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ABSTRACT 

 

This thesis investigates fault detection in a simulated car's gear steering system using 

MSC Adams and MATLAB simulations. It focuses on analyzing the angular acceleration 

signal from the outer tie rod, crucial for identifying faults. Through simulation, the car 

records the angular acceleration signal as a baseline for healthy signals and introduces 

simulated wear into the tie rod using MATLAB to mimic real-world faults. Various types 

of noise are added to the signals to assess the system's robustness. Two feature extraction 

methods, wavelet scattering and discrete wavelet transform, are evaluated for their 

effectiveness. Classification employs Support Vector Machines (SVM) and Neural 

Networks (NN) and aims to classify signals as normal or faulty and determine fault 

severity. Findings suggest wavelet scattering with Long Short-Term Memory (LSTM) 

Neural Networks as a stable approach. Techniques like Principal Component Analysis 

(PCA), Linear Discriminant Analysis (LDA), and Recursive Feature Elimination (RFE) 

enhance classification accuracy. This research significantly advances fault detection in 

automotive systems, providing insights into signal processing, classification algorithms, 

optimization, and feature selection. The developed fault detection system promises real-

world application, potentially enhancing steering system reliability and safety. 
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ÖZET 

Bu tez, MSC Adams ve MATLAB simülasyonlarını kullanarak bir simüle edilmiş aracın 

direksiyon sistemindeki hata tespitini araştırmaktadır. Dış bağlantı çubuğundan gelen 

açısal ivme sinyalini analiz etmeye odaklanarak hataları belirlemek için önemlidir. 

Simülasyon yoluyla, araç sağlıklı sinyaller için bir temel olarak açısal ivme sinyalini 

kaydeder ve MATLAB kullanarak gerçek dünya hatalarını taklit etmek için dış bağlantı 

çubuğuna simüle edilmiş aşınma ekler. Sistemin dayanıklılığını değerlendirmek için 

sinyallere çeşitli tiplerde gürültü eklenir. Dalgalet dağılması ve kesikli dalgalet dönüşümü 

olmak üzere iki özellik çıkarma yöntemi etkinlikleri açısından değerlendirilir. 

Sınıflandırma, Destek Vektör Makineleri (SVM) ve Sinir Ağları (NN) kullanır ve 

sinyalleri normal veya hatalı olarak sınıflandırmayı ve hata ciddiyetini belirlemeyi 

amaçlar. Bulgular, dalgakıran dağılmasıyla Uzun Kısa Vadeli Hafıza (LSTM) Sinir 

Ağları'nın istikrarlı bir yaklaşım olduğunu öne sürmektedir. Temel Bileşen Analizi 

(PCA), Doğrusal Ayırıcı Analiz (LDA) ve Tekrarlanan Özellik Eleme (RFE) gibi 

teknikler, sınıflandırma doğruluğunu artırır. Bu araştırma, otomotiv sistemlerinde hata 

tespitini önemli ölçüde ilerletmekte olup, sinyal işleme, sınıflandırma algoritmaları, 

optimizasyon ve özellik seçimi konularında içgörüler sunmaktadır. Geliştirilen hata tespit 

sistemi, direksiyon sistemi güvenilirliğini ve güvenliğini potansiyel olarak artırarak 

gerçek dünya uygulaması vadetmektedir. 

 

 

Anahtar kelimeler: Hata Tespiti; Direksiyon Sistemleri; Açısal İvme; Simülasyon; 

Dalgalet Analizi 
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I. INTRODUCTION 

1.1. Background 

Suspension failure in vehicles is a critical issue that poses a significant risk on the roads, 

leading to car accidents and potentially fatal outcomes. According to data from the 

National Highway Traffic Safety Administration (NHTSA) [1], suspension-related 

problems rank as the third most habitual reason for car accidents, often occurring in 

combination with steering, transmission, or engine issues. It has been reported that this 

combination accounts for approximately 3% of all traffic accidents. Sadly, the 

motivation for my thesis stems from a personal tragedy - the loss of a dear friend due 

to suspension failure. 

Suspension failure is a serious concern that can have devastating consequences. When 

driving a car, drivers may experience clicking or popping sensations in the suspension, 

which, unfortunately, some drivers may ignore or not recognize as significant. 

However, it is crucial to address these issues promptly, as they can lead to fatal 

accidents if left unattended. 

One specific danger associated with suspension failure is the potential loss of steering 

control, particularly in cases of ball joint or end-spindle failure. Such failures can result 

in a vehicle rollover and a catastrophic accident. The severity of these accidents is 

further highlighted by real-life incidents, such as the case involving Mena Massoud, a 

star of Disney's live-action films [2]. Mr. Massoud sued Tesla, alleging that a 

suspension failure was the cause of the accident that resulted in his damaged car (Figure 

I-1). Despite the contradictory statements from a Tesla spokesperson, the accident 

occurred, underscoring the need to uncover the truth behind such incidents. 



 

 

2 

 

These instances of suspension failure and their devastating consequences demand 

action. It is imperative to develop ideas and preventive measures to mitigate these 

accidents and enhance vehicle safety. Additionally, the creation of a fault recorder for 

suspension systems could provide valuable insights into the causes and potential 

warning signs of failures, contributing to improved preventive measures. 

By focusing on the prevention of suspension-related accidents and the development of 

a fault recorder, this thesis aims to address this critical issue and promote safer driving 

conditions. 

 

Figure I-1 Damaged Car Resulting from Suspension Failure. (Source Forbes) 

1.2. Gear Steering outer tie rode 

The outer tie rod is a crucial component of the steering system, responsible for 

connecting the steering mechanism to the wheel knuckle and enabling the wheels to 

turn. It comprises various parts, including the body, lower cup, lower part of the 

bearing, lower ring, dust boot, dust boot skirt, upper ring, ball stud, and castle nut with 

a cotter pin (Figure I-2). 
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Due to exposure to different forces such as longitudinal, lateral, and vertical forces, the 

tie rod experiences various types of stresses, leading to gradual wear and tear. If left 

unattended, this deterioration can pose significant risks and increase the likelihood of 

accidents. Therefore, it is essential to periodically replace the tie rod based on its 

individual life cycle, which is influenced by factors like material composition and 

design [3]. 

 

Figure I-2 Outer Tie Rod Subdivisions (Source Wozniak, 2022)  

The ball joint in the outer tie rod is particularly vulnerable as it encounters substantial 

longitudinal, lateral, and vertical stresses. As a result, this specific component is highly 

susceptible to wear, leading to vibrations and potential failure. The failure typically 

occurs at the spherical contact interface between the ball pin and the ball socket [4]. 

Finite element analysis serves as a powerful tool for understanding the tie rod's life 

cycle, load-bearing capacity, and optimal dimensions. By employing this analysis 

technique, we can gain insights into the tie rod's performance limitations and expected 

lifespan, ultimately enhancing vehicle safety and maintenance practices [5]. 
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Additionally, vibrations can occur when there is increased wear or improper tightening 

of the outer tie rod. These vibrations can serve as an indicator of the extent of damage. 

By monitoring these vibrations, we can evaluate the level of wear and potential damage 

to the tie rod. 

Our research focuses on utilizing vibration analysis as a tool to assess wear and 

potential damage in the outer tie rod of the steering system. We aim to monitor tie rod 

vibrations to determine the level of fault and extent of wear, providing valuable insights 

into its performance limitations and expected lifespan. This knowledge will contribute 

to enhancing vehicle safety and maintenance measures, ultimately reducing the risk of 

accidents caused by tie rod failure. 

 

Figure I-3 Tie-Rod. (Source International Journal of Application or Innovation in 

Engineering & Management (I JAI EM) 

1.3. Vibration Fault Objective 

Vibrations in tie rods within vehicle suspension systems can lead to potential dangers 

and safety concerns. These vibrations can be categorized into noise vibrations and 

movement vibrations, becoming more noticeable as the tie rod experiences wear and- 
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tear over time [6]. Incorrect tightening of the tie rod can further exacerbate vibration-

related issues. It is crucial to measure and analyze these vibrations to assess the level of 

danger and develop effective mitigation strategies. 

Various methods are available to measure vibrations, including accelerometers, 

velocity sensors, displacement sensors, strain gauge sensors, microphone sensors, and 

fiber optic sensors. One commonly used sensor is the piezoelectric angular acceleration 

sensor, which is battery-free and provides detailed information about angular 

acceleration [7]. The choice to measure angular acceleration instead of angular 

displacement or angular velocity is because angular acceleration provides more features 

about the signals [8]. It is important to note that angular acceleration (α) is crucial in 

understanding the impact of wear on the tie rod. Angular acceleration is measured in 

degrees per second squared (deg/s²), and as wear increases, vibration intensity also 

increases until failure eventually occurs. Analyzing these vibrations thoroughly allows 

us to classify the level of danger based on their intensity, providing valuable insights 

for effective risk assessment and developing mitigation strategies. 

One potential method for identifying faults in the tie rod and categorizing them into 

various levels involves the implementation of Automatic Speech Recognition (ASR) 

using wavelet-based feature extraction and classifiers, as proposed by [9]. This 

technique has also been used in fault detection for other devices such as gearboxes [10] 

and has been used for fault detection in heart signal ECG [11]. By employing this 

approach, vibrations in the vehicle suspension system, specifically in the tie rod, can be 

detected and analyzed, thereby facilitating fault diagnosis. 



 

 

6 

 

Using vibration analysis techniques allows us to gain comprehensive knowledge about 

the tie rod's condition. This knowledge is vital for enhancing vehicle safety, optimizing 

maintenance practices, and ensuring the reliability of the steering gear system. 

1.4. Vibration fault identification 

Vibration fault detection involves identifying the specific fault source by comparing 

test vibration data with fault models. The process consists of training (modeling) and 

identification (matching) units [12] Training builds fault models based on vibration 

features extracted from known fault samples, while identification calculates the 

correspondence between input features and fault models. Success in fault identification 

relies on effective training and identification. Vibration data is used to detect and 

pinpoint the source of the fault [13]. process can be further simplified and visualized 

using the provided flowchart (Figure I-4). 

 

Figure I-4 Fault Identification Flowchart 
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The process begins with the signal undergoing preprocessing, which is essential for 

preparing the signal for fault identification. During this stage, the signal undergoes 

several key steps. 

Firstly, the signal is labeled, categorizing it based on known fault types. This labeling 

step establishes a reference for the subsequent fault identification process. Additionally, 

denoising techniques are applied to remove unwanted noise and artifacts from the 

signal. This ensures that the subsequent analysis focuses on relevant information by 

eliminating unnecessary disturbances [14]. 

Following preprocessing, the signal enters the feature extraction stage. Various 

methods are utilized to extract meaningful information from the vibration data. 

Standard techniques include Fourier analysis, wavelet transforms, and statistical 

measures like mean and standard deviation. These methods enable the extraction of 

relevant features that can effectively differentiate between different fault types [15]. 

Once the features have been extracted, the signal proceeds to the classification stage. 

In this stage, a classifier is employed to match the extracted features with fault models, 

facilitating the identification of the specific fault type. Classification algorithms, such 

as support vector machines (SVM), decision trees, or neural networks, are commonly 

utilized for this purpose. The classifier compares the input features with the fault 

models generated during the training stage and determines the closest match, thereby 

identifying the fault [16]. 

In conclusion, vibration fault detection plays a vital role in detecting and localizing 

faults in machinery. Through effective training in fault models and the use of accurate 
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identification techniques, maintenance personnel can efficiently address issues, 

minimize downtime, and optimize overall machine performance. 

1.4.1. Signal preprocessing 

Signal preprocessing in vibration fault identification involves signal labeling and signal 

denoising. Signal labeling is the process of assigning appropriate labels or categories to 

the vibration signals based on the fault or condition being analyzed [17]. This step helps 

in organizing the data and facilitating subsequent analysis and classification. Signal 

denoising aims to remove unwanted noise from the vibration signals to improve the 

accuracy of fault detection and diagnosis. Various methods have been used for 

denoising, such 

1.4.1.1. Wavelet Denoising  

Wavelet denoising decomposes a signal into different scales using wavelet transform. 

Thresholding is applied to remove noise in certain scales while preserving essential 

signal details [18]. 

1.4.1.2. Median Filtering  

This non-linear method replaces each data point with the median of its neighboring 

points. It effectively removes impulse noise while preserving signal edges [19]. 

1.4.1.3. Low-Pass Filtering 

 Low-pass filters attenuate high-frequency noise while keeping the lower-frequency 

components of the signal intact. Common examples include Gaussian filters and 

moving average filters [20]. 
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1.4.1.4. Total Variation Denoising 

 Total variation denoising minimizes the total variation of the signal while ensuring that 

the denoised signal remains close to the observed noisy signal. It is useful for signals 

with sharp edges and discontinuities [21]. 

1.4.1.5. non-Local Means (NLM) 

 NLM is a powerful technique that exploits redundancy in signals. It averages similar 

patches in the signal to reduce noise while preserving key details [22]. 

1.4.1.6. Principal Component Analysis (PCA) 

 PCA transforms the noisy signal into a new coordinate system where the first few 

principal components capture the main signal information while the remaining 

components represent noise. Removing the noise components yields a denoised signal 

[23]. 

1.4.1.7. Sparse Representations  

Sparse representations represent signals as linear combinations of few basic elements 

(atoms) from a learned dictionary. Promoting sparsity helps to effectively suppress 

noise [24]. 

1.4.1.8. Kalman Filtering  

Kalman filters are optimal for estimating the true signal state from noisy measurements 

in systems with known or predictable dynamics [25]. 
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1.4.1.9. Machine Learning-based Denoising  

Machine learning techniques, such as deep learning and support vector machines, can 

be applied for signal denoising. These methods learn complex noise patterns and 

denoise signals effectively [14]. 

The choice of denoising method depends on the specific characteristics of the signal 

and the nature of the noise. Combining multiple denoising methods can often yield 

better results than using a single approach alone. 

1.4.2.   Features Extraction 

 Feature extraction is a crucial step in vibration fault identification as it involves 

extracting relevant information or characteristics from the preprocessed vibration 

signals. The extracted features serve as inputs for the subsequent classification 

algorithms. Several methods have been used for feature extraction in vibration fault 

identification. These methods include 

1.4.2.1.  Continuous Wavelet Transform (CWT) 

 The continuous wavelet transform is widely utilized in vibration analysis to create a 

time-frequency representation of vibration signals. It allows for the detection of 

transient events and the analysis of non-stationary signals [26].  

1.4.2.2. Discrete Wavelet Transform (DWT) 

 DWT is commonly employed for feature extraction in vibration analysis. By 

decomposing the vibration signal into different frequency bands, it enables the 

identification of specific frequency components and energy distribution [27]. 
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1.4.2.3. Wavelet Packet Transform (WPT) 

 WPT is an extension of DWT, providing a more detailed decomposition of vibration 

signals. It facilitates a comprehensive analysis of different frequency components and 

proves useful for fault diagnosis and feature extraction [28]. 

1.4.3. Wavelet Scattering Transform 

 Wavelet scattering is an advanced feature extraction method, that offers a stable and 

translation-invariant representation of data. It effectively captures both low-frequency 

and high-frequency information, making it robust against variations and deformations. 

Wavelet scattering has gained popularity in various signal analysis tasks, including 

vibration analysis [29]. 

1.4.3.1. Local Characteristics-scale Wavelet Packet Energy (LCWPE) 

 LCWPE is a wavelet-based feature extraction method that quantifies the energy of 

signals in different frequency bands. It is valuable for identifying localized faults in 

rotating machinery [30]. 

1.4.3.2. Wavelet Energy and Kurtosis (WEK) 

 WEK combines wavelet energy and kurtosis to extract features relevant for identifying 

fault-related components in vibration signals. Kurtosis, measuring the non-Gaussianity 

of the signal, aids in detecting impulsive faults [31]. 

Teager Energy Operator with Wavelet Transform (TEOWT) TEOWT combines the 

Teager energy operator with wavelet transform, enhancing the detection of transient 

signals in vibration data [32]. 

These methods are widely applied in vibration analysis for various purposes, such as 

fault detection, condition monitoring, and predictive maintenance of mechanical 
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systems. Researchers and practitioners often choose specific methods or combinations 

of methods based on the unique characteristics of vibration data and their analysis 

objectives. Staying up-to-date with the latest research and literature is essential for 

accessing the most current information on wavelet-based feature extraction methods in 

vibration analysis. 

1.4.4. Feature Selection, Training, Testing, and Classification 

 After feature extraction, the next steps involve feature selection, training, testing, and 

classification. Feature selection aims to identify the most relevant and informative 

features from the extracted set of features. This step helps in reducing the 

dimensionality of the data and improving the efficiency and accuracy of the 

classification algorithms. Various classification methods have been used in vibration 

fault identification, including 

1.4.4.1. Support Vector Machine (SVM)  

SVM is a powerful and versatile classifier that works well for both linear and non-linear 

data. It is particularly effective when dealing with high-dimensional feature spaces, 

making it suitable for vibration data analysis. SVM aims to find an optimal hyperplane 

that separates different classes, making it useful for binary classification tasks where 

you want to distinguish between normal and faulty states [33]. 

1.4.4.2. Random Forest  

Random Forest is an ensemble learning method that combines multiple decision trees 

to improve classification accuracy and robustness. It can handle large datasets with high 

dimensionality and is less prone to overfitting. Random Forest can be effective in 
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detecting various fault conditions by analyzing the patterns present in the vibration data 

Gradient [34]. 

1.4.4.3. Boosting Machines (GBM)  

GBM is another ensemble learning technique that sequentially builds multiple weak 

learners to create a robust predictive model. It is known for its high accuracy and ability 

to handle complex relationships in data. GBM can be well-suited for vibration fault 

detection tasks where there might be intricate interactions between distinctive features 

[35]. 

1.4.4.4. Neural Networks  

Deep learning-based approaches, particularly neural networks, have shown promising 

results in various fault detection tasks, including vibration analysis. Convolutional 

Neural Networks (CNNs) can effectively extract features from vibration signals, while 

Recurrent Neural Networks (RNNs) can capture temporal dependencies. Long Short-

Term Memory (LSTM) networks, a type of RNN, are well-suited for sequential data 

like vibration time series [36]. 

1.4.4.5. k-Nearest Neighbors (k-NN)  

k-NN is a simple but effective non-parametric classifier for vibration fault detection. It 

classifies data points based on the majority class among their k-nearest neighbors in the 

feature space. k-NN can be valuable when the underlying data distribution is not well-

defined or when dealing with imbalanced datasets [37]. 
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1.4.4.6. Decision Trees  

Decision trees are easy to interpret and visualize, making them valuable for 

understanding the reasoning behind the classifier's decisions. They can be useful for 

fault detection when the features have clear decision boundaries [38]. 

1.4.4.7. Ensemble Methods  

Ensemble methods like AdaBoost and XGBoost combine multiple weak learners (e.g., 

decision trees) to create a strong, accurate classifier. These methods can handle noisy 

or imbalanced data and are effective in capturing complex patterns in vibration signals 

[39]. 

Selecting the most appropriate classifier for vibration fault detection may require 

experimentation and tuning based on the specific dataset and problem requirements. 

Other crucial factors to consider include data size, dimensionality, class distribution, 

and available computational resources. These methods utilize the extracted and selected 

features to classify the vibration signals into different fault categories. The training and 

testing phases involve training the classification model using a labeled dataset and 

evaluating its performance on unseen data. This helps in assessing the accuracy and 

effectiveness of the classification algorithm in identifying and diagnosing faults in 

vibration signals. In summary, signal preprocessing in vibration fault identification 

involves signal labeling and denoising. Feature extraction methods include improved 

deep learning algorithms, hierarchical fuzzy entropy, wavelet packet energy entropy, 

WCFSE, and histogram features. Feature selection, training, testing, and classification 

methods such as SVM, CNN, fuzzy logic, and mathematical statistics are used for fault 

identification. 
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1.5. Best Model for fault Identification 

Choosing the most suitable model for fault identification depends on the characteristics 

of the signals being analyzed. Diverse types of signals, such as suspension vibrations, 

heart signals, human sounds, AC machine signals, engines, and other reciprocating 

signals, exhibit unique forms and timings. Consequently, each signal type requires 

specific approaches for feature extraction, filtering, and classification [40]. 

The selection of an optimal fault identification method depends on the designer's 

primary objectives. If accuracy is paramount, the chosen approach should prioritize 

precise fault detection. This means selecting a method or model that can accurately 

identify faults with minimal false positives or false negatives. Various techniques, such 

as machine learning algorithms or statistical methods, can be employed to achieve high 

accuracy in fault identification [41]. 

Conversely, if the time required for accomplishing the task is crucial, a method that 

offers faster results may be more appropriate. In time-sensitive scenarios, such as real-

time fault detection in critical systems, the speed of the identification process becomes 

a priority. In such cases, simpler algorithms or rule-based approaches that can quickly 

process the signals and provide prompt fault identification may be preferred [42]. 

The hardware employed for fault identification, such as GPUs, CPUs and FPGA, also 

influences the decision-making process. Certain models or algorithms may be better 

suited for specific hardware configurations. GPUs, with their parallel processing 

capabilities, are known to excel in tasks that can be parallelized, such as certain machine 

learning algorithms. On the other hand, CPUs may be more suitable for algorithms that 
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require sequential processing or have lower computational requirements, and FPGAs 

offer customization and optimization possibilities [43]. 

Cost can also be a factor in selecting a fault identification method. Some methods may 

require expensive hardware or extensive computational resources, which may not be 

feasible in certain situations. In such cases, cost-effective approaches that can still 

achieve the desired level of accuracy and speed may be preferred. 

When it comes to fault identification, numerous scientific techniques and algorithms 

can be employed. These approaches are typically categorized into two main groups 

model-based and data-driven methods. 

Model-based methods These techniques involve developing mathematical models that 

represent the system under analysis. Fault identification is performed by comparing the 

behavior of the actual system with the predicted behavior based on the model. Model-

based methods are particularly useful when a deep understanding of the system's 

dynamics is available. However, they may require extensive knowledge and expertise 

in system modeling. 

Data-driven methods These approaches rely on analyzing the measured data directly 

without explicitly modeling the system. Data-driven methods are advantageous when 

the underlying system dynamics are complex or not well understood. They often utilize 

machine learning algorithms to automatically learn patterns and correlations in the data. 

These methods can be further divided into supervised learning, unsupervised learning, 

and semi-supervised learning, depending on the availability of labeled training data 

[44]. 
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Supervised learning algorithms, such as support vector machines (SVMs) or random 

forests, require labeled examples of both normal and faulty behavior to train the model. 

Unsupervised learning algorithms, such as clustering or anomaly detection methods, 

can identify abnormal patterns in data without relying on labeled examples. Semi-

supervised learning combines aspects of both supervised and unsupervised learning, 

utilizing a limited amount of labeled data along with a larger amount of unlabeled data 

[45]. 

To enhance fault identification accuracy, feature extraction techniques play a crucial 

role. Feature extraction involves transforming the raw signals into a set of 

representative features that capture relevant information for fault identification. 

Common techniques include Fourier transforms, wavelet transforms, time-frequency 

analysis, and statistical measures [46]. 

In conclusion, selecting the best model for fault identification involves considering the 

specific characteristics of the signals, the desired objectives (accuracy vs. time 

efficiency), and the available hardware resources. Both model-based and data-driven 

methods offer effective approaches, with data-driven methods, particularly machine 

learning algorithms, being popular choices due to their ability to handle complex and 

unmodeled systems. Feature extraction techniques further aid in improving fault 

identification accuracy by extracting pertinent information from the signals. 

1.6. Thesis Scope 

The scope of this thesis encompasses the prevention and detection of suspension-related 

accidents in vehicles, with a specific focus on the outer tie rod component of the steering 

system. The research will primarily involve the analysis of vibrations in the tie rod to 
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assess wear and potential damage. The thesis will explore the use of vibration analysis 

techniques, such as Fourier analysis, wavelet transforms, and statistical measures, to 

extract meaningful information from the vibration data. The objective is to monitor tie 

rod vibrations and determine the level of fault and extent of wear, providing valuable 

insights into the tie rod's performance limitations and expected lifespan. 

Additionally, the thesis will investigate fault identification methods, including 

Automatic Speech Recognition (ASR) and wavelet-based feature extraction, to detect 

and categorize faults in the tie rod. The aim is to develop effective fault identification 

techniques that can accurately diagnose faults and facilitate the implementation of 

appropriate mitigation strategies. 

The thesis will focus on the outer tie rod component and its associated vibrations, 

considering factors such as material composition, design, and the specific failure modes 

of the tie rod. The research will involve experimental data collection and analysis to 

validate the effectiveness of the proposed vibration analysis and fault identification 

methods. 

The scope of the thesis does not extend to other suspension components or systems, 

such as shocks, struts, or control arms. The research will primarily concentrate on the 

outer tie rod and its role in suspension failure and accident prevention. However, the 

findings and methodologies developed in this thesis may have broader implications for 

vehicle suspension safety and maintenance. 

Overall, the thesis aims to contribute to the improvement of vehicle safety by 

developing preventive measures and utilizing advanced fault detection technologies 

specifically tailored to the outer tie rod component. 
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1.7. Research Objectives 

1. To investigate the causes and factors contributing to suspension failure in 

vehicles, with a specific focus on the outer tie rod component of the steering 

system. 

2. To analyze and assess the vibrations in the outer tie rod as an indicator of wear 

and potential damage, aiming to develop a comprehensive understanding of the 

tie rod's performance limitations and expected lifespan. 

3. To develop effective fault identification methods, such as Automatic Speech 

Recognition (ASR) and wavelet-based feature extraction, to detect and categorize 

faults in the tie rod. 

4. To explore preventive measures and maintenance practices that can enhance 

vehicle safety and reduce the risk of accidents caused by tie rod failure. 

5. To validate the proposed vibration analysis and fault identification methods 

through experimental data collection and analysis. 

6. To contribute to the improvement of vehicle safety by providing insights and 

recommendations for the design, maintenance, and monitoring of the outer tie rod 

component. 

1.8. Methodology 

The research will follow a Design Science Research (DSR) methodology, as proposed 

by [47]. The six steps of DSR, including programming, data collection and analysis, 

synthesis of objectives and analysis results, development, prototyping, and 

documentation, will guide the research process. This systematic approach will ensure 

that the research objectives are addressed in a rigorous and structured manner. 

The research design will involve both quantitative and qualitative methods. 

Quantitative data will be collected through vibration measurements and analysis, 

utilizing techniques such as Fourier analysis, wavelet transforms, and statistical 

measures. Qualitative data will be gathered through interviews and surveys to gain 
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insights into maintenance practices and the effectiveness of fault identification 

methods. 

The research instruments will include sensors for vibration measurement, 

questionnaires for data collection, and interview protocols for qualitative data 

gathering. The research will employ a mixed-methods approach, combining the 

strengths of quantitative and qualitative analysis to provide a comprehensive 

understanding of suspension failure and fault detection in the outer tie rod. 

Data analysis will involve statistical techniques for quantitative data, such as correlation 

analysis and regression analysis, to identify patterns and relationships. Qualitative data 

will be analyzed using thematic analysis to identify key themes and patterns in the 

responses. 

The research will also include experimental testing to validate the proposed vibration 

analysis and fault identification methods. Prototypes will be developed and tested under 

controlled conditions to assess their effectiveness in detecting and categorizing faults 

in the tie rod. 

Overall, the research methodology will ensure a systematic and rigorous approach to 

address the research objectives, combining quantitative and qualitative methods, and 

validating the proposed methods through experimental testing. The research findings 

will contribute to vehicle safety and provide insights into the design and maintenance 

of suspension systems. 
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1.9. Thesis Overview 

There will be six chapters accordingly 

Chapter 1 Introduction: The first chapter of the thesis introduces the topic of 

suspension failure in vehicles and its impact on road safety. It highlights the importance 

of addressing this issue and provides the motivation behind the research. The chapter 

outlines the objectives and scope of the thesis, setting the foundation for the subsequent 

chapters. 

Chapter 2 Literature Review: The literature review chapter provides a comprehensive 

overview of existing research and knowledge related to suspension failure and fault 

detection in vehicles. It examines relevant studies, theories, and methodologies 

employed in the field. The chapter critically analyzes the strengths and limitations of 

previous research, identifies gaps in the literature, and establishes the theoretical 

framework for the current study. 

Chapter 3 Methodology: In this chapter, the thesis describes the research methodology 

employed to achieve the stated objectives. It outlines the research design, data 

collection methods, and analysis techniques utilized in the study. The chapter also 

discusses any limitations and constraints encountered during the research process and 

explains how they were addressed. The methodology chapter provides a clear and 

detailed explanation of the steps taken to ensure the validity and reliability of the 

findings. 

Chapter 4 Data Results: This chapter presents the findings of the data analysis 

conducted in the study, along with their interpretation and discussion in relation to the 

research objectives. The results are presented in a clear and organized manner, utilizing 
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tables, graphs, and other visual aids to enhance understanding. Additionally, the 

implications of the findings are examined, compared to existing literature, and 

supported by appropriate references. Practical implications for suspension failure 

prevention and fault detection are explored, along with recommendations for future 

research and practical applications. 

Chapter 5 Conclusion: The conclusion chapter summarizes the main findings of the 

study and restates the research objectives. It highlights the contributions of the research, 

discusses its limitations, and suggests areas for further investigation. The chapter 

concludes with a final reflection on the significance of the research and its potential 

impact on improving vehicle safety and preventing suspension-related accidents. 

Overall, the thesis aims to provide a comprehensive analysis of suspension failure in 

vehicles, focusing on the outer tie rod component. It utilizes vibration analysis 

techniques and fault identification methods to enhance understanding, detection, and 

prevention of suspension failures. The subsequent chapters will delve into the research 

process, analysis, and interpretation of the findings. 
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II. LITERATURE REVIEW 

The literature review chapter examines the existing knowledge and research on 

suspension failure in vehicles, with a focus on the outer tie rod and its role in the 

suspension system. It aims to understand the causes and consequences of suspension 

failure and explore the potential application of vibration analysis and fault identification 

techniques in improving vehicle safety. By reviewing relevant literature, this chapter 

contributes to the understanding of suspension failure and provides insights for 

preventive measures. It also discusses the importance of vibration analysis and fault 

identification in detecting faults in the outer tie rod and suspension system. 

2.1. Overview of suspension systems problem 

Suspension systems are crucial components of vehicles, contributing significantly to 

driving comfort, steering control, and road friction. Ahmed Aboazoum underscores the 

prevalence of common suspension problems such as poor wheel alignment, faulty 

shocks or struts, damaged springs, failing ball joints, and faulty control arms. To uphold 

optimal suspension performance, Aboazoum advocates for regular inspections and 

timely repairs [48]. Meanwhile, Ravi Kumar et al. delve into investigating the failure 

of primary suspension systems within FIAT-type LHB bogies. Their study focuses 

specifically on the fatigue failure of primary helical springs and proposes design 

modifications aimed at enhancing fatigue life. Employing a flexible finite element 

model, the researchers conduct multi-body dynamic analysis and stress analysis. They 

estimate fatigue life using the Modified Goodman diagram and validate design 
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modifications through comparative fatigue life estimation [49]. In parallel, Saurabh D. 

Shinde, Shruti Maheshwari, and Satish Kumar's literature review delves into the 

analysis of McPherson suspension system components, with a particular emphasis on 

the strut mount. They highlight the critical role of suspension systems for safety and 

comfort while underscoring the risks associated with poor design. Previous research 

endeavors have leveraged computer-aided engineering techniques, encompassing static 

and dynamic simulations, finite element analysis, and fatigue analysis, to study various 

components. However, the authors identify a research gap concerning strut mount 

failure and propose design modifications to mitigate this issue [50]. 

2.2. Previous Research on Suspension Failure and analysis 

Suspension systems play a crucial role in ensuring the safety, performance, and comfort 

of automotive and railway vehicles. Detecting and diagnosing faults in suspension 

systems is essential for maintaining their reliability and preventing potential failures. 

Over the years, researchers have conducted numerous studies to develop effective 

techniques for detecting and diagnosing suspension failures. This topic aims to provide 

an overview of previous research on suspension failure detection techniques in 

automotive and railway systems. For instance, Hamed, Tesfa, Belachew, Fengshou, Gu, 

& Ball (2015) Focus on developing a mathematical model using a seven-degree-of-

freedom full car to analyze suspension performance. The study conducts simulations to 

predict the vehicle's response when driven over speed bumps of different shapes and 

speeds. The model is validated using experimental data collected from driving the 

vehicle over a specific bump at a speed of 8 km/hr. The research analyzes suspension 
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performance in terms of ride comfort, road handling, and stability, considering 

parameters such as wheel deflection, suspension travel, and vehicle body acceleration. 

The study also explores the effects of speed and changes in suspension specifications, 

including tire pressure. The developed model is used for fault detection of under-

inflated tires and predicting potential suspension faults [51]. Similarly, Patil & Darade 

(2018) Conducted a comprehensive study to examine the fatigue life and vibration 

behavior of the pitman arm in a steering system. Utilized Finite Element Analysis 

(FEA) using Ansys software and CATIA software for structural analysis and equipment 

design, respectively. By subjecting the Pitman arm to varying frequencies in Ansys, the 

researchers successfully identified critical areas prone to structural weaknesses. This 

research significantly contributes to the understanding of the pitman arm's durability 

and vibration characteristics within steering systems. The integration of FEA and 

advanced software tools allowed for a thorough evaluation of the arm's structural 

integrity and design considerations. The findings have substantial implications for 

enhancing the performance and reliability of steering systems in automotive 

applications [52]. In another Study, Reza Kashyzadeh et al. (2015) Conducted a study 

on predicting fatigue life in suspensions exposed to random vibrations from road 

roughness. Employed Catia, Ansys, and MATLAB for suspension modeling, fatigue 

life analysis, and simulation, respectively. By calculating fatigue life using FEM Ansys 

and comparing it with MATLAB’s PSD function, component life cycles and potential 

failures were determined. To enhance this approach, integration with vibration fault 

detection methods was proposed. This integration would improve the accuracy of 

identifying potential suspension failures, enabling proactive maintenance and fault 
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mitigation. Kashyzadeh's research contributes to the field by highlighting the potential 

for further advancements in fatigue life prediction and fault detection in suspensions. 

Future research can focus on developing advanced algorithms and methodologies to 

integrate vibration fault detection with fatigue life prediction, enhancing suspension 

reliability and performance [53]. Xiukun et al. (2013) Propose a novel approach for 

fault isolation in Light Rail Vehicles (LRVs) suspension systems using the Dempster-

Shafer (D-S) evidence theory. The authors address the importance of fault isolation for 

ensuring train safety and reliability, specifically focusing on the suspension system. 

They introduce a fault isolation algorithm that incorporates a fault feature database and 

multi-sensor information fusion. The algorithm utilizes a Kalman filter to generate 

residuals for fault diagnosis and employs the Eros and norm distance to measure the 

similarity between new and existing fault features. The obtained similarities are 

converted into basic belief assignments and fused using the D-S evidence theory to 

enhance isolation accuracy. The effectiveness of the proposed method is demonstrated 

through two case studies, highlighting its potential in improving the accuracy of fault 

recognition and the safety of LRVs [54]. Further, Jin et al. (2019) Introduce a method 

for estimating actuator faults in active suspension systems. The proposed approach 

combines an adaptive observer with genetic algorithm optimization to accurately track 

actuator faults under various conditions. Simulation results demonstrate the 

effectiveness and robustness of the method, outperforming other approaches. The paper 

also applies the fault estimation method in fault-tolerant control of the active suspension 

system, improving ride comfort and ensuring important constraints. Overall, the paper 

contributes to the field by addressing actuator fault estimation and providing a practical 
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solution for active suspension systems [55]. Meanwhile, X. Zhu et al., 2019 Addressed 

the problem of fault detection in vehicle active suspension systems. Proposed a fault 

detection filter design in the finite-frequency domain to enhance suspension system 

performance. Utilized the generalized Kalman-Yakubovich-Popov (KYP) lemma to 

derive a sufficient condition for the residual system with the prescribed H∞ 

performance index. The authors emphasized the importance of active suspension 

systems in improving ride comfort and vehicle safety. The proposed approach aimed to 

enhance suspension performance in the finite frequency range, targeting the frequency 

band of 4-8Hz known for its sensitivity to human body vibrations. The fault detection 

filter was formulated as a set of linear matrix inequalities, ensuring stability and 

performance. The authors demonstrated the effectiveness of their approach through a 

numerical example and compared it with existing methods. The paper contributes to the 

field of fault detection in vehicle active suspension systems by providing a finite-

frequency domain approach to improve performance and reliability [56]. Addressing 

fault detection in rail vehicle suspension systems, Mao et al. (2017) propose a fault 

detection scheme that uses a fault detection observer, considering uncertain track 

regularity and stochastic noises. The authors introduce disturbances to the suspension 

system states and design an observer to estimate both the system states and 

disturbances. They analyze the existence conditions for observer design and develop a 

systematic detection algorithm based on the residual signal. The paper includes 

simulation results to demonstrate the observer's behavior and performance. This study 

contributes to the field of fault detection in suspension systems by considering the 

impact of disturbances and stochastic noises. The proposed observer-based approach 
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shows promise in effectively detecting sensor faults in rail vehicle suspension systems. 

However, further research is necessary to validate the approach using real-world 

systems and explore its applicability to other types of suspension systems [57]. 

Sugahara & Researcher (2013) Proposed a fault detection technique for vertical 

dampers in railway vehicles. The method focuses on analyzing the phase difference 

between the bounce and pitch motions of bogie frames or the car body using inertial 

sensors. Through vibration excitation tests and running tests on a meter-gauge line, the 

authors validate the effectiveness of the proposed technique in detecting faults in both 

primary and secondary dampers. This approach offers a practical and cost-effective 

solution compared to traditional methods that rely on strain gauges. By evaluating the 

phase difference, damper faults can be detected during routine train operations, 

contributing to the field of fault detection in railway vehicle suspension systems [58]. 

In the realm of vehicle suspension systems, Yin & Huang (2015) Present a novel fault 

diagnosis method for vehicle suspension systems. The proposed approach leverages 

accelerometer measurements and employs a three-step process. Firstly, the method 

utilizes principal component analysis to determine the number of clusters. Secondly, it 

detects faults through fuzzy positivistic C-means clustering and fault lines. Finally, the 

root causes of faults are isolated using Fisher discriminant analysis. Notably, the 

method offers a practical and efficient solution by relying solely on accelerometer data 

from the four corners of the suspension. The authors demonstrate the effectiveness of 

their approach through a comprehensive simulation using a full vehicle benchmark 

[59]. Wei et al. (2013) Propose a data-driven approach for fault detection in vertical rail 

vehicle suspension systems. The authors use accelerometer sensors placed in the car 
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body and bogies to collect data. They investigate PCA-based and CVA-based fault 

detection methods. The simulation results show their approach's effectiveness for 

detecting vertical damper and spring faults. The paper highlights the importance of on-

line fault detection and condition monitoring for railway vehicle suspension systems. It 

also discusses previous studies on condition monitoring and fault detection in railway 

systems. Overall, the paper contributes to the field of condition monitoring and fault 

detection in railway vehicle suspension systems [60]. Moreover, Sakellariou et al. 

(2015) Present a feasibility study on vibration-based fault diagnosis in railway vehicle 

suspensions using a functional model-based method. The authors propose a fault 

detection and isolation (FDI) unit that is trained using data from a physics-based model 

of the suspension. The unit achieves fault diagnosis using a data-based method called 

the functional model-based method (FMBM). The FMBM utilizes a novel class of 

stochastic ARX-type models to accurately represent the system in a faulty state. The 

study demonstrates the feasibility of fault diagnosis in railway vehicle suspensions 

through Monte Carlo simulations. The FDI unit is shown to exhibit high sensitivity and 

accurate estimation of fault magnitudes, and it is robust to measure noise and other 

uncertainties. The authors conclude that the FDI unit has the potential to improve safety 

and performance in railway vehicles [61]. Aravanis et al. (2020) Investigated vibration-

based faults in railway vehicle suspension. Analyzed vibrations in a 9-degree-of-

freedom railway vehicle setup and compared two fault detection methods physics-based 

models and data-based models using Principal Component Analysis (PCA). 

Simulations were conducted in MATLAB using the Isim Function and Monte Carlo 

simulations. The study utilized baseline and inspection phases for active and faulty 
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systems, respectively. Fault detection was achieved through FM and PCA methods, 

analyzing curves and evaluating ROC curves. The experiment faced challenges due to 

limited vibration signals and the presence of non-measurable system components. The 

findings contribute to understanding fault detection in railway vehicle suspension 

systems. Further research is needed to address the challenges and enhance fault 

detection techniques in practical applications [62]. Additionally, Rahim et al. (2020) 

Assessed suspension fatigue in automobile systems. Utilized the discrete wavelet 

transform (DWT) and wavelet energy analysis to classify the fatigue level of 

suspensions. The study focused on measuring strain signals obtained from the coil 

spring component while driving on both smooth and bumpy roads. The findings provide 

valuable insights into the use of DWT and wavelet energy analysis for evaluating 

suspension fatigue. Future research can explore the refinement of these techniques, the 

inclusion of additional parameters, and the development of real-time fatigue monitoring 

systems to enhance suspension performance and reliability [63]. Azadi & Soltani 

(2009) Investigated fault detection in vehicle suspension systems using continuous 

wavelet transform (CWT) analysis. Focused on identifying faults in the damper and 

upper damper bushing (UDB) components by approximating system natural 

frequencies and frequency components with maximum energy using Morlet wavelet 

functions. The study involved simulation in ADAMS/CAR software and validation 

through laboratory tests. The authors suggested enhancing their method by integrating 

wavelet scattering or discrete wavelet transform along with modified classifiers for 

improved results and accuracy. Comparisons between these approaches and CWT 

analysis were proposed to assess their effectiveness in fault detection. The research 
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provides valuable insights into fault detection in vehicle suspension systems and 

suggests avenues for further improvement in fault detection capabilities [64]. In 

conclusion Previous research on suspension failure detection techniques in automotive 

and railway systems has contributed significantly to the understanding and 

improvement of fault detection methods. These studies have utilized various 

approaches, including physics-based models, data-driven models, wavelet analysis, 

fault detection filters, and fault isolation algorithms. The findings have provided 

valuable insights into the durability, vibration characteristics, fatigue life, and fault 

detection capabilities of suspension systems. Further research is needed to address the 

challenges and enhance fault detection techniques in practical applications, optimize 

design and material selection, and develop advanced algorithms and methodologies for 

integrating vibration fault detection with fatigue life prediction. These advancements 

will contribute to improving suspension reliability, performance, and safety in 

automotive and railway systems 

2.3. Vibration Analysis for Fault Detection  

Vibration analysis is a critical technique for detecting faults and predicting failures in 

rotating equipment, offering a proactive approach to minimize unforeseen failures and 

plant shutdowns. This literature review presents a compilation of studies that explore 

various methodologies and applications of vibration analysis for fault detection in 

rotating machinery. For instance, Nouman Khan and Ajit Prasad S L (2019) explore the 

vibration characteristics of a gearbox with cracked gear teeth to facilitate early fault 

detection. The authors employ a back-to-back gear test rig for vibration analysis and 
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utilize frequency spectrum and order tracking analysis for fault diagnosis. Results 

demonstrate that faulty gears exhibit higher amplitude vibrations at the gear mesh 

frequency (GMF), with amplitude increasing in proportion to the number of cracked 

teeth. Additionally, frequency domain analysis reveals higher-order sidebands at the 

GMF, further confirming the presence of defects. The study emphasizes the 

effectiveness of order tracking analysis for fault diagnosis and underscores the 

importance of timely detection of tooth fractures to avert catastrophic failures [65]. 

Building upon this, Nandi et al. (2005) provided a comprehensive overview of fault 

diagnosis techniques for electrical motors. The authors cover various types of faults 

including stator faults, bearing faults, broken rotor bar faults, and eccentricity-related 

faults. They highlight vibration frequencies as a key indicator for detecting bearing 

faults, along with thermal measurements and chemical analysis. For stator faults, 

techniques such as online partial-discharge tests, axial flux-based detection, and 

monitoring negative-sequence currents are discussed. Broken rotor bar faults can be 

detected using motor current signature analysis (MCSA), as well as through voltage 

and vibration analysis. Eccentricity-related faults can also be detected using MCSA and 

vibration analysis, with frequency components depending on the eccentricity type. The 

authors additionally explore the use of artificial intelligence techniques, such as neural 

networks and fuzzy logic systems, for machine condition monitoring and fault 

diagnosis, enabling the classification of fault signatures and diagnostic decision-

making. This article serves as a valuable resource for researchers and practitioners in 

the field of electrical motor fault diagnosis [66]. Plante et al. (2015) further extend this 

understanding by showcasing distinctive use of vibration analysis in detecting faults 
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and predicting failures in rotating equipment. The authors emphasize the significance 

of equipment monitoring to mitigate the risks of unforeseen failures and plant 

shutdowns. Vibration analysis is identified as the primary method for assessing 

equipment conditions and predicting failures. The study conducts a motor condition 

monitoring experiment, employing spectrum analysis software and MATLAB to 

analyze measured vibration data. The severity of vibration and specific natural 

frequencies are used to determine the motor's condition and identify fault types. The 

article presents results for three fault conditions (unbalance, mechanical looseness, and 

bearing fault), showcasing distinctive patterns and peaks in the frequency spectrum 

associated with each condition. The study concludes by highlighting the efficacy of 

vibration analysis and proposes further research on analyzing vibration trends for 

accurate failure prediction and reduced maintenance costs [67]. Expanding the scope, 

Sheng Fu et al. (2016) introduced a new method for mechanical fault diagnosis using 

time domain analysis and adaptive fuzzy C-means clustering. It addresses the challenge 

of identifying defects early due to component noise by calculating nine-time domain 

parameters as characteristic vectors for fault detection. The proposed approach 

demonstrates effectiveness in classifying different fault types, including micro-sized 

faults, based on vibration signals. It outperforms other methods like Hilbert 

transformation and wavelet denoising in detecting faults in rolling bearings. The 

simplicity and direct signal processing of time domain analysis make it advantageous 

in terms of processing time. Overall, the study validates the method's effectiveness and 

robustness through experiments using bearing data [68]. Dong et al. (2021) address 

prevalent challenges in existing methods by proposing a method to monitor bolt 
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looseness using vibration transmissibility analysis, addressing challenges in existing 

methods. The approach utilizes accelerometers to measure vibrations above and below 

cargo bolts. The spectral moment factor assesses torque level variations of the bolt 

group, while the eigensystem realization algorithm (ERA) identifies subtle eigenvalue 

changes to detect local bolt looseness. Experimental results demonstrate the method's 

effectiveness in detecting both global and local bolt looseness, making it a practical and 

cost-effective solution for ensuring safety in bolted joints across industries [69]. 

Parzinger et al. (2020) shift focus towards automated fault detection in building HVAC 

systems using machine learning models and statistical tests on residuals. The study 

emphasizes energy efficiency and the lack of cost-efficient methods for fault detection. 

They use detailed simulation data from a residential case study house to compare fault-

free and faulty operations. Nine statistical tests are applied to analyze residuals for fault 

detection. Results indicate accuracy is affected by data amount, fault type, and density. 

Finding the best combination of tests is crucial for accurate fault prediction in building 

HVAC systems [70]. Huang et al. (2019) leverage a two-stage machine-learning 

architecture for motor fault detection and feature extraction. The method avoids 

complex preprocessing by using motor vibration time-domain signals. The first stage 

utilizes an RNN-based VAE to reduce the dimension of sequential data and improve 

prediction accuracy. In the second stage, PCA and LDA further reduce dimensionality, 

enabling visualization and detection of different fault modes. Experimental results 

demonstrate over 99% accuracy in motor fault detection using a simple neural network. 

The proposed method has significant advantages over other dimension reduction 

techniques and is valuable for smart manufacturing and preventive maintenance 
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decision-making. Overall, the RNN-based VAE approach provides an effective and 

efficient solution for motor fault detection in various industries [71]. Concurrently, 

Belkacemi et al. (2020) investigate the detection of induction motor bearing lubrication 

issues using Discrete Wavelet Transform (DWT) analysis with MATLAB/Wavelets 

toolbox. Traditional time and frequency domain methods face challenges with non-

stationary vibration signals, making DWT a suitable alternative for accurate fault 

identification. Experimental validation using vibration signals from healthy and 

improperly lubricated bearings reveals that the DWT enhanced by MATLAB/Wavelets 

toolbox is effective in diagnosing lubrication defects. The healthy bearing signal 

exhibits lower magnitude peaks and lacks periodicity compared to the improper 

lubricated bearing signal. The DWT decomposition process, analyzing magnitude 

ranges and histogram distributions, supports the procedure's efficiency. The paper 

suggests future research in intelligent techniques for bearing fault detection and 

monitoring [27]. Hashemi et al. (2013) proposed a fuzzy model for auto-detecting gear 

faults based on vibration signal analysis. The model combines conventional methods 

and uses wavelet transform and statistical indexes as fault criteria. It simplifies the 

decision-making process by employing fuzzy systems, considering gear signals and 

fault effects. The model is validated through an empirical setup and performs well in 

detecting gear faults, even for different setups. It can estimate gear health and status 

using fuzzy logic, offering a simplified approach to gear fault diagnosis despite limited 

data availability and manufacturing challenges. Overall, the paper's contribution lies in 

proposing an effective fuzzy-based method for gear fault detection and health 

assessment [72]. Wang et al. (2019) introduced an enhanced cyclic modulation 
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spectrum (CMS) algorithm for detecting broken rotor bar (BRB) faults in induction 

motors (IMs). The CMS algorithm, based on vibration signature analysis, handles non-

stationary and non-linear signals characteristic of IMs with BRB faults. It optimizes 

window function, length, and step size for short-time Fourier transform (STFT) to 

improve accuracy and computational efficiency. Compared to motor current and 

vibration signature analyses, the improved CMS algorithm offers better fault detection 

and noise immunity. Simulation and experimental studies validate its efficacy in 

accurately diagnosing healthy and faulty motors with BRBs, making it a promising tool 

for online fault diagnosis [73]. Guo et al. (2018) contribute to early fault diagnosis in 

planetary gearboxes based on wavelet packet energy (WPE) and modulation signal bi-

spectrum (MSB) analysis. Vibration-based analysis was used to extract fault features 

by decomposing vibration signals into time-frequency subspaces using WPD. The 

method accurately diagnosed faults in experimental tests, including chipped sun gear 

tooth and inner-race fault cases. It offers advantages over existing methods by being 

data-driven, not requiring extensive system knowledge, and overcoming the limitations 

of other analysis techniques. The combination of WPE and MSB enables effective fault 

feature extraction and noise suppression, promising more accurate fault diagnosis in 

planetary gearboxes, and ensuring machinery safety and reliability. Future research can 

focus on optimization and addressing method limitations [74]. Meanwhile, Y. Li et al., 

(2020) propose a novel methodology for wheelset bearing fault detection in railway 

vehicles. The method comprises two stages morphological signal processing and 

morphological image processing. It utilizes a double cross-correlation operation to 

reduce noise and emphasize fault features in the signal. The filtered signal is 
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transformed into a time-frequency domain image using wavelet transform, and 

morphological image processing techniques are applied to enhance fault features while 

eliminating noise. The proposed amplitude-sum-based peak search algorithm extract’s 

fault features from the time-frequency plane. Real vibration signals from a wheelset 

bearing test rig were used for testing, showing superior performance compared to other 

methods in detecting various bearing faults, promising safer and more reliable railway 

operations [75]. Popescu and Aiordachioaie (2018) further expand fault detection to 

rolling element bearings (REB) using change detection and optimal segmentation of 

vibrating signals. The authors highlight the importance of fault modeling and predictive 

health monitoring for REB to prevent machine failure and economic losses. They 

provide an overview of existing condition-monitoring and fault diagnosis techniques 

for REB. Their proposed method employs an optimal segmentation algorithm based on 

a linear regression model with piecewise constant parameters, implemented in a 

MATLAB toolbox called VIBROTOOL. Experimental evaluations using data sets from 

Case Western Reserve University demonstrate the method's effectiveness in detecting 

faults in different components of REB. The method contributes to the field of condition 

monitoring and fault diagnosis in rotating machines, particularly in the context of 

rolling element bearings. Overall, the paper offers a promising approach for fault 

detection in REB through change detection and optimal signal segmentation [76]. Zhu 

et al. (2021) propose a comprehensive method for diagnosing bearing faults in rotating 

machinery. Their approach involves time-frequency feature extraction using Wavelet 

Packet Transform (WPT), followed by Multi-Weight Singular Value Decomposition 

(MWSVD) for relevant feature extraction and dimensionality reduction. A Support 
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Vector Machine (SVM) classifier is then used for fault diagnosis. The method is 

validated with data sets from different sources and outperforms traditional techniques 

like PCA and SVD in fault diagnosis and feature extraction. The proposed approach 

shows promise for practical applications in rotating machinery maintenance and fault 

diagnosis [77]. Liang et al. (2018) contribute to the field by introducing a fault detection 

method for stator inter-turn short-circuit in Permanent Magnet Synchronous Motors 

(PMSMs) using stator current and vibration signals. The authors introduce a time-

frequency method based on an improved wavelet packet transform to analyze the 

signals and detect short circuit faults. The feasibility of the approach is demonstrated 

through experimental tests on a three-phase PMSM. Signal-based methods, which 

analyze the signals collected from the motors, are preferred for PMSM fault diagnosis 

due to their speed and independence from specific models. The study contributes to the 

field of motor fault diagnosis and highlights the importance of signal-based methods 

for detecting faults in PMSMs [78]. In 2019, Rahnama et al. introduced a novel fault 

detection method for diode rectifiers in brushless synchronous generators using 

vibration signals. The approach involves wavelet transform-based feature extraction 

and multiclass support vector machines for classification. A modified sequential 

forward subset selection approach is employed for enhanced accuracy. The study 

includes an extensive literature review on fault detection using vibration signals and 

explores various fault types and their impact on machine vibration behavior. 

Experimental results demonstrate the method's effectiveness in detecting rectifier 

faults, outperforming conventional techniques [79]. The reviewed studies demonstrated 

the efficacy of diverse fault detection techniques. Integration of wavelet and machine 
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learning methods holds promise for accurate fault diagnosis. Future research should 

explore deep learning and big data applications to further enhance fault detection in 

rotating machinery, benefiting industries with improved reliability and reduced 

maintenance costs. 

2.4. A Comparative Study of Deep Learning Models for Vibration-Based Fault 

Identification in Rotating Machinery 

The field of fault identification in rotating machinery has witnessed significant progress 

with the integration of deep learning techniques. This paper presents a comprehensive 

comparative study of two state-of-the-art deep learning models for vibration-based fault 

diagnosis, each offering distinct advantages over traditional methods. In a 2017 study, 

Zhang Wei, Peng Gaoliang, and Li Chuanhao proposed a novel approach that utilizes 

Convolutional Neural Networks (CNNs) with a 2D representation of vibration signals 

as input. This approach eliminates the need for time-consuming data preprocessing, a 

common requirement in conventional methods like Fast Fourier Transform (FFT) and 

Artificial Neural Networks (ANN). Experimental results showcase the method's 

effectiveness, demonstrating improved fault diagnosis accuracy and stability when 

compared to a baseline system using FFT paper's significant contribution to intelligent 

fault diagnosis highlights its potential for further research and development [80]. In a 

parallel study, Shaheryar et al. (2017) introduces and ANN. Additionally, real-world 

datasets from the Case Western Reserve University Bearing Data center validate the 

model's performance. Although specific CNN hyperparameters and computational 

efficiency details are not fully disclosed, the MCNN-SDAE, a deep-learning framework 

for vibration-based fault identification in rotating machinery. This model combines 
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Convolutional Neural Networks (CNNs) with Denoising Autoencoders to facilitate 

unsupervised feature learning from raw vibration signals. MCNN-SDAE surpasses 

traditional methods in fault identification on a benchmark dataset of bearing-related 

faults. By effectively capturing complex fault dynamics and reducing the need for 

manual feature engineering, MCNN-SDAE exemplifies the capacity of deep neural 

architectures for vibration-based fault diagnosis in mechanical systems [81]. both 

proposed deep learning models offer valuable insights and advancements in the field of 

fault identification in rotating machinery. While the first model focuses on exploiting 

2D representations of vibration signals and simplifying data preprocessing, the second 

model emphasizes the strength of unsupervised feature learning through CNNs and 

Denoising Autoencoders. The findings from this comparative study can guide 

researchers and practitioners to explore hybrid approaches that leverage the strengths 

of both models, ultimately enhancing the accuracy and efficiency of vibration-based 

fault diagnosis. 

In conclusion, the application of artificial intelligence (AI) for fault detection in rotating 

machinery shows great potential for improving accuracy and reliability. The integration 

of AI-based machine learning (ML) models with vibration analysis techniques offers a 

promising approach to detecting faults in rotating machinery. The reviewed studies 

highlight the importance of utilizing AI and ML methods in vibration-based fault 

diagnosis (VFD) to enhance the accuracy and efficiency of fault detection. One area of 

further research is the optimization of parameters in vibration-based ML models to 

ensure accurate and reliable fault diagnosis. By considering the dynamics of the 

machine and optimizing the vibration parameters, the developed ML models can be 
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more effective in predicting faults accurately, even when applied to different machines 

or under different operating conditions. Another avenue for further research is the 

comparison and exploration of different AI techniques, such as artificial neural 

networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS), for fault 

detection in rotating machinery. Comparative studies between ML algorithms and AI 

neural networks can provide insights into the effectiveness and suitability of different 

approaches for detecting minor faults in induction motors. To achieve better accuracy 

and efficiency, future research should focus on utilizing larger and more diverse 

datasets, integrating multiple AI and ML methods, and optimizing the performance of 

the developed models. The use of advanced AI techniques, such as deep learning 

models, can further enhance fault detection capabilities by capturing complex fault 

dynamics and reducing the need for manual feature engineering. Additionally, the 

development of efficient algorithms and the utilization of parallel computing techniques 

can enable real-time fault detection, reducing the computational time required for 

analyzing large amounts of data [82]. The integration of edge computing and cloud-

based platforms can also facilitate real-time monitoring and remote fault diagnosis. In 

conclusion, further research should focus on utilizing AI for fault detection in rotating 

machinery, exploring different AI techniques, optimizing parameters, and developing 

efficient algorithms for real-time fault detection. By addressing these areas, researchers 

can enhance the accuracy, efficiency, and timeliness of fault diagnosis, leading to 

improved reliability, performance, and safety in various industries. 
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III. METHODOLOGY 

Our research methodology forms the bedrock of our quest for efficient fault detection 

in diverse road obstacles. We harness the power of Long Short-Term Memory (LSTM) 

networks, Neural Networks (NN), and Support Vector Machines (SVM) to address our 

objectives. 

LSTM networks, designed for sequential data, are first elucidated for their role in 

decoding intricate dependencies. NN's mathematical foundations are outlined to 

reinforce our understanding. Comparatively, LSTM networks and SVM models are 

dissected regarding complexity, feature engineering, scalability, interpretability, and 

performance. 

Hardware is pivotal. The Intel(R) Core(TM) i7-7820HK CPU at 2.90GHz, paired with 

the NVIDIA GeForce GTX 1080 GPU, drives our experiments. 

Feature extraction techniques such as Discrete Wavelet Transform and wavelet 

scattering in Matlab enhance our data analysis. 

This holistic approach equips us with the tools, techniques, and computational power 

to explore fault detection across various road obstacles, making our research a beacon 

of innovation in the field. 

3.1. Simulation Setup 

The simulation setup of the study employed two software tools MSC Adams and 

MATLAB. The car model represented a front-wheel-drive salon car and comprised ten 

interconnected systems, including the steering system, front and rear tires, brake 

system, sedan body system, power system (consisting of engine, transmission, and 
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transverse components), stabilizer bar, rear suspension system, front Macpherson 

suspension system, and the drive line (Figure III-1).  

 

Figure III-1 Car Model in MSC Adams 

Central to the analysis was the intensive examination of the front Macpherson 

suspension system, with particular emphasis on the left outer tie rod (Figure III-2). 

Signals of pivotal importance were exclusively extracted from this component for in-

depth scrutiny. 

 

Figure III-2 Left Outer Tie Rod 
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Upon successfully integrating the car model into MSC Adams, meticulous simulations 

ensued, employing a straight-line and maintained road scenario. The simulation 

parameters included 20 seconds, a step frequency of 50, a velocity of 20 km/hr, and a 

gear position of 20 (Figure III-3). 

 

Figure III-3 Simulation Parameters in MSC Adams 

Four discrete and meticulously crafted tests (scenarios) were executed on the car model, 

delving into the realm of the angular acceleration of the left outer tie rod on the X-axis. 

The outcomes derived from these tests offer profound insights into the car dynamic 

behavior under diverse road conditions, akin to the interpretive potential of real-life 

accelerometer readings. 
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Sine Road Scenario This scenario ingeniously replicated a Sinewave-like obstacle, 

spanning an expanse of 80 meters (Figure III-4). The resultant angular acceleration is 

vividly illustrated in (Figure III-5). 

 

 

Figure III-4 Sine Road Scenario 

 

Figure III-5 Angular Acceleration - Sine Road Scenario 
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Roughness Obstacle Scenario A simulation introduced a distinctly uneven road surface, 

incorporating a roughness obstacle stretching across 85 meters (Figure III-6). The 

ensuing angular acceleration is perceptibly displayed in (Figure III-7). 

 

 

Figure III-6 Roughness Obstacle Scenario 

 

Figure III-7 Angular Acceleration - Roughness Road Scenario 
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Pothole Obstacle Scenario This scenario emulated a road with a pothole obstacle 

spanning 10 meters (Figure III-8). The consequential angular acceleration is vividly 

portrayed in (Figure III-9). 

 

 

Figure III-8 Pothole Obstacle Scenario 

 

Figure III-9 Angular Acceleration - Pothole Road Scenario 
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Bump Obstacle Scenario Intriguingly, a bump obstacle measuring 2 meters in length 

and peaking at a maximum height of 7 cm was tactfully introduced (Figure III-10). The 

subsequent angular acceleration findings are depicted in (Figure III-11). 

 

Figure III-10 Bump Obstacle Scenario 

 

Figure III-11 Angular Acceleration - Bump Road Scenario 

The acquisition and analysis of angular acceleration signals underpinned meticulous 

scrutiny for each distinct scenario. This rigorous data collection procedure echoed the 

methodologies applied to real-life accelerometers, ultimately generating four 
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distinctive signals synonymous with the four individual scenarios (Figures I-5, I-7, I-9, 

and I-11). 

Post-simulation (Figure III-12), the ensuing results were seamlessly transferred as .tab 

files to the MATLAB platform for a profound analytical phase. This meticulous 

MATLAB analysis encompassed an array of procedures, including signal 

preprocessing, comprehensive data labeling, intricate feature extraction, and precise 

training and testing signal classification. 

 

Figure III-12 MSC ADAMS  Post-Simulation 

The sophisticated array of models implemented within the MATLAB environment 

facilitated effective interpretation and astute visualization of the outcomes. This holistic 

approach contributed substantially to our grasp of the multifaceted implications of 

diverse road obstacles on the angular acceleration patterns of the left outer tie rod within 

the context of the front Macpherson suspension system. 
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3.2. Signal Processing Procedure 

The raw data obtained from MSC Adams, saved as .tab files, is efficiently imported 

into MATLAB using the "importdata" function, resulting in the following assignments 

MATLAB 

SineWave = importdata('Sinewave.tab', '\t').data; 

Roughness = importdata('Roughness.tab', '\t').data; 

Pothole = importdata('Pothole.tab', '\t').data; 

Bump = importdata('bump.tab', '\t').data; 

Subsequent to data import, the temporal and angular acceleration data from each 

scenario file are meticulously extracted (Figure III-13). 

 

Figure III-13 Signals Extracted by MATLAB For Four Road Obstacles 
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. This process yields the essential signals represented in (Figures III-5, III-7, III-8, and 

III-11). 

To simulate wear in the Tie rod, a practical limitation in MSC Adams, we manipulate 

angular acceleration parameters by altering degrees. This adjustment exploits the 

fundamental correspondence between angular acceleration and (Degree/sec2). 

3.3. Data Preparation 

In this section, a dataset of 1000-point signals underwent two tests— one with and one 

without noise. A third test introduced noise, subsequently denoised using a wavelet 

denoising MATLAB function. The chosen signal length and noise variations simulate 

real-world scenarios, enabling comprehensive methodology evaluation. This section 

details the steps taken to address noise challenges and emphasizes the importance of 

the denoising process in enhancing signal quality for subsequent analysis. 

3.3.1. Operational Modes 

The initial mode focuses on distinct signal behavior. Normal signals exhibit a 

fluctuation range spanning from 0 to around 0.001. Faults are systematically 

introduced, encompassing a range from 0.005 to 2 degrees across diverse road types 

(Figure III-13). This design establishes four distinct fault levels, contributing to a 

collective pool of 400 signals. Each fault level comprises precisely 100 signals. Post-

signal generation, healthy, and fault signals are categorized and labeled meticulously. 

Signal shuffling ensues, culminating in their partitioning into 80 signals for training and 

20 for testing (Figure III-14). 
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Figure III-14 First Test Mode with Four Level of Faults 80% Training 20% Testing 

 The ensuing dataset is then prepared for subsequent feature extraction. A rigorous 

evaluation of the 15 fault detection models is conducted, with the most accurate models 

subjected to a two-step testing process involving the introduction of noise, simulating 

conditions akin to a grainy road, followed by denoising testing. 
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Figure III-15 Normal Signal and Generated Faulty Signals for Four Road Obstacles 

In the second mode, the focus is on healthy and wearily representation (Figure III-15). 

A set of 400 healthy signals per road type is employed. Wear is simulated, ranging from 

no wear to 0.001, while faults span between 0.005 to 2 degrees, emulating actual 

conditions. Similar to the preceding mode, signals undergo meticulous labeling, 

shuffling, and partitioning for training and testing (Figure III-16). 

The ensuing dataset is also primed for feature extraction. A comprehensive evaluation 

of 15 fault detection models is executed under three key scenarios unaltered signals, 

signals influenced by added noise mimicking a grainy road, and signals subjected to 

denoising prior to testing. 
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Figure III-16 Roads Under Stress Testing Faulty and Weary Conditions with an 80-20 

Split 

3.3.2. Noise additions 

The noises that will be added is a gaussian noises with standard deviation 30. 

we use the code in MATLAB to add this noise as below 

noiser = 30 * randn(size(AccData(2end,)) 

The code snippet provided generates random noise using the formula 

noiser = 30 * randn(size(AccData(2end,))) 

This code is used to generate random noise with a normal distribution and a mean of 0 

and standard deviation of 30. The `randn` function in generates random numbers from 

a standard normal distribution, and the `size` function is used to determine the size of 

the `AccData` matrix. The mathematical model related to this code is the random walk 
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plus noise model. The random walk plus noise model is a commonly used model in 

time series analysis and econometrics. It consists of a random walk component and a 

noise component. The random walk component represents a stochastic process that 

evolves, while the noise component represents random fluctuations around the random 

walk. The random walk plus noise model can be represented mathematically as: 

 𝑌𝑡 = 𝑌𝑡 − 1 + 𝜀𝑡               (III.1) 

where Y(t) is the value of the random walk plus noise process at time t, and ε(t) is the 

noise component at time t. The random noise generated by the code snippet can be seen 

as the ε(t) term in the model. It represents the random fluctuations around the random 

walk component [83]. 

3.3.3. Denoiser 

When addressing the challenge of noise reduction, particularly in scenarios like the 

generation of noise from a grainy road assumption, MATLAB's wdenoise function 

emerges as a robust and comprehensive solution. This function employs a sophisticated 

combination of techniques, seamlessly integrated to achieve optimal results in signal 

denoising. 

3.3.3.1. Empirical Bayesian Method  

At the core of the denoising process is the application of the empirical Bayesian method. 

This advanced statistical approach dynamically tailors the prior information based on 

the observed data. In contrast to traditional Bayesian methods, which rely on fixed 

priors, empirical Bayesian estimation adapts the prior distribution using the available 

data.  
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The central equation, expressing the posterior given the data, exemplifies this 

adaptability: 

 𝑃( 𝜃 ∣∣ 𝑦 ) ∝ 𝑃( 𝑦 ∣∣ 𝜃 ) ⋅ 𝑃(𝜃)               (III.2) 

The equation balances the updated belief distribution of a parameter (θ) following the 

observation of data (y). It achieves this balance by considering the likelihood of 

observing the data given the parameter P(y∣θ), the initial belief distribution of the 

parameter P(θ), and the overall probability of observing the data P(y). This equation 

symbolizes the adjustment of the parameter distribution after data observation, 

effectively reconciling the likelihood and the initial belief (prior). The empirical 

Bayesian method serves as a bridge between the challenge of determining a suitable 

prior and the necessity for data-driven inference. However, caution is advised in its 

application to prevent potential biases [84]. 

3.3.3.2. Cauchy Prior  

The method incorporates a Cauchy prior, which is a probability distribution 

characterized by its heavy tails. This characteristic makes it particularly effective in 

modeling data with outliers or heavy-tailed noise. The probability density function 

(PDF) of the Cauchy distribution, represented as: 

 
𝑓(𝑥;  𝜇, 𝛾)  =  (

1

𝜋𝛾
) ∗  (

𝛾2

(𝛾2  +  (𝑥 −  𝜇)2)
), 

              (III.3) 

The Cauchy distribution is characterized by three key parameters x (independent 

variable), μ (location parameter), and γ (scale parameter). μ determines the center of 

the distribution, while γ controls its spread. The reciprocal of πγ ensures normalization. 
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Cauchy distributions have heavy tails and lack finite moments, making them useful in 

statistical modeling. 

By integrating the Cauchy prior into a statistical method, it demonstrates robustness in 

handling scenarios with a high presence of outliers. The heavy tails of the Cauchy 

distribution allow it to assign non-negligible probabilities to extreme observations, 

making it resilient to the influence of outliers. This robustness contributes to the 

method's effectiveness in noise reduction, especially in situations where traditional 

methods might be sensitive to extreme values [85]. 

3.3.3.3. Sym4 Wavelet  

A key element in the denoising process is the utilization of the Symlet 4 wavelet 

function. Wavelets serve as fundamental tools in wavelet-based signal processing and 

denoising, enabling the analysis of signals across various scales. The Symlet 4 wavelet, 

available both in the time domain and as a representation through the Fourier transform, 

facilitates a nuanced understanding of signal characteristics. Although the mathematical 

formulation of this wavelet is intricate, its adoption in the denoising process signifies 

the method's adaptability to diverse signal structures and its capability to accurately 

capture important features [86]. 

 

𝜃𝛼(𝑋)𝑖 = {

𝑋𝑖 − 𝑡(𝛼) 𝑖𝑓 𝑋𝑖 > 𝑡(𝛼)

0                𝑖𝑓 |𝑋𝑖| ≤ 𝑡(𝛼)

𝑋𝑖 + 𝑡(𝛼) 𝑖𝑓 𝑋𝑖 > −𝑡(𝛼)
 

              (III.4) 

Here, 𝜃𝛼(𝑋)𝑖is the posterior median estimate of the i-th coordinate of the true signal θ, 

Xi is the i-th observation, α is the prior probability of non-zero coordinates, and t(α) is 

a threshold that depends on α and the noise level. 
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3.3.3.4. Posterior Median Threshold Rule  

Integral to the denoising methodology is the implementation of the posterior median 

threshold rule. This strategy guides the denoising process by determining the wavelet 

coefficients that predominantly represent noise. The main equation representing the 

posterior median threshold rule is the posterior median (z;w) through the distribution 

function: 

 
𝐹1̃  ( 𝜇 ∣∣ 𝑧 ) = ∫ 𝑓1( 𝑢 ∣ 𝑧 )𝑑𝑢

𝜇

−∞

 
              (III.5) 

Here, 𝐹1̃(μ∣z) is the cumulative distribution function (CDF) of the posterior 

distribution, where μ is the variable representing the value of the posterior median, z is 

the parameter representing the observed data, and f1(u∣z) is the probability density 

function (PDF) of the posterior distribution. This distribution function is crucial in 

determining the threshold t(α) and, consequently, guiding the denoising process [87]. 

In summary, the wdenoise function within MATLAB harnesses the power of the 

empirical Bayesian method, integrates the Cauchy prior, employs the Symlet 4 wavelet, 

and incorporates the posterior median threshold rule. This synergistic amalgamation of 

techniques establishes the foundation for effective signal denoising. By addressing 

outliers, accommodating diverse signal structures, and retaining crucial signal 

characteristics, this approach yields high-quality denoised signals, making it an 

invaluable tool in noise reduction scenarios. 

3.4. Feature extraction 

In the realm of signal processing and pattern recognition, feature extraction stands as a 

pivotal stage. It entails the conversion of raw data into a pertinent set of features that 

holds the potential for subsequent analysis or categorization. Two prominent 
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methodologies for feature extraction have been studied discrete wavelet transform 

(DWT) and wavelet scattering. This discussion delves into the underlying principles of 

these techniques, their practical applications in distilling significant attributes from 

signals, and a comprehensive evaluation of their efficacy in portraying signal 

characteristics. 

3.4.1. Discrete wavelet Transform (DWT) 

The Discrete Wavelet Transform (DWT) stands as a fundamental mathematical 

technique employed to dissect and scrutinize signals and datasets. Its significance 

resonates across diverse domains like image and signal processing, data compression, 

and feature extraction [88].In contrast to the conventional Fourier Transform, which 

portrays data through sine and cosine waves spanning distinct frequencies, the DWT 

dissects data across multiple scales and resolutions. This intricacy is achieved by 

breaking down the input into an array of wavelets, adept at capturing temporal and 

frequency insights [89]. Such partitioning opens the door to more versatile and efficient 

analysis of signals and data, rendering the DWT a pervasive choice in a multitude of 

applications. 

3.4.1.1. Concept of Wavelets 

Wavelets are small oscillating functions that are used in various applications of signal 

processing, data compression, and analysis. They provide a way to analyze signals and 

data at different scales, allowing us to capture both localized and global features in a 

more flexible manner than traditional Fourier-based methods. 

Within the domain of the Discrete Wavelet Transform (DWT), wavelets assume a 

pivotal role in the intricate processes of signal decomposition and subsequent 
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reconstruction. Employing wavelet functions, the methodology entails a meticulous 

traversal along the signal, resulting in the extraction of salient insights [90]. 

The efficacy of the DWT becomes manifest in its ability to fractionate signals into 

distinct frequency constituents, encapsulating both low-frequency trends and high-

frequency intricacies. This decomposition unfolds through the convolution of the signal 

with a gamut of wavelet functions, each distinguished by unique scales and positional 

parameters [90]. 

The Discrete Wavelet Transform (DWT) involves a distinct methodology wherein the 

discretization of scaling and shifting parameters is employed, obviating the direct 

sampling of either the signal or its transform. This strategic approach engenders 

heightened high-frequency resolution at low frequencies, concurrently facilitating 

elevated time resolution for higher frequencies. Notably, this approach ensures a 

uniform level of time and frequency resolution across all frequency bands. 

The decomposition of a discrete signal (x[n]) can be succinctly articulated as follows, 

drawing inspiration from the seminal work of [88]. 

 

𝑥[𝑛] = ∑ 𝑎𝑗0,𝑘0 , ∅ 𝑗0,𝐾0[𝑛] + ∑ ∑ 𝑑𝑗0,𝑘0, ∅𝑗0,𝑘0

𝑘

𝑗−1

𝑗=𝑗0𝑘

 

              (III.6) 

In this context, the discrete-time signal (x[n]) is represented as the sum of two terms. 

The first term involves a summation over indices (j0) and (k0), denoted as 

(aj0,k0,∅j0,k0[n]), where (a) represents coefficients associated with these indices. The 

second term consists of a double summation over indices (j) and (k), ranging from (j0) 

to (j-1) and across all (k) respectively, denoted as (dj0,k0,∅j0,k0). The parameters (j0) and 
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(k0) serve as initial indices, defining the range over which the summations occur within 

the signal (x[n]). 

This decomposition methodology uniquely equips the DWT to adeptly scrutinize the 

temporal (Figure III-17) and frequency attributes of a signal across a panorama of 

resolutions. Consequently, the technique adeptly captures both low-frequency trends 

and high-frequency intricacies, thereby substantiating its indispensability as a potent 

tool within the realm of signal processing [88]. 

 

Figure III-17 Discrete Wavelet Transform Decomposition Tree 

3.4.1.2. Properties of Wavelets 

Wavelets possess two significant properties, namely orthogonality and biorthogonality. 

In our project, we will mainly focus on utilizing the orthogonality of wavelets. 

Orthogonal wavelets, in particular, exhibit a crucial attribute where the inner product 
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of the wavelet function at one scale and position with the wavelet function at another 

scale and position is equal to zero (Figure III-18). This inherent orthogonality simplifies 

both the analysis and reconstruction procedures. Moreover, orthogonality enables the 

conservation of energy during the transformation process in orthogonal wavelet 

transforms. By leveraging these orthogonality properties, we can enhance the efficiency 

and accuracy of our project's analysis and reconstruction techniques [91].  

 

Figure III-18 Orthogonal Wavelets Two Different Scale and Position But the Product 

is Zero. 

3.4.1.3. Types of Wavelet Families 

Diverse wavelet families are at one's disposal, each characterized by unique attributes 

aptly suited for various signal types and applications. Among the well-established 

wavelet lineages are the Haar, Daubechies, Symlets, Coiflets, Biorthogonal, Morlet, 

and Mexican Hat families [92].  
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Figure III-19 Common Wavelet Families 

Our current experimental focus is dedicated to the exploration of the Daubechies 4 and 

5 wavelet families (Figure III-19), with a particular emphasis on decomposition at level 

5. Situated within the intermediate range spanning from db2 to db8, these chosen 

wavelet families have garnered recognition for their notable ability to refine precision 

within the field of vibration analysis. A noteworthy point of intrigue lies in the 

Daubechies wavelets, often denoted as "dbN," wherein the parameter N signifies the 

count of vanishing moments. This numerical identifier underscores their exceptional 

efficacy in capturing intricate patterns and nuances during the decomposition process, 

particularly when employed at the fifth level [93]. Renowned for their succinct support 

and efficient frequency localization, as illustrated in (Figure III-20), these wavelets 

present a distinguished presence in the field. 
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Figure III-20 Different Types of Daubechies Wavelets 

Filter banks play a crucial role in the practical application of the Discrete Wavelet 

Transform (DWT), a method that deconstructs signals into various frequency 

components. 

In the context of the DWT method, a pair of filters known as the low-pass filter (LPF) 

and the high-pass filter (HPF) form a filter bank. The LPF allows the passage of low-

frequency elements, while the HPF permits the transmission of high-frequency 

components. This process is combined with down-sampling, which reduces the 

sampling rate and provides a more concise representation of the original signal [94]. 

Mathematically by sampling the Continuous Wavelet Transform (CWT) on a dyadic 

grid, which means selecting specific values for translation and scale parameters [95].  

In this context, 'n' and 'm' are sets of positive integers, and 'N' represents the number of 
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samples. These parameters are discretized to create the DWT. Once discretized, the 

wavelet function can be defined as follows: 

 
𝐷𝑊𝑇𝜑(𝑗, 𝑘) = ∫ 𝑠(𝑡)𝜑𝑗,𝑘

∗
∞

−∞

(𝑡)𝑑𝑡. 
              (III.7) 

   

In this equation, ' j represents the scale parameter indicating the scale of the wavelet 

function, k denotes the translation parameter specifying the shift of the wavelet 

function, and ψ(j,k) (t) signifies the complex conjugate of the wavelet function  with ψ 

scale j and translation k. The integral computes the inner product between the signal  

s(t) and the complex conjugate of the wavelet function ψj,k over the entire range of t, 

facilitating the calculation of the discrete wavelet transform (DWT). The outcome 

DWT ψj,k provides information about the signal's decomposition at scale j and 

translation k, aiding in signal analysis and feature extraction. 

For the wavelet function ψ(j,k) (t) , it is defined as: 

 𝜑(𝑗,𝑘)(𝑡) = 2(2/𝑗)𝜑(2𝑗𝑡 − 𝑘)              (III.8) 

The DWT breaks down a signal into its coarse and detailed components by applying a 

sequence of high-pass and low-pass filtering operations based on the following 

equations: 

 𝑦ℎ𝑖𝑔ℎ(𝑘) = ∑ 𝑠(𝑛). ℎ(2𝑘 − 𝑛)

𝑛

 
               (III.9) 

 𝑦𝑙𝑜𝑤(𝑘) = ∑ 𝑠(𝑛). ℎ(2𝑘 − 𝑛)

𝑛

 
              (III.10) 

In equations (III.9) and (III.10), yhigh(k), ylow(k) represent the results of applying high-

pass and low-pass filters, respectively, to the signal s(n), followed by down sampling 
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by a factor of 2. These operations are performed using the impulse responses h(n) and 

g(n). Specifically, yhigh(k) is obtained by convolving s(n) with the impulse response 

h(2k−n), while ylow(k) is obtained by convolving s(n) with the impulse response 

g(2k−n). The summation is carried out over all samples n. The coefficients obtained 

from the low-pass filter are referred to as "approximation" coefficients (A), while those 

from the high-pass filter are called "detail" coefficients (D). The detail coefficients b(j,k) 

can be calculated using the following equation: 

 
𝑏(𝑗,𝑘) = ∫ 𝑠(𝑡)𝜑𝑗,𝑘

∗  (𝑡)𝑑𝑡 
             (III.11) 

Where ψ(j,k) represents the wavelet functions defined as: 

 
𝜑(𝑗,𝑘)(𝑡) = 1/(√2𝑗)  𝜑 (

𝑡 − 𝑘2𝑗

2𝑗
) 

             (III.12) 

Similarly, the approximate coefficients C(j,k) are calculated as: 

 
𝑐𝑗,𝑘 = ∫ 𝑠(𝑡)∅𝑗,𝑘

∗  (𝑡)𝑑𝑡 
             (III.13) 

 

Where ∅ (j,k) are the scaling functions, defined as: 

 
∅(𝑗,𝑘)(𝑡) = 1/(√2𝑗)  ∅ (

𝑡 − 𝑘2𝑗

2𝑗
) 

              (III.14) 

 

The discrete inverse transform f(t) is computed by summing the translated and dilated 

wavelets, weighted by their respective coefficients: 

 𝑓(𝑡) = ∑ 𝑏𝑗,𝑘𝜑𝑗,𝑘(𝑡)

𝑗,𝑘

 
             (III.11) 
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The DWT is a valuable tool for obtaining a multi-resolution representation of a signal, 

making it useful for real-time signal analysis. 

Following the passage of the signal through a low-pass filter, the outcome yields 

approximation coefficients that encapsulate the low-frequency components of the 

signal. Subsequently, the signal undergoes a down sampling operation by a factor of 

two, effectively halving the number of samples in the signal. This deliberate reduction 

in sample count serves the purpose of mitigating computational complexity and 

accelerating the overall algorithmic process [96]. 

In a similar vein, once the signal has traversed through a high-pass filter, the resultant 

detail coefficients emerge, characterizing the high-frequency components of the signal. 

Simultaneously, the signal undergoes another round of down sampling by a factor of 

two, effectively diminishing the sample count. This strategic down sampling operation 

is employed to curtail the number of samples and facilitate computational efficiency  

This down-sampling equation constitutes a crucial cornerstone within the DWT 

algorithm, serving to partition a signal into its distinct frequency components across 

multiple resolution tiers. Its significance resonates across diverse domains, finding 

application in areas like image processing, signal compression, and feature extraction 

[88]. Through the partitioning of frequency constituents into approximation and detail 

coefficients, the DWT expands the signal's representation across multiple scales. The 

low-pass filter (LPF) facilitates the transmission of low-frequency elements, whereas 

the high-pass filter (HPF) accommodates the high-frequency components. 

Consequently, the DWT excels at detecting and scrutinizing both overarching patterns 

and intricate particulars within a signal. This duality in frequency components gives 
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rise to a spectrum of applications, including signal compression, noise mitigation, 

feature extraction, and data analysis. 

Multiresolution Analysis (MRA) constitutes a fundamental aspect of the Discrete 

Wavelet Transform (DWT), allowing the decomposition of a signal into different levels 

of detail. These decomposition levels in the DWT correspond to distinct scales or 

resolutions of the signal, capturing specific frequency components or details (Figure 

III-21) [97]. 

 

Figure III-21 Discrete Wavelet Five Levels (Wavelet Db4) 

The hierarchical structure of the DWT enables analysis at multiple scales, providing a 

comprehensive understanding of the signal. In our project, we specifically applied a 5-

level DWT using the 'db4' wavelet to signals of length 1000. The extracted coefficients 

at each level are as follows Level 1 - 503 coefficients, Level 2 - 251 coefficients, Level 
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3 - 125 coefficients, Level 4 - 62 coefficients, and Level 5 - 31 coefficients. These 

coefficients encompass both detail and approximation coefficients from all levels of the 

wavelet decomposition. The approximation coefficients represent the low-frequency 

components or the coarse approximation of the signal, while the detail coefficients 

capture the high-frequency components or the details of the signal [97]. The 

decomposition process involves convolving the signal with a low-pass filter (scaling 

filter) and a high-pass filter (wavelet filter), followed by down sampling to reduce the 

resolution [98]. This process is repeated iteratively to obtain multiple levels of 

decomposition, each representing a different scale or level of detail [98]. The concept 

of MRA is particularly useful in various applications, including computer vision, signal 

coding, texture discrimination, edge detection, matching algorithms, and fractal 

analysis. By analyzing the signal at different scales, MRA allows for the extraction of 

relevant information at each level, enabling more efficient and effective analysis [97]. 

For example, in computer vision, analyzing images at each resolution level would be 

redundant, and it is more efficient to focus on the additional details available at higher 

resolutions. MRA provides a framework for this selective analysis of different levels of 

detail. The hierarchical structure of MRA also facilitates the interpretation of resolution 

and scale concepts [97]. The decomposition into different scales or levels of detail 

allows for a better understanding of the signal's characteristics at different resolutions. 

This understanding is crucial in various fields, such as climate teleconnection studies, 

where the analysis of signals at different temporal scales is essential. MRA-based 

methods enable the examination of interdependence patterns between climate signals 

and the identification of temporal variability in precipitation [99]. 
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S. In summary, MRA is a fundamental concept in the DWT that enables the 

decomposition of a signal into different levels of detail. The decomposition levels 

represent different scales or resolutions of the signal, allowing for analysis at multiple 

scales. This hierarchical structure facilitates the selective analysis of relevant 

information and provides a better understanding of the signal's characteristics at 

different resolutions. MRA has applications in various fields, including computer 

vision, signal coding, and climate teleconnection studies. 

3.4.1.4. Discrete wavelet transforms MATLAB Implementation 

The implementation of the discrete wavelet transforms (DWT) in MATLAB using the 

"wavedec" function is a widely used technique for signal processing and analysis. The 

"wavedec" function is utilized to decompose a signal into its wavelet coefficients at 

different levels of resolution. To employ the "wavedec" function, users need to specify 

the desired wavelet and the number of decomposition levels. The wavelet is a 

mathematical function that allows for the analysis of the signal at various scales. 

Different wavelets possess distinct properties and are suitable for different types of 

signals. For instance, the Daubechies wavelet is commonly chosen for its favorable 

time-frequency localization properties. The number of decomposition levels determines 

the level of detail in the decomposition. A higher number of levels provides more 

detailed information about the signal, but also increases the computational complexity. 

Once the signal is decomposed using the "wavedec" function, the resulting wavelet 

coefficients can be utilized for various purposes such as denoising, feature extraction, 

or signal reconstruction. These coefficients capture the different features present in the 

signal at different scales. The approximation coefficients represent the low-frequency 
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components of the signal, while the detail coefficients represent the high-frequency 

components. These coefficients can be further processed or analyzed based on the 

specific application requirements. In addition to the "wavedec" function, MATLAB 

provides other functions for working with wavelet coefficients, such as "wrcoef" for 

signal reconstruction. The MATLAB Wavelet Toolbox offers a range of wavelet 

families and functions to cater to different applications, allowing users to select the 

most suitable wavelet for their specific needs. In summary, the implementation of the 

discrete wavelet transforms in MATLAB using the "wavedec" function provides a 

powerful tool for signal processing and analysis. It enables the decomposition of signals 

into wavelet coefficients at different levels of resolution, providing valuable 

information about the signal's frequency content and features. These coefficients can 

then be utilized for various applications such as denoising, feature extraction, or signal 

reconstruction. 

3.4.2. Wavelet Scattering 

Wavelet scattering is a widely applicable mathematical technique that finds utility 

across various research domains. It enables the creation of translation-invariant 

representations for signals and images, thereby proving valuable for tasks such as 

texture classification, image recognition, and signal analysis [100]. The scattering 

transform is constructed through a series of wavelet convolutions and modulus 

operations, which facilitate the computation of the wavelet transform's magnitude. This 

transform exhibits stability in the presence of time-warping deformations and possesses 

the ability to capture transient phenomena. Notably, wavelet scattering has 

demonstrated promising outcomes in diverse applications, including music genre and 
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phone classification, texture discrimination, rainfall classification, and the analysis of 

meteorological data. By providing translation-invariant representations and stable 

features, wavelet scattering emerges as a powerful tool for signal and image analysis in 

various domains [101]. 

3.4.2.1.  Theory and principles 

In essence, wavelet scattering mirrors a deep convolutional network (Figure III-22), 

meticulously crafted through a cascade of wavelet modulus nonlinearities and low-pass 

filters. This construction empowers the derivation of low-variance features from real-

valued time series and image data, all while demanding minimal configuration. The 

outcomes are representations endowed with the attributes of translation invariance and 

robustness against the distortions induced by time warping [102]. Its efficacy in diverse 

classification tasks and its capacity to achieve state-of-the-art results, even with limited 

datasets [103], further underline the significance of wavelet scattering in the realms of 

machine learning and deep learning applications [104]. 

 

Figure III-22 Wavelet Scattering Vs Convolutional Neural Network 
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This permits the description of short-lived events like assaults and changes in signal 

amplitude [100]. The foundation of wavelets in signal analysis is tied to the notion of 

multiresolution analysis (MRA), a structured approach for forming orthonormal 

wavelet bases [105]. Wavelets offer a way to represent signals with focus on specific 

time and frequency segments. This enables the examination of signal attributes across 

various scales. Breaking down a signal into wavelet coefficients at different scales 

allows for a comprehensive grasp of both the signal's particular traits and its broader 

properties. Going beyond the conventional wavelet analysis, wavelet scattering 

broadens this approach by introducing multiple stages of wavelet convolutions and 

modulus operations. This permits the retrieval of insights into the signal's modulation 

spectrum across various scales and orientations. The scattering transform maintains 

local translation invariance, ensuring resilience against distortions in the timing of the 

signal [100]. Additionally, it furnishes constants that remain unaffected by changes in 

scale, shearing, and minor distortions [101]. Such characteristics endow wavelet 

scattering with substantial utility in diverse signal analysis contexts. The dissection of 

signals into multiple scales and orientations within wavelet scattering emerges through 

a series of linked wavelet convolutions and modulus operations. Wavelet convolutions 

apprehend the signal's frequency attributes across varied scales, while the modulus 

operators draw out amplitude particulars. By linking these processes, wavelet scattering 

adeptly grasps both the signal's frequency and amplitude fluctuations over diverse 

scales and orientations. The integration of wavelet scattering into signal analysis has 

unveiled encouraging outcomes across diverse fields. Instances include its role in 

categorizing musical genres and distinguishing phone characteristics [100]. 
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Furthermore, this technique has found application in distinguishing textures, yielding 

leading-edge classification outcomes across texture databases marked by uncontrolled 

viewing conditions [101]. Moreover, the utilization of wavelet scattering extends to the 

classification of electromagnetic signals, showcasing traits of translation invariance and 

resistance to deformation [106]. In summary, wavelet scattering is a signal analysis 

technique that utilizes wavelet convolutions and modulus operators to decompose 

signals into different scales and orientations. It provides a locally translation invariant 

representation that is stable to time-warping deformations and captures transient 

phenomena. Wavelet scattering has been successfully applied in various domains, 

including music classification, texture discrimination, and electromagnetic signal 

classification 

3.4.2.2. Mathematical formulations 

Scattering in the First Order Within the domain of Continuous Wavelet Transform 

(CWT), the acquisition of first-order scattering coefficients involves a fundamental 

procedure. This procedure entails the convolution of the modulus of the CWT with a 

low-pass filter, a technique commonly referred to as "temporal averaging." This 

strategic averaging process not only introduces time-shift variance but also guarantees 

stability when confronted with time-warping deformations. 

Mathematically, the first-order scattering coefficients, denoted as Sx(t, λ₁), are defined 

as the modulus of the convolution between the input signal x and the first-order wavelet 

function φλ₁. Subsequently, a convolution operation with a low-pass filter Φ is applied 

[100]. 

 𝑆𝑥(𝑡, 𝜆1) = |𝑥 ∗ 𝜑𝜆1| ∗ 𝛷              (III.12) 
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Figure III-23 Scattering Convolution Process 

Here, the parameter λ₁ signifies the center frequency of the first-order wavelets, and the 

convolution is executed between the low-pass filter and each individual row of the 

Continuous Wavelet Transform (CWT). 

The crux of this operation can be intuitively grasped as the act of sliding a wavelet 

across the signal, computing its modulus (|x * φλ₁|), and subsequently convolving it 

with Φ. This convolution with Φ serves as a mechanism for averaging on the modulus, 

ultimately yielding an invariant feature representation. This comprehensive process, 

recognized as the wavelet scattering transform, encompasses the sequential steps of 

sliding the wavelet over the signal, calculating the modulus, and then culminating with 
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an additional convolution operation utilizing Φ, which assumes the role of a low-pass 

filter (Figure III-23). 

In Second Order Scattering The second-order scattering procedure extends the 

methodology by performing convolution on the modulus of the first-order scattering 

coefficients with second-order wavelets [100]. 

In mathematical terms, this process is expressed as: 

 𝑊2𝑥(𝑡, 𝝀𝟏, 𝝀𝟐) = |𝒙 ∗ 𝜑𝝀1| ∗ 𝜑𝝀2              (III.13) 

In this equation, the first-order scattering coefficients Sx(t, λ₁) are treated as the new 

input (x), and they undergo convolution with a set of second-order wavelets φλ₂. This 

convolution is subsequently followed by an additional round of low-pass averaging. 

 𝑆2𝑥(𝑡, 𝝀𝟏, 𝝀𝟐) = |𝒙 ∗ 𝜑𝝀1| ∗ 𝜑𝝀2| ∗ ∅               (III.14) 

Higher-Order Scattering The framework can be further expanded to encompass 

higher-order scattering, where coefficients are derived through successive 

convolutions. This involves convolving wavelets with the modulus of coefficients 

obtained at the previous order, followed by modulus computation and low-pass 

filtering: 

 𝑆𝑚𝑥(𝑡, 𝝀𝟏, … , 𝝀𝒎) = |𝒙 ∗ 𝜑𝝀1| ∗ 𝜑𝝀m| ∗ ∅               (III.15) 

Wavelet Scattering Energy The selection of wavelets spanning diverse scales and 

their application by sliding across the signal ensures the coverage of distinct segments 

within the frequency spectrum. Notably, this procedure conserves energy, meaning that 

the energy observed in the time domain aligns with the energy present in the frequency 

domain. This energy preservation property forms a fundamental aspect of wavelet 

scattering (Figure III-24). 
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Dilated wavelets𝜑𝝀(𝑡) = 2

−
1

𝑄 𝜑 (2
−

𝑗

𝑄𝑡) , 𝑤𝑖𝑡ℎ 𝝀 = 𝟐
−

𝒋

𝑸 
             (III.20) 

Dilated Wavelets Dilated wavelets, characterized as φλ(t), are strategically designed to 

encompass a wide range of scales. This feature empowers them to adapt effectively to 

various frequency ranges, thereby contributing to the creation of a comprehensive 

feature representation [100]. 

 

Figure III-24 Wavelet Scattering Filter Bank 

Wavelet Transform The wavelet transforms, denoted as Wx(t), involves the 

convolution of the input signal x with both the original wavelet φ(t) and the dilated 

wavelets φλ(t) across various scales denoted as λ. 

  Wavelet transform Wx(t)={𝑥 ∗ 𝜑(𝑡), 𝑥 ∗ 𝜑𝝀(𝑡)}𝜆                   (III.21) 
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If |∅⏞ (𝑤)|

2

+ ∑ |𝜑̂𝜆 

𝜆

(𝑤)|2 = 1  
             (III.22) 

Then is unitary 

 ||𝑊𝑥||
2

= ||𝑥 ∗ 𝜑||
2

+ ∑||𝑥 ∗ 𝜑𝜆||
2

= ||𝑥||
2

𝜆

 
             (III.23) 

 

Unitary Property: The unitary property is achieved when the sum of squared 

coefficients from the low-pass filter and squared coefficients of dilated wavelets equals 

1. This property ensures the preservation of energy within the transformed signal. 

(Figure III-25). 

Wavelet Scattering Feature Extraction: The wavelet scattering transform entails a 

sequence of critical operations, including convolution, modulus calculation, and low-

pass filtering. The coefficients obtained from these operations are judiciously 

downsampled, effectively reducing computational complexity. In our specific 

application, 20 invariant features derived from this process yield 588 features per 

signal, enabling a detailed analysis. These coefficients, characterized by their 

interpretability and visualizability, form the essence of scattering features (see Figure 

III-25). 

Paths in Scattering: Within the context of the scattering transform, the term "paths" 

delineates sequences of operations that are systematically applied to the input signal. 

These paths effectively capture crucial hierarchical relationships and underlying 

features inherent in the signal representation [107] (Figure III-25). 
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Figure III-25 Wavelet Scattering Tree 

In summation, the wavelet scattering transforms represent a formidable approach for 

feature extraction, encompassing the intricate interplay of wavelet convolutions, 

modulus operations, and low-pass filtering. These operations are designed to capture 

the quintessential characteristics of a signal while simultaneously ensuring stability and 

invariance against deformations. The resulting scattering coefficients hold substantial 

utility across a diverse spectrum of signal analysis and processing endeavor. 

3.4.2.3. Implementation of Wavelet Scattering in MATLAB 

The implementation of wavelet scattering in MATLAB involves utilizing functions 

such as "waveletscattering" to compute the scattering coefficients. Wavelet scattering 

is a technique used for image and signal processing tasks, providing a translation-
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invariant and stable representation of data that is robust to deformations and preserves 

high-frequency information. The wavelet scattering network consists of cascaded 

wavelet transform convolutions with nonlinear modulus and averaging operators. This 

network computes a translation-invariant image representation that is stable to 

deformations and can be used for tasks such as texture discrimination and handwritten 

digit classification. To use the wavelet scattering function in MATLAB, users need to 

specify the wavelets and the number of levels for the scattering transform. The choice 

of wavelets depends on the specific application and the desired properties of the 

scattering coefficients. Different wavelet families, such as Morlet or Haar wavelets, can 

be employed. The number of levels determines the depth of the scattering network and 

affects the level of detail captured in the representation. The wavelet scattering function 

in MATLAB has been applied to various applications, including glaucoma detection in 

retinal fundus images. In this application, the wavelet image scattering network 

developed in MATLAB is used to perform the scattering decomposition on the images, 

and the resulting scattering coefficients are utilized as features for automatic diagnosis. 

It is worth noting that there are alternative implementations of wavelet scattering 

available in different programming languages. For instance, the Kymatio software 

package provides a Python implementation of the scattering transform in 1D, 2D, and 

3D. This implementation is compatible with modern deep learning frameworks and can 

be executed on both CPU and GPU, offering improved performance. In conclusion, the 

implementation of wavelet scattering in MATLAB involves using functions like 

"waveletscattering" to compute the scattering coefficients. The choice of wavelets and 

the number of levels determines the properties of the scattering transform. Wavelet 
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scattering has been successfully applied to various applications, such as glaucoma 

detection, and there are also alternative implementations available in other 

programming languages. 

3.5. Feature Selection and Optimization 

3.5.1. Principal Component Analysis (PCA) 

 is a widely-used dimensionality reduction technique that helps transform the original 

feature space into a new set of orthogonal variables known as principal components. 

This process is valuable in various applications, including machine learning, as it can 

alleviate issues such as multicollinearity and enhance model generalization [108]. 

Here's a breakdown of how PCA is typically performed 

Covariance Matrix Computation PCA begins by calculating the covariance matrix from 

the original feature data. The covariance matrix summarizes the relationships between 

the different features in the dataset [108]. 

The covariance matrix for a set of features, denoted as X, with n samples and m features, 

can be computed as follows: 

 𝑉𝑎𝑟(𝛽̂) = (𝑋𝑇𝑋)−1𝜎2              (III.24) 

Where Var (𝛽̂) represents the variance-covariance matrix of the coefficient estimates 𝛽̂ 

This matrix captures the uncertainty and interrelationships among the estimated 

coefficients. The equation involves several key components: X, is the design matrix of 

the predictor variables; XT, is the transpose of the design matrix. σ2 is the variance of 

the error term (residuals) in the linear regression model. The term (𝑋𝑇𝑋)−1 is the 

inverse of the matrix product of the transpose of the design matrix and the design matrix 

itself. 
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Eigenvalue and Eigenvector Calculation Next, PCA calculates the eigenvalues and 

corresponding eigenvectors of the covariance matrix. These eigenvectors represent the 

directions in the original feature space along which the data varies the most, and the 

eigenvalues represent the variance explained by each of these directions [108]. 

The equation for calculating eigenvectors and eigenvalues is: 

 

𝑋𝛽̂
r𝑖𝑑𝑔𝑒

= ∑ 𝑢𝑗  
𝑑𝑗

2

𝑑𝑗
2 + 𝜆

 𝑢𝑇
𝑗

𝑝

𝑗=1

y 

             (III.25) 

The equation for computing eigenvectors and eigenvalues in ridge regression, denoted 

by Equation (III.25), offer s a method to estimate coefficients 𝛽̂
𝑟𝑖𝑑𝑔𝑒

considering 

regularization. In this equation, X represents the design matrix of predictor variables, 

and y represents the response variable. The summation over p features encompasses the 

contribution of each eigenvector (uj), where (dj
2) denotes the square of the jth 

eigenvalue. Additionally, λ serves as the regularization parameter, controlling the 

balance between data fitting and coefficient magnitude. The equation scales the impact 

of each eigenvector by combining it with its associated eigenvalue and the 

regularization parameter. By summing these scaled contributions, 𝛽̂
𝑟𝑖𝑑𝑔𝑒

  is computed, 

providing a means to estimate the coefficients in ridge regression while considering the 

influence of eigenvectors, eigenvalues, and regularization. 

Choosing the Number of Principal Components To determine the optimal number of 

principal components to retain, various methods can be used, such as scree plots and 

explained variance. Scree plots show the eigenvalues in decreasing order, and the point 

at which the eigenvalues begin to level off indicates a suitable number of principal 
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components to retain (Figure III-26). Explained variance (Figure III-27) helps assess 

how much information is preserved by each principal component [109]. 

Reducing Dimensionality Once the number of principal components is decided, the 

dataset is transformed into a reduced feature set using the selected principal 

components. This reduction helps mitigate the curse of dimensionality and can enhance 

the performance of machine learning models [109]. 

 

Figure III-26 Scree Plot 

 

Figure III-27 Percentage of Variance 
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Here's a MATLAB code snippet for applying PCA to reduce dimensionality 

 

3.5.2.  Linear Discriminant Analysis (LDA) 

 is a powerful supervised dimensionality reduction technique, primarily designed for 

classification tasks. It aims to maximize the separation between different classes in a 

dataset while minimizing the variance within each class. In our analysis, we leveraged 

LDA to identify the most discriminatory features, rank them based on LDA 

coefficients, and seamlessly integrate them into our classification models to potentially 

enhance classification accuracy and model robustness. 

3.5.2.1. Here's an explanation of the key steps in applying LDA 

Executing LDA with Class Labels LDA operates in a supervised manner, considering 

class labels. It identifies features that contribute the most to separating different classes. 

Feature Ranking with LDA Coefficients LDA coefficients are used to rank and select 

features that significantly aid in defining class boundaries. Features with higher LDA 

coefficients are considered more important for classification. 

Integration into Classification Models The features refined through the LDA process 

are integrated into our classification models. This integration aims to improve the 

classification accuracy and overall robustness of our models. 

% apply PCA to reduce dimensionality 
numDims = 50; % set desired number of dimensions 
scTrain = reshape(scTrain, [], size(scTrain, 3))'; 
scTest = reshape(scTest, [], size(scTest, 3))'; 
[coeff,score,~,~,explained] = pca([scTrain; scTest]); 
scoreTrain = score(1:size(scTrain,1), 1:numDims); 
scoreTest = score(size(scTrain,1)+1:end, 1:numDims); 
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Below is the MATLAB code snippet for applying LDA: 

 

in this code, ldaModel represents the trained LDA model, and FoldTrainFeaturesLDA 

and FoldTestFeaturesLDA contain the LDA-transformed features for the training and 

test data, respectively. The main equation regarding LDA is based on finding the 

optimal linear projection that maximizes the between-class scatter while minimizing 

the within-class scatter 

3.5.3. Sequential Feature Selection (SRE) and Recursive Feature Elimination 

(RFE) 

Sequential Feature Selection (SRE) and Recursive Feature Elimination (RFE) are two 

iterative approaches to feature selection, both aiming to enhance the importance of 

selected features in a machine learning model. Here's an overview of each technique 

3.5.3.1. Sequential Feature Selection (SRE) 

SRE begins by ranking features based on relevant scoring metrics that indicate their 

importance or relevance to the problem. 

It then iteratively includes the most pertinent features, one at a time, in a sequential 

manner. 

% Apply Linear Discriminant Analysis (LDA) on the training data for this 
fold 

ldaModel = fitcdiscr(FoldTrainFeatures, FoldTrainLabels); 

 
% Apply LDA to the training and test data for this fold 
FoldTrainFeaturesLDA = predict(ldaModel, FoldTrainFeatures); 
FoldTestFeaturesLDA = predict(ldaModel, FoldTestFeatures); 

 
% Convert LDA-transformed features to a numeric matrix 
FoldTrainFeaturesLDA = double(FoldTrainFeaturesLDA); 
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The goal is to create a subset of features that optimally contribute to model accuracy 

and generalizability. 

Here's the MATLAB code for SRE 

 

 

3.5.3.2. Recursive Feature Elimination (RFE) 

RFE takes a different approach by employing specific machine learning algorithms 

(e.g., decision trees) to consecutively rank and eliminate the least influential features. 

Features are eliminated one at a time based on their impact on model performance. 

In our experiment, utilizing Recursive Feature Elimination (RFE), we aimed to identify 

a subset of features maximizing model accuracy and generalizability while reducing 

dimensionality, employing a total of 10 features. 

Throughout these iterative processes, careful monitoring of model performance is 

essential to ensure that the chosen feature subsets positively contribute to model 

accuracy and robustness. 

Here's the MATLAB code for RFE: 

 

% Compute SRE for training set 
sreTrain = computeSRE(scTrain); 
% Compute SRE for test set 
sreTest = computeSRE(scTest); 

% Perform RFE 
selectedFeatures = rfe(X_train, Y_train', numFeatures); 
% Keep only the selected features in the training and testing data 
TrainFeaturesSelected = cell(size(TrainFeatures)); 
for i = 1:numel(TrainFeatures) 
    TrainFeaturesSelected{i} = TrainFeatures{i}(selectedFeatures); 
end 
TestFeaturesSelected = cell(size(TestFeatures)); 
for i = 1:numel(TestFeatures) 
    TestFeaturesSelected{i} = TestFeatures{i}(selectedFeatures); 
end 
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3.6. Validation and Evaluation 

In the aftermath of feature selection, we meticulously undertook the validation and 

evaluation of our machine learning models. These evaluations were conducted with the 

aid of pertinent metrics, including accuracy, precision, recall, and F1-score. This 

judicious assessment ensured that the optimized feature subsets indeed yielded models 

that aligned with our predefined objectives effectively. 

Comparison and Conclusion: 

To summarize, the strategic application of feature selection methodologies, 

encompassing PCA, LDA, SRE, and RFE, assumed a pivotal role in the optimization 

of our machine learning and data analysis pipeline. These methodologies facilitated 

dimensionality reduction, augmentation of feature relevance, and the amelioration of 

model performance. It is important to acknowledge that each methodology possesses 

its unique strengths and limitations. Their synergistic application, however, endowed 

our research project with valuable insights and significantly contributed to its success. 

3.7. Fault Detection and Classification 

Fault detection and classification (FDC) represent pivotal processes in numerous 

industries, safeguarding the reliability and safety of systems, machinery, and 

operations. In the domain of machine learning, two powerful methodologies, namely 

Support Vector Machines (SVM) and Neural Networks (NN), have emerged as 

indispensable tools for FDC applications. 

Support Vector Machines (SVM) are esteemed for their robustness in delineating data 

into distinct classes. SVMs are exceptionally skilled at identifying optimal boundaries 

that maximize the separation margin between different data points. This capability 
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renders them well-suited for the task of fault detection, enabling them to address a wide 

array of scenarios involving both linear and non-linear data separation [110]. 

In contrast, Neural Networks (NN), particularly deep neural networks, have ushered in 

a new era of fault detection by harnessing the intricacies present within data patterns. 

NNs, constructed with interconnected layers of artificial neurons, excel in capturing 

intricate relationships and dependencies, making them adept at detecting even subtle 

faults that might elude traditional detection methods [111]. 

Furthermore, we will navigate through the merits and demerits of SVMs and NNs in 

the context of FDC, offering guidance on the judicious selection of each technique 

based on the problem at hand. By the culmination of this chapter, you will possess a 

comprehensive understanding of how to implement SVMs and NNs for fault detection 

and classification, equipping you to effectively address real-world challenges and 

uphold system reliability and safety. 

3.7.1. The Purpose of Using SVM and Neural Network 

In this research, Support Vector Machines (SVM) and Neural Networks (NN) are 

employed to classify faults in the tie rod. The tie rod is a critical component of a 

vehicle's steering system, and accurately detecting and classifying faults in the tie rod 

is crucial for vehicle safety and performance. 

The research objective is to develop a fault detection and classification system for the 

tie rod. The hypothesis is that SVM and NN can effectively classify tie rod faults based 

on different levels of fault severity. This classification allows for targeted maintenance 

actions based on the severity of the fault. 
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Two tests are conducted in this research. In the first test, SVM and NN are employed 

to classify tie rod faults into five levels, ranging from normal to severe faults (Figure 

III-28). In (Figure III-28), the diagonal cells represent the count or frequency of 

correctly classified instances. Additionally, it is observed that one fault in level 1 is 

predicted as normal. This detailed classification provides a better understanding of the 

tie rod's condition and facilitates appropriate maintenance actions. 

 

Figure III-28 SVM Four Faulty Levels Classification 

In the second test, SVM and NN models are employed to classify the tie rod's condition 

as either 'faulty' or 'normal' when encountering various road obstacles. Four types of 

road obstacles are considered sinewave road obstacles, roughness road obstacles, 

pothole road obstacles, and bump road obstacles. By analyzing the tie rod's response to 

these obstacles, SVM and NN can classify the tie rod's condition as normal or abnormal, 

indicating the presence of a fault (Figure III-29). For example, in (Figure III-29), the 

diagonal cells represent correctly predicted instances, and there is an error in the bumpy 
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road obstacle signals where two instances were incorrectly classified as faulty when 

they should have been classified as normal. 

 

Figure III-29 SVM Obstacle Types and Fault Classifications 

SVM and the Neural Network are chosen for this research due to their abilities to handle 

high-dimensional data and nonlinear relationships. They work by finding an optimal 

hyperplane (in the case of SVM) or a complex network of interconnected nodes and 

layers (in the case of Neural Network) that maximally separates different classes in the 

feature space. By training both classifiers with a dataset of tie rod responses to various 

fault levels and road obstacles, they can learn the patterns and characteristics associated 

with each class. These trained models can then be used to classify new instances of tie 

rod responses, accurately identifying the fault level or abnormality. 
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In conclusion, the purpose of using SVM and Neural Network (NN) in this research is 

to develop a fault detection and classification system for the tie rod. By employing these 

machine learning techniques, we can accurately classify faults and abnormalities, 

enabling timely maintenance actions to ensure vehicle safety and performance. The use 

of SVM and NN aligns with the research objectives by providing robust and accurate 

classification methods for tie rod faults, enhancing our ability to maintain and optimize 

vehicle systems. 

3.7.2. Support Vector Machines (SVM) 

 is a popular machine learning algorithm used for classification and regression tasks. It 

works by finding the best hyperplane that separates the data into different classes. The 

choice of the best hyperplane is based on maximizing the separation or margin between 

the two classes [112]. 

 

Figure III-30 Hyperplane and Support Vectors with Maximum Margin 
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In the case of linearly separable data, SVM selects the hyperplane that has the maximum 

distance from the nearest data point on each side. This hyperplane is known as the 

maximum-margin hyperplane or hard margin (Figure III-30). The goal is to find a 

hyperplane that can classify new data points accurately. SVM is robust to outliers, 

meaning it can ignore outliers and still find the best hyperplane [113],[112]. 

In cases where the data is not linearly separable, SVM introduces soft margins. Soft 

margins allow for some misclassification of data points, but penalize violations of the 

margin (Figure III-31). The SVM algorithm tries to minimize the hinge loss, which is 

a commonly used penalty function. The hinge loss is proportional to the distance of the 

violation from the margin [113]. 

 

Figure III-31 Hard Margin SVM Vs Soft Margin SVM 

However, in real-world scenarios, data is often not linearly separable. SVM addresses 

this issue by using a technique called kernelization. It maps the original data to a higher-

dimensional space where it becomes linearly separable [114] 
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Figure III-32 1D Dataset for Classification 

Let's consider the data shown in the Figure III-32. In the context of Support Vector 

Machines (SVM), we solve this problem by creating a new variable using a kernel. For 

simplicity, let's denote a point as xi on the line, and we create a new variable yi as a 

function of the distance from the origin, which we can visualize on a (Figure III-33). 

 

Figure III-33 SVM with RBF Kernel 
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In this case, the new variable y is generated as a function of the distance from the origin. 

Such a non-linear function that creates a new variable is referred to as a kernel. 

The process of mapping the data to a higher-dimensional space is achieved through the 

use of a kernel function. A kernel function is a non-linear function that transforms the 

original data into a new feature space. Commonly used kernel functions include 

polynomial kernels, Gaussian kernels, and sigmoid kernels [115]. 

3.7.2.1. Support Vector Machine Terminology 

Hyperplane: A hyperplane serves as the decision boundary that separates data points 

belonging to different classes within a feature space. In the context of linear 

classification, it is represented by the equation wx + b = 0. 

Support Vectors: Support vectors are crucial data points that are nearest to the 

hyperplane, playing a pivotal role in determining both the hyperplane's position and the 

margin [116]. 

Margin: The margin is defined as the distance between the hyperplane and the support 

vectors. In SVM, the primary goal is to maximize this margin because a wider margin 

generally indicates better classification performance. 

Kernel: A kernel is a mathematical function employed in SVM to transform original 

input data points into higher-dimensional feature spaces. This transformation enables 

the identification of a hyperplane even when the data points are not linearly separable 

in the original input space. Common kernel functions include linear, polynomial, radial 

basis function (RBF), and sigmoid kernels [116]. 
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Hard Margin: The hard margin hyperplane refers to a hyperplane that effectively 

separates data points of different classes without any misclassifications. It is the ideal 

scenario where the margin is maximized. 

Soft Margin: In situations where data is not perfectly separable or contains outliers, 

SVM allows for a soft margin approach. This introduces slack variables for each data 

point, relaxing the strict margin requirement and permitting some degree of 

misclassification or violations. It seeks a balance between increasing the margin and 

minimizing violations. 

C: The regularization parameter, denoted as C, is a crucial factor in SVM. It balances 

the trade-off between margin maximization and misclassification penalties. A higher 

value of C imposes a stricter penalty, resulting in a smaller margin and potentially fewer 

misclassifications [116]. 

Hinge Loss: SVM commonly employs the hinge loss as its loss function. It penalizes 

misclassifications and margin violations. The objective function in SVM is typically 

formulated by combining the hinge loss with a regularization term. In our Model we set 

the maximum number of objective function evaluations to 100. 

Dual Problem: The dual problem of SVM optimization involves finding the Lagrange 

multipliers associated with the support vectors. Solving the dual problem offers 

advantages, including the ability to utilize kernel tricks and more efficient computation 

[117]. 
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3.7.2.2. Mathematical Intuition of Support Vector Machine (SVM) 

In the context of a binary classification problem with classes labeled as +1 and -1, SVM 

seeks to find a decision boundary in the form of a hyperplane, which can be expressed 

mathematically as 

 𝑤𝑇𝑥 + 𝑏 = 0              (III.26) 

Here, 'w' represents the normal vector to the hyperplane, indicating the direction that is 

perpendicular to the hyperplane. The parameter 'b' represents the offset or distance of 

the hyperplane from the origin along this normal vector 'w'. 

The distance between a data point 'xi' and the decision boundary can be calculated using 

 
𝑑𝑖 =  

(𝑤𝑇𝑥 + 𝑏))

‖𝑤‖
 

                (III.27) 

 

 𝑑𝑖 =  
(𝑤𝑇𝑥+𝑏))

‖𝑤‖
 

                (III.28) 

Here, '||w||' denotes the Euclidean norm of the weight vector 'w' [118]. 

For a Linear SVM classifier, the classification rule is defined as 

 
𝑦̂ {

1 (𝑤𝑇𝑥 + 𝑏) ≥ 0

0 (𝑤𝑇𝑥 + 𝑏) < 0
  

                (III.29) 

In the case of a Hard Margin Linear SVM classifier, the optimization objective is to 

minimize the square of the Euclidean norm of 'w' while ensuring that all training 

instances are correctly classified and lie at a distance of at least 1 from the decision 

boundary [118] 

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑤,𝑏

1

2
𝑤𝑇 𝑤 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑤,𝑏

1

2
||𝑤2|| 

              (III.30) 

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1   𝑓𝑜𝑟 𝑖 = 1,2,3 … . 𝑚               (III.31) 
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In this context, 'ti' represents the target variable or label for the 'i'-th training instance. 

'ti' is -1 for negative occurrences (when 'y_i' = 0) and 1 for positive instances (when 'yi' 

= 1). The constraint ensures that the decision boundary separates the classes with a 

margin of at least 1. 

 𝑡𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1                 (III.32) 

 𝑡𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1                 (III.33) 

For a Soft Margin Linear SVM classifier, a regularization term is introduced to allow 

for some misclassification (soft margin), and the optimization problem becomes 

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑤,𝑏

1

2
𝑤𝑇 𝑤 + 𝑐 ∑ 𝜁𝑖

𝑚

𝑖=1

 
                (III.34) 

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜁𝑖  𝑎𝑛𝑑 𝜁𝑖 ≥ 0 𝑓𝑜𝑟 𝑖

= 1,2,3 … . 𝑚 

                (III.35) 

Here, 'C' controls the trade-off between maximizing the margin and minimizing the 

classification errors [118]. 

Dual Problem 

To solve the SVM optimization problem, a dual problem is often formulated to find the 

Lagrange multipliers 'α(i)' associated with the support vectors [118].. The dual objective 

function to be maximized is 

 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝛼  

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑡𝑖𝑡𝑗𝐾(𝑥𝑖, 𝑥𝑗) − ∑ 𝛼𝑖

𝑖→𝑚
 

𝑗→𝑚
1→𝑚

 
              (III.36) 

Here 

'αi' is the Lagrange multiplier associated with the 'i'-th training sample. 
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'K(xi, xj)' is the kernel function, which calculates the similarity between two samples 

'xi' and 'xj,' allowing SVM to handle nonlinear classification by implicitly mapping 

samples into a higher-dimensional feature space. 

Once the dual problem is solved, the SVM decision boundary can be described in terms 

of the optimal Lagrange multipliers and the support vectors [118]. The support vectors 

are the training samples with 'αi > 0,' and the decision boundary is determined by 

 𝑊 = ∑ 𝛼𝑖𝑡𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏 
𝑖→𝑚

 
                (III.37) 

 𝑡𝑖(𝑤𝑇𝑥𝑖 − 𝑏) = 1 ⟺ 𝑏 = 𝑤𝑇𝑥𝑖 − 𝑡𝑖                 (III.38) 

3.7.2.3. Hyperparameter Selection 

The process of selecting hyperparameters is pivotal in constructing an effective SVM 

model. Notable SVM hyperparameters include 

Regularization parameter (C): This parameter balances the trade-off between 

maximizing the margin and minimizing classification errors. Smaller 'C' values 

prioritize a larger margin but may allow for some misclassification, while larger 'C' 

values emphasize correct classification but risk overfitting [119]. 

Kernel type and parameters: In the case of kernel SVMs, the choice of kernel (e.g., 

linear, polynomial, RBF) and their associated parameters (e.g., degree for polynomial, 

gamma for RBF) must be determined [119]. 

Hyperparameter selection can be accomplished using techniques such as cross-

validation and grid search 

Cross-validation: The dataset is split into training and validation sets. For each set of 

hyperparameters, the model is trained on the training set and assessed on the validation 

set. The hyperparameters that yield the best validation performance are chosen [119]. 
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Grid search: A grid of potential hyperparameter values is defined, and the model's 

performance is systematically evaluated on the validation set for all combinations of 

hyperparameters. The combination with the best performance is selected [119]. 

3.7.2.4. Model Training 

To train an SVM model, the following steps are followed 

Data Preprocessing This includes tasks like feature scaling, handling missing values, 

and encoding categorical variables [120]. 

Data Splitting The dataset is partitioned into training and testing sets (or cross-

validation sets) [121]. 

SVM Type Selection Choose between linear or kernel SVM based on the data's 

characteristics. 

Hyperparameter Tuning Utilize techniques like cross-validation or grid search to 

identify optimal hyperparameters (C and kernel parameters) [122]. 

Model Training Fit the SVM model to the training data using the selected 

hyperparameters . 

Model Evaluation Assess the model's performance on the testing/validation dataset. 

Considerations such as dealing with imbalanced classes or outliers should be taken into 

account during the training process [123]. 

3.7.2.5. Model Evaluation 

The selection of evaluation metrics depends on the problem type (binary or multiclass 

classification, regression) and the specific objectives. Common metrics for assessing 

SVM models include: 

Accuracy: Measures overall classification correctness. 
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Precision: Calculates the ratio of true positive predictions to total predicted positives, 

assessing the model's ability to minimize false positives. 

Recall (Sensitivity): Computes the ratio of true positive predictions to total actual 

positives, gauging the model's capacity to capture all positive instances. 

F1-score: Provides a balance between precision and recall by calculating their 

harmonic mean. 

Confusion matrix: A tabular summary of true positive, true negative, false positive, 

and false negative predictions [123]. 

The choice between cross-validation and holdout validation hinges on factors such as 

dataset size, available computational resources, and the need for robust performance 

estimation. Cross-validation is often favored for its ability to provide a more reliable 

evaluation. 

Ultimately, the choice of evaluation metrics and validation strategy should align with 

the machine learning task's objectives and the dataset's characteristics. 

The implementation of SVM in MATLAB is facilitated by the SVM MATLAB 

function, which allows for training and testing SVM models [124]. The SVM 

MATLAB function supports different types of SVM, including C-SVM, nu-SVM, and 

k-NN [125].  

In MATLAB, the SVM MATLAB function can be used to optimize the performance 

of SVM models. This can be done by selecting appropriate parameter values and 

incorporating cross-validation techniques. The running time performance of different 

SVM variants can be measured using the tic and toc functions in MATLAB [123]. 
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The MATLAB code that used for SVM is accordingly 

To further optimize the performance of SVM, the MATLAB code for SVM tuning 

can be equipped with a brute force method to estimate a large number of parameter 

values and select the optimized values for generating the best model. Additionally, the 

SVM MATLAB code can incorporate a fivefold cross-validation for model evaluation 

[126]. 

In summary, the SVM MATLAB function provides a convenient way to implement 

SVM models in MATLAB. It supports different types of SVM and can be used in 

various applications. The performance of SVM can be optimized by selecting 

appropriate parameter values and incorporating cross-validation techniques. The 

MATLAB implementation of SVM has been utilized in fields such as robotics and 

medical imaging, and it can be further optimized by incorporating brute force methods 

and cross-validation techniques. 

% Train the SVM model on the training data 
model = fitcecoc(TrainFeatures, YTrain); 
% Train and tune the SVM model using the training data 
t = templateSVM('Standardize',true); 
SVMModel = fitcecoc(TrainFeatures, YTrain, 'Learners', t, 
'FitPosterior',true,... 
'OptimizeHyperparameters', {'BoxConstraint','KernelScale'},... 
'HyperparameterOptimizationOptions', optimizationOptions, 'Verbose', 1,... 
'HyperparameterOptimizationOptions', struct('AcquisitionFunctionName',... 
'expected-improvement-plus', 'MaxObjectiveEvaluations', 20, 
'UseParallel',true), 'Options', statset('UseParallel',true)); 
% Predict the labels of the test data using the tuned model 
YPred = predict(SVMModel, TestFeatures); 



 

 

102 

 

3.7.3. Neural network  

3.7.3.1. Long Short-Term Memory (LSTM) Networks 

LSTM networks represent a specific category within recurrent neural networks 

(RNNs), and their architecture is tailored for handling sequential data, including but not 

limited to time series data and natural language text. The fundamental mechanisms of 

LSTMs can be elucidated as follows  

Neurons and Layers: Within LSTM networks, the architectural building blocks are 

recurrent cells, which can be organized into multiple layers (Figure III-34). These cells 

differ significantly from standard feedforward neurons due to their intricate internal 

structure, encompassing gating mechanisms designed to regulate the flow of 

information. 

Input Layer: The input layer is responsible for receiving the raw data or features from 

the dataset. Each neuron within this layer represents a distinct feature [127]. 

Hidden Layers: Intermediate layers in neural networks, positioned between input and 

output layers, are crucial for pattern extraction. They perform mathematical operations 

on data, with complexity determined by the number of hidden layers. In your project, 

you've opted for an exceptionally large number of hidden layers - a staggering 1500 

layers. Each of these hidden layers contains neurons with weight arrays matching the 

previous layer's neuron count. This abundance of hidden layers exponentially increases 

both training and evaluation times. 

This extraordinary depth in our Neural Network architecture, while unconventional, 

can be useful for tackling highly complex and nonlinear data. It exemplifies the core 

principles of deep learning, which relies on deep neural networks to autonomously learn 
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intricate patterns and structures, often without the need for labeled data. Such depth has 

found applications in various domains, including computer vision and language 

processing. 

Output Layer: The output layer generates the ultimate output of the network, which 

might encompass classification labels, regression values, or other types of predictions 

[128]. 

 

Figure III-34 LSTM Neural Network Architecture 
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Cell Memory, Input Gate, Forget Gate, Output Gate LSTMs exhibit a unique 

architecture consisting of specialized components 

Cell Memory: The central feature distinguishing LSTMs is the presence of a dedicated 

cell memory, which assumes a critical role in preserving information over extended 

sequences, allowing the network to capture enduring dependencies within the data 

[129]. In an LSTM diagram, this cell memory is represented as a horizontal line 

stretching from ct-1 to ct, symbolizing the short-term memory of the cell (Figure III-

35).  

 

Figure III-35 LSTM Recurrent Unit and Gates 

Input Gate: The "Input Gate" in an LSTM cell regulates the flow of new data into the 

cell's memory. It decides which information is relevant and should be stored, adding it 

to the cell memory (Figure III-36). This process involves sigmoid and tanh gates that 

control the input's impact on the cell state, with "i" controlling the extent of influence. 
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Additionally, both the previous output ("h") and current input ("x") have individual 

weights for precise control over their contributions [129]. 

 

Figure III-36 LSTM Input Gate 

 𝑖𝑡 = 𝜎(𝑊𝑖 ∗ 𝑋𝑡 + 𝑈𝑖 ∗ ℎ(𝑡−1) + 𝑏𝑖)   (III.39) 

 𝑎𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑎 ∗ 𝑋𝑡 + 𝑈𝑎 ∗ ℎ(𝑡−1) + 𝑎)   (III.40) 

 𝐶𝑡 = 𝐶(𝑡−1) ∗ 𝑓𝑓 + 𝑖𝑡 ∗ 𝑎𝑡   (III.41) 

"I" determines the extent of "a's" impact on "c" within an LSTM cell. The hyperbolic 

tangent's (-1 to +1) range enables "a" to either decrease or increase "c," with the level 

of influence dictated by "i." Additionally, it's worth noting that both "h" and "x" possess 

distinct weights for both "i" and "a." 

Forget Gate: The "Forget Gate" is a pivotal component within LSTM cells, responsible 

for orchestrating the selective removal or "forgetting" of information from the cell 

memory that is considered irrelevant or outdated (Figure III-37). This discerning 

amnesia capability empowers LSTMs to concentrate on the most pertinent data [129]. 
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Operational details include the "σ" (sigmoid) function, which ranges from 0 to 1, 

governing the extent of information removal from the cell state. By adjusting the value 

of "σ," we control the degree of forgetfulness [129]. Specifically, both the current input 

(xt) and the previous output (ht-1) undergo multiplication by "σ." 

 

Figure III-37 LSTM Forget Gate 

Operational details include the "σ" (sigmoid) function, which ranges from 0 to 1, 

governing the extent of information removal from the cell state. By adjusting the value 

of "σ," we control the degree of forgetfulness. Specifically, both the current input (xt) 

and the previous output (ht-1) undergo multiplication by "σ." 

 𝑓𝑡 = 𝜎(𝑊𝑓 ∗ 𝑋𝑡 + 𝑈𝑓 ∗ ℎ(𝑡−1) + 𝑏𝑓)   (III.42) 

 𝐶𝑡 = 𝐶(𝑡−1) ∗ 𝑓𝑡 + 𝑖𝑡 ∗ 𝑎𝑡   (III.43) 

These operations involve weights (Wf and Uf), a bias (bf), and element-wise 

multiplication, symbolized by the blue circle with a cross. Notably, "h" and "x" possess 

their own sets of weights, further enhancing the network's adaptability for different 

tasks and temporal dependencies across time slots (t and t-1). 
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Output Gate: The "Output Gate" assumes a crucial role within the LSTM cell by 

determining which information stored in the cell memory (c) should contribute to the 

output (h) at a given time step (Figure III-38). This gate ensures that the LSTM yields 

outputs that are contextually relevant and suited to the task [129]. 

 

Figure III-38 LSTM Output Gate 

 𝑂𝑡 = 𝜎(𝑊𝑜 ∗ 𝑋𝑡 + 𝑈𝑜 ∗ ℎ(𝑡−1) + 𝑏𝑜)   (III.44) 

 ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝐶𝑡) + 𝑂𝑡   (III.45) 

The output (h) is derived from the cell state (c) via the tanh function, which can 

modulate c to be positive or negative within the range of -1 to +1. The degree to which 

this tanh(c) affects h is precisely controlled by "o." The value of "o" is computed using 

distinct weights for the previous output (ht-1) and the current input (xt), each 

determined by a sigmoid function [129]. 

It's worth noting that there exists a variant of LSTM known as the Gated Recurrent Unit 

(GRU), which lacks an output gate but incorporates a reset gate and an update gate for 

managing information flow. 
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Connections and Weights  

LSTM cells have internal weights and connections that govern the flow of information 

(Figure III-39). These weights are initialized using techniques like Xavier/Glorot 

initialization or He initialization, which are better suited for deep networks [130]. 

Activation Functions 

LSTM cells employ various activation functions internally, including sigmoid and 

hyperbolic tangent (tanh) functions (Figure III-39). These functions are used to control 

the operations of the gates (input, forget, output), ensuring that information flow is 

managed appropriately. Additionally, the Rectified Linear Unit (ReLU) activation 

function is frequently utilized for processing the output of LSTM cells [131]. 

Forward Propagation 

Forward propagation in LSTM networks involves processing sequential data one time 

step at a time. At each time step, the input and the previous cell's state are used to update 

the cell's internal state and produce an output. 

Loss Function 

The choice of a loss function depends on the specific task. For example, Mean Squared 

Error (MSE) can be used for regression tasks, while Cross-Entropy is suitable for 

sequence classification tasks. 

Backpropagation 

Backpropagation in LSTM networks is extended through time (BPTT) due to the 

sequential nature of data. Gradients are calculated and adjusted for each time step to 

train the network effectively [132]. 



 

 

109 

 

 

Figure III-39 Forward, Loss Function and Backward Propagation (This Figure by 

[133], [134]). 

3.7.3.2. Optimization 

Common optimization algorithms like Adam, RMSprop, or stochastic gradient descent 

(SGD) with learning rate annealing are used to update weights during training [134]. 

3.7.3.3. Training 

Training LSTM networks involves handling sequential data efficiently, including 

techniques like sequence padding, batching, and potentially using teacher forcing or 

attention mechanisms for sequence-to-sequence tasks [135]. 

Bias Term 

Each LSTM cell typically has its own bias terms for various gates and activations, 

which play a crucial role in the network's adaptability [136]. 
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Learning Rate (α) 

Selecting an appropriate learning rate (α) is critical for training, as it affects the 

convergence of the network [136]. 

Teacher Forcing 

For sequence-to-sequence tasks, teacher forcing can be used during training to improve 

convergence by providing ground-truth data at each time step [135]. 

In summary, LSTM networks are specialized for sequential data and use complex 

LSTM cells with gating mechanisms for learning and encoding sequential patterns. 

Understanding the specifics of LSTM architecture and training is essential when 

working with sequences. Be sure to refer to LSTM-specific resources and tutorials for 

more in-depth information. 

3.7.3.4. Mathematical Background behind LSTM RNNs 

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network 

(RNN) designed to effectively model and capture dependencies in sequential data. 

LSTMs are particularly valuable for tasks involving time series analysis, natural 

language processing, and other sequential data processing tasks. 

Forward Propagation in LSTM 

LSTM cells operate through a series of gates and activation functions, allowing them 

to selectively retain and update information over time [137]. The key components of 

forward propagation in an LSTM include 

Input Gate (i(t)) 

In this phase, we proceed to update the input gate of the LSTM unit, which takes into 

account the current input (𝑥(𝑡)), the output from the previous LSTM unit  𝑦(𝑡−1), and 
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the cell value from the previous time step 𝑐(𝑡−1). This update operation is carried out 

using the following equation 

 𝑖(𝑡) = 𝜎(𝑊𝑖 ∗ 𝑥(𝑡) + 𝑅𝑖 ∗ 𝑦(𝑡−1) + 𝑝𝑖 ⨀ 𝑐(𝑡−1) + 𝑏𝑖) (III.46) 

The input gate controls the addition of new information to the cell state. 

Here, σ represents the sigmoid activation function, while Wi, Ri, and pi correspond to 

the weights associated with 𝑥(𝑡), 𝑦(𝑡−1), and 𝑦(𝑡−1)respectively. bi signifies the bias 

vector linked to this specific component. 

Forget Gate (𝒇(𝒕)) 

In this phase, the LSTM unit determines what information to forget from its prior cell 

states 𝑐(𝑡−1). The calculation of activation values 𝑓(𝑡) for the forget gates at time step t 

is based on the current input 𝑥(𝑡), the previous outputs 𝑦(𝑡−1), the state of memory cells 

from the previous time step 𝑐(𝑡−1), along with the peephole connections, and the bias 

terms bf associated with the forget gates. This computation can be expressed as 

 𝑓(𝑡) = 𝜎(𝑊𝑓 ∗ 𝑥(𝑡) + 𝑅𝑓 ∗ 𝑦(𝑡−1) + 𝑝𝑓 ∗ 𝑦(𝑡−1)

+ 𝑝𝑓 ⨀  𝑐(𝑡−1) + 𝑏𝑓) 

(III.47) 

 𝑓(𝑡) = 𝜎(𝑊𝑓 ∗ 𝑥(𝑡) + 𝑅𝑓 ∗ 𝑦(𝑡−1) + 𝑝𝑓 ∗ 𝑦(𝑡−1)

+ 𝑝𝑓 ⨀  𝑐(𝑡−1) + 𝑏𝑓) 

(III.48) 

Here, Wf, Rf, and pf represent the weights corresponding to 𝑥(𝑡), 𝑦(𝑡−1), and 𝑐(𝑡−1) 

respectively, while bf denotes the bias weight vector [137]. 

 

 

 



 

 

112 

 

Cell State Update (c(t)) 

In this phase, the LSTM unit computes the cell value by combining the block input 𝒛(𝒕), 

the input gate 𝒊(𝒕)and the forget gate 𝒇(𝒕) values with the previous cell value [137]. This 

operation is represented as follows 

Top of Form 

 𝒄(𝒕) = 𝒛(𝒕) ⨀ 𝑖(𝒕) + 𝒄(𝒕−𝟏)⨀𝒇(𝒕)   (III.49) 

The cell state is updated based on the input gate and forget gate. 

Output Gate (o(t)) 

In this stage, the LSTM computes the output gate, which is a function of the current 

input 𝑥(𝑡), the previous LSTM unit output 𝑦(𝑡−1), and the cell value 𝑐(𝑡−1) from the 

previous iteration [137]. The output gate calculation is expressed as 

 𝑂(𝑡) = 𝜎(𝑊0 ∗ 𝑥(𝑡) + 𝑅0 ∗ 𝑦(𝑡−1) + 𝑝0 ⨀  𝑐(𝑡−1) + 𝑏0)   (III.50) 

Where Wo, Ro, and po represent the weights associated with 𝑥(𝑡), 𝑦(𝑡−1)and 𝑐(𝑡−1) 

respectively, and bo is the bias weight vector [137]. 

Output (y(t)) The final output is generated by applying an activation function g(⋅) to 

the cell state and scaling it by the output gate. 

 𝒚(𝒕) = 𝒈(𝒄(𝒕))⨀ 𝒐(𝒕)   (III.51) 

The logistic sigmoid function, denoted as σ(x), is used as a gate activation function and 

is defined as 𝜎(𝑥) =
1

1+𝑒−𝑥
. 

The hyperbolic tangent function, represented as g(x), and h(x), is frequently employed 

as the activation function for block input and output, and it is defined as tanh(x) [137]. 
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Backpropagation in LSTM 

Backpropagation is the process of calculating gradients (δ) of the loss function with 

respect to various components within the LSTM cell. These gradients guide the updates 

of the model's parameters during training. During the backward pass, the cell state c(t) 

accumulates gradients from both y(t) and the subsequent cell state 𝑐(𝑡−1). These 

gradients are aggregated before being propagated back to the current layer. 

In the final iteration T, the change 𝜹𝒚
(𝒕)

represents the network error gradient 𝜕𝐸/𝜹𝒚
(𝒕)

 

with E denoting the loss function. For other iterations 𝜹𝒚
(𝒕)

is the vector of delta values 

inherited from the layer above, including the recurrent dependencies. This process is 

expressed as follows 

Gradient Descent and Parameter Updates 

To train the LSTM, we use gradient-based optimization algorithms such as stochastic 

gradient descent (SGD), Adam, or RMSprop. These algorithms update the LSTM cell's 

parameters (weights and biases) using the gradients calculated during backpropagation 

[137]. 

For example, the update equations for weights and biases can be 

 

𝛥𝑊∗ = −𝛼 ∑ 𝛿∗
(𝑡)

⊗ 𝑥(𝑡)

𝑇

𝑡=0

 

  (III.52) 

 

𝛥𝑝𝑖 = −𝛼 ∑ 𝑐(𝑡)⨀𝛿𝑖
(𝑡+1)

𝑇−1

𝑡=0

  
  (III.53) 

 

𝛥𝑅 ∗= −𝛼 ∑

𝑇−1

𝑡=0

𝛿∗
(𝑡+1)

⊗ 𝑦(𝑡) 

  (III.54) 
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𝛥𝑝𝑓 = −𝛼 ∑ 𝑐(𝑡)⨀𝛿𝑓
(𝑡+1)

𝑇−1

𝑡=0

 

  (III.55) 

 

𝛥𝑏 ∗= −𝛼 ∑ 𝛿∗
(𝑡)

𝑇

𝑡=0

 

  (III.56) 

 

𝛥𝑝𝑜 = −𝛼 ∑ 𝑐(𝑡)⨀𝛿𝑜
(𝑡)

𝑇

𝑡=0

 

  (III.57) 

In this context, the symbol ⊗ signifies the outer product of two vectors, while the 

symbol ∗ can represent any component related to the weights, such as the block input 

𝑧̂, the input gate 𝑖̂, the forget gate 𝑓, or the output gate 𝑜̂.These equations form the 

foundation of LSTM RNNs, allowing them to effectively model sequential data, capture 

long-term dependencies, and adapt their parameters during training for various tasks, 

such as natural language processing, time series forecasting, and more [137]. 

3.7.4. LSTM MATLAB IMPLEMENTATOIN 

Introduction This research explores the use of ensemble LSTM (Long Short-Term 

Memory) neural networks to enhance fault detection accuracy in signal classification 

tasks. Accurate fault detection is crucial in domains like industry and healthcare. This 

study focuses on improving classification performance through ensemble learning with 

LSTM networks. 
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Network Architecture Utilizes a neural network architecture with sequence input, 

LSTM, fully connected, softmax, and classification layers to capture temporal 

dependencies in signal data. 

Prediction Aggregation Aggregates predictions from individual models using a mode 

operation to improve generalization and reduce overfitting. 

 

 

 

Results Reports accuracy of ensemble predictions compared to true labels (YTest) and 

visualizes classification performance using a confusion matrix. 

 

numHiddenUnits = 1500; 
numClasses = numel(unique(YTrain)); 
layers = [sequenceInputLayer(inputSize, 'Normalization', 'zscore') 
          lstmLayer(numHiddenUnits, 'OutputMode', 'last') 
          fullyConnectedLayer(numClasses) 
          softmaxLayer 
          classificationLayer]; 

Ensemble Learning: Trains multiple neural network models independently 

(specified as numModels) to introduce diversity among models. 
numModels = 3; 
YPredAll = zeros(length(YTest), numModels); 
YTrain = categorical(YTrain); 
for i = 1:numModels 
    % Train a new model 
    net = trainNetwork(TrainFeatures, YTrain, layers, options); 
     
    % Predict on the test set 
    YPred = classify(net, TestFeatures); 
     
    % Store predictions 
    YPredAll(:, i) = grp2idx(YPred); 
end 

 

% Create an ensemble prediction 
YPredEnsemble = mode(YPredAll, 2); 
YPredEnsemble = categorical(YPredEnsemble, 1:8, 
catnames); 
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the effectiveness of ensemble LSTM neural networks in fault detection for signal 

classification, highlighting the potential for enhanced accuracy and robustness. This 

research contributes to improving fault detection methodologies with applications in 

critical domains. 

 

 

 

 

% Calculate accuracy 
accuracy = 100 * sum(YPredEnsemble == YTest') / numel(YTest); 
% Display confusion matrix 
figure; 
cm = confusionchart(YTest, YPredEnsemble); 
title('Classification Performance'); 
cm.RowSummary = 'row-normalized'; 
cm.ColumnSummary = 'column-normalized'; 

 
% Print accuracy and confusion matrix 
fprintf('Accuracy: %.2f%%\n', accuracy); 
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SUPPORT VECTOR MACHINES 

(SVMS) 

NEURAL NETWORK 

• Model Complexity SVMs are 

generally simpler models compared 

to neural networks. They aim to 

find a hyperplane that best 

separates classes. 

• Feature Engineering SVMs 

require careful feature engineering, 

especially for a moderate number 

of features. 

• Scalability SVMs can be 

computationally expensive, 

particularly with large datasets  

[138]. 

• Model Interpretability SVMs 

are often considered more 

interpretable due to their decision 

boundary being defined by support 

vectors [139]. 

• Performance SVMs perform 

well in tasks with moderate data 

availability and when data exhibits 

linear separability or can be 

effectively separated with a 

suitable kernel [140]. 

• Model Complexity NNs can be 

extremely complex, with the ability 

to learn intricate, non-linear 

relationships within the data. 

• Feature Engineering NNs can 

automatically learn features from 

raw data, making them suitable for 

high-dimensional or unstructured 

data. 

• Scalability NNs are highly 

scalable and parallelizable, making 

them suitable for large datasets and 

distributed computing. 

• Model Interpretability NNs, 

particularly deep architectures, are 

often considered black-box models, 

making it challenging to interpret 

their predictions  [138]. 

• Performance NNs, especially 

deep learning models, have shown 

state-of-the-art performance in 

various domains, but they often 

require large amounts of labeled 

data  [140]. 
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3.7.5. SVM Vs Neural Network 

In summary, there's no definitive answer regarding which is better between SVMs and 

NNs. The choice should be guided by the specific characteristics of your data, your 

computational resources, and your performance and interpretability requirements. It's 

often valuable to experiment with both approaches to determine which one best suit our 

particular task. Additionally, hybrid models that combine SVMs and NNs can be 

explored in some scenarios to leverage the strengths of both techniques. 

3.7.6. Optimization of the Long Short-Term Memory (LSTM) Neural Network 

In this section, we explore the optimization strategies applied to our Long Short-Term 

Memory (LSTM) neural network, a pivotal component of our study. Our primary aim 

was to fine-tune the LSTM's parameters to enhance its performance and expedite 

convergence. The cornerstone of this optimization endeavor was the utilization of the 

Adam optimization algorithm, a potent tool for training neural networks. 

3.7.6.1. Adam Optimization Algorithm 

The Adam optimizer, stemming from the term "Adaptive Moment Estimation," stands 

as a leading choice for optimizing neural networks, including LSTMs. It amalgamates 

the strengths of two renowned optimization techniques, Adagrad and RMSprop. What 

sets Adam apart is its capability to dynamically adjust learning rates for individual 

parameters, rendering the training process more efficient and effective. This algorithm 

maintains two moving averages for each parameter the first moment (mean) and the 

second moment (uncentered variance). These moving averages adapt the learning rate 

throughout training, ensuring optimal convergence [141]. 
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In MATLAB, we implemented the Adam optimization algorithm, making use of built-

in functions within deep learning frameworks or custom implementations tailored to 

our study's specific requirements. The optimization process was finely tuned through 

careful adjustment of hyperparameters, including the learning rate (α), decay rates (β1 

and β2), and epsilon (ε) for numerical stability, to achieve not only optimal convergence 

but also superior performance tailored to our specific task [142]. 

3.7.6.2. Hyperparameter Tuning 

The effectiveness of an LSTM network hinges on the judicious selection of 

hyperparameters. To discern the optimal configuration for our LSTM, we embarked on 

an exhaustive hyperparameter tuning process, covering several pivotal parameters 

Learning Rate (α) This parameter governs the step size during weight updates within 

the optimization process. Extensive experimentation was conducted to pinpoint the 

learning rate that facilitated swift convergence without encountering challenges such as 

overshooting or convergence to local minima. 

Batch Size The choice of mini-batch size during training significantly influences 

convergence speed and memory usage. Systematic exploration of various batch sizes 

was undertaken to strike a balance between rapid convergence and manageable memory 

requirements [143]. 
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Architecture The architectural design of an LSTM network is crucial for its ability to 

model complex patterns [143]. In our case, we employed the following architecture: 

 

Where the Number of Hidden Unites = 1500; 

Max Epochs = 170; 

Minimum Batch Size = 170; 

and in the other Model we used the below parameters: 

 

layers = [ ... 
    sequenceInputLayer(inputSize,'Normalization','zscore') 
    lstmLayer(numHiddenUnits,'OutputMode','last')  
    fullyConnectedLayer(numClasses) 
    softmaxLayer 
    classificationLayer]; 

giving the options as below: 
maxEpochs = 170; 
miniBatchSize = 170; 

 
options = trainingOptions('adam', ... 
'InitialLearnRate', 1e-4, ... 
'MaxEpochs', 170, ... 
'MiniBatchSize', 170, ... 
'SequenceLength', 'longest', ... 
'Shuffle', 'every-epoch', ... 
'ValidationData', {TestFeatures, YTest}, ... 
'ValidationFrequency', 30, ... 
'Verbose', 1, ... 
'Plots', 'training-progress', ... 
'ExecutionEnvironment', 'gpu'); 

 

% Set the training parameters 
net.trainParam.epochs = 200; % Set the number of epochs to 100 
net.trainParam.max_fail = 20; % Set the maximum number of 
validation failures to 20 
net.trainParam.lr = 0.01; % Set the learning rate to 0.01 
net.trainParam.mc = 0.9; % Set the momentum constant to 0.9 
net.trainParam.beta1 = 0.9; % Set the beta1 parameter for Adam 
optimization to 0.9 
net.trainParam.beta2 = 0.999; % Set the beta2 parameter for Adam 
optimization to 0.999 
net.trainParam.epsilon = 1e-8; % Set the epsilon parameter for Adam 
optimization to 1e-8 
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Training and Ensemble Learning We used an ensemble learning approach by training 

multiple LSTM models and taking a majority vote for predictions [143]. The code for 

this ensemble learning is as follows: 

 

3.7.6.3. Evaluation and Confusion Matrix  

To assess the model's performance, we computed accuracy and displayed a confusion 

matrix: 

 

 

 

 

 

numModels = 3; % number of models to train 
YPredAll = zeros(length(YTest), numModels); % initialize matrix to 
store predictions 
YTrain=categorical(YTrain); 
for i = 1:numModels 
    % train a new model 
    net = trainNetwork(TrainFeatures,YTrain,layers,options); 
     
    % predict on test set 
    YPred = classify(net,TestFeatures); 
    YPred = 
renamecats(YPred,{'1','2','3','4','5','6','7','8'},catnames); 
    
    % store predictions in YPredAll matrix 
    YPredAll(:, i) = grp2idx(YPred); 
end 

 
% take the mode prediction across all models 
YPredEnsemble = mode(YPredAll, 2); 
YPredEnsemble = categorical(YPredEnsemble, 1:8, catnames); 
YTest = renamecats(YTest,{'1','2','3','4','5','6','7','8'},catnames); 

 

% compute accuracy 
accuracy = 100*sum(YPredEnsemble == YTest') / 
numel(YTest) 

 
% Plot the confusion matrix for the final model 
figure; 
cm = confusionchart(YTest, YPredEnsemble); 
title('Classification for a faulty and healthy signal for 
each road type'); 
cm.RowSummary = 'row-normalized'; 
cm.ColumnSummary = 'column-normalized'; 
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The hyperparameter tuning process encompassed diverse methodologies, ranging from 

grid search to random search and Bayesian optimization, the selection contingent upon 

the intricacy of the hyperparameter space. Robust evaluation metrics, encompassing but 

not limited to accuracy, loss, and domain-specific criteria, were enlisted to gauge the 

LSTM network's performance [143]. 

The harmonious amalgamation of the Adam optimization algorithm, ensemble 

learning, and meticulous hyperparameter tuning culminated in a finely-tuned LSTM 

architecture and training regimen, delivering optimal outcomes meticulously tailored 

to the specifics of our task. 

3.7.7. SVM Tuning 

Tuning SVM parameters is essential to achieve the best possible performance for your 

specific problem. In MATLAB, we can tune SVM hyperparameters using various 

techniques, including grid search and cross-validation. Here's a step-by-step on how we 

tuned SVM in MATLAB 

3.7.7.1. Splitting Data for Cross-Validation  

To assess the effectiveness of different hyperparameters, it's essential to divide the 

dataset into training and validation sets. MATLAB offers functions like 'cvpartition' or 

'crossval' to create cross-validation folds [144]. 

3.7.7.2. Choosing the SVM Kernel  

SVMs offer various kernels, including linear, polynomial, radial basis function (RBF), 

or sigmoid. The kernel choice plays a vital role in model's performance, so we should 

carefully select the most suitable one for your specific problem. 
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3.7.7.3. Selecting Hyperparameters  

Critical SVM hyperparameters to fine-tune include 

C This parameter controls the balance between maximizing the margin and minimizing 

classification errors [145]. In our model, we set the 'BoxConstraint' hyperparameter to 

the values '0.01,' '0.1,' '1,' and '10. 

3.7.7.4. Kernel Parameters  

Depending on the selected kernel type, such as the polynomial degree for polynomial 

kernels or kernel width for RBF kernels, additional parameters may need adjustment 

[145]. In our model, we specifically adjusted the 'KernelScale' hyperparameter, using 

the values '0.01,' '0.1,' '1,' and '10. 

Grid Search In MATLAB, the 'fitcsvm' function is employed to train SVM classifiers. 

For multi-class problems, 'fitcecoc' can be utilized. To execute a grid search for 

hyperparameter optimization, leverage 'fitcecoc' along with the 

'HyperparameterOptimizationOptions' parameter [145]. Below is an example: 

% Create an SVM template 
template = templateSVM('KernelFunction', 'rbf'); 
% Define the hyperparameter search space 
parameters = struct('BoxConstraint', [0.01, 0.1, 1, 10], 'KernelScale', 
[0.01, 0.1, 1, 10]); 
% Set up hyperparameter optimization options 
options = struct('Optimizer', 'bayesopt', 'MaxObjectiveEvaluations', 
30); 
% Conduct hyperparameter optimization using fitcecoc 
svm_model = fitcecoc(XTrain, YTrain, 'Learners', template, 
'OptimizeHyperparameters', 'auto',... 
    'HyperparameterOptimizationOptions', options, 'HyperparameterRange', 
parameters); 
% Assess the best model's performance on the validation set 
predictions = predict(svm_model, XValidation); 
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3.7.7.5. Model Evaluation 

 Following hyperparameter tuning, evaluate the SVM model's performance using 

appropriate metrics, such as accuracy, precision, recall, or F1-score, on a test dataset or 

through cross-validation. 

Always keep in mind that the choice of kernel and hyperparameters significantly 

influences our SVM model's performance. It's crucial to experiment with various 

configurations while employing cross-validation to prevent overfitting. 
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IV. THE RESULTS AND DISCUSSION 

In this chapter, we fuse the outcomes and insights from our experiments in road obstacle 

detection and suspension fault classification, providing a comprehensive view of both 

results and their implications. Our research, powered by an Intel(R) Core(TM) i7-

7820HK CPU and NVIDIA GeForce GTX 1080 GPU, spanned several tests, each 

targeting specific aspects of detection and classification under various environmental 

conditions. 

We focused on the Road Type and Signal Condition Classification, incorporating real-

world variables such as noise and denoising processes. This approach allowed us to 

assess the robustness of our systems under different operational scenarios. 

Our discussion goes beyond presenting data, and delving into the performance metrics, 

challenges, and potential for enhancements in practical applications. We critically 

analyze the impact of noise on classification accuracy and evaluate the effectiveness of 

various denoising techniques. 

Furthermore, this chapter acknowledges the study's limitations, offering insights into 

the constraints and practical considerations that shaped our research. We also put 

forward recommendations for future research, aiming to advance suspension fault 

detection systems. 

Summarizing, this chapter bridges our experimental results with thoughtful analysis, 

setting the stage for future innovations in automotive safety and performance 

enhancement. 
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4.1. First Test Discussion Road obstacles 5 levels of training and testing (With 

Noise) 

In our initial test for detecting road obstacle faults, we examined 15 diverse methods to 

identify obstacles such as Sinewaves, Grids, Potholes, and Bumps across five different 

levels of faults. To simulate realistic driving conditions, we introduced various types of 

noise, such as those resembling grain or engine sounds, which can affect the tie rod 

during driving. The results in a noisy environment (as shown in Table 1) were 

enlightening. Notably, the Wavelet Scattering SVM PCA method demonstrated 

exceptional performance, achieving a mean accuracy of 99.1%. 

Table 1 First Test Method Performance Summary (With Noises) 

Model Names Number of 
Training Cycles 

Mean 
Accuracy 

(%) 

Std 
Accuracy 

(%) 

Mean 
Time 
(sec) 

Std 
Time 
(sec) 

Wavelet Scattering SVM PCA 5 Folds 99,1 0,144 11 1 
DWT SVM 1 Iteration 95 2,16 9 4 
Wavelet Scattering SVM Tuned 20 Evaluations 95 1,41 403 62 
Wavelet Scattering SVM CV SRE 5 Folds 94,9 2,66 11 1 
Wavelet Scattering RNN ADAM 170 Epochs 94,8 1,5 53 3 
Wavelet Scattering SVM Tuned SRE 20 Evaluations 94,5 1,29 183 75 
DWT SVM Tuned 20 Evaluations 94,3 1,26 382 346 
Wavelet Scattering SVM CV 5 Folds 94,3 1,55 22 20 
Wavelet Scattering RNN 170 Epochs 93,8 2,63 59 4 
Wavelet Scattering SVM Tuned RFE 20 Evaluations 93 1,41 123 14 
Wavelet Scattering SVM CV RFE 5 Folds 91,1 0,625 13 1 
DWT SVM SRE Tuned 20 Evaluations 91 2,94 487 403 
Wavelet Scattering SVM CV LDA 5 Folds 77 5,72 9 1 
Wavelet Scattering SVM Tuned LDA 20 Evaluations 68 7,16 83 2 
DWT Neural Network 200 Epochs 54 6 10 9 
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4.1. Second Test Discussion Road obstacles 5 levels of training and testing 

(Denoised) 

In the second test, we focused on noise removal from road obstacles, using MATLAB's 

'wdenoise' function to eliminate the noises we introduced in the first test. Subsequently, 

we applied the same 15 methods to detect Sinewave, Grid, Pothole, and Bump obstacles 

across five varied levels of faults. The results showed that not only did the top-

performing method from the first test (referenced in Table 2) maintain its high accuracy 

post-denoising, but it also confirmed the robustness of this model. In contrast, while 

methods like the Wavelet Scattering SVM Tuned RFE and Tuned exhibited significant 

improvements after denoising, they also demonstrated a notable increase in processing 

time. This highlights the essential balance between detection accuracy and operational 

efficiency in road safety applications. 

Table 2 Second Test Method Performance Summary (Denoised) 

Model Names Number of 
Training Cycles 

Mean 
Accuracy 

(%) 

Std 
Accuracy 

(%) 

Mean 
Time (sec) 

Std Time 
(sec) 

Wavelet Scattering SVM PCA 5 Folds 97,9 2,75 11 7 

Wavelet Scattering SVM Tuned RFE 20 Evaluations 97,6 1,11 91 16 

Wavelet Scattering SVM Tuned 20 Evaluations 97,3 0,655 565 368 

Wavelet Scattering SVM Tuned SRE 20 Evaluations 96 0,816 146 25 

Wavelet Scattering RNN ADAM 170 Epochs 96 2 53 1 

Wavelet Scattering SVM CV RFE 5 Folds 94,8 0,315 13 1 

Wavelet Scattering RNN 170 Epochs 94,5 0,577 54 1 

DWT SVM 1 Iteration 94,5 1,29 5 2 

DWT SVM Tuned 20 Evaluations 93,5 3,7 361 189 

Wavelet Scattering SVM CV SRE 5 Folds 93,4 0,903 12 5 

Wavelet Scattering SVM CV 5 Folds 93,3 0,772 18 8 

DWT SVM SRE Tuned 20 Evaluations 90,5 2,08 561 444 

Wavelet Scattering SVM CV LDA 5 Folds 84,9 10,2 8,5 0,5 

DWT Neural Network 200 Epochs 82 3,46 247 41 

Wavelet Scattering SVM Tuned LDA 20 Evaluations 73,3 10,6 84 2 
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4.2. Third Test Road Type and Signal Condition Classification Comprehensive 

Testing (With Noise) 

The objective of the third test was to classify road types and signal conditions as either 

healthy or faulty, with a dual emphasis on maximizing accuracy and minimizing 

processing time. This comprehensive evaluation included scenarios with noise 

interference. The results, detailed in Table 3 for conditions with noise, reveal that the 

Wavelet Scattering RNN ADAM model exhibited high performance. The performance 

details of the tuning in ADAM's optimization can be found in Figure IV-1. The model 

maintained a mean accuracy of 97.8% with a relatively low standard deviation, 

indicating not only its effectiveness but also its consistency under noisy conditions. 

 

Table 3 Third Test Summary of Method Performance Metric (With Noise) 

Model Names Number of 
Training Cycles 

Mean 
Accuracy 

(%) 

Std 
Accuracy 

(%) 

Mean 
Time (sec) 

Std 
Time 
(sec) 

Wavelet Scattering RNN ADAM 170 Epochs 97,8 0,776 360 79 

DWT Neural Network 200 Epochs 97,7 0,261 41 6 

Wavelet Scattering SVM Tuned SRE 20 Evaluations 97,5 0,304 2970 530 

Wavelet Scattering SVM CV 5 Folds 97,2 0,846 86 17 

Wavelet Scattering SVM CV SRE 5 Folds 97,1 0,463 91 12 

Wavelet Scattering SVM CV RFE 5 Folds 96,5 0,0866 73 13 

Wavelet Scattering SVM Tuned RFE 20 Evaluations 96,3 0,135 2010 406 

Wavelet Scattering SVM PCA 5 Folds 95,8 0,61 81 14 

Wavelet Scattering SVM Tuned LDA 20 Evaluations 95,6 0,367 224 42 

Wavelet Scattering RNN 170 Epochs 95,5 0,685 386 56 

Wavelet Scattering SVM CV LDA 5 Folds 95,4 0,2 62 12 

Wavelet Scattering SVM Tuned 20 Evaluations 95,3 0,735 2630 483 

DWT SVM Tuned 20 Evaluations 95 0,598 4590 486 

DWT SVM SRE Tuned 20 Evaluations 93,1 0,304 4420 836 

DWT SVM 1 Iteration 92,2 0,358 194 38 
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Figure IV-1 Training Progress Road Type and Signal Condition Classification (With 

Noise) with Wavelet Scattering Neural Network Test Using adam Optimizer 

Figure IV-1 depicts the final training progress of the model, concluding at iteration 

2550 within three model loops with an impressive accuracy of 97.50%. Notably, this 

accuracy exhibits significant growth within the first 200 iterations of the training 

process, followed by a gradual increase until it reaches the final accuracy of 97.50%. 

4.3. Fourth Test Road Type and Signal Condition Classification Comprehensive 

Testing (Denoised) 

In the fourth test, we employed the denoising function, as mentioned in the previous 

test, to assess road type and signal condition classification under denoised conditions. 

The results, presented in Table 4, showed that the Wavelet Scattering SVM Tuned LDA 

model was a standout, achieving a mean accuracy of 98.4%. Details of the model's 
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tuning and evaluation can be found in Figures IV-2 and IV-3. However, it's important 

to highlight that this high accuracy came at the cost of increased processing time, 

illustrating the trade-off between accuracy and efficiency. These findings are vital for 

the advancement of road condition classification systems. They emphasize the 

significance of choosing the right model for each specific scenario to balance road 

safety and operational efficiency effectively. 

 

Table 4 Fourth Test Summary of Method Performance Metric (Denoised) 

Model Names Number of 
Training Cycles 

Mean 
Accuracy 

(%) 

Std 
Accuracy 

(%) 

Mean 
Time (sec) 

Std 
Time (sec) 

Wavelet Scattering SVM Tuned LDA 20 Evaluations 98,4 0,348 219 46 

Wavelet Scattering SVM Tuned 20 Evaluations 98,4 0,481 3580 602 

Wavelet Scattering SVM Tuned SRE 20 Evaluations 98,3 0,18 3400 691 

Wavelet Scattering SVM Tuned RFE 20 Evaluations 98,3 0,289 3760 569 

Wavelet Scattering RNN ADAM 170 Epochs 98,3 0,382 363 18 

DWT Neural Network 200 Epochs 98,1 0,499 44 3 

Wavelet Scattering SVM CV SRE 5 Folds 97,8 0,45 123 19 

Wavelet Scattering SVM CV LDA 5 Folds 97,7 0,456 60 12 

Wavelet Scattering RNN 170 Epochs 97,7 0,576 355 14 

Wavelet Scattering SVM CV RFE 5 Folds 97,4 0,17 71 11 

Wavelet Scattering SVM CV 5 Folds 97,1 0,551 114 22 

DWT SVM Tuned 20 Evaluations 97 0,439 4420 861 

DWT SVM SRE Tuned 20 Evaluations 95,9 0,421 1560 269 

Wavelet Scattering SVM PCA 5 Folds 92,9 0,52 551 101 

DWT SVM 1 Iteration 92,5 0,41 190 28 
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Figure IV-2 Objective Function Modeling of a faulty and healthy signal for each road 

type (Denoised) Wavelet Scattering and SVM Tuned and Optimized with LDA 

 

Figure IV-3 Minimum Objective vs. Number of Function Evaluations of a faulty and 

healthy signal for each road type (Denoised) Wavelet Scattering and SVM Tuned and 

Optimized with LDA 

In Figure IV-2, when we analyze the expected and actual performance of the tuned 

SVM model, we notice that 'Observed Points' cluster within a range of 0 to 0.6 in the 
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minimum objective function value. This pattern suggests that the model's performance 

is within an acceptable range. However, there are occasional instances where the 

performance falls outside this range. This variability in performance can be attributed 

to factors such as data characteristics, inherent limitations of the model, or variations in 

the datasets used for evaluation. 

In Figure IV-3, we observe that the hyperparameter optimization process produced 

promising results. The 'Minimum Observed Objective' achieved a low value of 0.02, 

signifying strong and robust model performance according to our selected metric. 

While the 'Estimated Minimum Objective' showed some fluctuations during the 

optimization process, it converged with the minimum observed objective. Although it 

did not reach the absolute lowest objective value, this outcome still indicates a level of 

performance that is both acceptable and effective for our specific task. 

Result Conclusion 

The extensive evaluation of various methods for detecting and classifying road 

obstacles under different conditions, including noise and denoising, offers valuable 

insights for autonomous driving and road safety. The tests demonstrate notable 

performance variations among methods, underscoring the necessity of choosing the 

most suitable technique based on application-specific requirements, data 

characteristics, and the trade-off between accuracy and processing time. 

In the first test, which focused on classifying road obstacles in noise-free conditions, 

the Wavelet Scattering SVM PCA method emerged as the most effective, achieving an 

exceptional mean accuracy of 99.1%. This result highlights the significance of 
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sophisticated algorithmic approaches in achieving high accuracy in road obstacle 

detection. 

 

In the second test, which included scenarios with and without noise, the Wavelet 

Scattering SVM PCA method maintained its robustness, achieving a high accuracy rate 

of 97.9% post-denoising. This performance parallels its effectiveness in vibration fault 

diagnosis for bearings at variable speeds, as noted in reference [146]. However, other 

methods like the Wavelet Scattering SVM Tuned RFE and the Wavelet Scattering SVM 

Tuned also showed significant improvements after denoising. These improvements, 

though, came at the cost of increased processing time. Nonetheless, they demonstrated 

robustness, especially in detecting unbalanced and bowed rotors, as documented in 

reference [147]. Specifically, the Wavelet Scattering SVM Tuned RFE achieved an 

accuracy of 97.6%, while the Wavelet Scattering SVM Tuned reached 97.3%. This test 

highlighted the critical balance between detection accuracy and operational efficiency 

in road safety applications. 

In the third test, which introduced noise to the road obstacle detection process, the 

Wavelet Scattering RNN ADAM model stood out. It maintained a mean accuracy of 

97.8% with low variability, demonstrating high performance and consistency under 

noisy conditions. Furthermore, the integration of wavelet scattering with LSTM proved 

effective in classifying unbalanced and bowed rotors, as indicated in reference [147]. 

Finally, in the fourth test, incorporating both noise and denoising, the Wavelet 

Scattering SVM Tuned LDA model was a top performer with a mean accuracy of 

98.4%, albeit with increased processing time. This highlights the crucial balance 
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between accuracy and operational efficiency. It has also showed promise in mixed 

signal environments, akin to its application in bearing vibration fault detection [148]. 

In conclusion, the optimal method for road obstacle detection and classification varies 

depending on data nature, noise presence, and the desired accuracy-efficiency balance. 

The effectiveness of feature selection, preprocessing, and adaptive techniques in 

enhancing performance and robustness is evident. These findings provide essential 

guidance for developing advanced road obstacle detection systems, contributing 

significantly to the field of autonomous driving technology. 

4.4. Limitations of the Study 

This research endeavor encountered certain limitations stemming from practical 

constraints and technical considerations. These limitations prompted the utilization of 

alternative methodologies to mitigate the challenges posed by the available resources. 

The scope and constraints of this study are delineated as follows 

4.4.1. Data Collection 

In this study, the primary method for data acquisition involved the utilization of Adams 

car simulation software. While Adams car simulation software is well-established for 

its data generation reliability, it is imperative to underscore that the specific software 

version employed in this research lacked the intrinsic capacity to directly simulate 

faults. To address this intrinsic limitation, the simulation methodology introduced 

variations in angular acceleration predicated on the influence of wear-induced changes. 

Moreover, in lieu of actual real-world noise, virtual noise components were 

incorporated. These methodological adaptations were implemented with the explicit 

objective of facilitating the study's ability to effectively capture and analyze the 
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manifestations of faults. This strategic approach was necessitated by the resource 

constraints encountered in this study and the concomitant fiscal implications associated 

with procuring dedicated sensors and control units for direct fault diagnosis. 

In the context of the application of accelerometer data for suspension fault detection, 

the data collection process necessitates meticulous attention to the following key 

considerations: 

Dataset Diversity and Extensiveness: The dataset employed in this research was 

diligently constructed to encompass a wide spectrum of real-world road conditions. 

This comprehensive dataset design aimed to faithfully model suspension behavior 

under various environmental and road condition scenarios. 

Dynamic Road Condition Variations: The data collection strategy incorporated the 

need to account for dynamic fluctuations in road conditions. This included 

accommodating transient anomalies such as potholes and other road surface 

irregularities, which necessitated the collection of data under diverse driving scenarios. 

Generalizability of the Model: Ensuring the robust generalizability of the machine 

learning model across distinct road conditions was a paramount consideration. The 

model's capacity to remain effective across different environmental contexts and its 

ability to maintain resilience against undue sensitivity to minor variations were critical 

for its practical applicability in real-world scenarios. 

Vital Information Captured by Accelerometer Data It is crucial to underscore the 

significance of accelerometer data, which captures pivotal vehicle movements and 

vibrations. These captured dynamics play an indispensable role in the detection of 

suspension issues that might not be readily discernible solely from surface 
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irregularities. Recognizing this pivotal role is imperative for accurate fault diagnosis 

and classification. 

4.4.2. Hardware Performance Evaluation 

Another substantial limitation of this study was the unavailability of an array of GPUs, 

CPUs, or FPGAs with varying processing speeds for the purpose of evaluating their 

influence on fault detection algorithms. Ideally, a comprehensive assessment would 

have involved testing diverse hardware speeds to gauge their impact on the 

effectiveness of the fault detection algorithms. Regrettably, due to resource constraints, 

this aspect could not be explored in depth. Nonetheless, this study focused on evaluating 

the overall performance and efficacy of the fault detection algorithms, irrespective of 

specific hardware variations. 

4.4.3. Time Constraints 

Time constraints presented a formidable challenge in this research endeavor. These 

temporal limitations-imposed constraints on the development of a more extensive array 

of fault detection algorithms and the exploration of a broader spectrum of road types. 

Although the study aspired to generate a substantial number of fault detection codes 

and incorporate a wide range of road scenarios, time restrictions curtailed the extent of 

these efforts. However, within the confines of the available time frame, the study 

diligently aimed to provide meaningful analysis and insights. 

In conclusion, this study acknowledges these limitations and has endeavored to mitigate 

their impact to the greatest extent possible, given the resources and time available, in 

pursuit of meaningful contributions to the field of suspension fault detection. 
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4.5. Recommendations for future research and practical applications 

In light of the limitations identified in this study, several compelling avenues for future 

research and practical applications emerge, each offering unique prospects for 

enhancing suspension fault detection methodologies. 

4.5.1. Integration of LiDAR with Accelerometer Data 

Exploration of LiDAR technology integration with accelerometer data is a paramount 

recommendation for suspension fault detection. This innovative technique utilizes 

LiDAR's ability to capture large amounts of training data and combines it with the 

practical testing capabilities of accelerometer data. Previous studies have demonstrated 

the effectiveness of LiDAR in earthquake detection [149], and this synergy can 

significantly enhance the accuracy and reliability of suspension fault detection models, 

particularly in real-world driving scenarios. 

4.5.2. Incorporation of Real-Life Data 

A key recommendation is to emphasize the incorporation of authentic real-world data 

in research efforts. While software simulations provide controlled environments, the 

resource-intensive collection of real-life data can provide invaluable insights into 

suspension behavior under diverse road conditions. Bridging the gap between 

laboratory findings and actual road performance augments the practical utility of 

suspension fault detection systems significantly. 

4.5.3. Merging Finite Element Analysis with Vibration Fault Detection 

The integration of finite element analysis with vibration fault detection methodologies 

is a promising approach that can significantly enhance suspension fault detection 
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accuracy and predictive capabilities, especially when considering the fatigue life cycle. 

This innovative integration enables the classification of fault severity based on finite 

element grades. For instance, in the case of tie rod degradation, specific vibrations 

corresponding to varying degrees of wear and high vibrations can signify different 

stages of the fatigue life cycle and levels of potential danger. By aligning the severity 

of detected faults through vibration analysis with fatigue life cycle-linked finite element 

grades, as done in Vibration Analysis of Defected Ball Bearings [150], this approach 

facilitates the provision of more precise warnings to drivers. 

4.5.4. Investment in Advanced Hardware Resources 

Crucial to the advancement of research endeavors is investing in advanced hardware 

resources, such as high-performance GPUs and processors. These resources facilitate 

the comprehensive analysis of complex real-life data, enabling the application of 

sophisticated machine-learning techniques to achieve heightened fault detection 

accuracy. 

4.5.5. Conducting Comparative Studies on Machine-Learning Algorithms 

Conducting comparative studies to evaluate different machine-learning algorithms in 

suspension fault detection is highly advantageous. Systematically comparing classifiers 

and feature extraction techniques aids in pinpointing the most reliable and efficient 

approach for practical implementation. 
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4.5.6. The practical applications of these recommendations span across various 

sectors 

Automotive Industry Integration of suspension fault detection systems in vehicle 

manufacturing can enhance safety and performance, enabling early identification of 

suspension issues, reducing maintenance costs, and ensuring safer driving experiences 

for consumers. 

Fleet Management Companies Integration of suspension fault detection into 

maintenance routines can lead to increased operational efficiency, reduced downtime, 

and substantial cost savings through timely identification of suspension problems. 

Road Safety Authorities Leveraging suspension fault detection systems for continuous 

monitoring of suspension health can swiftly identify vehicles with potential issues, 

allowing authorities to take proactive measures to prevent accidents arising from 

vehicle malfunctions. 

Aftermarket Automotive Service Providers Offering suspension fault detection as a 

value-added service can assist car owners in more effectively maintaining their 

vehicles, potentially extending their lifespan. 

Embracing these recommendations not only propels the field of suspension fault 

detection forward but also ensures tangible implementation across diverse sectors, 

promising a safer and more efficient automotive landscape. 
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4.5.7. The Cost and Application of Accelerometer in Vehicular Vibration 

Measurement 

To effectively measure vibrations in the outer tie rod of a car suspension, an 

accelerometer with a frequency range of 10 Hz to 1000 Hz and a sensitivity of at least 

100 mV/g is required. 

The PCB Piezotronics Model 601A01 accelerometer aligns perfectly with these criteria. 

With a frequency range spanning from 0.27 Hz to 10 kHz and a sensitivity of 100 mV/g, 

it is specifically designed for high-frequency vibration measurement in automotive and 

aerospace applications. Priced at $220 per unit, this accelerometer provides a cost-

effective solution for precise measurements [1]. To harness the full potential of data 

processing, customization of a chassis control module or suspension control module is 

recommended. This tailored modification ensures seamless integration with other 

functions, thereby enhancing safety and reliability  [151]. Additionally, establishing 

connectivity with other modules, such as the Engine Control Unit (ECU) [152], 

facilitates not only real-time error display on the dashboard but also error storage for 

future analysis and reference.  

 

 

 
1 PCB Piezotronics. (2024). Frequency range of 10 Hz to 1000 Hz for measuring vibration in the 

outer tie rod of a car suspension. Retrieved from [https://www.ni.com/en/shop/data-acquisition/sensor-

fundamentals/measuring-vibration-with-accelerometers.html] 
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V. CONCLUSION 

This thesis represents a substantial contribution to the field of fault detection in a 

simulated car's gear steering system, with a specific focus on suspension failure in 

vehicles. This issue is critical, as suspension failures pose significant risks on the road 

and can lead to severe, sometimes fatal, car accidents. The research employed a 

combination of simulation, data analysis, signal processing, and classification to 

address this issue thoroughly. 

The main findings of the study are centered around simulated wear and tear, data 

collection, feature extraction methods, classification algorithms, robustness analysis, 

and identifying the best-performing approaches. The study successfully simulated wear 

in the outer tie rod, generating faulty signals that mimic real-world conditions. The 

collected data from these simulations provided a baseline for healthy signals. 

Feature extraction was conducted using two distinct methods wavelet scattering and 

discrete wavelet transform. Their effectiveness in capturing signal characteristics was 

thoroughly evaluated. Support Vector Machines (SVM) and Neural Networks (NN) 

were used as classification algorithms to differentiate between normal and faulty 

signals. The robustness of the system was tested by introducing various types of noise, 

including rough road, tire, and engine noises. Analyses were performed on signals in 

conditions without noise, with noise, and after denoising. 

The study highlighted "Wavelet Scattering SVM PCA" as the best-performing method 

in the first test for noise scenarios, achieving an outstanding mean accuracy of 99.1%. 

In the second test, which incorporated noisy and noise-free scenarios, "Wavelet 

Scattering SVM PCA" again proved its effectiveness, maintaining a high accuracy rate 
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post-denoising at 97.9%. The third test, introducing noise into road obstacle detection, 

saw the "Wavelet Scattering RNN ADAM" model as the standout, with a mean 

accuracy of 97.8%. In the fourth and final test, incorporating both noise and denoising, 

the "Wavelet Scattering SVM Tuned LDA" emerged as the top performer, achieving a 

mean accuracy of 98.4%. 

While the research has its limitations, particularly within the simulated environment, it 

lays a solid foundation for future exploration. Real-world conditions may vary from 

simulations, and future research should focus on real-world testing, diverse datasets, 

and the advancement of machine learning techniques to enhance fault detection 

accuracy. 

The significance of this research lies in its potential applications in the automotive 

industry, offering a pathway to safer and more reliable vehicles. The methodologies and 

findings presented in this thesis not only contribute to the advancement of automotive 

safety and steering system fault detection but also play a critical role in enhancing 

overall road safety. 

This thesis, therefore, not only contributes to the technological advancements in the 

field but also honors the memory of those affected by suspension-related accidents, 

aiming to make roads safer for everyone. 
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APPENDIX A 

5.1. MATLAB Code to Generate Signals for Four Types Road obstacles 5 levels 

training and testing (With Noise, Denoised) 

% Load the data 

Sivewave = importdata('Sinewave.tab', '\t').data; 

Roughness = importdata('Roughness.tab', '\t').data; 

Pothole = importdata('Pothole.tab', '\t').data; 

Bump = importdata('bump.tab', '\t').data; 

% Extract the time vector and acceleration data 

t = Sivewave(,1); 

accsv = Sivewave(,17); 

accrg = Roughness(,17); 

accpthl = Pothole(,17); 

accbmp = Bump(,17); 

% Define the cell array of workspace names 

workspaceNames = {'accsv', 'accrg', 'accpthl','accbmp'}; 

% Loop through the workspace names 

for i = 1length(workspaceNames) 

    % Get the data for this workspace 

    data = evalin('base', workspaceNames{i}); 

     

    % Loop through the time points and frequency indices for 1000 

    for m = 1length(t) 

        for n = 199 

            % Compute the new value based on the time and frequency 

            if t(m) == 0 % Modified condition 

                data(m,n) = 0; 

            elseif data(m,1) > 0 

                data(m,n+1) = ((data(m,1)*t(m)^2) + (n*2/100000)) / (t(m)^2); 

            elseif data(m,1) < 0 

                data(m,n+1) = ((data(m,1)*t(m)^2) - (n*2/100000)) / (t(m)^2); 

            end 

        end 

    end 

     

    % Loop through the time points and frequency indices for 100 

    for m = 1length(t) 

        for n = 1400 
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            % Compute the new value based on the time and frequency 

            if t(m) == 0 % Modified condition 

                data(m,n+100) = 0; 

            elseif data(m,1) > 0 

                data(m,n+100) = ((data(m,1)*t(m)^2) + (n*2/400)) / (t(m)^2); 

            elseif data(m,1) < 0 

                data(m,n+100) = ((data(m,1)*t(m)^2) - (n*2/400)) / (t(m)^2); 

            end 

        end 

    end 

     

    % Assign the modified data back to the workspace 

    assignin('base', workspaceNames{i}, data); 

end 

% Delete the first three rows from each dataset 

accsv(13,) = []; 

accrg(13,) = []; 

accpthl(13,) = []; 

accbmp(13,) = []; 

t(13,)=[]; 

%labeling my columns 

x=ones(1,100); 

x2=repmat(2,1,100); 

x3=repmat(3,1,100); 

x4=repmat(4,1,100); 

x5=repmat(5,1,100); 

label=([x,x2,x3,x4,x5]); 

accsv=[label;accsv]; 

accrg=[label;accrg]; 

accpthl=[label;accpthl]; 

accbmp=[label;accbmp]; 

AccData=accrg; 

noiser = 30 * randn(size(AccData(2end,))); % Gaussian noise with standard deviation 

0.1 

noisy_signal = AccData(2end,) + noiser; 

%AccData= [[accsv1, accrg1, accpthl1,accbmp1];noisy_signal]; 

% Perform wavelet denoising on each column of the matrix 

denoisedMatrix = zeros(size(noisy_signal)); 

for col = 1size(noisy_signal, 2) 

    signal = noisy_signal(, col); 
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    % Perform wavelet denoising on the individual signal using wdenoise 

    denoisedSignal = wdenoise(signal); 

        % Store the denoised signal in the denoised matrix 

    denoisedMatrix(, col) = denoisedSignal; 

end 

AccData=[label;denoisedMatrix]; 

5.2. First Labelling Code for Four Types Road obstacles 5 levels training and 

testing (With Noise, Denoised) 

Ts=mean(diff(t)); 

rng default %fix the random 

AccData=AccData(,randperm(size(AccData,2))); 

%shuffle the columns 

traindata=AccData(2end,); 

trainlabel=categorical(AccData(1,)); 

numClasses = numel(trainlabel); 

CT = countlabels(trainlabel); 

tbl = table2array(CT(,2)); 

% Use cvpartition to split data into training and validation sets 

c = cvpartition(trainlabel, 'HoldOut', 0.2); 

trainIdx = training(c); 

testIdx = test(c); 

Ptrain = traindata(,trainIdx); 

Ttrain = trainlabel(trainIdx); 

Ptest = traindata(,testIdx); 

Ttest = trainlabel(testIdx); 

uniqueLabels = unique(trainlabel); 

catnames = {'Normal','Level 1','Level 2','Level 3','Level 4'}; 

uniqueLabels = renamecats(uniqueLabels,{'1','2','3','4','5'},catnames); 

bar(uniqueLabels, tbl); 

CTtrain=countlabels(Ttrain); 

CTtest=countlabels(Ttest); 

tblTrain = table2array(CTtrain(,2)); 

tblTest = table2array(CTtest(,2)); 

H = bar(uniqueLabels,[tblTrain, tblTest],'stacked'); 

legend(H,["Training Set","Test Set"],'Location','NorthEastOutside') 

LPtrain=[double(Ttrain);Ptrain]; 

[ii,jj,kk]=unique(LPtrain(1,)); 

m=accumarray(kk,(1numel(kk)),[],@(x) {x'}); 
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out=cell2mat(cellfun(@(x) 

LPtrain(,x(randperm(numel(x),1))),m','UniformOutput',false)); 

%%idx = randperm(size(Ptrain,2),4); 

%Fs = 1/Ts; 

parfor n = 1numel(out(1,)) 

    x=out(2end,n); 

    subplot(4,2,n); 

    plot(t,x); 

    if n == 4 || n == 5 

        xlabel('Seconds'); 

    end 

    d=dictionary([1,2,3,4,5],catnames); 

    title(d(n)); 

end 

5.2.1. Codes For All Models Used for First Tests. 

5.2.1.1. MATLAB Code Wavelete Scattering and Neural Network Using Adam 

Optimizer 

N = length(t(,1)); 

Fs = 1/Ts; 

tic; 

sn = waveletScattering('SignalLength',N,'SamplingFrequency',Fs,... 

    'InvarianceScale',20); 

[~,numpaths] = paths(sn); 

Ncfs = numCoefficients(sn); 

sum(numpaths) 

scTrain=gpuArray([ ]); 

for n=1size(Ptrain,2) 

    feat=featureMatrix(sn,gather(Ptrain(,n))); 

    u=feat(,12end,); 

    %Define the Kalman filter parameters 

A = eye(3); % state transition matrix 

H = eye(3); % observation matrix 

Q = 1e-5*eye(3); % state noise covariance 

R = 1e-3*eye(3); % observation noise covariance 

x0 = zeros(3,1); % initial state 

P0 = eye(3); % initial state covariance 

% Smooth each signal using the Kalman filter 

for i = 1size(u, 1)/3 
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    % Extract the signal 

    signal = u((i-1)*3+1i*3,); 

     

    % Initialize the Kalman filter 

    x = x0; 

    P = P0; 

     

    % Smooth the signal 

    for j = 1size(signal, 2) 

        y = signal(,j); 

         

        % Predict 

        x_ = A*x; 

        P_ = A*P*A' + Q; 

         

        % Update 

        K = P_*H'/(H*P_*H' + R); 

        x = x_ + K*(y - H*x_); 

        P = (eye(3) - K*H)*P_; 

         

        % Store the smoothed signal 

        signal(,j) = x; 

    end 

     

    % Replace the original signal with the smoothed signal 

    u((i-1)*3+1i*3,) = signal; 

end 

    scTrain=cat(3,scTrain,u); 

end 

scTest=gpuArray([ ]); 

for n=1size(Ptest,2) 

    feat=featureMatrix(sn,gather(Ptest(,n))); 

    u=feat(,12end,); 

    %Define the Kalman filter parameters 

A = eye(3); % state transition matrix 

H = eye(3); % observation matrix 

Q = 1e-5*eye(3); % state noise covariance 

R = 1e-3*eye(3); % observation noise covariance 

x0 = zeros(3,1); % initial state 

P0 = eye(3); % initial state covariance 
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% Smooth each signal using the Kalman filter 

for i = 1size(u, 1)/3 

    % Extract the signal 

    signal = u((i-1)*3+1i*3,); 

     

    % Initialize the Kalman filter 

    x = x0; 

    P = P0; 

     

    % Smooth the signal 

    for j = 1size(signal, 2) 

        y = signal(,j); 

         

        % Predict 

        x_ = A*x; 

        P_ = A*P*A' + Q; 

         

        % Update 

        K = P_*H'/(H*P_*H' + R); 

        x = x_ + K*(y - H*x_); 

        P = (eye(3) - K*H)*P_; 

         

        % Store the smoothed signal 

        signal(,j) = x; 

    end 

     

    % Replace the original signal with the smoothed signal 

    u((i-1)*3+1i*3,) = signal; 

end 

    scTest=cat(3,scTest,u); 

end 

TrainFeatures = scTrain; 

TrainFeatures = squeeze(num2cell(TrainFeatures,[1 2])); 

YTrain = Ttrain; 

TestFeatures = scTest; 

TestFeatures = squeeze(num2cell(TestFeatures,[1 2])); 

YTest = Ttest; 

[inputSize, ~] = size(TrainFeatures{1}); 

numHiddenUnits = 1500; 

numClasses = numel(unique(YTrain)); 
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layers = [ ... 

    sequenceInputLayer(inputSize,'Normalization','zscore') 

    lstmLayer(numHiddenUnits,'OutputMode','last')  

    fullyConnectedLayer(numClasses) 

    softmaxLayer 

    classificationLayer]; 

maxEpochs = 170; 

miniBatchSize = 170; 

options = trainingOptions('adam', ... 

    'InitialLearnRate', 1e-4, ... 

    'MaxEpochs', 170, ... 

    'MiniBatchSize', 170, ... 

    'SequenceLength', 'longest', ... 

    'Shuffle', 'every-epoch', ... 

    'ValidationData', {TestFeatures, YTest}, ... 

    'ValidationFrequency', 30, ... 

    'Verbose', 1, ... 

    'Plots', 'training-progress', ... 

    'ExecutionEnvironment', 'gpu'); 

numModels = 3; % number of models to train 

YPredAll = zeros(length(YTest), numModels); % initialize matrix to store predictions 

YTrain=categorical(YTrain); 

for i = 1numModels 

    % train a new model 

    net = trainNetwork(TrainFeatures,YTrain,layers,options); 

     

    % predict on test set 

    YPred = classify(net,TestFeatures); 

    YPred = renamecats(YPred,{'1','2','3','4','5'},catnames); 

    

    % store predictions in YPredAll matrix 

    YPredAll(, i) = grp2idx(YPred); 

end 

% take the mode prediction across all models 

YPredEnsemble = mode(YPredAll, 2); 

YPredEnsemble = categorical(YPredEnsemble, 15, catnames); 

 YTest = renamecats(YTest,{'1','2','3','4','5'},catnames); 

% compute accuracy and display confusion matrix 

accuracy = 100*sum(YPredEnsemble == YTest') / numel(YTest) 

% Plot the confusion matrix for the final model 
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figure; 

cm = confusionchart(YTest, YPred); 

title('Classification of faulty signals based on Levels'); 

cm.RowSummary = 'row-normalized'; 

cm.ColumnSummary = 'column-normalized'; 

elapsedTime = toc; 

fprintf('Elapsed time %.2f seconds\n', elapsedTime); 

5.2.1.2. MATLAB Code For Wavelet Scattering and SVM with PCA 

N = length(t(,1)); 

Fs = 1/Ts; 

tic; 

% Set wavelet scattering parameters 

sn = 

waveletScattering('SignalLength',N,'SamplingFrequency',Fs,'InvarianceScale',20); 

[~,numpaths] = paths(sn); 

Ncfs = numCoefficients(sn); 

% Extract scattering coefficients for training set 

scTrain = gpuArray([]); 

for n = 1size(Ptrain,2) 

    feat = featureMatrix(sn,gather(Ptrain(,n))); 

    u = feat; 

    scTrain = cat(3,scTrain,u); 

end 

% Extract scattering coefficients for test set 

scTest = gpuArray([]); 

for n = 1size(Ptest,2) 

    feat = featureMatrix(sn,gather(Ptest(,n))); 

    u = feat; 

    scTest = cat(3,scTest,u); 

end 

% Prepare the data for training and testing 

TrainFeatures = scTrain; 

TrainFeatures = reshape(TrainFeatures, [], size(TrainFeatures, 3)); 

TrainFeatures = TrainFeatures'; 

YTrain = Ttrain; 

TestFeatures = scTest; 

TestFeatures = reshape(TestFeatures, [], size(TestFeatures, 3)); 

TestFeatures = TestFeatures'; 

YTest = Ttest; 
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% Perform PCA to reduce the dimensionality of the feature matrix 

[coeff, score, latent] = pca(TrainFeatures); 

% Determine the number of principal components to use 

total_var = sum(latent); 

var_explained = cumsum(latent) / total_var; 

% Choose the number of principal components that explain at least 95% of the 

variance 

num_components = find(var_explained >= 0.95, 1); 

% Project the training and testing features onto the selected principal components 

TrainFeatures = TrainFeatures * coeff(, 1num_components); 

TestFeatures = TestFeatures * coeff(, 1num_components); 

% Set the number of folds for cross-validation 

numFolds = 5; 

% Define a cross-validation partition 

cvp = cvpartition(YTrain, 'KFold', numFolds); 

% Create a cell array to store the accuracy of each fold 

accuracyArray = cell(numFolds, 1); 

% Loop over each fold 

for fold = 1numFolds 

     

    % Get the training and validation indices for this fold 

    trainIdx = cvp.training(fold); 

    testIdx = cvp.test(fold); 

     

    % Extract the features and labels for this fold 

    FoldTrainFeatures = TrainFeatures(trainIdx, ); 

    FoldTrainLabels = YTrain(trainIdx); 

    FoldTestFeatures = TrainFeatures(testIdx, ); 

    FoldTestLabels = YTrain(testIdx); 

     

    % Train the SVM model on the training data for this fold 

   

model = fitcecoc(FoldTrainFeatures, FoldTrainLabels); 

     

    % Predict the labels of the test data for this fold 

    YPred = predict(model, FoldTestFeatures); 

     

    % Calculate the accuracy for this fold and store it in the accuracy array 

    accuracyArray{fold} = 100 * sum(YPred == FoldTestLabels') / 

numel(FoldTestLabels); 
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end 

% Calculate the mean accuracy over all folds 

meanAccuracy = mean(cell2mat(accuracyArray)); 

% Display the mean accuracy 

fprintf('Mean cross-validation accuracy %.2f%%\n', meanAccuracy); 

% Train the final model on all of the training data 

finalModel = fitcecoc(TrainFeatures, YTrain); 

% Predict the labels of the test data using the final model 

YPred = predict(finalModel, TestFeatures); 

% Calculate the accuracy of the final model 

finalAccuracy = 100 * sum(YPred == YTest') / numel(YTest); 

% Display the final accuracy 

fprintf('Final test set accuracy %.2f%%\n', finalAccuracy); 

YPred = categorical(YPred, {'1','2','3','4','5'}, catnames); 

 YTest = renamecats(YTest,{'1','2','3','4','5'},catnames); 

% Plot the confusion matrix for the final model 

figure; 

cm = confusionchart(YTest, YPred); 

title('Classification of faulty signals based on Levels'); 

cm.RowSummary = 'row-normalized'; 

cm.ColumnSummary = 'column-normalized'; 

elapsedTime = toc; 

fprintf('Elapsed time %.2f seconds\n', elapsedTime); 

5.2.1.3. MATLAB Code for WaveletScattering and SVM TUNED LDA 

N = length(t(,1)); 

Fs = 1/Ts; 

tic; 

% Set wavelet scattering parameters 

sn = 

waveletScattering('SignalLength',N,'SamplingFrequency',Fs,'InvarianceScale',20); 

% Extract scattering coefficients for training set 

scTrain = []; 

for n = 1size(Ptrain,2) 

    feat = featureMatrix(sn, Ptrain(,n)); 

    scTrain = cat(3, scTrain, feat); 

end 

% Extract scattering coefficients for test set 

scTest = []; 

for n = 1size(Ptest,2) 
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    feat = featureMatrix(sn, Ptest(,n)); 

    scTest = cat(3, scTest, feat); 

end 

% Prepare the data for training and testing 

TrainFeatures = scTrain; 

TrainFeatures = reshape(TrainFeatures, [], size(TrainFeatures, 3)); 

TrainFeatures = TrainFeatures'; 

YTrain = Ttrain; 

TestFeatures = scTest; 

TestFeatures = reshape(TestFeatures, [], size(TestFeatures, 3)); 

TestFeatures = TestFeatures'; 

YTest = Ttest; 

% Apply Linear Discriminant Analysis (LDA) on the training data for this fold 

    ldaModel = fitcdiscr(TrainFeatures, YTrain); 

     

    % Apply LDA to the training and test data for this fold 

    TrainFeaturesLDA = predict(ldaModel, TrainFeatures); 

    TestFeaturesLDA = predict(ldaModel, TestFeatures); 

     

    % Convert LDA-transformed features to a numeric matrix 

    TrainFeaturesLDA = double(TrainFeaturesLDA); 

    TestFeaturesLDA = double(TestFeaturesLDA); 

% Define hyperparameters to tune 

hyperparameters = struct(); 

hyperparameters.BoxConstraint = {'0.01', '0.1', '1', '10'}; 

hyperparameters.KernelScale = {'0.01', '0.1', '1', '10'}; 

% Define the search space for each hyperparameter 

params = struct(); 

params.BoxConstraint = optimizableVariable('BoxConstraint', [1, 10], 'Type', 

'integer'); 

hyperparameters.KernelScale = [0.1, 1]; 

params.KernelScale = optimizableVariable('KernelScale', 

hyperparameters.KernelScale, 'Type', 'real'); 

% Define the optimization options 

optimizationOptions = struct(); 

optimizationOptions.MaxObjectiveEvaluations = 100; 

optimizationOptions.AcquisitionFunctionName = 'expected-improvement-plus'; 

optimizationOptions.UseParallel = true; 

% Train and tune the SVM model using the training data 

temp = templateSVM('Standardize',true); 
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SVMModel = fitcecoc(TrainFeaturesLDA, YTrain, 'Learners', temp, 

'FitPosterior',true,... 

    'OptimizeHyperparameters', {'BoxConstraint','KernelScale'},... 

    'HyperparameterOptimizationOptions', optimizationOptions, 'Verbose', 1,... 

    'HyperparameterOptimizationOptions', struct('AcquisitionFunctionName',... 

    'expected-improvement-plus', 'MaxObjectiveEvaluations', 20, 'UseParallel',true), 

'Options', statset('UseParallel',true)); 

% Predict the labels of the test data using the tuned model 

YPred = predict(SVMModel, TestFeaturesLDA); 

% Calculate the accuracy of the model 

accuracy = 100 * sum(YPred == YTest') / numel(YTest); 

% Display the accuracy 

fprintf('Test set accuracy %.2f%%\n', accuracy); 

figure; 

YPred = categorical(YPred, {'1','2','3','4','5'}, catnames); 

 YTest = renamecats(YTest, {'1','2','3','4','5'},catnames); 

  % Plot the confusion matrix in a new figure 

    

      figure; 

cm = confusionchart(YTest, YPred); 

title('Classification of faulty signals based on Levels'); 

cm.RowSummary = 'row-normalized'; 

cm.ColumnSummary = 'column-normalized'; 

    elapsedTime = toc; 

    fprintf('Elapsed time %.2f seconds\n', elapsedTime); 

5.3. MATLAB Code to Generate Road Type and Signal Condition Classification 

Comprehensive Testing (Three Scenarios) 

% Load the data 

Sivewave = importdata('Sinewave.tab', '\t').data; 

Roughness = importdata('Roughness.tab', '\t').data; 

Pothole = importdata('Pothole.tab', '\t').data; 

Bump = importdata('bump.tab', '\t').data; 

% Extract the time vector and acceleration data 

t = Sivewave(,1); 

accsv = Sivewave(,17); 

accrg = Roughness(,17); 

accpthl = Pothole(,17); 

accbmp = Bump(,17); 

% Define the cell array of workspace names 
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workspaceNames = {'accsv', 'accrg', 'accpthl','accbmp'}; 

% Loop through the workspace names 

for i = 1length(workspaceNames) 

    % Get the data for this workspace 

    data = evalin('base', workspaceNames{i}); 

     

    % Loop through the time points and frequency indices for 1000 

    for m = 1length(t) 

        for n = 1399 

            % Compute the new value based on the time and frequency 

            if t(m) == 0 % Modified condition 

                data(m,n) = 0; 

            elseif data(m,1) > 0 

                data(m,n+1) = ((data(m,1)*t(m)^2) + (n*2/798000)) / (t(m)^2); 

            elseif data(m,1) < 0 

                data(m,n+1) = ((data(m,1)*t(m)^2) - (n*2/798000)) / (t(m)^2); 

            end 

        end 

    end 

     

    % Loop through the time points and frequency indices for 100 

    for m = 1length(t) 

        for n = 1400 

            % Compute the new value based on the time and frequency 

            if t(m) == 0 % Modified condition 

                data(m,n+400) = 0; 

            elseif data(m,1) > 0 

                data(m,n+400) = ((data(m,1)*t(m)^2) + (n*2/400)) / (t(m)^2); 

            elseif data(m,1) < 0 

                data(m,n+400) = ((data(m,1)*t(m)^2) - (n*2/400)) / (t(m)^2); 

            end 

        end 

    end 

     

    % Assign the modified data back to the workspace 

    assignin('base', workspaceNames{i}, data); 

end 

% Delete the first three rows from each dataset 

accsv(13,) = []; 

accrg(13,) = []; 
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accpthl(13,) = []; 

accbmp(13,) = []; 

t(13,)=[]; 

x=ones(1,400); 

x2=repmat(2,1,400); 

accsv1=([x,x2]); 

accsv=[accsv1;accsv]; 

x=repmat(3,1,400); 

x2=repmat(4,1,400); 

accrg1=([x,x2]); 

accrg=[accrg1;accrg]; 

x=repmat(5,1,400); 

x2=repmat(6,1,400); 

accpthl1=([x,x2]); 

accpthl=[accpthl1;accpthl]; 

x=repmat(7,1,400); 

x2=repmat(8,1,400); 

accbmp1=([x,x2]); 

accbmp=[accbmp1;accbmp]; 

AccData=[accsv, accrg, accpthl,accbmp]; 

%{ 

noiser = 30 * randn(size(AccData(2end,))); % Gaussian noise with standard deviation 

0.1 

noisy_signal = AccData(2end,) + noiser; 

AccData= [[accsv1, accrg1, accpthl1,accbmp1];noisy_signal]; 

% Perform wavelet denoising on each column of the matrix 

denoisedMatrix = zeros(size(noisy_signal)); 

for col = 1size(noisy_signal, 2) 

    signal = noisy_signal(, col); 

     

    % Perform wavelet denoising on the individual signal using wdenoise 

    denoisedSignal = wdenoise(signal); 

     

    % Store the denoised signal in the denoised matrix 

    denoisedMatrix(, col) = denoisedSignal; 

end 

% Perform wavelet denoising 

AccData = [[accsv1, accrg1, accpthl1,accbmp1];denoisedMatrix]; 

%} 

%AccData=accsv; 
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5.4. Second Labeling Code For Road Type and Signal Condition Classification 

Comprehensive Testing 

Ts = mean(diff(t)); 

rng default % Fix the random seed 

AccData = AccData(, randperm(size(AccData, 2))); 

% Shuffle the columns 

traindata = AccData(2end, ); 

trainlabel = categorical(AccData(1, )); 

numClasses = numel(trainlabel); 

CT = countlabels(trainlabel); 

tbl = table2array(CT(, 2)); 

% Use cvpartition to split data into training and validation sets 

c = cvpartition(trainlabel, 'HoldOut', 0.2); 

trainIdx = training(c); 

testIdx = test(c); 

Ptrain = traindata(, trainIdx); 

Ttrain = trainlabel(trainIdx); 

Ptest = traindata(, testIdx); 

Ttest = trainlabel(testIdx); 

uniqueLabels = unique(trainlabel); 

catnames = {'Normal Sinewave Road Obstacle Signals','Faulty Sinewave Road 

Obstacle Signals','Normal Roughness Road Obstacle Signals','Faulty Roughness Road 

Obstacle Signals','Normal Pothole Road Obstacle Signals','Faulty Pothole Road 

Obstacle Signals','Normal Bump Road Obstacle Signals','Faulty Bump Road Obstacle 

Signals'}; 

uniqueLabels = renamecats(uniqueLabels,{'1','2','3','4','5','6','7','8'},catnames); 

bar(uniqueLabels, tbl); 

CTtrain = countlabels(Ttrain); 

CTtest = countlabels(Ttest); 

tblTrain = table2array(CTtrain(, 2)); 

tblTest = table2array(CTtest(, 2)); 

H = bar(uniqueLabels, [tblTrain, tblTest], 'stacked'); 

legend(H, ["Training Set", "Test Set"], 'Location', 'NorthEastOutside') 

LPtrain = [double(Ttrain); Ptrain]; 

[ii, jj, kk] = unique(LPtrain(1, )); 

m = accumarray(kk, (1numel(kk)), [], @(x) {x'}); 

out = cell2mat(cellfun(@(x) LPtrain(, x(randperm(numel(x), 1))), m', 

'UniformOutput', false)); 

%%idx = randperm(size(Ptrain,2),4); 
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%Fs = 1/Ts; 

parfor n = 1numel(out(1,)) 

    x=out(2end,n); 

    subplot(8,2,n); 

    plot(t,x); 

    if n == 7 || n == 8 

        xlabel('Seconds'); 

    end 

    d=dictionary([1,2,3,4,5,6,7,8],catnames); 

    title(d(n)); 

end 

5.4.1. Codes For All Models Used for Second Tests. 

This test has the same codes as the previous test, with only differences in labeling and 

data. Therefore, you can replace, for example, the below  

 

code% Convert labels to categorical and rename categories 

YPred = categorical(YPred, {'1', '2', '3', '4', '5'}, catnames); 

YTest = renamecats(YTest, {'1', '2', '3', '4', '5'}, catnames); 

% Plot the confusion matrix 

figure; 

cm = confusionchart(YTest, YPred); 

title('Classification of faulty signals based on Levels'); 

cm.RowSummary = 'row-normalized'; 

cm.ColumnSummary = 'column-normalized'; 

to 

YPred = categorical(YPred, {'1','2','3','4','5','6','7','8'}, catnames); 

 YTest = renamecats(YTest,{'1','2','3','4','5','6','7','8'},catnames); 

% Plot the confusion matrix for the final model 

figure; 

cm = confusionchart(YTest, YPred); 

title('Classification for a faulty and healthy signal for each road type'); 

cm.RowSummary = 'row-normalized'; 

cm.ColumnSummary = 'column-normalized'; 

so the title and the number of mentioned label are differ. 

 
 


