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Accuracy improvement of target ship position estimation by 
a shore set-up stereo vision system 

   

  Recently, safety ship navigation has become more important by the increment in the ship sizes and 

number of ships worldwide. Marine accidents and collisions are forming a great risk for environment and 

maritime sector, and this risk is gradually increasing by the increment in the number and size of the ships. The 

maritime authorities of countries want to have better control opportunity of ship traffic especially in strict areas 

as territorial waters and straights due to the risk of accidents and environmental pollution. For this reason the 

VTS’s (Vessel Traffic Services) are developed and many people employed at VTS Centers to be able to 

control the traffic flow. Even more, worldwide maritime authority IMO (International Maritime Organization) 

constitutes new laws to achieve safer ship navigation and safer sea areas. However there is not enough 

preventive action taken and the frequency of maritime accidents is increasing. 

   For safer navigation and prevention of marine accidents, especially collision, ship detection has a great 

importance. There are already some detection devices as RADAR/ARPA (Automatic Radar Plotting Aid) and 

AIS (Automatic Identification System) on board ships. AIS is mandatory only for the vessels which are greater 

than 500GT. These equipments are capable of detecting ships which are greater than 500 GT in the range of 

20 nautical miles. However, the ships smaller than 500 GT and which are not carrying AIS device induce a 

high risk of collision. Even more in case of small ships, the radar cannot distinguish the ship and sea clutter 

and may cause false detection. Therefore, these devices may not be enough for collision-free navigation 

especially in domestic waters where small vessels like fishing boats exist.  

The accident inquiry reports show that the collisions are mostly caused by cargo ships and fishing vessels 

which are in the category we mentioned above. Therefore, this study has importance to detect ships in the 

range of about 3 nautical miles (about 5 km) -which is important to avoid from collision- which are small in size 

and not carrying AIS. The best way to do this is considered to be an artificial vision system that actually is 

carried out by human now. The inquiries show that most of the collisions take place in the range of 3 nautical 

miles from shore. One of the reasons for this is the fatigue of navigation officers. After a hectic work in port 

(loading and discharging), the navigation officer is already tired and has to carry out a navigation watch. 

Besides, near the port area the marine traffic is expected to be dense. In this case, the collision risk is 

increasing. By the application of such an assistant look-out system, the workload of seafarers will be reduced 

and safer navigation environment will be constituted.  
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In maritime field, detection of ships and autonomous navigation is getting more important day by day due to 

reduction in the number of mariners and increasing number of ships. Application of computer vision and digital 

image processing techniques can be effective for this purpose. This subject has not been studied sufficiently 

especially in maritime sector, so far. Some limited number of studies already has been carried out, but an 

accurate and precise system has not been developed yet.  

Stereo vision system is one of the most exploited systems to recover 3D information from 2D images. 

However, it has been applied almost for the land based robotic applications and not for maritime field. Therefore, 

stereo vision using digital images is one of the candidate methods for ship detection, 3-D location measurement 

and autonomous navigation of ships.  

In the previous study, feasibility of a stereo vision system was studied to detect ships and acquire ship 

position data. In that study, camera calibration was emphasized. However, especially in the long range (by 5 km) 

data some errors were encountered. To improve the accuracy of 3D data, these errors should be removed.  

One of the major causes of these errors is based on quantization errors. The quantization errors arise from 

use of digital images that has finite number of pixels. They affect the accuracy of the system especially in long 

range measurement due to increasing depth resolution with respect to range. That’s why image plane 

quantization error elimination is one of the purposes of this study. Our solution to overcome the quantization 

error is calculation of corresponding points between stereo pair images with sub-pixel order accuracy. There 

have been several methods proposed for sub-pixel image matching. Intensity-based sub-pixel registration is 

preferred in this study.  

Another important range error parameter is inaccuracy and vibration in disparity values of corresponding 

points. Refinement of the disparity values by low pass filtering (LPF) yields smoother values which results in 

reduction of 3-D measurement error to 1% of object’s distance. 

Applying the mentioned methods we observed a great improve in the accuracy of our stereo camera system. 

77% of the range error is eliminated. In a determined range the Z dimension error of ±170 m. is reduced to ±35 

m. The maximum measurable range with 150 m. range error is increased from 2600 m. to 5400 m. In the case of 

1.5 km. of measuring distance the range error is reduced to ±12 m. which is acceptable for this range. Therefore; 

it is sufficiently available to detect and estimate ship position in the range of 20 meters to 5400 meters which is 

well matched with the purpose of the study of detecting and locating small ships in a close range with 

conventional video cameras. 
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1. INTRODUCTION 

   Recently, safety ship navigation has become more important by the increment in the ship sizes and 

number of ships worldwide. Marine accidents and collisions are forming a great risk for environment and 

maritime sector. The maritime authorities of countries want to have better control opportunity of ship traffic. 

However there is not enough preventive action taken and the frequency of maritime accidents is increasing. 

   Detection of ships and autonomous navigation is getting more important day by day due to reduction in 

the number of mariners and for safer navigation and prevention of marine accidents, especially collision. 

There are already some detection devices as RADAR/ARPA (Automatic Radar Plotting Aid) and AIS 

(Automatic Identification System) on board ships. AIS is mandatory only for the vessels which are greater 

than 500GT. Therefore, the ships smaller than 500 GT and which are not carrying AIS device induce a high 

risk of collision. Even more in case of small ships, the radar cannot distinguish the ship and sea clutter and 

may cause false detection. Therefore, these devices may not be enough for collision-free navigation 

especially in domestic waters where small vessels like fishing boats exist. The accident inquiry reports 

confirm that the collisions are mostly caused by cargo ships and fishing vessels within the range of 3 nautical 

miles from shore.  

Application of computer vision and digital image processing techniques can be effective for this purpose. 

Stereo vision system is one of the most exploited systems to recover 3D information from 2D images. 

Therefore, we propose a stereo vision system using digital images for detecting and 3-D location 

measurement of ships. 

2. STEREO VISION SYSTEM AND STEREO ERROR  

   Especially in the long range (by 5 km) data 3-D error is increasing. To improve the accuracy of 3D data, 

these errors should be removed. One of the major causes of these errors is based on image plane 

quantization errors. The quantization errors arise from use of digital images that has finite number of pixels.     

   The model of our stereo system and error is illustrated in Figure.1. Assuming the pl is true and pr is 

detected with an error of ε, the 3-D location of P is estimated as P’. The estimated error of the location is 

obtained by the following equation, 
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The error ε in the camera coordinate system can be expressed in pixel coordinates by  

     
2

tan
2 


N

 ,                                                                        (2) 

where θ is horizontal angle of view, N is a horizontal image size and δ is the detected error of pr expressed 

in pixels. 

3. CAUSE OF ERROR AND PROPOSED SOLUTIONS 

   Our solution to overcome the quantization error is calculation of corresponding points between stereo pair 

images with sub-pixel order accuracy. There have been several methods proposed for sub-pixel image 

matching. Intensity-based sub-pixel registration is preferred in this study. In addition to that, refinement of the 
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disparity values by low pass filtering (LPF) yields smoother values. 
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Figure.1 Normal stereo camera model 

Applying the mentioned methods we observed a great improve in the accuracy of our stereo camera 

system. Figure 2 shows track of a ship measured by an experimental system, in which parameters are 

N=720, LB=8.14m, θ=43°.In Figure.2 this improvement can be seen visually. 77% of the range error is 

eliminated. In a determined range the Z dimension error of ±200 m. is reduced to around ±35 m. This result 

indicates that we can reduce sub-pixel matching error δ to 0.11 pixels on image plane coordinate by means of 

the proposed method. 

In addition, we can estimate the error in various conditions for the different values of N, LB, θ and Z using 

equation (1) and (2). The maximum measurable range with 150m range error is 5400m in case of the 

experimental system. If we use a higher resolution camera, for example N=2048, and set the baseline length 

to LB=25m, the range error can be reduced to 50m for an object at a distance of 5400m. Therefore, it is 

sufficiently available to detect and estimate ship position in the range of 20m to 5400m with 1% error of ship 

distance which is well matched with the purpose of the study and locating small ships in a close range. 

 

Figure.2 Step-by-step improvement of position estimation 

4. CONCLUSION 

   In order to measure ship position by the stereo vision system, errors due to corresponding point matching 

was investigated and it was found that we can obtain corresponding points with an accuracy of about 0.1 

pixels. This result indicates the possibility that we can measure ship distance with a sufficient accuracy, 1% 

error of ship distance. 
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CHAPTER 1  

 INTRODUCTION 

 Recently, safety ship navigation has become more important by the increment in the ship 

sizes and number of ships worldwide. International trade through shipping is significant, and 

expected to continue increasing over the next decade. Almost 90% of international trade is 

carried out via shipping. In 2006 global shipping was accounted as 30,686 billion tonne-miles. 

In 2007 it was 32,000 billion tonne-miles and was projected to grow in 2008 to more than 

33,000 billion tonne-miles, more than a 3% per year increase. Marine accidents and collisions 

are forming a great risk for environment and maritime sector and this risk is gradually 

increasing by the increment in the number and the size of the ships. Maritime authorities of 

countries want to have better control opportunity of ship traffic especially in strict areas as 

territorial waters and straights due to the risk of accidents and environmental pollution. For 

this reason the VTS’s (Vessel Traffic Services) are developed and many people employed at 

VTS Centers to be able to control the traffic flow. Even more, worldwide maritime authority 

IMO (International Maritime Organization) constitutes new laws to achieve safer ship 

navigation and safer sea areas. However there is not enough preventive action taken and the 

frequency of maritime accidents is increasing. Even more, the most encountered type of 

marine accidents is collision. Acccording to the report of Marine Accident Inquiry Agency 

more than 80% of accidents are due to human factors and mainly “improper lookout” and 

“non-compliance with marine traffic rules”[1].  Therefore it is clear that improving the 

lookout and piloting of the ship will have a key factor for decreasing the number of marine 

accidents. 

For safer navigation and prevention of marine accidents, especially collision, ship 

detection has a great importance. There are already some detection devices as 
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RADAR/ARPA (Automatic Radar Plotting Aid) and AIS (Automatic Identification System) 

on board ships. AIS is mandotory only for the vessels which are greater than 500GT. These 

equipments are capable of detecting ships which are greater than 500 GT in the range of 20 

nautical miles. However, the ships smaller than 500 GT and which are not carrying AIS 

device induce a high risk of collision. Even more in case of small ships, the radar cannot 

distinguish the ship and sea clutter and may cause false detection. Therefore, these devices 

may not be enough for collision-free navigation especially in domestic waters where small 

vessels like fishing boats exist.  

The accident inquiry reports show that the collisions are mostly caused by cargo ships and 

fishing vessels which are in the category we mentioned above. Therefore, this study has 

importance to detect ships in the range of about 3 nautical miles (about 5 km) -which is 

important to avoid from collision- which are small in size and not carrying AIS. The best way 

to do this is considered to be an artificial vision system that actually is carried out by human 

now. The inquiries show that most of the collisions take place in the range of 3 nautical miles 

from shore. One of the reasons for this is the fatigue of navigation officers. After a hectic 

work in port (loading and discharging), the navigation officer is already tired and has to carry 

out a navigation watch. Besides, near the port area the marine traffic is expected to be dense. 

In this case, the collision risk is increasing. By the application of such an assistant look-out 

system, the workload of seafarers will be reduced and safer navigation environment will be 

constituted.  

In maritime field, detection of ships and autonomous navigation is getting more important 

day by day due to reduction in the number of mariners and increasing number of ships. 

Application of computer vision and digital image processing techniques can be effective for 

this purpose. This subject has not been studied sufficiently especially in maritime sector, so 
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far. Some limited number of studies already has been carried out, but an accurate and precise 

system has not been developed yet.  

Stereo vision system is one of the most exploited systems to recover 3D information from 

2D images. However, it has been applied almost for the land based robotic applications and 

not for maritime field. Therefore, stereo vision using digital images is one of the candidate 

methods for ship detection, 3-D location measurement and autonomous navigation of ships. 

Hence, this research is proposing a new method for automatic detection and accurate position 

estimation of ships through application of a stereo vision system. 

1.1 Related Works 

To achieve the autonomous vessel navigation (ground vessel, airborne vessel, planet 

discovery vessel, marine surface vessel and marine underwater vessel) the studies are focused 

on two major topics of obstacle detection and collision avoidance.   

1.1.1 Vision-based Ship Detection 

There are various studies carried out for ship detection.  Except for the RADAR and 

SONAR detection techniques it’s almost based on detecting from images. However, there are 

numerous imaging techniques as infrared (IR), SAR (Synthetic Aperture Radar), ISAR 

(Inverse Synthetic Aperture Radar), satellite, laser and optical (or digital) images. Most of the 

ship detection studies are exploiting satellite SAR imagery and optical satellite imagery. A 

comparatively new study is presenting the state-of-art in ship detection with SAR imagery [2]. 

In reference [3] a collision avoidance system is presented which integrates the radar and 

infrared (IR) image information and in reference [4] classification of ship types exploiting 

Forward Looking Infrared (FLIR) images is studied. 

Besides, the number of digital image based ship detection studies is very limited. 

Reference [5] purposes a ship detection method through combining some image processing 
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techniques to the sea images which are taken from a shore set-up single photo camera. 

Shimpo et al. studied real-time detection of ships by calculating optical flow and moving 

vector between the digital image sequences and integrated this with other navigational 

equipments and AIS [6][7][8]. In reference [9] a feasible navigational lookout support system 

applying image processing techniques to the image sequence from a single video camera is 

studied. In this study combination of region segmentation and optical flow techniques are 

emphasized. Yamamoto et al. has a unique study of real-time detection of ships from a shore 

set-up camera system using stereo image sequences [10] [11]. Santhalia et al. studied 

classification of ship types applying neural networks to digital images from a single 

stationary camera [12]. Luna et al. proposed another method for ship identification which 

needs side view of ship from some different spectral ranges (CCD, FLIR, image intensifier) 

and compares this view with the stored database using Concavity-Convexity Scale Space 

(CCSS) which is an improved model of Curvature Scale Space (CSS) [13]. Ju et al. studied 

detecting and extracting the moving ship from complex background by applying mixture 

Gaussian models [14]. Huang et al. proposed a new method for detecting and 3D modeling of 

ships based on real-time segmentation and a novel clustering algorithm [15]. Wang et al. used 

change detection, morphological operators and Connected Components Labeling for ship 

detection of a seaport surveillance system [16]. Phelp built a digital image monitoring system 

which detects the excessive motion of ships in port and integrating ship data with digital 

terrain map (DTM) to be able to safety management of the port operations [17]. 

1.1.2 Vision-based Target Ship Position Estimation 

Smith et al.’s study is one of the oldest studies for the interpretation of ship images which 

gets the estimated location, orientation, dimensions, and heading of the ship using the spatial 

moments of the image [18]. References [10] and [11] are studying not only ship detection but 

also detected (target) ship’s position estimation. Reference [19] and [20] shows a method to 
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compute the course of target ship and distance between a target ship and own ship by means 

of a minute angle between the horizon and waterline using an image taken by a single video 

camera. 

The topics of obstacle detection and localization are mostly studied in realizing unmanned 

(autonomous) vehicles. In maritime sector these are separated into two categories of 

unmanned surface vehicles (USV) and autonomous underwater vehicles (AUV). In reference 

[21] the obstacle detection and collision avoidance of a USV is carried out by categorizing 

the distance of target into two parts of near-field (180 -300 m) and far-field (more than 300m). 

Different techniques applied for these categories. For near-field obstacle avoidance raw radar, 

stereo vision, monocular vision, nautical charts and millimeter wave radar data are used. For 

the far-field AIS contacts, nautical charts and ARPA contacts are exploited. Dunbabin et al. 

proposed a self docking of USV using a vision system of a single camera, GPS and Inertial 

Measurement Unit (IMU). This vision system has three primary functions: (1) Target 

segmentation from the image, (2) correction for camera lens distortion, (3) transformation 

from image coordinates to global coordinates. However, target distance and length data is not 

so reliable according to the experimental results [22] [23]. Ebken et al. applied unmanned 

ground vehicles (UGVs) technology to USVs. The primary obstacle avoidance sensor is a 

digital marine radar system produce by Xenex Inc. The radar provides both the raw radar 

image and the contact track data. It was intentioned to primarily use the raw radar image for 

obstacle avoidance and add the ARPA contact data to the obstacle map. However, due to 

unreliable nature of ARPA and high minimum detectable range (around 100 m) of digital 

marine radar a stereo vision system is included to be able to detect the closer objects [24]. 

Huntsberger et al. proposed an autonomous surface vessel which consists of a dynamic 

planning engine, a behavior engine and a perception engine. The perception engine 

algorithms derived from those used onboard the Mars Exploration Rovers (MER) for passive 
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stereo imaging, hazard detection/avoidance, and visual localization for navigation, combined 

with previous work by Spatial Integrated Systems in the areas of sensing and map-making. 

Camera models based on polynomial expansions used to correct camera/lens distortions are 

derived from a series of images obtained during a calibration procedure. A fast stereo 

algorithm developed at JPL (Jet Propulsion Laboratory) is used to generate a range map 

during the USV motion [25]. Reference [26] built an autonomous surface vehicle which has a 

navigation system that mainly consists of a monocular camera, a GPS and Inertial Navigation 

System (INS). Kalman filter is used for obstacle position estimation.  

1.2 Objectives of the Research 

In our study we propose a stereo vision system for accurate detection and localization of the 

ships. One of the advantages of stereo vision is you can both detect and calculate the location 

of the object. So it can be used not only for the marine surveillance system but also as a 

navigation tool for the ships.  

In the application of stereo vision system for the detection of ships some major problems 

have to be sorted out. One of them is the localization of the ships. Due to some characteristic 

quantitative errors of image acquisition systems and imaging geometry some errors take place 

especially in the distant locations and exact location of the ship can not be measured. These 

errors shold be removed or decreased.  Two kind of solutions are applied to reduce these 

errors.  

1. Sub-pixel image registration 

2. Disparity refinement 

Sub-pixel registration is necessary to reduce the error which is based on insufficiency of 

image plane quantization. We will investigate the effect of quantization error and calculate 

the percentage of quantization error versus total error. 
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Disparity is the main parameter of the stereo vision to be able to calculate the 3-D data. 

However, disparity data may include some vibration due to matching cost and noisy image 

data. And this vibration will result in the 3-D measurement data to be erroneous. The value of 

3-D error caused by disparity vibration will be investigated, too. 

Proving the effects of quantization error and disparity vibration, these error will be 

eliminated or reduced to make the stereo 3-D calculation as accurate as possible.  

1.3 Research Overview 

In the previous study, feasibility of a stereo vision system was studied to detect ships and 

acquire ship position data. In that study, camera calibration was emphasized. However, 

especially in the long range (by 5 km) data some errors were encountered. To improve the 

accuracy of 3D data, these errors should be removed.  

One of the major causes of these errors is based on quantization errors. The quantization 

errors arise from use of digital images that has finite number of pixels. They affect the 

accuracy of the system especially in long range measurement due to increasing depth 

resolution with respect to range. That’s why image plane quantization error elimination is one 

of the purposes of this study. Our solution to overcome the quantization error is calculation of 

corresponding points between stereo pair images with sub-pixel order accuracy. There have 

been several methods proposed for sub-pixel image matching. Intensity-based sub-pixel 

registration is preferred in this study.  

Another important range error parameter is inaccuracy and vibration in disparity values of 

corresponding points. Refinement of the disparity values by low pass filtering (LPF) yields 

smoother values which results in reduction of 3-D measurement error to 1% of object’s 

distance. 
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• Chapter 2 explains the general features of stereo vision system and projective 

geometry. 

• Chapter 3 shows how the quantization error occurs and to reduce this error by sub-

pixel matching method. 

• Chapter 4 points out the disparity value vibrations and application of Butterworth Low 

Pass Filter (BLPF) to refine the disparity data.  

• Chapter 5 displays the experimental studies and results. Error analysis is carried out 

based upon the experimental results. 

• Chapter 6 is conclusion and summary of the final results. 
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CHAPTER   2 

IMAGE ACQUISITION AND STEREO VISION SYSTEM 

Every image acquisition system performs some kind of transformation of 3D space 

(world) into 2D space (image). Finding the parameters of such a transformation is 

fundamental to describing the acquisition system. Perspective projective transformation is a 

good way of describing the behavior of real optics systems which can be described by a linear 

equation in a higher dimensional space of so-called homogeneous coordinates [1] [2] [3]. 

Figure 2.1 illustrates a simple perspective projection system.  

Figure.2.1 Perspective projection 

The simplest form of real camera comprises a pinhole and an imaging screen. This 

mechanism makes an image possible to build up from world space to image space [1]. Two 

coordinate systems are explained to understand the mathematical relationship between the 

points in the world space and the imaging space. These are: 

1. The external coordinate system which consists of two sub-coordinate systems of 

a. World coordinate system, and 
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b. Camera coordinate system. 

2. The internal coordinate system or pixel coordinate system. 

 

Figure.2.2 Pinhole camera model 

In Figure.2.2 the point Ow  is the central (or focal) point of world coordinate system which 

is denoted by the axis Xw, Yw, Zw. In our research, world coordinate system is used for 

estimating three-dimensional coordinates of marine vessels. Similarly, the camera coordinate 

system consists of Xc, Yc, Zc which has the origin of Oc. The relations between the world 

coordinates and camera coordinates are denoted by a rotation (R) and a translation (T). 

Another important part of the model is the image plane. The image plane is actually the CCD 

(Charge-Coupled Device) of the camera which is sensing the brightness values. So, the image 

is tessellated into rectangular elements which are called pixels. The image plane is parallel to 

the (Xc, Yc) plane of the camera coordinates. The projection of the point Oc on the image 

plane in Zc direction is called principal point o(u0, v0) of image plane which is the center point 

of the image plane and expressed in pixels. The line through the Oc and the principal point is 

called principal axis or optical axis. The distance from the Oc to the principal point is the 
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focal length. Pw(Xw, Yw, Zw) is representing a point in world coordinates whereas Pc(Xc, Yc, 

Zc ) and p(x,y,z) are representing the same point in camera coordinates and its projection onto 

image coordinates, respectively. Note that p(x,y,z) is still using the units of camera coordinate 

system. p(u,v) is used for denoting the same point in pixel coordinates after some 

transformations. The pixel coordinate system that we used can be seen in Figure.3.3.  

Fig.3.3 The pixel coordinate system. 

The relations between the camera coordinates and the image plane (or pixel coordinates) 

are built by the similar triangles theorem of Thales as follows which are the foundations of 

the pinhole camera model:  

                       � � � ��           � � � ��                    � � �                                      (2.1) 

Here P(X, Y, Z) are coordinates of point in camera coordiantes and p(x,y,z) are the projection 

of the point onto the image plane (but still in units of camera coordiantes). We can assume 

that f = 1 as different values of f  just corresponds to different scalings of the image [4]. In 

homogeneous coordinates these equations become: 



15 
 

                    	��
��     	
����   =  	
 � �� 
 �� � 
������� �
��
��                                                    (2.2) 

Incorporating the full camera calibration into the model it becomes: 

                  	��
��     	
����   =  K �
 � � �� 
 � �� � 
 �� M �
��
��                                               (2.3) 

In case of standart stereo system the rotation matrix is identity matrix, theoritically. Therefore 

assuming the vertical and horizontal physical pixel sizes are equal to 1, scaling factor λ ≠ 0 , 

and  the image center (principal point) overlaps with the camera optical axis the mapping 

matrix can be simplified to: 

                    ������ � � �� � � �� � � �� � 
 �� �

��
�,                                                                       (2.4) 

In real images, the origin of the image coordinates differs from the principal point and the 

scaling along each image axis is different. Therefore a further transformation is carried out by 

matrix K which defines the intrinsic parameters of the camera. In other words, the product of 

p(x,y,z) by matrix K results in p'(u,v) of pixel coordinates. Evenmore, the world coordinates 

usually does not coincide with the camera coordinates and an euclidean motion (consists of 

rotation and translation) is described by matrix M which defines the extrinsic parameters of 

camera system. The product of world coordinate by matrix M gives the pose of the camera. K 

is independent of the camera position and represented by an uppertriangular matrix: 

                    � ��	��� ! �"� ���# �"� � 
 �,                                                                           (2.5)     
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where hx and hy are horizantal and vertical physical sizes of one pixel, f/hx and f/hy are scaling 

factors along the x and y axis of the image plane and s is skew between the axis (usually s = 

0).  

 More practical representation of projective mapping from 3D to 2D is: 

            p' = MPw         In homogeneous coordinates   à       	����� �� = M3x4 �
��
��,           (2.6) 

 

where λ is the scale factor and M3x4 is called projection matrix which contains both interior 

and exterior camera parameters.  Computation of the projection matrix is called the projective 

camera calibration.. In application firstly the projection matrix M is calculated and then 

intrinsic and extrinsic parameters are estimated by decomposition methods as QR 

decomposition or SVD decomposition. To eliminate the unknown scaling factor (or for 

normalization) we can take the ratios and get the pixel coordinates by: 

              � � �$%%��&�$%'��&�$%(��&�$%)$(%��&�$('��&�$((��&�$()         � � �$'%��&�$''��&�$'(��&�$')$(%��&�$('��&�$((��&�$()                     (2.7) 

2.1 Extrinsic parameters 

For a given point P, its coordinates related to camera and world coordinates are connected 

by the following formula [1]: 

               Pc = R (Pw – T)                                                                                                   (2.8) 

where Pc is the expression of point P in camera coordinates, Pw  expresses the same point in 

world coordinates, R is the rotation matrix and T is the translation matrix between the origins 

of these coordinate systems. 

2.2 Intrinsic parameters 

The intrinsic parameters can be summarized as follows: 
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1. The parameters related to projective transformation: Focal length (f) 

2. The parameters that map the camera coordinate system into the image coordinate 

system: 

Origin of the image plane o(u0 , v0), physical dimensions of pixels hx and hy, pixel 

coordinates p'(u,v) and camera coordinates x, y of p(x,y,z). The relation is formulated 

as: 

                        x = (u – u0)hx                  y = (v – v0)hy                     (2.9) 

3. Geometric distortion parameters: Considering the radial distortion parameters k1, k2 

and r new coordinates in pixel coordinate system becomes:  

  �*+,,-*.-/ � 0%&12,3&�13,4         �*+,,-*.-/ � 5%&12,3&�13,4             6' � �' 7 �'            (2.10) 

Geometric distortions can be calculated through some different kind of polinomials, too. 

Contributing the extrinsic and intrinsic parameters we can express the projective 

transformation more deficitly: 

          p' = MPw ,           p' = 	����� �� = 	��� ! �"� ���# �"� � 
 � 	8% 98%�:8' 98':8( 98(:� Pw               (2.11) 

2.3 Stereo Image Acquisition  

 A common method for extracting depth information from intensity images is to acquire a 

pair of images using two cameras displaced from each other by a known distance called 

baseline (LB) [5]. A standart stereo geometry is illustrated in Figure.2.4. It is the simplest 

stereo camera system with two identical cameras and the coplanar image planes in which 

optical axis of the cameras are parallel. Each image has its own image coordinate system 

(pixel coordinate system) with the origin of upper-left corner. Besides, the center point of 

images overlap with the camera optical axis. The distance between image center (principal 
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point) and optical center is called focal length (f). Figure.2.5 illustrates the X-Z view of 

Figure.2.4. In this figure corresponding points and disparity can be seen more clearly.                                                     

Figure.2.4 A standart stereo image acquisition system 

Through the use of similar triangles , the range (Z) of the object can be calculated by 

equation:  

                � � ;<=> ?@ A                                                                                                      (2.12) 

which is called triangulation. The projection of the scene object is different in left and right 

images. These are called corresponding points. The displacement between the locations of 

projections on the left and right image is called disparity which is the denominator of the 

equation (2.12) as well. Disparity and range are inversely proportional. When the object gets 
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closer, disparity value increases. Notice that equation (2.12) is not valid for real environments 

and applications. To validate this equation three simplifying asumptions are made [6]: 

1. Camera axis are assumed to be paralel, 

2. The image planes are assumed to be paralel and coplanar, and 

3. Lens is assumed to make projection without distortions and in accordance with the 

pinhole camera model.  

Figure.2.5 Standart stereo system viewed through X-Z axis 

In standart stereo system theoritically the vertical disparity is zero. In other words, 

corresponding points lie on the equivalent vertical locations in image planes (yl = yr ). The 

plane passing through the object point in the scene and camera centers is called epipolar 

plane. The intersection of epipolar plane with left or right image plane defines epipolar lines. 

Epipolar plane and epipolar line are shown  in Figure.2.6. In standart stereo system epipolar 
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lines are paralel to the image scan lines or rows of pixel coordinates with constant y. Epipolar 

constraint is independent of scene structure and, only depens on the intrinsic parameters and 

camera relative positions. Epipolar line has a vital importance in case of defining epipolar 

constraint which decreases the corresponding point search to one dimension. That is because, 

the projection of any point in left image will lie on the epipolar line of the right image (yl = 

yr ). In practice there may be a vertical disparity due to misregistration of epipolar lines. 

In real environments it is very difficult to realize an ideal stereo configuration. Even a 

small misalignment of the cameras will cause invalidity of equations. Therefore, some 

additional calculations as distortion correction and error minimization by linear and unlinear 

estimation are carried out for reliable results which is called camera calibration. The 

calibration procedure consists of determining internal and external camera parameters which 

are mentioned before [7]. Therefore, a linear relation between the 3D real environment and 

the 2D image plane is constituted in homogeneous coordinates. 

Figure2.6 Epipolar Geometry 
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2.4 Problems of stereo vision 

Stereo camera system is used for calculating the three-dimensional structure of an object 

using two or more images taken from different viewpoints. The fundamental basis for stereo 

is the fact that projection of a single three-dimensional object point has a unique pair of 

image locations in two distinct cameras. Therefore, given two camera images, if it is possible 

to locate the image locations that correspond to the same physical point in real world, then it 

is possible to determine its three-dimensional location by triangulation [8].   

The essential problems of stereo vision are: 

1. Calibration problem, 

2. Correspondence problem due to:   

a. Lack of image plane quantization. 

b. Matching cost and brightness quantization. 

c. Occlusions.  

d. Image noise.  

e. Lack of texture. 

f. Other vision problems. 

3. Reconstruction problem. 

The calibration problem of our stereo system is emphasized during the previous study and 

the results show that the calibration of the system is good enough [9].  

The key problem in stereo is how to find corresponding points in the left and in the right 

image, referred as the correspondence problem [10]. In other words, matching the pixels in 

one image with their corresponding pixels in the other image. A detailed study of 
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correspondence problem is carried out by Schartein et al. [11]. In this study we will focus on 

reducing the three-dimensional error due to correspondence problem.  
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CHAPTER 3 

SUMMARY OF THE PREVIOUS STUDY (OR BASIC STUDY) 

In our experiment, two same digital video cameras, Panasonic, NV-GS300 are used to 

capture images with a resolution of 2048x1512 pixels and horizontal angle of view is about 

43 degrees by “photo shot mode”.  

X

Y
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x

z
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Object
( X, Y, Z )

Image plane

Projection of the object

(x, y, f )

Focal length: f

World coordinate system

Camera coordinate system
O

o

Optical center

 

Figure.3.1 Definition of coordinate systems. 

There are vaious camera calibration methods. In this study calibration from a known scene 

is preferred. According to the Figure.3.1 an object point Pi(X, Y, Z) is projected onto the 

image plane of camera coordinates (x, y, f). And the mapping from camera coordinates to 

pixel coordinates of (u, v) is carried out by the following functions. 

                



=

=

),(
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x

                                                                                                (3.1) 

Here, the intrinsic parameters of the camera are focal length f, and the functions fx and  fy . 

Considering the extrinsic parameters of rotation (R) and translation (T) of camera coordinate 

system, which depends on the camera configuration, the following equation is obtained for 

calculation of  distance in world coordinates: 
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where (X0, Y0, Z0) is the coordinates of camera center with regard to world coordinates and ki 

is a positive real number. Considering the real environment and calculation assumptions there 

will be an error between the calculated world point and the real world point which can be 

formulized as 
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If an adequate number of the points Pi (i=1, 2, …, N) and there projections onto the image pi 

(i=1, 2, …, N) are observed, unknown parameters in the functions fx and fy can be determined 

by minimizing the following sum of squared errors, S. 
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Moreover, the geometric distortion is also need to be corrected. To do this, the following 

forms were adapted as the function fx and fy through trial and error. 
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Extrinsic parameters of the cameras, which include locations and orientations of cameras, 

should be calculated according to our stereo camera configuration which is illustrated in 

Figure.3.2. The right and left cameras are set at (LB/2, 0, 0) and (-LB/2, 0, 0) in the world 

coordinates.   An object Pi( Xi, Yi, Zi ) in the world coordinate system is projected onto the 

point pri( xri , yri , 1) in the right camera coordinate system and pli( xli , yli , 1) in the left camera 
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coordinate system, respectively. Then, the following equations are derived in regard to the 

right camera and left camera, respectively. 
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where kri is a positive real number, θXr, θYr and θZr are rotation angles of camera coordinates. 

Combining these equations the following equation is derived: 
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with which the rotation angles of both cameras can be estimated by least squares method, in 

the case of existence of adequate number of correponding point pairs.  

3.1 Stereo Camera Cofiguration and 3D Measurement by Backprojection 

The stereo system of this study is configured as it can be seen in Figure.3.2. After the 

camera calibration is carried out as mentioned above, three-dimensional measurement of a 

ship can be carried out. Actually this is similar to reverse process of camera calibration. In 

camera calibration the pixel coordinates are acquired due to a known 3D point in world 

coordinates. In contrast, while 3D measurement the world coordinate data of a point is 

calculated up to the pixel coordinate data which is linearly related by camera calibration. To 

do this, firstly the interested point –marine vessel in our case- in image (pixel) coordinates is 

extracted or detected in one of images which is determined as the reference image. Left 

image is the reference image in this study and the notion for the coordinates of the point is 

(ul ,vl). Then the corresponding point of this point in the other image (ur ,vr) is found by a 

similarity measure or matching cost. There are numereous matching techniques as sum of 

absolute differences (SAD), cross correlation (CC), sum of squared differences (SSD), 
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ordinal measures etc. SSD was preferred for this study to find the corresponing point. The 

equation of similarity measure with SSD is as follows: 

                   RSSD(s) = J K�ELG 9 �EL 9 MGN�'IOP                                                                  (3.8) 

where f(i) and f(i - d ) are the reference and observed images, respectively. This is the vital 

point of the 3D measurement, because the accuracy of the measurement is depending on the 

accuracy of the correspondence. 
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Figure.3.2 Camera configuration of stereo vision 

   To be able to calculate the 3D data in world coordinates, we have to follow the steps from 

pixel coordinates to camera coordinates, and finally from camera coordinates to world 

coordinates. Having the pixel coordinates of interested point in both images, these points are 

transformed to camera coordinates by the following equation: 

Q �,R�,R S � %,AT2;UE0AF5AG&,AT3;VE0AF5AG&,ATT Q6,%%� E�, F �,G 7 6,%'�#E�, F �,G 7 6,%(6,'%� E�, F �,G 7 6,''�#E�, F �,G 7 6,'(S                 (3.9) 

 
 Q �DR�DR S � %,AT2;UE0?F5?G&,AT3;VE0?F5?G&,ATT Q6,%%� E�DF �DG 7 6,%'�#E�DF �DG 7 6,%(6,'%� E�DF �DG 7 6,''�#E�DF �DG 7 6,'(S                  (3.10) 

 

where rrij and rlij represent (i,j)-component of the rotation matrices R(θXr, θYr, θZr) and R(θXl, 

θYl, θZl), respectively.  
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In these equations camera rotation is also compensated –in other words both cameras become 

parallel in Z-axis-, and focal lengths are unity. Finally, the location of the object in the world 

coordinate system is obtained by the following equation. 
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For the details of this study you can refer to the reference [2]. 

3.2 Relation Between the Ship Size and Measurable Distance 

The distance calculation of the method depends on the resolution of a camera image, angle 

of view of the camera, size of a target ship and weather conditions and sea state. Relation 

among these factors except for weather conditions and sea states are derived as follows.  

                )2/tan(2 θss w
w

L
D

=

                                                                                            (3.12) 
  

where  D is distance of a target ship, Ls is the apparent length of the ship along the X-axis, w 

is the horizontal resolution of image in pixels, ws is the size of the ship’s image in pixels and 

θ is the angle of view of the camera, as shown in Figure.3.3.  

X
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θ / 2

w

ws

Image plane

ZLs

D

D tan(θ / 2)

 

Figure.3.3 Relation among distance, horizontal resolution and angle of view 
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Assuming that at least 20 pixels of ws required to detect the ship in the image, where w is 

2048 pixels and θ is 43° -the camera used in this paper- distance about 130 times Ls is the 

limit to detect a ship. As an example, distance of a 50 meters of fishing vessel can be 

measured in 6500 meters at a clear weather condition. 
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CHAPTER 4 

CONCEPT AND ESTIMATION OF THE STEREO SYSTEM ERROR 

Recovering a three-dimensional scene’s structure is one of the most important tasks in 

computer vision. Scene depth sensing technologies can be divided into active methods, such 

as radar, lidar, ultrasound scanners, or structured light projecting systems, and passive 

methods, which are predominantly based on stereoscopy [1]. The passive methods are 

particularly attractive as being the least interfering with the environment [2]. Many 

approaches have been proposed to model 3D objects and estimate depths using multiple input 

images. However, the issue of how to appropriately extract useful information in recovering 

depths from videos is still not addressed well [3]. The major issue is how to utilize disparate 

scene cues to achieve a more complete and accurate overall scene interpretation [4]. 

Figure.4.1 shows a normal stereo camera model and concept of the correspondence and 

3D reconstruction error. Two cameras are placed at (−LB/2, 0, 0) and (LB/2, 0, 0), respectively, 

in the world coordinates system O-XYZ (Kocak et al. 2009). 
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     coordinate system
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Figure.4.1 Concept of stereo 3D error due to correspondence problem 
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Focal lengths of both cameras are unity and their optical axes are parallel to Z-axis. In this 

model, an object located at P(X, Y, Z) is projected onto pl(xl, yl, 1) and pr(xr, yr, 1) in each 

camera coordinate system, respectively. Then, the coordinate (X, Y, Z) is obtained by 
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where LB is a baseline length. 

If the x-coordinate of pr, which is the corresponding point of pl, is detected with an error of ε, 

the 3D location of P is estimated as P'(X', Y', Z'). The amount of this error can be estimated.  

Adding this error parameter ε  to the general reconstruction equation (Equation 1) the 

measured erraneous coordinate (X', Y', Z') is obtained by the following equation: 
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From Equation (4.1) the following  equations are extracted. 
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Combining these equations with Equation (4.2) we obtain 
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The difference of the points  P(X, Y, Z) and P'(X', Y', Z')gives us the estimated error in world 

coordinates by the following equation 

 

       













 +

−
=

















−′

−′

−′

Z

Y

XL

ZL
Z

ZZ

YY

XX B

B

2/

ε

ε                                                                                 (4.5) 

 

While 3D reconstruction of a image point firstly we obtain the data in pixel coordinates 

and then transform it to camera coordinates and world coordinates. That’s why we are 

required to express the error in terms of the data of pixel coordinates, as well. From Figure.4. 

2 we can better understand this process.  

 

Figure.4.2 Illustration of correspondence error on image plane 

Considering δ is the amount of shift in pixel coordinates due to correspondence error, the 

difference of ith pixel and (i+ δ)th pixel yields the error in pixel coordinates. When focal 
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length f is normalized to 1 (or this image scale is chosen), the error ε in the camera coordinate 

system is expressed as shown by  

                2
tan

2 θδ
ε

N
= ,                                                                                                 (4.6) 

 

where θ  is horizontal angle of view, N is a horizontal image size and δ is the detected error 

of pr expressed in pixels. 

In the case of the ship is at the X = 0 position of the world coordinates or at  the position of 

P(0,0,D), calculation will be P'(0,0,D+ΔD) due to error. Figure.4.3 illustrates such kind of 

error situation. From the figure D is calculated as 

           
αtan

2
BL

D =
      ,                       (4.7) 

Therefore contributing the error to the equation, it becomes 

        
)tan(

2
αα ∆

L
∆DD B +=+

.                                                        (4.8) 
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Figure.4.3 Error in case of P(0, 0, D) 

 

Equation (8) can be derived from (6) and (7). 
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where k is D/LB. 
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CHAPTER 5 

IMAGE PLANE QUANTIZATION AND SUB-PIXEL REGISTRATION 

In the previous study the calibration of the cameras was mainly studied and the three-

dimensional measurement was carried out based on one pixel accuracy of the image plane 

which resulted in some erroneous measurement. One of the major causes of the errors is 

based on correspondence error which is the key problem of stereo systems. In this part we 

will consider about the correspondence error due to lack of image plane quantization or in 

other words quantization error. The quantization errors arise from use of digital images that 

has finite number of pixels. They affect the accuracy of the system especially in long range 

measurement because of increasing depth resolution. Considering the depth resolution, image 

plane with accuracy of one pixel, possible three-dimensional reconstruction of adjacent points 

which are far from image plane will be more difficult. Increasing the distance from camera 

planes the accuracy of the depth measurement diminishes (or depth resolution increases) due 

to the geometrical limitations caused by the geometrical parameters of a stereo system. In 

other words, the corresponding measurement area of one pixel in world coordinates is 

increasing. It can be better understood from Figure.5.1. 

That’s why quantization error elimination is aimed to achieve more accurate 

correspondences of stereo image pairs. We applied sub-pixel matching as a solution to 

eliminate quantization errors. This is to calculate corresponding points between stereo pair 

images with sub-pixel order accuracy which yields decreased depth resolution and 3D 

reconstruction error. Some methods for sub-pixel image matching have been already 

proposed. Intensity-based sub-pixel registration is preferred for this study. 
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5.1 Spatial Image Plane Quantization 

A crucial task that faces computer vision and other triangulation systems is the ability to 

obtain accurate three-dimensional position information in the presence of limited sensor 

resolution. Sensors for computer processing applications produce sampled, quantized data 

whose spatial resolution is determined by limits in device technology and bandwith. For the 

construction of accurate depth maps the resolution requirement is severe. Thus, to live within 

the constraints of limited spatial resolution, a greater understanding of positon error from 

image plane quantization is crucial [1]. 

 

 

Figure5.1 Image plane quantization, region of uncertainty and depth resolution 

In most of the stereo matching methods, it is assumed that one scene points’ projection 

onto the image plane is excatly onto the integer valued image coordinates. However, in 
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reality, the exact location of the projection onto the image plane is within sub-pixel level of 

± 0.5 pixel. Considering an ideal pinhole camera model and the correspondence error due to 

spatial image plane quantization, a points’measured position maps to a small volume in 3D 

due to finite resolution of the cameras which is called region of uncertanity. Figure.5.1 

illustrates this situation. In the figure ABCD rectangle is the X-Z direction view of region of 

uncertanity for point P. The exact location of the scene point can be anywhere in this region. 

Evenmore, it is seen that even a small change in the objects location in Z direction, has a 

great effect in that region. If the object is moved to point P' from point P, the region of 

uncertanity is increasing to rectangle of EFGH. In the case of long range object points, the 

spaciousness of region of uncertanity can be imagined. This causes greater errors in 3D 

recovery of long range points. This error has horizantal, vertical and range (Z direction) 

components but range error dominates over the horizantal and vertical error. That is why only 

range error is considered in this study. 

5.2 Explanation of Sub-pixel Image Registration 

Image matching is mainly concerned with finding a given target image in a reference 

image based on a pixel-by-pixel comparison of the target image with every possible sub-

image of the reference image. Image registration is more concerned with how to make 

equivalent geographic points of a scene or objects in two images to be coincided, where the 

two images are taken from the same scene either by using different positions or different 

times [2]. In stereo vision, there are left and right images of the same scene from different 

positions (and different times in case of image sequences). In conventional type, two images 

are registered in pixel-by-pixel accuracy. However, because of the different aspects of the 

cameras, pixel-by-pixel comparison is not sufficient for accurate registration and causing 

quantization errors. In sub-pixel registration, it is achieved at an accuracy of a fraction of a 
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pixel. Up to the type of sub-pixel estimation method 0.005 pixel registration accuracy can be 

achieved. Mainly, there are 5 types of sub-pixel displacement estimation [3]:  

(1) Similarity Interpolation, 

(2) Intensity Interpolation, 

(3) Gradient-based Interpolation, 

(4) Phase Correlation, 

(5) Geometric Method. 

In this study, we will exploit the similarity interpolation method of Shimizu and Okutomi  

which is based on intensity interpolations [4]. Similarity interpolation estimates the peak of a 

similarity function by fitting a parabola to the three indices near its extremum. Some different 

similarity measures as SAD (Sum of absolute differences), SSD (Sum of squared differences) 

or CC (Cross correlation) can be used. In this study we preferred SSD due to better results. 

While estimating sub-pixel displacement through similarity interpolation, SSD between left 

and right images are carried out and the highest value is selected as center pixel I (0). The 

preceding pixel becomes I (-1) and the next pixel is I (1).  Then the SSD values of these 

pixels are also calculated according to the following formula: 

           RSSD(s) = J K�ELG 9 �EL 9 M 7 !GN�'IOP  ,                                                          (5.1) 

where f(i) and f(i – d + s) are the reference and observed images, respectively, and s is the 

shift value in pixel unit from the extremum point. It is clear that the R(-1) and R(1) is larger 

than R(0). The sub-pixel estimation is based on these SSD values. After calculating SSD 

values, a parabola fitting is carried out which’s centerline location is the estimated sub-pixel 

position. Figure.5. 2 is illustrating this situation. 
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Figure.5.2 Parabola fitting of similarities 

Following formula is used for the calculation of the parabola fitting:  

             MW = XE@%G�–�XE%G'XE@%G@�)XE"G�&�'XE%G  .                                                            (5.2) 

where R(-1), R(0) and R(1) are the similarity values obtained from Equation (5.1). 
 

5.3 Experimental Results 

In our experiment, two identical digital video cameras, Panasonic, NV-GS300, with a 

resolution of 720x480 pixels were used for image acquisition by “video mode” to get image 

sequence of 10 frames per second. The horizontal angle of view is about 43 degrees was 

constant in the following experiments. Figure.5.3 shows the experimental set up. 

Left camera (−4.07,0,0)

Right camera (4.07,0,0)
For camera calibration

 

Figure.5.3 Experimental configuration of cameras 
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A degree of errors due to correspondence problem was verified using real images. The 

images were obtained at Akashi Strait. The baseline length is 8.14 meters. Calibration for 

intrinsic and extrinsic parameters of the cameras is briefly explained in Chapter 3. 

 

 

Figure.5.4 Sample stereo images of experimental configuration 

 

 

Figure.5.5 Tracking point of ship in image sequences 
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Figure.5.4 indicates an example of stereo images of Akashi Strait and Figure.5.5 shows 

the tracking point of a ship in the image sequences. The corrsponding point of this tracking 

point in the right pair of the stereo images is detected by similarity matching using SSD. 

Figure.5.6 is one of the matching result of our experiments. 

Figure.5.6 A sample image of image matching with similarity window 

 

There are two ships in the right of the image. The localization of one of them which is 

calculated in one pixel accuracy of image plane is shown in Figure.5.7. In the figure, the 

location of the ship’s bridge, the red point in Figure.5.5, is traced and plotted over about 38.5 

seconds, 385 frames. The blue diamonds are 3D measurement results obtained by stereo pair 

matching. X-axis means the rightward direction of the image, and Z-axis does the depth 

direction. Since the actual locations of the ship are unknown and it navigates almost along the 

X-axis, errors of X-coordinate cannot be estimated. Therefore, those of Z-coordinate will be 

examined in the following.        
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Figure.5.7 Illustration of quantization error in our experimental results 

Despite it is not possible to illustrate the quantization error in the size of 3 km, it is tried to 

illustrate in the Figure.5.7. For understanding the error due to image plane quantization 

Figure.5.8 can be helpful comparing this figure with Figure.5.1.  

Figure.5.8 Experimental results of region of uncertainty 
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In Figure.5.8 we can see the experimental results of so-called region of uncertainty. In the 

figure the ships estimated true position is assumed to be on the fitting line of calculated data. 

As it can be seen from the Figure.5.7 and Figure.5.8 the measurement results are not 

continuous. This is because of before mentioned image plane quantization insufficiency. The 

exact location of point could not be calculated and one of the red points which are in region 

of uncertainty is calculated. Therefore the result of calculation is erroneous. Although we 

cannot find the systematic errors that are caused by, for instance, an improper camera 

calibration, the errors due to the stereo pair matching problem can be estimated as the 

difference between the measured values and the fitting line. 

5.4 Results of Sub-pixel Matching 

By application of sub-pixel matching we observed that region of uncertainty is reduced. 

The comparison of one-pixel level accuracy and sub-pixel level accuracy situations are 

illustrated to be able to clearly see the improvement in location measurement. In the figures 

the blue diamonds are results obtained by stereo pair matching in one-pixel accuracy, while 

the red squares are those by sub-pixel matching method [4]. The line fitting of the obtained 

data is also carried out to display the estimated true course of the ships.  

One of the effective measure in the calculation of  depth is disparity. The effect of sub-

pixel registration to the disparity data is illustrated in addition to location figures. After sub-

pixel matching the disparity data become more continiuous and reliable.  

 We will consider about four different situations to examine the effect of sub-pixel image 

matching. In Figure.5.4 we can see two ships in different size and different distance which 

are called Ship1 and Ship 2. The situations are as follows: 

     Situation 1: Ship 1 Before Akashi Bridge 

     Situation 2: Ship 1 After Akashi Bridge 
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     Situation 3: Ship 2 Before Akashi Bridge 

     Situation 4: Ship 2 After Akashi Bridge 

 The foggy weather condition on the day of capturing images should be taken into 

consideration. If the weather was more clear, the accuracy of measurement would be much 

higher. 

5.4.1 Situation 1: Ship 1 Before Akashi Bridge  

Ship 1 is closer to the cameras (or has smaller range) and the image size (in pixels) is 

greater than Ship 2. That’s why it is expected that the accuracy of the measured data of Ship 

1 is better than Ship 2. In Figure 9 the discontinuity of one-pixel data is broken and 

continuous data is obtained by sub-pixel matching. The error is reduced due to closer data to 

the fitting line. We can say that great portion of the error was due to quantization problem. 

 

Figure.5.9  Effects of sub-pixel matching on range measurement: Situation 1 
 

Despite the error is reduced, there is still some error, because it is impossible to completely 

remove the error caused by quantization problem. This error can be seen more clearly in 

Figure.5.10 which is the magnified image of Figure.5.9.  
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Figure.5.10 Magnified image of Figure.5.9 

Figure.5.11 is displaying the effect of sub-pixel matching on disparity values. Disparity is 

inversely proportional to the range value. According to the figure we can say that the ship is 

moving almost parallel to the X axis of the cameras. After sub-pixel matching the sudden 

increase and decrase of the disparity values are removed. 

 

 

Figure.5.11 Effects of sub-pixel matching on disparity: Situation 1 
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5.4.2 Situation 2: Ship 1 After Akashi Bridge  

The locational accuracy results of Situation 2 is very similar to Situation 1 as it can be seen in 

Figure.5.12. 

 

Figure.5.12  Effects of sub-pixel matching on range measurement: Situation 2 

Checking the disparity values of Situation 2 in Figure.5.13 we see a larger disparity range 

comparing to Situation 1. It means that Ship 1 is slightly moving away from the X axis.  

 

Figure.5.13 Effects of sub-pixel matching on disparity: Situation 2 
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5.4.3 Situation 3: Ship 2 Before Akashi Bridge  

Ship 2 is smaller and more distant from the cameras. Adding the foggy weather condition 

the measurement is becoming more difficult. Figure.5.14 is describing the Situation 3. After -

350 meters –getting closer the cameras- one-pixel matching and sub-pixel matching results 

are almost overlapping.  

 

Figure.5.14  Effects of sub-pixel matching on range measurement: Situation 3 

The disparity values have only one time jumping range from frame 61 to 101. After than is 

smoother than sub-pixel matching. This may be due to overlapping  mentioned above. 

 

Figure.5.15 Effects of sub-pixel matching on disparity: Situation 3 
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5.4.4 Situation 4: Ship 2 After Akashi Bridge  

The characteristics of Situation 4 is different than the privious three situations. Until the 100 

meters there are many outliers observed. These outliers cause the line fitting be much 

different than the real case. Therefore, error measurement is also not reliable in this case. The 

main reason of the outliers is the error in the corresponding point finding. This is shown in 

Figure.5.18. 

 

Figure.5.16  Effects of sub-pixel matching on range measurement: Situation 4 

Due to corresponding point error, the disparity values are also abnormal as shown at 

Figure.5.17 . First 90 frames of disparity values have very strange characteristic. 

 

Figure.5.17 Effects of sub-pixel matching on disparity: Situation 4 
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Figure.5.18 Correlation window jump 



52 
 

Finding the corresponding point in the right image away from the actual one causes 

significant calculation error. The images in Figure.5.18 are sequential frames. While the ship 

is moving the ship is tracked in these sequences and correlation is carried out every time. 

However, sometimes the calculation is not true due to image noise and specular characteristic 

of sea surface. And the calculated corresponding point is not true as shown in the figure. This 

error causes the disparity and location values to be very different from actual values and 

behave as outliers. This problem can be solved by outlier elimination algorithms or 

improving the matching cost. 

 As a result, the errors of one-pixel unit matching range from about −170 meters to about 

200 meters. The values will theoretically become from -140 meters to 170 meters using 

equation (4.5) and (4.6) when δ ranges from −0.5 pixels to 0.5 pixels, and this almost agrees 

with the experimental result. On the other hand, the errors of sub-pixel unit matching are 

within ±50 meters, i.e. 0.014 as an error rate of objects distance.  It is found that stereo 

matching in sub-pixel unit is at least 3 times more accurate than one-pixel unit. It means that 

about 70% of the error was caused by quantization error. 
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CHAPTER 6 

REFINEMENT OF DISPARITY ESTIMATES WITH LOW PASS FILTERING 

Stereo reconstruction of dense depths from real images has long been a fundamental 

problem in computer vision. The reconstructed depths can be used by a wide spectrum of 

applications including 3D modeling, robot navigation, image-based rendering, and video 

editing. Although stereo problem has been extensively studied during the past decades, 

obtaining high-quality dense depth data is still a challenging problem due to many inherent 

difficulties, such as image noise, texture less pixels, and occlusions [1]. 

Two main constraints to be able to calculate disparity are similar intensity and smoothness. 

In other words if there is not occlusion, disparity map should vary as slowly as possible [2]. 

Correspendence between stereo image pairs provides low frequency information [3]. It means 

that if the measured disparity values have vibration, i.e. disparity values are not smooth, there 

exist a noise which means high frequency information. Removing these noise will result in a 

more reliable disparity estimation. By applying low pass filter (LPF), variable distance 

reconstruction of dynamic object is feasible despite restrictions in disparity variance. 

We preferred to use a 2nd order Butterworth low pass filter (BLPF)  for eliminating the 

noisy data from the measured disparity values. The response of Butterworth LPF can be seen 

at Figure.6.1.  

The transfer function of a BLPF is  defined as: 

         Z[E\GZ' � %%&�] ^̂_`3a  ,                                                                                         (6.1) 

where ωc  is cut off angular velocity, and n is the order of the filter [4]. 
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Figure.6.1  Butterworth low pass filter response (ωc=1) 

6.1 Results of Low Pass Filtering  

 We will examine the effect of BLPF on location measurement and disparity values in four 

situations as done for sub-pixel matching. The situations are as follows: 

     Situation 1: Ship 1 Before Akashi Bridge 

     Situation 2: Ship 1 After Akashi Bridge 

     Situation 3: Ship 2 Before Akashi Bridge 

     Situation 4: Ship 2 After Akashi Bridge 

 These situations are illustrated using the calculated data. In the figures pixel level, sub-

pixel level and BLPF accuracy results are compared. 3D location and disparity values in 

different situations are illustrated to show the step by step improvement through pixel-level 

matching, sub-pixel level matching and finally BLPF application. After application of BLPF 

the accuracy of location and disparity values are highly improved. 
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6.1.1 Situation 1: Ship 1 Before Akashi Bridge  

 Figure.6.2 shows the improvement of calculation in 3 steps. After BLPF application the 

result is seen almost overlapping with the fitting line and the error could be decreased more. 

 

Figure.6.2 Effects of BLPF on range measurement: Situation 1 

Looking at the Figure.6.3 which is zoomed form of Figure.6.2 we can see the situation more 

clearly and understand the characteristic of error. 

 

Figure.6.3 Magnified image of Figure.6.2 
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Figure.6.4 shows the same improvement for the disparity values. The vibration of the 

disparity values are eliminated and smoother disparity values obtained by BLPF refinement. 

 

Figure.6.4 Effects of BLPF on disparity: Situation 1 

6.1.2 Situation 2: Ship 1 After Akashi Bridge 

Situation 2 is very similar to Situation 1. Only the location is different and there is not a 

problem of mismatching. 

 

Figure.6.5 Effects of BLPF on range measurement: Situation 2 
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The disparity values of Situation 2 is almost same with the Situation 1 which means that the 

ship is moving parallel to X axis before bridge and after bridge. 

 

Figure.6.6 Effects of BLPF on disparity: Situation 2 

6.1.3 Situation 3: Ship 2 Before Akashi Bridge 

 As the ship is distant from cameras and ship size is smaller, the possibility of wrong 

calculation is increasing. In Figure.6.7 we observe some error due to mismatcing. Even one 

outlier caused by mismatching have a great effect on the location and disparity data. 

 
Figure.6.7 Effects of BLPF on range measurement: Situation 3 
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In Figure.6.8 the effect of BLPF on disparity is shown. We can see the effect of outliers to the 

disparity data. 

 
Figure.6.8 Effects of BLPF on disparity: Situation 3 

6.1.4 Situation 4: Ship 2 After Akashi Bridge  

The calculations of Situation 4 are quite good as Situation 1 and Situation 2. There is no 

outlier and refined values are almost overlapping the estimated true track of the ship as in 

Figure.6.9. 

 

Figure.6.9 Effects of BLPF on range measurement: Situation 4 
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Refined disparity values are improved as expected in Figure.6.10. 

 
Figure.6.10 Effects of BLPF on disparity: Situation 4 

As mentioned before, the correspondence data provides low frequency data. After 

removing the high frequency noise from this data by Butterworth LPF we obtain more 
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error is reduced from 0.014 to 0.011 comparing to sub-pixel matching error of objects 

distance. When we crosscheck with the pixel level error, 77% of error is caused by 

quantization error due to mismatching of correesponding points. This means that 7% of the 

error is eliminated through disparity refinement by BLPF.  
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CHAPTER 7 

EVALUATION OF ERROR IN VARIOUS SITUATIONS 

There are various stereo camera systems and configurations. One of the taxonomies of 

these configurations is wide-baseline and short-baseline stereo systems. Computer vision 

studies are mostly focused on short-baseline stereo studies and the number of wide-baseline 

stereo studies are limited. Even more the studies for evaluation of the stereo systems are 

usually theory based and experimental verification is done in a few studies. Some accuracy 

results of short-baseline stereo studies are as follows. The study expalined in reference [1] 

achieved the accuracy of ±5% at the range of 2.5 feet (0.76 meters).  The stereo system 

constructed by Faugeras et al. [2] has an accracy of ±0.05 % at 2 meters range. Another study 

based on wide angle of view can achieve ±2.8 %  of accuracy in 0.2 meters [3]. The range 

values of these studies are exteremely small for the case of ship detection. Our study is based 

on wide-baseline stereo system which is capable of measuring very long range (about 6000 

meters) with small error (about 1%) comparing the above mentioned studies.  

In our study the equation (4.6) for calculating the error is based on the error detected on 

the image plane. Therefore, fistly we detect the error of disparity on the image plane (in  the 

unit of camera coordinates) and we increased the accuracy of image plane  as much as 

possible. And then we will observe the effect of improvement in disparity data on 3D range 

measurement. Our accuracy improvement is carried out in two steps of sub-pixel matching 

and BLPF. Therefore we will consider about three situations: 

1. One-pixel accuracy (basic study) 

2. Sub-pixel accuracy 

3. BLPF disparity refinement 
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The image plane error of the one-pixel accuracy is limited with ±0.5 pixels. After 

application of sub-pixel matching this error is reduced to ±0.15 pixels. Finally by application 

of BLPF disparity refinement  the error is reduced to ±0.11 pixels on image plane.  

Using  the equations (4.5) and (4.6), error values of some different situations can be 

obtained. The values used in our study are N = 720 and  θ = 43. δ is decreasing by the 

accuracy is increasing. For one-pixel accuracy δ = 0.5 pixel, for sub-pixel accuracy δ = 0.15 

pixel and for BLPF refinement δ = 0.11 pixel values are feasible error values in image plane 

coordinates. 

In Table.7.1 and Table.7.2 ε values of different view angle for changing error value (δ) are 

listed.  

Table.7.1 ε values for N=2048 

θ (degree) δ = 0.5 δ = 0.15 δ = 0.11 

20 0.0000861 0.0000258 0.0000189 

30 0.0001307 0.0000392 0.0000287 

43 0.0001922 0.0000577 0.0000423 

50 0.0002275 0.0000682 0.0000500 

60 0.0002818 0.0000846 0.0000620 

70 0.0003416 0.0001025 0.0000752 

90 0.0004879 0.0001464 0.0001073 
 
 

Table.7.2 ε values for N= 720 (used in this study) 

θ (degree) δ = 0.5 δ = 0.15 δ = 0.11 

20 0.0002449 0.0000735 0.0000539 

30 0.0003717 0.0001115 0.0000818 

43 0.0005467 0.0001640 0.0001203 

50 0.0006471 0.0001941 0.0001424 

60 0.0008017 0.0002405 0.0001764 

70 0.0009718 0.0002915 0.0002138 

90 0.0013878 0.0004163 0.0003053 
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7.1 Evaluation of Maximum Measurable Range 

Considering the calculated ε values we can get the maximum allowable range up to the 

tolerable error value in range data. In Figure.7.1 maximum measurable range for different 

base length and different angle of view, in the case of accepting the range error of 150 meters 

is illustrated. As the base length is increased the measurable range is increasing, too. In this 

figure when the θ = 20 and LB = 12 m the measurable range is 9759 meters. Besides when 

the θ = 43 and LB = 8.14 the measurable range is 5372 meters with tolerating the error of 150 

meters. 

 

Figure.7.1 Measurable maximum range for N=2048, Ez=150m 

Figure.7.2 is showing the maximum range values when N=2048, Ez=150m, LB = 8.14, 

and θ = 43 in the cases of one pixel level, sub-pixel level and BLPF refinement. By the 

accuracy is increased   -or the δ value is decreased- maximum measurable range has a 

significant increase. 
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Figure.7.2 Maximum range, N=2048, Ez=150m, LB = 8.14, θ = 43 

In Figure.7.3 the case that the range error is 50 meters is evaluated for different angle of 

view and base length. As the base length is increased and the angle of view is decreased the 

measurable range is increasing.  

 

Figure.7.3 Measurable maximum range for N=2048, Ez=50m 
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Figure.7.4 Maximum range, N=2048, Ez=50m, LB = 8.14, θ = 43 

Figure.7.5 is illustrating the situation when the range error is desired to be maximum 35 m.  

 

Figure.7.5 Measurable maximum range for N=2048, Ez=35m 

In this case the measurable range decreases to 2595 meters which can be seen in Figure.7.6.  

Besides for one-pixel image plane accuracy this value is 1217 meters. Therefore by sub-pixel 
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Figure.7.6 Maximum range, N=2048, Ez=35m, LB = 8.14, θ = 43 

Despite the cameras used in this experiments have 2048 pixels of horizontal resolution in 

photo-shot mode we use video mode of 720 pixels. The following figures are for N=720 

pixels. Comparing to N=2048, the calculated range values when N=720 are worse, but the 

calculation speed is faster which is very important in real-time applications.  

 

Figure.7.7 Measurable maximum range for N=720, Ez=150m 
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Figure.7.7 shows the maximum range for accepting the error is 150 meters in different 

base length. When the view angle is 20 degrees the maximum range is 5779 meters, however 

this view angle is too small. Our cameras have 43 degrees view angle which corresponds to 

3150 meters of maximum range. Figure.7.8, Figure.7.10 and Figure.7.12 illustrates the 

situation of original values our experiments in the cases of different range accuracies. 

Figure.7.8 is for 150 meters range error case. Here, the measurable range is 3150 meters 

which was 5372 meters when N=2048. 

 

Figure.7.8 Maximum range, N=720, Ez=150m, LB = 8.14, θ = 43 

In Figure.7.9 and Figure.7.11 the calculation when the range error of 50 meters and 35 
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data is considered. In Figure.7.9 when the view angle is 20 degrees 3336 meters can be 

measured while this value is 2791 meters in Figure.7.11. According to the original parameters 

of our experimental study, the maximum range is 1819 meters with error of 50 meters as 

shown in Figure.7.10. This value is decreased to 1521 meters when we desire lower error 

value of 35 meters. This can be seen in Figure.7.11. 
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Figure.7.9 Measurable maximum range for N=720, Ez=50m 

 

 

Figure.7.10 Maximum range, N=720, Ez=50m, LB = 8.14, θ = 43 

In Figure.7.11 when the image plane accuracy is 1 pixel, the maximum range is 721 

meters. By sub-pixel matching and BLPF refinement the maximum range is increased more 
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Figure.7.11 Measurable maximum range for N=720, Ez=35m 

 

 

Figure.7.12 Maximum range, N=720, Ez=35m, LB = 8.14, θ = 43 
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7.2 Evaluation of Range Error 

The figures above were showing the relation of ε and Z to see the maximum measurable 

range in different situations with error range of 150 m., 50 m., and 35 m.. Now we will show 

the occurred range error (Ez) up to the different range measurements. The relation of range 

error (Ez) and ε for different view angle, base length and range are showed through 

Figure.7.13 to Figure.7.18. 

 

Figure.7.13 Relation of range error (Ez) and ε, N=2048, LB=4 

 

Figure.7.14 Relation of range error (Ez) and ε, N=720, LB=4 
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Figure.7.15 Relation of range error (Ez) and ε, N=2048, LB=8.14 

 

Figure.7.16 Relation of range error (Ez) and ε, N=720, LB=8.14 

 

Figure.7.17 Relation of range error (Ez) and ε, N=2048, LB=12 
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Figure.7.18 Relation of range error (Ez) and 

7.3 Evaluation of Range Error P

Range error percentage calculation

for different view angles in different image plane accuracies. These are shown through 

Figure.7.19 to Figure.7.21. In these figures;

                                       

which is range value normalized by base length.

Figure.7.19 % error for one pixel accuracy, N=720 (left) and N=2048 (right)
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Relation of range error (Ez) and ε, N=720, LB=12

Error Percentage 

calculation is carried out in two situations of N=720 and N=2048 

for different view angles in different image plane accuracies. These are shown through 

. In these figures; 

                                                                                                            

which is range value normalized by base length. 
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, N=720, LB=12 

is carried out in two situations of N=720 and N=2048 

for different view angles in different image plane accuracies. These are shown through 

                                                                                     (7.1) 
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Figure.7.20 % error for sub-pixel accuracy, N=720 (left) and N=2048 (right) 

 

Figure.7.21 % error for BLPF refinement, N=720 (left) and N=2048 (right) 

 

7.4 Minimum range 
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Table.7.3 Minimum range measurements 
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Figure.7.22 Minimum range (Z near) 
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CHAPTER 8 

CONCLUSION 

In this study, the accuracy of the stereo vision system to detect ships and the methods how 

to improve the accuracy is mainly investigated by theoretical and experimental considerations. 

Accuracy improvement is considered from point of view of stereo pair correspondence error. 

Especially error due to lack of image plane quantization and disparity vibration is considered. 

The effect of accuracy on maximum feasible distance to which stereo vision could be applied 

is analyzed. The sub-pixel accuracy of 0.11 pixel level is achieved in image plane coordinates 

which corresponds to 77% of the 3-D measurement error in metric coordinates. The 

experiments show that almost 70% of the error is eliminated by sub-pixel matching and the 

7% of the error is eliminated by disparity refinement. In total 77% of the error is eliminated. 

In other words, in a determined range the Z dimension error of ±170 meters is reduced to ±35 

meters. 

Besides, the measurable maximum and minimum ranges are also shown. With our stereo 

camera configuration and camera intrinsic parameters it is  sufficiently available to detect and 

estimate the position of ship in the range of 20 meters to 5400 meters which is well matched 

with the purpose of the study of detecting and locating of small ships in a close range with 

conventional video cameras. Comparing to previous study, the maximum feasible distance 

with 150 meters range error is increased from 2600 meters to 5400 meters. If the measuring 

distance is reduced to 1.5 km the range error will be reduced to ±12 meters, which is 

acceptable for this distance. The results indicate that we can measure distances of ships with 

about 1% error of ship distance. However, more accurate and larger range measurements can 

be carried out by changing the parameters which are described in the study. Nevertheless, the 

ability of a conventional video camera to get effective detections is limited and weather 

conditions, sea state and night time detection is not considered in this study. Besides, this 
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system is considered as a support system to existing navigational equipment but not replacing 

them.  

In our study and most of the studies, left image is considered as reference image and it is 

assumed true. And the relative error in the right image is calculated by sub-pixel matching. 

However, the projection location on the left image plane is also not exactly true (within the 

±1/2 pixel level). Therefore, especially in the stereo image sequences it causes the error to 

continue in the following sequences of the image. A sub-pixel method which carries out the 

sub-pixel registration of both images can be considered as a future work to increase the 

accuracy. 

Some of the noticed shortcomings of the study can be summarized as: 

1. Disparity Gradient Restriction: A restriction in the disparity variance is mentioned. 

The measurement is good when the ship is going parallel to cameras (or constant disparity). 

However when the ship is getting closer or far from cameras (changing disparity values of 

ship) some delayed results occurred in the disparity refinement process. This should be 

improved and the measurement should be accurate in changing disparities, too. Removing 

this restriction and to be able to make accurate measurements in any range of disparity 

gradient is also considered. 

2. Matching Outliers: During the matching process of small ship some outlier errors are 

occurred. This may be due to specular property of sea surface and foggy weather condition. 

These outliers can be eliminated applying RANSAC algorithm. 

On the other hand, there are other causes of errors such as improper camera calibration. 

Therefore, the accuracy of the proposed system must be totally considered as a future work. 

In conclusion, the proposed method on applicability of stereo vision for ship detection and 

position estimation is innovative, rather robust and satisfactory. 
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