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EFFECT OF
DYNAMIC CONTACT ANGLE MODELS
ON THE DROPLET SPREAD SIMULATIONS

SUMMARY

Many industrial processes such as inkjet printing, spray coating and spray cooling,
involve the liquid droplets impacting onto solid surfaces. Hence, an accurate
estimation of the impact of a droplet onto a solid surface is of great importance
because unexpected behaviors of droplets may result in bad quality products or
services. In order to make an accurate numerical simulation, one needs to solve many
challenging problems such as interface localization and the estimation of dynamic
contact angle (DCA). There are many techniques developed for the localization
of the phase interface in two phase flows. The most popular techniques are
the level set, the volume of fluid (VOF) and the Lagrangian methods. The
Lagrangian methods are computationally expensive, and the level set method is not
mass conservative. Therefore, in this work we have selected the VOF method
and conducted our simulations using two different interface capturing schemes, an
algebraic algorithm named Multidimensional Universal Limiter for Explicit Solution
and a geometrical algorithm named IsoAdvector. We have compared four DCA
models, the Quasi-Dynamic, the Shikhmurzaev, the Kistler and the Bracke models. We
have used OpenFOAM, an open source computational fluid dynamics (CFD) software
as our computation platform. We have implemented the DCA models and used them
as a boundary condition for the phase fraction equation, which is used by the VOF
method in order to locate the phase interface. Numerical simulations were compared
with five different experimental results. The performances of the simulations were
evaluated using two metrics, the mean spread factor error and the maximum spread
diameter error. Even though the performances of the DCA models are similar, for
higher Reynolds numbers, the Shikhmurzaev model gave the most accurate results,
whereas the Kistler model and the Quasi-Dynamic model gave better estimations in
low Reynolds numbers. We’ve also concluded that the IsoAdvector scheme is not
suitable for the droplet impact simulations with low Weber numbers.
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DINAMIK TEMAS ACISI
MODELLERININ DAMLACIK YAYILMASI
BENZETIMLERINE ETKIiSI

OZET

Sivi damlaciklarimin kati bir yiizeye carpmasi; miirekkep piiskiirtmeli baski, sprey
kaplama, piiskiirtmeli sogutma, tarim ilaglarinin uygulanmasi gibi bir¢ok endiistriyel
islemin etkili olarak gerceklestirilmesinde biiyiik 6nem tagir. Ornegin, sprey kaplama
isleminde hava baloncugu olugsumu iiriiniin kalitesini diisiirmekle beraber, eger
damlaciklarin davraniglart modellenebilirse ortadan kaldirilabilecek bir sorundur.
Diger bir ornek ise, hem kagida yazdirma islemlerinde, hem de organik 1s1k yayan
diyot (OLED) panellerinin iiretiminde kullanilan miirekkep piiskiirtmeli yazdirma
islemi, damlaciklarin 1slattig1 alandan direkt olarak etkilenmektedir. Bu nedenle,
bir damlacigin kati bir ylizey lizerindeki davraniginin dogru bir sekilde tahmin
edilmesi, endiistriyel iriinlerin kalitesinin artmasina olanak saglayacaktir.  Bu
siireclerin iyilestirilmesi icin yapilan fiziksel deneyler mesakkatli ve pahali oldugu icin,
damlaciklarin sayisal benzetiminin yapilmasi siklikla tercih edilen bir yontemdir.

Bir s1ivi damlasinin kati bir yiizey lizerinde yayilmasi viskoz, atalet ve temas hatti
kuvvetlerinin etkisi altinda gerceklesen, olduk¢a dinamik ve karmasik bir olaydir.
Yayilim olayin1 etkileyen bircok faktdr bulunmaktadir. Bunlardan bazilar1 damlacigin
kat1 yiizeye carpma anindaki c¢api1 ve hizi, ylizey piiriizliiliigii, basing, viskozite,
kat1 yiizeyinin 1slanabilirligi, Reynolds sayis1 ve Weber sayisi1 olarak siralanabilir.
Reynolds sayisi atalet kuvvetlerinin viskoz kuvvetlere orani, Weber sayisi ise atalet
kuvvetlerini ylizey gerilimine orani olarak tanimlanir.

Yukarida bahsi gecen sebeplerden otiirii bir damlacigin sayisal benzetiminin yapilmasi
oldukca zor bir siirectir ve c¢oziilmesi gereken bir ¢ok problem barindirir. Bu
problemlerden bazilar1 faz ara yiizeyinin yakalanmasi/izlenmesi, dinamik temas
acisinin tespiti, yiizey gerilmesinin modellenmesi ve temas hatti hizinin belirlenmesi
olarak siralanabilir.

Iki fazli akiglarda faz arayiiziiniin lokalizasyonu icin gelistirilmis bir¢ok teknik vardir.
En popiiler teknikler seviye kiimesi (level set), akiskan hacmi (volume of fluid,
VOF) yontemi ve Lagrange yontemleridir. Lagrange yontemleri kullanilarak yapilan
benzetimler diger yontemlere kiyasla oldukga yliksek bir hesaplama giicii gerektirir ve
seviye kiimesi yonteminde kiitle kayb1 (hesaplama siiresi ilerledikce s1vi kiitlesinin gaz
kiitlesine doniismesi) sorunlar1 mevcuttur. Bu sebeplerden 6tiirii bu calismada yapilan
sayisal benzetimlerde VOF metodu kullanilmisgtir.

VOF yonteminde farkli akigkan fazlar1 hacim kesri (volume fraction) fonksiyonu
ile takip edilir. ~ Hacim kesri, bir hesaplama hiicresinde bulunan akigkanin
kompozisyonunu belirten bir fonksiyondur. Ornegin bir hiicre tamamen bir akiskan
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ile doluysa, hacim kesri fonksiyonu 1 degerini alir, eger ki o hiicrede o akigkan mevcut
degilse 0 degerini alir. Dolayisiyla, hacim kesri fonksiyonunun O ile 1 arasinda olmast,
hiicrede akigkan ara yiizeyi varligin1 gostermektedir. Her bir zaman aralifinda hacim
kesri denklemi de korunum denklemleriyle birlikte ¢oziiliip ara yiizeyin adveksiyonu
saglanir.

Faz ara yiizeyinin keskin olmasini saglamak icin 6zel ayriklastirma yontemlerinin
kullanilmas1 gerekir. OpenFOAM’da kullanilan standart metot, cebirsel bir metot
olan Multidimensional Universal Limiter for Explicit Solution (MULES) metodudur.
Ancak MULES metodu kullanildiginda ara yiizey birka¢ hesaplama hiicresine yayilir.
Bu problemi ortadan kaldirmak i¢in, geometrik bir metot olan IsoAdvector metodu
Onerilmistir. Bu ¢alismada hem MULES hem de IsoAdvector metotlar1 kullanilarak
sayisal benzetimler yapilmustir.

Damlaciklarin sayisal benzetiminin isabetliligini etkileyen bir diger faktor ise temas
acisinin modellenmesidir. Temas acisi, iki karigsmaz akigkanin duvarla temas ettigi
noktada duvar ile akigkan ara yiizeyi tegetinin yaptig1 acidir. Akiskanlarin hareketsiz
oldugu durumda, bu a¢1 akiskan-duvar sisteminin bir 6zeligidir, ve bu durumda temas
acis1, denge temas acisi olarak adlandirilir.

Akiskanlarin hareket ettigi durumda ise temas acist yalnizca akiskan-duvar sistemine
degil aym1 zamanda akisa da baghdir ve dinamik temas agis1 olarak adlandirilir.
Hareketli durumda gozlemlenen dinamik temas agisinin davranigi heniiz tam olarak
anlasilamamis olsa da gectigimiz on yillarda arastirmacilar pek ¢ok dinamik temas
acis1 modeli gelistirmiglerdir. Pek cok dinamik temas ag¢is1t modeli, dinamik temas
acisini temas hatti hizinin ve kapiler sayisinin bir fonksiyonu olarak ifade eder.

Bu calismada; Shikhmurzaev, Kistler ve Bracke dinamik temas agis1 modellerini ve
Sanki-Dinamik temas acis1 modeli kullanilarak, literatiirde bulunan bes farkli damlacik
carpmasi deneyinin sayisal benzetimleri yapilmistir. Deneylerin Weber sayilart 1.81
ile 93 araliginda, Reynolds sayilari ise 36 ile 4010 araligindadir. Hesaplama platformu
olarak agik kaynakli bir hesaplamali akigkanlar dinamigi yazilimi olan OpenFOAM
programi kullanilmistir. Her bir dinamik temas acist modeli faz kesri denklemine
bir sinir sarti olarak verilmistir. Benzetimlerin performanslarin1 degerlendirmek
icin ortalama yayilma faktorii hatast ve maksimum yayilma capi hatasi Olciitleri
kullanilmustir.

Sonugta tiim dinamik temas ag¢is1 modellerinin deneylerle uyumlu sonuglar verdigi
gozlemlenmigtir. Tiim benzetimlerden elde edilen ortalama yayilma faktorii hatasi
en diisiik %1.34, en yiiksek %11.33 olarak bulunmustur. Benzer olarak, maksimum
yayilma c¢api1 hatast %1.24 ile %11.31 araliginda bulunmustur.

Diisiik Reynolds sayisina sahip deneylerde, benzetimlerin maksimum yayilma ¢apini
deneysel sonuclara oranla daha diisiik tahmin ettigi goriilmiistiir. Yiiksek Reynolds
sayisina sahip deneylerde ise maksimum yayilma cap1 gercekte oldugundan daha
yiiksek bulunmustur.

Dinamik temas agis1 modellerinin performanslari benzer olsa da yiiksek Reynolds
sayilarinda Shikhmurzaev modeli en dogru sonuglari verirken, Kistler modeli ve
Sanki-Dinamik model diisiik Reynolds sayilarinda daha iyi tahminler vermistir.

Ayrica, IsoAdvector’in diisiik Weber sayilarina sahip damlacik etkisi simiilasyonlari
icin uygun olmadig1 goriilmiistiir.
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Bu calismanin ilk boliimiinde damlacik ¢arpmasi olayi, bu olaya etki eden faktorler
ve literatiirde damlacik carpmasi benzetimlerinde kullanilan farkli yontemlerden
bahsedilmistir. Calismanin ikinci boliimii iki fazli akig denklemlerinin tiiretilmesine
adanmustir. Uciincii boliimde 6nceki boliimde elde edilen denklemler kullanilarak
elde edilen VOF metodu formiilasyonu ayrintili olarak incelenmigtir. Dordiincii
boliimde temas agist kavrami agiklanmis ve bu tezde kullanilan dinamik temas agisi
modelleri tanitilmigtir. Besinci boliimde benzetimi yapilan deneyler ve benzetim
ortami tamtilmigtir. Altinct boliimde benzetim sonuglar1 verilmis ve sonuclara dayal
bulgular tartisilmistir.  Son boliimde ise calismadan elde edilen genel sonuglar
verilmistir.
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1. INTRODUCTION

Many industrial processes and products such as inkjet printing, spray cooling, trickle
bed reactors, fuel injection and spray painting [2—4], involve liquid droplets impacting
onto a solid surface. It is important to estimate the outcomes of the wetting because it
has a significant impact on the quality of the products of these industrial processes. For
instance, in inkjet printing, which is not only used for printing on paper, but also used
in the organic light-emitting diode (OLED) technology [2], an accurate estimation of
the area wetted by the droplet is of crucial importance. Another example is droplet
splashing in spray painting, where it is aimed to avoid air entrainment as much as
possible [5]. Generally, the experiments conducted to improve these procedures are
time consuming and expensive. An alternative to the tedious trial and error procedures

is numerical simulations.

Spreading of a droplet is highly dynamic and complex phenomenon which is governed
by viscous, inertial and contact line forces. It is affected by many factors such
as initial droplet diameter and velocity, surface roughness, pressure, viscosity and
wettability [6]. Wettability, as the name suggests, is the measure of a liquid’s ability
to wet the solid surface [7] and it is a result of the balance between adhesive and
cohesive forces [8]. Wettability is quantified by the equilibrium contact angle, Of,
which is the angle between the surface of the solid and the free surface of the liquid.
Low O corresponds to higher wettability and, similarly, high 6 corresponds to lower
wettability as shown in Figure 1.1. If the contact angle is greater than 90° the surface is
said to be hydrophobic, and if the contact angle is less than 90° the surface is said to be
hydrophilic [9]. The equilibrium contact angle, g, is a thermodynamic property of the
liquid-gas-solid system [10]. However, when the contact line, which is the intersection
of the liquid’s free surface and the surface of the solid, is in motion, the system is no
longer in an equilibrium state and the contact angle diverges from Og. In such cases
the angle between the surface of the solid and the free surface of the liquid is called

the dynamic contact angle (DCA).



Figure 1.1 : Hydrophobic and hydrophilic surfaces.

There are many challenging factors in the numerical simulation of droplet spreading,
such as localization of the phase interface, determining the contact line velocity and
estimation of the contact angle. The methods proposed to solve these problems are

introduced below.

There are two groups of interface localization techniques that are widely employed
in flow problems with moving interfaces, namely interface tracking and interface
capturing methods. Interface tracking methods are used in numerical simulation
of droplet impact by many researchers [11-16]. In the interface tracking methods
Lagrangian marker particles are used to track the interface explicitly. This explicit
tracking of the interface can be very accurate since a large number of particles can
be used, and since the interface is accurately estimated, the errors regarding surface
tension are reduced [3]. However, these methods have issues with handling topological
changes such as bubble entrapment or break up of droplets due to the construction of
the interface by interpolating the Lagrangian marker particles [3]. Besides, due to the

high number of particles, Lagrangian techniques are computationally expensive.

In the interface capturing methods, the interface is given implicitly by an auxiliary
function. Two of the widely used interface capturing techniques in the droplet spread
are the volume of fluid method (VOF) [4, 17-23] and the level set method [24-27].
These methods are popular among researchers because of their low computational cost.
The VOF method locates the interface using the volume fraction function where a value
of unity or zero indicates the presence or absence of a phase, respectively, and the
values between 1 and 0 indicates the presence of the interface. In the level set method
the interface is located using a signed distance function: Negative and positive values
of this function distinguish the fluids, and zero level set indicates the boundary between

fluids. The advantage of the VOF method over the level set method is while the mass



cannot be conserved in the level set method, in the VOF method it can. On the other
hand, the VOF method is more prone to creating spurious currents compared to level
set method. A schematic representation of Lagrangian, VOF and level set methods is

shown in Figure 1.2
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Figure 1.2 : Interface localization [1]: (a) Lagrangian. (b) VOF. (c) Level set.

Another important challenge is the estimation of the contact line velocity, which is also
important for the calculation of the contact angle since the most of the DCA models
express the contact angle as a function of the contact line velocity. In the Lagrangian
techniques, the velocity of the marker particles can simply be used as the velocity of
the contact line. In the Eulerian approach, many methods have been developed such
as using the cell center velocity closest to the contact line [24], differentiation of the

wetted radius [28], shear strain rate [29] or some complex set of equations.

Finally, one of the most important challenges is the estimation of the contact angle.
Even though the earlier numerical studies on the problem didn’t take the contact angle
into account [30] or only considered a static contact angle [31], it is obvious that a
DCA model is able to explain the phenomena more accurately since the problem itself
is highly dynamic. Therefore, incorporating the DCA into the solution yields more

robust results.

There are numerous proposed models to calculate the DCA [2,32-36]. Besides, many
parameters affect the outcome of these models. In this study, we have compared
various DCA models with different flow settings against several experiments in order

to evaluate their performances.






2. CONSERVATION EQUATIONS OF TWO-PHASE FLOW

The spreading of a droplet involves a liquid phase and a gaseous phase surrounding the
liquid which is generally air. In our case, two immiscible, incompressible fluids are
considered. We assume that phases are isothermal, so we are not concerned with the
energy conservation.This section is devoted to present conservation equations of two
phase flow, and it serves as a basis while deriving the VOF equations in the next section.
We have used Sabisch’s [37], Klitz’s [3], Graveleau’s [38] and Whittaker’s [39] works

as main resources while writing this and next section.

2.1 Flow Domain

Let us describe the open flow domain as Q C R?® and its boundary as I'. Then, the
closed flow domain is denoted as Q = QUT". We can now define two open subdomains,

Q C Qand ©, C Q for each phase such that

QUL =Q 2.1)
Since the two phases are assumed to be immiscible,

QN =0 (2.2)
the interface between phases is defined as

[y=QiNQy. (2.3)
and the boundaries of each phase are

I = (NI)UTy (2.4)

where k = {1,2} denotes different phases. Note that even though Q is not a function

of time, Qy, Q, and I'y are time dependent. An illustration of Q is given in Figure 2.1.



Figure 2.1 : An illustration of Q.

2.2 Phase Tracking

A phase indicator function, 1, that specifies if a position vector, X, is located at the

domain of fluid k or not can be defined as

o 1 Xe .Q.k(t)
1x(X,t) = 2.5
(%:1) {0 otherwise. 2:5)

We can then derive fOHOWiIlg relations:
12=1 2.6
k k (2.6)

and

1,(1—1;) =0 2.7)

Any flow variable, 8, such as velocity or viscosity can be decomposed into two parts

by making use of the indicator function such that:
B = 11B1+ 12f,. (2.8)

2.3 Mass Conservation

By making use of equation (2.8), we can write velocity and density of the two phase
flow as

u=1liu+1u (2.9)



and

p=1ip1+12p2 (2.10)
Then, we can write the equation of mass conservation as

d(L1p1+ 12p2)
ot

—I—V(]llplﬁl—f—ﬂzpzﬁz) =0 2.11)
for the domain Q. If a subdomain, for example €1, is considered; substituting 1; = 1
and 1, = 0 into the above equation yields continuity for phase 1.

d
LV (piiiy) = 0 2.12)

It is straightforward that for the phase 2, the continuity is

d
P2 Sy =0 21

Now that we have two equations for two phases, a boundary condition is needed to be

defined at the phase interface.

At the interface, the mass conservation requires
pl(ﬁl—ﬁf)-ﬁfzpz(ﬁz—ﬁf)-ﬁf at Ff (2.14)

where uy denotes the velocity of the phase interface and 7 denotes the normal to the
interface. Besides that, if the interface is assumed to be impermeable, mass flux of a

phase in the interface should be zero.
Pty —iiy)-1ip=0 atTy (2.15)
Combining this with the equation (2.14)
Ug-fip=tip-iy atly (2.16)
and replacing uy with uy yields

ﬁl-ﬁfzﬁz-ﬁf ath 2.17)



2.4 Momentum Conservation

Assuming the viscosity and density are constant for each phase, conservation of
momentum equation can be written in a similar fashion to conservation of mass for

each phase separately.
dliy, oo -
Pkw +pk(ukV)uk = VT +prg (2.18)
Here, T} is the stress tensor defined as Ty = Py + Wi [Vii + (Viiy)T] where P is the
pressure of phase k, L is the dynamic viscosity of the phase k, g is the external volume

forces and the superscript 7' denotes the transpose.

Boundary condition for the momentum equation is obtained by the stress balance at
the interface:

l/ff- (Tl —Tz) = GI’Tf(VI’?f) (2.19)

The term in the right hand side accounts for surface tension, where ¢ is the surface

tension coefficient between phases.



3. VOLUME OF FLUID EQUATIONS

In section 2, the conservation equations for two phase flow are derived. Those
equations are defined in continuous space and time, therefore solving them
computationally requires infinite memory and computation power. Hence, a discrete

approximation of the conservation equation is required.

Firstly proposed by Hirt and Nichols [40], the VOF method has become an almost
standard approach to deal with interfacial two phase flows numerically. In the VOF
method, variables that represent cell averages are discretely defined in the cell centers.
In this section, we will introduce the equations in the VOF method. The main idea
behind the VOF method is averaging the conservation equations of individual phases
and collect them to get one set of equations for multiphase flow. The variables of the
new equations are defined in the cell centers of the computational cells. In order to
obtain averaged equations, we first need to define two averaging operators, (-) and
(+)x. The former one is called the superficial averaging operator and simply averages a

variable defined in phase k over a volume

(Be) = é /V Bxdv 3.1)

where V is the cell volume and V} is the volume occupied by phase k. Whereas the
latter one is called the intrinsic averaging operator and it averages the variable over the
cell volume occupied by phase k, which is the space average to assign a single discrete

value for a cell in finite volume analysis.
1
Box =1 [ Bav (32)
k Vi

Alternative forms of the operators can be obtained by applying the statements (2.6),

(2.7) and (2.8):

1 1

(B = /V Bav =g /V Bav (3.3)
1 1

(B = - /V Beliav = /V rav (3.4)
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The relationship between the two averaging operators is:
Vi
(Bi) = 7, (Be)x (3.5)

3.1 Volume Fraction

The volume fraction, also called color function, plays an important role in the VOF

method. It is defined as the average of the indicator function over a computational cell:

1
oy = (ﬂk> = V . ﬂde (3.6)
k

Since 1 is single valued and equal to 1 in phase k, the volume fraction is calculated as

v,
o = Vk (3.7)

and it accounts for the volume occupied by phase k in the cell. Thus, @ = 1 means
the cell is fully occupied by phase k and & = 0 means the phase k does not exist in the
cell. Any value between 0 and 1 indicates the presence of free surface in the cell (See

Figure 3.1).

Figure 3.1 : Volume fraction field.

By introducing o we can now define variables of the two phase flow in terms of their
phasic counterparts.

(i) = o (id1)1 + 0 (id2)2 (3.8)

10



(p) = ai(p1)1 + a(p2)2 3.9
(p) = a1 (p1)1 +a(p2)2 (3.10)

() = o (1)1 + ()2 (3.11)

If the assumptions of constant density and viscosity are made, then intrinsic averages
of those terms posses no fluctuations, hence (py)r = pr and () = Hy. By doing so,

we can write the last two equations as follows

(p) = a1p1 + ap2 (3.12)

(U) = oy g + oy (3.13)

3.2 Conservation Equations in VOF Method

In the VOF method, conservation equations are generated by averaging their
continuum counterparts and adding them up. Before taking that step, following

averaging theorems need to be introduced.

P\ _ By 1 -
<a_z>_ = —V/Akﬁkufnde (3.14)

VB = V(B +; [, Biias G.15)

Those theorems relate the derivative of the average to the average of the derivative
where By is a scalar, 7iy is the surface normal pointing from phase k to the other, i is

the interface velocity.

3.3 Continuity

Continuity equation for phase 1 is given in equation (2.12). Averaging the continuity
equation yields

d
(S +v(piiin)) = (0) (3.16)

11



Since the averaging operator is linear, this can be written as:

<&a”tl )+ Vipiii) = (0) (3.17)

Applying averaging theorems (3.14) and (3.15) to the both terms in the left hand side
of equation (3.17) yields:

d d 1
<%>: g’tﬁ v J, i (3.18)
— — 1 - —
<Vp1u1>:V<p1u1>+v/A puiiyit dA (3.19)
1

Substituting the above equations into equation (3.17) results in:

d(p1) 3
> +V{p1i1) = v

We can replace (p;) to its intrinsic counterpart using relations (3.5) and (3.7). Also

plnl(uf—ul)dV (3.20)

making use of the incompressibility of individual phases, the mass conservation

equation for phase 1 becomes:

d 1
P1%+P1V051<ﬁ1> V/Alplnl(uf i)dv (3.21)
Similarly for the phase 2, we have:
doy
P22 4 sV () = / pai (i — i) dV (322)

The terms in the right hand side describe the mass flow from one phase to the other.
The boundary condition at the interface requires the mass flows to be equal, hence we

can write the conservation of mass for both phases as

Ja n'1
and
d(l—a) L om
T+V(l—a)<u2) = —E (3.24)

where we have used @) = o and oy = 1 — . Mass conservation equation is obtained

by adding up equations (3.23) and (3.24):

V(i) = '(pil—é) (3.25)

If there in no mass transfer between phases, the mass conservation equation is further
reduced to

V(i) =0 (3.26)

12



3.4 Momentum Conservation

We have described the Navier-Stokes equation for a single phase in equation (2.18).

Averaging it yields:

<%(Pkﬁk)> + (V(pxiiiix)) = (VT ) 3.27)

With the averaging theorems, we can convert the average of the derivatives to the

derivative of the averages:

J, J, 1 L
<§(Pkuk)> = E(Pk“/& — V/Ak P frigdA (3.28)
- _, e 1 .
(V(priixiiy)) = V {(priixlix) + v /A PrililiyirdA (3.29)
k
(VT,) = V(T,) +~ / T iindA (3.30)
V Ja,

Applying incompressibility assumption to those equations like we did in the continuity

while deriving equation (3.21), we can simplify the first two equations above to:

d d 1
—(prlix) ) = Pr= Up)) — — Uyl (1 dA 31
<8t (Pkuk)> Pkat(ak<”k>) V/Akpkuk”fnkd (3.31)
- — - — 1 - = =
(V(pkukuk)> = ka(Ock<ukuk)) + V/A PrlylixhixdA (3.32)
k
Substituting them back into the equation (3.27) yields:
a — — — 1 —
Piy, (O i) ) + picV (o (iigiiy)) = VT i) + | TiiidA (3.33)
k

Here, the integrals in the inertial terms cancelled each other because of the boundary
condition at the interface (equation (2.16)) which requires iy = ify. Momentum

conservation equation for two phase flow is obtained by summing equation (3.33) for

two phases
p%(ﬁ) +pV (i) =V(T)+ Fs (3.34)
where Fy is defined using the boundary condition at the interface. Since n; = —n,, we
can write
Fo = é /A GTi(ViA)dA = é /A A(T1 —T2)dA (3.35)
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In order to deal with the term (i) in equation (3.34), we can split # into its average
and a deviation part. Depending on the size of the cell, we may still have variation
inside the cell. Therefore, when we assign a single discrete value to the cell center
representing the spatial average of the variable under consideration, we must have a
deviation component, ii’, representing variation of the variable within the cell. Hence,

similar to Reynolds decomposition, we can write,
= (i) +id (3.36)

We expect that theoretically as the cell volume shrinks to zero, the variational part

should go to zero as well. With this decomposition, we can write,

(aid) = ((() +a') ((@d) + ")) (3.37)

(iiid) = (@) (i) + (()a') + (i (id)) + (') (3.38)

since the spatial average of the variational part is zero.

(idid)y = ((id) (i) + (@'id') (3.39)

(') approaches to zero as the averaging volume gets smaller. So while using fine

meshes this term becomes less significant and we can approximate (i) as (i) (if).

In addition to above approximation, we approximate the viscous term in the stress
tensor as Vu((Vii) + (Vi)T) and finalize the VOF formulation of momentum
conservation.

p 2 (i) + pV i) i) = V{P) + Viu((Vid + (V)) + Fo (3.40)

3.5 Phase Fraction Equation

While combining two sets of conservation equations into one we have introduced a
new variable, phase fraction. The equation for phase fraction can be obtained by
manipulating the averaged mass conservation equation for single phase. Introducing

relative velocity as

(idy) = (i) — (ik2) (3.41)

14



averaged velocity of the phase 1 can be written as
() = (@) + (1 — &) {idr) (3.42)

inserting the equation (3.42) into equation (3.23), we obtain the equation for the phase
fraction
da 77

S V@) Vel -a)i) = 2 (3.43)

(a(1 — o)(iy)) is generally referred to as compression term, it compresses the free
surface and provides a sharper interface. It acts only on the interface region because

the term o(1 — ) is equal to zero if « is either zero or one.
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4. CONTACT ANGLE

The contact angle is the angle between the interface of the two fluids and the solid
surface. When contact line is stationary, the contact angle is a property of the
fluids-solid system and called as equilibrium contact angle, 8g. The relationship
between surface tensions of the phases and equilibrium contact angle on an ideal

surface is shown by Thomas Young [41] as
COS(QE)aLG = 8SG_6SL (4.1)

Here, 07, 05 and oy, are surface tensions of liquid-gas, solid-gas and solid-liquid,
respectively. An illustration of the surface tensions and contact angle can be seen in

Figure 4.1.

Owe

Gas

Figure 4.1 : Contact angle and surface tension.

In fact, the equation (4.1) is an exception rather than a rule, and the equilibrium contact
angle takes a value between the advancing contact angle (84) and the receding contact
angle (6g).

Or < O < 64 4.2)

Advancing contact angle is the contact angle measured just before the contact line
begins its movement to expand the liquid phase, similarly receding contact angle is the
contact angle measured just before the contact line begins its movement to expand the

gas phase (See Figure 4.2(b)). The difference between the advancing and the receding

17



contact angles is called contact angle hysteresis:

H=064,—6p (4.3)

It is generally viewed as a result of chemical heterogeneity of the surface and surface

roughness [35,42], but still is a controversial subject [43,44].

v -

(a) (b) (c)

Figure 4.2 : Contact angles: (a) Equilibrium contact angle. (b) Contact angle
hysteresis. (c) Dynamic contact angle.

When the contact line moves, the contact angle deviates from its equilibrium value and
is called the dynamic contact angle (6p). In the dynamic situation, Young’s equation
is no longer able to explain contact angle since there is no equilibrium. If the contact
line is advancing, in other words, it moves from liquid to gas, the DCA is greater than
the equilibrium one. Similarly for a receding contact line, the DCA is less than the
equilibrium contact angle (See Figure 4.2(c)). Although a general and accurate way
of calculating the DCA in relation to flow and fluid properties has not yet been found,

many attempts have been made to model the contact angle.
One of the pioneering works on DCAs is from Hoffman [45]. From his experiments
he observed that the DCA is a function of Capillary number and a shift factor,

6p = f(Ca+F(6g)) 4.4)
where the shift factor, F, is an unknown function of equilibrium contact angle and
Capillary number is the ratio of viscous forces to the surface tension:

_ Hug
o

Ca

4.5)

where u.; is contact line velocity. However Hoffman did not propose a complete

formulation.
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In 1993, Kistler presented an empirical model based on Hoffman’s observations [32].

Kistler’s correlation for the DCA is,

00 = fiops(Cat fighs(6F)) (4.6)

where fl;o} f is the inverse of the Hoffman function and Hoffman function is defined

as:

Srogy(x) = Cos™' {1 = 2Tanh .16 (=5 75%9) ) | @.7)

The DCA model based on Shikhmurzaev’s theoretical studies on the moving contact

lines [34] is of the form

2u* (a1 + aruy)
(1—a2)((a1 +u*?)'/2 +u*)

* Mg
u —=day3———

(0
r Sin(ep) F— GDSin(QD)

Sin(@D)COS(QD) — GD
a; =14 (1—ay)(Cos(6g) —ay)

Cos(6p) = Cos(6g) —

(4.8)

<
O *

where a;, a3 and a4 are phenomenological constants. For water these constants are
given as a, = 0.54, az = 12.5, a4 = —0.07 and for glycerin a; = 0.63, a3 =4.3, a4 =
—0.08 [46,47].

Another DCA model we use in this work is the Bracke’s empirical correlation [36]:
Cos(6p) = Cos(0g) —2(1 +Cos(6g))Ca'/? (4.9)
Quasi-Dynamic contact angle model is the simplest DCA model. In this model the

value of the DCA depends only on the sign of the contact line velocity, i.e. whether if

the contact line is advancing or receding.

04 if uq >0
Op=140r if uq=0 (4.10)
Or if ug <0

In the absence of the hysteresis data, this model reduces to static contact angle model.

6p = 6 (4.11)

All of the models above except the Quasi-Dynamic model predict DCAs for advancing

contact lines only. However, many researchers successfully used the Kistler model for
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both receding and advancing contact lines in numerical simulations [18,21, 28, 48],
which is also the approach we adopted in this work. On the other hand, we use
a different approach for the Shikhmurzaev and the Bracke models [46,49]. The

Hoffman-Voinov-Tanner law,
0, = 03 —72Ca (4.12)

is used to estimate the dynamic receding contact angle for those models. The estimated
contact angles by each DCA model we have used at different contact line velocities for

water on a smooth wax surface (64 = 105° and Oz = 95°) are shown in Figure 4.3.

130 1 —e— Shikhmurzaev
—>— Quasidynamic

120 4 —&— Kistler

Q —— Bracke

(@)}

C

<

9 110 -

c

o

)

2 100 A

&

(0]

C

>

8 90
80 +

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Contact Line Velocity

Figure 4.3 : DCA versus contact line velocity for different DCA models.

The contact angle hysteresis is incorporated into the models by replacing 6 with 64

and O in case of advancing and receding contact lines, respectively.
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5. METHODOLOGY

5.1 Experiments

In order to compare the effect of the contact angle models on the simulation accuracy,

5 experiments are chosen. In all of the experiments, a liquid droplet is impinged on

a solid, smooth, dry and flat surface. The experiments are chosen in order to ensure

a variety of Reynolds and Weber numbers are covered. The simulated experiments’

specifications are given in Table 5.1 and properties of water and glycerin are given in

Table 5.2.

Table 5.1 : Experiments.

Case Liquid Wall We Re Uy Dy 04 6r  Ref
1 Water Wax 52 3245 1.18 2.75 105 95 [50]
2 Water Wax 90 4010 1.64 245 105 95 [51]
3 Glycerin Wax 93 36 141 245 97 90 [51]
4 Water S. Steel 7.9 1200 048 2.5 120 65 [52]
5 Water S. Steel 1.81 575 0.23 2.5 120 65 [52]
Table 5.2 : Properties of liquids.
Liquid o [N/m] Wu[mPas] plkg/m?]
Water 0.073 1 996
Glycerin 0.063 116 1220
In this context, Reynolds and Weber numbers are defined as:
D
Re — P10 (5.1)
My
piugDo
We ="—7""— 5.2)
OLG
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5.2 Numerical implementation

For the numerical computations, we’ve used OpenFOAM’s two phase flow solvers,
interFoam [53] and interFlow [54]. They are both VOF method implementations
for immiscible, incompressible and isothermal fluids. We have explained the VOF

equations in detail in section 3. In summary, they are:

Vii=0 (5.3)
J ., L I— -
E(pu) + V(piii) = —Vp+Vu(Vii+Vi' )+ F5 +pg (5.4)
o L
W+V(o¢u)+Vo¢(l — )i, =0 (5.5)

where we have dropped the brackets that denote average values.

In order to keep the interface sharp, interFoam uses Multidimensional Universal
Limiter with Explicit Solution limiter (MULES) which models the relative velocity

on the cell face in equation (5.5) as

Uy, f =1 min (Ca%,max(%)> (5.6)

where ¢ is the face flux, Sy is the face area vector normal to the face pointing out of the
cell, i is the interface normal and Cy, is a user defined compression coefficient [55].
One problem of the MULES algorithm is, the interface is smeared over a small number

of cells [56].

The IsoAdvector method is a geometrical scheme for advection of sharp interfaces,
proposed as a replacement for MULES [54]. It is reported that it can successfully
solve the smearing problem of the MULES algorithm. The IsoAdvector method cuts
the cells into two parts so that each part contains only one fluid. In order to cut a cell,
the IsoAdvector method interpolates the cell centered phase fractions to cell vertices,
then using these vertices it decides where to cut the cell [57]. We have conducted

numerical computations using both MULES and IsoAdvector.

For the pressure-velocity coupling Pressure Implicit with Splitting of Operator (PISO)

algorithm is used. Discretization schemes that we have used are given in Appendix
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A. An adjustable time step scheme is used and time steps are adjusted so that
Courant—Friedrichs—Lewy (CFL) number never exceeds 0.2.
5.2.1 Surface tension

The surface tension force, Fg is given in equation (3.35) as
1 — —
Fs = —/ cii(Vi)dA 5.7)
V Ja

however, it is not possible to compute that as it is. The method used to calculate Fy
is Brackbill’s continuum surface force model [58]. This model computes the surface

force as

Fs =oxVa (5.8)

where K denotes the curvature of the phase interface and it is defined as

K=Vn (5.9
and the unit normal, 7 is
Va
n=-—— 5.10

5.2.2 Computational domain

The computational domain of the simulations is an axisymmetric wedge of 5° with 10
mm radius and 10 mm height as shown schematically in Figure 5.1. By setting the
domain radius to 10 mm, we ensured that the radius of the domain is 7-8 times higher

than the initial droplet radius.
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Figure 5.1 : Schematic view of computational domain.

The mesh has one cell in azimuthal direction and uniformly spaced cells in
non-azimuthal directions. In order to ensure grid independency, mesh convergence
study is conducted and results are given in Section 6.1. According to the mesh
convergence study, 500x500 grid is selected which is composed of 20 um x 20 um

cells.

5.2.3 Initial and boundary conditions

Since we are conducting axisymmetric computations, wedge boundary condition is
used at the front and back planes of the domain. Contact angle models described
in Section 4 are implemented and used as boundary condition at the wall for the
phase fraction coupled with no-slip boundary condition for the velocity. At all other
boundaries, the phase fraction is set to zero and velocities are defined as inlet-outlet.
The pressure boundary conditions are set to zero gradient at the wall and prescribed

atmospheric pressure at the other boundaries.

The initial geometry of the droplet is formed by setting phase fraction field at
corresponding cells before the simulation starts and impact velocity of the droplet is
set in the same manner. The initial state of the domain and boundary conditions can be

seen in Figure 5.2.
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Figure 5.2 : Initial state of the computational domain.

5.2.4 Contact line velocity

As stated in Section 4, all of the DCA models we use depend on contact line velocity,
uc, through Ca or sign of the u.;. We calculate the contact line as parallel component

of the cell center velocity closest to the wall as;

Ucp = |ﬁcl’ - ﬁpamllel 'ﬁparallel (5.11)

where 441701 and 7 pgrqi1er are velocity and interface normal’s components parallel to

the wall. Or explicitly ;

i (A L
cl — TS5 S o i— l"—‘t 512
" = E A (- &-a) ©.12)

where 7 is the phase interface normal, 7 is the wall normal and i is the fluid velocity.

25






6. RESULTS AND DISCUSSION

6.1 Mesh Convergence

In numerical simulations of fluid dynamics problems, it is important to have results not
affected by the selected grid size. Therefore, a mesh convergence test is conducted in
order to ensure that the solution is independent from mesh size. Usually finer meshes
yield more accurate solutions, but they come with the cost of computation time. So

it is important to find a mesh size that gives accurate results and has low computation

time.

In this study, mesh sizes of 200200, 250%x250, 500x500, 625 x625, 800x 800 and
1000 1000 are tested. In Figure 6.1, temporal evolution of spread factor is plotted for

Case 2 using the Kistler contact angle model. The spread factor (D/Dy) is defined as

the ratio of the wetted radius and the initial radius of the droplet.

Spread Factor

It seems that the results become independent of the mesh size only after 500x500

resolution.

304 —— 200x200
—— 250x250
-------- 500500

2.5 1 == 625x625
—— 800x800

1000x 1000

2.0 1

1.5

1.0

0.5 4

Time[ms]

Figure 6.1 : Mesh convergence study results.

It can be seen that 500x500 mesh is almost accurate as finer mesh
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resolutions and it requires much less computational effort as shown in Table 6.1. We

have selected 500x 500 mesh size which corresponds to 20 ym x 20 yum cells.

Table 6.1 : Computation times of different mesh sizes.

Mesh Size Computation Time

200200 565s
250250 844s
500500 10325s
625x625 24404s
800x 800 37406s
1000 x 1000 70639s

6.2 Numerical Simulations of Droplet Spread Experiments

In this section, we will present the results of the numerical simulations of droplet
spread experiments introduced in section 5.1. In the numerical simulations, we
have compared four DCA models, namely the Quasi-Dynamic, the Kistler, the
Shikhmurzaev and the Bracke models. We have also compared two interface capturing

schemes; an algebraic scheme MULES and a geometrical scheme IsoAdvector.

We will evaluate the performance of the contact angle models qualitatively by
comparing the images taken from the simulations at particular time instants. These
instants are chosen to enable us to make a comparison between the real images of the

droplets given in the experiments [28, 50, 52].

Quantitative analyses are done by comparing the maximum spread diameter and
temporal evolution of the spread factor. The mean spread factor error (MSFE) is
measured by averaging the relative absolute difference between different instants in
the experiment and the simulation. The maximum spread diameter error (MSDE)
is measured by normalizing the maximum spread diameter difference between the
simulations and the experiment. The normalization is done by dividing the difference

to the value of the corresponding experimental data.

Although it is a common practice in droplet spread studies to use non dimensional
time, for comparison with the experimental images, we have not nondimensionalized
our results. The dimensionless time is defined as

. tUp

T= Dy 6.1)
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where ¢ is time, Uy is impact velocity and Dy is initial droplet diameter.

6.2.1 Casel

In this case a water droplet of 2.75 mm diameter impacts onto a wax surface with 1.18
m/s initial velocity. Reynolds and Weber numbers are 3245 and 52 respectively. The

surface is slightly hydrophobic with contact angles 84 = 105° and 6 = 95°.

In the first 3 ms, where the spreading occurs, all the contact angle models used in
conjunction with either the MULES or the IsoAdvector schemes predict spreading
diameter reasonably well. After 1.5 ms, the difference between contact angle models

become distinguishable as shown in Figure 6.2. At the maximum spread stage, roughly
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MULES IsoAdvector
Figure 6.2 : Comparison of DCA models in terms of spread factor for Case 1.

between 3 ms and 6 ms, all DCA models overestimate the radius of the droplet. The
order of overestimation is same in both the MULES and the IsoAdvector simulations
and, in descending order, appears as the Quasi-Dynamic, the Kistler, the Bracke and
the Shikhmursaev models in descending order. After the maximum spread, roughly
after 6 ms, the droplet starts to recoil. As can be seen in Figure 6.3, in the MULES
simulations all of the DCA models seem to capture the recoiling stage well, whereas
in the IsoAdvector simulations spread diameter is slightly higher compared to the

experiment.
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Figure 6.3 : Comparison of MULES and IsoAdvector in terms of spread factor for
Case 1.

All contact angle models perform better when they are coupled in the MULES
algorithm compared to the IsoAdvector. The Shikhmurzaev model has the best
accuracy in terms of both MSFE and MSDE, followed by the Bracke model. Errors of

all models are listed in Table 6.2.

Table 6.2 : MSFE and MSDE of the simulations for Case 1.

Interface Method DCA Model MSFE MSDE
MULES Shikhmurzaev 4.18% 5.03%
MULES Kistler 7.75% 8.60%
MULES Bracke 4.89% 6.39%
MULES Quasi-Dynamic ~ 7.05% 9.52%
IsoAdvector Shikhmurzaev 7.15% 7.47%
IsoAdvector Kistler 11.33%  9.82%
IsoAdvector Bracke 7.17% 8.20%
IsoAdvector Quasi-Dynamic  10.76%  11.31%

In the earlier stages of impingement, the shapes of the droplets are almost identical

except for the air bubble formation observed in IsoAdvector simulations (See Figure
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6.4 and Figure 6.5). The gray areas in the MULES simulations, which can be seen
starting from the earliest time instances, grow as time goes on, and are the result of the
diffusive nature of the algorithm. Unlike MULES, the IsoAdvector method is able to
generate a sharp interface and, therefore, the gray areas don’t appear in the IsoAdvector

simulations.
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6.2.2 Case 2

In the second case, we will investigate a configuration similar to the first case where
a water droplet impacts onto a wax surface with Weber Number of 90 and Reynolds
Number of 4010. The diameter of the water droplet in this case 2.45 mm and the

impact velocity is 1.64 m/s.

In the spreading stage, the numerical simulations predict the spread factor to be greater
than the experiment, but in the recoiling stage they tend to predict lower spread factors
as shown in Figure 6.6. Unlike the case 1, all of the DCA models perform better in the
IsoAdvector simulations (See Figure 6.7). We can see that in the MULES simulations,
except for the Shikhmurzaev model, all the DCA models start to recede earlier than the

experiment.
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Figure 6.6 : Comparison of DCA models in terms of spread factor for Case 2.

The temporal evolution of the numerical results agrees well with the experiment.
However, the microdroplets that vertically emerge from the main droplet body can
be seen in all four DCA models in the MULES, and only for the Shikhmurzaev model
in the IsoAdvector at 11 ms, as shown in Figure 6.8 and Figure 6.9, but this feature is

not observed in the experiment.

Overall, all of 8 simulations result in low errors as can be seen in Table 6.3, but the
Shikhmurzaev model gives the best results for both spread factor and maximum spread

diameter just like in Case 1.
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Figure 6.7 : Comparison of MULES and IsoAdvector in terms of spread factor for

Case 2.

Table 6.3 : MSFE and MSDE of the simulations for Case 2.

Interface method DCA Model MSFE MSDE
MULES Shikhmurzaev 591% 3.06%
MULES Kistler 7.79%  6.55%
MULES Bracke 8.93% 5.15%
MULES Quasi-Dynamic  8.49%  6.72%
IsoAdvector Shikhmurzaev 501% 4.06%
IsoAdvector Kistler 551% 7.55%
IsoAdvector Bracke 5.66% 5.53%
IsoAdvector Quasi-Dynamic  6.56%  8.69%
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6.2.3 Case 3

This case is a low Reynolds number case where a glycerin droplet of 2.45 mm diameter
impacts onto a wax surface with 1.41 m/s initial velocity. Reynolds and Weber numbers
are 36 and 93, respectively. The surface is slightly hydrophobic with contact angles
04 = 97° and 6 = 90°.

In all simulations, the air entrapment between the wall and the droplet is observed and
this happens probably due to the high viscosity of glycerin as can be seen in Figure
6.12 and Figure 6.13. The spreading stage is captured very well with all contact
angle models in both the MULES and the IsoAdvector simulations. The Bracke
and the Shikhmurzaev models started to recede after the spreading stage and this is
not observed in the experiment (See Figure 6.10). We can see a smaller rebound in
Quasi-Dynamic model as well, but it is much slower compared to the Shikhmurzaev

and the Bracke models. The Kistler model on the other hand is able to keep the spread

factor at its maximum value over the time.
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Figure 6.10 : Comparison of DCA models in terms of spread factor for Case 3.

The Kistler model coupled with the IsoAdvector has almost a perfect match to the
experimental results, but a slight underestimation of the spread factor is present in
the MULES simulation (See Figure 6.11). In overall, we can say that the MULES
simulations always underestimate the spread factor compared to the IsoAdvector. The
MSFE and MSDE values for the Case 3 in given in Table 6.4. Unlike the high Reynolds

number cases, in this case, the MULES is also able to keep the interface sharp.
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Figure 6.11 : Comparison of MULES and IsoAdvector in terms of spread factor for

Case 3.

Table 6.4 : MSFE and MSDE of the simulations for Case 3.

Interface method  DCA Model MSFE MSDE
MULES Shikhmurzaev 8.26% -1.42%
MULES Kistler 503% -4.81%
MULES Bracke 9.83% -4.60%
MULES Quasi-Dynamic  2.20% -1.24%
IsoAdvector Shikhmurzaev 3.46% 2.60%

IsoAdvector Kistler 1.34% -1.29%
IsoAdvector Bracke 532% -1.31%
IsoAdvector Quasi-Dynamic  2.57%  2.24%
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Figure 6.12 : Temporal evolution of the droplet shapes in MULES simulations for
Case 3. DCA models from top to bottom: Quasi-Dynamic, Kistler,
Shikhmurzaev and Bracke.
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Figure 6.13 : Temporal evolution of the droplet shapes in IsoAdvector simulations
for Case 3. DCA models from top to bottom: Quasi-Dynamic, Kistler,
Shikhmurzaev and Bracke.
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6.2.4 Case4

This experiment is conducted by impinging a water droplet of 2.5 mm diameter onto a
stainless steel surface with 0.48 m/s initial velocity. The contact angles are 84 = 120°

and 6g = 60°. The Reynolds and Weber numbers are 1200 and 7.9, respectively.

Due to the low Weber number, the effect of the surface tension is more dominant
compared to the previous cases. Hence, the numerical calculations are much more
affected by the problematic nature of the surface tension calculations, which is caused
by the singularity in the contact line. One way to overcome this problem is to relax
the no-slip boundary condition at the solid surface, and another is to use a diffuse
interface. Since we want to test all the cases in the same setup, we didn’t relax
the no-slip boundary condition and, therefore, the IsoAdvector method which is not
diffusive is not able to simulate this case and blows after a short time. Therefore, we

can only show the results of the [soAdvector simulations for the first 2.5 ms.

We can see that even though the IsoAdvector simulations only lasted for 2.5 ms, the
droplet shapes are almost identical to the ones that are generated by the MULES
simulations (See Figure 6.15). In the MULES simulations, the shapes of the droplets
that are given by different DCA models are also similar (See Figure 6.16). All DCA
models predict the spread diameter higher than the experiment. At around 7 ms, the
models predict a recoiling behavior as can be seen in Figure 6.14, which is not present
in the experiment. Despite all these, they yield close results and low errors (See Table
6.5). The Shikhmurzaev model has the lowest error in both the spread factor and the

maximum spread diameter.
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Figure 6.14 : Comparison of DCA models in terms of spread factor for Case 4.
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Table 6.5 : MSFE and MSDE of the simulations for Case 4.

Interface method  DCA Model MSFE MSDE

MULES Shikhmurzaev 375% 5.11%

MULES Kistler 4.88%  6.60%

MULES Bracke 397% 5.31%

MULES Quasi-Dynamic  5.03%  6.90%
0.5ms 1.5ms

o a
o a
o a
o a

Figure 6.15 : Temporal evolution of the droplet shapes in IsoAdvector simulations
for Case 4. DCA models from top to bottom Quasi-Dynamic, Kistler,
Shikhmurzaev and Bracke.
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Figure 6.16 : Temporal evolution of the droplet shapes in MULES simulations for
Case 4. DCA models from top to bottom Quasi-Dynamic, Kistler,
Shikhmurzaev and Bracke.

6.2.5 Case 5

This experiment is conducted by impinging a water droplet of 2.5 mm diameter onto a
stainless steel surface with 0.23 m/s initial velocity. The contact angles are 64 = 120°
and O = 60°. The Reynolds and Weber numbers are 575 and 1.81, respectively. This
case has the lowest Weber number among the cases we have tested. So, the same

situation regarding the IsoAdvector in Case 4 applies to this case as well.

Starting from 2.5 ms until the end of the simulation, the spread factor is always
predicted lower than its actual values as shown in Figure 6.17. The small recoil starting
from 10 ms followed by an increase in the spread factor are resolved but much larger
in magnitudes. Also, the increase in the spread factor starts roughly 2.5 ms before it
is observed in the experiments. The lowest errors are given by the Kistler model (See

Table 6.6). The droplet shapes are given in Figure 6.18.
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Figure 6.17 : Comparison of DCA models in terms of spread factor for Case 5.

Table 6.6 : MSFE and MSDE of the simulations for Case 5.

Interface method  DCA Model MSFE MSDE
MULES Shikhmurzaev 8.84% -2.59%
MULES Kistler 728%  -2.24%
MULES Bracke 9.10% -3.06%
MULES Quasi-Dynamic  7.58%  -2.26%
0.5ms 1.5ms 3ms 5.5ms 7ms 9ms

@ A Ao A
L I W WSeW'§
® A Accon A
® A Ao A

Figure 6.18 : Temporal evolution of the droplet shapes in MULES simulations for
Case 5. DCA models from top to bottom Quasi-Dynamic, Kistler,
Shikhmurzaev and Bracke.
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7. CONCLUSIONS

In this study, numerical simulations of droplet impact on dry, smooth and solid
surfaces were done using four different DCA models, namely the Quasi-Dynamic, the
Kistler, the Bracke and the Shikhmurzaev models. These models are coupled with two
VOF based interface capturing methods, which are the MULES and the IsoAdvector
schemes. In order to compare the performances of the dynamic contact angle models
and the interface capturing methods, five different physical experiments with different
flow settings were simulated and the performances of the models were compared both
qualitatively and quantitatively. For all simulations, we’ve drawn the droplet shapes at
different time instances. The time instances were chosen so that the droplet shapes can
be compared with the experiments. It is observed that the temporal evolution of the

droplets matches with the physical experiments.

Even though we’ve discussed each experiment individually, we have discovered some
patterns. Two of the five experiments had relatively low Reynolds numbers (36 and
575) compared to the other three (1200, 3245 and 4010). We have seen that for all
experiments that have low Reynolds number, the maximum spread factor is estimated
to be slightly lower than the experiments in 10 simulations out of 12. Similarly, all
of the 20 simulations corresponding to the experiments with high Reynolds number
slightly overestimates the maximum spread factor. Another pattern we’ve discovered
is that, in all three experiments that have high Reynolds number, the Shikhmurzaev
model has always yields the lowest errors in the spread factor and the maximum
spread diameter both with the MULES and the IsoAdvector algorithms, whereas the
experiments with low Reynolds number is best simulated with the Kistler model and

the Quasi-Dynamic model.

Even though the sharp interface capturing methods such as the IsoAdvector method are
generally not used with the no-slip boundary condition without workarounds because
of the singularity at the contact line, we have shown that experiments with high Weber

numbers can be simulated with the IsoAdvector algorithm, but the experiments with
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low Weber numbers are failed to be simulated after 1 ms to 2 ms. Only considering
the three experiments that we were able to run the IsoAdvector simulations, the
experiments with high Weber numbers (90, 93) were predicted better in terms of the
MSFE, whereas the experiment with moderate Weber number (52) was predicted better
with the MULES algorithm. Of course, we cannot make robust conclusions using only
three cases, therefore conducting more simulations with an increased number of cases

which consists of a variety of Weber numbers is necessary for future work.

Overall, all contact angle models predict the temporal droplet spread factor evolution
very well, the maximum obtained MSFE is 11.33% and the minimum obtained MSFE
is 1.34% from all 32 simulations. In the majority of the simulations, the model
that performs worst is the Quasi-Dynamic model, and the best performing model
is the Shikhmurzaev model. However the difference between the Quasi-Dynamic
model’s performance and the Shikhmurzaev model’s performance is very small. The
same conclusions also apply to the performances for the maximum spread diameter
prediction, with lowest MSDE being 1.24% and the highest being 11.31%. For all

cases, the most accurate DCA models are summarized in Table 7.1

Table 7.1 : Most Accurate DCA Models.

Case We Re Most Accurate DCA Model

Casel 52 3245  Shikhmurzaev

Case2 90 4010  Shikhmurzaev

Case3 93 36 Quasi-Dynamic (MULES), Kistler (IsoAdvector)
Case4 79 1200  Shikhmurzaev

Case5 181 575 Kistler
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APPENDIX A.1

fvSchemes dictionary used with IsoAdvector simulations is as follows:

FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "system";
object fvSchemes;
}
ddtSchemes
{
default CrankNicolson 0.5;
}
gradSchemes
{
default Gauss linear;
}
divSchemes
{
div (rhoPhi, U) Gauss upwind;
div (phi,alpha) Gauss vanlLeer;
div (phirb,alpha) Gauss interfaceCompression;
div (( (rhoxnuEff) xdev2 (T (grad(U))))) Gauss linear;
}
laplacianSchemes
{
default Gauss linear corrected;

interpolationSchemes

{

default linear;

snGradSchemes

{
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default corrected;

fluxRequired
{
default no;
p_rgh;
pcorr;
alpha.water;

fvSolutions dictionary used with IsoAdvector simulations is as follows:

FoamFile

{
version 2.0;
format ascii;
class dictionary;
location "system";
object fvSolution;

}

solvers

{

"alpha.water.x"

{

interfaceMethod "isoAdvector";

isoFaceTol le-8;
surfCellTol le-8;

snapTol le-12;
nAlphaBounds 3;

clip true;
nAlphaCorr 2;
nAlphaSubCycles 1;

cAlpha 1;

MULESCorr yes;
nLimiterIter 8;

solver smoothSolver;
smoother symGaussSeidel;
tolerance le-8;

relTol 0;

56



"pcorr.x"

{
solver
preconditioner
tolerance
relTol

"o rgh"

{
solver
tolerance
relTol
smoother
nPreSweeps
nPostSweeps
nFinestSweeps

PCG;
DIC;
1le-10;

cacheAgglomeration true;
nCellsInCoarsestLevel 10;

agglomerator faceAreaPair;
mergelevel 1;
}
"o_rghFinal"
{
solver PCG;
preconditioner
{
preconditioner GAMG;
tolerance le-8;
relTol 0;
nVcycles 2;
smoother DICGaussSeidel;
nPreSweeps 2;
nPostSweeps 2;
nFinestSweeps 2;

cacheAgglomeration true;
nCellsInCoarsestLevel 10;

agglomerator faceAreaPair;
mergelevel 1;
}
tolerance le-9;
relTol 0;
maxIter 50;
}
U
{
solver smoothSolver;
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smoother DILUGaussSeidel;

tolerance le-7;
relTol 0.05;
nsSweeps 5;
minlter 3;

}

UFinal

{
solver smoothSolver;
smoother GaussSeidel;
tolerance le-8;
relTol 0;
nSweeps 2;

PIMPLE

{
momentumPredictor yes;
nCorrectors 3;
nOuterCorrectors 1;
nNonOrthogonalCorrectors 0;

nAlphaCorr 14
nAlphaSubCycles 1;
cAlpha 1;
}
APPENDIX A.2

fvSchemes dictionary used with MULES simulations is as follows:

FoamFile

{
version 2.0;
format ascii;
class dictionary;
location "system";
object fvSchemes;

}

ddtSchemes
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default CrankNicolson 0.5;

gradSchemes

{

default leastSquares;

divSchemes

{
div (rhoPhi,U) Gauss limitedLinearV 0.5;

(
div (phi,alpha) Gauss vanlLeer;
div (phirb, alpha) Gauss interfaceCompression;
div (((rho*nuEff) xdev2 (T (grad(U))))) Gauss linear;

laplacianSchemes

{

default Gauss linear corrected;

interpolationSchemes

{

default linear;

snGradSchemes

{

default corrected;

fluxRequired

{
default no;

p_rgh;
pcorr;
alpha.water;

fvSolutions dictionary used with MULES simulations is as follows:

FoamFile

{
version 2.0;
format ascii;
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class dictionary;
location "system";
object fvSolution;
}
solvers

{

"alpha.water.x"

{
nAlphaCorr

nAlphaSubCycles

cAlpha

MULESCorr

nLimiterIter

solver
smoother
tolerance
relTol

"pcorr. *"

{

solver

preconditioner

tolerance
relTol

"o rgh"

{
solver
tolerance
relTol
smoother
nPreSweeps
nPostSweeps

nFinestSweeps

smoothSolver;
symGaussSeidel;
le-8;

0;

PCG;
DIC;
le-10;

cacheAgglomeration true;
nCellsInCoarsestLevel 10;

agglomerator

mergelevel

"o_rghFinal"
{

solver

faceAreaPair;
1;

PCG;
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preconditioner

{
preconditioner
tolerance
relTol
nVcycles
smoother
nPreSweeps
nPostSweeps
nFinestSweeps

cacheAgglomeration true;
nCellsInCoarsestLevel 10;

agglomerator faceAreaPair;
mergelevel 1;

}
tolerance le-9;
relTol 0;
maxIter 50;

}

U

{
solver smoothSolver;
smoother DILUGaussSeidel;
tolerance le-7;
relTol 0.05;
nsSweeps 5) 2
minIter 3;

}

UFinal

{
solver smoothSolver;
smoother GaussSeidel;
tolerance le-8;
relTol 0;
nsSweeps 2;

}

}
PIMPLE

{

momentumPredictor yes;
nCorrectors

nOuterCorrectors

nNonOrthogonalCorrectors 0;
nAlphaCorr
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nAlphaSubCycles
cAlpha

1;
1;
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