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OZET

DOKTORA TEZi

YUKSEK MERTEBEDEN EGRILIKLIi KUTLECEKIM KURAMLARINDA
HOMOJEN EVREN MODELLERININ VARLIGININ ARASTIRILMASI

Selcuk GULER

istanbul Universitesi
Fen Bilimleri Enstitiisii

Fizik Anabilim Dah

Damisman : Do¢. Dr. Ertan GUDEKLI

Bu tez’de, f(R,G)-gravite diye adlandirilan yiiksek mertebeden kiitlecekim teorilerinde
uzayca ve de uzay-zamanca homojen evren modellerinin varligmni, f(R,G)-gravite
fonksiyonlarmin sekillerine ve 6zelliklerine bagl olarak arastirmaktir. Yukaridaki ifadelerde
R Ricci Egriligi ve G de G=R_ R —4R R® +R’ ile tammh Gauss-Bonnet terimidir.

Yukarida bahsedilen teoriler Einstein’in  1916°daki  Genel Rdlativite Teorisinin
genellestirilmesini olusturmaktadir ve 6zellikle 1998°deki gozlem verilerinden hareketle ortaya
konan “evrenin hizlanarak genislemesi” olgusunu aciklamaya yonelik girisimlerin bir parcasini
olusturmaktadir. Dolayisiyla bu yeni gravite teorilerinde kozmolojik modellerin ingasini,
rolativist kozmolojik modellere nispetle ne tiir degisiklikler igerdigini gdérmek Onem
kazanmaktadir. f(R,G)-gravite teorisini, uzayca homojen ve esyonsiiz modeller sinifindan
Bianchi Tip-1 ve Bianchi Tip-III modelleri gergevesinde, evrenin normal (standard) madde-
enerji igeriginin lineer barotropik hal denklemli bir miikemmel akigkan oldugu varsayimi
altinda ele alacagiz. Matematiksel iglenilebilirlik saglamas1 bakimindan s6z konusu modeller
donmesiz ve ortogonal tipten olacak, yani, metrikler kdsegensel olup yalnizca 3 bilinmeyen
6l¢ek carpani icerecektir. Bianchi Tip-I modeli en basit esyonsiiz model olup, ayn1 zamanda da
uzayca diiz esyonlii Robertson-Walker modelinin (diiz, acik ve kapali) genellestirilmesini
olusturmamaktadir. Temel amacimiz, efektif akiskan yaklagimi altinda alan denklemlerini
eshareketli bir ortonormal tetrad ¢atisinda hesaplayip, bunlarin ¢éztimleri olan dlgek ¢arpanlari
ile birlikte f(R,G)-gravitenin fonksiyonel formunu tesis etmek olacaktir. Bu isi, literatiirde
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cok az sayida yapilmis benzer amacl ¢alismalardan farkli bir bi¢imde ele alacagiz. Bunlarda
yapildigi iizere, pesinen amaca yonelik (ad hoc) 6n ¢oziimler (anzats) varsaymak yerine; once,
evrenin madde-enerji i¢eriginin esyonlii bir miikkemmel akiskan olarak varsayilmasi altinda alan
denklemlerinin bu kisitlama ile tutarlilik kosullar1 belirlenecek ve sonrasinda da, gerektigi
durumlarda 6n ¢oziimlere basvurulacaktir.

Subat 2022, 137 sayfa.

Anahtar kelimeler: Yiiksek Mertebeden Gravitasyon Teorileri, f(R,G)-gravite, Homojen
ve Anizotropik Evren Modelleri, Tutarlilik Kosullari, Bianchi Tip-Il|
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SUMMARY

Ph.D. THESIS

INVESTIGATION OF THE EXISTENCE OF HOMOGENEOUS UNIVERSE
MODELS IN HIGHER ORDER CURVATURE GRAVITY THEORIES

Selcuk GULER

Istanbul University
Institute of Graduate Studies in Sciences

Department of Physics

Supervisor : Assoc. Prof. Dr. Ertan GUDEKLI

In this thesis, it is to investigate the existence of homogeneous universe models in space and
space-time in higher order gravitational theories called f(R,G)-gravity, depending on the

shapes and properties of f(R,G) -gravity functions. In the above expressions, R is the Ricci

Curvature and G is the Gauss-Bonnet term defined with G =R, ,R* —4R R® +R’. The

above-mentioned theories constitute a generalization of Einstein's General Theory of Relativity
in 1916, and form part of attempts to explain the phenomenon of "accelerated expansion of the
universe"”, which is particularly evident from the observation data of 1998. Therefore, it is
important to see what kind of changes the construction of cosmological models involve in these
new gravity theories compared to relativist cosmological models. We will consider f(R,G) -

gravity theory within the framework of Bianchi Type-1 and Bianchi Type-111 models from the
class of spatially homogeneous and anisotropic models, under the assumption that the normal
(standard) matter-energy content of the universe is a perfect fluid with a linear barotropic
equation of state. In terms of providing mathematical workability, these models will be
rotationless and of orthogonal type, that is, the metrics will be diagonal and contain only 3
unknown scale factors. The Bianchi Type-1 model is the simplest anisotropic model, and at the
same time it does not constitute a generalization of the linear isotropic Robertson-Walker model
(flat, open, and closed). Our main goal will be to calculate the field equations in an isometric
orthonormal tetrad framework under the effective fluid approach, and to establish the functional

Xiv



form of f(R,G)-gravity with their solutions, scale factors. We will deal with this work in a

different way from the very few studies with similar purposes in the literature. Instead of
assuming ad hoc preliminary solutions (anzats) in advance, as is done in these; First, the
consistency conditions of the field equations with this restriction will be determined under the
assumption that the matter-energy content of the universe is a isotropic perfect fluid, and then
preliminary solutions will be applied when necessary.

February 2022, 137 pages.

Keywords: Higher Order Theories of Gravitation, f(R,G)-gravity, Homogeneous and
Anisotropic Universe Models, Consistency Conditions, Bianchi-Type I11
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1. GIRIS

Einstein’mn Ozel Rélativite Teorisinin ileri siiriilmiis oldugu 1905 yilinin hemen sonralarinda,
Newton’un Gravitasyon Teorisini de bu teorinin ger¢evesine oturtmaya yonelik pek c¢ok
girisim: ig¢ tutarsizlik, gdzlemlerle uyusmama, ongoriilerde isabetsizlik... gibi birtakim 6lgiitler
1s181nda, basarisiz kalmigtir. Buna karsilik, 1916 yilinda Einstein tarafindan ileri siiriilen Genel
Rolativite Teorisi (GRT) gravitasyonu 4-boyutlu bir uzay-zaman manifoldunu egriligi diliyle
tasvir eder. Bu teori, hem Merkiir’in perihel noktasinin yiizyillik gozlemsel ilerlemesini
aciklamis hem de, Giines civarindan gecen 1518 Giines’in gravitasyon alani nedeniyle
saptirilacagini dngdrmiis ve sapma miktarini da dogru olarak vermistir. flerleyen yillarda ortaya
cikan Brans-Dicke skaler-tansorel teorisi, zar-evren teorileri gibi alternatif teorilerle
karsilastirildiginda, GRT nin, bir ylizyilin1 geride birakmis olarak, Giines sistemimize iliskin
olaylarda, yani, yerel 6l¢ekte, hala en basarili bir gravitasyon teorisi olma 6zelligini koruya
gelmekte (siirdiire gelmekte) oldugunu sdylemek pek de yanlis olmaz. Ote yandan; GRT nin
alan denklemlerinin, astrofizik ve kozmoloji alaninda da, yani, galaksiler ve galaksiler arasi

ortamlar ile evrenin biitlinii gibi ¢ok daha genis Olgeklere uygulanmasi da: Biiyiik Patlama,

2.7° K ’lik kalint1 1s1n1im, Evrenin genislemesi, genis 6lgek yapilarmin (galaksilerin) olusumu,
karadeliklerin varlig1 gibi... gdézlemlerle biiyiikk 6l¢lide uyusan sonuglarin elde edilmesine
Onayak olmustur. Bununla beraber, GRT’ nin, ya da buna dayanan Rolativist Kozmolojinin
eksikleri ve sorunlar1 da yok degildir. Gozlemlerden kaynakli: Evrenin esyonliilesmesi, uzayca
diiz olma, ufuk gibi sorunlarin agiklanmasinin heniiz tatminkar bir diizeyde olmadigi
sOylenebilir. Ancak, bunlardan daha da oOnemlisi, 80’li yillardan itibaren yapilan teorik
diizeydeki ¢alismalarda GRT’nin orijinal sekliyle, kuvantum teorisiyle bagdastirilmayacagi
yoniinde yeterince ikna edici sonuglarin ortaya ¢ikmis oldugudur. Bu; GRT nin, Giines sistemi
gibi zayif gravitasyon alaninda ve dolayisiyla da diisiik egrilikli sistemler i¢in gecerli
olabilecegi; fakat evrenin baslangic anlar ile kuvvetli gravitasyon ve yiiksek egrilikli
durumlarda gegerli olamayacag1 yolunda bir kaniya sevk etmistir. Boyle durumlara getirilen
¢ozlim; gravitasyonu kuvantalagtirma amacinda ortaya ¢ikan istenmeyen sonsuzluklar1 elemek
(‘ronormalize etmek’) lizere, R Ricci skaler egriligine gore lineer olan Einstein-Hilbert (EH)
aksiyonuna Riemann egrilik tansoriiniin - ve de diger bazilarinin- muhtelif kombinasyonlariyla

olusturulabilecek egrilik invaryantlari terimleri eklemek suretiyle GRT yi degisiklige ugratmak



olmustur. Einstein teorisinin degisiklige ugratilmasi, yalnizca alan denklemlerine ek terimler
getirmemis, fakat gravitasyonun dortten biiyiik boyutlarda ele alinmasi gerektigine de yol
acmistir. Literatiirde M-Teori, Sicim Teorisi, Zar-Evren Teorileri gibi teoriler boyle yaklagimin
tirtinleridir. Ne var ki bu girisimler, yalnizca teorik diizeyde olup, bunlarin heniiz ne éngoriisel

ve ne de gozlemsel herhangi bir karsiliklar1 bulunmamaktadir.

Simdi, GRT’nin genis 6l¢eklerdeki gegerliligini asil sorgulanir duruma getiren astrofiziksel ve
kozmolojik gozlemsel gelismelere gelelim. Bunlardan ilki, “Karanlik Madde” (kisaca KM)
denilen meseledir. 30’lu yillarin basinda 6zellikle Zwickki ile baslatilan Galaksimize iliskin
gozlemler, Galaksi’mizde bir eksik (kayip) kiitle bulunduguna dair birtakim siipheler ortaya
cikarmistir. Glinlimiizde daha da gelistirilmis gozlemlerden olusturulan galaksi donme egrileri
diyagramlari, galaksi kollarinda dénen maddenin donme hizinin merkezden uzaklik ile 6nce
lineer olarak arttigin1 ve galaksi halosu civarinda ise artik sabit kaldigin1 vermektedirler. Oysa
Newton teorisi ve dolayisiyla lineerlestirilmis Einstein teorisi, lineerlikten sonra uzaklik ile ters
orantili olarak azalan bir degisim Ongoérmektedir. Boyle bir davranisi agiklamak icin halo
civarinda gézlenenden daha fazla madde bulunmasini varsaymak gerekmektedir. Ancak, boyle
bir maddeye aday olarak ne gosterilmisse, hi¢ biri de simdiye kadar gozlenebilmis degildir.
Galaksilerde gravitasyonel etki gosteren mahiyeti heniiz muamma boyle bir maddenin varligini
destekleyen bir bagka gozlemsel veri de, galaksilerin 15181n yayilisina uyguladigi mercekleme
olayidir. Bu gozlemlerden hareketle evrende olmasi gereken karanlik maddenin toplam

maddeye oranini i¢in yaklasik %27 bulunmaktadir.

Ikinci mesele ise, yiiksek kizila kaymaya sahip Siipernova Tip-Ia’larin gézlemlerinden 1998 de
elde edilen sasirtict sonugtur; zira o tarihlere kadar evrenin giiniimiizde yavaslayan bir sekilde
genisledigine inanilirken s6z konusu gozlemler, bunun bdyle olmadigini; tam tersine,
genislemenin hizlanarak (ivmelenerek) oldugu yoniinde sonuglar vermislerdir. Gliniimiize
kadar cesitli gruplarca da gittik¢e daha duyarli sekilde yapilan benzer gozlemler de, bir kozmik
ivmelenme siirecinde oldugumuzu dogrular mahiyettedir Bu durum, ayrica, dogrudan dogruya
olmasa da: baryon akustik osilasyonlari, kozmik arkafon esyonsiizliikleri, zayif gravitasyonel
merceklenme gibi farkli mahiyetteki gozlem sonuglariyla da teyit edilmektedir. Evren igin
Olciilen 151kl1 madde-enerji miktari, GRT nin Rélativist Kozmolojisi i¢inde kalinildig: takdirde
bdyle bir ivmelenmeyi aciklayamamaktadir; zira normal madde diyecegimiz bu ‘1s1kli madde’

cok ¢ok evrenin madde enerji igeriginin yaklasik %5 1 kadardir ve ivmelenme igin gerekli olan



%73 iin neredeyse on beste biridir. Iste, geri kalan %68 oranindaki madde-enerji “Karanlik
Enerji” (KE) olarak adlandirilmaktadir ve bunun da giiniimiizde gézlenen ivmeye yol
acabilmesi i¢in, bilinegelen standart madde tiirlerinden farkli olarak asiri negatif basingli olmast

gerekmektedir.

GRT ig¢inde kalinildiginda, aslinda, boyle asir1 basingli bir ekzotik madde-enerji varsayimi
yapmaksizin da, sz konusu ivmelenmeyi agiklamak miimkiindiir. Bu KE ye en basit aday,
hal parametresi -1 e esit olan bir efektif akiskana karsilik diisen A kozmolojik sabitidir ve
bundan 6tiirii de A nin alan denklemlerinde barindirilmas1 gerektigi diisiiniilmiistiir. Ote
yandan, A kozmolojik sabiti ayn1 zamanda boslugun (vakumun) da enerjisidir. Ancak, soyle
bir sorun ortaya ¢ikmaktadir: KE icin gerekli olan A nin simdiki degeri ile vakum degeri
arasinda nigin 121 mertebelik bir farklilik bulunmaktadir? “Hiyerarsi problemi” olarak
adlandirilan bu sorun, KE nin kozmolojik sabit ile agiklanmasina giiven duyulmamasina yol
acmaktadir. KE ye aday ikinci bir alternatifi ise EH-aksiyonunda madde Lagrange’yenine ithal
edilen ¢esitli skaler alanlar olusturmaktadir. Bu tiir modeller, “quintessence” (=besinci
element, skaler alanli) olarak anilmaktadir. Ancak bu, bir bilinmeyeni simdiye kadar higbir
sekilde gozlenememis bagka bir bilinmeyenle agiklamak gibi bir durum ortaya ¢ikarmaktadir.
Kaldi ki Einstein Alan Denklemleri’ne (EAD) bu tiir alanlarin ithali Giines sistemine iliskin

testlerde uygunsuzluklar da yaratmaktadir.

Yukaridaki her iki yaklasim da, KE ye karsilik diisecek sekilde bir-madde enerji olusturmak
tizere, EAD denklemlerinin sag yanini olusturan enerji-momentum tansoriiniin igeriginin
degistirilmesini hedef almaktadir. Lagrange’yen formiilasyon diliyle sdylendiginde bu, madde
Lagrange’yeninde amaca uygun degisiklikler yapmak demektir. Bu yaklagimiin alternatifini

ise, EAD’nin sol tarafin1 degisiklige ugratmak, yani, EH-aksiyonunda R ye gore lineer olan
geometrik Lagrange’yeni, egrilik invaryantlarinin keyfi bir f(R,G, R, R™,...) fonksiyonu ile
degistirmek olusturmaktadir. Bu yolla olusturulan degistirilmis Einstein teorisi
f(R,G, R,R*,[R,...)-gravite olarak anilmaktadir. Burada: G; R,, Riemann egrilik
tansoriiniin biiziilmeleri olan Ricei egrilik tanséri R, = R, ve Ricci egrilik skaleri R = R®,
den hareketle G=R, ,R™ —4R R® +R? seklinde olusturulan bir kombinasyonla tanimli

olup Gauss-Bonnet egrilik invaryanti olarak anilir.



Literatiirde, bu tip teoriler, 6zellikle de f (R) — gravite daha agirlikli olmak tizere, son 20 yildan

bu yana g¢esitli kozmolojik meseleler i¢in yogun bir ugras alani olusturadurmaktadirlar.
Calismalarin tamamina yakininda f(R)— gravite teorileri, evrenin, biiyiik 6lgekte uzayca
homojen ve esyonlii oldugu varsayimina dayali Robertson-Walker (RW) metrigi ¢cergevesinde
ele alinmaktadirlar. RW metrigi, GRT nin ortaya ¢ikisindan bu yana en ¢ok kullanilan metrik
olmustur. Evrenin geometrisi i¢in matematiksel bakimdan yapilan bu amaca yo6nelik (ad hoc)
basitlestirici varsayim, sonugta, alan denklemlerini t kozmik zamanina gore adi tiirevli ikinci
mertebeden diferansiyel denklemlere indirgemekte ve basing ile madde-enerji yogunlugu gibi
dinamik degiskenlerin de yalnizca t nin fonksiyonu olmalarina yol agmaktadir. Bu, homojenlik
ozelliginin bir sonucudur. Ote yandan esyonliiliik ise, metrik ifadesinde, dl¢ek ¢arpani denilen
a(t) gibi tek bir bilinmeyen fonksiyonla is gériilmesine yol agmaktadir. f —gravite igin de
durum GRT’deki gibidir: su farkla ki, alan denklemleri bu sefer dordiincii mertebeden

olmaktadir.

Uzayca homojenlik ve esyonliiliikk varsayimi, baslangicta, sadece ve sadece basitlestirme amagli
matematiksel bir calisma varsayimi olarak diisiiniilmiisse de, ilerleyen yillardaki gézlemler

evrenin biiylik 6l¢ekteki bugiinkii goriiniimiiniin s6z konusu varsayimla gergekten de biiyiik

dlgiide uyustuguna destek vermistir. Bununla beraber, yakin zamanlardaki gozlemler 5x107°
oraninda bir esyonsiizliige de isaret etmektedirler. Ote yandan, evrenin ilk zamanlarindaki
goriiniimiiniin, pekala esyonsiiz olup da sonralari birtakim mekanizmalar ile esyonliiliige
evrildigi olasilik dis1 degildir. Literatiirde bu konu ‘esyonliilesme meselesi’ olarak yer
almaktadir ve matematiksel ¢ercevesini de esyonliiliik kisitlamasinin gevsetilmesiyle varilan
‘uzayca homojen ve esyonsiiz uzay-zamanlar’ olusturmaktadir. Bu 6zellikteki uzay zamanlari,
Kantowski-Sachs modeli ile Bianchi-Tip modeller olusturmaktadir. Bianchi-Tip modeller,
1898 de Bianchi tarafindan Tip I-IX seklinde 9 ayr1 tip olarak siniflandirilmis olup 40’ It yillarin

sonlarindan itibaren de kozmolojide yogun bir sekilde kullanilagelmektedirler.

Bu Tez’de, f(R,G)— gravite teorisini, uzayca homojen ve esyonsiiz modeller sinifindan
Bianchi-Tip | ile Bianchi-Tip III modelleri ¢ergevesinde, evrenin normal (standard) madde-
enerji iceriginin lineer barotropik hal denklemli bir miikemmel akigskan oldugu varsayimi
altinda ele alacagiz. Matematiksel islenilebilirlik saglamasi bakimindan s6z konusu modeller
donmesiz ve ortogonal tipten olacak, yani, metrikler kdsegensel olup yalnizca 3 bilinmeyen

Ol¢ek carpani icerecektir. Bianchi Tip-1 modeli en basit esyonsiiz model olup, ayn1 zamanda da



uzayca diiz esyonlit RW modelini igermektedir. Bianchi-Tip III modeli ise hig¢ bir sekilde bir
RW modelinin (diiz, acik ve kapali) genellestirilmesini olusturmamaktadir. Temel amacimiz,
efektif akigkan yaklasimi altinda alan denklemlerini eshareketli bir ortonormal tetrad gatisinda

hesaplayip, bunlarin ¢oztimleri olan 6lgek ¢arpanlariyla birlikte f(R,G) nin fonksiyonel

formunu tesis etmek olacaktir. Bu isi, literatiirde ¢ok az sayida yapilmis benzer amach
caligmalardan farkli bir bigimde ele alacagiz. Bunlarda yapildigi iizere, pesinen amaca yonelik
(ad hoc) 6ngoziimler (anzats) varsaymak yerine; once, evrenin madde enerji igeriginin esyonlii
bir milkemmel akiskan olarak varsayilmasi altinda alan denklemlerinin bu kisitlama ile
tutarlilik kosullar1 belirlenecek ve sonrasinda da, gerektigi durumlarda ong6ziimlere

bagvurulacaktir.

Izlenecek galisma plani soyle olacaktir: 2.BSliim’de; Einstein’in gravitasyon teorisinin ortaya
cikisinda Einstein’a yol gosterici temel diislinceleri 6zetliyor ve alan denklemlerinin bizzat
Einstein tarafindan, 6nce kozmolojik sabiti ile degisiklige ugratilmasi ve sonrasinda da bundan
vazgecilmesi siirecine kisaca deginiyoruz. Bu Boliim’de, kozmolojik sabitin, evrenin giincel
ivmeli genislemesinin agiklanmasinda Karanlik Enerji’ye nasil bir alternatif olusturdugu da ele

alinmaktadir. 3. Bolim’de; Einstein Alan Denklemleri ile f(R,G)—gravite igin degisiklige

ugratilmis alan denklemlerini: Robertson-Walker metrigi ile Bianchi-Tip | ve Bianchi-Tip 11l
metrikleri c¢ergcevesinde ortonormal bir tetrad catisisinda hesaplamaya yetecek Olgiide,
matematiksel malzeme hakkinda bilgilendirme sunmaktayiz. Bu vesileyle; notasyon, indis
kabulleri, formiil yazilimlarindaki tanimlamalar, kurallar,... gibi kaynaktan kaynaga
degiskenlik gosteren pek ¢ok unsurun birbirleriyle tutarliligi da saglanmis olacaktir. 4.
Boliim’de; yani Bulgular boliimiinde sirasiyla Bianchi-Tip 11 ve Bianchi-Tip I modelleri i¢in
iki farkli yontemle alan denklemlerini yaziyoruz. Bunun akabinde bu alan denklemlerinden
hareketle her iki model igin tutarlilik kosullarini elde ediyoruz. Daha sonra bu tutarlilik kosullari
altinda ve miikemmel akiskan varsayimu ile birlikte Bianchi-Tip 11 ve Bianchi-Tip | modelleri

icin f(R,G) modellerini tesis ediyoruz. Tartisma ve Sonu¢ Bolimii ise, sonuglarin

degerlendirme ve tartismasina ayrilmistir.



2. GENEL KISIMLAR

2.1. EINSTEIN’IN GENEL ROLATIVITE TEORISi
2.1.1. Newtonsal Kiitlecekimin Yetersizlikleri

Newton’un postiile etmis oldugu Evrensel Kiitlegekim Kanunu; kiitleli cisimlerin birbirleriyle
etkilesmesini, kiitleleriyle orantili, aralarindaki uzakligin karesiyle ters orantili bir ¢ekim
kuvveti yoluyla tasvir eder. Bu kanuna dayali Newton Gk Mekanigi, Glines sistemimizdeki
gezegen, uydu, kuyruklu yildiz vb. goékcisimlerinin hareketlerini yalnizca aciklamakla
kalmamus, fakat ayn1 zamanda, Ay-Giines tutulmalari, kuyruklu yildizlarin tekrar goriinmeleri,
gel-git olaylar1 gibi pek ¢ok konuda isabetli 6ngoriiler sunmustur. Bir 6rnek vermek gerekirse,
Neptiin’lin varliginin 6nce kagit iizerinde kesfi, Newton Gok Mekaniginin belki de en ¢arpici
basarilarindan birini olusturmustur. Bununla beraber, Newton Gok Mekanigi, Merkiir
gezegeninin presesyon hareketindeki perihel noktasinin gézlenen ilerlemesi konusunda teorik
ve gozlemsel degerler arasinda neden 53”’/ylizy1l kadarlik bir fark bulundugunu agiklamakta
yetersiz kalmistir. 20°nc1 yiizyilin baslarina gelene kadar pek cok astronom ve astrofizik¢iyi
mesgul eden bu sorun i¢in amaca uygun (ad hoc) yaklasik bir diizine kadar hipotez ileri
stiriilmiigse de bunlardan higbiri kabul gérmemistir. Bunlar arasinda belki de en carpici olani,
uzakligin tami1 tamina bir ters kare olamayabilece8i diisiincesinden hareketle, kiitlegekim
kanunu Focr yi, £ <<1 olmak iizere Focr?* seklinde degisiklige ugratmak fikridir.
Fakat bu girisim, hem diger gezegenlere iliskin perihel ilerlemesi gozlemleriyle tutarsizliga yol
actigindan ve hem de Galaksimizde (Samanyolu’nda) gozlemlerle hi¢ bir sekilde ortaya
konulamamais bir gel-git etkisi ongérdiigiinden terk edilmistir. Bu sorun Einstein’in 1916’da
ileri siirmiis oldugu Genel Rolativite Teorisi (GRT) ¢ergevesinde ¢oziim bulmustur [1].
Einstein, 1905°de ileri siirmiis oldugu Ozel Rélativite Teorisini (ORT) ivmeli referans

sistemlerini de kapsayacak sekilde genellestirme arzusu sonucunda kiitlegekimi, genel bir

{Xa ,a,b,...=0,1,2, 3} koordinat sisteminde metrigi (yay elemani ya da uzay-zaman araligi)

ds’* =g, dx* dx° (2.1)

ile temsil edilen 4-boyutlu egrisel (Riemannsal) bir uzay-zaman geometrisinin egriligi diliyle

tasvir eden bir teoriye varmistir. Einstein’in GRT ’sinin alan denklemleri orijinal sekliyle



(A kozmolojik sabit olmaksizin),
1 2
Gab = Rab _E gabR =K Tab (22)

dir. 3. Boliim ’de daha da ayrintili olarak agiklamak tizere, simdilik burada:

g, : gravitasyon potansiyelleri roliinii oynayan 4-boyutlu uzay-zaman manifoldunun metrik

tansort,

R.,: 0, ve bunun birinci ile ikinci tiirevleriyle olusturulmus 4-boyutlu uzay-zaman

manifoldunun igsel egrilik tansériinden, R°,, biiziilmesiyle elde edilmis Ricci Egrilik Tansorti,

ach

R: R,, den hareketle R®, biiziilmesiyle elde edilmis Ricci Egrilik Skaleri,
T,, : Madde-Enerji dagilimini tasvir eden Enerji-Momentum Tansorti,
G,, : Einstein Tansorti,

x?: Isik hiz1 ¢ ve Newton evrensel kiitlecekim sabiti de G ile gosterilmek iizere x* =87G/c*
ile tanimli Einstein Kuplaj Sabiti

olduklarin1 kaydedelim.

Simetri 6zellikleri (bkz: 3.Boliim) de dikkate alindiginda; ikinci mertebeden kismi tiirevli,

birbirlerine kuple ve lineer olmayan toplam 10 adet bagimsiz denklemden olusan bu denklem

sistemi, formel olarak, Newtonal kiitlecekim kanununun kiitlecekimsel @ potansiyeli diliyle
ifade edildigi V°¢ = 472G p Poisson denkleminin bir gesit genellemesi goriiniimiindedir( p kiitle
yogunlugudur). Einstein kiitlegekiminde, ¢ nin yerini, toplamda 10 adet olan ve genel olarak
koordinatlarin fonksiyonu olan ¢, metrik fonksiyonlar1 (kiitlecekim potansiyelleri)

almaktadir. Einstein, bu teoriyi zayif kiitlegekim alani yaklasikliginda Giines sistemimize
uyguladiginda yalnizca Merkiir gezegeninin perihel noktasinin gozlemsel ilerleme degerini
dogru olarak hesaplamakla kalmamais, fakat ayn1 zamanda, 15181in Giines civarindan gecerken
kiitlecekimden etkilenerek yoriingesinin egrilip sapacagini da ongdrmiistiir. Ayrica sapma
miktarini, 1919°da Eddington tarafindan gézlemsel olarak dogrulandigi tizere, dogru olarak da
hesaplamistir [1]. Teorisinin Giines sistemi dlgeginde bir diger dogrulanmasinin da radar yanki
testi gozlemleri oldugunu kaydedelim. Simdi, her ne kadar Newton Teorisine alternatif bu yeni

kiitlegekim teorisi, Glines sistemi Olgegindeki olaylar konusunda agiklama ve Ongdrmede



yukarida siralanan basarilar1 gostermis olsa da Einstein, asagidaki su iki mesele konusunda

teorisini tatminkar bulmamastir.
2.1.2. GRT ’in Temellerinde Mach ve Minkowski’nin Diisiinceleri

Bunlardan birincisi; Einstein’in kendisi tarafindan “eylemsizligin goreliligi’’; giiniimiizde ise,
genel olarak “Mach Ilkesi” olarak adlandirilan goriislerin [2,3], teori tarafindan tatminkar bir
bi¢imde kapsanamadiginin tespitidir. Soyle ki; Avusturyali fizik¢i ve bilim felsefecisi Ernst
Mach’a (18..-1916) gore, merkezkag kuvvetleri, Coriolis kuvvetleri gibi eylemsizlik
kuvvetlerinin kdkeni, Newtonun savundugu gibi “Mutlak uzay’’ (ya da mutlak hareket) degil,
fakat, evrendeki madde dagilimidir (ya da maddeye gore harekettir). Buna gore, evrende hig
bir madde dagilimi olmasaydi bu takdirde eylemsizlik olaylarindan da s6z edilemeyecekti. Bu
goriis dogrultusunda Mach, mutlak uzayin fazladan ve gereksiz bir hipotez oldugunu ifade
ederek dinamigin mutlak hareket kavrami yerine gorel hareket (maddeye gore) kavramina
dayandirilmasi gerektigini ileri stirmiistiir. Her ne kadar Mach; Mutlak uzay ve mutlak hareket
kavramina dayali Newton Mekanigi yerine, kendi goriislerine dayali bir mekanik inga etmemis
ve dahast eylemsizlik kuvvetleriyle evrendeki uzak maddeler arasindaki esrarengiz
etkilesmenin mahiyetini belirtmemis olsa da, eylemsizlik olaylarinin kokenine Mutlak uzay gibi
tanim1 geregi higbir sekilde gozlenemez metafiziksel bir varlik yerine evrendeki cisimler gibi
gozlenebilir fiziksel bir koken atfeden bu goriisleri, “etkiyen, fakat iizerine etkinemez”
mahiyetteki bdyle varligin fizikte yeri olamayacagmi sdyleyen Einstein tarafindan da
benimsenmis ve GRT ’nin ileri siiriilmesinde kilavuzlayici (heuristic) bir rol oynamistir.
Bununla beraber, Einstein’in 1905°de ileri siirmiis oldugu ORT, aslinda, Mutlak uzay
kavramint hi¢bir sekilde reddetmemektedir. Teori, sadece ve sadece, diizgiin dogrusal harekette
bulunan eylemsizlik sistemleri arasindaki gegcisin; ister mekanik, ister elektrodinamik olsun,
tim fizik kanunlarinin invaryantligi (degismezligi) i¢in, artik Galile doniisiimleriyle degil de
bundan boyle Lorentz doniisiimiiyle olmasi gerektigini ileri slirmektedir. Ve bu teorinin
temelinde olan eylemsizlik sistemleri, “mutlak uzaya gore duran ya da diizgiin dogrusal
harekette bulunan sistemler” seklindeki tanimimi hala koruyadurmaktadirlar. Ote yandan,
ORT’nin Newton’un Mutlak uzay kavramini yakindan uzaktan dislamadigii bir de soyle
soyleyebiliriz; ¢ok iyi bilindigi {izere, ORT nin ortaya ¢ikisinin hemen sonrasinda (bir-iki y1l
icinde) Minkowski, teoriyi; biri zaman, diger {ligli de uzay koordinatlar1 olmak tizere toplamda

dort koordinatl noktalarin (ki artik bunlara “olay” demistir) kiimesinin olusturdugu ve uzay-



zaman adini verdigi bir 4-boyutlu geometri ¢er¢evesinde ele alip yorumlamistir. Bu geometriyi
tanimlayan ve iki olay arasindaki uzay-zaman araligi anlamini tagiyan Temel birinci formun

(metrigin) ifadesi, kartezyen koordinatlarda
ds® = —c*dt® + dx* +dy” +dz? (2.3)

bicimindedir. Aym zamanda bu da Oklidimsi diiz bir geometriyi temsil etmektedir.
Oap =y = KOs (-1, +1, +1, +1) = sabit metrik katsayilari, madde ya da herhangi bir seye bagl

olmaksizin bir kereye mahsus pesinen verilmis oldugundan tiim kinetik ve geometrik
ozelliklerin (uzunluk, ag1, vb...) belirleyicisi roliinii oynamaktadir. iste, Minkowski metrigi
denilen bu (2.3) ifadesi, mutlak uzay-zaman adlandirilmasi farkiyla Newtonsal Mutlak uzayin
ORT’deki esdeger karsil1g1 olmaktadir. Nitekim bir eylemsizlik sisteminden ivmeli ya da donen
bir referans sistemine gegildiginde, tipki Newton’un II. hareket kanununun invaryant kalmayip
da ortaya eylemsizlik kuvvetlerinin ¢gikiyor olmasi gibi, (2.3) metriginin katsayilari da invaryant
kalmayip hareketli sistemin hiz ve ivmesini igeren fonksiyonlara donlismekte ve dolayisiyla
bunlar, (2.3) metrikli mutlak uzay-zamana gore bir hareketinin belirleyicisi olma durumuna
gelmektedirler [2]. Sonu¢ olarak; Newton’un Mutlak uzay kavramina yoneltilebilecek tiim
elestiriler ayn1 sekilde ORT’nin mutlak uzay-zaman kavrami i¢in de gecerliligini korumaktadir
[2,3]. Simdi, Einstein’a geri donelim. Ancak, tamamlilik amaciyla sunu da belirtmeden
gecmeyelim; Minkowski’'nin ORT’yi 4-boyutlu bir uzay-zaman geometrisi biinyesinde
yorumlama, yani baska bir degisle, ORTyi geometrilestirme yaklasimina Einstein, baslangicta,
ORT’nin kavramsal basitligini karmasiklastirdi1 gerekgesiyle itirazda bulunmussa da, ¢ok
gegmeden bu yaklasgimin yerinde ve verimli olabilecegini idrak etmistir. Minkowski’nin bu
katkisi, GRT nin ortaya ¢ikis siirecinde énemli bir rol oynamus ve Einstein’a, ORT’yi ivmeli
ve donen sistemlere genellestirmek yolunda isabetli bir hareket noktasi olusturmustur. Einstein,

(2.1) metrigini, (2.3) {in genel egrisel koordinatlara (referans sistemlerine) genellestirilmesi
olarak almig ve buradaki g, (X°) metrik fonksiyonlarina taginan hiz, ivme gibi referans

sisteminin kinematik 6zelliklerine bagli geometrik kdkenli terimleri, sanal bir kiitlegekim alam
gibi yorumlamistir. Eylemsizlik kiitlesi ile kiitlecekimsel kiitlenin birbirlerine esit oldugu
varsayimina dayali olarak eylemsizlik kuvvetlerinin yerel olarak sanal bir kiitlecekim kuvveti
gibi yorumlanabilmesi, Einstein tarafindan “zayif esdegerlik ilkesi’’ olarak adlandirilmistir. Bu
suretle Einstein, eylemsizlik kuvvetlerine, Mach’in diislinceleri dogrultusunda, gozlenebilir

blyiikliiklerden kaynakli kiitlegekimsel bir koken atfetmektedir. Mach’in cisimlerin
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eylemsizligi konusundaki diisiincelerinden ¢ok etkilenmis oldugunu gesitli vesilelerle ifade
eden Einstein, teorisini tamamladiginda Mach’in diisiincelerinin ne 6lgiide kapsandigina
bakmis ve Mach’in goriislerine uygun birtakim sonuglar elde etmistir. Ancak, alan

denklemlerine ilk bakista Mach Ilkesiyle uyusmayan bir tutarsizlik derhal goze carpmaktadir.

Soyle ki; T,, =0 oldugunda, yani, evrende hi¢ bir madde bulunmasa dahi alan denklemleri,

tirevlerinin sifir olmasindan otiirti g, =7,, =k0s (-1, +1+1+1) =sabit metrigini ¢dziim

addetmektedir. Bu, evren bos olsa dahi, Mach’in diislincelerine aykir1 bir sekilde hala mutlak
hareket ya da mutlak uzaydan bahsedile biliniyor demektir. Einstein’in bu olumsuzlugun

istesinden nasil geldigi birazdan sdylenecektir.

2.2. ALAN DENKLEMLERININ A KOZMOLOJIK SABITi iLE DEGiSIKLIiGE
UGRATILMASI

2.2.1. ilk Evren Modelleri

Einstein’in (2.2) deki alan denklemlerini tatminkar bulmamasinin ikinci nedenini ise,
denklemlerin, tasavvur ettigi evren modelinin ingasina imkan tanimamasi olusturmaktadir [3].
Einstein, teorisini ileri siirmesinin hemen akabinde, yerel Olgekteki (Gilines siteminde)
basarilarindan cesaret olarak, alan denklemlerini evren gibi en genis dlgege uygulayarak bir
evren modeli inga etmeyi hedeflemistir. O tarihlerde heniiz evrenin genisledigi bilinmediginden
evren hakkinda yaygin inanig, “kiiresel” ve “kapali” bir geometriye sahip statik bir goriinlim
tasidig1 yolunda idi. Hesaplar1 basitlestirmek iizere Evrenin genis 6l¢ekte homojen ve uzayca
esyonlii oldugu varsayimindan yola ¢ikarak ve madde—enerji igerigini de bos almak yerine
fiziksel bakimdan nispeten daha gercek¢i olmasi bakimindan basingsiz maddeli bir akigkan gibi
varsayarak basit bir model olusturmay1 tasarladi. Ancak, (2.2) deki denklemlerin boyle bir
modele izin vermemesi iizerine, bunu saglamak i¢in denklemlere kozmolojik sabit adin1 verdigi

ve genel olarak A <0, A=0 ve A >0 olabilenbir A sabitiyle olusturulmus Ag,, gibiterim

eklemek gerekliligini duydu. Bu takdirde (2.2) deki alan denklemleri bizzat Einstein tarafindan
1 2
Rap ) O R+AQ,, =Ty, (2.4)

seklinde degisiklige ugratilmis oldu. Bu degisiklik yalnizca, hedeflenen: basingsiz madde dolu,

kiiresel, kapali ve de statik bir evren modeli vermekle kalmamis, fakat ayn1 zamanda, alan
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denklemlerinin Mach ilkesiyle olan uyusmazligini da (tutarsizligini da) ortadan kaldirmustir.

Nitekim T, =0 alindiginda (2.2) denklemlerinde g,, =7, icin arttk A7, # 0 olmakta ve

dolayistyla da, mutlak uzay-zamanin bos evren i¢in bir ¢6ziim olmasi durumu bertaraf
edilmektedir. Ancak, Statik Einstein Evreni olarak anilan bu modelin ileri siirtilmesinden ¢ok

kisa bir siire sonrasinda, 1917°de Hollandali astronom de Sitter, A -l1 alan denklemlerinin bos

evren, yani, T

al

, =0 hali igin, kabaca evrenin “yarigap1” goziiyle bakilabilecek a(t) olgek
carpani igin a(t) o eXp(\/A /3 t) seklinde zamana bagl bir sekilde genisleyen (statik degil!)

bir ¢6ziimiini sundu [3,4]. “Hareketsiz madde” olarak nitelendirilen Statik Einstein evrenine
karsilik, de Sitter evreni olarak anilan bu model “maddesiz hareket’’ niteligi tasimaktaydi. Ote
yandan, de Sitter evren modeli A -li olmasina ragmen Mach’in eylemsizlik goriisleriyle
uyusmayan unsurlar da igeriyordu. O tarihlerde pek fazla dikkat ¢ekmeyen A -li alan
denklemlerinin bu genisleyen ¢oziimiinii, 1922 de Friedmann’in, fakat bu sefer A -siz alan
denklemlerinin, uzayca homojen ve esyonlii evren varsayimi altinda: kapali, agik ve diiz
olabilen genisleyen ya da biiziilen evren modeli ¢ézlimleri izlemistir. Statik evren modeline
alternatif olan bu tip ¢oziimlere Einstein’in siddetli itirazlar1 olmussa da 1929°da Edwin
Hubble, galaksilerin kizila kayma go6zlemlerinden hareketle, evrenimizin statik degil de
genislemekte oldugunu ortaya koyunca Einstein, dinamik evren tasvirine yonelik itirazlarinm
artik stirdiirememistir. Bir yandan gozlemlerin genisleyen bir evren tasvirine destek vermesi,
diger yandan da Statik Einstein evreninin madde pertiirbasyonlar: altinda kararsiz oldugunun
gosterilmesi ve de dahasi A -li denklemlerin bile Mach’a karsit ¢oziimler vermesi lizerine
Einstein, A kozmolojik sabitin teoriye ithalinin gerekgelerinin artik ortadan kalktigina kani
olarak bu sabitten vazge¢mistir. Bu baglamda, Einstein’in ilerleyen yillarda A kozmolojik
sabiti i¢in, “hayatimdaki en biiyiik hatam” dedigi rivayet edilmektedir. Ancak, A kozmolojik

sabitinin hikayesi burada bitmemektedir.
2.2.2. Kozmolojik Gelismelerde A min Onemi

Einstein tarafindan artik disarilanmis olmasina ragmen A kozmolojik sabiti yine de kozmolojik
ve astrofizik alanindaki bir takim olaylarin agiklanmasi i¢in gerektiginde ilk once basvurulan
kavram olmay1 slirdiirmiistiir. Mesela, 60’11 yillarin ortasinda z~1.5-2 kizila kayma
araliklarinda nispeten fazla sayida galaksi ve quasar gozlenmesini aciklamak i¢in 15181n

giiniimiize, aynt gok cisminden birkag goriintii olusturacak sekilde evreni birka¢ kere



12

turladiktan sonra ulasmis oldugu tasarlanmis ve boyle bir durumun da ancak A kozmolojik
sabitini isin i¢ine sokmakla gergeklestirilebilecegi distiniilmiistiir [5]. Ve bu amagla da, A
kozmolojik sabitinin savunucularinin basinda gelen ve Biiyilk Patlama senaryosunun
onciilerinden olan George Lemaitre’in Eddington-Lemaitre-tipi kozmolojik modelleri
kullanilmistir. Bu modellerde, evren; genisleme sirasinda, A nin kritik degerleri i¢in gegici
olarak bir “uyuklama’’ evresine girebilmekte ve bu siire iginde de 151k evreni birkag¢ kez turlama

zamani bulabilmektedir [5].

A min kestirilen degeri yaklagik 1.11x107°* m™ dir ve Giines sistemimize iliskin hesaplarda bu
kadar kiiclik bir degerin hesaplara etkisi hemen hemen yok gibidir. Ancak, evren dlgeginde
durum tamamen farklidir; zira A nm varligt kozmolojik modellerin yapisini tamamen
degistirebilmektedir. S6z konusu durum; h Planck sabitinin, Klasik mekaniksel ile

kuvantumsal dlgekteki olaylar i¢in oynadigi rollere benzetilebilir.

Einstein’1in “en biiyiik hatam” dedigi A kozmolojik sabiti; dnemini ve vazgegilmezligini, 80’li
yillarin ortalarinda ileri siiriilen biri enflasyon (evrenin hizli sismesi anlaminda) teorisinde,
digeri de kiitlegcekimi kuvantum teorisiyle bagdastirmay1 amacglayan Kuvantumsal Kiitlecekim
(Quantum Gravity) teorisinde yer bularak gostermistir. Enflasyon teorisi; Parcacik Fizigi ile
klasik kozmolojinin birlesimi olan ve Biiylik Patlama varsayimina dayali olarak evrenin
evrimini tasvir eden Standart Kozmoloji’nin: ufuk, esyOnlillesme, uzaymn diizliigi gibi
kavramsal ve de gozlemsel sorunlarina ¢éziim getirmek iizere ileri siiriilmiis olup, giiniimiize

kadar da cesitli degisiklik ve iyilestirmelere konu olagelmistir. Bu teori temel olarak, evrenin

Biiyiik Patlamadan hemen sonra (yaklasik 107 saniye sonra) yukarida yazdigimiz

a(t)ocexp(\/AIBt) gibi “de Sitter benzeri” bir ivmeli genisleme 6ngdrmekte ve bunun

devaminda da evrenin giiniimiize kadar stirecek bir yavaslayan genisleme siirecine girecegini
sOylemektedir. Kuvantumsal Kiitlegekim Teorisinde ise A ya, boslugun (vakumun) enerjisi

roliinli oynamak diismektedir. Ger¢ekten de (2.4) denklemi
1 2
Gy =Ry 3 O R =—A0,, +&°T, (2.5)

seklinde ifade edilir de T, =0 aliirsa —Ag,, teriminin, bosluga baglanabilecek bir enerji-

momentum tansorii rolii oynadig: goriiliir.
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2.2.3. Karanhk Enerji ve A

Simdi A y1 giiniimiizde Kozmolojinin ‘y1ldiz1’ yapan ¢arpici gelismeye kisaca deginelim. 2000
yilina birkag yil kalana kadar, yukarida kisaca isaret ettigimiz gibi Standart Kozmoloji
cergevesinde, evrenin, ivmeli bir genisleme (enflasyon) sathasi gegirdikten sonra yavaslayan
bir genisleme silirecine girmis oldugu ve bunun da giliniimiizde hala siirmekte oldugu
diisiiniiliiyordu. Ancak 1998’lerde ilk sonuglar1 alinan yiiksek kizila kaymali Tip-Ia Siipernova
gozlemleri [6-8] bunun boyle olmadigini, tam tersine, yasinin 13.6 milyar y1l oldugu kestirilen
evrenin genislemesinin, yaklasik son iki milyar yilindan bu yana, ivmeli bir sekilde oldugunu
ortaya koymustur. Bu kaniyr giliniimiize kadar cesitli gruplarca gerceklestirilen Tip-la
Siipernova gdzlemleri ile farkli mahiyetteki: Genis Olgek Yapilari, Kozmik Mikrodalga Arka
Plan Esyonsiizlikleri, Baryon Akustik Osilasyonlar1 (dalgalanmalari), Zayif Galaksi
Merceklenmesi gibi gozlemler de dolayli ya da dolaysiz olarak desteklemektedirler [9-16].
Gozlemler, evrenin 1sikli ya da dedekte edilebilir, yani, baryonik madde-enerji igeriginin
evrende olmasi1 gereken toplam madde-enerjinin ancak % 5 i1 kadar oldugunu vermektedir; %27
si ise Karanlik Madde’ den olugsmaktadir. Bu, galaksilerin halosunda ya da galaksiler civarinda
bulunmasi gereken ve kiitlegekim etkisi gosteren, ancak bu giine kadar higbir sekilde
gozlenememis ve dolayisiyla da mahiyeti bilinmeyen bir madde dagilimina verilen isimdir.
Geri kalan %68 ine de Karanlik Enerji denilmektedir. G6zlenen ivmeli genigslemenin sorumlusu
olan iste budur ve bunun da bilinegelen (normal, siradan) maddeden farkli olarak asir1 negatif
basingli bir madde olmas1 gerekmektedir. Iste, bu dzelligi gosterecek ilk akla gelen aday da

yine Kozmolojik sabit olmaktadir [17,18]. Bunu asagida agiklayalim.

Evrenin biiyiik 6lgeklerde uzayca homojen ve esyonlii oldugu varsayimina dayali Robertson-

Walker (RW) metrigi icin GRT’nin alan denklemlerinin verdigi denklemlerden biri
E:—lxzcz(y+3p)+lAc2 (2.6)
a 6 3

olup bu Raychaudhuri denklemi olarak bilinir [3,4]. Burada, kozmik t zamaninin fonksiyonu

olan a(t) ye 6l¢ek carpani denir ve bu, sabit-zamanli 3-boyutlu uzaysal kesitlerin zamana baglh
degisimlerinin bir 6l¢iislinii verir. 4 ve p de, eger tek tiir madde s6z konusuysa, o maddenin

madde-enerji yogunlugu ve esyonlii basincidir. Bu ikisinin w=sabit olmak iizere, hal

denklemi denilen p =wu bagintisiyla birbirlerine bagl olduklar1 varsayilacaktir. Eger, pek
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cok madde tiirii (baryon, soguk karanlik madde (KM), foton, notrino, elektron,...) s6z konusu

ise, 4 ve p toplam yogunluk ve basing anlaminda alinacaktir. Bu toplamlara, kozmolojik

sabite

A A
M=t B=mg S p=a e w=-l (27)

bagintilariyla baglanan bir yogunluk ile bir basing da katilsin (son iki bagint1 hal denklemi ile
hal parametresini gostermektedir). Ayrica, simdilik, “Karanlik Enerji” denilecek sanal bir

madde tiirii de bulundugu varsayilsin. Bunun; yogunluk, basing ve hal denklemi, sirasiyla
v Pe Ve Pug =Wty 1le gosterilsin. O halde, en genisletilmis toplamlar:
P =+ pgy oty i Ve PP =P+ Pey -t Py Pee  Olacaktir.  Simdi, genelligi

bozmadan, baryon ve soguk Karanlik Madde toplamini tek tiir madde olarak alalim ve 'm’

indisi ile bunu kast edelim, yani, u, = u+ tty P, =P+ Pey Olsun. Bu sdylenenler 15181inda
(2.6) denklemi tekrar yazilirsa,

a 1
g:_g’fzcz(ﬂm---‘*‘ﬂ/\ + e +3(Pp -+ Py + Pre)

1
= _€K2C2[1+3(Wm to = L Wi )1ty + oy + i) (2.8)

olur. Simdi, bu denklemde yer alan tiim biiyiikliikleri simdiki kozmik zamanda degerlendirilmis

olarak alalim. Giiniimiizdeki hizlanan bir genisleme, & >0 demek oldugundan, (2.8) den
1
1+3(w, -1+w,)<0 <  w,-1+w, <—§ (2.9

kisitlamasi elde edilir ( x,,, 1, Ve p pozitif varsayilmistir; dolayisiyla A >0 dir). Eger A

almmamis ve KE de varsayilmamis olsaydi, W, <—% olmas1 gerekirdi ki, boyle bir hal
denklemine uyan higbir Standard (bilinegelen, normal, siradan) madde tiirii bilinenler arasinda
yer almamaktadir. Bir A varligi varsayimi ise, W, <—%+1:+§ vereceginden bir sorun

yaratmamaktadir. Eger A yerine KE gibi tasarimsal bir madde tiirli varsayilirsa, bu takdirde
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1 . . e
W <——=—W,_ olmalidir ki, bu, s6z konusu madde tiiriiniin asir1 negatif olmas: gerektiginin
3

ifadesinden baska bir sey degildir. Bu inceleme; hal parametresi -1 olan bir efektif akiskan gibi
diistintilebilecek A kozmolojik sabiti araciiyla, KE gibi bir tasarimsal maddeye ihtiyag
duyulmaksizin da evrenin giiniimiizdeki ivmelenmesinin agiklanabilecegini gostermektedir. Ne
var ki, bu yolla bir agiklama; Girig Boliimiinde sdylenildigi gibi, basta ‘Hiyerarsi problemi’
olmak iizere ‘cakisma’(coincidence), Glines sistemi testleriyle uyumsuzluk gibi sorunlar1 da
beraberinde tasimaktadir [17-19]. Yukaridaki incelemeden ¢ikan bir baska sonug ise, ek bir
tasarimsal akiskan varsayiminin araciligiyla da ivmelenmenin agiklanabileceginin miimkiin
olabilecegidir. Enerji-momentum tansoriine skaler alanlar ithal etmek suretiyle, efektif
akiskanlar olusturma yaklasimina ‘quintessense’ denilmektedir; ancak, bunlar da sorunsuz

degildirler [19].

2.3. ALAN DENKLEMLERININ EGRILiK INVARYANTLARI iLE DEGIiSiKLiGE
UGRATILMASI

Yukaridaki yaklasim, KE ye karsilik diisecek sekilde bir-madde enerji olusturmak iizere, EAD
denklemlerinin sag yanini olusturan enerji-momentum tansoriiniin igeriginin degistirilmesini

hedef almaktadir. Lagrange’yen formiilasyon diliyle sdylendiginde bu, madde-enerji-

2 5(J-oL,)

momentum tansoriinii T, =-——————— seklinde tanimlayan L, madde-enerji Lagrange

H 5 g ab
yogunlugununda, yani, madde Lagrange’yeninde amaca uygun degisiklikler yapmak demektir.

Bu yaklasiminin alternatifini ise, EAD’nin sol tarafin1 degisiklige ugratmak ve bunun i¢in de
S,,, :2_12jd“x,/—g(R—2A)+sm (2.10)
K \Y

seklindeki EH-aksiyonunda (A —1I:) R ye gore lineer olan geometrik Lagrange’yeni, egrilik
invaryantlarmm keyfi bir f(R,G, R, R®,[IR,...) fonksiyonu ile degistirmek olusturmaktadir.
Bu yolla olusturulan degistirilmis Einstein teorisi f(R,G, RabRab,DR,...) -gravite teorileri

olarak anilmaktadir [20-29]. Ozel olarak, aksiyon,

1
S =§Jd4x\/§f(R,G)+sm (2.11)
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seklinde se¢ildiginde, buradan metrige gore varyasyon alarak varilan alan denklemli teorilere

f (R,G) —gravite denir. Yukarida —g >0 ile d*x,/—g, sirasiyla, imzas1 +2 olan metrigin

determinanti1 ve 4-boyutlu uzay-zamanin invaryant hacim elemani gosterilmektedir; S de, L,

madde- enerji Lagrange yogunlugunun S, =Id4xq/—g L., seklindeki aksiyonudur. (2.11)
\Y

secimi altinda, metrige gore varyasyon alarak degisiklige ugratilmis Einstein denklemleri, yani,

f (R,G) — gravite ’nin alan denklemleri

1 1 ¢
frRy ) oo f +E 92Gfe = VaVy T + 0ul) fr —49,R“V.V, g (2.12)

-4G, [1f,—2RV .V, f, +4R°V V, f. +4R°V V T, —4R* V V f =x°T "

seklinde olmaktadir (Aciklamali ve ayrintili hesaplama icin Bkz.[1,3,30,31]). Ozel olarak,

f (R) — gravite i¢in indirgenmis denklemler
l 2 m
fRRab_E gabf _vavb fR +gabD fR =K Tab (213)

dir. Literatiirde, ‘degisiklige ugratilmis’ veya ‘yiiksek mertebeden gravitasyon teorileri’ olarak
anilan bu tip teoriler, 6zellikle de f (R)— gravite daha agirlikli olmak iizere, son 20 yildan bu
yana c¢esitli kozmolojik meseleler i¢in yogun bir ugras alant olusturadurmaktadirlar.
Calismalarin tamamina yakininda f — gravite teorileri, evrenin, biiyiik 6lgekte uzayca homojen
ve esyonlii oldugu varsayimina dayali Robertson-Walker (RW) metrigi cergevesinde ele
alinmaktadirlar. RW metrigi, GRT nin ortaya ¢ikisindan bu yana en ¢ok kullanilan metrik
olmustur. Evrenin geometrisi i¢in matematiksel bakimdan yapilan bu amaca yonelik (ad hoc)
basitlestirici varsayim, sonucta, alan denklemlerini t kozmik zamanina gore adi tiirevli ikinci
mertebeden diferansiyel denklemlere indirgemekte ve basing ile madde-enerji yogunlugu gibi
dinamik degiskenlerin de yalnizca t nin fonksiyonu olmalarina yol agmaktadir. Bu, homojenlik
ozelliginin bir sonucudur. Ote yandan esyonliiliik ise, metrik ifadesinde, dlgek ¢arpani denilen
a(t) gibi tek bir bilinmeyen fonksiyonla is goriilmesine yol agmaktadir. f —gravite i¢in de
durum, GRT ’deki gibidir: su farkla ki, alan denklemleri bu sefer dordiincii mertebeden
olmaktadir. Bulgular B6liimii’nde bu alan denklemleri agirlikli olarak, homojen fakat uzayca
esyonsiiz modeller olan ve dolayistyla li¢ dlgek ¢arpani barindiran Bianchi-Tip Il ve Bianchi-

Tip I modelleri ¢er¢evesinde ele alinacaktir.
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3. MALZEME VE YONTEM

3.1. ONBILGILER
3.1.1. Koordinatsal Tabanda Tansorler

Einstein’in Genel Roélativite teorisi, kiitlegekimi 4-boyutlu bir uzay-zaman geometrisinde ele

alir. Bu geometride, artik olay goziiyle bakilan bir noktanin koordinatlar, x°,x*,x* ve x*

yazilisiyla gosterilen 4 adet parametre ile gosterilir. Bunlardan x°, x° =ct olarak zaman

koordinati; diger X', x* ve X° ise uzay koordinatlar1 olarak diisiiniilecektir. Bu 4 sayiya (veya

fonksiyona), ayni zamanda bir koordinat sisteminin eksenlerinin ad1 goziiyle de bakilabilir.

Diferansiyel Geometri’ de bu eksenlere teget taban vektorleri igin genellikle birbirlerine
esdeger sekilde € =0, =0/0x' yazilislar: kullanilir ve bunlar eksenler boyunca dogrultu tiirevi

anlaminda bir operator olarak yorumlanirlar. Daha fazla ilerlemeden once, su indis kabullerini
verelim: Latin ve Grek alfabelerinin ikinci yarisindaki harfler, tansorel (ya da koordinatsal)

indis olarak kullanilacak olup sirasiyla su degerleri alacaklardir: i, j,k,...=0,1,2,3 ve
v, p,...=12,3. Birincilere uzay-zaman; ikincilere ise, uzay indisleri adi verilir. Birazdan

gorecegimiz tetrad indisleri i¢in ise, yukarida s6zii edilen alfabelerin ilk yarilarindaki harfler

kullanilacaktir;  buna gore: a,b,c,..=0,1,2,3 ve «,pf,7,..=12,3 olacaktir. Simdi,
koordinatsal tabant {0,,0,,0,,0,} = {ai} kiimesi ile gosterelim. Bir tansor, ya da 6zel olarak,
1-nci mertebeden bir tansér olan bir X vektorii, bu tabanda, taban vektorlerinin lineer bir
kombinasyonu olarak X = X'8; seklinde ifade edilebilir (aksi sdylenmedikge, Einstein toplam
kural1 kullanilacaktir, yani, tekrarlanan indisler, o indis degerleri iizerinden toplam yapilacagina
isaret edecektir). X vektoriiniin {8i} tabanindaki yukaridaki gosteriminde yer alan X' lere X
vektoriiniin kontravaryant bilesenleri denir. X in bir baska gdsterimi ise, dx' (0 |)=0 i ; diialite

bagintis1 uyarinca tamimlanan dx' lerden olusturulan {dxi} tabanin1 kullanmak suretiyle

X = X,dx' seklinde yapilabilir. Burada, X,

lere kovaryant bilesenler denir; dx'lere ise,
koordinatsal diferansiyel 1-formlar denilmekte olup, bunlar, x'=Sabit hiperyiizeylerinin
gradyentleri olarak yorumlanirlar. S6z konusu iki tabandan ‘olusturulan’ {6i,dxi} koordinatsal

tabaninda (buna dogal taban da denir), p-ninci mertebeden kontravaryant ve g-nuncu



18

mertebeden kovaryant (p+q)-nuncu merebeden karisik bir genel tansoriin bilesenlerinin

gosterimi T b i, S€klinde olur. Bir gosterimden digerine gegis ise, Temel birinci form

veya uzay-zaman araligi veyahut da metrik olarak adlandirilan
ds? = g;; (x)dx'dx’ (3.1)

ifadesindeki g; metrik katsayilari ve bunun 9" (g" = (gij)fl) ile g' ; gosterimleri aracigiyla,

mesela, X"\ =0,n0,,9'"9"X,,™™ gibi olur.
3.1.2. Koordinatsal Tabanda Alan Denklemleri Hesabi icin Gerekli Malzeme

{8i,dxi} koordinatsal tabaninda Einstein Alan Denklemlerinin (EAD) gosterimlerinden biri,

tiim indisler kovaryant olarak
1 2
G; =R; 5 g;R=-Ag; +«°T; (3.2)

dir. Toplamda 4x4=16 adet denklemden olusan bu denklem sistemi; metrik tansoriin, Ricci

=R, T, =T,

egrilik tansoriiniin ve enerji-momentum tansoriiniin, sirasiyla, @, i =95 R i T

simetri Ozelliklerinden dolayr 10 bagimsiz denklemli bir sisteme indirgenir. GRT’ de temel
hesap, verilmis bir (3.1) metrigi i¢in (3.2) yi hesaplamaktir. Bunun igin izlenen standart yolun

asamalarini kisaca belirtelim. Once,
1
1—‘kij :Egkl (aigkj +0, 9 _6kgij) (3.3

bagintis1 araciligiyla Christoffel sembolleri hesaplanir. Bunlar 4x4x4= 64 adet olmakla birlikte,

Fkij =T* . simetri 6zelliginden dolay1 ancak 40 1 bagimsizdur. ikinci adim olarak,

ji
Rlikj :8krlij _ajrlik +rmijrlmk _rmikrljm (3-4)

ifadesinden Riemann egrilik tansorii hesaplanir ve buradan da iz alarak, R; Ricci egrilik tansori

ile R izi
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Rij:gklRlikjERkikj ) R:ginijERjj (3.5)

seklinde bulunur. R;; Ricci egrilik tansoriine, istenirse, (3.4) e dogrudan dogruya | =k biizme

islemini uygulayarak da elde edilebilecek
Rij = akrkij _ajrkik +Fmijrkmk _Fmikrkjm (3-6)

ifadesinden de varilabilir. Toplam 4x4x4x4=256 bilesene sahip R",, Riemann egrilik

tansoriiniin, ya da bunun R;;,, =¢;,R";, gosteriminin,

Rijkl = Rklij’ Rijkl :_RjikI' Rijkl :_Rijlk1 Rijkl +Riklj +Riljk =0 (3.7)

simetri Ozellikleri nedeniyle, yalnizca 40 bagimsiz bileseni bulunmaktadir. R;; Ricei egrilik

tansoriiniin ise 4x4=16 bileseninden yalnizca 10 u, R;; = R;; den 6tiirti, bagimsizdir. Yukaridaki

bilgilendirmelere ek olarak bir de, kovaryant tiirev ifadesinin: bir skaler fonksiyon, bir vektor

ve bir 2-tansor igin

V=00 VX' =0X'+T';X!, V. X;=0.X,-T' X,

VX =0 XV +T X9 +TI X", VX, =0, X —T¥ X =T X, (3.8)
i i i k k i

VX' =0, X' +T X" =T* X',

olduklarini kaydedelim. Ve ayrica da Gauss-Bonnet egrilik invaryantinin

G =R, R™-4R;R" +R? (3.9)
seklindeki tanimini verelim.
3.1.3. Koordinatsal Olmayan Taban: Tetrad Tabam

{6i , dxi} koordinatsal tabani, metrigin grup simetrileri gibi 6zelliklerini yansitmakta yetersiz

kaldigindan genel tabanlar tanimlama yoluna gidilmistir. Bilindigi iizere, 4-boyutlu uzay-

zaman i¢in 4 adet lineer bagimsiz herhangi 4 adet vektor, bir taban olarak segilebilir. Genel ya

da tetrad tabani denilecek bu {e, } tabaninin €, (a,b,...=0,1,2,3) vektérleri, koordinatsal taban



20

vektorlerinin lineer kombinasyonu olarak e, =e€,'0, seklinde alinabilir. Burada e,

‘katsayilar’’, genel olarak koordinatlarin fonksiyonu olup €, vektdriiniin i-ninci bilesenini
gostermektedir. €, larn diialleri ise €®(g,) = 6, diialite bagintis1 araciligryla e* = e*dx' olarak

i
a

tanimlanirlar ve {ea}ya, diferansiyel 1-form tabani denir. Burada e, ve e® matrisleri,

dx' (0 |)=0 ij den otiri e,'e =0 ji ( veya e'e’=6,") bagmtilarim saglar, yani,
det(e,') # 0 ve det(e,*) # O olup birbirlerinin ters matrisleridir. Bir tansdriin {ai dx’ } ve {ea : ea}
tabanlarindaki koordinatsal ile tetrad bilesenleri arasindaki gegisler

X, &= ea‘ebj...ekc...Xij.__k'" e X = eiaejb...eck...Xab__f'" (3.10)

uyarinca olurlar. Ozel olarak, metrik tansoriin tetrad bilesenleri

b ij b

gab :eaiebjgij 1 gab :eiaej g 1 ga :eaiejbgij (311)

ab

dir ve tetrad indislerini indirme ve kaldirmalar bu g, ,9* ,g,” aracihigiyla olur. Koordinatsal

tabanda yazilmis olan (3.2) deki Einstein alan denklemleri {ea , ea} tetrad tabaninda

Gy =Ry _% J.,R=-A0, +K2Tab (3.12)

seklinde ifade edilirler.
3.1.4. Ortonormal Tetrad Tabanminda Alan Denklemleri Hesabi icin Gerekli Malzeme

{ea} taban vektorlerinin birbirlerine dik alinmasi durumunda, metrigin tetrad bilesenlerini

tamimlayan e, .e, = g, bagmtisi, 77,, = kOs (-1,+1,+1,+1) olmak lizere

8,6 =7y < €.6=-1, ¢g.e =0, (3.13)

bagitilarina indirgenir. Bu, taban I-formlar1 diliyle (3.1) deki uzay-zaman araliginin,

Minkowski’sel

ds® =7, e* e” =—(e%)* +(e")* +(e*)* + (e°)? (3.14)
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seklinde alinacagi anlamina gelir. {ea, ea} nin ortonormal (dik) bir ¢at1 olarak se¢imi, genel bir

tetrad tabani i¢in yazilmis bagintilart hatirt sayilir 6l¢iide sadelestirir. Bir bagka sadelestirmeyi

ise; tetrad catisnin zamansal taban vektorii €, i, akigkanin 4-1i hiz vektorii u ya paralel
secilmesi olusturur. Bu takdirde, {ea,ea} catisina eshareketli ¢at1 denir. &, =u=0, alinmast, 4-

lii hiz vektoriiniin tetrad bilesenlerinin

u*=(1,0,0,00=56%, ve u,=(-1,0,0,0)=-5"° (3.15)

olmasi anlamina geldiginden, buradan, birazdan deginecegimiz h,, =7, +uU,U, ile tanimh dik

izdiisiirme tansoriiniin tetrad bilesenlerinin

= h® (3.16)

o O ~» O
o O O
, O O O

seklinde basitlesecegi kolayca goriiliir.

Simdi, tetrad catisina 0zgii baz1 6zelliklere kisaca deginelim. Koordinatsal teget taban
vektorlerinin komiitatorlerinin [0;,0;]=0,0; —0;0; =0 olmasina karsn, tetrad taban vektorleri

c

icin [e,,e,]=e,e, —ee, =y e dir. y°, =—y°, anti simetri ozelligi tasiyan y°, lara

komiitasyon fonksiyonlar1 denilmektedir. S6z konusu komiitatér bagintisindan hareketle

bunlarin

7/cab = _(eaiebj _ebieaj)aiejc (3.17)
bagintisiyla hesaplanabilecegini gdérmek kolaydir. Ote yandan, koordinatsal tabandaki
Christoffel sembollerinin tetrad tabanindaki karsiliklar1 ise, yine ayni sembol ile gosterilen,
fakat I'°,, —I'“,, =7, bagmtisindan dolay1 artik alt indislerine gore simetrik olmayan I'°,,

bliytikliikleridir. Bunlara, Ricci donme katsayilar1 denilmekte olup, tetrad catisinin, 6zel olarak,

ortonormal olmasi halinde,

Cc 1 C Cl [of
FabZE(V ab_ndnafyfbd_ndnbfyfad) (3.18)
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ifadesiyle verilirler. (3.4-3.6) ve (3.9) daki: Riemann ve Ricci egrilik tansorleriyle Ricci skaleri

ve Gauss-Bonnet terimi i¢in ortonormal tetrad ¢atisindaki ifadeler ise, sirasiyla

Rabcd = ecrabd - edracb + Fedbrace _Fecbrade - 7ecdraeb (3.19)
Rab = ecrcab _ebrcca +rdbarccd _chbrcda (320)
R=n*R, , G=R,,R™ -4R R*+R? (3.21)

dir ve Riemann tansorii i¢in (3.7) de verilen simetri Ozellikleri tetrad bilesenleri i¢in de
gecerlidir. (3.8) deki kovaryant tiirevlerin tetrad karsiliklari ise, I" lar Ricci donme katsayilari
olmak tizere,

Vip=e,p, V X>=¢X*+T%, X", V,X,=¢X,-T",X,

V X® =g XP+T? XP+T° X*, V. X, =X, -T° X,-T°X

VX5 =6 X5+ X5 =T X5

(3.22)

ac

dir. Ote yandan, asagida tanimlarini verecegimiz, akigkanm: 6, genisleme tansorii, 6

genisleme skaleri ve de o, makaslama tansoriiniin komiitasyon fonksiyonlari cinsinden

ifadeleri de [3,32,33] soyle olur:

1 1 1
9(1,5 Z_E(y70a +770ﬂ) ' 9:_7707 ’ O-aﬁ' :_5(7;’0& +7/70ﬁ)+§7101505ﬁ (323)

3.1.5. Uzay-Zamanmin 1+3 Kovaryant Ayrisim Yontemi

Bir uzay-zamanda, u ile gosterilecek bir ayricalikli vektoriin bulunmasi durumunda, bu uzay-
zamandaki geometrik ve dinamik biiylikliikler yeni bir yapi ¢ercevesinde ele alinabilir.
Kozmoloji kapsaminda, evreni dolduran madde-enerji akigkanina, ya da onunla birlikte hareket
eden bir gozlemciye baglanan 4-lii hiz vektoriiniin boyle bir ayricalikli vektor rolinii oynadigi

diistiniilebilir. Bu takdirde
uu®=-1 (3.24)
uyarinca normlanmig bu zamansal u vektorii araciligiyla

U,=-uu ve h,=uuU +0, (3.25)

seklinde ¢ izdiisiim operatdrleri’ denilecek iki tansor tanimlanabilir. Birincisi, tansorleri U ya

paralel; ikincisi ise, u ya dik olarak, yani, gdzlemcinin u ya dik anlik durgunluk sistemine (3-
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boyutlu uzaysal hiperyiizeyler) iz diisiiriir. Dik izdiisiirme tansorii denilen h,, , tanimindan

dolay1

h,=h,, h,u"=0, h* =3 (3.26)

a

Ozeliklerini saglar. Bu iki izdiisiirme tansorii kullanilarak herhangi bir tansoriin ya da tansorel
bagintinin zamansal ve uzaysal kisimlarin tesisine 143 kovaryant (gbzlemciden bagimsiz
anlaminda) ayrisim yontemi denilmektedir. Ayrintilarina hi¢ girmeyip, sadece, Tez’imizde

kullanacagimiz akiskanin kinematik ve dinamik 6zelliklerine asagida kisaca deginelim.

Madde akiskanina baglanan 4-lii hiz vektoriiniin kovaryant tiirevinin ayrisimi

V.U, =-uu, +6, +ao, (3.27)

a

seklindedir. Burada: U nun zamana gore tiirevi olan U, bilesenine ivme, 6, ye genisleme
tansorii ve @, ye de donme tansorii denir. G6z Oniine alacagimiz modeller ivmesiz ve de
donmesiz olacagindan U, ve @, nin iizerinde durmayalm. 6, =6,, ve 6,u*=0

ozelliklerini saglayan, yani, simetrik ve uzaysal olan 6, nin 8=6°, seklinde taniml izine

genisleme skaleri adi verilir. Bu ikisinden hareketle o

1
b =04 ~3 6h,  seklinde tanimlanan

tansore de makaslama tansorii denir ve bu: o,u° =0 (uzaysal), o, =o,, (simetrik) ve
o®, =0 (izsiz)  Ozelliklerini saglar. Bu tansor, hacim degismeksizin genislemedeki sekil
deformasyonunu (mesela kiirenin elipsoyide doniismesi gibi) tasvir eder. Bu tansore,

1
o’ :E abaab >0 bagntis1 araciligryla makaslama skaleri denilen bir de skaler biiyiklik

baglanabilmektedir.

Simdi, ikinci bir bilgilendirme de akiskanin dinamik biiyiikliikleri hakkinda olacaktir. u hiziyla

hareket eden bir gbzlemcinin akiskana baglayabilecegi enerji-momentum tansoriiniin ifadesi

Tab = /uuaub + phab + qaub + qbua + ﬁ-ab (328)
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seklinde olup, burada u,p,q, ve 7, dinamik degiskenlerine, sirasiyla, madde-enerji

yogunlugu, esyonlii basing, 1s1 akisi vektorii ve esyonsiiz basing tansoérii denir. Bunlar,
gozlemciye gore Ol¢iilmiis biiyiikliikler olup, (3.24-3.26 ) bagintilar1 kullanilarak kolayca tesis

edilecegi lizere, asagidaki gibi tanimlanmislardir:

H= uaubTab
p — % habTab

3.29
g, = _hbau chc ( )

1
Ty = Taps = hc(ahdb)Tcd _éhathchd

Burada; yuvarlak parantezler, bir tansoriin simetrik kismini; agili olanlar ise, yukarida

tanimlandig1 gibi, izdiisiiriilmiis izsiz simetrik kismini géstermektedir. Tanimlarindan
qu*=0 ve x,u’=0 (yani, her ikisi de uzaysal) (3.30.a)

=0 (yani, simetrik ve izsiz) (3.30.b)

<ab>

Ty =Ty V€ T
olduklar1 anlasilmaktadir.

Bu baglamda su iki noktaya dikkat ¢ekmek yerinde olacaktir: Birincisi, (3.28) deki enerji-
momentum tansori, hi¢ bir sekilde akiskanin fizigi hakkinda bir bilgi sunmamaktadir. Sadece

dinamik degiskenler arasindaki birtakim bagintilar verir. Bunlara hal denklemi adi verilir.

Mesela, hal denklemi. g, =0=r, ise, bu taktirde (3.28),
T,y = pU,U, + phy, (3.31)

ifadesine indirgenir ki, buna miikemmel (veya ideal) akiskan denir. Esyonlii basing ile maddde-

enerji yogunlugu arasinda p = p(u) seklindeki bir bagintiya ise barotropik hal denklemi ve
bu bagintinin da w = Sabit olmak iizere p =Wy seklinde olanina da lineer barotropik hal
denklemi denir. w nun degisim aralign —-1<w<+1 dir. Kuvvetli enerji kosulu (#+3p=>0)
ihlal edilmeyecek sekilde w nun alacag: degerler aralign [-1/3;+1] dir. Ozel olarak w=1 ve

w=1/3 degerlerine kat1 akiskan ve 1gimim (rdlativitist gaz veya radyasyon) akiskani adi

verilmektedir., w=0 durumuna ise basingsiz akiskan (etkilesimsiz madde veya toz)
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denilmektedir. w<0 durumu negatif basingli bir akiskana; w < —1/3 durumu ise asir1 negatif
basingli bir akigkana karsilik gelmektedir. Ancak, bilinen standart madde- enerji tiirleri arasinda
bu sonuncu duruma uyan bir madde tiirii bulunmamaktadir. Evrenin gilinlimiizdeki giincel
ivmeli genislemesini agiklamak i¢in varligi varsayimsal olarak ileri siiriilen boyle bir madde

heniiz gézlenebilmis degildir.

Ikinci nokta ise, (3.28) ve (3.29) deki T, tansoriiniin illa da standard maddeye ait olmasi

gerekmemektedir. Bu, pekala, kismen ya da tamamen geometrik kokenli efektif bir enerji-
momentum tansorli de olabilir. Ve bu takdirde (3.28) bagintilari, bu efektif akiskana baglanan
efektif  dinamik  biyiikliikklerin ~ tanimlanmasina  olanak  saglayacaktir.  Nitekim

f(R,G)—gravite de ortaya ¢ikan ekstra geometrik terimler toplulugunun yorumu da bu

yaklagima dayandirilacaktir.

3.1.6. Homojen Kozmolojik Modeller

Yerel bir {Xi} -koordinat sisteminin {ai , dxi} koordinatsal tabaninda yazilmis (3.1) ifadesi, bir

uzay-zaman i¢in en genel metrik ifadesidir. Ancak, bdyle genel bir metrik i¢in Einstein alan
denklemlerinden bilinmeyen bagimsiz 10 adet g;; (Xk) metrik fonksiyonunu ¢6zmek neredeyse

olanaksizdir. Bu yiizden, eldeki problemin fizigine ve geometrisine uygun birtakim
basitlestirici varsayimlarda bulunup, hem bilinmeyen sayisin1 ve hem de diferansiyel denklem
sisteminin karmagikligini azaltmak yoluna gidilmektedir. Uzayca homojen modeller, bu tiirden
matematiksel kolayliklar bakimindan en basit modellerdir. Her ne kadar bunlar, (3.1) ile tasvir
edilen en genel uzay-zamanlarin ¢ok 6zel bir smifin1 olugturmaktaysalar da, kozmolojideki
uygulamalar bakimindan yeterince kapsamli modellerdir. Bu Tez’de, f(R,G)— gravite
teorisinin kozmolojisi i¢in, homojen modeller arasindan, yalnizca Robertson-Walker (RW),

Bianchi-Tip | ve Bianchi-Tip 11l metrikleri konu edilecektir.
3.1.6.1. Uzayca Homojen ve Esyonlit Model: RW-Metrigi

Kozmoloji kapsaminda en iyi bilinen ve en ¢ok kullanilan 6rnek, evrenin genis dlgeklerdeki
geometrisi hakkinda yapilan ‘uzayca homojen ve esyonlii oldugu’ varsayimidir. Bu takdirde

(3.1) metrigi yerel bir (t,r,0,¢) koordinat sisteminde
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ds” = —c’dt® +a’(t)[ dr’ + f,” (r)(d6” +sin” 0d 4] (3.32)

sekline indirgenmis olur. Buna Robertson-Walker (RW) metrigi denir. RW metriginin en az
dort farkli yazilisindan biri olan bu ‘trigonometrik’ gosterimde a(t) ye 6l¢ek ¢arpani denir ve
bu, sabit-zamanli 3-boyutlu uzaysal kesitlerin zamana bagli degisimlerinin bir 6l¢iisiinii verir.
S6z konusu 3-uzaylarin topolojisi ise, bunlarin sabit egrilikli oldugunu ifade eden ve uzaysal
egrilik indeksi denilen boyutsuz bir Kk parametresiyle tasvir edilir. Buna gore,
k=-1,k =0 ve k =+1 igin 3-boyutlu uzaym geometrisinin: agik (hiperbolik), diiz (Oklidsel)

ve kapali (eliptik) oldugu sdylenir. f, (r) fonksiyonu ise

sinr k=+1 igin
f(r)y=<r k=0 igin (3.33)

sinhr k=-1 igin
seklinde tanimlanmistir. Hemen anlasilacagi iizere, bu metrikte a(t) gibi tek bir bilinmeyen
metrik fonksiyon bulunmaktadir. Bunun, r,0 ve ¢ ye degil de yalnizca t ye bagli olmast
homojenligi; her ii¢ r,0 ve ¢ -dogrultulari igin ortak olmasi da esyonliiliigii ifade etmektedir.
S6z konusu varsayimin sonucunda, GRT’nin (3.2) deki alan denklemleri, yalnizca t nin
fonksiyonu olan dinamik biiyiikliiklerle birlikte, t ye gore adi tiirevli iki bagimsiz denkleme
indirgenmis olmaktadir. (3.2) metriginin bir 6n ¢oziim (anzats) olarak kullanimi GRT nin
ortaya ¢ikis yillarina kadar uzanmaktadir. Ancak, uzayca homojenlik ve esyonliiliik varsayimi
altinda elde edilebilecek yegane metrik seklinin bu oldugu ¢ok daha sonraki yillarda (1933°de)
Robertson ve Walker tarafindan, Grup Teorisi kullanilarak matematiksel bir kesinlikle
gosterilmistir. Grup Teorisi diliyle bu metrik, 6-parametreli G, esdl¢lim (izometri) simetri

grubu altinda invaryant kalan maksimum simetrik bir uzay-zamani temsil etmektedir.
3.1.6.2. Uzayca Homojen ve Esyonsiiz Modeller: Bianchi-Tip Metrikler

Uzayca homojen modeller, Grup Teorisi diliyle sdylenildiginde, r-parametreli siirekli bir

G, (r =3) hareket grubu (izometri, esol¢lim) altinda invaryant kalan uzay cinsinden

hiperylizeylere sahip modellerdir (genis bilgi i¢in bkz.[3,32,33]). Homojen ve esyonlii olan RW

metrigi, 6-parametreli G, esol¢lim (izometri) grubu altinda invaryant kalan maksimum

simetrik bir uzay-zamani temsil etmektedir. Eger s6z konusu varsayim; homojen olma kosulu
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tutulup da esyonliiliik varsayimi terk edilerek gevsetilirse, bu takdirde uzayca homojen, fakat
esyonsiiz modeller elde edilir. Bu 6zellikteki 3-uzaylar 1898’de Bianchi tarafindan incelenmis
ve Bianchi-Tip I...IX seklinde 9 tip olarak siiflandirilmistir. Bunlarin metrikleri, uzaysal 3-

uzaylara basitge transitif olarak etkiyen 3-parametreli bir G,(r=3 ), esdl¢iim grubu altinda,

invaryant kalmaktadir. Uzayca homojen olup da Bianchi-Tip modeler sinifina ait olmayan tek
bir model daha bulunmaktadir; o da, Kantowski-Sachs modeli denilen modeldir. Bu da, basitge

transitif alt-grubu olmayan bir G, simetri grubu altinda invaryant kalan bir metrigi tasvir eder.
Uzayca homojen modeller, metrik yapisi bakimindan, { E“} zamandan bagimsiz 3 adet 1-form

dan olusan taban (triad) olmak iizere

ds® =—c’dt*+T,(t)E“E” (3.34)
bigimindedirler (indis kabuliiniin §3.1.1. de soOylenildigi gibi: «,f,r,..=1,2,3 ve
1V, p,...=12,3 oldugunu hatirlatalim). Burada E* lar, {6i,dxi} tabani cinsinden

E“ =E“ (x")dx' (3.35)
bi¢giminde tanimlanmislardir. Bunlarin diialleri ise

E“(E,)=6, (E°E,'=6, ., E“E,’=6) (3.36)

olmak tzere
E,=E,'(x")o, (3.37)

dir. (3.34) ifadesinde I',,(t) =T, (t) matrisi yalnizca zamanin fonksiyonudur ve simetriden

dolay1 en fazla 6 bilesene sahiptir. Ancak, biz bu matrisi, A(t), B(t) ve C(t) dlgek carpanlari
olmak iizere, Literatiirde ¢ok siklikla kullanildig: gibi,

A*(t) O 0

r,t= 0 B(t) 0 (3.38)
0 0 C*t)

biciminde kosegensel alacagiz. Bu takdirde, (3.34) metrigi
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ds? = —c%dt® + A% (t)(EY)? + B2 (t)(E?)? + C2(t)(E®)° (3.39)

bi¢iminde ifade edilir. Boyle metrikli modellere donmesiz ortogonal modeller denir. Iki 6lcek
carpaninin birbirlerine esit olmasi durumu da Yerel Donmesel Simetrik (YDS) olarak
anilmaktadir. Olgek carpanlarindan ikisinin orantili olmas1 durumuna ise ‘hemen hemen Yerel

Donmesel Simetrik’ denilecektir.

Bianchi-Tip | igin zamandan bagimsiz invaryant taban 1-formlari: E' =dx, E*=dy, E®=dz
ve Bianchi-Tip III icin de: E'=dx, E*=e™dy , E’=dz seklinde secilirse,

x=x",y=x*,z=x® koordinatlarinda metriklerin gosterimleri, sirasiyla,

ds® = —dt >+ A% (t)dx* + B*(t)dy* + C*(t)dz’ (3.40)
ve

ds? = —dt?+ A% (t)dx* + B?(t)e ***dy® + C*(t)dz’ (3.41)

olur. Burada 4, 4 =0 olan reel bir parametredir. =0 i¢in (3.41) in (3.40) a indirgendigi
goze ¢arpmaktadir. Ancak, bu durum, higbir sekilde Bianchi-Tip I modelinin Bianchi-Tip 11l
modelinin bir 6zel hali oldugu anlami tagimamaktadir; zira 4 parametresi i¢cin 4 #0 den A =0
durumuna gecis, ayn1 zamanda uzay-zamanin topolojisini de degistirmektedir. Bu baglamda,
(3.41) metriginde 4 =0 ve A(t) = B(t) = C(t) se¢iminin de uzayca diiz RW modelini verdigini;
fakat bunun, s6z konusu modelin Bianchi-Tip III sinifina ait oldugu anlamina gelmedigini

vurgulayalim.

Simdi; (3.33), (3.40) ve (3.41) metrikleri icin, alan denklemlerinin hesabinda gerekecek:
ortonormal taban ((3.13),(3.14) ve diialite bagintisindan), komiitasyon fonksiyonlar1 ((3.17)
den) ile Ricci donme katsayilar1 ((3.18) den), genisleme ile makaslama tansdrleri ve skalerleri
((3.23) den, Riemann ile Ricci tansorleri ((3.19) ile (3.20) den) ile Einstein tansorii ((3.12) den)
ve nihayet, Ricci skaleri ile Gauss-Bonnet terimi ((3.21) den) gibi kinematik ve geometrik
biytikliiklerin ifadelerini verelim. Bunlar asagida Bianchi-Tip III metrigi igin gosterilmistir.

RW ve Bianchi-Tip I metrikleri i¢in olanlar ise sirasiyla Ek A ve Ek B de yer almaktadir.

BIANCHI-TIP III: ds® = —dt?+A?(t)dx* + B*(t)e ***dy® + C*(t)dz’
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e Ortonormal tetrad {e,,e* | taban:

e’ =dt 1 0 0 0
e = A(t)dx 0 At 0 0
2 W < e’ = N ,u (3.42.3)
e’ = B(t)e dy 0 0 Bte 0
e* =C(t)dz 0 O 0 C()
e, =0, 1 0 0 0
e = iax 0 — 0 0
A(t) A(t)
a2 = e = #2 3.42.b
&, =——, *“lo 0o 2 (3.42.0)
B(t) B(t)
e, = iaz 0o 0 o0 -—-
C(t) C(t)

o Komiitasyon fonksiyonlari ve Ricci donme katsayilar: ((3.17) ve (3.18) den):

A
0000 ¢ L 0%
0000 A
0 1
- -2 0 00
=10 0 0 0 T = A
0000 0 0 00
. 0 0 00 (3.43.2)
B .
00-g 0 000—%
oo o o Clooo o
7 ab EOOi 7ab0 0 0
B C .
0o A 00 o
C
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00 0 O
; 0 00O
o/—;oo A
. 2000
1—‘OabzooBO 1—‘labzA
B 0 00O
: 0 00O
00 0 &
C
0 00 o 0 0 0 O
0 00 O 0030
r’, =g _ ‘. =lo o0 Z o0
T2 2 ’ C
B C é
0 00 O ~ 0 0 0
C

¢ Genisleme Tansorii, genisleme skaleri ve makaslama tansorii:

A
A A B C
0,=|0 2 0| oy=2 o 220 0
B A B C
0 O ¢ 0 0 —é——+29
C A B C
6’:—+—+E
C

oy . .
02=A+B—Z+C—2+2E+2§+2%
C AB BC CA

c'=—0,0 == +—=t+t—=———-———-

. 1 . 1[A B ¢ AB BC Ch
3lA> B C* AB BC CA

(3.43.b)

(3.44.9)

(3.44.b)

(3.44.0)

(3.44.d)

e Riemann ve Ricci egrilik tansorleri, Rici egrilik skaleri, Gauss-Bonnet terimi

(Sifirdan farkli bilesenler yazilmistir):
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i
R0101: R1010 :_Rono :_RlOOl:_K
5
Rozoz = Rzozo = _Rozzo = _Rzooz = _E
&
R0303 = R3030 :_Rosso :_Rsoos :_E
A(B C
R0223 = Rzosz = _Rozsz = _Rzozs = _E[E_Ej (3-45-3)
AB
=R =
R o = —Ripy =—Rypp = AB
CA
:R = B —
R1313 3131 R1331 3113 CA
BC A°
R2323 = R3232 = _R2332 77 E_F
E B ¢ AB BC CA 2
Ro=-7%-%~ ~ 0= 2 m T Rr T or A2
A B C AB BC CA C
R1 —A+E+£ G _E_E_B_C iz
' A AB AC “ B C BC C?
R,=24+2A, BC 4 G, --S_A_CA (3.45.b)
B BA BC C C A CA
C CA CB 4° A B AB
w= At T~ Gy=—F—5-— e
C CA CB C A B AB
n (B C 6. A[B_C
C B C cC\B C
2
R=2|— A B E AB+BC+%—/1— (3.45.c)
A B C AB BC CA C?
2
G-8 ABC BCA CAB_AZ_ (3.45.d)
ABC BCA CAB AC?

3.2. f(R,G)-GRAVITE ALAN DENKLEMLERINI HESAPLAMA YONTEMLERI
3.2.1. Efektif Enerji-Momentum Tansorleri

Simdi, (2.12) de yazilmis f (R,G) -gravite’nin alan denklemlerini asagida tekrar yazalim:
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1 1 ]
fiRu _E Oa f "‘E 9.Gfc = V.V, e + 9,0 fr —4g,R dvcvd fe

(3.46)
—4G,,[1 f, —2RV,V, f, +4R, V.V, f; +4RV V, f, —4R* V.V, f, =«’T,"
Bunun izinin, f(R,G) fonksiyonunu verecek sekilde diizenlenmis ifadesinin
- % (KT +Rf, +2Gf, +311, + 2R1f, —4R“V.V, f.) (3.47)

oldugunu kaydedelim. Bu ifadelerde, T, evreni dolduran standard madde-enerji akiskanina

ab 7
baglanan enerji-momentum tansoridiir ve (3.28) deki format gibi, 4-1ii hiz vektoriine gore
Olciilmiis akiskanin dinamik biytikliiklerinden olugmustur. Standard madde-enerji oldugunu

vurgulamak igin (3.28) i, “m” ist-indisi kullanarak
T = 40U, + p"hyy +0,"U, +0,"U, + 75" (3.48)

seklinde yazalim. Eshareketli bir ortonormal ¢atida; (3.15), (3.16), (3. 24), (3.26) ve (3.30)

bagntilarimi kullanarak ve gy =0 , 75 =g, =0, 7, =7y, )+ + 75 =0 olduguna da

dikkat ederek, bunun ve T" =7*T_" ile tamiml1 izinin

m m m m
H =0 =0 —0;
m m m m m
- +7 T TT.
T," = q1m p ) 11 ) 12 ) 1;, . T =—4"+3p" (3.49)
—0; T P+ 7 T3
m m m m m
—0; T3 T3 P+ 7

um 0 0 0
0 p" 0 O
T, = , Th=—u"+3p" 3.50
ab 0 0 pm 0 H p ( )
0 0 0 p"

olur. Verilmis bir metrik alan denklemlerinin hesaplanma yontemlerini asagida sunuyoruz.

(3.46) y1, Einstein tansoriinii ortaya ¢ikaracak sekilde diizenleyelim: bunu,
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1 .
Egab(f - RfR —GfG)-i—VaVb fR - gabD fR
G, =K T;b K-Zlf 149, RUV,V, T, +4G,1f, +2RV,V, T, (3.51)
" "| 4RV, V, fs 4RV .V, fs +4R ™V V, f,
seklinde yazip,
T m
T, =2 (3.52)
R
ve
£ -
E gab(f - RfR _GfG) +vavb fR - gabD fR
T, = 21f +49,,RV .V, f, +4G, [If, +2RV,V, f, (3.53)
K
"| 4RV V, f, —4R°V V, fs +4R“V V,
ile de iki efektif enerji-momentum tansorii tanimlarsak ve ayrica da bunlarin toplamini
Tabt.ef = Tabm.ef +TabRG (354)
ile gosterirsek, sonugta
Gab = K‘Z-I-abt.(Ef (355)

elde edilmis olur. (3.52) ile tammlanan T,,™* ye efektif madde-enerji-momentum tansorii
denir. Tamamen geometrik terimlerden olusan T,,%¢ ise, efektif bir akiskanin enerji-momentum

tansoriine karsilik gelmektedir. Toplam efektif enerji-momentum tansérii olan T, de, bu

ikisinin toplami olup, standard madde ile geometrinin bir ¢esit etkilesiminin ifadesini

yansitmaktadir. Ote yandan, sz konusu 4-tip enerji-momentum tansériiniin
VG, =0= VT, =0, VT, =0, VT, =0, VT,"=0 (3.56)

korunum kanunlarina uyduklar da gosterilebilir[3,30,31]. Alan denklemlerinin yukaridaki ele

alinig tarzina efektif akiskan yaklagimi denir.
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Simdi; standard maddenin enerji-momentum tansoriiniin (3.49) daki genel ifadesini alarak ve
0., =7, ortonormallik kosulunu da gbz o6niinde bulundurarak, (3.55) deki efektif Einstein

denklemlerini bilesenleri cinsinden agikca yazalim. Bunu en azindan iki tiirlii yapmak miimkiin

goriinmektedir.
3.2.2. Alan Denklemleri Bilesenlerinin Dogrudan Dogruya Yazilmasi (Birinci Yontem)

Simdi; standard maddenin enerji-momentum tansoriiniin (3.49) daki genel ifadesini alarak ve
(3.52 — 3.54) bagintilarin1 da dikkate alarak, g,, =7, ortonormallik kosulu altinda, (3.55) deki

efektif Einstein denklemlerini, bilesenleri cinsinden agikca yazalim.

—%(f —Rfy —Gfy)+V,V, f, +11,

Gy = R +%R = ‘]f—+fi —4R%V V, f, +4G, 0 fs + 2RV V, f, (3.57.3)
" T -8RV V, fe +4R V.V, £,

%(f —Rf, -Gf,)+VV, f, —0f,
G, =R, —% R = 2 %”i HAR®Y VT, +4G T, + 2RV.V, f, (3.57.b)
" " _8R10chl fG +4R10dlvcvd fG
y .
>(F =R —Gle) +V,V, f, =,
G,, =R, —% R =« % + fi +AR™V V, f +4G,,[1f, +2RV,V,f, (3.57.c)
" "1 -8RV V, f, +4R,%, V.V, f,
y .
> (F =Rl —Gl) + V.V, =11,
G, =R, —% — i? %+ fi +4R®V V f, +4G,,0f, +2RV,V, f, (3.57.d)
" "1 -8RV, V,f, +4RMV V_ f,

_qm +V.V .. +4G, [ f.+2RV.V, f
G, =R, =x’ b M AL vl (3.57.¢)
fo T | 4RV .V, f, 4RV V. f, +4R“ V V,f,



35

6 g o w1 szvo for +4Gy fg +2RV,V, f; } (3574)
S fo  fo| 4R V.V, f, —4R V.V, f, +4R,% V.V, f,
_qm +V.V . f__+4G, [ f. +2RV.V, . f
GSOERSO:KZ d; +i[ 3 co RR 30 cG 3Vo GCd } (3.57.q)
f.  fi| 4RV .V, f, —4RV V,f, +4R™ V.V, T,
m +V.V., f, +4G,. [ f. +2RV.V f
Gl2 _ R12 — 2E+i|: 1 02 R 12 Gc 1Y 2'G ) :| (357h)
fo  fo| 4RV V,fs —4RV V, T, +4R™.V VT,
m [+V.V.f +4G, [ f. +2RV. V. f |
Gy =Ry =x? By 1|2 e R e e (3.57.K)

fo T | 4RV V,f; —4RS V.V, f, +4R,*.V V, fs |

m [+V.V.f. +4G, [ f. +2RV.V. f
G325R32=K2@+i 372 3 2" A - ; (3.57.1)
fo  fo| 4RV V, T 4RV V, fo +4R", V.V, f; |

3.2.3. 143 Kovaryant Ayrisim Uygulamak (Ikinci Yéntem)

Yukaridaki amag icin bir diger yontem ise, alan denklemlerinin eshareketli ortonormal tetrad

catisinda 1+3 ayrigimin1 yapmaktir. Bu yontem; (3.55) denkleminin her iki yanini, sirasiyla,
a

- - o« . . 1 el C
herhangi bir T, tansorii igin gegerli olan (3.29) bagintilarinda yer alan: u®u®, gh ® —h"u

1
ve hc(ahdb)Tcd —§hathd operatorleriyle ¢arpmaya dayamir. u® ve h, nin, eshareketli

ortonormal tetrad ¢atisin1 tanimlayan, sirasiyla, (3.15) ve (3.16) bagintilar1 kullanildiginda,

mesela,
a, b _y48,,b 2 t.ef 0,,0 __2..a,,b t.ef 2 tef
uu'G,, =u'u’x°T, = UUGy=xUUuT," = Gy=xku

elde edilir. Burada: ', efektif toplam madde-enerji yogunlugu olup, (3.29) daki ilk bagmti

ile tammlanmstir. 4 nin; enerji momentum tansorlerinin bilesenleri cinsinden ve bunlarn

da, (3.57.a) goz Oniine alindiginda, ac¢ilimlar cinsinden
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tef _ tef _ m.ef RG
W =T w =T + T

olarak verildigi kolayca anlagilmaktadir. Benzer sekilde, (3.55) denkleminin her iki yaninin

1
3 h* ile garpimi da

%habGab - K2 % habTabt.ef — %(hllGll + h22G22 + h33G33) — K,Z pt.ef

1 e
= 5(611+Gzz +Gy,) :szt'f

verir. Burada: p**, efektif toplam basing olup, (3.29) daki ikinci baginti ile tanimlanmustir.

p*® nin; enerji momentum tansorlerinin bilesenleri cinsinden ve bunlarin da, (3.57.a) goz

Oniine alindiginda, agilimlari cinsinden

€l 1 L€ €] L€
pt'f :g(Tnl f "'Tzzt f "‘T33t f)

:% Tllm.ef +-|-22m.ef +T33m.ef)+%(TllRG +T22RG +T33RG)

%(f —Rf, —Gf,)+ % (VV, o +V,V, . +V. V. ) f, +4R*V V_f,
4 2
o 1 +§(G11 +G,, +G;;)U f, +§ R(V, V. f, +V,V,f, +V,V.f.)
B f_R " Kz fR 8 c c c cd
_§(R1 V Vi +RSV .V, o + RV V1) +4R™ V V  f;)
+%(4R10dlvcvd fG + RZCdZVch fG + R3Cd3vcvd fG)
P" | e
=—4
i P

olarak verildigi kolayca anlagilmaktadir (yukaridaki bagmtida 7, +7m,, +7,, =0 ozelligi

kullanilmistir). Yine benzer sekilde, geri kalan diger iki operatdr ile ¢arpimlar sonucunda,
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a
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ile toplam efektif esyonsiiz basing tansérii 7. igin benzer

bagintilar elde edilebilir. Bunlari, yukaridakilerle birlikte asagida topluca vermekteyiz:

2 tef
Gy =k /Ute =
2 tef
G, +G, +Gy=x"p =
_ 2 tef
Gy =-k"q =
A 2 tef
Gy =-k°Q, =
_ 2 tef
G, =-k70, =

1 e
5 (+2G,; —G,, —Gy,) = Kzﬂltif

1 e
5(_G11 +2G,, - G;;) = KZ”;zf

1 e
5 (=G, —G,, +2G,,) = KZ”;sf

_ 2 t.ef
Gy, =K'y, =

=

=

=

tef tef _ m.ef RG
w =Ty =Ty +Ty

€] 1 m.e m.e m.e
pt.f :é(-l-ll f +T22 f +T33 f)

1
+ 3 (T11RG + TzzRG + TsaRG )

tef tef m.ef RG
0 __TIO —_(Tlo +T10 )

tef tef m.ef RG
0, —_Tzo —_(Tzo +T20 )

t.ef t.ef m.ef RG
Qs :_T30 :_(Tso +T30 )

ﬂ_::ief — % (+2T11t.ef _Tzzt.ef _T33t.ef )

1 m.e m.e! m.e!
=§(+2T11 “ _T22 f _T33 f)

1
+ § (+2T11RG - T22RG _T33RG)

B =TT 2 T )

l m.e m.e m.e
:g(_Tn . +2T22 f _T33 f)

1
+ 5 (_TllRG + 2T22 "o T33 e )

B =TT T 2T )
_l -T m.ef -7 m.ef T m.ef
- 3( 11 22 + 33 )

1
+ 5 (_T11RG _T22 e + 2T33 e )

tef _ tef _ m.ef RG
T, =T, " =T, +T,

(3.58)

(3.59)

(3.60.a)

(3.60.b)

(3.60.c)

(3.61.3)

(3.61.b)

(3.61.c)

(3.61.d)
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2 t.ef tef tef _ m.ef RG

Gy, =K1, = Ty =T =Ty +T, (3.61.e)
_ 2 t.ef tef _ tef _ m.ef RG

G, =K"7my = g =Ty =T, +T, (3.61.7)

Bulgular Boliimii’'nde, yukaridaki her iki formalizmin de Bianchi-Tip I, Bianchi-Tip I

uygulanmasi ele alinacaktir.
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4. BULGULAR

4.1. BIANCHI-TIiP III METRIGI iCIN F(R,G)-GRAVITE ALAN DENKLEMLERI

Bu Boliim’ de, 6nce Bianchi-Tip III modelini ele aliyoruz. § 3.2.2. ve § 3.2.3.deki yontemlerle
bilesenler cinsinden yazilan alan denklemleri, (3.41) metrigi i¢in (3.42)-(3.45) de verilen
kinematik ve geometrik 6zellikler ile Ek C deki bagintilar kullanilarak, olgek ¢arpanlar ile

f (R,G) fonksiyonunun zamansal tiirevleri cinsinden agik bir sekilde ifade edilecektir. Ancak,

standard maddeye baglanan enerji-momentum tansoriiniin (3.49) ile verilmis genel sekli,
belirlenmesi gereken 10 adet bilinmeyen dinamik degisken igermektedir. Bu zorlugu ortadan
kaldirmak i¢in, nispeten basit bir calisma hipotezi olarak, standard maddenin enerji-momentum
tansoriinii (3.50) deki gibi miikemmel akiskaninki olarak kisitlayacagiz. Ancak, bdyle bir
kisitlamanin alan denklemlerinde herhangi bir celiskiye ya da tutarsizlia yol acip agmayacagi,
incelenmesi gereken bir konu olusturacaktir ve bu da, tutarlilik kosullar1 olarak dncelikli olarak

ele alinacaktir [34,35].

4.1.1. Birinci Yonteme Gore f(R,G) Alan Denklemleri

Miikemmel akigkan i¢in hal denklemi @] =0 ve 7r =0 geklinde alindiginda, yukarida

sOylenen yol izlenerek § 3.2.2. deki alan denklemlerini asagidaki sekillere indirgenebilecekleri

kolayca gortilebilir.

w0 = AB+BC+%—/1—2—/czu———(f ~-Gf,)- ABLL T

AB BC CA C f 2f B C)T,
A(.BC 221, @

—4Z|3= 2| ¢
A\ BC C? f

o . .

Gll——E—E—ﬁ iz K’ +—(f—Rf ~Gf,)+ E+E h+h

B C BC C - 2f, B CJf, f,
(4.2.a)

p"

f

BC CB fq BC A%)f,
+4| — L4 —=-=

BC CB fo BC C?)f,
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G,--C A CA_oP 1 Ry Gf)+9+§-f—R+Ll
C A CA f, 2f, C AJf, f,
o (4.2.b)
+4| — CA & f +4%£
CA AC/f, CAT,
G,--~_B_AB_..p +J;U—Rf m)+-5+§13+5
A B AB f, 2f, A B)f, f,
- (4.2.c)
rf BB BAVE &f_e
AB ' BA AB f,
G, =0=0
G, =0=0 (4.3.a,b,c)
_A(B_C|__4A(B_C|Afe
® clB C C\B CJAf,
G,=0=0
G,,=0=0 (4.3.d.ef)
G, =0=0

Bu denklemler, bu durumlariyla ele alindiginda, amacimiza uygun kullanima elverisli
bulunmamaktadir. Bunlardan, eger varsa, hangilerinin bagimsiz denklem oldugu ilk bakista
anlagilamamaktadir. Ote yandan, mesela (4.2.c) denklemi (G,,-denklemi) gdz Oniine
alindiginda, burada C(t) 6l¢ek carpaninin yer almadigi derhal goze ¢arpmaktadir. Benzer
sekilde G,; -denkleminde A(t); G,,-denkleminde de B(t) dlgek carpani bulunmamaktadir. Bu
durum, dongiisel simetriye sahip s6z konusu denklemlerin bir tiir kombinasyonlarini almak
gerekliligini diislindiirtmektedir. Ancak bu, biraz da deneme-yanilma yontemine dayal bir is
oldugundan biz bu ise girismeyecegiz. Kaldi ki, asagida uygulayacagimiz § 3.2.3 deki 1+3

kovaryant ayrisim yontemi bu isi kendiliginden gerceklestirecektir.
4.1.2. ikinci Yonteme Gore f(R,G) Alan Denklemleri

(3.58)-(3.61) denklemlerinin; 6lgek ¢arpanlari ile f(R,G) fonksiyonunun tiirevleri cinsinden
yazilimlari, (3.42)-(3.45) bagintilari, Ek C ve de (3.50) olarak belirtilen girdiler yine
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kullanilarak asagidaki gibi bulunur. (3.58) ve (3.59) denklemlerinin karsiliklar, sirasiyla g

ve p"* ile etiketlendirecegimiz su denklemler olurlar:

ut AB+BC+%—%—K2L+i{—E(f—RfR—GfG)— AL fo
AB BC CA C . f | 2 A B C
,
o[ 12ABC 42t A) (4.4
ABC C° A

3

w. 2(A B C) 1(AB BC CA) 127
A B C

pre: —= +—+ —
3 AB BC CA 3C

sz +— { (f —Rf, GfG)+2 é+E+C fo+ fo
£ f |2 3lA'B C

alA(B C) B(E A) C(A B
t—|—| == |+=| =+—|+=| —+ fG
3_A£B Cj B[C Aj C[A BH

_ . o . . . . 2
(A48 8S cA) 2Ty )
3_ AB BC CA) C

t.ef

enklemleri 1se yalnizca #z0ve =U+( * oldugundan, 0zdc§ olaraxK SiIir
3.60) denkleml 1 G, #0ve ;¥ =0+05° #0 oldugundan, 6zdes olarak sif

olmayan tek bir denklem verir.

¢“: 0=0
0" : 0=0

g AB S\ g2(B C)Ak | A(C B A o ey
clB C C{B CJ)ATf, clc B A f,
(3.61) denklemlerinin karsiliklar1 da, diizenlendiklerinde, denklemlerin sag taraflari nt “leri

gostermek lizere:

. 1(2A B C) 1(AB 2BC CA 242 1 2A B C
Ty ——— |t =t = 2=— - fR
3lA B c)'3AB BC CA) 3C 3l A B C

_4[A §+C B 2C A E A 28 :
3] AlB C/ B c A B)J|C
4[AB 2BC CA 21 fe} “72)

3

AB BC CA c’
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w. 1( A 28 C) 1({AB BC 2CA) 12* 1|1(A 2B C);
Ty o S|t | ot | o= =+ = | s
3l A B C) 3(AB BC CA) 3C* f,|3lA B C
4/A(B 2C) B(C A} C[ 2A B)|.
—| === |+=| == |+ =| ——+= || s
3/AlB C) B(C A) C A B
o
_4 EJr%_E_ﬁ‘_z f'G (4.7.b)
3(AB BC CA C
w. 1 A B 2C) 1 2AB BC CA) 11* 1|1(A B 2C);
2 e il B e B e el B o [l Sl 1 8
3l A B C) 3 AB BC CA) 3C* f|3lA B C
4/A( 2B C) B(C 2A) C[A B)|;
——| ===t = |[+=| == || s
3/Al B C) B(C A) C(A B

4 2R B A i) @79
3 AB BC CA C

(4.7.d,e,f)

R
55
o O O
Il
o O O

olur. Simdi, (4.7) deki ii¢ denklemden hareketle, taraf tarafa cikarmalarla asagidaki su

diizenlenmis ii¢ yardimci denklemi olusturalim ve bunlarin diizenlenmis sekillerini de “I1°

sembolleriyle etiketleyelim:
noom,. A B C[AB) (A B\, [C(A B) C(A B)If
A B ClA B)|A BJf,, |CLA B) ClA B)|f,

R

mo-n.. B_C,A(B C) (B C\f [A(B C) A(B C)]i
B C A(B C B C)f; AlB C) A(B C)|f;
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o, CAB(EAN(C AV [8(C A) B(C At
C A BlC A)\c aJt, "|Blc a) Blc AT,
+4E E_é k_ﬂ_z 1+4fG =0 (48C)
Blc AJf, cZl T,

Bianchi-Tip III modeli i¢in (3.45) de yazmis oldugumuz Ricci skaleri ile Gauss-Bonnet

teriminin ifadelerini, biitiinligii saglamak iizere agsagida tekrarlayalim:

2
. Z(A B+C AB+BC CA z}

n =2 (4.9.a)
A B C AB BC CA C°
2
G_s ABC BCA CAB_A/I_ (4.10.3)
ABC BCA CAB AC?
Bunlari, ilerideki amaglarimiza uygun olarak
R_AABC +B+C+£—}b—2 (4.9.b)
2 A AlB C) B C BC C
G_A[BC 4 1 A[BC CB (4.10.b)
8 A(BC C A\ BC CB

seklinde diizenleyelim. Yine, ilerideki baz1 kullanimlarimiz i¢in ' + p**' ve 4" +3p'®

—u*" +3p" birlestirmelerini de olusturalim:

t.ef t.ef

4 p
_2(A B C) 2(AB BC CA) 22°
3A"B'C) 3 AB BC CA) 3C?

_eprp (LIUAB S L
f, f.| 3lLA B C
4[A(B C) B(C A) C(A B) 9ABC 32°A
t—| === |+=| == |+ =| == | ——— —2—f
3| AlB C B\IC A/ C{lA B ABC C° A

4/(AB BC CA) A% |
ol ===t — -5 | Ts
3][\AB BC CA) C

(4.11)
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ﬂt.ef+3pt.ef :
o[ ALBLC 30T, f —Rf, —Gf + ABLC f,+3f,
A B C fq fR A B C
+4 A E+9 + C+é +E é+E 3ABC+}L2 A f (4.12)
AlB C C A) ClA B ABC C
AB BC CA) A% |:
4| —t+—+— - | fs
AB BC CA) C
_ﬂ +3ptef.

_Z[A 8 CJ z(ﬁ &%}%_Kz 3y
R

= +
A B C AB BC CA
1 A B C), .:
+f_{2(f_RfR_GfG)+3{K+E+EJfR+3fR

R

A(B C) B(C A) C(A B ABC A2 A,

H —| =+ = |+=| =+ |+ | =+ = [+3—=—— | {5

AlB C/ BIlC A) ClA B ABC C?A
2

+4 AB BC+CA /1—2 fy (4.13)
AB BC CA) C

Yukaridaki denklemlerden (4.4) ile (4.5) e, RW-metrigindeki karsiliklarina atfen “Friedmann
denklemleri” denir; fakat burada, f(R,G)—gravite i¢in yazilmis olduklarindan
“genellestirilmis Friedmann denklemleri” demek daha dogru olacaktir. (4.12) ye ise,
“Raychaudhuri denklemi” ad1 verilir. (4.13) ise, (3.50) ile birlikte ele alindiginda, (3.47) de
yazilmig iz denkleminden bagka bir sey degildir. Bu denklemlerin: 2 x (4.4) - (4.12) + (3.47) =
R seklindeki birlestirilmesinden (4.9.a) ile verilen Ricci egrilik skalerini elde etmek

miimkiindiir. Simdi, bir de; mitkkemmel akigkan olarak alinacak siradan madde igin, (3.56 ) daki

V'T,™ =0 korunum denkleminden hareketle elde edilebilecek

7 +(2 : EJ(;; +p")=0 (4.14)

korunum denklemini yazalim. Bunun integrasyonunu simdiden vermek iyi olacaktir. Siradan

maddenin w = Sabit olmak tizere
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o" = (4.15)

seklinde lineer bir barotropik hal denklemine uydugu varsayimi altinda (4.14) denklemi

/,-lm-i-(l-f-W)(%-l-g—i-%]lum =0 (4.16)

seklini alir ve bu da

d d
—Inu" =—(1+w)—In(ABC
g M4 = (1 w) g In(ABC)

yazildiginda, kolayca integre edilerek

4™ oc (ABC) & (4.17)
verir. Orant1 katsayisini belirlemek iizere; baslangi¢ kosulu olarak, t=t, simdiki kozmik
zamaninda ", A,Bve C nin simdiki degerleri z,", A,, B, ve C, ile gosterilirse

po" o (A)B,Cy) ¢ (4.18)

olur ve dolayisiyla da, sonugta, korunum denkleminin ¢6ziimii i¢in

A = " (———] (4.19)

elde edilir. Bu noktada suna dikkati cekmek yerinde olacaktir. V°T,,™ =0 enerji momentum

tansoriiniin korunumundan hareketle tesis edilen (4.14) deki korunum denklemi, (4.4) ve (4.5)
denklemlerinden bagimsiz degildir; bir bagka deyisle, bu denklemi (4.4) ile (4.5)

denklemlerinden de elde etmek miimkiindiir. Nitekim (4.4) denkleminden cekilecek z™

fonksiyonun t zamanina gore tiirevi olusturulup da, (4.4) ile (4.5) in (4.11) deki toplaminin
A B C). . o )
_+_+E ile carpilmis sekliyle birlestirilirse, uygun diizenlemeler sonucunda (4.14)

denklemine varilir. Bu islemi uzunlugu nedeniyle burada gdstermiyoruz. Ancak (4.14) {in
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gercekten de boyle elde edilebilecegi § 4.2.1.1 de ele alinacak 6zel bir durum g¢ergevesinde

acikca gosterilecektir.

f (R,G) -gravite’nin Bianchi-Tip III modeli ¢er¢evesinde yazilabilecek tiim denklemleri -

bazilar1 bagimsiz olmasalar da - yukaridakilerden ibarettir. Bunlardan hareketle, oncelikli

amacimiz f(R,G)nin fonksiyonel formunun belirlenmesi olacaktir. Bu “ f (R,G) modeli

tesisi” olarak anilacaktir. Sonrasinda ise s6z konusu modelin evrenimizin giiniimiizdeki ivmeli

genislemesini verip vermedigine bakilacaktir.

Yukaridaki denklem ve bagmtilar: ii¢ii bilinmeyen A(t),B(t),C(t) 6l¢ek carpani; biri ™ (t)
(veya p™(t) ) fonksiyonu ve digeri de bilinmeyen f (R,G) fonksiyonu olmak tizere toplamda
bes bilinmeyen icermektedirler. Bunlarda yer alan f (R, G) fonksiyonunun, argiimanlarina gére

tiirevlerinin zamansal tlirevleri i¢in, zincir kurali kullanilarak kolayca yazilabilecek

fo=f R+ .G (4.20.2)
fo = ferR+ foG (4.20.b)
fo = ferR+ fooG + 2 fopg RG + frpqR? + foo G (4.20.c)
fy = foqR+ oG+ 2 RG + fypgR? + f g G (4.20.d)

bagintilar1 ve bunlarla birlikte R ile G nin (4.9) ve (4.10) daki ifadeleri de dikkate alindiginda,
denklemlerin o6lcek carpanlarina gore dordiincii mertebeden tiirevli, yiiksek derecel,
birbirlerine kuple ve asir1 lineer-olmayan (non-lineer) bir mahiyette olduklar1 derhal anlagilir.
Dolayisiyla, analitik ¢éziimler elde etmenin zor ve hatta imkansiz oldugu ve dahasi ¢éziimlerin
var olup olmadigin1 da pesinen sdyleyemeyecek bir durumla karsi karsiya bulunmaktayiz.
Bilinmeyen tiim 6lgek ¢arpanlari belirlenmis ve f fonksiyonun t zamani cinsinden f = f(t)
fonksiyonu bulunmus olsa bile, (4.9) ve (4.10) bagntilarindan elde edilecek R =R(t) ve
G =G(t) ifadeleri, f yi, f =f[t(R),t(G)]= f(R,G) olarak agik bir sekilde tesis etmeye her
zaman izin veremeye bilmektedir; zira bunun miimkiin olabilmesi i¢in muhakkak sekilde
analitik olarak t =t(R) (veya t =t(G)) ters fonksiyonlarinin olusturulmasi gerektigi agikardir.

Aksi  takdirde, s6z konusu asamada f(R,G) modelinin tesisi amacinda
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{f=1(t),R=R(t),G=G(t)} parametrik gosterimi ile yetinilmek zorunda kalimlacaktir.
Literatiirde; f(R,G) denklemlerini nispeten sadelestirmek i¢in bilinmeyen sayisini azaltmak
tizere, siklikla, B=C (yada A=B veya A=C) varsayimina dayali Yerel Donmesel Simetrik
(YDS) (Locally Rotationally Symmetric(LRS)) Bianchi-Tip modeller géz oniine alinmaktadir
[36,37,38,41]. Olgek carpanlar1 icin GRT’de de pek siklikla yapilan bu basitlestirmenin yani
sira, tek bilinmeyene indirgenmis denklemler elde etmek icin ad hoc (amaca yodnelik)
varsayimlardan Dbirini  “genisleme skaleriyle makaslama skalerini orantili almak”
olusturmaktadir [36,40,41]. Bir bagka varsayim ise, f fonksiyonu ile bir 6l¢ek ¢arpani arasinda
kuvvet kanunu gibi bir takim bagitilar 6ne siirmektir [39,40,41,42,43]. Bunlarin yani sira; (
yavaglama parametresi, H Hubble sabiti gibi bir takim kozmolojik parametreler hakkinda da
ad hoc varsayimlar s6z konusu olabilmektedir [40,42,43]. Asagida, bu tiir amaca uygun (ad
hoc) varsayimlara baglangicta bagvurmak yerine, dnce, alan denklemlerinin milkemmel akiskan
varsayimi ile tutarliligini incelemeyi ve sonrasinda da, ortaya ¢ikacak kisitlamalar altinda,
denklem sistemini, gerek sayica ve gerekse de bilinmeyenler bakimindan olabildigince

indirgenmis bir duruma getirmeyi amagliyoruz.
4.1.3. Tutarhhik Kosullan

Evrenin siradan madde-enerji igeriginin yalnizca " (t) madde-enerji yogunluklu ve p™(t)
basingli bir milkemmel akiskan ile tasvir edilmesi ya da baska bir deyisle, akigkanin enerji-

momentum tansériinde hal denklemi olarak q] =0 ve 72'26, =0 (a, B,...=1,2,3) varsayilmasi,
alan denklemlerinin G, ve G, bilesenlerinin s6z konusu varsayim ile tutarl olup olmayacagi

sorununu ortaya ¢ikarmaktadir. Asagida, miikemmel akiskan varsayimui ile tutarlilik anlaminda

bu sorun incelenecektir.

Simdi, once (4.6.c) denklemini ele alalim. A # 0 i¢in, bu denklemin tutarliliginin saglanacagi

durumlar sunlardir:

) A f C B )
i) 1+4——C %0 ve ———=0 < C=kB, (k =sabit>0 4.21
(i) I\ c B B, (k ) (4.21)

R

(J)) C=kB ve 1+4%%:0 (4.22)
R
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(k) 1+4%%=o ve %—g:o < C=kB (4.23)

R

“Birincil kosullar’’ olarak nitelendirecegimiz bu kosullarin (4.8) denklemlerine yansimasini ele

almadan 6nce, soz konusu denklemleri asagidaki gibi diizenleyelim. (4.8.a) y1

é_E 1+££ + é_E 9+£+£k+£k +i2 1+4fG =0
ABl ¢t/ aB)lc'f ct cCft )l 1,

seklinde ortak carpanlara alarak yazar ve

C 1 A1 20 e L (cf, +Cf, +aCH, +4CE,)
c f, Cf, Cf Cf,
1 d ..
=——|(Cf, +4Cf
Cf, dt( " <)

olduguna da dikkat ederek, (4.8.a) icin

A S i(CfR+4Cf'G)+ n_8, ii(C1‘R+4CI"G)+}L—2 143 | o
A B)Cf, A B )Cf, dt C f
veya, Cf, ile de garparak
A B iy A B)d Gy A ’
[——Ej(CfR +4CfG)+(K—EjE(CfR +4CfG)+E( fo+4fs)=0 (4.24.9)

elde ederiz. Benzer yolla, (4.8.b) ve (4.8.c) denklemleri de, sirasiyla,

B C v B C)\d v

5o (AfR+4AfG)+(E—E E(AfR+4AfG)=O (4.24.1)
¢ A .\ (C Ad ..\ A°B .

" (BfR+4BfG)+(E——A a(BfR+4BfG)-F(fR+4fG)=o (4.24.c)

seklinde yazilabilir. Bu baglamda, su 6zelliklere dikkat ¢ekmek yerinde olacaktir. Yukaridaki

bu 3 denklem, sirasiyla, tekrar diizenlenmis IT,, —I1,,, IT,, —I1,, ve I1,, —IT,, denklemleridir.

Eger bunlardan biri 6zdes olarak sifir oluyorsa geri kalan diger iki denklem birbirlerinin ters
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isaretlisi olurlar. Gergekten de, mesela IT1,, —I1,,=0 oldugunda, buradan, I1,, =Il,, ve
dolayisiyla da TIT1,, —IT,, =IT,, —I1,, = —([1,, —I1,,) olur. Buradan da; (4.8) ya da (4.24)

denklemlerinden en az ikisinin 6zdes olarak saglandigin1 gostermenin tutarlilik i¢in yeterli

olacagi sonucu ¢ikmaktadir. Ote yandan, 6zdes olarak saglanmis, mesela IT, —I1,,=0
denklemi, ek bilgi yoksa, higbir sekilde I1,, =0 veya I1,, =0 sonucunu dogurmaz. Diger
I1,,-11,,=0 ve Il,—II, =0 saglanmalar ise ¢ok ¢ok IT,, =I1,, =I1,, verir. Ancak,
]'Z(Haﬂ) =11, +1I1,, +I1,, =0 ozelligi gz oniinde bulundurulursa, buradan zorunlu olarak
I1,, =11,, =I1,, =0 sonucuna varilir. O halde; (4.8) denklemlerinin tutarlili§1, ayn1 zamanda

(4.7.a,b,c) denklemlerinin tutarlilig1 ile de esdegerdir.

Simdi, (i) birincil kosulunu goz Oniine alalim. Bu kosul altinda (4.24.b) nin 6zdes olarak

saglandigy; (4.24.c) nin ise (4.24.a) nin ters isaretlisine esit oldugu kolayca goriilebilir. O halde

() birincil kosulu altinda incelenmesi gereken yegane bagimsiz denklem (4.24.a) olmaktadir.
A,B,C ve f —fonksiyonu olmak iizere 4 bilinmeyen i¢eren bu denklem, (i) birincil kosulu

kullanilarak, 3 bilinmeyenli denklem olarak asagidaki:

(é—gJ(BfR +4BfG)+(—ﬁ—gJ%(BfR +4BfG)+£( fo+4fs)=0 (4.25)

1

denklemine indirgenmis olur. Bu denklemin saglanacagi durumlar ise ilk bakista sunlar

goziikmektedir:
(i) B=k,A ,(k,=sabit>0) ve f,+4f,=0 (4.26)
(i,) Bfy+4Bf,=0 ve f,+4f,=0 (4.27)

Bundan boyle, bunlar “ikincil kosul” olarak anilacaktir. Bu arada (i;) ve (i,) kosulunun birlikte
saglandigi, yani, “B=k,A ve Bf,+4Bf,=0 ve f,+4f,=0" gibi bir kosulun, (i)
birincil kosulu ile ¢eliski olusturacagindan 6tiirli yazilamayacagina isaret edelim. Simdi, (i,)

kosulu (i) ile birlikte goz oniine alindiginda

C=kB=kA (k,=kk,>0) (4.28)
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kosuluna doniisiir ve dolayistyla da Bianchi-Tip III modelini RW modeli gibi tek 6l¢ek carpanl

bir modele indirger. (i,) kosulu ise, Boc A gibi bir kosulun ileri siiriilmesine gerek
duyurtmayacak sekilde olusturulmus iki bagintidan olusmaktadir. Bu denklem sisteminde, f,

nin elenmesiyle elde edilebilecek
_Bf, +Bf, =0

denklemi

seklinde yazilip da integre edilirse ve ayrica da (i) temel kosulundaki C = kB bagintis1 goz

oniine alinirsa, K, ve K, = K, /k, pozitif ya da negatif olabilen sabitler olmak iizere
fo=KB=K,C (4.29.9)

bulunur ve bundan hareketle de gerek denklem sisteminden ve gerekse de tiiretme yoluyla

f.=KB=K,C (4.29.b)
f, =—4K B =-4K,C (4.29.0)
f,=—4K B =-4K,C (4.29.d)
f, =-4K B =-4K,C (4.29.¢)

bagintilar elde edilir. Simdi, her ne kadar etkisi pesinen goriilmese de, (4.25) denkleminin

saglanmasina yonelik (i) ve (i,) den farkl bir kosul daha ileri stirmek diisiiniilebilir; o da:
(i,) B#k,A ve Bf,+4Bfy=0 ve fo+4f,=0 (4.30)

dir. Bu takdirde (4.25) denklemi B = k,A ve Bf, +4Bf, # 0 olmak kaydiyla



51

d .
iB-AB a(BfR +4Bf, )
AB-AB  Bf, +4Bf,

~0 (4.31)

sekline getirilebilir. Bunun da integrasyonundan M ile pozitif ya da negatif olabilen bir

integrasyon sabiti gosterilmek tlizere

A B B . M

elde edilir. Bu denklemin bir benzeri, istenirse, (i) temel kosulundaki C =k,B bagintisi

sayesinde, B — C konularak da elde edilebilir.

Simdi, C#k,B olmak kaydiyla, (j) birincil kosulunu ele alalim. Bu, birbirlerine esdeger

bi¢imde
C#kB;
Af ; A . 1A
1+4—-2=0 < Afj+4Af.=0 < f,=-4—f, < f.=—=—1f, (4.33)
A fR R G R A G G 4 A R

bagintilariyla ifade edilebilir. Bu kosul altinda (4.24.b) nin saglandig1r hemen goriilmektedir.

(4.24.a) 1n saglanmasi i¢in ise, ilk bakista,

(i) B=kA , (k,=sabit>0) ve f,+4f, =0 (4.34)

(j,) Cf,+4Cf;=0 ve f,+4f,=0 (4.35)

kosullarindan birinin yeterli olacagi goriilmektedir. Bunlar da yine “ikincil kosul” olarak
adlandirilacaklardir. Yine burada (j,) ile (j,) kosullarinin birlikte saglandigi duruma karsilik
gelen B=k,A ve Cf,+4Cf,=0 ve f,+4f, =0 gibi bir iigiincii ikincil kosul ileri
stiriilemeyecegine dikkat ¢ekelim; zira bunun () ile birlestirilmesi Boc A,Coc A= C « B
gibi, (j) birincil kosulu ile geligsen bir sonuca yol agmaktadir. Simdi, (j,) ikincil kosulunun,

(J) birincil kosulu ile birlestirilmesi
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Bf, +4Bf, =0 (4.36.2)
fo+af, =0 (4.36.b)

denklem sistemiyle ifade edilebilir. Bu iki denklem arasinda 6nce f. elenerek bulunabilecek
_Bf, +Bf, =0

denklemi integre edilir ve tekrar (j,) ikincil kosulu da kullanilirsa, sonugta, fe ile f; ve

bunlarin da zamana gore tiirevleri, asagidaki gibi bulunur:

f.=KB=K,A (4.37.9)
f.=KB=K,A (4.37.b)
f, = —4K,B=—4K,A (4.37.0)
f, =—4K,B =—-4K,A (4.37.d)
f, =—4K B =—-4K,A (4.37.8)

Burada, K, keyfi bir integrasyon sabiti, K, de K, =Kk, seklinde tanimli yeni bir sabittir.
Simdi, geriye kalan (4.24.c) denkleminin de (J,) ikincil kosulu altinda, C oc A olmasi

gerekmeyecek sekilde, 0zdes olarak saglandigi derhal goriliir. Kosullarim kullanimi
baglaminda suna isaret etmek yerinde olacaktir; eger, dnce (4.24.a) degil de (4.24.c)

denkleminin saglanip saglanmadigina bakilmis olunsaydi, bu takdirde (j,) deki kosulda

B =k,Avyerine C =k,A, yani,
(i) C=kA , (k=sabit>0) ve f,+4f;=0 (4.38)
degisikligini yapmak gerekecek ve bu da (4.37) de B — C ile degistirilmis

fo=KC=K,A (4.39.a)
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f.=KC=K,A (4.39.h)
fo =—4K,C = -4K,A (4.39.c)
fo = —4K,C = —4K,A (4.39.d)
fo = —4K,C = —4K,A (4.39.¢)

ifadelerine yol acacakti. Bu durum i¢in, (4.24.a) denkleminde B o« A olmak gibi bir gereklilik

getirmenin s6z konusu olamayacagina da isaret edelim.

Simdi, (j,) ikincil kosulunu ele alalim. (j,) deki ilk bagintinin (4.33) ile karsilagtirilmasindan
C =k,Aolmasi gerektigi anlagilmaktadir ve bu bagint1 da, B ile A arasinda herhangi bir

bagint1 bulunmasini gerektirmeyecek sekilde, (4.24.c) denkleminin 6zdes olarak saglanmasina

yol agmaktadir. (4.39) bagmtilart (j,) kosuluna denk olmaktadir. (j) kosuluna iliskin buraya

kadarki incelemelerden ¢ikan sonucu dzetlemek gerekirse; C # kB olmak iizere, (4.37) veya

(4.39) bagintilar1, (4.6.c) ve (4.8) denklemlerinin 6zdes olarak saglanmasi i¢in yeterli

olmaktadir.

Ote yandan, (4.24) denklemlerinin birlikte saglanip saglanmayacaklari apacik goriilmese de,

(J) birincil kosulu altinda (j;) ve (j,) den daha az kisitlayict
(j;) fa+4f,=0 (4.40)

kosulunu ileri siirelim. Bu taktirde (j) ve (j;) den, (4.37) ile (4.39) dan daha az kisitlayict

fo = K,A (4.41.a)
fo = K,A (4.41.b)
fo=—-4K,A (4.41.c)

fo =—4K,A (4.41.d)



54

f,=—4K,A (4.41.8)

bagintilarina varilir. Bunlar (4.24) denklemlerine yerlestirildiginde; (4.24.a), diizenlenmis

sekliyle

CR e

denklemine indirgenir; (4.24.b) ise 6zdes olarak sifir; ve (4.24.c) de yukaridakinin ters
isaretlisini verir. (4.42) denklemi

AB—AB+AC—AC_0
AB-AB AC-AC

seklinde yazilir da integre edilirse
1|n\AB—AB\+1|n\Ac—Ac':\:o
dt dt
d ’ A .
a|n\(AB— AB)(AC - AC)|=0
|(AB— AB)(AC — AC)| = Sabit

(AB—-AB)(AC-AC)=L (4.43.2)

ya da,

[ﬁ_é](g_éjz L (4.43.0)
B AJC A) ABC

bulunur. Burada L, pozitif veya negatif olabilen bir integrasyon sabitidir. Dikkat edilecegi

lizere, sO6z konusu kosul takimi, dlgek carpanlari i¢in hicbir sekilde A oc B oc C gibi bir kosul

ortaya ¢ikartmamaktadir.

Simdi, son olarak (k) birincil kosulunu ele alalim. Bu kosul altinda (4.24.b) nin 6zdes olarak

saglandig1 ve (4.24.a) nin da
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(é—gj(BfR +4BfG)+(%—EJ%(BfR +4BfG)+£( fo+4f,)=0 (4.44)

1

seklinde yazilabilecegi kolayca goriilebilir. Bunun saglanmasi ise su durumlarda gergeklesir:

(k) BocA ve f,+4f, =0 (4.45)
(k,) Bfy+4Bf,=0 ve f,+4f, =0 (4.46)
(k,) B A ve Bf +4Bf,=0 ve f,+4f,=0 (4.47)

Bu ikincil kosullarin herbiri (k) birincil kosulu ile birlikte degerlendirildiginde, hepsinin de

asagidaki tek bir bagint1 takimina yol agtiklar1 kolayca bulunabilir.

CxBuxA (4.48.9)
fo =K,A=K,B=K,C (4.48.b)
fo =K,A=K,B=K,.C (4.48.0)
fe =—4K,A=—4K,B =—4K,C (4.48.d)
fo =—4K,A=-4K,B =-4K,C (4.48.¢)
f, =—4K A =-4K,B =-4K,C (4.48.f)

Yukarida ortaya ¢ikan tiim kosullar1 Tablo: 4.1 de gostermekteyiz. Bundan boyle, Tablodaki
kosul obekleri; birincil kosullar ile ikincil kosullarin birlestirilmesi anlaminda, mesela,

1®i, ] j;,... gibi “@® ” semboliiyle gosterilecektir.
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Tablo 4.1: Bianchi-Tip 11l Modeli igin Tutarlilik Kosullar1 [44]

e
1 R
0=

(i) B=k,Ave f,+4f, =0

C=kB=k,A
. C
§)) c

(j) B=k,Ave f,+4f, =0
(C oc A gerekmez)
fo =K,B=K,A
fo=KB=K,A
f, =—4K,B = -4K,A
f, =—4K,B =—-4K,A
f,=—4K B =—4K,A

(k,) Boc A ve f,+4f,=0

¢c B
k) =——=0(«<=C=kB) ve 1+4=—
() S5 =06 C=kB) .

_§=0(©C=k18) iken 1+4%f—:¢0
(i,) Bfy+4Bf,=0ve f,+4f, =0
(B oc A gerekmez)
fo =K,B=K,C

fy=KB=K,.C
fo =—4K,B=-4K,C
f, =—4K,B=-4K,C

fo =—4K B =-4K,C

B oecskB) iken 14421
b Af

R

=0

(j,) Cf,+4Cf, =0ve f,+4f, =0
C =kA (B« A gerekmez)
fs =KC=K,A
fy =K.C =K,A
f, =—4K,.C =-4K,A
f, =—4K,.C =—-4K,A
f,=—4KC =-4K,A

(i) ((j,) de B— C konulacak)

A:_izo
(k,) Bf, +4Bf, =0ve f, +4f, =0
Hepsi icin
(A B C)
fo =K,A=K,B=K,C
fs=KA=K,B=K_C

f, =—4K,A=-4K,B = -4K,C
f, = —4K,A=—4K,B=-4K,C
f, = —4K,A=-4K,B = -4K,C

(i,) fo+4f,=0
(B oc A gerekmez)
B = kA ve Bf, +4Bf, =0

sl
fG]

M
AB?

— 'vlkl2

B

veya
C —
C AC?

Fefe

(i) fa+4f,=0
(AocBoc C gerekmez)
fo = K,A
fo=K,A
fo =—4K,A
fo=—4K,A

(k;) Boc Ave Bf +4Bf; =0ve f, +4f; =0
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4.2. BIANCHI-TIP III iCIN f(R,G) MODELI TESISi

Simdi; (4.8) ve dolayisiyla da (4.7) denklemlerinin miikemmel akiskan varsayimi ile
tutarliliklarinin saglanmasi gerekliliginin yol a¢tig1 yukaridaki kisitlamalarin, geri kalan alan

denklemleri ile bagintilara yansimasini ele alalim.
4.2.1. i-Birincil Kosulu Altinda Denklemlerin Indirgenmesi

Once i -birincil kosulunu, yani,

C=kB <& C=kB ,C=kB <

(4.49)

w | m:

c.:.
<& — =
C

oOlo.
W | W

bagmtilarmi gz Sniine alalim ve bunlarin 1sigmnda: g™, p*, 4" +p', 4t +3p*

t.ef

—u* +3p* 4™, R ve G nin, iki bilinmeyen &l¢ek ¢arpani igeren indirgenmis ifadelerini

tesis edelim. Buna gore: (4.4), (4.5), (4.11), (4.12), (4.13), (4.19), (4.9) ve (4.10) dan:

y . i N ..
pr o RBLB A et L np ar)-[ A28
AB B’ k’B f.2f, A A
o . (4.50)
Al B2 2% 1,
-4— 3_2_ 2p2 | £
Al"B® kB’ f,
et 2(A _B) 1(,AB B?) 1 A2
P o =42 | 2—+ 5 [+
3lA""B) 3\"AB B?) 3K’B
e P L Rr o)+ 2 A 0B e T (4.51)
f. 2f, 3lA "B, f,

4/ AB _B(A B)|f, 4/( ,AB B A* |f;
+—12——+2—| —+— ||+ | 2=+ =5 |- 55 | =
3] AB B(A B)|f, 3| AB B?) k’B’|f,
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o tef 2(A _B) 2(,AB B?) 2 A?
Lo +pT | =t2- |+ 22—t =5 |- T
3l A B) 3\ AB B 3k, B

:Kzu 1(A+ZE]E+E

f. 3lA "B)f, f,

41 AB _B(A B) 9AB® 31" A|f;
+—|2——+2—| —+— |
3] " AB "B(A B) AB* k’B*A|f,
4[2AB B2 A% }g

—_ _+__
3|"AB B? k?’B?|f,

(4.52)

‘ut.ef +3pt.ef : _2(%+2Ej Zﬂ . (f —Rf GfG)

fR R
+ é-|-2E £+3£
A BT, T,

AB _B(A B) 3AB®  A* Alf
+4 2o =42 | S22 2D e
AB "B|A B) AB® k’B’A|f,

r. 4 ,
+4 2ﬁ+8—2— /21 > f—G
AB B° Kk B°|f;

(4.53)

. ,
—u +3p s =2 A2Bl, 2E B— +2%
A B AB B?) “k’B

—_” +3p” i(f—Rf ot )43 228 fe 3 e
f A B

R

2 2 ¢
+4 2——+2B A 52 2
B B2 k’B?)|f,

AB B2
H AB 82 } (4.54)

kl

"‘:
+
I
+
N
;/
=
+
=
"‘:
I
o
t
8
—~~
>
o
v
B
=
N
|
S
VR
2=
—~~
AN
o1
(3]
N
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o A{5-dr)ets
1

elde edilir.

42.1.1. i1®i, Kosul Takimi Altinda f(R,G) Modeli Tesisi

Incelemelerimize, Tablo: 4.1 de ilk siradaki i @i, kosul takimiyla baglamak yerine, énce, daha
zengin bir yapi sunmasi bakimindan i@i, kosul takimiyla baglamayi tercih ediyoruz.

Denklemlere gonderme yapmayr kolaylastirmak tlizere i@®i, tutarlilik kosullarmi asagida

tekrarliyoruz:
Bf, +4Bf, =0 ve f,+4f, =0, (Bo A gerekmez) (4.58)
fo=KB=K,C (4.59.2)
f.=KB=K,C (4.59.b)
f, =—4KB=-4K,C (4.59.0)
f, =—4K,B=-4K,C (4.59.d)
f, =-4K B =-4K,C (4.59.¢)

f(R,G) =aR+F(G) hali:

Ise énce « ile a#0 olan gergel bir say1 ve F(G) ile de G nin keyfi bir fonksiyonu

gosterilmek tizere f (R, G) fonksiyonunun

f(R,G)=aR+F(G) (4.60)
seklinde 6zel bir formunu gbz oniine alarak baglayalim. Bu takdirde

f,=Sabit=a#20 = f,=0 ve f,=0 (4.61)

olur. B o6lgek carpani igin (4.59.¢) den bulunabilecek
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(04 B_(l

a=-4KB = B= = B=
—4K, —4K,

t+C, (4.62)

¢ozlimiine baslangi¢c kosullar1 olarak: t=0 i¢cin B=0 ve simdiki t=t, icin de
B(t=t,) =B, >0 kosullar1 uygulanirsa, C, integrasyon sabiti icin C, =0 ve B, i¢in de

B, = %to >0 bulunur. Bu ¢6ziim, yani,

TN

B=B, t__e@ t (ayni zamanda C, = k,B, olmak iizere C =k C, b ka t) (4.63)
t, —4K; t, —4K,
(4.59.a) ya yerlestirilir ve bulunan da hem tiiretilir, hem de integre edilirse
a
fG = FG :_§t2 +CZ
fo=F,=-2t (4.64)
4
. o
fG = FG = —Z

bagmtilar: elde edilir. (4.60) varsayimi altinda i @i, kosul takiminin, f fonksiyonu ile bunun

tirevlerine ve de B ile C olgcek carpanlarina getirmis oldugu kisitlamalari asagida topluca

gostermekteyiz:
SR
fR fR
fo Fo_leje  fo R 1 fo F_ 1 (4.65)
fo fq 8 fo  fq 4 . . 4
B-B,~ , C=kB, C=C,~  C,—kB-—<% B_C_1 B_C_,
t, t, 4K,°'B C t'B C

Bunlar (4.56) ve (4.57) ye tasimnir ve hem kisaltma amaciyla, hem de sonraki tartigmalari

kolaylastirmak i¢in
t, A%t ) 5
n= >0 ve 551——051—177 (466)
k,B, k’B,’
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tanimlar1 yapilirsa, diizenlenmis sekilleriyle

%:%téz (4.68)

elde edilir. Ote yandan, (4.50) denklemi ise

A 2.2 m 2,2
261‘4_1_177 =K-2’u_ [F(G) GE P_%(%_ltﬂ J

_g{AE_E}ZKZ”_m_i[F(G)_GFG] (4.69)
a 2a

bicimine indirgenir. Benzer sekilde, (4.51) - (4.55) denklemlerinin indirgenmis sekilleri i¢in de

sirastyla,

O:KZ%Jr%[F(G)—GFG] (4.70)

& %%_tlz :KZ% (4.71)
AL 1] +3

Sihvards % Z[F(G)-GF,] (4.72)
Al 1 —u"+3p" 2

" 4 é+E L+wW)u"=0 = u"oc(At?) m_ | AL . (4.74)

A T H 7 B s :

bulunur. Son dort denklem, (4.69) ve (4.70) den bagimsiz degildirler. (4.71), (4.72) ve (4.73)
denklemlerin, bu iki denklemin dogrudan dogruya birlestirilmesi suretiyle de kolayca elde

edilebilecegine isaret edelim. Ote yandan, §4.1.2 de ispatsiz belirtildigi iizere, (4.74) deki



62

standard maddenin korunum denklemi de, (4.1) ve (4.2) nin sirasiyla indirgenmis sekilleri olan
(4.69) ve (4.70) den bagimsiz olmayip, bu ikisinin bir tiir kombinasyonundan elde edilebilirler.
Bu genel 6zelligi yukaridaki 6zel denklemler araciligiyla gosterelim. (4.69) denklemi t ye gore

tiretildiginde bulunacak

Al A*1 A1 2 TR : :
B N 4+ =k — | F(G)-GF. -GF 4.75
6{At At At t3} a 205[ (6)~GF; ~GF ] (@7

denklemine, zincir kuralindan yazilacak F(G)= FGG bagmtist yerlestirildiginde esitligin
sagindaki parantez icindeki ilk iki terim yok olur ve geriye kalan GF; terim i¢in de (4.64) ve

(4.68) bagintilart kullanildiginda, sonugta

A1 A1 2 y i
A, . V- A 4.76
é{Azt At? ts} a (4.76)
elde edilir. Ote yandan, (4.71) denkleminin her iki yan: da é+E+EEA+g ile
A B C At
carpildiginda
A1 Al 2 A 2\ 4"+ p”
| -+ —5—=|=k"| —F+— || ——— 4.77
S{Azt At? tJ [A t}[ a .7)

olur ki, bununla da (4.75) in taraf tarafa toplanmasi, (4.74) daki arzulanan sonucu verir. O halde;
(4.69)-(4.74) denklemleri arasinda en ¢ok ikisinin bagimsiz oldugunu bir daha vurgulayalim.

i @i, tutarlilik kosul takimi altinda f(R,G)=aR+ F(G) hali i¢in elde edilebilecek miimkiin
tiim bagint1 ve denklemler, heniiz bilinmeyen A(t) 6lgek ¢arpani disinda, hepsi hepsi yukarida
yer alanlar kadardir. Simdi amacimiz, F(G) fonksiyonel formunun (dolayisiyla da f(R,G)
nin) belirlenmesi anlamina gelen “ f (R, G) modeli tesisi” meselesini ele almak olacaktir. Bu is

icin izlenebilinecek yontemleri asagida siralayalim.

1) f(R,G)fonksiyonel formunun pesinen bilinmesi ya da secilmesi durumunda bunun f_, f
foe .- gibi argiimanlarina gore tiirevleri de biliniyor olacagindan, (4.67) ve (4.68) deki R ve

G ifadeleri sayesinde hepsi, A nn tiirevleri ile t cinsinden ifade edilmis olurlar. Bunlarin,
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mesela (4.69) a yerlestirilmesi, denklemi, bilinmeyen A(t) fonksiyonun tiirevleri cinsinden bir
diferansiyel denkleme doniistiiriir ve buradan da geriye, eger bulunabiliyorsa, A(t) ¢Oziimiinii
tesis etmek kalir. Bu suretle, ilkesel olarak, her bir f(R,G) fonksiyonel form se¢imi igin
bunlara karsilik diisecek farkli A(t) ¢Oziimleri bulmak miimkiin gériinmektedir. Ancak, bu

yolla elde edilecek diferansiyel denklemlerin, bir yandan iki ya da daha yiiksek mertebeden ve
diger yandan da asir1 nonlineer olabilmeleri, ¢oziimiin varlit ve insasi sorununu ortaya

¢ikaracaktir.

2) Yukaridaki yontemin karsit yaklagimini, f(R,G) yerine bilinen ya da segilen bir A(t)
fonksiyonundan hareket etmek olusturmaktadir. Ancak, A(t) nin fonksiyonel seklinin, (4.67)
deki R =R(t) den (veya (4.69) daki G =G(t) den) t =t(R) (veyat=t(G)) ters fonksiyonunun
¢ekilmesini miimkiin kilabilecek 6zellikte olmas1 gerektigi asikardir. Bu takdirde, t cinsinden

olan (4.69)-(4.73) denklemleri yalnizca R cinsinden (veya G cinsinden) denklemlere doniisiir

ve buradan da F fonksiyonunu kolayca tesis edebilmek olanagi dogmus olur.

Simdi; Once bu ikinci yaklagimi benimseyerek, sdylenenleri somutlagtirmak {izere, mesela,

(4.69) ve (4.70) denklemlerini g6z oniine alalim. Bunlardan ¢ekilecek ™ ve p™ ifadeleri

p" = wu” (4.78)

hal denklemine tasinirsa

_%[F_GFG]:_agWL_‘:%_H%W[F_GFG] @79)

ve buradan da F c¢ekilirse

F= 21“5""{’_2%_%2}@& (4.80)
+W

. 1
olur; ya da (4.64) deki F; = —gat2 +C, bagintisi kullanilirsa

po2eeW AL 11 LoGeic,e (4.81)
1+w | At t 8
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elde edilir. Son terim G nin bir skaler kat1 oldugundan topolojik invaryant durumundadir ve
dolayisiyla da alan denklemlerine bir katkist bulunmamaktadir (aksiyondaki varyasyonu bir
toplam diverjans olarak ortaya ¢ikmaktadir). Bu bakimdan bundan bdyle, G nin sabit bir kati

durumundaki bu tiir terimler g6z ardi edilecektir. (4.81) de goriildiigi iizere F =F(t) dir.
F = F(G) fonksiyonunu ortaya ¢ikarmak igin simdi yapilmasi gereken, (4.68) den t =t(G) ters
fonksiyonu elde etmek ve bunu da (4.81) e yerlestirip sonugta F = F(G) i tesis etmektir. Bu
yOntemin yiiriimesine olanak taniyabilecegini kestirebildigimiz bir fonksiyon olarak A(t) yi

asagidaki gibi secelim:

A(t)=Ao(t£] , neR ve nz0,1 (4.82)
0
Bir kuvvet kanunu tipinde olan A(t) fonksiyonu; t=0 icin A=0 ve t=t, i¢in de A=A,

baslangi¢ kosullarini saglamaktadir. n=0 i¢in A=Sabit ve n=1 i¢in de, bir yandan

A(t) oc B(t) oc C(t) ve diger yandan da G =0 olacagindan, bu n=0,1 degerleri dislanmigtir.

A(t) nin
An Ay (4.83)
At A t

tiirevleri; (4.67), (4.68) ve (4.81) ye yerlestirilirse, sirasiyla,
R=2(n+n+&t2 (4.84)
G=8n(n-1&t™ (4.85)
poloewin=h1 1 np (4.86)

1+w t* 8

elde edilir. (4.85) deki G ifadesinin t=t(G) ters fonksiyonunu olusturmaya olanak tanidigi

goriilmektedir. Ancak, bu isi bir adim sonrasina birakarak once, hesap kolayligi saglamasi
bakimindan, (4.86) yi1, (4.85) den yazilabilecek Gt* =8n(n—-1)&t? ifadesi yardimiyla daha

sade bir bigimde
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2céw(n-1) 1 1
F=—=1——""——an(h-){=
1+w  t° ( )étz
Fo a(n=1)&2w—n(1+w)] 12 (4.87)
1+w t
yazalim. Simdi, (4.85) den t yi
1
t=t(G) = M ! (4.88)
G
olarak ¢ekip de bu son denkleme yerlestirirsek F(G) yi
g0
— — 2
F-F(G)= a(n-He2w-nl+w)]| G | (4.59)
1+w 8n(n—1)¢&|

olarak tesis etmis oluruz. Ancak, bu asamaya gelmeden once, (4.88) deki t fonksiyonunun
gercekten de reel degerli oldugundan emin olmak gerekmektedir. Bunun i¢in, mutlak deger

i¢indeki ifadenin igaret incelemesini yapalim ve bu amagla

N, =8n(n—1)& =8n(n —1)(1—12 kﬁ(’; Zj (4.90)

gibi bir biiyiiklik tanimlayalim. Bu takdirde, (4.85) in G=N Mt"4 seklinde yazilisindan

anlasilacagi iizere G nin isaretini N, =~ belirlemektedir, yani,

N,,>0 ise G>0

, (4.91)
N,,<0 ise G<0

dir. O halde, N, /G oran daima pozitif olacagindan , t reel degerli olur ve dolayisiyla da

(4.89), mutlak degere gerek kalmaksizin

F—F(G)= a(n=)&[2w—n(l+w)] G (4.92)
1+w 8n(n-1)& '
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seklinde ifade edilebilir. A ve n parametrelerinin degerlerine gére N, nin isareti asagidaki

isaret tablolarindan hareketle belirlenebilir.

Tablo 4.2.a: n parametresinin isaret tablosu Tablo 4.2.b : 1 parametresinin isaret tablosu

n(n-1) + - +

Buradan da, N, nin, ve dolayisiyla da G nin; A ve n parametrelerinin degerlerine gore

isareti, Tablo 4.2.c deki gibi iki girdili bir (4, n)—tablosu ile gosterilebilir.

Tablo 4.2.c: (4,n) parametrelerine gore G nin isaret tablosu

(N
| [
| | |
n(n-1)=0 .
{ G<0 | G>0 | G>0 ! (<0
P RS . | R o oz oo o s g o
| | :
|
n(n-1)<0 G>0 | G<0 | G<0 , G>0
1 | | %
““““ T S
kB kB,
n(n-1)=0 { G <0 _:_', o G>0 | G>0 :;u G<0
[i] | 1}
& ) £>0 £E<0
Buna gore:

N, >0 ve G >0 bolgelericin: F(G)=+2W" “(8“(:")]\';3”(” D6 4934
nit+w

N,, <0 ve G <0 bolgelerigin: F(G)= —“[ZW_”OSEZ)]V;&‘(” VS 76 (a93b)
+W

yazilabilir. Simdi, s6z konusu model {izerinden su saptamalara isaret edelim:



67

1) Yukarida hareket noktasi olarak (4.69) ve (4.70) deki Friedmann denklemlerini aldik ve
bunlara (4.78) deki hal denklemini uyguladik. Ve ayrica da, bilinmeyen A(t) 6l¢ek ¢arpani

fonksiyonu i¢in (4.82) deki kuvvet kanunu fonksiyonunu sectik. Simdi acaba, bagka

denklemlerden de yola ¢ikmis olsaydik, ayn1 F(G) ¢oziimiine varir miydik? Asagida diger

mubhtelif segenekleri ele almaktayiz.

2) A(t) olgek garpani fonksiyonu (4.82) deki kuvvet kanunu fonksiyonunu olarak biliniyor
kaydiyla, hal denklemiyle birlikte, mesela, (4.71) deki birlestirilmis denklem ile (4.74) deki

korunum denkleminden yola ¢ikmis olsaydik acaba ne elde ederdik? Bunun cevabina yonelik

olarak; dnce, (4.74) deki korunum denkleminin £"(t) ¢6ziimiiniin (4.82) se¢imi i¢in

Ium (t) - Ium - ﬂt—(n+2)(l+w) ’ (ﬂ = ,uomto(n+2)(l+W)) (494)

oldugunu kaydedelim. A(t) 6lgek carpaninin (4.82) deki segimi ile (4.78) deki hal denklemi,

yukaridaki " ¢oziimii ile birlikte (4.71) e yerlestirildiginde

y 2
¢ (n : 1 _K Q+w)p {-(n+2)w) (4.95.3)
t o
ya da
—(Zf(n _1) _ K'Z (1+ W)ﬁ t—n(1+w)—2w (495b)

denklemine yol agar. Bu ifadenin her t i¢in gegerli olmasi demek, bir yandan

-nl+w)-2w=0 < w=—"_ o n:—j@L (4.96)
n+2 1+w
ve diger yandan da
—aé(n-1)=x’*1+w)fS (4.97.)

bagintilarinin saglanmasi gerektigi anlamina gelir. Bu son baginti, (4.96) nin yardimiyla,

—af(n-1D(n+2) =28 (4.97.b)
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veya
a&(L+3w) = 2 L+ w)> (4.97.)

bi¢giminde de ifade edilebilir. Sekil 4.1.(a) ve Sekil 4.1.(b) de, sirastyla, (4.96) daki n=n(w)
ve wW=w(n) fonksiyonlarnin degisimleri gosterilmektedir. W nun degisim aralig1 standard
maddeye karsilik diisen —1/3 <w <1 aralig1 olarak alinmigtir (W = —1/3 degeri standard madde

ile asir1 negatif basingli madde (karanlik enerji) sinirimi olusturdugundan araliga dahil

edilmemistir). N parametresinin; (4.82) de belirtildigi tizere n # 0,1 olduguna da dikkat ederek
-1/3<w<0<w<l = -1<n<0<n<1 (4.98)

biciminde kisitlanmis oldugu kolayca goriiliir ve bu da (4.97.b) denklemi araciligiyla, o ve &

parametreleri iizerine
KB >0 = at >0 (4.99)

kisitlamasini getirir. Ote yandan, (4.96) kisitlamalari altinda, (4.94) ¢6ziimii de

2
m m t m
H = Hy (_]  B="t (4.100)

olur.
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Sekil4.1.(a): n=n(w) fonksiyonun degisimi  Sekil4.1.(b): w = w(n) fonksiyonun degisimi

Simdi, bu varilan sonug¢lar 1s181nda (4.92) deki ¢coziime geri donelim. (4.96) kullanilarak bunun

F = F(G) = —2a&n(n-1) /8n(nG——1)§ (4.101)

seklinde yazilabilecegi kolayca gorilir. (4.98) bagintisti n parametresini daha da

kisitladigindan G nin isareti, Tablo: 4.2.c yerine, artik agagidaki Tablo: 4.2.d ile verilecektir.

Buna gore:
s J2
N,,>0 ve G>0 bolgelerigin: F(G)= —7a«/n(n—l)§\/G (4.102.a)
I J2
N,,<0 ve G <0 bolgelerigin: F(G)= +7a~/n(n—1)§\/G (4.102.b)

olacaktir.
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Tablo 4.2.d : (4,n) parametrelerine gére G nin isaret tablosu

n s
|
1!
_____ e e
s [ | I
e ')“0( G>0 | G<0 | G<0 | G>0
0
B ) 3 . | oo
! - kB, -:_ +k‘B" %Il
n(n-1)>0 G<0 | fo G>0 | G>0 [l G<0
| -1 |
£<0 E>0 ¢ =0 &>0 £<0
a <0 a>0 >0 a <0

3) Yine, A(t) olgek carpani fonksiyonun (4.82) deki kuvvet kanunu fonksiyonunu olarak
bilinmesi kaydiyla, (4.94) deki islenmis korunum kanunu ile bu sefer (4.69) daki birinci

Friedmann denklemi birlikte ele alindiginda, (4.64) bagintis1 ( ya da bunun islenmis sekli olan
(4.86) denklemi) ile (4.85) in de kullanimiyla, sonugcta

F =22t "2 4 gE(n-1)(2—-n)t > +C,G (4.103)

denklemine varilacagi kolayca bulunabilir. Bu, yeni bir denklem gibi goriinmesine ragmen,
aslinda, (4.96 ve 4.97) deki bagintilar nedeniyle kolayca tespit edilecegi lizere, (4.89) daki
¢Ozlimden bagka bir sey degildir.

4) Eger, onceki ornekte; geri kalan kosullar1 ayni1 kalmak tizere, birinci Friedmann denklemi

yerine bu sefer (4.70) deki ikincisi alinmis olsaydi, bu takdirde elde edilecek denklem
F =-2x?Wpt "2 _gfn(n-Dt? +C,G (4.104)

olmaktadir. Buna, (4.88) yerlestirildiginde ise, F fonksiyonu
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(n+2)(1+w)

F=F(G)= —2K2Wﬁ[%:| —aén(n —1)[%} +C,G  (4.105)

ifadesine donlismektedir. Ancak; bu, yukarida F i¢in tesis etmis oldugumuz fonksiyonel
formdan tamamen farkli bir goriiniim tasimaktadir((4.101) ile karsilastiriniz). S6z konusu

uyusmazligin ¢oziimii asagidaki saptama belirtildikten sonra ele alinacaktir.

5) F(G) fonksiyonunu; (4.69)-(4.74) deki denklemlerden higbirine gerek duymaksizin,

dogrudan dogruya (4.64) bagintisindan hareketle, yalnizca (4.82) ve (4.85) bagintilarim
kullanarak tesis etmek miimkiindiir. Gergekten de, (4.82) deki A(t) secimi igin elde edilen

(4.85) bagintisi (ya da (4.88) bagintisi) , (4.64) e yerlestirilirse

1/2
3 =_EO{M} +C, (4.106)
8 G

elde edilir ve bunun da integrasyonundan, daha once (4.101) de de yazilmis olan

F(G) =—2an(n —1){ } +C,G (4.107)

_ALV
8n(n-1)¢&
¢Oziimii bulunur. Simdi, (4.105) ¢oziimiine geri donelim. Bunun (4.107) deki ¢6ziim ile

bagdagmasi i¢in, ikisi biribirlerine esitlenir ve gerekli sadelestirme yapilirsa

_(n+2)(1+w)

—2K2wﬂ[@} ) =—a§n(n—1){8n(n(3—_1)§}12 (4.108)

bagintis1 elde edilir. Bunun her G i¢in saglanmasi, ancak ve ancak

1 1
AW == (4.109)

—2K°Wp = —aén(n-1)

bagintilarinin birlikte saglanmasiyla miimkiin olur. Bunlar ise, (4.96) ve (4.97) bagintilarindan
baska bir sey degildirler. Boylece (4.105) deki ¢oziimiin, aslinda, (4.101) deki ¢oziime

indirgenebilecegini gostermis olmaktayiz.
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Bu paragrafi kapamadan 6nce su onemli noktaya da isaret edelim; eger A(t) igin (4.82) deki

m(L-1)

kuvvet kanunu yerine, mesela, A(t) = Ae W , (m>0) seklinde bir “de Sitter tipi” genisleme,

yani, bir iistel kanun segmis olsaydik, denklemler F(G)oc /|G| verirken, (4.64) bagmntisi ise

F(G) o In|G| vermektedir. Bu uyusmazligin nedeni, asagidaki saptamada matematiksel olarak

acik bir sekilde gosterecegimiz tizere; t=t(G) ters fonksiyonunu elde etmek iizere

matematiksel bir uygunluk olarak sectigimiz (4.82) deki kuvvet kanununun, korunum denklemi
ile diger denklemlerin bir ¢6ziimii olmasi; buna karsilik, ayni matematiksel uygunlugu
saglamasina ragmen {istel kanunun séz konusu denklemlerin bir ¢oziimii olma o6zelligi

tasimamasidir.

6) A(t)yi pesinen segcmeyip de denklemlerden hareketle belirlemeye galisalim. Bunun igin

korunum kanununun (4.74) deki

—(1+w)

A tz m A +wg 2(1+w) A —(1+w)4—2(1+w)
= g1," A 2 A (4.110)

H = Hy (Eto_z

¢oziimiini F fonksiyonu ile bunun F; tiirevini icermeyen (4.71) denklemine -Ki, bu (4.69) ve

(4.70) Friedmann denklemlerinin bir birlestirilmesi idi- yerlestirirsek
_é: |:__ _ _j| — K.Z 1+ W ﬂom A01+Wt02(l+w) Af(l+w)t72(l+w) (4.111)
o
denklemini elde ederiz. Bu, bilinmeyen A(t) fonksiyonuna gore birinci mertebeden bir

diferansiyel denklemdir. Sabitler toplulugu igin

= —K'Z 1+_Wlu0m A01+Wt02(l+w) (4112)

sa
ile bir K sabiti tanimlayarak (4.111) i asagidaki gibi diizenleyelim.
2T AYA YA = K (4.113)

Bunun genel ¢oziimii i¢in, C; bir integrasyon sabiti olmak iizere,
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1

w+1 _ 2w 1+w
At) = Ct" (1+3w) -Kt™"(1+w) (4.114)
1+3w
bulmaktayiz. C, keyfi oldugundan, eger C, =0 alinirsa
L 2w
A(t) = {M}hw t Lew (4.115)
1+3w
ya da
) ST TR
Alt)=| — TASIEN ] 4.116
) LQMW%AO ; (4116)
seklinde bir 6zel ¢6ziim bulmus oluruz. Simdi
n=—2W (4.117)
1+w

almirsa, bu taktirde A(t) oct” seklinde kuvvet kanununun denklemleri saglayan bir ¢dziim

olarak kabul edilebilir oldugu ortaya ¢ikar.

7) Yukaridaki incelemelerden ¢ikan temel sonug su olmaktadir. Olgek ¢arpanlarmin t =t(G)
ters fonksiyonunu verecek sekilde secilmeleri ancak ve ancak yol gosterici
(heuristic=kilavuzlayici) bir mahiyet tagimaktadir. Esas olan; bunlarin, 6zellikle F ve F; i

icermeyen, korunum denklemi ile birlikte kullanilan  (4.71) denklemini saglamalar
gerektigidir. Bu anlamda (4.71) ile korunum denklemi birlikteligi bir bag denklemi rolii

oynamaktadir.
4.2.1.2. i1®i, Kosul Takimi Altinda f(R,G) Modeli Tesisi

Denklemlerimizin daha anlasilir bir sekilde olmasi ve yollama yapmayi1 kolaylastirmak tizere

i @1, tutarlilik kosulunu agagidaki gibi tekrarliyoruz.

B=k,A ve f,+4f,=0 (4.118)



74

Ik olarak f(R,G) fonksiyonunu ¢ ile a =0 olan gergel bir say1 ve F(G) ile de G nin keyfi

bir fonksiyonu gosterilmek iizere

f(R,G) = aR+ F(G)

(4.119)

seklinde 6zel bir form gbz oniine alalim. Bu durumda, (4.118) ve (4.119) ifadeleri birlikte ele

alindig: takdirde

f,=Sabit=a20 = f,=0 ve f,=0

f,=F, =—%t2+clt+c2

o

fG:FG:_Zt_'_Cl
.. o
fG:FG:—Z
fR:alh:O:h
R fR
kzi:_ltz_kgt_'_&
fo 14 8 a a
f_F_ 1.
fo 14 4 «a
fo _Fo_ 1
fo 14 4

olur. Bunlar (4.50)-(4.57) bagntilarina taginirsa,
A 2 A 2 A3 2 A A3
3A—2+ é%—:”is t—% 14425 +12i3&
A2 AKK2A. A K2K,2A Aa A o
"1
-2 = (F(G)-GF
a 2a( ©) G)
A _AA A_A&_sz_m 1

20420 2t gl +—(F(G)-GF
A AA AA«a a Za(() )

(4.120)

(4.121)

(4.122)

(4.123)

(4.124)
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_zé+3A_+(_Ai__3i+zéAjt_k A (1 4é£j

2 21, 2 p2 3 21, 2 p2
AT AR AT AR AT A (4.125)
3
12&3&43&5& 2 M+ P
A «a AA«a a
A A (A A7 A AA A2 AcC
_6K+3E+(_AW_3F+6ZK}_W[“ zjj
! 3 - (4.126)
+12i33—24AAC —2 30 e G)-GF,)
A AAa o
A A (A A A AA A2 Ac,
_6__3?_£KW_3F_6KZJHH< zAz(l 4xzj
112 2 (4.127)
3 _,,m m
—12%3—24AAC 2“—+3'°+3(|:(G)—G|:G)
A AAa«a a a
3. —(1+w)
. m A m_ m —(1+w m m A
f +[7j(1+W)u =0 = 4" (AT 4" =, [Fj (4.128)

. ) )
E:3§+3i2_—2}“2 . (4.129)
2 A A kKA

o ,
G =é[3i2_%] (4.130)
8 AlTAT KkA

elde edilir. (4.129) ve (4.130) daki A(t) fonksiyonunun seklini, R =R(t) ve G =G(t) veya
t=t(R) ve t =t(G) ters fonksiyonunun ¢ekilebilmesi miimkiin olacak sekilde segilmelidir. Bu

durumda, (4.123)-(4.127) denklemleri yalnizca R cinsinden veya G cinsinden denklemlere

dontisiir ve buradan da F fonksiyonunu kolayca tesis edebiliriz.

Simdi A(t) olgek ¢arpanini asagidaki gibi segelim.

A(t) = Ae™ (4.131)

A(t) fonksiyonunun hesaplamalarda kullanilmak tizere gerekli tiirevleri,
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Alm , A_m (4.132)
A A

bicimindedir. (4.131) ve (4.132) ifadeleri sirasiyla (4.129) ve (4.130) a yerlestirilirse,

2
R=12m’ —2K?e™™ = tzziln(lzz%J (4.133)

m m- —

21 2
G =24m* —8m°K?%e™™ = t= Zi In (zjrnTKG] (4.134)

m m —

2
ve burada K? = ﬁw olmak iizere elde edilir.
1 "2

(4.123) ve (4.124) ifadeleri

p" =wu" (4.135)

hal denklemine taginir ve A(t) fonksiyonunu ve tiirevlerini yerlerine yazarsak,

F-GF,+-2% (1— mt + 4m &](—Zmz —w(3m® - K%?™)) (4.136)
@+w) a

olur yada (4.121) deki F, = —%tz +Ct+C, bagintis1 kullanilirsa

F=—%Gt +CGt+C,G+-—2% (1— mt +4m3j(—2m2 —w(3m? - K%e™™)) | (4.137)
8 @+w) a
elde edilir. C,G terimi G nin bir kat1 oldugundan topolojik invaryant durumundadir ve alan

denklemlerine katkis1 bulunmamaktadir. (4.137) de goriildiigii tizere F = F(t) bigimindedir.
Simdi F =F(G) fonksiyonunu elde edebilmek igin (4.134) bagmtisini (4.137) esitligine

yerlestirmek gerekmektedir. Bu durumda,
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2 2 3 2 2
F=FG)={-%| L[ 2K ||, c dmel, w all /80K Iq
8| 2m 24m” -G 1+w G 1+wdm| 2m 24m” -G

2
_ im a (1+ 4m &j (4.138)
+W (04

elde edilir.

4.2.1.3. i®i, Kosul Takimi Altinda f(R,G) Modeli Tesisi

Bu kosul takimi i¢in hesaplarimiza Gauss-Bonnet teriminden yani (4.57) ifadesini goz oniine

alalim ve bu durum i¢in A(t) ve B(t) olgek ¢arpanlarinin fonksiyonel formunu asagidaki gibi

secelim:
A(t) = At" (4.139)
B(t) = B,t" (4.140)

olsun. Fonksiyonel formu yukaridaki gibi se¢ilen 6lgek ¢arpanlari i¢in hesaplamalarda yollama

yapmay1 kolaylastirmak tizere gerekli tiirev ifadeleri,

. 5 mim-1
Amo A_m(m-1) 2 ) (4.141)
At A t
' 3 n(n-1
B.n  B_n(-Y (4.142)
B t B t

bicimindedir.(4.139)-(4.142) bagmtilar1 (4.57) ye yerlestirilirse

m(m-1)( n? 2 n(n-1
G_mm-fn’ A ) ,mnn(n-y) (4.143)
8 t 2 kB, t*" tt ot

olur. (4.143) ifadesi ayrintili olarak incelenirse, bu bagintidan t yi G cinsinden ¢ekebilmemiz
icin bir 6n kosul koymamiz gerekmektedir. Bu durumda ilk terimi sifir yapan m=1 secimi
yaparsak,

2 2 b
G-= w — t= {M} (4.144)
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elde edilir. Simdi f(R,G) fonksiyonunu, « ile a #0 olan gergel bir say1 ve F(G) ile de G

nin keyfi bir fonksiyonu gosterilmek {izere

f(R,G)=aR+F(G) (4.145)
seklinde 6zel bir form goz Ontine alalim. Bu durumda,

fo=Sabit=a=0 = f,=0 ve f,=0 (4.146)

olur. i @i, kosul takimi ve (4.146) ifadesi birlikte ele alindig1 taktirde

f.=F, :—%t2+Clt+C2

fo = Fs =—%t+C1 (4.147)
. a

fG = FG :—Z

elde edilir. Daha sonra hesaplamalara gonderme yapmak i¢in asagidaki su yararli bagintilar

olusturalim.
oo o e
R R
£=i:—lt2+&t+cz
f. fq a «a
. ' (4.148)
f_G = i — _lt +_1
fo fq a
fo _F_ 1
fo  fq 4
I @1, kosul takimi altinda elde edilen tiim bagintilar (4.50)-(4.54) e taginirsa,
2n(1-n) C,(3n? A2 u™ o1
o g - =k — — (F(G)-GF 4.149
t2 a ( t3 k12802t2n+1J a 2a( ( ) G) ( )
2n(n®-2n+1) 4c,(2n(n-1)(n+1) p" 1
——a = R T 4~ (F(G)-GF 4.150
3t? 3 [ t ) Za( ©) ) ( )
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n(n®-5n+4) c (—2n*+9n?+2n A’ , 1™+ p”
2 e 3 gz | K (4.151)
3t o 3t k. Byt a
2n(n®-3n+2) ¢ (n(-2n*+3n+2) 22 4" 3p™ 1
A G A e 0 L r @0k, ) (4152
2n’(n-1) C,(n(-2n*>-3n+2) A2 —u"+3p" 2
Sl e’ S et =2 PP L 2 (F(G)-GF
t2 + a t3 + klZ BOZtZr‘H—l K a + a ( ( ) G)
(4.153)
elde edilir. (4.149) ve (4.150) ifadeleri
(4.154)

m

p" =wpu

hal denklemine tasinirsa,

2¢ | 2n(n®=2n+1)-6n(l-nMWw C (—2n(n-D(n+L)-9nw A’
2 +4—= 3 TR
3t a 3t k°B,t

(4.155)

F=GF, +
1+w

bulunur. F; = _Zp +C,t+C, ifadesini (4.155) esitliginde yerine yazarsak, F fonksiyonunu

F = F(t) cinsinden elde ederiz.

X =2n(n?-2n+1)-6n(l—n)w
Y =-2n(n-1)(n+1)-9n’w (4.156)
2
Z= ? > W
kl BO

F fonksiyonunu daha anlasilir bir sekilde (4.156) kisaltmalarini kullanarak asagidaki gibi

yazabiliriz.
a 20 [ X C(Y Z
F=——Gt!+CGt+C,G+——| 5 +4—1| —+—— 4.157
8 ' 2 1+W{3t2 a(3t3 tz””ﬂ (4.157)
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Burada C,G terimi topolojik invaryant oldugu igin etkisi yoktur. Son olarak t=t(G) ters

fonksiyonu cinsinden (4.144) ifadesini, (4.157) esitliginde yerlerine yazarsak

Fo —%[16n2(n —1)]}/2 G2 +C,[16n2(n —1)]% %

2n+1

+12“ X ye%+4& ! ye%+ Z __ G+
Wi 3[16n*(n-1) | | 3[16n*(n-1) "* [16n°(n-D)] *

(4.158)

bulunur.

4.2.2. j-Birincil Kosulu Altinda Denklemlerin indirgenmesi

[lk olarak j -birincil kosulunu, yani

()) C=kB ve 1+4é£:0
A f,

t.ef

’ lut.ef + pt.ef’ /Jt.ef +3p ,

bagmtilarmi gdz Oniine alalim ve bunlar 113inda #**, p*

t.ef

_lut.ef + 3 p

sirasiyla daha onceki hesaplamalardan elde edilen (4.4), (4.5), (4.11), (4.12), (4.13), (4.19),
(4.9) ve (4.10) bagintilar1 oldugunu belirtelim.

, 4", R ve G nin, ii¢ bilinmeyenli 6lgek garpani igeren indirgenmis ifadeleri

42.2.1. |® }, Kosul Takimi Altinda f(R,G) Modeli Tesisi

Denklemlerimizin daha anlasilir bir sekilde olmasi1 ve yollama yapmay1 kolaylastirmak iizere

j@J; tutarlilik kosulunu asagidaki gibi tekrarlayalim.
B=k,A ve fo+4f, =0 (4.159)

Bu durumu altinda (4.4), (4.5), (4.9) ve (4.10) esitlikleri
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- .. , N C
ue iz+2£_}“_2:,<2'“__ L (f -Rf; —Gf)- Zé+E T
A AC C fo 2f, A C)f,
. .. N
aAAC 2K
Al AC C°)f,
et 2(.A C) 1(A*> _AC) 14°
Pl | 2=+ = || 5 t2—= [+ =
3L A C) 3A AC) 3C
:z<2p—+i(f—RfR—GfG)+E AL k+k
fq R 3L A C)f, fg
+£ 2A_C+Zé é+9 k_Fﬂ ZA_C+A_2 _/1_2
3| AC AlA C)|f, 3 AC A C
R A C _AC A )2?
— =20 + 2 N o —
2 A C AC A C

G A(,AC 2*) CA’
— |2 — |4+ =——
8 A

(4.160)

(4.161)

(4.162)

(4.163)

elde edilir. (4.160)-(4.163) ifadelerini inceledigimizde iki bilinmeyen 6lgek carpani goze

carpmaktadir. Bu durumda 6l¢ek carpanlarini asagidaki gibi secelim.

At) = At"
C(t)=C,t"

(4.164)

(4.165)

Fonksiyonel formu yukaridaki gibi secilen ol¢ek carpanlari i¢in hesaplamalarda yollama

yapmay1 kolaylastirmak tizere gerekli tiirev ifadeleri,

_A_E é_n(n—l)
At ' At
¢ m ¢ _m(m-1)
C t ’ c  t?

bigimindedir. (4.164)-(4.167) bagintilar1 (4.162) ve (4.163) e yerlestirilirse

(4.166)

(4.167)
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R 3n%+(2n+m)(m-1 A2
R s(meminy 15
0
G n(n=-1)(2nm A2 n’m(m-1
8 (t2 )( {2 _Cztzm}r (t“ : (4.169)
0

olur. (4.168) ve (4.169) ifadesi ayrintili olarak incelenirse, bu bagintilardan t yi R ve G

cinsinden cekebilmemiz i¢in bir én kosul koymamiz gerekmektedir. Ik géze garpan n=1
sartin1 koyarsak (4.169) esitliginden t yi G cinsinden elde edebiliriz. Fakat (4.168) bagintisi
incelenirse bu sart altindan t yi R cinsinden ¢ekemeyiz. Bu durumda bir diger sart olabilecek
m =1 i¢in, (4.168) ve (4.169) ifadelerinden t yi R ve G cinsinden ¢ekebiliriz. m =1 durumu
altinda (4.168) ve (4.169) bagintilar1 incelenirse,

20,2 92 2,2 92 b
R== |3l =4 ) o | 234 (4.170)
C, t C, R
8n(n-1)(2C,’n-1%) 8n(n-1)(2C,’n-1%) 74
G- i ~ t- : (4.171)
C,t C, G
elde edilir. @ j, tutarlilik kosulunu asagida tekrarlayalim.
fo =K,A (4.172.a)
fo =K,A (4.172.b)
f,=—4K,A (4.172.c)
f, =—4K,A (4.172.d)
f,=—4K,A (4.172.¢)
Bu bagintilar 1s181nda su yararli ifadeler sonraki hesaplamalarda kullanilmak tizere,
fo _Fe _A fo F_A
fo Fy A F, A
A T (4.173)
o _F__1A fo _F__ 1
fo Fq 4 fo R 4
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elde edilir. (4.160) ve (4.161) ifadelerine (4.173) bagntilar yerlestirilirse,

2—A+A2 AC+A—C=K2”——i(f-RfR-GfG)
A A2 AC AC f2f,

_gé__A:sz—+i(f —Rf, —Gfy)
A A8 T o8,

bulunur. Yukaridaki bu iki esitlikte dlgek carpanlarini yerlerine yazarsak,

2 _ _ m
Sn-2n-l tf” 1:18‘;——%(1‘ —Rf, —Gf,)
R R

—(”_1)(22_3”) 2P L Re, o)
t £ 2f,

esitliklerine ulasilir. (4.176) ve (4.177) ifadeleri

m m

p" =wpu

hal denklemine taginirsa,

n-1)(2-3n)—(3n>-2n-1)w
F=GF, +RF; + 2F (n-1)( ) 2( )
1+w t

elde edilir. (4.179) esitliginde bilinmeyen diger ifadeleri de t cinsinden yazarsak,

fo=F, =—4K,A = fo=F, =—4K,Ant""
. KA, .
f=F =K,A = fG=FG=n2—ﬁ)t yc,

elde ederiz. (4.180) ifadeleri (4.179) a taginirsa,

F=KeR g, 06— ak, At R-8K, AN

(n-1)(2-3n)—(3n° -2n-1)w .

n+1 1+w

(4.174)

(4.175)

(4.176)

(4.177)

(4.178)

(4.179)

(4.180)

-3

(4.181)
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elde edilir. Burada C,G terimi topolojik invaryant oldugu i¢in etkisi yoktur. Son olarak (4.170)

ve (4.171) ifadelerini kullanilarak t yi asagidaki sekilde

X =4n(n-1)(2C,’n-1%)
Y =3C,n? - A7

(4.182)

X R %

elde ederiz. (4.183) ifadesini, (4.181) esitliginde yerine yazarsak

n+l n-1
— n+l 1-n - n+l 1-n
F oK) X RZGZ—4K2ADn{5}2 R2G?
n+1lY Y
n-3
n-1)(2-3n)—(3n*-2n-1)w "3 3
8K2A0n{( )(2=30) ) }[1} .
1+w Y

bulunur.

42.2.2. |® |, Kosul Takimi Altinda f(R,G) Modeli Tesisi

Denklemlerimizin daha anlasilir bir sekilde olmasi ve yollama yapmay1 kolaylastirmak iizere

]® J, tutarlilik kosulunu asagidaki gibi tekrarlayalim.
Cf, +4Cf,=0 ve fo+4f, =0 (4.185)

C =k,A durumu altinda (4.4), (4.5), (4.9) ve (4.10) esitlikleri
- .. ) o LN
FET SO, R Y/ WA PL WA 18
A AB kA f.  2f; A B)f;

oo
_4A[32B_ ’}2 T (a186)
Al"AB KZA? ) f,
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et 2(. A B) 1(A* _AB) 1 A2
Pl | 2=t — || 5t |t
3l A B) 3lA°” "AB) 3kj’A

=/c2p—+i(f—RfR—GfG)+E ALB h+—
fa  2f; 3L A B)f;
+i ZE_’_ZA A+E k.kﬂ 2&4_&2
3| AB AlA B)|f, 3 AB A
R A B _AB A? 2
—=2—+—+2—+t————
2 A B AB A* KkSZA?

G A(_AB 2 B A2
2 2 %m v It
8 Al AB k?A’) BA

(4.187)

(4.188)

(4.189)

elde edilir. (4.186)-(4.189) ifadelerini inceledigimizde iki bilinmeyen 6lgek carpani goze

carpmaktadir. Bu durumda 6lcek carpanlarini asagidaki gibi segelim.

At) = At"
B(t) = B,t"

(4.190)

(4.191)

Fonksiyonel formu yukaridaki gibi secilen ol¢ek carpanlari i¢in hesaplamalarda yollama

yapmay1 kolaylastirmak tizere gerekli tiirev ifadeleri,

_A_E é_n(n—l)
A ’ At

B m 6_m(m-1)
B t ’ Bt

bi¢imindedir. (4.190)-(4.193) bagmntilar1 (4.188) ve (4.189) a yerlestirilirse

R 3n* +(2n+m)(m-1) ~ A2
2 t2 k12pb2t2n

G n(n-1)(2nm  A° n’m(m-1)
gz 2 2 _k12Ab2t2n + t*

(4.192)

(4.193)

(4.194)

(4.195)
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olur. (4.194) ve (4.195) ifadeleri ayrintili olarak incelenirse, bu bagntilardan t yi R ve G
cinsinden ¢ekebilmemiz icin bir 6n kosul koymamiz gerekmektedir. ilk gdze carpan n=1

sartin1 koyarsak, bu durum altinda (4.194) ve (4.195) bagintilar1 incelenirse,

k?A? (m? +m+1)—-24% k?A? (M +m+1)-22° 7
- 25 242 = t= e (4.196)
KAt kAR

Y
g tmm-y {%} (4.197)

elde edilir. @ j, tutarlilik kosulunu asagida tekrarlayalim.

fo =K,A (4.198.a)
fo =K,A (4.198.b)
fo=—4K,A (4.198.c)
f,=—4K,A (4.198.d)
fo=—4K,A (4.198.e)
Bu bagintilar 1s181nda su yararli ifadeler sonraki hesaplamalarda kullanilmak tizere,

fo F, A f. F, A

ﬂ_g__A ..f_R_..F_R__A (4.199)
fo _Fo_ 1A o _F_ 1

fo R 4 A fo Fg 4

elde edilir. (4.186) ve (4.187) ifadelerine (4.199) bagintilar yerlestirilirse,

AN ABLAB_ el Lt Rf, o) (4.200)
AN AB AB N T, 2f,

222 By (1 -Rf -G, (4.201)

A, 2f,

bulunur. Yukaridaki bu iki esitlikte dlgek carpanlarini yerlerine yazarsak,
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1-m 4" 1
=P (f R, —Gf 4.202
g < g ap, Rl Gl (4.202)
O=K2$—+%(f—RfR—GfG) (4.203)
R R

esitliklerine ulagilir. (4.202) ve (4.203) ifadeleri

m

p" =wu" (4.204)

hal denklemine tasinirsa,

2f, [ (M-1)w
F =Gf. +Rf, +—2R 4.205
B F 1+W{ t2 } ( )

elde edilir. (4.205) esitliginde bilinmeyen diger ifadeleri de t cinsinden yazarsak,

fo =—4K,A = fo=—4K,ANt" = 4K, A,

. (4.206)
f, =K,A =¥ A =Mt”“+cl= KZ'A“t2+C1

n+1 2
elde ederiz. (4.206) ifadeleri (4.205) e tasinirsa,
m-1)w
FoKoh e, ogoak aRr- KA 2) (4.207)
2 1+w t

olur. Burada C,G terimi topolojik invaryant oldugu i¢in etkisi yoktur. Son olarak (4.196) ve

(4.197) ifadelerini kullanilarak t yi asagidaki sekilde

X =8m(m-1)k’A?

4.208
Y =k’AZ(m? +m+1)-247 (4.208)
1
_ [5 BT (4.209)
Y G

elde ederiz. (4.209) ifadesini, (4.207) esitliginde yerine yazarsak
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8K, A, (m—
AM-YWY o (4.210)
1+w X

_{X—SY

st [aAR-

bulunur.

42.2.3. |® |, Kosul Takimi Altinda f(R,G) Modeli Tesisi

Denklemlerimizin daha anlasilir bir sekilde olmasi igin @ J, tutarlilik kogulunu asagidaki gibi

tekrarlayalim.
fo =K,A (4.211.a)
fo = K,A (4.211.b)
fo=—4K,A (4.211.c)
fo=—4K,A (4.211.d)
fo=—4K,A (4.211e)

fo _F_A fh_ R _A
f F A F, A
i .R R R (4.212)
fo _FK__1A fo _FK_ 1
f, F, 4 f, F, 4

elde edilir. Bu kosul takimi (4.4), (4.5), (4.9) ve (4.10) esitlikleri lizerine herhangi bir degisiklik

getirmemektedir. Bu durumda ilk olarak (4.9) ve (4.10) esitliklerini goz oniine alalim.

2
o[ A, B, C AB BC %—i (4.213)
A'B C AB BC CA C
2
o _g[ ABC _ BCA CAB_é/I_ (4.214)
ABC 'BCA CAB AC’

A(t), B(t) ve C(t) olgek garpanlarini asagidaki sekilde segelim.

At) = At™ (4.215)
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B(t) = Bt" (4.216)

C(t) =C,t’ (4.217)

Fonksiyonel formu yukaridaki gibi segilen Olgek carpanlari i¢in hesaplamalarda yollama

yapmayi kolaylagtirmak tizere gerekli tiirev ifadeleri,

A_m A_m(m-1) A_(m-1) (4.218)
At ' A t2 ' A t
B_n B_n(n-1 B_(n-1) (4.219)
B t ’ B t2 ’ B t
c_op C_pr(rp-Y c_(pYy (4.220)
C t ' C P . C t

bigimindedir. (4.215)-(4.220) bagintilar1 (4.213) ve (4.214) e yerlestirilirse,

2
R_of Mm-1)+n(n-1)+p(p-+mn+np+mp A (4.221)
t? Cozt2p
2
G —g[ Mm=Dnp+n(n —41)mp+ p(p-Ymn m(m-1)4 (4.222)
i C02t2p+2

elde edilir. Yukaridaki esitliklerden t yi ¢gekebilmemiz i¢in p =1 sec¢imi yaparsak,

Cy* (m*+n’ +mn)- 22 2C,%(m? +n? +mn)-24° %
R=2 _ = t= : (4.223)
Clt CR

G:8£mn(m+n—2)C02—m(m—1)/12J _ t_[8{mn(m+n2)C02m(ml)/iz}]%

c,’t* C,’G
(4.224)
elde edilir. Simdi elimizdeki biitlin bagmtilar1 (4.4) ve (4.5) esitliginde yerine yazarsak,
mme2n+ -Gl _ a4 L gy o) (4.225)

t? f. 2f,
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m-1)(4m?> +n>+mn+m-—n m
1] (m-1)( : ) e Pl L (R, o) (4.226)
3 mt fR 2fR

esitliklerine ulasilir. (4.225) ve (4.226) ifadeleri

p" =wu" (4.227)

hal denklemine taginirsa,

F = Gf_ +RI, + 2f, { 1[(m—1)(4m2+n2+mn+m—n)][m(m+2n+1)—(3n+l)jw}

l1+w| 3 mt? 2
(4.228)
elde edilir. (4.228) esitliginde bilinmeyen diger ifadeleri de t cinsinden yazarsak,
fo=—4K,A = f.=—4K,Amt™
fi = K,A = 1 =%tmﬂ +C, (4.229)

elde ederiz. (4.229) ifadeleri (4.228) e taginirsa,

K, A, _
F=—232Gt"+CG-4K AmRt™
m+1 ! 28

+ 38(55?;) [(m—l)(4m2 +n’+mn+m-n)—(m?*(m+2n+1)-m(3n +1))W}tm‘3

(4.230)

elde edilir. Burada C,G terimi topolojik invaryant oldugu i¢in etkisi yoktur. Son olarak (4.223)
ve (4.224) ifadelerini kullanilarak t yi asagidaki sekilde
X :S[mn(m +n—2)Cy* —m(m —1)/12]

23
Y:Z[Coz(m2+n2+mn)—21 (4231

1

X R |2
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elde ederiz. (4.232) ifadesini, (4.230) esitliginde yerine yazarsak

m+1 m-1

— m+l 1-m —  m+l  1-m
F oA (ﬁj 2 RZGZ—4K2AOm(5) "R2G?
m+1\Y Y
m-3
—— m-3 3-m
+38(fi';0/)[(m—1)(4m2+n2+mn+m—n)_(m2(m+2n+1)—m(3n+1))w}(é} "R2G 2

(4.233)

bulunur.

4.2.3. k -Birincil Kosulu Altinda Denklemlerin indirgenmesi

t.ef t.ef

[lk olarak k -birincil kosulu altinda £"", p**", p* +p"", u* +3p"", - +3p*", 4",

R ve G nin, iki bilinmeyenli dlgek ¢arpani i¢eren indirgenmis ifadelerini tesis edelim. Bunlar
i -birincil kosulu altindaki (4.50), (4.51), (4.52), (4.53), (4.54), (4.55), (4.56) ve (4.57)

denklemlerinin kendisidir.

4231 k@k, k®k, ve K@k, Kosul Takimi Alunda f(R,G) Modeli Tesisi

k@dk, k@&k, ve k@k, bu ii¢ kosul takimini ayr1 ayri incelememiz bizi ayni denklemlere

gotiireceginden sadece iclerinden bir kosul takimi altinda modelimizi olusturmak yeterli

olacaktir. Denklemlerimizin daha anlagilir bir sekilde olmasi igin k @Kk, tutarlilik kosulunu

asagidaki gibi tekrarlayalim.

i —KA (4.234.9)
f=KA (4.234.b)
fo=—4KA (4.234.c)
f,=—4K A (4.234.d)
f,=—4KA (4.234.¢)

Bu bagintilar 1s181nda su yararli ifadeler sonraki hesaplamalarda kullanilmak tizere,
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fo R _A f R _A
f F, A F, A
A Lo UF (4.235)
fe _F_ 1A fo _F_ 1
f. F, 4A f. F, 4

elde edilir. Bu kosul takimi (4.50), (4.51), (4.56) ve (4.57) esitlikleri lizerine herhangi bir
degisiklik getirmemektedir. Bu durumda ilk olarak (4.56) ve (4.57) esitliklerini gbz oniine

alalim.
. .. ., )
1
e )
)

(4.236) ve (4.237) deki A(t) ve B(t) fonksiyonlarinin seklini R=R(t) ve G=G(t) veya
t=t(R) ve t=t(G) ters fonksiyonunun ¢ekilebilmesi miimkiin olacak sekilde se¢ilmelidir.

Simdi A(t) ve B(t) dlgek ¢arpanlarini asagidaki gibi segelim.

Alt) = At" (4.238)

B(t) = B,t" (4.239)

A(t) ve B(t) fonksiyonlarmin hesaplamalarda kullanilmak tizere gerekli tiirevleri,

. .. 1
An A n(“2 ) (4.240)
At A t

. . 1
E.m  B_mmd (4.241)
B t B t
bigimindedir. (4.238)-(4.241) ifadeleri sirasiyla (4.236) ve (4.237) ye yerlestirilirse,
2 _ 2
EZSm +(n 21)(2m+n)_ 2/122 (4.242)
2 t kB, 2t>"



93

G n(n-1)
8

m? A2 J 2m’n(m-1)
= _ |+ (4.243)
( t*> kBt t*

olur. (4.242) ve (4.243) ifadeleri ayrintili olarak incelenirse, bu bagintilardan t yi R ve G

cinsinden ¢ekebilmemiz i¢in bir 6n kosul koymamiz gerekmektedir. m =1 sartin1 koyarsak, bu

durum altinda (4.242) ve (4.243) bagintilar1 incelenirse,

%

2| (n*+n+1)k’B2 - A° 2{(n* +n+1)k B, — 4
R= I 2)212 ] = t= { 2)21 ) (4.244)
k. °B,t k,°B,"R
8n(n-1)(k’B,* —4%) 8n(n-1)(k’B,* —1%) %
- 2Q 244 = on 2 (4.245)
k,“B,t k,°B,"G
elde edilir. (4.50) ve (4.51) ifadelerine (4.235) bagintilar1 yerlestirilirse,
A B[LA ,B LA =K2“——i(f—RfR—GfG) (4.246)
A Bl"A "B A f, 2f;
AR 284, 8) 288 B0 L g a2
3A 3B A) 3AB A fq .
bulunur. Yukaridaki bu iki esitlikte 6l¢ek ¢arpanlarini yerlerine yazarsak,
n+4)(n-1 m
(=41 o L gr ) (4.248)
t fo 2f;
2 _ m
mAlinc4_ 2P 1 (¢ Ri,-cf,) (4.249)
3t f, 2f,
esitliklerine ulasilir. (4.248) ve (4.249) ifadeleri
p" =wu" (4.250)

hal denklemine tasinirsa,
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2, | (-7n* +1In-4)-3(n+4)(n-1)w

F =Gf, +Rf, + 4.251
¢ R 14w 3t° (4.251)
elde edilir. (4.251) esitliginde bilinmeyen diger ifadeleri de t cinsinden yazarsak,
fo =—4K,A = f,=—4KAN""
. (4.252)
f, = KA = fo=—22 KA t"+C,
n+1

elde edilir. (4.252) ifadeleri (4.251) e tasinirsa,

tn—3

F= KA g, oo oak antir— KD (-7 +11n-4)-3(n+4)(n-1)w
n+1 3 1+w

(4.253)

burada C,G terimi topolojik invaryant oldugu i¢in etkisi yoktur. Son olarak (4.244) ve (4.245)

ifadelerini kullanilarak t yi asagidaki sekilde

X =8n(n-1)(k’B," —4%)

4.254
Y=2[(n2+n+1)k12302—12} (4:254)
1
_ [ﬁ ET (4.255)
Y G
elde edilir. (4.255) ifadesini, (4.253) esitliginde yerine yazarsak
nd n+l 1-n nt n+l  1-n
F:Klp\)(lj 202 4K1'Abn££j2 R2G 2
n+1 Y
(4.256)

G
n-3
8K n| (-7n* +1In-4)-3(n+4)(n-1)w (ljz e
1+w Y

bulunur.
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4.3. BIANCHI-TiP I METRIGIi iCiN f(R,G) GRAVITE DENKLEMLERI

Uzayca homojen ve esyonsiiz evren modelleri sinifindan olan Bianchi-Tip | modelinin metrik

ifadesi
ds® = —dt >+ A*(t)dx* + B*(t)dy® + C*(t)dz* (4.257)

bi¢imindedir. Bianchi-Tip I modeli i¢in § 3.2.2. ve § 3.2.3.deki yontemlerle bilesenler cinsinden
yazilan alan denklemlerini (4.257) metrigi i¢in Ek B Bianchi-Tip I kisminda verilen (B.1)-(B.4)
de kinematik ve geometrik 6zellikler ile Ek C deki bagintilar kullanilarak, 6l¢ek ¢arpanlari ile

f (R,G) fonksiyonunun zamansal tiirevleri cinsinden agik bir sekilde ifade edilecektir. Fakat
standard maddeye baglanan enerji-momentum tansoriiniin (3.49) ile verilmis genel sekli,
belirlenmesi gereken 10 adet bilinmeyen dinamik degisken igermektedir. Bu zorlugu ortadan
kaldirmak i¢in, nispeten basit bir calisma hipotezi olarak, standard maddenin enerji-momentum
tansoriinii (3.50) deki gibi milkemmel akigkaninki olarak kisitlayacagiz. Ancak, boyle bir
kisitlamanin alan denklemlerinde herhangi bir celiskiye ya da tutarsizlia yol acip agmayacagi,
incelenmesi gereken bir konu olusturacaktir ve bu da, tutarlilik kosullar1 olarak 6ncelikli olarak

ele alinacaktir.

4.3.1. Birinci Yonteme Gore f(R,G) Alan Denklemleri

Miikemmel akigkan i¢in hal denklemi @] =0 ve ﬂ:ﬁ =0 seklinde alindiginda, yukarida

sOylenen yol izlenerek § 3.2.2. deki alan denklemlerini asagidaki sekillere indirgenebilecekleri

kolayca gortilebilir.

002ﬁ+§+%:’(2ﬂ__i(f_RfR_GfG)_ A+E+E h
AB BC CA  f, 2f A'B CJf,
. (4.258)
_12ABC f,
ABC T,
G, -2 C BC_ P L ¢ mi—or)+BiC]f,te
B C BC  f  2f, B CJf f,
(4.259.3)

_+_ —_ —_—
BC CB

LafBC CB)f ,BC
f.  BC f,
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G,--C A CA_oP 1 Ry Gf)+9+§-f—R+Ll
C A CA = f  2f C AJf. f
o (4.259.h)
+4| — CA & f +4%£
CA AC)f. CAT,
G,--~_B_AB_..p +J;U—Rf m)+-5+§13+5
A B AB  f.  2f A BT T,
. (4.259.¢)
Lal AB §é 4éEig
AB ' BA AB T,
G, =0=0
G, =0=0 (4.260.a,b,c)
G, =0=0
G, =0=0 (4.260.d,e,)
G, =0=

Bu denklemler, bu durumlariyla ele alindiginda, amacimiza uygun kullanima elverisli
bulunmamaktadir. Bunlardan, eger varsa, hangilerinin bagimsiz denklem oldugu ilk bakista
anlagilamamaktadir. Ote yandan, mesela (4.259.c) denklemi (G,, -denklemi) gbz Oniine
alindiginda, bunda C(t) Ol¢ek carpanmin yer almadigi derhal goze garpmaktadir. Benzer
sekilde G, -denkleminde A(t); G,, -denkleminde de B(t) 6l¢ek ¢arpani bulunmamaktadir. Bu
durum, dongiisel simetriye sahip s6z konusu denklemlerin bir tiir kombinasyonlarin1 almak
gerekliligini diisiindiirtmektedir. Ancak bu, biraz da deneme-yanilma yontemine dayali bir is

oldugundan biz bu ise girismeyecegiz. Kald1 ki, asagida uygulayacagimiz § 3.2.3 deki 1+3

kovaryant ayrigim yontemi bu isi kendiliginden gerceklestirecektir.
4.3.2. Ikinci Yonteme Gore f(R,G) Alan Denklemleri

(3.58)-(3.61) denklemlerinin; 6lgek ¢arpanlari ile f(R,G) fonksiyonunun tiirevleri cinsinden

yazilimlari, Ek B ve de (3.50) olarak belirtilen girdiler yine kullanilarak asagidaki gibi bulunur:

t.ef

(3.58) ve (3.59) denklemlerinin karsiliklar, sirastyla " ve p“*' ile etiketlendirecegimiz su

denklemler olurlar:
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S s B TIRL AR e I
AB BC CA = f, f.| 2 A B

ef 2(A B C) 1({AB BC CA
-= +—+
A B C

P 3 AB BC CA

3
:sz—+i{%(f - Rf, —GfG)+§£é+E+9j fo+ 1o

f.  fo A B C
4[A(B C) B(C A) C(A B)|.
t—|—|=+=|+=| =+ |+=| —+= || s
3/AlB C) B\C A) C(A B
+ 3 ., BCRp=A fs (4.262)
3_ AB BC CA

(3.60) denklemleri ise 6zdes olarak sifir olan agsagidaki denklemleri verir.

tef .

4

t.ef

0
g : 0
0

tef .

0
0 (4.263.a,b,c)
o 0

(3.61) denklemlerinin karsiliklar1 da, diizenlendiklerinde, denklemlerin sag taraflari 72';'5 leri

gostermek lizere:
. 1(2A B C) 1(AB 2BC CA) 1 |1( 2A B C);
Ty S e | —t— |= | ——+ =+ = | [,
3lA B C) 3lAB BC CA) f, |3l A B C
4/ A(B C) Bf 2C A) C(A 2B)|;
—| === |+=| ——F+—= |+ = =——— || s
3]A{B C) Bl C A) ClA B

_ﬂ(%__zgg +%] f'(;} (4.264.2)
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e 1[ A 2B c] 1(AB BC ZCAJ 1{1(A 2B Cj-
Ty @ S|t — = |+t ———— |= S| ——+ = | T,
A B C

3 A B C) 3lAB BC CA fa |3
4| A(B 2C) B(C A) C[ 2A B)|;
—| === +=| == |+ =| ——+= || s
3| AlB C BI(IC A) Cl A B
_4 ﬁJr%_g f'G (4.264.b)
3lAB BC CA

. 1 A B 2C) 1( 2AB BC CA) 1 |1(A B 2C);
Ty @ =|————=F— [+ —F+—F+— [=—< | =+ =——— |
3 AB C) 3 AB BC CA) f,|3lA B C
4| A( 2B C) B(C 2A) C(A B)|.
——| ===t = |+ = =+ = || T
3l]Al B C) BlC AJ) C|lA B

g(%%g] f;} (4.264.0)

(4.264.de,T)

R
55
o O O
Il
o O O

olur. Simdi, (4.264) deki ii¢ denklemden hareketle, taraf tarafa cikarmalarla asagidaki su

diizenlenmis ii¢ yardimci denklemi olusturalim ve bunlarin diizenlenmis sekillerini de “I1°

sembolleriyle etiketliyelim:

Hll_HZZ: A_E_FE A_E + A_E £+4 E A_E +9 A_E f_G
A B Cl\A BJ|A BJf, |ClA B) ClA B)|Tf,

wC[A_B )T _j (4.265.2)
cla BT,
noon. B.CA(B S\ (8 Clh [JAB ¢ A8 ¢k
B C AB C) B CJi, '|alB c) AlB CJ|T,

+4_A(_'__]_:o (4.265.h)
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H33_Hll: E_A+E E_é + E_é h+4 E E_é +E E_é f_G
cC A BlC AJ|\c AJf, |BlC A) BlC AJ|f,
+4_(___j—G:O (4265C)

Bianchi-Tip | modeli i¢in Ek B (B.4) de yazmis oldugumuz Ricci skaleri ile Gauss-Bonnet

teriminin ifadelerini, biitiinligii saglamak iizere agsagida tekrarlayalim:

R=2 A+E+E+E+§+% (4.266)
A B C AB BC CA
G ABC N BCA+ CAB (4.267)
ABC BCA CAB
Yine, ilerideki bazi kullanimlarimiz igin " + p*"  ve " +3p"" —put +3p"
birlestirmelerini de olusturalim;
Iut.ef + pt.ef
2(A B C) 2(AB BC CA
—=| ==t |+ —+—+—
3lA B C) 3lAB BC CA
St (L] AB S
fq f| 3\A B C
(4.268)

4 A(B C) B(C A} C[A B) 9ABC |;
t—|—| == |[+=| == |+ =| =+ = |-———— | ;
3]A{B C) B{C A) ClA B) ABC
4/(AB BC CA||;
+—|| —=+—=+— || s
3|\ AB BC CA

tef .

ﬂt.ef + 3 p
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o[ A BLC es#3p7 1 f —Rf, —Gf + ABL fo+3f,
A B C £, AB C

+a| A[BLC) BIC A, CIA B} 3ABC I (4.269)
aAle'c) Blc A claTB) ABC

AB BC CA)|;
4| —+—+— || s
AB BC CA

tef .

—u +3p
HA B C| ,(AB _BC CA|_ o-u +3p°

A B C AB BC CA fq

1 A B C .
+=J2(f—Rf, —-Gf.)+3| =+ —+—= | f_ +3f
f{( « ~Gfs) [A B Cj ROTR

R

A(B C) B(C A) C A B ABC
H|—| == |+=| =+— |[+= 3—f
AlB c) BlcTal"cla"B ABC
vl AB BC+CA f
AB BC CA

Simdi, bir de; mitkemmel akiskan olarak alinacak siradan madde igin, (3.56 ) daki V°T," =0

(4.270)

korunum denkleminden hareketle elde edilebilecek

m (A B C) n
L +[K+E+Ej(ﬂ +p )=0 (4.271)

korunum denklemini yazalim (detayl bilgi i¢in (4.14)-(4.19) esitliklerine bakiniz).
4.3.3. Tutarhhk Kosullari

Evrenin siradan madde-enerji igeriginin yalnizca " (t) madde-enerji yogunluklu ve p™(t)
basin¢li bir milkkemmel akiskan ile tasvir edilmesi ya da baska bir deyisle, akiskanin enerji-

momentum tansoriinde hal denklemi olarak g =0 ve 7Z'aﬂ =0 (a, B,...=1,2,3) varsayilmasi,

alan denklemlerinin G, ve G, bilesenlerinin s6z konusu varsayim ile tutarl olup olmayacagi

sorununu ortaya ¢ikarmaktadir. Asagida, milkemmel akigkan varsayimu ile tutarlilik anlaminda

bu sorun incelenecektir.
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Once (4.265.a) denklemlerini ele alalim.
A B (A B)d y
(—A—EJ(CfR +4CfG)+(—A—EJa(CfR +4Cf5)=0 (4.272.9)

olur. Benzer sekilde, (4.265.b) ve (4.265.¢) denklemleri de, sirasiyla,

B C . B C)\d ;
C A g C A)d y
[E—Zj(BfR +4BfG)+[E—Zja(BfR +4BfG ) =0 (42720)

seklinde yazilabilir. (4.272.a) nin ilk bakista su durumlar i¢in saglandig1 goriilmektedir:

(i) BocA (4.273)
(jj) Cf,+4Cf =0 (4.274)
(kk) Boc A ve Cf,+4Cf, =0 (4.275)

Bunlar “’Birincil kosullar’’1imiz olacaktir. Simdi, (ii) kosulu altinda (4.272.b) ve (4.272.c)
denklemlerine bakalim. (4.272.b) denklemi

[%—%j(AfR +4AfG)+(—i—%j%(AfR +4Af;)=0 (4.276)
ve digeri de bunun ters isaretlisi olur. (4.276) nin saglanmasi ise su ikincil kosullar altinda olur:
(i) CocA (4.277)
(ii,) Af, +4Af, =0 (4.278)

(i) CcA ve Af,+4Af =0 (4.279)
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Simdi sirayla (ii) ile bu ikincil kosullar1 birlestirelim. (ii,) birlestirilmeden Ao B oc C kosulu
ortaya ¢ikar ve bu durum i¢in fg, f; ve tiirevleri tizerine hig bir kosul gelmez. (ii) ile (ii,)
birlikte g6z oniine alindiginda ise B oc Ave Af, + 4AfG =0 kosullar1 olusur. ikinci bagmtinin
f, veya fG yi, ve dolayisiyla da bunlarin nokta tiirevlerini kisitladigi goriilmektedir. Bu kosul
altinda B oc C olmasinin gerekmedigi anlagilmaktadir. (ii) ile (ii;) {in birlestirilmesi ise

Ao B oc C ye ek olarak 6nceki durum gibi f, ve f; tiirevleri lizerine kisitlama getirmektedir.

Simdi (jj) ile (i), (ii,) ve (ii;) ikincil kosullarin birlegtirilmesine bakalim. (jj) ile bu
ligiiniin birlegtirilmesinin tek bir Coc A ve Cf +4CfG =0 kosulunu verdigini gérmek

kolaydir. Bu durumda B oc A olmasi gerekmediginden geri kalan denklemler A(t) ile B(t)

Olcek carpanlarinin ikisini de igerecektir.

Simdi de (kk) ile (ii,),(ii,) ve (ii,) ikincil kosullarin birlestirilmesine bakalim. Buradaki s6z
konusu tii¢ birlestirmenin de ayni bir Ao« BocC kosulunu, fakat buna ek olarak da

Af, + 4AfG =0 kisitlamasini getirdigi kolayca goriilebilir.

Son olarak, (4.273)-(4.275) birincil kosularina, bunlardan farkli mahiyette olan iki kosul daha
ortaya koymak miimkiin goriinmektedir; o da (4.272.a) ile (4.272.b) denklemlerinin bizzat

kendileridir. Gergekten de Ao BocC varsaymadan ve de Cf,+4Cf,#0 (keza:
Af, +4AfG #0 ve Bf, +4BfG #0) olmak kaydiyla, (4.272.a) ve (4.272.b) denklemleri

diizenlenip de integre edildikten sonra M, ve M, keyfi iki integrasyon sabiti olmak iizere
(AB—-BA)(Cf, +4Cfs) =M, ve (BC-CB)(Af,+4Af;)=M, (4.280)

seklinde bir kosul olarak ifade edilebilir. Bu iki bagmtidan olusan kosul altinda (4.272.c)
denkleminin de 6zdes olarak saglanacagini teorik olarak bilmekle birlikte bu pek asikar

gorinmemektedir. Ancak, s6z konusu bagintilar taraf tarafa toplanir ve parantez agilimi da
yapilip diizenlenirse, sonugta, M; + M, + M, =0 olmak iizere (AC - CA)(BfR +4Bf, ) =M,

bulunur ki, bu, (4.272.c) nin (4.272.a) ve (4.272.b) gibi diizenlenmis seklinden baska bir sey
degildir. Tablo 4.2 de yukaridaki tutarlilik kosullarini topluca gostermekteyiz.
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Tablo 4.3 : Bianchi-Tip I Modeli igin Tutarlilik Kosullari

(i) B A
(ii,) Coc A (ii,) Af,+4Af,=0 (ii,) Coc A ve Af,+4Af, =0
AxBoxC (B o« C gerekmez) AxcBocC

(jj) Cf, +4Cf, =0
(ii,) Coc A (ii,) Af, +4Af, =0 (ii,) Coc A ve Af, +4Af, =0
Hepsi icin
Coc A ve Cf,+4Cf, =0
(B oc A gerekmez)

(kk) Boc A ve Cf, +4Cf, =0
(i) Coc A (ii,) Af, +4Af, =0 (ii;) Coc A ve Af, +4Af, =0
Hepsi icin
AxBoC
Af, +4Af, =0

4.4. BIANCHI-TIP I ICiN f(R,G) MODELI TESISI

Oncelikle (4.265) ve dolayisiyla da (4.264) denklemlerinin miikemmel akiskan varsaymmi ile
tutarliliklarinin saglanmasi gerekliliginin yol a¢tig1 yukaridaki kisitlamalarin, geri kalan alan
denklemleri ile bagmtilara yansimasini ele alalim. Tutarlilik kosul takimlart su sekildedir:
@i, i, 1 Diiy, jjDil, JjDil,, Jj Dii,, Kk Dii, Kk Dii, ve kk @ii,. Belirtilen kosul

t.ef

, _ﬂt.ef +3p ,

takimlar altinda agikca gorildigi tizere ', p*®, u* +p', u* +3p*

m

4", R ve G nin, olgek ¢arpanlar igeren indirgenmis ifadeleri sirasiyla (4.261), (4.262),
(4.268), (4.269), (4.270), (4.271), (4.266) ve (4.267) bagmtilarmin kendileridir. Bu durum
altinda tim kosul takimlart i¢in tek bir ¢oziime gitmemiz yeterli olacaktir. Simdi (4.261)

esitligini asagida tekrarlayalim.
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I R IR AR o
AB BC CA " f, fl 2 AB C
o -1285C )¢ (4.281)
ABC

(4.281) esitliligi ayrintili olarak incelenirse, 6l¢ek carpanlari lizerine herhangi bir kisitlama veya

ongoriide bulunmadan once, f(R,G) fonksiyonunu « ile « #0 olan gergel bir say1 ve F(G)

ile de G nin keyfi bir fonksiyonu gosterilmek tizere

f(R,G)=aR+F(G) (4.282)
seklinde 6zel bir form goz Oniine alalim [45,46]. Bu durumda,

f =Sabit=a=0 = f,=0 ve f,=0 (4.283)

f, = f,.G=F4G (4.284)
olur. (4.282)-(4.284) bagintilar1 (4.281) e yerlestirilirse,

AB BC CA 1
t—t—==

AB BC CA_ 12ABC £ & (4.285)
AB BC CA «a

(Kz,um —%[F(G)—GFG]—FC

elde edilir. Simdi A(t), B(t) ve C(t) 6lgek garpanlarinin fonksiyonel formunu asagidaki gibi

secelim:
A(t) = At™ (4.286)
B(t) = B,t™ (4.287)
C(t)=C,t"™ (4.288)

Fonksiyonel formu yukaridaki gibi secilen &lgek carpanlari i¢in hesaplamalarda yollama

yapmay1 kolaylastirmak {izere gerekli tiirev ifadeleri,

b

: LA (4.289)

t2

A A_
A A
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B_p, B_Pp(pr.-Y (4.290)
B t ’ B t?
c_p C_p(p-Y (4.291)
C t ’ C t?

bi¢imindedir. (4.289)-(4.291) bagmntilar1 (4.267) e yerlestirilirse

G =8p,p,P;(P,+ P, + Ps _3)t_4 (4.292)
G=yt" (4.293)
Vs =8P P, P3(P+ P, + P;—3) (4.294)

olur ve (4.292)-(4.294) bagintilar1 1s18inda su yararli ifadeler sonraki hesaplamalarda

kullanilmak tizere

G=yt" = G=-4yt" (4.295)

t=y /G = G=-4y/G" (4.296)

olur. Simdi korunum denklemini, yani (4.271) bagintisi ele alip incelersek

m (A B CY) n
yr +[K+E+Ej(ﬂ +p")=0 (4.297)

siradan (normal) maddenin w = sabit olmak iizere
p" =wp" (4.298)
seklinde lineer bir barotropik hal denklemine uydugu varsayimi altinda (4.297) denklemi
C

an +(1+W)(£+§+Ejym =0 (4.299)

seklini alir ve bu da

d d
—Inu" =—(1+w)—In(ABC
g M4 =1+ w) g In(ABC)
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yazildiginda, kolayca integre edilerek
u™ oc (ABC) ™ (4.300)

verir. Orant1 katsayisim1 belirlemek iizere; baslangi¢ kosulu olarak, t=t, simdiki kozmik

zamaninda ", A B ve C nin simdiki degerleri 4", A, B, ve C, ile gosterilirse
1" o (AB,C,) ™" (4.301)

olur ve dolayisiyla da, sonucta, (4.286)-(4.291) bagintilar1 1s1ginda korunum denkleminin

¢Ozimii i¢in

= (1+w)

A BC
"=y | —— = 4.302
80 uo[AOBOCOJ (4.302)
,um(t) =,u0mt*(P1+Pz+Pa)(1+W) (4.303)

elde edilir. Elde edilen tiim bagintilar (4.285) e tasinirsa

1 G (PP )W)
PP, + P, Po+ PPy _ 1 Kzﬂom( ]

1 12 —4G%
_E(F(G)_GFG)_ pi3pzp3{ JFGG

¢ a 7 7
(4.304)
1
1 1 G 48F GZ K‘2 m(G 2(91+P2+P3)(1+W)
LF@) -2RGralpp+ popy+ pypy) [ 2O (PR Kt [O _0
2 2 s Vs a Vs
(4.305)

bulunur. Bu diferansiyel denklemin genel ¢6ziimii,

1 p+p+ps

+CG+C,G* ¢ (4.306)

L (P By pa)(t4w)

F(G)=C.G +C,G*
burada

G =8G/y, (4.307)
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olmak tizere diger katsayilar asagidaki gibidir.

C :_\/ia(p1p2+pzp3+p3p1)(p1+ P, +Pp;—3)
; 2 (P + P, + Py +3)

22 (P Py By (W), 7 (Pr+ Pyt P+ w) X
-2 3 (p1+p2+p3+3)(’< Il'lo/a)

C. =

swW

1
4—§(p1+ P, + Py)(19+15W) + (P, P, + P, Ps + PsP,)(4+7W+3W?)
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5. TARTISMA VE SONUC

Genel anlamiyla kozmoloji, evrenin gozlenebilir Ozelliklerini anlamay1r zaman igindeki
evrimine agiklik getirmeyi amag¢ edinmis bir bilim dalidir. Bu maksatla, spektroskopiden
parcacik fizigine kadar fizigin bir¢ok alt dalindan faydalanilarak, tarih boyunca bu disipline ait
cesitli teoriler One siiriilmiistiir. Siiphesiz ki evrenin tam bir izahinin yapilabilmesi i¢in ortaya
atilmis Oneriler arasinda, Einstein’in Genel Rolativite Teorisi (GRT) biiyiikk bir onem
tasimaktadir. 1915 yilinda one siiriilen bu teori, modern kozmolojinin temelini olusturmakta
olup, gelisen gozlem teknoloji ve yontemlerle elde edilen yeni bilgiler 1s181nda, ortaya atildigi
zamandan bugiine, bizzat Einstein’in kendisi de dahil olmak iizere, bircok bilim insani

tarafindan modifiye edilmistir.

Kozmoloji tarihinde doniim noktasi olan GRT nin 6ne siiriildiigii donem de, evrenin duragan
ve sonlu oldugunun yaygin kabulii, teori i¢in birtakim sikintilar ortaya ¢ikarmaktaydi. Herhangi
bir madde-enerji dagilimmin bulunmamasi durumunda, yerel bdlgede bir gravitasyonun
olugsmamasi, ayrica duragan bir evrenin, gravitasyonel etkilesimlere yenik diiserek ¢okmesi
gerekmekteydi. Bu gibi sorunlar Einstein’1, alan denklemlerinin madde ile ilgili béliimiine bir
terim eklemeye itmistir. Bu terim A parametresi veya Kozmolojik Sabit olarak adlandirilir.
Her ne kadar bu oneri Einstein tarafindan beyhude bir girisim olarak diisiiniilmiis olsa da 1929
yilinda yapilan gozlemler sayesinde tespit edilen galaksilerin presesyon hareketi, kozmolojik
sabitin gerekliligini tekrar ortaya koymustur. Ve bu sabit evrenin geniglemesinin izahi olarak

denklemdeki yerini almigstir.

Fakat son donem genis Olcekli gozlem sonuglart bize, evrenin ivmelenerek genisledigi bir
doneme gegcis yaptigimi gostermektedir. Sadece siradan madde-radyasyon ile dolu bir evren
modeli ile bu durum tam olarak izah edilememektedir. Buna ek olarak, evrenin genislemesinden
sorumlu tutulmus olan A parametresinin fiziksel yorumu da dinamik bir evreni tarif etmekte
yetersiz kalmaktadir. Ayrica Einstein alan denklemleri, giines sistemi gibi daha diisiik enerjili
gravitasyon alanlarin ¢éziimii i¢in gayet tutarli olmasi fakat izahinda yiiksek mertebeden
egriliklere ihtiya¢ duyulan sistemlerin ve evrende meydana gelen bir takim olaylarin
aciklanmasinda yetersiz kalmasi, bilim insanlarini bir kez daha alternatif bir teori armaya ya da

GRT’nin alan denklemlerinde degisiklik yapmaya itmistir.
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Bu amagla, f(R,G)-gravite teorisini, uzayca homojen ve esyOnsiiz modeller sinifindan

Bianchi-Tip | ve Bianchi-Tip III modelleri ¢ergevesinde, evrenin normal (standard) madde-
enerji iceriginin lineer barotropik hal denklemli bir miikemmel akiskan oldugu varsayimi
altinda ele aldik. Matematiksel hesaplanabilme saglamasi bakimindan s6z konusu modeller
donmesiz ve ortogonal tipten alinarak, yani metrikler kosegensel olup yalnizca ii¢ bilinmeyen
Olgek ¢arpani igermektedir. Bianchi-Tip I modeli en basit esyonsiiz model olup, ayn1 zamanda
da uzayca diiz esyonlii RW modelini igermektedir. Bianchi-Tip 111 modeli ise higbir sekilde bir
RW modelinin (diiz, agik ve kapali) genellestirmesini olusturmamaktadir. Efektif akiskan
yaklagimi altinda alan denklemlerini eshareketli bir ortonormal tetrad ¢atisinda hesaplayip,
bunlarin ¢oziimleri olan 6l¢ek carpanlariyla birlikte f(R,G) nin fonksiyonel formlarini tesis
ettik. Bu isi, literatiirde ¢cok az sayida yapilmis benzer amagl ¢alismalardan farkli bir bicimde
ele aldik. Bunlarda yapildigi lizere, pesinen amaca yonelik (ad hoc) ongdziimler (anzats)
varsaymak yerine; dnce evrenin madde-enerji iceriginin esyonlii bir miikemmel akigkan olarak
varsayilmasi altinda alan denklemlerinin bu kisitlama ile ayrintili bir sekilde Bianchi-Tip 11,
Bianchi-Tip I modelleri i¢in tutarlilik kosullarin1 belirledik ve sonrasinda on¢oziimleri tesis

ettik.
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EKLER
EK A. ROBERTSON-WALKER:
ds” = —cdt® +a*(t) [ dr’ + f,” (r)(d6” +sin’ 6d 4]
* Koordinatlar : (x°, x', x*,x*) = (ct,r,0,4) (gegici olarak c=1 almacaktir = x° =ct=t)

* Ortonormal tetrad {ea, ea} taban:

e’ =dt 1 0 0 0
el =a(t)dr . |0 a(t) 0 0
e =a(t)f (r)dé “Zlo o aq f (r) 0 A1)
e’ =C(t)dz 0 0 0 a(t) f (r)sin@
e, =0, 1 0 0 0
e = o, 0 — 0 0
a(t) a(t)
S =0 o L1 _ AL
a(t) fi (r) a(t) f, (r)
1 1
€ = —.a¢ 0 0 0 _
a(t) f (r)sing a(t)f (r)sing

e Komiitasyon fonksiyonlar1 ve Ricci donme katsayilar1 (‘nokta’ ve ‘iissii’ yaziliglari,

sirastyla, t kozmik zamanina ve r koordinatina gore tiirevleri gostermektedir):

0000 0 - 00
0 00O a
0o _ 1|2 0 00 A.2
7ab 0000 j/aba ()
000 0 0O 0 OO
0O 0 0O




0o _
1—‘ab_

o
o ol o

o O

2 _
1_‘ab_

® | o

o

o oo

-=Z 0
a
i
af,
0 0
0 0
0
0
0
a
a
0 0
0 0
0 0
_cote
af,
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1 _
1—‘ab_

» | o

L O

o

¢ Genisleme Tansorii, genisleme skaleri ve makaslama tansorii:

o oo

eab =

o oo

a
a

0 0 @
a
0 0 &
af, (A2)
0 0 _COt@
af,
£ cotd
af,  af,
0 0
0 0
, (A2)
LTI
af,
0 0 &
af,
0 O 0 O
0 O 0 O
r3ab: 0O O 0 0 (A.2)
a f' cotd 0
a af, af,
o, =0 (A.3)

¢ Riemann ve Ricci egrilik tansorleri, Rici egrilik skaleri, Gauss-Bonnet terimi (Sifirdan

farkl bilesenler yazilmistir):

K
0303 — ~
a (A.4)
a k
R2323 a_ + ?



5
Roo:_3g

. az
=—+2—=+2—
Ry a a " a
R33:R22_R11
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a? _k
GOO:3¥+3¥

a a* k
e
G33:GzzzGl1

(A.4)

(A.4)
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EK B. BIANCHI-TIP I:

ds? = —dt2+ A% (t)dx? + B2 (t)dy? + C?(t)dz?

* Ortonormal tetrad {ea, ea} tabam:

e’ =dt 1 0 0 0
e' = A(t)dx 0 At) 0 O
® = 2= ® (B.1)
e’ = B(t)dy 0 0 Bt O
e® =C(t)dz 0 0 0 C(t)
e, =0, 1 0 0 0
&= o, 0o -1 0o o
A(t) A(t)
=N e' = B.1
N =lo 0o L B
B(t) B(t)
e3=iaz 0 0 R
C(t) C(t)
¢ Komiitasyon fonksiyonlari ve Ricci donme katsayilari:
A
0000 0 — 090
0000 A
O = b=l—= 0 00
»%10 0 0 0 T =1
0000 0 0 00
0O 0 0O (B.2)
00 -2 ¢ 000 -S
B C
, |0 0 0 0 . |0 00 0
7/ ab B yab 0 O O 0
5 0 0 O :
00 0 0 c 200
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0 0 0 O
A 0 00O
0 % 0 O A
1—‘Oabz B 1—‘1&1b= K 0 O O
060 35 0 0 000
' 0 00O
00 0 & (B.2)
C
0 00O 0 00O
0 00O 0 00O
I, = r‘’y=/0 000
’ g 000 i ¢
0000 c 000
¢ Genisleme Tansorii, genisleme skaleri ve makaslama tansorii:
A 0 O ZA—E—E 0 0
A A B C
,=|0 B 0|, aab—l 0 —A+ZE—E 0 (B.3)
B A B C
0 O ¢ 0 0 —é——+29
C A C
H:A+E+E (B.3)
A B C

o . g .
:A2 B—2+C—2+2E+2§+2% (B.3)
A B C AB BC CA

O =—0,0 ==

2 3

)y iy i

, 1 o 1 AZJFB_Z C2 AB BC CA (B.3)
A° B C° AB BC CA

¢ Riemann ve Ricci egrilik tansorleri, Rici egrilik skaleri, Gauss-Bonnet terimi (Sifirdan

farkli olan bilesenler yazilmistir) :

A B C

R0101 :_K , Rozoz :_E , R0303 :_E
) .. o (B.4)

AB CA BC

R1212:E ' Rlslsza ' R2323:E
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A B C AB BC CA
0= T AT ~ Co ==t o~ =x
A B C AB BC CA
A AB AC B C BC
Ry=—+ 5+~ Cy=-5-=- T~
A AB AC B C BC (B.4)
B BA BC C A CA
2= ot or T e GCp=-Z—7%- A
B BA BC C A CA
C CA CB A B AB
Ry=—+—+— Gy=————- -
C CA CB A B AB
A B C AB BC CA ABC BCA CAB
R=2| —+—4+—+—+—+— = + + (B.4)
A B C AB BC CA ABC BCA CAB
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EK C. BAZI YARARLI BAGINTILAR:

e Yalmizca t zamanma bagh bir skaler ¢ =¢(t) skaler fonksiyonunun kovaryant

tiirevlerinin tetrad bilesenleri (¢ =o(t), f; = f;(t) ve f, = f;(t) fonksiyonlarinin yerini

tutmaktadir):

V, Vo0 =6,6,0— T80 =@
Vavbgo = ea (vb<0) _rcabvc(p ° Oq) ° Ogo 0 O.O Oq) gp
_ c ViVip=-T",0
_eaebgo_r anCcP = 0 - (Cl)
—eeon-T" e V, Vo =-1",¢
=659 abCo® 0 -
ViV =—T"30p
VOV, ==V V0 VIV =4V Ve
V%V ,p=-V V VVip=-V VvV
A AR MG A L R AT RS RS
ViV =-V V.o V*Vip=-V V.o
VOV ,p=+V,V 0 VNVlp =4V, V 0
(C.2)

lp=V'Voo=1"V,Vyp = Up=-VVp—(V,V9+V,V,0+V.V,0)p

=—¢- (Foll +F022 + 1—‘033)(? (C.3)
A B C A B C
r',=—,I1",=—, I, == = p=¢—| —+—+—|¢
Bianchi-Tip Ive lligin: ~ * A ' % B ' ® C vy (A B C}D
(C.4)
a -
RW icin: r°11=r°22=r°33=g = D(p:—(o—3g(p (C.5)

¢ Ricci tansoriiniin tetrad gosterimleri arasindaki bagintilar:

ROO =—Ry, R = +Ryo
R’ =+R RY” = _R
R b — bdR . 0 04 ’ Rab — 18C bdR . 04 C6
a n ad Rao — _Rao nn cd Rao — _Rao ( )
B _ af _
Ra = +R0ﬂ R* = +Raﬁ

Koordinatlar : (x°, x*,x*,x*) = (ct,r, 8, $)
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Metrik tansor ve tersi (gegici olarak c=1 alinmistir = x° =ct=t):

1.0 0 0
10 0 0 o L o 0
o a o 0 ! - .
@)=l o ap o |90 o e 0 (€7)
0 0 0 a’f?’sin’6 ‘ .
0 0 0 ==
a“f . sin“@

Christoffel Sembolleri (‘nokta’ ve ‘iissii’ yazilislari, sirasiyla, t kozmik zamanina ve r

koordinatina gore tiirevleri gdstermektedir.Sifirdan farkli olanlar yazilmistir) :

a a a
I’°, =aa rt =rt =— 2, =r2 == re.=rs ==
1 01 0= 02 0= 03 077
. i f
1ﬁozz = aasz 1ﬂlzz == fk fk FZlZ = r221 3 f_k rsla F331 f_k (C-8)
k k

I, =aaf’sin’9 ', =—f, f, sin*0 T?,=-cos@sing T°,=I°,=cotd

Riemann tansoriiniin bilesenleri ( kullanilarak diger sifirdan farkli olanlar bulunabilir) :

.. 2
Ruoi=—ad , Ry, =-adf’ , Ry,=-adf’sin’0

(C.9)
R,, =a’f%(@*+Kk) , Ry, =a’f’sin*0(a*+k) , R,,, =a*f*sin’9(a* +k)

Ricci tansoriiniin bilesenleri (digerleri=0) :

ad a . a° k .
R00=—3g , R11=a2(a+2¥+2¥) , R,=f?R, , R,=1f7’sin0dR, (C.10)

Ricci skaler egriligi ve Gauss-Bonnet egrilik invaryanti (G = R, R —4R; R'+R?):

e 2
R= 6(§+a—+—) G=208@ X, (C.11)
a a a a

Einstein tansoriiniin bilesenleri (digerleri=0) :

a° a2 .
Goo=3(a ) G, =a’(- 2——a—— ) G, = f’Gy, Gy = fsin®60G, (C.12)
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Enerji-momentum tansérii (miikemmel akiskan ve U' =6&', < u, =—6°, alarak) :

u 0 0 0
T, =puu; +p(g; +uu) = T, = L ° (C.13)
! H v Y10 0 pa’f? 0

0 O 0 pa’f,’sin’ @

Einstein_alan _denklemleri (c#1 durumuna diizeltilmis Friedmann-Lemaitre-Robertson-
Walker (FLRW) denklemleri) :

22 2
3@ K At iciu (C.14)
a a
.. ) )
L S (C.15)
a a a

Bu ikisinin kombinasyonu, Raychudhuri denklemini verir. Ote yandan, yine bu ikisinden
.o,a
La+3—(u+p)=0 (C.16)
a

bulunur ki, bu da, korunum denklemi olup madde—enerjinin korundugunu ifade eder. Bu son ii¢

denklem Standard Rolativist Kozmoloji’nin temellerini olusturur.
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