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SİMGELER VE KISALTMALAR 

 

Çalışma boyunca kullanılan simgeler ve kısaltmalar aşağıda verilmiştir. 

Simgeler    Açıklamalar 

𝛼     Alpha 

𝛽     Beta 

𝛾     Gamma 

𝜆     Lambda 

𝜃     Theta 

𝜅     Kappa 

𝜉     Xi 

𝛷     Phi 

𝜇     Mu 

ζ                                                         Zeta 

∑     Toplam sembolü 

|𝑞|     𝑞 nun modülü 

 

Kısaltmalar    Açıklamalar 

NLS     Nonlineer Schrödinger  

SH                Schrödinger-Hirota  

FL     Fokas-Lenells  

KdV                                                   Korteweg de Vries  

NLDS     Nonlineer dispersif Schrödinger 

SS                                                      Sasa-Satsuma 

LPD                                                   Lakshmanan-Porsezian-Daniel 

 



 
 

1. GİRİŞ 

Optik solitonlar teknolojisinin analitik ve hızlı gelişimi, telekomünikasyon 

endüstrisinde kalıcı bir etki bırakmıştır (Atai ve Malomed, 2001; Geng ve Li, 2008; Guo ve 

Zhou, 2010; Kudryashov, 2020a, 2020b, 2020c, 2020d, 2021; Susanto ve Malomed, 2021; 

Yan, 2006a, 2006b; Zhang vd., 2010; Wazwaz, 2016, 2018; Wazwaz ve Kaur, 2019). Bu 

durum, bu alanda performans artışı için çok sayıda sonuca ve sayısız yollara yol açtı. 

Kıtalararası mesafeler boyunca solitonların dinamik akışını yöneten birkaç model vardır. 

En görünür model, nonlineer Schrödinger (NLS) denklemi olsa da, duruma bağlı olarak 

genellikle diğer modellere sapmak gerekir. Örneğin, dispersif solitonlar Schrödinger-

Hirota (SH) denklemi veya Fokas-Lenells (FL) denklemi ve diğerleri tarafından yönetilir. 

Kıtalararası mesafeler boyunca soliton iletimi için temel elektronik kumaşı 

oluşturan iki anahtar bileşen, kromatik dağılım ve kendiliğinden faz modülasyonudur. 

Kromatik dağılım lineer iken, kendiliğinden faz modülasyonu bir optik fiberdeki nonlineer 

kırılma indisinin yapısından kaynaklanır. Kapsamlı olarak incelenen kendiliğinden faz 

modülasyonunun çeşitli biçimleri vardır. Bunlar, nonlineer kırılma indisinin Kerr olmayan 

yasaları olarak bilinirler. Burada, Kerr yasası nonlineerliğin kübik biçimidir ve bu 

bağlamda ele alınan modele sıklıkla kübik Schrödinger denklemi veya daha yaygın olarak 

NLS denklemi olarak atıfta bulunulur. 

Bu çalışmada, uzun mesafeler için soliton dinamiklerini yöneten alternatif bir 

model olan komleks Ginzburg-Landau (GL) denklemi ele alınacaktır (Biswas, 2009, 2018; 

Triki vd., 2012; Mirzazadeh vd., 2016; Arnous vd., 2017; Biswas ve Alqahtani, 2017, 

Biswas vd., 2018a, 2018b, 2021a, 2021b; Arshed vd., 2019; Das vd., 2019; Yildirim vd., 

2020a, 2020b; Zayed vd., 2020, 2021;  Yan vd., 2020; Yalçı ve Ekici, 2022). Bu model, 

nonlineer kromatik dağılım ile incelenmiştir. Kendiliğinden faz modülasyon yapılarının 

çeşitli formları çalışılmıştır. (Biswas ve Konar, 2006). Bu nonlineerlik formları şu 

şekildedir: Kerr  yasası, kuvvet  yasası, parabolik yasası, çift kuvvet yasası, kuadratik-

kübik yasası, logaritma yasası, anti-kübik yasası, kübik-kuintik-septik yasası, üçlü-kuvvet 

yasası, zayıf yerel-olmayan nonlineerliğe sahip parabolik yasası, genelleştirilmiş anti-

kübik yasası, kübik-kuartik yasası ve son olarak genelleştirilmiş kübik-kuartik yasasıdır. 

Fiberlerin özensiz kullanımı, fiberin yeraltı ve denizaltı kurulumu gibi çeşitli fiziksel 
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unsurlar ve çevresel nedenler gibi diğer sorunlar, kromatik dağılımın nonlineer hale 

getirilmesine neden olabilir. Böyle bir durumda solitonlar durağan hale gelecek ve böylece 

kıtalar arası ve okyanuslar arası mesafeler için bilgi transferi tamamen duracaktır. Bu, 

özellikle dünyanın tamamen internet faaliyetlerine bağımlı olduğu COVID-19 

zamanlarında feci bir etkiye yol açacaktır. Çok çeşitli kendiliğinden faz modülasyonu için, 

durağan solitonların analitik türetilmesi, çalışmanın geri kalanında gösterilmektedir. 

Durağan solitonlar, eliptiklik modülü uygun limite yaklaşırken soliton çözümlerine 

yaklaşan Jacobi’nin eliptik fonksiyonları aracılığıyla elde edilir.  

Durağan optik solitonların araştırılması son zamanlarda büyük ilgi gördü ve bir dizi 

anlamlı sonuç elde edildi. (Biswas ve Khalique, 2011)’de nonlineer dispersif Schrödinger 

(NLDS) denkleminin Lie grup analizi yardımıyla integrasyonu gerçekleştirildi ve ele 

alınan model için durağan çözümler elde edildi. (Biswas ve Khalique, 2013)’te 

genelleştirilmiş gelişimli NLDS denklemi için durağan çözümler çıkarıldı. (Biswas vd., 

2018)’de, nonlineer grup hız dağılımını sürdüren optik fiberlerdeki durağan solitonları 

incelemek için genişletilmiş deneme fonksiyon yöntemi kullanıldı ve bu çalışmanın 

devamı olarak aynı yöntem kullanılarak Kerr olmayan birkaç egzotik nonlineerlik yasasına 

sahip NLS denklemine durağan soliton çözümler ortaya çıkarıldı (Ekici vd., 2018). (Adem 

vd., 2020)’de, model denklem lineer zamansal gelişimin yanı sıra genelleştirilmiş zamansal 

gelişim ile birlikte göz önüne alındı ve nonlineer kırılma indisinin quadratik-kübik 

yasasına ve nonlineer kromatik dağılıma sahip durağan optik solitonlar türetildi. (Adem 

vd., 2020)’de, NLS denkleminin pertürbe edilmiş bir formu olan Sasa-Satsuma (SS) 

denklemi tarafından modellenen, nonlineer kromatik dağılıma ve kendiliğinden faz 

modülasyonunun Kerr yasasına sahip durağan optik solitonlar keşfedildi. (Adem vd., 

2021)’de, nonlineer kırılma indisinin Kerr yasasına sahip Lakshmanan-Porsezian-Daniel 

(LPD) modeli için nonlineer kromatik dağılımlı durağan optik solitonlar elde edildi. (Sucu 

vd., 2021)’de, karşılık gelen kromatik dağılım nonlineer hale getirildiğinde, bir optik 

fiberin nonlineer kırılma indisinin on bir farklı formu için genişletilmiş deneme fonksiyon 

algoritması ile durağan optik solitonları keşfedildi. (Ekici vd., 2021)’de, kromatik 

dağılımın nonlineer versiyonuyla birlikte, Nikolay Kudryashov tarafından son zamanlarda 

önerilen altı nonlineer kırılma indisi yasası ile modellenen durağan solitonlar çalışıldı. 

(Sonmezoglu vd., 2021)’de, nonlineer kromatik dağılımla birlikte nonlineer kırılma 

indisinin yeni önerilmiş kübik-kuartik biçimi için durağan optik solitonlar araştırıldı. 

(Biswas vd., 2022)’de, Kudryashov’un son zamanlarda önerilen kırılma indisinin beşli 
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(quintuple) kuvvet yasası ile NLS denklemine durağan optik soliton çözümler elde etmek 

için genişletilmiş deneme fonksiyon şeması uygulandı. İncelenen bu model, nonlineer 

kromatik dağılım ile birlikte çalışıldı. Hem lineer zamansal gelişim hem de genelleştirilmiş 

zamansal gelişim dikkate alındı. 

Tez çalışmasının yapısı şu şekilde düzenlenmiştir: 2. Bölümde, solitonlar ve optik 

solitonlar hakkında bilgiler verildi ve optik soliton tipleri olan parlak, koyu, tekil ve 

durağan solitonlardan bahsedildi. Bir optik fiber boyunca ışık darbesinin yayılmasını 

yöneten NLS denklemi 3. Bölümde verildi ve sonra nonlineer optikte meydana gelen 

nonlineerliğin on üç formu tanıtıldı. 4. Bölümde, çok sayıda nonlineer kırılma indisi 

yapılarına sahip nonlineer kromatik dağılımlı kompleks GL denklemine durağan soliton 

çözümler elde etmek için uygulanacak olan genelleştirilmiş 𝐺′/𝐺-açılım yönteminin tanımı 

verildi. Bir sonraki bölümde ana modele girişten sonra takip eden bölüm, modelde 

uygulanacak olan matematiksel analizin ayrıntılı bir şekilde açıklamasıdır. Bu analiz 

kendiliğinden faz modülasyonunun önerildiği şekliyle on üç alt bölümden oluşan nonlineer 

kırılma indisi yapılarının on üç formu ile birlikte başarıyla uygulandı. Son olarak, 7. 

Bölümde, bazı sonuçlar ve gelecekte açılacak olan araştırma yollarını da kapsayan birkaç 

öneri sunulmaktadır. 
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2.TEMEL BİLGİLER 

2.1. Solitonlar 

Fizik ve matematik alanında, soliter dalga, yayılma sırasında boyutunu ve şeklini 

değiştirmeyen özel bir dalga türüdür. Soliter dalga olgusu ilk olarak Viktorya dönemi 

mühendisi, deniz mimarı ve gemi yapımcısı John Scott Russell (1808-1882) tarafından 

keşfedilmiştir (Russell, 1834). 1834’te dar bir kanal boyunca hareket eden soliter dalgaları 

gözlemlemek için bir dizi deney yapmıştır. Daha sonra Russell, dalgaların kararlı olmaları 

ve hızlarını ve boyutlarını değiştirmeden çok büyük mesafelerde yayılabilmeleri de dahil 

olmak üzere bu soliter dalgaların temel özelliklerini incelemek için laboratuvarında bir 

tank inşa etmiştir. Russell’ın gözlemleri, iki Hollandalı bilim adamı olan Diederik 

Korteweg ve Gustav de Vries (Korteweg ve de Vries, 1895) 1895’te soliter dalga ve 

periyodik dalga çözümleri ile birlikte KdV denklemini sağlayana kadar Newton ve 

Bernoulli’nin hidrodinamik teorileriyle pek uyumlu değildi. Bir soliton, diğer soliter 

dalgalarla çarpışmadan sonra kalıcı yapısını koruma özelliğine sahip bir parçacık olarak da 

hareket eden bir dalga paketidir. Başka bir deyişle soliton, aşağıdaki istisnai özelliklere 

sahip soliter hareket eden dalgayı temsil eden lineer olmayan bir kısmi diferansiyel 

denklemin bir çözümü olarak tanımlanabilir (Agrawal, 2001): 

 Kalıcı bir yapıya sahiptir. 

 Dağılmaz. 

 Süperpozisyon teorisine uymaz. 

 Belirli bir bölge içinde yer alır. 

 Diğer solitonlarla çarpıştıktan sonra şekli ve boyutu değişmez. 

Solitonlar yalnızca su dalgaları ile sınırlı değildir, aynı zamanda integrallenebilir nonlineer 

kısmi diferansiyel denklemin çeşitli soliton çözümleri vermesi gibi, farklı nonlineer 

sistemlerde de görünürler. Solitonlar benzersiz özelliklerinden dolayı, akışkanlar dinamiği, 

yay sistemi, DNA’daki sıvının hareketi, plazma fiziği, telekomünikasyon endüstrisi ve 

nonlineer optik gibi matematiksel fiziğin çeşitli alanlarında çok verimlidirler (Agrawal, 

1989). 

2.2. Optik Solitonlar 

Nonlineer optikte soliton terimi, dalganın geçtiği ortamdaki lineer ve lineer 

olmayan etkiler arasındaki denge nedeniyle yayılma sırasında yolunu veya şeklini 
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değiştirmeyen herhangi bir optik darbe olarak tanımlanır. Bunlara, ortamda kırılmayan 

veya dağılmayan lokalize ışık darbeleri olarak atıfta bulunulur. Herhangi bir bozulma 

olmadan uzun mesafeler katedebilirler ve bu özellik soliton teorisini optik iletişim alanında 

çok faydalı kılar. Optik fiberde bulunan ve telekomünikasyon endüstrisinde optik sistemin 

performansını etkileyebilecek çeşitli etkenler vardır. Optik darbe yayılımı, darbe 

genişlemesi ve semboller arası girişim üreten lineer bir etki olarak tanımlanan ve basitçe 

GVD olarak adlandırılan grup hız dağılımından etkilenebilir. Tek modlu fiberlerde ortaya 

çıkan birçok doğrusal olmayan etki de vardır, bunlar kendiliğinden faz modülasyonu, 

Raman saçılması ve Kerr etkisidir. Bir ışık dalgasını yaymak için, ışığı iyi tanımlanmış bir 

yol boyunca hareket etmeye zorlamak için bir kırılma indisi varyasyonu uygulayarak ışık 

huzmesini optik fiber veya başka bir ortamda yönlendirmek için dalga kılavuzu 

kullanılabilir. Günümüzde internet sektörü, Twitter, Facebook ve Google da dahil olmak 

üzere telekomünikasyon sektörü optik solitonların yardımıyla çalışmaktadır (Milović ve 

Biswas, 2013). 

2.2.1. Optik soliton tipleri 

(i) Parlak soliton 

Parlak soliton, kendisiyle ilişkili dalganın genliğinde kısa süreli bir artışla 

oluşturulan lokalize bir yüzeydir. Parlak solitonlar, taşıyıcının kararsızlığından kaynaklanır 

ve bu kararlı olmayan durumun nedeni uzun dalga modülasyonudur. Dağılım alanında, 

dalganın frekansı ve kırılma indisi ters orantılıdır, bu nedenle frekans arttıkça kırılma indisi 

azalır ve geçici parlak solitonlar elde edilebilir (Hasegawa ve Tappert, 1973). Normal 

dağılım bölgesinde, optik fiberlerdeki nonlineer etkenler solitonların oluşumunu etkiler. 

Optik fiberlerde, grup hız dağılımı, kararsızlığı nedeniyle düzensiz olan sabit genlik 

dalgasına sahiptir. Parlak solitonlar, sekant hiperbolik grafiği temsil eder. Matematiksel 

olarak, parlak solitonlar 𝜁 = 𝐵(𝑡̂ − 𝜇𝑧) olmak üzere 

 

𝑣(𝑧, 𝑡̂) = 𝜆 sech𝑝ζ                                                                                                                             (1) 

 

şeklinde tanımlanır (Biswas vd., 2012). Burada 𝑣(𝑧, 𝑡̂) solitonun 𝑡̂ zamanına ve 𝑧 

mesafesine bağlı genliği, 𝜇 soliton hızı, 𝜆 yer değiştirme (𝑧 =  0 ve 𝑡̂ = 0’da maksimum), 

𝐵 ters soliton genişliği ve 𝑝 denklemin çıkarılması sırasında belirlenen bilinmeyendir. 
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(ii) Koyu soliton 

Koyu solitonlar, ilk kez 1987’de P. Emplit ve ark. (Emplit vd., 1987) tarafından 

çalışıldı. Onlar normal darbe kısa bir süre için sıfıra atladığında ve orijinal konumuna geri 

döndüğünde koyu solitonların üretildiğini gözlemlediler. Bunlar kendileriyle ilişkili 

dalgaların genliğinde kısa süreli bir azalmanın yarattığı lokalize dalgalardır ve ayrıca 

taşıyıcı dalga kararlı olduğunda da ortaya çıkarlar. 

Bu tür solitonlar yoğunluk düşüşleri olarak gösterilebildiğinden, sürekli dalga arka 

planında koyu soliton bulunur. Kendi kendine odaklanmayan nonlineer durumlarda, koyu 

solitonlar ortaya çıkar. Sürekli kararlı arka planları nedeniyle, bu solitonlar nonlineer 

fiberden geçen darbelerde küçük boşluklar oluşturur. Topolojik dalgalar ve şok dalgaları 

koyu solitonlar kullanılarak incelenir. Bu tür solitonlar çok yüksek hızda yayılırlar ve hızla 

enerji kazanıp kaybedebilirler. Kerr olmayan malzemelerin varlığında koyu soliter dalgalar 

kararsız dalgalara dönüşür ve teğet hiperbolik grafiği oluştururlar. 

Matematiksel olarak, koyu solitonlar 𝑛 > 0  ve  𝜁 = 𝐵(𝑡̂ − 𝜇𝑧) olmak üzere aşağıdaki gibi 

tanımlanır (Bekir vd., 2014): 

𝑣(𝑧, 𝑡̂) = 𝜆 tanh𝑛ζ.                                                                                                                           (2) 

Burada 𝑣(𝑧, 𝑡̂) solitonun 𝑡̂ zamanına ve 𝑧 mesafesine bağlı genliği, 𝜇 soliton hızı, 𝜆 yer 

değiştirme (𝑧 =  0 ve 𝑡̂ = 0’da maksimum), 𝐵 ters soliton genişliği ve 𝑛 denklemin 

çıkarılması sırasında belirlenen bilinmeyendir. 

(iii) Tekil soliton 

Nonlineer oluşum denklemleri alanında, tekil solitonlar bol karakteristiktedir ve 

çözümleri, belirli koşullar altında Rouge dalgalarının oluşumuna neden olan sivri uçlar 

şeklinde gösterilebilir. 

Rosenau-KdV denklemini kullanarak Razborova ve ark. (Razborova vd., 2014) tekil 

solitonları, korunum yasalarını ve şok dalgaları buldular. 

 

Tekil bir soliton bulmak için 

 

𝑣(𝜁) = 𝐵 csch𝑛𝜁                                                                                                                                (3) 
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formunda ansatz uygulanır. Burada 𝐵 sıfırdan farklı keyfi bir sabiti gösterir ve 𝑛, daha 

sonra belirlenecek olan bir bilinmeyendir. 

 

(iv) Durağan soliton 

Hareketsiz duruyormuş gibi görünen ve üzerinde mevcut olan parçacıkların 

sabitlenmiş yerlerinde titreştiği dalga, durağan veya duran dalga olarak bilinir. NLS 

denkleminin durağan çözümü, bu NLS denkleminin çözümü zıt yönde hareket eden ve 

belirli dalga boyunda birbiriyle çarpışan iki özdeş dalga biçiminde olduğunda ortaya çıkar. 

NLDS denkleminin lokalize edilmiş durağan soliton çözümleri 

 

𝑣(𝑥, 𝑡) = 𝜙(𝑥)𝑒𝑖𝜆𝑡                                                                                                                            (4) 

 

şeklindedir. Burada 𝜆 bir sabittir ve 𝜙 fonksiyonu sadece 𝑥 bağımsız değişkenine bağlıdır. 

Biswas ve arkadaşları (Biswas ve Khalique, 2011), NLS denkleminin durağan çözümlerini 

elde ettiler. 
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3. NONLİNEER SCHRÖDİNGER DENKLEMİ 

 

Bir optik fiber boyunca ışık darbesinin yayılmasını yöneten denklem, NLS 

denklemi olarak bilinir. Bu denklem, nonlineer optik, plazma fiziği ve akışkanlar dinamiği 

dahil olmak üzere matematiksel fiziğin sayısız alanında önemli bir rol oynar. NLS 

denklemi, normalde integre edilemeyen nonlineer bir kısmi diferansiyel denklemdir. Bu 

denklemi integrallenemez kılan, yalnızca onda bulunan nonlineer terim değildir, aynı 

zamanda yüksek dereceli dağılım da integrallenebilirliğini etkiler. Bu denklem, daha sonra 

tartışılacak olan farklı nonlineerlik türleri için soliton çözümlerine yardımcı olur. NLS 

denklemi genellikle aşağıdaki denklemle tanımlanır (Biswas ve Konar, 2006): 

 

𝑖𝑣𝑡 +
1

2
𝑣𝑥𝑥 + 𝐹(|𝑣|2)𝑣 = 0.                                                                                                           (5) 

 

Yukarıdaki denklemde 𝐹, reel değerli fonksiyonu temsil eder ve 𝑣, 𝑥 ve 𝑡 bağımsız 

değişkenlerine bağlıdır. İlk terim zamana göre gelişim terimini temsil ederken, ikinci terim 

grup hız dağılımından kaynaklanmaktadır ve üçüncü terim nonlineer terimin varlığını 

göstermektedir. Bu denklem optik fiberden geçen kısa darbeyi bulmak için kullanılır ve 

pikosaniyelik ışık darbelerinin araştırılması için iki faktör olan grup hız dağılımı ve 

kendiliğinden faz modülasyonu NLS denklemine dahil edilmiştir (Azzouzi vd., 2009). Katı 

çekirdekli fotonik kristal fiberlerden geçen optik darbeleri incelemek için üçüncü 

mertebeden dağılım, Raman öz frekans kaymaları ve kendiliğinden dikleşme gibi bazı 

nonlineer etkilere sahip daha yüksek dereceli NLS denklemi kullanılır (Azzouzi vd., 2015). 

Nonlineer optik fiberlerde çeşitli soliton yayılımlarını incelemeye yardımcı olan bu tür 

denklemler ayrıca nonlineer oluşum denklemleri olarak da bilinir. 

3.1. Nonlineerliğin Sınıflandırılması 

(5) denklemindeki 𝐹 fonksiyonunun şimdiye kadar bilinen çeşitli nonlineerlik 

türleri vardır. Bunlar aşağıdaki gibi listelenir: 

1. Kerr yasası: 

Bu nonlineerlik durumu 

𝐹(𝑠) = 𝑠                                                                                                                                 (6) 
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iken oluşur (Biswas ve Konar, 2006). Nonlineer optikte meydana gelen 

nonlineerliğin en basit formu olarak tanımlanabilir. Nonlineerliğin bu türüne sahip 

NLS denklemi, ters saçılma dönüşümü yöntemi kullanılarak integrallenebilir. Optik 

fiberlerin çoğunda Kerr yasası nonlineerliği gözlemlenebilir. 

 

2. Kuvvet yasası: 

 

Kuvvet yasası nonlineerliği 

 

𝐹(𝑠) = 𝑠𝑚                                                                                                                              (7) 

 

şeklinde formüle edilir (Biswas ve Konar, 2006). Nonlineerliğin bu türü, nonlineer 

plazma fiziğinde ve nonlineer optikte ortaya çıkar. Nonlineerliğin bu durumunda, 

dalga parçalanmasından kaçınmak için 0 < 𝑛 < 2 olması esastır. Yarı iletkenler 

kuvvet yasası nonlineerliği de sergilerler. 

 

 

3. Kübik-kuintik yasası (parabolik yasası): 

            Parabolik yasası nonlineerliği,  𝑏1 ve 𝑏2 sıfırdan farklı sabitler olmak üzere, 

𝐹(𝑠) = 𝑏1𝑠 + 𝑏2𝑠2                                                                                                 (8) 

 

ile verilir (Biswas ve Konar, 2006). Bu nonlineerlik, parabolik yasası olarak da 

bilinir. Nonlineerliğin bu türü, Langmuir dalgaları ile iyon-akustik dalgalar 

arasındaki bağlantının değerlendirilmesinde ortaya çıkar. 

 

4. Çift kuvvet yasası: 

            Çift-kuvvet yasası nonlineerliği, 𝑏1 ve 𝑏2 sıfırdan farklı sabitler olmak üzere, 

  

𝐹(𝑠) = 𝑏1𝑠𝑚 + 𝑏2𝑠2𝑚                                                                                                        (9) 

 

biçiminde yapılanır (Biswas ve Konar, 2006). Bu nonlineerlik, LiNbO3 gibi 

fotovoltaik-fotorefraktif materyallerdeki solitonları tanımlamak için temel model 

olarak hizmet etmektedir. 

 

5. Kuadratik-kübik yasası: 

            Kuadratik-kübik yasası,  𝑏1 ve 𝑏2 sabitler olmak üzere, 

𝐹(𝑠) = 𝑏1√𝑠 + 𝑏2𝑠                                                                                                                      (10) 
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iken oluşur (Fujioka vd., 2011). Bu yasa, ilk olarak,  2011 yılında ortaya çıktı ve 

kaotik fenomenlerin incelenmesinde görüldü. 

 

6. Logaritma yasası: 

Bu nonlineerlik durumunda (Biswas ve Konar, 2006) 

𝐹(𝑠) = ln𝑠.                                                                                                                                       (11) 

 

Böyle bir yasanın avantajı, bu tip nonlineer ortamın, solitonları dağılmadan 

koruyan soliton radyasyonu üretmemesidir. Bu durum yukarıda tartışılan nonlineer 

yasalara kıyasla bu ortamın ek bir avantajıdır. 

 

7. Anti-kübik yasası: 

 

Bu yasa, ilk olarak, 2003 yılında ortaya çıktı (Fedele vd., 2003; Triki vd., 2016). 

Anti-kübik yasası,  𝑏1 ve 𝑏2 ve  𝑏3  sabitler olmak üzere 

 

𝐹(𝑠) =
𝑏1

𝑠2
+ 𝑏2𝑠 + 𝑏3𝑠2                                                                                                                (12) 

 

iken oluşur.  

 

8. Kübik-kuintik-septik yasası: 

 

Bu yasa, parabolik yasası nonlineerliğinin bir genişlemesidir. Bu nonlineer ortam,  

𝑏1 ve 𝑏2 ve  𝑏3  sabitler olmak üzere 

             𝐹(𝑠) = 𝑏1𝑠 + 𝑏2𝑠2 + 𝑏3𝑠3                                                                                              (13) 

iken oluşur (Biswas ve Konar, 2006).  

 

9. Üçlü-kuvvet yasası: 

Bu nonlineer ortam, 𝑏1, 𝑏2 ve 𝑏3 sabitler olmak üzere 

             𝐹(𝑠) = 𝑏1𝑠𝑚 + 𝑏2𝑠2𝑚 + 𝑏3𝑠3𝑚                                                                                      (14) 

iken oluşur (Biswas ve Konar, 2006). Bu yasa, çift-kuvvet yasası nonlineerliğinin 

bir genişlemesi ve kübik-kuintik-septik yasası nonlineerliğinin bir 

genelleştirmesidir. 

 

10. Zayıf yerel-olmayan nonlineerliğe sahip parabolik yasası: 



11 

 

             Bu ortam, 𝑏1, 𝑏2 ve 𝑏3 sabitler olmak üzere 

             𝐹(𝑠) = 𝑏1𝑠 + 𝑏2𝑠2 + 𝑏3𝑠𝑥𝑥                                                                                             (15)   

ile verilir (Zhou vd., 2013). 

 

11. Genelleştirilmiş anti-kübik yasası: 

 

Bu yasa, anti-kübik yasası nonlineerliğinin bir genelleştirmesidir ve 𝑏1, 𝑏2, 

𝑏3 sabitler olmak üzere aşağıdaki gibi yapılanır (Biswas vd., 2019): 

               𝐹(𝑠) =
𝑏1

𝑠𝑚+1 + 𝑏2𝑠𝑚 + 𝑏3𝑠𝑚+1 .                                                                                               (16)          

12. Kübik-kuartik yasası: 

 

İlk olarak, 2021 yılında ortaya çıktı. Bu nonlineer ortam, 𝑏1 ve 𝑏2 sabitler olmak 

üzere 

             𝐹(𝑠) = 𝑏1𝑠 + 𝑏2𝑠
3

2                                                                                                             (17)                                                                  

şeklinde formüle edilir (Sonmezoglu vd., 2021).   

 

13. Genelleştililmiş kübik-kuartik yasası: 

 

Bu yasa  kübik-kuartik yasasının bir genelleştirmesidir ve 𝑏1 ve 𝑏2 sabitler olmak 

üzere 

𝐹(𝑠) = 𝑏1𝑠𝑚 + 𝑏2𝑠
3𝑚

2                                                                                                        (18) 

 

biçiminde yapılanır (Sonmezoglu vd., 2021). 
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4. GENELLEŞTİRİLMİŞ 𝑮′/𝑮-AÇILIM YÖNTEMİ 

Son zamanlarda, Wang ve diğerleri (Wang vd., 2008), nonlineer oluşum 

denklemlerinin hareket eden dalga çözümlerini araştırmak için 𝐺′ 𝐺⁄ −açılım yöntemi adı 

verilen basit bir yöntem sunmuşlardır. Burada 𝐺 = 𝐺(𝜉), 𝐺′′(𝜉) + 𝜆𝐺′(𝜉) + 𝜇 𝐺(𝜉) =

0 ikinci mertebeden lineer adi diferansiyel denklemini sağlar ve 𝜆, 𝜇 keyfi sabitlerdir. Daha 

fazla detay için bkz. (Zayed vd., 2009; Zayed, 2009; Zhang vd., 2008a, 2008b). 

Bu çalışmada, genelleştirilmiş 𝐺′ 𝐺⁄ −açılım yöntemi olarak adlandırılan alternatif bir 

yaklaşım kullanıldı. Bu yöntemin ana fikri, nonlineer diferansiyel denklemlerin hareket 

eden dalga çözümlerinin 𝐺′ 𝐺⁄ ’de bir polinom ile ifade edilebildiğidir, burada 𝐺 = 𝐺(𝜉), 

ikinci mertebeden lineer adi diferansiyel denklemi yerine [𝐺′(𝜉)]2 = 𝑒2𝐺4(𝜉) + 𝑒1𝐺2(𝜉) +

𝑒0,  Jacobi eliptik denklemini sağlar. Burada 𝜉 = 𝑥 + 𝑦 + 𝑧 − 𝑉𝑡 ve 𝑒2, 𝑒1, 𝑒0, 𝑉  keyfi 

sabitler iken  ′ =
𝑑

𝑑𝜉
  şeklinde tanımlanır. Bu polinomun derecesi, verilen nonlineer 

denklemlerde görülen en yüksek mertebeden türevler ile nonlineer terimler arasındaki 

homojen denge dikkate alınarak belirlenebilir. Bu polinomun katsayıları, önerilen 

yöntemin kullanılması sürecinden kaynaklanan bir dizi cebirsel denklemin çözülmesiyle 

elde edilebilir. Bu yaklaşım, çok sayıda nonlineer kırılma indisi yapılarına sahip nonlineer 

kromatik dağılım ile çalışılan kompleks GL denkleminin durağan soliton çözümlerinin 

oluşturulmasında önemli bir rol oynayacaktır. 

Genelleştirilmiş 𝐺′ 𝐺⁄ −açılım yönteminin tanımı aşağıdaki gibi verilir (Zayed, 2009; 

Malik vd., 2012; Yalçı ve Ekici, 2022): 

Nonlineer kısmi diferensiyel denklemin 

 

𝐹(𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑦, 𝑢𝑧 , 𝑢𝑡𝑡 , 𝑢𝑥𝑡 , 𝑢𝑥𝑥, 𝑢𝑥𝑦, 𝑢𝑦𝑦, 𝑢𝑦𝑡, 𝑢𝑧𝑧 , 𝑢𝑧𝑡 , 𝑢𝑧𝑥, 𝑢𝑧𝑦, . . . ) = 0                          (19)  

biçiminde verildiğini varsayalım.  Burada 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) bilinmeyen bir fonksiyondur, 𝐹 

ise 𝑢(𝑥, 𝑦, 𝑧, 𝑡) ve onun kısmi türevlerinde en yüksek mertebeli türevlerin ve nonlineer 

terimlerin yer aldığı bir polinomdur. Genelleştirilmiş 𝐺′/𝐺 −açılım yönteminin ana 

adımları aşağıdaki gibi sunulur: 

1. Adım: Hareket eden dalga değişkeni   

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝜉),      𝜉 = 𝑥 + 𝑦 + 𝑧 − 𝑉𝑡                                                                              (20)  
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ile verilir. Burada 𝑉 bir sabittir. (20) denklemi, (19) denkleminde yazılarak, 𝑢 = 𝑢(𝜉) için 

(19) denklemi  

𝑃(𝑢, 𝑢′, 𝑢′′, 𝑢′′′, . . . ) = 0                                                                                                                (21)   

formunda bir adi diferansiyel denkleme indirgenir.  

2. Adım: (21) denkleminin çözümünün 𝐺′/𝐺’de bir polinom ile aşağıdaki gibi ifade 

edilebildiğini varsayalım:  

𝑢(𝜉) = ∑

𝑁

𝑖=0

𝛼𝑖 (
𝐺′

𝐺
)

𝑖

.                                                                                                                     (22) 

Burada 𝐺 = 𝐺(𝜉) fonksiyonu 

[𝐺′(𝜉)]2 = 𝑒2𝐺4(𝜉) + 𝑒1𝐺2(𝜉) + 𝑒0                                                                                          (23) 

Jacobi eliptik denklemini sağlar. Burada 𝛼𝑖 , 𝑒2, 𝑒1, 𝑒0  𝑣𝑒  𝑉, 𝛼𝑁 ≠ 0 daha sonra 

belirlenecek keyfi sabitlerdir. 𝑁 pozitif tam sayısı, (19) veya (21) denkleminde görülen en 

yüksek mertebeli türevler ile nonlineer terimler arasındaki homojen denge dikkate alınarak 

belirlenebilir. Daha net bir ifadeyle, 𝑢(𝜉)’nin derecesini 𝐷[𝑢(𝜉)] = 𝑁 olarak tanımlanır ve 

bu takdirde diğer ifadelerin derecesi aşağıdaki gibi verilir:   

𝐷 [
𝑑𝑞𝑢

𝑑𝜉𝑞
] = 𝑁 + 𝑞,      𝐷 [𝑢𝑝 (

𝑑𝑞𝑢

𝑑𝜉𝑞
)

𝑠

] = 𝑁𝑝 + 𝑠(𝑞 + 𝑁).                                                      (24) 

Böylece, (22) denklemindeki 𝑁’nin değeri bulunabilir.  

3. Adım: (22) denklemi (21) denkleminde yerine koyularak ve (23) denklemi kullanılarak, 

𝐺𝑗(𝜉), 𝐺′(𝜉), 𝐺𝑗(𝜉)(𝑗 = ±1, ±2, . . . ) cinsinden polinomlar elde edilir. Elde edilen 

polinomların her bir katsayısı sıfıra eşitlenerek, 𝛼𝑖, 𝑒2, 𝑒1, 𝑒0  𝑣𝑒  𝑉 için bir dizi cebirsel 

denklem bulunur.  

4. Adım:  (23) denkleminin genel çözümleri iyi bilindiğinden (bkz. Ek-A), 𝛼𝑖, 𝑉 ve (23) 

denkleminin genel çözümü (22) denkleminde yerine konulduğunda, (19) ile verilen 

nonlineer kısmi diferansiyel denklemin birçok hareket eden dalga çözümü çıkarılır. 
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5. ANA MODEL 

Bu çalışmada incelenecek olan kompleks GL denkleminin boyutsuz formu  

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑛𝑞)𝑥𝑥 + 𝑏𝐹(|𝑞|2)𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞                   (25)                                                                                                                                   

ile verilir (Biswas, 2009, 2018; Triki vd., 2012; Mirzazadeh vd., 2016; Arnous vd., 2017; 

Biswas ve Alqahtani, 2017, Biswas vd., 2018a, 2018b, 2021a, 2021b; Arshed vd., 2019; 

Das vd., 2019; Yildirim vd., 2020a, 2020b; Zayed vd., 2020, 2021;  Yan vd., 2020; Yalçı 

ve Ekici, 2022). Burada 𝑎, 𝑏, 𝛼, 𝛽 ve 𝛾 sabitlerdir ve 𝐹 nonlineer fonksiyonu temsil eder. 

İlk terim lineer gelişim terimini temsil ederken, 𝑎 nın katsayısı nonlineer kromatik 

dağılımdır ve üçüncü terim genelleştirilmiş nonlineer terimi açıklar. 𝛼, 𝛽 ve 𝛾 terimleri, 

pertürbasyon etkilerinden kaynaklanmaktadır; özellikle 𝛾, detuning etkisinden gelir. Ayrıca 

(25) ile verilen modelde bağımsız değişkenler, sırasıyla uzaysal ve zamansal koordinatlar 

olan 𝑥 ve 𝑡 dir. 𝑞(𝑥, 𝑡) bağımlı değişkeni dalga profilini temsil eden kompleks değerli bir 

fonksiyondur, 𝑞∗(𝑥, 𝑡) fonksiyonu 𝑞(𝑥, 𝑡) fonksiyonunun eşleniğini gösterir ve son olarak 

𝑖 = √−1. 

(25) denkleminde, 𝐹 gerçek değerli bir cebirsel fonksiyondur ve kompleks 𝐹(|𝑞|2)𝑞: 𝐶 →

𝐶 fonksiyonunun düzgünlüğüne sahip olmak gereklidir. Kompleks 𝐶 düzlemi iki boyutlu 

bir 𝑅2 lineer uzay olarak göz önüne alınırsa, 𝐹(|𝑞|2)𝑞 fonksiyonu 𝑘 kez sürekli 

türevlenebilirdir, yani 

𝐹(|𝑞|2)𝑞 ∈ ⋃

∞

𝑚,𝑛=1

 𝐶𝑘((−𝑛, 𝑛) × (−𝑚, 𝑚); 𝑅2)                                                                                    (26) 

                                                                                                                                

(25) denklemi, Painleve integrallenebilirlik testini geçemediği için klasik ters saçılma 

dönüşümü yöntemiyle integrallenemeyen nonlineer bir kısmi diferansiyel denklemdir. 
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6. MATEMATİKSEL ANALİZ 

Ele alınan modele durağan soliton çözümler elde etmek için, çözüm hipotezi 

aşağıdaki gibi alınır (Biswas ve Khalique, 2011, 2013; Biswas vd., 2018, 2021; Ekici vd., 

2018, 2021; Sonmezoglu vd., 2021; Sucu vd., 2021; Adem vd., 2020a, 2020b, 2021): 

𝑞 = 𝜙(𝑥)𝑒𝑖𝜆𝑡.                                                                                                                                   (27)               

Burada, λ sabiti dalga sayısını temsil eder ve 𝜙 fonksiyonu sadece 𝑥 bağımsız değişkenine 

bağlıdır. (27) denklemi, (25) denkleminde yazılarak  

−(𝛾 + 𝜆)𝜙2 + 𝑏𝜙2𝐺(𝜙2) − 2(𝛼 − 2𝛽)(𝜙′)2 + 𝑎𝑛(𝑛 + 1)𝜙𝑛(𝜙′)2 − 2𝛼𝜙𝜙′′ 

 +𝑎(𝑛 + 1)𝜙𝑛+1𝜙′′ = 0                                                                                                                              (28)  

denklemine ulaşılır. (28) denklemi, sonraki alt bölümlerde nonlineer ortamın tipine göre 

analiz edilecektir.  

6.1. Kerr Yasası 

Kerr yasası durumunda,  (25) denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑛𝑞)𝑥𝑥 + 𝑏|𝑞|2𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞                     (29) 

halini alır. (29) denklemini integrallemek için 𝑛 = 1 seçilmesi gerekir. Bu takdirde, (29) 

denklemi  

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑞)𝑥𝑥 + 𝑏|𝑞|2𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞                         (30) 

biçiminde sadeleşir ve (28) denklemi  

−(𝛾 + 𝜆)𝜙2 + 𝑏𝜙4 − 2(𝛼 − 2𝛽)(𝜙′)2 + 2𝑎𝜙(𝜙′)2 − 2𝛼𝜙𝜙′′ + 2𝑎𝜙2𝜙′′ = 0            (31) 

denklemine indirgenir. Bu bölümde, (30) ile verilen modele durağan soliton çözümler 

ortaya çıkarmak için genelleştirilmiş 𝐺′/𝐺-açılım yöntemi uygulanacaktır. Balans 
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prensibinden, (31) denklemindeki 𝜙4 ile 𝜙(𝜙′)2 veya 𝜙2𝜙′′  terimleri dengelenerek 𝑁 = 2 

bulunur. Bu durumda formal çözüm  

𝜙(𝑥) = 𝛼0 + 𝛼1 (
𝐺′

𝐺
) + 𝛼2 (

𝐺′

𝐺
)

2

                                                                                             (32) 

şeklini alır. (32) denklemi, (31) denkleminde yerine yazılarak ve (23) denklemi 

kullanılarak, 𝐺𝑗, 𝐺′𝐺𝑗 (𝑗 = ±1, ±2, … ) cinsinden bir polinom elde edilir. Elde edilen 

polinomun her bir katsayısı sıfıra eşitlenerek 𝛼𝑖, 𝑒2, 𝑒1, 𝑒0 için bir cebirsel denklem sistemi 

bulunur. Daha sonra, ortaya çıkan sistemin çözülmesi ile aşağıdaki çözüm setleri elde 

edilir: 

𝑏 =
80𝑎2𝑒1

𝛼
,    𝛼0 = 0,    𝛼1 = 0,    𝛼2 = −

𝛼

4𝑎𝑒1
,    𝛽 =

3𝛼

4
,    𝜆 = −𝛾 + 5𝛼𝑒1 +

12𝛼𝑒0𝑒2

𝑒1
.     (33) 

                                                                                                                                 

𝑏 = −
20𝑎2𝑒1

𝛼
,    𝑒0 = 0,    𝛼0 = −

𝛼

𝑎
,    𝛼1 = 0,    𝛼2 =

𝛼

𝑎𝑒1
,    𝛽 =

𝛼

4
,    𝜆 = −𝛾 − 12𝛼𝑒1.       (34) 

                                                                                                                                        

(33) denklemi, (32) denkleminde yerine konularak ve (27) denklemi kullanılarak  

𝑞(𝑥, 𝑡) = −
𝛼

4𝑎𝑒1
(

𝐺′

𝐺
)

2

exp [𝑖 (−𝛾 + 5𝛼𝑒1 +
12𝛼𝑒0𝑒2

𝑒1
) 𝑡]                                                (35) 

 

elde edilir. Bu takdirde, (23) denkleminin Ek-A da verilen çözümleri kullanılarak, ele 

alınan model için aşağıdaki durağan çözümler çıkarılır:  

I. 𝑒0 = 1, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 𝑘2 ise 

𝑞(𝑥, 𝑡) =
𝛼

4𝑎(𝑘2 + 1)
cs2𝑥dn2𝑥exp [−𝑖 (𝛾 + 5𝛼(𝑘2 + 1) +

12𝛼𝑘2

𝑘2 + 1
) 𝑡]                        (36) 

  veya 

𝑞(𝑥, 𝑡) =
𝛼(1 − 𝑘2)2

4𝑎(𝑘2 + 1)
sc 2𝑥nd2𝑥exp [−𝑖 (𝛾 + 5𝛼(𝑘2 + 1) +

12𝛼𝑘2

𝑘2 + 1
) 𝑡].                       (37) 
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II. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2𝑘2 − 1, 𝑒2 = −𝑘2 için 

𝑞(𝑥, 𝑡) = −
𝛼

4𝑎(2𝑘2 − 1)
sc 2𝑥dn2𝑥exp [𝑖 (−𝛾 + 5𝛼(2𝑘2 − 1) +

12𝛼𝑘2(𝑘2 − 1)

2𝑘2 − 1
) 𝑡].            (38) 

                    

III. 𝑒0 = 𝑘2 − 1, 𝑒1 = 2 − 𝑘2, 𝑒2 = −1 iken 

𝑞(𝑥, 𝑡) = −
𝛼𝑘4

4𝑎(2 − 𝑘2)
sd2𝑥cn2𝑥exp [𝑖 (−𝛾 + 5𝛼(2 − 𝑘2) +

12𝛼(1 − 𝑘2)

2 − 𝑘2
) 𝑡] .         (39) 

              

IV. 𝑒0 = 𝑘2, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 1 olduğunda  

 

𝑞(𝑥, 𝑡) =
𝛼

4𝑎(𝑘2 + 1)
ds2𝑥cn2𝑥exp [−𝑖 (𝛾 + 5𝛼(𝑘2 + 1) +

12𝛼𝑘2

𝑘2 + 1
) 𝑡]                         (40) 

 veya 

𝑞(𝑥, 𝑡) =
𝛼(1 − 𝑘2)2

4𝑎(𝑘2 + 1)
sc 2𝑥nd2𝑥exp [−𝑖 (𝛾 + 5𝛼(𝑘2 + 1) +

12𝛼𝑘2

𝑘2 + 1
) 𝑡].                          (41) 

 

V. 𝑒0 = −𝑘2, 𝑒1 = 2𝑘2 − 1, 𝑒2 = 1 − 𝑘2 durumunda 

𝑞(𝑥, 𝑡) = −
𝛼

4𝑎(2𝑘2 − 1)
sc 2𝑥dn2𝑥exp [𝑖 (−𝛾 + 5𝛼(2𝑘2 − 1) +

12𝛼𝑘2(𝑘2 − 1)

2𝑘2 − 1
) 𝑡].            (42) 

  

VI. 𝑒0 = −1, 𝑒1 = 2 − 𝑘2, 𝑒2 = 𝑘2 − 1 ise 

𝑞(𝑥, 𝑡) = −
𝛼𝑘4

4𝑎(2 − 𝑘2)
sd2𝑥cn2𝑥exp [𝑖 (−𝛾 + 5𝛼(2 − 𝑘2) +

12𝛼(1 − 𝑘2)

2 − 𝑘2 ) 𝑡].                       (43) 

 

VII. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2 − 𝑘2, 𝑒2 = 1 için 

𝑞(𝑥, 𝑡) = −
𝛼

4𝑎(2 − 𝑘2)
ds2𝑥nc2𝑥exp [𝑖 (−𝛾 + 5𝛼(2 − 𝑘2) +

12𝛼(1 − 𝑘2)

2 − 𝑘2 ) 𝑡].                      (44) 
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VIII. 𝑒0 = 1, 𝑒1 = 2 − 𝑘2, 𝑒2 = 1 − 𝑘2 iken  

𝑞(𝑥, 𝑡) = −
𝛼

4𝑎(2 − 𝑘2)
dc2𝑥ns2𝑥exp [𝑖 (−𝛾 + 5𝛼(2 − 𝑘2) +

12𝛼(1 − 𝑘2)

2 − 𝑘2
) 𝑡] .        (45) 

     

IX. 𝑒0 = 1, 𝑒1 = 2𝑘2 − 1, 𝑒2 = 𝑘2(𝑘2 − 1) olduğunda 

𝑞(𝑥, 𝑡) = −
𝛼

4𝑎(2𝑘2 − 1)
cd4𝑥ns2𝑥exp [𝑖 (−𝛾 + 5𝛼(2𝑘2 − 1) +

12𝛼𝑘2(𝑘2 − 1)

2𝑘2 − 1
) 𝑡].             (46) 

  

X. 𝑒0 = 𝑘2(𝑘2 − 1), 𝑒1 = 2𝑘2 − 1, 𝑒2 = 1 durumunda 

𝑞(𝑥, 𝑡) = −
𝛼

4𝑎(2𝑘2 − 1)
cs2𝑥nd2𝑥exp [𝑖 (−𝛾 + 5𝛼(2𝑘2 − 1) +

12𝛼𝑘2(𝑘2 − 1)

2𝑘2 − 1
) 𝑡].             (47) 

   

XI. 𝑒0 =
1

4
, 𝑒1 =

1

2
(1 − 2𝑘2), 𝑒2 =

1

4
  ise  

𝑞(𝑥, 𝑡) = −
𝛼

2𝑎(1 − 2𝑘2)
ds2𝑥exp [𝑖 (−𝛾 +

5𝛼(1 − 2𝑘2)

2
+

3𝛼

2(1 − 2𝑘2)
) 𝑡].               (48) 

                        

XII. 𝑒0 =
1

4
(1 − 𝑘2), 𝑒1 =

1

2
(1 + 𝑘2), 𝑒2 =

1

4
(1 − 𝑘2) için 

𝑞(𝑥, 𝑡) = −
𝛼

2𝑎(1 + 𝑘2)
dc2𝑥exp [𝑖 (−𝛾 +

5𝛼(1 + 𝑘2)

2
+

3𝛼(1 − 𝑘2)2

2(1 + 𝑘2)
) 𝑡].                 (49) 

                            

XIII. 𝑒0 =
𝑘2

4
, 𝑒1 =

1

2
(𝑘2 − 2), 𝑒2 =

1

4
  iken 

𝑞(𝑥, 𝑡) = −
𝛼

2𝑎(𝑘2 − 2)
cs2𝑥exp [𝑖 (−𝛾 +

5𝛼(𝑘2 − 2)

2
+

3𝛼𝑘2

2(𝑘2 − 2)
) 𝑡].                       (50) 
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XIV. 𝑒0 =
𝑘2

4
, 𝑒1 =

1

2
(𝑘2 − 2), 𝑒2 =

𝑘2

4
  olduğunda 

𝑞(𝑥, 𝑡) =
𝛼

2𝑎(𝑘2 − 2)
dn2𝑥exp [𝑖 (−𝛾 +

5𝛼(𝑘2 − 2)

2
+

3𝛼𝑘4

2(𝑘2 − 2)
) 𝑡] .                          (51) 

Burada, (36) denkleminden (51) denklemine kadar olan çözümler, modelin Jacobi eliptik 

fonksiyon çözümlerini temsil eder.                                     

XV. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = −1 durumunda, durağan koyu optik soliton çözüm aşağıdaki 

gibi bulunur:  

𝑞(𝑥, 𝑡) = −
𝛼

4𝑎
tanh2𝑥exp[𝑖(−𝛾 + 5𝛼)𝑡].                                                                                (52) 

                

XVI. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1 ise, ele alınan denklem için durağan tekil optik soliton çözüm 

aşağıdaki gibi elde edilir:  

     

𝑞(𝑥, 𝑡) = −
𝛼

4𝑎
coth2𝑥exp[𝑖(−𝛾 + 5𝛼)𝑡].                                                                                (53) 

                                                           

XVII. 𝑒0 = 0, 𝑒1 = −1, 𝑒2 = 1 için, aşağıdaki periyodik dalga türetilir: 

𝑞(𝑥, 𝑡) =
𝛼

4𝑎
tan2𝑥exp[−𝑖(𝛾 + 5𝛼)𝑡].                                                                                       (54) 

XVIII. 𝑒0 = 0, 𝑒1 = −(1 + 𝑘2), 𝑒2 = 𝑘2 iken, Jacobi eliptik fonksiyon çözüm aşağıdaki gibi 

çıkarılır: 

𝑞(𝑥, 𝑡) =
𝛼

4𝑎(1 + 𝑘2)
cs2𝑥dn2𝑥exp[−𝑖(𝛾 + 5𝛼(1 + 𝑘2))𝑡].                                              (55) 

Benzer şekilde, (34) denklemi, (32) denkleminde yerine konularak ve (27) denklemi 

kullanılarak 

𝑞(𝑥, 𝑡) = {−
𝛼

𝑎
+

𝛼

𝑎𝑒1
(

𝐺′

𝐺
)

2

} exp[−𝑖(𝛾 + 12𝛼𝑒1)𝑡]                                                                            (56) 
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bulunur. Bu durumda, incelenen model için durağan çözümler aşağıdaki gibi listelenir: 

I. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = −1 ise, aşağıdaki durağan parlak optik soliton çözüm keşfedilir:       

𝑞(𝑥, 𝑡) = −
𝛼

𝑎
sech2𝑥exp[−𝑖(𝛾 + 12𝛼)𝑡].                                                                                (57) 

                                                                                                                                      

II. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1 için, durağan tekil optik soliton çözümün diğer formu 

bulunur: 

𝑞(𝑥, 𝑡) =
𝛼

𝑎
csch2𝑥exp[−𝑖(𝛾 + 12𝛼)𝑡].                                                                                             (58) 

                                                                      

III. 𝑒0 = 0, 𝑒1 = −1, 𝑒2 = 1 iken, aşağıdaki periyodik dalga elde edilir: 

𝑞(𝑥, 𝑡) = −
𝛼

𝑎
csc2𝑥exp[−𝑖(𝛾 − 12𝛼)𝑡].                                                                                   (59) 

                                                                         

IV. 𝑒0 = 0, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 𝑘2 olduğunda, Jacobi eliptik fonksiyonlar açısından  

çözüm aşağıdaki gibi türetilir:  

𝑞(𝑥, 𝑡) = {−
𝛼

𝑎
(1 +

cs2𝑥dn2𝑥

𝑘2+1
)} exp[−𝑖(𝛾 − 12𝛼(𝑘2 + 1))𝑡].                                              (60)      

6.2. Kuvvet Yasası                     

Kuvvet yasası nonlineerliği durumunda, (25) denklemi    

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑛𝑞)𝑥𝑥 + 𝑏|𝑞|2𝑚𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞                                 (61) 

    

denklemine çöker. (61) denkleminin integrasyonunu gerçekleştirmek için 𝑛 = 𝑚 seçilmesi 

gerekir, bu da (61) denkleminin 

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑚𝑞)𝑥𝑥 + 𝑏|𝑞|2𝑚𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞                                (62) 
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denklemine yoğunlaştığı anlamına gelir.  Bu yüzden, (28) ile verilen adi diferansiyel 

denklem 

 −(𝛾 + 𝜆)𝜙2 + 𝑏𝜙2𝑚+2 − 2(𝛼 − 2𝛽)(𝜙′)2 + 𝑎𝑚(𝑚 + 1)𝜙𝑚(𝜙′)2 − 2𝛼𝜙𝜙′′ 

 +𝑎(𝑚 + 1)𝜙𝑚+1𝜙′′ = 0                                                                                                                     (63)

                                                                                    

şeklinde sadeleşir. Kapalı form çözümler elde etmek için 

𝜙 = 𝜑
2

𝑚                                                                                                                                              (64) 

                                                     

dönüşümü kullanılır. Böylece (63) denklemi 

−𝑚2(𝛾 + 𝜆)𝜑2 + 𝑏𝑚2𝜑6 + 4(4𝛽 + 𝛼(𝑚 − 4))(𝜑′)2 + 2𝑎(𝑚2 + 3𝑚 + 2)𝜑2(𝜑′)2 

−4𝛼𝑚𝜑𝜑′′ + 2𝑎𝑚(𝑚 + 1)𝜑3𝜑′′ = 0                                                                                       (65)

  

halini alır. Balans prensibinden 𝑁 = 1 bulunur. Bu durumda, formal çözüm aşağıdaki gibi 

yapılanır: 

𝜑(𝑥) = 𝛼0 + 𝛼1 (
𝐺′

𝐺
).                                                                                                                  (66) 

(66) denklemi, (65) denkleminde yerine yazılarak ve (23) denklemi kullanılarak, 𝐺𝑗, 𝐺′𝐺𝑗 

(𝑗 = ±1, ±2, … ) cinsinden bir polinom elde edilir. Elde edilen polinomun her bir katsayısı 

sıfıra eşitlenerek 𝛼𝑖, 𝑒2, 𝑒1, 𝑒0 için bir cebirsel denklem sistemi bulunur. Daha sonra, ortaya 

çıkan sistemin çözülmesi ile aşağıdaki çözüm seti elde edilir:                                 
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𝑏 =
2𝑎2𝑒1(𝑚 + 1)3(3𝑚 + 2)

𝛼𝑚3
,    𝛼0 = 0,    𝛼1 =

1

𝑚 + 1
√−

𝛼𝑚

𝑎𝑒1
,

𝛽 = 𝛼 −
𝛼𝑚

4
,    𝛾 =

2𝛼𝑒1
2(3𝑚 + 2) + 8𝛼𝑒0𝑒2(𝑚 + 2) − 𝑒1𝜆𝑚(𝑚 + 1)

𝑒1𝑚(𝑚 + 1)
.

                         (67) 

   

(67) denklemi, (66) denkleminde yerine konularak ve (27) denklemi kullanılarak 

𝑞(𝑥, 𝑡) = {
1

𝑚 + 1
√−

𝛼𝑚

𝑎𝑒1
(

𝐺′

𝐺
)}

2

𝑚

𝑒𝑖𝜆𝑡                                                                                     (68) 

  

bulunur. Bu takdirde, ele alınan denklem için durağan çözümler aşağıdaki gibi çıkarılır:  

I. 𝑒0 = 1, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 𝑘2  ise  

𝑞(𝑥, 𝑡) = {
1

𝑚 + 1
√

𝛼𝑚

𝑎(𝑘2 + 1)
cs𝑥dn𝑥}

2

𝑚

𝑒𝑖𝜆𝑡                                                                         (69) 

                                                                 

veya 

𝑞(𝑥, 𝑡) = {
𝑘2 − 1

𝑚 + 1
√

𝛼𝑚

𝑎(𝑘2 + 1)
sc𝑥nd𝑥}

2

𝑚

𝑒𝑖𝜆𝑡 .                                                                       (70) 

                                                             

II. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2𝑘2 − 1, 𝑒2 = −𝑘2  için 

𝑞(𝑥, 𝑡) = {−
1

𝑚 + 1
√

𝛼𝑚

𝑎(1 − 2𝑘2)
sc𝑥dn𝑥}

2

𝑚

𝑒𝑖𝜆𝑡 .                                                                 (71) 
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III. 𝑒0 = 𝑘2 − 1, 𝑒1 = 2 − 𝑘2, 𝑒2 = −1  iken  

𝑞(𝑥, 𝑡) = {−
𝑘2

𝑚 + 1
√

𝛼𝑚

𝑎(𝑘2 − 2)
sd𝑥cn𝑥}

2

𝑚

𝑒𝑖𝜆𝑡.                                                                    (72) 

                                                                                                                                                     

IV. 𝑒0 = 𝑘2, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 1 olduğunda 

𝑞(𝑥, 𝑡) = {−
1

𝑚 + 1
√

𝛼𝑚

𝑎(𝑘2 + 1)
ds𝑥cn𝑥}

2

𝑚

𝑒𝑖𝜆𝑡                                                                     (73) 

                                                             

veya 

𝑞(𝑥, 𝑡) = {
1 − 𝑘2

𝑚 + 1
√

𝛼𝑚

𝑎(𝑘2 + 1)
sc𝑥nd𝑥}

2

𝑚

𝑒𝑖𝜆𝑡.                                                                       (74) 

                                                                 

V. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2 − 𝑘2, 𝑒2 = 1 durumunda  

 𝑞(𝑥, 𝑡) = {−
1

𝑚 + 1
√

𝛼𝑚

𝑎(𝑘2 − 2)
ds𝑥nc𝑥}

2

𝑚

𝑒𝑖𝜆𝑡.                                                                   (75) 

        

VI. 𝑒0 = 1, 𝑒1 = 2𝑘2 − 1, 𝑒2 = 𝑘2(𝑘2 − 1) ise 

𝑞(𝑥, 𝑡) = {
1

𝑚 + 1
√

𝛼𝑚

𝑎(1 − 2𝑘2)
cd2𝑥ns𝑥}

2

𝑚

𝑒𝑖𝜆𝑡.                                                                   (76) 

 

VII. 𝑒0 = 𝑘2(𝑘2 − 1), 𝑒1 = 2𝑘2 − 1, 𝑒2 = 1 için 
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𝑞(𝑥, 𝑡) = {−
1

𝑚 + 1
√

𝛼𝑚

𝑎(1 − 2𝑘2)
cs𝑥nd𝑥}

2

𝑚

𝑒𝑖𝜆𝑡 .                                                                 (77) 

 

VIII. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = −1 iken 

𝑞(𝑥, 𝑡) = {−
1

𝑚 + 1
√−

𝛼𝑚

𝑎
tanh𝑥}

2

𝑚

𝑒𝑖𝜆𝑡 .                                                                                (78) 

                                                                             

IX. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1 olduğunda 

𝑞(𝑥, 𝑡) = {−
1

𝑚 + 1
√−

𝛼𝑚

𝑎
coth𝑥}

2

𝑚

𝑒𝑖𝜆𝑡.                                                                                (79) 

                                                                             

X. 𝑒0 = 0, 𝑒1 = −1, 𝑒2 = 1 durumunda  

𝑞(𝑥, 𝑡) = {
1

𝑚 + 1
√

𝛼𝑚

𝑎
tan𝑥}

2

𝑚

𝑒𝑖𝜆𝑡 .                                                                                           (80) 

  

Burada, (69)-(77) denklemleri ile verilen çözümler, modelin Jacobi eliptik fonksiyon 

çözümleri iken, (78)-(80) çözümleri, sırasıyla durağan koyu optik soliton çözümü, durağan 

tekil optik soliton çözümü ve periyodik dalgayı temsil eder. 

6.3. Parabolik Yasası                                                                                    

Parabolik yasası nonlineerliği durumunda, (25) ile verilen GL denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑛𝑞)𝑥𝑥 + (𝑏1|𝑞|2 + 𝑏2|𝑞|4)𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞             (81) 

         



25 

 

denklemine çöker. (81) denkleminin  integrasyonunu gerçekleştirmek için 𝑛 = 2 seçilmesi 

gerekir, bu durumda (81) denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|2𝑞)𝑥𝑥 + (𝑏1|𝑞|2 + 𝑏2|𝑞|4)𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞              (82) 

         

denklemine yoğunlaşır. Bu takdirde (28) denklemi 

−(𝛾 + 𝜆)𝜙2 + 𝑏1𝜙4 + 𝑏2𝜙6 − 2(𝛼 − 2𝛽)(𝜙′)2 + 6𝑎𝜙2(𝜙′)2 − 2𝛼𝜙𝜙′′ + 3𝑎𝜙3𝜙′′ = 0      (83)    

halini alır. Balans prensibinden 𝑁 = 1 olur. Bu durumda formal çözüm 

𝜙(𝑥) = 𝛼0 + 𝛼1 (
𝐺′

𝐺
)                                                                                                                   (84) 

şeklini alır. (84) denklemi, (83) denkleminde yerine yazılarak ve (23) denklemi 

kullanılarak, 𝐺𝑗, 𝐺′𝐺𝑗 (𝑗 = ±1, ±2, … ) cinsinden bir polinom elde edilir. Elde edilen 

polinomun her bir katsayısı sıfıra eşitlenerek 𝛼𝑖, 𝑒2, 𝑒1, 𝑒0 için bir cebirsel denklem sistemi 

bulunur. Daha sonra, ortaya çıkan sistemin çözülmesi ile aşağıdaki çözüm seti elde edilir: 

 𝑏2 =
3𝑎(18𝑎𝑒1 − 𝑏1)

𝛼
,    𝛼0 = 0,    𝛼1 =

2√𝛼

√𝑏1 − 18𝑎𝑒1

,

𝛽 =
𝛼

2
,    𝛾 =

6𝑎(8𝛼𝑒1
2 + 16𝛼𝑒0𝑒2 − 3𝑒1𝜆) + 𝑏1(𝜆 − 4𝛼𝑒1)

18𝑎𝑒1 − 𝑏1
.

                                             (85) 

       

(85) denklemi, (84) denkleminde yerine konularak ve (27) denklemi kullanılarak 

         

𝑞(𝑥, 𝑡) =   
2√𝛼

√𝑏1 − 18𝛼𝑒1

(
𝐺′

𝐺
) 𝑒𝑖𝜆𝑡                                                                                             (86) 

                               

ifadesine ulaşılır. Bu takdirde, durağan çözümler aşağıdaki gibi listelenir: 

I. 𝑒0 = 1, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 𝑘2 ise 
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𝑞(𝑥, 𝑡) =
2√𝛼

√𝑏1 + 18𝛼(𝑘2 + 1)
cs𝑥dn𝑥𝑒𝑖𝜆𝑡                                                                              (87) 

                                                                   

veya           

 𝑞(𝑥, 𝑡) = −
2(1 − 𝑘2)√𝛼

√𝑏1 + 18𝛼(𝑘2 + 1)
sc𝑥nd𝑥𝑒𝑖𝜆𝑡.                                                                        (88) 

                                                                    

II. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2𝑘2 − 1, 𝑒2 = −𝑘2  için 

𝑞(𝑥, 𝑡) = −
2√𝛼

√𝑏1 − 18𝛼(2𝑘2 − 1)
sc𝑥dn𝑥𝑒𝑖𝜆𝑡.                                                                       (89) 

                                                                  

III. 𝑒0 = 𝑘2 − 1, 𝑒1 = 2 − 𝑘2, 𝑒2 = −1 iken 

𝑞(𝑥, 𝑡) = −
2𝑘2√𝛼

√𝑏1 − 18𝛼(2 − 𝑘2)
sd𝑥cn𝑥𝑒𝑖𝜆𝑡.                                                                           (90) 

IV. 𝑒0 = 𝑘2, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 1 olduğunda 

               

𝑞(𝑥, 𝑡) = −
2√𝛼

√𝑏1 + 18𝛼(𝑘2 + 1)
ds𝑥cn𝑥𝑒𝑖𝜆𝑡                                                                                   (91) 

                                                                 

veya 

𝑞(𝑥, 𝑡) =
2(1 − 𝑘2)√𝛼

√𝑏1 + 18𝛼(𝑘2 + 1)
sc𝑥nd𝑥𝑒𝑖𝜆𝑡 .                                                                               (92) 

                                                                     

V. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2 − 𝑘2, 𝑒2 = 1 durumunda 

𝑞(𝑥, 𝑡) = −
2√𝛼

√𝑏1 − 18𝛼(2 − 𝑘2)
ds𝑥nc𝑥𝑒𝑖𝜆𝑡.                                                                          (93) 
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VI. 𝑒0 = 1, 𝑒1 = 2𝑘2 − 1, 𝑒2 = 𝑘2(𝑘2 − 1) ise   

𝑞(𝑥, 𝑡) =
2√𝛼

√𝑏1 − 18𝛼(2𝑘2 − 1)
cd 2𝑥ns𝑥𝑒𝑖𝜆𝑡.                                                                        (94) 

 

VII. 𝑒0 = 𝑘2(𝑘2 − 1), 𝑒1 = 2𝑘2 − 1, 𝑒2 = 1 için 

𝑞(𝑥, 𝑡) = −
2√𝛼

√𝑏1 − 18𝛼(2𝑘2 − 1)
cs𝑥nd𝑥𝑒𝑖𝜆𝑡.                                                                       (95) 

 

VIII. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = −1  iken 

𝑞(𝑥, 𝑡) = −
2√𝛼

√𝑏1 − 18𝛼
tanh𝑥𝑒𝑖𝜆𝑡.                                                                                              (96) 

                                                                                          

IX. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1 olduğunda 

𝑞(𝑥, 𝑡) = −
2√𝛼

√𝑏1 − 18𝛼
coth𝑥𝑒𝑖𝜆𝑡.                                                                                              (97) 

                                                                                         

X.  𝑒0 = 0, 𝑒1 = −1, 𝑒2 = 1 durumunda 

𝑞(𝑥, 𝑡) =
2√𝛼

√𝑏1 + 18𝛼
tan𝑥𝑒𝑖𝜆𝑡.                                                                                                     (98) 

Burada, (87)-(95) çözümleri, Jacobi eliptik fonksiyon çözümleri temsil ederken, (96)-(98) 

çözümleri, sırasıyla durağan koyu optik soliton çözümü, durağan tekil optik soliton 

çözümü ve periyodik dalgayı işaret eder.                                                                                                

6.4. Çift Kuvvet Yasası 

Çift-kuvvet yasası nonlineerliği durumunda,  (25) denklemi 
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𝑖𝑞𝑡 + 𝑎(|𝑞|𝑛𝑞)𝑥𝑥 + (𝑏1|𝑞|2𝑚 +   𝑏2|𝑞|4𝑚)𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞     (99) 

halini alır. (99) denklemini integrallemek için 𝑛 = 2𝑚 seçilmesi gerekir. Bu durumda, (99) 

denklemi  

𝑖𝑞𝑡 + 𝑎(|𝑞|2𝑚𝑞)𝑥𝑥 + (𝑏1|𝑞|2𝑚 +   𝑏2|𝑞|4𝑚)𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞                  (100) 

biçiminde değişir ve (28) denklemi   

−(𝛾 + 𝜆)𝜙2 + 𝑏1𝜙2𝑚+2 + 𝑏2𝜙4𝑚+2 − 2(𝛼 − 2𝛽)(𝜙′)2 + 2𝑎𝑚(2𝑚 + 1)𝜙2𝑚(𝜙′)2 

−2𝛼𝜙𝜙′′ + 𝑎(2𝑚 + 1)𝜙2𝑚+1 𝜙′′  = 0                                                                                   (101) 

denklemine indirgenir. Aşağıda verilen   

 𝜙 = 𝜑
1

𝑚                                                                                                                                           (102) 

                                                                   

dönüşümü  yardımıyla (101) denklemi   

 

−𝑚2(𝛾 + 𝜆)𝜑2 + 𝑏1𝑚2𝜑4 + 𝑏2𝑚2𝜑6 + 2(𝛼(𝑚 − 2) + 2𝛽)(𝜑′)2 

+𝑎(2𝑚2 + 3𝑚 + 1)𝜑2(𝜑′)2 − 2𝑚𝛼𝜑𝜑′′ + 𝑎𝑚(2𝑚 + 1)𝜑3𝜑′′ = 0                             (103) 

       

denklemine dönüşür. Dengeleme prensibinden 𝑁 = 1 bulunur. Bu da formal çözümün 

𝜑(𝑥) = 𝛼0 + 𝛼1 (
𝐺′

𝐺
)                                                                                                                            (104) 

                                                   

şeklinde olacağı anlamına gelir. (104) denklemi, (103) denkleminde yerine yazılarak ve 

(23) denklemi kullanılarak, 𝐺𝑗, 𝐺′𝐺𝑗 (𝑗 = ±1, ±2, … ) cinsinden bir polinom elde edilir. 

Elde edilen polinomun her bir katsayısı sıfıra eşitlenerek 𝛼𝑖 , 𝑒2, 𝑒1, 𝑒0 için bir cebirsel 

denklem sistemi bulunur. Daha sonra, ortaya çıkan sistemin çözülmesi ile aşağıdaki çözüm 

seti elde edilir: 
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𝑏1 = −
4𝑏2𝛼𝑚

𝑎(6𝑚2 + 5𝑚 + 1)
+

2𝑎(2𝑚 + 1)2𝑒1

𝑚2
,    𝛼0 = 0,    𝛼1 =

√−𝑎(𝑚(6𝑚 + 5) + 1)

𝑚√𝑏2

,      

                                                                                                                                                                          (105)

𝛽 = 𝛼 −
𝛼𝑚

2
, 𝛾 =

𝑚3𝑏2(4𝛼𝑒1 − 𝑚𝜆) − (𝑚 + 1)(3𝑚 + 1)(2𝑎𝑚 + 𝑎)2(𝑒1
2 − 4𝑒0𝑒2)

𝑚4𝑏2
.                                    

 

  

(105) denklemi, (104) denkleminde yerine konularak ve (27) denklemi kullanılarak 

𝑞(𝑥, 𝑡) = {
√−𝑎(𝑚(6𝑚 + 5) + 1)

𝑚√𝑏2

(
𝐺′

𝐺
)}

1

𝑚

𝑒𝑖𝜆𝑡                                                                     (106) 

                               

elde edilir. Bu takdirde, çözümler aşağıdaki gibi keşfedilir: 

I. 𝑒0 = 1, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 𝑘2  ise 

𝑞(𝑥, 𝑡) = {
√−𝑎(𝑚(6𝑚 + 5) + 1)

𝑚√𝑏2

cs𝑥dn𝑥}

1

𝑚

𝑒𝑖𝜆𝑡                                                                  (107) 

                                                                

veya 

              

 𝑞(𝑥, 𝑡) = {−
(1 − 𝑘2)√−𝑎(𝑚(6𝑚 + 5) + 1)

𝑚√𝑏2

sc𝑥nd𝑥}

1

𝑚

𝑒𝑖𝜆𝑡.                                              (108) 

                                               

II. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2𝑘2 − 1, 𝑒2 = −𝑘2  için 

𝑞(𝑥, 𝑡) = {−
√−𝑎(𝑚(6𝑚 + 5) + 1)

𝑚√𝑏2

sc𝑥dn𝑥}

1

𝑚

𝑒𝑖𝜆𝑡.                                                            (109) 

                                                                 

III. 𝑒0 = 𝑘2 − 1, 𝑒1 = 2 − 𝑘2, 𝑒2 = −1  iken 
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𝑞(𝑥, 𝑡) = {−
𝑘2√−𝑎(𝑚(6𝑚 + 5) + 1)

𝑚√𝑏2

sd𝑥cn𝑥}

1

𝑚

𝑒𝑖𝜆𝑡.                                                       (110) 

                                                                    

IV. 𝑒0 = 𝑘2, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 1 olduğunda 

               

𝑞(𝑥, 𝑡) = {−
√−𝑎(𝑚(6𝑚 + 5) + 1)

𝑚√𝑏2

ds𝑥cn𝑥}

1

𝑚

𝑒𝑖𝜆𝑡                                                                  (111) 

                                                          

veya 

              

𝑞(𝑥, 𝑡) = {
(1 − 𝑘2)√−𝑎(𝑚(6𝑚 + 5) + 1)

𝑚√𝑏2

sc𝑥nd𝑥}

1

𝑚

𝑒𝑖𝜆𝑡.                                               (112) 

                    

                                                                        

V. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2 − 𝑘2, 𝑒2 = 1 durumunda 

𝑞(𝑥, 𝑡) = {−
√−𝑎(𝑚(6𝑚 + 5) + 1)

𝑚√𝑏2

ds𝑥nc𝑥}

1

𝑚

𝑒𝑖𝜆𝑡.                                                                 (113) 

                                                                 

VI. 𝑒0 = 1, 𝑒1 = 2𝑘2 − 1, 𝑒2 = 𝑘2(𝑘2 − 1) ise    

𝑞(𝑥, 𝑡) = {
√−𝑎(𝑚(6𝑚 + 5) + 1)

𝑚√𝑏2

cd2𝑥ns𝑥}

1

𝑚

𝑒𝑖𝜆𝑡.                                                             (114) 

 

VII. 𝑒0 = 𝑘2(𝑘2 − 1), 𝑒1 = 2𝑘2 − 1, 𝑒2 = 1 için 

𝑞(𝑥, 𝑡) = {−
√−𝑎(𝑚(6𝑚 + 5) + 1)

𝑚√𝑏2

cs𝑥nd𝑥}

1

𝑚

𝑒𝑖𝜆𝑡.                                                            (115) 
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VIII. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = −1 iken 

      

𝑞(𝑥, 𝑡) = {−
√−𝑎(𝑚(6𝑚 + 5) + 1)

𝑚√𝑏2

tanh𝑥}

1

𝑚

𝑒𝑖𝜆𝑡.                                                              (116) 

                                                                          

IX. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1 olduğunda 

𝑞(𝑥, 𝑡) = {−
√−𝑎(𝑚(6𝑚 + 5) + 1)

𝑚√𝑏2

coth𝑥}

1

𝑚

𝑒𝑖𝜆𝑡 .                                                               (117) 

                                                                                        

X. 𝑒0 = 0, 𝑒1 = −1, 𝑒2 = 1 durumunda 

𝑞(𝑥, 𝑡) = {
√−𝑎(𝑚(6𝑚 + 5) + 1)

𝑚√𝑏2

tan𝑥}

1

𝑚

𝑒𝑖𝜆𝑡 .                                                                           (118) 

Burada, (107)-(115) denklemlerinde bahsedilen çözümler, modelin Jacobi eliptik 

fonksiyon çözümlerini gösterirken, (116)-(118) çözümleri, sırasıyla durağan koyu optik 

soliton çözümü, durağan tekil optik soliton çözümü ve periyodik dalgayı temsil eder.                                                                                   

6.5. Kuadratik-Kübik Yasası             

Kuadratik-kübik yasası durumunda, (25) denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑛𝑞)𝑥𝑥 + (𝑏1|𝑞| + 𝑏2|𝑞|2)𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞             (119) 

        

halini alır. (119) denklemini integrallemek için 𝑛 = 1 seçilmesi gerekir. Bu takdirde, (119) 

denklemi    

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑞)𝑥𝑥 + (𝑏1|𝑞| + 𝑏2|𝑞|2)𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞               (120) 
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biçiminde değişir. Bu yüzden (28) ile verilen adi diferansiyel denklem 

−(𝛾 + 𝜆)𝜙2 + 𝑏1𝜙3 + 𝑏2𝜙4 − 2(𝛼 − 2𝛽)(𝜙′)2 + 2𝑎𝜙(𝜙′)2 − 2𝛼𝜙𝜙′′ + 2𝑎𝜙2𝜙′′ = 0      (121) 

                                                                                  

şeklinde sadeleşir. Dengeleme prensibinden balans sayısı, 𝑁 = 2 olarak belirlenir. 

Böylece, formal çözüm  

                                              

𝜙(𝑥) = 𝛼0 + 𝛼1 (
𝐺′

𝐺
) + 𝛼2 (

𝐺′

𝐺
)

2

                                                                                           (122) 

                                                                                    

şeklini alır. (122) denklemi, (121) denkleminde yerine yazılarak ve (23) denklemi 

kullanılarak, 𝐺𝑗, 𝐺′𝐺𝑗 (𝑗 = ±1, ±2, … ) cinsinden bir polinom elde edilir. Elde edilen 

polinomun her bir katsayısı sıfıra eşitlenerek 𝛼𝑖, 𝑒2, 𝑒1, 𝑒0 için bir cebirsel denklem sistemi 

bulunur. Daha sonra, ortaya çıkan sistemin çözülmesi ile aşağıdaki çözüm setleri elde 

edilir: 

𝑏1 = −
2𝛼𝑏2

5𝑎
+ 32𝑎𝑒1,    𝛼0 = 0,    𝛼1 = 0,    𝛼2 = −

20𝑎

𝑏2
,

𝛽 =
3𝛼

4
,    𝜆 =

𝑏2(8𝛼𝑒1 − 𝛾) + 240𝑎2(4𝑒0𝑒2 − 𝑒1
2)

𝑏2
.

                                                 (123) 

            

𝑒0 = 0,    𝛼0 =
20𝑎𝑒1

𝑏2
,    𝛼1 = 0,    𝛼2 = −

20𝑎

𝑏2
,

𝛽 =
5(𝑎(16𝑎𝑒1 + 𝑏1) + 𝛼𝑏2)

4𝑏2
,    𝜆 =

20𝑎𝑒1(16𝑎𝑒1 + 𝑏1) − 𝑏2(𝛾 − 4𝛼𝑒1)

𝑏2
.

                 (124) 

 

(123) denklemi, (122) denkleminde yerine konularak ve (27) denklemi kullanılarak 
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𝑞(𝑥, 𝑡) = −
20𝑎

𝑏2
(

𝐺′

𝐺
)

2

exp [𝑖 (
𝑏2(8𝛼𝑒1 − 𝛾) + 240𝑎2(4𝑒0𝑒2 − 𝑒1

2)

𝑏2
) 𝑡]                      (125) 

                                

elde edilir. Bu takdirde, ele alınan modele durağan çözümler aşağıdaki gibi bulunur:    

I. 𝑒0 = 1, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 𝑘2  ise 

𝑞(𝑥, 𝑡) = −
20𝑎

𝑏2
cs2𝑥dn2𝑥exp [−𝑖 (

𝑏2(8𝛼𝑘2 + 8𝛼 + 𝛾) + 240𝑎2(𝑘4 − 2𝑘2 + 1)

𝑏2
) 𝑡]           (126) 

                                                                   

veya 

              

𝑞(𝑥, 𝑡) = −
20𝑎(1 − 𝑘2)2

𝑏2

sc 2𝑥nd2𝑥exp [−𝑖 (
𝑏2(8𝛼𝑘2 + 8𝛼 + 𝛾) + 240𝑎2(𝑘4 − 2𝑘2 + 1)

𝑏2

) 𝑡].        (127) 

 

                                              

II. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2𝑘2 − 1, 𝑒2 = −𝑘2 için 

𝑞(𝑥, 𝑡) = −
20𝑎

𝑏2
sc 2𝑥dn2𝑥exp [𝑖 (

𝑏2(16𝛼𝑘2 − 8𝛼 − 𝛾) − 240𝑎2

𝑏2
) 𝑡] .                         (128) 

                                   

III. 𝑒0 = 𝑘2 − 1, 𝑒1 = 2 − 𝑘2, 𝑒2 = −1 iken 

𝑞(𝑥, 𝑡) = −
20𝑎𝑘4

𝑏2
sd2𝑥cn2𝑥exp [−𝑖 (

𝑏2(8𝛼𝑘2 − 16𝛼 + 𝛾) + 240𝑎2𝑘4

𝑏2
) 𝑡].             (129) 

                                                                  

IV. 𝑒0 = 𝑘2, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 1 olduğunda 

𝑞(𝑥, 𝑡) = −
20𝑎

𝑏2
ds2𝑥cn2𝑥exp [−𝑖 (

𝑏2(8𝛼𝑘2 + 8𝛼 + 𝛾) + 240𝑎2(𝑘4 − 2𝑘2 + 1)

𝑏2
) 𝑡]           (130) 
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veya 

𝑞(𝑥, 𝑡) = −
20𝑎(1 − 𝑘2)2

𝑏2

sc 2𝑥nd2𝑥exp [−𝑖 (
𝑏2(8𝛼𝑘2 + 8𝛼 + 𝛾) + 240𝑎2(𝑘4 − 2𝑘2 + 1)

𝑏2

) 𝑡].        (131) 

    

V. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2 − 𝑘2, 𝑒2 = 1 durumunda 

               

𝑞(𝑥, 𝑡) = −
20𝑎

𝑏2
𝑑𝑠2𝑥nc2𝑥exp [−𝑖 (

𝑏2(8𝛼𝑘2 − 16𝛼 + 𝛾) + 240𝑎2𝑘4

𝑏2
) 𝑡].                               (132) 

                                                                 

VI.  𝑒0 = 1, 𝑒1 = 2𝑘2 − 1, 𝑒2 = 𝑘2(𝑘2 − 1) ise     

𝑞(𝑥, 𝑡) = −
20𝑎

𝑏2
cd4𝑥ns2𝑥exp [𝑖 (

𝑏2(16𝛼𝑘2 − 8𝛼 − 𝛾) − 240𝑎2

𝑏2
) 𝑡].                                        (133) 

                                        

VII. 𝑒0 = 𝑘2(𝑘2 − 1), 𝑒1 = 2𝑘2 − 1, 𝑒2 = 1 için 

𝑞(𝑥, 𝑡) = −
20𝑎

𝑏2
cs2𝑥nd2𝑥exp [𝑖 (

𝑏2(16𝛼𝑘2 − 8𝛼 − 𝛾) − 240𝑎2

𝑏2
) 𝑡].                                        (134) 

                                        

VIII. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = −1 iken 

               

𝑞(𝑥, 𝑡) = −
20𝑎

𝑏2
tanh2𝑥exp [𝑖 (

𝑏2(8𝛼 − 𝛾) − 240𝑎2

𝑏2
) 𝑡].                                                               (135) 

                                                   

IX. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1 olduğunda  

𝑞(𝑥, 𝑡) = −
20𝑎

𝑏2
coth2𝑥exp [𝑖 (

𝑏2(8𝛼 − 𝛾) − 240𝑎2

𝑏2
) 𝑡].                                                               (136) 

                                                                                       

X.  𝑒0 = 0, 𝑒1 = −1, 𝑒2 = 1 durumunda  
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𝑞(𝑥, 𝑡) = −
20𝑎

𝑏2
tan2𝑥exp [−𝑖 (

𝑏2(8𝛼 + 𝛾) + 240𝑎2

𝑏2
) 𝑡].                                                              (137) 

                                                          

Burada, (126)-(134) denklemleri ile verilen çözümler, modelin Jacobi eliptik fonksiyon 

çözümlerini temsil ederken, (135)-(137) çözümleri, sırasıyla durağan koyu optik soliton 

çözüm, durağan tekil optik soliton çözüm ve periyodik dalgadır.  

Benzer şekilde, (124) denklemi, (122) denkleminde yerine konularak ve (27) denklemi 

kullanılarak 

𝑞(𝑥, 𝑡) = {
20𝑎𝑒1

𝑏2
−

20𝑎

𝑏2
(

𝐺′

𝐺
)

2

} exp [𝑖 (
20𝑎𝑒1(16𝑎𝑒1 + 𝑏1) − 𝑏2(𝛾 − 4𝛼𝑒1)

𝑏2
) 𝑡]                   (138) 

                                                     

elde edilir. Bu durumda, aşağıdaki durağan çözümler türetilir:  

I. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = −1 ise, durağan parlak optik soliton çözüm aşağıdaki gibi 

bulunur: 

𝑞(𝑥, 𝑡) =
20𝑎

𝑏2
sech2𝑥exp [𝑖 (

20𝑎(16𝑎 + 𝑏1) − 𝑏2(𝛾 − 4𝛼)

𝑏2
) 𝑡].                                                   (139) 

                                                

II. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1 iken, ele alınan denklem için durağan tekil optik soliton 

çözüm aşağıdaki gibi elde edilir: 

𝑞(𝑥, 𝑡) = −
20𝑎

𝑏2
csch2𝑥exp [𝑖 (

20𝑎(16𝑎 + 𝑏1) − 𝑏2(𝛾 − 4𝛼)

𝑏2
) 𝑡].                                               (140) 

                                                                        

III. 𝑒0 = 0, 𝑒1 = −1, 𝑒2 = 1 olduğunda, aşağıdaki periyodik dalga keşfedilir: 

𝑞(𝑥, 𝑡) = −
20𝑎

𝑏2
sec2𝑥exp [𝑖 (

20𝑎(16𝑎 − 𝑏1) − 𝑏2(𝛾 + 4𝛼)

𝑏2
) 𝑡].                                                 (141) 

                                                                        

6.6. Logaritma Yasası 
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Logaritma yasası durumunda, (25) denklemi  

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑛𝑞)𝑥𝑥 + 2𝑏𝑞ln|𝑞| =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞                              (142) 

denklemine indirgenir. Bu yüzden, (28) ile verilen adi diferansiyel denklem  

−(𝛾 + 𝜆)𝜙2 + 2𝑏𝜙2ln|𝜙| − 2(𝛼 − 2𝛽)(𝜙′)2 + 𝑎𝑛(𝑛 + 1)𝜙𝑛(𝜙′)2 − 2𝛼𝜙𝜙′′ 

+𝑎(𝑛 + 1)𝜙𝑛+1𝜙′′ = 0                                                                                                                             (143)                                                                                         

halini alır. Kapalı form çözümler çıkarmak için 

𝜙 = exp
1

𝜑
                                                                                                                                                     (144)                                                         

dönüşümü uygulanır. Böylece (143) denklemi  

2𝑏𝜑3 − (𝛾 + 𝜆)𝜑4 + (𝑎(𝑛 + 1)2𝑒
𝑛

𝜑 − 4𝛼 + 4𝛽) (𝜑′)2 − (𝑎(𝑛 + 1)𝑒
𝑛

𝜑 − 2𝛼) 𝜑2𝜑′′ 

+2 (𝑎(𝑛 + 1)𝑒
𝑛

𝜑 − 2𝛼) 𝜑(𝜑′)2 = 0                                                                                                       (145) 

denklemine dönüşür. 𝑛 = 0 iken (145) denkleminin integrasyonu gerçekleştirilebilir ve bu 

durumda (142) denklemi   

𝑖𝑞𝑡 + 𝑎𝑞𝑥𝑥 + 2𝑏𝑞ln|𝑞| =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞                                          (146) 

halini alır ve (145) denklemi de 

2𝑏𝜑3 − (𝛾 + 𝜆)𝜑4 + (𝑎 − 4𝛼 + 4𝛽)(𝜑′)2 + 2(𝑎 − 2𝛼)𝜑(𝜑′)2 − (𝑎 − 2𝛼)𝜑2𝜑′′ = 0         (147) 

  

olarak değişir. Balans prensibinden 𝑁 = 2 bulunur. Böylece formal çözüm 

𝜑(𝑥) = 𝛼0 + 𝛼1 (
𝐺′

𝐺
) + 𝛼2 (

𝐺′

𝐺
)

2

                                                                                                         (148) 

     

şeklini alır. (148) denklemi, (147) denkleminde yerine yazılarak ve (23) denklemi 

kullanılarak, 𝐺𝑗, 𝐺′𝐺𝑗 (𝑗 = ±1, ±2, … ) cinsinden bir polinom elde edilir. Elde edilen 
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polinomun her bir katsayısı sıfıra eşitlenerek 𝛼𝑖, 𝑒2, 𝑒1, 𝑒0 için bir cebirsel denklem sistemi 

bulunur. Daha sonra, ortaya çıkan sistemin çözülmesi ile aşağıdaki çözüm seti elde edilir: 

𝑏 = 2𝑒1(2𝛼 − 𝑎),    𝑒0 = 0,    𝛼0 = −𝛼2𝑒1,    𝛼1 = 0,

𝛽 = 𝛼 −
𝑎

4
,    𝜆 =

2(𝑎 − 2𝛼)

𝛼2
− 𝛾.

                                                           (149) 

 

(149) denklemi, (148) denkleminde yerine konularak ve (27) denklemi kullanılarak 

𝑞(𝑥, 𝑡) = exp [−𝛼2𝑒1 + 𝛼2 (
𝐺′

𝐺
)

2

]

−1

exp [𝑖 (
2(𝑎 − 2𝛼)

𝛼2
− 𝛾) 𝑡]                                                  (150) 

                                

elde edilir. Bu takdirde, benimsenen modele Gaussian soliter dalgalar aşağıdaki gibi 

listelenir:   

I. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = −1 ise 

𝑞(𝑥, 𝑡) = exp[−𝛼2sech2𝑥]−1exp [𝑖 (
2(𝑎 − 2𝛼)

𝛼2
− 𝛾) 𝑡].                                                                (151) 

                                                                  

II. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1 için 

𝑞(𝑥, 𝑡) = exp[𝛼2csch2𝑥]−1exp [𝑖 (
2(𝑎 − 2𝛼)

𝛼2
− 𝛾) 𝑡].                                                                    (152) 

      

                                                                               

III. 𝑒0 = 0, 𝑒1 = −1, 𝑒2 = 1 iken 

𝑞(𝑥, 𝑡) = exp[𝛼2sec2𝑥]−1exp [𝑖 (
2(𝑎 − 2𝛼)

𝛼2
− 𝛾) 𝑡].                                                                      (153) 

                                                         

6.7. Anti-Kübik Yasası 
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Anti-kübik yasası durumunda, (25) denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑛𝑞)𝑥𝑥 + (
𝑏1

|𝑞|4
+ 𝑏2|𝑞|2 + 𝑏3|𝑞|4) 𝑞 =

1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞                (154) 

 

denklemine indirgenir. 𝑛 = 2 iken (154) denkleminin integrasyonu gerçekleştirilebilir. Bu 

takdirde, (154) denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|2𝑞)𝑥𝑥 + (
𝑏1

|𝑞|4
+ 𝑏2|𝑞|2 + 𝑏3|𝑞|4) 𝑞 =

1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞               (155) 

 

gibi yoğunlaşır. Bu yüzden, (28) ile verilen adi diferansiyel denklem 

𝑏1𝜙−2 − (𝛾 + 𝜆)𝜙2 + 𝑏2𝜙4 + 𝑏3𝜙6 − 2(𝛼 − 2𝛽)(𝜙′)2 + 6𝑎𝜙2(𝜙′)2 − 2𝛼𝜙𝜙′′ + 3𝑎𝜙3𝜙′′ = 0       (156)  

 

şeklinde sadeleşir. Balans prensibinden 𝑁 = 1 bulunur. Böylece  

 𝜙(𝑥) = 𝛼0 + 𝛼1 (
𝐺′

𝐺
)                                                                                                                               (157) 

                                                       

şeklini alır. (157) denklemi, (156) denkleminde yerine yazılarak ve (23) denklemi 

kullanılarak, 𝐺𝑗, 𝐺′𝐺𝑗 (𝑗 = ±1, ±2, … ) cinsinden bir polinom elde edilir. Elde edilen 

polinomun her bir katsayısı sıfıra eşitlenerek 𝛼𝑖, 𝑒2, 𝑒1, 𝑒0 için bir cebirsel denklem sistemi 

bulunur. Daha sonra, ortaya çıkan sistemin çözülmesi ile aşağıdaki çözüm seti elde edilir: 

𝑏1 = 0,    𝑏3 =
3𝑎(18𝑎𝑒1 − 𝑏2)

𝛼
,    𝛼0 = 0,    𝛼1 =

2√𝛼

√𝑏2 − 18𝑎𝑒1

,

𝛽 =
𝛼

2
,    𝛾 =

6𝑎(8𝛼𝑒1
2 + 16𝛼𝑒0𝑒2 − 3𝑒1𝜆) + 𝑏2(𝜆 − 4𝛼𝑒1)

18𝑎𝑒1 − 𝑏2
.

                                                  (158) 

           

(158) denklemi, (157) denkleminde yerine konularak ve (27) denklemi kullanılarak 
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𝑞(𝑥, 𝑡) =
2√𝛼

√𝑏2 − 18𝑎𝑒1

(
𝐺′

𝐺
) 𝑒𝑖𝜆𝑡                                                                                              (159) 

            

ifadesine ulaşılır. (158) denklemindeki sonuçlardan görüleceği gibi,  𝑏1 = 0 

olduğundan, anti-kübik yasası parabolik yasasına indirgenir. Ayrıca, (158) ile verilen 

çözüm seti parabolik yasası durumunda elde edilen çözüm seti ile aynı olduğundan bu 

bölümdeki çözümler ihmal edildi. 

6.8. Kübik-Kuintik-Septik Yasası 

Bu nonlineerlik durumunda, (25) denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑛𝑞)𝑥𝑥 + (𝑏1|𝑞|2 + 𝑏2|𝑞|4 + 𝑏3|𝑞|6)𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞            (160) 

                                                                                                                                                                 

denklemine indirgenir. 𝑛 = 4 iken (160) denkleminin integrasyonu gerçekleştirilebilir. Bu 

takdirde, (160) denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|4𝑞)𝑥𝑥 + (𝑏1|𝑞|2 + 𝑏2|𝑞|4 + 𝑏3|𝑞|6)𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞            (161) 

gibi yoğunlaşır. Bu yüzden, (28) ile verilen adi diferansiyel denklem 

−(𝛾 + 𝜆)𝜙2 + 𝑏1𝜙4 + 𝑏2𝜙6 + 𝑏3𝜙8 − 2(𝛼 − 2𝛽)(𝜙′)2 + 20𝑎𝜙4(𝜙′)2 

−2𝛼𝜙𝜙′′ + 5𝑎𝜙5𝜙′′ = 0                                                                                                           (162) 

                                                                                                                                                      

şeklinde sadeleşir. Balans prensibinden 𝑁 = 1  bulunur. Böylece 

 𝜙(𝑥) = 𝛼0 + 𝛼1 (
𝐺′

𝐺
)                                                                                                                 (163) 
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şeklini alır. (163) denklemi, (162) denkleminde yerine yazılarak ve (23) denklemi 

kullanılarak, 𝐺𝑗, 𝐺′𝐺𝑗 (𝑗 = ±1, ±2, … ) cinsinden bir polinom elde edilir. Elde edilen 

polinomun her bir katsayısı sıfıra eşitlenerek 𝛼𝑖, 𝑒2, 𝑒1, 𝑒0 için bir cebirsel denklem sistemi 

bulunur. Daha sonra, ortaya çıkan sistemin çözülmesi ile aşağıdaki çözüm seti elde edilir: 

   𝑏1 =
4 (𝛼 − 5𝑎𝛼1

4(𝑒1
2 − 4𝑒0𝑒2))

𝛼1
2 ,            𝑏2 = 50𝑎𝑒1,    

  𝑏3 = −
30𝑎

𝛼1
2 ,        𝛼0 = 0, 𝛽 =

𝛼

2
,       𝜆 = 4𝛼𝑒1 − 𝛾.

                                                                 (164) 

   

(164) denklemi, (163) denkleminde yerine konularak ve (27) denklemi kullanılarak 

𝑞(𝑥, 𝑡) = 𝛼1 (
𝐺′

𝐺
) exp[𝑖(4𝛼𝑒1 − 𝛾)𝑡]                                                                                      (165) 

        

                                                               

elde edilir. Sonuç olarak, aşağıdaki durağan çözümler türetilir:  

I. 𝑒0 = 1, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 𝑘2  ise 

𝑞(𝑥, 𝑡) = 𝛼1cs𝑥dn𝑥exp[−𝑖(4𝛼(𝑘2 + 1) + 𝛾)𝑡]                                                                    (166) 

 

veya 

              

 𝑞(𝑥, 𝑡) = 𝛼1(𝑘2 − 1)sc𝑥nd𝑥exp[−𝑖(4𝛼(𝑘2 + 1) + 𝛾)𝑡].                                                 (167) 

                                                                      

II. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2𝑘2 − 1, 𝑒2 = −𝑘2 için 

𝑞(𝑥, 𝑡) = −𝛼1sc𝑥dn𝑥exp[𝑖(4𝛼(2𝑘2 − 1) − 𝛾)𝑡].                                                                (168) 

                                                                

III. 𝑒0 = 𝑘2 − 1, 𝑒1 = 2 − 𝑘2, 𝑒2 = −1 iken 
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𝑞(𝑥, 𝑡) = −𝛼1𝑘2sd𝑥cn𝑥exp[𝑖(4𝛼(2 − 𝑘2) − 𝛾)𝑡].                                                                   (169) 

                                                                     

IV. 𝑒0 = 𝑘2, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 1 olduğunda 

𝑞(𝑥, 𝑡) = −𝛼1ds𝑥cn𝑥exp[−𝑖(4𝛼(𝑘2 + 1) + 𝛾)𝑡]                                                                (170) 

                                                                         

veya 

             

𝑞(𝑥, 𝑡) = 𝛼1(1 − 𝑘2)sc𝑥nd𝑥exp[−𝑖(4𝛼(𝑘2 + 1) + 𝛾)𝑡].                                                       (171) 

                                                                

V. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2 − 𝑘2, 𝑒2 = 1 durumunda 

               

𝑞(𝑥, 𝑡) = −𝛼1ds𝑥nc𝑥exp[𝑖(4𝛼(2 − 𝑘2) − 𝛾)𝑡].                                                                         (172) 

                                                                   

VI. 𝑒0 = 1, 𝑒1 = 2𝑘2 − 1, 𝑒2 = 𝑘2(𝑘2 − 1) ise    

𝑞(𝑥, 𝑡) = 𝛼1cd2𝑥ns𝑥exp[𝑖(4𝛼(2𝑘2 − 1) − 𝛾)𝑡].                                                                  (173) 

                                    

VII. 𝑒0 = 𝑘2(𝑘2 − 1), 𝑒1 = 2𝑘2 − 1, 𝑒2 = 1 için 

𝑞(𝑥, 𝑡) = −𝛼1cs𝑥nd𝑥exp[𝑖(4𝛼(2𝑘2 − 1) − 𝛾)𝑡].                                                                      (174) 

                                  

VIII. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = −1 iken 

𝑞(𝑥, 𝑡) = −𝛼1tanh𝑥exp[𝑖(4𝛼 − 𝛾)𝑡].                                                                                      (175) 

                                                                               

IX. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1 olduğunda  

𝑞(𝑥, 𝑡) = −𝛼1coth𝑥exp[𝑖(4𝛼 − 𝛾)𝑡].                                                                                      (176) 
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X. 𝑒0 = 0, 𝑒1 = −1, 𝑒2 = 1 durumunda  

𝑞(𝑥, 𝑡) = 𝛼1tan𝑥exp[−𝑖(4𝛼 + 𝛾)𝑡].                                                                                        (177) 

 

Burada, Jacobi eliptik fonksiyon çözümler (166)-(174) denklemleri ile temsil edilirken, 

durağan koyu optik soliton çözüm, durağan tekil optik soliton çözüm ve periyodik dalga 

çözüm sırasıyla (175), (176) ve (177) denklemleri ile temsil edilir.  

6.9. Üçlü-Kuvvet Yasası 

Üçlü-kuvvet yasası durumunda, (25) denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑛𝑞)𝑥𝑥 + (𝑏1|𝑞|2𝑚 + 𝑏2|𝑞|4𝑚 + 𝑏3|𝑞|6𝑚)𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞  (178) 

                                                                                                                      

denklemine indirgenir. 𝑛 = 4m iken (178) denkleminin integrasyonu gerçekleştirilebilir. 

Bu takdirde, (178) denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|4𝑚𝑞)𝑥𝑥 + (𝑏1|𝑞|2𝑚 + 𝑏2|𝑞|4𝑚 + 𝑏3|𝑞|6𝑚)𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞                   (179) 

                                                                 

gibi yoğunlaşır. Bu yüzden, (28) ile verilen adi diferansiyel denklem 

−(𝛾 + 𝜆)𝜙2 + 𝑏1𝜙2𝑚+2 + 𝑏2𝜙4𝑚+2 + 𝑏3𝜙6𝑚+2 − 2(𝛼 − 2𝛽)(𝜙′)2 

 

+4𝑎𝑚(4𝑚 + 1)𝜙4𝑚(𝜙′)2 − 2𝛼𝜙𝜙′′ + 𝑎(4𝑚 + 1)𝜙4𝑚+1𝜙′′ = 0                                  (180)                                                                                                                                                

şeklinde sadeleşir. Kapalı form çözümler çıkarmak için    
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𝜙 = 𝜑
1

𝑚                                                                                                                                            (181) 

                                                                                        

dönüşümü (180) denklemine  uygulanır  ve böylece (180) denklemi 

−𝑚2(𝛾 + 𝜆)𝜑2 + 𝑏1𝑚2𝜑4 + 𝑏2𝑚2𝜑6 + 𝑏3𝑚2𝜑8 + 2(𝛼(𝑚 − 2) + 2𝛽)(𝜑′)2 

  

+𝑎(12𝑚2 + 7𝑚 + 1)𝜑4(𝜑′)2 − 2𝑚𝛼𝜑𝜑′′ + 𝑎𝑚(4𝑚 + 1)𝜑5𝜑′′ = 0                           (182) 

                                   

denklemine dönüşür. Balans prensibinden 𝑁 = 1 bulunur. Böylece  

𝜑(𝑥) = 𝛼0 + 𝛼1 (
𝐺′

𝐺
)                                                                                                                  (183) 

şeklini alır. (183) denklemi, (182) denkleminde yerine yazılarak ve (23) denklemi 

kullanılarak, 𝐺𝑗, 𝐺′𝐺𝑗 (𝑗 = ±1, ±2, … ) cinsinden bir polinom elde edilir. Elde edilen 

polinomun her bir katsayısı sıfıra eşitlenerek 𝛼𝑖, 𝑒2, 𝑒1, 𝑒0 için bir cebirsel denklem sistemi 

bulunur. Daha sonra, ortaya çıkan sistemin çözülmesi ile aşağıdaki çözüm seti elde edilir: 

𝑏1 =
4𝛼𝑚 − 𝑎𝛼1

4(𝑒1
2 − 4𝑒0𝑒2)(3𝑚 + 1)(4𝑚 + 1)

𝛼1
2𝑚2

,    𝑏2 =
2𝑎𝑒1(4𝑚 + 1)2

𝑚2
,        

𝑏3 = −
𝑎(4𝑚 + 1)(5𝑚 + 1)

𝛼1
2𝑚2

, 𝛼0 = 0,        𝛽 = 𝛼 −
𝛼𝑚

2
,    𝜆 =

4𝛼𝑒1

𝑚
− 𝛾.

                      (184) 

 

(184) denklemi, (183) denkleminde yerine konularak ve (27) denklemi kullanılarak 

𝑞(𝑥, 𝑡) = {𝛼1 (
𝐺′

𝐺
)}

1

𝑚

exp [𝑖 (
4𝛼𝑒1

𝑚
− 𝛾) 𝑡]                                                                           (185) 

                                                                   

elde edilir. Bu takdirde, incelenen model için aşağıdaki durağan çözümler keşfedilir:  

I. 𝑒0 = 1, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 𝑘2  ise 



44 

 

 𝑞(𝑥, 𝑡) = {𝛼1cs𝑥dn𝑥}
1

𝑚exp [−𝑖 (
4𝛼(𝑘2 + 1)

𝑚
+ 𝛾) 𝑡]                                                            (186) 

veya 

𝑞(𝑥, 𝑡) = {𝛼1(𝑘2 − 1)sc𝑥nd𝑥}
1

𝑚exp [−𝑖 (
4𝛼(𝑘2 + 1)

𝑚
+ 𝛾) 𝑡].                                       (187) 

                        

II. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2𝑘2 − 1, 𝑒2 = −𝑘2 için 

𝑞(𝑥, 𝑡) = {−𝛼1sc𝑥dn𝑥}
1

𝑚exp [𝑖 (
4𝛼(2𝑘2 − 1)

𝑚
− 𝛾) 𝑡].                                                     (188) 

                                                                   

III. 𝑒0 = 𝑘2 − 1, 𝑒1 = 2 − 𝑘2, 𝑒2 = −1 iken 

𝑞(𝑥, 𝑡) = {−𝛼1𝑘2sd𝑥cn𝑥}
1

𝑚exp [𝑖 (
4𝛼(2 − 𝑘2)

𝑚
− 𝛾) 𝑡].                                                   (189) 

                                                                               

IV. 𝑒0 = 𝑘2, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 1 olduğunda 

               

𝑞(𝑥, 𝑡) = {−𝛼1ds𝑥cn𝑥}
1

𝑚exp [−𝑖 (
4𝛼(𝑘2 + 1)

𝑚
+ 𝛾) 𝑡]                                                           (190) 

 

veya 

𝑞(𝑥, 𝑡) = {𝛼1(1 − 𝑘2) sc𝑥nd𝑥}
1

𝑚exp [−𝑖 (
4𝛼(𝑘2 + 1)

𝑚
+ 𝛾) 𝑡].                                      (191) 

                                                                   

V. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2 − 𝑘2, 𝑒2 = 1 durumunda 
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𝑞(𝑥, 𝑡) = {−𝛼1ds𝑥nc𝑥}
1

𝑚exp [𝑖 (
4𝛼(2 − 𝑘2)

𝑚
− 𝛾) 𝑡].                                                        (192) 

                                                                           

VI. 𝑒0 = 1, 𝑒1 = 2𝑘2 − 1, 𝑒2 = 𝑘2(𝑘2 − 1) ise 

𝑞(𝑥, 𝑡) = {𝛼1cd2𝑥ns𝑥}
1

𝑚exp [𝑖 (
4𝛼(2𝑘2 − 1)

𝑚
− 𝛾) 𝑡].                                                      (193) 

VII. 𝑒0 = 𝑘2(𝑘2 − 1), 𝑒1 = 2𝑘2 − 1, 𝑒2 = 1 için 

𝑞(𝑥, 𝑡) = {−𝛼1cs𝑥nd𝑥}
1

𝑚exp [𝑖 (
4𝛼(2𝑘2 − 1)

𝑚
− 𝛾) 𝑡].                                                     (194) 

                                          

VIII. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = −1 iken 

               

𝑞(𝑥, 𝑡) = {−𝛼1tanh𝑥}
1

𝑚exp [𝑖 (
4𝛼

𝑚
− 𝛾) 𝑡].                                                                           (195) 

                                  

IX. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1 olduğunda 

𝑞(𝑥, 𝑡) = {−𝛼1coth𝑥}
1

𝑚exp [𝑖 (
4𝛼

𝑚
− 𝛾) 𝑡].                                                                           (196) 

                                                                                    

X. 𝑒0 = 0, 𝑒1 = −1, 𝑒2 = 1 durumunda 

𝑞(𝑥, 𝑡) = {𝛼1tan𝑥}
1

𝑚exp [−𝑖 (
4𝛼

𝑚
+ 𝛾) 𝑡].                                                                             (197) 

  

Burada, Jacobi eliptik fonksiyon çözümler (186)-(194) denklemleri ile temsil edilirken, 

durağan koyu optik soliton çözüm, durağan tekil optik soliton çözüm ve periyodik dalga 

çözüm sırasıyla (195), (196) ve (197) denklemleri ile temsil edilir.                                                                            
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6.10. Zayıf Yerel-Olmayan Nonlineerliğe Sahip Parabolik Yasası 

Bu nonlineerlik durumunda, (25) denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑛𝑞)𝑥𝑥 + (𝑏1|𝑞|2 + 𝑏2|𝑞|4 + 𝑏3(|𝑞|2)𝑥𝑥)𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞    (198) 

 

denklemine indirgenir. 𝑛 = 2 iken (198) denkleminin integrasyonu gerçekleştirilebilir. Bu 

takdirde, (198) denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|2𝑞)𝑥𝑥 + (𝑏1|𝑞|2 + 𝑏2|𝑞|4 + 𝑏3(|𝑞|2)𝑥𝑥)𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞    (199) 

  

gibi yoğunlaşır. Bu yüzden, (28) ile verilen adi diferansiyel denklem 

−(𝜆 + 𝛾)𝜙2 + 𝑏1𝜙4 + 𝑏2𝜙6 − 2(𝛼 − 2𝛽)(𝜙′)2 + 6𝑎𝜙2(𝜙′)2 

−2𝛼𝜙𝜙′′ + 3𝑎𝜙3𝜙′′ = 0                                                                                                            (200) 

                                                                

şeklinde sadeleşir. Balans prensibinden 𝑁 = 1 bulunur. Böylece  

𝜙(𝑥) = 𝛼0 + 𝛼1 (
𝐺′

𝐺
)                                                                                                                  (201) 

şeklini alır. (201) denklemi, (200) denkleminde yerine yazılarak ve (23) denklemi 

kullanılarak, 𝐺𝑗, 𝐺′𝐺𝑗 (𝑗 = ±1, ±2, … ) cinsinden bir polinom elde edilir. Elde edilen 

polinomun her bir katsayısı sıfıra eşitlenerek 𝛼𝑖, 𝑒2, 𝑒1, 𝑒0 için bir cebirsel denklem sistemi 

bulunur. Daha sonra, ortaya çıkan sistemin çözülmesi ile aşağıdaki çözüm setleri elde 

edilir: 

𝑏1 = 𝑒1 (2𝑎 −
4𝛼1

2𝑏2

3
) +

4𝛼

𝛼1
2 ,    𝑏3 = −2𝑎 −

𝛼1
2𝑏2

6
,    𝛼0 = 0,    

𝛽 =
𝛼

2
,    𝜆 = 2𝑎𝛼1

2(𝑒1
2 − 4𝑒0𝑒2) −

𝛼1
4𝑏2(𝑒1

2 − 4𝑒0𝑒2)

3
− 𝛾 + 4𝛼𝑒1.

                                   (202) 
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𝑏1 =
𝛼

𝛼1
2 −

12𝑎𝑒1

5
,    𝑏2 =

3𝑎

5𝛼1
2 ,    𝑏3 = −

21𝑎

10
,    𝑒0 = 0,    

𝛼0 = 𝛼1√𝑒1,    𝛽 =
5𝛼

4
,    𝜆 = 4𝛼𝑒1 − 𝛾.

                                                (203) 

(202) denklemi, (201) denkleminde yerine konularak ve (27) denklemi kullanılarak 

𝑞(𝑥, 𝑡) = 𝛼1 (
𝐺′

𝐺
) exp [𝑖 (2𝑎𝛼1

2(𝑒1
2 − 4𝑒0𝑒2) −

𝛼1
4𝑏2(𝑒1

2 − 4𝑒0𝑒2)

3
− 𝛾 + 4𝛼𝑒1) 𝑡]  (204) 

elde edilir. Sonuç olarak, durağan çözümler aşağıdaki gibi listelenir: 

I. 𝑒0 = 1, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 𝑘2  ise 

𝑞(𝑥, 𝑡) = 𝛼1cs𝑥dn𝑥exp [𝑖 (2𝑎𝛼1
2(𝑘2 − 1)2 −

𝛼1
4𝑏2(𝑘2−1)

2

3
− 𝛾 − 4𝛼(𝑘2 + 1)) 𝑡]                    (205)                                                                                               

veya 

           

𝑞(𝑥, 𝑡) = 𝛼1(𝑘2 − 1)sc𝑥nd𝑥exp [𝑖 (2𝑎𝛼1
2(𝑘2 − 1)2 −

𝛼1
4𝑏2(𝑘2 − 1)2

3
− 𝛾 − 4𝛼(𝑘2 + 1)) 𝑡].              (206) 

                                                                                                                                                                        

II. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2𝑘2 − 1, 𝑒2 = −𝑘2 için 

𝑞(𝑥, 𝑡) = −𝛼1sc𝑥dn𝑥exp [𝑖 (2𝑎𝛼1
2 −

𝛼1
4𝑏2

3
− 𝛾 + 4𝛼(2𝑘2 − 1)) 𝑡].                                           (207) 

                                                               

III. 𝑒0 = 𝑘2 − 1, 𝑒1 = 2 − 𝑘2, 𝑒2 = −1 iken 

𝑞(𝑥, 𝑡) = −𝛼1𝑘2sd𝑥cn𝑥exp [𝑖 (2𝑎𝛼1
2𝑘4 −

𝛼1
4𝑏2𝑘4

3
− 𝛾 − 4𝛼(𝑘2 − 2)) 𝑡].                              (208)  

                                                                                   

IV. 𝑒0 = 𝑘2, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 1 olduğunda 
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𝑞(𝑥, 𝑡) = −𝛼1ds𝑥cn𝑥exp [𝑖 (2𝑎𝛼1
2(𝑘2 − 1)2 −

𝛼1
4𝑏2(𝑘2 − 1)2

3
− 𝛾 − 4𝛼(𝑘2 + 1)) 𝑡]         (209) 

 

veya 

             

𝑞(𝑥, 𝑡) = 𝛼1(1 − 𝑘2) sc𝑥nd𝑥exp [𝑖 (2𝑎𝛼1
2(𝑘2 − 1)2 −

𝛼1
4𝑏2(𝑘2 − 1)2

3
− 𝛾 − 4𝛼(𝑘2 + 1)) 𝑡].             (210) 

                                                                 

V. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2 − 𝑘2, 𝑒2 = 1 durumunda 

𝑞(𝑥, 𝑡) = −𝛼1ds𝑥nc𝑥exp [𝑖 (2𝑎𝛼1
2𝑘4 −

𝛼1
4𝑏2𝑘4

3
− 𝛾 + 4𝛼(2 − 𝑘2)) 𝑡].                                    (211) 

                                                                          

VI. 𝑒0 = 1, 𝑒1 = 2𝑘2 − 1, 𝑒2 = 𝑘2(𝑘2 − 1) ise     

𝑞(𝑥, 𝑡) = 𝛼1cd2𝑥ns𝑥exp [𝑖 (2𝑎𝛼1
2 −

𝛼1
4𝑏2

3
− 𝛾 + 4𝛼(2𝑘2 − 1)) 𝑡].                                            (212) 

                           

VII. 𝑒0 = 𝑘2(𝑘2 − 1), 𝑒1 = 2𝑘2 − 1, 𝑒2 = 1 için 

𝑞(𝑥, 𝑡) = −𝛼1cs𝑥nd𝑥exp [𝑖 (2𝑎𝛼1
2 −

𝛼1
4𝑏2

3
− 𝛾 + 4𝛼(2𝑘2 − 1)) 𝑡].                                           (213) 

                                         

VIII. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = −1 iken 

               

𝑞(𝑥, 𝑡) = −𝛼1tanh𝑥exp [𝑖 (2𝑎𝛼1
2 −

𝛼1
4𝑏2

3
− 𝛾 + 4𝛼) 𝑡].                                                                 (214) 

                                                                          

IX. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1 olduğunda 
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𝑞(𝑥, 𝑡) = −𝛼1coth𝑥exp [𝑖 (2𝑎𝛼1
2 −

𝛼1
4𝑏2

3
− 𝛾 + 4𝛼) 𝑡].                                                                 (215) 

                                                                                   

X. 𝑒0 = 0, 𝑒1 = −1, 𝑒2 = 1 durumunda 

𝑞(𝑥, 𝑡) = 𝛼1tan𝑥exp [𝑖 (2𝑎𝛼1
2 −

𝛼1
4𝑏2

3
− 𝛾 − 4𝛼) 𝑡].                                                                       (216) 

                                                                                 

Burada, Jacobi eliptik fonksiyon çözümler (205)-(213) denklemleri ile temsil edilirken, 

durağan koyu optik soliton çözüm, durağan tekil optik soliton çözüm ve periyodik dalga 

çözüm sırasıyla (214), (215) ve (216) denklemleri ile temsil edilir. 

Benzer şekilde, (203) denklemi, (201) denkleminde yerine konularak ve (27) denklemi 

kullanılarak 

𝑞(𝑥, 𝑡) = 𝛼1 {√𝑒1 + (
𝐺′

𝐺
)} exp[𝑖(4𝛼𝑒1 − 𝛾)𝑡]                                                                                   (217) 

                                                                            

elde edilir. Bu durumda, elde edilen durağan çözümler aşağıdaki gibidir: 

VIII. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = −1 ise, durağan koyu optik soliton çözüm aşağıdaki gibi 

bulunur: 

𝑞(𝑥, 𝑡) = 𝛼1(1 − tanh𝑥)exp[𝑖(4𝛼 − 𝛾)𝑡].                                                                                            (218) 

                                                                                        

IX. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1 iken, durağan tekil optik soliton çözüm aşağıdaki gibi 

elde edilir: 

𝑞(𝑥, 𝑡) = 𝛼1(1 − coth𝑥)exp[𝑖(4𝛼 − 𝛾)𝑡].                                                                                            (219) 

                                                                       

X. 𝑒0 = 0, 𝑒1 = −1, 𝑒2 = 1 olduğunda, aşağıdaki periyodik dalga çözüm türetilir:  

𝑞(𝑥, 𝑡) = 𝛼1(𝑖 + tan𝑥)exp[−𝑖(4𝛼 + 𝛾)𝑡].                                                                                            (220) 
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6.11. Genelleştirilmiş Anti-Kübik Yasası 

Bu nonlineerlik durumunda, (25) denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑛𝑞)𝑥𝑥 + (
𝑏1

|𝑞|2𝑚+2 + 𝑏2|𝑞|2𝑚 + 𝑏3|𝑞|2𝑚+2) 𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞                   (221) 

denklemine indirgenir. 𝑛 = 𝑚 + 1 iken (221) denkleminin integrasyonu gerçekleştirilebilir. 

Bu takdirde, (221) denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑚+1𝑞)𝑥𝑥 + (
𝑏1

|𝑞|2𝑚+2 + 𝑏2|𝑞|2𝑚 + 𝑏3|𝑞|2𝑚+2) 𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞           (222) 

gibi yoğunlaşır. Bu yüzden, (28) ile verilen adi diferansiyel denklem 

−(𝛾 + 𝜆)𝜙2 + 𝑏1𝜙−2𝑚 + 𝑏2𝜙2𝑚+2 + 𝑏3𝜙2𝑚+4 − 2(𝛼 − 2𝛽)(𝜙′)2 

  

+𝑎(𝑚 + 1)(𝑚 + 2)𝜙𝑚+1(𝜙′)2 − 2𝛼𝜙𝜙′′ + 𝑎(𝑚 + 2)𝜙𝑚+2𝜙′′ = 0                                          (223) 

       

şeklinde sadeleşir. Kapalı form çözümler çıkarmak için 

                                                     

𝜙 = 𝜑
1

𝑚+1                                                                                                                                        (224) 

                                                              

dönüşümü (223) denklemine uygulanır ve böylece (223) denklemi 

𝑏1(𝑚 + 1)2 − (𝑚 + 1)2(𝛾 + 𝜆)𝜑2 + 𝑏3(𝑚 + 1)2𝜑4 + 2(𝛼(𝑚 − 1) + 2𝛽)(𝜑′)2 

+𝑎(𝑚 + 2)𝜑(𝜑′)2 − 2𝛼(𝑚 + 1)𝜑𝜑′′ + 𝑎(𝑚 + 1)(𝑚 + 2)𝜑2𝜑′′ + 𝑏2(𝑚 + 1)2𝜑(𝑥)
2𝑚

𝑚+1
+2 = 0            (225) 

                                                                                                                                                

denklemine dönüşür. Daha fazla ilerleyebilmek için 𝑏2 = 0 seçilmesi gerekir. Bu durumda, 

(221) denklemi  

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑚+1𝑞)𝑥𝑥 + (
𝑏1

|𝑞|2𝑚+2
+ 𝑏3|𝑞|2𝑚+2) 𝑞 =

1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞            (226) 

şeklinde değişir ve (225) denklemi   
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 𝑏1(𝑚 + 1)2 − (𝑚 + 1)2(𝛾 + 𝜆)𝜑2 + 𝑏3(𝑚 + 1)2𝜑4 + 2(𝛼(𝑚 − 1) + 2𝛽)(𝜑′)2 

+𝑎(𝑚 + 2)𝜑(𝜑′)2 − 2𝛼(𝑚 + 1)𝜑𝜑′′ + 𝑎(𝑚 + 1)(𝑚 + 2)𝜑2𝜑′′ = 0                                        (227)         

 

biçiminde sadeleşir. Balans prensibinden 𝑁 = 2  bulunur. Böylece  

 𝜑(𝑥) = 𝛼0 + 𝛼1 (
𝐺′

𝐺
) + 𝛼2 (

𝐺′

𝐺
)

2

                                                                                                        (228) 

 

şeklini alır. (228) denklemi, (227) denkleminde yerine yazılarak ve (23) denklemi 

kullanılarak, 𝐺𝑗, 𝐺′𝐺𝑗 (𝑗 = ±1, ±2, … ) cinsinden bir polinom elde edilir. Elde edilen 

polinomun her bir katsayısı sıfıra eşitlenerek 𝛼𝑖, 𝑒2, 𝑒1, 𝑒0 için bir cebirsel denklem sistemi 

bulunur. Daha sonra, ortaya çıkan sistemin çözülmesi ile aşağıdaki çözüm setleri elde 

edilir: 

𝑏1 = −
8𝑎𝛼2

3(𝑒1
3 − 36𝑒0𝑒1𝑒2)2(𝑚 + 2)

81(𝑒1
2 + 12𝑒0𝑒2)(𝑚 + 1)2

,    𝑏3 = −
2𝑎(𝑚 + 2)(3𝑚 + 5)

𝛼2(𝑚 + 1)2
,      

 𝛼0 = −
2𝛼2𝑒1

3
, 𝛼1 = 0, 𝛼 =

𝑎𝛼2𝑒1(𝑒1
2 − 36𝑒0𝑒2)(𝑚 + 2)

9(𝑒1
2 + 12𝑒0𝑒2)(𝑚 + 1)

,                                            (229)

 𝛽 =
𝑎𝛼2𝑒1(𝑒1

2 − 36𝑒0𝑒2)(𝑚 + 2)(𝑚 + 5)

36(𝑒1
2 + 12𝑒0𝑒2)(𝑚 + 1)

, 𝛾 = −𝜆 −
2𝑎𝛼2(𝑒1

2 + 12𝑒0𝑒2)(𝑚 + 2)(𝑚 + 3)

3(𝑚 + 1)2
.

 

      

 

𝑏1 = 0,    𝑏3 = −
2𝑎(𝑚 + 2)(3𝑚 + 5)

𝛼2(𝑚 + 1)2 ,    𝑒0 = 0,    𝛼0 = −𝛼2𝑒1,    𝛼1 = 0,

                                                                                                                                                                        ( 230)

𝛼 =
𝑎𝛼2𝑒1(𝑚 + 2)2

𝑚 + 1
+

(𝑚 + 1)(𝛾 + 𝜆)

4𝑒1

,    𝛽 =
𝑎𝛼2𝑒1(𝑚 + 2)2

𝑚 + 1
+

(𝑚 + 1)(𝑚 + 5)(𝛾 + 𝜆)

16𝑒1

.

                

 

(229) denklemi, (228) denkleminde yerine konularak ve (27) denklemi kullanılarak 

𝑞(𝑥, 𝑡) = {−
2𝛼2𝑒1

3
+ 𝛼2 (

𝐺′

𝐺
)

2

}

1

𝑚+1

𝑒𝑖𝜆𝑡                                                                                 (231) 
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elde edilir. Sonuç olarak, elde edilen durağan çözümler aşağıdaki gibidir: 

I. 𝑒0 = 1, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 𝑘2  ise 

𝑞(𝑥, 𝑡) = {
2𝛼2(𝑘2 + 1)

3
+ 𝛼2cs2𝑥dn2𝑥}

1

𝑚+1

𝑒𝑖𝜆𝑡                                                                 (232) 

                                                                                           

veya         

𝑞(𝑥, 𝑡) = {
2𝛼2(𝑘2 + 1)

3
+ 𝛼2(1 − 𝑘2)2 sc 2𝑥nd2𝑥}

1

𝑚+1

𝑒𝑖𝜆𝑡 .                                            (233) 

                                                                                                                                                                                                                       

II. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2𝑘2 − 1, 𝑒2 = −𝑘2 için 

𝑞(𝑥, 𝑡) = {−
2𝛼2(2𝑘2 − 1)

3
+ 𝛼2 sc 2𝑥dn2𝑥}

1

𝑚+1

𝑒𝑖𝜆𝑡 .                                                       (234) 

                                                                                             

III. 𝑒0 = 𝑘2 − 1, 𝑒1 = 2 − 𝑘2, 𝑒2 = −1 iken 

𝑞(𝑥, 𝑡) = {−
2𝛼2(2 − 𝑘2)

3
+ 𝛼2𝑘4sd2𝑥cn2𝑥}

1

𝑚+1

𝑒𝑖𝜆𝑡.                                                       (235) 

                                                                                                                          

IV. 𝑒0 = 𝑘2, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 1 olduğunda 

𝑞(𝑥, 𝑡) = {
2𝛼2(𝑘2 + 1)

3
+ 𝛼2ds2𝑥cn2𝑥}

1

𝑚+1

𝑒𝑖𝜆𝑡                                                                 (236) 

                                                              

veya 

𝑞(𝑥, 𝑡) = {
2𝛼2(𝑘2 + 1)

3
+ 𝛼2(1 − 𝑘2)2 sc 2𝑥nd2𝑥}

1

𝑚+1

𝑒𝑖𝜆𝑡 .                                            (237) 
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V. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2 − 𝑘2, 𝑒2 = 1 durumunda 

𝑞(𝑥, 𝑡) = {−
2𝛼2(2 − 𝑘2)

3
+ 𝛼2ds2𝑥nc2𝑥}

1

𝑚+1

𝑒𝑖𝜆𝑡.                                                            (238) 

VI. 𝑒0 = 1, 𝑒1 = 2𝑘2 − 1, 𝑒2 = 𝑘2(𝑘2 − 1) ise 

𝑞(𝑥, 𝑡) = {−
2𝛼2(2𝑘2 − 1)

3
+ 𝛼2cd4𝑥ns2𝑥}

1

𝑚+1

𝑒𝑖𝜆𝑡 .                                                         (239) 

VII. 𝑒0 = 𝑘2(𝑘2 − 1), 𝑒1 = 2𝑘2 − 1, 𝑒2 = 1 için 

𝑞(𝑥, 𝑡) = {−
2𝛼2(2𝑘2 − 1)

3
+ 𝛼2cs2𝑥nd2𝑥}

1

𝑚+1

𝑒𝑖𝜆𝑡.                                                         (240) 

                                                              

VIII. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = −1 iken 

𝑞(𝑥, 𝑡) = {−
2𝛼2

3
+ 𝛼2tanh2𝑥}

1

𝑚+1

𝑒𝑖𝜆𝑡.                                                                                  (241) 

IX. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1 olduğunda 

𝑞(𝑥, 𝑡) = {−
2𝛼2

3
+ 𝛼2coth2𝑥}

1

𝑚+1

𝑒𝑖𝜆𝑡.                                                                                  (242) 

X. 𝑒0 = 0, 𝑒1 = −1, 𝑒2 = 1 durumunda 

𝑞(𝑥, 𝑡) = {
2𝛼2

3
+ 𝛼2tan2𝑥}

1

𝑚+1

𝑒𝑖𝜆𝑡 .                                                                                         (243) 

Burada, Jacobi eliptik fonksiyon çözümler (232)-(240) denklemleri ile temsil edilirken, 

durağan koyu optik soliton çözüm, durağan tekil optik soliton çözüm ve periyodik dalga 

çözüm sırasıyla (241), (242) ve (243) denklemleri ile temsil edilir. 

Benzer şekilde, (230) denklemi, (228) denkleminde yerine konularak ve (27) denklemi 

kullanılarak 
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𝑞(𝑥, 𝑡) = {−𝛼2𝑒1 + 𝛼2 (
𝐺′

𝐺
)

2

}

1

𝑚+1

𝑒𝑖𝜆𝑡                                                                                     (244) 

                                                                          

elde edilir. Bu durumda, incelenen model için, sırasıyla, durağan parlak ve tekil optik 

soliton çözümler ve ayrıca periyodik dalga çözüm aşağıdaki gibi çıkarılır: 

I. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = −1 ise 

𝑞(𝑥, 𝑡) = {−𝛼2sech2𝑥}
1

𝑚+1𝑒𝑖𝜆𝑡 .                                                                                                 (245) 

                                                                                                     

II. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1 için 

𝑞(𝑥, 𝑡) = {𝛼2csch2𝑥}
1

𝑚+1𝑒𝑖𝜆𝑡.                                                                                                    (246) 

                                                                                              

III. 𝑒0 = 0, 𝑒1 = −1, 𝑒2 = 1 iken 

𝑞(𝑥, 𝑡) = {𝛼2sec2𝑥}
1

𝑚+1𝑒𝑖𝜆𝑡                                                                                                        (247) 

6.12. Kübik-Kuartik Yasası 

Bu nonlineerlik durumunda, (25) denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑛𝑞)𝑥𝑥 + (𝑏1|𝑞|2 + 𝑏2|𝑞|3)𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞           (248) 

 

denklemine indirgenir. 𝑛 = 2 iken (248) denkleminin integrasyonu gerçekleştirilebilir. Bu 

takdirde, (248) denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|2𝑞)𝑥𝑥 + (𝑏1|𝑞|2 + 𝑏2|𝑞|3)𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞              (249) 
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gibi yoğunlaşır. Bu yüzden, (28) ile verilen adi diferansiyel denklem 

−(𝛾 + 𝜆)𝜙2 + 𝑏1𝜙4 + 𝑏2𝜙5 − 2(𝛼 − 2𝛽)(𝜙′)2 + 6𝑎𝜙2(𝜙′)2 − 2𝛼𝜙𝜙′′  + 3𝑎𝜙3𝜙′′ = 0   (250) 

                                                                                                                                                                 

şeklinde sadeleşir. Balans prensibinden 𝑁 = 2 olarak belirlenir. Böylece 

𝜙(𝑥) = 𝛼0 + 𝛼1 (
𝐺′

𝐺
) + 𝛼2 (

𝐺′

𝐺
)

2

                                                                                           (251) 

şeklini alır. (251) denklemi, (250) denkleminde yerine yazılarak ve (23) denklemi 

kullanılarak, 𝐺𝑗, 𝐺′𝐺𝑗 (𝑗 = ±1, ±2, … ) cinsinden bir polinom elde edilir. Elde edilen 

polinomun her bir katsayısı sıfıra eşitlenerek 𝛼𝑖, 𝑒2, 𝑒1, 𝑒0 için bir cebirsel denklem sistemi 

bulunur. Daha sonra, ortaya çıkan sistemin çözülmesi ile aşağıdaki çözüm setleri elde 

edilir: 

𝑏1 = 72𝑎𝑒1,    𝑏2 = −
42𝑎

𝛼2
,    𝛼0 = 0,    𝛼1 = 0,    𝛼 =

15𝛼2
2𝑎(𝑒1

2 − 4𝑒0𝑒2)

4
,

𝛽 =
45𝛼2

2𝑎(𝑒1
2 − 4𝑒0𝑒2)

16
,    𝜆 = 30𝑎𝛼2

2𝑒1(𝑒1
2 − 4𝑒0𝑒2) − 𝛾.

                (252) 

                             

 

𝑏1 = −36𝑎𝑒1,    𝑏2 = −
42𝑎

𝛼2
,    𝑒0 = 0,    𝛼0 = −𝛼2𝑒1,    𝛼1 = 0,

𝛽 =
5𝛼

4
,    𝜆 = 4𝛼𝑒1 − 𝛾.

                                   ( 253) 

 

(252) denklemi, (251) denkleminde yerine konularak ve (27) denklemi kullanılarak 

𝑞(𝑥, 𝑡) = 𝛼2 (
𝐺′

𝐺
)

2

exp[𝑖(30𝑎𝛼2
2𝑒1(𝑒1

2 − 4𝑒0𝑒2) − 𝛾)𝑡]                                                    (254) 

elde edilir. Sonuç olarak, aşağıdaki durağan çözümler keşfedilir: 

I. 𝑒0 = 1, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 𝑘2 ise 
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𝑞(𝑥, 𝑡) = 𝛼2cs2𝑥dn2𝑥exp[−𝑖(30𝑎𝛼2
2(𝑘2 + 1)(𝑘2 − 1)2 + 𝛾)𝑡]                                        (255) 

veya 

  

𝑞(𝑥, 𝑡) = 𝛼2(1 − 𝑘2)2 sc 2𝑥nd2𝑥exp[−𝑖(30𝑎𝛼2
2(𝑘2 + 1)(𝑘2 − 1)2 + 𝛾)𝑡].                (256) 

                                             

II. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2𝑘2 − 1, 𝑒2 = −𝑘2 için 

𝑞(𝑥, 𝑡) = 𝛼2 sc 2𝑥dn2𝑥exp[𝑖(30𝑎𝛼2
2(2𝑘2 − 1) − 𝛾)𝑡].                                                     (257) 

                                                                                          

III. 𝑒0 = 𝑘2 − 1, 𝑒1 = 2 − 𝑘2, 𝑒2 = −1 iken 

𝑞(𝑥, 𝑡) = 𝛼2𝑘4sd2𝑥cn2𝑥exp[𝑖(30𝑎𝛼2
2𝑘4(2 − 𝑘2) − 𝛾)𝑡].                                                     (258) 

                                                                                                                           

IV. 𝑒0 = 𝑘2, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 1 olduğunda 

               

𝑞(𝑥, 𝑡) = 𝛼2ds2𝑥cn2𝑥exp[−𝑖(30𝑎𝛼2
2(𝑘2 + 1)(𝑘2 − 1)2 + 𝛾)𝑡]                                      (259) 

                                

veya 

             

𝑞(𝑥, 𝑡) = 𝛼2(1 − 𝑘2)2 sc 2𝑥nd2𝑥exp[−𝑖(30𝑎𝛼2
2(𝑘2 + 1)(𝑘2 − 1)2 + 𝛾)𝑡].                (260) 

                                                                                                        

V. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2 − 𝑘2, 𝑒2 = 1 durumunda 

𝑞(𝑥, 𝑡) = 𝛼2ds2𝑥nc2𝑥exp[𝑖(30𝑎𝛼2
2𝑘4(2 − 𝑘2) − 𝛾)𝑡].                                                      (261)                                                

VI. 𝑒0 = 1, 𝑒1 = 2𝑘2 − 1, 𝑒2 = 𝑘2(𝑘2 − 1) ise 

𝑞(𝑥, 𝑡) = 𝛼2cd4𝑥ns2𝑥exp[𝑖(30𝑎𝛼2
2(2𝑘2 − 1) − 𝛾)𝑡].                                                        (262)                                                 

VII. 𝑒0 = 𝑘2(𝑘2 − 1), 𝑒1 = 2𝑘2 − 1, 𝑒2 = 1 için 

𝑞(𝑥, 𝑡) = 𝛼2cs2𝑥nd2𝑥exp[𝑖(30𝑎𝛼2
2(2𝑘2 − 1) − 𝛾)𝑡].                                                        (263)                                                                       
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VIII. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = −1 iken 

𝑞(𝑥, 𝑡) = 𝛼2tanh2𝑥exp[𝑖(30𝑎𝛼2
2 − 𝛾)𝑡].                                                                                      (264) 

 

IX. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1 olduğunda 

𝑞(𝑥, 𝑡) = 𝛼2coth2𝑥exp[𝑖(30𝑎𝛼2
2 − 𝛾)𝑡].                                                                                (265) 

                                                                                                              

X. 𝑒0 = 0, 𝑒1 = −1, 𝑒2 = 1 durumunda 

𝑞(𝑥, 𝑡) = 𝛼2tan2𝑥exp[−𝑖(30𝑎𝛼2
2 + 𝛾)𝑡].                                                                               (266) 

                                                                                         

Burada, Jacobi eliptik fonksiyon çözümler (255)-(263) denklemleri ile temsil edilirken, 

durağan koyu optik soliton çözüm, durağan tekil optik soliton çözüm ve periyodik dalga 

çözüm sırasıyla (264), (265) ve (266) denklemleri ile temsil edilir. 

Benzer şekilde, (253) denklemi, (251) denkleminde yerine konularak ve (27) denklemi 

kullanılarak 

𝑞(𝑥, 𝑡) = {−𝛼2𝑒1 + 𝛼2 (
𝐺′

𝐺
)

2

} exp[𝑖(4𝛼𝑒1 − 𝛾)𝑡]                                                                      (267)     

                                                                            

elde edilir. Bu durumda, sırasıyla, durağan parlak ve tekil optik soliton çözümler ve ayrıca 

periyodik dalga çözüm aşağıdaki gibi bulunur: 

I. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = −1 ise 

𝑞(𝑥, 𝑡) = −𝛼2sech2𝑥exp[𝑖(4𝛼 − 𝛾)𝑡].                                                                                    (268) 

                                                                                           

II. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1 için 

𝑞(𝑥, 𝑡) = 𝛼2csch2𝑥exp[𝑖(4𝛼 − 𝛾)𝑡].                                                                                        (269) 
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III. 𝑒0 = 0, 𝑒1 = −1,  𝑒2 = 1 iken 

𝑞(𝑥, 𝑡) = 𝛼2sec2𝑥exp[−𝑖(4𝛼 + 𝛾)𝑡].                                                                                      (270) 

                                                                                      

6.13. Genelleştililmiş Kübik-Kuartik Yasası 

Bu nonlineerlik durumunda, (25) denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|𝑛𝑞)𝑥𝑥 + (𝑏1|𝑞|2𝑚 + 𝑏2|𝑞|3𝑚)𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞     (271) 

denklemine indirgenir. 𝑛 = 2𝑚 iken (271) denkleminin integrasyonu gerçekleştirilebilir. 

Bu takdirde, (271) denklemi 

𝑖𝑞𝑡 + 𝑎(|𝑞|2𝑚𝑞)𝑥𝑥 + (𝑏1|𝑞|2𝑚 + 𝑏2|𝑞|3𝑚)𝑞 =
1

|𝑞|2𝑞∗
[𝛼|𝑞|2(|𝑞|2)𝑥𝑥 − 𝛽{(|𝑞|2)𝑥}2] + 𝛾𝑞  (272) 

   

gibi yoğunlaşır. Bu yüzden, (28) ile verilen adi diferansiyel denklem 

−(𝛾 + 𝜆)𝜙2 + 𝑏1𝜙2𝑚+2 + 𝑏2𝜙3𝑚+2 − 2(𝛼 − 2𝛽)(𝜙′)2 + 2𝑎𝑚(2𝑚 + 1)𝜙2𝑚(𝜙′)2 

−2𝛼𝜙𝜙′′ + 𝑎(2𝑚 + 1)𝜙2𝑚+1𝜙′′ = 0                                                                                                   (273) 

                                                                                                                                                                                              

şeklinde sadeleşir. Kapalı form çözümler çıkarmak için 

                                                     

𝜙 = 𝜑
2

𝑚                                                                                                                                           (274) 

                                                          

dönüşümü (273) denklemine uygulanır ve böylece (273) denklemi 

−𝑚2(𝛾 + 𝜆)𝜑2 + 𝑏1𝑚2𝜑6 + 𝑏2𝑚2𝜑8 + 4(𝛼(𝑚 − 4) + 4𝛽)(𝜑′)2 

+2𝑎(6𝑚2 + 7𝑚 + 2)𝜑4(𝜑′)2 − 4𝑚𝛼𝜑𝜑′′ + 2𝑎𝑚(2𝑚 + 1)𝜑5𝜑′′ = 0                                      (275) 

                                                                                                                                           

denklemine dönüşür. Balans prensibinden 𝑁 = 1 elde edilir. Böylece  
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𝜑(𝑥) = 𝛼0 + 𝛼1 (
𝐺′

𝐺
)                                                                                                                 (276) 

  

şeklini alır. (276) denklemi, (275) denkleminde yerine yazılarak ve (23) denklemi 

kullanılarak, 𝐺𝑗, 𝐺′𝐺𝑗 (𝑗 = ±1, ±2, … ) cinsinden bir polinom elde edilir. Elde edilen 

polinomun her bir katsayısı sıfıra eşitlenerek 𝛼𝑖, 𝑒2, 𝑒1, 𝑒0 için bir cebirsel denklem sistemi 

bulunur. Daha sonra, ortaya çıkan sistemin çözülmesi ile aşağıdaki çözüm seti elde edilir: 

𝑏1 =
8𝑎𝑒1(2𝑚 + 1)2

𝑚2 ,    𝑏2 = −
2𝑎(2𝑚 + 1)(5𝑚 + 2)

𝛼1
2𝑚2

,    𝛼0 = 0,    𝛼 =
𝑎𝛼1

4(𝑒1
2 − 4𝑒0𝑒2)(𝑚(6𝑚 + 7) + 2)

4𝑚
,

𝛽 = −
𝑎𝛼1

4(𝑒1
2 − 4𝑒0𝑒2)(𝑚 − 4)(2𝑚 + 1)(3𝑚 + 2)

16𝑚
,   𝜆 =

2𝑎𝛼1
4𝑒1(𝑒1

2 − 4𝑒0𝑒2)(6𝑚2 + 7𝑚 + 2)

𝑚2 − 𝛾.

      (277) 

     

(277) denklemi, (276) denkleminde yerine konularak ve (27) denklemi kullanılarak 

𝑞(𝑥, 𝑡) = {𝛼1 (
𝐺′

𝐺
)}

2

𝑚

exp [𝑖 (
2𝑎𝛼1

4𝑒1(𝑒1
2 − 4𝑒0𝑒2)(6𝑚2 + 7𝑚 + 2)

𝑚2
− 𝛾) 𝑡]                           (278) 

                          

elde edilir. Sonuç olarak, incelenen denklem için durağan çözümler aşağıdaki gibi çıkarılır: 

I. 𝑒0 = 1, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 𝑘2 ise 

𝑞(𝑥, 𝑡) = {𝛼1cs𝑥dn𝑥}
2

𝑚exp [−𝑖 (
2𝑎𝛼1

4(𝑘2 + 1)(𝑘2 − 1)2(6𝑚2 + 7𝑚 + 2)

𝑚2
+ 𝛾) 𝑡]              (279) 

veya           

𝑞(𝑥, 𝑡) = {𝛼1(𝑘2 − 1)sc𝑥nd𝑥}
2

𝑚exp [−𝑖 (
2𝑎𝛼1

4(𝑘2 + 1)(𝑘2 − 1)2(6𝑚2 + 7𝑚 + 2)

𝑚2
+ 𝛾) 𝑡].                (280) 

 

II. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2𝑘2 − 1, 𝑒2 = −𝑘2 için 

𝑞(𝑥, 𝑡) = {−𝛼1sc𝑥dn𝑥}
2

𝑚exp [𝑖 (
2𝑎𝛼1

4(2𝑘2 − 1)(6𝑚2 + 7𝑚 + 2)

𝑚2
− 𝛾) 𝑡].                              (281) 

                                                                                             

III. 𝑒0 = 𝑘2 − 1, 𝑒1 = 2 − 𝑘2, 𝑒2 = −1 iken 
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𝑞(𝑥, 𝑡) = {−𝛼1𝑘2sd𝑥cn𝑥}
2

𝑚exp [𝑖 (
2𝑎𝛼1

4𝑘4(2 − 𝑘2)(6𝑚2 + 7𝑚 + 2)

𝑚2
− 𝛾) 𝑡].                       (282) 

                                                                                                                            

IV. 𝑒0 = 𝑘2, 𝑒1 = −(𝑘2 + 1), 𝑒2 = 1 olduğunda 

               

𝑞(𝑥, 𝑡) = {−𝛼1ds𝑥cn𝑥}
2

𝑚exp [−𝑖 (
2𝑎𝛼1

4(𝑘2 + 1)(𝑘2 − 1)2(6𝑚2 + 7𝑚 + 2)

𝑚2
+ 𝛾) 𝑡]            (283) 

                                  

veya 

             

𝑞(𝑥, 𝑡) = {𝛼1(1 − 𝑘2)sc𝑥nd𝑥}
2

𝑚exp [−𝑖 (
2𝑎𝛼1

4(𝑘2 + 1)(𝑘2 − 1)2(6𝑚2 + 7𝑚 + 2)

𝑚2
+ 𝛾) 𝑡].                (284) 

                                                                                                      

V. 𝑒0 = 1 − 𝑘2, 𝑒1 = 2 − 𝑘2, 𝑒2 = 1 durumunda 

              

𝑞(𝑥, 𝑡) = {−𝛼1ds𝑥nc𝑥}
2

𝑚exp [𝑖 (
2𝑎𝛼1

4𝑘4(2 − 𝑘2)(6𝑚2 + 7𝑚 + 2)

𝑚2
− 𝛾) 𝑡].                            (285) 

                                                                                                                        

VI. 𝑒0 = 1, 𝑒1 = 2𝑘2 − 1, 𝑒2 = 𝑘2(𝑘2 − 1) ise     

𝑞(𝑥, 𝑡) = {𝛼1cd2𝑥ns𝑥}
2

𝑚exp [𝑖 (
2𝑎𝛼1

4(2𝑘2 − 1)(6𝑚2 + 7𝑚 + 2)

𝑚2
− 𝛾) 𝑡].                                (286) 

                                                           

VII. 𝑒0 = 𝑘2(𝑘2 − 1), 𝑒1 = 2𝑘2 − 1, 𝑒2 = 1 için 

 𝑞(𝑥, 𝑡) = {−𝛼1cs𝑥nd𝑥}
2

𝑚exp [𝑖 (
2𝑎𝛼1

4(2𝑘2 − 1)(6𝑚2 + 7𝑚 + 2)

𝑚2
− 𝛾) 𝑡].                             (287) 

                                                                       

VIII. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = −1 iken 
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𝑞(𝑥, 𝑡) = {−𝛼1tanh𝑥}
2

𝑚exp [𝑖 (
2𝑎𝛼1

4(6𝑚2 + 7𝑚 + 2)

𝑚2
− 𝛾) 𝑡].                                                    (288) 

   

IX. 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1 olduğunda 

𝑞(𝑥, 𝑡) = {−𝛼1coth𝑥}
2

𝑚exp [𝑖 (
2𝑎𝛼1

4(6𝑚2 + 7𝑚 + 2)

𝑚2
− 𝛾) 𝑡].                                                    (289) 

                                                                                                                

X. 𝑒0 = 0, 𝑒1 = −1, 𝑒2 = 1 durumunda 

𝑞(𝑥, 𝑡) = {𝛼1tan𝑥}
2

𝑚exp [−𝑖 (
2𝑎𝛼1

4(6𝑚2 + 7𝑚 + 2)

𝑚2
+ 𝛾) 𝑡].                                                      (290) 

   

Burada, (279)-(287) denklemleri ile verilen çözümler, modelin Jacobi eliptik fonksiyon 

çözümleri iken, (288)-(290) çözümleri, sırasıyla durağan koyu optik soliton çözümü, 

durağan tekil optik soliton çözümü ve periyodik dalgayı temsil eder.                                                 
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Şekil 1: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (36) çözümünün nümerik simülasyonu.    

 

Şekil 2: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (37) çözümünün nümerik simülasyonu. 

 

Şekil 3: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (38) çözümünün nümerik simülasyonu. 
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Şekil 4: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (39) çözümünün nümerik simülasyonu. 

 

Şekil 5: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (40) çözümünün nümerik simülasyonu. 

 

Şekil 6: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (41) çözümünün nümerik simülasyonu. 
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Şekil 7: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (42) çözümünün nümerik simülasyonu. 

 

Şekil 8: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (43) çözümünün nümerik simülasyonu.                                                                     

 

     Şekil 9: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (44) çözümünün nümerik simülasyonu.                        
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     Şekil 10: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (45) çözümünün nümerik simülasyonu. 

 

     Şekil 11: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (46) çözümünün nümerik simülasyonu. 

 

     Şekil 12: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (47) çözümünün nümerik simülasyonu. 



66 

 

 

     Şekil 13: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (48) çözümünün nümerik simülasyonu. 

 

     Şekil 14: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (49) çözümünün nümerik simülasyonu. 

 

     Şekil 15: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (50) çözümünün nümerik simülasyonu. 



67 

 

 

Şekil 16: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (51) çözümünün nümerik simülasyonu. 

 

Şekil 17: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (52) çözümünün nümerik simülasyonu. 

 

Şekil 18: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (53) çözümünün nümerik simülasyonu. 
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Şekil 19: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (54) çözümünün nümerik simülasyonu. 

 

Şekil 20: 𝑎 = 1,  𝑘 = 0.5 ve 𝛼 = 1, 2, 3, 4, 5 için (55) çözümünün nümerik simülasyonu. 

 

Şekil 21: 𝑎 = 1 ve 𝛼 = 1, 2, 3, 4, 5 için (57) çözümünün nümerik simülasyonu. 
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Şekil 22: 𝑎 = 1 ve 𝛼 = 1, 2, 3, 4, 5 için (58) çözümünün nümerik simülasyonu. 

 

Şekil 23: 𝑎 = 1 ve 𝛼 = 1, 2, 3, 4, 5 için (59) çözümünün nümerik simülasyonu. 

 

Şekil 24: 𝑎 = 1 ve 𝛼 = 1, 2, 3, 4, 5 için (60) çözümünün nümerik simülasyonu. 
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7. SONUÇ VE ÖNERİLER 

Bu çalışma, nonlineer kromatik dağılımlı ve kendiliğinden faz modülasyonu 

yapılarının çeşitli formlarına sahip komleks GL denkleminden ortaya çıkan durağan 

solitonların türetilmesi ve sergilenmesi üzerinedir. Sonuçlar, lineer zamansal gelişim için 

gösterilmiştir. Bir ürün olarak durağan optik soliton çözümleri ve diğer dalga çözümleri 

üreten Jacobi’nin eliptik fonksiyonlar yaklaşımı benimsenmiştir. Periyodik tekil çözümler, 

Gaussian solitary dalgalar ve Jacobi’nin eliptik fonksiyonları cinsinden çözümler elde 

edilmiştir. Durağan optik solitonların dört formunun tamamı bu çalışmada keşfedilmiştir 

ve bunlar parlak, koyu ve tekil solitonlardır (her iki türden). Burada listelenen çözümlerin 

bolluğu, komleks GL denkleminin çalışıldığı diğer fiziksel ve mühendislik alanlarının yanı 

sıra optik topluluğunda faydalı bir varlık olacaktır. 

İleride, komleks GL denklemine ek integrasyon teknikleri uygulanacaktır. Hareket 

eden dalgalar yöntemi, yarı-ters varyasyon ilkesi ve belirsiz katsayılar yöntemi bunlardan 

birkaçıdır. Soliton parametrelerinin adyabatik dinamiklerini elde etmek için soliton 

pertürbasyon teorisi de uygulanacaktır. Solitonların kanal içi çarpışması incelenecek ve 

yarı parçacık teorisi geliştirilecektir. Ardından, stokastik pertürbasyon da ele alınacak ve 

bu çalışmanın anlık bir sonucu, aynı modeli genelleştirilmiş zamansal gelişimle incelemek 

olacaktır. Bu, burada ele alınan ve incelenen modele genelleştirilmiş bir bakış açısı 

verecektir. Son olarak model, varyasyonel iterasyon yöntemi, Adomian ayrıştırma şeması 

ve diğer yöntemlerin kullanımı ile nümerik olarak da ele alınacaktır. 
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EKLER 

Bu kısımda (23) ile verilen Jacobi eliptik denkleminin çözümleri ve Jacobi eliptik 

fonksiyonlarla ile ilgili bazı bilgiler verilecektir.  

EK-A 

(23) denkleminin çözümleri aşağıdaki gibi listelenir (Zayed, 2009; Malik vd., 2012; Yalçı 

ve Ekici, 2022): 

 Durum 𝑒0 𝑒1 𝑒2 𝐺(𝑥) 𝐺′(𝑥)

1 1 −(1 + 𝑘2) 𝑘2 sn𝑥 cn𝑥dn𝑥

2 1 −(1 + 𝑘2) 𝑘2 cd𝑥 −(1 − 𝑘2)sd𝑥nd𝑥

3 1 − 𝑘2 2𝑘2 − 1 −𝑘2 cn𝑥 −sn𝑥dn𝑥
4 𝑘2 − 1 2 − 𝑘2 −1 dn𝑥 −𝑘2sn𝑥cn𝑥
5 𝑘2 −(𝑘2 + 1) 1 ns𝑥 −ds𝑥cs𝑥

6 𝑘2 −(𝑘2 + 1) 1 dc𝑥 (1 − 𝑘2)nc𝑥sc𝑥

7 −𝑘2 2𝑘2 − 1 1 − 𝑘2 nc𝑥  sc𝑥dc𝑥
8 −1 2 − 𝑘2 𝑘2 − 1 nd𝑥 𝑘2sd𝑥cd𝑥
9 1 − 𝑘2 2 − 𝑘2 1 cs𝑥 −ns𝑥ds𝑥
10 1 2 − 𝑘2 1 − 𝑘2 sc𝑥 nc𝑥dc𝑥
11 1 2𝑘2 − 1 𝑘2(𝑘2 − 1) sd𝑥 nd𝑥cd𝑥

12 𝑘2(𝑘2 − 1) 2𝑘2 − 1 1 ds𝑥 −cs𝑥ns𝑥

13
1

4

1

2
(1 − 2𝑘2)

1

4
ns𝑥 ± cs𝑥 −ds𝑥cs𝑥 ∓ ns𝑥ds𝑥

14
1

4
(1 − 𝑘2)

1

2
(1 + 𝑘2)

1

4
(1 − 𝑘2) nc𝑥 ±  sc𝑥  sc𝑥dc𝑥 ± nc𝑥dc𝑥

15
𝑘2

4

1

2
(𝑘2 − 2)

1

4
ns𝑥 ± ds𝑥 −ds𝑥cs𝑥 ∓ cs𝑥ns𝑥

16
𝑘2

4

1

2
(𝑘2 − 2)

𝑘2

4
sn𝑥 ± icn𝑥 dn𝑥cn𝑥 ∓ isn𝑥dn𝑥

17 0 1 −1 sech𝑥 −sech𝑥tanh𝑥
18 0 1 1 csch𝑥 −csch𝑥coth𝑥
19 0 −1 1 sec𝑥 sec𝑥tan𝑥

20 0 0 1
1

ξ
−

1

ξ2

21 0 −(1 + 𝑘2) 𝑘2 sn𝑥 cn𝑥dn𝑥

 

burada 𝑘, (0 < 𝑘 < 1) Jacobi eliptik fonksiyonların modülüdür ve 𝑖 = √−1.                                               

EK-B 

𝑘 → 1− iken, Jacobi eliptik fonksiyonlar hiperbolik fonksiyonlara dejenere olur: 

sn 𝑥 → tanh 𝑥,  cn 𝑥 → sech 𝑥,  dn 𝑥 → sech 𝑥,  sc 𝑥 → sinh 𝑥,  
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sd 𝑥 → sinh 𝑥,  cd 𝑥 → 1,  ns 𝑥 → coth 𝑥, nc 𝑥 → cosh 𝑥,       (291)     

nd 𝑥 → cosh 𝑥, cs 𝑥 → csch 𝑥,  ds 𝑥 → csch 𝑥, dc 𝑥 → 1.  

Ancak, 𝑘 → 0+ iken, Jacobi eliptik fonksiyonlar trigonometrik fonksiyonlara dönüşür. 

sn 𝑥 → sin 𝑥,   cn 𝑥 → cos 𝑥,   dn 𝑥 → 1,   sc 𝑥 → tan 𝑥,  

sd 𝑥 → sin 𝑥,   cd 𝑥 → cos 𝑥,  ns 𝑥 → csc 𝑥,  nc 𝑥 → sec 𝑥,         (292) 

nd 𝑥 → 1,  cs 𝑥 → cot 𝑥,   ds 𝑥 → csc 𝑥,   dc 𝑥 → sec 𝑥.  

EK-C 

cd 𝑥 =
cn 𝑥

dn 𝑥
 ,                dc 𝑥 =

dn 𝑥

cn 𝑥
,                    nc 𝑥 =

1

cn 𝑥
,                  nd 𝑥 =

1

dn 𝑥
,         

cs 𝑥 =
cn 𝑥

sn 𝑥
,                  sc 𝑥 =

sn 𝑥

cn 𝑥
,                     sd 𝑥 =

sn 𝑥

dn 𝑥
,                  ds 𝑥 =

dn 𝑥

sn 𝑥
.            (293) 
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