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SES-USTU UCAKLARDA
COK-DISIPLINLi VE COK-DOGRULUKLU
OPTIMIZASYON YONTEMLERININ UYGULANMASI

OZET

Hem ekonomik hem de cevresel olarak diizenlemelere uygun ses-iistii araclarin
gelistirilmesi, giiniimiizde sivil havacilik ¢alismalarindaki zorlu hedefler arasinda
oncelikli olarak yer almaktadir. 1970’11 yillarda kargimiza ¢ikan bu hedef ilk ses-iistii
ticari ucak olan Concorde’un tasarimi ile hayata gecmistir. Her ne kadar ses-iistii ucan
ticari bir ugak iiretilmis olsa da isletme maliyetleri ve sonik patlamalardan kaynakli
giiriiltiilerden dolay1 2003 yilinda emekliye ayrilmistir. Ardindan cesitli ¢alismalar
denenmigtir ancak halen ticari tasimalarda siireklilik saglayabilen bir tasarimin ortaya
konulmadig1 goriillmektedir. Giiniimiizde bu hedefi gelistirmek i¢in Boeing, Airbus
gibi biiyiik firmalarin ve NASA, JAXA gibi arastirma kurumlarinin bu konuda yogun
caligmalar yiiriittigi goriilmektedir.

Yakin gecmise kadar hava araci tasarim siireci, bir tasarimin ortaya konulmasi ve
onun tasarim hedeflerine ulasabilmesi i¢in tasarimda yapilan iyilestirmeler seklinde
ilerlemekteydi. = Ancak giinlimiizde bu tasarim siirecleri sayisal optimizasyon
calismalan ile ilerletilmektedir. Boylelikle tasarim siirecinde birden fazla alternatif
tasarimi istenen hedefler dogrultusunda bir siiriicii algoritma sayesinde sayisal olarak
test etme imkani olmaktadir. Bu teknoloji tasarimcilarin verimli bir sekilde daha
bagarili hava araglari tasarlamalarina imkan vermektedir. Optimizasyon ¢aligmalarinin
tasarim siirecindeki bu avantajlarina ragmen, gerektirdigi yiiksek hesaplama giicii ve
zaman alic iteratif analiz siirecleri dezavantaj olmaktadir. Ancak ses-listil ucaklar
gibi cok-disiplinli tasarim gerektiren ve bircok sertifikasyon kisitlamalart olan bir
iirlinil, istenen sartlara uygun bir sekilde tasarlayabilmek icin optimizasyon ¢alismalari
zorunluluk haline gelmektedir.

Dijital teknolojilerin gelismesi ile birlikte ucak tasarim siirecleri ve kullanilan
yontemler de degisim gostermektedir. Yakin gecmise kadar ugak tasarim
stireclerinde agirlikli olarak potansiyel akig yontemlerini dayanan panel yontemleri
kullanilmaktaydi. Panel yontemleri hizli ve yeterli sonu¢ vermesine ragmen bazi
varsayimlara dayanmasindan dolayi giiniimiizde yerini daha dogru sonuglar veren
Hesaplamali Akigkanlar Dinamigi (HAD) analizlerine birakmigtir.  Giiniimiizdeki
HAD yoéntemleri ile deneysel sonuglara yakin sonuglar elde etmek miimkiindiir. Ancak
HAD analizlerine dayanan optimizasyon ¢aligmalar1 olduk¢a maliyetli olabilmektedir.
Ozellikle bu tez kapsaminda ele alan siipersonik ucaklarda, ses-alt1 hizlarda ugan
ucaklarin aksine 6nemli bir kriter olarak karsimiza c¢ikan sonik patlama hesaplari icin
biiyiik akig alanlarinin analizinin yapilmasimin gerekliligi HAD temelli optimizasyon
caligsmalarinin maliyetinin katlanilmaz boyutlara ¢ikarabilmektedir.

Hesaplamali analizler alaninda artan bilgi ile artan optimizasyon ¢alismasi siirelerini
makul seviyelerde tutmak icin cesitli yontemler ¢alismalara dahil olmustur. Bunlarin
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ilki ve temeli vekil modelleme yontemleridir. ~ Vekil modelleme yOntemleri
belli sayida farkli tasarim degiskeni icin elde edilen analiz sonuglar1 kullanilarak
ayni girdi degerleri i¢in analiz programina ¢ok yakin sonuc¢ veren temsili bir
modelin olusturulmasina dayanmir. Belli sayida analiz sonucu ile kurulan temsili
modeller, analiz programina yakin sonu¢ verdigi i¢in optimizasyon calismasinda
analiz programi yerine kullanilarak optimizasyon siireci hizlandirilmaktadir. Vekil
modelleme yoOntemleri verimli yontemler olsalar da, optimizasyon probleminin
boyutuna bagli olarak temsili modeli kurmak igin gereken analiz sayisi artig
gostermektedir. Gerekli olan analiz sayisindaki artig ile optimizasyon calismasinin
maliyeti de artig gostermekte olup, pahali analiz programlarinin kullanildig1 yiiksek
boyutlu optimizasyon calismalarinda ¢ok-dogruluklu vekil modellerin kullanildig:
gozlemlenmektedir. Cok-dogruluklu vekil modellemede farkli dogruluklu analiz
programlar1 birlikte kullanilmakta olup, temelde iki kademeli vekil modelleme
yontemleridir. Cok-dogruluklu temsili modelleme i¢in ilk asamada c¢ok sayida diisiik
dogruluklu analiz sonucu kullanilarak diisiik dogruluklu analiz programi i¢in temsili
model kurulmaktadir. Ardindan az sayida yiiksek dogruluklu analiz sonucu ile
diisitk dogruluklu temsili sonucu diizeltilerek, yiiksek dogruluklu analiz programina
yakin sonuglar veren cok-dogruluklu temsili model kurulmaktadir. Ucak tasarim
stirecinde diisiik dogruluklu analiz programi panel yontemleri, yiiksek dogruluklu
analiz programi ise HAD analizleri olarak diisiiniilebilir. Temelde diisiik ve yiiksek
dogruluklu analiz programinin yiiksek oranda iligki gosterdigine inanilmakta olup,
yiiksek boyutlu problemlerde gereken ¢ok sayida analiz hizli sonug veren ucuz diisiik
dogruluklu analiz programindan elde edilmektedir. Az sayida pahali analiz programi
da diisiik dogruluklu analiz programu ile yiiksek dogruluklu analiz programi arasinda
bir diizeltme fonksiyonu olusturmak i¢in kullanilmaktadir.

Literatiirde farkli yaklasimlarla tek ve ¢ok-dogruluklu vekil modelleme yontemleri
bulunmakta olup, her problem i¢in her zaman dogru sonug¢ veren tek bir yaklagim
bulunmamaktadir. Ele alinan problemin &zelliklerine ve boyutuna bagli olarak farkli
temsili modelleme yontemlerinin bagarilar1 degismektedir. Bundan dolay:1 hala tek
ve cok-dogruluklu vekil modelleme yontemleri iizerinde arastirma caligmalar1 ve
gelistirmeler devam etmektedir. Tek ve ¢ok-dogruluklu vekil modelleme yontemleri
genetik modellemeden, robotik alanina ¢ok farkli alanlarda kullanilmakta olup,
havacilik alaninda da niimerik ve deneysel ¢alismalarda kullanilmaktadir.

Yiiksek lisans tez caligmasinin amaci, hesaplama acgisindan verimli bir optimizasyon
stireci gelistirmek i¢in ¢ok-dogruluklu analiz ve temsili modelleme yOntemlerini
cok-disiplinli hava araci tasarim optimizasyon siirecine entegre etmektir. Daha
once ifade edildigi gibi farkli temsili modelleme yontemleri bulunmaktadir, bu
tez kapsaminda literatiirde sikhik ile kullanilan tek ve ¢ok-dogruluklu temsili
modelleme yontemleri i¢in programlar gelistirilmistir. Optimizasyon calismalart icin
lokal o6zellikleri yakalamada bagsarili oldugu i¢in ve yontemin tahmini hata degeri
saglamasindan dolayr Gaussian siirecleri temelli co-Kriging yontemi igcin program
gelistirilmigtir.  Belirsizlik analizi i¢in ise analiz programinin genel davranmiglarini
yakalama bagarisindan dolay1 ¢ok-dogruluklu Polinom Kaos Genislemesi yontemi
icin kod gelistirilmigtir.  Ayrica ¢ok-dogruluklu model yOnetim algoritmas: olan
belirsizlik analizlerinde kullanilan ¢cok-dogruluklu Monte Carlo yéntemi icin program
gelistirilmistir. Baglangicta gelistirilen kodlar analitik fonksiyonlar {izerinde
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kullanilarak dogrulanmis ve karsilastirlmistir.  Gelistirilen kodlarin ugak tasarim
siireclerinde kullanimini gdstermek icin bir optimizasyon ve bir belirsizlik analizi
caligmast yapilmigtir.

Optimizasyon problemi olarak siipersonik ugak kanadi problemi ele alinmigtir. Ele
alman ilk geometrinin kanat iist goriiniimii 5 degisken ile temsil edilmistir. Tasarim
degiskenleri icin belirlenen deger araliklarinda diisiik dogruluklu akig analizi programi
olarak kullanilan PANAIR panel aerodinamik programu ile 309, yiiksek dogruluklu
akig analiz programi olarak kullanilan SU2 acik-kaynakli hesaplamali akigkanlar
dinamigi program ile 105 adet farkli tasarim ig¢in analiz yapilmigtir. Akis analizi
sonuclar1 kullanilarak NASA tarafindan gelistirilen sBoom programa ile sonik patlama
analizi gerceklestirilmistir.  Akis ve sonik patlama analiz sonuglari kullanilarak
co-Kriging yontemi ile cok-dogruluklu temsili model kurulmustur. Kurulan
cok-dogruluklu temsili model kullanilarak siipersonik ucak kanat geometrisi icin tek
ve ¢ok amacl optimizasyon ¢alismasi gerceklestirilmistir. Optimizasyon yontemi
olarak Genetik algoritma ve Davidon-Fletcher Powell yontemleri kullanilmistir. Her
iki optimizasyon yontemi ile de benzer sonuglar elde edilmigstir. Cok-dogruluklu
temsili modellemede kullanilan yiiksek dogruluklu analiz sayis1 tek dogruluklu temsili
model kurmak i¢in gereken analiz sayisi ile kiyaslanarak ¢cok-dogruluklu temsili model
kurmanin yaklagik olarak %66 daha ucuz oldugu gézlemlenmistir. Bu oran problem
yapisina bagli olarak degisiklik gostermekte olup, bu problem icin yaklasik %66
kazang saglamistir.

Belirsizlik analizi olarak sonik patlama degerindeki belirsizlik aragtirilmistir. Hiicum
acisi, Mach sayisi, yerin yiiksekligi ve yerin yansitma faktorii ozelliklerindeki
belirsizlikler dikkate alinarak sonik patlama degerindeki belirsizlik degerlendirilmistir.
Geometri olarak JAXA kanat govde geometrisi kullamlmigtir. ~ Optimizasyon
calismasinda oldugu gibi diisiik dogruluklu akis analizi icin PANAIR, yiiksek
dogruluklu analiz programi i¢in SU2-Euler ¢oziiciisii kullanilmistir. Sonik patlama
analizleri de sBoom programi kullanilarak gerceklestirilmistir.  Cok-dogruluklu
Polinom Kaos Genisleme yontemi ve cok-dogruluklu Monte Carlo yontemi ile
belirsizlik analizi gergeklestirilerek yontemlerin karsilagtirilmasi sunulmustur.

Yapilan uygulama sonuglart referans alarak, cok-dogruluklu temsili modelleme
yontemlerinin optimizasyon ve belirsizlik analiz maliyetlerini tek dogruluklu temsili
modelleme yontemlerine gore yaklasik %50 zaman ve maliyet kazanci sagladig:
goriilmiigtiir. Direkt analiz programlar1 kullanilarak optimizasyon ve belirsizlik analizi
gerceklestirilmemistir, ancak literatiirdeki bilgiler referans alinarak cok-dogruluklu
optimizasyon ve belirsizlik analiz yontemlerinin direkt analiz programlar1 kullanilarak
gerceklestirilen calismalara gore hesaplama zamani ve maliyeti agisindan ¢ok avantajli
olduklart goriilmektedir. Bu calismada, ¢ok-dogruluklu optimizasyon ve belirsizlik
analizi yontemlerinin tasarim siireclerine entegrasyonu ve avantajlari gosterilmektedir.
Ote yandan calisma kapsaminda ele alinmasa da temsili modelleme siireclerinde
uyarlanabilir (adaptive) ornekleme yontemlerinin eklenmesi veya temsili modellerin
kurulma siireclerine modelin birinci ve ikinci tiirev bilgilerinin dahil edilmesi bu
stirecleri daha verimli hale getirecektir. Gelecekteki ¢aligmalarda ¢ok-dogruluklu
optimizasyon ve belirsizlik analizleri tek bir cati altinda birlegtirilerek belirsizlik
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altinda tasarim optimizasyon c¢aligmalari icin verimli bir optimizasyon siirecinin
kurulmasi planlamaktadir.
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APPLICATION OF MULTI-DISCIPLINARY
AND MULTI-FIDELITY OPTIMIZATION METHODS
IN SUPERSONIC AIRCRAFT DESIGN

SUMMARY

One of the challenging goals in civil aviation studies today is the design of an
economically and environmentally viable commercial supersonic aircraft. This target,
which emerged in the 1970s, was realized with the design of Concorde, the first
supersonic commercial aircraft. Although a commercial supersonic flying aircraft was
produced, it retired in 2003 due to the high operating costs and mainly due to the noise
from sonic booms that were beyond environmental regulations over land. Afterwards,
various studies were initiated, however a completely successful design in commercial
supersonic transportation has not been put forward yet. Today, it is seen that large
companies such as Boeing, Airbus and research institutions such as NASA and JAXA
carry out intensive studies on this subject in order to achieve this goal.

Until recently, the air-vehicle design process employed costly iterations where an
initial design was updated so that it could satisfy its performance goals. However,
nowadays, these design processes benefit significantly from numerical optimization
studies. Thus, during the design process, many alternative designs are monitored
efficiently according to the required targets. Despite these advantages of optimization
studies in the design process, high computational power and time-consuming function
evaluation processes are seen as remarkable disadvantages. On the other hand,
multi-disciplinary optimization studies become a necessity in order to design advanced
air vehicles such as supersonic aircraft, which has many certification restrictions, in
accordance with the desired flight conditions.

With the development of computational technology, aircraft design processes and the
methods also change. For aerodynamic analysis, panel methods based on potential flow
solver are used in aircraft design processes until computational fluid dynamics methods
are developed and become widespread. Although panel methods give fast and good
results, since they are based on some limiting assumptions, they have been replaced by
computational fluid dynamics (CFD) analysis, which gives more accurate results today.
With today’s CFD methods, it is possible to obtain results close to the experimental
results. However, optimization studies based on CFD analyses can be quite costly.
Especially for supersonic air vehicles, unlike air vehicles flying at subsonic speeds,
large flow fields should be analyzed for sonic boom calculations, which is an important
criterion. This requirement can increase the cost of CFD-based optimization studies to
unaffordable levels.

Further approaches and methods have been implemented in the optimization studies
in order to keep the increasing computational costs at reasonable levels by using
the increasing knowledge in the field of computational analysis. The first and basic
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of these are surrogate modelling methods. Surrogate modelling methods can be
interpolation or regression methods. Surrogate modelling methods are based on the
creation of a representative model to replace the analysis program using the analysis
results obtained for a certain number of different design variables. With surrogate
modelling methods, it is possible to create a surrogate model that gives very close
results to the analysis program results for the same input values. Since the surrogate
models established with a certain number of analysis results give results close to the
analysis program, the optimization process is accelerated by using surrogates instead
of the analysis program in the optimization study. Although surrogate modelling
methods are efficient methods, the number of analyses required to establish the
surrogate model increases depending on the size of the optimization problem. With
the increase in the number of analyses required, the cost of the optimization study
also increases, and it is observed that multi-fidelity surrogate models are used in
high-dimensional optimization studies where expensive analysis programs are used.
In multi-fidelity surrogate modelling, different fidelity analysis programs are used
and they are two-stage surrogate modelling methods. For multi-fidelity surrogate
modelling, a surrogate model for a low-fidelity analysis program is established by
using a large number of low-fidelity analysis results in the first stage. Then, the
low-fidelity surrogate modelling result is corrected using a small number of high
fidelity analysis results. Thus, a multi-fidelity surrogate model is established, which
gives results close to the high-fidelity analysis program. In the aircraft design process,
the low-fidelity model can be considered as a panel method, and the high-fidelity
model can be considered as the CFD model. Basically, it is believed that the low and
high fidelity analysis program is highly correlated, and the large number of analyses
required in high dimensional problems are obtained from the inexpensive low fidelity
analysis program that gives fast results. A few expensive analysis program results
are also used to create a correction function between the low fidelity and high fidelity
analysis programs.

There are many different surrogate modelling and multi-fidelity surrogate modelling
methods in the literature, and there is no single approach that always gives correct
results for every problem. The success of different surrogate modelling methods varies
depending on the characteristics and size of the problem being addressed. Therefore,
studies on single and multi-fidelity surrogate modelling methods are still ongoing.
Single and multi-fidelity surrogate modelling methods are used in many different fields
from genetic modelling to robotics and are also used in numerical and experimental
studies in the field of aviation.

The aim of the master thesis is to integrate multi-fidelity analysis and surrogate
modelling methods into the multidisciplinary aircraft design optimization process to
develop a computationally efficient optimization process. As stated before, there are
different surrogate modelling methods, and within the scope of the thesis, programs
have been developed for single and multi-fidelity surrogate modelling methods,
which are frequently used in the literature. A program has been developed for the
Gaussian-based CoKriging method since it is successful in capturing local features
for optimization studies and provides an estimated error value of the method. For
uncertainty analysis, a code has been developed for the multi-fidelity Polynomial
Chaos Expansion method, due to the success of capturing the general behaviour of
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the analysis program. In addition, a program has been developed for the multi-fidelity
Monte Carlo method used in uncertainty analysis, which is a multi-fidelity model
management algorithm. Initially developed codes were validated and compared using
analytical functions. An optimization and uncertainty analysis study was conducted to
demonstrate the use of the developed codes in aircraft design processes.

The supersonic aircraft wing problem is chosen as an optimization problem. The top
view of the considered base geometry is represented by 5 variables. In the design
space determined for the optimization variables, 309 different designs were analyzed
with the PANAIR program, which is used as a low-fidelity flow analysis program,
and 105 designs are evaluated with the SU2 program, which is used as a high-fidelity
flow analysis program. Sonic boom analysis was performed with the sBoom program
using the flow analysis pressure results. A multi-fidelity surrogate model is established
with the CoKriging method using the flow and sonic boom analysis results. A single
and multi-objective optimization study is carried out for supersonic aircraft wing
geometry using the established multi-fidelity surrogate model. Genetic algorithm
and Davidon-Fletcher Powell methods were used as optimization methods. Similar
results were obtained with both optimization methods. Comparing the number of
high-fidelity analyses used in multi-fidelity surrogate modelling with the number of
analyses required to build a single-fidelity surrogate model, it has been observed that
it is approximately 66% cheaper to build a multi-fidelity surrogate model. This ratio
varies depending on the problem, and it has provided a gain of approximately 66% for
this problem.

As the uncertainty analysis demonstration, the uncertainty in the sonic boom value
is investigated. The uncertainty in the sonic boom value is evaluated by taking
into account the uncertainties in the angle of attack, Mach number, the altitude of
the ground and reflection factor of the ground. The JAXA wing body is used as
the geometric model. As in the optimization study, PANAIR is used for the low
fidelity flow analysis and the SU2-Euler solver is used for the high fidelity analysis
program. Sonic boom analyses are performed using the sBoom program. Uncertainty
quantification is performed with the multi-fidelity PCE method and the multi-fidelity
Monte Carlo method, and a comparison of the methods is presented.

Taking the results of the application as a reference, optimization and uncertainty
analysis costs of multi-fidelity surrogate modelling methods have provided approx-
imately 50% time and cost savings compared to single-fidelity surrogate modelling
methods. Optimization and uncertainty analysis are not performed using direct
analysis programs, however, with reference to the information in the literature,
it is seen that multi-fidelity optimization and uncertainty analysis methods are
advantageous in terms of computational time and cost compared to studies performed
using direct analysis programs. This study demonstrates the integration and advantages
of multi-fidelity optimization and uncertainty analysis methods into design processes.
On the other hand, adding adaptive sampling methods in the surrogate modelling
processes or incorporating the gradient and Hessian information of the model into
the construction processes of the surrogate models will make these processes more
efficient, although these implementations are not in the scope of this study. For
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future studies, robust optimization processes under uncertainty will be established by
coupling multi-fidelity optimization methods and uncertainty analyses efficiently.
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1. GIRIS

Ticari ses-iistii ugug i¢in ¢esitli denemelere ragmen cevresel ve ekonomik kriterlere
uygun ucusun gerceklestirilememesinden dolay1 ses-iistii ticari uguslar devamli hale
gelememistir.  Giiniimiizde Boom, Aerion gibi firmalar tekrar ses-iistii ticari ugus
icin calismalara baglamis olup, ses-iistii ticari ugaklar hala giincel bir calisma
alan1 olmaya devam etmektedir. Ses-iistii uguslarda, sonik patlamalardan olusan
giiriiltiiler ve ugus maliyetleri ugusa elveriglilik agisindan bir engel olmaktadir.
Ses-iistii ugak tasarimlarinda bu kriterlerin g6z oniine alinmasi siirdiiriilebilir ticari
ses-iistii ucuslarn gerceklestirilebilmesi icin bilyiik énem arz etmektedir. Ifade
edilen kriterler ve artirilabilecek daha bir¢ok kriteri saglayan bir tasarimin iteratif
bir siire¢ ile saglanmasi olduk¢a zaman alici ve maliyetli olacaktir. Bundan dolay1
bircok havacilik tasariminda oldugu gibi ses-iistii ugak tasarimlarinda da optimizasyon
calismalar1 kaginilmazdir. Ayrica HAD analizleri gibi hesaplamalar1 zaman alici analiz
programlarinin kullanildig1 optimizasyon ¢alismalarinda pahali analiz programlarin
kullanilma sayisinin azaltilmasi tasartm maliyetlerinin ve siiresinin azaltilmasi
icin bilyilk 6nem arz etmektedir. Bu noktada, ¢ok-dogruluklu vekil modelleme

yontemlerinin tasarim siireclerine entegre edilmesi 6nem arz etmektedir.

Cok-dogruluklu analiz ve modelleme yontemleri, farkli dogruluklu modellerden
yararlanarak az sayida yiiksek dogruluklu ama pahali analiz programi kullanarak,
yiiksek dogruluklu analiz sonuglarina yakin sonuglarin elde edilmesinin hedeflendigi
yaklagimlar/algoritmalardir. Cok-dogruluklu analiz ve modelleme icin farkli
yontemler onerilmekte olup, her yontemin avantajinin one ¢iktigi farkli problemler
bulunmaktadir. Literatiirdeki caligmalar g6z oniine alindiginda Gaussian siire¢ temelli
cok-dogruluklu temsili modelleme yontemleri lokal 6zellikleri yakalamadaki bagarilar
ve tahmini varyans ¢iktilarindan dolay1 optimizasyon ¢alismalarinda siklik ile tercih
edilmektedir.  Belirsizlik analizleri goz oOniine alindiginda ise diisiik dogruluklu

problemler i¢in tasarim uzayinin genel davranisini yakalamadaki basarisindan dolay1



cok-dogruluklu polinom kaos yontemlerinin tercih edildigi gozlemlenmektedir.
Yiiksek boyutlu belirsizlik analizlerinde ise diger yontemlere gére daha az sayida
yiiksek dogruluklu analiz sonucuna ihtiyac duyan model yonetim algoritmasi

cok-dogruluklu Monte Carlo yontemlerinin tercih edildigi gozlemlenmektedir.

1.1 Literatiir Arastirmasi

Son yillarda artan islem giicline ragmen yiiksek dogruluklu analiz yontemlerini,
optimizasyon ve ¢ok degiskenli belirsizlik analizleri gibi yiiksek islem giiciine ihtiyac
duyulan siireglere dahil etmek olduk¢a maliyetli ve zaman alicidir. Bir diger yandan
ise daha gercek¢i sonuclar elde etmek acisindan yiiksek dogruluklu yontemlerin
tasarim, optimizasyon ve belirsizlik analizi gibi siireclere dahil edilmesi biiyiik 6nem
arz etmektedir. Bundan dolay: yiiksek hesaplama giicii gerektiren analiz yontemleri
tasarim siirecine dahil edilirken analiz siiresini ve maliyetini de makul seviyede
tutabilmek adma son 20 yilda ¢ok-dogruluklu yontemler on plana cikmaktadir.
Cok-dogruluklu analiz yontemlerinin temel amaci istenen dogruluk seviyesini elde
edecek sekilde hesaplama siiresini azaltmaktir. ~ Bundan dolayr c¢ok-dogruluklu
caligsmalarda zaman kazanimi raporlanmasi 6nemlidir. Ancak genel olarak yayinlara
bakilirsa bu konu hakkinda cok fazla bilgi verilmedigi goriilmektedir. Fernandez
ve digerleri, 2016 yilina kadar yapilan ¢ok-dogruluklu yontemlerin uygulamalarinda
verilen bilgilerden yola cikarak cok-dogruluklu yontemlerin problemin tipine
bagli olmak ile beraber 90% mertebesine kadar hesaplama zamaninda azalma

saglayabilecegini ifade etmektedir [36].

Cok-dogruluklu yaklasim karmasik sistemlerin analiz ve tasarim siireclerinde istenen
dogruluk seviyesini elde edecek sekilde mevcut tiim model ve verilerden en iyi sekilde
yaralanmaya caligmaktadir. Bdyle bir yaklagim, eldeki tahmin/karar gorevi i¢in uygun
beceriye sahip modelleri segmek i¢in sistematik yontemler gerektirir. Ayrica farkli

model ve deneylerden bilgi ve veri sentezleme yollar1 gerektirir.

Cok-dogruluklu yontemlerin siniflandirilmasi i¢in farkli gruplandirmalar yapilmakta
olup, literatiirde en ¢ok kabul goren siniflandirma Peherstorfer ve digerlerinin [5]

yaptiklar1 adaptasyon, fiizyon ve filtreleme siniflandirmasidir.



* Adaptasyon
Adaptasyon sinifinda yer alan yontemler, hesaplama devam ederken yiiksek
kaliteli modelden gelen bilgilerle diisiik kaliteli modeli gelistirmeye dayanir.
Adaptasyona dayali model yonetimine bir ornek, optimizasyon siirecinin her
yinelemesinde bir Kriging modelinin uyarlandig1 verimli global optimizasyon
(Efficient Global Optimization - EGO) caligmalart [34,35] Ornek verilebilir.
Bagka bir ornek olarak, yiiksek dogruluklu model sonuglarindan yararlanilarak
olusturulan diizeltme fonksiyonlar1 araciligiyla diisiik dogruluklu model ¢iktilarinin
diizeltilmesidir. Orneklenen yiiksek ve diisiik dogruluklu analiz ¢iktilari arasindaki

farka veya orana dayal diizeltmelerin kullanilmas1 yaygindir [32,33].

* Fiizyon
Fiizyon siniflandirmasinda yer alan ¢cok-dogruluklu analiz yontemleri bilgi kaynas-
masina dayanmaktadir. Fiizyona dayali yaklasimlarda, diisiik ve yiiksek kaliteli
modelleri degerlendirir ve ardindan tiim ¢iktilardan gelen bilgiler kullanilarak tek
bir temsili model kurulur. Bu agidan ¢ok-dogruluklu temsili modelleme yontemleri
fiizyon siniflandirmasina dahil olurlar. Literatiirde siklik ile kullanilan co-Kriging
[31], ¢ok-dogruluklu polinom kaos genisleme [8], ¢cok-dogruluklu sinir aglari [7]

yontemleri bu simiflandirmaya dahildir.

* Filtreleme
Filtreleme siifina dahil olan ¢ok-dogruluklu analiz yontemleri analiz sonug¢lariin
filtrelenmesine dayanir. Bu yontemlerde yiiksek kaliteli model, diisiik kaliteli
bir filtrenin degerlendirilmesinin ardindan cagrilir. Aday nokta diisiik dogruluklu
modelin degerlendirmesine dayali bir kriteri karsiliyorsa yiiksek kaliteli modelin
degerlendirilmesi gerceklestirilir. Cok dogruluklu filtreleme stratejisinin bir 6rnegi,
¢ok asamali Markov-chain Monte Carlo (MCMC) algoritmasidir. iki asamali
MCMC yonteminin kullanildig1 calismalarda [6], calisma diisiik dogruluklu
model ile gerceklestirilmekte olup, diisiik dogruluklu model ¢iktisi olabilirlik
fonksiyonunu tetiklediginde aday noktada yiiksek dogruluklu analiz programi

calistirilmaktadir.



Literatiir arastirmasi ¢ok-dogruluklu modelleme yOntemlerin arasinda simif ayrimi
gozetilmeksizin yapilmis olup, havacilik ile alakali caligmalar g6z 6niine alinmistir. Bu
calismalarin daha ¢ok optimizasyon, belirsizlik analizi veya belirsizlik altinda gercek-
lestirilen optimizasyon calismalar1 gibi yiiksek islem giicii gerektiren calismalarda

kullanildig1 gbzlemlenmektedir.

Hava araclar1 gibi karmagik sistemler ¢ok disiplinli sistemlerdir. Bundan dolay1
yliksek dogruluklu analiz yontemlerin hava araci gibi ¢ok disiplinli tasarim opti-
mizasyon c¢aligsmalarina uygulanmasi olduk¢a zaman alic1 ve maliyetli olabilmektedir.
Bundan dolay1 cok-dogruluklu analiz yontemleri bu tarz calismalarda siklikta
kullanmilmaktadir. [40], [44] ve [47] siipersonik ucaklarin tasarim optimizasyon
caligsmalart i¢in ¢ok-dogruluklu analiz yontemlerini kullanmiglardir. Caligmalarinda
Kriging, co-Kriging gibi deterministik olmayan yontemleri ile ¢ok-dogruluklu tepki
yiizeyleri olusturarak elde ettikleri tepki yiizeylerini optimizasyon calismasinda
kullanmaktadirlar. ~ Cok-dogruluklu tepki yiizeyleri olusturmak i¢in cok sayida
diisik dogruluklu analiz yonteminden elde edilen sonuglar kullanarak tepki yiizeyi
olusturulmaktadir. Az sayida yiiksek dogruluklu analiz yonteminden elde edilen
sonuclar ile de diisiik dogruluklu tepki yiizeyini diizenlenerek, yiiksek dogruluklu
analiz yontemi dogrulugunda ¢ok-dogruluklu tepki yiizeyi olusturulmaktadir. Mac-
Donald ¢alismasinda transonik kanatlar icin ¢ok-dogruluklu optimizasyon ¢alismasi
gerceklestirmektedir [46].  Calismasinda diisiik ve yiliksek dogruluklu analiz
yontemleri gliven bolgesi model yonetimi (Trust region model managemet) araciligiyla
bir arada kullanilmaktadir. Fenrich ve digerleri de calismalarinda giiven bolgesi
model yonetimi aracilifiyla farkli dogruluk seviyesinde analiz yontemlerini bir arada
kullanmugtir [45]. Diger calismadan farkli olarak, bu caligmada diisiik ve yiiksek
dogruluklu analiz programi kullanilarak stokastik izdiisiim yontemleri (anchored
decomposition ve polynomial chaos yontemleri) araciligiyla indirgenmis modeller
olusturulmustur.  Cok-dogruluklu tasarim optimizasyon calismasi direkt analiz
programi kullanmak yerine indirgenmis modeller kullanilarak gerceklestirilmistir.
Cok-dogruluklu analiz yontemlerinde sadece farkli matematiksel modeller cesitli
dogruluk seviyesi sahip modeller olarak kullanilmaz. Farkli kalitedeki sayisal

aglar farkli dogruluktaki analiz yontemi olarak kabul edilip ¢ok-dogruluklu analiz



calismalart da gerceklestirilebilmektedir. Alexandrov ve digerleri, farkli kalitedeki
sayisal aglar ile bir kanadin tasarim icin giiven bolgesi model yonetimini kullanarak

cok-dogruluklu optimizasyon ¢alismasi gerceklestirmektedir [39].

Giivenilir tasarim siirecleri icin belirsizlik analizi biiyikk onem arz etmektedir.
Ancak yiiksek hesaplama giiciine ihtiya¢ duyulan analiz programlarn ile belirsizlik
analizi gerceklestirmek katlanilmaz tasarim siireclerine neden olabilir.  Bundan
dolayr belirsizlik analizlerinde ve belirsizlik altinda optimizasyon caligmalarinda
cok-dogruluklu yontemler siklikla kullanilmaktadir. Quick ve digerleri, riizgar
tiirbini kesit profili tasariminda belirsizlik analizi i¢in ¢ok-dogruluklu yontemlerini
kullanmaktadir [37]. Reynolds Averaged Navier-Stokes ve Detached Eddy
Simulations yontemi kullanarak ¢ok-dogruluklu Monte Carlo yontemi ile belirsizlik
analizi gerceklestirmektedir. Ilaveten, Chaudhuri ve digerleri, iiretim ve operasyon
kosullarindaki belirsizlikleri g6z Oniine alarak kuyruksuz insansiz hava araci icin
belirsizlik altinda optimizasyon ¢alismasi gerceklestirmektedir [38]. Diisiik patlamali
siipersonik bir ucak tasarimi icin ¢cok-dogruluklu belirsizlik nicelemesi kapsaminda,
West ve Phillips [49], ekleme ve diizeltme yaklasimina dayanan cok-dogruluklu
polinom kaos genislemesi yontemi ile sonik patlama belirsizlik analizi gelistirdi. West
ve Gumbert [50], transonik kanat profiline ve ¢ok disiplinli ugak tasarim problemlerine
cok-dogruluklu polinom kaos genislemesini yontemini uyguladi. Ayrica, Wang
ve digerleri [51], belirsizlik analizi i¢in polinom kaos genisleme yontemini Gauss
siireclerini kullanarak ¢ok-dogruluklu temsili modelleme yontemi gelistirmistir. Ng
ve digerleri [52], akustik kornanin giivenilir optimizasyonu i¢in belirsizlik nicelemesi
agsamasinda uygulanan kontrol degiskeninin varyansinin azaltmasini temel alan ¢ok
dogruluklu Monte Carlo yontemini 6nerdiler. Quick ve digerleri [53], cok-dogruluklu
Monte Carlo (MFMC) yontemini kullanarak belirsiz akis ozelliklerinin bir kanat
profili problemi tizerindeki etkisini incelemistir. Peherstorfer ve digerleri [12], MEMC
yontemi i¢in optimal bir model yonetim algoritmasi gelistirdi. Peherstorfer ve digerleri
[54], daha az veri ile daha dogru sonuglar elde etmek icin uyarlamali diisiik dogruluklu
model ile MFMC yo6ntemini kullanmig, ¢alismanin sonunda MFMC yo6ntemine dayali
uyarlamali diisiik dogruluk modeli standart MFEMC yontemi ile karsilastirilmistir. Ek
olarak, Peherstorfer ve digerleri [10], biiylik 6lgekli belirsizlik analizi icin MFMC



yontemini kullandi ve farkli korelasyon degerlerine sahip modellerin kombinasyonuna

bagh olarak sonuclarin dogrulugunun nasil degistigini inceledi.

1.2 Tez Taslag

Ses-iistii ugaklarda ¢ok disiplinli ve cok-dogruluklu optimizasyon ¢aligmasina tek ve
cok-dogruluklu temsili modelleme kodlarinin gelistirilmesi ile baglanmistir. Boliim
2’de tez kapsaminda kullanilan temsili modelleme yontemleri hakkinda detayl
bilgiler paylagilmistir. Boliim 3’te optimizasyon c¢alismalarinda kullanilan yontemler

aciklanmugtir.

Boliim 3 ve 4’te uygulamalarda kullanilan aerodinamik ve sonik patlama disiplinleri
hakkinda bilgiler paylasilmistir. Uygulamali olarak kabiliyetlerin dogrulanmasi igin

cesitli dogrulama calismalart paylagilmistir.

Gelistirilen kodlar ve analiz kabiliyetleri kullanilarak gerceklestirilen uygulama
calismalar1 Bolim 6°da paylagilmistir.  Toplamda 2 uygulama {izerinde calisma
yapilmis olup, ilk uygulamada siipersonik ucak kanadi igin gerceklestirilen
cok-dogruluklu optimizasyon calismasiin detaylar1 paylagilmistir. Ikinci uygulama
olarak ise sonik patlama degeri i¢in gerceklestirilen cok-dogruluklu belirsizlik analizi

caligmasi paylasilmigtir.



2. TEK- ve COK- DOGRULUKLU MODELLEME

Tez kapsaminda ¢ok-dogruluklu analiz ve temsili modelleme y&ntemlerinin siipersonik
ucak optimizasyon ve belirsizlik analizi ¢alismalarina entegrasyonu hedeflenmistir.
Cok-dogruluklu temsili modelleme yontemleri temelde ufak farklar ile sirali olarak
temsili modelleme siirecini icermektedir. Bundan dolay1 ¢ok-dogruluklu temsili
modelleme yontemlerini agiklayabilmek i¢in Oncelikli olarak temsili modelleme
yontemlerinin iyi anlagilmasi gerekir. Dolayisiyla, bu boliimde oncellikle ¢alisma
kapsaminda kullanilan c¢ok-dogruluklu yontemler ile alakali temsili modelleme
yontemleri aciklanmigtir.  Ardindan aciklanan temsili modelleme yontemlerinin

cok-dogruluklu versiyonlar1 agiklanmaisgtir.

2.1 Temsili Modelleme Yontemi

Tez kapsamindaki uygulamalarda co-Kriging ve c¢ok-dogruluklu polinom kaos
genisleme yontemi kullanilmistir. Bu baslik altinda bu yontemlerin tek dogruluklu
temsili modelleme versiyonlar1 olan Kriging ve polinom kaos genisleme yontemleri

aciklanmugtir.

2.1.1 Kriging temsili modelleme yontemi

Kriging, c¢odziim uzayinda yapilan Orneklerle ¢oziim uzayinda bagka bir noktada
interpolasyon yapilarak o noktadaki degerin tahminine dayanan bir vekil modelleme
yontemidir. 11k olarak 1950’lerde Krige [21] tarafindan gelistirildi ve 1960’larda Math-
eron [22] tarafindan formiilize edildi. Kriging yontemi, Sack ve arkadaslarinin [23]
calismasiyla bilgisayar deneyleri yaklasimina uygulamalart ile birlikte miihendislik
tasarimlarina uygulanmaya baslandi. 2000’lerin basinda, Gauss siirecleri, giiriiltiilii
verileri destekleyen Gauss-regresyon modelinin [24] tanitilmasi sayesinde, regresyon
ve siniflandirma uygulamalar i¢in yeniden ilgi kazandi. Kriging yontemi, lineer

olmayan fonksiyonlar1 modelleyebilmesi ve tasarim alanim1 kesfetmek amaciyla



kullanilabilecek hata tahmini saglama imkanlarindan dolay1 literatiirde siklik ile

kullanilmaktadr.

Bir m-boyutlu problemi ele aldifimizi ve X tasarim degiskeni icin M(X) bilinmeyen
fonksiyonuna Kriging yontemi ile temsili model olusturmak istediginizi varsayalim.
Bu temsili modelin kurulabilmesi icin Oncelikle temsili model kurulmak istenen
fonksiyonunun ilgilenilen c¢6ziim uzayinda yeterli miktarda farkli noktalarda
degerlendirilmesi gerekir. Bunun i¢in Oncelikle ilgilenilen ¢dziim uzay: iizerinde
ornekleme planina ihtiyag vardir. Belirlenen 6rnekleme plani dogrultusunda belirlenen
N ornekleme noktasinda (X = [x(l),x(z), o x )}T) zaman agisindan maliyetli yiiksek
dogruluklu fonksiyon degerlendirilerek temsili modeli egitmek amach kullanilacak
Y = [y(l), y<2) yees y(N )]Ts R veri seti olusturulur. Orneklenen veriler ve bu 6rnekleme
noktalarinda fonksiyonun hesaplanan degerlerine karsilik gelen cevaplar Kriging

temsili modelinin egitilmesinde kullanilmaktadir.

Kriging yontemi ile M(X) hesaplamali modeli denklem 2.1’deki gibi ifade edilen

interpolasyon yontemi ile ifade edilmeye caligiimaktadir.
M(3) = fxrg(¥) = p+Z(3) 2.1)

Bu denklemde fKRG()_c'), kriging yontemi ile belirli bir ¥ noktasinda ongoriilen
fonksiyonun degeridir. u, hesaplamali modelin genel davranisini modellemek igin
kullanilan bir terim olup, trend fonksiyonu olarak adlandirilir. Trend fonksiyonu
icin farkli hesaplama y&ntemleri bulunmakta olup, bu ¢alismada hesaplamali modelin
ortalamasi olarak sabit alinmigti.  Denklem 2.1’deki Z(X) sifir ortalamali ve
o? varyansh stokastik bir siireci temsil etmektedir. Z(X), hesaplamali modelin
trend fonksiyonundan sapmasin gostermekte olup, gozlemler arasi korelasyon

degerlendirilerek hesaplanabilmektedir. Korelasyon denklemi kullanilarak iki tasarim

noktas1 arasindaki kovaryans denklemi 2.2°deki gibi ifade edilmektedir.
cov [Z (55 <">,x’(f)>} - 02r<)? (">,f(f>;é) i j=12,..N 2.2)
Literatiirde farkli korelasyon fonksiyonlari kullanilmaktadir.  Gaussian, Ustel,

Matern 3/2, Matern 5/2 literatiirde siklik ile kullanilan korelasyon denklemleri

olup, korelasyon fonksiyonlari denklem 2.3-2.6’da verilmistir.  Denklemlerdeki



r ()_c' 0 (), é) , % D jle ¥ () 5rnekleme noktalar1 arasindaki korelasyonu, 6 ise temsili

modeli kurmak i¢in gereken bilinmeyen hiper-parametreleri ifade etmektedir.

Ustel korelasyon denklemi,

’55 o),)—gm‘
(@ 2().9) = _
r(x\,xV;0) =ex = 2.3)
( )=exp |-
Gaussian korelasyon denklemi,
| ;(z),;m‘ 2
20 2().8) = N
r(x X ,9) exp |~ - (2.4)
Matern 3/2 korelasyon denklemi,
W ol ;m,;m‘ ‘3(1)7}(1))
2 (i j — 31
r<x 7 ,e) 1+V3 - exp | -3 - (2.5)
Matern 5/2 korelasyon denklemi,
‘;(z)g(j)’ S ‘;C»(o,;g(n’ ? ‘j‘(l),j{(ﬁ‘
(10,10:8) = [ 14 vaE o3 () e | ovsl
0] 3 0
(2.6)

Bu denklemlerdeki 6 vektorii bilinmeyen korelasyon parametreleri olup, bilinmeyen

6 vektorii tasarim degiskenlerinin sayis1 (m) kadar bilinmeyen parametre icermektedir.

Korelasyon denklemi drnekleme noktasinin ¢evresindeki orneklemeler ile arasindaki

yerel model hassasiyeti iizerindeki etkisini ve modelin diizgiinliigiinii kontrol

etmektedir. Denklemlerdeki 6 vektorii bilinmemekte olup, temsili modelin kurulmasi

icin bu parametrelerin dogru bir sekilde belirlenmesi gerekir. Literatiirde bu

parametreleri belirlemek igin alternatif yontemler sunulmakta olup bu calismada

parametrelerin belirlenmesi icin siklik ile kullanilan maksimum olabilirlik fonksiyonu

kullanilmagtir.



6 parametreleri logaritmik olabilirlik denklemini maksimize edecek sekilde belirlen-
mekte olup, konsantre logaritmik olabilirlik denklemi 2.7’de verilmistir. Bu denklemi
maksimum yapacak parametrelerin analitik yollar ile belirlenmesi pek olas1 olmayip,
literatiirde optimizasyon algoritmalar1 kullanilarak parametreler belirlenmektedir. Bu
calismada da genetik algoritma kodu koda uygun bir sekilde entegre edilerek 6
parametreleri belirlenmektedir. Genel olarak, eniyileme algoritmasi lizerinde herhangi

bir stnirlama yoktur, ancak verimlilik goz oniinde bulundurulmalidir.
Ln(6) = — [N1n(6?) +1n|[R]|] /2 2.7

Korelasyon matrisindeki bilinmeyen parametrelerin elde edilmesi ile birlikte asagida
verilen Kriging modeli tahmin denklemi kullanilarak ilgilenilen ¢dziim uzay1 icinde

farkl: noktalarda fonksiyonun degeri tahmin edilebilmektedir.
Frrg(x) =TR+7TRI™' (Y —1f0) (2.8)

Bu denklemdeki {1 tahmini regresyon parametresi, 7 ise N x 1 boyutlu gézlenmemis
X ile tim gozlemler (X) arasindaki korelasyon vektoriidiir. Y ise temsili model
olusturmak i¢in kullanilan tiim goézlemleri iceren N x 1 boyutlu bir vektordiir.
Denklemlerdeki 1 ise N x 1 boyutlu birim vektorii temsil etmektedir. Tahmini
regresyon parametresi ve temsili modeli egitmek amach kullanilan veri setinin

varyansi denklem 2.9 ve 2.10’deki gibi hesaplanmaktadir.

TR~y
TR =
—»_,\—* T —1 _’_’\_’
g2 V-1l Rl (¥ —ul) (2.10)

N
Kriging yontemi ic¢in gelistirilen program icin genel akis diyagrami Sekil 2.1°da

paylagilmistir.

Miihendislik problemlerinde kullanilan yontemler her zaman kesin bir sonu¢ ver-
memektedirler, analiz programlarinin sonuglari zaman zaman giiriiltii icerebilmektedir.
Temsili modelin kurulmasi istenen analiz sonug¢larinin giiriiltii icermesi durumunda
Kriging-interpolasyon yontemi kotii performans sergilemektedir. Kriging yonteminin

analiz sonuclarinda giiriiltii icermesi durumunda kullanilmas: icin Kriging-regresyon
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Analiz Sonuglari
T,y

Trend fonksiyonunu
hesapla

v

Optimum — oL
Hiperparametrelerin AT

Hesaplanmasi le—— Algoritmasi
¢ Maksimum
Tahmin Olabilirlik —l
Yeni bir tasarim noktasinda Fonksiyonu

¢ Korelasyon
/ Ciktilar
Ongoérilen analiz sonucu
ve tahmini varyans

Fonksiyonu
Sekil 2.1 : Kriging yontemi icin gelistirilen kodun akig diyagrami

yontemi gelistirilmigtir.  Tez kapsaminda giiriiltiilii analiz sonuclart i¢in temsili
model kurabilmek i¢in Keane ve digerlerinin [29] Onerdikleri yaklagim kullanilarak
Kriging-interpolasyon yontemi Kriging-regresyon yontemi olarak gelistirilmistir.
[29]’da giiriiltiiyii filtrelemek icin korelasyon matrisinin kosegenine denklem 2.11°deki

gibi regresyon katsayisinin eklenmesini onerir.

r(x(l),x(l),é) r(ic’(l),)_c'(N),é) A 0
Rreg] = (R]+A[l]) = : : + A
r<5c’<N>,5c’<1>;é) r(~<N>,x<N>;a) 0 4
2.11)

Kriging interpolasyon yonteminde korelasyon matrisinin ([R]) ana kosegeni 1’lerden
olusmaktadir.  Bunun fiziksel olarak anlami temsili modelin Ornekleme nok-
talarindan ge¢mesi gerektigi anlamina gelmektedir.  Analiz sonuglann giiriiltii
icermesi durumunda temsili modelin 6rnekleme noktasindan ge¢meye zorlamak,
Kriging-interpolasyon yonteminin hatali sonuglar vermesine neden olmaktadir.
Kriging regresyon yonteminde korelasyon matrisinin ana kosegenine regresyon kat-
sayist eklenerek, temsili modeli 6rnekleme noktalarindan gegmeye zorlamamaktadir.
Probleme bagh olarak giiriiltii seviyesi degiskenlik gosterebilmektedir. Bundan dolay1
regresyon katsayist A hiperparametre olarak ele alinmaktadir ve negatif maksimum

olabilirlik denklemi minimize edilerek optimum 6 ve A degerleri elde edilmektedir.

11



2.1.2 Polinom kaos genislemesi temelli temsili modelleme yontemi

Polinom Kaos Genislemesi (PCE), bir dizi dik polinom aracilifiyla stokastik analiz
sonuglarin1 temsil etmeyi amaclayan, temsili modelleme yontemidir. PCE yontemi
Gaussian dagilimina dayanan degiskenler icin Wiener [15] tarafindan 6nerilmistir. Xiu
ve Karniadakis ¢alismalarinda [17], PCE yontemini Gaussian dagilimi gostermeyen
(Gamma, Uniform, Beta vs.) degiskenler icin Wiener-Askey semasim [16]
kullanarak gelistirdiler. Xiu ve Karniadakis’in farkli dagilim gosteren degiskenler
icin kullanilmasini 6nerdigi dik polinom ailesi ve agirlik fonksiyonlar Cizelge 2.1°de
verilmistir [17].

Cizelge 2.1 : Siirekli olasilik dagilimlarinin bigimleri ile Wiener-Askey semast
arasindaki baglanti

Dasihim Yogunluk Polinom Agirhik Desteklenen
£ Fonksiyonu Fonksiyonu Aralik
2 =
Normal \/LﬁeT Hermite ez [—o0,00]
Uniform % Legendre 1 [—1,1]
1—x)*(1+x)P .
Beta zafmflg(éﬂgﬂ) Jacobi (1—x)%(1 +x)P [—1,1]
Eksponensiyel e Laguerre e [0, 00]
@, Genellestirilmis _
x'e (04 X fove)
Gamma T(o+1) Laguerre e 0,2}

Sonlu boyutlu I" uzayinda, normal dagilima sahip tasarim degiskeni icin Hermite
polinomlar1 kullanilarak M (X) hesaplamali modeli denklem 2.12°deki gibi P+ 1 terim

ile temsil edilmeye caligilmaktadir.
P
M%) ~ P (i) = Y oy - Vi) (2.12)
k=0

Dik polinom aileleri farkli deger araliklarda desteklenmektedir. Bundan dolay1 X
girdi vektorii kullanilan polinomun desteklendigi araliga gore normalize edilir. i,
X girdi vektoriiniin normalize edilmis halini ifade etmektedir. Denklemdeki oy
bilinmeyen katsayilari; ‘i’k, normalize edilmis # girdi vektorii icin ¢ok degiskenli
Hermite polinomlarini ifade etmektedir. Wy (i), bir boyutlu y;(u ;) polinomlarmnin
carpimu ile elde edilmektedir. y;(u;) terimindeki i ifadesi y polinomunun derecesini
ifade etmektedir. u; ifadesindeki j ise # vektoriiniin j. terimini ifade etmektedir.

Bir boyutlu Hermite polinomu (i) denklem 2.13’teki gibi ifade edilmektedir. Bu
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denklemdeki ¢ (i), normal dagilimin (N(0, 1)) olasilik yogunluk fonksiyonunun i.

tiirevini ifade etmektedir.

vilw) = (1) |61 () /9 (w)] @.13)
Standart degisken € cinsinden ilk birka¢ Hermite polinomu denklem 2.14’deki gibi
elde edilmektedir.
vo(6) =1
vi(§)=¢
w(E)=E2—1

. (2.14)
wi(§) =87 38

wi(§) =&* - 65743
ys(§) =&~ 1087 +15¢
Denklem 2.13’teki polinom acilimindaki P 4 1 terimindeki bilinmeyen polinom
katsayisinin sayisi denklem 2.15°teki gibi hesaplanmaktadir. Bu denklemdeki m
problemdeki degisken sayisini, p ise bir boyutlu Hermite polinomunun () maksimum

derecesini ifade etmektedir.
(m+p)!

P+1=
m!p!

(2.15)

Bilinmeyen polinom katsayilarinin dogru bir sekilde elde edilebilmesi icin gerekli
analiz sayis1 (V), P+ 1 adet olan polinom katsayis1 sayisindan biiyiik olmasi gerekir.
Problemin sayisina bagl olarak dogru sonug¢ elde etmek i¢in ihtiya¢ duyulan analiz
sayist artig gostermektedir. Hosder ve digerleri [18], dogru bir temsili modelleme igin

gereken analiz sayisimt Ny = 2(P + 1) olmasi gerektigini 6nermektedir.

Bilinmeyen PCE katsayilar1 o’larin tahmini i¢in regresyon modelleri, Smolyak
sparse grid, rastgele ornekleme, tensor carpimu gibi farkli yontemler bulunmaktadir.
Smolyak sparse grid, random &6rnekleme ve tensor ¢arpimi yaklasimlari bilinmeyen
katsayilar1 elde etmek i¢in i¢ carpimlar kullanarak her bir temel fonksiyona karsi
analiz sonuglarina yansitmaktan olugan spektral izdiisiim yontemleridir. Bilinmeyen
katsayilar denklem 2.12’nin iki tarafinin da (i) katsayilarin garpilmasi ile elde

edilen denklem 2.16 araciligiyla elde edilir.

(V@) = <ki akl?k(ﬁ)\il,-(ﬁ)> (2.16)
=0
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Kullanilan polinomlarin ortogonalite kuralindan yararlanilarak, denklem 2.16’te
bilinmeyen katsayilarin yalmiz birakilmasi ile bilinmeyen PCE katsayilar denklem

2.17°daki gibi hesaplanmaktadir.
<Y’ : ‘_Pk<ﬁ)>
(#2)

Bu ifadedeki payda analitik olarak degerlendirilirken; pay ise ikinci dereceden ¢arpim

o = (2.17)

[19], Smolyak sparse grid [20], random 6rnekleme, regresyon gibi yontemler ile ¢ok
boyutlu bir entegrasyon gerektirir. Regresyon yontemi disindaki yontemler, izdiigiim
temelli yontemler olup ¢6ziim icin belli bir sayida analiz sonucunun bulunmasini
gerektirir. Regresyon yonteminde ise herhangi bir sayida analiz sonucu ile bilinmeyen

katsayilar bulunabilmektedir.

Herhangi sayida analiz sonucu ile bilinmeyen katsayilar1 hesaplamak miimkiin
oldugundan dolayi, tez kapsaminda regresyon yontemi kullanilarak bilinmeyen
polinom katsayilar1 hesaplanmistir. Regresyon yontemi ile bilinmeyen katsayilarin
hesaplanmasinda denklem 2.12°de sunulan polinom acilimi, Ny adet analiz sonucu ile

denklem 2.18’de verilen matris notasyonun ¢oziimii ile elde edilir.

Y =[¥]d+e (2.18)

V1 1 ‘Pl (ul) ‘I’p(ul) (04] el
. 1 ¥ (u o WY (u o e
e R T e L N I I B
YN, 1 ¥ (un) . le (uNS) O, enN;
(2:19)

Denklemlerdeki ¢ hata terimini ifade etmekte olup, & katsayilar1 en kiigiik kareler

yontemi ile denklem 2.20°deki gibi elde edilmektedir.

a= (v w) " ("7 (2.20)

Bilinmeyen katsayilarin elde edilmesi ile birlikte yeni bir tasarim degiskeni i¢in tahmin

denklem 2.21°deki gibi elde edilmektedir.

frce(it) = [¥]a 2.21)
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2.2 Cok-Dogruluklu Modelleme Yontemi

Cok dogruluklu modellemede amag hesaplama agisindan pahali analiz programlarinin
kullanildig1 optimizasyon, belirsizlik ¢alismalarinda hesaplama maliyetini azaltmak
icin farkli dogruluktaki analiz programini bir arada kullanmaktir. Cok sayida
diisitk-dogruluklu analiz sonucu, az sayida yiiksek-dogruluklu analiz sonucu
ile diizeltilerek yiiksek-dogruluklu analiz sonucuna yakin sonuglar veren bir
cok-dogruluklu model kurulmaya calisilmakta olup, literatiirde farkli cok-dogruluklu
modelleme yontemleri bulunmaktadir. Bu yontemlerde kullanilacak diisiik ve yiiksek
dogruluklu analiz programi, kullanicinin ele aldig1 probleme ve istenen dogruluk

mertebesine bagli olarak degisebilmektedir.

Bu boliimde c¢alismada kullanilan ¢ok-dogruluklu modelleme yontemi aciklanmis
olup, ilk bagta co-Kriging temsili modelleme yontemi aciklanmistir. Ardindan PCE
yontemini cok-dogruluklu temsili modelle doniistiirmek icin kullanilan yaklagim
aciklanmigtir.  Son olarak cok-dogruluklu belirsizlik analizlerinde kullanilan model

yoOnetim algoritmasi olan ¢ok-dogruluklu Monte Carlo yontemi aciklanmistir.

2.2.1 Co-Kriging

Yiiksek dogruluktaki verilere dayali dogru bir temsil modeli olusturmak, degiskenlerin
sayisina bagli olarak yine de pahali olabilmektedir. Bu nedenle, Kriging gibi yontemler
ile temsili bir model olusturmak zaman agisindan hala bir engel olmaya devam
etmektedir. Hesaplama maliyetini diisiirmek ic¢in, Hiyerarsik Kriging veya Co-Kriging
yontemleriyle vekil modeller olusturmak i¢in yiiksek dogruluklu modeller ile diisiik
dogruluk modeller kullanilabilir. Co-Kriging’in ana varsayimi, diisiik ve yiiksek

kaliteli modellerin bir sekilde iliskili oldugu ve bazi temel 6zellikleri paylastigidir.

Cok-dogruluklu bir vekil modellemede yiiksek miktarda nispeten ucuz veriyi, az
miktarda ise pahali veriyi kullanarak yiiksek dogruluklu modele yakin sonug¢ veren
temsili model olugturulur.  Co-kriging, coklu veri setlerini iliskilendirmek igin
kullanilan bir yontem olup, bu calismada Forrester ve digerlerinin [29] gosterimi
kullanilmigtir.  Ag¢iklamay1 kolaylagtirmak icin 2 farkli dogruluk seviyesine sahip

modelin birlestirilmesi iizerine formiilasyon verilmisgtir.
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Bu calismada sunulan co-Kriging yonteminin temelinde yatan ana diisiince Kennedy
ve O’Hagan’in [30] oto-regresyon modeline dayanmaktadir. Oto-regresyon yontemi
denklem 2.22’deki gibi ifade edilmekte olup, yontem pahali modelin simiilasyonun
dogru oldugunu ve herhangi bir yanlisligin tamamen daha ucuz analiz programindan
kaynakli oldugunu ifade etmektedir. Bir baska ifade ile herhangi bir ¥ deki pahali
analiz programinin sonucu biliniyorsa, ucuz analiz programindan 6grenilecek her
bilgiden daha fazlasinin pahali analiz sonucunda elde edilecegini ifade etmektedir. Bu

durum Markov 6zelligi olarak bilinmektedir.
cov {fhf (f(")) e DY) i <)?(i)) } — 0,V £ &0 (2.22)

Co-Kriging yontemi temelde ucuz ve pahali analiz programinin sonuglari arasinda
denklem 2.23’deki gibi bir iligki kurmaya caliymaktadir. Bu denklemdeki Z;;(X)
ve Z,r(X) Gauss siirecleri ifade etmekte olup, ucuz ve pahali analiz programinin
lokal 6zelliklerini temsil etmektedir. Kennedy ve O’Hagan oto-regresyon modeli [30]
kullanilarak ucuz analiz sonuglarinin p 6lg¢eklendirme faktorii ile ¢arpip, pZ;¢(X) ie
Zj,¢(X) arasindaki fark vektoriinii belirten Z,; (X) Gaussian siire¢ sonuglari ile toplanarak
diisik dogruluklu analiz sonucu yiiksek dogruluklu analiz sonucuna yakinsamasi
saglanmaktadir.

Zip(3) = pZiy(%) + Zy() (2.23)

Kriging yonteminde oldugu gibi co-Kriging yonteminde de Z(X) stokastik Gauss
siirecleri 6rnekleme noktalar1 arasindaki korelasyon araciligiyla hesaplanmakta olup,
co-Kriging yonteminde iki ayr1 dogruluk seviyesine sahip veri seti i¢in kovaryans

matrisi denklem 2.24’deki gibi yazilmaktadir.

[C] _ |: Ccov {Zlf(le) s Z[f(le)} cov {th(th) s Z]f (X]f) } :|
cov{Z(Xne), Zip(Xip) ) cov{Zus(Xne), Zyy (Xne) }

— |: Gc2 [RC(le’th)] pGg [RC(lea th)] }
pOZ[R(Xit, Xne)] P02 [Re(Xnt, Xne)] + 07 [Ra(Xng, Xne)]

Calismada Kriging yonteminde oldugu gibi farkli korelasyon fonksiyonlar kul-

(2.24)

lanilabilmekte olup, Kriging yonteminde aciklanan Gaussian, iistel, Matern 3/2
ve Matern5/2 korelasyon denklemleri caligma kapsaminda gelistirilen koda entegre
edilmigtir. Denklem 2.24 incelenecek olursa, [R.| ve [R;] olarak iki ayr1 koveryans

matrisi mevcuttur. Bundan dolay1 kriging yonteminde bilinmeyen 6 vektoriinde yerine
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burada 6., 6; vektorii ve dlgeklendirme parametresi p parametreleri yer almaktadir. 6
vektorleri m tasarim de8isken sayisit kadar bilinmeyen hiperparametre icermektedir.
Kisacast Kriging yonteminde m tane bilinmeyen hiperparametre varken, co-Kriging

yonteminde 2m + 1 tane bilinmeyen hiperparametre bulunmaktadir.

Nispeten ucuz analiz sonuglarimiz ile pahali analiz sonuclarimiz birbirinden bagimsiz
oldugu icin, ucuz analiz sonuglar1 kullanilarak Kriging yonteminde oldugu gibi u., o,
ve 6, degerleri denklem 2.25°de verilen logaritmik maksimum olabilirlik denklemini

maksimize edecek sekilde belirlenebilmektedir.

Ny (Y —Tauy) Ry (Xup X)) (¥ —Th)

1
A2
~=Lin (&) = 5 Infdet (IR (X17,X1y))) | - T
(2.25)
Denklem 2.25’iin tiirevinin alinip sifira egitlenmesi ile p. ve o, degerleri asagidaki

denklemlerde verildigi gibi hesaplanabilmektedir.

fur=T"Riy (X1, X00)] 'Y /T Ry (X, Xap)] 7' T (2.26)
o = T - S
67 = (Ylf_ mzf) Riy (X7, X07)] ! (Ylf_ lﬂzf) /Nif (2.27)

Denklem 2.25’1 maksimize edecek sekilde u. ve o, parametreleri belirlenmis olup,
denklemler incelendiginde goriilecektir ki, denklem hala bilinmeyen 6. degerlerine
baglhidir. Denklem 2.26 ve 2.27 ifadeleri denklem 2.25°de yerine yazilirsa denklem
2.28’de verilen konsantre logaritmik olabilirlik denklemi elde edilir (Sabit terimler
ihmal edildi).

N[f

N1
——n (oﬁ) — 3 In[det (IRiy (X17.X1y)))| (2.28)

Denklem 2.28’de verilen konsantre logaritmik olabilirlik denklemini maksimize ede-
cek sekilde de 6. parametreleri belirlenir. Boylelikle bilinmeyen hiperparametrelerden

6. sadece ucuz analiz sonuglari kullanilarak elde edilmis olur.

Bilinmeyen diger hiperparametreler éd ve p’nun belirlenebilmesi icin Oncelikle

denklem 2.29°deki gibi fark vektorii tantmlanmalidir.

d=Yy—p fir (Xny) (2.29)

Bu denklemdeki fj (X)), pahali analiz sonuglarinin oldugu konumlarinda hesaplanan

ucuz analiz sonuglarini ifade etmektedir. Eger X, tasarim degiskenleri igin ucuz
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analiz programi sonuglart (f;7(Xr)) elde edilemiyorsa, zaten 6, degerleri bilindigi
icin Kriging tahmin denklemi ile hesaplanabilir. Boylelikle fark vektoriiniin logaritmik

olabilirlik denklemi takip eden denklemdeki gibi yazilmaktadir.

> AT P
10 (62) — YIn|det ([Ry (Xig, Xa)]) | — (24 [R"(Xgﬁ;;’”” Hd-1pa) (2 30)

Denklem 2.30’nun tiirevinin sifira esitlenmesi ile t; ve 03 takip edilen denklemlerdeki

gibi elde edilmektedir.
fla =T [Ry (X0p, X0p)) "' d/T Ry (X g, Xnp)] 1T (2.31)
— N T _ — - A
5 = <d— 1Nd) [Ra (X5, X 7)) (d— lud) /Ny (2.32)

éd ve p bilinmeyen hiperparametreleri ise denklem 2.33’nin maksimize edecek sekilde

elde edilir.
A

1
5 In (67) — E1n |det ([Ry (Xnp, Xns)])] (2.33)

Denklem 2.28 ve 2.33 optimizasyon algoritmasi kullanilarak hiper-parametreler
belirlenmektedir. Optimizasyon algoritmasinda herhangi bir kisitlama yoktur. Ancak
literatiirdeki caligmalara baktigimizda evrimsel algoritmalarin daha iyi sonug¢ verdigi
gozlemlenmektedir. Bundan dolay1 ¢alismada hiper-parametrelerin belirlenmesinde

genetik algoritma kullanilmistir.

Gerekli biitiin hiper-parametrelerin belirlenmesi ile birlikte denklem 2.34’te verilen
co-Kriging tahmin denklemi kullanilarak, yeni bir konumda pahali analiz sonucuna

yakin sonuglar elde edilebilir.
fhf ()_C'new) = ﬁlf+8T[C]_l(?_Tﬁd) (2.34)

Tahmin denklemindeki ¢, tahminin yapilmak istendigi tasarim noktasinin
cok-dogruluklu temsili modeli egitmek amacli kullanilan tasarim noktalar: ile

arasindaki korelasyon vektorii olup, denklem 2.35’deki gibi hesaplanmaktadir.

. 1531? Rip (X17,%new)

= i = B = . 2.35
¢ pZGIZf le (le,xnew) + 05 Ry (le7xi’l€W> ( :

Co-Kriging yontemi icin ortalama karesel hata tahmini denklem 2.36’de verilmektedir.

AD A

5% (Xnew) = P67+ 67 — T[] (2.36)
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Yontem hakkinda gerekli bilgilendirme yapilirken bazi denklemlerin tiiretilmesi
aciklanmamig olup, denklemlerin tiiretilmesi konusundaki detayl bilgiler igin [29]

ve [31]’yi inceleyebilirsiniz.

Tez kapsaminda co-Kriging yontemi i¢in gelistirilen kodun akis diyagrami Sekil 2.2°de

verilmisgtir.

Analiz Sonuglari

Xifsyif
XnfrYnf

Trend Fonksiyonun
Hesaplanmasi

Optimum .
Hiperparametrelerin 0:[“’“'_1:5)/0'1
Hesaplanmasi <~ goritmasi
¢ Maksimum
Olabilirlik
Xhg, Xig'min Fonksiyonu ﬁ

alt kiimesi? Korelasyon
¢ Fonksiyonu

Tahmin )
Xe'de ucuz analiz sonucunun | ——> Fark vektérunin
tahmini Hesaplanmasi

Optimum > .
Hiperparametrelerin o:[‘";‘:_zt:;/:n
Hesaplanmasi [ gort 1
¢ Maksimum
Tahmin Olabilirlik
Fonksiyon
Yeni bir tasarim noktasinda lyonu y

i Korelasyon

Fonksiyonu
4 Ciktilar
Ongorilen analiz sonucu
ve tahmini varyans

Sekil 2.2 : Co-Kriging yontemi i¢in gelistirilen kodun akis diyagrami

Giiriiltiili analiz sonuglarinda co-Kriging yontemini kullanabilmek icin Kriging
yonteminde oldugu gibi giiriiltiiyii filtrelemek icin korelasyon matrisinin ana
kosegenine regresyon terimi eklenmistir.  Temsili modelin iki asamasinda da

korelasyon matrisindeki regresyon parametresi hiper-parametre olarak ele alinmustir.

2.2.2 Cok-dogruluklu polinom kaos genisleme yontemi

Polinom kaos yontemini, ¢ok-dogruluklu temsili modellemede kullanabilmek igin
ekleme ve carpim diizeltme yaklagimi kullamlmistir. Ekleme ve carpim terimleri
ile diizeltme yaklasimi dik polinom temelli temsili modelleme yodntemlerini

cok-dogruluklu temsili model haline getirmek icin kullanilmaktadir. Ng ve digerleri
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[14] diizeltme yaklagimi ile PCE yontemini ¢ok-dogruluklu temsili modelleme i¢in
kullanmis ve diizeltme yaklagimi ile yiiksek dogruluklu modelden daha dogru bir

modelleme yapilabildigini gdstermistir.

Diizeltme yaklasimi ile ¢ok-dogruluklu modelleme yonteminde temel mantik, az
sayida yiiksek dogruluklu analiz sonucu ile bu sonuglara karsilik diisitk dogruluklu
analiz sonucu arasindaki fark ve oranlar i¢in temsili model kurulmasi ve diisiik
dogruluklu analiz programi i¢in kurulan temsili modelin bu fark ve oran temsili
modelleri ile diizeltilmesine dayanir. Diizeltme yaklasimi icin kullanilan en genel

esitlik denklemi 2.37°da verilmistir.

Fug G) =7 [fir @)+ fa R)] + (1= iy (3) fin (3) (2.37)

Denklem 2.37°de goriildiigii gibi yontem, yiiksek dogruluklu temsili modele yakin
sonuglar elde etmek icin diisiik dogruluklu modeli ekleme ve carpim fonksiyonlari
ile diizeltmektedir. Denklemdeki flf cok sayida diisiik dogruluklu analiz sonucu i¢in
PCE yontemi ile kurulan temsili modeli ifade etmektedir. f, ve f,, terimleri sirasiyla
ekleme ve carpim diizeltme temsili modellerini ifade etmekte olup, Y model etki
katsayisimi ifade eden bir katsayidir. Ekleme ve ¢arpim diizeltme temsili modelleri
az sayida bulunan yiiksek dogruluklu analiz sonucu ve tasarim uzayinda bu sonuglara
karsilik gelen ()?Ef}) diisiik dogruluklu analiz sonuglari kullanilarak olusturulur. Ekleme
ve carpim vektoril icin kullanilan veriler sirasiyla denklem 2.38 ve 2.39°deki gibi
hesaplanir. Denklemlerdeki fj,r ve f;r sirasiyla yiiksek ve diigiik dogruluklu analiz

programini temsil eder.

(th) fhf( ) flf(th) i:1,2,...,Nhf (2.38)
Lo @D

T, (27) = ”—% (2.39)
flf(th

Hesaplanan Y, ve Y,, ekleme ve carpim vektorleri icin PCE yontemi ile kurulan £, ve
fin temsili modellerinin kurulmasi ile denklem 2.37°da verilen ¢ok-dogruluklu temsili
model ( fmf) elde edilir. Denklem 2.37°daki model etki katsayisi (y) diizeltme ve
carpim terimleri i¢in kurulan temsili modeller kullanilarak denklem 2.40’deki gibi

hesaplanmaktadir. "
(fm(x))
@)+ ) 24

Y=
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Cok-dogruluklu temsili modellemenin ana hedefi az sayida yiiksek dogruluklu analiz
kullanarak diisiitk dogruluklu analiz programinin sonuclarinin diizeltilerek yiiksek
dogruluklu analiz sonucuna yakin sonuglar veren bir model kurmaktadir. Ekleme ve
carpim diizeltme temsili modellerine dayanan ¢ok-dogruluklu modellerin sadece dik
polinom temelli temsili modelleme yontemlerinde tercih edilmesinin temel nedeni,
dik polinom temelli temsili modelleme yontemlerinde temsili modeli kurmak i¢in
gereken veri sayisi kullanilan polinom derecesi ile orantili olmasidir. Ekleme ve
diizeltme yaklasiminda az sayida bulunan yiiksek ve diisiik dogruluklu analiz sonuglari
arasindaki fark ve oran i¢in temsili model kurulmakta olup, diisiik dogruluklu polinom
dereceleri kullanilarak az sayida veri ile temsili model kurmak miimkiin olmaktadir.
Ancak Kriging gibi korelasyon fonksiyonu temelli temsili modelleme yontemlerin
gereken veri sayis1 problem boyutu ile orantilidir. Dolayisiyla ekleme ve diizeltme
temsili modellerini kurmak icin gereken veri sayisi, direkt yiiksek dogruluklu temsili
model kurmak i¢in gereken veri sayisi birbirine ¢ok yakin olacaktir. Bundan
dolay1 ekleme ve carpim diizeltme temsili modellerine dayanan cok-dogruluklu
modelleme yontemi korelasyon temelli temsili modellerini ¢ok-dogruluklu modellere

doniistiirmek i¢in tercih edilmemektedir.

2.3 Cok-Dogruluklu Monte Carlo Yontemi

Cok-Dogruluklu Monte Carlo (MFMC) yontemi c¢ok dogruluklu model yonetim
algoritmasi olup, cok-dogruluklu belirsizlik analizlerinde kullanilir. Cok-dogruluklu
Monte Carlo yontemi, énemli 6l¢iide azaltilmis maliyetle belirli bir girdi dagilimina
sahip belirsiz degiskenler i¢in yiiksek dogruluklu analiz modelinin ¢ikti dagiliminin
istatistiksel ozelliklerini hesaplamak i¢in diisiik ve yiiksek dogruluklu modellerin
ciktilarin1 birlestirir.  Genel olarak c¢ok-dogruluklu uygulamalarda, analizlerin
cogunlugunun diisiik dogruluklu analizler kullanilarak gerceklestirildigi, hesaplama
maliyetini azaltmak i¢in az sayida yliksek dogruluklu analiz sonucunun diizeltilmesi
icin kullanilir,. MFMC uygulamalarinda ise c¢ok-dogruluklu tahminin varyansini
azaltmak ic¢in cok sayida diisiik kaliteli analiz sonucu kullanilirken, tahminin taraf-
sizlig1 i¢in az sayida yliksek kaliteli analiz kullanilir [10]. MFMC yontemi temelde

cok-seviyeli Monte Carlo (Multi-level Monte Carlo) yontemine benzemektedir, ancak
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modellerin kombinasyonunda farkli siirecleri kullanir [11].

Formiilasyonda yiiksek dogruluklu model f M le gosterilirken, diisiik dogruluklu
modeller dogruluk seviyesine gore sirasiyla f(z), f(3),..., f(k) ile gosterilmektedir.
Tiim modeller, 2", girdi alanindan aym c¢ikti alanmna, %, (f) 1 2~ — %) eslenir.
MFMC tahmininin hesaplanmasi, belirli bir hesaplama biitcesi olan p dahilinde
yapilir. Bu nedenle, modellerin degerlendirme sayis1 ve her bir modelin maliyeti
tanimlanmalidir. Formiilasyonda i. modelin maliyeti ve degerlendirme sayisi sirasiyla
w; ve m; ile gosterilmektedir. Model degerlendirme sayist 0 < m; < mp < ... < my,
olarak tanimlanir, yani yiiksek kaliteli modelin en az bir kez degerlendirilmesi gerekir

ve model dogrulugu azaldik¢ca model daha fazla degerlendirilir.

Monte Carlo yontemi ile f () modelinin m; analiz sonucu kullanarak denklem 2.41

seklinde hesaplanmaktadir.
1 m; . 1 m; _‘ i 2
= Z £ (602 = — Z (79 ) -) (2.41)

MFMC yontemi ise ¢ok-dogruluklu modelin ortalama ve varyans tahmini icin

denklem 2.42 ve 2.43 ile farkli dogruluktaki modellerin MC tahminlerini birlestirir.
(i)

Denklemdeki yﬁnl) ve (Gm, ) f‘ modelinin m; analiz sonucu kullanilarak MC yontemi

(i)

ile hesaplanan ortalama ve varyans sonucu olup, y,, , ve (Gm, )% ise £ modelinin

m;_1 analiz sonucu kullanilarak hesaplanan ortalama ve varyans sonuglaridir.

k . .
=5+ Y o ()7;(71) —y‘fé?_l) (2.42)
=2
k . .
(M) = (602 + Y o ((6,5;))2 - (6,51’),1)2> (2.43)
i=2

MFMC tahminleri og,...,04 katsayilart ve my,ms,...,m; model degerlendirme
sayilarina bagli olup, MFMC tahmini i¢in bu parametrelerin belirlenmesi gerekir.
Referans [12] ve [13] optimum & ve m parametrelerini belirlemek iizere gerceklestir-
ilmigti. Bu caligmalarin temellinde, optimum « ve m parametreleri belirlenen p
hesaplama biitcesi icerisinde denklem 2.44°te verilen MFMC ortalama tahminindeki

varyans deZeri minimize edilecek sekilde belirlenmektedir.

Var[1 Gm1 n Z (— _ E) (a?(crn(j))z —20py ;0 o,E,{.)) (2.44)

m;_1
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Denklem 2.44’teki o-,§{,.), i. modelin m; analiz sonucunda hesaplanan standart sapmayi,

p1,; ise i. model ile yiiksek dogruluklu model arasindaki korelasyon katsayisim

gostermektedir. MFMC tahmininin maliyeti ise denklem 2.45°teki gibi hesaplanir.
k
(") =Y wimi =win (2.45)
i=1

Denklem 2.44 ve 2.45 kullanilarak, MFMC tahminleri i¢in gerekli olan optimum o ve
m parametrelerin bulunmasi icin gereken optimizasyon problemi denklem 2.46’deki

gibi tanimlanmaktadir.

argmin J(m,0n,...,04) = Var[7""]
meRK, ay,...,04.ER
kisit mi_1—m; < 0, i= 2, e ,k (2.46)
—mq S 07
wlim=p

Optimum o ve m degerleri tamimlanan optimizasyon problemi ¢oziilerek elde edilir.
Optimum parametreler kullanilarak, MFMC tahminleri denklem 2.42 ve 2.43 ile elde
edilebilir.

2.4 Dogrulama Calismalari

Tez kapsaminda gelistirilen kodlar1 dogrulamak amaciyla analitik denklemler ile
dogrulama calismalar1 gerceklestirilmistir. Dogrulama calismalar1 iki baslik altinda
gerceklestirilmistir.  IIk boliimde cok-dogruluklu temsili modelleme yontemleri
analitik denklemler iizerinden dogrulanmustir.  Ikinci boliimde ¢ok-dogruluklu
belirsizlik analizi i¢in kullanilan MFPCE ve MFMC yo6ntemleri icin analitik denklem

iizerinden belirsizlik analizi gerceklestirilmistir.

2.4.1 Cok-dogruluklu temsili modelleme

Gelistirilen co-Kriging kodunu dogrulamak icin 1 ve 2 boyutlu analitik denklemler
icin temsili model kurulmustur. Kurulan temsili modeller literatiirde temsili model
dogrulugunu 6lgmek icin kullanilan test metrikleri kullanilarak kodun dogru caligtigi

gosterilmektedir.

Temsili modeli test etmek amaciyla normalize edilmis ortalama karakok hatasi

(NRMSE) ve optimizasyon dogrulugu metrigi kullanilmistir. Ortalama karakok hatasi
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temsili modelin global dogrulugunu 6l¢cmek amaciyla kullanilan bir metrik olup,
denklem 2.47°de verilmistir. Farkli denklemlerde elde edilen metrik degerlerini
karsilagtirabilmek ic¢in normalize edilmis ortalama karesel hata kullanilmig olup

formiilii denklem 2.48’da paylagilmistir.

1
N ¢

1

N
RMSE = (yi — i) (2.47)
=1

NRMSE — — RMSE_ (2.48)

(¥max — Ymin)
Co-Kriging yontemi optimizasyon c¢alismasinda analiz programi gibi kullanilmakta
olup, optimum boélgeyi dogru modelleyebilmesi biiyilk 6nem tasimaktadir. Bunun
icin dogrulama calismasinda optimum sonucun dogrulugunu Slgmek i¢in kullanilan
optimizasyon dogrulugu metrigi (d;) kullanilmis olup, formiilii denklem 2.49°da
paylasilmistir. d, temsili model ile elde edilen optimum tasarim degiskenlerinin gercek
tasarim degiskenlerinden uzakligini ifade etmektedir. dy terimi ise temsili model ile

elde edilen optimum sonucun ger¢ek optimum sonuca olan uzakligini ifade etmektedir.

A2+ A2 I N /gi—x% . \? v

d=\l——= burada di=, Y (ﬂ) ve df:M
2 Nj:I Zj Ymax — Ymin

(2.49)

Bu denklemlerdeki g kurulan temsili model ile elde edilen optimum sonucun tasarim
degiskenlerini, xj,in analitik denklemlerden hesaplanan gercek minimum sonucun
tasarim degiskenlerini ifade etmektedir. Z ise tasarim degiskenlerinin maksimum
ve minimum degeri arasindaki farki ifade etmektedir. v, Ve Vg terimleri ise

sirastyla analitik denklemden elde edilen minimum ve maksimum analiz sonucunu

ifade etmektedir.

¢ Forrester denklemi,
Forrester denklemi, cok-dogruluklu yontemler icin kullanilan bir boyutlu

dogrulama denklemi olup, takip eden denklemlerdeki gibi tanimlanmaktadir.
fnp(x) = (6x— 2)% xsin(12x—4)
fip(x) =0.5f4p(x) +10(x = 0.5) =5 (2.50)
x1 =1[0,1]
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Tasarim uzayinda diisilk dogruluklu modelden lineer araliklar ile elde edilen 10
denklem sonucu, yiiksek dogruluklu modelden lineer araliklar ile elde edilen 5

denklem sonucu kullanilarak co-Kriging yontemi ile temsili model kurulmustur.

Temsili modelden ve analitik denklemlerden elde edilen tepki yiizeyleri Sekil 2.3’de

paylagiimistir.
154 fr
- i
== CoKriging
® HF veri
101 & LFveri

B Tahmini varyans

-10 T
0.0

T
0.2

T T T T
0.4 0.6 0.8 10
X

Sekil 2.3 : Forrester denklemi i¢in co-Kriging yontemi uygulamasi

Degisen yiiksek dogruluklu analiz sonucuna bagli olarak kurulan temsili modelin
dogrulugunu gozlemlemek adina, diisitk dogruluklu analiz sayis1 sabit tutularak

farkli yiiksek dogruluklu analiz sayisi icin temsili model kurulmugtur. Kurulan

temsili modeller i¢in hesaplanan hata metrikleri Sekil 2.4’de sunulmustur.
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Sekil 2.4 : Forrester denklemi i¢in temsili model test metriklerinin sonucu (N, = 30)
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Test metriklerinden goézlemlendigi gibi 10°’dan fazla yiiksek dogruluklu analiz
sonucunun kullanildigr durumlarda temsili model optimum sonucu ¢ok dogru
bir sekilde elde edebilmektedir. Ayrica global acidan da dogru temsili model

kurulabilmektedir.

ALOS denklemi,
Cok-dogruluklu temsili modelleri dogrulamak i¢in kullanilan bir diger denklem
ALOS denklemidir. ALOS denkleminin bir, iki ve iic boyutlu versiyonlar
bulunmakta olup, bir boyutlu ALOS fonksiyonu denklem 2.51°de verilmistir.
fip(x) = sin (30(x — 0.9)*) cos(2(x — 0.9)) + (x — 0.9) /2
fir(x) = (far(x) — 1 +x) /(140.25x) (2.51)
x; =10,1]

ALOS denklemi ani degisimler gosteren bir denklem olup, diizgiin bir temsili
model kurmak icin Forrester denklemine gore daha fazla analiz sonucuna ihtiyag
duyulmaktadir. Dogrulama calismasi kapsaminda 30 diisiik dogruluklu, 10 yiiksek
dogruluklu analiz sonucu kullanilarak temsili model kurulmustur. Temsili model ve
analitik denklemden elde edilen tepki yiizeyleri Sekil 2.5’de verilmistir. Sekilden
de goriildigi gibi diisiik dogruluklu modelden elde edilen bilgiler sayesinde az
sayida yliksek dogruluklu analiz sonucu ile, yiiksek dogruluklu analiz sonucunun

bulunmadig1 bolgelerdeki degisimler dogru bir sekilde elde edilebilmektedir.

Degisen yiiksek dogruluklu analiz sonucuna bagh olarak temsili model kurul-
mustur. Kurulan temsili modeller i¢in hesaplanan hata metrikleri Sekil 2.6’de

sunulmustur.

Test metrikleri incelenecek olursa, ALOS denkleminin cok sayida yiiksek
dogruluklu analiz sonucunun kullanildigi durumda sonuglarin belli bir degere
yakinsadig1 gézlemlenmektedir. ALOS denklemindeki ani degisimlerden dolay1
diizgiin bir temsili modeli kurmak i¢in ¢ok sayida yiiksek dogruluklu analiz sonucu
gerekmektedir. Ancak elde edilen sonuglar gelistirilen kodun dogru calistigim

gostermektedir.

Paciorek denklemi,

Paciorek denklemi iki boyutlu dogrulama denklemi olup, yiiksek ve diisiik
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Sekil 2.5 : ALOS denklemi icin co-Kriging yontemi uygulamasi
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Sekil 2.6 : ALOS denklemi igin temsili model test metriklerinin sonucu (N; = 50)

dogruluklu fonksiyonlar denklem 2.52’de verilmistir.

fnr (x1,x2) = sin (L)

12 (2.52)

fir (x1,x2) = fnr (x1,%2) —9A%Cos <L>

X1X2

Yiiksek ve diisiik dogruluklu fonksiyonlar i¢in temsili yiizeyler Sekil 2.7°de
verilmigtir.  Sekilden de goriildiigii gibi yiiksek ve diisiikk dogruluklu temsili
yiizeylerde ani degisim olan lokal bolgeler bulunmaktadir. Tki model arasinda linear
iligki olsada, tasarim uzaymin belli bolgelerindeki lokal ani degisimlerden dolay1

cok-dogruluklu temsili model ile elde edilmesi zor bir denklemdir.
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Sekil 2.7 : Paciorek fonksiyonu yiiksek ve diisiik dogruluklu tepki yiizeyi

Degisen yiiksek dogruluklu analiz sonucuna bagli olarak temsili model kurul-

mustur.

Kurulan temsili modeller i¢in hesaplanan hata metrikleri Sekil 2.8’de

sunulmusgtur.
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Sekil 2.8 : Paciorek denklemi igin temsili model test metriklerinin sonucu (N; ¢ = 100)

Metrik sonuclarindan gézlemlendigi gibi artan yiiksek dogruluklu analiz sayisina

bagl olarak ¢cok dogruluklu temsili modelin dogrulugu artmaktadir.

2.4.2 Cok-dogruluklu belirsizlik analizi

Cok-dogruluklu belirsizlik analizi i¢in gelistirilen MFPCE ve MFMC kodlarini dogru-

lamak i¢in analitik bir denklem {izerinden dogrulama calismasi1 gerceklestirilmistir.

Analitik denklem olarak literatiirde belirsizlik analizi ¢alismalarinda yontemi ve siireci
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dogrulama amaclh kullanilan Borehole denklemi kullanilmigtir. Diigiik ve yiiksek

dogruluklu Borehole denklemleri sirasiyla denklem 2.53 ve 2.54’de verilmistir.

5T, (Hu — H))

fir(x) = +1 (2.53)
In(r/ry) (1.5 + —m(r/zrfj;‘%w + %)
27T, (H, — H,
fu(x) = ( ) (2.54)

In(r/r) (1+ e + %)
MFMC yontemi diisiik ve yiiksek dogruluklu analiz sonuclar1 arasindaki korelasyonu
referans alarak, istatiksel parametreleri hesaplamak icin kullanilacak diisiik ve
yiiksek dogruluklu analiz sayisini belirler. Kullanilan analitik denklemler arasindaki
korelasyon degerinin yiiksek olmasindan dolay1 korelasyon degerini azaltmak igin
diisitk dogruluklu denkleme uniform olarak degisen giiriiltii parametresi, 1 ~
% (—1,1), eklenmistir.  Belirsizlik analizinde kullamilan belirsiz degiskenlerin

dagilimlan Cizelge 2.2’de verilmistir.

Cizelge 2.2 : Belirsiz degiskenlerin istatistikleri

Belirsiz Degigken Istatistik

'y U ~ (0.05,0.15)

r U ~ (100,5000)
1, U ~ (63700,115600)
H, U ~ (990,1100)
T; U ~ (63.1,116)
H, U ~ (700,820)

L U ~ (1120,1680)
K U ~ (9855,12045)

MFMC ve MFPCE yontemlerini kullanarak belirsizlik analizi gerceklestirilmisgtir.
Ayrica sonuglart dogrulamak i¢cin Monte Carlo yontemi ile tek dogruluklu belirsizlik

analizi gergeklegtirilmisgtir.

2.4.2.1 Cok-dogruluklu Monte Carlo yontemi ile uygulama

MFMC yo6ntemi, modeller arasindaki korelasyon degerine bakarak belirli bir biitce
dahilinde kullanilacak diisiik ve yiiksek dogruluklu analizlerin sayisina karar verir.

Bu nedenle, hesaplama biitcelerinin belirlenmesi gerekli olup, diisiik ve yiiksek
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dogruluklu analiz maliyetleri sirasiyla 0,5 ve 1 olarak kabul edilmistir. Belirlenen
maliyet degerleri kullanilarak, farkli hesaplama biitceleri icin belirsizlik analizi

gerceklestirilmigtir.

Farkli biitce degerleri icin gerceklestirilen belirsizlik analizi sonucu elde edilen
ortalama ve varyans degerlerinin degisimi Sekil 2.9 ve 2.10’da verilmistir. Diisiik
hesaplama biitgeli cok-dogruluklu tahmin yapilirken birkag yiiksek dogruluklu analiz
kullanilarak yapildigi i¢in ortalama ve varyans tahminleri yiiksek hata oranina sahiptir.
Bunun i¢in ¢alisma her bir hesaplama biitgesi i¢in 100 kez tekrarlanmistir. Her tekrar
sonunda elde edilen sonuglarin ortalama degerleri grafikte kirmizi ¢izgi ile, tekrarlarda

elde edilen sonuglarin minimum ve maksimum degerleri ise grafikte mavi cizgiler ile

gosterilmigtir.
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Sekil 2.9 : Farkli biitce degerleri icin MFMC ortalama tahmini

Sekil 2.9 ve 2.10°da goriildiigii gibi biitge artisina bagl olarak sonuglardaki degisim
miktar1 azalmaktadir. Her biitce degeri i¢in kullanilan diisiik ve yiiksek dogruluklu

analiz sayilan Cizelge 2.3’de paylagilmistir.
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Sekil 2.10 : Farkli biitce degerleri icin MFMC varyans tahmini

Cizelge 2.3 : Degisen biitce degerlerine bagh olarak MFMC tahmini ve kullanilan
analiz sayilari.

Biitce (p) 100 1000 4000 10000 50000 MC
Yiksek Dogruluklu 22 89 224 1124 le+7
Analiz Sayis1
Diisiik Dogruluklu

. 195 1955 7820 19550 97750 -
Analiz Sayisi

Ortalama 76.364 76.217 76.293 76.324 76319 76.319
Standart Sapma 44986 44.585 44.690 44.714 44.693 44.668

MEMC Yonteminin 0 163 0012 0476 1.622  1.042
Hesaplama Siiresi(s)

Cizelge 2.3’deki sonuglardan da goriilebilecegi gibi, MFEMC yontemi az sayida yiiksek
dogruluklu analiz sonucu ile MC yontemine yakin sonuglar vermektedir. Ancak biitce

artigina bagh olarak sonuglarin giivenilirligi artis gostermektedir.

2.4.2.2 Cok-dogruluklu polinom kaos yontemi ile uygulama

Dogrulama calismasinda, c¢ok-dogruluklu PCE yontemi ile elde edilen sonuglari

MEFMC sonuclar1 ile kiyaslamak icin MFMC yontemi ile giivenilir tahminin
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yapildig analiz sayilart kullanilarak MFPCE yontemi ile temsili model kurulmusgtur.
MFMC calismasinda yapilan tekrarlarda biitgenin 10000°den biiyiik oldugu durumda
sonuclardaki salinim azalmaktadir. Bundan dolayt MFMC uygulamasinda biitcenin
10000 oldugu durumda kullanilan yiiksek ve diisiik dogruluklu analiz sayis1 kadar
analiz sonucu kullanilarak temsili model kurulmugtur. Temsili modeli kurmak
icin kullanilacak polinom derecesi, regresyon ve tahmin hatasi referans alinarak
belirlenmistir. Temsili modeli kurmak i¢in kullanilacak analizlerin %80’1 ile temsili
model kurulup, %20’si ile tahmin hatas1 hesaplanmistir. Diisiik dogruluklu model i¢in

hesaplanan regresyon ve tahmin hatalar1 Sekil 2.11°de paylagilmistir.
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Sekil 2.11 : Diisiik dogruluklu temsili modelin regresyon ve tahmin hatasi

Sekil 2.11°de gozlemlendigi gibi 4. dereceye kadar polinom derecesindeki artis
tahmini ve regresyon hatasinda azalmaya neden olmaktadir. Polinom derecesinin 4’ten
biiyiik oldugu durumlarda tahmin hatasinda artis gozlemlenmektedir. Bundan dolay1
diisiik dogruluklu temsili model kurulurken polinom derecesi 4 alinmistir. Ekleme ve
carpim diizeltme terimi i¢in kurulan temsili modellerinde polinom dereceleri benzer
yaklagimla belirlenmistir. Ekleme ve carpim diizeltme terimi icin kurulan temsili
modellerin polinom dereceleri sirastyla 2 ve 3 alinmigtir. Kurulan temsili modeller
kullamlarak 107 belirsiz degisken kombinasyonu icin tahmin yapilmigtir. Tahmin

sonuglarindan belirsizlik parametreleri hesaplanmigtir. Sekil 2.12°de paylagilmistir.
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Sekil 2.12 : Farkli dogruluklu modeller i¢in sonuglardaki dagilim
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2.4.2.3 Belirsizlik analizi sonuclarmin karsilastirilmasi

MFPCE ve MFMC yontemi ile belirsizlik analizi gergeklestirilmistir. Sonuglari
dogrulamak icin yiiksek dogruluklu denklem kullanilarak Monte Carlo yontemi ile

de belirsizlik analizi gergeklestirilmigtir. Elde edilen istatiksel veriler Cizelge 2.4’te

verilmisgtir.
Cizelge 2.4 : Uygulama sonuglarinin karsilastirmasi
Yontem Ortalama Standart Sapma Hesaplama Siiresi (s)
MC 76.3095 447121 -
MFMC (p=10000) 76.3242 44.7144 0.476
MFPCE 76.3078 44.6877 109.218

Sonuglardan goriildiigii gibi, cok-dogruluklu belirsizlik analiz yontemleri ile Monte
Carlo ile elde edilen sonuclara cok yakin sonuglar elde edilmistir. Hesaplama siiresi
acisindan bakildiginda MFPCE yontemi ile MFMC yontemine gore daha uzun siirede

belirsizlik dagilimlan elde edilmektedir.
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3. OPTIMIiZASYON METODOLOJISI

Temsili model temelli optimizasyon c¢alismalarinda, temsili modelden elde edilen
tiirev bilgisinin yaniltici olabileceginden dolay1 tiirev temelli olmayan optimizasyon
yontemleri Onerilir. Bu calisma kapsaminda tiirev temelli ve tiirev temelli olmayan
iki ayr1 yontem ile optimizasyon calismasi1 gerceklestirilerek, temsili model temelli
optimizasyon ¢alismasindaki basarisi ve verimi degerlendirilmeye calisilmistir. Tiirev
temelli olmayan yontem olarak Genetik algoritma yontemi kullanilmis olup, tiirev
temelli yontem olarak Davidon-Fletcher-Powell yontemi kullanilmigtir. Takip eden
boliimlerde, Boliim 6’da aciklanan optimizasyon c¢aligmasinda kullanilan iki yontem
aciklanmigtir. Ayrica optimizasyon calismasinda cok-amaclh optimizasyon caligmasi
gerceklestirilmis olup, kullanilan optimizasyon ¢alismalarin1 cok-amacli optimizasyon

problemlerinde kullanmak i¢in izlenen metodoloji de hakkinda bilgi verilmistir.

3.1 Genetik Algoritma

Genetik algoritma (GA), evrimsel algoritmalarin temelini olusturan en bilindik
yontemlerden biridir. Evrim teorisindeki “En giicliiniin hayatta kalmas1" prensipleri
izerine kurulan optimizasyon yontemi, bir nevi evrim teorisinin yapay sistemler icin
uygulamasidir. Diger yontemlerin aksine ele alinan sistemin matematiksel modelinin
tiirevlerini kullanmayan genetik algoritma, tamamen olasiliksal olarak en iyi bireyi
aramaktadir. Bundan dolay1r modelin tiirev bilgisinin elde edilmesinin zor oldugu

tasarim siireclerinde tercih edilmektedir.

Genetik algoritma evrim teorisini temel aldi§1 icin, algoritmalardaki sistemler
hiicre yapisina benzetilmektedir. Eniyilenmesi yapilmak istenen sistem, genetik
algoritmalarda birey olarak adlandirilmaktadir. Bir bireyi temsil etmek amaciyla
kullanilan her bir ozellik gen, bireyi olusturan genlerin toplamina ise genotip

denilmektedir. Sistemi olusturan genotipin fiziksel goriiniimii ise fenotip olarak
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adlandirilmaktadir.  Sekil 3.1, benzetimin daha iyi anlagilmasi i¢in basit bir ucagin

tagiyici yiizeylerinin GA’daki benzetimine yer verilmistir.

Genotip
Kromozom 4

I {Kanat Alani, Aciklik Orani, Sivrilme Oram, Ok Agisi, Kanat Profili Parametreleri} L

‘ {Kanat Alan, Aqiklik Orami, Sivrilme Oram, Ok Aqisi, Kanat Profili Parametreleri} :
, | {Kanat AlanyAciklik Orani, Sivrilme Oram, Ok Agisi, Kanat Profili Parametreleri} |
X v J )

Gen

Fenotip

Sekil 3.1 : Bir ucagin genetik algoritma ile benzetimi

GA dogadaki iireme ve evrim kavramlarindan ilhan almis olup, (1) segilim, (2)
caprazlama ve (3) mutasyon gibi {ic ana adimdan olusur.  Secilim, istenen
ozelliklerin elde edildigi bireylerin daha uzun siire hayatta kaldig1 ve popiilasyon gen
havuzuna daha fazla katkida bulundugu dogal secilime dayanir. Caprazlama, iireme
sirasinda kromozomlar arasinda genetik Ozelliklerin birlestirdi§i kromozomlarin
caprazlamasindan esinlenmigtir. Mutasyon ise dogal olarak meydana gelen gen
dizisinde kalic1 bir degisiklik olan genetik mutasyonu taklit eder. Genetik algoritma

icin en genel akig semas1 Sekil 3.2°deki gibidir.

Genetik algoritmalar kullanici tarafindan belirlenen sinirlamalar cevresinde olusan
ornek uzaydan rastgele baglangic popiilasyonunun olusturulmasiyla baglar. Olusturu-
lan bireylerin ama¢ dogrultusunda uygun analiz programlari ile analizi yapilir. Analiz
sonucunda elde edilen sonuglar kullanilarak bireyler ama¢ dogrultusunda belirlenen
uygunluk fonksiyonu araciligiyla degerlendirilmeye tabi tutulur. Degerlendirme
sonucunda belirlenen bagaril1 bireylerin olusacak gelecek nesillerde daha etkili oldugu
yontemler kullanilarak sonraki nesilleri olusturacak ebeveynler secilir. Ebeveynlerin
ozelliklerinin ¢aprazlanmas1 ile ebeveynlerin 6zelliklerini tasiyan yeni bireyler

olusturulur. Yeni olusturulan bireyler ebeveynlerinin 6zelliklerini tagimakta olup
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Sekil 3.2 : Genetik algoritma akis semasi

sonucun yerel bir maksimum noktasina yakinsama ihtimalini azaltmak adma ve
popiilasyona c¢esitlilik katmak icin yeni olusturulan bireyler mutasyona ugratilir.

Mutasyon ile yeni olusan bireye, ebeveynlerinden farkli 6zellikler verilir. Mutasyon
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agsamast sonucunda olusan yeni bireyler analiz edilip, uygunluk fonksiyonu ile
degerlendirilir. Birey basarili bir birey ise sonraki nesile dahil edilir. Eger birey
basarili bir birey degilse birey 6ldiiriiliir ve yeni bir birey olusturulur. Bu iglemler
belirlenen maksimum nesil sayisi, nesillerdeki bireylerde degisimin gézlemlenmemesi

gibi kriterleri saglanana kadar devam eder.

3.2 Coklu Baslangi¢ Noktali Davidon-Fletcher-Powell

Davidon-Fletcher-Powell (DFP) yontemi kisitlamasiz bir optimizasyon yontemidir.
Yontem ilk olarak Davidon [56] tarafidan gelistirilmis olup, Fletcher ve Powell [57]

tarafindan modifiye edilmigtir. Caligmada kullanilan DFP algoritmas1 Cizelge 3.1°de

verilmigtir.
Cizelge 3.1 : DFP yontemi icin algoritma
DFP Algoritmasi
: 0
Admm 1: Baglangi¢ noktasini tahmin et, x".

n x n boyutlu bir A° matrisi belirle.
(Matris ilk iterasyonda birim matris alinabilir.)
Yakinsama kriterini belirle €.

Admm 2: Gradyan vektoriinii hesapla; 0 =vys x(0)>.

c®’nin normunu hesapla Hc(k) H
Adim 3:
Eger ||c®) ’ < g ise dur, degilse devam et.
. llerleme yoniinii hesapla,
Admd: o) L 000
. k K\o: gk <oseoss e .
Adum 5: fla) = f(x*+ad")’i d* yoniinde minimize edecek sekilde

ilerme miktarinm a;’y1 hesapla.
(Golden section algoritmasi kullanilabilir.)
SkH) = xl(k) + Axl(k) olarak giincelle.
Asagidaki formiile gére A*) matrisini giincelle.
Adim 7: A (k+1) — A (%) +B® 4 )
burada;

k) _
B()“(Zmng’ CEED)

Adim 8: lterasyon insidisini k = k + 1 olarak degistir, adim 2’ye git.

Adim 6: Tasarim noktasini x

R0 o —g® KT

DFP yontemi kisitlamasiz bir optimizasyon yontemi olup, ele aldigimiz problem
gibi c¢ogu miihendislik problemi kisitlamalar icermektedir. DFP yo6ntemini

kisitlamali optimizasyon ¢aligmalarinda kullanabilmek icin ceza fonksiyonu (penalty
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function) ile entegre edilmistir. Adindan da anlagilacag:i gibi, ama¢ fonksiyonu,
kisitlarin ihlal edildigi durumlarda amag¢ fonksiyonunu cezalandirmaya dayanir ve
ama¢ fonksiyonu, optimizasyon caligmasinda denklem 3.1°deki gibi ceza terimleri
kullanilarak diizenlenir.
r m
F(x) = f0)+ X i)+ Lo (8i(x))” 3.1
j= i=
Denklem 3.1°deki f(x) orjinal amag¢ fonksiyonu, A(x) esitlik kisitlarini, g(x) ise
esitsizlik kisitlamalarim temsil etmektedir. r;, ve r, ceza parametrelerini ifade etmekte
olup ry,rg > 0’dir. Ceza parametrelerin se¢imi i¢in farkli yaklagimlar bulunmaktadir.
Eger rj, , parametreleri kiigiik segilirse, optimizasyon ¢aligmasi sonucunda elde edilen
optimum tasarim biitiin kisitlara uymayabilir. Eger cok yiiksek ceza parametreleri
secilir ise amac fonksiyonunun kotii kosullanma riski vardir. Bu nedenle, optimizasyon
algoritmasindaki r, , parametreleri kiigiik bir degerle baglamali ve daha biiytik bir

degere yiikseltilmelidir [55]. Bu yiizden ceza terimleri denklem 3.2°deki gibi

tanimlanmaktadir. :
rg = max [1, : }
8i (lx) (3.2)
= l—
A [ h @ﬂ

DFP yoOnteminde yon arama algoritmasi olarak Altin Boélim (Golden-Section)
algoritmasi, sayisal tiirev hesaplamalarinda merkezi fark yontemi kullanilmigtir.
Optimizasyon caligmasi, degistirilmis amag fonksiyonu ile DFP yontemi kullanilarak

gerceklestirilir.

DFP yontemi lokal optimizasyon yontemidir. Kiiresel optimizasyon problemlerinde
kullanabilmek i¢in cezalandirma fonksiyonu ile birlestirilen DFP yontemi, ¢oklu

baslangic algoritmasi ile entegre edilmistir.

3.3 Cok-Amach Optimizasyon Metodolojisi

Cok-amaclh optimizasyon problemlerinde birden ¢ok amag fonksiyonu bulunmakta
olup, birden ¢ok amacin bir arada optimizasyonu yapilmaya calisihr.  Tek
amacli optimizasyonun aksine, ¢cok-amach optimizasyon calismasi sonucunda amag

fonksiyonlarinin agirliklarina bagl olarak Pareto optimal ¢éziimler olarak adlandirilan
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bir dizi nokta elde edilir. Optimizasyon yontemlerini cok-amacli hale getirmek
icin, agirhikl toplam, & kisitlamal, hedef programlama (goal programming),
fayda fonksiyon (utility function) yontemi gibi klasik yontemler bulunmaktadir.
Bu yontemler temelde optimizasyon calismasini farkli kisitlama, agirlik degeri
gibi parametreler ile tekrarlanmasina dayanmaktadir. Bu yoOntemlerin aksine tek
optimizasyon calismasi altinda pareto front egrisinin elde edilebilecegi NSGA-II,
MOEA gibi giincel yontemlerde bulunmaktadir. Tez kapsaminda non-lineer pareto
egrilerini yakalamada basarili oldugu ve standart optimizasyon algoritmalar ile entegre

etmesinin kolaylgindan dolay1 €-kisitlamali yontemi kullanilmasgtr.

3.3.1 e-kisitlamali method

e-kisitlamali yontem, optimizasyon algoritmasimni c¢ok-amach optimizasyon calis-
malarinda kullanmak i¢in Onerilen bir yontemdir. Eger bir optimizasyon problemi k
adet amag fonksiyonuna sahipse, yontem bir tane amag fonksiyonu hari¢ geriye kalan
biitiin amac¢ fonksiyonlarim egitsizlik kisit1 olarak tanimlamaktadir. Belirlenen kisit
icin farkli degerler alinarak optimizasyon calismasi tekrarlanarak pareto front egrisi
elde edilmektedir. Yontem k adet amag¢ fonksiyonu olan optimizasyon caligmasini

denklem 3.3’deki gibi tanimlamaktadir.

min fj (x)

kisit fi(x) <& i=2,..,k

3.3)

Cok-amacl optimizasyon problemlerinde, optimizasyon ¢alismasi farkl € degerlerine
gore gerceklestirilir. Bu yontemin bir dezavantaji € parametrelerine karar vermektir.
Her bir amag¢ fonksiyonu i¢in bu parametreler belirlenmelidir. Bu calismada bu
parametreler kurulan ¢ok-dogruluklu temsili model araciligiyla ucuz bir sekilde

belirlenmektedir.
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4. AERODINAMIK ANALIZ

Cok-dogruluklu analiz ve optimizasyon caligmalar1 hesaplama siiresini azaltmak
icin ¢ok sayida diisiikk dogruluklu modelin az sayida yiiksek dogruluklu model ile
diizeltilmesine dayanir. Bundan dolay1 tez kapsaminda yapilacak cok-dogruluklu
optimizasyon ve belirsizlik analizi ¢alismalarinda akis analizleri i¢in farkli dogruluk
seviyelerine sahip aerodinamik modelinin belirlenmesi gerekmektedir. ~ Farkli
varsayimlar altinda potensiyel akis, Euler, Naiver-Stokes coziiciileri gibi farkli akig
coziiciileri tammlanabilmektedir. Ele alinan problemde istenen dogruluk mertebesi
ve hesaplama maliyeti gereksinimlerine gore farkli dogruluklu seviyesine sahip
akig modellerinin secimi degiskenlik gosterebilir. Bu calisma kapsaminda mevcut
hesaplama giicii diisiiniilerek ve literatiirdeki caligmalar referans alinarak diisiik
dogruluklu akis ¢oziiciisii olarak yiiksek dereceli panel yontemi olan PANAIR
programi, yiikksek dogruluklu akis coziiciisii olarak ise Euler akis coziiciisiiniin

kullanilmas1 uygun bulunmustur.

Takip eden boliimlerde tez calismasi kapsaminda akis analizleri icin kullamilan
programlar ve programlar icin gerekli olan ag yapilarinin olusturulma yontemleri agik-
lanmigtir. Aciklanan program ve yontemler kullanilarak akis analizi kabiliyetlerinin

dogrulanmasi i¢in cesitli uygulamalara yer verilmektedir.

4.1 Yiiksek Dogruluklu Akis Analizi icin Ag Yapisinin Olusturulmasi

Genel bir HAD probleminin aksine, sonik patlama hesaplamalari i¢in yapilan HAD
analizlerinde yiizey iizerindeki basin¢ dagilimindan ziyade ucaktan 2-3 boy uzaktaki
basing dagilimi ile ilgilenilmektedir. Bu da hem ¢6ziim hacminin boyutunu arttirmakta
hem de oldukca dogru ve kesin bir HAD ¢6ziimii gerektirmektedir. Dolayisiyla bu
gereksinimleri kargilamak i¢in olusturulmasi gereken ag yapisinin ¢ok yiiksek eleman
sayilarina sahip olmasi gerekmektedir. Ag elemani sayisinin artmasi gerekli olan

hesaplama giicliniin ve siiresinin artmast gerektigi anlamina gelmektedir. Bu durum
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ozellikle HAD temelli optimizasyon, belirsizlik analizlerinin siiresini katlanilmaz

boyutlara eristirebilmektedir.

Genellikle HAD aglarinin kalitesi, akig analizinin sonucunu etkilemektedir. Ag
kalitesinin kotii olmasi sayisal yontemlerin hatali sonu¢ vermesine ve geometriden
kisa bir mesafe sonra basing dalgalarinin sinyalinin kaybina neden olur. Basaril
bir simiilasyon i¢in ag yapisi geometriden belli bir uzaklikta dalga sinyallerini
elde edebilecek kalitede olmalidir. Literatiirdeki calismalar géz oniine alindiginda
bu zorlugun ag adaptasyonu ile veya hibrit ag yapisinin kullanilarak agildigi

goriilmektedir.

Daha 6nce yapilan calismalar gdz oniine alindiginda sonik patlama hesaplari icin
yapisal ag (structured mesh), yapisal olmayan ag (unstructured mesh) ve bu iki
ag yapisinin bir arada kullanildigi hibrit calismalar goriilmektedir.  Yapisal ag
sonik dalgalar yakalamak i¢in oldukca uygundur. Ancak yapisal ag olusturmak
icin geometrinin diizenlenmesi olduk¢a zaman almaktadir. Yapisal olmayan ag
ile ayriklagtirma ise, yapisal ayriklastirma ile kiyaslandiginda ¢ok kisa siirede ag
olusturulabilmektedir. Ancak yapisal olmayan ag ile ucaktan belli bir uzaklikta sonik
dalgalarin yakalanmas1 zordur. Ayrica yapisal olmayan ag ile sonik dalgalarin dogru
bir sekilde yakalanmasi ancak cok fazla eleman sayisi ile miimkiin olmaktadir. Bu
durum akis alaninin sayisal olarak ¢oziim siirecini olduk¢a uzatmaktadir. Bundan
dolay1 bu calismada AIAA Sonik Patlama Calistaylarinda oldugu gibi yapisal ve

yapisal olmayan ag yapisindan olusan hibrid ag yapis1 kullanilmistir.

4.1.1 Siipersonik ucaklar icin hibrid ag yapisi

Siipersonik ucaklar i¢in genel hibrit ag yapis1 Sekil 4.1°de gosterildigi gibi ¢ekirdek
ve cekirdek aginin ¢evresinde yer alan uzak akis alanmini temsil eden uzak alan ag
blogundan olusur. Cekirdek ag blogu geometriyi i¢inde barindiran yar silindirik
ag yapist olup geometrinin diizenlenmesi gibi zaman alic1 siire¢lerden kurtulmak
adina yapisal olmayan ag kullanilarak olusturulmaktadir. Caligma siiresince ¢ekirdek
ag blogu dort yiizli hiicreler kullanilarak olusturulmugstur. Dortyiizlii hiicrelerin
kullanilma nedeni geometriye yakin yerlerde dortyiizliilerin kaliteli ag olusturma

stirecini kolaylagtirmasidir.
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Sekil 4.1 : Hibrid ag yapis1 [1]
Uzak Alan Ag Yapist - Altryiizlii Hitcreler

Cekirdek Blok -
Dértyiizlii Hilcreler

Sekil 4.2 : Yakin ve uzak alan ag yapisi [1]

Uzak alan ag yapisi sok dalgalar1 daha iyi yakalamak adina yapisal ag kullanilarak
olusturulmustur. Yapisal olmayan cekirdek agi ile birlesim yiizeyinden alinan basing
imzasi1 uzak alan akig alaninda iletilerek ucaktan belirli bir uzakliktaki basing dagilimi
yapisal ag sayesinde daha dogru bir sekilde elde edilmektedir. Bdylelikle yakin
alana kaliteli yapisal olmayan ag olusturulmasi sayesinde, yapisal ag olusturmak
adina geometriyi diizenlemek icin gerekli olan ugrastan kurtularak basing dagilimini
ve sok dalgalar1 ugaktan belirli bir uzaklikta dogru bir sekilde elde etmek miimkiin
olmaktadir. Uzak alan ag1 Sekil 4.2°de goriildiigii gibi Mach agis1 dogrultusunda aci
yaparak serbest akim dogrultusunda uzanmakta olup, Mach acist denklem 4.1°deki
gibi hesaplanmaktadir. Mach agist dogrultusunda aga verilen yonelim sok dalgalarinin
daha iyi elde edilmesine olanak vermektedir. Ayrica bu Mach yonelim agis1 niimerik

difiizyonun azalmasina yardimeci olmaktadir.

w=sin"'(1/M) 4.1
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Uzak alan yapisal agi olusturulurken, ag yapisinin kalitesinden 6diin vermeden
ag eleman1 sayisini azalttigr icin altiylizlii elemanlar kullanilmasi tercih edilmistir.

Anlatilanlar dogrultusunda olusturulan 6rnek bir hibrid ag yapis1 Sekil 4.3 ve 4.4°de

goriilmektedir.
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Sekil 4.4 : Hibrid ag yapisi

Hibrit ag yapisinin ugaktan belirli bir uzaklikta basin¢ imzasinin ve aerodinamik

katsayilarin elde edilmesi konusunda basarili oldugu [58]° da yapilan uygulamalar ile
gosterilmistir. Ishikawa ve digerleri (2010) [58], bir siipersonik ugak i¢in hibrit ve

tamamen yapisal ag olusturarak cesitli analizler yapmis ve sonuclar1 kiyaslanustir. iki

farkli ag yapisi ile elde edilen sonuclarin birbiri ile Ortiistiigii goriilmiistiir. Ayrica bu

calismada cekirdek blok olarak adlandirilan geometriyi i¢inde barindiran ag yapisinin
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yarigapinin basing imzasi iizerindeki etkisi incelenmistir. Yapilan uygulamalar sonucu
gozlemlenmistir ki cekirdek blogunun yarigapt geometriyi icinde barindiracak sekilde
ne kadar azaltilirsa basing imzasindaki keskin dalgalanmalar da o kadar iyi elde
edilebilmektedir. Bundan dolay1 [58]’da elde edilen sonuclar gdz oniine alinarak

cekirdek blogu olusturulurken yarigcap olabildigince kiiciik tutulmaya caligilmustir.

4.2 Yiiksek Dogruluklu Aerodinamik Analiz: SU2- Euler Coziiciisii

Yiiksek dogruluklu akis ¢oziisii SU2 programu Standford Universitesi Havacilik
ve Uzay Tasarim Laboratuvar1 (Aerospace Design Laboratory - ADL) tarafindan
gelistirilmis acik kaynak c¢oklu-fizik ¢oziiciisiidiir. SU2 programi siipersonik ugak
tasarim ve optimizasyon calismalarinda siklik ile kullanilmakta olup, caligmalar SU2
programinin saglam ve giivenilir bir program oludugunu gostermektedir. Ses-iistii
akiglarda viskoz etkilerin az olmas1 ve ¢6ziim siiresinin kisa olmasindan dolay1 tez
kapsaminda yiiksek dogruluklu akig analizi icin SU2 programindaki-Euler coziiciisii

kullanilmas1 uygun goriilmiistiir.

90 _
E-I—V'FC(Q)—O )
P . _pv (4.2)
Q=4 PV Fo=9 pVaV+Ip
pPE PEV +pV

Euler denkleminin diferansiyel formu denklem 4.2°de verilmis olup, denklemdeki
p,E, p,V,I ifadeleri sirasiyla yogunluk, kiitle bagina enerji, termodinamik basing, hiz

vektori ve birim matrisi ifade eder.

4.2.1 Yiiksek dogruluklu ses-iistii akis problemi i¢in ¢éziim yontemi

Akis analizi yapilirken matematiksel model ve sayisal yontemler igin bazi
parametrelerin se¢ilmesi gerekmektedir. Bundan dolay1 akis analizlerinde kullanilan
yontemler ve yontemlerin parametreleri icin bir kargilagtirma calismasi gercek-
lestirilmigtir.  SU2 v6.2 ¢oziiciisti igerisinden sayisal ayriklagtirma yontemi olarak
JST, LAX-FRIEDRICH, CUSP, ROE, AUSM gibi yontemler bulunmaktadir. Bu
yontemlerin hangisinin daha kisa siirede daha dogru sonug¢ verecegini incelemek

adina, Delta kanat geometrisi kullanilarak farkli ayriklastirma yontemleri i¢in analizler
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gerceklestirilmistir. Analiz sonuglar1 Cizelge 4.1°de verilmistir. Analizler yakinsama
kriteri 1077 secilerek gerceklestirilmistir.  Cizelgede paylagilan iterasyon sayist
ve aerodinamik katsay1 degerleri, analizin 10~ yakinsama kriterine ulastigindaki

sonugclardir.

Cizelge 4.1 : Sayisal ayriklastirma yontemlerinin kiyaslamasi

Yontem  Iterasyon Sayisi  Tasima Katsayist  Siiriikleme Katsayisi

JST 100 2.03E-02 3.65E-03
LAX 100 2.05E-02 3.65E-03
ROE 233 1.80E-02 4.74E-03

HLLC 643 2.03E-02 3.66E-03
AUSM Iraksadi - -
CUSP Iraksadi - -

TURKEL Iraksadi - -

Cizelge 4.1°’de goriildiigii gibi JST ve LAX yontemleri ayni iterasyon sayisinda
birbirine ¢ok yakin tagima ve siiriikkleme katsayisim vermektedir. Sonik patlama
analizlerinde ugaktan belli bir mesafedeki basin¢ dagilimlar1 kullanilmakta olup,
yontemlerin uzak alandaki basin¢ izini elde etmedeki bagsarilarin1 6lgmek igin
yontemlerin akis domainleri Sonik Patlama Tahmin Calistayr (SBPW) sonuclan ile

kiyaslanmigtir. JST ve LAX yontemi ile elde edilen akig alanlarindaki Mach sayisi

dagilimlar1 Sekil 4.5°de verilmistir.

Sekil 4.5 : JST ve LAX yontemleri ile elde edilen Mach sayis1 dagilimi

Sekil 4.5°de verilen sol taraftaki sekil JST, sag taraftaki ise LAX ile yapilmis ¢oziimlere
ait olup, dagilimdan goriilecegi tizere JST yontemi akis alaninda sok dalgalarini uzak
alana iletmede daha bagarili iken, LAX yonteminde sok dalgalari olmasi gerekenin

aksine kisa mesafede soniimlenmektedir.
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SU2 coziiciisiinii kullanan SBPW katilimcilar: da JST yOntemini tercih etmiglerdir. Bu
caligma ile siipersonik akig kosullarinda SU2 v6.2 c¢oziiciisiindeki sayisal ayriklagtirma

yontemlerinden JST yonteminin daha iyi sonug verdigi dogrulanmastir.

4.3 Diisiik Dogruluklu Akis Coziiciisii: A502/Panair 3D Panel Yontemi

A502 olarak da bilinen PANAIR programi herhangi ii¢c boyutlu bir geometri etrafindaki
akig ozelliklerini hesaplamak i¢in Boeing tarafindan gelistirilmis yiiksek dereceli
panel metodudur. Program, ses alti ve ses iistii Mach sayilarinda lineerlestirilmis
potansiyel akis sinir-kosullari problemini ¢6zmek igin yiiksek dereceli bir panel
yontemi kullanir. PANAIR programi siipersonik lineerlestirilmis teori kapsaminda

gecerli olan Prandtl-Glauert denklemlerini ¢cozmek de olup, denklem 4.3’te verilmistir.
(1—M2) o5+ +=5=0 (4.3)
X

Denklemdeki &, hiz potasiyelindeki bozunmay1 ifade etmektedir. PANAIR programi
hava aracinin iizerine yerlestirilen kaynak ve dubletleri, duvar sinir sart1 ile ¢c6zmekte
olup, panel sayisina baglh olarak 5-10 dakika arasinda sonu¢ vermektedir. Programdan
cikti olarak aerodinamik katsayilar, yiizey basing dagilimi, belirli istasyonlardaki
tasima degeri, akis alanindaki basing¢ dagilimi gibi degerleri almak miimkiindiir. Sonik
patlama analizleri icin ugaktan belli bir uzakliktaki basing dagilimi gerekmekte olup,
PANAIR ile akig alanindaki belli konumlardan basing dagiliminin elde edilebilmesi

calismada diisiik dogruluklu akis programi olarak tercih edilmesi nedenlerinden biridir.

4.4 Farkh Dogruluklu Akis Coziiciileri icin Dogrulama ve Karsilastirma

Calismasi

Bu bolimde yiiksek ve diisiik dogruluklu analiz sonuglarini dogrulamak igin
karsilagtirma calismalarina yer verilmistir ~ Dogrulama calismalarinda SBPW
geometrilerinin deneysel ve katilimci sonuglar paylasildigi icin SBPW geometrilerinin
kullanilmasi tercih edilmistir. Elde edilen sonuglar literatiirde bulunan ¢esitli sonuglar
ile dogrulanmistir.  Ardindan yiiksek ve diisikk dogruluklu analiz sonuglarinin

karsilagtirmasina yer verilmistir.
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4.4.1 Yiiksek dogruluklu akis ¢oziiciisii icin dogrulama calismasi

Yiiksek dogruluklu akis analizlerini dogrulamak icin SBPW’larda kullanilan Delta
kanat ve JAXA kanat govde geometrileri kullanilmigtir. Bu geometriler i¢in deneysel
ve SBPW katilimcilarinin analiz sonuglar literatiirde paylasilmigtir.  Bu agidan
dogrulama calismalan i¢in olduk¢a uygun geometrilerdir. Takip eden bolimlerde

sirastyla bu iki geometri i¢in yapilan dogrulama calismasina yer verilmisgtir.

Delta kanat geometrisi

Delta kanat (DW) geometrisi SBPW-I’de kullanilan geometrilerden biridir. Bu model
eksenel simetrik bir gdvde ve 69 derece geriye dogru bir ok agisina sahip bir kanada

sahiptir. Delta kanat geoemtrisi Sekil 4.6’da verilmistir.

Sekil 4.6 : Delta kanat geometrisi [2]

Geometrinin literatiirde paylasilan riizgar tiineli deneyleri 1.7 Mach sayisinda
gerceklestirilmigtir. Bundan dolayr SU2 programinda akis analizi bu Mach sayisinda
gerceklestirilmis olup, SU2 akis analizinde kullanilan analiz parametreleri Cizelge

4.2’de verilmektedir.

Cizelge 4.2 : Delta kanat geometrisi i¢in akis analizi parametreleri

Parametre Deger

Coziicii Euler
Mach Sayist 1.7
Hiicum Agisi 0.0°

Serbest Akim Basinct 12110 Pa
Serbest Akim Sicakligt 216 K
Yontem JST
Linear Coziicti FGMRES
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Deneysel sonuclar ile karsilastirma yapabilmek adina akis analizi riizgar tiineli
baglant1 pargalan ile gerceklestirilmistir.

Ag yapist hibrit ag yapist kullanilarak
gerceklestirilmis olup, Sekil 4.7 ve 4.8’de olusturulan ag yapis1 gosterilmektedir.

Sekil 4.7 : Delta kanat geometrisi i¢in olugturulan yiizey ag1

Sekil 4.8 : Delta kanat geometrisi i¢in olugturulan hibrit ag yapisi

Olusturulan hibrit ag yapisi kullanilarak akis analizi gerceklestirilmistir. Akis analizi
sonucu elde edilen Mach sayis1 dagilimi Sekil 4.9 ve 4.10 verilmistr.

1.8e+00
[ 175
1.7

[ 1.65

1.6e+00

Mach

Sekil 4.9 : Delta kanat geometrisi Mach say1s1 dagilimi, yandan gortiniim

49



Sekil 4.10 : Delta kanat geometrisi Mach sayis1 dagilima, izometrik goriinim

Mach sayis1 dagilimlarindan c¢oziimden istenen sok dalgalarinin yakalandig:
goriilmektedir. Sayisal olarak sonuclari dogrulamak ve geometriden belli uzaklikta
basing dagiliminin dogru bir sekilde elde edilip edilmedigini gozlemlemek igin
yakin alan basing dagilimlar1 kargilagtinlmistir. Kargilagtirma ¢alismasinda SBPW
katilimcilarinin sonuglar1 ve deneysel sonuglar kullanilmis olup, akis analizde ucagin
24.8 in¢ mesafe altindan x ekseni dogrultusunda elde edilen basing izi karsilagtirma

caligmasinda kullanilmistir. Kargilagtirma grafigi Sekil 4.11°de verilmistir.

SBPW katilimcilari R% r, ;
-0.025 - Riizgar Tiineli R -
suz
m{)‘{)3 1 1 1 1 1 1 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/L

Sekil 4.11 : Delta kanat geometrisi i¢in 24.8 in¢ mesafede basing izi kiyaslamasi
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Bu grafik iizerindeki mavi noktalar SBPW katilimcilarin aldigi sonuglart [2], siyah
kesikli egriler ise riizgar tiineli deney verisi araligimi [2], kirmizi e8ri ise SU2
programindan aliman basing izini ifade etmektedir. Grafikten de goriilecegi iizere ucak
geometrisi iizerindeki 6n ve arka soklar deneysel veri ile olduk¢a yakin ¢ikmaktadir.
Ancak arka bolgedeki genisleme dalgarinda elde edilen ¢oziimiin deneysel veriden
uzaklastig1 goriilmektedir. Katilimcer gruplarin ¢oziimlerine de bakildigi zaman bu

bolgede kismen daha fazla belirsizlik oldugu goriilmektedir.

JAXA kanat govde geometrisi

JAXA kanat govde (JWB) geometrisi kanat ve govdeden olusan basit bir ucak
konfigurasyonudur. Delta kanat geometrisinin aksine JWB geometrisi simetrik
olmayan bir kanat profiline sahiptir. JWB model SBPW’ye geometri olusturmak i¢in
C25D modelinin esdeger alan dagilimindan yola ¢ikilarak tersine tasarim yolu ile

olusturulmustur [60]. JWB geometrisi Sekil 4.12’de paylagilmisgtr.

Sekil 4.12 : JWB geometrisi

JWB modelinin akis analizinde kullanilan parametreler Cizelge 4.3 verilmistir. Akis

analizi kosullar sonik patlama calistayindan alimustir [61].

Cizelge 4.3 : JWB Analiz Parametreleri

Parametre Deger
Analiz Tirii Euler
Mach Sayis1 1.6
Hiicum Agisi 0.0

Serbest Akim Basinct 12110 Pa
Serbest Akim Sicaklik 216 K
Yontem JST
Lineer Coziicii FGMRES
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JWB geometrisi i¢in de hibrit ag yapist kullanilmistir. A§ yapisi toplamda 12 milyon
eleman icermekte olup, bu ag yapisi kullanilarak akig analizi gerceklestirilmistir. Akis

analizi sonucunda elde edilen Mach sayis1 dagilimi Sekil 4.13 ve 4.14’te verilmistir.

"Z Mach
‘9/ X 1.500e+00 1.85 1.6 1.65 1.700e+00

WL,\ITWK\I\I\‘\\\“

Sekil 4.13 : JWB geometrisi tizerindeki Mach sayist dagilimi

: JWB geometrisi i¢in simetri eksenlerindeki Mach sayis1 dagilimi

Elde edilen SU2 akig c¢oziimii kullanilarak, ugagin 2.55 govde boyu altindan alinan
basing dagilimlar1 Sonik Patlama Calistay katilimci sonucu [3] ile kiyaslanmustir.

Grafik iizerinde yapilan kiyaslama Sekil 4.15’te verilmistir.

Grafiklerden de goriilecegi iizere 6n bolgedeki basing izi referansa oldukca yakin bir
sekilde elde edilmistir. Orta ve arka bolgede bulunan kiiciik farkliliklar ise kullanilan
ag yapisindan kaynaklanmaktadir. Daha yiiksek eleman sayisina sahip bir ag yapisi ile

bu bolgelerdeki dalgalanmalar da elde edilebilir.
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x/L
Sekil 4.15 : JWB geometrisinin 2.55 boy altindaki basing izi kiyaslamasi [3]

4.4.2 Diisiik dogruluklu akis analizi

Bu boliimde DW ve JWB geometrileri icin PANAIR programinda analizler yapilmistir.
Elde edilen sonuglar SU2 programindan elde edilen sonuglar ile karsilagtirilarak

sonuglarin tutarlilig1 gosterilmigtir.

4.4.2.1 Delta kanat geometrisi

DW geometrisi 3600 adet panel ile modellenmis olup, analiz kosullar1 SU2
programinsaki analiz kogullar1 ile ayn1 olacak sekilde analizler gerceklestirilmisgtir.

DW geometrisi i¢in olusturulan paneller Sekil 4.16’de verilmistir.

_.
——
=
=
=

S
=
==

i

=

—_—

Sekil 4.16 : PANAIR programi icin DW geometrisine olusturulan panel yapisi
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Sekil 4.17°de iki akig coziiciisiinden elde edilen yiizey basing katsayisi dagilimi
paylasilmistir. Sekilden de goriilecegi iizere panel yontemi ile elde edilen sonu¢ HAD
sonucuna biiyiik oranda benzerlik gostermektedir. Iki yontem arasindaki en biiyiik

farkin genisleme soklarinin gerceklestigi bolgelerde oldugu goriilmektedir.

SU2

Sekil 4.17 : SU2 ile Panair programlarindan elde edilen basing katsayis1 dagilimi

Sonik patlama analizlerinde kullanilmak icin gereken yakin alan basing katsayisi
dagilimi1 Sekil 4.18’de verilmistir. Basing dagilimi hava aracinin 24.8 in¢ altindan

alinmastir.

su2

D06 PANAIR | |

0.04

0.02

a0

dP /P

-0.02

-0.04

0 0.1 0.2 0.3 0.4 0.5 0.6
x/L

Sekil 4.18 : Delta kanat geometrisi i¢in yakin alan basing dagilimi karsilagtirmasi
Sekil 4.18’de goriildiigii gibi gdovdenin 6n kisminda olusan sok dalgalarin olusturdugu
basing degisimi PANAIR programu ile diizgiin bir sekilde elde edilmektedir. Ancak
kanat iizerinde olusan genisleme dalgalarinin olusturdugu basing degisimi PANAIR

programi ile elde edilememektedir.
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4.4.2.2 JAXA kanat govde geometrisi

JWB geometrisi 5360 adet panel ile modellenmis olup, analiz kosullar1 SU2
programindaki analiz kosullar ile ayn1 olacak sekilde analizler gerceklestirilmisgtir.

JWB geometrisi i¢in olusturulan paneller Sekil 4.19’da verilmistir.

Sekil 4.19 : PANAIR programi i¢cin JWB geometrisine olusturulan panel yapisi

Sekil 4.20’de iki akig coziiciisiinden elde edilen yiizey basing katsayisi dagilimi
paylasiimistir. Sekilden de goriilecegi iizere panel yontemi ile elde edilen sonu¢ HAD

sonucuna yakin sonug¢ vermektedir.

vvvvvvv
zzzzzzzzz

PANAIR

PANAIR A

Sekil 4.20 : JWB geometrisi i¢in basmg katsayilarinin karsilastirilmasi (soldaki {ist,
sagdaki alt yiizey)

Sonik patlama analizlerinde kullanilmak icin gereken yakin alan basing katsayisi
dagilim1 Sekil 4.21°de sunulmustur. Basing dagilimi hava aracinin 2.55 gdvde boyu

altindan alinmigtir.

SU2 ve PANAIR program ile elde edilen sonuclar incelendiginde, 6n govde
kisminin olusturdugu basing degisimi iki program ile de dogru bir sekilde elde

edilmektedir. Kanat bolgesindeki dagilimlar incelendiginde ise PANAIR programinin
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Sekil 4.21 : JWB geometrisi i¢in yakin alan basing dagilimi kargilagtirmasi
biiyiik dalgalanmalar goriilmekte olup, SU2 sonucundan oldukc¢a farkli oldugu
goriilmektedir.  Carpenter ve digerleri ¢alismalarinda [62] JAXA kanat govde
geometrisini kullanarak PANAIR programini sonik patlama karakteristii ve bagarisi
irdelenmistir, caligmalarinda PANAIR programi ile benzer yakin alan dagiliminm elde

etmistir.
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5. SONIK PATLAMA

Sonik patlama analizleri i¢in kullanilan farkli yaklasimlar bulunmakta olup, bu
tez kapsaminda yakin alan akustik ¢oziimii yaklagimina dayanan sBoom programi
kullanilarak sonik patlama analizleri gerceklestirilmistir. Bu bolimde sirasiyla, sonik
patlama analizlerinde kullanilan sBoom programi hakkinda bilgiler paylasilmis olup,

akig analizi sonuglar1 kullanilarak yapilan dogrulama ¢aligsmalarina yer verilmistir.

5.1 Sonik Patlama Hesabi - sBoom

Yakin alan akustik ¢6ziimiine dayanan sonik patlama analizlerinde hava aracindan
belli bir uzakliktaki basing katsayist dagilimi kullanilir. Akis analizi sonucu ugaktan
belli bir uzaklikta elde edilen basin¢ katsayist dagilimi kullanilarak basing dalgalar
yere kadar iletilir (propogade edilir). Sonik patlama analizlerindeki genel siire¢ Sekil
5.1°de verilmistir. Sonik patlama hesaplamalarinda dogru bir sonug¢ elde edebilmek
icin ucgaktan 2 veya 3 boy uzakliktan elde edilen basing¢ katsayilarinin kullanilmasi

Onerilmektedir [64].

#,/'\w\‘ \ Yakmn Alan
3 ! Basing Izi

\\r\\‘\\ﬁ‘ \‘(N“

Akis Analizi Sonucu

Yakin Alan Basing
Izinin Yere Iletilmesi

NN

Sekil 5.1 : Yakin alan akustik ¢6ziimiine dayanan sonik patlama tahmin siireci [4]

ere iletilmesi

Y

Akis Analiz Sonucunun

Giirliltd Hesabi Yerdeki Basing 1zi

Calisma kapsaminda sonik patlama hesaplamalar1 icin, NASA Langley Arastirma

Merkezi tarafindan gelistirilen sBoom kodu kullanilmigtir. sBoom programi geometrik

57



akustik kodu olup, denklem 5.1°de verilen Burger denklemlerini zaman adimlarina

bagh olarak ¢ozmektedir.

2 d(poco)
oP 9P 19%P d 94 9poc)
= 9 __p_Jdop, 00 p (5.1)

_ = P— _I_ [ — _|_ y————=

Jdo ot T ot? ; 1+9V% 2A 2P0
Program 2 ayn girdi dosyasi kullanmaktadir. Bunlardan ilki geometrinin akig analizi
sonucu hava aracindan belli bir mesafeden elde edilen basin¢ dagilimidir. Diger input
dosyast ise analiz girdilerinin iceren girdi dosyasidir. Girdi dosyasinda yer alan bilgiler

asagida sirasiyla listelenmigtir.

* Mach sayisi

* Ucus irtifasi

* Basing izinin ugagin ekseninden uzakligi

* Yerdeki yansima faktorii

* Yer seviyesinin yiiksekligi

* Azimut agilariin sayis1 ve azimut agilari

* Atmosfer sicaklik, riizgar ve nem profilleri

» Ucus bas ve tirmanma agisi

Program iki girdi dosyasim kullanarak, yakin alan basing izini Burger denklemlerini
kullanarak tanmimlanan girdi paramatre kosullarinda yere kadar iletilmektedir
(propogade etmektedir). Analiz sonucunda program yerdeki basing imzasim ve
farkli metrikler i¢in desibel cinsinden yerde duyulan giiriiltii seviyesini vermektedir.

Program ve yontem hakkinda daha detayli bilgiler icin [64]’li inceleyebilirsiniz.

5.2 Dogrulama Calismasi

Bu boliimde Delta-wing ve JWB geometrileri icin gerceklestirilen PANAIR ve SU2
akig analizi sonuclarindan elde edilen yakin alan basing izleri kullanilarak sonik
patlama analizleri gerceklestirilmigtir. Elde edilen sonuclar SBPW calistayina katilan

katilimcilarin sonuglar ile kiyaslanmustir.
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5.2.1 Delta kanat geometrisi

Delta-Wing geometrisi ile alakali bilgiler akis analizi kisminda paylasilmis olup,
SU2 ve PANAIR programinda elde edilena akis analizleri sonuglarn Sekil 5.2°de

paylagiimistir.

0.06

su2
PANAIR

0.04

0.02

o0

dP/P

-0.02 |

-0.04

0 0.1 0.2 0.3 0.4 0.5 0.6
x/L

Sekil 5.2 : DW geometrisi icin PANAIR ve SU2’dan elde edilen yakin alan basing
izleri

Iki programdan da elde edilen yakin alan basing izleri kullanilarak sonik patlama
analizleri gergeklestirilmistir. Sonik patlama analizlerinde standart atmosfer kosullari
kullanilmis olup, riizgarsiz atmosfer kosulu varsayilmistir. Sonik patlama analizlerinde

kullanilan akis analizi ve geometri bilgileri Cizelge 5.1°de verilmistir.

Cizelge 5.1 : DW modeli icin sonik patlama parametreleri

Parametre Deger Birim
Model Uzunlugu 6.9 ing
Model Olgegi  0.0065
Ucus Hizi 1.7 Mach
Ucus Irtifast 55000  ft
Ya1'<1¥1 alan bas.mg 248 ing
izi mesafesi

Sonik patlama analiz sonucunda elde edilen yerdeki basing izi Sekil 5.3’te

paylasilmistir.
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Sekil 5.3 : DW modeli yer basing izi karsilastirmasi

PANAIR programu ile elde edilen yakin alan basing dagilindaki salinimlara ragmen,
yerdeki basing izi incelendiginde sonuglarin birbirine ¢ok yakin oldugu goriilmektedir.
Bu durum sonik patlama hesaplamalar i¢in diisiik dogruluklu analizi programi olarak

PANAIR progrmainin kullanilabilecegini géstermektedir.

5.2.2 JAXA kanat govde geometrisi

Dogrulama caligmasi icin kullamilan bir diger geometri JAXA kanat govde
geometrisidir. Cizelge 5.2°de sonik patlama analizlerinde kullanilan parametreler
verilmistir.  Onceki analizlere benzer olarak standart riizgarsiz atmosfer kabulii
yapilmisti. DW geometrisinde oldugu gibi sonik patlama analizlerinde standart

atmosfer kosullar1 kullanilmig olup, riizgarsiz atmosfer kosulu varsayilmistir.

Cizelge 5.2 : JWB modeli i¢in sonik patlama parametreleri

Parametre Deger Birim

Model Uzunlugu  38.7  metre
Model Olcegi 1

Ucgus Hiz1 1.6 Mach

Ucus Irtifast 52000  ft
Yakin alan basing 98 635

.. . metre
izi mesafesi
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Sonik patlama analizlerinde kullanilan yakin alan basing dagilimlar1 Sekil 5.4’da

verilmistir.

0.02

su2

0.015 [ PANAIR |

0.01 |

0.005

o

-0.005

dP/P
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-0.02

-0.025 |

-0.03 y
0 0.5 1 1.5

x/L
Sekil 5.4 : JWB modeli yakin alan basing izi karsilagtirmasi

Sonik patlama analizi sonucu elde edilen yerdeki basing izi Sekil 5.5’da paylasilmistir.
Iki programdan elde edilen sonuclar incelendiginde 6n govdenin etkileri iki programda
benzer davranig gostermektedir. Ancak kanat ve arka govdenin etkileri PANAIR

programinda SU2 programinin aksine ters bir etki gostermektedir.

0.5

su2

0.4r PANAIR | 7

dP (psf)

05 . . i . . . i : . .
20 30 40 50 60 70 80 90 100 110 120 130
zaman (ms)

Sekil 5.5 : JWB modeli yer basing izi kargilagtirmasi
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Carpenter ve digerleri calismalarinda [62] JAXA kanat govde geometrisini kullanarak
PANAIR programi ile akis analizi gerceklestirmis ve sBoom programi ile sonik
patlama analizi gerceklestirmistir. JAXA kanat geometrisi i¢in [62] ile benzer sonuglar

elde edilmistir.
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6. UYGULAMALAR

Tez kapsaminda gelistirilen kabiliyetlerin uygulamas: iki ayn baghk altinda
sunulmustur.  Ilk uygulamada ses-iistii hizda ucan bir ugak geometrisinin kanat
ist-goriiniimil i¢in optimizasyon calismasi yapilmistir. Bes degisken ile temsil edilen
ucak kanadi icin co-Kriging yontemi ile ¢ok-dogruluklu optimizasyon caligsmasi
gerceklestirilmistir. ikinci uygulamada ise ¢ok-dogruluklu sonik patlama belirsizlik

analizi sunulmustur.

6.1 Cok-Dogruluklu Sonik Patlama Minimizasyonu

Geligtirilen kabiliyetlerin 6rnek bir probleme uygulamasi yapilmigtir. Bu kapsamda
cok-dogruluklu optimizasyon calismasi rijit bir ucak icin uygulanmstir.  Ilk
olarak optimizasyon degiskenleri olarak ucak geometrisi ele alinmistir. Sonraki
boliimde aciklandigi lizere bu ucak geometrisi parametrize edilmistir. Ardindan bu
parametreler kullanilarak bir baslangic geometrisi belirlenmistir. Daha sonra bu
baslangic geometrisi i¢in yiiksek ve diisiik dogruluklu akis ¢oziimleri yapilmis ve
kargilagtirilmigtir. Sonrasinda ¢ok-dogruluklu optimizasyon ¢alismasinda kullanilmak
izere cok-dogruluklu temsili model olusturulmasi anlatilmigtir. Son olarak kullanilan
optimizasyon yonteminden bahsedilmis ve uygulamasi anlatilmigtir.  Yapilan bu

calisma ATAA SciTech 2021 konferansinda sunulmustur [4].

6.1.1 Geometri tanimlamasi

Bir optimizasyon calismasinda geometrinin belirlenen amag¢ fonksiyonuna uygun
olarak optimize edilebilmesi i¢in belli parametreler ile ifade edilmesi gerekmektedir.
Ucak geometrisi lizerinde govde, kanat, motor yatagi gibi parcalarin matematiksel
olarak ifade edilebilmesi icin literatiirde birka¢ yontem bulunmaktadir. Bunlardan
birisi ise Simif-Sekil Transformasyonu (Class-Shape Transformation - CST) olarak

adlandirilan ve global olarak geometri tanimlamasina imkan sunan y&ntemdir [59].

63



Calismada bu yontemin tercih edilmesinin sebebi diger yontemlere kiyasla daha az
parametre ile daha biiyiik bir uzayin taranmasina izin vermesidir. En genel CST

denklemi, denklem 6.1°de verilmistir.

S(w) =R (W)S(w) + wir 6.1)

Bu denklemde C, sinif fonksiyonunu; S, sekil fonksiyonunu ifade etmektedir. Ny ve
N, ise sinif fonksiyonunun katsayilarini ifade etmektedir. Bu sinif fonksiyonu denklem

6.2°deki gibi tanimlanir.
Cha(w) = v (1—y)™ (6.2)

Sekil fonksiyonu da 6.3’teki gibi tanimlanmaktadir.

S(y) = iiAiSi(W) (6.3)

Bu denklemdeki A; degerleri sekil fonksiyonunun parametrelerini ifade etmektedir.
Optimizasyon asamasinda bu parametreler de§isken olarak kullanilmaktadir. CST
yontemi ile ilgili detaylar [59]’de bulunmaktadir.

Yapilan optimizasyon caligmasinda 6rnek bir ugagin kanadinin iist goriiniimiiniin
optimize edilmesi hedeflenmistir. Bunun i¢in CST yontemi kanat iist goriinlimiiniin
parametrize edilmesinde kullanilmigtir. Bahsedildigi iizere optimizasyon caligmasi
icin temsili model kurulmasi gerekmektedir. Artan degisken sayisina bagh olarak
temsili model kurulmasi i¢in gereken analiz sayis1 da artmaktadir. Bu nedenle mevcut

hesaplama kabiliyetleri dogrultusunda deg§isken sayis1 5 olarak belirlenmistir.

4.5 ! C’[‘

8 254 i Hiicum kenar erisi_ ~
/A (2 parametre ile temsil edildi.)

20 25 30 35 40
X ekseni. m

Sekil 6.1 : Kanat iist goriiniimiiniin parametreleri

Sekil 6.1°de goriilecegi iizere uc veter uzunlugu, uc veterin x ekseni dogrultusundaki

konumu, y ekseni boyunca veter uzunlugu dagilimi ve hiicum kenar1 egrisinin 2
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parametresi geometri degiskeni olarak ele alinmigtir. Burada hiicum kenar1 e8risinin
belirlenmesinde CST yontemi kullanilmigtir. Dikkat edilmesi gereken bir nokta ise
CST denklemlerinin x koordinati O ile 1 arasinda olacak sekilde tanimlanmaktadir. Bu
nedenle geometri iiretilirken ilk olarak mevcut katsayilara gore boyutsuz bir geometri
iiretilip ardindan x ve y koordinatlar1 uygun bir katsay1 ile carpilarak boyutlu hale
getirilmektedir. Kanadin kanat profili ve kok veter uzunlugu sabit tutulmaktadir.

Matematiksel olarak ucak kanadimi tanimladiktan sonra bu geometri tizerinden analiz
yapabilmek adina bu geometrinin herhangi bir geometri formatinda dosya olarak
olusturulmas: gerekmektedir. Bu islem ESP programi aracilig ile yapilmustir. Ilk
olarak belirlenen geometri parametrelerine gore kdkten uca kadar belli araliklarla lokal
veter uzunluklar1 hesaplanip, ardindan her bir y koordinatinda ESP icerisinden kanat
profili kod betigi ile olusturulmaktadir. Sonrasinda bu kanat profilleri birlestirilerek 3
boyutlu kanat yapisi elde edilebilmektedir. ESP igerisinde olusturulan geometri “.stp”
uzantili olarak kayit edilmektedir. Boylelikle uygun ag yapisi yazilimlari tarafindan
kullanilmaktadir. Sekil 6.2°de, ESP programinda alinan 6rnek bir geometri goriintiisii

bulunmaktadir.

Sekil 6.2 : ESP programindan alinan drnek bir geometri

Bu calismada sonik patlama minimizasyonu bir kanat-govde geometrisi igin
yapilmugtir. Sekil 6.3’de 2. AIAA Sonik Patlama Tahmin Calistayr’ndan alinan JAXA

kanat govde geometrisi verilmigtir.

Ik olarak ele alman JAXA kanat govde geoemetrisinin govdesi iizerinde bir
sadelestirme yapilmistir. Sekil 6.4’te gosterildigi tizere govdenin arka kismi i¢in bir

sadelestirilme yapilmistir. Bunu yapmaktaki asil neden HAD analizlerinde ag yapisi
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Sekil 6.3 : JAXA kanat govde geometrisi iist goriiniim

elemanlarinin sayisini olabildigince az tutmak ve diisiik dogruluklu analiz yonteminde

yontemden kaynakli dalgalanmalar1 engellemektir.

Sekil 6.4 : JAXA kanat govde geometrisi govde arkasi igin sadelestirme

Sadelestirilmis govde geometrisi yukarida agiklamasi yapilan kanat tamimlamasi ile

beraber kullanilmigtir. Kanadin parametrize edilmesi icin kullanilan de8iskenler ve
degisken araliklar1 Tablo 6.1°de verilmistir.

Cizelge 6.1 : Kanat geometrisi parametreleri

Parametre Isim Min Deger Max Deger
A Hiicum Kenar1 Egrisinin Birinci Katsayisi -10 0
Al Hiicum Kenar1 Egrisinin Ikinci Katsayisi -2 10
A Veter Dagiliminin Katsayisi 0 10
Cp Ug Veter Uzunlugu (metre) 1 3
Ug Veterin Hiicum Kenarinin
Xip X koordinati (metre) 30 =
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Tabloda verilen deg8isken araliklarina gore olusturulan bazi 6rnek kanat geometrileri

Sekil 6.5’te yer almaktadir.

A, =0 A1, =-2Acn=10Cp=1X,, =45 Alg, =9 A1, =-1Acyp =5Crp = 1.2 X;p, =37.5

Ay ==9 Ajgy =-1A4c4 =5Cp=12X,, =315 Algy =9 Ajgy =1 Acp =1Cp = 12X, =43.5

Sekil 6.5 : Geometri parametreleri ile olusturulmusg 4 tane 6rnek kanat

Sekilden de goriilecegi iizere belirlenen tasarim degiskenleri araliklart ile genig bir

geometri uzay1 taranabilmektedir.

6.1.2 Baslangic geometrisi

Yukarida verilen geometri tanimlamasina gore belli bir geometri segilerek baglangic
geometrisi olarak ele alinmistir. Asagidaki tabloda secilen baglangic geometrisinin

parametreleri bulunmaktadir.

Cizelge 6.2 : Baglangi¢ kanat geometrisi parametreleri

Parametre Isim Deger
Ain Hiicum Kenar1 Egrisinin Birinci Katsayisi -5
A Hiicum Kenar1 Egrisinin Tkinci Katsayist -1
A Veter Dagiliminin Katsayisi 1
Cp Ug Veter Uzunlugu (metre) 2.4
% Ug Veterin Hiicum Kenarinin 34

tp X koordinati (metre)
Cy Kok Veter Uzunlugu (metre) 21.43
b Yar1 Kanat Aciklig1 (metre) 4.578

Bu parametrelere gore olusturulmus baslangic geometrisi ESP programindan

olusturulmus ve Sekil 6.6’da verilmistir.
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Sekil 6.6 : Baglangi¢c geometrisi

6.1.3 Akis ¢oziimleri

Baglangi¢ geometrisi belirlendikten sonra optimizasyon c¢alismasina baglamadan 6nce
baslangic geometrisi i¢in akis analizleri yapilmistir. Yiiksek dogruluklu akis analizi
icin SU2-Euler coziiciisii kullanilmigtir. Boliim 4.1.1°de agiklanan hibrit ag yapisi
kullanilarak, akis analizi i¢in gereken ag yapisi olusturulmugtur. Olugsturulan ag
yapisi toplamda 8.335 milyon ag elemani icermektedir. Analizlerde JST ayriklastirma

ayriklastirma yontemi kullanilmistir. Yakinsama kriteri olarak 10~ secilmistir.

Diisiik dogruluklu akis analizlerinde PANAIR programi kullanilmistir.  Program
tamamen potansiyel akig ¢oziimii yaptig1 icin iki tane onemli varsayim yapmaktadir;
diisiik hiicum agis1 ve uzun-ince geometriler. Optimizasyon ¢alismasi 3 derece hiicum
acisinda yapildigi i¢in ve kullanilan ugak geometrisi uzun ince bir yapiya sahip oldugu
icin programin varsayimlarina uyulmaktadir. Base geometri toplamda 3871 adet panel
kullanilarak temsil edilmistir. Coziim yaklagik olarak 2.4 GHz cift cekirdekli islemci

ile 10 dakika siirmektedir.

Base geometri i¢in yiiksek ve diisiik dogruluklu akis coziiciilerinden elde edilen
sonuglar Sekil 6.7 ve 6.8°de paylasilmistir. Sekillerden de goriilecegi iizere basing

katsayis1 dagilimlar1 olduk¢a benzerdir.

Yiizey basing katsayilarnt kiyaslandiktan sonra aerodinamik katsayilar ve basing

izindeki farklar kiyaslanmigtir. Tablo 6.3 elde edilen de8erler verilmistir.
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Sekil 6.7 : Ust yiizey basing katsayis1 kiyaslamasi
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Sekil 6.8 : Alt yiizey basing katsayis1 kiyaslamasi

Cizelge 6.3 : Sonuglarin kiyaslanmasi

Yontem Cr Cp min Ap (psf)
Yiiksek Dogruluklu  0.07112 0.006561 -0.67701
Diigiik Dogruluklu ~ 0.069  0.006165 -0.79113
Yiizdelik Fark 2.8 6.2 16.2

Tablodan da goriilecegi lizere aerodinamik katsayilar olduk¢a yakin c¢ikmaktadir.
Ancak yakin alan basing degerinde belli bir fark vardir. Bu farkin nedeni asagidaki
Sekil 6.9°da goriillmektedir.

PANAIR’den alinan basing izinde bazi bolgelerde biiyiik dalgalanmalar goriilmektedir.
Bu dalgalanmalarin sebebi kullanilan yontemden kaynaklidir. Ozellikle kanadin ug

veterinin firar kenarinda tekillikler olugmaktadir.
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Sekil 6.9 : Yakin alan basing izi kiyaslamasi, 2 boy alti

6.1.4 Sonik patlama hesaplamalari

Sonik patlama hesaplamalar1 i¢in SBOOM yazilimi kullanilmigtir. sSBOOM yazilimim
PANAIR ve SU2 programlarina baglayan Python kodlar1 yazilarak optimizasyon
iterasyonu icerisinde kullanilmigtir. Calisma cok-dogruluklu gerceklestirildigi i¢in
akustik analizler icin de lineer ve lineer olmayan ¢oziiciiler kullanmilmistir. sBOOM
yazilim icerisinde lineer olmayan etkilerin kapatilmas: icin bir girdi parametresi
bulunmaktadir. Baglangi¢c geometrisi i¢in elde edilen yakin alan basing izleri SBOOM
yazilimina girdi olarak verilerek, 52000 ft irtifa i¢in sonik patlama analizi yapilmig ve

elde edilen yer imzas1 kiyaslamasi asagidaki sekilde verilmistir.

PANAIR programindan alinan yakin alan basing izinin icerisindeki salimimlarin yere
ulastiginda soniimlendigi goriilmektedir. Ancak bu salinimlar en yiiksek ve en diisiik

basing bolgelerinde sekilde goriildiigii iizere bir fark yaratmaktadir.

6.1.5 Cok-dogruluklu temsili model

Onceki boliimlerde yapilan optimizasyon calismasi icin gerekli olan geometri
tanimlamasi, optimizasyon degiskenleri, baglangic geometrisi ve baslangi¢c geometrisi
icin yapilan analizler verilmistir. Bu agamadan sonra optimizasyon algoritmas1 direkt

olarak analiz araclarina baglanarak geometri degiskenlerine gore bir optimizasyon

70



1 T T T T T T T

su2
0.8 PANAIR | 7

06

04

0.2}

0

dP (psf)

-0.2

-04

-06

-0.8

"o 20 40 60 80 100 120 140 160
zaman (ms)

Sekil 6.10 : Baglangic geometrisi yer imzas1 kiyaslamasi
calismas1 yapilabilmektedir. Ancak bu durumda optimizasyon algoritmasi tasarim
uzaym tararken cok fazla akis analizine ihtiya¢ duymaktadir. Bu nedenle direkt
analiz programlarini kullanarak yapilan bir optimizasyon ¢alismast ¢ok uzun siireler
gerektirmektedir. Bu baglamda kullanilan analiz programlart i¢in ¢ok-dogruluklu
temsili model kurulup, bu temsili model iizerinden optimizasyon calismasi yapmak

cok daha kisa siirelerde ¢caligmay1r miimkiin kilmaktadir. Bu boliimde optimizasyon

calismasi icin olusturulan ¢ok-dogruluklu temsili model anlatilmistir.

Calismada cok-dogruluklu modelleme konusunda farkli dogruluk seviyesine sahip
modellerin kombinasyonu i¢in Gaussian Processes (GP)’e dayanan co-Kriging
yontemi kullanilmaktadir. Ozellikle klasik Oto-Regresyon yontemi uzay havacilik
tasarim uygulamalarinda yaygin olarak kullanilmaktadir. Bu yontem dogrusal bir
oto-regresyon bilgi fiizyonu semasinm tanimlamaktadir. Kullanim kolaylig1 agsindan
da bir avantaja sahiptir. Bu nedenle co-Kriging yontemi ¢ok-dogruluklu temsili model

kurulmasi i¢in tercih edilmigtir.

Calismada c¢ok-dogruluklu temsili model olusturulmast icin co-Kriging yontemi
kullanilmaktadir.  Ancak burada diisiik dogruluklu temsili modelin hata orani
da dikkate alinmalidir.  Yiiksek dogruluklu analizlerin sayisi az tutulacagindan

dolay:r diisiitk dogruluklu temsili modeldeki hatalar ¢ok-dogruluklu temsili modeli
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direkt olarak etkilemektedir. ~Bu nedenle 725 adet diisiik dogruluklu analiz
gerceklestirilmistir. Bu analizlerin 300 tanesinin sonucu ile diigiik dogruluklu temsili
model kurulmus, 425 analiz sonucu ise test noktasi olarak kullamlmigtir. Bu 425
test noktasinda hata oranlarinin %1.5 degerini gectigi tasrim noktalar1 egitim veri
setine eklenerek temsili model yeniden egitilmistir. Sonug olarak 309 analiz sonucu
kullanarak hata payr %1.5 altinda olan bir diisiik dogruluklu temsili model elde
edilmigtir. Diisiik dogruluklu model elde edildikten sonra ¢ok-dogruluklu temsili
model olusturulmustur. Bu temsili modele yiiksek dogruluklu analiz sonuglari
eklenerek cok-dogruluklu temsili model elde edilmistir. Bu temsili modelde hata
pay1 en fazla %2 olarak bulunmugtur. %?2’lik hata i¢in 105 adet yiiksek dogruluklu
analiz sonucu kullanilmigtir. Eger bu temsili model sadece yiiksek dogruluklu analiz
programi ile kurulmak istenseydi ayn: hata orani i¢in yaklasik 300 analiz sonucu
gerekecekti. Dolayisiyla cok-dogruluklu temsili model yaklagimi %66 oraninda zaman
tasarrufu saglanmaktadir. Asagidaki tabloda diisitk dogruluklu ve cok-dogruluklu

temsili modeller i¢in hata oranlan verilmistir.

Cizelge 6.4 : Temsili model hata oranlar1

Diisiik Dogruluklu  Yiiksek Dogruluklu

Temsili Model Temsili Mode
Test noktalarindaki en biiyiik hata (%) 1.41 1.84
Tasarim uzayindaki en biiyilk MSE 6.2e-6 0.8e-5

6.1.6 Optimizasyon calismasi

Temsili model olusturulup test edildikten sonra optimizasyon algoritmasina baglanarak
optimizasyon calismasi gerceklestirilmistir. Takip eden boliimde uygulamaya yer

verilmistir.

6.1.6.1 Optimizasyon yontemi

Cok-amach optimizasyon problemlerinde, optimizasyon ¢aligmasi farkli epsilon (g;)
degerlerine gore gerceklestirilir. Bu yontemin bir dezavantaji & parametrelerine
karar vermektir. Her bir ama¢ fonksiyonu icin bu parametreler belirlenmelidir. Bu

calismada bu parametreler i¢in yaklasik degerler kullanilmistir. Bu yaklasik degerler
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daha once temsili modeller kurulurken belirlenmistir. Tez kapsaminda bahsedilen
bu optimizasyon yontemleri bir kod catisi altinda toplanmis, olusturulan altyapi ve

algoritma asagidaki semada verilmigtir.

Tasarim uzayinin belirlenmesi ve
tasarim degiskenleri igin
drneklemelerin yapilmasi

v v

e M e p
Dustk dogruluklu analiz Yuksek dogruluklu analiz
programi icgin veri seti programi icin veri seti
_ J _ J
A \ 4
e N e N
Belirlenen veri setindeki tasarim Belirlenen veri setindeki tasarim
degiskenleri icin dusik dogruluklu degiskenleri icin ylksek dogruluklu
analizlerin yapilmasi analizlerin yapilmasi
- J - J

v

Cok dogruluklu temsili
modelin kurulmasi
noktalari igin gok

v v v v
dogruluklu temsili

Baslangi¢ Baslangi¢ Baslangig Baslangig . model kullanilarak

Noktasi 1 Noktasi 2 Noktasi 3 Noktas! k DFP yontemi ile

optimizasyon
calismasi

Farkli baslangi¢

A

Optimizasyon sonuglarinin
degerlendiriimesi ve optimum
geometrinin belirlenmesi

Sekil 6.11 : Cok-dogruluklu optimizasyon icin akis semasi

6.1.6.2 Tek-amach optimizasyon

Bahsedilen optimizasyon yontemi programlandiktan sonra mevcut calisma igin
uygulanmustir. ik olarak tek amagh bir optimizasyon ¢alismasi yapilmistir. Burada
ama¢ fonksiyonu sonik patlama seviyesinin minimizasyonu olarak belirlenmistir.
Ayrica penalti fonksiyonu yontemine alternatif olarak Genetik Algoritma kullanilarak

da optimizasyon caligmasi yapilmis, elde edilen sonuglar kiyaslanmistir. Asagidaki
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denklem sisteminde optimizasyon problemi tanimlanmustir.

. AP(s)
min
s€S  APpuge
C
kisit gq(s) = D(s) —1<0, gi(s) eR
Dpase

Cr,
— base 1 < 0’ I 9’{
g2(s) G 'S 82(5)

S={seR, sp <s<sy}
s = (Ara1,A1a2,Ach: Cips Xip) (6.4)
—-10<A4;;1 <0
0<A;p<10
—2<A, <10
1<Gp<3

30 < X, <45

Optimizasyon ¢alismasinda ama¢ minimum sonik patlama degerini veren optimum
kanat geklini elde etmektir. Ancak caligma sonunda elde edilecek geometrinin
baslangic geometrisine gore daha az Cp, daha fazla Cp degerine sahip olmamasi
gerekmektedir. Bu nedenle denklem sisteminde de goriilecegi iizere bu aerodinamik
katsayilar kisitlama olarak verilmistir. Elde edilen optimum geometri parametreleri
asagidaki tabloda verilmistir. Tablodan da goriilecegi iizere sonik patlama degeri i¢in

%15 iyilesme elde edilmistir.

Cizelge 6.5 : Optimum parametreler ve sonuglar

Metrik  Baglangi¢c Degeri  Optimum Penalti1 DFP Yontemi  Optimum GA

ALl 5 -0.0004 -0.0901
Al -1 -0.0589 -0.5419
Ao 1 4.8183 4.4528
C,p(m) 2.4 1.0875 1.3917
X, (m) 34 34.2489 34.1102
Cr 0.0693 0.0693 0.0693
Cp 0.0066 0.0066 0.0066
AP(psf) -0.6745 -0.5673 -0.574

Sonuglardan goriilecegi lizere Genetik Algoritma kisitlamalara tam olarak uymaktadir.

Ancak penaltt DFP yontemi bazen kisitlamalar ihlal etmektedir. Bu nedenle penalti
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parametrelerinin secimine dikkat edilmelidir. Asagidaki sekilde elde edilen optimum

geometriler verilmistir.

ilk Geometri

Optimum GA

Pressure Coefficient

3.0e01
[0.2
Optimum DFP | o

o
0.1
3.0e01

Penalt1 katsayilarinin uygun ayarlamasi ile Genetik Algoritma ve penaltt DFP yontem-

Sekil 6.12 : Optimum geometriler

lerinin oldukg¢a yakin sonug verdigi goriilmektedir. Ancak kisitlamalarin sinirlarindaki
kiiciik degisiklikler amag¢ fonksiyonunu biiyiikk oranda degistirebilmektedir. Bu
nedenle penaltt DFP yontemi kisitlama sinirlarinin esnek oldugu problemler icin
daha iyi sonuclar verebilmektedir. Asagidaki tabloda ise elde edilen optimum
geometrileri temsili model yerine direkt olarak analiz programlan ile elde edilen

sonuglart goriilmektedir.

Cizelge 6.6 : Optimum geometri sonuglari

Cp Cp min AP (psf)
SuU2 0.07  0.0067 -0.5606
Genetik Algoritma PANAIR 0.0675 0.0062 -0.6576
Temsili Model 0.0693 0.0066 -0.574
Su2 0.0696 0.0067 -0.5513
DFP Penalt1 Yontemi PANAIR 0.0672 0.0063 -0.6579
Temsili Model 0.0673  0.0066 -0.5673
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6.1.6.3 Cok-amach optimizasyon

Sadece sonik patlama minimizasyonu i¢in tek amacl optimizasyon yaptiktan sonra
hem sonik patlama hem de aerodinamik verimlilik i¢in bir ¢ok-amacli optimizasyon
calismasi1 yapilmigtir. Bahsedildigi iizere epsilon yontemi kullanilmistir. Ucagin
tagimasi sabit kalacak sekilde esitlik kisitlamasi olarak verilmis, sonik patlama ve
stiriikleme katsayist minimize edilmeye calisilmistir. Problem asagidaki denklem

sisteminde tanimlanmustir.

min AP(s)
s€S APpuse
C
kisit gi(s) = M—8 <0, gi(s)eR

base

g (s) = % —1<0, gs)eR
S={seR, sy <s<sy}
s = (Ara1,A1a2,Ach Crp; Xip) (6.5)
—-10<A;,,1 <0
0<A;p<10
—2<A; <10
1<G,<3
30<X;, <45
Optimizasyon ¢aligmasi sonucunda sonik patlama ve siiriikleme icin bir Pareto Front

egrisi elde edilmis, Sekil 6.13 verilmigtir.

Sekilden goriilecegi lizere kanat ucu veter uzunlugu ve ok acisi arttikca yerdeki sonik
patlama etkisi de artmaktadir. Ancak bu parametrelerin artmasi ile siiriikleme katsayisi
azalmaktadir. Sonug olarak rijit geometri kabulii ile bir kanat gévde konfigiirasyonu

icin sekil optimizasyonu yapilmistir.
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min AP

-0.66
0.006425 0.006475 0.006525 0.006575 0.006625

Cp
Sekil 6.13 : Pareto front egrisi, 6rnek geometriler ile birlikte

6.2 Cok-Dogruluklu Sonik Patlama Belirsizlik Analizi

Havacilik alaninda bir c¢ok sertifikasyon siireci bulunmakta olup, bu durum
giivenilir ve saglam tasarimlar siireclerini gerektirmektedir. Giivenilir tasarimlarin
gerceklestirilmesi tasarim ve optimzasyon ¢alismalarina belirsizliklerin dahil edilmesi
ile miimkiin olabilmektedir. =~ Bundan dolay1 bu c¢alismada ilerde optimizasyon
calismalarimiza entegre etmek icin ve c¢ok-dogruluklu temsili modelleme ve
analiz kabiliyetlerimizi gostermek icin ¢ok-dogruluklu belirsizlik analizi problemi
ele alimmistir. Bu calismada c¢ok-dogruluklu sonik patlama belirsizlik analizi
gerceklestirilmigtir. Belirsizlik analizi JAXA kanat govde geometrisi i¢in yapilmis
olup, CFD ve sonik patlama analizlerindeki belirsiz parametreler kullanilarak sonik
patlama degerindeki belirsizlikler incelenmistir.  Calisma AIAA Aviation 2021

konferansinda sunulmustur [63].

6.2.1 Problem tanim

Calismada HAD analizlerinde kullanilan Mach sayisi ve hiicum agisi, sonik patlama
hesaplarinda kullanilan yerin irtifasi ve yerin yansitma faktorii belirsiz parametre
olarak kullanilarak ¢ok disiplili ve dogruluklu belirsizlik analizi ger¢eklestirilmistir.

Belirsiz degiskenlerin istatistiksel degerleri Tablo 6.7°de verilmistir.
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Cizelge 6.7 : Belirsiz degiskenlerin istatistikleri

Belirsiz Degisken Istatistik

Hiicum agis1 (°) 4~ (3.07,0.1%)
Mach Sayist N~ (1.6,0.0016%)
Yansitma faktorii % ~ (1.8,2)

Yerin irtifas1 (f1) % ~ (0,5000)

Tablo 6.7°de paylagilan belirsiz degiskenler icin belirlenen deger araliklarinda
diisitk dogruluklu analiz icin 140, yiiksek dogruluklu analiz i¢in 70 Ornekleme
yapilmisti.  Ornekleme yontemi olarak tasarrm uzaym doldurma bagarisindan
dolayr Halton drnekleme yontemi kullanilmistir. Belirlenen 6rnekleme noktalarinda
analizler yapilarak, temsili modelleri kurmak i¢in gereken veri-seti olusturulmustur.
Olusturulan veri seti kullanilarak cok-dogruluklu Monte Carlo ve Polinom kaos
genigleme yontemleri ile JWB geometrisi icin sonik patlama belirsizlik analizi
gerceklestirilmistir. Takip eden boliimlerde sirasiyla ¢ok-dogruluklu Monte Carlo
ve cok-dogruluklu PCE yontemleri ile gergeklestirilen belirsizlik analizlerine yer

verilmigtir.

6.2.2 Cok-dogruluklu Monte Carlo yontemi ile belirsizlik analizi

MFMC tahmini i¢in, belirlenen biitce igerisinde denklem 2.44 minimize edilerek, m
ve o parametrelerinin hesaplanmasi gerekmektedir. MFMC yénteminin belirlenen
biitce icerisinde yiiksek ve diisiik dogruluklu analizin ka¢ defa kullanilacaginin
belirlenebilmesi i¢cin ydntemlerin analiz siirelerinin (maliyetlerinin) programa ver-
ilmesi gerekir. JWB geometrisi icin yapilan analizler referans alindiginda SU2 ve
Panair programlarinin bagil hesaplama siireleri/maliyetleri sirasiyla 1 ve 0.01 olarak
belirlendi. Bu maliyet degerleri kullanilarak farkli biitce degerleri icin MFMC yontemi
ile belirsizlik analizi gergeklestirildi. Degisen biitce degerine bagli olarak hesaplanan

ortalama ve varyans degerleri Sekil 6.14 ve 6.15’te verilmistir.

Diisiik biitceli cok-dogruluklu tahminlerde, yontem az sayida yiiksek dogruluklu
analiz sonucundan yaralanmaktadir. Bundan dolay:1 yiiksek dogruluklu analizin
gerceklestirildigi degiskenlerin tasarim uzayindaki konumuna baghh olarak MF

tahminde yiiksek degisimler goriilebilmektedir. Bundan dolay1 herbir biitce degeri icin
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Sekil 6.14 : Degisen biitce degerlerine bagli MEMC ortalama tahmini
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Sekil 6.15 : Degisen biit¢e degerlerine bagli MFMC varyans tahmini

MFEMC analizi 100 defa tekrarlanmigtir. Sekil 6.14 ve 6.15°te, 100 tekrar sonucunda
elde edilen tahminlerin ortalamasi kirmizi ¢izgi ile gosterilmistir. Ayrica tekrarlardaki
minimum ve maksimum tahmin degerileri de mavi cizgiler ile belirtilmistir.
Sekillerden de goriildiigii gibi, biitgenin artmasina bagli olarak tahmin degerlerindeki
sapmalar azalmaktadir. Ayrica biitcenin artmasi ile MFMC tahmin degerleri MC
tahminlerine yakinsamaktadir. Ele alinan problem i¢in biitce degerinin 500’den biiyiik
oldugu durumlarda MFMC yontemi, 107 6rnekleme ile hesaplanan MC yontemi

sonucuna ¢ok yakin sonuglar vermektedir.
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Cizelge 6.8 : Degisen biitge degerlerine bagli olarak MFMC tahmini ve kullanilan
analiz sayilari.

Biitce (p) 350 100 250 500 1000 MC

Yiiksek Dogruluklu 86 215 430 861 le+7
Analiz Sayisi

Diisiik Dogruluklu

. 694 1389 3473 6946 13893 -
Analiz Sayist

Ortalama (dB) 83.0600 83.0675 83.0663 83.0699 83.0704 83.0702
Standart Sapma (dB) 0.8678  0.8496  0.8522  0.8487 0.8485  0.8475

MEMC Yonteminin 939 6841 7.650 8045 15960 4710
Hesaplama Siiresi(s)

Degisen biitce degerleri icin MFMC tahmini ve kullanilan analiz sayilar1 Tablo
6.8’de verilmistir. ~ Sonuglardan goriilmektedir ki, MFMC yontemi az sayida
yiiksek dogruluklu analiz sonucu ile MC yontemine yakin sonuglar vermektedir.
Ancak, artan biitge ile kullanilan yliksek dogruluklu analiz sayisi1 artmaktadir ve
bu durum MFMC tahminlerini daha giivenilir yapmaktadir.  Temsili modelin
kurulmas1 ve belirsizlik nicelemesinin gerceklestirilme siirelerinin toplami Tablo
6.8’de verilmis olup, belirsizlik analizi sonu¢larinin 10-15 saniye gibi kisa bir siirede

elde edilebilmektedir.

—o— Monte Carlo
N % Cok-dogruluklu MC

102k
w
%)
=
£
E . 3
<10
l_

104+

10° 102 108 104

Hesaplama Butgesi (p)
Sekil 6.16 : MC ve MFMC tahmininin MSE karsilastirmasi

MEMC yoéntemini MC yontemi ile kiyaslamak i¢in, farkli sayida yiiksek dogruluklu
analiz sonucu kullanilarak MC tahminleri yapilmistir. Degisen biitgeye bagli olarak

elde edilen MC ve MFMC tahminleri icin 107 6rnekleme ile elde edilen MC sonuglari
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dogru sonu¢ kabul ederek MSE degerleri hesaplanmistir. Sonuglar Sekil 6.16°da
verilmistir. Sonuglardan da goriilmektedir ki, az sayida yiiksek dogruluklu analiz ile

MFMC yoéntemi daha giivenilir sonuglar vermektedir.

Karsilagtirma calismalarini yapabilmek i¢in bu ¢alisma diigiik ve yiiksek dogruluklu
analizlerden elde edilen veri setlerine PCE yontemi ile temsili model kurularak

gergeklestirilmistir.

6.2.3 Cok-dogruluklu polinom kaos genislemesi yontemi ile belirsizlik analizi

Polinom kaos yonteminde problem boyutunun artmasina baglh olarak polinom ag¢ilim-
daki bilinmeyen katsayilarin eksponensiyel olarak artmasindan dolayi bilinmeyen
katsayilar1 bulmak i¢in gerekli olan veri sayisida artmaktadir. Bundan sebeple yiiksek
boyutlu problemler icin ¢ok fazla analiz sonucuna ihtiya¢ duymasindan dolay1 uygun
bir yontem degildir. Bu ¢alismada 4 degiskenli yani diisiik boyutlu bir problem ele

alinmuis olup, diisiik boyutlu bir problem icin PCE y&nteminin bagarisi aragtirilmistir.

PCE yontemini ¢cok-dogruluklu uygulamalarda kullanabilmek icin ekleme ve ¢arpim
diizeltme yaklasimi kullanilmis olup, yontemin detaylart Bolim 2’de agiklanmuisgtir.
Cok-dogruluklu PCE y6ntemi kurma siireci i¢in genel akis diyagrami Sekil 6.17°de
paylasilmistir.

Sekil 6.17°de agiklandig1 gibi oncelikle ¢ok sayida bulunan diisitk dogruluklu analiz
sonucu ile PCE yontemi ile temsili model kurulmaktadir. Ardindan tasarim uzayinda
yiiksek dogruluklu analizlerin yapildigi tasarim degiskenleri i¢in diisiik dogruluklu
temsili modelden diisiik dogruluklu analiz sonuglar1 tahmin edilmektdir. X,y tasarim
noktlarindaki yiiksek dogruluklu model sonucu ve diisiik dogruluklu temsili model
sonuglart kullanilarak modeller arasindaki fark ve oran vektorleri hesaplanmaktadir.
Hesaplanan fark ve oran vektorleri icin diisiik polinom derecesi i¢in PCE yontemi ile
temsili model kurulmaktadir. Cok-dogruluklu temsili modelin kurulmasi icin gerek
son parametre model etki katsayisi hesabi i¢in tasarim uzayinda bir ¢ok noktada fark
ve oran temsili modellerinin sonuglar1 hesaplanmaktadir. Bu sonuglar kullanilarak

denklem 2.40’daki gibi model etki katsayis1 hesaplanmaktadir. Model etki katsayisinin
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Cok sayida dusuk Az sayida yuksek
dogruluklu analiz sonucu dogruluklu analiz sonucu
Xz,«, Yif) (Xns: Yar)

Disik dogruluklu model igin PCE
yoéntemi ile temsili modelleme

(f lf(m))
iki modelin analiz sonuglarinda iki modelin analiz sonuglarinda
fark vektoriinii hesapla oran vektoriint hesapla
Yo = Yas — f1p(Xns) Yin = Yar/f1p(Xng)
Fark vektorl icin PCE yontemi ile Oran vektoru igin PCE yontemi ile
temsili modelleme temsili modelleme
faol2) fom(2)
Model etki katsayisini hesapla
=2
_ @)
-2 =2
(£ a(@)) + {f ()

Cok dogruluklu PCE modeli

Fmp(@) =41F 15(@) + Fal@)] + 1 = )F (@) f ()
Sekil 6.17 : Cok-dogruluklu PCE yontemi i¢in akis diyagrami

hesaplanmasi ile birlikte, ¢ok-dogruluklu PCE temsili modeli denklem 2.37°daki gibi
kurulmaktadir.

Polinom kaos yontemin problemi en iyi sekilde temsil edecek polinom derecesinin
belirlenmesi gerekir. Polinom derecesini belirlemek i¢in tek ve dogru bir yaklasim
olmayip, literatiirdeki bazi calismalar test noktalarindaki hata degerini referans
alarak polinom derecesini belirlerken bazi calismalar capraz dogrulama hatasi
(cross-validation error) degerleri referans polinom derecesine karar vermektedir. Bu
calisma kapsaminda temsili modeli kurmak i¢in kullanilan polinom derecesi test
ve egitim veri seti noktalarinda hesaplanan regresyon ve tahmin hata degerleri
referans alinarak belirlenmistir. Cok-dogruluklu temsili modelleme siireci igerinde ¢ok
sayida PCE yontemi ile temsili model kurulmakta olup, takip eden kisimlarda diisiik
dogruluklu analiz programi kurulurken takip edilen siire¢ aciklanmistir. Fark ve oran
vektorleri i¢inde temsili model kurulurken diigiik dogruluklu modelin kurulmasina

benzer bir siirec izlenmigtir.
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Diistik dogruluklu analiz programi ile toplamda 140 analiz yapilmisti. Bu 140
analiz sonucundan 100 tanesi egitim verisi, 40 tanesi test verisi olarak kullanilarak
diisik dogruluklu analiz programi icin farkli polinom derecesi i¢in temsili model
kurulmustur. Kurulan temsili modeller icin egitim verisini kullanarak regresyon hatast,
test verileri kullanilarak tahmin hatasi hesaplanmigtir. Hata metrigi olarak ortalama
bagil hata metrigi kullanilmigtir. Farkli polinom dereceleri icin elde edilen hata

degerleri Sekil 6.18’de verilmistir.

T T T T T T T ')
—%— Regresyon
—&— Tahmin
102 .
9 ° =
2
©
=
e
ke
e
=)
@
o
107 5 ; : : : : :
9 1.5 2 2.5 3 35 4 4.5 5

Polinom derecesi
Sekil 6.18 : Diisiik dogruluklu temsili modelin regresyon ve tahmin hatasi

Sekil 6.18’de gozlemlendigi gibi, regresyon ve tahmin hatalar1 polinom derecesi 4’e
kadar azalmaktadir. Polinom derecesinin 4’ten biiyiik bir deger almasiyla regresyon
hatas1 azalirken, tahmin hatast artis gostermektedir. Bundan dolay1 ¢ok-dogruluklu
temsili modelin kurulma siirecinde diisilk dogruluklu polinom derecesi 4 olarak
alinmustir ve 140 verinin tamamu ile temsili model kurulmustur. Fark ve oran vektorleri
icin temsili modelin kurulmasi siirecinde de benzer bir yol izlenmistir. Tahmin
ve regresyon hatalar1 referans alinarak fark vektorii icin kurulan temsili model igin
polinom derecesini 2 alinmasma oran vektorii i¢cin kurulan temsili model i¢in ise

polinom derecesinin 3 alinmasina karar verilmistir.
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Gerekli temsili modellerin kurulmasi ile birlikte c¢ok-dogruluklu PCE modeli
olusturulmustur. Kurulan ¢ok-dogruluklu temsili model kullanilarak tasarim uzayinda
107 farkli belirsiz degisken kombinasyonu igin tahmin gerceklestirilmistir. Elde
edilen tahminler kullanilarak istatiksel degerler hesaplanmigtir.  Aymi zamanda
cok-dogruluklu temsili model kurulurken kullanilan diisiik ve yiiksek dogruluklu
analiz sonuglar1 kullanilarak diisiik ve yiiksek dogruluklu temsili model kurulmustur.
Diisiik ve yiiksek dogruluklu temsili model icinde 107 analiz sonucu kullanilarak
belirsizlik analizi yapilmistir. Elde edilen diisiik, yiliksek ve cok-dogruluklu temsili

modeller ile elde edilen sonuclar Sekil 6.19°da verilmistir.

0.8 T T T T T T T T T

Diisuk dogrulukiu model
0.7 Yiiksek dogruluklu model
‘ Cok dogruluklu model

0.6

0.5

Olasilik
o
I

0.3

0.2

0.1

76 79 8 81 8 8 84 8 8 8 8
Giiriiltii (dB)
Sekil 6.19 : Sonik patlamadaki olasilik dagilim

Elde edilen istatiksel sonuglar Cizelge 6.9’da verilmistir.

Cizelge 6.9 : Sonik patlama degerindeki belirsizlik icin istatiksel degerler

Temsili Model Ortalama (dB) Standart Sapma (dB) Hesaplama Siiresi (s)

Diisiik dogruluklu 84.3606 0.5345 3.6
temsili model

Yiiksek dogruluklu 83.0702 0.8475 29
temsili model

Cok-dogruluklu 831606 0.8503 10.6

temsili model
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Sekil 6.19 ve Cizelge 6.9°da goriildiigii gibi, diisiik dogruluklu modelin ortalamasi
ve standart sapmasi yiiksek dogruluklu modelden ¢ok farkli olmasina ragmen, basit
bir diizeltme yaklasimi sonucu elde edilen ¢ok-dogruluklu temsili model yiiksek

dogruluklu temsili modele ¢cok yakin sonuglar vermektedir.

6.2.4 Cok-dogruluklu PCE ve MC yontemlerinin kiyaslanmasi

MFMC ve MFPCE yontemleri ile sonik patlama degerindeki belirsizlik igin
cok-dogruluklu belirsizlik analizi gerceklestirilmistir. Ayrica yiiksek dogruluklu analiz
sonuglart icin kurulan temsili model araciligiyla MC yontemi ile belirsizlik analizi
gerceklestirilmigtir. Karsilagtirma amaci ile elde edilen yontemlerin sonuglart Cizelge

6.10’da verilmistir.

Cizelge 6.10 : Yontemlerin kiyaslanmasi

Diigiik dog.  Yiiksek dog. Ortalama  Standart = Hesaplama

analiz sayis1  analiz sayis1 (dB) Sapma(dB)  Siiresi (s)
Monte Carlo - le+7 83.0702 0.8475 4.7
MEMC (p=500) 6946 430 83.0699 0.8487 15.9
MFPCE 70 140 83.1606 0.8503 10.6

MFEFMC ve MFPCE yontemleri ¢cok farkli yaklasimlar olup, cok-dogruluklu yontemler
arasinda farkli siniflandirmalar arasinda yer almaktadir. MFPCE yontemi fiizyon
yontemi olup, yontem sonunda ¢ok-dogruluklu bir temsili model kurulur. MFMC
filtreleme smifinda yer alan bir model yonetim algoritmasidir. MFMC yodnteminde
modeller arasindaki korelasyonun rehberliginde ve belirli bir biit¢e icerisinde
cok-dogruluklu modelin ortalama tahminindeki varyansi azaltilmasima dayanir.
MFPCE yonteminin aksine MFMC yonteminde bir temsili model olusturulmaz.
Yontemlerin yaklasimlar: her ne kadar farkli olsa da Cizelge 6.10’da goriildiigii gibi

iki yontemde MC sonuglarina yakin sonuglar vermektedir.

Temelde MFMC yontemi yiiksek boyutlu belirsizlik analizi igin gelistirilmis
bir yontemdir. MFPCE yontemi ise aksine diisiik boyutlu problemler igin
kullanilmaktadir. MFPCE yonteminin yliksek boyutlar kullanilmamasinin nedeni
boyutun artmasina bagli olarak modelin kurulmasi i¢in gereken analiz sayisinin

eksponensiyel olarak artis gostermesidir. Bu calismada diisiik boyutlu bir problem
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icin uygulama yapilmis olup, sonuclardan da goriildiigi gibi MFPCE yontemi
daha az sayida diisiik ve yiiksek dogruluklu analiz sonucu ile diizgiin bir tahmin
yapabilmektedir. MFMC yontemi ise daha fazla sayida diisiik ve yiiksek dogruluklu
analiz sonucu kullanmakta olup, bu durum MFMC yoénteminin diisiik boyutlu

problemler icin verimli bir yontem olmadig1 gostermektedir.
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7. OZET ve GELECEK CALISMALAR

Calisma kapsaminda ¢ok-dogruluklu temsili modelleme yontemlerinin ses-iistii ugak
optimizasyon c¢alismalarina entegresyonu sunulmustur. Cok-dogruluklu modelleme
temelli optimizasyon, belirsizlik analizi yontemlerinin tek dogruluklu temsili
modelleme yontemlerine gore kazanci degerlendirilmeye calisilmistir. Cok-dogruluklu
modelleme siirecine oncelikle analitik fonksiyonlar ile baglanmis, gelistirilen kodlar

anatilik fonksiyonlar iizerinden dogrulanmaisgtir.

Analitik denklemler iizerinden yontemlerin avantaj ve dezavantajlarinin aragtirilmasin-
dan sonra, ses-ilistli ucak kanadi optimizasyon calismasina gecilmistir. Calisma
kapsaminda ucak kanadimin st goriiniisii 5 degisken ile parametrize edilmistir.
Belirlenen tasarim uzayinda 5 degisken icin yapilan 6rneklemeler icin diisiik ve yiiksek
dogruluklu analizler gergeklestirilmistir. Olusturulan geometriler icin yapilan analiz
sonuglart kullanilarak co-Kriging yontemi ile temsili model kurulmustur. Kurulan
cok-dogruluklu temsili model kullanilarak optimizasyon ¢alismas1 gerceklestirilmistir.
Cok-dogruluklu temsili modelin kurulmasi siiresince 309 diisiik dogruluklu, 105 yiik-
sek dogruluklu analiz sonucu kullamilmistir. Diisiik dogruluklu temsili model kurmak
icin kullanilan analiz sayis1 referans alinarak, ¢ok-dogruluklu temsili modelleme
ile yaklasik olarak %66 zaman tasarufu saglandigir gozlemlenmistir. Optimizasyon
calismasinin ardindan sonik patlama belirsizlik analizi ele alinmistir. Sonik patlama
degerindeki belirsizligi arastirmak adina belirlenen 4 belirsiz degisken icin sonik
patlama degerindeki belirsizlik arastirllmistir. Belirsizlik analizi ¢ok-dogruluklu PCE
yontemi ile kurulan temsili model kurularak ve ¢ok-dogruluklu Monte Carlo yontemi
kullamlarak gergeklestirilmistir. Cok-dogruluklu PCE yonteminin ele alinan diisiik
boyutlu problemler i¢in daha verimli oldugu gozlemlenmistir. Cok-dogruluklu PCE
yontemi ile temsili modelin kurulmas: siiresince 140 diisiik, 70 yiiksek dogruluklu

analiz kullanilmis olup, kullanilan analiz sayilar1 referans alindiginda ¢cok-dogruluklu

87



temsili modelin bu problem icin yaklasik olarak %50 mertebelerinde zaman kazanci

sagladig1 gozlemlenmistir.

Yiiksek lisans tez calismasi kapsaminda ¢ok-dogruluklu modelleme yontemlerinin
cok disiplinli ses-listii optimizasyon ve belirsizlik analizi siirecine entegresyonu ele
alimmistir. Cok-dogruluklu modelleme yonteminin, tek dogruluklu modelleme yo6n-
temine gore zaman ve hesaplama kazanci sunulmaya calisgilmistir. Gelecek caligmalar
olarak, cok-dogruluklu modelleme yontemlerinin belirsizlik altinda gergeklestirilen
optimizasyon calismalarina verimli bir sekilde entegrasyonu planlanmaktadir. Ayrica
cok-dogruluklu modelleme yontemlerinin yiiksek boyutlu problemlerdeki basarilarinin

arastirtlmasi hedeflenmektedir.
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