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YüKSEK LİSANS TEZİ
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Tahir Tekin FİLİZ, a M.Sc. student of ITU Graduate School student ID 503171129,
successfully defended the thesis entitled “EFFECT OF DYNAMIC CONTACT AN-
GLE MODELS ON THE DROPLET SPREAD SIMULATIONS”, which he prepared
after fulfilling the requirements specified in the associated legislations, before the jury
whose signatures are below.
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EFFECT OF
DYNAMIC CONTACT ANGLE MODELS

ON THE DROPLET SPREAD SIMULATIONS

SUMMARY

Many industrial processes such as inkjet printing, spray coating and spray cooling,
involve the liquid droplets impacting onto solid surfaces. Hence, an accurate
estimation of the impact of a droplet onto a solid surface is of great importance
because unexpected behaviors of droplets may result in bad quality products or
services. In order to make an accurate numerical simulation, one needs to solve many
challenging problems such as interface localization and the estimation of dynamic
contact angle (DCA). There are many techniques developed for the localization
of the phase interface in two phase flows. The most popular techniques are
the level set, the volume of fluid (VOF) and the Lagrangian methods. The
Lagrangian methods are computationally expensive, and the level set method is not
mass conservative. Therefore, in this work we have selected the VOF method
and conducted our simulations using two different interface capturing schemes, an
algebraic algorithm named Multidimensional Universal Limiter for Explicit Solution
and a geometrical algorithm named IsoAdvector. We have compared four DCA
models, the Quasi-Dynamic, the Shikhmurzaev, the Kistler and the Bracke models. We
have used OpenFOAM, an open source computational fluid dynamics (CFD) software
as our computation platform. We have implemented the DCA models and used them
as a boundary condition for the phase fraction equation, which is used by the VOF
method in order to locate the phase interface. Numerical simulations were compared
with five different experimental results. The performances of the simulations were
evaluated using two metrics, the mean spread factor error and the maximum spread
diameter error. Even though the performances of the DCA models are similar, for
higher Reynolds numbers, the Shikhmurzaev model gave the most accurate results,
whereas the Kistler model and the Quasi-Dynamic model gave better estimations in
low Reynolds numbers. We’ve also concluded that the IsoAdvector scheme is not
suitable for the droplet impact simulations with low Weber numbers.
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DİNAMİK TEMAS AÇISI
MODELLERİNİN DAMLACIK YAYILMASI

BENZETİMLERİNE ETKİSİ

ÖZET

Sıvı damlacıklarının katı bir yüzeye çarpması; mürekkep püskürtmeli baskı, sprey
kaplama, püskürtmeli soğutma, tarım ilaçlarının uygulanması gibi birçok endüstriyel
işlemin etkili olarak gerçekleştirilmesinde büyük önem taşır. Örneğin, sprey kaplama
işleminde hava baloncuğu oluşumu ürünün kalitesini düşürmekle beraber, eğer
damlacıkların davranışları modellenebilirse ortadan kaldırılabilecek bir sorundur.
Diğer bir örnek ise, hem kağıda yazdırma işlemlerinde, hem de organik ışık yayan
diyot (OLED) panellerinin üretiminde kullanılan mürekkep püskürtmeli yazdırma
işlemi, damlacıkların ıslattığı alandan direkt olarak etkilenmektedir. Bu nedenle,
bir damlacığın katı bir yüzey üzerindeki davranışının doğru bir şekilde tahmin
edilmesi, endüstriyel ürünlerin kalitesinin artmasına olanak sağlayacaktır. Bu
süreçlerin iyileştirilmesi için yapılan fiziksel deneyler meşakkatli ve pahalı olduğu için,
damlacıkların sayısal benzetiminin yapılması sıklıkla tercih edilen bir yöntemdir.

Bir sıvı damlasının katı bir yüzey üzerinde yayılması viskoz, atalet ve temas hattı
kuvvetlerinin etkisi altında gerçekleşen, oldukça dinamik ve karmaşık bir olaydır.
Yayılım olayını etkileyen birçok faktör bulunmaktadır. Bunlardan bazıları damlacığın
katı yüzeye çarpma anındaki çapı ve hızı, yüzey pürüzlülüğü, basınç, viskozite,
katı yüzeyinin ıslanabilirliği, Reynolds sayısı ve Weber sayısı olarak sıralanabilir.
Reynolds sayısı atalet kuvvetlerinin viskoz kuvvetlere oranı, Weber sayısı ise atalet
kuvvetlerini yüzey gerilimine oranı olarak tanımlanır.

Yukarıda bahsi geçen sebeplerden ötürü bir damlacığın sayısal benzetiminin yapılması
oldukça zor bir süreçtir ve çözülmesi gereken bir çok problem barındırır. Bu
problemlerden bazıları faz ara yüzeyinin yakalanması/izlenmesi, dinamik temas
açısının tespiti, yüzey gerilmesinin modellenmesi ve temas hattı hızının belirlenmesi
olarak sıralanabilir.

İki fazlı akışlarda faz arayüzünün lokalizasyonu için geliştirilmiş birçok teknik vardır.
En popüler teknikler seviye kümesi (level set), akışkan hacmi (volume of fluid,
VOF) yöntemi ve Lagrange yöntemleridir. Lagrange yöntemleri kullanılarak yapılan
benzetimler diğer yöntemlere kıyasla oldukça yüksek bir hesaplama gücü gerektirir ve
seviye kümesi yönteminde kütle kaybı (hesaplama süresi ilerledikçe sıvı kütlesinin gaz
kütlesine dönüşmesi) sorunları mevcuttur. Bu sebeplerden ötürü bu çalışmada yapılan
sayısal benzetimlerde VOF metodu kullanılmıştır.

VOF yönteminde farklı akışkan fazları hacim kesri (volume fraction) fonksiyonu
ile takip edilir. Hacim kesri, bir hesaplama hücresinde bulunan akışkanın
kompozisyonunu belirten bir fonksiyondur. Örneğin bir hücre tamamen bir akışkan
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ile doluysa, hacim kesri fonksiyonu 1 değerini alır, eğer ki o hücrede o akışkan mevcut
değilse 0 değerini alır. Dolayısıyla, hacim kesri fonksiyonunun 0 ile 1 arasında olması,
hücrede akışkan ara yüzeyi varlığını göstermektedir. Her bir zaman aralığında hacim
kesri denklemi de korunum denklemleriyle birlikte çözülüp ara yüzeyin adveksiyonu
sağlanır.

Faz ara yüzeyinin keskin olmasını sağlamak için özel ayrıklaştırma yöntemlerinin
kullanılması gerekir. OpenFOAM’da kullanılan standart metot, cebirsel bir metot
olan Multidimensional Universal Limiter for Explicit Solution (MULES) metodudur.
Ancak MULES metodu kullanıldığında ara yüzey birkaç hesaplama hücresine yayılır.
Bu problemi ortadan kaldırmak için, geometrik bir metot olan IsoAdvector metodu
önerilmiştir. Bu çalışmada hem MULES hem de IsoAdvector metotları kullanılarak
sayısal benzetimler yapılmıştır.

Damlacıkların sayısal benzetiminin isabetliliğini etkileyen bir diğer faktör ise temas
açısının modellenmesidir. Temas açısı, iki karışmaz akışkanın duvarla temas ettiği
noktada duvar ile akışkan ara yüzeyi teğetinin yaptığı açıdır. Akışkanların hareketsiz
olduğu durumda, bu açı akışkan-duvar sisteminin bir özeliğidir, ve bu durumda temas
açısı, denge temas açısı olarak adlandırılır.

Akışkanların hareket ettiği durumda ise temas açısı yalnızca akışkan-duvar sistemine
değil aynı zamanda akışa da bağlıdır ve dinamik temas açısı olarak adlandırılır.
Hareketli durumda gözlemlenen dinamik temas açısının davranışı henüz tam olarak
anlaşılamamış olsa da geçtiğimiz on yıllarda araştırmacılar pek çok dinamik temas
açısı modeli geliştirmişlerdir. Pek çok dinamik temas açısı modeli, dinamik temas
açısını temas hattı hızının ve kapiler sayısının bir fonksiyonu olarak ifade eder.

Bu çalışmada; Shikhmurzaev, Kistler ve Bracke dinamik temas açısı modellerini ve
Sanki-Dinamik temas açısı modeli kullanılarak, literatürde bulunan beş farklı damlacık
çarpması deneyinin sayısal benzetimleri yapılmıştır. Deneylerin Weber sayıları 1.81
ile 93 aralığında, Reynolds sayıları ise 36 ile 4010 aralığındadır. Hesaplama platformu
olarak açık kaynaklı bir hesaplamalı akışkanlar dinamiği yazılımı olan OpenFOAM
programı kullanılmıştır. Her bir dinamik temas açısı modeli faz kesri denklemine
bir sınır şartı olarak verilmiştir. Benzetimlerin performanslarını değerlendirmek
için ortalama yayılma faktörü hatası ve maksimum yayılma çapı hatası ölçütleri
kullanılmıştır.

Sonuçta tüm dinamik temas açısı modellerinin deneylerle uyumlu sonuçlar verdiği
gözlemlenmiştir. Tüm benzetimlerden elde edilen ortalama yayılma faktörü hatası
en düşük %1.34, en yüksek %11.33 olarak bulunmuştur. Benzer olarak, maksimum
yayılma çapı hatası %1.24 ile %11.31 aralığında bulunmuştur.

Düşük Reynolds sayısına sahip deneylerde, benzetimlerin maksimum yayılma çapını
deneysel sonuçlara oranla daha düşük tahmin ettiği görülmüştür. Yüksek Reynolds
sayısına sahip deneylerde ise maksimum yayılma çapı gerçekte olduğundan daha
yüksek bulunmuştur.

Dinamik temas açısı modellerinin performansları benzer olsa da yüksek Reynolds
sayılarında Shikhmurzaev modeli en doğru sonuçları verirken, Kistler modeli ve
Sanki-Dinamik model düşük Reynolds sayılarında daha iyi tahminler vermiştir.

Ayrıca, IsoAdvector’ın düşük Weber sayılarına sahip damlacık etkisi simülasyonları
için uygun olmadığı görülmüştür.
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Bu çalışmanın ilk bölümünde damlacık çarpması olayı, bu olaya etki eden faktörler
ve literatürde damlacık çarpması benzetimlerinde kullanılan farklı yöntemlerden
bahsedilmiştir. Çalışmanın ikinci bölümü iki fazlı akış denklemlerinin türetilmesine
adanmıştır. Üçüncü bölümde önceki bölümde elde edilen denklemler kullanılarak
elde edilen VOF metodu formülasyonu ayrıntılı olarak incelenmiştir. Dördüncü
bölümde temas açısı kavramı açıklanmış ve bu tezde kullanılan dinamik temas açısı
modelleri tanıtılmıştır. Beşinci bölümde benzetimi yapılan deneyler ve benzetim
ortamı tanıtılmıştır. Altıncı bölümde benzetim sonuçları verilmiş ve sonuçlara dayalı
bulgular tartışılmıştır. Son bölümde ise çalışmadan elde edilen genel sonuçlar
verilmiştir.
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1. INTRODUCTION

Many industrial processes and products such as inkjet printing, spray cooling, trickle

bed reactors, fuel injection and spray painting [2–4], involve liquid droplets impacting

onto a solid surface. It is important to estimate the outcomes of the wetting because it

has a significant impact on the quality of the products of these industrial processes. For

instance, in inkjet printing, which is not only used for printing on paper, but also used

in the organic light-emitting diode (OLED) technology [2], an accurate estimation of

the area wetted by the droplet is of crucial importance. Another example is droplet

splashing in spray painting, where it is aimed to avoid air entrainment as much as

possible [5]. Generally, the experiments conducted to improve these procedures are

time consuming and expensive. An alternative to the tedious trial and error procedures

is numerical simulations.

Spreading of a droplet is highly dynamic and complex phenomenon which is governed

by viscous, inertial and contact line forces. It is affected by many factors such

as initial droplet diameter and velocity, surface roughness, pressure, viscosity and

wettability [6]. Wettability, as the name suggests, is the measure of a liquid’s ability

to wet the solid surface [7] and it is a result of the balance between adhesive and

cohesive forces [8]. Wettability is quantified by the equilibrium contact angle, θE ,

which is the angle between the surface of the solid and the free surface of the liquid.

Low θE corresponds to higher wettability and, similarly, high θE corresponds to lower

wettability as shown in Figure 1.1. If the contact angle is greater than 90◦ the surface is

said to be hydrophobic, and if the contact angle is less than 90◦ the surface is said to be

hydrophilic [9]. The equilibrium contact angle, θE , is a thermodynamic property of the

liquid-gas-solid system [10]. However, when the contact line, which is the intersection

of the liquid’s free surface and the surface of the solid, is in motion, the system is no

longer in an equilibrium state and the contact angle diverges from θE . In such cases

the angle between the surface of the solid and the free surface of the liquid is called

the dynamic contact angle (DCA).

1



Figure 1.1 : Hydrophobic and hydrophilic surfaces.

There are many challenging factors in the numerical simulation of droplet spreading,

such as localization of the phase interface, determining the contact line velocity and

estimation of the contact angle. The methods proposed to solve these problems are

introduced below.

There are two groups of interface localization techniques that are widely employed

in flow problems with moving interfaces, namely interface tracking and interface

capturing methods. Interface tracking methods are used in numerical simulation

of droplet impact by many researchers [11–16]. In the interface tracking methods

Lagrangian marker particles are used to track the interface explicitly. This explicit

tracking of the interface can be very accurate since a large number of particles can

be used, and since the interface is accurately estimated, the errors regarding surface

tension are reduced [3]. However, these methods have issues with handling topological

changes such as bubble entrapment or break up of droplets due to the construction of

the interface by interpolating the Lagrangian marker particles [3]. Besides, due to the

high number of particles, Lagrangian techniques are computationally expensive.

In the interface capturing methods, the interface is given implicitly by an auxiliary

function. Two of the widely used interface capturing techniques in the droplet spread

are the volume of fluid method (VOF) [4, 17–23] and the level set method [24–27].

These methods are popular among researchers because of their low computational cost.

The VOF method locates the interface using the volume fraction function where a value

of unity or zero indicates the presence or absence of a phase, respectively, and the

values between 1 and 0 indicates the presence of the interface. In the level set method

the interface is located using a signed distance function: Negative and positive values

of this function distinguish the fluids, and zero level set indicates the boundary between

fluids. The advantage of the VOF method over the level set method is while the mass

2



cannot be conserved in the level set method, in the VOF method it can. On the other

hand, the VOF method is more prone to creating spurious currents compared to level

set method. A schematic representation of Lagrangian, VOF and level set methods is

shown in Figure 1.2

Figure 1.2 : Interface localization [1]: (a) Lagrangian. (b) VOF. (c) Level set.

Another important challenge is the estimation of the contact line velocity, which is also

important for the calculation of the contact angle since the most of the DCA models

express the contact angle as a function of the contact line velocity. In the Lagrangian

techniques, the velocity of the marker particles can simply be used as the velocity of

the contact line. In the Eulerian approach, many methods have been developed such

as using the cell center velocity closest to the contact line [24], differentiation of the

wetted radius [28], shear strain rate [29] or some complex set of equations.

Finally, one of the most important challenges is the estimation of the contact angle.

Even though the earlier numerical studies on the problem didn’t take the contact angle

into account [30] or only considered a static contact angle [31], it is obvious that a

DCA model is able to explain the phenomena more accurately since the problem itself

is highly dynamic. Therefore, incorporating the DCA into the solution yields more

robust results.

There are numerous proposed models to calculate the DCA [2, 32–36]. Besides, many

parameters affect the outcome of these models. In this study, we have compared

various DCA models with different flow settings against several experiments in order

to evaluate their performances.
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2. CONSERVATION EQUATIONS OF TWO-PHASE FLOW

The spreading of a droplet involves a liquid phase and a gaseous phase surrounding the

liquid which is generally air. In our case, two immiscible, incompressible fluids are

considered. We assume that phases are isothermal, so we are not concerned with the

energy conservation.This section is devoted to present conservation equations of two

phase flow, and it serves as a basis while deriving the VOF equations in the next section.

We have used Sabisch’s [37], Klitz’s [3], Graveleau’s [38] and Whittaker’s [39] works

as main resources while writing this and next section.

2.1 Flow Domain

Let us describe the open flow domain as Ω ⊂ R3 and its boundary as Γ. Then, the

closed flow domain is denoted as Ω=Ω∪Γ. We can now define two open subdomains,

Ω1 ⊂Ω and Ω2 ⊂Ω for each phase such that

Ω1∪Ω2 = Ω (2.1)

Since the two phases are assumed to be immiscible,

Ω1∩Ω2 =∅ (2.2)

the interface between phases is defined as

Γ f = Ω1∩Ω2. (2.3)

and the boundaries of each phase are

Γk = (Ωk∩Γ)∪Γ f (2.4)

where k = {1,2} denotes different phases. Note that even though Ω is not a function

of time, Ω1, Ω2 and Γ f are time dependent. An illustration of Ω is given in Figure 2.1.
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Figure 2.1 : An illustration of Ω.

2.2 Phase Tracking

A phase indicator function, 1k, that specifies if a position vector, ~x, is located at the

domain of fluid k or not can be defined as

1k(~x, t) =

{
1 ~x ∈Ωk(t)
0 otherwise.

(2.5)

We can then derive following relations:

1
2
k = 1k (2.6)

and

1k(1−1k) = 0 (2.7)

Any flow variable, β , such as velocity or viscosity can be decomposed into two parts

by making use of the indicator function such that:

β = 11β1 +12β2. (2.8)

2.3 Mass Conservation

By making use of equation (2.8), we can write velocity and density of the two phase

flow as

u = 11u1 +12u2 (2.9)
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and

ρ = 11ρ1 +12ρ2 (2.10)

Then, we can write the equation of mass conservation as

∂ (11ρ1 +12ρ2)

∂ t
+∇(11ρ1~u1 +12ρ2~u2) = 0 (2.11)

for the domain Ω. If a subdomain, for example Ω1, is considered; substituting 11 = 1

and 12 = 0 into the above equation yields continuity for phase 1.

∂ρ1

∂ t
+∇(ρ1~u1) = 0 (2.12)

It is straightforward that for the phase 2, the continuity is

∂ρ2

∂2
+∇(ρ2~u2) = 0 (2.13)

Now that we have two equations for two phases, a boundary condition is needed to be

defined at the phase interface.

At the interface, the mass conservation requires

ρ1(~u1−~u f ) ·~n f = ρ2(~u2−~u f ) ·~n f at Γ f (2.14)

where u f denotes the velocity of the phase interface and~n f denotes the normal to the

interface. Besides that, if the interface is assumed to be impermeable, mass flux of a

phase in the interface should be zero.

ρk(~uk−~u f ) ·~n f = 0 at Γ f (2.15)

Combining this with the equation (2.14)

~uk ·~n f =~u f ·~n f at Γ f (2.16)

and replacing u f with uk yields

~u1 ·~n f =~u2 ·~n f at Γ f (2.17)
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2.4 Momentum Conservation

Assuming the viscosity and density are constant for each phase, conservation of

momentum equation can be written in a similar fashion to conservation of mass for

each phase separately.

ρk
∂~uk

∂ t
+ρk(~uk∇)~uk = ∇TTT k +ρk~g (2.18)

Here, TTT k is the stress tensor defined as TTT k = Pk + µk[∇~uk +(∇~uk)
T ] where Pk is the

pressure of phase k, µk is the dynamic viscosity of the phase k,~g is the external volume

forces and the superscript T denotes the transpose.

Boundary condition for the momentum equation is obtained by the stress balance at

the interface:

~n f · (TTT 1−TTT 2) = σ ~n f (∇~n f ) (2.19)

The term in the right hand side accounts for surface tension, where σ is the surface

tension coefficient between phases.
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3. VOLUME OF FLUID EQUATIONS

In section 2, the conservation equations for two phase flow are derived. Those

equations are defined in continuous space and time, therefore solving them

computationally requires infinite memory and computation power. Hence, a discrete

approximation of the conservation equation is required.

Firstly proposed by Hirt and Nichols [40], the VOF method has become an almost

standard approach to deal with interfacial two phase flows numerically. In the VOF

method, variables that represent cell averages are discretely defined in the cell centers.

In this section, we will introduce the equations in the VOF method. The main idea

behind the VOF method is averaging the conservation equations of individual phases

and collect them to get one set of equations for multiphase flow. The variables of the

new equations are defined in the cell centers of the computational cells. In order to

obtain averaged equations, we first need to define two averaging operators, 〈···〉 and

〈···〉k. The former one is called the superficial averaging operator and simply averages a

variable defined in phase k over a volume

〈βk〉=
1
V

∫
V

βkdV (3.1)

where V is the cell volume and Vk is the volume occupied by phase k. Whereas the

latter one is called the intrinsic averaging operator and it averages the variable over the

cell volume occupied by phase k, which is the space average to assign a single discrete

value for a cell in finite volume analysis.

〈βk〉k =
1
Vk

∫
Vk

βkdV (3.2)

Alternative forms of the operators can be obtained by applying the statements (2.6),

(2.7) and (2.8):

〈βk〉=
1
V

∫
Vk

βk1kdV =
1
V

∫
Vk

βkdV (3.3)

〈βk〉k =
1
Vk

∫
Vk

βk1kdV =
1
Vk

∫
Vk

βkdV (3.4)
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The relationship between the two averaging operators is:

〈βk〉=
Vk

V
〈βk〉k (3.5)

3.1 Volume Fraction

The volume fraction, also called color function, plays an important role in the VOF

method. It is defined as the average of the indicator function over a computational cell:

αk = 〈1k〉=
1
V

∫
Vk

1kdV (3.6)

Since 1k is single valued and equal to 1 in phase k, the volume fraction is calculated as

αk =
Vk

V
(3.7)

and it accounts for the volume occupied by phase k in the cell. Thus, α = 1 means

the cell is fully occupied by phase k and α = 0 means the phase k does not exist in the

cell. Any value between 0 and 1 indicates the presence of free surface in the cell (See

Figure 3.1).

Figure 3.1 : Volume fraction field.

By introducing α we can now define variables of the two phase flow in terms of their

phasic counterparts.

〈~u〉= α1〈~u1〉1 +α2〈~u2〉2 (3.8)
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〈p〉= α1〈p1〉1 +α2〈p2〉2 (3.9)

〈ρ〉= α1〈ρ1〉1 +α2〈ρ2〉2 (3.10)

〈µ〉= α1〈µ1〉1 +α2〈µ2〉2 (3.11)

If the assumptions of constant density and viscosity are made, then intrinsic averages

of those terms posses no fluctuations, hence 〈ρk〉k = ρk and 〈µk〉k = µk. By doing so,

we can write the last two equations as follows

〈ρ〉= α1ρ1 +α2ρ2 (3.12)

〈µ〉= α1µ1 +α2µ2 (3.13)

3.2 Conservation Equations in VOF Method

In the VOF method, conservation equations are generated by averaging their

continuum counterparts and adding them up. Before taking that step, following

averaging theorems need to be introduced.〈
∂βk

∂ t

〉
=

∂ 〈βk〉
∂ t
− 1

V

∫
Ak

βk~u f~nkdA (3.14)

〈∇βk〉= ∇〈βk〉+
1
V

∫
Ak

βk~nkdA (3.15)

Those theorems relate the derivative of the average to the average of the derivative

where βk is a scalar, ~nk is the surface normal pointing from phase k to the other, ~u f is

the interface velocity.

3.3 Continuity

Continuity equation for phase 1 is given in equation (2.12). Averaging the continuity

equation yields 〈
∂ρ1

∂ t
+∇(ρ1~u1)

〉
= 〈0〉 (3.16)
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Since the averaging operator is linear, this can be written as:〈
∂ρ1

∂ t

〉
+∇〈ρ1~u1〉= 〈0〉 (3.17)

Applying averaging theorems (3.14) and (3.15) to the both terms in the left hand side

of equation (3.17) yields:〈
∂ρ1

∂ t

〉
=

∂ 〈ρ1〉
∂ t
− 1

V

∫
A1

ρ1~u f~n1dA (3.18)

〈∇ρ1~u1〉= ∇〈ρ1~u1〉+
1
V

∫
A1

ρ1~u1~n1dA (3.19)

Substituting the above equations into equation (3.17) results in:

∂ 〈ρ1〉
∂ t

+∇〈ρ1~u1〉=
1
V

∫
A1

ρ1~n1(~u f −~u1)dV (3.20)

We can replace 〈ρ1〉 to its intrinsic counterpart using relations (3.5) and (3.7). Also

making use of the incompressibility of individual phases, the mass conservation

equation for phase 1 becomes:

ρ1
∂α1

∂ t
+ρ1∇α1〈~u1〉=

1
V

∫
A1

ρ1~n1(~u f −~u1)dV (3.21)

Similarly for the phase 2, we have:

ρ2
∂α2

∂ t
+ρ2∇α2〈~u2〉=

1
V

∫
A2

ρ2~n2(~u f −~u2)dV (3.22)

The terms in the right hand side describe the mass flow from one phase to the other.

The boundary condition at the interface requires the mass flows to be equal, hence we

can write the conservation of mass for both phases as

∂α

∂ t
+∇α〈~u1〉=

ṁ
ρ1

(3.23)

and
∂ (1−α)

∂ t
+∇(1−α)〈~u2〉=−

ṁ
ρ2

(3.24)

where we have used α1 = α and α2 = 1−α . Mass conservation equation is obtained

by adding up equations (3.23) and (3.24):

∇〈~u〉= ṁ
( 1

ρ1
− 1

ρ2

)
(3.25)

If there in no mass transfer between phases, the mass conservation equation is further

reduced to

∇〈~u〉= 0 (3.26)
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3.4 Momentum Conservation

We have described the Navier-Stokes equation for a single phase in equation (2.18).

Averaging it yields: 〈
∂

∂ t
(ρk~uk)

〉
+ 〈∇(ρk~uk~uk)〉= 〈∇TTT k〉 (3.27)

With the averaging theorems, we can convert the average of the derivatives to the

derivative of the averages:〈
∂

∂ t
(ρk~uk)

〉
=

∂

∂ t
〈ρk~uk〉−

1
V

∫
Ak

ρk~uk~u f~nkdA (3.28)

〈∇(ρk~uk~uk)〉= ∇〈ρk~uk~uk〉+
1
V

∫
Ak

ρk~uk~uk~nkdA (3.29)

〈∇TTT k〉= ∇〈TTT k〉+
1
V

∫
Ak

TTT k~nkdA (3.30)

Applying incompressibility assumption to those equations like we did in the continuity

while deriving equation (3.21), we can simplify the first two equations above to:〈
∂

∂ t
(ρk~uk)

〉
= ρk

∂

∂ t
(αk〈~uk〉)−

1
V

∫
Ak

ρk~uk~u f~nkdA (3.31)

〈∇(ρk~uk~uk)〉= ρk∇(αk〈~uk~uk〉)+
1
V

∫
Ak

ρk~uk~uk~nkdA (3.32)

Substituting them back into the equation (3.27) yields:

ρk
∂

∂ t
(αk〈~uk〉)+ρk∇(αk〈~uk~uk〉) = ∇〈TTT k〉+

1
V

∫
Ak

TTT k~nkdA (3.33)

Here, the integrals in the inertial terms cancelled each other because of the boundary

condition at the interface (equation (2.16)) which requires ~u f = ~uk. Momentum

conservation equation for two phase flow is obtained by summing equation (3.33) for

two phases

ρ
∂

∂ t
〈~u〉+ρ∇〈~u~u〉= ∇〈T 〉+Fσ (3.34)

where Fσ is defined using the boundary condition at the interface. Since n1 =−n2, we

can write

Fσ =
1
V

∫
A

σ~n(∇~n)dA =
1
V

∫
A
~n(TTT 1−TTT 2)dA (3.35)
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In order to deal with the term 〈~u~u〉 in equation (3.34), we can split ~u into its average

and a deviation part. Depending on the size of the cell, we may still have variation

inside the cell. Therefore, when we assign a single discrete value to the cell center

representing the spatial average of the variable under consideration, we must have a

deviation component, ~u′, representing variation of the variable within the cell. Hence,

similar to Reynolds decomposition, we can write,

~u = 〈~u〉+~u′ (3.36)

We expect that theoretically as the cell volume shrinks to zero, the variational part

should go to zero as well. With this decomposition, we can write,

〈~u~u〉= 〈(〈~u〉+~u′)(〈~u〉+~u′)〉 (3.37)

〈~u~u〉= 〈〈~u〉〈~u〉〉+ 〈〈~u〉~u′〉+ 〈~u′〈~u〉〉+ 〈~u′~u′〉 (3.38)

since the spatial average of the variational part is zero.

〈~u~u〉= 〈〈~u〉〈~u〉〉+ 〈~u′~u′〉 (3.39)

〈~u′~u′〉 approaches to zero as the averaging volume gets smaller. So while using fine

meshes this term becomes less significant and we can approximate 〈~u~u〉 as 〈~u〉〈~u〉.

In addition to above approximation, we approximate the viscous term in the stress

tensor as ∇µ(〈∇~u〉 + 〈∇~u〉T ) and finalize the VOF formulation of momentum

conservation.

ρ
∂

∂ t
〈~u〉+ρ∇〈~u〉〈~u〉= ∇〈P〉+∇µ(〈∇~u〉+ 〈∇~u〉T )+Fσ (3.40)

3.5 Phase Fraction Equation

While combining two sets of conservation equations into one we have introduced a

new variable, phase fraction. The equation for phase fraction can be obtained by

manipulating the averaged mass conservation equation for single phase. Introducing

relative velocity as

〈~ur〉= 〈~u1〉−〈~u2〉 (3.41)
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averaged velocity of the phase 1 can be written as

〈~u1〉= 〈~u〉+(1−α)〈~ur〉 (3.42)

inserting the equation (3.42) into equation (3.23), we obtain the equation for the phase

fraction
∂α

∂ t
+∇(α〈~u〉)+∇(α(1−α)〈~ur〉) =

ṁ
ρ1

(3.43)

(α(1−α)〈~ur〉) is generally referred to as compression term, it compresses the free

surface and provides a sharper interface. It acts only on the interface region because

the term α(1−α) is equal to zero if α is either zero or one.
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4. CONTACT ANGLE

The contact angle is the angle between the interface of the two fluids and the solid

surface. When contact line is stationary, the contact angle is a property of the

fluids-solid system and called as equilibrium contact angle, θE . The relationship

between surface tensions of the phases and equilibrium contact angle on an ideal

surface is shown by Thomas Young [41] as

Cos(θE)~σLG = ~σSG−~σSL (4.1)

Here, σLG, σSG and σSL are surface tensions of liquid-gas, solid-gas and solid-liquid,

respectively. An illustration of the surface tensions and contact angle can be seen in

Figure 4.1.

Figure 4.1 : Contact angle and surface tension.

In fact, the equation (4.1) is an exception rather than a rule, and the equilibrium contact

angle takes a value between the advancing contact angle (θA) and the receding contact

angle (θR).

θR ≤ θE ≤ θA (4.2)

Advancing contact angle is the contact angle measured just before the contact line

begins its movement to expand the liquid phase, similarly receding contact angle is the

contact angle measured just before the contact line begins its movement to expand the

gas phase (See Figure 4.2(b)). The difference between the advancing and the receding
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contact angles is called contact angle hysteresis:

H = θA−θD (4.3)

It is generally viewed as a result of chemical heterogeneity of the surface and surface

roughness [35, 42], but still is a controversial subject [43, 44].

Figure 4.2 : Contact angles: (a) Equilibrium contact angle. (b) Contact angle
hysteresis. (c) Dynamic contact angle.

When the contact line moves, the contact angle deviates from its equilibrium value and

is called the dynamic contact angle (θD). In the dynamic situation, Young’s equation

is no longer able to explain contact angle since there is no equilibrium. If the contact

line is advancing, in other words, it moves from liquid to gas, the DCA is greater than

the equilibrium one. Similarly for a receding contact line, the DCA is less than the

equilibrium contact angle (See Figure 4.2(c)). Although a general and accurate way

of calculating the DCA in relation to flow and fluid properties has not yet been found,

many attempts have been made to model the contact angle.

One of the pioneering works on DCAs is from Hoffman [45]. From his experiments

he observed that the DCA is a function of Capillary number and a shift factor,

θD = f (Ca+F(θE)) (4.4)

where the shift factor, F , is an unknown function of equilibrium contact angle and

Capillary number is the ratio of viscous forces to the surface tension:

Ca =
µucl

σ
(4.5)

where ucl is contact line velocity. However Hoffman did not propose a complete

formulation.
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In 1993, Kistler presented an empirical model based on Hoffman’s observations [32].

Kistler’s correlation for the DCA is,

θD = fho f f (Ca+ f−1
ho f f (θE)) (4.6)

where f−1
ho f f is the inverse of the Hoffman function and Hoffman function is defined

as:

fho f f (x) =Cos−1
{

1−2Tanh
[
5.16

( x
1+1.31x0.99

)0.706
]}

(4.7)

The DCA model based on Shikhmurzaev’s theoretical studies on the moving contact

lines [34] is of the form

Cos(θD) =Cos(θE)−
2u∗(a1 +a2u∗0)

(1−a2)
(
(a1 +u∗2)1/2 +u∗

) (4.8)

u∗ = a3
µlucl

σ

u∗0 =
Sin(θD)−θDSin(θD)

Sin(θD)Cos(θD)−θD

a1 = 1+(1−a2)(Cos(θE)−a4)

where a2, a3 and a4 are phenomenological constants. For water these constants are

given as a2 = 0.54, a3 = 12.5, a4 =−0.07 and for glycerin a2 = 0.63, a3 = 4.3, a4 =

−0.08 [46, 47].

Another DCA model we use in this work is the Bracke’s empirical correlation [36]:

Cos(θD) =Cos(θE)−2(1+Cos(θE))Ca1/2 (4.9)

Quasi-Dynamic contact angle model is the simplest DCA model. In this model the

value of the DCA depends only on the sign of the contact line velocity, i.e. whether if

the contact line is advancing or receding.

θD =


θA i f ucl > 0
θE i f ucl = 0
θR i f ucl < 0

(4.10)

In the absence of the hysteresis data, this model reduces to static contact angle model.

θD = θE (4.11)

All of the models above except the Quasi-Dynamic model predict DCAs for advancing

contact lines only. However, many researchers successfully used the Kistler model for
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both receding and advancing contact lines in numerical simulations [18, 21, 28, 48],

which is also the approach we adopted in this work. On the other hand, we use

a different approach for the Shikhmurzaev and the Bracke models [46, 49]. The

Hoffman-Voinov-Tanner law,

θ
3
D = θ

3
R−72Ca (4.12)

is used to estimate the dynamic receding contact angle for those models. The estimated

contact angles by each DCA model we have used at different contact line velocities for

water on a smooth wax surface (θA = 105◦ and θR = 95◦) are shown in Figure 4.3.

Figure 4.3 : DCA versus contact line velocity for different DCA models.

The contact angle hysteresis is incorporated into the models by replacing θE with θA

and θR in case of advancing and receding contact lines, respectively.
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5. METHODOLOGY

5.1 Experiments

In order to compare the effect of the contact angle models on the simulation accuracy,

5 experiments are chosen. In all of the experiments, a liquid droplet is impinged on

a solid, smooth, dry and flat surface. The experiments are chosen in order to ensure

a variety of Reynolds and Weber numbers are covered. The simulated experiments’

specifications are given in Table 5.1 and properties of water and glycerin are given in

Table 5.2.

Table 5.1 : Experiments.

Case Liquid Wall We Re U0 D0 θA θR Ref
1 Water Wax 52 3245 1.18 2.75 105 95 [50]
2 Water Wax 90 4010 1.64 2.45 105 95 [51]
3 Glycerin Wax 93 36 1.41 2.45 97 90 [51]
4 Water S. Steel 7.9 1200 0.48 2.5 120 65 [52]
5 Water S. Steel 1.81 575 0.23 2.5 120 65 [52]

Table 5.2 : Properties of liquids.

Liquid σ [N/m] µ[mPas] ρ[kg/m3]

Water 0.073 1 996
Glycerin 0.063 116 1220

In this context, Reynolds and Weber numbers are defined as:

Re =
ρlu0D0

µl
(5.1)

We =
ρlu2

0D0

σLG
(5.2)
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5.2 Numerical implementation

For the numerical computations, we’ve used OpenFOAM’s two phase flow solvers,

interFoam [53] and interFlow [54]. They are both VOF method implementations

for immiscible, incompressible and isothermal fluids. We have explained the VOF

equations in detail in section 3. In summary, they are:

∇~u = 0 (5.3)

∂

∂ t
(ρ~u)+∇(ρ~u~u) =−∇p+∇µ(∇~u+∇~uT )+Fσ +ρ~g (5.4)

∂α

∂ t
+∇(αu)+∇α(1−α)~ur = 0 (5.5)

where we have dropped the brackets that denote average values.

In order to keep the interface sharp, interFoam uses Multidimensional Universal

Limiter with Explicit Solution limiter (MULES) which models the relative velocity

on the cell face in equation (5.5) as

~ur, f =~n f min

(
Cα

|φ |
|S f |

,max
(
|φ |
|S f |

))
(5.6)

where φ is the face flux, S f is the face area vector normal to the face pointing out of the

cell, ~n f is the interface normal and Cα is a user defined compression coefficient [55].

One problem of the MULES algorithm is, the interface is smeared over a small number

of cells [56].

The IsoAdvector method is a geometrical scheme for advection of sharp interfaces,

proposed as a replacement for MULES [54]. It is reported that it can successfully

solve the smearing problem of the MULES algorithm. The IsoAdvector method cuts

the cells into two parts so that each part contains only one fluid. In order to cut a cell,

the IsoAdvector method interpolates the cell centered phase fractions to cell vertices,

then using these vertices it decides where to cut the cell [57]. We have conducted

numerical computations using both MULES and IsoAdvector.

For the pressure-velocity coupling Pressure Implicit with Splitting of Operator (PISO)

algorithm is used. Discretization schemes that we have used are given in Appendix
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A. An adjustable time step scheme is used and time steps are adjusted so that

Courant–Friedrichs–Lewy (CFL) number never exceeds 0.2.

5.2.1 Surface tension

The surface tension force, Fσ is given in equation (3.35) as

Fσ =
1
V

∫
A

σ~n(∇~n)dA (5.7)

however, it is not possible to compute that as it is. The method used to calculate Fσ

is Brackbill’s continuum surface force model [58]. This model computes the surface

force as

Fσ = σκ∇α (5.8)

where κ denotes the curvature of the phase interface and it is defined as

κ = ∇~n (5.9)

and the unit normal,~n is

~n =
∇α

|∇α|
(5.10)

5.2.2 Computational domain

The computational domain of the simulations is an axisymmetric wedge of 5◦ with 10

mm radius and 10 mm height as shown schematically in Figure 5.1. By setting the

domain radius to 10 mm, we ensured that the radius of the domain is 7-8 times higher

than the initial droplet radius.
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Figure 5.1 : Schematic view of computational domain.

The mesh has one cell in azimuthal direction and uniformly spaced cells in

non-azimuthal directions. In order to ensure grid independency, mesh convergence

study is conducted and results are given in Section 6.1. According to the mesh

convergence study, 500×500 grid is selected which is composed of 20 µm × 20 µm

cells.

5.2.3 Initial and boundary conditions

Since we are conducting axisymmetric computations, wedge boundary condition is

used at the front and back planes of the domain. Contact angle models described

in Section 4 are implemented and used as boundary condition at the wall for the

phase fraction coupled with no-slip boundary condition for the velocity. At all other

boundaries, the phase fraction is set to zero and velocities are defined as inlet-outlet.

The pressure boundary conditions are set to zero gradient at the wall and prescribed

atmospheric pressure at the other boundaries.

The initial geometry of the droplet is formed by setting phase fraction field at

corresponding cells before the simulation starts and impact velocity of the droplet is

set in the same manner. The initial state of the domain and boundary conditions can be

seen in Figure 5.2.
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Figure 5.2 : Initial state of the computational domain.

5.2.4 Contact line velocity

As stated in Section 4, all of the DCA models we use depend on contact line velocity,

ucl , through Ca or sign of the ucl . We calculate the contact line as parallel component

of the cell center velocity closest to the wall as;

ucl = |~ucl|=~nparallel ·~uparallel (5.11)

where ~uparallel and~nparallel are velocity and interface normal’s components parallel to

the wall. Or explicitly ;

ucl =
~n− (~t ·~n)~t
|~n− (~t ·~n)~t|

·
(
~u− (~t ·~u)~t

)
(5.12)

where~n is the phase interface normal,~t is the wall normal and~u is the fluid velocity.
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6. RESULTS AND DISCUSSION

6.1 Mesh Convergence

In numerical simulations of fluid dynamics problems, it is important to have results not

affected by the selected grid size. Therefore, a mesh convergence test is conducted in

order to ensure that the solution is independent from mesh size. Usually finer meshes

yield more accurate solutions, but they come with the cost of computation time. So

it is important to find a mesh size that gives accurate results and has low computation

time.

In this study, mesh sizes of 200×200, 250×250, 500×500, 625×625, 800×800 and

1000×1000 are tested. In Figure 6.1, temporal evolution of spread factor is plotted for

Case 2 using the Kistler contact angle model. The spread factor (D/D0) is defined as

the ratio of the wetted radius and the initial radius of the droplet.

Figure 6.1 : Mesh convergence study results.

It seems that the results become independent of the mesh size only after 500×500

resolution. It can be seen that 500×500 mesh is almost accurate as finer mesh
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resolutions and it requires much less computational effort as shown in Table 6.1. We

have selected 500×500 mesh size which corresponds to 20 µm × 20 µm cells.

Table 6.1 : Computation times of different mesh sizes.

Mesh Size Computation Time
200×200 565s
250×250 844s
500×500 10325s
625×625 24404s
800×800 37406s

1000×1000 70639s

6.2 Numerical Simulations of Droplet Spread Experiments

In this section, we will present the results of the numerical simulations of droplet

spread experiments introduced in section 5.1. In the numerical simulations, we

have compared four DCA models, namely the Quasi-Dynamic, the Kistler, the

Shikhmurzaev and the Bracke models. We have also compared two interface capturing

schemes; an algebraic scheme MULES and a geometrical scheme IsoAdvector.

We will evaluate the performance of the contact angle models qualitatively by

comparing the images taken from the simulations at particular time instants. These

instants are chosen to enable us to make a comparison between the real images of the

droplets given in the experiments [28, 50, 52].

Quantitative analyses are done by comparing the maximum spread diameter and

temporal evolution of the spread factor. The mean spread factor error (MSFE) is

measured by averaging the relative absolute difference between different instants in

the experiment and the simulation. The maximum spread diameter error (MSDE)

is measured by normalizing the maximum spread diameter difference between the

simulations and the experiment. The normalization is done by dividing the difference

to the value of the corresponding experimental data.

Although it is a common practice in droplet spread studies to use non dimensional

time, for comparison with the experimental images, we have not nondimensionalized

our results. The dimensionless time is defined as

τ =
tU0

D0
(6.1)
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where t is time, U0 is impact velocity and D0 is initial droplet diameter.

6.2.1 Case 1

In this case a water droplet of 2.75 mm diameter impacts onto a wax surface with 1.18

m/s initial velocity. Reynolds and Weber numbers are 3245 and 52 respectively. The

surface is slightly hydrophobic with contact angles θA = 105◦ and θR = 95◦.

In the first 3 ms, where the spreading occurs, all the contact angle models used in

conjunction with either the MULES or the IsoAdvector schemes predict spreading

diameter reasonably well. After 1.5 ms, the difference between contact angle models

become distinguishable as shown in Figure 6.2. At the maximum spread stage, roughly

MULES IsoAdvector
Figure 6.2 : Comparison of DCA models in terms of spread factor for Case 1.

between 3 ms and 6 ms, all DCA models overestimate the radius of the droplet. The

order of overestimation is same in both the MULES and the IsoAdvector simulations

and, in descending order, appears as the Quasi-Dynamic, the Kistler, the Bracke and

the Shikhmursaev models in descending order. After the maximum spread, roughly

after 6 ms, the droplet starts to recoil. As can be seen in Figure 6.3, in the MULES

simulations all of the DCA models seem to capture the recoiling stage well, whereas

in the IsoAdvector simulations spread diameter is slightly higher compared to the

experiment.
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Quasi-Dynamic Shikhmurzaev

Kistler Bracke
Figure 6.3 : Comparison of MULES and IsoAdvector in terms of spread factor for

Case 1.

All contact angle models perform better when they are coupled in the MULES

algorithm compared to the IsoAdvector. The Shikhmurzaev model has the best

accuracy in terms of both MSFE and MSDE, followed by the Bracke model. Errors of

all models are listed in Table 6.2.

Table 6.2 : MSFE and MSDE of the simulations for Case 1.

Interface Method DCA Model MSFE MSDE
MULES Shikhmurzaev 4.18% 5.03%
MULES Kistler 7.75% 8.60%
MULES Bracke 4.89% 6.39%
MULES Quasi-Dynamic 7.05% 9.52%
IsoAdvector Shikhmurzaev 7.15% 7.47%
IsoAdvector Kistler 11.33% 9.82%
IsoAdvector Bracke 7.17% 8.20%
IsoAdvector Quasi-Dynamic 10.76% 11.31%

In the earlier stages of impingement, the shapes of the droplets are almost identical

except for the air bubble formation observed in IsoAdvector simulations (See Figure
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6.4 and Figure 6.5). The gray areas in the MULES simulations, which can be seen

starting from the earliest time instances, grow as time goes on, and are the result of the

diffusive nature of the algorithm. Unlike MULES, the IsoAdvector method is able to

generate a sharp interface and, therefore, the gray areas don’t appear in the IsoAdvector

simulations.
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6.2.2 Case 2

In the second case, we will investigate a configuration similar to the first case where

a water droplet impacts onto a wax surface with Weber Number of 90 and Reynolds

Number of 4010. The diameter of the water droplet in this case 2.45 mm and the

impact velocity is 1.64 m/s.

In the spreading stage, the numerical simulations predict the spread factor to be greater

than the experiment, but in the recoiling stage they tend to predict lower spread factors

as shown in Figure 6.6. Unlike the case 1, all of the DCA models perform better in the

IsoAdvector simulations (See Figure 6.7). We can see that in the MULES simulations,

except for the Shikhmurzaev model, all the DCA models start to recede earlier than the

experiment.

MULES IsoAdvector
Figure 6.6 : Comparison of DCA models in terms of spread factor for Case 2.

The temporal evolution of the numerical results agrees well with the experiment.

However, the microdroplets that vertically emerge from the main droplet body can

be seen in all four DCA models in the MULES, and only for the Shikhmurzaev model

in the IsoAdvector at 11 ms, as shown in Figure 6.8 and Figure 6.9, but this feature is

not observed in the experiment.

Overall, all of 8 simulations result in low errors as can be seen in Table 6.3, but the

Shikhmurzaev model gives the best results for both spread factor and maximum spread

diameter just like in Case 1.
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Quasi-Dynamic Shikhmurzaev

Kistler Bracke
Figure 6.7 : Comparison of MULES and IsoAdvector in terms of spread factor for

Case 2.

Table 6.3 : MSFE and MSDE of the simulations for Case 2.

Interface method DCA Model MSFE MSDE
MULES Shikhmurzaev 5.91% 3.06%
MULES Kistler 7.79% 6.55%
MULES Bracke 8.93% 5.15%
MULES Quasi-Dynamic 8.49% 6.72%
IsoAdvector Shikhmurzaev 5.01% 4.06%
IsoAdvector Kistler 5.51% 7.55%
IsoAdvector Bracke 5.66% 5.53%
IsoAdvector Quasi-Dynamic 6.56% 8.69%
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6.2.3 Case 3

This case is a low Reynolds number case where a glycerin droplet of 2.45 mm diameter

impacts onto a wax surface with 1.41 m/s initial velocity. Reynolds and Weber numbers

are 36 and 93, respectively. The surface is slightly hydrophobic with contact angles

θA = 97◦ and θR = 90◦.

In all simulations, the air entrapment between the wall and the droplet is observed and

this happens probably due to the high viscosity of glycerin as can be seen in Figure

6.12 and Figure 6.13. The spreading stage is captured very well with all contact

angle models in both the MULES and the IsoAdvector simulations. The Bracke

and the Shikhmurzaev models started to recede after the spreading stage and this is

not observed in the experiment (See Figure 6.10). We can see a smaller rebound in

Quasi-Dynamic model as well, but it is much slower compared to the Shikhmurzaev

and the Bracke models. The Kistler model on the other hand is able to keep the spread

factor at its maximum value over the time.

MULES IsoAdvector
Figure 6.10 : Comparison of DCA models in terms of spread factor for Case 3.

The Kistler model coupled with the IsoAdvector has almost a perfect match to the

experimental results, but a slight underestimation of the spread factor is present in

the MULES simulation (See Figure 6.11). In overall, we can say that the MULES

simulations always underestimate the spread factor compared to the IsoAdvector. The

MSFE and MSDE values for the Case 3 in given in Table 6.4. Unlike the high Reynolds

number cases, in this case, the MULES is also able to keep the interface sharp.
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Quasi-Dynamic Shikhmurzaev

Kistler Bracke
Figure 6.11 : Comparison of MULES and IsoAdvector in terms of spread factor for

Case 3.

Table 6.4 : MSFE and MSDE of the simulations for Case 3.

Interface method DCA Model MSFE MSDE
MULES Shikhmurzaev 8.26% -1.42%
MULES Kistler 5.03% -4.81%
MULES Bracke 9.83% -4.60%
MULES Quasi-Dynamic 2.20% -1.24%
IsoAdvector Shikhmurzaev 3.46% 2.60%
IsoAdvector Kistler 1.34% -1.29%
IsoAdvector Bracke 5.32% -1.31%
IsoAdvector Quasi-Dynamic 2.57% 2.24%
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Figure 6.12 : Temporal evolution of the droplet shapes in MULES simulations for
Case 3. DCA models from top to bottom: Quasi-Dynamic, Kistler,
Shikhmurzaev and Bracke.

Figure 6.13 : Temporal evolution of the droplet shapes in IsoAdvector simulations
for Case 3. DCA models from top to bottom: Quasi-Dynamic, Kistler,
Shikhmurzaev and Bracke.
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6.2.4 Case 4

This experiment is conducted by impinging a water droplet of 2.5 mm diameter onto a

stainless steel surface with 0.48 m/s initial velocity. The contact angles are θA = 120◦

and θR = 60◦. The Reynolds and Weber numbers are 1200 and 7.9, respectively.

Due to the low Weber number, the effect of the surface tension is more dominant

compared to the previous cases. Hence, the numerical calculations are much more

affected by the problematic nature of the surface tension calculations, which is caused

by the singularity in the contact line. One way to overcome this problem is to relax

the no-slip boundary condition at the solid surface, and another is to use a diffuse

interface. Since we want to test all the cases in the same setup, we didn’t relax

the no-slip boundary condition and, therefore, the IsoAdvector method which is not

diffusive is not able to simulate this case and blows after a short time. Therefore, we

can only show the results of the IsoAdvector simulations for the first 2.5 ms.

We can see that even though the IsoAdvector simulations only lasted for 2.5 ms, the

droplet shapes are almost identical to the ones that are generated by the MULES

simulations (See Figure 6.15). In the MULES simulations, the shapes of the droplets

that are given by different DCA models are also similar (See Figure 6.16). All DCA

models predict the spread diameter higher than the experiment. At around 7 ms, the

models predict a recoiling behavior as can be seen in Figure 6.14, which is not present

in the experiment. Despite all these, they yield close results and low errors (See Table

6.5). The Shikhmurzaev model has the lowest error in both the spread factor and the

maximum spread diameter.

MULES IsoAdvector
Figure 6.14 : Comparison of DCA models in terms of spread factor for Case 4.
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Table 6.5 : MSFE and MSDE of the simulations for Case 4.

Interface method DCA Model MSFE MSDE
MULES Shikhmurzaev 3.75% 5.11%
MULES Kistler 4.88% 6.60%
MULES Bracke 3.97% 5.31%
MULES Quasi-Dynamic 5.03% 6.90%

Figure 6.15 : Temporal evolution of the droplet shapes in IsoAdvector simulations
for Case 4. DCA models from top to bottom Quasi-Dynamic, Kistler,
Shikhmurzaev and Bracke.
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Figure 6.16 : Temporal evolution of the droplet shapes in MULES simulations for
Case 4. DCA models from top to bottom Quasi-Dynamic, Kistler,
Shikhmurzaev and Bracke.

6.2.5 Case 5

This experiment is conducted by impinging a water droplet of 2.5 mm diameter onto a

stainless steel surface with 0.23 m/s initial velocity. The contact angles are θA = 120◦

and θR = 60◦. The Reynolds and Weber numbers are 575 and 1.81, respectively. This

case has the lowest Weber number among the cases we have tested. So, the same

situation regarding the IsoAdvector in Case 4 applies to this case as well.

Starting from 2.5 ms until the end of the simulation, the spread factor is always

predicted lower than its actual values as shown in Figure 6.17. The small recoil starting

from 10 ms followed by an increase in the spread factor are resolved but much larger

in magnitudes. Also, the increase in the spread factor starts roughly 2.5 ms before it

is observed in the experiments. The lowest errors are given by the Kistler model (See

Table 6.6). The droplet shapes are given in Figure 6.18.
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MULES IsoAdvector
Figure 6.17 : Comparison of DCA models in terms of spread factor for Case 5.

Table 6.6 : MSFE and MSDE of the simulations for Case 5.

Interface method DCA Model MSFE MSDE
MULES Shikhmurzaev 8.84% -2.59%
MULES Kistler 7.28% -2.24%
MULES Bracke 9.10% -3.06%
MULES Quasi-Dynamic 7.58% -2.26%

Figure 6.18 : Temporal evolution of the droplet shapes in MULES simulations for
Case 5. DCA models from top to bottom Quasi-Dynamic, Kistler,
Shikhmurzaev and Bracke.
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7. CONCLUSIONS

In this study, numerical simulations of droplet impact on dry, smooth and solid

surfaces were done using four different DCA models, namely the Quasi-Dynamic, the

Kistler, the Bracke and the Shikhmurzaev models. These models are coupled with two

VOF based interface capturing methods, which are the MULES and the IsoAdvector

schemes. In order to compare the performances of the dynamic contact angle models

and the interface capturing methods, five different physical experiments with different

flow settings were simulated and the performances of the models were compared both

qualitatively and quantitatively. For all simulations, we’ve drawn the droplet shapes at

different time instances. The time instances were chosen so that the droplet shapes can

be compared with the experiments. It is observed that the temporal evolution of the

droplets matches with the physical experiments.

Even though we’ve discussed each experiment individually, we have discovered some

patterns. Two of the five experiments had relatively low Reynolds numbers (36 and

575) compared to the other three (1200, 3245 and 4010). We have seen that for all

experiments that have low Reynolds number, the maximum spread factor is estimated

to be slightly lower than the experiments in 10 simulations out of 12. Similarly, all

of the 20 simulations corresponding to the experiments with high Reynolds number

slightly overestimates the maximum spread factor. Another pattern we’ve discovered

is that, in all three experiments that have high Reynolds number, the Shikhmurzaev

model has always yields the lowest errors in the spread factor and the maximum

spread diameter both with the MULES and the IsoAdvector algorithms, whereas the

experiments with low Reynolds number is best simulated with the Kistler model and

the Quasi-Dynamic model.

Even though the sharp interface capturing methods such as the IsoAdvector method are

generally not used with the no-slip boundary condition without workarounds because

of the singularity at the contact line, we have shown that experiments with high Weber

numbers can be simulated with the IsoAdvector algorithm, but the experiments with
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low Weber numbers are failed to be simulated after 1 ms to 2 ms. Only considering

the three experiments that we were able to run the IsoAdvector simulations, the

experiments with high Weber numbers (90, 93) were predicted better in terms of the

MSFE, whereas the experiment with moderate Weber number (52) was predicted better

with the MULES algorithm. Of course, we cannot make robust conclusions using only

three cases, therefore conducting more simulations with an increased number of cases

which consists of a variety of Weber numbers is necessary for future work.

Overall, all contact angle models predict the temporal droplet spread factor evolution

very well, the maximum obtained MSFE is 11.33% and the minimum obtained MSFE

is 1.34% from all 32 simulations. In the majority of the simulations, the model

that performs worst is the Quasi-Dynamic model, and the best performing model

is the Shikhmurzaev model. However the difference between the Quasi-Dynamic

model’s performance and the Shikhmurzaev model’s performance is very small. The

same conclusions also apply to the performances for the maximum spread diameter

prediction, with lowest MSDE being 1.24% and the highest being 11.31%. For all

cases, the most accurate DCA models are summarized in Table 7.1

Table 7.1 : Most Accurate DCA Models.

Case We Re Most Accurate DCA Model
Case 1 52 3245 Shikhmurzaev
Case 2 90 4010 Shikhmurzaev
Case 3 93 36 Quasi-Dynamic (MULES), Kistler (IsoAdvector)
Case 4 7.9 1200 Shikhmurzaev
Case 5 1.81 575 Kistler
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APPENDIX A.1

fvSchemes dictionary used with IsoAdvector simulations is as follows:

FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "system";
object fvSchemes;

}

ddtSchemes
{

default CrankNicolson 0.5;
}

gradSchemes
{

default Gauss linear;
}

divSchemes
{

div(rhoPhi,U) Gauss upwind;
div(phi,alpha) Gauss vanLeer;
div(phirb,alpha) Gauss interfaceCompression;
div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

}

laplacianSchemes
{

default Gauss linear corrected;
}

interpolationSchemes
{

default linear;
}

snGradSchemes
{
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default corrected;
}

fluxRequired
{

default no;
p_rgh;
pcorr;
alpha.water;

}

fvSolutions dictionary used with IsoAdvector simulations is as follows:

FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "system";
object fvSolution;

}

solvers
{

"alpha.water.*"
{

interfaceMethod "isoAdvector";
isoFaceTol 1e-8;
surfCellTol 1e-8;
snapTol 1e-12;
nAlphaBounds 3;
clip true;

nAlphaCorr 2;
nAlphaSubCycles 1;
cAlpha 1;

MULESCorr yes;
nLimiterIter 8;

solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-8;
relTol 0;

}
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"pcorr.*"
{

solver PCG;
preconditioner DIC;
tolerance 1e-10;
relTol 0;

}

"p_rgh"
{

solver GAMG;
tolerance 1e-8;
relTol 1e-3;
smoother DIC;
nPreSweeps 0;
nPostSweeps 2;
nFinestSweeps 2;
cacheAgglomeration true;
nCellsInCoarsestLevel 10;
agglomerator faceAreaPair;
mergeLevel 1;

}

"p_rghFinal"
{

solver PCG;
preconditioner
{

preconditioner GAMG;
tolerance 1e-8;
relTol 0;
nVcycles 2;
smoother DICGaussSeidel;
nPreSweeps 2;
nPostSweeps 2;
nFinestSweeps 2;
cacheAgglomeration true;
nCellsInCoarsestLevel 10;
agglomerator faceAreaPair;
mergeLevel 1;

}
tolerance 1e-9;
relTol 0;
maxIter 50;

}
U
{

solver smoothSolver;
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smoother DILUGaussSeidel;
tolerance 1e-7;
relTol 0.05;
nSweeps 5;
minIter 3;

}

UFinal
{

solver smoothSolver;
smoother GaussSeidel;
tolerance 1e-8;
relTol 0;
nSweeps 2;

}

}

PIMPLE
{

momentumPredictor yes;
nCorrectors 3;
nOuterCorrectors 1;
nNonOrthogonalCorrectors 0;
nAlphaCorr 1;
nAlphaSubCycles 1;
cAlpha 1;

}

APPENDIX A.2

fvSchemes dictionary used with MULES simulations is as follows:

FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "system";
object fvSchemes;

}

ddtSchemes
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{
default CrankNicolson 0.5;

}

gradSchemes
{

default leastSquares;
}

divSchemes
{

div(rhoPhi,U) Gauss limitedLinearV 0.5;
div(phi,alpha) Gauss vanLeer;
div(phirb,alpha) Gauss interfaceCompression;
div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

}

laplacianSchemes
{

default Gauss linear corrected;
}

interpolationSchemes
{

default linear;
}

snGradSchemes
{

default corrected;
}

fluxRequired
{

default no;
p_rgh;
pcorr;
alpha.water;

}

fvSolutions dictionary used with MULES simulations is as follows:

FoamFile
{

version 2.0;
format ascii;
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class dictionary;
location "system";
object fvSolution;

}

solvers
{

"alpha.water.*"
{

nAlphaCorr 2;
nAlphaSubCycles 1;
cAlpha 0.3;

MULESCorr yes;
nLimiterIter 8;

solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-8;
relTol 0;

}

"pcorr.*"
{

solver PCG;
preconditioner DIC;
tolerance 1e-10;
relTol 0;

}

"p_rgh"
{

solver GAMG;
tolerance 1e-8;
relTol 1e-3;
smoother DIC;
nPreSweeps 0;
nPostSweeps 2;
nFinestSweeps 2;
cacheAgglomeration true;
nCellsInCoarsestLevel 10;
agglomerator faceAreaPair;
mergeLevel 1;

}

"p_rghFinal"
{

solver PCG;
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preconditioner
{

preconditioner GAMG;
tolerance 1e-8;
relTol 0;
nVcycles 2;
smoother DICGaussSeidel;
nPreSweeps 2;
nPostSweeps 2;
nFinestSweeps 2;
cacheAgglomeration true;
nCellsInCoarsestLevel 10;
agglomerator faceAreaPair;
mergeLevel 1;

}
tolerance 1e-9;
relTol 0;
maxIter 50;

}
U
{

solver smoothSolver;
smoother DILUGaussSeidel;
tolerance 1e-7;
relTol 0.05;
nSweeps 5;
minIter 3;

}

UFinal
{

solver smoothSolver;
smoother GaussSeidel;
tolerance 1e-8;
relTol 0;
nSweeps 2;

}

}

PIMPLE
{

momentumPredictor yes;
nCorrectors 3;
nOuterCorrectors 1;
nNonOrthogonalCorrectors 0;
nAlphaCorr 1;
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nAlphaSubCycles 1;
cAlpha 1;

}

62



CURRICULUM VITAE

Name Surname : Tahir Tekin Filiz

Place and Date of Birth : Balıkesir, 01.01.1991

E-Mail : filiz17@itu.edu.tr

EDUCATION :

• B.Sc. : 2016, Yıldız Technical University, Faculty of Mechan-
ical Engineering, Department of Mechanical Engineer-
ing

63

uluhatun
Rectangle


	FOREWORD
	TABLE OF CONTENTS
	ABBREVIATIONS
	SYMBOLS
	LIST OF TABLES
	LIST OF FIGURES
	SUMMARY
	ÖZET
	1. INTRODUCTION
	2. Conservation Equations of Two-Phase Flow
	Flow Domain
	Phase Tracking
	Mass Conservation
	Momentum Conservation

	3. VOLUME OF FLUID EQUATIONS
	Volume Fraction
	Conservation Equations in VOF Method
	Continuity
	Momentum Conservation
	Phase Fraction Equation

	4. CONTACT ANGLE
	5. METHODOLOGY
	Experiments
	Numerical implementation
	Surface tension
	Computational domain
	Initial and boundary conditions
	Contact line velocity


	6. RESULTS AND DISCUSSION
	Mesh Convergence
	Numerical Simulations of Droplet Spread Experiments
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5


	7. CONCLUSIONS
	REFERENCES
	APPENDIX A.1
	APPENDIX A.2

	CURRICULUM VITAE

	ÖZET
	APPENDICES


