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ABSTRACT

HIERARCHICAL HUMAN ACTIVITY RECOGNITION WITH FUSION OF
AUDIO AND MULTIPLE INERTIAL SENSOR MODALITIES

Yilmaz, Tugce Alara
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Adnan Yazici

February 2022, 97| pages

People perform a wide variety of activities every day. Systems that can automatically
distinguish these activities, i.e. human activity recognition models, have improved
markedly, especially in the last decade. Deep learning is demonstrating increas-
ingly promising outcomes in overcoming the problem of human activity detection
as technology improves at a rapid pace. However, validating activity recognition in
real-world situations is critical for practical solutions that work in natural contexts.
Establishing systems that could achieve automatic activity recognition with real-life
settings such as the devices that people use every day naturally and the environment
they live in, might require lots of computational complexity. A lightweight neural net-
work model is adopted for this purpose, one that could run swiftly even in the back-
ground process without taking up a lot of space when embedded into smartphones.
Four inertial sensory data are represented in color coded image form and fused with
three channelled audio data image representation to perform recognition task. The
resulting fusion images allow rapid recognition performance because the size of the
each image is so small. This thesis also underlines that audio sensor data, which

require considerably bigger window sizes for identification on their own, improve



automated recognition performance when used in conjunction with inertial sensors,
even when divided into small window sizes to interact with other sensors simultane-
ously. In addition, this thesis provides a strategy that helps the computer better discern
real-world behaviors by introducing activities, contexts, and placements in a hierar-
chical manner to perform accurate activity recognition. By merging auditory images
with inertial color coded images, representing multiple activity pairs with hierarchical
groups according to activity-context-placement, and employing a lightweight model,
high accurate recognition performance score competitive to state-of-art, nearly 91%
success rate is achieved. We believe that this research could be classified as a "quality
of experience" because it presents a lightweight model that could be used to predict
behavior of individual by data collected from devices such as smartphone and smart-

watch that everyone uses each day naturally.

Keywords: human activity recognition, deep learning, inertial sensor, audio sensor
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0z

SES VE COKLU ATALET SENSORU MODALITELERI FUZYONU iLE
HIYERARSIK INSAN AKTIVITESI TANIMA

Yilmaz, Tugce Alara
Yiiksek Lisans, Bilgisayar Miithendisligi Boliimii

Tez Yoneticisi: Prof. Dr. Adnan Yazici

Subat 2022 ,[97]sayfa

Insanlar her giin cok cesitli aktiviteler gergeklestirirler. Bu faaliyetleri otomatik ola-
rak ayirt edebilen sistemler, yani insan faaliyeti tanima modelleri, 6zellikle son on
yilda onemli 6l¢iide iyilesmistir. Derin 68renme, teknoloji hizla gelistikge insan et-
kinligi tespiti sorununun iistesinden gelmede giderek daha fazla umut vaat eden so-
nuglar ortaya koyuyor. Bununla birlikte, gercek diinya durumlarinda etkinlik tanimay1
dogrulamak, dogal baglamlarda calisan pratik ¢coziimler icin kritik Sneme sahiptir. In-
sanlarin her giin dogal olarak kullandiklar1 cihazlar ve yasadiklar1 ortam gibi gercek
hayat ayarlariyla otomatik aktivite tamimay1 gerceklestirebilecek sistemler kurmak,
cok fazla hesaplama karmasiklig1 gerektirebilir. Bu amag i¢in, akilli telefonlara yer-
lestirildiginde ¢ok fazla yer kaplamadan arka planda bile hizla ¢alisabilen hafif bir
sinir ag1 modeli benimsenmigtir. Dort atalet sensor verisi, renk kodlu goriintii bigi-
minde temsil edilir ve tanima gorevini gerceklestirmek icin ii¢ kanalli ses verisi go-
riintii temsili ile birlestirilir. Elde edilen flizyon goriintiileri, her goriintiiniin boyutu
cok kiiciik oldugu icin hizli tanima performansi saglar. Bu tez ayrica, kendi baslarina

tanimlama i¢in 6nemli Ol¢iide daha biiyiik pencere boyutlar1 gerektiren ses sensoril
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verilerinin, diger sensorlerle ayni anda etkilesim kurmak i¢in kii¢iik pencere boyutla-
rina boliindiigiinde bile, eylemsiz sensorlerle birlikte kullanildiginda otomatik tanima
performansim iyilestirdiinin altin1 ¢izer. Ek olarak, bu tez, dogru etkinlik tanima
gerceklestirmek i¢in etkinlikleri, baglamlari ve yerlesimleri hiyerarsik bir sekilde su-
narak bilgisayarin gercek diinya davraniglarini daha iyi ayirt etmesine yardimci olan
bir strateji saglar. Isitsel goriintiileri eylemsiz renk kodlu goriintiilerle birlestirerek,
etkinlik-baglam-yerlestirmeye gore hiyerarsik gruplarla ¢oklu etkinlik c¢iftlerini tem-
sil ederek ve hafif bir model kullanarak, son teknoloji ile rekabet eden yiiksek dogru-
lukta tanima performansi puani, yaklasik 91% basar1 sonucu elde edilir. Herkesin her
giin dogal olarak kullandig: akilli telefon ve akilli saat gibi cihazlardan toplanan ve-
rilerle bireyin davranigini tahmin etmek icin kullanilabilecek hafif bir model sundugu

icin bu aragtirmanin bir "deneyim kalitesi" olarak siniflandirilabilecegine inaniyoruz.

Anahtar Kelimeler: insan aktivitesi tanima, derin 6grenme, atalet sensorii, ses sen-
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CHAPTER 1

INTRODUCTION

1.1 Human Activity Recognition in Real-World

Human activity recognition tasks take advantage of assistive technology to provide
knowledge of what activity is performed by users by constructing a pattern. Recog-
nizing human activities via connected sensors and widely available wearable com-
puting, sometimes known as the Internet of Things (IoT), is an interesting topic with
numerous challenges. Some of those challenges are complexity of natural activities,
inter and intra changeability of natural behavior and keeping the balance preserving

privacy issue and research.

Human activity recognition applications are used to tackle problems in variety of
fields such as elderly care [49], sports [S0], smart home gain popularity. Automatic
detection with a robust algorithm makes the process more frequent, objective and ef-
fortless. In order for these applications to be successful on a broad scale, the context
recognition solution must be inconspicuous and operate without needing the user to
change their behavior. It’s critical that research reflects real-world scenarios in which
such solutions would be used by people in their natural environment with the help of
every-day devices. The fact that this operation takes place in the background while
individuals using their own devices without any guidance prevents it from being a
burdensome process for people. Simultaneously, to be effective in the field of human
activity recognition, an approach that is not specific to a person but can forecast the
daily behavior of the general population is required. By offering a generic framework,
this thesis seeks to distinguish human activities or behaviors that various people con-

duct on a regular basis with varied habits. It achieves this purpose by combining



numerous sensor modalities.

1.2 Objectives of the Thesis

The primary goal of this research is to offer a model that examines human behavior in
a hierarchical fashion using multiple images coded from sensors implanted in devices
that could be utilized by everyone in their daily lives in conjunction with technology.
To achieve so, color coded inertial sensor images and audio images are fused with
small image representation to be used during activity prediction. Simultaneously, the
effects of audio and inertial sensors on activity recognition are studied independently,
while the impact of combining multiple modalities on basic performance is explored.
The multi-label problem is efficiently solved using a hierarchical way to define phys-

ical activity, context, and phone placement.

The following tasks are examined in order to fulfill the provided objectives:

e Examining the existing studies of human behavioral context recognition, for

both sensor based and vision based

e Studying over common deep learning and machine learning approaches

e Examining audio sensory features and converting audio sensor data

e Converting multiple sensory data to color coded images and audio data to im-

ages with three channel

e Proposing hierarchic method to combine physical activity, context and device

placement

e Working with a deep neural network model used multiple embedded sensor

modalities from smartphone and smartwatch

e Conducting evaluation of proposed system

2



1.3 Contributions of the Thesis

The research emphasizes on using inertial and audio sensor modalities’ fusion in a
form that works well with a lightweight model. Model could predict people’s natural
behavioral contexts in their daily living environment and with the items they use in
daily-base without being recorded in a controlled environment, in hierarchical way
by predicting both physical activity and behavioral context. In order to achieve this,
it shows the effect of combined different sensor modalities on human activity recog-
nition by fusing the sensor with the features obtained from the audio sensor, as well
as the sensors such as accelerometer and gyroscope, which are widely used in human

activity recognition.

Many studies in the existing literature require individuals to complete prescribed
tasks, which resulted in non-natural behavior. In order to reveal the effect of uti-
lizing different sensor modalities while predicting behavior, a large real-life dataset
is used. This data collection, which is compiled from the daily activities of a large
number of participants, has far more activities than those reported in the literature.
Simultaneously, this data are only gathered from widely utilized technology gadgets,
such as smartphones and smartwatches. There are no additional gadgets required for
the model represented in this work to operate with, only smartphone and smartwatch,
data of basic devices used by each person every day is enough to achieve promising
results for different activity groupings. Because the records comprise actions that
people conduct in their daily lives and because each person’s behavior habits differ,
the data should be submitted to particular processing in order to provide a general
answer. Therefore, a data processing method based on simulating changing pattern
of the sensor input distribution with standard deviation, for each different activity is
presented in this work, for both inertial and audio sensor information. The data repre-
sentation is in small image format, color coded by embedding X,Y,Z dimensions into
R,G,B channels for inertial sensors and assigning each three channels as extracted
feature data for audio sensors. During creation of images, sliding window approach
is employed. One of the most crucial factors in activity recognition is the supplied
window range. Small window sizes could be used by inertial sensors to distinguish

activities, whereas wide frames are preferable for activity recognition from sound.



However, the window size in this study is maintained modest in order to see how well

inertial and acoustic sensor fusions work together to differentiate activity.

People might perform multiple activities at once in real life, therefore, human activi-
ties are pre-defined within this work based on hierarchy, which indicated combination
of multiple activities, based on depth level. First step of the hierarchy indicates a main
physical activity such as "Walking" while second step declare context of human, for
example "Shopping". Third step indicates smartphone placement, which gives cue
about activity. The aim of this approach is to get the best results possible by compar-
ing the effects of various physical activities or different phone placements reported
simultaneously with a context. In this research, two alternative test procedures are
used. All defined contexts (with or without phone placement) are tested with respect
to the corresponding hierarchy depth in the first technique. The goal of this method
is to create predictions based on a variety of activity combinations. Contexts with the
same primary activity are examined with other contexts in their hierarchy layers as
well as their own primary physical activity groups in the second procedure. The goal
here is to discern distinct settings notably using auditory data, even though they have

the same physical activity, and hence the same physical motion flow.

The study here also aims to achieve most accurate results by using minimized num-
ber of features gathered from sensors. Only three (X, Y, Z) dimensions are used for
inertial data when generating color coded images, which are formed single pixel. For
audio data, to maintain small image representation approach, MFCC and MSPC fea-
tures are used only, which have 13 and 32 channels per each timestamp, respectively.
Each channel represent a pixel in the audio image. Hyper parameters are tuned to
achieve best possible results. Balanced accuracy and Fl-scores are interpreted as
efficiency units of the system uses imbalanced dataset. Overall performances are
reported with BA while in context based performances are reported with F1 score.
Compared to existing studies, model outperforms with balanced accuracy rate 91%
for primary physical activity recognition. At second level, overall balanced accuracy
score is measured as 82% while it is 85% at the third level of the hierarchical approach

tree.



To summarize, the following key contributions are addressed in this thesis:

e A framework is represented which offers a generic inter-human solution to
HAR. It processes data collected by devices each person use daily without caus-
ing additional burden. Furthermore, since the recordings are not scripted with

respect to activity, the framework could be adapted into real-life solutions.

e A novel audio image representation which is incorporated to the existing so-
lutions that use inertial sensors is introduced. Features are represented in 3
channelled image form to fuse audio sensory data with color coded images of

inertial sensors.

e Activity, context and phone placements are modeled in a hierarchical manner
to get better insight to the genuine human activity habits. This pre-definition
of labels enables integrative context descriptions that contains a mix of activi-
ties, contexts, the environment, body position and other factors, while enabling
model to operate multi-class classification method which actually indicates

multi-label.

o A lightweight model is utilized that requires comparably little memory space
and serves rapid prediction performance. Proposed model with data represen-

tation could be utilized in real-time activity monitoring solutions.

e Two methods are used to assess activity recognition performance. In the first
method, described as main group independent, activity classes share same hier-
archical level are examined as a whole group. In the second group, in addition
to performing recognition within the same hierarchy, testing groups are con-

structed based on primary physical activity.

1.4 The Outline of the Thesis

There are five chapters in this thesis. In Chapter[2] the background material required
to comprehend the rest of the work completed within the scope of this thesis is pre-
sented. The algorithms of machine learning and deep learning that are most com-

monly employed are summarized. The purpose of the literature review section is to

5



investigate the primary associated proposed techniques that are relevant to the ap-

plicative context.

In Chapter [3] the proposed model and design details are all thoroughly explained. In
addition, one of the most significant contributions in this thesis, the explanation of
how to analyze diverse sensor data and integrate them into the system in a different

input form is described comprehensively.

In Chapter [4] the deep learning architecture provided for recognition with inertial and
acoustic sensory inputs are thoroughly evaluated. Evaluation methods and observa-
tions are explained in detail. Furthermore, comparison is conducted with existing

studies in the literature and this work.

The study is brought to a conclusion in Chapter [5| with summarizing observations.



CHAPTER 2

BACKGROUND

This chapter covers necessary background information about machine learning meth-
ods and deep learning architectures and used evaluation methods of those. Later, hu-
man activity recognition is explained briefly, common datasets are listed and related
studies in the literature are examined in detail. Finally, the methods employed in the
conversion of each feature of the audio signal, as well as the flow of this process, are

detailed for the audio sensor data used in this study.

2.1 Machine Learning

Machine learning is an branch of Artificial Intelligence (Al) technology that allows
systems to automatically learn and improve from experience without being explicitly
designed. Machine Learning is concerned with the creation of computer programs

that could access data and utilize it to learn on their own for given task.

There are several variances about defining types of Machine Learning but groups
could be categorized with respect to their purpose. Based on their functionality, there

are four main categories described as follows:

1. Supervised Learning: Supervised learning is a task of designing algorithms that
can generate broad models and hypotheses using externally given situations to
predict the destiny of future samples. The goal of supervised machine learning
classification algorithms is to categorize data based on historical information.
For simpler explanation, input and output pairs are mapped together [1]]. There

are two types of supervised learning, classification and regression.

7



(a) Classification: Classification is a process of categorizing a set of data into
predetermined classes. Method aims to determine which category a given

data belongs to by learning the relationship between input and output.

(b) Regression: In statistics, regression is the process of estimating an out-
put value based on a collection of input values [4]. Regression models
are used to predict dependent variable with respect to continuous set of

independent variables.

2. Unsupervised Learning: Unsupervised learning is learning a task without hav-
ing any information about correct outputs but by learning relationships among
the perceptions and predicting future perceptions with the help of previous
ones. There is no pre-assigned labeled data for unsupervised learning algo-

rithm to work with [2].

3. Semi-supervised Learning: Chapelle et al. [3] defines semi-supervised learning
as halfway between supervised learning and unsupervised learning, in a way
that with unlabeled data, system is fed with some small portion of data that
includes supervision information. Semi-supervised learning algorithms try to
predict unlabeled data by understanding information from labeled data, under

weak supervision.

4. Reinforcement Learning: Learning how to relate situations to behaviors in or-
der to maximize a numerical reward or minimize the risk is known as reinforce-
ment learning. Reinforcement learning, as opposed to other machine learning

techniques, focuses on goal-directed learning via interaction [3]].

In this thesis, classification is used to resolve the problem definition. Therefore, this

section also covers widely-used classification algorithms.

Support vector machine (SVM) algorithm is a commonly used machine learning tech-
nique both used to achieve classification and regression tasks. It aims to find best
hyperplane in N-dimensional space to separate data points from two classes. There
could be more than one hyperplane that separates points, but SVM aims to find the
one with maximum margin. Besides it is relatively memory efficient, algorithm is

also effective when there the margin between point distributions is clearer.



K-Nearest Neighbors(k-NN) is another machine learning algorithm that is widely
used since it is simple and easy-to-implement. Algorithm depends on the basic ap-
proach that similar things are commonly distributed over same or close space. For
each point, algorithm tries to find belonging space by calculating its distances to sam-
ples already placed, based on a predefined distance function. To do so, it needs a

distance vector and the number k.

Decision Tree (DT) which is a graph-based structure works like a flowchart that sep-
arating data points recursively with respect to feature-based conditions until reaching
to leaf node, a class. Decision trees are easy to understand and they visualized graph-

ically for non-experts to understand easily.

Random Forest (RF) represented by Leo Breiman is a set of individual decision trees
where each tree is dependent to a vector generated by random sampling and each
one has the same distribution across all other trees in the forest. Combining multiple
models to make weak learner models has a significant vote. Aim of the RF algorithm
is to receive more accurate prediction by advising most. It could be used for both

classification and regression tasks.

Artificial Neural Network (ANN), forms the basis of frequently used deep learning
algorithm is another machine learning algorithm used. ANN models are motivated by
biological sciences, which investigate how real creatures’ neuroanatomy has evolved
to solve issues [7]. A conventional Artificial Neural Network is made up of several
basic, linked processors known as neurons, each of which generates a series of real-
valued activations [9]. In basic terms, a neuron accepts n inputs and plugs them into
the equation z = WX + 6, where X represents inputs {xg, z; ...z, }, W represents
weights of the inputs {wo, w;1...w,} and 6 represents bias {6y, 6 ...0,}, where z
is the output of the addition unit. Activation function f,.(z) simulates the state of
neuron and get output, y = f,(2) [8]. Figure shows basic structure of neural

network.
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Figure 2.1: Basic neuron structure

The task of the activation function is to determine whether neurons will be activated
based on the results from the weighted sum and bias. Activation functions are chosen
specific to task to achieve. Most popular activation functions and their formula are

given below:

1. Linear Activation:

£(x) = x 2.1)
2. Sigmoid Function:
1
f = 2.2
X = 1o 22
3. Softmax Function:
F(xi) = o (2.3)

D i1 €M

4. Hyperbolic Tangent (Tanh) Function:

o) = S @4
5. Rectified Linear Unit(ReLLU) Function:
f(x) = max(0,x) (2.5)
6. Leaky ReLLU Function:
f(x) = max(0.1x, x) (2.6)
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2.2 Deep Learning

Deep learning is a branch of machine learning that uses multilevel designs to acquire
high-level abstractions from data [10]]. It’s a modern concept that’s increasingly being
used recently in conventional fields of Artificial Intelligence (AI) such as computer

vision [[11]], natural language processing [[12], transfer learning [13] and so on.

ANN algorithm is the basis of deep learning. A feedforward neural network means
there are no cycling connections among the nodes. With this architecture, information
flow is directed from input to output which is called forward propagation. In order to
compute the gradient of the loss function regarding to weights, backpropagation al-
lows the information from the scalar cost yielded by forward propagation in training
phase to flow backward through the network[14]. This method is used to minimize
the cost and maximize the efficiency. At this point, optimizer functions are also im-
portant because they aim the same. Optimizers are dependent to weights and biases
of the model. Some well-known optimizer functions are Stochastic Gradient De-
scent(SGD), Mini-Batch Gradient Descent, Adaptive Moment Estimation (ADAM)
and Root Mean Square Propagation (RMSProp).

There are many architectures such as Convolutional Neural Networks (CNN), Re-
current Neural Networks (RNN), Autoencoders, Restrictive Boltzmann Machines
(RBM) etc. This section covers some neural network architectures used in deep learn-

ing literature to help better understanding of the work presented.

2.2.1 Convolutional Neural Network

CNNs are multilayered neural networks that use convolution operation to emphasis
the importance of the information coming from closer neurons compared to further
neurons. On contrary to neuron structure in ANN, neurons in CNN are structured
in three dimensions, width-height which are spatial dimensions of input and depth

which indicates the volume of the activation [[16]].
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Figure 2.2: Basic CNN structure

A basic CNN composed of three parts; (1) input layer(s), (2) feature-extraction layers
and (3) classification layer(s). Figure[2.2] shows basic structure. In the architecture,
convolution layers are responsible for feature-extraction coming from previous neu-
rons in hierarchy, which is handled by filters or in other name, kernels. Kernels in
each convolution layer scan the input that has a typical grid-like structure [[15] such
as matrix and attempt to extract features that are relevant or explainable. Result of
that operation is called feature map. As predicted, feature maps are dependent to
kernel and input image, i.e., each time kernel is changed, feature maps are changed
as well. Therefore, values of kernels are important. CNNs also help at this issue by
finding optimized kernels at during learning phase. In order to operate convolution
for each pixel with NxN convolution kernel first, each pixel in the image is scanned
by using kernel. Then element-wise multiplication is applied with sub-pixels of the
image and kernel values. Finally, results of each multiplication are written into the

corresponding pixel.

Generally, a pooling layer follows convolution layer in CNN, which plays important
role. It operates subsampling by reducing the size of the feature map, while elim-
inating less-informative points and preserving the critical information. They shrink
dimension by a static kernel. They lower down computational cost since number of

training parameters are decreased. There are different types of pooling; average, min-
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imum and maximum. Figure [2.3]illustrates types and results.

] 4 a0 78 26 40
a0 4 4 79
2 3 12 47 3] 23
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Figure 2.3: Pooling Operation and Types

After convolution and pooling layers have completed their job, final feature map is
fed to classification layers, which are fully connected (FC) -or by other name, dense-
layers to calculate class or regression scores. However, in cases where feature maps
have more than one dimension, before they are fed directly, they are reshaped or

flattened to one dimension.

Dropout is another layer type used in neural network models, it neglects some nodes
during training by random choice. Dropout layers are used to regularize deep neural
networks to prevent from overfitting which is basically a system learns features of

given training data only, not the features of problem in general.

2.2.2 Recurrent Neural Network

Recurrent Neural Network (RNN) is an extension of traditional neural network archi-
tecture that has hidden states and allows previous experiences to be used as upcoming
feature in those states, therefore, information is kept within the network. It has cyclic
structure, which is the main difference between RNNs and regular feed-forward net-
works, it could be though as interconnected series networks. Well known application
developed based on RNNs are Long Short-Term Memory (LSTM)[17] and Gated
Recurrent Units (GRU) [18]. LSTMs are more advanced forms of RNNs that could
solve the vanishing gradient problem, problem of architecture that could not update

value of weight during training by permitting data to be preserved. GRUs are simpler
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versions of LSTMs, which composed of gated units that control the flow of informa-
tion within the them without any independent memory cells, and structurally, there

are no output gate.

2.2.3 Autoencoder

Autoencoder is a type of neural networks that tries to learn a compact representation
of input data by applying beneficial manipulations. Aim of an autoencoder is to
recreate input data by neglecting insignificant data, by learning important features of
while minimizing the error between input and output data. This NN architecture is
composed of encoder and decoder parts. Encoding part interprets the input data and
compress it. The output from encoding part is compressed data or bottleneck. Then
decoder part attempts to reconstruct the input from compressed data. In cases when
using only single autoencoder does not enough for proper feature extraction, Stacked
Autoencoders where each hidden layer’s output is coupled to the input of the next

hidden layer are used.

2.2.4 Restricted Boltzmann Machine

Restricted Boltzmann Machines (RBM) are generative and non-deterministic neu-
ral network architectures that learn probability distribution that maximizes the likeli-
hood. Structurally, they have restricted connections between their two layers of neu-
rons, called visible and hidden. There are no connection within the same layer. Visi-
ble neurons translate each input with weight and bias and forwards to hidden neurons,
this process is called forward-pass. Hidden neurons create activation with weights
and overall bias and pass values for re-construction, which is called backward-pass.
Model learns features after a few forward and backward passes. Deep Belief Net-
works (DBN) are generative models that combines multiple stacked RMBSs that each
stacked model performs non-linear transformations and pass that output as input layer

to consecutive RBM.
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2.3 Performance Evaluation in ML & DL

2.3.1 Cross-Validation Methods

Learning algorithms try to reach a generalization by conducting various operations on
a given data, then they try to understand whether the model performs consistent or not
based on prediction accuracy results of unseen but similar data. When model learns
noise or random fluctuations come along with information coming from seen data
as concept, the problem called overfitting might occurred. A reliable model should
be able to give high results when tested not only with the data supplied to it during
the train, but also with data that it has never seen belongs to same task. To make sure
model is reliable, cross-validation is applied. Cross-validation is basically resampling

over data by splitting it with different techniques as follows:

e Holdout: It is the simplest cross-validation technique. All data is divided into
two, train and test set, or three by adding a validation set, depending on the

case. Division is done by ratio such as 70% train, 30% test.

e Leave-One-Out (LOO): Each data point is removed as test data while others
are train data in this method. This process continues for each observation in
the dataset. Average value gathered from results of testing per each iteration

indicate overall model performance.

e [eave-One-Subject-Out (LOSO): Train and test sets are constructed with data
of different users. Each subject’s data is utilized as a test iteratively, while

remaining users’ data being used for training.

e Leave-One-Day-Out (LODO): Used in large time series datasets where data is

divided into days with respect to timestamps.

e N-fold: In this technique, dataset is divided into N equal parts. While one part
is split as test, remaining N-1 parts form training set. Each part N is put to the

test iteratively.
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2.3.2 Performance Metrics

To measure system performance, there are various methods. Depending on the fac-
tors such as the goal, sample distributions in the dataset, several metrics could be
employed to measure model performance. In general view, Accuracy and F1 scores
are the two most used metrics. Accuracy indicates the fraction of the correct predic-
tions of the model of the all samples. On the other hand, F1 score is harmonic mean
of sample ratio of correctly identified as positives to all actual-positives (recall) and
sample ratio of correctly identified as positives to all predicted-positives (precision).

Formulas of performance metrics are as follows:

1. Accuracy Score:

TP + TN
A= 2.7
TP + TN+ FP + FN @.7)

2. Precision:
TP

PRE = TP + FP (2.8)
3. Recall (Sensitivity):
TP
REC=Tp 1 FN (&9)
4. Specificity:
TN
SPE= ———— 2.1
TN + FP 2.10)
5. Balanced Accuracy Score:
E PE
BA — REC +SPE @.11)
2
6. F1 Score:
2-PRE - REC
F1 = 2.12
PRE + REC ( )
where:

e TP: True Positives, prediction points to class which observation belongs.
e FP: False Positives, prediction points to class which observation doesn’t belong.

e TN: True Negatives, prediction doesn’t point class which observation does not

belong.

e FN: False Negatives, prediction doesn’t point class which observation belongs.
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2.4 Related Work

2.4.1 Human Activity Recognition (HAR)

A human activity is defined as a particular stream of actions in a repetitive continua-
tion. Human Activity Recognition solutions (HAR) aim to identify an activity based
on its characteristics. However, an activity characteristic might change from one per-
son to another because each person performs activities differently due to habits, per-
sonal preferences or health reasons. Besides such limitations, present systems offer

promising outcomes recognizing human activities [20] [32].

In this work, sensor-based HAR task is performed. Generally, HAR applications
use specific to certain type of sensor modalities such as body-worn sensors, objects

sensors and ambient sensors [21]].

2.4.2 Datasets used for HAR

Table 2.1] covers most used public datasets in HAR studies includes inertial sensor
data and their details. Listed datasets are mostly based on sensor data are embedded

sensors in smartphones and smartwatches.

2.4.2.1 The ExtraSensory Dataset Details

The ExtraSensory [25]] dataset contains data from 60 individuals who performed nat-
ural behaviors in their own lives and in their own environment, and they documented
these actions using the devices they use, without any external control (someone direct-
ing them what to do and when to do it). The term in-the-wild represents this approach.
Data is collected from smartphones and smartwatches, while various sensor modali-
ties are included, accelerometer (both phone and watch), gyroscope, magnetometer,
audio, location and phone state (e.g. battery). All raw data sensor measurements are
transformed into 225 features with feature extraction technique, which are combina-
tion of time domain features and frequency domain features. In this work, for x,y,z

dimensions of inertial sensors and 13-channels of MFCC, mean time feature is used.

17



Table 2.1: Public Datasets

Reference Dataset Frequency #Subject #Activity Sensor(s)
[22] Opportunity 30 Hz 4 16 A,G,M,0,AM
(23] UCI-HAR 50 Hz 30 6 A, G
[24] MHealth 50 Hz 10 12 A,GM,ECG
[25] ExtraSensory 40 Hz 60 51 A,G,M,Aud
[26] USC-HAD 100 Hz 14 12 AG
[27] WISDM 20 Hz 29 6 A
(28] PAMAP2 100 Hz 9 23 A,GM
[29] REALDISP 50 Hz 17 33 A,G,M,4DQ
[30] DSADS 25 Hz 8 19 A,GM
(31] HHAR 100Hz 9 6 AG

*A:Accelerometer, G:Gyroscope, M:Magnetometer, Aud: Audio, AM: Ambient Sensor, O:Object Sen-

sor, ECG:Electrocardiograph, 4DQ:4D Quaternions

There are no fixed timeframes for actions, as subjects are expected to record their
natural behavior in their regular basis. Furthermore, each person might have different
habits during an activity, for instance, someone could walk fast while other walks
slowly. Because of this, the time of each activity is captured, as well as the quantity
of context-based contributions that varies from person to person, in the dataset. It
changes from person-based as well. Therefore, overall dataset become an imbalanced
dataset. The efforts to prevent the imbalanced dataset from reducing performance for

activities with fewer samples are explained in chapter [5]

ExtraSensory consists of 51 labels which many of them occur at the same time, makes
it multi-label. Multi-label learning is concerned with data instances that are simulta-
neously associated with numerous class labels. Despite performance of existed stud-
ies with multi-label solutions increased, still for this study, this approach is not appli-
cable. However, labels in the dataset could be subdivided into categories as activity
(e.g. Walking), context/ (e.g. Watching TV), phone state (e.g. Phone on Table). This
categorization is represented in hierarchical way in this study, where h1 labels imply

physical activities (e.g. Lying Down), h2 labels indicate a context (e.g. Watching TV)
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occur together with an physical activity and h3 labels are combination of a physical
activity, a context and the state of phone (e.g. Phone on Table). During data creation,
three-letter abbreviations are used to identify the labels of this hierarchical structure
from each of the original labels, including physical activities <H1>, behavioral con-
texts <H2> and phone placements <H3>. Representation <H1>_<H2>_<H3> is used

while defining new contexts for this study, refer Table [2.2]

Table 2.2: Abbreviaton and Activity Matching

Abbreviation Activity Name Type Level at Hierarchy
LYD Lying Down Activity 1
STN Standing Activity 1
SIT Sitting Activity 1
WLK Walking Activity 1
RUN Running Activity 1
BIC Bicycling Activity 1
SLE Sleeping Context 2
SUR Surfing the Internet | Context 2
WAT Watching TV Context 2
IAC In a Car Context 2
IAM In a Meeting Context 2
IND Indoors Context 2
ouT Outside Context 2
SHP Shopping Context 2
TLK Talking Context 2
EXE Exercise Context 2
PIH Phone in Hand Placement 3
POT Phone on Table Placement 3
PIP Phone in Pocket | Placement 3
PIB Phone in Bag Placement 3

Because humans might run numerous activities at the same time, a hierarchical cat-
egorization of activities is essential. Furthermore, it is critical to combine activities
in order to solve the multi-label problem without eliminating various labelled infor-
mation, representing a new format that express same combination with single label

approach. The activities listed above are chosen based on their sample contribution
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range across the dataset and their mutual exclusivity with other user-defined activities

at the same hierarchy level.

2.4.3 HAR Studies

Human activity recognition aims to model people’s daily activity patterns in either
controlled or uncontrolled settings. The main challenge HAR approaches face is the
variety of activities. People perform numerous activities in daily life. Furthermore,
each person intend to behave in different patterns while operating same activity due
to habits. The number of models that accurately predict human behavior are rapidly
grow, parallel to portable device usage. Still, behavior detection task faces struggles
due to computational efficiency of devices. In general, regular and reliable data is
needed to generalize and distinguish a behavior, but devices could perform excessive
data with complex algorithms effectively. HAR studies are divided into two cate-

gories regarding feature data usage, such as sensor based and vision based.

2.4.3.1 Sensor Based HAR Studies

Sensor-based HAR has been used in a variety of practical applications, including
smart home, healthcare and elderly monitoring. Furthermore, the rapid growth of
wireless sensor networks has resulted in a vast volume of data being collected from
a variety of sensors, including wearable sensors, object sensors, and environmental
sensors [47]. Wearable sensors generally aim to understand human movement and
behavior. Smartphones, smartwatches, bracelets are integrated with variable wear-
able sensors as accelerometer, gyroscope, magnetometer. Object sensors are used
to detect movements of specific objects and correlate them with human behavior.
Radio-frequency identifications are used to track and identify people and items in the
Internet of Things (I0OT) environment. Environmental sensors embedded in the en-
vironment are used to track changes in environmental factors as a result of physical
activity. Radars, pressure sensors and temperature sensors are types of environmen-
tal sensors. The outcomes of the sensor-based human activity recognition literature

review are presented in the Table 2.3
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Table 2.3: Sensor-Based HAR Studies

Study Dataset(s) #Activity | Overlap(%) | WS(s) CM | Evaluation | Metric Result
k-NN 0.99
SVM 0.95
[34] Collected 12 80 1 RF 10-Fold A 0.98
HMM 0.83
GMM 0.72
[41] Collected 17 50 12.8 SVM 10-Fold A 0.98
RF 0.75
[43] Collected 22 87.5 40 SVM Holdout F1 0.57
NEV 0.92
5-Fold 0.77 (F)
125] ExtraSensory 25 NA 20 LR BA
LOO 0.78 (L)
0.94 (F/M)
5-Fold (F) 0.93 (F/C)
[35] RWHAR 5 50 5 CNN F1
LOO (L) 0.75 (L/M)
0.76 (L/C)
UCI-HAR 10 10-Fold 0.97
[36] NA CNN A
WISDM 6 2.56 Holdout 0.93
UCI-HAR 6 50 2.56 0.97
UniMib SHAR 17 50 3 0.76
WISDM 6 95 10 0.98
[38] CNN Holdout A
PAMAP2 18 78 5.12 0.93
Opportunity 18 50 1 0.93
Weakly Labeled 4 50 40.96 0.92
[39] Collected 10 NA 10 CNN Holdout F1 0.87
A(A) | 095(A)
[42] WISDM 6 50 32 CNN 7-Fold
F1 (F) | 0.94 (F)
34(US) 20 (US) 0.90 (US)
Ubicomp08(U) 4(UC) 300 (UC) | CNN LODO 0.90 (UC)
[46] NA Fl
Opportunity(O) 4(0S) 0.5(0S) | LSTM | Holdout 0.92(0S)
5(00) 10 (OC) 0.83(0C)
UCI-HAR 6 50 2.56 0.96 (A)
Opportunity 17 8stp 64rpw AGA) 0.80 (F)
[40] | UniMib SHAR 17 2stp 151rpw | CNN Holdout FL(E) 0.78 (A)
PAMAP2 18 50 2.56 0.92 (A)
WISDM 6 20stp 200rpw 0.98 (A)
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Table 2.4: Sensor-Based HAR Studies (continued)

Study | Dataset(s) | #Activity | Overlap(%) | WS(s) CM Evaluation | Metric | Result
Opportunity 18 NA NA 0.95
[44] PAMAP2 18 0 5.12 I-NN Holdout Fl1 0.94
UCI-HAR 6 50 2.56 0.95
[37] MHealth 12 50 2.56 DBN Holdout A 0.97
. SLEN(S) 0.96 (S)
[45] Collected 6 50 2.56 Holdout A
LSTM(L) 0.97 (L)

*WS:Window Size in seconds, A: Accuracy, BA: Balanced Accuracy, NA:Not Applicable, stp:sliding

step length, rpw: row per window

Researchers who introduced ExtraSensory dataset [25] perform HAR task with se-
lected 25 behavioral contexts out of 51 contexts. As cross validation, 5-fold (48 user
as train, 12 user as test) and LOO validation methods are selected. They apply Lo-
gistic Regression (LR). Paper also emphasis on using balanced accuracy (BA) or F1
score instead of Accuracy (A) due to highly imbalanced structure of activity distribu-
tions. In the work, for 5-fold cross validation, 77% BA score is achieved, while for
LOO BA accuracy is slightly improved as 78%. In study [34], researchers perform
experiments over the data they collected with three inertial sensor (accelerometer,
gyroscope and magnetometer) located in upper/lower body. In data pre-processing
part, they extract 11 time domain features and 6 frequency domain features from
data. They use 80% overlapping window with 25 samples (1 second) each. They
also make comparison between raw sensor measurement performance and feature ex-
tracted sensor performance of their models and emphasis that with proper features ex-
tracted, accuracy values of all classification models they experimented except GMM
are increased. Another study [41] focusing on elderly care, where collecting data
from both wearable and ambient sensors. In the paper, they investigate performance
effect of feature selection methods and compare results. Furthermore, an ambient
based hierarchy is represented in this study as another test area. They group activities
based on room and conduct experiments with and without feature selection models.
Best accuracy score with SVM model is achieved with hierarchical approach with

feature selected model CMIM as 98% 10-fold validation.
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Deep learning algorithms become dominant architectures recently for HAR tasks.
Researcher in [35] represents a CNN model with 3 convolution layers and one fully
connected layer. As sensor input, even though the public dataset used in this study
has many different sensor located in different parts of the body, only accelerome-
ter from sensor located at waist is used. From raw data, an accelerometer vector
is created by substracting activity vector caused by gravity from original vector, to
present only human movement. Monochromed Horizontal-Vertical images are cre-
ated with 50% overlapping window rate. In addition, colored HV images are created
by adding time dependency. With 5-fold cross validation, F1 score results obtained
are 94% and 93% monochrome and colored HVs respectively. For LOO, F1 score
results are 75% and 76%. In [36], a shallow CNN architecture that extracts features
automatically to perform real-time operations with best possible time-series duration
is represented. Besides classical CNN, researchers combine different pre-processing
metrics such as statistical features, data centering, data normalization with CNN to
find optimal result. For WISDM, they perform training with 26 user data while re-
maining rest of the users as test data, which gives them 93% accuracy for 10 second
interval. In UCI dataset, they perform 10-fold cross validation for data of 10 users
remained and receive 97% A score, for 2.56 second interval. Kernel selection is very
important in case of CNN-based studies. Study [38]] aims to obtain higher scores than
existing studies by examining interchangeable kernel size in the same feature lay-
ers. By conducting extensive experiments, they observe the effect of dilation rate and
group number changes over accuracy scores with given kernel size. CNN consists
of three convolution layers while last two are changed with selective kernel convo-
lution. Table [2.3] lists score of the proposed method for all given datasets. In the
paper, they perform comparison with state-of-art methods and receive promising re-
sults. Using lightweight CNN architectures for recognition tasks is recently become
popular thanks to public datasets. In [40], 5 different experiments are performed with
layer-wise approach. There are 3 convolutional layers in this CNN where between
each, there are two sub-networks that generates local loss to train weights at each
hidden layer. Sub-networks are responsible to calculate similarity matching loss and
prediction loss and passes the values to next layer in CNN while effecting weights.
Even though holdout validation is used, they divide train and test data differently.

Phrase rpw represents row per window while stp is sliding step length. For UCI-
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HAR, UniMib SHAR and WISDM datasets, train and test data rates are 70% and
30%, where with using both of the sub-networks, A scores are 96%, 78% and 98%
respectively. By same approach, experiment with PAMAP2 data is divided as 80%
as train, rest as test, while achieving A score 92%. Opportunity dataset is highly im-
balanced, therefore, score is reported in F1 metric as 80% where, train-test division
is done user-based. Traditional end-to-end CNN model approaches circumvent the
drawbacks of manual feature extraction. In case there is less train data of a complex
activity, recognition performance might be very low. Study [42] tries to tackle this
issue by representing a two-stage CNN model in which one part is responsible for
only deciding activities ascending stairs and descending stairs while other does clas-
sification for the rest. Study also does data augmentation which respect to duration
of action. In data augmentation part, in order to represent short step and long step
points same, they perform linear interpolation. Overall accuracy and F1 scores are
reported as 95% and 94% respectively for data augmented two-stage CNN. Inception
NN structure, which is used in [44], consists of blocks that processes input from pre-
vious layer with multiple kernels and concatenate their results. Blocks generally use
small sized filters to avoid overfitting for information that locally distributed. In the
study, with three are three represented kernel sizes in the model. Holdout validation
is applied into datasets that have various overlap ratios and window length. F1 scores
over three datasets are reported 95%(Opportunity), 94%(PAMAP2) and 95%(UCI-
HAR). Activities could be categorized based on required duration or multiple-single
action requirement. In [46]], activity categorization is applied based on their com-
plexity such as defining Standing activity as simple and Cooking as complex. After
new data labelling approach, first, data of complex activities are fed into CNN model
for feature extraction. Then extracted features are delivered into a softmax layer so
that LSTM model performs simple activity recognition from complex ones. In Table
[2.3] letters U and O distinguish datasets while letters S and C indicates simple and
complex. UbicompO8 dataset is validated with LODO since it is collected from one
person. Opportunity dataset is validated with holdout. Different categories of activi-
ties are tested with different window lengths due to nature of activity. Research [37]]
proposes a DBN framework. DBN-based architecture composed of various number
of different units, while they conduct experiments to figure out effect of number of

hidden units at different layers of their system. Even though they mentioned using
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sliding window technique with 50% overlapping rate with 2.56 second. Study [43]]
emphasis on benefits of feature engineering over raw sensor data. They extracted
time and frequency domain features and use them while conducting performance test
with their Single Layer FeedForward Network (SLFN) and LSTM models. LSTM
model receive distilled knowledge from SLFN model result at the softmax layer to
boost deep model performance by taking benefit from shallow ML methods’ perfor-
mance over features. To use holdout validation method, dataset is divided into two
parts, 70% as train and 30% as test data. Accuracy results are reported as 96% for
SFLN model and 97% for proposed LSTM model. There are few studies using au-
dio data to perform HAR. In [39], audio data is collected from open source online
platforms, where each 9 minutes of record is divided into train for 6 minutes and test
for 3 minutes. Melspectrograms are extracted from raw data with 200 mel-frequency
bin and 500 frames to conduct experiments. Overall F1 score is 87% while activity
Talking has highest recognition score, 93%. While [39]] uses DL, conventional ML al-
gorithms are used to evaluate performance over human activity recognition based on
audio signals. In [43], researchers compare their represented method Non-Markovian
Ensemble Voting (NEV) with classical methods, RF and SVM. Each activity stream
is learned and tested from generated bag-of-sounds, which is similar to a dictionary
showing places of frame starting points and center per each activity audio. Similar
to other studies, MFCC features are generated from raw signal for each activity with
87.5% overlapping window rate. F-score average results are reported as 75%, 57%,
for classical methods RF and SVM respectively while for their novel method NEV

outperforms with 92% F-score.

There are interesting researches in the Table 2.3 that have reported promising results
with offered solutions. Studies such as [34], [38]], [40] and [41] have achieved very
high success results, such as 98% by using different inertial sensors as input. Even
though in other studies include less activities, number of activities predicted is 34 in
[46]], which indicates much more complexity. Still reported F1 score is 90%. There
are a few approaches that use audio sensor data to accomplish activity recognition
task like [39]] which tries to distinct 22 different activities based on sounds recorded.
Their novel method NEV reaches 92% F1 score. Sensor-based HAR was used in

this thesis since it is an intriguing subject to perform activity recognition with data
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gathered from inertial and auditory sensors.

2.4.3.2 Vision Based HAR Studies

Human activity, behavior or mimic-gesture recognition with the help of video record-
ings’ analysis has been extensively researched [62]], [63] [47], the area of interest
of vision-based HAR. The primary rationale is to use highly informative visual data
acquired by cameras to perform high-level interpretation, in order to assist human
operators with highest possible efficacy, or, even replace human monitoring with au-
tonomous machines. The approach has a significant impact on security and surveil-
lance [64] [65]], healthcare and interactive applications [66]. Table lists some of

the existing studies for vision-based human activity learning tasks.

In [S9]], researchers introduced three leveled CNN classifiers for RGB, depth and
skeletal data to categorize activity based on motion history images, depth motion
maps and skeleton sequence images respectively. For 5 CNN, they use well known
VGG-F predefined model. They conduct experiments with 5-fold cross validation
and report 95% accuracy for UTD-MHAD dataset, 96% accuracy for SBU-KI dataset
which could be interpreted as state of art and 93% accuracy score for CAD-60. Re-
searchers present an framework consists of multiple RNN-trees for skeleton based
fine-grained activity recognition in [60]. To begin, they concatenate and process
small-scale existing datasets to construct their own dataset including 140 activities.
They conduct tests over large scale data which is divided into sets as 60% training,
20% validation and 20% for test. They offer multiple tree structures, most success-
ful model gives 89% accuracy. Also they conduct test to predict model performance
over NTU RGB+D dataset. Validation method is not specified, however, most suc-
cessful result is reported as 83% in this dataset with unidirectional RNN. Study [61]
performs good results noisy data. In that study, an three layered SAE with denoising
tensor is introducted which manages temporal and spatial corruption of given data.
DTAEs cope with different corruption ratios individually when it comes to temporal
corruption. Data corruption rates tested are 20%, 40% and 60% respectively. Best re-
sults are obtained with 20% noisy data rate, which results 86% accuracy. Framework

introduced in [|68]] is tested within five distinct datasets with distinct activities each.
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Table 2.5: Vision-Based HAR Studies

o Classification . .
Study Dataset(s) #Activity Evaluation | Metric Result
Model
UTD-MHAD(U) 27 (U) 0.95(U)
(59] SBU-KI(S) 8(S) CNN 5-Fold A 0.96(S)
CAD-60(C) 12 (O) 0.93(C)
Collected(C 140 (C Holdout (C 0.89(C
0] ollected(C) © RNN oldout (C) A ©
NTU RGB+D(N) 60 (N) NA (N) 0.83(N)
(1] MSR Action Pairs 12 AE NA A 0.86
UCF101(U) 101 (U) 0.94(U)
HMDBS51(H) 51 (H) 0.72(H)
. CNN &
[68] Hollywood2(HW) 12 (HW) LSTM Holdout A 0.69(HW)
UCF50(UC) 50 (UC) 0.95(UC)
YouTube(Y) 11 (Y) 0.96(Y)
. MSR Action3D (A) 20 (A) 0.93(A)
[69] HMM LOSO A
MSR Daily Activity3D (D) | 16 (D) 0.94(D)
G3D (G) 20 (G) 0.96G)
SYSU 3D HOI (S) 12 (S) 0.95(S)
(70] UTD-MHAD (U) 27 (U) CNN LNSO A 0.89(U)
MSR Action3D (A) 20 (A) 1.00(A)
MSR Daily Activity3D (D) | 16 (D) 0.97(D)
MSR Action3D (M) 20 (M) 0.95 (M)
[71] Berkeley MHAD (B) 11 (B) RNN LNSO A 1.00 (B)
HDMO5 (H) 65 (H) 0.97 (H)

*A: Accuracy, BA: Balanced Accuracy, NA: Not Applicable

They concatenate their approach into three phase, preprocessing, feature extraction
with CNN and action sequence learning with LSTM. In preprocessing phase, only
frames with relavant information are captured from continuous stream. Next, they
generate feature maps from frames captured using CNN. In final phase, multilayer
LSTM is constructed for sequence learning and predicting the activity based on se-
quence. Model evaluation is done with dividing dataset into 60% as train, 20% as test
and remaining for validation. Proposed methodology outperforms state of art meth-
ods in four of the datasets while the reported accuracy result 69% using Hollywood?2
does not, based on overall results, even for some classes, there are very high accuracy

scores are obtained. In another vision-based work [[69]], researchers use RGBD data to
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extract features from human pose and remove information coming from background.
RGB-D images are extracted and used to generate skeletal joint features from cap-
tured human pose. Two datasets with distinct number of classes are used with LOSO
cross-validation method. HMM model they represented perform in accuracy score
unit is 93% for MSR Action3D dataset and 94% with MSR Daily Activity3D dataset.
There are multiple processing methods in vision-based HAR such as skeleton data,
depth data or RGB. Research [/0] presents a methodology for RGB-D video-based
action recognition that uses bidirectional rank pooling, using depth primarily. Dy-
namic depth images are constructed in three level, body, parts and joints respectively.
All of those create spatially structured dynamic depth images. Later, bidirectional
rank pooling based on depth map sequence is applied with CNN approach to each of
those levels separately. As late fusion technique, model achieves higher results with
multiply fusion. Table [2.5]shows accuracy scores obtained with proposed model for
distinct vision-based HAR datasets. Even though train-test division rates are changed
dataset to dataset, generally N user is divided as test while others are used to train
model. In case of skeletal joint vision-based study, [[71] could be an example. In the
study, skeletal joints information of users are hierarchically grouped based on differ-
ent parts of the body such as leg joints, arm joints etc. An bidirectional hierarchical
RNN model is adapted to perform classification task based on classes mentioned in
Table [2.5] even though original database might include much more classes. For MSR
Action3D dataset, even numbered subjects are selected for testing while odd num-
bered subjects are for training the model. Overall accuracy score is reported as 95
%. For Berkeley MHAD, data of 7 subjects are used as train data while rest of them
is saved for test. Performance of the model in here is reported as 100% with this
configuration. Lastly, model performs with 97% for HDMOS dataset, which includes

various number of classes.

There are many challenges of vision-based solutions of HAR. Challenges in human
activity recognition using multimedia stems not only from the complexity of por-
traying the motion of body components, but also from a range of other genuine is-
sues such camera motion, a dynamic background, and inclement weather [73] which
could effect overall system performance in a negative manner. Furthermore, because

human movements are complicated and variable depending on conditions like age,
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body-proportion or personal habit, even the tiniest movement could convey context
[74]], which cause a learning model to mispredict behavior. Although this is an excit-
ing subject, for the reasons stated, a vision-based technique id not chosen for activity

recognition in this study.

2.5 Audio Processing

Mel Frequency Cepstrum Cooefficients (MFCC)s are derived from raw audio sig-
nal with respect to different transforms and operations. First, continuous signal in
waveform is divided into windowing frames, then Discrete Fourier Transform(DFT)
is applied to all windowing frames, basically moving the audio signal from time do-
main to frequency domain. Power Spectrums or on other name Amplitude Spectrums,
that show magnitude of the signal changing in frequency are obtained from that op-
eration. They represent perceptually-informed amplitude in frequency. Frequency
expression in Hz unit are transformable to frequency expressions in mel unit. To con-
vert frequency to mel scale, first, depending on the problem, number of mel bands
are selected. Regarding to band range, constructed mel filter banks (generally 32-
64) are applied to PSs, as matrix multiplication to receive Mel Power Spectrogram.
Melspectrogram expresses frequency(mel bands) change over time. With applying
mel-scaling, sound is basically represented in a linear form. Logartihm operation is
applied into PS to uniform Log Power Spectrum (Log-PS), which is a continuous fre-
quency with harmonic components that are periodic. Result of that operation is Log
Mel Spectrograms. Then, Discrete Cosine Transform (which is simplified version of
DFT) is applied into to get the matrix of real-valued cepstral coefficients (tradition-
ally 12-13 coefficients), MFCCs. Figure [2.4]illustrates process to convert waveform
signal into first Melspectrogram, then Log Melspectrogram and finally MFCC.

In this study, both Melspectrograms and MFCCs are used to learn from audio signal.
Melspectrograms are chosen often to work with DL algorithms while MFCCs are
preferred by ML algorithms generally. This work summarizes the performance of

both to overcome problem description as well as Log Melspectrogram.
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Figure 2.4: Audio Signal Processing steps
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CHAPTER 3

PROPOSED FRAMEWORK FOR HUMAN ACTIVITY RECOGNITION

The processes for recognizing human activity using embedded smartphone and smart-
phone sensors are described in depth in this chapter. First, the framework that depicts
overall architecture is introduced. Input generation mechanism that proposed deep
learning model would utilize is explained in detail, including preprocessing over data
to define clusters and processing technique that translates sensory input for both iner-
tial sensors and audio features. Lastly, to perform recognition task with lesser com-
putational effort, a lightweight deep neural network model is used that performs clas-

sification task in which performance is improved by hyperparameter tuning.

3.1 The Framework for Hierarchical Human Activity Recognition

The proposed pipeline in this thesis consists of 5 main steps: (1) data acquisition and
feature extraction & selection, (2) data preprocessing and normalization, (3) color
coded or/and audio image production, (4) sensor fusion, (5) supervised classification

based on hierarchy depth level. Figure |3.1|demonstrates overall framework.

Real-time data collected from smartphone and smartwatch are processed to remove
noise at first. After that, features from a variety of sensor modalities are retrieved. In
this thesis, only mean features of each axis in sensors and mean features of MFCC are
selected in future selection phase. MSPCs are transformed from MFCCs. Color coded
images are produced from the four inertial sensors, where each row represents a single
sensor data. Images are also produced utilizing the grayscale to RGB technique from
both of the audio features, MFCC and MSPC. The lightweight model learns patterns

from each sensor images or fused images of audio and inertial sensors which are
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Figure 3.1: Proposed framework for hierarchical human activity recognition

formed in the preceding step. This study introduces a three-tiered hierarchy, primary
physical activity at level H1, activity and context pairings at level H2 and finally
smartphone placement dependent activity and context pairings at level H3. Thanks
to this representation, multi-labeled activity recognition is achieved by using a model

adapted to multi-class classification.

3.2 Input Generation For Human Activity Recognition Task

HAR aims to model daily life of people, finding out body motion and user behav-
ior. Models could interpret common movements and behaviors via diverse sensory
information. In this section, processing and analysis of data for gathered from four
inertial sensors and their fusion with audio sensor is explained. CNN architectures
have shown to be extremely successful, particularly in the field of computer vision.
Based on their width-height-depth infrastructure, they have shown great performance
over visual data. Therefore, activity images with respect to their sequence are con-
structed from sensory information to take advantage of the architecture. Depthwise
construction leads dividing data into channels, resulting into smaller data expressions

and lighter model selection that operates faster.

3.2.1 Data Preprocessing

The dataset includes 60 csv files, representing activities of daily lives of 60 users for

each timestamp and feature values extracted with feature-engineering techniques. It
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is a highly imbalanced dataset since daily or overall contribution of users differ from
one to another. Even for single user, since data is not collected in a smartly controlled
environment with dedicated sensor measurement units, but it is collected in their nat-
ural habitat with naturally used devices, smartphones and smartwatches, distribution
of data between activities, contexts are extremely imbalanced. To overcome this is-
sue, in addition to the precautions taken during training, the window width is chosen
as 20 point sample (20 row per window) in order to increase the number of images to
be obtained from activities containing very little data while generating data. Further-
more, overlap ratio of windowing is chosen as 50% based upon the information in the

literature.

Extrasensory includes 51 activity labels. However not all of them indicates physical
activities, some of them indicates behavioral contexts, placement of the smartphone
or current location the user. Therefore, in this work, original activity labels in dataset
are divided into sub-categories and hierarchical approach based on the categories is

considered.

Feature data is clustered based on each activity per each user. For hierarchically
defined activities, points stamped with labels which exist in each step of the hier-
archy are taken from the data. Figure [3.2] shows data clustering flow, for level one
user-defined label. At first, each user data segmented based on activity (or contexts
depending on hierarchy level) are collected. Later, data is clustered based on sensor
information. Each bucket represents that user’s sensory data S for issued activity A.
This process is iterated for each activity, for each individual. After clustering, win-

dowing operation is performed to construct images.

In this study, besides the inertial sensors, the information gathered from audio signal
recorded by smartphone is used to boost learning performance of the model, particu-
larly on specific contexts such as "Talking" or "Watching TV". Raw data from audio
signal is not available in the dataset due to privacy reasons. Instead, Mel-frequency
Cepstral Coefficients (MFCC), which is numerized representation of sound power
spectrum are listed for each timestamp. In the dataset, 26 features are extracted from
original audio gathered with smartphone. 13 of them indicates MFCC channels’ mean

values measured within 400 frame average values and remaining 13 of them represent
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Figure 3.2: Data Clustering Flow

standard deviation values, per each timestamp.

Derivation of MFCCs from audio signals have been explained in section [2.5] Same
section also introduces Mel Spectrogram, previous step just before computing MFCC.
After applying DCT to Mel Spectrogram, resulted MFCCs are in linear form, which
make them vulnerable to be absorbed by neural networks. Therefore, MFCCs are
comparably beneficial with linear models, while Mel Spectrograms give better classi-
fication performance in DNNs since they are able to learn from more complex struc-
tures easily. Both MFCC and Mel Spectrogram representations are used. To receive
Mel Spectrograms from MFCCs which are among the features in the dataset, steps
mentioned in [2.5] are applied in a reverse manner, with librosa [33] open source li-
brary is used. While converting from MFCC to Mel Spectrogram, nmels parameter

is given 32, considering existing studies.

3.2.2 Image Generation

Understanding pattern of action or context is a problem to tackle when designing a
system. In this study, activities are converted into images to visualize changing sen-
sory information pattern. The aim to represent daily activities or contexts of humans
as image is to create motion history in a visualized form which CNN model could uti-

lize the input during feature extraction. Each sensor data has a hardware-dependent
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distribution range. Besides, in terms of human activity recognition, a sensor could
give values in various distribution ranges for each different activity. Activities fol-
low a general pattern, therefore, sensory information changes are confined for actions
require less effort. However, for high effort required actions, sensor measurements
indicate a lot of fluctuation. Relying on this approach and considering numerous
activities in the data set, first, standard deviation (formula [3.1)) value of each sensor
measurement’s channel is calculated. Then each value in the data is re-calculated with
equation @ to normalize values into unit based variance, where ¢ represent element
and j represents channel of a sensor. Note that X indicates mean of x. This step of
regularization operated user-based and separately per each sensor, because the sen-
sors in smart phones and smart watches that each user uses daily might have various
distribution ranges due to varied hardware and software installed. At the same time,

this regularization is carried out before activity-based categorization, per each person.

1 N

s(x) =\ g7 2. (X — %) (3.1)
i=1

iy = =X (3.2)

In image representation, each pixel has a numerical value and generally they are rep-
resented by 8-bits (one-byte), which indicates [0, 255] range. After data regulariza-
tion explained above has been operated, in order to express those numerical values as
pixels of images, another normalization method is applied that maps sensory informa-
tion with respect to standard deviation proportionally to pixel rate. Mapping values
are determined independently for each individual and each sensor data information

channel in order to keep natural behavior per person.

In this study, three different sensory image types are created, one for inertial sensors
and, two for audio sensor features, MFCC and MSPC. Each one have different size
due to feature characteristics. Despite the common functions used in calculating the
pixel values, while converting the inertial and audio sensors into images, there are
differences in the RGB sequence due to channel numbers. Sensory fusion images are

constructed by concatenating inertial and audio feature images.

35



3.2.2.1 Inertial Sensor Images

Inertial sensors are combination of smartphone sensors (accelerometer, gyroscope,
magnetometer) and smartwatch accelerometer. Each of those have 3-channels, X,Y
and Z which could be mapped into pixel as RGB channels. Therefore, for inertial
sensors, data for X axis is mapped into R, Y axis is mapped into G and Z axis is
mapped into B, which led constructing color coded images. This RBG mapping color
coding technique is obtained from work of [51]]. There are four inertial sensors used
in this study, represented by a row in resulting image. Figure 3.3 shows color coded
image of activity "Lying Down" at hierarchy level one, each row indicates a sensor
information. Color coded images generated based on hierarchy level, figure[3.4]shows

an example.

Smartwatch Accelerometer
Smartphone Accelerometer
Smartphone Gyroscope

Smartphone Magnetometer

Figure 3.3: Inertial sensory fusion image of Lying Down Activity with Units

(a) H2 Inertial image, Activ- (b) H3 Inertial image, Activity:
ity: Walking, Context: Shopping, Standing, Context: Outside, Place-
Placement: NA ment: PIP

Figure 3.4: Inertial images of sample classes with hierarchy



3.2.2.2 Audio Images

The method used for in inertial sensors is not applicable for audio sensor, since MFCC
sequences are composed of 13 channels while MSPCs and LMPSCs have 32 chan-
nels, and they both have additional feature, maximum value. They could be repre-
sented as grayscale images by themselves with one-dimension. However, for training
and testing both of inertial sensor images and audio sensor images together to keep
overall architecture simple, they are converted to RGB from grayscale, by assigning
each value in the channel for all R, G and B channels of the resulting MFCC, Mel
Spectrogram or Log Mel Spectrogram image. Therefore, to a novel representation of
auido images is introduced in this thesis. This three channelled images are incorpo-
rated to color coded images. Figure [3.5illustrates some examples of MFCC, MSPC
and LMPSC based images.

I

(a) H2 MFCC image, Activ-  (b) H3 MSPC image, Ac- (c) HI LMSPC image, Activ-

ity: Walking, Context: Talk- tivity: Sitting, Context: In a ity: Bicycling, Context: NA,

ing, Placement: NA Meeting, P: Phone on Table Placement: NA

Figure 3.5: Audio Feature Images
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3.3 Convolutional Neural Network Model

To operate classification based on activity, images representing sensor fusion for each
activity are constructred after preprocessing and color coding. Mathematical con-
volution operation enables to extract information based on local neighborhood with
respect to kernel weights. CNN algorithms that takes this advantage are exception-
ally good at lowering the amount of parameters without sacrificing model quality,
considering inputs that have high dimensionality such as images. Architecture used
here is inspired by work of [S1]. However, to achieve best results out of model,
some parts are tested with different values. The task of selecting a collection of ideal
hyperparameters for a learning algorithm is known as hyperparameter tuning. A hy-
perparameter is a value for a parameter that is used to influence the learning process,
determined before training. In this work, to find optimal values for each configurable
layer in the network, hyperparameter tuning is performed. Other factors, such as node

weights are, on the other hand, learned during training.

Kernel size is crucial element of mathematical convolution that effects directly the
feature extraction process. Small kernel size is beneficial to detect details while big-
ger kernel size could detect largely distributed features. Also, odd-sized kernels are
preferred rather than even ones in order to maintain symmetry of pixels. Without
that symmetry, distortions might occur across consecutive layers, therefore, odd ker-
nel size is safer choice, rather than handling any possible corruption. Images consist
of different heights due to inertial, MFCC, Melspectrogram and combined images.
Therefore, using large kernel might reduce features coming from inertial sensors

while expiring for audio-based sensor. As a result, 3x3 kernel size is selected.

Feature map or in another name activation dimensions might vary based on configura-
tion. It’s a mapping that correlates to activation of different areas of the image, and it’s
also known as a feature map, because, it points where a specific type of feature could
be located inside the output image with respect to filter. There are no significant stud-
ies that indicate the effect of higher feature map sizes increase model performance.
In order to keep lightweight of the model and number of training parameters, number

of feature map is selected 32 for all convolutional layers.
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Pooling layer is responsible of dimension reduction over feature maps by eliminating
redundant data, based on the selected method. As a result, it has a considerable
impact on feature extraction process. There are two main methods, max pooling
and average pooling to summarize features in an area of the image. In this work,
max pooling method is used. As stated before, each row in the image inertial area,
first four columns since there are four inertial sensors used in this study, represents
a distinct sensor, while for audio sensors, image height is bigger. In order to avoid
losing important features from inertial sensors, pooling layer kernel size is selected

as 1x2 to operate dimension reduction row-based.

Fully connected or dense layers do classification operation with data fed to them.
In order avoid deciding classification results directly with one fully connected layer
which has number of class as output channel, in addition to that layer, additional two
fully connected layers are used. First fully connected layer linked to flatten layer
has 512 neurons, this layer is followed by another fully connected layer with 256
neurons. Those two use ReLLU as activation function. The last layer has neurons
equal to number of classes, which might change based on hierarchy or test group.

Final dense layer works with softmax activation function.

There are many optimizers, but in this work, Sthocastic Gradient Descent (SGD) is
selected. Gradients multiplied with specified learning rates are substracted from the
weights with this optimizer. In this case, choosing best learning rate for system might
increase system accuracy. Given the smaller changes to the weights for each update,
smaller learning rates necessitate more training epochs, whereas greater learning rates
necessitate fewer training epochs. Therefore, learning rate selection should be con-
sidered with number of epochs. On the other hand, momentum is another choice
effects performance of SGD. Momentum conceptually states acceleration rate in the
training process. Figure [3.6]illustrates the results of experiments performed to select

the most robust learning rate.

39



Irate=1.0 Irate=0.1

0.3456
0.3456 1
0.3454
0.3454 1 0.3452
0.3450
0.3452 4 0.3448
0.3446
0.3450 4
0.3444
0.3442
0 20 40 60 80 160 (] 20 40 60 80 100
(a) Learning Rate = 1.0 (b) Learning Rate = 0.1
0.34575 Irate=0.01 Irate=0.001
0.34550 4 0.4
0.34525 1
0.3
0.24500 A
0.34475 A 0.2
0.34450 o
0.1
0.34425 4
0.34400 1 0.0
E) Zb fl‘O Gb Eb lll)l) ) 20 40 60 80 100
(c) Learning Rate = 0.01 (d) Learning Rate = 0.001
Irate=0.0001 Irate=1e-05
104 10
0.9
0.9
0.8
0.8 0.7
0.6
0.7 4
0.5
0.6 1
0.4
. 0.3
0 20 40 60 80 100 (] 20 40 60 80 100
(e) Learning Rate = 0.0001 (f) Learning Rate = 1e-05
Irate=1e-06 Irate=1e-07
104
0.8
094
0.7
0.8
0.6
0.7 4
0.5
0.6 4
0.4
054
0.3
0.4
034 0.2
02 0.1
0 20 40 60 80 100 ) 20 40 60 80 100

(g) Learning Rate = 1e-06 (h) Learning Rate = 1e-07

Figure 3.6: Accuracy vs Epoch Graphs of each Learning Rate
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To sum up, the CNN based architecture defined here consists of 4 convolutional layers
that each have 32 output channels and 3x3 kernel size. Each convolution layer is
followed by a max pooling layer with kernel size 1x2. Activation function is chosen as
Rectified Linear Unit (ReLU) for both convolution and max pooling layers. After last
pooling layer, a flatten layer is added into the model to reshape dimension of features
fed to first fully connected layer, with 512 hidden units. Next fully connected layer
has 256 hidden units. Finally, hidden units of the last fully connected layer are equal
to number of classes, which changes based on test cases. The activation function
of the last fully connected layer is softmax, that performs well with multiple class
problem. As optimizer, SGD is used with learning rate 0.0001 and momentum 0.9
while loss function is selected as Categorical Cross-Entropy Loss. To make a robust
prediction, to keep validation loss minimum and keep accuracy maximum, an early
stop condition is defined that waits until 50th epoch, but mainly stops when the loss
quantity being measured after each epoch stops decreasing, in other words, minimum
validation loss is encountered during training. Overall structure is in figure and

details of the model are listed below:

Number of Convolotional Layers: 4

e Number of Max Pooling Layers: 4

e Number of Dense Layers: 3

e Activation Function: Rectified Linear Unit (ReLU) and Softmax
e Convolution Kernel: 3x3

e Max Pooling Kernel: 1x2

e Number of Hidden Layers per Dense Layer: 512 (Layer 1), 256 (Layer 2)
e Optimizer: Sthocastic Gradient Descent (SGD)

e Learning Rate and Momentum: 0.0001 and 0.9

e Batch Size: 32

e Epochs: 100
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e Loss Function: Categorical Cross-Entropy

e Early Stop Condition: Minimum validation loss
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Figure 3.7: CNN structure used in this work

Keras [72] library is used to build model and perform tasks in this study, since it

provides simple interfaces with as little user input as feasible.
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CHAPTER 4

EXPERIMENTS AND EVALUATION

This chapter covers experiments and evaluation of Human Activity Recognition method
represented in this work. Deep Learning model represented in section [3.3]is evalu-
ated. Experiments are conducted in two main ways. The first one includes testing all
user defined activities based on their primary physical activity within their hierarchy
level without grouping. The second one is testing each activity within its correspond-
ing group based on primary physical activity in its hierarchy level. During model
evaluation under this chapter, two cross-validation methods are applied; holdout and
5-fold. For holdout, data is randomly divided into three parts as train, validation and
test, per each user-defined label chunk to minimize misleading results due to unbal-
anced nature of the real-world data. Data division rates are 70% as train, 10% as
validation and 20% as test, while conduction experiments for all types. Validation
dataset is used during early stopping and controlling whether there are any overfitting
in the system or not. This process is repeated per each holdout validation, which is
five for each of the testing strategies. For 5-fold cross validation, data is firstly shuf-
fled, then divided into five parts. Per each fold, single part becomes test data and
remaining four parts are used as train data. To do so, it is guaranteed that whole gen-
erated data is used as train and test purposes. For early stop strategies, test dataset is
used to prevent overfitting. Extrasensory dataset represents real-life of subjects. As
it is emphasized during the dataset review process, since tests are conducted with an
highly imbalanced dataset, balanced accuracy scores or F1 scores are used to evaluate
performance. Furthermore, to improve performance of activities with less data, class
weight approach is applied. Despite the number of samples from each class in the
training data, class weights give all classes equal influence on gradient changes. This

prevents models from overestimating the class with more samples over lesser ones.
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4.1 Hierarchical Evaluation based on Main Group Independency

In this section, primary physical activities (H1), placement independent contexts (H2)
and placement dependent contexts (H3) are tested with labels hierarchically at the
same level with them without grouping based on prior activity. Position dependency
is based on smartphone settlement, in which main sensory measurement units are lo-
cated. Figure[d.T|represents user-defined labels hierarchically combined with original

labels in the dataset, in which tests under this section are conducted.

PRIMARY PLACEMENT POSITION
PHYSICAL INDEPENDENT DEPENDENT
ACTIVITY CONTEXT CONTEXT
|
o B e . o
IR
| DR — | |
- SIT_SUR_POT
S T ==
SIT_IAC_PIB
= (%) m (%] m
: g 2| >SS
5 5 s |-
5 NHE s B g
2 4 ™ 2 |
= - =
&
: 5 |2 |-
= s ——{ |2
N
— ST —— | RN
Bl g V1< mo_poT |
=
S B g WL ouT — LT
R e ucouTPre
B v sive WLICSHP_PID
—— s || R —
m—“ — L — LT
B8 ||| =

Figure 4.1: Hierarchically User-Defined Activities and Test Groups - Main Group
Independent
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4.1.1 Holdout Cross Validation Results

The tests are conducted under this subsection with holdout cross validation method
where details are explained above. Holdout validation method is applied five times

and average results are listed.

In hierarchy level one (H1), recognising operation is performed for six main phys-
ical activities with all inertial, audio and their combination data. HI Test Group -
PPA clusterization in Figure [4.T| represents activities tested. Table [4.1]lists results of
experiments. According to results gathered, audio data itself is very informative to
distinct physical activity as well. In case of training with MSPC features only, mean
balanced accuracy score of 85% highlights the importance of the impact of sound in
recognizing primary physical activities. However, by combining with inertial sensor
modalities in color coded image base, overall result is improved as 90 %, which is a
very promising data considering different user habits, in case of using MSPC. MFCC
and inertial sensor fusion features also present promising results with 88 %. Figure
demonstrates overall F1 score per primary physical activity. Audio impact could
be seen conspicuously from the figure. The precise activity detection results are sub-
stantially improved when the audio sensor is paired with the inertial sensors. For
example, audio effect boosts up performance to distinct physical activity "Running"
among other ones, even though inertial sensors are insufficient. Simultaneously, it
has been observed that the audio sensor alone could execute the activity recognition

operation with a sufficient accuracy for some activities. Furthermore, it could be seen
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that MSPC performance is marginally better than MFCC performance for primary

activities, and as a result, combination performance.

Table 4.1: Holdout Results of Primary Physical Activities

Sensor | HoldoutID | ACC REC SPE BACC PRE Mac-FI Mic-F1 W-F1
1 0.767 0.692 0.943 0.817 0.680 0.683 0.767  0.768

2 0.786 0.717 0946 0.832 0.723 0.717 0.786  0.788

Inertial 3 0.769 0.700 0943 0.822 0.685 0.690 0.769  0.771
4 0.785 0.710 0946 0.828 0.722 0.712 0.785 0.786

5 0.786 0.707 0946 0.827 0.720 0.711 0.786  0.785

Mean 0.779 0.705 0945 0.825 0.706 0.702 0.779  0.780

1 0.785 0.709 0947 0.827 0.741 0.723 0.785 0.781

2 0.794 0.728 0949 0.839 0.750 0.738 0.794  0.791

MECC 3 0.782 0.699 0946 0.822 0.725 0.710 0.782  0.780
4 0.795 0.718 0950 0.834 0.750 0.732 0.795 0.793

5 0.795 0.711 0950 0.830 0.747 0.727 0.795 0.794

Mean 0.790 0.713 0948 0.830 0.743 0.726 0.790  0.788

1 0.802 0.726 0953 0.840 0.738  0.730 0.802  0.803

2 0.812 0.741 0956 0.849 0.753 0.745 0.812 0.815

MSPC 3 0.827 0.737 0.958 0.847 0.763 0.749 0.827  0.825
4 0.823 0.746 0958 0.852 0.782 0.762 0.828 0.831

5 0.826 0.735 0957 0.846 0.763 0.748 0.826  0.829

Mean 0.819 0.737 0956 0.847 0.760 0.747 0.819  0.820

1 0.842 0.791 0961 0.876 0.759 0.774 0.842 0.842

2 0.839 0.783 0.961 0.872 0.763 0.771 0.839  0.831

Inertial & 3 0.845 0.805 0962 0.884 0.772 0.787 0.845 0.846
MFCC 4 0.845 0.797 0962 0.879 0.762 0.777 0.845 0.845
5 0.840 0.794 0961 0.878 0.761 0.775 0.840 0.841

Mean 0.842 0.794 0961 0.878 0.752 0.776 0.842  0.842

1 0.876 0.848 0.970 0.909 0.840 0.842 0.876  0.877

2 0.860 0.823 0966 0.894 0.816 0.818 0.860  0.859

Inertial & 3 0.873 0.824 0969 0.896 0.842 0.831 0.873  0.875
MSPC 4 0.869 0.826 0968 0.897 0.832 0.827 0.869  0.869
5 0.867 0.808 0.968 0.888 0.848 0.824 0.867 0.868

Mean 0.869 0.826 0968 0.897 0.836 0.828 0.869 0.870s
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In hierarchy level two (H2), recognising operation is performed for 15 human con-
texts where each one includes at least one primary physical activities with all inertial,

audio and their combination data.

Table 4.2: Holdout Results of Placement Independent Contexts

Sensor | HoldoutID | ACC REC SPE BACC PRE Mac-F1 Mic-F1 W-Fl
1 0.718 0.528 0977 0.753 0521 0520 0.718 0.722

2 0.713 0474 0977 0.726 0483 0472  0.713 0.717

Inertial 3 0.698 0.495 0977 0.736 0.486 0.485 0.698 0.703
4 0.713 0490 0.977 0.733 0.513 0.495 0.713  0.717

5 0.710 0.481 0977 0.729 0.493 0479 0.710  0.711

Mean 0.711 0.494 0977 0.735 0499 0490 0.711 0.715

1 0.767 0.592 0982 0.787 0.589 0.588 0.767 0.771

2 0.748 0.522 0981 0.751 0.530 0.522  0.748 0.749

MECC 3 0.758 0.532 0982 0.757 0509 0.516 0.758  0.757
4 0.753 0.524 0981 0.752 0.591 0.527 0.753 0.758

5 0.767 0.546 0982 0.764 0.567 0.554  0.767 0.769

Mean 0.758 0.543 0981 0.762 0.557 0.541 0.758 0.761

1 0.777 0.585 0982 0.783 0582 0.580  0.777 0.776

2 0.776 0.572 0.982 0.777 0.598 0.583 0.776  0.775

MSPC 3 0.768 0.532 0982 0.757 0.594 0.548 0.768  0.769
4 0.751 0.509 0980 0.745 0542 0.521 0.751  0.751

5 0.768 0.573 0981 0.777 0581 0.574  0.768 0.767

Mean 0.768 0.554 0982 0.768 0.579 0.561 0.768 0.767

1 0.802 0.616 0985 0.800 0.608 0.610 0.802 0.801

2 0.792 0.585 0.984 0.784 0.606 0.590  0.792 0.793

Inertial & 3 0.796 0.598 0984 0.791 0.605 0.600  0.796 0.795
MFCC 4 0.805 0.603 0985 0.794 0.618 0.606 0.805 0.803
5 0.804 0.600 0.985 0.792 0.627 0.611 0.804 0.804

Mean 0.800 0.600 0.984 0.792 0.613 0.604  0.800 0.799

1 0.801 0.560 0984 0.772 0.617 0.579 0.801  0.802

2 0.798 0.609 0983 0.796 0.635 0.615 0.798  0.795

Inertial & 3 0.793 0.606 0983 0.795 0.620 0.610 0.793 0.791
MPSC 4 0.803 0.619 0985 0.802 0.637 0.622  0.803 0.802
5 0.795 0.591 0984 0.788 0.616 0.601 0.795 0.797

Mean 0.798 0.597 0984 0.790 0.625 0.605 0.798 0.797
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The labels used are presented in Figure [@.1] within cluster H2 Test Group - PIC, in-
dicates hierarchy depth two, 15 phone placement independent contexts. Table [4.2]
lists experiment results of each iteration. Compared to previous layer in hierarchy,
scores tend to downscale. However, there are multiple context issued here. The im-
portance of audio and inertial sensor fusions is seen when looking at the performance
outcomes. Without any audio help, predictability success become 75% model trained
only with inertial sensory information. It is observed that among others, "Standing,
Outside" context is much more prone to be confused with others. When any kind of
audio, whether MFCC or MSPC feature is combined with inertial sensors, however,

balanced accuracy score is increased to 80% in best case, 79% average.

Context-based scores are illustrated with Figure 4.3] Similar to the higher levels, fu-
sion of both inertial and audio sensors demonstrate better results compared to others,
in general. Especially, for contexts such as "Watching TV" which includes constant
background noise or "In a Meeting" includes human interaction, recognition perfor-

mance is extremely enhanced compared to inertial sensors.
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From the Figure.3] it is observed that overall performance of some contexts are very
high while others are low. Main reason behind that issue is unbalanced distribution

of real-world data both inter-user and intra-user based.

Lastly, user defined labels based on placement dependent contexts in hierarchy level
three (H3) are evaluated, results are listed in Table[d.3] Figure[d.I|shows 3rd hierarchy
classes listed under cluster H3 Test Group - PDC. The system tries to understand
activity, context as well as smartphone placement in this case, so, user-defined activity
count is increased as 28. Note that, Running & Exercise & Phone in Pocket context
images could not be constructed due to windowing limitations, therefore, hierarchy
level three does not include any context coming from Running primary activity. The

overall results are slightly lower than the higher level.

At this level, sensor fusion difference become more conspicuous. By using inertial
sensors’ information only, balanced accuracy score become 72.5%. Overall system
performance is boosted up to 77% by synthesizing two modalities, audio and iner-
tial together. In inertial only case, system tend to be confused based on smartphone
placement. With the help of audio to inertial sensor information, the model prediction

rate is increased for contexts including environmental sounds.

Table 4.3: Holdout Results of Placement Dependent Contexts

Sensor | HoldoutID | ACC REC SPE BACC PRE Mac-FI Mic-F1 W-F1
1 0.729 0.478 0989 0.734 0471 0462  0.729 0.738

2 0.738 0.442 0989 0.716 0.487 0444  0.738 0.742

Inertial 3 0.752 0495 0990 0.742 0.531 0500 0.752 0.755
4 0.729 0.425 0988 0.707 0.437 0421 0.729  0.731

5 0.733 0.468 0.989 0.729 0.491 0.466 0.733  0.742

Mean 0.736 0462 0989 0.725 0483 0.459 0.736  0.742

1 0.761 0.438 0990 0.714 0.564 0.469 0.761 0.767

2 0.757 0.444 0990 0.717 0.545 0457 0.757 0.758

MECC 3 0.764 0.492 0990 0.741 0.548 0.502 0.764 0.768
4 0.738 0.452 0989 0.721 0469 0.446 0.738 0.737

5 0.744 0.464 0989 0.727 0.469 0.458 0.744 0.746

Mean 0.753 0.458 0990 0.724 0.519 0.466 0.753  0.755
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Table 4.4: Holdout Results of Placement Dependent Contexts (continued)

Sensor | HoldoutID | ACC REC SPE BACC PRE Mac-Fl Mic-F1 W-F1

1 0.751 0.449 0989 0.719 0508 0464  0.751 0.755

2 0.736 0.425 0.989 0.707 0474 0.428 0.736  0.738

MSPC 3 0.751 0.457 0990 0.723 0527 0.469 0.751  0.756
4 0.689 0.363 0.987 0.675 0.390 0.367 0.689  0.692

5 0.704 0.399 0988 0.693 0455 0410 0.704 0.704

Mean 0.726 0.419 0989 0.704 0471 0.428 0.726  0.727

1 0.808 0.549 0992 0.770 0.609 0.564  0.808 0.810

2 0.811 0.573 0.992 0.783 0.626 0.585 0.811 0.814

Inertial & 3 0.798 0.573 0992 0.782 0.599 0.571 0.798  0.799
MFCC 4 0.802 0.546 0992 0.769 0.575 0.552 0.802  0.807
5 0.804 0.524 0992 0.758 0.623 0.546 0.804 0.804

Mean 0.805 0.553 0992 0.772 0.606 0.563 0.805  0.807

1 0.769 0.522 0990 0.756 0.559 0.527 0.769  0.768

2 0.804 0.563 0.992 0.777 0.604 0570  0.804 0.807

Inertial & 3 0.776 0.530 0991 0.760 0.659 0.564  0.776 0.778
MSPC 4 0.794 0.536 0992 0.764 0.578 0540  0.794 0.794
5 0.815 0.608 0.993 0.800 0.624 0.608 0.815 0.816

Mean 0.792 0.552 0991 0.772 0.605 0.562 0.792 0.793

In case of PDC performance evaluation under this group, Figure 4.4 demonstrates
placement dependent context performances overall 28 contexts, with F-1 scores. Con-
cluded from the figure, overall performance of the model that utilizes combined
modalities is resulted higher than the single modalities, only inertial or only audio.
Best fusion combination differ from user-defined activity to activity. For some cases,
MSPC and audio combination gives better prediction scores while for some cases,
MFCC and audio combination outperforms others. For example, for "Sitting, In a
Meeting, Phone on Table" PIC, MSPC and audio fusion gives best results while for
"Walking, Indoors, Phone in Pocket" PIC, MFCC and audio fusion resulted best F-1
scores. Sensor fusion enables model to differentiate contexts even smartphone place-
ment is in same configuration, which could model to mispredict current context only

using inertial sensors.
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Figure 4.4: PDC Main Group Independent F1 scores per context-placement - Holdout

4.1.2 5-Fold Cross Validation Results

The tests are conducted under this subsection with 5-fold cross validation method
where details are explained above. Results using each parts as test data once are

calculated and mean results are listed.
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In hierarchy level one, for main group independent testing part, there are six physical

activities, could be seen in 4.1 Table [d.5]lists the results for different input types.

Table 4.5: 5-Fold Results of Primary Physical Activities

Sensor | FoldID | ACC REC SPE BACC PRE Mac-F1 Mic-F1 W-F1
1 0.774 0.716 0.945 0.830 0.666 0.687 0.774  0.775
2 0.757 0.695 0941 0.818 0.653 0.671 0.757  0.759
3 0.766 0.705 0.943 0.824 0.661 0.680 0.766  0.768

Inertial
4 0.768 0.705 0944 0.824 0.661 0.679 0.768 0.769
5 0.754 0.690 0.940 0.815 0.649 0.667 0.754  0.755
Mean | 0.764 0.702 0943 0.823 0.658 0.677 0.764  0.765
1 0.794 0.701 0948 0.824 0.740 0.716 0.794  0.790
2 0.801 0.717 0.950 0.833 0.748 0.728 0.801  0.798
MECC 3 0.806 0.724 0.951 0.837 0.752 0.734 0.806  0.804
4 0.786 0.693 0947 0.820 0.700 0.695 0.786  0.784
5 0.805 0.731 0.951 0.841 0.754 0.740 0.805 0.804
Mean | 0.798 0.713 0949 0.831 0.739 0.722 0.798 0.796
1 0.816 0.722 0.954 0.838 0.755 0.737 0.816  0.817
2 0.790 0.745 0.950 0.848 0.738 0.738 0.790 0.793
MSPC 3 0.799 0.708 0.950 0.829 0.788 0.741 0.799 0.797
4 0.783 0.737 0949 0.843 0.731 0.730 0.783 0.786
5 0.795 0.749 0.951 0.850 0.745 0.743 0.795 0.798
Mean | 0.797 0.732 0951 0.842 0.751 0.738 0.797  0.798
1 0.784 0.680 0.947 0.814 0.707 0.693 0.784  0.783
2 0.775 0.693 0.944 0.819 0.721 0.706 0.775  0.771
LMSPC 3 0.774 0.687 0.945 0.816 0.746 0.711 0.774  0.774

4 0.762 0.669 0.941 0.805 0.701 0.683 0.762  0.758

5 0.779 0.698 0.946 0.822 0.725 0.710 0.779  0.777
Mean | 0.775 0.686 0.945 0.815 0.720 0.700 0.775 0.773
1 0.882 0.832 0972 0902 0.826 0.829 0.882  0.882

2 0.861 0.819 0.967 0.893 0.814 0.816 0.861 0.862
Inertial & 3 0.886 0.831 0973 0902 0.855 0.841 0.886  0.887
MFCC 4 0.886 0.831 0.973 0.902 0.855 0.841 0.854 0.854
5 0.886 0.842 0973 0908 0.856 0.848 0.886  0.887
Mean | 0.874 0.826 0.970 0.898 0.832  0.828 0.874 0.874
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Table 4.6: 5-Fold Results of Primary Physical Activities (continued)

Sensor FoldID | ACC REC SPE BACC PRE Mac-FlI Mic-FI W-F1
1 0.884 0.865 0972 0919 0.829 0.843 0.884 0.885

2 0.870 0.846 0.969 0.907 0.813 0.827 0.870  0.870

Inertial & 3 0.881 0.853 0972 0912 0.823 0.835 0.881 0.882
MSPC 4 0.875 0.846 0970 0.908 0.816 0.828 0.875 0.875
5 0.885 0.855 0.972 0914 0.827 0.838 0.885 0.886

Mean | 0.879 0.853 0.971 0912 0.822 0.834 0.879  0.880

1 0.873 0.814 0.969 0.892 0.828  0.821 0.873  0.873

2 0.863 0.792 0.966 0.879 0.833 0.811 0.863  0.862

Inertial & 3 0.866 0.801 0.967 0.884 0.838 0.818 0.866  0.865
LMSPC 4 0.873 0.809 0.969 0.889 0.827 0.817 0.873  0.872

5 0.877 0.811 0.970 0.890 0.830 0.820 0.877 0.876
Mean | 0.871 0.806 0.968 0.887 0.831 0.817 0.871 0.870

The model performs with overall 82% with using inertial sensors only, as could be
seen from the results. However, single sound sensors indicate better results than in-
ertial in case of MFCC and MSPC features, while LMSPC is slightly lower. Among
three audio sensor types, MSPC is the most informative one with prediction score
84%, where 83% 1is achieved with MFCC and 82% with LMSPC. The sensor fusion
effect is noticeable in the results. The average balanced accuracy score is measured
as 91% for inertial and MSPC sensor fusions, while other fusion types give very ac-
curate results as well. Figure[d.5]illustrates average F1 scores measured per each fold
per each classes. The figure clearly demonstrates the audio impact. When the audi-
tory sensor is used in conjunction with the inertial sensors, the accuracy of activity
detection is greatly improved. For instance, in the case of the "Bicycling" activity, the
bar graph shows that the auditory component MSPC aids the model in identifying that
activity. Additionally, it is discovered that for some activities, the audio sensor alone
could perform the activity recognition operation with adequate accuracy, especially

feature MSPC of audio in this case.
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Figure 4.5: PPA Main Group Independent F1 scores per activity - 5-Fold

In hierarchy level two (H2), multi-class classification is operated among 15 dis-
tinct activity-context pair classes represented in Figure @.1] which indicates Place-
ment Independent Contexts (PIC). The test are conducted by applying 5-fold cross-
validation. Table [4.7]includes all fold results in different metrics and average. When
only inertial sensors’ information is employed, the model’s prediction score is mea-
sured at 75%. The auditory features imply higher scores than the inertial sensor alone.
MSPC appears to be the most informative of the three audio elements when compared
to the others, with balanced accuracy score 79%. The enhancing effect of audio and
inertial sensor fusion may be deduced from the findings. The model performance is
highest when inertial and MFCC fusion is used, with an nearly 81% balanced accu-
racy score. Inertial-MSPC and inertial-LMSPC scores are both slightly lower than
this number, both of them achieve 80% balanced accuracy score. These results show
that when auditory sensors are combined with inertial sensors, they produce excellent
results not just in recognizing physical activity but also in identifying contexts. Si-
multaneously, results are acquired demonstrating how effective audio sensors are at

recognizing context, regardless from the most suitable type.
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Table 4.7: 5-Fold Results of Placement Independent Contexts

Sensor | FoldID | ACC REC SPE BACC PRE Mac-F1 Mic-F1 W-F1
1 0.726 0.543 0979 0.761 0.520 0.522 0.726  0.730

2 0.722 0.515 0978 0.747 0.506 0.504 0.722  0.726

Inertial 3 0.712 0.507 0.978 0.742 0.505 0.499 0.712  0.719
4 0.732 0.555 0979 0.767 0.527 0.538 0.732  0.736

5 0.732 0.510 0979 0.744 0.519 0.508 0.732  0.734

Mean | 0.725 0.526 0979 0.752 0.515 0.514 0.725  0.729

1 0.766 0.550 0.982 0.766 0.549 0.545 0.766  0.770

2 0.761 0.541 0982 0.761 0.560 0.545 0.761 0.762

MFCC 3 0.760 0.552 0.981 0.767 0.581 0.559 0.760 0.760
4 0.752 0.563 0981 0.772 0.546 0.551 0.752  0.757

5 0.758 0.554 0.981 0.768 0.571  0.559 0.758  0.760

Mean | 0.759 0.552 0982 0.767 0.561 0.552 0.759 0.762

1 0.796 0.615 0.984 0.800 0.622 0.613 0.796  0.795

2 0.791 0.580 0.983 0.781 0.637 0.602 0.791  0.790

MSPC 3 0.794 0.615 0984 0.799 0.639 0.624 0.794  0.795
4 0.784 0.602 0.983 0.792 0.579 0.588 0.784 0.784

5 0.789 0.585 0.983 0.784 0.598 0.588 0.789  0.788

Mean | 0.791 0.599 0983 0.791 0.615 0.603 0.791  0.790

1 0.791 0.623 0.983 0.803 0.643 0.629 0.791 0.792

2 0.761 0.556 0981 0.769 0.587 0.563 0.761 0.761

LMSPC 3 0.758 0.562 0981 0.771 0.564 0.560 0.758  0.760
4 0.785 0.579 0983 0.781 0.608  0.589 0.785 0.785

5 0.768 0.567 0.981 0.774 0.602 0.579 0.768  0.765

Mean | 0.773 0.577 0.982 0.780 0.601 0.584 0.773  0.772

1 0.819 0.630 0.986 0.808 0.630 0.628 0.819 0.818

2 0.803 0.622 0.985 0.803 0.620 0.619 0.803  0.804

Inertial & 3 0.807 0.620 0.985 0.802 0.630 0.624 0.807  0.807
MFCC 4 0.809 0.621 0.985 0.803 0.640 0.628 0.809  0.808
5 0.825 0.638 0986 0.812 0.647 0.640 0.825 0.823

Mean | 0.813 0.626 0985 0.806 0.633 0.628 0.813 0.812
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Table 4.8: 5-Fold Results of Placement Independent Contexts (continued)

Sensor | FoldID | ACC REC SPE BACC PRE Mac-F1 Mic-F1 W-F1

1 0.791 0.597 0.984 0.790 0.609 0.599 0.791 0.792

2 0.805 0.611 0984 0.798 0.640 0.620 0.805 0.802

Inertial & 3 0.814 0.631 0985 0.808 0.660 0.642 0.814 0.812
MSPC 4 0.802 0.593 0.984 0.789 0.619 0.604 0.802  0.801
5 0.814 0.660 0.986 0.823 0.659 0.657 0.814 0.816

Mean | 0.805 0.618 0985 0.802 0.638 0.624 0.805 0.804

1 0.800 0.637 0.984 0.811 0.647 0.637 0.800  0.801

2 0.797 0.615 0984 0.800 0.619 0.610 0.797 0.797

Inertial & 3 0.806 0.615 0.985 0.800 0.649 0.625 0.806  0.807
LMSPC 4 0.807 0.644 0.985 0.814 0.632 0.633 0.807  0.807
5 0.790 0.577 0.983 0.780 0.596 0.583 0.790 0.788

Mean | 0.800 0.618 0.984 0.801 0.629 0.617 0.800  0.800

Activity-context pair based average F1 scores are visualized in figure[4.6] In general,

fusion of both inertial and auditory sensors produces superior results than others,

similar to the observations in other levels. Some contexts have very high overall per-

formance while others have low overall performance due to unequal data distribution.
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Figure 4.6 also demonstrates importance of the audio. For example, model performs
with much more higher recognition accuracy rate in case of activities including ve-
hicle noise, such as "Sitting, In a Car" or environmental noise such as "Standing

Outside".

In hierarchy level three (H3), multi-class classification is operated with 28 classes
represented in the level three in Figure 4.1} In this level, smartphone placements are
handled separately per each primary physical activity and context pairs. Their gen-
eral name is Placement Dependent Contexts (PDC). Results of model performance
is listed in Table 4.9 per each input type, with all fold results as well as overall re-
sult. When inertial and auditory sensor characteristics are fused, the mean findings
obtained from 5-fold cross validation performance metrics show that the recognition
performance improves. The model show similar performances with three versions
of the fusion, with distinct audio features. Balanced accuracy score is measured as
76% in overall. Using inertial sensors only is resulted with 72% balanced accuracy
score. Among three audio features, MFCC become the most informative one during

prediction with score 71%.

Table 4.9: 5-Fold Results of Placement Dependent Contexts

Sensor | FoldID | ACC REC SPE BACC PRE Mac-F1I Mic-F1 W-F1
1 0.730 0.454 0989 0.722 0.460 0.439 0.730 0.739
2 0.733 0475 0989 0.732 0.466 0.458 0.733  0.737
3 0.730 0.427 0.989 0.708 0.405 0.403 0.730  0.733

Inertial
4 0.712 0.404 0988 0.696 0.385 0.383 0.712 0.716
5 0.718 0.451 0989 0.720 0.464 0437 0.718 0.727
Mean | 0.725 0.442 0989 0.716 0436 0.424 0.725 0.731
1 0.749 0.508 0.990 0.749 0.519 0.499 0.749  0.755
2 0.753 0.415 0990 0.702 0.443 0415 0.753 0.754
MECC 3 0.728 0.423 0.989 0.706 0.408 0.404 0.728 0.732
4 0.759 0.412 0990 0.701 0.466 0.430 0.759  0.758

5 0.749 0.425 0990 0.707 0.403 0.409 0.749  0.753
Mean | 0.748 0.436 0990 0.713 0.448 0.431 0.748  0.750
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Table 4.10: 5-Fold Results of Placement Dependent Contexts (continued)

Sensor | FoldID | ACC REC SPE BACC PRE Mac-F1 Mic-F1 W-F1
1 0.727 0.429 0.989 0.709 0.424 0419 0.727 0.731

2 0.732 0.387 0989 0.688 0.434 0.399 0.732  0.734

MSPC 3 0.737 0427 0989 0.708 0.483 0.431 0.737 0.742
4 0.717 0.394 0.988 0.691 0.405 0.394 0.717  0.720

5 0.645 0.280 0.985 0.633 0.284 0.274 0.645 0.645

Mean | 0.712 0.384 0988 0.686 0.406 0.384 0.712 0.714

1 0.681 0.410 0.987 0.698 0.430 0.411 0.681 0.687

2 0.672 0.376 0986 0.681 0.325 0.345 0.672  0.675

LMSPC 3 0.716 0.378 0988 0.683 0.402 0.380 0.716  0.716
4 0.678 0.329 0.987 0.658 0.348  0.329 0.678 0.684

5 0.689 0.453 0.987 0.720 0.413 0416 0.689  0.702

Mean | 0.687 0.389 0.987 0.688 0.384 0.376 0.687 0.693

1 0.802 0.535 0.992 0.763 0.505 0.511 0.802  0.804

2 0.798 0.535 0992 0.764 0.529 0.524 0.798  0.803

Inertial & 3 0.788 0.543 0991 0.767 0.563 0.541 0.788  0.791
MFCC 4 0.816 0.547 0.993 0.770 0.631 0.572 0.816  0.815
5 0.793 0.523 0.992 0.758 0.577 0.531 0.793  0.793

Mean | 0.799 0.537 0992 0.764 0.561 0.536 0.799  0.801

1 0.801 0.533 0.992 0.763 0.544 0.518 0.801  0.800

2 0.770 0.534 0991 0.763 0.546 0.516 0.770  0.773

Inertial & 3 0.810 0.570 0992 0.781 0.607 0.575 0.810 0.812
MSPC 4 0.809 0.545 0.992 0.768 0.622  0.556 0.809  0.809
5 0.772 0.488 0.991 0.740 0.521 0.484 0.772  0.773

Mean | 0.793 0.534 0.992 0.763 0.568 0.530 0.793  0.794

1 0.787 0.558 0.991 0.775 0.572  0.556 0.787  0.791

2 0.795 0.586 0.992 0.789 0.622 0.592 0.795 0.796

Inertial & 3 0.778 0.495 0991 0.743 0.509 0.497 0.778  0.778
LMSPC 4 0.774 0.481 0.991 0.736 0.486 0.477 0.774  0.776
5 0.774 0.540 0.991 0.765 0.597 0.545 0.774  0.778

Mean | 0.782 0.532 0991 0.762 0.557 0.533 0.782 0.784
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Two subfigures in figure[4.7|demonstrates model performance over each class for each
input type, in F1 measurement unit. PDC-based performance is revealed to be very
variable for each class, with certain situations doing exceptionally well. The main
cause of this problem is an unequal distribution of user data. Labels with a larger
sample of examples work well and model learns their features very accurately, but it

performs poorly when recognizing labels with a smaller sample of data.

Average F-1 Scores of Labels with Different Sensor Fusions - H3 MGI

1.0
B inertial
= mfcc
H == mspc
3 Imspc
[ inertial + mfcc
0.8 B3 inertial + mspc

= inertial + Imspc

0.6 H l

0.4

0.2

F1 Score
]
T
L
T

I

0.0-

SIT_IAM_POT {

LYD_SLE_POT {
LYD_SUR_PIH
LYD_WAT_POT
SIT_SUR_PIH
SIT_SUR_POT {
SIT_IAC_PIB {
SIT_IAC_PIH {
SIT_IAC_PIP
SIT_IAM_PIP ¢
SIT_WAT_PIH
SIT_WAT_PIP
SIT_WAT_POT

(a)

Average F-1 Scores of Labels with Different Sensor Fusions - H3 MGI cont.

B inertial
==

0.8 n 3 mspe

3 Imspc

3 inertial + mfcc

I inertial + mspc

B inertial + Imspc

0.1

F1 Score
o [=] o o o o
N w » n o ~
)

0.0-

WLK_TLK_PIP
WLK_TLK_PIH

STN_IND_PIP £

STN_IND_PIB +
STN_IND_PIH
STN_IND_POT
STN_OUT_PIH
STN_OUT_PIP
WLK_IND_PIP
WLK_IND_POT
WLK_OUT_PIB
WLK_OUT_PIH
WLK_OUT_PIP
WLK_SHP_PIB
BIC_EXE_PIP

5
o
o

@

(b)

Figure 4.7: PDC Main Group Independent F1 scores per context-placement - 5-Fold

59



4.2 Hierarchical Evaluation based on Main Group Dependency

In this section, first, recognition performance of primary physical activities (H1) are
evaluated. Performance of context recognition in case of placement independent con-
texts (H2) and placement dependent contexts (H3) are represented within groups that
share same prior physical activity and at same hierarchical level. Figure [4.§]illus-
trates user-defined labels per each step of the hierarchy and test groups where results

are listed under this section. Holdout and 5-fold cross validation evaluations are per-

formed.
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4.2.1 Holdout Cross Validation Results

The tests are carried out in this part using the holdout cross validation approach,
which is described in greater detail above. Holdout method is applied five times and

average results are listed.

Recognition performance for primary physical activity recognition task is similar to
results in previous section for same hierarchy level, since instead of 6 classes, there
are 5 main physical activities, "Bicycling" is not included in this classification. Figure
H.8]includes those five activities with HI Test Group - PPA. Scores of each iteration,
as well as mean for different metrics are listed in Table 4.1l Overall BA score mea-
sured with only inertial sensor features is 82%. However, it is observed from the
results that only using audio features whether it is MFCC or MSPC, recognition per-
formance become nearly 83%, slightly more than inertial only. This concludes audio
only could be used to predict primary human activity. As predicted, audio and iner-
tial sensor fusion images have an empowering effect with the described lightweight
model. Average of balanced accuracy scores for MSPC and four inertial sensor fusion

is obtained as 90.7% where MFCC and inertial combination gives BA rate 90%.

Figure [d.9]demonstrates model performance over five primary physical contexts, with
F1 score unit. The overall performance is much improved by combining three charac-
teristics of each inertial sensor and several feature configurations of the audio sensor.
The model especially confuses "Standing" and "Walking" activities with each other.
Furthermore, in the case of "Running" physical activity, the auditory signal becomes

significantly more informative.
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Table 4.11: Holdout Results of Primary Physical Activity Results

Sensor | HoldoutID | ACC REC SPE BACC PRE Mac-Fl Mic-F1 W-F1
1 0.795 0.702 0940 0.821 0.656 0.672 0.795 0.797

2 0.788 0.692 0.938 0.815 0.647 0.663 0.788  0.790

Inertial 3 0.800 0.718 0941 0.830 0.664 0.683 0.800  0.802
4 0.799 0.693 0.941 0.817 0.655 0.669 0.799  0.801

5 0.806 0.711 0943 0.827 0.665 0.682 0.806  0.807

Mean 0.798 0.703 0941 0.822 0.657 0.674  0.798 0.800

1 0.791 0.708 0.937 0.823 0.704 0.705 0.791  0.792

2 0.797 0.714 0.939 0.827 0.710 0.712 0.797 0.798

MFCC 3 0.802 0.726 0941 0.834 0.717 0.721 0.802  0.803
4 0.796 0.705 0.939 0.822 0.706 0.705 0.796  0.798

5 0.800 0.720 0.940 0.830 0.742 0.729 0.800  0.802

Mean 0.797 0.715 0939 0.827 0.716 0.714  0.797 0.799

1 0.793 0.727 0938 0.833 0.714 0.720  0.793 0.793

2 0.795 0.717 0939 0.828 0.713 0.715 0.795 0.798

MSPC 3 0.803 0.727 0942 0.834 0.720 0.723 0.803  0.804
4 0.801 0.721 0.940 0.831 0.718 0.719 0.801 0.802

5 0.786 0.723 0.936 0.830 0.709 0.715 0.786  0.787

Mean 0.796 0.723 0939 0.829 0.715 0.719 0.796  0.797

1 0.892 0.844 0.969 0907 0.824 0.833 0.892  0.892

2 0.886 0.828 0.966 0.897 0.818 0.823 0.886  0.886

Inertial & 3 0.879 0.818 0964 0.891 0.806 0.812 0.879  0.879
MFCC 4 0.890 0.834 0968 0.901 0.821 0.827 0.890  0.890
5 0.893 0.836 0.969 0.903 0.823 0.829 0.893 0.894

Mean 0.889 0.832 0.967 0.900 0.818 0.825 0.889  0.889

1 0.894 0.847 0969 0.908 0.857 0.852 0.894  0.896

2 0.885 0.826 0967 0.896 0.822 0.824  0.885 0.887

Inertial & 3 0.900 0.853 0971 0912 0.844 0.848 0.900 0.902
MSPC 4 0.898 0.850 0.970 0910 0.850 0.850  0.898 0.900
5 0.899 0.843 0.970 0.906 0.873 0.856 0.899 0.901

Mean 0.895 0.844 0969 0.907 0.849 0.846 0.895 0.897

User-defined activities in the second and third steps of the hierarchy tree, placement

independent contexts and placement dependent contexts respectively, are used to per-
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form model evaluation with user-defined activities in the branches of the primary
activity they are connected and that share same hierarchical layers. Therefore, for

each level, there are four different classification are conducted.

Table 4.12: Average Holdout Results of Placement Independent Context Group Test-

ing
Test Group Sensor ACC REC SPE BACC PRE Mac-Fl Mic-F1 W-F1
Inertial 0965 0.765 0.902 0.834 0.756 0.759 0.965 0.966
MFCC 0970 0.784 0912 0.848 0.791 0.786 0970 0.970
PIC-1 MSPC 0965 0.753 0.895 0.824 0.761 0.754 0.965 0.965
Inertial & MFCC | 0.974 0.842 0940 0.891 0.804 0.821 0974 0973
Inertial & MSPC | 0.973 0.798 0.920 0.859 0.795 0.794 0973 0973
Inertial 0.938 0.770 0.799 0.790 0.729 0.755 0.938  0.937
MFCC 0948 0.679 0.679 0.679 0.720 0.694 0.948 0.946
PIC-2 MSPC 0949 0.694 0.694 0.694 0.735 0.707 0.949 0.948
Inertial & MFCC | 0.952 0.825 0.825 0.825 0.752 0.791 0952 0952
Inertial & MSPC | 0.950 0.799 0.799 0.799 0.740 0.766 0.950 0951
Inertial 0.786 0.760 0.920 0.840 0.777 0.767 0.786  0.786
MFCC 0.777 0.768 0919 0.844 0.761 0.762 0.777  0.777
PIC-3 MSPC 0.809 0.797 0.927 0.862 0.813 0.803 0.809 0.808
Inertial & MFCC | 0.974 0.842 0940 0.891 0.804 0.821 0974 0974
Inertial & MSPC | 0.838 0.836 0.938 0.887 0.848  0.840 0.838 0.838
Inertial 0.493 0469 0.810 0.637 0470 0.463 0.493  0.492
MFCC 0.524 0.510 0.826 0.668 0.499 0.493 0.524 0521
PIC-4 MSPC 0464 0.389 0.797 0593 0.404 0.389 0.464 0.460
Inertial & MFCC | 0.519 0.481 0.820 0.651 0.480 0475 0.519 0.517
Inertial & MSPC | 0.569 0.542 0.843 0.692 0.539 0.535 0.569 0.566

For each test group, model is tested with different test data five times. Average val-
ues of those with respect to corresponding test group is listed with Table {.12] for
position independent human activity recognition. At this level, each activity indicates
a combination of a context and a primary physical activity. Test group PIC-1 shows
how proposed model perform predicting contexts for primary physical activity "Lying
Down". Because of the dominance of context "Sleeping", this comparison is done by
very imbalanced data. However, by avoiding this perplexing predicament, the model

has produced efficient recognition results by giving a class weight to each class dur-
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ing training. Audio and inertial sensor fusion produces more accurate data than any
sensor on its own. The combination of inertial and MFCC yields an 89% balanced
accuracy score, whereas the combination of inertial and MSPC yields an 85%. In this
situation, audio feature MFCC, has significantly improved recognition performance
compared to MSPC. There is another observation in this case is that, accuracy results
are very high compared to balanced accuracy. Accuracy gives true predictions over
all, therefore, it is possible to conclude that model is successful in estimating the class

with a considerably higher number of examples.

Test group PIC-2 represents, two contexts of "Standing". Contributing sample im-
age count of "Indoors" is excessively much compared to "Outside". Again, audio
existence in the system rises performance score. Inertial only performs with 79% bal-
anced accuracy rate, while inertial and MSPC fusion follows it with nearly 80%. In
this case, MFCC is the key audio feature which increases overall performance com-
bined with inertial sensors. Average balanced accuracy result become 82.5%. While
neither type of audio helps to predict as accurately as inertial alone, when used as a

fusion with inertials, they have an improving effect on system performance.
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Model performance to distinct different contexts based on provided data is shown
with the figure .10} Values of each context here illustrates context-based perfor-
mance within corresponding test group, in PIC groups. Average F1 scores of five
iterations are shown. In general, sensor fusion approach works well compared to
single sensory information. Context "Sleeping" have pretty high recognition per-
formance compared to others, but this cluster includes extremely high sample size
compared to others. Still, model could utilize images to yield good performance over
small sample sized contexts as well, by using class weight technique. PIC-1, PIC2
and PIC-3 yields great performances, average balanced accuracy 87% with sensor
fusion, with MFCC features. However, model could not recognize PIC-4, activity
"Walking" contexts as well as other groups in the hierarchy, which results BA score
of 84% overall.

Placement Independent Context group PIC-3 indicates contexts from ancestor phys-
ical activity "Sitting". There are four contexts to be predicted in this case. In case
of sample sizes, there is a more accurate distribution between class samples, there-
fore, class weights. Average balanced accuracy with only using inertial sensors is
around 84%. Sensor fusion with both MFCC and MSPC performs with 89% and
88.6% respectively. However, there is an interesting outcome observed in this case.
Only MSPC’s success in correctly identifying which of these four classes any image
supplied to it belongs to is 86%, little more than only inertial. Contexts such as "In
a car", "In a meeting" belongs to that class is more predictable with given either en-
vironmental sounds or human interaction. Figure {.TT]illustrates confusion matrices

per each sensor modality.

Last test group is in the second hierarchy level is PIC-4, contexts of activity "Walk-
ing". Among all other test groups in this hierarchy level, lower results are obtained
in this group. When possible issues are investigated, it is observed that system could
properly distinguish between contexts "Outside" and "Talking". A reason might be
that environmental sounds in an external setting where people are communicating
with one other could also generate difficulty in the system’s capacity to recognize
context, even if the person is not speaking. All in all, best performance is achieved

with sensor fusion again, with MSPC and inertial sensors as BA 69%.
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In hierarchy level three, activity groupings divided into different contexts in the pre-
vious level are also grouped according to smartphone placements. Table #.13|denotes

the results of four different category of user-defined activities.

At level three hierarchy, a primary physical activity occur together with a context
which is represented with multiple input types, based on smartphone placement. First
test group is called PDC-1, which indicates primary activity "Lying Down"’s context
classes constructed by different settlement of smartphone. In this test group, sensor
fusion had a enhancing impact. Model performs with 83% balanced accuracy rate
while using inertial sensory information during prediction. When audio sensors are
included, the success rate rises to 84-85% as BA. As could be predicted from accuracy

rates, it is a highly imbalanced sub-group.

Table 4.13: Average Holdout Results of Placement Dependent Context Group Testing

Test Group Sensor ACC REC SPE BACC PRE Mac-F1I Mic-FI W-F1
Inertial 0.979 0.730 0.934 0.832 0.769 0.736 0.979  0.980

MFCC 0977 0.686 0.926 0.806 0.743  0.695 0.977 0977

PDC-1 MSPC 0971 0.572 0900 0.736 0.630 0.592 0971 0972

Inertial & MFCC | 0.973 0.747 0934 0.840 0.699 0.721 0973 0974
Inertial & MSPC | 0.972 0.794 0.926 0.860 0.878 0.822 0972 0973

Inertial 0.771 0.638 0943 0.801 0.686 0.648 0.771  0.771
MFCC 0.724 0.534 0929 0.731 0.617 0.551 0.724  0.726
PDC-2 MSPC 0.642 0470 0923 0.701 0.467 0.468 0.642 0.642

Inertial & MFCC | 0.870 0.835 0.967 0.901 0.873 0.839 0.870 0.871
Inertial & MSPC | 0.830 0.673 0.956 0.815 0.828 0.713 0.830  0.830

Inertial 0.742 0.574 0.966 0.770 0.513 0.536 0.742  0.743
MFCC 0.780 0.581 0.968 0.774 0.605 0.581 0.780 0.781
PDC-3 MSPC 0.784 0.595 0.969 0.782 0.625 0.603 0.784 0.784

Inertial & MFCC | 0.834 0.680 0.976 0.828 0.698 0.678 0.834  0.835
Inertial & MSPC | 0.845 0.744 0978 0.861 0.682 0.703 0.845 0.845

Inertial 0.506 0.562 0.924 0.743 0.531 0.527 0.506  0.507
MFCC 0466 0.505 0917 0.711 0.520 0.491 0.466 0.466
PDC-4 MSPC 0.322 0269 0.893 0.581 0323 0.261 0.322  0.323

Inertial & MFCC | 0.573 0.612 0932 0.772 0.614  0.607 0.573 0.572
Inertial & MSPC | 0.476 0.509 0.917 0.713 0.561 0.494 0476 0477
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In second test group, PDC-2, group of Standing physical activity’s placement depen-
dent contexts are evaluated. With utilizing inertial sensor color coded images, model
performance reaches 80% BA in average. Audio MSPC and inertial combination
rises that performance to 81%, where MFCC feature usage increase the performance
to nearly 90%. Although not a particularly impressive result in single sensor, the use

of sensors in fusion improves the overall performance.

PDC-3 indicates group of contexts derived with respect to main activity "Sitting".
The effect of numerous sensors combined together is seen here, as it is in the others.
Model trained with only inertial sensors have 77% accurate prediction rate in case of
BA. With the help of audio sensors, performance score rises to 86% in average using
MSPC where it is observed around 82% for MFCC. These performance-enhancing
results highlight the importance of the audio sensor. It could be seen from confu-
sion matrices of the sensors. In figure d.12] it is seen that from inertial sensor only
confusion matrix, having the same primary physical activity "Sitting" with the same
smartphone placement "Phone on Table", model is vunerable to predict whether im-
age belongs to context class "Surfing the Internet" or "Watching TV". However, with
the help of using audio sensors, this vunerability decays during prediction in the same

situation.

Lastly, placement oriented user-defined activities derived from primary activity "Walk-
ing" which represented with group PDC-4 are evaluated. Deep neural network per-
formance trained by inertial sensor individually gives 74% balanced accuracy score.
The overall balanced accuracy score decreases when inertial sensors combined with
MSPC. On the other hand, performance of the model tend to increase by using MFCC
features of audio rather than MSPC. Performance rises to 77% by using MFCC fea-
tures and inertial sensors together. Deep model performance trained only by those
audio features become 71%, i.e. system accurately tell primary physical activity,
context and smartphone placement of a person with 71% by only looking at sounds

around.

Figure [4.13]illustrates F1 score yielded by model based on context-placement pairs.
MEFCC, outperforms MSPC at this level for some user-defined labels. For example,
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MFCC:s are particularly potent compared to MSPCs in the placement-dependent con-
text "Sitting, In a Meeting, Phone in Hand," and as a result, MFCC and inertial fusion
performance. In case of BA score, average performance of test groups PDC-1, PDC-2
and PDC-3 87%, as observed for the same main group dependent part at the previ-
ous level. However, in hierarchy three, overall performance of PDC-4 is increased to

77%. The more successful outcome emphasizes the importance of phone placement.
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4.2.2 5-Fold Cross Validation Results

The tests are carried out in this section using a 5-fold cross validation procedure, as
detailed above. The findings are generated using each part as test data and the mean

results of them are reported.

Recognizing operations are done for five main physical activities with all inertial,
audio, and their combination data at hierarchy level one (H1). Figure 4.8 shows
which classes are used in the classification. Table 4.14] lists results with different
metrics. Model performs with balanced accuracy score 82%. Among three audio
features tried here, model gives the most accurate results with MSPC feature of audio.
Other audio features, MFCC and LMSPC, also contribute by themselves with values
that are extremely near to the inertial sensors’ score. However, the model shows
great performance, 90% with audio and inertial sensor fusion. The highest average
balanced accuracy score is obtained by using inertial and MSPC sensor fusion, where
MFCC and inertial fusion result is very score to that. Although the score of LMSPC
and inertial combination is lower than the others, as a result, it is also observed that

better results are achieved if sensors are used together.

Even though "Sitting" and "Lying down" activities have large data contribution, still
very small data seem to be efficient while detecting activities as could be seen from

"Running" in figure 4.14]
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Table 4.14: 5-Fold Results of Primary Physical Activities

Sensor | FoldID | ACC REC SPE BACC PRE Mac-F1 Mic-F1 W-F1
1 0.789 0.713 0.938 0.825 0.659 0.681 0.789  0.791

2 0.779 0.692 0.934 0.813 0.656 0.672 0.779  0.781

Inertial 3 0.789 0.699 0938 0.819 0.654 0.673 0.789  0.791
4 0.787 0.712 0.937 0.825 0.673 0.690 0.787 0.789

5 0.783 0.706 0.936 0.821 0.668 0.685 0.783 0.784

Mean | 0.785 0.705 0.937 0.821 0.662 0.680 0.785 0.787

1 0.789 0.691 0.937 0.814 0.716 0.701 0.789  0.790

2 0.799 0.701 0940 0.821 0.727 0.712 0.799  0.800

MECC 3 0.800 0.703 0941 0.822 0.727 0.713 0.800  0.801
4 0.795 0.697 0.940 0.818 0.732 0.711 0.795 0.797

5 0.799 0.706 0.941 0.824 0.738 0.718 0.799  0.801

Mean | 0.796 0.700 0940 0.820 0.728 0.711 0.796  0.798

1 0.803 0.736 0.940 0.838 0.730 0.732 0.803  0.803

2 0.809 0.748 0944 0.846 0.718 0.732 0.809 0.812

MSPC 3 0.819 0.729 0.947 0.838 0.734  0.731 0.819  0.820
4 0.827 0.747 0.949 0.848 0.773  0.757 0.827 0.828

5 0.829 0.730 0.949 0.840 0.773 0.746 0.829  0.830

Mean | 0.817 0.738 0946 0.842 0.746 0.740 0.817 0.818

1 0.790 0.675 0.938 0.806 0.707 0.685 0.790 0.792

2 0.791 0.689 0939 0.814 0.713 0.698 0.791 0.793

LMSPC 3 0.803 0.705 0.942 0.824 0.726 0.712 0.803  0.805
4 0.805 0.706 0.943 0.825 0.728 0.713 0.805  0.807

5 0.777 0.652 0.933 0.792 0.700 0.673 0.777  0.776

Mean | 0.793 0.686 0.939 0.812 0.715 0.696 0.793  0.795

1 0.871 0.822 0.962 0.892 0.834 0.828 0.871 0.871

2 0.882 0.837 0966 0901 0.845 0.841 0.882  0.882

Inertial & 3 0.882 0.810 0.966 0.888 0.842 0.824 0.882  0.882
MFCC 4 0.892 0.853 0.969 0911 0.845 0.849 0.892 0.892
5 0.868 0.798 0.962 0.880 0.802 0.800 0.868  0.869

Mean | 0.879 0.824 0965 0.894 0.834 0.828 0.879  0.879
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Table 4.15: 5-Fold Results of Primary Physical Activities (continued)

Sensor FoldID | ACC REC SPE BACC PRE Mac-FlI Mic-FI W-F1
1 0.859 0.834 00959 0.897 0.812 0.822 0.859 0.861

2 0.867 0.862 0.962 0912 0.824 0.841 0.867 0.869

Inertial & 3 0.850 0.805 0.957 0.881 0.734 0.763 0.850 0.852
MSPC 4 0.862 0.829 0.961 0.895 0.801 0.814 0.862 0.864
5 0.869 0.839 0.963 0.901 0.810 0.823 0.869 0.871

Mean | 0.861 0.834 0.960 0.897 0.796 0.813 0.861 0.863

1 0.823 0.764 0.949 0.857 0.752 0.755 0.823 0.824

2 0.827 0.799 0.951 0.875 0.765 0.780 0.827 0.830

Inertial & 3 0.836 0.789 0.953 0.871 0.767 0.776 0.836  0.838
LMSPC 4 0.839 0.809 0.954 0.882 0.776 0.791 0.839 0.841

5 0.838 0.769 0.954 0.861 0.767 0.766 0.838  0.841
Mean | 0.833 0.786 0.952 0.869 0.765 0.774 0.833  0.835

Model evaluation is performed with user-defined activities in the branches of the pri-
mary activity they are connected to and that share the same hierarchical layers with
user-defined activities in the second and third steps of the hierarchy tree. As a result,

four distinct classifications are undertaken for each level.

In hierarchy level two (H2), in case of main group dependent testing, there are four
main test groups, which could be seen in figure 4.8 Table lists the results. Test
group PIC-1, indicates contexts of "Lying down". Even though has a very unbalanced
dataset, still promising results are obtained. For MFCC and inertial fusion, the bal-
anced accuracy score of the model become 90%. In this case, MFCC only shows 3%

greater performance compared to inertial sensors. It proves effect of the audio.

For test group PIC-2, contexts of "Standing" activity, the most approximate recogni-
tion results are achieved with inertial and MSPC fusion with score 81%. This outcome
emphasizes the importance of environmental sounds in recognizing human activity,
since two contexts are used here, "Indoors" and "Outside". Despite the fact that the
number of samples in the context "Indoors" is significantly more than in the context
"Outside," the model still learns from this unbalanced dataset using the class weight

strategy.
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Table 4.16: Average 5-Fold Results of Placement Independent Context Group Testing

Test Group Sensor ACC REC SPE BACC PRE Mac-Fl Mic-F1 W-F1
Inertial 0966 0.778 0.910 0.844 0.758 0.766  0.966 0.967

MFCC 0974 0.815 0927 0.871 0.812 0.813 0974 0974

MSPC 0969 0.767 0.903 0.835 0.784 0.774  0.969 0.969

PIC-1 LMSPC 0966 0.729 0.881 0.805 0.777 0.749 0.966  0.966

Inertial & MFCC | 0.980 0.864 0.948 0.906 0.850 0.856 0.980 0.980
Inertial & MSPC | 0.976 0.824 0.928 0.876 0.829 0.824 0976 0.976
Inertial & LMSPC | 0.975 0.808 0.925 0.867 0.816 0.810 0975 0975

Inertial 0956 0.729 0.729 0.729 0.763  0.742 0.956  0.955
MFCC 0965 0.734 0.734 0.734 0.835 0.769 0.965 0.962
MSPC 0953 0.722 0.722 0.722 0.737 0.728 0.953 0.952
PIC-2 LMSPC 0954 0.686 0.686 0.686 0.748 0.707 0954 0.950

Inertial & MFCC | 0.963 0.801 0.801 0.801 0.802 0.799 0.963  0.963
Inertial & MSPC | 0.968 0.814 0.814 0.814 0.833  0.820 0.968 0.967
Inertial & LMSPC | 0.968 0.761 0.761 0.761 0.848 0.797 0.968  0.965

Inertial 0.798 0.779 0924 0.852 0.793 0.785 0.798  0.798
MFCC 0.807 0.793 0.928 0.861 0.803 0.797 0.807  0.807
MSPC 0.833 0.822 0.935 0.879 0.845 0.831 0.833 0.832
PIC-3 LMSPC 0.823 0.818 0.933 0.876 0.821 0.818 0.823  0.822

Inertial & MFCC | 0.870 0.869 0.951 0.910 0.869 0.869 0.870 0.870
Inertial & MSPC | 0.866 0.863 0.949 0.906 0.875 0.868 0.866  0.866
Inertial & LMSPC | 0.865 0.867 0.949 0908 0.869 0.867 0.865 0.865

Inertial 0.515 0482 0.819 0.650 0489 0474 0.515 0.514
MFCC 0.535 0.509 0.826 0.668 0.519 0.503 0.535 0.529
MSPC 0.509 0.441 0.814 0.627 0464 0.438 0.509 0.499
PIC-4 LMSPC 0.499 0.421 0.809 0.615 0468 0.428 0.499 0.491

Inertial & MFCC | 0.559 0.536 0.836 0.686 0.519 0.517 0.559 0.551
Inertial & MSPC | 0.564 0.539 0.831 0.685 0.518 0.524 0.564  0.558
Inertial & LMSPC | 0.559 0.537 0.837 0.687 0.524  0.522 0.559 0.554

PIC-3 indicates contexts of "Sitting" physical activity. All three version of the audio
data demonstrates good results when combining with inertial sensor data, all of them
have 91% balanced accuracy score. The model shows 85% by using only inertial data.
The model performance is improved compared to using only MSPC audio feature,

since score is measured as 88%. Confusion matrices of PIC-3 are in figure
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Lastly, PIC-4 group is tested. It denotes contexts of "Walking". The most confusing
test group for the model in this hierarchy is this one. The overall performance is best
with LMSPC and inertial sensor combination, with 69%. As observed for the holdout
case, the model does not distinguish between "Outdoors" and "Talking" activities as
well as others. The cause is most likely due to the person mistaking external human

speech sounds for his or her own voice.

Context-based F1 score achievements are shown in figure .15] The model demon-
strates great performance with test groups PIC-1, PIC-2 and PIC-3. Their average
balanced accuracy score is 87%. Meanwhile, in case of PIC-4, even though audio has
a very improving effect, still scores are not high as other test groups. Still, in overall,
grouping technique in hierarchical levels shows slightly better performance compared

to not grouping, based on the results.
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Figure 4.15: PIC Main Group Dependent F1 scores per context - 5-Fold

In hierarchy level three (H3), for main group dependent test mechanism, again, four
test group is created. However, the user-defined labels are distinct from each other in
another way at this level, again activity-context division but additional on smartphone

placement. Table [4.17]lists average results of 5-fold cross-validation.
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Table 4.17: Average 5-Fold Results of Placement Dependent Context Group Testing

H Test Group Sensor ACC REC SPE BACC PRE Mac-FI Mic-FI W-Fl H

Inertial 0.986 0.807 0953 0.880 0.811 0.800 0986 0.987

MFCC 0986 0.787 0962 0874 0.795 0.780 0986 0.986

MSPC 0973 0.544 0.890 0.717 0.601 0.560 0973 0.974

PDC-1 LMSPC 0974 0.541 0.884 0.712 0.668 0.575 0974 0.974
Inertial & MFCC | 0.986 0.824 0.962 0.893 0.792 0.803  0.986 0.987

Inertial & MSPC | 0.985 0.809 0970 0.899 0.804 0.806 0985 0.986

Inertial & LMSPC | 0.982 0.755 0.937 0.846 0.749 0.740 0982 0.982

Inertial 0.805 0.631 0949 0.790 0.670 0.642  0.805 0.805

MFCC 0.781 0.592 0.942 0.767 0.620 0.599  0.781 0.783

MSPC 0.683 0.495 0918 0.707 0.496 0488  0.683 0.683

PDC-2 LMSPC 0.687 0.485 0918 0.701 0.491 0470 0.687 0.687
Inertial & MFCC | 0.847 0.684 0971 0.827 0.677 0.670  0.847 0.848

Inertial & MSPC | 0.829 0.681 0.958 0.820 0.701 0.680  0.829 0.829

Inertial & LMSPC | 0.830 0.662 0958 0.810 0.720 0.675  0.830 0.831

Inertial 0.781 0.591 0969 0.780 0.590 0.578  0.781 0.782

MFCC 0.804 0.629 0972 0.800 0.598 0.598  0.804 0.805

MSPC 0.815 0.616 0973 0.795 0.613 0.603 0.815 0.815

PDC-3 LMSPC 0.796 0.631 0971 0.801 0.577 0.579 0.796 0.796
Inertial & MFCC | 0.867 0.700 0.981 0.840 0.708 0.689  0.867 0.867

Inertial & MSPC | 0.851 0.659 0.979 0.819 0.656 0.646  0.851 0.852

Inertial & LMSPC | 0.850 0.664 0978 0.821 0.688 0.667  0.850 0.852

Inertial 0.510 0.470 0.925 0.697 0446 0437 0510 0.511

MFCC 0.506 0.521 0923 0.722 0.519 0.501 0.506  0.506

MSPC 0.399 0331 0.906 0.619 0345 0319 0399 0.400

PDC-4 LMSPC 0.390 0.307 0.904 0.606 0.339 0306 0390 0.389
Inertial & MFCC | 0.564 0.650 0.940 0.782 0.690 0.635  0.564 0.564

Inertial & MSPC | 0.601 0.579 0943 0.757 0.643 0.609  0.601 0.602

Inertial & LMSPC | 0.525 0.498 0.927 0.712 0518 0482  0.525 0.525

The first test group, PDC-I indicates, "Lying down" test group dependent to place-

ment. In this group, even though inertial sensors only are very informative while

distinguishing the context and phone placement, still audio and inertial sensor fusion

increases the overall performance nearly 2%. The average score is 90% in inertial

and MSPC feature fusion, despite the fact that the data is highly imbalanced.
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In PDC-2, the model tries to predict both context and phone placement of main ac-
tivity "Standing" at the same time. By using audio feature MFCC and inertial sensors
in a combination, overall performance is measured as 83%. The MFCC and inertial
combination also works well for PDC-3, for classes of "Sitting" activity. Confusion
matrices are in figure .18 for fold id 3. For PDC-4, even though audio helps to im-
prove overall performance up to 78%, still this score is below compared to other test

groups. Figure d.T7/demonstrates the model performance over predicting each issued

class in F1 measurement unit.

Average F-1 Scores of Labels with Different Sensor Fusions - H3 MGD (PDC-1, PDC-3)

0.8 4

0.6

0.4 +

0.2

F1 Score
o
[}
1
T

SIT_SUR_POT 4

SIT_WAT_PIP £

LYD_SLE POT ¢
LYD_SUR_POT {
LYD_SUR PIH
LYD_WAT_POT
SIT_SUR_PIH
SIT_IAC_PIB {
SIT_IAC_PH +
SIT_IAC_PIP
SIT_IAM_PIP £
SIT_IAM_POT 1
SIT_IAM_PIH
SIT_WAT_POT +

Labels

(a)

Average F-1 Scores of Labels with Different Sensor Fusions - H3 MG (PDC-2, PDC-4)

0.8 1

inertial + Imspc

0.6

0.4 4

F1 Score
o o
[=] N
)

{
g
)

]
)
Hocon

STN_IND_PIP £

STN_IND_PIB +
STN_IND_PIH
STN_IND_POT +
STN_OUT_PIH
STN_OUT_PIP
WLK_IND_PIP
WLK_IND_POT
WLK_OUT_PIB
WLK_OUT_PIH
WLK_OUT_PIP
WLK_SHP_PIB {
WLK_TLK_PIP
WLK_TLK_PIH

Labels

(b)

Figure 4.17: PDC Main Group Dependent F1 scores per context-placement - Holdout

78



SIT_SUR_PIH SIT_SUR_PIH

SIT_SUR_POT SIT_SUR_POT

SIT_IAC_PIB SIT_IAC_PIB

SIT_IAC_PIH SIT_IAC_PIH

SIT_IAC_PIP! SIT_IAC_PIP!

SIT_IAM_PIP SIT_IAM_PIP

SIT_IAM_POT SIT_IAM_POT

SIT_IAM_PIH . SIT_IAM_PIH

SIT_WAT_PIP SIT_WAT_PIP

SIT_WAT_POT SIT_WAT_POT

SIT_IAC_PIP

SIT_SUR_PIH
SIT_IAC_PIB
SIT_IAC_PIH
SIT_IAC_PIP
SIT_IAM_PIP
SIT_IAM_POT
SIT_IAM_PIH
SIT_SUR_PIH
SIT_SUR_POT
SIT_IAC_PIB
SIT_IAC_PIH
SIT_IAM_PIP
SIT_IAM_POT
SIT_IAM_PIH
SIT_WAT_POT

SIT_WAT_POT

SIT_SUR_POT

(b)

~
(N
R

SIT_SUR_PIH SIT_SUR_PIH

SIT_SUR_POT SIT_SUR_POT

SIT_IAC_PIB SIT_IAC_PIB

SIT_IAC_PIH SIT_IAC_PIH

SIT_IAC_PIP! SIT_IAC_PIP!

SIT_IAM_PIP SIT_IAM_PIP

SIT_IAM_POT SIT_IAM_POT

SIT_IAM_PIH SIT_IAM_PIH

SIT_WAT_PIP SIT_WAT_PIP

SIT_WAT_POT SIT_WAT_POT

g
o
<
£
@

(d)

SIT_IAC_PIB
SIT_IAC_PIP

~
g
~

SIT_SUR_PIH SIT_SUR_PIH
SIT_SUR_POT SIT_SUR_POT
SIT_IAC_PIB SIT_IAC_PIB
SIT_IAC_PIH SIT_IAC_PIH
SIT_IAC_PIP SIT_IAC_PIP
SIT_IAM_PIP SIT_IAM_PIP
SIT_IAM_POT SIT_IAM_POT
SIT_1AM_piH 0] 0 SIT_IAM_PIH
SIT_WAT_PIP SIT_WAT_PIP

SIT_WAT_POT SIT_WAT_POT

SIT_IAM_PIH

SIT_SUR_PIH
SIT_SUR_POT
SIT_IAC_PIB
SIT_IAC_PIH
SIT_IAC_PIP
SIT_IAM_PIP
SIT_WAT_POT
SIT_SUR_POT
SIT_IAC_PIB
SIT_IAC_PIH
SIT_IAC_PIP
SIT_IAM_PIP
SIT_WAT_POT

—~
(¢]
~
~
Nz}
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Inertial &KLMSPC, - 5-Fold
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4.3 Discussion

The data set has been used in a variety of studies due to the extensive list of activities
that may be used to replicate daily life that it represents, as well as the sufficient num-
ber of gathered samples to use timestamped data for activity recognition studies, since
October 2017. Because the data collection contains asymmetrical real-life data, the
majority of the researches report results with balanced accuracy. Table d.18]lists stud-
ies done with this real-world dataset and proposed model performance comparison to

others.

First attempt over the data set for behavioral context recognition with machine learn-
ing algorithms is reported by Vaizman et al [25] with Logistic Regression which they
test single-sensor and sensor-fusion classifiers using 25 selected activity list. That
work gives results overall Balanced Accuracy (BA) 71.8%, and they observed that
using multiple sensor data gives better result than only single one. In the next work
of Vaizman et al [52]], they use multiple Multi-Layer-Perceptron (MLP) techique over
51 labels by adding 26 other activities which they did not consider for their previous
work. Best performance is obtained with two-hidden-level with dimensions (16, 16),
where BA is 77.3% average value of 51 label performance. Generally, accelerometer
and gyroscope sensor data are used to predict body movements. In most of the works
used the data set, rather than using all of the context labels, researches are focused on
basic daily life activities such as "walking", "lying down" etc. Tarafdar et al. [S3] uses
only four of the primary physical activities and apply undersampling method to over-
come imbalanced data issue. First, they conduct feature engineering, find out most
useful features for each sensor and use them only, while they divide data as 60% train,
40% test. Cruciani et al. [S5] also used undersampling to overcome unbalanced data
issue among their activity list to work with, which includes five primary physical ac-
tivities. They use inertial measurement unit (IMU) data. Average F1 score is reported
as %52.7, with used CNN. In contrast most of the work in this dataset, they used
audio-based modalities to predict environment of the activities. To do so, they create
three groups named "Indoors", "Outdoors" and "Vehicle" based on original activities.
Their F1 score over audio-based sensor modality is 21%. They do not conduct any

fusion of audio and inertial sensors. Adaimi et al. [S7]] used 22 activities represented
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in the data set. They conduct experiments with almost all sensor-modalities in the
set, accelerometer, gyroscope, watch accelerometer, location, audio, phone state. To
overcome imbalanced data, they use balanced class-weights. Furthermore, they ap-
plied active learning, both pull-based and stream-based approach to select data. They
list results of each sensor modality used as feature, but early fusion generally serves
best results, over others with reported balanced accuracy 79%. Since prediction over
very highly correlated activity data is very hard, some researchs are focused on gener-
ating their own activity approaches by combining multi-daily activities as one activity
and conduct classification over new contexts. For example, Ehatisham-Ul-Haq et al
[S54]] firstly use six of the primary activities, where other activities are dependent to
any one of them such as "lying when sleeping with phone on table". They define 29
fine-grained activities by doing so. Furthermore, they apply feature reduction tech-
nique CfsSubetSel to find and use features from sensors only gives best distinction
performance from all features. By doing so, they use only 12 features out of 26 per
each sensor. Even though they do experiments with other classifiers as well, RF gives
best result for six physical activities balanced accuracy 83%, 29 context-dependent
activities 86%. Grouping activities to issue with less context approach is applied by
others as well like Asim et al [56]. They define activities of daily life as primary
and secondary. They named same primary activities in Ehatisham-Ul-Haq et al [54]]
are used while they generate 15 secondary contexts which are combination of ac-
tivities, for example, "Standing and Shopping". They also applied feature reduction
during preparing the data. They use only 18 most informative features from phone
accelerometer for their work. The best results for accuracy are obtained again with
RF where balanced accuracy is reported as 80% for six primary activities while it
is 77% for secondary contexts. Ehatisham-ul-Haq et al [58]] represent another work
with same approach as their previous work, Ehatisham-ul-Haq et al [54]. As differ-
ence from previous work, they level activities as physical activities, behavioral activ-
ities and phone positions. They apply three level based testing while also within the
same level, groups are divided with respect to physical activity. Furthermore, they
conduct feature engineering and decide to work with 18 extracted over 26 features
from smartphone and smartwatch accelerometer sensor data. Two-level classifier is
applied, activity and context. With RF, balanced accuracy score is reported as 80%

for 5 main activities while it is 76% second level, 13 classes. For phone position
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dependent ones, results especially for "Sitting" and "Standing" main groups are very

high, in overall 83% balanced accuracy score is reported.

In this study, the activities are arranged hierarchically to avoid confusing the proposed
model in circumstances when multiple activities and contexts are done at same time,
similar to [[54]], [56] and [58]]. Furthermore, test are conducted in two different cross-

validation method; holdout and 5-fold.

In model evaluation, there are two main approaches, first, user-defined labels are
tested within the same hierarchy level, without grouping based on primary physi-
cal activity. With the audio fusion effect with inertial sensors widely used in this
field, promising results are obtained considering real-world structure and imbalanced
data. For holdout validation, in case of primary activities, balanced accuracy score
is measured as 91% for classification done with five physical activities, average from
five iterations, which outperforms all of the previously reported results by a suffi-
ciently big margin, scores obtained using only five physical primary activity is re-
ported as 88%([S3]) and 80%([54]]), even though those works use high number of
features compared to this work. The average balanced accuracy measured with 5-fold
cross validation is 90% for five class case, which still outperforms existing studies.
For six primary physical activity class, activity "bicycling" is added into the system.
The average balanced accuracy score is measured as 90% which exceeds all other
researches utilizing those classes during model evaluation, for holdout. Similarly
for 5-fold, model performs with 91% performance while distinguishing six primary

physical activities.

In comparison to the preceding layer, the multiclass classification process becomes
more challenging at hierarchy level two because more complex activity-context pairs
with variable combinations are regarded as classes. For this level, there are two main
types of testing, one is main group independent and another is main group depen-
dent. In case of main group independent testing, there are 15 fine-grained activity
classes constructed by multiple contexts and activities. Proposed ligthweight model
outperforms existing study [S6l] by 2% higher rate with the same number of classes
with overall balanced accuracy score measured 79%, for holdout cross validation. In

case of 5-fold cross validation, the overall score is measured as 81%, which is 2%
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higher from the average holdout result, where 4% higher than [56]. This is achieved
using inertial and audio sensor fusion since only inertial data does not perform as well
as combination. In case of main group dependent case, there are four main groups,
which yield different scores. In case of level two testing, for holdout cross validation,
overall balanced accuracy of four distinct test group is 82%, which exceeds highest re-
ported BA score 76% with the exact same label configuration in [S8]]. Similarly, 83%
balanced accuracy score is obtained in the same hierarchical configuration, which is
significantly, around 7%, greater than [58]]. Comparing by test case, only placement
independent activities of group "walking" is lower than their work while other three
group performance is extremely higher than reported scores for both of the validation

methods.

The depth of tree is end with level three, where smartphone placement become cru-
cial element while constructing labels with activity-context pair information inherited
from previous layer. Due to framing approach and lack of labelled information from
users, there are no "running, exercise, phone on pocket" for any of the 60 users in the
pre-processed data. Therefore, hierarchy level three does not include that user-defined
context. In research [54], researchers use three sensor modalities with multiple fea-
tures selected in data processing case and obtain 86% in level three case, main group
independent test grouping. Even though results at the same configuration in this study
does not exceed this score for both of the cross validation methods, still audio data
boost overall system performance when used with inertial sensors. In case of main
group dependent test case, however, proposed solution surpasses state of art solutions,
with a sufficient margin. Average score based on iteration mean results of four activ-
ity dependent groups become 85%, which is nearly 2% higher than reported results
of [58], which is 83%, for holdout validation. The scores are nearly 1.5% higher from
existing study [58]] in case of 5-fold cross validation, in level three, main group de-
pendent testing. Their two test groups, "sitting" and "standing" derivatives, perform
with very high scores while remaining two is reported extremely low compared to
those. In this study, however, results for three groups are very close, but in case of

"walking", result is slightly lower.
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Table 4.18: Studies using the real-world ExtraSensory dataset and results

Study #Act. Activity Type Sensors | Evaluation || Classifier | Metric | Result
PA, WA, L,
[23] 25 Behavioral Context 5-Fold LR BA 0.72
G, PS, AU
PA, WA, L,
[52] 51 Behavioral Context 5-Fold MLP BA 0.76
G, PS, AU
: . . PA, WA,
[153] 5 Physical Activity Holdout || AdaBoost A 0.88
G, M
i 5 Physical Activity PA, G 0.52
53] 5-Fold CNN F1
3 Location AU 0.21
i ) PA, WA, L
[157] 22 Behavioral Context Holdout LR BA 0.79
G, PS, AU
6 Physical Activity 0.83
[54] PA, WA, G 5-Fold RF BA
29 Context with PP 0.86
6 Physical Activity 0.80
[56] PA 10-Fold RF BA
15 Behavioral Context 0.77
5 Physical Activity 0.80
[58] 13 Behavioral Context PA, WA 5-Fold RF BA 0.76
29 Context with PP 0.83
6 Physical Activity 0.90
Proposed PA, WA,
15 | Behavioral Context Holdout CNN BA 0.79
MGI) G,M, AU
28 Context with PP 0.77
5 Physical Activity 0.91
Proposed PA, WA,
13 | Behavioral Context Holdout CNN BA 0.82
(MGD) G, M, AU
28 Context with PP 0.85
6 Physical Activity 0.91
Proposed PA, WA,
15 | Behavioral Context 5-Fold CNN BA 0.81
MGI) G,M, AU
28 Context with PP 0.76
5 Physical Activity 0.90
Proposed PA, WA,
13 | Behavioral Context 5-Fold CNN BA 0.83
(MGD) G, M, AU
28 Context with PP 0.84

*A:Accuracy, BA:Balanced Accuracy, AU:Audio, PS:Phone State, G:Gyroscope, M:Magnetometer,
PA:Phone Accelerometer, WA:Watch Accelerometer, L:Location, MGI: Main Group Independent,

MGD: Main Group Dependent, PP:Phone Placement
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The proposed solution performs with sufficient and promising results even with the
data of various distinct characterized people operating not based on pre-defined script
but based on their regular habits. The time window is set at 20 rpw to express each
activity flow better while keeping sample size maximum in this highly imbalanced
dataset. Defining multiple activities tend to occur simultaneously in a form with
a concatenation and considering those as one class, with respect to hierarchy ad-
just model to be more applicable in real-world HAR task. Inertial sensors, not re-
quired wearing some other measurement devices but embedded inside smartphone
and smartwatch give information about what does the primary activity of the user at
any time. Audio data, even though is sliced to little window size unlike general usage,
illustrates highly effective results both in its own at some cases and in a fusion with
inertial sensory information. Both MFCC and MSPC performances are good while
at some cases, MFCC suprass MSPC and vice versa. Furthermore, proposed feature
processing emphasis the importance of temporal change during image generation and

activity recognition.

In the thesis, a lightweight deep learning model is utilized to perform recognition
task. Model occupies 1.9 MB to 6.2 MB memory space based on sample number
of activities involved and size of the data, which differ for inertial images to audio
and fusion images, where each of them have 20 pixel width and all are 3 channelled.

Table 4.19] demonstrates average memory space of the model as well as input sizes.

Table 4.19: Average Memory Space of Model

Input Type #Height(P) Single Image Size #Params(Model) Memory Space(Model) H

Inertial 4 102 B 228,586 1.9 MB
MFCC 14 613 B 392,426 3.2MB
MSPC 33 1.0 KB 703,722 5.7MB
Inertial & MFCC 18 667 B 457,962 3.7MB
Inertial & MSPC 37 1.1 KB 769,258 6.2 MB

*B:Bytes, KB:Kilobytes, MB:Megabytes, P:Pixel

After testing phase, models that work with different types of images are trained with
whole chunk of the data of 60 users, to form create pre-trained model, for future use.

It could be inferred intuitively that when the pre-trained version of this lightweight
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model is integrated into any user’s phone, it could perform automatic activity recogni-
tion by operating in the background process for extremely brief periods of time, with
using embedded sensor data. From the Table 4.19]it is concluded that model occupy
limited space. Furthermore, from the analysis conducted during test phase, overall
classification prediction time of the model for single image is measured as 5210~*
seconds, measured with a virtual machine which has Ubuntu 20.04. Based on these
findings, it could be concluded that if the model is integrated into any user’s phone, it
will take up little space in the phone’s memory while working in the background not
effecting phone performance much while conducting real-time activity recognition

automatically.
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CHAPTER 5

CONCLUSION

The most challenging part of real-life applications is that each person uses theirs own
device, smartphone and smartwatch in this case, and perform natural behavior on
their own environment, without someone telling what to do in which duration. Even
though scripted scenarios are favored for activity recognition tasks because they pro-
vide fewer problems and produce better results, with the help of developing technol-
ogy, more accurate findings are obtained by using models that could grasp the activi-
ties and contexts of bigger groups of people without imposing additional burdens on

them.

The processing time of an activity, therefore recording the sensory information is
completely user dependent in real-world case. Therefore, optimal solution could be
utilized to operate with user-independent models. Data analysis and preprocessing
is important in that aspect. The promising success of the idea of recreating the sen-
sor information in image format is riveted with this work, for both inertial sensors
and audio sensor. Simulating activities occurring over a period of time in their corre-
sponding pattern with the proposed differential data representation greatly improves
the model’s performance. To detect an activity with sensor data, it takes a particular
length of time and repetition, which varies depending on the sensor. Therefore, win-
dow size selection is very important. Even though recognition with audio requires
wider window size, to maximize sample size contributing in the processed data, au-
dio is used with little window size. Data representation technique is very crucial to
work with different systems. Since in this thesis, a performance is illustrated with a
lightweight deep learning model, image format is chosen to work with a CNN model.

In such system with there is a large bias between samples of activities, proposed
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model that utilize data representation performs outstanding results. The difficulty of
multi-label classification has been solved by using a hierarchy to define the activity,
context, and placement with each hierarchy. At the same time, people could engage
in an activity and engage in a context. Furthermore, since device-placement is leaved
up to user preference, recognition become possible with this approach regardless of

user habits.
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