
T.C.

ISTANBUL OKAN UNIVERSITY

INSTITUTE OF GRADUATE SCIENCES

THESIS

FOR THE DEGREE OF

MASTER OF SCIENCE

IN AUTOMOTIVE MECHATRONICS AND

INTELLIGENT VEHICLES PROGRAM

Yousif ALARAJI

(203005012)

AN INVESTIGATION INTO VIBRATION ANALYSIS FOR

DETECTING FAULTS IN VEHICLE STEERING OUTER

TIE-ROD

THESIS ADVISOR

Assist. Prof. Dr. Sina ALP

ISTANBUL, February 2024

ii

ABSTRACT

This thesis investigates fault detection in a simulated car's gear steering system using

MSC Adams and MATLAB simulations. It focuses on analyzing the angular acceleration

signal from the outer tie rod, crucial for identifying faults. Through simulation, the car

records the angular acceleration signal as a baseline for healthy signals and introduces

simulated wear into the tie rod using MATLAB to mimic real-world faults. Various types

of noise are added to the signals to assess the system's robustness. Two feature extraction

methods, wavelet scattering and discrete wavelet transform, are evaluated for their

effectiveness. Classification employs Support Vector Machines (SVM) and Neural

Networks (NN) and aims to classify signals as normal or faulty and determine fault

severity. Findings suggest wavelet scattering with Long Short-Term Memory (LSTM)

Neural Networks as a stable approach. Techniques like Principal Component Analysis

(PCA), Linear Discriminant Analysis (LDA), and Recursive Feature Elimination (RFE)

enhance classification accuracy. This research significantly advances fault detection in

automotive systems, providing insights into signal processing, classification algorithms,

optimization, and feature selection. The developed fault detection system promises real-

world application, potentially enhancing steering system reliability and safety.

Keywords: Fault Detection; Steering Systems; Angular Acceleration; Simulation;

Wavelet Analysis

iii

ÖZET

Bu tez, MSC Adams ve MATLAB simülasyonlarını kullanarak bir simüle edilmiş aracın

direksiyon sistemindeki hata tespitini araştırmaktadır. Dış bağlantı çubuğundan gelen

açısal ivme sinyalini analiz etmeye odaklanarak hataları belirlemek için önemlidir.

Simülasyon yoluyla, araç sağlıklı sinyaller için bir temel olarak açısal ivme sinyalini

kaydeder ve MATLAB kullanarak gerçek dünya hatalarını taklit etmek için dış bağlantı

çubuğuna simüle edilmiş aşınma ekler. Sistemin dayanıklılığını değerlendirmek için

sinyallere çeşitli tiplerde gürültü eklenir. Dalgalet dağılması ve kesikli dalgalet dönüşümü

olmak üzere iki özellik çıkarma yöntemi etkinlikleri açısından değerlendirilir.

Sınıflandırma, Destek Vektör Makineleri (SVM) ve Sinir Ağları (NN) kullanır ve

sinyalleri normal veya hatalı olarak sınıflandırmayı ve hata ciddiyetini belirlemeyi

amaçlar. Bulgular, dalgakıran dağılmasıyla Uzun Kısa Vadeli Hafıza (LSTM) Sinir

Ağları'nın istikrarlı bir yaklaşım olduğunu öne sürmektedir. Temel Bileşen Analizi

(PCA), Doğrusal Ayırıcı Analiz (LDA) ve Tekrarlanan Özellik Eleme (RFE) gibi

teknikler, sınıflandırma doğruluğunu artırır. Bu araştırma, otomotiv sistemlerinde hata

tespitini önemli ölçüde ilerletmekte olup, sinyal işleme, sınıflandırma algoritmaları,

optimizasyon ve özellik seçimi konularında içgörüler sunmaktadır. Geliştirilen hata tespit

sistemi, direksiyon sistemi güvenilirliğini ve güvenliğini potansiyel olarak artırarak

gerçek dünya uygulaması vadetmektedir.

Anahtar kelimeler: Hata Tespiti; Direksiyon Sistemleri; Açısal İvme; Simülasyon;

Dalgalet Analizi

iv

ACKNOWLEDGMENT

I am immensely grateful to Dr. Sina ALP for his unwavering guidance, support, and

encouragement throughout the entirety of this research. His expertise, profound

knowledge, and insightful feedback have been pivotal in shaping the direction and quality

of this study. I am truly fortunate to have had the opportunity to work under his

supervision.

I would also like to extend my heartfelt appreciation to Dr. Rami KHUSHABA for his

valuable contributions and assistance during this research endeavor. His expertise and

thoughtful input have significantly enriched the outcomes of this study, and I am deeply

grateful for his guidance and support.

Furthermore, I would like to express my sincere thanks to the staff of the Mechatronics

Engineering Department for their assistance and cooperation. Their continuous support

and dedication have been instrumental in facilitating the smooth progress of this project.

I am indebted to the library staff of Okan University and Baghdad University for their

kind assistance and access to invaluable resources. Their efforts have been instrumental

in expanding the breadth of my research and enhancing the overall quality of this work.

Last but not least, I would like to extend my gratitude to all the individuals who have

contributed, in any way, to the success of this research. Your support, whether it was

through providing valuable insights, sharing resources, or offering encouragement, has

been greatly appreciated.

v

TABLE OF CONTENTS

LIST OF TABLES .. VIII

LIST OF FIGURES .. IX

SYMBOLS .. XII

I. INTRODUCTION ... 1

1.1. BACKGROUND ... 1

1.2. GEAR STEERING OUTER TIE RODE ... 2

1.3. VIBRATION FAULT OBJECTIVE .. 4

1.4. VIBRATION FAULT IDENTIFICATION .. 6

1.4.1. Signal preprocessing ... 8

1.4.2. Features Extraction ... 10

1.4.3. Wavelet Scattering Transform .. 11

1.4.4. Feature Selection, Training, Testing, and Classification 12

1.5. BEST MODEL FOR FAULT IDENTIFICATION .. 15

1.6. THESIS SCOPE ... 17

1.7. RESEARCH OBJECTIVES .. 19

1.8. METHODOLOGY .. 19

1.9. THESIS OVERVIEW .. 21

II. LITERATURE REVIEW ... 23

2.1. OVERVIEW OF SUSPENSION SYSTEMS PROBLEM................................... 23

2.2. PREVIOUS RESEARCH ON SUSPENSION FAILURE AND ANALYSIS 24

2.3. VIBRATION ANALYSIS FOR FAULT DETECTION 31

2.4. A COMPARATIVE STUDY OF DEEP LEARNING MODELS FOR VIBRATION-

BASED FAULT IDENTIFICATION IN ROTATING MACHINERY 39

III. METHODOLOGY ... 42

3.1. SIMULATION SETUP... 42

3.2. SIGNAL PROCESSING PROCEDURE ... 50

3.3. DATA PREPARATION ... 51

vi

3.3.1. Operational Modes .. 51

3.3.2. Noise additions ... 54

3.3.3. Denoiser .. 55

3.4. FEATURE EXTRACTION .. 58

3.4.1. Discrete wavelet Transform (DWT) 59

3.4.2. Wavelet Scattering .. 71

3.5. FEATURE SELECTION AND OPTIMIZATION ... 81

3.5.1. Principal Component Analysis (PCA) 81

3.5.2. Linear Discriminant Analysis (LDA) 84

3.5.3. Sequential Feature Selection (SRE) and Recursive Feature

Elimination (RFE) ... 85

3.6. VALIDATION AND EVALUATION .. 87

3.7. FAULT DETECTION AND CLASSIFICATION ... 87

3.7.1. The Purpose of Using SVM and Neural Network 88

3.7.2. Support Vector Machines (SVM) ... 91

3.7.3. Neural network ... 102

3.7.4. LSTM MATLAB IMPLEMENTATOIN 114

3.7.5. SVM Vs Neural Network ... 118

3.7.6. Optimization of the Long Short-Term Memory (LSTM) Neural

Network .. 118

3.7.7. SVM Tuning ... 122

IV. THE RESULTS AND DISCUSSION .. 125

4.1. FIRST TEST DISCUSSION ROAD OBSTACLES 5 LEVELS OF TRAINING AND

TESTING (WITH NOISE) .. 126

4.1. SECOND TEST DISCUSSION ROAD OBSTACLES 5 LEVELS OF TRAINING AND

TESTING (DENOISED) ... 127

4.2. THIRD TEST ROAD TYPE AND SIGNAL CONDITION CLASSIFICATION

COMPREHENSIVE TESTING (WITH NOISE) .. 128

4.3. FOURTH TEST ROAD TYPE AND SIGNAL CONDITION CLASSIFICATION

COMPREHENSIVE TESTING (DENOISED) ... 129

4.4. LIMITATIONS OF THE STUDY ... 134

4.4.1. Data Collection ... 134

vii

4.4.2. Hardware Performance Evaluation ... 136

4.4.3. Time Constraints ... 136

4.5. RECOMMENDATIONS FOR FUTURE RESEARCH AND PRACTICAL APPLICATIONS

 137

4.5.1. Integration of LiDAR with Accelerometer Data 137

4.5.2. Incorporation of Real-Life Data ... 137

4.5.3. Merging Finite Element Analysis with Vibration Fault Detection

 137

4.5.4. Investment in Advanced Hardware Resources 138

4.5.5. Conducting Comparative Studies on Machine-Learning Algorithms

 138

4.5.6. The practical applications of these recommendations span across

various sectors ... 139

4.5.7. The Cost and Application of Accelerometer in Vehicular Vibration

Measurement ... 140

V. CONCLUSION .. 141

APPENDIX A ... 167

5.1. MATLAB CODE TO GENERATE SIGNALS FOR FOUR TYPES ROAD OBSTACLES

5 LEVELS TRAINING AND TESTING (WITH NOISE, DENOISED) 167

5.2. FIRST LABELLING CODE FOR FOUR TYPES ROAD OBSTACLES 5 LEVELS

TRAINING AND TESTING (WITH NOISE, DENOISED) .. 169

5.2.1. Codes For All Models Used for First Tests. 170

5.3. MATLAB CODE TO GENERATE ROAD TYPE AND SIGNAL CONDITION

CLASSIFICATION COMPREHENSIVE TESTING (THREE SCENARIOS) 178

5.4. SECOND LABELING CODE FOR ROAD TYPE AND SIGNAL CONDITION

CLASSIFICATION COMPREHENSIVE TESTING .. 181

5.4.1. Codes For All Models Used for Second Tests. 182

viii

LIST OF TABLES

Table 1 First Test Method Performance Summary (With Noises) _______________ 126

Table 2 Second Test Method Performance Summary (Denoised) _______________ 127

Table 3 Third Test: Summary of Method Performance Metric (With Noise) _______ 128

Table 4 Fourth Test: Summary of Method Performance Metric (Denoised) _______ 130

ix

LIST OF FIGURES

Figure I-1 Damaged Car Resulting from Suspension Failure. (Source Forbes) _______ 2

Figure I-2 Outer Tie Rod Subdivisions (Source Wozniak, 2022) __________________ 3

Figure I-3 Tie-Rod. (Source International Journal of Application or Innovation in

Engineering & Management (I JAI EM) _____________________________________ 4

Figure I-4 Fault Identification Flowchart ____________________________________ 6

Figure III-1 Car Model in MSC Adams_____________________________________ 43

Figure III-2 Left Outer Tie Rod ___ 43

Figure III-3 Simulation Parameters in MSC Adams ___________________________ 44

Figure III-4 Sine Road Scenario __ 45

Figure III-5 Angular Acceleration - Sine Road Scenario _______________________ 45

Figure III-6 Roughness Obstacle Scenario __________________________________ 46

Figure III-7 Angular Acceleration - Roughness Road Scenario __________________ 46

Figure III-8 Pothole Obstacle Scenario _____________________________________ 47

Figure III-9 Angular Acceleration - Pothole Road Scenario _____________________ 47

Figure III-10 Bump Obstacle Scenario _____________________________________ 48

Figure III-11 Angular Acceleration - Bump Road Scenario _____________________ 48

Figure III-12 MSC ADAMS Post-Simulation ________________________________ 49

Figure III-13 Signals Extracted by MATLAB For Four Road Obstacles ___________ 50

Figure III-14 First Test Mode with Four Level of Faults 80% Training 20% Testing _ 52

Figure III-15 Normal Signal and Generated Faulty Signals for Four Road Obstacles _ 53

Figure III-16 Roads Under Stress Testing Faulty and Weary Conditions with an 80-20

Split __ 54

x

Figure III-17 Discrete Wavelet Transform Decomposition Tree _________________ 61

Figure III-18 Orthogonal Wavelets Two Different Scale and Position But the Product is

Zero. __ 62

Figure III-19 Common Wavelet Families ___________________________________ 63

Figure III-20 Different Types of Daubechies Wavelets ________________________ 64

Figure III-21 Discrete Wavelet Five Levels (Wavelet Db4) _____________________ 68

Figure III-22 Wavelet Scattering Vs Convolutional Neural Network ______________ 72

Figure III-23 Scattering Convolution Process ________________________________ 75

Figure III-24 Wavelet Scattering Filter Bank ________________________________ 77

Figure III-25 Wavelet Scattering Tree ______________________________________ 79

Figure III-26 Scree Plot ___ 83

Figure III-27 Percentage of Variance ______________________________________ 83

Figure III-28 SVM Four Faulty Levels Classification __________________________ 89

Figure III-29 SVM Obstacle Types and Fault Classifications ____________________ 90

Figure III-30 Hyperplane and Support Vectors with Maximum Margin ____________ 91

Figure III-31 Hard Margin SVM Vs Soft Margin SVM ________________________ 92

Figure III-32 1D Dataset for Classification __________________________________ 93

Figure III-33 SVM with RBF Kernel ______________________________________ 93

Figure III-34 LSTM Neural Network Architecture ___________________________ 103

Figure III-35 LSTM Recurrent Unit and Gates ______________________________ 104

Figure III-36 LSTM Input Gate __ 105

Figure III-37 LSTM Forget Gate ___ 106

Figure III-38 LSTM Output Gate __ 107

xi

Figure III-39 Forward, Loss Function and Backward Propagation (This Figure by [133],

[134]). ___ 109

Figure IV-1 Training Progress Road Type and Signal Condition Classification (With

Noise) with Wavelet Scattering Neural Network Test Using adam Optimizer ______ 129

Figure IV-2 Objective Function Modeling of a faulty and healthy signal for each road

type (Denoised) Wavelet Scattering and SVM Tuned and Optimized with LDA____ 131

Figure IV-3 Minimum Objective vs. Number of Function Evaluations of a faulty and

healthy signal for each road type (Denoised) Wavelet Scattering and SVM Tuned and

Optimized with LDA __ 131

xii

SYMBOLS

Yt Time series variable at time t

ε(t) Error term at time t in the time series model

P(θ∣y) Posterior probability given the data

P(y∣θ) Likelihood function

f(x; μ,γ) Probability density function of a Cauchy distribution

θ̂α(X)i Threshold estimate of θ for a given α and data point i

∅ Wavelet coefficient in the discrete wavelet transform

λ

Lambda (threshold parameter in denoising scaling or shaping

parameter)

N Number of observations or data points

DWTφ Discrete wavelet transform with wavelet function φ

φ Wavelet function in the wavelet transform

yhigh(k) High-pass filtered signal

ylow(k) Low-pass filtered signal

Φ Continuous wavelet transform with a father wavelet Φ

ψ Mother wavelet in wavelet analysis

s Scaling factor in wavelet equations

w Weight vector

b Bias term associated with the wavelet coefficient in DWT

C Regularization parameter (Penalty parameter)

∥w∥ Euclidean norm of the weight vector

α Alpha Lagrange multiplier associated with training samples

K(xi,xj) Kernel function measuring similarity between samples

Ot Output gate

σ(x) Logistic sigmoid function

g(x) Hyperbolic tangent function

ΔW* Update term in the weight matrix W in neural networks

xiii

Δpi

Update term for the input-to-hidden weights in neural

networks

ΔR* Update term for the recurrent weights in neural networks

α Alpha (Learning rate)

β ̂ Estimated coefficients in a linear model

ŷ Predicted class in a support vector machine

di Margin distance in a support vector machine

Sm Multiscale wavelet scalogram with multiple scales

xiv

ABBREVIATIONS

NHTSA National Highway Traffic Safety Administration

SVM Support Vector Machine

DWT Discrete Wavelet Transform

WPT Wavelet Packet Transform

LCWPE Local Characteristics-scale Wavelet Packet Energy

WEK Wavelet Energy and Kurtosis

TEOWT Teager Energy Operator with Wavelet Transform

ASR Automatic Speech Recognition

ECG Electrocardiogram

PCA Principal Component Analysis

NLM Non-Local Means

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

GBM Gradient Boosting Machines

k-NN k-Nearest Neighbors

GPU Graphics Processing Unit

CPU Central Processing Unit

FPGA Field-Programmable Gate Array

DSR Design Science Research

FEA Finite Element Analysis

PSD Power Spectral Density

CWT Continuous Wavelet Transform

FEM Finite Element Method

ARX Auto Regressive model with exogenous input

KYP Kalman-Yakubovich-Popov

xv

GMF Gear Mesh Frequency

MCSA Motor Current Signature Analysis

ERA Eigensystem Realization Algorithm

HVAC Heating, Ventilation, and Air Conditioning

VAE Variational Autoencoder

LDA Linear Discriminant Analysis

STFT Short-Time Fourier Transform

WPE Wavelet Packet Energy

MSB Modulation Signal Bi-spectrum

PMSM Permanent Magnet Synchronous Motors

REB Rolling Element Bearings

VFD Vibration-Based Fault Diagnosis

ANN Artificial Neural Networks

AI Artificial Intelligence

ML Machine Learning

MSC Software for Multibody Dynamics Simulation

Matlab Matrix Laboratory

PDF Probability Density Function

Sym4 Symlet

LPF Low-Pass Filter

HPF High-Pass Filter

MRA Multiresolution Analysis

IEEE Institute of Electrical and Electronics Engineers

RFE Recursive Feature Elimination

SRE Sequential Feature Selection

NN Neural Network

RBF Radial Basis Function

C

Regularization Parameter (Penalty parameter in

SVM)

xvi

Hinge function used SVM for penalizing misclassifications

Kernel

Function used for transforming data into higher

dimensions

Dual The dual form of the optimization problem in SVM

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

SGD Stochastic Gradient Descent

MSE Mean Squared Error

Cross-Entropy A loss function used in classification tasks

ReLU Rectified Linear Unit

BPTT Back-Propagation Through Time

Adam Adaptive Moment Estimation algorithm

RMSprop Root Mean Square Propagation

numHiddenUnits Number of hidden units in the LSTM layer

numClasses Number of output classes

YTrain/YTest Training and Testing datasets respectively

YPred Predicted output

YPredAll Matrix storing predictions from multiple models

YPredEnsemble prediction aggregated from multiple models

cm Confusion matrix

net LSTM model

1

I. INTRODUCTION

1.1. Background

Suspension failure in vehicles is a critical issue that poses a significant risk on the roads,

leading to car accidents and potentially fatal outcomes. According to data from the

National Highway Traffic Safety Administration (NHTSA) [1], suspension-related

problems rank as the third most habitual reason for car accidents, often occurring in

combination with steering, transmission, or engine issues. It has been reported that this

combination accounts for approximately 3% of all traffic accidents. Sadly, the

motivation for my thesis stems from a personal tragedy - the loss of a dear friend due

to suspension failure.

Suspension failure is a serious concern that can have devastating consequences. When

driving a car, drivers may experience clicking or popping sensations in the suspension,

which, unfortunately, some drivers may ignore or not recognize as significant.

However, it is crucial to address these issues promptly, as they can lead to fatal

accidents if left unattended.

One specific danger associated with suspension failure is the potential loss of steering

control, particularly in cases of ball joint or end-spindle failure. Such failures can result

in a vehicle rollover and a catastrophic accident. The severity of these accidents is

further highlighted by real-life incidents, such as the case involving Mena Massoud, a

star of Disney's live-action films [2]. Mr. Massoud sued Tesla, alleging that a

suspension failure was the cause of the accident that resulted in his damaged car (Figure

I-1). Despite the contradictory statements from a Tesla spokesperson, the accident

occurred, underscoring the need to uncover the truth behind such incidents.

2

These instances of suspension failure and their devastating consequences demand

action. It is imperative to develop ideas and preventive measures to mitigate these

accidents and enhance vehicle safety. Additionally, the creation of a fault recorder for

suspension systems could provide valuable insights into the causes and potential

warning signs of failures, contributing to improved preventive measures.

By focusing on the prevention of suspension-related accidents and the development of

a fault recorder, this thesis aims to address this critical issue and promote safer driving

conditions.

Figure I-1 Damaged Car Resulting from Suspension Failure. (Source Forbes)

1.2. Gear Steering outer tie rode

The outer tie rod is a crucial component of the steering system, responsible for

connecting the steering mechanism to the wheel knuckle and enabling the wheels to

turn. It comprises various parts, including the body, lower cup, lower part of the

bearing, lower ring, dust boot, dust boot skirt, upper ring, ball stud, and castle nut with

a cotter pin (Figure I-2).

3

Due to exposure to different forces such as longitudinal, lateral, and vertical forces, the

tie rod experiences various types of stresses, leading to gradual wear and tear. If left

unattended, this deterioration can pose significant risks and increase the likelihood of

accidents. Therefore, it is essential to periodically replace the tie rod based on its

individual life cycle, which is influenced by factors like material composition and

design [3].

Figure I-2 Outer Tie Rod Subdivisions (Source Wozniak, 2022)

The ball joint in the outer tie rod is particularly vulnerable as it encounters substantial

longitudinal, lateral, and vertical stresses. As a result, this specific component is highly

susceptible to wear, leading to vibrations and potential failure. The failure typically

occurs at the spherical contact interface between the ball pin and the ball socket [4].

Finite element analysis serves as a powerful tool for understanding the tie rod's life

cycle, load-bearing capacity, and optimal dimensions. By employing this analysis

technique, we can gain insights into the tie rod's performance limitations and expected

lifespan, ultimately enhancing vehicle safety and maintenance practices [5].

4

Additionally, vibrations can occur when there is increased wear or improper tightening

of the outer tie rod. These vibrations can serve as an indicator of the extent of damage.

By monitoring these vibrations, we can evaluate the level of wear and potential damage

to the tie rod.

Our research focuses on utilizing vibration analysis as a tool to assess wear and

potential damage in the outer tie rod of the steering system. We aim to monitor tie rod

vibrations to determine the level of fault and extent of wear, providing valuable insights

into its performance limitations and expected lifespan. This knowledge will contribute

to enhancing vehicle safety and maintenance measures, ultimately reducing the risk of

accidents caused by tie rod failure.

Figure I-3 Tie-Rod. (Source International Journal of Application or Innovation in

Engineering & Management (I JAI EM)

1.3. Vibration Fault Objective

Vibrations in tie rods within vehicle suspension systems can lead to potential dangers

and safety concerns. These vibrations can be categorized into noise vibrations and

movement vibrations, becoming more noticeable as the tie rod experiences wear and-

5

tear over time [6]. Incorrect tightening of the tie rod can further exacerbate vibration-

related issues. It is crucial to measure and analyze these vibrations to assess the level of

danger and develop effective mitigation strategies.

Various methods are available to measure vibrations, including accelerometers,

velocity sensors, displacement sensors, strain gauge sensors, microphone sensors, and

fiber optic sensors. One commonly used sensor is the piezoelectric angular acceleration

sensor, which is battery-free and provides detailed information about angular

acceleration [7]. The choice to measure angular acceleration instead of angular

displacement or angular velocity is because angular acceleration provides more features

about the signals [8]. It is important to note that angular acceleration (α) is crucial in

understanding the impact of wear on the tie rod. Angular acceleration is measured in

degrees per second squared (deg/s²), and as wear increases, vibration intensity also

increases until failure eventually occurs. Analyzing these vibrations thoroughly allows

us to classify the level of danger based on their intensity, providing valuable insights

for effective risk assessment and developing mitigation strategies.

One potential method for identifying faults in the tie rod and categorizing them into

various levels involves the implementation of Automatic Speech Recognition (ASR)

using wavelet-based feature extraction and classifiers, as proposed by [9]. This

technique has also been used in fault detection for other devices such as gearboxes [10]

and has been used for fault detection in heart signal ECG [11]. By employing this

approach, vibrations in the vehicle suspension system, specifically in the tie rod, can be

detected and analyzed, thereby facilitating fault diagnosis.

6

Using vibration analysis techniques allows us to gain comprehensive knowledge about

the tie rod's condition. This knowledge is vital for enhancing vehicle safety, optimizing

maintenance practices, and ensuring the reliability of the steering gear system.

1.4. Vibration fault identification

Vibration fault detection involves identifying the specific fault source by comparing

test vibration data with fault models. The process consists of training (modeling) and

identification (matching) units [12] Training builds fault models based on vibration

features extracted from known fault samples, while identification calculates the

correspondence between input features and fault models. Success in fault identification

relies on effective training and identification. Vibration data is used to detect and

pinpoint the source of the fault [13]. process can be further simplified and visualized

using the provided flowchart (Figure I-4).

Figure I-4 Fault Identification Flowchart

7

The process begins with the signal undergoing preprocessing, which is essential for

preparing the signal for fault identification. During this stage, the signal undergoes

several key steps.

Firstly, the signal is labeled, categorizing it based on known fault types. This labeling

step establishes a reference for the subsequent fault identification process. Additionally,

denoising techniques are applied to remove unwanted noise and artifacts from the

signal. This ensures that the subsequent analysis focuses on relevant information by

eliminating unnecessary disturbances [14].

Following preprocessing, the signal enters the feature extraction stage. Various

methods are utilized to extract meaningful information from the vibration data.

Standard techniques include Fourier analysis, wavelet transforms, and statistical

measures like mean and standard deviation. These methods enable the extraction of

relevant features that can effectively differentiate between different fault types [15].

Once the features have been extracted, the signal proceeds to the classification stage.

In this stage, a classifier is employed to match the extracted features with fault models,

facilitating the identification of the specific fault type. Classification algorithms, such

as support vector machines (SVM), decision trees, or neural networks, are commonly

utilized for this purpose. The classifier compares the input features with the fault

models generated during the training stage and determines the closest match, thereby

identifying the fault [16].

In conclusion, vibration fault detection plays a vital role in detecting and localizing

faults in machinery. Through effective training in fault models and the use of accurate

8

identification techniques, maintenance personnel can efficiently address issues,

minimize downtime, and optimize overall machine performance.

1.4.1. Signal preprocessing

Signal preprocessing in vibration fault identification involves signal labeling and signal

denoising. Signal labeling is the process of assigning appropriate labels or categories to

the vibration signals based on the fault or condition being analyzed [17]. This step helps

in organizing the data and facilitating subsequent analysis and classification. Signal

denoising aims to remove unwanted noise from the vibration signals to improve the

accuracy of fault detection and diagnosis. Various methods have been used for

denoising, such

1.4.1.1. Wavelet Denoising

Wavelet denoising decomposes a signal into different scales using wavelet transform.

Thresholding is applied to remove noise in certain scales while preserving essential

signal details [18].

1.4.1.2. Median Filtering

This non-linear method replaces each data point with the median of its neighboring

points. It effectively removes impulse noise while preserving signal edges [19].

1.4.1.3. Low-Pass Filtering

 Low-pass filters attenuate high-frequency noise while keeping the lower-frequency

components of the signal intact. Common examples include Gaussian filters and

moving average filters [20].

9

1.4.1.4. Total Variation Denoising

 Total variation denoising minimizes the total variation of the signal while ensuring that

the denoised signal remains close to the observed noisy signal. It is useful for signals

with sharp edges and discontinuities [21].

1.4.1.5. non-Local Means (NLM)

 NLM is a powerful technique that exploits redundancy in signals. It averages similar

patches in the signal to reduce noise while preserving key details [22].

1.4.1.6. Principal Component Analysis (PCA)

 PCA transforms the noisy signal into a new coordinate system where the first few

principal components capture the main signal information while the remaining

components represent noise. Removing the noise components yields a denoised signal

[23].

1.4.1.7. Sparse Representations

Sparse representations represent signals as linear combinations of few basic elements

(atoms) from a learned dictionary. Promoting sparsity helps to effectively suppress

noise [24].

1.4.1.8. Kalman Filtering

Kalman filters are optimal for estimating the true signal state from noisy measurements

in systems with known or predictable dynamics [25].

10

1.4.1.9. Machine Learning-based Denoising

Machine learning techniques, such as deep learning and support vector machines, can

be applied for signal denoising. These methods learn complex noise patterns and

denoise signals effectively [14].

The choice of denoising method depends on the specific characteristics of the signal

and the nature of the noise. Combining multiple denoising methods can often yield

better results than using a single approach alone.

1.4.2. Features Extraction

 Feature extraction is a crucial step in vibration fault identification as it involves

extracting relevant information or characteristics from the preprocessed vibration

signals. The extracted features serve as inputs for the subsequent classification

algorithms. Several methods have been used for feature extraction in vibration fault

identification. These methods include

1.4.2.1. Continuous Wavelet Transform (CWT)

 The continuous wavelet transform is widely utilized in vibration analysis to create a

time-frequency representation of vibration signals. It allows for the detection of

transient events and the analysis of non-stationary signals [26].

1.4.2.2. Discrete Wavelet Transform (DWT)

 DWT is commonly employed for feature extraction in vibration analysis. By

decomposing the vibration signal into different frequency bands, it enables the

identification of specific frequency components and energy distribution [27].

11

1.4.2.3. Wavelet Packet Transform (WPT)

 WPT is an extension of DWT, providing a more detailed decomposition of vibration

signals. It facilitates a comprehensive analysis of different frequency components and

proves useful for fault diagnosis and feature extraction [28].

1.4.3. Wavelet Scattering Transform

 Wavelet scattering is an advanced feature extraction method, that offers a stable and

translation-invariant representation of data. It effectively captures both low-frequency

and high-frequency information, making it robust against variations and deformations.

Wavelet scattering has gained popularity in various signal analysis tasks, including

vibration analysis [29].

1.4.3.1. Local Characteristics-scale Wavelet Packet Energy (LCWPE)

 LCWPE is a wavelet-based feature extraction method that quantifies the energy of

signals in different frequency bands. It is valuable for identifying localized faults in

rotating machinery [30].

1.4.3.2. Wavelet Energy and Kurtosis (WEK)

 WEK combines wavelet energy and kurtosis to extract features relevant for identifying

fault-related components in vibration signals. Kurtosis, measuring the non-Gaussianity

of the signal, aids in detecting impulsive faults [31].

Teager Energy Operator with Wavelet Transform (TEOWT) TEOWT combines the

Teager energy operator with wavelet transform, enhancing the detection of transient

signals in vibration data [32].

These methods are widely applied in vibration analysis for various purposes, such as

fault detection, condition monitoring, and predictive maintenance of mechanical

12

systems. Researchers and practitioners often choose specific methods or combinations

of methods based on the unique characteristics of vibration data and their analysis

objectives. Staying up-to-date with the latest research and literature is essential for

accessing the most current information on wavelet-based feature extraction methods in

vibration analysis.

1.4.4. Feature Selection, Training, Testing, and Classification

 After feature extraction, the next steps involve feature selection, training, testing, and

classification. Feature selection aims to identify the most relevant and informative

features from the extracted set of features. This step helps in reducing the

dimensionality of the data and improving the efficiency and accuracy of the

classification algorithms. Various classification methods have been used in vibration

fault identification, including

1.4.4.1. Support Vector Machine (SVM)

SVM is a powerful and versatile classifier that works well for both linear and non-linear

data. It is particularly effective when dealing with high-dimensional feature spaces,

making it suitable for vibration data analysis. SVM aims to find an optimal hyperplane

that separates different classes, making it useful for binary classification tasks where

you want to distinguish between normal and faulty states [33].

1.4.4.2. Random Forest

Random Forest is an ensemble learning method that combines multiple decision trees

to improve classification accuracy and robustness. It can handle large datasets with high

dimensionality and is less prone to overfitting. Random Forest can be effective in

13

detecting various fault conditions by analyzing the patterns present in the vibration data

Gradient [34].

1.4.4.3. Boosting Machines (GBM)

GBM is another ensemble learning technique that sequentially builds multiple weak

learners to create a robust predictive model. It is known for its high accuracy and ability

to handle complex relationships in data. GBM can be well-suited for vibration fault

detection tasks where there might be intricate interactions between distinctive features

[35].

1.4.4.4. Neural Networks

Deep learning-based approaches, particularly neural networks, have shown promising

results in various fault detection tasks, including vibration analysis. Convolutional

Neural Networks (CNNs) can effectively extract features from vibration signals, while

Recurrent Neural Networks (RNNs) can capture temporal dependencies. Long Short-

Term Memory (LSTM) networks, a type of RNN, are well-suited for sequential data

like vibration time series [36].

1.4.4.5. k-Nearest Neighbors (k-NN)

k-NN is a simple but effective non-parametric classifier for vibration fault detection. It

classifies data points based on the majority class among their k-nearest neighbors in the

feature space. k-NN can be valuable when the underlying data distribution is not well-

defined or when dealing with imbalanced datasets [37].

14

1.4.4.6. Decision Trees

Decision trees are easy to interpret and visualize, making them valuable for

understanding the reasoning behind the classifier's decisions. They can be useful for

fault detection when the features have clear decision boundaries [38].

1.4.4.7. Ensemble Methods

Ensemble methods like AdaBoost and XGBoost combine multiple weak learners (e.g.,

decision trees) to create a strong, accurate classifier. These methods can handle noisy

or imbalanced data and are effective in capturing complex patterns in vibration signals

[39].

Selecting the most appropriate classifier for vibration fault detection may require

experimentation and tuning based on the specific dataset and problem requirements.

Other crucial factors to consider include data size, dimensionality, class distribution,

and available computational resources. These methods utilize the extracted and selected

features to classify the vibration signals into different fault categories. The training and

testing phases involve training the classification model using a labeled dataset and

evaluating its performance on unseen data. This helps in assessing the accuracy and

effectiveness of the classification algorithm in identifying and diagnosing faults in

vibration signals. In summary, signal preprocessing in vibration fault identification

involves signal labeling and denoising. Feature extraction methods include improved

deep learning algorithms, hierarchical fuzzy entropy, wavelet packet energy entropy,

WCFSE, and histogram features. Feature selection, training, testing, and classification

methods such as SVM, CNN, fuzzy logic, and mathematical statistics are used for fault

identification.

15

1.5. Best Model for fault Identification

Choosing the most suitable model for fault identification depends on the characteristics

of the signals being analyzed. Diverse types of signals, such as suspension vibrations,

heart signals, human sounds, AC machine signals, engines, and other reciprocating

signals, exhibit unique forms and timings. Consequently, each signal type requires

specific approaches for feature extraction, filtering, and classification [40].

The selection of an optimal fault identification method depends on the designer's

primary objectives. If accuracy is paramount, the chosen approach should prioritize

precise fault detection. This means selecting a method or model that can accurately

identify faults with minimal false positives or false negatives. Various techniques, such

as machine learning algorithms or statistical methods, can be employed to achieve high

accuracy in fault identification [41].

Conversely, if the time required for accomplishing the task is crucial, a method that

offers faster results may be more appropriate. In time-sensitive scenarios, such as real-

time fault detection in critical systems, the speed of the identification process becomes

a priority. In such cases, simpler algorithms or rule-based approaches that can quickly

process the signals and provide prompt fault identification may be preferred [42].

The hardware employed for fault identification, such as GPUs, CPUs and FPGA, also

influences the decision-making process. Certain models or algorithms may be better

suited for specific hardware configurations. GPUs, with their parallel processing

capabilities, are known to excel in tasks that can be parallelized, such as certain machine

learning algorithms. On the other hand, CPUs may be more suitable for algorithms that

16

require sequential processing or have lower computational requirements, and FPGAs

offer customization and optimization possibilities [43].

Cost can also be a factor in selecting a fault identification method. Some methods may

require expensive hardware or extensive computational resources, which may not be

feasible in certain situations. In such cases, cost-effective approaches that can still

achieve the desired level of accuracy and speed may be preferred.

When it comes to fault identification, numerous scientific techniques and algorithms

can be employed. These approaches are typically categorized into two main groups

model-based and data-driven methods.

Model-based methods These techniques involve developing mathematical models that

represent the system under analysis. Fault identification is performed by comparing the

behavior of the actual system with the predicted behavior based on the model. Model-

based methods are particularly useful when a deep understanding of the system's

dynamics is available. However, they may require extensive knowledge and expertise

in system modeling.

Data-driven methods These approaches rely on analyzing the measured data directly

without explicitly modeling the system. Data-driven methods are advantageous when

the underlying system dynamics are complex or not well understood. They often utilize

machine learning algorithms to automatically learn patterns and correlations in the data.

These methods can be further divided into supervised learning, unsupervised learning,

and semi-supervised learning, depending on the availability of labeled training data

[44].

17

Supervised learning algorithms, such as support vector machines (SVMs) or random

forests, require labeled examples of both normal and faulty behavior to train the model.

Unsupervised learning algorithms, such as clustering or anomaly detection methods,

can identify abnormal patterns in data without relying on labeled examples. Semi-

supervised learning combines aspects of both supervised and unsupervised learning,

utilizing a limited amount of labeled data along with a larger amount of unlabeled data

[45].

To enhance fault identification accuracy, feature extraction techniques play a crucial

role. Feature extraction involves transforming the raw signals into a set of

representative features that capture relevant information for fault identification.

Common techniques include Fourier transforms, wavelet transforms, time-frequency

analysis, and statistical measures [46].

In conclusion, selecting the best model for fault identification involves considering the

specific characteristics of the signals, the desired objectives (accuracy vs. time

efficiency), and the available hardware resources. Both model-based and data-driven

methods offer effective approaches, with data-driven methods, particularly machine

learning algorithms, being popular choices due to their ability to handle complex and

unmodeled systems. Feature extraction techniques further aid in improving fault

identification accuracy by extracting pertinent information from the signals.

1.6. Thesis Scope

The scope of this thesis encompasses the prevention and detection of suspension-related

accidents in vehicles, with a specific focus on the outer tie rod component of the steering

system. The research will primarily involve the analysis of vibrations in the tie rod to

18

assess wear and potential damage. The thesis will explore the use of vibration analysis

techniques, such as Fourier analysis, wavelet transforms, and statistical measures, to

extract meaningful information from the vibration data. The objective is to monitor tie

rod vibrations and determine the level of fault and extent of wear, providing valuable

insights into the tie rod's performance limitations and expected lifespan.

Additionally, the thesis will investigate fault identification methods, including

Automatic Speech Recognition (ASR) and wavelet-based feature extraction, to detect

and categorize faults in the tie rod. The aim is to develop effective fault identification

techniques that can accurately diagnose faults and facilitate the implementation of

appropriate mitigation strategies.

The thesis will focus on the outer tie rod component and its associated vibrations,

considering factors such as material composition, design, and the specific failure modes

of the tie rod. The research will involve experimental data collection and analysis to

validate the effectiveness of the proposed vibration analysis and fault identification

methods.

The scope of the thesis does not extend to other suspension components or systems,

such as shocks, struts, or control arms. The research will primarily concentrate on the

outer tie rod and its role in suspension failure and accident prevention. However, the

findings and methodologies developed in this thesis may have broader implications for

vehicle suspension safety and maintenance.

Overall, the thesis aims to contribute to the improvement of vehicle safety by

developing preventive measures and utilizing advanced fault detection technologies

specifically tailored to the outer tie rod component.

19

1.7. Research Objectives

1. To investigate the causes and factors contributing to suspension failure in

vehicles, with a specific focus on the outer tie rod component of the steering

system.

2. To analyze and assess the vibrations in the outer tie rod as an indicator of wear

and potential damage, aiming to develop a comprehensive understanding of the

tie rod's performance limitations and expected lifespan.

3. To develop effective fault identification methods, such as Automatic Speech

Recognition (ASR) and wavelet-based feature extraction, to detect and categorize

faults in the tie rod.

4. To explore preventive measures and maintenance practices that can enhance

vehicle safety and reduce the risk of accidents caused by tie rod failure.

5. To validate the proposed vibration analysis and fault identification methods

through experimental data collection and analysis.

6. To contribute to the improvement of vehicle safety by providing insights and

recommendations for the design, maintenance, and monitoring of the outer tie rod

component.

1.8. Methodology

The research will follow a Design Science Research (DSR) methodology, as proposed

by [47]. The six steps of DSR, including programming, data collection and analysis,

synthesis of objectives and analysis results, development, prototyping, and

documentation, will guide the research process. This systematic approach will ensure

that the research objectives are addressed in a rigorous and structured manner.

The research design will involve both quantitative and qualitative methods.

Quantitative data will be collected through vibration measurements and analysis,

utilizing techniques such as Fourier analysis, wavelet transforms, and statistical

measures. Qualitative data will be gathered through interviews and surveys to gain

20

insights into maintenance practices and the effectiveness of fault identification

methods.

The research instruments will include sensors for vibration measurement,

questionnaires for data collection, and interview protocols for qualitative data

gathering. The research will employ a mixed-methods approach, combining the

strengths of quantitative and qualitative analysis to provide a comprehensive

understanding of suspension failure and fault detection in the outer tie rod.

Data analysis will involve statistical techniques for quantitative data, such as correlation

analysis and regression analysis, to identify patterns and relationships. Qualitative data

will be analyzed using thematic analysis to identify key themes and patterns in the

responses.

The research will also include experimental testing to validate the proposed vibration

analysis and fault identification methods. Prototypes will be developed and tested under

controlled conditions to assess their effectiveness in detecting and categorizing faults

in the tie rod.

Overall, the research methodology will ensure a systematic and rigorous approach to

address the research objectives, combining quantitative and qualitative methods, and

validating the proposed methods through experimental testing. The research findings

will contribute to vehicle safety and provide insights into the design and maintenance

of suspension systems.

21

1.9. Thesis Overview

There will be six chapters accordingly

Chapter 1 Introduction: The first chapter of the thesis introduces the topic of

suspension failure in vehicles and its impact on road safety. It highlights the importance

of addressing this issue and provides the motivation behind the research. The chapter

outlines the objectives and scope of the thesis, setting the foundation for the subsequent

chapters.

Chapter 2 Literature Review: The literature review chapter provides a comprehensive

overview of existing research and knowledge related to suspension failure and fault

detection in vehicles. It examines relevant studies, theories, and methodologies

employed in the field. The chapter critically analyzes the strengths and limitations of

previous research, identifies gaps in the literature, and establishes the theoretical

framework for the current study.

Chapter 3 Methodology: In this chapter, the thesis describes the research methodology

employed to achieve the stated objectives. It outlines the research design, data

collection methods, and analysis techniques utilized in the study. The chapter also

discusses any limitations and constraints encountered during the research process and

explains how they were addressed. The methodology chapter provides a clear and

detailed explanation of the steps taken to ensure the validity and reliability of the

findings.

Chapter 4 Data Results: This chapter presents the findings of the data analysis

conducted in the study, along with their interpretation and discussion in relation to the

research objectives. The results are presented in a clear and organized manner, utilizing

22

tables, graphs, and other visual aids to enhance understanding. Additionally, the

implications of the findings are examined, compared to existing literature, and

supported by appropriate references. Practical implications for suspension failure

prevention and fault detection are explored, along with recommendations for future

research and practical applications.

Chapter 5 Conclusion: The conclusion chapter summarizes the main findings of the

study and restates the research objectives. It highlights the contributions of the research,

discusses its limitations, and suggests areas for further investigation. The chapter

concludes with a final reflection on the significance of the research and its potential

impact on improving vehicle safety and preventing suspension-related accidents.

Overall, the thesis aims to provide a comprehensive analysis of suspension failure in

vehicles, focusing on the outer tie rod component. It utilizes vibration analysis

techniques and fault identification methods to enhance understanding, detection, and

prevention of suspension failures. The subsequent chapters will delve into the research

process, analysis, and interpretation of the findings.

23

II. LITERATURE REVIEW

The literature review chapter examines the existing knowledge and research on

suspension failure in vehicles, with a focus on the outer tie rod and its role in the

suspension system. It aims to understand the causes and consequences of suspension

failure and explore the potential application of vibration analysis and fault identification

techniques in improving vehicle safety. By reviewing relevant literature, this chapter

contributes to the understanding of suspension failure and provides insights for

preventive measures. It also discusses the importance of vibration analysis and fault

identification in detecting faults in the outer tie rod and suspension system.

2.1. Overview of suspension systems problem

Suspension systems are crucial components of vehicles, contributing significantly to

driving comfort, steering control, and road friction. Ahmed Aboazoum underscores the

prevalence of common suspension problems such as poor wheel alignment, faulty

shocks or struts, damaged springs, failing ball joints, and faulty control arms. To uphold

optimal suspension performance, Aboazoum advocates for regular inspections and

timely repairs [48]. Meanwhile, Ravi Kumar et al. delve into investigating the failure

of primary suspension systems within FIAT-type LHB bogies. Their study focuses

specifically on the fatigue failure of primary helical springs and proposes design

modifications aimed at enhancing fatigue life. Employing a flexible finite element

model, the researchers conduct multi-body dynamic analysis and stress analysis. They

estimate fatigue life using the Modified Goodman diagram and validate design

24

modifications through comparative fatigue life estimation [49]. In parallel, Saurabh D.

Shinde, Shruti Maheshwari, and Satish Kumar's literature review delves into the

analysis of McPherson suspension system components, with a particular emphasis on

the strut mount. They highlight the critical role of suspension systems for safety and

comfort while underscoring the risks associated with poor design. Previous research

endeavors have leveraged computer-aided engineering techniques, encompassing static

and dynamic simulations, finite element analysis, and fatigue analysis, to study various

components. However, the authors identify a research gap concerning strut mount

failure and propose design modifications to mitigate this issue [50].

2.2. Previous Research on Suspension Failure and analysis

Suspension systems play a crucial role in ensuring the safety, performance, and comfort

of automotive and railway vehicles. Detecting and diagnosing faults in suspension

systems is essential for maintaining their reliability and preventing potential failures.

Over the years, researchers have conducted numerous studies to develop effective

techniques for detecting and diagnosing suspension failures. This topic aims to provide

an overview of previous research on suspension failure detection techniques in

automotive and railway systems. For instance, Hamed, Tesfa, Belachew, Fengshou, Gu,

& Ball (2015) Focus on developing a mathematical model using a seven-degree-of-

freedom full car to analyze suspension performance. The study conducts simulations to

predict the vehicle's response when driven over speed bumps of different shapes and

speeds. The model is validated using experimental data collected from driving the

vehicle over a specific bump at a speed of 8 km/hr. The research analyzes suspension

25

performance in terms of ride comfort, road handling, and stability, considering

parameters such as wheel deflection, suspension travel, and vehicle body acceleration.

The study also explores the effects of speed and changes in suspension specifications,

including tire pressure. The developed model is used for fault detection of under-

inflated tires and predicting potential suspension faults [51]. Similarly, Patil & Darade

(2018) Conducted a comprehensive study to examine the fatigue life and vibration

behavior of the pitman arm in a steering system. Utilized Finite Element Analysis

(FEA) using Ansys software and CATIA software for structural analysis and equipment

design, respectively. By subjecting the Pitman arm to varying frequencies in Ansys, the

researchers successfully identified critical areas prone to structural weaknesses. This

research significantly contributes to the understanding of the pitman arm's durability

and vibration characteristics within steering systems. The integration of FEA and

advanced software tools allowed for a thorough evaluation of the arm's structural

integrity and design considerations. The findings have substantial implications for

enhancing the performance and reliability of steering systems in automotive

applications [52]. In another Study, Reza Kashyzadeh et al. (2015) Conducted a study

on predicting fatigue life in suspensions exposed to random vibrations from road

roughness. Employed Catia, Ansys, and MATLAB for suspension modeling, fatigue

life analysis, and simulation, respectively. By calculating fatigue life using FEM Ansys

and comparing it with MATLAB’s PSD function, component life cycles and potential

failures were determined. To enhance this approach, integration with vibration fault

detection methods was proposed. This integration would improve the accuracy of

identifying potential suspension failures, enabling proactive maintenance and fault

26

mitigation. Kashyzadeh's research contributes to the field by highlighting the potential

for further advancements in fatigue life prediction and fault detection in suspensions.

Future research can focus on developing advanced algorithms and methodologies to

integrate vibration fault detection with fatigue life prediction, enhancing suspension

reliability and performance [53]. Xiukun et al. (2013) Propose a novel approach for

fault isolation in Light Rail Vehicles (LRVs) suspension systems using the Dempster-

Shafer (D-S) evidence theory. The authors address the importance of fault isolation for

ensuring train safety and reliability, specifically focusing on the suspension system.

They introduce a fault isolation algorithm that incorporates a fault feature database and

multi-sensor information fusion. The algorithm utilizes a Kalman filter to generate

residuals for fault diagnosis and employs the Eros and norm distance to measure the

similarity between new and existing fault features. The obtained similarities are

converted into basic belief assignments and fused using the D-S evidence theory to

enhance isolation accuracy. The effectiveness of the proposed method is demonstrated

through two case studies, highlighting its potential in improving the accuracy of fault

recognition and the safety of LRVs [54]. Further, Jin et al. (2019) Introduce a method

for estimating actuator faults in active suspension systems. The proposed approach

combines an adaptive observer with genetic algorithm optimization to accurately track

actuator faults under various conditions. Simulation results demonstrate the

effectiveness and robustness of the method, outperforming other approaches. The paper

also applies the fault estimation method in fault-tolerant control of the active suspension

system, improving ride comfort and ensuring important constraints. Overall, the paper

contributes to the field by addressing actuator fault estimation and providing a practical

27

solution for active suspension systems [55]. Meanwhile, X. Zhu et al., 2019 Addressed

the problem of fault detection in vehicle active suspension systems. Proposed a fault

detection filter design in the finite-frequency domain to enhance suspension system

performance. Utilized the generalized Kalman-Yakubovich-Popov (KYP) lemma to

derive a sufficient condition for the residual system with the prescribed H∞

performance index. The authors emphasized the importance of active suspension

systems in improving ride comfort and vehicle safety. The proposed approach aimed to

enhance suspension performance in the finite frequency range, targeting the frequency

band of 4-8Hz known for its sensitivity to human body vibrations. The fault detection

filter was formulated as a set of linear matrix inequalities, ensuring stability and

performance. The authors demonstrated the effectiveness of their approach through a

numerical example and compared it with existing methods. The paper contributes to the

field of fault detection in vehicle active suspension systems by providing a finite-

frequency domain approach to improve performance and reliability [56]. Addressing

fault detection in rail vehicle suspension systems, Mao et al. (2017) propose a fault

detection scheme that uses a fault detection observer, considering uncertain track

regularity and stochastic noises. The authors introduce disturbances to the suspension

system states and design an observer to estimate both the system states and

disturbances. They analyze the existence conditions for observer design and develop a

systematic detection algorithm based on the residual signal. The paper includes

simulation results to demonstrate the observer's behavior and performance. This study

contributes to the field of fault detection in suspension systems by considering the

impact of disturbances and stochastic noises. The proposed observer-based approach

28

shows promise in effectively detecting sensor faults in rail vehicle suspension systems.

However, further research is necessary to validate the approach using real-world

systems and explore its applicability to other types of suspension systems [57].

Sugahara & Researcher (2013) Proposed a fault detection technique for vertical

dampers in railway vehicles. The method focuses on analyzing the phase difference

between the bounce and pitch motions of bogie frames or the car body using inertial

sensors. Through vibration excitation tests and running tests on a meter-gauge line, the

authors validate the effectiveness of the proposed technique in detecting faults in both

primary and secondary dampers. This approach offers a practical and cost-effective

solution compared to traditional methods that rely on strain gauges. By evaluating the

phase difference, damper faults can be detected during routine train operations,

contributing to the field of fault detection in railway vehicle suspension systems [58].

In the realm of vehicle suspension systems, Yin & Huang (2015) Present a novel fault

diagnosis method for vehicle suspension systems. The proposed approach leverages

accelerometer measurements and employs a three-step process. Firstly, the method

utilizes principal component analysis to determine the number of clusters. Secondly, it

detects faults through fuzzy positivistic C-means clustering and fault lines. Finally, the

root causes of faults are isolated using Fisher discriminant analysis. Notably, the

method offers a practical and efficient solution by relying solely on accelerometer data

from the four corners of the suspension. The authors demonstrate the effectiveness of

their approach through a comprehensive simulation using a full vehicle benchmark

[59]. Wei et al. (2013) Propose a data-driven approach for fault detection in vertical rail

vehicle suspension systems. The authors use accelerometer sensors placed in the car

29

body and bogies to collect data. They investigate PCA-based and CVA-based fault

detection methods. The simulation results show their approach's effectiveness for

detecting vertical damper and spring faults. The paper highlights the importance of on-

line fault detection and condition monitoring for railway vehicle suspension systems. It

also discusses previous studies on condition monitoring and fault detection in railway

systems. Overall, the paper contributes to the field of condition monitoring and fault

detection in railway vehicle suspension systems [60]. Moreover, Sakellariou et al.

(2015) Present a feasibility study on vibration-based fault diagnosis in railway vehicle

suspensions using a functional model-based method. The authors propose a fault

detection and isolation (FDI) unit that is trained using data from a physics-based model

of the suspension. The unit achieves fault diagnosis using a data-based method called

the functional model-based method (FMBM). The FMBM utilizes a novel class of

stochastic ARX-type models to accurately represent the system in a faulty state. The

study demonstrates the feasibility of fault diagnosis in railway vehicle suspensions

through Monte Carlo simulations. The FDI unit is shown to exhibit high sensitivity and

accurate estimation of fault magnitudes, and it is robust to measure noise and other

uncertainties. The authors conclude that the FDI unit has the potential to improve safety

and performance in railway vehicles [61]. Aravanis et al. (2020) Investigated vibration-

based faults in railway vehicle suspension. Analyzed vibrations in a 9-degree-of-

freedom railway vehicle setup and compared two fault detection methods physics-based

models and data-based models using Principal Component Analysis (PCA).

Simulations were conducted in MATLAB using the Isim Function and Monte Carlo

simulations. The study utilized baseline and inspection phases for active and faulty

30

systems, respectively. Fault detection was achieved through FM and PCA methods,

analyzing curves and evaluating ROC curves. The experiment faced challenges due to

limited vibration signals and the presence of non-measurable system components. The

findings contribute to understanding fault detection in railway vehicle suspension

systems. Further research is needed to address the challenges and enhance fault

detection techniques in practical applications [62]. Additionally, Rahim et al. (2020)

Assessed suspension fatigue in automobile systems. Utilized the discrete wavelet

transform (DWT) and wavelet energy analysis to classify the fatigue level of

suspensions. The study focused on measuring strain signals obtained from the coil

spring component while driving on both smooth and bumpy roads. The findings provide

valuable insights into the use of DWT and wavelet energy analysis for evaluating

suspension fatigue. Future research can explore the refinement of these techniques, the

inclusion of additional parameters, and the development of real-time fatigue monitoring

systems to enhance suspension performance and reliability [63]. Azadi & Soltani

(2009) Investigated fault detection in vehicle suspension systems using continuous

wavelet transform (CWT) analysis. Focused on identifying faults in the damper and

upper damper bushing (UDB) components by approximating system natural

frequencies and frequency components with maximum energy using Morlet wavelet

functions. The study involved simulation in ADAMS/CAR software and validation

through laboratory tests. The authors suggested enhancing their method by integrating

wavelet scattering or discrete wavelet transform along with modified classifiers for

improved results and accuracy. Comparisons between these approaches and CWT

analysis were proposed to assess their effectiveness in fault detection. The research

31

provides valuable insights into fault detection in vehicle suspension systems and

suggests avenues for further improvement in fault detection capabilities [64]. In

conclusion Previous research on suspension failure detection techniques in automotive

and railway systems has contributed significantly to the understanding and

improvement of fault detection methods. These studies have utilized various

approaches, including physics-based models, data-driven models, wavelet analysis,

fault detection filters, and fault isolation algorithms. The findings have provided

valuable insights into the durability, vibration characteristics, fatigue life, and fault

detection capabilities of suspension systems. Further research is needed to address the

challenges and enhance fault detection techniques in practical applications, optimize

design and material selection, and develop advanced algorithms and methodologies for

integrating vibration fault detection with fatigue life prediction. These advancements

will contribute to improving suspension reliability, performance, and safety in

automotive and railway systems

2.3. Vibration Analysis for Fault Detection

Vibration analysis is a critical technique for detecting faults and predicting failures in

rotating equipment, offering a proactive approach to minimize unforeseen failures and

plant shutdowns. This literature review presents a compilation of studies that explore

various methodologies and applications of vibration analysis for fault detection in

rotating machinery. For instance, Nouman Khan and Ajit Prasad S L (2019) explore the

vibration characteristics of a gearbox with cracked gear teeth to facilitate early fault

detection. The authors employ a back-to-back gear test rig for vibration analysis and

32

utilize frequency spectrum and order tracking analysis for fault diagnosis. Results

demonstrate that faulty gears exhibit higher amplitude vibrations at the gear mesh

frequency (GMF), with amplitude increasing in proportion to the number of cracked

teeth. Additionally, frequency domain analysis reveals higher-order sidebands at the

GMF, further confirming the presence of defects. The study emphasizes the

effectiveness of order tracking analysis for fault diagnosis and underscores the

importance of timely detection of tooth fractures to avert catastrophic failures [65].

Building upon this, Nandi et al. (2005) provided a comprehensive overview of fault

diagnosis techniques for electrical motors. The authors cover various types of faults

including stator faults, bearing faults, broken rotor bar faults, and eccentricity-related

faults. They highlight vibration frequencies as a key indicator for detecting bearing

faults, along with thermal measurements and chemical analysis. For stator faults,

techniques such as online partial-discharge tests, axial flux-based detection, and

monitoring negative-sequence currents are discussed. Broken rotor bar faults can be

detected using motor current signature analysis (MCSA), as well as through voltage

and vibration analysis. Eccentricity-related faults can also be detected using MCSA and

vibration analysis, with frequency components depending on the eccentricity type. The

authors additionally explore the use of artificial intelligence techniques, such as neural

networks and fuzzy logic systems, for machine condition monitoring and fault

diagnosis, enabling the classification of fault signatures and diagnostic decision-

making. This article serves as a valuable resource for researchers and practitioners in

the field of electrical motor fault diagnosis [66]. Plante et al. (2015) further extend this

understanding by showcasing distinctive use of vibration analysis in detecting faults

33

and predicting failures in rotating equipment. The authors emphasize the significance

of equipment monitoring to mitigate the risks of unforeseen failures and plant

shutdowns. Vibration analysis is identified as the primary method for assessing

equipment conditions and predicting failures. The study conducts a motor condition

monitoring experiment, employing spectrum analysis software and MATLAB to

analyze measured vibration data. The severity of vibration and specific natural

frequencies are used to determine the motor's condition and identify fault types. The

article presents results for three fault conditions (unbalance, mechanical looseness, and

bearing fault), showcasing distinctive patterns and peaks in the frequency spectrum

associated with each condition. The study concludes by highlighting the efficacy of

vibration analysis and proposes further research on analyzing vibration trends for

accurate failure prediction and reduced maintenance costs [67]. Expanding the scope,

Sheng Fu et al. (2016) introduced a new method for mechanical fault diagnosis using

time domain analysis and adaptive fuzzy C-means clustering. It addresses the challenge

of identifying defects early due to component noise by calculating nine-time domain

parameters as characteristic vectors for fault detection. The proposed approach

demonstrates effectiveness in classifying different fault types, including micro-sized

faults, based on vibration signals. It outperforms other methods like Hilbert

transformation and wavelet denoising in detecting faults in rolling bearings. The

simplicity and direct signal processing of time domain analysis make it advantageous

in terms of processing time. Overall, the study validates the method's effectiveness and

robustness through experiments using bearing data [68]. Dong et al. (2021) address

prevalent challenges in existing methods by proposing a method to monitor bolt

34

looseness using vibration transmissibility analysis, addressing challenges in existing

methods. The approach utilizes accelerometers to measure vibrations above and below

cargo bolts. The spectral moment factor assesses torque level variations of the bolt

group, while the eigensystem realization algorithm (ERA) identifies subtle eigenvalue

changes to detect local bolt looseness. Experimental results demonstrate the method's

effectiveness in detecting both global and local bolt looseness, making it a practical and

cost-effective solution for ensuring safety in bolted joints across industries [69].

Parzinger et al. (2020) shift focus towards automated fault detection in building HVAC

systems using machine learning models and statistical tests on residuals. The study

emphasizes energy efficiency and the lack of cost-efficient methods for fault detection.

They use detailed simulation data from a residential case study house to compare fault-

free and faulty operations. Nine statistical tests are applied to analyze residuals for fault

detection. Results indicate accuracy is affected by data amount, fault type, and density.

Finding the best combination of tests is crucial for accurate fault prediction in building

HVAC systems [70]. Huang et al. (2019) leverage a two-stage machine-learning

architecture for motor fault detection and feature extraction. The method avoids

complex preprocessing by using motor vibration time-domain signals. The first stage

utilizes an RNN-based VAE to reduce the dimension of sequential data and improve

prediction accuracy. In the second stage, PCA and LDA further reduce dimensionality,

enabling visualization and detection of different fault modes. Experimental results

demonstrate over 99% accuracy in motor fault detection using a simple neural network.

The proposed method has significant advantages over other dimension reduction

techniques and is valuable for smart manufacturing and preventive maintenance

35

decision-making. Overall, the RNN-based VAE approach provides an effective and

efficient solution for motor fault detection in various industries [71]. Concurrently,

Belkacemi et al. (2020) investigate the detection of induction motor bearing lubrication

issues using Discrete Wavelet Transform (DWT) analysis with MATLAB/Wavelets

toolbox. Traditional time and frequency domain methods face challenges with non-

stationary vibration signals, making DWT a suitable alternative for accurate fault

identification. Experimental validation using vibration signals from healthy and

improperly lubricated bearings reveals that the DWT enhanced by MATLAB/Wavelets

toolbox is effective in diagnosing lubrication defects. The healthy bearing signal

exhibits lower magnitude peaks and lacks periodicity compared to the improper

lubricated bearing signal. The DWT decomposition process, analyzing magnitude

ranges and histogram distributions, supports the procedure's efficiency. The paper

suggests future research in intelligent techniques for bearing fault detection and

monitoring [27]. Hashemi et al. (2013) proposed a fuzzy model for auto-detecting gear

faults based on vibration signal analysis. The model combines conventional methods

and uses wavelet transform and statistical indexes as fault criteria. It simplifies the

decision-making process by employing fuzzy systems, considering gear signals and

fault effects. The model is validated through an empirical setup and performs well in

detecting gear faults, even for different setups. It can estimate gear health and status

using fuzzy logic, offering a simplified approach to gear fault diagnosis despite limited

data availability and manufacturing challenges. Overall, the paper's contribution lies in

proposing an effective fuzzy-based method for gear fault detection and health

assessment [72]. Wang et al. (2019) introduced an enhanced cyclic modulation

36

spectrum (CMS) algorithm for detecting broken rotor bar (BRB) faults in induction

motors (IMs). The CMS algorithm, based on vibration signature analysis, handles non-

stationary and non-linear signals characteristic of IMs with BRB faults. It optimizes

window function, length, and step size for short-time Fourier transform (STFT) to

improve accuracy and computational efficiency. Compared to motor current and

vibration signature analyses, the improved CMS algorithm offers better fault detection

and noise immunity. Simulation and experimental studies validate its efficacy in

accurately diagnosing healthy and faulty motors with BRBs, making it a promising tool

for online fault diagnosis [73]. Guo et al. (2018) contribute to early fault diagnosis in

planetary gearboxes based on wavelet packet energy (WPE) and modulation signal bi-

spectrum (MSB) analysis. Vibration-based analysis was used to extract fault features

by decomposing vibration signals into time-frequency subspaces using WPD. The

method accurately diagnosed faults in experimental tests, including chipped sun gear

tooth and inner-race fault cases. It offers advantages over existing methods by being

data-driven, not requiring extensive system knowledge, and overcoming the limitations

of other analysis techniques. The combination of WPE and MSB enables effective fault

feature extraction and noise suppression, promising more accurate fault diagnosis in

planetary gearboxes, and ensuring machinery safety and reliability. Future research can

focus on optimization and addressing method limitations [74]. Meanwhile, Y. Li et al.,

(2020) propose a novel methodology for wheelset bearing fault detection in railway

vehicles. The method comprises two stages morphological signal processing and

morphological image processing. It utilizes a double cross-correlation operation to

reduce noise and emphasize fault features in the signal. The filtered signal is

37

transformed into a time-frequency domain image using wavelet transform, and

morphological image processing techniques are applied to enhance fault features while

eliminating noise. The proposed amplitude-sum-based peak search algorithm extract’s

fault features from the time-frequency plane. Real vibration signals from a wheelset

bearing test rig were used for testing, showing superior performance compared to other

methods in detecting various bearing faults, promising safer and more reliable railway

operations [75]. Popescu and Aiordachioaie (2018) further expand fault detection to

rolling element bearings (REB) using change detection and optimal segmentation of

vibrating signals. The authors highlight the importance of fault modeling and predictive

health monitoring for REB to prevent machine failure and economic losses. They

provide an overview of existing condition-monitoring and fault diagnosis techniques

for REB. Their proposed method employs an optimal segmentation algorithm based on

a linear regression model with piecewise constant parameters, implemented in a

MATLAB toolbox called VIBROTOOL. Experimental evaluations using data sets from

Case Western Reserve University demonstrate the method's effectiveness in detecting

faults in different components of REB. The method contributes to the field of condition

monitoring and fault diagnosis in rotating machines, particularly in the context of

rolling element bearings. Overall, the paper offers a promising approach for fault

detection in REB through change detection and optimal signal segmentation [76]. Zhu

et al. (2021) propose a comprehensive method for diagnosing bearing faults in rotating

machinery. Their approach involves time-frequency feature extraction using Wavelet

Packet Transform (WPT), followed by Multi-Weight Singular Value Decomposition

(MWSVD) for relevant feature extraction and dimensionality reduction. A Support

38

Vector Machine (SVM) classifier is then used for fault diagnosis. The method is

validated with data sets from different sources and outperforms traditional techniques

like PCA and SVD in fault diagnosis and feature extraction. The proposed approach

shows promise for practical applications in rotating machinery maintenance and fault

diagnosis [77]. Liang et al. (2018) contribute to the field by introducing a fault detection

method for stator inter-turn short-circuit in Permanent Magnet Synchronous Motors

(PMSMs) using stator current and vibration signals. The authors introduce a time-

frequency method based on an improved wavelet packet transform to analyze the

signals and detect short circuit faults. The feasibility of the approach is demonstrated

through experimental tests on a three-phase PMSM. Signal-based methods, which

analyze the signals collected from the motors, are preferred for PMSM fault diagnosis

due to their speed and independence from specific models. The study contributes to the

field of motor fault diagnosis and highlights the importance of signal-based methods

for detecting faults in PMSMs [78]. In 2019, Rahnama et al. introduced a novel fault

detection method for diode rectifiers in brushless synchronous generators using

vibration signals. The approach involves wavelet transform-based feature extraction

and multiclass support vector machines for classification. A modified sequential

forward subset selection approach is employed for enhanced accuracy. The study

includes an extensive literature review on fault detection using vibration signals and

explores various fault types and their impact on machine vibration behavior.

Experimental results demonstrate the method's effectiveness in detecting rectifier

faults, outperforming conventional techniques [79]. The reviewed studies demonstrated

the efficacy of diverse fault detection techniques. Integration of wavelet and machine

39

learning methods holds promise for accurate fault diagnosis. Future research should

explore deep learning and big data applications to further enhance fault detection in

rotating machinery, benefiting industries with improved reliability and reduced

maintenance costs.

2.4. A Comparative Study of Deep Learning Models for Vibration-Based Fault

Identification in Rotating Machinery

The field of fault identification in rotating machinery has witnessed significant progress

with the integration of deep learning techniques. This paper presents a comprehensive

comparative study of two state-of-the-art deep learning models for vibration-based fault

diagnosis, each offering distinct advantages over traditional methods. In a 2017 study,

Zhang Wei, Peng Gaoliang, and Li Chuanhao proposed a novel approach that utilizes

Convolutional Neural Networks (CNNs) with a 2D representation of vibration signals

as input. This approach eliminates the need for time-consuming data preprocessing, a

common requirement in conventional methods like Fast Fourier Transform (FFT) and

Artificial Neural Networks (ANN). Experimental results showcase the method's

effectiveness, demonstrating improved fault diagnosis accuracy and stability when

compared to a baseline system using FFT paper's significant contribution to intelligent

fault diagnosis highlights its potential for further research and development [80]. In a

parallel study, Shaheryar et al. (2017) introduces and ANN. Additionally, real-world

datasets from the Case Western Reserve University Bearing Data center validate the

model's performance. Although specific CNN hyperparameters and computational

efficiency details are not fully disclosed, the MCNN-SDAE, a deep-learning framework

for vibration-based fault identification in rotating machinery. This model combines

40

Convolutional Neural Networks (CNNs) with Denoising Autoencoders to facilitate

unsupervised feature learning from raw vibration signals. MCNN-SDAE surpasses

traditional methods in fault identification on a benchmark dataset of bearing-related

faults. By effectively capturing complex fault dynamics and reducing the need for

manual feature engineering, MCNN-SDAE exemplifies the capacity of deep neural

architectures for vibration-based fault diagnosis in mechanical systems [81]. both

proposed deep learning models offer valuable insights and advancements in the field of

fault identification in rotating machinery. While the first model focuses on exploiting

2D representations of vibration signals and simplifying data preprocessing, the second

model emphasizes the strength of unsupervised feature learning through CNNs and

Denoising Autoencoders. The findings from this comparative study can guide

researchers and practitioners to explore hybrid approaches that leverage the strengths

of both models, ultimately enhancing the accuracy and efficiency of vibration-based

fault diagnosis.

In conclusion, the application of artificial intelligence (AI) for fault detection in rotating

machinery shows great potential for improving accuracy and reliability. The integration

of AI-based machine learning (ML) models with vibration analysis techniques offers a

promising approach to detecting faults in rotating machinery. The reviewed studies

highlight the importance of utilizing AI and ML methods in vibration-based fault

diagnosis (VFD) to enhance the accuracy and efficiency of fault detection. One area of

further research is the optimization of parameters in vibration-based ML models to

ensure accurate and reliable fault diagnosis. By considering the dynamics of the

machine and optimizing the vibration parameters, the developed ML models can be

41

more effective in predicting faults accurately, even when applied to different machines

or under different operating conditions. Another avenue for further research is the

comparison and exploration of different AI techniques, such as artificial neural

networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS), for fault

detection in rotating machinery. Comparative studies between ML algorithms and AI

neural networks can provide insights into the effectiveness and suitability of different

approaches for detecting minor faults in induction motors. To achieve better accuracy

and efficiency, future research should focus on utilizing larger and more diverse

datasets, integrating multiple AI and ML methods, and optimizing the performance of

the developed models. The use of advanced AI techniques, such as deep learning

models, can further enhance fault detection capabilities by capturing complex fault

dynamics and reducing the need for manual feature engineering. Additionally, the

development of efficient algorithms and the utilization of parallel computing techniques

can enable real-time fault detection, reducing the computational time required for

analyzing large amounts of data [82]. The integration of edge computing and cloud-

based platforms can also facilitate real-time monitoring and remote fault diagnosis. In

conclusion, further research should focus on utilizing AI for fault detection in rotating

machinery, exploring different AI techniques, optimizing parameters, and developing

efficient algorithms for real-time fault detection. By addressing these areas, researchers

can enhance the accuracy, efficiency, and timeliness of fault diagnosis, leading to

improved reliability, performance, and safety in various industries.

42

III. METHODOLOGY

Our research methodology forms the bedrock of our quest for efficient fault detection

in diverse road obstacles. We harness the power of Long Short-Term Memory (LSTM)

networks, Neural Networks (NN), and Support Vector Machines (SVM) to address our

objectives.

LSTM networks, designed for sequential data, are first elucidated for their role in

decoding intricate dependencies. NN's mathematical foundations are outlined to

reinforce our understanding. Comparatively, LSTM networks and SVM models are

dissected regarding complexity, feature engineering, scalability, interpretability, and

performance.

Hardware is pivotal. The Intel(R) Core(TM) i7-7820HK CPU at 2.90GHz, paired with

the NVIDIA GeForce GTX 1080 GPU, drives our experiments.

Feature extraction techniques such as Discrete Wavelet Transform and wavelet

scattering in Matlab enhance our data analysis.

This holistic approach equips us with the tools, techniques, and computational power

to explore fault detection across various road obstacles, making our research a beacon

of innovation in the field.

3.1. Simulation Setup

The simulation setup of the study employed two software tools MSC Adams and

MATLAB. The car model represented a front-wheel-drive salon car and comprised ten

interconnected systems, including the steering system, front and rear tires, brake

system, sedan body system, power system (consisting of engine, transmission, and

43

transverse components), stabilizer bar, rear suspension system, front Macpherson

suspension system, and the drive line (Figure III-1).

Figure III-1 Car Model in MSC Adams

Central to the analysis was the intensive examination of the front Macpherson

suspension system, with particular emphasis on the left outer tie rod (Figure III-2).

Signals of pivotal importance were exclusively extracted from this component for in-

depth scrutiny.

Figure III-2 Left Outer Tie Rod

44

Upon successfully integrating the car model into MSC Adams, meticulous simulations

ensued, employing a straight-line and maintained road scenario. The simulation

parameters included 20 seconds, a step frequency of 50, a velocity of 20 km/hr, and a

gear position of 20 (Figure III-3).

Figure III-3 Simulation Parameters in MSC Adams

Four discrete and meticulously crafted tests (scenarios) were executed on the car model,

delving into the realm of the angular acceleration of the left outer tie rod on the X-axis.

The outcomes derived from these tests offer profound insights into the car dynamic

behavior under diverse road conditions, akin to the interpretive potential of real-life

accelerometer readings.

45

Sine Road Scenario This scenario ingeniously replicated a Sinewave-like obstacle,

spanning an expanse of 80 meters (Figure III-4). The resultant angular acceleration is

vividly illustrated in (Figure III-5).

Figure III-4 Sine Road Scenario

Figure III-5 Angular Acceleration - Sine Road Scenario

46

Roughness Obstacle Scenario A simulation introduced a distinctly uneven road surface,

incorporating a roughness obstacle stretching across 85 meters (Figure III-6). The

ensuing angular acceleration is perceptibly displayed in (Figure III-7).

Figure III-6 Roughness Obstacle Scenario

Figure III-7 Angular Acceleration - Roughness Road Scenario

47

Pothole Obstacle Scenario This scenario emulated a road with a pothole obstacle

spanning 10 meters (Figure III-8). The consequential angular acceleration is vividly

portrayed in (Figure III-9).

Figure III-8 Pothole Obstacle Scenario

Figure III-9 Angular Acceleration - Pothole Road Scenario

48

Bump Obstacle Scenario Intriguingly, a bump obstacle measuring 2 meters in length

and peaking at a maximum height of 7 cm was tactfully introduced (Figure III-10). The

subsequent angular acceleration findings are depicted in (Figure III-11).

Figure III-10 Bump Obstacle Scenario

Figure III-11 Angular Acceleration - Bump Road Scenario

The acquisition and analysis of angular acceleration signals underpinned meticulous

scrutiny for each distinct scenario. This rigorous data collection procedure echoed the

methodologies applied to real-life accelerometers, ultimately generating four

49

distinctive signals synonymous with the four individual scenarios (Figures I-5, I-7, I-9,

and I-11).

Post-simulation (Figure III-12), the ensuing results were seamlessly transferred as .tab

files to the MATLAB platform for a profound analytical phase. This meticulous

MATLAB analysis encompassed an array of procedures, including signal

preprocessing, comprehensive data labeling, intricate feature extraction, and precise

training and testing signal classification.

Figure III-12 MSC ADAMS Post-Simulation

The sophisticated array of models implemented within the MATLAB environment

facilitated effective interpretation and astute visualization of the outcomes. This holistic

approach contributed substantially to our grasp of the multifaceted implications of

diverse road obstacles on the angular acceleration patterns of the left outer tie rod within

the context of the front Macpherson suspension system.

50

3.2. Signal Processing Procedure

The raw data obtained from MSC Adams, saved as .tab files, is efficiently imported

into MATLAB using the "importdata" function, resulting in the following assignments

MATLAB

SineWave = importdata('Sinewave.tab', '\t').data;

Roughness = importdata('Roughness.tab', '\t').data;

Pothole = importdata('Pothole.tab', '\t').data;

Bump = importdata('bump.tab', '\t').data;

Subsequent to data import, the temporal and angular acceleration data from each

scenario file are meticulously extracted (Figure III-13).

Figure III-13 Signals Extracted by MATLAB For Four Road Obstacles

51

. This process yields the essential signals represented in (Figures III-5, III-7, III-8, and

III-11).

To simulate wear in the Tie rod, a practical limitation in MSC Adams, we manipulate

angular acceleration parameters by altering degrees. This adjustment exploits the

fundamental correspondence between angular acceleration and (Degree/sec2).

3.3. Data Preparation

In this section, a dataset of 1000-point signals underwent two tests— one with and one

without noise. A third test introduced noise, subsequently denoised using a wavelet

denoising MATLAB function. The chosen signal length and noise variations simulate

real-world scenarios, enabling comprehensive methodology evaluation. This section

details the steps taken to address noise challenges and emphasizes the importance of

the denoising process in enhancing signal quality for subsequent analysis.

3.3.1. Operational Modes

The initial mode focuses on distinct signal behavior. Normal signals exhibit a

fluctuation range spanning from 0 to around 0.001. Faults are systematically

introduced, encompassing a range from 0.005 to 2 degrees across diverse road types

(Figure III-13). This design establishes four distinct fault levels, contributing to a

collective pool of 400 signals. Each fault level comprises precisely 100 signals. Post-

signal generation, healthy, and fault signals are categorized and labeled meticulously.

Signal shuffling ensues, culminating in their partitioning into 80 signals for training and

20 for testing (Figure III-14).

52

Figure III-14 First Test Mode with Four Level of Faults 80% Training 20% Testing

 The ensuing dataset is then prepared for subsequent feature extraction. A rigorous

evaluation of the 15 fault detection models is conducted, with the most accurate models

subjected to a two-step testing process involving the introduction of noise, simulating

conditions akin to a grainy road, followed by denoising testing.

53

Figure III-15 Normal Signal and Generated Faulty Signals for Four Road Obstacles

In the second mode, the focus is on healthy and wearily representation (Figure III-15).

A set of 400 healthy signals per road type is employed. Wear is simulated, ranging from

no wear to 0.001, while faults span between 0.005 to 2 degrees, emulating actual

conditions. Similar to the preceding mode, signals undergo meticulous labeling,

shuffling, and partitioning for training and testing (Figure III-16).

The ensuing dataset is also primed for feature extraction. A comprehensive evaluation

of 15 fault detection models is executed under three key scenarios unaltered signals,

signals influenced by added noise mimicking a grainy road, and signals subjected to

denoising prior to testing.

54

Figure III-16 Roads Under Stress Testing Faulty and Weary Conditions with an 80-20

Split

3.3.2. Noise additions

The noises that will be added is a gaussian noises with standard deviation 30.

we use the code in MATLAB to add this noise as below

noiser = 30 * randn(size(AccData(2end,))

The code snippet provided generates random noise using the formula

noiser = 30 * randn(size(AccData(2end,)))

This code is used to generate random noise with a normal distribution and a mean of 0

and standard deviation of 30. The `randn` function in generates random numbers from

a standard normal distribution, and the `size` function is used to determine the size of

the `AccData` matrix. The mathematical model related to this code is the random walk

55

plus noise model. The random walk plus noise model is a commonly used model in

time series analysis and econometrics. It consists of a random walk component and a

noise component. The random walk component represents a stochastic process that

evolves, while the noise component represents random fluctuations around the random

walk. The random walk plus noise model can be represented mathematically as:

 𝑌𝑡 = 𝑌𝑡 − 1 + 𝜀𝑡 (III.1)

where Y(t) is the value of the random walk plus noise process at time t, and ε(t) is the

noise component at time t. The random noise generated by the code snippet can be seen

as the ε(t) term in the model. It represents the random fluctuations around the random

walk component [83].

3.3.3. Denoiser

When addressing the challenge of noise reduction, particularly in scenarios like the

generation of noise from a grainy road assumption, MATLAB's wdenoise function

emerges as a robust and comprehensive solution. This function employs a sophisticated

combination of techniques, seamlessly integrated to achieve optimal results in signal

denoising.

3.3.3.1. Empirical Bayesian Method

At the core of the denoising process is the application of the empirical Bayesian method.

This advanced statistical approach dynamically tailors the prior information based on

the observed data. In contrast to traditional Bayesian methods, which rely on fixed

priors, empirical Bayesian estimation adapts the prior distribution using the available

data.

56

The central equation, expressing the posterior given the data, exemplifies this

adaptability:

 𝑃(𝜃 ∣∣ 𝑦) ∝ 𝑃(𝑦 ∣∣ 𝜃) ⋅ 𝑃(𝜃) (III.2)

The equation balances the updated belief distribution of a parameter (θ) following the

observation of data (y). It achieves this balance by considering the likelihood of

observing the data given the parameter P(y∣θ), the initial belief distribution of the

parameter P(θ), and the overall probability of observing the data P(y). This equation

symbolizes the adjustment of the parameter distribution after data observation,

effectively reconciling the likelihood and the initial belief (prior). The empirical

Bayesian method serves as a bridge between the challenge of determining a suitable

prior and the necessity for data-driven inference. However, caution is advised in its

application to prevent potential biases [84].

3.3.3.2. Cauchy Prior

The method incorporates a Cauchy prior, which is a probability distribution

characterized by its heavy tails. This characteristic makes it particularly effective in

modeling data with outliers or heavy-tailed noise. The probability density function

(PDF) of the Cauchy distribution, represented as:

𝑓(𝑥; 𝜇, 𝛾) = (

1

𝜋𝛾
) ∗ (

𝛾2

(𝛾2 + (𝑥 − 𝜇)2)
),

 (III.3)

The Cauchy distribution is characterized by three key parameters x (independent

variable), μ (location parameter), and γ (scale parameter). μ determines the center of

the distribution, while γ controls its spread. The reciprocal of πγ ensures normalization.

57

Cauchy distributions have heavy tails and lack finite moments, making them useful in

statistical modeling.

By integrating the Cauchy prior into a statistical method, it demonstrates robustness in

handling scenarios with a high presence of outliers. The heavy tails of the Cauchy

distribution allow it to assign non-negligible probabilities to extreme observations,

making it resilient to the influence of outliers. This robustness contributes to the

method's effectiveness in noise reduction, especially in situations where traditional

methods might be sensitive to extreme values [85].

3.3.3.3. Sym4 Wavelet

A key element in the denoising process is the utilization of the Symlet 4 wavelet

function. Wavelets serve as fundamental tools in wavelet-based signal processing and

denoising, enabling the analysis of signals across various scales. The Symlet 4 wavelet,

available both in the time domain and as a representation through the Fourier transform,

facilitates a nuanced understanding of signal characteristics. Although the mathematical

formulation of this wavelet is intricate, its adoption in the denoising process signifies

the method's adaptability to diverse signal structures and its capability to accurately

capture important features [86].

𝜃𝛼(𝑋)𝑖 = {

𝑋𝑖 − 𝑡(𝛼) 𝑖𝑓 𝑋𝑖 > 𝑡(𝛼)

0 𝑖𝑓 |𝑋𝑖| ≤ 𝑡(𝛼)

𝑋𝑖 + 𝑡(𝛼) 𝑖𝑓 𝑋𝑖 > −𝑡(𝛼)

 (III.4)

Here, 𝜃𝛼(𝑋)𝑖is the posterior median estimate of the i-th coordinate of the true signal θ,

Xi is the i-th observation, α is the prior probability of non-zero coordinates, and t(α) is

a threshold that depends on α and the noise level.

58

3.3.3.4. Posterior Median Threshold Rule

Integral to the denoising methodology is the implementation of the posterior median

threshold rule. This strategy guides the denoising process by determining the wavelet

coefficients that predominantly represent noise. The main equation representing the

posterior median threshold rule is the posterior median (z;w) through the distribution

function:

𝐹1̃ (𝜇 ∣∣ 𝑧) = ∫ 𝑓1(𝑢 ∣ 𝑧)𝑑𝑢

𝜇

−∞

 (III.5)

Here, 𝐹1̃(μ∣z) is the cumulative distribution function (CDF) of the posterior

distribution, where μ is the variable representing the value of the posterior median, z is

the parameter representing the observed data, and f1(u∣z) is the probability density

function (PDF) of the posterior distribution. This distribution function is crucial in

determining the threshold t(α) and, consequently, guiding the denoising process [87].

In summary, the wdenoise function within MATLAB harnesses the power of the

empirical Bayesian method, integrates the Cauchy prior, employs the Symlet 4 wavelet,

and incorporates the posterior median threshold rule. This synergistic amalgamation of

techniques establishes the foundation for effective signal denoising. By addressing

outliers, accommodating diverse signal structures, and retaining crucial signal

characteristics, this approach yields high-quality denoised signals, making it an

invaluable tool in noise reduction scenarios.

3.4. Feature extraction

In the realm of signal processing and pattern recognition, feature extraction stands as a

pivotal stage. It entails the conversion of raw data into a pertinent set of features that

holds the potential for subsequent analysis or categorization. Two prominent

59

methodologies for feature extraction have been studied discrete wavelet transform

(DWT) and wavelet scattering. This discussion delves into the underlying principles of

these techniques, their practical applications in distilling significant attributes from

signals, and a comprehensive evaluation of their efficacy in portraying signal

characteristics.

3.4.1. Discrete wavelet Transform (DWT)

The Discrete Wavelet Transform (DWT) stands as a fundamental mathematical

technique employed to dissect and scrutinize signals and datasets. Its significance

resonates across diverse domains like image and signal processing, data compression,

and feature extraction [88].In contrast to the conventional Fourier Transform, which

portrays data through sine and cosine waves spanning distinct frequencies, the DWT

dissects data across multiple scales and resolutions. This intricacy is achieved by

breaking down the input into an array of wavelets, adept at capturing temporal and

frequency insights [89]. Such partitioning opens the door to more versatile and efficient

analysis of signals and data, rendering the DWT a pervasive choice in a multitude of

applications.

3.4.1.1. Concept of Wavelets

Wavelets are small oscillating functions that are used in various applications of signal

processing, data compression, and analysis. They provide a way to analyze signals and

data at different scales, allowing us to capture both localized and global features in a

more flexible manner than traditional Fourier-based methods.

Within the domain of the Discrete Wavelet Transform (DWT), wavelets assume a

pivotal role in the intricate processes of signal decomposition and subsequent

60

reconstruction. Employing wavelet functions, the methodology entails a meticulous

traversal along the signal, resulting in the extraction of salient insights [90].

The efficacy of the DWT becomes manifest in its ability to fractionate signals into

distinct frequency constituents, encapsulating both low-frequency trends and high-

frequency intricacies. This decomposition unfolds through the convolution of the signal

with a gamut of wavelet functions, each distinguished by unique scales and positional

parameters [90].

The Discrete Wavelet Transform (DWT) involves a distinct methodology wherein the

discretization of scaling and shifting parameters is employed, obviating the direct

sampling of either the signal or its transform. This strategic approach engenders

heightened high-frequency resolution at low frequencies, concurrently facilitating

elevated time resolution for higher frequencies. Notably, this approach ensures a

uniform level of time and frequency resolution across all frequency bands.

The decomposition of a discrete signal (x[n]) can be succinctly articulated as follows,

drawing inspiration from the seminal work of [88].

𝑥[𝑛] = ∑ 𝑎𝑗0,𝑘0 , ∅ 𝑗0,𝐾0[𝑛] + ∑ ∑ 𝑑𝑗0,𝑘0, ∅𝑗0,𝑘0

𝑘

𝑗−1

𝑗=𝑗0𝑘

 (III.6)

In this context, the discrete-time signal (x[n]) is represented as the sum of two terms.

The first term involves a summation over indices (j0) and (k0), denoted as

(aj0,k0,∅j0,k0[n]), where (a) represents coefficients associated with these indices. The

second term consists of a double summation over indices (j) and (k), ranging from (j0)

to (j-1) and across all (k) respectively, denoted as (dj0,k0,∅j0,k0). The parameters (j0) and

61

(k0) serve as initial indices, defining the range over which the summations occur within

the signal (x[n]).

This decomposition methodology uniquely equips the DWT to adeptly scrutinize the

temporal (Figure III-17) and frequency attributes of a signal across a panorama of

resolutions. Consequently, the technique adeptly captures both low-frequency trends

and high-frequency intricacies, thereby substantiating its indispensability as a potent

tool within the realm of signal processing [88].

Figure III-17 Discrete Wavelet Transform Decomposition Tree

3.4.1.2. Properties of Wavelets

Wavelets possess two significant properties, namely orthogonality and biorthogonality.

In our project, we will mainly focus on utilizing the orthogonality of wavelets.

Orthogonal wavelets, in particular, exhibit a crucial attribute where the inner product

62

of the wavelet function at one scale and position with the wavelet function at another

scale and position is equal to zero (Figure III-18). This inherent orthogonality simplifies

both the analysis and reconstruction procedures. Moreover, orthogonality enables the

conservation of energy during the transformation process in orthogonal wavelet

transforms. By leveraging these orthogonality properties, we can enhance the efficiency

and accuracy of our project's analysis and reconstruction techniques [91].

Figure III-18 Orthogonal Wavelets Two Different Scale and Position But the Product

is Zero.

3.4.1.3. Types of Wavelet Families

Diverse wavelet families are at one's disposal, each characterized by unique attributes

aptly suited for various signal types and applications. Among the well-established

wavelet lineages are the Haar, Daubechies, Symlets, Coiflets, Biorthogonal, Morlet,

and Mexican Hat families [92].

63

Figure III-19 Common Wavelet Families

Our current experimental focus is dedicated to the exploration of the Daubechies 4 and

5 wavelet families (Figure III-19), with a particular emphasis on decomposition at level

5. Situated within the intermediate range spanning from db2 to db8, these chosen

wavelet families have garnered recognition for their notable ability to refine precision

within the field of vibration analysis. A noteworthy point of intrigue lies in the

Daubechies wavelets, often denoted as "dbN," wherein the parameter N signifies the

count of vanishing moments. This numerical identifier underscores their exceptional

efficacy in capturing intricate patterns and nuances during the decomposition process,

particularly when employed at the fifth level [93]. Renowned for their succinct support

and efficient frequency localization, as illustrated in (Figure III-20), these wavelets

present a distinguished presence in the field.

64

Figure III-20 Different Types of Daubechies Wavelets

Filter banks play a crucial role in the practical application of the Discrete Wavelet

Transform (DWT), a method that deconstructs signals into various frequency

components.

In the context of the DWT method, a pair of filters known as the low-pass filter (LPF)

and the high-pass filter (HPF) form a filter bank. The LPF allows the passage of low-

frequency elements, while the HPF permits the transmission of high-frequency

components. This process is combined with down-sampling, which reduces the

sampling rate and provides a more concise representation of the original signal [94].

Mathematically by sampling the Continuous Wavelet Transform (CWT) on a dyadic

grid, which means selecting specific values for translation and scale parameters [95].

In this context, 'n' and 'm' are sets of positive integers, and 'N' represents the number of

65

samples. These parameters are discretized to create the DWT. Once discretized, the

wavelet function can be defined as follows:

𝐷𝑊𝑇𝜑(𝑗, 𝑘) = ∫ 𝑠(𝑡)𝜑𝑗,𝑘

∗
∞

−∞

(𝑡)𝑑𝑡.
 (III.7)

In this equation, ' j represents the scale parameter indicating the scale of the wavelet

function, k denotes the translation parameter specifying the shift of the wavelet

function, and ψ(j,k) (t) signifies the complex conjugate of the wavelet function with ψ

scale j and translation k. The integral computes the inner product between the signal

s(t) and the complex conjugate of the wavelet function ψj,k over the entire range of t,

facilitating the calculation of the discrete wavelet transform (DWT). The outcome

DWT ψj,k provides information about the signal's decomposition at scale j and

translation k, aiding in signal analysis and feature extraction.

For the wavelet function ψ(j,k) (t) , it is defined as:

 𝜑(𝑗,𝑘)(𝑡) = 2(2/𝑗)𝜑(2𝑗𝑡 − 𝑘) (III.8)

The DWT breaks down a signal into its coarse and detailed components by applying a

sequence of high-pass and low-pass filtering operations based on the following

equations:

 𝑦ℎ𝑖𝑔ℎ(𝑘) = ∑ 𝑠(𝑛). ℎ(2𝑘 − 𝑛)

𝑛

 (III.9)

 𝑦𝑙𝑜𝑤(𝑘) = ∑ 𝑠(𝑛). ℎ(2𝑘 − 𝑛)

𝑛

 (III.10)

In equations (III.9) and (III.10), yhigh(k), ylow(k) represent the results of applying high-

pass and low-pass filters, respectively, to the signal s(n), followed by down sampling

66

by a factor of 2. These operations are performed using the impulse responses h(n) and

g(n). Specifically, yhigh(k) is obtained by convolving s(n) with the impulse response

h(2k−n), while ylow(k) is obtained by convolving s(n) with the impulse response

g(2k−n). The summation is carried out over all samples n. The coefficients obtained

from the low-pass filter are referred to as "approximation" coefficients (A), while those

from the high-pass filter are called "detail" coefficients (D). The detail coefficients b(j,k)

can be calculated using the following equation:

𝑏(𝑗,𝑘) = ∫ 𝑠(𝑡)𝜑𝑗,𝑘

∗ (𝑡)𝑑𝑡
 (III.11)

Where ψ(j,k) represents the wavelet functions defined as:

𝜑(𝑗,𝑘)(𝑡) = 1/(√2𝑗) 𝜑 (

𝑡 − 𝑘2𝑗

2𝑗
)

 (III.12)

Similarly, the approximate coefficients C(j,k) are calculated as:

𝑐𝑗,𝑘 = ∫ 𝑠(𝑡)∅𝑗,𝑘

∗ (𝑡)𝑑𝑡
 (III.13)

Where ∅ (j,k) are the scaling functions, defined as:

∅(𝑗,𝑘)(𝑡) = 1/(√2𝑗) ∅ (

𝑡 − 𝑘2𝑗

2𝑗
)

 (III.14)

The discrete inverse transform f(t) is computed by summing the translated and dilated

wavelets, weighted by their respective coefficients:

 𝑓(𝑡) = ∑ 𝑏𝑗,𝑘𝜑𝑗,𝑘(𝑡)

𝑗,𝑘

 (III.11)

67

The DWT is a valuable tool for obtaining a multi-resolution representation of a signal,

making it useful for real-time signal analysis.

Following the passage of the signal through a low-pass filter, the outcome yields

approximation coefficients that encapsulate the low-frequency components of the

signal. Subsequently, the signal undergoes a down sampling operation by a factor of

two, effectively halving the number of samples in the signal. This deliberate reduction

in sample count serves the purpose of mitigating computational complexity and

accelerating the overall algorithmic process [96].

In a similar vein, once the signal has traversed through a high-pass filter, the resultant

detail coefficients emerge, characterizing the high-frequency components of the signal.

Simultaneously, the signal undergoes another round of down sampling by a factor of

two, effectively diminishing the sample count. This strategic down sampling operation

is employed to curtail the number of samples and facilitate computational efficiency

This down-sampling equation constitutes a crucial cornerstone within the DWT

algorithm, serving to partition a signal into its distinct frequency components across

multiple resolution tiers. Its significance resonates across diverse domains, finding

application in areas like image processing, signal compression, and feature extraction

[88]. Through the partitioning of frequency constituents into approximation and detail

coefficients, the DWT expands the signal's representation across multiple scales. The

low-pass filter (LPF) facilitates the transmission of low-frequency elements, whereas

the high-pass filter (HPF) accommodates the high-frequency components.

Consequently, the DWT excels at detecting and scrutinizing both overarching patterns

and intricate particulars within a signal. This duality in frequency components gives

68

rise to a spectrum of applications, including signal compression, noise mitigation,

feature extraction, and data analysis.

Multiresolution Analysis (MRA) constitutes a fundamental aspect of the Discrete

Wavelet Transform (DWT), allowing the decomposition of a signal into different levels

of detail. These decomposition levels in the DWT correspond to distinct scales or

resolutions of the signal, capturing specific frequency components or details (Figure

III-21) [97].

Figure III-21 Discrete Wavelet Five Levels (Wavelet Db4)

The hierarchical structure of the DWT enables analysis at multiple scales, providing a

comprehensive understanding of the signal. In our project, we specifically applied a 5-

level DWT using the 'db4' wavelet to signals of length 1000. The extracted coefficients

at each level are as follows Level 1 - 503 coefficients, Level 2 - 251 coefficients, Level

69

3 - 125 coefficients, Level 4 - 62 coefficients, and Level 5 - 31 coefficients. These

coefficients encompass both detail and approximation coefficients from all levels of the

wavelet decomposition. The approximation coefficients represent the low-frequency

components or the coarse approximation of the signal, while the detail coefficients

capture the high-frequency components or the details of the signal [97]. The

decomposition process involves convolving the signal with a low-pass filter (scaling

filter) and a high-pass filter (wavelet filter), followed by down sampling to reduce the

resolution [98]. This process is repeated iteratively to obtain multiple levels of

decomposition, each representing a different scale or level of detail [98]. The concept

of MRA is particularly useful in various applications, including computer vision, signal

coding, texture discrimination, edge detection, matching algorithms, and fractal

analysis. By analyzing the signal at different scales, MRA allows for the extraction of

relevant information at each level, enabling more efficient and effective analysis [97].

For example, in computer vision, analyzing images at each resolution level would be

redundant, and it is more efficient to focus on the additional details available at higher

resolutions. MRA provides a framework for this selective analysis of different levels of

detail. The hierarchical structure of MRA also facilitates the interpretation of resolution

and scale concepts [97]. The decomposition into different scales or levels of detail

allows for a better understanding of the signal's characteristics at different resolutions.

This understanding is crucial in various fields, such as climate teleconnection studies,

where the analysis of signals at different temporal scales is essential. MRA-based

methods enable the examination of interdependence patterns between climate signals

and the identification of temporal variability in precipitation [99].

70

S. In summary, MRA is a fundamental concept in the DWT that enables the

decomposition of a signal into different levels of detail. The decomposition levels

represent different scales or resolutions of the signal, allowing for analysis at multiple

scales. This hierarchical structure facilitates the selective analysis of relevant

information and provides a better understanding of the signal's characteristics at

different resolutions. MRA has applications in various fields, including computer

vision, signal coding, and climate teleconnection studies.

3.4.1.4. Discrete wavelet transforms MATLAB Implementation

The implementation of the discrete wavelet transforms (DWT) in MATLAB using the

"wavedec" function is a widely used technique for signal processing and analysis. The

"wavedec" function is utilized to decompose a signal into its wavelet coefficients at

different levels of resolution. To employ the "wavedec" function, users need to specify

the desired wavelet and the number of decomposition levels. The wavelet is a

mathematical function that allows for the analysis of the signal at various scales.

Different wavelets possess distinct properties and are suitable for different types of

signals. For instance, the Daubechies wavelet is commonly chosen for its favorable

time-frequency localization properties. The number of decomposition levels determines

the level of detail in the decomposition. A higher number of levels provides more

detailed information about the signal, but also increases the computational complexity.

Once the signal is decomposed using the "wavedec" function, the resulting wavelet

coefficients can be utilized for various purposes such as denoising, feature extraction,

or signal reconstruction. These coefficients capture the different features present in the

signal at different scales. The approximation coefficients represent the low-frequency

71

components of the signal, while the detail coefficients represent the high-frequency

components. These coefficients can be further processed or analyzed based on the

specific application requirements. In addition to the "wavedec" function, MATLAB

provides other functions for working with wavelet coefficients, such as "wrcoef" for

signal reconstruction. The MATLAB Wavelet Toolbox offers a range of wavelet

families and functions to cater to different applications, allowing users to select the

most suitable wavelet for their specific needs. In summary, the implementation of the

discrete wavelet transforms in MATLAB using the "wavedec" function provides a

powerful tool for signal processing and analysis. It enables the decomposition of signals

into wavelet coefficients at different levels of resolution, providing valuable

information about the signal's frequency content and features. These coefficients can

then be utilized for various applications such as denoising, feature extraction, or signal

reconstruction.

3.4.2. Wavelet Scattering

Wavelet scattering is a widely applicable mathematical technique that finds utility

across various research domains. It enables the creation of translation-invariant

representations for signals and images, thereby proving valuable for tasks such as

texture classification, image recognition, and signal analysis [100]. The scattering

transform is constructed through a series of wavelet convolutions and modulus

operations, which facilitate the computation of the wavelet transform's magnitude. This

transform exhibits stability in the presence of time-warping deformations and possesses

the ability to capture transient phenomena. Notably, wavelet scattering has

demonstrated promising outcomes in diverse applications, including music genre and

72

phone classification, texture discrimination, rainfall classification, and the analysis of

meteorological data. By providing translation-invariant representations and stable

features, wavelet scattering emerges as a powerful tool for signal and image analysis in

various domains [101].

3.4.2.1. Theory and principles

In essence, wavelet scattering mirrors a deep convolutional network (Figure III-22),

meticulously crafted through a cascade of wavelet modulus nonlinearities and low-pass

filters. This construction empowers the derivation of low-variance features from real-

valued time series and image data, all while demanding minimal configuration. The

outcomes are representations endowed with the attributes of translation invariance and

robustness against the distortions induced by time warping [102]. Its efficacy in diverse

classification tasks and its capacity to achieve state-of-the-art results, even with limited

datasets [103], further underline the significance of wavelet scattering in the realms of

machine learning and deep learning applications [104].

Figure III-22 Wavelet Scattering Vs Convolutional Neural Network

73

This permits the description of short-lived events like assaults and changes in signal

amplitude [100]. The foundation of wavelets in signal analysis is tied to the notion of

multiresolution analysis (MRA), a structured approach for forming orthonormal

wavelet bases [105]. Wavelets offer a way to represent signals with focus on specific

time and frequency segments. This enables the examination of signal attributes across

various scales. Breaking down a signal into wavelet coefficients at different scales

allows for a comprehensive grasp of both the signal's particular traits and its broader

properties. Going beyond the conventional wavelet analysis, wavelet scattering

broadens this approach by introducing multiple stages of wavelet convolutions and

modulus operations. This permits the retrieval of insights into the signal's modulation

spectrum across various scales and orientations. The scattering transform maintains

local translation invariance, ensuring resilience against distortions in the timing of the

signal [100]. Additionally, it furnishes constants that remain unaffected by changes in

scale, shearing, and minor distortions [101]. Such characteristics endow wavelet

scattering with substantial utility in diverse signal analysis contexts. The dissection of

signals into multiple scales and orientations within wavelet scattering emerges through

a series of linked wavelet convolutions and modulus operations. Wavelet convolutions

apprehend the signal's frequency attributes across varied scales, while the modulus

operators draw out amplitude particulars. By linking these processes, wavelet scattering

adeptly grasps both the signal's frequency and amplitude fluctuations over diverse

scales and orientations. The integration of wavelet scattering into signal analysis has

unveiled encouraging outcomes across diverse fields. Instances include its role in

categorizing musical genres and distinguishing phone characteristics [100].

74

Furthermore, this technique has found application in distinguishing textures, yielding

leading-edge classification outcomes across texture databases marked by uncontrolled

viewing conditions [101]. Moreover, the utilization of wavelet scattering extends to the

classification of electromagnetic signals, showcasing traits of translation invariance and

resistance to deformation [106]. In summary, wavelet scattering is a signal analysis

technique that utilizes wavelet convolutions and modulus operators to decompose

signals into different scales and orientations. It provides a locally translation invariant

representation that is stable to time-warping deformations and captures transient

phenomena. Wavelet scattering has been successfully applied in various domains,

including music classification, texture discrimination, and electromagnetic signal

classification

3.4.2.2. Mathematical formulations

Scattering in the First Order Within the domain of Continuous Wavelet Transform

(CWT), the acquisition of first-order scattering coefficients involves a fundamental

procedure. This procedure entails the convolution of the modulus of the CWT with a

low-pass filter, a technique commonly referred to as "temporal averaging." This

strategic averaging process not only introduces time-shift variance but also guarantees

stability when confronted with time-warping deformations.

Mathematically, the first-order scattering coefficients, denoted as Sx(t, λ₁), are defined

as the modulus of the convolution between the input signal x and the first-order wavelet

function φλ₁. Subsequently, a convolution operation with a low-pass filter Φ is applied

[100].

 𝑆𝑥(𝑡, 𝜆1) = |𝑥 ∗ 𝜑𝜆1| ∗ 𝛷 (III.12)

75

Figure III-23 Scattering Convolution Process

Here, the parameter λ₁ signifies the center frequency of the first-order wavelets, and the

convolution is executed between the low-pass filter and each individual row of the

Continuous Wavelet Transform (CWT).

The crux of this operation can be intuitively grasped as the act of sliding a wavelet

across the signal, computing its modulus (|x * φλ₁|), and subsequently convolving it

with Φ. This convolution with Φ serves as a mechanism for averaging on the modulus,

ultimately yielding an invariant feature representation. This comprehensive process,

recognized as the wavelet scattering transform, encompasses the sequential steps of

sliding the wavelet over the signal, calculating the modulus, and then culminating with

76

an additional convolution operation utilizing Φ, which assumes the role of a low-pass

filter (Figure III-23).

In Second Order Scattering The second-order scattering procedure extends the

methodology by performing convolution on the modulus of the first-order scattering

coefficients with second-order wavelets [100].

In mathematical terms, this process is expressed as:

 𝑊2𝑥(𝑡, 𝝀𝟏, 𝝀𝟐) = |𝒙 ∗ 𝜑𝝀1| ∗ 𝜑𝝀2 (III.13)

In this equation, the first-order scattering coefficients Sx(t, λ₁) are treated as the new

input (x), and they undergo convolution with a set of second-order wavelets φλ₂. This

convolution is subsequently followed by an additional round of low-pass averaging.

 𝑆2𝑥(𝑡, 𝝀𝟏, 𝝀𝟐) = |𝒙 ∗ 𝜑𝝀1| ∗ 𝜑𝝀2| ∗ ∅ (III.14)

Higher-Order Scattering The framework can be further expanded to encompass

higher-order scattering, where coefficients are derived through successive

convolutions. This involves convolving wavelets with the modulus of coefficients

obtained at the previous order, followed by modulus computation and low-pass

filtering:

 𝑆𝑚𝑥(𝑡, 𝝀𝟏, … , 𝝀𝒎) = |𝒙 ∗ 𝜑𝝀1| ∗ 𝜑𝝀m| ∗ ∅ (III.15)

Wavelet Scattering Energy The selection of wavelets spanning diverse scales and

their application by sliding across the signal ensures the coverage of distinct segments

within the frequency spectrum. Notably, this procedure conserves energy, meaning that

the energy observed in the time domain aligns with the energy present in the frequency

domain. This energy preservation property forms a fundamental aspect of wavelet

scattering (Figure III-24).

77

Dilated wavelets𝜑𝝀(𝑡) = 2

−
1

𝑄 𝜑 (2
−

𝑗

𝑄𝑡) , 𝑤𝑖𝑡ℎ 𝝀 = 𝟐
−

𝒋

𝑸
 (III.20)

Dilated Wavelets Dilated wavelets, characterized as φλ(t), are strategically designed to

encompass a wide range of scales. This feature empowers them to adapt effectively to

various frequency ranges, thereby contributing to the creation of a comprehensive

feature representation [100].

Figure III-24 Wavelet Scattering Filter Bank

Wavelet Transform The wavelet transforms, denoted as Wx(t), involves the

convolution of the input signal x with both the original wavelet φ(t) and the dilated

wavelets φλ(t) across various scales denoted as λ.

 Wavelet transform Wx(t)={𝑥 ∗ 𝜑(𝑡), 𝑥 ∗ 𝜑𝝀(𝑡)}𝜆 (III.21)

78

If |∅⏞ (𝑤)|

2

+ ∑ |𝜑̂𝜆

𝜆

(𝑤)|2 = 1
 (III.22)

Then is unitary

 ||𝑊𝑥||
2

= ||𝑥 ∗ 𝜑||
2

+ ∑||𝑥 ∗ 𝜑𝜆||
2

= ||𝑥||
2

𝜆

 (III.23)

Unitary Property: The unitary property is achieved when the sum of squared

coefficients from the low-pass filter and squared coefficients of dilated wavelets equals

1. This property ensures the preservation of energy within the transformed signal.

(Figure III-25).

Wavelet Scattering Feature Extraction: The wavelet scattering transform entails a

sequence of critical operations, including convolution, modulus calculation, and low-

pass filtering. The coefficients obtained from these operations are judiciously

downsampled, effectively reducing computational complexity. In our specific

application, 20 invariant features derived from this process yield 588 features per

signal, enabling a detailed analysis. These coefficients, characterized by their

interpretability and visualizability, form the essence of scattering features (see Figure

III-25).

Paths in Scattering: Within the context of the scattering transform, the term "paths"

delineates sequences of operations that are systematically applied to the input signal.

These paths effectively capture crucial hierarchical relationships and underlying

features inherent in the signal representation [107] (Figure III-25).

79

Figure III-25 Wavelet Scattering Tree

In summation, the wavelet scattering transforms represent a formidable approach for

feature extraction, encompassing the intricate interplay of wavelet convolutions,

modulus operations, and low-pass filtering. These operations are designed to capture

the quintessential characteristics of a signal while simultaneously ensuring stability and

invariance against deformations. The resulting scattering coefficients hold substantial

utility across a diverse spectrum of signal analysis and processing endeavor.

3.4.2.3. Implementation of Wavelet Scattering in MATLAB

The implementation of wavelet scattering in MATLAB involves utilizing functions

such as "waveletscattering" to compute the scattering coefficients. Wavelet scattering

is a technique used for image and signal processing tasks, providing a translation-

80

invariant and stable representation of data that is robust to deformations and preserves

high-frequency information. The wavelet scattering network consists of cascaded

wavelet transform convolutions with nonlinear modulus and averaging operators. This

network computes a translation-invariant image representation that is stable to

deformations and can be used for tasks such as texture discrimination and handwritten

digit classification. To use the wavelet scattering function in MATLAB, users need to

specify the wavelets and the number of levels for the scattering transform. The choice

of wavelets depends on the specific application and the desired properties of the

scattering coefficients. Different wavelet families, such as Morlet or Haar wavelets, can

be employed. The number of levels determines the depth of the scattering network and

affects the level of detail captured in the representation. The wavelet scattering function

in MATLAB has been applied to various applications, including glaucoma detection in

retinal fundus images. In this application, the wavelet image scattering network

developed in MATLAB is used to perform the scattering decomposition on the images,

and the resulting scattering coefficients are utilized as features for automatic diagnosis.

It is worth noting that there are alternative implementations of wavelet scattering

available in different programming languages. For instance, the Kymatio software

package provides a Python implementation of the scattering transform in 1D, 2D, and

3D. This implementation is compatible with modern deep learning frameworks and can

be executed on both CPU and GPU, offering improved performance. In conclusion, the

implementation of wavelet scattering in MATLAB involves using functions like

"waveletscattering" to compute the scattering coefficients. The choice of wavelets and

the number of levels determines the properties of the scattering transform. Wavelet

81

scattering has been successfully applied to various applications, such as glaucoma

detection, and there are also alternative implementations available in other

programming languages.

3.5. Feature Selection and Optimization

3.5.1. Principal Component Analysis (PCA)

 is a widely-used dimensionality reduction technique that helps transform the original

feature space into a new set of orthogonal variables known as principal components.

This process is valuable in various applications, including machine learning, as it can

alleviate issues such as multicollinearity and enhance model generalization [108].

Here's a breakdown of how PCA is typically performed

Covariance Matrix Computation PCA begins by calculating the covariance matrix from

the original feature data. The covariance matrix summarizes the relationships between

the different features in the dataset [108].

The covariance matrix for a set of features, denoted as X, with n samples and m features,

can be computed as follows:

 𝑉𝑎𝑟(𝛽̂) = (𝑋𝑇𝑋)−1𝜎2 (III.24)

Where Var (𝛽̂) represents the variance-covariance matrix of the coefficient estimates 𝛽̂

This matrix captures the uncertainty and interrelationships among the estimated

coefficients. The equation involves several key components: X, is the design matrix of

the predictor variables; XT, is the transpose of the design matrix. σ2 is the variance of

the error term (residuals) in the linear regression model. The term (𝑋𝑇𝑋)−1 is the

inverse of the matrix product of the transpose of the design matrix and the design matrix

itself.

82

Eigenvalue and Eigenvector Calculation Next, PCA calculates the eigenvalues and

corresponding eigenvectors of the covariance matrix. These eigenvectors represent the

directions in the original feature space along which the data varies the most, and the

eigenvalues represent the variance explained by each of these directions [108].

The equation for calculating eigenvectors and eigenvalues is:

𝑋𝛽̂
r𝑖𝑑𝑔𝑒

= ∑ 𝑢𝑗
𝑑𝑗

2

𝑑𝑗
2 + 𝜆

 𝑢𝑇
𝑗

𝑝

𝑗=1

y

 (III.25)

The equation for computing eigenvectors and eigenvalues in ridge regression, denoted

by Equation (III.25), offer s a method to estimate coefficients 𝛽̂
𝑟𝑖𝑑𝑔𝑒

considering

regularization. In this equation, X represents the design matrix of predictor variables,

and y represents the response variable. The summation over p features encompasses the

contribution of each eigenvector (uj), where (dj
2) denotes the square of the jth

eigenvalue. Additionally, λ serves as the regularization parameter, controlling the

balance between data fitting and coefficient magnitude. The equation scales the impact

of each eigenvector by combining it with its associated eigenvalue and the

regularization parameter. By summing these scaled contributions, 𝛽̂
𝑟𝑖𝑑𝑔𝑒

 is computed,

providing a means to estimate the coefficients in ridge regression while considering the

influence of eigenvectors, eigenvalues, and regularization.

Choosing the Number of Principal Components To determine the optimal number of

principal components to retain, various methods can be used, such as scree plots and

explained variance. Scree plots show the eigenvalues in decreasing order, and the point

at which the eigenvalues begin to level off indicates a suitable number of principal

83

components to retain (Figure III-26). Explained variance (Figure III-27) helps assess

how much information is preserved by each principal component [109].

Reducing Dimensionality Once the number of principal components is decided, the

dataset is transformed into a reduced feature set using the selected principal

components. This reduction helps mitigate the curse of dimensionality and can enhance

the performance of machine learning models [109].

Figure III-26 Scree Plot

Figure III-27 Percentage of Variance

84

Here's a MATLAB code snippet for applying PCA to reduce dimensionality

3.5.2. Linear Discriminant Analysis (LDA)

 is a powerful supervised dimensionality reduction technique, primarily designed for

classification tasks. It aims to maximize the separation between different classes in a

dataset while minimizing the variance within each class. In our analysis, we leveraged

LDA to identify the most discriminatory features, rank them based on LDA

coefficients, and seamlessly integrate them into our classification models to potentially

enhance classification accuracy and model robustness.

3.5.2.1. Here's an explanation of the key steps in applying LDA

Executing LDA with Class Labels LDA operates in a supervised manner, considering

class labels. It identifies features that contribute the most to separating different classes.

Feature Ranking with LDA Coefficients LDA coefficients are used to rank and select

features that significantly aid in defining class boundaries. Features with higher LDA

coefficients are considered more important for classification.

Integration into Classification Models The features refined through the LDA process

are integrated into our classification models. This integration aims to improve the

classification accuracy and overall robustness of our models.

% apply PCA to reduce dimensionality
numDims = 50; % set desired number of dimensions
scTrain = reshape(scTrain, [], size(scTrain, 3))';
scTest = reshape(scTest, [], size(scTest, 3))';
[coeff,score,~,~,explained] = pca([scTrain; scTest]);
scoreTrain = score(1:size(scTrain,1), 1:numDims);
scoreTest = score(size(scTrain,1)+1:end, 1:numDims);

85

Below is the MATLAB code snippet for applying LDA:

in this code, ldaModel represents the trained LDA model, and FoldTrainFeaturesLDA

and FoldTestFeaturesLDA contain the LDA-transformed features for the training and

test data, respectively. The main equation regarding LDA is based on finding the

optimal linear projection that maximizes the between-class scatter while minimizing

the within-class scatter

3.5.3. Sequential Feature Selection (SRE) and Recursive Feature Elimination

(RFE)

Sequential Feature Selection (SRE) and Recursive Feature Elimination (RFE) are two

iterative approaches to feature selection, both aiming to enhance the importance of

selected features in a machine learning model. Here's an overview of each technique

3.5.3.1. Sequential Feature Selection (SRE)

SRE begins by ranking features based on relevant scoring metrics that indicate their

importance or relevance to the problem.

It then iteratively includes the most pertinent features, one at a time, in a sequential

manner.

% Apply Linear Discriminant Analysis (LDA) on the training data for this
fold

ldaModel = fitcdiscr(FoldTrainFeatures, FoldTrainLabels);

% Apply LDA to the training and test data for this fold
FoldTrainFeaturesLDA = predict(ldaModel, FoldTrainFeatures);
FoldTestFeaturesLDA = predict(ldaModel, FoldTestFeatures);

% Convert LDA-transformed features to a numeric matrix
FoldTrainFeaturesLDA = double(FoldTrainFeaturesLDA);

86

The goal is to create a subset of features that optimally contribute to model accuracy

and generalizability.

Here's the MATLAB code for SRE

3.5.3.2. Recursive Feature Elimination (RFE)

RFE takes a different approach by employing specific machine learning algorithms

(e.g., decision trees) to consecutively rank and eliminate the least influential features.

Features are eliminated one at a time based on their impact on model performance.

In our experiment, utilizing Recursive Feature Elimination (RFE), we aimed to identify

a subset of features maximizing model accuracy and generalizability while reducing

dimensionality, employing a total of 10 features.

Throughout these iterative processes, careful monitoring of model performance is

essential to ensure that the chosen feature subsets positively contribute to model

accuracy and robustness.

Here's the MATLAB code for RFE:

% Compute SRE for training set
sreTrain = computeSRE(scTrain);
% Compute SRE for test set
sreTest = computeSRE(scTest);

% Perform RFE
selectedFeatures = rfe(X_train, Y_train', numFeatures);
% Keep only the selected features in the training and testing data
TrainFeaturesSelected = cell(size(TrainFeatures));
for i = 1:numel(TrainFeatures)
 TrainFeaturesSelected{i} = TrainFeatures{i}(selectedFeatures);
end
TestFeaturesSelected = cell(size(TestFeatures));
for i = 1:numel(TestFeatures)
 TestFeaturesSelected{i} = TestFeatures{i}(selectedFeatures);
end

87

3.6. Validation and Evaluation

In the aftermath of feature selection, we meticulously undertook the validation and

evaluation of our machine learning models. These evaluations were conducted with the

aid of pertinent metrics, including accuracy, precision, recall, and F1-score. This

judicious assessment ensured that the optimized feature subsets indeed yielded models

that aligned with our predefined objectives effectively.

Comparison and Conclusion:

To summarize, the strategic application of feature selection methodologies,

encompassing PCA, LDA, SRE, and RFE, assumed a pivotal role in the optimization

of our machine learning and data analysis pipeline. These methodologies facilitated

dimensionality reduction, augmentation of feature relevance, and the amelioration of

model performance. It is important to acknowledge that each methodology possesses

its unique strengths and limitations. Their synergistic application, however, endowed

our research project with valuable insights and significantly contributed to its success.

3.7. Fault Detection and Classification

Fault detection and classification (FDC) represent pivotal processes in numerous

industries, safeguarding the reliability and safety of systems, machinery, and

operations. In the domain of machine learning, two powerful methodologies, namely

Support Vector Machines (SVM) and Neural Networks (NN), have emerged as

indispensable tools for FDC applications.

Support Vector Machines (SVM) are esteemed for their robustness in delineating data

into distinct classes. SVMs are exceptionally skilled at identifying optimal boundaries

that maximize the separation margin between different data points. This capability

88

renders them well-suited for the task of fault detection, enabling them to address a wide

array of scenarios involving both linear and non-linear data separation [110].

In contrast, Neural Networks (NN), particularly deep neural networks, have ushered in

a new era of fault detection by harnessing the intricacies present within data patterns.

NNs, constructed with interconnected layers of artificial neurons, excel in capturing

intricate relationships and dependencies, making them adept at detecting even subtle

faults that might elude traditional detection methods [111].

Furthermore, we will navigate through the merits and demerits of SVMs and NNs in

the context of FDC, offering guidance on the judicious selection of each technique

based on the problem at hand. By the culmination of this chapter, you will possess a

comprehensive understanding of how to implement SVMs and NNs for fault detection

and classification, equipping you to effectively address real-world challenges and

uphold system reliability and safety.

3.7.1. The Purpose of Using SVM and Neural Network

In this research, Support Vector Machines (SVM) and Neural Networks (NN) are

employed to classify faults in the tie rod. The tie rod is a critical component of a

vehicle's steering system, and accurately detecting and classifying faults in the tie rod

is crucial for vehicle safety and performance.

The research objective is to develop a fault detection and classification system for the

tie rod. The hypothesis is that SVM and NN can effectively classify tie rod faults based

on different levels of fault severity. This classification allows for targeted maintenance

actions based on the severity of the fault.

89

Two tests are conducted in this research. In the first test, SVM and NN are employed

to classify tie rod faults into five levels, ranging from normal to severe faults (Figure

III-28). In (Figure III-28), the diagonal cells represent the count or frequency of

correctly classified instances. Additionally, it is observed that one fault in level 1 is

predicted as normal. This detailed classification provides a better understanding of the

tie rod's condition and facilitates appropriate maintenance actions.

Figure III-28 SVM Four Faulty Levels Classification

In the second test, SVM and NN models are employed to classify the tie rod's condition

as either 'faulty' or 'normal' when encountering various road obstacles. Four types of

road obstacles are considered sinewave road obstacles, roughness road obstacles,

pothole road obstacles, and bump road obstacles. By analyzing the tie rod's response to

these obstacles, SVM and NN can classify the tie rod's condition as normal or abnormal,

indicating the presence of a fault (Figure III-29). For example, in (Figure III-29), the

diagonal cells represent correctly predicted instances, and there is an error in the bumpy

90

road obstacle signals where two instances were incorrectly classified as faulty when

they should have been classified as normal.

Figure III-29 SVM Obstacle Types and Fault Classifications

SVM and the Neural Network are chosen for this research due to their abilities to handle

high-dimensional data and nonlinear relationships. They work by finding an optimal

hyperplane (in the case of SVM) or a complex network of interconnected nodes and

layers (in the case of Neural Network) that maximally separates different classes in the

feature space. By training both classifiers with a dataset of tie rod responses to various

fault levels and road obstacles, they can learn the patterns and characteristics associated

with each class. These trained models can then be used to classify new instances of tie

rod responses, accurately identifying the fault level or abnormality.

91

In conclusion, the purpose of using SVM and Neural Network (NN) in this research is

to develop a fault detection and classification system for the tie rod. By employing these

machine learning techniques, we can accurately classify faults and abnormalities,

enabling timely maintenance actions to ensure vehicle safety and performance. The use

of SVM and NN aligns with the research objectives by providing robust and accurate

classification methods for tie rod faults, enhancing our ability to maintain and optimize

vehicle systems.

3.7.2. Support Vector Machines (SVM)

 is a popular machine learning algorithm used for classification and regression tasks. It

works by finding the best hyperplane that separates the data into different classes. The

choice of the best hyperplane is based on maximizing the separation or margin between

the two classes [112].

Figure III-30 Hyperplane and Support Vectors with Maximum Margin

92

In the case of linearly separable data, SVM selects the hyperplane that has the maximum

distance from the nearest data point on each side. This hyperplane is known as the

maximum-margin hyperplane or hard margin (Figure III-30). The goal is to find a

hyperplane that can classify new data points accurately. SVM is robust to outliers,

meaning it can ignore outliers and still find the best hyperplane [113],[112].

In cases where the data is not linearly separable, SVM introduces soft margins. Soft

margins allow for some misclassification of data points, but penalize violations of the

margin (Figure III-31). The SVM algorithm tries to minimize the hinge loss, which is

a commonly used penalty function. The hinge loss is proportional to the distance of the

violation from the margin [113].

Figure III-31 Hard Margin SVM Vs Soft Margin SVM

However, in real-world scenarios, data is often not linearly separable. SVM addresses

this issue by using a technique called kernelization. It maps the original data to a higher-

dimensional space where it becomes linearly separable [114]

93

Figure III-32 1D Dataset for Classification

Let's consider the data shown in the Figure III-32. In the context of Support Vector

Machines (SVM), we solve this problem by creating a new variable using a kernel. For

simplicity, let's denote a point as xi on the line, and we create a new variable yi as a

function of the distance from the origin, which we can visualize on a (Figure III-33).

Figure III-33 SVM with RBF Kernel

94

In this case, the new variable y is generated as a function of the distance from the origin.

Such a non-linear function that creates a new variable is referred to as a kernel.

The process of mapping the data to a higher-dimensional space is achieved through the

use of a kernel function. A kernel function is a non-linear function that transforms the

original data into a new feature space. Commonly used kernel functions include

polynomial kernels, Gaussian kernels, and sigmoid kernels [115].

3.7.2.1. Support Vector Machine Terminology

Hyperplane: A hyperplane serves as the decision boundary that separates data points

belonging to different classes within a feature space. In the context of linear

classification, it is represented by the equation wx + b = 0.

Support Vectors: Support vectors are crucial data points that are nearest to the

hyperplane, playing a pivotal role in determining both the hyperplane's position and the

margin [116].

Margin: The margin is defined as the distance between the hyperplane and the support

vectors. In SVM, the primary goal is to maximize this margin because a wider margin

generally indicates better classification performance.

Kernel: A kernel is a mathematical function employed in SVM to transform original

input data points into higher-dimensional feature spaces. This transformation enables

the identification of a hyperplane even when the data points are not linearly separable

in the original input space. Common kernel functions include linear, polynomial, radial

basis function (RBF), and sigmoid kernels [116].

95

Hard Margin: The hard margin hyperplane refers to a hyperplane that effectively

separates data points of different classes without any misclassifications. It is the ideal

scenario where the margin is maximized.

Soft Margin: In situations where data is not perfectly separable or contains outliers,

SVM allows for a soft margin approach. This introduces slack variables for each data

point, relaxing the strict margin requirement and permitting some degree of

misclassification or violations. It seeks a balance between increasing the margin and

minimizing violations.

C: The regularization parameter, denoted as C, is a crucial factor in SVM. It balances

the trade-off between margin maximization and misclassification penalties. A higher

value of C imposes a stricter penalty, resulting in a smaller margin and potentially fewer

misclassifications [116].

Hinge Loss: SVM commonly employs the hinge loss as its loss function. It penalizes

misclassifications and margin violations. The objective function in SVM is typically

formulated by combining the hinge loss with a regularization term. In our Model we set

the maximum number of objective function evaluations to 100.

Dual Problem: The dual problem of SVM optimization involves finding the Lagrange

multipliers associated with the support vectors. Solving the dual problem offers

advantages, including the ability to utilize kernel tricks and more efficient computation

[117].

96

3.7.2.2. Mathematical Intuition of Support Vector Machine (SVM)

In the context of a binary classification problem with classes labeled as +1 and -1, SVM

seeks to find a decision boundary in the form of a hyperplane, which can be expressed

mathematically as

 𝑤𝑇𝑥 + 𝑏 = 0 (III.26)

Here, 'w' represents the normal vector to the hyperplane, indicating the direction that is

perpendicular to the hyperplane. The parameter 'b' represents the offset or distance of

the hyperplane from the origin along this normal vector 'w'.

The distance between a data point 'xi' and the decision boundary can be calculated using

𝑑𝑖 =

(𝑤𝑇𝑥 + 𝑏))

‖𝑤‖

 (III.27)

 𝑑𝑖 =
(𝑤𝑇𝑥+𝑏))

‖𝑤‖

 (III.28)

Here, '||w||' denotes the Euclidean norm of the weight vector 'w' [118].

For a Linear SVM classifier, the classification rule is defined as

𝑦̂ {

1 (𝑤𝑇𝑥 + 𝑏) ≥ 0

0 (𝑤𝑇𝑥 + 𝑏) < 0

 (III.29)

In the case of a Hard Margin Linear SVM classifier, the optimization objective is to

minimize the square of the Euclidean norm of 'w' while ensuring that all training

instances are correctly classified and lie at a distance of at least 1 from the decision

boundary [118]

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑤,𝑏

1

2
𝑤𝑇 𝑤 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑤,𝑏

1

2
||𝑤2||

 (III.30)

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 𝑓𝑜𝑟 𝑖 = 1,2,3 … . 𝑚 (III.31)

97

In this context, 'ti' represents the target variable or label for the 'i'-th training instance.

'ti' is -1 for negative occurrences (when 'y_i' = 0) and 1 for positive instances (when 'yi'

= 1). The constraint ensures that the decision boundary separates the classes with a

margin of at least 1.

 𝑡𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 (III.32)

 𝑡𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 (III.33)

For a Soft Margin Linear SVM classifier, a regularization term is introduced to allow

for some misclassification (soft margin), and the optimization problem becomes

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑤,𝑏

1

2
𝑤𝑇 𝑤 + 𝑐 ∑ 𝜁𝑖

𝑚

𝑖=1

 (III.34)

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜁𝑖 𝑎𝑛𝑑 𝜁𝑖 ≥ 0 𝑓𝑜𝑟 𝑖

= 1,2,3 … . 𝑚

 (III.35)

Here, 'C' controls the trade-off between maximizing the margin and minimizing the

classification errors [118].

Dual Problem

To solve the SVM optimization problem, a dual problem is often formulated to find the

Lagrange multipliers 'α(i)' associated with the support vectors [118].. The dual objective

function to be maximized is

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝛼

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑡𝑖𝑡𝑗𝐾(𝑥𝑖, 𝑥𝑗) − ∑ 𝛼𝑖

𝑖→𝑚

𝑗→𝑚
1→𝑚

 (III.36)

Here

'αi' is the Lagrange multiplier associated with the 'i'-th training sample.

98

'K(xi, xj)' is the kernel function, which calculates the similarity between two samples

'xi' and 'xj,' allowing SVM to handle nonlinear classification by implicitly mapping

samples into a higher-dimensional feature space.

Once the dual problem is solved, the SVM decision boundary can be described in terms

of the optimal Lagrange multipliers and the support vectors [118]. The support vectors

are the training samples with 'αi > 0,' and the decision boundary is determined by

 𝑊 = ∑ 𝛼𝑖𝑡𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏
𝑖→𝑚

 (III.37)

 𝑡𝑖(𝑤𝑇𝑥𝑖 − 𝑏) = 1 ⟺ 𝑏 = 𝑤𝑇𝑥𝑖 − 𝑡𝑖 (III.38)

3.7.2.3. Hyperparameter Selection

The process of selecting hyperparameters is pivotal in constructing an effective SVM

model. Notable SVM hyperparameters include

Regularization parameter (C): This parameter balances the trade-off between

maximizing the margin and minimizing classification errors. Smaller 'C' values

prioritize a larger margin but may allow for some misclassification, while larger 'C'

values emphasize correct classification but risk overfitting [119].

Kernel type and parameters: In the case of kernel SVMs, the choice of kernel (e.g.,

linear, polynomial, RBF) and their associated parameters (e.g., degree for polynomial,

gamma for RBF) must be determined [119].

Hyperparameter selection can be accomplished using techniques such as cross-

validation and grid search

Cross-validation: The dataset is split into training and validation sets. For each set of

hyperparameters, the model is trained on the training set and assessed on the validation

set. The hyperparameters that yield the best validation performance are chosen [119].

99

Grid search: A grid of potential hyperparameter values is defined, and the model's

performance is systematically evaluated on the validation set for all combinations of

hyperparameters. The combination with the best performance is selected [119].

3.7.2.4. Model Training

To train an SVM model, the following steps are followed

Data Preprocessing This includes tasks like feature scaling, handling missing values,

and encoding categorical variables [120].

Data Splitting The dataset is partitioned into training and testing sets (or cross-

validation sets) [121].

SVM Type Selection Choose between linear or kernel SVM based on the data's

characteristics.

Hyperparameter Tuning Utilize techniques like cross-validation or grid search to

identify optimal hyperparameters (C and kernel parameters) [122].

Model Training Fit the SVM model to the training data using the selected

hyperparameters .

Model Evaluation Assess the model's performance on the testing/validation dataset.

Considerations such as dealing with imbalanced classes or outliers should be taken into

account during the training process [123].

3.7.2.5. Model Evaluation

The selection of evaluation metrics depends on the problem type (binary or multiclass

classification, regression) and the specific objectives. Common metrics for assessing

SVM models include:

Accuracy: Measures overall classification correctness.

100

Precision: Calculates the ratio of true positive predictions to total predicted positives,

assessing the model's ability to minimize false positives.

Recall (Sensitivity): Computes the ratio of true positive predictions to total actual

positives, gauging the model's capacity to capture all positive instances.

F1-score: Provides a balance between precision and recall by calculating their

harmonic mean.

Confusion matrix: A tabular summary of true positive, true negative, false positive,

and false negative predictions [123].

The choice between cross-validation and holdout validation hinges on factors such as

dataset size, available computational resources, and the need for robust performance

estimation. Cross-validation is often favored for its ability to provide a more reliable

evaluation.

Ultimately, the choice of evaluation metrics and validation strategy should align with

the machine learning task's objectives and the dataset's characteristics.

The implementation of SVM in MATLAB is facilitated by the SVM MATLAB

function, which allows for training and testing SVM models [124]. The SVM

MATLAB function supports different types of SVM, including C-SVM, nu-SVM, and

k-NN [125].

In MATLAB, the SVM MATLAB function can be used to optimize the performance

of SVM models. This can be done by selecting appropriate parameter values and

incorporating cross-validation techniques. The running time performance of different

SVM variants can be measured using the tic and toc functions in MATLAB [123].

101

The MATLAB code that used for SVM is accordingly

To further optimize the performance of SVM, the MATLAB code for SVM tuning

can be equipped with a brute force method to estimate a large number of parameter

values and select the optimized values for generating the best model. Additionally, the

SVM MATLAB code can incorporate a fivefold cross-validation for model evaluation

[126].

In summary, the SVM MATLAB function provides a convenient way to implement

SVM models in MATLAB. It supports different types of SVM and can be used in

various applications. The performance of SVM can be optimized by selecting

appropriate parameter values and incorporating cross-validation techniques. The

MATLAB implementation of SVM has been utilized in fields such as robotics and

medical imaging, and it can be further optimized by incorporating brute force methods

and cross-validation techniques.

% Train the SVM model on the training data
model = fitcecoc(TrainFeatures, YTrain);
% Train and tune the SVM model using the training data
t = templateSVM('Standardize',true);
SVMModel = fitcecoc(TrainFeatures, YTrain, 'Learners', t,
'FitPosterior',true,...
'OptimizeHyperparameters', {'BoxConstraint','KernelScale'},...
'HyperparameterOptimizationOptions', optimizationOptions, 'Verbose', 1,...
'HyperparameterOptimizationOptions', struct('AcquisitionFunctionName',...
'expected-improvement-plus', 'MaxObjectiveEvaluations', 20,
'UseParallel',true), 'Options', statset('UseParallel',true));
% Predict the labels of the test data using the tuned model
YPred = predict(SVMModel, TestFeatures);

102

3.7.3. Neural network

3.7.3.1. Long Short-Term Memory (LSTM) Networks

LSTM networks represent a specific category within recurrent neural networks

(RNNs), and their architecture is tailored for handling sequential data, including but not

limited to time series data and natural language text. The fundamental mechanisms of

LSTMs can be elucidated as follows

Neurons and Layers: Within LSTM networks, the architectural building blocks are

recurrent cells, which can be organized into multiple layers (Figure III-34). These cells

differ significantly from standard feedforward neurons due to their intricate internal

structure, encompassing gating mechanisms designed to regulate the flow of

information.

Input Layer: The input layer is responsible for receiving the raw data or features from

the dataset. Each neuron within this layer represents a distinct feature [127].

Hidden Layers: Intermediate layers in neural networks, positioned between input and

output layers, are crucial for pattern extraction. They perform mathematical operations

on data, with complexity determined by the number of hidden layers. In your project,

you've opted for an exceptionally large number of hidden layers - a staggering 1500

layers. Each of these hidden layers contains neurons with weight arrays matching the

previous layer's neuron count. This abundance of hidden layers exponentially increases

both training and evaluation times.

This extraordinary depth in our Neural Network architecture, while unconventional,

can be useful for tackling highly complex and nonlinear data. It exemplifies the core

principles of deep learning, which relies on deep neural networks to autonomously learn

103

intricate patterns and structures, often without the need for labeled data. Such depth has

found applications in various domains, including computer vision and language

processing.

Output Layer: The output layer generates the ultimate output of the network, which

might encompass classification labels, regression values, or other types of predictions

[128].

Figure III-34 LSTM Neural Network Architecture

104

Cell Memory, Input Gate, Forget Gate, Output Gate LSTMs exhibit a unique

architecture consisting of specialized components

Cell Memory: The central feature distinguishing LSTMs is the presence of a dedicated

cell memory, which assumes a critical role in preserving information over extended

sequences, allowing the network to capture enduring dependencies within the data

[129]. In an LSTM diagram, this cell memory is represented as a horizontal line

stretching from ct-1 to ct, symbolizing the short-term memory of the cell (Figure III-

35).

Figure III-35 LSTM Recurrent Unit and Gates

Input Gate: The "Input Gate" in an LSTM cell regulates the flow of new data into the

cell's memory. It decides which information is relevant and should be stored, adding it

to the cell memory (Figure III-36). This process involves sigmoid and tanh gates that

control the input's impact on the cell state, with "i" controlling the extent of influence.

105

Additionally, both the previous output ("h") and current input ("x") have individual

weights for precise control over their contributions [129].

Figure III-36 LSTM Input Gate

 𝑖𝑡 = 𝜎(𝑊𝑖 ∗ 𝑋𝑡 + 𝑈𝑖 ∗ ℎ(𝑡−1) + 𝑏𝑖) (III.39)

 𝑎𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑎 ∗ 𝑋𝑡 + 𝑈𝑎 ∗ ℎ(𝑡−1) + 𝑎) (III.40)

 𝐶𝑡 = 𝐶(𝑡−1) ∗ 𝑓𝑓 + 𝑖𝑡 ∗ 𝑎𝑡 (III.41)

"I" determines the extent of "a's" impact on "c" within an LSTM cell. The hyperbolic

tangent's (-1 to +1) range enables "a" to either decrease or increase "c," with the level

of influence dictated by "i." Additionally, it's worth noting that both "h" and "x" possess

distinct weights for both "i" and "a."

Forget Gate: The "Forget Gate" is a pivotal component within LSTM cells, responsible

for orchestrating the selective removal or "forgetting" of information from the cell

memory that is considered irrelevant or outdated (Figure III-37). This discerning

amnesia capability empowers LSTMs to concentrate on the most pertinent data [129].

106

Operational details include the "σ" (sigmoid) function, which ranges from 0 to 1,

governing the extent of information removal from the cell state. By adjusting the value

of "σ," we control the degree of forgetfulness [129]. Specifically, both the current input

(xt) and the previous output (ht-1) undergo multiplication by "σ."

Figure III-37 LSTM Forget Gate

Operational details include the "σ" (sigmoid) function, which ranges from 0 to 1,

governing the extent of information removal from the cell state. By adjusting the value

of "σ," we control the degree of forgetfulness. Specifically, both the current input (xt)

and the previous output (ht-1) undergo multiplication by "σ."

 𝑓𝑡 = 𝜎(𝑊𝑓 ∗ 𝑋𝑡 + 𝑈𝑓 ∗ ℎ(𝑡−1) + 𝑏𝑓) (III.42)

 𝐶𝑡 = 𝐶(𝑡−1) ∗ 𝑓𝑡 + 𝑖𝑡 ∗ 𝑎𝑡 (III.43)

These operations involve weights (Wf and Uf), a bias (bf), and element-wise

multiplication, symbolized by the blue circle with a cross. Notably, "h" and "x" possess

their own sets of weights, further enhancing the network's adaptability for different

tasks and temporal dependencies across time slots (t and t-1).

107

Output Gate: The "Output Gate" assumes a crucial role within the LSTM cell by

determining which information stored in the cell memory (c) should contribute to the

output (h) at a given time step (Figure III-38). This gate ensures that the LSTM yields

outputs that are contextually relevant and suited to the task [129].

Figure III-38 LSTM Output Gate

 𝑂𝑡 = 𝜎(𝑊𝑜 ∗ 𝑋𝑡 + 𝑈𝑜 ∗ ℎ(𝑡−1) + 𝑏𝑜) (III.44)

 ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝐶𝑡) + 𝑂𝑡 (III.45)

The output (h) is derived from the cell state (c) via the tanh function, which can

modulate c to be positive or negative within the range of -1 to +1. The degree to which

this tanh(c) affects h is precisely controlled by "o." The value of "o" is computed using

distinct weights for the previous output (ht-1) and the current input (xt), each

determined by a sigmoid function [129].

It's worth noting that there exists a variant of LSTM known as the Gated Recurrent Unit

(GRU), which lacks an output gate but incorporates a reset gate and an update gate for

managing information flow.

108

Connections and Weights

LSTM cells have internal weights and connections that govern the flow of information

(Figure III-39). These weights are initialized using techniques like Xavier/Glorot

initialization or He initialization, which are better suited for deep networks [130].

Activation Functions

LSTM cells employ various activation functions internally, including sigmoid and

hyperbolic tangent (tanh) functions (Figure III-39). These functions are used to control

the operations of the gates (input, forget, output), ensuring that information flow is

managed appropriately. Additionally, the Rectified Linear Unit (ReLU) activation

function is frequently utilized for processing the output of LSTM cells [131].

Forward Propagation

Forward propagation in LSTM networks involves processing sequential data one time

step at a time. At each time step, the input and the previous cell's state are used to update

the cell's internal state and produce an output.

Loss Function

The choice of a loss function depends on the specific task. For example, Mean Squared

Error (MSE) can be used for regression tasks, while Cross-Entropy is suitable for

sequence classification tasks.

Backpropagation

Backpropagation in LSTM networks is extended through time (BPTT) due to the

sequential nature of data. Gradients are calculated and adjusted for each time step to

train the network effectively [132].

109

Figure III-39 Forward, Loss Function and Backward Propagation (This Figure by

[133], [134]).

3.7.3.2. Optimization

Common optimization algorithms like Adam, RMSprop, or stochastic gradient descent

(SGD) with learning rate annealing are used to update weights during training [134].

3.7.3.3. Training

Training LSTM networks involves handling sequential data efficiently, including

techniques like sequence padding, batching, and potentially using teacher forcing or

attention mechanisms for sequence-to-sequence tasks [135].

Bias Term

Each LSTM cell typically has its own bias terms for various gates and activations,

which play a crucial role in the network's adaptability [136].

110

Learning Rate (α)

Selecting an appropriate learning rate (α) is critical for training, as it affects the

convergence of the network [136].

Teacher Forcing

For sequence-to-sequence tasks, teacher forcing can be used during training to improve

convergence by providing ground-truth data at each time step [135].

In summary, LSTM networks are specialized for sequential data and use complex

LSTM cells with gating mechanisms for learning and encoding sequential patterns.

Understanding the specifics of LSTM architecture and training is essential when

working with sequences. Be sure to refer to LSTM-specific resources and tutorials for

more in-depth information.

3.7.3.4. Mathematical Background behind LSTM RNNs

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network

(RNN) designed to effectively model and capture dependencies in sequential data.

LSTMs are particularly valuable for tasks involving time series analysis, natural

language processing, and other sequential data processing tasks.

Forward Propagation in LSTM

LSTM cells operate through a series of gates and activation functions, allowing them

to selectively retain and update information over time [137]. The key components of

forward propagation in an LSTM include

Input Gate (i(t))

In this phase, we proceed to update the input gate of the LSTM unit, which takes into

account the current input (𝑥(𝑡)), the output from the previous LSTM unit 𝑦(𝑡−1), and

111

the cell value from the previous time step 𝑐(𝑡−1). This update operation is carried out

using the following equation

 𝑖(𝑡) = 𝜎(𝑊𝑖 ∗ 𝑥(𝑡) + 𝑅𝑖 ∗ 𝑦(𝑡−1) + 𝑝𝑖 ⨀ 𝑐(𝑡−1) + 𝑏𝑖) (III.46)

The input gate controls the addition of new information to the cell state.

Here, σ represents the sigmoid activation function, while Wi, Ri, and pi correspond to

the weights associated with 𝑥(𝑡), 𝑦(𝑡−1), and 𝑦(𝑡−1)respectively. bi signifies the bias

vector linked to this specific component.

Forget Gate (𝒇(𝒕))

In this phase, the LSTM unit determines what information to forget from its prior cell

states 𝑐(𝑡−1). The calculation of activation values 𝑓(𝑡) for the forget gates at time step t

is based on the current input 𝑥(𝑡), the previous outputs 𝑦(𝑡−1), the state of memory cells

from the previous time step 𝑐(𝑡−1), along with the peephole connections, and the bias

terms bf associated with the forget gates. This computation can be expressed as

 𝑓(𝑡) = 𝜎(𝑊𝑓 ∗ 𝑥(𝑡) + 𝑅𝑓 ∗ 𝑦(𝑡−1) + 𝑝𝑓 ∗ 𝑦(𝑡−1)

+ 𝑝𝑓 ⨀ 𝑐(𝑡−1) + 𝑏𝑓)

(III.47)

 𝑓(𝑡) = 𝜎(𝑊𝑓 ∗ 𝑥(𝑡) + 𝑅𝑓 ∗ 𝑦(𝑡−1) + 𝑝𝑓 ∗ 𝑦(𝑡−1)

+ 𝑝𝑓 ⨀ 𝑐(𝑡−1) + 𝑏𝑓)

(III.48)

Here, Wf, Rf, and pf represent the weights corresponding to 𝑥(𝑡), 𝑦(𝑡−1), and 𝑐(𝑡−1)

respectively, while bf denotes the bias weight vector [137].

112

Cell State Update (c(t))

In this phase, the LSTM unit computes the cell value by combining the block input 𝒛(𝒕),

the input gate 𝒊(𝒕)and the forget gate 𝒇(𝒕) values with the previous cell value [137]. This

operation is represented as follows

Top of Form

 𝒄(𝒕) = 𝒛(𝒕) ⨀ 𝑖(𝒕) + 𝒄(𝒕−𝟏)⨀𝒇(𝒕) (III.49)

The cell state is updated based on the input gate and forget gate.

Output Gate (o(t))

In this stage, the LSTM computes the output gate, which is a function of the current

input 𝑥(𝑡), the previous LSTM unit output 𝑦(𝑡−1), and the cell value 𝑐(𝑡−1) from the

previous iteration [137]. The output gate calculation is expressed as

 𝑂(𝑡) = 𝜎(𝑊0 ∗ 𝑥(𝑡) + 𝑅0 ∗ 𝑦(𝑡−1) + 𝑝0 ⨀ 𝑐(𝑡−1) + 𝑏0) (III.50)

Where Wo, Ro, and po represent the weights associated with 𝑥(𝑡), 𝑦(𝑡−1)and 𝑐(𝑡−1)

respectively, and bo is the bias weight vector [137].

Output (y(t)) The final output is generated by applying an activation function g(⋅) to

the cell state and scaling it by the output gate.

 𝒚(𝒕) = 𝒈(𝒄(𝒕))⨀ 𝒐(𝒕) (III.51)

The logistic sigmoid function, denoted as σ(x), is used as a gate activation function and

is defined as 𝜎(𝑥) =
1

1+𝑒−𝑥
.

The hyperbolic tangent function, represented as g(x), and h(x), is frequently employed

as the activation function for block input and output, and it is defined as tanh(x) [137].

113

Backpropagation in LSTM

Backpropagation is the process of calculating gradients (δ) of the loss function with

respect to various components within the LSTM cell. These gradients guide the updates

of the model's parameters during training. During the backward pass, the cell state c(t)

accumulates gradients from both y(t) and the subsequent cell state 𝑐(𝑡−1). These

gradients are aggregated before being propagated back to the current layer.

In the final iteration T, the change 𝜹𝒚
(𝒕)

represents the network error gradient 𝜕𝐸/𝜹𝒚
(𝒕)

with E denoting the loss function. For other iterations 𝜹𝒚
(𝒕)

is the vector of delta values

inherited from the layer above, including the recurrent dependencies. This process is

expressed as follows

Gradient Descent and Parameter Updates

To train the LSTM, we use gradient-based optimization algorithms such as stochastic

gradient descent (SGD), Adam, or RMSprop. These algorithms update the LSTM cell's

parameters (weights and biases) using the gradients calculated during backpropagation

[137].

For example, the update equations for weights and biases can be

𝛥𝑊∗ = −𝛼 ∑ 𝛿∗
(𝑡)

⊗ 𝑥(𝑡)

𝑇

𝑡=0

 (III.52)

𝛥𝑝𝑖 = −𝛼 ∑ 𝑐(𝑡)⨀𝛿𝑖
(𝑡+1)

𝑇−1

𝑡=0

 (III.53)

𝛥𝑅 ∗= −𝛼 ∑

𝑇−1

𝑡=0

𝛿∗
(𝑡+1)

⊗ 𝑦(𝑡)

 (III.54)

114

𝛥𝑝𝑓 = −𝛼 ∑ 𝑐(𝑡)⨀𝛿𝑓
(𝑡+1)

𝑇−1

𝑡=0

 (III.55)

𝛥𝑏 ∗= −𝛼 ∑ 𝛿∗
(𝑡)

𝑇

𝑡=0

 (III.56)

𝛥𝑝𝑜 = −𝛼 ∑ 𝑐(𝑡)⨀𝛿𝑜
(𝑡)

𝑇

𝑡=0

 (III.57)

In this context, the symbol ⊗ signifies the outer product of two vectors, while the

symbol ∗ can represent any component related to the weights, such as the block input

𝑧̂, the input gate 𝑖̂, the forget gate 𝑓, or the output gate 𝑜̂.These equations form the

foundation of LSTM RNNs, allowing them to effectively model sequential data, capture

long-term dependencies, and adapt their parameters during training for various tasks,

such as natural language processing, time series forecasting, and more [137].

3.7.4. LSTM MATLAB IMPLEMENTATOIN

Introduction This research explores the use of ensemble LSTM (Long Short-Term

Memory) neural networks to enhance fault detection accuracy in signal classification

tasks. Accurate fault detection is crucial in domains like industry and healthcare. This

study focuses on improving classification performance through ensemble learning with

LSTM networks.

115

Network Architecture Utilizes a neural network architecture with sequence input,

LSTM, fully connected, softmax, and classification layers to capture temporal

dependencies in signal data.

Prediction Aggregation Aggregates predictions from individual models using a mode

operation to improve generalization and reduce overfitting.

Results Reports accuracy of ensemble predictions compared to true labels (YTest) and

visualizes classification performance using a confusion matrix.

numHiddenUnits = 1500;
numClasses = numel(unique(YTrain));
layers = [sequenceInputLayer(inputSize, 'Normalization', 'zscore')
 lstmLayer(numHiddenUnits, 'OutputMode', 'last')
 fullyConnectedLayer(numClasses)
 softmaxLayer
 classificationLayer];

Ensemble Learning: Trains multiple neural network models independently

(specified as numModels) to introduce diversity among models.
numModels = 3;
YPredAll = zeros(length(YTest), numModels);
YTrain = categorical(YTrain);
for i = 1:numModels
 % Train a new model
 net = trainNetwork(TrainFeatures, YTrain, layers, options);

 % Predict on the test set
 YPred = classify(net, TestFeatures);

 % Store predictions
 YPredAll(:, i) = grp2idx(YPred);
end

% Create an ensemble prediction
YPredEnsemble = mode(YPredAll, 2);
YPredEnsemble = categorical(YPredEnsemble, 1:8,
catnames);

116

the effectiveness of ensemble LSTM neural networks in fault detection for signal

classification, highlighting the potential for enhanced accuracy and robustness. This

research contributes to improving fault detection methodologies with applications in

critical domains.

% Calculate accuracy
accuracy = 100 * sum(YPredEnsemble == YTest') / numel(YTest);
% Display confusion matrix
figure;
cm = confusionchart(YTest, YPredEnsemble);
title('Classification Performance');
cm.RowSummary = 'row-normalized';
cm.ColumnSummary = 'column-normalized';

% Print accuracy and confusion matrix
fprintf('Accuracy: %.2f%%\n', accuracy);

117

SUPPORT VECTOR MACHINES

(SVMS)

NEURAL NETWORK

• Model Complexity SVMs are

generally simpler models compared

to neural networks. They aim to

find a hyperplane that best

separates classes.

• Feature Engineering SVMs

require careful feature engineering,

especially for a moderate number

of features.

• Scalability SVMs can be

computationally expensive,

particularly with large datasets

[138].

• Model Interpretability SVMs

are often considered more

interpretable due to their decision

boundary being defined by support

vectors [139].

• Performance SVMs perform

well in tasks with moderate data

availability and when data exhibits

linear separability or can be

effectively separated with a

suitable kernel [140].

• Model Complexity NNs can be

extremely complex, with the ability

to learn intricate, non-linear

relationships within the data.

• Feature Engineering NNs can

automatically learn features from

raw data, making them suitable for

high-dimensional or unstructured

data.

• Scalability NNs are highly

scalable and parallelizable, making

them suitable for large datasets and

distributed computing.

• Model Interpretability NNs,

particularly deep architectures, are

often considered black-box models,

making it challenging to interpret

their predictions [138].

• Performance NNs, especially

deep learning models, have shown

state-of-the-art performance in

various domains, but they often

require large amounts of labeled

data [140].

118

3.7.5. SVM Vs Neural Network

In summary, there's no definitive answer regarding which is better between SVMs and

NNs. The choice should be guided by the specific characteristics of your data, your

computational resources, and your performance and interpretability requirements. It's

often valuable to experiment with both approaches to determine which one best suit our

particular task. Additionally, hybrid models that combine SVMs and NNs can be

explored in some scenarios to leverage the strengths of both techniques.

3.7.6. Optimization of the Long Short-Term Memory (LSTM) Neural Network

In this section, we explore the optimization strategies applied to our Long Short-Term

Memory (LSTM) neural network, a pivotal component of our study. Our primary aim

was to fine-tune the LSTM's parameters to enhance its performance and expedite

convergence. The cornerstone of this optimization endeavor was the utilization of the

Adam optimization algorithm, a potent tool for training neural networks.

3.7.6.1. Adam Optimization Algorithm

The Adam optimizer, stemming from the term "Adaptive Moment Estimation," stands

as a leading choice for optimizing neural networks, including LSTMs. It amalgamates

the strengths of two renowned optimization techniques, Adagrad and RMSprop. What

sets Adam apart is its capability to dynamically adjust learning rates for individual

parameters, rendering the training process more efficient and effective. This algorithm

maintains two moving averages for each parameter the first moment (mean) and the

second moment (uncentered variance). These moving averages adapt the learning rate

throughout training, ensuring optimal convergence [141].

119

In MATLAB, we implemented the Adam optimization algorithm, making use of built-

in functions within deep learning frameworks or custom implementations tailored to

our study's specific requirements. The optimization process was finely tuned through

careful adjustment of hyperparameters, including the learning rate (α), decay rates (β1

and β2), and epsilon (ε) for numerical stability, to achieve not only optimal convergence

but also superior performance tailored to our specific task [142].

3.7.6.2. Hyperparameter Tuning

The effectiveness of an LSTM network hinges on the judicious selection of

hyperparameters. To discern the optimal configuration for our LSTM, we embarked on

an exhaustive hyperparameter tuning process, covering several pivotal parameters

Learning Rate (α) This parameter governs the step size during weight updates within

the optimization process. Extensive experimentation was conducted to pinpoint the

learning rate that facilitated swift convergence without encountering challenges such as

overshooting or convergence to local minima.

Batch Size The choice of mini-batch size during training significantly influences

convergence speed and memory usage. Systematic exploration of various batch sizes

was undertaken to strike a balance between rapid convergence and manageable memory

requirements [143].

120

Architecture The architectural design of an LSTM network is crucial for its ability to

model complex patterns [143]. In our case, we employed the following architecture:

Where the Number of Hidden Unites = 1500;

Max Epochs = 170;

Minimum Batch Size = 170;

and in the other Model we used the below parameters:

layers = [...
 sequenceInputLayer(inputSize,'Normalization','zscore')
 lstmLayer(numHiddenUnits,'OutputMode','last')
 fullyConnectedLayer(numClasses)
 softmaxLayer
 classificationLayer];

giving the options as below:
maxEpochs = 170;
miniBatchSize = 170;

options = trainingOptions('adam', ...
'InitialLearnRate', 1e-4, ...
'MaxEpochs', 170, ...
'MiniBatchSize', 170, ...
'SequenceLength', 'longest', ...
'Shuffle', 'every-epoch', ...
'ValidationData', {TestFeatures, YTest}, ...
'ValidationFrequency', 30, ...
'Verbose', 1, ...
'Plots', 'training-progress', ...
'ExecutionEnvironment', 'gpu');

% Set the training parameters
net.trainParam.epochs = 200; % Set the number of epochs to 100
net.trainParam.max_fail = 20; % Set the maximum number of
validation failures to 20
net.trainParam.lr = 0.01; % Set the learning rate to 0.01
net.trainParam.mc = 0.9; % Set the momentum constant to 0.9
net.trainParam.beta1 = 0.9; % Set the beta1 parameter for Adam
optimization to 0.9
net.trainParam.beta2 = 0.999; % Set the beta2 parameter for Adam
optimization to 0.999
net.trainParam.epsilon = 1e-8; % Set the epsilon parameter for Adam
optimization to 1e-8

121

Training and Ensemble Learning We used an ensemble learning approach by training

multiple LSTM models and taking a majority vote for predictions [143]. The code for

this ensemble learning is as follows:

3.7.6.3. Evaluation and Confusion Matrix

To assess the model's performance, we computed accuracy and displayed a confusion

matrix:

numModels = 3; % number of models to train
YPredAll = zeros(length(YTest), numModels); % initialize matrix to
store predictions
YTrain=categorical(YTrain);
for i = 1:numModels
 % train a new model
 net = trainNetwork(TrainFeatures,YTrain,layers,options);

 % predict on test set
 YPred = classify(net,TestFeatures);
 YPred =
renamecats(YPred,{'1','2','3','4','5','6','7','8'},catnames);

 % store predictions in YPredAll matrix
 YPredAll(:, i) = grp2idx(YPred);
end

% take the mode prediction across all models
YPredEnsemble = mode(YPredAll, 2);
YPredEnsemble = categorical(YPredEnsemble, 1:8, catnames);
YTest = renamecats(YTest,{'1','2','3','4','5','6','7','8'},catnames);

% compute accuracy
accuracy = 100*sum(YPredEnsemble == YTest') /
numel(YTest)

% Plot the confusion matrix for the final model
figure;
cm = confusionchart(YTest, YPredEnsemble);
title('Classification for a faulty and healthy signal for
each road type');
cm.RowSummary = 'row-normalized';
cm.ColumnSummary = 'column-normalized';

122

The hyperparameter tuning process encompassed diverse methodologies, ranging from

grid search to random search and Bayesian optimization, the selection contingent upon

the intricacy of the hyperparameter space. Robust evaluation metrics, encompassing but

not limited to accuracy, loss, and domain-specific criteria, were enlisted to gauge the

LSTM network's performance [143].

The harmonious amalgamation of the Adam optimization algorithm, ensemble

learning, and meticulous hyperparameter tuning culminated in a finely-tuned LSTM

architecture and training regimen, delivering optimal outcomes meticulously tailored

to the specifics of our task.

3.7.7. SVM Tuning

Tuning SVM parameters is essential to achieve the best possible performance for your

specific problem. In MATLAB, we can tune SVM hyperparameters using various

techniques, including grid search and cross-validation. Here's a step-by-step on how we

tuned SVM in MATLAB

3.7.7.1. Splitting Data for Cross-Validation

To assess the effectiveness of different hyperparameters, it's essential to divide the

dataset into training and validation sets. MATLAB offers functions like 'cvpartition' or

'crossval' to create cross-validation folds [144].

3.7.7.2. Choosing the SVM Kernel

SVMs offer various kernels, including linear, polynomial, radial basis function (RBF),

or sigmoid. The kernel choice plays a vital role in model's performance, so we should

carefully select the most suitable one for your specific problem.

123

3.7.7.3. Selecting Hyperparameters

Critical SVM hyperparameters to fine-tune include

C This parameter controls the balance between maximizing the margin and minimizing

classification errors [145]. In our model, we set the 'BoxConstraint' hyperparameter to

the values '0.01,' '0.1,' '1,' and '10.

3.7.7.4. Kernel Parameters

Depending on the selected kernel type, such as the polynomial degree for polynomial

kernels or kernel width for RBF kernels, additional parameters may need adjustment

[145]. In our model, we specifically adjusted the 'KernelScale' hyperparameter, using

the values '0.01,' '0.1,' '1,' and '10.

Grid Search In MATLAB, the 'fitcsvm' function is employed to train SVM classifiers.

For multi-class problems, 'fitcecoc' can be utilized. To execute a grid search for

hyperparameter optimization, leverage 'fitcecoc' along with the

'HyperparameterOptimizationOptions' parameter [145]. Below is an example:

% Create an SVM template
template = templateSVM('KernelFunction', 'rbf');
% Define the hyperparameter search space
parameters = struct('BoxConstraint', [0.01, 0.1, 1, 10], 'KernelScale',
[0.01, 0.1, 1, 10]);
% Set up hyperparameter optimization options
options = struct('Optimizer', 'bayesopt', 'MaxObjectiveEvaluations',
30);
% Conduct hyperparameter optimization using fitcecoc
svm_model = fitcecoc(XTrain, YTrain, 'Learners', template,
'OptimizeHyperparameters', 'auto',...
 'HyperparameterOptimizationOptions', options, 'HyperparameterRange',
parameters);
% Assess the best model's performance on the validation set
predictions = predict(svm_model, XValidation);

124

3.7.7.5. Model Evaluation

 Following hyperparameter tuning, evaluate the SVM model's performance using

appropriate metrics, such as accuracy, precision, recall, or F1-score, on a test dataset or

through cross-validation.

Always keep in mind that the choice of kernel and hyperparameters significantly

influences our SVM model's performance. It's crucial to experiment with various

configurations while employing cross-validation to prevent overfitting.

125

IV. THE RESULTS AND DISCUSSION

In this chapter, we fuse the outcomes and insights from our experiments in road obstacle

detection and suspension fault classification, providing a comprehensive view of both

results and their implications. Our research, powered by an Intel(R) Core(TM) i7-

7820HK CPU and NVIDIA GeForce GTX 1080 GPU, spanned several tests, each

targeting specific aspects of detection and classification under various environmental

conditions.

We focused on the Road Type and Signal Condition Classification, incorporating real-

world variables such as noise and denoising processes. This approach allowed us to

assess the robustness of our systems under different operational scenarios.

Our discussion goes beyond presenting data, and delving into the performance metrics,

challenges, and potential for enhancements in practical applications. We critically

analyze the impact of noise on classification accuracy and evaluate the effectiveness of

various denoising techniques.

Furthermore, this chapter acknowledges the study's limitations, offering insights into

the constraints and practical considerations that shaped our research. We also put

forward recommendations for future research, aiming to advance suspension fault

detection systems.

Summarizing, this chapter bridges our experimental results with thoughtful analysis,

setting the stage for future innovations in automotive safety and performance

enhancement.

126

4.1. First Test Discussion Road obstacles 5 levels of training and testing (With

Noise)

In our initial test for detecting road obstacle faults, we examined 15 diverse methods to

identify obstacles such as Sinewaves, Grids, Potholes, and Bumps across five different

levels of faults. To simulate realistic driving conditions, we introduced various types of

noise, such as those resembling grain or engine sounds, which can affect the tie rod

during driving. The results in a noisy environment (as shown in Table 1) were

enlightening. Notably, the Wavelet Scattering SVM PCA method demonstrated

exceptional performance, achieving a mean accuracy of 99.1%.

Table 1 First Test Method Performance Summary (With Noises)

Model Names Number of
Training Cycles

Mean
Accuracy

(%)

Std
Accuracy

(%)

Mean
Time
(sec)

Std
Time
(sec)

Wavelet Scattering SVM PCA 5 Folds 99,1 0,144 11 1
DWT SVM 1 Iteration 95 2,16 9 4
Wavelet Scattering SVM Tuned 20 Evaluations 95 1,41 403 62
Wavelet Scattering SVM CV SRE 5 Folds 94,9 2,66 11 1
Wavelet Scattering RNN ADAM 170 Epochs 94,8 1,5 53 3
Wavelet Scattering SVM Tuned SRE 20 Evaluations 94,5 1,29 183 75
DWT SVM Tuned 20 Evaluations 94,3 1,26 382 346
Wavelet Scattering SVM CV 5 Folds 94,3 1,55 22 20
Wavelet Scattering RNN 170 Epochs 93,8 2,63 59 4
Wavelet Scattering SVM Tuned RFE 20 Evaluations 93 1,41 123 14
Wavelet Scattering SVM CV RFE 5 Folds 91,1 0,625 13 1
DWT SVM SRE Tuned 20 Evaluations 91 2,94 487 403
Wavelet Scattering SVM CV LDA 5 Folds 77 5,72 9 1
Wavelet Scattering SVM Tuned LDA 20 Evaluations 68 7,16 83 2
DWT Neural Network 200 Epochs 54 6 10 9

127

4.1. Second Test Discussion Road obstacles 5 levels of training and testing

(Denoised)

In the second test, we focused on noise removal from road obstacles, using MATLAB's

'wdenoise' function to eliminate the noises we introduced in the first test. Subsequently,

we applied the same 15 methods to detect Sinewave, Grid, Pothole, and Bump obstacles

across five varied levels of faults. The results showed that not only did the top-

performing method from the first test (referenced in Table 2) maintain its high accuracy

post-denoising, but it also confirmed the robustness of this model. In contrast, while

methods like the Wavelet Scattering SVM Tuned RFE and Tuned exhibited significant

improvements after denoising, they also demonstrated a notable increase in processing

time. This highlights the essential balance between detection accuracy and operational

efficiency in road safety applications.

Table 2 Second Test Method Performance Summary (Denoised)

Model Names Number of
Training Cycles

Mean
Accuracy

(%)

Std
Accuracy

(%)

Mean
Time (sec)

Std Time
(sec)

Wavelet Scattering SVM PCA 5 Folds 97,9 2,75 11 7

Wavelet Scattering SVM Tuned RFE 20 Evaluations 97,6 1,11 91 16

Wavelet Scattering SVM Tuned 20 Evaluations 97,3 0,655 565 368

Wavelet Scattering SVM Tuned SRE 20 Evaluations 96 0,816 146 25

Wavelet Scattering RNN ADAM 170 Epochs 96 2 53 1

Wavelet Scattering SVM CV RFE 5 Folds 94,8 0,315 13 1

Wavelet Scattering RNN 170 Epochs 94,5 0,577 54 1

DWT SVM 1 Iteration 94,5 1,29 5 2

DWT SVM Tuned 20 Evaluations 93,5 3,7 361 189

Wavelet Scattering SVM CV SRE 5 Folds 93,4 0,903 12 5

Wavelet Scattering SVM CV 5 Folds 93,3 0,772 18 8

DWT SVM SRE Tuned 20 Evaluations 90,5 2,08 561 444

Wavelet Scattering SVM CV LDA 5 Folds 84,9 10,2 8,5 0,5

DWT Neural Network 200 Epochs 82 3,46 247 41

Wavelet Scattering SVM Tuned LDA 20 Evaluations 73,3 10,6 84 2

128

4.2. Third Test Road Type and Signal Condition Classification Comprehensive

Testing (With Noise)

The objective of the third test was to classify road types and signal conditions as either

healthy or faulty, with a dual emphasis on maximizing accuracy and minimizing

processing time. This comprehensive evaluation included scenarios with noise

interference. The results, detailed in Table 3 for conditions with noise, reveal that the

Wavelet Scattering RNN ADAM model exhibited high performance. The performance

details of the tuning in ADAM's optimization can be found in Figure IV-1. The model

maintained a mean accuracy of 97.8% with a relatively low standard deviation,

indicating not only its effectiveness but also its consistency under noisy conditions.

Table 3 Third Test Summary of Method Performance Metric (With Noise)

Model Names Number of
Training Cycles

Mean
Accuracy

(%)

Std
Accuracy

(%)

Mean
Time (sec)

Std
Time
(sec)

Wavelet Scattering RNN ADAM 170 Epochs 97,8 0,776 360 79

DWT Neural Network 200 Epochs 97,7 0,261 41 6

Wavelet Scattering SVM Tuned SRE 20 Evaluations 97,5 0,304 2970 530

Wavelet Scattering SVM CV 5 Folds 97,2 0,846 86 17

Wavelet Scattering SVM CV SRE 5 Folds 97,1 0,463 91 12

Wavelet Scattering SVM CV RFE 5 Folds 96,5 0,0866 73 13

Wavelet Scattering SVM Tuned RFE 20 Evaluations 96,3 0,135 2010 406

Wavelet Scattering SVM PCA 5 Folds 95,8 0,61 81 14

Wavelet Scattering SVM Tuned LDA 20 Evaluations 95,6 0,367 224 42

Wavelet Scattering RNN 170 Epochs 95,5 0,685 386 56

Wavelet Scattering SVM CV LDA 5 Folds 95,4 0,2 62 12

Wavelet Scattering SVM Tuned 20 Evaluations 95,3 0,735 2630 483

DWT SVM Tuned 20 Evaluations 95 0,598 4590 486

DWT SVM SRE Tuned 20 Evaluations 93,1 0,304 4420 836

DWT SVM 1 Iteration 92,2 0,358 194 38

129

Figure IV-1 Training Progress Road Type and Signal Condition Classification (With

Noise) with Wavelet Scattering Neural Network Test Using adam Optimizer

Figure IV-1 depicts the final training progress of the model, concluding at iteration

2550 within three model loops with an impressive accuracy of 97.50%. Notably, this

accuracy exhibits significant growth within the first 200 iterations of the training

process, followed by a gradual increase until it reaches the final accuracy of 97.50%.

4.3. Fourth Test Road Type and Signal Condition Classification Comprehensive

Testing (Denoised)

In the fourth test, we employed the denoising function, as mentioned in the previous

test, to assess road type and signal condition classification under denoised conditions.

The results, presented in Table 4, showed that the Wavelet Scattering SVM Tuned LDA

model was a standout, achieving a mean accuracy of 98.4%. Details of the model's

130

tuning and evaluation can be found in Figures IV-2 and IV-3. However, it's important

to highlight that this high accuracy came at the cost of increased processing time,

illustrating the trade-off between accuracy and efficiency. These findings are vital for

the advancement of road condition classification systems. They emphasize the

significance of choosing the right model for each specific scenario to balance road

safety and operational efficiency effectively.

Table 4 Fourth Test Summary of Method Performance Metric (Denoised)

Model Names Number of
Training Cycles

Mean
Accuracy

(%)

Std
Accuracy

(%)

Mean
Time (sec)

Std
Time (sec)

Wavelet Scattering SVM Tuned LDA 20 Evaluations 98,4 0,348 219 46

Wavelet Scattering SVM Tuned 20 Evaluations 98,4 0,481 3580 602

Wavelet Scattering SVM Tuned SRE 20 Evaluations 98,3 0,18 3400 691

Wavelet Scattering SVM Tuned RFE 20 Evaluations 98,3 0,289 3760 569

Wavelet Scattering RNN ADAM 170 Epochs 98,3 0,382 363 18

DWT Neural Network 200 Epochs 98,1 0,499 44 3

Wavelet Scattering SVM CV SRE 5 Folds 97,8 0,45 123 19

Wavelet Scattering SVM CV LDA 5 Folds 97,7 0,456 60 12

Wavelet Scattering RNN 170 Epochs 97,7 0,576 355 14

Wavelet Scattering SVM CV RFE 5 Folds 97,4 0,17 71 11

Wavelet Scattering SVM CV 5 Folds 97,1 0,551 114 22

DWT SVM Tuned 20 Evaluations 97 0,439 4420 861

DWT SVM SRE Tuned 20 Evaluations 95,9 0,421 1560 269

Wavelet Scattering SVM PCA 5 Folds 92,9 0,52 551 101

DWT SVM 1 Iteration 92,5 0,41 190 28

131

Figure IV-2 Objective Function Modeling of a faulty and healthy signal for each road

type (Denoised) Wavelet Scattering and SVM Tuned and Optimized with LDA

Figure IV-3 Minimum Objective vs. Number of Function Evaluations of a faulty and

healthy signal for each road type (Denoised) Wavelet Scattering and SVM Tuned and

Optimized with LDA

In Figure IV-2, when we analyze the expected and actual performance of the tuned

SVM model, we notice that 'Observed Points' cluster within a range of 0 to 0.6 in the

132

minimum objective function value. This pattern suggests that the model's performance

is within an acceptable range. However, there are occasional instances where the

performance falls outside this range. This variability in performance can be attributed

to factors such as data characteristics, inherent limitations of the model, or variations in

the datasets used for evaluation.

In Figure IV-3, we observe that the hyperparameter optimization process produced

promising results. The 'Minimum Observed Objective' achieved a low value of 0.02,

signifying strong and robust model performance according to our selected metric.

While the 'Estimated Minimum Objective' showed some fluctuations during the

optimization process, it converged with the minimum observed objective. Although it

did not reach the absolute lowest objective value, this outcome still indicates a level of

performance that is both acceptable and effective for our specific task.

Result Conclusion

The extensive evaluation of various methods for detecting and classifying road

obstacles under different conditions, including noise and denoising, offers valuable

insights for autonomous driving and road safety. The tests demonstrate notable

performance variations among methods, underscoring the necessity of choosing the

most suitable technique based on application-specific requirements, data

characteristics, and the trade-off between accuracy and processing time.

In the first test, which focused on classifying road obstacles in noise-free conditions,

the Wavelet Scattering SVM PCA method emerged as the most effective, achieving an

exceptional mean accuracy of 99.1%. This result highlights the significance of

133

sophisticated algorithmic approaches in achieving high accuracy in road obstacle

detection.

In the second test, which included scenarios with and without noise, the Wavelet

Scattering SVM PCA method maintained its robustness, achieving a high accuracy rate

of 97.9% post-denoising. This performance parallels its effectiveness in vibration fault

diagnosis for bearings at variable speeds, as noted in reference [146]. However, other

methods like the Wavelet Scattering SVM Tuned RFE and the Wavelet Scattering SVM

Tuned also showed significant improvements after denoising. These improvements,

though, came at the cost of increased processing time. Nonetheless, they demonstrated

robustness, especially in detecting unbalanced and bowed rotors, as documented in

reference [147]. Specifically, the Wavelet Scattering SVM Tuned RFE achieved an

accuracy of 97.6%, while the Wavelet Scattering SVM Tuned reached 97.3%. This test

highlighted the critical balance between detection accuracy and operational efficiency

in road safety applications.

In the third test, which introduced noise to the road obstacle detection process, the

Wavelet Scattering RNN ADAM model stood out. It maintained a mean accuracy of

97.8% with low variability, demonstrating high performance and consistency under

noisy conditions. Furthermore, the integration of wavelet scattering with LSTM proved

effective in classifying unbalanced and bowed rotors, as indicated in reference [147].

Finally, in the fourth test, incorporating both noise and denoising, the Wavelet

Scattering SVM Tuned LDA model was a top performer with a mean accuracy of

98.4%, albeit with increased processing time. This highlights the crucial balance

134

between accuracy and operational efficiency. It has also showed promise in mixed

signal environments, akin to its application in bearing vibration fault detection [148].

In conclusion, the optimal method for road obstacle detection and classification varies

depending on data nature, noise presence, and the desired accuracy-efficiency balance.

The effectiveness of feature selection, preprocessing, and adaptive techniques in

enhancing performance and robustness is evident. These findings provide essential

guidance for developing advanced road obstacle detection systems, contributing

significantly to the field of autonomous driving technology.

4.4. Limitations of the Study

This research endeavor encountered certain limitations stemming from practical

constraints and technical considerations. These limitations prompted the utilization of

alternative methodologies to mitigate the challenges posed by the available resources.

The scope and constraints of this study are delineated as follows

4.4.1. Data Collection

In this study, the primary method for data acquisition involved the utilization of Adams

car simulation software. While Adams car simulation software is well-established for

its data generation reliability, it is imperative to underscore that the specific software

version employed in this research lacked the intrinsic capacity to directly simulate

faults. To address this intrinsic limitation, the simulation methodology introduced

variations in angular acceleration predicated on the influence of wear-induced changes.

Moreover, in lieu of actual real-world noise, virtual noise components were

incorporated. These methodological adaptations were implemented with the explicit

objective of facilitating the study's ability to effectively capture and analyze the

135

manifestations of faults. This strategic approach was necessitated by the resource

constraints encountered in this study and the concomitant fiscal implications associated

with procuring dedicated sensors and control units for direct fault diagnosis.

In the context of the application of accelerometer data for suspension fault detection,

the data collection process necessitates meticulous attention to the following key

considerations:

Dataset Diversity and Extensiveness: The dataset employed in this research was

diligently constructed to encompass a wide spectrum of real-world road conditions.

This comprehensive dataset design aimed to faithfully model suspension behavior

under various environmental and road condition scenarios.

Dynamic Road Condition Variations: The data collection strategy incorporated the

need to account for dynamic fluctuations in road conditions. This included

accommodating transient anomalies such as potholes and other road surface

irregularities, which necessitated the collection of data under diverse driving scenarios.

Generalizability of the Model: Ensuring the robust generalizability of the machine

learning model across distinct road conditions was a paramount consideration. The

model's capacity to remain effective across different environmental contexts and its

ability to maintain resilience against undue sensitivity to minor variations were critical

for its practical applicability in real-world scenarios.

Vital Information Captured by Accelerometer Data It is crucial to underscore the

significance of accelerometer data, which captures pivotal vehicle movements and

vibrations. These captured dynamics play an indispensable role in the detection of

suspension issues that might not be readily discernible solely from surface

136

irregularities. Recognizing this pivotal role is imperative for accurate fault diagnosis

and classification.

4.4.2. Hardware Performance Evaluation

Another substantial limitation of this study was the unavailability of an array of GPUs,

CPUs, or FPGAs with varying processing speeds for the purpose of evaluating their

influence on fault detection algorithms. Ideally, a comprehensive assessment would

have involved testing diverse hardware speeds to gauge their impact on the

effectiveness of the fault detection algorithms. Regrettably, due to resource constraints,

this aspect could not be explored in depth. Nonetheless, this study focused on evaluating

the overall performance and efficacy of the fault detection algorithms, irrespective of

specific hardware variations.

4.4.3. Time Constraints

Time constraints presented a formidable challenge in this research endeavor. These

temporal limitations-imposed constraints on the development of a more extensive array

of fault detection algorithms and the exploration of a broader spectrum of road types.

Although the study aspired to generate a substantial number of fault detection codes

and incorporate a wide range of road scenarios, time restrictions curtailed the extent of

these efforts. However, within the confines of the available time frame, the study

diligently aimed to provide meaningful analysis and insights.

In conclusion, this study acknowledges these limitations and has endeavored to mitigate

their impact to the greatest extent possible, given the resources and time available, in

pursuit of meaningful contributions to the field of suspension fault detection.

137

4.5. Recommendations for future research and practical applications

In light of the limitations identified in this study, several compelling avenues for future

research and practical applications emerge, each offering unique prospects for

enhancing suspension fault detection methodologies.

4.5.1. Integration of LiDAR with Accelerometer Data

Exploration of LiDAR technology integration with accelerometer data is a paramount

recommendation for suspension fault detection. This innovative technique utilizes

LiDAR's ability to capture large amounts of training data and combines it with the

practical testing capabilities of accelerometer data. Previous studies have demonstrated

the effectiveness of LiDAR in earthquake detection [149], and this synergy can

significantly enhance the accuracy and reliability of suspension fault detection models,

particularly in real-world driving scenarios.

4.5.2. Incorporation of Real-Life Data

A key recommendation is to emphasize the incorporation of authentic real-world data

in research efforts. While software simulations provide controlled environments, the

resource-intensive collection of real-life data can provide invaluable insights into

suspension behavior under diverse road conditions. Bridging the gap between

laboratory findings and actual road performance augments the practical utility of

suspension fault detection systems significantly.

4.5.3. Merging Finite Element Analysis with Vibration Fault Detection

The integration of finite element analysis with vibration fault detection methodologies

is a promising approach that can significantly enhance suspension fault detection

138

accuracy and predictive capabilities, especially when considering the fatigue life cycle.

This innovative integration enables the classification of fault severity based on finite

element grades. For instance, in the case of tie rod degradation, specific vibrations

corresponding to varying degrees of wear and high vibrations can signify different

stages of the fatigue life cycle and levels of potential danger. By aligning the severity

of detected faults through vibration analysis with fatigue life cycle-linked finite element

grades, as done in Vibration Analysis of Defected Ball Bearings [150], this approach

facilitates the provision of more precise warnings to drivers.

4.5.4. Investment in Advanced Hardware Resources

Crucial to the advancement of research endeavors is investing in advanced hardware

resources, such as high-performance GPUs and processors. These resources facilitate

the comprehensive analysis of complex real-life data, enabling the application of

sophisticated machine-learning techniques to achieve heightened fault detection

accuracy.

4.5.5. Conducting Comparative Studies on Machine-Learning Algorithms

Conducting comparative studies to evaluate different machine-learning algorithms in

suspension fault detection is highly advantageous. Systematically comparing classifiers

and feature extraction techniques aids in pinpointing the most reliable and efficient

approach for practical implementation.

139

4.5.6. The practical applications of these recommendations span across various

sectors

Automotive Industry Integration of suspension fault detection systems in vehicle

manufacturing can enhance safety and performance, enabling early identification of

suspension issues, reducing maintenance costs, and ensuring safer driving experiences

for consumers.

Fleet Management Companies Integration of suspension fault detection into

maintenance routines can lead to increased operational efficiency, reduced downtime,

and substantial cost savings through timely identification of suspension problems.

Road Safety Authorities Leveraging suspension fault detection systems for continuous

monitoring of suspension health can swiftly identify vehicles with potential issues,

allowing authorities to take proactive measures to prevent accidents arising from

vehicle malfunctions.

Aftermarket Automotive Service Providers Offering suspension fault detection as a

value-added service can assist car owners in more effectively maintaining their

vehicles, potentially extending their lifespan.

Embracing these recommendations not only propels the field of suspension fault

detection forward but also ensures tangible implementation across diverse sectors,

promising a safer and more efficient automotive landscape.

140

4.5.7. The Cost and Application of Accelerometer in Vehicular Vibration

Measurement

To effectively measure vibrations in the outer tie rod of a car suspension, an

accelerometer with a frequency range of 10 Hz to 1000 Hz and a sensitivity of at least

100 mV/g is required.

The PCB Piezotronics Model 601A01 accelerometer aligns perfectly with these criteria.

With a frequency range spanning from 0.27 Hz to 10 kHz and a sensitivity of 100 mV/g,

it is specifically designed for high-frequency vibration measurement in automotive and

aerospace applications. Priced at $220 per unit, this accelerometer provides a cost-

effective solution for precise measurements [1]. To harness the full potential of data

processing, customization of a chassis control module or suspension control module is

recommended. This tailored modification ensures seamless integration with other

functions, thereby enhancing safety and reliability [151]. Additionally, establishing

connectivity with other modules, such as the Engine Control Unit (ECU) [152],

facilitates not only real-time error display on the dashboard but also error storage for

future analysis and reference.

1 PCB Piezotronics. (2024). Frequency range of 10 Hz to 1000 Hz for measuring vibration in the

outer tie rod of a car suspension. Retrieved from [https://www.ni.com/en/shop/data-acquisition/sensor-

fundamentals/measuring-vibration-with-accelerometers.html]

141

V. CONCLUSION

This thesis represents a substantial contribution to the field of fault detection in a

simulated car's gear steering system, with a specific focus on suspension failure in

vehicles. This issue is critical, as suspension failures pose significant risks on the road

and can lead to severe, sometimes fatal, car accidents. The research employed a

combination of simulation, data analysis, signal processing, and classification to

address this issue thoroughly.

The main findings of the study are centered around simulated wear and tear, data

collection, feature extraction methods, classification algorithms, robustness analysis,

and identifying the best-performing approaches. The study successfully simulated wear

in the outer tie rod, generating faulty signals that mimic real-world conditions. The

collected data from these simulations provided a baseline for healthy signals.

Feature extraction was conducted using two distinct methods wavelet scattering and

discrete wavelet transform. Their effectiveness in capturing signal characteristics was

thoroughly evaluated. Support Vector Machines (SVM) and Neural Networks (NN)

were used as classification algorithms to differentiate between normal and faulty

signals. The robustness of the system was tested by introducing various types of noise,

including rough road, tire, and engine noises. Analyses were performed on signals in

conditions without noise, with noise, and after denoising.

The study highlighted "Wavelet Scattering SVM PCA" as the best-performing method

in the first test for noise scenarios, achieving an outstanding mean accuracy of 99.1%.

In the second test, which incorporated noisy and noise-free scenarios, "Wavelet

Scattering SVM PCA" again proved its effectiveness, maintaining a high accuracy rate

142

post-denoising at 97.9%. The third test, introducing noise into road obstacle detection,

saw the "Wavelet Scattering RNN ADAM" model as the standout, with a mean

accuracy of 97.8%. In the fourth and final test, incorporating both noise and denoising,

the "Wavelet Scattering SVM Tuned LDA" emerged as the top performer, achieving a

mean accuracy of 98.4%.

While the research has its limitations, particularly within the simulated environment, it

lays a solid foundation for future exploration. Real-world conditions may vary from

simulations, and future research should focus on real-world testing, diverse datasets,

and the advancement of machine learning techniques to enhance fault detection

accuracy.

The significance of this research lies in its potential applications in the automotive

industry, offering a pathway to safer and more reliable vehicles. The methodologies and

findings presented in this thesis not only contribute to the advancement of automotive

safety and steering system fault detection but also play a critical role in enhancing

overall road safety.

This thesis, therefore, not only contributes to the technological advancements in the

field but also honors the memory of those affected by suspension-related accidents,

aiming to make roads safer for everyone.

143

REFERENCES

[1] A. French, “National Highway Traffic Safety Administration (NHTSA) Notes,”

Ann Emerg Med, vol. 35, no. 6, pp. 0623–0624, 2000, doi

10.1067/mem.2000.106831.

[2] A. Ohnsman, “Not His Wish Star Of Disney’s ‘Aladdin’ Sues Tesla For

Defective Model 3 In Hollywood Crash,” Forbes, May 2019.

[3] M. Wozniak, A. Rylski, and K. Siczek, “The Measurement of the Wear of Tie

Rod End Components,” Strojniški vestnik - Journal of Mechanical Engineering,

vol. 68, no. 2, pp. 101–125, 2022, doi 10.5545/sv-jme.2021.7389.

[4] J. C. Watrin, H. Makich, B. Haddag, M. Nouari, and X. Grandjean, “Analytical

modelling of the ball pin and plastic socket contact in a ball joint,” in Congrès

français de mécanique, Lille, France, Aug. 2017. doi hal-03325718.

[5] A. S. Sener, “Fatigue life resolution of the steering wheel tie rod of a LCV with

FEA,” Mechanika, vol. 23, no. 5, pp. 622–629, 2017, doi

10.5755/j01.mech.23.5.16078.

[6] L. Natrayan, E. Aravindaraj, M. S. Santhosh, and M. S. Kumar, “ANALYSIS

AND OPTIMIZATION OF CONNECTING TIE ROD ASSEMBLY IN

AGRICULTURE APPLICATION,” Acta Mechanica Malaysia, vol. 2, no. 1, pp.

06–10, Jan. 2019, doi 10.26480/amm.01.2019.06.10.

[7] Y. Tomikawa, “PIEZOELECTRIC ANGULAR ACCELERATION SENSOR.”

2003.

144

[8] S. E. El-Khamy and H. A. Elsayed, “Classification of Multi-User Chirp

Modulation Signals Using Wavelet Higher-Order-Statistics Features and

Artificial Intelligence Techniques,” International Journal of Communications,

Network and System Sciences, vol. 05, no. 09, pp. 520–533, 2012, doi

10.4236/ijcns.2012.59063.

[9] K. Daqrouq, T. A. Hilal, M. Sherif, S. El-Hajjar, and A. R. Al-Qawasmi,

“Speaker identification system using wavelet transform and neural network,” in

2009 International Conference on Advances in Computational Tools for

Engineering Applications, ACTEA 2009, 2009, pp. 559–564. doi

10.1109/ACTEA.2009.5227953.

[10] M. , N. M. , H. J. , & K. S. H. Heydarzadeh,

“Non_invasive_Gearbox_Fault_Diagnosis_Usi,” IEEE international conference

on acoustics, speech and signal processing (ICASSP) , pp. 371–375, 2017, doi

10.1109/icassp.2017.7952180.

[11] S. Nahak, A. Pathak, and G. Saha, “Fragment-level classification of ECG

arrhythmia using wavelet scattering transform,” Expert Syst Appl, vol. 224, p.

120019, 2023, doi 10.1016/j.eswa.2023.120019.

[12] S. Wegerich, “Similarity‐based modeling of vibration features for fault detection

and identification,” Sensor Review, vol. 25, no. 2, pp. 114–122, 2005, doi

10.1108/02602280510585691.

[13] P. , & P. V. Khaire, “A smart fault identification system for ball bearing using

simulation-driven vibration analysis,” Archive of Mechanical Engineering, pp.

247–270, Nov. 2023, doi 10.24425/ame.2023.145583.

145

[14] C. Pravin and V. Ojha, “A Novel ECG Signal Denoising Filter Selection

Algorithm Based on Conventional Neural Networks,” in Proceedings - 19th

IEEE International Conference on Machine Learning and Applications, ICMLA

2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 1094–

1100. doi 10.1109/ICMLA51294.2020.00176.

[15] A. Patil, C. Deshmukh, and A. R. Panat, “Feature extraction of EEG for emotion

recognition using Hjorth features and higher order crossings,” in Conference on

Advances in Signal Processing, CASP 2016, Institute of Electrical and

Electronics Engineers Inc., Nov. 2016, pp. 429–434. doi

10.1109/CASP.2016.7746209.

[16] A. Stetco et al., “Machine learning methods for wind turbine condition

monitoring A review,” Renewable Energy, vol. 133. Elsevier Ltd, pp. 620–635,

Nov. 2019. doi 10.1016/j.renene.2018.10.047.

[17] W. Zhang, G. Peng, C. Li, Y. Chen, and Z. Zhang, “A new deep learning model

for fault diagnosis with good anti-noise and domain adaptation ability on raw

vibration signals,” Sensors (Switzerland), vol. 17, no. 2, Feb. 2017, doi

10.3390/s17020425.

[18] R. G. T. K. Hazra1, “Comparing Wavelet and Wavelet Packet Image Denoising

Using Thresholding Techniques,” International Journal of Science and

Research (IJSR), vol. 5, no. 6, pp. 790–796, Nov. 2016, doi

10.21275/v5i6.nov164305.

146

[19] Dr. S. Kumar, “Image Denoising Technique Using Trimmed Based Median

Bilateral Filtering Method,” International Journal Of Engineering And

Computer Science, Nov. 2017, doi 10.18535/ijecs/v6i6.15.

[20] A. Oppenheim et al., “Digital Signal Processing 24.0 Digital Signal Processing

Academic and Research Staff Part-time Assistants/Special Projects.”

[21] J. Guo and Q. Chen, “Image denoising based on nonconvex anisotropic total-

variation regularization,” Signal Processing, vol. 186, Nov. 2021, doi

10.1016/j.sigpro.2021.108124.

[22] P. Singh, S. Shahnawazuddin, and G. Pradhan, “An Efficient ECG Denoising

Technique Based on Non-local Means Estimation and Modified Empirical Mode

Decomposition,” Circuits Syst Signal Process, vol. 37, no. 10, pp. 4527–4547,

Nov. 2018, doi 10.1007/s00034-018-0777-9.

[23] J. Shlens, “A Tutorial on Principal Component Analysis.” 2014. doi

10.48550/arXiv.1404.1100.

[24] S. Huai and S. Zhang, “A novel sparse representation algorithm for AIS real-

time signals,” EURASIP J Wirel Commun Netw, vol. 2018, no. 1, Nov. 2018, doi

10.1186/s13638-018-1244-9.

[25] Y. Zheng, W. Jiang, and X. Qiu, “A Variable Parameter Method Based on Linear

Extended State Observer for Position Tracking,” 2022, doi 10.3390/act110200.

[26] J. B. Tary, R. H. Herrera, and M. Van Der Baan, “Analysis of time-varying

signals using continuous wavelet and synchrosqueezed transforms,”

Philosophical Transactions of the Royal Society A Mathematical, Physical and

147

Engineering Sciences, vol. 376, no. 2126, Aug. 2018, doi

10.1098/rsta.2017.0254.

[27] B. Belkacemi, S. Saad, Z. Ghemari, F. Zaamouche, and A. Khazzane, “Detection

of induction motor improper bearing lubrication by discrete wavelet transforms

(DWT) decomposition,” Instrumentation Mesure Metrologie, vol. 19, no. 5, pp.

347–354, Nov. 2020, doi 10.18280/i2m.190504.

[28] D. Strömbergsson, P. Marklund, K. Berglund, and P. E. Larsson, “Bearing

monitoring in the wind turbine drivetrain A comparative study of the FFT and

wavelet transforms,” Wind Energy, vol. 23, no. 6, pp. 1381–1393, Nov. 2020,

doi 10.1002/we.2491.

[29] J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE Trans

Pattern Anal Mach Intell, vol. 35, no. 8, pp. 1872–1886, 2013, doi

10.1109/TPAMI.2012.230.

[30] S. Zhou, S. Qian, W. Chang, Y. Xiao, and Y. Cheng, “A novel bearing multi-

fault diagnosis approach based on weighted permutation entropy and an

improved SVM ensemble classifier,” Sensors (Switzerland), vol. 18, no. 6, Nov.

2018, doi 10.3390/s18061934.

[31] G. Jain, M. Sharma, and B. Agarwal, “Optimizing semantic LSTM for spam

detection,” International Journal of Information Technology (Singapore), vol.

11, no. 2, pp. 239–250, Nov. 2019, doi 10.1007/s41870-018-0157-5.

[32] M. Cao, W. Xu, W. Ostachowicz, and Z. Su, “Damage identification for beams

in noisy conditions based on Teager energy operator-wavelet transform modal

148

curvature,” J Sound Vib, vol. 333, no. 6, pp. 1543–1553, Nov. 2014, doi

10.1016/j.jsv.2013.11.003.

[33] C. Cortes, V. Vapnik, and L. Saitta, “Support-Vector Networks Editor,” Machine

Leaming, vol. 20. Kluwer Academic Publishers, pp. 273–297, 1995. doi

10.1007/BF00994018.

[34] D. R. Cutler et al., “Random forests for classification in ecology,” Ecology, vol.

88, no. 11, pp. 2783–2792, Nov. 2007, doi 10.1890/07-0539.1.

[35] G. C, J. A. Mangai, and M. Bansal, “An Investigation of Ensemble Learning

Algorithms for Fault Diagnosis of Roller Bearing,” 2022. doi

10.3233/apc220016.

[36] C. Li, R. V. Sánchez, G. Zurita, M. Cerrada, and D. Cabrera, “Fault diagnosis

for rotating machinery using vibration measurement deep statistical feature

learning,” Sensors (Switzerland), vol. 16, no. 6, Nov. 2016, doi

10.3390/s16060895.

[37] Z. G. Su, Q. Hu, and T. Denoeux, “A Distributed Rough Evidential K-NN

Classifier Integrating Feature Reduction and Classification,” IEEE Transactions

on Fuzzy Systems, vol. 29, no. 8, pp. 2322–2335, Nov. 2021, doi

10.1109/TFUZZ.2020.2998502.

[38] E. Zio, P. Baraldi, and I. C. Popescu, “A fuzzy decision tree for fault

classification,” Risk Analysis, vol. 28, no. 1, pp. 49–67, Nov. 2008, doi

10.1111/j.1539-6924.2008.01002.x.

[39] A. Spyros et al., “Towards Continuous Enrichment of Cyber Threat Intelligence

A Study on a Honeypot Dataset,” in Proceedings of the 2022 IEEE International

149

Conference on Cyber Security and Resilience, CSR 2022, Institute of Electrical

and Electronics Engineers Inc., 2022, pp. 267–272. doi

10.1109/CSR54599.2022.9850295.

[40] K. K. Verma, B. M. Singh, and A. Dixit, “A review of supervised and

unsupervised machine learning techniques for suspicious behavior recognition

in intelligent surveillance system,” International Journal of Information

Technology (Singapore), vol. 14, no. 1, pp. 397–410, Feb. 2022, doi

10.1007/s41870-019-00364-0.

[41] D. Dey, B. Chatterjee, S. Dalai, S. Munshi, and S. Chakravorti, “A deep learning

framework using convolution neural network for classification of impulse fault

patterns in transformers with increased accuracy,” IEEE Transactions on

Dielectrics and Electrical Insulation, vol. 24, no. 6, pp. 3894–3897, Dec. 2017,

doi 10.1109/TDEI.2017.006793.

[42] Z. Yu, L. Zhang, and J. Kim, “The Performance Analysis of PSO-ResNet for the

Fault Diagnosis of Vibration Signals Based on the Pipeline Robot,” Sensors

(Basel), vol. 23, no. 9, May 2023, doi 10.3390/s23094289.

[43] H. Li, X. Yue, Z. Wang, W. Wang, H. Tomiyama, and L. Meng, “A survey of

Convolutional Neural Networks —From software to hardware and the

applications in measurement,” in Measurement Sensors, Elsevier Ltd, Dec. 2021.

doi 10.1016/j.measen.2021.100080.

[44] M. A. Atoui and A. Cohen, “Coupling data-driven and model-based methods to

improve fault diagnosis,” Comput Ind, vol. 128, Jun. 2021, doi

10.1016/j.compind.2021.103401.

150

[45] J. Yan and X. Wang, “Unsupervised and semi-supervised learning the next

frontier in machine learning for plant systems biology,” Plant Journal. John

Wiley and Sons Inc, 2022. doi 10.1111/tpj.15905.

[46] H. Zhu, Z. He, J. Wei, J. Wang, and H. Zhou, “Bearing fault feature extraction

and fault diagnosis method based on feature fusion,” Sensors, vol. 21, no. 7, Apr.

2021, doi 10.3390/s21072524.

[47] J. Peffers, “The Design Science Research Process  A Model for Producing and

Presenting Information Systems Research,” 2006. [Online]. Available

http//rightsstatements.org/page/InC/1.0/?language=en

[48] A. Aboazoum, “An Overview of the most Common Vehicle Suspension

Problems,” Brilliance Research of Artificial Intelligence, vol. 2, no. 3, pp. 120–

124, Nov. 2022, doi 10.47709/brilliance.v2i3.1655.

[49] R. Kumar, T. Sharma, A. Shekhar, and N. S. Vyas, “Primary suspension failure

analysis in FIAT type LHB bogies and life estimation,” Eng Fail Anal, vol. 138,

Nov. 2022, doi 10.1016/j.engfailanal.2022.106320.

[50] S. D. Shinde, S. Maheshwari, and S. Kumar, “Literature review on analysis of

various Components of McPherson suspension,” Materials Today Proceedings,

vol. 5. pp. 19102–19108, 2018. doi 10.18280/mmep.070411.

[51] M. Hamed, B. Tesfa, F. Gu, and A. D. Ball, “Effects of Tyre Pressure on Vehicle

Suspension Performance,” International Letters of Chemistry, Physics and

Astronomy, vol. 55, pp. 102–111, Nov. 2015, doi 10.56431/p-l6t1lc.

[52] P. B. Patil and P. D. Darade, “Vibrational Analysis, Life Prediction and

Optimization of Pitman Arm Using FEM,” International Journal of

151

Computational Engineering Research, vol. 8. pp. 2250–3005, 2018. doi

10.18280/mmep.070411.

[53] K. Reza Kashyzadeh, M. Jafar Ostad-Ahmad-Ghorabi, and A. Arghavan,

“Mediterranean Journal of Modeling and Simulation Fatigue life prediction of

package of suspension automotive under random vibration based on road

roughness,” 2015. Accessed Nov. 26, 2023. [Online]. Available

https//www.asjp.cerist.dz/en/downArticle/10/4/1/674

[54] W. Xiukun, G. Kun, and J. Limin, “Fault Isolation of Light Rail Vehicle

Suspension System Based on D-S Evidence Theory,” in the 32nd Chinese

Control Conference, Xi’an,China IEEE, 2013, pp. 6116–6121.

[55] P. Jin, W. Xue, and K. Li, “Actuator Fault Estimation for Vehicle Active

Suspensions Based on Adaptive Observer and Genetic Algorithm,” Shock and

Vibration, vol. 2019, 2019, doi 10.1155/2019/1783850.

[56] X. Zhu, Y. Xia, S. Chai, and P. Shi, “Fault detection for vehicle active suspension

systems in finite-frequency domain,” IET Control Theory and Applications, vol.

13, no. 3, pp. 387–394, Nov. 2019, doi 10.1049/iet-cta.2018.5922.

[57] Z. Mao, Y. Zhan, G. Tao, B. Jiang, and X. G. Yan, “Sensor Fault Detection for

Rail Vehicle Suspension Systems with Disturbances and Stochastic Noises,”

IEEE Trans Veh Technol, vol. 66, no. 6, pp. 4691–4705, Nov. 2017, doi

10.1109/TVT.2016.2628054.

[58] Y. S. Takashi KOJIMA, “Fault Detection of Vertical Dampers of Railway

Vehicle Based on Phase Difference of Vibrations,” vol. 54, no. 3. 2013. doi

10.2219/rtriqr.54.139.

152

[59] S. Yin and Z. Huang, “Performance Monitoring for Vehicle Suspension System

via Fuzzy Positivistic C-Means Clustering Based on Accelerometer

Measurements,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 5, pp.

2613–2620, Nov. 2015, doi 10.1109/TMECH.2014.2358674.

[60] X. Wei, L. Jia, and H. Liu, “A comparative study on fault detection methods of

rail vehicle suspension systems based on acceleration measurements,” Vehicle

System Dynamics, vol. 51, no. 5, pp. 700–720, 2013, doi

10.1080/00423114.2013.767464.

[61] J. S. Sakellariou, K. A. Petsounis, and S. D. Fassois, “Vibration based fault

diagnosis for railway vehicle suspensions via a functional model based method

A feasibility study,” Journal of Mechanical Science and Technology, vol. 29, no.

2, pp. 471–484, Nov. 2015, doi 10.1007/s12206-015-0107-0.

[62] T. C. I. Aravanis, J. S. Sakellariou, and S. D. Fassois, “A stochastic Functional

Model based method for random vibration based robust fault detection under

variable non–measurable operating conditions with application to railway

vehicle suspensions,” J Sound Vib, vol. 466, Feb. 2020, doi

10.1016/j.jsv.2019.115006.

[63] A. A. A. Rahim, S. Abdullah, S. S. K. Singh, and M. Z. Nuawi, “Selection of the

optimum decomposition level using the discrete wavelet transform for

automobile suspension system,” Journal of Mechanical Science and Technology,

vol. 34, no. 1, pp. 137–142, Jan. 2020, doi 10.1007/s12206-019-1213-1.

153

[64] S. Azadi and A. Soltani, “Fault detection of vehicle suspension system using

wavelet analysis,” Vehicle System Dynamics, vol. 47, no. 4, pp. 403–418, Apr.

2009, doi 10.1080/00423110802094298.

[65] N. Khan, “Vibration Response of a Gearbox having Gear with Teeth Root

Cracks,” Int J Res Appl Sci Eng Technol, vol. 7, no. 6, pp. 2015–2020, Nov.

2019, doi 10.22214/ijraset.2019.6339.

[66] H. Ahmed and A. K. Nandi, “Compressive Sampling and Feature Ranking

Framework for Bearing Fault Classification With Vibration Signals,” IEEE

Access, vol. 6, pp. 44731–44746, Nov. 2018, doi

10.1109/ACCESS.2018.2865116.

[67] T. Plante, A. Nejadpak, and C. X. Yang, “Faults detection and failures prediction

using vibration analysis,” in AUTOTESTCON (Proceedings), Institute of

Electrical and Electronics Engineers Inc., Nov. 2015, pp. 227–231. doi

10.1109/AUTEST.2015.7356493.

[68] S. Fu, K. Liu, Y. Xu, and Y. Liu, “Rolling bearing diagnosing method based on

time domain analysis and adaptive fuzzy C -means clustering,” Shock and

Vibration, vol. 2016, 2016, doi 10.1155/2016/9412787.

[69] G. Dong, J. Chen, and F. Zhao, “Monitoring of the Looseness in Cargo Bolts

under Random Excitation Based on Vibration Transmissibility,” Shock and

Vibration, vol. 2021, 2021, doi 10.1155/2021/8841940.

[70] M. Parzinger, L. Hanfstaengl, F. Sigg, U. Spindler, U. Wellisch, and M.

Wirnsberger, “Residual analysis of predictive modelling data for automated fault

detection in building’s heating, ventilation and air conditioning systems,”

154

Sustainability (Switzerland), vol. 12, no. 17, Nov. 2020, doi

10.3390/SU12176758.

[71] Y. Huang, C. H. Chen, and C. J. Huang, “Motor fault detection and feature

extraction using rnn-based variational autoencoder,” IEEE Access, vol. 7, pp.

139086–139096, 2019, doi 10.1109/ACCESS.2019.2940769.

[72] M. Hashemi and M. S. Safizadeh, “Design of a fuzzy model based on vibration

signal analysis to auto-detect the gear faults,” Industrial Lubrication and

Tribology, vol. 65, no. 3, pp. 194–201, 2013, doi 10.1108/00368791311311196.

[73] Z. Wang, J. Yang, H. Li, D. Zhen, Y. Xu, and F. Gu, “Fault identification of

broken rotor bars in induction motors using an improved cyclic modulation

spectral analysis,” Energies (Basel), vol. 12, no. 17, Nov. 2019, doi

10.3390/en12173279.

[74] J. Guo, Z. Shi, H. Li, D. Zhen, F. Gu, and A. D. Ball, “Early fault diagnosis for

planetary gearbox based wavelet packet energy and modulation signal

bispectrum analysis,” Sensors (Switzerland), vol. 18, no. 9, Nov. 2018, doi

10.3390/s18092908.

[75] Y. Li, X. Liang, Y. Chen, Z. Chen, and J. Lin, “Wheelset bearing fault detection

using morphological signal and image analysis,” Struct Control Health Monit,

vol. 27, no. 11, Nov. 2020, doi 10.1002/stc.2619.

[76] T. D. Popescu and D. Aiordachioaie, “Rolling Element Bearing Fault Detection

Using Vibrating Signals Segmentation,” in IEEE International Conference on

Emerging Technologies and Factory Automation, ETFA, Institute of Electrical

155

and Electronics Engineers Inc., Nov. 2018, pp. 940–947. doi

10.1109/ETFA.2018.8502555.

[77] H. Zhu, Z. He, J. Wei, J. Wang, and H. Zhou, “Bearing fault feature extraction

and fault diagnosis method based on feature fusion,” Sensors, vol. 21, no. 7, Nov.

2021, doi 10.3390/s21072524.

[78] H. Liang, Y. Chen, S. Liang, and C. Wang, “Fault detection of stator inter-turn

short-circuit in pmsm on stator current and vibration signal,” Applied Sciences

(Switzerland), vol. 8, no. 9, Nov. 2018, doi 10.3390/app8091677.

[79] M. Rahnama and A. Vahedi, “Application of acoustic signals for rectifier fault

detection in brushless synchronous generator,” Archives of Acoustics, vol. 44,

no. 2, pp. 267–276, 2019, doi 10.24425/aoa.2019.128490.

[80] W. Zhang, G. Peng, C. Li, Y. Chen, and Z. Zhang, “A new deep learning model

for fault diagnosis with good anti-noise and domain adaptation ability on raw

vibration signals,” Sensors (Switzerland), vol. 17, no. 2, Nov. 2017, doi

10.3390/s17020425.

[81] A. Shaheryar, X.-C. Yin, and W. Y. Ramay, “Robust Feature Extraction on

Vibration Data under Deep-Learning Framework An Application for Fault

Identification in Rotary Machines,” International Journal of Computer

Applications, vol. 167, no. 4. pp. 975–8887, 2017.

[82] S. E. Pandarakone, Y. Mizuno, and H. Nakamura, “A comparative study between

machine learning algorithm and artificial intelligence neural network in

detecting minor bearing fault of induction motors,” Energies (Basel), vol. 12, no.

11, 2019, doi 10.3390/en12112105.

156

[83] Hamilton and James D, “Time Series Analysis,” 2021. doi

10.1515/9780691218632.

[84] D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. Van Der Linde, “Bayesian

measures of model complexity and fit,” J. R. Statist. Soc. B, vol. 64. pp. 583–

639, 2002. doi 10.1111/1467-9868.00353.

[85] P. Mayo, O. Karakus, R. Holmes, and A. Achim, “Representation learning via

cauchy convolutional sparse coding,” IEEE Access, vol. 9, pp. 100447–100459,

2021, doi 10.1109/ACCESS.2021.3096643.

[86] P. C. Nugroho, R. Widadi, and D. Zulherman, “Hand and Foot Movement of

Motor Imagery Classification Using Wavelet Packet Decomposition and

Multilayer Perceptron Backpropagation.” 2021. doi 10.2991/aer.k.210810.042.

[87] I. M. Johnstone and B. W. Silverman, “Empirical bayes selection of wavelet

thresholds,” Ann Stat, vol. 33, no. 4, pp. 1700–1752, Aug. 2005, doi

10.1214/009053605000000345.

[88] S. G. (Stéphane G.) Mallat and Gabriel. Peyré, A wavelet tour of signal

processing  the sparse way. 1999. doi 10.1016/B978-0-12-374370-1.X0001-8.

[89] I. Daubechies, Ten Lectures on Wavelets. Society for Industrial and Applied

Mathematics, 1992. doi 10.1137/1.9781611970104.

[90] V. J. Samar, A. Bopardikar, R. Rao, and K. Swartz, “Wavelet Analysis of

Neuroelectric Waveforms A Conceptual Tutorial,” Brain and Language, vol. 66.

Brain and Language, pp. 7–60, 1999. doi 10.1006/brln.1998.2024.

[91] C. S. Burrus, R. Gopinath, and H. Guo, “Wavelets and Wavelet Transforms.”

OpenStax-CNX, 2022. doi cnx-org-col11454.

157

[92] S. Sridhar, P. Rajesh Kumar, and K. V. Ramanaiah, “Wavelet Transform

Techniques for Image Compression – An Evaluation,” International Journal of

Image, Graphics and Signal Processing, vol. 6, no. 2, pp. 54–67, Jan. 2014, doi

10.5815/ijigsp.2014.02.07.

[93] J. C. i Roura and J. L. R. Martínez, Transient Analysis and Motor Fault Detection

using the Wavelet Transform. INTECH Open Access Publisher, 2011. doi

10.5772/15377.

[94] G. C. (Geoffrey C. Green, Wavelet-based denoising of cardiac PET data. Library

and Archives Canada = Bibliothèque et Archives Canada, 2005. doi

10.22215/etd/2005-07963.

[95] V. S. Chourasia and A. K. Tiwari, “Design methodology of a new wavelet basis

function for fetal phonocardiographic signals,” The Scientific World Journal,

vol. 2013, 2013, doi 10.1155/2013/505840.

[96] M. S. Mechee, Z. M. Hussain, and Z. I. Salman, “Wavelet Theory Applications

of the Wavelet.” IntechOpen, 2021. doi 10.5772/intechopen.94911.

[97] S. G. Mallat, “A Theory for Multiresolution Signal Decomposition The Wavelet

Representation,” IEEE Trans Pattern Anal Mach Intell, vol. I, no. 7, 1989, doi

10.1109/34.192463.

[98] M. Kobayashi and K. Nakano, “Development of Quasi-Shift-Invariant Complex

Discrete Wavelet Transform,” Journal of Signal Processing. pp. 211–244, 2017.

doi 10.2299/jsp.21.211.

158

[99] X. He and H. Guan, “Multiresolution analysis of precipitation teleconnections

with large-scale climate signals A case study in South Australia,” Water Resour

Res, vol. 49, no. 10, pp. 6995–7008, Oct. 2013, doi 10.1002/wrcr.20560.

[100] J. Andén and S. Mallat, “Deep scattering spectrum,” IEEE Transactions on

Signal Processing, vol. 62, no. 16, pp. 4114–4128, Aug. 2014, doi

10.1109/TSP.2014.2326991.

[101] L. Sifre and S. Mallat, “Rotation, scaling and deformation invariant scattering

for texture discrimination,” in Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2013, pp. 1233–1240.

doi 10.1109/CVPR.2013.163.

[102] S. Mallat, “Group Invariant Scattering,” Commun Pure Appl Math, vol. 65, no.

10, pp. 1331–1398, Oct. 2012, doi 10.1002/cpa.21413.

[103] C. Szegedy et al., “2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR),” IEEE Computer Society, 2015. doi

10.1109/CVPR.2015.7298594.

[104] J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE Trans

Pattern Anal Mach Intell, vol. 35, no. 8, pp. 1872–1886, 2013, doi

10.1109/TPAMI.2012.230.

[105] Z. Li, “An Explicit Algorithm for the Construction of 3-Band Wavelet Frames

Based on FMRA,” Applied and Computational Mathematics, vol. 7, no. 3, p.

155, 2018, doi 10.11648/j.acm.20180703.21.

159

[106] H. Zhou et al., “Weight-Variable Scattering Convolution Networks and Its

Application in Electromagnetic Signal Classification,” IEEE Access, vol. 7, pp.

175889–175896, 2019, doi 10.1109/ACCESS.2019.2957519.

[107] I. Waldspurger, “Exponential decay of scattering coefficients.” IEEE, 2017. doi

10.1109/SAMPTA.2017.8024473.

[108] T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of Statistical

Learning.” Springer New York, pp. 225–256, 2001. doi 10.1007/978-0-387-

21606-5.

[109] S. M. Holland, “PRINCIPAL COMPONENTS A N ALYSI S (PCA).”

Department of Geology, University of Georgia, Athens, GA 30602-2501, 2019.

Accessed Nov. 20, 2023. [Online]. Available

http//strata.uga.edu/8370/handouts/pcaTutorial.pdf

[110] A. E. Maxwell, T. A. Warner, and F. Fang, “Implementation of machine-learning

classification in remote sensing An applied review,” International Journal of

Remote Sensing, vol. 39, no. 9. Taylor and Francis Ltd., pp. 2784–2817, Nov.

2018. doi 10.1080/01431161.2018.1433343.

[111] A. Khelifi, N. M. Ben Lakhal, H. Gharsallaoui, and O. Nasri, “Artificial Neural

Network-based Fault Detection,” in 2018 5th International Conference on

Control, Decision and Information Technologies, CoDIT 2018, Institute of

Electrical and Electronics Engineers Inc., Jun. 2018, pp. 1017–1022. doi

10.1109/CoDIT.2018.8394963.

160

[112] Y. Zhang and L. Wu, “Classification of fruits using computer vision and a

multiclass support vector machine,” Sensors (Switzerland), vol. 12, no. 9, pp.

12489–12505, Nov. 2012, doi 10.3390/s120912489.

[113] Í. Santana, B. Serrano, M. Schiffer, and T. Vidal, “Support Vector Machines with

the Hard-Margin Loss Optimal Training via Combinatorial Benders’ Cuts,” Nov.

2022, doi 10.48550/arXiv.2207.07690.

[114] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Reproducing Kernel

Hilbert Space, Mercer’s Theorem, Eigenfunctions, Nystr\"om Method, and Use

of Kernels in Machine Learning Tutorial and Survey,” Jun. 2021, [Online].

Available http//arxiv.org/abs/2106.08443

[115] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Reproducing Kernel

Hilbert Space, Mercer’s Theorem, Eigenfunctions, Nyström Method, and Use of

Kernels in Machine Learning Tutorial and Survey,” Nov. 2021, doi

10.48550/arXiv.2106.08443.

[116] R. G. Brereton and G. R. Lloyd, “Support Vector Machines for classification and

regression,” Analyst, vol. 135, no. 2. Royal Society of Chemistry, pp. 230–267,

2010. doi 10.1039/b918972f.

[117] J. Hajewski, S. Oliveira, and D. Stewart, “Smoothed hinge loss and ℓ1 support

vector machines,” in IEEE International Conference on Data Mining

Workshops, ICDMW, IEEE Computer Society, Nov. 2019, pp. 1217–1223. doi

10.1109/ICDMW.2018.00174.

[118] R. Hammoud, “MATHEMATICS BEHIND MACHINE LEARNING,” 2023.

[Online]. Available

161

https//scholarworks.lib.csusb.edu/etdDissertations.1778.https//scholarworks.lib.

csusb.edu/etd/1778

[119] M. Shamsi and S. Beheshti, “Separability and Scatteredness (S&S) Ratio-Based

Efficient SVM Regularization Parameter, Kernel, and Kernel Parameter

Selection,” Nov. 2023, doi 10.48550/arXiv.2305.10219.

[120] C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, “A Review on Data

Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery

From Building Operational Data,” Frontiers in Energy Research, vol. 9.

Frontiers Media S.A., Nov. 2021. doi 10.3389/fenrg.2021.652801.

[121] Y. Xu and R. Goodacre, “On Splitting Training and Validation Set A

Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for

Estimating the Generalization Performance of Supervised Learning,” J Anal

Test, vol. 2, no. 3, pp. 249–262, Jul. 2018, doi 10.1007/s41664-018-0068-2.

[122] D. M. Belete and M. D. Huchaiah, “Grid search in hyperparameter optimization

of machine learning models for prediction of HIV/AIDS test results,”

International Journal of Computers and Applications, vol. 44, no. 9, pp. 875–

886, 2022, doi 10.1080/1206212X.2021.1974663.

[123] Reda Yacouby and Dustin Axman, “Probabilistic Extension of Precision, Recall,

and F1 Score for More Thorough Evaluation of Classification Models.”

Association for Computational Linguistics, 2020. doi

10.18653/v1/2020.eval4nlp-1.9.

162

[124] B. Choi and S. Jo, “A Low-Cost EEG System-Based Hybrid Brain-Computer

Interface for Humanoid Robot Navigation and Recognition,” PLoS One, vol. 8,

no. 9, Sep. 2013, doi 10.1371/journal.pone.0074583.

[125] B. Kwon, H. Song, and S. Lee, “Accurate Blind Lempel-Ziv-77 Parameter

Estimation via 1-D to 2-D Data Conversion over Convolutional Neural

Network,” IEEE Access, vol. 8, pp. 43965–43979, 2020, doi

10.1109/ACCESS.2020.2977827.

[126] F. Iglesias and T. Zseby, “Analysis of network traffic features for anomaly

detection,” Mach Learn, vol. 101, no. 1–3, pp. 59–84, Nov. 2015, doi

10.1007/s10994-014-5473-9.

[127] A. Shewalkar, D. nyavanandi, and S. A. Ludwig, “Performance Evaluation of

Deep neural networks Applied to Speech Recognition Rnn, LSTM and GRU,”

Journal of Artificial Intelligence and Soft Computing Research, vol. 9, no. 4, pp.

235–245, Nov. 2019, doi 10.2478/jaiscr-2019-0006.

[128] A. Shewalkar, D. nyavanandi, and S. A. Ludwig, “Performance Evaluation of

Deep neural networks Applied to Speech Recognition Rnn, LSTM and GRU,”

Journal of Artificial Intelligence and Soft Computing Research, vol. 9, no. 4, pp.

235–245, Oct. 2019, doi 10.2478/jaiscr-2019-0006.

[129] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term Memory Based Recurrent

Neural Network Architectures for Large Vocabulary Speech Recognition,” Nov.

2014, doi 10.48550/arXiv.1402.1128.

163

[130] G. Jain, M. Sharma, and B. Agarwal, “Optimizing semantic LSTM for spam

detection,” International Journal of Information Technology (Singapore), vol.

11, no. 2, pp. 239–250, Jun. 2019, doi 10.1007/s41870-018-0157-5.

[131] M. U. Abbasi, A. Rashad, A. Basalamah, and M. Tariq, “Detection of Epilepsy

Seizures in Neo-Natal EEG Using LSTM Architecture,” IEEE Access, vol. 7, pp.

179074–179085, 2019, doi 10.1109/ACCESS.2019.2959234.

[132] Y. and S. Q. Hao, “The implementation of a Deep Recurrent Neural Network

Language Model on a Xilinx FPGA 1.” 2017. doi 10.48550/arXiv.1710.10296.

[133] M. Tan, S. Yuan, S. Li, Y. Su, H. Li, and F. H. He, “Ultra-Short-Term Industrial

Power Demand Forecasting Using LSTM Based Hybrid Ensemble Learning,”

IEEE Transactions on Power Systems, vol. 35, no. 4, pp. 2937–2948, Nov. 2020,

doi 10.1109/TPWRS.2019.2963109.

[134] S. Ruder, “An overview of gradient descent optimization algorithms,” Nov.

2016, doi 10.48550/arXiv.1609.04747.

[135] A. Napieralski and R. Nowak, “Basecalling Using Joint Raw and Event

Nanopore Data Sequence-to-Sequence Processing,” Sensors, vol. 22, no. 6, Mar.

2022, doi 10.3390/s22062275.

[136] Y. Lu and F. M. Salem, “Simplified Gating in Long Short-term Memory (LSTM)

Recurrent Neural Networks Index Terms-Recurrent Neural Networks (RNN),

Long Short-term Memory (LSTM), Stochastic Gradient Descent.” IEEE, 2017.

doi 10.1109/MWSCAS.2017.8053244.

164

[137] G. Van Houdt, C. Mosquera, and G. Nápoles, “A review on the long short-term

memory model,” Artif Intell Rev, vol. 53, no. 8, pp. 5929–5955, Dec. 2020, doi

10.1007/s10462-020-09838-1.

[138] Z. Huang, H. Chen, C. J. Hsu, W. H. Chen, and S. Wu, “Credit rating analysis

with support vector machines and neural networks A market comparative study,”

Decis Support Syst, vol. 37, no. 4, pp. 543–558, Nov. 2004, doi 10.1016/S0167-

9236(03)00086-1.

[139] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should i trust you?’ Explaining

the predictions of any classifier,” in Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,

Association for Computing Machinery, Nov. 2016, pp. 1135–1144. doi

10.1145/2939672.2939778.

[140] L. Vanajakshi and L. R. Rilett, A comparison of the performance of artificial

neural networks and support vector machines for the prediction of traffic speed.

IEEE Intelligent Vehicles Symposium, 2004. doi 10.1109/IVS.2004.1336380.

[141] S. J. Reddi, S. Kale, and S. Kumar, “On the Convergence of Adam and Beyond,”

Nov. 2019, doi 10.48550/arXiv.1904.09237.

[142] Y. Xi, C. Ren, Q. Tian, Y. Ren, X. Dong, and Z. Zhang, “Exploitation of Time

Series Sentinel-2 Data and Different Machine Learning Algorithms for Detailed

Tree Species Classification,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol.

14, pp. 7589–7603, 2021, doi 10.1109/JSTARS.2021.3098817.

[143] L. Yang and A. Shami, “On Hyperparameter Optimization of Machine Learning

Algorithms Theory and Practice,” Jul. 2020, doi 10.1016/j.neucom.2020.07.061.

165

[144] Farhan Ahnaf Rashid and F. A. Rashid, “Development of a Machine Learning

Based Fall Detection System for the Elderly and Disabled CERTIFICATE OF

ORIGINAL AUTHORSHIP.” 2021. Accessed Nov. 20, 2023. [Online].

Available http//hdl.handle.net/10453/162783

[145] A. R. Mello, J. de Matos, M. R. Stemmer, A. de Souza Britto, and A. L. Koerich,

“A Novel Orthogonal Direction Mesh Adaptive Direct Search Approach for

SVM Hyperparameter Tuning,” Nov. 2019, doi 10.48550/arXiv.1904.11649.

[146] M. Pule, O. Matsebe, and R. Samikannu, “Application of PCA and SVM in Fault

Detection and Diagnosis of Bearings with Varying Speed,” Math Probl Eng, vol.

2022, p. 5266054, 2022, doi 10.1155/2022/5266054.

[147] N. Rezazadeh, M. de Oliveira, D. Perfetto, A. De Luca, and F. Caputo,

“Classification of Unbalanced and Bowed Rotors under Uncertainty Using

Wavelet Time Scattering, LSTM, and SVM,” Applied Sciences (Switzerland),

vol. 13, no. 12, Jun. 2023, doi 10.3390/app13126861.

[148] J. Pacheco-Chérrez, J. A. Fortoul-Díaz, F. Cortés-Santacruz, L. María Aloso-

Valerdi, and D. I. Ibarra-Zarate, “Bearing fault detection with vibration and

acoustic signals Comparison among different machine leaning classification

methods,” Eng Fail Anal, vol. 139, p. 106515, 2022, doi

https//doi.org/10.1016/j.engfailanal.2022.106515.

[149] A. K. Krishnan, E. Nissen, S. Saripalli, R. Arrowsmith, and A. H. Corona,

“Change Detection Using Airborne LiDAR Applications to Earthquakes,” in

Experimental Robotics The 13th International Symposium on Experimental

Robotics, J. P. Desai, G. Dudek, O. Khatib, and V. Kumar, Eds., Heidelberg

166

Springer International Publishing, 2013, pp. 733–743. doi 10.1007/978-3-319-

00065-7_49.

[150] V. G. Salunkhe, R. G. Desavale, and S. G. Kumbhar, “Vibration Analysis of

Deep Groove Ball Bearing Using Finite Element Analysis and Dimension

Analysis,” J Tribol, vol. 144, no. 8, Feb. 2022, doi 10.1115/1.4053262.

[151] A. Yang, Y. Zang, L. Xu, L. Li, and D. Tan, “A Systematic Review and Future

Development of Automotive Chassis Control Technology,” Applied Sciences,

vol. 13, no. 21, p. 11859, Oct. 2023, doi 10.3390/app132111859.

[152] J. Schuller, “CHASSIS ARCHITECTURES – Electronic chassis platform –

highly integrated ECU for chassis control functions,” 2017, pp. 349–365. doi

10.1007/978-3-658-14219-3_25.

167

APPENDIX A

5.1. MATLAB Code to Generate Signals for Four Types Road obstacles 5 levels

training and testing (With Noise, Denoised)

% Load the data

Sivewave = importdata('Sinewave.tab', '\t').data;

Roughness = importdata('Roughness.tab', '\t').data;

Pothole = importdata('Pothole.tab', '\t').data;

Bump = importdata('bump.tab', '\t').data;

% Extract the time vector and acceleration data

t = Sivewave(,1);

accsv = Sivewave(,17);

accrg = Roughness(,17);

accpthl = Pothole(,17);

accbmp = Bump(,17);

% Define the cell array of workspace names

workspaceNames = {'accsv', 'accrg', 'accpthl','accbmp'};

% Loop through the workspace names

for i = 1length(workspaceNames)

 % Get the data for this workspace

 data = evalin('base', workspaceNames{i});

 % Loop through the time points and frequency indices for 1000

 for m = 1length(t)

 for n = 199

 % Compute the new value based on the time and frequency

 if t(m) == 0 % Modified condition

 data(m,n) = 0;

 elseif data(m,1) > 0

 data(m,n+1) = ((data(m,1)*t(m)^2) + (n*2/100000)) / (t(m)^2);

 elseif data(m,1) < 0

 data(m,n+1) = ((data(m,1)*t(m)^2) - (n*2/100000)) / (t(m)^2);

 end

 end

 end

 % Loop through the time points and frequency indices for 100

 for m = 1length(t)

 for n = 1400

168

 % Compute the new value based on the time and frequency

 if t(m) == 0 % Modified condition

 data(m,n+100) = 0;

 elseif data(m,1) > 0

 data(m,n+100) = ((data(m,1)*t(m)^2) + (n*2/400)) / (t(m)^2);

 elseif data(m,1) < 0

 data(m,n+100) = ((data(m,1)*t(m)^2) - (n*2/400)) / (t(m)^2);

 end

 end

 end

 % Assign the modified data back to the workspace

 assignin('base', workspaceNames{i}, data);

end

% Delete the first three rows from each dataset

accsv(13,) = [];

accrg(13,) = [];

accpthl(13,) = [];

accbmp(13,) = [];

t(13,)=[];

%labeling my columns

x=ones(1,100);

x2=repmat(2,1,100);

x3=repmat(3,1,100);

x4=repmat(4,1,100);

x5=repmat(5,1,100);

label=([x,x2,x3,x4,x5]);

accsv=[label;accsv];

accrg=[label;accrg];

accpthl=[label;accpthl];

accbmp=[label;accbmp];

AccData=accrg;

noiser = 30 * randn(size(AccData(2end,))); % Gaussian noise with standard deviation

0.1

noisy_signal = AccData(2end,) + noiser;

%AccData= [[accsv1, accrg1, accpthl1,accbmp1];noisy_signal];

% Perform wavelet denoising on each column of the matrix

denoisedMatrix = zeros(size(noisy_signal));

for col = 1size(noisy_signal, 2)

 signal = noisy_signal(, col);

169

 % Perform wavelet denoising on the individual signal using wdenoise

 denoisedSignal = wdenoise(signal);

 % Store the denoised signal in the denoised matrix

 denoisedMatrix(, col) = denoisedSignal;

end

AccData=[label;denoisedMatrix];

5.2. First Labelling Code for Four Types Road obstacles 5 levels training and

testing (With Noise, Denoised)

Ts=mean(diff(t));

rng default %fix the random

AccData=AccData(,randperm(size(AccData,2)));

%shuffle the columns

traindata=AccData(2end,);

trainlabel=categorical(AccData(1,));

numClasses = numel(trainlabel);

CT = countlabels(trainlabel);

tbl = table2array(CT(,2));

% Use cvpartition to split data into training and validation sets

c = cvpartition(trainlabel, 'HoldOut', 0.2);

trainIdx = training(c);

testIdx = test(c);

Ptrain = traindata(,trainIdx);

Ttrain = trainlabel(trainIdx);

Ptest = traindata(,testIdx);

Ttest = trainlabel(testIdx);

uniqueLabels = unique(trainlabel);

catnames = {'Normal','Level 1','Level 2','Level 3','Level 4'};

uniqueLabels = renamecats(uniqueLabels,{'1','2','3','4','5'},catnames);

bar(uniqueLabels, tbl);

CTtrain=countlabels(Ttrain);

CTtest=countlabels(Ttest);

tblTrain = table2array(CTtrain(,2));

tblTest = table2array(CTtest(,2));

H = bar(uniqueLabels,[tblTrain, tblTest],'stacked');

legend(H,["Training Set","Test Set"],'Location','NorthEastOutside')

LPtrain=[double(Ttrain);Ptrain];

[ii,jj,kk]=unique(LPtrain(1,));

m=accumarray(kk,(1numel(kk)),[],@(x) {x'});

170

out=cell2mat(cellfun(@(x)

LPtrain(,x(randperm(numel(x),1))),m','UniformOutput',false));

%%idx = randperm(size(Ptrain,2),4);

%Fs = 1/Ts;

parfor n = 1numel(out(1,))

 x=out(2end,n);

 subplot(4,2,n);

 plot(t,x);

 if n == 4 || n == 5

 xlabel('Seconds');

 end

 d=dictionary([1,2,3,4,5],catnames);

 title(d(n));

end

5.2.1. Codes For All Models Used for First Tests.

5.2.1.1. MATLAB Code Wavelete Scattering and Neural Network Using Adam

Optimizer

N = length(t(,1));

Fs = 1/Ts;

tic;

sn = waveletScattering('SignalLength',N,'SamplingFrequency',Fs,...

 'InvarianceScale',20);

[~,numpaths] = paths(sn);

Ncfs = numCoefficients(sn);

sum(numpaths)

scTrain=gpuArray([]);

for n=1size(Ptrain,2)

 feat=featureMatrix(sn,gather(Ptrain(,n)));

 u=feat(,12end,);

 %Define the Kalman filter parameters

A = eye(3); % state transition matrix

H = eye(3); % observation matrix

Q = 1e-5*eye(3); % state noise covariance

R = 1e-3*eye(3); % observation noise covariance

x0 = zeros(3,1); % initial state

P0 = eye(3); % initial state covariance

% Smooth each signal using the Kalman filter

for i = 1size(u, 1)/3

171

 % Extract the signal

 signal = u((i-1)*3+1i*3,);

 % Initialize the Kalman filter

 x = x0;

 P = P0;

 % Smooth the signal

 for j = 1size(signal, 2)

 y = signal(,j);

 % Predict

 x_ = A*x;

 P_ = A*P*A' + Q;

 % Update

 K = P_*H'/(H*P_*H' + R);

 x = x_ + K*(y - H*x_);

 P = (eye(3) - K*H)*P_;

 % Store the smoothed signal

 signal(,j) = x;

 end

 % Replace the original signal with the smoothed signal

 u((i-1)*3+1i*3,) = signal;

end

 scTrain=cat(3,scTrain,u);

end

scTest=gpuArray([]);

for n=1size(Ptest,2)

 feat=featureMatrix(sn,gather(Ptest(,n)));

 u=feat(,12end,);

 %Define the Kalman filter parameters

A = eye(3); % state transition matrix

H = eye(3); % observation matrix

Q = 1e-5*eye(3); % state noise covariance

R = 1e-3*eye(3); % observation noise covariance

x0 = zeros(3,1); % initial state

P0 = eye(3); % initial state covariance

172

% Smooth each signal using the Kalman filter

for i = 1size(u, 1)/3

 % Extract the signal

 signal = u((i-1)*3+1i*3,);

 % Initialize the Kalman filter

 x = x0;

 P = P0;

 % Smooth the signal

 for j = 1size(signal, 2)

 y = signal(,j);

 % Predict

 x_ = A*x;

 P_ = A*P*A' + Q;

 % Update

 K = P_*H'/(H*P_*H' + R);

 x = x_ + K*(y - H*x_);

 P = (eye(3) - K*H)*P_;

 % Store the smoothed signal

 signal(,j) = x;

 end

 % Replace the original signal with the smoothed signal

 u((i-1)*3+1i*3,) = signal;

end

 scTest=cat(3,scTest,u);

end

TrainFeatures = scTrain;

TrainFeatures = squeeze(num2cell(TrainFeatures,[1 2]));

YTrain = Ttrain;

TestFeatures = scTest;

TestFeatures = squeeze(num2cell(TestFeatures,[1 2]));

YTest = Ttest;

[inputSize, ~] = size(TrainFeatures{1});

numHiddenUnits = 1500;

numClasses = numel(unique(YTrain));

173

layers = [...

 sequenceInputLayer(inputSize,'Normalization','zscore')

 lstmLayer(numHiddenUnits,'OutputMode','last')

 fullyConnectedLayer(numClasses)

 softmaxLayer

 classificationLayer];

maxEpochs = 170;

miniBatchSize = 170;

options = trainingOptions('adam', ...

 'InitialLearnRate', 1e-4, ...

 'MaxEpochs', 170, ...

 'MiniBatchSize', 170, ...

 'SequenceLength', 'longest', ...

 'Shuffle', 'every-epoch', ...

 'ValidationData', {TestFeatures, YTest}, ...

 'ValidationFrequency', 30, ...

 'Verbose', 1, ...

 'Plots', 'training-progress', ...

 'ExecutionEnvironment', 'gpu');

numModels = 3; % number of models to train

YPredAll = zeros(length(YTest), numModels); % initialize matrix to store predictions

YTrain=categorical(YTrain);

for i = 1numModels

 % train a new model

 net = trainNetwork(TrainFeatures,YTrain,layers,options);

 % predict on test set

 YPred = classify(net,TestFeatures);

 YPred = renamecats(YPred,{'1','2','3','4','5'},catnames);

 % store predictions in YPredAll matrix

 YPredAll(, i) = grp2idx(YPred);

end

% take the mode prediction across all models

YPredEnsemble = mode(YPredAll, 2);

YPredEnsemble = categorical(YPredEnsemble, 15, catnames);

 YTest = renamecats(YTest,{'1','2','3','4','5'},catnames);

% compute accuracy and display confusion matrix

accuracy = 100*sum(YPredEnsemble == YTest') / numel(YTest)

% Plot the confusion matrix for the final model

174

figure;

cm = confusionchart(YTest, YPred);

title('Classification of faulty signals based on Levels');

cm.RowSummary = 'row-normalized';

cm.ColumnSummary = 'column-normalized';

elapsedTime = toc;

fprintf('Elapsed time %.2f seconds\n', elapsedTime);

5.2.1.2. MATLAB Code For Wavelet Scattering and SVM with PCA

N = length(t(,1));

Fs = 1/Ts;

tic;

% Set wavelet scattering parameters

sn =

waveletScattering('SignalLength',N,'SamplingFrequency',Fs,'InvarianceScale',20);

[~,numpaths] = paths(sn);

Ncfs = numCoefficients(sn);

% Extract scattering coefficients for training set

scTrain = gpuArray([]);

for n = 1size(Ptrain,2)

 feat = featureMatrix(sn,gather(Ptrain(,n)));

 u = feat;

 scTrain = cat(3,scTrain,u);

end

% Extract scattering coefficients for test set

scTest = gpuArray([]);

for n = 1size(Ptest,2)

 feat = featureMatrix(sn,gather(Ptest(,n)));

 u = feat;

 scTest = cat(3,scTest,u);

end

% Prepare the data for training and testing

TrainFeatures = scTrain;

TrainFeatures = reshape(TrainFeatures, [], size(TrainFeatures, 3));

TrainFeatures = TrainFeatures';

YTrain = Ttrain;

TestFeatures = scTest;

TestFeatures = reshape(TestFeatures, [], size(TestFeatures, 3));

TestFeatures = TestFeatures';

YTest = Ttest;

175

% Perform PCA to reduce the dimensionality of the feature matrix

[coeff, score, latent] = pca(TrainFeatures);

% Determine the number of principal components to use

total_var = sum(latent);

var_explained = cumsum(latent) / total_var;

% Choose the number of principal components that explain at least 95% of the

variance

num_components = find(var_explained >= 0.95, 1);

% Project the training and testing features onto the selected principal components

TrainFeatures = TrainFeatures * coeff(, 1num_components);

TestFeatures = TestFeatures * coeff(, 1num_components);

% Set the number of folds for cross-validation

numFolds = 5;

% Define a cross-validation partition

cvp = cvpartition(YTrain, 'KFold', numFolds);

% Create a cell array to store the accuracy of each fold

accuracyArray = cell(numFolds, 1);

% Loop over each fold

for fold = 1numFolds

 % Get the training and validation indices for this fold

 trainIdx = cvp.training(fold);

 testIdx = cvp.test(fold);

 % Extract the features and labels for this fold

 FoldTrainFeatures = TrainFeatures(trainIdx,);

 FoldTrainLabels = YTrain(trainIdx);

 FoldTestFeatures = TrainFeatures(testIdx,);

 FoldTestLabels = YTrain(testIdx);

 % Train the SVM model on the training data for this fold

model = fitcecoc(FoldTrainFeatures, FoldTrainLabels);

 % Predict the labels of the test data for this fold

 YPred = predict(model, FoldTestFeatures);

 % Calculate the accuracy for this fold and store it in the accuracy array

 accuracyArray{fold} = 100 * sum(YPred == FoldTestLabels') /

numel(FoldTestLabels);

176

end

% Calculate the mean accuracy over all folds

meanAccuracy = mean(cell2mat(accuracyArray));

% Display the mean accuracy

fprintf('Mean cross-validation accuracy %.2f%%\n', meanAccuracy);

% Train the final model on all of the training data

finalModel = fitcecoc(TrainFeatures, YTrain);

% Predict the labels of the test data using the final model

YPred = predict(finalModel, TestFeatures);

% Calculate the accuracy of the final model

finalAccuracy = 100 * sum(YPred == YTest') / numel(YTest);

% Display the final accuracy

fprintf('Final test set accuracy %.2f%%\n', finalAccuracy);

YPred = categorical(YPred, {'1','2','3','4','5'}, catnames);

 YTest = renamecats(YTest,{'1','2','3','4','5'},catnames);

% Plot the confusion matrix for the final model

figure;

cm = confusionchart(YTest, YPred);

title('Classification of faulty signals based on Levels');

cm.RowSummary = 'row-normalized';

cm.ColumnSummary = 'column-normalized';

elapsedTime = toc;

fprintf('Elapsed time %.2f seconds\n', elapsedTime);

5.2.1.3. MATLAB Code for WaveletScattering and SVM TUNED LDA

N = length(t(,1));

Fs = 1/Ts;

tic;

% Set wavelet scattering parameters

sn =

waveletScattering('SignalLength',N,'SamplingFrequency',Fs,'InvarianceScale',20);

% Extract scattering coefficients for training set

scTrain = [];

for n = 1size(Ptrain,2)

 feat = featureMatrix(sn, Ptrain(,n));

 scTrain = cat(3, scTrain, feat);

end

% Extract scattering coefficients for test set

scTest = [];

for n = 1size(Ptest,2)

177

 feat = featureMatrix(sn, Ptest(,n));

 scTest = cat(3, scTest, feat);

end

% Prepare the data for training and testing

TrainFeatures = scTrain;

TrainFeatures = reshape(TrainFeatures, [], size(TrainFeatures, 3));

TrainFeatures = TrainFeatures';

YTrain = Ttrain;

TestFeatures = scTest;

TestFeatures = reshape(TestFeatures, [], size(TestFeatures, 3));

TestFeatures = TestFeatures';

YTest = Ttest;

% Apply Linear Discriminant Analysis (LDA) on the training data for this fold

 ldaModel = fitcdiscr(TrainFeatures, YTrain);

 % Apply LDA to the training and test data for this fold

 TrainFeaturesLDA = predict(ldaModel, TrainFeatures);

 TestFeaturesLDA = predict(ldaModel, TestFeatures);

 % Convert LDA-transformed features to a numeric matrix

 TrainFeaturesLDA = double(TrainFeaturesLDA);

 TestFeaturesLDA = double(TestFeaturesLDA);

% Define hyperparameters to tune

hyperparameters = struct();

hyperparameters.BoxConstraint = {'0.01', '0.1', '1', '10'};

hyperparameters.KernelScale = {'0.01', '0.1', '1', '10'};

% Define the search space for each hyperparameter

params = struct();

params.BoxConstraint = optimizableVariable('BoxConstraint', [1, 10], 'Type',

'integer');

hyperparameters.KernelScale = [0.1, 1];

params.KernelScale = optimizableVariable('KernelScale',

hyperparameters.KernelScale, 'Type', 'real');

% Define the optimization options

optimizationOptions = struct();

optimizationOptions.MaxObjectiveEvaluations = 100;

optimizationOptions.AcquisitionFunctionName = 'expected-improvement-plus';

optimizationOptions.UseParallel = true;

% Train and tune the SVM model using the training data

temp = templateSVM('Standardize',true);

178

SVMModel = fitcecoc(TrainFeaturesLDA, YTrain, 'Learners', temp,

'FitPosterior',true,...

 'OptimizeHyperparameters', {'BoxConstraint','KernelScale'},...

 'HyperparameterOptimizationOptions', optimizationOptions, 'Verbose', 1,...

 'HyperparameterOptimizationOptions', struct('AcquisitionFunctionName',...

 'expected-improvement-plus', 'MaxObjectiveEvaluations', 20, 'UseParallel',true),

'Options', statset('UseParallel',true));

% Predict the labels of the test data using the tuned model

YPred = predict(SVMModel, TestFeaturesLDA);

% Calculate the accuracy of the model

accuracy = 100 * sum(YPred == YTest') / numel(YTest);

% Display the accuracy

fprintf('Test set accuracy %.2f%%\n', accuracy);

figure;

YPred = categorical(YPred, {'1','2','3','4','5'}, catnames);

 YTest = renamecats(YTest, {'1','2','3','4','5'},catnames);

 % Plot the confusion matrix in a new figure

 figure;

cm = confusionchart(YTest, YPred);

title('Classification of faulty signals based on Levels');

cm.RowSummary = 'row-normalized';

cm.ColumnSummary = 'column-normalized';

 elapsedTime = toc;

 fprintf('Elapsed time %.2f seconds\n', elapsedTime);

5.3. MATLAB Code to Generate Road Type and Signal Condition Classification

Comprehensive Testing (Three Scenarios)

% Load the data

Sivewave = importdata('Sinewave.tab', '\t').data;

Roughness = importdata('Roughness.tab', '\t').data;

Pothole = importdata('Pothole.tab', '\t').data;

Bump = importdata('bump.tab', '\t').data;

% Extract the time vector and acceleration data

t = Sivewave(,1);

accsv = Sivewave(,17);

accrg = Roughness(,17);

accpthl = Pothole(,17);

accbmp = Bump(,17);

% Define the cell array of workspace names

179

workspaceNames = {'accsv', 'accrg', 'accpthl','accbmp'};

% Loop through the workspace names

for i = 1length(workspaceNames)

 % Get the data for this workspace

 data = evalin('base', workspaceNames{i});

 % Loop through the time points and frequency indices for 1000

 for m = 1length(t)

 for n = 1399

 % Compute the new value based on the time and frequency

 if t(m) == 0 % Modified condition

 data(m,n) = 0;

 elseif data(m,1) > 0

 data(m,n+1) = ((data(m,1)*t(m)^2) + (n*2/798000)) / (t(m)^2);

 elseif data(m,1) < 0

 data(m,n+1) = ((data(m,1)*t(m)^2) - (n*2/798000)) / (t(m)^2);

 end

 end

 end

 % Loop through the time points and frequency indices for 100

 for m = 1length(t)

 for n = 1400

 % Compute the new value based on the time and frequency

 if t(m) == 0 % Modified condition

 data(m,n+400) = 0;

 elseif data(m,1) > 0

 data(m,n+400) = ((data(m,1)*t(m)^2) + (n*2/400)) / (t(m)^2);

 elseif data(m,1) < 0

 data(m,n+400) = ((data(m,1)*t(m)^2) - (n*2/400)) / (t(m)^2);

 end

 end

 end

 % Assign the modified data back to the workspace

 assignin('base', workspaceNames{i}, data);

end

% Delete the first three rows from each dataset

accsv(13,) = [];

accrg(13,) = [];

180

accpthl(13,) = [];

accbmp(13,) = [];

t(13,)=[];

x=ones(1,400);

x2=repmat(2,1,400);

accsv1=([x,x2]);

accsv=[accsv1;accsv];

x=repmat(3,1,400);

x2=repmat(4,1,400);

accrg1=([x,x2]);

accrg=[accrg1;accrg];

x=repmat(5,1,400);

x2=repmat(6,1,400);

accpthl1=([x,x2]);

accpthl=[accpthl1;accpthl];

x=repmat(7,1,400);

x2=repmat(8,1,400);

accbmp1=([x,x2]);

accbmp=[accbmp1;accbmp];

AccData=[accsv, accrg, accpthl,accbmp];

%{

noiser = 30 * randn(size(AccData(2end,))); % Gaussian noise with standard deviation

0.1

noisy_signal = AccData(2end,) + noiser;

AccData= [[accsv1, accrg1, accpthl1,accbmp1];noisy_signal];

% Perform wavelet denoising on each column of the matrix

denoisedMatrix = zeros(size(noisy_signal));

for col = 1size(noisy_signal, 2)

 signal = noisy_signal(, col);

 % Perform wavelet denoising on the individual signal using wdenoise

 denoisedSignal = wdenoise(signal);

 % Store the denoised signal in the denoised matrix

 denoisedMatrix(, col) = denoisedSignal;

end

% Perform wavelet denoising

AccData = [[accsv1, accrg1, accpthl1,accbmp1];denoisedMatrix];

%}

%AccData=accsv;

181

5.4. Second Labeling Code For Road Type and Signal Condition Classification

Comprehensive Testing

Ts = mean(diff(t));

rng default % Fix the random seed

AccData = AccData(, randperm(size(AccData, 2)));

% Shuffle the columns

traindata = AccData(2end,);

trainlabel = categorical(AccData(1,));

numClasses = numel(trainlabel);

CT = countlabels(trainlabel);

tbl = table2array(CT(, 2));

% Use cvpartition to split data into training and validation sets

c = cvpartition(trainlabel, 'HoldOut', 0.2);

trainIdx = training(c);

testIdx = test(c);

Ptrain = traindata(, trainIdx);

Ttrain = trainlabel(trainIdx);

Ptest = traindata(, testIdx);

Ttest = trainlabel(testIdx);

uniqueLabels = unique(trainlabel);

catnames = {'Normal Sinewave Road Obstacle Signals','Faulty Sinewave Road

Obstacle Signals','Normal Roughness Road Obstacle Signals','Faulty Roughness Road

Obstacle Signals','Normal Pothole Road Obstacle Signals','Faulty Pothole Road

Obstacle Signals','Normal Bump Road Obstacle Signals','Faulty Bump Road Obstacle

Signals'};

uniqueLabels = renamecats(uniqueLabels,{'1','2','3','4','5','6','7','8'},catnames);

bar(uniqueLabels, tbl);

CTtrain = countlabels(Ttrain);

CTtest = countlabels(Ttest);

tblTrain = table2array(CTtrain(, 2));

tblTest = table2array(CTtest(, 2));

H = bar(uniqueLabels, [tblTrain, tblTest], 'stacked');

legend(H, ["Training Set", "Test Set"], 'Location', 'NorthEastOutside')

LPtrain = [double(Ttrain); Ptrain];

[ii, jj, kk] = unique(LPtrain(1,));

m = accumarray(kk, (1numel(kk)), [], @(x) {x'});

out = cell2mat(cellfun(@(x) LPtrain(, x(randperm(numel(x), 1))), m',

'UniformOutput', false));

%%idx = randperm(size(Ptrain,2),4);

182

%Fs = 1/Ts;

parfor n = 1numel(out(1,))

 x=out(2end,n);

 subplot(8,2,n);

 plot(t,x);

 if n == 7 || n == 8

 xlabel('Seconds');

 end

 d=dictionary([1,2,3,4,5,6,7,8],catnames);

 title(d(n));

end

5.4.1. Codes For All Models Used for Second Tests.

This test has the same codes as the previous test, with only differences in labeling and

data. Therefore, you can replace, for example, the below

code% Convert labels to categorical and rename categories

YPred = categorical(YPred, {'1', '2', '3', '4', '5'}, catnames);

YTest = renamecats(YTest, {'1', '2', '3', '4', '5'}, catnames);

% Plot the confusion matrix

figure;

cm = confusionchart(YTest, YPred);

title('Classification of faulty signals based on Levels');

cm.RowSummary = 'row-normalized';

cm.ColumnSummary = 'column-normalized';

to

YPred = categorical(YPred, {'1','2','3','4','5','6','7','8'}, catnames);

 YTest = renamecats(YTest,{'1','2','3','4','5','6','7','8'},catnames);

% Plot the confusion matrix for the final model

figure;

cm = confusionchart(YTest, YPred);

title('Classification for a faulty and healthy signal for each road type');

cm.RowSummary = 'row-normalized';

cm.ColumnSummary = 'column-normalized';

so the title and the number of mentioned label are differ.

