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ABSTRACT

Autoregressive Conditional Duration and Liquidity

This thesis provides an in-depth Autoregressive Conditional Duration (ACD)
application and examines the relationship between the consecutive transaction, price,
and volume durations in Borsa Istanbul (BIST) stock exchange and investigates the
explanatory power of models’ coefficients on return and liquidity measures. ACD
models enable the usage of intraday high-frequency order book data to model the
duration between consecutive transactions and predict the next meaningful duration.
Durations are modeled in two parts, past and conditional, and the power of
dependencies between successive trades is investigated in this way. In this study, by
utilizing a subset of the ten most traded stocks in BIST and applying a framework for
investigating the most suitable error term specification, various ACD models and
extensions are employed to understand the intraday duration behaviors of different
stocks. First, a brief explanation is specified about why the widely used low-
frequency liquidity measures are inadequate at capturing the appropriate intraday
liquidity. Afterwards, the durations between the transactions, prices, and volumes are
modeled by using various types of ACD models, and a framework is established.
Finally, new coefficients taken from the ACD applications are comparatively studied
using regressions across different trading windows. Building on the framework of in-
depth applications and analysis of ACD, a panel regression is used to understand the
explanatory power of the new model. The findings of this study demonstrate the
effectiveness of using ACD applications for modeling intraday duration effects on

equity returns and liquidity.
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OZET

Otoregresif Kosullu Siire ve Likidite

Bu tez bir Otoregresif Kosullu Siire (ACD) uygulamasi sunmakta ve Borsa
Istanbul’da (BIST) ardisik islem, fiyat ve hacim siireleri arasindaki iliskiyi
incelemektedir. ACD modelleri giin i¢i yliksek frekansli emir defteri verilerini
kullanarak, islemler arasindaki siirenin modellenmesini ve bir sonraki anlamli islem
stiresinin tahmin edilmesini saglar. Siireler gecmis ve kosullu olmak {izere iki
parcada modellenir ve ardisik islemler arasindaki bagimliliklarin giicii bu sekilde
arastirilir. Bu ¢caligmada ilk olarak, yaygin sekilde kullanilan diisiik frekansh likidite
Olciitlerinin, giin i¢i yiiksek frekansli islemlerden meydana gelen likiditeyi 6lgmedeki
eksikliklerine dair kisa bir agiklama yapilmistir. Ikinci olarak, islemler arasindaki
stireler, fiyatlar ve hacimler, farklit ACD metotlar1 kullanilarak modellenmis ve
karsilagtirilmistir. En uygun hata terimi spesifikasyonunun ve ACD uzantisinin
sec¢imi i¢in bir ¢erceve ¢izilmistir. Son olarak, ACD uygulamalarinin yeni ¢iktilari,
giin i¢i alim satim faaliyetleri ile karsilastirmali olarak incelenmis ve getiriler
aciklanmistir. Cesitli ACD analizleri lizerine insa edilen yeni degiskenlerin agiklayici
giiclinii anlamak i¢in bir panel regresyon uygulanmig ve piyasa kosullari, model
ciktilart ile test edilmis, agiklama giicii rapor edilmistir. Bu tezin bulgular, hisse

uygulamalarinin etkinligini ortaya koymaktadir.
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CHAPTER 1

INTRODUCTION

Stock liquidity has been an essential issue in financial markets for several years. It
can be briefly described as the ability of buying or selling a significant amount of a
security quickly, anonymously, and with minimal or no price impact.

The stock liquidity and the trading activity have been investigated from a
couple of different perspectives and have drawn much attention in the financial
market and academia. In the 1970s first researchers to examine the concept of
liquidity were Demsetz (1968) and Tinic (1972). Demsetz manages to list the
determinants of liquidity as trading volume, number of trades, volatility, firm size,
and price. Four years later, Tinic demonstrates a positive relationship between
trading activity and liquidity and a negative association between trading activity and
volatility.

Following these new studies, the researchers in the upcoming years started to
explore whether the assets with high spread and/or price impact have higher average
returns from the cross-sectional point of view. Amiduh and Mendelson (1986),
studying the bid-ask spreads, and Brennan and Subrahmanyam (1996), focusing on
price impacts, both pieces of research find a positive relationship between expected
stock returns and alternative proxies for individual illiquidity levels.

Building on the previous research, new studies investigating the different
liquidity perspectives emerge. The presence of predictability and commonality in
liquidity is revealed in various studies, such as Subrahmanyam (2001), Amihud
(2002), among many others. Asset pricing based on liquidity risks empirically aids in

explaining the cross-section of stock returns and how the decreased liquidity is



increasing expected stock returns. Liquidity plays an essential role in solving
numerous asset pricing puzzles and anomalies. Amihud, Mendelson, and Pederson
(2005), in their survey study on liquidity and assets prices, review the principles on
how liquidity impacts the required returns of securities. They show that the effects of
liquidity risks in empirical studies are statistically significant and economically vital.

The liquidity risk is a priced source of risk when the particular models are
fitted into the financial data. The scale of the liquidity premium is significantly
present, but quantity differs among the studies and the proxies. For example, Pastor
and Stambaugh (2003) report a very high 7.5% annual premium even though
Acharya and Pederson (2005) find it 1.1% annually.

Across the financial literature, the main difficulty with liquidity is that the
liquidity itself is unobservable, and it is needed to use proxies to integrate into any
model. Since 2002, the illiquidity measure developed by Amihud has been the most
widely used liquidity proxy in the financial market and literature. In recent years,
more than hundreds of researches published in several most famous and attended
journals like the Journal of Financial Economics, Journal of Finance, etc., used
Amihud Illiquidity measure as their liquidity proxy for their empirical analyses.
Amihud’s measure is widely used because of briefly two main reasons; first is the
ease of use and the second one is that it is demonstrated in many analyses that the
Amihud Illiquidity has a solid positive relation with the expected stock return. In his
study, Amihud essentially describes the price impact by the proportion of absolute
daily return to the trading volume. However, in financial theory, intraday trading
activities are crucial to liquidity and volatility. So that while facilitating the
measurement of liquidity, we are missing or ignoring some essential daily

information of the related underlying securities by using Amihud (2002). It is



discussed in Chordia, Huh, and Subrahmanyam (2009) that although many
microstructure theories have been developed, extant economic models are unable to
map precisely onto Amihud’s construct of the ratio of absolute return to volume.

The excess returns captured by the Amihud measure are generally called the
liquidity premium that should be taken into consideration while modeling any
securities. Academics use it to analyze liquidity premium, build liquidity factors, or
liquidity tests, but we cannot be sure if the pricing of the Amihud is undoubtedly due
to the price impact or other reasons. Excluding the intraday trading activity like
intraday volatility, excessive price changes, or volume differences between price-
changing transactions, Amihud’s Illiquidity is leaving some questions marks in the
asset pricing models.

This study proposes a new way of measuring liquidity that takes intraday
trading information into consideration to solve this missing information problem. It
is considered that due to the improved automation of financial markets and the
advancements in computing power, including intraday high-frequency data into the
liquidity and volatility models have become a necessity. Modeling the duration
between the transactions, forecasting the following significant price change and price
impact becomes available with Autoregressive Conditional Duration (ACD) models
by using intraday high-frequency data.

The ACD model was developed by Engle and Russell (1998), whose specific
purpose is the modeling of times between events. Both Engle (2000) and Engle
(2002) demonstrate that the ACD model shares many characteristics with the
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models and
that durations can be modeled like volatility. As it is in the GARCH model of

Bollerslev (1986), ACD models also rely on economic motivation following from the



clustering of news and financial events in the market. With all these characteristics of
ACD models, it becomes viable to incorporate and model intraday data for liquidity
measurement. From our point of view, by generating such intraday duration
estimations by using corresponding properties, it becomes possible to address most
of the concerns about the usage of Amihud’s liquidity measure.

In this study, there are mainly three research questions that are focused on.
Firstly, it is investigated whether it is possible to use ACD specifications on BIST
intraday orderbook data to get statistically significant and meaningful results?
Secondly, can a framework for selecting appropriate error terms specification and
ACD extension be constructed for different durations like transaction, price, and
volume? Finally, is it viable to use these results from ACD models on HFD for
capturing the relationships between liquidity and returns? Moreover, what are the

explanatory power of these coefficients from estimated models?



CHAPTER 2

LITERATURE REVIEW

The objective of this chapter is to present a review of the prior literature on ACD and
liquidity. The first part analyses the most important liquidity studies in literature, and

the second part is on both theoretical as well as empirical studies on ACD models.

2.1 Liquidity literature

Traditionally and practically, a market with a low transaction cost is defined as a
liquid, while one with a high level of cost is illiquid. Since these costs affecting the
transactions rely on many circumstances, such as the trade's size, timing, trading
spot, counterparts, it is not easy to make the measurements. On the other hand, it can
be said that the total information required for calculating the exact transaction cost is
often unobtainable. Therefore, a wide range of measures utilized to assess liquidity
appropriately should be identified.

Trading volume: It is described as the total number of shares or contracts
traded for particular equity during a specified time horizon. It can be measured on
any kind of security traded during a trading period. This measure is simple to
calculate and available worldwide.

Trading frequency: It is the number of trades completed within a specific time
window. The high trading frequency may be associated with higher liquidity, but on
the other hand, it can also be related to increased volatility. The trade size is not
taken into consideration while measuring the frequency.

Bid-Ask spread: Direct way to measure the cost of a small trade is generally

computed as the difference between the bid and ask price as the bid-ask midpoint.



The spread determines the cost of performing a single exchange of a particular size.
Since the data is widely available in real-time, it is easy to calculate straightforward.
Given that there is a restricted number of waiting orders in the bid and ask spread,
the bid-ask spread calculation cannot be utilized in large-scale transaction cost or
liquidity calculations.

Quote size: This can be defined as the number of securities tradable at the bid
and offer prices. It is precisely linked to market depth and accompanies the bid-ask
spread. Measuring the quote size can be complicated for the majority of the markets
since the market maker may have a regulation that makes it probable to hide some of
the order book depth. (Iceberg orders etc.).

Trade size: Amount of securities traded at the corresponding bid and ask price
points. Quantity traded will be different from the quantity quoted most of the time
since transactions are not directly linked with the quoted quantity. This measure can
alternate the usage of quote size.

Regarding all these measures used for calculating liquidity, different liquidity
models have been developed by many researchers in the financial literature. In this
study, we will mainly focus on comparing the models and theories with the popular
Amihud’s Illiquidity measure from 2002. However, first, it is relevant to review
some of the most famous liquidity studies from the financial literature as well.

The capability of trading a large number of stocks with minimum price
impact, cost, and delay can be labeled as liquidity. As Keynes explained in the
1930s, we can call an asset liquid if it is possible to trade it immediately without any
loss in realization. All the characteristics that are briefly explained in the previous
paragraph cannot be described in a unique measure. Therefore, an adequate measure

of liquidity that denotes all these qualities continues to be a field of research.



We can categorize the stock market liquidity measurement literature into four
different groups. The former literature suggests four primary characteristics of
liquidity as trading volume, realization time, price impact, and trading(transaction)
cost. These four different main characteristics can be relatively captured by various
liquidity measures such as depth as volume and quantity measure, breadth as price
impact measure, immediacy as time and speed measure, and finally, transaction costs
as a cost measure. These measures differ from one another by the frequency of the
data that is being used in the studies. While some measures are calculated on intraday
high-frequency data, some others are measured in low frequency, for instance,
monthly or yearly data.

Depending on the objectives and the calculation time windows of the
corresponding works, measuring methodology displays numerous amount of
variations. Various liquidity approaches have been used and proposed in the
literature. As Chai et al. (2010) believe, it is impossible to find the best measure that
can calculate every type of liquidity for various market systems and conditions
because each kind of measure captures distinct characteristics of liquidity. As
liquidity has multidimensional features, it cannot be captured by a single measure.
The outcomes from separate measures of liquidity can denote different decisions.
(Benic and Franic, 2008)

Many studies in the literature compare the liquidity measures with one
another. Hallin et al. (2011) use the spread and volume-related liquidity, compare
them with each other and inform that both procedures are negatively correlated and
provide almost identical information about market liquidity. In another study of
comparing liquidity measures, Marshall et al. (2013) found that three different

measures of Gibbs, Amivest, and Amihud are all effective at measuring liquidity in



the emerging markets. Moreover, as an additional study of assessing the measures
and results, Bedowska-Sojka (2018) reports that the Amihud Illiquidity is the most
accurate transactional cost-based measure in the literature, according to their
findings.

From the point of view of market impact cost, Kyle (1985) and Breen,
Hodrick, Korajczyk (2002) are both very important studies on explaining the
illiquidity deriving from private information. They explain the illiquidity by
generating a competitive and risk-neutral market maker modeling. They manage to
show that the illiquidity will be present when two agents with different levels of
information are against each other in any auction. The informed trader will be
positioning himself according to the information he possesses so that this action will
create an un-equilibrium between informed and uninformed agents.

Stoll (1978) and Amihud, Mendelson (1980) are essential papers
concentrating on the bid-ask spread side of the liquidity. They all show that the
fundamental source of illiquidity is the fragmentation of investors and markets,
which means that not all market participants are present at the same and all time. For
example, a seller may possibly arrive at the market when a genuine buyer is not
present. This gap caused by the timing of the presence of the participants is filled by
the market maker for the purpose of market continuity. However, this results in
bearing additional risks for the market maker, and it should be compensated for this
risk. Amihud and Mendelson (1980) and Stoll (1981) solve this problem by having
the bid-ask prices depending on the market maker’s inventory and modeling the
illiquidity from inventory risk.

In the finance literature, there are also a collection of papers modeling

liquidity from the point of view of search and delay costs, price and execution risks,



and limits on trading. In both studies, Duffie et al. (2003) and (2005) manage to
model the liquidity risk deriving from the search, bargain, and limits of trading,
especially in the OTC markets. They conclude their study by explaining the positive
relationship between search frictions and liquidity premium.

Datar, Naik, and Radcliffe (1998) measure the liquidity by share turnover,
which is volume divided by the number of shares. They show that higher turnover is
correlated with greater liquidity and find that liquidity (higher turnover) is linked
with lower expected returns.

Brennan and Subrahmanyam (1996) estimate the liquidity from a Kyle-
inspired model; Stoll and Whaley (1983) derive the liquidity as spread plus
commissions from the direct and observable data, and Glosten and Harris (1988)
approximate the mechanisms of bid-ask spreads as asymmetric information and
inventory costs. Pastor and Stambaugh (2002) generate a liquidity proxy from their
return reversal measures, and Lesmond, Ogden, and Trzcinka (1997) use the zero-
return measure (proportion of zero daily returns). Pastor and Stambaugh (PS)
measure built by Pastor and Stambaugh (2003) is acquired by the regression of daily
returns in excess of daily market index returns with daily dollar volume.

Price impact size is assessed by the slope of the price function in Hasbrouck
(2009). Goyenko et al. (2009) introduce the five-minute price impact by capturing
the permanent price deviations in a 5S-minute trade window. Bid-Ask spread’s
midpoints are measured from the beginning of the trade window until the close.
Trzcinka et al. (2009) introduce a high correlated proxy with spread-related measures
called FHT. They compare percentage cost and cost per volume proxies from

intraday equity market data.



Liquidity is in different types of combination in related studies such as Vu et
al. (2015), Lee (2011), and Bradrania and Peat (2013). In addition to stock market
liquidity and calculating it with several different proxies, market liquidity risk with
expected returns is also an essential issue for researchers to base their studies on. The
market liquidity risk has been well calculated as the association between stock return,
liquidity, and market return.

Vu et al. (2015) use the Liquidity Adjusted Capital Asset Pricing Model
(LACAPM) and find out that liquidity risks are higher in bearish markets and
positively correlated with market returns. Bradrania and Peat (2013) also reveal the
existence of market liquidity risks’ effects on stock returns. The occurrences of the
liquidity risks are well impacting the expected returns, and it is already priced in the
assets. Dang and Nguyen (2020) show the harmful effects of liquidity risks on stock
returns across various global markets. Similarly, Nneji (2015) studies the strong
relationship between stock market crashes and the hikes in stock market liquidity
risks. Guloglu and Ekinci (2021) review the measures that are used for quantifying
liquidity in empirical studies. Focusing on the high-frequency research, they show
the differences and similarities according to different dimensions of liquidity and that
market liquidity measures are categorizable according to their distinct characteristics.

The first liquidity proxy that has been used in the literature can be assessed as
Keynes (1930), where liquidity is linked to the cost of realization of an asset’s
market order. The Sum of the buying premium and the selling discount, which is the
spread between the bid and ask price, is accepted as the measure of illiquidity. As
explained in previous paragraphs, building on both market and academic knowledge
of the mid-1900s, the most famous studies on the market microstructure of liquidity

and estimations of market liquidity proxies are shown in Table 1 below.
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Table 1. Most-used Liquidity Proxies and their Remarks

Data Proxy
Author/Year ' ' Summary
Frequency | Dimension
Cooper et al. . .
Day Price Impact Amivest measurement
(1985)
Chordia et al. Transaction
Minute Bid-Ask Spread
(2001) Cost
Day or ) o
Datar (1998) Price Impact Elasticity of Trades
Month
[lliquidity Measurement,
Amihud (2002) Day Price Impact Sensitivity to dollar
volumes
Pastor and ‘ Volume of stocks vs stock
Day Price Impact y
Stambaugh (2003) price impacts
' Relative Systematic Liquidity vs
Uddin (2009) Month .
Measures Stock liquidity
Trzcinka et al. Day and Comparative High-Frequency Proxies
(2009) Minute Analysis Comparisons

These various liquidity proxies formed mainly by low-frequency data are

commonly used in asset pricing research papers, but none of them are as popular as
Amihud’s liquidity ratio. At this point, it is logical for our study to focus on Amihud
(2002) and try to explain why the low-frequency liquidity proxies are insufficient for
today’s financial markets.

The return premium linked with the universally used Amihud (2002)
illiquidity measure is primarily accepted as a liquidity premium that offsets the price
impact or transaction cost. A basic absolute value of the return to dollar volume ratio

is utilized as a measure to calculate the liquidity premium. It is so simple to use and
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apply to any kind of trading data and uses only publicly available data. The main
reason behind Amihud's (2002) popularity comes from this simplicity of application.
Even if the Amihud illiquidity is widely used by researchers for examining
liquidity premium, building liquidity factors, or testing for liquidity, it is not clear
whether the valuation of the Amihud is due to the price impact (stock liquidity) or
other reasons. As it can be understood in the formula, the model excludes intraday
trading activity like intraday volatility and price changes. The Amihud illiquidity is
positively correlated with the “end of the day” return of the underlying asset. So, no
matter what the intraday volume or the volatility of the related security is, if the
closing price is equal or close enough to the opening price, this model will measure

the illiquidity lower than it should be.

2.2 Autoregressive conditional duration literature
In recent years, with the introduced accessibility of the low-cost intraday transaction
datasets, both the finance literature and market-wide financial analysts started to
embrace the studies of High-Frequency Data (HFD). Most empirical studies using
day-to-day data acquired by keeping either first or final observation of the time series
are totally neglecting intraday events. They are being replaced by models using
intraday databases, taking every single transaction into calculations. Using HFD and
modeling it with econometrics, finance, and time-series statistics, a more profound
knowledge of market activity and microstructure emerge. These new approaches
make it possible to keep up with the constantly increasing speed of trading
worldwide.

Recent studies in the market microstructure show that apart from traditional

trade variables like price, volume, number of trades, etc., time is also carrying
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information and should, therefore, be modeled. Inspired by these arguments, the
ACD model developed by Engle and Russell (1998), whose main objective is
modeling the irregularly spaced transaction data, is used in this study.

The main concept of ACD is the trade duration which is essentially the
waiting time between successive transactions of equity. (Engle and Russell, 1998)
One of the essential features of this high-frequency trade data is that it is irregularly
spaced in time. (Engle, 2000) Different kinds of distributions such as Exponential,
Weibull, or Gamma are used to model these ACD structures. The flexibility and the
versatility of the Weibull distribution become handy for this study of modeling the
irregularly spaced duration data between the consecutive trades. (Meitz and
Terasvirta, 2006)

Time occurred between trades is informative, as proposed in both Easley and
O’Hara (1992) and Easley et al. (1997). The empirical and theoretical research
conducted on ACD models, which has drawn much attention on microstructure, trade
intensity, and liquidity, are covered in research studies like (Bauwens and Giot,
2001; Engle, 2002; Hautsch, 2004; Tsay, 2002).

Building on the baseline model of Engle and Russell (1998), many
researchers contribute to the literature by generating different types of ACD
applications depending on their datasets and purposes. In the literature, there is a
shared acknowledgment that the ACD models can be classified into three different
generations. Exponential ACD (EACD), Gamma/Generalized Gamma ACD
(GACD/GGACD), and Weibull ACD(WACD) can be considered as the most
prevalent versions of ACD models that make use of different types of error term
distributions since the model's inception. Models using Engle and Russell’s baseline

ACD with various error term specifications are classified as first-generation ACD
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models with the assumption of having the innovations following a distribution with
nonnegative support.

There are also a significant amount of studies concentrating on the additional
flexibility of parametric and nonparametric extensions. Box-Cox ACD (BCACD)
model of Dufour and Engle (2000), the logarithmic version (LACD) of Bauwens and
Giot (2000), threshold implementation (TACD) of Zhang et al. (2001), and
augmented modeling (AACD) of Fernandes and Grammig (2006) can be referred as
these second generation of ACD models.

Developing on the first-generation models and addressing the needs for
additional flexibility of parametric and nonparametric extensions, there are
significant amounts of studies expanding the standard ACD model for improved
versatility. Box-Cox ACD (BCACD) model of Dufour and Engle (2000), the
logarithmic version (LACD) of Bauwens and Giot (2000), threshold implementation
(TACD) of Zhang et al. (2001), and augmented modeling (AACD) of Fernandes and
Grammig (2006) can be referred as these second-generation of ACD models. Pacurar
(2008) delivers a comprehensive review of these first and second generations of
models that were developed prior to the global financial crisis. She concludes by
declaring that the group of ACD-GARCH models, along with the connection
between price durations and volatility, may help develop risk measures based on
transaction data that are beneficial for active intraday traders. While some studies
have already been introduced, she believes this subject would be given further
attention.

Furthermore, Hautsch (2012) provides an interesting set of models to further
explain recent developments and areas of usages of duration models. Motivated by

the growing popularity of HFTs, he manages to present distinct styles of ACD
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models and illustrates their effectiveness and capabilities in different types of
applications in his book, Econometrics of Financial High-Frequency Data. Starting
with the standard ACD model of Engle and Russel (1998) and extending the model
for specific purposes, the special cases are presented as; the Additive and
Multiplicative Model (AMACD) for incorporating news impact curves, Box-Cox
Model (BACD) for concave and convex news impact functions, Exponential Model
(EXACD) of Dufour and Engle (2000) for capturing piece-wise linear impacts,
Hentschel Model (HACD) by Fernandes and Grammig (2006) for introducing
multiplicative stochastic component and Spline News Impact Model (SNIACD) by
modeling the news response.

Bhogal and Variyam (2019) review the latest literature on conditional
durations models in 2019. As they stated in their study, their paper can be noticed as
an extension to Pacurar’s study, where she studied the majority of “the first- and
second-generation” models of conditional durations. They review the theoretical and
empirical studies developed after 2008 and add the third-generation conditional
duration models to the ACD literature review as an extension.

There are also some remarkable works on how to forecast some aspects of the
monetary markets by using ACD models. Tse and Yang (2012) predict the intraday
volatility of an equity, and Pyrlik (2013) delivers predictions on market crashes by
using the same methodology. Huptas (2014) develops an empirical study on
durations of selected stocks in the Polish stock exchange by using Bayesian inference
on ACD models. Applying a logarithmic extension of ACD models, Gurgul and
Syrek (2016) investigate and compares the microstructure of Polish and German

stock exchanges.
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The recent popularity of cryptocurrencies motivated a considerable effort to
understand crypto markets' properties and microstructural behavior. The tech-savvy
investor base and advent of HFT in this particular market require that particular
attention be paid to high-frequency models to understand the sources of volatility and
duration clustering. Dimpfl and Odelli (2020) use this duration perspective of ACD
to estimate the probability of a significant price event in Bitcoin and investigate how

Bitcoin features are associated with durations and volatility.

16



CHAPTER 3

METHODOLOGY AND MODEL

3.1 Standard ACD model and diurnal adjustments

As mentioned before, the HFD data are irregularly time-spaced and statistically
considered as point processes. As explained in Bauwens and Giot (2001), an HFD
contains a collection of information on financial trades, and “the times” of these
events serve as the arrival times of the point process. Engle and Russell (1998) use
this data as a basis for their study of the trading activity and market microstructure
investigation.

A point process of the durations between market transactions is modeled by Engle
and Russell (1998), and the model is identified as the ACD model. Since price or
volume events are associated with the arriving time, the mechanism can be labeled as
a marked point process. The stochastic process of the ACD model adopts a series of
time points {ty,tq, ..., ty, ... ), to < t; < -+ < t,. If we call N(t), the quantity of
events that occurred before the time t, the conditional intensity process can be written

as:
A(tIN(), by, ooy tg) = Alitr_1)10P(N(t + At) > N(©) | N(O), ty, ..., ty ) /AL (1)

This function (1) can be specified as a hazard function, and as it is assumed in
Engle and Russell (1998), it links the duration ahead with the likelihood of the next
event occurring. The parameterized duration function is assumed as the conditional
probability of transaction i, occurred at time t provided the duration among t; and

ti_1 where x; = t; — t;_; is the marginal duration between two consecutive
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transactions. As it is suggested by Engle and Russell, if we let y, be the conditional

expectation of 1 th duration, it can be written as:

E(Xi | Xi—q, 0 X1) = Yi(Xjoq, -, X35 0) = P (2)

Furthermore, the standardized durations of the ACD model can be assessed as:

& = — 3)

i

are independent and identically distributed, which is iid. This indicates that the
conditional expected duration can capture all the temporal dependencies and that

ACD is characterized by the description of the conditional duration y; and the

distribution of g;. Engle and Russell (1998) show that the recent p durations
characterize the conditional duration and that a conventional model of ACD(p,q) can

be described as:

p q
Y=o+ Z oXj—j + Z Bjwi- 4)
i=0 i=0

p and q are lag orders.

The specification of error term g; arranges the ACD models into different
categories. Exponential and Weibull distributions are the two most utilized
distributions of the error term ¢;. The preference of distribution in (4) influences the
conditional intensity or the hazard function of the ACD model. The flat conditional
hazard function implied by Exponential distribution leads to the refusal of duration
clustering. As it is indicated in many empirical studies like; Engle and Russell
(1998), Dufour and Engle (2000), Feng et al. (2004), Lin and Tamvakis (2004), and
various others, using a flat hazard function implied by Exponential distribution is

limiting and can be simply omitted in empirical applications. The shape of the
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Weibull distribution leads to more flexible analysis and fits the idea of duration
clustering, which can even be seen in raw data.
The Weibull distribution with parameters (k v), the hazard function can be described

ash(x) = x? 7?1 y and the conditional intensity take the form:

At Xy 1) = (T + 1/ Wik ) (E= ta) ' ¥ (5)

The two-parameter family is obtained by I' being the gamma function and y
being the Weibull parameter, which specification indicates an increasing or
decreasing hazard function. Depending on the Weibull parameter being greater or
less than one, the hazard function is upward or downward sloping. The log-
likelihood of the Weibull function decreases to the log-likelihood of exponential
ACD if the parameter is equal to one. These parameters are acquired by using
maximume-likelithood estimation. Finally, the log-likelihood function for Weibull

ACD can be assessed as:

N(T)
log L = Z In (y/x;) +yIn (T(1 + 1/v)x¢7 ) — (T + 1/y)x97 )Y (6)
=1

The strong intraday seasonality is a well-known characteristic of the HFD.
Many researchers like Bollerslev and Domowitz (1993), Beltratti and Morana
(1999), and several others report the same high-frequency trading data characteristics
in their studies. Engle and Russell (1998) state that greater trading activity at the
opening and closing of the trading sessions leads to smaller durations between
transactions. It can be linked to the investor’s behaviors. Before proceeding with
modeling of the durations, the intraday durations are decomposed into two parts:

deterministic and stochastic. This method of removing the intraday seasonality
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effects is initially employed by Engle and Russell (1998). The diurnally adjusted

durations X; , of the durations X; and the expected duration 6y, is given by (7) and (8),
respectively:
% = xi/(tic1;04) (7N

Eiog (%) = ¢ (ti—1; 0)Wi(Ri—1, ..., K13 Oy) ®)

Two sets of parameters stated in function (5) are estimated using maximum
likelihood with a two-stage estimation method. First, a cubic spline function is used
to remove the intraday effects of duration, and then these diurnally adjusted durations

are utilized in the ACD model.

3.2 Distributional assumptions for error term specifications

Because of the ease of use and application, the exponential distribution is a natural
option very appropriate for ACD estimations. The standard exponential distribution
with a shape parameter equal to one is used by Engle and Russell (1998) and is
called the EACD model. A significant advantage of employing this distribution is
that it provides a quasi-maximum likelihood (QML) estimator for the ACD
parameters (Engle and Russell, 1998). It has been shown by Drost and Werker
(2004) that a satisfactory level of consistency of the estimates is achieved when the
QML estimation is built on the standard gamma family. The quasi-likelihood

function can be written as:

NCD 9
TOEESY LTT +log i)
i=1
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Engle and Russell (1998) validate the EACD (1,1) by the resemblance
between the ACD and GARCH models by applying the same results on the QMLE
properties of the GARCH (1,1). Under the preliminary conditions of their model, the
estimates of 0 are achieved by maximizing the likelihood function given above (9).

The QML estimation produces steady estimations, and the processes in the
case of exponential distributions are simple to execute, but this happens at the cost of
efficiency. In practical applications, fully efficient maximum likelihood estimates
might be best to use. However, in contrast, the selection of the distribution of the
error term in the methodology affects the conditional intensity and hazard function of
the ACD model. The exponential specification entails a fixed conditional hazard
function that is relatively restricting and might be effortlessly rejected in practical
economic applications. For better versatility and adaptability, Engle and Russell
(1998) employ a standard Weibull distribution with a scale parameter being equal to
one, and the following model is called WACD. The log-likelihood of the Weibull
function decreases to the log-likelihood of exponential ACD if the parameter is equal
to one. The Weibull parameter dictates the allowance of increasing or decreasing
hazard function by being greater or less than one. As shown in function (6), these
parameters are acquired using maximum-likelihood estimation.

Encouraged by the explanatory evaluation of observed price and volume
durations, Grammig and Maurer (2000) cast doubt on the notion of monotonicity of
the hazard function in Engle and Russell’s standard ACD models. They support
using a Burr distribution, which can be derived as a Gamma mixture of Weibull
distributions (Lancaster, 1992), containing the Exponential, Weibull, and log-logistic
as special cases. This specification of ACD using the Burr distribution is called Burr-

ACD.
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Having the same doubts on the standard ACD models parallel to Gramming
and Maurer, Lunde (1999) suggests the usage of the generalized gamma distribution
that leads into the G-ACD model. Both distributions used by the researchers permit
similar shaped hazard functions, equally dependent on two parameters, for referring
to circumstances where, for minor durations, the hazard function is escalating and,
for lengthy durations, the hazard function is declining. Moreover, Hautsh (2002;
2004, 2012) compares the possible error term specifications and suggests
Generalized F distributions that include Weibull and Log-logistic as special cases.

The ACD model has been expanded in numerous aspects, focusing primarily
on increasing the conventional details of durations. The solid connection amongst the
ACD and GARCH models encouraged the rapid development of complementary
measurements of conditional durations. All these possible error term distributions
and the ones used in this study can be found in Table 2. The most popular
generalizations of the ACD methodology are reviewed in the following subsection of

Standard ACD Model Extensions.
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Table 2. Error Term Distributions

Weibull:

Burr (as in Grammig and Maurer, 2000):

e~W(8,y), 0,y>0

f.(e) = ByeY~le 0"
E(e) =07 T(y1+1)
Forcing E(e) = 1;

6 =[Gy + 1)

with Hazard Function:
h(g) = Bye¥ !

(10)

e~Burr(8,x, 02); 6,x,0% > 0,k > o2

Prek1

fs(s) = 1
(1 + 020e%)sz™!
. P+ rE-3)

RN T T ETR)
Forcing E(e) = 1;
(Y-
o2 (1+2)r(5+1)

(11)

Generalized Gamma:

Generalized F (Hautsch,2012):

e~GG(y, kD), Y, K,Ae>0

yekv-1 £\Y

AT () P {_ (X) }

I'(k+s/y)
I'(x)

fe(e) =
E(e5) = A8

Forcing E(¢) = 1;

I'(x)

(12)

e~GF(1, v,k A), Y, KA >0

_ e+ (/Y

fS (8) )\KYB(K, n)
r'(x)r
where B(x,1) = F((};)+(1T1]))

F(k+s/Y)T(m—s/y)

SY — ASnS/Y
HE = T o

Forcing E(e) = 1;

_ reorm)
YTk +1/Y)F(m — 1/y)

(13)
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3.3 Standard ACD model extensions

As it is deeply explained in Hautsch (2012), the class of generalized polynomial
random coefficient ACD models includes a variety of extensions of the standard
ACD model permitting for additive and multiplicative stochastic components known
as specifications. This time, differing from the standard ACD model, the conditional
mean function includes lagged innovations additively and/or multiplicatively.
Furthermore, it includes parameterizations describing not just the linear but also
further adaptable news impact curves. For ease of demonstration, the following
methodology will be based on the models with a lag order of p and q equal to one. In
the following sections, we will be discussing and demonstrating the methodology for
Logarithmic ACD (LACD) of Bauwens and Giot (2000) and Lunde (1999), Additive
and Multiplicative ACD (AMACD) of Hautsch (2012), and Augmented Box-Cox

ACD (ABACD) of Hautsch (2012).

3.3.1 Logarithmic ACD

As an advanced and more complex form of the ACD model, Bauwens and Giot
(2000) present the LACD model. In the standard ACD (m, q) model, appropriate
conditions are required for the parameters to confirm the positivity of durations.
When it is needed to add some variable taken from the market microstructure and
have a possibility of negative coefficients, the durations may become negative.
Bauwens and Giot (2000) propose the more adaptable LACD (m, q) model in which
the logarithm of the conditional duration is used to prevent this situation. The
logarithmic design permit introduction of supplementary variables into the

methodology, deprived of sign limitations on their coefficients.
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Both Bauwens and Giot (2000) and Lunde (2000) suggest the LACD model
that guarantees the non-negativity of durations without any restrictions on

parameters. The model is obtained by x; = y;&; with (14),

In¥; =w+an g_4 +Bln ¥;_, 14
=w+anx_;+(B—a)n ¥_, (14)

where g; is 1.1.d with mean equals to one. Differing from the standard ACD model,
the LACD model entails a concave relationship between g;_; and x;. Negative
surprises from the news impact, which is g; <1, on x; is greater than the positive
surprises with g; >1. Similar to the linear ACD model introduced in the first part of
the methodology, in the case of distribution with a mean non-equal to one, the model

can be written as:

x; = Wi /C =: D (15)
In &; =® + aln g_; + Bln d;_4

where @ :=w + (f — 1)In {and ¢; := &/ { with E[§;]:=(# |

Finally, the general form of LACD (p, q) of Bauwens and Giot can be stated as:

P q
In gy =w+ Z ojln €5 + z BjIn (16)
=1 j=1
Inside the ACD literature, it is discussed that the standard ACD model given
in the first section of methodology cannot completely capture the possible nonlinear
dependencies between conditional durations and the past durations from the financial
market data. To be specific, the authors state that linear models overpredict the

conditional durations after extremely short or long durations. This promotes and

encourages new methods looking for more versatile functional forms that might
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permit characteristic responses to small and large shocks in durations. Following the
concerns in the finance literature on the versatility of ACD models, we will also be
discussing AMACD and ABACD methodology in the following sections for our

study.

3.3.2 Augmented ACD models

In this section, the methodology for two different types of generalized polynomial
random coefficient ACD models is published. First is the Additive and Multiplicative
ACD known as AMACD(p,r,q), and the second is Augmented Box-Cox ACD,
known as ABACD(p,q). As explained in 3.3, with the additive and multiplicative
form of the model, more flexible news impacts can be captured with

parametrizations.

3.3.2.1 Additive and Multiplicative ACD (AMACD) Model
The ACD specification with additive and multiplicative extension for lag levels of

P=Q=1 can be given by:

Y=o+ (a¥i_1 + )&y + PPy (17)

Where v is the parameter letting the model imply a news impact curve with
the slope of a¥;_; + v. Therefore, the lagged enhancements come into the
conditional mean function additively, along with multiplicatively. In this perception,
the Additive and Multiplicative ACD (AMACD) model is more adaptable and

includes the standard ACD model in the case of v =0.
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A more general form of AMACD (p,r,q) of Hautsch (2012) can also be written as:

r q

O(]'Xi_]- + z V]'Si_]- + z B]ul—] (18)
é =1

M"U

Hi =+

In which, as for the standard model, we assume that the duration x; = y;g;,

where the error term g; is i.i.d and distributed with a mean E (g;) =1.

3.3.2.2 Augmented Box-Cox ACD
By applying the methodology for developing the asymmetric GARCH presented by
Hentschel (1995), an extension of the ACD model, which is called ABACD, is

obtained by Hautsch (2012):

8
‘Pisl =w+a(lg_; —bl +c(g_,—b)) “ + B‘Pf_ll (19)

In this design, the parameter b is related to the location of the kink and the 6,
is the determinant of the shape of function around b. For §, > 1, the shape is convex,
and for 6, < 1 it is concave. The ABACD model is specified on an additive

stochastic component. The more generalized for ABACD(p,q) can be provided by:

p

q
p_i51 =w+ Z O(j(|8i—j — V| + Cj|Si_]' - b|)82 + z le-li—js1 (20)
j=1

=1
Although this design of the news impact function makes it available for more

elasticity, it holds one main disadvantage since the parameter restriction |c[<=1 must

be imposed to be able to bypass complicated values when §, # 1.
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CHAPTER 4

DATA AND MARKET DESCRIPTION

The data used in this study and the BIST stock exchange is described in this chapter.

4.1 BIST market information
Full intraday order book data that has been purchased from BIST, which consists of
order book information of every single Borsa Istanbul stock and derivatives from the
end of the year 2019, is used in this study. The total data that is gathered is
approximately around one tb. The study sample is selected as the 10 most traded
stocks in BIST. A stock must satisfy certain conditions not to be excluded from our
sub-sample. The stock is not supposed to be under “special treatment” by BIST
Administration during the research interval since it would artificially manipulate the
pricing and duration activities. In their study, Zhang (2001) shows that the different
price limits and trading rules would affect the trading activities in a biased sense.
According to our selection methodology, our sample stocks and their tickers
are as follows; GARAN.E, THYAO.E, KCHOL.E, EREGL.E, TUPRS.E, ISCTR.E,

BIMAS.E, PETKM.E, EKGYO.E, SAHOL.E.

4.2 Data and filtering

The duration data for the study are extracted from BIST orderbook dataset from
September 2019 to November 2019. Each trade is recorded with label, datetime,
price, volume, bid price, and ask price information. The total dataset of BIST equities
consists of 23.3 million observations. To escape wrong calculations, the data is
categorized in a sense that only the durations from continuous trading sessions are

kept. All the data before 10:00 a.m. and after 6:00 p.m. are removed. The trading
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days in which the stock price would reach its trading limits of 10% are also omitted

from the database. (None of the 10 most traded stocks reached this limit in this

study). After the selection and filtering process, the subset of 10 most traded stocks

in BIST, which is around 3 million observations, is used in our models. Table 3

demonstrates the summary statistics and the raw data information of the selected

stocks.

Table 3. Descriptive Statistics for 10 most Traded Stocks in our Sample

Stock Stats Price Duration Volume Ask Bid  Stock Stats Price Duration Volume Ask Bid
BIMAS| N 124580 124580 124580 124580 124580 |KCHOL| N 133892 133892 133892 133892 133892
Mean 47.79  4.85 13330.73  47.80  47.76 Mean 1842 451 12236.23 18.43 18.42
Max 59.55 831 127000000 49.86  49.84 Max 21.54 469 11400000 19.44 19.43
Min 36.8 0 38.96 46.06  46.02 Min 14.37 0 15.08 16.95 16.88
Sd  0.87 14.84 3612433  0.83 0.83 Sd  0.54 14.73  43915.07 0.54 0.54
EKGYO| N 157016 157016 157016 157016 157016|PETKM| N 256741 256741 256741 256741 256741
Mean 1.24 3.84  13701.16 1.24 1.23 Mean 3.48 235 1742952 349 3.48
Max 1.57 321 2480000 1.42 1.41 Max 4.33 321 3406362  3.66 3.65
Min 1.04 0 1.08 1.09 1.08 Min  2.68 0 2.8 3.33 3.32
Sd  0.07 9.85  69564.78  0.07 0.07 Sd  0.07 5.53  88310.88 0.078 0.079
EREGL| N 295448 295448 295448 295448 295448 |SAHOL| N 169238 169238 169238 169238 169238
Mean 6.64 2.04 1328722  6.65 6.64 Mean 8.82 357 12287.63 8.83 8.81
Max 8.28 324 2835849 6.99 6.98 Max 11.1 339 6438474  9.68 9.67
Min 5.17 0 5.26 6.43 6.42 Min  6.63 0 8.18 8.18 8.17
Sd  0.11 548 4151347  0.11 0.11 Sd 034 10.28 35133.93 034 0.34
GARAN| N 483272 483272 483272 483272 483272|THYAO| N 896539 896539 896539 896539 896539
Mean 9.38 125 3815645  9.38 9.37 Mean 11.60  0.67 3112556 11.61 11.60
Max 12.02 323 28000000 10.28  10.27 Max 14.85 321 20200000 12.4 12.39
Min  6.68 0 6.68 8.25 8.24 Min 8.6 0 8.6 10.6 10.59
Sd  0.50 3.94 1323483 050 0.50 Sd 039 2.09 1068485 0.39 0.39
ISCTR| N 176486 176486 176486 176486 176486| TUPRS| N 284780 284780 284780 284780 284780
Mean 5.95 3.42 17960.79  5.96 5.94 Mean 127.96 2.12129 18243.99 128.02 127.90
Max 7.38 395 8760000 6.34 6.33 Max 169.6 322 14900000 143.8 143.7
Min 448 0 4.48 5.49 5.47 Min 949 0 97 117.4 117.3
Sd  0.17 10.03 4819159  0.16 0.16 Sd 749 6.20  70526.22 745 7.45
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Raw Observations from Orderbook Data
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Figure 1. Number of observations for each equity separately
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durations (seconds)

CHAPTER 5

EMPIRICAL RESULTS

5.1 ACD applications to transaction, price and volume durations

A Framework for various ACD models and extensions is conducted in this section.

5.1.1 Diurnal adjustments

As explained in Methodology with the functions (7) and (8), a cubic spline method is
applied for removing the intraday effect from all our selected stocks separately. For
demonstrating the removal of the seasonality from the data, most traded equity in the
sub-sample THYAO.E is chosen, and the results of the diurnal adjustments for

transaction durations are reported.

1IO 1'2 1'4 1‘6 1.8
time of the day

Figure 2. Diurnally adjusted transaction durations estimated by cubic spline
function without day of the week aggregation.
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Figure 3. Diurnally adjusted transaction durations estimated by cubic spline
function with day of the week aggregation

896539 transactions of THY AO are used for estimation of diurnal factors
both for daily and day of the week specifications. A few interesting things can be
observed from the outputs in Figure 2 and Figure 3. It can be clearly observed that
durations are longer in the middle of the day or “lunch time” and shorter at the end of
the day when traders are more involved. It can also be seen that the durations tend to
get shorter and shorter after 15:30 local time, which is the opening of U.S stock
markets.

The pattern does not seem to differ broadly between the durations occurring
on the different days of the week. That is why it is logical not to apply a weekday
aggregation and force different weekdays to have different diurnal adjustments. We
continue with the intraday diurnal aggregation since we observe the same trading
pattern with every equity in our sample. The results from diurnal adjustments in

Figure 4 and via the correlogram of the ACD fitted BIST equities in the next chapter.
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Figure 4. Diurnally adjusted transaction durations estimated by cubic spline function
with daily aggregation for all stocks in our sample.

33



Diurnally adjusted durations are almost equal across whole equities in our
sample from BIST. This similarity might be explained by the market-wide trading
activity being parallel and correlated between different stocks. High-frequency
trading algorithms of the institutional traders and analogous financial behaviors
(bandwagon eftect) of local traders clearly add up to these clustering effects that we
observe in durations. This clustering of time events should be paid attention to in
every single intraday high-frequency analysis to be able to understand the

microstructure of the money markets.

5.1.2 Autoregressive conditional duration model for transaction durations
For the second step of the maximum likelihood method, diurnally adjusted
transaction durations of all stocks are fitted by using an ACD(p,q) as in equation (8).
As parallel to the literature, the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) are used to verify the optimal lag length and the lag
length of 1 for both p and q, which is WACD (1,1) fits the data best. As it has been
done in the previous chapter, THY AO has been chosen to further clarify why it is
decided to use Weibull distribution for the durations and to understand the
differences between different choices of the distribution of the error terms. Before
getting into the results, an advanced explanation of this reasoning behind the
distribution selection can be made by using comparative tables, quantile-quantile
plots, hazard function graphics and scatter plots of conditional durations versus
residuals.

Both Pacurar in 2008 and Bhogal, Variyam in 2019, well-rounded reviews in
the ACD literature, report that Exponential, Weibull, Burr, and Generalized Gamma

distributions are the most used error specification for capturing information from
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different types of financial duration data. Because of this reasoning, an ACD (1,1)
with four different error term specifications is applied, and the results are reported in

Table 4 and Figure 5. (Bhogal & Variyam, 2019; Pacurar, 2008)

Table 4. ACD (1,1) application for four different distributions; Weibull,
Exponential, Gen.Gamma, and Burr

Weibull  Coef SE PV Goodness Value |Exponential Coef SE PV Goodness Value

W, 0.003 0.000 0 LLH -163661 W, 0.0030.000 0 LLH  -154261
oy 0.080 0.001 0  AIC 327330 a, 0.0800.001 0  AIC  328582.1
B4 0.919 0.001 0  BIC  327370.7 B1 0.9180.001 0  BIC  328836.9

Y1 1.383 0.002 0 MSE 1.05 MSE 1.079841
Gen.Gamma Coef SE PV Goodness Value Burr Coef SE PV Goodness Value
W, 0.028 0.001 0 LLH -99103 W, 0.0210.001 0 LLH -152064.9

a 0.106 0.002 0  AIC  298305.8| a,  0.1180.005 0 AIC  304209.9
B, 0.868 0.003 0  BIC 298730.6] B,  0.8660.005 0 BIC  304549.6
K,  22.6373.106 0 MSE 097 y;  1.1700.009 0 MSE  1.00

Vi 0.179 0.013 0

Note: All p-values are statistically significant. The goodness of fit values of loglikelihood, AIC, BIC,
and MSE are all reported.

When the results are compared in Table 4, it is observed that all four
specifications can be used according to their goodness of fit values with Weibull and
Exponential distribution fitting the data slightly better than the other two. Another
standard method of assessing the closeness between theoretical distributions and the
empirical samples is studying the quantile-quantile plots visually. The quantiles of
samples are plotted against the theoretical quantiles, and the deviation from each
other is examined, with lower deviation being a better fit. In Figure 6, we report Q-Q

plots for four different error distributions.
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Parallel to Table 4, it is seen that residual quantiles are closer to theoretical
quantiles for Weibull and Exponential distribution. The deviation from the assumed
error term distribution is more extensive for both Generalized Gamma and Burr

distribution compared with the other two.

ACD (1,1) with Weibull distribution ACD (1,1) with Exponential distribution

ACD (1,1) with Generalized Gamma distribution ACD (1,1) Burr distribution

Figure 5. Q-Q plots for four different error term distributions; Weibull, Exponential,
Generalized Gamma and Burr

The fact that the sample quantiles lie below the red line imposed by the
distribution function indicates that the empirical distribution has a different tail than
the applied distribution. At this point, the hazard functions of Weibull and
Exponential distribution are plotted to compare the results graphically. Both the non-
parametric estimate of the hazard function from the residuals and the hazard function

implied from the model estimate are plotted. The empirical hazard function of the
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residuals from the non-parametric estimator is from Engle and Russell. When the
residuals are compared with the estimated parameters of the selected error
distribution, it can be clearly found out that Weibull is a better fit for the sample.

(Engle and Russell, 1998)

Hazard function estimates: nonparametric (black) and exponential implied (red). Hazard function estimates: nonparametric (black) and Weibull implied (red).

residual residual

Figure 6. Hazard functions from the residuals estimated from ACD (1,1) with
Exponential (left) and Weibull(right) error term specifications

For the exponential distribution, the hazard function is flat and equal to one as
the distribution is forced to have a unit expectation which is explained in the
methodology chapter. For the Weibull error term specification, it is also investigated
how the estimated conditional means are predicting the mean size of the upcoming
durations. In figure 7, the residuals and their means are plotted against the estimated
conditional means. As expected, the mean of the residuals is constant across each

level of conditional durations.
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Scatter plot of residuals against estimated conditional means

residuals

Estimated conditional means

Figure 7. Plot of residuals versus conditional means

Weibull error term specification is used for the ACD estimation of 10 most
traded stocks, and the results are reported in following Tables 5 and 6. The
computational results confirm the autoregressive component of the durations data.

Table 6 shows the decreasing autocorrelation of durations due to the removal
of diurnal components and ACD estimations. The autocorrelation behavior is similar
across all the equities. The Weibull term is statistically significant at resolving the

shape of the hazard function.
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Table 5. Estimates from the WACD (1,1) model applied to each equity in sub-
sample separately

BIMAS Coef SE PV Goodness Value KCHOL Coef SE PV Goodness Value

W4 0.0230.002 0 LLH  -33206.49 wq 0.0170.001 0 LLH -32281.28
oy 0.1040.004 0 AIC 66420.99 oy 0.0920.004 0  AIC  64570.56
B4 0.8750.005 0 BIC 66454.96 B1 0.8920.005 0 BIC  64604.54
Y1 0.9190.004 0 MSE 1.777 Y1 0.9160.004 0 MSE 1.89

EKGYO Coef SE PV Goodness Value PETKM Coef SE PV Goodness Value

W4 0.0140.001 0 LLH -58006.61 wq 0.0060.000 0 LLH -82597.62
oy 0.1290.003 0 AIC  116021.23 oy 0.0710.002 0  AIC 165203.24
B4 0.8600.003 0 BIC 116057.77 B1 0.9240.002 0 BIC  165240.94
Y1 1.0200.003 0 MSE 1.86 Y1 1.1580.003 0 MSE 1.23

EREGL Coef SE PV Goodness Value SAHOL Coef SE PV Goodness Value

w4 0.0090.001 0 LLH -81717.06 w4 0.0080.001 0 LLH -45872.82
oy 0.0830.002 0 AIC  163442.12 oy 0.0970.003 0  AIC  91753.65
B1 0.9090.002 0 BIC 163479.74 B1 0.8970.003 0 BIC  91789.02
Y1 1.1120.003 0 MSE 1.357095 Y1 0.9950.003 0 MSE 1.65

EREGL Coef SE PV Goodness Value THYAO Coef SE PV Goodness Value

wq 0.0090.001 0 LLH -81717.06 w1 0.0030.000 0 LLH  -163661
oy 0.0830.002 0  AIC  163442.12 oy 0.0800.001 0  AIC 327330
B4 0.9090.002 0 BIC 163479.74 B1 0.9190.001 0  BIC  327370.7
Y1 1.1120.003 0 MSE 1.357095 Y1 1.3830.002 0 MSE 1.052

ISCTR Coef SE PV Goodness Value TUPRS Coef SE PV Goodness Value

w4 0.0150.001 0 LLH  -48308.65 w4 0.0070.001 0 LLH -69066.55
04 0.0940.003 0  AIC 96625.31 o4 0.0640.002 0  AIC 138141.11
B1 0.8930.004 0 BIC 96660.85 B1 0.9300.002 0  BIC 138178.05

Y1 1.0010.003 0 MSE 1.575 Y1 1.1120.003 0 MSE 1.31

Note: The p-values for every coefficient are statistically significant for a 5% level for each
stock in the sample.

In Table 5, the estimation outcomes are presented. As it can be noticed, a;and
B;coefficients are statistically significant, showing us a strong interrelationship in the
transaction duration series. Since both coefficients are significantly greater than 0, it
can be said that consecutive trades carry a high degree of dependence. The

magnitude of the last duration can determine the timing of the next, which leads to
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duration clustering. The persistence of price durations can be seen from the sum of
a,and B, coefficients which are very close to 1. The current transaction duration is
helpful in defining the subsequent duration, which may validate the duration clusters
at a particular time of the day. The Weibull parameter y, for all stocks is also
statistically significant.

As it’s explained in the methodology part of the study, conditional on the
Weibull parameter being greater or less than one, the hazard function is upward or
downward sloping. The log-likelihood decreases to the log-likelihood of ACD with
exponential specification when the Weibull parameter is equal to one. In Engle and
Russell’s ACD analysis on the U.S stock market, it is reported that all y; are less
than one, and this implies a downward slopping hazard function. (Engle and Russell,
1998) In the finding, different results of Weibull parameters for individual stocks are
observed. These differences in levels of coefficients can be explained by trading
activity. In U.S markets, most traded stocks have a higher sum of coefficients o; and
B1 and lower level of Weibull since the institutional investors are favoring the high
liquidity and that they are a lot more active compared to the Turkish stock market.

As opposed to U.S stock markets, 70 percent of the intraday volume of BIST
is realized by local individual investors. Comparing the two markets, it can be
noticed that the Turkish stock market has less trading activity and longer trade
durations. These divergences from developed financial markets tend to get less

evident as High-Frequency Trading becomes more utilized market-wide.
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Figure 8. Auto-correlogram of durations, diurnally adjusted durations, and residuals
for each stock in our sample.
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To investigate the validity of the ACD framework and test the possible
autocorrelation of residuals, Ljung-Box Q-statistics is used, the correlograms, and
Meitz and Terdsvirta’s Lagrange Multiplier tests for ACD models are conducted.
(Meitz and Terésvirta, 2006) Test results are almost indistinguishable across all
stocks in our sub-sample. If the model is correctly specified, it is expected to have
independent error terms, and the residuals should not show any further ACD

structured dependency.

Table 6. Lagrange Multiplier Test of Meitz and Terdsvirta (2006) for no remaining
ACD

Degree of

Stock L-M Stats Freedom P-value # of durations
THYAO 455 5 0 896539
SAHOL 128 5 0 169238
EKGYO 212 5 0 157016
PETKM 228 5 0 256741
BIMAS 159 5 0 124580

ISCTR 92.5 5 0 176486
TUPRS 125 5 0 284780
EREGL 261 5 0 295448
KCHOL 124 5 0 133892
GARAN 423 5 0 483272

Note: LM test of Meitz and Terésvirta (2006) for ACD models to investigate possible remaining ACD
structures.

WACD (1,1) model successfully removes the autocorrelation in the data. The
null hypothesis that the residuals are autocorrelated is rejected, indicating that our
WACD (1,1) model is accurately identified and does a good job of fitting the data. It
can be seen from Table 5 and Figure 8 that adjusted durations exhibit a strong
autocorrelation structure, and the time of the day effect does not account fully for the
dependence of the durations. The residuals are not significantly autocorrelated. ACF

is slowly decreasing to zero in all cases. After removing the diurnal component, the
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correlations are declining somewhat, but the considerable reduction in
autocorrelations comes for the residuals after removing the estimated WACD (1,1)
dependency. It can also be understood that there are not any remaining ACD
structures in the residuals from the M&T Lagrange Multiplier test, which can be seen

in Table 6.

5.1.3 Autoregressive conditional duration models for price durations

To be able to further investigate bid-ask spread behaviors of the intraday
transactions, the correct ACD model parallel to literature is conducted. The main
idea behind this ACD fitting process is to fully understand the durations between
price impacts and find an explication between durations, volume, and trade intensity.
We want to have a closer look at the behaviors of price durations, the realized
volume between the bid-ask spread changes, and the trade intensity according to the
number of trades for each price duration.

First, the bid-ask spread durations are constructed by calculating the raw
durations between “mid-prices” of the spread. It is assumed that the mid-price is the
average of the bid and ask price value at the corresponding trade window. We find
the most suitable duration calculation method by investigating different trade
windows and comparing correlograms between different durations.

As it is done in chapter 5.1.1, for demonstrating the removal of the
seasonality from the data, investigating the most suited smoothing method, and for
applying various types of ACD methodology step by step, the most traded equity in
the subsample, which is THY AO.E, is selected. The results of the diurnal

adjustments and ACD fits for price durations are reported.
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As seen above in Figure 9, even if the duration means windows are changed,
the week of the day pattern for price durations, as it has been already seen in
transaction durations, can be observed. According to these findings, it is reasonable
to use a day of the week diurnal adjustment to clean our data from seasonality.

According to the literature, three different most used smoothing methods for
the durations are applied, and then the results are tested and decided which one fits
the data the best. Super Smoother, Flexible Fourier Form, and Cubic Spline Function
methods are all applied separately to raw durations for the calculation of diurnal
adjustments. The results of the smoothing methods can be seen in Figure 10.

2 hours means
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time

Figure 9. Intraday raw mean duration patterns for price durations
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While converting from raw durations to adjusted durations by using the
appropriate smoothing methodologys, it is crucial not to get negative duration returns.
In this instance, the cubic spline function fails to get positive results for all cases. The
negative fitted line produced by the cubic spline technique can be explained by the
sudden shift in the mean durations in the opening hours of that trading day. This
estimation would yield negative adjusted durations and would be contradicting the
assumptions of ACD methodology and prevent further estimations. Because of this
reasoning, the cubic spline technique is eliminated for this case. On the other hand,
when the differences between the other two methods are evaluated, one can see that
FFF is more versatile and superior at capturing intraday duration instability. Parallel
to raw durations, duration shifts and clusters are further noticeable.

The patterns and correlograms are evaluated for different calculations, and it
is decided that the Flexible Fourier Form (FFF) fits the data the best. The
improvements in the durations can be seen with the comparisons of autocorrelation
between raw and adjusted durations generated by FFF. The correlogram for the

Flexible Fourier Smoothing methodology is given in Figure 11.
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Figure 11. Correlogram for diurnal adjustments applied to raw durations with FF
smoothing and day of the week seasonality removal

Completing the method selection process of diurnal durations makes it
possible to apply various ACD and Log-ACD methods. We apply both ACD and
Log-ACD estimations using Weibull error term distributions (We showed the
reasoning behind the Weibull error term specification decision in the previous
chapters.). The table below shows that the Weibull distribution estimations with four
different ACD methodologies fit our price duration data. For the sake of having more
flexibility with our coefficients, we use the Weibull distribution method for our study
in the further parts. AMACD, ABACD, Log-ACD, and ACD methods, explained in
the methodology part of our study, are applied to adjusted price durations estimated
by our Flexible Fourier smoothing and day of the week diurnal seasonality removal
methods. The descriptive statistics of adjusted durations and results of the ACD fits
can be seen in Tables 7 and 8 below.

Since the price duration is the duration between each meaningful (price
impact) transaction, the descriptive statistics should be understood from the point of

view of price-changing intervals. The total number of transactions that changed the
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bid and ask spread in the orderbook is 7875, with a mean of 93.9, meaning that it
takes approximately 94 transactions to change the price floor of the corresponding
orderbook. All the details in descriptive statistics should be read from this

perspective in Table 7.

Table 7. Descriptive Statistics of Adjusted Price Durations

Stock Stats ~ Price  Duration Volume (TL) # Of Transaction

THYAO N 7875 7875 7875 7875
Mean 11.54 65.34 2930158 93.9
Max  12.38 4332 50581230 1821

Min 10.60 0 10 1

Median 11.62 12 1340986 38

Table 8. Estimates from four Different ACD Specifications for Price Durations with
Weibull Error Term

Log-ACD Coef SE PV Goodness Value ACD Coef SE PV Goodness Value

Value Value
W 0.155 0.013 0 LLH  -4562.8 o 0.041 0.007 0 LLH -4499.19
o 0.143 0.012 O AIC 9133.6 o 0.164 0.014 O AIC  9006.386
By 0.895 0.021 0 BIC 9161.5 By 0.796 0.018 0 BIC 9034272
Y1 0.612 0.004 0 MSE 5.1879 Y1 0.623 0.005 0 MSE 5.257101
AMACD Coef SE PV Goodness Value |ABACD  Coef SE PV Goodness Value
Value Value
wq 0.0064 0.0080.042 LLH -4486.8 w1 -0.908 0.7140.203 LLH -4460.29
a; 0.0725 0.018 0 AIC 8983.7 a; 0.823 0.6150.181 AIC 8936.579
vy 0.0613 0.013 0 BIC 9018.6 (o) 1.316 0.368 0 BIC 8992.351
B1 0.8526 0.018 O MSE 5.171 B1 0933 0.008 0 MSE 5.115013
Y1 0.624 0.005 0 vy -1.706 0.480 0
61 0.199 0.1120.076
5, 0.096 0.017 O
Y1 0.625 0.004 0
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When we analyze the estimates from our ACD specifications in Table 8, since
the values are within very close distance, it is challenging to decide which model
better fits the price duration data. For that reason, at this point, as we did with
transaction durations, it is logical to compare correlograms of each model separately
and select our model depending on it.

As it can be noticed, a;and [3;coefficients are statistically significant,
showing us a strong interrelationship in the price duration series for each model.
Given that both coefficients are considerably greater than 0, it can be assumed that
consecutive trades carry a high degree of dependence. The scale of the last duration
can define the timing of the next, which leads to duration clustering. The persistence
of transaction durations can be seen from the sum of a;and 3; coefficients which are
very close to 1 for all specifications. The current price duration is valuable in
defining the following duration, and this may possibly confirm the duration clusters
at a particular time of the day. The Weibull parameter y, for all stocks is also
statistically significant. We can justify this significance of Weibull parameters with

hazard function plots in the figure below.
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Figure 12. Correlogram for ACD, LACD, AMACD and ABACD separately
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Hazard function estimates: nonparametric (black) and Weibull implied (red). Hazard function estimates: nonparametric (black) and Weibull implied (red)
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Figure 13. Plots for hazard function estimates for ACD, LACD, AMACD and
ABACD separately

As clarified in the previous section 5.1.2, the hazard function is upward or
downward sloping depending on the Weibull parameter being larger or less than one.
The log-likelihood decreases to the log-likelihood of ACD with exponential
specification when the Weibull parameter is equal to one. In Engle and Russell’s
ACD analysis on the U.S stock market, it is reported that all y,; are less than one, and
this implies a downward slopping hazard function. (Engle and Russell, 1998) In our
finding, we find the same results of Weibull parameters for price durations parallel to

U.S stock markets. These levels of coefficients can be explained by trading activity.
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With a statistically significant Weibull parameter less than 1, the downward slopping
hazard function implies price duration clustering can be justified as expected.

Stocks with a higher sum of coefficients a;and 3; and lower level of Weibull
since the institutional investors are favoring the high liquidity, and this intuitional
trading activity results in a “bandwagon” effect in transaction intensity. Price
impacting transactions are clearly clustering when the activity rises in the market.
When we compare the results from Figures 12 and 13, we can declare that both
standard ACD and AMACD can explain the price durations. Since the results are
significant and close to each other, we can choose to use AMACD because of its
greater possibility of capturing news impacts. In the methodology part 3.3.2.1, it can
be seen that with an additive and multiplicative form of the model, more flexible
news impacts can be captured with parametrizations. We also report the scatter plot
for the AMACD model in Figure 14 to understand the residuals' behavior better. As
expected, the mean of the residuals is at the same level for all values of estimated

conditional means.
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Figure 14. Scatter plot for estimated conditional means versus residuals for AMACD
model
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5.1.4 Autoregressive conditional duration models for volume durations

After investigating trade and price durations, we proceed to further analyses of
volume durations for threshold volume behavior of intraday transactions. We
construct the correct ACD model parallel to the literature. The main objective behind
this volume process is to fully understand the durations between pre-determined
Turkish Lira levels of volume that occur consecutively in the stock market. We
intend to have a more decisive view of the behaviors of volume durations, the
realized stalling time between the volume level changes, and the trade intensity
according to the number of trades for each volume duration.

First, we construct the volume durations by calculating the raw durations
between pre-determined levels of volumes. Since there is not a universally accepted
volume level for volume threshold duration models, as an addition to the literature,
instead of selecting only a pre-determined volume level for each equity (which is 1
million dollars of volume in most of the studies, around 10 million in Turkish liras),
we assume that 0.001, 0.005 and 0.01 of the total Turkish liras of volume at the
corresponding trade window are more satisfying for the study. We find the most
suitable duration calculation method by investigating different volume windows and
comparing correlograms between different durations. We report the descriptive
statistics for different levels of volumes in Table 9 below.

As we have accomplished in chapter 5.1.1, for representing the elimination of
the seasonality from the data, investigating the most appropriate smoothing
technique, and for applying various types of ACD methodology step by step, we
selected the most traded equity in our subsample, which is THY AO.E and describe

the results of the diurnal adjustments and ACD fits for volume durations.
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As it can be seen, even if duration means windows are adjusted, the week of
the day pattern for volume durations, as previously found in transaction and price
durations, is undoubtedly realized. Corresponding to these discoveries, a day of the
week diurnal adjustment is chosen to cleanse the data from seasonality.

Matching the literature, three different smoothing methods for the durations
are employed, tested the results, and decided that the methodology that fits the data
the finest is Flexible Fourier Form. Methods are all applied separately to raw

durations to calculate diurnal adjustments.

Table 9. Descriptive Statistics of Adjusted Volume Durations of Three Different
Threshold Levels

Threshold Stats  Price Duration # Of Transaction
2.3 million TL N 9164 9164 9164
(0,01%) Mean 11.62 56.55 80.93
Max  12.38 1668 506
Min  10.60 1 4
Median 11.69 27 71
4.6 million TL N 4838 4838 4838
(0.02%) Mean 11.63 107.1 153.1
Max  12.38 2783 771
Min  10.60 1 7
Median 11.70 60 138
11.5 million TL N 1983 1983 1983
(0.05%) Mean 11.63 261 373
Max  12.38 3775 1438
Min  10.60 1 40
Median 11.63 168 338

The total number of transactions that occurred for the respective realized
volume threshold in the orderbook can be seen in Table 9. All the details in
descriptive statistics should be read from this perspective of “filling” the volume

needed for the pre-determined threshold. The number of transactions and duration
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statistics show us how many transactions needed to be realized to reach the

respective threshold level and how long it took to realize them.

Diurnal pattern estimated by "Flexible Fourier Form"
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Figure 15. Diurnally adjusted duration patterns estimated by FFF for three different
threshold levels
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The LACD (1,1) specification estimates are analyzed in Table 10 for three
threshold levels. As it can be observed, a;and 3;coefficients are statistically
significant, showing us a strong interrelationship in the volume duration series for
each threshold level. Given that both coefficients are significantly larger than 0, it
can be expected that successive trades carry a high degree of dependence. The size of
the final duration can explain the scheduling of the next, which advances into
duration clustering for volume durations, as seen in both price and transaction
durations. The persistence of volume durations can be seen from the sum of a;and 3;
coefficients being close to 1 for all specifications. The current volume duration is
significant in defining the following duration, which confirms the duration clusters at
a specific time of the day. The Weibull parameter y, for all specifications is also
statistically significant. Just by analyzing the estimates from the LACD, we cannot
make any decision between different threshold levels. That is why it is logical to

check how the residuals and auto correlograms are at this point.

Table 10. Estimates for Log-ACD (1,1) Model for Three Different Volume
Thresholds

Threshold Log-ACD Coeff Value SE PV Goodness Value
2.3 million TL W, 0.0874 0.00404 0 Loglikelihood  -7594.47
(0.01%) oy 0.1807 0.00662 0 AIC 15196.94
B4 0.9366 0.00542 0 BIC 15225.44
Y1 1.0228 0.00777  0.003 MSE 1.280409
4.6 million TL W, 0.0788 0.00508 0 Loglikelihood  -3866.56
(0.02%) oy 0.2562 0.00964 0 AIC 7741.112
B1 0.8877 0.00936 0 BIC 7767.049
Y1 1.236 0.01276 0 MSE 0.864163
11.5 million TL W, 0.0757 0.00978 0 Loglikelihood -1444
(0.05%) oy 0.4123 0.01938 0 AIC 2895.9
B1 0.8028 0.01764 0 BIC 2918.27
Y1 1.5433 0.02748 0 MSE 0.54656
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Figure 16. Correlograms for three different threshold levels

When we check the correlograms in Figure 16 for the threshold levels, we can

immediately see the reduction in the correlations first with diurnal adjustment then
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an even more significant reduction with LACD modeling. In lower volume threshold
levels, it is found that first and second lagged values are still autocorrelated even
though LACD implies a considerable reduction for volume durations and adjusted
durations. By analyzing the LACD estimates and correlogram, it becomes evident
that the selection of volume threshold at 0,05 percent is better than other options.
One can say that when the volume threshold is kept smaller than it should be, around
230.000 dollars, in this case, the autocorrelation is inevitable in residuals. Since there
are no specific rules in the ACD literature for determining the volume levels for
durations, it is logical to compare the results of different volume percentages and
decide. At this point, the scatter plots and hazard functions are published to deeper

understand the residuals with a 0.05 percent volume threshold.

Hazard function estimates: nonparametric (black) and Weibull implied (red).

hazard

0.0-

residual

Figure 17. Hazard function estimates for LACD (1,1) with Weibull error distribution
for 0,05% volume threshold specification
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Figures 17,18, and 19 are helpful for verifying our LACD (1,1) model and
understanding the residuals from the model. Nonparametric results from the model
match closely with the Weibull implied function. In Figure 17, since the Weibull
coefficient is around 1.5, the hazard function is upward sloping. When the residual
quantiles are plotted against the Weibull distribution in Figure 18, the same matching

the theoretical values are also reflected.

sample

5
weibull theoretical quantiles

Figure 18. Quantile-quantile plot for residuals versus theoretical quantiles for LACD
(1,1) with 0.05% threshold specification

59



In Figure 19, the mean of the residuals is at the same level for all values of
estimated conditional means as theoretically expected. By exploring these three
figures, successfully fitted LACD (1,1) on volume durations for 0.05% specification

can be justified.

12-

11-

10-

residuals

muHats

Figure 19. Scatter plot for estimated conditional means versus residuals for LACD
(1,1) with 0.05% threshold specification
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5.2 Modelling liquidity with autoregressive conditional duration models

As an extension to what has been done in previous chapter 5.1, in this part of the
empirical findings, the link between the durations modeling and liquidity is further
analyzed by using the same dataset of the 10 most traded equities in BIST. A
Weibull ACD model is conducted on the dataset, but this time for daily and one-hour
trading windows. The ACD methodology is applied individually for each stock and

each hour of the trading session for every day.

Table 11. Summary Statistics for 10 Most Traded Stocks in BIST

Stock |Stats Price Duration Volume  Ask Bid Stock |Stats Price Duration Volume Ask Bid

BIMAS | N 124580 124580 124580 124580 124580{KCHOL| N 133892 133892 133892 133892 133892

Mean 47.79  4.85 13331  47.8 47.76 Mean 1843  4.51 12236 18.44 18.42
Max 59.55 831  1.27E+08 49.86 49.84 Max 21.54 469  1.14E+07 19.44 19.43
Min 36.8 0 39 46.06 46.02 Min 1437 0 15 1695 16.88

Sd  0.87 14.85 361243 083 0.83 Sd  0.55 14.74 43915 054  0.54

EKGYO| N 157016 157016 157016 157016 157016 PETKM| N 256741 256741 256741 256741 256741

Mean 1.24 3.84 13701 124 123 Mean 3.48 2.35 17430 349 348
Max 1.57 321 248E+06 142 141 Max 4.33 321  3.41E+06 3.66  3.65
Min 1.04 0 1 1.09 1.08 Min 2.68 0 3 333 332

Sd  0.07 9.85 69565  0.07  0.07 Sd  0.07 5.53 88311  0.07 0.07

EREGL | N 295448 295448 295448 295448 295448/ SAHOL| N 169238 169238 169238 169238 169238

Mean 6.65 2.05 13287  6.65 6.64 Mean 8.82 3.57 12288  8.83  8.82
Max 8.28 324  2.84E+06 6.99 6.98 Max 11.1 339 6.44E+06 9.68  9.67
Min 5.17 0 5 643  6.42 Min 6.63 0 8 8.18  8.17

Sd  0.12 5.49 41513 0.11  0.11 Sd  0.34 10.29 35134 035 035

GARAN| N 483272 483272 483272 483272 483272|THYAO| N 896539 896539 896539 896539 896539

Mean 9.38 1.25 38156 939 938 Mean 11.61 0.67 31126 11.61 11.6
Max 12.02 323 2.80E+07 10.28 10.27 Max 14.85 321 2.02E+07 124 1239
Min 6.68 0 7 825 824 Min 8.6 0 9 10.6  10.59

Sd 051 3.94 132348 0.51 0.51 Sd 04 2.09 106849 039  0.39

ISCTR | N 176486 176486 176486 176486 176486/ TUPRS | N 284780 284780 284780 284780 284780

Mean 5.95 3.42 17961 596 595 Mean 12796  2.12 18244 128.03 1279
Max 7.38 395 8.76E+06 6.34  6.33 Max 169.6 322 1.49E+07 143.8 143.7
Min 448 0 4 549 547 Min 94.9 0 97 1174 1173

Sd  0.17 10.04 48192  0.17 0.17 Sd 749 6.21 70526  7.46  7.46
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Table 12. WACD (1,1) Estimation Results for Each Stock Separately

BIMAS  Coef SE PV Goodness Value | KCHOL Coef SE PV Goodness Value

w, 0023 0002 0 Loglike. -33206 | w, 0017 0001 0 Loglike. -32281
a, 0104 0004 0 AIC 66421 a, 0092 0004 0 AIC 64571
B, 0875 0005 0 BIC 66455 B, 0892 0005 0 BIC 64605
y, 0919 0004 0 MSE 1778 y, 0916 0004 0 MSE 189

EKGYO Coef SE PV Goodness Value | PETKM Coef SE PV Goodness Value

W, 0.014  0.001 0 Loglike. -58007 W, 0.006  0.000 0 Loglike. -82598
oy 0.129  0.003 0 AIC 116021 oy 0.071  0.002 0 AIC 165203
By 0.860  0.003 0 BIC 116058 By 0.924  0.002 0 BIC 165241
Y1 1.020  0.003 0 MSE 1.869 Y1 1.158  0.003 0 MSE 1.231

EREGL Coef SE PV Goodness Value | SAHOL Coef SE PV Goodness Value

@, 00095 00006 0 Loglike. -81717 | w, 0008 0001 0 Loglike. -45873
a, 00832 00019 0 AIC 163442 | « 0097 0003 0 AIC 91754
B, 09091 00021 0 BIC 163480 | B, 0897 0003 0 BIC 91789
y, 11120 00027 0 MSE 1357 vy, 0995 0003 0 MSE 1656

GARAN Coef SE PV Goodness Value | THYAO Coef SE PV Goodness Value

W 0.008  0.000 0 Loglike. -108000 W, 0.003  0.000 0 Loglike. -163661
oy 0.093  0.002 0 AIC 216299 oy 0.080  0.001 0 AIC 327330
By 0.902  0.002 0 BIC 216338 By 0.919  0.001 0 BIC 327371
Y1 1.166  0.002 0 MSE 1.526 Y1 1.383  0.002 0 MSE 1.053

ISCTR  Coef SE PV Goodness Value | TUPRS Coef SE PV Goodness Value

W, 0.015  0.001 0 Loglike. -48309 W, 0.007  0.001 0 Loglike. -69067

oy 0.094  0.003 0 AIC 96625 oy 0.064  0.002 0 AIC 138141
By 0.893  0.004 0 BIC 96661 By 0.930  0.002 0 BIC 138178
Y1 1.001  0.003 0 MSE 1.575 Y1 1.112  0.003 0 MSE 1.319

The primary purpose of this chapter is to investigate the explanatory power of
the model and compare it with market-wide used proxies. The coefficient from the
WACD model and related Amihud Illiquidity measures are used for building several
correlation matrices and multivariate regressions to understand the relationship of
our model with stock returns, volume, and liquidity measures. Stock-wise descriptive
stats and WACD (1,1) estimates for raw data can be found in Table 11 and Table 12

above.
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5.2.1 Estimation results for daily data

The dataset is split into daily trading intervals for further investigations of Amihud,
return, and ACD coefficient relations. Tables 13 and 14 below show summary
statistics and correlation matrix for all variables of daily estimations can be seen. As
expected in previous chapters, a negative relationship between Weibull’s slop
coefficient y and Amihud can be observed. Parallel to the economic interpretation,

the Amihud Illiquidity is expected to increase when the durations are clustering.

Table 13. Summary Statistics for Daily Panel Data

Variable Obs Mean Std. Dev. Min Max
Return 180 0.006 0.024 -0.036 0.988
® 180 0.319 0.158 0.035 0.748
o 180 0.086 0.050 -0.045 0.266
B 180 0.605 0.156 0.095 0.910
Amihud 180 2E-09 3E-09 1E-10 2E-08
Y 180 1.094 0.137 0.884 1.673

Table 14. Correlation Matrix for Daily Estimations

o B Y Return  Amihud
o 1
B -0.1292 1
Y 0.0643  0.3821 1
Return | 0.0628  0.0628 0.148 1
Amihud | 0.0578 -0.4054 -0.421  0.1576 1

Another result parallel to the market microstructure interpretations can be
assessed as the relationship between B and Amihud Illiquidity. Since f is the
coefficient of the past conditional duration estimated by ACD, one may expect
higher 3 values when the market activity and trade intensity are elevated. It is

possible to investigate these results in Tables 15 and 16 below.
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Table 15. Pairwise Pooled Regressions for Daily Return

Variables Model 1 Model 2 Model 3 Model 4 Model 5
Y 0.026*** 0.041
(0.013) (0.027)
B 0.010 0.006
(0.012) (0.014)
o 0.029 0.017
(0.023) (0.030)
Amihud 1.1E+06 2.E+06
-1.2E+06  -1.5E+06
Constant -0.022 0.000 0.004 0.003 -0.049
(0.014) (0.008) (0.003) (0.003) (0.025)
Observations 180 180 180 180 180
R-squared 0.022 0.004 0.004 0.025 0.083
Robust standard errors in parentheses
*** P<0.01, ** p<0.05, p<0.1 *
Table 16. Pairwise Pooled Regressions for Daily Amihud
Variables Model 1 Model 2 Model 3 Model 4
Y -0.099%** -0.068***
(0.013) (0.019)
B -0.083%** -0.047%*
(0.015) (0.019)
o 0.037 0.030
(0.062) (0.060)
Constant 0.137 0.079 0.026 0.129
(0.015) (0.010) (0.005) (0.013)
Observations 180 180 180 180
R-squared 0.177 0.164 0.003 0.248

Robust standard errors in parentheses
*H% p<0.01, ** p<0.05, * p<0.1

Pairwise pooled regression results for return and Amihud Illiquidity versus all

the coefficients are reported in the tables above. Weibull’s slope parameter vy is

significant in both cases. Both y and 3 are significant for estimating Amihud’s proxy.

In Table 16, model 4 has an explanatory power of 0.248 as R-square, which indicates

significant variables from WACD (1,1) are capable of explaining the corresponding

proxy to an extent. Having negative and significant coefficient signs for B and y

demonstrates the connection between the persistence of durations and the upward
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slopping shape of the hazard function. With a hazard function leaning toward such a
shape, one can expect to see “thicker” bid-ask spreads, as it’s explained in Engle and
Russell (1998). This characteristic of the hazard’s shapes indicates a greater failure
rate as durations get longer, making it possible to accumulate a greater amount of
passive orders waiting at the bid and ask levels. By this perception, one can expect to
see a less illiquid order book since a “thicker” bid-ask spread would increase the
amount of equity buyable with minimum transaction cost.

The same perspective for understanding the economic interpretation of the
negative relationship between y and Amihud can also be applied to y and return. As
the bid-ask passive orders get “thicker, " larger transactions and volumes are required
to generate returns. At this point, Fixed and Random Effect Panel Regressions are

conducted for return versus Amihud and ACD coefficients in Tables 17 and 18.

Table 17. Fixed-Effects Regression for Daily Returns

Variables FE Regression
® 0.011
(0.22)
o 0.002
(0.023)
B 0.010
(0.022)
Amihud -1.9E+06
(2,4E+06)
Y -0.014**
(0.006)
Constant 0.006
(0.023)
Observations 180
R-squared 0.16
No of company 10

Robust standard errors in parentheses
*EE p<0.01, ** p<0.05, * p<0.1

65



Table 18. Random-Effects Regression for Daily Returns

Variables RE Regression

® 0.003
(0.040)

o -0.002
(0.039)

B 0.002
(0.040)

Amihud -2 1E+06***

(6.4E+05)

Y -0.008***
(0.002)

Constant 0.007
(0.041)

Observations 180

R-squared 0.189

No of company 10

Robust standard errors in parentheses
**% p<0.01, ** p<0.05, * p<0.1

Both regressions are statistically significant, as it is reported with F tests.
Results from the corresponding regressions are superior to pooled regression in Table
15. For RE regression, both the Amihud and y are significant. A Hausman test is
deployed to be able to understand which regression is preferable, and the test results
are given in Table 19. By using the chi-square test results, we fail to reject the null
hypothesis that the RE model is suitable. As expected from the significance of the

variables and the R square results, it is preferred to continue with RE regressions.
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Table 19. Hausman Test for Daily FE and RE Regressions

FE Panel RE Panel Difference Std.E
w 0.200 0.192 0.008 0
o 0.122 0.152 -0.030 0
B 0.190 0.186 0.004 0
Amihud -1.9E+06 -2.0E+06 1.3E+05 -1.9E+05
Y1 -0.115 -0.061 -0.053 -0.016
Chi square 0.51
Prob>chi2 0.47
Table 20. Friedman's Test of Cross-Sectional Independence for RE
Correlation matrix of residuals
cl c2 c3 c4 c5 c6 c7 c8 c9 cl0
rl 1
2 | 0.578 1
3 1-0.100 0.237 1
4| 0.612 0.709 0.127 1
5 | 0406 0488 0.446 0.443 1
6 | 0.619 0.594 -0.106 0.738 0.403 1
7 1 0.679 0.703 -0.014 0.574 0.571 0.747 1
8 |-0.202 0.127 0.591 -0.137 0.140 -0.344 -0.243 1
M | 0.704 0.608 -0.316 0.539 0.075 0.538 0.589 -0.016 1
r10 | 0.540 0.394 -0.105 0.350 0.415 0487 0.671 -0.369 0.290 1

Friedman's test of cross-sectional independence = 69.84, Pr = 0.00

Considering the Friedman Test results, the null hypothesis that no differences
between the variables is rejected. RE regression is suitable for the data. In RE
estimation results, the coefficient for the Weibull’s vy is negative, and that leads to
negative relations between y and return. These results are parallel to microstructure
interpretations. Since Weibull’s y directly accounts for the Hazard function's slope,
duration clustering enforced by the slope is associated with the return. From the
market behavior perspective, it can be assumed that the possibility of having inclined
returns arises because of clustering imposed by “bandwagon effects” and

institutional intraday trader impacts on the market.
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5.2.2 Estimation results for hourly data

The estimations from Table 12 are divided into one-hour trade windows to be able to
compare WACD (1,1) coefficients with Amihud Illiquidity measures, corresponding
stock returns, and various variables. The resulting summary statistics for stock-wise
WACD coefficients can be seen in Table 21. As can be noticed from Table 12, all
coefficients are statistically significant. a+f values are close to one, demonstrating
the persistence of lagged durations and conditional durations on determining the
duration of t+1. Weibull parameters are equal or greater than one in most cases,
indicating flat/upward slopping hazard function estimates. For further and in-depth
analysis, Random-Effects (RE) and Fixed-Effects (FE) panel regressions are

conducted for understanding variable relationships.
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Table 21. Stock-wise Summary Statistics for WACD (1,1) Estimations on Hourly
Adjusted Trading Windows

BIMAS  Obs Mean Std. Dv.  Min Max [KCHOL Obs Mean Std. Dv.  Min Max

w; 144 0460 0414 -0.025 1917 g 144 0.404 0395 -0.059 1.807
oy 144 0.064 0.145 -0.354 0.490 oy 144 0.043  0.148 -0.401 0.593
B4 144 0481 0476 -1.086 1.123 B4 144 0.561 0437 -0.852 1.126
Y1 144 0962 0.092 0.704 1304 Y1 144 0957 0.106 0.688  1.436

Return 144 -2.2E-04 0.005 -0.020 0.025 | Return 144 -1.5E-04 0.006 -0.023  0.028
Amihud 144 4.70E-103.97E-10 0 .84E-09| Amihud 144 5.08E-103.92E-10 0  2.00E-09

—

EKGYO Obs Mean Std. Dv.  Min Max |[PETKM Obs Mean Std. Dv.  Min Max

W, 144 0323  0.324 0.009 1.929 W, 144 0332 0425 0.015 2.021
oy 144 0.139  0.131 -0.370 0.640 oy 144 0.065 0.064 -0.101 0.229
B4 144 0.547 0352 -0955 1.106 B4 144 0.607 0418 -1.025 1.019
Y1 144 1.046  0.148  0.735 1554 Y1 144 1.156  0.106 0929  1.559

Return 144 -0.001  0.008 -0.026 0.036 | Return 144  -2.2E-04 0.005 -0.017 0.018
Amihud 144  9.05E-10 1.83E-09 0 48E-08| Amihud 144  1.87E-102.45E-10 0 1.59E-09
EREGL  Obs Mean Std. Dv. Min Max |[SAHOL Obs Mean Std. Dv. Min Max

—_

wg 144 0290 0317 0.013  1.709 wg 144 0.417  0.400 0.025 1935
oy 144 0.088 0.074 -0.119 0.271 oy 144 0.083  0.107 -0.239  0.349
B4 144 0.627 0310 -0.744 1.021 B4 144 0.505 0411 -0956 1.073
Y1 144 1.117  0.112  0.864 1.531 Y1 144 1.017 0.091 0809 1318

Return 144  -9.1E-05 0.006 -0.019 0.014 | Return 144 -44E-05 0.012 -0.025 0.123
Amihud 144 2.09E-10 1.83E-10 0 8.98E-10{ Amihud 144  5.9E-10 9.0E-10 0 1.0E-08
GARAN Obs Mean Std. Dv.  Min Max [THYAO Obs Mean Std. Dv.  Min Max

w; 144 0202 0.218 0.008  1.581 g 144 0.112  0.152 -0.014 1.151
oy 144 0.114  0.075 -0.119 0.397 oy 144 0.097 0.040 0.032 0.239
B4 144 0.689  0.227 -0.606 1.033 B4 144 0.794  0.165 -0.238 0.963
Y1 144 1.154  0.161 0.859 1.709 Y1 144 1.368 0252 0972 2431

Return 144 6.57E-05 0.012 -0.036 0.113 | Return 144 -4.0E-04 0.007 -0.027 0.0293
Amihud 144 1.73E-109.97E-10 0 1.19E-08| Amihud 144  3.24E-112.21E-11 0 1.03E-10

ISCTR  Obs Mean Std. Dv.  Min Max | TUPRS Obs Mean Std. Dv.  Min Max

W, 144 0.382  0.358 0.039 1.807 W, 144 0309 0362 0.004 1990
oy 144 0.085 0.120 -0.244 0.601 oy 144 0.055 0.060 -0.147 0.192
B4 144 0.540 0389 -0.737 1.116 B4 144 0.641 0366 -0.955 1.066
Y1 144 1.031  0.113  0.788  1.380 Y1 144 1.106  0.107 0902  1.568

Return 144 -33E-04 0.007 -0.022 0.038 | Return 144 -0.002  0.018 -0.208  0.026
Amihud 144 4.59E-108.61E-10 0  7.62E-09| Amihud 144 2.15E-109.83E-10 0 1.19E-08

In Table 22, the correlation matrices for WACD estimates from the previous
summary statistics table can be examined. The link between the duration and
liquidity is investigated by comparing the Amihud Illiquidity measure and return
values with the WACD estimates. The goal here is to understand the inter-

relationships from a cross-sectional point of view.
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Table 22. Correlation Matrices for WACD (1,1) Estimations vs Amihud and Return

BIMAS ®w; o B1 Y1 Return Amihud |[KCHOL  w; 0y B1 Y1 Return Amihud
o 1.00 wq 1.00
a; 0.24 1.00 oy 0.14 1.00
B4 -0.96 -0.51 1.00 B, -0.95 -0.45 1.00
Y1 -0.11 -0.24 0.17 1.00 Y1 -0.10 -0.13 0.14 1.00
Return -0.13 -0.05 0.13 0.01 1.00 Return  0.07 -0.03 -0.05 -0.17 1.00
Amihud 0.11 0.14 -0.15 -0.09 -0.12 1.00 |Amihud -0.07 -0.02 0.06 0.10 -0.14 1.00
EKGYO w; oy B1 Y1 Return Amihud |[PETKM  w; 0y B1 Y1 Return Amihud
o 1.00 w1 1.00
a; 0.06 1.00 oy -0.13  1.00
B4 -0.94 -0.40 1.00 B, -0.99 -0.02 1.00
Y1 -0.21 -0.43 0.35 1.00 Y1 -0.15  -0.13 0.17 1.00
Return 0.14 0.07 -0.15 -0.10 1.00 Return  0.12  0.05 -0.13 -0.26 1.00
Amihud 0.10 -0.06 -0.07 -0.12  0.05 1.00 |Amihud -0.14 -0.05 0.15 -0.15 -0.08 1.00
EREGL w; o4 B1 v1 Return Amihud [SAHOL w; a; B1  y1 Return Amihud
W, 1.00 wq 1.00
a; -0.17 1.00 oy -0.04  1.00
By -0.97 -0.06 1.00 B, -0.97 -0.22 1.00
Y1 -0.19 -0.22 0.24 1.00 Y1 -0.21 -0.04 0.22 1.00
Return 0.08 0.09 -0.10 -0.15 1.00 Return  0.06 -0.14 -0.02 -0.04 1.00
Amihud 0.03 -0.10 -0.01 -0.24 -0.06 1.00 |Amihud 0.03 -0.11 0.00 0.05 0.69 1.00
GARAN w; o B1 Y1 Return Amihud [THYAO oy B1 y1 Return Amihud
W, 1.00 w1 1.00
a; 0.00 1.00 oy 0.28 1.00
B  -0.95 -0.31 1.00 By -0.98 -0.48 1.00
Y1 -0.18 -0.08 0.20 1.00 Y1 -0.25  -0.37 0.31 1.00
Return 0.11 -0.15 -0.05 -0.11  1.00 Return  0.06  0.04 -0.06 -0.19 1.00
Amihud 0.10 -0.15 -0.05 0.03 0.79 1.00 |Amihud 0.06 0.02 -0.06 -0.10 -0.15 1.00
ISCTR w; o B1 Y1 Return Amihud | TUPRS  w; oy B1 y1 Return Amihud
W 1.00 w1 1.00
a; 0.16 1.00 oy 0.09 1.00
B1 -0.96 -0.44 1.00 By -0.99 -0.25 1.00
Y1 -0.16 -0.42 0.27 1.00 Y1 -0.13  0.15 0.11 1.00
Return 0.01 0.01 -0.01 -0.01 1.00 Return  -0.32 0.04 0.31 -0.12 1.00
Amihud 0.03 -0.08 -0.01 0.00 0.16 1.00 |Amihud 0.36 -0.03 -0.35 0.02 -0.94 1.00

Fixed-Effect and Random-Effects regressions can be observed in Table 23

and Table 24 below. Both regressions are statistically significant, as reported with F

and Wald Chi-Square tests. By using the chi-square test results, we fail to reject the

null hypothesis that RE model is suitable. A Hausman test is deployed to be able to

understand which regression is preferable, and the test results are given in Table 25.
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Table 23. Fixed-Effect Regression Results for WACD (1,1) Coefficients with
Amihud and Return

FE
Variables Regression
® 0.002
(0.012)
o -0.001
(0.011)
B 0.003
(0.011)
Amihud 1.28E+05
(-3.0E+06)
Y -0.008***
(0.002)
Constant 0.006
(0.014)
Observations 1,440
No. of companies 10
R-squared 0.013
Robust standard errors in
parentheses

8% 5<0.01, ** p<0.05, * p<0.1

Table 24. Random-Effects Regression Results for WACD (1,1) Coefficients with
Amihud and Return

RE
Variables Regression
® 0.000
(0.017)
o -0.001
(0.017)
B 0.001
(0.017)
Amihud 4.26E+04
-2.95E+05
Y -0.006***
(0.002)
Constant 0.005
(0.017)
Observations 1,440
No. of companies 10
R-squared 0.113

Standard errors in parentheses
seskeok p<0-01, k% p<0.05, * p<0.1
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Regarding the Hausmann test, we rejected the null hypothesis of the RE
model being appropriate, and we decided to continue with RE panel regression.

Friedman test is used for checking cross-sectional independencies in Table 26.

Table 25. Hausmann Test for RE and FE Panel Regressions

FE Panel RE Panel Difference Std.E
w 0.002 0.000 0.002 0.001
o -0.001 -0.001 0.001 0.001
B 0.003 0.001 0.002 0.001
Amihud 1.3E+05 4.3E+04 8.6E+04 5.8E+04
Y1 -0.008 -0.006 -0.002 0.001
Chi-square 2.23
Prob>chi2 0.1353
Table 26. Friedman's Test for Cross-Sectional Independencies
Correlation matrix of residuals
cl c2 c3 c4 c5 c6 c7 c8 c9 clo
rl 1
2 | 0419 1
r3 | 0.098 0.156 1
r4 | 0211 0468 0.365 1
r5 | 0315 0421 0.197 0.357 1
r6 | 0.157 0327 0.068 0.260 0.233 1
r7 | 0408 0.672 0.173 0.449 0.442 0.320 1
r8 | -0.016 0.205 0.085 0.262 0.280 0.076 0.093 1
9 | 0468 0.730 0.008 0.436 0.359 0.272 0.665 0.186 1
rl0 | 0.102 0475 0.037 0.217 0.163 0.150 0.491 -0.089 0.348 1

Friedman's test of cross-sectional independence = 547.845, Pr = 0.00

The null hypothesis that there are no differences between the variables is
rejected regarding the Friedman Test results. RE regression is appropriate for the
data. As it can be noticed from the regression results, the y coefficient from the

ACD’s Weibull distribution error term specification is the only statistically
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significant variable. The coefficient for the Weibull’s v is negative, leading to a
negative correlation between y and return. These results are parallel to economic
interpretations. Weibull’s y directly explains the slope of the Hazard function,
duration clustering imposed by the slope is directly linked with return. As the y of
Weibull declines and that slope of the hazard function gets below one, the duration
clustering begins. In Tables 27,28,29,30, and 31, the results for pair-wise pooled

regressions are reported.

Table 27. Pairwise Pooled Regression for Hourly Amihud

Variables Model 1 Model 2 Model 3 Model 4
Y -0.007*** -0.006%***
(0.001) (0.001)
B -0.002** -0.002*
(0.001) (0.001)
o -0.002 -0.005
(0.003) (0.003)
Constant 0.011%* 0.005%* 0.004 0.012
(0.001) (0.001) (0.003) (0.011)
Observations 1,440 1,440 1,440 1,440
R-squared 0.021 0.011 0.001 0.028

Robust standard errors in parentheses
skkok p<0-01, *k p<0.05, * p<0.1

Table 28. Pair Regression for Return and Gamma

Variables Return/Gamma
c -0.004**

(0.002)
Constant 0.004**

(0.002)
Observations 1440
R-squared 0.006
Robust standard errors in
parentheses

skkok p<0-01, *k p<0.05, * p<0.1

73



Table 29. Pair Regression for Return and Amihud

Variables Return/Amihud

Amihud 0.000

(0.000)
Constant -0.001

(0.001)
Observations 1440
R-squared 0.000
Robust standard errors in
parentheses

4% p<0.01, ** p<0.05, * p<0.1

Table 30. Pair Regression for Return and Alpha

Variables Return/Alpha
o -0.002

(0.002)
Constant -0.000

(0.000)
Observations 1,440
R-squared 0.000
Robust standard errors in
parentheses

8% 5<0.01, ** p<0.05, * p<0.1

Table 31. Pair Regression for Return and Beta

Variables Return/Beta
B 0.001

(0.002)
Constant -0.001

(0.001)
Observations 1,440
R-squared 0.001
Robust standard errors in
parentheses

skkok p<0-01, *k p<0.05, * p<0.1
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CHAPTER 6

CONCLUSION

This thesis investigates and models the transaction, price, and volume durations in
Borsa Istanbul and shows the explanatory power of various ACD specifications and
extensions on the stock market activities. Durations from intraday orderbook data
display strong autocorrelation; therefore, a general framework from conventional
literature and an ACD model is used to inspect market microstructure.

The analysis demonstrates that BIST durations can be successfully modeled
using these methods by removing any autocorrelated dependencies parallel to
developed financial markets. In addition, a framework for choosing the error term
specification is provided by conducting analysis with various types of distributions
and ACD model selections that are most commonly used in finance literature.

Statistically significant and positive coefficients from the models imply that
the durations are strongly interrelated and can be estimated using past values of
conditional and unconditional durations. The magnitude of the last duration can
determine the next’s timing, leading to duration clustering. Having a sum of
coefficients of past durations close to one reveals the strong persistence of lagged
durations in all cases. It is also found out that the cross-sectional differences within
the most traded ten stocks reveal differing degrees of clustering in trade durations.
Turkish duration dynamics appear to follow developing market examples rather than
the developed ones like the US. As trading speed increases, intraday dynamics
become ever more essential, and a more significant number of investors adopt HFT,
one can expect to see a convergence in durations between worldwide financial

markets.
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The primary motivation behind the first part of this thesis was to generate a
framework for modeling every type of market durations in BIST by comparing
various models with distinctive specifications and extensions. In the second part, the
aim was to use the outcomes of the respective framework to show the explanatory
power of the intraday duration modeling, which cannot be clarified by traditional
low-frequency liquidity models and proxies in the literature.

The results from the first part of the study show that the serial correlation
between the durations can be eliminated and modeled by ACD models for different
market scenarios. Distinctive error specifications and ACD extension can be used
and compared by this framework, and every type of duration can be modeled in
BIST. Moreover, the outcomes of the second part of the study reveal that intraday
liquidity and duration modeled by the framework from the first part helps explaining

equity market movements and the traditional Amihud Illiquidity model.
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