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This thesis introduces two novel techniques for the analysis and synthesis of image sequences:

a linear algorithm for weak calibration of a stereo rig from point correspondences, and an

algorithm for image-based rendering without explicit three-dimensional reconstruction based

on point and line correspondences.

By recasting the epipolar constraint in a projective setting with an appropriate basis choice,

we �rst show that Jepson's and Heeger's linear subspace algorithm for in�nitesimal motion

estimation can be generalized to the �nite motion case. This yields a linear method for weak

calibration. The algorithm has been implemented and tested on both real and synthetic images,

and it is compared to other linear and non-linear approaches to weak calibration.

We then show that the set of all images of a rigid scene taken by a Euclidean camera is

a six-dimensional variety, and we introduce a parameterization (called parameterized image

variety, or PIV in short) of this variety for weak perspective and paraperspective cameras in

terms of the image positions of three reference points. This parameterization can be estimated

via linear least-squares and non-linear least-squares with low-degree equations.

We use parameterized image varieties of both point and line features to synthesize new

images from a set of pre-recorded pictures without actual three-dimensional reconstruction

(image-based rendering) in an integrated framework. The method has been implemented and

extensively tested on real data sets.

Finally, we show how to adapt recent advances in statistically-unbiased least-squares meth-

ods to our image-based rendering approach. The point-based PIV involves equations with



bilinear or higher-order data dependencies and we show how to eÆciently estimate its parame-

ters by adapting Leedan's and Meer's technique for bilinear estimation problems.



ABSTRACT

This thesis introduces two novel techniques for the analysis and synthesis of image sequences:

a linear algorithm for weak calibration of a stereo rig from point correspondences, and an

algorithm for image-based rendering without explicit three-dimensional reconstruction based

on point and line correspondences.

By recasting the epipolar constraint in a projective setting with an appropriate basis choice,

we �rst show that Jepson's and Heeger's linear subspace algorithm for in�nitesimal motion

estimation can be generalized to the �nite motion case. This yields a linear method for weak

calibration. The algorithm has been implemented and tested on both real and synthetic images,

and it is compared to other linear and non-linear approaches to weak calibration.

We then show that the set of all images of a rigid scene taken by a Euclidean camera is

a six-dimensional variety, and we introduce a parameterization (called parameterized image

variety, or PIV in short) of this variety for weak perspective and paraperspective cameras in

terms of the image positions of three reference points. This parameterization can be estimated

via linear least-squares and non-linear least-squares with low-degree equations.

We use parameterized image varieties of both point and line features to synthesize new

images from a set of pre-recorded pictures without actual three-dimensional reconstruction

(image-based rendering) in an integrated framework. The method has been implemented and

extensively tested on real data sets.

Finally, we show how to adapt recent advances in statistically-unbiased least-squares meth-

ods to our image-based rendering approach. The point-based PIV involves equations with

bilinear or higher-order data dependencies and we show how to eÆciently estimate its parame-

ters by adapting Leedan's and Meer's technique for bilinear estimation problems.

iii



Decidated to my parents, Elmas and Osman Genc

iv



ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Jean Ponce, for his guidance and support

throughout my graduate studies at the University of Illinois. It has been a pleasure to work

with him. I also would like to thank to the other members of my thesis committee, Professors

Seth Hutchinson, David Kriegman and Dan Roth for their input and time.

Thanks also extend to Professor Peter Meer for his collaboration and contributions, and to

my colleagues in the Computer Vision and Robotics research group for their helpful discussions,

including (but not limited to) Kevin Knickels, Peter Leven, Sung-il Pae and Attawith Sudsang.

Finally, I wish to thank my wife, Emine Genc, for her endless patience and support, and

my daughter, Hilal, and my son, Ibrahim Said, for the joy they bring to my life.

This research was partially supported by a fellowship from the Turkish Ministry of Educa-

tion, by the National Science Foundation under grants IRI-9224815 and IRI-9634312 and by

the National Aeronautics and Space Administration under grant NAG 1-613.

v



TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 WEAK CALIBRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Epipolar Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Current Approaches to Weak Calibration . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Linear Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Nonlinear Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The In�nitesimal Case: Jepson's and Heeger's Approach . . . . . . . . . . . . . 13

3 A LINEAR SUBSPACE ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 A New Approach to Weak Calibration . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 A Projective Version of the Epipolar Constraint . . . . . . . . . . . . . . 16

3.1.2 Setting up the Linear Constraints . . . . . . . . . . . . . . . . . . . . . . 18

3.1.3 Solving the Linear Constraints . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.4 Estimating the Position of the Epipoles . . . . . . . . . . . . . . . . . . . 19

3.1.5 Estimating the Epipolar Transformation . . . . . . . . . . . . . . . . . . 20

3.1.6 Summary of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Empirical Evaluation of the Proposed Approach . . . . . . . . . . . . . . . . . . 21

3.2.1 Experiments Using Real Data . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Comparison with Other Methods . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Computational Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 IMAGE-BASED RENDERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Model-Based Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Factorization Method of Tomasi and Kanade . . . . . . . . . . . . . . . . 38

4.2 Transfer-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Light-Field Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 PARAMETERIZED IMAGE VARIETIES . . . . . . . . . . . . . . . . . . . . . 47

5.1 The Set of Images of a Rigid Scene . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.1 AÆne Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.2 Euclidean Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 A New Approach to Image-Based Rendering . . . . . . . . . . . . . . . . . . . . 53

vi



5.2.1 The Point PIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1.1 Estimation of the Structure Parameters . . . . . . . . . . . . . 57

5.2.2 The Line PIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.2.1 Line Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.2.2 Line Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.3 From Lines to Line Segments . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Image Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.1 Hidden-Surface Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.2 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 The Paraperspective Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.1 The Paraperspective Point PIV . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.2 The Paraperspective Line PIV . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Adding a Second Pass to the Algorithm . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.1 Integrating Point and Line PIVs to Estimate Structure Parameters . . . 67

5.5.2 The Re�ned Point PIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.3 The Re�ned Line PIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6 Summary of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Degenerate Scene and Camera Con�gurations . . . . . . . . . . . . . . . . . . . . 71

5.7.1 Degenerate Point Con�gurations . . . . . . . . . . . . . . . . . . . . . . . 72

5.7.2 Degenerate Line Con�gurations . . . . . . . . . . . . . . . . . . . . . . . 73

5.7.3 Degenerate Camera Con�gurations . . . . . . . . . . . . . . . . . . . . . 74

5.8 Implementation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.8.1 The Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.8.2 The Point PIV Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.8.3 The Line PIV Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.8.4 Combined Results for Line and Point PIVs . . . . . . . . . . . . . . . . . 79

5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 BILINEAR ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 The Errors-in-Variables Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.2 Lagrange Multipliers Formulation . . . . . . . . . . . . . . . . . . . . . . 100

6.2.3 Computing the Covariance Matrices . . . . . . . . . . . . . . . . . . . . . 101

6.2.4 Solving the Eigenproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.5 Summary of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 The Paraperspective Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Implementation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.1 Synthetic Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.2 Experiments with Real Data . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4.3 Comparisons with Factorization . . . . . . . . . . . . . . . . . . . . . . . 108

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

vii



APPENDIX A Elementary Notions of Analytical Projective Geometry . . . 131

APPENDIX B � (��) and �(�� ) are Orthogonal to (1; 1; 1)T . . . . . . . . . . . 133

APPENDIX C Paraperspective Constraints . . . . . . . . . . . . . . . . . . . . 134

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

viii



LIST OF TABLES

Table Page

3.1 The linear subspace algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 The abbreviations for the weak calibration algorithms tested in the experiments. 28

3.3 Running times of the various methods. We have indicated the running time for

both a single run of the LS method and the 30 runs required to select a good basis. 34

5.1 Properties of the data sets used in the experiments. . . . . . . . . . . . . . . . . 78

6.1 Abbreviations used to denote the variants of the PIV algorithm. . . . . . . . . . 106

ix



LIST OF FIGURES

Figure Page

1.1 Recovered epipolar lines for a pair of images. . . . . . . . . . . . . . . . . . . . . 2

1.2 Example image synthesis: 30 images (top 6 rows) are used to obtain the synthe-

sized image for a novel view (larger image). . . . . . . . . . . . . . . . . . . . . . 4

2.1 Epipolar geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 The pencils of planes and lines used to compute the u = k1 (left) and v = k2

(right) projective coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Recovered epipolar lines for the house data sets. . . . . . . . . . . . . . . . . . . 23

3.3 Recovered epipolar lines for the bridge data sets. . . . . . . . . . . . . . . . . . . 24

3.4 Recovered epipolar lines for the tribunal data sets. . . . . . . . . . . . . . . . . . 25

3.5 E�ect of basis choice on the performance of the algorithm. The bucket size is

0.1 pixel, and we only show the part of the histograms corresponding to errors

between 0 and 10 pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Results obtained by running variants of the normalized eight-point and virtual

parallax methods on our seven data sets: (a) normalized eight-point algorithm;

the dashed curve represents the errors measured when using the singular value

decomposition of the fundamental matrix to compute the epipolar lines, while

the solid curve represents the errors measured when the epipoles are used as a

basis for estimating the epipolar transformation and thus the epipolar lines; (b)

similar plot for the non-linear version of the virtual parallax algorithm; (c) linear

and non-linear versions of the virtual parallax algorithm. . . . . . . . . . . . . . 29

3.7 A comparison of �ve weak calibration techniques using real data. . . . . . . . . . 30

3.8 E�ect of noise on the �ve methods. Note that all plots are truncated at an error

level of 4 pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.9 E�ect of noise on the �ve methods. Here the relative error in reconstruction of

epipoles with respect to ground truth is given. See the text for details. . . . . . 33

4.1 Transferring the images of the scene point P in two reference images p3 into a

third one as the intersection of the corresponding epipolar lines. . . . . . . . . . . 41

4.2 Parameterization of the light �eld. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 AÆne camera model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Geometric setting for points and lines in 3D. . . . . . . . . . . . . . . . . . . . . 51

x



5.3 Euclidean projection models: In orthographic projection a point is projected onto

the image plane orthographically. In weak perspective projection a point is �rst

projected onto a reference plane orthographically and followed by a perspective

projection. Finally, a paraperspective projection is obtained by �rst projecting

the scene points onto the reference plane parallel to the line joining a reference

point on the reference plane and followed by a perspective projection. Amomg

these projection models, paraperspective projection is the best approximation to

the perspective projection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Geometric setup for the point and the line PIVs. . . . . . . . . . . . . . . . . . . 54

5.5 Parameterization of the line Æ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6 Z-bu�ering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.7 The image-based rendering algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 70

5.8 A degenerate camera con�guration where the parameterization may fail: the

camera moves along the line joining the center of projection and the �rst reference

point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.9 First three data sets used in the experiments: The �rst column shows a sample

image. The second column shows the point features and the third column shows

the line features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.10 Last four data sets used in the experiments: The �rst column shows a sample

image. The second column shows the point features and the third column shows

the line features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.11 Image point reconstruction on real data sets: for each data the bars from left to

right represents the SW1, SP1, SW2 and SP2 methods. In training, from top

to bottom, the �rst 25%, 50%, 75% and 100% of the images were used. And, in

testing, the remaining images for the �rst three plots and all of the images for

the last plot were used and the average error in prediction were recorded. . . . . 81

5.12 Image synthesis for the last image in the KITCHEN data set using the �rst half

of the images in training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.13 Image synthesis for the last image in the HOUSE data set using the �rst half of

the images in training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.14 Image synthesis for the last image in the LQBOX data set using the �rst half of

the images in training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.15 Image synthesis for the last image in the TOWER data set using the �rst half

of the images in training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.16 Image synthesis for the last image in the XL1BOX data set using the �rst half

of the images in training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.17 Image synthesis for the last image in the FLOWER data set using the �rst half

of the images in training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.18 Image synthesis for novel views using point features for the data sets KITCHEN,

HOUSE, LQBOX, TOWER, Xl1BOX and FLOWER. . . . . . . . . . . . . . . . 88

5.19 Image synthesis for novel views using point features for the FACE data set. . . . 89

xi



5.20 Image line reconstruction on real data sets. The upper four graphs show the

error in line directions where the bars from left to right represents the W1, P1,

W2 and P2 methods. From top to bottom, the �rst 25%, 50%, 75% and 100% of

the images are used in training. The last graph shows the error in line position

(from left to right the �rst 25%, 50%, 75% and 100% of the images are used in

training. Note that the four graphs are not to the same scale. . . . . . . . . . . . 90

5.21 Reconstructed lines (solid) together with the original lines (dashed) for the last

image in the LQBOX data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.22 Reconstructed lines (solid) together with the original lines (dashed) for the last

image in the TOWER data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.23 Reconstructed lines (solid) together with the original lines (dashed) for the last

image in the XL1BOX data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.24 Image synthesis for novel views using both line and point features using the

second pass of paraperspective case. . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 The EIV parameter estimation algorithm. . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Performance of the weak perspective SVD- and EIV-based methods with respect

to the amount of noise: the parameters have been computed using 10 images and

the mean error in reconstruction of image point locations has been recorded for

50 test images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3 Performance of the weak perspective SVD- and EIV-based methods with respect

to the number of images in training: all of the testing (50) and the training

images have been perturbed with a Gaussian noise with �2 = 0:5 pixels. . . . . . 111

6.4 Quantitative comparisons of the SVD- and EIV-based methods on real data sets.

All variants of the algorithm are tested (from left to right, SW1, EW1, SW2,

EW2, SP1, EP1, SP2 and EP2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Qualitative comparison of the weak-perspective SVD- and EIV-based methods

on the KITCHEN data set using the �rst half of the images in training. The

synthesized images correspond to the last image in the data. . . . . . . . . . . . . 113

6.6 Qualitative comparison of the paraperspective SVD- and EIV-based methods

on the KITCHEN data set using the �rst half of the images in training. The

synthesized images correspond to the last image in the data. . . . . . . . . . . . . 114

6.7 Qualitative comparison of the weak-perspective SVD- and EIV-based methods

on the HOUSE data set using the �rst half of the images in training. The

synthesized images correspond to the last image in the data. . . . . . . . . . . . . 115

6.8 Qualitative comparison of the paraperspective SVD- and EIV-based methods on

the HOUSE data set using the �rst half of the images in training. The synthesized

images correspond to the last image in the data. . . . . . . . . . . . . . . . . . . 116

6.9 Qualitative comparison of the weak-perspective SVD- and EIV-based methods

on the LQBOX data set using the �rst half of the images in training. The

synthesized images correspond to the last image in the data. . . . . . . . . . . . . 117

6.10 Qualitative comparison of the paraperspective SVD- and EIV-based methods

on the LQBOX data set using the �rst half of the images in training. The

synthesized images correspond to the last image in the data. . . . . . . . . . . . . 118

xii



6.11 Qualitative comparison of the weak-perspective SVD- and EIV-based methods

on the TOWER data set using the �rst half of the images in training. The

synthesized images correspond to the last image in the data. . . . . . . . . . . . . 119

6.12 Qualitative comparison of the paraperspective SVD- and EIV-based methods

on the TOWER data set using the �rst half of the images in training. The

synthesized images correspond to the last image in the data. . . . . . . . . . . . . 120

6.13 Qualitative comparison of the weak-perspective SVD- and EIV-based methods

on the XL1BOX data set using the �rst half of the images in training. The

synthesized images correspond to the last image in the data. . . . . . . . . . . . . 121

6.14 Qualitative comparison of the paraperspective SVD- and EIV-based methods

on the XL1BOX data set using the �rst half of the images in training. The

synthesized images correspond to the last image in the data. . . . . . . . . . . . . 122

6.15 Qualitative comparison of the weak-perspective SVD- and EIV-based methods

on the FLOWER data set using the �rst half of the images in training. The

synthesized images correspond to the last image in the data. . . . . . . . . . . . . 123

6.16 Qualitative comparison of the paraperspective SVD- and EIV-based methods

on the FLOWER data set using the �rst half of the images in training. The

synthesized images correspond to the last image in the data. . . . . . . . . . . . . 124

6.17 Comparisons of the variants of the PIV algorithm (from left to right, SW1, EW1,

SW2, EW2, SP1, EP1, SP2 and EP2) and the factorization method of Tomasi

and Kanade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.18 Synthesized images for novel views using the EW1 and the factorization algo-

rithms for the HOUSE and KITCHEN data sets. . . . . . . . . . . . . . . . . . . 126

6.19 Synthesized images for novel views using the EW1 and the factorization algo-

rithms for the LQBOX and XL1BOX data sets. . . . . . . . . . . . . . . . . . . . 127

xiii



CHAPTER 1

INTRODUCTION

The human visual system processes a continuous stream of images to deduce information

about the world. Computer vision tries to imitate these capabilities by processing sequences of

images obtained by a digital camera.

In this context, two images of a rigid scene are related by the epipolar geometry. The

estimation of the epipolar geometry from point correspondences is called weak calibration. The

synthesis of new views of a scene from a set of pre-recorded pictures is called image-based

rendering. In this thesis, we investigate these two problems and develop algorithms to solve

them.

It has been shown by Jepson and Heeger in [43, 50] that motion estimation for calibrated

cameras undergoing in�nitesimal displacements can be reduced to a linear problem. A primary

objective of this thesis was to answer the following question: is it possible to generalize Jepson's

and Heeger's method to the �nite motion case? As we will see in Chapter 3, the answer to this

question is yes when the motion analysis problem is considered in a projective setting. In this

case, motion estimation reduces to the estimation of the epipolar geometry, a process known as

weak calibration.

More precisely, two uncalibrated perspective images of a rigid object are related by the

epipolar geometry (or equivalently by the fundamental matrix which is a 3� 3 singular matrix)

[21]. When the cameras are calibrated, i.e., the intrinsic parameters of the cameras are known,

this relation is captured by the essential matrix [63]. The image of a scene point in one image lies

on the corresponding epipolar line. The epipolar lines in one image go through the epipole, i.e.,

the intersection of the image plane with the baseline connecting the centers of the two camera.

The epipolar line associated with a scene point is the intersection of the image plane and the
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Figure 1.1 Recovered epipolar lines for a pair of images.

plane spanned by the point and the centers of two cameras. See Figure 1.1 for an example of

recovered epipolar lines for a pair of images using the algorithm introduced in Chapter 3.

Developing accurate and reliable methods for weak calibration is very important in practice

because of the central role of epipolar geometry in stereo and motion algorithms: in particular,

Faugeras [19] and Hartley, Gupta and Chang [39] have shown that it is possible to reconstruct

the three-dimensional projective structure of a scene observed by a weakly calibrated stereo

rig without any knowledge of the intrinsic parameters of the cameras (see [55, 75, 99, 88] for

related work). As demonstrated by Xu et al. [117] [80] and Deriche et al. [16] [120], estimating

the epipolar geometry from initial point correspondences is also the key to establishing further

correspondences in image matching. Luong and Faugeras [68] discuss many other applications,

including the construction of stereo projective invariants [31, 34, 35, 99], the synthesis of new

images from old ones [57, 95], convex hull computation [91], image recti�cation [38, 94], motion

segmentation [80, 110], and self calibration [21, 36].

We propose in Chapter 3 a linear algorithm for weak calibration that generalizes Jepson's

and Heeger's method to the �nite motion case. This algorithm has been implemented and

comparisons with other techniques are presented.
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Second, we consider the problem of image-based rendering from point and line correspon-

dences. This class of techniques operates solely on a �xed set of pre-recorded pictures of a rigid

scene to synthesize new views of the scene without actually constructing a three-dimensional

model, o�ering an alternative to the classical model-based rendering methods.

In recent years, there has been a proliferation of research on image-based rendering in both

computer vision [57, 95, 56, 3] and computer graphics [9, 30, 61]. The computer graphics

techniques are based on the idea that the set of all visual rays (light �eld) is four-dimensional,

and can thus be characterized from a two-dimensional sample of images of a rigid scene. In

contrast, the computer vision techniques only use a discrete set of views among which point

correspondences have been established by feature tracking or conventional stereo matching.

Unfortunately, previous image-based rendering techniques based on ideas from aÆne or

projective geometry generate pictures that may be aÆnely or projectively deformed. Another

primary objective of this thesis was to determine whether it was possible to construct correct

images without estimating the three-dimensional structure of the scene or the motion of the

camera. We have indeed developed such an algorithm presented in Chapter 5 that takes into

account Euclidean constraints directly.

A desirable property that an image-based rendering system should have is that even a

restricted range of motion in the input should be suÆcient to render correct images for far

apart views. For example, the image-based rendering system developed in this thesis can

generate a view from the top of a building even though only small set of frontal images of the

building are available (see Figure 1.2 for an example).

1.1 Thesis Organization

In Chapter 2, the main elements of epipolar geometry are summarized and various ap-

proaches to weak calibration are reviewed. This chapter also clari�es the relationship between

Jepson's and Heeger's linear subspace approach [50, 43, 51] to in�nitesimal motion analysis and

the Longuet-Higgins characterization of epipolar geometry.
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Figure 1.2 Example image synthesis: 30 images (top 6 rows) are used to obtain the synthesized

image for a novel view (larger image).
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In Chapter 3, we introduce a linear algorithm for estimating the epipolar geometry. We �rst

show that Jepson's and Heeger's linear subspace technique for in�nitesimal motion estimation

can be generalized to the �nite motion case by choosing an appropriate basis for projective

space. This yields a linear method for weak calibration. The proposed algorithm has been

implemented and tested on both real and synthetic images, and it is compared to other linear

and non-linear approaches to weak calibration.

In Chapter 4, we review various image-based rendering techniques. In Chapter 5, after

discussing di�erent projection models and their properties, we introduce a new approach to

image-based rendering taking into account the Euclidean constraints associated with real cam-

eras. We assume that a set of point correspondences are given throughout the sequence. The

method is based on a new parameterization of the set of all weak perspective or paraperspective

images of a rigid scene. The method has been implemented and tested on real data. We also

present an analysis of degenerate camera and scene con�gurations for which our algorithm may

fail. We then generalize the point-based approach to handle line correspondences. Note that us-

ing lines has the advantage that they can be located very accurately in images. In image-based

rendering, the e�ective use of line correspondences requires the prediction of the end points of

the line segments. We propose a method for solving this problem and integrating point and

line features to render new images of the scene in a common framework.

In Chapter 6, we investigate the use of statistically-unbiased least-squares methods in image-

based rendering applications. In particular, the estimation of the parameters of the PIV involves

solving a set of equations with bilinear or higher-order data dependencies. The approach pro-

posed by Leedan and Meer [59, 60] for bilinear data dependency problems is adapted to the

estimation of the PIV parameters for the weak perspective and paraperspective cases.

Finally, we conclude in Chapter 7 by summarizing the results of this thesis and giving some

future research directions.

Part of the material in this thesis has been published in a number of papers: The weak

calibration method in Chapter 3 was �rst presented in [86] and [87]. The point-based image-

based rendering algorithm in Chapter 5 was presented in [26]. Finally, the bilinear estimation

algorithm of Chapter 6 was presented in [27].
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CHAPTER 2

WEAK CALIBRATION

The geometric information contained in two images taken by uncalibrated perspective cam-

eras is completely captured by the epipolar geometry of the two images, i.e., by the knowledge

of the epipoles and of the homography, called epipolar transformation, relating the pencils of

epipolar lines in the two images, or equivalently, by the knowledge of the fundamental matrix

[21, 39, 33, 64, 68]. This chapter reviews current approaches to the problem of estimating the

epipolar geometry from point correspondences, a process known as weak calibration.

Developing accurate and reliable methods for weak calibration is very important in practice

because of the central role of epipolar geometry in stereo and motion algorithms: in particular,

Faugeras [19] and Hartley, Gupta and Chang [39] have shown that it is possible to reconstruct

the three-dimensional projective structure of a scene observed by a weakly calibrated stereo

rig without any knowledge of the intrinsic parameters of the cameras (see [55, 75, 99, 88] for

related work). As demonstrated by Xu et al. [117] [80] and Deriche et al. [16] [120], estimating

the epipolar geometry from initial point correspondences is also the key to establishing further

correspondences in image matching. Luong and Faugeras [68] discuss many other applications,

including the construction of stereo projective invariants [31, 34, 35, 99], the synthesis of new

images from old ones [57, 95], convex hull computation [91], image recti�cation [38, 94], motion

segmentation [80, 110], and self calibration [21, 36].

We will assume throughout the presentation that a static scene is observed by a mobile

perspective camera. In the in�nitesimal case we assume that the motion �eld is known. In

the �nite-motion case we suppose that discrete point correspondences used as input to the

weak calibration process have been correctly established by a separate matching process. Let

us just mention that there is a vast literature on image matching, including various methods
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for detecting feature points [76, 18, 32, 81, 92, 15], hypothesizing initial correspondences (e.g.,

correlation [28, 79, 24], feature tracking [75, 108, 118] and structural matching [4, 98, 45, 115]),

establishing new correspondences once an initial estimate of the epipolar geometry has been

obtained [117, 80], and �nding and rejecting false matches using techniques from robust statistics

[83, 97, 110, 109]. Two recent papers by Deriche et al. describe an integrated approach to image

matching that combines several of these ideas and achieves impressive results [16, 120].

The rest of this chapter is organized as follows. Section 2.1 summarizes the main elements of

epipolar geometry. Section 2.2 presents previous approaches to weak calibration, including the

non-linear distance minimization technique of Luong et al. [65, 68], Hartley's normalized eight-

point algorithm [37], and the virtual parallax approach of Boufama and Mohr [6]. Section 2.3

clari�es the relationship between Jepson's and Heeger's linear subspace approach to in�nitesimal

motion analysis [50, 43, 51] and the Longuet-Higgins characterization of epipolar geometry [63].

2.1 Epipolar Geometry

Consider two perspective cameras with optical centers C and C 0 and image planes � and

�0 (Figure Figure 2.1). If P is a point observed by the cameras and p;p0 denote its two images,

then the point p (resp. p0) lies on the line where the plane formed by C, C 0 and P intersects

the image plane � (resp. �0). This line goes through the point e (resp. e0) where the baseline

joining the optical centers C and C 0 intersects the plane � (resp. �0). The points e and e0

are called the epipoles associated with the two cameras, and the line passing through e0 and

de�ned by the intersection of the plane formed by the points C, C 0, and p is called the epipolar

line associated with the point p.

This yields the well-known epipolar constraint: \if p and p0 are images of the same point,

then p0 lies on the epipolar line associated with p", which is of course of fundamental importance

in stereo vision.

Longuet-Higgins [63] was the �rst person to give a simple algebraic characterization of the

epipolar constraint, namely

p
0TEp = 0; (2.1)

where E = [t�]R, and the point p (resp. p0) has been identi�ed with the vector of its homo-

geneous image coordinates (u; v; 1)T (resp. (u0; v0; 1)T ). Here [a�] denotes the skew-symmetric
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Figure 2.1 Epipolar geometry.

matrix such that [a�]x = a� x is the cross-product of the vectors a and x. The matrix E is

called the essential matrix representing the motion from the �rst to the second camera de�ned

by the rotation R and the translation t. As shown by Huang and Faugeras, essential matrices

are characterized by the fact that they are singular with two equal non-zero singular values

[47].

The Longuet-Higgins relation holds for calibrated cameras, i.e., cameras whose internal pa-

rameters are known so that image positions can be expressed in normalized coordinates. As

shown by Faugeras, Luong and Maybank [21, 64, 68], it is still possible to write the epipolar

constraint for uncalibrated cameras as

p
0TFp = 0; (2.2)

where the matrix F , called the fundamental matrix, is not, in general, an essential matrix. It

has rank two, and the eigenvector of F (resp. FT ) corresponding to its zero eigenvalue is the

epipole e (resp. e0). Note that Fp (resp. FT
p
0) represents the epipolar line corresponding to

the point p (resp. p0) in the second (resp. �rst) image.

Alternatively, the epipolar geometry is also determined by the position of the epipoles e and

e
0 and by the epipolar transformation: as shown in [21, 65, 68], the correspondence between

epipolar lines is captured by a homography, i.e., if the epipolar line l with slope � in the �rst

image matches the epipolar line l0 with slope � 0 in the second image, then

� ! �
0 =

a� + b

c� + d

with � =
v � �

u� �

and �
0 =

v
0 � �

0

u
0 � �

0
; (2.3)
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where a; b; c; d are the coeÆcients of the homography, p = (u; v)T and p0 = (u0; v0)T are corre-

sponding points, and e = (�; �)T and e0 = (�0; �0)T are the epipoles. This homography is the

epipolar transformation, and as shown in [21, 65, 68], the coeÆcients of the fundamental matrix

can be computed from the positions of the epipoles e and e0 and a; b; c; d, and vice versa. In

particular,

F =

0
BBB@

b a �a� � b�

�d �c c� + d�

d�
0 � b�

0
c�

0 � a�
0 �c��0 � d�

0
�+ a��

0 + b��
0

1
CCCA : (2.4)

2.2 Current Approaches to Weak Calibration

As mentioned by Faugeras [20], the problem of estimating the epipoles and the epipolar

transformations compatible with seven point correspondences was �rst posed by Chasles [8]

and solved by Hesse [44] (see the article by Sturm [103] for an analysis of Hesse's method and

the paper by Faugeras and Maybank [72] for a modern account). Hesse's approach is mostly

of theoretical interest since it only exploits the minimum number of point correspondences

necessary to estimate the epipolar geometry and is thus unable to deal with noise. More

robust approaches to weak calibration from a large number of point correspondences have been

proposed recently in the computer vision community: Luong et al. [65, 68] have proposed

various linear and non-linear least-squares methods for estimating the fundamental matrix,

which captures the epipolar geometry in algebraic form. In particular, they have shown that,

although Longuet-Higgins' eight-point algorithm [63] generalizes to the uncalibrated case and

can be used to estimate the fundamental matrix via linear least squares, its performance is in

general poor in the presence of noise. This has prompted Luong et al. to propose an iterative

non-linear algorithm that minimizes the distance between image points and the corresponding

epipolar lines. The reliability and accuracy of this technique have been established through

extensive experimentation in [65, 68].

Recently, Hartley [37] has shown that the poor characteristics of the eight-point method

can be traced to the fact that the corresponding matrices are ill-conditioned, so that adding a

simple preprocessing step (translating the data so it is centered at the origin, then scaling it so

the average distance to the origin is
p
2 pixel) improves the algorithm's performance to a level

comparable to the one achieved through non-linear minimization.
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Following an original idea by Couapel [12], Boufama and Mohr [6] have proposed a di�erent

linear algorithm, based on the notion of virtual parallax, to compute one of the epipoles and

the homography between a plane and the images (see the papers by Demey, Zisserman and

Beardsley [14] and Luong and Faugeras [66, 68] for related approaches assuming that groups

of coplanar points have been identi�ed). They have shown that this is suÆcient to completely

determine the epipolar geometry and have also reported good results.

The two linear approaches mentioned so far use a redundant set of parameters: the eight-

point algorithm does not take into account the rank-two property of fundamental matrices, thus

it estimates eight parameters instead of the seven coeÆcients that de�ne the epipolar geometry,

while the virtual parallax algorithm linearizes the estimation process by introducing another

extraneous variable. In contrast, in Chapter 3 we propose an approach which estimates the

epipolar geometry through singular value decomposition [116], yet only involves the variables

of interest, namely the position of the epipoles and the epipolar transformation. The core of

this approach is the computation of the epipoles, which is based on the choice of an appropriate

basis for projective space and on the construction of two sets of linear constraints corresponding

to certain combinations of the original epipolar constraints. This construction has been inspired

by Jepson's and Heeger's linear subspace method for in�nitesimal motion estimation [50, 43, 51],

and it is related to the linearized weak calibration method of Lawn and Cipolla [58].

So far, we have assumed that point correspondences are available. There are two types of

possible errors (outliers) in these matches, i.e., noise in feature location and false matches. The

above methods and [59] can handle the noise in the feature location to some degree. However,

when there are false matches, other robust methods are needed such as [109].

We will propose in Chapter 3 a new method for weak calibration and compare it to other

approaches [65, 68, 37, 6]. We briey describe these here for completeness (see [119] for a review

of other techniques that are not covered here).

2.2.1 Linear Methods

Note that the epipolar constraint (2.2) is a linear equation in the nine coeÆcients of the

fundamental matrix F . Since (2.2) is homogeneous in the coeÆcients of F , it follows that

observing eight point correspondences is in principle suÆcient to estimate the fundamental

matrix. When n � 8 correspondences are available, F can be estimated using linear least
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squares by minimizing

nX
i=1

(p
0T
i Fpi)2 (2.5)

with respect to the coeÆcients of F under the constraint that the vector formed by these

coeÆcients has unit norm.

This method generalizes Longuet-Higgins' eight-point algorithm [63] to the uncalibrated

case but ignores the rank-two property of fundamental matrices. To enforce this constraint,

Luong et al. [65, 68] have proposed to use the matrix F output by the eight-point algorithm as

the basis for a two-step estimation process: �rst, use linear least squares to compute the position

of the epipoles e and e0 that minimize jFej2 and jFT
e
0j2; second, substitute the coordinates

of these points in (2.3): this yields a linear parameterization of the fundamental matrix by the

coeÆcients of the epipolar transformation, which can now be estimated by minimizing (2.5) via

linear least squares.

Recently, Hartley [37] has proposed a normalized eight-point algorithm and has also reported

excellent results. His approach is based on the observation that the poor performance of the

plain eight-point method is due, for the most part, to poor numerical conditioning. Thus

Hartley has proposed to translate and scale the data so it is centered at the origin and the

average distance to the origin is
p
2 pixel. This dramatically improves the conditioning of the

linear least-squares estimation process. Accordingly, his method is divided into four steps: �rst,

transform the image coordinates using appropriate translation and scaling operators T : pi ! p̂i

and T 0 : p0i ! p̂
0
i. Second, use linear least squares to compute the matrix F̂ minimizing

nX
i=1

(p̂
0T
i F̂ p̂i)2:

Third, enforce the rank-two constraint; this can be done using the two-step method of Luong et

al. described earlier, but Hartley uses instead a technique, suggested by Tsai and Huang [111]

in the calibrated case, which constructs the singular value decomposition [116]

F̂ = USVT

of F̂ . Here, S = diag(r; s; t) is a diagonal 3 � 3 matrix with entries r � s � t, and U ;V are

orthogonal 3� 3 matrices. The rank-two matrix F̂ 0 minimizing the Frobenius norm of F̂ � F̂ 0

is simply F̂ 0 = Udiag(r; s; 0)VT [111]. Fourth, set F = T 0T F̂ 0T . This is the �nal estimate of

the fundamental matrix.

11



The recent linear algorithm for weak calibration due to Boufama and Mohr [6] and based

on an original idea of Couapel [12] is too involved to be described in detail here, so we will just

give a rough sketch of their approach and refer the reader to [6] for further details: the main

idea is that a set of coplanar points and their images de�ne two homographies between the

plane they lie in and the two image planes, and thus a third homography between the image

planes themselves; this homography and the knowledge of one of the epipoles provide a new

parameterization of the epipolar geometry. (It should be noted that a similar idea was proposed

earlier by Luong and Faugeras [66, 68], who have given linear and non-linear methods for weak

calibration based on the estimation of the homographies associated with several groups of four

or more coplanar points; these groups can be found, when they exist, by using generate-and-test

methods such as the ones described in [22, 31, 102, 91].)

In general, four coplanar scene points are not guaranteed to exist, and the virtual parallax

associated with one of these points is the di�erence between the position of its actual image

projection and the position it would assume if it belonged to the plane formed by the other

three points. Boufama and Mohr have shown that the virtual parallax associated with a set of

image correspondences can be used (in conjunction with an appropriate choice for projective

bases of the two image planes) to estimate the homography and one epipole, thus the whole

epipolar geometry. This estimation process can be linearized through an appropriate change of

variables, which includes the introduction of an extraneous parameter. Once an estimate of the

epipolar geometry has been obtained via linear least squares, it can be re�ned if necessary by

going back to the original non-linear equations and using non-linear least squares. As shown

in [6], both the linear and non-linear variants of this method also give very good results and

automatically ensure that the rank-two constraint is satis�ed. As noted in [119], another reason

for the good performance is due to the change of projective coordinates that results in data

normalization similar to normalized eight-point algorithm.

2.2.2 Nonlinear Methods

An alternative to the eight-point algorithm is to minimize the distance between the image

points and the corresponding epipolar lines, i.e.,

nX
i=1

[d2(p0i;Fpi) + d2(pi;FT
p
0
i)];
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which is a non-linear problem, regardless of the parameterization chosen for the fundamental

matrix. The minimization can be initialized using the result of the eight-point algorithm; this

is the method proposed by Luong et al. [65, 68]. In the experiments described in [65, 68], both

the parameterization de�ned by (2.3) and a simple rank-two, seven-parameter parameterization

proposed by Robert et al. [91] are used with similar results, far superior to those obtained using

the eight-point method.

2.3 The In�nitesimal Case: Jepson's and Heeger's Approach

So far we have considered �nite displacements between two uncalibrated cameras. We now

turn to the case of in�nitesimal displacements between calibrated cameras since this is the

setting for Jepson's and Heeger's linear subspace method [50, 51], which is the inspiration for

our approach to weak calibration.

Suppose that a moving perspective camera with unit focal length observes some scene. Let

p = (u; v; 1)T denote the position of an image point, and _p = ( _u; _v; 0)T denote the corresponding

motion �eld; it is well known (see [46] for example) that if the instantaneous motion of the

camera is described in a coordinate system attached to the scene by the translational velocity

t and the rotational velocity !, then

0
@ _u

_v

1
A =

0
@�1 0 u

0 �1 v

1
A (

1

z

t+ ! � p):

Eliminating z among the two scalar components of this vector equation yields, after some

simple algebraic manipulation:

p
T ([t�][!�])p+ (p� _p) � t = 0: (2.6)

Equation (2.6) is simply the instantaneous form of the Longuet-Higgins relation (2.1) which

captures the epipolar geometry in the discrete, calibrated case. (Vi�eville and Faugeras [113]

have recently derived an equation similar to (2.6) which characterizes the motion �eld of a

camera with varying intrinsic parameters.)

Note that in the case of pure translation we have ! = 0, thus (p� _p) � t = 0, which yields

the well known result that the motion �eld points toward the epipole (or focus of expansion) in

the case of pure translational motion.
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Let us now turn to the relationship between the in�nitesimal Longuet-Higgins relation (2.6)

and Jepson's and Heeger's linear subspace method [50, 51]. We can rewrite (2.6) as

(p� _p) � t = t
T ([p�]

2)!: (2.7)

Let us now suppose that we observe the motion �eld _pi at n image points pi (i = 1; ::; n).

We de�ne a vector of n coeÆcients � = (�1; ::; �n)
T and the vector � (�) =

Pn
i=1 �ipi � _pi. It

follows from (2.7) that

� (�) � t = t
T (

nX
i=1

�i[pi�]
2)!:

Hence, for any value of � such that
Pn

i=1 �i[pi�]
2 = 0, we have � (�) � t = 0, which is a linear

constraint on t. Because the matrix [pi�]
2 has the form

[pi�]
2 =

0
BBB@

�1� v
2
i uivi ui

uivi �1� u
2
i vi

ui vi �u2i � v
2
i

1
CCCA ;

the corresponding condition on the coeÆcients �i is that

nX
i=1

�i(1; ui; vi; uivi; u
2
i ; v

2
i ) = 0:

This system of 6 equations in n unknowns admits an (n�6)-dimensional space of solutions,

and constructing a basis for this subspace yields n� 6 linear constraints on t, which can then

be found via linear least squares. This is Jepson's and Heeger's linear method for estimating

the translational component of motion, and we see that it can be derived from the in�nitesimal

epipolar constraint.
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CHAPTER 3

A LINEAR SUBSPACE ALGORITHM

Jepson's and Heeger's method does not generalize in a straightforward way to the discrete

motion case, partly because �nite rotations introduce additional non-linear constraints. Lawn

and Cipolla [58] have proposed a linearized subspace method using a �rst-order approximation

of the rigid body transformation associated with small image regions to derive linear constraints

on the translation direction and the position of the epipoles.

In contrast, the linear subspace method proposed in this chapter reformulates the motion

equations in a projective coordinate system, where the camera orientation and more generally

the location of the image plane are irrelevant, and the motion is completely determined by

the displacement of the optical center (see [107] for a related approach in the two-dimensional,

calibrated case). Computing this displacement allows us to weakly calibrate our two cameras,

i.e., to �nd the two epipoles and compute the epipolar transformation.

The rest of this chapter is organized as follows: Section 3.1 describes the new algorithm

to weak calibration in detail. Then, Section 3.2 discusses the implementation details and

experiments along with comparisons to the method discussed in the previous chapter.

3.1 A New Approach to Weak Calibration

We assume in the rest of this section that the reader is familiar with elementary notions

of analytical projective geometry [106] such as projective bases, projective coordinates and

cross-ratios. A short introduction to these concepts is given in Appendix A for completeness.
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3.1.1 A Projective Version of the Epipolar Constraint

Let us choose four scene points {say A1, A2, A3 and A4{ and the optical center C of the

�rst camera as a projective basis. We assign to these �ve points the homogeneous projective

coordinates A1 = (1; 0; 0; 0)T , A2 = (0; 1; 0; 0)T , C = (0; 0; 1; 0)T , A3 = (0; 0; 0; 1)T and

A4 = (1; 1; 1; 1)T . Following Eq. (A.1) in Appendix A, the projective coordinates of a point P

in this basis are (k1; k2; k3; 1)
T , where

8>>><
>>>:

k1 = [A2CA1;A2CA3;A2CA4;A2CP ];

k2 = [CA1A2;CA1A3;CA1A4;CA1P ];

k3 = [A1A2C;A1A2A3;A1A2A4;A1A2P ];

and LMN denotes the plane spanned by the three points L,M and N , while [�1;�2;�3;�4]

denotes the cross-ratio of the pencil of planes �1, �2, �3, �4.

The two cross-ratios k1 and k2 are easily computed from image measurements by intersecting

the corresponding pencils of planes with the �rst image plane: if ai denotes the image of Ai

for i = 1; ::; 4, and p denotes the image of P , we have
8<
:

k1 = [a2a1;a2a3;a2a4;a2p];

k2 = [a1a2;a1a3;a1a4;a1p];

wheremn denotes the line joining the pointsm and n, and [l1; l2; l3; l4] denotes the cross-ratio

of the pencil of lines l1, l2, l3, l4 (Figure 3.1). The coordinates k1; k2 are simply the non-

homogeneous plane projective coordinates of the point p in the basis formed by a1, a2, a3, a4,

where the basis points have homogeneous projective coordinates a1 = (1; 0; 0)T , a2 = (0; 1; 0)T ,

a3 = (0; 0; 1)T and a4 = (1; 1; 1)T .

To emphasize the fact that k1 and k2 can be directly measured in the image, while k3

cannot, let us rename these coordinates as u = k1, v = k2, and z = k3. It should be clear that,

from now on, the coordinates that we will use for both scene points and their image projections

are projective coordinates. We will only switch back to the usual aÆne image coordinates in

Section 3.1.5. Of course, the aÆne coordinates of the image points can be computed from the

projective coordinates through a projective coordinate transformation. The corresponding 3�3

matrix can be computed by writing the change of coordinates for the four points ai, i = 1; ::; 4.

Let C 0 denote the optical center of the second camera, with homogeneous coordinates

(�; �; ; 1) in the basis (A1;A2;C;A3;A4). Let (u0; v0; z0; 1) denote the coordinates of the
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Figure 3.1 The pencils of planes and lines used to compute the u = k1 (left) and v = k2 (right)

projective coordinates.

point P in the basis (A1;A2;C
0
;A3;A4). We compute the coeÆcients of the projective trans-

formation mapping (u0; v0; z0; 1)T into �(u; v; z; 1)T by writing the change of coordinates for the

�ve points Ai (i = 1; ::; 4) and C 0, and obtain

8>>>>>><
>>>>>>:

�u = ( � �)u0 + �z
0
;

�v = ( � �)v0 + �z
0
;

�z = z
0
;

� = ( � 1) + z
0
:

In turn, eliminating � and z0 between the �rst, second, and fourth of these equations yields,

after some simple algebraic manipulation

p
0TFp = 0 where F =

0
BBB@

 � � 0 0

0  � � 0

0 0  � 1

1
CCCA [e�]; (3.1)

e = (�; �; 1)T is the image position of the �rst epipole, and, as before, p = (u; v; 1)T and

p
0 = (u0; v0; 1)T . Equation (3.1) is just another incarnation of the epipolar constraint, F being

the fundamental matrix.

It should be noted that Carlsson [7] has used the double algebra to derive an alternative

construction of the fundamental matrix in a projective setting. The end result is of course the

same with an appropriate choice of projective basis.
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3.1.2 Setting up the Linear Constraints

Reversing the order of the terms, the epipolar constraint can be rewritten as

e
TQ

0
BBB@

 � �

 � �

 � 1

1
CCCA = 0 where Q = [p�]

0
BBB@

u
0 0 0

0 v
0 0

0 0 1

1
CCCA : (3.2)

Let us now de�ne the vectors f = (�; �; ��)T and q = (v � vu
0
; uv

0 � u; u
0 � v

0)T . After

some more simple algebraic manipulation, we can rewrite (3.2) as

(p� p0) � e = q � f :

Suppose that beside the four reference correspondences, we observe n others, namely pi $

p
0
i, with i = 1; ::; n. Given a vector of n coeÆcients � = (�1; ::; �n)

T , let us de�ne the vectors

� (�) =
Pn

i=1 �i(pi � p0i) and �(�) =
Pn

i=1 �iqi. It follows that

� (�) � e = �(�) � f : (3.3)

In particular, for any value �� such that � (�� ) = 0, (3.3) provides a linear constraint on

f , while for any value �� such that �(��) = 0, the same equation provides a linear constraint

on e. Since the vectors �� and �� are each de�ned by three equations in n unknowns, they

form (n� 3)-dimensional subspaces of IRn.

Because of the particular structure of our problem, both the linear constraints on e and f

will prove useful for computing e. In particular, it is easy to show (see Appendix B) that the

vectors � (��) and �(�� ) are both orthogonal to the vector (1; 1; 1)T . Since the vectors � (��)

are also orthogonal to e, they only span a one-dimensional line. Likewise, the vectors �(�� )

span a line orthogonal to both f and (1; 1; 1)T .

As shown below, representative vectors � 0 = (a� ; b� ; c� )
T and �0 = (a�; b�; c�)

T for the

lines spanned respectively by the vectors � (��) and �(�� ) can be identi�ed through singular

value decomposition.

3.1.3 Solving the Linear Constraints

In this section we give a linear method for computing the vectors �0 and � 0. Computing

either of these vectors is an instance of the following problem: we are given a set of vectors xi
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and yi (i = 1; ::; n) in IRp, having the property that the set of linear combinations
Pn

i=1 �iyi

such that
Pn

i=1 �ixi = 0 is d-dimensional. We want to construct this d-dimensional set. This

is easily done using singular value decomposition as follows.

We suppose n > p > d (this is true in our application, where n is the number of data points,

p = 3, and d = 1). Construct the p� n matrices

X = [x1; : : : ;xn] and Y = [y1; : : : ;yn]:

The set of vectors � such that
Pn

i=1 �ixi = 0 is simply the null space of X . Writing the

singular value decomposition of X yields:

X = USVT ;

where U is an orthogonal p�p matrix, S is a p�n matrix, and V is an orthogonal n�n matrix.

In the generic case, X has (maximal) rank p, and a basis for its null space is formed by the

rightmost n� p columns of V.

Let V0 denote the n� (n� p) matrix formed by these columns, the set of vectors
Pn

i=1 �iyi

such that
Pn

i=1 �ixi = 0 is thus the subspace spanned by the columns of the matrix YV0.

According to our assumptions, this p� (n� p) matrix has rank d < p. To �nd the range of

YV0, we construct its singular value decomposition

YV0 = U1S1VT1 ;

and the range is spanned by the leftmost d columns of U1.

The rank-d hypothesis can be veri�ed by comparing the �rst d singular values in S1 to the

remaining ones.

3.1.4 Estimating the Position of the Epipoles

Once the vectors � 0 and �0 have been estimated, we can compute the position of the

epipoles as follows: since both � 0 and �0 are orthogonal to (1; 1; 1)T , we have c� = �a� � b�

and c� = �a� � b�, which allows us to rewrite (3.3) as

0
@ a� b�

b�� a��

1
A
0
@1� �

1� �

1
A = 0 (3.4)
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A necessary condition for this system of two homogeneous linear equations in 1 � � and

1� � to admit a non-trivial solution is that its determinant a�a��� b� b�� is zero. Solving for

� as a function of � and substituting into the �rst equation of (3.4) �nally yields

� =
b�

a�

a� + b�

a� + b�
; � =

a�

b�

a� + b�

a� + b�
: (3.5)

Substituting these values back into the second equation of (3.4) shows that they are indeed

solutions of our problem.

3.1.5 Estimating the Epipolar Transformation

Once � and � have been computed, the aÆne coordinates of the epipoles are easily computed

from the image positions of the points ai (i = 1; ::; 4). Accordingly, let us change notation so

that u; v (resp. u0; v0) now denote the aÆne coordinates of a point in the �rst (resp. second)

image, and �; � and �0; �0 denote the aÆne coordinates of the two epipoles. We can rewrite the

epipolar transformation (2.3) as a linear constraint on a; b; c; d:

((v � �)(u0 � �
0); (u� �)(u0 � �

0);�(v � �)(v0 � �
0);�(u� �)(v0 � �

0))

0
BBBBBB@

a

b

c

d

1
CCCCCCA

= 0; (3.6)

and it follows that, given n correspondences, the coeÆcients a; b; c; d can be estimated (up to

an irrelevant scale factor) using linear least squares. Thus the whole epipolar geometry can be

recovered through linear least squares and singular value decomposition.

3.1.6 Summary of the Algorithm

Table 3.1 shows the various steps of the proposed approach to weak calibration. It should

be noted that, unlike some recent non-linear approaches to the same problem (e.g., [68]), our

method does not minimize a physically-signi�cant error such as the distance between image

points and the corresponding epipolar lines. On the other hand, it does not require an initial

guess. As will be shown in Section 3.2.2, both approaches can be combined by using a non-

linear distance-minimization algorithms to \polish" the results obtained by our method, an

approach reminiscent of numerical root �nding, where a few Newton-Raphson iterations are

used to �ne-tune the results obtained by reliable methods with slower convergence rate.

20



1. Pick four points a1, a2, a3 and a4 in the left image and use these points and their matches

in the right image as projective image bases.

2. Transform the image points from the Euclidean to the projective frame.

3. Estimate the position of the epipoles as follows:

(a) Use the SVD-based method of Section 3.1.3 and Eq. (3.3) to compute the vector � 0.

(b) Use the SVD-based method of Section 3.1.3 and Eq. (3.3) to compute the vector �0.

(c) Use Eq. (3.5) to compute the projective coordinates of the epipoles.

(d) Convert the projective coordinates of the epipoles back to Euclidean space.

4. Estimate the remaining parameters of the fundamental matrix using Eq. (3.6) and linear

least-squares.

Table 3.1 The linear subspace algorithm.

It should also be noted that centering and scaling the data points as proposed by Hartley [37]

will not change the outcome of our algorithm since it uses as input the projective coordinates of

the image points in the basis formed by the points ai (i = 1; ::; 4): these coordinates are of course

independent of any scaling or centering transformation. In addition, we are not aware of scaling

and/or conditioning methods for improving the stability of singular value decomposition: as

noted in [11], it is possible to scale the rows and columns of a matrix to improve the reliability

of the estimation of its rank. But this will not improve the reliability of the estimation of its

range and null space, which are exactly the quantities we are trying to estimate.

3.2 Empirical Evaluation of the Proposed Approach

We have implemented the linear subspace approach proposed in Section 3.1 using the LIN-

PACK public-domain package for numerical linear algebra [17]. This section discusses the

results of our experiments with real and synthetic data.

3.2.1 Experiments Using Real Data

The real data used in our experiments were kindly provided by Boubakeur Boufama; they

consist of point matches between pairs of images of a house model (data sets H(a) and H(b), see

Figure 3.2), a bridge (data sets B(a), B(b) and B(c), see Figure 3.3), and a tribunal (data sets
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T(a) and T(b), see Figure 3.4). The matches were found automatically by using correlation

to track curvature extrema in image sequences [75], and their number varies from 25 to 55

depending on the data set. Figures 3.2 to 3.4 show the images, the data points (small white

discs) and the epipolar lines (short white line segments) estimated by our program.

Quantitatively, we have used in all our tests the distance between the data points and the

recovered epipolar lines, averaged over the two images and all the data points, as an error

measure. The output of the program depends of course on the point matches ai $ a
0
i (i =

1; ::; 4) chosen as projective bases for the two images. The results shown in Figures 3.2 to 3.4

correspond to \good" basis choices, obtained for each data set by trying 30 random bases, then

selecting the one minimizing our error measure.

It would of course be interesting to develop a better method for selecting an appropriate

basis. At the very least, it is possible to ensure that the four points selected are not coplanar,

using methods such as the ones described in [22, 31, 102, 91].

To gain a better understanding of the e�ect of basis choice on the performance of our

approach, we have also run our weak calibration program with 500 randomly chosen bases for

each data set, and recorded the results in histograms of the average distance between the data

points and the estimated epipolar lines. Figure 3.5 shows the outcome of this experiment:

qualitatively, the histograms are roughly unimodal, with the largest peak always corresponding

to an average error smaller than 1.5 pixel. Quantitative results are shown in the accompanying

table. They indicate that a small number of random choices should typically be suÆcient to

obtain good results: for every data set, at least 10% of the choices yield an error of 1 pixel

or less. This means that one out of 30 random choices will achieve this level of performance

with a probability of 1� 0:930 � 0:95, assuming of course that our 500 samples provide a good

estimate of the actual probability distribution.

3.2.2 Comparison with Other Methods

We have conducted a number of comparisons between the linear subspace approach and

other methods for weak calibration: our LINPACK implementation of Hartley's normalized

eight-point algorithm [37], Boufama's and Mohr's implementation of the virtual parallax method

[6], Quan's implementation of the non-linear distance minimization technique of Luong et al.

[65, 68], which uses the output of the plain eight-point method to initialize the minimization,
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H(a)

H(b)

Figure 3.2 Recovered epipolar lines for the house data sets.

23



B(a)

B(b)

B(c)

Figure 3.3 Recovered epipolar lines for the bridge data sets.
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T(a)

T(b)

Figure 3.4 Recovered epipolar lines for the tribunal data sets.
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Figure 3.5 E�ect of basis choice on the performance of the algorithm. The bucket size is 0.1

pixel, and we only show the part of the histograms corresponding to errors between 0 and 10

pixels.
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and our own implementation of the distance minimization algorithm, which relies instead on the

output of the linear subspace approach as initial guess. The latter program uses the Levenberg-

Marquardt routine from the MINPACK public-domain library [77] to perform the distance

minimization.

Before presenting these comparisons, let us say a few words about how we have chosen to

illustrate the results of the various algorithms. As explained in Section 2.2, Hartley's normalized

eight-point method is divided into four steps: translating and scaling of the data, estimating

the matrix F̂ through linear least squares, replacing it by the rank-two matrix F̂ 0 using singular

value decomposition, and �nally computing F . We have implemented this technique as well as a

variant using the two-step method of Luong et al. [65, 68] mentioned earlier, which bypasses the

computation of F̂ 0 and instead enforces the rank-two constraint by computing the epipoles from

F then estimating the epipolar transformation. It is easy to show that the epipoles computed by

this method are exactly the same as the epipoles computed using Hartley's original algorithm,

but that the epipolar transformations are di�erent. As shown in Figure 3.6(a), this variant

has given better results than the original method in our experiments. This has also proven

to be the case for the virtual parallax algorithm (Figure 3.6(b)): even though F is estimated

directly, smaller errors are obtained when the epipolar transformation is estimated a posteriori

from the epipoles' positions. Thus, for both algorithms, the error plots presented in this section

have been constructed by (1) computing the epipoles, either directly or from the fundamental

matrix, (2) estimating the epipolar transformation, and (3) using it to construct the epipolar

lines. We have also tested both the linear and non-linear versions of the virtual parallax method

of Boufama and Mohr, using their own implementation. As expected, the non-linear variant,

which uses the output from the linear one as initial guess, has yielded better results in all of our

experiments (Figure 3.6(c)). Thus we have used the non-linear version of their approach in all

our comparisons. It should also be noted that the virtual parallax method, like ours, relies on

the choice of a particular projective basis. In Boufama's and Mohr's current implementation,

this choice is �xed, which will bias any comparison in favor of our approach since we always

try 30 di�erent bases and pick the best one. In addition, excluding four correspondences (the

basis points) from the weak calibration process may also in certain cases bias the comparison

in favor of our method since the four points may be very noisy. However, it is unlikely that
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N8P Normalized eight-point algorithm

VP Virtual parallax algorithm

LS Linear subspace algorithm

D8P Distance minimization algorithm starting from plain eight-point guess

DLS Distance minimization algorithm starting from linear subspace guess

Table 3.2 The abbreviations for the weak calibration algorithms tested in the experiments.

our method would give good results in this case since the whole calibration process depends on

these points.

We now present our comparisons, using the abbreviations in Table 3.2 to designate the

various techniques tested in our experiments.

Figure 3.7 compares the �ve methods using our seven image pairs. It shows that, even

though the DLS algorithm always gives the best results, the performances of the �ve methods

are remarkably close over the range of data. In particular, there is no clear winner among the

linear algorithms: the only signi�cant di�erence between them has been measured for the data

set T(b), for which the error associated with the VP and LS methods is roughly one half of the

error associated with the N8P algorithm. As reported in [6] and con�rmed by our experiments,

this is also a case where the D8P algorithm fails to recover the correct epipolar geometry,

probably because it converges to the wrong local minimum from a bad initial guess found by

the plain eight-point algorithm.

It should be noted that we have also used the output of the N8P and VP algorithms

to initialize the distance minimization algorithm, with results essentially identical to those

obtained using the DLS method. This indicates that the non-linear distance minimization

algorithm works very well when provided with adequate initial guesses, and suggests using it to

re�ne the results obtained by any of the other methods, an approach reminiscent of numerical

root �nding, where a few Newton-Raphson iterations are used to \polish" the results obtained

by reliable methods with slower convergence rate.

Figure 3.8 compares the e�ects of noise on the �ve methods: we have constructed synthetic

data from the image pairs in Figures 3.2 to 3.4 by modifying the image positions of the point

correspondences until they perfectly agree with the epipolar geometry shown in the �gures. We

have then added various amounts of zero-mean Gaussian noise to these data, with standard
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Figure 3.6 Results obtained by running variants of the normalized eight-point and virtual

parallax methods on our seven data sets: (a) normalized eight-point algorithm; the dashed curve

represents the errors measured when using the singular value decomposition of the fundamental

matrix to compute the epipolar lines, while the solid curve represents the errors measured when

the epipoles are used as a basis for estimating the epipolar transformation and thus the epipolar

lines; (b) similar plot for the non-linear version of the virtual parallax algorithm; (c) linear and

non-linear versions of the virtual parallax algorithm.
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Figure 3.7 A comparison of �ve weak calibration techniques using real data.

deviation between 0 and 1.5 pixel, and run the �ve programs. The plots shown in Figure 3.8

have been constructed by averaging the errors measured for 100 runs of each method for each

noise level (in the case of the subspace method, each \run" of the algorithm actually corresponds

to 30 runs with random basis choices, always picking the best one).

According to these experiments, the N8P, VP and LS methods once again achieve very

close performance levels. If we now turn our attention to the non-linear distance minimization

algorithms, we observe that the D8P method sometimes yields large errors at high noise levels:

in particular, the error measured for data sets B(b) and B(c) is over 3.5 pixels at the 0.5-pixel

noise level, and it reaches 17 pixels at the 1.5-pixel noise level (the latter is not shown in Figure

3.8, where all plots are truncated at the 4-pixel error level for readability). The most likely

cause for this behavior is again convergence to the wrong local minimum from a bad initial

guess found by the plain eight-point algorithm. In contrast, the DLS algorithm yields the best

results of all of the implemented methods.

We have conducted a second series of experiments with synthetic data to see how well the

epipoles are recovered by the various methods. Following [68], we de�ne the relative error

between a ground-truth epipole e1 = (�1; �1)
T and its estimate e2 = (�2; �2)

T by

1

2

min(
j�1 � �2j

min(j�1j; j�2j)
; 1) +

1

2

min(
j�1 � �2j

min(j�1j; j�2j)
; 1):

We then average the relative errors associated with the two epipoles. Figure 3.9 shows the

results of our experiments. As before, the plots shown in this �gure have been constructed by
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Figure 3.8 E�ect of noise on the �ve methods. Note that all plots are truncated at an error

level of 4 pixels.
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averaging the errors measured for 100 runs of each method for each noise level, each \run" of

the subspace method corresponding to 30 runs with random basis choices, always picking the

one that minimizes the average distance to the epipolar lines. These new experiments con�rm

that the various methods give very close levels of performance, except for the D8P method,

which as expected, gives by far the worse results at high noise levels.

3.2.3 Computational Cost

Recovering the complete epipolar geometry using the subspace algorithm requires construct-

ing the singular value decomposition of several matrices. In particular, assuming we have n

point correspondences, steps 3(a) and 3(b) have the same complexity. Each step performs the

following SVD-based operations: the computation of the null space V0 of a 3� (n� 4) matrix

and the computation of the range U1 of a 3�(n�7) matrix. In addition, the computation of the

matrix YV0 requires the multiplication of two matrices of sizes 3� (n�4) and (n�4)� (n�7).

Finally, after computing both the epipoles, step 4 requires the computation of the null space

of an (n � 4) � 4 matrix. The contribution of the other steps of the algorithm to its overall

complexity is negligible.

The normalized eight point algorithm requires the SVD-based computation of the null space

of an n� 9 matrix. The cost of the other computations is negligible.

It can be shown that the number of oating point operations required by singular value

decomposition for a p� q matrix where p� q is linear in p and quadratic in q [11]. Since the

SVD of the transpose of a matrix is the transpose of its SVD, constructing the singular value

decomposition of a q�pmatrix where p� q is also linear in p and quadratic in q. Thus, the SVD

computations involved in the LS method are expected to be cheaper then the corresponding

computations in the N8P method. Note however, that as n grows, the computation of the

matrix YV0, whose cost is quadratic in n, will eventually dominate the cost of the LS method.

We do not have an estimate of the computational cost of the non-linear algorithms (i.e., the

distance minimization algorithm and the non-linear virtual parallax algorithm). The number

of steps required to converge to a solution depends both on the input data and the initial guess.

Table 3.3 gives actual running times for all methods, measured using our seven data sets on

a SUN SPARCStation 10.
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Figure 3.9 E�ect of noise on the �ve methods. Here the relative error in reconstruction of

epipoles with respect to ground truth is given. See the text for details.
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Average Running Time of Algorithms [ms]

Data n N8P VP LS 30 � LS DLS

H(a) 37 100 442 22 660 974

H(b) 46 120 471 31 930 2490

B(a) 55 150 502 44 1320 1874

B(b) 55 150 497 44 1320 1896

B(c) 55 150 591 44 1320 3942

T(a) 46 120 483 31 930 4321

T(b) 25 70 454 12 360 786

Table 3.3 Running times of the various methods. We have indicated the running time for both

a single run of the LS method and the 30 runs required to select a good basis.

This table con�rms the above analysis: a single run of the LS method is cheaper than a run

of the N8P method, but 30 runs of the LS method are of course more expensive. The LS/N8P

cost ratio increases with n as the quadratic matrix multiplication step becomes more and more

costly.

3.3 Discussion

By recasting Jepson's and Heeger's linear subspace method for in�nitesimal motion analysis

in the setting of �nite motion analysis for uncalibrated cameras, we have been able to construct

a reliable linear algorithm for weak calibration. The method estimates the right number of pa-

rameters and an implicit data normalization is done due to the change of projective coordinates

resulting in good performance.

We have compared our algorithm empirically with other approaches to the same problem:

the plain and normalized eight-point methods of [37], the virtual parallax algorithm of [6, 12],

and the non-linear distance minimization technique of [65, 68]. According to our experiments

with both real and synthetic data, there does not appear to be a clear (i.e., statistically signi�-

cant) winner among the linear methods, which all give very close levels of performance, except

for the plain eight-point method, whose performance degrades quickly as noise increases. To

re�ne the results of this comparison, it would be very interesting to also conduct a theoretical

analysis of the stability of the linear algorithms, as was done recently by Luong and Faugeras

[67, 68] for the non-linear method of Luong et al. [65, 68] using both statistical techniques
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and the notion of critical surfaces from photogrammetry (see the books by Maybank [71] and

Faugeras [20] for discussions of these surfaces in the computer vision context).

A key part of our approach is the choice of an appropriate basis for projective space, which

assumes that four reference points can be measured accurately. An interesting question is

whether it is possible to design a di�erent linear subspace algorithm that takes every image

measurement equally into account, hopefully averaging out individual errors. Another interest-

ing question is whether the linear subspace approach can be generalized to handle calibrated

cameras directly and estimate the full motion in a linear manner.
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CHAPTER 4

IMAGE-BASED RENDERING

This part of the thesis is concerned with the problem of rendering new images of a scene

from a set of pre-recorded pictures. Before presenting our approach in Chapter 5, we review

here current approaches to this problem.

Traditionally, synthesizing a new view of a scene for a virtual camera position has been

done by �rst reconstructing a three-dimensional model from a set of images using computer

vision techniques and then rendering the model using computer graphics techniques. As an

alternative, recent work in computer graphics [9, 30, 61] and computer vision [57, 95, 56, 3]

has demonstrated the possibility of rendering three-dimensional scenes without explicit three-

dimensional models (image-based rendering). The computer graphics techniques developed by

Chen [9], Gortler, Grzeszczuk, Szeliski and Cohen [30], and Levoy and Hanrahan [61] are based

on the idea that the set of all visual rays (light �eld) is four-dimensional, and can thus be

characterized from a two-dimensional sample of two-dimensional images of a rigid scene. In

contrast, the computer vision techniques proposed by Laveau and Faugeras [57], Seitz and Dyer

[95], and Kutulakos and Vallino [56] only use a discrete (and possibly small) set of views among

which point correspondences have been established by feature tracking or conventional stereo

matching.

One of the earliest attempts to render new images from an existing set of images without

three-dimensional reconstruction was the movie-map approach of Lippman [62]. This method

was based on an image database containing a vast number of images representing the scene.

New views of the scene were rendered by taking the closest image corresponding to the virtual

camera position de�ning the new view. The closest view in the database then morphed to

allow small camera motions to get the desired view. With this method, realistic pictures can
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be synthesized provided that a close enough view is present in the database. Clearly, when a

large variation in viewpoint is allowed, one needs to have so many images that the approach

becomes unmanageable.

Practical methods for image-based rendering have, however, been developed recently. As

shown below, they can be roughly divided into three groups: (1) model-based, (2) transfer-

based, and (3) light-�eld methods. We review these techniques next.

4.1 Model-Based Techniques

Model-based techniques to image-based rendering involve two distinct steps: reconstruction

of the three-dimensional model from a set of images using techniques from computer vision,

and rendering the model using computer graphics techniques. Besides the model, texture

information may also be extracted from the images to be used in the rendering process.

There is a tremendous amount of work in the computer vision literature on model recon-

struction from intensity images with di�erent paradigms such as structure from motion (e.g.,

[55, 108, 19, 105]), shape from stereo (e.g., [70, 79]), shape from shading (e.g., [49, 84]), and

other model reconstruction methods (e.g., [13, 104]). The extracted model may be a complete

CAD model or just the positions of some geometric features like points and lines.

Once the 3D model representing the scene has been reconstructed, a new view of the scene

can be obtained by �rst setting the virtual camera position, i.e., the position and the orientation

of the camera, and then rendering the model using computer graphics techniques. This usu-

ally requires additional information such as an illumination model and the surface reectance

properties of the objects in the scene. Using these information, a picture of the scene can be

synthesized for example by ray tracing (for more information on ray tracing see [41, Chapter

14]). To achieve more realistic images one can use texture mapping (see [42] for a review)

using the texture extracted from the input images. Depending on the details in the model,

model-based methods can yield very realistic images.

A complete image-based rendering system that represents the scene using depth maps has

been described by Kanade et al. in [52, 78]. They have described a visual medium, called

virtualized reality, where a representation of a real scene is captured as a collection of stereo

intensity images along with reconstructed depth maps. A depth map contains the depth of each
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pixel corresponding to a point in the scene. When a new view is rendered the stereo intensity

images provide the texture to be used in texture mapping.

As an example of model reconstruction, we describe below the factorization method of

Tomasi and Kanade [108] that will be compared with our approach in later chapters.

4.1.1 Factorization Method of Tomasi and Kanade

An orthographic camera projects a scene P onto its image plane with

8<
:

u = a
T
P + tx;

v = b
T
P + ty;

(4.1)

where p = (u; v)T is the image of the point P , the vectors aT and bT are the �rst two rows of the

camera rotation matrix, and tx and ty are the �rst two coordinates of the camera translation.

Here we are considering a set of scene points Pi (for i = 1; :::;m) and their orthographic

projections pi.

Without loss of generality, we can set the origin of the world coordinate frame at the center

of mass of the scene, i.e.,

P 0 =
1

m

mX
i=1

P i: (4.2)

The orthographic projection of the point P 0 is also the center of mass of the image points,

i.e.,

p0 =
1

m

mX
i=1

pi: (4.3)

When we apply the projection in (4.1) to the point P 0, we can solve for the camera trans-

lation with

0
@tx
ty

1
A =

1

m

mX
i=1

0
@ui
vi

1
A
: (4.4)

We can now choose the center of image coordinate frame at P 0, and rewrite the projection

equations in matrix form with (for f orthographic images of m points)

W =MS; (4.5)
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where

W =

0
BBBBBBBBBBBB@

u

(1)
1 u

(1)
2 : : : u

(1)
m

: : : : : : : : : : : :

u

(f)
1 u

(f)
2 : : : u

(f)
m

v

(1)
1 v

(1)
2 : : : v

(1)
m

: : : : : : : : : : : :

v

(f)
1 v

(f)
2 : : : v

(f)
m

1
CCCCCCCCCCCCA

(4.6)

is the registered measurement matrix,

M =

0
BBBBBBBBBBBB@

a
(1)

: : :

a
(f)

b
(1)

: : :

b
(f)

1
CCCCCCCCCCCCA

(4.7)

is the motion matrix, and

S =

0
BBB@

x1 x2 : : : xm

y1 y2 : : : ym

z1 z2 : : : zm

1
CCCA (4.8)

is the shape matrix.

The factorization method of Tomasi and Kanade [108] is based on the observation that the

registered measurement matrixW is at most rank 3. For noisy registered observation matrix, the

rank property is not correct anymore but a possible solution to the shape and rotation matrices

can be recovered using the three greatest singular values of the noisy registered measurement

matrix, thus, factoring it into (using singular value decomposition)

W = US1=2S1=2VT = M̂Ŝ: (4.9)

Note that the matrices M̂ and Ŝ are determined up to a linear transformation, i.e.,

M̂Ŝ = (M̂0A�1)(AŜ 0);
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and M̂0 and Ŝ 0 are also possible solutions to the motion and shape matrices. A normalization

can be done by using the orthographic projection constraints,i.e., the fact that the rotation

matrices are orthonormal yielding 3f nonlinear constraints on the vectors a and b for each

image. The factorization method has been extended to weak perspective and paraperspective

projections [85] as well as to line features [90].

4.2 Transfer-Based Methods

The computer vision techniques for image-based rendering without actual three-dimensional

reconstruction proposed by Laveau and Faugeras [57], Seitz and Dyer [95], Kutulakos and

Vallino [56], and Avidan and Shashua [3] use only a discrete (and possibly small) set of views

among which point correspondences have been established by feature tracking or conventional

stereo matching. These approaches are related to the classical problem of transfer in pho-

togrammetry: given the image positions of a number of tie points in a set of reference images

and in a new image, and given the image positions of a ground point in the reference images,

predict the position of that point in the new image [5] (Figure 4.1).

In the projective case, Laveau and Faugeras [57] have proposed to �rst estimate the pairwise

epipolar geometry (i.e., weak calibration, see Chapter 2) between the set of reference views,

then reproject the scene points into a new image. The new image is speci�ed by the positions

of the new optical center in two reference images (i.e., the epipoles) and the position of four

reference points in the new image. By de�nition, the epipolar geometry constrains the possible

reprojections of points in the reference images. In the new image, the projection of the scene

point is at the intersection of two epipolar lines associated with the point and two reference

images (Figure 4.1).

Once the feature points have been reprojected, realistic rendering is achieved using classical

computer graphics techniques such as ray tracing and texture mapping ([41, Chapters 13,

14]). Laveau and Faugeras have developed a three-dimensional ray tracing method to handle

occlusions without direct geometric reconstruction. For some cases, this method may require

more than two images to fully solve visibility problems.

The main contribution of this work is the demonstration that a virtual view can be ren-

dered without any three-dimensional reconstruction. However, since they do not enforce the
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Figure 4.1 Transferring the images of the scene point P in two reference images p3 into a third

one as the intersection of the corresponding epipolar lines.

Euclidean constraints, the rendered images are ambiguous (i.e., they are in general separated

from the \correct" pictures by arbitrary planar projective transformations) unless additional

scene constraints are taken into account.

Related methods have been proposed by several authors in both the aÆne and projective

cases [3, 56, 95, 73]. For three images taken by a calibrated pinhole camera, Avidan and Shashua

[3] have used trifocal tensors [100] to constrain the reprojection of the points in these images.

In other words, the three images of a scene point obey certain multilinear matching constraints

captured by the trifocal tensor that can be constructed from three images in a linear fashion.

This tensor can then be used to construct a general warping function from the reference images

to the virtual image. This method can be used to render new images either from two or three

reference pictures by setting the virtual camera position and the orientation. Even though no
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three-dimensional reconstruction is performed, the small rotations between the cameras used

at modeling time are actually recovered (motion estimation). An advantage of this approach is

that using trilinear tensors ensures that there is no degenerate virtual camera con�guration.

Kutulakos and Vallino in [56] have proposed another transfer method based on the aÆne

projection model. They have observed that, given two or more images of four points in the

scene, the aÆne coordinates of another point can be extracted in a linear fashion without any

three-dimensional information about the camera position or the reference points in the scene.

In fact, when the image of the four reference points are known in the image plane, the projection

of any other point is given by

0
@u
v

1
A =

0
@u1 u2 u3 u0

v1 v2 v3 v0

1
A

0
BBBBBB@

x

y

z

1

1
CCCCCCA
;

where (u0; v0)
T , (u1; v1)

T , (u2; v2)
T , (u3; v3)

T are the projections of four reference points and

(x; y; z; 1)T is the homogeneous vector of the point's aÆne coordinates. This equation does not

involve any motion parameters but implicitly reconstructs the scene up to an aÆne transfor-

mation. Once again a new view is de�ned by the image positions of the reference points.

For more restricted virtual camera motions, Seitz and Dyer [96] use a technique called view

morphing to render novel images of a rigid scene from two images. Their method assumes that

the virtual camera center lies on the baseline (i.e., the line connecting the centers of the two

camera associated with the reference images). The method works on point correspondences

which are given a priori and involves �rst recti�cation of the two reference images so that the

image planes are parallel, then linear interpolation of the new image from the recti�ed reference

images, and �nally inverse recti�cation of the morphed image. The new image will be physically

valid in the sense that the virtual camera preserves rigid transformations. This method is also

essentially based on the transfer idea in that when the reference images are recti�ed, any virtual

image whose center lies on the baseline is a linear combination of two reference images.
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4.3 Light-Field Methods

The computer graphics techniques developed by Chen [9], Gortler, Grzeszczuk, Szeliski and

Cohen [30], Levoy and Hanrahan [61], and McMillan and Bishop [74] are based on the idea that

the set of all visual rays (light �eld) is four-dimensional, and can thus be characterized from a

two-dimensional sample of two-dimensional images of a rigid scene. The light �eld is a simpli�ed

form of the plenoptic function [1]. The plenoptic function at a point (x; y; z) determines the

radiant energy emitted from the scene along a ray passing through this point. More precisely,

the plenoptic function is normally written as

p = P (x; y; z; �; �; �; t)

where (x; y; z)T is the position of the point of interest (for example the position of the optical

center of a camera), � and � are angular coordinates de�ning the orientation of the ray, � is

the wavelength at which the radiance is measured and t is the time. When a snapshot of the

function is considered (which is the case for a static picture), time and wavelength are �xed,

then the number of parameters drop to 5. Furthermore, when we assume that the radiance is

independent of the position of the point of interest along the corresponding rays (which is the

case for a camera taking images of a scene), the parameter space (or the light �eld) becomes

the four-dimensional set of light rays.

The image-based rendering approaches based on the light �eld approximate the plenoptic

function and create a lookup table from a large set of images representing the scene. At

synthesis time a virtual camera view is set and the view is interpolated from the lookup table.

Essentially, image morphing can be viewed as interpolation of the visual rays (or the light

�eld or the plenoptic function) arriving at a particular pixel. Then, any method based on

pixel interpolation must answer two questions: how to establish pixel correspondences between

images and how to de�ne a new camera position. The methods described in this section will

address these question. Furthermore, the quality of the synthesized images will depend on the

reference images used. The closer the virtual view is to the reference images, the better the

quality of the synthesized images. Therefore, these methods tend to utilize a large number of

images.

As we have already discussed, the light-�eld methods do not rely on particular image fea-

tures, and work instead with the image pixels which is one of the main distinctions between
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the methods discussed in this section and the transfer-based methods of the previous section.

The transfer-based methods use a set of features and synthesize new images by �rst predicting

the images of these features and texture mapping the rest of the picture. The transfer-based

methods in principle assume that the scene is composed of Lambertian surfaces (texture map-

ping will not work perfectly for other types of models) whereas the light-�eld methods do not

assume anything about the reectance properties of the scene.

The �rst method we will review is the view interpolation method of Chen and Williams [10]

which generates intermediate images by morphing images stored at nearby viewpoints. The

morphing process requires a pixel correspondence map that is computed using a priori known

range data and the camera transformations. When the virtual camera is set, reference images

at nearby viewpoints in the image database are retrieved and the new image is morphed from

these reference images. Since morphing is a linear interpolation of the visual rays arriving at

a particular pixel, this method will generate physically correct images when the virtual image

plane is parallel to the baseline connecting the two reference images.

Despite similarities in the way a new view is generated, the view morphing technique of

Seitz and Dyer [95] di�ers from the view interpolation method of Chen and Williams in several

ways. First, Seitz and Dyer do not require a known range map. Instead, they use a set of feature

correspondences to rectify the reference images so that pixel correspondences can be established.

A second di�erence is in they way the virtual camera position is set by these two methods. The

view interpolation method of Chen and Williams assumes that the camera motions are known

and the reference images are retrieved from the database accordingly, whereas Seitz and Dyer

render new images which are restricted to lie on the baseline of two reference frames. So, the

view morphing technique of Seitz and Dyer is closely related to the transfer-based methods.

A similar technique has appeared in Chen's image-based rendering system, called Quick-

TimeVR [9], where the scene is represented by a set of cylindrical panoramas instead of regular

intensity images. A new view is synthesized by warping the cylindrical image whose center of

projection is closest to that of the new view. Cylindrical panaromas represents a restricted

view of the scene, therefore, the virtual camera position is in principle restricted.

In the methods we have discussed so far, the plenoptic function (or light �eld) concept have

been used implicitly without actually characterizing it from the input images. Instead, these

methods keep the images in the database and morph the reference images closest to the desired
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Figure 4.2 Parameterization of the light �eld.

view. As we have mentioned already, image morphing is the interpolation of the visual rays

arriving at a particular pixel. The methods we will review below actually recover the light �eld

explicitly and use it to render new images instead of keeping the images as a representation of

the plenoptic function.

The technique developed by Levoy and Hanrahan [61], called light-�eld rendering, param-

eterizes the visual rays with four parameters with L(u; v; s; t) (see Figure 4.2). To synthesize

a virtual view, they describe an eÆcient method to compute the ray parameters for the new

view. These parameters are used to �nd the corresponding rays in the lookup table for the new

view. The storage requirement for this method can be very large.

A similar representation by Gortler, Grzeszczuk, Szeliski and Cohen [30] is called the Lumi-

graph (a representation of the four-dimensional light �eld). It uses the same parameterization

for the visual rays (see Figure 4.2). The Lumigraph is a continuous four-dimensional space. A

discrete set of input images yields a discrete Lumigraph. So the continuous Lumigraph needs

to be reconstructed from the discrete Lumigraph to synthesize intermediate views. Let us �rst

assume that the discrete Lumigraph is placed on grid points with data value x(i; j; p; q). Fur-

thermore, let us associate the basis functions Bi;j;p;q with each grid point to reconstruct the

continuous Lumigraph as the linear sum (considering that we have M subdivisions in s and t
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dimensions and N subdivisions in u and v dimensions)

~
L(s; t; u; v) =

MX
i=0

MX
j=0

NX
p=0

NX
q=0

x(i; j; p; q)Bi;j;p;q(s; t; u; v);

where ~
L is the continuous Lumigraph. In [30], a quadrilinear basis function whose value is 1 at

the grid point and 0 at all neighboring grid points.

Even though it can generate very realistic images, like light-�eld rendering, the Lumigraph

requires a large number of images. This is a characteristic of light-�eld methods. On the other

hand, the transfer-based methods require far less input images at the expense of image quality.
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CHAPTER 5

PARAMETERIZED IMAGE VARIETIES

The set of all images of a rigid scene observed by a mobile camera with �xed intrinsic

parameters forms a six-dimensional variety. This is intuitively obvious since, for a mobile

camera with �xed internal parameters, the image of a rigid scene is completely determined by

the six parameters de�ning the position and orientation of the camera.

We propose to construct an explicit representation of V , the Parameterized Image Variety

(or PIV) from a set of point and line correspondences established across a sequence of weak

perspective or paraperspective images. The PIV associated with a rigid scene is parameterized

by the position of three image points, and it can be used to synthesize new pictures of this

scene from arbitrary viewpoints, with applications in the virtual reality domain.

Like other recent approaches to image synthesis without explicit three-dimensional models

[57, 95, 56, 40], our method completely by-passes the estimation of the motion and structure

parameters, and works fully in image space. Previous techniques exploit the aÆne or projec-

tive structure of images [55, 19, 39] but ignore the Euclidean constraints associated with real

cameras; consequently, as noted in [57], the synthesized pictures may be subjected to aÆne or

projective deformations. Our method takes Euclidean constraints into account explicitly and

outputs correct images.

In the remainder of this chapter, we �rst review the various projection models used in our

approach and show how they determine the set of all possible images of a rigid scene. Then a

parameterization of the set of all images of a �xed set of points and lines based on images of

three points is described. We also show how both the point and line PIVs can be integrated in

a general framework for image synthesis without explicit three-dimensional models, and present

experiments to validate our approach.
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Figure 5.1 AÆne camera model.

5.1 The Set of Images of a Rigid Scene

The set of all images of m points and n lines (corresponding to the two coordinates de�ning

each point and line) rigidly attached to each other can be embedded in a 2(m+n)-dimensional

vector space E, but it forms in fact a low-dimensional subspace V of E: as will be shown

below, V is a variety of E (i.e., a subspace de�ned by polynomial equations) of dimension eight

for aÆne cameras, and an eleven-dimensional variety for projective cameras. But V is only a

six-dimensional variety of E for weak perspective, paraperspective [82, 2], and full perspective

cameras.

5.1.1 AÆne Cameras

Let us �rst consider an aÆne camera observing some 3D scene, i.e., let us assume that

the scene, represented in some �xed world coordinate system, is �rst submitted to a 3D aÆne

transformation and then orthographically projected onto the image plane of the camera (see

Figure 5.1).

We denote the coordinate vector of a scene point P in the world coordinate system by

P = (x; y; z)T . Let p = (u; v)T denote the coordinate vector of the projection p of P onto the

image plane, the aÆne camera model can be written as

p =MP + p0 (5.1)

with

M =

0
@a

T

b
T

1
A and p0 =

0
@u0
v0

1
A
:
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Note that p0 is the image of the origin of the world coordinate system.

Suppose we observe a �xed set of points Pi (i = 1; ::;m) with coordinate vectors P i, and let

pi denote the coordinate vectors of the corresponding image points. Writing (5.1) for all the

scene points yields

0
@u
v

1
A =

0
@x y z 0 0 0 1 0

0 0 0 x y z 0 1

1
A

0
BBB@

a

b

p0

1
CCCA ;

where

u =

0
BBB@

u1

: : :

um

1
CCCA ;v =

0
BBB@

v1

: : :

vm

1
CCCA ;x =

0
BBB@

x1

: : :

xm

1
CCCA ;y =

0
BBB@

y1

: : :

ym

1
CCCA ; z =

0
BBB@

z1

: : :

zm

1
CCCA ;1 =

0
BBB@

1

: : :

1

1
CCCA ;0 =

0
BBB@

0

: : :

0

1
CCCA :

In other words, the set of images of m points is an eight-dimensional vector space Vp embed-

ded in IR2m. Given f � 2 views of the m points, a basis for this vector space can be identi�ed

by performing the singular value decomposition of the 2m� f matrix

O =

0
@u

(1)
: : : u

(f)

v
(1)

: : : v
(f)

1
A
;

where u(i) and v(i) (i = 1; ::; f) denote the vectors u and v associated with frame number i.

Once a basis for V has been constructed, new images can be constructed by assigning arbitrary

values to a, b and p0.

An alternative method is to pick four scene points, say A0, A1, A2 and A3 as an aÆne world

basis: let �, � and  denote the aÆne coordinates of a point P in this basis, so that

P = (1� �� � � )A0 + �A1 + �A2 + A3:

If ai denotes the image of the point Ai (i = 0; 1; 2; 3) and p denotes the image of the point

P , we have

p = (1� �� � � )a0 + �a1 + �a2 + a3; (5.2)

and it follows that �, � and  can be computed from f � 2 images through linear least squares.

Once these values are known, new images can be generated by specifying the image positions

49



of the points ai and using (5.2) to compute all the other point positions. This is essentially

the method proposed by Kutulakos and Vallino [56], and its roots can be found in the classical

paper by Koenderink and Van Doorn on aÆne structure from motion [55].

Suppose now that we observe a point P with a �xed set of cameras M(i) (i = 1; ::; f), and

let p(i) denote the image of P corresponding to the projection matrixM(i). We have

t = o+ xc1 + yc2 + zc3;

where

t =

0
BBB@

p
(1)

: : :

p
(f)

1
CCCA ;o =

0
BBB@

p
(1)
0

: : :

p
(f)
0

1
CCCA ; c1 =

0
BBBBBBBBB@

a

(1)
1

b

(1)
1

: : :

a

(f)
1

b

(f)
1

1
CCCCCCCCCA

; c2 =

0
BBBBBBBBB@

a

(1)
2

b

(1)
2

: : :

a

(f)
2

b

(f)
2

1
CCCCCCCCCA

; c3 =

0
BBBBBBBBB@

a

(1)
3

b

(1)
3

: : :

a

(f)
3

b

(f)
3

1
CCCCCCCCCA

;

which shows that the set of images taken by the cameras is the three-dimensional aÆne subspace

of IR2f spanned by the point o and the vectors c1, c2 and c3.

This is of course just a re-statement of several well-known results: in particular, if the center

of mass of the observed feature points is chosen as the origin of the image coordinate system, it

can be shown that an aÆne image is the linear combination of three model images [112], that

the measurement matrix

O0 =

0
BBBBBBBBBBBB@

u

(1)
1 : : : u

(1)
m

: : : : : : : : :

u

(f)
1 : : : u

(f)
m

v

(1)
1 : : : v

(1)
m

: : : : : : : : :

v

(f)
1 : : : v

(f)
m

1
CCCCCCCCCCCCA

has rank 3 [108, 85] (note that O 6= O0), and that the image trajectories of a scene point are

linear combinations of the trajectories of three reference points [114].

Let us now consider a line � parameterized by its direction 
 and the vector D joining

the origin of the world coordinate system to its projection onto � (see Figure 5.2). We can

parameterize the image Æ of � onto the image plane by the image vector d that joins the origin
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Figure 5.2 Geometric setting for points and lines in 3D.

of the image coordinate system to its orthogonal projection onto Æ. This vector is de�ned by

the two constraints
8<
:

d � (M
) = 0;

d � (MD + p0) = jdj2:
(5.3)

It follows that the set of all aÆne images of n lines is an eight-dimensional variety Vl (i.e., a

subspace de�ned by polynomial constraints) embedded in IR2n and de�ned by the 2n equations

in 2n+ 8 unknowns (namely, the coordinates of the vectors di (i = 1; ::; n) associated with the

n lines and the coordinates of the vectors a, b and p0) obtained by writing (5.3) for the n lines.

Combining the above results for points and lines we conclude that the set of all aÆne images

of m points and n lines is an eight-dimensional variety V embedded in IR2(m+n).

5.1.2 Euclidean Constraints

Let us now assume a �xed world coordinate and suppose that the camera observing the

scene has been calibrated so that image points are represented by their normalized coordinate

vectors. Here we are going to look at three Euclidean versions of aÆne cameras to approximate

perspective projection (see Figure 5.3).

Observing that for an orthographic camera (see Figure 5.3) aT and bT are the �rst two rows

of a rotation matrix shows that an orthographic camera is an aÆne camera with the additional

constraints

jaj2 = jbj2 = 1 and a � b = 0: (5.4)
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Figure 5.3 Euclidean projection models: In orthographic projection a point is projected onto

the image plane orthographically. In weak perspective projection a point is �rst projected

onto a reference plane orthographically and followed by a perspective projection. Finally, a

paraperspective projection is obtained by �rst projecting the scene points onto the reference

plane parallel to the line joining a reference point on the reference plane and followed by a

perspective projection. Amomg these projection models, paraperspective projection is the best

approximation to the perspective projection.

52



In turn, a weak perspective (or scaled orthographic) camera is an aÆne camera with the

two constraints

jaj2 = jbj2 and a � b = 0: (5.5)

Finally, as shown in Appendix C, a paraperspective camera is an aÆne camera with the

constraints

a � b =
urvr

2(1 + u
2
r)

jaj2 +
urvr

2(1 + v
2
r )

jbj2 and (1 + v
2
r )jaj2 = (1 + u

2
r)jbj2; (5.6)

where (ur; vr) denote the coordinates of the image of the reference point associated with the

scene (see [85] for the use of similar constraints in Euclidean shape and motion recovery). It

should be noted that under this projection model, the vectors a and b do not form a basis of

the image plane. Instead, they form a basis of the vector plane orthogonal to the line joining

the optical center of the camera to the reference point (Appendix C).

As expected, the paraperspective constraints reduce to the weak perspective constraints

when ur = vr = 0, and the weak perspective constraints reduce in turn to the orthographic

constraints when ja2j = jb2j = 1.

As shown earlier, the set of aÆne images of a �xed scene is an eight-dimensional vector space.

If we restrict our attention to orthographic, weak perspective, or paraperspective cameras, the

set of images becomes the 5D or 6D variety of this 8D vector space de�ned respectively by the

constraints (5.4), (5.5), or (5.6). It should be noted that the case of perspective and projective

cameras is similar: this time however, the projection equations involve a 3 � 4 matrix. They

are bilinear in the image coordinates and the rows of this matrix, and de�ne an 11D variety.

The Euclidean constraints associated with perspective cameras yield �ve additional quadratic

constraints, which again reduce the set of images of a scene to a 6D variety.

5.2 A New Approach to Image-Based Rendering

We propose a parameterization of the six-dimensional variety formed by the weak perspec-

tive images of m points and n lines in terms of the image positions of three points in the scene.

This parameterization de�nes the Parameterized Image Variety (or PIV) associated with the

scene.
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Figure 5.4 Geometric setup for the point and the line PIVs.

Let us suppose that we observe three points A0, A1, A2 whose images are not collinear. We

can choose (without loss of generality) a Euclidean coordinate system such that the coordinate

vectors of the four points in this system are A0 = (0; 0; 0)T , A1 = (1; 0; 0)T , A2 = (p; q; 0)T

(Figure 5.4). The values of p and q are nonzero but unknown.

These points will be used to parameterize the PIV in the next two sections. We start by

constructing the point PIV, since the equations derived in this case will also be used to construct

the line PIV in Section Section 5.2.2. In both cases, the image rendering process is divided

into two steps: a training stage, where the parameters of the PIV are estimated from an input

image stream, and a synthesis stage, where the parameters of the points and/or lines of interest

are estimated from the position of the three reference points in the new image. A potential

advantage of lines over points is that they can be located very accurately in edge maps using

least squares and they can facilitate the production of a good triangulation.

5.2.1 The Point PIV

Let us consider a point P and its projection p in the image plane, and denote by P =

(x; y; z)T and p = (u; v)T their coordinate vectors. The values of (x; y; z) are of course un-

known. We will also assume that u0 = v0 = 0 since we can go back to the general case via

an image translation. From here on, we focus on the weak perspective projection case. The

paraperspective projection case is considered later.
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Applying (5.1) to A1, A2 and P yields

u
def
=

0
BBB@

u1

u2

u

1
CCCA = Aa; and v

def
=

0
BBB@

v1

v2

v

1
CCCA = Ab; (5.7)

where

A def
=

0
BBB@

A
T
1

A
T
2

P
T

1
CCCA =

0
BBB@

1 0 0

p q 0

x y z

1
CCCA :

In turn, this implies that

a = Bu; and b = Bv; (5.8)

where

B def
= A�1 =

0
BBB@

1 0 0

� � 0

�=z �=z 1=z

1
CCCA ;

and

� = �p
q

; � =
1

q

; � = �(x+ �y); � = ��y:

Using (5.8) and letting C def
= z

2BTB, the weak perspective constraints (5.5) can be rewritten

as
8<
:
u
TCu� vTCv = 0;

u
TCv = 0;

(5.9)

with

C =

0
BBB@

�1 �2 �

�2 �3 �

� � 1

1
CCCA ; and

8>>><
>>>:

�1 = (1 + �
2)z2 + �

2
;

�2 = ��z
2 + ��;

�3 = �
2
z
2 + �

2
:

Equation (5.9) de�nes a pair of linear constraints on the coeÆcients �i (i = 1; 2; 3), � and

�; they can be rewritten as

Nd� = 0; (5.10)
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where

Nd
def
=

0
@d

T
1 � dT2
d
T

1
A (5.11)

with
8>>><
>>>:

d
T
1

def
= (u21; 2u1u2; u

2
2; 2u1u; 2u2u; u

2);

d
T
2

def
= (v21 ; 2v1v2; v

2
2 ; 2v1v; 2v2v; v

2);

d
T def
= (u1v1; u1v2 + u2v1; u2v2; u1v + uv1; u2v + uv2; uv);

and �
def
= (�1; �2; �3; �; �; 1)

T .

When the four points A0, A1, A2, and P are rigidly attached to each other, the �ve structure

coeÆcients �1, �2, �3, � and � are �xed. For a rigid scene formed by m points, choosing three

of the points as a reference triangle and writing (5.10) for the remaining ones yields a set of

2m� 6 quadratic equations in 2m unknowns, which do indeed de�ne a parameterization of the

set of all weak perspective images of the scenes. This is the PIV.

Note that the weak perspective constraints (5.10) are linear in the �ve structure coeÆcients.

Thus, given a collection of images and point correspondences, we can compute these coeÆcients

through linear least squares. We describe in Section 5.2.1.1 how to estimate these coeÆcients

using linear least squares and we will discuss alternative estimation techniques in Chapter 6.

Once the vector � has been estimated, we can specify arbitrary image positions for our

three reference points. Equation (5.10) yields two quadratic constraints on the two unknowns

u and v. Although this system should a priori admit four solutions, it admits exactly two real

solutions: indeed, if we let

u2
def
=

0
@u1
u2

1
A
; v2

def
=

0
@v1
v2

1
A
;

and

E def
=

0
@�1 � �

2
�2 � ��

�2 � �� �3 � �
2

1
A =

0
@(1 + �

2)z2 ��z
2

��z
2

�
2
z
2

1
A
;

then (5.5) can easily be rewritten as

8<
:

X
2 � Y

2 + e1 � e2 = 0;

2XY + e = 0;
(5.12)
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where 8>>><
>>>:

e1 = u
T
2 Eu2;

e2 = v
T
2 Ev2;

e = 2uT
2 Ev2;

and

8<
:

X = u+ �u1 + �u2;

Y = v + �v1 + �v2:

To compute the solutions of (5.12), we introduce the variable Z de�ned by
8>>>>>>><
>>>>>>>:

X
2 =

1

2
(Z � e1 + e2);

Y
2 =

1

2
(Z + e1 � e2):

Squaring the second equation of (5.12) and taking into account the fact that, since Z =

X
2 + Y

2, its value is positive, yields

Z =
p
(e1 � e2)2 + e

2
: (5.13)

In turn, this yields two opposite solutions for X and two opposite solutions for Y . Only

two of the four possible pairs are solutions of the original equations, and they are determined

by the fact that 2XY + e = 0. Once X and Y have been solved for, the values of u and v are

trivially obtained.

5.2.1.1 Estimation of the Structure Parameters

In order to compute the �ve structure parameters in �, let us rewrite the weak perspective

constraints (5.10) for all available images (i.e., for i = 1; :::; f):
8<
:
d
T
i � = 0;

e
T
i � = 0;

(5.14)

where

di
def
=

0
BBBBBBBBBBBB@

u
2
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2
1i

2(u1iu2i � v1iv2i)

u
2
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2
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2(u1iui � v1ivi)

2(u2iui � v2ivi)

u
2
i � v
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CCCCCCCCCCCCA

and ei
def
=

0
BBBBBBBBBBBB@

u1iv1i

u1iv2i + u2iv1i

u2iv2i

u1ivi + uiv1i

u2ivi + uiv2i

uivi

1
CCCCCCCCCCCCA

(5.15)
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Note that the weak perspective constraints in (5.14) are linear in the �ve structure coef-

�cients. In particular, given a collection of f images of four points, we can compute these

coeÆcients through linear least squares: let us de�ne the 6� f data matrix

D def
= (d1; : : : ;df ;e1; : : : ;ef ) ; (5.16)

where di and ei are the values of the data-dependent vectors de�ned in (5.15) associated with

frame number i (i = 1; : : : ; f). The linear-least-squares solution of the over-constrained linear

system DT
�̂ = 0 is �̂ = 1

�6
�, where � = (�1; �2; �3; �4; �5; �6)

T is the eigenvector of the 6 � 6

matrix DDT corresponding to its smallest eigenvalue. Alternatively, � can be computed as the

sixth column of the 6� 6 matrix V in the singular value decomposition (or SVD) UWVT of the

f � 6 matrix DT .

5.2.2 The Line PIV

We establish the PIV associated with lines by considering the line position and the line

direction separately. Line positions are parameterized using aÆne notions only.

5.2.2.1 Line Position

Let us now consider a line � and assume that its intersection with the reference plane

spanned by the points A0, A1 and A2 is transversal (Figure 5.4). Without loss of generality,

we can parameterize this line by the aÆne coordinates (�1; �2) of the point Q where the line

intersects the reference plane in the basis (A0; A1; A2), i.e.,

Q = A0 + �1A1 + �2A2;

and by the coordinate vector 
 = (x; y; 1)T of its direction in the Euclidean world coordinate

system.

Let Æ be the image of �, we can parameterize this line by the position of the image q of

the point Q and the unit coordinate vector ! = (cos �; sin �)T of its direction. If we take as

before a0 as the origin of the image plane, and denote by d the distance between a0 and Æ, the

equation of Æ is

�u sin � + v cos � � d = 0; (5.17)
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Figure 5.5 Parameterization of the line Æ.

where (u; v) denote image coordinates. Since the point Q lies in the reference plane, the aÆne

coordinates of q in the coordinate system a0; a1; a2 are also �1 and �2, i.e.,

q = a0 + �1a1 + �2a2; (5.18)

and substituting in (5.17) yields

(u1 sin � � v1 cos �)�1 + (u2 sin � � v2 cos �)�2 + d = 0; (5.19)

which is a linear equation in the aÆne coordinates �1 and �2. Given several images of the

line �, we can thus use (5.19) to estimate �1 and �2 via linear least squares. These aÆne

coordinates can then be used to predict the position of q in any new image once a0, a1 and a2

have been speci�ed in (5.18).

5.2.2.2 Line Orientation

Let us now turn to the prediction of �. Note that the equations derived in Section 5.2.1 still

apply when we take P = 
 and p
def
= (u; v)T = �!, where � is an image-dependent scale factor.

Note that since the overall value of � is irrelevant, we can take z = 1 with the assumption that

the line is not parallel to the plane spanned by the three reference points.

There are two di�erences with the point case: (a) in the line case, the �ve parameters �i

(1 = 1; 2; 3), � and � are not independent since there is no z parameter to take into account,

and (b) the two equations in (5.9) contain terms in �, that depend on the image considered.

We can remove this dependency by eliminating � between the two equations (of course, this
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will introduce nonlinearities). We will deal with the redundancy of the structure parameters

later in this section.

This time we use (5.13) instead of (5.10) to parameterize the PIV since it yields simpler

equations. First note that
8<
:

X = � cos � + �u1 + �u2;

Y = � sin � + �v1 + �v2;

and therefore

sin �X � cos �Y = �;

where

�

def
= (u1 sin � � v1 cos �)�+ (u2 sin � � v2 cos �)�

is independent of �. Squaring this equation and using the variable Z de�ned in the previous

section yields

2�2 = Z + (e1 � e2) cos 2� + e sin 2�:

Evaluating �2 and substituting the value of Z in (5.13) yields

f1 + f2 � (g1 � g2) cos 2� � g sin 2� =
p
(e1 � e2)2 + e

2
; (5.20)

where

8<
:

f1
def
= u

T
2 Fu2;

f2
def
= v

T
2 Fv2;

F def
=

0
@�

2
��

�� �
2

1
A
;

8>>><
>>>:

g

def
= 2u2Gv2;

g1
def
= u2Gu2;

g2
def
= v2Gv2;

and G def
=

0
@�1 �2

�2 �3

1
A
:

At this point, we still have a redundant set of �ve structure parameters. Let 
def
=
p
�
2 + �

2,

we can now de�ne a minimal set of four structure parameters "1, "2, "3 and � by the equations
8>>><
>>>:

"1 = (1 + �
2)=2;

"2 = ��=
2
;

"3 = �
2
=

2
;

and �
def
= Arg(�; �):

With this notation, (5.20) becomes

i1 + i2 � (j1 � j2) cos 2� � j sin 2� =
p
(h1 � h2)2 + h

2
; (5.21)
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where

8>>><
>>>:

h1
def
= u

T
2Hu2;

h2
def
= v

T
2Hv2;

h

def
= 2u2Hv2;

H def
=

0
@"1 "2

"2 "3

1
A
;

and

8>>><
>>>:

i1
def
= u

T
2 Iu2;

i2
def
= v

T
2 Iv2;

i

def
= 2u2Iv2;

I def
=

0
@

1
2
(1 + cos 2�) sin 2�

sin 2� 1
2
(1� cos 2�)

1
A
;

and j
def
= h+ i, j1

def
= h1 + i1, j2

def
= h2 + i2.

Given a set of line correspondences, the four structure parameters "1, "2, "3 and � can esti-

mated via non-linear least squares. At synthesis time, (5.21) becomes a trigonometric equation

in 2�, with two solutions that are easily computed in closed form. Each of this solution only

determines � up to a � ambiguity, which is immaterial in our case.

Note that directly minimizing the error corresponding to (5.21) is a biased process. A better

method is to minimize

pX
i=1

(�i � �̂i)
2
;

where �̂i is the line orientation empirically measured in image number i, and �i is the orientation

predicted from (5.21). This is a constrained minimization problem, and the derivatives of �i

with respect to the structure parameters are easily computed from the partial derivatives of

(5.21) with respect to � and these parameters.

5.2.3 From Lines to Line Segments

In�nite lines are inappropriate for direct rendering. Thus we must associate with each line

a line segment. On the other hand, while lines can be localized very accurately in the input

images, the position of their endpoints cannot in general be estimated reliably since most edge

�nders behave poorly near edge junctions. Additional line breaks can also be introduced by

the program that segments edges into straight lines. Here we present a method for computing

a rough estimate of the endpoints of a line from its PIV.
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Let R denote one of the endpoints of the segment associated with the line �, and let r

denote its image. We have r � q = l!, and R � Q = L
, and we can once again write

�! = M
, where this time � = l=L. The (signed) distance l is known at training time and

unknown at synthesis time, while the (signed) distance L is unknown at training time and

known at synthesis time. We have:

X
2 + Y

2 = Z = 
2
T;

where

T

def
=

1


2

p
(e1 � e2)2 + e

2 =
p
(h1 � h2)2 + h

2
;

and expanding this equation yields a quadratic equation in �:

�
2 � 2�[(u1 cos� + u2 sin�) cos � + (v1 cos� + v2 sin�) sin �] + 

2(� � T ) = 0: (5.22)

Note that we can compute  from the vector ("1; "2; "3)
T as


2 =

"3

"1"3 � "
2
2

:

This equation (5.22) has the form

�
2 � 2c�+ d = 0:

To avoid sign problems due to the fact that � is only known up to a � ambiguity and that the

sign of l and L cannot be determined, we square this equation and introduce the new variables

l
0 def= l

2 and L0
def
= l

02. We obtain

d
2
L

02 + 2l0(d� 2c2)L0 + l

02 = 0:

Its solutions are of course the same as before, but this equation can now be used to estimate L2

via non-linear least squares since its coeÆcients only depend on 2�, 2� and l2. During image

generation we estimate jlj as j�Lj, and give a sign to l using tracking from a real image. The

value of l used at that time does not have to be a precise estimate of the actual line extent as

long as it remains consistent over the synthetic frames.
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Figure 5.6 Z-bu�ering.

5.3 Image Synthesis

Once the PIV parameters have been estimated, the scene can be rendered from a new

viewpoint by specifying interactively the image positions of the three reference points, and

computing the corresponding image positions of all other points and lines. To create a shaded

picture, we can construct a constrained Delaunay triangulation of these line segments and points

(using, for example Shewuck's Triangle public-domain software [101]) whose vertices and edges

form a superset of the input points and line segments. Texture mapping is then easily achieved

by using the same triangulation in one of the input images. This section details the main stages

of the rendering process.

5.3.1 Hidden-Surface Removal

Here we show how traditional z-bu�er techniques can be used to perform hidden-surface

elimination even though no explicit three-dimensional reconstruction is performed. Our aim

here is to assign relative depth values to the vertices of the traingles obtained from points and

line segments as described above.

Let � denote the image plane of one of our input images, and �0 the image plane of our

synthetic image. To render correctly two points P and Q that project onto the same point r0

in the synthetic image, we must compare their depths.

Let R denote the intersection of the viewing ray joining P to Q with the plane spanned by

the reference points A0, A1 and A2, and let p, q, r denote the projections of P , Q and R into
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the reference image. Suppose for the time being that P and Q are two of the points tracked in

the input image; it follows that the positions of p and q are known. The position of r is easily

computed by remarking that its coordinates in the aÆne basis of � formed by the projections

a0; a1; a2 of the reference points are the same as the coordinates of R in the aÆne basis formed

by the points A0; A1; A2 in their own plane, and thus are also the same as the coordinates of r0

in the aÆne basis of �0 formed by the projections a00; a
0
1; a

0
2 of the reference points.

The ratio of the depths of P and Q relative to the plane � is simply the ratio pr=qr. Not

that deciding which point is actually visible requires orienting the line supporting the points

p; q; r, which is simply the epipolar line associated with the point r0. A coherent orientation

should be chosen for all epipolar lines (this is easy since they are all parallel to each other). Note

that this does not require explicitly computing the epipolar geometry: given a �rst point p0, one

can orient the line pr, then use the same orientation for all other point correspondences. The

orientations chosen should also be consistent over successive frames, but this is not a problem

since the direction of the epipolar lines changes slowly from one frame to the next, and one can

simply choose the new orientation so that it makes an acute angle with the previous one.

5.3.2 Rendering

Given an input triangulation, the entire scene can now be rendered using z-bu�ering as

follows:

1. pick the correct orientation for the epipolar lines (using one of the point correspondences

and the previous orientation);

2. compute, for each of the data points P , the position of r in the reference image and the

\depth" pr and store it as its \z" coordinate;

3. render the triangles forming the scenes using a z-bu�er algorithm with orthographic pro-

jection along the z-axis.

Texture mapping is easily incorporated in the process.

It should be noted that this process can generate two families of images corresponding to the

initial choice of epipolar line orientation. The choice can be made by the user during interactive

image synthesis.
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5.4 The Paraperspective Case

In this section, we extend the weak perspective case to the paraperspective case. We will

choose a0 as the reference point for the paraperspective projection in the rest of this discussion,

i.e., ur = u0 and vr = v0 in (5.6).

5.4.1 The Paraperspective Point PIV

The construction of the paraperspective point PIV follows the same steps as in the weak

perspective case: using (5.6) yields
8<
:

 1u
TCu�  2v

TCv = 0;

2uTCv � �1u
TCu� �2v

TCv = 0;
(5.23)

where

 1 = 1 + v
2
0 ;  2 = 1 + u

2
0; �1 =

1

 2

u0v0; and �2 =
1

 1

u0v0: (5.24)

This can as before be rewritten as a linear system in �:

Nd� = 0; (5.25)

where this time

Nd
def
=

0
@  1d

T
1 �  2d

T
2

2dT � �1d
T
1 � �2d

T
2

1
A
: (5.26)

Once the structure parameters have been estimated via linear least squares, we can predict

new image coordinates by rewriting (5.23) as
8<
:

 1(X
2 + e1)�  2(Y

2 + e2) = 0;

2XY + e� �1(X
2 + e1)� �2(Y

2 + e2) = 0:
(5.27)

To improve the symmetry of our problem, let us introduce as before the variable Z de�ned

by
8>>>>>>><
>>>>>>>:

X
2 =

 2

2
(Z � #)

Y
2 =

 1

2
(Z + #)

where #

def
=

1

 1 2

( 1e1 �  2e2);

65



Substituting in the second equation of (5.27) yields

2XY � u0v0Z + � = 0; (5.28)

where

� = e� �1e1 � �2e2:

In turn, squaring (5.28) yields a quadratic equation in Z only:

(1 + u
2
0 + v

2
0)Z

2 + 2u0v0�Z � ( 1 2#
2 + �

2) = 0 (5.29)

whose roots have opposite signs since the degree of the equation is 2 and constant coeÆcients

have opposite signs.

The positive solution is the correct one since  1 2Z =  1X
2 +  2Y

2. This yields two

opposite values for X and two opposite values for Y . Two of the four possible pairs are

solutions of the original equations: they are determined by the fact that 2XY = u0v0Z � �.

5.4.2 The Paraperspective Line PIV

Finding the intersection of the line with the reference plane, i.e., the image of line position,

proceeds as before in Section 5.2.2 since this point is de�ned using purely aÆne notions.

To parameterize the line orientation for the paraperspective images, we can introduce as

before the quantity

� = sin �X � cos �Y:

Squaring this parameter and introducing the variable Z yields

2�2 = (
 1 +  2

2

+
 1 �  2

2

cos 2� � u0v0 sin 2�)Z + (
 1 �  2

2

+
 1 +  2

2

cos 2�)#+ � sin 2�:

Since we also have

2�2 = f1 + f2 � (f1 � f2) cos 2� � f sin 2�;

we can solve for Z and replace it in (5.29) to obtain the desired parameterization of the line

PIV for paraperspective images. The parameters are "1; "2; "3 and � as described before in

Section 5.2.2.

At synthesis time, once again, we have a trigonometric equation in � with two solutions for

which the correct solution can be chosen using tracking.
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5.5 Adding a Second Pass to the Algorithm

In this section we show how to compute the common parameters 1 + �
2, �� and �2 from

both line and point PIVs computed in Section 5.2 and to re�ne the rest of the parameters for

point and line PIVs.

5.5.1 Integrating Point and Line PIVs to Estimate Structure Parameters

Once the structure parameters associated with all the points and lines have been computed,

these can be used to construct a re�ned estimate of the parameters 1 + �
2, �� and �2 that are

common across all features. Indeed, the vectors (�1 � �
2
; �2 � ��; �3 � �

2)T and ("1; "2; "3)
T

associated with the various lines and points all belong to the one-dimensional vector space

spanned by (1 + �
2
; ��; �

2)T . Note that

0
BBB@

�1 � �
2

�2 � ��

�3 � �
2

1
CCCA = z

2

0
BBB@

1 + �
2

��

�
2

1
CCCA and

0
BBB@

"1

"2

"3

1
CCCA =

1


2

0
BBB@

1 + �
2

��

�
2

1
CCCA :

A representative unit vector (�1; �2; �3)
T can be found via singular value decomposition, and

we have

8>>><
>>>:

 �1 = 1 + �
2
;

 �2 = ��;

 �3 = �
2
;

for some  . Solving this system yields:

8>>><
>>>:

1 + �
2 = �1�3=(�1�3 � �22);

�� = �2�3=(�1�3 � �
2
2);

�
2 = �3�3=(�1�3 � �

2
2):

5.5.2 The Re�ned Point PIV

Once the common structure parameters 1 + �
2, �� and �2 have been estimated, a better

estimate of the point PIV can be constructed via linear least squares. Here we consider the

more general case of paraperspective images and use the derivations from Section 5.4.1.
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In particular, we can use these parameters to compute E 0 def= E=z2 directly. Equation (5.27)

can now be rewritten as
8<
:

 1(e
0
1 +X

02)�  2(e
0
2 + Y

02) = 0;

e
0 + 2X 0

Y
0 � �1(e

0
1 +X

02)� �2(e
0
2 + Y

02) = 0;
(5.30)

where, this time,

8>>><
>>>:

e
0
1 = u

T
2 E 0u2;

e
0
2 = v

T
2 E 0v2;

e
0 = 2uT

2 E 0v2;

and
8<
:

X
0 = X=z = c � u = c

TAa = n � a;

Y
0 = Y=z = c � v = c

TAb = n � b;

where n = (0; 0; 1)T is the normal to the reference triangle. Since the vectors a and b are

orthogonal to the line joining the optical center of the camera to the reference point, it follows

that X 0, Y 0, and the aÆne ow are all zero when this line is parallel to n.

We can use (5.30) to solve for X 0 and Y 0 as before. Once these values have been computed

for each frame, we can estimate the value of �, �, and z for each point using linear least squares

and the relation

0
BBBBBBBBB@

u

(1)
1 u

(1)
2 X

0(1) �u(1)

v

(1)
1 v

(1)
2 Y

0(1) �v(1)

: : : : : : : : : : : :

u

(f)
1 u

(f)
2 X

0(f) �u(f)

v

(f)
1 v

(f)
2 Y

0(f) �v(f)

1
CCCCCCCCCA

0
BBBBBB@

�

�

z

1

1
CCCCCCA

= 0:

This assumes of course that the signs chosen for the values of X 0 and Y 0 for all frames are

consistent. To achieve this, for f images of m points, we construct during the �rst pass of the

algorithm the m� 2f matrix

0
BBB@

X

(1)
1 : : : X

(f)
1 Y

(1)
1 : : : Y

(f)
1

: : : : : : : : : : : : : : : : : :

X

(1)
m : : : X

(f)
m Y

(1)
m : : : Y

(f)
m

1
CCCA =

0
BBB@

z1

: : :

zm

1
CCCA (X

0(1)
; : : : ;X

0(f)
; Y

0(1)
; : : : ; Y

0(f)):
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This matrix has by de�nition rank 1, and it follows that an estimate of the vector

(X
0(1)
; : : : ;X

0(f)
; Y

0(1)
; : : : ; Y

0(f)) can be computed (up to an unknown scale factor) through

singular value decomposition. This estimate can be used to assign consistent signs to the

coeÆcients X
0(i) and Y

0(i) recomputed during the second pass of the algorithm.

At rendering time, we solve (5.30) for X 0 and Y
0 for each new frame, then compute the

values of u and v for each point by using the relationship

u = zX
0 + �u1 + �u2; v = zY

0 + �v1 + �v2:

5.5.3 The Re�ned Line PIV

Once again, when the common parameters 1 + �
2, �� and �2 are given the two parameters

� and � can be obtained via linear least squares as follows.

As we have done for the point case, we can compute E directly. When we take p = �!,

(5.27) can be rewritten as

8<
:

 1(e1 +X
2)�  2(e2 + Y

2) = 0;

e+ 2XY � �1(e1 +X
2)� �2(e2 + Y

2) = 0;
(5.31)

where

8>>><
>>>:

e1 = u
T
2 Eu2;

e2 = v
T
2 Ev2;

e = 2uT
2 Ev2;

and
8<
:

X = � cos � + �u1 + �u2 = c � u = c
TAa = n � a;

Y = � sin � + �v1 + �v2 = c � v = c
TAb = n � b;

where n = (0; 0; 1)T is the normal to the reference triangle.

We can use (5.31) to solve for X and Y as before. Once these values have been computed

for each frame, we can estimate the value of � and � for each line using linear least squares

and the relation
0
BBB@

v
(1)
1 cos �(1) � u

(1)
1 sin �(1) v

(1)
2 cos �(1) � u

(1)
2 sin �(1) X

(1) sin �(1) � Y
(1) cos �(1)

: : : : : : : : :

v
(f)
1 cos �(f) � u

(f)
1 sin �(f) v

(f)
2 cos �(f) � u

(f)
2 sin �(f) X

(f) sin �(f) � Y
(f) cos �(f)

1
CCCA

0
BBB@

�

�

1

1
CCCA = 0:
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1. Training:

(a) Pick three points a0, a1 and a2 as the reference points and center all points at a0.

(b) Compute the point PIVs using the method of Section 5.2.1 or Section 5.4.1.

(c) Compute the line PIVs using the method of Section 5.2.2 or Section 5.4.2.

(d) Compute re�ned point and line PIVs as described in Section 5.5.

2. Rendering:

(a) De�ne a new view by setting image coordinates of a0, a1 and a2 at the desired view.

(b) Predict the image of points and lines using methods of Section 5.2.1 (or Section 5.4.1)

and Section 5.2.2 (or Section 5.4.2).

(c) Resolve ambiguities using tracking from a previous image.

(d) Render the images using the method described in Section 5.3.2.

Figure 5.7 The image-based rendering algorithm.

As before, this assumes that the signs chosen for the values of X and Y for all frames are

consistent. Once we have the signs of X 0 and Y 0 for each frame and since the signs of X (resp.

Y ) and X 0 (resp. Y 0) are the same, we can use the results from the second pass of point features

and choose the signs for X and Y accordingly.

At rendering time, we solve (5.31) for X and Y for each new frame, then compute the value

of � for each point by using the relationship

(X � �u1 � �u2) cos � � (Y � �v1 � �v2) sin � = 0:

5.6 Summary of the Algorithm

Figure 5.7 shows the various steps of the proposed approach to image-based rendering using

parameterized image varieties for point and line correspondences. The approach has two distinct

steps: (1) computing the point and line PIVs (training), and (2) predicting images using the

computed PIVs (rendering).

It should be noted that three reference points must be selected among the input point

correspondences. We can always pick the center of the mass for each image (using the points

that are visible in all images) as the �rst reference point.
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5.7 Degenerate Scene and Camera Con�gurations

It is of course important to understand what degenerate con�gurations of scene points and

lines and camera positions make the determination of the point line PIVs ill-conditioned. Here

we spell out some simple cases in the paraperspective case.

It is easy to show using (5.7) that the matrix Nd in (5.26) can be rewritten as

Nd = NpNstr; (5.32)

where the projection matrix is

Np
def
=

0
@e

T � �1e
T
1 � �2e

T
2

 1e
T
1 �  2e

T
2

1
A
; (5.33)

and the structure matrix is

Nstr
def
=

0
BBBBBBBBBBBB@

1 2p p
2 2x 2px x

2

0 q pq y py + qx xy

0 0 q
2 0 2qy y

2

0 0 0 z pz xz

0 0 0 0 qz yz

0 0 0 0 0 z
2

1
CCCCCCCCCCCCA

; (5.34)

with 8>>><
>>>:

e
T
1

def
= (a21; 2a1a2; a

2
2; 2a1a3; 2a2a3; a

2
3);

e
T
2

def
= (b21; 2b1b2; b

2
2; 2b1b3; 2b2b3; b

2
3);

e
T def
= (a1b1; a1b2 + a2b1; a2b2; a1b3 + a3b1; a2b3 + a3b2; a3b3):

Let us de�ne �
def
= (1; 0; 1; 0; 0; 1)T . Using (5.6), (5.7) and (5.8) shows that

Np� =

0
@a � b� �1jaj2 � �2jbj2

 1jaj2 �  2jbj2

1
A = 0 and z

2
� = Nstr�: (5.35)

Equations (5.32) and (5.35) con�rm of course that the rank of Np is at most 5. If we now

consider f images and denote by N (i)

d (resp. N (i)
p ) the value of the matrix Nd (resp. Np) for

image number i (i = 1; ::; f), and de�ne the data and projection matrices by

Ndat
def
=

0
BBB@

N (1)

d

: : :

N (f)
d

1
CCCA and Npro

def
=

0
BBB@

N (1)
p

: : :

N (f)
p

1
CCCA ;
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we obtain

Ndat = NproNstr:

Like Np, Ndat has at most rank 5. Degenerate con�gurations correspond to either Npro or

Nstr having rank smaller than 5.

5.7.1 Degenerate Point Con�gurations

First note that the determinant of the matrix Nstr is equal to q
4
z
4. Hence this matrix has

rank 6 unless z = 0. In this case, its last three rows are zero, and it follows that the matrix Ndat

has at most rank 3 for points in the plane of the reference triangle. An explicit parameterization

of the null space of Ndat is given below, and it is used to show that the rank is indeed 3, and

that the image synthesis method described in Section 5.2.1 will give the correct results even in

that case.

The fact that � belongs to the null space of the matrix

0
BBB@

1 2p p
2 2x 2px x

2

0 q pq y py + qx xy

0 0 q
2 0 2qy y

2

1
CCCA

can be rewritten as

P

0
BBB@

�1

�2

�3

1
CCCA = �Q

0
BBB@

�4

�5

1

1
CCCA ;

where

P def
=

0
BBB@

1 2p p
2

0 q pq

0 0 q
2

1
CCCA and Q def

=

0
BBB@

2x 2px x
2

y py + qx xy

0 2qy y
2

1
CCCA :

The inverse of P is easily shown to be

P�1 =

0
BBB@

1 �2p=q p
2
=q

2

0 1=q �p=q2

0 0 1=q2

1
CCCA ;
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and it follows that

0
BBB@

�1

�2

�3

1
CCCA = �P�1Q

0
BBB@

�4

�5

1

1
CCCA = �

0
BBB@

2� 0 �
2

� � ��

0 2� �
2

1
CCCA

0
BBB@

�4

�5

1

1
CCCA :

We �nally obtain

8>>><
>>>:

�1 � �
2
4 = �(�4 + �)2;

�2 � �4�5 = �(�4 + �)(�5 + �);

�3 � �
2
5 = �(�5 + �)2:

In particular, if we de�ne �1 = �4+�, �2 = �5+�, and � = (�1; �2)
T , we have e1 = �(� �u2)

2,

e2 = �(� � v2)2, and e = �(� �u2)(� � v2), and it follows immediately that the two solutions of

(5.27) are (X�
; Y

�) = (� � u2;� � v2) and (�X�
;�Y �).

We can now determine the solution (u�; v�) corresponding to (X�
; Y

�):

8<
:

u
� = X

� � �4u1 � �5u2 = � � u2 � (�1 � �)u1 � (�2 � �)u2 = �u1 + �u2;

v
� = Y

� � �4v1 � �5v2 = � � v2 � (�1 � �)v1 � (�2 � �)v2 = �v1 + �v2:

Those are of course the correct image coordinates for a point in the reference plane, corre-

sponding to a zero aÆne ow.

5.7.2 Degenerate Line Con�gurations

In our analysis of the line PIV we have assumed that the line � in the scene intersects the

refence plane transversally so we can take 
 = (x; y; 1)T . Let us now consider the general case

where the line direction is given by the unit vector 
 = (x; y; z)T .

Without going into the details of the derivation, we can analyze the degenerate line con�gu-

ration as follows: the discussion in the previous section holds with P = (x; y; z)T and u = � cos �

and v = � sin �. Then, by noting that the determinant of the matrix Nstr is equal to q
4
z
4, we

see that this matrix has rank 6 unless z = 0. In this case, the last three rows of Nstr are zero,

and it follows that the matrix Ndat has at most rank 3 for lines parallel to the plane spanned

by the three reference points. This is a degenerate case for line features.
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5.7.3 Degenerate Camera Con�gurations

While it is in general diÆcult to give necessary and suÆcient conditions for the rank of Npro

to be less than 5, it is shown in below that the matrix has at most rank 4 when the motion of

the camera is such that the direction of the line joining the optical center of the camera to the

scene reference point remains constant.

Let us de�ne the vectors q = (q1; q2; q3)
T and � = (q21 ; q1q2; q

2
2 ; q1q3; q2q3; q

2
3)

T . We have

Np� =

0
@(a � q)(b � q)� �1(a � q)2 � �2(b � q)2

 1(a � q)2 �  2(b � q)2

1
A

It follows that a necessary and suÆcient condition for � to be in the null space of Np is that

8<
:

XY � �1X2 � �2Y
2 = 0;

 1X
2 �  2Y

2 = 0;

where X = a � q and Y = b � q. This homogeneous system of equations obviously admits (0; 0)

as a solution. To see that this is in fact the only solution, we can easily eliminate X and Y

between the two equations. This yields the resultant  1 2� (�1 2+�2 1) = 1+u20+v
2
0, which

is positive.

Recalling the de�nition of u0, v0, a and b, we see that the solution X = Y = 0 corresponds

to
8<
:

tzi � q � txk � q = 0

tzj � q � tyk � q = 0
() (R�C)� q = 0:

In other words, a necessary and suÆcient condition for the vector � to be in the null space

of Np is that q be parallel to the line joining the optical center of the camera to the reference

point (see Figure 5.8).

5.8 Implementation and Results

In this section, we present the results of the experiments conducted to validate our approach

to image-based rendering using point and line features described in the previous sections.

The point-based PIV algorithm is implemented in C. The line-based algorithm is imple-

mented in MATLAB. Interactive image synthesis is programmed in C++ using OpenGL [93]

and the OpenGL Utility Toolkit (GLUT) [54] on both UNIX and Windows NT platforms.
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A0

Figure 5.8 A degenerate camera con�guration where the parameterization may fail: the camera

moves along the line joining the center of projection and the �rst reference point.

5.8.1 The Data Sets

We have tested our algorithm on seven data sets: the HOUSE data set, kindly provided by

Dr. Carlo Tomasi, the KITCHEN data set, kindly provided by the Modeling by Videotaping

Research Group at the Department of Computer Science of Carnegie Mellon University, the

LQBOX data set kindly provided by Dr. Long Quan and the data sets TOWER, XL1BOX,

FLOWER and FACE which are acquired by the author in the Computer Vision and Robotics

Laboratory at the Beckman Institute, using a Canon XL1 Digital Camcorder kindly provided

by Dr. David Kriegman.

Figures 5.9 and 5.10 show sample pictures from the data sets along with the point and line

features. Table 5.1 shows the properties of these data sets. Each data set contains point features

tracked in a set of images. The point correspondences for the KITCHEN and HOUSE data sets

were provided by their authors. For our own data sets, we have implemented a version of the

Harris corner detector [32] and matched the points using a simple RANSAC (random sample

consensus) type algorithm [23]. We then eliminated visible bad matches by hand. The line

segments were extracted in images using the publicly available software environment VISTA

[89] and the line correspondences are established by hand.

We assume that the images in these data sets are obtained using a paraperspective camera

and we pick the center of mass of the observed points as our �rst reference point A0. The other

two reference points are chosen by the user.
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Figure 5.9 First three data sets used in the experiments: The �rst column shows a sample

image. The second column shows the point features and the third column shows the line

features.
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Figure 5.10 Last four data sets used in the experiments: The �rst column shows a sample

image. The second column shows the point features and the third column shows the line

features.
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Table 5.1 Properties of the data sets used in the experiments.

# of Images # of Points # Lines

KITCHEN 40 97 -

HOUSE 175 275 -

LQBOX 14 48 13

TOWER 30 94 33

XL1BOX 37 47 7

FLOWER 42 67 -

FACE 51 2305 -

5.8.2 The Point PIV Experiments

As we have described in the previous sections, we have four variants of the image-based

rendering algorithm for point features: (1) the �rst pass of the weak perspective PIV (or SW1

in short), (2) the �rst pass of the paraperspective PIV (SP1), (3) the second pass of the weak

perspective PIV (SW2), and (4) the second pass of the paraperspective PIV (SP2). These

methods use linear least squares to estimate the parameters.

We �rst present some quantitative results: we have estimated the point PIVs for each data

set using the �rst 25%, 50% and 75% of the images in each data set and reconstructed the

image points for the rest of the images using the computed parameters. We have also used all

of the images in the training and reconstructed the image points for all of the images. For each

case, we have recorded errors as the di�erence between the reconstructed and the original image

point locations. Figure 5.11 shows the results of this experiment. For each data set the four

bars from left to right represents the SW1, SP1, SW2 and SP2 methods. The �rst three plots

show the reconstruction power of our approach. As expected, the larger the number of images

used in training, the better the reconstruction for the new views. Even though the second pass

does not always improve the results quantitatively, it improves the quality of the synthesized

images as we will see below.

Figures 5.12-5.17 shows the synthesized views for the above experiments corresponding to

the last frame in each data set and using only the �rst half of the images in training. In

each case, we show, from left to right, the images synthesized by SW1, SP1, SW2 and SP2

algorithms. As it can be seen, the second pass improves results qualitatively.
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Figure 5.18 shows completely new images generated for each data set. These pictures are

created by changing the position of the three reference points. Note that we present more results

for point PIVs in the next chapter where we evaluate the new bilinear estimation algorithm.

Finally, we have created movies from synthesized pictures using our approach. These movies

can be found at \http://www-cvr.ai.uiuc.edu/~ygenc/thesis/index.html".

5.8.3 The Line PIV Experiments

We have carried out experiments on the LQBOX, XL1BOX and TOWER data sets for line-

based parameterized image varieties. Figure 5.20 shows the mean errors for the reconstruction

of images of line features for di�erent variants of the algorithm, namely, the �rst passes of the

weak perspective and paraperspective algorithms and the second passes (or W1, P1, W2 and

P2 in short). Note that the line position is computed using aÆne notions only so it does not

have any variants. We have computed the parameters associated with the line positions and

line directions by using a di�erent number of images during training and reconstructing the

images of the lines for the rest of the images or for all of the images for the last case. We

have recorded the error in reconstruction of the line position in pixels and the line direction in

degrees.

Figures 5.21-5.23 show the line features with their extents reconstructed for the last frame

in each data set. We have used the �rst half of the images in each data set in training. The

�gures also show the original lines as the dashed lines whereas the reconstructed lines are drawn

as solid lines. Once again the second pass improves the results considerably.

5.8.4 Combined Results for Line and Point PIVs

We present in Figure 5.24 some new image synthesis results where we used the line and

point PIVs together for the LQBOX, TOWER and XL1BOX data sets. An advantage of lines

over points is that they can be located very accurately in edge maps using least squares and

they can facilitate the production of a good triangulation.
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5.9 Conclusions

We have presented a parameterization of the set of all images of a �xed set of points and

lines based on images of three reference points. The parameterization (Parameterized Image

Variety or PIV) takes into account the Euclidean constraints and produces correct images in the

context of image-based rendering. We have integrated the point-based and line-based methods

in a common framework for image-based rendering. The method correctly handles occlusions

and enables the use of z-bu�er and texture-mapping techniques for rendering images without

actual depth computation.

We have implemented the proposed methods and performed extensive experiments on real

data sets. Our experiments show that the method synthesizes realistic images.

Finally, we have analyzed the degenerate scene and camera con�gurations for our param-

eterization. Degenerate scene con�gurations include the case where a point lies on the plane

spanned by the three reference points. The parameterization still works for this case. For lines,

a degeneracy occurs when the line is parallel to the reference plane. We have also analyzed the

degenerate camera con�gurations. One of the degeneracies arises when the camera moves along

a line which is parallel to the line joining the center of the camera and the reference point.

The parameterization is based on weak perspective and paraperspective projections. Al-

though our approach can in principle be extended to the full perspective case, this would require

eliminating three variables (the last row of the camera rotation) among �ve quadratic equations

(the Euclidean constraints associated with perspective images), a formidable task in elimination

theory [69].
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Figure 5.11 Image point reconstruction on real data sets: for each data the bars from left to

right represents the SW1, SP1, SW2 and SP2 methods. In training, from top to bottom, the

�rst 25%, 50%, 75% and 100% of the images were used. And, in testing, the remaining images

for the �rst three plots and all of the images for the last plot were used and the average error

in prediction were recorded.
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SW1 SP1

SW2 SP2

Figure 5.12 Image synthesis for the last image in the KITCHEN data set using the �rst half

of the images in training.
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SW1 SP1

SW2 SP2

Figure 5.13 Image synthesis for the last image in the HOUSE data set using the �rst half of

the images in training.
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SW1 SP1

SW2 SP2

Figure 5.14 Image synthesis for the last image in the LQBOX data set using the �rst half of

the images in training.

84



SW1 SP1

SW2 SP2

Figure 5.15 Image synthesis for the last image in the TOWER data set using the �rst half of

the images in training.
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SW1 SP1

SW2 SP2

Figure 5.16 Image synthesis for the last image in the XL1BOX data set using the �rst half of

the images in training.
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SW1 SP1

SW2 SP2

Figure 5.17 Image synthesis for the last image in the FLOWER data set using the �rst half

of the images in training.
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Figure 5.18 Image synthesis for novel views using point features for the data sets KITCHEN,

HOUSE, LQBOX, TOWER, Xl1BOX and FLOWER.

88



Figure 5.19 Image synthesis for novel views using point features for the FACE data set.
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Figure 5.20 Image line reconstruction on real data sets. The upper four graphs show the error

in line directions where the bars from left to right represents the W1, P1, W2 and P2 methods.

From top to bottom, the �rst 25%, 50%, 75% and 100% of the images are used in training.

The last graph shows the error in line position (from left to right the �rst 25%, 50%, 75% and

100% of the images are used in training. Note that the four graphs are not to the same scale.
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W1 P1

W2 P2

Figure 5.21 Reconstructed lines (solid) together with the original lines (dashed) for the last

image in the LQBOX data set.
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W1 P1

W2 P2

Figure 5.22 Reconstructed lines (solid) together with the original lines (dashed) for the last

image in the TOWER data set.
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W1 P1

W2 P2

Figure 5.23 Reconstructed lines (solid) together with the original lines (dashed) for the last

image in the XL1BOX data set.
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Figure 5.24 Image synthesis for novel views using both line and point features using the second

pass of paraperspective case.
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CHAPTER 6

BILINEAR ESTIMATION

As described in Chapter 5, the computation of the point-based parameterized image varieties

for weak perspective cameras involves estimating parameters from a set of constraints which are

linear in the parameters and bilinear in the image observations. For paraperspective cameras,

the constraints are not bilinear but higher-order functions of the image observations. In the

previous chapter, we have used linear least squares based on singular value decomposition to

estimate the parameters in both cases. The underlying assumption is that the residual errors are

linear, but for higher-order data dependencies, the residual errors are non-linear and, therefore,

using linear least squares will bias the solution.

Optimal solutions to the parameter �tting problems of this type have been recently studied

by Leedan and Meer in [59, 60] in the context of epipolar geometry estimation and ellipse

�tting, and signi�cant performance improvements over linear least squares have been reported.

Their parameter estimation method takes into account the non-linear nature of the errors in

the image observations. In this chapter, we will adapt this method to estimate the point PIVs

in the context of image-based rendering.

The rest of this chapter is organized as follows. After presenting some background on the

parameter �tting problems for higher-order data dependencies, we restate the parameter esti-

mation problem from Section 5.2.1 and show in Section 6.2 how to apply the method described

in [59] to the problem. For simplicity we �rst consider the weak perspective case, then give the

solution for the paraperspective case. We present results of our experiments in Section 6.4.
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6.1 Background

In this section, we will de�ne a statistical model (Errors-In-Variables model) that best

describes the parameter estimation problem encountered in Chapter 5 and state the reasons

why we choose this model. We also provide some background necessary to follow the discussion

in later sections (we largely follow [25]).

A statistical model is a speci�cation of [25, p. 9]:

� the variables and the parameters of interest,

� the relationships among the variables,

� the assumptions about the statistical properties of the random variables.

In a parameter estimation problem the aim is to estimate the parameters of a model from

the samples generated by this model. The variables are the data points and the noise terms.

The actual observations are the data points perturbed by the noise terms. The model also

de�nes the relationships (or constraints) among the variables and the parameters along with

the assumptions about the stochastic properties of the random variables (e.g., noise).

A functional, zero-residual, symmetrical, Errors-In-Variables (EIV) model can be described

by (for i = 1; :::; n, where n is the number of samples that the model generates):

� !io: the error-free observation vectors,

� �o: the true parameter vectors,

� �!i: the noise vectors,

� !i: the noisy observations which are related to !io with

!i = !io +�!i; (6.1)

� the continuous constraint function

'(!io; �o) = 0; (6.2)

� the assumption on the statistical properties of the noise, i.e.,

�!i � GI(0; Ci): (6.3)
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This model assumes that the random noise vectors �!i are independently distributed with

a general probability density function as described above. In particular, the noise is from a dis-

tribution with zero mean and di�erent covariance matrices for each observation. Furthermore,

it is assumed that the noise vectors are independent of each other.

In a functional model, the error-free observations !io are treated as �xed. For this model,

given the noisy observations, the error-free observations will also be estimated along with the

parameters. The alternative is a structural model where the error-free observation vectors are

considered as random variables with some unknown probability density functions and these

functions are estimated as well. We have chosen the functional model because the error-free

observations (i.e., the image points) actually correspond to a �xed value.

In a symmetrical model, there is no distinction between the observations. In other words,

we do not seek any dependency among the data although such dependencies might exist. This

model �ts our problem since we do not emphasize a particular observation and seek no depen-

dencies among the data.

A zero-residual model means that the constraint function has no error in it. We have chosen

this model because every true data point obeys a model governed by a geometrical constraint

(i.e., the Euclidean constraints).

Depending on the constraint function, a model can be either linear or non-linear. A linear

model has a constraint function that is both linear in the observations and the parameters. A

non-linear model, on the other hand, has functions that are non-linear in the observed variables.

Note that the type of estimation problems we are considering in this chapter have constraint

functions that are non-linear in the observations and we will show below how to linearize them

to �nd an optimal solution.

6.2 The Errors-in-Variables Model

We propose in this section the errors-in-variables (or EIV) model to estimate the structure

parameters as an alternative to the solution given in Section 5.2.1.1 and show that computing the

PIV parameters reduces to a constrained optimization problem after a suitable linearization. In

turn, using Lagrange multipliers reduces the constrained optimization to an unconstrained one,
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that can be solved iteratively using generalized singular value decomposition. The presentation

is an adaptation of the method proposed by Leedan and Meer in [59].

6.2.1 Problem Statement

When f images have been observed, we can rewrite the constraints (5.14) de�ning the

parameterized image varieties as

s
T
i � = 0; for i = 1; : : : ; 2f; (6.4)

where, for j = 1; : : : ; f , s2j�1
def
= dj and s2j

def
= ej .

Let us introduce

wj
def
=

0
@uj

vj

1
A
; for j = 1; : : : ; f; (6.5)

where uj and vj are the values of the vectors u and v associated with image number j as

de�ned in Section 5.2.1. Note that si is a non-linear function of the actual observation wj .

This function is bilinear for the weak perspective cameras and a higher-order polynomial for

the paraperspective cameras.

Since image measurements are not exact, the observation vector wj is noisy and we assume

that

wj = wjo +�wjo; (6.6)

where wjo is the exact or error-free observation and �wjo is the noise distributed independently

with a general, symmetric probability density function with zero mean and positive semide�nite

matrix C!, i.e.,

�wjo � GI(0; C!): (6.7)

Note that the image measurements are assumed to have been translated so the image p0

of the �rst reference point is at the origin. This does not change the noise distribution for the

observations since the di�erence of two normally distributed random variables with zero mean

and equal variances is also normal with zero mean and twice the original variance.

We are going to assume as in [59] that C! = �
2C�! is known up to the common multiple �2.

As described in the previous section, this error process de�nes a non-linear, functional, zero-

residual, symmetrical, errors-in-variables (EIV) model [25, 59]. The optimal solution to the
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non-linear EIV model estimation problem is obtained by minimizing the Mahalanobis distances

between noisy and correct data, i.e., computing

[�̂; ŵj] = arg min
�
o
;wjo

fX
j=1

(wj �wjo)
TCy!(wj �wjo); (6.8)

subject to

s
T
io�o = 0; for i = 1; : : : ; 2f;

where, for j = 1; : : : ; f , the vectors s2j�1;o and s2j;o are the values of s2j�1 and s2j associated

with wjo, and Cy! denotes the pseudo-inverse of C!.

Several solutions to (6.8) have been proposed, including total least squares [48] and the

renormalization method of Kanatani [53]. These methods all involve approximations of the

objective function in (6.8).

The total-least-squares solution [48] is obtained by assuming that the error in linearized

observation vectors are from a normal distribution with zero mean and a common variance, i.e.,

�sio � GI(0; �2I): (6.9)

Clearly this assumption may not hold in general since the observation is a non-linear function

of the original observations with the same assumed error statistics. Since linear least squares

is a speci�c case of total least squares, its solution is not optimal.

An e�ective (if potentially sub-optimal) solution can be found by solving instead a linearized

version of the original problem as proposed in [59]. The idea is to use si as observable instead

of wj: let us assume that for j = 1; : : : ; f ,

8<
:
dj = djo +�djo; �djo � GI(0; Cdj);

ej = ejo +�ejo; �ejo � GI(0; Cej);
(6.10)

where Cdj = �
2C�dj is the covariance matrix (with �2 being the common multiple and C�dj being

the normalized covariance matrix) and similarly Cej = �
2C�ej. We can restate the errors-in-

variables model of the estimation process as the computation of

[�̂; ŝi] = arg min
�
o
;sio

2fX
i=1

(si � sio)T Cyi (si � sio); (6.11)
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subject to

s
T
io�o = 0 for i = 1; : : : ; 2f;

where

C2j�1 def
= Cdj and C2j def

= Cej for j = 1; : : : ; f:

Note that the covariance matrices Ci are by de�nition symmetric positive semide�nite.

6.2.2 Lagrange Multipliers Formulation

The constrained minimization problem in (6.11) can be solved by assuming that the covari-

ance matrices C�dj and C�ej (hence C�i ) are known and converting the problem into an uncon-

strained minimization problem. To do this, we introduce Lagrange multipliers and replace the

true parameters with the estimated ones. This reduces the original optimization problem to

the problem of minimizing

L

def
=

1

2

2fX
i=1

(si � ŝi)TCyi (si � ŝi) +
2fX
i=1

�iŝ
T
i �̂ (6.12)

with respect to the original unknowns plus the Lagrange multipliers �i associated with the

constraints for i = 1; : : : ; 2f .

Di�erentiating L with respect to the unknowns �̂, ŝi and �i allows us (after some sim-

ple algebraic manipulations) to reformulate our original problem as the solution the following

eigenproblem in the unknown �̂:

P �̂ �Q�̂ = 0; (6.13)

where

P def
=

2fX
i=1

sis
T
i

�̂
TC�i �̂

(6.14)

is the weighted, centered moment matrix of the observation and

Q def
=

2fX
i=1

0
B@

s
T
i �̂

�̂
TC�i �̂

1
CA

2

C�i (6.15)
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is the weighted error covariance matrix. Note that P and Q also depend on the unknown �̂. As

an intermediate step of elimination of the Lagrange multipliers, we have

ŝi = si �
�̂si

�̂
TCi�̂

Ci�̂ (6.16)

which can be used to estimate sio.

This formulation is of course very similar (if a bit simpler, due to the absence of a data-

independent term) to the general formulation obtained in [59].

The approach described in this section assumes that the normalized covariance matrices are

known. Expressions for the covariance matrices C�dj and C�ej for j = 1; :::; f , are derived in the

next section.

6.2.3 Computing the Covariance Matrices

Let us �rst rewrite the linearized random variables �do and �eo as a function of the true

and noisy image measurements (ignoring the subscript j for convenience):

�do =

0
BBBBBBBBBBBB@

u
2
1 � v

2
1 � u

2
1o + v

2
1o

2(u1u2 � v1v2 � u1ou2o + v1ov2o)

u
2
2 � v

2
2 � u

2
2o + v

2
2o

2(u1u� v1v � u1ouo + v1ovo)

2(u2u� v2v � u2ouo + v2ovo)

u
2 � v2 � u

2
o + v

2
o

1
CCCCCCCCCCCCA

(6.17)

and

�eo =

0
BBBBBBBBBBBB@

u1v1 � u1ov1o

u1v2 + u2v1 � u1ov2o � u2ov1o

u2v2 � u2ov2o

u1v + uv1 � u1ovo � uov1o
u2v + uv2 � u2ovo � uov2o

uv � uovo

1
CCCCCCCCCCCCA

: (6.18)

We have assumed that the image noise has zero mean and a variance equal to �2, in other

words

�wo � NI(0; �2I):
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We �rst eliminate the noisy image observations u and v in �do and �eo by replacing

their equivalents in terms of the noise-free observations and the noise (i.e., u = u0 +�u0 and

v = v0 +�v0). Now, when we take the expectations of the vectors �do and �eo with respect

to the actual random variables �u0 and �v0, it is easy to show that the means for �do and

�eo are zero and the associated covariance matrices are

C�d =

0
BBBBBBBBBBBB@

a11 a7 0 a8 0 0

a7 a22 a7 a9 a8 0

0 a7 a33 0 a9 0

a8 a9 0 a44 a7 a8

0 a8 a9 a7 a55 a9

0 0 0 a8 a9 a66

1
CCCCCCCCCCCCA

and C�e = 4C�d ; (6.19)

with
8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

a11 = �
2 + v1o

2 + u1o
2
;

a22 = 2�2 + v2o
2 + u1o

2 + v1o
2 + u2o

2
;

a33 = �
2 + v2o

2 + u2o
2
;

a44 = 2�2 + vo
2 + v1o

2 + uo
2 + u1o

2
;

a55 = 2�2 + vo
2 + u2o

2 + v2o
2 + uo

2
;

a66 = �
2 + vo

2 + uo
2
;

a7 = v1ov2o + u1ou2o;

a8 = vov1o + u1ouo;

a9 = v2ovo + u2ouo:

Note that the entries of the matrices C�d and C�e depend on the noise variance �2 and the

error-free observation vector wo that are both a priori unknown. A method for estimating these

quantities will be discussed below.

6.2.4 Solving the Eigenproblem

The diÆculty in solving the eigenproblem (6.13) stems from the fact that the matrices P and

Q depend on the unknown parameter vector �̂, which requires an iterative scheme to estimate

�̂. Following [59], we repeatedly compute the generalized eigenvector �̂
(k)

associated with the
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smallest eigenvalue �min of

P(k�1)
�̂
(k)

= �Q(k�1)
�̂
(k)
; (6.20)

where P(k�1) and Q(k�1) are the matrices P and Q associated with the value �̂
(k�1)

of �̂. The

iterative process is stopped when j�min�1j or the variation in the objective function L becomes

smaller than a preset threshold. For this eigenproblem, the Rayleigh quotient is

� =
�̂
(k)TP(k�1)

�̂
(k)

�̂
(k)TQ(k�1)

�̂
(k)

(6.21)

and when �̂
(k)

= �̂
(k�1)

it can be shown that � = 1, and the convergence can be measured from

j�min � 1j.

In the actual implementation, we also follow [59] and use generalized singular value decom-

position [29] to improve the numerical behavior of the method. If P(k�1)
c and Q(k�1)

c are the

Cholesky decompositions of the matrices P(k�1) and Q(k�1) respectively, the solution �̂
(k)

is

obtained by computing the generalized singular value decomposition of the matrices P(k�1)
c and

Q(k�1)
c and taking the solution associated with the smallest generalized singular value. Even

though the convergence is not guaranteed, our experiments have shown that with a reliable

initial estimate the algorithm converges after a few steps, in agreement with the experiments

of [59].

This method requires an initial estimate of �̂
(0)

which can be obtained as follows [59]: we

can approximate the known normalized covariance matrices with

C�i = iC�; (6.22)

where C� is not known. We can �nd C� and i via minimizing the Frobenius norm of the matrix

C�i � iC� by taking i = 1 as the starting value. When we plug C�i in (6.20) we obtain

P0�̂
(0) � �

�C��̂(0) = 0; (6.23)

where

P0 =

2fX
i=1

sis
T
i

i

: (6.24)
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As before we can solve for �̂
(0)

using generalized singular value decomposition on the

Cholesky decompositions of matrices P0 and C�.

To compute the approximate covariance matrices as described in Section 6.2.3, we need

to �nd the true observation vectors !io and the noise variance �2. We can compute initial

estimates for �̂
(0)

as described above, which is independent of �̂2. However, estimation of �̂
(0)

still requires the covariance matrix C�. By neglecting the higher-order moments (i.e., assuming

zero mean), we can take C� as the weighted sum of C�i evaluated at !io = !i in (6.19). Once

we have �̂
(0)
, �̂2 can be estimated from

�̂
2 =

�̂
(0)TP(0)

�̂
(0)

2f � 6

: (6.25)

Finally, an initial estimate of ŝ
(0)
i hence !̂

(0)
i can be obtained using �̂

(0)
in (6.16).

6.2.5 Summary of the Algorithm

Figure 6.1 shows the various steps of the proposed approach to the parameter estimation

problem for weak-perspective point PIVs. Note that we are mostly interested in the estimation

of the parameters. However, the estimates for the error-free data can be obtained easily as the

last step of the process.

6.3 The Paraperspective Case

The ideas described in the previous sections also apply to the paraperspective case. However,

this time the constraints are no longer bilinear in the observations. In particular, for the

linearized model we have

s
T
i � = 0; for i = 1; : : : ; 2f; (6.26)

where, for j = 1; : : : ; f , s2j�1
def
= dj and s2j

def
= ej . But this time

dj
def
= (1 + u

2
0j)d

0
1j � (1 + v

2
0j)d

0
2j (6.27)

and

ej
def
= (1 + u

2
0j)(1 + v

2
0j)d

0
j � u0jv0j(1 + u

2
0j)d

0
1j � u0jv0j(1 + v

2
0j)d

0
1j; (6.28)
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1. Initialization

(a) Compute C�i (0), i and C� as described in Section 6.2.4.

(b) Estimate �̂
(0)

as described in Section 6.2.4.

(c) Estimate �̂2 from (6.25).

(d) Estimate !̂
(0)
i from (6.16).

(e) Compute the covariance matrices C�i from (6.19).

2. Repeat the following until j�min � 1j or the variation in the objective function L become

smaller than a preset threshold.

� Estimate �̂
(k)

as described in Section 6.2.2.

3. Compute !̂i from (6.16).

Figure 6.1 The EIV parameter estimation algorithm.

where

d
0
1j
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=

0
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2u1ju2j
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u
2
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; d
0
2j

def
=

0
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v
2
1j

2v1jv2j

v
2
2j

2v1jvj

2v2jvj

v
2
j

1
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and d
0
j
def
=

0
BBBBBBBBBBBB@

u1jv1j

u1jv2j + u2jv1j

u2jv2j

u1jvj + ujv1j

u2jvj + ujv2j

ujvj

1
CCCCCCCCCCCCA

: (6.29)

In this case, it is not straightforward to �nd the covariance matrices for the linearized

observation vectors. However, if we assume that the images of the �rst reference point are noise

free, we can compute the covariance matrices associated with the linearized random variables

�dj and �ej as we have done for the weak perspective case in Section 6.2.3. We have used

MAPLE symbolic algebra package to �nd these covariance matrices and due to the complexity

of their expressions we are not able to show them here. The results for the paraperspective case

in the following section is based on this algorithm.
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Table 6.1 Abbreviations used to denote the variants of the PIV algorithm.

Estimation Algorithm Projection Model Second Pass

SW1 SVD weak perspective no

EW1 EIV weak perspective no

SW2 SVD weak perspective yes

EW2 EIV weak perspective yes

SP1 SVD paraperspective no

EP1 EIV paraperspective no

SP2 SVD paraperspective yes

EP2 EIV paraperspective yes

6.4 Implementation and Results

We have implemented the proposed parameter estimation algorithm in MATLAB and tested

it on real as well as synthetic data sets. We have compared the performance of the new

parameter estimation algorithm with the linear-least-squares method based on singular value

decomposition. The variants of the algorithms and their abbreviations are shown in Table 6.1.

Note that the second passes of the SVD- and EIV-based algorithms involve the same procedure,

namely, using the estimated structure parameters and re�ning them as explained in Section 5.5.

6.4.1 Synthetic Experiments

We have tested the various algorithms discussed in this and the previous chapters for point-

based PIVs on synthetic data sets. The synthetic images have been created as 512�512 weak-

perspective images of 20 points inside the unit cube. Then the images of all points including

those of the reference points have been perturbed by zero mean Gaussian noise with varying

standard deviations. We have divided the noise-added synthetic data into training and testing

images and estimated the structure parameters using the training images and then tested the

computed parameters by reconstructing the images of the points in the test images. We have

kept the size of the test images �xed (i.e., 50 images). Note that we have repeated each

experiment for 50 times and recorded the average errors in reconstructions. Furthermore, we

have chosen the three reference points at random to reduce any bias towards a particular choice.

The �rst experiment have been carried out to measure the performance of the algorithms

with respect to the level of noise added to the images. For this we have used 10 randomly
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generated training images with added noise whose amount (standard deviation) is varied from

0 to 1.5 pixel with 0.1 pixel increments. Figure 6.2 shows the average errors in the reconstruction

of images of points. We have identi�ed two di�erent cases for the training images. In the �rst

case (the upper graph) the camera has no restrictions on its motion. In the second case (the

lower graph) however we have restricted the camera so that mostly sees a �xed face of the

unit cube. Clearly the second case is a more challenging image-based rendering problem. As

it can be seen from these results, the EIV estimation method improves the results consistently.

The performance improvement is more visible for the second case where we have less viewing

variations in the training images.

The second experiment has been conducted to observe the performance of the algorithms

with respect to the number of images in the training data. By adding noise with standard

deviation of 0.5 pixels, we have changed the number of images in the training data from 3

to 20 images. The results are depicted in Figure 6.3. Once again, the EIV method improves

the results consistently though the di�erence becomes small when we have more images in the

training. Moreover, as before the di�erence is more visible for the second case where we have

less viewing variations in the training images.

6.4.2 Experiments with Real Data

We have conducted experiments on the real data sets described earlier in Chapter 5. The

�rst test has been done by using di�erent amount of images in training. In particular, we have

used the �rst 25%, 50% and 75% of the images in training to compute the parameters and used

these parameters to predict the image positions of all data points in the rest of the images. We

also used all the images in each data set to reconstruct the parameters and predict the image

positions in all of the images. The average errors in the predictions are displayed in Figure 6.4.

In this �gure, we have four di�erent training cases as indicated above. Also, for each data set,

we have 8 bars representing the eight variants of the algorithm in the following order (from the

left to the right): SW1, EW1, SW2, EW2, SP1, EP1, SP2 and EP2. Once again we see that

the EIV method consistently gives better results when only the �rst pass is used. Interestingly,

the second pass does not always improve the results.

Figures 6.5-6.16 show more comparisons, qualitative this time: in this case, the views cor-

responding to the last image in each data set generated by the various methods are shown. We
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have used �rst half of the images in training. Again, the EIV estimation algorithm has per-

formed better especially for the KITCHEN and XL1BOX data sets where di�erence in image

quality is clearly noticeable.

6.4.3 Comparisons with Factorization

In this section we compare our approach to the factorization method of Tomasi and Kanade

[108] as explained in Chapter 4. We �rst compare both methods quantitatively as follows:

we have used all of the images in the training to compute the point-based PIV for our ap-

proach and the Euclidean structure and the motion for the factorization method. We then

have reconstructed all of the images using both methods and recorded the error statistics in the

reconstructions. Figure 6.17 shows the results of this experiment. Note that, for the TOWER

and FLOWER data sets, our implementation of normalization (i.e., enforcing the Euclidean

constraints) for factorization had failed, therefore, we present the results of the experiments

with the other four data sets. These experiments shows that the EW1 variant of our algorithm

and the factorization method performed quite well.

Completely new views of the scenes are synthesized using the factorization approach and

the EW1 variant of the PIV algorithm. The results are shown in Figures 6.18 and 6.18. The

new views are obtained as follows: �rst the motion of the camera is picked (i.e., the translation

and the rotation of the camera), then the scene is reconstructed using the structure obtained

from the factorization algorithm, and �nally using the images of the reference of this new view,

the corresponding image is reconstructed using the EW1 algorithm.

6.5 Conclusions

We have applied the parameter estimation procedure for bilinear constraints described by

Leedan and Meer in [59] to the estimation of the point-based parameterized image varieties in

the context of image-based rendering. Our experiments with real and synthetic data demon-

strated that the new parameter estimation technique consistently yields better results than

those of the linear least squares approach based on singular value decomposition.

Both the weak perspective and paraperspective cases are considered. The weak perspective

case yields very simple expressions for the linearized observation vectors as functions of the
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real image measurements. The mean of the corresponding random variable is zero and the nor-

malized covariance matrices include second order moments. Unfortunately, the paraperspective

case has more complex linearized observations vectors which makes it impossible to adapt the

original algorithm. Instead, we have assumed that the �rst reference point is noise free resulting

in a method similar to the weak perspective case.
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Figure 6.2 Performance of the weak perspective SVD- and EIV-based methods with respect

to the amount of noise: the parameters have been computed using 10 images and the mean

error in reconstruction of image point locations has been recorded for 50 test images.
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Figure 6.3 Performance of the weak perspective SVD- and EIV-based methods with respect

to the number of images in training: all of the testing (50) and the training images have been

perturbed with a Gaussian noise with �2 = 0:5 pixels.
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Figure 6.4 Quantitative comparisons of the SVD- and EIV-based methods on real data sets.

All variants of the algorithm are tested (from left to right, SW1, EW1, SW2, EW2, SP1, EP1,

SP2 and EP2).
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SW1 EW1

SW2 EW2

Figure 6.5 Qualitative comparison of the weak-perspective SVD- and EIV-based methods on

the KITCHEN data set using the �rst half of the images in training. The synthesized images

correspond to the last image in the data.
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SP1 EP1

SP2 EP2

Figure 6.6 Qualitative comparison of the paraperspective SVD- and EIV-based methods on

the KITCHEN data set using the �rst half of the images in training. The synthesized images

correspond to the last image in the data.

114



SW1 EW1

SW2 EW2

Figure 6.7 Qualitative comparison of the weak-perspective SVD- and EIV-based methods on

the HOUSE data set using the �rst half of the images in training. The synthesized images

correspond to the last image in the data.
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SP1 EP1

SP2 EP2

Figure 6.8 Qualitative comparison of the paraperspective SVD- and EIV-based methods on

the HOUSE data set using the �rst half of the images in training. The synthesized images

correspond to the last image in the data.
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SW1 EW1

SW2 EW2

Figure 6.9 Qualitative comparison of the weak-perspective SVD- and EIV-based methods on

the LQBOX data set using the �rst half of the images in training. The synthesized images

correspond to the last image in the data.
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SP1 EP1

SP2 EP2

Figure 6.10 Qualitative comparison of the paraperspective SVD- and EIV-based methods on

the LQBOX data set using the �rst half of the images in training. The synthesized images

correspond to the last image in the data.
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SW1 EW1

SW2 EW2

Figure 6.11 Qualitative comparison of the weak-perspective SVD- and EIV-based methods

on the TOWER data set using the �rst half of the images in training. The synthesized images

correspond to the last image in the data.
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SP1 EP1

SP2 EP2

Figure 6.12 Qualitative comparison of the paraperspective SVD- and EIV-based methods on

the TOWER data set using the �rst half of the images in training. The synthesized images

correspond to the last image in the data.
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SW1 EW1

SW2 EW2

Figure 6.13 Qualitative comparison of the weak-perspective SVD- and EIV-based methods

on the XL1BOX data set using the �rst half of the images in training. The synthesized images

correspond to the last image in the data.

121



SP1 EP1

SP2 EP2

Figure 6.14 Qualitative comparison of the paraperspective SVD- and EIV-based methods on

the XL1BOX data set using the �rst half of the images in training. The synthesized images

correspond to the last image in the data.
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SW1 EW1

SW2 EW2

Figure 6.15 Qualitative comparison of the weak-perspective SVD- and EIV-based methods on

the FLOWER data set using the �rst half of the images in training. The synthesized images

correspond to the last image in the data.

123



SP1 EP1

SP2 EP2

Figure 6.16 Qualitative comparison of the paraperspective SVD- and EIV-based methods on

the FLOWER data set using the �rst half of the images in training. The synthesized images

correspond to the last image in the data.
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Figure 6.17 Comparisons of the variants of the PIV algorithm (from left to right, SW1, EW1,

SW2, EW2, SP1, EP1, SP2 and EP2) and the factorization method of Tomasi and Kanade.
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EW1 FACTOR

Figure 6.18 Synthesized images for novel views using the EW1 and the factorization algorithms

for the HOUSE and KITCHEN data sets.
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EW1 FACTOR

Figure 6.19 Synthesized images for novel views using the EW1 and the factorization algorithms

for the LQBOX and XL1BOX data sets.
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CHAPTER 7

CONCLUSIONS

7.1 Summary of Contributions

We have addressed in this thesis two computer vision problems related to the analysis

and synthesis of image sequences, namely, the weak calibration of a stereo rig from point

correspondences, and image-based rendering without explicit three-dimensional reconstruction.

We have introduced novel algorithms for both problems.

Chapters 2 and 3 address the weak calibration problem. We have introduced a linear weak

calibration algorithm by recasting the epipolar constraints in a projective setting with an ap-

propriate basis choice. We have shown that Jepson's and Heeger's linear subspace algorithm

for in�nitesimal motion estimation can be generalized to �nite motion case. With experiments

on both real and synthetic images, and comparisons to other linear and non-linear weak cal-

ibration algorithms, we have demonstrated that our approach performs quite well. The main

contributions of this part of the thesis can be summarized as follows:

� We have clari�ed the relationship between the linear subspace method of Jepson and

Heeger for in�nitesimal motion estimation and the Longuet-Higgins' characterization of

epipolar geometry.

� We have derived a new formulation for the epipolar geometry in a projective setting.

� We have introduced a linear algorithm for estimating epipolar geometry based on this

formulation.

Chapters 4, 5 and 6 address the image-based rendering problem. We have introduced a

new algorithm that uses point and line features together and respects the Euclidean constraints
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associated with real cameras. After showing that the set of all images of a rigid scene taken by

a Euclidean camera is a six-dimensional variety, we have described a method to parameterize

this variety in terms of images of three reference points. We have used this parameterization to

synthesize new images from point and line correspondences without actual three-dimensional

reconstruction. We have veri�ed our approach with extensive experiments. Furthermore, we

have applied recent advances in statistically-unbiased least-squares methods to our image-based

rendering approach resulting in signi�cant improvements. In summary, our contributions in-

clude:

� We have introduced a parameterization of the set of all images of a scene (points and lines)

based on the images of three reference points for weak-perspective and paraperspective

projections.

� We have successfully used this parameterization to synthesize new images using point and

line features in a general framework and presented a method to handle occlusions without

actually recovering the depth.

� We have analyzed the degenerate scene and camera con�gurations for which our param-

eterization may fail.

� We have successfully adapted recent advances in statistically-unbiased least-squares meth-

ods of [59] to our algorithm and obtained signi�cant performance improvements over the

linear least-squares solution.

7.2 Future Research Directions

Here we sketch some future research directions.

In the weak calibration case:

� Choice of basis points: A key part of our approach is the choice of an appropriate

basis for projective space, which assumes that four reference points can be measured

accurately. An interesting question is whether it is possible to design a di�erent linear

subspace algorithm that takes every image measurement equally into account, hopefully

averaging out individual errors.
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� Calibrated cameras: Another interesting question is whether the linear subspace ap-

proach can be generalized to handle calibrated cameras directly and estimate the full

motion in a linear manner.

In the image-based rendering case:

� Applications of PIVs: Let us �rst note that parameterized image varieties are poten-

tially useful in motion segmentation and object recognition tasks: although the PIV is

not a vector space but a variety, its parameters can be estimated through linear least

squares. In particular, a point will be rigidly attached to the Euclidean frame de�ned by

the three reference points of the PIV if and only if the space spanned by six polynomials

in the coordinates of the projections of the four points is �ve-dimensional. Thus singular

value decomposition can in principle be used to test this rank condition and perform

motion segmentation of video sequences. It is also possible to use the PIV of an object

as its model in object recognition tasks, replacing the costly manual construction of CAD

models by the automatic learning of the PIV from an image sequence. In this scenario,

point matches can be predicted and veri�ed from the PIV as a simple variant of the image

synthesis approach discussed earlier. This technique is similar to Basri's and Ullman's

method for recognition by linear combination of model images [112], but it incorporates

Euclidean constraints in the matching process.

� Adaptive Triangulation: A very interesting problem is the construction of better

meshes from image sequences. This is a diÆcult issue for any image-based rendering

technique that does not attempt to estimate the camera motion or the actual scene struc-

ture, and it is also a very important one in practice since rendering a scene from truly

arbitrary viewpoints requires constructing a mesh covering its whole surface.
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APPENDIX A

Elementary Notions of Analytical Projective Geometry

In this section we introduce some basic notions from analytical projective geometry. In

particular, we de�ne projective bases and coordinates in the real projective plane IP2 and 3D

space IP3 (we largely follow [106]).

A projective basis for a plane is de�ned by a triangle of reference and a coplanar unit point,

and a projective basis of 3D space is de�ned by a tetrahedron of reference and a unit point.

The non-homogeneous projective coordinates of a point can be de�ned geometrically in

terms of cross-ratios: the cross-ratio of four collinear points A;B;C;D is

[A;B;C;D] =
CA

CB
� DB

DA
;

the cross-ratio of four lines passing through some point O (a pencil of lines) is de�ned as the

cross-ratio of the intersections of these lines with any other line l0 not passing through O, and

the cross-ratio of four planes intersecting along some line l (a pencil of planes) is the cross-ratio

of the pencil of lines formed by the intersection of these planes with any other plane �0 not

containing l. These cross-ratios are independent of l0 and �0.

In the plane, the non-homogeneous projective coordinates (k1; k2) of the point P in the

basis (A0;A1;A2;A) are de�ned by
8<
:

k1 = [A1A0;A1A2;A1A;A1P ];

k2 = [A0A1;A0A2;A0A;A0P ];

where MN denotes the line joining the points M and N , and [l1; l2; l3; l4] denotes the cross-

ratio of the pencil of lines l1, l2, l3, l4. With these conventions, the homogeneous coordinates of

the basis points A0, A1, A2 and A are respectively (1; 0; 0)T , (0; 1; 0)T , (0; 0; 1)T and (1; 1; 1)T .

The homogeneous coordinates of P are (k1; k2; 1)
T .
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Similarly, the non-homogeneous projective coordinates (k1; k2; k3) of the point P in the

basis (A0;A1;A2;A3;A) are de�ned by

8>>><
>>>:

k1 = [A1A2A0;A1A2A3;A1A2A;A1A2P ] ;

k2 = [A2A0A1;A2A0A3;A2A0A;A2A0P ] ;

k3 = [A0A1A2;A0A1A3;A0A1A;A0A1P ] ;

(A.1)

and LMN denotes the plane spanned by the three points L, M and N , and [�1;�2;�3;�4]

denotes the cross-ratio of the pencil of planes �1, �2, �3, �4. With these conventions, the

homogeneous coordinates of the basis pointsA0, A1, A2, A3 andA are respectively (1; 0; 0; 0)T ,

(0; 1; 0; 0)T , (0; 0; 1; 0)T , (0; 0; 0; 1)T and (1; 1; 1; 1)T . The homogeneous coordinates of P are

(k1; k2; k3; 1)
T .
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APPENDIX B

� (��) and �(�� ) are Orthogonal to (1; 1; 1)T

The vectors � (�) and �(�) are de�ned by

8<
:
� (�) =

Pn
i=1 �i(pi � p0i) =

Pn
i=1 �i(vi � v

0
i; u

0
i � ui; uiv

0
i � u

0
ivi)

T
;

�(�) =
Pn

i=1 �iqi =
Pn

i=1 �i(vi � viu
0
i; uiv

0
i � ui; u

0
i � v

0
i)
T
:

Note that, for any value �� such that �(��) = 0, we have

� (��) =

nX
i=1

��;i(vi � u
0
i; u

0
i � ui; ui � vi)

T
:

In particular, the sum of the coordinates of the vector � (��) is zero, which implies that it

is orthogonal to the vector (1; 1; 1)T . On the other hand, for any value �� such that � (�� ) = 0,

we have

�(�� ) =

nX
i=1

�� ;i(vi � uiv
0
i; uiv

0
i � ui; ui � vi) = 0:

Thus the sum of the coordinates of the vector �(�� ) is zero, which implies that this vector

is also orthogonal to (1; 1; 1)T .
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APPENDIX C

Paraperspective Constraints

Let C denote the optical center of the camera and (i; j;k) denote the orthonormal basis

vectors attached to the camera. Let R denote a scene reference point, � denote the line joining

C to R, and � denote the fronto-parallel plane passing through R. Paraperspective projection

of a scene point P operates in two steps [82]: parallel projection in the direction of � is �rst

used to map P onto a point Q of the plane �; perspective projection is then used to map the

point Q onto the image point p.

Using the above notation, paraperspective projection can be modeled by

p =

0
BBBBBBB@

1

tz

(iT �
tx

tz

k
T )

1

tz

(jT �
ty

tz

k
T )

1
CCCCCCCA
(P �R) +

0
BBBBBBB@

tx

tz

ty

tz

1
CCCCCCCA
;

where (tx; ty; tz) are the coordinates of the vector R�C in the coordinate system (i; j;k).

If p0 is the projection of the origin of the world coordinate frame, we obtain

p� p0 =

0
BBBBBBB@

1

tz

(iT �
tx

tz

k
T )

1

tz

(jT �
ty

tz

k
T )

1
CCCCCCCA
P ;

which is indeed an instance of (5.1) with

ur =
tx

tz
; vr =

ty

tz
; a =

1

tz
(i� urk) and b =

1

tz
(j � vrk):
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Note that a and b are by construction orthogonal to the vector R�C. In particular, they

form a basis of the plane orthogonal to the line joining the optical center of the camera to the

reference point.

Equivalently, we have i = tza + urk and j = tzb + vrk, and using the orthonormality

constraints

i � j = j � k = k � i = 0; and jij2 = jjj2 = jkj2

yields immediately the new constraints

urvrjaj2 � (1 + u
2
r)a � b = 0 and urvrjbj2 � (1 + v

2
r )a � b = 0:

These are then trivially rearranged in the more symmetric form

8<
:

 1jaj2 =  2jbj2;

2a � b = �1jaj2 + �2jbj2;
(C.1)

where

 1 = 1 + v
2
r ;  2 = 1 + u

2
r; �1 =

1

 2

urvr; and �2 =
1

 1

urvr;

and (ur; vr) denote the coordinates of the image of the reference point associated with the scene.
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