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SIMGELER DiZiNi

D: Déteron, Déteryum gekirdegi

T: Trityum gekirdegi

He: Helyum gekirdegi

Li: Lityum gekirdegi

B: Bohr gekirdegi
n: nétron
p: proton
t. zaman
m; Elektron kiitlesi, kg
M: lyon kiitlesi, kg

q: elektronun yiikii, C
1 plazmanm hapsedilme siiresi, s
7, . Iki carpigma arasindaki ag1, s
c. 1stkhiza, m/s
o : Ozdireng katsayis1
p: Birim hacimdeki pargacik say1 yoguntugw, 1/cm’
n: vizkozite sabiti
yergekimi ivmesi, m/s®

: Elektrik alan vektorii, N/C
: Magnetik alan vektorii, Gauss
. Hiz vektorii, m/s
x ekseni yoéniindeki elektrik alan vektorii
y ekseni yoniindeki elektrik alan vektérii
z yoniindeki elektrik alan vekt6rii

X yoniindeki magnetik alan vektorii
y yoniindeki magnetik alan vektorii

z yoniindeki magnetik alan vektérii
: X yoniindeki hiz vektorii
: y yoniindeki hiz vektorii
. z yonindeki hiz vektorii

V| : magnetik alana dik iz vektorl
V,;: magnetik alana parelel iz vektdrii

7 : Konum vekt6rii, m
W: Plazma pargaciklarin toplam enerjisi, Joule

W, : Magnetik alana dik dogrultuda hareket eden pargaciklann enerjisi
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W, : Magnetik alana parelel dogrultuda hareket eden pargaciklann enerjisi

J: Akim yogunlugu vektérii, C/m’s

u : Magnetik dipol momenti, Joule/Gauss
8: Kayip koni tepe ag1s1, derece

L : Plazma sisteminin boyutu, m

Ry : Magunetik reynolds sayist

W, : Larmor Frekansi, Hertz

r,: Larmor yangap:, m

F’v : Vizkozite kuvvet vektorii, Newton

B . Magnetik ayna iginde magnetik alanin maximum degeri

B,: Magnetik ayna iginde magnetik alanin minimum degeri

ds: Magnetik alan dogrultusundaki yol eleman

p: Pargacik basinci, N/m?

Vl&,c : Magnetik alana dik yénde pargaciklann klavuz merkez siiriiklenmesi
Ve Genel bir F kuvvet vektdriiniin etkisinde pargaciklairn siiriiklenme iz
vektorii

V‘B.l =VB: Magnetik alan gradyenti
VxB: Magnetik alanin rotasyoneli

VxE : Elektrik alanm rotasyoneli
R,: Aynaoram
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1. MADDENIN DORDUNCU HALI OLARAK PLAZMA
1.1 Plazmamn Tanmimi

Plazma katy, sivi ve gaz halinden sonra dogada var olan maddenin dérdiincii
halidir. Maddenin atomik yapis1 diigiimiildigiinde bilinen ilk Wig hal igin gu
sylenebibilir. Kat1 haldeki madde; atomlarn birbirlerine siki bir gekilde
baglanmas ile olugturulmugtur. Atomlar arasindaki bag o derece kuvvetlidir
ki ginliik yasantida yapay etki olmaksizin kati haldeki madde iizerinde
degisiklik yapmak igin atomlar arasmdaki baglar1 bozacak kadar kuvvet
uygulanmahdir. Bilindigi gibi kati madde amorf ve kristal olmak iizere
ikiye aymlr. Kristal yapisi ii¢ boyutta digiiniildiginde simetrinin séz
konusu oldugu yapidir. Amorf katlar ise simetri olmaksizin var olan
katlardir.  Sivi hal s6z komusu oldugunda atomlar arasindaki bag kati
haldekine nazaran daha zayiftr. Dolayis: ile stvi haldeki madde &rnegin
kolayca bulundufu kabm hacmini alabilir. Ciinkii atomlar arasmdaki bag
sivi maddeyi bir arada tutabilecek kadar kuvvetli degildir. Gaz halinde
atomlar arasindaki baglar gittikce zayiflamuigtir ve madde sivi haldeki
durumundan daha serbest bir yapiya kavugmugtur. Tiim bu ii¢ halde de
maddeyi olusturan atomlar nétralliklerini korurlar ve hatta atomlar arasinda
kurulan baglar tiimii ile bu ilke ger¢evesinde kurulur.

Diinyada her i¢ halide kolayca bulmak miimkiindiir. Ancak uzaym
derinliklerinde ilerledikce kargilagilan wildizlann, gaz nebulalarmmn
yapisinin;  kati, stvi yada gaz halinden oldukea farkh bir yapiya sahip
oldugu gozlenir. Dolayisi ile bu yapmun fiziksel incelemside diger hallerin
yapisindan farkh olmalidir. Maddenin bu hali plazmadir. Kati, stv1 ve gaz
halinden farks ise gu sekilde agiklanabilir. Plazma halindeki madde serbest
halde pozitif ve negatif elektrik yiiklerine sahiptir. Sicaklik atomlarm
iyonlasmalarm saglayacak kadar yiiksektir. Bu sebeple atomun atomik
vapisi  kolayca bozulur. Atomik yapinin bozulmasiyla olusan serbest
elektrik yiiklerinin sicakhiktan dolay: sahip olacaklan termal hareketlilikte o
kadar etkindir ki elektrik yiiklerinin elektirksel etkilegmeleri plazma
halindeki maddenin parcaciklarnt arasinda baskimn bir rol iistlenemez. Daha
dogrusu elektriksel g¢ekim kuvvetleri ile elektronlann tekrar atom

¢ekirdegine baglanmalan olanaksiz olur.
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Sekil 1.1 Dogada var olan maddenin 4 haline 6rnek

Evrendeki maddenin % 99° u yukanda bahsedilen yapisi ile plazma
halindedir. Bilinen ve yasadigimz uzay bélgesi ise evrenin plazma olmayan
% 1’ lik kasmum teskil etmektedir. Plazmanin maddenin diger ii¢ halinden
oldukca farkh ozellikleri vardir. Cinkii serbest elektrik yiiklerinden
olusmustur. Kati, stvi ve gaz hali nétr haldedirler ve elektromagnetik
etkilesmelere cevap vermezler. Ancak plazma elektromagetik etkilesmelere
cevap vermektedir. Ciinkii serbest elektrik yiklerinden olugmustur. Plazma
halindeki madde tiim sisteme bu sistemin digindaki bir gézlem noktasindan
bakildiginda toplam yiikii sifir olan nétr bir madde gibi gériiniir. Sistem
elektromagnetik etkilesmelerden ise bu kuvvetlerin uzun erisimli olmas1 ve
pargaciklar arasindaki elektromagnetik gekim kuvvetlerinin etkisinin diigiik
olmasi nedeniyle etkilenir. Plazmanin bu nétral yapisina yar: notrallik adi
verilir. “Sistemin tiimiine sistemin disindan bakildiinda nétiirdiir ve sistem
dig kaynakh uygulanan elektromagnetik kuvvetlerle etkilesmeye girer.”

Plazmanin bir diger ¢zelligide plazmay: olusturan serbest haldeki elektrik
yiklerinin foplu davramglar  gostermesidir. Bu 6zellik plazmann
“diyamegnetik” ozelliginin bir sonucudur. Diyamagnetiklik, tanim ile
birlikte kullamlirsa, plazma parcaciklan, disandan uygulanan etkilere ters
yonde yani bu etkiyi digarlayacak sekilde davranarak bu dig kaynakh etkiyi
perdelemeye cahigir. Plazma iginde yerel bolgeler diigiiniiliirse plazmay:
olusturan plazma parcaciklanmn yerel dagilunlan bu etkiyi gésterecek
sekilde yeterli sayida olmalidar.

Kisaca deginilen bu iki durum iyonlagmus her gaz sistemine plazma adimmn
verilip verilmemesi ile ilgili sartlar belirtir. Yan nétrallik sistemin boyutlan
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ile elekromagnetik etkilesme bolgesinin boyutlant tizerine bir kisittama
getirir. Sistemin boyutlan, eletromagnetik etkinin perdelendifi bélgeden
biiyiik olmalidir. Toplu davramsglar yerel bélgelerde birden gok fazla sayida
serbest pargacik olmasim gerekli kilar. Dolayis: ile plazma pargaciklarmn
yogunlugu bir birim degerden yiiksek olmahidir.

1.2 Plazma Fiziginin Cahyma Alanlan

Plazma halindeki madde ile ilk ¢aligmalar 1920° li yillarda Langmuir,
Tonks ve gahigma arkadaglar tarafindan gaz bogalma deneyleri sirasmda
yaplmustir. Bu deneylerde vakum tiipleri gelistirmek amaci ile bu tiiplerin
icinden biiyiik akimlar gegirilir ve tiip i¢indeki gazin iyonlagmas: saglanir.

Onemli diger bir uygulama kontrollil termonikleer fizyon ile ilgili olarak
yapilan ¢ahigmalardir, Modern Plazma fizigi ¢alismalan 1952 yilinda
hidrojen bombasimn patlatilmast ile baslamlstlr Hidrojen bombas, fiizyon
ile ilgili yapilan ve kontrollii olarak gergeklesmeyen bir demedir. Fizyon
kacik atom ¢ekirdeklerinin birleserek daha bilydk bir atom gekirdegi
olugturmas: olayrdir. Bu olay gergeklesirken enerji agiga ¢ikar ve yildizlarm
enerji kaynag fiizyon tepkimeleridir. Hidrojen bombasinin denemesinden
sonra termoniikleer fiizyon ile ilgili ¢alismalarin amaci kontollii olarak bu
enerji kaynagindan insan hayatmin ginliik yasaminda kullamilmasina
yonelik olmugtur. 1952 yilindan giiniimiize kadar bu ¢ahgma hala bagariya
ulagamarmgtir. Bunun sebebi ise plazmamn hapsedilmesi ile ilgili olarak
karsilagiian sorunlardir.

Plazma fiziginin diger bir uygulama alamda uzay fizigi ile ilgili yapilan
galigmalardir. Bu dal giines rizgarlan olarak adlandinlan ve giinesin
¢ekiminden kurtularak uzaya savrulan yiikler ya da daha dogru deyimi ile
kozmik pargaciklar ile diinyanin magnetik alam tarafindan olusturulan ve
magnetosfer olarak adlandirilan bélge ile etkilegimini inceler. Giines
riizgarlanim olgturan pargaciklar magnetosfer tarafindan hapsedilir ve
magnetik alamin zayrf oldugu kutup bolgelerinden diinya atmosferi ile
karsilasarak aurora yada kutup isiklar adi verilen gokyiizii olaylarina sebep
verir,



Diger bir uygulama galaksi ve yildizlann yapisim inceleyen bir dal olan
astrofizik alamnda plazma fizigi bilgilerinin kullanlmasidir. Astronomi
agisidan bu yaklagim yildizlann ve karadeliklerin olusumu ve yasamlan
agisindan 6nemli ip uglan tagimaktadir.

Bir diger ¢ahsma alam Magnetohidrodinamik enerji  ¢evrimi
uygulamalandir. Bu ¢aliyma alam1 plazmanmn serbest elektrik yiiklii
yapisindan yararlanarak plazmamn iginden bir elektrik akiminin
gegirilmesini ongoriir.

Boyle bir galigmada iki énemli uygulama vardwr. Birincisi plazmamn dig bir
magnetik alan ile elektrik yiiklerine ayrilmasi ve bir akim elde edilerek bu
akimm kullamlmasma y6neliktir. Ikincisi plazma iginden bir akim
gegirilerek plazmamn sistemden atilmasim saglamaktir. Bu galisma uzay
boslugunda uzay gemilerinin hareketlilikleri konusunda fikirler vermigtir.
Bu amagla giines riizgarlarim olustuxan parcaciklanin  kullaniimasi
Ongorillerek NASA tarafindan bir uzay gemisi inga edilmigtir.

Bir diger uygulamada kafr hal fizigi dahnda olan gahgmalardir. Bu dal ise
metal ve yan iletkenlerdeki elektron ve bosluk akimlarimin ve etkilerinin
aragtirilmasina yonelik gahigmalar yapilmaktadir.

1.3 Termoniikleer Fiizyon ve Lawson Kriteri

Fiizyon kiigiik ¢ekirdeklerin kendilerinden daha biiyiikk bir gekirdek
olugturacak sekilde birlestikleri bir g¢ekirdek tepkimesidir. Bu tepklme
sonunda tipkr  fisyon tepkunesmde oldugu gibi kitlenin enerjiye
doniigmesinden dolayr bir enerji agia ¢ikar. Ugzerinde ilk caligilan
reaksiyonlar;

D+T —He (3.5MeV) + n (14.1 MeV)
n+Li ———8He (2.1MeV) + T (2.7MeV)
reaksiyonlandir. Bu tepkimelerin &ncelikli tercih sebebi en diisiik

aktivasyon sicaklify ve en diisik hapsetme kosullanna sahip olmasidir.
Tepkimelerde enerjinin biiyiik kismn 14.1 MeV’ 1k enerjiye sahip
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nétronlarn  bir 1s1 gevriminde kullanilmasiyla elde edllu‘ F@on
Reaksiyonu ve 151 gevrimi sekil (1.3.1) ve sekil (1.3.2)" de gosterilmistir.

lum Fuslaon Reaction

Sekil 1.3.2 Fiizyon tepkimesi sonucu ortaya g¢ikan yiksek enerjili
nétronlarm 181 cevrimi



Plazma fiziginin aragtrma ve uygulama alam igine giren Termoniikleer
flizyonun bagart ile saglanabilmesi igin baz1 teknik olanaksizliklar
bulunmaktadir. Bunlardan en nemlisi milyon santigrad mertebesindeki bir
sicaklikta bulunan maddenin dagilmadan nasil bir arada tutulabilecegi ile
ilgilidir. Plazmay1 olugturan pargaciklarm bu kadar yiiksek bir sicaklikta
sahip olacaklan termal hareketlilik sebebi ile plazma pargaciklanmn biiyiik
bir kismu ortamdan kagma efilimi gosterecektir. Bu kadar yiiksek bir
sicakliktaki maddeyi herhangi bir maddesel yap: iginde tutmak olanaksizdir.
Bu sebeple 1960° L yillarm basinda “Magnetik Hapsetme” olarak
adlandinlan yontemler geligtirilmeye baglanmustir. Magnetik hapsetme
yénteminde milyon santigrad mertebesindeki sicakha sahip plazma
parcagiklan, magnetik alan kullamlarak olugturulacak magnetik alanlar
iginde plazmay:r hapsetmeyi 6ng6rir. Bu konun detaylan fizerinde bir
sonraki boliimde durulacaktir,

Magpnetik alan kullanilarak plazmamn hapsedilmesi ve termoniikieer
fiizyonun olugmas ile ilgili olarak Lawson Kriteri olarak adlandinlan bir
paremetre vardir. Bu parametre plazmammn hapsedilme siiresi ve hapsedilen
pargacik say1 yogunkugu ile ilgili bir paremetredir. n hapsedilen pargacik
say1 yopunlugu ve t hapsedilme siiresi olmak tizere; n.t carpimi “Lawson
kriteri” olarak tammlamr. Bu ¢arpumin fiziksel anlam birim hacimde
hapsedilmiy toplam pargacik sayisim vermesidir ve fiizyon reaksiyonun
gerceklesebilmesi igin bu garpimun belirli bir degerin tizerinde olmasi
gerekmektedir,

D-T reaksiyonu igin n.t garpmmumin minimum degeri 10'* cm®sn ve D-D
reaksiyonu igin n.t carpimunm 10'® cm™.sn degerinde olmas: gerekir. Eger
bu kriter saglanabilirse maddeyi plazma haline getirmek ve plazmay:
hapsedecek kadar giiglii magnetik alan elde etmek i¢in kullanilan enerjiden
fazlas1 alnabilir. Degisik ¢aliyjma prensiplerindeki tiim flizyon
reaktbrlerinde elde edilmeye ¢aligilan ilk sart Lawson kriteridir.




2. ELEKTRIK ve MAGNETIK ALAN iCINDE PLAZMANIN
DURUMU

Plazma serbest halde pozitif ve negatif yiiklere sahiptir. Dolayisi ile plazma
dis kaynakh bir alan igine konuldugunda elektrik kuvvetler yiiklerin
isaretine bagh oldupundan zt isaretli yikler farkh davramglar gosterirler.
Omegin plazma diizenli bir dig elektrik alan igine konnldupunda zit igaretli
yiikler farkh yonlerde ayrilmalar gosterirler ve bu aynima nedeniyle plazma
icinde ikincil bir elektrik alan kurulur. Bu iki elektrik alammn etkisindeki
yiikler salimm yapmaya baglarlar. Bu salimmlara “Plazma Salimmlary” adi
verilir. Bununla beraber pargaklar arasinda meydana gelen garpigmalann
frekansi plazmamm incelenmesi igin keskin bir sinir gizer. Eger bu garpigma
frekans1 kiiciik ise bu durumda plazma serbest elektrik yiiklerini iginde
banndiran bir akigkan gibi davramr. Plazmay: bu durumu ile inceleyen dal
“Magnetohidrodinamik” olarak adlandiriir. Magnetohidrodinamik, elektrik
ve magnetik alan igindeki plazmayr aliskan denklemleri ile elektrik ve
magnetik alan denklemleri birlestirilerek plazmamin bu davramsim
agiklamaya cahisihr. Carpisma frekansmmn degeri efer belli bir degerin
iizerinde ise bu durumdaki plazma ile ¢ahigan dalda “Plazma Fizigi”dir ve
gazlann kinetik teorisi ile birlikte elektrik ve magnetik alan denklemleri
kullanilarak plazmamn bu davramg agiklanmaya ¢aligilir,

2.1. Magnetohidrodinamik Denklemleri

Olagan hidrodinamik denklemleri;

Stireklilik denklem,
a — —
§p+V.(pV) =0 @.11)

Kuvvet denklemi,

—

d — ] == = -
p§=—Vp+l(JxB)+Fv +pg (2.12)
c



olarak tammbdir. Kuvvet denklemi basing gradyanti, elektromagnetik
etkilesmeden kaynaklanan Lorentz kuvveti katkisi, vizkozite ve
gravitasyonel etkilegsme terimlerini igerir.

Olagan bir sv1 igin vizkoziteden kaynakianan kuvvet terimi katkasi,
F, =qVV 2.1.3)

olarak tammlidir. Bu ifadede m vizkozite sabitidir. Vizkozite bir alaskamn
hareketine dik dogrultuda taginan momentumun dlgisadir. Denklem
(2.1.2)’ nin sol tarafinda bulunan tirev “konvektif tirev” olarak adlandmnlir.
Konvektif tiirev,

4_0 .7v 2.1.4)
d ot

olarak tammhidir. Bu tiirev 1fadesmde ilk terim sabit bir noktadaki deg1slm1,
ikinci terim ise akigkamnm V' Iz ile akiyor olmasindan dolayr 7 ile

7 +dr noklan arasmdaki degisimi tammmlar. Esitligin sol tarafi ise
toplam degisimi tamimlar.

Alkuskan elektriksel 6zelliklere sahip oldugundan Maxwell denklemleride
gegerlidir. Diverjansla ilgili ilk iki Maxwell denklemi, rotasyonla ilgili diger
iki Maxwell denkleminden elde edilebildiginden bu iki denklemle
ilgilenilir. Bu denklemler,

VxE+la—B- =0 (2.1.5.3)
c ot

Vip =227, 10E
c c Ot

denklemleridir. Sonug¢ olarak bu denklemlerin birlegtirilmesi ile
Magnetohidrodinamik denklemleri agagidaki gibi tanimlamr.

(2.1.5.)



Madde yogunlufuna ait siireklilik denklemi;

2 4V (pP)=0 @.11)
ot
Kuvvet Denklemi;
o G5+ GxB)+F + 08 @.12)
dt c
Faraday Yasasi;
VxE + 108 _ 0 (2.1.5.2)
c of
Ampere Yasast,
VB = 4_”7 + 10E (2.1.5.b)
¢ c of
Ohm Yasasi;
7 = o(B + 1 (7xB)) 2.16)
(4
Elektrik Yiiklerine ait Siireklilik Denklemi;
EJJﬁj =0 @2.1.7)
ot
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2.2 Elektrik ve Magnetik Alan I¢inde Tek Parcacik Hareketi

Plazma salmim frekansinin belirli bir degerden sonrasinda plazmanin yapisi
ile plazma fizigi ilgilenir. Termodinamik yasalan ile birlikte digaridan
uygulanan elektrik ve magnetik alamn etkiside hesaplara katilmak
zorundadir. Bu sebeple 6ncelikle elektrik ve magnetik alamin varhiginda tek
baglarina serbest elektrik yiiklerinin davramglan hakkinda bilgiler gézden
gegirilmelidir.

2.2.1Diizenli £ ve B Alanlart

En basit durumdan baglamrsa ve elektrik alamn sifir oldugu durum

diigiiniiliirse 7 hizina sahip bir pargacik magnetik alana dik yénde hiz
bilesenine sahipse, Lorentz kuvveti etkisi ile pargacik basit bir siklatron
dénmesi hareketi yapar.

—

dV — —
m—=qgVxB 2.2.1
at qrx (2.2.1)

Eger magnetik alamn x ve y bilesenleri sifir ise pargacik z eksenini simetri
ekseni olarak gérerek dairesel bir yoriinge izler. B,=B,=0 ise bilesenleri ile
hareket denklemleri;

o,
m; = quBz s
o,
m—at— =-qV.B, , 222
o, _
ot

olarak elde edilir. z dogrultusunda pargacifa etkiyen kuvvet yoktur ve
pargacik X-y diizleminde dairesel hareket yapar. Buna Larmor dénmesi ac
verilir. Larmor dénmesi i¢in frekans;



2.2.3)
m mce
olarak tammhdir. Dénme hareketinin yarigap1 ise
Vv, mV.c
r=—t =T (2.2.4)
wc |qIBG

olarak tammlidir. Denklem(2.1.2.2)’nin ¢6ziimleri dairesel hareketin
dzelliklerini tanimlar. Hizlar;

iw,t —_ ; it
V,=V. ™V, =iV e™ (2.2.5)
olarak tanmmhidir ve konumlar;
X=X, =rsinw, , y—-y, =1r coswt (2.2.6)

olarak tammhdir. Elektron ve pozitif yiikli par¢aciklar diizenli bir magnetik
alan i¢cinde en basit gekli ile bu tip bir Larmor hareketi yaptiklan goriiliir.

Sekil 2.2.1 Diizenli Magnetik alanda Larmor Hareketi
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Elektron ve pozitif yiiklii iyonlarm her ikiside magnetik alandan dolay1 bir
dénme hareketi yaptiklarindan iki yiikk grubunu ayn ayn géstermek yerine
bir kilavuz merkez tammlamas: yapilmigtir. Boylece tek bir merkez ile her
iki yiik grubununda hareketlerine ait bir merkez tanmu yapilmus olur.
Gésterimde basitlik olmasi1 amaci ile béyle bir tanim kullamlir.

Larmor hareketinde pargaciklarin yiikleri 6nemlidir ¢iinkii parcaciklann
dénme yonleri daima magnetik alan etkisini azaltacak yéndedir. Bu 6zellik
diyamagnetizma 6zelligidir. Bu durumda plazma pargaciklan disandan
uygulanan magnetik alam disarlayacak sekilde davramr. Pargacik magnetik
alana parelel bir liz bilegenine sahipsede bu durumda parcacik yine z
cksenini simetri ekseni olarak gorerck magnetik alana parelel olan
dogrultuda da hareket ederek helisel bir yoriinge izleyecektir.

Elektrik alanmn sifir olmadifz durumda Lorentz kuvvet denklemine bu
elektrik alan terimide eklenecektir.

-—

m Z—It/ = q(E + I_/.x_B.) ; (2.27

Eger elektrik alamin y bileseninin sifir oldugu disimiiliirse yani alamn
sadece x-z diizleminde deger aldify diigiiniiliirse ve yine magnetik alamn
sadece z bileseninin var oldugu diigiiniiliirse bu durumda elektrik alandan
gelen terimierle kuvvet ifadesi;

2 _dg  y=4y,+v, 2.2.8)
da m m '
v, _q

==AF +o V., 2.2.9
a2 wV, (22,9
av, —taV, (2.2.10)



olarak tammlamr. Bu 6zel durum igin -y  ybniinde pargaciklann
siiriiklendikleri g6zlenir. Pargaciklar yine magnetik alamn etkisini
sifirlayacak sekilde diyamagnetiklik 6zellifinden dolayr Larmor hareketi
vaparlar ancak bir tam dénme ger¢eklesmeden -y yoniindeki
siiriiklenmeden dolay: pargaciklar x-y diizleminde siiriikklenme gosterirler.

Bu somi¢ E+VxB=0 sart1 yardim ile bulunabilir. m?t terimi

dénmeye ait terimleri verdiginden 6nemsenmez. Bu durumda elektrik alanin
varliginda meydana gelecek olan siiriiklenme igin,

=~

~  Ex
Vlgc = B2

Vs @.2.11)

seklinde bir tamm elde edilir. Bu luz ifadesi diizenli bir elektrik alanin
varhfinda pargaciklarin gosterecekleri elektrik alan siiriiklenmesi olarak
tanymlamr,

Denklem (2.1.2.11) herhangi bir F* kuveti igin genellestirilebilir. Buna bir
ornek olarak gravitasyonel kuvvet diigiiniiliirse denklem (2.1.2.11) igin en
genel formda;

Vy=— (2.2.12)

olarak yazilabilir. Bu ifadede kuvvet yerine gravitasyonel kuvvet ifadesi
kullamlabilir,

V=" (2.2.13)

formunda bir iz ifadesi elde edilir. Bu ifade gravitasyonel alandan dolay1
plazma pargaciklarimin etkisi altinda olacaklar siiriiklenme hiz ifadesi
olacaktir. Bu ifadenin difer bir 6zelligide lzin yilke bagh olmasidir.
Elektronlar ve iyonlar z1t yénlerde siiriiklenme gésterirler. Zit y6nlerdeki bu
siiriiklenme plazma iginde;
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J=nM +m)&

B
B 2214
ifadesi ile tanimh bir akim yogunlugu olugacagim gésterir. Bu siiriiklenme
biiyiikliik olarak ihmal edilebilir bir degere sahiptir ancak alan geometrileri
egrisel oldugunda merkezkag etkiside giindeme gelecektir. Dikkat edilirse
bu siiriikklenme kiitleye bagimlidir ve bu 6zelligi itibari ile bu siiriikklenme,
egrisel geometrilerde 6nemli bir kararsizhiga sebep olur.

2.2.2. Diizensiz E Alam

Alanlarmn diizenli olduklan durumda ¢éziimler yukanda anlatildif: sekilde
tam olarak elde edilebilir ancak alanlann diizensiz olduklant durumda
diizensizlik igin bir yaklaggmda bulunmak gerekir. S6z konusu yaklagim

>
diizensizligin boyutu ile Larmor yarigam ile ilgilidir. Eger Zl«l olacak

sekilde Larmor yanigap: ile diizensizligin boyutlan kargilagtirildiginda,
diizensizligin boyutlann Larmor yangapma kiyasla biiyiik boyutlarda ise
Larmor hareketinin bu diizensizlikten etkilenmedigi yaklagim altinda
pargaciklann izleyecekleri yoriinge incelenir.

2.22.1. VBLE,Grad B Siiriiklenmesi ve Egrisel Siiriiklenme

Gradyent, vektorel bir alan iginde yogunlugun belirli bir yonde artiyor veya
azaliyor olmast durumudur ve bu vektorin yonat yogunlugun az oldugu
taraftan yogunlugun yiksek oldugu tarafa dogrudur. Bu agamada bir
magnetik alan gradyentinin var oldupu diginiilecektir. Bu durum igin
basitlik amaciyla magnetik alamn z yéniinde oldugu ve magnetik alan
kuvvet gizgileri yogunlugunun da y yoniinde degistigi diigiiniilsiin.

Plazma pargaciklan z yoniindeki magnetik alan yoneliminden dolay: yine z
dogrultusundaki eksenler etrafinda Larmor dénmesi yaparlar. Bu dénme x-y
diizleminde kalacaktir. Ancak y ydniinde de bir magnetik alan gradyentinin
olmas: pargaciklann Larmor donmesi hareketini bozar. Ciinkii Larmor

yanigapmin daha biyilkk y degerlerinde pargacifm iginde bulunacaj



magpetik alan y’ nin daha diigiik degerleri igin daha siddetli olacaktir. Bu
durum matematiksel olarak su sekilde incelenebilir.

Pargaciga etki eden Lorentz kuvvetinin bir dénme iizerinden ortalamasina
. g
bakalabilir. Oyleki I’((l yaklagimn altinda diigimilecek olursa magnetik
alan gradyenti bir Larmor yanigap: igin sabit kabul edilebilir. Bu durumda
parcacifa etkiyen kuvvetin x bileseninin ortalamas1 sifir olacaktir. Ciinkii
parcactk Larmor donmesi yaparken bir tam yukan cikarken harcadifn
zaman kadar agafy inerkende aym: zamam harcayacaktir. Bu nedenle
¥
pargacifa alan gradyenti varken ve z’((l yaklagimi s6z konusu iken
etkiyen kuvvetin x bileseninin ortalamas: sifir olacaktir. Pargaciga etkiyen

kuvvetin y bileseninin ortalamasi ise alan gradyentinin sebep olacag etkiyi
tamumlayacaktir. Lorentz kuvvetinin y bileseni bu durum igin;

F,=-4V.B,(y) (2.2.15)

Magnetik alamin z bilegeni igin x¢=0, yo=0 noktasin civarinda Taylor
serisine agilirsa agafidaki ifade elde edilir.

B=Bo+ (;.5)1—3' S

OB
B, =B, +J’(-5y—) (2.2.16)

¥
Denklem (2.1.2.5)’in reel kaismi kullamilacak olursa ve Z’((l yaklasim
alinda denklem (2.1.2.14) , denklem (2.1.2.12)’de kullamlirsa Lorentz
kuvvetinin y bilegeni igin

F, =—qV (coswt)(B, £, (cosa)ct)(%f) - (22.17)
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ifadesi elde edilir. bu kuvvet ifadesinin bir Larmor dénmesi {izerinden
ortalamasina bakilirsa ilk terimin ortalamasimn sifir olacagi ve ikinci
terimin ortalamasinin da;

= 1 0B
Fy=2qV 5(5) (2.2.18)

olarak elde edildigi goriiliir. Bu kuvvet ifadesi olagan bir siiriiklenme igin
tamimlanan Denklem (2.1.2.12)’ de kullamlacak olursa magnetik alan
gradyentinden kaynaklanacak kilavuz merkez siiriiklenmesi bulunabilir,

- _1FxB 15£_ Vin 108

v - 2.2.19
“ 4 B {E B2y @219

Bu ifade segilmis olan 6zel durum igin gegerlidir. Pargaciklar +x y&ntinde
siiriiklenirler. Bu sonug genellenirse;

BxVB
B 2

ifadesi elde edilir. Boylece alan gradyentinin varhgmda pargaciklarin
olagan Larmor yoériingelerinin nasil degistigi goriilmii olur.  Bu
siiriiklenmenin &zelligi homojen olmayan alanlar icinde pargaciklar ile
magnetik alann etkﬂesnmm tammlamasidir. Bunun énemli bir uygulamasi
“magnetik ayna” mn temelini olugturmaktadir ve detayl: olarak bir sonraki
kesimde incelenecektir.

I_/"ﬁ —V W — (2.2.20)

Egrisel magnetik alan gizgilerinin bir R, egrilik yarigapmna sahip olarak
dairesel gekilde uygulandify ve alamin yarigap dogrultusu boyunca sabit
olarak kabul edildigi durum diigiiniiliirse ki bdyle bir alan geometriside daha
sonra ilgilenilecek olan Tokamak sistemlerinin temelini olugturmaktadir. Bu
noktada plazma pargaciklan egrilmig bu alan gizgileri boyunca Larmor
donmeleri yaparak ilerleyeceklerdir. Bu noktada plazma pargaciklarmna
merkezkag kuvveti etki edecek ve pargaciklar bu kuvvetin etkisi altnda
siiriklenme egiliminde olacaklandr.



Pargaciklara etkiyecek olan merkezkag etkisi;

2 —r
ot mV, ~ ch
Fo=—""F=mV,’—

R, R’

(4

(2.2.21)

olarak tamimlamr. Bu kuvvet ifadesi Denklem (2.1.2.12)° de kullamlacak
olursa bu kuvvetten kaynaklanan siiriiklenme etkisi i¢in genel bir ifade elde
edilebilecektir.

7 =11_7:fx§ _ my,’? R.xB
q B2 qB2 R 2

c

(2.2.22)

ifadesi en genel formda merkezkag etkisinden kaynaklanan siiriiklenmeyi
tammlar. Ancak fiziksel bir gercek goz ard1 edilmemelidir. Boyle bir alan
elde edebilmek miimkiin degildir. Maxwell denklemleri ilede bunu
gorebilmek miimkiindiir. Ciinkii alamn bir R, egrilik yangapina sahip
oldugu ve merkez etrafinda alanin yangap dogrultusunda sabit oldugu kabul
edildi. Fiziksel gergek yancap dogrultusunda bir alan gradyentinin
olacagidir. Boglukta VxB =0 sartimin saglanmasi gerklilizi ile bu
geometrideki alan i¢in magnetik alan gradyentinin katkis: hesaba katilabilir.
Silindiriksel koordinatlara gére diigiiniilecek olursa magnetik alamn sadece
0 bilesenine ve magnetik alan gradyentininde sadece r bilesenine sahip
oldugu diigimiilecek olursa;

@B =12 ¢8,) =0, Byal @2.2.23)
ror r

olarak tammhidir. Bu hesaplamalar yapilirsa magnetik alan gradyenti igin
bu geometride;

VB = ’E}(— IT:”Z ) 2.2.24)

ifadesi elde edilir. Denklem (2.1.2.20)" de bu ifade kullamilacak olursa
magnetik alan gradyentinden kaynaklanan siiriiklenme igin;
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= +1VnB

Vg = (2.2.25)

ifadesi elde edilir. Bu siiriiklenme etkisi ile Denklem (2.1.2.22) bagmtis1
birlegtirilecek olursa bu geometrideki alan i¢in en genel gekli ile siiriiklenme
hizina ait ifade elde edilecektir.

VotV =2 BB Ly 2y (2.2.26)
g R, 2

Bu ifade egrisel alana sahip bir geometride pargaciklarm siiriiklenmesini
tammlayan ifadesidir. Torus gekilli geometriler iginde hapsedilmek istenen
plazma parcaciklan bu siiriiklenmeyi gosterirler ve bu hapsedilemek istenen
plazma icin olumsuz bir etki vermekte ve plazmanin yangap dogrultusunda
kaybina sebep olmaktadir,



3. PLAZMANIN HAPSEDILMESI

Plazma milyon santigrad mertebesinde sicaklikta bulunan ve bu sicakhkta
serbest halde elektrik yiiklerine sahip bir maddedir. Termoniikleer fiizyon

gergeklesebilmesi i¢in plazmammn ve agifa gikan enerjinin
konrol altina almmasi gerekmektedir. Bu sebeple hem plazmamin
hapsedilmesini saglayan hem de agifa ¢ikan enerjinin kontrollii olarak
santrallerde degerlendirilmesini amaglayan sistemlere ihtiyag duyulur. Bu
asamada sadece plazmamn hapsedilmesi igin uygun nitelikteki sistemler
diigiiniilecektir. Plazmamn hapsedilmesi igin iki farkh yontem
kullamlmaktadir. Bu sistemler agik sistemler ve kapali sistemler olarak
adlandinlit. Kapal sistemlerde plazmay: hapsetmek igin  kullamlan
magnetik alan hapsetme béligesi icinde kalir. Agik sistemlerde ise magnetik
alan plazmamin hapsedildigi bolge disinda kalr.

Agik sistemler kendi iglerinde uygulanma tekniklerine gore ikiye ayrihirlar.
Pinch ve magnetik ayna olmak iizere. Ikisi arasindaki temel fark plazmamn
akigkan olarak incelendifi durum ve tek pargacik bakis altinda incelendigi
durumdur. Yukanida bahsedildigi gibi ¢arpigma frekansi eger kiigiik ise bu
durumdaki plazma ile magnetohidrodinamik baki altinda plazma incelenir,
Eer carpigma biiyiikse bu durumda da plazma fizigi ile tek pargagik
hareketi gergevesinde plazma fizigi bakin altnda plazma incelenir.
Akigkan yaklagiminda plazmamm hapsedilmesi igin pinch adi verilen
sistemler kullanalir. Bu sistemlerde ama¢ magnetik basing ile pargacik
basincmn dengelenerek plazmamn hapsedilmesi amaglamr. Pinch iginde
plazmanm hapsedilmesi bir sonraki boliimde incelenecektir.

3.1. Magnetik Ayna

Magnetik ayna 1952’1l yillarda yiiksek sicakliktaki plazmayi hapsetmek
amac: ile tasarlanan bir magnetik aragtir, Magnetik ayna sekil 3.1° de
gosterildigi gibi sabit bir eksene parelel olarak yonlendirilmis magnetik alan
¢izgileri, magnetik aynanin sonlan olarak adlandmilan bolgelerde siddeti
artinlarak sige sekilli bir geometriye sahiptir.
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Sekil 3.1 Magnetik Ayna Geometrisi

Magnetik aynamin temel diigiincesi fiziksel bir degismez olan magnetik
momentten dolayr plazmay: terk etmek isteyen parcaciklarin magnetik
alamin giddetli oldufu son bolgelerden yansitilmasidir. Ayrnntilan ile bu
ozellik agagrda incelenecektir,

z ekseni ytniinde y6nelmis alan gizgilerinin yine z ekseni dogrultusunda bir
magnetik alan gradyentine sahip oldugu diistiniilsiin, sekil 3.1’ de oldugu
gibi. Genel bali itibari ile alan gizgileri, z eksenine gdre eksen simetrisine
sahiptir. Silindirik koordinatlara gére digtiniilecek olursa magnetik alan
radyal yonde de bir bilegene sahiptir. Bu radyal bilesen magnetik alamn
diverjansinin sifir olmasi gartindan bulunabilir.

VB=0 G.L1)

—l—~a—(rB,)+ %, =
ror 0z

0 (3.1.2)

Eger ikinci terim =0 noktas1 civarinda diginiilir ve r ile ¢ok fazla
degismiyorsa bu durumda;

rB, =—J”raB’ dr = B =—l[aBz] (.13)
0 2 r=0

0z 4 oz



olarak bulunur. r ile magnetik alamn biyikligiinin degismesi kilavuz
merkezlerin simetri ekseni etrafinda grad B siiriiklenmesine sebep olur.
—Z—g— = 0 oldugundan radyal yonde grad B siiritklenmesi yoktur. Lorentz

kuvvetinin bilesenleri,

Fr = Q(VoBz _VzBB)
FG = q(—VrBz +V2Br) (314)
Fz = q(VrBG —VaBr)

B¢=0 olmasindan dolay1 kuvvet ifadesinde r bilegenindeki ikinci terim ve z
bilesenindeki ilk terim sifir olacaktir. Kuvvet ifadesindeki r bileseninin ilk
terimi ve O bilegeninin ilk terimi olagan Larmor dénmesini tammlayacaktir.
Kuvvet ifadesinde © bilesenindeki 2. terim eksen iizerinde sifir olur. z
bileseninin 2. Terimi ise ilgilenilecek olan terimdir. Denklem (3.1.3) iin
kullamlmasiyla yukanida verilen Lorentz kuvvetinin z bilegeninin;

1 OB
F =—qV r(—=
z Zq a (az

) (.1.5)

olacag goriliir. Bu ifadenin bir donme iizerinden ortalamasimn alimmasi
gerekir ve basitlik olmas1 amaciyla kilavuz merkezi eksen tizerinde olan bir
pargacik diigiiniilsiin. Bu durumda Vg donme hareketi boyunca sabittir.

¥ =1, olduundan ortalama kuvvet;

FoslgyrBe_y
2

V —Z
qv.h 52

= (3.1.6)

&z 2 B &

qu 0B, _ 1mV,’ 9B,
wc

1
2

olarak bulunacaktir. Bu ifade, magnetik ayna diigiincesinin temelini
olusturan bir 6zelligi igermektedir.
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Ddonme hareketi yapan bir pargacik,

lmVl2
2 B

M= 3.1.7)

ile tammlanan bir magnetik momente sahiptir. Dolayis1 ile bir dénme
boyunca pargacik iizerindeki ortalama kuvvet ,

oB,
oz

olarak tanimlanabilecektir. Magnetik moment, magnetik aynamin temel
prensibidir ¢iinkii donme hareketi yapan bir pargacik, magnetik alanm
siddetinin degigtigi bolgelerde hareket ederken Larmor yarigap: degisecektir
ancak p magnetik momenti sabit kalacaktir.

F =-u

z

(3.1.8)

B magnetik alan1 dogrultusunda pargacigim hareket denklemi,

dv, 0B
—=—Uu— 3.1.9
(e (3.19)

olarak tammlansin. Burada V), pargacifin magnetik alana paralel
dogrultuda olan hiz bilegenidir. Bu ifade V), ile arpilirsa;
v, oBds _ dB

d 1 2
vy 2 Coay =y 8 __ 2 3.1.10
it dt dt(2m v) ”as dt 'udt ( )

dB
ifadesi eclde edilir. Burada E pargacik tarafindan goriillen B’deki

degisimdir, B’nin kendisi sabittir. Enerjinin korunumu ilkesine gore
pargacifin toplam enerjisi korunmak zorundadr.

d 1 1 d, 1
:1;('2-’””:12 +5mVL2)=E(5mVllz +uB)=0 (.11



Bu durumda;

- p—j—f + %([IB) = 0 ifadesine gbre;

i,u =0 (.1.12)

dt

bagintis1 elde edilir. Denklem (3.1.12) bagmntiss magnetik momentin bir

hareket degismezi oldugn anlamma gelir. Pargacigin hareketi boyunca B
alaninda degismeler meydana gelse dahi pargacifin magnetik momenti sabit
kalacaktir. Bu diigiince magnetik ayna prensibinin temelidir. Bunun sebebi
ise su sekilde agiklanabilir:

Bir pargacik magnetik ayna iginde zayif bir magnetik alan bolgesinden
kuvvetli bir magnetik alan bélgesine termal hereketliligi sonucunda hareket

edecek olursa, B alaninda artma olacagindan pargacifin magnetik dipol
momentinin sabit kalabilmesi igin pargacifin alana dik olan hiz bileseninde
de artma olmak zorundadwr. Pargacigm toplam enerjisi korunmak zorunda

oldugundan pargacigin B magnetik alanina parelel iz bilesenide azalmak
zorunda olacaktir. Sekil 3.1° de verilen ayna geometrisi diigiiniilecek olursa
temel digiince plazma pargaciklanmin magnetik alamin siddetinin daha
biiylik oldugu bélgelerden pargaciklann yansiilmasi ve magnetik alamn
siddetinin daba zayif oldufu orta bolgelerde plazmanin hapsedilmesine
dayanmaktadir, Bunun yamnda tuzaklama hem iyonlar hemde elektronlar

icin gegerlidir.

Plazmanin magnetik ayna igindeki tuzaklanmas: uzaysal olarak iki boyutta
incelenebilir. Magnetik alana dik olan dogrultu ve magnetik alana parelel
olan dogrultu olmak iizere. Ayna geometrisine gbre diigiimildigiinde;
magnetik alana dik yonde pargaciklarin aynamn disina dogru difiizyonu
Onlenir. Magnetik alana parelel dogrultuda ise siddeti giderek artan
magnetik alanin varlif pargaciklann yansitilmasim saglar.

Ancak hedeflenen tuzaklama kusursuz bir tuzaklama degildir. Gerek
parcaciklar arasmdaki carpigmalar ve gereksede yiksek frekans kararsizhigh
olarak adlandinlan etkiler ile 6ngoériilen ideal tuzaklama gerceklesemez.
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Ideal tuzaklamamn olabilmesi igin magnetik alana parlel olan hiz
bileseninin sifir olmas: gerekmektedir. Magnetik alana parelel hiz bileseni
sifir olmayan pargaciklar kayip koni olarak adlandinilan bir dagihima sahip
olarak magnetik ayna sistemini terkederler.

3.1.1. Kayip Koni ve Yiiksek Frekans Kararsizliklari

Magnetik ayna igindeki pargaciin toplam kinetik enerjisi W ile gosterilsin
ve magnetik alana dik ve parelel olan dogrultular igin toplam kinetik
enerjinin W =W, +W, seklinde tammlandip1 diigiinilsin. Toplam
kinetik enerjinin bir hareket sabiti oldugu géz 6niine alimr ve alan gizgisi
boyunca konuma gére degisimi incelenirse;

aw. __dw, _dw,
ds ds  ds

(.1.1.1)

sonucu elde edilir. Magnetik momentin korunumu ve magnetik momentin
denklem (3.1.7) tanumina gére ;

0=z ——— (3.1.1.2)

sonucu elde edilirz. Denklem (3.1.1.1) ve denklem (3.1.1.2)’ nin
birlegtirilmesiyle

aw, dB
=—U— 3.1.13
T (3.1.13)

1 ds
sonucu elde edilir. W, = EmV,,2 ve V= s tamimlan disiniiliirse

Newton’un ikinci kanununa gére;
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aw, _V d(mVy) — d(mVy) -F

] 4
dt B dt ; at (3.1.14)
F=_py®__42
n 'ucif dg('UB)

sonucu elde edilir. Ifadeye dikkat edildiginde 4B miceliginin alan
gizgileri boyunca pargaciklann hareketi igin hapsedici bir potansiyel olarak
davrandifn gériiliir. Bu durumda hapsedici bu potansiyel ve pargaciklarin
toplam kinetik enerjisi kiyaslanarak magnetik ayna igindeki hapsedilme
incelenebilir.

Aynanin sonlannda alan giddetinin B,..x oldugu diigiiniiliirse;
uB__. >W 3.1.1.5)

sartim saglayan pargaciklann yukanda tammlanan potansiyel iginde
tuzaklanacafn sonucu elde edilir Bu sarti saglayan tiim pargaciklar
magnetik ayna iginde tuzaklanacaklardir. Bu tamm yardim ile bu sart
saflamayan ve magnetik ayna sisteminden kagacak olan pargaciklar igin
kayip koni tammina gegilebilir. Denklem (3.1.7), denklem (3.1.1.5)
bagintisinda kullanilacak olursa ;

B

bagmtis1 elde edilir. Ayna sisteminde magnetik alammn en diigiik degeri Bo

Bmm( c
olarak tammlamrsa ve R, = B ayna oram” tanim yapihirsa ;

wQo_ _1
W R,

(3.1.1.7)

bagintisi elde edilir. Toplam kinetik enerji ve magnetik alana dik
dogrultudaki harekete ait kinetik enerjinin tammlan kullamlirsa
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MO _gi60)> L G.118)

V(0) ( R, )E

sonucu elde edilir, Burada 6(0), B=By,’ da pargacigm helisel y6riingesinin
tepe agisidir. Bundan dolay1 tuzaklama garti 8(0) tizerindedir.

6(0) > Arcsin

: 3.1.1.9)
R,2
olarak elde edilir. Denklem (3.1.19) ile tammlanan sarti saglayan
pargaciklar magnetik ayna iginde tuzaklanacaklardrr. Helisel yorimgesinin
tepe agis1 bu sartt saglayamayacak kadar kiigiik olan pargaciklarsa magnetik
ayna sisteminden kagacaklardir. Kagan pargaciklar 6(0) agis1 tepe agisi
olmak iizere iz uzaymda bir koni dagibm gosteriler ve bu sebepten
dolayida kagan bu pargaciklar i¢in kayip koni dagilum tammi kullanilir,

Elektronlar, iyonlara goére daha yiiksek carpigma frekansina sahip
olduklanndan kayip koni dagihim igindeki pargaciklarin bilyiik ¢ogunlugu
elektronlardan  olugmaktadwr.  Plazmanmn  elektronlari,  iyonlann
enerjilerinden daha kiigiik ya da karsilagtnlabilir bir bityiklige sahip
olmadikga kayip koni igine daha fazla sayida sagilacaklardir. Bu durumda
aynalar arasinda elektronlarm biiyitk gogunlugunun kaybedildikleri sonucu
ortaya gikar. Magnetik ayna igcinden daha fazla sayida kagan elektronlardan
dolayr plazma iginde e gibi bir potansiyelin olusacaktir. Dolayis1 ile
enerjinin korunumu ifadesi ve tuzaklama gartt degisecektir. Bu sartlar
altinda toplam enerji;

E=W +W,+e¢ (3.1.1.10)

olarak tammlanir ve denklem (3.1.7)’deki magnetik moment tanim
kullanilirsa



B=B ey ‘da ¢=0 ve
B=B, ‘da ¢=¢; olarak alimrsa, toplam enerji,

E = B, +W,(0)+ed, ,B=B,
E=uB_, ,B=B_ (3.1.1.11)
sonucu elde edilir. Bu durumda bu iki enerji ifadesinin esitlenmesiyle;

W, (O[R, —1]= W, (0) +eg, (.11.12)

sonucuna ulagthr. W, (0) =W, + W, (0) olarak tammlamrsa ve bunun
denklem (3.1.1.12) ile birlestirilmesi ile

R, sin’g, =1+%
/4

0

= ¢, = Arcsin (3.1.1.13)

sonucu elde edilir W, burada B=Bj’daki toplam kinetik enerjidir.
Elektronlarin ayna sistemini daha kolay terkedebilmelerinden dolay: iyonlar
icin diigiiniildiiiinde kayip koniyi tammlayan agrya ek bir terim gelmigtir.
Bu ek terimin yani elektrik potansiyelinin yoklugunda denklem ilk bulunan
degere indirgenecektir.

Plazmamn elektronlan diigiiniliirse, elektronun yiikiinden dolay1 denklem
(3.1.1.13)’ e gore tiim elektronlar plazma iginde olusan elektrik potansiyeli
tarafindan W, < edy sarts saglamrsa elktrostatik olarak tuzaklamr. Yiikiin
elektron igin negatif olmasmdan dolayr denklem (3.1.1.13) ile verilen agiy1
saglayacak daha yiksek enerjili elektronlarda magnetik ayna iginde
tuzaklanabilecektir. Sekil 3.1.1.1° de kayip koni dagilim gésterilmigtir,

e P
oy B3
e
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Sekil 3.1.1.1. Kayip Koni

Magnetik ayna iginde plazmamn kaybi, hapsedilmeye caligilan plazma
icinde dalgalanmalarm olugmasina neden olur. Bu durumda iyonlar hiz
uzaymda diflizyona ugrarlar ve plazmanin kayip oraninda bir arty meydana
gelir. Bu kayba yaksek frekans kararsizlig adi verilir. Gerek iz uzaymdaki
kayip koni dagihmm, gereksede plazma iginde olusan bu kararsizhk ve bu
kararmizhigin  sonucunda da plazmann  kaybedilmesi magnetik ayna
prensibinin agilmay: bekleyen problemleridir.  Magnetik ayna iginde
plazmanm bu iki gekilde kaybr Lawson Kriterinin yakalanmasinda biiyiik
engel tegkil etmektedir. (Post, 1978, 1980, 1987), (Franchis, 1976)

3.2 Magnetik Reynolds Sayisi, Magnetohidrodinamik Denge Durumu
ve Pinch

Pinch etkisi plazma pargaciklanimin akigkan olarak hareket etmesinden
dolayt ve pargaciklar arasindaki garpigmanin  diisiik olmasmdan
kaynaklanan  magnetohidrodinamik bakisn altinda  plazmamn
hapsedilmesini 6ngéren bir sistemdir. Temel diigiince magnetik basing ile
pargacik basincinn dengelenmesidir. Matematiksel olarak bu diigiincenin
temelinin incelenmesi asagidaki gibidir.




Elektrik yitklerinin alasmdan dolay: Ohm kanunn ;

- . 1 ek

J=o(E+={xB)) (3.2.1)
c

olarak tammbhidir. Magnetik alanin zamana gore degigimini tammlayan

Maxwell denklemi diigiiniiliirse;

0B = =
ot xE) ¢22

ve (3.2.1) tanim bu denklemde yerine konulursa

(3.2.3)

ot
formuna doner. Ampere yasasinin kullanilmas: ile magnetik alamin zamana
gore degisimi son gekli ile

B 54 +Ix(eB)
o

2

4c V’B (3.2.4)
/108

B Vx(xB)+
ot
olarak elde edilir.

Plazmanm duragan oldugu durum igin yani hzinda degismenin meydana
gelmedigi durum igin (3.2.4) denkleminin ilk terimi sifir olur ve denklem

(3.2.5) difiizyon denklemine indirgenir.
2] 2
B _c V’B (3.2.5)
ot A4rno

Bu durumda magnetik alamin denklem (3.2.6) ile verilen difiizyon zamam
i¢inde difiizyona ugradif goriiliir,

(3.2.6)
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L, B magneti alammn uzaysal defisim uzunlugudur. t zamam ile
kargilagtinlabilen kisa zaman dilimleri i¢in (3.2.4) denklemi denklemi
Alfven teoremi olarak bilinen duruma doniigiir.

B - .=
—_— -B 3.2
> x(VxB) (.27

Bu denklem ilk olarak 1942 wyihnda Alfven tarafindan elde edilerek
yorumlammugtir, Denklemin fiziksel yorumu “Akigkan ile birlikte haraket
eden ilmekten gegen magnetik aki sifirdir.” geklindedir.  Bu durum
magnetik alann difiizyona ugradift bélgenin haricinde olan i¢ bolgelerdeki
durumu ifade eder. Akigkan ile birlikte harcket eden ¢evrimdeki magnetik
aka sabit oldufundan bu alan “donmus magnetik alan” olarak yorumlanzr.
Difiizyona ugrayan magnetik alan ile donmus magnetik alan ¢izgilerinin
oram “Magnetik Reynolds Sayist” olarak tammlamr. Magnetik Reynolds
sayst ;

Vs

le =
L

(3.2.8)

olarak tammlanir. V hizi ile hareket eden ve L iginde donmug magnetik alan
cizgileri sayisimn oramdir.

R'2>> 1 ise Alfven Teoremi gegerlidir ve magnetik aki plazma iginde
sabittir. Yiiksek iletkenlige kars: gelir.

R', << ise magnetik alan difiizyona ugrar. Disik iletkenlige karg: gelir.
(Chorlton,1963)

Magnetohidrodinamik denge durumu V akigkan hizsmin sifir oldugu durumm
kapsar. Bu durumda da magnetohidrodinamik kuvvet denklemi agagidaki
duruma indirgenir,

JxB =cVp (3.2.9)
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Bu denge durumu incelenirse JxB vektoriiniin, magnetik alan ve akim
yoBunlugu vektoriine dik oldugundan su sonug elde edilir. J ﬁp =0 ve
B Vp =0 olmalidir. Bu durumda magnetohidrodinamik denge durumu
igin §p *nin bulundugu diizleme magnetik alan vekt6rii ve akim yogunlugu

vektorii dik olmalidir, Dolayis1 magnetik alammn ve akim yofunlugunun,
basincin sabit oldugu yiizeylerde bulunmas: gerekir. Bu etki pich etkisi

olarak bilinir. Ampere kamumundan J akim yopunlugunun (3.2.9)
denkleminde kullanilmastyla ve

Bx(VxB) = —(BV)B + %ﬁ(ﬁﬁ) (3.2.10)

6zdesliginin kullamlmas ile

— c2 -

Vp = —VB? (3.2.11)
87

bagmtisi elde edilir. Bu magnetohidrodinamik denge durumunda pargacik
ve magnetik basincin dengelenmesini veren ifadedir.

2

p +;—B2 = sabit (3.2.12)
T

Magnetohidrodinamik denge durumunda bu gekilde pargacik ve magnetik
basmein dengelenmesi planlanmig ve bu amagla pinch ismi ile amilan
magnetik hapsetme sistemlleri tasarlanmistir, 6 pinch ve Z pinch olarak
adlandinlan iki pinch vardir. Her ikisinde de amag plazama iginden bir akim
gecirebilmek yolu ile hem artan direngten dolayr plazmay: isitmak hemde
pargactk akimindan dolayr olusan magnetik alan iginde plazmay
hapsedebilmektir. Bu diigiince fiizyon aragtirmalannin en énemli iki sorunu
teskil etmektedir. $ekil 3.2.1 a ve b * de swrasiyla © pinch ve Z pinch
gosterilmigtir.
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Sekil 3.2.1 (a) Z pinch ve (b) © pinch
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Merkezkag etkisini gidermek amactyla toroidal yonde helisel bir geometriye
sahip olacak sekilde stellarator isimli hapsctme sistcmleri tasarlanmigtr.
Amag toroidal dogrultuda helisel geometriye sahip alan ¢izgileri boyunca
parcaciklarin Larmor donmesi yaparak vakum odasi icinde hapsedilmesidir.
Ancak bu seferde pargaciklar da bir elektrik alan olusur ve parcaciklar
icin etkin bir £xB siiriiklenmesi meydana gelir. Bu siiritklenme nedeniyle
istenilen sicakhkta istenilen pargacik yogunluguna ulagsma konusunda
onemli kararsiziiklar meydana gelir Bunun yaminda magnetik alan
simetrisinden dolay: simetriyi bozan asimetrik etkiler olusur. Ve sonug

olarak Lawson kriteri sagl Stell: isi sekil 3.3.2°de

gosterilmistir.

Sekil 3.3.2 Stellarator Geometrisi

Yukarida plazmanm hapsedilmesi icin tasarlanan magnetik ayna. pinch,
tokamak ve stellarator gibi sistemlerin her biri i¢in tiim galismalar Lawson
Kriterinin saglanmasina yonelik olarak devam etmektedir.
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memgmdmmondmm denklem (1.1) olarak
17.‘6,1,(;,:7)+

(4757} [a,( p-7 V-7 {
147§l -7 G (7)

A JGAR6P)

Bu denklemde f,, £, ve f; sirasiyla nétr atomlarmn, elektronlarin ve iyonlann
dagilim fonksiyonlandir. o, ve o,’de sirasiyla elektron iyonizasyonu ve
karsihkh yiikk degisimi tesir kesitleridir. Denklem (1.1) deneysel olarak
1974’ te Freeman ve Jones (Freeman and Jones, 1974) tarafindan elde
edilmigtir ki karsilikli yiik degisimi tesir kesiti iyi bir yaklagiklikla hiz ile
ters orantihdir. Elektron ve nétr atomlann kiitle farkindan dolayida
iyonizasyon oram nétr atomlarn hizindan bagimsizdue. Bu durumda
denklem (1.1) denklem (1.2) formunda yazilabilir.

?.sz,(?,?) +N~(;)[< OV > +<aoV >]f0(;,;)

_N,( )<a'x,V>f (r V)IdV'fb(r V') (1.2)

Bu denklemde f; uzaysal olarak normalize edilmig iyon dagiimma karst
gelmektedir.

P =~}\—f;- olarak tammbde, Denklem (1.2)° deki N;  nicelifi

carpigmalardan  dolay1 elektron yofunluguna egit olarak alman iyon
yogunlugudur. Ve < > notasyonu géz ¢niine alinan iyon elektron dagiimi
fizrinde bir ortalamadur,

Problemi z degiskeni ile dizlemsel geometride incelemek ve iyon

dagiliminm Ty(z) sicaklify ile bir Maxwell dagihmuna uygun bir dagilima
sahip oldugu diigimiiliirse denlem Vi ve V,, hizlarmdan bagimsiz olacaktir.
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Bu durumda denklem (1.2)’ de baz1 diizenlemeler yapilabilir. Denklem
(1.2) Vy ve V, iizerinden integre edilirse ;

2T T

Ny(z )[<a'x,V>+<a'e,V>]_[ | fo(r,V)dV dv, (1.3)

—~00 — 0

=NQ)<on> | | f; (r V)jdV' fo(r V‘)d'deVy

—00 —¢0

Bu denklemde ;
‘I"(T,u)=jf T 5Ev.av, (14)

tammu yapilirsa denklem (1.3) asagidaki forma sahip olur.
a\y(r u) — =+ N; (z)[< Ox,V >+<0a,V >]‘P(-r u)

(1.5)
=Ni(z)<o,V > j j f; (r V)jdV‘fo(r,V')dedVy

-0 =00

Denklem (1.5)’in her iki tarafi N; (z) [<o, ,V> + <o, ,V>] ile biliiniirse;

v, 6‘?(1',14)4_?( u)
Niz)<og,V >+<0,,V>] & ’ L6
Niz)<o,V > (1.6)

715 (r,V)_[dV fo(r V)dV a,

N,-(z)[< OV >+<0,,V >]_°u ®

formuna déniisiir. Bu son ifade de boyutsuz olan iki nicelik tanimlanirsa ;

2; l.[ 'N <0' V>+<o, V>] a7
V 0

U=

Vl
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252
<o.V> exp[~ i}
[< TV >4 < a-e,V>]V,~(z)J;

tamumt yapilirsa (1.2) denklemi ;

ee.u)=

u 6_‘1’(1',_11) +W¥(u,7)= c(z, u)]idu’\l’(r,u')

or

(1.8)

(1.9)

formuna déniigiir. Bu denklem diizlem geometride hidrojen atomlarmin
transportu igin ilgilenilecek denklemdir. $imdi bu denklemin ¢dziimii ile

ilgilenilecektir.



2. SINGULER OZFONKSIYONLARIN KURULMASI

Denklem (1.9)’daki c(t,u) teriminin herhangi bir L(t,u) fonksiyonunun
Laplace doniigiimii oldugu diigiiniiliirse c(z,u) ve L (t,u) arasinda agagidaki
bagint1 gegerli olacaktir.

clr,u) = j dtL(t,u)e'% @.1)
0

bu durum igin denklem (1.9) Mullikin ve Siewert’in (Mullikin and
Siewert, 1980) incelemeleri sonucu

¥ (r,u)= 6@ -u)e % + @, (z,u) @2)

seklinde bir ¢oziime sabiptir. @, icin agagidaki ifade ile verilen sart gegerli
olmahdir. Bu sart ile ¢oziimiin limit degerlerde tamimh olmas1 sarti
yiiklenmig olur.

Idu(bu (z,u)=0 2.3)

Bu sarin yiiklenmesi ile denklem (1.9) asagidaki gibi forma sahip
olacaktir,

204 g (z,u) j dtL(t, u)e ™" )
or
Bu ifadede l =% % olarak tamimlidir. Bu diigiincelerin sonrasinda
w

denkiem (2.4)’e denklem (2.5) formunda ¢6ziim aranmaktadir.

®, (z,u)= ik, (t,u)e 7 @5)
0
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Bu tanimm yapilan ®,(z,u) denklem (2.3)’de verilen sartt saglamalidir. Bu
durumda K, (t,u)’ mn da saglamas1 gereken bir sart elde edilir.

[auk,(t,u)=0 @.6)

Su sekilde bir ¢ozitm aranmaktadir. Eger
(w—u)K, (t,u)=wL(t,u) @

seklinde tammlanan bir K,(t,u) fonksiyonu

K, (tu)= ﬁ;L(t, u)—At,w)d(w—u) @.8)

formunda olan bir ¢oziime sahip olarak bulunabilirse denklem (2.5),
denklem (2.4) denkleminin bir ¢6ziimii olacaktir. Denklem (2.6) ile verilen
sartla A(t,w) fonksiyonunun sahip olmas: gereken form elde edilebilir.
Denklem (2.8) denklem (2.6)’da kullanilacak olursa A(t,w) nun;

A, w)= Iodu(w“_' u]L(t, u) 2.9)

formunda bir yapiya sahip olmasi gerektifi bulunur. Ama¢ deklem
(2.8)’deki singiilerligi kaldumaktir. Bu sonuglar birlikte kullamlrsa
denklem (1.9)*un denklem (2.10) ile tammlanan gekli ile singiiler ¢dziimler
icerdigi goriilir.

¥, (v,u) = 5@ —u)e 7 +
| dt[( )L(t u)-At,w)s(w—u } Yo

Yukaridaki diisiincelerin bakis agis1 altinda deklem (1.9), denklem (2.10)
formunda bir ¢oziime sahip olmahdir. Denklem (1.9)’un adjointinin
diigtimiilmesi yoluyla denklem (2.10) ile verilen c¢6ziimin adjointi
- - hir

2.10)



Denklem (1.9)’un adjoint formu denklem (2.11) ile tammhdir. Adjoint
denklem ile denklem (1.9)’un ¢bziimii arasinda bir diklik bagmts
kurulabilir. Bu yontem singiiler 6zfonksiyonlar arasinda kolay bir sekilde
diklik bagmtis: tanimlayabilmek igin knllanilan bir ¢6ziim teknigidir.

P ED) o) faueeal Gn)  am
T -0

denklem (1.9)’un ve son deklem ile bunlann ¢6ziimlerinin u iizerinden
integralinin t’ya gore olan tiirevlerinin sifir olmas1 gerektigi diistiniiliir.

9 [u¥(z,u)¥" (z,u)du =0 2.12)
ot 7,

Ya da tv'nun baz degerlerinde 6megin 7 = oo degerlerinde WY~ carpimu
sifira gitmesi gerektigi digiiniiliir. Bu durumda asagdaki form elde edilir.

I u¥(z,u)¥" (v, u)du = 0 (2.13)
Ancak su belirtilmelidir ki denklem (2.13) eger ¥ ve ¥ igin aym v
degerine karsi gelen ¢oziimler degilse, bu ifade bir diklik bagmtis1 degildir.
Simdi denklem (2.11) ile verilen adjoint denklem igin adjoint
dzfonksiyonun yani ¢oziimiin durumu incelenebilir. Adjoint denklemin
¢Oziimi;

‘PU*(‘r,u) =S +ule™™ + o, (r,u) (2.14)

Bu ¢oziim igin denklem (2.3)’de oldugu gibi bir sart yiiklenmelidir. Ancak
yiiklenecek sart denklem (2.3)’den farkl olarak;

[duc(z,u)®,"(z,u)=0 2.15)

Cebirsel detaylarin iizerinde durmaksizin adjoint denklemin ¢éziimii ;



¥ (r,u) =5 +u)e 7 +
| dt[( )L(t —v)-7n(t,w)s(w+u Je'7

(2.16)

1 1 1
L(t,-v) ve wigin denklem (2.1)ve — = ; + — tammlan yine gegerlidir.
w v

Ozel bir durum olarak c(t,u)’nun c(t,u)=c(v)f(u®) formunda degiskenlerine
aynlabildigi diigimiilebilir. Bu durumda adjoint denklemin ¢ézimi;

¥ (z,u)= (sabzt)\y (5u) 2.17)

oldugu sonucu elde edilir ve denklem (2.13) ile verilen diklik bagintis1

u‘I’ (z, u)‘—((r——%)d 2.18)

formuna doniigiir. Yine t’nun bazt degerlerinde ¥,¥, carpimunmn sifir
oldugu diigtiniilir.
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3. F-N ¢OZUM METODU

Bu boliimde t=0’ da yansitilan par¢acik olmayacak sekilde I'(u) igeri giren
pargacik akisiyla bir yan uzay problemi diigiiniilecektir. Denklem (1.9) i¢in
simur sartlan asagidaki sekilde tammlidur.

¥(0,u)=T(u)u>0

W(eo,u) =0 D

Singiiler 6zfonksiyonlar 0 < # < o0 arahfmda 7 = o’ da sifira gitmeleri
sartiyla bir énceki kesimden bulunur ve denklem (3.2) ile 6nerilen ¢6ziim
yapilir.

¥(r,u)= c‘jia'vA(u)‘I’u (z,u) (3.2)

Denklem (2.13) ile verilen diklik bagmtismin kullamlmasiyla asaBidaki
diklik sart1 elde edilir.

«©

Iu‘l’u'(r,u)‘l"(r,u)du =0 ,0<v<w (3.3)

-0

Denklem (3.1) ile verilen smir sartlanmn kullamlmas: ile denklem (3.3)
=0’ da
Asagdaki formda yazilabilir.

o« L)

J'uCD; (- u)‘I"(O,—u)du = J-u(I) S (u)l"(u)z’u (3.4

0

Burada @, (#)="¥,"(0,u4) .olarak tammlidir. Denklem (3.4) u>0 igin
Y(0,-u) disan ¢ikan aki igin ¢ozilen bir singiiler integral denklemdir.
Denklem (3.4)" iin bir ¢bziim teknigi olarak nétron transport problemleri
icin Grandjean ve Siewert (Grandjean and Siewert, 1979) tarafindan



onerilen F-N metodu kullamhir. Ozelliklede disan ¢tkan dagilim igin N tane
agisal dagihim fonksiyonumum bir lineer kombinasyonu oldugu diigtniitiir,

N
Y(0,~u)=>Y 4,8,) , w0 3.5)
n=1

Burada A, belirlenecek olan katsayidir.

Denklem (3.4)’ de denklem (3.5)’ in kullanilmasiyla ve N tane siralt v,
‘noktast igin hesaplama yapilirsa

¥
4

. N
>Cn4, =S, ,m=123. N 3.6)
n=1

Bu denklem A, igin ¢6ziilecektir. Oyleki;

ud, "(~)g, () 6

!
3
"
Y !

olarak tanimhdir. Gelecek kesimde bu metot baz almnarak elde edilen
niimerik sonuglar gosterilmigtir.



4. SABIT PLAZMA SICAKLIGI

Daha 6nce tartigilmg olan diisiincelerin bir uygulamas: olarak uzaysal

olarak T; sicakhifindan bagimsiz bir plazma diisimelim. Bu durumda V'
karakteristik hizimn V; iyon hizina esit oldufn disiiniilir. Bu durum igin
denklem (1.9) ile verilen transport denklemi;

u é%g—:_iu—) +¥(r, u) = -C%J;‘I’('r, u')du' @.1

formuna sahip olur. Burada c agagidaki sekilde tammlidir.

<o.,V>
= <1 (4.2)
<o, V>+<o,V>

Daha once tiiretilmis olan 6zfonksiyonlar ditgiiniilerek trasport denkleminin
¢Oziimii agagidaki sekilde verilir.

¥, (r.u)= [ﬁ(uf,‘ )e-"" YA v)]b'(v—u)]e—% @.3)

¥, (ru)=e" ¥, (r,-u) @.4)

Burada A(c,v) agagidaki sekilde tammlidir.

c ¢f v 2
A =— ™ d .
(c,0) \/;_-[,(u—u} g 4.5)

Eger denklem (2.18) ile verilen diklik bagmtismda @, ()= ¥, (0,u)
olarak alinarak kullamlirsa bu durumda;

o«

Iue"z®u(u)tbu. (u)du = 0,0 = v' (4.6)

—~00
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olarak tanimli bir bagmti elde edilir. Bu ifadenin elde edilmesinde @, (u)=®.
o(-u) 6zdesligi kullamlmigtir. Bulunan son denklem singiiler 6zfonksiyonlar
icin agagidaki sekilde tanymlanan bir diklik bagmtisi $nerilmesini olanakl
kalar.

<«

J'ue"z @, (), (u)du = N()5{ - v @.7

-0

Case ve Zweifel (Case and Zweifel, 1967)’ in nétron transport denklemi
icin yaptiklar ahsmalara gore;

N(p)=ve” I:I_\z (c,v)+ (1/7?cue“’z )z ] 4.8

olarak tammbidir ve burada A =1- A olarak tammhdir. Bu singiiler
ozfonksiyonlann sabit plazma sicaklift durumu igin yan-bblge tamhg
Burrell (Burrell, 1978) ve Connor (Connor, 1977) ispat edilmigtir.

Su agamada igeri giren aki ;
()= 80 ~u,)u, >0 4.9)

olarak kabul edilerek son kesimde tammlanan F-N metodu kullanilarak
sabit iyon sicaklig1 albedo problemini iizerinde galigtlabilir.

Albedo bir yiizey icin bu yizeyden yansitilan pargacik sayisimin yideye giren
pargacik saysina oram olarak tamimlanmy. Sonsuz bir ortam igin c=1 dir.
Denklem (4.1) ile verilmis olan transport denkleminin bir ¢6ziimii;

¥(z,u) = (sabit)e™ (4.10)
seklindedir ve W(0,~u) disant g¢ikan aki Grandjean ve Siewert (Grandjean

and Siewert, 1979)’in ndtron transport problemlerindeki uygulamalanndan
yapilan segimlerin kiyaslamas: ile agagidaki gekilde segilir.



N
Y(0,-u)=Y 4™ u u>0 @.11)

n=l

Bu durumda S,, kaynak terimleri ve F-N matris denklemindeki C,,, matris
elemanlan

cv u,
=—= Com =C 4.12
Sm '\/;Z" (Um +u0 ]’Cmn n(um) ( )
olarak tammlidir. Burada;
Co (U) = UC.,(U)- Zi/!)— F(%l),n 20 - (4.13)
/2

olarak tammhdir ve I'(z) olagan gamma fonksiyonudur. Bunun yaninda;

c ¢ 1 a2
C°(U):l__\/7£(u+uje du (4.14)

olarak tammhdir. Oncelikle A, bulunmahdir ve Albedo denklem (4.15) ile
verilen gekliyle tanimhdur.

N
A= __l_z Anl‘(ﬁﬂ) (4.15)

(7 — 2

Sonug olarak bilinen A, ’ler tiim u’lar igin *¥'(0,u) ylizey ¢oziimlerini verir ve
denklem (4.7) ile verilmis olan tiim bslge diklik bagmtsindan sabit plazma
sicaklifn igin tantmlanmug olan transport denkleminin ¢oziimi;

¥(r.u)= [40), (u)e 7dv (4.16)
0
olarak tammlidir, Burada A(v) agagidaki sekliyle tammhdir.
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0

L Yodv @.17)

A(v) =

~00

Bu sonuglar igiginda 2N. mertebeden Hermite polinomlarmn kékleri
kullanilarak agagida tablo 1°de verilmi§ olan niimerik sonuglar elde
Hlmistir.

Cizelge 1. F-N metodu ile elde edilen niimerik sonuglar

c=0.94 c=0.96 c=0.98 c=0.99

0.64450 0.70549 0.77591 0.81537
0.52060 0.63089 0.97128 1.99971
0.49809 0.50634 0.33358 -0.11117
0.52337 0.63554 0.42510 | -9.72386
0.52203 0.57702 0.28300 -1.08401
0.51944 0.58393 0.02229 -3.69549
0.51964 0.58647 0.72259 -3.14020
0.51969 0.58615 0.68273 -3.65952

Slojanfunlealwin)-tZ

Elde edilen sonuglar sunlan géstermektedir:

(a) F-N metodunun yakinsamasi c, 1 degerine yaklagirken bozulmaktadr,
Goriildiigii gibide ¢ deferi 1 degerine yaklagttkga sonuglann iyi
olmadif kolayca goriinmektedir.

(b) ug azalirken yakinsama bozulmaktadur.

(c) Yakinsayan ¢6ziim dogru ¢6ziimdiir,



5. HERMITE POLINOMU ACILIMI

Denklem (4.1) ile verilen “sabit iyon sicakhf transport denklemine”
denklemin homojenligini bozacak olan ve kaynak terimine karyi gelecek
olan bir terim ekleyerek elde edilecek olan denmkiem (5.1) lizerinde

dijsiimiilsi

" 5‘I’(u,z) W, 2)= ce™

0z Jr

Nétron transport teorisinde kullanilan F-N metodunun kiyaslamasi ile
¥(u,z) dagshm fonksiyonu igin denklem (5.2) ile verilen ¢6ziim 6nerisi
yapulabilir.

];du"l’(z,u‘)+ Sw,z) 1)

4

P(u,z)=e™ Z;II—\P (2)H () 6.2)

n=0 n

Denklem (5.2)’de kullamlan H,(x) fonksiyonu h, normalizasyon sabitiyle
tammli Hermite polinomudur. Rodrigues formiilii olarak Hermite Polinomu

—?
o"e™
n

H,(x)=¢ h =2"mm (5.3)

olarak tammbdir ve diklik bagntsi,

om#n

(5.4)
\/;Z”n!,m =n

ie-x’ﬁn(x)ﬂ,n(x)m{

olarak tammhdir. Denklem (5.2)'nin H,(u) ile carpldipy ve diklik

bagmtisinin  uygulandifn diigiiniiliirse agihm katsayilan W,(z)’leri verir,
Boylece denklem (5.2) ile 6nerilen ¢bziim bulunmus olur., S(u,z) kaynak
terimide aym digiince ile Hermite polinomlar cinsinden seriye agilabilir.
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S(u,z)=e™ Z—S (2)H () (5.5)

ﬂ=0 n

Denklem (5.1) ifadesi H,(u) ile garpilir ve Hermite polinomlan igin gegerli
olan diklik bagintis1 knllanilacak olursa ¥, (z) i¢in agagidaki tekrarlama
bagmtilan elde edilir.

10¥,"

————+(1 oY, =85,
2 0z

Oz "2 O g
Noétron transport teorisindeki F-N metodunun kiyaslamasi olarak H-N
yaklagiminda da N tek ise ¥y, = 0 ayarlamasi yapilir. Bir transport simr
sart1 olarak sol yan i¢in
Y(O,u=I'(w), w0 )
sinir sartt kabul edilir. P-N metodundaki Marshak simir sartimn kiyaslamasi

N+1
ile H-N yaklagimu igin (T) tane smur sartimn oldugu sonucu elde
edilir, Bu durumda;
N
r,=>C,%, =0, m=135,...N (5.8)

n=0

olarak tanimlanir, Denklem (5.8)’de kullanilan terimler denklem (5.9) ile
tammlidir;

r, =Tu’”l"(u)du; Com =hLT meH (5.9)
0 4

Bu sunir gartlan diizlem geometri igin saZ tarafta da gegerli olacaktir. Bunun
yaninda denklem (5.6) N’nin tiim degerleri igin stireklilik denklemidir.
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Y -c)p=5, (5.10)
0z

N=1 igin yani en diigiik mertebe igin difiizyon ya da akiskan tamm bulunur.
Denklem (5.6)’dan §;,=0 ise,

J = _1op (5.11)

2 ¢

sonucu elde edilir. Bu difiizyon denklemidir ve diftizyon katsayis1 %’dir.
Nétron transport teorisinde bu katsayr 1/3°diir. Difiizyon yaklagiminda sol
taraf igin siur sartt m=n=1 i¢in denklem (5.8)’den

] 1 8p(0)
J o= — |p(0)- 2PV s
Y (2 r-ﬁ)p() v (5.12)

olarak tammhdir. Eger iceri giren aki sifir olarak alinirsa bu durumda lineer
extrapolasyon uzaklif bulunur.

p 7

L =" =0.886 5.13
6_p 2 A (5.13)
0z

Eger uzaysal olarak sicaklia bagh bir plazma diigiiniiliirse denklem (5.1)
asagidaki forma domniigiir;
u!

(2203 0k T 2l st (5.14)

2 J;a(z ) —0

Bu ifade de a’(z) iyonlar igin boyutsuz bir sicaklik dagiim fonksiyonudur.
Bu durum igin ‘W(u,z) yerel bir Maxwelyen dagihim civarinda seriye
agilabilir.

¥y
Ylu,z)=e "N (20" (5.15)
n=0
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Bu tanimda N tektir ve denklem (5.7)’nin ilk N+1 tane terimini igerir. Bu
yaklagim a=1 igin Hermite polinomu agihmma esittir. Omegin N=1 igin
difiizyonun Fick kanunu elde edilir.

2
J=——1-M (5.16)

2 0z

Bu ifade genel durumda nétr atomlann akuminin iyon sicakliginin gradyenti
ile orantth oldugunu gosterir.

H-N yaklagiminin kesinliinin denemesi amaciyla denklem (4.9) ile
verilmig olan girig delta fonksiyonu ve sabit iyon sicakhgt durumunda yan
uzay albedo problemi diigiiniilebilir. - Sonuglar P-10 yaklagim sonuglan ile
kargilagtinilmgtir.

H-1 yaklagiminda ki bu yaklasim daha once deginildifi iizere akigkan
tammu ile uyugur, agagidaki albedo sonucu bulunur.

teriminin olmadifi yani Sp= 0 ve $;=0 oldufu diigiiniiliir ve
denklem (5.6) ile tammIlanan tekrarlama bagintilant kullamlacak olursa,

l§5+ﬂfcﬁg=o
;Paz (.17)
L+¥, =0
1574
Bu denklemlerin beraber goziilmesi ile;
Y = 4 V200
00 (5.18)

¥, = \J2(1- c)d,e ¥

sonuclar: elde edilir. Bu g¢6ziimlere ulagildiktan sonra denklem (5.2) ile
verilmig olan tam g6ziime gegilebilir.



W)= e {%\1’ (z)+7”_;qq(z)} 639

Elde edilen bu sonuglardan sonra albedonun hesabina gegilebilir. Albedo bir
yiizeye giren ve gikan akimn oramu seklinde matematiksel olarak asagidaki
sekilde tanimbhdir.

o0

Iu‘P(O,—u)a’u
A=2 (5.20)
J u¥(0,u)du
0
olarak tanimlidir. Elde edilen sonuglara gére H-1 yaklagim igin;
—u \l ( 5
I Agau - ! Agdu
Tu vr 2-/2lic) (5.21)

~u Aodu+IJ2(l ) 2 —u Agdu 2+{2”1 c)

Til

sonucu elde edilir. Ancak bu ifadenin iki 6nemli eksikliZi vardir. Bunlardan
birincisi us’dan bagimsiz olmasi ve diferide ¢<0.36 deferi igin negatif bir
albedo tammiamasidir. Bu iki eksiklik pargaciklar arasinda meydana gelen
carpismalarin da gz Oniine almmasiyla diizeltirlir: Carpigmalarda géz
oniine alindifinda H-1 yaklagim igin albedo igin (5.22) nolu ile verilen
denklem elde edilir,

(5.22)

- 2c
o+ f2-0)] o, 20=0)]



Tablo’2 de elde edilen sonuglar karsilagtrilmugtir. Ustten alta dogru (1) H-
1, 2) H-3, (3) H-1, ilk garpigma (4) F-10 (tam) sonuglar1 gosterilmigtir.
Tiim ¢ ve uy parametreleri igin ilk ¢arpigma yaklagimm oldukea iyi sonuglar
vermigtir.

Cizelge 2. F-N ve H-N metodu ile elde edilen albedo deBerleri

Uy c=0.5 ¢=0.9 ¢=0.96
1.0 0.0603 0.432 0.599 .
1.0 0.106 0.450 0.608
1.0 0.133 0.445 0.598
1.0 0.119 0.428 0.586
10.0 0.0603 0.432 0.599
10.0 2.147 -3.285 -3.856
10.0 0.0241 0.118 0.200
10.0 0.0219 0.112 0.194
100. 0.0603 0.432 0.599
100. 206. -377. -450,
100. 0.00262 0.0141 0.0262
100. 0.00241 0.0135 0.0254




TARTISMA VE SONUC

Bu galigma iki béliim halinde yapilmstir. Ik béliimde plazma fiziginin esas
¢aligma konulanndan olan Fizyon enerjisi tizerinde durulmug ve plazmamn
hapsedilmesi esaslan incelenmistir. incelemede ilk hapsetme sistemlerinden
olan Magnetik Ayna incelenmistir. Magnetik Ayna sistemleri iginde
plazmanm hapsedilme esas1 ayrintih olarak iglenmistir. Plazmay olugturan
pargaciklar arasindaki carpismalar ve plazma igindeki kararsizliklar
nedeniyle pargaciklarin b1z uzayinda kayip koni dagilim gbsterek magnetik
ayna sistemini terkettikleri ve bu sebepten dolayida Lawson kriterinin
saglanamadify sonucu incelenmigtir. Lawson Kriteri saglanamadifr igin
magnetik ayna sistemlerinde kontrollii olarak fiizyon tepkimelerinin elde
edilemedigi sonucuna vanlmigtir,

Magnetik ayna sistemlerinin bu bagansizhfindan dolayr Lawson Kriterinin
saglanmas1 amaciyla dizayn edilen tokamak, stellarator ve pinch gibi diger
sistemlerede kisaca deginilmigtir.

Ikinci boliimde bir hidrojen plazmas1 igine nétr hidrojen atomlammn
gonderilmesi incelenmigtir. Notr hidrojen atomlanna ait transport denklemi
deneysel sonuglar yardimiyla ve iyon dagilminin bir Maxwell dagilim
sergiledifi yaklagimiyla diizlem geometride yazilmagtir, Diizlem
geometride yazilmig nétr atom transport denkleminin denklemin nétron
transport teorisindeki integro diferansiyel denklemden farkh olarak (-1,+1)
aralifinda olan integral aralifinin hidrojen plazmasi igin  (-00,+00)
aralipinda oldufu gériilmiigtiir. Daha sonraki agamada diizlem geometride
elde edilen nétr atom transport denklemine nétron transport denkleminin
incelenmesinde kullantlan zfonksiyonlar aranmigtir. Sabit plazma sicakhf
yaklagim ile Gzfonksiyonlar ve bu 6zfonksiyonlar arasindaki diklik
bagmtilanmn elde edilmesinden sonra ndtron transport teorisindeki F-N
metodu kullamlarak yan uzay albedo degerleri hesaplanmugtir,. F-N
metodu yardimyla elde edilen degerlerde c’nin 1’e yakin degerleri igin
albedonun negatif degerler aldify goriilmiigtiz. Bu sebeple  integro
diferansiyel denklemin aralifinin (-00,400 ) arahfinda tammh olmasindan
dolay1 Hermite polinomlan ile yan uzay albedo hesab1 yapilmigtir. Hermite
polinomlanmn kullamlmasiyla elde edilen albedo degerlerinin F-N metodu
ile elde edilen degerlere oldukga yakin oldugu ve c’nin 1’e yaklagan
degerlerinde sorun gikarmadig goriilmiigtiir.
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