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Bu tez’de, ( , )f R G -gravite diye adlandırılan yüksek mertebeden kütleçekim teorilerinde 

uzayca ve de uzay-zamanca homojen evren modellerinin varlığını, ( , )f R G -gravite 

fonksiyonlarının şekillerine ve özelliklerine bağlı olarak araştırmaktır. Yukarıdaki ifadelerde 

R  Ricci Eğriliği ve G  de 
24abcd ab

abcd abG R R R R R    ile tanımlı Gauss-Bonnet terimidir. 

Yukarıda bahsedilen teoriler Einstein’ın 1916’daki Genel Rölativite Teorisinin 

genelleştirilmesini oluşturmaktadır ve özellikle 1998’deki gözlem verilerinden hareketle ortaya 

konan “evrenin hızlanarak genişlemesi” olgusunu açıklamaya yönelik girişimlerin bir parçasını 

oluşturmaktadır. Dolayısıyla bu yeni gravite teorilerinde kozmolojik modellerin inşasını, 

rölativist kozmolojik modellere nispetle ne tür değişiklikler içerdiğini görmek önem 

kazanmaktadır. ( , )f R G -gravite teorisini, uzayca homojen ve eşyönsüz modeller sınıfından 

Bianchi Tip-I ve Bianchi Tip-III modelleri çerçevesinde, evrenin normal (standard) madde-

enerji içeriğinin lineer barotropik hal denklemli bir mükemmel akışkan olduğu varsayımı 

altında ele alacağız. Matematiksel işlenilebilirlik sağlaması bakımından söz konusu modeller 

dönmesiz ve ortogonal tipten olacak, yani, metrikler köşegensel olup yalnızca 3 bilinmeyen 

ölçek çarpanı içerecektir. Bianchi Tip-I modeli en basit eşyönsüz model olup, aynı zamanda da 

uzayca düz eşyönlü Robertson-Walker modelinin (düz, açık ve kapalı) genelleştirilmesini 

oluşturmamaktadır. Temel amacımız, efektif akışkan yaklaşımı altında alan denklemlerini 

eşhareketli bir ortonormal tetrad çatısında hesaplayıp, bunların çözümleri olan ölçek çarpanları 

ile birlikte ( , )f R G -gravitenin fonksiyonel formunu tesis etmek olacaktır. Bu işi, literatürde 
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çok az sayıda yapılmış benzer amaçlı çalışmalardan farklı bir biçimde ele alacağız. Bunlarda 

yapıldığı üzere, peşinen amaca yönelik (ad hoc) ön çözümler (anzats) varsaymak yerine; önce, 

evrenin madde-enerji içeriğinin eşyönlü bir mükemmel akışkan olarak varsayılması altında alan 

denklemlerinin bu kısıtlama ile tutarlılık koşulları belirlenecek ve sonrasında da, gerektiği 

durumlarda ön çözümlere başvurulacaktır. 

Şubat 2022, 137 sayfa. 

Anahtar kelimeler:  Yüksek Mertebeden Gravitasyon Teorileri,   ( , )f R G -gravite,  Homojen 

ve Anizotropik Evren Modelleri,  Tutarlılık Koşulları, Bianchi Tip-III 
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In this thesis, it is to investigate the existence of homogeneous universe models in space and 

space-time in higher order gravitational theories called ( , )f R G -gravity, depending on the 

shapes and properties of ( , )f R G -gravity functions. In the above expressions, R  is the Ricci 

Curvature and G is the Gauss-Bonnet term defined with 
24abcd ab

abcd abG R R R R R   . The 

above-mentioned theories constitute a generalization of Einstein's General Theory of Relativity 

in 1916, and form part of attempts to explain the phenomenon of "accelerated expansion of the 

universe", which is particularly evident from the observation data of 1998. Therefore, it is 

important to see what kind of changes the construction of cosmological models involve in these 

new gravity theories compared to relativist cosmological models. We will consider ( , )f R G -

gravity theory within the framework of Bianchi Type-I and Bianchi Type-III models from the 

class of spatially homogeneous and anisotropic models, under the assumption that the normal 

(standard) matter-energy content of the universe is a perfect fluid with a linear barotropic 

equation of state. In terms of providing mathematical workability, these models will be 

rotationless and of orthogonal type, that is, the metrics will be diagonal and contain only 3 

unknown scale factors. The Bianchi Type-I model is the simplest anisotropic model, and at the 

same time it does not constitute a generalization of the linear isotropic Robertson-Walker model 

(flat, open, and closed). Our main goal will be to calculate the field equations in an isometric 

orthonormal tetrad framework under the effective fluid approach, and to establish the functional 

INVESTIGATION OF THE EXISTENCE OF HOMOGENEOUS UNIVERSE 

MODELS IN HIGHER ORDER CURVATURE GRAVITY THEORIES 



xv 

 

form of ( , )f R G -gravity with their solutions, scale factors. We will deal with this work in a 

different way from the very few studies with similar purposes in the literature. Instead of 

assuming ad hoc preliminary solutions (anzats) in advance, as is done in these; First, the 

consistency conditions of the field equations with this restriction will be determined under the 

assumption that the matter-energy content of the universe is a isotropic perfect fluid, and then 

preliminary solutions will be applied when necessary. 

February 2022, 137 pages. 

Keywords:  Higher Order Theories of Gravitation, ( , )f R G -gravity, Homogeneous and 

Anisotropic Universe Models, Consistency Conditions, Bianchi-Type III      
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1. GİRİŞ 

 Einstein’ın Özel Rölâtivite Teorisinin ileri sürülmüş olduğu 1905 yılının hemen sonralarında, 

Newton’un Gravitasyon Teorisini de bu teorinin çerçevesine oturtmaya yönelik pek çok 

girişim:  iç tutarsızlık, gözlemlerle uyuşmama, öngörülerde isabetsizlik... gibi birtakım ölçütler 

ışığında, başarısız kalmıştır. Buna karşılık, 1916 yılında Einstein tarafından ileri sürülen Genel 

Rölâtivite Teorisi (GRT) gravitasyonu 4-boyutlu bir uzay-zaman manifoldunu eğriliği diliyle 

tasvir eder. Bu teori, hem Merkür’ün perihel noktasının yüzyıllık gözlemsel ilerlemesini 

açıklamış hem de, Güneş civarından geçen ışığın Güneş’in gravitasyon alanı nedeniyle 

saptırılacağını öngörmüş ve sapma miktarını da doğru olarak vermiştir. İlerleyen yıllarda ortaya 

çıkan Brans-Dicke skaler-tansörel teorisi, zar-evren teorileri gibi alternatif teorilerle 

karşılaştırıldığında, GRT’nin, bir yüzyılını geride bırakmış olarak, Güneş sistemimize ilişkin 

olaylarda, yani, yerel ölçekte, hâlâ en başarılı bir gravitasyon teorisi olma özelliğini koruya 

gelmekte (sürdüre gelmekte) olduğunu söylemek pek de yanlış olmaz. Öte yandan; GRT’nin 

alan denklemlerinin, astrofizik ve kozmoloji alanında da, yani, galaksiler ve galaksiler arası 

ortamlar ile evrenin bütünü gibi çok daha geniş ölçeklere uygulanması da: Büyük Patlama, 

2.7o K ’lik kalıntı ışınım, Evrenin genişlemesi, geniş ölçek yapılarının (galaksilerin) oluşumu,  

karadeliklerin varlığı gibi... gözlemlerle büyük ölçüde uyuşan sonuçların elde edilmesine 

önayak olmuştur. Bununla beraber, GRT’nin, ya da buna dayanan Rölâtivist Kozmolojinin 

eksikleri ve sorunları da yok değildir. Gözlemlerden kaynaklı: Evrenin eşyönlüleşmesi,  uzayca 

düz olma, ufuk gibi sorunların açıklanmasının henüz tatminkâr bir düzeyde olmadığı 

söylenebilir. Ancak, bunlardan daha da önemlisi, 80’li yıllardan itibaren yapılan teorik 

düzeydeki çalışmalarda GRT’nin orijinal şekliyle, kuvantum teorisiyle bağdaştırılmayacağı 

yönünde yeterince ikna edici sonuçların ortaya çıkmış olduğudur. Bu; GRT’nin, Güneş sistemi 

gibi zayıf gravitasyon alanında ve dolayısıyla da düşük eğrilikli sistemler için geçerli 

olabileceği; fakat evrenin başlangıç anları ile kuvvetli gravitasyon ve yüksek eğrilikli 

durumlarda geçerli olamayacağı yolunda bir kanıya sevk etmiştir. Böyle durumlara getirilen 

çözüm; gravitasyonu kuvantalaştırma amacında ortaya çıkan istenmeyen sonsuzlukları elemek 

(‘rönormalize etmek’) üzere, R  Ricci skaler eğriliğine göre lineer olan Einstein-Hilbert (EH) 

aksiyonuna Riemann eğrilik tansörünün - ve de diğer bazılarının- muhtelif kombinasyonlarıyla 

oluşturulabilecek eğrilik invaryantları terimleri eklemek suretiyle GRT’yi değişikliğe uğratmak 
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olmuştur. Einstein teorisinin değişikliğe uğratılması, yalnızca alan denklemlerine ek terimler 

getirmemiş, fakat gravitasyonun dörtten büyük boyutlarda ele alınması gerektiğine de yol 

açmıştır. Literatürde M-Teori, Sicim Teorisi, Zar-Evren Teorileri gibi teoriler böyle yaklaşımın 

ürünleridir. Ne var ki bu girişimler, yalnızca teorik düzeyde olup, bunların henüz ne öngörüsel 

ve ne de gözlemsel herhangi bir karşılıkları bulunmamaktadır.  

Şimdi, GRT’nin geniş ölçeklerdeki geçerliliğini asıl sorgulanır duruma getiren astrofiziksel ve 

kozmolojik gözlemsel gelişmelere gelelim. Bunlardan ilki, “Karanlık Madde” (kısaca KM) 

denilen meseledir. 30’lu yılların başında özellikle Zwickki ile başlatılan Galaksimize ilişkin 

gözlemler, Galaksi’mizde bir eksik (kayıp) kütle bulunduğuna dair birtakım şüpheler ortaya 

çıkarmıştır. Günümüzde daha da geliştirilmiş gözlemlerden oluşturulan galaksi dönme eğrileri 

diyagramları, galaksi kollarında dönen maddenin dönme hızının merkezden uzaklık ile önce 

lineer olarak arttığını ve galaksi halosu civarında ise artık sabit kaldığını vermektedirler. Oysa 

Newton teorisi ve dolayısıyla lineerleştirilmiş Einstein teorisi, lineerlikten sonra uzaklık ile ters 

orantılı olarak azalan bir değişim öngörmektedir. Böyle bir davranışı açıklamak için halo 

civarında gözlenenden daha fazla madde bulunmasını varsaymak gerekmektedir. Ancak, böyle 

bir maddeye aday olarak ne gösterilmişse, hiç biri de şimdiye kadar gözlenebilmiş değildir. 

Galaksilerde gravitasyonel etki gösteren mahiyeti henüz muamma böyle bir maddenin varlığını 

destekleyen bir başka gözlemsel veri de, galaksilerin ışığın yayılışına uyguladığı mercekleme 

olayıdır. Bu gözlemlerden hareketle evrende olması gereken karanlık maddenin toplam 

maddeye oranını için yaklaşık %27 bulunmaktadır. 

İkinci mesele ise, yüksek kızıla kaymaya sahip Süpernova Tip-Ia’ların gözlemlerinden 1998 de 

elde edilen şaşırtıcı sonuçtur; zira o tarihlere kadar evrenin günümüzde yavaşlayan bir şekilde 

genişlediğine inanılırken söz konusu gözlemler, bunun böyle olmadığını; tam tersine, 

genişlemenin hızlanarak (ivmelenerek) olduğu yönünde sonuçlar vermişlerdir. Günümüze 

kadar çeşitli gruplarca da gittikçe daha duyarlı şekilde yapılan benzer gözlemler de, bir kozmik 

ivmelenme sürecinde olduğumuzu doğrular mahiyettedir Bu durum, ayrıca, doğrudan doğruya 

olmasa da: baryon akustik osilasyonları, kozmik arkafon eşyönsüzlükleri, zayıf gravitasyonel 

merceklenme gibi farklı mahiyetteki gözlem sonuçlarıyla da teyit edilmektedir. Evren için 

ölçülen ışıklı madde-enerji miktarı, GRT’nin Rölâtivist Kozmolojisi içinde kalınıldığı takdirde 

böyle bir ivmelenmeyi açıklayamamaktadır; zira normal madde diyeceğimiz bu ‘ışıklı madde’ 

çok çok evrenin madde enerji içeriğinin yaklaşık %5 i kadardır ve ivmelenme için gerekli olan 
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%73 ün neredeyse on beşte biridir. İşte, geri kalan %68 oranındaki madde-enerji “Karanlık 

Enerji” (KE) olarak adlandırılmaktadır ve bunun da günümüzde gözlenen ivmeye yol 

açabilmesi için, bilinegelen standart madde türlerinden farklı olarak aşırı negatif basınçlı olması 

gerekmektedir. 

GRT içinde kalınıldığında, aslında, böyle aşırı basınçlı bir ekzotik madde-enerji varsayımı 

yapmaksızın da,   söz konusu ivmelenmeyi açıklamak mümkündür. Bu KE ye en basit aday, 

hal parametresi  -1 e eşit olan bir efektif akışkana karşılık düşen   kozmolojik sabitidir ve 

bundan ötürü de   nın alan denklemlerinde barındırılması gerektiği düşünülmüştür. Öte 

yandan,    kozmolojik sabiti aynı zamanda boşluğun (vakumun) da enerjisidir. Ancak, şöyle 

bir sorun ortaya çıkmaktadır: KE için gerekli olan   nın şimdiki değeri ile vakum değeri 

arasında niçin 121 mertebelik bir farklılık bulunmaktadır? “Hiyerarşi problemi” olarak 

adlandırılan bu sorun, KE nin kozmolojik sabit ile açıklanmasına güven duyulmamasına yol 

açmaktadır. KE ye aday ikinci bir alternatifi ise EH-aksiyonunda madde Lagrange’yenine ithal 

edilen çeşitli skaler alanlar oluşturmaktadır. Bu tür modeller, “quintessence” (beşinci 

element, skaler alanlı) olarak anılmaktadır. Ancak bu,  bir bilinmeyeni şimdiye kadar hiçbir 

şekilde gözlenememiş başka bir bilinmeyenle açıklamak gibi bir durum ortaya çıkarmaktadır. 

Kaldı ki Einstein Alan Denklemleri’ne (EAD) bu tür alanların ithali Güneş sistemine ilişkin 

testlerde uygunsuzluklar da yaratmaktadır. 

Yukarıdaki her iki yaklaşım da, KE ye karşılık düşecek şekilde bir-madde enerji oluşturmak 

üzere, EAD denklemlerinin sağ yanını oluşturan enerji-momentum tansörünün içeriğinin 

değiştirilmesini hedef almaktadır. Lagrange’yen formülasyon diliyle söylendiğinde bu, madde 

Lagrange’yeninde amaca uygun değişiklikler yapmak demektir. Bu yaklaşımının alternatifini 

ise, EAD’nin sol tarafını değişikliğe uğratmak, yani, EH-aksiyonunda R  ye göre lineer olan 

geometrik Lagrange’yeni, eğrilik invaryantlarının keyfi bir ( , , ,...)ab

abf R G R R  fonksiyonu ile 

değiştirmek oluşturmaktadır. Bu yolla oluşturulan değiştirilmiş Einstein teorisi 

( , , , ,...)ab

abf R G R R R -gravite olarak anılmaktadır. Burada: ;G  abcdR  Riemann eğrilik 

tansörünün büzülmeleri olan Ricci eğrilik tansörü 
c

ab acbR R  ve Ricci eğrilik skaleri 
c

cR R  

den hareketle 
24abcd ab

abcd abG R R R R R    şeklinde oluşturulan bir kombinasyonla tanımlı 

olup Gauss-Bonnet eğrilik invaryantı olarak anılır. 
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Literatürde, bu tip teoriler, özellikle de ( )f R gravite  daha ağırlıklı olmak üzere, son 20 yıldan 

bu yana çeşitli kozmolojik meseleler için yoğun bir uğraş alanı oluşturadurmaktadırlar. 

Çalışmaların tamamına yakınında ( )f R gravite  teorileri, evrenin, büyük ölçekte uzayca 

homojen ve eşyönlü olduğu varsayımına dayalı Robertson-Walker (RW) metriği çerçevesinde 

ele alınmaktadırlar. RW metriği, GRT’nin ortaya çıkışından bu yana en çok kullanılan metrik 

olmuştur. Evrenin geometrisi için matematiksel bakımdan yapılan bu amaca yönelik (ad hoc) 

basitleştirici varsayım, sonuçta, alan denklemlerini t  kozmik zamanına göre adi türevli ikinci 

mertebeden diferansiyel denklemlere indirgemekte ve basınç ile madde-enerji yoğunluğu gibi 

dinamik değişkenlerin de yalnızca t  nin fonksiyonu olmalarına yol açmaktadır. Bu, homojenlik 

özelliğinin bir sonucudur. Öte yandan eşyönlülük ise, metrik ifadesinde, ölçek çarpanı denilen 

( )a t  gibi tek bir bilinmeyen fonksiyonla iş görülmesine yol açmaktadır. f gravite  için de 

durum GRT’deki gibidir: şu farkla ki, alan denklemleri bu sefer dördüncü mertebeden 

olmaktadır. 

Uzayca homojenlik ve eşyönlülük varsayımı, başlangıçta, sadece ve sadece basitleştirme amaçlı 

matematiksel bir çalışma varsayımı olarak düşünülmüşse de, ilerleyen yıllardaki gözlemler 

evrenin büyük ölçekteki bugünkü görünümünün söz konusu varsayımla gerçekten de büyük 

ölçüde uyuştuğuna destek vermiştir. Bununla beraber, yakın zamanlardaki gözlemler 
55 10  

oranında bir eşyönsüzlüğe de işaret etmektedirler. Öte yandan, evrenin ilk zamanlarındaki 

görünümünün, pekâlâ eşyönsüz olup da sonraları birtakım mekanizmalar ile eşyönlülüğe 

evrildiği olasılık dışı değildir. Literatürde bu konu  ‘eşyönlüleşme meselesi’ olarak yer 

almaktadır ve matematiksel çerçevesini de eşyönlülük kısıtlamasının gevşetilmesiyle varılan 

‘uzayca homojen ve eşyönsüz uzay-zamanlar’ oluşturmaktadır. Bu özellikteki uzay zamanları,  

Kantowski-Sachs modeli ile Bianchi-Tip modeller oluşturmaktadır. Bianchi-Tip modeller, 

1898 de Bianchi tarafından Tip I-IX şeklinde 9 ayrı tip olarak sınıflandırılmış olup 40’ lı yılların 

sonlarından itibaren de kozmolojide yoğun bir şekilde kullanılagelmektedirler. 

 Bu Tez’de, ( , )f R G gravite teorisini, uzayca homojen ve eşyönsüz modeller sınıfından 

Bianchi-Tip I ile Bianchi-Tip III modelleri çerçevesinde, evrenin normal (standard) madde-

enerji içeriğinin lineer barotropik hal denklemli bir mükemmel akışkan olduğu varsayımı 

altında ele alacağız. Matematiksel işlenilebilirlik sağlaması bakımından söz konusu modeller 

dönmesiz ve ortogonal tipten olacak, yani, metrikler köşegensel olup yalnızca 3 bilinmeyen 

ölçek çarpanı içerecektir. Bianchi Tip-I modeli en basit eşyönsüz model olup, aynı zamanda da 
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uzayca düz eşyönlü RW modelini içermektedir. Bianchi-Tip III modeli ise hiç bir şekilde bir 

RW modelinin (düz, açık ve kapalı) genelleştirilmesini oluşturmamaktadır. Temel amacımız,  

efektif akışkan yaklaşımı altında alan denklemlerini eşhareketli bir ortonormal tetrad çatısında 

hesaplayıp, bunların çözümleri olan ölçek çarpanlarıyla birlikte ( , )f R G  nin fonksiyonel 

formunu tesis etmek olacaktır. Bu işi, literatürde çok az sayıda yapılmış benzer amaçlı 

çalışmalardan farklı bir biçimde ele alacağız. Bunlarda yapıldığı üzere, peşinen amaca yönelik 

(ad hoc) önçözümler (anzats) varsaymak yerine; önce, evrenin madde enerji içeriğinin eşyönlü 

bir mükemmel akışkan olarak varsayılması altında alan denklemlerinin bu kısıtlama ile 

tutarlılık koşulları belirlenecek ve sonrasında da, gerektiği durumlarda önçözümlere 

başvurulacaktır. 

İzlenecek çalışma planı şöyle olacaktır: 2.Bölüm’de; Einstein’ın gravitasyon teorisinin ortaya 

çıkışında Einstein’a yol gösterici temel düşünceleri özetliyor ve alan denklemlerinin bizzat 

Einstein tarafından, önce kozmolojik sabiti ile değişikliğe uğratılması ve sonrasında da bundan 

vazgeçilmesi sürecine kısaca değiniyoruz. Bu Bölüm’de,  kozmolojik sabitin, evrenin güncel 

ivmeli genişlemesinin açıklanmasında Karanlık Enerji’ye nasıl bir alternatif oluşturduğu da ele 

alınmaktadır. 3. Bölüm’de; Einstein Alan Denklemleri ile ( , )f R G gravite  için değişikliğe 

uğratılmış alan denklemlerini: Robertson-Walker metriği ile Bianchi-Tip I ve Bianchi-Tip III 

metrikleri çerçevesinde ortonormal bir tetrad çatısısında hesaplamaya yetecek ölçüde, 

matematiksel malzeme hakkında bilgilendirme sunmaktayız. Bu vesileyle; notasyon, indis 

kabulleri, formül yazılımlarındaki tanımlamalar, kurallar,... gibi kaynaktan kaynağa 

değişkenlik gösteren pek çok unsurun birbirleriyle tutarlılığı da sağlanmış olacaktır. 4. 

Bölüm’de; yani Bulgular bölümünde sırasıyla Bianchi-Tip III ve Bianchi-Tip I modelleri için 

iki farklı yöntemle alan denklemlerini yazıyoruz. Bunun akabinde bu alan denklemlerinden 

hareketle her iki model için tutarlılık koşullarını elde ediyoruz. Daha sonra bu tutarlılık koşulları 

altında ve mükemmel akışkan varsayımı ile birlikte Bianchi-Tip III ve Bianchi-Tip I modelleri 

için ( , )f R G  modellerini tesis ediyoruz. Tartışma ve Sonuç Bölümü ise, sonuçların 

değerlendirme ve tartışmasına ayrılmıştır. 
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2. GENEL KISIMLAR 

2.1. EINSTEIN’IN GENEL RÖLATİVİTE TEORİSİ  

2.1.1. Newtonsal Kütleçekimin Yetersizlikleri 

Newton’un postüle etmiş olduğu Evrensel Kütleçekim Kanunu; kütleli cisimlerin birbirleriyle 

etkileşmesini, kütleleriyle orantılı, aralarındaki uzaklığın karesiyle ters orantılı bir çekim 

kuvveti yoluyla tasvir eder. Bu kanuna dayalı Newton Gök Mekaniği, Güneş sistemimizdeki 

gezegen, uydu, kuyruklu yıldız vb. gökcisimlerinin hareketlerini yalnızca açıklamakla 

kalmamış, fakat aynı zamanda, Ay-Güneş tutulmaları, kuyruklu yıldızların tekrar görünmeleri, 

gel-git olayları gibi pek çok konuda isabetli öngörüler sunmuştur. Bir örnek vermek gerekirse, 

Neptün’ün varlığının önce kâğıt üzerinde keşfi, Newton Gök Mekaniğinin belki de en çarpıcı 

başarılarından birini oluşturmuştur. Bununla beraber, Newton Gök Mekaniği, Merkür 

gezegeninin presesyon hareketindeki perihel noktasının gözlenen ilerlemesi konusunda teorik 

ve gözlemsel değerler arasında neden 53’’/yüzyıl kadarlık bir fark bulunduğunu açıklamakta 

yetersiz kalmıştır. 20’ncı yüzyılın başlarına gelene kadar pek çok astronom ve astrofizikçiyi 

meşgul eden bu sorun için amaca uygun (ad hoc) yaklaşık bir düzine kadar hipotez ileri 

sürülmüşse de bunlardan hiçbiri kabul görmemiştir. Bunlar arasında belki de en çarpıcı olanı,  

uzaklığın tamı tamına bir ters kare olamayabileceği düşüncesinden hareketle, kütleçekim 

kanunu 2F r   yi, 1    olmak üzere 2F r     şeklinde değişikliğe uğratmak fikridir. 

Fakat bu girişim, hem diğer gezegenlere ilişkin perihel ilerlemesi gözlemleriyle tutarsızlığa yol 

açtığından ve hem de Galaksimizde (Samanyolu’nda) gözlemlerle hiç bir şekilde ortaya 

konulamamış bir gel-git etkisi öngördüğünden terk edilmiştir. Bu sorun Einstein’ın 1916’da 

ileri sürmüş olduğu Genel Rölativite Teorisi (GRT)  çerçevesinde çözüm bulmuştur [1]. 

Einstein, 1905’de ileri sürmüş olduğu Özel Rölativite Teorisini (ÖRT) ivmeli referans 

sistemlerini de kapsayacak şekilde genelleştirme arzusu sonucunda kütleçekimi, genel bir  

 , , ,... 0,1,2,3ax a b   koordinat sisteminde metriği (yay elemanı ya da uzay-zaman aralığı) 

2 a b

abds g dx dx                                                                                                             (2.1) 

ile temsil edilen 4-boyutlu eğrisel (Riemannsal) bir uzay-zaman geometrisinin eğriliği diliyle 

tasvir eden bir teoriye varmıştır. Einstein’ın GRT ’sinin alan denklemleri orijinal şekliyle  
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( kozmolojik sabit olmaksızın),  

21

2
ab ab ab abG R g R T                                                                                                      (2.2) 

dir. 3. Bölüm ’de daha da ayrıntılı olarak açıklamak üzere, şimdilik burada: 

abg : gravitasyon potansiyelleri rolünü oynayan 4-boyutlu uzay-zaman manifoldunun metrik 

tansörü, 

abR : abg ve bunun birinci ile ikinci türevleriyle oluşturulmuş 4-boyutlu uzay-zaman 

manifoldunun içsel eğrilik tansöründen,
c

acbR büzülmesiyle elde edilmiş Ricci Eğrilik Tansörü, 

:R  abR  den hareketle 
a

aR  büzülmesiyle elde edilmiş Ricci Eğrilik Skaleri, 

abT : Madde-Enerji dağılımını tasvir eden Enerji-Momentum Tansörü, 

abG : Einstein Tansörü, 

2 : Işık hızı c ve Newton evrensel kütleçekim sabiti de G ile gösterilmek üzere 
2 48 /G c       

ile tanımlı Einstein Kuplaj Sabiti  

olduklarını kaydedelim. 

Simetri özellikleri (bkz: 3.Bölüm) de dikkate alındığında; ikinci mertebeden kısmi türevli, 

birbirlerine kuple ve lineer olmayan toplam 10 adet bağımsız denklemden oluşan bu denklem 

sistemi, formel olarak, Newtonal kütleçekim kanununun kütleçekimsel   potansiyeli diliyle 

ifade edildiği 
2 4 G     Poisson denkleminin bir çeşit genellemesi görünümündedir(  kütle 

yoğunluğudur). Einstein kütleçekiminde,   nin yerini, toplamda 10 adet olan ve genel olarak 

koordinatların fonksiyonu olan abg  metrik fonksiyonları (kütleçekim potansiyelleri) 

almaktadır. Einstein, bu teoriyi zayıf kütleçekim alanı yaklaşıklığında Güneş sistemimize 

uyguladığında yalnızca Merkür gezegeninin perihel noktasının gözlemsel ilerleme değerini 

doğru olarak hesaplamakla kalmamış, fakat aynı zamanda, ışığın Güneş civarından geçerken 

kütleçekimden etkilenerek yörüngesinin eğrilip sapacağını da öngörmüştür. Ayrıca sapma 

miktarını, 1919’da Eddington tarafından gözlemsel olarak doğrulandığı üzere, doğru olarak da 

hesaplamıştır [1].  Teorisinin Güneş sistemi ölçeğinde bir diğer doğrulanmasının da radar yankı 

testi gözlemleri olduğunu kaydedelim. Şimdi, her ne kadar Newton Teorisine alternatif bu yeni 

kütleçekim teorisi, Güneş sistemi ölçeğindeki olaylar konusunda açıklama ve öngörmede 
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yukarıda sıralanan başarıları göstermiş olsa da Einstein, aşağıdaki şu iki mesele konusunda 

teorisini tatminkâr bulmamıştır. 

2.1.2. GRT ’in Temellerinde Mach ve Minkowski’nin Düşünceleri 

Bunlardan birincisi; Einstein’ın kendisi tarafından “eylemsizliğin göreliliği’’; günümüzde ise, 

genel olarak “Mach İlkesi” olarak adlandırılan görüşlerin [2,3], teori tarafından tatminkâr bir 

biçimde kapsanamadığının tespitidir. Şöyle ki; Avusturyalı fizikçi ve bilim felsefecisi Ernst 

Mach’a (18..-1916) göre, merkezkaç kuvvetleri, Coriolis kuvvetleri gibi eylemsizlik 

kuvvetlerinin kökeni, Newtonun savunduğu gibi “Mutlak uzay’’ (ya da mutlak hareket) değil, 

fakat, evrendeki  madde dağılımıdır (ya da maddeye göre harekettir). Buna göre, evrende hiç 

bir madde dağılımı olmasaydı bu takdirde eylemsizlik olaylarından da söz edilemeyecekti. Bu 

görüş doğrultusunda Mach, mutlak uzayın fazladan ve gereksiz bir hipotez olduğunu ifade 

ederek dinamiğin mutlak hareket kavramı yerine görel hareket (maddeye göre) kavramına 

dayandırılması gerektiğini ileri sürmüştür. Her ne kadar Mach; Mutlak uzay ve mutlak hareket 

kavramına dayalı Newton Mekaniği yerine, kendi görüşlerine dayalı bir mekanik inşa etmemiş 

ve dahası eylemsizlik kuvvetleriyle evrendeki uzak maddeler arasındaki esrarengiz 

etkileşmenin mahiyetini belirtmemiş olsa da, eylemsizlik olaylarının kökenine Mutlak uzay gibi 

tanımı gereği hiçbir şekilde gözlenemez metafiziksel bir varlık yerine evrendeki cisimler gibi 

gözlenebilir fiziksel bir köken atfeden bu görüşleri, “etkiyen, fakat üzerine etkinemez” 

mahiyetteki böyle varlığın fizikte yeri olamayacağını söyleyen Einstein tarafından da 

benimsenmiş ve GRT ’nin ileri sürülmesinde kılavuzlayıcı (heuristic) bir rol oynamıştır. 

Bununla beraber, Einstein’ın 1905’de ileri sürmüş olduğu ÖRT, aslında, Mutlak uzay 

kavramını hiçbir şekilde reddetmemektedir. Teori, sadece ve sadece, düzgün doğrusal harekette 

bulunan eylemsizlik sistemleri arasındaki geçişin; ister mekanik, ister elektrodinamik olsun, 

tüm fizik kanunlarının invaryantlığı (değişmezliği) için, artık Galile dönüşümleriyle değil de 

bundan böyle Lorentz dönüşümüyle olması gerektiğini ileri sürmektedir. Ve bu teorinin 

temelinde olan eylemsizlik sistemleri, “mutlak uzaya göre duran ya da düzgün doğrusal 

harekette bulunan sistemler” şeklindeki tanımını hâlâ koruyadurmaktadırlar. Öte yandan, 

ÖRT’nin Newton’un Mutlak uzay kavramını yakından uzaktan dışlamadığını bir de şöyle 

söyleyebiliriz; çok iyi bilindiği üzere, ÖRT’nin ortaya çıkışının hemen sonrasında (bir-iki yıl 

içinde) Minkowski, teoriyi; biri zaman, diğer üçü de uzay koordinatları olmak üzere toplamda 

dört koordinatlı noktaların (ki artık bunlara “olay” demiştir) kümesinin oluşturduğu ve uzay-
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zaman adını verdiği bir 4-boyutlu geometri çerçevesinde ele alıp yorumlamıştır. Bu geometriyi 

tanımlayan ve iki olay arasındaki uzay-zaman aralığı anlamını taşıyan Temel birinci formun 

(metriğin) ifadesi, kartezyen koordinatlarda  

2 2 2 2 2 2ds c dt dx dy dz                                                                                            (2.3) 

biçimindedir. Aynı zamanda bu da Öklidimsi düz bir geometriyi temsil etmektedir. 

( 1, 1, 1, 1)ab abg köş sabit        metrik katsayıları, madde ya da herhangi bir şeye bağlı 

olmaksızın bir kereye mahsus peşinen verilmiş olduğundan tüm kinetik ve geometrik 

özelliklerin (uzunluk, açı, vb...) belirleyicisi rolünü oynamaktadır. İşte, Minkowski metriği 

denilen bu (2.3) ifadesi, mutlak uzay-zaman adlandırılması farkıyla Newtonsal Mutlak uzayın 

ÖRT’deki eşdeğer karşılığı olmaktadır. Nitekim bir eylemsizlik sisteminden ivmeli ya da dönen 

bir referans sistemine geçildiğinde, tıpkı Newton’un II. hareket kanununun invaryant kalmayıp 

da ortaya eylemsizlik kuvvetlerinin çıkıyor olması gibi, (2.3) metriğinin katsayıları da invaryant 

kalmayıp hareketli sistemin hız ve ivmesini içeren fonksiyonlara dönüşmekte ve dolayısıyla 

bunlar, (2.3) metrikli mutlak uzay-zamana göre bir hareketinin belirleyicisi olma durumuna 

gelmektedirler [2]. Sonuç olarak; Newton’un Mutlak uzay kavramına yöneltilebilecek tüm 

eleştiriler aynı şekilde ÖRT’nin mutlak uzay-zaman kavramı için de geçerliliğini korumaktadır 

[2,3]. Şimdi, Einstein’a geri dönelim. Ancak, tamamlılık amacıyla şunu da belirtmeden 

geçmeyelim; Minkowski’nin ÖRT’yi 4-boyutlu bir uzay-zaman geometrisi bünyesinde 

yorumlama, yani başka bir değişle, ÖRT’yi geometrileştirme yaklaşımına Einstein, başlangıçta, 

ÖRT’nin kavramsal basitliğini karmaşıklaştırdığı gerekçesiyle itirazda bulunmuşsa da, çok 

geçmeden bu yaklaşımın yerinde ve verimli olabileceğini idrak etmiştir. Minkowski’nin bu 

katkısı, GRT’nin ortaya çıkış sürecinde önemli bir rol oynamış ve Einstein’a, ÖRT’yi ivmeli 

ve dönen sistemlere genelleştirmek yolunda isabetli bir hareket noktası oluşturmuştur. Einstein, 

(2.1) metriğini, (2.3) ün genel eğrisel koordinatlara (referans sistemlerine) genelleştirilmesi 

olarak almış ve buradaki ( )c

abg x  metrik fonksiyonlarına taşınan hız, ivme gibi referans 

sisteminin kinematik özelliklerine bağlı geometrik kökenli terimleri, sanal bir kütleçekim alanı 

gibi yorumlamıştır. Eylemsizlik kütlesi ile kütleçekimsel kütlenin birbirlerine eşit olduğu 

varsayımına dayalı olarak eylemsizlik kuvvetlerinin yerel olarak sanal bir kütleçekim kuvveti 

gibi yorumlanabilmesi, Einstein tarafından “zayıf eşdeğerlik ilkesi’’ olarak adlandırılmıştır.  Bu 

suretle Einstein, eylemsizlik kuvvetlerine, Mach’ın düşünceleri doğrultusunda, gözlenebilir 

büyüklüklerden kaynaklı kütleçekimsel bir köken atfetmektedir. Mach’ın cisimlerin 
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eylemsizliği konusundaki düşüncelerinden çok etkilenmiş olduğunu çeşitli vesilelerle ifade 

eden Einstein, teorisini tamamladığında Mach’ın düşüncelerinin ne ölçüde kapsandığına 

bakmış ve Mach’ın görüşlerine uygun birtakım sonuçlar elde etmiştir. Ancak, alan 

denklemlerine ilk bakışta Mach İlkesiyle uyuşmayan bir tutarsızlık derhal göze çarpmaktadır. 

Şöyle ki; 0abT   olduğunda, yani, evrende hiç bir madde bulunmasa dahi alan denklemleri, 

türevlerinin sıfır olmasından ötürü ( 1, 1 1 1)ab abg köş sabit         metriğini çözüm 

addetmektedir. Bu, evren boş olsa dahi, Mach’ın düşüncelerine aykırı bir şekilde hâlâ mutlak 

hareket ya da mutlak uzaydan bahsedile biliniyor demektir. Einstein’ın bu olumsuzluğun 

üstesinden nasıl geldiği birazdan söylenecektir.  

2.2. ALAN DENKLEMLERİNİN   KOZMOLOJİK SÂBİTİ İLE DEĞİŞİKLİĞE 

UĞRATILMASI 

2.2.1. İlk Evren Modelleri 

Einstein’ın (2.2) deki alan denklemlerini tatminkâr bulmamasının ikinci nedenini ise, 

denklemlerin, tasavvur ettiği evren modelinin inşasına imkân tanımaması oluşturmaktadır [3]. 

Einstein, teorisini ileri sürmesinin hemen akabinde, yerel ölçekteki (Güneş siteminde) 

başarılarından cesaret olarak,  alan denklemlerini evren gibi en geniş ölçeğe uygulayarak bir 

evren modeli inşa etmeyi hedeflemiştir. O tarihlerde henüz evrenin genişlediği bilinmediğinden 

evren hakkında yaygın inanış, “küresel” ve “kapalı” bir geometriye sahip statik bir görünüm 

taşıdığı yolunda idi. Hesapları basitleştirmek üzere Evrenin geniş ölçekte homojen ve uzayca 

eşyönlü olduğu varsayımından yola çıkarak ve madde–enerji içeriğini de boş almak yerine 

fiziksel bakımdan nispeten daha gerçekçi olması bakımından basınçsız maddeli bir akışkan gibi 

varsayarak basit bir model oluşturmayı tasarladı. Ancak, (2.2) deki denklemlerin böyle bir 

modele izin vermemesi üzerine, bunu sağlamak için denklemlere kozmolojik sabit adını verdiği 

ve genel olarak 0 , 0 0ve       olabilen bir   sabitiyle oluşturulmuş  abg  gibi terim 

eklemek gerekliliğini duydu. Bu takdirde (2.2) deki alan denklemleri bizzat Einstein tarafından 

21

2
ab ab ab abR g R g T                                                                                                  (2.4) 

şeklinde değişikliğe uğratılmış oldu. Bu değişiklik yalnızca, hedeflenen: basınçsız madde dolu, 

küresel, kapalı ve de statik bir evren modeli vermekle kalmamış, fakat aynı zamanda, alan 
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denklemlerinin Mach ilkesiyle olan uyuşmazlığını da (tutarsızlığını da) ortadan kaldırmıştır. 

Nitekim 0abT   alındığında (2.2)  denklemlerinde ab abg  için artık 0ab   olmakta ve 

dolayısıyla da,  mutlak uzay-zamanın boş evren için bir çözüm olması durumu bertaraf 

edilmektedir. Ancak, Statik Einstein Evreni olarak anılan bu modelin ileri sürülmesinden çok 

kısa bir süre sonrasında, 1917’de Hollandalı astronom de Sitter,  -lı alan denklemlerinin boş 

evren, yani, 0abT   hali için, kabaca evrenin “yarıçapı” gözüyle bakılabilecek ( )a t  ölçek 

çarpanı için  ( ) exp / 3a t t   şeklinde zamana bağlı bir şekilde genişleyen (statik değil!) 

bir çözümünü sundu [3,4]. “Hareketsiz madde” olarak nitelendirilen Statik Einstein evrenine 

karşılık, de Sitter evreni olarak anılan bu model “maddesiz hareket’’ niteliği taşımaktaydı. Öte 

yandan, de Sitter evren modeli  –lı olmasına rağmen Mach’ın eylemsizlik görüşleriyle 

uyuşmayan unsurlar da içeriyordu. O tarihlerde pek fazla dikkat çekmeyen  -lı alan 

denklemlerinin bu genişleyen çözümünü, 1922 de Friedmann’ın, fakat bu sefer  -sız alan 

denklemlerinin, uzayca homojen ve eşyönlü evren varsayımı altında: kapalı, açık ve düz 

olabilen genişleyen ya da büzülen evren modeli çözümleri izlemiştir. Statik evren modeline 

alternatif olan bu tip çözümlere Einstein’ın şiddetli itirazları olmuşsa da 1929’da Edwin 

Hubble, galaksilerin kızıla kayma gözlemlerinden hareketle, evrenimizin statik değil de 

genişlemekte olduğunu ortaya koyunca Einstein, dinamik evren tasvirine yönelik itirazlarını 

artık sürdürememiştir. Bir yandan gözlemlerin genişleyen bir evren tasvirine destek vermesi, 

diğer yandan da Statik Einstein evreninin madde pertürbasyonları altında kararsız olduğunun 

gösterilmesi ve de dahası  -lı denklemlerin bile Mach’a karşıt çözümler vermesi üzerine 

Einstein,   kozmolojik sabitin teoriye ithalinin gerekçelerinin artık ortadan kalktığına kani 

olarak bu sabitten vazgeçmiştir. Bu bağlamda, Einstein’ın ilerleyen yıllarda   kozmolojik 

sabiti için, “hayatımdaki en büyük hatam” dediği rivayet edilmektedir. Ancak,   kozmolojik 

sabitinin hikâyesi burada bitmemektedir. 

2.2.2. Kozmolojik Gelişmelerde   nın Önemi 

Einstein tarafından artık dışarılanmış olmasına rağmen   kozmolojik sabiti yine de kozmolojik 

ve astrofizik alanındaki bir takım olayların açıklanması için gerektiğinde ilk önce başvurulan 

kavram olmayı sürdürmüştür. Mesela, 60’lı yılların ortasında 1.5 2z    kızıla kayma 

aralıklarında nispeten fazla sayıda galaksi ve quasar gözlenmesini açıklamak için ışığın 

günümüze, aynı gök cisminden birkaç görüntü oluşturacak şekilde evreni birkaç kere 
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turladıktan sonra ulaşmış olduğu tasarlanmış ve böyle bir durumun da ancak   kozmolojik 

sabitini işin içine sokmakla gerçekleştirilebileceği düşünülmüştür [5]. Ve bu amaçla da,    

kozmolojik sabitinin savunucularının başında gelen ve Büyük Patlama senaryosunun 

öncülerinden olan George Lemaître’in Eddington-Lemaître-tipi kozmolojik modelleri 

kullanılmıştır. Bu modellerde, evren; genişleme sırasında,  nın kritik değerleri için geçici 

olarak bir “uyuklama’’ evresine girebilmekte ve bu süre içinde de ışık evreni birkaç kez turlama 

zamanı bulabilmektedir [5].  

  nın kestirilen değeri yaklaşık 
52 21.11 10  m   dir ve Güneş sistemimize ilişkin hesaplarda bu 

kadar küçük bir değerin hesaplara etkisi hemen hemen yok gibidir. Ancak, evren ölçeğinde 

durum tamamen farklıdır; zira   nın varlığı kozmolojik modellerin yapısını tamamen 

değiştirebilmektedir. Söz konusu durum; h  Planck sabitinin, Klasik mekaniksel ile 

kuvantumsal ölçekteki olaylar için oynadığı rollere benzetilebilir. 

Einstein’ın “en büyük hatam” dediği   kozmolojik sabiti; önemini ve vazgeçilmezliğini, 80’li 

yılların ortalarında ileri sürülen biri enflasyon (evrenin hızlı şişmesi anlamında) teorisinde, 

diğeri de kütleçekimi kuvantum teorisiyle bağdaştırmayı amaçlayan Kuvantumsal Kütleçekim 

(Quantum Gravity) teorisinde yer bularak göstermiştir. Enflasyon teorisi; Parçacık Fiziği ile 

klasik kozmolojinin birleşimi olan ve Büyük Patlama varsayımına dayalı olarak evrenin 

evrimini tasvir eden Standart Kozmoloji’nin: ufuk, eşyönlüleşme, uzayın düzlüğü gibi 

kavramsal ve de gözlemsel sorunlarına çözüm getirmek üzere ileri sürülmüş olup, günümüze 

kadar da çeşitli değişiklik ve iyileştirmelere konu olagelmiştir. Bu teori temel olarak, evrenin 

Büyük Patlamadan hemen sonra (yaklaşık 
3510

 saniye sonra) yukarıda yazdığımız 

 ( ) exp / 3a t t   gibi “de Sitter benzeri” bir ivmeli genişleme öngörmekte ve bunun 

devamında da evrenin günümüze kadar sürecek bir yavaşlayan genişleme sürecine gireceğini 

söylemektedir.  Kuvantumsal Kütleçekim Teorisinde ise   ya, boşluğun (vakumun) enerjisi 

rolünü oynamak düşmektedir. Gerçekten de (2.4) denklemi  

21

2
ab ab ab ab abG R g R g T                                                                                      (2.5) 

şeklinde ifade edilir de 0abT   alınırsa abg  teriminin, boşluğa bağlanabilecek bir enerji-

momentum tansörü rolü oynadığı görülür. 



13 

 

 

 

2.2.3. Karanlık Enerji ve   

Şimdi   yı günümüzde Kozmolojinin ‘yıldızı’ yapan çarpıcı gelişmeye kısaca değinelim. 2000 

yılına birkaç yıl kalana kadar, yukarıda kısaca işaret ettiğimiz gibi Standart Kozmoloji 

çerçevesinde, evrenin, ivmeli bir genişleme (enflasyon) safhası geçirdikten sonra yavaşlayan 

bir genişleme sürecine girmiş olduğu ve bunun da günümüzde hâlâ sürmekte olduğu 

düşünülüyordu. Ancak 1998’lerde ilk sonuçları alınan yüksek kızıla kaymalı Tip-Ia Süpernova 

gözlemleri [6-8] bunun böyle olmadığını, tam tersine, yaşının 13.6 milyar yıl olduğu kestirilen 

evrenin genişlemesinin, yaklaşık son iki milyar yılından bu yana, ivmeli bir şekilde olduğunu 

ortaya koymuştur. Bu kanıyı günümüze kadar çeşitli gruplarca gerçekleştirilen Tip-Ia 

Süpernova gözlemleri ile farklı mahiyetteki: Geniş Ölçek Yapıları, Kozmik Mikrodalga Arka 

Plan Eşyönsüzlükleri, Baryon Akustik Osilasyonları (dalgalanmaları), Zayıf Galaksi 

Merceklenmesi gibi gözlemler de dolaylı ya da dolaysız olarak desteklemektedirler [9-16].  

Gözlemler, evrenin ışıklı ya da dedekte edilebilir, yani, baryonik madde-enerji içeriğinin 

evrende olması gereken toplam madde-enerjinin ancak % 5 i kadar olduğunu vermektedir; %27 

si ise Karanlık Madde’ den oluşmaktadır. Bu, galaksilerin halosunda ya da galaksiler civarında 

bulunması gereken ve kütleçekim etkisi gösteren, ancak bu güne kadar hiçbir şekilde 

gözlenememiş ve dolayısıyla da mahiyeti bilinmeyen bir madde dağılımına verilen isimdir. 

Geri kalan %68 ine de Karanlık Enerji denilmektedir. Gözlenen ivmeli genişlemenin sorumlusu 

olan işte budur ve bunun da bilinegelen (normal, sıradan) maddeden farklı olarak aşırı negatif 

basınçlı bir madde olması gerekmektedir. İşte, bu özelliği gösterecek ilk akla gelen aday da 

yine Kozmolojik sabit olmaktadır [17,18]. Bunu aşağıda açıklayalım. 

Evrenin büyük ölçeklerde uzayca homojen ve eşyönlü olduğu varsayımına dayalı Robertson-

Walker (RW) metriği için GRT’nin alan denklemlerinin verdiği denklemlerden biri 

2 2 21 1
( 3 )

6 3

a
c p c

a
                                                                                              (2.6) 

olup bu Raychaudhuri denklemi olarak bilinir [3,4]. Burada, kozmik t zamanının fonksiyonu 

olan ( )a t  ye ölçek çarpanı denir ve bu, sabit-zamanlı 3-boyutlu uzaysal kesitlerin zamana bağlı 

değişimlerinin bir ölçüsünü verir.   ve p  de, eğer tek tür madde söz konusuysa, o maddenin 

madde-enerji yoğunluğu ve eşyönlü basıncıdır. Bu ikisinin w sabit  olmak üzere, hal 

denklemi denilen p w  bağıntısıyla birbirlerine bağlı oldukları varsayılacaktır. Eğer, pek 
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çok madde türü (baryon, soğuk karanlık madde (KM), foton, nötrino, elektron,...) söz konusu 

ise,   ve p  toplam yoğunluk ve basınç anlamında alınacaktır. Bu toplamlara, kozmolojik 

sabite 

 
2 2

, 1p p w 
 

    

 
                                              (2.7) 

bağıntılarıyla bağlanan bir yoğunluk ile bir basınç da katılsın (son iki bağıntı hal denklemi ile 

hal parametresini göstermektedir). Ayrıca, şimdilik, “Karanlık Enerji” denilecek sanal bir 

madde türü de bulunduğu varsayılsın. Bunun; yoğunluk, basınç ve hal denklemi, sırasıyla KE

, KEp  ve KE KE KEp w   ile gösterilsin. O halde, en genişletilmiş toplamlar: 

...top

KM KE         ve ...top

KM KEp p p p p     olacaktır. Şimdi, genelliği 

bozmadan, baryon ve soğuk Karanlık Madde toplamını tek tür madde olarak alalım ve ' 'm  

indisi ile bunu kast edelim, yani, m KM     m KMp p p   olsun. Bu söylenenler ışığında 

(2.6) denklemi tekrar yazılırsa, 

2 21
( ... 3( ... )

6
m KE m KE

a
c p p p

a
                                                                        

2 21
[1 3( ... 1 )]( ... )

6
m KE m KEc w w                                                           (2.8)  

olur. Şimdi, bu denklemde yer alan tüm büyüklükleri şimdiki kozmik zamanda değerlendirilmiş 

olarak alalım. Günümüzdeki hızlanan bir genişleme, 0a   demek olduğundan, (2.8) den  

1
1 3( 1 ) 0 1

3
m KE m KEw w w w                                                             (2.9) 

kısıtlaması elde edilir ( ,m KEve    pozitif varsayılmıştır; dolayısıyla 0   dir). Eğer   

alınmamış ve KE de varsayılmamış olsaydı, 
1

3
mw    olması gerekirdi ki, böyle bir hal 

denklemine uyan hiçbir Standard (bilinegelen, normal, sıradan) madde türü bilinenler arasında 

yer almamaktadır. Bir   varlığı varsayımı ise, 
1 2

1
3 3

mw       vereceğinden bir sorun 

yaratmamaktadır. Eğer   yerine KE gibi tasarımsal bir madde türü varsayılırsa, bu takdirde 
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1

3
KE mw w    olmalıdır ki, bu, söz konusu madde türünün aşırı negatif olması gerektiğinin 

ifadesinden başka bir şey değildir. Bu inceleme; hal parametresi -1 olan bir efektif akışkan gibi 

düşünülebilecek    kozmolojik sabiti aracığıyla, KE gibi bir tasarımsal maddeye ihtiyaç 

duyulmaksızın da evrenin günümüzdeki ivmelenmesinin açıklanabileceğini göstermektedir. Ne 

var ki, bu yolla bir açıklama; Giriş Bölümünde söylenildiği gibi, başta  ‘Hiyerarşi problemi’ 

olmak üzere ‘çakışma’(coincidence), Güneş sistemi testleriyle uyumsuzluk gibi sorunları da 

beraberinde taşımaktadır [17-19]. Yukarıdaki incelemeden çıkan bir başka sonuç ise, ek bir 

tasarımsal akışkan varsayımının aracılığıyla da ivmelenmenin açıklanabileceğinin mümkün 

olabileceğidir. Enerji-momentum tansörüne skaler alanlar ithal etmek suretiyle, efektif 

akışkanlar oluşturma yaklaşımına ‘quintessense’  denilmektedir; ancak, bunlar da sorunsuz 

değildirler [19].  

2.3. ALAN DENKLEMLERİNİN EĞRİLİK İNVARYANTLARI İLE DEĞİŞİKLİĞE 

UĞRATILMASI 

Yukarıdaki yaklaşım, KE ye karşılık düşecek şekilde bir-madde enerji oluşturmak üzere, EAD 

denklemlerinin sağ yanını oluşturan enerji-momentum tansörünün içeriğinin değiştirilmesini 

hedef almaktadır. Lagrange’yen formülasyon diliyle söylendiğinde bu, madde-enerji-

momentum tansörünü 
 2 m

ab ab

gL
T

gg






 


 şeklinde tanımlayan mL  madde-enerji Lagrange 

yoğunluğununda, yani,  madde Lagrange’yeninde amaca uygun değişiklikler yapmak demektir. 

Bu yaklaşımının alternatifini ise, EAD’nin sol tarafını değişikliğe uğratmak ve bunun için de 

 4

2

1
2

2
EH m

V

S d x g R S


                                                                                (2.10) 

şeklindeki EH-aksiyonunda ( )lı   R  ye göre lineer olan geometrik Lagrange’yeni, eğrilik 

invaryantlarının keyfi bir ( , , , ,...)ab

abf R G R R R  fonksiyonu ile değiştirmek oluşturmaktadır. 

Bu yolla oluşturulan değiştirilmiş Einstein teorisi ( , , , ,...)ab

abf R G R R R -gravite teorileri 

olarak anılmaktadır [20-29]. Özel olarak, aksiyon, 

4

2

1
( , )

2
m

V

S d x g f R G S


                                                                                     (2.11) 
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şeklinde seçildiğinde, buradan metriğe göre varyasyon alarak varılan alan denklemli teorilere 

( , )f R G gravite  denir. Yukarıda 0g   ile 4d x g , sırasıyla, imzası +2 olan metriğin 

determinantı ve 4-boyutlu uzay-zamanın invaryant hacim elemanı gösterilmektedir; mS  de, mL  

madde- enerji Lagrange yoğunluğunun  
4

m m

V

S d x gL   şeklindeki aksiyonudur. (2.11) 

seçimi altında, metriğe göre varyasyon alarak değişikliğe uğratılmış Einstein denklemleri, yani, 

( , )f R G gravite ’nin alan denklemleri 

2

1 1
4

2 2

4 2 4 4 4

cd

R ab ab ab G a b R ab R ab c d G

c c cd m

ab G a b G a c b G b c a G a b c d G ab

f R g f g Gf f g f g R f

G f R f R f R f R f T

       

             

         (2.12) 

şeklinde olmaktadır (Açıklamalı ve ayrıntılı hesaplama için Bkz.[1,3,30,31]). Özel olarak, 

( )f R gravite için indirgenmiş denklemler 

21

2

m

R ab ab a b R ab R abf R g f f g f T                                                                       (2.13) 

dir. Literatürde, ‘değişikliğe uğratılmış’ veya ‘yüksek mertebeden gravitasyon teorileri’ olarak 

anılan bu tip teoriler,  özellikle de ( )f R gravite  daha ağırlıklı olmak üzere, son 20 yıldan bu 

yana çeşitli kozmolojik meseleler için yoğun bir uğraş alanı oluşturadurmaktadırlar. 

Çalışmaların tamamına yakınında f gravite  teorileri, evrenin, büyük ölçekte uzayca homojen 

ve eşyönlü olduğu varsayımına dayalı Robertson-Walker (RW) metriği çerçevesinde ele 

alınmaktadırlar. RW metriği, GRT’nin ortaya çıkışından bu yana en çok kullanılan metrik 

olmuştur. Evrenin geometrisi için matematiksel bakımdan yapılan bu amaca yönelik (ad hoc) 

basitleştirici varsayım, sonuçta, alan denklemlerini t  kozmik zamanına göre adi türevli ikinci 

mertebeden diferansiyel denklemlere indirgemekte ve basınç ile madde-enerji yoğunluğu gibi 

dinamik değişkenlerin de yalnızca t  nin fonksiyonu olmalarına yol açmaktadır. Bu, homojenlik 

özelliğinin bir sonucudur. Öte yandan eşyönlülük ise, metrik ifadesinde, ölçek çarpanı denilen 

( )a t  gibi tek bir bilinmeyen fonksiyonla iş görülmesine yol açmaktadır. f gravite  için de 

durum, GRT ’deki gibidir: şu farkla ki, alan denklemleri bu sefer dördüncü mertebeden 

olmaktadır. Bulgular Bölümü’nde bu alan denklemleri ağırlıklı olarak, homojen fakat uzayca 

eşyönsüz modeller olan ve dolayısıyla üç ölçek çarpanı barındıran Bianchi-Tip III ve Bianchi-

Tip I modelleri çerçevesinde ele alınacaktır. 
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3. MALZEME VE YÖNTEM 

3.1. ÖNBİLGİLER  

3.1.1. Koordinatsal Tabanda Tansörler 

Einstein’ın Genel Rölativite teorisi, kütleçekimi 4-boyutlu bir uzay-zaman geometrisinde ele 

alır. Bu geometride, artık olay gözüyle bakılan bir noktanın koordinatları, 
0 1 2 3, ,x x x ve x

yazılışıyla gösterilen 4 adet parametre ile gösterilir. Bunlardan  
0x , 

0x ct  olarak zaman 

koordinatı; diğer 
1 2 3,x x ve x  ise uzay koordinatları olarak düşünülecektir. Bu 4 sayıya (veya 

fonksiyona), aynı zamanda bir koordinat sisteminin eksenlerinin adı gözüyle de bakılabilir. 

Diferansiyel Geometri’ de bu eksenlere teğet taban vektörleri için genellikle birbirlerine 

eşdeğer şekilde / i

i ie x      yazılışları kullanılır ve bunlar eksenler boyunca doğrultu türevi 

anlamında bir operatör olarak yorumlanırlar. Daha fazla ilerlemeden önce, şu indis kabullerini 

verelim: Latin ve Grek alfabelerinin ikinci yarısındaki harfler, tansörel (ya da koordinatsal)  

indis olarak kullanılacak olup sırasıyla şu değerleri alacaklardır: , , ,... 0,1, 2,3i j k   ve 

, , ,... 1, 2,3    . Birincilere uzay-zaman; ikincilere ise, uzay indisleri adı verilir. Birazdan 

göreceğimiz tetrad indisleri için ise, yukarıda sözü edilen alfabelerin ilk yarılarındaki harfler 

kullanılacaktır;  buna göre: , , ,... 0,1, 2,3a b c   ve , , ,... 1, 2,3     olacaktır. Şimdi, 

koordinatsal tabanı    0 1 2 3, , , i       kümesi ile gösterelim. Bir tansör, ya da özel olarak, 

1-nci mertebeden bir tansör olan bir X vektörü, bu tabanda, taban vektörlerinin lineer bir 

kombinasyonu olarak 
i

iX X   şeklinde ifade edilebilir (aksi söylenmedikçe, Einstein toplam 

kuralı kullanılacaktır, yani, tekrarlanan indisler, o indis değerleri üzerinden toplam yapılacağına 

işaret edecektir). X vektörünün  i  tabanındaki yukarıdaki gösteriminde yer alan iX   lere X  

vektörünün kontravaryant bileşenleri denir. X in bir başka gösterimi ise, ( )i i

j jdx   düalite 

bağıntısı uyarınca tanımlanan 
idx  lerden oluşturulan  idx  tabanını kullanmak suretiyle 

i

iX X dx  şeklinde yapılabilir. Burada, iX  lere kovaryant bileşenler denir; 
idx lere ise, 

koordinatsal diferansiyel 1-formlar denilmekte olup, bunlar, 
ix Sabit  hiperyüzeylerinin 

gradyentleri olarak yorumlanırlar. Söz konusu iki tabandan ‘oluşturulan’  , i

i dx  koordinatsal 

tabanında (buna doğal taban da denir), p-ninci mertebeden kontravaryant ve q-nuncu 
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mertebeden kovaryant (p+q)-nuncu merebeden karışık bir genel tansörün bileşenlerinin 

gösterimi  1 2

. . .1 2

. . . p

j j jq

i i i
T  şeklinde olur. Bir gösterimden diğerine geçiş ise, Temel birinci form 

veya uzay-zaman aralığı veyahut da metrik olarak adlandırılan 

2 ( )k i j

ijds g x dx dx                                                                                                          (3.1) 

ifadesindeki  ijg  metrik katsayıları ve bunun 
ijg (

1( )ij

ijg g  ) ile 
i

jg  gösterimleri aracığıyla, 

mesela, 
. . .

. . . ln

i s i p r mns

j k l k m j prX g g g g X   gibi olur. 

3.1.2. Koordinatsal Tabanda Alan Denklemleri Hesabı İçin Gerekli Malzeme 

 , i

i dx  koordinatsal tabanında Einstein Alan Denklemlerinin (EAD) gösterimlerinden biri, 

tüm indisler kovaryant olarak 

21

2
ij ij ij ij ijG R g R g T                                                                                          (3.2) 

dir. Toplamda 4x4=16 adet denklemden oluşan bu denklem sistemi; metrik tansörün, Ricci 

eğrilik tansörünün ve enerji-momentum tansörünün, sırasıyla, , ,i j j i i j j i i j j ig g R R T T    

simetri özelliklerinden dolayı 10 bağımsız denklemli bir sisteme indirgenir. GRT’ de temel 

hesap, verilmiş bir (3.1) metriği için (3.2) yi hesaplamaktır. Bunun için izlenen standart yolun 

aşamalarını kısaca belirtelim. Önce,  

1
( )

2

k kl

ij i kj j ik k ijg g g g                                                                                         (3.3) 

bağıntısı aracılığıyla Christoffel sembolleri hesaplanır. Bunlar 4x4x4= 64 adet olmakla birlikte, 

k k

i j j i    simetri özelliğinden dolayı ancak 40 ı bağımsızdır. İkinci adım olarak, 

l l l m l m l

ik j k i j j i k i j mk ik jmR                                                                                (3.4) 

ifadesinden Riemann eğrilik tansörü hesaplanır ve buradan da iz alarak, ijR  Ricci eğrilik tansörü 

ile R  izi 
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k l k

i j l i k j i k jR g R R     ,     
i j j

i j jR g R R                                                                    (3.5) 

şeklinde bulunur. i jR  Ricci eğrilik tansörüne, istenirse, (3.4) e doğrudan doğruya l k  büzme 

işlemini uygulayarak da elde edilebilecek 

k k m k m k

i j k i j j i k i j mk ik jmR                                                                               (3.6) 

ifadesinden de varılabilir. Toplam 4x4x4x4=256 bileşene sahip 
m

jk lR  Riemann eğrilik 

tansörünün, ya da bunun 
m

i j k l im j k lR g R  gösteriminin,  

, , , 0i i i

i j k l k l i j i j k l j i k l i j k l i j l k j k l k l j l j kR R R R R R R R R                                     (3.7) 

simetri özellikleri nedeniyle, yalnızca 40 bağımsız bileşeni bulunmaktadır. i jR  Ricci eğrilik 

tansörünün ise 4x4=16 bileşeninden yalnızca 10 u, i j j iR R  den ötürü, bağımsızdır. Yukarıdaki 

bilgilendirmelere ek olarak bir de, kovaryant türev ifadesinin: bir skaler fonksiyon, bir vektör 

ve bir 2-tansör için 

, ,

,

i i i j j

s s s s sj s i s i si j

ij ij i kj j ik k k

s s sk sk s ij s ij si kj sj ik

i i i k k i

s j s j sk j sj k

X X X X X X

X X X X X X X X

X X X X

           

         

    

                         (3.8) 

olduklarını kaydedelim. Ve ayrıca da Gauss-Bonnet eğrilik invaryantının 

24ijkl ij

ijkl ijG R R R R R                                                                                                 (3.9) 

şeklindeki tanımını verelim.  

3.1.3. Koordinatsal Olmayan Taban: Tetrad Tabanı 

 , i

i dx  koordinatsal tabanı, metriğin grup simetrileri gibi özelliklerini yansıtmakta yetersiz 

kaldığından genel tabanlar tanımlama yoluna gidilmiştir. Bilindiği üzere, 4-boyutlu uzay-

zaman için 4 adet lineer bağımsız herhangi 4 adet vektör, bir taban olarak seçilebilir. Genel ya 

da tetrad tabanı denilecek bu  ae tabanının ae  ( , ,... 0,1, 2,3)a b   vektörleri, koordinatsal taban 
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vektörlerinin lineer kombinasyonu olarak 
i

a a ie e   şeklinde alınabilir. Burada  
i

ae  

‘katsayıları’,  genel olarak koordinatların fonksiyonu olup ae  vektörünün i-ninci bileşenini 

göstermektedir. ae  ların düalleri ise  ( )a a

b be e   düalite bağıntısı aracılığıyla 
a a i

ie e dx  olarak 

tanımlanırlar ve  ae ya, diferansiyel 1-form tabanı denir.  Burada 
i

ae  ve 
a

ie  matrisleri, 

( )i i

j jdx    den ötürü 
i a i

a j je e  ( veya 
i b a

a i be e  ) bağıntılarını sağlar, yani, 

det( ) 0 det( ) 0i a

a ie ve e   olup birbirlerinin ters matrisleridir. Bir tansörün  , i

i dx ve , a

ae e  

tabanlarındaki koordinatsal ile tetrad bileşenleri arasındaki geçişler 

... ...

... ...... ...c i j c k

ab a b k ijX e e e X            
... ...

... ...... ...k a b k c

ij i j c abX e e e X                                 (3.10) 

uyarınca olurlar. Özel olarak, metrik tansörün tetrad bileşenleri 

i j

ab a b ijg e e g   ,   
ab a b ij

i jg e e g   ,   
b i b j

a a j ig e e g                                                       (3.11) 

dir ve tetrad indislerini indirme ve kaldırmalar bu , ,ab b

ab ag g g  aracılığıyla olur. Koordinatsal 

tabanda yazılmış olan (3.2) deki Einstein alan denklemleri  , a

ae e tetrad tabanında  

21

2
ab ab ab ab abG R g R g T                                                                                  (3.12) 

şeklinde ifade edilirler. 

3.1.4. Ortonormal Tetrad Tabanında Alan Denklemleri Hesabı İçin Gerekli Malzeme  

 ae  taban vektörlerinin birbirlerine dik alınması durumunda, metriğin tetrad bileşenlerini 

tanımlayan .a b abe e g  bağıntısı, ( 1, 1, 1, 1)ab köş       olmak üzere 

0 0 0. . 1 , . 0 , .a b abe e e e e e e e                                             (3.13) 

bağıntılarına indirgenir. Bu, taban 1-formları diliyle (3.1) deki uzay-zaman aralığının, 

Minkowski’sel  

2 0 2 1 2 2 2 3 2( ) ( ) ( ) ( )a b

abds e e e e e e                                                                    (3.14) 
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şeklinde alınacağı anlamına gelir.  , a

ae e  nın ortonormal (dik) bir çatı olarak seçimi, genel bir 

tetrad tabanı için yazılmış bağıntıları hatırı sayılır ölçüde sadeleştirir. Bir başka sadeleştirmeyi 

ise; tetrad çatısının zamansal taban vektörü 0e  ın, akışkanın 4-lü hız vektörü u ya paralel 

seçilmesi oluşturur. Bu takdirde,  , a

ae e  çatısına eşhareketli çatı denir. 0e  u t   alınması, 4-

lü hız vektörünün tetrad bileşenlerinin 

0(1 ,0 , 0, 0)a au       ve     
0( 1 ,0 , 0, 0)a au                                                              (3.15) 

olması anlamına geldiğinden, buradan, birazdan değineceğimiz  ab ab a bh u u    ile tanımlı dik 

izdüşürme tansörünün tetrad bileşenlerinin 

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ab

abh h

 
 
  
 
 
 

                                                                                            (3.16) 

şeklinde basitleşeceği kolayca görülür. 

Şimdi, tetrad çatısına özgü bazı özelliklere kısaca değinelim. Koordinatsal teğet taban 

vektörlerinin komütatörlerinin [ , ] 0i j i j j i         olmasına karşın, tetrad taban vektörleri 

için [ , ] c

a b a b b a ab ce e e e e e e    dir. 
c c

ab ba    anti simetri özelliği taşıyan 
c

ab  lara 

komütasyon fonksiyonları denilmektedir. Söz konusu komütatör bağıntısından hareketle 

bunların 

( )c i j i j c

ab a b b a i je e e e e                                                                                                    (3.17) 

bağıntısıyla hesaplanabileceğini görmek kolaydır. Öte yandan, koordinatsal tabandaki 

Christoffel sembollerinin tetrad tabanındaki karşılıkları ise, yine aynı sembol ile gösterilen, 

fakat 
c c c

ab ba ab      bağıntısından dolayı artık alt indislerine göre simetrik olmayan 
c

ab  

büyüklükleridir. Bunlara, Ricci dönme katsayıları denilmekte olup, tetrad çatısının, özel olarak, 

ortonormal olması halinde, 

1
( )

2

c c cd f cd f

ab ab af bd bf ad                                                                                 (3.18) 
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ifadesiyle verilirler. (3.4-3.6) ve (3.9) daki: Riemann ve Ricci eğrilik tansörleriyle Ricci skaleri 

ve Gauss-Bonnet terimi için ortonormal tetrad çatısındaki ifadeler ise, sırasıyla 

a a a e a e a e a

bcd c bd d cb db ce cb de cd ebR e e                                                              (3.19) 

c c d c d c

ab c ab b ca ba cd cb daR e e                                                                            (3.20) 

2, 4ab abcd ab

ab abcd abR R G R R R R R                                                             (3.21) 

dir ve Riemann tansörü için (3.7) de verilen simetri özellikleri tetrad bileşenleri için de 

geçerlidir. (3.8) deki kovaryant türevlerin tetrad karşılıkları ise,   lar Ricci dönme katsayıları 

olmak üzere, 

, ,

,

a a a b b

f f f f fb f a f a fa b

ab ab a cb b ac c c

f f fc fc f ab f ab fa cb fb ac

a a a c c a

f b f b fc b fb c

e X e X X X e X X

X e X X X X e X X X

X e X X X

        

       

   

                (3.22) 

dir. Öte yandan, aşağıda tanımlarını vereceğimiz, akışkanın: ab  genişleme tansörü,   

genişleme skaleri ve de ab  makaslama tansörünün komütasyon fonksiyonları cinsinden 

ifadeleri de [3,32,33] şöyle olur: 

  0 0

1
( )

2

 

          , 
0



     ,  0 0 0

1 1
( )

2 3

  

                           (3.23) 

3.1.5. Uzay-Zamanın 1+3 Kovaryant Ayrışım Yöntemi  

Bir uzay-zamanda, u ile gösterilecek bir ayrıcalıklı vektörün bulunması durumunda, bu uzay- 

zamandaki geometrik ve dinamik büyüklükler yeni bir yapı çerçevesinde ele alınabilir. 

Kozmoloji kapsamında, evreni dolduran madde-enerji akışkanına, ya da onunla birlikte hareket 

eden bir gözlemciye bağlanan 4-lü hız vektörünün böyle bir ayrıcalıklı vektör rolünü oynadığı 

düşünülebilir. Bu takdirde 

1a

au u                                                                                                                        (3.24) 

uyarınca normlanmış bu zamansal u vektörü aracılığıyla  

ab a bU u u     ve     ab a b abh u u g                                                                               (3.25) 

şeklinde  ‘ izdüşüm operatörleri’ denilecek iki tansör tanımlanabilir. Birincisi, tansörleri u ya 

paralel; ikincisi ise, u ya dik olarak, yani, gözlemcinin u ya dik anlık durgunluk sistemine (3-
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boyutlu uzaysal hiperyüzeyler) iz düşürür. Dik izdüşürme tansörü denilen abh  , tanımından 

dolayı 

, 0 , 3b a

ab ba ab ah h h u h                                                                               (3.26) 

özeliklerini sağlar. Bu iki izdüşürme tansörü kullanılarak herhangi bir tansörün ya da tansörel 

bağıntının zamansal ve uzaysal kısımlarının tesisine 1+3 kovaryant (gözlemciden bağımsız 

anlamında)  ayrışım yöntemi denilmektedir. Ayrıntılarına hiç girmeyip, sadece, Tez’imizde 

kullanacağımız akışkanın kinematik ve dinamik özelliklerine aşağıda kısaca değinelim. 

Madde akışkanına bağlanan 4-lü hız vektörünün kovaryant türevinin ayrışımı  

a b a b ab abu u u                                                                                                       (3.27) 

şeklindedir. Burada: u  nun zamana göre türevi olan bu  bileşenine ivme, ab  ye genişleme 

tansörü ve ab  ye de dönme tansörü denir. Göz önüne alacağımız modeller ivmesiz ve de 

dönmesiz olacağından bu   ve ab   nin üzerinde durmayalım. ab ba   ve 0a

abu   

özelliklerini sağlayan, yani, simetrik ve uzaysal olan ab nin 
a

a   şeklinde tanımlı izine 

genişleme skaleri adı verilir. Bu ikisinden hareketle 
1

3
ab ab abh       şeklinde tanımlanan 

tansöre de makaslama tansörü denir ve bu: 0b

abu   (uzaysal), ab ba   (simetrik) ve 

0a

a   (izsiz)    özelliklerini sağlar. Bu tansör, hacim değişmeksizin genişlemedeki şekil 

deformasyonunu (mesela kürenin elipsoyide dönüşmesi gibi) tasvir eder. Bu tansöre,  

2 1
0

2

ab

ab     bağıntısı aracılığıyla makaslama skaleri denilen bir de skaler büyüklük 

bağlanabilmektedir. 

Şimdi, ikinci bir bilgilendirme de akışkanın dinamik büyüklükleri hakkında olacaktır. u hızıyla 

hareket eden bir gözlemcinın akışkana bağlayabileceği enerji-momentum tansörünün ifadesi 

ab a b ab a b b a abT u u ph q u q u                                                                                (3.28) 
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şeklinde olup, burada , , a abp q ve   dinamik değişkenlerine, sırasıyla, madde-enerji 

yoğunluğu, eşyönlü basınç, ısı akısı vektörü ve eşyönsüz basınç tansörü denir. Bunlar, 

gözlemciye göre ölçülmüş büyüklükler olup, (3.24-3.26 ) bağıntıları kullanılarak kolayca tesis 

edileceği üzere,  aşağıdaki gibi tanımlanmışlardır: 

( )

1

3

1

3

a b

ab

ab

ab

b c

a a bc

c d cd

ab ab a b cd ab cd

u u T

p h T

q h u T

T h h T h h T



  





 

  

                                                                            (3.29) 

Burada; yuvarlak parantezler, bir tansörün simetrik kısmını; açılı olanlar ise, yukarıda 

tanımlandığı gibi, izdüşürülmüş izsiz simetrik kısmını göstermektedir. Tanımlarından 

0a

aq u     ve   0b

abu    ( yani, her ikisi de uzaysal)                                             (3.30.a) 

ab ba    ve    0ab         (yani, simetrik ve izsiz)                                                    (3.30.b) 

oldukları anlaşılmaktadır. 

Bu bağlamda şu iki noktaya dikkat çekmek yerinde olacaktır: Birincisi, (3.28) deki enerji-

momentum tansörü, hiç bir şekilde akışkanın fiziği hakkında bir bilgi sunmamaktadır. Sadece 

dinamik değişkenler arasındaki birtakım bağıntılar verir. Bunlara hal denklemi adı verilir. 

Mesela, hal denklemi. 0a abq    ise, bu taktirde (3.28), 

ab a b abT u u ph                                                                                                         (3.31) 

ifadesine indirgenir ki, buna mükemmel (veya ideal) akışkan denir. Eşyönlü basınç ile maddde- 

enerji yoğunluğu arasında   ( )p p   şeklindeki bir bağıntıya ise barotropik hal denklemi ve 

bu bağıntının da w Sabit  olmak üzere p w  şeklinde olanına da lineer barotropik hal 

denklemi denir. w  nun değişim aralığı 1 1w     dir.  Kuvvetli enerji koşulu ( 3 0p   ) 

ihlal edilmeyecek şekilde w  nun alacağı değerler aralığı  [ 1/ 3; 1]   dir. Özel olarak 1w    ve 

1/ 3w   değerlerine katı akışkan ve ışınım (rölativitist gaz veya radyasyon) akışkanı adı 

verilmektedir. 0w   durumuna ise basınçsız akışkan (etkileşimsiz madde veya toz) 



25 

 

 

 

denilmektedir. 0w   durumu negatif basınçlı bir akışkana; 1/ 3w    durumu ise aşırı negatif 

basınçlı bir akışkana karşılık gelmektedir. Ancak, bilinen standart madde- enerji türleri arasında 

bu sonuncu duruma uyan bir madde türü bulunmamaktadır. Evrenin günümüzdeki güncel 

ivmeli genişlemesini açıklamak için varlığı varsayımsal olarak ileri sürülen böyle bir madde 

henüz gözlenebilmiş değildir.  

İkinci nokta ise, (3.28) ve (3.29) deki abT   tansörünün illa da standard maddeye ait olması 

gerekmemektedir. Bu, pekâlâ, kısmen ya da tamamen geometrik kökenli efektif bir enerji-

momentum tansörü de olabilir. Ve bu takdirde (3.28) bağıntıları, bu efektif akışkana bağlanan 

efektif dinamik büyüklüklerin tanımlanmasına olanak sağlayacaktır. Nitekim 

( , )f R G gravite  de ortaya çıkan ekstra geometrik terimler topluluğunun yorumu da bu 

yaklaşıma dayandırılacaktır. 

3.1.6. Homojen Kozmolojik Modeller  

Yerel bir  ix -koordinat sisteminin  , i

i dx  koordinatsal tabanında yazılmış (3.1) ifadesi, bir 

uzay-zaman için en genel metrik ifadesidir. Ancak, böyle genel bir metrik için Einstein alan 

denklemlerinden bilinmeyen bağımsız 10 adet ( )k

ijg x  metrik fonksiyonunu çözmek neredeyse 

olanaksızdır. Bu yüzden, eldeki problemin fiziğine ve geometrisine uygun birtakım 

basitleştirici varsayımlarda bulunup, hem bilinmeyen sayısını ve hem de diferansiyel denklem 

sisteminin karmaşıklığını azaltmak yoluna gidilmektedir. Uzayca homojen modeller, bu türden 

matematiksel kolaylıklar bakımından en basit modellerdir. Her ne kadar bunlar, (3.1) ile tasvir 

edilen en genel uzay-zamanların çok özel bir sınıfını oluşturmaktaysalar da, kozmolojideki 

uygulamalar bakımından yeterince kapsamlı modellerdir. Bu Tez’de, ( , )f R G gravite  

teorisinin kozmolojisi için, homojen modeller arasından, yalnızca Robertson-Walker (RW), 

Bianchi-Tip I ve Bianchi-Tip III metrikleri konu edilecektir.  

3.1.6.1. Uzayca Homojen ve Eşyönlü Model: RW-Metriği  

Kozmoloji kapsamında en iyi bilinen ve en çok kullanılan örnek, evrenin geniş ölçeklerdeki 

geometrisi hakkında yapılan ‘uzayca homojen ve eşyönlü olduğu’ varsayımıdır. Bu takdirde  

(3.1) metriği yerel bir  ( , , , )t r     koordinat sisteminde  
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2 2 2 2 2 2 2 2 2( ) ( )( sin ]kds c dt a t dr f r d d                                                                (3.32) 

şekline indirgenmiş olur. Buna Robertson-Walker (RW) metriği denir. RW metriğinin en az 

dört farklı yazılışından biri olan bu ‘trigonometrik’ gösterimde ( )a t  ye ölçek çarpanı denir ve 

bu, sabit-zamanlı 3-boyutlu uzaysal kesitlerin zamana bağlı değişimlerinin bir ölçüsünü verir. 

Söz konusu 3-uzayların topolojisi ise,  bunların sabit eğrilikli olduğunu ifade eden ve uzaysal 

eğrilik indeksi denilen boyutsuz bir k  parametresiyle tasvir edilir. Buna göre, 

1, 0 1k k ve k      için 3-boyutlu uzayın geometrisinin: açık (hiperbolik), düz (Öklidsel) 

ve kapalı (eliptik) olduğu söylenir. ( )kf r  fonksiyonu ise 

sin 1 için

( ) 0 için

sinh 1 için

k

r k

f r r k

r k

 


 
  

                                                                                   (3.33) 

şeklinde tanımlanmıştır. Hemen anlaşılacağı üzere, bu metrikte ( )a t  gibi tek bir bilinmeyen 

metrik fonksiyon bulunmaktadır. Bunun, ,r ve   ye değil de yalnızca t ye bağlı olması 

homojenliği; her üç ,r ve   -doğrultuları için ortak olması da eşyönlülüğü ifade etmektedir. 

Söz konusu varsayımın sonucunda, GRT’nin (3.2) deki alan denklemleri, yalnızca t nin 

fonksiyonu olan dinamik büyüklüklerle birlikte, t ye göre adi türevli iki bağımsız denkleme 

indirgenmiş olmaktadır. (3.2) metriğinin bir ön çözüm (anzats) olarak kullanımı GRT’nin 

ortaya çıkış yıllarına kadar uzanmaktadır. Ancak, uzayca homojenlik ve eşyönlülük varsayımı 

altında elde edilebilecek yegâne metrik şeklinin bu olduğu çok daha sonraki yıllarda (1933’de)  

Robertson ve Walker tarafından, Grup Teorisi kullanılarak matematiksel bir kesinlikle 

gösterilmiştir. Grup Teorisi diliyle bu metrik, 6-parametreli  
6G  eşölçüm (izometri) simetri 

grubu altında invaryant kalan maksimum simetrik bir uzay-zamanı temsil etmektedir. 

3.1.6.2. Uzayca Homojen ve Eşyönsüz Modeller: Bianchi-Tip Metrikler 

Uzayca homojen modeller, Grup Teorisi diliyle söylenildiğinde, r-parametreli sürekli bir 

( 3)rG r   hareket grubu (izometri, eşölçüm) altında invaryant kalan uzay cinsinden 

hiperyüzeylere sahip modellerdir (geniş bilgi için bkz.[3,32,33]). Homojen ve eşyönlü olan RW 

metriği, 6-parametreli  
6G  eşölçüm (izometri) grubu altında invaryant kalan maksimum 

simetrik bir uzay-zamanı temsil etmektedir. Eğer söz konusu varsayım; homojen olma koşulu 
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tutulup da eşyönlülük varsayımı terk edilerek gevşetilirse, bu takdirde uzayca homojen, fakat 

eşyönsüz modeller elde edilir. Bu özellikteki 3-uzaylar 1898’de Bianchi tarafından incelenmiş 

ve Bianchi-Tip I...IX şeklinde 9 tip olarak sınıflandırılmıştır. Bunların metrikleri, uzaysal 3-

uzaylara basitçe transitif olarak etkiyen 3-parametreli bir 
3G ( r =3 ), eşölçüm grubu altında, 

invaryant kalmaktadır. Uzayca homojen olup da Bianchi-Tip modeler sınıfına ait olmayan tek 

bir model daha bulunmaktadır; o da, Kantowski-Sachs modeli denilen modeldir. Bu da, basitçe 

transitif alt-grubu olmayan bir 
4G  simetri grubu altında invaryant kalan bir metriği tasvir eder. 

Uzayca homojen modeller, metrik yapısı bakımından,  E
  zamandan bağımsız 3 adet 1-form 

dan oluşan taban (triad) olmak üzere 

2 2 2 ( )ds c dt t E E 

                                                                                            (3.34) 

biçimindedirler (indis kabulünün §3.1.1. de söylenildiği gibi: , , ,... 1, 2,3     ve 

, , ,... 1, 2,3     olduğunu hatırlatalım). Burada  E  lar,  , i

i dx   tabanı cinsinden  

( ) i

iE E x dx                                                                                                             (3.35) 

biçiminde tanımlanmışlardır. Bunların düalleri ise 

( ) ( , )i j j

i i iE E E E E E    

                                                                 (3.36) 

olmak üzere 

( )i

iE E x                                                                                                                (3.37) 

dir. (3.34) ifadesinde ( ) ( )t t      matrisi yalnızca zamanın fonksiyonudur ve simetriden 

dolayı en fazla 6 bileşene sahiptir. Ancak, biz bu matrisi, ( ) , ( ) ( )A t B t ve C t  ölçek çarpanları 

olmak üzere, Literatürde çok sıklıkla kullanıldığı gibi,  

 

2

2

2

( ) 0 0

( ) 0 ( ) 0

0 0 ( )

A t

t B t

C t



 
 

   
 
 

                                                                                 (3.38) 

biçiminde köşegensel alacağız. Bu takdirde, (3.34) metriği 
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2 2 2 2 1 2 2 2 2 2 3 2( )( ) ( )( ) ( )( )ds c dt A t E B t E C t E                                                       (3.39) 

biçiminde ifade edilir. Böyle metrikli modellere dönmesiz ortogonal modeller denir. İki ölçek 

çarpanının birbirlerine eşit olması durumu da Yerel Dönmesel Simetrik (YDS) olarak 

anılmaktadır. Ölçek çarpanlarından ikisinin orantılı olması durumuna ise ‘hemen hemen Yerel 

Dönmesel Simetrik’ denilecektir. 

Bianchi-Tip I için zamandan bağımsız invaryant taban 1-formları: 
1 2 3, ,E dx E dy E dz     

ve Bianchi-Tip III için de: 
1 2 3, ,zE dx E e dy E dz    şeklinde seçilirse, 

1 2 3, ,x x y x z x    koordinatlarında metriklerin gösterimleri, sırasıyla,  

2 2 2 2 2 2 2 2( ) ( ) ( )ds dt A t dx B t dy C t dz                                                                      (3.40) 

ve  

2 2 2 2 2 2 2 2 2( ) ( ) ( )zds dt A t dx B t e dy C t dz                                                                (3.41) 

olur. Burada  , 0   olan reel bir parametredir. 0   için (3.41) in  (3.40)  a indirgendiği 

göze çarpmaktadır. Ancak, bu durum, hiçbir şekilde Bianchi-Tip I modelinin Bianchi-Tip III 

modelinin bir özel hali olduğu anlamı taşımamaktadır; zira   parametresi için 0   den 0   

durumuna geçiş, aynı zamanda uzay-zamanın topolojisini de değiştirmektedir. Bu bağlamda, 

(3.41) metriğinde 0   ve ( ) ( ) ( )A t B t C t  seçiminin de uzayca düz RW modelini verdiğini; 

fakat bunun, söz konusu modelin Bianchi-Tip III sınıfına ait olduğu anlamına gelmediğini 

vurgulayalım.  

Şimdi; (3.33), (3.40) ve (3.41) metrikleri için, alan denklemlerinin hesabında gerekecek: 

ortonormal taban ((3.13),(3.14) ve düalite bağıntısından), komütasyon fonksiyonları ((3.17) 

den) ile Ricci dönme katsayıları ((3.18) den), genişleme ile makaslama tansörleri ve skalerleri 

((3.23) den, Riemann ile Ricci tansörleri ((3.19) ile (3.20) den)  ile Einstein tansörü ((3.12) den) 

ve nihayet, Ricci skaleri ile Gauss-Bonnet terimi ((3.21) den)  gibi kinematik ve geometrik 

büyüklüklerin ifadelerini verelim. Bunlar aşağıda Bianchi-Tip III metriği için gösterilmiştir. 

RW ve Bianchi-Tip I metrikleri için olanlar ise sırasıyla Ek A ve Ek B de yer almaktadır. 

BIANCHI-TİP III:          
2 2 2 2 2 2 2 2 2( ) ( ) ( )zds dt A t dx B t e dy C t dz       
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 Ortonormal tetrad , a

ae e tabanı:  

0

1

2

3

( )

( )

( )

z

e dt

e A t dx

e B t e dy

e C t dz











                  

1 0 0 0

0 ( ) 0 0

0 0 ( ) 0

0 0 0 ( )

a

i z

A t
e

B t e

C t



 
 
 
 
 
 

                          (3.42.a) 

0

1

2

3

1

( )

( )

1

( )

t

x

z

y

z

e

e
A t

e
e

B t

e
C t



 

 

 

 

                                    

1 0 0 0

1
0 0 0

( )

0 0 0
( )

1
0 0 0

( )

i z
a

A t

e e

B t

C t



 
 
 
 
 

  
 
 
 
 
 

                               (3.42.b) 

 Komütasyon fonksiyonları ve Ricci dönme katsayıları ((3.17) ve (3.18) den): 

0 1

2 3

0 0 0
0 0 0 0

0 0 0 0
                            0 0 0
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 Genişleme Tansörü, genişleme skaleri ve makaslama tansörü: 
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A B C

A B C
                                                                                                                 (3.44.b) 
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                                                                         (3.44.c)
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                                                   (3.44.d) 

 Riemann ve Ricci eğrilik tansörleri, Rici eğrilik skaleri, Gauss-Bonnet terimi 

(Sıfırdan  farklı bileşenler yazılmıştır): 
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3.2. f(R,G)-GRAVİTE ALAN DENKLEMLERİNİ HESAPLAMA YÖNTEMLERİ  

3.2.1. Efektif Enerji-Momentum Tansörleri  

Şimdi, (2.12) de yazılmış ( , )f R G -gravite’nin alan denklemlerini aşağıda tekrar yazalım: 



32 

 

 

 

2

1 1
4

2 2

4 2 4 4 4

cd

R ab ab ab G a b R ab R ab c d G

c c cd m

ab G a b G a c b G b c a G a b c d G ab

f R g f g Gf f g f g R f

G f R f R f R f R f T

       

             

         (3.46) 

Bunun izinin, ( , )f R G fonksiyonunu verecek şekilde düzenlenmiş ifadesinin 

21
( 2 3 2 4 )

2

m cd

R G R G c d Gf T Rf Gf f R f R f                                              (3.47) 

olduğunu kaydedelim. Bu ifadelerde, 
m

abT , evreni dolduran standard madde-enerji akışkanına 

bağlanan enerji-momentum tansörüdür ve (3.28) deki format gibi, 4-lü hız vektörüne göre 

ölçülmüş akışkanın dinamik büyüklüklerinden oluşmuştur. Standard madde-enerji olduğunu 

vurgulamak için (3.28) i , “ m ”  üst-indisi kullanarak  

m m m m m m

ab a b ab a b b a abT u u p h q u q u                                                                      (3.48) 

şeklinde yazalım. Eşhareketli bir ortonormal çatıda; (3.15), (3.16), (3. 24), (3.26) ve (3.30) 

bağıntılarını kullanarak ve 0 0 00 , 0m m m

a aq     , 
m m

    11 22 33 0m m m     olduğuna da 

dikkat ederek, bunun ve 
m ab m

abT T  ile tanımlı izinin 
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m m m m
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 
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  
    

       ,     3m m mT p                        (3.49) 

şekline indirgeneceğini görmek kolaydır. Mükemmel akışkan için ise bu, daha da sadeleşerek 

0 0 0

0 0 0

0 0 0

0 0 0

m

m

m

ab m

m

p
T

p

p

 
 
 
 
  
 

   ,    3m m mT p                                                           (3.50) 

olur. Verilmiş bir metrik alan denklemlerinin hesaplanma yöntemlerini aşağıda sunuyoruz.  

(3.46) yı, Einstein tansörünü ortaya çıkaracak şekilde düzenleyelim: bunu,  
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                                    (3.51) 

şeklinde yazıp, 

.
m

m ef ab
ab

R

T
T

f
                                                                                                                      (3.52) 

ve 
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1
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2
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ile de iki efektif enerji-momentum tansörü tanımlarsak ve ayrıca da bunların toplamını 

. .t ef m ef RG

ab ab abT T T                                                                                                     (3.54) 

ile gösterirsek, sonuçta  

2 .t ef

ab abG T                                                                                                                   (3.55) 

elde edilmiş olur. (3.52) ile tanımlanan 
.m ef

abT  ye efektif madde-enerji-momentum tansörü 

denir. Tamamen geometrik terimlerden oluşan 
RG

abT  ise, efektif bir akışkanın enerji-momentum 

tansörüne karşılık gelmektedir. Toplam efektif enerji-momentum tansörü olan 
.t ef

abT  de, bu 

ikisinin toplamı olup, standard madde ile geometrinin bir çeşit etkileşiminin ifadesini 

yansıtmaktadır. Öte yandan, söz konusu 4-tip enerji-momentum tansörünün  

. .0 0 , 0 , 0 , 0a a t ef a m ef a RG a m

ab ab ab ab abG T T T T                             (3.56) 

korunum kanunlarına uydukları da gösterilebilir[3,30,31]. Alan denklemlerinin yukarıdaki ele 

alınış tarzına efektif akışkan yaklaşımı denir. 
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Şimdi; standard maddenin enerji-momentum tansörünün (3.49) daki genel ifadesini alarak ve 

ab abg   ortonormallik koşulunu da göz önünde bulundurarak, (3.55) deki efektif Einstein 

denklemlerini bileşenleri cinsinden açıkça yazalım. Bunu en azından iki türlü yapmak mümkün 

görünmektedir. 

3.2.2. Alan Denklemleri Bileşenlerinin Doğrudan Doğruya Yazılması (Birinci Yöntem) 

Şimdi; standard maddenin enerji-momentum tansörünün (3.49) daki genel ifadesini alarak ve 

(3.52 – 3.54) bağıntılarını da dikkate alarak, ab abg  ortonormallik koşulu altında, (3.55) deki 

efektif Einstein denklemlerini, bileşenleri cinsinden açıkça yazalım. 
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3.2.3. 1+3 Kovaryant Ayrışım Uygulamak (İkinci Yöntem) 

Yukarıdaki amaç için bir diğer yöntem ise, alan denklemlerinin eşhareketli ortonormal tetrad  

çatısında 1+3 ayrışımını yapmaktır. Bu yöntem; (3.55) denkleminin her iki yanını, sırasıyla, 

herhangi bir abT  tansörü için geçerli olan (3.29) bağıntılarında yer alan: 
a bu u , 

1

3

abh , 
b c

ah u   

ve  ( )

1

3

c d cd

a b cd abh h T h h  operatörleriyle çarpmaya dayanır. 
au  ve abh  nin, eşhareketli 

ortonormal tetrad çatısını tanımlayan, sırasıyla, (3.15) ve (3.16) bağıntıları kullanıldığında, 

mesela, 

2 .a b a b t ef

ab abu u G u u T         
0 0 2 .

00

a b t ef

abu u G u u T        
2 .

00

t efG    

elde edilir. Burada: 
.t ef , efektif toplam madde-enerji yoğunluğu olup, (3.29) daki ilk bağıntı 

ile tanımlanmıştır. 
.t ef nin; enerji momentum tansörlerinin bileşenleri cinsinden ve bunların 

da, (3.57.a) göz önüne alındığında, açılımları cinsinden             
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olarak verildiği kolayca anlaşılmaktadır. Benzer şekilde, (3.55) denkleminin her iki yanının  
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verir. Burada: 
.t efp , efektif toplam basınç olup, (3.29) daki ikinci bağıntı ile tanımlanmıştır. 

.t efp  nin; enerji momentum tansörlerinin bileşenleri cinsinden ve bunların da, (3.57.a) göz 

önüne alındığında, açılımları cinsinden 

. . . .
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olarak verildiği kolayca anlaşılmaktadır (yukarıdaki bağıntıda 11 22 33 0      özelliği 

kullanılmıştır). Yine benzer şekilde, geri kalan diğer iki operatör ile çarpımlar sonucunda, 
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toplam efektif ısı akısı 
.t ef

aq  ile toplam efektif eşyönsüz basınç tansörü 
.t ef

a için benzer 

bağıntılar elde edilebilir. Bunları, yukarıdakilerle birlikte aşağıda topluca vermekteyiz:          

2 .

00

t efG                                 
. . .

00 00 00

t ef t ef m ef RGT T T                                      (3.58) 

 

2 . . . . .

11 22 33 11 22 33

11 22 33

1
( )

3

1
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3

t ef t ef m ef m ef m ef

RG RG RG

G G G p p T T T

T T T

      

  

                          (3.59) 

2 . . . .

10 1 1 10 10 10( )t ef t ef t ef m ef RGG q q T T T                                (3.60.a) 

2 . . . .

20 2 2 20 20 20( )t ef t ef t ef m ef RGG q q T T T                                (3.60.b) 

2 . . . .

30 3 3 30 30 30( )t ef t ef t ef m ef RGG q q T T T                                 (3.60.c) 

2 . . . . .
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. . .
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                  (3.61.b) 

2 . . . . .
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. . .
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1 1
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3 3

1
( 2 )

3

1
( 2 )

3

t ef t ef t ef t ef t ef
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                       (3.61.c) 

2 . . . .

12 12 12 12 12 12

t ef t ef t ef m ef RGG T T T                                       (3.61.d) 
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2 . . . .

23 23 23 23 23 23

t ef t ef t ef m ef RGG T T T                                     (3.61.e) 

2 . . . .

31 31 32 31 31 31

t ef t ef t ef m ef RGG T T T                                       (3.61.f) 

Bulgular Bölümü’nde, yukarıdaki her iki formalizmin de Bianchi-Tip III, Bianchi-Tip I 

uygulanması ele alınacaktır. 
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4. BULGULAR 

4.1. BİANCHİ-TİP III METRİĞİ İÇİN F(R,G)-GRAVİTE ALAN DENKLEMLERİ 

Bu Bölüm’ de, önce Bianchi-Tip III modelini ele alıyoruz. § 3.2.2. ve § 3.2.3.deki yöntemlerle 

bileşenler cinsinden yazılan alan denklemleri, (3.41) metriği için (3.42)-(3.45) de verilen 

kinematik ve geometrik özellikler ile Ek C deki bağıntılar kullanılarak, ölçek çarpanları ile  

( , )f R G  fonksiyonunun  zamansal  türevleri cinsinden açık bir şekilde ifade edilecektir. Ancak, 

standard maddeye bağlanan enerji-momentum tansörünün (3.49) ile verilmiş genel şekli, 

belirlenmesi gereken 10 adet bilinmeyen dinamik değişken içermektedir. Bu zorluğu ortadan 

kaldırmak için, nispeten basit bir çalışma hipotezi olarak, standard maddenin enerji-momentum 

tansörünü (3.50) deki gibi mükemmel akışkanınki olarak kısıtlayacağız. Ancak, böyle bir 

kısıtlamanın alan denklemlerinde herhangi bir çelişkiye ya da tutarsızlığa yol açıp açmayacağı, 

incelenmesi gereken bir konu oluşturacaktır ve bu da, tutarlılık koşulları olarak öncelikli olarak 

ele alınacaktır [34,35]. 

4.1.1. Birinci Yönteme Göre f(R,G) Alan Denklemleri 

Mükemmel akışkan için hal denklemi 0mq   ve 0m

   şeklinde alındığında, yukarıda 

söylenen yol izlenerek § 3.2.2. deki alan denklemlerini aşağıdaki şekillere indirgenebilecekleri 

kolayca görülebilir. 
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             (4.1) 
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           (4.2.a) 
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                       (4.2.b) 
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 
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   
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                                                                       (4.3.a,b,c) 

12

23

31

0 0

0 0

0 0

G

G

G

 

 

 

                                                                                                               (4.3.d,e,f) 

Bu denklemler, bu durumlarıyla ele alındığında, amacımıza uygun kullanıma elverişli 

bulunmamaktadır. Bunlardan, eğer varsa, hangilerinin bağımsız denklem olduğu ilk bakışta 

anlaşılamamaktadır. Öte yandan, mesela (4.2.c) denklemi (
33G -denklemi) göz önüne 

alındığında, burada ( )C t  ölçek çarpanının yer almadığı derhal göze çarpmaktadır. Benzer 

şekilde 
11G -denkleminde ( )A t ; 

22G -denkleminde de ( )B t  ölçek çarpanı bulunmamaktadır. Bu 

durum, döngüsel simetriye sahip söz konusu denklemlerin bir tür kombinasyonlarını almak 

gerekliliğini düşündürtmektedir. Ancak bu, biraz da deneme-yanılma yöntemine dayalı bir iş 

olduğundan biz bu işe girişmeyeceğiz. Kaldı ki, aşağıda uygulayacağımız  § 3.2.3 deki 1+3 

kovaryant ayrışım yöntemi bu işi kendiliğinden gerçekleştirecektir. 

4.1.2. İkinci Yönteme Göre f(R,G) Alan Denklemleri 

(3.58)-(3.61) denklemlerinin; ölçek çarpanları ile ( , )f R G fonksiyonunun türevleri cinsinden 

yazılımları, (3.42)-(3.45) bağıntıları, Ek C ve de (3.50) olarak belirtilen girdiler yine 
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kullanılarak aşağıdaki gibi bulunur. (3.58) ve (3.59) denklemlerinin karşılıkları, sırasıyla .t ef

ve .t efp  ile etiketlendireceğimiz şu denklemler olurlar: 

 
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(3.60) denklemleri ise, yalnızca 
30 0G  ve 

.

3 30 0t ef RGq q    olduğundan, özdeş olarak sıfır 

olmayan tek bir denklem verir.  

.

1

.

2

.

3

: 0 0

: 0 0

4
: 4 1 0     (4.6.a,b,c)
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(3.61) denklemlerinin karşılıkları da, düzenlendiklerinde, denklemlerin sağ tarafları .t ef

 leri 

göstermek üzere: 

2
.

11 2

1 2 1 2 2 1 1 2
:    

3 3 3 3

4 2 2
                                            

3

t ef

R

R

A B C AB BC CA A B C
f

A B C AB BC CA C f A B C

A B C B C A C A

A B C B C A C A




     
              

     

   
         

   

2

2

4 2 2
                                                                          (4.7.a)

3

G

G

B
f

B

AB BC CA
f

AB BC CA C



  
  

  

  
     

  

 



42 

 

 

 

2
.

22 2

1 2 1 2 1 1 1 2
:    

3 3 3 3

4 2 2
                                            

3

t ef

R

R

A B C AB BC CA A B C
f

A B C AB BC CA C f A B C

A B C B C A C A

A B C B C A C A




     
              

     

   
         

   

2

2

4 2
                                                                            (4.7.b)

3

G

G

B
f

B

AB BC CA
f

AB BC CA C



  
  

  

  
     

  

 

2
.

33 2

1 2 1 2 1 1 1 2
:   

3 3 3 3

4 2 2
                                          

3

t ef

R

R

A B C AB BC CA A B C
f

A B C AB BC CA C f A B C

A B C B C A C A

A B C B C A C A




     
               

     

   
         

   

2

2

4 2
                                                                         (4.7.c)

3

G

G

B
f

B

AB BC CA
f

AB BC CA C



  
  

  

  
      

  

 

.

12

.

23

.

32

: 0 0

: 0 0

: 0 0

t ef

t ef

t ef













                                                                                                          (4.7.d,e,f) 

olur. Şimdi, (4.7) deki üç denklemden hareketle, taraf tarafa çıkarmalarla aşağıdaki şu 

düzenlenmiş üç yardımcı denklemi oluşturalım ve bunların düzenlenmiş şekillerini de ‘ ’ 

sembolleriyle etiketleyelim: 
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Bianchi-Tip III modeli için (3.45) de yazmış olduğumuz Ricci skaleri ile Gauss-Bonnet 

teriminin ifadelerini, bütünlüğü sağlamak üzere aşağıda tekrarlayalım: 
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Bunları, ilerideki amaçlarımıza uygun olarak 

2

22

R A A B C B C BC

A A B C B C BC C

 
       

 
                                                                 (4.9.b) 

2

28

G A BC A BC CB

A BC C A BC CB

   
      

   
                                                                        (4.10.b) 

şeklinde düzenleyelim. Yine, ilerideki bazı kullanımlarımız için  . .t ef t efp    ve  . .3t ef t efp   

. .3t ef t efp   birleştirmelerini de oluşturalım: 

. .t ef t efp    : 

2

2

2

2 2 2

3 3 3

1 1
                      

3

4
                          +

3

m m

R R

R R

A B C AB BC CA

A B C AB BC CA C

p A B C
f f

f f A B C

A B C B C A C

A B C B C A C






   
         

   

   
       

  

   
      

   

2

2

2

2

9 3

4
                          

3

G

G

A B ABC A
f

A B ABC C A

AB BC CA
f

AB BC CA C





  
    

  

   
      

    

(4.11) 
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. .3t ef t efp    : 

2

2

2

3 1
2 + 3

3
                             +4

       

m m

R G R R

R R

G

A B C p A B C
f Rf Gf f f

A B C f f A B C

A B C B C A C A B ABC A
f

A B C B C A C A B ABC C A






    
            

   

      
            

      

2

2
                      + 4 G

AB BC CA
f

AB BC CA C

    
     

    

(4.12) 

. .3 :   t ef t efp   

 

2
2

2

3
2 2 2

1
                                          2 +3 3

                                          +

m m

R

R G R R

R

A B C AB BC CA p

A B C AB BC CA C f

A B C
f Rf Gf f f

f A B C

 


     
          

   

  
       

  

2

2

2

2

4 3

                                          + 4                          

G

G

A B C B C A C A B ABC A
f

A B C B C A C A B ABC C A

AB BC CA
f

AB BC CA C





      
            

      

   
     

    

            (4.13)

 

Yukarıdaki denklemlerden (4.4) ile (4.5) e, RW-metriğindeki karşılıklarına atfen “Friedmann 

denklemleri” denir; fakat burada, ( , )f R G  gravite için yazılmış olduklarından 

“genelleştirilmiş Friedmann denklemleri” demek daha doğru olacaktır. (4.12) ye ise, 

“Raychaudhuri denklemi” adı verilir. (4.13) ise, (3.50) ile birlikte ele alındığında, (3.47) de 

yazılmış iz denkleminden başka bir şey değildir. Bu denklemlerin: 2 x (4.4) - (4.12) + (3.47) = 

R   şeklindeki birleştirilmesinden (4.9.a) ile verilen Ricci eğrilik skalerini elde etmek 

mümkündür. Şimdi, bir de; mükemmel akışkan olarak alınacak sıradan madde için, (3.56 ) daki 

0b m

abT   korunum denkleminden hareketle elde edilebilecek 

  0m m mA B C
p

A B C
 

 
     
 

                                                                                         (4.14) 

korunum denklemini yazalım. Bunun integrasyonunu şimdiden vermek iyi olacaktır. Sıradan 

maddenin w Sabit  olmak üzere  
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m mp w                                                                                                                       (4.15) 

şeklinde lineer bir barotropik hal denklemine uyduğu varsayımı altında (4.14) denklemi  

 1 0m mA B C
w

A B C
 

 
     

 
                                                                                           (4.16) 

şeklini alır ve bu da 

 ln 1 ln( )md d
w ABC

dt dt
     

yazıldığında, kolayca integre edilerek 

(1 )( )m wABC                                                                                                           (4.17) 

verir. Orantı katsayısını belirlemek üzere; başlangıç koşulu olarak, 
0t t  şimdiki kozmik 

zamanında  , ,m A B ve C  nin şimdiki değerleri 0 0 0 0, ,m A B ve C  ile gösterilirse 

(1 )

0 0 0 0( )m wA B C                                                                                                                  (4.18) 

olur ve dolayısıyla da, sonuçta, korunum denkleminin çözümü için  

(1 )

0

0 0 0

( )

w

m m A B C
t

A B C
 

 

 
  

 
                                                                                               (4.19) 

elde edilir. Bu noktada şuna dikkati çekmek yerinde olacaktır. 0b m

abT   enerji momentum 

tansörünün korunumundan hareketle tesis edilen (4.14) deki korunum denklemi, (4.4) ve (4.5) 

denklemlerinden bağımsız değildir; bir başka deyişle, bu denklemi (4.4) ile (4.5)  

denklemlerinden de elde etmek mümkündür. Nitekim (4.4) denkleminden çekilecek .m ef   

fonksiyonun t  zamanına göre türevi oluşturulup da,  (4.4) ile (4.5) in (4.11) deki toplamının 

A B C

A B C

 
  

 
 ile çarpılmış şekliyle birleştirilirse, uygun düzenlemeler sonucunda (4.14) 

denklemine varılır. Bu işlemi uzunluğu nedeniyle burada göstermiyoruz. Ancak (4.14) ün 
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gerçekten de böyle elde edilebileceği § 4.2.1.1 de ele alınacak özel bir durum çerçevesinde 

açıkça gösterilecektir. 

( , )f R G -gravite’nin Bianchi-Tip III modeli çerçevesinde yazılabilecek tüm denklemleri -

bazıları bağımsız olmasalar da -  yukarıdakilerden ibarettir. Bunlardan hareketle, öncelikli 

amacımız ( , )f R G nin fonksiyonel formunun belirlenmesi olacaktır. Bu “ ( , )f R G modeli 

tesisi” olarak anılacaktır. Sonrasında ise söz konusu modelin evrenimizin günümüzdeki ivmeli 

genişlemesini verip vermediğine bakılacaktır. 

Yukarıdaki denklem ve bağıntılar: üçü bilinmeyen ( )A t , ( )B t , ( )C t  ölçek çarpanı; biri ( )m t

(veya ( )mp t ) fonksiyonu ve diğeri de bilinmeyen ( , )f R G  fonksiyonu olmak üzere toplamda 

beş bilinmeyen içermektedirler. Bunlarda yer alan ( , )f R G fonksiyonunun, argümanlarına göre 

türevlerinin zamansal türevleri için, zincir kuralı kullanılarak kolayca yazılabilecek 

R RR RGf f R f G                                                                                                       (4.20.a) 

G GR GGf f R f G                                                                                                      (4.20.b) 

2 22R RR RG RRG RRR RGGf f R f G f RG f R f G                                                            (4.20.c) 

2 22G GR GG GRG GRR GGGf f R f G f RG f R f G                                                       (4.20.d) 

bağıntıları ve bunlarla birlikte R  ile G  nin (4.9) ve (4.10) daki ifadeleri de dikkate alındığında,  

denklemlerin ölçek çarpanlarına göre dördüncü mertebeden türevli, yüksek dereceli, 

birbirlerine kuple ve aşırı lineer-olmayan (non-lineer) bir mahiyette oldukları derhal anlaşılır. 

Dolayısıyla, analitik çözümler elde etmenin zor ve hatta imkânsız olduğu ve dahası çözümlerin 

var olup olmadığını da peşinen söyleyemeyecek bir durumla karşı karşıya bulunmaktayız. 

Bilinmeyen tüm ölçek çarpanları belirlenmiş ve f  fonksiyonun t zamanı cinsinden ( )f f t  

fonksiyonu bulunmuş olsa bile, (4.9) ve (4.10) bağıntılarından elde edilecek  ( )R R t  ve 

( )G G t  ifadeleri, f  yi, [ ( ), ( )] ( , )f f t R t G f R G   olarak açık bir şekilde tesis etmeye her 

zaman izin veremeye bilmektedir; zira bunun mümkün olabilmesi için muhakkak şekilde 

analitik olarak ( )t t R  (veya ( )t t G ) ters fonksiyonlarının oluşturulması gerektiği aşikârdır. 

Aksi takdirde, söz konusu aşamada ( , )f R G  modelinin tesisi amacında 
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 ( ), ( ), ( )f f t R R t G G t    parametrik gösterimi ile yetinilmek zorunda kalınılacaktır. 

Literatürde; ( , )f R G  denklemlerini nispeten sadeleştirmek için bilinmeyen sayısını azaltmak 

üzere, sıklıkla, B C ( ya da A B  veya A C ) varsayımına dayalı Yerel Dönmesel Simetrik 

(YDS) (Locally Rotationally Symmetric(LRS)) Bianchi-Tip modeller göz önüne alınmaktadır 

[36,37,38,41]. Ölçek çarpanları için GRT’de de pek sıklıkla yapılan bu basitleştirmenin yanı 

sıra, tek bilinmeyene indirgenmiş denklemler elde etmek için ad hoc (amaca yönelik) 

varsayımlardan birini “genişleme skaleriyle makaslama skalerini orantılı almak” 

oluşturmaktadır [36,40,41]. Bir başka varsayım ise, f  fonksiyonu ile bir ölçek çarpanı arasında 

kuvvet kanunu gibi bir takım bağıntılar öne sürmektir [39,40,41,42,43]. Bunların yanı sıra; q  

yavaşlama parametresi, H  Hubble sabiti gibi bir takım kozmolojik parametreler hakkında da  

ad hoc varsayımlar söz konusu olabilmektedir [40,42,43]. Aşağıda, bu tür amaca uygun (ad 

hoc) varsayımlara başlangıçta başvurmak yerine, önce, alan denklemlerinin mükemmel akışkan 

varsayımı ile tutarlılığını incelemeyi ve sonrasında da, ortaya çıkacak kısıtlamalar altında, 

denklem sistemini, gerek sayıca ve gerekse de bilinmeyenler bakımından olabildiğince 

indirgenmiş bir duruma getirmeyi amaçlıyoruz. 

4.1.3. Tutarlılık Koşulları 

Evrenin sıradan madde-enerji içeriğinin yalnızca ( )m t  madde-enerji yoğunluklu ve ( )mp t

basınçlı bir mükemmel akışkan ile tasvir edilmesi ya da başka bir deyişle, akışkanın enerji-

momentum tansöründe hal denklemi olarak 0mq   ve 0m

   ( , ,... 1, 2,3   ) varsayılması, 

alan denklemlerinin 
0G  ve G  bileşenlerinin söz konusu varsayım ile tutarlı olup olmayacağı 

sorununu ortaya çıkarmaktadır. Aşağıda, mükemmel akışkan varsayımı ile tutarlılık anlamında 

bu sorun incelenecektir. 

Şimdi, önce (4.6.c) denklemini ele alalım. 0   için, bu denklemin tutarlılığının sağlanacağı 

durumlar şunlardır: 

 1 1( ) 1 4 0 0        ,  0G

R

fA C B
i ve C k B k sabit

A f C B
                            (4.21) 

1( ) 1 4 0G

R

fA
j C k B ve

A f
                                                                                             (4.22) 



48 

 

 

 

1( ) 1 4 0 0      G

R

fA C B
k ve C k B

A f C B
                                                                (4.23) 

“Birincil koşullar’’ olarak nitelendireceğimiz bu koşulların (4.8) denklemlerine yansımasını ele 

almadan önce, söz konusu denklemleri aşağıdaki gibi düzenleyelim. (4.8.a) yı  

 
2

2

44 4 4
1 1 0G G G GR

R R R R R

f f f ffA B C A B C C C

A B C f A B C f C f C f C f

        
                 

        
 

şeklinde ortak çarpanlara alarak yazar ve 

 

 

4 4 1
4 4

1
                                       4

G GR
R R G G

R R R R

R G

R

f ffC C C
Cf Cf Cf Cf

C f C f C f Cf

d
Cf Cf

Cf dt

      

 

 

olduğuna da dikkat ederek, (4.8.a) için 

   
2

2

41 1
4 4 1 0G

R G R G

R R R

fA B A B d
Cf Cf Cf Cf

A B Cf A B Cf dt C f

     
           

     

 

veya, 
RCf  ile de çarparak 

     
2

4 4 4 0R G R G R G

A B A B d
Cf Cf Cf Cf f f

A B A B dt C

   
          

   
                       (4.24.a)    

elde ederiz. Benzer yolla, (4.8.b) ve (4.8.c) denklemleri de, sırasıyla, 

   4 4 0R G R G

B C B C d
Af Af Af Af

B C B C dt

   
        

   
                                                 (4.24.b)   

     
2

2
4 4 4 0R G R G R G

C A C A d B
Bf Bf Bf Bf f f

C A C A dt C

   
          

   
                    (4.24.c)  

şeklinde yazılabilir. Bu bağlamda, şu özelliklere dikkat çekmek yerinde olacaktır. Yukarıdaki 

bu 3 denklem, sırasıyla, tekrar düzenlenmiş 11 22  , 
22 33  ve 33 11  denklemleridir. 

Eğer bunlardan biri özdeş olarak sıfır oluyorsa geri kalan diğer iki denklem birbirlerinin ters 
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işaretlisi olurlar. Gerçekten de, mesela 
22 33 0    olduğunda, buradan, 

22 33   ve 

dolayısıyla da 
11 22 11 33 33 11( )          olur. Buradan da; (4.8) ya da (4.24) 

denklemlerinden en az ikisinin özdeş olarak sağlandığını göstermenin tutarlılık için yeterli 

olacağı sonucu çıkmaktadır. Öte yandan, özdeş olarak sağlanmış, mesela 
11 22 0  

denklemi, ek bilgi yoksa, hiçbir şekilde 
11 0   veya 

22 0   sonucunu doğurmaz. Diğer 

22 33 0    ve 
33 11 0    sağlanmaları ise çok çok 

11 22 33     verir. Ancak, 

11 22 33( ) 0İz       özelliği göz önünde bulundurulursa, buradan zorunlu olarak

11 22 33 0       sonucuna varılır. O halde; (4.8) denklemlerinin tutarlılığı, aynı zamanda 

(4.7.a,b,c) denklemlerinin tutarlılığı ile de eşdeğerdir. 

Şimdi, ( )i  birincil koşulunu göz önüne alalım. Bu koşul altında (4.24.b) nin özdeş olarak 

sağlandığı; (4.24.c) nin ise (4.24.a) nın ters işaretlisine eşit olduğu kolayca görülebilir. O halde 

( )i  birincil koşulu altında incelenmesi gereken yegâne bağımsız denklem (4.24.a) olmaktadır. 

, ,   ve  fonksiyonuA B C f   olmak üzere 4 bilinmeyen içeren bu denklem, ( )i  birincil koşulu 

kullanılarak, 3 bilinmeyenli denklem olarak aşağıdaki:  

     
2

1

4 4 4 0R G R G R G

A B A B d
Bf Bf Bf Bf f f

A B A B dt k B

   
          

   
                    (4.25) 

denklemine indirgenmiş olur. Bu denklemin sağlanacağı durumlar ise ilk bakışta şunlar 

gözükmektedir: 

1 2 2( ) , ( 0) 4 0R Gi B k A k sabit ve f f                                                             (4.26) 

2( ) 4 0 4 0R G R Gi Bf Bf ve f f                                                                                 (4.27) 

Bundan böyle, bunlar “ikincil koşul” olarak anılacaktır. Bu arada 1( )i  ve 
2( )i  koşulunun birlikte 

sağlandığı, yani, “ 2 4 0 4 0R G R GB k A ve Bf Bf ve f f     ” gibi bir koşulun, ( )i  

birincil koşulu ile çelişki oluşturacağından ötürü yazılamayacağına işaret edelim. Şimdi, 1( )i

koşulu ( )i  ile birlikte göz önüne alındığında  

1 3C k B k A       ( 3 1 2 0k k k  )                                                                               (4.28) 
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koşuluna dönüşür ve dolayısıyla da Bianchi-Tip III modelini RW modeli gibi tek ölçek çarpanlı 

bir modele indirger. 
2( )i  koşulu ise, B A  gibi bir koşulun ileri sürülmesine gerek 

duyurtmayacak şekilde oluşturulmuş iki bağıntıdan oluşmaktadır. Bu denklem sisteminde, 
Rf

nin elenmesiyle elde edilebilecek 

0G GBf Bf    

denklemi 

0G

G

f B

Bf
    

şeklinde yazılıp da integre edilirse ve ayrıca da ( )i  temel koşulundaki 
1C k B  bağıntısı göz 

önüne alınırsa, 1K  ve 
2 1 1/K K k  pozitif ya da negatif olabilen sabitler olmak üzere  

1 2Gf K B K C                                                                                                          (4.29.a) 

bulunur ve bundan hareketle de gerek denklem sisteminden ve gerekse de türetme yoluyla 

1 2Gf K B K C                                                                                                            (4.29.b) 

1 24 4Rf K B K C                                                                                                           (4.29.c) 

1 24 4Rf K B K C                                                                                                  (4.29.d) 

1 24 4Rf K B K C                                                                                                       (4.29.e) 

bağıntıları elde edilir. Şimdi, her ne kadar etkisi peşinen görülmese de, (4.25) denkleminin 

sağlanmasına yönelik 1( )i  ve 
2( )i  den farklı bir koşul daha ileri sürmek düşünülebilir; o da: 

3 2( ) 4 0 4 0R G R Gi B k A ve Bf Bf ve f f                                                    (4.30) 

dir. Bu takdirde (4.25) denklemi 2B k A  ve 4 0R GBf Bf   olmak kaydıyla 
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 4

0
4

R G

R G

d
Bf Bf

AB AB dt

AB AB Bf Bf




 
 

                                                                                       (4.31) 

şekline getirilebilir. Bunun da integrasyonundan M  ile pozitif ya da negatif olabilen bir 

integrasyon sabiti gösterilmek üzere 

2
4R G

A B B M
f f

A B B AB

  
    

  
                                                                                          (4.32) 

elde edilir. Bu denklemin bir benzeri, istenirse, ( )i  temel koşulundaki
1  C k B bağıntısı 

sayesinde, B C  konularak da elde edilebilir. 

Şimdi, 1C k B  olmak kaydıyla, ( )j  birincil koşulunu ele alalım. Bu, birbirlerine eşdeğer 

biçimde 

1C k B ;  

 
1

1 4 0        4 0      4       
4

G
R G R G G R

R

fA A A
Af Af f f f f

A f A A
                (4.33) 

bağıntılarıyla ifade edilebilir. Bu koşul altında (4.24.b) nin sağlandığı hemen görülmektedir. 

(4.24.a) ın sağlanması için ise, ilk bakışta,  

 1 2 2( )        ,    0           4 0R Gj B k A k sabit ve f f                                                   (4.34) 

2( )     4 0      ve     4 0R G R Gj Cf Cf f f                                                                     (4.35) 

koşullarından birinin yeterli olacağı görülmektedir. Bunlar da yine “ikincil koşul” olarak 

adlandırılacaklardır. Yine burada 
1( )j  ile 2( )j  koşullarının birlikte sağlandığı duruma karşılık 

gelen 2 4 0 4 0R G R GB k A ve Cf Cf ve f f      gibi bir üçüncü ikincil koşul ileri 

sürülemeyeceğine dikkat çekelim; zira bunun ( )j  ile birleştirilmesi  ,B A C A C B   

gibi, ( )j  birincil koşulu ile çelişen bir sonuca yol açmaktadır. Şimdi, 
1( )j  ikincil koşulunun, 

( )j  birincil koşulu ile birleştirilmesi 
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4 0R GBf Bf                                                                                                           (4.36.a) 

4 0R Gf f                                                                                                              (4.36.b) 

denklem sistemiyle ifade edilebilir. Bu iki denklem arasında önce 
Rf  elenerek bulunabilecek 

0G GBf Bf    

denklemi integre edilir ve tekrar 
1( )j  ikincil koşulu da kullanılırsa, sonuçta, Gf  ile Rf  ve 

bunların da zamana göre türevleri, aşağıdaki gibi bulunur: 

1 2Gf K B K A                                                                                                                (4.37.a) 

1 2Gf K B K A                                                                                                            (4.37.b) 

1 24 4Rf K B K A                                                                                                                          (4.37.c) 

1 24 4Rf K B K A                                                                                                                          (4.37.d) 

1 24 4Rf K B K A                                                                                                                     (4.37.e) 

Burada, 1K  keyfi bir integrasyon sabiti, 2K  de 2 1 2K K k  şeklinde tanımlı yeni bir sabittir. 

Şimdi, geriye kalan (4.24.c) denkleminin de 
1( )j  ikincil koşulu altında, C A  olması 

gerekmeyecek şekilde, özdeş olarak sağlandığı derhal görülür. Koşulların kullanımı 

bağlamında şuna işaret etmek yerinde olacaktır; eğer, önce (4.24.a) değil de (4.24.c) 

denkleminin sağlanıp sağlanmadığına bakılmış olunsaydı, bu takdirde 
1( )j  deki koşulda 

2B k A yerine 1C k A , yani,  

'

1( )j       1 1   ,    0           4 0R GC k A k sabit ve f f                                               (4.38) 

değişikliğini yapmak gerekecek ve bu da (4.37) de B C  ile değiştirilmiş  

1 2Gf K C K A                                                                                                           (4.39.a) 
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1 2Gf K C K A                                                                                                          (4.39.b) 

1 24 4Rf K C K A                                                                                                    (4.39.c) 

1 24 4Rf K C K A                                                                                                   (4.39.d) 

1 24 4Rf K C K A                                                                                                   (4.39.e) 

ifadelerine yol açacaktı. Bu durum için, (4.24.a) denkleminde B A  olmak gibi bir gereklilik 

getirmenin söz konusu olamayacağına da işaret edelim. 

Şimdi, 
2( )j  ikincil koşulunu ele alalım. 

2( )j  deki ilk bağıntının (4.33) ile karşılaştırılmasından  

1C k A olması gerektiği anlaşılmaktadır ve bu bağıntı da, B  ile A  arasında herhangi bir 

bağıntı bulunmasını gerektirmeyecek şekilde, (4.24.c) denkleminin özdeş olarak sağlanmasına 

yol açmaktadır. (4.39) bağıntıları 
2( )j  koşuluna denk olmaktadır. ( )j  koşuluna ilişkin buraya 

kadarki incelemelerden çıkan sonucu özetlemek gerekirse; 1C k B  olmak üzere,  (4.37) veya 

(4.39) bağıntıları, (4.6.c) ve (4.8) denklemlerinin özdeş olarak sağlanması için yeterli 

olmaktadır. 

Öte yandan, (4.24) denklemlerinin birlikte sağlanıp sağlanmayacakları apaçık görülmese de, 

( )j  birincil koşulu altında  
1( )j  ve  

2( )j   den daha az kısıtlayıcı  

3( )     4 0R Gj f f                                                                                                       (4.40) 

koşulunu ileri sürelim. Bu taktirde ( )j  ve 
3( )j  den, (4.37) ile (4.39) dan daha az kısıtlayıcı 

2Gf K A                                                                                                                    (4.41.a) 

2Gf K A                                                                                                                   (4.41.b) 

24Rf K A                                                                                                                (4.41.c) 

24Rf K A                                                                                                                (4.41.d) 
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24Rf K A                                                                                                                (4.41.e) 

bağıntılarına varılır. Bunlar (4.24) denklemlerine yerleştirildiğinde; (4.24.a), düzenlenmiş 

şekliyle 

0
A B A C A B A C

A B A C A B A C

     
          

     
                                                                  (4.42) 

denklemine indirgenir; (4.24.b) ise özdeş olarak sıfır; ve (4.24.c) de yukarıdakinin ters 

işaretlisini verir. (4.42) denklemi 

0
AB AB AC AC

AB AB AC AC

 
 

 
 

şeklinde yazılır da integre edilirse 

ln ln 0
d d

AB AB AC AC
dt dt

     

ln ( )( ) 0
d

AB AB AC AC
dt

    

( )( )AB AB AC AC Sabit    

( )( )AB AB AC AC L                                                                                              (4.43.a) 

ya da, 

2

B A C A L

B A C A A BC

  
    

  
                                                                                         (4.43.b) 

bulunur. Burada L , pozitif veya negatif olabilen bir integrasyon sabitidir. Dikkat edileceği 

üzere, söz konusu koşul takımı, ölçek çarpanları için hiçbir şekilde A B C  gibi bir koşul 

ortaya çıkartmamaktadır. 

Şimdi, son olarak ( )k  birincil koşulunu ele alalım. Bu koşul altında (4.24.b) nin özdeş olarak 

sağlandığı ve (4.24.a) nın da 
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     
2

1

4 4 4 0R G R G R G

A B A B d
Bf Bf Bf Bf f f

A B A B dt k B

   
          

   
                    (4.44) 

şeklinde yazılabileceği kolayca görülebilir. Bunun sağlanması ise şu durumlarda gerçekleşir: 

1( ) 4 0R Gk B A ve f f                                                                                          (4.45) 

2( ) 4 0 4 0R G R Gk Bf Bf ve f f                                                                             (4.46) 

3( ) 4 0 4 0R G R Gk B A ve Bf Bf ve f f                                                          (4.47) 

Bu ikincil koşulların herbiri ( )k  birincil koşulu ile birlikte değerlendirildiğinde, hepsinin de 

aşağıdaki tek bir bağıntı takımına yol açtıkları kolayca bulunabilir. 

C B A                                                                                                                  (4.48.a) 

1 2 3Gf K A K B K C                                                                                              (4.48.b) 

1 2 3Gf K A K B K C                                                                                                (4.48.c) 

1 2 34 4 4Rf K A K B K C                                                                                        (4.48.d) 

1 2 34 4 4Rf K A K B K C                                                                                              (4.48.e) 

1 2 34 4 4Rf K A K B K C                                                                                             (4.48.f) 

Yukarıda ortaya çıkan tüm koşulları Tablo: 4.1 de göstermekteyiz. Bundan böyle, Tablodaki 

koşul öbekleri; birincil koşullar ile ikincil koşulların birleştirilmesi anlamında, mesela, 

1 3, ,...i i j j   gibi “ ” sembolüyle gösterilecektir. 
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Tablo 4.1: Bianchi-Tip III Modeli İçin Tutarlılık Koşulları [44] 

1

1 2 2 3

1 3

1 2

1 2

( ) 0 ( ) 1 4 0

( ) 4 0 ( ) 4 0 4 0 ( ) 4 0

( ) ( )

4 0

4

G

R

R G R G R G R G

G R G

G R

fC B A
i C k B iken

C B A f

i B k A ve f f i Bf Bf ve f f i f f

C k B k A B A gerekmez B A gerekmez

f K B K C B kA ve Bf Bf

A B B
f K B K C f f

A B B

     

        

   

    

 
    

 
2

1 2

2

1
1 2 2

1 2

1

1 2 2 3

4 4

4 4 4

4 4

( ) 0 ( ) 1 4 0

( ) 4 0 ( ) 4 0 4 0 (

G

R

R R G

R

G

R

R G R G R G

M

AB

f K B K C veya

MkA C C
f K B K C f f

A C C AC

f K B K C

fC B A
j C k B iken

C B A f

j B k A ve f f j Cf Cf ve f f j

 
 

 

   

  
        

  

   

     

      

1

1 2 1 2 2

1 2 1 2 2

1 2 1 2 2

1 2 1 2

) 4 0

( ) ( ) ( )

4 4 4 4 4

4 4 4 4

R G

G G G

G G G

R R R

R R

f f

C A gerekmez C k A B A gerekmez A B C gerekmez

f K B K A f K C K A f K A

f K B K A f K C K A f K A

f K B K A f K C K A f K A

f K B K A f K C K

 

    

    

    

         

        2

1 2 1 2 2

'

1 1 2

1

1 2

4

4 4 4 4 4

( ) (( ) )

( ) 0( ) 1 4 0

( ) 4 0 ( ) 4 0

R

R R R

G

R

R G R G

A f K A

f K B K A f K C K A f K A

B A C A L
j j de B C konulacak

B A C A A BC

fC B A
k C k B ve

C B A f

k B A ve f f k Bf Bf ve f

 

         

  
     

  

     

     3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

4 0 ( ) 4 0 4 0

( )

4 4 4

4 4 4

4 4 4

R G R G R G

G

G

R

R

R

f k B A ve Bf Bf ve f f

Hepsi için

A B C

f K A K B K C

f K A K B K C

f K A K B K C

f K A K B K C

f K A K B K C

      

 

  

  

     

     

     
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4.2. BİANCHİ-TİP III İÇİN f(R,G) MODELİ TESİSİ 

Şimdi; (4.8) ve dolayısıyla da (4.7) denklemlerinin mükemmel akışkan varsayımı ile 

tutarlılıklarının sağlanması gerekliliğinin yol açtığı yukarıdaki kısıtlamaların, geri kalan alan 

denklemleri ile bağıntılara yansımasını ele alalım. 

4.2.1.  i -Birincil Koşulu Altında Denklemlerin İndirgenmesi 

Önce i -birincil koşulunu, yani,  

1 1 1 ,
C B C B

C k B C k B C k B
C B C B

                                         (4.49)  

bağıntılarını göz önüne alalım ve bunların ışığında: 
.t ef , 

.t efp , 
. .t ef t efp  , 

. .3t ef t efp  , 

. .3t ef t efp  , 
m , R  ve G  nin, iki bilinmeyen ölçek çarpanı içeren indirgenmiş ifadelerini 

tesis edelim. Buna göre: (4.4), (4.5), (4.11), (4.12), (4.13), (4.19), (4.9) ve (4.10) dan:    

 
2 2

. 2

2 2 2

1

2 2

2 2 2

1

1
:    2 2

2

                         -4 3     

m
t ef R

R G

R R R

G

R

fAB B A B
f Rf Gf

AB B k B f f A B f

fA B

A B k B f

 
 



 
        

 

 
 

 

        (4.50) 

 

2 2
.

2 2 2

1

2

2

2

2 1 1
:   2 2

3 3 3

1 2
                           + 2

2 3

4 4
    + 2 2 2

3 3

t ef

m

R R
R G

R R R R

G

R

A B AB B
p

A B AB B k B

f fp A B
f Rf Gf

f f A B f f

fA B B A B AB B

A B B A B f AB B





   
       

   

 
      

 

   
     

   

2

2 2

1

G

R

f

k B f

 
  
 

(4.51)  
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2 2
. .

2 2 2

1

2

2 2

2 2 2

1

2 2 2
: 2 2

3 3 3

1
2

3

4 9 3
                          + 2 2

3

4
2

3

t ef t ef

m m

R R

R R R

G

R

A B AB B
p

A B AB B k B

f fp A B

f A B f f

fA B B A B AB A

A B B A B AB k B A f

AB









   
        

   

 
    

 

  
     

  


2 2

2 2 2

1

 G

R

fB

AB B k B f

 
  

 

        (4.52) 

. . 2 3 1
3 : 2 2 ( )

                                                    + 2 3

                                           +4 2 2

m m
t ef t ef

R G

R R

R R

R R

A B p
p f Rf Gf

A B f f

f fA B

A B f f

A B B A

A B B A


 

  
       

 

 
  

 

 
2 2

2 2 2

1

2 2

2 2 2

1

3

     4 2

G

R

G

R

fB AB A

B AB k B A f

fAB B

AB B k B f





  
   

  

 
   

 

   (4.53) 

 

2 2
. .

2 2 2

1

2

2 2

2 2 2

1

3 :   2 2 2 2 2

3 2
                               +3 2 3

+4 2 2 3

t ef t ef

m m

R R
R G

R R R R

A B AB B
p

A B AB B k B

f fp A B
f Rf Gf

f f A B f f

A B B A B A B

A B B A B A B k B









   
         

   

  
      

 

 
    

  

2 2

2 2 2

1

4 2 (4.54)

G

R

G

R

f

f

fAB B

AB B k B f



 
 

 

  
    

  

 

(1 )

2
2 (1 )

0 2

0 0

2 (1 ) =0       ( )    ,     

w

m m m w m mA B A B
w AB

A B A B
    

 

    
        
   

 (4.55) 

2 2

2 2 2

1

2 2
2

R A A B B B

A A B B B k B


                                                                                    (4.56) 
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2 2

2 2 2

1

2
8

G A B A BB

A B k B A BB

 
   

 
                                                                                        (4.57) 

elde edilir.  

4.2.1.1. 2i i  Koşul Takımı Altında f(R,G) Modeli Tesisi 

İncelemelerimize, Tablo: 4.1 de ilk sıradaki 1i i  koşul takımıyla başlamak yerine, önce, daha 

zengin bir yapı sunması bakımından 2i i  koşul takımıyla başlamayı tercih ediyoruz. 

Denklemlere gönderme yapmayı kolaylaştırmak üzere 
2i i  tutarlılık koşullarını aşağıda 

tekrarlıyoruz: 

4 0 4 0, ( )R G R GBf Bf ve f f B A gerekmez                                               (4.58) 

1 2Gf K B K C                                                                                                             (4.59.a) 

1 2Gf K B K C                                                                                                               (4.59.b) 

1 24 4Rf K B K C                                                                                                             (4.59.c) 

1 24 4Rf K B K C                                                                                                          (4.59.d) 

1 24 4Rf K B K C                                                                                                               (4.59.e) 

 

( , ) ( )f R G R F G   hali: 

İşe önce   ile 0   olan gerçel bir sayı ve ( )F G  ile de G  nin keyfi bir fonksiyonu 

gösterilmek üzere ( , )f R G fonksiyonunun 

( , ) ( )f R G R F G                                                                                                    (4.60) 

şeklinde özel bir formunu göz önüne alarak başlayalım. Bu takdirde 

0         0     ve      0R R Rf Sabit f f                                                              (4.61) 

olur. B  ölçek çarpanı için (4.59.c) den bulunabilecek 
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1 1

1 1

4                   
4 4

K B B B t C
K K

 
       

 
                                                   (4.62) 

çözümüne başlangıç koşulları olarak: 0t   için 0B   ve şimdiki 
0t t  için de  

0 0( ) 0B t t B    koşulları uygulanırsa, 
1C  integrasyon sabiti için 

1 0C   ve 
0B  için de 

0 0

1

0
4

B t
K


 


 bulunur. Bu çözüm, yani, 

 0

0 14

t
B B t

t K


 


 (aynı zamanda 

0 1 0C k B  olmak üzere 1
1 0

0 14

kt
C k C t

t K


 


)    (4.63) 

(4.59.a) ya yerleştirilir ve bulunan da hem türetilir, hem de integre edilirse 

2

2
8

4

4

G G

G G

G G

f F t C

f F t

f F







   

  

  

                                                                                                      (4.64) 

bağıntıları elde edilir. (4.60) varsayımı altında 
2i i  koşul takımının, f  fonksiyonu ile bunun 

türevlerine ve de B  ile C  ölçek çarpanlarına getirmiş olduğu kısıtlamaları aşağıda topluca 

göstermekteyiz:  

2

2

1
0 1 0 0 1 0 0

0 0 1

,  0

1 1 1
, ,

8 4 4

1
, , , , , 0

4

R R
R

R R

G G G G G G

R R R R R R

f f
f

f f

f F f F f F
t C t

f f f f f f

kt t B C B C
B B C k B C C C k B t

t t K B C t B C





  

         

        


 (4.65) 

Bunlar (4.56) ve (4.57) ye taşınır ve hem kısaltma amacıyla, hem de sonraki tartışmaları 

kolaylaştırmak için     

2 2
2 20 0

2 2

1 0 1 0

0        ve          1 1
t t

k B k B


                                                                            (4.66) 
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tanımları yapılırsa, düzenlenmiş şekilleriyle 

2

2

2

R A A

A A t t


                                                                                                             (4.67) 

28

G A

A t


                                                                                                                       (4.68) 

elde edilir. Öte yandan, (4.50) denklemi ise 

 
2 2 2 2

2

2 2

1 1 1 3
 2 ( ) +

2

m

G

A A
F G GF

A t t t A t t

    


 

 
      

 
 

     2

2

1 1 1
( )

2

m

G

A
F G GF

A t t


 

 

 
     

 
                                                                   (4.69) 

biçimine indirgenir. Benzer şekilde, (4.51) - (4.55) denklemlerinin indirgenmiş şekilleri için de 

sırasıyla,  

 2 1
0 ( )

2

m

G

p
F G GF

 
                                                                                       (4.70) 

2

2

1 1 m mA p

A t t


 



  
   

 
                                                                                          (4.71) 

 2

2

1 1 3 1
( )

m m

G

A p
F G GF

A t t


 

 

  
     

 
                                                           (4.72) 

 2

2

1 1 3 2
( )

m m

G

A p
F G GF

A t t


 

 

   
    

 
                                                         (4.73) 

(1 )

2
2 (1 )

0 2

0 0

2
(1 ) =0     ( )    ,     

w

m m m w m mA A t
w At

A t A t
    

 

    
        
   

        (4.74) 

bulunur. Son dört denklem, (4.69) ve (4.70) den bağımsız değildirler. (4.71), (4.72) ve (4.73) 

denklemlerin, bu iki denklemin doğrudan doğruya birleştirilmesi suretiyle de kolayca elde 

edilebileceğine işaret edelim. Öte yandan, §4.1.2 de ispatsız belirtildiği üzere, (4.74) deki 
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standard maddenin korunum denklemi de, (4.1) ve (4.2) nin sırasıyla indirgenmiş şekilleri olan 

(4.69) ve (4.70) den bağımsız olmayıp, bu ikisinin bir tür kombinasyonundan elde edilebilirler. 

Bu genel özelliği yukarıdaki özel denklemler aracılığıyla gösterelim. (4.69) denklemi  t  ye göre 

türetildiğinde bulunacak 

2
2

2 2 3

1 1 1 2 1
( )

2

m

G G

A A A
F G GF GF

A t A t A t t


 

 

 
           

 
                                        (4.75) 

denklemine, zincir kuralından yazılacak ( ) GF G F G  bağıntısı yerleştirildiğinde eşitliğin 

sağındaki parantez içindeki ilk iki terim yok olur ve geriye kalan GGF  terim için de (4.64) ve 

(4.68) bağıntıları kullanıldığında, sonuçta 

2
2

2 2 3

1 1 2 mA A

A t A t t


 



 
   

 
                                                                                        (4.76) 

elde edilir. Öte yandan,  (4.71) denkleminin her iki yanı da  
2A B C A

A B C A t
     ile 

çarpıldığında 

2
2

2 2 3

1 1 2 2 m mA A A p

A t A t t A t


 



    
       

    
                                                             (4.77) 

olur ki, bununla da (4.75) in taraf tarafa toplanması, (4.74) daki arzulanan sonucu verir. O halde; 

(4.69)-(4.74) denklemleri arasında en çok ikisinin bağımsız olduğunu bir daha vurgulayalım. 

2i i tutarlılık koşul takımı altında ( , ) ( )f R G R F G   hali için elde edilebilecek mümkün 

tüm bağıntı ve denklemler, henüz bilinmeyen ( )A t  ölçek çarpanı dışında, hepsi hepsi yukarıda 

yer alanlar kadardır. Şimdi amacımız, ( )F G  fonksiyonel formunun (dolayısıyla da ( , )f R G

nin) belirlenmesi anlamına gelen “ ( , )f R G modeli tesisi” meselesini ele almak olacaktır. Bu iş 

için izlenebilinecek yöntemleri aşağıda sıralayalım. 

1) ( , )f R G fonksiyonel formunun peşinen bilinmesi ya da seçilmesi durumunda bunun
Rf ,

Gf

RGf ... gibi argümanlarına göre türevleri de biliniyor olacağından, (4.67) ve (4.68) deki  R ve 

G  ifadeleri sayesinde hepsi, A  nın türevleri ile t  cinsinden ifade edilmiş olurlar. Bunların,  
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mesela (4.69) a yerleştirilmesi, denklemi, bilinmeyen ( )A t fonksiyonun türevleri cinsinden bir 

diferansiyel denkleme dönüştürür ve buradan da geriye, eğer bulunabiliyorsa, ( )A t  çözümünü 

tesis etmek kalır. Bu suretle, ilkesel olarak, her bir ( , )f R G fonksiyonel form seçimi için 

bunlara karşılık düşecek farklı ( )A t  çözümleri  bulmak mümkün görünmektedir. Ancak, bu 

yolla elde edilecek diferansiyel denklemlerin, bir yandan iki ya da daha yüksek mertebeden ve 

diğer yandan da aşırı nonlineer olabilmeleri, çözümün varlığı ve inşası sorununu ortaya 

çıkaracaktır. 

2) Yukarıdaki yöntemin karşıt yaklaşımını, ( , )f R G  yerine bilinen ya da seçilen bir ( )A t  

fonksiyonundan hareket etmek oluşturmaktadır. Ancak, ( )A t  nin fonksiyonel şeklinin, (4.67) 

deki ( )R R t den (veya (4.69) daki ( )G G t  den) ( )t t R   (veya ( )t t G ) ters fonksiyonunun 

çekilmesini mümkün kılabilecek özellikte olması gerektiği aşikârdır. Bu takdirde, t cinsinden 

olan (4.69)-(4.73) denklemleri yalnızca R  cinsinden (veya G cinsinden) denklemlere dönüşür 

ve buradan da F  fonksiyonunu kolayca tesis edebilmek olanağı doğmuş olur.  

Şimdi; önce bu ikinci yaklaşımı benimseyerek, söylenenleri somutlaştırmak üzere, mesela, 

(4.69) ve (4.70) denklemlerini göz önüne alalım. Bunlardan çekilecek m  ve mp  ifadeleri  

m mp w                                                                                                                      (4.78) 

hal denklemine taşınırsa 

   2

1 1 1 1

2 2
G G

A
F GF w w F GF

A t t


 
       

 
                                                        (4.79) 

ve buradan da F  çekilirse 

2

2 1 1

1
G

w A
F GF

w A t t

  
   

  
                                                                                        (4.80) 

olur; ya da (4.64) deki 
2

2

1

8
GF t C    bağıntısı kullanılırsa 

2

22

2 1 1 1

1 8

w A
F Gt C G

w A t t




 
    

  
                                                                         (4.81) 
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elde edilir. Son terim G  nin bir skaler katı olduğundan topolojik invaryant durumundadır ve 

dolayısıyla da alan denklemlerine bir katkısı bulunmamaktadır (aksiyondaki varyasyonu bir 

toplam diverjans olarak ortaya çıkmaktadır). Bu bakımdan bundan böyle, G  nin sabit bir katı 

durumundaki bu tür terimler göz ardı edilecektir. (4.81) de görüldüğü üzere  ( )F F t  dir. 

( )F F G  fonksiyonunu ortaya çıkarmak için şimdi yapılması gereken, (4.68) den  ( )t t G  ters 

fonksiyonu elde etmek ve bunu da (4.81) e yerleştirip sonuçta ( )F F G   yi tesis etmektir. Bu 

yöntemin yürümesine olanak tanıyabileceğini kestirebildiğimiz bir fonksiyon olarak ( )A t  yi 

aşağıdaki gibi seçelim:  

  0

0

( )  ,       R     ve   0 ,1

n

t
A t A n n

t

 
   

 
                                                                  (4.82) 

Bir kuvvet kanunu tipinde olan ( )A t fonksiyonu; 0t   için 0A   ve 
0t t  için de 

0A A  

başlangıç koşullarını sağlamaktadır. 0n   için A Sabit  ve 1n   için de, bir yandan 

( ) ( ) ( )A t B t C t   ve diğer yandan da 0G   olacağından, bu 0 ,1n   değerleri dışlanmıştır. 

( )A t  nin 

2

( 1)
       ,        

A n A n n

A t A t


                                                                                           (4.83) 

türevleri; (4.67), (4.68) ve (4.81) ye yerleştirilirse, sırasıyla, 

2 22( )R n n t                                                                                                             (4.84) 

48 ( 1)G n n t                                                                                                                   (4.85) 

2

2

2 ( 1) 1 1

1 8

w n
F Gt

w t





 


                                                                                               (4.86) 

elde edilir. (4.85) deki G ifadesinin ( )t t G  ters fonksiyonunu oluşturmaya olanak tanıdığı 

görülmektedir. Ancak, bu işi bir adım sonrasına bırakarak önce, hesap kolaylığı sağlaması 

bakımından, (4.86) yı, (4.85) den yazılabilecek  2 28 ( 1)Gt n n t    ifadesi yardımıyla daha 

sade bir biçimde 
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2 2

2 ( 1) 1 1
( 1)

1

w n
F n n

w t t


 


  


 

2

( 1) [2 (1 )] 1
 

1

n w n w
F

w t

   



                                                                                  (4.87) 

yazalım. Şimdi, (4.85) den t  yi 

1

48 ( 1)
( )

n n
t t G

G


                                                                                                  (4.88) 

olarak çekip de bu son denkleme yerleştirirsek  ( )F G  yi  

1

2( 1) [2 (1 )]
( )

1 8 ( 1)

n w n w G
F F G

w n n

 





  
 

 
                                                     (4.89) 

olarak tesis etmiş oluruz. Ancak, bu aşamaya gelmeden önce, (4.88) deki t  fonksiyonunun 

gerçekten de reel değerli olduğundan emin olmak gerekmektedir. Bunun için, mutlak değer 

içindeki ifadenin işaret incelemesini yapalım ve bu amaçla 

2
2 0

, 2 2

1 0

8 ( 1) 8 ( 1) 1n

t
N n n n n

k B
  

 
     

 
                                                                              (4.90) 

gibi bir büyüklük tanımlayalım. Bu takdirde, (4.85) in 4

,nG N t

  şeklinde yazılışından 

anlaşılacağı üzere G  nin işaretini ,nN  belirlemektedir, yani, 

,

,

0 0

0 0

n

n

N ise G

N ise G





 

 
                                                                                           (4.91) 

dir. O halde, , /nN G   oranı daima pozitif olacağından , t  reel değerli olur ve dolayısıyla da 

(4.89), mutlak değere gerek kalmaksızın 

( 1) [2 (1 )]
( )

1 8 ( 1)

n w n w G
F F G

w n n

 



  
 

 
                                                         (4.92) 
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 şeklinde ifade edilebilir.   ve n   parametrelerinin değerlerine göre ,nN  nın işareti aşağıdaki 

işaret tablolarından hareketle belirlenebilir. 

Tablo 4.2.a : n  parametresinin işaret tablosu         Tablo 4.2.b :   parametresinin işaret tablosu 

 

Buradan da, ,nN nin, ve dolayısıyla da G  nin;    ve n   parametrelerinin değerlerine göre 

işareti, Tablo 4.2.c deki gibi iki girdili bir ( , )n tablosu  ile gösterilebilir. 

Tablo 4.2.c: ( , )n  parametrelerine göre G  nin işaret tablosu 

 

Buna göre: 

, 0 0nN ve G    bölgeler için :    
[2 (1 )] 8 ( 1)

( )
8 (1 )

w n w n n
F G G

n w

   
 


      (4.93.a) 

, 0 0nN ve G    bölgeler için :  
[2 (1 )] 8 ( 1)

( )
8 (1 )

w n w n n
F G G

n w

    
  


  (4.93.b) 

yazılabilir. Şimdi, söz konusu model üzerinden şu saptamalara işaret edelim: 
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1) Yukarıda hareket noktası olarak (4.69) ve (4.70) deki Friedmann denklemlerini aldık ve 

bunlara (4.78) deki hal denklemini uyguladık. Ve ayrıca da, bilinmeyen ( )A t  ölçek çarpanı 

fonksiyonu için (4.82) deki kuvvet kanunu fonksiyonunu seçtik. Şimdi acaba, başka 

denklemlerden de yola çıkmış olsaydık, aynı ( )F G  çözümüne varır mıydık? Aşağıda diğer 

muhtelif seçenekleri ele almaktayız. 

2) ( )A t  ölçek çarpanı fonksiyonu (4.82) deki kuvvet kanunu fonksiyonunu olarak biliniyor 

kaydıyla, hal denklemiyle birlikte, mesela, (4.71) deki birleştirilmiş denklem ile (4.74) deki 

korunum denkleminden yola çıkmış olsaydık acaba ne elde ederdik? Bunun cevabına yönelik 

olarak; önce, (4.74) deki korunum denkleminin ( )m t  çözümünün (4.82) seçimi için  

( 2)(1 ) ( 2)(1 )

0 0( )  , (  )m m n w m n wt t t                                                               (4.94) 

olduğunu kaydedelim. ( )A t ölçek çarpanının (4.82) deki seçimi ile (4.78) deki hal denklemi, 

yukarıdaki 
m   çözümü ile birlikte (4.71) e yerleştirildiğinde  

2
( 2)(1 )

2

( 1) (1 ) n wn w
t

t

 




   
                                                                                  (4.95.a) 

ya da 

2 (1 ) 2( 1) (1 ) n w wn w t                                                                                        (4.95.b) 

denklemine yol açar. Bu ifadenin her t  için geçerli olması demek, bir yandan 

2
(1 ) 2 0

2 1

n w
n w w w n

n w
         

 
                                          (4.96) 

ve diğer yandan da 

2( 1) (1 )n w                                                                                                    (4.97.a) 

bağıntılarının sağlanması gerektiği anlamına gelir. Bu son bağıntı, (4.96) nın yardımıyla, 

2( 1)( 2) 2n n                                                                                                (4.97.b) 
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veya 

2 2(1 3 ) (1 )w w                                                                                                (4.97.c) 

biçiminde de ifade edilebilir. Şekil 4.1.(a) ve Şekil 4.1.(b) de, sırasıyla, (4.96) daki ( )n n w  

ve ( )w w n  fonksiyonlarının değişimleri gösterilmektedir. w  nun değişim aralığı standard 

maddeye karşılık düşen 1/ 3 1w    aralığı olarak alınmıştır ( 1 3w   değeri standard madde 

ile aşırı negatif basınçlı madde (karanlık enerji) sınırını oluşturduğundan aralığa dahil 

edilmemiştir). n  parametresinin; (4.82) de belirtildiği üzere 0,1n   olduğuna da dikkat ederek 

1/ 3 0 1 1 0 1w w n n                                                                               (4.98) 

biçiminde  kısıtlanmış olduğu kolayca görülür ve bu da (4.97.b) denklemi aracılığıyla,  ve   

parametreleri üzerine 

2 0 0                                                                                          (4.99) 

kısıtlamasını getirir. Öte yandan, (4.96) kısıtlamaları altında, (4.94) çözümü de 

2

2

0 0 0

0

,m m mt
t

t
   



 
  

 
                                                                                    (4.100) 

olur. 
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Şekil4.1.(a): ( )n n w fonksiyonun değişimi    Şekil4.1.(b): ( )w w n fonksiyonun değişimi 

Şimdi, bu varılan sonuçlar ışığında (4.92) deki çözüme geri dönelim. (4.96) kullanılarak bunun  

( ) 2 ( 1)
8 ( 1)

G
F F G n n

n n



   


                                                                      (4.101) 

şeklinde yazılabileceği kolayca görülür. (4.98) bağıntısı n  parametresini daha da 

kısıtladığından G  nin işareti, Tablo: 4.2.c yerine, artık aşağıdaki Tablo: 4.2.d ile verilecektir. 

Buna göre: 

, 0 0nN ve G    bölgeler için :    
2

( ) ( 1)
2

F G n n G                            (4.102.a) 

, 0 0nN ve G    bölgeler için :  
2

( ) ( 1)
2

F G n n G                              (4.102.b) 

olacaktır. 
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Tablo 4.2.d : ( , )n  parametrelerine göre G  nin işaret tablosu 

 

3) Yine, ( )A t  ölçek çarpanı fonksiyonun (4.82) deki kuvvet kanunu fonksiyonunu olarak 

bilinmesi kaydıyla, (4.94) deki işlenmiş korunum kanunu ile bu sefer (4.69) daki birinci 

Friedmann denklemi birlikte ele alındığında, (4.64) bağıntısı ( ya da bunun işlenmiş şekli olan 

(4.86) denklemi) ile (4.85) in de kullanımıyla, sonuçta 

2 ( 2)(1 ) 2

22 ( 1)(2 )n wF t n n t C G                                                                    (4.103) 

denklemine varılacağı kolayca bulunabilir. Bu, yeni bir denklem gibi görünmesine rağmen, 

aslında, (4.96 ve 4.97) deki bağıntılar nedeniyle kolayca tespit edileceği üzere, (4.89) daki 

çözümden başka bir şey değildir. 

4) Eğer, önceki örnekte; geri kalan koşulları aynı kalmak üzere, birinci Friedmann denklemi 

yerine bu sefer (4.70) deki ikincisi alınmış olsaydı, bu takdirde elde edilecek denklem 

2 ( 2)(1 ) 2

22 ( 1)n wF w t n n t C G                                                                     (4.104) 

olmaktadır. Buna, (4.88) yerleştirildiğinde ise, F  fonksiyonu  
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( 2)(1 )
1/2

4
2

2

8 ( 1) 8 ( 1)
( ) 2 ( 1)

n w

n n n n
F F G w n n C G

G G

 
  

 
 

    
        

   
      (4.105) 

ifadesine dönüşmektedir. Ancak; bu, yukarıda F  için tesis etmiş olduğumuz fonksiyonel 

formdan tamamen farklı bir görünüm taşımaktadır((4.101) ile karşılaştırınız). Söz konusu 

uyuşmazlığın çözümü aşağıdaki saptama belirtildikten sonra ele alınacaktır. 

5) ( )F G  fonksiyonunu; (4.69)-(4.74) deki denklemlerden hiçbirine gerek duymaksızın, 

doğrudan doğruya (4.64) bağıntısından hareketle, yalnızca (4.82) ve (4.85)  bağıntılarını 

kullanarak tesis etmek mümkündür. Gerçekten de, (4.82) deki ( )A t  seçimi için elde edilen 

(4.85) bağıntısı (ya da (4.88) bağıntısı) , (4.64) e yerleştirilirse 

1/2

2

1 8 ( 1)

8
G

n n
F C

G




 
   

 
                                                                                  (4.106) 

elde edilir ve bunun da integrasyonundan, daha önce (4.101) de de yazılmış olan 

1/2

2( ) 2 ( 1)
8 ( 1)

G
F G n n C G

n n




 
    

 
                                                                 (4.107) 

çözümü bulunur. Şimdi, (4.105) çözümüne geri dönelim. Bunun (4.107) deki çözüm ile 

bağdaşması için, ikisi biribirlerine eşitlenir ve gerekli sadeleştirme yapılırsa 

( 2)(1 )
1/2

4
2 8 ( 1) 8 ( 1)

2 ( 1)

n w

n n n n
w n n

G G

 
  

 
 

    
      

   
                                   (4.108) 

bağıntısı elde edilir. Bunun her G  için sağlanması, ancak ve ancak 

 
2

1 1
( 2)(1 )

4 2

2 ( 1)

n w

w n n  

    

   

                                                                                              (4.109) 

bağıntılarının birlikte sağlanmasıyla mümkün olur. Bunlar ise, (4.96) ve (4.97) bağıntılarından 

başka bir şey değildirler. Böylece (4.105) deki çözümün, aslında, (4.101) deki çözüme 

indirgenebileceğini göstermiş olmaktayız. 
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 Bu paragrafı kapamadan önce şu önemli noktaya da işaret edelim; eğer ( )A t  için (4.82) deki 

kuvvet kanunu yerine, mesela, 0

( 1)

0( )

t
m

t
A t A e



 , ( 0m  )  şeklinde bir “de Sitter tipi” genişleme, 

yani, bir üstel kanun seçmiş olsaydık,  denklemler ( )F G G  verirken,   (4.64) bağıntısı ise 

( ) lnF G G   vermektedir. Bu uyuşmazlığın nedeni, aşağıdaki saptamada matematiksel olarak 

açık bir şekilde göstereceğimiz üzere; ( )t t G  ters fonksiyonunu elde etmek üzere 

matematiksel bir uygunluk olarak seçtiğimiz  (4.82) deki kuvvet kanununun, korunum denklemi 

ile diğer denklemlerin bir çözümü olması; buna karşılık, aynı matematiksel uygunluğu 

sağlamasına rağmen üstel kanunun söz konusu denklemlerin bir çözümü olma özelliği 

taşımamasıdır. 

6) ( )A t yi peşinen seçmeyip de denklemlerden hareketle belirlemeye çalışalım. Bunun için  

korunum kanununun (4.74) deki  

(1 )

2
1 2(1 ) (1 ) 2(1 )

0 0 0 02

0 0

w

m m m w w w wA t
A t A t

A t
  

 

      
  

 
                                                (4.110) 

çözümünü F  fonksiyonu ile bunun GF  türevini içermeyen (4.71) denklemine -ki, bu (4.69) ve 

(4.70) Friedmann denklemlerinin bir birleştirilmesi idi- yerleştirirsek 

2 1 2(1 ) (1 ) 2(1 )

0 0 02

1 1 1 m w w w wA w
A t A t

A t t
  



       
   

 
                                                  (4.111) 

denklemini elde ederiz. Bu, bilinmeyen ( )A t  fonksiyonuna göre birinci mertebeden bir 

diferansiyel denklemdir. Sabitler topluluğu için  

2 1 2(1 )

0 0 0

1
 m w ww

K A t 


 
                                                                                     (4.112) 

ile bir K  sabiti tanımlayarak (4.111) i aşağıdaki gibi düzenleyelim.  

2 1 2 1w w w wt A A t A K                                                                                                   (4.113) 

Bunun genel çözümü için, 1C  bir integrasyon sabiti olmak üzere,  
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1
1 2 1

1 (1 3 ) (1 )
( )

1 3

w w wC t w K t w
A t

w

     
  

 
                                                                 (4.114) 

bulmaktayız. 1C  keyfi olduğundan, eğer 1 0C   alınırsa 

1
2

1
1

(1 )
( )

1 3

w
w

w
K w

A t t
w

 


  
   

                                                                                          (4.115) 

ya da  

1
22 2 1

1 2(1 ) 1
0 0 0

(1 )
( )

1 3

ww
m w w w

w
A t A t t

w






 
  

 
  

 
                                                             (4.116) 

şeklinde bir özel çözüm bulmuş oluruz. Şimdi  

2

1

w
n

w
 


                                                                                                                       (4.117) 

alınırsa, bu taktirde ( ) nA t t  şeklinde kuvvet kanununun denklemleri sağlayan bir çözüm 

olarak kabul edilebilir olduğu ortaya çıkar. 

7) Yukarıdaki incelemelerden çıkan temel sonuç şu olmaktadır. Ölçek çarpanlarının ( )t t G  

ters fonksiyonunu verecek şekilde seçilmeleri ancak ve ancak yol gösterici 

(heuristic=kılavuzlayıcı) bir mahiyet taşımaktadır. Esas olan; bunların, özellikle F  ve GF  yi 

içermeyen, korunum denklemi ile birlikte kullanılan  (4.71) denklemini sağlamaları 

gerektiğidir. Bu anlamda (4.71) ile korunum denklemi birlikteliği bir bağ denklemi rolü 

oynamaktadır. 

4.2.1.2. 1i i  Koşul Takımı Altında f(R,G) Modeli Tesisi 

Denklemlerimizin daha anlaşılır bir şekilde olması ve yollama yapmayı kolaylaştırmak üzere 

1i i  tutarlılık koşulunu aşağıdaki gibi tekrarlıyoruz. 

2      ve    4 0R GB k A f f                                                                                         (4.118) 
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İlk olarak ( , )f R G  fonksiyonunu   ile 0   olan gerçel bir sayı ve ( )F G  ile de G  nin keyfi 

bir fonksiyonu gösterilmek üzere 

( , ) ( )f R G R F G                                                                                                   (4.119) 

şeklinde özel bir form göz önüne alalım. Bu durumda, (4.118) ve (4.119) ifadeleri birlikte ele 

alındığı takdirde 

0            0     ve       0R R Rf Sabit f f                                                            (4.120) 

2

1 2

1

8

4

4

G G

G G

G G

f F t C t C

f F t C

f F







    

   

  

                                                                                         (4.121) 

2 1 2

1

,  0

1

8

1

4

1

4

R R
R

R R

G G

R R

G G

R R

G G

R R

f f
f

f f

f F C C
t t

f f

f F C
t

f f

f F

f f



 



  

    

   

  

                                                                                       (4.122) 

olur. Bunlar (4.50)-(4.57) bağıntılarına taşınırsa,  

 

2 2 3 2 3

1 1

2 2 2 2 3 2 2 2 3

1 2 1 2

2

3 3 1 4 12

1
                                                                  ( )

2

m

G

C CA A A A A
t

A A k k A A k k A A A

F G GF

 

 




 

   
       

  

  

                    (4.123) 

 21 1
2 2 8 ( )

2

m

G

CA A A A A p
t F G GF

A A A A A


  
                                                  (4.124) 
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2 2 3 2

1

2 2 2 2 3 2 2 2

1 2 1 2

3
21 1

3

2 3 3 2 1 4

                                                              12 8
m m

CA A A A A A A
t

A A A k k A A A A k k A A

C CA A A p

A A A

 






  

   
         

  


  

          (4.125) 

 

2 2 3 2

1

2 2 2 2 3 2 2 2

1 2 1 2

3
21 1

3

6 3 3 6 1 4

3 1
                                    12 24 ( )

m m

G

CA A A A A A A
t

A A A k k A A A A k k A A

C CA A A p
F G GF

A A A

 






   

   
         

  


    

(4.126) 

 

2 2 3 2

1

2 2 2 2 3 2 2 2

1 2 1 2

3
21 1

3

6 3 3 6 1 4

3 2
                                  12 24 ( )

m m

G

CA A A A A A A
t

A A A k k A A A A k k A A

C CA A A p
F G GF

A A A

 






   

   
         

  

 
    

(4.127) 

(1 )

3
3 (1 )

0 3

0

3
(1 ) =0         ( )     ,     

w

m m m w m mA A
w A

A A
    

 

    
       
   

            (4.128) 

2 2

2 2 2 2

1 2

3 3
2

R A A

A A k k A


                                                                                            (4.129) 

2 2

2 2 2 2

1 2

3
8

G A A

A A k k A

 
  

 
                                                                                          (4.130) 

elde edilir. (4.129) ve (4.130) daki ( )A t fonksiyonunun şeklini, ( )R R t  ve ( )G G t  veya 

( )t t R  ve ( )t t G  ters fonksiyonunun çekilebilmesi mümkün olacak şekilde seçilmelidir. Bu 

durumda, (4.123)-(4.127) denklemleri yalnızca R  cinsinden veya G  cinsinden denklemlere 

dönüşür ve buradan da F  fonksiyonunu kolayca tesis edebiliriz. 

Şimdi ( )A t  ölçek çarpanını aşağıdaki gibi seçelim. 

0( ) mtA t A e                                                                                                                (4.131) 

( )A t  fonksiyonunun hesaplamalarda kullanılmak üzere gerekli türevleri, 
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2              ,           
A A

m m
A A
                                                                                   (4.132) 

biçimindedir. (4.131) ve (4.132) ifadeleri sırasıyla (4.129) ve (4.130) a yerleştirilirse, 

2
2 2 2

2

1 2
12 2                              ln

2 12

mt K
R m K e t

m m R

  
     

 
                                   (4.133) 

2 2
4 2 2 2

4

1 8
24 8                        ln

2 24

mt m K
G m m K e t

m m G

  
     

 
                               (4.134) 

ve burada  
2

2

2 2 2

1 2 0

K
k k A


    olmak üzere elde edilir.  

(4.123) ve (4.124) ifadeleri 

m mp w                                                                                                                    (4.135) 

hal denklemine taşınır ve ( )A t  fonksiyonunu ve türevlerini yerlerine yazarsak, 

  2 2 2 212
1 4 2 3

(1 )

mt

G

C
F GF mt m m w m K e

w





  
        

   
                                (4.136) 

olur ya da (4.121) deki  
2

1 2
8

GF t C t C


     bağıntısı kullanılırsa 

  2 2 2 2 21
1 2

2
1 4 2 3  (4.137)

8 (1 )

mtC
F Gt C Gt C G mt m m w m K e

w

 



  
           

   
 

elde edilir. 2C G  terimi G  nin bir katı olduğundan topolojik invaryant durumundadır ve alan 

denklemlerine katkısı bulunmamaktadır. (4.137) de görüldüğü üzere ( )F F t biçimindedir. 

Şimdi ( )F F G  fonksiyonunu elde edebilmek için (4.134) bağıntısını (4.137) eşitliğine 

yerleştirmek gerekmektedir. Bu durumda, 
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  





      
          

         

 
  

  
             (4.138)

 

elde edilir. 

4.2.1.3. 3i i  Koşul Takımı Altında f(R,G) Modeli Tesisi 

Bu koşul takımı için hesaplarımıza Gauss-Bonnet teriminden yani (4.57) ifadesini göz önüne 

alalım ve bu durum için  ( )A t  ve ( )B t  ölçek çarpanlarının fonksiyonel formunu aşağıdaki gibi 

seçelim: 

0( ) mA t A t                                                                                                                (4.139) 

0( ) nB t B t                                                                                                                  (4.140) 

olsun. Fonksiyonel formu yukarıdaki gibi seçilen ölçek çarpanları için hesaplamalarda yollama 

yapmayı kolaylaştırmak üzere gerekli türev ifadeleri, 

 
2

1
         ,        

m mA m A

A t A t


                                                                                         (4.141) 

 
2

1
         ,        

n nB n B

B t B t


                                                                                      (4.142) 

biçimindedir.(4.139)-(4.142) bağıntıları (4.57) ye yerleştirilirse 

   2 2

2 2 2 2 2 2

1 0

1 1
2

8 n

m m n nG n m n

t t k B t t t t

  
   

 
                                                           (4.143) 

olur. (4.143) ifadesi ayrıntılı olarak incelenirse, bu bağıntıdan t  yi G  cinsinden çekebilmemiz 

için bir ön koşul koymamız gerekmektedir. Bu durumda ilk terimi sıfır yapan 1m   seçimi 

yaparsak, 

   
1

2 2 4

4

16 1 16 1
                    

n n n n
G t

t G

  
    

 
                                                   (4.144) 
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elde edilir. Şimdi ( , )f R G  fonksiyonunu,   ile 0   olan gerçel bir sayı ve ( )F G  ile de G  

nin keyfi bir fonksiyonu gösterilmek üzere 

( , ) ( )f R G R F G                                                                                                   (4.145) 

şeklinde özel bir form göz önüne alalım. Bu durumda, 

0Rf Sabit               0Rf     ve    0Rf                                                        (4.146) 

olur. 3i i  koşul takımı ve  (4.146) ifadesi birlikte ele alındığı taktirde 

2

1 2

1

8

4

4

G G

G G

G G

f F t C t C

f F t C

f F







    

   

  

                                                                                         (4.147) 

elde edilir. Daha sonra hesaplamalara gönderme yapmak için aşağıdaki şu yararlı bağıntıları 

oluşturalım. 

2 1 2

1

,  0

1

8

1

4

1

4

R R
R

R R

G G

R R

G G

R R

G G

R R

f f
f

f f

f F C C
t t

f f

f F C
t

f f

f F

f f



 



  

    

   

  

                                                                                       (4.148) 

3i i  koşul takımı altında elde edilen tüm bağıntılar (4.50)-(4.54) e taşınırsa, 

 
 

2 2
21

2 3 2 2 2 1

1 0

2 1 3 1
4 ( )

2

m

Gn

n n C n
F G GF

t t k B t

 


  

  
     

 
                            (4.149) 

 
 

2

21

2 3

2 2 1 4 2 ( 1)( 1) 1
( )

3 3 2

m

G

n n n C n n n p
F G GF

t t


  

    
    

 
                     (4.150) 
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 2 3 2 2
21

2 3 2 2 2 1

1 0

2 5 4 2 9 2
4

3 3

m m

n

n n n C n n n p

t t k B t

 


 

      
   

 
                        (4.151) 

   
 

2 2 2
21

2 3 2 2 2 1

1 0

2 3 2 2 3 2 3 1
4 ( )

m m

Gn

n n n n n nC p
F G GF

t t k B t

 

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 (4.152) 

 
 

2 2 2
21

2 3 2 2 2 1

1 0

2 1 ( 2 3 2) 3 2
4 ( )

                                                                                                                                 (4

m m

Gn

n n C n n n p
F G GF

t t k B t

 


  

      
     

 

.153)

 

elde edilir. (4.149) ve (4.150) ifadeleri 

m mp w                                                                                                                     (4.154) 

hal denklemine taşınırsa, 

 2 2 2

1

2 3 2 2 2 1

1 0

2 2 1 6 (1 )2 2 ( 1)( 1) 9
4

1 3 3

                                                                                                                 

G n

n n n n n w C n n n n w
F GF w

w t t k B t

 

 

         
     

    

                         (4.155)

 

bulunur. 
2

1 2
8

GF t C t C


     ifadesini (4.155) eşitliğinde yerine yazarsak, F  fonksiyonunu 

( )F F t  cinsinden elde ederiz.   

 2

2

2

2 2

1 0

2 2 1 6 (1 )

2 ( 1)( 1) 9

X n n n n n w

Y n n n n w

Z w
k B



    

    



                                                                                        (4.156) 

F  fonksiyonunu daha anlaşılır bir şekilde (4.156) kısaltmalarını kullanarak aşağıdaki gibi 

yazabiliriz. 

2 1
1 2 2 3 2 1

2
4

8 1 3 3 n

CX Y Z
F Gt C Gt C G

w t t t

 

 

  
           

                                      (4.157) 
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Burada 2C G terimi topolojik invaryant olduğu için etkisi yoktur. Son olarak ( )t t G  ters 

fonksiyonu cinsinden (4.144) ifadesini, (4.157) eşitliğinde yerlerine yazarsak 

1 1 31
2 22 42 4
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2 1
31

12 4 4
1 3 2 1

2 22 4 2 4

16 ( 1) 16 ( 1)
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           4

1 3 16 ( 1) 3 16 ( 1) 16 ( 1)
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F n n G C n n G

CX Y Z
G G G

w n n n n n n











          

  
  

                   

                                                                                  (4.158)

 

bulunur. 

4.2.2.  j -Birincil Koşulu Altında Denklemlerin İndirgenmesi 

İlk olarak j -birincil koşulunu, yani 

1( ) 1 4 0G

R

fA
j C k B ve

A f
            

bağıntılarını göz önüne alalım ve bunlar ışığında 
.t ef , 

.t efp , 
. .t ef t efp  , 

. .3t ef t efp  , 

. .3t ef t efp  , 
m , R  ve G  nin, üç bilinmeyenli ölçek çarpanı içeren indirgenmiş ifadeleri 

sırasıyla daha önceki hesaplamalardan elde edilen (4.4), (4.5), (4.11), (4.12), (4.13), (4.19), 

(4.9) ve (4.10) bağıntıları olduğunu belirtelim.   

4.2.2.1. 1j j  Koşul Takımı Altında f(R,G) Modeli Tesisi 

Denklemlerimizin daha anlaşılır bir şekilde olması ve yollama yapmayı kolaylaştırmak üzere 

1j j   tutarlılık koşulunu aşağıdaki gibi tekrarlayalım. 

2             ve              4 0R GB k A f f                                                                        (4.159) 

Bu durumu altında (4.4), (4.5), (4.9) ve (4.10) eşitlikleri   



81 

 

 

 

 
2 2

. 2

2 2

2

2

1
:    +2 2

2

                         4 3     

m
t ef R

R G

R R R

G

R

fA AC A C
f Rf Gf

A AC C f f A C f

fA AC

A AC C f

 
 



 
       

 

 
  

 

      (4.160) 
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 
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    (4.161)  

2 2

2 2
2 2

2

R A C AC A

A C AC A C


                                                                                      (4.162) 

2 2

2 2
2

8

G A AC C A

A AC C C A

 
   

 
                                                                                       (4.163) 

elde edilir. (4.160)-(4.163) ifadelerini incelediğimizde iki bilinmeyen ölçek çarpanı göze 

çarpmaktadır. Bu durumda ölçek çarpanlarını aşağıdaki gibi seçelim. 

0( ) nA t A t                                                                                                                  (4.164) 

0( ) mC t C t                                                                                                                  (4.165) 

Fonksiyonel formu yukarıdaki gibi seçilen ölçek çarpanları için hesaplamalarda yollama 

yapmayı kolaylaştırmak üzere gerekli türev ifadeleri, 

 
2

1
         ,        

n nA n A

A t A t


                                                                                          (4.166) 

 
2

1
         ,        

m mC m C

C t C t


                                                                                      (4.167) 

biçimindedir. (4.164)-(4.167) bağıntıları (4.162) ve (4.163) e yerleştirilirse 
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  2 2

2 2 2

0

3 2 1

2 m

n n m mR

t C t

  
                                                                                          (4.168) 

   22

2 2 2 2 4
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1 12

8 m

n n n m mG nm

t t C t t

  
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 
                                                                  (4.169) 

olur. (4.168) ve (4.169) ifadesi ayrıntılı olarak incelenirse, bu bağıntılardan t  yi  R  ve G  

cinsinden çekebilmemiz için bir ön koşul koymamız gerekmektedir. İlk göze çarpan 1n   

şartını koyarsak (4.169) eşitliğinden  t  yi   G  cinsinden elde edebiliriz. Fakat (4.168) bağıntısı 

incelenirse bu şart altından t  yi  R   cinsinden çekemeyiz. Bu durumda bir diğer şart olabilecek 

1m   için, (4.168) ve (4.169) ifadelerinden   t   yi  R  ve G  cinsinden çekebiliriz. 1m   durumu 

altında (4.168) ve (4.169) bağıntıları incelenirse, 

1
22 2 2 2 2 2

0 0

2 2 2

0 0

3 32 2
                

C n C n
R t

C t C R

      
       

    
                                     (4.170) 

     
1

42 2 2 2

0 0

2 4 2

0 0

8 1 2 8 1 2
             

n n C n n n C n
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     
   
  

                         (4.171) 

elde edilir. 1j j  tutarlılık koşulunu aşağıda tekrarlayalım. 

2Gf K A                                                                                                                                  (4.172.a) 

2Gf K A                                                                                                                  (4.172.b) 

24Rf K A                                                                                                           (4.172.c) 

24Rf K A                                                                                                           (4.172.d) 

24Rf K A                                                                                                             (4.172.e) 

Bu bağıntılar ışığında şu yararlı ifadeler sonraki hesaplamalarda kullanılmak üzere, 

  

                   

1 1
            

4 4

R R R R

R R R R

G G G G

R R R R

f F f FA A

f F A f F A

f F f FA

f F A f F

   

     

                                                                                (4.173) 
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elde edilir. (4.160) ve (4.161) ifadelerine (4.173) bağıntıları yerleştirilirse, 

 
2

2

2

1
2

2

m

R G

R R

A A AC AC
f Rf Gf

A A AC AC f f


                                                      (4.174) 

 2 1
2

2

m

R G

R R

A A p
f Rf Gf

A A f f
                                                                       (4.175) 

bulunur. Yukarıdaki bu iki eşitlikte ölçek çarpanlarını yerlerine yazarsak, 

 
2
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2

3 2 1 1

2

m

R G

R R

n n
f Rf Gf

t f f



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                                                                           (4.176) 

  
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2

m

R G

R R

n n p
f Rf Gf

t f f


 
                                                            (4.177) 

eşitliklerine ulaşılır. (4.176) ve (4.177) ifadeleri 

m mp w                                                                                                                    (4.178) 

hal denklemine taşınırsa, 

    2
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                                                 (4.179) 

elde edilir. (4.179) eşitliğinde bilinmeyen diğer ifadeleri de t   cinsinden yazarsak, 

1
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12 0
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4                         4

                          
1
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                                              (4.180) 

elde ederiz. (4.180) ifadeleri (4.179) a taşınırsa, 
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elde edilir. Burada 1C G  terimi topolojik invaryant olduğu için etkisi yoktur. Son olarak (4.170) 

ve (4.171)  ifadelerini kullanılarak  t  yi aşağıdaki şekilde  
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
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                                                                                       (4.182) 

               

1

2X R
t

Y G

 
  
 

                                                                                                          (4.183) 

elde ederiz. (4.183) ifadesini, (4.181) eşitliğinde yerine yazarsak 
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4
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n
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K A n R G

w Y

 
   


 

   
        

       
       

                                                                              (4.184)

 

bulunur. 

4.2.2.2. 2j j  Koşul Takımı Altında f(R,G) Modeli Tesisi 

Denklemlerimizin daha anlaşılır bir şekilde olması ve yollama yapmayı kolaylaştırmak üzere 

2j j   tutarlılık koşulunu aşağıdaki gibi tekrarlayalım. 

4 =0           ve              4 0R G R GCf Cf f f                                                                (4.185) 

1C k A  durumu altında (4.4), (4.5), (4.9) ve (4.10) eşitlikleri   

 
2 2

. 2

2 2 2

1

2

2 2

1

1
:    +2 2

2

                         4 3      (4.186)

m
t ef R

R G

R R R
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A AB k A f f A B f

fA AB

A AB k A f

 
 



 
       

 

 
  

 
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 

2 2
.

2 2 2
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2 1 1
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3 3 3

1 2
                           + 2

2 3

4 4
    + 2 2 2

3 3

t ef

m

R R
R G

R R R R

G

R

A B A AB
p

A B A AB k A

f fp A B
f Rf Gf

f f A B f f

fAB A A B AB A

AB A A B f AB A





   
       

   

 
      

 

   
     

   

2

2 2

1

G

R

f

k A f

 
  
 

(4.187)  

2 2

2 2 2

1

2 2
2

R A B AB A

A B AB A k A


                                                                                      (4.188) 

2 2

2 2 2

1

2
8

G A AB B A

A AB k A B A

 
   

 
                                                                                       (4.189) 

elde edilir. (4.186)-(4.189) ifadelerini incelediğimizde iki bilinmeyen ölçek çarpanı göze 

çarpmaktadır. Bu durumda ölçek çarpanlarını aşağıdaki gibi seçelim. 

0( ) nA t A t                                                                                                                  (4.190) 

0( ) mB t B t                                                                                                                  (4.191) 

Fonksiyonel formu yukarıdaki gibi seçilen ölçek çarpanları için hesaplamalarda yollama 

yapmayı kolaylaştırmak üzere gerekli türev ifadeleri, 

 
2

1
         ,        

n nA n A

A t A t


                                                                                         (4.192) 

 
2

1
         ,        

m mB m B

B t B t


                                                                                      (4.193) 

biçimindedir. (4.190)-(4.193) bağıntıları (4.188) ve (4.189) a yerleştirilirse 

  2 2

2 2 2 2

1 0

3 2 1

2 n

n n m mR

t k A t

  
                                                                                     (4.194) 

   22

2 2 2 2 2 4

1 0

1 12

8 n

n n n m mG nm

t t k A t t

  
   

 
                                                                  (4.195) 
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olur. (4.194) ve (4.195) ifadeleri ayrıntılı olarak incelenirse, bu bağıntılardan t  yi R  ve G  

cinsinden çekebilmemiz için bir ön koşul koymamız gerekmektedir. İlk göze çarpan  1n   

şartını koyarsak, bu durum altında (4.194) ve (4.195) bağıntıları incelenirse, 

   
1

22 2 2 2 2 2 2 2

1 0 1 0

2 2 2 2 2

1 0 1 0

1 2 1 2
                

k A m m k A m m
R t

k A t k A R

       
   
  

            (4.196) 

   
1

4

4

8 1 8 1
             

m m m m
G t

t G

  
    

 
                                                          (4.197) 

elde edilir. 2j j  tutarlılık koşulunu aşağıda tekrarlayalım. 

2Gf K A                                                                                                                                  (4.198.a) 

2Gf K A                                                                                                                  (4.198.b) 

24Rf K A                                                                                                           (4.198.c) 

24Rf K A                                                                                                           (4.198.d) 

24Rf K A                                                                                                             (4.198.e) 

Bu bağıntılar ışığında şu yararlı ifadeler sonraki hesaplamalarda kullanılmak üzere, 

  

                   

1 1
           

4 4

R R R R

R R R R

G G G G

R R R R

f F f FA A

f F A f F A

f F f FA

f F A f F

   

     

                                                                                (4.199) 

elde edilir. (4.186) ve (4.187) ifadelerine (4.199) bağıntıları yerleştirilirse, 

 
2

2

2

1
2

2

m

R G

R R

A A AB AB
f Rf Gf

A A AB AB f f


                                                      (4.200) 

 2 1
2

2

m

R G

R R

A A p
f Rf Gf

A A f f
                                                                       (4.201) 

bulunur. Yukarıdaki bu iki eşitlikte ölçek çarpanlarını yerlerine yazarsak, 
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 2

2

1 1

2

m

R G

R R

m
f Rf Gf

t f f





                                                                           (4.202) 

 2 1
0

2

m

R G

R R

p
f Rf Gf

f f
                                                                                 (4.203) 

eşitliklerine ulaşılır.  (4.202) ve (4.203) ifadeleri 

m mp w                                                                                                                    (4.204) 

hal denklemine taşınırsa, 

 
2

12

1

R
G R

m wf
F Gf Rf

w t

 
    

  
                                                                             (4.205) 

elde edilir. (4.205) eşitliğinde bilinmeyen diğer ifadeleri de t   cinsinden yazarsak, 

1

2 2 0 2 0

1 22 0 2 0
2 1 1

4                         4 4

                          
1 2

n

R R

n

G G

f K A f K A nt K A

K A K A
f K A f t C t C

n





      

     


                                     (4.206) 

elde ederiz. (4.206) ifadeleri (4.205) e taşınırsa, 

 22 0 2 0
1 2 0 2

18
4

2 1

m wK A K A
F Gt C G K A R

w t


   


                                                              (4.207) 

olur. Burada 1C G  terimi topolojik invaryant olduğu için etkisi yoktur. Son olarak (4.196) ve 

(4.197)  ifadelerini kullanılarak   t   yi aşağıdaki şekilde  

 

 

2 2

1 0

2 2 2 2

1 0

8 1

1 2

X m m k A

Y k A m m 

 

   
                                                                                       (4.208) 

 

1

2X R
t

Y G

 
  
 

                                                                                                             (4.209) 

elde ederiz. (4.209) ifadesini, (4.207) eşitliğinde yerine yazarsak 
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 2 0 1

2 0

8 18

2 1

K A m wX Y Y
F K A R GR

Y w X


 

    
                                                              (4.210) 

bulunur. 

4.2.2.3. 3j j  Koşul Takımı Altında f(R,G) Modeli Tesisi 

Denklemlerimizin daha anlaşılır bir şekilde olması için 3j j  tutarlılık koşulunu aşağıdaki gibi 

tekrarlayalım. 

2Gf K A                                                                                                                                  (4.211.a) 

2Gf K A                                                                                                                  (4.211.b) 

24Rf K A                                                                                                           (4.211.c) 

24Rf K A                                                                                                           (4.211.d) 

24Rf K A                                                                                                             (4.211.e) 

Bu bağıntılar ışığında şu yararlı ifadeler sonraki hesaplamalarda kullanılmak üzere, 

                   

1 1
           

4 4

R R R R

R R R R

G G G G

R R R R

f F f FA A

f F A f F A

f F f FA

f F A f F

   

     

                                                                                (4.212) 

elde edilir. Bu koşul takımı (4.4), (4.5), (4.9) ve (4.10) eşitlikleri üzerine herhangi bir değişiklik 

getirmemektedir. Bu durumda ilk olarak (4.9) ve (4.10) eşitliklerini göz önüne alalım. 

2

2
2

A B C AB BC CA
R

A B C AB BC CA C

 
       

 
                                                                 (4.213) 

2

2
8

ABC BCA CAB A
G

ABC BCA CAB A C

 
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 
                                                                        (4.214) 

( ),  ( ) ve ( )A t B t C t  ölçek çarpanlarını aşağıdaki şekilde seçelim. 

0( ) mA t A t                                                                                                                 (4.215) 
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0( ) nB t B t                                                                                                                  (4.216) 

0( ) pC t C t                                                                                                                 (4.217) 

Fonksiyonel formu yukarıdaki gibi seçilen ölçek çarpanları için hesaplamalarda yollama 

yapmayı kolaylaştırmak üzere gerekli türev ifadeleri, 

   
2

1 1
         ,              ,          

m m mA m A A

A t A t A t

 
                                                    (4.218) 
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 
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   
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1 1
         ,                ,         

p p pC p C C

C t C t C t

 
                                                       (4.220) 

biçimindedir. (4.215)-(4.220) bağıntıları (4.213) ve (4.214) e yerleştirilirse, 
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                                             (4.222) 

elde edilir. Yukarıdaki eşitliklerden t  yi çekebilmemiz için 1p   seçimi yaparsak, 
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  (4.223) 
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      (4.224)

 

elde edilir. Şimdi elimizdeki bütün bağıntıları (4.4) ve (4.5) eşitliğinde yerine yazarsak, 
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  
 

2 2

2

2

1 41 1

3 2

m

R G

R R

m m n mn m n p
f Rf Gf

mt f f


     
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  

                      (4.226) 

eşitliklerine ulaşılır.  (4.225) ve (4.226) ifadeleri 

m mp w                                                                                                                    (4.227) 

hal denklemine taşınırsa, 
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elde edilir. (4.228) eşitliğinde bilinmeyen diğer ifadeleri de t   cinsinden yazarsak, 
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                                                              (4.229) 

elde ederiz. (4.229) ifadeleri (4.228) e taşınırsa, 
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elde edilir. Burada 1C G  terimi topolojik invaryant olduğu için etkisi yoktur. Son olarak (4.223) 

ve (4.224)  ifadelerini kullanılarak   t   yi aşağıdaki şekilde  
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elde ederiz. (4.232) ifadesini, (4.230) eşitliğinde yerine yazarsak 
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                                                                                 (4.233)

 

bulunur. 

4.2.3.  k -Birincil Koşulu Altında Denklemlerin İndirgenmesi 

İlk olarak k -birincil koşulu altında 
.t ef , 

.t efp , 
. .t ef t efp  , 

. .3t ef t efp  , 
. .3t ef t efp  , 

m , 

R  ve G  nin, iki bilinmeyenli ölçek çarpanı içeren indirgenmiş ifadelerini tesis edelim. Bunlar 

i -birincil koşulu altındaki (4.50), (4.51), (4.52), (4.53), (4.54), (4.55), (4.56) ve (4.57) 

denklemlerinin kendisidir.  

4.2.3.1. 1k k , 2k k  ve 3k k  Koşul Takımı Altında f(R,G) Modeli Tesisi 

1k k , 2k k  ve 3k k  bu üç koşul takımını ayrı ayrı incelememiz bizi aynı denklemlere 

götüreceğinden sadece içlerinden bir koşul takımı altında modelimizi oluşturmak yeterli 

olacaktır. Denklemlerimizin daha anlaşılır bir şekilde olması için  1k k   tutarlılık koşulunu 

aşağıdaki gibi tekrarlayalım. 

1Gf K A                                                                                                                                  (4.234.a) 

1Gf K A                                                                                                                  (4.234.b) 

14Rf K A                                                                                                           (4.234.c) 

14Rf K A                                                                                                           (4.234.d) 

14Rf K A                                                                                                             (4.234.e) 

Bu bağıntılar ışığında şu yararlı ifadeler sonraki hesaplamalarda kullanılmak üzere, 
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f F f FA A

f F A f F A

f F f FA

f F A f F

   

     

                                                                                 (4.235) 

elde edilir. Bu koşul takımı (4.50), (4.51), (4.56) ve (4.57) eşitlikleri üzerine herhangi bir 

değişiklik getirmemektedir. Bu durumda ilk olarak (4.56) ve (4.57) eşitliklerini göz önüne 

alalım. 

2 2
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A A B B B k B


                                                                                    (4.236) 

2 2

2 2 2

1

2
8

G A B A BB

A B k B A BB

 
   

 
                                                                                        (4.237) 

(4.236) ve (4.237) deki  ( )A t  ve ( )B t  fonksiyonlarının şeklini ( )R R t  ve ( )G G t  veya  

( )t t R  ve ( )t t G  ters fonksiyonunun çekilebilmesi mümkün olacak şekilde seçilmelidir. 

Şimdi ( )A t  ve ( )B t  ölçek çarpanlarını aşağıdaki gibi seçelim. 

0( ) nA t A t                                                                                                                  (4.238) 

0( ) mB t B t                                                                                                                  (4.239) 

( )A t  ve ( )B t  fonksiyonlarının hesaplamalarda kullanılmak üzere gerekli türevleri, 

 
2

1
         ,        

n nA n A

A t A t


                                                                                         (4.240) 

 
2

1
         ,        

m mB m B

B t B t


                                                                                      (4.241) 

biçimindedir. (4.238)-(4.241) ifadeleri sırasıyla (4.236) ve (4.237) ye yerleştirilirse, 

2 2

2 2 2 2

1 0

3 ( 1)(2 )

2 m

R m n m n

t k B t

  
                                                                                     (4.242) 
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   22 2

2 2 2 2 2 4

1 0

1 2 1

8 m

n n m n mG m

t t k B t t

  
   

 
                                                                  (4.243) 

olur. (4.242) ve (4.243) ifadeleri ayrıntılı olarak incelenirse, bu bağıntılardan t yi R  ve G  

cinsinden çekebilmemiz için bir ön koşul koymamız gerekmektedir. 1m   şartını koyarsak, bu 

durum altında (4.242) ve (4.243) bağıntıları incelenirse,  

    
1

22 2 2 22 2 2 2

1 01 0

2 2 2 2 2

1 0 1 0

2 12 1
                

n n k Bn n k B
R t

k B t k B R

        
     

 
 

      (4.244) 

   
1

2 2 2 2 2 2 4

1 0 1 0

2 2 4 2 2

1 0 1 0

8 1 ( ) 8 1 ( )
             

n n k B n n k B
G t

k B t k B G

     
    

 
                          (4.245) 

elde edilir. (4.50) ve (4.51) ifadelerine (4.235) bağıntıları yerleştirilirse, 

 2 1
2 2 2

2

m

R G

R R

A B A B A
f Rf Gf

A B A B A f f




 
       

 
                                               (4.246) 

 24 2 2 1
1

3 3 3 2

m

R G

R R

A B A A B A p
f Rf Gf

A B A A B A f f


 
         

 
                                  (4.247) 

bulunur. Yukarıdaki bu iki eşitlikte ölçek çarpanlarını yerlerine yazarsak, 

  
 2

2

4 1 1

2

m

R G

R R

n n
f Rf Gf

t f f




 
                                                                           (4.248) 

 
2

2

2

7 11 4 1

3 2

m

R G

R R

n n p
f Rf Gf

t f f


 
                                                               (4.249) 

eşitliklerine ulaşılır.  (4.248) ve (4.249) ifadeleri 

m mp w                                                                                                                    (4.250) 

hal denklemine taşınırsa, 
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    2

2

7 11 4 3 4 12

1 3

R
G R

n n n n wf
F Gf Rf

w t

      
   

   

                                             (4.251) 

elde edilir. (4.251) eşitliğinde bilinmeyen diğer ifadeleri de t   cinsinden yazarsak, 

1

1 1 0

11 0
1 1

4                         4

                          
1

n

R R

n

G G

f K A f K A nt

K A
f K A f t C

n





    

   


                                                        (4.252) 

elde edilir. (4.252) ifadeleri (4.251) e taşınırsa, 

    2

1 1 31 0 1
1 1 0

7 11 4 3 4 18
4

1 3 1

                                                                                                                                  

n n n
n n n n wK A K n

F Gt C G K A nt R t
n w

  
      
    

   

(4.253)

 

burada 1C G  terimi topolojik invaryant olduğu için etkisi yoktur. Son olarak (4.244) ve (4.245)  

ifadelerini kullanılarak   t   yi aşağıdaki şekilde  

 

 

2 2 2

1 0

2 2 2 2

1 0

8 1 ( )

2 1

X n n k B

Y n n k B





  

    
 

                                                                                     (4.254)  

1

2X R
t

Y G

 
  
 

                                                                                                              (4.255) 

elde edilir. (4.255) ifadesini, (4.253) eşitliğinde yerine yazarsak 

    

1 1
1 1 1 1

2 2
1 0 2 2 2 2

1 0

3
2 3 3

2
1 2 2

4
1

7 11 4 3 4 18
                       

3 1

n n
n n n n

n
n n

K A X X
F R G K A n R G

n Y Y

n n n n wK n X
R G

w Y

 
   


 

   
    

    

        
   

    

     (4.256) 

bulunur. 
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4.3. BİANCHİ-TİP I METRİĞİ İÇİN  f(R,G) GRAVİTE DENKLEMLERİ 

Uzayca homojen ve eşyönsüz evren modelleri sınıfından olan Bianchi-Tip I modelinin metrik 

ifadesi   

 
2 2 2 2 2 2 2 2( ) ( ) ( )ds dt A t dx B t dy C t dz                                                                      (4.257) 

biçimindedir. Bianchi-Tip I modeli için § 3.2.2. ve § 3.2.3.deki yöntemlerle bileşenler cinsinden 

yazılan alan denklemlerini (4.257) metriği için Ek B Bianchi-Tip I kısmında verilen (B.1)-(B.4) 

de kinematik ve geometrik özellikler ile Ek C deki bağıntılar kullanılarak, ölçek çarpanları ile 

( , )f R G  fonksiyonunun  zamansal  türevleri cinsinden açık bir şekilde ifade edilecektir. Fakat 

standard maddeye bağlanan enerji-momentum tansörünün (3.49) ile verilmiş genel şekli, 

belirlenmesi gereken 10 adet bilinmeyen dinamik değişken içermektedir. Bu zorluğu ortadan 

kaldırmak için, nispeten basit bir çalışma hipotezi olarak, standard maddenin enerji-momentum 

tansörünü (3.50) deki gibi mükemmel akışkanınki olarak kısıtlayacağız. Ancak, böyle bir 

kısıtlamanın alan denklemlerinde herhangi bir çelişkiye ya da tutarsızlığa yol açıp açmayacağı, 

incelenmesi gereken bir konu oluşturacaktır ve bu da, tutarlılık koşulları olarak öncelikli olarak 

ele alınacaktır. 

4.3.1. Birinci Yönteme Göre f(R,G) Alan Denklemleri 

Mükemmel akışkan için hal denklemi 0mq   ve 0m

   şeklinde alındığında, yukarıda 

söylenen yol izlenerek § 3.2.2. deki alan denklemlerini aşağıdaki şekillere indirgenebilecekleri 

kolayca görülebilir. 

2

00

1
( )

2

12

m

R
R G

R R R

G

R

fAB BC CA A B C
G f Rf Gf

AB BC CA f f A B C f

fABC

ABC f




 
          

 



                 (4.258) 

2

11

1
( )

2

4 4

m

R R
R G

R R R R

G G

R R

f fB C BC p B C
G f Rf Gf

B C BC f f B C f f

f fBC CB BC

BC CB f BC f


 

           
 

 
   

 

               (4.259.a) 
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22
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R G

R R R R

G G

R R

f fC A CA p C A
G f Rf Gf

C A CA f f C A f f

f fCA AC CA

CA AC f CA f


 

           
 

 
   
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                  (4.259.b) 

2

33

1
( )

2

4 4

m

R R
R G

R R R R

G G

R R

f fA B AB p A B
G f Rf Gf

A B AB f f A B f f

f fAB BA AB

AB BA f AB f


 

           
 

 
   

 

                  (4.259.c) 

01

02

03

0 0

0 0

0 0

G

G

G

 

 

 

                                                                                                            (4.260.a,b,c) 

12

23

31

0 0

0 0

0 0

G

G

G

 

 

 

                                                                                                               (4.260.d,e,f) 

Bu denklemler, bu durumlarıyla ele alındığında, amacımıza uygun kullanıma elverişli 

bulunmamaktadır. Bunlardan, eğer varsa, hangilerinin bağımsız denklem olduğu ilk bakışta 

anlaşılamamaktadır. Öte yandan, mesela (4.259.c) denklemi (
33G -denklemi) göz önüne 

alındığında, bunda ( )C t  ölçek çarpanının yer almadığı derhal göze çarpmaktadır. Benzer 

şekilde 
11G -denkleminde ( )A t ; 

22G -denkleminde de ( )B t  ölçek çarpanı bulunmamaktadır. Bu 

durum, döngüsel simetriye sahip söz konusu denklemlerin bir tür kombinasyonlarını almak 

gerekliliğini düşündürtmektedir. Ancak bu, biraz da deneme-yanılma yöntemine dayalı bir iş 

olduğundan biz bu işe girişmeyeceğiz. Kaldı ki, aşağıda uygulayacağımız  § 3.2.3 deki 1+3 

kovaryant ayrışım yöntemi bu işi kendiliğinden gerçekleştirecektir. 

4.3.2. İkinci Yönteme Göre f(R,G) Alan Denklemleri 

(3.58)-(3.61) denklemlerinin; ölçek çarpanları ile ( , )f R G fonksiyonunun türevleri cinsinden 

yazılımları, Ek B  ve de (3.50) olarak belirtilen girdiler yine kullanılarak aşağıdaki gibi bulunur:  

(3.58) ve (3.59) denklemlerinin karşılıkları, sırasıyla .t ef ve .t efp  ile etiketlendireceğimiz şu 

denklemler olurlar: 
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 . 2 1 1
  :     
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
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 
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  
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   (4.261)
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      
          

      

   
     

    

.262)

 

(3.60) denklemleri ise özdeş olarak sıfır olan aşağıdaki denklemleri verir.  

.

1

.

2

.

3

: 0 0

: 0 0

: 0 0     

t ef

t ef

t ef

q

q

q







                                                                                                  (4.263.a,b,c) 

(3.61) denklemlerinin karşılıkları da, düzenlendiklerinde, denklemlerin sağ tarafları .t ef

 leri 

göstermek üzere: 

.

11

1 2 1 2 1 1 2
:    

3 3 3

4 2 2
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A B C AB BC CA A B C
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    
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4 2
                                                                                (4.264.a)
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                                                                               (4.264.b)
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                                                                            (4.264.c)
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








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                                                                                                   (4.264.d,e,f) 

olur. Şimdi, (4.264) deki üç denklemden hareketle, taraf tarafa çıkarmalarla aşağıdaki şu 

düzenlenmiş üç yardımcı denklemi oluşturalım ve bunların düzenlenmiş şekillerini de ‘ ’ 

sembolleriyle etiketliyelim: 
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                                                                 +4 0    
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33 11 :     4  

                                                                    4
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Bianchi-Tip I modeli için Ek B (B.4) de yazmış olduğumuz Ricci skaleri ile Gauss-Bonnet 

teriminin ifadelerini, bütünlüğü sağlamak üzere aşağıda tekrarlayalım: 

2
A B C AB BC CA

R
A B C AB BC CA

 
      

 
                                                                   (4.266) 

8
ABC BCA CAB

G
ABC BCA CAB

 
   

 
                                                                                (4.267) 

 Yine, ilerideki bazı kullanımlarımız için  . .t ef t efp    ve  . .3t ef t efp   . .3t ef t efp   

birleştirmelerini de oluşturalım; 

. .t ef t efp    : 

2

2 2

3 3

1 1
                      

3

4
                          +

3

m m

R R

R R

A B C AB BC CA

A B C AB BC CA

p A B C
f f

f f A B C

A B C B C A C A B

A B C B C A C A B




   
        

   

   
       

  

   
       

   

9

4
                          

3

G

G

ABC
f

ABC

AB BC CA
f

AB BC CA

  
  

  

   
     

    

               (4.268) 

. .3t ef t efp    : 
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2 3 1
2 + 3

3
                             +4

               

m m

R G R R

R R

G

A B C p A B C
f Rf Gf f f

A B C f f A B C

A B C B C A C A B ABC
f

A B C B C A C A B ABC




    
            

   

      
           

      

              + 4 G

AB BC CA
f

AB BC CA

   
    

    

         (4.269) 

. .3 :   t ef t efp   

 

2 3
2 2

1
                                        2 +3 3

                                        +4

m m

R

R G R R

R

A B C AB BC CA p

A B C AB BC CA f

A B C
f Rf Gf f f

f A B C

A B

A B




     
         

   

  
       

  

 3

                                        + 4                                     

G

G

C B C A C A B ABC
f

C B C A C A B ABC

AB BC CA
f

AB BC CA

      
          

      

   
    

    

(4.270) 

Şimdi, bir de; mükemmel akışkan olarak alınacak sıradan madde için, (3.56 ) daki 0b m

abT   

korunum denkleminden hareketle elde edilebilecek 

  0m m mA B C
p

A B C
 

 
     
 

                                                                                         (4.271) 

korunum denklemini yazalım (detaylı bilgi için (4.14)-(4.19) eşitliklerine bakınız).  

4.3.3. Tutarlılık Koşulları 

Evrenin sıradan madde-enerji içeriğinin yalnızca ( )m t  madde-enerji yoğunluklu ve ( )mp t

basınçlı bir mükemmel akışkan ile tasvir edilmesi ya da başka bir deyişle, akışkanın enerji-

momentum tansöründe hal denklemi olarak 0mq   ve 0m

   ( , ,... 1, 2,3   ) varsayılması, 

alan denklemlerinin 
0G  ve G  bileşenlerinin söz konusu varsayım ile tutarlı olup olmayacağı 

sorununu ortaya çıkarmaktadır. Aşağıda, mükemmel akışkan varsayımı ile tutarlılık anlamında 

bu sorun incelenecektir. 
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Önce (4.265.a) denklemlerini ele alalım. 

   4 4 0R G R G

A B A B d
Cf Cf Cf Cf

A B A B dt

   
        

   
                                             (4.272.a) 

olur. Benzer şekilde, (4.265.b) ve (4.265.c) denklemleri de, sırasıyla, 

   4 4 0R G R G

B C B C d
Af Af Af Af

B C B C dt

   
        

   

                                                  (4.272.b)   

   4 4 0R G R G

C A C A d
Bf Bf Bf Bf

C A C A dt

   
        

   
                                             (4.272.c)  

şeklinde yazılabilir. (4.272.a) nın ilk bakışta şu durumlar için sağlandığı görülmektedir:  

( )ii B A                                                                                                                     (4.273) 

( ) 4 0R Gjj Cf Cf                                                                                                        (4.274) 

( ) 4 0R Gkk B A ve Cf Cf                                                                                      (4.275)   

Bunlar ‘’Birincil koşullar’’ımız olacaktır. Şimdi, ( )ii  koşulu altında (4.272.b) ve (4.272.c) 

denklemlerine bakalım. (4.272.b) denklemi   

   4 4 0R G R G

A C A C d
Af Af Af Af

A C A C dt

   
        

   
                                                     (4.276) 

ve diğeri de bunun ters işaretlisi olur. (4.276) nın sağlanması ise şu ikincil koşullar altında olur:  

1( )ii C A                                                                                                                          (4.277) 

2( ) 4 0R Gii Af Af                                                                                                            (4.278) 

3( ) 4 0R Gii C A ve Af Af                                                                                           (4.279) 
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Şimdi sırayla ( )ii  ile bu ikincil koşulları birleştirelim. 1( )ii  birleştirilmeden A B C   koşulu 

ortaya çıkar ve bu durum için Rf , Gf  ve türevleri üzerine hiç bir koşul gelmez. ( )ii  ile 2( )ii  

birlikte göz önüne alındığında ise B A ve 4 0R GAf Af   koşulları oluşur. İkinci bağıntının 

Rf  veya  Gf   yi, ve dolayısıyla da bunların nokta türevlerini kısıtladığı görülmektedir. Bu koşul 

altında B C olmasının gerekmediği anlaşılmaktadır. ( )ii  ile 3( )ii  ün birleştirilmesi ise 

A B C   ye ek olarak önceki durum gibi Rf  ve Gf  türevleri üzerine kısıtlama getirmektedir. 

Şimdi ( )jj  ile 1( )ii , 2( )ii  ve 3( )ii  ikincil koşulların birleştirilmesine bakalım. ( )jj  ile bu 

üçünün birleştirilmesinin tek bir C A  ve 4 0R GCf Cf   koşulunu verdiğini görmek 

kolaydır. Bu durumda B A  olması gerekmediğinden geri kalan denklemler ( )A t  ile ( )B t

ölçek çarpanlarının ikisini de içerecektir. 

Şimdi de ( )kk  ile 1( )ii , 2( )ii  ve 3( )ii  ikincil koşulların birleştirilmesine bakalım. Buradaki söz 

konusu üç birleştirmenin de aynı bir A B C   koşulunu, fakat buna ek olarak da 

4 0R GAf Af   kısıtlamasını getirdiği kolayca görülebilir.  

Son olarak, (4.273)-(4.275) birincil koşularına, bunlardan farklı mahiyette olan iki koşul daha 

ortaya koymak mümkün görünmektedir; o da (4.272.a) ile (4.272.b)  denklemlerinin bizzat 

kendileridir. Gerçekten de A B C   varsaymadan ve de 4 0R GCf Cf   (keza: 

4 0R GAf Af   ve 4 0R GBf Bf  ) olmak kaydıyla, (4.272.a) ve (4.272.b) denklemleri 

düzenlenip de integre edildikten sonra 1M  ve 2M  keyfi iki integrasyon sabiti olmak üzere 

   14R GAB BA Cf Cf M      ve      24R GBC CB Af Af M                              (4.280) 

şeklinde bir koşul olarak ifade edilebilir. Bu iki bağıntıdan oluşan koşul altında (4.272.c) 

denkleminin de özdeş olarak sağlanacağını teorik olarak bilmekle birlikte bu pek aşikâr 

görünmemektedir. Ancak, söz konusu bağıntılar taraf tarafa toplanır ve parantez açılımı da 

yapılıp düzenlenirse, sonuçta, 1 2 3 0M M M    olmak üzere    34R GAC CA Bf Bf M    

bulunur ki, bu, (4.272.c) nin (4.272.a) ve (4.272.b) gibi düzenlenmiş şeklinden başka bir şey 

değildir. Tablo 4.2 de yukarıdaki tutarlılık koşullarını topluca göstermekteyiz. 
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Tablo 4.3 : Bianchi-Tip I Modeli İçin Tutarlılık Koşulları 

1 2 3

                          ( )

( )                               ( ) 4 0                     ( )     4 0

          ( )              

                    

R G R G

ii B A

ii C A ii Af Af ii C A ve Af Af

A B C B C gerekmez A B C



     

    

1 2 3

    ( ) 4 0

( )                          ( ) 4 0                 ( )   4 0

                                                 

                                

R G

R G R G

jj Cf Cf

ii C A ii Af Af ii C A ve Af Af

Hepsi için

 

     

1 2

                        4 0

                                                           ( )

                     ( )   4 0

( )                             ( )

R G

R G

C A ve Cf Cf

B A gerekmez

kk B A ve Cf Cf

ii C A ii Af

  



  

 34 0                      ( )      4 0

                                                            4 0

R G R G

R G

Af ii C A ve Af Af

Hepsi için

A B C

Af Af

    

 

 

 

 

4.4. BİANCHİ-TİP I İÇİN  f(R,G)  MODELİ TESİSİ 

Öncelikle (4.265) ve dolayısıyla da (4.264) denklemlerinin mükemmel akışkan varsayımı ile 

tutarlılıklarının sağlanması gerekliliğinin yol açtığı yukarıdaki kısıtlamaların, geri kalan alan 

denklemleri ile bağıntılara yansımasını ele alalım. Tutarlılık koşul takımları şu şekildedir: 

1 2 3 1 2 3 1 2 3,  ,  ,  ,  ,  ,  ,   ve  ii ii ii ii ii ii jj ii jj ii jj ii kk ii kk ii kk ii         . Belirtilen koşul 

takımları altında açıkça görüldüğü üzere 
.t ef , 

.t efp , 
. .t ef t efp  , 

. .3t ef t efp  , 
. .3t ef t efp  , 

m , R  ve G  nin,  ölçek çarpanları içeren indirgenmiş ifadeleri sırasıyla (4.261), (4.262), 

(4.268), (4.269), (4.270), (4.271), (4.266) ve (4.267) bağıntılarının kendileridir. Bu durum 

altında tüm koşul takımları için tek bir çözüme gitmemiz yeterli olacaktır. Şimdi (4.261) 

eşitliğini aşağıda tekrarlayalım. 
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 . 2 1 1
  :     

2

12
                                                                     +                          

m
t ef

R G R

R R

G

AB BC CA A B C
f Rf Gf f

AB BC CA f f A B C

ABC
f

ABC


 

 
           

  

  
  

  
     (4.281)

 

(4.281) eşitliliği ayrıntılı olarak incelenirse, ölçek çarpanları üzerine herhangi bir kısıtlama veya 

öngörüde bulunmadan önce, ( , )f R G  fonksiyonunu   ile 0   olan gerçel bir sayı ve ( )F G  

ile de G  nin keyfi bir fonksiyonu gösterilmek üzere 

( , ) ( )f R G R F G                                                                                                   (4.282) 

şeklinde özel bir form göz önüne alalım [45,46]. Bu durumda,  

0Rf Sabit               0Rf     ve    0Rf                                                        (4.283) 

G GG GGf f G F G                                                                                                        (4.284) 

olur. (4.282)-(4.284) bağıntıları (4.281) e yerleştirilirse, 

 21 1 12
( )

2

m

G GG

AB BC CA ABC
F G GF F G

AB BC CA ABC
 



 
      

 
                                      (4.285) 

elde edilir. Şimdi ( ),  ( )  ve  ( )A t B t C t  ölçek çarpanlarının fonksiyonel formunu aşağıdaki gibi 

seçelim: 

 1

0( )
p

A t A t                                                                                                                (4.286) 

2

0( )
p

B t B t                                                                                                                  (4.287) 

3

0( )
p

C t C t                                                                                                                  (4.288) 

Fonksiyonel formu yukarıdaki gibi seçilen ölçek çarpanları için hesaplamalarda yollama 

yapmayı kolaylaştırmak üzere gerekli türev ifadeleri, 

 1 11

2

1
         ,        

p ppA A

A t A t


                                                                                         (4.289) 
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 2 22

2

1
         ,        

p ppB B

B t B t


                                                                                      (4.290) 

 3 33

2

1
         ,        

p ppC C

C t C t


                                                                                      (4.291) 

biçimindedir. (4.289)-(4.291) bağıntıları (4.267) e yerleştirilirse 

4

1 2 3 1 2 38 ( 3)G p p p p p p t                                                                                   (4.292) 

4

sG t                                                                                                                       (4.293) 

1 2 3 1 2 38 ( 3)s p p p p p p                                                                                        (4.294) 

olur ve (4.292)-(4.294) bağıntıları ışığında şu yararlı ifadeler sonraki hesaplamalarda 

kullanılmak üzere 

4 5                  4s sG t G t                                                                                  (4.295) 

51 1 1
4 4 4 4               4  s st G G G 



                                                                         (4.296) 

olur. Şimdi korunum denklemini, yani (4.271) bağıntısı ele alıp incelersek  

  0m m mA B C
p

A B C
 

 
     
 

                                                                                         (4.297) 

sıradan (normal) maddenin w sabit  olmak üzere  

m mp w                                                                                                                       (4.298) 

şeklinde lineer bir barotropik hal denklemine uyduğu varsayımı altında (4.297) denklemi  

 1 0m mA B C
w

A B C
 

 
     

 
                                                                                           (4.299) 

şeklini alır ve bu da 

 ln 1 ln( )md d
w ABC

dt dt
     
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yazıldığında, kolayca integre edilerek 

(1 )( )m wABC                                                                                                           (4.300) 

verir. Orantı katsayısını belirlemek üzere; başlangıç koşulu olarak, 
0t t  şimdiki kozmik 

zamanında  , ,m A B ve C  nin şimdiki değerleri 0 0 0 0, ,m A B ve C  ile gösterilirse 

(1 )

0 0 0 0( )m wA B C                                                                                                                  (4.301) 

olur ve dolayısıyla da, sonuçta, (4.286)-(4.291) bağıntıları ışığında korunum denkleminin 

çözümü için  

(1 )

0

0 0 0

( )

w

m m A B C
t

A B C
 

 

 
  

 
                                                                                                 (4.302) 

1 2 3( )(1 )

0( )
p p p wm mt t     

                                                                                              (4.303) 

elde edilir. Elde edilen tüm bağıntılar (4.285) e taşınırsa 

 
51 2 3

4

1
4

1
( )(1 )

4
21 2 2 3 3 1 1 2 3

02 3

121 1 4
( )

2

                                                                                                    

p p p w

m

G GG

s s

p p p p p p p p pG G
F G GF F

t t
 

  

   
     

      
    

 

                                       (4.304)

 

1 2 3

1
( )(1 )

2 2 4
1 2 3 0

1 2 2 3 3 1

48 ( )1 1
( ) ( ) 0

2 2

                                                                                                                  

p p p w
m

GG
G

s s s

F G p p pG G
F G F G p p p p p p

 


   

  

 
       

 

                          (4.305)

 

bulunur. Bu diferansiyel denklemin genel çözümü, 

1 2 3
1 2 3

1 1
( )(1 )

4 4 4
1 2( )

p p p
p p p w

s swF G C G C G C G C G
 

   

                                                    (4.306) 

burada 

8 sG G                                                                                                                 (4.307) 
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olmak üzere diğer katsayılar aşağıdaki gibidir. 

1 2 2 3 3 1 1 2 3

1 2 3

( )( 3)1

2 ( 3)
s

p p p p p p p p p
C

p p p

     
 

  
 

 
1 2 3 1 2 3

3 1
2 ( )(1 ) ( )(1 )

24 4
1 2 3 0

2

1 2 3 1 2 2 3 3 1

2 3 ( 3)

1
4 ( )(19 15 ) ( )(4 7 3 )

3

p p p w p p p w

sw

p p p
C

p p p w p p p p p p w w

  
       

   


        
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5. TARTIŞMA VE SONUÇ 

Genel anlamıyla kozmoloji, evrenin gözlenebilir özelliklerini anlamayı zaman içindeki 

evrimine açıklık getirmeyi amaç edinmiş bir bilim dalıdır. Bu maksatla, spektroskopiden 

parçacık fiziğine kadar fiziğin birçok alt dalından faydalanılarak, tarih boyunca bu disipline ait 

çeşitli teoriler öne sürülmüştür. Şüphesiz ki evrenin tam bir izahının yapılabilmesi için ortaya 

atılmış öneriler arasında, Einstein’ın Genel Rölativite Teorisi (GRT) büyük bir önem 

taşımaktadır. 1915 yılında öne sürülen bu teori, modern kozmolojinin temelini oluşturmakta 

olup, gelişen gözlem teknoloji ve yöntemlerle elde edilen yeni bilgiler ışığında, ortaya atıldığı 

zamandan bugüne, bizzat Einstein’ın kendisi de dâhil olmak üzere, birçok bilim insanı 

tarafından modifiye edilmiştir. 

Kozmoloji tarihinde dönüm noktası olan GRT’nin öne sürüldüğü dönem de, evrenin durağan 

ve sonlu olduğunun yaygın kabulü, teori için birtakım sıkıntılar ortaya çıkarmaktaydı. Herhangi 

bir madde-enerji dağılımının bulunmaması durumunda, yerel bölgede bir gravitasyonun 

oluşmaması, ayrıca durağan bir evrenin, gravitasyonel etkileşimlere yenik düşerek çökmesi 

gerekmekteydi. Bu gibi sorunlar Einstein’ı, alan denklemlerinin madde ile ilgili bölümüne bir 

terim eklemeye itmiştir. Bu terim   parametresi veya Kozmolojik Sabit olarak adlandırılır. 

Her ne kadar bu öneri Einstein tarafından beyhude bir girişim olarak düşünülmüş olsa da 1929 

yılında yapılan gözlemler sayesinde tespit edilen galaksilerin presesyon hareketi, kozmolojik 

sabitin gerekliliğini tekrar ortaya koymuştur. Ve bu sabit evrenin genişlemesinin izahı olarak 

denklemdeki yerini almıştır. 

Fakat son dönem geniş ölçekli gözlem sonuçları bize, evrenin ivmelenerek genişlediği bir 

döneme geçiş yaptığını göstermektedir. Sadece sıradan madde-radyasyon ile dolu bir evren 

modeli ile bu durum tam olarak izah edilememektedir. Buna ek olarak, evrenin genişlemesinden 

sorumlu tutulmuş olan   parametresinin fiziksel yorumu da dinamik bir evreni tarif etmekte 

yetersiz kalmaktadır. Ayrıca Einstein alan denklemleri, güneş sistemi gibi daha düşük enerjili 

gravitasyon alanların çözümü için gayet tutarlı olması fakat izahında yüksek mertebeden 

eğriliklere ihtiyaç duyulan sistemlerin ve evrende meydana gelen bir takım olayların 

açıklanmasında yetersiz kalması, bilim insanlarını bir kez daha alternatif bir teori armaya ya da 

GRT’nin alan denklemlerinde değişiklik yapmaya itmiştir. 
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Bu amaçla, ( , )f R G -gravite teorisini, uzayca homojen ve eşyönsüz modeller sınıfından 

Bianchi-Tip I ve Bianchi-Tip III modelleri çerçevesinde, evrenin normal (standard) madde-

enerji içeriğinin lineer barotropik hal denklemli bir mükemmel akışkan olduğu varsayımı 

altında ele aldık. Matematiksel hesaplanabilme sağlaması bakımından söz konusu modeller 

dönmesiz ve ortogonal tipten alınarak, yani metrikler köşegensel olup yalnızca üç bilinmeyen 

ölçek çarpanı içermektedir. Bianchi-Tip I modeli en basit eşyönsüz model olup, aynı zamanda 

da uzayca düz eşyönlü RW modelini içermektedir. Bianchi-Tip III modeli ise hiçbir şekilde bir 

RW modelinin (düz, açık ve kapalı) genelleştirmesini oluşturmamaktadır. Efektif akışkan 

yaklaşımı altında alan denklemlerini eşhareketli bir ortonormal tetrad çatısında hesaplayıp, 

bunların çözümleri olan ölçek çarpanlarıyla birlikte ( , )f R G  nin fonksiyonel formlarını tesis 

ettik. Bu işi, literatürde çok az sayıda yapılmış benzer amaçlı çalışmalardan farklı bir biçimde 

ele aldık. Bunlarda yapıldığı üzere, peşinen amaca yönelik (ad hoc) önçözümler (anzats) 

varsaymak yerine; önce evrenin madde-enerji içeriğinin eşyönlü bir mükemmel akışkan olarak 

varsayılması altında alan denklemlerinin bu kısıtlama ile ayrıntılı bir şekilde Bianchi-Tip III, 

Bianchi-Tip I modelleri için tutarlılık koşullarını belirledik ve sonrasında önçözümleri tesis 

ettik. 
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EKLER 

EK A. ROBERTSON-WALKER: 

2 2 2 2 2 2 2 2 2( ) ( )( sin ]kds c dt a t dr f r d d        
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 Komütasyon fonksiyonları ve Ricci dönme katsayıları (‘nokta’ ve ‘üssü’ yazılışları, 

sırasıyla, t  kozmik zamanına ve r  koordinatına göre türevleri göstermektedir): 
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 Genişleme Tansörü, genişleme skaleri ve makaslama tansörü: 
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  Riemann ve Ricci eğrilik tansörleri, Rici eğrilik skaleri, Gauss-Bonnet terimi (Sıfırdan   

farklı bileşenler yazılmıştır): 
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EK B. BIANCHI-TİP I: 
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 Komütasyon fonksiyonları ve Ricci dönme katsayıları:  
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                                                (B.2) 

 Genişleme Tansörü, genişleme skaleri ve makaslama tansörü: 

2 0 00 0

1
0 0 ,    0 2 0

3

0 0 0 0 2

ab ab

A B CA

A B CA

B A B C

B A B C

C A B C

C A B C

 

  
   

  
  

      
  
  

    
   

      (B.3) 

A B C

A B C
                                                                                                                     (B.3) 

2

2 2 2
2

2 2
2 2 2

A B C AB BC CA

A C AB BC CAB
                                                                            (B.3) 

2

2 2 2
2

2 2

1 1

2 3

ab

ab

A B C AB BC CA

A C AB BC CAB
  

 
       

 
                                                    (B.3) 

 Riemann ve Ricci eğrilik tansörleri, Rici eğrilik skaleri, Gauss-Bonnet terimi (Sıfırdan 

farklı olan bileşenler yazılmıştır) : 

0101 0202 0303

1212 1313 2323

, ,

, ,

A B C
R R R

A B C

AB CA BC
R R R

AB CA BC

     

  

                                                                    (B.4) 
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00 00

11 11

22 22

33 33

A B C AB BC CA
R G

A B C AB BC CA

A AB AC B C BC
R G

A AB AC B C BC

B BA BC C A CA
R G

B BA BC C A CA

C CA CB A B AB
R G

C CA CB A B AB

      

      

      

      

                                           (B.4) 

2
A B C AB BC CA

R
A B C AB BC CA

 
      

 
          8

ABC BCA CAB
G

ABC BCA CAB

 
   

 
                  (B.4) 
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EK C. BAZI YARARLI BAĞINTILAR: 

 Yalnızca t zamanına bağlı bir skaler ( )t   skaler fonksiyonunun kovaryant 

türevlerinin tetrad bileşenleri ( ( )t  , ( )R Rf f t  ve ( )G Gf f t  fonksiyonlarının yerini 

tutmaktadır): 

0

0 0 0 0 00 0

0

1 1 11

0

0 2 2 22

0 0

3 3 33

( ) c

a b a b ab c

c

a b ab c

a b ab

e e e
e

e e e

e e e

   
  

 
 

 
 

 

     
      

    
   

           

                         (C.1) 

0 0 0

0 0 0 0 0

0 0

0 0

0

0 0 0

,

                                                        

a ac a b ac bd

b c b c d



  

 

 

  

    

   

   
      

   

   

          
 
          

            
          

           

                                                                                     (C.2)

 

0 0 1 1 2 2 3 3

0 0 0

11 22 33

( )

( )                             (C.3)

b ab

b a b         

 

               

     
 

Bianchi-Tip I ve III için: 

0 0 0

11 22 33, ,

                                                                                                    (C.4)

A B C A B C

A B C A B C
  

 
           

   

RW için:      
0 0 0

11 22 33 3
a a

a a
                                                       (C.5) 

 Ricci tansörünün tetrad gösterimleri arasındaki bağıntılar: 

0 00

0 00 00

0

0 0 0

0 0

0 0

0

,b bd ab ac bd

a ad cd

R R R R

R R R R
R R R R

R R R R

R R R R

 

 



  

 

  

  

    
 

    
    

    
     

                            (C.6) 

Koordinatlar : 
0 1 2 3( , , , ) ( , , , )x x x x ct r    
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Metrik tansör ve tersi (geçici olarak c=1 alınmıştır 
0x ct t  ): 

2

2 2

2 2 2

1 0 0 0

0 0 0
( )

0 0 0

0 0 0 sin

i j

k

k

a
g

a f

a f 

 
 
 
 
 
 

 , 

2

2 2

2 2 2

1 0 0 0

1
0 0 0

1( )
0 0 0

1
0 0 0

sin

i j

k

k

a

g

a f

a f 

 
 
 
 
 
 
 
 
 
 
 

    (C.7) 

Christoffel Sembolleri (‘nokta’ ve ‘üssü’ yazılışları, sırasıyla, t  kozmik zamanına ve r  

koordinatına göre türevleri göstermektedir.Sıfırdan farklı olanlar yazılmıştır) : 

0 1 1 2 2 3 3

11 01 10 02 20 03 30

' '
0 2 1 ' 2 2 3 3

22 22 12 21 13 31

0 2 2 1 ' 2 2 3 3

33 33 33 23 32sin sin cos sin cot

k k
k k k

k k

k k k

a a a
aa

a a a

f f
aaf f f

f f

aaf f f    

             

            

           

     (C.8) 

Riemann tansörünün bileşenleri ( kullanılarak diğer sıfırdan farklı olanlar bulunabilir) :   

2 2 2

0101 0202 0303

2 2 2 2 2 2 2 2 4 2 2

1212 1313 2323

, , sin

( ) , sin ( ) , sin ( )

k k

k k k

R aa R aaf R aaf

R a f a k R a f a k R a f a k



 

     

     
       (C.9)   

Ricci tansörünün bileşenleri (diğerleri=0) : 

2
2 2 2 2

00 11 22 11 33 112 2
3 , ( 2 2 ) , , sink k

a a a k
R R a R f R R f R

a a a a
              (C.10) 

Ricci skaler eğriliği ve Gauss-Bonnet eğrilik invaryantı (
24ijkl ij

ijkl ijG R R R R R    ) : 

2 2

2 2 2 2
6( ) 24 ( )

a a k a a k
R G

a a a a a a
                                                                 (C.11) 

Einstein tansörünün bileşenleri (diğerleri=0) : 

   
2

00 2 2
3( )

a k
G

a a
  ,  

2
2

11 2 2
( 2 )

a a k
G a

a a a
    , 

2

22 11kG f G  ,   
2 2

33 11sinkG f G             (C.12) 



121 

 

 

 

Enerji-momentum tansörü (mükemmel akışkan ve 
0

0

i i

i iu u        alarak) : 

( )ij i j ij i jT u u p g u u           

2

2 2

2 2 2

0 0 0

0 0 0

0 0 0

0 0 0 sin

i j

k

k

pa
T

pa f

pa f





 
 
 
 
 
 

                   (C.13)  

Einstein alan denklemleri ( 1c   durumuna düzeltilmiş Friedmann-Lemaître-Robertson-

Walker (FLRW) denklemleri) :  

2 2
2 2 2

2 2
3( )

a kc
c c

a a
               (C.14) 

2 2
2 2 2

2 2
2

a a kc
c c p

a a a
                                                                                        (C.15) 

Bu ikisinin kombinasyonu,  Raychudhuri denklemini verir. Öte yandan, yine bu ikisinden  

3 ( ) 0
a

p
a

                                                                                                              (C.16) 

bulunur ki, bu da, korunum denklemi olup madde–enerjinin korunduğunu ifade eder. Bu son üç  

denklem Standard Rölativist Kozmoloji’nin temellerini oluşturur. 
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