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Optik solitonlar, nonlineer optik alaninda aragtirmalarin bir hazinesini temsil eder.
Uzun mesafeler i¢in optik fiberler araciligtyla soliton yayiliminin dinamiklerini tanimlayan
birka¢ model vardir. Bunlar, nonlineer Schrodinger denklemi, Schrodinger-Hirota
denklemi, Sasa-Satsuma denklemi, Manakov denklemi, Biswas-Milovi¢ denklemi ve
digerleridir. Bu ¢aligmada, ¢ok sayida nonlineer kirilma indisi yapilarina sahip nonlineer
kromatik dagilim ile calisilan kompleks Ginzburg-Landau denkleminin duragan soliton
cozlimleri elde edilmistir. Genellestirilmis (G'/G)-a¢ilim yOnteminin uygulanmasi ile
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1. GIRIS

Optik solitonlar teknolojisinin analitik ve hizli gelisimi, telekomiinikasyon
endustrisinde kalic1 bir etki birakmustir (Atai ve Malomed, 2001; Geng ve Li, 2008; Guo ve
Zhou, 2010; Kudryashov, 2020a, 2020b, 2020c, 2020d, 2021; Susanto ve Malomed, 2021;
Yan, 2006a, 2006b; Zhang vd., 2010; Wazwaz, 2016, 2018; Wazwaz ve Kaur, 2019). Bu
durum, bu alanda performans artigi i¢in ¢ok sayida sonuca ve sayisiz yollara yol agt1.
Kitalararas1 mesafeler boyunca solitonlarin dinamik akisini yoneten birkag model vardir.
En goriinlir model, nonlineer Schrodinger (NLS) denklemi olsa da, duruma bagl olarak
genellikle diger modellere sapmak gerekir. Ornegin, dispersif solitonlar Schrddinger-

Hirota (SH) denklemi veya Fokas-Lenells (FL) denklemi ve digerleri tarafindan yonetilir.

Kitalararas1 mesafeler boyunca soliton iletimi i¢in temel elektronik kumasi
olusturan iki anahtar bilesen, kromatik dagilim ve kendiliginden faz modiilasyonudur.
Kromatik dagilim lineer iken, kendiliginden faz modiilasyonu bir optik fiberdeki nonlineer
kirilma indisinin yapisindan kaynaklanir. Kapsamli olarak incelenen kendiliginden faz
modiilasyonunun ¢esitli bicimleri vardir. Bunlar, nonlineer kirilma indisinin Kerr olmayan
yasalar1 olarak bilinirler. Burada, Kerr yasasi nonlineerligin kiibik bi¢imidir ve bu
baglamda ele alinan modele siklikla kiibik Schrodinger denklemi veya daha yaygin olarak

NLS denklemi olarak atifta bulunulur.

Bu c¢alismada, uzun mesafeler igin soliton dinamiklerini yOneten alternatif bir
model olan komleks Ginzburg-Landau (GL) denklemi ele alinacaktir (Biswas, 2009, 2018;
Triki vd., 2012; Mirzazadeh vd., 2016; Arnous vd., 2017; Biswas ve Algahtani, 2017,
Biswas vd., 2018a, 2018b, 2021a, 2021b; Arshed vd., 2019; Das vd., 2019; Yildirim vd.,
2020a, 2020b; Zayed vd., 2020, 2021; Yan vd., 2020; Yalg1 ve Ekici, 2022). Bu model,
nonlineer kromatik dagilim ile incelenmistir. Kendiliginden faz modiilasyon yapilarinin
gesitli formlar1 c¢alisilmistir. (Biswas ve Konar, 2006). Bu nonlineerlik formlari su
sekildedir: Kerr yasasi, kuvvet yasasi, parabolik yasasi, ¢ift kuvvet yasasi, kuadratik-
kiibik yasasi, logaritma yasasi, anti-kiibik yasasi, kiibik-kuintik-septik yasasi, liglii-kuvvet
yasasi, zayif yerel-olmayan nonlineerlige sahip parabolik yasasi, genellestirilmis anti-
kiibik yasasi, kiibik-kuartik yasasi ve son olarak genellestirilmis kiibik-kuartik yasasidir.

Fiberlerin 6zensiz kullanimi, fiberin yeralti ve denizalti kurulumu gibi ¢esitli fiziksel



unsurlar ve c¢evresel nedenler gibi diger sorunlar, kromatik dagilimin nonlineer hale
getirilmesine neden olabilir. Boyle bir durumda solitonlar duragan hale gelecek ve boylece
kitalar aras1 ve okyanuslar arasi mesafeler i¢in bilgi transferi tamamen duracaktir. Bu,
Ozellikle diinyanin tamamen internet faaliyetlerine bagimli oldugu COVID-19
zamanlarinda feci bir etkiye yol acacaktir. Cok ¢esitli kendiliginden faz modiilasyonu i¢in,
duragan solitonlarin analitik tiiretilmesi, calismanin geri kalaninda gosterilmektedir.
Duragan solitonlar, eliptiklik modiilii uygun limite yaklasirken soliton ¢ozlimlerine

yaklasan Jacobi’nin eliptik fonksiyonlar1 araciligiyla elde edilir.

Duragan optik solitonlarin arastirilmasi son zamanlarda biiyiik ilgi gérdii ve bir dizi
anlamli sonug elde edildi. (Biswas ve Khalique, 2011)’de nonlineer dispersif Schrodinger
(NLDS) denkleminin Lie grup analizi yardimiyla integrasyonu gerceklestirildi ve ele
alman model i¢in duragan c¢oziimler elde edildi. (Biswas ve Khalique, 2013)’te
genellestirilmis gelisimli NLDS denklemi i¢in duragan ¢oziimler ¢ikarildi. (Biswas vd.,
2018)’de, nonlineer grup hiz dagilimmi siirdiiren optik fiberlerdeki duragan solitonlar
incelemek i¢in genisletilmis deneme fonksiyon yontemi kullanildi ve bu g¢aligmanin
devamu olarak ayni1 yontem kullanilarak Kerr olmayan birka¢ egzotik nonlineerlik yasasina
sahip NLS denklemine duragan soliton ¢oziimler ortaya ¢ikarild: (Ekici vd., 2018). (Adem
vd., 2020)’de, model denklem lineer zamansal gelisimin yan1 sira genellestirilmis zamansal
gelisim ile birlikte goz Oniline alindi ve nonlineer kirilma indisinin quadratik-kiibik
yasasina ve nonlineer kromatik dagilima sahip duragan optik solitonlar tiiretildi. (Adem
vd., 2020)’de, NLS denkleminin pertiirbe edilmis bir formu olan Sasa-Satsuma (SS)
denklemi tarafindan modellenen, nonlineer kromatik dagilima ve kendiliginden faz
modiilasyonunun Kerr yasasina sahip duragan optik solitonlar kesfedildi. (Adem vd.,
2021)’de, nonlineer kirilma indisinin Kerr yasasina sahip Lakshmanan-Porsezian-Daniel
(LPD) modeli i¢in nonlineer kromatik dagilimli duragan optik solitonlar elde edildi. (Sucu
vd., 2021)’de, karsilik gelen kromatik dagilim nonlineer hale getirildiginde, bir optik
fiberin nonlineer kirilma indisinin on bir farkli formu i¢in genisletilmis deneme fonksiyon
algoritmasi1 ile duragan optik solitonlar1 kesfedildi. (Ekici vd., 2021)’de, kromatik
dagilimin nonlineer versiyonuyla birlikte, Nikolay Kudryashov tarafindan son zamanlarda
Onerilen alt1 nonlineer kirilma indisi yasasi ile modellenen duragan solitonlar ¢alisildi.
(Sonmezoglu vd., 2021)’de, nonlineer kromatik dagilimla birlikte nonlineer kirilma
indisinin yeni Onerilmis kiibik-kuartik bi¢imi i¢in duragan optik solitonlar arastirildi.

(Biswas vd., 2022)’de, Kudryashov’un son zamanlarda onerilen kirilma indisinin besli
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(quintuple) kuvvet yasasi ile NLS denklemine duragan optik soliton ¢oziimler elde etmek
icin genisletilmis deneme fonksiyon semasi uygulandi. Incelenen bu model, nonlineer
kromatik dagilim ile birlikte ¢alisildi. Hem lineer zamansal gelisim hem de genellestirilmis

zamansal gelisim dikkate alindi.

Tez calismasinin yapist su sekilde diizenlenmistir: 2. Boliimde, solitonlar ve optik
solitonlar hakkinda bilgiler verildi ve optik soliton tipleri olan parlak, koyu, tekil ve
duragan solitonlardan bahsedildi. Bir optik fiber boyunca 1sik darbesinin yayilmasini
yoneten NLS denklemi 3. Boliimde verildi ve sonra nonlineer optikte meydana gelen
nonlineerligin on {i¢ formu tanitildi. 4. Boliimde, ¢ok sayida nonlineer kirilma indisi
yapilarina sahip nonlineer kromatik dagilimli kompleks GL denklemine duragan soliton
¢oziimler elde etmek igin uygulanacak olan genellestirilmis G'/G-agilim yonteminin tanimi
verildi. Bir sonraki boliimde ana modele giristen sonra takip eden boliim, modelde
uygulanacak olan matematiksel analizin ayrintili bir sekilde agiklamasidir. Bu analiz
kendiliginden faz modiilasyonunun 6nerildigi sekliyle on ii¢ alt boliimden olusan nonlineer
kirilma indisi yapilarinin on ii¢ formu ile birlikte basariyla uygulandi. Son olarak, 7.
Boliimde, bazi sonuglar ve gelecekte agilacak olan arastirma yollarini da kapsayan birkag

oneri sunulmaktadir.



2. TEMEL BILGILER

2.1. Solitonlar

Fizik ve matematik alaninda, soliter dalga, yayillma sirasinda boyutunu ve seklini
degistirmeyen Ozel bir dalga tiiriidiir. Soliter dalga olgusu ilk olarak Viktorya donemi
miihendisi, deniz mimar1 ve gemi yapimcist John Scott Russell (1808-1882) tarafindan
kesfedilmistir (Russell, 1834). 1834°te dar bir kanal boyunca hareket eden soliter dalgalar
gbzlemlemek i¢in bir dizi deney yapmistir. Daha sonra Russell, dalgalarin kararli olmalari
ve hizlarmi ve boyutlarini degistirmeden c¢ok biiylik mesafelerde yayilabilmeleri de dahil
olmak iizere bu soliter dalgalarin temel 6zelliklerini incelemek icin laboratuvarinda bir
tank insa etmistir. Russell’in goézlemleri, iki Hollandali bilim adami olan Diederik
Korteweg ve Gustav de Vries (Korteweg ve de Vries, 1895) 1895’te soliter dalga ve
periyodik dalga ¢oziimleri ile birlikte KdV denklemini saglayana kadar Newton ve
Bernoulli’nin hidrodinamik teorileriyle pek uyumlu degildi. Bir soliton, diger soliter
dalgalarla carpismadan sonra kalic1 yapisini koruma 6zelligine sahip bir parcacik olarak da
hareket eden bir dalga paketidir. Bagka bir deyisle soliton, asagidaki istisnai 6zelliklere
sahip soliter hareket eden dalgayr temsil eden lineer olmayan bir kismi diferansiyel

denklemin bir ¢6ziimii olarak tanimlanabilir (Agrawal, 2001):

e Kalic1 bir yapiya sahiptir.

e Dagilmaz.

e Siiperpozisyon teorisine uymaz.

e Belirli bir bolge i¢inde yer alir.

e Diger solitonlarla ¢arpistiktan sonra sekli ve boyutu degismez.
Solitonlar yalnizca su dalgalari ile sinirlt degildir, ayn1 zamanda integrallenebilir nonlineer
kismi diferansiyel denklemin ¢esitli soliton ¢oziimleri vermesi gibi, farkli nonlineer
sistemlerde de goriiniirler. Solitonlar benzersiz 6zelliklerinden dolayi, akiskanlar dinamigi,
yay sistemi, DNA’daki sivinin hareketi, plazma fizigi, telekomiinikasyon endiistrisi ve
nonlineer optik gibi matematiksel fizigin ¢esitli alanlarinda ¢ok verimlidirler (Agrawal,
1989).

2.2. Optik Solitonlar

Nonlineer optikte soliton terimi, dalganin gectigi ortamdaki lineer ve lineer

olmayan etkiler arasindaki denge nedeniyle yayilma sirasinda yolunu veya seklini
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degistirmeyen herhangi bir optik darbe olarak tanimlanir. Bunlara, ortamda kirilmayan
veya dagilmayan lokalize 11k darbeleri olarak atifta bulunulur. Herhangi bir bozulma
olmadan uzun mesafeler katedebilirler ve bu 6zellik soliton teorisini optik iletisim alaninda
cok faydali kilar. Optik fiberde bulunan ve telekomiinikasyon endiistrisinde optik sistemin
performansini1 etkileyebilecek ¢esitli etkenler vardir. Optik darbe yayilimi, darbe
genislemesi ve semboller arasi girisim iireten lineer bir etki olarak tanimlanan ve basitce
GVD olarak adlandirilan grup hiz dagilimindan etkilenebilir. Tek modlu fiberlerde ortaya
cikan bir¢cok dogrusal olmayan etki de vardir, bunlar kendiliginden faz modiilasyonu,
Raman sagilmasi ve Kerr etkisidir. Bir 151k dalgasini yaymak i¢in, 15181 iyi tanimlanmis bir
yol boyunca hareket etmeye zorlamak i¢in bir kirilma indisi varyasyonu uygulayarak 151k
huzmesini optik fiber veya baska bir ortamda yonlendirmek i¢in dalga kilavuzu
kullanilabilir. Giinimiizde internet sektorii, Twitter, Facebook ve Google da dahil olmak
tizere telekomiinikasyon sektorii optik solitonlarin yardimiyla ¢aligmaktadir (Milovi¢ ve

Biswas, 2013).

2.2.1. Optik soliton tipleri
(i) Parlak soliton

Parlak soliton, kendisiyle iligkili dalganin genliginde kisa siireli bir artisla
olusturulan lokalize bir ylizeydir. Parlak solitonlar, tasiyicinin kararsizligindan kaynaklanir
ve bu kararli olmayan durumun nedeni uzun dalga modiilasyonudur. Dagilim alaninda,
dalganin frekansi ve kirilma indisi ters orantilidir, bu nedenle frekans arttik¢a kirilma indisi
azalir ve gegici parlak solitonlar elde edilebilir (Hasegawa ve Tappert, 1973). Normal
dagilim bolgesinde, optik fiberlerdeki nonlineer etkenler solitonlarin olusumunu etkiler.
Optik fiberlerde, grup hiz dagilimi, kararsizligi nedeniyle diizensiz olan sabit genlik
dalgasina sahiptir. Parlak solitonlar, sekant hiperbolik grafigi temsil eder. Matematiksel

olarak, parlak solitonlar { = B(t — uz) olmak iizere
v(z,t) = Asech?{ €Y
seklinde tanimlanir (Biswas vd., 2012). Burada v(z ) solitonun £ zamanmna ve z

mesafesine bagh genligi, u soliton hizi, A yer degistirme (z = 0 ve £ = 0°da maksimum),

B ters soliton genisligi ve p denklemin g¢ikarilmasi sirasinda belirlenen bilinmeyendir.



(if) Koyu soliton

Koyu solitonlar, ilk kez 1987°de P. Emplit ve ark. (Emplit vd., 1987) tarafindan
caligildi. Onlar normal darbe kisa bir siire i¢in sifira atladiginda ve orijinal konumuna geri
dondiiginde koyu solitonlarin iiretildigini gozlemlediler. Bunlar kendileriyle iliskili
dalgalarin genliginde kisa siireli bir azalmanin yarattifi lokalize dalgalardir ve ayrica

tasiyict dalga kararli oldugunda da ortaya cikarlar.

Bu tiir solitonlar yogunluk diisiisleri olarak gosterilebildiginden, stirekli dalga arka
planinda koyu soliton bulunur. Kendi kendine odaklanmayan nonlineer durumlarda, koyu
solitonlar ortaya c¢ikar. Siirekli kararli arka planlari nedeniyle, bu solitonlar nonlineer
fiberden gecen darbelerde kiigiik bosluklar olusturur. Topolojik dalgalar ve sok dalgalar
koyu solitonlar kullanilarak incelenir. Bu tiir solitonlar ¢ok yiiksek hizda yayilirlar ve hizla
enerji kazanip kaybedebilirler. Kerr olmayan malzemelerin varliginda koyu soliter dalgalar

kararsiz dalgalara doniisiir ve teget hiperbolik grafigi olustururlar.

Matematiksel olarak, koyu solitonlar n > 0 ve { = B(f — uz) olmak iizere asagidaki gibi
tanimlanir (Bekir vd., 2014):

v(z,t) = A tanh"C. (2)

Burada v(z,t) solitonun ¢ zamanina ve z mesafesine baglh genligi, u soliton hizi, A yer
degistirme (z = 0 ve t = 0’da maksimum), B ters soliton genisligi ve n denklemin

cikarilmasi sirasinda belirlenen bilinmeyendir.
(iii) Tekil soliton

Nonlineer olusum denklemleri alaninda, tekil solitonlar bol karakteristiktedir ve
¢Ozlimleri, belirli kosullar altinda Rouge dalgalarinin olusumuna neden olan sivri uglar
seklinde gosterilebilir.

Rosenau-KdV denklemini kullanarak Razborova ve ark. (Razborova vd., 2014) tekil

solitonlari, korunum yasalarini ve sok dalgalar1 buldular.

Tekil bir soliton bulmak igin

v({) = B csch™( 3



formunda ansatz uygulanir. Burada B sifirdan farkli keyfi bir sabiti gosterir ve n, daha

sonra belirlenecek olan bir bilinmeyendir.

(iv) Duragan soliton

Hareketsiz duruyormus gibi gorlinen ve flizerinde mevcut olan parcaciklarin
sabitlenmis yerlerinde titrestigi dalga, duragan veya duran dalga olarak bilinir. NLS
denkleminin duragan ¢oziimii, bu NLS denkleminin ¢oziimii zit yonde hareket eden ve
belirli dalga boyunda birbiriyle ¢arpisan iki 6zdes dalga bigiminde oldugunda ortaya ¢ikar.

NLDS denkleminin lokalize edilmis duragan soliton ¢6ziimleri

v(x, t) = p(x)et (4)

seklindedir. Burada A bir sabittir ve ¢ fonksiyonu sadece x bagimsiz degiskenine baghdir.
Biswas ve arkadaslar1 (Biswas ve Khalique, 2011), NLS denkleminin duragan ¢oziimlerini

elde ettiler.



3. NONLINEER SCHRODINGER DENKLEMIi

Bir optik fiber boyunca 1sik darbesinin yayilmasini ydneten denklem, NLS
denklemi olarak bilinir. Bu denklem, nonlineer optik, plazma fizigi ve akiskanlar dinamigi
dahil olmak iizere matematiksel fizigin sayisiz alaninda O6nemli bir rol oynar. NLS
denklemi, normalde integre edilemeyen nonlineer bir kismi diferansiyel denklemdir. Bu
denklemi integrallenemez kilan, yalnizca onda bulunan nonlineer terim degildir, ayni
zamanda yliksek dereceli dagilim da integrallenebilirligini etkiler. Bu denklem, daha sonra
tartigilacak olan farkli nonlineerlik tiirleri igin soliton ¢6ziimlerine yardimci olur. NLS

denklemi genellikle asagidaki denklemle tanimlanir (Biswas ve Konar, 2006):

1
v, + > Vex + F(lv|®»)v = 0. (5)

Yukaridaki denklemde F, reel degerli fonksiyonu temsil eder ve v, x ve t bagimsiz
degiskenlerine bagldir. 11k terim zamana gére gelisim terimini temsil ederken, ikinci terim
grup hiz dagilimindan kaynaklanmaktadir ve tgilincii terim nonlineer terimin varligini
gostermektedir. Bu denklem optik fiberden gecen kisa darbeyi bulmak icin kullanilir ve
pikosaniyelik 1s1k darbelerinin arastirilmasi i¢in iki faktér olan grup hiz dagilimi ve
kendiliginden faz modiilasyonu NLS denklemine dahil edilmistir (Azzouzi vd., 2009). Kati
cekirdekli fotonik kristal fiberlerden gecen optik darbeleri incelemek i¢in iiglincii
mertebeden dagilim, Raman 6z frekans kaymalari ve kendiliginden diklesme gibi bazi
nonlineer etkilere sahip daha yiiksek dereceli NLS denklemi kullanilir (Azzouzi vd., 2015).
Nonlineer optik fiberlerde c¢esitli soliton yayilimlarini incelemeye yardimci olan bu tiir

denklemler ayrica nonlineer olusum denklemleri olarak da bilinir.

3.1. Nonlineerligin Simiflandirilmasi

(5) denklemindeki F fonksiyonunun simdiye kadar bilinen ¢esitli nonlineerlik

tiirleri vardir. Bunlar asagidaki gibi listelenir:

1. Kerr yasasi:
Bu nonlineerlik durumu

F(s)=s (6)



iken olusur (Biswas ve Konar, 2006). Nonlineer optikte meydana gelen
nonlineerligin en basit formu olarak tanimlanabilir. Nonlineerligin bu tiiriine sahip
NLS denklemi, ters sa¢ilma doniisiimii yontemi kullanilarak integrallenebilir. Optik
fiberlerin cogunda Kerr yasasi nonlineerligi gdzlemlenebilir.

Kuvvet yasasi:

Kuvvet yasasi nonlineerligi

F(s) =s™ ()
seklinde formiile edilir (Biswas ve Konar, 2006). Nonlineerligin bu tiirli, nonlineer
plazma fiziginde ve nonlineer optikte ortaya ¢ikar. Nonlineerligin bu durumunda,

dalga parcalanmasindan kaginmak icin 0 < n < 2 olmas1 esastir. Yar iletkenler
kuvvet yasast nonlineerligi de sergilerler.

Kiibik-kuintik yasasi (parabolik yasasi):

Parabolik yasasi nonlineerligi, b, Ve b, sifirdan farkli sabitler olmak {izere,

F(s) = bys + b,s? €))
ile verilir (Biswas ve Konar, 2006). Bu nonlineerlik, parabolik yasasi olarak da
bilinir. Nonlineerligin bu tiiri, Langmuir dalgalar1 ile iyon-akustik dalgalar
arasindaki baglantinin degerlendirilmesinde ortaya cikar.

Cift kuvvet yasasi:

Cift-kuvvet yasasi nonlineerligi, b, ve b, sifirdan farkli sabitler olmak tizere,

F(s) = bys™ + bys®™ 9)
bi¢giminde yapilanir (Biswas ve Konar, 2006). Bu nonlineerlik, LiNbO3 gibi
fotovoltaik-fotorefraktif materyallerdeki solitonlari tanimlamak igin temel model
olarak hizmet etmektedir.
Kuadratik-kiibik yasasi:

Kuadratik-kiibik yasasi, b, Ve b, sabitler olmak iizere,

F(S) = bl\/g + bzs (10)



iken olusur (Fujioka vd., 2011). Bu yasa, ilk olarak, 2011 yilinda ortaya ¢ikt1 ve
kaotik fenomenlerin incelenmesinde goriildii.

6. Logaritma yasasi:
Bu nonlineerlik durumunda (Biswas ve Konar, 2006)
F(s) = Ins. (11)
Boyle bir yasanin avantaji, bu tip nonlineer ortamin, solitonlar1 dagilmadan
koruyan soliton radyasyonu tiretmemesidir. Bu durum yukarida tartisilan nonlineer
yasalara kiyasla bu ortamin ek bir avantajidir.

7. Anti-kiibik yasasi:

Bu yasa, ilk olarak, 2003 yilinda ortaya ¢ikti (Fedele vd., 2003; Triki vd., 2016).
Anti-kiibik yasasi, b, Ve b, ve bs sabitler olmak iizere

b,
F(s) = 2t bys + bss? (12)

iken olusur.
8. Kiibik-kuintik-septik yasasi:

Bu yasa, parabolik yasasi nonlineerliginin bir genislemesidir. Bu nonlineer ortam,
b, ve b, ve b; sabitler olmak tizere

F(s) = bys + b,s? + bys3 (13)
iken olusur (Biswas ve Konar, 2006).
9. Uclii-kuvvet yasast:

Bu nonlineer ortam, b, b, ve b sabitler olmak tlizere

F(s) = bys™ + bys?™ + bys3™ (14)
iken olusur (Biswas ve Konar, 2006). Bu yasa, ¢ift-kuvvet yasasi nonlineerliginin
bir  genislemesi ve  kiibik-kuintik-septik  yasasi  nonlineerliginin  bir

genellestirmesidir.

10. Zayif yerel-olmayan nonlineerlige sahip parabolik yasasi:

10



11.

12.

13.

Bu ortam, b,, b, ve b; sabitler olmak tlizere

F(s) = bys + bys? + b3S,y (15)
ile verilir (Zhou vd., 2013).
Genellestirilmis anti-kiibik yasasi:

Bu yasa, anti-kiibik yasasit nonlineerliginin bir genellestirmesidir ve by, by,
b; sabitler olmak tizere agsagidaki gibi yapilanir (Biswas vd., 2019):

F(s) = % + bys™ + bgs™*t1, (16)

Kiibik-kuartik yasasi:

Ilk olarak, 2021 yilinda ortaya cikti. Bu nonlineer ortam, b, Ve b, sabitler olmak
uzere

3
F(s) = bys + bysz 17
seklinde formiile edilir (Sonmezoglu vd., 2021).

Genellestililmis kiibik-kuartik yasasi:

Bu yasa kiibik-kuartik yasasinin bir genellestirmesidir ve b, ve b, sabitler olmak
uzere

3m
F(s) = bis™+ bysz (18)

bi¢iminde yapilanir (Sonmezoglu vd., 2021).
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4. GENELLESTIRILMIS G’/G-ACILIM YONTEMI

Son zamanlarda, Wang ve digerleri (Wang vd., 2008), nonlineer olusum
denklemlerinin hareket eden dalga ¢oziimlerini arastirmak i¢in G'/G —a¢ilim yontemi adi
verilen basit bir yontem sunmuslardir. Burada G = G(¢), G"($) + AG' () + uG(é) =
0 ikinci mertebeden lineer adi diferansiyel denklemini saglar ve A, u keyfi sabitlerdir. Daha
fazla detay i¢in bkz. (Zayed vd., 2009; Zayed, 2009; Zhang vd., 2008a, 2008b).

Bu calismada, genellestirilmis G'/G —agilim yontemi olarak adlandirilan alternatif bir
yaklagim kullanildi. Bu yontemin ana fikri, nonlineer diferansiyel denklemlerin hareket
eden dalga ¢oziimlerinin G'/G’de bir polinom ile ifade edilebildigidir, burada G = G (§),
ikinci mertebeden lineer adi diferansiyel denklemi yerine [G'(§)]? = e,G*(§) + e,G%(§) +
eo, Jacobi eliptik denklemini saglar. Burada & =x+y+z—Vt ve ey, eq, e,V  keyfi

!

. : d : : : : .
sabitler iken =% seklinde tanimlanir. Bu polinomun derecesi, verilen nonlineer

denklemlerde goriilen en yiikksek mertebeden tiirevler ile nonlineer terimler arasindaki
homojen denge dikkate alinarak belirlenebilir. Bu polinomun katsayilari, Onerilen
yontemin kullanilmasi siirecinden kaynaklanan bir dizi cebirsel denklemin ¢oziilmesiyle
elde edilebilir. Bu yaklagim, ¢ok sayida nonlineer kirilma indisi yapilarina sahip nonlineer
kromatik dagilim ile ¢alisilan kompleks GL denkleminin duragan soliton ¢oziimlerinin

olusturulmasinda 6nemli bir rol oynayacaktir.

Genellestirilmis G'/G —agilim yonteminin tanimi asagidaki gibi verilir (Zayed, 20009;
Malik vd., 2012; Yal¢1 ve Ekici, 2022):

Nonlineer kismi diferensiyel denklemin

F(u, Up, Uy, Uy, Uz, Ugr, Uges Uxxs Ueys Uyys Uy, Uzz, Uzp, Uz uzy,...) =0 (19)

bigiminde verildigini varsayalim. Burada u = u(x,y, z, t) bilinmeyen bir fonksiyondur, F
ise u(x,y,zt) ve onun kismi tiirevlerinde en yiiksek mertebeli tiirevlerin ve nonlineer
terimlerin yer aldigi bir polinomdur. Genellestirilmis G'/G —agihim y6nteminin ana

adimlar1 asagidaki gibi sunulur:

1. Adim: Hareket eden dalga degiskeni
u(x,y,z,t) =u(é), é=x+y+z-V, (20)
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ile verilir. Burada V bir sabittir. (20) denklemi, (19) denkleminde yazilarak, u = u(¢) igin
(19) denklemi
P(u, v, u",u",...) =0 (21)

formunda bir adi diferansiyel denkleme indirgenir.

2. Adim: (21) denkleminin ¢oziimiiniin G'/G’de bir polinom ile asagidaki gibi ifade

edilebildigini varsayalim:
N

"\’
w9 =) a (E) . (22)

=0

Burada G = G (¢) fonksiyonu

[G"(O)]* = e;G*(&) + e,G*(§) + ¢ (23)

Jacobi eliptik denklemini saglar. Burada a;, e, eq, ey ve V,ay #0 daha sonra

belirlenecek keyfi sabitlerdir. N pozitif tam sayisi, (19) veya (21) denkleminde goriilen en

yiiksek mertebeli tiirevler ile nonlineer terimler arasindaki homojen denge dikkate alinarak

belirlenebilir. Daha net bir ifadeyle, u(§) nin derecesini D[u(§)] = N olarak tanimlanir ve

bu takdirde diger ifadelerin derecesi asagidaki gibi verilir:

D [dq_u] =N+gq, D [up (dq_u)sl = Np +s(q + N). (24)
déd d&d

Boylece, (22) denklemindeki N’nin degeri bulunabilir.

3. Adim: (22) denklemi (21) denkleminde yerine koyularak ve (23) denklemi kullanilarak,
G/ (6),G'(§),6/()(j = +1,+2,...) cinsinden polinomlar elde edilir. Elde edilen
polinomlarin her bir katsayisi sifira esitlenerek, a;, e,, e,e, ve V igin bir dizi cebirsel

denklem bulunur.

4. Adim: (23) denkleminin genel ¢oziimleri iyi bilindiginden (bkz. Ek-A), «;, V ve (23)
denkleminin genel ¢oziimii (22) denkleminde yerine konuldugunda, (19) ile verilen

nonlineer kismi diferansiyel denklemin bir¢ok hareket eden dalga ¢6ziimii ¢ikarilir.
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5. ANA MODEL

Bu caligmada incelenecek olan kompleks GL denkleminin boyutsuz formu

1

P [lq1?(1q]?)xx — B{Ual?)}] + va (25)

iqe + a(lql"q)xx + bF(Iq1*)q =

ile verilir (Biswas, 2009, 2018; Triki vd., 2012; Mirzazadeh vd., 2016; Arnous vd., 2017;
Biswas ve Algahtani, 2017, Biswas vd., 2018a, 2018b, 2021a, 2021b; Arshed vd., 2019;
Das vd., 2019; Yildirim vd., 2020a, 2020b; Zayed vd., 2020, 2021; Yan vd., 2020; Yal¢1
ve Ekici, 2022). Burada a, b, a, B ve y sabitlerdir ve F nonlineer fonksiyonu temsil eder.
Ik terim lineer gelisim terimini temsil ederken, a min katsayist nonlineer kromatik
dagilimdir ve tglincii terim genellestirilmis nonlineer terimi agiklar. a, S ve y terimleri,
pertiirbasyon etkilerinden kaynaklanmaktadir; 6zellikle y, detuning etkisinden gelir. Ayrica
(25) ile verilen modelde bagimsiz degiskenler, sirasiyla uzaysal ve zamansal koordinatlar
olan x ve t dir. q(x,t) bagimli degiskeni dalga profilini temsil eden kompleks degerli bir

fonksiyondur, g*(x, t) fonksiyonu q(x, t) fonksiyonunun eslenigini gosterir ve son olarak
i =+v-—1.

(25) denkleminde, F gercek degerli bir cebirsel fonksiyondur ve kompleks F(|q|?)q: C —
C fonksiyonunun diizgiinliigiine sahip olmak gereklidir. Kompleks C diizlemi iki boyutlu
bir R? lineer uzay olarak goz oniine almirsa, F(|q|?)q fonksiyonu k kez siirekli
tiirevlenebilirdir, yani

co

FlaPyae | ] c4(-nmx (=mm); R?) 26)

mn=1

(25) denklemi, Painleve integrallenebilirlik testini gegemedigi igin klasik ters sacilma

doniisimii yontemiyle integrallenemeyen nonlineer bir kismi diferansiyel denklemdir.
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6. MATEMATIKSEL ANALIZ

Ele alinan modele duragan soliton ¢oziimler elde etmek igin, ¢oziim hipotezi
asagidaki gibi alinir (Biswas ve Khalique, 2011, 2013; Biswas vd., 2018, 2021; Ekici vd.,
2018, 2021; Sonmezoglu vd., 2021; Sucu vd., 2021; Adem vd., 2020a, 2020b, 2021):

q = p(x)e. (27)

Burada, A sabiti dalga sayisini temsil eder ve ¢ fonksiyonu sadece x bagimsiz degiskenine
baglidir. (27) denklemi, (25) denkleminde yazilarak

—(r + D¢? + bdp*G(¢?) — 2(a — 28)(¢")? + an(n + 1)¢p™(¢")? — 2a¢d”
+a(n+ Dep"t1p" =0 (28)

denklemine ulasilir. (28) denklemi, sonraki alt boliimlerde nonlineer ortamin tipine gore

analiz edilecektir.
6.1. Kerr Yasasi

Kerr yasas1 durumunda, (25) denklemi

1
iqe + a(1q1"q)xx + blql*q = P [lql*(1q1*)xx — B{UqIP)x}?] + va (29)

halini alir. (29) denklemini integrallemek i¢in n = 1 segilmesi gerekir. Bu takdirde, (29)

denklemi

, 1
iqe +a(lql@)xx + blql?q = I [elq|> (g1 xx — BLUGID) ] + v (30)

bi¢iminde sadelesir ve (28) denklemi

—(y + Dp? + bop* — 2(a — 28)(¢")? + 2ap(¢')? — 2ad” + 2a¢?¢" =0 (D

denklemine indirgenir. Bu boliimde, (30) ile verilen modele duragan soliton ¢oziimler

ortaya ¢ikarmak igin genellestirilmis G'/G-agilim yontemi uygulanacaktir. Balans
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prensibinden, (31) denklemindeki ¢* ile ¢p(¢")? veya ¢p?¢p" terimleri dengelenerek N = 2

bulunur. Bu durumda formal ¢oziim

G' 6"\’
d(x) =ap +ay <E> + a; <E> (32)

seklini alir. (32) denklemi, (31) denkleminde yerine yazilarak ve (23) denklemi
kullanilarak, G’, G'G’ (j = +1,42,...) cinsinden bir polinom elde edilir. Elde edilen
polinomun her bir katsayisi sifira esitlenerek a;, e, e, ey icin bir cebirsel denklem sistemi

bulunur. Daha sonra, ortaya ¢ikan sistemin ¢oziilmesi ile asagidaki ¢6ziim setleri elde

edilir:
80a’e; a 3a 12aege;
= , ap=0, a; =0, azz—m, ﬁ:T' A=—-y+5ae + e (33)
20a’e; a
=— , =0, ap=——, a1 =0, a, = , B=—, A=—-y—12ae,. (34)
a e 4

(33) denklemi, (32) denkleminde yerine konularak ve (27) denklemi kullanilarak

N 2
a (G ) 12aeye,
q(x,t) = — tae, 7/ P [l (—y + 5ae; + 8—1) t] (35)

elde edilir. Bu takdirde, (23) denkleminin Ek-A da verilen ¢oziimleri kullanilarak, ele

alinan model i¢in asagidaki duragan ¢oziimler ¢ikarilir:

I. eo = 1, e = _(kZ + 1), e, = k2 iSE

a . , ) 12ak?
q(x,t) = mcs xdn®xexp |—i|y + 5a(k“ + 1) + 1 t (36)
veya
a(l — k?)? 12ak?
q(x,t) = ﬁsc 2xnd?xexp I—i (y +5a(k?+1) + e 1) tl. (37)
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II eO=1_k2,el=2k2_1,ez=_k2igin

q(x,t) = . Zxdn®xexp |i| —y + 5a(2k? — 1) + w t (38)
’ 4a(2k? —1) 2k2 — 1 '
III eo=k2—1,el=2—k2,ez=—1iken
(x,t) = ak” d2xcn? i [ —y + 5a(2 — k?) +12a(1_k2) t 39
q(x,t) = 4a(2—k2)s xcn“xexp i —y a > — 12 . (39)
IV. e, =k? e, =—(k?+1), e, = 10ldugunda
(x,t) = S, L + 5a(k?+1) + 12ak” t (40)
TEY = (e + 1) y Y k2 +1
veya
a(l—k*> X 12ak?
=— —i 1 . 41
q(x,t) Tatk? + 1)sc xnd“xexp |—i|y + S5a(k* + )+k2 1 t (41)
V. ey=-k?% e =2k?*—-1,e, =1—k?durumunda
qlx,t) = S, Zxdn?xexp |i| —y + 5a(2k? — 1) + w t (42)
’ 4a(2k? —1) 2k2 — 1 '
VI 60:_1,61=2_k2,62:k2_1ise
3 ak* Poen? ) Sz — 2y 4 1290 = k?) 23
q(x,t)——ms xcn“xexp |i| —y + 5a(2 — )+2_—k2 t|. (43)
VII eozl_kz,el=2_k2,ez=1igin
q(x,t) = —Ldszxnczxexp i|—y+5a(2—-k?+ M t (44)
’ 4a(2 — k2) 2 — k2 '
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VIII. €0=1,el=2—k2,€2=1—k2iken

a

UC R 4a(2 — k?)

12a(1 — k?
dc?xns?xexp Ii <—y +5a(2 — k?) + %) tl. (45)

IX. ey=1,e =2k?—1,e, =k?k?—1) oldugunda

12ak?(k? -1
q(x,t) = —mcd“'xnszxexp [i <—y +5a(2k? - 1) + %) t]. (46)
X. ey=k?*k?—-1),e; = 2k? -1, e, = 1durumunda
a y , 5 12ak?(k? — 1)
q(x,t) = —mcs xnd®xexp |i{ —y + 5a(2k* — 1) +W t|. 47
XI.  eg=1y e =5(1-2k?), e, = ise
5 a 4s? , N 5a(1 — 2k?) N 3a 18
e T Ll L 2 2(1-2k2)) | (48)
XIl. ey = §(1 — k), e; =3(1+k?), e =2 (1 k?) igin
a , 5a(l1+k?) 3a(l-—k?)?
qlx,t) = —mdczxexp ll (—y + > + 20 1 k) : (49)
XU eg=" e, =2(k2~2), ¢, = iken
a ) , 5a(k? —2) 3ak?
q(x,t) = —mcs xexp |i| -y + > +2(k2 2 t]. (50)
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k? 1,59 k? <
XIV.  eg=—,e=5(k*—2),e, =" oldugunda

, 5a(k?—2) 3ak* et
l(—y+ > +2(k2_2)>tl. (51)

Burada, (36) denkleminden (51) denklemine kadar olan ¢oziimler, modelin Jacobi eliptik

q(x,t) =

a dn?
P n“xexp

fonksiyon ¢6ziimlerini temsil eder.

XV. e,=0, e =1, e, =—1 durumunda, duragan koyu optik soliton ¢oziim asagidaki

gibi bulunur:
a
q(x,t) = —Etanhzxexp[i(—y + 5a)t]. (52)
XVI. e;=0,e; =1,e, =11ise, ele alinan denklem i¢in duragan tekil optik soliton ¢6ziim

asagidaki gibi elde edilir:

a
q(x, t) = — Ecothzxexp[i(—y + 5a)t]. (53)
XVIIL. ey, =0,e; =—1,e, = 1igin, asagidaki periyodik dalga tiiretilir:
a
q(x, t) = Etanzxexp[—i(y + 5a)t]. (54)
XVIIL. ey =0,e, =—(1+k?), e, = k? iken, Jacobi eliptik fonksiyon ¢6ziim asagidaki gibi
cikarilir:
@ 2.0dn2 ; 2
= — 1 .
q(x,t) T+ kD) cs?xdn?xexp[—i(y + 5a(1 + k?))t] (55)

Benzer sekilde, (34) denklemi, (32) denkleminde yerine konularak ve (27) denklemi
kullanilarak

a a (G
qx,t) = {—— + _<E> }exp[—i(y + 12ae,)t] (56)

a ae;
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bulunur. Bu durumda, incelenen model igin duragan ¢oziimler asagidaki gibi listelenir:
I.  ey=0,e; =1, e, =—1ise, asagidaki duragan parlak optik soliton ¢dziim kesfedilir:

a
q(x,t) = —Esechzxexp[—i(y + 12a)t]. (57)

Il. e =0, eg=1, e, =1 i¢in, duragan tekil optik soliton ¢6ziimiin diger formu
bulunur:

a
q(x,t) = Ecschzxexp[—i(y + 12a)t]. (58)

I1l. ey, =0,e; =—1,e, =1Iiken, asagidaki periyodik dalga elde edilir:

q(x, t) = —%csczxexp[—i(y - 12a)t]. (59)

IV. e,=0, e =—(k?+1), e, = k? oldugunda, Jacobi eliptik fonksiyonlar agisindan
¢oziim agagidaki gibi tiiretilir:

q(x,t) = {—%(1 + Cszxdnzx)} exp[—i(y — 12a(k? + 1))t]. (60)

k2+1
6.2. Kuvvet Yasasi

Kuvvet yasasi nonlineerligi durumunda, (25) denklemi

1
iqe +a(lq|"q)xx + blq|*™q = TS [elq|*(1q1*)xx — BL{(q1?)x}*] + vq (61)

denklemine ¢oker. (61) denkleminin integrasyonunu gerceklestirmek igin n = m se¢ilmesi
gerekir, bu da (61) denkleminin

1
iqe +a(lq|™@)xx + blq|*™q = VIR [lql*(1q1®)xx — BLUq1P)x}*] + vq (62)
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denklemine yogunlastigi anlamina gelir. Bu yiizden, (28) ile verilen adi diferansiyel

denklem

—(y + D2 + bp™2 — 2(a — 28)(¢)? + am(m + D™ ($")? - 2ap$”

+a(m+ 1)¢p™*t1p" =0 (63)

seklinde sadelesir. Kapali form ¢oziimler elde etmek igin

¢ = <P% (64)

dontigiimii kullanilir. Boylece (63) denklemi
—m?(y + D2 + bm?¢° + 4(4B + a(m — 4))(¢")? + 2a(m? + 3m + 2)p?(¢')?

—4amee"” + 2am(m + 1)@3¢" =0 (65)

halini alir. Balans prensibinden N = 1 bulunur. Bu durumda, formal ¢6ziim asagidaki gibi

yapilanir:

Gl
o(x)=ay+ a, <) (66)
(66) denklemi, (65) denkleminde yerine yazilarak ve (23) denklemi kullanilarak, G/, G'G’
(j = £1,42,...) cinsinden bir polinom elde edilir. Elde edilen polinomun her bir katsayisi
sifira esitlenerek a;, e,, e4, e, i¢in bir cebirsel denklem sistemi bulunur. Daha sonra, ortaya

¢ikan sistemin ¢dziilmesi ile agagidaki ¢oziim seti elde edilir:
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2a%e;(m+ 1)3(3m + 2) 1 am
b = 3 , 0o = 0, a, = -,
am m+1 aeq

am 2aef(3m + 2) + 8aege,(m + 2) — e; Am(m + 1)
eem(m+ 1) '

(67)

(67) denklemi, (66) denkleminde yerine konularak ve (27) denklemi kullanilarak

2

1 am (G"\|"
— _ it
9(x%,0) m+1 ’ ae; <G> ¢ (68)

bulunur. Bu takdirde, ele alinan denklem i¢in duragan ¢6ziimler asagidaki gibi ¢ikarilir:

I. 60:1, 61:_(k2+1),62 :kz iSG

2
(x,t) = 1 am d § it 69
POV =V 1 a2 + D) X (€ (69)

veya

2
k% —1 , am "
,t — lﬂ.t.
q(x,t) 1 a2+ D scxndx ; e (70)

II €0=1—k2,€1=2k2—1,€2=—k2 i(;ln

2

)=t = anel o 71
qlx,t) = —— a(1—2k2)scx nx, e”". (71)
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III eo=k2—1,el=2—k2,ez=—1 iken

2

k? ’ am "
—J_ iAt
q(x,t) mi1 [atkz=2) sdxcnx p e,

IV €y = kz, e = _(kz + 1), e, = 1 Oldugunda

2
(n.0) = 1 am d " it
CEE =V 1 JaGe+ ) (€

veya

2
e t) = 1—k? am q 4 P
g ) == a(k2+1)scxnx et

V. e =1—k?e =2—k? e, =1durumunda

2

1 am " .
_ ’ g
q(x,t) =< — 1 |ate =D dsxncx ; et

VI eO=1, el=2k2_1, ez=k2(k2_1) ise

2

q(x,t) = ! o cdZxnsx § et
’ m+1 [a(l—2k?) '

VII eo =k2(k2_1), eq =2k2_1, e, = 11@111

23
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3

t) = : il d 1 77
q(x,t) = —— a(l_ZkZ)csxnx et (77)

VIII. e0=0,61=1,ez=—1iken

2

1 am m.
qlx,t) = {_m+ n f—Ttanhx} el (78)

IX. e, =0,e =1,e,=10ldugunda

2

1 am ™ e
q(x,t) = —1 —Tcothx et. (79)

X. e,=0,e =—1,e, =1durumunda

2

1 am m
q(x,t) = {m — /Ttanx} et (80)

Burada, (69)-(77) denklemleri ile verilen ¢oziimler, modelin Jacobi eliptik fonksiyon
¢oziimleri iken, (78)-(80) ¢oziimleri, sirasiyla duragan koyu optik soliton ¢6ziimii, duragan

tekil optik soliton ¢6ziimii ve periyodik dalgay: temsil eder.
6.3. Parabolik Yasas1

Parabolik yasas1 nonlineerligi durumunda, (25) ile verilen GL denklemi

1
iqe + a(1q" @ xx + (b11q1* + bylq|H)g = TS [alql*(1q]*)xx — B{(al®)x}*] +vq (81)
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denklemine ¢oker. (81) denkleminin integrasyonunu gergeklestirmek igin n = 2 segilmesi

gerekir, bu durumda (81) denklemi

1
iqe + a(1q1?@)xx + (b1lql* + b2 lq|M)q ::T&TEEI[Q|Q|2(|q|2)xx — B{Uq1»)x}*1 +va (82)

denklemine yogunlasir. Bu takdirde (28) denklemi

—(y + Dp? + b1dp* + by¢° — 2(a — 2B)(¢")? + 6adp?(¢")? — 2a¢¢” +3ap>¢" =0  (83)

halini alir. Balans prensibinden N = 1 olur. Bu durumda formal ¢6ziim

G’
p(x) =ap + a4 <E> (84)

seklini alir. (84) denklemi, (83) denkleminde yerine yazilarak ve (23) denklemi
kullanilarak, G/, G'G’ (j = +1,42,...) cinsinden bir polinom elde edilir. Elde edilen
polinomun her bir katsayisi sifira esitlenerek a;, e, e4, eq igin bir cebirsel denklem sistemi

bulunur. Daha sonra, ortaya ¢ikan sistemin ¢oziilmesi ile asagidaki ¢6ztim seti elde edilir:

3a(18ael - bl) 2\/&
5 = , Qg = 0, o = —,
a \/ bl - 18(181
(85)
a _ 6a(8aef + 16aege, —3eA) + by (A — 4ae,)
=7 v= 18ae; — by '
(85) denklemi, (84) denkleminde yerine konularak ve (27) denklemi kullanilarak
2Va G\ .

q(x,t) = —(—) et 86

ﬂ bl - 18“61 G ( )

ifadesine ulasilir. Bu takdirde, duragan ¢oziimler asagidaki gibi listelenir:

I. €0=1, 61=—(k2+1),€2 =k2 iSE
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2\Va .
q(x,t) = Va csxdnxeit
by +18a(k? + 1)

veya

2(1 — kVa .
q(x,t) = — ( We scxndxei’t,
by + 18a(k? + 1)

II. 60:1_k2,61:2k2_1,62:_k2 1(;111

2\Va .
q(x,t) = — Va scxdnxeit,
Jby — 18a(2k?2 — 1)

. ey =k?-1,e,=2—-k? e, =—1iken
0 1

2k%a .
q(x,t) = — Va sdxcnxet,
Vb1 — 18a(2 — k?)

IV. e, =k?e =—(k?+1),e, =10ldugunda

2\Va .
q(x,t) = — Va dsxcnxei?t
by + 18a(k? + 1)

veya

2(1 — k¥)Va .
q(x,t) = ( Wa scxndxe™t,
by +18a(k? + 1)

V. e =1—-k?e =2—k? e, =1durumunda

2Va

q(x,t) = — dsxncxe’

At
Jb1 — 18a(2 — k?) '

26
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VI. e =1,e =2k?—1,e, =k?(k?—1) ise

2Va

q(x,t) = cd 2xnsxett, (94)
Vb, — 18a(2k?2 — 1)
VII (=) =k2(k2_1), eq =2k2_1, e, = 11Q1n
2Va .
q(x, t) = — csxndxe . (95)
by — 18a(2k? — 1)
VIII. 6020,61:1,62:_1 iken
2V a .
q(x,t) = —b—\/_18tanhxel’“. (96)
1~ a
IX. e =0,e =1,e, =10ldugunda
2Va ,
q(x,t) = — —————cothxe, (97)
by — 18«
X.  ey=0,e =-1,e, =1durumunda
2Va .
q(x,t) = Ltanxel’”. (98)

v/ b1 +18a

Burada, (87)-(95) ¢oziimleri, Jacobi eliptik fonksiyon ¢oziimleri temsil ederken, (96)-(98)
cozlimleri, sirasiyla duragan koyu optik soliton ¢oziimii, duragan tekil optik soliton

¢Ozlimii ve periyodik dalgay1 isaret eder.
6.4. Cift Kuvvet Yasasi

Cift-kuvvet yasasi nonlineerligi durumunda, (25) denklemi
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1
iqe +a(lq" @ xx + (b11q1?™ + balq|*™)q = VIS [@lq?(191®)xx — BLUaID)}* T +va  (99)

halini alir. (99) denklemini integrallemek i¢in n = 2m segilmesi gerekir. Bu durumda, (99)

denklemi

ige + a(1q1*™q)xx + (b1lq|*™ + bylql*™)q = [alg?Uq1®)x — BLUGI?) 3] + vq (100)

lal?q*
bi¢iminde degisir ve (28) denklemi

—(y + NP2 + bip™2 + b ™42 — 2 — 2B)(¢")? + 2am(2m + 1§ (¢")?
—2a¢d” +a(2m+ 1)p?™mt1 ¢"” =0 (101)
denklemine indirgenir. Asagida verilen

¢ = <P% (102)

doniisimii yardimiyla (101) denklemi

—m?(y + D)@? + bym?¢p* + bym?¢°® + 2(a(m — 2) + 28)(¢")?

+a(2m? + 3m + 1)@?(¢")? — 2mape” + am(2m + 1)p3¢p"” =0 (103)

denklemine dontisiir. Dengeleme prensibinden N = 1 bulunur. Bu da formal ¢6ziimiin

Gl
p(x) =ap+ ay (?) (104)

seklinde olacagi anlamina gelir. (104) denklemi, (103) denkleminde yerine yazilarak ve
(23) denklemi kullamlarak, G/, G'G’ (j = +1,+2,...) cinsinden bir polinom elde edilir.
Elde edilen polinomun her bir katsayisi sifira esitlenerek «;,e,,eq, ey igin bir cebirsel
denklem sistemi bulunur. Daha sonra, ortaya ¢ikan sistemin ¢oziilmesi ile asagidaki ¢oziim

seti elde edilir:
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4byam 2a(2m + 1)%e,

\/—a(m(6m +5)+1)
" a(6m?+5m+1) m? ’

my/by
(105)

8 am m3b,(4ae; — mA) — (m + 1)(3m + 1)(2am + a)?(e? — 4eye,)
= — -, y = .

0=0 a =

m#b,

(105) denklemi, (104) denkleminde yerine konularak ve (27) denklemi kullanilarak

1

\/—a(m(6m +5)+1) (G_’) m it
m./b, G

qlx,t) = (106)

elde edilir. Bu takdirde, ¢oziimler asagidaki gibi kesfedilir:

. e=1,e =—(k?+1),e, =k? ise

1
— 6m+5)+1 HE
ia Gt ?b_ ) )csxdnx et (107)
m4/ 03

q(x,t) =

veya

1

_a- k?)\/—a(m(6m + 5) + 1)

b

q(x,t) = { scxndx} et (108)

II eozl_kz,el=2k2_1,ez=_k2 i(;ll’l

1

J—a(m(ém+5) + 1)

b

q(x, t) = {_

m
scxdnx} e, (109)

III. €0=k2—1,€1=2—k2,ez=—1 iken
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1
m

sdxcnx} et (110)

B k?\/—a(m(6m +5) + 1)

b,

q(x,t) = {

IV. ey =k?e =—(k?+1),e, =10oldugunda

1

—a(m(ébm+5) +1 mno
q(x,t) = —\/ (m( ) )dsxcnx et (111)
mb,
veya
1
1—k?)\/— 6m+5)+1 2
q(x,t) = {( )V a(T\;lIS_m ) )scxndx} el (112)
m+/ 0y
V. e =1—k?e =2—k? e, =1durumunda
1
- em+5)+1 mo
q(x,t) = —\/ a(m(6m + 5) )dsxncx e, (113)
mb,
VI 60:1, el=2k2_1, ez=k2(k2_1) ise
1
—a(m(em+5) +1 mno.
q(x,t) = {\/ (m( ) )cdzxnsx} el (114)
mb,
VII 60 :kz(kz_l), 61 =2k2_1, 62 = 119111
1
- em+5)+1 mno
q(x,t) = —\/ a(m(ém +5) )csxndx et (115)
b,

30



VIII. e0=0,61=1,ez=—1iken

J—a(m(ém+5) + 1)
ta

T

q(x,t) = {— nhx} e, (116)

IX. ey =0,e =1,e, =10ldugunda

—a(m(6m+5) + 1 mo
q(x,t) :{—\/ a(m( T\;lb_ ) )cothx} e, (117)
m~/ 0y

X. ey=0,e =-1,e, =1durumunda

l
—a(m(ém +5) + 1 ™
q(x,t) ={\/ a(m( T\;lb— ) )tanx} et (118)
m./ 0y

Burada, (107)-(115) denklemlerinde bahsedilen ¢oziimler, modelin Jacobi eliptik
fonksiyon ¢oziimlerini gosterirken, (116)-(118) ¢oziimleri, sirasiyla duragan koyu optik

soliton ¢6ziimii, duragan tekil optik soliton ¢oziimii ve periyodik dalgay1 temsil eder.

6.5. Kuadratik-Kiibik Yasasi

Kuadratik-kiibik yasas1 durumunda, (25) denklemi

1
iqe + a(lq|"@)xx + (b1lql + b21q|*)q = e [alq|?(1g1®)xx — B{al®)x}*] +vq (119)
halini alir. (119) denklemini integrallemek i¢in n = 1 se¢ilmesi gerekir. Bu takdirde, (119)
denklemi

1
iqe + a(lql@)xx + (b1lql + b2lq1*)q = aa [@lq1?(Uq|®)xx — B{UqI®)x}*] + va (120)
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bi¢iminde degisir. Bu yiizden (28) ile verilen adi diferansiyel denklem

—(y + D@2 + b9 + byp* — 2(a — 2B)(¢")* + 2a¢(¢')? — 2adp” + 2a¢p?¢p"” =0  (121)

seklinde sadelesir. Dengeleme prensibinden balans sayisi, N =2 olarak belirlenir.

Boylece, formal ¢oziim

GI GI 2
o(x) =ay+ ay <E> +a, <E> (122)

seklini alir. (122) denklemi, (121) denkleminde yerine yazilarak ve (23) denklemi
kullanilarak, G’, G'G’ (j = +1,42,...) cinsinden bir polinom elde edilir. Elde edilen
polinomun her bir katsayisi sifira esitlenerek a;, e,, e4, eq icin bir cebirsel denklem sistemi

bulunur. Daha sonra, ortaya ¢ikan sistemin ¢Oziilmesi ile asagidaki ¢oziim setleri elde

edilir:
2ab, 20a
1= 5q + 32(181, dg = O, a, = 0, a, = _b_z,
(123)
3a b,(8ae; —y) + 240a?(4eye, — e?)
f=—, A= .
4 b,
—0 _ 20ae, —0 _ 20a
eO - Y, aO - b2 ) al - ) aZ - b2 )
(124)

g = 5(a(16ae; + by) + ab,) 1 20ae;(16ae; + by) — by(y — 4ae;)
B 4b, S b, '

(123) denklemi, (122) denkleminde yerine konularak ve (27) denklemi kullanilarak
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2

20a (G’ b,(8 —y) + 240a?(4 —e?

q(x,t)z——a 2 expli 2(8ae; —v) a®(4epe; —ef) " (125)
b, \ G b,

elde edilir. Bu takdirde, ele alinan modele duragan ¢oziimler asagidaki gibi bulunur:

. e=1e =—(k*+1),e, =k? ise

b,(8ak? + 8a + v) + 240a?(k* — 2k?* + 1
_l.< 2 Y) : ( ))t] 126
2

20a
q(x,t) = —b—cszxdnzxexp
2

veya
20a(l — k?)? 2 240a%(k* —2k* + 1
q(x,t) = _a(b—)sc Zxnd%xexp [—i (b2(8ak t8at+y) -2 Oa (k s )> t]. (127)
2 2
II eo=1—k2, 81:2k2_1,82=_k2 1(;11’1
20a b,(16ak? — 8a — y) — 240a?
q(x,t) = ———sc 2xdn?xexp li < 2( 2 >tl (128)
b, b,
III. eO=k2_1,61=2_k2,ez=_1iken
20ak* b,(8ak? — 16a +y) + 240a%k*
q(x,t) = — sd?xcn?xexp l—i( 2( 2 )tl (129)
b, b,
IV. ey=k?e =—(k?+1),e, =10ldugunda
20 b,(8ak? + 8a +y) + 240a%(k* — 2k* + 1
q(x,t) = —b—adszxcnzxexp [—( 2(8a aty) 5 a’( )> t] (130)
2 2
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veya

20a(1 — k?)? b,(8ak? + 8a +y) + 240a%(k* — 2k* + 1
q(x,t) = —Msc Zxnd%xexp [—i( 2(8a aty) a’( )> t]. (131)
b, b,
V. ey =1-k?e =2—k?e,=1durumunda
20a b,(8ak? — 16a +y) + 240a?k*
q(x,t) = ———ds?xnc?xexp [—i( 2( v >t] (132)
b, b,
VI eo = 1, el = 2k2 - 1, 62 = k2(k2 - 1) ise
20a b,(16ak? — 8a —y) — 240a?
q(x,t) = ——— cd*xns?xexp i( 2( 2 )t] (133)
b, b,
VII. €y = k2(k2 - 1), e = 2k2 - 1, e, = 1 ig:ll’l
20a b,(16ak? — 8a —y) — 240a?
q(x,t) = ———cs?xnd?xexp i( 2( v )t] (134)
b2 b2
VIII. eo=0,el=1,ez=—1iken
20a b,(8a —y) — 240a?
q(x,t) = ———tanh?xexp [1( 2( ") )t] (135)
b, b,
IX eo = 0, e = 1, e, = 1 Oldugunda
20a b,(8a —y) — 240a?
q(x,t) = —b—cothzxexp [i ( 2( )l/)) >t] (136)
2 2

X. ey =0,e =—1,e, =1durumunda
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[ ) <b2(8a +y) + 240a2> t]. (137)

(x,t) = % tan?
qlx,t) = b an“xexp |—1 b,

2

Burada, (126)-(134) denklemleri ile verilen ¢dziimler, modelin Jacobi eliptik fonksiyon
¢oztimlerini temsil ederken, (135)-(137) ¢oziimleri, sirasiyla duragan koyu optik soliton

¢Ozilim, duragan tekil optik soliton ¢6ziim ve periyodik dalgadir.

Benzer sekilde, (124) denklemi, (122) denkleminde yerine konularak ve (27) denklemi

kullanilarak

q(x,t) = {Zanl _20a <G_'>2} exp [i <20ael(16ael al 121) by 4“61)) t] (138)
2

elde edilir. Bu durumda, asagidaki duragan ¢oziimler tiiretilir:

. e =0 e =1, e, =—1 ise, duragan parlak optik soliton ¢6ziim asagidaki gibi
bulunur:

[i (20a(16a + by) — b,(y — 4a)> t]

( t)_ZOa h2
qlx,t) = 2 sech“xexp b,

2

(139)

Il. e, =0, e =1, e, =1 iken, ele alinan denklem igin duragan tekil optik soliton
¢Oziim asagidaki gibi elde edilir:

20a(16a + by) — b, (y — 4
q(x,t) = ——acschzxexp i a(16a +by) = by (y — 1) tf. (140)
b, b,
1. ey =0,e; =—1, e, = 1o0ldugunda, asagidaki periyodik dalga kesfedilir:
20 20a(16a —by) — b,(y +4
qlx,t) = — b_a sec?xexp [i ( a(16a 1b) 2y a)) t]. (141)
2 2

6.6. Logaritma Yasasi
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Logaritma yasas1 durumunda, (25) denklemi

1
iqe + a(1q]™ @) xx + 2bqln|q| = TS [alg*Ug1®)xx — BLUGI?)}*] + vq (142)

denklemine indirgenir. Bu yiizden, (28) ile verilen adi diferansiyel denklem
—(r + D9? + 2b¢p*In|p| — 2(a — 28)(¢")? + an(n + 1)¢™(¢")? — 2a¢ "
+a(n+1)¢p™ 1" =0 (143)

halini alir. Kapali form ¢ézlimler ¢ikarmak i¢in

¢ = expi (144)

dontigiimii uygulanir. Boylece (143) denklemi

2b@3 — (y + Do* + (a(n + 1)%e¢ — 4a + 4,8> (p)? — (a(n + 1)ee — Za) 0"

+2 (a(n + 1)e% — Za) p(@)?> =0 (145)

denklemine doniisiir. n = 0 iken (145) denkleminin integrasyonu gerceklestirilebilir ve bu
durumda (142) denklemi

iqe + aqyy + 2bqlnlq| = ———= [alq*(1q|®)xx — B{Uq1*)+}*1 + vq (146)

lal*q” [
halini alir ve (145) denklemi de

2bg® — (¥ + No* + (a —4a + 4B)(¢")* + 2(a — 2a)p(¢")? — (a — 2a) %" =0 (147)

olarak degisir. Balans prensibinden N = 2 bulunur. Bdylece formal ¢6ziim
G' G"\’
p(x) =ay+ay z + a, z (148)

seklini alir. (148) denklemi, (147) denkleminde yerine yazilarak ve (23) denklemi
kullanilarak, G/, G'G’ (j = +1,42,...) cinsinden bir polinom elde edilir. Elde edilen

36



polinomun her bir katsayisi sifira esitlenerek a;, e,, e, ey icin bir cebirsel denklem sistemi

bulunur. Daha sonra, ortaya ¢ikan sistemin ¢oziilmesi ile asagidaki ¢oziim seti elde edilir:

b=2e;2a—a), =0, ay,=—aze;, a; =0,

a 1= 2(a — 2a) (149)
4" T v

p=a-

(149) denklemi, (148) denkleminde yerine konularak ve (27) denklemi kullanilarak

-1
q(x,t) = exp [—azel + a, (%) ] exp [i <M — y> t] (150)

a

elde edilir. Bu takdirde, benimsenen modele Gaussian soliter dalgalar asagidaki gibi

listelenir:

I. eo=0,el=1,ez=—1ise

q(x,t) = exp[—a,sech?x] texp [i <@ - y> t]. (151)
2

II eozo,e]_:l,ez:llgln

2(a — 2a

q(x,t) = exp[a,csch?x] texp [i <¥ — y) t]. (152)
2

III eO=0,61=_1,eZ=1iken

q(x,t) = exp[aysec?x] texp [i <M — )/) t]. (153)

az

6.7. Anti-Kiibik Yasasi
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Anti-kiibik yasas1 durumunda, (25) denklemi

b 1
ige + a(q"q)ss + (77 + bolal? + balal") 0 = s el al)ss — BUa +vg  (154)

denklemine indirgenir. n = 2 iken (154) denkleminin integrasyonu gergeklestirilebilir. Bu
takdirde, (154) denklemi

b 1
iqe +a(1q1*Q) e + (lqﬁ + bylql* + b3|Q|4) q= W[alqlz(lqlz)m - B{Uql®}*1 +vq (155)

gibi yogunlasir. Bu yiizden, (28) ile verilen adi diferansiyel denklem

b2 — (v + D)p? + byp* + b3¢)6 —2(a = 2B)(dN?% + 6adp?(¢p)? — 2a¢p” + 3a¢p3¢” =0 (156)

seklinde sadelesir. Balans prensibinden N = 1 bulunur. Bdylece

Gl
¢(x)==a04-a1<z;> (157)

seklini alir. (157) denklemi, (156) denkleminde yerine yazilarak ve (23) denklemi
kullanilarak, G/, G'G’ (j = +1,42,...) cinsinden bir polinom elde edilir. Elde edilen
polinomun her bir katsayisi sifira esitlenerek a;, e, e4, e, igin bir cebirsel denklem sistemi
bulunur. Daha sonra, ortaya ¢ikan sistemin ¢oziilmesi ile asagidaki ¢6ziim seti elde edilir:

3a(18ae; — b 2\Va
by =0, by= ( ! 2). ap=0, a; = va

a Jb, — 18ae,

_6a(8aef + 16aepe, — 3eiA) + by (4 — 4ae;)
B 18ae; — b, '

(158)

(158) denklemi, (157) denkleminde yerine konularak ve (27) denklemi kullanilarak
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2Va G'\ .
) = ——| | e 159
1000) b2—18ael<5)e (159)

ifadesine ulasilir. (158) denklemindeki sonuglardan goriilecegi gibi, b; = 0
oldugundan, anti-kiibik yasasi parabolik yasasina indirgenir. Ayrica, (158) ile verilen
¢coziim seti parabolik yasas1 durumunda elde edilen ¢oziim seti ile ayn1 oldugundan bu

boliimdeki ¢oziimler ihmal edildi.
6.8. Kiibik-Kuintik-Septik Yasasi

Bu nonlineerlik durumunda, (25) denklemi

1
iqe + a(1q1"@xx + (b11q|? + by lq|* + b3lq|®)q = s [elq1?(19]®)xx — BLUq1*)}*] + va (160)

denklemine indirgenir. n = 4 iken (160) denkleminin integrasyonu gergeklestirilebilir. Bu
takdirde, (160) denklemi

1
iqe +a(lq1*@)xx + (b1lq|* + b2 lq|* + b3lq|®)q = s [lq|>(q1?)xx — BL{UqI?)}?] + vq (161)
gibi yogunlasir. Bu yiizden, (28) ile verilen adi diferansiyel denklem

—(y + D¢p? + by1dp* + by¢° + b3p® — 2(a — 28)(¢")? + 20a¢*(¢")?

—2apd” + 5ap5p” =0 (162)

seklinde sadelesir. Balans prensibinden N = 1 bulunur. Boylece

GI
o(x) =ay+ a; <E) (163)
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seklini alir. (163) denklemi, (162) denkleminde yerine yazilarak ve (23) denklemi
kullanilarak, G’, G'G’ (j = +1,42,...) cinsinden bir polinom elde edilir. Elde edilen
polinomun her bir katsayisi sifira esitlenerek a;, e, e, ey icin bir cebirsel denklem sistemi

bulunur. Daha sonra, ortaya ¢ikan sistemin ¢oziilmesi ile asagidaki ¢6ziim seti elde edilir:

4 (a — Saaf(e? — 4—6062))

b1 = 2 ) bz = 50(16’1,
ay
(164)
30a a
b3——?, a, =0, ﬁ=§, A =4ae; —v.
1
(164) denklemi, (163) denkleminde yerine konularak ve (27) denklemi kullanilarak
G' )
q(xt) =y <?> exp[i(4ae; —y)t] (165)
elde edilir. Sonug olarak, asagidaki duragan ¢oziimler tiiretilir:
. e =16 =—(k?+1),e,=k? ise

q(x,t) = aycsxdnxexp[—i(4a(k? + 1) + y)t] (166)
veya

q(x,t) = a;(k? — Dscxndxexp[—i(4a(k? + 1) + y)t]. (167)

II eO=1_k2,el=2k2_1,ez=_k2igin
q(x,t) = —ayscxdnxexpli(4a(2k? — 1) — y)t]. (168)

III eo=k2—1,el=2—k2,ez=—1iken
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q(x,t) = —ak?*sdxcnxexp[i(4a(2 — k%) — y)t].

IV €y = kz, e = _(kz + 1), e, = 1 Oldugunda

q(x,t) = —ajdsxcnxexp[—i(4a(k? + 1) + y)t]

veya

q(x,t) = a;(1 — k?)scxndxexp[—i(4a(k? + 1) + y)t].

V. ey=1—-k?e =2—k?e,=1durumunda

q(x,t) = —ajdsxncxexpli(4a(2 — k?) — y)t].

VI. eO=1, 61=2k2_1, ez=k2(k2_1) ise

q(x,t) = a;cd?xnsxexpli(4a(2k? — 1) — y)t].

VII eo :kz(kz_l), el =2k2_1, 62 = 11(;111

q(x,t) = —ajcsxndxexpli(4a(2k? — 1) — y)t].

VIII 60:0,91=1,ez=_1iken

q(x,t) = —a; tanhxexp[i(4a — y)t].

IX eo = 0, e = 1, €y, = 1 Oldugunda

q(x,t) = —a;cothxexp[i(4a — y)t].
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X. e =0,e, =—1,e, =1durumunda

q(x,t) = ajtanxexp[—i(4a + y)t]. (177)

Burada, Jacobi eliptik fonksiyon ¢oziimler (166)-(174) denklemleri ile temsil edilirken,
duragan koyu optik soliton ¢6ziim, duragan tekil optik soliton ¢oziim ve periyodik dalga
¢Oziim sirasiyla (175), (176) ve (177) denklemleri ile temsil edilir.

6.9. Uclii-Kuvvet Yasasi

Uclii-kuvvet yasas1 durumunda, (25) denklemi

1

iqe + a(1q|"@)xx + (b11qI*™ + by |q|*™ + b3lq1°™)q = = [@lq*(1q]*)xx — B{qI?)}*] +vq (178)
lg1>q

denklemine indirgenir. n = 4m iken (178) denkleminin integrasyonu gergeklestirilebilir.
Bu takdirde, (178) denklemi

1
iqy + a(lq1*™ @) xx + (b11qI%™ + bylq|*™ + b3lq|®™)q = W[alqlz(lqlz)m = B{Uq1» ] +vq (179)

gibi yogunlasir. Bu yiizden, (28) ile verilen adi diferansiyel denklem

—(¥ + DP* + by P2 + by 4 by o™ — 2(a — 2B)(¢')?

+4am(4m + 1)p*™(¢p")? — 2a¢pdp” + a(dm + 1) p*™t1p"” =0 (180)

seklinde sadelesir. Kapali form ¢oziimler ¢ikarmak igin
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¢ = gn (181)

doniistimii (180) denklemine uygulanir ve boylece (180) denklemi

—m?(y + )@? + bym?@* + b,m?@® + bym?@® + 2(a(m — 2) + 28)(¢")?

+a(12m? + 7m + De*(¢")? — 2mage” + am(4m + 1D)p°¢"” =0 (182)

denklemine doniisiir. Balans prensibinden N = 1 bulunur. Boylece

Gl
o(x)=ay+a, (E) (183)
seklini alir. (183) denklemi, (182) denkleminde yerine yazilarak ve (23) denklemi
kullanilarak, G/, G'G’ (j = +1,42,...) cinsinden bir polinom elde edilir. Elde edilen
polinomun her bir katsayisi sifira esitlenerek a;, e, e4, €q icin bir cebirsel denklem sistemi

bulunur. Daha sonra, ortaya ¢ikan sistemin ¢oziilmesi ile asagidaki ¢6ziim seti elde edilir:

4am — aay(ef — 4ege,)3m+ 1)(4m + 1) b 2ae,(4m + 1)?
1= y by =——e——

a?m? m2 '
(184)

a(dm+ 1)(5Gm+ 1) am 4ae,
by = — 7. 3 , ay=0, pf=a———, A= -7v.
aym

(184) denklemi, (183) denkleminde yerine konularak ve (27) denklemi kullanilarak

1

q(x, t) = {al (%)}E exp [i (4:161 — )/) t] (185)

elde edilir. Bu takdirde, incelenen model i¢in asagidaki duragan ¢oziimler kesfedilir:

I. € = 1, e = _(kZ + 1), e, = k2 iSE
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) 2
q(x,t) = {a;csxdnx}mexp l—' <w + y) tl

veya

1 2
q(x,t) = {a;(k? — 1)scxndx}mexp I—i (W + y> tl_

Il. e =1—k?e =2k?—1,e, = —k?icin

q(x,t) = {—alscxdnx}%exp Ii <4a(#2—1) - )/) tl.

III. eo=k2—1,el=2—k2,62=—1iken

4a(2 — k?) B )/) t].

q(x,t) = {—a,k?sdxcnx}mexp li < A

IV. ey =k?e =—(k*+1),e, =1o0ldugunda

L 2
q(x,t) = {—a,dsxcnx}mexp l—i <w + y) tl

veya

q(x,t) = {a;(1 — k?) scxndx}%exp I—(

V. eo=1—k? e =2—k? e, =1durumunda
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) _ 2
q(x,t) = {—a;dsxncx}mexp li <w — )/) tl.

VI. ey =1,e =2k?—1,e, = k?(k? —1) ise

1
q(x,t) = {a;cd’xnsx}mexp

VII.  ey=k?kk?®—1),e; =2k?—1,e, = 1igin

1
q(x,t) = {—a,csxndx}mexp Ii (

VI ey =0,e; =1,¢e, =—1iken
L 4a
q(x,t) = {—a; tanhx}mexp [i (F - y> t].

IX €y = 0, e = 1, e, = 1 Oldugunda

q(x,t) = {—alcothx}%exp [i (%Z - y) t].

X. ey =0,e; =—1,e, =1durumunda

q(x,t) = {altanx}%exp [—i (4% + y) t].

; (4a(2k2 -1) B y) tl
— .

4a(2k? — 1)
=)

(192)

(193)

(194)

(195)

(196)

(197)

Burada, Jacobi eliptik fonksiyon ¢oziimler (186)-(194) denklemleri ile temsil edilirken,

duragan koyu optik soliton ¢6ziim, duragan tekil optik soliton ¢oziim ve periyodik dalga

¢Oziim sirasiyla (195), (196) ve (197) denklemleri ile temsil edilir.
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6.10. Zayif Yerel-Olmayan Nonlineerlige Sahip Parabolik Yasasi

Bu nonlineerlik durumunda, (25) denklemi

1
iqe + a(lq]" @z + (b1lq1* + bylql* + b3 (11 x0)q = TR [@lg1>(q|®)xx — BLUqID I +vq (198)

denklemine indirgenir. n = 2 iken (198) denkleminin integrasyonu gergeklestirilebilir. Bu
takdirde, (198) denklemi

1
iqe +a(191*@xx + (b1lql® + b2lq1* + b3 (191) ) = 5= [@la*(1q1?)xx — B{Uq|P)}*]1 +vq (199)
lg|*q

gibi yogunlasir. Bu yiizden, (28) ile verilen adi diferansiyel denklem
—(A+7)p* + bip* + by¢° — 2(a — 2)(¢")? + 6ag?(¢)?

—2a¢pd" +3ap3¢p” =0 (200)

seklinde sadelesir. Balans prensibinden N = 1 bulunur. Bdylece

G’
p(x) =ap+a; <E> (201)

seklini alir. (201) denklemi, (200) denkleminde yerine yazilarak ve (23) denklemi
kullamlarak, G/, G'G’ (j = +1,+2,...) cinsinden bir polinom elde edilir. Elde edilen
polinomun her bir katsayisi sifira esitlenerek «;, e, 4, € i¢in bir cebirsel denklem sistemi
bulunur. Daha sonra, ortaya ¢ikan sistemin ¢oziilmesi ile asagidaki ¢6ziim setleri elde

edilir:

o b = —2a— )
a?’ 7P 776

b1=61<2a_ a0=0;

4a%b2> 4o azb,
(202)
atb,(ef — 4ee;) _

3

a 2(,2
B = 5 A= 2aai(ef —4eye,) — y + 4ae;.
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a 12ae; 3a 21a

b = — — , = —, b = -, =0,

1= T 2T BE g =0

(203)
S5a
a = a\fes, B = A= 4ae; —y.
(202) denklemi, (201) denkleminde yerine konularak ve (27) denklemi kullanilarak
G’ aib,(e? — 4eye

q(x,t) = ay (E) exp li <2aaf(e12 — 4eye,) — — 2( 13 0¢2) _ Y+ 40591) tl (204)
elde edilir. Sonug olarak, duragan ¢oziimler asagidaki gibi listelenir:

. e =1 =—(k?+1),e, =k? ise
q(x,t) = aycsxdnxexp [i <2aaf(k2 —1)% - w —y—4a(k?+ 1)) t] (205)

veya

ath,(k? — 1)

q(x,t) = a;(k? — 1)scxndxexp Ii (Zaaf(kz -1)2 - -y —4a(k? + 1)) tl. (206)

3
II eo=1—k2,el=2k2—1,ez=—k2i(;in
, 2 asz 2
q(x,t) = —ayscxdnxexp |i| 2aaf — 3 Y + 4a(2k” —1) |t]. (207)
III eo=k2_1,el=2_k2,ez=_1iken
atby k*
q(x,t) = —a;k?sdxcnxexp |i | 2aa?k* — A 4a(k? —2) | t]. (208)

IV € = kz, e = _(kz + 1), e, = 1 Oldugunda
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ath,(k? — 1)?

q(x,t) = —a,;dsxcnxexp [i (Zaalz (k? —1)% - 3

—y —4a(k?® + 1)) t] (209)

veya

ath,(k? — 1)

q(x,t) = a;(1 — k?) scxndxexp [i <2aa12(k2 -1)2 - -y —4a(k?+ 1)) tl. (210)

3
V. ey=1—k?%e =2—k?e,=1durumunda
atbyk*
q(x,t) = —a;dsxncxexp [i (Zaazlzk4 -y t4a(2- k2)> t]. (211)
VI 60:1, el=2k2—1,€2=k2(k2—1) ise
atb,
q(x,t) = a;cd?xnsxexp |i| 2aa? — LA 4a(2k? - 1) |t|. (212)
VII eozkz(kz_l), el=2k2_1, 62=11(;ln
ath
q(x,t) = —a,csxndxexp [i (Zaocl2 - 13 2 _ Y + 4a(2k? — 1)) t]. (213)
VIII eO:0,61=1,62=_1iken
aib,
q(x,t) = —a tanhxexp |i | 2aa? — 3 Y + 4a | tf. (214)

IX. e =0,e; =1,e, =1o0ldugunda
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4
1

arb,
3 —y +4a ) t]. (215)

q(x,t) = —a; cothxexp [i <2aaf —

X. ey,=0,e; =—1,e, =1durumunda

. 2 abe
q(x,t) = a tanxexp |i| 2aa; — 3 V- 4a | t|. (216)

Burada, Jacobi eliptik fonksiyon ¢oziimler (205)-(213) denklemleri ile temsil edilirken,
duragan koyu optik soliton ¢6ziim, duragan tekil optik soliton ¢6ziim ve periyodik dalga

¢Ozlim sirasiyla (214), (215) ve (216) denklemleri ile temsil edilir.

Benzer sekilde, (203) denklemi, (201) denkleminde yerine konularak ve (27) denklemi

kullanilarak

q(x,t) = ay {\/e_l + (%)} expli(4ae, — y)t] (217)

elde edilir. Bu durumda, elde edilen duragan ¢oztiimler asagidaki gibidir:

VIII. e,=0,e, =1, e, =—1 ise, duragan koyu optik soliton ¢oziim asagidaki gibi
bulunur:
q(x,t) = a; (1 — tanhx)exp[i(4a — y)t]. (218)

IX. e, =0,e =1,e,=1Iiken, duragan tekil optik soliton ¢6ziim asagidaki gibi
elde edilir:

q(x,t) = a; (1 — cothx)exp[i(4a — y)t]. (219)

X. ey =0,e; =—1,e, =1 oldugunda, asagidaki periyodik dalga ¢coziim tiiretilir:

q(x,t) = a, (i + tanx)exp[—i(4a + y)t]. (220)
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6.11. Genellestirilmis Anti-Kiibik Yasasi

Bu nonlineerlik durumunda, (25) denklemi

b
iqe + a(lqI™@xx + (W+ b, lq|*™ + bglqlz’””) q=

|q|12q* lalq?(1q1®)xx — BLUaIF ] +vq (221)

denklemine indirgenir. n = m + 1 iken (221) denkleminin integrasyonu gergeklestirilebilir.
Bu takdirde, (221) denklemi

b 1
iqe + a(lq™ 1 q) v + (W + by lq|*™ + b3|q|2m+2) q= W[alqlz(lqlz)m = B{UaIDx¥*1 +vq (222)

gibi yogunlasir. Bu yiizden, (28) ile verilen adi diferansiyel denklem

—(y + )P + b1 ™*™ + byp?" 2 4 by p* ™ — 2(a - 2B)(¢")?

+a(m+ 1)(m + 2)p™ 1 (p")? — 2apdp”’ + a(m + 2)p™ 29" =0 (223)

seklinde sadelesir. Kapali form ¢ozlimler ¢ikarmak igin

¢ = g (224)

dontistimii (223) denklemine uygulanir ve boylece (223) denklemi
by(m+ 1% — (m+ 1)%(y + Dp? + bs(m + 1)%p* + 2(a(m — 1) + 2B)(¢")?

2m
+a(m +2)e(@")? — 2a(m + D" + a(m + 1)(m + 2)9%@" + b,(m + 1)2p(x)m+1™? =0 (225)

denklemine doniistir. Daha fazla ilerleyebilmek igin b, = 0 se¢ilmesi gerekir. Bu durumda,
(221) denklemi

b 1
i+ a(lal™ @ + (s + bslalP™2) @ = [ @l P1a) — BUaPT +v0 (226)

seklinde degisir ve (225) denklemi
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bi(m+1)? = (m+ D*(y + De? + bs(m + 1)?¢* + 2(a(m — 1) + 28)(¢")?

+a(m+2)p(p")? —2a(m + D" +a(m + 1)(m + 2)e2¢" =0 (227)

bi¢iminde sadelesir. Balans prensibinden N = 2 bulunur. Boylece

Gl Gl 2
p(x)=ag+a (E) +a; (E) (228)

seklini alir. (228) denklemi, (227) denkleminde yerine yazilarak ve (23) denklemi
kullanilarak, G’, G'G’ (j = +1,42,...) cinsinden bir polinom elde edilir. Elde edilen
polinomun her bir katsayisi sifira esitlenerek a;, e,, e4, eq icin bir cebirsel denklem sistemi

bulunur. Daha sonra, ortaya ¢ikan sistemin ¢Oziilmesi ile asagidaki ¢oziim setleri elde

edilir:
b = 8aas(e3 — 36epeie,)%(m + 2) _ 2a(m+2)(3m+5)
17 81(e2 + 12epe)(m+1)2 ~ 3T a(m+ 12
2a,e, aaye,(ef — 36eqe,)(m + 2)
Aoy = — ) a, = 0, = 4 229
0 3 1 9(e? + 12epe,)(m + 1) (229
_aaze(ef —36ege;)(m +2)(m + 5) L 2aa,(e? + 12epey)(m + 2)(m + 3)
- 36(c? + 12ege)(m+1) ' | 3(m + 1)2 '
2a(m+ 2)(3m + 5)
b1 = 0, b3 = — 2 , €p = 0, ap = —areq, a; = 0,
a,(m+1)
(230)
_aaze;(m+2)° s m+ Dy +2)  ame(m+2)° (m+1Dm+5F+2)
*= m+1 4e, r m+1 16e, '
(229) denklemi, (228) denkleminde yerine konularak ve (27) denklemi kullanilarak
1
2a,e G\ )"+
q(x,t) = {_ 32 Lt a, <E> ] et (231)
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elde edilir. Sonug olarak, elde edilen duragan ¢oziimler asagidaki gibidir:

I. eO = 1, e = _(kz + 1), e, = k2 ise

1

20,(k? +1 mH
q(x,t) = {% + azcszxdnzx} et (232)
veya
1
2a,(k* + 1 meL
q(x,t) = {% + a,(1 — k?)? sc andzx} gidlr (233)
Il. e =1—-k?e =2k?*—1,e, = —k?icin
1
2a,(2k? — 1 m+l
qx, t) = {—Z(f) + a, sc 2xdnzx} et (234)
III. eO=k2_1,61=2_k2,62=_1iken
1
20,(2 — k2 mil
qx, t) = {—% + a2k4sd2xcn2x} et (235)

IV. ey, =k?e =—(k?+1),e, =1o0ldugunda

1

2a,(k* +1 m+l
qx, t) = {% + azdszxcnzx} et (236)
veya
1
2a,(k* +1 mil
q(x,t) = {% + a,(1 — k?)?%sc andzx} ettt (237)
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V. ey=1-—k?e; =2—k?e, =1durumunda

1

2a,(2 — k? mi1
2,2~k + azdszxnczx} ettt (238)

CI(x! t) = {_ 3

VI. ey=1,e =2k?*—1,e, = k?(k? — 1) ise

1

2a,(2k* -1 m+1
q(x,t) = {—Z(f) + azcd“xnszx} ettt (239)
VII eo :kz(kz_l), el =2k2_1, 62 = 11(}111
1
2a,(2k* -1 m+1
q(x,t) = {—% + azcszxndzx} et (240)
VIII. 6020,61:1,62:_1iken
1
2a, 5 m+1 1
q(x, t) = {_T-I_ a,tanh x} et (241)

IX. ey =0,e; =1,e, =10ldugunda

1

Zaf m+1
qx, t) = {— TZ + azcothzx} et (242)

X. ey=0,e; =—1,e, =1 durumunda

1

2a m+1
q(x,t) = {TZ + aztanzx} ettt (243)

Burada, Jacobi eliptik fonksiyon ¢oziimler (232)-(240) denklemleri ile temsil edilirken,
duragan koyu optik soliton ¢6ziim, duragan tekil optik soliton ¢6ziim ve periyodik dalga

¢Ozlim sirasiyla (241), (242) ve (243) denklemleri ile temsil edilir.

Benzer sekilde, (230) denklemi, (228) denkleminde yerine konularak ve (27) denklemi

kullanilarak
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1

G’ 2\m+1 .
q(x,t) = {—azel + a, (E) } giAt (244)

elde edilir. Bu durumda, incelenen model igin, sirasiyla, duragan parlak ve tekil optik

soliton ¢6ziimler ve ayrica periyodik dalga ¢oziim asagidaki gibi ¢ikarilir:
I. e0=0,el=1,ez=—1ise

1 .
q(x,t) = {—a,sech®x}m+ieitt, (245)

Il. e, =0,e;=1,e;, =11i¢in

1 .
q(x,t) = {a,csch?x}m+ielt, (246)

III. eO=0,61=_1,62=1iken

_tr .
q(x,t) = {a,sec?x}mrieitt (247)
6.12. Kiibik-Kuartik Yasasi

Bu nonlineerlik durumunda, (25) denklemi

1
iqe +a(lq1" @ xx + (b1lq]* + blq1*)gq = FIErE [elql?(1g1®)xx — BL{al*)x}*] + vq (248)

denklemine indirgenir. n = 2 iken (248) denkleminin integrasyonu gergeklestirilebilir. Bu
takdirde, (248) denklemi

1
iqe + a(191*@)xx + (b11q|* + b2 1q|*)q = FIETE [elql*(1g1®)xx — B al®)}*] + vq (249)
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gibi yogunlasir. Bu yiizden, (28) ile verilen adi diferansiyel denklem

—(y + D¢? + b1¢* + b2¢° — 2(a — 2B)(¢")? + 6a¢?(¢")? — 2add” +3ap>¢” =0 (250)

seklinde sadelesir. Balans prensibinden N = 2 olarak belirlenir. Boylece

GI GI 2
o(x) =ay+ ay <E> + a, (E) (251)

seklini alir. (251) denklemi, (250) denkleminde yerine yazilarak ve (23) denklemi
kullanilarak, G/, G'G’ (j = +1,42,...) cinsinden bir polinom elde edilir. Elde edilen
polinomun her bir katsayisi sifira esitlenerek a;, e,, e, e, igin bir cebirsel denklem sistemi

bulunur. Daha sonra, ortaya ¢ikan sistemin ¢oziilmesi ile asagidaki ¢6ziim setleri elde

edilir:
42a 15a2a(e? — 4eye
b1=72a6’1, b2=__, (l0=0, a1=0, a = 2 (1 0 2),
a, 4
(252)
45a2a(e? — 4eye
= L i6 0 2), A =30aaie,(e? — 4eyey) — y.
42a
b; = —36ae,, b, = - e =0, ay=—aye;, a; =0,
2
(253)
S5a
ﬁ=T, /1=4C¥€1—)/
(252) denklemi, (251) denkleminde yerine konularak ve (27) denklemi kullanilarak
¢\
q(x,t) = a; (E) exp[i(30aaZe; (ef — 4ege;) — y)t] (254)

elde edilir. Sonug olarak, asagidaki duragan ¢oziimler kesfedilir:

I. €y = 1, e = _(kz + 1), e, = k2 iSG
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q(x,t) = aycs?xdn?xexp[—i(30aa3(k? + 1)(k? — 1)? + y)t]
veya

q(x,t) = a,(1 — k?)? sc 2xnd?xexp[—i(30aas(k? + 1) (k? — 1)? + y)t].

II eozl_k2,81=2k2_1,ez=_kzi(;in

q(x,t) = a, sc 2xdn?xexp[i(30aas(2k? — 1) — y)t].

. e =k?*—1,e,=2—-k? e, =—1iken

q(x,t) = ayk*sd?xcn?xexp[i(30aazk*(2 — k?) — y)t].

IV. e, =k? e =—(k?+1),e, =10ldugunda

q(x,t) = ayds?xcn?xexp[—i(30aa’(k? + 1)(k? — 1)? + y)t]

veya

q(x,t) = ay(1 — k?)? sc 2xnd?xexp[—i(30aas (k? + 1)(k? — 1)? + y)t].

V. ey =1—-k?%e; =2—k?e,=1durumunda
q(x,t) = ayds?xnc?xexp[i(30aask*(2 — k?) — y)t].
VI. ey =1,e =2k?—1,e, =k?(k?—1)ise
q(x,t) = aycd*xns?xexp[i(30aa?(2k? — 1) — y)t].

VII. ey=k?k?*—-1),e; =2k*—1,e, =1i¢in

q(x,t) = aycs?xnd?xexp[i(30aa(2k? — 1) — y)t].
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VIII. e,=0,e, =1,e, =—11iken

q(x,t) = aytanh?xexp[i(30aas — y)t]. (264)

IX. ey =0,e =1,e;, =1o0ldugunda

q(x,t) = aycoth?xexp[i(30aaZ — y)t]. (265)
X. ey=0,e; =—1,e; =1durumunda
q(x,t) = aytan?xexp[—i(30aas + y)tl. (266)

Burada, Jacobi eliptik fonksiyon ¢oziimler (255)-(263) denklemleri ile temsil edilirken,
duragan koyu optik soliton ¢oziim, duragan tekil optik soliton ¢éziim ve periyodik dalga

¢ozlim sirasiyla (264), (265) ve (266) denklemleri ile temsil edilir.

Benzer sekilde, (253) denklemi, (251) denkleminde yerine konularak ve (27) denklemi

kullanilarak

N 2

q(x,t) = {—azel +a, (%) }exp[i(élae1 —pt] (267)

elde edilir. Bu durumda, sirasiyla, duragan parlak ve tekil optik soliton ¢oziimler ve ayrica

periyodik dalga ¢6ziim asagidaki gibi bulunur:

I. eO=0,61=1,ez=_1ise

q(x,t) = —a,sech?xexpli(4a — y)t]. (268)

II eO=0,61=1,ez=1igin

q(x,t) = aycsch?xexpli(4a — y)t]. (269)
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. ey;=0,e;=-1,e,=1iken

q(x,t) = aysec?xexp[—i(4a + y)t]. (270)

6.13. Genellestililmis Kiibik-Kuartik Yasasi

Bu nonlineerlik durumunda, (25) denklemi

, 1
iqe + a(lq" @ xx + (b11q1*™ + by |q1>™)q = P [alq|*(1q1?)xx — BLUa1)F*] +vq  (271)

denklemine indirgenir. n = 2m iken (271) denkleminin integrasyonu gergeklestirilebilir.
Bu takdirde, (271) denklemi

, 1
iq; + a(1q1*™@)xx + (b1lq*™ + b2lq*™)q = g [alql?(1q1®)xx — B{Ua1) ] +vq (272)

gibi yogunlasir. Bu yiizden, (28) ile verilen adi diferansiyel denklem

—(y + DP? + by p>™+2 + by¢°™*2 — 2(a = 28)(¢")? + 2am(2m + 1)¢p*™(¢")?

—2a¢pd"” +a(m+ 1)¢p*>™*t1p"” =0 (273)

seklinde sadelesir. Kapali form ¢oziimler ¢ikarmak icin

¢ = pm (274)
doniistimii (273) denklemine uygulanir ve boylece (273) denklemi

—m2(y + )@? + bym?@® + bym?@® + 4(a(m — 4) + 45)(¢")?

+2a(6m? + 7m + 2)@p*(¢")? — 4mage” + 2am(m + 1)@>¢" =0 (275)

denklemine doniigiir. Balans prensibinden N = 1 elde edilir. Boylece
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GI
p(x) =ap+ (E) (276)
seklini alir. (276) denklemi, (275) denkleminde yerine yazilarak ve (23) denklemi
kullanilarak, G/, G'G’ (j = +1,42,...) cinsinden bir polinom elde edilir. Elde edilen
polinomun her bir katsayisi sifira esitlenerek a;, e,, e, ey icin bir cebirsel denklem sistemi

bulunur. Daha sonra, ortaya ¢ikan sistemin ¢oziilmesi ile asagidaki ¢oziim seti elde edilir:

8ae;(2m + 1)? 2a(2m + 1)(5m + 2) aat(e? — 4ege)(m(6m + 7) + 2)
"= 2 b2:_ 2.2 ’ aOZO' a= ’
m arm 4m
(277)
_aat(ef — 4ege;)(m — 4)(2m + 1)(3m + 2) . 2aate,(e? — 4eye,)(6m? + 7m + 2)
b=- 16m T m? -
(277) denklemi, (276) denkleminde yerine konularak ve (27) denklemi kullanilarak
G’ = (2aate;(e? — deyey)(6m? + 7m + 2)
qlx,t) = {al <E>} exp [l < 112 07;2 — y> t] (278)

elde edilir. Sonug olarak, incelenen denklem i¢in duragan ¢oziimler asagidaki gibi ¢ikarilir:

. e=1e =—(k?+1),e, =k?ise

2 2aaf(k? + 1)(k? — 1)?(6m? + 7Tm + 2
q(x,t) = {a;csxdnx}mexp [—i < i€ ) mz) ( ) + y) t] (279)
veya

2 2aaf(k® + 1)(k2 — 1)2(6m? +7 2

q(x,t) = {a; (k? — 1)scxndx}mexp [—i( aai (k” + 1)( mz) (6m” + 7m + )+ y) t]. (280)
II €0=1—k2,€1=2k2—1,€2=—k2i§il’l

2 2aaf(2k? — 1)(6m? + 7m + 2
q(x,t) = {—a;scxdnx}mexp [i < aa; ( 1r(12m m+2) — y) t]. (281)

III eo=k2—1,el=2—k2,ez=—1iken
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2 2aa
q(x,t) = {—a;k?*sdxcnx}mexp [i < !

V.

2
q(x,t) = {—a;dsxcnx}mexp [—i <

veya

q(x,t) = {a;(1 — kz)scxndx}%exp [—i(

V.

2 2aa
q(x,t) = {—a;dsxncx}mexp [i <

VI.

2
q(x,t) = {a;cd?xnsx}mexp [l(

VII.

2 2aa
q(x,t) = {—a;csxndx}mexp [i <

VIII.

1k*(2 — k?)(6m? + 7Tm + 2)

€y = k2’ €1 = _(kZ + 1)1 €z

m2

= 1 oldugunda

€y = 1—k2,€1 = 2_k2,62

m2

m?2

= 1 durumunda

m2

tk*(2 — k?)(6m? + 7m + 2) > ]
—vy|tl.

€y = 1, e = 2k2 - 1, e, = k2(k2 - 1) ise

eo = kZ(kZ - 1), e = 2k2 -

m2

1,e, = 1i¢in

+2k? —1)(6m? + 7m + 2)

€y = O, e = 1, e, = _1|ken

m2

60

2aaf(k? + 1)(k? — 1)?(6m? + 7m + 2) N

2aaf(2k? — 1)(6m? + 7m + 2) >t]
— y .

o

)

2aaf(k?+ 1)(k? — 1)?(6m? + 7Tm + 2) ) ]
+y|t

)

(282)

(283)

(284)

(285)

(286)

(287)



2 (2aaf(6m? + 7m+ 2)
q(x,t) = {—a tanhx}mexp |i — —v | tf. (288)
IX. e, =0,e =1,e, =1o0ldugunda

2 (2aat(6m? +7m + 2)
q(x,t) = {—a,cothx}mexp |i — —y | t|. (289)

X. e =0,e; =—1,e; =1durumunda
2 (2aaf(6m? + 7m + 2)

q(x,t) = {a tanx}mexp [—i — +v|t]. (290)

Burada, (279)-(287) denklemleri ile verilen ¢oziimler, modelin Jacobi eliptik fonksiyon
coziimleri iken, (288)-(290) ¢ozlimleri, sirastyla duragan koyu optik soliton ¢ozliimii,

duragan tekil optik soliton ¢ozlimii ve periyodik dalgay: temsil eder.
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cs(x10.5)% dn(x10.5)2
4(0.5%+1)

2es(x10.5)? dn(x10.5)?
4{0.52+1)

3 es(x10.5)% dn(x10 5)%
4(0.5%+1)

4csix10.5) dn(x10.5)
4(0.5%+1)

5 cs(x10.5)2 dn(x10.5)2
4(0.5%+1)

Sekill:a=1, k=05vea=1,2,3,4,5 icin (36) ¢ozlimiiniin niimerik simiilasyonu.

lal

(1-0.5%)? sc(x10.5)% nd(x10.5)>
4(0.5%+1)

(2 (1-0.52)%) sc(x10.5)* nd(x10.5)
4(0.5%+1)

(3 (1-0.52)%) sc(x10.5) nd(x[0.5)
4(0.5%+1)

(4{1-0.5%)%) sc(x10.5) nd(x10.5)
4(0.5%+1)

(5{1-0.5%)%) sc(x10.5)? nd(x10.5)
4(0.5%+1)

¢ozlimiinlin niimerik simiilasyonu.
lal
__ se(xl0.5)% dn(x10.5)

4(2205%-1)

 2sc(x10.5)% dn(x10.5)>
4(2x05%-1)

 3sc(xl05) dn(x10.5)>
4{2x0.57-1)

 4sc(x10.5) dn(x10.5)
4(2x0.52-1)

_ 55c(x10.5) dn(x10.5)2
4(20.52-1)

Sekil3:a=1, k=05vea =1,2,3,4,5 i¢in (38) ¢6zlimiiniin niimerik simiilasyonu.
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0.5% sd(x10.5)% en(x10.5)%
4(2-0.5%)

(2 0.5%) sd(x10.5)% ca(x10.5)?
4(2-057%)

(3 % 0.5%) sd(x10.5)% ca(x10.5)
4(2-0.5%)

(4 x0.5%) sd(x10.5)% en(x10.5)
4(2-05%)

(5% 0.5%) sdix10.5)% en(x10.5)>
4(2-0.5)

Sekild:a=1, k=05vea=1,2,3,4,5 icin (39) ¢ézlimiiniin niimerik simiilasyonu.
lql
_ dsxin.5)% en(xl0 5
4(0.5%+1)

2.ds(x10.5)% en(x10.5)
4(0.5%+1)

3 ds(x10.5)2 en(x10.5)
4(0.5%+1)

4 ds(x10.5)% en(x10.5)%
4{0.52+1)

5 ds(x10.5) en(x10.5)
4(0.5%+1)

Sekil5:a=1, k=05vea=1,2,3,4,5 icin (40) ¢ézlimiiniin niimerik simiilasyonu.

lal

12[ (120582 se(x10.5)% nd(x10.5)
4(0.5%+1)

(2 (1-0.52)%) sc(x10.5)* nd(x10.5)
4(0.5%+1)

(3 (1-0.52)%) sc(x10.5) nd(x[0.5)
4(0.5%+1)

It (1-0.52)) sc(x10.5)* nd(x10.5)2
4(0.5%+1)

(5{1-0.5%)%) sc(x10.5)? nd(x10.5)
4(0.5%+1)

Sekil6:a =1, k=05vea=1,2,3,4,5 i¢in (41) ¢oziimiiniin niimerik simiilasyonu.
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lal

 se(x10.5)? dn(x10.5)
4(2205%-1)

 2sc(x10.5)% dn(x10.5)>
4(2x05%-1)

 3sc(xl05) dn(x10.5)>
4{2x0.57-1)

 4sc(x10.5) dn(x10.5)
4(2x0.52-1)

_ 55c(x10.5) dn(x10.5)2
4(20.52-1)

lal

0.5% sd(x10.5)2 cn(x10.5)%
4(2-05%)

(220.5%) sdix10.5)% en(x10.5)>
4(2-0.5)

(3 % 0.5%) sd(x10.5)% en(x10.5)>
4(2-057%)

4 % 0.5%) sd(x10.5)% ca(x10.5)
4(2-057%)

(5 % 0.5%) sd(x10.5)% ca(x10.5)?
4(2-057%)

Sekil 8:a=1, k=05vea=1,2,3,4,5 icin (43) ¢ozlimiiniin niimerik simiilasyonu.

lal
ds(x10.5)2 ne(x10.5)
4(2-0.5%)

2 ds(x10.5)% ne(x10.5)
4(2-05%)

3 ds(x10.5)2 nc(x10.5)
4(2-0.5%)

4 ds(x10.5)% ne(x10.5)%
4(2-0.5%)

5 ds(x10.5)? nc(x10.5)
4(2-0.5%)

Sekil9:a=1, k=05vea=1,2,3,4,5 icin (44) ¢ozlimiiniin niimerik simiilasyonu.
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de(x10.5)% ns(x10.5)
4(2-0.5%)

2 de(x10.5)% ns(x10.5)
4(2-05%)

3 de(x10.5)2 ns(x10.5)%
4(2-0.5%)

4 de(x10.5)? ns(x10.5)%
4(2-0.5%)

5 de(x10.5)2 ns(x10.5)
4(2-0.5%)

Sekil 10:a =1, k=0.5ve a =1,2,3,4,5 i¢in (45) ¢oziimiiniin niimerik simiilasyonu.

lal
40

 cd(x10.5)* ns(x10.5)
4(2x05%-1)

 2cd(x10.51* ns(x10.5)
4(2x05%-1)

 3cd(xI0 5% ns(x10 5%
4{2x0.57-1)

_ 4cd(xl0.51* ns(x10.5)
4(2x0.52-1)

_ 5cd(x10.5)* ns(x10.5)2
4(20.5%-1)

Sekil11:a=1, k=05Vvea =1,2,3,4,5 i¢in (46) ¢Oziimiiniin niimerik simiilasyonu.
lql
__ es(xl0.5)% nd(xl0.5)
4(2x0.5%-1)

 2cs(xl0.5)? nd(x10.5)
4(2x0.52-1)

_ 3es(xl0.5)? ad(x10.5)
4(20.5%-1)

 4es(x10.5)? ad(x10.5)
4(2x05%-1)

_ 5es(x10.5)% nd(x10.5)2
4{2x0.5%-1)

Sekil 12: a =1, k=0.5Vve a =1,2,3,4,5 i¢in (47) ¢oziimiiniin nlimerik simiilasyonu.
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lal

__ds(xl0.5)?
2(1-2%0.5%)

_ _2ds(x05)?
2(1-2x05%)

 3ds(xl05)?
2(1-2x0.5%)

4 ds(x10.5)%
2(1-2%0.5%)

5 ds(x10.5)2
2(1-2%0.5%)

Sekil 13:a =1, k=05ve a =1,2,3,4,5 i¢in (48) ¢Oziimiiniin niimerik simiilasyonu.
lal
_ ds(d05)?
2(1+0.5%)

_ 2ds(x10.5)
2(1+0.5%)

. 3dsixl0s)?
2(1+0.5%)

o 4dsxl0.5)?
2(1+0.5%)

_ 5ds(xl0.5)%
2(1+0.52)

Sekil 14:a =1, k=05Vve a =1,2,3,4,5 i¢in (49) ¢oziimiiniin niimerik simiilasyonu.
lal
o cs;xlO.S!z
2(0.52-2)

_ 2cs(xl0.5)?
2{0.5%-2)

. 3esxlos)?
2{0.5%-2)

_dosxl0.5)?
2(0.5%-2)

_ scs(xl0.5)?
2(0.5°-2)

Sekil 15:a =1, k=05vea =1,2,3,4,5 i¢in (50) ¢oziimiiniin niimerik simiilasyonu.
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lal

Sekil 16:a =1, k=05vea =1,2,3,4,5 igin (51) ¢Oziimiiniin niimerik simiilasyonu.

lal

12

— 0.25tanh?*(x)
— 0.5 tanh*(x)
—— 0.75 tanh?(x)
— 1tanh*(x)

—— 1.25tanh*(x)

Sekil17:a =1, k=05ve a =1,2,3,4,5 i¢in (52) ¢oziimiiniin niimerik simiilasyonu.

lal

— 0.25 coth*(x)
— 0.5coth?(x)
—— 0.75 coth*(x)
— 1coth?(x)

— 1.25 coth?(x)

Sekil 18:a =1, k=05ve a =1,2,3,4,5 i¢in (53) ¢Oziimiiniin niimerik simiilasyonu.
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lal

— 0.25tan*(x)
— 0.5tan*(x)
— 0.75tan’(x)
— 1tan’(x)

—— 1.25tan’(x)

Sekil 19:a =1, k=0.5Vve a = 1,2,3,4,5 i¢in (54) ¢oziimiiniin nlimerik simiilasyonu.
lal
_ es(x105) dn(x10.5)%
4(1+0.52)

2es(x10.5) dn(x10.5)?
4(1+0.5%)

3 es(x10.5)% dn(x10 %)%
4(1+0.5%)

4csix10.5) dn(x10.5)
4(1+0.5%)

5 cs(x10.5)2 dn(x10.5)2
4(1+0.5%)

Sekil 20:a =1, k=05ve a =1,2,3,4,5 i¢in (55) ¢Oziimiiniin niimerik simiilasyonu.

lal

— 1sech*(x

— 2sech?(x

)
)
—— 3sech’(x)
— 4sech’(x)

)

— S5sech?(x

Sekil 21: a =1ve a = 1,2,3,4,5 i¢in (57) ¢dziimiiniin niimerik simiilasyonu.
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lal

— lesch?(x

— 2ecsch?(x

)
)
— 3esch?(x)
— 4esch?(x)

)

— Scsch?(x

Sekil 22: a =1ve a =1, 2,3,4,5 i¢in (58) ¢ozlimiiniin niimerik simiilasyonu.

lal

— lesci(x)
— 2csct(x)
— 3csci(x)
— 4cesci(x)

— 5csci(x)

lal

- 1 cslxfl 2 iU 2
(14) (1 2 Zne)

1+ cs(x]0. 5! du!x\OS
0.52+1

] 4 Sstxl0. 5)2 dn(xI0. 5)2]
0.5%+1

] 4 Sstxl0. 5)2 dn(xI0. 5)2]
0.52+1

cs(x10.5)% dn(x[0.5)2
0.5241

—
+

Sekil 24: a = 1ve a = 1,2,3,4,5 i¢in (60) ¢dziimiiniin niimerik simiilasyonu.
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7. SONUC VE ONERILER

Bu calisma, nonlineer kromatik dagilimli ve kendiliginden faz modiilasyonu
yapilarinin ¢esitli formlarina sahip komleks GL denkleminden ortaya cikan duragan
solitonlarin tiiretilmesi ve sergilenmesi {izerinedir. Sonugclar, lineer zamansal gelisim igin
gosterilmistir. Bir iirlin olarak duragan optik soliton ¢oziimleri ve diger dalga ¢oziimleri
ireten Jacobi’nin eliptik fonksiyonlar yaklagimi benimsenmistir. Periyodik tekil ¢oziimler,
Gaussian solitary dalgalar ve Jacobi’nin eliptik fonksiyonlari cinsinden ¢oziimler elde
edilmistir. Duragan optik solitonlarin dort formunun tamami bu calismada kesfedilmistir
ve bunlar parlak, koyu ve tekil solitonlardir (her iki tiirden). Burada listelenen ¢oziimlerin
bollugu, komleks GL denkleminin ¢alisildig diger fiziksel ve miihendislik alanlariin yani

sira optik toplulugunda faydali bir varlik olacaktir.

[leride, komleks GL denklemine ek integrasyon teknikleri uygulanacaktir. Hareket
eden dalgalar yontemi, yari-ters varyasyon ilkesi ve belirsiz katsayilar yontemi bunlardan
birkagidir. Soliton parametrelerinin adyabatik dinamiklerini elde etmek igin soliton
pertiirbasyon teorisi de uygulanacaktir. Solitonlarin kanal i¢i ¢arpismasi incelenecek ve
yar1 parcacik teorisi gelistirilecektir. Ardindan, stokastik pertiirbasyon da ele alinacak ve
bu caligmanin anlik bir sonucu, ayn1 modeli genellestirilmis zamansal gelisimle incelemek
olacaktir. Bu, burada ele aliman ve incelenen modele genellestirilmis bir bakis agisi
verecektir. Son olarak model, varyasyonel iterasyon yontemi, Adomian ayristirma semast

ve diger yontemlerin kullanimi ile niimerik olarak da ele alinacaktir.
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EKLER

Bu kisimda (23) ile verilen Jacobi eliptik denkleminin ¢éziimleri ve Jacobi eliptik

fonksiyonlarla ile ilgili bazi bilgiler verilecektir.

EK-A

(23) denkleminin ¢oziimleri asagidaki gibi listelenir (Zayed, 2009; Malik vd., 2012; Yal¢1
ve EKici, 2022):

Durum

OO O U hHh W N -

[EEGY
= o

o
w N

14

15

16

17
18
19

20
21

€o

1

1
1—k?
k%2 -1
k2

k2
—k?
-1
1—k?
1

1
kz(k2 -1
1

4

1
7=k

S © cooimalT,

—(1+k?)

1— k?
k?—1

1

1—k?
k%(k? —1)
1

(1-k%

|_,;|w-l>|>—‘-l>|»—ul>l>—x
_ N

=

G(x)
snx
cdx

cnx
dnx
nsx
dcx
ncx
ndx
csx

scx

sdx

dsx

nsx + csx

ncx + scx
nsx + dsx

snx + icnx

sechx
cschx

secx
1

3

snx

G'(x)

cnxdnx

—(1 — k?)sdxndx
—snxdnx

—k?snxcnx
—dsxcsx

(1 — k®)ncxscx
scxdcx
k?sdxcdx
—nsxdsx
ncxdcx

ndxcdx

—CsXnsx

—dsxcsx F nsxdsx

scxdcx + ncxdex
—dsxcsx F csxnsx

dnxcnx F isnxdnx

—sechxtanhx
—cschxcothx

secxtanx
1

-

cnxdnx

burada k, (0 < k < 1) Jacobi eliptik fonksiyonlarin modiiliidiir ve i = v—1.

EK-B

k — 17 iken, Jacobi eliptik fonksiyonlar hiperbolik fonksiyonlara dejenere olur:

snx — tanhx,

cnx — sechx,

dnx - sechx,

71

scx — sinh x,



sd x — sinh x,

nd x — coshx,

cdx » 1,

csx — cschx,

ns x — coth x,

dsx — cschx,

ncx — coshx,

dcx —» 1.

(291)

Ancak, k - 0% iken, Jacobi eliptik fonksiyonlar trigonometrik fonksiyonlara doniisiir.

snx — sinx,
sdx — sinx,

ndx - 1,

EK-C

cnx — CoS X,
cdx — cosx,

csx — cotx,

dnx
dcx =—,
cnx
nx
SCX = —,
cnx

dnx - 1,
ns x — CSCX,

dsx — cscx,

1
ncx = —,
cnx

snx

sd x —m,
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scx — tanx,
ncx — secx,

dcx — secx.

(292)

(293)
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