
 

 

 

 

 

AUTOREGRESSIVE CONDITIONAL DURATION AND LIQUIDITY 

 

 

 

 

 

 

ÜMİT ALTAY BARAN 

 

 

 

 

 

 

 

BOĞAZİÇİ UNIVERSITY 

2022



 
 

 
 

 

AUTOREGRESSIVE CONDITIONAL DURATION AND LIQUIDITY 

 

 

 

Thesis submitted to the 

Institute for Graduate Studies in Social Sciences 

in partial fulfillment of the requirements for the degree of 

 

 

Doctor of Philosophy 

in 

Management 

 

 

by 

Ümit Altay Baran 

 

 

Boğaziçi University 

2022 

  



 
 

 
 

 

 

 

Autoregressive Conditional Duration and Liquidity 

 

 

 

The thesis of Ümit Altay Baran 

has been approved by: 

 

 

 

Assist. Prof. Cenk C. Karahan   _________________________ 
(Thesis Advisor) 
 
 
Assoc. Prof. Neslihan Yılmaz   _________________________ 
 
 
 
Assoc. Prof. Tolga Umut Kuzubaş   _________________________ 
 
 
 
Assoc. Prof. Cumhur Ekinci    _________________________ 
(External Member) 
 
 
Assoc. Prof. Mehmet Oğuz Karahan   _________________________ 
(External Member) 

 

 

 

January 2022  



 

 

 

 

DECLARATION OF ORIGINALITY 

 
 
 

I, Ümit Altay Baran, certify that 

 I am the sole author of this thesis and that I have fully acknowledged and 

documented in my thesis all sources of ideas and words, including digital 

resources, which have been produced or published by another person or 

institution; 

 this thesis contains no material that has been submitted or accepted for a degree 

or diploma in any other educational institution;  

 this is a true copy of the thesis approved by my advisor and thesis committee at 

Boğaziçi University, including final revisions required by them.  

 

 

 

Signature……………………………………………........ 

 

Date ……………………………………………............... 



 
 

iv 
 

ABSTRACT 

Autoregressive Conditional Duration and Liquidity 

 

This thesis provides an in-depth Autoregressive Conditional Duration (ACD) 

application and examines the relationship between the consecutive transaction, price, 

and volume durations in Borsa Istanbul (BIST) stock exchange and investigates the 

explanatory power of models’ coefficients on return and liquidity measures. ACD 

models enable the usage of intraday high-frequency order book data to model the 

duration between consecutive transactions and predict the next meaningful duration. 

Durations are modeled in two parts, past and conditional, and the power of 

dependencies between successive trades is investigated in this way. In this study, by 

utilizing a subset of the ten most traded stocks in BIST and applying a framework for 

investigating the most suitable error term specification, various ACD models and 

extensions are employed to understand the intraday duration behaviors of different 

stocks. First, a brief explanation is specified about why the widely used low-

frequency liquidity measures are inadequate at capturing the appropriate intraday 

liquidity. Afterwards, the durations between the transactions, prices, and volumes are 

modeled by using various types of ACD models, and a framework is established. 

Finally, new coefficients taken from the ACD applications are comparatively studied 

using regressions across different trading windows. Building on the framework of in-

depth applications and analysis of ACD, a panel regression is used to understand the 

explanatory power of the new model. The findings of this study demonstrate the 

effectiveness of using ACD applications for modeling intraday duration effects on 

equity returns and liquidity. 
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ÖZET 

Otoregresif Koşullu Süre ve Likidite 

 

Bu tez bir Otoregresif Koşullu Süre (ACD) uygulaması sunmakta ve Borsa 

İstanbul’da (BİST) ardışık işlem, fiyat ve hacim süreleri arasındaki ilişkiyi 

incelemektedir. ACD modelleri gün içi yüksek frekanslı emir defteri verilerini 

kullanarak, işlemler arasındaki sürenin modellenmesini ve bir sonraki anlamlı işlem 

süresinin tahmin edilmesini sağlar. Süreler geçmiş ve koşullu olmak üzere iki 

parçada modellenir ve ardışık işlemler arasındaki bağımlılıkların gücü bu şekilde 

araştırılır. Bu çalışmada ilk olarak, yaygın şekilde kullanılan düşük frekanslı likidite 

ölçütlerinin, gün içi yüksek frekanslı işlemlerden meydana gelen likiditeyi ölçmedeki 

eksikliklerine dair kısa bir açıklama yapılmıştır. İkinci olarak, işlemler arasındaki 

süreler, fiyatlar ve hacimler, farklı ACD metotları kullanılarak modellenmiş ve 

karşılaştırılmıştır. En uygun hata terimi spesifikasyonunun ve ACD uzantısının 

seçimi için bir çerçeve çizilmiştir. Son olarak, ACD uygulamalarının yeni çıktıları, 

gün içi alım satım faaliyetleri ile karşılaştırmalı olarak incelenmiş ve getiriler 

açıklanmıştır. Çeşitli ACD analizleri üzerine inşa edilen yeni değişkenlerin açıklayıcı 

gücünü anlamak için bir panel regresyon uygulanmış ve piyasa koşulları, model 

çıktıları ile test edilmiş, açıklama gücü rapor edilmiştir. Bu tezin bulguları, hisse 

senedi getirileri üzerindeki gün içi likidite etkilerini modellemek için ACD 

uygulamalarının etkinliğini ortaya koymaktadır. 
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CHAPTER 1 

INTRODUCTION 

 

Stock liquidity has been an essential issue in financial markets for several years. It 

can be briefly described as the ability of buying or selling a significant amount of a 

security quickly, anonymously, and with minimal or no price impact. 

The stock liquidity and the trading activity have been investigated from a 

couple of different perspectives and have drawn much attention in the financial 

market and academia. In the 1970s first researchers to examine the concept of 

liquidity were Demsetz (1968) and Tinic (1972). Demsetz manages to list the 

determinants of liquidity as trading volume, number of trades, volatility, firm size, 

and price. Four years later, Tinic demonstrates a positive relationship between 

trading activity and liquidity and a negative association between trading activity and 

volatility. 

Following these new studies, the researchers in the upcoming years started to 

explore whether the assets with high spread and/or price impact have higher average 

returns from the cross-sectional point of view. Amiduh and Mendelson (1986), 

studying the bid-ask spreads, and Brennan and Subrahmanyam (1996), focusing on 

price impacts, both pieces of research find a positive relationship between expected 

stock returns and alternative proxies for individual illiquidity levels. 

Building on the previous research, new studies investigating the different 

liquidity perspectives emerge. The presence of predictability and commonality in 

liquidity is revealed in various studies, such as Subrahmanyam (2001), Amihud 

(2002), among many others. Asset pricing based on liquidity risks empirically aids in 

explaining the cross-section of stock returns and how the decreased liquidity is 
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increasing expected stock returns. Liquidity plays an essential role in solving 

numerous asset pricing puzzles and anomalies. Amihud, Mendelson, and Pederson 

(2005), in their survey study on liquidity and assets prices, review the principles on 

how liquidity impacts the required returns of securities. They show that the effects of 

liquidity risks in empirical studies are statistically significant and economically vital.  

The liquidity risk is a priced source of risk when the particular models are 

fitted into the financial data. The scale of the liquidity premium is significantly 

present, but quantity differs among the studies and the proxies. For example, Pastor 

and Stambaugh (2003) report a very high 7.5% annual premium even though 

Acharya and Pederson (2005) find it 1.1% annually.  

Across the financial literature, the main difficulty with liquidity is that the 

liquidity itself is unobservable, and it is needed to use proxies to integrate into any 

model. Since 2002, the illiquidity measure developed by Amihud has been the most 

widely used liquidity proxy in the financial market and literature. In recent years, 

more than hundreds of researches published in several most famous and attended 

journals like the Journal of Financial Economics, Journal of Finance, etc., used 

Amihud Illiquidity measure as their liquidity proxy for their empirical analyses. 

Amihud’s measure is widely used because of briefly two main reasons; first is the 

ease of use and the second one is that it is demonstrated in many analyses that the 

Amihud Illiquidity has a solid positive relation with the expected stock return. In his 

study, Amihud essentially describes the price impact by the proportion of absolute 

daily return to the trading volume. However, in financial theory, intraday trading 

activities are crucial to liquidity and volatility. So that while facilitating the 

measurement of liquidity, we are missing or ignoring some essential daily 

information of the related underlying securities by using Amihud (2002). It is 
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discussed in Chordia, Huh, and Subrahmanyam (2009) that although many 

microstructure theories have been developed, extant economic models are unable to 

map precisely onto Amihud’s construct of the ratio of absolute return to volume.  

The excess returns captured by the Amihud measure are generally called the 

liquidity premium that should be taken into consideration while modeling any 

securities. Academics use it to analyze liquidity premium, build liquidity factors, or 

liquidity tests, but we cannot be sure if the pricing of the Amihud is undoubtedly due 

to the price impact or other reasons. Excluding the intraday trading activity like 

intraday volatility, excessive price changes, or volume differences between price-

changing transactions, Amihud’s Illiquidity is leaving some questions marks in the 

asset pricing models. 

This study proposes a new way of measuring liquidity that takes intraday 

trading information into consideration to solve this missing information problem. It 

is considered that due to the improved automation of financial markets and the 

advancements in computing power, including intraday high-frequency data into the 

liquidity and volatility models have become a necessity. Modeling the duration 

between the transactions, forecasting the following significant price change and price 

impact becomes available with Autoregressive Conditional Duration (ACD) models 

by using intraday high-frequency data.  

The ACD model was developed by Engle and Russell (1998), whose specific 

purpose is the modeling of times between events. Both Engle (2000) and Engle 

(2002) demonstrate that the ACD model shares many characteristics with the 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models and 

that durations can be modeled like volatility. As it is in the GARCH model of 

Bollerslev (1986), ACD models also rely on economic motivation following from the 
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clustering of news and financial events in the market. With all these characteristics of 

ACD models, it becomes viable to incorporate and model intraday data for liquidity 

measurement. From our point of view, by generating such intraday duration 

estimations by using corresponding properties, it becomes possible to address most 

of the concerns about the usage of Amihud’s liquidity measure. 

In this study, there are mainly three research questions that are focused on. 

Firstly, it is investigated whether it is possible to use ACD specifications on BIST 

intraday orderbook data to get statistically significant and meaningful results? 

Secondly, can a framework for selecting appropriate error terms specification and 

ACD extension be constructed for different durations like transaction, price, and 

volume? Finally, is it viable to use these results from ACD models on HFD for 

capturing the relationships between liquidity and returns? Moreover, what are the 

explanatory power of these coefficients from estimated models?   
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CHAPTER 2 

LITERATURE REVIEW 

 

The objective of this chapter is to present a review of the prior literature on ACD and 

liquidity. The first part analyses the most important liquidity studies in literature, and 

the second part is on both theoretical as well as empirical studies on ACD models. 

 

2.1  Liquidity literature 

Traditionally and practically, a market with a low transaction cost is defined as a 

liquid, while one with a high level of cost is illiquid. Since these costs affecting the 

transactions rely on many circumstances, such as the trade's size, timing, trading 

spot, counterparts, it is not easy to make the measurements. On the other hand, it can 

be said that the total information required for calculating the exact transaction cost is 

often unobtainable. Therefore, a wide range of measures utilized to assess liquidity 

appropriately should be identified. 

Trading volume: It is described as the total number of shares or contracts 

traded for particular equity during a specified time horizon. It can be measured on 

any kind of security traded during a trading period. This measure is simple to 

calculate and available worldwide. 

Trading frequency: It is the number of trades completed within a specific time 

window. The high trading frequency may be associated with higher liquidity, but on 

the other hand, it can also be related to increased volatility. The trade size is not 

taken into consideration while measuring the frequency. 

Bid-Ask spread: Direct way to measure the cost of a small trade is generally 

computed as the difference between the bid and ask price as the bid-ask midpoint. 
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The spread determines the cost of performing a single exchange of a particular size. 

Since the data is widely available in real-time, it is easy to calculate straightforward. 

Given that there is a restricted number of waiting orders in the bid and ask spread, 

the bid-ask spread calculation cannot be utilized in large-scale transaction cost or 

liquidity calculations. 

Quote size: This can be defined as the number of securities tradable at the bid 

and offer prices. It is precisely linked to market depth and accompanies the bid-ask 

spread. Measuring the quote size can be complicated for the majority of the markets 

since the market maker may have a regulation that makes it probable to hide some of 

the order book depth. (Iceberg orders etc.). 

Trade size: Amount of securities traded at the corresponding bid and ask price 

points. Quantity traded will be different from the quantity quoted most of the time 

since transactions are not directly linked with the quoted quantity. This measure can 

alternate the usage of quote size. 

Regarding all these measures used for calculating liquidity, different liquidity 

models have been developed by many researchers in the financial literature. In this 

study, we will mainly focus on comparing the models and theories with the popular 

Amihud’s Illiquidity measure from 2002. However, first, it is relevant to review 

some of the most famous liquidity studies from the financial literature as well. 

The capability of trading a large number of stocks with minimum price 

impact, cost, and delay can be labeled as liquidity. As Keynes explained in the 

1930s, we can call an asset liquid if it is possible to trade it immediately without any 

loss in realization. All the characteristics that are briefly explained in the previous 

paragraph cannot be described in a unique measure. Therefore, an adequate measure 

of liquidity that denotes all these qualities continues to be a field of research. 
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We can categorize the stock market liquidity measurement literature into four 

different groups. The former literature suggests four primary characteristics of 

liquidity as trading volume, realization time, price impact, and trading(transaction) 

cost. These four different main characteristics can be relatively captured by various 

liquidity measures such as depth as volume and quantity measure, breadth as price 

impact measure, immediacy as time and speed measure, and finally, transaction costs 

as a cost measure. These measures differ from one another by the frequency of the 

data that is being used in the studies. While some measures are calculated on intraday 

high-frequency data, some others are measured in low frequency, for instance, 

monthly or yearly data.  

Depending on the objectives and the calculation time windows of the 

corresponding works, measuring methodology displays numerous amount of 

variations. Various liquidity approaches have been used and proposed in the 

literature. As Chai et al. (2010) believe, it is impossible to find the best measure that 

can calculate every type of liquidity for various market systems and conditions 

because each kind of measure captures distinct characteristics of liquidity. As 

liquidity has multidimensional features, it cannot be captured by a single measure. 

The outcomes from separate measures of liquidity can denote different decisions. 

(Benic and Franic, 2008) 

Many studies in the literature compare the liquidity measures with one 

another. Hallin et al. (2011) use the spread and volume-related liquidity, compare 

them with each other and inform that both procedures are negatively correlated and 

provide almost identical information about market liquidity. In another study of 

comparing liquidity measures, Marshall et al. (2013) found that three different 

measures of Gibbs, Amivest, and Amihud are all effective at measuring liquidity in 
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the emerging markets. Moreover, as an additional study of assessing the measures 

and results, Bedowska-Sojka (2018) reports that the Amihud Illiquidity is the most 

accurate transactional cost-based measure in the literature, according to their 

findings. 

From the point of view of market impact cost, Kyle (1985) and Breen, 

Hodrick, Korajczyk (2002) are both very important studies on explaining the 

illiquidity deriving from private information. They explain the illiquidity by 

generating a competitive and risk-neutral market maker modeling. They manage to 

show that the illiquidity will be present when two agents with different levels of 

information are against each other in any auction. The informed trader will be 

positioning himself according to the information he possesses so that this action will 

create an un-equilibrium between informed and uninformed agents. 

Stoll (1978) and Amihud, Mendelson (1980) are essential papers 

concentrating on the bid-ask spread side of the liquidity. They all show that the 

fundamental source of illiquidity is the fragmentation of investors and markets, 

which means that not all market participants are present at the same and all time. For 

example, a seller may possibly arrive at the market when a genuine buyer is not 

present. This gap caused by the timing of the presence of the participants is filled by 

the market maker for the purpose of market continuity. However, this results in 

bearing additional risks for the market maker, and it should be compensated for this 

risk. Amihud and Mendelson (1980) and Stoll (1981) solve this problem by having 

the bid-ask prices depending on the market maker’s inventory and modeling the 

illiquidity from inventory risk. 

In the finance literature, there are also a collection of papers modeling 

liquidity from the point of view of search and delay costs, price and execution risks, 
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and limits on trading. In both studies, Duffie et al. (2003) and (2005) manage to 

model the liquidity risk deriving from the search, bargain, and limits of trading, 

especially in the OTC markets. They conclude their study by explaining the positive 

relationship between search frictions and liquidity premium. 

Datar, Naik, and Radcliffe (1998) measure the liquidity by share turnover, 

which is volume divided by the number of shares. They show that higher turnover is 

correlated with greater liquidity and find that liquidity (higher turnover) is linked 

with lower expected returns. 

Brennan and Subrahmanyam (1996) estimate the liquidity from a Kyle-

inspired model; Stoll and Whaley (1983) derive the liquidity as spread plus 

commissions from the direct and observable data, and Glosten and Harris (1988) 

approximate the mechanisms of bid-ask spreads as asymmetric information and 

inventory costs. Pastor and Stambaugh (2002) generate a liquidity proxy from their 

return reversal measures, and Lesmond, Ogden, and Trzcinka (1997) use the zero-

return measure (proportion of zero daily returns). Pastor and Stambaugh (PS) 

measure built by Pastor and Stambaugh (2003) is acquired by the regression of daily 

returns in excess of daily market index returns with daily dollar volume. 

Price impact size is assessed by the slope of the price function in Hasbrouck 

(2009). Goyenko et al. (2009) introduce the five-minute price impact by capturing 

the permanent price deviations in a 5-minute trade window. Bid-Ask spread’s 

midpoints are measured from the beginning of the trade window until the close. 

Trzcinka et al. (2009) introduce a high correlated proxy with spread-related measures 

called FHT. They compare percentage cost and cost per volume proxies from 

intraday equity market data. 
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Liquidity is in different types of combination in related studies such as Vu et 

al. (2015), Lee (2011), and Bradrania and Peat (2013). In addition to stock market 

liquidity and calculating it with several different proxies, market liquidity risk with 

expected returns is also an essential issue for researchers to base their studies on. The 

market liquidity risk has been well calculated as the association between stock return, 

liquidity, and market return. 

Vu et al. (2015) use the Liquidity Adjusted Capital Asset Pricing Model 

(LACAPM) and find out that liquidity risks are higher in bearish markets and 

positively correlated with market returns. Bradrania and Peat (2013) also reveal the 

existence of market liquidity risks’ effects on stock returns. The occurrences of the 

liquidity risks are well impacting the expected returns, and it is already priced in the 

assets. Dang and Nguyen (2020) show the harmful effects of liquidity risks on stock 

returns across various global markets. Similarly, Nneji (2015) studies the strong 

relationship between stock market crashes and the hikes in stock market liquidity 

risks. Guloglu and Ekinci (2021) review the measures that are used for quantifying 

liquidity in empirical studies. Focusing on the high-frequency research, they show 

the differences and similarities according to different dimensions of liquidity and that 

market liquidity measures are categorizable according to their distinct characteristics. 

The first liquidity proxy that has been used in the literature can be assessed as 

Keynes (1930), where liquidity is linked to the cost of realization of an asset’s 

market order. The Sum of the buying premium and the selling discount, which is the 

spread between the bid and ask price, is accepted as the measure of illiquidity. As 

explained in previous paragraphs, building on both market and academic knowledge 

of the mid-1900s, the most famous studies on the market microstructure of liquidity 

and estimations of market liquidity proxies are shown in Table 1 below. 
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Table 1.  Most-used Liquidity Proxies and their Remarks 

Author/Year 
Data 

Frequency 

Proxy 

Dimension 
Summary 

Cooper et al. 

(1985) 
Day Price Impact Amivest measurement 

Chordia et al. 

(2001) 
Minute 

Transaction 

Cost 
Bid-Ask Spread 

Datar (1998) 
Day or 

Month 
Price Impact Elasticity of Trades 

Amihud (2002) Day Price Impact 

Illiquidity Measurement, 

Sensitivity to dollar 

volumes 

Pastor and 

Stambaugh (2003) 
Day Price Impact 

Volume of stocks vs stock 

price impacts 

Uddin (2009) Month 
Relative 

Measures 

Systematic Liquidity vs 

Stock liquidity 

Trzcinka et al. 

(2009) 

Day and 

Minute 

Comparative 

Analysis 

High-Frequency Proxies 

Comparisons 

 

These various liquidity proxies formed mainly by low-frequency data are 

commonly used in asset pricing research papers, but none of them are as popular as 

Amihud’s liquidity ratio. At this point, it is logical for our study to focus on Amihud 

(2002) and try to explain why the low-frequency liquidity proxies are insufficient for 

today’s financial markets. 

The return premium linked with the universally used Amihud (2002) 

illiquidity measure is primarily accepted as a liquidity premium that offsets the price 

impact or transaction cost. A basic absolute value of the return to dollar volume ratio 

is utilized as a measure to calculate the liquidity premium. It is so simple to use and 
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apply to any kind of trading data and uses only publicly available data. The main 

reason behind Amihud's (2002) popularity comes from this simplicity of application. 

Even if the Amihud illiquidity is widely used by researchers for examining 

liquidity premium, building liquidity factors, or testing for liquidity, it is not clear 

whether the valuation of the Amihud is due to the price impact (stock liquidity) or 

other reasons. As it can be understood in the formula, the model excludes intraday 

trading activity like intraday volatility and price changes. The Amihud illiquidity is 

positively correlated with the “end of the day” return of the underlying asset. So, no 

matter what the intraday volume or the volatility of the related security is, if the 

closing price is equal or close enough to the opening price, this model will measure 

the illiquidity lower than it should be.  

 

2.2  Autoregressive conditional duration literature 

In recent years, with the introduced accessibility of the low-cost intraday transaction 

datasets, both the finance literature and market-wide financial analysts started to 

embrace the studies of High-Frequency Data (HFD). Most empirical studies using 

day-to-day data acquired by keeping either first or final observation of the time series 

are totally neglecting intraday events. They are being replaced by models using 

intraday databases, taking every single transaction into calculations. Using HFD and 

modeling it with econometrics, finance, and time-series statistics, a more profound 

knowledge of market activity and microstructure emerge. These new approaches 

make it possible to keep up with the constantly increasing speed of trading 

worldwide. 

Recent studies in the market microstructure show that apart from traditional 

trade variables like price, volume, number of trades, etc., time is also carrying 
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information and should, therefore, be modeled.  Inspired by these arguments, the 

ACD model developed by Engle and Russell (1998), whose main objective is 

modeling the irregularly spaced transaction data, is used in this study. 

The main concept of ACD is the trade duration which is essentially the 

waiting time between successive transactions of equity. (Engle and Russell, 1998) 

One of the essential features of this high-frequency trade data is that it is irregularly 

spaced in time. (Engle, 2000) Different kinds of distributions such as Exponential, 

Weibull, or Gamma are used to model these ACD structures. The flexibility and the 

versatility of the Weibull distribution become handy for this study of modeling the 

irregularly spaced duration data between the consecutive trades. (Meitz and 

Teräsvirta, 2006) 

Time occurred between trades is informative, as proposed in both Easley and 

O’Hara (1992) and Easley et al. (1997). The empirical and theoretical research 

conducted on ACD models, which has drawn much attention on microstructure, trade 

intensity, and liquidity, are covered in research studies like (Bauwens and Giot, 

2001; Engle, 2002; Hautsch, 2004; Tsay, 2002). 

Building on the baseline model of Engle and Russell (1998), many 

researchers contribute to the literature by generating different types of ACD 

applications depending on their datasets and purposes. In the literature, there is a 

shared acknowledgment that the ACD models can be classified into three different 

generations. Exponential ACD (EACD), Gamma/Generalized Gamma ACD 

(GACD/GGACD), and Weibull ACD(WACD) can be considered as the most 

prevalent versions of ACD models that make use of different types of error term 

distributions since the model's inception. Models using Engle and Russell’s baseline 

ACD with various error term specifications are classified as first-generation ACD 
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models with the assumption of having the innovations following a distribution with 

nonnegative support.  

There are also a significant amount of studies concentrating on the additional 

flexibility of parametric and nonparametric extensions. Box-Cox ACD (BCACD) 

model of Dufour and Engle (2000), the logarithmic version (LACD) of Bauwens and 

Giot (2000), threshold implementation (TACD) of Zhang et al. (2001), and 

augmented modeling (AACD) of Fernandes and Grammig (2006) can be referred as 

these second generation of ACD models. 

Developing on the first-generation models and addressing the needs for 

additional flexibility of parametric and nonparametric extensions, there are 

significant amounts of studies expanding the standard ACD model for improved 

versatility. Box-Cox ACD (BCACD) model of Dufour and Engle (2000), the 

logarithmic version (LACD) of Bauwens and Giot (2000), threshold implementation 

(TACD) of Zhang et al. (2001), and augmented modeling (AACD) of Fernandes and 

Grammig (2006) can be referred as these second-generation of ACD models. Pacurar 

(2008) delivers a comprehensive review of these first and second generations of 

models that were developed prior to the global financial crisis. She concludes by 

declaring that the group of ACD-GARCH models, along with the connection 

between price durations and volatility, may help develop risk measures based on 

transaction data that are beneficial for active intraday traders. While some studies 

have already been introduced, she believes this subject would be given further 

attention. 

Furthermore, Hautsch (2012) provides an interesting set of models to further 

explain recent developments and areas of usages of duration models. Motivated by 

the growing popularity of HFTs, he manages to present distinct styles of ACD 
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models and illustrates their effectiveness and capabilities in different types of 

applications in his book, Econometrics of Financial High-Frequency Data. Starting 

with the standard ACD model of Engle and Russel (1998) and extending the model 

for specific purposes, the special cases are presented as; the Additive and 

Multiplicative Model (AMACD) for incorporating news impact curves, Box-Cox 

Model (BACD) for concave and convex news impact functions, Exponential Model 

(EXACD) of Dufour and Engle (2000) for capturing piece-wise linear impacts, 

Hentschel Model (HACD) by Fernandes and Grammig (2006) for introducing 

multiplicative stochastic component and Spline News Impact Model (SNIACD) by 

modeling the news response. 

Bhogal and Variyam (2019) review the latest literature on conditional 

durations models in 2019. As they stated in their study, their paper can be noticed as 

an extension to Pacurar’s study, where she studied the majority of “the first- and 

second-generation” models of conditional durations. They review the theoretical and 

empirical studies developed after 2008 and add the third-generation conditional 

duration models to the ACD literature review as an extension. 

There are also some remarkable works on how to forecast some aspects of the 

monetary markets by using ACD models. Tse and Yang (2012) predict the intraday 

volatility of an equity, and Pyrlik (2013) delivers predictions on market crashes by 

using the same methodology. Huptas (2014) develops an empirical study on 

durations of selected stocks in the Polish stock exchange by using Bayesian inference 

on ACD models. Applying a logarithmic extension of ACD models, Gurgul and 

Syrek (2016) investigate and compares the microstructure of Polish and German 

stock exchanges.  
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The recent popularity of cryptocurrencies motivated a considerable effort to 

understand crypto markets' properties and microstructural behavior. The tech-savvy 

investor base and advent of HFT in this particular market require that particular 

attention be paid to high-frequency models to understand the sources of volatility and 

duration clustering. Dimpfl and Odelli (2020) use this duration perspective of ACD 

to estimate the probability of a significant price event in Bitcoin and investigate how 

Bitcoin features are associated with durations and volatility. 
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CHAPTER 3 

METHODOLOGY AND MODEL 

 

3.1  Standard ACD model and diurnal adjustments 

As mentioned before, the HFD data are irregularly time-spaced and statistically 

considered as point processes. As explained in Bauwens and Giot (2001), an HFD 

contains a collection of information on financial trades, and “the times” of these 

events serve as the arrival times of the point process. Engle and Russell (1998) use 

this data as a basis for their study of the trading activity and market microstructure 

investigation. 

A point process of the durations between market transactions is modeled by Engle 

and Russell (1998), and the model is identified as the ACD model. Since price or 

volume events are associated with the arriving time, the mechanism can be labeled as 

a marked point process. The stochastic process of the ACD model adopts a series of 

time points  {t଴, tଵ, … , t୬, … }, t଴ < tଵ < ⋯ < t୬. If we call N(t), the quantity of 

events that occurred before the time t, the conditional intensity process can be written 

as: 

λ൫t ∣ N(t), tଵ, … , t୒(୲)൯ = lim
୼୲→଴

 P൫N(t + Δt) > N(t) ∣ N(t), tଵ, … , t୒(୲)൯/Δt (1) 

This function (1) can be specified as a hazard function, and as it is assumed in 

Engle and Russell (1998), it links the duration ahead with the likelihood of the next 

event occurring. The parameterized duration function is assumed as the conditional 

probability of transaction i, occurred at time t provided the duration among t୧ and 

t୧ିଵ where x୧ = t୧ − t୧ିଵ is the marginal duration between two consecutive 
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transactions. As it is suggested by Engle and Russell, if we let 
୧
 be the conditional 

expectation of i th duration, it can be written as: 

E(x୧ ∣ x୧ିଵ, … , xଵ) = ψ୧(x୧ିଵ, … , xଵ; θ) ≡ ψ୧ (2) 

Furthermore, the standardized durations of the ACD model can be assessed as: 

ε୧ =
x୧


୧

 (3) 

 

are independent and identically distributed, which is iid. This indicates that the 

conditional expected duration can capture all the temporal dependencies and that 

ACD is characterized by the description of the conditional duration 
୧
 and the 

distribution of ε୧. Engle and Russell (1998) show that the recent p durations 

characterize the conditional duration and that a conventional model of ACD(p,q) can 

be described as: 

ψ୧ = ω + ෍  

୮

୨ୀ଴

α୨x୧ି୨ + ෍  

୯

୨ୀ଴

β୨ψ୧ି୨ (4) 

p and q are lag orders. 

The specification of error term ε୧ arranges the ACD models into different 

categories. Exponential and Weibull distributions are the two most utilized 

distributions of the error term ε୧. The preference of distribution in (4) influences the 

conditional intensity or the hazard function of the ACD model. The flat conditional 

hazard function implied by Exponential distribution leads to the refusal of duration 

clustering. As it is indicated in many empirical studies like; Engle and Russell 

(1998), Dufour and Engle (2000), Feng et al. (2004), Lin and Tamvakis (2004), and 

various others, using a flat hazard function implied by Exponential distribution is 

limiting and can be simply omitted in empirical applications. The shape of the 
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Weibull distribution leads to more flexible analysis and fits the idea of duration 

clustering, which can even be seen in raw data.  

The Weibull distribution with parameters ( ), the hazard function can be described 

as h(x) =     ିଵ  and the conditional intensity take the form:  

λ൫t ∣ x୒(୲), … , xଵ൯ = ൫Γ(1 + 1/γ)ψ୒(୲)ାଵ
ିଵ ൯

ஓ
൫t − t୒(୲)൯

ஓିଵ
γ (5) 

 

The two-parameter family is obtained by Γ being the gamma function and γ 

being the Weibull parameter, which specification indicates an increasing or 

decreasing hazard function. Depending on the Weibull parameter being greater or 

less than one, the hazard function is upward or downward sloping. The log-

likelihood of the Weibull function decreases to the log-likelihood of exponential 

ACD if the parameter is equal to one. These parameters are acquired by using 

maximum-likelihood estimation. Finally, the log-likelihood function for Weibull 

ACD can be assessed as: 

log L = ෍  

୒(୘)

୧ୀଵ

ln (γ/x୧) + γln (Γ(1 + 1/γ)x୧ψ୧
ିଵ) − (Γ(1 + 1/γ)x୧ψ୧

ିଵ)ஓ (6) 

 

The strong intraday seasonality is a well-known characteristic of the HFD. 

Many researchers like Bollerslev and Domowitz (1993), Beltratti and Morana 

(1999), and several others report the same high-frequency trading data characteristics 

in their studies. Engle and Russell (1998) state that greater trading activity at the 

opening and closing of the trading sessions leads to smaller durations between 

transactions. It can be linked to the investor’s behaviors. Before proceeding with 

modeling of the durations, the intraday durations are decomposed into two parts: 

deterministic and stochastic. This method of removing the intraday seasonality 
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effects is initially employed by Engle and Russell (1998). The diurnally adjusted 

durations xన෥  , of the durations x୧ and the expected duration θந is given by (7) and (8), 

respectively: 

x෤୧ = x୧/ϕ൫t୧ିଵ; θம൯ (7) 

E୧ିଵ(x୧) = ϕ൫t୧ିଵ; θம൯ψ୧൫x෤୧ିଵ, … , x෤ଵ; θந൯ (8) 

 

Two sets of parameters stated in function (5) are estimated using maximum 

likelihood with a two-stage estimation method. First, a cubic spline function is used 

to remove the intraday effects of duration, and then these diurnally adjusted durations 

are utilized in the ACD model. 

 

3.2  Distributional assumptions for error term specifications 

Because of the ease of use and application, the exponential distribution is a natural 

option very appropriate for ACD estimations. The standard exponential distribution 

with a shape parameter equal to one is used by Engle and Russell (1998) and is 

called the EACD model. A significant advantage of employing this distribution is 

that it provides a quasi-maximum likelihood (QML) estimator for the ACD 

parameters (Engle and Russell, 1998). It has been shown by Drost and Werker 

(2004) that a satisfactory level of consistency of the estimates is achieved when the 

QML estimation is built on the standard gamma family. The quasi-likelihood 

function can be written as: 

 

L(θ) = − ෍  

୒(୘)

୧ୀଵ

൤
x୧

ψ୧
+ log ψ୧൨ 

(9) 
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Engle and Russell (1998) validate the EACD (1,1) by the resemblance 

between the ACD and GARCH models by applying the same results on the QMLE 

properties of the GARCH (1,1). Under the preliminary conditions of their model, the 

estimates of θ are achieved by maximizing the likelihood function given above (9). 

The QML estimation produces steady estimations, and the processes in the 

case of exponential distributions are simple to execute, but this happens at the cost of 

efficiency. In practical applications, fully efficient maximum likelihood estimates 

might be best to use. However, in contrast, the selection of the distribution of the 

error term in the methodology affects the conditional intensity and hazard function of 

the ACD model. The exponential specification entails a fixed conditional hazard 

function that is relatively restricting and might be effortlessly rejected in practical 

economic applications. For better versatility and adaptability, Engle and Russell 

(1998) employ a standard Weibull distribution with a scale parameter being equal to 

one, and the following model is called WACD. The log-likelihood of the Weibull 

function decreases to the log-likelihood of exponential ACD if the parameter is equal 

to one. The Weibull parameter dictates the allowance of increasing or decreasing 

hazard function by being greater or less than one. As shown in function (6), these 

parameters are acquired using maximum-likelihood estimation.   

Encouraged by the explanatory evaluation of observed price and volume 

durations, Grammig and Maurer (2000) cast doubt on the notion of monotonicity of 

the hazard function in Engle and Russell’s standard ACD models. They support 

using a Burr distribution, which can be derived as a Gamma mixture of Weibull 

distributions (Lancaster, 1992), containing the Exponential, Weibull, and log-logistic 

as special cases. This specification of ACD using the Burr distribution is called Burr-

ACD. 
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Having the same doubts on the standard ACD models parallel to Gramming 

and Maurer, Lunde (1999) suggests the usage of the generalized gamma distribution 

that leads into the G-ACD model. Both distributions used by the researchers permit 

similar shaped hazard functions, equally dependent on two parameters, for referring 

to circumstances where, for minor durations, the hazard function is escalating and, 

for lengthy durations, the hazard function is declining. Moreover, Hautsh (2002; 

2004, 2012) compares the possible error term specifications and suggests 

Generalized F distributions that include Weibull and Log-logistic as special cases.  

The ACD model has been expanded in numerous aspects, focusing primarily 

on increasing the conventional details of durations. The solid connection amongst the 

ACD and GARCH models encouraged the rapid development of complementary 

measurements of conditional durations. All these possible error term distributions 

and the ones used in this study can be found in Table 2. The most popular 

generalizations of the ACD methodology are reviewed in the following subsection of 

Standard ACD Model Extensions. 
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Table 2.  Error Term Distributions 

 

Weibull: Burr (as in Grammig and Maurer, 2000): 

 

ε~W(θ, γ), θ, γ > 0 

fக(ε) = θγεஓିଵeି஘கಋ

E(ε) = θିஓషభ
Γ(γିଵ + 1)

Forcing E(ε) = 1 ;
 

θ = [Γ(γିଵ + 1)]ஓ

with Hazard Function:
h(ε) = θγεஓିଵ

  

 
(10) 

 

ε~Burr(θ, κ, σଶ);  θ, κ, σଶ > 0 , κ > σଶ 

fக(ε) =
θκεசିଵ

(1 + σଶθεச)
భ

ಚమାଵ

E(εୱ) = θି
౩

ಒ ×
Γ ቀ1 +

ୗ

ச
ቁ Γ ቀ

ଵ

஢మ −
ୗ

ச
ቁ

σଶ ቀ1 +
ୗ

ச
ቁ Γ ቀ

ଵ

஢మ + 1ቁ

 

Forcing E(ε) = 1 ; 

θ = ቌ
Γ ቀ1 +

ଵ

ச
ቁ Γ ቀ

ଵ

஢మ −
ଵ

ச
ቁ

σଶ ቀ1 +
ଵ

ச
ቁ Γ ቀ

ଵ

஢మ + 1ቁ
ቍ

ச

 

(11) 

Generalized Gamma: Generalized F (Hautsch,2012): 

 

ε~GG(γ, κ, λ), γ, κ, λ, ε > 0 

fக(ε) =
γε୩ஓିଵ

λ୩ஓΓ(κ)
exp ൜− ቀ

ε

λ
ቁ

ஓ

ൠ

E(εୱ) = λୱ
Γ(κ + s/γ)

Γ(κ)

 

Forcing E(ε) = 1 ; 

λ =
Γ(κ)

Γ ቀκ +
ଵ

ஓ
ቁ
 

 

(12) 

 

ε~GF(η, γ, κ, λ), η, γ, κ, λ > 0 

fக(ε) =
γεசஓିଵ[η + (ε/λ)ஓ]ି஗ିசη஗

λசஓB(κ, η)
 

where B(κ, η) =
Γ(κ)Γ(η)

Γ(κ + η)
 

E(εୱ) = λୱηୱ/ஓ
Γ(κ + s/γ)Γ(η − s/γ)

Γ(κ)Γ(η)
 

Forcing E(ε) = 1 ; 

λ =
Γ(κ)Γ(η)

ηଵ/ஓΓ(κ + 1/γ)Γ(η − 1/γ)
 

(13) 
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3.3  Standard ACD model extensions 

As it is deeply explained in Hautsch (2012), the class of generalized polynomial 

random coefficient ACD models includes a variety of extensions of the standard 

ACD model permitting for additive and multiplicative stochastic components known 

as specifications. This time, differing from the standard ACD model, the conditional 

mean function includes lagged innovations additively and/or multiplicatively. 

Furthermore, it includes parameterizations describing not just the linear but also 

further adaptable news impact curves. For ease of demonstration, the following 

methodology will be based on the models with a lag order of p and q equal to one. In 

the following sections, we will be discussing and demonstrating the methodology for 

Logarithmic ACD (LACD) of Bauwens and Giot (2000) and Lunde (1999), Additive 

and Multiplicative ACD (AMACD) of Hautsch (2012), and Augmented Box-Cox 

ACD (ABACD) of Hautsch (2012).  

 

3.3.1  Logarithmic ACD 

As an advanced and more complex form of the ACD model, Bauwens and Giot 

(2000) present the LACD model. In the standard ACD (m, q) model, appropriate 

conditions are required for the parameters to confirm the positivity of durations. 

When it is needed to add some variable taken from the market microstructure and 

have a possibility of negative coefficients, the durations may become negative. 

Bauwens and Giot (2000) propose the more adaptable LACD (m, q) model in which 

the logarithm of the conditional duration is used to prevent this situation. The 

logarithmic design permit introduction of supplementary variables into the 

methodology, deprived of sign limitations on their coefficients. 
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Both Bauwens and Giot (2000) and Lunde (2000) suggest the LACD model 

that guarantees the non-negativity of durations without any restrictions on 

parameters. The model is obtained by x୧ = ψ୧ε୧ with (14), 

 

ln Ψ୧ = ω + αln ε୧ିଵ + βln Ψ୧ିଵ

= ω + αln x୧ିଵ + (β − α)ln Ψ୧ିଵ
 (14) 

 

where ε୧ is i.i.d with mean equals to one. Differing from the standard ACD model, 

the LACD model entails a concave relationship between ε୧ିଵ and x୧. Negative 

surprises from the news impact, which is ε୧ <1, on x୧ is greater than the positive 

surprises with ε୧ >1. Similar to the linear ACD model introduced in the first part of 

the methodology, in the case of distribution with a mean non-equal to one, the model 

can be written as: 

x୧ = Ψ୧ε෤୧/ζ =: Φ୧ε෤୧

ln Φ୧ = ω෥ + αln ε୧ିଵ + βln Φ୧ିଵ
 (15) 

where ω෥  := ω + (β − 1)ln ζ and ε୧ := ε෤୧/ ζ with E[ε෤୧]:= ζ ≠ 1 

Finally, the general form of LACD (p, q) of Bauwens and Giot can be stated as: 

ln μ୧ = ω + ෍  

୮

୨ୀଵ

α୨ln ε୧ି୨ + ෍  

୯

୨ୀଵ

β୨ln μ୧ି୨ (16) 

Inside the ACD literature, it is discussed that the standard ACD model given 

in the first section of methodology cannot completely capture the possible nonlinear 

dependencies between conditional durations and the past durations from the financial 

market data. To be specific, the authors state that linear models overpredict the 

conditional durations after extremely short or long durations. This promotes and 

encourages new methods looking for more versatile functional forms that might 
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permit characteristic responses to small and large shocks in durations. Following the 

concerns in the finance literature on the versatility of ACD models, we will also be 

discussing AMACD and ABACD methodology in the following sections for our 

study.  

 

3.3.2  Augmented ACD models 

In this section, the methodology for two different types of generalized polynomial 

random coefficient ACD models is published. First is the Additive and Multiplicative 

ACD known as AMACD(p,r,q), and the second is Augmented Box-Cox ACD, 

known as ABACD(p,q). As explained in 3.3, with the additive and multiplicative 

form of the model, more flexible news impacts can be captured with 

parametrizations. 

 

3.3.2.1  Additive and Multiplicative ACD (AMACD) Model 

The ACD specification with additive and multiplicative extension for lag levels of 

P=Q=1 can be given by: 

 

Ψ୧ = ω + (αΨ୧ିଵ + v)ε୧ିଵ + βΨ୧ିଵ (17) 

 

Where v is the parameter letting the model imply a news impact curve with 

the slope of αΨ୧ିଵ + v. Therefore, the lagged enhancements come into the 

conditional mean function additively, along with multiplicatively. In this perception, 

the Additive and Multiplicative ACD (AMACD) model is more adaptable and 

includes the standard ACD model in the case of v =0. 
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A more general form of AMACD (p,r,q) of Hautsch (2012) can also be written as: 

μ୧ = ω + ෍  

୮

୨ୀଵ

α୨x୧ି୨ + ෍  

୰

୨ୀଵ

v୨ε୧ି୨ + ෍  

୯

୨ୀଵ

β୨μ୧ି୨ (18) 

 

In which, as for the standard model, we assume that the duration x୧ = μ୧ε୧, 

where the error term ε୧ is i.i.d and distributed with a mean E (ε୧) =1. 

 

3.3.2.2  Augmented Box-Cox ACD 

By applying the methodology for developing the asymmetric GARCH presented by 

Hentschel (1995), an extension of the ACD model, which is called ABACD, is 

obtained by Hautsch (2012): 

Ψ୧
ஔభ = ω + α൫|ε୧ିଵ − b| + c(ε୧ିଵ − b)൯

ஔమ
+ βΨ୧ିଵ

ஔభ  (19) 

 

In this design, the parameter b is related to the location of the kink and the δଶ 

is the determinant of the shape of function around b. For δଶ > 1, the shape is convex, 

and for δଶ < 1 it is concave. The ABACD model is specified on an additive 

stochastic component. The more generalized for ABACD(p,q) can be provided by: 

 

μ୧
ஔభ = ω + ෍  

୮

୨ୀଵ

α୨൫หε୧ି୨ − vห + c୨หε୧ି୨ − bห൯
ஔమ

+ ෍  

୯

୨ୀଵ

β୨μ୧ି୨
ஔభ (20) 

 

Although this design of the news impact function makes it available for more 

elasticity, it holds one main disadvantage since the parameter restriction |c|<=1 must 

be imposed to be able to bypass complicated values when δଶ ≠ 1. 
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CHAPTER 4 

DATA AND MARKET DESCRIPTION 

 

The data used in this study and the BIST stock exchange is described in this chapter. 

 

4.1  BIST market information 

Full intraday order book data that has been purchased from BIST, which consists of 

order book information of every single Borsa Istanbul stock and derivatives from the 

end of the year 2019, is used in this study. The total data that is gathered is 

approximately around one tb. The study sample is selected as the 10 most traded 

stocks in BIST. A stock must satisfy certain conditions not to be excluded from our 

sub-sample. The stock is not supposed to be under “special treatment” by BIST 

Administration during the research interval since it would artificially manipulate the 

pricing and duration activities. In their study, Zhang (2001) shows that the different 

price limits and trading rules would affect the trading activities in a biased sense.  

According to our selection methodology, our sample stocks and their tickers 

are as follows; GARAN.E, THYAO.E, KCHOL.E, EREGL.E, TUPRS.E, ISCTR.E, 

BIMAS.E, PETKM.E, EKGYO.E, SAHOL.E. 

 

4.2  Data and filtering 

The duration data for the study are extracted from BIST orderbook dataset from 

September 2019 to November 2019. Each trade is recorded with label, datetime, 

price, volume, bid price, and ask price information. The total dataset of BIST equities 

consists of 23.3 million observations. To escape wrong calculations, the data is 

categorized in a sense that only the durations from continuous trading sessions are 

kept. All the data before 10:00 a.m. and after 6:00 p.m. are removed. The trading 
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days in which the stock price would reach its trading limits of 10% are also omitted 

from the database. (None of the 10 most traded stocks reached this limit in this 

study). After the selection and filtering process, the subset of 10 most traded stocks 

in BIST, which is around 3 million observations, is used in our models. Table 3 

demonstrates the summary statistics and the raw data information of the selected 

stocks. 

Table 3.  Descriptive Statistics for 10 most Traded Stocks in our Sample 

Stock Stats Price Duration Volume Ask Bid Stock Stats Price Duration Volume Ask Bid 

BIMAS N 124580 124580 124580 124580 124580 KCHOL N 133892 133892 133892 133892 133892 
 

Mean 47.79 4.85 13330.73 47.80 47.76 
 

Mean 18.42 4.51 12236.23 18.43 18.42 
 

Max 59.55 831 127000000 49.86 49.84 
 

Max 21.54 469 11400000 19.44 19.43 
 

Min 36.8 0 38.96 46.06 46.02 
 

Min 14.37 0 15.08 16.95 16.88 
 

Sd 0.87 14.84 361243.3 0.83 0.83 
 

Sd 0.54 14.73 43915.07 0.54 0.54 
              

EKGYO N 157016 157016 157016 157016 157016 PETKM N 256741 256741 256741 256741 256741 
 

Mean 1.24 3.84 13701.16 1.24 1.23 
 

Mean 3.48 2.35 17429.52 3.49 3.48 
 

Max 1.57 321 2480000 1.42 1.41 
 

Max 4.33 321 3406362 3.66 3.65 
 

Min 1.04 0 1.08 1.09 1.08 
 

Min 2.68 0 2.8 3.33 3.32 
 

Sd 0.07 9.85 69564.78 0.07 0.07 
 

Sd 0.07 5.53 88310.88 0.078 0.079 
              

EREGL N 295448 295448 295448 295448 295448 SAHOL N 169238 169238 169238 169238 169238 
 

Mean 6.64 2.04 13287.22 6.65 6.64 
 

Mean 8.82 3.57 12287.63 8.83 8.81 
 

Max 8.28 324 2835849 6.99 6.98 
 

Max 11.1 339 6438474 9.68 9.67 
 

Min 5.17 0 5.26 6.43 6.42 
 

Min 6.63 0 8.18 8.18 8.17 
 

Sd 0.11 5.48 41513.47 0.11 0.11 
 

Sd 0.34 10.28 35133.93 0.34 0.34 
              

GARAN N 483272 483272 483272 483272 483272 THYAO N 896539 896539 896539 896539 896539 
 

Mean 9.38 1.25 38156.45 9.38 9.37 
 

Mean 11.60 0.67 31125.56 11.61 11.60 
 

Max 12.02 323 28000000 10.28 10.27 
 

Max 14.85 321 20200000 12.4 12.39 
 

Min 6.68 0 6.68 8.25 8.24 
 

Min 8.6 0 8.6 10.6 10.59 
 

Sd 0.50 3.94 132348.3 0.50 0.50 
 

Sd 0.39 2.09 106848.5 0.39 0.39 
              

ISCTR N 176486 176486 176486 176486 176486 TUPRS N 284780 284780 284780 284780 284780 
 

Mean 5.95 3.42 17960.79 5.96 5.94 
 

Mean 127.96 2.12129 18243.99 128.02 127.90 
 

Max 7.38 395 8760000 6.34 6.33 
 

Max 169.6 322 14900000 143.8 143.7 
 

Min 4.48 0 4.48 5.49 5.47 
 

Min 94.9 0 97 117.4 117.3 
 

Sd 0.17 10.03 48191.59 0.16 0.16 
 

Sd 7.49 6.20 70526.22 7.45 7.45 
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Figure 1.  Number of observations for each equity separately 
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CHAPTER 5 

EMPIRICAL RESULTS 

 

5.1  ACD applications to transaction, price and volume durations  

A Framework for various ACD models and extensions is conducted in this section. 

 

5.1.1  Diurnal adjustments 

As explained in Methodology with the functions (7) and (8), a cubic spline method is 

applied for removing the intraday effect from all our selected stocks separately. For 

demonstrating the removal of the seasonality from the data, most traded equity in the 

sub-sample THYAO.E is chosen, and the results of the diurnal adjustments for 

transaction durations are reported.  

 

 

Figure 2.  Diurnally adjusted transaction durations estimated by cubic spline 
function without day of the week aggregation. 
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896539 transactions of THYAO are used for estimation of diurnal factors 

both for daily and day of the week specifications. A few interesting things can be 

observed from the outputs in Figure 2 and Figure 3. It can be clearly observed that 

durations are longer in the middle of the day or “lunch time” and shorter at the end of 

the day when traders are more involved. It can also be seen that the durations tend to 

get shorter and shorter after 15:30 local time, which is the opening of U.S stock 

markets.  

The pattern does not seem to differ broadly between the durations occurring 

on the different days of the week. That is why it is logical not to apply a weekday 

aggregation and force different weekdays to have different diurnal adjustments. We 

continue with the intraday diurnal aggregation since we observe the same trading 

pattern with every equity in our sample. The results from diurnal adjustments in 

Figure 4 and via the correlogram of the ACD fitted BIST equities in the next chapter.  

Figure 3.  Diurnally adjusted transaction durations estimated by cubic spline 
function with day of the week aggregation 
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Figure 4.  Diurnally adjusted transaction durations estimated by cubic spline function 
with daily aggregation for all stocks in our sample. 
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Diurnally adjusted durations are almost equal across whole equities in our 

sample from BIST. This similarity might be explained by the market-wide trading 

activity being parallel and correlated between different stocks. High-frequency 

trading algorithms of the institutional traders and analogous financial behaviors 

(bandwagon effect) of local traders clearly add up to these clustering effects that we 

observe in durations. This clustering of time events should be paid attention to in 

every single intraday high-frequency analysis to be able to understand the 

microstructure of the money markets.   

 

5.1.2  Autoregressive conditional duration model for transaction durations  

For the second step of the maximum likelihood method, diurnally adjusted 

transaction durations of all stocks are fitted by using an ACD(p,q) as in equation (8). 

As parallel to the literature, the Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) are used to verify the optimal lag length and the lag 

length of 1 for both p and q, which is WACD (1,1) fits the data best. As it has been 

done in the previous chapter, THYAO has been chosen to further clarify why it is 

decided to use Weibull distribution for the durations and to understand the 

differences between different choices of the distribution of the error terms. Before 

getting into the results, an advanced explanation of this reasoning behind the 

distribution selection can be made by using comparative tables, quantile-quantile 

plots, hazard function graphics and scatter plots of conditional durations versus 

residuals. 

Both Pacurar in 2008 and Bhogal, Variyam in 2019, well-rounded reviews in 

the ACD literature, report that Exponential, Weibull, Burr, and Generalized Gamma 

distributions are the most used error specification for capturing information from 
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different types of financial duration data. Because of this reasoning, an ACD (1,1) 

with four different error term specifications is applied, and the results are reported in 

Table 4 and Figure 5. (Bhogal & Variyam, 2019; Pacurar, 2008) 

 

Table 4.  ACD (1,1) application for four different distributions; Weibull, 
Exponential, Gen.Gamma, and Burr 

Weibull Coef SE PV Goodness Value Exponential Coef SE PV Goodness Value 

ωଵ 0.003 0.000 0 LLH -163661 ωଵ 0.003 0.000 0 LLH -154261 

αଵ 0.080 0.001 0 AIC 327330 αଵ 0.080 0.001 0 AIC 328582.1 

βଵ 0.919 0.001 0 BIC 327370.7 βଵ 0.918 0.001 0 BIC 328836.9 

γଵ 1.383 0.002 0 MSE 1.05 
    

MSE 1.079841 

Gen.Gamma Coef SE PV Goodness Value Burr Coef SE PV Goodness Value 

ωଵ 0.028 0.001 0 LLH -99103 ωଵ 0.021 0.001 0 LLH -152064.9 

αଵ 0.106 0.002 0 AIC 298305.8 αଵ 0.118 0.005 0 AIC 304209.9 

βଵ 0.868 0.003 0 BIC 298730.6 βଵ 0.866 0.005 0 BIC 304549.6 

κଵ 22.637 3.106 0 MSE 0.97 γଵ 1.170 0.009 0 MSE 1.00 

γଵ 0.179 0.013 0    
   

  

Note:  All p-values are statistically significant. The goodness of fit values of loglikelihood, AIC, BIC, 
and MSE are all reported. 

 

When the results are compared in Table 4, it is observed that all four 

specifications can be used according to their goodness of fit values with Weibull and 

Exponential distribution fitting the data slightly better than the other two. Another 

standard method of assessing the closeness between theoretical distributions and the 

empirical samples is studying the quantile-quantile plots visually. The quantiles of 

samples are plotted against the theoretical quantiles, and the deviation from each 

other is examined, with lower deviation being a better fit.  In Figure 6, we report Q-Q 

plots for four different error distributions. 



 
 

36 
 

Parallel to Table 4, it is seen that residual quantiles are closer to theoretical 

quantiles for Weibull and Exponential distribution. The deviation from the assumed 

error term distribution is more extensive for both Generalized Gamma and Burr 

distribution compared with the other two. 

 

The fact that the sample quantiles lie below the red line imposed by the 

distribution function indicates that the empirical distribution has a different tail than 

the applied distribution. At this point, the hazard functions of Weibull and 

Exponential distribution are plotted to compare the results graphically. Both the non-

parametric estimate of the hazard function from the residuals and the hazard function 

implied from the model estimate are plotted. The empirical hazard function of the 

Figure 5.  Q-Q plots for four different error term distributions; Weibull, Exponential, 
Generalized Gamma and Burr 
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residuals from the non-parametric estimator is from Engle and Russell. When the 

residuals are compared with the estimated parameters of the selected error 

distribution, it can be clearly found out that Weibull is a better fit for the sample. 

(Engle and Russell, 1998) 

 

 

For the exponential distribution, the hazard function is flat and equal to one as 

the distribution is forced to have a unit expectation which is explained in the 

methodology chapter. For the Weibull error term specification, it is also investigated 

how the estimated conditional means are predicting the mean size of the upcoming 

durations. In figure 7, the residuals and their means are plotted against the estimated 

conditional means. As expected, the mean of the residuals is constant across each 

level of conditional durations.  

Figure 6.  Hazard functions from the residuals estimated from ACD (1,1) with 
Exponential (left) and Weibull(right) error term specifications 
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Weibull error term specification is used for the ACD estimation of 10 most 

traded stocks, and the results are reported in following Tables 5 and 6. The 

computational results confirm the autoregressive component of the durations data.  

Table 6 shows the decreasing autocorrelation of durations due to the removal 

of diurnal components and ACD estimations. The autocorrelation behavior is similar 

across all the equities. The Weibull term is statistically significant at resolving the 

shape of the hazard function. 

  

Figure 7.  Plot of residuals versus conditional means 



 
 

39 
 

Table 5.  Estimates from the WACD (1,1) model applied to each equity in sub-
sample separately 

BIMAS Coef SE PV Goodness Value KCHOL Coef SE PV Goodness Value 
ωଵ 0.023 0.002 0 LLH -33206.49 ωଵ 0.017 0.001 0 LLH -32281.28 
αଵ 0.104 0.004 0 AIC 66420.99 αଵ 0.092 0.004 0 AIC 64570.56 
βଵ 0.875 0.005 0 BIC 66454.96 βଵ 0.892 0.005 0 BIC 64604.54 
γଵ 0.919 0.004 0 MSE 1.777 γଵ 0.916 0.004 0 MSE 1.89 

EKGYO Coef SE PV Goodness Value PETKM Coef SE PV Goodness Value 
ωଵ 0.014 0.001 0 LLH -58006.61 ωଵ 0.006 0.000 0 LLH -82597.62 
αଵ 0.129 0.003 0 AIC 116021.23 αଵ 0.071 0.002 0 AIC 165203.24 
βଵ 0.860 0.003 0 BIC 116057.77 βଵ 0.924 0.002 0 BIC 165240.94 
γଵ 1.020 0.003 0 MSE 1.86 γଵ 1.158 0.003 0 MSE 1.23 

EREGL Coef SE PV Goodness Value SAHOL Coef SE PV Goodness Value 
ωଵ 0.009 0.001 0 LLH -81717.06 ωଵ 0.008 0.001 0 LLH -45872.82 
αଵ 0.083 0.002 0 AIC 163442.12 αଵ 0.097 0.003 0 AIC 91753.65 
βଵ 0.909 0.002 0 BIC 163479.74 βଵ 0.897 0.003 0 BIC 91789.02 
γଵ 1.112 0.003 0 MSE 1.357095 γଵ 0.995 0.003 0 MSE 1.65 

EREGL Coef SE PV Goodness Value THYAO Coef SE PV Goodness Value 
ωଵ 0.009 0.001 0 LLH -81717.06 ωଵ 0.003 0.000 0 LLH -163661 
αଵ 0.083 0.002 0 AIC 163442.12 αଵ 0.080 0.001 0 AIC 327330 
βଵ 0.909 0.002 0 BIC 163479.74 βଵ 0.919 0.001 0 BIC 327370.7 
γଵ 1.112 0.003 0 MSE 1.357095 γଵ 1.383 0.002 0 MSE 1.052 

ISCTR Coef SE PV Goodness Value TUPRS Coef SE PV Goodness Value 
ωଵ 0.015 0.001 0 LLH -48308.65 ωଵ 0.007 0.001 0 LLH -69066.55 
αଵ 0.094 0.003 0 AIC 96625.31 αଵ 0.064 0.002 0 AIC 138141.11 
βଵ 0.893 0.004 0 BIC 96660.85 βଵ 0.930 0.002 0 BIC 138178.05 
γଵ 1.001 0.003 0 MSE 1.575 γଵ 1.112 0.003 0 MSE 1.31 

Note: The p-values for every coefficient are statistically significant for a 5% level for each 
stock in the sample. 

 

In Table 5, the estimation outcomes are presented. As it can be noticed, αଵand 

βଵcoefficients are statistically significant, showing us a strong interrelationship in the 

transaction duration series. Since both coefficients are significantly greater than 0, it 

can be said that consecutive trades carry a high degree of dependence. The 

magnitude of the last duration can determine the timing of the next, which leads to 
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duration clustering. The persistence of price durations can be seen from the sum of 

αଵand βଵ coefficients which are very close to 1. The current transaction duration is 

helpful in defining the subsequent duration, which may validate the duration clusters 

at a particular time of the day. The Weibull parameter γଵfor all stocks is also 

statistically significant.   

As it’s explained in the methodology part of the study, conditional on the 

Weibull parameter being greater or less than one, the hazard function is upward or 

downward sloping. The log-likelihood decreases to the log-likelihood of ACD with 

exponential specification when the Weibull parameter is equal to one. In Engle and 

Russell’s ACD analysis on the U.S stock market, it is reported that all γଵ are less 

than one, and this implies a downward slopping hazard function. (Engle and Russell, 

1998) In the finding, different results of Weibull parameters for individual stocks are 

observed. These differences in levels of coefficients can be explained by trading 

activity. In U.S markets, most traded stocks have a higher sum of coefficients αଵand 

βଵ and lower level of Weibull since the institutional investors are favoring the high 

liquidity and that they are a lot more active compared to the Turkish stock market.  

As opposed to U.S stock markets, 70 percent of the intraday volume of BIST 

is realized by local individual investors. Comparing the two markets, it can be 

noticed that the Turkish stock market has less trading activity and longer trade 

durations. These divergences from developed financial markets tend to get less 

evident as High-Frequency Trading becomes more utilized market-wide. 

  



 
 

41 
 

BIMAS 

 

KCHOL 

 
EKGYO 

 

PETKM 

 
EREGL 

 

SAHOL 

 
GARAN 

 

THYAO 

 
ISCTR 

 

TUPRS 

 
Figure 8.  Auto-correlogram of durations, diurnally adjusted durations, and residuals 
for each stock in our sample. 



 
 

42 
 

To investigate the validity of the ACD framework and test the possible 

autocorrelation of residuals, Ljung-Box Q-statistics is used, the correlograms, and 

Meitz and Teräsvirta’s Lagrange Multiplier tests for ACD models are conducted. 

(Meitz and Teräsvirta, 2006) Test results are almost indistinguishable across all 

stocks in our sub-sample. If the model is correctly specified, it is expected to have 

independent error terms, and the residuals should not show any further ACD 

structured dependency.  

Table 6.  Lagrange Multiplier Test of Meitz and Teräsvirta (2006) for no remaining 
ACD 

Note: LM test of Meitz and Teräsvirta (2006) for ACD models to investigate possible remaining ACD 
structures. 

 

WACD (1,1) model successfully removes the autocorrelation in the data. The 

null hypothesis that the residuals are autocorrelated is rejected, indicating that our 

WACD (1,1) model is accurately identified and does a good job of fitting the data. It 

can be seen from Table 5 and Figure 8 that adjusted durations exhibit a strong 

autocorrelation structure, and the time of the day effect does not account fully for the 

dependence of the durations. The residuals are not significantly autocorrelated. ACF 

is slowly decreasing to zero in all cases. After removing the diurnal component, the 

     

Stock L-M Stats 
Degree of 
Freedom 

P-value # of durations 

THYAO 455 5 0 896539 

SAHOL 128 5 0 169238 

EKGYO 212 5 0 157016 

PETKM 228 5 0 256741 

BIMAS 159 5 0 124580 

ISCTR 92.5 5 0 176486 

TUPRS 125 5 0 284780 

EREGL 261 5 0 295448 

KCHOL 124 5 0 133892 

GARAN 423 5 0 483272 
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correlations are declining somewhat, but the considerable reduction in 

autocorrelations comes for the residuals after removing the estimated WACD (1,1) 

dependency. It can also be understood that there are not any remaining ACD 

structures in the residuals from the M&T Lagrange Multiplier test, which can be seen 

in Table 6. 

 

5.1.3  Autoregressive conditional duration models for price durations 

To be able to further investigate bid-ask spread behaviors of the intraday 

transactions, the correct ACD model parallel to literature is conducted. The main 

idea behind this ACD fitting process is to fully understand the durations between 

price impacts and find an explication between durations, volume, and trade intensity. 

We want to have a closer look at the behaviors of price durations, the realized 

volume between the bid-ask spread changes, and the trade intensity according to the 

number of trades for each price duration.  

First, the bid-ask spread durations are constructed by calculating the raw 

durations between “mid-prices” of the spread. It is assumed that the mid-price is the 

average of the bid and ask price value at the corresponding trade window. We find 

the most suitable duration calculation method by investigating different trade 

windows and comparing correlograms between different durations.  

As it is done in chapter 5.1.1, for demonstrating the removal of the 

seasonality from the data, investigating the most suited smoothing method, and for 

applying various types of ACD methodology step by step, the most traded equity in 

the subsample, which is THYAO.E, is selected. The results of the diurnal 

adjustments and ACD fits for price durations are reported.  
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As seen above in Figure 9, even if the duration means windows are changed, 

the week of the day pattern for price durations, as it has been already seen in 

transaction durations, can be observed. According to these findings, it is reasonable 

to use a day of the week diurnal adjustment to clean our data from seasonality.  

According to the literature, three different most used smoothing methods for 

the durations are applied, and then the results are tested and decided which one fits 

the data the best. Super Smoother, Flexible Fourier Form, and Cubic Spline Function 

methods are all applied separately to raw durations for the calculation of diurnal 

adjustments. The results of the smoothing methods can be seen in Figure 10. 

 

 

 

Figure 9.  Intraday raw mean duration patterns for price durations 
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While converting from raw durations to adjusted durations by using the 

appropriate smoothing methodology, it is crucial not to get negative duration returns. 

In this instance, the cubic spline function fails to get positive results for all cases. The 

negative fitted line produced by the cubic spline technique can be explained by the 

sudden shift in the mean durations in the opening hours of that trading day. This 

estimation would yield negative adjusted durations and would be contradicting the 

assumptions of ACD methodology and prevent further estimations. Because of this 

reasoning, the cubic spline technique is eliminated for this case. On the other hand, 

when the differences between the other two methods are evaluated, one can see that 

FFF is more versatile and superior at capturing intraday duration instability. Parallel 

to raw durations, duration shifts and clusters are further noticeable. 

The patterns and correlograms are evaluated for different calculations, and it 

is decided that the Flexible Fourier Form (FFF) fits the data the best. The 

improvements in the durations can be seen with the comparisons of autocorrelation 

between raw and adjusted durations generated by FFF. The correlogram for the 

Flexible Fourier Smoothing methodology is given in Figure 11. 
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Figure 10.  Diurnal patterns estimated by three different most used Smoothing 
Methods in literature 
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Figure 11.  Correlogram for diurnal adjustments applied to raw durations with FF 
smoothing and day of the week seasonality removal 

 

Completing the method selection process of diurnal durations makes it 

possible to apply various ACD and Log-ACD methods. We apply both ACD and 

Log-ACD estimations using Weibull error term distributions (We showed the 

reasoning behind the Weibull error term specification decision in the previous 

chapters.). The table below shows that the Weibull distribution estimations with four 

different ACD methodologies fit our price duration data. For the sake of having more 

flexibility with our coefficients, we use the Weibull distribution method for our study 

in the further parts. AMACD, ABACD, Log-ACD, and ACD methods, explained in 

the methodology part of our study, are applied to adjusted price durations estimated 

by our Flexible Fourier smoothing and day of the week diurnal seasonality removal 

methods. The descriptive statistics of adjusted durations and results of the ACD fits 

can be seen in Tables 7 and 8 below. 

Since the price duration is the duration between each meaningful (price 

impact) transaction, the descriptive statistics should be understood from the point of 

view of price-changing intervals. The total number of transactions that changed the 
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bid and ask spread in the orderbook is 7875, with a mean of 93.9, meaning that it 

takes approximately 94 transactions to change the price floor of the corresponding 

orderbook. All the details in descriptive statistics should be read from this 

perspective in Table 7. 

 

Table 7.  Descriptive Statistics of Adjusted Price Durations 

 

 

 

 

 

Table 8.  Estimates from four Different ACD Specifications for Price Durations with 
Weibull Error Term 

Log-ACD Coef 
Value 

SE PV Goodness Value ACD Coef 
Value 

SE PV Goodness Value 

ωଵ 0.155 0.013 0 LLH -4562.8 ωଵ 0.041 0.007 0 LLH -4499.19 

αଵ 0.143 0.012 0 AIC 9133.6 αଵ 0.164 0.014 0 AIC 9006.386 

βଵ 0.895 0.021 0 BIC 9161.5 βଵ 0.796 0.018 0 BIC 9034.272 

γଵ 0.612 0.004 0 MSE 5.1879 γଵ 0.623 0.005 0 MSE 5.257101 

AMACD Coef 
Value 

SE PV Goodness Value ABACD Coef 
Value 

SE PV Goodness Value 

ωଵ 0.0064 0.008 0.042 LLH -4486.8 ωଵ -0.908 0.714 0.203 LLH -4460.29 

αଵ 0.0725 0.018 0 AIC 8983.7 αଵ 0.823 0.615 0.181 AIC 8936.579 

νଵ 0.0613 0.013 0 BIC 9018.6 Cଵ 1.316 0.368 0 BIC 8992.351 

βଵ 0.8526 0.018 0 MSE 5.171 βଵ 0.933 0.008 0 MSE 5.115013 

γଵ 0.624 0.005 0   νଵ -1.706 0.480 0   

      δଵ 0.199 0.112 0.076   

      δଶ 0.096 0.017 0   

      γଵ 0.625 0.004 0   

Stock Stats Price Duration Volume (TL) # Of Transaction 

THYAO N 7875 7875 7875 7875 

  Mean 11.54 65.34 2930158 93.9 

  Max 12.38 4332 50581230 1821 

  Min 10.60 0 10 1 

  Median 11.62 12 1340986 38 
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When we analyze the estimates from our ACD specifications in Table 8, since 

the values are within very close distance, it is challenging to decide which model 

better fits the price duration data. For that reason, at this point, as we did with 

transaction durations, it is logical to compare correlograms of each model separately 

and select our model depending on it.   

As it can be noticed, αଵand βଵcoefficients are statistically significant, 

showing us a strong interrelationship in the price duration series for each model. 

Given that both coefficients are considerably greater than 0, it can be assumed that 

consecutive trades carry a high degree of dependence. The scale of the last duration 

can define the timing of the next, which leads to duration clustering. The persistence 

of transaction durations can be seen from the sum of αଵand βଵ coefficients which are 

very close to 1 for all specifications. The current price duration is valuable in 

defining the following duration, and this may possibly confirm the duration clusters 

at a particular time of the day. The Weibull parameter γଵfor all stocks is also 

statistically significant. We can justify this significance of Weibull parameters with 

hazard function plots in the figure below.  
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Correlogram for ACD 

 

Correlogram for LACD 

 

Correlogram for AMACD 

 

Correlogram for ABACD 

Figure 12.  Correlogram for ACD, LACD, AMACD and ABACD separately 
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Hazar function for ACD Hazard function for LACD 

Hazard function for AMACD Hazard function for ABACD 

Figure 13.  Plots for hazard function estimates for ACD, LACD, AMACD and 
ABACD separately 

 

As clarified in the previous section 5.1.2, the hazard function is upward or 

downward sloping depending on the Weibull parameter being larger or less than one. 

The log-likelihood decreases to the log-likelihood of ACD with exponential 

specification when the Weibull parameter is equal to one. In Engle and Russell’s 

ACD analysis on the U.S stock market, it is reported that all γଵ are less than one, and 

this implies a downward slopping hazard function. (Engle and Russell, 1998) In our 

finding, we find the same results of Weibull parameters for price durations parallel to 

U.S stock markets. These levels of coefficients can be explained by trading activity. 
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With a statistically significant Weibull parameter less than 1, the downward slopping 

hazard function implies price duration clustering can be justified as expected.  

Stocks with a higher sum of coefficients αଵand βଵ and lower level of Weibull 

since the institutional investors are favoring the high liquidity, and this intuitional 

trading activity results in a “bandwagon” effect in transaction intensity. Price 

impacting transactions are clearly clustering when the activity rises in the market. 

When we compare the results from Figures 12 and 13, we can declare that both 

standard ACD and AMACD can explain the price durations. Since the results are 

significant and close to each other, we can choose to use AMACD because of its 

greater possibility of capturing news impacts. In the methodology part 3.3.2.1, it can 

be seen that with an additive and multiplicative form of the model, more flexible 

news impacts can be captured with parametrizations. We also report the scatter plot 

for the AMACD model in Figure 14 to understand the residuals' behavior better. As 

expected, the mean of the residuals is at the same level for all values of estimated 

conditional means. 

 

Figure 14.  Scatter plot for estimated conditional means versus residuals for AMACD 
model  
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5.1.4  Autoregressive conditional duration models for volume durations 

After investigating trade and price durations, we proceed to further analyses of 

volume durations for threshold volume behavior of intraday transactions. We 

construct the correct ACD model parallel to the literature. The main objective behind 

this volume process is to fully understand the durations between pre-determined 

Turkish Lira levels of volume that occur consecutively in the stock market. We 

intend to have a more decisive view of the behaviors of volume durations, the 

realized stalling time between the volume level changes, and the trade intensity 

according to the number of trades for each volume duration.  

First, we construct the volume durations by calculating the raw durations 

between pre-determined levels of volumes. Since there is not a universally accepted 

volume level for volume threshold duration models, as an addition to the literature, 

instead of selecting only a pre-determined volume level for each equity (which is 1 

million dollars of volume in most of the studies, around 10 million in Turkish liras), 

we assume that 0.001, 0.005 and 0.01 of the total Turkish liras of volume at the 

corresponding trade window are more satisfying for the study. We find the most 

suitable duration calculation method by investigating different volume windows and 

comparing correlograms between different durations. We report the descriptive 

statistics for different levels of volumes in Table 9 below. 

As we have accomplished in chapter 5.1.1, for representing the elimination of 

the seasonality from the data, investigating the most appropriate smoothing 

technique, and for applying various types of ACD methodology step by step, we 

selected the most traded equity in our subsample, which is THYAO.E and describe 

the results of the diurnal adjustments and ACD fits for volume durations.  
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As it can be seen, even if duration means windows are adjusted, the week of 

the day pattern for volume durations, as previously found in transaction and price 

durations, is undoubtedly realized. Corresponding to these discoveries, a day of the 

week diurnal adjustment is chosen to cleanse the data from seasonality.  

Matching the literature, three different smoothing methods for the durations 

are employed, tested the results, and decided that the methodology that fits the data 

the finest is Flexible Fourier Form. Methods are all applied separately to raw 

durations to calculate diurnal adjustments.  

 

Table 9.  Descriptive Statistics of Adjusted Volume Durations of Three Different 
Threshold Levels 

 

 

 

 

 

 

 

 

 

 

 

The total number of transactions that occurred for the respective realized 

volume threshold in the orderbook can be seen in Table 9. All the details in 

descriptive statistics should be read from this perspective of “filling” the volume 

needed for the pre-determined threshold. The number of transactions and duration 

Threshold Stats Price Duration # Of Transaction 

2.3 million TL N 9164 9164 9164 

 (0,01%) Mean 11.62 56.55 80.93 

  Max 12.38 1668 506 

  Min 10.60 1 4 

  Median 11.69 27 71 

4.6 million TL N 4838 4838 4838 

(0.02%) Mean 11.63 107.1 153.1 

 Max 12.38 2783 771 

 Min 10.60 1 7 

 Median 11.70 60 138 

11.5 million TL N 1983 1983 1983 

(0.05%) Mean 11.63 261 373 

 Max 12.38 3775 1438 

 Min 10.60 1 40 

 Median 11.63 168 338 
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statistics show us how many transactions needed to be realized to reach the 

respective threshold level and how long it took to realize them. 

0.01% 
of total 
volume 

 

0.02% 
of total 
volume 

 

0.05% 
of total 
volume 

 
Figure 15.  Diurnally adjusted duration patterns estimated by FFF for three different 
threshold levels 
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 The LACD (1,1) specification estimates are analyzed in Table 10 for three 

threshold levels. As it can be observed, αଵand βଵcoefficients are statistically 

significant, showing us a strong interrelationship in the volume duration series for 

each threshold level. Given that both coefficients are significantly larger than 0, it 

can be expected that successive trades carry a high degree of dependence. The size of 

the final duration can explain the scheduling of the next, which advances into 

duration clustering for volume durations, as seen in both price and transaction 

durations. The persistence of volume durations can be seen from the sum of αଵand βଵ 

coefficients being close to 1 for all specifications. The current volume duration is 

significant in defining the following duration, which confirms the duration clusters at 

a specific time of the day. The Weibull parameter γଵfor all specifications is also 

statistically significant. Just by analyzing the estimates from the LACD, we cannot 

make any decision between different threshold levels. That is why it is logical to 

check how the residuals and auto correlograms are at this point. 

 

Table 10.  Estimates for Log-ACD (1,1) Model for Three Different Volume 
Thresholds 

Threshold Log-ACD Coeff Value SE PV Goodness Value 

2.3 million TL ωଵ 0.0874 0.00404 0 Loglikelihood -7594.47 

(0.01%) αଵ 0.1807 0.00662 0 AIC 15196.94 

 βଵ 0.9366 0.00542 0 BIC 15225.44 

 γଵ 1.0228 0.00777 0.003 MSE 1.280409 

4.6 million TL ωଵ 0.0788 0.00508 0 Loglikelihood -3866.56 

(0.02%) αଵ 0.2562 0.00964 0 AIC 7741.112 

 βଵ 0.8877 0.00936 0 BIC 7767.049 

 γଵ 1.236 0.01276 0 MSE 0.864163 

11.5 million TL ωଵ 0.0757 0.00978 0 Loglikelihood -1444 

(0.05%) αଵ 0.4123 0.01938 0 AIC 2895.9 

 βଵ 0.8028 0.01764 0 BIC 2918.27 

 γଵ 1.5433 0.02748 0 MSE 0.54656 
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0.01% 

of total 

volume 

 

0.02%of 

total 

volume 

 

0.05% 

of total 

volume 

 

Figure 16.  Correlograms for three different threshold levels 

 

When we check the correlograms in Figure 16 for the threshold levels, we can 

immediately see the reduction in the correlations first with diurnal adjustment then 
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an even more significant reduction with LACD modeling. In lower volume threshold 

levels, it is found that first and second lagged values are still autocorrelated even 

though LACD implies a considerable reduction for volume durations and adjusted 

durations. By analyzing the LACD estimates and correlogram, it becomes evident 

that the selection of volume threshold at 0,05 percent is better than other options. 

One can say that when the volume threshold is kept smaller than it should be, around 

230.000 dollars, in this case, the autocorrelation is inevitable in residuals. Since there 

are no specific rules in the ACD literature for determining the volume levels for 

durations, it is logical to compare the results of different volume percentages and 

decide.  At this point, the scatter plots and hazard functions are published to deeper 

understand the residuals with a 0.05 percent volume threshold. 

 

Figure 17.  Hazard function estimates for LACD (1,1) with Weibull error distribution 
for 0,05% volume threshold specification 
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Figures 17,18, and 19 are helpful for verifying our LACD (1,1) model and 

understanding the residuals from the model. Nonparametric results from the model 

match closely with the Weibull implied function. In Figure 17, since the Weibull 

coefficient is around 1.5, the hazard function is upward sloping. When the residual 

quantiles are plotted against the Weibull distribution in Figure 18, the same matching 

the theoretical values are also reflected. 

 

Figure 18.  Quantile-quantile plot for residuals versus theoretical quantiles for LACD 
(1,1) with 0.05% threshold specification 
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In Figure 19, the mean of the residuals is at the same level for all values of 

estimated conditional means as theoretically expected. By exploring these three 

figures, successfully fitted LACD (1,1) on volume durations for 0.05% specification 

can be justified. 

 

 
Figure 19.  Scatter plot for estimated conditional means versus residuals for LACD 
(1,1) with 0.05% threshold specification 
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5.2  Modelling liquidity with autoregressive conditional duration models 

As an extension to what has been done in previous chapter 5.1, in this part of the 

empirical findings, the link between the durations modeling and liquidity is further 

analyzed by using the same dataset of the 10 most traded equities in BIST. A 

Weibull ACD model is conducted on the dataset, but this time for daily and one-hour 

trading windows. The ACD methodology is applied individually for each stock and 

each hour of the trading session for every day. 

 

Table 11.  Summary Statistics for 10 Most Traded Stocks in BIST 

Stock Stats Price Duration Volume Ask Bid Stock Stats Price Duration Volume Ask Bid 

BIMAS N 124580 124580 124580 124580 124580 KCHOL N 133892 133892 133892 133892 133892 

  Mean 47.79 4.85 13331 47.8 47.76   Mean 18.43 4.51 12236 18.44 18.42 

  Max 59.55 831 1.27E+08 49.86 49.84   Max 21.54 469 1.14E+07 19.44 19.43 

  Min 36.8 0 39 46.06 46.02   Min 14.37 0 15 16.95 16.88 

  Sd 0.87 14.85 361243 0.83 0.83   Sd 0.55 14.74 43915 0.54 0.54 

EKGYO N 157016 157016 157016 157016 157016 PETKM N 256741 256741 256741 256741 256741 

  Mean 1.24 3.84 13701 1.24 1.23   Mean 3.48 2.35 17430 3.49 3.48 

  Max 1.57 321 2.48E+06 1.42 1.41   Max 4.33 321 3.41E+06 3.66 3.65 

  Min 1.04 0 1 1.09 1.08   Min 2.68 0 3 3.33 3.32 

  Sd 0.07 9.85 69565 0.07 0.07   Sd 0.07 5.53 88311 0.07 0.07 

EREGL N 295448 295448 295448 295448 295448 SAHOL N 169238 169238 169238 169238 169238 

  Mean 6.65 2.05 13287 6.65 6.64   Mean 8.82 3.57 12288 8.83 8.82 

  Max 8.28 324 2.84E+06 6.99 6.98   Max 11.1 339 6.44E+06 9.68 9.67 

  Min 5.17 0 5 6.43 6.42   Min 6.63 0 8 8.18 8.17 

  Sd 0.12 5.49 41513 0.11 0.11   Sd 0.34 10.29 35134 0.35 0.35 

GARAN N 483272 483272 483272 483272 483272 THYAO N 896539 896539 896539 896539 896539 

  Mean 9.38 1.25 38156 9.39 9.38   Mean 11.61 0.67 31126 11.61 11.6 

  Max 12.02 323 2.80E+07 10.28 10.27   Max 14.85 321 2.02E+07 12.4 12.39 

  Min 6.68 0 7 8.25 8.24   Min 8.6 0 9 10.6 10.59 

  Sd 0.51 3.94 132348 0.51 0.51   Sd 0.4 2.09 106849 0.39 0.39 

ISCTR N 176486 176486 176486 176486 176486 TUPRS N 284780 284780 284780 284780 284780 

  Mean 5.95 3.42 17961 5.96 5.95   Mean 127.96 2.12 18244 128.03 127.9 

  Max 7.38 395 8.76E+06 6.34 6.33   Max 169.6 322 1.49E+07 143.8 143.7 

  Min 4.48 0 4 5.49 5.47   Min 94.9 0 97 117.4 117.3 

  Sd 0.17 10.04 48192 0.17 0.17   Sd 7.49 6.21 70526 7.46 7.46 



 
 

62 
 

Table 12.  WACD (1,1) Estimation Results for Each Stock Separately 

 

 

The primary purpose of this chapter is to investigate the explanatory power of 

the model and compare it with market-wide used proxies. The coefficient from the 

WACD model and related Amihud Illiquidity measures are used for building several 

correlation matrices and multivariate regressions to understand the relationship of 

our model with stock returns, volume, and liquidity measures. Stock-wise descriptive 

stats and WACD (1,1) estimates for raw data can be found in Table 11 and Table 12 

above. 

 

 

BIMAS Coef SE PV Goodness Value KCHOL Coef SE PV Goodness Value 

ωଵ 0.023 0.002 0 Loglike. -33206 ωଵ 0.017 0.001 0 Loglike. -32281 

αଵ 0.104 0.004 0 AIC 66421 αଵ 0.092 0.004 0 AIC 64571 

βଵ 0.875 0.005 0 BIC 66455 βଵ 0.892 0.005 0 BIC 64605 

γଵ 0.919 0.004 0 MSE 1.778 γଵ 0.916 0.004 0 MSE 1.896 

EKGYO Coef SE PV Goodness Value PETKM Coef SE PV Goodness Value 

ωଵ 0.014 0.001 0 Loglike. -58007 ωଵ 0.006 0.000 0 Loglike. -82598 

αଵ 0.129 0.003 0 AIC 116021 αଵ 0.071 0.002 0 AIC 165203 

βଵ 0.860 0.003 0 BIC 116058 βଵ 0.924 0.002 0 BIC 165241 

γଵ 1.020 0.003 0 MSE 1.869 γଵ 1.158 0.003 0 MSE 1.231 

EREGL Coef SE PV Goodness Value SAHOL Coef SE PV Goodness Value 

ωଵ 0.0095 0.0006 0 Loglike. -81717 ωଵ 0.008 0.001 0 Loglike. -45873 

αଵ 0.0832 0.0019 0 AIC 163442 αଵ 0.097 0.003 0 AIC 91754 

βଵ 0.9091 0.0021 0 BIC 163480 βଵ 0.897 0.003 0 BIC 91789 

γଵ 1.1120 0.0027 0 MSE 1.357 γଵ 0.995 0.003 0 MSE 1.656 

GARAN Coef SE PV Goodness Value THYAO Coef SE PV Goodness Value 

ωଵ 0.008 0.000 0 Loglike. -108000 ωଵ 0.003 0.000 0 Loglike. -163661 

αଵ 0.093 0.002 0 AIC 216299 αଵ 0.080 0.001 0 AIC 327330 

βଵ 0.902 0.002 0 BIC 216338 βଵ 0.919 0.001 0 BIC 327371 

γଵ 1.166 0.002 0 MSE 1.526 γଵ 1.383 0.002 0 MSE 1.053 

ISCTR Coef SE PV Goodness Value TUPRS Coef SE PV Goodness Value 

ωଵ 0.015 0.001 0 Loglike. -48309 ωଵ 0.007 0.001 0 Loglike. -69067 

αଵ 0.094 0.003 0 AIC 96625 αଵ 0.064 0.002 0 AIC 138141 

βଵ 0.893 0.004 0 BIC 96661 βଵ 0.930 0.002 0 BIC 138178 

γଵ 1.001 0.003 0 MSE 1.575 γଵ 1.112 0.003 0 MSE 1.319 
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5.2.1  Estimation results for daily data 

The dataset is split into daily trading intervals for further investigations of Amihud, 

return, and ACD coefficient relations. Tables 13 and 14 below show summary 

statistics and correlation matrix for all variables of daily estimations can be seen. As 

expected in previous chapters, a negative relationship between Weibull’s slop 

coefficient γ and Amihud can be observed. Parallel to the economic interpretation, 

the Amihud Illiquidity is expected to increase when the durations are clustering. 

 

Table 13.  Summary Statistics for Daily Panel Data 

Variable Obs Mean Std. Dev. Min Max 

Return 180 0.006 0.024 -0.036 0.988 
ω 180 0.319 0.158 0.035 0.748 
α 180 0.086 0.050 -0.045 0.266 
β 180 0.605 0.156 0.095 0.910 
Amihud 180 2E-09 3E-09 1E-10 2E-08 
γ 180 1.094 0.137 0.884 1.673 

 

Table 14.  Correlation Matrix for Daily Estimations 

 α β γ Return Amihud 

α 1     
β -0.1292 1    
γ 0.0643 0.3821 1   

Return 0.0628 0.0628 0.148 1  
Amihud 0.0578 -0.4054 -0.421 0.1576 1 

 

Another result parallel to the market microstructure interpretations can be 

assessed as the relationship between β and Amihud Illiquidity. Since β is the 

coefficient of the past conditional duration estimated by ACD, one may expect 

higher β values when the market activity and trade intensity are elevated. It is 

possible to investigate these results in Tables 15 and 16 below. 
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Table 15.  Pairwise Pooled Regressions for Daily Return 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 
            
γ 0.026***    0.041 

 (0.013)    (0.027) 
β  0.010   0.006 

  (0.012)   (0.014) 
α   0.029  0.017 

   (0.023)  (0.030) 
Amihud    1.1E+06 2.E+06 

    -1.2E+06 -1.5E+06 
Constant -0.022 0.000 0.004 0.003 -0.049 

 (0.014) (0.008) (0.003) (0.003) (0.025) 
      

Observations 180 180 180 180 180 
R-squared 0.022 0.004 0.004 0.025 0.083 
Robust standard errors in parentheses    
*** P<0.01, ** p<0.05, p<0.1 *     

 

Table 16.  Pairwise Pooled Regressions for Daily Amihud 

Variables Model 1 Model 2 Model 3 Model 4 
          
γ -0.099***   -0.068*** 

 (0.013)   (0.019) 
β  -0.083***  -0.047** 

  (0.015)  (0.019) 
α   0.037 0.030 

   (0.062) (0.060) 
Constant 0.137 0.079 0.026 0.129 

 (0.015) (0.010) (0.005) (0.013) 
     

Observations 180 180 180 180 
R-squared 0.177 0.164 0.003 0.248 
Robust standard errors in parentheses   
*** p<0.01, ** p<0.05, * p<0.1    

 

Pairwise pooled regression results for return and Amihud Illiquidity versus all 

the coefficients are reported in the tables above. Weibull’s slope parameter γ is 

significant in both cases. Both γ and β are significant for estimating Amihud’s proxy. 

In Table 16, model 4 has an explanatory power of 0.248 as R-square, which indicates 

significant variables from WACD (1,1) are capable of explaining the corresponding 

proxy to an extent. Having negative and significant coefficient signs for β and γ 

demonstrates the connection between the persistence of durations and the upward 
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slopping shape of the hazard function. With a hazard function leaning toward such a 

shape, one can expect to see “thicker” bid-ask spreads, as it’s explained in Engle and 

Russell (1998). This characteristic of the hazard’s shapes indicates a greater failure 

rate as durations get longer, making it possible to accumulate a greater amount of 

passive orders waiting at the bid and ask levels. By this perception, one can expect to 

see a less illiquid order book since a “thicker” bid-ask spread would increase the 

amount of equity buyable with minimum transaction cost.  

The same perspective for understanding the economic interpretation of the 

negative relationship between γ and Amihud can also be applied to γ and return. As 

the bid-ask passive orders get “thicker, " larger transactions and volumes are required 

to generate returns. At this point, Fixed and Random Effect Panel Regressions are 

conducted for return versus Amihud and ACD coefficients in Tables 17 and 18. 

 

Table 17.  Fixed-Effects Regression for Daily Returns 

Variables FE Regression 
    
ω 0.011 

 (0.22) 
α 0.002 

 (0.023) 
β 0.010 

 (0.022) 
Amihud -1.9E+06 

 (2,4E+06) 
γ -0.014** 

 (0.006) 
Constant 0.006 

 (0.023) 
  

Observations 180 
R-squared 0.16 
No of company 10 
Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 18.  Random-Effects Regression for Daily Returns 

Variables RE Regression 
    
ω 0.003 

 (0.040) 
α -0.002 

 (0.039) 
β 0.002 

 (0.040) 
Amihud -2.1E+06*** 

 (6.4E+05) 
γ -0.008*** 

 (0.002) 
Constant 0.007 

 (0.041) 
  

Observations 180 
R-squared 0.189 
No of company 10 
Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

 

Both regressions are statistically significant, as it is reported with F tests. 

Results from the corresponding regressions are superior to pooled regression in Table 

15. For RE regression, both the Amihud and γ are significant. A Hausman test is 

deployed to be able to understand which regression is preferable, and the test results 

are given in Table 19. By using the chi-square test results, we fail to reject the null 

hypothesis that the RE model is suitable. As expected from the significance of the 

variables and the R square results, it is preferred to continue with RE regressions. 
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Table 19.  Hausman Test for Daily FE and RE Regressions 

 FE Panel RE Panel Difference Std.E 

ω 0.200 0.192 0.008 0 
α 0.122 0.152 -0.030 0 
β 0.190 0.186 0.004 0 

Amihud -1.9E+06 -2.0E+06 1.3E+05 -1.9E+05 
γଵ -0.115 -0.061 -0.053 -0.016 

Chi square 0.51    

Prob>chi2 0.47    

 

 

Table 20.  Friedman's Test of Cross-Sectional Independence for RE 

 Correlation matrix of residuals 
 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 

r1 1          
r2 0.578 1         
r3 -0.100 0.237 1        
r4 0.612 0.709 0.127 1       
r5 0.406 0.488 0.446 0.443 1      
r6 0.619 0.594 -0.106 0.738 0.403 1     
r7 0.679 0.703 -0.014 0.574 0.571 0.747 1    
r8 -0.202 0.127 0.591 -0.137 0.140 -0.344 -0.243 1   
r9 0.704 0.608 -0.316 0.539 0.075 0.538 0.589 -0.016 1  

r10 0.540 0.394 -0.105 0.350 0.415 0.487 0.671 -0.369 0.290 1 

 
Friedman's test of cross-sectional independence = 69.84, Pr = 0.00 

 

Considering the Friedman Test results, the null hypothesis that no differences 

between the variables is rejected. RE regression is suitable for the data. In RE 

estimation results, the coefficient for the Weibull’s γ is negative, and that leads to 

negative relations between γ and return. These results are parallel to microstructure 

interpretations. Since Weibull’s γ directly accounts for the Hazard function's slope, 

duration clustering enforced by the slope is associated with the return. From the 

market behavior perspective, it can be assumed that the possibility of having inclined 

returns arises because of clustering imposed by “bandwagon effects” and 

institutional intraday trader impacts on the market. 



 
 

68 
 

5.2.2  Estimation results for hourly data 

The estimations from Table 12 are divided into one-hour trade windows to be able to 

compare WACD (1,1) coefficients with Amihud Illiquidity measures, corresponding 

stock returns, and various variables. The resulting summary statistics for stock-wise 

WACD coefficients can be seen in Table 21.  As can be noticed from Table 12, all 

coefficients are statistically significant. α+β values are close to one, demonstrating 

the persistence of lagged durations and conditional durations on determining the 

duration of t+1. Weibull parameters are equal or greater than one in most cases, 

indicating flat/upward slopping hazard function estimates. For further and in-depth 

analysis, Random-Effects (RE) and Fixed-Effects (FE) panel regressions are 

conducted for understanding variable relationships. 
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Table 21.  Stock-wise Summary Statistics for WACD (1,1) Estimations on Hourly 
Adjusted Trading Windows 

BIMAS Obs Mean Std. Dv. Min Max KCHOL Obs Mean Std. Dv. Min Max 

ωଵ 144 0.460 0.414 -0.025 1.917 ωଵ 144 0.404 0.395 -0.059 1.807 

αଵ 144 0.064 0.145 -0.354 0.490 αଵ 144 0.043 0.148 -0.401 0.593 

βଵ 144 0.481 0.476 -1.086 1.123 βଵ 144 0.561 0.437 -0.852 1.126 

γଵ 144 0.962 0.092 0.704 1.304 γଵ 144 0.957 0.106 0.688 1.436 

Return 144 -2.2E-04 0.005 -0.020 0.025 Return 144 -1.5E-04 0.006 -0.023 0.028 

Amihud 144 4.70E-10 3.97E-10 0 1.84E-09 Amihud 144 5.08E-10 3.92E-10 0 2.00E-09 

EKGYO Obs Mean Std. Dv. Min Max PETKM Obs Mean Std. Dv. Min Max 

ωଵ 144 0.323 0.324 0.009 1.929 ωଵ 144 0.332 0.425 0.015 2.021 

αଵ 144 0.139 0.131 -0.370 0.640 αଵ 144 0.065 0.064 -0.101 0.229 

βଵ 144 0.547 0.352 -0.955 1.106 βଵ 144 0.607 0.418 -1.025 1.019 

γଵ 144 1.046 0.148 0.735 1.554 γଵ 144 1.156 0.106 0.929 1.559 

Return 144 -0.001 0.008 -0.026 0.036 Return 144 -2.2E-04 0.005 -0.017 0.018 

Amihud 144 9.05E-10 1.83E-09 0 1.48E-08 Amihud 144 1.87E-10 2.45E-10 0 1.59E-09 

EREGL Obs Mean Std. Dv. Min Max SAHOL Obs Mean Std. Dv. Min Max 

ωଵ 144 0.290 0.317 0.013 1.709 ωଵ 144 0.417 0.400 0.025 1.935 

αଵ 144 0.088 0.074 -0.119 0.271 αଵ 144 0.083 0.107 -0.239 0.349 

βଵ 144 0.627 0.310 -0.744 1.021 βଵ 144 0.505 0.411 -0.956 1.073 

γଵ 144 1.117 0.112 0.864 1.531 γଵ 144 1.017 0.091 0.809 1.318 

Return 144 -9.1E-05 0.006 -0.019 0.014 Return 144 -4.4E-05 0.012 -0.025 0.123 

Amihud 144 2.09E-10 1.83E-10 0 8.98E-10 Amihud 144 5.9E-10 9.0E-10 0 1.0E-08 

GARAN Obs Mean Std. Dv Min Max THYAO Obs Mean Std. Dv. Min Max 

ωଵ 144 0.202 0.218 0.008 1.581 ωଵ 144 0.112 0.152 -0.014 1.151 

αଵ 144 0.114 0.075 -0.119 0.397 αଵ 144 0.097 0.040 0.032 0.239 

βଵ 144 0.689 0.227 -0.606 1.033 βଵ 144 0.794 0.165 -0.238 0.963 

γଵ 144 1.154 0.161 0.859 1.709 γଵ 144 1.368 0.252 0.972 2.431 

Return 144 6.57E-05 0.012 -0.036 0.113 Return 144 -4.0E-04 0.007 -0.027 0.0293 

Amihud 144 1.73E-10 9.97E-10 0 1.19E-08 Amihud 144 3.24E-11 2.21E-11 0 1.03E-10 

ISCTR Obs Mean Std. Dv. Min Max TUPRS Obs Mean Std. Dv. Min Max 

ωଵ 144 0.382 0.358 0.039 1.807 ωଵ 144 0.309 0.362 0.004 1.990 

αଵ 144 0.085 0.120 -0.244 0.601 αଵ 144 0.055 0.060 -0.147 0.192 

βଵ 144 0.540 0.389 -0.737 1.116 βଵ 144 0.641 0.366 -0.955 1.066 

γଵ 144 1.031 0.113 0.788 1.380 γଵ 144 1.106 0.107 0.902 1.568 

Return 144 -3.3E-04 0.007 -0.022 0.038 Return 144 -0.002 0.018 -0.208 0.026 

Amihud 144 4.59E-10 8.61E-10 0 7.62E-09 Amihud 144 2.15E-10 9.83E-10 0 1.19E-08 

 
 
 

In Table 22, the correlation matrices for WACD estimates from the previous 

summary statistics table can be examined. The link between the duration and 

liquidity is investigated by comparing the Amihud Illiquidity measure and return 

values with the WACD estimates. The goal here is to understand the inter-

relationships from a cross-sectional point of view. 
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Table 22.  Correlation Matrices for WACD (1,1) Estimations vs Amihud and Return 

BIMAS ωଵ αଵ βଵ γଵ Return Amihud KCHOL ωଵ αଵ βଵ γଵ Return Amihud 

ωଵ 1.00      ωଵ 1.00      

αଵ 0.24 1.00     αଵ 0.14 1.00     

βଵ -0.96 -0.51 1.00    βଵ -0.95 -0.45 1.00    

γଵ -0.11 -0.24 0.17 1.00   γଵ -0.10 -0.13 0.14 1.00   

Return -0.13 -0.05 0.13 0.01 1.00  Return 0.07 -0.03 -0.05 -0.17 1.00  

Amihud 0.11 0.14 -0.15 -0.09 -0.12 1.00 Amihud -0.07 -0.02 0.06 0.10 -0.14 1.00 

EKGYO ωଵ αଵ βଵ γଵ Return Amihud PETKM ωଵ αଵ βଵ γଵ Return Amihud 

ωଵ 1.00      ωଵ 1.00      

αଵ 0.06 1.00     αଵ -0.13 1.00     

βଵ -0.94 -0.40 1.00    βଵ -0.99 -0.02 1.00    

γଵ -0.21 -0.43 0.35 1.00   γଵ -0.15 -0.13 0.17 1.00   

Return 0.14 0.07 -0.15 -0.10 1.00  Return 0.12 0.05 -0.13 -0.26 1.00  

Amihud 0.10 -0.06 -0.07 -0.12 0.05 1.00 Amihud -0.14 -0.05 0.15 -0.15 -0.08 1.00 

EREGL ωଵ αଵ βଵ γଵ Return Amihud SAHOL ωଵ αଵ βଵ γଵ Return Amihud 

ωଵ 1.00      ωଵ 1.00      

αଵ -0.17 1.00     αଵ -0.04 1.00     

βଵ -0.97 -0.06 1.00    βଵ -0.97 -0.22 1.00    

γଵ -0.19 -0.22 0.24 1.00   γଵ -0.21 -0.04 0.22 1.00   

Return 0.08 0.09 -0.10 -0.15 1.00  Return 0.06 -0.14 -0.02 -0.04 1.00  

Amihud 0.03 -0.10 -0.01 -0.24 -0.06 1.00 Amihud 0.03 -0.11 0.00 0.05 0.69 1.00 

GARAN ωଵ αଵ βଵ γଵ Return Amihud THYAO ωଵ αଵ βଵ γଵ Return Amihud 

ωଵ 1.00      ωଵ 1.00      

αଵ 0.00 1.00     αଵ 0.28 1.00     

βଵ -0.95 -0.31 1.00    βଵ -0.98 -0.48 1.00    

γଵ -0.18 -0.08 0.20 1.00   γଵ -0.25 -0.37 0.31 1.00   

Return 0.11 -0.15 -0.05 -0.11 1.00  Return 0.06 0.04 -0.06 -0.19 1.00  

Amihud 0.10 -0.15 -0.05 0.03 0.79 1.00 Amihud 0.06 0.02 -0.06 -0.10 -0.15 1.00 

ISCTR ωଵ αଵ βଵ γଵ Return Amihud TUPRS ωଵ αଵ βଵ γଵ Return Amihud 

ωଵ 1.00      ωଵ 1.00      

αଵ 0.16 1.00     αଵ 0.09 1.00     

βଵ -0.96 -0.44 1.00    βଵ -0.99 -0.25 1.00    

γଵ -0.16 -0.42 0.27 1.00   γଵ -0.13 0.15 0.11 1.00   

Return 0.01 0.01 -0.01 -0.01 1.00  Return -0.32 0.04 0.31 -0.12 1.00  

Amihud 0.03 -0.08 -0.01 0.00 0.16 1.00 Amihud 0.36 -0.03 -0.35 0.02 -0.94 1.00 

 

Fixed-Effect and Random-Effects regressions can be observed in Table 23 

and Table 24 below. Both regressions are statistically significant, as reported with F 

and Wald Chi-Square tests. By using the chi-square test results, we fail to reject the 

null hypothesis that RE model is suitable. A Hausman test is deployed to be able to 

understand which regression is preferable, and the test results are given in Table 25. 



 
 

71 
 

Table 23.  Fixed-Effect Regression Results for WACD (1,1) Coefficients with 
Amihud and Return 

Variables 
FE 

Regression 
    
ω 0.002 

 (0.012) 
α -0.001 

 (0.011) 
β 0.003 

 (0.011) 
Amihud 1.28E+05 

 (-3.0E+06) 
γ -0.008*** 

 (0.002) 
Constant 0.006 

 (0.014) 
  

Observations 1,440 
No. of companies 10 
R-squared 0.013 
Robust standard errors in 
parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

Table 24.  Random-Effects Regression Results for WACD (1,1) Coefficients with 
Amihud and Return 

Variables 
RE 

Regression 
    
ω 0.000 

 (0.017) 
α -0.001 

 (0.017) 
β 0.001 

 (0.017) 
Amihud 4.26E+04 

 -2.95E+05 
γ -0.006*** 

 (0.002) 
Constant 0.005 

 (0.017) 
  

Observations 1,440 
No. of companies 10 
R-squared 0.113 
Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Regarding the Hausmann test, we rejected the null hypothesis of the RE 

model being appropriate, and we decided to continue with RE panel regression. 

Friedman test is used for checking cross-sectional independencies in Table 26. 

 

Table 25.  Hausmann Test for RE and FE Panel Regressions 
 

 FE Panel RE Panel Difference Std.E 
ω 0.002 0.000 0.002 0.001 

α -0.001 -0.001 0.001 0.001 

β 0.003 0.001 0.002 0.001 

Amihud 1.3E+05 4.3E+04 8.6E+04 5.8E+04 

γଵ -0.008 -0.006 -0.002 0.001 

Chi-square 2.23    

Prob>chi2 0.1353    

 

 

 

Table 26.  Friedman's Test for Cross-Sectional Independencies 

 Correlation matrix of residuals 
 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 

r1 1          

r2 0.419 1         

r3 0.098 0.156 1        

r4 0.211 0.468 0.365 1       

r5 0.315 0.421 0.197 0.357 1      

r6 0.157 0.327 0.068 0.260 0.233 1     

r7 0.408 0.672 0.173 0.449 0.442 0.320 1    

r8 -0.016 0.205 0.085 0.262 0.280 0.076 0.093 1   

r9 0.468 0.730 0.008 0.436 0.359 0.272 0.665 0.186 1  

r10 0.102 0.475 0.037 0.217 0.163 0.150 0.491 -0.089 0.348 1 

 
Friedman's test of cross-sectional independence = 547.845, Pr = 0.00 

 

The null hypothesis that there are no differences between the variables is 

rejected regarding the Friedman Test results. RE regression is appropriate for the 

data. As it can be noticed from the regression results, the γ coefficient from the 

ACD’s Weibull distribution error term specification is the only statistically 
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significant variable. The coefficient for the Weibull’s γ is negative, leading to a 

negative correlation between γ and return. These results are parallel to economic 

interpretations. Weibull’s γ directly explains the slope of the Hazard function, 

duration clustering imposed by the slope is directly linked with return. As the γ of 

Weibull declines and that slope of the hazard function gets below one, the duration 

clustering begins.  In Tables 27,28,29,30, and 31, the results for pair-wise pooled 

regressions are reported. 

 

Table 27.  Pairwise Pooled Regression for Hourly Amihud 

Variables Model 1 Model 2 Model 3 Model 4 
          
γ -0.007***   -0.006*** 

 (0.001)   (0.001) 
β  -0.002**  -0.002* 

  (0.001)  (0.001) 
α   -0.002 -0.005 

   (0.003) (0.003) 
Constant 0.011* 0.005* 0.004 0.012 

 (0.001) (0.001) (0.003) (0.011) 

     
Observations 1,440 1,440 1,440 1,440 
R-squared 0.021 0.011 0.001 0.028 
Robust standard errors in parentheses   
*** p<0.01, ** p<0.05, * p<0.1    

 

Table 28.  Pair Regression for Return and Gamma 

Variables Return/Gamma 
    
σ -0.004** 

 (0.002) 
Constant 0.004** 

 (0.002) 
  

Observations 1440 
R-squared 0.006 
Robust standard errors in 
parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 29.  Pair Regression for Return and Amihud 

Variables Return/Amihud 
  

Amihud 0.000 
 (0.000) 
Constant -0.001 
 (0.001) 
  

Observations 1440 
R-squared 0.000 
Robust standard errors in 
parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 
 
 

Table 30.  Pair Regression for Return and Alpha 

Variables Return/Alpha 
    
α -0.002 

 (0.002) 
Constant -0.000 

 (0.000) 
  

Observations 1,440 
R-squared 0.000 
Robust standard errors in 
parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

 

Table 31.  Pair Regression for Return and Beta 

Variables Return/Beta 

  
β 0.001 
 (0.002) 
Constant -0.001 
 (0.001) 
  
Observations 1,440 
R-squared 0.001 
Robust standard errors in 
parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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CHAPTER 6 

CONCLUSION 

 

This thesis investigates and models the transaction, price, and volume durations in 

Borsa Istanbul and shows the explanatory power of various ACD specifications and 

extensions on the stock market activities. Durations from intraday orderbook data 

display strong autocorrelation; therefore, a general framework from conventional 

literature and an ACD model is used to inspect market microstructure.  

The analysis demonstrates that BIST durations can be successfully modeled 

using these methods by removing any autocorrelated dependencies parallel to 

developed financial markets. In addition, a framework for choosing the error term 

specification is provided by conducting analysis with various types of distributions 

and ACD model selections that are most commonly used in finance literature.  

Statistically significant and positive coefficients from the models imply that 

the durations are strongly interrelated and can be estimated using past values of 

conditional and unconditional durations. The magnitude of the last duration can 

determine the next’s timing, leading to duration clustering. Having a sum of 

coefficients of past durations close to one reveals the strong persistence of lagged 

durations in all cases. It is also found out that the cross-sectional differences within 

the most traded ten stocks reveal differing degrees of clustering in trade durations. 

Turkish duration dynamics appear to follow developing market examples rather than 

the developed ones like the US. As trading speed increases, intraday dynamics 

become ever more essential, and a more significant number of investors adopt HFT, 

one can expect to see a convergence in durations between worldwide financial 

markets. 
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The primary motivation behind the first part of this thesis was to generate a 

framework for modeling every type of market durations in BIST by comparing 

various models with distinctive specifications and extensions. In the second part, the 

aim was to use the outcomes of the respective framework to show the explanatory 

power of the intraday duration modeling, which cannot be clarified by traditional 

low-frequency liquidity models and proxies in the literature. 

The results from the first part of the study show that the serial correlation 

between the durations can be eliminated and modeled by ACD models for different 

market scenarios. Distinctive error specifications and ACD extension can be used 

and compared by this framework, and every type of duration can be modeled in 

BIST. Moreover, the outcomes of the second part of the study reveal that intraday 

liquidity and duration modeled by the framework from the first part helps explaining 

equity market movements and the traditional Amihud Illiquidity model. 

  



 
 

77 
 

REFERENCES 

 

Acharya, V. V., & Pedersen, L. H. (2005). Asset pricing with liquidity risk. Journal 
of Financial Economics, 77(2), 375–410. 
https://doi.org/10.1016/j.jfineco.2004.06.007 

Amihud, Y. (2002). Illiquidity and stock returns: Cross-section and time-series 
effects. Journal of Financial Markets, 5(1), 31–56. 
https://doi.org/10.1016/S1386-4181(01)00024-6 

Amihud, Y., & Mendelson, H. (1980). Dealership market: Market-making with 
inventory. Journal of Financial Economics, 8(1), 31–53. 

Amihud, Y., & Mendelson, H. (1986). Asset pricing and the bid-ask spread. Journal 
of Financial Economics, 17(2), 223–249. https://doi.org/10.1016/0304-
405X(86)90065-6 

Amihud, Y., Mendelson, H., & Pedersen, L. (2005). Liquidity and Asset Prices. 
Foundations and Trends in Finance, 1(4), 269-364. 
http://doi.org/10.1561/0500000003  

Bauwens, L., & Giot, P. (2000). The Logarithmic ACD Model: An Application to the 
Bid-Ask Quote Process of Three NYSE Stocks. Annales d’Economie et de 
Statistique, 60. https://doi.org/10.2307/20076257 

Bauwens, L., & Giot, P. (2001). Econometric Modelling of Stock Market Intraday 
Activity. Boston, Springer. https://doi.org/10.1007/978-1-4757-3381-5 

Będowska-Sójka, B. (2018). Emerging and Mature Markets – Behavior of Low-
Frequency Liquidity Measures. The Case of the German and Polish Stock 
Markets. Problemy Zarzdania Management Issues, (76), 24–36. 

Beltratti, A., & Morana, C. (1999). Computing value at risk with high frequency 
data. Journal of Empirical Finance, 6(5), 431–455. 

Benic, V., & Franic, I. (2008). Stock Market Liquidity: Comparative Analysis of 
Croatian and Regional Markets. Financial Theory and Practice, 32(4), 477–
498. 

Bhogal, S. K., & Variyam, R. T. (2019). Conditional Duration Models for High-
Frequency Data: A Review on Recent Developments. Journal of Economic 
Surveys, 33(1), 252–273. https://doi.org/10.1111/joes.12261 

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. 
Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-
4076(86)90063-1 

Bollerslev, T., & Domowitz, I. (1993). Trading Patterns and Prices in the Interbank 
Foreign Exchange Market. Journal of Finance, 48(4), 1421–1443. 



 
 

78 
 

Bradrania, R., & Peat, M. (2013). Characteristic Liquidity, Systematic Liquidity and 
Expected Returns. Journal of International Financial Markets, Institutions 
and Money https://doi.org/10.2139/ssrn.1913152 

Breen, W. J., Hodrick, L. S., & Korajczyk, R. A. (2002). Predicting equity liquidity. 
Management Science, 48(4), 470–483. 
https://doi.org/10.1287/mnsc.48.4.470.210 

Brennan, M. J., & Subrahmanyam, A. (1996). Market microstructure and asset 
pricing: On the compensation for illiquidity in stock returns. Journal of 
Financial Economics, 41(3), 441–464. https://doi.org/10.1016/0304-
405X(95)00870-K 

Chai, D., Faff, R., & Gharghori, P. (2010). New evidence on the relation between 
stock liquidity and measures of trading activity. International Review of 
Financial Analysis, 19(3), 181–192. 
https://doi.org/10.1016/j.irfa.2010.02.005 

Chordia, T., Huh, S.-W., & Subrahmanyam, A. (2009). Theory-Based Illiquidity and 
Asset Pricing. The Review of Financial Studies, 22(9), 3629-3668 
https://doi.org/10.1093/rfs/hhn121 

Chordia, T., Roll, R., & Subrahmanyam, A. (2001). Market Liquidity and Trading 
Activity. The Journal of Finance, 56(2), 501–530. 
https://doi.org/10.1111/0022-1082.00335 

Dang, T. L., & Nguyen, T. M. H. (2020). Liquidity risk and stock performance 
during the financial crisis. Research in International Business and Finance, 
52, 101165. https://doi.org/10.1016/j.ribaf.2019.101165 

Datar, V. T., Y. Naik, N., & Radcliffe, R. (1998). Liquidity and stock returns: An 
alternative test. Journal of Financial Markets, 1(2), 203–219. 

Demsetz, H. (1968). The Cost of Transacting. The Quarterly Journal of Economics, 
82(1), 33. https://doi.org/10.2307/1882244 

Dimpfl, T., & Odelli, S. (2020). Bitcoin Price Risk—A Durations Perspective. 
Journal of Risk and Financial Management, 13(7), 1–18. 

Drost, F. C., & Werker, B. (2004). Semiparametric Duration Models. Journal of 
Business & Economic Statistics, 22(1), 40–50. 

Duffie, D., Gârleanu, N., & Pedersen, L. H. (2005). Over-the-Counter Markets. 
Econometrica, 73(6), 1815–1847. https://doi.org/10.1111/j.1468-
0262.2005.00639.x 

Duffie, D., & Singleton, K. (2003). Credit Risk: Pricing Measurement and 
Management. In Credit Risk: Pricing, Measurement, and Management. 

Dufour, A., & Engle, R. F. (2000). Time and the Price Impact of a Trade. The 
Journal of Finance, 55(6), 2467–2498. https://doi.org/10.1111/0022-
1082.00297 



 
 

79 
 

Easley, D., Kiefer, N., & O’Hara, M. (1997). One Day in the Life of a Very Common 
Stock. Review of Financial Studies, 10(3), 805–835. 

Easley, D., & O’Hara, M. (1992). Time and Process of Security Adjustment. The 
Journal of Finance, 47, 577-604. https://doi.org/10.1111/j.1540-
6261.1992.tb04402.x 

Engle, R. (2002). Dynamic Conditional Correlation: A Simple Class of Multivariate 
Generalized Autoregressive Conditional Heteroskedasticity Models. Journal 
of Business & Economic Statistics, 20(3), 339–350. 

Engle, R. F. (2000). The Econometrics of Ultra-High-Frequency Data. 
Econometrica, 68(1), 1–22. 

Engle, R. F., & Russell, J. R. (1998). Autoregressive Conditional Duration: A New 
Model for Irregularly Spaced Transaction Data. Econometrica, 66(5), 1127–
1162. https://doi.org/10.2307/2999632 

Feng, D., Jiang, G. J., & Song, P. X.-K. (2004). Stochastic Conditional Duration 
Models with “Leverage Effect” for Financial Transaction Data. Journal of 
Financial Econometrics, 2(3), 390–421. 
https://doi.org/10.1093/jjfinec/nbh016 

Fernandes, M., & Grammig, J. (2006). A family of autoregressive conditional 
duration models. Journal of Econometrics, 130(1), 1–23. 

Gerhard, F., & Hautsch, N. (2002). Volatility estimation on the basis of price 
intensities. Journal of Empirical Finance, 9(1), 57–89. 

Glosten, L. R., & Harris, L. E. (1988). Estimating the components of the bid/ask 
spread. Journal of Financial Economics, 21(1), 123–142. 
https://doi.org/10.1016/0304-405X(88)90034-7 

Goyenko, R. Y., Holden, C. W., & Trzcinka, C. (2009). Do liquidity measures 
measure liquidity? Journal of Financial Economics, 92(2), 153–181. 

Grammig, J., & Maurer, K.O. (2000). Non-monotonic hazard functions and the 
autoregressive conditional duration model. Econometrics Journal, 3, 16–38. 
https://doi.org/10.1111/1368-423X.00037 

Groth, J., Cooper, S., & Avera, W. (1985). Liquidity, exchange listing, and common 
stock performance. Journal of Economics and Business, 37, 19–33. 
https://doi.org/10.1016/0148-6195(85)90003-7 

Guloglu, C. Z., & Ekinci, C. (2021). Liquidity measurement: A comparative review 
of the literature with a focus on high frequency. Journal of Economic 
Surveys, 36(1), 41-74. https://doi.org/10.1111/joes.12440 

Gurgul, H., & Syrek, R. (2016). The logarithmic ACD model: The microstructure of 
the German and Polish stock markets. Managerial Economics, 17(1), 77–92. 



 
 

80 
 

Hallin, M., Mathias, C., Pirotte, H., & Veredas, D. (2011). Market liquidity as 
dynamic factors. Journal of Econometrics, 163(1), 42–50. 
https://doi.org/10.1016/j.jeconom.2010.11.005 

Hasbrouck, J. (2009). Trading Costs and Returns for U.S. Equities: Estimating 
Effective Costs from Daily Data. The Journal of Finance, 64, 1445–1477. 
https://doi.org/10.1111/j.1540-6261.2009.01469.x 

Hautsch, N. (2004). Modelling Irregularly Spaced Financial Data: Theory and 
Practice of Dynamic Duration Models. Springer-Verlag. 
https://doi.org/10.1007/978-3-642-17015-7 

Hautsch, N. (2012). Econometrics of Financial High-Frequency Data. Berlin, 
Springer-Verlag. https://doi.org/10.1007/978-3-642-21925-2 

Ho, T., & Stoll, H. (1981). Optimal dealer pricing under transactions and return 
uncertainty. Journal of Financial Economics, 9(1), 47–73. 

Huptas, R. (2014). Bayesian Estimation and Prediction for ACD Models in the 
Analysis of Trade Durations from the Polish Stock Market. Central European 
Journal of Economic Modelling and Econometrics, 6(4), 237–273. 

Kyle, A. S. (1985). Continuous Auctions and Insider Trading. Econometrica, 53(6), 
1315–1335. https://doi.org/10.2307/1913210 

Lancaster, T. (1992). The Econometric Analysis of Transition Data. Rhode Island, 
Cambridge University Press, https://doi.org/10.1017/CCOL0521265967  

Lee, K.-H. (2011). The world price of liquidity risk. Journal of Financial Economics, 
99(1), 136–161. https://doi.org/10.1016/j.jfineco.2010.08.003 

Lesmond, D., Trzcinka, C., & Ogden, J. (1997). A New Measure of Transaction 
Costs. The Review of Financial Studies, 12(5), 1113-1141 

Lin, S. X., & Tamvakis, M. N. (2004). Effects of NYMEX trading on IPE Brent 
Crude futures markets: A duration analysis. Energy Policy, 32(1), 77–82. 

Lunde, A. (1999). A Generalized Gamma Autoregressive Conditional Duration 
Model. Department of Economics, Politics and Public Administration, 
Aalborg University 

Marshall, B. R., Nguyen, N. H., & Visaltanachoti, N. (2013). Frontier Market 
Transaction Costs and Diversification. Journal of Financial Markets, 24, 1-
24. https://doi.org/10.1016/j.finmar.2015.04.002 

Meitz, M., & Teräsvirta, T. (2006). Evaluating Models of Autoregressive 
Conditional Duration. Journal of Business & Economic Statistics, 24(1), 104–
124. 

Nneji, O. (2015). Liquidity shocks and stock bubbles. Journal of International 
Financial Markets, Institutions and Money, 35, 132–146. 
https://doi.org/10.1016/j.intfin.2014.12.010 



 
 

81 
 

Pacurar, M. (2008). Autoregressive Conditional Duration Models in Finance: A 
Survey of the Theoretical and Empirical Literature. Journal of Economic 
Surveys, 22(4), 711–751. https://doi.org/10.1111/j.1467-6419.2007.00547.x 

Pastor, L., & Stambaugh, R. (2002). Mutual fund performance and seemingly 
unrelated assets. Journal of Financial Economics, 63(3), 315–349. 

Pastor, L., & Stambaugh, R. (2003). Liquidity Risk and Expected Stock Returns. 
Journal of Political Economy, 111(3), 642–685. 

Pyrlik, V. (2013). Autoregressive conditional duration as a model for financial 
market crashes prediction. Physica A: Statistical Mechanics and Its 
Applications, 392(23), 6041–6051. 
https://doi.org/10.1016/j.physa.2013.07.072 

Stoll, H. R. (1978). The Pricing of Security Dealer Services: An Empirical Study of 
Nasdaq Stocks. The Journal of Finance, 33(4), 1153–1172. 
https://doi.org/10.1111/j.1540-6261.1978.tb02054.x 

Stoll, H., & Whaley, R. E. (1983). Transaction costs and the small firm effect. 
Journal of Financial Economics, 12(1), 57–79. 

Tinic, S. M. (1972). The Economics of Liquidity Services. The Quarterly Journal of 
Economics, 86(1), 79–93. 

Tsay, R. S. (2002). Analysis of Financial Time Series. John Wiley & Sons, Inc. 
https://doi.org/10.1002/0471264105 

Tse, Y. K., & Yang, T. T. (2012). Estimation of high-frequency volatility: An 
autoregressive conditional duration approach. Journal of Business and 
Economics Statistics, 30(4), 533–545. 
https://doi.org/10.1080/07350015.2012.707582 

Uddin, M. H. (2009). Reexamination of stock liquidity risk with a relative measure. 
Studies in Economics and Finance, 26, 24–35. 
https://doi.org/10.1108/10867370910946306 

Vu, V., Chai, D., & Do, V. (2015). Empirical tests on the liquidity-adjusted capital 
asset pricing model. Pacific-Basin Finance Journal, 35, 73–89. 
https://doi.org/10.1016/j.pacfin.2014.10.007 

Zhang, M. Y., Russell, J. R., & Tsay, R. S. (2001). A nonlinear autoregressive 
conditional duration model with applications to financial transaction data. 
Journal of Econometrics, 104(1), 179–207. https://doi.org/10.1016/S0304-
4076(01)00063-X 

 


