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ABSTRACT

THREE-DIMENSIONAL RECONSTRUCTION AND
EDITING FROM SINGLE IMAGES WITH
GENERATIVE MODELS

Bahri Batuhan Bilecen
M.S. in Computer Engineering

Advisor: Aysegiil Diindar Boral
May 2025

Advancements in generative networks have significantly improved visual synthe-
sis, particularly in three-dimensional (3D) applications. However, key challenges
remain in achieving high-fidelity 3D reconstruction, preserving identity in 3D
stylization, and enabling reference-based edits with 3D consistency. This the-
sis attempts to address these gaps through three interconnected studies. First,
a framework of high-fidelity 3D head reconstruction from single images is in-
troduced, leveraging dual encoder GAN inversion to reconstruct full 360-degree
heads. By integrating an occlusion-aware triplane discriminator, this approach
ensures seamless blending of visible and occluded regions, surpassing existing
methods in realism and structural accuracy. Next, an identity-preserving 3D
head stylization method is developed to balance artistic transformation with fa-
cial identity retention. Through multi-view score distillation and likelihood dis-
tillation, this technique enhances stylization diversity while maintaining subject-
specific features, outperforming prior diffusion-to-GAN adaptation strategies. Fi-
nally, a single image reference-based 3D-aware image editing method extends
these advancements by enabling precise, high-quality edits using triplane rep-
resentations. By incorporating automatic feature localization, spatial disentan-
glement, and fusion learning, this work achieves state-of-the-art performance in
3D-consistent, 2D reference-guided edits across various domains. Together, these
contributions attempt to advance the field of 3D-aware generative modeling, pro-
viding robust solutions for reconstruction, stylization, and editing with greater
fidelity, consistency, and control.

Keywords: 3D reconstruction, 3D editing, 3D stylization, generation from single

images.
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OZET

URETKEN MODELLERLE TEKLI GORSELLERDEN
UC-BOYUTLU YENIDEN YAPILANDIRMA VE

DUZENLEME

Bahri Batuhan Bilecen
Bilgisayar Miihendisligi, Yiiksek Lisans
Tez Danigmani: Aysegiil Diindar Boral

May 2025

Uretken aglardaki gelismeler, ic-boyutlu (3B) uygulamalarda goriintii iiretimini
onemli dlglide iyilestirmigtir. Ancak yiiksek dogrulukta 3B yeniden yapilandirma,
tsluplagtirma sirasinda kimlik korunumu ve 3B tutarliliga sahip kaynak ta-
banli diizenlemeler saglama konusunda zorluklar devam etmektedir.  Bu
caligma, 3B farkindalikli alanlardaki iiretken modellemeyi gelistiren ii¢ baglantil
aragtirmayla bahsedilen eksiklikleri gidermektedir. Tk olarak, yiiksek dogruluklu
3B kafa yeniden yapilandirma modeli sunulmustur. Tek gortintiiden 360 derece
kafa iiretimi yapmak ig¢in ¢ift kodlayicih GAN tersine ¢evirme yontemi kul-
lanilmaktadir.  Gortiniir ve gizli bolgelerin birlestirilmesini saglayan ortme
farkindalikli li¢-diizlem ayrimcist ile bu yontem, yapisal dogruluk acgisindan
mevcut yaklagimlart agmaktadir. Ardindan, sanatsal dontisim sirasinda
yiuz kimliginin korunmasii dengeleyen bir 3B kafa isliiplagtirma yontemi
geligtirilmigtir.  Coklu skor damitma ve olabilirlik damitma (LD) teknikleri
sayesinde bu yontem, onceki uyarlama stratejilerine gore 6zneye ozgi ozellikleri
daha iyi korumaktadir. Son olarak, tek goriintiiye dayali kaynak tabanlh 3B
farkindalikli gortintii diizenleme gergevesi, ti¢-diizlem temsillerini kullanarak has-
sas ve yiliksek kaliteli 3B diizenlemeler yapilmasini saglamaktadir. Otomatik
ozellik konumlandirma, mekansal ayristirma ve flizyon 6grenme tekniklerini en-
tegre ederek cesitli alanlarda 3B tutarli ve referans odakli diizenlemelerde en
yiksek performansi elde etmektedir. Bu katkilar, 3B tiretken modellemeyi
ileriye tagiyarak, yeniden yapilandirma, tisluplama ve diizenleme alanlarinda daha
yiiksek dogruluk ve kontrol saglayan giiclii ¢oziimler sunmaktadir.

Anahtar sozcikler: 3B yeniden yapilandirma, 3B diizenleme, 3B tisluplagtirma,
tekli gorsellerden 3B tiretim.
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Chapter 1

Introduction

Advances in three-dimensional (3D) generative modelling have opened exciting
new frontiers in visual computing. One of many branches in this research area
is synthesising, reconstructing, and editing, even when given only a single in-
put image. Much of this progress is driven by Generative Adversarial Networks
(GANs) [7] and Latent Diffusion Models [2]. When these models are combined
with Neural Radiance Fields (NeRFs) [1] or triplane representations [8], they
deliver high-quality, 3D-aware results that remain consistent across novel view-
points. Such capabilities pave the way for applications ranging from faithful 3D

reconstruction to stylization and intuitive, geometry-aware editing.

This thesis presents three related works on 3D generation and manipulation
from single images, mainly shown on human-centric applications: high-fidelity
3D head reconstruction [9] from single images, identity-preserving 3D head styl-
ization [10], and reference-based 3D-aware editing [11] from single images. Each
section in this introduction introduces new methods that address fundamental
limitations in current approaches by leveraging advanced architectures, innova-

tive training strategies, and carefully designed latent-space operations.



1.1 High-fidelity 3D Head Reconstruction from

Single Images

3D GANs, such as EG3D [8], extend 2D generative models with consistent
3D representations by integrating NeRF-like components. Inverting these mod-
els—projecting a real image back into the latent space, which is a key task for
applications like identity capture and 3D editing. Unlike 2D inversion [12, 13, 14],
3D inversion must synthesize occluded regions realistically and maintain consis-

tency across views.

Early 3D GAN inversion methods rely on optimization [15, 16], which are
accurate but computationally heavy. Encoder-based methods [17, 18] are faster

but typically use EG3D, which limits generation to near-frontal views.

In this work, we adopt PanoHead [6], which enables 360° synthesis but intro-
duces new challenges such as hallucinating completely invisible regions. Existing
EG3D-based inversion methods often fail in this context, since some reconstruc-
tions appear accurate only from the original view, while others generate plausible

geometry that does not match the input.

To overcome this, we propose a dual-encoder architecture. One encoder
specializes in reconstructing the visible input view, while the other focuses on
predicting occluded regions. Their outputs are fused in the triplane space, with
a novel occlusion-aware discriminator enforcing coherence across all views.
Our approach outperforms state-of-the-art inversion baselines in terms of recon-

struction accuracy and quality across novel views.

1.2 Identity Preserving 3D Head Stylization

3D head stylization transforms realistic heads into artistic versions while main-

taining their identity across multiple angles. This task has gained interest due to



its relevance in entertainment, AR, education, and virtual avatars. Prior work in
2D stylization using GANs [19, 20] leveraged StyleGAN [21], but recent efforts
now target 3D-aware stylization [22, 23].

Most methods are built on EG3D, restricting synthesis to near-frontal views
and limiting stylization performance across 360°. We adopt PanoHead to explore
full-head stylization; however, we still observe that adapting existing methods
often produces inconsistent results at novel angles. Additionally, Score Distil-
lation Sampling (SDS) [24] has shown effectiveness for diffusion-guided styliza-
tion [22, 23], but tends to cause identity loss and reduced diversity [23].

To address this, we adapt Negative Log-likelihood Distillation (LD) [25]
to GANs, which preserves identity and image sharpness better than SDS. We
show that utilizing a 3D GAN backbone eliminates extensive regularization to
avoid divergence, unlike traditional LD or SDS, which are performed directly on
3D parameters. We further introduce rank-weighing of score tensors on VQ-
VAE channels and propose multi-view grid and mirror score gradients to
regularize the distillation process, and better preserve input color and facial iden-
tity during distillation. We also avoid score distillation in the super-resolution
(SR) layers to retain high-quality stylization. Our multi-view gradient formu-
lation aligns with 3D-GAN design, boosting consistency across all angles and

avoiding SR overfitting, outperforming current state-of-the-art methods.

1.3 Reference-based 3D-aware Image Editing
with Triplanes

Image editing using GANs has advanced significantly through inversion [26,
12, 27, 17, 28] and latent manipulation [29], but remains largely 2D-focused.
Reference-based editing, which transfers attributes from a reference image to a

target, is powerful yet underdeveloped for 3D-aware models.

Existing 3D-aware editing methods [17, 23, 30| lack reference-based flexibility,

3



while 2D methods [31, 32, 33, 29, 20, 34, 35, 36] do not support multi-view or
3D consistency. Our approach bridges this gap by enabling reference-based
3D-aware image editing via triplanes [8, 5, 37, 38| for the first time.

Triplanes provide a shared canonical latent 3D space, simplifying cross-view
and cross-domain edits. For instance, attributes like eyeglasses and hairstyles can
be transferred without requiring perfect 2D alignment. Our framework exploits
this property of triplane-based generators, learns to localize and disentangle re-
gions using masked residual gradients, and fuses the features using dedicated

encoders.

Our reference-based editing framework is generalized to human faces and
heads [6], animal faces, cartoons [22], full-body edits [5], and class-agnostic 3D
object renders [39, 38, 37|, demonstrating broad applicability.

In the remaining of this thesis, Chapter 2 will present Preliminaries and Re-
lated Work, Chapters 3 to 5 will detail three aforementioned works [10, 9, 11],

and Chapter 6 will discuss Conclusion and Future Work.



Chapter 2

Preliminaries and Related Work

2.1 Generative Adversarial Networks

Generative adversarial neural networks (GANs) were proposed by Goodfellow et
al. [7]. The main idea is making two agents (discriminator D and generator G)
race each other in a minimax game, where one agent’s gain is another agent’s loss.
The game continues oscillating until both agents reach a stable equilibrium. In
the process, generator G produces fake data G(z) from latent vectors z ~ p(z),
and discriminator D tries to identify if G(z)’s are real or fake. The goal is to
create deceivingly real-looking G(z)’s, with the aid of D’s feedback during the
training. A basic GAN architecture is given in Fig. 2.1.

Since training GANs is inherently a classification problem, binary cross entropy
(BCE) loss in Eq. (2.1) is utilized:

BCE(z,y) = ylogz + (1 — y) - log(1 — z) (2.1)

Using Eq. (2.1), losses for D and G become:
loss D = H]1)in BCE(D(z),1) + BCE(D(G(z)),0) (2.2)
loss G = mén BCE(D(G(z)),1) (2.3)

5



Real

samples
z~ P,
Latent Generated

variable samples

loss_D = min(BCE(D(x),1) + BCE(D(x~),0))
loss_G = min(BCE(D(x~),1))

Figure 2.1: Basic structure of a GAN. 0 and 1 denote the labels of fake and real,
respectively. BCE is the binary cross-entropy loss.

Upon further simplifications, minimizing loss D and loss_G in Egs. (2.2)
and (2.3) becomes equivalent to maximizing Eq. (2.4) and minimizing Eq. (2.5),
respectively:

m]:z)LXIEprT logD(z) + E,.,, log(1 — D(G(z))) (2.4)

minE.,, log(1l — D(G(2))) (2.5)

Combining Eq. (2.4) and Eq. (2.5) yields the overall minimax loss in Eq. (2.6):

m&n max E,p, logD(z) + Ezup, log(1 — D(2))), (2.6)

where P, denotes the ground truth real data distribution, and P, denotes the
generator model distribution implicitly by & = G(z), z ~ p,. Most of the time,
p. ~ N(0,I) (i.e., zero norm, unit variance Gaussian). Algorithm 1 demonstrates

how GANSs are trained via mini-batch stochastic gradient descent (SGD).

Now, assume D is trained to optimality while G is not, which can be achieved
through Algorithm 1. In this case, optimizing Eq. (2.6) minimizes the Jensen-
Shannon (JS) divergence [40] between P, and IP;,. However, JS divergence strug-
gles to measure the distance between disjoint distributions. Once P, and P,
become disjoint, their distance remains constant, preventing G from receiving
meaningful feedback to improve [41]. To address this, alternative loss functions

that better define the distance between distributions have been proposed.

6



Algorithm 1 Mini-batch SGD training of GANs. w and € are the parameters of D
and G, respectively. Adapted from [7].

for number of training iterations do
for number of discriminator steps do
Sample m noise (fake) samples {x(, ... 2™} from p,.
Sample m real examples {z(V) ... 2™} from P,.
Update the discriminator by ascending its stochastic gradient:

7L S o (o) + s (1D (6 ()

end for
for number of generator steps do
Sample m noise samples {z(), ... 2™} from p..
Update the generator by descending its stochastic gradient:

o Y los (1D (G (1)

end for
end for

One such alternative is the Farth-Mover (EM) distance, also known as
Wasserstein-1. Informally, the EM distance measures the cost of transporting
the mass of one distribution to another, where the cost depends on the mass and
transport distance. Formally, the minimum distance W is defined in Eq. (2.7),
where ~ is the joint PMF of P, and P, (mass), and ||z — Z|| is the transport

distance. A visualization is shown in Fig. 2.2.

W(P,,P,) = . inf  Egzyllz—2|| = inf ) Z'y r, @) —z|  (2.7)

~II(P,,Py) Y~ TI(P,

Using the Kantorovich-Rubinstein duality, Eq. (2.7) can be expressed
as Eq. (2.8):
W(P,,Py) = sup E,wp,D(z) — Ezop,D(Z), (2.8)

ID]lL<1

where the supremum is over all 1-Lipschitz functions D.



e

v(z, %) [z — &
Mass Transport distance

Figure 2.2: Visualization of mass (left) and transport distance (right) for EM.
Adapted from [42].

Then, finding the minimum distance W between P, and P, is a matter of
training neural networks D, & Gy, assuming that the gradients Vg, W are
well-defined and some mild constraints [43, 44] for D and G hold. Further-
more, Eq. (2.9) and Eq. (2.10) can also be shown to be true [43, 44], allowing us
to write the overall objective in Eq. (2.11):

VoW(P,,P,) = —E..,. VoD, (Go(2)) (2.9)
VWP, P,) =E, p, ViDy(2) — E.up. VDo (Go(2)) (2.10)
mGirn max E;p,D(z) — Ezp,D(T) (2.11)

Eq. (2.11) describes the objective for minimizing W, where D is the set of
1-Lipschitz functions. Notice that the optimization is very similar to those of
traditional GANs but replaces the log with Lipschitz constraints. Eq. (2.11) can be
solved via Algorithm 2, which are known as Wasserstein GANs (WGAN) [43, 44]
in the literature. Replacing BCE with the Wasserstein-1 distance stabilizes GAN

training and improves output quality.



Algorithm 2 Mini-batch training of WGANs. w and 6 are the parameters of D and
G, respectively. Adapted from [43].

for number of training iterations do
for number of discriminator (critic) steps do
Sample m noise (fake) samples {x() ... 2™} from p,.
Sample m real examples {z() ... 2™} from P,.
Update the discriminator (critic) by ascending its stochastic gradient:

V.t 37D () - D (G ()]

=1

1
m

Clip gradients or weights of D to heuristically force 1-Lipschitz-ness
end for
for number of generator steps do

Sample m noise samples {z(V) ... 2™} from p..

Update the generator by descending its stochastic gradient:

Vi zm:D (G (D))

end for
end for

2.2 Neural Rendering and Neural Radiance

Fields

2.2.1 3D Representations and Neural Volumetric Render-

ing

3D representations form the foundation of rendering techniques, providing various
ways to model and visualize scenes. These representations are broadly categorized
into explicit, hybrid, and implicit (Fig. 2.3), each offering distinct advantages

and challenges in rendering.

Explicit representations approximate 3D structures using discrete elements
such as voxel grids, meshes, point clouds, 3D Gaussian splats [46], and recent

methods like radiant foams [47]. While these methods directly define geometry

9



Implicit

NeRF
+ 39 oo ./', J
: j(.\\‘:"? N E;’L‘
A/H\ A%
Signed distance field Occupancy field (Neural) radiance field
Explicit Hybrid

P

Point Voxel Triangular 2D/3D Gaussian

cloud grid mesh splatting Bi/triplanes

Figure 2.3: Different 3D surface representations. Adapted from [45].

and are compatible with traditional rendering pipelines, they have inherent limi-
tations. The memory usage of voxel grids grows cubically with resolution, meshes
struggle to model fine details like hair strands, and ensuring seamless, closed sur-
faces without artifacts is a significant challenge [48]. These inefficiencies have

driven the shift toward more compact and expressive representations.

Implicit representations address these challenges by modeling 3D structures as
continuous fields defined by neural networks. Instead of storing discrete geometry,
implicit methods parameterize objects or scenes using smooth functions, which
can be queried at arbitrary resolutions. Examples include occupancy fields [49],
which determine whether a point in space is occupied; signed distance functions
(SDFs) [50], which compute the distance from a point to the surface of an object;
and radiance fields [1], which encode view-dependent color and density informa-
tion. Implicit representations are more efficient, expressive, and flexible compared

to most explicit ones.

Hybrid representations combine the strengths of both explicit and implicit

approaches, offering improved efficiency and interpretability, e.g., triplanes [8].

The development of neural volumetric rendering (NVR) has further revolu-

tionized how 3D scenes are modeled and rendered. Classical volumetric rendering

10



integrates color and density values along multiple rays shot through the scene.
NVR extends this by making the entire process differentiable, allowing neural
networks to learn 3D scenes from 2D data via gradient descent. A very popular
method Neural Radiance Fields (NeRF) [1] exemplifies this approach.

The topic of neural rendering is very diverse and deserves its own work; there-
fore, we opted not to give further details on the recent NVR literature in this
document. That said, we will briefly mention NVR equations and NeRFs [1] as

our work utilizes its fundamental parts in triplanes.

2.2.2 Mathematical Formulation of NVR

For completeness, we will summarize the math behind neural volumetric render-

ing [51], and clarify how it is tied with NeRF.

We denote a ray in a reparametrized form as r = o + td running through
a 3D medium (Fig. 2.4), where o is the origin and d is the unit vector along
the ray. Then, r hitting a particle at point t is probabilistically described as
P(hit at t) = o(t)dt|, where o(t) is the volume density. More informally, the

chance that the ray stops in an infinitesimal dt interval around ¢ is o(t)dt. On
the contrary, r not hitting a particle traveling over the interval [0, ¢) is defined by
the transmittance function (7), i.e. | P(no hits before t) = T (t) |.

Ray
Vr(t) = o+ td

Scene

Camera

Figure 2.4: Reparametrized ray, coming out of the camera and passing through
the scene.

Then, during the travel, the probability of r not hitting a particle when taking

a dt step is the multiplication of not having hit a particle in the interval [0, ),

11



and not hitting a particle at t (Eq. (2.12))

T(t+dt)="T(t)(1—o(t)dt) (2.12)
T() + T (t)dt = T(t) — T(t)o(t)dt (2.13)
T, _
—Tt)dt = o(t)dt (2.14)
b
log T(t)|2 = —/ o(s)ds (2.15)
b
T(a—b) = ;EZ; = exp (—/ a(s)ds) (2.16)

T(a — b) in Eq. (2.16) is defined as the probability that r travels from a to
b without hitting a particle. If a = 0 and b = ¢, then 7(0 — t) = T (¢) as be-
fore. By Eq. (2.16), T (t)o(t) = exp <— fot a(s)ds) o(t) is the corresponding PDF,
which yields the likelihood that r stops precisely at ¢t without hitting anything
before. Then, the expected color value C returned by the ray is Eq. (2.17):

C= / ’ T (t)o(t)c(t)dt, (2.17)

where r travels from 0 to D, and c is the color density at t.

Notice that Eq. (2.17) is a nested integral due to 7 (t)o(t) and is intractable.
To break up the outer integral, r is divided into equal segments §; = t;11 — t;,
where in each segment we assume a constant ¢ and ¢, but non-constant 7 ().

Under those constraints, Eq. (2.17) becomes equivalent to Eq. (2.18):

C- / " T (o (et = i / ot (2.18)

Using the multiplicative property of transmittance, we can also split up 7 into
T and 1 — «, where the first term T" denotes how much of the ray is blocked by
the previous segments, and the second term 1 — o denotes how much is blocked

partway through the current segment. Therefore, « itself denotes how much light
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has contributed to the current segment i (Fig. 2.5), and is also used synony-
mously with alpha blending coefficients. Eq. (2.19) demonstrates how to exploit
the multiplicative property:

ti tit1
T (tiv1) = exp (—/ Uids) exp (—/ ' Gids) (2.19)
t1 t;

i—1
= exXp (— ]Zl 0j5j> exXp —O'i<tz‘+15.— tz) (220)
27 (1—a) (2.21)
¥ Ray
tnt1
Scene

Camera

Figure 2.5: The case where the ray has hit a particle in the range (¢;,t;41). 7T is
divided into T; and 1 — «;.

Now, we can simplify Eq. (2.17) as Eq. (2.26):

= /D T (t)o(t)c(t)dt (2.22)

n tit1
=> / ' T (t)oscidt Eq. (2.18) (2.23)
i=1 7t

:iexp( Zo—j >azcz /tlﬂ exp(—oy(t —t))dt  Eq. (2.19)  (2.24)

z

- Zexp ( Zo—j >cz (1— eXp( 0i0:)) Eq. (2.21)  (2.25)

az

= ZTiciai (2.26)
=1
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Eq. (2.26) describes the rendered color in a discretized way and establishes the
volumetric rendering equations for neural radiance fields. Intuitively, the final
color C is a weighted sum of the colors ¢; of 3D points sampled along this ray,
down-weighted by transmittance T;. Also, notice that T; = II’_} (1 — «;), which

establishes a connection to the traditional a-compositing.

It is also worth noting that 3D Gaussian splatting [46] differs from NeRFs by
not requiring a neural renderer. However, it does utilize the same concept of

volumetric rendering, where the calculations for « are slightly different.

2.2.3 Neural Radiance Fields

Neural radiance fields (NeRFs) estimate color ¢ and density o at a 3D location
x and 2D viewing direction d via a multi-layer perceptron (MLP). Rendering is
performed using classical volumetric rendering techniques, as shown in Eq. (2.26),
making the 3D scene fully learnable with gradient descent and limited 2D data.
The general pipeline of NeRF is visualized in Fig. 2.6.

3D
scene <o
Camera 2D
at x training
facing d data

Neural w
volumetric C= ZTiCiai
rendering i=1

- N
L

Figure 2.6: General pipeline of NeRF. Adapted from [1].
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To improve training and output quality, NeRF employs positional encoding and
hierarchical volumetric sampling. Positional encoding captures high-frequency
details by processing Fourier-transformed MLP inputs, while hierarchical sam-

pling uses two MLPs (coarse and fine) to focus on the most relevant scene parts.

Since NeRF’s introduction, various extensions have been proposed. Some
methods aim to reduce aliasing for higher-quality rendering [52, 53], while others
replace the computationally heavy MLP with alternative architectures [54, 55].
Since technically any suitable neural network can replace Fg in Fig. 2.6, GANs
are also utilized for their generative capabilities [56, 8] to learn the radiance and

density fields.

2.3 Latent Diffusion Models and Score-based
Models

Diffusion models are generative techniques that iteratively remove noise to trans-
form a simple initial distribution into realistic data. A type of diffusion model,
Denoising Diffusion Probabilistic Models (DDPMs) [57] achieve this through a
forward process ¢ that adds Gaussian noise step-by-step to data xo (Eq. (2.27)),

and a reverse process p that removes noise to reconstruct the data (Eq. (2.28)):

q(x¢|xi—1) = N (x¢; Vaurx—1, (1 — ay)I), (2.27)
Po(x_1]x:) = N(x_1; po(x4, 1), 021), (2.28)

where py is predicted by a neural network ey(xy, t) (a denoising convolutional UNet
or a diffusion transformer (DiT)). The model is trained to minimize the mean-
squared error between the true noise € and the network’s prediction via Eq. (2.29).
By learning denoising, DDPMs generate high-quality, realistic samples from pure

noise.
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L=Ei . [le— eo(xi,t)]’] (2.29)

Latent Diffusion Models (LDMs) [2] improve efficiency of diffusion models
by operating in a compressed latent space using a vector-quantized variational
autoencoder (VQ-VAE, £ — D in Fig. 2.7). Eqs. (2.27) and (2.28) occur in this
lower-dimensional latent space z, with additional conditioning on external signals
Ty, significantly reducing computational costs while preserving data quality and
enabling controllable generation. LDMs have found widespread applications in

image, video, and 3D generation and restoration.

Pixel Latent Conditioning
Space Space (text,
image,
4 . d video,
mE > 22— oeess P 2T embedding,
etc.)

Zt—1 backward

process
e L
z Zt
-

Cross attention

Figure 2.7: Architecture of LDM. Figure adapted from [2].

Score-based models [58] generalize the diffusion process into a continuous-time
framework using stochastic differential equations (SDEs). The forward process is
represented as Eq. (2.30), where f(x,t) is a drift term, g(t) is the noise coefficient,

and dw is a Wiener process. The reverse process is represented as Eq. (2.31):
dx = f(x,t)dt + g(t)dw, (2.30)
dx = [f(x,t) — g(t)*Vxlog py(x)]dt + g(t)dw, (2.31)

where V logp;(x) is the score function, which is learned by training a neural
network sy (X, t) to approximate the gradient of the log data density. Most of the
time, f(x,t) is set to 0.
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DDPM can be interpreted as a discretized version of the score-based SDE
framework. Specifically, the predicted noise €y(x;,t) in DDPM corresponds to

the negative score function (i.e., €y(xy,t) ox —Vy log py(x)).

2.4 Score Distillation Sampling

Score Distillation Sampling (SDS) [24] leverages pre-trained 2D diffusion models
to guide the generation of content in other domains, such as 3D. The SDS gradient

is defined as:

VoLsos(6,7 = g(0)) 2 B[ eolacy,t) —000] (232
where x; = oyx + o€ is a noised version of x, €,(z;t) is the noise predicted by
the diffusion model, w(t) weights the timestep contribution, € is 3D the repre-
sentation, and ¢ is the differentiable renderer to project 3D to 2D. Intuitively,
SDS adds noise € to the rendered output x and updates 6 based on the score
function of the diffusion model, guiding the target model toward higher-density
regions in the diffusion model’s learned distribution. Note that SDS does not re-
quire a backward pass through the denoiser é,, and @ is directly updated through

Vo Lsps.

2.5 2D and 3D Style-Based Generators

2.5.1 StyleGAN2

StyleGAN, developed by NVIDIA, is one of the most popular GAN architectures,
with three versions [59, 21, 60] improving on each other. These models excel at
generating realistic 2D human and animal portraits and allow easy manipulation

of results via style vectors. StyleGAN2 [21] is widely preferred for its usability,

17



pre-trained checkpoints, and interpretable latent space, enabling intuitive edits.

Its architecture is shown in Fig. 2.8.
z~ Pz

Map

S
m
<

Figure 2.8: Partial architecture of StyleGAN2 and its outputs. Conv block has
many sub-layers, but they are omitted for clarity. Adapted from [21].

The generation process works as follows: Latent vectors Z ~ p, are nor-
malized and mapped to a 14x512-dimensional latent space W via a fully con-
nected mapping network. This network disentangles features and ensures that
each layer of the generator G controls a different style. After mapping, 14 of
1x512-dimensional style vectors w are injected into different layers of G. These
vectors can vary (referred to as W if they are different). The initial input of
G is a learned constant vector ¢, so the injected w’s ultimately dictate the gen-
erated image. Within G, w undergoes a learned affine transformation A and is
combined with the convolutional layer weights and biases via modulation layers.
Additionally, noise B is injected at various points to enhance detail and provide
randomness. Using consciously modified w’s, image editing can be performed in

the latent space, and a controlled synthesis can be achieved.

18



2.5.2 3D Generators, EG3D and PanoHead

GANs have made significant advancements in generating photo-realistic 3D con-
tent. In 3D-aware image synthesis, GANs were used in generating 3D explicit rep-
resentations such as point clouds [61], voxels [62, 63, 64], and meshes [65, 66, 67]
from 2D data. The development of neural radiance fields made the implicit rep-

resentations more prominent.

There are multiple 3D-aware GANs that perform novel image synthesis and
utilize volumetric renderers. 7—GAN [56] is the first study to use GANs in im-
plicit radiance field representations. StyleNeRF [68] progressively upsamples in
2D feature maps and uses those in the volume rendering via NeRF. StyleSDF [69]
utilizes a modified StyleGAN2 backbone with SDF-based volumetric rendering.
FeNeRF [70] utilizes decoupled latent codes for semantics and texture with shared
geometry for better novel view consistency. EG3D [8] also eliminates the heavy
MLP of NeRF and uses a StyleGAN2-based backbone, but they generate orthog-
onal triplanes for feature extraction and keep the volumetric rendering processes
the same with NeRF. LP3D [71] proposes a one-shot method to encode an RGB
image into a canonical triplane representation via ViT-based encoders, later to
be rendered via a volumetric renderer. PanoHead [6] extends on EG3D with tri-
grid triplanes and a more diverse training set. Unlike EG3D, PanoHead is able
to synthesize full 360-degree geometry. SphereHead [72] proposes a novel tri-
plane representation in the spherical coordinate system and eliminates mirrored

artifacts of PanoHead.

EG3D (Fig. 2.9) and PanoHead generate hybrid 3D representations called
triplanes with their modified StyleGAN2 backbone (Gy), which takes 512-
dimensional style vectors w and outputs 3 x N x 256 x 256 resolution triplanes
(N = 32 for EG3D, N = 96 for PanoHead). Rays are shot onto the triplanes,
gathered values for each plane are summed and decoded into ¢ and c using a
lightweight MLP, and rendered from a specified camera pose using a neural volu-
metric renderer (Rg) to synthesize a 2D head image with size 64 x 64. Finally, a

convolution-based super-resolution (SR) network performs upscaling from 64 x 64
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images to 512 x 512 final images to refine details. Since the SR network upscales
significantly, it plays a critical role in maintaining geometric consistency while

prioritizing a rich texture and color.

z~p, OQutput image

& feature
maps 4 Super‘j + w
Orthogonal resolution
triplanes T o
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Fzyy Fy., Fyz ™

Figure 2.9: EG3D architecture, without the discriminator.

2.6 GAN Inversion, Editing, and Stylization

2.6.1 GAN Inversion

GAN inversion is the task of finding/estimating the latent vectors z by observ-
ing the corresponding generator outputs G(z). It is an ill-posed problem since
the generator Gy is not technically invertible (unless G belongs to normalizing
flows [73]) and the dimensionality of the latent space is much smaller than those
of G’s outputs, hence it is a challenging task. Nonetheless, if done successfully,
the biggest advantage of GAN inversion is editability. In other words, one can
find the latent vector correspondence of an image and perform editing in the la-
tent domain. Editing in the pixel domain is less desired since achieving satisfying

results is harder without human supervision.

Fig. 2.10 demonstrates different approaches to GAN inversion. Optimization-
based approaches [74, 75] start with a random w and directly optimize w and/or
the parameters of Gy; hence Gy is aimed to overfit to output a specific image
most of the time. On the other hand, the encoder-based ones [12, 27, 76, 26|
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Figure 2.10: Various GAN inversion approaches in the literature (right). Encoder-
based inversion (left). Edits such as adding a smile can be done by linear opera-
tions (A is the smile direction) inside the latent space.

freeze Gy and try to learn the latent space of Gy via an encoder E,. Encoder-
based approaches are more generalizable, and the editability is good, but they
lack the superior reconstruction quality of the optimization-based ones. Hybrid
methods [13] try to take the best of both, where they train a rough encoder E,

and perform fine-tuning of the w’s with optimization.

One major inversion work is Pivotal Tuning Inversion (PTI) [75], which roughly
estimates a pivot w, by latent code optimization while keeping Gy frozen and
then tunes Gy around w, to obtain the final result. The method uses a locality
regularization to ensure that only the latent space around w), is altered, avoiding

possible distortions for other latent vector outputs.

Besides PTI, with the recent development of 3D GANs, new 3D-aware hybrid
and optimization-based GAN inversion methods have also emerged. IDE-3D [77]
offers a hybrid GAN inversion method. By modifying the EG3D generator, they
generate both a textural and a semantic triplane to enable disentangled editing
via semantic map manipulations. In addition, in order to eliminate the pose bias
for faithful reconstruction and novel portrait synthesis, they employ semantic &
canonical encoders combined with PTI [75] based tuning. Pose optimization [15]
jointly optimizes latent code and pose inversion for multi-view consistent inver-

sion and editing. A hybrid approach is chosen; ede [27] is used for latent code
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estimation, and their custom pose encoder for the pose estimation. PTI-based
optimization is applied for refining the encoder outputs at the end. E3DGE [78]
offers an alignment module for high-quality editing and local feature fusion for
high-fidelity 3D-GAN inversion. They train their encoder with 3D meshes &
2D multi-view pairs synthesised from the generator, and perform feature fusion
of multiple views for consistent novel view generation. HFGI3D [16] utilizes a
pseudo-view estimation pipeline for keeping visible textures intact and generat-
ing new textures on occluded regions in novel view rendering. More specifically,
they optimize a latent code for rough geometry and visible part reconstruction,
optimize another latent code for occluded part generation based on a binary dif-
ference map calculated using out-of-distribution textures, and perform a final
optimization by the previously estimated two pseudo-multi-view supervisions in
W space. SPI [79] exploits facial symmetry of human faces, and uses this as a
prior in generating novel views. With the prior information, the method first per-
forms a rough inversion with optimization, then a joint optimization with novel

views while applying depth-guided 3D warping as a regularization.

Although few, there are also encoder-based methods tailored for 3D GANSs.
TriPlaneNet [18] first extracts a rough inversion via [12], and fine-tunes the re-
sult with estimated triplane offsets. GOAE [17] has a similar approach to [18];
however, it adds an adaptive feature alignment block for better triplane offset ad-
dition, and an occlusion-aware mix tri-plane regularizer to perform faithful edits

and novel view reconstructions.

2.6.2 Editing and Stylization in GANs

There are abundant editing methods for GAN inversion in the literature [80,
14, 3, 4, 20, 19]. GANSpace [3] finds out that principal components of feature
tensor activations on the early layers of generators (or the mapping networks)
represent important factors of variation and uses those components for editing.
InterfaceGAN [4] assumes a linear hyperplane in the generator’s latent space as

a separation boundary for two binary attributes (male-female, old-young, etc.)
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and fits a support vector classifier (SVC) to obtain the boundary vectors for
editing. For disentangling attributes, they conditionally manipulate the vectors
by applying orthogonal projection. StyleCLIP [20] converts the text prompts
into CLIP [81] embeddings and embeds them into style vectors with their custom
mapping network. StyleGAN-NADA [19] trains another generator in parallel
with the feedback from CLIP embedding data without using gradients from any
image information and can generate out-of-domain edits. Fig. 2.11 compares two
mostly used and straightforward editing methods. Notice that the latent space
of GAN is not fully visualizable due to its high dimensionality; therefore, a 2D

representation was chosen.

we W
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Figure 2.11: Representative comparison of [3] and [4] finding the editing directions
p12. Héaarkénen et al. [3] finds the most dominant direction p; via principle
component anaysis (PCA), and Shen et al. [4] finds the opposite binary attributes’
(A and ~A) linear boundary normal py by fitting sampled w’s to a SVC. Attribute
label scores of w’s are generated from an external classifier.
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Chapter 3

High-fidelity 3D Head
Reconstruction from Single

Images

In this chapter, we present a new method for high-fidelity 3D head reconstruction
from single images, built on recent advances in 3D GANs and GAN inversion [9].
While encoder-based approaches have shown strong results in this area, many
rely on EG3D, which is mainly designed for synthesizing near-frontal views. This
limitation constrains their performance in capturing comprehensive 3D head ge-
ometry. To overcome these shortcomings, we propose a new framework based
on PanoHead, which excels in generating 360-degree views and provides a richer

representation of the head structure from arbitrary angles.

Our approach introduces a dual encoder system that aims to strike a bal-
ance between accurate reconstruction and realistic view generation from multiple
angles. To combine the strengths of the two encoders, we propose a stitching
framework in the triplane domain that merges their outputs into a unified repre-
sentation. For this stitching to work effectively, both encoders need to produce

consistent features despite being optimized for different tasks. We ensure this
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through a carefully designed training strategy that includes a novel occlusion-
aware triplane discriminator. This discriminator helps guide the model toward
more coherent and realistic results by applying adversarial learning. Experimental
results show that our method outperforms existing encoder training techniques,

both qualitatively and quantitatively, as illustrated in Fig. 3.1.

The rest of this chapter details the methodology, implementation details, and
results of the aforementioned work B. Bilecen, A. Gékmen, A. Dindar, Dual
Encoder GAN Inversion for High-Fidelity 3D Head Reconstruction from Single
Images, NeurIPS 2024 [9]. Bold names are joint first authors.

Figure 3.1: Reconstruction of 3D representation by inverting images into
PanoHead’s latent space.

3.1 Method

3.1.1 Training an encoder

This section introduces the general pipeline of the encoders employed in our dual-
encoder framework. Each encoder takes an input image I and predicts the latent

code wt, which is then passed to the generator to produce triplane features.
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These synthesized features are then fed into the renderer to generate a 2D image

with a specified camera parameter 7.4,, as described by Eq. (3.1):

w =E(I)
IV, = R(G(w"), Team)

out

(3.1)

Here, IZY, denotes the output rendering for the same view as the input, and
E; represents the encoder. While the W space allows for leveraging priors em-
bedded in the generator, its limited expressive power in reconstructing image
details has been noted due to the information bottleneck of its 14 x 512 dimen-
sions. To address this limitation, both 2D inversion techniques [76, 14] and 3D
GAN inversion methods [18] permit higher-rate features to pass to the genera-
tors, facilitating the capture of fine details. In 3D GAN inversion methods, these
higher-rate features are encoded through a smaller second network and transmit-
ted to the triplane features. We adopt a similar approach in our encoders. We

refer to the final output as If) ;. Further details of the architecture are provided

in Section 3.2.2.

The primary challenge in this setting arises from establishing appropriate train-
ing objective losses, as our training dataset consists solely of single images, pro-
viding ground truth only for the rendered image from the same view as the
input. For these output and ground-truth pairs, we set the usual reconstruction
losses, namely, LPIPS perceptual loss [82], L5 reconstruction loss (MSE), and
ArcFace [83] based identity loss. The training objective for Encoder 1 with

parameters g, is given in Eq. (3.2):

min A\ Lrpips (Ignan I) + Ao Lo (I, I) + AsLidentity (Tanar 1) (3.2)

e,

where the coefficients are set as A\ = 0.8, Ay = 1.0, A3 = 0.5.

While models trained with the objective given in Eq. (3.2) learn to reconstruct

a given view, they often struggle to generalize and produce realistic features from
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other camera views. Consequently, we design an adversarial-based loss objective
for our second encoder. This second encoder generates realistic predictions for

invisible views, as explained in Section 3.1.2.

3.1.2 Occlusion-aware triplane discriminator

To achieve a realistic reconstruction of the 3D model, represented in a triplane
structure, it is essential to guide the encoder for visible views and overall coher-
ence. Since we lack a one-to-one ground truth to guide the triplane structure,
we experiment with various setups incorporating adversarial losses. A naive ap-
proach to utilize adversarial loss would be to render estimated triplanes from
other views and assess the realism of these 2D images using a discriminator.
However, our experiments observe that this setup hinders the model’s ability to
learn high fidelity to the input image, as will be further detailed in Section 3.3.2.
Moreover, randomly rendering different views can only guide limited parts of the

triplane structure rather than the overall.

To overcome this limitation and avoid the computational burden of rendering
unnecessary views, we explore the possibility of training a discriminator in the
triplane domain. In our training process for the triplane discriminator, we follow
a procedure where we sample latent vectors Z* and generate in-domain triplanes
using PanoHead, serving as our real samples. Meanwhile, the fake samples are
triplanes generated from encoded images, as depicted in Fig. 3.2. Despite the
observed improvement in reconstructions facilitated by this adversarial loss, we
note a persistent challenge hindering the network’s ability to achieve high fidelity
to the input. This discrepancy may stem from the real samples originating from
the generator, lacking the detailed feature characteristic of real-world images.
Therefore, this may lead the encoder to omit encoding realistic facial details if

they are absent in the synthesized samples.

We propose our occlusion-aware discriminator to overcome this limita-
tion. This discriminator is exclusively trained with features corresponding to

occluded pixels. This approach ensures that triplane features associated with

27



visible regions, such as a frontal face, are not utilized for discriminator train-
ing. Additionally, we introduce a masking mechanism for synthesized triplanes
to mitigate any distribution mismatch arising between encoded and synthesized
triplanes. This masking process contributes to aligning the distributions of real

and fake samples, further enhancing the coherence of the training dynamics.

;«’} Occlusion
L masks

Figure 3.2: Our triplane discriminator training involves generating real samples
from Z* and producing in-domain triplanes using PanoHead. Fake samples are
generated from encoded images. Despite the effectiveness of adversarial loss in
enhancing reconstructions, challenges may persist in achieving high fidelity to the
input due to the origin of real samples from the generator G. To address this,
we use an occlusion-aware discriminator D, trained exclusively with features
from occluded pixels. This ensures that visible regions, such as frontal views 7g,
have reduced influence while training D.

Encoded triplanes

2{1:14}

Synthesized triplanes

We find the set of visible points based on the depth map of the given view via

inverse rendering. Specifically, the occlusion mask O, is estimated by Eq. (3.3):

Orp = R\ {p[z,y,2] : 7pDK I[u,v,1]"}, (3.3)

where plx,y, z] is the triplane coordinates, mg is the extrinsic camera parameters
of the input view, D is the depth map from the input view, K is the intrinsic
camera parameters, I[u, v, 1] are the homogeneous coordinates of the input image
I rendered from the input view. More clearly, from the current camera pose,

we map back to the depth values to obtain the mask of visible regions (1-O,).
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Then, we invert the visible region mask to obtain O,,. The utilization of occlusion
masks has been previously investigated in 3D methodologies, albeit in different
contexts. For instance, they have been used in generating pseudo-ground truth
images to facilitate optimization-based 3D reconstruction [79] and integrated into
passing high-rate residual features to the triplane [17]. However, it is the first
time used in the discriminator. This allows for a selective focus on regions where

the encoder may encounter challenges in faithfully replicating realism.

The training objective for Encoder 2 with parameters g, is given in Eq. (3.4).

Tene = G(E2(I)),

IV = R(Tenc, ),

IglEIQH M Lpips (I, I) + Ao Lo (TP, I) 4+ As Lidentity (I, I) + A Laay (D(OrTenc)),
(3.4)

where T, is the encoded triplane of image I, D is the discriminator, O, is the
occlusion mask from the same view 7. A 23 are the same as in Eq. (3.2), and
Ay = 0.001. L,qy in Eq. (3.4) is given in Eq. (3.5):

Lagy(z) = softplus(—z), (3.5)

where softplus is a smooth and differentiable approximation to ReL.U.

The training objective for discriminator D with parameters fp is given
in Eq. (3.6).

Tene = G(Ex(I)),
Tsynth = G(l\/[(ZJr ~ N(Oa I14)7 7Tfront>)7 (36)
I%in )\‘CadV(D(OWTenc)a D(OwTsynth»:

where Tyyne is the synthesised triplane from randomly sampled z*, M is the
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mapping network, mgone is the canonical front pose. L.q, in Eq. (3.6) is given
in Eq. (3.7):

Laav(z,y) = softplus(—z) + softplus(y) (3.7)

A is set as 0.5.

We jointly train Encoder 2 and the discriminator D in a traditional adversarial
fashion. We further employ R1-regularization to encourage L1-Lipschitzness [44]
to justify using softplus, where its weighting coefficient is 10 and is applied

every 16 iterations.

3.1.3 Dual encoder pipeline

In our approach, we train two encoders: the first, as outlined in Section 3.1.1,
and the second, augmented with an additional adversarial loss detailed in Sec-
tion 3.1.2. While the initial encoder excels at reconstructing high-fidelity facial
images from the input, it often produces unrealistic results for other viewpoints,
as depicted in Fig. 3.3. Conversely, the second encoder yields better overall out-

comes, albeit with slightly diminished fidelity to the input face.

FIACRREITERD
RIS REIDCE D
AR AFIDAE D

Figure 3.3: Visual results of Encoder 1, Encoder 2, and dual encoders for the
given input images in Columns 1 and 6.
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Our aim is to devise a dual-encoder pipeline that harnesses the strengths of

both encoded features. To achieve this, we leverage the occlusion masks derived
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in Section 3.1.2. By combining the visible portions from Encoder 1 and the
occluded segments from Encoder 2, we generate our final output, as illustrated

in Fig. 3.4. Sample outputs are visualized in Row 3 of Fig. 3.3.

Occluded
triplane regions

Visible triplane
regions

Figure 3.4: The inference pipeline with dual encoders for full 3D head reconstruc-
tion. Given a face portrait with pose mr, we can perform 360-degree rendering
from any given pose Tyovel-

While each encoder contributes partially to the ultimate feature, achieving
seamless integration necessitates consistency in the output of both encoders de-
spite their distinct specializations. For instance, if Encoder 1 flawlessly renders
a given view of the face but fails to capture the correct geometry, artifacts may
arise in the combined result. Thus, it remains imperative to train both encoders

comprehensively to ensure an overall high-quality outcome.

3.2 Experimental Setup

3.2.1 Training

We combined images of FFHQ [59] and LPFF [84] and split it for training (~140k)
and validation (~14k). CelebA-HQ [85] and multi-view MEAD [86] are employed
for additional evaluation. We removed face portrait backgrounds for training and
evaluation datasets, applied camera and image mirroring during training, and
performed pose rebalancing proposed in [84] as data augmentation. We utilized

the same dataset to train competitive methods for fair evaluation. The models
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are trained for 500k iterations with a batch size of 3 on a single RTX 4090 GPU.
The learning rate is 1e~* for both encoders and the occlusion-aware discriminator.
Ranger is utilized as the optimizer, which is a combination of Rectified Adam [87]
with Lookahead [88].

3.2.2 Architecture details

Encoder 1 and 2. For our Encoder 1 and 2, we employ 2-stage encoding for
W™ and high-rate F features, also seen in common with other style-based encoder
methods [12, 26, 13, 17, 18]. We opted for the architecture in [12] for W stage
(GradualStyleEncoder) and in [18] for F stage (TriplanenetEncoder), both
for Encoder 1 and 2.

Ablation encoders. GradualStyleEncoder is used for the Z* encoder,
where the resulting 14 latent vectors are later passed through the mapping net-
work with truncation v = 0.85 and canonical front camera pose. However, for the
Z encoder, a smaller variation of [12] (BackboneEncoderUsinglastLayerIntoW)
is implemented. This choice is due to Z being less expressive compared to Z71 (1
dim vs. 14 dim) and hence a smaller encoder being sufficient. The same mapping

network parameters for the Z* case are also utilized for Z encoder outputs.

Occlusion-aware triplane discriminator. We follow a feedforward network
approach with a channel bottleneck for our triplane discriminator D (Table 3.1).
Noting that the occluded triplane dimensions are [batch size,3,96,256,256],
we first add each depth slice to the channel dimension to get the input shape as
[batch_size,288,256,256]. Output dimensions are [batch_size,1]. We do
not utilize saturating functions such as sigmoid at the end since WGAN-based

loss is utilized.

Ablation image discriminator. For the back-view image discriminator used

in ablations, we change the input channel number of the model in Table 3.1 from
288 to 3.
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Table 3.1: Architecture for the discriminator. Conv2D parameters are: (input
channels, output channels, kernel size, stride, padding), respectively. Bias terms
are disabled.

Conv2D(288,64,3,1,1)
LeakyReLU(0.2)
Conv2D(64,128,3,1,1)
BatchNorm2D(128)
LeakyReLU(0.2)
Conv2D(128,256,3,1,1)
BatchNorm2D (256)
LeakyReLU(0.2)
Conv2D(256,512,3,1,1)
BatchNorm2D(512)
LeakyReLU(0.2)
Conv2D(512,1,3,1,0)
AvgPool(1)

3.2.3 Baselines

The baseline models are provided in Table 3.2. We note that no encoder pipelines
are aimed at full 360-degree head reconstruction. We train the models with the
author’s released code to invert images into PanoHead’s latent space. We run
experiments with optimization-based [75, 74] and encoder-based methods, ede
and pSp [27, 12], proposed for StyleGAN-based architectures. We also include
methods proposed for EG3D, namely, TriplaneNetv2 and GOAE [18, 79].

3.2.4 Evaluation metrics

We report Lo, LPIPS [82], and ID [83] scores for original-view reconstruction,
which measure the fidelity to the input image. For the novel-view quality, we
measure Fréchet inception distance (FID) [89]. Since our validation datasets have
limited angle variance, we measure the distance between 1000 randomly synthe-
sized and 1000 encoded real-life image distributions. The images are rendered
from varying yaw angles, covering the 360-degree range to include occluded re-

gions. We also utilize the multi-view image dataset MEAD dataset. Specifically,
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we fed front MEAD images (0° yaw) to all methods, rendered them from novel
views of MEAD (from 60° to 0° yaw), and compared them with their correspond-
ing ground truths. This allows us to report LPIPS and ID metrics alongside the

FID metric for the novel views.

3.3 Results

3.3.1 Comparison with state-of-the-art

Table 3.2 provides quantitative comparisons against state-of-the-art optimization
and encoder-based methods. GOAE achieves significantly better same-view re-
construction scores (L2, LPIPS, and ID), however, shows much worse FID scores,
indicating their inability to produce realistic views. While TriplaneNetv2 achieves
similar same-view reconstruction scores as our method, its FID score is also sig-
nificantly worse. Overall, the pSp and e4e methods perform worse than ours
in all metrics. PTI achieves similar results to our method but takes 250x the

computation time of ours and requires a GPU with large memory.

Table 3.2: Quantitative scores on various test sets.

FFHQ + LPFF CelebAHQ Time

Category Method| » '\ 1 pIPS | ID 1 FID || £, | LPIPS | ID 4 FID ||sec |
Optimization W optim. [74][0.035 0.17 0.57 65.30/0.049 0.19 0.49 63.57|49.19
PTI [75][0.019 0.11 0.89 59.40/0.033 0.13 0.86 57.85|86.52

pSp[12][0.028  0.15  0.77 90.52[0.033 0.17 0.70 88.20] 0.08

e4e[27]/0.064 0.24 052 82.99/0.080 0.26 0.42 84.70| 0.05
Encoder|TriplaneNetv2[18]{0.017 0.10 0.86 98.97|0.020 0.11 0.80 99.02| 0.17
GOAE[17]/0.015 0.09 0.87 168.96/0.017 0.10  0.86 173.64| 0.15

Ours|0.017 0.10 0.87 65.44]0.021 0.12 0.84 62.58| 0.37

We extend the quantitative analyses to multi-view with the MEAD dataset.
Specifically, we feed front MEAD images (0° yaw) to all methods, render them
from novel views of MEAD (from 60° to 0° yaw), and compare them with their
corresponding ground truths. Table 3.3 reveals that our method significantly im-

proves over compared methods, especially in LPIPS and ID metrics.
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Table 3.3: Quantitative scores on multi-view MEAD dataset.

Category | Method

LPIPS |
1£60° +30°

ID 4

+60°

+30°

FID |

+60°

+30°

W opt.

Optim. PTT

0.249 0.200
0.346 0.262

0.570
0.515

0.558
0.548

48.473
66.399

43.875
53.977

pSp
ede
Tpn.v2
GOAE
Ours

Encoder

0.245 0.189
0.318 0.265
0.248 0.192
0.296 0.249
0.223 0.178

0.640
0.544
0.658
0.654
0.706

0.650
0.462
0.663
0.660
0.726

49.364
67.399
48.937
87.644
47.207

48.098
70.854
46.493
92.758
43.822

Qualitative results are shown in Figs. 3.5 and 3.6. The competing methods

produce unrealistic outputs when viewed from angles other than the input view.

Among these, PTTI achieves good front and side views but fails to generate realistic

hair from the back. Our method achieves the best results overall.

PTI W+ opt.

pSp

99759009
BP9 9 88
DDDDDDD

Trip.v2 ede

GOAE

Ours

b bo e Bo B Be Re

Pty
ED@@@

BB,
Ll
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Figure 3.5: Comparisons of ours and competing methods.

We also include mesh comparisons in Fig. 3.7. Ours is better than the most

recent encoder-based method [18] and generally performs well compared to PTI.

Note that PTI mostly generates smoother meshes (Row 3) but can sometimes
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reconstruction

(0°), target (£60°), and render on +60° using the reconstructed 0° triplanes.

Figure 3.6: Edited image results. From left to right: input (0°),
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Figure 3.7: Inputs (first), reconstructions (second), and 360° mesh renders (rest).
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struggle depending on the input sample (Row 6).

3.3.2 Ablation study

In Table 3.4 and Fig. 3.8, we present an ablation study demonstrating the effec-
tiveness of our occlusion-aware triplane discriminator quantitatively and qualita-
tively. The first Row of results shows that not using any discriminator achieves
good reconstruction of the given view, as indicated by LPIPS and ID scores.
This is also visible in the first Row in Fig. 3.8. However, this approach fails to

generalize to novel views, as evidenced by the FID score and visual results.

No D

D w/ occ D w/oocc D w/ img

Figure 3.8: Qualitative results of ablation on occlusion-aware discriminator D.

Table 3.4: Ablation on occlusion-aware discriminator D.

|[LPIPS | ID 1 FID |

No D| 0.10 0.87 89.50

D w image domain| 0.17 0.67 72.86
D w/o triplane occ.| 0.15 0.70 66.24
D w/ triplane occ.| 0.14 0.75 64.02

On the other hand, training the model with an additional adversarial objective
that operates on novel images generated using randomly sampled camera parame-
ters improves the FID score but significantly harms the fidelity of the input image.
Training a discriminator in the triplane domain and applying adversarial losses
from this domain improves overall scores compared to training the discriminator

in the 2D image domain. However, as seen in Fig. 3.8 (third Row), the face still
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lacks high fidelity to the input, and other views are unrealistic. Lastly, using the
occlusion-aware triplane discriminator improves identity fidelity and FID scores.
The hair looks more natural, similar to the ones generated by the model when

sampled from z.

In our framework, we chose to embed images into the W% space. Table 3.5
presents an ablation study that explores utilizing different projection spaces and
various combinations of training data. Training an encoder to project images to
the Z or Z* space, where Z is sampled 14 times, results in better FID scores.
However, this comes at the cost of high-fidelity reconstruction. Similarly, transi-
tioning to a less constrained W7 space enhances fidelity to the input but worsens
the FID score. Addressing this challenge necessitates additional measures, such
as the proposed dual encoder setup with the occlusion-aware discriminator ob-
jective. It is important to note that the distinction between the Z* and W
space arises from the camera parameters incorporated into the mapping network.
While Z* employs various samples of Z, it adheres to the same set of camera
parameters assigned to the mapping network. In contrast, the YW space does
not impose such constraints during encoding. Given that the real image dataset
primarily consists of limited camera poses, typically front-view faces, we inves-
tigate training the encoder with synthetically generated images from PanoHead.
However, solely utilizing synthetic images generated from samples of Z* to in-
troduce more diversity compared to Z leads to poor performance on real image
validation sets regarding reconstruction quality. When combining synthetic and

real images, we observe an improvement compared to using them individually.

Table 3.5: Ablation on training data and latent space.

Train data|Proj.|LPIPS | ID 1 FID |

Real img.| Z 0.29 0.31 45.79

Real img.| Z* 0.22 0.60 76.54

Real img.| WT | 0.10 0.86 98.97

ZT gens.| WT | 027 0.25 46.93

Real imgs. + ZT| W+ | 0.10 0.87 89.50

Lastly, we show the results of using the dual encoder in Table 3.6. The visual
results were previously presented in Fig. 3.3. The dual mechanism leverages the

strengths of both encoders, achieving the same LPIPS and ID scores as Encoder
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Table 3.6: Ablation on dual-encoder.

Method |LPIPS | ID 1 FID |
E,| 0.10 0.87 89.50

E2| 0.14 0.75 64.02
Dual| 0.10 0.87 65.44

1 while also producing FID scores very similar to those of Encoder 2.

3.3.3 Editing application

We follow the reference-based editing in [11] in our pipeline. This method encodes
input images, and edits are performed in the triplane space. This approach
utilizes the fact that triplanes have a canonical space, allowing for the transfer
of local parts from one triplane to another. Fig. 3.9 demonstrates a successful
transfer of hairstyle from a reference image to the target human in 3D. Another
advantage of encoder-based models over optimization ones is the feasibility of
such applications. For example, this would not be possible with PTT since the
generator is fine-tuned for each sample, preventing the copying of features from

one image to another in the encoded feature space.

Figure 3.9: Hair edits from source image (first) to destination image (second) and
360° renders (rest).

3.3.4 Broader impacts and limitations

Our framework has the potential to revolutionize the movie industry, AR, and
VR, enabling applications like animating portraits and creating realistic game

environments. However, it raises ethical concerns, particularly the risk of ”deep
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fakes”. We stress the need for safeguards to ensure the ethical use of this tech-

nology.

We acknowledge that there is room for improvements in the fidelity of images,
the realism and 3D-consistency of generations (see Fig. 3.10, Row 2), and the
smoothness of the meshes (see Fig. 3.7). Since the projection is made onto the
latent space of PanoHead, our method may not handle out-of-domain or tail sam-
ples well (such as images with high-frequency details or accessories). For instance,
our method struggles with hats, as demonstrated in the first Row of Fig. 3.10. We
also recognize that, in certain cases, the artifacts are visible in the back middle

of the head and are more noticeable in the mesh rendering as shown in Fig. 3.7.

Figure 3.10: Example failure cases. Inputs (first), reconstructions (second), and
novel views.
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Chapter 4

Identity Preserving 3D Head
Stylization

In this chapter, we present a novel approach to 3D-aware head stylization that
combines GAN domain adaptation with diffusion-based distillation [10], with a
strong emphasis on identity preservation. While 3D stylization aims to convert
realistic facial features into artistic representations, existing methods often fall
short by focusing primarily on near-frontal views and struggling to retain the
subject’s unique identity. To address these limitations, our framework builds
on PanoHead, which enables full 360-degree image synthesis, allowing for more

expressive and comprehensive stylizations.

Our pipeline introduces a negative log-likelihood distillation (LD) strategy de-
signed to enhance identity consistency while improving stylization quality. We
further refine this process by incorporating a multi-view grid score, mirror gra-
dients, and a novel score rank weighting mechanism within the 3D GAN archi-
tecture. These contributions collectively lead to significant improvements, both
qualitatively and quantitatively. As shown in Fig. 4.1, our results outperform
existing methods and offer meaningful insights into the integration of diffusion

models and GANSs for 3D head stylization with reliable identity preservation.
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The rest of this chapter details the methodology, implementation details, and
results of the aforementioned work B. Bilecen, A. Gokmen, F. Gizelant, A.
Dindar, Identity Preserving 3D Head Stylization with Multiview Score Distilla-
tion, In submission, 2025 [10].

4.1 Method

Input

Style
Cl:jl?

leGAN

NADA

usion

Diffusion  StyleGAN Sty
GAN3D

Ours

Werewolf

Figure 4.1: Showcasing our method, effectively balancing stylization and identity
preservation. Other approaches often struggle to achieve high-quality stylization
and accurate identity retention. Notably, other methods generate identical faces
for different inputs (e.g., Joker stylization), whereas ours preserves unique features
for each input, ensuring distinct and personalized results for every individual face.

Our method involves fine-tuning the pre-trained parameters of PanoHead to
adapt it for generating images from different domains. This section will go
through the development of the method. Specifically, we will explain the adoption
of LD to 3D-aware image generators, mention the differences between SDS, ex-
tend LD with cross-pose dependencies and grid denoising, and use rank reduction

on score tensors. The general training approach is visualized in Fig. 4.2.
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Figure 4.2: Our proposed training approach with mirror gradients (a) and grid
distillation (b). Dashed and non-dashed lines show backpropagation and forward
paths. G, R, SR, and SD denote generator, neural renderer, super-resolver, and
denoising UNet, respectively. Output of SD is the score, V,, logp(z]|y). We
employ a depth-conditioned ControlNet in (b). For the sake of simplicity, we
omit the CFG here.

4.1.1 Likelihood distillation (LD) objective

We partially adapt the distillation procedure in [25] and tailor it to GANs, ex-

plained in this section.
Recall the DDPM forward process:

Vagry ++vV1—am =z, n~N(0,T) (4.1)

Assume that distribution (g) of the 3D representation (#) conditioned on gen-
eration prompt (y) is proportional to the prompt-conditioned distribution (p)
of independent 2D renders (z) on different poses (7). In our setup, 6 is the
style-based 3D GAN layers.

q(0ly) o< p(a, xh, ... 2 |y) = Hp(rcély) (4.2)

We optimize negative log-likelihood of Eq. (4.2) to find 6:

—log q(fly) = —log Hp Toly) = Z log p(wly) (4.3)

Define the loss Lip as the average of infinitely many N render poses and find

gradient Vy to update 6 via gradient descent, where 7 is any given pose:
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1 . m
Lip = ¥ ]&gmoo log q(0ly) = —E.{logp(zg|y)}

(4.4)
VoLip = —E-{Vlogp(zg|y)}
Using Egs. (4.1) and (4.4) and change of variables in probability:
Ore| ™ _ plaly)
Tly) = p(afly)| ot 4.5
platl) = lalo| | =2k (45

Take the log of both sides, the partial derivative with respect to zf, and
decompose the right-hand side with the chain rule using the relation in Eq. (4.1):

log p(zf|y) = log p(z]|y) — log v/

Ologp(agly) _ Op(afly) Oxf
oxf oxf  0xf (4.6)

vy
Ly

™
0x]

Va, log p(zgly) = Vo, log p(o]|y)

Extend the partial gradient chain in Eq. (4.6) to 6 from z7:

™ s
Ox} 0xf

dzF 06’

Vo logp(xgly) = Ve, log p(zf|y) (4.7)

where V., logp(z7|y) is the score function estimation. Plugging Eq. (4.7)
into Eq. (4.4) yields the update direction:

0xf] Oxf
VoLlip = —Erg Vi, 1 7 L2 5, 4.8
oo = ~Br { Voo pla )5k 00 | (48)
where gi—g is y/a; from Eq. (4.1). Notice that to update 6, we do not need

to back-propagate through the denoising UNet and can acknowledge the UNet
output as a part of the gradient. For the domain adaptation task, we assign 6 as

the PanoHead layers.

Note that LD is different than SDS [24] as it optimizes negative log-likelihood

instead of reverse KL-divergence. Compliant with previous observations [90], we
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also observe that SDS yields blurry results, as LD is sharp in domain adaptation
tasks. We attribute this to the fact that SDS is inherently mode-secking due
to the subtraction of ground truth noise € from the estimated noise ¢ and high
classifier-free guidance (CFG) [91] weight to avoid divergence [24]. In contrast, LD
is diversity-seeking (by not utilizing €), does not require very high CFG weights,
and is more suitable for our task, considering that we utilize a GAN prior. This
issue had not been investigated before on GANs, and the focus was diverted to
additional losses to solve the underlying issues of SDS, e.g. [22, 23]. We also note
that Huang et al. [25] proposes multiple-gradient descent on top of Eq. (4.8),
which we simply omit since the pretrained GAN backbone is strong enough to

avoid divergence.

4.1.2 Rank-weighted score tensors

While LD reduces the smoothness issues, we may come across some artifacted
results, especially around the hair, ears, and neck on some prompts (Fig. 4.3,
full-rank). Notice that the artifacts are more focused on incorrect color distribu-
tion rather than the style itself. Since diffusion latents must also contain color
distribution information [92], we decide to investigate the SVD of the score ten-
sors along the VQ-VAE latent channel (4) dimension. We notice that the first
rank contains most of the stylization and surpassing the contributions of the lower
three ranks can mitigate undesired tints. Hence, we re-weigh the diagonal singu-
lar value matrix S with linearly decaying coefficients W from the largest singular

value to the smallest. Specifically,

USVT = SVD(Vylog p(z§|y)),

(4.9)
Vologp(x]|y) = UWEVT,

where p is the rank-weighted score distribution, 3,4 = diag(oy, 09, ..., 04), Usxs =
[Ul, Uy -.uy U4] 5 V4096x4 = [Ul, Vo, ..., ’04]7 and W = dlag(l, 075, 05, O25)

As seen in Fig. 4.3, rank-weighted score tensors eliminate the problematic tints
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and set a good baseline for the following improvements. We set the weight scores
based on our empirical analysis, and the same weights are used for the training

of all prompts.

LD + [93] (full-rank)

LD + [93] (weighted-rank)

Figure 4.3: Ablation study on rank weighing. After SVD, four rank-1 matrices
are obtained, and k™ are chosen for reconstruction. Weighted rank improves the
results compared to full rank. In this figure, we also present our final results for
comparisons with LD + weighted rank and our multi-view and mirror gradient
optimizations for completeness.

4.1.3 Extending LD with mirror poses and multi-view dis-

tillation

The expression in Eq. (4.8) does not consider the correlation between different
views. To add cross-dependencies, we account for another poses where 7’ # 7
in Eq. (4.10):

v6"CLD = _Eﬂ,wt {th Ing(x;wy) ox™ 00 al,ﬂ/ o0
0 0

w£m!

Notice that 2252CTW) — 7 og p(a7|y) 2L in Bq. (4.10):

Tr, 7\',
oxf oxf
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VoLlip = —E o, {th log p(z7|y) :r(()axo
Ty

Tt

(%t oxf
(@7 ly)5 89}

(4.11)

By utilizing the symmetry prior for human heads, we assume that if 7 and 7’

e =

are yaw-symmetric camera matrices, 27 = M(zT ) where M is the vertical mir-

ror (flip) operator. Then, by Eq. (4.1), ng, simply becomes My/qa;. Further
2o

simplifying the expression Eq. (4.11) yields:

oxf oxf
Valtin = ~Eu { Valoup(af V(e + MG L (412

As shown in Fig. 4.2 (a), this intuitively means that we utilize the same score esti-
mation for mirror poses but must also mirror the gradients while back-propagating
to the generator. Since 3D-consistent face domain editing with 2D-diffusion mod-
els is challenging, keeping the same score estimation for different renders of the
same ID under logical constraints avoids deviating from the convergence path.
This is because there is no guarantee that V,, log p(27|y) and V,, log p(«T |y) will

indicate the same direction for the same y.

Notice the mirror approach can be extended to any render pose tuple (m,7")

as long as we can find a tractable gradient chain for 2 a . Our experiments show

O
that mirror gradients further improve stylization while accentuating 3D-aware

features like glasses (Fig. 4.9).

Mirror gradients only correlate with yaw-symmetric poses. Now, let us consider
the joint probability distribution p and not assume explicit independence among

poses, yielding Eq. (4.13):

q(0ly) o< p<x8’ xé? P xN’y) = ({way)’

T (4.13)
Votun, = ~Eaea { Viea ogpllar ) S L8]

where {2} is defined to have all poses {0, 1, ..., N }. However, this is not compu-
tationally feasible. Instead, as shown in Fig. 4.2 (b), we approximate {zf} with
a 2x2 grid, where each element is a x] with different render pose 7. This way,

denoising UNet can correlate between different renders of 6, improving stylization
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consistency across views. We further employ a depth-conditioned ControlNet [93]
as a regularizer to ensure the estimated score does not collapse to a single fused

image.

Our approach does not fine-tune any diffusion model to accommodate multiple
inputs [94, 95, 96] for multi-view consistency. Instead, it can use any pre-trained
diffusion model and re-purposes grid structures for the distillation task, first pro-

posed for video generation [97] and editing [98] with spatiotemporal consistency.

The PanoHead model generates images at a resolution of 512 x 512 [6], and
the diffusion model similarly processes 512 x 512 images when using LD-losses [2].
For grid construction, we arrange four images in a 2 x 2 layout but reduce the
individual image size to 256 x 256 to avoid memory issues during forward passes.
This way, the final grid image has the size of 512 x 512. Although this main-
tains a good correlation between poses and consistent stylization, it creates a
resolution mismatch when gradients are directly propagated from the PanoHead
output. To resolve this, we experiment with feeding the gradients before the SR
network, where the renderer outputs images at a lower resolution of 64 x 64. This
adjustment is only necessary for multi-view distillation, where we backpropagate
VyLyp, before the SR layers. For mirror poses, we do not need to skip the super-
resolution layers since they match the correct resolution, and so we backpropagate
V¢ Lip after the SR, as visualized in Fig. 4.2. This strategy improves the styliza-
tion quality and reduces unwanted artifacts, such as blur, over-saturation, and

color tint.

Algorithm 3 demonstrates the LD algorithm with mirror and grid gradients.
sample_latent utilizes the mapping network of the generator and maps z to w™,
later to be fed to the generator. make grid creates a 2x2 grid with 4 inputs. M
is realized with torch.flip(x,dims=[-1]). with no_grad() disables gradient
calculation. Note that each time z( is generated, we implicitly pass it through
VQ-VAE to embed it into SD’s latent space.
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Algorithm 3 LD with mirror and grid grads

Require: Generator Gy, neural renderer R, super-resolver SR, depth extractor D, depth and
text-conditioned denoising UNet SD, generator mapping truncation parameter v, extrinsic
triplane render matrix , mirror pose 7', vertical flip operator M, rank weighing matrix W

1: for ¢ in {0,1,..., N} do

2: w' ¢ sample_latent (1)=0.8)

3 m, 7 < sample_pose () > E,
4:  zT xf « SR(R(Gy(z), 7))

5: n,t < noise_scheduler(0.70,0.96)

6: xf — vaxl + 1 —amn > E,,
7 with no_grad():

8: V., log p(a7ly) /I = a; « SD(a7,y,t,D(a7))

9:  grad < Vg, logp(af|y)vou

10: UXVT < SVD(grad)

11: grad <+ UWXVT > rank weighing
12: xf .backward (grad) > VoLLp
13: x7 .backward (M (grad)) > mirror gradients
14: optimizer.step()

15: end for

16: for 7 in {0,1,...,N} do

17: wt ¢« sample_latent (1)=0.8)

18: {r} = 7% 7!, 72, 73 < sample_pose() > Egry
19: {zZ}Lr < make grid(R(Gg(w™),{m}))

20: {27} + make_grid(SR(R(Gy(w™),{7})))

21: n,t < noise_scheduler(0.30,0.80)

22: {zT} + Va{zl} + V1 —aun DE{mt}
23: with no_grad():

2. Vi logp({a7}y)/vVI =& « SD({zf},5.t, D({5)))

25: grad < V.3 log p({z] }Hy)v/ar

2%: USVT « SVD (grad)

27: grad + UWXVT > rank weighing
28: {z§ }1r . backward (grad) > grid gradients VyLrp,
29: optimizer.step()

30: end for

31: return Gy
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4.2 Experimental Setup

4.2.1 Baselines

We compare our method against several domain adaptation techniques, all
adapted to work with the PanoHead generator. StyleCLIP [20] trains a W map-
per network using a CLIP-based loss. StyleGAN-NADA [19] modifies adaptively-
selected generator layers using the CLIP objective, instead of altering W+. Style-
GANFusion [22] leverages SDS (score distillation sampling) for domain adapta-
tion, paired with a directional regularizer via a frozen generator for stable distil-
lation. DiffusionGAN3D [23] further improves upon [22] by introducing a relative
distance loss for better regularization. We also include 2D-3D editing methods
such as InstantID [99], InstructPix2Pix [100] and InstructNerf2Nerf [101] for a

broader comparison.

For StyleCLIP [20], we train the latent mapper with PanoHead’s [6] genera-
tor. For StyleGAN-NADA [19] and StyleGANFusion [22], we utilize the official
repository of [22] and modify the generator backbone to PanoHead, adopting
their EG3D configuration for PanoHead. Additionally, we implement adaptive
layer selection for [19]. For Diffusion GAN3D [23], where no official codebase is
available, we implement the method following the original paper. Our baseline
builds on [23], integrating their relative distance loss for domain adaptation while
introducing our proposed improvements. After adapting the generators, we in-
vert images by optimizing W7 to reconstruct the input image using the original
PanoHead generator. The optimized W is then fed into each domain-adapted

generator to produce renderings from various viewpoints.

For all baselines, we faithfully adhere to their original hyperparameters, includ-
ing denoiser checkpoints, noise schedulers, learning rates, and optimizers, unless

adjustments are necessary due to training divergence.
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4.2.2 Training

We train the generator with synthetic z1x512 ~ N (0,I) data for 10k iterations with
batch size 1, where the truncation parameter of the generator’s mapping network
is ¢ = 0.8. We use Adam optimizer with a le=* learning rate. We optimize the
G.backbone.synthesis and G.backbone.superresolution sub-networks of the
generator G and freeze all convolutional layer biases, using the same configuration
as [22]. The classifier-free-guidance (CFG) [91] weight and depth-conditioned
ControlNet [93] guidance weight are set to 7.5 and 1.0, respectively. Depth ground
truths are extracted from [102] since the neural renderer’s depth estimations are

low-resolution and require additional clipping (64 x 64).

As the conditional denoiser for our method and the ablation study for showing
the improvements upon [23], we employ the model Realistic Vision v5.1, similar
to Wu et al.’s work [103]. For qualitative and quantitative comparison among
other methods, we employ the methods’ suggested diffusion checkpoints in their

papers and repositories.

For mirror and grid denoising, noise start timestep t is uniformly selected
among (0.70,0.96) and (0.30,0.80), respectively, where ¢ is from 0 — 1. We
use DDIMScheduler for the noise scheduler. The number of inference steps in the

diffusion pipeline is always 1 since we perform score distillation.

4.2.3 Evaluation metrics

For stylization performance, we measure Fréchet Inception Distance (FID) [89]
and CLIP embedding similarity; for ID preservation, we measure ArcFace-
based [83] ID similarity and multi-view render depth £, difference AD. To con-
struct our test set, we perform W7 inversion to randomly chosen ~100 FFHQ

images. These W1’s are input to each generator to stylize a real identity.

In FID and CLIP, we construct two different edited image distributions,
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wherein one, the images are edited with a Stable Diffusion pipeline in the 2D im-
age domain (ground-truth distribution), and in the other, the images are edited
via the domain-adapted 3D-aware generators. These two distributions are used
to compute FID, and individual image pairs between them are used to compute
CLIP similarity scores. We generate a third distribution using unedited images to
evaluate identity preservation (ID) and AD. Scores for ID and AD are then calcu-
lated between using image pairs from the second and third distributions. Fig. 4.4

visualizes sample images in those three distributions.

Figure 4.4: Samples from the utilized dataset. From left to right: Ours (distri-
bution #2), ground truth unedited image (distribution #3), edited image with
full-step diffusion pipeline (distribution #1).

4.3 Results

4.3.1 Comparison with state-of-the-art

We provide quantitative and qualitative results in Table 4.1 and Figs. 4.1 and 4.5,
respectively. Table 4.1 demonstrates that our method outperforms others in
terms of stylization quality, as measured by FID and CLIP scores, as well as
in identity preservation, as evaluated by ArcFace-based ID similarity and multi-
view depth difference AD across nearly all prompts. These numerical findings are
consistent with the visual assessment. Figs. 4.1 and 4.5 reveal that StyleCLIP and
StyleGAN-NADA produce stylizations of lower quality, with noticeable artifacts
in the renderings. While StyleGANFusion and DiffusionGAN3D are capable of
producing stylized images, they significantly compromise identity preservation.
For instance, in the Joker example in Fig. 4.1, both methods generate identical
facial features for two different identities. Similarly, for the sketch prompt, the

identities are substantially altered. Competing methods also remove accessories
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such as eyeglasses. In contrast, our method effectively preserves the identity of

the input image while delivering high-quality stylizations.

2D Methods 3D Domain Adpt. Methods

[100] [99] [20] [19] [22] [23] Ours

FID 1444 160.8 118.2 @ 81.1 | 168.0 189.3 | 77.6

:::2 CLIP | 0.82 0.68 0.77 0.81 0.76 ~ 0.82 0.86
£ ID 0.40 059 0.52 | 0.61 0.60 0.46 0.69

AD 0.024 0.050 0.022 [ 0.013 0.003 0.024 0.014

FID 116.8 170.3 | 97.6 116.3 119.3 110.7 | 67.7
E CLIP | 0.90  0.69 0.75 0.81 0.80  0.86 0.89
2 1D 0.44 047 038 | 050 041 0.47 0.56

AD 0.023 0.066 0.031 0.011  0.007 0.009 | 0.003
= FID 178.1 183.3 248.8 2129 2039 | 132.3 99.7
% CLIP | 0.82 058 0.63 0.75 0.70 0.81 0.85
z ID 0.28  0.53  0.42 0.45 041 0.68 0.56
E AD 0.013 0.065 0.039 0.012 0.012 | 0.002 0.002
- FID 89.56  162.7 103.7 99.7 99.0 159.4 @ 91.6
S CLIP 065 0.65 | 0.75 0.71 0.74 0.71 0.77
% 1D 0.24 | 089 0.54 0.51 0.53  0.48 0.75

AD 0.002 0.047 0.026 0.034 0.012 0.016 | 0.005
., FID 60.9 160.4 181.6 154.5 | 85.5 166.2 144.5
£ CLIP [ 0.91 0.71 0.63 076 | 0.83 0.82 0.82
£ 1D 0.39 | 0.56  0.61 0.36  0.47 0.43 0.55

AD 0.011 0.038 0.012 0.039 | 0.007 0.009 = 0.006

Table 4.1: Quantitative scores with competitive methods.

Fig. 4.6 presents the mesh predictions for the Pixar-style stylizations produced
by our method and the competing approaches. The first Row shows reconstruc-
tions of the input image from different views, both in RGB image space and from
the mesh perspective. These results demonstrate that our method achieves signif-
icantly better identity preservation both in terms of facial features and distinctive
accessories, such as eyeglasses. Unlike other methods, which completely remove

or distort the eyeglasses, our approach maintains them with high fidelity.

We then conduct a user study with 25 participants to evaluate the quality of 3D
stylization and identity preservation across different methods. Participants are
shown images generated by five different models: StyleCLIP, StyleGAN-NADA,
StyleGANFusion, DiffusionGAN3D, and our own approach. For each image, they
are asked to select which output best balances stylization and identity preserva-
tion. The methods are presented in random order for each image to minimize

bias. Results of this user study are shown in Fig. 4.7. The data indicate that
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Figure 4.5: Qualitative stylization results provided in 360-degree views.
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Figure 4.6: Mesh and rendering visualizations of ours and competing methods
for the Pixar prompt. The input consists of a single image, and we display the
inverted and rendered results from PanoHead from three different viewpoints.
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our method is consistently preferred across all the prompts tested, with partic-
ipants overwhelmingly selecting it as the best for both stylization and identity

preservation when compared to the other approaches.
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Figure 4.7: The percentage of users’ preferences is presented for different prompts.
Users overwhelmingly select our method when compared to the other approaches.

4.3.2 Ablation study

We begin our ablation study with the DiffusionGAN3D [23] baseline and build
upon it by incorporating various improvements. [23] uses SDS loss for generator
optimization, along with a relative distance loss. This relative distance loss aims
to preserve the distance between two images generated by the original generator,
which serves as the ground truth. The fine-tuned generator is then optimized to

maintain this same distance between the corresponding generated samples.

As shown in Fig. 4.8, while their method successfully achieves stylization, the
results fail to preserve the characteristics of the input images. Next, we replace
the text-based diffusion model that generates the SDS loss with the depth-based
ControlNet [93], which helps retain more characteristics from the input image,
though its effectiveness remains limited. In the next setting, we apply negative
log-likelihood distillation (LD) alongside the depth-based ControlNet model. This
results in less saturation, and we observe improved preservation of the input
identity. We also show our final results demonstrating the improved color and
geometry alignment with the input images that include the improvements from

grid and mirror gradients in the last column. These visuals are consistent with
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the quantitative improvements presented in Table 4.2.

Werewolf

o

<
i
[a

Input [23 [23] +[93] LD + [93] Owurs

Figure 4.8: Qualitative Ablation Study I. LD and other regularizers like grid and
mirror scores help keep the original hair color, skin tone, and geometry while
stylizing.

FID A CLIP A 1D A

(23] 14719 - 074 - 035 -
(23] + [93] 140.20 [=6.99'| 0.75 [40.01] 0.34 [ -0.01
LD + [93] 116.88 [-23.32| 0.81 |40.06 0.46 |40.12
LD + [93] + W-rank 116.09 4+0.79 0.82 |+0.01 0.48 | 40.02
LD + [93] + W-rank + Grid after SR 99.53 [-16.56 0.85 +0.03 0.49 ' +0.01
LD + [93] + W-rank + Grid before SR 81.11 |-18.42 0.85 | 0.00 0.51 [+0.02
LD + [93] + W-rank + Grid before SR + Mirror gradients 84.17 |+3.06 0.86 [40.01 0.52 |+0.01

Table 4.2: Quantitative ablation study. A represents the difference between the
results of the current Row and the Row above. W-rank indicates weighted-rank.
Our approach improves stylization with ID retention.

We continue our ablation study in Fig. 4.9. We start from the previous
study with the results of LD, including rank-weighted score tensors and depth-
based ControlNet guidance. The ablation study for rank-weighting is presented
in Fig. 4.3 to provide a clearer explanation of the method, so we omit that dis-
cussion here. Next, we add the grid-based denoising, which provides multi-view
consistent distillation. We observe that the multi-view grid gradients improve

the results even when we feed them after the super-resolution layers, but if we
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feed the gradients to the generator before the super-resolution network, the re-
sults improve further both quantitatively and qualitatively, as shown in Table 4.2
and Fig. 4.9, respectively. Finally, we incorporate cross-dependencies with mirror

poses, enhancing intricate details, as evidenced by the zoomed-in views.

LD + [93] Grid Grid Grid +
Input W-rank after SR before SR mirror

Werewolf

Pixar

Figure 4.9: Qualitative Ablation Study II. Grid distillation improves stylization
while preserving identity, and mirror gradients focus on symmetric, intricate fea-
tures like glasses.

We present additional results with various prompts in Fig. 4.10. These prompts
include local stylization, such as adding a mustache or editing hair to pink. For
these experiments, we do not employ attribute-based masking for score gradi-
ents (for example, we do not mask the face when editing the hair). Despite this,
our method successfully achieves both localized edits and more global transforma-
tions, such as modifying the character to resemble an elf under a single framework.
In Fig. 4.11, we also compare our method with Instruct-Pix2Pix [100] (IP2P) and
Instruct-Nerf2Nerf [101] (IN2N). From the available results, it is clear that our
method outperforms others, balancing ID preservation and stylization. Notably,
IP2P is not 3D-consistent, while IN2N may generate over-smoothened and un-

natural results.
Regarding runtime, our method requires ~3h of generator tuning per prompt
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Figure 4.10: Additional results with various prompts applied to the input image

given in the first column.
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Figure 4.11: Additional comparisons with other 2D-3D editing methods.
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methods are run with the same seed for different views.



on a single A100 GPU. After tuning, inference on any head image takes only
~0.5s. In comparison, [101] requires ~1h to fit NeRF to a single identity and
+3h for stylizing the scene. [99, 100] take 50 iterations through denoiser, taking
~10-15s. [23, 22| also tune their generators, and their training and inference

times are similar to ours.

4.3.3 Limitations

A limitation, similar to other methods, is that stylization may not fully preserve
earrings and hair accessories, as illustrated in Fig. 4.12. Another one is the output
resolution, which is bounded by the utilized generative model. However, they can

be eliminated by utilizing a heavier model.

Input & Joker Input & Sketch

Figure 4.12: Limitations in preserving earrings and hair accessories.
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Chapter 5

Reference-based 3D-aware Image
Editing with Triplanes

In this chapter, we introduce a reference-based editing framework [11] that lever-
ages the latent space of 3D-aware GANs for high-quality image manipulation.
While GANs have proven effective for editing real images through latent space
operations, recent models like EG3D extend these capabilities by incorporating
3D structure using triplane representations. Despite this progress, there is limited
work on unified frameworks for high-quality, reference-guided editing in 3D-aware
settings. This study addresses that gap by demonstrating the effectiveness of the
triplane space for performing advanced, spatially consistent edits guided by a

reference image.

The proposed method integrates several key components, including a special-
ized encoder, automatic localization, spatial disentanglement of triplane features,
and a fusion learning mechanism that together enable effective and precise edit-
ing. We evaluate our approach across a wide range of domains, including human
faces, full 360-degree head representations, animal faces, partially stylized trans-
formations such as cartoon edits, full-body clothing changes, and class-agnostic
examples. Fig. 5.1 visualizes our framework’s qualitative editing results in various

domains.
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The rest of this chapter details the methodology, implementation details, and
results of the aforementioned work B. Bilecen, Y. Yalin, N. Yu, A. Dindar,
Reference-Based 3D-Aware Image Editing with Triplanes, CVPR 2025 (High-
light) [11].

Our unified, 3D-aware reference-based editing method on triplanes
outj requires a su«gle source & reference image as aputs, and can perform...

GEEEIE )

A A A A A

AES NN

-wvirtual try-on

—

\

~wwu*

won class-agnostic samples! fw\e—smmzd edits Ln.ke gLasses

..animal face part transfer

Figure 5.1: Our approach excels in reference-based edits, utilizing only a single
source and reference image. Leveraging 3D-aware triplanes, our edits are versatile
and 3D consistent, allowing for rendering from various viewpoints. We show
results on human faces, heads, bodies, and extend beyond to animal faces and
class-agnostic samples.

5.1 Method

Our main motivation lies in the fact that triplanes can be stitched and blended
for editing, like in the 2D image domain. However, achieving satisfying results re-
quires important observations and carefully designed steps, which will be detailed

in this section.

5.1.1 Localizing parts in the triplane space

To address this, we take advantage of the volumetric renderer used in [8] being

fully differentiable, and back-propagate the 2D image domain masks to the 3D
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hybrid triplane domain to calculate gradients on triplanes (Fig. 5.2, triplane lo-
calization in Algorithm 4). First, input images are encoded using a pre-trained
model [18, 17] to obtain triplane features. These features are rendered with dif-
ferent camera poses m oy to create multi-view 2D renderings R(T, 7). An
off-the-shelf segmentation network Syp identifies attributes [104] (e.g., hair, eyes,
glasses) in each rendering. The segmentation outputs are assigned as output gra-
dients Vgt ), and are back-propagated to the triplane domain to accumulate

input gradients >,V -, which localizes the triplane mask.

7{1,2,.,N}

Figure 5.2: Triplane part localization stage. E, G, and R are encoder [17, 18],
generator [8], and neural volumetric renderer, respectively. For the 2D segmen-
tation model Sop, we use state-of-the-art off-the-shelf segmentation models [104].
Images other than the input image are cropped to zoom in for visualization pur-
poses.

The most direct way to perform a region transfer from reference to source
image would be to mask and copy & paste the region of interest. However, this
process becomes intricate in hybrid 3D representations like triplanes, due to the

absence of a conventional method for identifying the regions to be masked.

To convert a gradient mask into a binarized one, we perform mean clipping,
normalization, and thresholding with parameters (¢,7) (post-processing in Algo-
rithm 4). These parameters are set once and used across all experiments for each

attribute and domain. This localization is done for source and reference images.

For finer granularity and to avoid copying unwanted attributes, such as copy-
ing glasses and not the eyes, W directions [29] can be utilized in addition.

By computing the difference between triplanes with and without the attribute,
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Algorithm 4 Triplane localization and masking

Require: Generator G, encoder E, renderer R, image I, extrinsic matrices my 2 . n, segmen-
tation net Sop, post-processing params (e, )
Ensure: Triplane mask M

1: T,Vt,+ G(E(I)),0 > Initialize triplane and gradients
2: for each m; in 15, v do > Triplane localization
3 I;, < R(T,m)

4: VR(T,m) +— Sop(Ir,, attr)

5 Vr < V1 + autograd(R, Vz(r,x,))

6: end for

7: for each c in Vr do > Post-processing
8: Vo, <« {x € Vr, : |V, (z) — tte] < €}

9: Vr, + (Vr, —minVr,)/(max Vr, —min V)

10: Vr, + {x €Vy, :1if Vg _(z) >~ else 0}

11: end for

12: return M < V-

AT,ir = G(w) — G(w — Way,y) and multiplying with gradient mask M, a more

precise mask can be created.

5.1.2 Implicit fusion by encoding & decoding

After finding suitable masks for reference and source triplanes, M, and Mg,

respectively, a naive approach would be to follow Eq. (5.1):
Ttmp - Mref : Tref + Msrc : Tsrc (51)

However, Fig. 5.6 (V1) reveals that only using Eq. (5.1) distorts the geometry
and color consistency, and creates stitching seams around the editing borders. In
addition, in some cases, the contents in T, and Ty, are not enough to ensure
the editing looks natural around the region where two masks meet, necessitating
the hallucination of additional content to complement the editing. For example,
we may want to remove the long hair from the source image and replace it with
the short hair from the reference image. In this case, the pixels that correspond

to long hair regions need to be inpainted.

Given the above observations and GAN’s latent spaces embed natural images,
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we render the naively fused triplane with the canonical pose 7¢a,, re-encode Eypy+,

and re-decode via the generator G to obtain an implicitly fused triplane, shown
in Eq. (5.2):

Timp = G(EW+ (R(Ttmp77rcan))) (5'2)

Note that state-of-the-art image inversion methods for EG3D, such as GOAE
[17] and TriPlaneNet [18], employ both low-rate W+ and high-rate F codes. The
latter is crucial for reconstructing fine image details. However, our objective in
this phase is not to achieve perfect image reconstruction. On the contrary, we aim
for the encoder to map the image to a latent space with natural reconstructions.
To achieve this, we disable the high-frequency restoration branch of Ey+ to
prevent encoding visible seams. This allows us to project the edited image onto
its nearest representation on G’s manifold, implicitly fusing the masked triplanes.
The output of this step can be seen in Fig. 5.3, showcasing seamless boundaries

across the stitches.

Triplane
localization

Triplane MSTC :
localization - 1
¢ T canonical 0
X a
% Tre l

Figure 5.3: Triplane localization and implicit fusion stages, where E* denotes
the fine-tuned image encoder that is described in Section 5.1.3. Straightforward
stitching in the triplane results in color inconsistency across the boundaries, as
shown in Iy, (zoom in for details). Leveraging E*, we aim to attain seamless
boundaries and produce outputs with a natural appearance.

Note that image details are compromised at this stage, as we solely depend

on the low-rate W space. To bring the details back, we only employ Ti,, at
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the transition regions, as depicted in Eq. (5.3). For instance, when we transfer
the mouth from reference to source, we aim for the triplane features outside the
mouth to originate from Ty, the mouth features from T,., and features near

mouth from Tij,,,.

Tf = 5<]~v-[1ref) : Tref + E(Msrc) : Tsrc

(5.3)
+ (g(Msrc) > E(Mref)) * Timp

Here, £ denotes morphological erosion. We also apply Gaussian blurring with
parameters (j, o) onto the masks to avoid sharp edges. This step is not illustrated

in Fig. 5.3 for brevity.

Finally, T} is rendered from any desired pose mg, and the final image is ob-

tained, as shown in Eq. (5.4).

]edited = R(Tf7 ﬂ-R) (54)

5.1.3 Fine-tuning the image encoder

Although Tjy,, obtained in Section 5.1.2 helps tremendously even though a pre-
trained encoder is used to obtain it, we notice in some cases where we have skin
color inconsistencies, background leakages, and missing high-frequency details
around the editing regions (Fig. 5.6 (V2)). Hence, we fine-tune the implicit
fusion encoder Ey+, jointly with the triplane editing pipeline, to mitigate the

aforementioned effects.

During the fine-tuning phase, we generate renders as ground-truths from var-
ious viewpoints of the source and reference images corresponding to different
attributes. Then, we employ masked losses to guide Ey+ in encoding only the
visible regions, as illustrated in Fig. 5.4. For instance, if our objective is to trans-

fer hair, we mask the reference renderings to exclude pixels that do not represent
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hair while doing the opposite for the source ground truth. To ensure that recon-
struction losses do not affect the boundaries, we dilate the segmentation masks.

The objective function is provided in Eq. (5.5):

m}%n /\<I>£<I>(D(Mref) : R(Tf, ﬂ-i); D<Mref) : R(Trefa 7]-1)) (5 5)
+>\ID£ID (D(Msrc) : R(Tf, 7Ti)a D(Msrc) : R(Tsrca ﬂ-i))7

where Lg is the learned perceptual image patch similarity loss (LPIPS) [82], Lip
is the identity similarity loss [83], D is dilation operation, and Msrc and Mref are
the corresponding 2D segmentation masks for the rendered images R(Tge, ;)

and R(T,e, ;) with poses m;, respectively.

L i
Triplane
fusion

( &
Tref 'ﬁ

Mo * R(Trer, 7N)

Figure 5.4: Pipeline for the implicit fusion encoder fine-tuning. We generate
masked ground truths for our task by utilizing 2D segmentation networks and
via renderings from multiple views. We aim to carry the reference parts in great
detail to our source image while preserving the source’s identity. The triplane
fusion corresponds to Eq. (5.3).

To achieve identity preservation of the source image, we rely on the ID losses,
and to copy the attribute with details, we rely on the LPIPS score from Eq. (5.5).
We omit pixel-wise losses like £, since they are highly dependent on the quality
of the off-the-shelf 2D segmentation network. During the fine-tuning, we use each

subject tuple (T, Trer) multiple times, rendered from N randomly chosen ;’s.

Compliant with the common encoder training methodology, we use the same

training datasets generators are trained with. We employ Ranger optimizer,
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which is a combination of Rectified Adam [87] with Lookahead [88]. The learning

4 and fine-tuning is done for 1500 steps with a batch size of 2

on a single RTX 4090.

rate is set to le™

5.2 Experimental Setup

5.2.1 Evaluation metrics

We present metrics evaluating both the reconstruction and editing qualities of
our approach. For editing assessment, we employ the Fréchet Inception Distance
(FID) [89], which evaluates realism by comparing the distribution of target images
with that of edited images. Specifically, we compute FIDs for adding eyeglasses
and hair edits from black to blonde transition using the CelebA [105] dataset.
For instance, leveraging ground-truth attribute labels, we add eyeglasses to im-
ages without them and compute FIDs between the edited and original images
that already have eyeglasses. This procedure is similarly applied to hair edits.
For reconstruction evaluation, we mask the edited areas and measure the L2 and
Structural Similarity Index (SSIM) between the input and edited images. For
instance, in the eyeglasses edit, we mask the eyeglasses and measure the alter-
ation in the unedited regions. This dual assessment framework ensures a robust

evaluation of both the fidelity and quality of our editing approach.

5.2.2 Baselines

We conducted comprehensive comparisons by evaluating our method against a
range of latent direction, text and image reference-based, 2D and 3D-aware, GAN,
and diffusion-based editing methods. Notably, no existing reference-based editing

methods achieve 3D consistency within a single framework.
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HiSD and VecGAN++ are reference-based 2D image-to-image methods. Inter-
FaceGAN, StyleCLIP (W), SFE (W' /F), StyleFusion (W), Barbershop, and
HairCLIPv2 (F/S) operate within the latent spaces of StyleGAN and can be
adapted to 3D-aware GANs like EG3D. However, only the last three are reference-
based, with two focusing on hair edits. For diffusion-based models, LEDITS++
and InfEdit perform text-based editing, while NoiseCLR utilizes pretrained latent
edit noise directions. Paint by Example inpaints the masked source image with

the reference image but lacks control over which parts of the reference are used.

5.3 Results

5.3.1 Comparison with state-of-the-art

We present quantitative and qualitative comparisons with competing methods
in Table 5.1 and Fig. 5.5, respectively. From Table 5.1, it is evident that our
method outperforms competing methods significantly in terms of FID and pre-

serves identity better in the non-edited regions.

Observing Fig. 5.5, our method demonstrates superior performance in hair and
glasses edits compared to competing methods. HisD and VecGAN++ struggle
with maintaining fidelity to the reference, particularly with glasses, due to their
reliance on low-rate latent spaces. While InterFaceGAN, StyleCLIP, and SFE can
add glasses and perform some hair transfers, they falter with uncommon edits
like hat removal (Column 5) and red hair (Column 8) due to the limitations of
their W /F spaces and their non-reference-based approach. LEDITS++ and
InfEdit, being text-conditioned, fail to accurately reflect the original reference
in their edits. NoiseCLR does not effectively explore hairstyle directions, and
its glasses modifications are entangled with makeup changes (Columns 2 and
4). Paint by Example can transfer some features but often produces severe out-
of-domain artifacts (Columns 1, 5-8). Barbershop and HairCLIPv2, optimized

for hairstyle edits, suffer from geometric inconsistencies (Column 8) and fail in
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Table 5.1: Quantitative scores on CelebA. (X) indicates the method is not capable
of such edits. First and second best methods are given in bold and underlined,
respectively. Time is measured on Tesla T4.

Eyeglasses Hair | Time
FID | Mgsim T Mg, L|FID | Mgssin T Mg, L] (s)

HiSD [106]| 77.56  0.9471 0.0090 | 94.53 0.9743 0.0036 | 1.1
VecGAN++ [80]| 71.47 0.7483 0.0630 | 80.47 0.9296 0.0090 | 2.2

Barbershop [31]| X X X |62.80 0.8756 0.0182| 125
HairCLIPv2 [32]| X X X 85.75 0.8769 0.0173| 180
StyleFusion [107]| X X X 84.67 0.8435 0.0198 | 24

InterfaceGAN [29]] 88.13 0.9398 0.0104 | 80.93 0.7888 0.0387 | 0.6
StyleCLIP [20]| 80.13 0.8421 0.0476 [92.60 0.8716 0.0196 | 0.6
SFE [34]| 106.1 0.9341 0.0099 | 89.49 0.9355 0.0050 | 5.1

E3DGE [78]| X X X 77.86 0.8083 0.0257 | 1.2
NoiseCLR [35]| 107.1 0.7958 0.0440 | X X X 17.2
LEDITS++ [36]| 115.2 0.9645 0.0047 | 96.56 0.9717 0.0025| 25.9

InfEdit [108]{ 90.33 0.8338 0.1042 | 105.4 0.7425 0.0613 | 9.1
Paint by ex. [33]| 74.18 0.8828 0.0252 | 82.38 0.9229 0.0155| 9.6
Ours|66.68 0.9818 0.0021|64.59 0.9720 0.0029| 6.0

some hair edit cases (Column 5). Finally, StyleFusion’s feature transfer relies on
W/WT directions, resulting in the loss of many high-rate details and outputs
that do not fully reflect the original images, especially when the features cannot

be well-represented in those domains (Column 8).

Next, we conduct a user study with 25 participants to evaluate our reference-
based edits. Participants are shown original and edited images and asked to
identify the edited ones. We utilize outputs of EG3D for both original and edited
images to neutralize the influence of encoding on the results, and utilize the same
angle for the source and edited images with random ordering to minimize bias.
Participants could also choose “undecided” if they find it difficult to distinguish.
The study focuses on edits to the mouth, eyes, and nose on the FFHQ) dataset, and
the eyes, nose, and mouth on the AFHQ dataset. Some participants frequently
chose “undecided”, while others performed near random chance in identifying
edits, in Table 5.2.
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Figure 5.5: Comparisons with the competing editing methods for glasses addition
and hair edits. Ours, HisD, VecGAN++, Barbershop, StyleFusion, HairCLIPv2,
and Paint by Ex. use reference images for editing. InterFaceGAN, StyleCLIP,
SFE, and NoiseCLR use previously calculated latent directions. LEDITS++ and
InfEdit use text prompts. N/A indicates the model is incapable of such edits.
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Table 5.2: The results of our user study, where participants are asked to identify
the edited image. Based on this study, we find that our edits are challenging to
distinguish. Numbers are percentages.

FFHQ AFHQ
Eyes Nose Mouth‘Overall Eyes Nose+Mouth‘Overall
Original| 40 29 34 34 40 42 41
Ours (edited)| 49 59 40 49 49 43 46
Undecided| 11 13 26 16 11 15 13

5.3.2 Ablation study

We demonstrate the improvements during the development of our pipeline stages,

both quantitatively and qualitatively, in Table 5.3 and Fig. 5.6, respectively.

Table 5.3: Quantitative ablation study. V1 is the post-processing triplane gradi-
ents, V2 is the implicit fusion, and V3 fine-tunes the implicit fusion encoder.

Eyeglasses Hair
V1 V2 V3|FID | Mssim T Mg, L |FID | Mssim T Mg, |

X X X |79.50 0.8451 0.0323 |82.42 0.8177 0.0195
vV X X |7446 09814 0.0022|77.30 0.9674 0.0034
v v/ X |68.19 0.9822 0.0020|67.04 0.9691 0.0033
v vV V/|66.68 0.9818 0.0021 |64.59 0.9720 0.0029

In our first ablation study (Fig. 5.6), we apply Eq. (5.1) to merge the triplanes
using a mask calculated via an autograd function without any post-processing
(No V Column). Due to the intricate volumetric function affecting many pixels
for each value in the triplane, the initial mask fails to stitch images effectively,
resulting in blurry outputs. Following the introduction of post-processing (+V1
Column), as described in Section 5.1.1, we successfully achieve clear stitching, as
depicted in Fig. 5.6. This allows us to transfer the hair of one person to our in-
put while aligning the features using the canonical representation of the triplane.
However, the resulting output still lacks realism because it combines features from
two different images with varying illuminations, identities, and skin colors. To
address the issue of smoothness at stitch boundaries, we follow Section 5.1.2 and
perform encoding and decoding via the pretrained encoder and decoder, respec-

tively, on the fused triplane. Since these encoders are trained with real images,
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Figure 5.6: Qualitative ablation study for glasses and hair edits, showing the
effects of all fundamental stages of our pipeline.

they know about real image priors. Despite the input image not being realis-
tic (+V1 Column), the encoder successfully encodes its latent to the generator’s
natural latent space while attempting to preserve the identity in (+V2 Column).
However, a pretrained encoder optimized for projecting real images onto the gen-
erator’s latent space is not optimal for our specific use case. Consequently, we
replace the encoder with one trained specifically for this task, elaborated in Sec-
tion 5.1.3. This specialized encoder (+V3 Column) ensures color preservation
and enhances editing details, such as the coherence of eyeglass frames, as well as
reducing background leakage. We note that the qualitative observations comply

with the quantitative scores, as displayed in our second ablation study, Table 5.3.

Cross-generator edits. We also provide novel edits in Fig. 5.7, where the
reference and source triplanes are gathered from stylized and non-stylized genera-
tors, respectively. Specifically, we utilize [22] and fine-tune the EG3D backbones
via different text prompts [24]. Then, we synthesize stylized triplanes (T.f) and
perform reference-based editing on the triplanes of default EG3D (Ty.). The
rest of the steps are the same as before, using the original EG3D and encoder we
trained for EG3D. The results presented in Fig. 5.7 demonstrate our method’s
independence from backbones, showcasing its capability to achieve part-based

attribute stylization. This differs from [22], which offers global stylization.
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Mouth

Reference Source Output Reference Source Output

Figure 5.7: Cross-generator edits with stylizing. Our method achieves copying
local parts from stylized images, such as cartoon portraits.

Additional face, full body, and 360-degree head edits. Fig. 5.8 demon-
strates challenging human face reference-based edits on EG3D [8] like transferring
lips, eyeglasses, and nose from one person to another. Fig. 5.9 shows edits on an-
imal face parts for eyes, nose, and mouth. Fig. 5.10 demonstrates fashion edits
on AG3D [5] trained with DeepFashion [109] dataset. Fig. 5.11 extends human
face part edits to full 360-degree hair edits on PanoHead [6]. It is evident that
our approach is generalizable to different triplane generators. While extending
our method to different triplane-based generators and datasets, we only changed
the 2D segmentation network and the encoder fine-tuning dataset to comply with

the generator, when required.

Generalizing to class-agnostic edits. Given the importance of large recon-
struction models [39, 38, 37, 110], we extend our method to arbitrary object edits
using the triplanes of LN3Diff and InstantMesh [38, 37|, proving the potential

capabilities of our method. Some results are visualized in Fig. 5.1.

5.3.3 Limitations

Our approach relies on the capabilities of EG3D, AG3D, PanoHead, LN3Diff, and
InstantMesh, which may struggle with background generation and high-quality
reconstruction. Consequently, in some instances, rich background details may
not be fully presented (Column 4 on Fig. 5.5). However, this can be mitigated

by not relying on the generator for background generation.
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Figure 5.8: Additional editing examples from the CelebA dataset. Our method is
able to seamlessly incorporate features such as lips, eyes, and nose from reference
to source, despite pose differences and interference like eyeglasses.
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Figure 5.9: Additional editing examples from AFH(Q dataset. The nose and

mouth are handled as a single part.
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Chapter 6

Conclusion and Future Work

This thesis explored single-image generation and editing from three comple-
mentary perspectives: faithful reconstruction [9], identity-preserving styliza-
tion [10], and reference-guided editing [11]. Leveraging the 360° synthesis ability
of PanoHead and recent progress in triplane-based NeRF-GAN hybrids, we in-
troduced new methods outperforming current state-of-the-art and new inspiring

perspectives to the research domain.

The first work is a dual-branch GAN-inversion system [9] supported by an
occlusion-aware triplane discriminator. Together, they deliver sharper geometry
and more reliable novel views than previous single-encoder baselines. The second
work [10] distills a latent diffusion model into the GAN domain with negative
log-likelihood objectives and score-rank weighting, thereby enabling strong styl-
ization while largely retaining facial identity. The third work [11] presents a spa-
tially disentangled fusion pipeline on the triplane domain that transfers desired
features from an example image to another subject, meanwhile maintaining 3D-
consistency. Extensive qualitative and quantitative tests confirm improvements

over state-of-the-art methods, particularly for challenging poses and attributes.

Future works will seek to perform the proposed methods on larger reconstruc-

tion backbones based on diffusion transformers (DiT), extend to class-agnostic
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3D models, and experiment with token-level attention fusion to remove the need

for canonical alignment spaces.

In closing, the thesis offers a cohesive set of works that reconstructs, stylizes,
and edits 3D heads and objects from single images while preserving identity.
Although some challenges and limitations are still present, the presented ideas

provide a solid baseline for further research and practical applications.
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