tersoff Potansiyeli, Young Modiilii, Elmas
yap1, Yay Sabiti.



ABSTRACT

MECHANICAL PROPERTIES OF NANO-SPRINGS BASED ON
STRUCTURAL PARAMETERS: MOLECULAR DYNAMIC
SIMULATION
MSC THESIS
AHMET YESEVI KARABACAK
PAMUKKALE UNIVERSITY INSTITUTE OF SCIENCE

PHYSICS
(SUPERVISOR:PROF. DR. SEVGI OZDEMIR KART)

DENIiZLi, DECEMBER 2021

In this thesis, carbon and silicon nanosprings in diamond crystal structure
and their core@shell nanosprings have been designed. Molecular dynamics (MD)
simulations have been performed on isobaric (NPT) statistical ensemble to examine
some of mechanical properties. Interatomic interactions are described by the
Tersoff type potential. The spring constant of nanosprings is determined from the
behavior of the potential energy as a function of small-displacement within the
elastic limits. The elastic modulus of the springs are calculated from the stress-strain
relationship. The effects of structural parameters, such as spring and wire radii,
spring spacing and rotational numbers on mechanical properties are examined. The
effects of shell thickness and material type on the elasticity properties of SiC based
core@shell nanosprings are also investigated. Compared with the properties of pure
C and Si, and C@Si nanosprings, our MD simulation results show that SiOC core-
shell nanosprings improve elastic properties. The behaviors of the total energy, heat
capacity and pair distribution function are identified by applying the heating process
to the Si nanospring with the canonical (NVT) statistical ensemble MD simulation
method. The simulation results obtained in this thesis study are original and have
the potential to lead to experimental studies.

KEYWORDS: Molecular Dynamics Simulation, Core-Shell Nanospring,
LAMMPS Package Program, Tersoff Potential, Young's Modulus, Diamond
Structure, Spring Constant.
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1. GIRiS

Endiistriyel ihtiyag ve teknolojik imkanlarin artmasi ile nanobilim ve
nanoteknoloji konusundaki gelismeler son yillarda oldukga ilgi cekmektedir. Metrenin
milyarda biri anlamima gelen nano boyutta gozlem yapmak i¢in ¢ok 6zel teknik
deneysel Olgiimlere ve mikroskobik boyutta simiilasyon hesaplama ydntemlerine
ihtiyac duyulmaktadir. Nanometre seviyesinde planlanan gozlem ve analizler
onemlidir, ¢iinkii bu boyutta madde makro yapilarina gore oldukga farkli ve/veya
tyilestirilmis 6zellikler gdstermektedir. Nano-sistemin fiziksel 6zellikleri ebadina,
sekline, orgili parametresine ve morfolojik yapisina gore degismektedir. Yeni nano-
malzemeleri tasarlamak ve tliretmek i¢in bunlarin yapisal, mekanik ve termal
ozelliklerinin iyi anlasilmasi gerekir. Cesitli deneysel teknikler gelistirilmesine
ragmen, bu sistemlerin genel atom boyutlarinda davranislari halen anlagilmamaistir.
Hesaplamali simiilasyon yontemleri sadece yeterli ve dogru mikroskobik bilgiler
vermekte kalmaz, istenilen biiyiikliikte ve yapida nanoyapilarin tasarlanmasina olanak

saglar.

Nanoyaylar makro diizeydeki benzerlerinden farkli olarak daha verimli ve
kullanigh 6zellikler gostermektedir. Nanoyaylarin etkinligi 6nce dogadaki birgok
olayda gozlemlenmistir. Tiim memeli canlilarda bulunan elastin proteini nanoyay gibi
davranmaktadir. Damarlarin ve akcigerlerin genisleyip biiziigmesinde nanoyay
davranig1 sergilemektedir. Kendi boyutunun sekiz katina kadar uzama kapasitesine
sahiptir (Baldok 2011). Nanoyaylar esnektir, sikistirma yolu ile enerji depolamaktadir
ve ileride kimyasal pillerin yerini alabilirler (Hill 2006). Yiiksek yiizey-hacim oraninin
bliyiik olmasi nedeniyle, katalizér uygulamalarinda yer almaktadir. Cok kiiciik
kuvvetlerde bile salinim yaptiklarindan sivi ve gazin fiziksel hareketini izleyen
nanosensorlerde kullanilabilirler (Liu ve dig. 2014, Foncesa ve Douglas 2004). Ayrica
nanoyaylar elektromanyetik dalgalarla etkilesime girmektedirler. Bu 6zelligiyle gilines
enerjisini verimli kullanma gibi farkli alanlarda teknolojiye katki saglayabilirler

(Kuhdiyev ve Baymdir 2015).



Nano bilim, mikroskobik aygit yapilarini ve islevlerini nano boyuta tagimayi
amag edinmistir. Sarmal yaylar yapisal hafizasi olan elastik metal objelerdir. Bunlarin
mekanik enerjiyi depolamasi ve agiga ¢ikarmasi birgok teknolojik uygulamalara yol
agmustir. Ayrica, mekanik enerjiyi nano boyutta kontrol edebilme nano-uygulamalarda
onemli bir adim olacaktir. Son yillarda, sarmal yaylarin nano boyutta iiretilmesi ve
bilimsel calismalari oldukga biiyiik bir ilgi toplamustir. Ozellikle, karbon nano
sarmallar (carbon nanocoil, CNC) veya helis ¢ok katli karbon nanotiipler (helical
multiwalled carbon nanotubes, MWCNTSs) veya diger bir degisle karbon nanoyaylar
(Carbon nanosprings, CNS) miikemmel -elektro-mekanik oOzelliklerine sahip
olmasindan dolay1 siiper gii¢lii fiber, kiitle sensorii, elektromanyetik alan emisyon
cihazi, enerjiyi muhafaza ve depolama, gaz ve optik sensorler, nano mekanik ve
elektromanyetik aygitlar gibi birgok teknolojik alanda uygulama hedefi bulurken, bir
cok deneysel galismalarin ilgi odagi haline gelmistir (Sun ve dig. 2016). Volodin ve
arkadaslart (2004), 170 nm capl helis karbon nanotiipiin (helically coiled carbon
nanotube, HCCNT) Young modiiliinii 0,7 TPa civarinda atomik kuvvet mikroskobu
(atomic force microscope, AFM) ile 6l¢miislerdir. MWCNT iki adet AFM (atomic
force microscope) manivela arasina yerlestirip diisiik oranda zorlanma uygulandiginda
linear olmayan yay benzeri % 42 oraninda uzama gostermis olup, plastik bir degisim
yasamamistir (Chen ve dig. 2003). Poggi ve arkadaslar1 (2004) AFM mikroskopu ile
tek karbon nanoyayin sikistirma tepkisini ve rezonans frekanslarini lgmiisler ve
karbon nanoyayin burulma davranisi gozlemlemislerdir. Diger bir yanda, elmas
benzeri karbon (diamond-like carbon, DLC) yapisi Raman spektrumu &lgiimii ile
kanitlanmis olup, bu yap1 odaklanmis iyon demeti kimyasal buhar depolama yontemi
(focused-ion-beam chemical vapor deposition, FIB-CVD) ile Young modiilii 100 GPa
degerinde oldugu gosterilmistir (Fujita ve dig. 2001). Yang ve arkadaslari (2004)
kendileri gelistirdikleri yontemle elde ettikleri nano yaylarda baslangic boyutunun 3-
15 katina kadar elastik degisim gozlemlemis ve bunu siiper-elastik 6zellik olarak
adlandirmiglardir. Nakamatsu ve arkadaslar1 (2007) DLC nano yaylarimi (gaplari 80-
130 nm) FIB-CVD yontemi ile retmisler ve bunlarin mekanik &zelliklerini
arastirmiglardir. Bu yapilarin kesme modiiliinii ise 70 GPa olarak tespit etmisler ki, bu

celikten yapilmis geleneksel sarmal yayinkinin degerine ¢ok yakindir.

Teorik calismalara baktigimizda, Kirchhoff rod modelin nanoyaylar i¢in

uygun olabilecegi 6nerilmis ve Chen ve arkadaslar1 (2003) tarafindan gézlemlenen



geometrik yapili HCCNT nano yapilarin Young modiiliinii 6,88 GPa olarak
hesaplanmistir (Foncesa ve Douglas 2004). Sanada ve arkadaglar1 (2008) sarmal yay
yaricapt 325 nm ve boyu 1080 nm olan bir HCCNT’ nin Young modiiliinii 4,5 GPa
olarak sonlu elemanlar yontemi (Finite Element Method, FEM) ile bulmuslardir. Liu
ve arkadaslar1 (2011) ise HCCNT’nin maksimum %60 uzama ve % 35 sikisma
zorlanmalar1 gosterebilecegini atomik kuantum simiilasyon yontemi ile teyit
etmiglerdir. Molekiiler Mekanik (MM) calismast HCCNT yapisinin sarmal yarigap1
arttiginda yay sabitinin artacagini, fakat elastik ve kopma zorlanmalarinin
degismeyecegini rapor etmistir (Ghaderi ve Hajiesmaili 2012). Son yillarda, sicaklik
ve egim agisinin ii¢ farkli HCCNT nin ¢ekme 6zelliklerine etkisi klasik molekiiler
dinamik (MD) simiilasyon yontemi ile ¢aligilmistir (Shahini ve dig. 2017). Wu ve
arkadaglar1 (2018) farkli CNT-kiralite yapili alti tane HCCNT’nin gerilme
karakterleri MD simiilasyon yontemi ile incelemisler ve her kiralite yapisinin farkli
zor-zorlanma iliskisi, burulma dengesizligi ve nano-menteseye benzer plastik 6zelligi
gosterdigini rapor etmislerdir. Anlasildigi iizere, elmas benzeri karbon nanoyaylarin

literatiirde herhangi bir hesaplamali simiilasyon ¢aligsmasi yer almamaktadir.

Ayrica, Si bazli nanoyaylar1 Co metali ile ince bir tabaka seklinde kimyasal
buhar depolama yontemi ile kaplayip, elektromekaniksel ¢alistiriciyr nanoboyutta
tasarlama ¢aligmalar1 gergeklestirilmistir (Sigh 2004). Daha sonralari, Si nanoyaylari
ZnO ile ince bir tabaka halinde kaplanip, kimyasal-rezistans 6zellikleri incelenmistir
(Dobrokhotov ve dig. 2012). Anlasilacag: iizere, kor@kabuk yapida nanoyaylarin
teorik olarak modellenmesi ve fiziksel 6zelliklerinin karakterize edilmesi literatiirde

bulunmamaktadir.

Bu tez ¢alismasinda ana amacimiz, MD simiilasyon yontemini kullanarak
farkli yapisal parametreler ile tasarlanan nanoyaylarin yapisal, termodinamik ve erime
ozelliklerinin elde edilmesinin yami sira, farkli sicakliklarda bazi mekanik
ozelliklerinin belirlenmesidir. Bu tez calismasinda elmas orgii yapisinda karbon ve
silisyum nanoyaylar model sistem olarak segilmistir. Ayrica C malzemenin Si
malzemesi ile Kkor@kabuk (Si@C ve/veya C@Si) yapisinda olusturduklar
nanoyaylarin fiziksel 6zellikleri ilk defa bu ¢aligmada irdelenmistir. Young modiilii

gibi mekanik 6zellikleri ve ¢cekme islemi uygulanarak enerji depolama 6zellikleri (yay



sabitini elde etme gibi) arastirilmistir. Bu 6zelliklerin yapisal parametrelere gore

degisimi incelenmistir.

Nanoyay yapilarinin modellenmesi konusunda gorsel ara yiizii (GUI) olan bir
yazilim programi hazirlanmig olup, diger arastirmacilarin daha kolay bir sekilde

nanoyaylari olusturmasini saglamaktadir.

Bu tez ¢alismasinda; 2. Bolimde MD simiilasyon yontemi ile ilgili detayli
teorik bilgiler verilmis olup, hareket denklemleri, algoritmalar, atomlar arasi etkilesim
potansiyel fonksiyonlar1 anlatilmistir. 3. bdliimda tasarlanan nanoyaylar hakkinda
bilgi verilmis olup hesaplama yontemi detaylica anlatilmistir. 4. boélimde MD
simiilasyon caligmasinda elde edilen veriler sunulmus olup, detaylica sonuglar

tartisilmistir. Son boliimde ise tezin 6nemi ve sonucu verilmistir.



2. TEORIK BIiLGILER

2.1 Malzeme Bilimi Simiilasyon Modelleri

Dogadaki dort temel kuvvetin etkisi ile maddelerde su etkilesimler olusur:
elektromanyetik, gii¢lii niikleer, zayif niikleer ve kiitle ¢ekimi. Malzeme bilimi
acisindan ilk kuvveti dikkate almak yeterlidir. Dolayisiyla herhangi bir materyal
etkilesimleri elektron, ¢ekirdek ve atomlar arasinda olusan elektro-manyetik iliskiler
ile sinirlanmis olur. Diger kuvvetlerin etkisi olduk¢a az olup nadiren bazi arastirma

konularina dahil edilir.

Hesaba dayal1 simiilasyonlar teorik modeller ile deneysel 6l¢iimler arasinda bir
koprii gérevinde bulunur. Bu yontem ile doga olaylar1 basitlestirilerek ve kontrol
altinda tekrar modellenerek iiretilir. Diger bir deyisle, materyal etkilesimleri
belirlenerek malzeme ve sistemlerin fiziksel 6zellikleri tahmin edilir. Zor sartlarda
6l¢iilmesi miimkiin olmayan durumlarda bu modelin 6nemi biiyiiktiir. Sistem boyutu
ve zaman Ol¢eklendirmesine gore Sekil 2.1°de verildigi lizere bir¢ok simiilasyon
yontemleri bulunmaktadir. Simiilasyon modelin sistem 06zelliklerini deneye yakin
secilmesi ve uyarlanmasi eldeki problemin ¢oziimiinde olduk¢a Onemlidir. Bu
yontemlerden en yaygin olanlari; Sonlu Elamanlar Analizi, Monte Carlo Yontemi,
Molekiiler Dinamik ve Ab Inito Yontemidir. Sekil 2.1°de goriildigii lizere, bu dort
yontemin sistemin biiyiikliigli ve simiilasyon zamanina gore avantajlart ve
kisitlamalar1 bulunur. Zaman ve biiyiklik o6lcegi arttikga temel bilimlerden
mithendislik uygulamalarma dogru bilimsel disiplinler degismekte olup, secilen

simiilasyon yontemleri de farklilik arz etmektedir.

2.1.1 Sonlu Elemanlar Analizi

Sonlu elemanlar yontemi fizik ve miihendislik problemlerinde kullanilan
sayisal analiz ¢6ziim yontemidir. Bu yontem ile sistem ¢ok kiiciik pargalara ayrilir ve
zor, zorlanma, sicaklik, basing gibi degiskenler hesaplanir. Her bir parcacigin
davranigini tahmin etmek icin matematiksel denklemler olusturulur ve fonksiyonlar

polinom seklinde secilir. Gergek sistemin davranigi belirlemek i¢in tiim pargalarin
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davraniglar1 toplanir. Cebirsel, diferansiyel ve integral denklemler niimerik yontemler
ve bilgisayar araciliyla ¢oziiliir. Bu yontemle cok cesitli karmasik miihendislik
problemlerin ¢oztimii elde edilir. Bunlar arasinda elastik ve plastik deformasyon,
kirilma, 1s1 aktarimi, mekanik gerilme, sivi akisi, elektro manyetik etkilesim

sayilabilir.

2.1.2 Monte Carlo Yontemi

Monte Carlo (MC) Yontemi tekrarlanan rastgele 6rneklemeye dayanan bir
istatiksel hesaplama yontemidir. Sonucun deterministik olarak bulunmasinin miimkiin
olmadig1 problemlerin ¢oziimiinde rastgele sayilarla ve istatiksel olasiliklara dayanan

stokastik bir modelleme teknigi olarak da ifade edilir. Problemdeki olasilik ifadeleri

U
Boltzman faktorii e *BT ile tamimlanir. Burada U sistemin potansiyel enerjisi, kg

Boltzman sabiti ve T ise sicakliktir. Atomlarin ortamda serbestge ve rastgele hareketine
izin verilerek en diisiik enerji seviyeli kararli durumun bulunmasina olanak saglar.
Zamana bagli dinamiksel 6zellikler bu yontemle izah edilemez. MC yontemlerinin
Olgegi mikron boyutunda olup, malzemelerin mikro-yapilarinin anlasilmasinda
faydalidir.

2.1.3 Ab Initio Yontemi

Kelime anlami olarak ilk ilkeler yontemi, elektron ve ¢ekirdegi temel parcacik
olarak ele alir ve atom alt1 diinyay1 bunlara dayanarak agiklar. Sistem sadece kuantum
mekanigi temelleri ile agiklanabilir. Ab-Initio hesaplar1 herhangi bir dis parametreye
ihtiyac1 yoktur. Sadece sistemdeki atomlarin atom numarasini bilmek yeterlidir.
1930’larda sadece hidrojen benzeri atomlarin ozellikleri kuantum mekanigi ile
hesaplanabiliyordu. Yogunluk fonksiyonel teorisinin (Density Functional Theory,
DFT) gelistirilmesi ile birka¢ bin atomu bu yontemle ¢alismak miimkiin hale gelmistir.

Biitiin elektrik ve manyetik 6zellikler bu yontemle tayin edilebilir.
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Sekil 2.1: Simiilasyon Yo6ntemleri.

2.1.4 Molekiiler Dinamik Yontemi

Molekiiler Dinamik Yontemi (MD) atomu temel parcacik olarak alir, elektron
ve ¢ekirdegi ihmal eder. Bu yilizden sistem klasik fizigin temelleri ile tanimlamak
miimkiindiir. Sadece atom-atom etkilesmesi s6z konusu oldugu i¢in Newton hareket
denklemini ¢6zmek nispeten kolaydir. 1960 yilinda birkag¢ yiiz atomun simiilasyonu
ile baglayan MD yontemi gilinlimiizde milyar atom seviyesinde hesaplamalar
yapabilmektedir. MD’nin cezbedici yani etkilesim potansiyellerini kullanmasidir.
Etkilesim potansiyellerindeki deneysel parametreler veya kuantum hesaplamalardan
elde edilir. Bu sayede elektron ve c¢ekirdek etkilesmesi hesaplamalari ortadan
kalkmakta, fakat manyetik ve elektrik 6zellikleri belirlenemez. Potansiyel, ilk konum
ve ilk hiz biliniyorsa atomlarin davraniglari zamana bagh olarak adim adim

ongoriilebilir.



Bu tez caligmasinda kullanilan ve yukarida kisaca tanimlanan MD yontemi

takip eden alt boliimde detayli bir sekilde agiklanmaktadir.

2.2 Molekiiler Dinamik Simiilasyon Yontemi

MD metodu uzun bir literatiir gegmisine sahip olup, ilk olarak Alder ve
Wainwright (1957) tarafindan bir sert kiire sisteminin faz geg¢isini incelemek iizere insa
edilmistir. Daha sonra, Rahman (1964) ger¢ekei potansiyele sahip molekiiler sistemin
faz davranisi incelemek iizere ilk basarili MD simiilasyonunu gercgeklestirmistir. Bu
oncli calismalardan bu yana, bu metodun uygulamalari sayica artmakta olup,
giinlimiizde MD fizik, kimya, malzeme bilimi, biyoloji ve jeoloji gibi disiplinlerde
yaygin olarak kullanilan ve gazlar, sivilar, katilar, ylizeyler ve kiimeler olmak iizere
bir¢ok farkli sistem tiiriiniin ayrintili mikroskobik dinamik davranisini modellemesine

olanak tantyan 6nemli bir teorik araca doniismiistiir.

Birkag yiiz ila milyonlarca parcaciktan olusan sistemlere uygulanan MD
simiilasyon teknigi, etkilesimli ¢ok pargacikli sistemlerin zamana gore davranisi
hakkinda bilgi vermektedir. Atom ve molekiillerin fiziksel hareketleri, atomlar arasi
etkilesimi tanimlayan bir potansiyel fonksiyonu kullanilarak Newton'un hareket
denkleminin niimerik olarak ¢oziilmesiyle elde edilir. Istatistiksel mekanik
cergevesinde gelistirilen teorik yaklasimlar kullanilarak sistemin denge ve tasinim

ozellikleri belirlenir.

Fiziksel bir sistemi acgiklayabilen modele (ve sonugta ortaya c¢ikan
matematiksel ifade) gore ayirt edilebilen iki temel MD yontemi vardir. “Klasik
mekanik’> MD simiilasyonlarinda, molekiiller "top ve ¢ubuk" modeline benzeyen
klasik nesneler olarak ele alinir. Yumusak toplar atomlara, elastik ¢ubuklar ise baglara
karsilik gelir. Klasik mekanigin yasalar1 sistemin dinamiklerini tanimlar. 1980'lerde
Car ve Parinello'nun (1985) ¢1gir agan ¢alismalariyla baslayan "kuantum" veya "ilk
ilkeler" MD simiilasyonlari ise kimyasal bagin kuantum dogasin1 agik¢a hesaba katar.
Sistemdeki bagi belirleyen degerlik elektron yogunlugu fonksiyonu kuantum
denklemleri kullanilarak hesaplanirken, iyonlarin (i¢ elektronlar ve c¢ekirdekler)
dinamigi klasik olarak tanimlanir. Kuantum MD simiilasyonlari, klasik yaklagima gore

onemli bir gelismeyi temsil etmekte ve kuantum etkilerin 6nemli oldugu 6zellikleri

8



belirlemede basarili bir sekilde uygulanmaktadir. Ancak, daha fazla bilgisayar hafiza
ve hiz kaynagi gerektirirler. Giinimiizde, klasik MD, nano saniyelik zaman
Olceklerinde binlerce atom igeren sistemlerin simiilasyonlar1 igin pratik ve

kullanighdir.

Klasik MD algoritmasimnin temel semasi Sekil 2.2° de verilmistir. MD
simiilasyonlar1 temel ii¢ asamada gergeklestirilir: Simiilasyon girdilerini hazirlama,
MD dengeleme hesaplarin1 gerceklestirme ve sonuclarin analizlerini olusturma.
Sistemin ilk yapisinin modellenmesi ya deneysel yapidan ya da karsilastirilabilir
modellenmis verilerden elde edilir. Sistem olusturulduktan sonra, her atoma etkiyen
kuvvetler atomik kuvvet-alanlar denklemlerinden elde edilir. Atomik kuvvet alani
modelinde, atomlar arasi olusan kuvvetler tarafindan bir arada tutulan atom gruplari
fiziksel sistemleri olusturur. Kuvvet-alanini ifade eden potansiyel molekiiler yapidan
tayin edilir. Ozellikle kimyasal baglar, bir molekiilii olusturan atomlar arasindaki
etkilesimlerin seklinden kaynaklanir. Kuvvet-alanlar karmasik denklemlerden olusur,
fakat bu denklemleri ¢ozmek oldukca basittir. Molekiiler diizeyde kuvvet-alani
etkilesimleri basitce su terimlerden olusur: bag uzunlugu ve agilari ifade eden kimyasal
yay sistemi yapisinin deformasyon enerjisi, kimyasal bag etrafinda donme enerjisini
veren periyodik fonksiyon terimi, ¢ekici ve itici terimleri iceren ve Lennard —Jones
potansiyel formunda olan Van der Waals etkilesimleri ve Coulomb elektrostatik
etkilesimleri. N tane etkilesen atomun potansiyel enerjisi konumlarin bir fonksiyonu
cinsinden temsil eden potansiyel U (ry, ..., 13,) ile agiklanir. Potansiyel verildiginde,
atom lizerine etkiyen kuvvet potansiyelin atomik yer degistirmelere gore gradyani ile
belirlenir. Atomik kuvvet alan1 modelleri ve klasik MD, sistemin fizigini ve kimyasini
temsil eden belirli bir fonksiyonel forma sahip ampirik potansiyellere dayanir.
Potansiyel parametreleri, ab initio Born-Oppenheimer yaklasimi (¢ekirdek ve
elektronun kiitlesi birbirinden ¢ok farkli oldugu i¢in elektron ve ¢ekirdek problemlerin
birbirinden farkli ¢oziilmesi) hesaplarina veya deneysel verilere uyarlanarak elde

edilir.



v

Enerji hesaplamalar: E_ {x}
» ‘t,
(Kuvvel-alan1) l

F=-dE_JoX,

a=F/m — | gidim izi

Niimerik l

entegrasyon v, (t+df) = (0), + a, ot

|

X, (t+df) = x(1), + v,at
l

Kuvvetler

1

Not : Simiilasyon ¢iktis1. gidim izi, 3 boyutta atomlarin her bir simiilasyon zaman
adimnda anhik kordinatlarinin diizenli listesidir.

Kisaltmalar : E_,, potansiyel enerji : ¢, simiilasyon zamanu; dr. déngii zaman1.
x atom Koordinati: F., Kuvvet; a. ivime: m. Kiitle; v az

Sekil 2.2: Molekiiler Dinamik Simiilasyon Algoritmasi.

Her bir atoma etki eden kuvvetler elde edildikten sonra, ivme ve hizlari
hesaplamak ve atom konumlarini giincellemek icin klasik Newton'un hareket yasasi
kullanilir. Sistemin hareket denklemleri Newton veya Hamiltonyen dinamigi ile
tanimlanir. Hareket denklemini ¢6zebilmek icin baslangic konum ve hizlarin bilinmesi
gerekir. Problemin ¢ok cisimli dogasindan dolay1 hareket denklemleri sonlu farklar
metotlar1 kullanilarak ayriklastirilir ve niimerik olarak ¢oziiliir. Sonug olarak, her bir
dt kiigiik zaman araliginda MD yoériingeleri hem konum hem de konum tiirevleri
vektorleri cinsinden belirlenir. Faz uzayinda sistemin zamandaki degisimi elde edilmis
olunur. Hareket denklemlerin integral ¢oziimleri ig¢in bir takim niimerik metotlar

gelistirilmistir. En yaygin kullanilan1 Verlet algoritmasidir.

Hareket denklemlerin integrali niimerik olarak ¢oziiliirken, sistemin kararsiz

olmasimi engellemek i¢in molekiillerin en hizli hareketlerinden daha kisa sonsuz kiigiik
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dt zaman adimi (pargaciklarin g¢arpigsma siiresi) MD simiilasyon adimi olarak
kullanilmalidir. Bu, atomistik simiilasyonlar i¢in genelde 1 ile 2 fs arasinda alinir.
Sonlu bir simiilasyon zaman araliginda, sistem uygun istatistik kiimelerinde dengeye
ulastirilir. Son olarak termodinamik dengeye gelmis sistemin 6zelliklerinin kiimesel

ortalamasi alinarak makroskopik 6zelliklere ulagilir.

MD simiilasyonunda dikkat edilmesi gereken temelde iki unsur mevcuttur.
Bunlardan birincisi sistemin gozlenmek istenen oOzelliklerine uygun baslangic
sartlarinin se¢ilmesidir. Digeri ise MD sistemini tanimlayan potansiyel fonksiyonunun
dogru bigimde tanimlanmasidir. Asagidaki alt basliklarda MD simiilasyon yonteminin

asamalar1 kisaca izah edilmektedir.

2.2.1 MD Baslangic Kosullar

MD c¢aligmasini baglatabilmek i¢in tiim baslangi¢ kosullari tanimlanmalidir.
Bu hazirlik, gereksiz verileri en aza indirmek ve giivenilir sonuglar elde etmek icin
Oonemlidir. Sistemin hareket denklemlerini ¢6zmek ic¢in her parcacigin baslangic
konumlar1 ve hizlar1 saglanmalidir. Kristal yapilarda, ilk konum kristalografik orgii
yapisi ile kolaylikla belirlenir. Hatta birkag birim hiicreyi birlestiren siiper hiicre
olusturularak da tanimlanabilir. Ornegin, metalik sistemler ¢ogunlukla fec kristal drgii
yapisindadir. Sivilar i¢in konumlar rastgele olusturulabilir veya 6rgii bir yap1 olusturup

wsitilir ve daha sonra eritilerek diizensiz yapi elde edilir.

[k koordinatlarin belirlenmesinin yani sira, baslangi¢ hizlarinin da iiretilmesi
gerekir. Her par¢acigin hizi, istenilen sicaklikta belirlenen Maxwell-Boltzmann veya

Gaussian dagilimindan rastgele olusturulur;

Pw) = () e (- 22) @1

Burada, m kiitle, T istenilen sicaklik, kg Boltzmann sabiti ve P(v) bir atomun v hizinda

olma olasiligidir. Ayrica, sistemin kiitle merkezi ve agisal momentumu sifir olmasini
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saglayacak tarzda rasgele olusturulur ki, sistemin donmesi (6zellikle sonlu sistemler

i¢in) engellenir.

MD simiilasyon modelinin sistemin 6zeliklerini belirlemede verimli olabilmesi
icin MD’nin getirdikleri kisitlamalari iyi belirlemek gerekir. Hesaplama kisitlamalari
nedeniyle, birkag¢ bin pargacik igeren kiiciik bir sistem simiilasyon kutusunda simiile
edilir. Bu kadar kiigiik sistemden elde edilen termodinamik 6zellikler gergek biitiin
Ozelliklerini tanmimlamak icin yetersiz kalir. Béyle bir durumda, daha kiigiik bir sistem
boyutu kullanarak sistemin makroskobik &zelliklerini incelemek i¢in uygun sinir
kosullart uygulanir. MD simiilasyonlarinda sinir kosulunu ele almanin birkag yolu
vardir. Yaygin olarak kullanilan yontem, periyodik sinir kosulunu (PBC) kullanmaktir.
Bu durumda hiicre, Sekil 2.3'de gosterildigi gibi sonsuz bir 6rgii olusturmak igin her
yonde c¢ogaltilir. Simiilasyon sirasinda sadece merkez hiicredeki parcaciklar dikkate
aliir ve bir parcacik merkez hiicrede hareket ettiginde komsu hiicrenin her birindeki
periyodik goriintlisii de ayni1 sekilde hareket eder. Bir parcacik merkez hiicreden
uzaklastiginda, periyodik goriintiileri diger kars1 taraftan goriiniir. Sonucta, kat1 bir
simir duvart olmadigi ve simiilasyon sirasinda merkezi simiilasyon hiicresindeki

pargacik sayisinin korundugu anlamina gelir.

PBCin kullanimi, parcaciklarin etkilesim kuvvetlerin hesaplanmasinda da
onemli bir etkiye sahiptir. Sekil 2.3’de verilen simiilasyon hiicresindeki kirmizi
parcacigin diger tiim atomlarla etkilesimini diisiindiigiimiizde, N-1 tane etkilesim
terimi gelmektedir. Ancak, ¢cevreleyen kutularda yatan goriintiilerden gelen etkilesimi
de dahil ettigimizde, sonsuz etkilesim terimi olusur. Bu durumda tiim goriintiilerle
etkilesimleri dahil etmek miimkiin degildir. Kisa mesafeli etkilesim i¢in bu sorun,
minimum goriintli kurali ile ¢oziiliir. Bu durumda, merkezinde kirmizi atom bulunan
orijinal kutuyla ayni boyutta bir simiilasyon kutusu olusturulur. Kirmiz1 atomun bu
bolgede bulunan atomlarla, yani diger N- 1 atomlarinin en yakin periyodik goriintiileri
ile etkilesime girdigi yaklasimi kullanilir (bkz. Sekil 2.3). Bu yaklagimda ¢ift yonli
etkilesim ele alindiginda, her MD adiminda N (N —1) /2 tane etkilesim terimi
gelecektir. Dolayisiyla enerji veya kuvveti hesaplamak icin gereken siire N2 boyutunda
olacaktir. Orta diizeyde bir sistem boyutu i¢in bile bu hesaplama oldukca ¢ok
pahalidir. Lennard-Jones potansiyeli gibi kisa menzilli etkilesim igin, biyiik katki

ilgilenilen atoma yakin komsulardan gelir. Hesaplama maliyetini diisiirmenin en basit
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yollarindan biri, ¢ift hesaplama sayisini azaltmak i¢in kiiresel bir kesme yaricapt Re¢
(bakiniz Sekil 2.3) kullanarak etkilesimi bazi kesme noktalarinda kesmektir. Boylece
problemin karmasikligi N boyutuna indirgenmis olur. Kesme mesafesi L/2'den kiiciik
olmalidir, burada L herhangi bir periyodik yonde kutunun boyutudur. Aksi takdirde
bir parcacik ile ikiden fazla goriintii arasinda bazi etkilesimler meydana gelebilir,
ancak potansiyelin glivenli bir sekilde ihmal edilebilmesi i¢in R¢'nin yeterince biiyiik
olmasi gerekir. Uzun menzilli etkilesimlere sahip sistemlerin, 6rnegin Coulomb
etkilesimli iyonik sistemlerde oldugu gibi, etkilesim hesaplamalari daha zorludur. Bu
tiir sistemler i¢in Ewald toplama, hizli ¢ok kutuplu yontemler ve pargacik ag tabanl

teknikler gibi ¢esitli teknikler gelistirilmistir (Frenkel ve Smit 2002).

Sekil 2.3: Periyodik sinir kosulu.

Zaman adiminin boyutu da dogru bir sekilde belirlenmelidir. Miimkiin oldugu
kadar fazla faz uzayimi tarayabilmek icin biiyiilk olmali, ancak malzemenin
ozelliklerini iyi lireten yoriingeler olusturmak icin de yeterince kiigiik olmalidir. Kiigiik
bir zaman adimi, hareket denklemlerin sayisal ¢oziimiiniin dogrulugunu artirmakta,
ancak yeteri uzunlukta bir yoriinge elde etmek i¢in ¢ok fazla sayida zaman adimi

gerektirmektedir. Ote yandan, zaman adimi ¢ok biiyiik bir deger aldiginda, enerjide
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biiyiik dalgalanmalara veya kaymalara neden olur ve hatta simiilasyonu kararsiz hale
getirebilir. Her durumda zaman adimi parcaciklarin ¢arpismalart arasindaki ortalama
siireden daha biiylik olmamalidir. Yiksek dereceli algoritmalar enerjideki hatay1
kiiciik tutarken, islem yiikiinii azaltmak acisindan biiylik zaman adimlarinin
kullanilmasini tercih eder. Bununla birlikte, bu algoritmalar, kisa stireler i¢in ¢ok iyi
enerji korunumu saglama egilimindedir, ancak uzun siireler boyunca enerji kaymasi
onemli hale gelebilir. Buna karsilik, Verlet algoritmasi kisa siireler i¢in orta derecede
enerji korunumuna sahiptir, ancak uzun siireler boyunca ve hatta biiyiik bir zaman
adiminda bile ¢ok az enerji kaymas1 olusur. Diislik dereceli hiz Verlet algoritmast,
islem yiikii ve sonu¢ verimliligi agisindan genellikle MD simiilasyonlarinda tercih

edilir. Bir atomik sistem i¢in tipik bir zaman adimi1 boyutu birka¢ femto saniyedir.

2.2.2 Newton Dinamigi

MD simiilasyon yontemi, Newton un ikinci yasasinin ¢dziimiine dayanir (ﬁ =
md). Kuvvet ve ivme bilinirse yapidaki tiim atomlarin hareketleri belirlenebilir.
Zamana bagli denklemleri kullanilarak atomlarin hiz ve koordinatlar1 her t zaman
adimi i¢in hesaplanir. Atom sayis1 ve t zaman adimina bagh olarak hesaplamalar daha
pahali olacak ve zaman alacaktir (Wahnstrom 2018). Sistemdeki i pargacigi igin
Newton hareket yasasi asagidaki gibidir;

ﬁi = miai . (22)

fvme a; su sekilde ifade edilebilir;

-

_dv;  d* (2.3)

Y= T ae

Burada r; atomlarin konumunu gosterir ve ikinci dereceden tiirevi bize ivmeyi verir.

Ivme ayn1 zamanda potansiyel enerjinin konuma gére tiirevi olarak gosterilebilir;

1 dU (2.4)

a;=————

m; dT'i

Kuvvet, potansiyel enerjinin negatif gradyanidir;
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d 2.5)
Fl = d_riUpOt .

Sistemin toplam enerjisi su sekilde ifade edilir;

(2.6)

N 2
: :mivi
E = 2 + Upot(T'l, ...... T'N)

i=1

Bu denklem tiim atomlarin kinetik ve potansiyel enerjisini gosterir. Atomun belirli bir

sicaklikta ve x koordinatinda hizin1 bulmak i¢in Maxwell-Boltzman dagilimi kullanilir
(Denklem 2.1).

2.2.3 Hamiltonyen Dinamigi:

Hamiltonyen dinamigi formiilasyonu klasik fizige gore daha avantajlidir.
Istatiksel fizik ve kuantum mekanigi ile baglantisi daha agik ve dogrudandir.
Hamiltonyen dinamiginde genel koordinatlar g; , momentum p; ile gosterilir. Newton
dinamiginde her i pargaciga etki eden toplam kuvvet tanimlanir ve Newton’un ikinci
yasasinda yerine konularak hem hizin hem de konumun zaman i¢indeki degisimi
bulunur. Konum, zamana bagl ikinci dereceden diferansiyel denklemiyle ¢oziiliir.
Diger bir yanda, Hamiltonyen dinamiginde, Hamiltonyen genel koordinatlar cinsinden
tanimlanir. Zamana bagli degisimden elde edilen birinci dereceden diferansiyel

denklemler ¢oziilerek her bir pargaciga ait konum ve momentum hesaplanir;

. 0H 2.7)
qi = T
Pi
ve
) JH 2.8
Pi==3" = (28)
q:

Burada, H Hamiltonyeni ifade etmektedir. izole edilmis bir sistem igin, H sistemin

Eyin Kinetik ve U potansiyel enerjilerinin toplamina esittir;

H(qi,p:)) = Exin +U . (2.9)
Zamana bagl tiirev alindiginda sistemin toplam enerjisi korunur;
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(2.10)

H(ql.pl Z[a q; + ap pl]—O

Kartezyen koordinatlar cinsinden Hamiltonyen asagidaki ifadeyi alir;

N (2.11)

i=1

p; = m;v; genellestirilmis momentum olup (2.11) denklemi Hamiltonyen genel

koordinatlar cinsinden;

N
p;
H= EZml Ulad - (2.9

i=j
seklinde olur.

Hamilton denklemiyle baslangic kosullarina bagli olarak momentum ve
konumun gelisimi izlenebilir. Burada konum faz uzayindadir. Hamilton dinamigi
matris notasyonu ile de gosterilebilir. X(q,p) faz uzay1 noktasinin zamana gore degisimi

asagidaki gibidir;

dx ((’)H oH oH 6H> L (2.13)
dt - apl ) venn apF ) aql LN aqF aX .

Burada, M matris formunda olup asagidaki gibi tanimlanir;

(%) &

Dogrusal osilatorler Hamiltonyen sistemler igin en iyi 6rneklerden birisi olup,

k kuvvet sabitine sahip bir osilatoriin Hamiltonyen denklemi asagidaki gibidir;

1p2 1
H(q,p) = 5+ kq® (2.15)

Matris formunda su sekilde yazilabilir;
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1. 1 2.16
H(q,p)=§pTM 1p+§qTKq (2.16)

K simetri sabitidir. Hamiltonyen dinamigine goére diferansiyel denklemler asagidaki

gibi verilir;
4 _ y-1p (217)
dt
ve
ap _ -Kq . (2.18)
dt

Denklem (2.17)’i zamana gore tiirevini alip denklem (2.18) burada

kullanildiginda konum cinsinden hareket denklemi elde edilir

aa _ (2.19)
M—==-Kq .

2.2.4 Atomik Etkilesim Potansiyelleri

Bir sistemdeki atomlarin hareketini teorik olarak tanimlayabilmek i¢in, atomlar
arasindaki etkilesimleri belirlemek gerekir. Atomlar arasindaki etkilesimleri
hesaplamak kuantum mekanigini gerektirir ki, ancak bir¢ok atomdan olusan bir
sistemin bu yontemle etkilesimini tanimlamak neredeyse imkansizdir. Yogunluk
Fonksiyonel Teorisi (Density Functional Theory, DFT) gibi kuantum mekanigine
dayali simiilasyon teknikleri ile yalnizca yiizler ila binlerce atom mertebesindeki
sistemlerin etkilesimleri incelenebilir. Daha biiyiik sistemler, daha basit ve sayisal
olarak daha verimli etkilesim modellerini gerektirir. Molekiiler dinamik gibi biiyiik
Olgekli atomistik simiilasyonlarda, atomlar arasindaki etkilesimler hesaplama
acisindan verimli bir potansiyel fonksiyonu ile belirlenir. Boylece, kuantum mekanigi
simiilasyonlarda miimkiin olandan ¢ok daha biiyiik sistemlerin veya daha uzun zaman

periyotlarin simiilasyonlar1 miimkiin hale gelir.

Kisaca, atomlar arasi potansiyeli, sistemin toplam potansiyel enerjisini,

bireysel ve relatif konumlarinin bir fonksiyonu olarak hesaplamak icin kullanilan
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nispeten basit analitik fonksiyonlar olarak tanimlayabiliriz.  Etkili bir analitik
potansiyel, temeldeki kuantum mekaniksel etkilesimlerden de fazla uzaklagsmayacak
tarzda miimkiin olan en basit islevsel bicime sahip olmalidir. Gergegi en iyi sekilde
yansitabilmesi igin, potansiyel enerji fonksiyonlarinda birka¢ ayarlanabilir
parametreler bulunmaktadir. Bu parametreler deneylerden ve/veya kuantum mekanik
hesaplamalarindan iiretilir. Ornegin, metaller ve kovalent malzemeler gibi katilari
modellemek i¢in gelistirilen potansiyel parametreleri tipik olarak kuantum hesaplama
veya deneysel baglanma enerjileri, elastik sabitler, 6rgii sabitleri ve ylizey enerjileri
gibi ozelliklere uyarlanir. Sivilar i¢in, buharlasma 1sis1 ve yogunluk gibi ozellikler

bagli olmayan etkilesimler i¢in fit parametreleri olarak kullanilir.

Potansiyel test edilirken fit parametrelerin disindaki diger 6zelliklerin de
(0rnegin erime sicakligi, kusur olusum enerjileri gibi) iyi tanimlamasi gerekir. Diger
bir degisle, verimli bir potansiyelin aktarabilirlik (transferability) 6zelligine sahip
olmasi gerekir. Ayrica, aktarilabilirlik 6zelligi bir potansiyelin maddeyi farkli kosullar
(6rnegin, yiiksek sicaklik ve basing) altinda tanimlama yetenegidir. Bu potansiyellerin

ayni zamanda hesaplama agisindan da verimli, hizl1 ve uygulanmasi pratik olmalidir.

Potansiyel fonksiyonlarini olugturmak icin farkli yontemler bulunmaktadir. En

basit yontemlerden birisi ¢ift etkilesim potansiyelidir.

2.2.4.1 Cift Etkilesim Potansiyeli

Bu yontem, atomun enerjisini, tim atom giftleri arasindaki etkilesim
enerjisinin toplami olarak belirler. Bununla birlikte, bu tiir yontemler, komsu atomlarin
onemli bir etkiye sahip olabilmesine ragmen, komsu atomlarin ¢ift etkilesimi
tizerindeki etkisini hesaba katmaz. Bu tiir potansiyeller i¢in iki parcacigin etkilesim
enerjisi yalnizca aralarindaki mesafeye baglidir ve ¢cevreye bagli degildir. N tane atom

sisteminin toplam enerjisi su sekilde verilir;

N (2.20)

1
U(ry..ry) = 3 Z <p(rij)

=1
i#j
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Burada, ¢(r;j) i ve j atomlar1 arasindaki ¢ift etkilesim enerjisi, rij iki atom arasi

uzakligi ve r; ise i. atomun konumunu verir.

Potansiyel fonksiyonu basit forma sahip olmasina ragmen, bir¢ok maddenin
Ozelliklerini tamimlamak igin ¢ift potansiyel modelleri kullanilir. Fakat, ¢ift
potansiyellerin bazi1 dezavantajlar1 bulunmaktadir. Diisiik paketleme yogunluguna
(basit kiibik) sahip olup ve kovalent baglara sahip kristal 6rgii sistemlerinde kararlt
degildir. Ayrica aktarilabilirlik 6zellikleri olduke¢a zayiftir.

Sistemdeki atomlar arasindaki etkilesimler genellikle potansiyel fonksiyona
cekici ve itici terimler seklinde dahil edilir. Cekici terim, metalik bag, iyonik bag,
kovalent bag veya zayif van der Waals kuvvetlerinden kaynaklanan baglar seklinde
atomlar arasindaki baglanma etkilesimlerini kapsar. Atomlar arasindaki itici etkilesim
terimi, atomlar arasi kisa uzakliklarda baskin hale gelir. Atomlar birbirine yaklastikca,
elektronlar arasindaki Coulomb kuvvetleri ve Pauli disarlama ilkesinden kaynaklanan
itme kombinasyonu tiim ¢ekici kuvvetlerde hakim olur. Daha da kii¢iikk mesafede,

cekirdekler arasindaki Coulomb itmesi 6nemli hale gelir.

En yaygin olarak kullanilan ¢ift potansiyeli, 1924 yillarina dayanan ve
baslangicta zayif etkilesen gazlar, 6zellikle argon icin gelistirilmis olan Lennard-Jones

potansiyelidir (Jones 1924).

22411 Lennard-Jones Potansiyeli

Iki atom arasindaki itici etkilesme ve Van-der Waals London tiirii cekici

etkilesmeden olusan toplam etkilesme potansiyel enerjisi
o\'2 0\ (2.21)
vy =4[ (2) - (5) |

seklinde ifade edilir ve Lennard-Jones (LJ) potansiyeli olarak adlandirilir. Burada,
Sekil 2.4’de gosterildigi lizere, € potansiyel kuyusunun derinligi, baska bir deyisle iki
parcacik arasinda ¢ekim kuvvetinin biiyilikliigii, o iki pargacik arasinda potansiyelin

sifir oldugu uzaklig1 vermekte olup, potansiyel parametrelerini olusturmaktadir. Bu
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ampirik form, kor elektronlarin gii¢lii itmesini (Pauli disarlama ilkesi) temsil eden itici

bir r'? etkilesimi ile uzun erimli ¢ekici r® van-der Waals etkilesimini birlestirir. Teq =

2'/6 ¢ mesafesinde sistem dengede olur.

Lennard Jones Potansiveli

—- —r (0)

Potansivel Enerji (V)
[=]
S

Sekil 2.4: Lennard Jones potansiyeli.

Ikili etkilesimlerde dnemli bir potansiyel olmanm disinda LJ modeli diger
potansiyeller tarafindan da kullanilmaktadir. LJ potansiyel enerjiyi hassas sekilde
yansitmamakta, fakat bilgi-islemsel basitliginden dolayr ¢ok yaygin olarak
kullanilmaktadir. Ayrica, sivi ve polimerlerin simiilasyonlarinin yaninda reaksiyona
girmeyen atomlar, katilar ve molekiiller arasindaki yapisma ve kohezyon
simiilasyonlar1 i¢in de ¢ok verimlidir. Ozellikle LJ potansiyeli, soygazlar ve ikili

atomik gaz molekiiliinii tanimlamak i¢in uygun modeldir.

Basit formda olmalar1 nedeniyle, ¢ift potansiyeller atomistik simiilasyonlarda
kullanildiginda bazi beklenen kisitlamalara sahiptir. Cift potansiyellerdeki en 6nemli
eksiklik, cevresel bagimliligin tamamen olmamasidir. Potansiyel enerji, atom
ciftlerinin atomlar arasi uzakliginin bir fonksiyonu olarak degerlendirilir Ki,
cevreleyen atomlarin geometrisi hicbir sekilde dikkate alinmaz. Cevresel etkilerin
eksikligi nedeniyle, ornegin bir katida yiizey etkileri ve bosluk olusum enerjisi
yeterince tanimlanmamustir. Cift potansiyel tarafindan tanimlanan bir malzemenin
tahmini temel durumu her zaman siki paketli bir yapi, yani altigen siki paketli (hcp)
veya ylizey merkezli kiibik (fcc) yapi olacaktir. Bu durum diger kristal yapilar

tanimlama olasiligini ortadan kaldirir. Ayrica ¢ift potansiyel kullanimi durumunda,
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kiibik atom sistemi i¢in Ci2 ve Cas elastik sabitlerinin orani tam olarak bire esit
olacaktir (Cauchy iliskisi). Bu iligki, ¢ift potansiyelinin tanimlayamadigi birgok
elemanda ihlal edilir. Bu nedenle, bu sinirlamalar ¢oklu cisim etkilesimlerini dikkate

alan daha karmasik potansiyellerin kullanilmasini gerektirir.

2.24.2 Coklu Cisim Etkilesim Potansiyelleri

Sistemdeki bir atoma ¢evresinde bulunan atomlarin geometrisinin etkisini hesaba
katmak i¢in, potansiyel enerji iki cisimli etkilesim (ikili etkilesme) teriminin 6tesinde
cok cisim etkilesim terimleri icermelidir. En genel bigimde, N atomlu bir sistemin

toplam potansiyel enerjisi asagidaki gibi yazilabilir;

N N N (2.22)
Utor = z Uy (m) + z Uy(ri,m) + z Us(ri, 7, 1) + -+
i ij ik
Burada, U1, Uz, Uz sirasiyla, bir-, iki-, tig-cisimli potansiyelleri ve 7; i atomunun
konum vektoriinii vermektedir. Eger sistem dis alana (6rnegin, elektrik alan) maruz
kalirsa bir-cisimli terim de dikate alinir. Boyle bir durum olmadiginda, potansiyel
enerji fonksiyonu atomlarin pozisyonlarindan bagimsiz olup, atomlar aras1 mesafeler

ve agilar kullanilarak biraz daha basit genel bi¢cimde yazilabilir;

N N (2.23)
Utot = z Uy, (1) + Z Us (1i, it Oijic) + -

ij ijk
Burada, rij i ve j atomlar1 arasindaki uzaklik, 6;;, ise i, j ve k atomlar1 arasindaki agiy1

tanimlamaktadir.

Literatiirde bir¢ok farkli tiirde cok cisimli potansiyeller gelistirilmis olup,
bunlar genis bir malzeme grubuna uygulanmistir. Cift potansiyellerin 6tesine gegmek
ve ¢ok cisimli etkileri iki cisimli potansiyellere dahil etmek icin iki yaklasim
onerilmistir: Ilk yaklasim, verilen bir atomun yerel elektronik yogunlugunun bir
fonksiyonu olan bir terimi ikili terime eklemektir. Bu yontem, ¢ok cisimli etkileri ifade
eden birkag alternatif potansiyelin olusturulmasina yol agmistir; Elemental metaller

ve alagimlarini (Foiles 1986; 1987, Johnson 1988; 1990, Adams 1989, Stillinger 1985,
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Stott 1980) tanimlamada kullanilan gémiilii atom modeli (Embedded Atom Model,
EAM) potansiyelleri (Daw 1983; 1984; 1993), Glue Model potensiyeli (Ercolessi
1986), bcc elemental metaller icin gelistirilen Finnis-Sinclair potansiyeli (Finnis
1984), fcc gegis element metalleri igin olusturulan Sutton-Chen (SC) potansiyelleri
(Sutton 1990), fcc rastgele ikili alasimlarint modellemek ( Black 1992, Zhang 2000,
Ghazali 2001) igin kullanilan Rafii-Tabar ve Sutton potansiyeli (Sutton 1991) bunlar

arasindadir.

Ikinci yaklagim ise, uygun fonksiyonel formlar ve simetrilerle, ii¢-cisim ve dort-
cisim terimleri gibi daha yiiksek dereceli ikili etkilesimlere ekleyerek kiime
potansiyelleri olusturmaktir. Bdylece, daha yiiksek mertebeden terimlerin dahil
edilmesi ile sistemlerin enerjilerinin tek basina ¢ift potansiyeller tarafindan verilenden
daha dogru bir modellemesini saglamaktadir. Stillinger-Weber (1985) ve Tersoff
(1989) potansiyellerini bu yaklasima 6rnek olarak ele alabiliriz.

22421 Gomiiliit Atom Modeli

Gomiilii atom modeli formalizmi (Daw 1984), metaldeki bir safsizligin pozitif
bir arka plana (¢ekirdek) sahip bir elektron bulutuna gomiilii olarak goriilebildigi etkili
ortam teorisi (Nerskov 1982; Stott 1980) ilkelerine dayanmaktadir. Bu ortama
genellikle ‘jel’ olarak adlandirilmaktadir. GoGmme enerjisi, jel igine gdmiilii bir atom
ile jelden ayrilmig bir atom arasindaki enerji farki olarak tanimlanir. Bu enerji, elektron
yogunlugunun evrensel bir fonksiyoneli olarak ifade edilir (Hohenberg 1964), bu da
yaygin olarak kullanilan DFT’in temelini olusturmaktadir. Safsizli§in gdmme enerjisi,
safsizligin ¢ekirdeginin ylikii ve gomiilmeden Once safsizligin pozisyonundaki
elektron yogunlugu ile belirlenebilir. Bu nedenle, safsizligin bulundugu o6rgiiniin
toplam enerjisi, safsizlik eklenmeden Onceki ana sistemin elektron yogunlugunun

evrensel bir fonsiyoneli cinsiden tanimlanir;

U= Fzrlpn()] . (2.24)

Burada, Z ve R sirasiyla atom numarasini ve safsizligin konumunu vermektedir. pj (1)
ise safsizligin bulunmadigi ana sistemin elektron yogunlugunu ifade etmektedir.

Fonksiyonel F evrenseldir ve ana orgiiden bagimsizdir. Fonksiyonelin tam formu
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bilinmemekte olup, bunu belirlemek de karmasik bir istir. Yerel yaklasima gore,
ortamin elektron yogunlugunun homojen oldugu kabul edilir ve safsizligin enerjisi de
bu homojen elektron yogunlugunun fonksiyonu cinsinden ifade edilebilecegi onerilir.
Her atom, ana sistemdeki diger atomlar tarafindan safsizlik olarak goriilecegi i¢in yerel

yaklasima gore toplam enerji asagidaki gibi yazilir;

U=> Flon] - (2.25)

Burada Fi i. atomun konumundaki elektron yogunlugu fonksiyonu cinsinden gomme
enerjisidir. Ayrica, Denklem (2.25), cekirdekler arasindaki itme etkilesimlerini dikkate

almaz. Bu itme terimi, basit bir ¢ift potansiyeli @;; olarak tanimlanabilir. Boylece,

toplam potansiyel enerjisi
o1 2.26
U= ZFi(ph:l)‘l'EZ@ij(rij) : (2.26)
i i#j

seklinde yazilir. Burada, 7;; i ve j atomlar arasindaki mesafeyi verir. i. atomun
bulundugu konumdaki ana orgiiniin elektron yogunlugu, diger j komsu atomlarin i
atomunun bulundugu konumda olusturdugu p;(r;;) yik yogunlugunun toplami

seklinde tanimlanir;

Phi = ij(rij) : (227)

i+j

Itici ¢ift fonksiyonu, genellikle perdeleme yiik potansiyeli formunda asagidaki gibi

kullanilir;

T

Kisaca, EAM potansiyelini belirlemek F gémme enerjisinin fonksiyonel formu ve Z(r)

etkin ylikiinii belirlemekten olugsmaktadir.

EAM potansiyeli birgok metal ve gecis metallerinde, 6zellikle fcc kristal

yapisina sahip olanlar i¢in iyi ¢alismaktadir. Fakat ge¢is metallerinin bir kisminda,

23



bunlarin alagimlarda ve tiim metallerde elastik sabitlerini hesaplarken hassasiyeti
diismektedir. Bu problemi ¢6zmek i¢in, modifiye edilmis EAM (Modified Embedded
Atom Model; MEAM) modelleri gelistirilmistir. EAM formiiliiniin genel yapisi
korunmustur. MEAM, EAM’da ihmal edilen atomlar arasi baglanmanin agisal etkisini
elektron yogunlugunu agisal terimlerle ifade ederek dahil etmektedir. Elektron

yogunluk fonksiyonuna dokunulmadan enerji denklemi degistirilmistir (Bonny 2005).

2.24.2.2 Finnis ve Sinclair Potansiyeli

Finnis ve Sinclair Potansiyeli (FS) (Finnis 1984) baslangicta ge¢is metallerinin
enerjisini  modellemek i¢in olusturulmustur. Metalleri modellemek i¢in ¢ift
potansiyellerden gelen problemlerden kaginmaya calisilmistir. Ornegin, cift
potansiyellerin kullanimi ile Cauchy bagintisinin C;, = Cy4 esitligini vermesi, kubik
kristallerdeki metalleri dogru tanimlayamaz. FS modelinde, N atom sisteminin toplam

enerjisi su sekilde yazilir;

U= %Z Z V(rij) — CZ pi% _ (2.29)

ioN %) i

Burada, V(r;;) birbirlerinden r;; uzakliginda bulunan i atomu ile j atomu arasindaki
ikili itici potansiyelini verirken, (2.29) Denklemindeki ikinci terim ise gekici gok cisim
etkilesimini tanimlar. Bu terimin kare kok formunda olmasi Siki1 Baglam Modeli’nin
ikinci moment yaklasimi (Second Moment Approximation to the Tight-Binding

Model) (Ackland 1987) anolojisinden gelmektedir. Cok cisimli etkilesimler de @(r;;)

cekici gift etkilesim cinsinden asagidaki esitlik ile ifade edilir;

Denklem (2.29)da verilen FS potansiyelleri, Denklem (2.26)’da verilen EAM
potansiyellerine form olarak benzemektedir. Ancak, yorumlari1 oldukc¢a farklidir. FS
potansiyellerindeki ¢oklu terim Siki Baglam Modeli (Harrisson 1984) temelinde
tiretilmistir ve bu, EAM potansiyellerindeki  F;(pp;) gdmme fonksiyonellerine

karsilik gelmektedir.
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Bu potansiyeller goriildiigii lizere basit ve kullanigli forma sahiptirler, ancak
etkilesim kisa erimli olup, yiizey 6zelliklerini yeteri kadar dogru agiklayamaz. Ayrica,
saf metallerin Ozelliklerinden bunlarin alasim oOzelliklerini belirlemede EAM
potansiyellerine gore daha az verimlidir. Bu kisitlamalara ragmen, literatiirde bazi

soy metaller (Au, Ag, Cu) ve alasimlan i¢in FS potansiyelleri olusturulmustur
(Ackland 1990).

2.24.2.3 Sutton-Chen Potansiyeli

Suton-Chen (SC) potansiyelleri (Sutton 1990) uzun erimli FS tipi potansiyel
olup, bu nedenle form olarak EAM potansiyellerine benzemektedir. Potansiyelin uzun
erinimli olmasinin nedeni (2.29) ve (2.30) denklemlerindeki V(r) ve @(r)
fonksiyonlarin ters kuvveti formunda olmasindan kaynaklanmaktadir. SC
potansiyelleri on tane fcc gecis element metalinin enerjisini tanimlamaktadir. Itici
ikili etkilesim ve ¢ekici ¢ok cisim etkilesim terimlerinden olusan SC potansiyelinin

formu asagidaki gibidir;

1 1
U= Z U; = Z ZESUV(T”U) — ¢i€;5(pi)?
i

i | Jj=i

(2.31)

Burada, V(ryj) i. ve j. atomlar arasindaki uzun erimli van der Walls etkilesimlerini

aciklayan itici ¢ift potansiyeli vermektedir;

n 2.32
V(ry) = <i> (232

U

ve p; 1. atoma etkiyen ¢ekici ¢coklu etkilesimi aciklayan yerel enerji yogunlugudur;

pi = Z B(ry) = Z (%)m | (2.33)

J#i J#i

Denklemlerdeki a uzunluk boyutunda bir parametre olup, genellikle denge anindaki

kristal orgli sabitini ifade etmektedir. ¢ sabiti ¢ekici terimi itici terime dl¢eklendiren
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pozitif boyutsuz parametredir. € enerji boyutunda parametre olup, n, mise n >m
olacak tarzda pozitif tamsayilardir. SC parametreleri deneysel orgii sabiti, kohesif

enerji ve bulk modiiliine fit edilerek elde edilmistir.

Daha sonra, Sutton ve Rafii-Tabar (1991) tarafindan ikili fcc metal alasimlari
icin SC potensiyelleri gelistirilmistir; her iki tip atom 6rgii kristal yapisindaki orgii
noktalarina rastgele bir sekilde yerlesirler. Alasimlarin potansiyel parametreleri
element metallerin SC potansiyel parametrelerinin geometrik veya aritmetik

ortalamasi alinarak tanimlanir.

Daha sonraki yillarda, Cagin ve arkadaslar1 (1999) ampirik ¢ok cisimli SC
potansiyel parametrelerine bazi kuantum diizeltmeleri ekleyerek, kohesif enerji,
yogunluk, orgii sabiti, elastik sabitleri, hacim modiilii, bosluk olusturma enerjisi, ylizey
enerjisi ve fonon frekansi gibi deneysel 6zelliklere uyarlamiglar ve parametrize
etmiglerdir. Bu Kuantum Sutton-Chen (Q-SC) potansiyelleri kullanilarak erime
sicakligl, oOrgli kusuru, elastik sabitler, fonon dipersiyon 0Ozellikleri, difiizyon
mekanizmasi ve camsi Ozellikler gibi bir¢ok fiziksel 6zellikleri karakterize etmede

basarili olunmustur (Ozdemir Kart ve dig. 2004%2¢9, Kart ve dig. 20042P¢4),

2.24.2.4 Stillinger-Weber Potansiyeli

LJ modelinin basit formda olmasindan dolay:r kullanimi yaygin olmasina
ragmen, iyonik, metalik veya kovalent olarak bagl katilarin 6zelliklerini yeniden
iiretemez. Ozellikle kovalent bag, bagi olusturan iki atom arasindaki elektron
ciftlerinin paylasilmasindan kaynaklanir. Karbon sistemleri de dahil olmak iizere
kovalent katilar1 tanimlamak icin, hem baglanma hem de agisal ve koordinasyon
bagimliliklarint hesaba katan daha karmagik bir potansiyel gereklidir. Kovalent bag,
diger tiim bag tiirleri arasinda en giiclii olanidir ve tekli, ikili ve hatta ticlii baglar
olusturabilir. Bu ylizden bu tiir sistemlerde ¢ok cisim etkilesim potansiyellerini

kullanmak gerekmektedir.

Cift potansiyellerde ¢evresel bagimliligin olmamasindan hareketle, daha dogru
cok cisimli potansiyeller gelistirmek i¢in bagka bir yaklasim, 6rgii icindeki bir atomun

etrafindaki yerel bag konfigiirasyonlarina odaklanmaktir. Cevreleyen bag
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geometrisine giiclii bir bagimlilik, kovalent olarak baglanmis malzemelerin yapilarini
dogru bir sekilde yeniden olusturmak i¢in olduk¢a Onemlidir. Stillinger-Weber
potansiyeli (Stillinger 1980), elmas yapisinda bulunan Si elementinin temel durum
enerjisini dogru bir sekilde minimize etmek i¢in agikga acisal bagimlilik icermektedir.

Potansiyel enerji ikili cisim ve {iglii cisim etkilesim terimlerinden olusur;

U= z efa(rij/0) + 2 efs(1:/0,71;/0,7 /) (2.34)

i<j i<j<k

Burada, € ve 6 enerji ve uzunluk parametreleridir. Cift fo potansiyeli agagidaki formu

alir;

(2.35)

@) = { zg(Br‘P —r~9) exp[(r — a)"l],, :;Cclz

Burada, A, B, p ve q pozitif parametrelerdir. Hesaplamalarin ¢ok uzun stirmemesi igin,
r = a durumunda kesme uygulanir. Ucglii cisim etkilesim fonksiyonu ise ag1 ve

konuma bagimli h fonksiyonu cinsinden asagidaki gibi verilir;

Tk

) )

q13
Q|

fs ( ) = h(T‘ij, ik ejik) + h(rji' Tjk gijk)

o

+ h(rie e, Ou) - (2.36)

Burada 6;;, , 7;; Ve 7y vektorleri arasindaki acty1 vermektedir.

Elmas yapisinin temel durum o6zellikleri dogru bir sekilde yansitilmistir.
Potansiyel, erime noktasinda gercege yakin veriler vermektedir. Fakat, Stillinger-
Weber potansiyeli Si elmas yapist ile smirli olup, diger elementlere tam
uyarlanamamaktadir. Potansiyelin aktarabilirlik 6zelligini saglayabilmek i¢in, agisal
bagimliligin yaninda bag diizeninin de potansiyele eklenmesi ile olur. Yerel bag

diizenine acik¢a bagimlilik, Tersoff benzeri potansiyellerde saglanmistir.
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22425 Tersoff Potansiyeli

Kovalent bagli karbon sistemleri icin ¢esitli potansiyeller onerilmis ve yillar
boyunca kullanilmistir. Bunlarin ¢ogu, etkilesimi tanimlamay1 6neren Abell (1985)
ve Tersoffun (Tersof 1986; 19882°) ilk calismalarindan kaynaklanmaktadir. Bu
kabule gore, gergek sistemlerde bagin giicii yakin g¢evredeki atomlara baglhidir.
Ornegin, ilgili atomun ¢ok komsusu varsa bag zayiftir; az komsu varsa bag kuvvetlidir.
Boylece bu model, en yakin komsu etkilesimlerine dayanmaktadir. Cok cisimli
sistemin baglanma enerjisi, ikili en yakin komsu etkilesimleri cinsinden
hesaplanmaktadir. Tersoff bu kabiilii kullanarak, Si (Tersoff 1986; Tersoff 1988%), C
(Tersoff 1988), Si-C (Tersoff 1988C; Tersoff 1989), Ge ve Si-C (Tersoff 1989) katihal

yapilarinda baglanma enerjilerini hesaplamistir.

Bag diizeni ilkesini temel tutarak, Tersoff (1988?) asagidaki formda verilen

atomlar arasi potansiyeli Onermistir;

1 2.3
U= Ez fe(rip)fo(riy) + bifa(ris)] -

i#j

Burada fz(7;j) ve fa(ryj) siwrasiyla, itici ve gekici ¢ift fonksiyonlardir. Bu

fonksiyonlar, Morse ¢ift potansiyeli formunda se¢ilmistir;

fo(r) = AeChn) (2.38)
ve
fa(r) = —BeC%m) (2.39)

fc(rl- j), hesaplama maliyetini azaltmak i¢in kovalent etkilesim araligryla sinirli olan

kesme fonksiyonudur;

r<R-D
1 1 [;-R (2.40)
fc(r) = E—Esin D , R—-D<r<R+D
0 r>R+D
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fc degeri 0 ile 1 arasinda deger alir. R ve D parametreleri sadece bazi elementlerin
birinci kabuktaki komsu atomlar1 géz niine alinarak eklenmistir. Denklem (2.37)’deki
bij terimi kovalent bagin agisal ve koordinasyon bagimliligini hesaba katan "bag
diizeni" terimidir. Bu terim ¢oklu cisim etkilesimlerini vermekte olup, belirli bir bagin
bulundugu yerel atomik ¢evreye bagimliligini ifade eder. bj; fonksiyonu, potansiyelin
onemli kismidir ve bag diizeninin bir Olgilisiinii temsil eder. i ve j atomlarinin

koordinasyon sayilarinin monoton olarak azalan bir fonksiyonudur;
by = (1+B") /. (241)
Burada, ¢, []‘ koordinasyon sayisi (en yakin komsu atom sayisi) olup asagidaki gibidir;

Gij = Z fc(rik)!](6’1'1%)‘3/1%(T”_r"‘)3 (2.42)

k=i,

g(6) ise bag agisini tanimlayan fonksiyondur;

c? c? (2.43)

9O =1+ G~ [T (h—cos 0)7]

Bu denklemlerdeki r;; — 1y, iki atom arasi uzaklik ve 6 ise bag acisidir. d
parametresi agiya bagimliligin ne derece etkiledigini, ¢ parametresi ise agisal etkinin
giiclinii gosterir. Kovalent baglar icin lineer, trigonal veya tertrahedral geometriler
onemlidir. {;; terimiyle geometrik yapmin etkisi yansitilir. Elmas yapisi tertrahedral

yapida olup, Sekil 2.5’de gosterilmistir.
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Sekil 2.5: Elmas kristal yap.

Denklem (2.41)’de verilen bj; fonksiyonu, Tersoff potansiyellerinin can alici
terimidir ve bi¢iminin g¢esitli temsilleri bulunmaktadir; reaktif ampirik bag diizeni
potansiyeli (Reactive Empirical Bond Order, REBO) (Brenner 2002), uyarlanabilir
molekiiller aras1 REBO potansiyel (Adaptive Intermolecular REBO, AIREBO) (Stuart
2000), gevreye bagli atomlar aras1 potansiyel (Environment Dependent Interatomic,
EDIP) (Marks 2000), uzun erimli karbon bag diizeni potansiyeli (Long Range Carbon
Bond Order, LCBOPII) (Los 2005) ve analitik bag diizeni potansiyelini (Analytic
Bond Order, BOP ) bunlar arasinda siralayabiliriz.

Tersoff potansiyeli, aslinda bir ¢ift potansiyeli formundadir, ancak bag diizeni
fonksiyonu araciligiyla olusan kapali (implicit) bir ii¢-cisimli etkilesim bagimliligi,
biiyiik 6lgekli atomistik simiilasyonlarinda kullanim igin hesaplama agisindan verimli
hale getirmektedir. Tersoff potansiyeli kovalent baglar i¢in kullanilan en basarili
potansiyellerden birisidir. Bunun sebeplerinden en onemlisi, yaygin potansiyellerin
aksine bag olusumuna ve bozulmasina imkan vermesidir. Yakin ¢evredeki atomlari
dikkate alan yaklagimi sayesinde bag etkisinin ne kadar giiclii oldugunu

gostermektedir (Szymon 2017).

Bu tez ¢alismasinda Si ve C elementlerinin etkilesimlerini tanimlayabilmek
i¢cin Tersoff potansiyel parametreleri (1989) kullanilmistir. C ve Si igin potansiyel
parametreleri Tablo 2.1°de listelenmistir. C igin parametreler deneysel orgii sabiti,
bulk modiilii ve elmas yapidaki karbon politiplerinin kohesif enerjilerine fit

edilmesiyle elde edilmistir. Si i¢in parametreler bulk modiilii, bag uzunlugu ve elmas
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yapisindaki Si politiplerinin kohesif enerjilerinden olusan bir veri tabanina fit edilerek

bulunmustur.

Tablo 2.1: Si ve C elemetleri igin Tersoff Potansiyel Parametreleri (1989?).

Potensiyel C Si

Parametreleri

AeV) 1393,6 1830,8
B(eV) 346,7 471,18
AA°h 3,4879 2,4799
u(a°b 2,2119 1,7322

B 1,5724 x 1077 1,1 x10°6
N 0,727551 0,7873

C 3V8049x 10* 1,0039 x 105
D 4,384 16.217

H -0,57058 -0,59825
R(A?) 18 2,7

S(A°) 2.1 3,0

2.2.5 Niumerik Yontemler

N-atomlu ii¢ boyutlu bir sistemin etkilesim sonucunda 3N tane Newton hareket
denklemleri olusur. Bu denklemlerdeki adi diferansiyel denklemleri ¢oziilmeye
calisildiginda, birinci integrali pargaciklarin hizlarini ve ikincisi ise konumlarini verir.
Fakat 6N boyutlu (3 konum ve 3 momentum) i¢in bu diferansiyel denklemlerin analitik

¢ozimil miimkiin degildir.
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Bu sebeple MD simiilasyonlar1 bu diferansiyel denklemlerin sonlu farklar
metodu kullanarak niimerik ¢dzer. Diferansiyeldeki dr (= d3r) ve dt terimleri sirasiyla
Ar ve At sonlu farklara donistiiriilerek diferansiyel denklemlerdeki sonlu farklar
denklemlerine doniistiirtiliir. t zamaninda r(t) pozisyonu konumunda bulunan sistemin

At zaman sonraki t+At anindaki konumu Taylor serisi agilimi asagidaki gibidir;

a(t) d3r(t) (2.44)

r(t + At) = r(t) + v(t)At + — At2 + o ——+ At3 ..

Burada At ayrik kiiciik zaman araligidir. N atomlu sistemin Newton

denklemlerinin niimerik ¢oziimii asagidaki islemler takip edilerek gerceklestirilir.

e Verilen potansiyel i¢in her bir atoma etki eden F; kuvvetleri
hesaplanir.

e Hesaplanan F; kuvvetlerini a; = % denkleminde yerlestirerek her bir
atoma ait a; ivmeleri hesaplanir.

e t+ At zamansonrakir;,v; ve a; denklem (2.44)’de verilen sonlu
elemanlar yontemi kullanilarak elde edilir.

e Hesaplanan verileri bir sonraki iterasyon i¢in girdi olarak kullanilarak,
ayni islemler sistem kararli duruma gelene kadar tekrarlanir ve sonunda

kararli yapinin yoriingeleri elde edilir.

Numerik ¢Ozlimiin problemlere uygulanabilir olmas1 acisindan farkli
derecelerde seri kesilmekte olup, kesilme derecesine gore bir¢ok sayida niimerik

yontem tiiretilmistir. Bu yontemler Tablo 2.2° de listelenmistir.

Tablo 2.2: Niimerik yontemler.

1. Derecede Yontemler 2. Derece Yontemler Yiiksek Dereceli Yontemler
Euler Verlet Runge-Kutta
Geriye dogru Euler Hiz Verlet Lineer ¢oklu adim
Yar1 kapali Euler Trapezodial kurali Genel Dogrusal yontem
Ussel Euler Beeman Geriye dogru diferansiyel yontem
Orta nokta yontemi Yoshida
Heun yontemi Ongoérme-Diizeltme
Newmark-Beta
Leapfrog
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Problemlere gore integrasyon yonteminin secilmesi agsagida verilen kriterlere

baglhdir (Stole 2015):

e Algoritma enerji ve momentum korumali,
e Biiylik t zaman adimlarina izin verilmeli,
e Bilgi islem agisindan verimli olmali,

e Newton denklemleri zamana gore tersinir olmali.

MD hesaplarinda genellikle Taylor agilimdaki iiciincii terime kadar olan
terimler dikkate alinir. Ihmal edilen diger yiiksek terimler kesme hatas1 O(At*) olarak
disiiniiliir. Coziim tam degildir, fakat c¢oziime yakindir. En yaygin kullanilan
yontemler Verlet, Hiz-Verlet ve Ongorme-Diizeltme algoritmalardir. Bu calismada hiz

Verlet kullanilmistir. Asagida Verlet tipi algoritmalar agiklanmistir.

2.2.5.1 Verlet Algoritmasi

Verlet algoritmasi basit olmasina karsin Molekiiler dinamikte en ¢ok kullanilan
algoritmalardan birisidir. 2. Dereceden Stérmer algoritmasidir ve MD simiilasyonlara
amaciyla ilk Verlet tarafindan 1967 yilinda merkezi fark temelli algoritma dnerilmistir.
Bu yontemle Taylor a¢ilimi1 zaman i¢inde ileri ve geri konumlar i¢in olusturulur ve

tictincii dereceden terimler ele alinir;

3
X(t + A0 = 2(0) + V(OM + 5 a(OBE + -2 QUVE 0(At*) @4)
2 3! dt3
ve
d>x(t) (2.46)

1 1
x(t —At) = x(t) — v(DAt + 3 a(t)At? — =

3 4
TRPTE At® + O(At*)

Bu iki denklem toplandiginda t + At zamanindaki konum igin ifade ¢ikar;
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x(t + At) = 2x(t) + x(t — At) + a(t)At? + 0(AtY) . (2.47)

Bu denklem Verlet algoritmasi olarak bilinir. Bu algoritmada iigiincii tiirevler
agikca goriilmemekte olup kesme hatas1 O(At*) mertebesindedir. Verlet algoritmasi
zamana gore tersinir ve uygulanmasi oldukga basittir. (2.47) denkleminde goriildigi
tizere X(t+ At) konumu belirleyebilmek igin Xx(t), x(t — At) ve a(t) terimlerin
bilinmesi gerekir. Bunlar1 bulmak igin atomlar aras1 kuvveti ve Newton’un ikinci
yasasini dikkate almaliy1z. Verlet algoritmasi ilk zaman adiminda, t anindaki konumu,
ivmeyi ve bir 6nceki t — At anindaki konumu girdi olarak alir. Fakat bir 6nceki konum
bilinmedigi icin algoritma kendi kendine baslayamaz. Bunun i¢in asagidaki basit

yaklagim kullanir;

x(t —At) = x(t) —v(H)At . (2.48)

[k zaman adimindan sonra, ikinci iterasyonda x (t + 2At) konumu elde etmek
icin Denklem (2.47) kullanilir. Goriildiigh tizere Verlet algoritmasi ile hizin zamana
gbre degisimi agikca bulunmaktadir. Fakat hiz bilgisi kinetik enerjiyi ve sonrasinda
sistemin sicakligini tahmin etmek i¢in gereklidir. Bu terim Denklem (2.45)’u Denklem
(2.46)’den ¢ikararak bulunur;

x(t + At) — x(t — At)
- 2At

(2.49)

v(t) + 0(At?)

Bu denklemde goriildiigi tizere gore hiz 2At zamani iginde konum farklar1 alinarak
bulunmaktadir. Hizda hata oran1 O(At?) mertebesinde oldugu icin enerjide

dalgalanmalar olugmaktadir.

Verlet algoritmasinin avantaji basit ve kararli bir algoritma olmasidir. Ustelik
kararlilig1 biiyiik zaman adimlar i¢in bile gegerlidir. Algoritmanin kararli olmasindan
kasit, bir zaman adimindaki hatanin diger adimlarda birikerek artmamasidir. Zaman
adimi (At) artikca kesme hatasi artmaktadir. Verlet’in hata seviyesi makul

seviyededir.
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2.2.5.2 Hiz-Verlet Algoritmasi

Hiz1 verimli bir sekilde ele almak i¢i Hiz Verlet algoritmasi ad1 altinda yeni bir

algoritma Verlet tarafindan onerilmistir;

1
x(t + At) = x(t) + v(t)At + 3 a(t)At?, (2.50)
ve
a(t) +a(t + At 251
v(t+ A0 = v(t) + ®) 2( )+At (2.51)
Burada F(t), a (t) ivmeyi tanimlayan parcaciklar arasindaki etkilesim
1
[F(t) + F(t + At)] + At . (2.52)

" 2m

kuvvetidir. Verlet algoritmasinda hiz, konum bilgisi kullanilarak ¢oziilmekte olup
bilgisayar hafizasinda x(t) ve x (¢ — At) konum verilerini tutar. Ote yandan, Hiz-Verlet
algoritmasinda ise v(t),a(t) ve x(t) verileri hafizada tutulmak zorundadir. Bu
algoritma ara adim hesaplar1 gerektirmektedir. Ilk konum Denklem (2.45) ile elde

edilir. Hiz ise asagida verilen ara adimda hesaplanir;

v (t + %At) =v(t) + % a(t)At (2.53)
RSl v (254
2m

Kuvvet veya ivme t + At zamaninda hesaplandiktan sonra, bu zamandaki yeni hiz
asagidaki denklem kullanilarak bulunur;
F(t+ At)] (2.55)

1
v(t + At) =v<t+—At>+[— At
2 2m

Hiz-Verlet algoritmasi fazla veri tutmasindan dolayr islem verimliligi
acisindan olumsuz goriinse de simiilasyon sonucunda hem hiz hem de konum verisi
elde edilebilmektedir. Boylece bu algoritma islem yiikiinii azaltmaktadir. Ayrica,
niimerik kararliligt ve basit uygulanabilirligi 6zelliginden dolayr Hiz Verlet

algoritmasi birgok MD simiilasyon ¢aligmalari tarafindan tercih edilmektedir.
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2.2.6 Istatistik Kiimeler

MD simiilasyonlari, sistemin tiim pargaciklart i¢in mikroskobik diizeyde,
konum ve momentumu zamana bagli olarak iiretir. MD ydnteminde, faz uzayinda
olusturulan yoriingeler boyunca zaman {izerinden ortalamalar alinarak makroskopik
degerlere wulasilir. N parcacikli sistemin A  makroskopik  biiytikliigliniin
A@N (t), p" (t)) mikroskobik degerlerinin iizerinden zaman ortalamasi asagidaki gibi

tanimlanir;

(4) = lim [ AGN @)+ () de . (2.56)

Burada, 7V (t) N. parcacigin konumu, p" (t) ise momentumudur. Ortalama degerler
istatistik mekaniginin temelleri kullanilarak elde edilir. MD simiilasyonlarinda
kullanilan zaman ortalamasi yerine istatistik topluluklar1 iizerinden ortalama almak
daha kullanighidir. Sonsuz bir zaman diliminde, eger sistem Sabit bir enerji yiizeyindeki
tiim mikro durumlara ugrayabiliyorsa, sistemin ergodik oldugu sdylenir. Bu durumda,

istatistiksel topluluk ortalamasi zaman ortalamasina esit olur;

<A)zaman = (A)NVE ' (2.57)

Istatistik toplulugu aym1 mikroskobik etkilesimler tarafindan tanimlanan ve
ortak bir makroskobik 6zellikler kiimesini paylasan sistemler toplulugu olarak ifade
edilir. Denklem (2.56)’deki zaman ortalamasi, sabit enerji, sabit pargacik sayis1 ve
sabit hacim kosulu altinda alinir. Bu durumda, mikrokanonik veya NVE toplulugunda
bir yoriinge olusturulur. Bununla birlikte, birgok durumda, sabit hacim ve sabit sicaklik
(NVT) veya sabit basing ve sabit sicaklik (NPT) gerektiren kanonik toplulukta
simiilasyon yontemlerine ihtiyag duyulabilir. Ayrica simiilasyon sonuglarini deney ile
karsilagtirabilmek i¢in sabit sicaklik veya basingta ¢alismak gerekebilir. Bu durumda,
termostat ve/veya barostat kavramlarindan gelen terimler Hamiltonian denklemine

ilave edilir. Bu denkleme genisletilmis Hamiltonian hareket denklemi denilmektedir.
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2.2.6.1 Genisletilmis Hamiltonyen Methodu

Sabit basing kosullarinda MD simiilasyonlarini gergeklestirmek igin ilk
calisma Andersen (1980) tarafindan gelmistir. Andersen, sistemin dinamigine yeni bir
degisken, yani sistem hacmi (piston), iliskili hiz, kiitle ve dis basinca bagli potansiyel
enerji terimi ile tanitarak, atomlarin ve hacimden olusan birlesik sistemin izoentalpik
(sabit entalpi, NPH) toplulugunda dis basinca nasil tepki verebileceginin izahini
yapmustir. Andersen, atomlarin dinamiklerini, sistemin hacmi Q ile birlestirmeyi

asagidaki Lagrange denklemiyle 6nermistir;

(2.58)

1 . 1 1 .
Landersen = Ez mi‘QZ/3qi2 -U (-(23: {CI}) + Emﬂﬂz — Pey 02
i

Buradaki ilk iki terim, atomlarin kinetik ve potansiyel enerjisi olup, hacime olan
bagimliliklar1 acikga gosterilecek sekilde tanmimlanmistir. Terimler, Kkartezyen

~1/3y;  6rgii koordinatlari cinsinden ifade

konumlart rj yerine 6l¢eklendirilmis q; = 2
edilmistir. Uciincii ve dérdiincii terimler sirastyla, dinamiksel degisken olan Q hacmin
kinetik ve potansiyel enerjilere karsilik gelir. Terim my, termostatin kiitlesi Ve Pext
sisteme uygulanan disg basingtir. Hacim sabit oldugunda, kinetik enerjisi sifir olur ve
hacim potansiyel enerjisi sabit kalir. Bu durumda £ 4, 4ersern. Mikrokanonik Lagrange'a
indirgenir. Bununla birlikte, hacim serbest¢e hareket ettiginde, atomlarin ve hacmin
olusturdugu birlesik sistemin yonlendirdigi gibi artan veya azalan dis basinca tepki
verecektir. Hacim sonunda yerlesecek ve ortalama bir deger etrafinda salinacaktir.
Asagidaki denklemler kullanilarak Lagrangian denkleminden Hamiltonyen formuna

gecisi kolaylikla saglanir (Goldstein 1980);

oL (2.59)
bi = EXo
i
ve
W= am-L (2:60)
i

Andersen’in yaklagimi sadece hacimdeki dalgalanmalar1 dikkate alir, diger bir

degisle simiilasyon kutusunun biiyiikliigiiniin degisimine izin verilir, fakat seklinin

37



sabit kalmasina zorlanir. Bu durum sivilar i¢in sorun olusturmaz, fakat kristaller i¢in
kisitlayict olmaktadir. Ozellikle malzeme bir fazdan diger bir kat1 faza gegtiginde,
sadece hiicrenin hacmi degil, sekli de degismektedir. Bu durumlar1 dikkate almak igin,
Parinello ve Rahman (1980, 1981) Anderson’un gelistirdigi metodu asagidaki
Lagrangian denklemi ile genellestirmistir;

1 o 1 " (2.61)
Log =3 ) midiHt - Ha = U(q,H) + 5 MyTr(HUH) = PoV
i

Bu denklemde, Anderson’un serbestlik derecesi olarak tanimladigi hacim
yerine simiilasyon kutusunun seklini tanimlayan vektor bilesenlerini veren H matrisi
yer almaktadir. Burada, atomlarin kartezyan koordinatlari r = Hgq; bagmtist ile
tanimlanmaktadir. Bu formiilasyonla, sadece hiicrenin seklinin bozulumuna izin

verilmemekte, uzayda serbestge yonelimdeki degisikliklere de sebep verilmektedir.

Andersen (1980) sabit basing kosulunun (NPH toplulugu) yaninda sabit
sicaklik durumda (kanonik veya NVT toplulugu) simiilasyonlar1 gerceklestirmek icin
de bir metot gelistirmistir. Bu metoda gore, atom rastgele segilip, bunun hizi
simiilasyonun istenen sicakliga karsilik gelen Maxwell-Boltzmann dagilimindan elde
edilmektedir. Bu metoda Andersen termostati denilmektedir. Andersen'in sabit
basingta simiilasyon yapma prosediirii deterministik iken, sabit sicakliktaki prosediirii
stokastiktir. Fakat Andersen termostati, dinamiksel 6zellikleri iyi tanimlayamamakta,
ozellikle taginim Ozelliklerde hizli bir tutarsizlik gostermektedir. Sabit sicaklik
ortaminda deterministik yaklasan kanonik kiime simiilasyon yontemi Nosé (1984)
tarafindan saglanmigtir. Nosé sisteme serbestlik derecesi s olan 1s1 banyosunu ilave
ederek, sistemin sicakligini dinamiksel olarak kontrol etmistir. Lagrangian denklemi
asagidaki gibidir;

1 . 1 )
L= mistr 4 omes? — U((r) ~ gkaTexeIns (2.62)
i

Burada g sistemin serbestlik derecesinin sayisini, kg Boltzmann sabiti, S termostatin

serbestlik derecesi, ms termostatin kiitlesi ve Text ise sistemin istenilen sicakligidir.
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(2.62) Esitligi ile verilen Nosé termostatin Lagrangian denkleminin Hamiltonyen

karsilig1 asagida verilmektedir;

2 2
pPi Ps (2.63)
) =Z F U + 2+ ghpTon ] .
N i 2m;s? {rD 2m, 9Kplext NS
Burada, p; = m;s?7; i. atomun momentumu Ve pg = mgS ise termostatin

momentumudur.

Daha sonra, Hoover (1985) 1s1 banyosunun termodinamik siirtinme
katsayisint n=sPs/ms seklinde tanimlayarak, Nosé’un sabit sicaklik teorisindeki
denklemler daha kullanigh hale gelmistir. Nosé—Hoover termostat hareket denklemleri

asagidaki gibi tanimlanmustir;

> B 2.64
=l (2.64)
P; = F; —nP, (2.65)
ve

p? (2.66)

Yit—gkpT

A — 1
n=—"45

Siirtiinme katsayis1 sabit olmayip, pozitif ve negatif degerler alarak 1s1 banyosunun
dinamigini kontrol etmek i¢in kullanilir. Atomlarin toplam kinetik enerji gkgT’den
bliyiik oldugunda, dolayisiyla 7 pozitif deger alir ve 1s1 banyosunda bir siirtiinme
olusturur. Bu siirtiinme de 1s1 banyosunun kinetik enerjisinden daha az olacak tarzda
atomlarin hareketinin yavaglamasina neden olur. Diger bir yanda, eger atomlarin
toplam kinetik enerji gkgT’den kiigiik olursa, 7 negatif olur, dolayisiyla atomlar 1s1
banyosunun kinetik enerjisine ulasmak icin hizlanirlar. Atomlarn sicakligi 1s1
banyosunun T sicakligina sahip oldugunda termodinamik denge saglanmis olur. Bu
durumda, sistemin enerjisinde dalgalanmalar olugsmasina izin verilerek, sistem ve 1s1
banyosunun toplam enerjisinin sabit olmas1 saglanir. Boylece Nose-Hoover termostat

yontemi ile kanonik toplulugu (NVT) MD simiilasyonu temelleri elde edilmis olunur.
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Daha sonralar1 Ray ve Rahman (1985), Parinello (1981) tarafindan gelistirilen
dinamiksel sabit basing metoduna Nosé-Hoover’in sabit sicaklik teorisini ekleyerek

NPT istatistik toplulugunun MD simiilasyonlari i¢in metot gelistirmislerdir;

P? 1 P2

H= Y ——+ U(V‘E?) +ﬁ+P3xV
T 2m;V3s?
p2 (2.67)
+ i + gkgT In(s)

Burada, (13, P:) i. atomun faz uzay parametreleri, (V,P;) Parinello ve Rahman’in
tanimladigi MD hiicrenin hacmi ve momentumu ve (s, P;) ise Nosé termostatin faz
uzay1r parametreleridir. Denklem (2.67)’daki ilk iki terim N atomlu sistemin
Hamiltonyenini, ikinci iki terim MD hiicrenin ve son iki terim de Nosé termostatin

katkilarini1 vermektedir.

2.2.7 Simiilasyon Yazilimlar:

MD, biyoloji ve biyokimyadan jeokimya, malzeme bilimi ve polimer fizigine
kadar bir¢ok disiplinlerde kullanilan ve atomik diizeyde c¢ok sayida parcacigin
etkilesimini analiz eden bir hesaplama aracidir. Bu simiilasyonlar, malzeme ve
laboratuvar maliyetleri ve iiretim siiresi agisindan maliyet tasarrufunu saglamak icin
gerceklestirilir. Bilgi islem ve bellek maliyeti géz Oniinde bulunduruldugunda,
milyonlarca etkilesiminin simiilasyonu siiper bilgi islem ortamlarinin (siiper

bilgisayarlar) kullanimi ile verimli hale gelir.

2000'lerin baginda, tiim MD algoritmalar1 Merkezi Islem Birimlerine (Central
Processing Units, CPU'lar) dayanmakta olup, birden fazla CPU kullanarak bunlarin
simiilasyonlar1 siiper bilgisayarlarda gerceklestiriliyordu. Son zamanlarda, Grafik
Isleme Birimi'nin (Graphics Processing Unit, GPU) piyasaya siiriilmesi ile, biiyiik
Olclide paralel hesaplama 6nem kazanmis olup, bu durum MD simiilasyonlarinin
verimini artirmistir. Son yillarda, ¢ogu temel MD kodlar1 GPU'lar i¢in olusturulmus
ve hatta GPU'larda kullanilmak tiizere 6zel olarak yazilmis MD kodlar1 bile
gelistirilmistir (ACEMD61). Giinlimiizde ¢esitli yiiksek performansli MD simiilasyon

paket programlari ticari ve acik kaynak kodlu olarak literatiire sunulmustur. Ornegin;

40



LAMMPS (Plimpton 1995), DL POLY (Smith 1996; 2002) Moldy (Refson 2000),
IMD (Gahler 2000), NAMD (Nelson 1996, Kale 1999), Gromacs (Berendsen 1995,
Lindahl 2001), CHARMM (Karplus 1983) ve AMBER (Pearlman 1995). Birgok
bilimsel ¢alisma ile bu programlarin giivenirlikleri ve verimliligi test edilmistir. Bu
programlarin bazilar1 Tablo 2.3°de listelenmis olup, kullanim alanlar1 ve 6zellikleri
verilmistir. Bu tez ¢alismasinda LAMMPS MD yazilim programi kullanilmis olup,
asagidaki alt baglikta detaylica verilmistir.

2271 LAMMPS Paket Program

LAMMPS (Large-scale Moleculer Massively Paralel Simulator) daha ¢ok
malzeme simiilasyonuna odaklanmig bir MD simiilasyon yazilimidir. LAMMPS
baslangicta Cooperative Research and Development Agreement (CRADA) ve United
States Department of Energy tarafindan gelistirilmistir. Yazilim giincelleme ve
dagitimla ilgili sorumluluklar gorevleri su an Sandia National Laboratories ve Temple
University arasinda paylasilmistir (LAMMPS). Ucretsiz ve 6zgiir bir yazilim olup
GNU lisansina sahiptir. {1k versiyonlart FORTRAN 77 ve FORTRAN 90 ile yazilmus

olup, giincel durumu ise C++ dilinde mevcuttur.

LAMMPS programinda oldukga ¢esitli molekiiler yapt modellenebilir; atomik
yapilar, polimerler, bulk sistemler (metaller, seramikler, oksitler), graniiller, iri taneli
yapilar. Bunun yanisira mezoskobik sistemler de farkli potansiyel ve baslangic
kosullar1 kullanarak ¢alisilabilir. Iki boyutlu ve ii¢ boyutlu sistemleri, birka¢ atomdan

milyar atoma tasarlanabilir.

LAMMPS paralel hesaplamaya uyumlu olarak yazilmistir. Bunun i¢in MPI
(message-passing library) kiitiiphanesini kullanmaktadir. Bu kod kiitiiphanesine sahip
birkag¢ bilgisayar simiilasyondaki hesaplama yiikiinii paylasabilir. Dolayisiyla stiper
bilgisayarlarda LAMMPS calistirilabildigi gibi diziistii ve masaiistii bilgisayarlarda da
sorun yasamadan kullanilabilir. Gilinlimiizde artik ¢ok ¢ekirdekli islemciler
yayginlasmistir. MPI c¢ekirdekleri kullanarak paralel hesaplama islem zamanin
kisaltir. Son yillarda ¢ekirdekli islemcilere ek olarak bilimsel paralel hesaplara uygun
ekran kartlar1 (GPU) iretilmisti. LAMMPS MPI haricindeki CUDA gibi kod

kiitliphaneleri kullanarak paralel hesaplamalarda ekran kartlarin1 da kullanabilir.
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Tablo 2.3: MD yazilimlart.

Yazihm ismi  Kullanim Alam Lisans Ve Kod Sorumlu
Erisim Kurulus
LAMMPS Kat1 hal, Ucretsiz, acik C++ Sandia
malzeme bilimi kaynak
AMBER Biyomolekiil Simiilasyon Fortran,C Ambermd.org
Ticari, analiz
ticretsiz
CP2K Katihal, Ucretsiz,agik Fortran CP2K
Kuantum model kaynak
NAMD+ Biyomolekiil Ticari olmayan C++ Beckman
amaglar i¢in Institue
VMD ticretsiz
GROMACS Biyomolekiil Ucretsiz agik C gromacs.org
kaynak
BOSS Genel Molekiiler ~ Akademisyenler Fortran Yale
dinamik igin licretsiz University
ACEMD Biyomolekiil Ticari CUDA Acellera Ltd
CHARMM Biyomolekiil Akademisyenler  Fortran,CUDA  Charmm.org

i¢in iicretsiz

En genel anlamiyla parcacik etkilesimlerini incelemek i¢in Newton hareket

denklemlerini kullanilmaktadir. Bu pargacik atom, molekiil, iri taneli yap: veya

mezoskobik, veya makroskobik malzeme olabilir. Etkilesimleri incelemek igin

kullanilan modeller cogunlukla kisa mesafe etkileri dikkate almaktadir. Uzun

mesafeler i¢in ek 6zellikler desteklenmistir. LAMMPS birbirine yakin atomlar takip

icin komsu atom listeleri olusturmaktadir. Bu listeler ¢cok yakin mesafelerde itici olan

parcaciklar i¢in optimize edilmistir. Boylece pargaciklarin yerel yogunlugu asla fazla

bliyiik olamaz.

LAMMPS agik kaynak oldugu i¢in kodlarina erisilebilir ve degistirilebilir.

Baslangictan itibaren kapasitesini gelistirecek fonksiyonlarin kolay eklenmesi icin
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modiiler olarak tasarlanmistir. Hatta su an kaynak kodunun %95°1 eklenti dosyalaridir.

Yeni ozellikler i¢in github tizerinden talepte bulunulabilir (Github LAMMPS?).

LAMMPS gelistiricileri yazilim 6zelliklerini genisletmeye odaklanmistir. Bu
sebeple gorsel ara yiizli yoktur ve komut satirindan erisilir. Simiilasyon sonucunun
analizi de kullaniciya birakilmustir. Istendigi takdirde gesitli yazilim dillerinde ara yiiz
olusturulabilir. LAMMPS kaynak kodu kiitiiphane olarak da kullanilabilir. Buna 6rnek
Python dili kullanan PyLammps (LAMMPS 2021) verilebilir.

Sekil 2.6” de LAMMPS paket programi ¢alisma semasi verilmistir. LAMMPS
calistiritlirken girdi (input) dosyasinda nelerin hangi baslangic kosullarinda
hesaplanmak istedigi belirtilir. Bu dosyada (text) potansiyel etkilesimi belirleyen
dosya da tanimlanir. Girdi dosyalarini1 tek seferde isleyen programlardan farklidir
LAMMPS bu girdiyi tek seferde degil, satir satir okur. Bu yilizden girdi doyasinda
komut siralamasi1 6nemlidir. Programda calismama kosulunda pek ¢ok hata LAMMPS
tarafindan tanimlanmistir. Bu 6zelligi ile kullaniciya nerede hata oldugu konusunda
yol gosterir. Sonuglar basarili bir sekilde alinmis ise yine format olarak text dosyasi
olan "log.lammps" ve "dump" dosyalarinda sirasiyla istenen Ozellikler ve
simiilasyondaki atomlarin ti¢ boyuttaki koordinatlar1 kaydedilir. Bu ¢iktilar farkl
programlarla analiz edilebilir. Gorsel olarak OVITO (2021) gibi araglarla atom

yapilar1 analiz edilebilir.
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Simiilasyonu Calistirmak igin is Akisi (LAMMPS kullanin)

3

g

e
- 5 calc_fec.in | | Al99.eam.alloy calc_fcc.pbs
55

=

Windows \\// N

£ 5 \ Imp_win_no-mpi.exe < calc_fcc.in /
25 \ qsub calc_fec.pbs /
— E : . \ \
] _s Linux:
Ch

N\ Imp_dut0<calc_fecin  / /:j’,ff

Ay
"“‘--._‘_‘-‘ \
\,ff/{:’/:“\ -

=]
3
E% \, OVITO / \ VMD / \MATLAB /
[L)

Sekil 2.6: LAMMPS calisma akis semasi.
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3. MATERYAL VE YONTEM

3.1 Hesaplama Yontemi

Bu tez calismasinda, saf C ve Si malzemelerin nanoyay modelleri tasarlandi ve
bazi mekanik 6zellikleri MD simiilasyon yontemi ile arastirildi. Si nanoyayina isitma
islemi uygulanarak erime mekanizmasi irdelendi. Atomlar arasi etkilesimleri
tanimlamak i¢in elmas yapidaki C-Si sistemler i¢in olusturulmus Tersoff potansiyeli

(1986) kullanild:.

Nanoyaylarin eksenel simetrisi z yoniinde se¢ildi ve asagida verilen koordinat

sistemlerine gore olusturuldu;

x(uw,v) = (R+r cosv)cosu , (3.1)

y(u,v) = (R +r cosv)sinu (3.2
ve

Pxu (3.3)

z(u,v) =71 sinv +

Burada, u ve v degiskenleri asagidaki sinirlart igermektedir;

u € [0,2N7) (3.4)
ve

v € |[0,2m) . (3.5)

Denklemdeki r, R, P ve N yapisal parametreler olup sirasiyla tel yarigapi, yay yarigapi,
yay aralif1 ve donme sayisini vermektedir. Bu yapisal parametreler, Sekil 3.1°de C
malzemesi i¢in olusturulan nanoyay iizerinde gosterildi. Bu parametreler dort farkl
degerde degistirilerek, her bir malzeme i¢in on ii¢ farkli parametre yapisinda saf
nanoyay sistemleri olusturuldu ve Tablo 3.1’de listelendi. NY olarak kodlanan
referans nanoyay1 N, P, r ve R parametreleri sirasiyla 2, 64 A°, 16 A° ve 48 A° olarak
secildi. Digerleri ise NY referans yayinin parametrelerinden iigii sabit tutulup digeri

tic farkli degerde degistirilerek olusturuldu.
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Sekil 3.1 : Nanoyay parametreleri: P yay araligi, R yay yarigap, r tel yarigapi. Burada, N=2
olup dénme sayisim vermektedir.

Yaylar1 olusturan atomlar1 kristal sistemin diizeninde yerlestirebilmek igin
nanoyayin sigabilecegi biiyiikliikte olusturulan kiiplin i¢i elmas kristal yapisi ile
dolduruldu. Daha sonra nanoyay bu kiipiin igine yerlestirilip yaymn disinda kalan

atomlar kesilerek, nanoyay elmas yap1 diizeninde olusturuldu.

Ayrica kor@kabuk yapisinda nanoyay modelleri de tasarlandi. Sekil 3.2°de
gosterildigi lizere n = 4 katmandan olusan C(n-m)@Si(m) seklindeki kor@kabuk
nanoyaylar1 (n-m) katman yarigapindaki kor kismina C ve onu saran (m) katman
kalinligindaki kabuk bolgesine de Si yerlestirilerek insa edildi. Her bir katmanin
yarigap1 o malzemenin drgii parametresi uzunlugunda alindi (C i¢in a = 3,57 A° ve Si
icin a = 5,43 A"). r = 4a yarigapli kor-kabuk nanotelin diger parametleri (R, N ve P)
referans sistem olarak ele aldigimiz NY modelininkileriyle (Tablo 3.1) ayn1 alinmistir.
Sonugta 4 katmandan olusan kor@kabuk nanoyaylar1 C1@S3, C2@S2, C3@S1 ve C4
seklinde tasarlandi. Kabuk bolgesinde malzeme cinsinin yayin mekanik 6zelliklerine
etkisini inceleyebilmek i¢in, i¢ bolgeye Si ve dis bolgeye de C malzemesini

yerlestirilerek dort farkli kabuk kalinliginda Si@C kor-kabuk nanoyaylar1 olusturuldu:
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Sil@C3, Si2@C2, Si3@C1 ve Si4. Kor@kabuk nanoyayin sematik goriinimii
Si2@C2 modeli i¢in Sekil 3.2°de verildi. Ayrica ayni sekilde saf C nanoyayin farkli

yonlerden sekli de sunuldu.

Tablo 3.1: Yapisal paremetrelere gore tasarlanan saf C ve Si nanoyay modelleri.

Model Yapisal Parametreler
N P(A) r(A) R (A)
Referans NY 2 64 16 48
Nanoyay
NYN1 3 64 16 48
N donme
sayisi NYN2 4 64 16 48
degisken
NYN3 5 64 16 48
NYP1 2 80 16 48
P yay aralig1
degisken NYP2 2 96 16 48
NYP3 2 112 16 48
NYrl 2 64 20 48
r tel yaricapi
degiskgnp NYTr2 2 64 24 48
NYr3 2 64 30 48
NYR1 2 64 16 64
R yay yaricap1
degisken NYR2 2 64 16 80
NYR3 2 64 16 96
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c) d)

Sekil 3.2: Nanoyaylarin sematik goriiniimleri: C nanoyayin a) iistten ve b) yandan goriiniimii.

Si2@C2 kor kabuk nanoyayin c) perspektif ve d) kesit goriiniim{i.

Sonug olarak, bu tez ¢alismasinda 34 farkli model tasarlandi1 ve farkli sicaklik
altinda MD simiilasyonlar1 gergeklestirildi. Nanoyay yapisini olusturmak i¢in Python
dilinde bir yazilim programi olusturuldu. Bu program i¢in ara yiiz goriintlisii

gelistirildi. Detayh bilgiler Ek A’da verilmistir.
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LAMMPS hazir paket programi MD simiilasyonlar1 gerceklestirmek icin
kullanildi. 6R X 6R X (N-P) (burada, R, N ve P yay parametreleri) boyutunda
simiilasyon kutusuna nanoyaylar yerlestirildi. z ekseni boyunca periyodik sinir
kosullar saglandi. Konjuge gradyent algoritmasi ile baslangi¢ yapisindaki sistemlerin
minimum enerjiyi saglayarak konfigiirasyon yapilar1 elde edildi. Hiz-Verlet
algoritmasi ile hareket denklemleri her bir dt = 1 fs zaman araliginda (MD adim

uzunlugu) ¢oziildu.

500,000 MD adim 1sitma islemleri gergeklestirildikten sonra, ek 500,000 MD
adimi simiilasyonlar1 dengeleme islemleri icin gerceklestirildi. Nose-Hoover
termostat1 kullanarak 1sitma islemlerinde sicaklik sabit tutuldu. Toplam enerji,
potansiyel enerji, kinetik enerji, entropi, hacim, basing ve zor gibi 6zellikler her bir 50
MD adiminda tayin edildi. Dengeleme isleminin son 100,000 MD adimu1 {izerinden bu
Ozelliklerin ortalamasi alindi. Nanoyaylarin 1s1 kapasitesi ve ¢ift dagilim fonksiyonu
ozelliklerini elde etmek icin Python yazilimda analiz programlar1 gelistirildi. Si
nanoyayinin erime sicakligi ve davranigi toplam enerji, 1s1 kapasitesi ve ¢ift dagilim

fonksiyonunun sicakliga bagimlilig: incelenerek tayin edildi.

Hem saf hem de kor@kabuk nanoyay sistemlerin mekaniksel davranigini
belirleyebilmek i¢in ¢ekme islemi uygulanarak NPT MD simiilasyonlar
gerceklestirildi. Nanoyaylar 10 K sicakliginda 250,000 MD adimu siiresince dengeye
getirildi. Sonrasinda 5x108 fs® zorlanma hiz1 ile z yoniinde sistemlere cekme
uygulandi. Bu islem yapilirken, yayin {ist ve alt bolgesindeki birkag¢ atom katmani sabit
tutuldu. Parinello-Rahman barometre kullanimi ile sistemlerin basincinin sabitlenmesi
saglandi. Nanoyaylarda depolanan potansiyel enerjinin kii¢lik yer degistirmeye kars1
davranigindan yaylarin yay sabiti tayin edildi. Zor-zorlanma iliskisinden nanoyaylarin
akma ve ¢cekme dayanimlar1 kontrol edildi. Elastik sinirlar1 igerisinde elastik modiilii
hesaplandi. Ayrica sicakligin yay sabitine ve elastik modiiliine etkisini inceleyebilmek

icin 10 K, 250 K, 500 K ve 1000 K sicakliklarda saf yaylara ¢cekme iglemi uygulandi.

Bu tezde gerceklestirilen MD simiilasyonlar1 ve analiz hesaplari, Pamukkale
Universitesi Bilimsel Arastirma Projesi Birimi tarafindan desteklenmis PAU-BAP-
2019FEBEO050 nolu proje imkanlari ile alinan is istasyonu ve PAU FIZIK Béliimii

Malzeme Fizigi Simiilasyon Laboratuvari olanaklari ile yapildi. Nanoyaylarin
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mekaniksel ve termal davraniglarinin tayininde kullanilan analiz 6zelliklerinin detay1

asagida alt bagliklar altinda agiklanmaktadir.

3.2 Mekaniksel ozellikler

Malzemelerin mekanik o6zellikleri, malzemelerin kapasite ve mukavemeti
hakkinda bilgi {iretir. Miithendislik iiriinlerini incelemek i¢in en 6nemli alanlardan biri
olan mekanik o6zelliklerinin detaylica tayin edilmesi, uzay sanayi dahil ¢esitli
endiistriyel alanda bir¢ok problemin ¢oziilmesinde etkin olur. Hammadde standardi
kontrol edilebilir ve bulgular1 mithendislik tasarimlari i¢in rehber olur. Bu 6zellikler
1s1 ve sicaklik miktart ile degigsmektedir. Mekanik ozellikler olarak malzemelerin
mukavemeti (dayanim), elastikiyet, plastisite, sertlik, kirilganlik, doviilebilirlik,

tokluk, yorgunluk, siineklik, siiriinme ve daha fazlasi sayilabilir.

3.2.1 Cekme testi

Cekme testi, malzemelerin mukavemetini kontrol etmek i¢in mekanik test
yontemlerinde kullanilir. Verim mukavemeti (akma dayanimi), Young modiilii (elastik
modiilii), Poisson orani, nihai ¢gekme mukavemeti (cekme dayanimi) ¢ekme testinin
temel 6zellikleridir. Yiik veya zor uygulanarak, malzemenin nasil cevap verecegi, bu
gerilme testi ile belirlenir. Ornegin, bir malzeme kirilma noktasina kadar gerilir ve
daha sonra malzemenin mukavemetini kontrol etmek i¢in serbest birakilir. Ne kadar
kuvvet uygulandigi, bu testle dl¢lilen uzunlugundaki degisimle dogrudan iligkilidir.
Uygulanan bu kuvvet germe (zor) seklinde olgiiliir ve uzunluk degisimi gerilme

(zorlanma) olarak ifade edilir.

Cekme testi, zor-zorlanma verilerinin elde edilmesini saglayan en yaygin
kullanilan yontemlerden biridir. Bu test verileriyle bircok mekanik 6zellik tayin
edilebilmektedir. Test esnasinda, uygulanan artan kuvvetin etkisinde malzeme kirilana
kadar sekil degistirir. Cekme testi Sekil 3.3 verildigi iizere, cekme ve basma seklinde
malzemeye uygulanmaktadir. Cekme yiikii uygulandiginda malzeme uzamakta ve

gerilme esnasinda malzeme daha uzun ve ince hale gelir. Eger yilik uygulandiginda
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malzemenin boyu kisaliyorsa, malzemeye basma yiikii uygulanmistir. Bu durumda

malzemeler daha kisa ve kalin hale gelir.

v
—~ ;]I'_““\ | Ag
Ff—FF . l r/
] A
f v CEKME ‘o ! BASMA
T 3t "’_-g—l_
AQ%T_ _f
M

Sekil 3.3: (a) Cekme yiikii ve (b) basma yiikii altinda olusan sekil degisimi

Uygulanan kuvvet malzemenin kesit alanin sekline ve biiyiikliigiine gore
degiskenlik gostermektedir. Bu sebeple, bu farkliliklart minimuma indirgemek igin,

yiik ve uzama sirastyla zor ve zorlanma olarak normalize seklinde kullanilir.

3.2.2 Zor ve Zorlanma

Zor, malzemenin A, kesit alanina uygulanan F kuvvetin bu alana oranidir;

F (3.6)

Diger bir degisle uygulanan lokal basing anlamina da gelir. Malzemeye o zoru

uygulandiginda, malzemenin uzunlugunda degisim olusur. Bu degisimin orijinal

uzunluguna orani € zorlanmay1 ifade eder;
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I —1ly Al (3.7)

L o

E =

Burada, [, ilk uzunluk, / ise gekme testi sonrasinda 6lgiilen uzunluktur. Zorlanmanin
birimi yoktur; boyutsuzdur. Her zora kars1 bir zorlanma vardir. Zor ve zorlanma ikinci
dereceden tensor olustururlar; o;; ve &;. Burada ‘i’ indisi uygulanan kuvvetin
dogrultusunu, ‘j’ indisi ise kesit alanlarin normal yonlerini gésterir. Bu durumda,
ornegin oy, Ay yizey elemanina (normal vektorii y yoniinde) x yoniinde kuvvet
etkiyen zor bilesenini tanimlar. oy, , gy, Ve 0, bilesenleri normal zorlar veya
sikigtirma zorlar1 diye tanimlanirken, gy, Ox;, Oyx, 0,1, 0y, V€ 05, bilesenleri ise
kesme (shear) zorlari ile ifade edilirler. Normal zor Cismin uzunlugu boyunca
sikistirilmas: veya gerilmesi durumunda, kesme zoru ise cismin diizlemlerinin

birbirine gore kaymasini tanimlayan durumda olusur. Benzer sekilde, ¢;; bilesenleri

icin de ayni tanimlamalar yapilir. Esneklik limiti i¢erisinde zor, zorlanma ile dogrusal

bagint1 igerisindedir;

Oij = Z Cijki€x : (38)
Kl

Burada, Cjjy,; elastik sabiti olup, dordiincii dereceden terimlere sahiptir. Elastik sabiti,

sisteme disaridan zor uygulandiginda malzemenin gosterdigi direnci Olger. Voigt

gosterimi ile elastik sabitlerini ikili indis formunda tanimlayabiliriz;

0; = z Cl}g] . (39)
J

3.2.3 Zor-Zorlanma Egrisi

Katilar ve bunlarin mekanik 6zellikleri ile ilgilendigimizde, elastik 6zellikleri
hakkinda bilgiler edinmek Onemlidir. Bu malzemelerde farkli yiikler altinda zor-
zorlanma iliskilerini inceleyerek malzemelerin elastik 6zelliklerini 6grenebiliriz. Tipik
zor-zorlanma egrisi Sekil 3.4’ de verilmistir. Bu egride vurgulanan bazi noktalar
vardir: Orant1 sinir1 (A), elastik sinir (akma dayanimi, B), diisiik verim noktasi (C),

¢ekme dayanimi (D) ve kirilma noktasi (E).
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Orant1 sinirina kadar sisteme yiik uygulandiginda, Hooke Yasast bu bolgede
gecerli olup, zor ve zorlanma arasinda dogrusal bir bagint1 olusur. Bu limitte, zor-
zorlanma orani bize Young modiilii veya elastik modiiliinii olarak bilinen bir oranti

sabitini verir. Grafikteki OA noktas1 orant1 simirin1 temsil eder.

Genellikle 0,05 zorlanma miktarlarina kadar metalik malzemeler elastik
davranig sergilerler. Diger bir degisle gerilen malzeme serbest birakildiktan sonra,
malzeme orijinal sekline geri doner. Malzemeyi daha fazla deforme ettigimizde, bu
bolgede Hooke bagintisi gegerliligini yitirir, malzeme orjinal seklini koruyamaz, artik
malzeme plastik deformasyona ugrar. Plastik deformasyonun basladigi zoru tayin
etmek, malzeme tasariminda Onemlidir. Elastik-plastik deformasyon gegisinin
olustugu zor degerine elastik sinir veya akma dayanimi (Sekil 3.4 de B noktasi)
denilmektedir. Akma dayanimini tespit etmek genelde zordur, bunun igin 0,002 civari
zorlanma degerinden egriye parelel bir dogru ¢izilir. Bu dogrunun egri iizerinde kestigi
nokta akma dayanimi olarak alinir. Sekilde C noktasi ile belirlenen diisiik verim
noktasinda plastisite olugsmaya baslar ve sonrasinda kalici plastik deformasyon olusur.
Daha sonra, zorlanma kirilma noktasina kadar artis gosterip, daha sonra ani kopmanin
olustugu sekilde E noktasina kadar azalmaktadir. Cekme dayanimi bu egride olusan
maksimum zora (Sekil 3.4° de D) karsilik gelmektedir. Diger bir degisle, ¢cekme
dayanimi malzemenin dayanabilecegi maksimum yiiktiir. Bu yiikten sonra malzeme

kirilmaktadir.

3.2.4 Elastik ve Plastik Degisim

Malzemeye uygulanan zoru kaldirdiktan sonra, malzeme orijinal haline geri donerse,
bu o6zellik esneklik olarak bilinir. Elastikiyet, malzemelerin mikroskobik 6zelliklerine
baglidir ve malzemeden malzemeye degisir. Ornegin, metaller kristal kafesten olusur,
bu nedenle yeniden sekillendirme bu kristal hiicrelere baglidir. Kauguk ve polimerler

malzemelerinde, polimer zincirleri uygulanan zorun etkilerinden sorumludur.

Elastik smir ve elastik modiili tim elastikiyet olgusunu aciklar. Celik gibi sert
malzemelere deformasyona ugratabilmek igin, yiiksek elastik modiillerine sahip
olduklart igin yiiksek zor uygulamak gereklidir. Ote yanda, kaucuk gibi yumusak

malzemeler diisiik elastik modiiliine sahiptirler ve deformasyona ugratmak daha
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kolaydir. Ancak, elastik sinirin lizerinde yiiksek zor uygulandiginda, uygulanan zoru
kaldirdiktan sonra malzeme orijinal formuna geri donmez, hatta bagka farkli boyut
veya malzeme sekline doniisiir. Burada kalic1 olarak deformasyon meydana gelir.
Artik malzeme plastik deformasyonun etkisindedir. Elastik siur, elastik ve plastik
deformasyon arasindaki sinirdir. Bu sebeple, elastikiyet hem elastik modiiliine hem de
elastik sinira baghdir. Ornegin, kauguklar yiiksek elastik smir ve diisiik elastik
modiillerini sergilerler. Boylece, lastikleri daha biiyiik degerlere kadar germek daha

kolaydir.

el Elastik Sunsr Cekme Noktas
o Disik verim D

" Noktas

C E
. Kinima
Noktas
Zor
5
2
@
'g :
Plastk o0ige
Zorilanma >

Sekil 3.4 Zor- Zorlanma egrisi (BYJUS).

Zor arttiginda, Hook yasasina gore belirli bir sinir iginde gerginlik de artar.
Ancak bu elastik sinirin 6tesinde, zor ile zorlanma dogru orantili degildir. Plastisite bu
elastik sinirin  Gtesinde gerceklesir. Plastik davranis, bir malzemenin kalict
deformasyonunu agiklar. Gerilmeyi giderdikten sonra, malzeme orijinal sekline veya
boyutuna geri dsnmez. Ornegin, kauguk daha fazla zor tasimaz ve maksimum gerilme
uyguladiktan sonra kirilma noktasina gecer ve geri donmez. Plastisite yine

malzemeden malzemeye degisir.
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3.2.5 Elastik Modiilii

Malzemeler kiigiik zorlara maruz kaldiginda, zor ve zorlanma arasinda

dogrusal bir bagint1 olusmakta olup, Hooke Yasasi’n1 saglamaktadir;

o=Ee . (3.10)

Burada, E orant1 sabiti Young modiilii veya elastik modiilii olarak adlandirilmaktadir.
Sekil 3.4°de goriildiigii lizere, orant1 limitine kadar zor-zorlanma arasinda dogrusal bir
baginti bulunmaktadir. Dogrusal bu egrinin egimi Young modiiliinii vermektedir.
Thomas Young (18.yiizy1l) katilarin elastikiyetini tek boyutta incelemistir. Young
modiilii bir malzemenin temel 6zelligidir ve esas olarak basinca ve sicakliga baglidir.
Young modiilii herhangi bir malzemenin sertligi hakkinda bilgi verir. Ayrica,
malzemeye ¢ekme zoru veya basma zoru uygulanarak, izotropik malzemenin

boyutlarini agiklar.

3.3 Termal Ozellikler

3.3.1 Cift dagilhim fonksiyonu

Cift dagilim fonksiyonu (g (r)) sistemlerin yapisal 6zelliklerinin incelenmesini
saglar. g(r) fonksiyonu, merkezdeki bir atomun kendisinden r uzakligindaki komsu
atomlarin bulunma olasiligin1 tanimlar. Sekil 3.5’de goriildiigii lizere, merkezdeki
yesil renkteki atomdan r kadar uzakliktaki ve bu atomu ¢evreleyen dr kalinligindaki
halkaya karsilik gelen g(r)’deki birinci tepenin altinda kalan alan 1. koordinasyon atom
say1sini, ikinci tepenin altindaki alan 2. koordinasyon atom sayisini ve diger tepelerin

altinda kalan alanlar da diger komsu koordinasyon atom sayisini1 vermektedir.

Cift dagilim fonksiyonu, belirli bir hacimde bulunan pargacik ciftleri arasindaki
mesafelerin dagilimini agiklar. Cift dagilim fonksiyonu yogunluga ve sicakliga
baghdir. Sekil 3.5’de goriildiigii gibi r uzakliginda dr kalinliktaki halkada bulunan
atomlarin bulunmas: ile elde edilir. Boylece malzemenin yapisal ve termodinamik
ozellikleri hakkinda bilgi verir. g(r)’in farkli fazlardaki davraniglart Sekil 3.6’da
Ozetlenmistir. Kristal yapidaki sistemlerin ¢ift dagilim fonksiyonlar1 belirli
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uzakliklarda keskin pik davraniglarinin gostermesinin sebebi o uzakliklarda kristal
diizeninde atomlarin yogunlastigini1 gosterir. Sekil 3.6 b) sikkinda ikinci tepecikteki
yarilma amorf yapilarin karakteristik 6zelligidir. Stvi durumda kristal keskin  pikler
yumusamakta ve genislemekte olup, gittikge kristal diizenin bozuldugunu
isaret etmektedir (Sekil 3.6 c¢). Gazlarda ise, atomlar rastgele dagilma egiliminde olup,

atomlarin her bolgede esit miktarda dagildigini ifade eder (Sekil 3.6 d).

1. koordinasyon sayisi

Sekil 3.5: Cift dagilim fonksiyonu.

Birden fazla c¢esit atom icin de ¢ift dagilim fonksiyonu belirlenmesi
miimkiindiir. g(r), yogunluk — yogunluk korelasyon fonksiyonu seklinde (Hwang ve
Lee 2005) asagidaki gibi tanimlanir;

g(r) = %(Z Z S(r—my) . (3.11)

i i#j
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Bu denklemde, V sistemin hacmi, N atom sayisi, r merkez atom ile diger atomlar
arasindaki uzaklik, 7;; kabuk igindeki atomlarin uzakligidir. Bu tanimi asagidaki

matematiksel bagint1 ile de gosterebiliriz (Haile 1992);

V n(r)

9(r) = N 4nr2Ar (3.12)

Burada, n(r) koordinasyon sayis1 ve 4mr?2Ar kabugun hacmidir.

Sekil 3.6: g(r) cift dagilim fonksiyonu; a) kati kristaller, b) kat1 amorf yapilar, c) s1v1 ve
d) gaz fazlari igin.
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3.3.2 Is1 kapasitesi

Is1 kapasitesi maddenin karakteristik bir 6zelligidir ve sicakliginin bir birim
artirmak i¢in gerekli 1s1 miktaridir. Bir nesnesin 1s1 kapasitesi C ile gosterilir;
(3.13)

¢= lim =

M kiitleli bir cisme AQ kadar 1s1 verildiginde sicaklik AT kadar yiikselmektedir. Faz
gecisi esnasinda sicaklik degismeksizin maksimum aldig1 enerji erime noktasini tespit
etmede Onemlidir. Erime esnasinda sistem enerji almaya devam etse de sicaklik
degismez. Sistemin sicakligini iki siirecte degistirebilirsiniz; Sabit hacimde veya sabit

basingta.

Sabit hacimde bir islemden gecen bir sistem, higbir is yapilmadigini ima eder,
bu nedenle saglanan 1s1 sadece i¢ enerjideki degisime katkida bulunur. Bu sekilde elde
edilen 1s1 kapasitesine sabit hacimde 6zgiil 1s1 (sabit hacimde 1s1 kapasitesi) denir ve

C, olarak gosterilir;

C - <6E > (3.14)
v \oT/y '

Bu denklemden de anlasilacagi iizere, sabit hacimde 1s1 kapasitesi sistemin toplam

enerjisinin sicakliga gore tiirevi seklinde tanimlanmaktadir. Diger bir yanda, sabit

basingta 1s1 kapasitesi ise sistemin H enthalpisinin sicakliga gore degisimi seklinde

ifade edilir;

- (6_H) _ (3.15)
T /p

Malzemelerin erime sicakligin1 bulmak i¢in €, ’nin sicakliga gore degisimi incelenir.
Faz gecisi sirasinda ne kadar enerji verilirse verilsin sistemin sicaklig1 artmaz, fakat

atomun orgii diizenini degistirir.

Is1 kapasitesini tespit etmenin diger yontemi ise enerji dalgalanmalarinin
istatistiksel ortalamasidir (Allen ve Tildesley 1987). NVT kanonik kiime istatistigine

gore, kinetik enerjiden gelen kisim sabit oldugu i¢in 1s1 kapasitesini potansiyel
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enerjideki degisim olusturmaktadir. TVN kiimesinde Z esbolisim fonksiyonu

asagidaki gibi tanimlanir;

1 =t 3.16
Z:EfekBT(dpdr)N . (3.16)

Burada H sistemin Hamiltonyeni, ks Boltzman sabitidir. Denklemdeki integral faz

uzay1 hacmi iizerinden alinmaktadir. Hamiltonyen kiime ortalamasi ile toplam enerji

elde edilir;
L[ HekoT (dyd, )" (3.47)
(H)=E =< T
1 . =f
= J eFaT (dpd, )V
Denklem (3.14) uygulanirsa
1 1 (3.18)
— 2y _ 2
CV kBTZ <H ) kBTZ (H>

denklemi elde edilmektedir. Her iki taraf Nkgifadesi ile boliindiigiinde asagidaki

denklem olusur;

G G
Nky  Nkg T2

= (H?) ~ (H)? 19

NVT istatistik kiimesinde kinetik enerjiden gelen terim sabittir. Hamiltonyen

denklemi buna gore tanimlandiginda, C, denklemi agagidaki gibi olur;

Gy

v (3.20)
kg  Nkg*T?

(PE?) — (PEY) + 2

Burada, N toplam atom sayisi ve (PE) potansiyel enerjinin istatistik kiime

ortalamasidir.
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3.4 Yay Fizigi

Fiziksel olarak yay, mekanik enerjiyi depolayabilen elastik cisimlerdir.
Genelde metallerden yapilir. Yay terimi yaygin olarak sarmal yapidaki yaylar icin

kullanilmaktadir.

Kuvvetin etkisi ile konumu degisen genel bir fiziksel sistem (piirlizsiiz yatay
bir yiizey iizerindeki bir sarmal yaya bagli cisim) Sekil 3.7°de verilmistir. Yay, denge

(x=0) konumundan gerilir veya sikistirilirsa, cisim {izerine

F = —k% (3.21)

ile verilen bir kuvvet uygular. Bu kuvvet geri c¢agirict kuvvet olarak adlandirilir.
Burada x, cismin gerilmemis (x = 0) konumuna gore yer degistirmesi, K yayimn kuvvet
sabiti olarak adlandirilan pozitif bir sabittir. Yaylar i¢in Hooke kanunu olarak bilinen
bu kuvvet yasasi, sadece kiiclik yer degistirmeler i¢in gecerlidir. Esitlikteki eksi isareti
ise, yaym etkidigi kuvvetin daima yer degistirme ile zit yonlii oldugunu ifade eder.
Diger bir degisle, elastik sinirin 6tesine uzatilmadigi veya ¢ekilmedigi siirece yaylar
Hooke kanuna uyar. Sert yaylar daha biiyiik, yaumusak yaylar daha kiigiik k degerlerine
sahiptir (Martin 2020).

Yay x yer degistirmesi kadar sikistirilip birakildiginda yay kuvveti

W L (3.22)
2

kadar 1s yapar. Ayrica, yay sikistirildigi veya gerildiginde bu is miktar1 kadar yayda
potansiyel enerji depolanir;

sl (3.23)
2

Yay denge konumundan sikistirildiginda cismin kinetik enerjisi potansiyel enerjiye
doniisiir. Yay denge konumuna tekrar geldiginde yayda depolanan potansiyel enerji

cisme kinetik enerji olarak aktarilir (Sekil 3.8);
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1 (3.24)

K= 5 mv?
F
—
Cekme
—
Sikistirma

Sekil 3.7: Piiriizsiiz yatay bir yiizey iizerindeki bir sarmal yaya bagli m kiitleli bir
cisim gerildiginde veya sikistirildiginda, cisim tizerine etkiyen geri ¢cagirict F
kuvvetin gosterimi.

(a)

le—x —|-=

|
|
! e |
] Bl T
K;=0
(b)
x=10
| —-
| v
A AT A A A v =
_h'_, = —.';;.rm i

Sekil 3.8: Sikistirilan yayda depolanan U potansiyel enerjisi ve serbest birakildiginda K
kinetik enerjiye aktarima.
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4. VERILER VE YORUM

Nanoteknolojinin gelismesiyle birlikte, yeni nano yapili malzemeler ve
bunlardan olusan cihazlarin gelistirilmesi konusunda bilimsel ilgi artmaktadir.
Nanomalzemeler, 6zellikle bir boyutlu nanoyapilarda, yiiksek yiizey/hacim oranlari
nedeniyle ¢esitli alanlarda benzersiz 6zellikler ve faydalar gosterdigi i¢in, bu nano
yapili malzemelerin mekanik 6zelliklerinin bulk yapilarina gére nasil farklilastiginin
arastirilmasina yonelik ¢alismalar giindem olusturmaktadir.

Ozellikle, nanoyaylar veya nanobobinler tek boyutlu nanoyapilar olup, &zel
periyodik ve elastik 6zelliklerinden dolay1 nanoelektromekanik sistemlerdeki umut
verici uygulamalar1 giderek daha fazla ilgi géormektedir. Bu uygulamalar arasinda
nanoyaylarin mekanik 6zelliklerini karakterize etmek biiyiik 6nem tagimaktadir. Bu
sebeple, bu tez calismasinda nanoyay yapida C ve Si nanomalzemeler tasarlandi ve
bunlarin mekaniksel 6zelliklerin yaninda bazi termal 6zellikleri de incelendi.

Yapisal parametrelerin mekaniksel 6zelliklere etkisini inceleyebilmek i¢in onii¢
farkl1 hem C hem de Si nanoyay yapilar olusturuldu. Ayrica kor@kabuk yapida SiC
nanoyaylar, kor bolgesine Si malzemesinin kabuk bolgesine yerlestirilen C
malzemesinin kaplanmasi ile olusturularak, bu yapilarin mekaniksel 6zelliklere
etkileri de irdelendi. Bu tiir malzemeler tek tip malzemeden olusan nanoyapilara gore
oldukgca farkli 6zellikler gostermekte olup, malzeme ¢esidine gore fiziksel 6zelliklerde
tyilesme gostermektedir. Kor@kabuk nanotellerin biiyiikliigli, malzeme ¢esidi, kabuk
kalinlig1 ve geometrik yapist bu malzemelerin fiziksel ozelliklerini degistirmede
onemli faktorlerdir. Bu sebeple, uygun boyutlarda segilen yay geometrik yapisindaki
nanotelin uygun kor ¢api1 veya kabuk kalinliginin segilmesi ile istenen ozelliklere
ulasilmasi ve nanoyapinin performansinin iyilestirilmesi miimkiin hale gelir. Kabuk
bolgesindeki malzeme ¢esidinin etkisini izleyebilmek i¢in de Si@C kor-kabuk
nanoyayin yaninda C@Si nanoyaylar1 da tasarlandi. Tablo 3.1°de verilen model
yapilari, atom sayilar1 ve kor ve kabuk bolgesindeki atomlarin yiizdelik oranlar1 Tablo
4.1¢de listelenmistir. Elmas yapisindaki Si kristalinin 6rgii parametresinin (5,43 A) C
Orgii parametresinden ¢ok farkli olmasi ve nanoyay yapi parametrelerinden sadece
nanoyayin yarigapinin orgii parametrelerine (3,57 A) gore degiskenlik gostermesinden
dolayr Si (23880 — 73192) ve C (83960 — 257300) nanoyaylarin atom sayilari
birbirinden oldukga farklilik gostermektedir. NY modelinde (nanotelin yaricapi haric)
yapist olusturulan kor@kabuk nanoyaylarin atom sayilar1 ise 37200-74480 araliginda
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degiskenlik gostermektedir. Nanoyaylarin kuvvet sabiti (yay sabiti) yayda biriken
potansiyel enerjinin kiiglik yer degistirmeye gore davranisindan bulundu ve elastik
smirlar igerisinde zor-zorlanma iliskileri elde edildi. Model sistemlere z yo6niinde
¢ekme kuvveti uygulanarak hesaplanan elastik modiiliine, yay parametreleri ve kor
cap1 ya da kabuk kalinliginin etkisi irdelenmistir. Si nanoyaylarin (NY modelindeki)
erime davranisi toplam enerji, 1s1 kapasitesi, ¢ift dagilim fonksiyonu gibi termal

Ozelliklerin sicakliga bagimliligina gore incelenmistir.

4.1 Mekaniksel Ozellikler

4.1.1 Cekme Deneyi Sonuclari

Bu tez ¢alismasindaki model yaylarin iist ve alt kesit kisimlarin %10’luk
kisimlar sabit tutuldu ve geriye kalan orta bolgesine z yoniinde ¢cekme deneyleri NPT
istatistigi MD simiilasyonlari ile uygulandi. Her bir nanoyaya 10 K sicakliginda 5x108
fs1 eksenel zorlanma hiz1 ile sekil degisimi % 200 olana kadar yaylara cekme islemi
uygulandi. NY modelindeki saf C ve Si nanoyaylarma 250 K, 500 K ve 1000 K olmak
tizere ii¢ farkli sicaklikta bu ¢cekme islemleri gergeklestirilerek, sicakligin elastisite

ozelliklere etkisi de incelendi.

Nanoyaylara [001] yoniinde eksenel zorlanma uygulandiginda, akma
dayanimi sirasinda malzemelerin yoneliminde degisimler gozlemlenerek, plastik
bozuluma ugramislardir. Sekil 4.1’de NY yapisindaki C nanOyayina uygulanan ¢ekme
islemi esnasinda bazi zorlanma durumuna gore malzemenin sekil degisimi
goriilmektedir. Sekil 4.1a)’da nanoyaya herhangi bir ¢cekme uygulanmamistir. Daha
sonra elastik sinirlar1 igerisinde (b sikki) malzemeye ¢ekme uygulanmis olup, atom
diziliminde herhangi bir degisiklik gézlenmemektedir. Bu degisimler akma dayanimi
sonrasinda (c sikki) baslamaktadir. Sonra, plastik deformasyona ugradig: goriilmekte
(d sikki1) ve siineklik 6zelligi fazlaca olmasindan dolayr boyunun iki kati kadar
cekilmesine ragmen herhangi bir kopma goriilmemektedir ve boyuna uzamaktadir (e

sikka).
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Tablo 4.1: Saf Si ve C nanoyay ve C-Si bazli kor@kabuk nanoyaylarin atom sayilari ve

oranlar1
Model Atom Sayilan
C Si
NY 83960 23914
NYN1 126914 36029
NYN2 169800 48100
C NYN3 212100 60204
2 NYP1 84300 23880
% NYP2 84600 24004
§ NYP3 84722 24414
4= NYrl 131250 37378
Y NYr2 189100 53780
NYr3 257300 73192
NYR1 118800 31870
NYR2 139900 39780
NYR3 168100 47880
Atom Sayilari Yiizdelik Toplam Atom
Oranlan Sayisi
C Si %C %Si

§ Cl@si3 2507 34703 6,7 93,3 37200
g C2@si2 13299 23769 35,9 64,1 37068
S C3@sil 32438 11130 74,5 25,5 43568
5 Cc4 66924 0 100 0 66924
-cgc Sil@C3 1709 72771 2,3 97,7 74480
S Si2@C2 8759 61883 124 876 70642
E Si3@C1 21310 33922 38,6 61,4 55200
Si4 0 44094 0 100 44094
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a. €=00 b. &=01 c. €=0.32 d =069 |e. €£=20
elastik bolge sinir1 | akma dayanimi cekme dayanimi

Sekil 4.1: C nanoyaya uygulanan ¢ekme islemi siirecinde aldig1 bazi zorlanma durumundaki

goriintileri.

NY modelindeki saf C ve Si nanoyaylarin 10 K sicakliginda zorun zorlanmaya
kars1 davranis1 Sekil 4.2°de gozlenmektedir. Sekilde goriildiigii lizere, yaklasik olarak
€=[0:0,1] araliginda zorlanma lineer bir davranis sergilemekte olup, bu bdlgede
malzemeler elastik deformasyona ugramaktadir. C ve Si nanoyaylari sirast ile gak =
9,77 GPa ve gak = 2,71 GPa akma dayanimlarindan sonra plastik deformasyona
gecmeye baslamaktadir. Sekilde iki tepe noktasi1 goriilmekte olup, bu bolgelerde artik
yay 6zelliginin bozuldugu ve ikinci tepeden sonra malzemenin tel boyutuna gectigini
gostermektedir. IKinci tepe noktasma karsilik gelen zoru gekme dayanimi olarak
tanimladigimizda, C ve Siicin o ¢ekme dayanimlari sirastyla 12,3 GPa ve 6,3 GPa
olarak bulunmugtur. Goriildiigii tizere, C nanoyayinin akma ve ¢ekme dayanimlari ve
bunlara karsilik gelen zorlanma degerleri, Si nanoyayinkine gore daha biiyiik olmasi,
plastik deformasyona kars1 C malzemesinin daha dayanikli oldugunu ve yay 6zelligini

daha iyi korudugunu ifade etmektedir.

Saf C ve Si nanoyaylara 10 K, 250 K, 500 K ve 1000 K sicakliklarinda eksenel
¢ekme islemi uygulandi ve sicakligin elastik sinirlar igerisinde zor-zorlanma iliskisine
etkisi sirasiyla Sekil 4.3 ve 4.4’ de verildi. Sicaklik arttik¢a her bir zorlanmaya karsi
zorun azaldigr ve C nanoyayin sicakliga daha direngli oldugu agik¢a sekillerde

goriinmektedir.
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Zorlanma
Sekil 4.2 :10 K sicakliginda NY modeli yapisindaki C ve Si nanoyaylarin zor-zorlanma
iliskisi

7 I " T T T T T T T T
T=10 K1(X)
T=250 K f(x)
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a4t ]
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Sekil 4.3: NY modeli yapisindaki C nanoyayimn 10 K, 250 K, 500 K ve 1000 K
sicakliklarinda zor-zorlanma iliskisi.
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Sekil 4.4: NY modeli yapisindaki Si nanoyayin 10 K, 250 K, 500 K ve 1000 K
sicakliklarinda zor-zorlanma iliskisi

412 Yay Sabiti

Saf ve kor@kabuk nanoyaylarin k yay sabitini hesaplamak i¢in, yaylarda
depolanan potansiyel enerjinin kiiclik yer degistirmeye (elastik sinirlar icinde) gore
davraniglar1 incelendi. NY model yapisindaki C ve Si nanoyaylar i¢in bu davranis
sirastyla Sekil 4.5 ve 4.6°da sergilendi. Veriler lineer bir fonksiyona uyarlanmis olup,
birinci derece katsayisi K yay sabitini vermektedir. C ve Si malzemeler i¢in yay yapisal
parametrelerin K yay sabitine iliskisi incelendi. Yapisal parametreler r tel yarigapi, R
yay yaricapi, P yay araligi ve N doniis sayisindan olugmaktadir. Her bir yapisal

parametre i¢in dort farkli degerler alindi ve bu modellere ¢cekme deneyleri uygulandi.

C ve Si nanoyaylarin k yay sabitinin r tel yarigapi, R yay yarigapi, P yay araligi
(yay dontisleri arasindaki yiikseklik) ve N doniis sayisina gore davranislari sirasiyla
Sekiller 4.7, 4.8, 4.9 ve 4.10’da sunulmustur. Tel yaricap1 ve yay yaricap: arttikca
yaylarin K yay sabitinde artis goziikmektedir. Bu artis C nanoyayinda daha hizh
olmaktadir. Bu da herhangi bir deformasyona kars1 Si nanoyayina gore daha direncli

oldugunu ifade etmektedir. Diger bir yandan ise yay araligi ve donme sayisindaki
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artig k yay sabitinde azalmasina neden olmaktadir. Yine C malzemesindeki diisiis Si

malzemesine gore daha hizli olmaktadir.

Nanoboyuttaki malzemeler makro boyuttaki Ozelliklerinden farkliliklar
gosterebilmektedir. Makro boyutta nanoyaylarin geometrik parametrelere asagidaki

bagint1 ile iligkilendirilir (Shigley 1996);

L= Gr* ((4.2)
" 16R3N

Burada, G kesme modiiliidiir. Stirekli ortamdaki ¢ubuklarin sertlik 6zelliginin
geometrik parametrelere bagimliliklarini analiz edebilmek i¢in, Fonseca ve arkadaslar
(2004) siirekli ortam Kirchhoff modelini gelistirmisler ve asagidaki esitlik ile yay

sabitinin yapisal parametrelere bagimligini agiklamislardir;

3x10°17 : . . .

25x10°17 | |

R

—

e
3
T

1

1.5x10°17 | _

1x10°17 | i

Potansiyel Enerji (Joule)

5x10-18 | i

0 5x10-20 1x10‘219 1.?1&19 2x10-19 2.5x10°
X412 (metre©)

Sekil 4.5: NY modeli yapisindaki C nanoyaym 10 K sicakliginda potansiyel enerjinin yer
degistirmeye gore davranisi.
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Sekil 4.6 : NY modeli yapisindaki Si nanoyayin 10 K sicakliginda potansiyel enerjinin yer
degistirmeye gore davranisi.

_Er* cosa 4.2)
~ 8NR3
Burada, « asagidaki gibidir;
P 4.3)
TR

(4.2) denklemindeki E, nanoyayin elastik modiiliidiir. Cu nanoyaylarina bu Kirchoff
modeli uyarlanmis ve K yay sabitinin yapisal parametrelere bagimliligi Chang ve Yeh
(2008) tarafindan gerceklestirilen molekiiler istatistik simiilasyon yontemi ile
belirlenmistir. Bu tez calismasinda yapilan simiilasyon ¢alismasi sonuglarina gore,
tel yarigapinin artmasi ile yay sabitinin artmasi, doniis sayisinin ve yay araliginin
artmasi ile yay sabitinin azalmasi Kirchhoff ¢gubuk modelini desteklemektedir. Fakat,
bu modele gore, yay sabiti yay yarigapina R ile bagimhidir ki, Sekil 4.8°den de
goriilecegi iizere, k sabiti R yay yarigapi ile dogrusal bagint1 gostermektedir. Bu sonug
Chang ve Yeh tarafindan (2008) Cu nanoyaylar i¢in gerceklestirilen molekiiler

istatistik simiilasyon sonuglar1 ile uyusmamakta ve Kirchhoff ¢ubuk modelini
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desteklememektedir. Ayrica, bu ¢alismadan elde edilen yay sabitinin yay yarigapina
dogrusal bagimlilig1 (4.1) Denkleminde verilen bulk sonuglari ile de uyusmamakta

olup, bulk 6zelliklerle farklilik géstermektedir.

C ve Si nanoyaylarinin yay sabitinin sicaklia bagimliligi Sekil 4.11° de
sunulmustur. Karbon nanoyay1 diisiik sicaklikta ¢ok fazla etkilenmez iken, 1000 K
civarinda nerdeyse yay sabiti {i¢ kat1 diislis yasamustir. Si nanoyayini inceledigimizde,
diisiik sicakliklarda yay sabiti oldukga etkilenmis olup, 500 K ve 1000 K civarlarinda
hemen hemen ayn1 degeri almistir. Ayrica, C ve Si nanoyaylarin yay sabitinin yapisal

parametrelere ve sicakliga bagimliligi Tablo 4.2°de de listelenmistir.

400 = T T T T T

350 - 4

hs] ] oM
o [S)] o
o o o
T T T

1 1 1

K sabiti (N/m)
[ |
[ ]

100 | i

50 |- L |

0 1 1 I 1 1 1 1
16 18 20 22 24 26 28 30
r Tel Yarigapi (A)

Sekil 4.7: 10 K sicakliginda C ve Si nanoyaylarm k (N/m) yay sabitinin r (A) tel yarigapina

gore davranisi.

Tek tip atomlu yaylarin yaninda, C-Si bazli kor@kabuk nanoyaylarinin da
cekme MD simiilasyonlar1 gergeklestirildi. Ornek olarak, Si2@C2 nanoyaymn ele
aldigimizda. Burada iki Si 6rgii sabiti uzunlugunda kor bolgesinde Si, iki C orgii
uzunlugunda da kabuk bolgesine C yerlestirilmistir. Malzemelerin kesistigi bolgenin
uzunlugu, C ve Si malzemelerinin 6rgii sabitinin ortalamasi alinarak belirlenmistir.

Yay sabiti kabuk kalinligina ve malzeme ¢esidine gore degisim gdstermektedir. Elde
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Sekil 4.8: 10 K sicakliginda C ve Si nanoyaylarin k (N/m) yay sabitinin R (A) yay
yarigapina gore davranist

140 : . . . . .

120 4

100 4

K sabiti (N/m)

20 | |
[ ]
hd .

0 1 1 1 1 1 1
50 60 70 80 _ 90, 100 110 120
P Yay Araligi (A)

Sekil 4.9: 10 K sicakliginda C ve Si nanoyaylarin k (N/m) yay sabitinin P (A) yay araligina
gore davranisi.
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Sekil 4.10: 10 K sicakliginda C ve Si nanoyaylarin k (N/m) yay sabitinin N donme sayisina gore
davranisi.
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Sekil 4.11: NY modelindeki C ve Si nanoyaylarin k (N/m) yay sabitinin T (K) sicakligina gore
degisimi.
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edilen sonuglar Tablo 4.3’de listelendi. Dort katman Si ve C nanoyaylarin yay sabitleri
sirastyla, 45,96 N/m ve 74,29 N/m olarak hesaplanmistir. Kor bolgesindeki C, Si
kabuklariyla kaplandiginda ve bu Si kabuk katman sayisi arttikga bu degerler
diismekte ve 36,40 N/m degerine ulagsmaktadir. Sonug olarak, C@Si nanoyaylar1 saf
C ve saf Si nanoyayma gore yumusama gostermektedir. Diger bir yanda, kor
bolgesindeki Si malzemesi, C ile kaplaninca ve C kabuk katman sayis1 arttik¢a yay
sabiti 117,20 N/m olmakta, nerdeyse saf nanoyaylarin iki kat1 kadar deger almaktadir.
Sonug olarak Si@C nanoyaylari, saf C ve saf Si nanoyayina gore oldukega sert bir yay

sabitine sahip olup, herhangi bir deformasyona yiiksek direng gostermektedir.

C@Si nanoyaylarin yay sabitinin kabuk kalinligina gore davramisi Sekil
4.12°de, Si@C nanoyaylarininki de Sekil 4.13’de sergilenmektedir. Goriildiigii iizere,
Saf C ve Si nanoyaylarin yay sabiti, C@Si bazli kor@kabuk nanoyaylara gore yiiksek
iken, dis katman Si ile kaplaninca bu yaylar daha yumusamakta olup, esnekligi daha
fazlaca olmaktadir. Kabuk kalinlig1 iki katman Si’dan olusunca yay sabiti minimum
degerini almaktadir. Diger bir yanda, Sekil 4.13’1i inceledigimizde, Si malzemesini C
ile kaplayinca kor@kabuk nanoyayaylarin yay sabiti saf nanoyaylara gore artmakta,
hatta kor bolgedeki Si ii¢ katman C ile kaplandiginda bu 6zellik maksimum olmaktadir
ve yaymn esnekligi azalmaktadir. Kisaca, C@Si kor@kabuk nanoyaylarina gore ters

bir davranig gostermektedir.

4.1.3 Elastik Modiilii

Nanoyaylara elastik deformasyon bdolgesi sinirlarinda uygulanan eksenel
cekme isleminin sonucunda zor zorlanmaya lineer bagimlidir. Ornek olarak, Si4, C4
ve Sil@C3 ve C1@Si3 nanoyaylarin elastik sinirlari igerisinde zor zorlanma iliskisi
Sekil 4.14°de sergilenmektedir. Bu zor-zorlanma bagintisinin egimi elastik modiiliiniin
degerini vermektedir. Saf C ve Si nanoyaylarin elastik modiilleri 10 K, 250 K, 500 K
ve 1000 K sicakliklarinda, Si@C ve C@Si kor-kabuk nanoyaylarnki de 10 K
sicakliginda hesaplandi. Ayrica C ve Si nanoyaylarin yapisal parametrelerin elastik
modiiliine etkisi de incelendi. Sonuglar sirasiyla Tablo 4.2 ve Tablo 4.3° de listelendi.

C’un elastik modiilii Si nanoyayina gore yiiksek olup,
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Tablo 4.2: Farkli model yapilarindaki C ve Si nanoyaylarin 10 K sicakligindaki yay sabiti k
(N/m?) ve Elastik Modiilii E (GPa).

C Si

Model k (N/m) E (GPa) k (N/m) E (GPa)
131,00 44,70 29,00 11,10
130,00° 44,43 18,00 6,15
NY 123,00° 42,04° 14,00° 1,70°
54,00° 18,65° 15,00° 9,50°
NYN1 58,00 29,65 9,00 5,20
NYN2 34,00 23,14 7,00 5,69
NYN3 20,00 16,95 4,00 5,15
NYP1 45,00 23,99 13,00 7,80
NYP2 46,00 35,27 9,00 7,70
NYP3 28,00 29,20 5,00 7,44
NYri 217,00 47,40 54,00 11,80
NYr2 209,00 31,70 82,00 12,49
NYr3 371,00 41,40 108,0 12,80
NYR1 169,00 43,32 39,00 10,79
NYR2 206,00 42,20 49,00 10,98
NYR3 248,00 42,38 59,00 10,97

3250 K, 500K, ¢ 1000K sicakliginda alinmustir.

Tablo 4.3: Si-C bazli kor@kabuk yapili nanoyaylarin 10 K sicakligindaki yay sabiti k
(N/m?) ve Elastik Modiilii E (GPa).

C@si
Model k (N/m) E (GPa)
Si4 45,96 8,50
Cl@sSi3 36,40 8,12
C2@si2 34,40 9,37
C3@sil 43,10 15,18
C4 74,29 12,33

Si@C
Model k (N/m) E (GPa)
C4 74,29 12,33
Sil@C3 117,20 41,55
Si2@C2 98,87 26,48
Si3@C1 44,64 7,80
Si4 45,96 8,50
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Sekil 4.12: NY model yapisindaki C@Si bazli kor@kabuk nanoyaylarin k (N/m) yay

sabitinin kabuk kalinligina gore davranisi.
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Sekil 4.13: NY model yapisindaki Si@C bazh kor@kabuk nanoyaylarin k (N/m) yay

sabitinin kabuk kalinligina goére davranisi.
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Sekil 4.14: NY modeli yapisindaki Saf C ve Si nanoyaylar ile Sil@C3 ve C1@Si3 kor-
kabuk nanoyaylarin 10 K sicakliginda zor-zorlanma iliskisi.

sicaklikla bu deger diismekte ve nanoyaylarin eksenel c¢ekmeye karst direnci

beklendigi lizere azalmaktadir.

Saf nanoyaylarin E elastik modiiliiniin r tel yaricap1, R yay yaricapi, P yay
araligt ve N doniis sayisina gore davranislar sirastyla Sekiller 4.15, 4.16, 4.17 ve
4.18’da sunuldu. Tel ve yay yarigaplari, ve P yay araliginin degismesi saf nanoyaylarin
elastik modiilinde o6zelikle C nanoyayinda dalgalanmalar olugsmakta ve pek
degiskenlik gostermemektedir. Donme sayisindaki artis esnekligi artirdigi i¢in, elastik
modiiliiniin azalmasma neden olmaktadir. Bu degisim karbon nanoyayinda daha

belirgindir.

Sekil 4.19 saf nanoyaylarin elastik modiiliiniin sicakliga gore degisimini
vermektedir. Diisiik sicaklikta C nanoyay1 yay sabitinde oldugu gibi elastik modiiliinde
de pek etkilenmemekte olup, diisiik oranda azalma gostermektedir. Fakat 1000 K
civarinda sistemin gosterdigi direng nerdeyse iki kat daha azalmistir. Si nanoyayinda
500K’e kadar bir anormal derecede diisiis yasamakta, fakat son sicakliktaki artis Si
nanoyayindaki salinim hareketi saglikli bir veri almamiza engel olmaktadir. Si
nanoyayin toplam atom sayis1 C nanoyayin atom sayisina gore nerdeyse dort kat1 daha

az oldugu i¢in, bu sicaklikta Si atomlar1 daha fazla titresmektedir. Ayrica LAMMPS
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hazir paket programinda uygulanan ¢ekme deneylerinin yiiksek sicaklikta bazi hatalara
sebep verdigi rapor edilmistir. (Github, LAMMPSP)
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Sekil 4.15: 10 K sicakliginda C ve Si nanoyaylarin E (GPa) elastik modiiliiniin r (A) tel
yarigapina gore davranisi.

SiC bazli kor@kabuk nanoyaylarmin elastik modiilleri de hesaplandi ve
sonuglar Tablo 4.3’de verildi. Yay sabitinde oldugu gibi, elastik modiilii de kabuk
kalinligina veya kor ¢apina ve kabuktaki malzeme ¢esidine bagimlidir. Dort katman
Si ve C nanoyaylarin elastik modiilleri sirasiyla, 8,50 GPa ve 12,33 GPa olarak
bulunmustur. C malzemesi Si malzemesi ile kaplandiginda ve kor bolgesinin katman
sayis1 (C atom sayisi) arttikga sistemin deformasyona gosterdigi direng artmaktadir,
hatta ince bir Si katman: ile kaplandiginda saf C malzemesine gore daha fazla bir
direnc gostermektedir. Ote yanda, kordaki Si, C ile sarildiginda ve C katman sayisi
arttiginda elastik modiilii biiylik oranda artmakta ve nerdeyse saf C nanoyayinkine
gore dort kat1 kadar artis sergilemektedir. Diger bir degisle, Si malzemesinin C
tarafindan sarilmasiyla olusan Si@C kor-kabuk nanoyaylari deformasyona karsi

gosterdigi direnci oldukea iyilestirmektedir.
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Sekil 4.16: 10 K sicakhiginda C ve Si nanoyaylarm k (N/m) yay sabitinin R (A) yay
yarigapina gore davranisi.

60 ; . : T T T
C =n
Si -

w
o
T
1

I
o
T
1

E Elastik Moduli (GPa)
8 8

=
T

.
1

80 9.
P Yay Araligi (A)

0 |
50 60 70 100 110 120

Sekil 4.17: 10 K sicakhiginda C ve Si nanoyaylarm k (N/m) yay sabitinin P (A) yay araligma
gore davranisi.

78



60 . . . .

’ |
Si »
50 L d
© |
o
O 40 - -
E
o
3
230+ - 1
—
» |
©
020 - j
i |
10 b - 4
] - ®
0 L L L
1 2 4 5 6

3
N Ddnme Sayisi

Sekil 4.18: 10 K sicakliginda C ve Si nanoyaylarin k (N/m) yay sabitinin N dénme sayisina
gore davranisi.
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Sekil 4.19: NY modelindeki C ve Si nanoyaylarin E (GPa) elastik modiiliiniin T (K)
sicakligina gore degisim.
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Sekil 4.20 ve Sekil 4.21, sirasiyla, C@Si ve Si@C nanoyaylarin elastik
modiiliiniin kabuk kalinligina gore degisimlerini gostermektedir. Sekillerden de
anlasilacagi lizere, nanoyay Si ile kaplaninca ve katman sayis1 arttikca elastik modiilii
azalmakta, C ile kaplaninca ve katman sayisi arttik¢a da elastik modiilii artmakta, hatta

saf C nanoyayinkinden de daha iyi sonu¢ vermektedir.
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Kor-kabuk

Sekil 4.20: NY model yapisindaki C@Si bazli kor@kabuk nanoyaylarin E (GPa) elastik
modiiliiniin kabuk kalinligina gore davranist.

4.2 Termal Ozellikler

Saf nanoyayimin termal davranislari, toplam enerji, 1s1 kapasitesi ve ¢ift dagilim
fonksiyonu fiziksel 6zellikler irdelenerek incelendi. Yaylarin erime sicakliklar1 bu
ozelliklerin sicakliga bagimliliklarindan elde edildi. Toplam enerjinin sicakliga gore
degisimi Sekil 4.22° de verildi. Sekilde goriildiigli {izere, malzemenin kat1 oldugu
durumda dogrusal bir baginti bulunmaktadir. Daha sonra ani bir yiikselisle bu
dogrusalliga devam edip, s1v1 fazina gegmistir. Sistemin toplam enerjisindeki bu ani
artis sistemin eridigini gostermektedir ve bu andaki sicaklik erime sicakligini
belirlemektedir. Bu sicaklik Si nanoyay i¢in 1350 K olarak hesaplanmis olup
beklendigi lizere bulk deneysel degerlerinden (Si i¢in 1683 K) kiiciiktiir.
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Sekil 4.21: NY model yapisindaki Si@C bazli kor@kabuk nanoyaylarin E (GPa) elastik
modiiliiniin kabuk kalinligia gore davranisi.
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Sekil 4.22: NY modelindeki saf Si nanoyayinin toplam enerjisinin sicakliga bagimliligi.
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Nanoyaylarin erime sicaklig 1s1 kapasitesi-sicaklik iligkisinden de test edildi.

Is1 kapasitesi Denklem (3.20)’ da verilen potansiyel enerjinin ortalamasi hesaplanarak

elde edildi. Burada kinetik enerjiden gelen katki sabit olup (g kg), potansiyel enerjideki

degisim 1s1 kapasiteninin sicakliga bagimliligini belirlemektedir. Si ve C nanoyaylarin
sicakliga bagli molar 1s1 kapasitesi Sekil 4.23” de sunuldu. Sekilden gortildigii tizere,
erime sicakligina kadar yaklasik olarak ayni1 degerde kalip, erime sicakliginda birden
artis gostermektedir. Bu sicakligin iizerindeki sicakliklarda hafif bir artig gostererek
ayn1 miktarlarda seyretmektedir. Is1 kapasitesi-sicaklik bagintisindan elde edilen erime

sicaklig1 toplam enerji-sicaklik iligkisinden elde edilen degeri teyitlemektedir.
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Sekil 4.23: NY modelindeki Saf Si nanoyayinin molar 1s1 kapasitesinin sicakliga bagimliligi.

Python komutlarinda yazdigimiz analiz programi1 MD simiilasyon sonucunda
elde edilen atom konumlarimi kullanmakta ve model sistemlerin ¢ift dagilim
fonksiyonunu vermektedir. Farkli sicakliklarda atomlarin birbirine gore koordinasyon
davranigin1 gozlemlemek i¢in, saf nanoyaylarin ¢ift dagilim fonksiyonunun sicakliga
gore degisimi Sekil 4.24’de wverildi.  Sekillerdeki pikler, merkezdeki atomun
komsuluklar koordinasyonunu vermekte olup, bu piklerin altinda kalan alan yakin

komsu atom sayisini belirlemektedir. Sekilde diisiik sicaklikta (1000K) ¢ift dagilim
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fonksiyonunda gozlemlenen yiiksek pikler malzemenin kati fazda oldugunu ifade
ederken, sicaklik arttikca (1500 K) bu piklerin yiikseklikleri yumusamakta ve gittikge
genislemektedir. Belirli bir sicakliktan sonra (2350 K) bu piklerin keskinligi oldukga
zayiflamakta ve hatta baz1 piklerin yok oldugu gdziikmektedir. ilk pikten sonra belirli
bir g(r) degeri etrafinda salinim gdstermektedir. Bu durumda sistem sivi dinamigini

yasamaktadir.  Sekilleri inceledigimizde Si 1350 K sicakliginda eridigi

gozlemlenmektedir.
3 : : :
TOO0K ——
1500 K —
2350 K
2400K
25+ 2500K 1
2| |
S5}
(@]
1L
05|
0
0 2

Sekil 4.24: NY modelindeki Si nanoyaylarinin g(r) ¢ift dagilim fonksiyonunun sicakliga
bagimliligi.
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5. SONUCLAR

Bu tez c¢alismasinda, elmas kristal yapisinda saf C ve Si, ve bunlarin
kor@kabuk yapisinda nanoyay modelleri tasarlandi. Nanoyaylar farkli yapisal
parametrelerde (r tel yaricapi, R yay yarigapi, P yay araligit ve N doniis sayisi)
olusturulup, bunlarin bazi mekaniksel 6zelliklere etkisi MD simiilasyon yontemi ile
arastirildi. Ayrica kor@kabuk nanoyaylarin kabuk kalinligi ve kabuktaki malzeme
cesidi degistirildiginde k yay sabiti ve E elastik modiilii gibi mekaniksel davraniglarin
degisimi incelendi. Son olarak, saf Si nanoyayin toplam enerji, 1s1 kapasitesi ve ¢ift
dagilim fonksiyonu gibi fiziksel 6zelliklerin sicakliga bagimlilig1 hesaplandi ve erime
sicakliklart belirlendi. Bu calismada gerceklestirilen MD simiilasyon hesaplarindan

c¢ikarilan sonuglar asagida siralanmastir;

» Yapilan zor-zorlanma simiilasyon sonuclarindan goriilmiistiir ki, elastik

sinirlar1 icinde Hooke yasasi nano dlgekte de gecerlidir.

» Tel ve yay yarigaplarinin artmasiyla K yay sabiti degeri artarken, yay araligi ve
dénme sayisindaki degisim Kk yay sabitinin azalmasina sebep vermektedir. k
sabitinin R yay yarigapi ile dogrusal bagint1 icinde olmasi, Kk sabiti ile yay
geometrisi  arasinda iliski kuran Kirchhoff c¢ubuk modelini ve bulk
yapilarindaki davranisi desteklememektedir. Bu durumda, nano Olgekteki
nanoyaylarin makro 6lgege gore farkli davranislar sergiledigi sonucu ¢ikarila

bilinir.

» C nanoyayin Si nanoyayinkine gore K yay sabitinin degeri yiiksek olup, yay

parametrelerinin degisimine daha hizli cevap vermektedir.

» Kor bolgesindeki C malzemesi Si malzemesi ile kaplandiginda olusturulan
C@Si nanoyaylarinda Si kabuk katman sayisi arttik¢a K yay sabitinin azalmasi,
saf C ve saf Si nanoyaylarina gore deformasyona karsi daha yumusadigini
gostermektedir. Diger bir yanda, Si@C nanoyaylarindaki C katman sayis1
arttik¢a, yay sabiti yiikselmekte olup, saf nanoyayindaki degerinin nerdeyse iki
katina ulagmaktadir. Bu da deformasyon altinda Si@C nanoyaylarin daha

direncli oldugunu ifade etmektedir.

84



» Tel ve yay vyaricaplar, yay araligmin degisimi elastik modiiliini pek
degistirmezken, donme sayisinin artigi elastik modiiliinii beklendigi {izere

yumusatmaktadir.

> I¢ bolgedeki C ince bir Si katmani ile kaplandiginda eksenel ¢ekmeye
gosterdigi direng saf karbon yayinkine gore daha fazladir. Hatta, kor bolgesine
Si ve kor kismina C yerlestirip, katman sayisi arttirildiginda elastik modiilii saf
karbonunkine gore dort katina yakin bir degerde artig sergilemektedir. Kisaca
Si@C nanoyaylar1 eksenel olarak cekildiginde, gosterdigi direng diger

nanoyaylara gore oldukca kayda deger alir.

» Karbon nanoyayinin yay sabiti ve elastik modiilii diisiik sicakliklarda sicaklik
artisindan fazla etkilenmezken, silisyumun direnci olduk¢a zayiflamaktadir.
Sicaklik 1000 K kadar ¢ikarildiginda, karbonun mekanik 6zellikleri oldukga
zayiflarken, silisyum artik fazla etkilenmemektedir. Kisaca, makro boyutta
oldugu gibi, nanoyaylarin mekanik Ozellikleri sicaklik karsisinda

zayiflamaktadir.

» Beklenildigi lizere, Si nanoyayin erime noktas: bulk deneysel sonuca gore
diisiik ¢itkmigtir. Toplam enerjinin sicaklik bagintisindan hesaplanan erime
sicakligl, 1s1 kapasitesi ve ¢ift dagilim fonksiyonunun sicakliga gore

degisimlerinden de teyitlenmistir.

» C, Si ve SiC bazl kor@kabuk nanoyaylarin baz1 mekaniksel 6zellikleri ilk
defa bu ¢alismada verilmis olup, tahmin edilen bulgular deneysel ¢aligmalara

yon verecegi beklenmektedir.

» Gelecek bir ¢alisma ile bu ¢alismada tasarlanan diger nanoyaylarin termal ve

dinamik 6zelliklerinin tayin edilmesi planlanmaktadir.
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EKLER
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6. EKLER

1. Nanoyay Modelleme Arayiizii

Program python dilini kullanarak tek atomlu ve kor@kabuk nanoyay yapilar
tiretmektedir. Asagida Sekil EK 1’de programin ara yiizii goriilmektedir. Program hem
Windows hem de Unix isletim sistemlerinde calismakta olup, nnsprng-Gui.py

dosyast ile ara yliz ortaminda islev gérmektedir.

f Nanoyay Modelleme v0.12 - O
1 2 3 4 5
A A A A
) 5C 5C sC 5C 5C
Kisial Yapst bcc bec bee bce bec
] W v v
Element kisaltmasi |Cu ICu ICu |Cu ICu
2 lattice uzunlugu |1.D |1.0 |1.D |1.D |1.0

R Yay Yangap |1.D

rTelVangap 1.0 1.0 1.0 10 1.0

P Yayin Araligi |1.D
N Dénme Sayisi |1
Olugtur

Sekil EK 1. Nanoyay modelleme programinin arayliiz gériiniimii.

Algoritmanin isleyis sekli su sekildedir; Once yay sisteminden daha biiyiik
hacimli istenilen Orgii kristal yapida kiip olusturulmaktadir. Sonra, Denklemler 3.1-
3.5°deki formiilasyonlar kullanilarak istenilen yapisal parametrelerde yay olusturulup,
tasarlanan kiipe yerlestirilir. Yay hacminin disinda kalan atom bilgileri silinerek, 6rgii
kristal diizeninde yay yapisi tasarlanmig olunur. Elde kalan atom listesi istenen

nanoyayin yapisini olusturur

Tek atomlu yapilar i¢in en soldaki siitunda 6nce kristal 6rgii bi¢imi segilmeli,
sonra yapisal parametre bilgileri (a 6rgii uzunlugu, R yay yarigap, r tel yarigapi, P yay
araligt ve N donme sayisi) sirastyla doldurulmalidir. Diger dort siitiin
degistirilmediginde ve dokunulmadiginda, sonra da ‘Olustur’ diigmesine basildiginda

tek atomlu nanoyaydaki atomlarin konumlarimi veren c¢iktiyr ti¢ farkli formatta
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olusturulmaktadir. Bu ii¢ format .Immp uzantili LAMMPS girdi dosyasi, .xyz uzantili
dosya ve .xml uzantili dosya seklindedir. xyz uzantis1t OVITO gibi goriintiileme
programlar1 tarafindan kullanilan yaygin ve basit bir formattir. xml dosyasi i¢in

Microsoft magazasinda Ball & Stick adl1 program iicretsiz olarak indirilebilir.

Dort farkli kristal orgii yapisi tanimlanmistir; basit kiibik orgii (sc), yilizey
merkezli kiibik 6rgii (fce), hacim merkezli kiibik orgii (bcc) ve elmas kafes (diamond).
Ayrica 114 elementin tamaminin atom agirligi tanimlanmistir. Ciktilarin alinabilmesi

icin malzemelerin element simgeleri dogru girilmesi gerekmektedir.

Kor@kabuk yapilar1 olusturmak istedigimizde, diger siitunlar da
doldurulmalidir. Yazilim 5 katmanli kor@kabuk yapilar1 da olusturmaktadir.  Kor
bolgesinden kabuk bolgesine dogru ilerledigimizde sirasiyla, 1., 2., 3., 4. ve 5.
slitunlara atom yapi bilgileri girilmelidir. Kor ve kabuk yapilar ayni ekseni paylastigi
icin, 1. silituna ait N donme sayilari, P yay araliklar1 ve R yay yaricap bilgileri, diger
situnlarininki ile ayn1 olmakta, bu sebeple diger siitunlarda bu bilgiler
girilmemektedir. Ikinci siitundan itibaren r tel kalinhg bilgisine kabuk kalinligi
girilmelidir. Iki katman arasindaki mesafe iki katmandaki atomlarmn oOrgii
uzunluklarmin ortalamasi alinarak hesaplanmaktadir. Tiim bilgiler dolduruldugunda,
“Olustur” digmesine basildiginda kor@kabuk nanoyayin yapisal bilgisini veren ¢ikt1

dosyalarini olusturulmaktadir.

LAMMPS c¢iktist .Immp uzantis1 i¢in simiilasyon kutularinin boyutlari
nanoyayin ebatlar1 dikkate alinarak olusturmaktadir. Nanoyay sistemi, x ve y
kartezyan koordinatlarinda kutu sinirlarindan R yay yaricapmin ii¢ kati kadar bir
mesafede olacak tarzda simiilasyon kutusunun merkezine yerlestirilir. Periyodik
kosullar diisiiniilerek, z boyutunda yaklasik bir 6rgii mesafesi kadar simiilasyon
kutusunda bosluk birakilmaktadir. Kisaca, simiilasyon kutusu 6R X 6R x (N - P)
yapisal parametre boyutlarinda se¢ilmelidir. Ayrica yayin yatay kesit alan1 otomatik
hesaplanip, ¢iktt dosyasinin ilk satirinda verilmekte olup, bu bilgi elastik sabitleri

hesaplarinda kullanilmaktadir.

Yazilim kalic1 olarak kullanim icin github
(https://github.com/hmtysv/nanoyaymodelleme) sitesine yiiklenerek

‘nanoyaymodelleme’ program adi ile literatiir erisimine acilmistir. Indirilebilir ve
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istenildigi takdirde revize edilebilinir. Ayn1 anda birden fazla nanoyay olusturmak i¢in
komut satirinda ¢alisan batch-ouput.py calistirilmalidir. Batch klasoriinde .csv
dosyalarina istenen Ozellikler liste seklinde tanimlanmalidir. Béylece tek bir emirle

onlarca nanoyay tretilebilinir.
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