T.C.
ISTANBUL OKAN UNIVERSITY
INSTITUTE OF GRADUATE SCIENCES

THESIS
FOR THE DEGREE OF
MASTER OF SCIENCE
IN AUTOMOTIVE MECHATRONICS AND
INTELLIGENT VEHICLES PROGRAM

Yousif ALARAJI
(203005012)

AN INVESTIGATION INTO VIBRATION ANALYSIS FOR
DETECTING FAULTS IN VEHICLE STEERING OUTER
TIE-ROD

THESIS ADVISOR
Assist. Prof. Dr. Sina ALP

ISTANBUL, February 2024

ABSTRACT

This thesis investigates fault detection in a simulated car's gear steering system using
MSC Adams and MATLAB simulations. It focuses on analyzing the angular acceleration
signal from the outer tie rod, crucial for identifying faults. Through simulation, the car
records the angular acceleration signal as a baseline for healthy signals and introduces
simulated wear into the tie rod using MATLAB to mimic real-world faults. Various types
of noise are added to the signals to assess the system's robustness. Two feature extraction
methods, wavelet scattering and discrete wavelet transform, are evaluated for their
effectiveness. Classification employs Support Vector Machines (SVM) and Neural
Networks (NN) and aims to classify signals as normal or faulty and determine fault
severity. Findings suggest wavelet scattering with Long Short-Term Memory (LSTM)
Neural Networks as a stable approach. Techniques like Principal Component Analysis
(PCA), Linear Discriminant Analysis (LDA), and Recursive Feature Elimination (RFE)
enhance classification accuracy. This research significantly advances fault detection in
automotive systems, providing insights into signal processing, classification algorithms,
optimization, and feature selection. The developed fault detection system promises real-

world application, potentially enhancing steering system reliability and safety.

Keywords: Fault Detection; Steering Systems; Angular Acceleration; Simulation;

Wavelet Analysis

OZET

Bu tez, MSC Adams ve MATLAB simiilasyonlarini kullanarak bir simiile edilmis aracin
direksiyon sistemindeki hata tespitini arastirmaktadir. Di1s baglanti ¢gubugundan gelen
acisal ivme sinyalini analiz etmeye odaklanarak hatalar1 belirlemek i¢in 6nemlidir.
Similasyon yoluyla, ara¢ saglikli sinyaller igin bir temel olarak agisal ivme sinyalini
kaydeder ve MATLAB kullanarak gercek diinya hatalarin taklit etmek i¢in dis baglant1
cubuguna simiile edilmis asinma ekler. Sistemin dayanikliligin1 degerlendirmek i¢in
sinyallere ¢esitli tiplerde giiriiltii eklenir. Dalgalet dagilmasi ve kesikli dalgalet doniistimti
olmak tizere iki oOzellik c¢ikarma yontemi etkinlikleri acisindan degerlendirilir.
Siniflandirma, Destek Vektor Makineleri (SVM) ve Sinir Aglart (NN) kullanir ve
sinyalleri normal veya hatali olarak smiflandirmay1 ve hata ciddiyetini belirlemeyi
amaglar. Bulgular, dalgakiran dagilmasiyla Uzun Kisa Vadeli Hafiza (LSTM) Sinir
Aglari'min istikrarli bir yaklagim oldugunu o6ne siirmektedir. Temel Bilesen Analizi
(PCA), Dogrusal Ayirict Analiz (LDA) ve Tekrarlanan Ozellik Eleme (RFE) gibi
teknikler, siniflandirma dogrulugunu artirir. Bu aragtirma, otomotiv sistemlerinde hata
tespitini 6nemli Olgiide ilerletmekte olup, sinyal isleme, siniflandirma algoritmalari,
optimizasyon ve 6zellik se¢imi konularinda i¢goriiler sunmaktadir. Gelistirilen hata tespit
sistemi, direksiyon sistemi gilivenilirligini ve giivenligini potansiyel olarak artirarak

gercek diinya uygulamasi vadetmektedir.

Anahtar kelimeler: Hata Tespiti; Direksiyon Sistemleri; Acisal Ivme; Simiilasyon;

Dalgalet Analizi

ACKNOWLEDGMENT

I am immensely grateful to Dr. Sina ALP for his unwavering guidance, support, and
encouragement throughout the entirety of this research. His expertise, profound
knowledge, and insightful feedback have been pivotal in shaping the direction and quality
of this study. I am truly fortunate to have had the opportunity to work under his
supervision.

I would also like to extend my heartfelt appreciation to Dr. Rami KHUSHABA for his
valuable contributions and assistance during this research endeavor. His expertise and
thoughtful input have significantly enriched the outcomes of this study, and | am deeply
grateful for his guidance and support.

Furthermore, | would like to express my sincere thanks to the staff of the Mechatronics
Engineering Department for their assistance and cooperation. Their continuous support
and dedication have been instrumental in facilitating the smooth progress of this project.
I am indebted to the library staff of Okan University and Baghdad University for their
kind assistance and access to invaluable resources. Their efforts have been instrumental
in expanding the breadth of my research and enhancing the overall quality of this work.
Last but not least, | would like to extend my gratitude to all the individuals who have
contributed, in any way, to the success of this research. Your support, whether it was
through providing valuable insights, sharing resources, or offering encouragement, has

been greatly appreciated.

LIST OF TABLES. ... eeeeeees VI
LIST OF FIGURES ..o oottt ettt ettt eeeeeeeeeeeeeeeeereeeeeeeeeees IX
SY MBI OIS . s XII
L INTRODUCTION ... 1
1.1, BACKGROUND .. .uututttttttttetetateeaeeeeeteseeeeseeeeesessnesensnenssesensnessnennnnnnnnnnns 1
1.2. GEAR STEERING OUTER TIE RODE ...uvuvueuteteettueaeaeeenennnenenensnensnnnnnnnnnnnnns 2
1.3. VIBRATION FAULT OBJIECTIVE ...cetieeeeeeeeeeeeeeeeeeieaeeeeeeeeeeeiiaaeeeeeeseennnns 4
1.4. VIBRATION FAULT IDENTIFICATION ...teieeeieeeeeeee e e e e eeeeeeeeeennnns 6
1.4.1. Signal PreproCesSINGc.coveieerieieerieeiieseeseeseeseesreeeesreessens 8
1.4.2. Features EXTractioncc.ueeeeeeeeeeee e, 10
1.4.3. Wavelet Scattering Transformccccoovveieienenenisiseen, 11
1.4.4. Feature Selection, Training, Testing, and Classification........ 12
1.5. BEST MODEL FOR FAULT IDENTIFICATION ...vuvueueieiiiieiieieeeeieeennnns 15
LB, THESIS SCOPE ..vvveiiee ettt et e et ettt e e e e e e e et ee s e e s eeeeeseesbaaaeseeeeesennnns 17
1.7. RESEARCH OBJIECTIVES ..ovuuieeeeeeeeeeeeeee e e e e e ee e eteaaeeeeeeeeenenaaeseeeeseennnns 19
1.8. IMIETHODOLOGY .eueeeeeeeeeeee et e e e e e e e e e e e eee e e e e e eeeeeeeeaeeeeeeeeeennnns 19
1.9, THESIS OVERVIEWceieeeeeeeee et eeeeeeee e e e e ee e eeaaeseeeeeeeeeiaaeeeeeeeennnnnn 21
Il LITERATURE REVIEW.o 23
2.1. OVERVIEW OF SUSPENSION SYSTEMS PROBLEM.....ceeeeveeeeiieeeeeeeeeeeeennns 23
2.2. PREVIOUS RESEARCH ON SUSPENSION FAILURE AND ANALYSIS 24
2.3. VIBRATION ANALYSIS FOR FAULT DETECTION ...uvviieeieeeiiiieeeeeeeeeeeeenns 31

TABLE OF CONTENTS

BASED FAULT IDENTIFICATION IN ROTATING MACHINERY ..covvvnveeieiieeeeeeieeeaeens 39
HL. METHODOLOGY oottt ee e e e e e e e v e eeneneneaaees 42
3.1, SIMULATION SETUP. ..ttt ee e ettt e e e e e e e e e e eeeeeeeeeeeereeeeneaaseseeeeeennnnns 42

3.2. SIGNAL PROCESSING PROCEDUREuuiieieiieeetttieeieeeeeeeeeeaieeseseessesennnns 50

3.3. DATA PREPARATION ..eetttttieteeeteteettaessesseesesssssnnsessessesssssnnnssseessessssnns 51

3.3.1. Operational MOGES.........cccviiiiiiiiiieieeee e 51

3.3.2. NOISE adUITIONS ...c.vveveeiiieieeiesee e 54
31303 DBNOISEN ...ttt 55
3.4, FEATURE EXTRACTION ...ceuvitiattitesiaresteseesessesteseasesseseesesseseessasessensesensens 58
3.4.1. Discrete wavelet Transform (DWT)cccooeveienenieneiieneen 59
3.4.2. Wavelet SCAtteriNgc.ccvvevereeiieie e seee e 71
3.5. FEATURE SELECTION AND OPTIMIZATIONcoviiiterieriaieseeearesseseesennens 81
3.5.1. Principal Component Analysis (PCA)......ccccccvveveiieenesiiennnn 81
3.5.2. Linear Discriminant Analysis (LDA)ccccoorvniininiiniinieennn, 84
3.5.3. Sequential Feature Selection (SRE) and Recursive Feature
ElMINation (RFE).......coi it 85
3.6. VALIDATION AND EVALUATION ...ccvviviiiriitesieieesiesiesasseseesesesseseesennens 87
3.7. FAULT DETECTION AND CLASSIFICATIONceivieiieaiiienieesieesieeseens 87
3.7.1. The Purpose of Using SVM and Neural Network 88
3.7.2. Support Vector Machines (SVM)cccevevieieiveiieceeiennn 91
3.7.3. NeUural NEIWOIKccveieiiiiiie e 102
3.7.4. LSTM MATLAB IMPLEMENTATOINcccoviiiiieiiieeee. 114
3.7.5. SVM Vs Neural NetWorkcccocvevenieeieiieneee e 118
3.7.6. Optimization of the Long Short-Term Memory (LSTM) Neural
INETWOTK ..ttt 118
3.7.7. SVM TUNING ..o 122
IV. THE RESULTS AND DISCUSSION.......cocoiiiiiiiieieiee e, 125

4.1. FIRST TEST DISCUSSION ROAD OBSTACLES 5 LEVELS OF TRAINING AND
TESTING (WITH NOISE) .ttt ettt 126

4.1. SECOND TEST DISCUSSION ROAD OBSTACLES 5 LEVELS OF TRAINING AND
TESTING (DENOISED) ..uvviiutieiiieeieesiee et ste et site ettt e e e na e snee s 127

4.2. THIRD TEST ROAD TYPE AND SIGNAL CONDITION CLASSIFICATION
COMPREHENSIVE TESTING (WITH NOISE)....ceiuiiieiiiriiiesieieee e 128

4.3. FOURTH TEST ROAD TYPE AND SIGNAL CONDITION CLASSIFICATION

COMPREHENSIVE TESTING (DENOISED) ...c.vviivieiiieiiee e eiee et se e 129
A4 LIMITATIONS OF THE STUDY otevetuiieieeeeeeeeiieee e e e e eeeeeeee e e e s eeneeennn s 134
4.4.1. Data ColleCtioncoooeeeeeeeeeeeee 134

Vi

4.4.2. Hardware Performance Evaluation............ccccco . 136

4.4.3. TIME CONSIIAINTS.....cviiiiesiiiiesee e 136
4.5. RECOMMENDATIONS FOR FUTURE RESEARCH AND PRACTICAL APPLICATIONS

137

4.5.1. Integration of LIDAR with Accelerometer Data 137
4.5.2. Incorporation of Real-Life Datacccccooeiiiinininicicien, 137
4.5.3. Merging Finite Element Analysis with Vibration Fault Detection

137
4.5.4. Investment in Advanced Hardware ResOUrcescc.c....... 138

4.5.5. Conducting Comparative Studies on Machine-Learning Algorithms
138
4.5.6. The practical applications of these recommendations span across
VAFTOUS SECLOTS. .. eeuveereieriesieesteastesseesieeseesseesteesaesseesseesesseesseeseaneesseesseaneesses 139
4.5.7. The Cost and Application of Accelerometer in Vehicular Vibration

Y (T R U]] T 140
V. CONCLUSTON ..ottt e e e e et e e e e e eeerennens 141
AP P EN D X A e ettt ar 167

5.1. MATLAB CoDE TO GENERATE SIGNALS FOR FOUR TYPES ROAD OBSTACLES
5 LEVELS TRAINING AND TESTING (WITH NOISE, DENOISED).........ccccvririrenennnen. 167

5.2. FIRST LABELLING CODE FOR FOUR TYPES ROAD OBSTACLES 5 LEVELS

TRAINING AND TESTING (WITH NOISE, DENOISED)ccveiviiiieiiieiecee e ecie e 169

5.2.1. Codes For All Models Used for First Tests.cccovvvveeevvreenne. 170
5.3. MATLAB CoDE TO GENERATE ROAD TYPE AND SIGNAL CONDITION
CLASSIFICATION COMPREHENSIVE TESTING (THREE SCENARIOS)........c0coveennenn. 178

5.4. SECOND LABELING CODE FOR ROAD TYPE AND SIGNAL CONDITION

CLASSIFICATION COMPREHENSIVE TESTING .ctveettteeeeeeeeeeeeeeieseeeesreeennrnanseeeeeees 181

5.4.1. Codes For All Models Used for Second TestS........cccceeeevnnnnne 182

Vii

LIST OF TABLES

Table 1 First Test Method Performance Summary (With Noises)

Table 2 Second Test Method Performance Summary (Denoised)

Table 3 Third Test: Summary of Method Performance Metric (With Noise)

Table 4 Fourth Test: Summary of Method Performance Metric (Denoised)

viii

126

127

128

130

LIST OF FIGURES

Figure 1-1 Damaged Car Resulting from Suspension Failure. (Source Forbes)
Figure 1-2 Outer Tie Rod Subdivisions (Source Wozniak, 2022)

Figure I-3 Tie-Rod. (Source International Journal of Application or Innovation in

Engineering & Management (I JAlI EM)

2

Figure 1-4 Fault Identification Flowchart

Figure I11-1 Car Model in MSC Adams

Figure I11-2 Left Outer Tie Rod

Figure I11-3 Simulation Parameters in MSC Adams

Figure I11-4 Sine Road Scenario

Figure I11-5 Angular Acceleration - Sine Road Scenario

Figure 111-6 Roughness Obstacle Scenario

Figure I11-7 Angular Acceleration - Roughness Road Scenario

Figure 111-8 Pothole Obstacle Scenario

Figure I111-9 Angular Acceleration - Pothole Road Scenario

Figure 111-10 Bump Obstacle Scenario

Figure I11-11 Angular Acceleration - Bump Road Scenario

Figure 111-12 MSC ADAMS Post-Simulation

Figure 111-13 Signals Extracted by MATLAB For Four Road Obstacles

43

43

44

45

45

46

46

47

47

48

48

49

50

Figure 111-14 First Test Mode with Four Level of Faults 80% Training 20% Testing _ 52

Figure I11-15 Normal Signal and Generated Faulty Signals for Four Road Obstacles _ 53

Figure 111-16 Roads Under Stress Testing Faulty and Weary Conditions with an 80-20

Split

54

Figure 111-17 Discrete Wavelet Transform Decomposition Tree

61

Figure 111-18 Orthogonal Wavelets Two Different Scale and Position But the Product is

Zero.

62

Figure 111-19 Common Wavelet Families

63

Figure 111-20 Different Types of Daubechies Wavelets

64

Figure 111-21 Discrete Wavelet Five Levels (Wavelet Db4)

68

Figure 111-22 Wavelet Scattering Vs Convolutional Neural Network

Figure 111-23 Scattering Convolution Process

72

75

Figure 111-24 Wavelet Scattering Filter Bank

77

Figure I11-25 Wavelet Scattering Tree

79

Figure 111-26 Scree Plot

83

Figure 111-27 Percentage of Variance

83

89

Figure 111-28 SVM Four Faulty Levels Classification

Figure 111-29 SVM Obstacle Types and Fault Classifications

90

Figure 111-30 Hyperplane and Support Vectors with Maximum Margin

Figure 111-31 Hard Margin SVM Vs Soft Margin SVM

91

92

Figure 111-32 1D Dataset for Classification

93

Figure 111-33 SVM with RBF Kernel

93

Figure 111-34 LSTM Neural Network Architecture

Figure 111-35 LSTM Recurrent Unit and Gates

Figure 111-36 LSTM Input Gate

Figure 111-37 LSTM Forget Gate

Figure 111-38 LSTM Output Gate

103

104

105

106

107

Figure 111-39 Forward, Loss Function and Backward Propagation (This Figure by [133],

[134]). 109

Figure 1V-1 Training Progress Road Type and Signal Condition Classification (With
Noise) with Wavelet Scattering Neural Network Test Using adam Optimizer 129
Figure 1V-2 Objective Function Modeling of a faulty and healthy signal for each road
type (Denoised) Wavelet Scattering and SVM Tuned and Optimized with LDA_ 131
Figure IV-3 Minimum Objective vs. Number of Function Evaluations of a faulty and
healthy signal for each road type (Denoised) Wavelet Scattering and SVM Tuned and

Optimized with LDA 131

Xi

Yt

&(t)
P(0ly)
P(yl0)
(x5)
Go(X)i
1)

A
N
DWTe

¢
yhigh(k)
ylow(k)
()

A4

S

w

b

C

iwil

a
K(xi,Xj)
Ot

o(X)
9(x)
AW*

SYMBOLS

Time series variable at time t

Error term at time t in the time series model
Posterior probability given the data

Likelihood function

Probability density function of a Cauchy distribution
Threshold estimate of 0 for a given a and data point 1

Wavelet coefficient in the discrete wavelet transform
Lambda (threshold parameter in denoising scaling or shaping
parameter)

Number of observations or data points

Discrete wavelet transform with wavelet function ¢
Wavelet function in the wavelet transform

High-pass filtered signal

Low-pass filtered signal

Continuous wavelet transform with a father wavelet ®
Mother wavelet in wavelet analysis

Scaling factor in wavelet equations

Weight vector

Bias term associated with the wavelet coefficient in DWT
Regularization parameter (Penalty parameter)

Euclidean norm of the weight vector

Alpha Lagrange multiplier associated with training samples
Kernel function measuring similarity between samples
Output gate

Logistic sigmoid function

Hyperbolic tangent function

Update term in the weight matrix W in neural networks

Xii

AR*

Update term for the input-to-hidden weights in neural
networks

Update term for the recurrent weights in neural networks
Alpha (Learning rate)

Estimated coefficients in a linear model

Predicted class in a support vector machine

Margin distance in a support vector machine

Multiscale wavelet scalogram with multiple scales

Xiii

NHTSA
SVM
DWT
WPT
LCWPE
WEK
TEOWT
ASR
ECG
PCA
NLM
CNN
RNN
LSTM
GBM
k-NN
GPU
CPU
FPGA
DSR
FEA
PSD
CWT
FEM
ARX
KYP

ABBREVIATIONS

National Highway Traffic Safety Administration
Support Vector Machine

Discrete Wavelet Transform

Wavelet Packet Transform

Local Characteristics-scale Wavelet Packet Energy
Wavelet Energy and Kurtosis

Teager Energy Operator with Wavelet Transform
Automatic Speech Recognition
Electrocardiogram

Principal Component Analysis

Non-Local Means

Convolutional Neural Network

Recurrent Neural Network

Long Short-Term Memory

Gradient Boosting Machines

k-Nearest Neighbors

Graphics Processing Unit

Central Processing Unit

Field-Programmable Gate Array

Design Science Research

Finite Element Analysis

Power Spectral Density

Continuous Wavelet Transform

Finite Element Method

Auto Regressive model with exogenous input

Kalman-Yakubovich-Popov

Xiv

GMF Gear Mesh Frequency

MCSA Motor Current Signature Analysis

ERA Eigensystem Realization Algorithm
HVAC Heating, Ventilation, and Air Conditioning
VAE Variational Autoencoder

LDA Linear Discriminant Analysis

STFT Short-Time Fourier Transform

WPE Wavelet Packet Energy

MSB Modulation Signal Bi-spectrum

PMSM Permanent Magnet Synchronous Motors
REB Rolling Element Bearings

VFD Vibration-Based Fault Diagnosis

ANN Artificial Neural Networks

Al Artificial Intelligence

ML Machine Learning

MSC Software for Multibody Dynamics Simulation
Matlab Matrix Laboratory

PDF Probability Density Function

Sym4 Symlet

LPF Low-Pass Filter

HPF High-Pass Filter

MRA Multiresolution Analysis

IEEE Institute of Electrical and Electronics Engineers
RFE Recursive Feature Elimination

SRE Sequential Feature Selection

NN Neural Network

RBF Radial Basis Function

Regularization Parameter (Penalty parameter in
C SVM)

XV

Hinge

Kernel

Dual

LSTM

GRU

SGD

MSE
Cross-Entropy
ReLU

BPTT

Adam
RMSprop
numHiddenUnits
numClasses
YTrain/YTest
YPred

YPredAll
YPredEnsemble
cm

net

function used SVM for penalizing misclassifications
Function used for transforming data into higher
dimensions

The dual form of the optimization problem in SVM
Long Short-Term Memory

Gated Recurrent Unit

Stochastic Gradient Descent

Mean Squared Error

A loss function used in classification tasks
Rectified Linear Unit

Back-Propagation Through Time

Adaptive Moment Estimation algorithm

Root Mean Square Propagation

Number of hidden units in the LSTM layer
Number of output classes

Training and Testing datasets respectively
Predicted output

Matrix storing predictions from multiple models
prediction aggregated from multiple models
Confusion matrix

LSTM model

XVi

|. INTRODUCTION

1.1. Background

Suspension failure in vehicles is a critical issue that poses a significant risk on the roads,
leading to car accidents and potentially fatal outcomes. According to data from the
National Highway Traffic Safety Administration (NHTSA) [1], suspension-related
problems rank as the third most habitual reason for car accidents, often occurring in
combination with steering, transmission, or engine issues. It has been reported that this
combination accounts for approximately 3% of all traffic accidents. Sadly, the
motivation for my thesis stems from a personal tragedy - the loss of a dear friend due
to suspension failure.

Suspension failure is a serious concern that can have devastating consequences. When
driving a car, drivers may experience clicking or popping sensations in the suspension,
which, unfortunately, some drivers may ignore or not recognize as significant.
However, it is crucial to address these issues promptly, as they can lead to fatal
accidents if left unattended.

One specific danger associated with suspension failure is the potential loss of steering
control, particularly in cases of ball joint or end-spindle failure. Such failures can result
in a vehicle rollover and a catastrophic accident. The severity of these accidents is
further highlighted by real-life incidents, such as the case involving Mena Massoud, a
star of Disney's live-action films [2]. Mr. Massoud sued Tesla, alleging that a
suspension failure was the cause of the accident that resulted in his damaged car (Figure
I-1). Despite the contradictory statements from a Tesla spokesperson, the accident

occurred, underscoring the need to uncover the truth behind such incidents.

These instances of suspension failure and their devastating consequences demand
action. It is imperative to develop ideas and preventive measures to mitigate these
accidents and enhance vehicle safety. Additionally, the creation of a fault recorder for
suspension systems could provide valuable insights into the causes and potential
warning signs of failures, contributing to improved preventive measures.

By focusing on the prevention of suspension-related accidents and the development of
a fault recorder, this thesis aims to address this critical issue and promote safer driving

conditions.

Figure 1-1 Damaged Car Resulting from Suspension Failure. (Source Forbes)
1.2. Gear Steering outer tie rode
The outer tie rod is a crucial component of the steering system, responsible for
connecting the steering mechanism to the wheel knuckle and enabling the wheels to
turn. It comprises various parts, including the body, lower cup, lower part of the
bearing, lower ring, dust boot, dust boot skirt, upper ring, ball stud, and castle nut with

a cotter pin (Figure 1-2).

Due to exposure to different forces such as longitudinal, lateral, and vertical forces, the
tie rod experiences various types of stresses, leading to gradual wear and tear. If left
unattended, this deterioration can pose significant risks and increase the likelihood of
accidents. Therefore, it is essential to periodically replace the tie rod based on its
individual life cycle, which is influenced by factors like material composition and

design [3].

Castle Nut L2 Ball Stud

Upper
Ring

Body
I Dust
boot

Lower
Ring

Bearing
lower part

Lower Cup

Figure 1-2 Outer Tie Rod Subdivisions (Source Wozniak, 2022)

The ball joint in the outer tie rod is particularly vulnerable as it encounters substantial
longitudinal, lateral, and vertical stresses. As a result, this specific component is highly
susceptible to wear, leading to vibrations and potential failure. The failure typically
occurs at the spherical contact interface between the ball pin and the ball socket [4].

Finite element analysis serves as a powerful tool for understanding the tie rod's life
cycle, load-bearing capacity, and optimal dimensions. By employing this analysis
technique, we can gain insights into the tie rod's performance limitations and expected

lifespan, ultimately enhancing vehicle safety and maintenance practices [5].

Additionally, vibrations can occur when there is increased wear or improper tightening
of the outer tie rod. These vibrations can serve as an indicator of the extent of damage.
By monitoring these vibrations, we can evaluate the level of wear and potential damage
to the tie rod.

Our research focuses on utilizing vibration analysis as a tool to assess wear and
potential damage in the outer tie rod of the steering system. We aim to monitor tie rod
vibrations to determine the level of fault and extent of wear, providing valuable insights
into its performance limitations and expected lifespan. This knowledge will contribute
to enhancing vehicle safety and maintenance measures, ultimately reducing the risk of

accidents caused by tie rod failure.

Figure 1-3 Tie-Rod. (Source International Journal of Application or Innovation in
Engineering & Management (I JAI EM)
1.3. Vibration Fault Objective
Vibrations in tie rods within vehicle suspension systems can lead to potential dangers
and safety concerns. These vibrations can be categorized into noise vibrations and

movement vibrations, becoming more noticeable as the tie rod experiences wear and-

tear over time [6]. Incorrect tightening of the tie rod can further exacerbate vibration-
related issues. It is crucial to measure and analyze these vibrations to assess the level of
danger and develop effective mitigation strategies.

Various methods are available to measure vibrations, including accelerometers,
velocity sensors, displacement sensors, strain gauge sensors, microphone sensors, and
fiber optic sensors. One commonly used sensor is the piezoelectric angular acceleration
sensor, which is battery-free and provides detailed information about angular
acceleration [7]. The choice to measure angular acceleration instead of angular
displacement or angular velocity is because angular acceleration provides more features
about the signals [8]. It is important to note that angular acceleration (a) is crucial in
understanding the impact of wear on the tie rod. Angular acceleration is measured in
degrees per second squared (deg/s?), and as wear increases, vibration intensity also
increases until failure eventually occurs. Analyzing these vibrations thoroughly allows
us to classify the level of danger based on their intensity, providing valuable insights
for effective risk assessment and developing mitigation strategies.

One potential method for identifying faults in the tie rod and categorizing them into
various levels involves the implementation of Automatic Speech Recognition (ASR)
using wavelet-based feature extraction and classifiers, as proposed by [9]. This
technique has also been used in fault detection for other devices such as gearboxes [10]
and has been used for fault detection in heart signal ECG [11]. By employing this
approach, vibrations in the vehicle suspension system, specifically in the tie rod, can be

detected and analyzed, thereby facilitating fault diagnosis.

Using vibration analysis techniques allows us to gain comprehensive knowledge about
the tie rod's condition. This knowledge is vital for enhancing vehicle safety, optimizing
maintenance practices, and ensuring the reliability of the steering gear system.

1.4. Vibration fault identification

Vibration fault detection involves identifying the specific fault source by comparing
test vibration data with fault models. The process consists of training (modeling) and
identification (matching) units [12] Training builds fault models based on vibration
features extracted from known fault samples, while identification calculates the
correspondence between input features and fault models. Success in fault identification
relies on effective training and identification. Vibration data is used to detect and
pinpoint the source of the fault [13]. process can be further simplified and visualized

using the provided flowchart (Figure 1-4).

[Reference (I-Iealthyu".l
Signals)

B B
' ™
(Similarity

Classifier —v(. Fault Identification I
\ Similarity
\ o/
— v —

/" Reference (Fault
Levels)

Feature
Extraction

[Input Singals | Signa.l
. (Read by Sensors) Processing

Figure I-4 Fault Identification Flowchart

The process begins with the signal undergoing preprocessing, which is essential for
preparing the signal for fault identification. During this stage, the signal undergoes
several key steps.

Firstly, the signal is labeled, categorizing it based on known fault types. This labeling
step establishes a reference for the subsequent fault identification process. Additionally,
denoising techniques are applied to remove unwanted noise and artifacts from the
signal. This ensures that the subsequent analysis focuses on relevant information by
eliminating unnecessary disturbances [14].

Following preprocessing, the signal enters the feature extraction stage. Various
methods are utilized to extract meaningful information from the vibration data.
Standard techniques include Fourier analysis, wavelet transforms, and statistical
measures like mean and standard deviation. These methods enable the extraction of
relevant features that can effectively differentiate between different fault types [15].
Once the features have been extracted, the signal proceeds to the classification stage.
In this stage, a classifier is employed to match the extracted features with fault models,
facilitating the identification of the specific fault type. Classification algorithms, such
as support vector machines (SVM), decision trees, or neural networks, are commonly
utilized for this purpose. The classifier compares the input features with the fault
models generated during the training stage and determines the closest match, thereby
identifying the fault [16].

In conclusion, vibration fault detection plays a vital role in detecting and localizing

faults in machinery. Through effective training in fault models and the use of accurate

identification techniques, maintenance personnel can efficiently address issues,

minimize downtime, and optimize overall machine performance.

1.4.1. Signal preprocessing

Signal preprocessing in vibration fault identification involves signal labeling and signal
denoising. Signal labeling is the process of assigning appropriate labels or categories to
the vibration signals based on the fault or condition being analyzed [17]. This step helps
in organizing the data and facilitating subsequent analysis and classification. Signal
denoising aims to remove unwanted noise from the vibration signals to improve the
accuracy of fault detection and diagnosis. Various methods have been used for

denoising, such

1.4.1.1. Wavelet Denoising
Wavelet denoising decomposes a signal into different scales using wavelet transform.
Thresholding is applied to remove noise in certain scales while preserving essential

signal details [18].

1.4.1.2. Median Filtering
This non-linear method replaces each data point with the median of its neighboring

points. It effectively removes impulse noise while preserving signal edges [19].

1.4.1.3. Low-Pass Filtering
Low-pass filters attenuate high-frequency noise while keeping the lower-frequency
components of the signal intact. Common examples include Gaussian filters and

moving average filters [20].

1.4.1.4. Total Variation Denoising
Total variation denoising minimizes the total variation of the signal while ensuring that
the denoised signal remains close to the observed noisy signal. It is useful for signals

with sharp edges and discontinuities [21].

1.4.1.5. non-Local Means (NLM)
NLM is a powerful technique that exploits redundancy in signals. It averages similar

patches in the signal to reduce noise while preserving key details [22].

1.4.1.6. Principal Component Analysis (PCA)

PCA transforms the noisy signal into a new coordinate system where the first few
principal components capture the main signal information while the remaining
components represent noise. Removing the noise components yields a denoised signal

[23].

1.4.1.7. Sparse Representations
Sparse representations represent signals as linear combinations of few basic elements
(atoms) from a learned dictionary. Promoting sparsity helps to effectively suppress

noise [24].

1.4.1.8. Kalman Filtering
Kalman filters are optimal for estimating the true signal state from noisy measurements

in systems with known or predictable dynamics [25].

1.4.1.9. Machine Learning-based Denoising

Machine learning techniques, such as deep learning and support vector machines, can
be applied for signal denoising. These methods learn complex noise patterns and
denoise signals effectively [14].

The choice of denoising method depends on the specific characteristics of the signal
and the nature of the noise. Combining multiple denoising methods can often yield

better results than using a single approach alone.

1.4.2. Features Extraction

Feature extraction is a crucial step in vibration fault identification as it involves
extracting relevant information or characteristics from the preprocessed vibration
signals. The extracted features serve as inputs for the subsequent classification
algorithms. Several methods have been used for feature extraction in vibration fault

identification. These methods include

1.4.2.1. Continuous Wavelet Transform (CWT)
The continuous wavelet transform is widely utilized in vibration analysis to create a
time-frequency representation of vibration signals. It allows for the detection of

transient events and the analysis of non-stationary signals [26].

1.4.2.2. Discrete Wavelet Transform (DWT)
DWT is commonly employed for feature extraction in vibration analysis. By
decomposing the vibration signal into different frequency bands, it enables the

identification of specific frequency components and energy distribution [27].

10

1.4.2.3. Wavelet Packet Transform (WPT)

WPT is an extension of DWT, providing a more detailed decomposition of vibration
signals. It facilitates a comprehensive analysis of different frequency components and
proves useful for fault diagnosis and feature extraction [28].

1.4.3. Wavelet Scattering Transform

Wavelet scattering is an advanced feature extraction method, that offers a stable and
translation-invariant representation of data. It effectively captures both low-frequency
and high-frequency information, making it robust against variations and deformations.
Wavelet scattering has gained popularity in various signal analysis tasks, including

vibration analysis [29].

1.4.3.1. Local Characteristics-scale Wavelet Packet Energy (LCWPE)
LCWPE is a wavelet-based feature extraction method that quantifies the energy of
signals in different frequency bands. It is valuable for identifying localized faults in

rotating machinery [30].

1.4.3.2. Wavelet Energy and Kurtosis (WEK)

WEK combines wavelet energy and kurtosis to extract features relevant for identifying
fault-related components in vibration signals. Kurtosis, measuring the non-Gaussianity
of the signal, aids in detecting impulsive faults [31].

Teager Energy Operator with Wavelet Transform (TEOWT) TEOWT combines the
Teager energy operator with wavelet transform, enhancing the detection of transient
signals in vibration data [32].

These methods are widely applied in vibration analysis for various purposes, such as

fault detection, condition monitoring, and predictive maintenance of mechanical

11

systems. Researchers and practitioners often choose specific methods or combinations
of methods based on the unique characteristics of vibration data and their analysis
objectives. Staying up-to-date with the latest research and literature is essential for
accessing the most current information on wavelet-based feature extraction methods in

vibration analysis.

1.4.4. Feature Selection, Training, Testing, and Classification

After feature extraction, the next steps involve feature selection, training, testing, and
classification. Feature selection aims to identify the most relevant and informative
features from the extracted set of features. This step helps in reducing the
dimensionality of the data and improving the efficiency and accuracy of the
classification algorithms. Various classification methods have been used in vibration

fault identification, including

1.4.4.1. Support Vector Machine (SVM)

SV M is a powerful and versatile classifier that works well for both linear and non-linear
data. It is particularly effective when dealing with high-dimensional feature spaces,
making it suitable for vibration data analysis. SVM aims to find an optimal hyperplane
that separates different classes, making it useful for binary classification tasks where

you want to distinguish between normal and faulty states [33].

1.4.4.2. Random Forest
Random Forest is an ensemble learning method that combines multiple decision trees
to improve classification accuracy and robustness. It can handle large datasets with high

dimensionality and is less prone to overfitting. Random Forest can be effective in

12

detecting various fault conditions by analyzing the patterns present in the vibration data

Gradient [34].

1.4.4.3. Boosting Machines (GBM)

GBM is another ensemble learning technique that sequentially builds multiple weak
learners to create a robust predictive model. It is known for its high accuracy and ability
to handle complex relationships in data. GBM can be well-suited for vibration fault
detection tasks where there might be intricate interactions between distinctive features

[35].

1.4.4.4. Neural Networks

Deep learning-based approaches, particularly neural networks, have shown promising
results in various fault detection tasks, including vibration analysis. Convolutional
Neural Networks (CNNs) can effectively extract features from vibration signals, while
Recurrent Neural Networks (RNNs) can capture temporal dependencies. Long Short-
Term Memory (LSTM) networks, a type of RNN, are well-suited for sequential data

like vibration time series [36].

1.4.4.5. k-Nearest Neighbors (k-NN)

k-NN is a simple but effective non-parametric classifier for vibration fault detection. It
classifies data points based on the majority class among their k-nearest neighbors in the
feature space. k-NN can be valuable when the underlying data distribution is not well-

defined or when dealing with imbalanced datasets [37].

13

1.4.4.6. Decision Trees
Decision trees are easy to interpret and visualize, making them valuable for
understanding the reasoning behind the classifier's decisions. They can be useful for

fault detection when the features have clear decision boundaries [38].

1.4.4.7. Ensemble Methods

Ensemble methods like AdaBoost and XGBoost combine multiple weak learners (e.g.,
decision trees) to create a strong, accurate classifier. These methods can handle noisy
or imbalanced data and are effective in capturing complex patterns in vibration signals
[39].

Selecting the most appropriate classifier for vibration fault detection may require
experimentation and tuning based on the specific dataset and problem requirements.
Other crucial factors to consider include data size, dimensionality, class distribution,
and available computational resources. These methods utilize the extracted and selected
features to classify the vibration signals into different fault categories. The training and
testing phases involve training the classification model using a labeled dataset and
evaluating its performance on unseen data. This helps in assessing the accuracy and
effectiveness of the classification algorithm in identifying and diagnosing faults in
vibration signals. In summary, signal preprocessing in vibration fault identification
involves signal labeling and denoising. Feature extraction methods include improved
deep learning algorithms, hierarchical fuzzy entropy, wavelet packet energy entropy,
WCFSE, and histogram features. Feature selection, training, testing, and classification
methods such as SVM, CNN, fuzzy logic, and mathematical statistics are used for fault

identification.

14

1.5. Best Model for fault Identification

Choosing the most suitable model for fault identification depends on the characteristics
of the signals being analyzed. Diverse types of signals, such as suspension vibrations,
heart signals, human sounds, AC machine signals, engines, and other reciprocating
signals, exhibit unique forms and timings. Consequently, each signal type requires
specific approaches for feature extraction, filtering, and classification [40].

The selection of an optimal fault identification method depends on the designer's
primary objectives. If accuracy is paramount, the chosen approach should prioritize
precise fault detection. This means selecting a method or model that can accurately
identify faults with minimal false positives or false negatives. Various techniques, such
as machine learning algorithms or statistical methods, can be employed to achieve high
accuracy in fault identification [41].

Conversely, if the time required for accomplishing the task is crucial, a method that
offers faster results may be more appropriate. In time-sensitive scenarios, such as real-
time fault detection in critical systems, the speed of the identification process becomes
a priority. In such cases, simpler algorithms or rule-based approaches that can quickly
process the signals and provide prompt fault identification may be preferred [42].

The hardware employed for fault identification, such as GPUs, CPUs and FPGA, also
influences the decision-making process. Certain models or algorithms may be better
suited for specific hardware configurations. GPUs, with their parallel processing
capabilities, are known to excel in tasks that can be parallelized, such as certain machine

learning algorithms. On the other hand, CPUs may be more suitable for algorithms that

15

require sequential processing or have lower computational requirements, and FPGAs
offer customization and optimization possibilities [43].

Cost can also be a factor in selecting a fault identification method. Some methods may
require expensive hardware or extensive computational resources, which may not be
feasible in certain situations. In such cases, cost-effective approaches that can still
achieve the desired level of accuracy and speed may be preferred.

When it comes to fault identification, numerous scientific techniques and algorithms
can be employed. These approaches are typically categorized into two main groups
model-based and data-driven methods.

Model-based methods These techniques involve developing mathematical models that
represent the system under analysis. Fault identification is performed by comparing the
behavior of the actual system with the predicted behavior based on the model. Model-
based methods are particularly useful when a deep understanding of the system's
dynamics is available. However, they may require extensive knowledge and expertise
in system modeling.

Data-driven methods These approaches rely on analyzing the measured data directly
without explicitly modeling the system. Data-driven methods are advantageous when
the underlying system dynamics are complex or not well understood. They often utilize
machine learning algorithms to automatically learn patterns and correlations in the data.
These methods can be further divided into supervised learning, unsupervised learning,
and semi-supervised learning, depending on the availability of labeled training data

[44].

16

Supervised learning algorithms, such as support vector machines (SVMs) or random
forests, require labeled examples of both normal and faulty behavior to train the model.
Unsupervised learning algorithms, such as clustering or anomaly detection methods,
can identify abnormal patterns in data without relying on labeled examples. Semi-
supervised learning combines aspects of both supervised and unsupervised learning,
utilizing a limited amount of labeled data along with a larger amount of unlabeled data
[45].

To enhance fault identification accuracy, feature extraction techniques play a crucial
role. Feature extraction involves transforming the raw signals into a set of
representative features that capture relevant information for fault identification.
Common techniques include Fourier transforms, wavelet transforms, time-frequency
analysis, and statistical measures [46].

In conclusion, selecting the best model for fault identification involves considering the
specific characteristics of the signals, the desired objectives (accuracy vs. time
efficiency), and the available hardware resources. Both model-based and data-driven
methods offer effective approaches, with data-driven methods, particularly machine
learning algorithms, being popular choices due to their ability to handle complex and
unmodeled systems. Feature extraction techniques further aid in improving fault
identification accuracy by extracting pertinent information from the signals.

1.6. Thesis Scope

The scope of this thesis encompasses the prevention and detection of suspension-related
accidents in vehicles, with a specific focus on the outer tie rod component of the steering

system. The research will primarily involve the analysis of vibrations in the tie rod to

17

assess wear and potential damage. The thesis will explore the use of vibration analysis
techniques, such as Fourier analysis, wavelet transforms, and statistical measures, to
extract meaningful information from the vibration data. The objective is to monitor tie
rod vibrations and determine the level of fault and extent of wear, providing valuable
insights into the tie rod's performance limitations and expected lifespan.

Additionally, the thesis will investigate fault identification methods, including
Automatic Speech Recognition (ASR) and wavelet-based feature extraction, to detect
and categorize faults in the tie rod. The aim is to develop effective fault identification
techniques that can accurately diagnose faults and facilitate the implementation of
appropriate mitigation strategies.

The thesis will focus on the outer tie rod component and its associated vibrations,
considering factors such as material composition, design, and the specific failure modes
of the tie rod. The research will involve experimental data collection and analysis to
validate the effectiveness of the proposed vibration analysis and fault identification
methods.

The scope of the thesis does not extend to other suspension components or systems,
such as shocks, struts, or control arms. The research will primarily concentrate on the
outer tie rod and its role in suspension failure and accident prevention. However, the
findings and methodologies developed in this thesis may have broader implications for
vehicle suspension safety and maintenance.

Overall, the thesis aims to contribute to the improvement of vehicle safety by
developing preventive measures and utilizing advanced fault detection technologies

specifically tailored to the outer tie rod component.

18

1.7. Research Objectives

1. To investigate the causes and factors contributing to suspension failure in
vehicles, with a specific focus on the outer tie rod component of the steering
system.

2. Toanalyze and assess the vibrations in the outer tie rod as an indicator of wear
and potential damage, aiming to develop a comprehensive understanding of the
tie rod's performance limitations and expected lifespan.

3. To develop effective fault identification methods, such as Automatic Speech
Recognition (ASR) and wavelet-based feature extraction, to detect and categorize
faults in the tie rod.

4. To explore preventive measures and maintenance practices that can enhance
vehicle safety and reduce the risk of accidents caused by tie rod failure.

5. To validate the proposed vibration analysis and fault identification methods
through experimental data collection and analysis.

6. To contribute to the improvement of vehicle safety by providing insights and
recommendations for the design, maintenance, and monitoring of the outer tie rod

component.

1.8. Methodology

The research will follow a Design Science Research (DSR) methodology, as proposed
by [47]. The six steps of DSR, including programming, data collection and analysis,
synthesis of objectives and analysis results, development, prototyping, and
documentation, will guide the research process. This systematic approach will ensure
that the research objectives are addressed in a rigorous and structured manner.

The research design will involve both quantitative and qualitative methods.
Quantitative data will be collected through vibration measurements and analysis,
utilizing techniques such as Fourier analysis, wavelet transforms, and statistical

measures. Qualitative data will be gathered through interviews and surveys to gain

19

insights into maintenance practices and the effectiveness of fault identification
methods.

The research instruments will include sensors for vibration measurement,
questionnaires for data collection, and interview protocols for qualitative data
gathering. The research will employ a mixed-methods approach, combining the
strengths of quantitative and qualitative analysis to provide a comprehensive
understanding of suspension failure and fault detection in the outer tie rod.

Data analysis will involve statistical techniques for quantitative data, such as correlation
analysis and regression analysis, to identify patterns and relationships. Qualitative data
will be analyzed using thematic analysis to identify key themes and patterns in the
responses.

The research will also include experimental testing to validate the proposed vibration
analysis and fault identification methods. Prototypes will be developed and tested under
controlled conditions to assess their effectiveness in detecting and categorizing faults
in the tie rod.

Overall, the research methodology will ensure a systematic and rigorous approach to
address the research objectives, combining quantitative and qualitative methods, and
validating the proposed methods through experimental testing. The research findings
will contribute to vehicle safety and provide insights into the design and maintenance

of suspension systems.

20

1.9. Thesis Overview

There will be six chapters accordingly

Chapter 1 Introduction: The first chapter of the thesis introduces the topic of
suspension failure in vehicles and its impact on road safety. It highlights the importance
of addressing this issue and provides the motivation behind the research. The chapter
outlines the objectives and scope of the thesis, setting the foundation for the subsequent
chapters.

Chapter 2 Literature Review: The literature review chapter provides a comprehensive
overview of existing research and knowledge related to suspension failure and fault
detection in vehicles. It examines relevant studies, theories, and methodologies
employed in the field. The chapter critically analyzes the strengths and limitations of
previous research, identifies gaps in the literature, and establishes the theoretical
framework for the current study.

Chapter 3 Methodology: In this chapter, the thesis describes the research methodology
employed to achieve the stated objectives. It outlines the research design, data
collection methods, and analysis techniques utilized in the study. The chapter also
discusses any limitations and constraints encountered during the research process and
explains how they were addressed. The methodology chapter provides a clear and
detailed explanation of the steps taken to ensure the validity and reliability of the
findings.

Chapter 4 Data Results: This chapter presents the findings of the data analysis
conducted in the study, along with their interpretation and discussion in relation to the

research objectives. The results are presented in a clear and organized manner, utilizing

21

tables, graphs, and other visual aids to enhance understanding. Additionally, the
implications of the findings are examined, compared to existing literature, and
supported by appropriate references. Practical implications for suspension failure
prevention and fault detection are explored, along with recommendations for future
research and practical applications.

Chapter 5 Conclusion: The conclusion chapter summarizes the main findings of the
study and restates the research objectives. It highlights the contributions of the research,
discusses its limitations, and suggests areas for further investigation. The chapter
concludes with a final reflection on the significance of the research and its potential
impact on improving vehicle safety and preventing suspension-related accidents.
Overall, the thesis aims to provide a comprehensive analysis of suspension failure in
vehicles, focusing on the outer tie rod component. It utilizes vibration analysis
techniques and fault identification methods to enhance understanding, detection, and
prevention of suspension failures. The subsequent chapters will delve into the research

process, analysis, and interpretation of the findings.

22

Il. LITERATURE REVIEW

The literature review chapter examines the existing knowledge and research on
suspension failure in vehicles, with a focus on the outer tie rod and its role in the
suspension system. It aims to understand the causes and consequences of suspension
failure and explore the potential application of vibration analysis and fault identification
techniques in improving vehicle safety. By reviewing relevant literature, this chapter
contributes to the understanding of suspension failure and provides insights for
preventive measures. It also discusses the importance of vibration analysis and fault

identification in detecting faults in the outer tie rod and suspension system.

2.1. Overview of suspension systems problem

Suspension systems are crucial components of vehicles, contributing significantly to
driving comfort, steering control, and road friction. Ahmed Aboazoum underscores the
prevalence of common suspension problems such as poor wheel alignment, faulty
shocks or struts, damaged springs, failing ball joints, and faulty control arms. To uphold
optimal suspension performance, Aboazoum advocates for regular inspections and
timely repairs [48]. Meanwhile, Ravi Kumar et al. delve into investigating the failure
of primary suspension systems within FIAT-type LHB bogies. Their study focuses
specifically on the fatigue failure of primary helical springs and proposes design
modifications aimed at enhancing fatigue life. Employing a flexible finite element
model, the researchers conduct multi-body dynamic analysis and stress analysis. They

estimate fatigue life using the Modified Goodman diagram and validate design

23

modifications through comparative fatigue life estimation [49]. In parallel, Saurabh D.
Shinde, Shruti Maheshwari, and Satish Kumar's literature review delves into the
analysis of McPherson suspension system components, with a particular emphasis on
the strut mount. They highlight the critical role of suspension systems for safety and
comfort while underscoring the risks associated with poor design. Previous research
endeavors have leveraged computer-aided engineering techniques, encompassing static
and dynamic simulations, finite element analysis, and fatigue analysis, to study various
components. However, the authors identify a research gap concerning strut mount

failure and propose design modifications to mitigate this issue [50].

2.2. Previous Research on Suspension Failure and analysis

Suspension systems play a crucial role in ensuring the safety, performance, and comfort
of automotive and railway vehicles. Detecting and diagnosing faults in suspension
systems is essential for maintaining their reliability and preventing potential failures.
Over the years, researchers have conducted numerous studies to develop effective
techniques for detecting and diagnosing suspension failures. This topic aims to provide
an overview of previous research on suspension failure detection techniques in
automotive and railway systems. For instance, Hamed, Tesfa, Belachew, Fengshou, Gu,
& Ball (2015) Focus on developing a mathematical model using a seven-degree-of-
freedom full car to analyze suspension performance. The study conducts simulations to
predict the vehicle's response when driven over speed bumps of different shapes and
speeds. The model is validated using experimental data collected from driving the

vehicle over a specific bump at a speed of 8 km/hr. The research analyzes suspension

24

performance in terms of ride comfort, road handling, and stability, considering
parameters such as wheel deflection, suspension travel, and vehicle body acceleration.
The study also explores the effects of speed and changes in suspension specifications,
including tire pressure. The developed model is used for fault detection of under-
inflated tires and predicting potential suspension faults [51]. Similarly, Patil & Darade
(2018) Conducted a comprehensive study to examine the fatigue life and vibration
behavior of the pitman arm in a steering system. Utilized Finite Element Analysis
(FEA) using Ansys software and CATIA software for structural analysis and equipment
design, respectively. By subjecting the Pitman arm to varying frequencies in Ansys, the
researchers successfully identified critical areas prone to structural weaknesses. This
research significantly contributes to the understanding of the pitman arm's durability
and vibration characteristics within steering systems. The integration of FEA and
advanced software tools allowed for a thorough evaluation of the arm's structural
integrity and design considerations. The findings have substantial implications for
enhancing the performance and reliability of steering systems in automotive
applications [52]. In another Study, Reza Kashyzadeh et al. (2015) Conducted a study
on predicting fatigue life in suspensions exposed to random vibrations from road
roughness. Employed Catia, Ansys, and MATLAB for suspension modeling, fatigue
life analysis, and simulation, respectively. By calculating fatigue life using FEM Ansys
and comparing it with MATLAB’s PSD function, component life cycles and potential
failures were determined. To enhance this approach, integration with vibration fault
detection methods was proposed. This integration would improve the accuracy of

identifying potential suspension failures, enabling proactive maintenance and fault

25

mitigation. Kashyzadeh's research contributes to the field by highlighting the potential
for further advancements in fatigue life prediction and fault detection in suspensions.
Future research can focus on developing advanced algorithms and methodologies to
integrate vibration fault detection with fatigue life prediction, enhancing suspension
reliability and performance [53]. Xiukun et al. (2013) Propose a novel approach for
fault isolation in Light Rail Vehicles (LRVS) suspension systems using the Dempster-
Shafer (D-S) evidence theory. The authors address the importance of fault isolation for
ensuring train safety and reliability, specifically focusing on the suspension system.
They introduce a fault isolation algorithm that incorporates a fault feature database and
multi-sensor information fusion. The algorithm utilizes a Kalman filter to generate
residuals for fault diagnosis and employs the Eros and norm distance to measure the
similarity between new and existing fault features. The obtained similarities are
converted into basic belief assignments and fused using the D-S evidence theory to
enhance isolation accuracy. The effectiveness of the proposed method is demonstrated
through two case studies, highlighting its potential in improving the accuracy of fault
recognition and the safety of LRVs [54]. Further, Jin et al. (2019) Introduce a method
for estimating actuator faults in active suspension systems. The proposed approach
combines an adaptive observer with genetic algorithm optimization to accurately track
actuator faults under various conditions. Simulation results demonstrate the
effectiveness and robustness of the method, outperforming other approaches. The paper
also applies the fault estimation method in fault-tolerant control of the active suspension
system, improving ride comfort and ensuring important constraints. Overall, the paper

contributes to the field by addressing actuator fault estimation and providing a practical

26

solution for active suspension systems [55]. Meanwhile, X. Zhu et al., 2019 Addressed
the problem of fault detection in vehicle active suspension systems. Proposed a fault
detection filter design in the finite-frequency domain to enhance suspension system
performance. Utilized the generalized Kalman-Yakubovich-Popov (KYP) lemma to
derive a sufficient condition for the residual system with the prescribed Hoo
performance index. The authors emphasized the importance of active suspension
systems in improving ride comfort and vehicle safety. The proposed approach aimed to
enhance suspension performance in the finite frequency range, targeting the frequency
band of 4-8Hz known for its sensitivity to human body vibrations. The fault detection
filter was formulated as a set of linear matrix inequalities, ensuring stability and
performance. The authors demonstrated the effectiveness of their approach through a
numerical example and compared it with existing methods. The paper contributes to the
field of fault detection in vehicle active suspension systems by providing a finite-
frequency domain approach to improve performance and reliability [56]. Addressing
fault detection in rail vehicle suspension systems, Mao et al. (2017) propose a fault
detection scheme that uses a fault detection observer, considering uncertain track
regularity and stochastic noises. The authors introduce disturbances to the suspension
system states and design an observer to estimate both the system states and
disturbances. They analyze the existence conditions for observer design and develop a
systematic detection algorithm based on the residual signal. The paper includes
simulation results to demonstrate the observer's behavior and performance. This study
contributes to the field of fault detection in suspension systems by considering the

impact of disturbances and stochastic noises. The proposed observer-based approach

27

shows promise in effectively detecting sensor faults in rail vehicle suspension systems.
However, further research is necessary to validate the approach using real-world
systems and explore its applicability to other types of suspension systems [57].
Sugahara & Researcher (2013) Proposed a fault detection technique for vertical
dampers in railway vehicles. The method focuses on analyzing the phase difference
between the bounce and pitch motions of bogie frames or the car body using inertial
sensors. Through vibration excitation tests and running tests on a meter-gauge line, the
authors validate the effectiveness of the proposed technique in detecting faults in both
primary and secondary dampers. This approach offers a practical and cost-effective
solution compared to traditional methods that rely on strain gauges. By evaluating the
phase difference, damper faults can be detected during routine train operations,
contributing to the field of fault detection in railway vehicle suspension systems [58].
In the realm of vehicle suspension systems, Yin & Huang (2015) Present a novel fault
diagnosis method for vehicle suspension systems. The proposed approach leverages
accelerometer measurements and employs a three-step process. Firstly, the method
utilizes principal component analysis to determine the number of clusters. Secondly, it
detects faults through fuzzy positivistic C-means clustering and fault lines. Finally, the
root causes of faults are isolated using Fisher discriminant analysis. Notably, the
method offers a practical and efficient solution by relying solely on accelerometer data
from the four corners of the suspension. The authors demonstrate the effectiveness of
their approach through a comprehensive simulation using a full vehicle benchmark
[59]. Wei et al. (2013) Propose a data-driven approach for fault detection in vertical rail

vehicle suspension systems. The authors use accelerometer sensors placed in the car

28

body and bogies to collect data. They investigate PCA-based and CVA-based fault
detection methods. The simulation results show their approach's effectiveness for
detecting vertical damper and spring faults. The paper highlights the importance of on-
line fault detection and condition monitoring for railway vehicle suspension systems. It
also discusses previous studies on condition monitoring and fault detection in railway
systems. Overall, the paper contributes to the field of condition monitoring and fault
detection in railway vehicle suspension systems [60]. Moreover, Sakellariou et al.
(2015) Present a feasibility study on vibration-based fault diagnosis in railway vehicle
suspensions using a functional model-based method. The authors propose a fault
detection and isolation (FDI) unit that is trained using data from a physics-based model
of the suspension. The unit achieves fault diagnosis using a data-based method called
the functional model-based method (FMBM). The FMBM utilizes a novel class of
stochastic ARX-type models to accurately represent the system in a faulty state. The
study demonstrates the feasibility of fault diagnosis in railway vehicle suspensions
through Monte Carlo simulations. The FDI unit is shown to exhibit high sensitivity and
accurate estimation of fault magnitudes, and it is robust to measure noise and other
uncertainties. The authors conclude that the FDI unit has the potential to improve safety
and performance in railway vehicles [61]. Aravanis et al. (2020) Investigated vibration-
based faults in railway vehicle suspension. Analyzed vibrations in a 9-degree-of-
freedom railway vehicle setup and compared two fault detection methods physics-based
models and data-based models using Principal Component Analysis (PCA).
Simulations were conducted in MATLAB using the Isim Function and Monte Carlo

simulations. The study utilized baseline and inspection phases for active and faulty

29

systems, respectively. Fault detection was achieved through FM and PCA methods,
analyzing curves and evaluating ROC curves. The experiment faced challenges due to
limited vibration signals and the presence of non-measurable system components. The
findings contribute to understanding fault detection in railway vehicle suspension
systems. Further research is needed to address the challenges and enhance fault
detection techniques in practical applications [62]. Additionally, Rahim et al. (2020)
Assessed suspension fatigue in automobile systems. Utilized the discrete wavelet
transform (DWT) and wavelet energy analysis to classify the fatigue level of
suspensions. The study focused on measuring strain signals obtained from the coil
spring component while driving on both smooth and bumpy roads. The findings provide
valuable insights into the use of DWT and wavelet energy analysis for evaluating
suspension fatigue. Future research can explore the refinement of these techniques, the
inclusion of additional parameters, and the development of real-time fatigue monitoring
systems to enhance suspension performance and reliability [63]. Azadi & Soltani
(2009) Investigated fault detection in vehicle suspension systems using continuous
wavelet transform (CWT) analysis. Focused on identifying faults in the damper and
upper damper bushing (UDB) components by approximating system natural
frequencies and frequency components with maximum energy using Morlet wavelet
functions. The study involved simulation in ADAMS/CAR software and validation
through laboratory tests. The authors suggested enhancing their method by integrating
wavelet scattering or discrete wavelet transform along with modified classifiers for
improved results and accuracy. Comparisons between these approaches and CWT

analysis were proposed to assess their effectiveness in fault detection. The research

30

provides valuable insights into fault detection in vehicle suspension systems and
suggests avenues for further improvement in fault detection capabilities [64]. In
conclusion Previous research on suspension failure detection techniques in automotive
and railway systems has contributed significantly to the understanding and
improvement of fault detection methods. These studies have utilized various
approaches, including physics-based models, data-driven models, wavelet analysis,
fault detection filters, and fault isolation algorithms. The findings have provided
valuable insights into the durability, vibration characteristics, fatigue life, and fault
detection capabilities of suspension systems. Further research is needed to address the
challenges and enhance fault detection techniques in practical applications, optimize
design and material selection, and develop advanced algorithms and methodologies for
integrating vibration fault detection with fatigue life prediction. These advancements
will contribute to improving suspension reliability, performance, and safety in

automotive and railway systems

2.3. Vibration Analysis for Fault Detection

Vibration analysis is a critical technique for detecting faults and predicting failures in
rotating equipment, offering a proactive approach to minimize unforeseen failures and
plant shutdowns. This literature review presents a compilation of studies that explore
various methodologies and applications of vibration analysis for fault detection in
rotating machinery. For instance, Nouman Khan and Ajit Prasad S L (2019) explore the
vibration characteristics of a gearbox with cracked gear teeth to facilitate early fault

detection. The authors employ a back-to-back gear test rig for vibration analysis and

31

utilize frequency spectrum and order tracking analysis for fault diagnosis. Results
demonstrate that faulty gears exhibit higher amplitude vibrations at the gear mesh
frequency (GMF), with amplitude increasing in proportion to the number of cracked
teeth. Additionally, frequency domain analysis reveals higher-order sidebands at the
GMF, further confirming the presence of defects. The study emphasizes the
effectiveness of order tracking analysis for fault diagnosis and underscores the
importance of timely detection of tooth fractures to avert catastrophic failures [65].
Building upon this, Nandi et al. (2005) provided a comprehensive overview of fault
diagnosis techniques for electrical motors. The authors cover various types of faults
including stator faults, bearing faults, broken rotor bar faults, and eccentricity-related
faults. They highlight vibration frequencies as a key indicator for detecting bearing
faults, along with thermal measurements and chemical analysis. For stator faults,
techniques such as online partial-discharge tests, axial flux-based detection, and
monitoring negative-sequence currents are discussed. Broken rotor bar faults can be
detected using motor current signature analysis (MCSA), as well as through voltage
and vibration analysis. Eccentricity-related faults can also be detected using MCSA and
vibration analysis, with frequency components depending on the eccentricity type. The
authors additionally explore the use of artificial intelligence techniques, such as neural
networks and fuzzy logic systems, for machine condition monitoring and fault
diagnosis, enabling the classification of fault signatures and diagnostic decision-
making. This article serves as a valuable resource for researchers and practitioners in
the field of electrical motor fault diagnosis [66]. Plante et al. (2015) further extend this

understanding by showcasing distinctive use of vibration analysis in detecting faults

32

and predicting failures in rotating equipment. The authors emphasize the significance
of equipment monitoring to mitigate the risks of unforeseen failures and plant
shutdowns. Vibration analysis is identified as the primary method for assessing
equipment conditions and predicting failures. The study conducts a motor condition
monitoring experiment, employing spectrum analysis software and MATLAB to
analyze measured vibration data. The severity of vibration and specific natural
frequencies are used to determine the motor's condition and identify fault types. The
article presents results for three fault conditions (unbalance, mechanical looseness, and
bearing fault), showcasing distinctive patterns and peaks in the frequency spectrum
associated with each condition. The study concludes by highlighting the efficacy of
vibration analysis and proposes further research on analyzing vibration trends for
accurate failure prediction and reduced maintenance costs [67]. Expanding the scope,
Sheng Fu et al. (2016) introduced a new method for mechanical fault diagnosis using
time domain analysis and adaptive fuzzy C-means clustering. It addresses the challenge
of identifying defects early due to component noise by calculating nine-time domain
parameters as characteristic vectors for fault detection. The proposed approach
demonstrates effectiveness in classifying different fault types, including micro-sized
faults, based on vibration signals. It outperforms other methods like Hilbert
transformation and wavelet denoising in detecting faults in rolling bearings. The
simplicity and direct signal processing of time domain analysis make it advantageous
in terms of processing time. Overall, the study validates the method's effectiveness and
robustness through experiments using bearing data [68]. Dong et al. (2021) address

prevalent challenges in existing methods by proposing a method to monitor bolt

33

looseness using vibration transmissibility analysis, addressing challenges in existing
methods. The approach utilizes accelerometers to measure vibrations above and below
cargo bolts. The spectral moment factor assesses torque level variations of the bolt
group, while the eigensystem realization algorithm (ERA) identifies subtle eigenvalue
changes to detect local bolt looseness. Experimental results demonstrate the method's
effectiveness in detecting both global and local bolt looseness, making it a practical and
cost-effective solution for ensuring safety in bolted joints across industries [69].
Parzinger et al. (2020) shift focus towards automated fault detection in building HVAC
systems using machine learning models and statistical tests on residuals. The study
emphasizes energy efficiency and the lack of cost-efficient methods for fault detection.
They use detailed simulation data from a residential case study house to compare fault-
free and faulty operations. Nine statistical tests are applied to analyze residuals for fault
detection. Results indicate accuracy is affected by data amount, fault type, and density.
Finding the best combination of tests is crucial for accurate fault prediction in building
HVAC systems [70]. Huang et al. (2019) leverage a two-stage machine-learning
architecture for motor fault detection and feature extraction. The method avoids
complex preprocessing by using motor vibration time-domain signals. The first stage
utilizes an RNN-based VAE to reduce the dimension of sequential data and improve
prediction accuracy. In the second stage, PCA and LDA further reduce dimensionality,
enabling visualization and detection of different fault modes. Experimental results
demonstrate over 99% accuracy in motor fault detection using a simple neural network.
The proposed method has significant advantages over other dimension reduction

techniques and is valuable for smart manufacturing and preventive maintenance

34

decision-making. Overall, the RNN-based VAE approach provides an effective and
efficient solution for motor fault detection in various industries [71]. Concurrently,
Belkacemi et al. (2020) investigate the detection of induction motor bearing lubrication
issues using Discrete Wavelet Transform (DWT) analysis with MATLAB/Wavelets
toolbox. Traditional time and frequency domain methods face challenges with non-
stationary vibration signals, making DWT a suitable alternative for accurate fault
identification. Experimental validation using vibration signals from healthy and
improperly lubricated bearings reveals that the DWT enhanced by MATLAB/Wavelets
toolbox is effective in diagnosing lubrication defects. The healthy bearing signal
exhibits lower magnitude peaks and lacks periodicity compared to the improper
lubricated bearing signal. The DWT decomposition process, analyzing magnitude
ranges and histogram distributions, supports the procedure's efficiency. The paper
suggests future research in intelligent techniques for bearing fault detection and
monitoring [27]. Hashemi et al. (2013) proposed a fuzzy model for auto-detecting gear
faults based on vibration signal analysis. The model combines conventional methods
and uses wavelet transform and statistical indexes as fault criteria. It simplifies the
decision-making process by employing fuzzy systems, considering gear signals and
fault effects. The model is validated through an empirical setup and performs well in
detecting gear faults, even for different setups. It can estimate gear health and status
using fuzzy logic, offering a simplified approach to gear fault diagnosis despite limited
data availability and manufacturing challenges. Overall, the paper's contribution lies in
proposing an effective fuzzy-based method for gear fault detection and health

assessment [72]. Wang et al. (2019) introduced an enhanced cyclic modulation

35

spectrum (CMS) algorithm for detecting broken rotor bar (BRB) faults in induction
motors (IMs). The CMS algorithm, based on vibration signature analysis, handles non-
stationary and non-linear signals characteristic of IMs with BRB faults. It optimizes
window function, length, and step size for short-time Fourier transform (STFT) to
improve accuracy and computational efficiency. Compared to motor current and
vibration signature analyses, the improved CMS algorithm offers better fault detection
and noise immunity. Simulation and experimental studies validate its efficacy in
accurately diagnosing healthy and faulty motors with BRBs, making it a promising tool
for online fault diagnosis [73]. Guo et al. (2018) contribute to early fault diagnosis in
planetary gearboxes based on wavelet packet energy (WPE) and modulation signal bi-
spectrum (MSB) analysis. Vibration-based analysis was used to extract fault features
by decomposing vibration signals into time-frequency subspaces using WPD. The
method accurately diagnosed faults in experimental tests, including chipped sun gear
tooth and inner-race fault cases. It offers advantages over existing methods by being
data-driven, not requiring extensive system knowledge, and overcoming the limitations
of other analysis techniques. The combination of WPE and MSB enables effective fault
feature extraction and noise suppression, promising more accurate fault diagnosis in
planetary gearboxes, and ensuring machinery safety and reliability. Future research can
focus on optimization and addressing method limitations [74]. Meanwhile, Y. Li et al.,
(2020) propose a novel methodology for wheelset bearing fault detection in railway
vehicles. The method comprises two stages morphological signal processing and
morphological image processing. It utilizes a double cross-correlation operation to

reduce noise and emphasize fault features in the signal. The filtered signal is

36

transformed into a time-frequency domain image using wavelet transform, and
morphological image processing techniques are applied to enhance fault features while
eliminating noise. The proposed amplitude-sum-based peak search algorithm extract’s
fault features from the time-frequency plane. Real vibration signals from a wheelset
bearing test rig were used for testing, showing superior performance compared to other
methods in detecting various bearing faults, promising safer and more reliable railway
operations [75]. Popescu and Aiordachioaie (2018) further expand fault detection to
rolling element bearings (REB) using change detection and optimal segmentation of
vibrating signals. The authors highlight the importance of fault modeling and predictive
health monitoring for REB to prevent machine failure and economic losses. They
provide an overview of existing condition-monitoring and fault diagnosis techniques
for REB. Their proposed method employs an optimal segmentation algorithm based on
a linear regression model with piecewise constant parameters, implemented in a
MATLAB toolbox called VIBROTOOL. Experimental evaluations using data sets from
Case Western Reserve University demonstrate the method's effectiveness in detecting
faults in different components of REB. The method contributes to the field of condition
monitoring and fault diagnosis in rotating machines, particularly in the context of
rolling element bearings. Overall, the paper offers a promising approach for fault
detection in REB through change detection and optimal signal segmentation [76]. Zhu
et al. (2021) propose a comprehensive method for diagnosing bearing faults in rotating
machinery. Their approach involves time-frequency feature extraction using Wavelet
Packet Transform (WPT), followed by Multi-Weight Singular Value Decomposition

(MWSVD) for relevant feature extraction and dimensionality reduction. A Support

37

Vector Machine (SVM) classifier is then used for fault diagnosis. The method is
validated with data sets from different sources and outperforms traditional techniques
like PCA and SVD in fault diagnosis and feature extraction. The proposed approach
shows promise for practical applications in rotating machinery maintenance and fault
diagnosis [77]. Liang et al. (2018) contribute to the field by introducing a fault detection
method for stator inter-turn short-circuit in Permanent Magnet Synchronous Motors
(PMSMs) using stator current and vibration signals. The authors introduce a time-
frequency method based on an improved wavelet packet transform to analyze the
signals and detect short circuit faults. The feasibility of the approach is demonstrated
through experimental tests on a three-phase PMSM. Signal-based methods, which
analyze the signals collected from the motors, are preferred for PMSM fault diagnosis
due to their speed and independence from specific models. The study contributes to the
field of motor fault diagnosis and highlights the importance of signal-based methods
for detecting faults in PMSMs [78]. In 2019, Rahnama et al. introduced a novel fault
detection method for diode rectifiers in brushless synchronous generators using
vibration signals. The approach involves wavelet transform-based feature extraction
and multiclass support vector machines for classification. A modified sequential
forward subset selection approach is employed for enhanced accuracy. The study
includes an extensive literature review on fault detection using vibration signals and
explores various fault types and their impact on machine vibration behavior.
Experimental results demonstrate the method's effectiveness in detecting rectifier
faults, outperforming conventional techniques [79]. The reviewed studies demonstrated

the efficacy of diverse fault detection techniques. Integration of wavelet and machine

38

learning methods holds promise for accurate fault diagnosis. Future research should
explore deep learning and big data applications to further enhance fault detection in
rotating machinery, benefiting industries with improved reliability and reduced
maintenance costs.

2.4. A Comparative Study of Deep Learning Models for Vibration-Based Fault

Identification in Rotating Machinery

The field of fault identification in rotating machinery has witnessed significant progress
with the integration of deep learning techniques. This paper presents a comprehensive
comparative study of two state-of-the-art deep learning models for vibration-based fault
diagnosis, each offering distinct advantages over traditional methods. In a 2017 study,
Zhang Wei, Peng Gaoliang, and Li Chuanhao proposed a novel approach that utilizes
Convolutional Neural Networks (CNNs) with a 2D representation of vibration signals
as input. This approach eliminates the need for time-consuming data preprocessing, a
common requirement in conventional methods like Fast Fourier Transform (FFT) and
Artificial Neural Networks (ANN). Experimental results showcase the method's
effectiveness, demonstrating improved fault diagnosis accuracy and stability when
compared to a baseline system using FFT paper's significant contribution to intelligent
fault diagnosis highlights its potential for further research and development [80]. In a
parallel study, Shaheryar et al. (2017) introduces and ANN. Additionally, real-world
datasets from the Case Western Reserve University Bearing Data center validate the
model's performance. Although specific CNN hyperparameters and computational
efficiency details are not fully disclosed, the MCNN-SDAE, a deep-learning framework

for vibration-based fault identification in rotating machinery. This model combines

39

Convolutional Neural Networks (CNNs) with Denoising Autoencoders to facilitate
unsupervised feature learning from raw vibration signals. MCNN-SDAE surpasses
traditional methods in fault identification on a benchmark dataset of bearing-related
faults. By effectively capturing complex fault dynamics and reducing the need for
manual feature engineering, MCNN-SDAE exemplifies the capacity of deep neural
architectures for vibration-based fault diagnosis in mechanical systems [81]. both
proposed deep learning models offer valuable insights and advancements in the field of
fault identification in rotating machinery. While the first model focuses on exploiting
2D representations of vibration signals and simplifying data preprocessing, the second
model emphasizes the strength of unsupervised feature learning through CNNs and
Denoising Autoencoders. The findings from this comparative study can guide
researchers and practitioners to explore hybrid approaches that leverage the strengths
of both models, ultimately enhancing the accuracy and efficiency of vibration-based

fault diagnosis.

In conclusion, the application of artificial intelligence (Al) for fault detection in rotating
machinery shows great potential for improving accuracy and reliability. The integration
of Al-based machine learning (ML) models with vibration analysis techniques offers a
promising approach to detecting faults in rotating machinery. The reviewed studies
highlight the importance of utilizing Al and ML methods in vibration-based fault
diagnosis (VFD) to enhance the accuracy and efficiency of fault detection. One area of
further research is the optimization of parameters in vibration-based ML models to
ensure accurate and reliable fault diagnosis. By considering the dynamics of the

machine and optimizing the vibration parameters, the developed ML models can be

40

more effective in predicting faults accurately, even when applied to different machines
or under different operating conditions. Another avenue for further research is the
comparison and exploration of different Al techniques, such as artificial neural
networks (ANNSs) and adaptive neuro-fuzzy inference systems (ANFIS), for fault
detection in rotating machinery. Comparative studies between ML algorithms and Al
neural networks can provide insights into the effectiveness and suitability of different
approaches for detecting minor faults in induction motors. To achieve better accuracy
and efficiency, future research should focus on utilizing larger and more diverse
datasets, integrating multiple Al and ML methods, and optimizing the performance of
the developed models. The use of advanced Al techniques, such as deep learning
models, can further enhance fault detection capabilities by capturing complex fault
dynamics and reducing the need for manual feature engineering. Additionally, the
development of efficient algorithms and the utilization of parallel computing techniques
can enable real-time fault detection, reducing the computational time required for
analyzing large amounts of data [82]. The integration of edge computing and cloud-
based platforms can also facilitate real-time monitoring and remote fault diagnosis. In
conclusion, further research should focus on utilizing Al for fault detection in rotating
machinery, exploring different Al techniques, optimizing parameters, and developing
efficient algorithms for real-time fault detection. By addressing these areas, researchers
can enhance the accuracy, efficiency, and timeliness of fault diagnosis, leading to

improved reliability, performance, and safety in various industries.

41

[11l. METHODOLOGY

Our research methodology forms the bedrock of our quest for efficient fault detection
in diverse road obstacles. We harness the power of Long Short-Term Memory (LSTM)
networks, Neural Networks (NN), and Support Vector Machines (SVM) to address our
objectives.

LSTM networks, designed for sequential data, are first elucidated for their role in
decoding intricate dependencies. NN's mathematical foundations are outlined to
reinforce our understanding. Comparatively, LSTM networks and SVM models are
dissected regarding complexity, feature engineering, scalability, interpretability, and
performance.

Hardware is pivotal. The Intel(R) Core(TM) i7-7820HK CPU at 2.90GHz, paired with
the NVIDIA GeForce GTX 1080 GPU, drives our experiments.

Feature extraction techniques such as Discrete Wavelet Transform and wavelet
scattering in Matlab enhance our data analysis.

This holistic approach equips us with the tools, techniques, and computational power
to explore fault detection across various road obstacles, making our research a beacon
of innovation in the field.

3.1. Simulation Setup

The simulation setup of the study employed two software tools MSC Adams and
MATLAB. The car model represented a front-wheel-drive salon car and comprised ten
interconnected systems, including the steering system, front and rear tires, brake

system, sedan body system, power system (consisting of engine, transmission, and

42

transverse components), stabilizer bar, rear suspension system, front Macpherson

suspension system, and the drive line (Figure I11-1).

Rear tire

7 system
Brake System Body System

Power
System

Front tires system
N\ Rear Suspension

System
Front
——== Suspension System

"~ Stabilizer bar

Figure I11-1 Car Model in MSC Adams
Central to the analysis was the intensive examination of the front Macpherson
suspension system, with particular emphasis on the left outer tie rod (Figure 111-2).
Signals of pivotal importance were exclusively extracted from this component for in-

depth scrutiny.

Outer Tie-Rod Left

Figure I11-2 Left Outer Tie Rod

43

Upon successfully integrating the car model into MSC Adams, meticulous simulations
ensued, employing a straight-line and maintained road scenario. The simulation
parameters included 20 seconds, a step frequency of 50, a velocity of 20 km/hr, and a

gear position of 20 (Figure 111-3).

Full-Vehicle Analysis: Straight-Line Maintain

Vehicle Assembly l sedan_FWD L|
Assembly Variant ldefault L] ﬂ
Output Prefix l|
End Time / Duration lzo [Sec]

Step Frequency L| [50 [Hz]
Analysis Mode l interactive j
Road Data File 6. I mdids://acar_shared/roads tbl/3d_bump.rdf
Velocity I 20 I km/hr :J
Gear Position I 2 j

-

v Quasi-Static Straight or Skidpad Set-Up

Maintain l velocity L]

Steering Input] straight line j

[v Create Event Log File v Add Vehicle Dynamics Requests

I~ Compute Characteristic Values
'L—\‘l ﬂ!:’, OK I Apply | Cancel

Figure 111-3 Simulation Parameters in MSC Adams
Four discrete and meticulously crafted tests (scenarios) were executed on the car model,
delving into the realm of the angular acceleration of the left outer tie rod on the X-axis.
The outcomes derived from these tests offer profound insights into the car dynamic
behavior under diverse road conditions, akin to the interpretive potential of real-life

accelerometer readings.

44

Sine Road Scenario This scenario ingeniously replicated a Sinewave-like obstacle,
spanning an expanse of 80 meters (Figure 111-4). The resultant angular acceleration is

vividly illustrated in (Figure I11-5).

80 Meters Sine Shape
Obstacle

Figure 111-4 Sine Road Scenario

10000.0

| — front_macpherson_strut_susp.gel_tierod_XFORM.WDX |

5000.0 I

00 (LUCERY

Angular Accleration (deg/sec?)

-5000.0
-10000.0
00 50 10.0 15.0 200
Time (sec)

Figure I11-5 Angular Acceleration - Sine Road Scenario

45

Roughness Obstacle Scenario A simulation introduced a distinctly uneven road surface,
incorporating a roughness obstacle stretching across 85 meters (Figure 111-6). The

ensuing angular acceleration is perceptibly displayed in (Figure I11-7).

10 Meters Roughness Road

Figure 111-6 Roughness Obstacle Scenario

5000.0 .
40000 | —front_macpherson_strut_susp.gel_tierod_XFORM WDX|

3000.0
20000 |
10000 |
00 "l LR LA T

I &l |

b G LA] Ll |'l||w'|||'J i K
10000 | R l Lk
-20000 . ‘
30000
40000
50000

00

50) 100 ’ 150 ’ 200
Time (sec)

Angular Accleration (deg/sec?)

Figure 111-7 Angular Acceleration - Roughness Road Scenario

46

Pothole Obstacle Scenario This scenario emulated a road with a pothole obstacle
spanning 10 meters (Figure 111-8). The consequential angular acceleration is vividly

portrayed in (Figure I11-9).

10 Meters Pothole
Obstacle

Figure 111-8 Pothole Obstacle Scenario

30000.0

—front_macpherson_strut_susp.gel_tierod_XFORM.WDX

20000.0

10000.0

0.0 L

100000 . : . : :
0.0 5.0 100 190 200
Time (sec)

Angular Accleration (deg/sec?)

Figure 111-9 Angular Acceleration - Pothole Road Scenario

47

Bump Obstacle Scenario Intriguingly, a bump obstacle measuring 2 meters in length
and peaking at a maximum height of 7 cm was tactfully introduced (Figure 111-10). The

subsequent angular acceleration findings are depicted in (Figure 111-11).

2 Meters Length
7 cm Height <.
Bump Obstacle —

Figure 111-10 Bump Obstacle Scenario

U 150000

9, — front_macpherson_strut_susp.ger_tierod _XFORMWDX

~ 100000 :

0

3 50000 L

: UO wr'l Huy' 1 \rw

o !

'S 50000

U

@ 100000

9 150000

g

w -200000

0

5 -250000 :

7 00 50 10.0 15.0 200
c .

q Time (sec)

Figure 111-11 Angular Acceleration - Bump Road Scenario
The acquisition and analysis of angular acceleration signals underpinned meticulous
scrutiny for each distinct scenario. This rigorous data collection procedure echoed the

methodologies applied to real-life accelerometers, ultimately generating four

48

distinctive signals synonymous with the four individual scenarios (Figures I-5, I-7, 1-9,
and 1-11).

Post-simulation (Figure 111-12), the ensuing results were seamlessly transferred as .tab
files to the MATLAB platform for a profound analytical phase. This meticulous
MATLAB analysis encompassed an array of procedures, including signal
preprocessing, comprehensive data labeling, intricate feature extraction, and precise

training and testing signal classification.

RAHTZEMAe LT L.RA4e

4000.0 7
3000051
2000.0 4

| ,_I ,
mzﬂ A !Ht\ﬁf"!!”llﬂ ruflwiﬂl[r’l h'l ("IH .J'r \hﬂ A || 1 N ﬂl f
o00o] \V ~-J|JlU uvl Lr! W .[i | i WJ W V _r

—front macphc son_strut_susp.gel_tie rod XFORM.W Ll}'{

\
-2000.04 !
300004
-4000.0

-5000.0
0.0 5.0 100 15.0 200

Analysis: time_maintain Time (sec) 2024-02-26 15:57.28

Angular Acceleration (degisec**2)

I S

Add Cures

Arkd Corves To Cument Piot

Clawr Fiat

Indegendent Auis

& Tme © Data

T

! 1 E Ad| U GST Mosllycowdy & 0B O W @ 04 mNG m;";:ﬂ L}

Figure 111-12 MSC ADAMS Post-Simulation
The sophisticated array of models implemented within the MATLAB environment
facilitated effective interpretation and astute visualization of the outcomes. This holistic
approach contributed substantially to our grasp of the multifaceted implications of
diverse road obstacles on the angular acceleration patterns of the left outer tie rod within

the context of the front Macpherson suspension system.

49

3.2. Signal Processing Procedure

The raw data obtained from MSC Adams, saved as .tab files, is efficiently imported
into MATLAB using the "importdata” function, resulting in the following assignments
MATLAB

SineWave = importdata('Sinewave.tab', '\t').data;

Roughness = importdata('Roughness.tab’, '\t").data;

Pothole = importdata('Pothole.tab’, '\t").data;

Bump = importdata('bump.tab’, '\t').data;

Subsequent to data import, the temporal and angular acceleration data from each

scenario file are meticulously extracted (Figure 111-13).

Normal Sine Road Obstacle Signal

< 5000 F
=]
s
£ o U
D
O
Q
< . . :

-5000

(o] 5 10 15 20
Time

4000 Normal Roughness Road Obstacle Signal
S
hg 2000 [1
E o _ 7 W r*'wml \ Y M wwrw |
D
8 -2000 + E
< ; i i

-4000

o 5 10 15 20

Time
.10¢ Normal Pothole Road Obstacle Signal

| | ANLL B

"o 5 10 15 20

Acceleration
- o - N W

Time
Normal Bump Road Obstacle Signal
& 2000 . - .
o
:.g 1000 ’ L
s o R ""‘“J fW“ "'A'x'd %““’V -
8 -1000 | H F‘
(&)
<€ 2000 |
o] 5 10 15 20

Time

Figure 111-13 Signals Extracted by MATLAB For Four Road Obstacles

50

. This process yields the essential signals represented in (Figures I11-5, 111-7, 111-8, and
1-11).

To simulate wear in the Tie rod, a practical limitation in MSC Adams, we manipulate
angular acceleration parameters by altering degrees. This adjustment exploits the
fundamental correspondence between angular acceleration and (Degree/sec?).

3.3. Data Preparation

In this section, a dataset of 1000-point signals underwent two tests— one with and one
without noise. A third test introduced noise, subsequently denoised using a wavelet
denoising MATLAB function. The chosen signal length and noise variations simulate
real-world scenarios, enabling comprehensive methodology evaluation. This section
details the steps taken to address noise challenges and emphasizes the importance of

the denoising process in enhancing signal quality for subsequent analysis.

3.3.1. Operational Modes

The initial mode focuses on distinct signal behavior. Normal signals exhibit a
fluctuation range spanning from 0 to around 0.001. Faults are systematically
introduced, encompassing a range from 0.005 to 2 degrees across diverse road types
(Figure 111-13). This design establishes four distinct fault levels, contributing to a
collective pool of 400 signals. Each fault level comprises precisely 100 signals. Post-
signal generation, healthy, and fault signals are categorized and labeled meticulously.
Signal shuffling ensues, culminating in their partitioning into 80 signals for training and

20 for testing (Figure 111-14).

51

400

I Training Set
[Test Set

350

250 -

200 -

150

100 -

50

Normal Level 1 Level 2 Level 3 Level 4

Figure 111-14 First Test Mode with Four Level of Faults 80% Training 20% Testing
The ensuing dataset is then prepared for subsequent feature extraction. A rigorous
evaluation of the 15 fault detection models is conducted, with the most accurate models
subjected to a two-step testing process involving the introduction of noise, simulating

conditions akin to a grainy road, followed by denoising testing.

52

Acceleration

Acceleration
B B S e e

Original Sine Road Obstacle Signal

Tlme

.10* Original Pothole Road Obstacle Signal

f u,»

2 4 6 8 10 12 14 16 18
Time

Original Bump Road Obstacle Signal

VY

’ !

2 4 6 8 10 12 14 16 18
Time

20

Acceleration

Faulty Sine Road Obstacle Signal

.10¢ Faulty Pothole Road Obstacle Signal

£ 5000 F [
9 9
- -
© ©
- S
2 9 — K T—
[} @
Q o
Q Q
< :) < L0)

-5000 4

0 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Time Time
Onglnal Roughness Road Obstacle Signal 4000 Faulty Roughness Road Obstacle Slgnal

c s
_° L]
0(-': 2000 0‘-" 2000
i o
2 w 8 o} Lvmv
(] r @
3 2000 f 3 2000
< : <

4000 -4000

8 20 0 8 20

Tlme

Acceleration
A o w N

é 4j 6 é 1‘0 12 14 16 18 20
Time
Faulty Bump Road Obstacle Signal

2000
1000

0
-1000
-2000 £

RN Y

| i ¥
‘ (II

|

o L e

2 4 6 8 10 12 14 16 18 20
Time

Figure 111-15 Normal Signal and Generated Faulty Signals for Four Road Obstacles
In the second mode, the focus is on healthy and wearily representation (Figure I11-15).
A set of 400 healthy signals per road type is employed. Wear is simulated, ranging from
no wear to 0.001, while faults span between 0.005 to 2 degrees, emulating actual
conditions. Similar to the preceding mode, signals undergo meticulous labeling,
shuffling, and partitioning for training and testing (Figure 111-16).

The ensuing dataset is also primed for feature extraction. A comprehensive evaluation
of 15 fault detection models is executed under three key scenarios unaltered signals,
signals influenced by added noise mimicking a grainy road, and signals subjected to

denoising prior to testing.

53

I Training Set
I Test Set

Figure 111-16 Roads Under Stress Testing Faulty and Weary Conditions with an 80-20

Split

3.3.2. Noise additions

The noises that will be added is a gaussian noises with standard deviation 30.

we use the code in MATLAB to add this noise as below

noiser = 30 * randn(size(AccData(2end,))

The code snippet provided generates random noise using the formula

noiser = 30 * randn(size(AccData(2end,)))

This code is used to generate random noise with a normal distribution and a mean of 0
and standard deviation of 30. The “randn’ function in generates random numbers from
a standard normal distribution, and the “size™ function is used to determine the size of

the ~AccData” matrix. The mathematical model related to this code is the random walk

54

plus noise model. The random walk plus noise model is a commonly used model in
time series analysis and econometrics. It consists of a random walk component and a
noise component. The random walk component represents a stochastic process that
evolves, while the noise component represents random fluctuations around the random
walk. The random walk plus noise model can be represented mathematically as:
Yt=Yt—1+¢t (1n.1)
where Y (t) is the value of the random walk plus noise process at time t, and &(t) is the
noise component at time t. The random noise generated by the code snippet can be seen
as the (t) term in the model. It represents the random fluctuations around the random

walk component [83].

3.3.3. Denoiser

When addressing the challenge of noise reduction, particularly in scenarios like the
generation of noise from a grainy road assumption, MATLAB's wdenoise function
emerges as a robust and comprehensive solution. This function employs a sophisticated
combination of techniques, seamlessly integrated to achieve optimal results in signal

denoising.

3.3.3.1. Empirical Bayesian Method

At the core of the denoising process is the application of the empirical Bayesian method.
This advanced statistical approach dynamically tailors the prior information based on
the observed data. In contrast to traditional Bayesian methods, which rely on fixed
priors, empirical Bayesian estimation adapts the prior distribution using the available

data.

55

The central equation, expressing the posterior given the data, exemplifies this
adaptability:

P(61y)xP(y|6)-P(0) (11.2)
The equation balances the updated belief distribution of a parameter (8) following the
observation of data (y). It achieves this balance by considering the likelihood of
observing the data given the parameter P(y|0), the initial belief distribution of the
parameter P(0), and the overall probability of observing the data P(y). This equation
symbolizes the adjustment of the parameter distribution after data observation,
effectively reconciling the likelihood and the initial belief (prior). The empirical
Bayesian method serves as a bridge between the challenge of determining a suitable
prior and the necessity for data-driven inference. However, caution is advised in its

application to prevent potential biases [84].

3.3.3.2. Cauchy Prior

The method incorporates a Cauchy prior, which is a probability distribution
characterized by its heavy tails. This characteristic makes it particularly effective in
modeling data with outliers or heavy-tailed noise. The probability density function
(PDF) of the Cauchy distribution, represented as:

_ 1 2 (111.3)
ey = (2) * Grra =)

The Cauchy distribution is characterized by three key parameters x (independent

variable), p (location parameter), and y (scale parameter). p determines the center of

the distribution, while y controls its spread. The reciprocal of wy ensures normalization.

56

Cauchy distributions have heavy tails and lack finite moments, making them useful in
statistical modeling.

By integrating the Cauchy prior into a statistical method, it demonstrates robustness in
handling scenarios with a high presence of outliers. The heavy tails of the Cauchy
distribution allow it to assign non-negligible probabilities to extreme observations,
making it resilient to the influence of outliers. This robustness contributes to the
method's effectiveness in noise reduction, especially in situations where traditional

methods might be sensitive to extreme values [85].

3.3.3.3. Sym4 Wavelet
A key element in the denoising process is the utilization of the Symlet 4 wavelet
function. Wavelets serve as fundamental tools in wavelet-based signal processing and
denoising, enabling the analysis of signals across various scales. The Symlet 4 wavelet,
available both in the time domain and as a representation through the Fourier transform,
facilitates a nuanced understanding of signal characteristics. Although the mathematical
formulation of this wavelet is intricate, its adoption in the denoising process signifies
the method's adaptability to diverse signal structures and its capability to accurately
capture important features [86].

A X, —tla) if X; > t(a) (111.4)

0o(X); =40 if 1] < t(a)

X, +tla)if X; > —t(a)

Here, 8, (X);is the posterior median estimate of the i-th coordinate of the true signal 0,

Xi is the i-th observation, a is the prior probability of non-zero coordinates, and t(a) is

a threshold that depends on a and the noise level.

57

3.3.3.4. Posterior Median Threshold Rule

Integral to the denoising methodology is the implementation of the posterior median
threshold rule. This strategy guides the denoising process by determining the wavelet
coefficients that predominantly represent noise. The main equation representing the
posterior median threshold rule is the posterior median (z;w) through the distribution
function:

u
F1 (ulz) :j- fi(ulz)du (11.5)

Here, Fi(ulz) is the cumulative distribution function (CDF) of the posterior
distribution, where p is the variable representing the value of the posterior median, z is
the parameter representing the observed data, and fi(ulz) is the probability density
function (PDF) of the posterior distribution. This distribution function is crucial in
determining the threshold t(a) and, consequently, guiding the denoising process [87].
In summary, the wdenoise function within MATLAB harnesses the power of the
empirical Bayesian method, integrates the Cauchy prior, employs the Symlet 4 wavelet,
and incorporates the posterior median threshold rule. This synergistic amalgamation of
techniques establishes the foundation for effective signal denoising. By addressing
outliers, accommodating diverse signal structures, and retaining crucial signal
characteristics, this approach yields high-quality denoised signals, making it an
invaluable tool in noise reduction scenarios.

3.4. Feature extraction

In the realm of signal processing and pattern recognition, feature extraction stands as a
pivotal stage. It entails the conversion of raw data into a pertinent set of features that

holds the potential for subsequent analysis or categorization. Two prominent

58

methodologies for feature extraction have been studied discrete wavelet transform
(DWT) and wavelet scattering. This discussion delves into the underlying principles of
these techniques, their practical applications in distilling significant attributes from
signals, and a comprehensive evaluation of their efficacy in portraying signal

characteristics.

3.4.1. Discrete wavelet Transform (DWT)

The Discrete Wavelet Transform (DWT) stands as a fundamental mathematical
technique employed to dissect and scrutinize signals and datasets. Its significance
resonates across diverse domains like image and signal processing, data compression,
and feature extraction [88].In contrast to the conventional Fourier Transform, which
portrays data through sine and cosine waves spanning distinct frequencies, the DWT
dissects data across multiple scales and resolutions. This intricacy is achieved by
breaking down the input into an array of wavelets, adept at capturing temporal and
frequency insights [89]. Such partitioning opens the door to more versatile and efficient
analysis of signals and data, rendering the DWT a pervasive choice in a multitude of

applications.

3.4.1.1. Concept of Wavelets

Wavelets are small oscillating functions that are used in various applications of signal
processing, data compression, and analysis. They provide a way to analyze signals and
data at different scales, allowing us to capture both localized and global features in a
more flexible manner than traditional Fourier-based methods.

Within the domain of the Discrete Wavelet Transform (DWT), wavelets assume a

pivotal role in the intricate processes of signal decomposition and subsequent

59

reconstruction. Employing wavelet functions, the methodology entails a meticulous
traversal along the signal, resulting in the extraction of salient insights [90].

The efficacy of the DWT becomes manifest in its ability to fractionate signals into
distinct frequency constituents, encapsulating both low-frequency trends and high-
frequency intricacies. This decomposition unfolds through the convolution of the signal
with a gamut of wavelet functions, each distinguished by unique scales and positional
parameters [90].

The Discrete Wavelet Transform (DWT) involves a distinct methodology wherein the
discretization of scaling and shifting parameters is employed, obviating the direct
sampling of either the signal or its transform. This strategic approach engenders
heightened high-frequency resolution at low frequencies, concurrently facilitating
elevated time resolution for higher frequencies. Notably, this approach ensures a
uniform level of time and frequency resolution across all frequency bands.

The decomposition of a discrete signal (x[n]) can be succinctly articulated as follows,
drawing inspiration from the seminal work of [88].

-1
x[n] = z Ajo,k0 D jokoln] + Z Z djo,k0, D jo,ko

k j=jo k

(111.6)

In this context, the discrete-time signal (x[n]) is represented as the sum of two terms.
The first term involves a summation over indices (jo) and (ko), denoted as
(ajo,k0,Djoko[N]), where (a) represents coefficients associated with these indices. The
second term consists of a double summation over indices (j) and (k), ranging from (jo)

to (j-1) and across all (k) respectively, denoted as (djo,ko,Djo,0). The parameters (jo) and

60

(ko) serve as initial indices, defining the range over which the summations occur within
the signal (X[n]).

This decomposition methodology uniquely equips the DWT to adeptly scrutinize the
temporal (Figure I11-17) and frequency attributes of a signal across a panorama of
resolutions. Consequently, the technique adeptly captures both low-frequency trends
and high-frequency intricacies, thereby substantiating its indispensability as a potent

tool within the realm of signal processing [88].

DWT Decomposition Tree

[}
Yain,
Sign

L] »
HPFT LPFT
.HPFQ .LPFQ

Iy PF4 . 'DF4

Figure 111-17 Discrete Wavelet Transform Decomposition Tree
3.4.1.2. Properties of Wavelets

Wavelets possess two significant properties, namely orthogonality and biorthogonality.
In our project, we will mainly focus on utilizing the orthogonality of wavelets.

Orthogonal wavelets, in particular, exhibit a crucial attribute where the inner product

61

of the wavelet function at one scale and position with the wavelet function at another
scale and position is equal to zero (Figure 111-18). This inherent orthogonality simplifies
both the analysis and reconstruction procedures. Moreover, orthogonality enables the
conservation of energy during the transformation process in orthogonal wavelet
transforms. By leveraging these orthogonality properties, we can enhance the efficiency

and accuracy of our project's analysis and reconstruction techniques [91].

db4 : phi ' db4 : psi

Figure 111-18 Orthogonal Wavelets Two Different Scale and Position But the Product

is Zero.

3.4.1.3. Types of Wavelet Families

Diverse wavelet families are at one's disposal, each characterized by unique attributes
aptly suited for various signal types and applications. Among the well-established
wavelet lineages are the Haar, Daubechies, Symlets, Coiflets, Biorthogonal, Morlet,

and Mexican Hat families [92].

62

Common Wavelet Families
Haar 04 Daubechies (db4)) Symlets (symd) 5 210 Coiflets (coifd)
: 2 1 T

08

06

04 04 | 06

02

. Biorthogonal (bior3.5) Morlet Mexican Hat

Figure 111-19 Common Wavelet Families
Our current experimental focus is dedicated to the exploration of the Daubechies 4 and
5 wavelet families (Figure 111-19), with a particular emphasis on decomposition at level
5. Situated within the intermediate range spanning from db2 to db8, these chosen
wavelet families have garnered recognition for their notable ability to refine precision
within the field of vibration analysis. A noteworthy point of intrigue lies in the
Daubechies wavelets, often denoted as "dbN," wherein the parameter N signifies the
count of vanishing moments. This numerical identifier underscores their exceptional
efficacy in capturing intricate patterns and nuances during the decomposition process,
particularly when employed at the fifth level [93]. Renowned for their succinct support
and efficient frequency localization, as illustrated in (Figure 111-20), these wavelets

present a distinguished presence in the field.

63

Different Types of Daubechies Wavelets

db2 Wavelet (Scale 4) 5 Scaling Function (Scale 4)
® N o
- 1 \ ks
505 \ g0
£ 0 e E
< */—2_'_7_‘{_ ~ 1 L L I { 2 I L L I I L
1.5 1 -0.5 0 0.5 1 1.5 2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Time Time
db4 Wavelet (Scale 6) Scaling Function (Scale 6)
o 1 ™ 2 1
205 | N 2 05f
= — IA l\, EL 0
I —_— 05+
£ — .) <05 — ‘ ‘ .
-1 -0.5 0 0.5 1 1.5 -1 -0.5 0 0.5 1 15
Time Time
db6 Wavelet (Scale 8) Scaling Function (Scale 8)
o | ' fi ‘ o ' ‘ '
el \ el
2057 | 2
= L_ g0
E Or — : E
< . N . . < 4]
1.5 1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5
Time Time
: db8 Wavelet (Scale 10) Scaling Function (Scale 10)
4 \ € 05}
205 . o
= i 3 0
£ Of = E -0.57
< ‘ / 1k
1.5 1 -0.5 0 0.5 1 -1.5 -1 0.5 0 0.5 1
Time Time

Figure 111-20 Different Types of Daubechies Wavelets

Filter banks play a crucial role in the practical application of the Discrete Wavelet
Transform (DWT), a method that deconstructs signals into various frequency
components.

In the context of the DWT method, a pair of filters known as the low-pass filter (LPF)
and the high-pass filter (HPF) form a filter bank. The LPF allows the passage of low-
frequency elements, while the HPF permits the transmission of high-frequency
components. This process is combined with down-sampling, which reduces the
sampling rate and provides a more concise representation of the original signal [94].
Mathematically by sampling the Continuous Wavelet Transform (CWT) on a dyadic
grid, which means selecting specific values for translation and scale parameters [95].
In this context, 'n" and 'm' are sets of positive integers, and 'N' represents the number of

64

samples. These parameters are discretized to create the DWT. Once discretized, the
wavelet function can be defined as follows:

DWT,(j, k) =f s(t)pj (Hadt. (1.7)

In this equation, ' j represents the scale parameter indicating the scale of the wavelet
function, k denotes the translation parameter specifying the shift of the wavelet
function, and k) (t) signifies the complex conjugate of the wavelet function with y
scale j and translation k. The integral computes the inner product between the signal
s(t) and the complex conjugate of the wavelet function jk over the entire range of t,
facilitating the calculation of the discrete wavelet transform (DWT). The outcome
DWT wjk provides information about the signal's decomposition at scale j and
translation k, aiding in signal analysis and feature extraction.
For the wavelet function y (t) , it is defined as:

00 (©) = 202t~ k) (118)
The DWT breaks down a signal into its coarse and detailed components by applying a
sequence of high-pass and low-pass filtering operations based on the following

equations:

Yhign (k) = Z s(n).h(2k —n) (111.9)

n

ylow(k) = Z S(ﬂ)h(Zk — n) (|||10)

n

In equations (111.9) and (111.10), ynigh(K), Yiow(K) represent the results of applying high-

pass and low-pass filters, respectively, to the signal s(n), followed by down sampling

65

by a factor of 2. These operations are performed using the impulse responses h(n) and
g(n). Specifically, ynign(K) is obtained by convolving s(n) with the impulse response
h(2k—n), while yiow(k) is obtained by convolving s(n) with the impulse response
g(2k—n). The summation is carried out over all samples n. The coefficients obtained
from the low-pass filter are referred to as "approximation" coefficients (A), while those
from the high-pass filter are called "detail” coefficients (D). The detail coefficients by

can be calculated using the following equation:

b = f s(O@j (O)dt (111.11)
Where k) represents the wavelet functions defined as:
0u0® =1/(/2)) ¢ <t —zifz’) (111.12)
Similarly, the approximate coefficients Cjx) are calculated as:
Gk = J s(t)@;, (B)dt (111.13)
Where @ () are the scaling functions, defined as:
B0®) = 1/(y2)) 9 <t ‘Zifzj> (111.14)

The discrete inverse transform f(t) is computed by summing the translated and dilated

wavelets, weighted by their respective coefficients:

f@) = 2 bj 19 () (111.11)
j.k

66

The DWT is a valuable tool for obtaining a multi-resolution representation of a signal,
making it useful for real-time signal analysis.

Following the passage of the signal through a low-pass filter, the outcome vyields
approximation coefficients that encapsulate the low-frequency components of the
signal. Subsequently, the signal undergoes a down sampling operation by a factor of
two, effectively halving the number of samples in the signal. This deliberate reduction
in sample count serves the purpose of mitigating computational complexity and
accelerating the overall algorithmic process [96].

In a similar vein, once the signal has traversed through a high-pass filter, the resultant
detail coefficients emerge, characterizing the high-frequency components of the signal.
Simultaneously, the signal undergoes another round of down sampling by a factor of
two, effectively diminishing the sample count. This strategic down sampling operation
is employed to curtail the number of samples and facilitate computational efficiency
This down-sampling equation constitutes a crucial cornerstone within the DWT
algorithm, serving to partition a signal into its distinct frequency components across
multiple resolution tiers. Its significance resonates across diverse domains, finding
application in areas like image processing, signal compression, and feature extraction
[88]. Through the partitioning of frequency constituents into approximation and detail
coefficients, the DWT expands the signal's representation across multiple scales. The
low-pass filter (LPF) facilitates the transmission of low-frequency elements, whereas
the high-pass filter (HPF) accommodates the high-frequency components.
Consequently, the DWT excels at detecting and scrutinizing both overarching patterns

and intricate particulars within a signal. This duality in frequency components gives

67

rise to a spectrum of applications, including signal compression, noise mitigation,
feature extraction, and data analysis.

Multiresolution Analysis (MRA) constitutes a fundamental aspect of the Discrete
Wavelet Transform (DWT), allowing the decomposition of a signal into different levels
of detail. These decomposition levels in the DWT correspond to distinct scales or
resolutions of the signal, capturing specific frequency components or details (Figure

111-21) [97].

Original Signal
T

§ 5000 T T T T T T T T
5 o M‘rl‘lf W V,’}#ﬁwﬂj’ﬂi‘ ‘"}V‘VL{‘ dv\‘-{ v ‘4“\"'\'\, "r*r*.: Vel \\MWMJJ’VA”‘."\‘A-,JV‘\J'J\\J-TM'A‘WI \»\P"\UM ‘h"“f" el it ”,M‘Ifﬂ."«lmj :A,M W
E 5000 1 1 1 1 L 1 1 1 1
0 0.1 0.2 03 04 0.5 0.6 07 08 0.9 1
Time
® Approximation (Level 1)
'S 1000 } " T ‘v,,‘\,u N ™A b '_ T ak T4 nl "‘, I A | t PP ,‘uli\‘ 1 Aoan | J
£ o AT VAV AN AR\ A AR P VA ™ Vo Ve U0 W
Q. .1000 — v Sl) L W Yy | b i o M R AL L AL A W | v | -
£ -20001 ’ : | | ! I | 1
< 0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1
Time
o Approximation (Level 2)
T 2000 T T T T T
3 iR I
E .2000 1 1 1 1 1 1 1
0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1
Time
© Approximation (Level 3)
T 1000 T T T T T T
3
8
%_ o}
5 -1000) 1 L | 1
0 0.1 02 03 04 0s 0.6 0.7 08 09 1
Time
® Approximation (Level 4)
g 500 T T T T T
8
B oF i
5 500 L | | | |
0 0.1 02 03 04 05 06 0.7 o8 0.9 1
Time
® Approximation (Level 5)
W 800 T T T T T T
=
:-]
E 500 I I 1 1 1 L L |
0 01 02 03 04 05 06 07 08 09 1

Time

Figure 111-21 Discrete Wavelet Five Levels (Wavelet Db4)
The hierarchical structure of the DWT enables analysis at multiple scales, providing a
comprehensive understanding of the signal. In our project, we specifically applied a 5-
level DWT using the 'db4’ wavelet to signals of length 1000. The extracted coefficients

at each level are as follows Level 1 - 503 coefficients, Level 2 - 251 coefficients, Level

68

3 - 125 coefficients, Level 4 - 62 coefficients, and Level 5 - 31 coefficients. These
coefficients encompass both detail and approximation coefficients from all levels of the
wavelet decomposition. The approximation coefficients represent the low-frequency
components or the coarse approximation of the signal, while the detail coefficients
capture the high-frequency components or the details of the signal [97]. The
decomposition process involves convolving the signal with a low-pass filter (scaling
filter) and a high-pass filter (wavelet filter), followed by down sampling to reduce the
resolution [98]. This process is repeated iteratively to obtain multiple levels of
decomposition, each representing a different scale or level of detail [98]. The concept
of MRA is particularly useful in various applications, including computer vision, signal
coding, texture discrimination, edge detection, matching algorithms, and fractal
analysis. By analyzing the signal at different scales, MRA allows for the extraction of
relevant information at each level, enabling more efficient and effective analysis [97].
For example, in computer vision, analyzing images at each resolution level would be
redundant, and it is more efficient to focus on the additional details available at higher
resolutions. MRA provides a framework for this selective analysis of different levels of
detail. The hierarchical structure of MRA also facilitates the interpretation of resolution
and scale concepts [97]. The decomposition into different scales or levels of detail
allows for a better understanding of the signal's characteristics at different resolutions.
This understanding is crucial in various fields, such as climate teleconnection studies,
where the analysis of signals at different temporal scales is essential. MRA-based
methods enable the examination of interdependence patterns between climate signals

and the identification of temporal variability in precipitation [99].

69

S. In summary, MRA is a fundamental concept in the DWT that enables the
decomposition of a signal into different levels of detail. The decomposition levels
represent different scales or resolutions of the signal, allowing for analysis at multiple
scales. This hierarchical structure facilitates the selective analysis of relevant
information and provides a better understanding of the signal's characteristics at
different resolutions. MRA has applications in various fields, including computer

vision, signal coding, and climate teleconnection studies.

3.4.1.4. Discrete wavelet transforms MATLAB Implementation

The implementation of the discrete wavelet transforms (DWT) in MATLAB using the
"wavedec" function is a widely used technique for signal processing and analysis. The
"wavedec" function is utilized to decompose a signal into its wavelet coefficients at
different levels of resolution. To employ the "wavedec" function, users need to specify
the desired wavelet and the number of decomposition levels. The wavelet is a
mathematical function that allows for the analysis of the signal at various scales.
Different wavelets possess distinct properties and are suitable for different types of
signals. For instance, the Daubechies wavelet is commonly chosen for its favorable
time-frequency localization properties. The number of decomposition levels determines
the level of detail in the decomposition. A higher number of levels provides more
detailed information about the signal, but also increases the computational complexity.
Once the signal is decomposed using the "wavedec" function, the resulting wavelet
coefficients can be utilized for various purposes such as denoising, feature extraction,
or signal reconstruction. These coefficients capture the different features present in the

signal at different scales. The approximation coefficients represent the low-frequency

70

components of the signal, while the detail coefficients represent the high-frequency
components. These coefficients can be further processed or analyzed based on the
specific application requirements. In addition to the "wavedec" function, MATLAB
provides other functions for working with wavelet coefficients, such as "wrcoef" for
signal reconstruction. The MATLAB Wavelet Toolbox offers a range of wavelet
families and functions to cater to different applications, allowing users to select the
most suitable wavelet for their specific needs. In summary, the implementation of the
discrete wavelet transforms in MATLAB using the "wavedec" function provides a
powerful tool for signal processing and analysis. It enables the decomposition of signals
into wavelet coefficients at different levels of resolution, providing valuable
information about the signal's frequency content and features. These coefficients can
then be utilized for various applications such as denoising, feature extraction, or signal

reconstruction.

3.4.2. Wavelet Scattering

Wavelet scattering is a widely applicable mathematical technique that finds utility
across various research domains. It enables the creation of translation-invariant
representations for signals and images, thereby proving valuable for tasks such as
texture classification, image recognition, and signal analysis [100]. The scattering
transform is constructed through a series of wavelet convolutions and modulus
operations, which facilitate the computation of the wavelet transform's magnitude. This
transform exhibits stability in the presence of time-warping deformations and possesses
the ability to capture transient phenomena. Notably, wavelet scattering has

demonstrated promising outcomes in diverse applications, including music genre and

71

phone classification, texture discrimination, rainfall classification, and the analysis of
meteorological data. By providing translation-invariant representations and stable
features, wavelet scattering emerges as a powerful tool for signal and image analysis in

various domains [101].

3.4.2.1. Theory and principles

In essence, wavelet scattering mirrors a deep convolutional network (Figure 111-22),
meticulously crafted through a cascade of wavelet modulus nonlinearities and low-pass
filters. This construction empowers the derivation of low-variance features from real-
valued time series and image data, all while demanding minimal configuration. The
outcomes are representations endowed with the attributes of translation invariance and
robustness against the distortions induced by time warping [102]. Its efficacy in diverse
classification tasks and its capacity to achieve state-of-the-art results, even with limited
datasets [103], further underline the significance of wavelet scattering in the realms of

machine learning and deep learning applications [104].

Convolutional Neural Network

c c c
o o o
=] k=] =]
=] =3 =]
[<] o o
> > >
c c c
o o o
(9] O ()

InputSignal

Wavelet Scattering Network

Input Signal

Figure I111-22 Wavelet Scattering Vs Convolutional Neural Network

72

This permits the description of short-lived events like assaults and changes in signal
amplitude [100]. The foundation of wavelets in signal analysis is tied to the notion of
multiresolution analysis (MRA), a structured approach for forming orthonormal
wavelet bases [105]. Wavelets offer a way to represent signals with focus on specific
time and frequency segments. This enables the examination of signal attributes across
various scales. Breaking down a signal into wavelet coefficients at different scales
allows for a comprehensive grasp of both the signal's particular traits and its broader
properties. Going beyond the conventional wavelet analysis, wavelet scattering
broadens this approach by introducing multiple stages of wavelet convolutions and
modulus operations. This permits the retrieval of insights into the signal's modulation
spectrum across various scales and orientations. The scattering transform maintains
local translation invariance, ensuring resilience against distortions in the timing of the
signal [100]. Additionally, it furnishes constants that remain unaffected by changes in
scale, shearing, and minor distortions [101]. Such characteristics endow wavelet
scattering with substantial utility in diverse signal analysis contexts. The dissection of
signals into multiple scales and orientations within wavelet scattering emerges through
a series of linked wavelet convolutions and modulus operations. Wavelet convolutions
apprehend the signal's frequency attributes across varied scales, while the modulus
operators draw out amplitude particulars. By linking these processes, wavelet scattering
adeptly grasps both the signal's frequency and amplitude fluctuations over diverse
scales and orientations. The integration of wavelet scattering into signal analysis has
unveiled encouraging outcomes across diverse fields. Instances include its role in

categorizing musical genres and distinguishing phone characteristics [100].

73

Furthermore, this technique has found application in distinguishing textures, yielding
leading-edge classification outcomes across texture databases marked by uncontrolled
viewing conditions [101]. Moreover, the utilization of wavelet scattering extends to the
classification of electromagnetic signals, showcasing traits of translation invariance and
resistance to deformation [106]. In summary, wavelet scattering is a signal analysis
technique that utilizes wavelet convolutions and modulus operators to decompose
signals into different scales and orientations. It provides a locally translation invariant
representation that is stable to time-warping deformations and captures transient
phenomena. Wavelet scattering has been successfully applied in various domains,
including music classification, texture discrimination, and electromagnetic signal

classification

3.4.2.2. Mathematical formulations

Scattering in the First Order Within the domain of Continuous Wavelet Transform
(CWT), the acquisition of first-order scattering coefficients involves a fundamental
procedure. This procedure entails the convolution of the modulus of the CWT with a
low-pass filter, a technique commonly referred to as "temporal averaging." This
strategic averaging process not only introduces time-shift variance but also guarantees
stability when confronted with time-warping deformations.

Mathematically, the first-order scattering coefficients, denoted as Sx(t, A1), are defined
as the modulus of the convolution between the input signal x and the first-order wavelet
function @Ai. Subsequently, a convolution operation with a low-pass filter @ is applied
[100].

Sx(t,AY) = |x x At x @ (111.12)

74

1000

2z 5000 0r|g|nal Signal
=
s o %Wﬁ'ﬂ\ﬂjﬁ Wﬁwﬂm‘ b w v (ww‘.m.m i *M\' b «mfwml iy »rwmlw% 3 m’ Wi
£ -s000 ‘
< 0 100 200 300 400 500 soo 700 soo 200
Time
Ix * < A1|
i?%g "w-r1 i
[=2] - 400
o 200
- 200 300 400 500 600 700 800 900 1000
Time
Ix* ,\1| * ¢
< 1A & - - W T - 1500
=3 — & > - ;880
3]
- 100 200 300 400 500 600 700 800 900 1000
Time
lIx * 3 A, 1* A, |

100 200 300 400 500 600 700 800 200 1000
Time
IIX*% I*sz I* ¢

100 200 300 400 500 600 700 800 900 1000
Time
lix* w,\1 * szzI * w)\sl

100 200 300 400 500 600 700 800 900 1000
Time

Figure 111-23 Scattering Convolution Process

Here, the parameter A1 signifies the center frequency of the first-order wavelets, and the

convolution is executed between the low-pass filter and each individual row of the

Continuous Wavelet Transform (CWT).

The crux of this operation can be intuitively grasped as the act of sliding a wavelet

across the signal, computing its modulus (Jx * @A), and subsequently convolving it

with ®. This convolution with @ serves as a mechanism for averaging on the modulus,

ultimately yielding an invariant feature representation. This comprehensive process,

recognized as the wavelet scattering transform, encompasses the sequential steps of

sliding the wavelet over the signal, calculating the modulus, and then culminating with

75

an additional convolution operation utilizing ®, which assumes the role of a low-pass
filter (Figure 111-23).
In Second Order Scattering The second-order scattering procedure extends the
methodology by performing convolution on the modulus of the first-order scattering
coefficients with second-order wavelets [100].
In mathematical terms, this process is expressed as:
Wox(t, A1,42) = |x * @a1] * @32 (111.13)
In this equation, the first-order scattering coefficients Sx(t, A1) are treated as the new
input (x), and they undergo convolution with a set of second-order wavelets @A2. This
convolution is subsequently followed by an additional round of low-pass averaging.
Syx(t, A1, A2) = |2 % 1] * @za] * @ (111.14)
Higher-Order Scattering The framework can be further expanded to encompass
higher-order scattering, where coefficients are derived through successive
convolutions. This involves convolving wavelets with the modulus of coefficients
obtained at the previous order, followed by modulus computation and low-pass
filtering:
SiX(t, A1, s A) = X% Qa1 * @am| * O (111.15)
Wavelet Scattering Energy The selection of wavelets spanning diverse scales and
their application by sliding across the signal ensures the coverage of distinct segments
within the frequency spectrum. Notably, this procedure conserves energy, meaning that
the energy observed in the time domain aligns with the energy present in the frequency
domain. This energy preservation property forms a fundamental aspect of wavelet

scattering (Figure 111-24).

76

_1 _J _J
Dilated waveletsp, (t) = 2 2 ¢ (2 Qc>,with,1 — 270 (111.20)

Dilated Wavelets Dilated wavelets, characterized as @A(t), are strategically designed to
encompass a wide range of scales. This feature empowers them to adapt effectively to
various frequency ranges, thereby contributing to the creation of a comprehensive

feature representation [100].

Wavelet Filter Magnitudes (First Filter Bank)
: x = . :

4 1 T T 1
HiMAAN AN \ \ \
2 ”‘l' [i\ [\ \ o
1 \'» ‘ .‘ , | { Y\ ‘
8 u‘\' ‘ ! I\ f \ | i
(¢ MA A A ‘
6 [] { “] \ B
4 1“ AR ! Y Yy Y IY ¥
TR \ A \ A
2 l‘ ‘ ‘ ” / \ / \ i
| ' | \ / \
o HE (My ,‘X AAANAAAANAN AN N - = 1 2| L 1
0 5 10 15 20 25 30 35 40 45 50
Cycles/Sample
% Wavelet Filter Magnitudes (Second Filter Bank)
[T T T T T T T
2 T =
1
8 -
6
4
2 ff N
0 / | L L S— L L : = - —l

5 10 15 20 25 30 35 40 45 50
Cycles/Sample

Figure 111-24 Wavelet Scattering Filter Bank
Wavelet Transform The wavelet transforms, denoted as Wx(t), involves the
convolution of the input signal x with both the original wavelet ¢(t) and the dilated
wavelets @A(t) across various scales denoted as A.

Wavelet transform Wx(t)={x * ¢ (t), x * ¢,(t)}, (1m.21)

77

2
If [8 (w) 62 (W) = 1 (111.22)
| W| +ZL: oA (W

Then is unitary

||Wx||2:||x*<P||2+Z||x*(pl||2:||x||2 (111.23)
A

Unitary Property: The unitary property is achieved when the sum of squared
coefficients from the low-pass filter and squared coefficients of dilated wavelets equals
1. This property ensures the preservation of energy within the transformed signal.
(Figure 111-25).

Wavelet Scattering Feature Extraction: The wavelet scattering transform entails a
sequence of critical operations, including convolution, modulus calculation, and low-
pass filtering. The coefficients obtained from these operations are judiciously
downsampled, effectively reducing computational complexity. In our specific
application, 20 invariant features derived from this process yield 588 features per
signal, enabling a detailed analysis. These coefficients, characterized by their
interpretability and visualizability, form the essence of scattering features (see Figure
111-25).

Paths in Scattering: Within the context of the scattering transform, the term "paths"
delineates sequences of operations that are systematically applied to the input signal.
These paths effectively capture crucial hierarchical relationships and underlying

features inherent in the signal representation [107] (Figure 111-25).

78

g & Dl
ISx(t,) = |x X gy * 0] .‘ .‘ .‘

[1x X @aal* aal
Sx(tALRy) = (X X @y * o] 0 ‘ é.‘o.‘é ‘ é.aé.ab ‘ é.‘o.‘o ¢

0/0/001010100,0]0.001000100 01000000100 0 LEICRN

Figure 111-25 Wavelet Scattering Tree
In summation, the wavelet scattering transforms represent a formidable approach for
feature extraction, encompassing the intricate interplay of wavelet convolutions,
modulus operations, and low-pass filtering. These operations are designed to capture
the quintessential characteristics of a signal while simultaneously ensuring stability and
invariance against deformations. The resulting scattering coefficients hold substantial

utility across a diverse spectrum of signal analysis and processing endeavor.

3.4.2.3. Implementation of Wavelet Scattering in MATLAB
The implementation of wavelet scattering in MATLAB involves utilizing functions
such as "waveletscattering” to compute the scattering coefficients. Wavelet scattering

is a technique used for image and signal processing tasks, providing a translation-

79

invariant and stable representation of data that is robust to deformations and preserves
high-frequency information. The wavelet scattering network consists of cascaded
wavelet transform convolutions with nonlinear modulus and averaging operators. This
network computes a translation-invariant image representation that is stable to
deformations and can be used for tasks such as texture discrimination and handwritten
digit classification. To use the wavelet scattering function in MATLAB, users need to
specify the wavelets and the number of levels for the scattering transform. The choice
of wavelets depends on the specific application and the desired properties of the
scattering coefficients. Different wavelet families, such as Morlet or Haar wavelets, can
be employed. The number of levels determines the depth of the scattering network and
affects the level of detail captured in the representation. The wavelet scattering function
in MATLAB has been applied to various applications, including glaucoma detection in
retinal fundus images. In this application, the wavelet image scattering network
developed in MATLAB is used to perform the scattering decomposition on the images,
and the resulting scattering coefficients are utilized as features for automatic diagnosis.
It is worth noting that there are alternative implementations of wavelet scattering
available in different programming languages. For instance, the Kymatio software
package provides a Python implementation of the scattering transform in 1D, 2D, and
3D. This implementation is compatible with modern deep learning frameworks and can
be executed on both CPU and GPU, offering improved performance. In conclusion, the
implementation of wavelet scattering in MATLAB involves using functions like
"waveletscattering" to compute the scattering coefficients. The choice of wavelets and

the number of levels determines the properties of the scattering transform. Wavelet

80

scattering has been successfully applied to various applications, such as glaucoma
detection, and there are also alternative implementations available in other
programming languages.

3.5. Feature Selection and Optimization

3.5.1. Principal Component Analysis (PCA)
is a widely-used dimensionality reduction technique that helps transform the original
feature space into a new set of orthogonal variables known as principal components.
This process is valuable in various applications, including machine learning, as it can
alleviate issues such as multicollinearity and enhance model generalization [108].
Here's a breakdown of how PCA is typically performed
Covariance Matrix Computation PCA begins by calculating the covariance matrix from
the original feature data. The covariance matrix summarizes the relationships between
the different features in the dataset [108].
The covariance matrix for a set of features, denoted as X, with n samples and m features,
can be computed as follows:

Var(f) = (XTX) 1o? (111.24)
Where Var () represents the variance-covariance matrix of the coefficient estimates
This matrix captures the uncertainty and interrelationships among the estimated
coefficients. The equation involves several key components: X, is the design matrix of
the predictor variables; X, is the transpose of the design matrix. ¢ is the variance of
the error term (residuals) in the linear regression model. The term (X7X)™1! is the
inverse of the matrix product of the transpose of the design matrix and the design matrix

itself.

81

Eigenvalue and Eigenvector Calculation Next, PCA calculates the eigenvalues and
corresponding eigenvectors of the covariance matrix. These eigenvectors represent the
directions in the original feature space along which the data varies the most, and the
eigenvalues represent the variance explained by each of these directions [108].
The equation for calculating eigenvectors and eigenvalues is:

d2 (111.25)

p
Aridge_ j T
X" =) s G Wy
j=t

The equation for computing eigenvectors and eigenvalues in ridge regression, denoted

by Equation (111.25), offer s a method to estimate coefficients Eridgeconsidering
regularization. In this equation, X represents the design matrix of predictor variables,
and y represents the response variable. The summation over p features encompasses the
contribution of each eigenvector (uj), where (dj?) denotes the square of the jth
eigenvalue. Additionally, A serves as the regularization parameter, controlling the
balance between data fitting and coefficient magnitude. The equation scales the impact

of each eigenvector by combining it with its associated eigenvalue and the

regularization parameter. By summing these scaled contributions, ,’Bridge is computed,
providing a means to estimate the coefficients in ridge regression while considering the
influence of eigenvectors, eigenvalues, and regularization.

Choosing the Number of Principal Components To determine the optimal number of
principal components to retain, various methods can be used, such as scree plots and
explained variance. Scree plots show the eigenvalues in decreasing order, and the point

at which the eigenvalues begin to level off indicates a suitable number of principal

82

components to retain (Figure 111-26). Explained variance (Figure 111-27) helps assess
how much information is preserved by each principal component [109].

Reducing Dimensionality Once the number of principal components is decided, the
dataset is transformed into a reduced feature set using the selected principal
components. This reduction helps mitigate the curse of dimensionality and can enhance

the performance of machine learning models [109].

Scree Plot

Eigenvalue

1 2 3 4 5 5] 7 8 =] 10
Principal Component

Figure 111-26 Scree Plot

Percentage of Variance Explained

11

Percentage of Variance

1 2 3 4 5 6 7 8 9 10
Principal Component

Figure 111-27 Percentage of Variance

83

Here's a MATLAB code snippet for applying PCA to reduce dimensionality

% apply PCA to reduce dimensionality

numDims 50; % set desired number of dimensions
scTrain = reshape(scTrain, [], size(scTrain, 3))°';
scTest = reshape(scTest, [], size(scTest, 3))';
[coeff,score,~,~,explained] = pca([scTrain; scTest]);
scoreTrain = score(l:size(scTrain,1), 1l:numDims);
scoreTest = score(size(scTrain,1)+1:end, 1:numDims);

3.5.2. Linear Discriminant Analysis (LDA)

is a powerful supervised dimensionality reduction technique, primarily designed for
classification tasks. It aims to maximize the separation between different classes in a
dataset while minimizing the variance within each class. In our analysis, we leveraged
LDA to identify the most discriminatory features, rank them based on LDA
coefficients, and seamlessly integrate them into our classification models to potentially

enhance classification accuracy and model robustness.

3.5.2.1. Here's an explanation of the key steps in applying LDA

Executing LDA with Class Labels LDA operates in a supervised manner, considering
class labels. It identifies features that contribute the most to separating different classes.
Feature Ranking with LDA Coefficients LDA coefficients are used to rank and select
features that significantly aid in defining class boundaries. Features with higher LDA
coefficients are considered more important for classification.

Integration into Classification Models The features refined through the LDA process
are integrated into our classification models. This integration aims to improve the

classification accuracy and overall robustness of our models.

84

Below is the MATLAB code snippet for applying LDA:

% Apply Linear Discriminant Analysis (LDA) on the training data for this
fold

ldaModel = fitcdiscr(FoldTrainFeatures, FoldTrainlLabels);
% Apply LDA to the training and test data for this fold

FoldTrainFeaturesLDA = predict(ldaModel, FoldTrainFeatures);
FoldTestFeaturesLDA = predict(ldaModel, FoldTestFeatures);

% Convert LDA-transformed features to a numeric matrix
FoldTrainFeaturesLDA = double(FoldTrainFeaturesLDA);

in this code, IdaModel represents the trained LDA model, and FoldTrainFeaturesLDA
and FoldTestFeaturesLDA contain the LDA-transformed features for the training and
test data, respectively. The main equation regarding LDA is based on finding the
optimal linear projection that maximizes the between-class scatter while minimizing

the within-class scatter

3.5.3. Sequential Feature Selection (SRE) and Recursive Feature Elimination
(RFE)

Sequential Feature Selection (SRE) and Recursive Feature Elimination (RFE) are two
iterative approaches to feature selection, both aiming to enhance the importance of

selected features in a machine learning model. Here's an overview of each technique

3.5.3.1. Sequential Feature Selection (SRE)

SRE begins by ranking features based on relevant scoring metrics that indicate their
importance or relevance to the problem.

It then iteratively includes the most pertinent features, one at a time, in a sequential

manner.

85

The goal is to create a subset of features that optimally contribute to model accuracy
and generalizability.

Here's the MATLAB code for SRE

% Compute SRE for training set
sreTrain = computeSRE(scTrain);
% Compute SRE for test set
sreTest = computeSRE(scTest);

3.5.3.2. Recursive Feature Elimination (RFE)

RFE takes a different approach by employing specific machine learning algorithms
(e.g., decision trees) to consecutively rank and eliminate the least influential features.
Features are eliminated one at a time based on their impact on model performance.

In our experiment, utilizing Recursive Feature Elimination (RFE), we aimed to identify
a subset of features maximizing model accuracy and generalizability while reducing
dimensionality, employing a total of 10 features.

Throughout these iterative processes, careful monitoring of model performance is
essential to ensure that the chosen feature subsets positively contribute to model
accuracy and robustness.

Here's the MATLAB code for RFE:

% Perform RFE
selectedFeatures = rfe(X_train, Y_train', numFeatures);
% Keep only the selected features in the training and testing data
TrainFeaturesSelected = cell(size(TrainFeatures));
for i = 1:numel(TrainFeatures)
TrainFeaturesSelected{i} = TrainFeatures{i}(selectedFeatures);
end
TestFeaturesSelected = cell(size(TestFeatures));
for i = 1:numel(TestFeatures)
TestFeaturesSelected{i} = TestFeatures{i}(selectedFeatures);

end

86

3.6. Validation and Evaluation

In the aftermath of feature selection, we meticulously undertook the validation and
evaluation of our machine learning models. These evaluations were conducted with the
aid of pertinent metrics, including accuracy, precision, recall, and F1-score. This
judicious assessment ensured that the optimized feature subsets indeed yielded models
that aligned with our predefined objectives effectively.

Comparison and Conclusion:

To summarize, the strategic application of feature selection methodologies,
encompassing PCA, LDA, SRE, and RFE, assumed a pivotal role in the optimization
of our machine learning and data analysis pipeline. These methodologies facilitated
dimensionality reduction, augmentation of feature relevance, and the amelioration of
model performance. It is important to acknowledge that each methodology possesses
its unique strengths and limitations. Their synergistic application, however, endowed
our research project with valuable insights and significantly contributed to its success.
3.7. Fault Detection and Classification

Fault detection and classification (FDC) represent pivotal processes in numerous
industries, safeguarding the reliability and safety of systems, machinery, and
operations. In the domain of machine learning, two powerful methodologies, namely
Support Vector Machines (SVM) and Neural Networks (NN), have emerged as
indispensable tools for FDC applications.

Support Vector Machines (SVM) are esteemed for their robustness in delineating data
into distinct classes. SVMs are exceptionally skilled at identifying optimal boundaries

that maximize the separation margin between different data points. This capability

87

renders them well-suited for the task of fault detection, enabling them to address a wide
array of scenarios involving both linear and non-linear data separation [110].

In contrast, Neural Networks (NN), particularly deep neural networks, have ushered in
a new era of fault detection by harnessing the intricacies present within data patterns.
NNSs, constructed with interconnected layers of artificial neurons, excel in capturing
intricate relationships and dependencies, making them adept at detecting even subtle
faults that might elude traditional detection methods [111].

Furthermore, we will navigate through the merits and demerits of SVMs and NNs in
the context of FDC, offering guidance on the judicious selection of each technique
based on the problem at hand. By the culmination of this chapter, you will possess a
comprehensive understanding of how to implement SVMs and NNs for fault detection
and classification, equipping you to effectively address real-world challenges and

uphold system reliability and safety.

3.7.1. The Purpose of Using SVM and Neural Network

In this research, Support Vector Machines (SVM) and Neural Networks (NN) are
employed to classify faults in the tie rod. The tie rod is a critical component of a
vehicle's steering system, and accurately detecting and classifying faults in the tie rod
is crucial for vehicle safety and performance.

The research objective is to develop a fault detection and classification system for the
tie rod. The hypothesis is that SVM and NN can effectively classify tie rod faults based
on different levels of fault severity. This classification allows for targeted maintenance

actions based on the severity of the fault.

88

Two tests are conducted in this research. In the first test, SVM and NN are employed
to classify tie rod faults into five levels, ranging from normal to severe faults (Figure
[11-28). In (Figure 111-28), the diagonal cells represent the count or frequency of
correctly classified instances. Additionally, it is observed that one fault in level 1 is
predicted as normal. This detailed classification provides a better understanding of the

tie rod's condition and facilitates appropriate maintenance actions.

The diagonal cells of the
confusion matrix represent
the count or frequency of
correctly classified instances.

Level One of Fault
Predicted as
Normal

True Class

Normal Level 1 Level 2 Level 3 Level 4
Predicted Class

Figure 111-28 SVM Four Faulty Levels Classification
In the second test, SVM and NN models are employed to classify the tie rod's condition
as either "faulty’ or 'normal’ when encountering various road obstacles. Four types of
road obstacles are considered sinewave road obstacles, roughness road obstacles,
pothole road obstacles, and bump road obstacles. By analyzing the tie rod's response to
these obstacles, SVM and NN can classify the tie rod's condition as normal or abnormal,
indicating the presence of a fault (Figure 111-29). For example, in (Figure 111-29), the

diagonal cells represent correctly predicted instances, and there is an error in the bumpy

89

road obstacle signals where two instances were incorrectly classified as faulty when

they should have been classified as normal.

Classification of Faulty and Healthy Signals by Road Type

Mormal Sinewave Road Obstadle Signals [:l1

Faulty Sinewave Road Obstacle Signals BO

Normal Roughness Road Obstacle Signals 80

Faulty Roughness Road Obstadle Signals B0

Two instances of Normal
bump road obstacle signals
— were incorrectly classified as
faulty instead of normal

Wormal Pethole Road Obstacle Signals 80

5]
un
q
(i Faulty Pothole Road Obstacle Signals 80
2
[

Normal Bump Road Obstacle Signals M 2

Faulty Bump Road Obstacle Signals ‘ 80

H00% 1000% H000% 1000% 100.0% 1000% 1000% O76%

NI - R R - B
5\9“"‘ oo 5\9“"\ 5@“ °"\ o oo g
R 2 c)a

\e-‘* A

60“5 e.o‘f}a o‘ﬁ; w0 o 02’60""\a oo o
99° R oo o o P o

e 0)\\““6 dm:‘}o* @a%"f o
xio““ﬁ\ ea"‘:{mﬁ“"‘\ w\“?“ o 93"\ <

Predicted Class
Figure 111-29 SVM Obstacle Types and Fault Classifications
SVM and the Neural Network are chosen for this research due to their abilities to handle
high-dimensional data and nonlinear relationships. They work by finding an optimal
hyperplane (in the case of SVM) or a complex network of interconnected nodes and
layers (in the case of Neural Network) that maximally separates different classes in the
feature space. By training both classifiers with a dataset of tie rod responses to various
fault levels and road obstacles, they can learn the patterns and characteristics associated
with each class. These trained models can then be used to classify new instances of tie

rod responses, accurately identifying the fault level or abnormality.

90

In conclusion, the purpose of using SVM and Neural Network (NN) in this research is
to develop a fault detection and classification system for the tie rod. By employing these
machine learning techniques, we can accurately classify faults and abnormalities,
enabling timely maintenance actions to ensure vehicle safety and performance. The use
of SVM and NN aligns with the research objectives by providing robust and accurate
classification methods for tie rod faults, enhancing our ability to maintain and optimize

vehicle systems.

3.7.2. Support Vector Machines (SVM)

is a popular machine learning algorithm used for classification and regression tasks. It
works by finding the best hyperplane that separates the data into different classes. The
choice of the best hyperplane is based on maximizing the separation or margin between

the two classes [112].

SVM Hyperplane and Support Vectors with Maximum Margin

4l i
3l i
oL _

o~

1<

3 1r .

©

5]

L
ok _

-1 N _
O Class 1 + * * + RS
+ Class 2 T
(O Support Vectors ++ —+ R
-2 ||«ZBa®> Decision Boundary n RN B
- - - - Maximum Margin RN
I I Il Il 1 1 Il
-2 -1 0 1 2 3 4
Feature 1

Figure 111-30 Hyperplane and Support Vectors with Maximum Margin

91

In the case of linearly separable data, SVM selects the hyperplane that has the maximum

distance from the nearest data point on each side. This hyperplane is known as the

maximum-margin hyperplane or hard margin (Figure 111-30). The goal is to find a

hyperplane that can classify new data points accurately. SVM is robust to outliers,

meaning it can ignore outliers and still find the best hyperplane [113],[112].

In cases where the data is not linearly separable, SVM introduces soft margins. Soft

margins allow for some misclassification of data points, but penalize violations of the

margin (Figure 111-31). The SVM algorithm tries to minimize the hinge loss, which is

a commonly used penalty function. The hinge loss is proportional to the distance of the

violation from the margin [113].

Feature 2

-2+

-4

Hard Margin SVM

O
| <>

Class 2 ®

Support Vectors
Decision Boundary

= = = = Maximum Margin

-2

0 2
Feature 1

Feature 2

-2

~ Q (@

Soft Margin SVM

O
O

Class 1

+ Class 2 N
O Support Vectors N

Decision Boundary | S

H= = = = Maximum Margin

-2

0 2 4
Feature 1

Figure 111-31 Hard Margin SVM Vs Soft Margin SVM

However, in real-world scenarios, data is often not linearly separable. SVM addresses

this issue by using a technique called kernelization. It maps the original data to a higher-

dimensional space where it becomes linearly separable [114]

92

1D Dataset for Classification

- Class 1
0.8 - Class 2

Origin(0)
(=]
'

Figure 111-32 1D Dataset for Classification
Let's consider the data shown in the Figure 111-32. In the context of Support Vector
Machines (SVM), we solve this problem by creating a new variable using a kernel. For
simplicity, let's denote a point as xi on the line, and we create a new variable yi as a

function of the distance from the origin, which we can visualize on a (Figure 111-33).

. SVM with RBF Kernel

Decision Boundary
10 + O Class 1 /
x Class -1

Figure 111-33 SVM with RBF Kernel

93

In this case, the new variable y is generated as a function of the distance from the origin.
Such a non-linear function that creates a new variable is referred to as a kernel.

The process of mapping the data to a higher-dimensional space is achieved through the
use of a kernel function. A kernel function is a non-linear function that transforms the
original data into a new feature space. Commonly used kernel functions include

polynomial kernels, Gaussian kernels, and sigmoid kernels [115].

3.7.2.1. Support Vector Machine Terminology

Hyperplane: A hyperplane serves as the decision boundary that separates data points
belonging to different classes within a feature space. In the context of linear
classification, it is represented by the equation wx + b = 0.

Support Vectors: Support vectors are crucial data points that are nearest to the
hyperplane, playing a pivotal role in determining both the hyperplane's position and the
margin [116].

Margin: The margin is defined as the distance between the hyperplane and the support
vectors. In SVM, the primary goal is to maximize this margin because a wider margin
generally indicates better classification performance.

Kernel: A kernel is a mathematical function employed in SVM to transform original
input data points into higher-dimensional feature spaces. This transformation enables
the identification of a hyperplane even when the data points are not linearly separable
in the original input space. Common kernel functions include linear, polynomial, radial

basis function (RBF), and sigmoid kernels [116].

94

Hard Margin: The hard margin hyperplane refers to a hyperplane that effectively
separates data points of different classes without any misclassifications. It is the ideal
scenario where the margin is maximized.

Soft Margin: In situations where data is not perfectly separable or contains outliers,
SVM allows for a soft margin approach. This introduces slack variables for each data
point, relaxing the strict margin requirement and permitting some degree of
misclassification or violations. It seeks a balance between increasing the margin and
minimizing violations.

C: The regularization parameter, denoted as C, is a crucial factor in SVM. It balances
the trade-off between margin maximization and misclassification penalties. A higher
value of C imposes a stricter penalty, resulting in a smaller margin and potentially fewer
misclassifications [116].

Hinge Loss: SVM commonly employs the hinge loss as its loss function. It penalizes
misclassifications and margin violations. The objective function in SVM is typically
formulated by combining the hinge loss with a regularization term. In our Model we set
the maximum number of objective function evaluations to 100.

Dual Problem: The dual problem of SVM optimization involves finding the Lagrange
multipliers associated with the support vectors. Solving the dual problem offers
advantages, including the ability to utilize kernel tricks and more efficient computation

[117].

95

3.7.2.2. Mathematical Intuition of Support Vector Machine (SVM)
In the context of a binary classification problem with classes labeled as +1 and -1, SVM
seeks to find a decision boundary in the form of a hyperplane, which can be expressed
mathematically as

wlix+b=0 (111.26)
Here, 'W' represents the normal vector to the hyperplane, indicating the direction that is
perpendicular to the hyperplane. The parameter 'b' represents the offset or distance of
the hyperplane from the origin along this normal vector 'w'.

The distance between a data point 'xi* and the decision boundary can be calculated using

wTx + b)) (111.27)
U0 = P .
llwll
4 = WTxen) (111.28)
: llwl|

Here, '||w||' denotes the Euclidean norm of the weight vector 'w' [118].
For a Linear SVM classifier, the classification rule is defined as

A{1 WTx+b) =0 (111.29)
Y10 (w™x +b) < 0

In the case of a Hard Margin Linear SVM classifier, the optimization objective is to
minimize the square of the Euclidean norm of 'w' while ensuring that all training
instances are correctly classified and lie at a distance of at least 1 from the decision
boundary [118]

1 T T (111.30)
minimize,,, -w" w = minimizey,, - [lw?|]

Subject toy;(wTx; +b) =1 fori=123...m (111.31)

96

In this context, 'ti' represents the target variable or label for the 'i'-th training instance.
'ti" is -1 for negative occurrences (when'y_i' = 0) and 1 for positive instances (when 'y;'
= 1). The constraint ensures that the decision boundary separates the classes with a
margin of at least 1.
ti(wlx; +b) > 1 (111.32)
ti(wlx; +b) =1 (11.33)
For a Soft Margin Linear SVM classifier, a regularization term is introduced to allow

for some misclassification (soft margin), and the optimization problem becomes

1 m (111.34)
minimize,, , EWT w+c z {;
i=1
Subject to y;(wTx; + b) =1 —{;and {; = 0 fori (111.35)

=123...m
Here, 'C' controls the trade-off between maximizing the margin and minimizing the
classification errors [118].
Dual Problem
To solve the SVM optimization problem, a dual problem is often formulated to find the
Lagrange multipliers 'a(i)' associated with the support vectors [118].. The dual objective
function to be maximized is

1
Maximize, 5 E E aiajtitjK (xi, xj) — E ai (111.36)
1-m ¢ i-m
jom

Here

'ai' is the Lagrange multiplier associated with the 'i'-th training sample.

97

'"K(xi, xj)" is the kernel function, which calculates the similarity between two samples
'Xi' and 'xj," allowing SVM to handle nonlinear classification by implicitly mapping
samples into a higher-dimensional feature space.

Once the dual problem is solved, the SVM decision boundary can be described in terms
of the optimal Lagrange multipliers and the support vectors [118]. The support vectors

are the training samples with 'ai > 0,' and the decision boundary is determined by
W = Z aitiK(xi,x) + b (111.37)
i-m
tiwlxi—b) =1 b =wTxi — ti (111.38)

3.7.2.3. Hyperparameter Selection

The process of selecting hyperparameters is pivotal in constructing an effective SVM
model. Notable SVM hyperparameters include

Regularization parameter (C): This parameter balances the trade-off between
maximizing the margin and minimizing classification errors. Smaller 'C' values
prioritize a larger margin but may allow for some misclassification, while larger 'C'
values emphasize correct classification but risk overfitting [119].

Kernel type and parameters: In the case of kernel SVMs, the choice of kernel (e.g.,
linear, polynomial, RBF) and their associated parameters (e.g., degree for polynomial,
gamma for RBF) must be determined [119].

Hyperparameter selection can be accomplished using techniques such as cross-
validation and grid search

Cross-validation: The dataset is split into training and validation sets. For each set of
hyperparameters, the model is trained on the training set and assessed on the validation

set. The hyperparameters that yield the best validation performance are chosen [119].

98

Grid search: A grid of potential hyperparameter values is defined, and the model's
performance is systematically evaluated on the validation set for all combinations of

hyperparameters. The combination with the best performance is selected [119].

3.7.2.4. Model Training

To train an SVM model, the following steps are followed

Data Preprocessing This includes tasks like feature scaling, handling missing values,
and encoding categorical variables [120].

Data Splitting The dataset is partitioned into training and testing sets (or cross-
validation sets) [121].

SVM Type Selection Choose between linear or kernel SVM based on the data's
characteristics.

Hyperparameter Tuning Utilize techniques like cross-validation or grid search to
identify optimal hyperparameters (C and kernel parameters) [122].

Model Training Fit the SVM model to the training data using the selected
hyperparameters .

Model Evaluation Assess the model's performance on the testing/validation dataset.
Considerations such as dealing with imbalanced classes or outliers should be taken into

account during the training process [123].

3.7.2.5. Model Evaluation

The selection of evaluation metrics depends on the problem type (binary or multiclass
classification, regression) and the specific objectives. Common metrics for assessing
SVM models include:

Accuracy: Measures overall classification correctness.

99

Precision: Calculates the ratio of true positive predictions to total predicted positives,
assessing the model's ability to minimize false positives.

Recall (Sensitivity): Computes the ratio of true positive predictions to total actual
positives, gauging the model's capacity to capture all positive instances.

F1-score: Provides a balance between precision and recall by calculating their
harmonic mean.

Confusion matrix: A tabular summary of true positive, true negative, false positive,
and false negative predictions [123].

The choice between cross-validation and holdout validation hinges on factors such as
dataset size, available computational resources, and the need for robust performance
estimation. Cross-validation is often favored for its ability to provide a more reliable
evaluation.

Ultimately, the choice of evaluation metrics and validation strategy should align with
the machine learning task's objectives and the dataset's characteristics.

The implementation of SVM in MATLAB is facilitated by the SVM MATLAB
function, which allows for training and testing SVM models [124]. The SVM
MATLAB function supports different types of SVM, including C-SVM, nu-SVM, and
k-NN [125].

In MATLAB, the SVM MATLAB function can be used to optimize the performance
of SVM models. This can be done by selecting appropriate parameter values and
incorporating cross-validation techniques. The running time performance of different

SVM variants can be measured using the tic and toc functions in MATLAB [123].

100

The MATLAB code that used for SVM is accordingly

% Train the SVM model on the training data

model = fitcecoc(TrainFeatures, YTrain);

% Train and tune the SVM model using the training data

t = templateSVM('Standardize',true);

SVMModel = fitcecoc(TrainFeatures, YTrain, 'Learners', t,
'FitPosterior',true,...

'OptimizeHyperparameters', {'BoxConstraint', 'KernelScale'},...
'"HyperparameterOptimizationOptions', optimizationOptions, 'Verbose', 1,...
'"HyperparameterOptimizationOptions', struct('AcquisitionFunctionName',...
'expected-improvement-plus', 'MaxObjectiveEvaluations', 20,
'UseParallel’,true), 'Options', statset('UseParallel',true));

% Predict the labels of the test data using the tuned model

YPred = predict(SVMModel, TestFeatures);

To further optimize the performance of SVM, the MATLAB code for SVM tuning
can be equipped with a brute force method to estimate a large number of parameter
values and select the optimized values for generating the best model. Additionally, the
SVM MATLAB code can incorporate a fivefold cross-validation for model evaluation
[126].

In summary, the SVM MATLAB function provides a convenient way to implement
SVM models in MATLAB. It supports different types of SVM and can be used in
various applications. The performance of SVM can be optimized by selecting
appropriate parameter values and incorporating cross-validation techniques. The
MATLAB implementation of SVM has been utilized in fields such as robotics and
medical imaging, and it can be further optimized by incorporating brute force methods

and cross-validation techniques.

101

3.7.3. Neural network

3.7.3.1. Long Short-Term Memory (LSTM) Networks

LSTM networks represent a specific category within recurrent neural networks
(RNNS), and their architecture is tailored for handling sequential data, including but not
limited to time series data and natural language text. The fundamental mechanisms of
LSTMs can be elucidated as follows

Neurons and Layers: Within LSTM networks, the architectural building blocks are
recurrent cells, which can be organized into multiple layers (Figure 111-34). These cells
differ significantly from standard feedforward neurons due to their intricate internal
structure, encompassing gating mechanisms designed to regulate the flow of
information.

Input Layer: The input layer is responsible for receiving the raw data or features from
the dataset. Each neuron within this layer represents a distinct feature [127].

Hidden Layers: Intermediate layers in neural networks, positioned between input and
output layers, are crucial for pattern extraction. They perform mathematical operations
on data, with complexity determined by the number of hidden layers. In your project,
you've opted for an exceptionally large number of hidden layers - a staggering 1500
layers. Each of these hidden layers contains neurons with weight arrays matching the
previous layer's neuron count. This abundance of hidden layers exponentially increases
both training and evaluation times.

This extraordinary depth in our Neural Network architecture, while unconventional,
can be useful for tackling highly complex and nonlinear data. It exemplifies the core

principles of deep learning, which relies on deep neural networks to autonomously learn

102

intricate patterns and structures, often without the need for labeled data. Such depth has
found applications in various domains, including computer vision and language
processing.

Output Layer: The output layer generates the ultimate output of the network, which

might encompass classification labels, regression values, or other types of predictions

Output
Output :
Layer
Feedback Loop
Input LST™M Dense Output
Layer Layer Layers Layer
> > Y1
—_— — Y
_/ ’o O (D > 2
> > Y3
> — YN
Cell State

Hidden State

Forget Input e Output
gate gate gate

Figure 111-34 LSTM Neural Network Architecture

103

Cell Memory, Input Gate, Forget Gate, Output Gate LSTMs exhibit a unique
architecture consisting of specialized components

Cell Memory: The central feature distinguishing LSTMs is the presence of a dedicated
cell memory, which assumes a critical role in preserving information over extended
sequences, allowing the network to capture enduring dependencies within the data
[129]. In an LSTM diagram, this cell memory is represented as a horizontal line
stretching from ct-1 to ct, symbolizing the short-term memory of the cell (Figure Il1-

35).

LSTM Recurrent Unit

Ct-1

Cell State

\ ht-1

xt

Candidate for

cell state
Forget Input update Output
gafte gate gate

Figure 111-35 LSTM Recurrent Unit and Gates
Input Gate: The "Input Gate" in an LSTM cell regulates the flow of new data into the
cell's memory. It decides which information is relevant and should be stored, adding it
to the cell memory (Figure 111-36). This process involves sigmoid and tanh gates that

control the input's impact on the cell state, with "i" controlling the extent of influence.

104

Additionally, both the previous output ("h™) and current input ("x") have individual

weights for precise control over their contributions [129].

Input Gate

Ce1-

Figure 111-36 LSTM Input Gate

ir =o(W;* X, + U * he_qy + by) (111.39)
ar = tanh(Wa *Xe + Uy * he_qy + a) (111.40)
Ct = C(t—l) *ff + it * at (“I4l)

"I'" determines the extent of "a's" impact on "c" within an LSTM cell. The hyperbolic
tangent's (-1 to +1) range enables "a" to either decrease or increase "c," with the level
of influence dictated by "i." Additionally, it's worth noting that both "h" and "Xx" possess
distinct weights for both "i" and "a.”

Forget Gate: The "Forget Gate™ is a pivotal component within LSTM cells, responsible
for orchestrating the selective removal or "forgetting” of information from the cell
memory that is considered irrelevant or outdated (Figure I11-37). This discerning

amnesia capability empowers LSTMs to concentrate on the most pertinent data [129].

105

n_n

Operational details include the "¢" (sigmoid) function, which ranges from 0 to 1,
governing the extent of information removal from the cell state. By adjusting the value
of "o," we control the degree of forgetfulness [129]. Specifically, both the current input

(xt) and the previous output (ht-1) undergo multiplication by "c."

Forget Gate

Figure 111-37 LSTM Forget Gate
Operational details include the "¢" (sigmoid) function, which ranges from 0 to 1,
governing the extent of information removal from the cell state. By adjusting the value
of "o," we control the degree of forgetfulness. Specifically, both the current input (Xt)
and the previous output (ht-1) undergo multiplication by "c."
fi = O'(Wf * Xp + Up % heqy + bf) (11.42)
Ce=Cu-py*fr ticxa; (111.43)
These operations involve weights (Wf and Uf), a bias (bf), and element-wise
multiplication, symbolized by the blue circle with a cross. Notably, "h™ and "x" possess

their own sets of weights, further enhancing the network's adaptability for different

tasks and temporal dependencies across time slots (t and t-1).

106

Output Gate: The "Output Gate™ assumes a crucial role within the LSTM cell by
determining which information stored in the cell memory (c) should contribute to the
output (h) at a given time step (Figure 111-38). This gate ensures that the LSTM yields

outputs that are contextually relevant and suited to the task [129].

Output Gate

Cr1-ff
+H'ay

Figure 111-38 LSTM Output Gate
0y =0(W, x Xy + Uy * hit_1y + by) (111.44)
h; = tanh(C;) + O; (111.45)
The output (h) is derived from the cell state (c) via the tanh function, which can
modulate c to be positive or negative within the range of -1 to +1. The degree to which
this tanh(c) affects h is precisely controlled by "0." The value of 0™ is computed using
distinct weights for the previous output (ht-1) and the current input (xt), each
determined by a sigmoid function [129].
It's worth noting that there exists a variant of LSTM known as the Gated Recurrent Unit
(GRU), which lacks an output gate but incorporates a reset gate and an update gate for

managing information flow.

107

Connections and Weights

LSTM cells have internal weights and connections that govern the flow of information
(Figure 111-39). These weights are initialized using techniques like Xavier/Glorot
initialization or He initialization, which are better suited for deep networks [130].
Activation Functions

LSTM cells employ various activation functions internally, including sigmoid and
hyperbolic tangent (tanh) functions (Figure 111-39). These functions are used to control
the operations of the gates (input, forget, output), ensuring that information flow is
managed appropriately. Additionally, the Rectified Linear Unit (ReLU) activation
function is frequently utilized for processing the output of LSTM cells [131].
Forward Propagation

Forward propagation in LSTM networks involves processing sequential data one time

step at a time. At each time step, the input and the previous cell's state are used to update
the cell's internal state and produce an output.

Loss Function

The choice of a loss function depends on the specific task. For example, Mean Squared
Error (MSE) can be used for regression tasks, while Cross-Entropy is suitable for
sequence classification tasks.

Backpropagation

Backpropagation in LSTM networks is extended through time (BPTT) due to the
sequential nature of data. Gradients are calculated and adjusted for each time step to

train the network effectively [132].

108

Figure 111-39 Forward, Loss Function and Backward Propagation (This Figure by

[133], [134]).

3.7.3.2. Optimization
Common optimization algorithms like Adam, RMSprop, or stochastic gradient descent

(SGD) with learning rate annealing are used to update weights during training [134].

3.7.3.3. Training
Training LSTM networks involves handling sequential data efficiently, including

techniques like sequence padding, batching, and potentially using teacher forcing or
attention mechanisms for sequence-to-sequence tasks [135].

Bias Term
Each LSTM cell typically has its own bias terms for various gates and activations,

which play a crucial role in the network'’s adaptability [136].

109

Learning Rate (o)

Selecting an appropriate learning rate (o) is critical for training, as it affects the
convergence of the network [136].

Teacher Forcing

For sequence-to-sequence tasks, teacher forcing can be used during training to improve

convergence by providing ground-truth data at each time step [135].

In summary, LSTM networks are specialized for sequential data and use complex
LSTM cells with gating mechanisms for learning and encoding sequential patterns.
Understanding the specifics of LSTM architecture and training is essential when
working with sequences. Be sure to refer to LSTM-specific resources and tutorials for

more in-depth information.

3.7.3.4. Mathematical Background behind LSTM RNNs

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network
(RNN) designed to effectively model and capture dependencies in sequential data.
LSTMs are particularly valuable for tasks involving time series analysis, natural
language processing, and other sequential data processing tasks.

Forward Propagation in LSTM

LSTM cells operate through a series of gates and activation functions, allowing them
to selectively retain and update information over time [137]. The key components of
forward propagation in an LSTM include

Input Gate (i(t))

In this phase, we proceed to update the input gate of the LSTM unit, which takes into

account the current input (x®), the output from the previous LSTM unit y¢~, and

110

the cell value from the previous time step ¢t~V This update operation is carried out
using the following equation
i) =oc(W;*x® + R x»y®D 4+ p, @tV +) (111.46)

The input gate controls the addition of new information to the cell state.
Here, o represents the sigmoid activation function, while Wi, Ri, and pi correspond to
the weights associated with x, y@=1 and y~Drespectively. bi signifies the bias
vector linked to this specific component.
Forget Gate (f®)
In this phase, the LSTM unit determines what information to forget from its prior cell
states ¢c(*~1. The calculation of activation values f® for the forget gates at time step t
is based on the current input x®, the previous outputs yt~2, the state of memory cells
from the previous time step ¢(~1, along with the peephole connections, and the bias
terms bf associated with the forget gates. This computation can be expressed as

FO = a(W; « x® + R * yE-1 4 ps * y =1 (111.47)

+p; O Y + by)
f® = o (W = x® + R * y- 4 Dy * y -1 (111.48)
+p;r O D + b))

Here, Wf, Rf, and pf represent the weights corresponding to x©, y~1 and ¢t~V

respectively, while bf denotes the bias weight vector [137].

111

Cell State Update (c(t))
In this phase, the LSTM unit computes the cell value by combining the block input z®,
the input gate i®®and the forget gate f® values with the previous cell value [137]. This
operation is represented as follows
Top of Form
c(t) =z®0 @i® 4 cEDEfO® (111.49)

The cell state is updated based on the input gate and forget gate.
Output Gate (o(t))
In this stage, the LSTM computes the output gate, which is a function of the current
input x®, the previous LSTM unit output y ¢~ and the cell value ¢~ from the
previous iteration [137]. The output gate calculation is expressed as

0® =a(Wy*x® + Ry xy& D +py @ ¢t + by) (111.50)
Where Wo, Ro, and po represent the weights associated with x(®,y(=Dand ¢¢-1
respectively, and bo is the bias weight vector [137].
Output (y(t)) The final output is generated by applying an activation function g(:) to
the cell state and scaling it by the output gate.

y® = g(c®)® o® (111.51)

The logistic sigmoid function, denoted as o(x), is used as a gate activation function and

is defined as o(x) = o

The hyperbolic tangent function, represented as g(x), and h(x), is frequently employed

as the activation function for block input and output, and it is defined as tanh(x) [137].

112

Backpropagation in LSTM
Backpropagation is the process of calculating gradients (08) of the loss function with
respect to various components within the LSTM cell. These gradients guide the updates

of the model's parameters during training. During the backward pass, the cell state c(t)
accumulates gradients from both y(t) and the subsequent cell state ¢(t~V. These

gradients are aggregated before being propagated back to the current layer.

In the final iteration T, the change Sgt)represents the network error gradient 6E/6§t)

®;

with E denoting the loss function. For other iterations &), is the vector of delta values

inherited from the layer above, including the recurrent dependencies. This process is
expressed as follows

Gradient Descent and Parameter Updates

To train the LSTM, we use gradient-based optimization algorithms such as stochastic
gradient descent (SGD), Adam, or RMSprop. These algorithms update the LSTM cell's
parameters (weights and biases) using the gradients calculated during backpropagation
[137].

For example, the update equations for weights and biases can be

r (111.52)
AW, = —az 5 Q@ x®

t=0

-1 (111.53)
Api = —az c(t)®6i(t+1)

t=0

-1 (111.54)
AR +=—a Y SV g y®

t=0

113

-1 - (111.55)
= — ®
Apf = az 6,

t=0
T
Ab %= _az>) (111.56)
t=0
\ ® (11.57)
Apo = —az C(t)®6o
t=0

In this context, the symbol @ signifies the outer product of two vectors, while the
symbol * can represent any component related to the weights, such as the block input
2, the input gate f, the forget gate £, or the output gate 6.These equations form the
foundation of LSTM RNNs, allowing them to effectively model sequential data, capture
long-term dependencies, and adapt their parameters during training for various tasks,

such as natural language processing, time series forecasting, and more [137].

3.7.4. LSTM MATLAB IMPLEMENTATOIN

Introduction This research explores the use of ensemble LSTM (Long Short-Term
Memory) neural networks to enhance fault detection accuracy in signal classification
tasks. Accurate fault detection is crucial in domains like industry and healthcare. This
study focuses on improving classification performance through ensemble learning with

LSTM networks.

114

numHiddenUnits = 1500;
numClasses = numel(unique(YTrain));
layers = [sequenceInputLayer(inputSize, 'Normalization', 'zscore')
lstmLayer(numHiddenUnits, 'OutputMode', 'last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
Ensemble Learning: Trains multiple neural network models independently
(specified as numModels) to introduce diversity among models.
numModels = 3;
YPredAll = zeros(length(YTest), numModels);
YTrain = categorical(YTrain);
for i = 1l:numModels
% Train a new model
net = trainNetwork(TrainFeatures, YTrain, layers, options);

% Predict on the test set
YPred = classify(net, TestFeatures);

% Store predictions
YPredAll(:, i) = grp2idx(YPred);
end

Network Architecture Utilizes a neural network architecture with sequence input,

LSTM, fully connected, softmax, and classification layers to capture temporal

dependencies in signal data.

Prediction Aggregation Aggregates predictions from individual models using a mode

operation to improve generalization and reduce overfitting.

% Create an ensemble prediction

YPredEnsemble = mode(YPredAll, 2);
YPredEnsemble = categorical(YPredEnsemble, 1:8,
catnames);

Results Reports accuracy of ensemble predictions compared to true labels (Y Test) and

visualizes classification performance using a confusion matrix.

115

% Calculate accuracy

accuracy = 100 * sum(YPredEnsemble == YTest') / numel(YTest);
% Display confusion matrix

figure;

cm = confusionchart(YTest, YPredEnsemble);
title('Classification Performance');

cm.RowSummary = 'row-normalized';

cm.ColumnSummary = 'column-normalized’;

% Print accuracy and confusion matrix
fprintf('Accuracy: %.2f%%\n', accuracy);

the effectiveness of ensemble LSTM neural networks in fault detection for signal
classification, highlighting the potential for enhanced accuracy and robustness. This
research contributes to improving fault detection methodologies with applications in

critical domains.

116

SUPPORT VECTOR MACHINES
(SVMS)

NEURAL NETWORK

e Model Complexity SVMs are
generally simpler models compared
to neural networks. They aim to
find a hyperplane that best
separates classes.

e Feature Engineering SVMs
require careful feature engineering,
especially for a moderate number
of features.

e Scalability SVMs can be
computationally expensive,
particularly with large datasets
[138].

e Model Interpretability SVMs
are often considered more
interpretable due to their decision
boundary being defined by support
vectors [139].

e Performance SVMs perform
well in tasks with moderate data
availability and when data exhibits
linear separability or can be
effectively separated with a
suitable kernel [140].

e Model Complexity NNs can be
extremely complex, with the ability
to learn intricate, non-linear
relationships within the data.

e Feature Engineering NNs can
automatically learn features from
raw data, making them suitable for
high-dimensional or unstructured
data.

e Scalability NNs are highly
scalable and parallelizable, making
them suitable for large datasets and
distributed computing.

e Model Interpretability NNs,
particularly deep architectures, are
often considered black-box models,
making it challenging to interpret
their predictions [138].

e Performance NNs, especially
deep learning models, have shown
state-of-the-art performance in
various domains, but they often
require large amounts of labeled
data [140].

117

3.7.5. SVM Vs Neural Network

In summary, there's no definitive answer regarding which is better between SVMs and
NNSs. The choice should be guided by the specific characteristics of your data, your
computational resources, and your performance and interpretability requirements. It's
often valuable to experiment with both approaches to determine which one best suit our
particular task. Additionally, hybrid models that combine SVMs and NNs can be

explored in some scenarios to leverage the strengths of both techniques.

3.7.6. Optimization of the Long Short-Term Memory (LSTM) Neural Network

In this section, we explore the optimization strategies applied to our Long Short-Term
Memory (LSTM) neural network, a pivotal component of our study. Our primary aim
was to fine-tune the LSTM's parameters to enhance its performance and expedite
convergence. The cornerstone of this optimization endeavor was the utilization of the

Adam optimization algorithm, a potent tool for training neural networks.

3.7.6.1. Adam Optimization Algorithm

The Adam optimizer, stemming from the term "Adaptive Moment Estimation," stands
as a leading choice for optimizing neural networks, including LSTMs. It amalgamates
the strengths of two renowned optimization techniques, Adagrad and RMSprop. What
sets Adam apart is its capability to dynamically adjust learning rates for individual
parameters, rendering the training process more efficient and effective. This algorithm
maintains two moving averages for each parameter the first moment (mean) and the
second moment (uncentered variance). These moving averages adapt the learning rate

throughout training, ensuring optimal convergence [141].

118

In MATLAB, we implemented the Adam optimization algorithm, making use of built-
in functions within deep learning frameworks or custom implementations tailored to
our study's specific requirements. The optimization process was finely tuned through
careful adjustment of hyperparameters, including the learning rate (o), decay rates (1

and 2), and epsilon (&) for numerical stability, to achieve not only optimal convergence

but also superior performance tailored to our specific task [142].

3.7.6.2. Hyperparameter Tuning

The effectiveness of an LSTM network hinges on the judicious selection of
hyperparameters. To discern the optimal configuration for our LSTM, we embarked on
an exhaustive hyperparameter tuning process, covering several pivotal parameters
Learning Rate (o)) This parameter governs the step size during weight updates within
the optimization process. Extensive experimentation was conducted to pinpoint the
learning rate that facilitated swift convergence without encountering challenges such as
overshooting or convergence to local minima.

Batch Size The choice of mini-batch size during training significantly influences
convergence speed and memory usage. Systematic exploration of various batch sizes
was undertaken to strike a balance between rapid convergence and manageable memory

requirements [143].

119

Architecture The architectural design of an LSTM network is crucial for its ability to

model complex patterns [143]. In our case, we employed the following architecture:

layers = [.

sequenceInputlLayer(inputSize, 'Normalization', 'zscore")
lstmLayer(numHiddenUnits, 'OutputMode’, "last")
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];

giving the options as below:

maxEpochs = 170;

miniBatchSize = 170;

options = trainingOptions('adam',
'InitiallLearnRate', le-4,
'MaxEpochs', 170,
'MiniBatchSize', 170,
'SequencelLength', 'longest',
'Shuffle', 'every-epoch',
'ValidationData', {TestFeatures, YTest},
'ValidationFrequency', 30,
'Verbose', 1,

'Plots', 'training-progress',
"ExecutionEnvironment’, 'gpu');

Where the Number of Hidden Unites = 1500;
Max Epochs = 170;
Minimum Batch Size = 170;

and in the other Model we used the below parameters:

% Set the training parameters

net.trainParam.epochs = 200; % Set the number of epochs to 100
net.trainParam.max_fail = 20; % Set the maximum number of
validation failures to 20

net.trainParam.lr = 0.01; % Set the learning rate to 0.01
net.trainParam.mc = 0.9; % Set the momentum constant to 0.9
net.trainParam.betal = 0.9; % Set the betal parameter for Adam
optimization to 0.9

net.trainParam.beta2 = 0.999; % Set the beta2 parameter for Adam
optimization to ©.999

net.trainParam.epsilon = le-8; % Set the epsilon parameter for Adam
optimization to 1le-8

120

Training and Ensemble Learning We used an ensemble learning approach by training
multiple LSTM models and taking a majority vote for predictions [143]. The code for

this ensemble learning is as follows:

numModels = 3; % number of models to train
YPredAll = zeros(length(YTest), numModels); % initialize matrix to
store predictions
YTrain=categorical(YTrain);
for i = 1:numModels
% train a new model
net = trainNetwork(TrainFeatures,YTrain,layers,options);

% predict on test set

YPred = classify(net,TestFeatures);

YPred =
renamecats(YPred,{'1','2",'3","'4",'5"','6"','7"','8"'},catnames);

% store predictions in YPredAll matrix
YPredAll(:, i) = grp2idx(YPred);
end

% take the mode prediction across all models

YPredEnsemble = mode(YPredAll, 2);

YPredEnsemble = categorical(YPredEnsemble, 1:8, catnames);

YTest = renamecats(YTest,{'1','2"','3","'4",'5"','6"','7"',"'8"'},catnames);

3.7.6.3. Evaluation and Confusion Matrix
To assess the model's performance, we computed accuracy and displayed a confusion

matrix:

% compute accuracy
accuracy = 100*sum(YPredEnsemble == YTest') /
numel(YTest)

% Plot the confusion matrix for the final model

figure;

cm = confusionchart(YTest, YPredEnsemble);
title('Classification for a faulty and healthy signal for
each road type');

cm.RowSummary = 'row-normalized';

cm.ColumnSummary = 'column-normalized';

121

The hyperparameter tuning process encompassed diverse methodologies, ranging from
grid search to random search and Bayesian optimization, the selection contingent upon
the intricacy of the hyperparameter space. Robust evaluation metrics, encompassing but
not limited to accuracy, loss, and domain-specific criteria, were enlisted to gauge the
LSTM network's performance [143].

The harmonious amalgamation of the Adam optimization algorithm, ensemble
learning, and meticulous hyperparameter tuning culminated in a finely-tuned LSTM
architecture and training regimen, delivering optimal outcomes meticulously tailored

to the specifics of our task.

3.7.7. SVM Tuning

Tuning SVM parameters is essential to achieve the best possible performance for your
specific problem. In MATLAB, we can tune SVM hyperparameters using various
techniques, including grid search and cross-validation. Here's a step-by-step on how we

tuned SVM in MATLAB

3.7.7.1. Splitting Data for Cross-Validation
To assess the effectiveness of different hyperparameters, it's essential to divide the
dataset into training and validation sets. MATLAB offers functions like 'cvpartition’ or

‘crossval’ to create cross-validation folds [144].

3.7.7.2. Choosing the SVM Kernel
SVMs offer various kernels, including linear, polynomial, radial basis function (RBF),
or sigmoid. The kernel choice plays a vital role in model's performance, so we should

carefully select the most suitable one for your specific problem.

122

3.7.7.3. Selecting Hyperparameters

Critical SVM hyperparameters to fine-tune include

C This parameter controls the balance between maximizing the margin and minimizing
classification errors [145]. In our model, we set the 'BoxConstraint' hyperparameter to

the values '0.01,' '0.1,' '1," and '10.

3.7.7.4. Kernel Parameters

Depending on the selected kernel type, such as the polynomial degree for polynomial
kernels or kernel width for RBF kernels, additional parameters may need adjustment
[145]. In our model, we specifically adjusted the 'KernelScale' hyperparameter, using

the values '0.01,' '0.1,' '1," and '10.

Grid Search In MATLAB, the ‘fitcsvm' function is employed to train SVM classifiers.
For multi-class problems, ‘fitcecoc' can be utilized. To execute a grid search for

hyperparameter ~ optimization, leverage fitcecoc' along with the

'HyperparameterOptimizationOptions' parameter [145]. Below is an example:

% Create an SVM template

template = templateSVM('KernelFunction', 'rbf');

% Define the hyperparameter search space

parameters = struct('BoxConstraint', [0.01, 0.1, 1, 10], 'KernelScale',

[0.01, 0.1, 1, 10]);

% Set up hyperparameter optimization options

options = struct('Optimizer', 'bayesopt', 'MaxObjectiveEvaluations',

30);

% Conduct hyperparameter optimization using fitcecoc

svm_model = fitcecoc(XTrain, YTrain, 'Learners', template,

'OptimizeHyperparameters', 'auto',...
'HyperparameterOptimizationOptions', options, 'HyperparameterRange’,

parameters);

% Assess the best model's performance on the validation set

predictions = predict(svm_model, XValidation);

123

3.7.7.5. Model Evaluation

Following hyperparameter tuning, evaluate the SVM model's performance using
appropriate metrics, such as accuracy, precision, recall, or F1-score, on a test dataset or
through cross-validation.

Always keep in mind that the choice of kernel and hyperparameters significantly
influences our SVM model's performance. It's crucial to experiment with various

configurations while employing cross-validation to prevent overfitting.

124

V. THE RESULTS AND DISCUSSION

In this chapter, we fuse the outcomes and insights from our experiments in road obstacle
detection and suspension fault classification, providing a comprehensive view of both
results and their implications. Our research, powered by an Intel(R) Core(TM) i7-
7820HK CPU and NVIDIA GeForce GTX 1080 GPU, spanned several tests, each
targeting specific aspects of detection and classification under various environmental
conditions.

We focused on the Road Type and Signal Condition Classification, incorporating real-
world variables such as noise and denoising processes. This approach allowed us to
assess the robustness of our systems under different operational scenarios.

Our discussion goes beyond presenting data, and delving into the performance metrics,
challenges, and potential for enhancements in practical applications. We critically
analyze the impact of noise on classification accuracy and evaluate the effectiveness of
various denoising techniques.

Furthermore, this chapter acknowledges the study's limitations, offering insights into
the constraints and practical considerations that shaped our research. We also put
forward recommendations for future research, aiming to advance suspension fault
detection systems.

Summarizing, this chapter bridges our experimental results with thoughtful analysis,
setting the stage for future innovations in automotive safety and performance

enhancement.

125

4.1. First Test Discussion Road obstacles 5 levels of training and testing (With

Noise)

In our initial test for detecting road obstacle faults, we examined 15 diverse methods to
identify obstacles such as Sinewaves, Grids, Potholes, and Bumps across five different
levels of faults. To simulate realistic driving conditions, we introduced various types of
noise, such as those resembling grain or engine sounds, which can affect the tie rod
during driving. The results in a noisy environment (as shown in Table 1) were
enlightening. Notably, the Wavelet Scattering SVM PCA method demonstrated

exceptional performance, achieving a mean accuracy of 99.1%.

Table 1 First Test Method Performance Summary (With Noises)

Model Names Number of Mean Std Mean Std
Training Cycles Accuracy Accuracy Time Time

(%) (%) (sec) (sec)

Wavelet Scattering SVM PCA 5 Folds 99,1 0,144 11 1
DWT SVM 1 Iteration 95 2,16 9 4
Wavelet Scattering SVM Tuned 20 Evaluations 95 1,41 403 62
Wavelet Scattering SVM CV SRE 5 Folds 94,9 2,66 11 1
Wavelet Scattering RNN ADAM 170 Epochs 94,8 1,5 53 3
Wavelet Scattering SVM Tuned SRE 20 Evaluations 94,5 1,29 183 75
DWT SVM Tuned 20 Evaluations 943 1,26 382 346
Wavelet Scattering SVM CV 5 Folds 94,3 1,55 22 20
Wavelet Scattering RNN 170 Epochs 93,8 2,63 59 4
Wavelet Scattering SVM Tuned RFE 20 Evaluations 93 1,41 123 14
Wavelet Scattering SVM CV RFE 5 Folds 91,1 0,625 13 1
DWT SVM SRE Tuned 20 Evaluations 91 2,94 487 403
Wavelet Scattering SVM CV LDA 5 Folds 77 5,72 9 1
Wavelet Scattering SVM Tuned LDA 20 Evaluations 68 7,16 83 2
DWT Neural Network 200 Epochs 54 6 10 9

126

4.1. Second Test Discussion Road obstacles 5 levels of training and testing
(Denoised)

In the second test, we focused on noise removal from road obstacles, using MATLAB's
‘wdenoise' function to eliminate the noises we introduced in the first test. Subsequently,
we applied the same 15 methods to detect Sinewave, Grid, Pothole, and Bump obstacles
across five varied levels of faults. The results showed that not only did the top-
performing method from the first test (referenced in Table 2) maintain its high accuracy
post-denoising, but it also confirmed the robustness of this model. In contrast, while
methods like the Wavelet Scattering SVM Tuned RFE and Tuned exhibited significant
improvements after denoising, they also demonstrated a notable increase in processing
time. This highlights the essential balance between detection accuracy and operational

efficiency in road safety applications.

Table 2 Second Test Method Performance Summary (Denoised)

Model Names Number of Mean Std Mean Std Time
Training Cycles Accuracy Accuracy Time (sec) (sec)

))

Wavelet Scattering SVM PCA 5 Folds 97,9 2,75 11 7
Wavelet Scattering SVM Tuned RFE 20 Evaluations 97,6 1,11 91 16
Wavelet Scattering SVM Tuned 20 Evaluations 97,3 0,655 565 368
Wavelet Scattering SVM Tuned SRE 20 Evaluations 96 0,816 146 25
Wavelet Scattering RNN ADAM 170 Epochs 96 2 53 1
Wavelet Scattering SVM CV RFE 5 Folds 94,8 0,315 13 1
Wavelet Scattering RNN 170 Epochs 94,5 0,577 54 1
DWT SVM 1 Iteration 94,5 1,29 5 2
DWT SVM Tuned 20 Evaluations 93,5 3,7 361 189
Wavelet Scattering SVM CV SRE 5 Folds 93,4 0,903 12 5
Wavelet Scattering SVM CV 5 Folds 93,3 0,772 18 8
DWT SVM SRE Tuned 20 Evaluations 90,5 2,08 561 444
Wavelet Scattering SVM CV LDA 5 Folds 84,9 10,2 8,5 0,5
DWT Neural Network 200 Epochs 82 3,46 247 41
Wavelet Scattering SVM Tuned LDA 20 Evaluations 73,3 10,6 84 2

127

4.2. Third Test Road Type and Signal Condition Classification Comprehensive

Testing (With Noise)

The objective of the third test was to classify road types and signal conditions as either
healthy or faulty, with a dual emphasis on maximizing accuracy and minimizing
processing time. This comprehensive evaluation included scenarios with noise
interference. The results, detailed in Table 3 for conditions with noise, reveal that the
Wavelet Scattering RNN ADAM model exhibited high performance. The performance
details of the tuning in ADAM's optimization can be found in Figure IV-1. The model
maintained a mean accuracy of 97.8% with a relatively low standard deviation,

indicating not only its effectiveness but also its consistency under noisy conditions.

Table 3 Third Test Summary of Method Performance Metric (With Noise)

Model Names Number of Mean Std Mean Std
Training Cycles Accuracy Accuracy Time (sec) Time

(%) (%) (sec)

Wavelet Scattering RNN ADAM 170 Epochs 97,8 0,776 360 79

DWT Neural Network 200 Epochs 97,7 0,261 41 6
Wavelet Scattering SVM Tuned SRE 20 Evaluations 97,5 0,304 2970 530
Wavelet Scattering SVM CV 5 Folds 97,2 0,846 86 17
Wavelet Scattering SVM CV SRE 5 Folds 97,1 0,463 91 12
Wavelet Scattering SVM CV RFE 5 Folds 96,5 0,0866 73 13
Wavelet Scattering SVM Tuned RFE 20 Evaluations 96,3 0,135 2010 406
Wavelet Scattering SVM PCA 5 Folds 95,8 0,61 81 14
Wavelet Scattering SVM Tuned LDA 20 Evaluations 95,6 0,367 224 42
Wavelet Scattering RNN 170 Epochs 95,5 0,685 386 56
Wavelet Scattering SVM CV LDA 5 Folds 95,4 0,2 62 12
Wavelet Scattering SVM Tuned 20 Evaluations 95,3 0,735 2630 483
DWT SVM Tuned 20 Evaluations 95 0,598 4590 486
DWT SVM SRE Tuned 20 Evaluations 93,1 0,304 4420 836
DWT SVM 1 Iteration 92,2 0,358 194 38

128

Training Progress

I . . s . A » re e TNy BBy @) -
A " D maa L PR 8000 e

Accuracy (%)

"

‘\UU

. 1500
Iteration

06

- \‘w...,..

2

0.2 e Py ol .
o

4 ' -ty R B0 @) Final
1 s ! T

. 1500
Iteration

Figure 1\V-1 Training Progress Road Type and Signal Condition Classification (With

Noise) with Wavelet Scattering Neural Network Test Using adam Optimizer

Figure V-1 depicts the final training progress of the model, concluding at iteration
2550 within three model loops with an impressive accuracy of 97.50%. Notably, this
accuracy exhibits significant growth within the first 200 iterations of the training
process, followed by a gradual increase until it reaches the final accuracy of 97.50%.
4.3. Fourth Test Road Type and Signal Condition Classification Comprehensive

Testing (Denoised)

In the fourth test, we employed the denoising function, as mentioned in the previous
test, to assess road type and signal condition classification under denoised conditions.
The results, presented in Table 4, showed that the Wavelet Scattering SVM Tuned LDA

model was a standout, achieving a mean accuracy of 98.4%. Details of the model's

129

tuning and evaluation can be found in Figures 1VV-2 and IV-3. However, it's important
to highlight that this high accuracy came at the cost of increased processing time,
illustrating the trade-off between accuracy and efficiency. These findings are vital for
the advancement of road condition classification systems. They emphasize the
significance of choosing the right model for each specific scenario to balance road

safety and operational efficiency effectively.

Table 4 Fourth Test Summary of Method Performance Metric (Denoised)

Model Names Number of Mean Std Mean Std
Training Cycles Accuracy Accuracy Time (sec) Time (sec)
%) %)

Wavelet Scattering SVM Tuned LDA 20 Evaluations 98,4 0,348 219 46

Wavelet Scattering SVM Tuned 20 Evaluations 98,4 0,481 3580 602
Wavelet Scattering SVM Tuned SRE 20 Evaluations 98,3 0,18 3400 691
Wavelet Scattering SVM Tuned RFE 20 Evaluations 98,3 0,289 3760 569
Wavelet Scattering RNN ADAM 170 Epochs 98,3 0,382 363 18
DWT Neural Network 200 Epochs 98,1 0,499 44 3

Wavelet Scattering SVM CV SRE 5 Folds 97,8 0,45 123 19
Wavelet Scattering SVM CV LDA 5 Folds 97,7 0,456 60 12
Wavelet Scattering RNN 170 Epochs 97,7 0,576 355 14
Wavelet Scattering SVM CV RFE 5 Folds 97,4 0,17 71 11

Wavelet Scattering SVM CV 5 Folds 97,1 0,551 114 22
DWT SVM Tuned 20 Evaluations 97 0,439 4420 861
DWT SVM SRE Tuned 20 Evaluations 95,9 0,421 1560 269
Wavelet Scattering SVM PCA 5 Folds 92,9 0,52 551 101
DWT SVM 1 Tteration 92,5 0,41 190 28

130

Objective function model

L] Observed points
Points being evaluated
0.6 — 1 Model mean
@ Next point
* Model minimum feasible

Estimated objective function value

10°

KernelScale BoxConstraint

Figure V-2 Objective Function Modeling of a faulty and healthy signal for each road

type (Denoised) Wavelet Scattering and SVM Tuned and Optimized with LDA

Min objective vs. Number of function evaluations

105
o Min observed objective
Estimated min objective| 4045
04
.\
0.35

(=]
M
(4]
Min objective

0.2
10.15
1041

| {005

Function evaluations

Figure 1V-3 Minimum Objective vs. Number of Function Evaluations of a faulty and
healthy signal for each road type (Denoised) Wavelet Scattering and SVM Tuned and

Optimized with LDA

In Figure 1V-2, when we analyze the expected and actual performance of the tuned

SVM model, we notice that 'Observed Points' cluster within a range of 0 to 0.6 in the

131

minimum objective function value. This pattern suggests that the model's performance
is within an acceptable range. However, there are occasional instances where the
performance falls outside this range. This variability in performance can be attributed
to factors such as data characteristics, inherent limitations of the model, or variations in

the datasets used for evaluation.

In Figure V-3, we observe that the hyperparameter optimization process produced
promising results. The 'Minimum Observed Objective' achieved a low value of 0.02,
signifying strong and robust model performance according to our selected metric.
While the 'Estimated Minimum Objective' showed some fluctuations during the
optimization process, it converged with the minimum observed objective. Although it
did not reach the absolute lowest objective value, this outcome still indicates a level of
performance that is both acceptable and effective for our specific task.

Result Conclusion

The extensive evaluation of various methods for detecting and classifying road
obstacles under different conditions, including noise and denoising, offers valuable
insights for autonomous driving and road safety. The tests demonstrate notable
performance variations among methods, underscoring the necessity of choosing the
most suitable technique based on application-specific requirements, data
characteristics, and the trade-off between accuracy and processing time.

In the first test, which focused on classifying road obstacles in noise-free conditions,
the Wavelet Scattering SVM PCA method emerged as the most effective, achieving an

exceptional mean accuracy of 99.1%. This result highlights the significance of

132

sophisticated algorithmic approaches in achieving high accuracy in road obstacle

detection.

In the second test, which included scenarios with and without noise, the Wavelet
Scattering SVM PCA method maintained its robustness, achieving a high accuracy rate
of 97.9% post-denoising. This performance parallels its effectiveness in vibration fault
diagnosis for bearings at variable speeds, as noted in reference [146]. However, other
methods like the Wavelet Scattering SVM Tuned RFE and the Wavelet Scattering SVM
Tuned also showed significant improvements after denoising. These improvements,
though, came at the cost of increased processing time. Nonetheless, they demonstrated
robustness, especially in detecting unbalanced and bowed rotors, as documented in
reference [147]. Specifically, the Wavelet Scattering SVM Tuned RFE achieved an
accuracy of 97.6%, while the Wavelet Scattering SVM Tuned reached 97.3%. This test
highlighted the critical balance between detection accuracy and operational efficiency
in road safety applications.

In the third test, which introduced noise to the road obstacle detection process, the
Wavelet Scattering RNN ADAM model stood out. It maintained a mean accuracy of
97.8% with low variability, demonstrating high performance and consistency under
noisy conditions. Furthermore, the integration of wavelet scattering with LSTM proved
effective in classifying unbalanced and bowed rotors, as indicated in reference [147].
Finally, in the fourth test, incorporating both noise and denoising, the Wavelet
Scattering SVM Tuned LDA model was a top performer with a mean accuracy of

98.4%, albeit with increased processing time. This highlights the crucial balance

133

between accuracy and operational efficiency. It has also showed promise in mixed
signal environments, akin to its application in bearing vibration fault detection [148].
In conclusion, the optimal method for road obstacle detection and classification varies
depending on data nature, noise presence, and the desired accuracy-efficiency balance.
The effectiveness of feature selection, preprocessing, and adaptive techniques in
enhancing performance and robustness is evident. These findings provide essential
guidance for developing advanced road obstacle detection systems, contributing
significantly to the field of autonomous driving technology.

4.4. Limitations of the Study

This research endeavor encountered certain limitations stemming from practical
constraints and technical considerations. These limitations prompted the utilization of
alternative methodologies to mitigate the challenges posed by the available resources.

The scope and constraints of this study are delineated as follows

4.4.1. Data Collection

In this study, the primary method for data acquisition involved the utilization of Adams
car simulation software. While Adams car simulation software is well-established for
its data generation reliability, it is imperative to underscore that the specific software
version employed in this research lacked the intrinsic capacity to directly simulate
faults. To address this intrinsic limitation, the simulation methodology introduced
variations in angular acceleration predicated on the influence of wear-induced changes.
Moreover, in lieu of actual real-world noise, virtual noise components were
incorporated. These methodological adaptations were implemented with the explicit

objective of facilitating the study's ability to effectively capture and analyze the

134

manifestations of faults. This strategic approach was necessitated by the resource
constraints encountered in this study and the concomitant fiscal implications associated
with procuring dedicated sensors and control units for direct fault diagnosis.

In the context of the application of accelerometer data for suspension fault detection,
the data collection process necessitates meticulous attention to the following key
considerations:

Dataset Diversity and Extensiveness: The dataset employed in this research was
diligently constructed to encompass a wide spectrum of real-world road conditions.
This comprehensive dataset design aimed to faithfully model suspension behavior
under various environmental and road condition scenarios.

Dynamic Road Condition Variations: The data collection strategy incorporated the
need to account for dynamic fluctuations in road conditions. This included
accommodating transient anomalies such as potholes and other road surface
irregularities, which necessitated the collection of data under diverse driving scenarios.
Generalizability of the Model: Ensuring the robust generalizability of the machine
learning model across distinct road conditions was a paramount consideration. The
model's capacity to remain effective across different environmental contexts and its
ability to maintain resilience against undue sensitivity to minor variations were critical
for its practical applicability in real-world scenarios.

Vital Information Captured by Accelerometer Data It is crucial to underscore the
significance of accelerometer data, which captures pivotal vehicle movements and
vibrations. These captured dynamics play an indispensable role in the detection of

suspension issues that might not be readily discernible solely from surface

135

irregularities. Recognizing this pivotal role is imperative for accurate fault diagnosis

and classification.

4.4.2. Hardware Performance Evaluation

Another substantial limitation of this study was the unavailability of an array of GPUs,
CPUs, or FPGAs with varying processing speeds for the purpose of evaluating their
influence on fault detection algorithms. Ideally, a comprehensive assessment would
have involved testing diverse hardware speeds to gauge their impact on the
effectiveness of the fault detection algorithms. Regrettably, due to resource constraints,
this aspect could not be explored in depth. Nonetheless, this study focused on evaluating
the overall performance and efficacy of the fault detection algorithms, irrespective of

specific hardware variations.

4.4.3. Time Constraints

Time constraints presented a formidable challenge in this research endeavor. These
temporal limitations-imposed constraints on the development of a more extensive array
of fault detection algorithms and the exploration of a broader spectrum of road types.
Although the study aspired to generate a substantial number of fault detection codes
and incorporate a wide range of road scenarios, time restrictions curtailed the extent of
these efforts. However, within the confines of the available time frame, the study
diligently aimed to provide meaningful analysis and insights.

In conclusion, this study acknowledges these limitations and has endeavored to mitigate
their impact to the greatest extent possible, given the resources and time available, in

pursuit of meaningful contributions to the field of suspension fault detection.

136

4.5. Recommendations for future research and practical applications
In light of the limitations identified in this study, several compelling avenues for future
research and practical applications emerge, each offering unique prospects for

enhancing suspension fault detection methodologies.

4.5.1. Integration of LIiDAR with Accelerometer Data

Exploration of LiDAR technology integration with accelerometer data is a paramount
recommendation for suspension fault detection. This innovative technique utilizes
LiDAR's ability to capture large amounts of training data and combines it with the
practical testing capabilities of accelerometer data. Previous studies have demonstrated
the effectiveness of LIDAR in earthquake detection [149], and this synergy can
significantly enhance the accuracy and reliability of suspension fault detection models,

particularly in real-world driving scenarios.

4.5.2. Incorporation of Real-Life Data

A key recommendation is to emphasize the incorporation of authentic real-world data
in research efforts. While software simulations provide controlled environments, the
resource-intensive collection of real-life data can provide invaluable insights into
suspension behavior under diverse road conditions. Bridging the gap between
laboratory findings and actual road performance augments the practical utility of

suspension fault detection systems significantly.

4.5.3. Merging Finite Element Analysis with Vibration Fault Detection
The integration of finite element analysis with vibration fault detection methodologies

is a promising approach that can significantly enhance suspension fault detection

137

accuracy and predictive capabilities, especially when considering the fatigue life cycle.
This innovative integration enables the classification of fault severity based on finite
element grades. For instance, in the case of tie rod degradation, specific vibrations
corresponding to varying degrees of wear and high vibrations can signify different
stages of the fatigue life cycle and levels of potential danger. By aligning the severity
of detected faults through vibration analysis with fatigue life cycle-linked finite element
grades, as done in Vibration Analysis of Defected Ball Bearings [150], this approach

facilitates the provision of more precise warnings to drivers.

4.5.4. Investment in Advanced Hardware Resources

Crucial to the advancement of research endeavors is investing in advanced hardware
resources, such as high-performance GPUs and processors. These resources facilitate
the comprehensive analysis of complex real-life data, enabling the application of
sophisticated machine-learning techniques to achieve heightened fault detection

accuracy.

4.5.5. Conducting Comparative Studies on Machine-Learning Algorithms

Conducting comparative studies to evaluate different machine-learning algorithms in
suspension fault detection is highly advantageous. Systematically comparing classifiers
and feature extraction techniques aids in pinpointing the most reliable and efficient

approach for practical implementation.

138

4.5.6. The practical applications of these recommendations span across various
sectors

Automotive Industry Integration of suspension fault detection systems in vehicle
manufacturing can enhance safety and performance, enabling early identification of
suspension issues, reducing maintenance costs, and ensuring safer driving experiences
for consumers.

Fleet Management Companies Integration of suspension fault detection into
maintenance routines can lead to increased operational efficiency, reduced downtime,
and substantial cost savings through timely identification of suspension problems.
Road Safety Authorities Leveraging suspension fault detection systems for continuous
monitoring of suspension health can swiftly identify vehicles with potential issues,
allowing authorities to take proactive measures to prevent accidents arising from
vehicle malfunctions.

Aftermarket Automotive Service Providers Offering suspension fault detection as a
value-added service can assist car owners in more effectively maintaining their
vehicles, potentially extending their lifespan.

Embracing these recommendations not only propels the field of suspension fault
detection forward but also ensures tangible implementation across diverse sectors,

promising a safer and more efficient automotive landscape.

139

4.5.7. The Cost and Application of Accelerometer in Vehicular Vibration

Measurement

To effectively measure vibrations in the outer tie rod of a car suspension, an
accelerometer with a frequency range of 10 Hz to 1000 Hz and a sensitivity of at least
100 mV/qg is required.

The PCB Piezotronics Model 601A01 accelerometer aligns perfectly with these criteria.
With a frequency range spanning from 0.27 Hz to 10 kHz and a sensitivity of 100 mV/g,
it is specifically designed for high-frequency vibration measurement in automotive and
aerospace applications. Priced at $220 per unit, this accelerometer provides a cost-
effective solution for precise measurements [*]. To harness the full potential of data
processing, customization of a chassis control module or suspension control module is
recommended. This tailored modification ensures seamless integration with other
functions, thereby enhancing safety and reliability [151]. Additionally, establishing
connectivity with other modules, such as the Engine Control Unit (ECU) [152],
facilitates not only real-time error display on the dashboard but also error storage for

future analysis and reference.

1 PCB Piezotronics. (2024). Frequency range of 10 Hz to 1000 Hz for measuring vibration in the
outer tie rod of a car suspension. Retrieved from [https://www.ni.com/en/shop/data-acquisition/sensor-

fundamentals/measuring-vibration-with-accelerometers.html]

140

V. CONCLUSION

This thesis represents a substantial contribution to the field of fault detection in a
simulated car's gear steering system, with a specific focus on suspension failure in
vehicles. This issue is critical, as suspension failures pose significant risks on the road
and can lead to severe, sometimes fatal, car accidents. The research employed a
combination of simulation, data analysis, signal processing, and classification to
address this issue thoroughly.

The main findings of the study are centered around simulated wear and tear, data
collection, feature extraction methods, classification algorithms, robustness analysis,
and identifying the best-performing approaches. The study successfully simulated wear
in the outer tie rod, generating faulty signals that mimic real-world conditions. The
collected data from these simulations provided a baseline for healthy signals.

Feature extraction was conducted using two distinct methods wavelet scattering and
discrete wavelet transform. Their effectiveness in capturing signal characteristics was
thoroughly evaluated. Support Vector Machines (SVM) and Neural Networks (NN)
were used as classification algorithms to differentiate between normal and faulty
signals. The robustness of the system was tested by introducing various types of noise,
including rough road, tire, and engine noises. Analyses were performed on signals in
conditions without noise, with noise, and after denoising.

The study highlighted "Wavelet Scattering SVM PCA" as the best-performing method
in the first test for noise scenarios, achieving an outstanding mean accuracy of 99.1%.
In the second test, which incorporated noisy and noise-free scenarios, "Wavelet

Scattering SVM PCA™" again proved its effectiveness, maintaining a high accuracy rate

141

post-denoising at 97.9%. The third test, introducing noise into road obstacle detection,
saw the "Wavelet Scattering RNN ADAM™ model as the standout, with a mean
accuracy of 97.8%. In the fourth and final test, incorporating both noise and denoising,
the "Wavelet Scattering SVM Tuned LDA" emerged as the top performer, achieving a
mean accuracy of 98.4%.

While the research has its limitations, particularly within the simulated environment, it
lays a solid foundation for future exploration. Real-world conditions may vary from
simulations, and future research should focus on real-world testing, diverse datasets,
and the advancement of machine learning techniques to enhance fault detection
accuracy.

The significance of this research lies in its potential applications in the automotive
industry, offering a pathway to safer and more reliable vehicles. The methodologies and
findings presented in this thesis not only contribute to the advancement of automotive
safety and steering system fault detection but also play a critical role in enhancing
overall road safety.

This thesis, therefore, not only contributes to the technological advancements in the
field but also honors the memory of those affected by suspension-related accidents,

aiming to make roads safer for everyone.

142

[1]

[2]

[3]

[4]

[5]

[6]

[7]

REFERENCES

A. French, “National Highway Traffic Safety Administration (NHTSA) Notes,”
Ann Emerg Med, vol. 35 no. 6, pp. 0623-0624, 2000, doi
10.1067/mem.2000.106831.

A. Ohnsman, “Not His Wish Star Of Disney’s ‘Aladdin’ Sues Tesla For
Defective Model 3 In Hollywood Crash,” Forbes, May 2019.

M. Wozniak, A. Rylski, and K. Siczek, “The Measurement of the Wear of Tie
Rod End Components,” Strojniski vestnik - Journal of Mechanical Engineering,
vol. 68, no. 2, pp. 101-125, 2022, doi 10.5545/sv-jme.2021.7389.

J. C. Watrin, H. Makich, B. Haddag, M. Nouari, and X. Grandjean, “Analytical
modelling of the ball pin and plastic socket contact in a ball joint,” in Congres
francais de mécanique, Lille, France, Aug. 2017. doi hal-03325718.

A. S. Sener, “Fatigue life resolution of the steering wheel tie rod of a LCV with
FEA,” Mechanika, wvol. 23, no. 5, pp. 622629, 2017, doi
10.5755/j01.mech.23.5.16078.

L. Natrayan, E. Aravindaraj, M. S. Santhosh, and M. S. Kumar, “ANALYSIS
AND OPTIMIZATION OF CONNECTING TIE ROD ASSEMBLY IN
AGRICULTURE APPLICATION,” Acta Mechanica Malaysia, vol. 2, no. 1, pp.
06-10, Jan. 2019, doi 10.26480/amm.01.2019.06.10.

Y. Tomikawa, “PIEZOELECTRIC ANGULAR ACCELERATION SENSOR.”

2003.

143

[8]

[9]

[10]

[11]

[12]

[13]

S. E. EI-Khamy and H. A. Elsayed, “Classification of Multi-User Chirp
Modulation Signals Using Wavelet Higher-Order-Statistics Features and
Artificial Intelligence Techniques,” International Journal of Communications,
Network and System Sciences, vol. 05, no. 09, pp. 520-533, 2012, doi
10.4236/ijcns.2012.59063.

K. Dagrouqg, T. A. Hilal, M. Sherif, S. El-Hajjar, and A. R. Al-Qawasmi,
“Speaker identification system using wavelet transform and neural network,” in
2009 International Conference on Advances in Computational Tools for
Engineering Applications, ACTEA 2009, 2009, pp. 559-564. doi
10.1109/ACTEA.2009.5227953.

M. , N M , H J , & K S H. Heydarzadeh,
“Non_invasive Gearbox Fault Diagnosis Usi,” IEEE international conference
on acoustics, speech and signal processing (ICASSP) , pp. 371-375, 2017, doi
10.1109/icassp.2017.7952180.

S. Nahak, A. Pathak, and G. Saha, “Fragment-level classification of ECG
arrhythmia using wavelet scattering transform,” Expert Syst Appl, vol. 224, p.
120019, 2023, doi 10.1016/j.eswa.2023.120019.

S. Wegerich, “Similarity-based modeling of vibration features for fault detection
and identification,” Sensor Review, vol. 25, no. 2, pp. 114-122, 2005, doi
10.1108/02602280510585691.

P., & P. V. Khaire, “A smart fault identification system for ball bearing using
simulation-driven vibration analysis,” Archive of Mechanical Engineering, pp.

247-270, Nov. 2023, doi 10.24425/ame.2023.145583.

144

[14]

[15]

[16]

[17]

[18]

C. Pravin and V. Ojha, “A Novel ECG Signal Denoising Filter Selection
Algorithm Based on Conventional Neural Networks,” in Proceedings - 19th
IEEE International Conference on Machine Learning and Applications, ICMLA
2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 1094
1100. doi 10.1109/ICMLA51294.2020.00176.

A. Patil, C. Deshmukh, and A. R. Panat, “Feature extraction of EEG for emotion
recognition using Hjorth features and higher order crossings,” in Conference on
Advances in Signal Processing, CASP 2016, Institute of Electrical and
Electronics Engineers Inc.,, Nov. 2016, pp. 429-434. doi
10.1109/CASP.2016.77462009.

A. Stetco et al., “Machine learning methods for wind turbine condition
monitoring A review,” Renewable Energy, vol. 133. Elsevier Ltd, pp. 620-635,
Nov. 2019. doi 10.1016/j.renene.2018.10.047.

W. Zhang, G. Peng, C. Li, Y. Chen, and Z. Zhang, “A new deep learning model
for fault diagnosis with good anti-noise and domain adaptation ability on raw
vibration signals,” Sensors (Switzerland), vol. 17, no. 2, Feb. 2017, doi
10.3390/517020425.

R. G. T. K. Hazral, “Comparing Wavelet and Wavelet Packet Image Denoising
Using Thresholding Techniques,” International Journal of Science and
Research (IJSR), wvol. 5, no. 6, pp. 790-796, Nov. 2016, doi

10.21275/v5i6.nov164305.

145

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Dr. S. Kumar, “Image Denoising Technique Using Trimmed Based Median
Bilateral Filtering Method,” International Journal Of Engineering And
Computer Science, Nov. 2017, doi 10.18535/ijecs/v6i6.15.

A. Oppenheim et al., “Digital Signal Processing 24.0 Digital Signal Processing
Academic and Research Staff Part-time Assistants/Special Projects.”

J. Guo and Q. Chen, “Image denoising based on nonconvex anisotropic total-
variation regularization,” Signal Processing, vol. 186, Nov. 2021, doi
10.1016/j.sigpro.2021.108124.

P. Singh, S. Shahnawazuddin, and G. Pradhan, “An Efficient ECG Denoising
Technique Based on Non-local Means Estimation and Modified Empirical Mode
Decomposition,” Circuits Syst Signal Process, vol. 37, no. 10, pp. 4527-4547,
Nov. 2018, doi 10.1007/s00034-018-0777-9.

J. Shlens, “A Tutorial on Principal Component Analysis.” 2014. doi
10.48550/arXiv.1404.1100.

S. Huai and S. Zhang, “A novel sparse representation algorithm for AIS real-
time signals,” EURASIP J Wirel Commun Netw, vol. 2018, no. 1, Nov. 2018, doi
10.1186/513638-018-1244-9.

Y. Zheng, W. Jiang, and X. Qiu, “A Variable Parameter Method Based on Linear
Extended State Observer for Position Tracking,” 2022, doi 10.3390/act110200.
J. B. Tary, R. H. Herrera, and M. Van Der Baan, “Analysis of time-varying
signals using continuous wavelet and synchrosqueezed transforms,”

Philosophical Transactions of the Royal Society A Mathematical, Physical and

146

[27]

[28]

[29]

[30]

[31]

[32]

Engineering Sciences, vol. 376, no. 2126, Aug. 2018, doi
10.1098/rsta.2017.0254.

B. Belkacemi, S. Saad, Z. Ghemari, F. Zaamouche, and A. Khazzane, “Detection
of induction motor improper bearing lubrication by discrete wavelet transforms
(DWT) decomposition,” Instrumentation Mesure Metrologie, vol. 19, no. 5, pp.
347-354, Nov. 2020, doi 10.18280/i2m.190504.

D. Strombergsson, P. Marklund, K. Berglund, and P. E. Larsson, “Bearing
monitoring in the wind turbine drivetrain A comparative study of the FFT and
wavelet transforms,” Wind Energy, vol. 23, no. 6, pp. 1381-1393, Nov. 2020,
doi 10.1002/we.2491.

J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE Trans
Pattern Anal Mach Intell, vol. 35, no. 8, pp. 1872-1886, 2013, doi
10.1109/TPAMI.2012.230.

S. Zhou, S. Qian, W. Chang, Y. Xiao, and Y. Cheng, “A novel bearing multi-
fault diagnosis approach based on weighted permutation entropy and an
improved SVM ensemble classifier,” Sensors (Switzerland), vol. 18, no. 6, Nov.
2018, doi 10.3390/s18061934.

G. Jain, M. Sharma, and B. Agarwal, “Optimizing semantic LSTM for spam
detection,” International Journal of Information Technology (Singapore), vol.
11, no. 2, pp. 239-250, Nov. 2019, doi 10.1007/s41870-018-0157-5.

M. Cao, W. Xu, W. Ostachowicz, and Z. Su, “Damage identification for beams

in noisy conditions based on Teager energy operator-wavelet transform modal

147

[33]

[34]

[35]

[36]

[37]

[38]

[39]

curvature,” J Sound Vib, vol. 333, no. 6, pp. 1543-1553, Nov. 2014, doi
10.1016/j.jsv.2013.11.003.

C. Cortes, V. Vapnik, and L. Saitta, “Support-Vector Networks Editor,” Machine
Leaming, vol. 20. Kluwer Academic Publishers, pp. 273-297, 1995. doi
10.1007/BF00994018.

D. R. Cutler et al., “Random forests for classification in ecology,” Ecology, vol.
88, no. 11, pp. 2783-2792, Nov. 2007, doi 10.1890/07-0539.1.

G. C, J. A. Mangai, and M. Bansal, “An Investigation of Ensemble Learning
Algorithms for Fault Diagnosis of Roller Bearing,” 2022. doi
10.3233/apc220016.

C. Li, R. V. Sanchez, G. Zurita, M. Cerrada, and D. Cabrera, “Fault diagnosis
for rotating machinery using vibration measurement deep statistical feature
learning,” Sensors (Switzerland), vol. 16, no. 6, Nov. 2016, doi
10.3390/516060895.

Z. G. Su, Q. Hu, and T. Denoeux, “A Distributed Rough Evidential K-NN
Classifier Integrating Feature Reduction and Classification,” IEEE Transactions
on Fuzzy Systems, vol. 29, no. 8, pp. 2322-2335, Nov. 2021, doi
10.1109/TFUZZ.2020.2998502.

E. Zio, P. Baraldi, and I. C. Popescu, “A fuzzy decision tree for fault
classification,” Risk Analysis, vol. 28, no. 1, pp. 49-67, Nov. 2008, doi
10.1111/j.1539-6924.2008.01002.x.

A. Spyros et al., “Towards Continuous Enrichment of Cyber Threat Intelligence

A Study on a Honeypot Dataset,” in Proceedings of the 2022 IEEE International

148

[40]

[41]

[42]

[43]

[44]

Conference on Cyber Security and Resilience, CSR 2022, Institute of Electrical
and Electronics Engineers Inc.,, 2022, pp. 267-272. doi
10.1109/CSR54599.2022.9850295.

K. K. Verma, B. M. Singh, and A. Dixit, “A review of supervised and
unsupervised machine learning techniques for suspicious behavior recognition
in intelligent surveillance system,” International Journal of Information
Technology (Singapore), vol. 14, no. 1, pp. 397-410, Feb. 2022, doi
10.1007/s41870-019-00364-0.

D. Dey, B. Chatterjee, S. Dalai, S. Munshi, and S. Chakravorti, “A deep learning
framework using convolution neural network for classification of impulse fault
patterns in transformers with increased accuracy,” IEEE Transactions on
Dielectrics and Electrical Insulation, vol. 24, no. 6, pp. 3894-3897, Dec. 2017,
doi 10.1109/TDEI.2017.006793.

Z.Yu, L. Zhang, and J. Kim, “The Performance Analysis of PSO-ResNet for the
Fault Diagnosis of Vibration Signals Based on the Pipeline Robot,” Sensors
(Basel), vol. 23, no. 9, May 2023, doi 10.3390/523094289.

H. Li, X. Yue, Z. Wang, W. Wang, H. Tomiyama, and L. Meng, “A survey of
Convolutional Neural Networks —From software to hardware and the
applications in measurement,” in Measurement Sensors, Elsevier Ltd, Dec. 2021.
doi 10.1016/j.measen.2021.100080.

M. A. Atoui and A. Cohen, “Coupling data-driven and model-based methods to
improve fault diagnosis,” Comput Ind, vol. 128, Jun. 2021, doi

10.1016/j.compind.2021.103401.

149

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

J. Yan and X. Wang, “Unsupervised and semi-supervised learning the next
frontier in machine learning for plant systems biology,” Plant Journal. John
Wiley and Sons Inc, 2022. doi 10.1111/tpj.15905.

H. Zhu, Z. He, J. Wei, J. Wang, and H. Zhou, “Bearing fault feature extraction
and fault diagnosis method based on feature fusion,” Sensors, vol. 21, no. 7, Apr.
2021, doi 10.3390/s21072524.

J. Peffers, “The Design Science Research Process A Model for Producing and
Presenting Information Systems Research,” 2006. [Online]. Available
http//rightsstatements.org/page/InC/1.0/?language=en

A. Aboazoum, “An Overview of the most Common Vehicle Suspension
Problems,” Brilliance Research of Artificial Intelligence, vol. 2, no. 3, pp. 120—
124, Nov. 2022, doi 10.47709/brilliance.v2i3.1655.

R. Kumar, T. Sharma, A. Shekhar, and N. S. Vyas, “Primary suspension failure
analysis in FIAT type LHB bogies and life estimation,” Eng Fail Anal, vol. 138,
Nov. 2022, doi 10.1016/j.engfailanal.2022.106320.

S. D. Shinde, S. Maheshwari, and S. Kumar, “Literature review on analysis of
various Components of McPherson suspension,” Materials Today Proceedings,
vol. 5. pp. 19102-19108, 2018. doi 10.18280/mmep.070411.

M. Hamed, B. Tesfa, F. Gu, and A. D. Ball, “Effects of Tyre Pressure on Vehicle
Suspension Performance,” International Letters of Chemistry, Physics and
Astronomy, vol. 55, pp. 102-111, Nov. 2015, doi 10.56431/p-16t1lc.

P. B. Patil and P. D. Darade, “Vibrational Analysis, Life Prediction and

Optimization of Pitman Arm Using FEM,” International Journal of

150

[53]

[54]

[55]

[56]

[57]

[58]

Computational Engineering Research, vol. 8. pp. 2250-3005, 2018. doi
10.18280/mmep.070411.

K. Reza Kashyzadeh, M. Jafar Ostad-Ahmad-Ghorabi, and A. Arghavan,
“Mediterranean Journal of Modeling and Simulation Fatigue life prediction of
package of suspension automotive under random vibration based on road
roughness,” 2015. Accessed Nov. 26, 2023. [Online]. Auvailable
https//www.asjp.cerist.dz/en/downArticle/10/4/1/674

W. Xiukun, G. Kun, and J. Limin, “Fault Isolation of Light Rail Vehicle
Suspension System Based on D-S Evidence Theory,” in the 32nd Chinese
Control Conference, Xi’an,China IEEE, 2013, pp. 6116-6121.

P. Jin, W. Xue, and K. Li, “Actuator Fault Estimation for Vehicle Active
Suspensions Based on Adaptive Observer and Genetic Algorithm,” Shock and
Vibration, vol. 2019, 2019, doi 10.1155/2019/1783850.

X.Zhu, Y. Xia, S. Chai, and P. Shi, “Fault detection for vehicle active suspension
systems in finite-frequency domain,” IET Control Theory and Applications, vol.
13, no. 3, pp. 387—-394, Nov. 2019, doi 10.1049/iet-cta.2018.5922.

Z. Mao, Y. Zhan, G. Tao, B. Jiang, and X. G. Yan, “Sensor Fault Detection for
Rail Vehicle Suspension Systems with Disturbances and Stochastic Noises,”
IEEE Trans Veh Technol, vol. 66, no. 6, pp. 4691-4705, Nov. 2017, doi
10.1109/TVT.2016.2628054.

Y. S. Takashi KOJIMA, “Fault Detection of Vertical Dampers of Railway
Vehicle Based on Phase Difference of Vibrations,” vol. 54, no. 3. 2013. doi

10.2219/rtriqr.54.139.

151

[59]

[60]

[61]

[62]

[63]

S. Yin and Z. Huang, “Performance Monitoring for Vehicle Suspension System
via Fuzzy Positivistic C-Means Clustering Based on Accelerometer
Measurements,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 5, pp.
2613-2620, Nov. 2015, doi 10.1109/TMECH.2014.2358674.

X. Wei, L. Jia, and H. Liu, “A comparative study on fault detection methods of
rail vehicle suspension systems based on acceleration measurements,” Vehicle
System Dynamics, vol. 51, no. 5, pp. 700-720, 2013, doi
10.1080/00423114.2013.767464.

J. S. Sakellariou, K. A. Petsounis, and S. D. Fassois, “Vibration based fault
diagnosis for railway vehicle suspensions via a functional model based method
A feasibility study,” Journal of Mechanical Science and Technology, vol. 29, no.
2, pp. 471-484, Nov. 2015, doi 10.1007/s12206-015-0107-0.

T. C. I. Aravanis, J. S. Sakellariou, and S. D. Fassois, “A stochastic Functional
Model based method for random vibration based robust fault detection under
variable non—measurable operating conditions with application to railway
vehicle suspensions,” J Sound Vib, vol. 466, Feb. 2020, doi
10.1016/j.jsv.2019.115006.

A. A. A.Rahim, S. Abdullah, S. S. K. Singh, and M. Z. Nuawi, “Selection of the
optimum decomposition level using the discrete wavelet transform for
automobile suspension system,” Journal of Mechanical Science and Technology,

vol. 34, no. 1, pp. 137-142, Jan. 2020, doi 10.1007/s12206-019-1213-1.

152

[64]

[65]

[66]

[67]

[68]

[69]

[70]

S. Azadi and A. Soltani, “Fault detection of vehicle suspension system using
wavelet analysis,” Vehicle System Dynamics, vol. 47, no. 4, pp. 403-418, Apr.
2009, doi 10.1080/00423110802094298.

N. Khan, “Vibration Response of a Gearbox having Gear with Teeth Root
Cracks,” Int J Res Appl Sci Eng Technol, vol. 7, no. 6, pp. 2015-2020, Nov.
2019, doi 10.22214/ijraset.2019.6339.

H. Ahmed and A. K. Nandi, “Compressive Sampling and Feature Ranking
Framework for Bearing Fault Classification With Vibration Signals,” IEEE
Access, vol. 6, pp. 44731-44746, Nov. 2018, doi
10.1109/ACCESS.2018.2865116.

T. Plante, A. Nejadpak, and C. X. Yang, “Faults detection and failures prediction
using vibration analysis,” in AUTOTESTCON (Proceedings), Institute of
Electrical and Electronics Engineers Inc., Nov. 2015, pp. 227-231. doi
10.1109/AUTEST.2015.7356493.

S. Fu, K. Liu, Y. Xu, and Y. Liu, “Rolling bearing diagnosing method based on
time domain analysis and adaptive fuzzy C -means clustering,” Shock and
Vibration, vol. 2016, 2016, doi 10.1155/2016/9412787.

G. Dong, J. Chen, and F. Zhao, “Monitoring of the Looseness in Cargo Bolts
under Random Excitation Based on Vibration Transmissibility,” Shock and
Vibration, vol. 2021, 2021, doi 10.1155/2021/8841940.

M. Parzinger, L. Hanfstaengl, F. Sigg, U. Spindler, U. Wellisch, and M.
Wirnsberger, “Residual analysis of predictive modelling data for automated fault

detection in building’s heating, ventilation and air conditioning systems,”

153

[71]

[72]

[73]

[74]

[75]

[76]

Sustainability (Switzerland), wvol. 12, no. 17, Nov. 2020, doi
10.3390/SU12176758.

Y. Huang, C. H. Chen, and C. J. Huang, “Motor fault detection and feature
extraction using rnn-based variational autoencoder,” IEEE Access, vol. 7, pp.
139086-139096, 2019, doi 10.1109/ACCESS.2019.2940769.

M. Hashemi and M. S. Safizadeh, “Design of a fuzzy model based on vibration
signal analysis to auto-detect the gear faults,” Industrial Lubrication and
Tribology, vol. 65, no. 3, pp. 194-201, 2013, doi 10.1108/00368791311311196.
Z. Wang, J. Yang, H. Li, D. Zhen, Y. Xu, and F. Gu, “Fault identification of
broken rotor bars in induction motors using an improved cyclic modulation
spectral analysis,” Energies (Basel), vol. 12, no. 17, Nov. 2019, doi
10.3390/en12173279.

J. Guo, Z. Shi, H. Li, D. Zhen, F. Gu, and A. D. Ball, “Early fault diagnosis for
planetary gearbox based wavelet packet energy and modulation signal
bispectrum analysis,” Sensors (Switzerland), vol. 18, no. 9, Nov. 2018, doi
10.3390/518092908.

Y. Li, X. Liang, Y. Chen, Z. Chen, and J. Lin, “Wheelset bearing fault detection
using morphological signal and image analysis,” Struct Control Health Monit,
vol. 27, no. 11, Nov. 2020, doi 10.1002/stc.2619.

T. D. Popescu and D. Aiordachioaie, “Rolling Element Bearing Fault Detection
Using Vibrating Signals Segmentation,” in IEEE International Conference on

Emerging Technologies and Factory Automation, ETFA, Institute of Electrical

154

[77]

[78]

[79]

[80]

[81]

[82]

and Electronics Engineers Inc., Nov. 2018, pp. 940-947. doi
10.1109/ETFA.2018.8502555.

H. Zhu, Z. He, J. Wei, J. Wang, and H. Zhou, “Bearing fault feature extraction
and fault diagnosis method based on feature fusion,” Sensors, vol. 21, no. 7, Nov.
2021, doi 10.3390/521072524.

H. Liang, Y. Chen, S. Liang, and C. Wang, “Fault detection of stator inter-turn
short-circuit in pmsm on stator current and vibration signal,” Applied Sciences
(Switzerland), vol. 8, no. 9, Nov. 2018, doi 10.3390/app8091677.

M. Rahnama and A. Vahedi, “Application of acoustic signals for rectifier fault
detection in brushless synchronous generator,” Archives of Acoustics, vol. 44,
no. 2, pp. 267-276, 2019, doi 10.24425/a0a.2019.128490.

W. Zhang, G. Peng, C. Li, Y. Chen, and Z. Zhang, “A new deep learning model
for fault diagnosis with good anti-noise and domain adaptation ability on raw
vibration signals,” Sensors (Switzerland), vol. 17, no. 2, Nov. 2017, doi
10.3390/517020425.

A. Shaheryar, X.-C. Yin, and W. Y. Ramay, “Robust Feature Extraction on
Vibration Data under Deep-Learning Framework An Application for Fault
Identification in Rotary Machines,” International Journal of Computer
Applications, vol. 167, no. 4. pp. 975-8887, 2017.

S. E. Pandarakone, Y. Mizuno, and H. Nakamura, “A comparative study between
machine learning algorithm and artificial intelligence neural network in
detecting minor bearing fault of induction motors,” Energies (Basel), vol. 12, no.

11, 2019, doi 10.3390/en12112105.

155

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

Hamilton and James D, “Time Series Analysis,” 2021. doi
10.1515/9780691218632.

D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. Van Der Linde, “Bayesian
measures of model complexity and fit,” J. R. Statist. Soc. B, vol. 64. pp. 583—
639, 2002. doi 10.1111/1467-9868.00353.

P. Mayo, O. Karakus, R. Holmes, and A. Achim, “Representation learning via
cauchy convolutional sparse coding,” IEEE Access, vol. 9, pp. 100447-100459,
2021, doi 10.1109/ACCESS.2021.3096643.

P. C. Nugroho, R. Widadi, and D. Zulherman, “Hand and Foot Movement of
Motor Imagery Classification Using Wavelet Packet Decomposition and
Multilayer Perceptron Backpropagation.” 2021. doi 10.2991/aer.k.210810.042.
I. M. Johnstone and B. W. Silverman, “Empirical bayes selection of wavelet
thresholds,” Ann Stat, vol. 33, no. 4, pp. 1700-1752, Aug. 2005, doi
10.1214/009053605000000345.

S. G. (Stéphane G.) Mallat and Gabriel. Peyré, A wavelet tour of signal
processing the sparse way. 1999. doi 10.1016/B978-0-12-374370-1.X0001-8.
I. Daubechies, Ten Lectures on Wavelets. Society for Industrial and Applied
Mathematics, 1992. doi 10.1137/1.9781611970104.

V. J. Samar, A. Bopardikar, R. Rao, and K. Swartz, “Wavelet Analysis of
Neuroelectric Waveforms A Conceptual Tutorial,” Brain and Language, vol. 66.
Brain and Language, pp. 7-60, 1999. doi 10.1006/brIn.1998.2024.

C. S. Burrus, R. Gopinath, and H. Guo, “Wavelets and Wavelet Transforms.”

OpenStax-CNX, 2022. doi cnx-org-col11454.

156

[92]

[93]

[94]

[95]

[96]

[97]

[98]

S. Sridhar, P. Rajesh Kumar, and K. V. Ramanaiah, “Wavelet Transform
Techniques for Image Compression — An Evaluation,” International Journal of
Image, Graphics and Signal Processing, vol. 6, no. 2, pp. 54-67, Jan. 2014, doi
10.5815/ijigsp.2014.02.07.

J. C.iRouraandJ. L. R. Martinez, Transient Analysis and Motor Fault Detection
using the Wavelet Transform. INTECH Open Access Publisher, 2011. doi
10.5772/15377.

G. C. (Geoffrey C. Green, Wavelet-based denoising of cardiac PET data. Library
and Archives Canada = Bibliothéque et Archives Canada, 2005. doi
10.22215/etd/2005-07963.

V. S. Chourasia and A. K. Tiwari, “Design methodology of a new wavelet basis
function for fetal phonocardiographic signals,” The Scientific World Journal,
vol. 2013, 2013, doi 10.1155/2013/505840.

M. S. Mechee, Z. M. Hussain, and Z. 1. Salman, “Wavelet Theory Applications
of the Wavelet.” IntechOpen, 2021. doi 10.5772/intechopen.94911.

S. G. Mallat, “A Theory for Multiresolution Signal Decomposition The Wavelet
Representation,” IEEE Trans Pattern Anal Mach Intell, vol. 1, no. 7, 1989, doi
10.1109/34.192463.

M. Kobayashi and K. Nakano, “Development of Quasi-Shift-Invariant Complex
Discrete Wavelet Transform,” Journal of Signal Processing. pp. 211-244, 2017.

doi 10.2299/jsp.21.211.

157

[99] X. He and H. Guan, “Multiresolution analysis of precipitation teleconnections
with large-scale climate signals A case study in South Australia,” Water Resour
Res, vol. 49, no. 10, pp. 6995-7008, Oct. 2013, doi 10.1002/wrcr.20560.

[100]J. Andén and S. Mallat, “Deep scattering spectrum,” IEEE Transactions on
Signal Processing, vol. 62, no. 16, pp. 4114-4128, Aug. 2014, doi
10.1109/TSP.2014.2326991.

[101] L. Sifre and S. Mallat, “Rotation, scaling and deformation invariant scattering
for texture discrimination,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2013, pp. 1233-1240.
doi 10.1109/CVPR.2013.163.

[102] S. Mallat, “Group Invariant Scattering,” Commun Pure Appl Math, vol. 65, no.
10, pp. 1331-1398, Oct. 2012, doi 10.1002/cpa.21413.

[103] C. Szegedy et al., “2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR),” IEEE Computer Society, 2015. doi
10.1109/CVPR.2015.7298594.

[104]J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE Trans
Pattern Anal Mach Intell, vol. 35, no. 8, pp. 1872-1886, 2013, doi
10.1109/TPAMI.2012.230.

[105] Z. Li, “An Explicit Algorithm for the Construction of 3-Band Wavelet Frames
Based on FMRA,” Applied and Computational Mathematics, vol. 7, no. 3, p.

155, 2018, doi 10.11648/j.acm.20180703.21.

158

[106] H. Zhou et al., “Weight-Variable Scattering Convolution Networks and Its
Application in Electromagnetic Signal Classification,” IEEE Access, vol. 7, pp.
175889-175896, 2019, doi 10.1109/ACCESS.2019.29575109.

[107] I. Waldspurger, “Exponential decay of scattering coefficients.” IEEE, 2017. doi
10.1109/SAMPTA.2017.8024473.

[108] T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of Statistical
Learning.” Springer New York, pp. 225-256, 2001. doi 10.1007/978-0-387-
21606-5.

[109] S. M. Holland, “PRINCIPAL COMPONENTS A N ALYSI S (PCA).”
Department of Geology, University of Georgia, Athens, GA 30602-2501, 2019.
Accessed Nov. 20, 2023. [Online]. Available
http//strata.uga.edu/8370/handouts/pcaT utorial.pdf

[110] A. E. Maxwell, T. A. Warner, and F. Fang, “Implementation of machine-learning
classification in remote sensing An applied review,” International Journal of
Remote Sensing, vol. 39, no. 9. Taylor and Francis Ltd., pp. 2784-2817, Nov.
2018. doi 10.1080/01431161.2018.1433343.

[111] A. Khelifi, N. M. Ben Lakhal, H. Gharsallaoui, and O. Nasri, “Artificial Neural
Network-based Fault Detection,” in 2018 5th International Conference on
Control, Decision and Information Technologies, CoDIT 2018, Institute of
Electrical and Electronics Engineers Inc., Jun. 2018, pp. 1017-1022. doi

10.1109/CoDIT.2018.8394963.

159

[112] Y. Zhang and L. Wu, “Classification of fruits using computer vision and a
multiclass support vector machine,” Sensors (Switzerland), vol. 12, no. 9, pp.
12489-12505, Nov. 2012, doi 10.3390/s120912489.

[113] I. Santana, B. Serrano, M. Schiffer, and T. Vidal, “Support Vector Machines with
the Hard-Margin Loss Optimal Training via Combinatorial Benders’ Cuts,” Nov.
2022, doi 10.48550/arXiv.2207.07690.

[114] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Reproducing Kernel
Hilbert Space, Mercer’s Theorem, Eigenfunctions, Nystr\"om Method, and Use
of Kernels in Machine Learning Tutorial and Survey,” Jun. 2021, [Online].
Available http//arxiv.org/abs/2106.08443

[115] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Reproducing Kernel
Hilbert Space, Mercer’s Theorem, Eigenfunctions, Nystrom Method, and Use of
Kernels in Machine Learning Tutorial and Survey,” Nov. 2021, doi
10.48550/arXiv.2106.08443.

[116] R. G. Brereton and G. R. Lloyd, “Support Vector Machines for classification and
regression,” Analyst, vol. 135, no. 2. Royal Society of Chemistry, pp. 230-267,
2010. doi 10.1039/h918972f.

[117]J. Hajewski, S. Oliveira, and D. Stewart, “Smoothed hinge loss and €1 support
vector machines,” in IEEE International Conference on Data Mining
Workshops, ICDMW, IEEE Computer Society, Nov. 2019, pp. 1217-1223. doi
10.1109/ICDMW.2018.00174.

[118] R. Hammoud, “MATHEMATICS BEHIND MACHINE LEARNING,” 2023.

[Online]. Available

160

https//scholarworks.lib.csush.edu/etdDissertations.1778.https//scholarworks.lib.
csusb.edu/etd/1778

[119] M. Shamsi and S. Beheshti, “Separability and Scatteredness (S&S) Ratio-Based
Efficient SVM Regularization Parameter, Kernel, and Kernel Parameter
Selection,” Nov. 2023, doi 10.48550/arXiv.2305.10219.

[120] C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, “A Review on Data
Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery
From Building Operational Data,” Frontiers in Energy Research, vol. 9.
Frontiers Media S.A., Nov. 2021. doi 10.3389/fenrg.2021.652801.

[121]Y. Xu and R. Goodacre, “On Splitting Training and Validation Set A
Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for
Estimating the Generalization Performance of Supervised Learning,” J Anal
Test, vol. 2, no. 3, pp. 249-262, Jul. 2018, doi 10.1007/s41664-018-0068-2.

[122] D. M. Belete and M. D. Huchaiah, “Grid search in hyperparameter optimization
of machine learning models for prediction of HIV/AIDS test results,”
International Journal of Computers and Applications, vol. 44, no. 9, pp. 875-
886, 2022, doi 10.1080/1206212X.2021.1974663.

[123] Reda Yacouby and Dustin Axman, ‘“Probabilistic Extension of Precision, Recall,
and F1 Score for More Thorough Evaluation of Classification Models.”
Association for Computational Linguistics, 2020. doi

10.18653/v1/2020.eval4nlp-1.9.

161

[124] B. Choi and S. Jo, “A Low-Cost EEG System-Based Hybrid Brain-Computer
Interface for Humanoid Robot Navigation and Recognition,” PL0S One, vol. 8,
no. 9, Sep. 2013, doi 10.1371/journal.pone.0074583.

[125] B. Kwon, H. Song, and S. Lee, “Accurate Blind Lempel-Ziv-77 Parameter
Estimation via 1-D to 2-D Data Conversion over Convolutional Neural
Network,” IEEE Access, vol. 8, pp. 43965-43979, 2020, doi
10.1109/ACCESS.2020.2977827.

[126] F. Iglesias and T. Zseby, “Analysis of network traffic features for anomaly
detection,” Mach Learn, vol. 101, no. 1-3, pp. 59-84, Nov. 2015, doi
10.1007/s10994-014-5473-9.

[127] A. Shewalkar, D. nyavanandi, and S. A. Ludwig, ‘“Performance Evaluation of
Deep neural networks Applied to Speech Recognition Rnn, LSTM and GRU,”
Journal of Artificial Intelligence and Soft Computing Research, vol. 9, no. 4, pp.
235-245, Nov. 2019, doi 10.2478/jaiscr-2019-0006.

[128] A. Shewalkar, D. nyavanandi, and S. A. Ludwig, ‘“Performance Evaluation of
Deep neural networks Applied to Speech Recognition Rnn, LSTM and GRU,”
Journal of Artificial Intelligence and Soft Computing Research, vol. 9, no. 4, pp.
235-245, Oct. 2019, doi 10.2478/jaiscr-2019-0006.

[129] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term Memory Based Recurrent
Neural Network Architectures for Large Vocabulary Speech Recognition,” Nov.

2014, doi 10.48550/arXiv.1402.1128.

162

[130] G. Jain, M. Sharma, and B. Agarwal, “Optimizing semantic LSTM for spam
detection,” International Journal of Information Technology (Singapore), vol.
11, no. 2, pp. 239-250, Jun. 2019, doi 10.1007/s41870-018-0157-5.

[131] M. U. Abbasi, A. Rashad, A. Basalamah, and M. Tariq, “Detection of Epilepsy
Seizures in Neo-Natal EEG Using LSTM Architecture,” IEEE Access, vol. 7, pp.
179074-179085, 2019, doi 10.1109/ACCESS.2019.2959234.

[132] Y. and S. Q. Hao, “The implementation of a Deep Recurrent Neural Network
Language Model on a Xilinx FPGA 1.” 2017. doi 10.48550/arXiv.1710.10296.

[133] M. Tan, S. Yuan, S. Li, Y. Su, H. Li, and F. H. He, “Ultra-Short-Term Industrial
Power Demand Forecasting Using LSTM Based Hybrid Ensemble Learning,”
IEEE Transactions on Power Systems, vol. 35, no. 4, pp. 2937-2948, Nov. 2020,
doi 10.1109/TPWRS.2019.29631009.

[134] S. Ruder, “An overview of gradient descent optimization algorithms,” Nov.
2016, doi 10.48550/arXiv.1609.04747.

[135] A. Napieralski and R. Nowak, “Basecalling Using Joint Raw and Event
Nanopore Data Sequence-to-Sequence Processing,” Sensors, vol. 22, no. 6, Mar.
2022, doi 10.3390/522062275.

[136] Y. Lu and F. M. Salem, “Simplified Gating in Long Short-term Memory (LSTM)
Recurrent Neural Networks Index Terms-Recurrent Neural Networks (RNN),
Long Short-term Memory (LSTM), Stochastic Gradient Descent.” IEEE, 2017.

doi 10.1109/MWSCAS.2017.8053244.

163

[137] G. Van Houdt, C. Mosquera, and G. Napoles, “A review on the long short-term
memory model,” Artif Intell Rev, vol. 53, no. 8, pp. 5929-5955, Dec. 2020, doi
10.1007/s10462-020-09838-1.

[138] Z. Huang, H. Chen, C. J. Hsu, W. H. Chen, and S. Wu, “Credit rating analysis
with support vector machines and neural networks A market comparative study,”
Decis Support Syst, vol. 37, no. 4, pp. 543-558, Nov. 2004, doi 10.1016/S0167-
9236(03)00086-1.

[139] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should i trust you?’ Explaining
the predictions of any classifier,” in Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Association for Computing Machinery, Nov. 2016, pp. 1135-1144. doi
10.1145/2939672.2939778.

[140] L. Vanajakshi and L. R. Rilett, A comparison of the performance of artificial
neural networks and support vector machines for the prediction of traffic speed.
IEEE Intelligent Vehicles Symposium, 2004. doi 10.1109/1VS.2004.1336380.

[141] S.J. Reddi, S. Kale, and S. Kumar, “On the Convergence of Adam and Beyond,”
Nov. 2019, doi 10.48550/arXiv.1904.09237.

[142] Y. Xi, C. Ren, Q. Tian, Y. Ren, X. Dong, and Z. Zhang, “Exploitation of Time
Series Sentinel-2 Data and Different Machine Learning Algorithms for Detailed
Tree Species Classification,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol.
14, pp. 7589-7603, 2021, doi 10.1109/JSTARS.2021.3098817.

[143] L. Yang and A. Shami, “On Hyperparameter Optimization of Machine Learning

Algorithms Theory and Practice,” Jul. 2020, doi 10.1016/j.neucom.2020.07.061.

164

[144] Farhan Ahnaf Rashid and F. A. Rashid, “Development of a Machine Learning
Based Fall Detection System for the Elderly and Disabled CERTIFICATE OF
ORIGINAL AUTHORSHIP.” 2021. Accessed Nov. 20, 2023. [Online].
Available http//hdl.handle.net/10453/162783

[145] A. R. Mello, J. de Matos, M. R. Stemmer, A. de Souza Britto, and A. L. Koerich,
“A Novel Orthogonal Direction Mesh Adaptive Direct Search Approach for
SVM Hyperparameter Tuning,” Nov. 2019, doi 10.48550/arXiv.1904.11649.

[146] M. Pule, O. Matsebe, and R. Samikannu, “Application of PCA and SVM in Fault
Detection and Diagnosis of Bearings with Varying Speed,” Math Probl Eng, vol.
2022, p. 5266054, 2022, doi 10.1155/2022/5266054.

[147] N. Rezazadeh, M. de Oliveira, D. Perfetto, A. De Luca, and F. Caputo,
“Classification of Unbalanced and Bowed Rotors under Uncertainty Using
Wavelet Time Scattering, LSTM, and SVM,” Applied Sciences (Switzerland),
vol. 13, no. 12, Jun. 2023, doi 10.3390/app13126861.

[148] J. Pacheco-Chérrez, J. A. Fortoul-Diaz, F. Cortés-Santacruz, L. Maria Aloso-
Valerdi, and D. I. Ibarra-Zarate, “Bearing fault detection with vibration and
acoustic signals Comparison among different machine leaning classification
methods,” Eng Fail Anal, wvol. 139, p. 106515, 2022, doi
https//doi.org/10.1016/j.engfailanal.2022.106515.

[149] A. K. Krishnan, E. Nissen, S. Saripalli, R. Arrowsmith, and A. H. Corona,
“Change Detection Using Airborne LiDAR Applications to Earthquakes,” in
Experimental Robotics The 13th International Symposium on Experimental

Robotics, J. P. Desai, G. Dudek, O. Khatib, and V. Kumar, Eds., Heidelberg

165

Springer International Publishing, 2013, pp. 733-743. doi 10.1007/978-3-319-
00065-7_49.

[150] V. G. Salunkhe, R. G. Desavale, and S. G. Kumbhar, “Vibration Analysis of
Deep Groove Ball Bearing Using Finite Element Analysis and Dimension
Analysis,” J Tribol, vol. 144, no. 8, Feb. 2022, doi 10.1115/1.4053262.

[151] A. Yang, Y. Zang, L. Xu, L. Li, and D. Tan, “A Systematic Review and Future
Development of Automotive Chassis Control Technology,” Applied Sciences,
vol. 13, no. 21, p. 11859, Oct. 2023, doi 10.3390/app132111859.

[152]J. Schuller, “CHASSIS ARCHITECTURES - Electronic chassis platform —
highly integrated ECU for chassis control functions,” 2017, pp. 349-365. doi

10.1007/978-3-658-14219-3 25.

166

APPENDIX A

5.1. MATLAB Code to Generate Signals for Four Types Road obstacles 5 levels
training and testing (With Noise, Denoised)

% Load the data
Sivewave = importdata('Sinewave.tab', '\t').data;
Roughness = importdata('Roughness.tab’, '\t").data;
Pothole = importdata('Pothole.tab’, "\t").data;
Bump = importdata('bump.tab’, '\t').data;
% Extract the time vector and acceleration data
t = Sivewave(,1);
accsv = Sivewave(,17);
accrg = Roughness(,17);
accpthl = Pothole(,17);
accbmp = Bump(,17);
% Define the cell array of workspace names
workspaceNames = {'accsV', ‘accrg’, ‘accpthl’,'accomp'};
% Loop through the workspace names
for i = 1length(workspaceNames)

% Get the data for this workspace

data = evalin(‘base’, workspaceNames{i});

% Loop through the time points and frequency indices for 1000
for m = 1length(t)
forn =199
% Compute the new value based on the time and frequency
if t(m) == 0 % Modified condition
data(m,n) = 0;
elseif data(m,1) >0
data(m,n+1) = ((data(m,1)*t(m)"2) + (n*2/100000)) / (t(m)"2);
elseif data(m,1) <0
data(m,n+1) = ((data(m,1)*t(m)"2) - (n*2/100000)) / (t(m)"2);
end
end
end

% Loop through the time points and frequency indices for 100

for m = 1length(t)
for n = 1400

167

% Compute the new value based on the time and frequency
if t(m) == 0 % Modified condition
data(m,n+100) = 0;
elseif data(m,1) >0
data(m,n+100) = ((data(m,1)*t(m)"2) + (n*2/400)) / (t(m)"2);
elseif data(m,1) <0
data(m,n+100) = ((data(m,1)*t(m)"2) - (n*2/400)) / (t(m)"2);
end
end
end

% Assign the modified data back to the workspace
assignin('base’, workspaceNames{i}, data);
end
% Delete the first three rows from each dataset
accsv(13,) =[J;
accrg(13,) = [I;
accpthl(13,) =1J;
accbmp(13,) =[I;
t(13,)=[1;
%labeling my columns
x=ones(1,100);
x2=repmat(2,1,100);
x3=repmat(3,1,100);
x4=repmat(4,1,100);
x5=repmat(5,1,100);
label=([x,x2,x3,x4,x5]);
accsv=[label;accsv];
accrg=[label;accrg];
accpthl=[label;accpthl];
accbmp=[label;accbmp];
AccData=accrg;
noiser = 30 * randn(size(AccData(2end,))); % Gaussian noise with standard deviation
0.1
noisy_signal = AccData(2end,) + noiser;
%AccData= [[accsvl, accrgl, accpthll,accbmpl];noisy_signal];
% Perform wavelet denoising on each column of the matrix
denoisedMatrix = zeros(size(noisy_signal));
for col = 1size(noisy_signal, 2)
signal = noisy_signal(, col);

168

% Perform wavelet denoising on the individual signal using wdenoise
denoisedSignal = wdenoise(signal);
% Store the denoised signal in the denoised matrix
denoisedMatrix(, col) = denoisedSignal;
end

AccData=[label;denoisedMatrix];
5.2. First Labelling Code for Four Types Road obstacles 5 levels training and

testing (With Noise, Denoised)

Ts=mean(diff(t));

rng default %fix the random
AccData=AccData(,randperm(size(AccData,2)));

%shuffle the columns

traindata=AccData(2end,);
trainlabel=categorical(AccData(1,));

numClasses = numel(trainlabel);

CT = countlabels(trainlabel);

tbl = table2array(CT(,2));

% Use cvpartition to split data into training and validation sets
¢ = cvpartition(trainlabel, 'HoldOut', 0.2);

trainldx = training(c);

testldx = test(c);

Ptrain = traindata(,trainldx);

Ttrain = trainlabel(trainldx);

Ptest = traindata(,testldx);

Ttest = trainlabel(testldx);

uniqueLabels = unique(trainlabel);

catnames = {'Normal','Level 1','Level 2','Level 3','Level 4'};
uniqueLabels = renamecats(uniqueLabels,{'1',2','3','4",'5'},catnames);
bar(uniquelLabels, tbl);

CTtrain=countlabels(Ttrain);

CTtest=countlabels(Ttest);

tblTrain = table2array(CTtrain(,2));

tblTest = table2array(CTtest(,2));

H = bar(uniqueLabels,[tbITrain, tbiTest], stacked’);
legend(H,["Training Set","Test Set"],'Location’,'NorthEastOutside")
LPtrain=[double(Ttrain);Ptrain];
[i1,jj,kk]=unique(LPtrain(1,));
m=accumarray(kk,(1numel(kk)),[].@(x) {x'});

169

out=cell2Zmat(cellfun(@(x)
LPtrain(,x(randperm(numel(x),1))),m','UniformOutput’,false));
%%idx = randperm(size(Ptrain,2),4);
%Fs = 1/Ts;
parfor n = Inumel(out(1,))
x=out(2end,n);
subplot(4,2,n);
plot(t,x);
ifn==4]|n==
xlabel('Seconds');
end
d=dictionary([1,2,3,4,5],catnames);
title(d(n));
end

5.2.1. Codes For All Models Used for First Tests.

5.2.1.1. MATLAB Code Wavelete Scattering and Neural Network Using Adam
Optimizer

N = length(t(,1));

Fs =1/Ts;

tic;

sn = waveletScattering('SignalLength’,N,'SamplingFrequency',Fs,...
‘InvarianceScale',20);

[~,numpaths] = paths(sn);

Ncfs = numCoefficients(sn);

sum(numpaths)

scTrain=gpuArray([]);

for n=1size(Ptrain,2)
feat=featureMatrix(sn,gather(Ptrain(,n)));
u=feat(,12end,);
%Define the Kalman filter parameters

A = eye(3); % state transition matrix

H = eye(3); % observation matrix

Q = le-5*eye(3); % state noise covariance

R = 1le-3*eye(3); % observation noise covariance

X0 = zeros(3,1); % initial state

PO = eye(3); % initial state covariance

% Smooth each signal using the Kalman filter

for i = 1size(u, 1)/3

170

% Extract the signal
signal = u((i-1)*3+1i*3,);

% Initialize the Kalman filter
X = X0;
P =PO;

% Smooth the signal
for j = 1size(signal, 2)
y = signal(,j);

% Predict
X_ = A*X;
P_=A*P*A'+ Q;

% Update
K=P_*H'/(H*P_*H' + R);
X =X_+ K*(y - H*x);

P = (eye(3) - K*H)*P_;

% Store the smoothed signal
signal(,j) = X;
end

% Replace the original signal with the smoothed signal

u((i-1)*3+1i*3,) = signal;
end
scTrain=cat(3,scTrain,u);
end
scTest=gpuArray([]);
for n=1size(Ptest,2)
feat=featureMatrix(sn,gather(Ptest(,n)));
u=feat(,12end,);
%Define the Kalman filter parameters
A = eye(3); % state transition matrix
H = eye(3); % observation matrix
Q = le-5*eye(3); % state noise covariance
R = 1le-3*eye(3); % observation noise covariance
X0 = zeros(3,1); % initial state
PO = eye(3); % initial state covariance

171

% Smooth each signal using the Kalman filter
for i = 1size(u, 1)/3

% Extract the signal

signal = u((i-1)*3+1i*3,);

% Initialize the Kalman filter
X = X0;
P =PO;

% Smooth the signal
for j = 1size(signal, 2)
y = signal(,j);

% Predict
X_ = A*X;
P_=A*P*A'+ Q;

% Update
K=P_*H/(H*P_*H' + R);
X =X_+ K*(y - H*x);

P = (eye(3) - K*H)*P_;

% Store the smoothed signal
signal(,j) = x;
end

% Replace the original signal with the smoothed signal
u((i-1)*3+1i*3,) = signal;
end
scTest=cat(3,scTest,u);
end
TrainFeatures = scTrain;
TrainFeatures = squeeze(num2cell(TrainFeatures,[1 2]));
YTrain = Ttrain;
TestFeatures = scTest;
TestFeatures = squeeze(num2cell(TestFeatures,[1 2]));
Y Test = Ttest;
[inputSize, ~] = size(TrainFeatures{1});
numHiddenUnits = 1500;
numClasses = numel(unique(YTrain));

172

layers=1 ...
sequencelnputLayer(inputSize,'Normalization','zscore")
IstmLayer(numHiddenUnits, OutputMode','last’)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];

maxEpochs = 170;

miniBatchSize = 170;

options = trainingOptions(‘adam’, ...
‘InitialLearnRate’, 1e-4, ...
'‘MaxEpochs', 170, ...
'MiniBatchSize', 170, ...
'SequenceLength’, 'longest’, ...
'Shuffle’, ‘every-epoch’, ...
‘ValidationData', {TestFeatures, YTest}, ...
'ValidationFrequency', 30, ...
'Verbose', 1, ...
'Plots', 'training-progress, ...
'‘ExecutionEnvironment’, ‘gpu’);

numModels = 3; % number of models to train

YPredAll = zeros(length(Y Test), numModels); % initialize matrix to store predictions

Y Train=categorical(YTrain);
for i = InumModels

% train a new model

net = trainNetwork(TrainFeatures,Y Train,layers,options);

% predict on test set
YPred = classify(net, TestFeatures);
YPred = renamecats(YPred,{'1','2",'3','4",'5'},catnames);

% store predictions in YPredAll matrix
YPredAll(, i) = grp2idx(YPred);
end
% take the mode prediction across all models
YPredEnsemble = mode(YPredAll, 2);

YPredEnsemble = categorical(YPredEnsemble, 15, catnames);

YTest = renamecats(YTest,{'1','2','3",'4",'5'},catnames);
% compute accuracy and display confusion matrix

accuracy = 100*sum(YPredEnsemble == YTest") / numel(Y Test)

% Plot the confusion matrix for the final model

173

figure;

cm = confusionchart(YTest, YPred);
title("Classification of faulty signals based on Levels');
cm.RowSummary = ‘row-normalized’;
cm.ColumnSummary = ‘column-normalized’;
elapsedTime = toc;

fprintf(Elapsed time %.2f seconds\n', elapsedTime);

5.2.1.2. MATLAB Code For Wavelet Scattering and SVM with PCA
N = length(t(,1));

Fs =1/Ts;

tic;

% Set wavelet scattering parameters
sn =

waveletScattering('SignalLength’,N,'SamplingFrequency',Fs,'InvarianceScale',20);
[~,numpaths] = paths(sn);
Ncfs = numCoefficients(sn);
% Extract scattering coefficients for training set
scTrain = gpuArray([]);
for n = 1size(Ptrain,2)
feat = featureMatrix(sn,gather(Ptrain(,n)));

u = feat;
scTrain = cat(3,scTrain,u);
end

% Extract scattering coefficients for test set
scTest = gpuArray([]);
for n = 1size(Ptest,2)

feat = featureMatrix(sn,gather(Ptest(,n)));

u = feat;
scTest = cat(3,scTest,u);
end

% Prepare the data for training and testing

TrainFeatures = scTrain;

TrainFeatures = reshape(TrainFeatures, [], size(TrainFeatures, 3));
TrainFeatures = TrainFeatures’;

YTrain = Ttrain;

TestFeatures = scTest;

TestFeatures = reshape(TestFeatures, [], size(TestFeatures, 3));
TestFeatures = TestFeatures',

YTest = Ttest;

174

% Perform PCA to reduce the dimensionality of the feature matrix

[coeff, score, latent] = pca(TrainFeatures);

% Determine the number of principal components to use

total_var = sum(latent);

var_explained = cumsum(latent) / total_var;

% Choose the number of principal components that explain at least 95% of the
variance

num_components = find(var_explained >= 0.95, 1);

% Project the training and testing features onto the selected principal components
TrainFeatures = TrainFeatures * coeff(, Lnum_components);

TestFeatures = TestFeatures * coeff(, L1num_components);

% Set the number of folds for cross-validation

numkFolds = 5;

% Define a cross-validation partition

cvp = cvpartition(YTrain, 'KFold', numFolds);

% Create a cell array to store the accuracy of each fold

accuracyArray = cell(numFolds, 1);

% Loop over each fold

for fold = LnumFolds

% Get the training and validation indices for this fold
trainldx = cvp.training(fold);
testldx = cvp.test(fold);

% Extract the features and labels for this fold
FoldTrainFeatures = TrainFeatures(trainldx,);
FoldTrainLabels = YTrain(trainldx);
FoldTestFeatures = TrainFeatures(testldx,);
FoldTestLabels = YTrain(testldx);

% Train the SVM model on the training data for this fold
model = fitcecoc(FoldTrainFeatures, FoldTrainLabels);

% Predict the labels of the test data for this fold
YPred = predict(model, FoldTestFeatures);

% Calculate the accuracy for this fold and store it in the accuracy array
accuracyArray{fold} = 100 * sum(YPred == FoldTestLabels") /
numel(FoldTestLabels);

175

end

% Calculate the mean accuracy over all folds
meanAccuracy = mean(cell2mat(accuracyArray));

% Display the mean accuracy

fprintf('Mean cross-validation accuracy %.2f%%\n', meanAccuracy);
% Train the final model on all of the training data
finalModel = fitcecoc(TrainFeatures, YTrain);

% Predict the labels of the test data using the final model
YPred = predict(finalModel, TestFeatures);

% Calculate the accuracy of the final model

finalAccuracy = 100 * sum(YPred == YTest') / numel(YTest);
% Display the final accuracy

fprintf('Final test set accuracy %.2f%%\n’, final Accuracy);
YPred = categorical(YPred, {'1','2','3','4"'5'}, cathames);
YTest = renamecats(YTest,{'1','2','3,'4"'5'},catnames);

% Plot the confusion matrix for the final model

figure;

cm = confusionchart(YTest, YPred);

title("Classification of faulty signals based on Levels');
cm.RowSummary = 'row-normalized’;
cm.ColumnSummary = ‘column-normalized’;

elapsedTime = toc;

fprintf('Elapsed time %.2f seconds\n', elapsedTime);

5.2.1.3. MATLAB Code for WaveletScattering and SVM TUNED LDA
N = length(t(,1));

Fs =1/Ts;

tic;

% Set wavelet scattering parameters
sn =

waveletScattering('SignalLength',N,'SamplingFrequency',Fs,'InvarianceScale',20);
% Extract scattering coefficients for training set
scTrain = [];
for n = 1size(Ptrain,2)
feat = featureMatrix(sn, Ptrain(,n));
scTrain = cat(3, scTrain, feat);

end
% Extract scattering coefficients for test set
scTest =],

for n = 1size(Ptest,2)

176

feat = featureMatrix(sn, Ptest(,n));
scTest = cat(3, scTest, feat);
end
% Prepare the data for training and testing
TrainFeatures = scTrain;
TrainFeatures = reshape(TrainFeatures, [], size(TrainFeatures, 3));
TrainFeatures = TrainFeatures';
YTrain = Ttrain;
TestFeatures = scTest;
TestFeatures = reshape(TestFeatures, [], size(TestFeatures, 3));
TestFeatures = TestFeatures';
YTest = Ttest;
% Apply Linear Discriminant Analysis (LDA) on the training data for this fold
IdaModel = fitcdiscr(TrainFeatures, YTrain);

% Apply LDA to the training and test data for this fold
TrainFeaturesLDA = predict(ldaModel, TrainFeatures);
TestFeaturesLDA = predict(ldaModel, TestFeatures);

% Convert LDA-transformed features to a numeric matrix
TrainFeaturesLDA = double(TrainFeaturesLDA);
TestFeaturesLDA = double(TestFeaturesLDA);
% Define hyperparameters to tune
hyperparameters = struct();
hyperparameters.BoxConstraint = {'0.01', '0.1', '1', '10'};
hyperparameters.KernelScale = {'0.01', '0.1', '1', '10'};
% Define the search space for each hyperparameter
params = struct();
params.BoxConstraint = optimizableVariable('BoxConstraint', [1, 10], "Type',
'integer’);
hyperparameters.KernelScale = [0.1, 1];
params.KernelScale = optimizableVariable('KernelScale’,
hyperparameters.KernelScale, 'Type', ‘real’);
% Define the optimization options
optimizationOptions = struct();
optimizationOptions.MaxObjectiveEvaluations = 100;
optimizationOptions.AcquisitionFunctionName = 'expected-improvement-plus’;
optimizationOptions.UseParallel = true;
% Train and tune the SVM model using the training data
temp = templateSVM('Standardize',true);

177

SVMModel = fitcecoc(TrainFeaturesLDA, YTrain, 'Learners’, temp,

'FitPosterior',true,...
'OptimizeHyperparameters', {'BoxConstraint','KernelScale'},...
'HyperparameterOptimizationOptions', optimizationOptions, 'Verbose', 1,...
'HyperparameterOptimizationOptions', struct('AcquisitionFunctionName',...
‘expected-improvement-plus’, ‘MaxObjectiveEvaluations', 20, 'UseParallel',true),

'‘Options', statset('UseParallel’,true));

% Predict the labels of the test data using the tuned model

YPred = predict(SVMModel, TestFeaturesLDA);

% Calculate the accuracy of the model

accuracy = 100 * sum(YPred == YTest') / numel(YTest);

% Display the accuracy

fprintf('Test set accuracy %.2f%%\n’, accuracy);

figure;

YPred = categorical(YPred, {'1','2','3','4"'5'}, cathames);

YTest = renamecats(YTest, {'1','2','3",'4",'5'},cathames);

% Plot the confusion matrix in a new figure

figure;

cm = confusionchart(YTest, YPred);
title("Classification of faulty signals based on Levels');
cm.RowSummary = 'row-normalized’;
cm.ColumnSummary = ‘column-normalized’;

elapsedTime = toc;

fprintf('Elapsed time %.2f seconds\n', elapsedTime);
5.3. MATLAB Code to Generate Road Type and Signal Condition Classification

Comprehensive Testing (Three Scenarios)

% Load the data

Sivewave = importdata('Sinewave.tab’, '\t').data;
Roughness = importdata('Roughness.tab’, '\t').data;
Pothole = importdata('Pothole.tab’, '\t").data;
Bump = importdata('bump.tab’, '\t').data;

% Extract the time vector and acceleration data
t = Sivewave(,1);

accsv = Sivewave(,17);

accrg = Roughness(,17);

accpthl = Pothole(,17);

accbmp = Bump(,17);

% Define the cell array of workspace names

178

workspaceNames = {'accsV', ‘accrg’, ‘accpthl’,'accomp'};
% Loop through the workspace names
for i = llength(workspaceNames)

% Get the data for this workspace

data = evalin('base’, workspaceNames{i});

% Loop through the time points and frequency indices for 1000
for m = 1length(t)
forn=1399
% Compute the new value based on the time and frequency
if t(m) == 0 % Modified condition
data(m,n) = 0;
elseif data(m,1) >0
data(m,n+1) = ((data(m,1)*t(m)"2) + (n*2/798000)) / (t(m)"2);
elseif data(m,1) <0
data(m,n+1) = ((data(m,1)*t(m)"2) - (n*2/798000)) / (t(M)"2);
end
end
end

% Loop through the time points and frequency indices for 100
for m = 1length(t)
for n = 1400
% Compute the new value based on the time and frequency
if t(m) == 0 % Modified condition
data(m,n+400) = 0;
elseif data(m,1) >0
data(m,n+400) = ((data(m,1)*t(m)"2) + (n*2/400)) / (t(m)"2);
elseif data(m,1) <0
data(m,n+400) = ((data(m,1)*t(m)"2) - (n*2/400)) / (t(m)"2);
end
end
end

% Assign the modified data back to the workspace
assignin('base’, workspaceNames{i}, data);
end
% Delete the first three rows from each dataset
accsv(13,) =[J;
accrg(13,) = [J;

179

accpthl(13,) = [J;
accbmp(13,) = [I;
t(13,)=[1;
x=ones(1,400);
x2=repmat(2,1,400);
accsvl=([x,x2]);
accsv=[accsvl;accsv];
x=repmat(3,1,400);
x2=repmat(4,1,400);
accrgl=([x,x2)]);
accrg=[accrgl;accrg];
x=repmat(5,1,400);
x2=repmat(6,1,400);
accpthl1=([x,x2]);
accpthl=[accpthl1;accpthl];
x=repmat(7,1,400);
x2=repmat(8,1,400);
accbmpl=([x,x2]);
accbmp=[accbmpl;accbmp];
AccData=[accsv, accrg, accpthl,accbmp];
%{
noiser = 30 * randn(size(AccData(2end,))); % Gaussian noise with standard deviation
0.1
noisy_signal = AccData(2end,) + noiser;
AccData= [[accsvl, accrgl, accpthll,accbmpl];noisy_signal];
% Perform wavelet denoising on each column of the matrix
denoisedMatrix = zeros(size(noisy_signal));
for col = 1size(noisy_signal, 2)
signal = noisy_signal(, col);

% Perform wavelet denoising on the individual signal using wdenoise
denoisedSignal = wdenoise(signal);

% Store the denoised signal in the denoised matrix
denoisedMatrix(, col) = denoisedSignal;
end
% Perform wavelet denoising
AccData = [[accsvl, accrgl, accpthll,accbmpl];denoisedMatrix];
%}
%AccData=accsv;

180

5.4. Second Labeling Code For Road Type and Signal Condition Classification

Comprehensive Testing

Ts = mean(diff(t));

rng default % Fix the random seed

AccData = AccData(, randperm(size(AccData, 2)));

% Shuffle the columns

traindata = AccData(2end,);

trainlabel = categorical(AccData(1,));

numClasses = numel(trainlabel);

CT = countlabels(trainlabel);

tbl = table2array(CT(, 2));

% Use cvpartition to split data into training and validation sets

¢ = cvpartition(trainlabel, 'HoldOut', 0.2);

trainldx = training(c);

testldx = test(c);

Ptrain = traindata(, trainldx);

Ttrain = trainlabel(trainldx);

Ptest = traindata(, testldx);

Ttest = trainlabel(testldx);

uniqueLabels = unique(trainlabel);

catnames = {'Normal Sinewave Road Obstacle Signals','Faulty Sinewave Road
Obstacle Signals','Normal Roughness Road Obstacle Signals','Faulty Roughness Road
Obstacle Signals','Normal Pothole Road Obstacle Signals','Faulty Pothole Road
Obstacle Signals','Normal Bump Road Obstacle Signals','Faulty Bump Road Obstacle
Signals'};

uniqueLabels = renamecats(uniqueLabels,{'1',2','3','4",'5','6",'7",'8'},catnames);
bar(uniqueLabels, tbl);

CTtrain = countlabels(Ttrain);

CTtest = countlabels(Ttest);

tblTrain = table2array(CTtrain(, 2));

tblTest = table2array(CTtest(, 2));

H = bar(uniqueLabels, [tblTrain, tblTest], 'stacked");

legend(H, ["Training Set", "Test Set"], 'Location’, 'NorthEastOutside")

LPtrain = [double(Ttrain); Ptrain];

[ii, jj, kk] = unique(LPtrain(1,));

m = accumarray(kk, (1numel(kk)), [1, @(x) {x'});

out = cell2mat(cellfun(@(x) LPtrain(, x(randperm(numel(x), 1))), m',
‘UniformOutput’, false));

%%idx = randperm(size(Ptrain,2),4);

181

%Fs = 1/Ts;

parfor n = Inumel(out(1,))
x=out(2end,n);
subplot(8,2,n);
plot(t,x);
ifn==7|n==

xlabel('Seconds');

end
d=dictionary([1,2,3,4,5,6,7,8],catnames);
title(d(n));

end

5.4.1. Codes For All Models Used for Second Tests.

This test has the same codes as the previous test, with only differences in labeling and
data. Therefore, you can replace, for example, the below

code% Convert labels to categorical and rename categories
YPred = categorical(YPred, {'1', '2', '3, '4', '5'}, cathames);
YTest = renamecats(YTest, {'1', '2', '3', '4', '5'}, catnames);

% Plot the confusion matrix

figure;

cm = confusionchart(YTest, YPred);

title("Classification of faulty signals based on Levels');
cm.RowSummary = 'row-normalized’;

cm.ColumnSummary = ‘column-normalized’;

to

YPred = categorical(YPred, {'1',2','3','4''5','6",'7",'8'}, catnames);
YTest = renamecats(YTest,{'1',2','3",'4"'5','6",'7",'8'},catnames);
% Plot the confusion matrix for the final model

figure;

cm = confusionchart(YTest, YPred);

title("Classification for a faulty and healthy signal for each road type’);
cm.RowSummary = row-normalized’;

cm.ColumnSummary = ‘column-normalized’;

so the title and the number of mentioned label are differ.

182

