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THESIS EXPLORING THE POTENTIAL OF DIGITAL TWIN 

TECHNOLOGY TO IMPROVE FACTORS AFFECTING CONSTRUCTION 

PRODUCTIVITY DURING THE CONSTRUCTION PHASE 

SUMMARY 

In the construction industry, productivity has been a challenging and significant 

problem. Despite its significant economic importance, the construction sector often 

underperforms due to inefficiencies observed across various project stages. Low 

productivity is caused by a variety of problems, including insufficient 

communication, labor shortages, inadequate planning and a limited integration of 

digital technologies. These serious problems eventually decrease the general 

efficiency and sustainability of construction projects by causing delays, cost 

overruns, risk factors and resource waste, particularly during the building stage. As a 

result of these problems the construction sector is becoming more interested in 

advanced technologies in order to experience a digital transformation. Thus, the 

industry may achieve better site control, more effective decision making, and 

improved collaboration. Digital twin (DT) technology is one of these innovations 

that is currently gaining attention as an exciting concept that could help with major 

inefficiencies during the building phase. DT makes it possible for virtual and 

physical environments to synchronize in current time while offering insights based 

on data for performance enhancement. When integrated with Construction 4.0 

technologies such as internet of things (IoT), artificial intelligence (AI), machine 

learning (ML) and others, DT systems can enable predictive maintenance, better 

visualization, dynamic planning and modelling construction processes. According to 

current literature, the DT concept may be particularly beneficial during the building 

stage since the construction phase is characterized by complicated resource 

allocation, changing scheduling and critical cost, time and safety performance goals. 

DT implementation during this stage might facilitate real time site management, 

decrease rework, enhance safety conditions and allow for a more prepared decision 

making process. Despite these encouraging advantages, the implementation of DT in 

the construction stage remains limited, largely due to high costs, technical barriers 

and lack of awareness.  

This research investigates the potential of DT technology to improve productivity in 

the construction phase by examining how its capabilities align with the factors 

negatively affecting project performance. To achieve this goal, the objectives of the 

study are (1) to explore the role of DT throughout the building life cycle in the 

construction sector (2) to identify its benefits, challenges, and key application areas 

in the construction stage (3) to determine the factors affecting productivity during the 

construction phase (4) to compare these factors with the DT system's identified 

capabilities to assess its potential in overcoming productivity challenges. To 

accomplish these goals, the research adopts a two step method. First, a 

comprehensive literature review was conducted to identify the most critical 

productivity related factors and discover the present knowledge of DT system’s role 

in construction such as its opportunities, obstacles and major application areas. As a 
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second step, the questionnaire was designed based on the literature findings to 

understand the perception of sector experts and distributed to professionals in the 

construction industry. This resulted in 76 valid responses. The data were analyzed 

using SPSS v.29. The collected data were analyzed using several statistical methods 

including descriptive statistics, Cronbach’s alpha reliability analysis, normality tests, 

correlation analysis, independent samples t-tests and one-way ANOVA. These 

methods enabled a detailed evaluation of relationships between variables and the 

identification of notable variations in perceptions across participant groups. 

Findings from the survey suggest that industry professionals recognize the high 

potential of DT technology to address key productivity challenges in the construction 

phase. According to the survey results, professionals identified labor, management 

systems and design related issues as the most influential and frequently occurring 

productivity factors. However, when assessing DT system’s potential impact, 

participants believed the greatest improvements would occur in design related issues 

and management systems. These areas where DT capabilities such as integration 

with emerging technologies and time, cost optimizations are particularly effective. 

Despite labor being the most important productivity factor, the associated DT 

application area workforce monitoring was ranked lowest. This may indicate that DT 

was not believed to have much of an impact on labor concerns. In the statistical 

analyses, strong correlations for the benefits of DT concept were found between risk 

management, real time digital representation and resource management, as well as 

between time and cost management and resource management. In the challenges of 

the DT category, the highest correlations appeared among data integration, data 

management and high-fidelity modeling. For key application areas of DT, strong 

links were observed between material and equipment management, site monitoring 

and time and cost optimization. 

In addition to descriptive and correlation analyses, the study conducted independent 

samples t-tests and one-way ANOVA to explore differences in perceptions among 

participant groups. According to t-tests and ANOVA, there were minor variations 

between the participant groups. For the t-test, participants were divided into two 

groups based on their prior knowledge of DT technology (DT-informed and 

uninformed). Although no significant differences were observed in perceptions of 

respondents on the productivity factors and the opportunities of the DT system, 

significant differences emerged in specific areas. Regarding the potential impact of 

DT on productivity related factors, a statistically significant difference was identified 

for the communication factor, suggesting that DT-informed participants believed DT 

implementation could more strongly improve communication during the construction 

phase. In the challenges, DT-informed participants rated obstacles such as data 

integration, high-fidelity modeling and the need for skill and training more critically 

than non-informed participants. Similarly in the key application areas of DT in the 

construction phase, a significant difference was observed for the enhanced decision 

making processes variable, where DT-informed participants rated this application 

area more highly than non-informed participants. For the one-way ANOVA, 

participants were categorized according to their professional experience: less than 2 

years, 2–5 years and more than 5 years. Even though opinions were generally the 

same among the groups, two notable distinctions were found. First, participants with 

more than 5 years of experience reported a higher mean score for DT’s adaptability 

performance compared to those with 2–5 years of experience. Second, in the 

integration with the emerging technologies application area, those with more than 5 
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years of experience again rated the application area significantly higher compared to 

participants with 2–5 years of experience. These findings may imply that more 

experienced professionals tend to perceive a more positive view of DT as more 

adaptable and better suited for integration with advanced technologies in 

construction processes. 

According to the results obtained from the study, industry experts are optimistic 

about the DT technology and believe that it can significantly influence the factors 

determining efficiency and positively affect the productivity in the construction 

phase. 
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TÜRKÇE YAPIM AŞAMASINDA İNŞAAT VERİMLİLİĞİNİ ETKİLEYEN 

FAKTÖRLERİN İYİLEŞTİRİLMESİNDE DİJİTAL İKİZ 

TEKNOLOJİSİNİN POTANSİYELİNİN İNCELENMESİ 

ÖZET 

İnşaat sektöründe verimlilik, bu alanda uzun süredir hem önemli hem de zorluk teşkil 

eden bir problem olarak görülmektedir. Ekonomik açıdan büyük önem taşımasına 

rağmen, inşaat sektörü çoğu zaman proje süreçlerinin çeşitli aşamalarında 

gözlemlenen verimsizlikler nedeniyle düşük performans sergilemektedir. Düşük 

verimlilik, yetersiz iletişim, iş gücü eksiklikleri, yetersiz planlama ve dijital 

teknolojilerin sınırlı entegrasyonu gibi çeşitli sorunlardan kaynaklanmaktadır. 

Özellikle yapım aşamasında ortaya çıkan gecikmeler, maliyet aşımı, risk unsurları ve 

kaynak israfı gibi etkiler sonucunda bu sorunlar inşaat projelerinin genel 

verimliliğini ve sürdürülebilirliğini olumsuz yönde etkilemektedir. Bu sorunlar 

nedeniyle, sektör dijital dönüşüm sürecine yönelik olarak ileri teknolojilere giderek 

daha fazla ilgi göstermektedir. Bu bağlamda sektör, şantiye kontrolü ve izleme, karar 

alma süreçleri ve iş birliğini iyileştirme yönünde ilerleme kaydedebilir. 

Bu teknolojik yenilikler arasında yer alan dijital ikiz (DT) teknolojisi, özellikle 

yapım aşamasındaki ciddi verimsizlikleri giderebilecek potansiyele sahip, dikkat 

çekici bir kavram olarak öne çıkmaktadır. DT teknolojisi, sanal ve fiziksel ortamlar 

arasında eş zamanlı senkronizasyon sağlayarak performans iyileştirmeye yönelik veri 

temelli içgörüler sunar. Nesnelerin interneti (IoT), yapay zeka (AI), makine 

öğrenmesi (ML) gibi Endüstri 4.0 teknolojileriyle entegre edildiğinde, DT sistemleri 

tahmine dayalı bakım, gelişmiş görselleştirme, dinamik planlama ve inşaat 

süreçlerinin modellenmesini mümkün kılmaktadır. Güncel literatüre göre, DT 

kavramı özellikle yapım aşamasında önemli faydalar sunabilir; çünkü bu aşama, 

kaynak tahsisi, değişken zaman tahmini ve maliyet, zaman, güvenlik hedefleri 

açısından en karmaşık süreçlerin yaşandığı dönemdir. Bu teknoloji sayesinde, şantiye 

yönetimi gerçek zamanlı olarak yürütülebilir, yeniden iş yapma oranı azaltılabilir, 

güvenlik koşulları iyileştirilebilir ve daha hazırlıklı bir karar alma süreci sağlanabilir. 

Ancak bu avantajlara rağmen, DT’nin yapım aşamasındaki uygulamaları hala 

sınırlıdır, bunun başlıca nedenleri arasında yüksek maliyetler, teknik engeller ve 

farkındalık eksikliği yer almaktadır. 

Bu çalışma, DT teknolojisinin yapım aşamasında verimliliği artırma potansiyelini 

araştırmakta ve bu teknolojinin yeteneklerinin, proje performansını olumsuz 

etkileyen faktörlerle ne derece örtüştüğünü incelemektedir. Bu amaç doğrultusunda 

çalışmanın hedefleri şunlardır: (1) DT’nin inşaat sektöründeki yapı yaşam döngüsü 

boyunca oynadığı rolü incelemek, (2) Yapım aşamasındaki avantajlarını, zorluklarını 

ve önemli uygulama alanlarını belirlemek, (3) Yapım aşamasında verimliliği 

etkileyen faktörleri ortaya koymak, (4) Bu faktörleri DT sisteminin özellikleri ile 

karşılaştırarak, söz konusu teknolojinin verimlilik sorunlarını çözmedeki 

potansiyelini değerlendirmektir. 
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Bu hedefleri gerçekleştirmek amacıyla iki aşamalı bir yöntem benimsenmiştir. İlk 

olarak, verimlilik ile ilişkili temel faktörleri ve DT sistemlerinin inşaat süreçlerindeki 

rolünü, fırsatlar, zorluklar ve uygulama alanları gibi, belirlemek amacıyla kapsamlı 

bir literatür taraması yapılmıştır. İkinci aşamada ise, literatür bulgularına dayanarak 

uzman görüşlerini anlamaya yönelik bir anket formu hazırlanmış ve inşaat sektörü 

profesyonellerine uygulanmıştır. Anket sonucunda 76 geçerli yanıt elde edilmiştir. 

Veriler SPSS v.29 yazılımı kullanılarak analiz edilmiştir. Sonrasında ise tanımlayıcı 

istatistikler, Cronbach’s Alpha güvenilirlik testi, normallik testleri, korelasyon 

analizi, bağımsız örneklemler t-testi ve tek yönlü ANOVA gibi çeşitli istatistiksel 

yöntemler uygulanmıştır. Bu analizler, değişkenler arası ilişkilerin ve katılımcı 

gruplar arasında algı farklılıklarının detaylı biçimde değerlendirilmesine olanak 

sağlamıştır. 

Anket bulguları, sektör profesyonellerinin DT teknolojisinin yapım aşamasındaki 

temel verimlilik sorunlarını çözme konusunda yüksek bir potansiyele sahip olduğunu 

düşündüklerini ortaya koymaktadır. Katılımcılar, iş gücü, yönetim sistemleri ve 

tasarıma bağlı konuları en etkili ve en sık karşılaşılan verimlilik faktörleri olarak 

tanımlamıştır. Ancak DT sisteminin potansiyel etkileri değerlendirildiğinde, 

katılımcılar en büyük iyileştirmenin tasarım kaynaklı sorunlar ve yönetim 

sistemlerinde gerçekleşebileceğini belirtmiştir. Bu durum, DT’nin özellikle yeni 

teknolojilerle entegrasyon ve zaman, maliyet optimizasyonu gibi yeteneklerinin bu 

alanlarda etkili olduğunu göstermektedir. Öte yandan, iş gücü en önemli verimlilik 

faktörü olarak görülmesine rağmen, bu faktöre karşılık gelen DT uygulama alanı 

olan işgücü takibi en düşük sırada yer almıştır. Bu da DT'nin iş gücü sorunlarına 

yönelik etkisinin sınırlı algılandığını göstermektedir. 

İstatistiksel analizler kapsamında, korelasyon analizinde, DT’nin faydalarına ilişkin 

olarak risk yönetimi, gerçek zamanlı dijital temsil ve kaynak yönetimi arasında, 

ayrıca zaman ve maliyet yönetimi ile kaynak yönetimi arasında güçlü korelasyonlar 

gözlemlenmiştir. Zorluklar kategorisinde en yüksek korelasyon veri entegrasyonu, 

veri yönetimi ve yüksek doğruluklu modelleme arasında bulunmuştur. Önemli 

uygulama alanlarında ise malzeme ve ekipman yönetimi, şantiye izleme ve zaman, 

maliyet optimizasyonu arasında güçlü ilişkiler belirlenmiştir. 

Tanımlayıcı ve korelasyon analizlerine ek olarak, bağımsız örneklemler t-testi ve tek 

yönlü ANOVA analizleri de yapılmıştır. T-testinde katılımcılar, DT hakkında bilgi 

sahibi olanlar ve olmayanlar şeklinde iki gruba ayrılmıştır. DT teknolojisinin 

faydaları ve verimlilik faktörleri konusunda gruplar arasında anlamlı bir fark 

bulunmazken, belirli alanlarda farklılıklar gözlemlenmiştir. Özellikle, iletişim 

faktörü için DT’den haberdar katılımcılar, teknolojinin bu alanda daha yüksek katkı 

sağlayacağını düşünmektedir. Ayrıca, veri entegrasyonu, yüksek doğruluklu 

modelleme ve beceri, eğitim ihtiyacı gibi zorluklar da DT bilgisine sahip katılımcılar 

tarafından daha eleştirel biçimde değerlendirilmiştir. Uygulama alanlarında ise 

geliştirilmiş karar alma süreçleri değişkeni anlamlı fark göstermiştir, DT bilgisi 

olanlar bu uygulamayı daha etkili görmektedir. 

ANOVA analizinde katılımcılar, mesleki deneyimlerine göre üç gruba ayrılmıştır: 2 

yıldan az, 2–5 yıl ve 5 yıldan fazla deneyimi olanlar. Genel olarak benzer görüşler 

bildirilse de iki önemli farklılık tespit edilmiştir. Beş yıldan fazla deneyime sahip 

katılımcılar, adaptasyon yeteneği ve yeni teknolojilerle entegrasyon uygulama 

alanlarını diğer gruplara kıyasla daha yüksek puanlamıştır. Bu bulgular, deneyimli 
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profesyonellerin DT teknolojisinin gerçek hayatla adaptasyon ve ileri teknolojilerle 

entegrasyonu konularında daha olumlu bir bakış açısına sahip olabileceğini 

göstermektedir. 

Çalışmadan elde edilen sonuçlara göre sektör uzmanları, DT teknolojisine iyimser 

yaklaşmakta ve bu teknolojinin verimliliği belirleyen temel faktörler üzerinde olumlu 

etkiler yaratabileceğine inanmaktadır. 
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 INTRODUCTION 1. 

Productivity remains one of the most critical, complicated and persistent issues in the 

construction industry. The productivity performance of the sector has remained 

below that of other important industries despite making an enormous economic 

contribution (Turner et al., 2021; Laszig et al., 2020Therefore, the industry continues 

to experience low levels of efficiency, frequent delays and high resource waste. 

Numerous studies have identified a number of variables that adversely affect 

construction productivity, including inadequate planning, poor communication, 

insufficient skills, shortages of workers, technological diversity, material waste and 

safety incidents (Mehta et al., 2022; Hasan et al., 2018; Ghoddousi and Hosseini, 

2012). Additionally, the complex and multidisciplinary nature of construction 

projects, together with uncertainties and constant changes, leads to cost overruns, 

project delays and poor employee output, particularly during the construction phase. 

Contributing factors such as delayed digitalization and innovation resistance 

intensify the productivity gap in the sector. Moreover, the lack of real time 

information, unconnected systems and a restricted usage of smart technologies 

during operation phases contributes to the sector’s strong productivity challenges. 

Furthermore these inefficiencies constrain financial results, achievement of time, 

cost, quality and sustainability standards (Teisserenc and Sepasgozar, 2021; Naoum, 

2016). Due to these consistent difficulties, the construction sector has been growing 

attention to digital transformation with the goal of improving performance. These 

persistent inefficiencies have created a requirement for advanced digital technologies 

that can enhance coordination, monitoring and management methods during 

construction processes. Within this context, digital twin (DT) technology has 

emerged as a highly exciting development. Among the most recent digital solutions, 

DT technology has gained significant attention for its ability to establish a real time 

data connection between the physical and virtual worlds (Wang et al., 2021; Liu et 

al., 2022). The data flow enables continuous synchronization for monitoring, 

simulation and optimization purposes (Boje et al., 2020). Through integration with 
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internet of things (IoT), artificial intelligence (AI), deep learning (DL), machine 

learning (ML) and other innovative technologies, DT systems can process large 

datasets, predict outcomes and provide feedback for ongoing performance 

improvement in a project’s life cycle (Elfarri et al., 2022; Lu et al., 2020a; Austin et 

al., 2020). DT allows stakeholders to calculate possible hazards and make data driven 

decisions early in the project. In addition, it provides real time visualization and 

predictive monitoring. This helps reduce interruptions and improve planning by 

offering an extensive overview of site conditions and activities. Additionally, DT 

provides a number of advantages, including life cycle cost reductions, enhanced 

safety performance, energy optimization, predictive maintenance and sustainability 

benefits from more effective resource usage. These advantages support long term 

environmental goals as well. Compared to other industries, the architecture, 

engineering and construction (AEC) sector has adopted the DT concept more 

recently. The most common applications are observed in the operation and 

maintenance stages of the building lifecycle (Almatared et al., 2022). However, the 

construction phase presents significant opportunities for DT implementation (Opoku 

et al., 2021; Boje et al. 2020). As Yang et al. (2024) emphasize that this phase 

involves the high level of complexity in management systems such as resource 

allocation, time, quality and cost. According to Piras et al. (2024) and Almatared et 

al. (2022), DT appears as a system that may handle this complexity since it works 

effectively when combined with advanced technologies to provide dynamic and 

intelligent construction site modeling. However, as Construction 4.0 encourages the 

digital transformation of the industry, there is rising interest in implementing DT 

(Moshood et al., 2024). This is particularly during the construction phase, when its 

productivity boosting effects could be most effective. In this phase, DT technologies 

have the potential to address several inefficiencies. DT might encourage faster 

decision making and minimize rework, delays and safety hazards by providing real 

time site condition viewing, automated progress tracking, material and labor 

monitoring and construction simulation. These capabilities align closely with key 

productivity factors. According to Bosch-Sijtsema et al. (2021), by facilitating more 

accurate simulations and data based systems, DT has the capacity to directly address 

factors influencing productivity such as time, cost, safety and quality. Furthermore, 

DT increased its ability to improve collaboration among project stakeholders, 

decrease waste and optimize processes by integrating with tools like robotics, big 
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data analytics and building information modeling (BIM) (Bosch-Sijtsema et al., 

2021; Sepasgozar et al., 2021). The potential of DT and its increasing demand to 

improve construction productivity is frequently highlighted in the literature. 

Nevertheless, the implementation of DT technologies during the construction phase 

is in early stages. This technology is a valuable approach to overcoming persistent 

inefficiencies by promoting connectivity, automation and adaptability in construction 

processes. The relationship between DT technology and productivity is an important 

area for the future of the construction sector.  

 Purpose of the Study  1.1

According to existing literature, DT is most commonly applied in the operation and 

maintenance phase of the building lifecycle (Almatared et al., 2022). Boje et al. 

(2023) state that the DT of a structure starts to take form during the construction 

phase, but it reaches more advanced degrees of development during its operational 

stage. However, Yang et al. (2024) emphasize that the performance of the 

construction phase directly affects key project outcomes such as quality, schedule, 

cost and safety efficiency. In line with this, Akanmu et al. (2021) highlight the 

significance of the construction stage, claiming that DT is essential for optimizing 

several project lifecycle processes during this phase. Similarly, Boje et al. (2020) 

argue that the adoption of the DT concept in the construction phase has the capacity 

to revolutionize the construction industry. Building on this perspective, the study 

focuses on the potential of DT in the construction phase by addressing the factors 

that negatively impact productivity during this stage. It examines how DT 

capabilities correspond to these challenges by identifying its advantages, main 

obstacles to its adoption and significant usage areas. Thus it may contribute to a 

deeper understanding of its role in enhancing project performance. More generally, 

the study investigates the relationship between DT technology and productivity in the 

construction phase by identifying the key productivity related factors and assessing 

how DT's capabilities may contribute to addressing these challenges. Through a 

combination of literature review and survey analysis, the research tries to provide 

insights into the potential role of DT in enhancing efficiency in the construction 

phase. To achieve this purpose, the research objectives are: 
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1) To explore the role of DT throughout the building life cycle in the 

construction sector 

2) To identify its benefits, challenges, and key application areas in the 

construction stage 

3) To determine the factors affecting productivity during the construction phase 

4) To compare these factors with the DT system's identified capabilities to 

assess its potential in overcoming productivity challenges 

  Scope of the Study 1.2

This study focuses on the possible role of DT in responding to productivity 

challenges in the construction stage. Therefore the scope is limited to the 

construction phase of the building life cycle. Also the research is based on a 

comprehensive literature review and a survey conducted with professionals from the 

local construction industry. The study discusses how DT could assist in reducing 

these inefficiencies through an analysis of capabilities of DT technology and 

alignment with productivity factors. Since DT technology is still in its early stages of 

adoption within the construction sector, the survey stage of the study mostly reflects 

expert opinions and projections rather than direct evaluations based on practical 

experience. 

 Method of the Study 1.3

In order to achieve the objectives, this study combines a comprehensive literature 

review and a quantitative survey. The literature review was conducted to identify 

main productivity factors in the building stage as well as to examine the advantages, 

challenges in adoption and major usage areas of DT systems in the same phase. 

Based on the findings from the literature, a questionnaire was developed to collect 

data from experts. The survey intended to discover  perceptions of participants about 

DT and their opinions on its possible contributions to improving productivity in the 

construction phase. The data collected were analyzed using descriptive statistics, 

reliability tests, normality test , correlation analysis, independent samples t-test and 

one-way ANOVA. Then the data is examined in order to find relationships and 

assess differences. 
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 LITERATURE REVIEW  2. 

 Digital Twin 2.1

A digital twin (DT) is a dynamic virtual representation of real world properties 

through the use of actual time data obtained from sensors (Boje et al., 2020; Opoku 

et al., 2021; Liu et al., 2021). Simply, DT is the combining of information between 

an actual object and its virtual replica that functions in both directions (Fuller et al., 

2020). The DT consists of 3 main parts: the real world twin, the virtual world twin 

and the connection that links twins with information and data flow (Rasheed et al., 

2020; Nguyen and Adhikari, 2023; Teizer et al., 2022). Also DT varies with 3D 

modeling in terms of being current and having information exchange (Elfarri et al., 

2022; Jiang et al., 2021). DT technology was mentioned in 2003 by Grieves who was 

the first person to describe the DT concept, and he was working on product lifecycle 

management (Boje et al., 2020; Liu et al., 2021; Akanmu et al., 2021). At the 

beginning, the concept did not garner significant attention or engagement during that 

period (Wang et al., 2022). However nowadays as data generation from sensors and 

communication technology develop, the concept of the DT is gaining success and 

becoming popular (Wang et al., 2021; Liu et al., 2021; Kim and Ham, 2022). NASA 

played a significant role by releasing a paper in 2012 and took an important step in 

defining the framework of DT (Fuller et al., 2020; Khajavi et al., 2019). In that study 

conducted by Glaessgen and Stargel (2012) in NASA they mentioned the DT as a 

combined and complex simulation of a real vehicle or system, that includes various 

physical factors and probabilities. It utilizes the most accurate physical models, data 

from sensors, historical fleet information and more to replicate the entire operational 

lifespan of its real-world twin. DT is currently one of the main and developing 

technological advancements for Industry 4.0 and the upcoming Industry 5.0 (Lauria 

and Azzalin, 2024). Sun et al. (2022) emphasize studies in this field have intensified 

in recent years. They emphasize that not only the visual parameters taken from the 

physical object are transferred to the DT, but also data containing all kinds of 

information is transferred, and as a result, a virtual representation consisting of 
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multidimensional information is created. Researchers further discuss, the purpose of 

a DT is to provide information and insight when making decisions and taking action 

about the physical item. Likewise Zhuang et al. (2018) state DT includes virtual data 

that provides a description of a physical object, spanning from the details to the 

larger geometric aspects to express the multiplicity of data collected. Wang et al. 

(2022) explain, DT uses digital methods including the creation of tools, simulations, 

IoT devices and VR to translate the various characteristics of real world equipment 

into virtual environments. This process creates a digital replica that can be taken 

apart, adjusted and used multiple times. The method boosts a person's understanding 

of objects. Similarly Liu et al. (2021) indicate, in the building sector, DT offers 

multiple levels of information, visualization, analyzing and estimation. Through the 

use of DT, customers may see all of the details they need about the physical 

construction, which improves comprehension and communication. It is also capable 

of processing information well. Furthermore, data mining is a way to generate new 

knowledge from huge data sets if fresh data are made accessible through DT. 

Condition analysis and other emergency management procedures can benefit greatly 

from this. In summary, Jiao et al. (2024) highlight DT is a key digital tool for the 

construction sector, enhancing operation efficiency and quality. Additionally, Boje et 

al. (2020) approach this topic from a sustainability perspective, stating that 

advancing clean energy and low carbon emission goals is how the significance of 

working with DT is determined. Figure 2.1 explains the working principle of the DT 

between the real world and the visual representation. The four interaction 

relationships between both the physical and digital worlds have been simplified into 

a conceptual framework.  

In examining the DT and Building information modeling (BIM) relationship, they 

are both representations of actual assets, but due to the differences in their functions 

and capabilities, DT of structures could be thought of as a version of BIM+, which 

was created from digital descriptions (Wang et al., 2022). Autodesk (2023) expresses 

that the BIM process combines data from planning and design, while DT captures 

information throughout the construction and operational phases of the asset, enabling 

the prediction of future projects. Abilities to communicate distinguish DT apart from 

3D modeling and these skills are a necessary component of DT (Wang et al., 2021). 



7 

 

Figure 2.1 : The digital twin platform's structure adapted from Sun et al. (2022). 

Khajavi et al. (2019) claim, BIM is mainly employed to avoid errors in the building 

design process, enhance communication among stakeholders, boost construction 

efficiency and track the time and cost of construction projects. In contrast, DT has 

purposes such as predictive maintenance, improving resource efficiency, enhancing 

tenant comfort, conducting what-if analyses for optimizing building design and 

enabling closed-loop design to transfer insights from one building to future ones. DT 

has the capability to be constantly updated to mirror real time changes in the physical 

object, and they can utilize predictive analytics to anticipate future conditions unlike 

to BIM (Elfarri et al., 2022). Boje et al.  (2020) point out that in the building sector, 

there are a number of restrictions on BIM. Its lack of IoT connection is one of its 

primary weaknesses. Also BIM has a static and closed data system, while DT offers 

an interactive accessible online workspace that includes internet of things (IoT) 

integration and advanced artificial intelligence (AI) capabilities. BIM also stays 

poorly in the areas of automation and interoperability. They emphasize further, BIM 

helps professionals create a regular way to represent building parts and systems. In 

contrast, the DT analyzes the wider picture by considering the social and technical 

aspects of complex objects. It does this by using real time data connections between 

the digital and physical worlds. Researchers also highlight, in the relationship 

between physical and virtual aspects of DT, BIM is often seen as a part of it. These 

elements that DT have can assist in resolving BIM's constraints and giving the 

building sector a more complete and useful tool. BIM is a process centered on 3D 

modeling that provides architects, engineers and construction experts with the means 
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to effectively plan, design, build and oversee buildings and infrastructure in a more 

efficient manner (Eastman et al., 2011). According to Succar (2008), BIM serves as a 

realistic visual representation of a building that may be utilized for design, planning 

and construction phases. However, it is primarily employed during the design and 

building stages of a project. On the other hand, DT technology is a lively, real time 

digital copy of a real item or system using sensor data to represent the current 

condition of the actual item (Tao et al., 2018). The research community is currently 

shifting its attention from BIM applications to DT applications and the challenge lies 

in the fact that the BIM model is disconnected between physical and virtual objects, 

whereas DT intends to deal with this by creating a strong, two-way integration link 

(Almatared et al., 2022). Nonetheless, the adoption of DT technology remains at an 

early developmental phase (Boje et al., 2020). In brief, although both BIM and DT 

offer digital representations of real property, BIM focuses mainly on design and 

construction, whereas DT further by providing continuous tracking, analysis and 

predictive purposes throughout an asset's lifecycle (Wang et al., 2022; Elfarri et al., 

2022; Liu et al., 2021; Tao et al., 2018). This shift from BIM to DT improves 

monitoring, oversight and decision making abilities over a structure's existence 

(Mashood et al., 2024).  

2.1.1 Technologies supporting digital twin implementation 

Advancements in technology have revolutionized the construction sector by 

integrating machines, sensors and intelligent systems into the planning, building and 

monitoring processes (Si et al., 2023). DT integrates several industry 4.0 

technologies to the building industry, such as data collection and processing, 

modeling and simulation, tools for decision support systems (Moshood et al., 2024). 

In relation to this there are many technologies that help DT to operate (Piras et al., 

2024). Some of them are IoT (Sethi et al., 2017; Sun et al., 2022), AI (Elfarri et al., 

2022; Al Musaed and Yitmen, 2023), Model Visualisation (Elfarri et al., 2022; Sun 

et al., 2022), Immersive Technologies (Yang et al., 2024; Piras et al., 2024), Deep 

Learning (DL) & Machine Learning (ML) (Wang et al., 2022; Austin et al., 2020; Lu 

et al., 2020a), Sensor Technology (Riaz et al., 2015; Austin et al., 2020; Ham and 

Kim, 2020), Cloud Platforms & Data Storage (Ying et al., 2019; Fuller et al., 2020). 

Together, these technologies form the foundation of the DT structure and enable 

producing precise, dynamic and current time digital replicas (Yang et al., 2024). 
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Austin et al. (2020) and Akanmu et al. (2021) insist the key components of a 

successful DT system are cloud computing, IoT and semantic modeling. On the other 

hand, Yang et al. (2024) claim technologies like blockchain, cloud computing, big 

data and simulation are viewed as additions and enhancements to the DT structure, 

giving the system more features and abilities. 

The IoT refers to the integration of internet connectivity into various devices, giving 

them the ability to collect information about their environment (Yang et al., 2024). 

Fuller et al. (2020) state the escalating number of IoT devices, which surpassed 17 

billion in 2018, indicates the technology's significant development. According to 

their projections, there will be more than 75 billion of these devices in use by 2025, 

and the industry will be worth more than $5 trillion. Likewise Teisserenc and 

Sepasgozar (2021) mention, in construction areas, IoT may result in annual savings 

of between $160 billion and $930 billion. Madni et al. (2019) point out the increase 

in connectivity fits with the idea of a connected environment on a global scale. 

Additionally they explain it has positive effects on a variety of industries, including 

daily life, communication, healthcare, construction, transportation, smart cities, smart 

homes, wearables and manufacturing. Sun et al. (2022) indicate the IoT plays a 

crucial role in the DT platform. IoT devices, collect status data from physical objects 

and transmit this data for further analysis. This real time data stream enables 

functions such as accurate and real time monitoring. BIM and IoT have the potential 

to provide technological support for managing building operations through the DT. 

Also they add the automated procedures and IoT devices are needed for effective 

time management. Similarly Vemulapalli et al. (2021)  claim to have the full 

potential of DT, it requires a convergence of the modern technologies such as AI and 

IoT. Also they express the effectiveness of DT technology in the IoT network lies in 

its ability to create a virtual representation of a physical object. Moreover they state 

the technologies should be standardized for their applications and long-term viability. 

In a similar way Sethi et al. (2017) mention IoT devices are vulnerable to cyber 

attacks, because the data they collect can be sensitive. Therefore, it is essential to 

ensure that the data is secure and that the privacy of the users is protected. Also it's 

crucial to properly handle the huge amount of data that IoT devices produce. 

Furthermore IoT devices are battery-powered and have minimal compute and storage 

resources. Communication of data between devices is a power consuming task, 
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especially wireless communication. Therefore, researchers discuss the need for a 

solution that facilitates communication with low power consumption. On the other 

hand IoT devices can help in cost savings by reducing energy consumption and 

improving the efficiency of various processes.  

The fundamental concept of AI and its general definition originated in the late 1950s, 

focusing on the creation of intelligent systems (Fuller et al., 2020).  Almatared et al. 

(2022) express AI as one of the major fields of DT research and add that it is crucial 

in helping project managers improve their choices that have an impact on costs, time 

and effort. They also indicate AI plays a crucial role in decision making and in the 

context of DT it enhances predictive analysis capabilities. They emphasize that while 

DT often relies on simulation for predictions, the integration of AI can significantly 

improve decision making within the architecture, engineering and construction 

(AEC) field. Numerous studies found that the DT was assisted by IoT, making AI a 

crucial element to enable the DT for prediction and better decisions (Boje et al., 

2020). Elfarri et al. (2022) state AI, along with sensor technologies and virtual reality 

(VR), is examined to provide real time information about various aspects of the 

house such as air quality, water leakage, occupancy and external weather conditions. 

They claim AI is used to develop a DT of a construction. For this reason in their 

study, they created a fully functional and highly capable DT of a contemporary home 

by combining AI, innovative sensor technology and VR. Almusaed and Yitmen 

(2023) point out AI simulations and DT are employed in the design and management 

of tasks, structure and operations for the next era of constructions, with the aim of 

improving user satisfaction and optimizing building efficiency. The idea of applying 

AI in the construction of smart buildings is becoming more and more popular as 

technology, particularly the IoT continues to advance. These models reflect various 

design possibilities and estimate their implications. Also they assess the building's 

performance and methods to enhance both user comfort and building efficiency. 

Moreover artificial neural networks (ANN) have several advantages over traditional 

techniques and may be utilized to develop and operate intelligent building systems. 

Furthermore they mention that only a few of the many capabilities of ANN in 

information processing include instability, resilience, fault and failure tolerance, 

learning and managing uncertain and complex data. 
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Regarding model visualization, Elfarri et al. (2022) indicate that 3D modeling 

involves the use of software to create a three-dimensional representation of an object, 

commonly referred to as a computer-aided design (CAD) model. This model is 

composed of points, edges and surfaces, which collectively create a visual simulation 

of physical objects. Also 3D rendering is a digital graphics technique where textures 

are applied to the surfaces of a 3D model, resulting in a lifelike and photorealistic 

appearance of the object. Furthermore they mention the importance of 3D modeling 

in creating a DT. Sun et al. (2022) add that the precise recreation of physical items in 

a high-fidelity digital model is the central component of a DT system. For the DT to 

gain some kind of management over the actual environment, the visualization is a 

crucial tool. This model includes multi-dimensional object status data and is capable 

of being used for simulations and visualization, among other things. The BIM model 

and application use a complex model and place a spotlight on collaboration, which 

may meet the necessities of the DT model. Due to the multifaceted nature of the 

building environment and the numerous services it offers, monitoring and controlling 

it using a single digital replica is challenging. To address this, multiple BIM models 

are generated from the original BIM files. These models store specific information 

and function independently to handle various aspects effectively. 

In the context of immersive technologies, technology that switches out the actual 

world with a fully virtual environment is VR, improves it with simulation is 

augmented reality (AR), or combines the two is mixed reality (MR) (Salih and El-

adaway, 2024). Yang et al. (2024) claim that VR offers a wide range of uses in 

construction over the lifespan of a project. It enables architects to totally immerse 

into the design process, assessing lighting, materials and set up. Also they emphasize 

VR and AR may offer both interactive and immersive usages by combining BIM, 

IoT and other innovations. They further discuss AR has lasting significance in the 

construction industry, particularly when combined with tools for identifying and 

visualizing environmental abnormalities in building projects. Incorporating VR/AR 

with BIM is anticipated to improve project awareness by allowing users to virtually 

enter buildings, simplify onsite manufacturing with less errors and more (Pan et al., 

2021a). Additionally, AR enhances construction visualization by overlaying digital 

data in the physical world, while VR creates simulated work settings for detailed 

planning and education by offering virtual supervision throughout the construction 
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stages (Pan et al., 2021b; Sabet and Chong, 2020). Moreover, immersive 

technologies promote safety and risk management during the construction stage, help 

with employee education and simulate the process of construction (Pan et al., 2021b; 

Piras et al., 2024). Furthermore, these tools enable people to experience actual job 

conditions previous to project finish (Piras et al., 2024). As Sabet and Chong (2020) 

point out VR/AR facilitate automation, reduce flaws and improve security by 

allowing virtual site inspections to see possible hazards. Also VR offers an 

environment that can enhance satisfaction between stakeholders as well as work 

excellence by providing detailed visuals and improved comprehension of project 

participants (Yang et al., 2024; Sabet and Chong, 2020). Salih and El-adaway (2024) 

offer significantly, demonstrating that AR and VR are one of the essential players in 

time savings. Additionally, their study shows an intense connection among DT and 

AR/VR.  

ML, a subset of AI, is the development of technologies that can enable the computer 

to acquire knowledge and make decisions on behalf of the user without being 

explicitly programmed to do so and deep learning is an element of machine learning 

(Fuller et al., 2020). DT combines AI, ML and data analytics to build interactive 

digital simulations that can represent and forecast the present and future states of 

reality while also learning from a variety of sources (Lu et al., 2020a). Wang et al. 

(2022) identify DL as a simple neural network with three or more layers. They claim 

deep learning enables DT to evolve from static digital duplicates into dynamic 

instruments capable of learning, adjusting and optimizing. DT are created and run 

using DL as a core technology. Also they state that deep learning, as a subset of 

machine learning, has the capacity to examine the extensive data gathered by DT for 

prediction, operational enhancement and facilitating the self-improvement and 

adaptability of DT over time. As researchers state numerous AI programs and 

services rely on DL to increase automation and carry out both physical and mental 

duties without any human participation. In their study, in order to evaluate 

inhabitants' environmental peacefulness, the deep learning approach is used to 

evaluate the impact of DT applications in intelligent buildings. Austin et al. (2020) 

point out the operation and optimization of the DT system greatly benefits from 

machine learning. ML systems can examine data gathered from physical objects or 

their surroundings and use it to estimate outcomes or discover movements. 
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Furthermore it gives the DT the analytical capability required to make insightful 

conclusions from the data it has acquired, improving its ability to reflect and monitor 

the condition of the real world item or system.  

Sensor technology involves employing a variety of sensors to identify and react to 

specific signs in the physical surroundings, such as light, temperature, movement, 

moisture, pressure, or numerous other environmental factors. (Riaz et al., 2015; 

Austin et al., 2020). Austin et al. (2020) indicate sensor technology is essential for 

both building and running a DT. Sensors that are integrated into the physical object 

or its surroundings gather real time information regarding different aspects and 

variables. This information is afterward sent to the DT, which utilizes it to adjust its 

condition and actions to mirror those of the physical counterpart. They discuss, 

sensor technology acts as the crucial data bridge connecting the physical object to its 

DT, ensuring the digital representation accurately mirrors the current status of the 

real-world counterpart. This makes it possible to observe, assess and improve the 

physical system or object in real time using its DT.  As Riaz et al. (2015) point out, 

nevertheless, sensor data flows will provide challenges for conventional approaches 

to data management due to the enormous amounts of data. Similarly Ham and Kim 

(2020) mention the challenges that may present an issue, and one of them is the 

precision of the gathered data, which can impact the overall dependability of both the 

collected data and the subsequent analysis. Additionally, the process of gathering 

data can be lengthy and may lead to notable reluctance or discomfort among 

participants, particularly in participatory sensing methods. This might influence the 

extent to which these technologies can be effectively utilized. 

Ying et al. (2019) mention that cloud technology involves employing distant servers 

on the internet for data storage, management and processing, instead of relying on 

local servers or personal computers. This offers users the ability to access data and 

applications from any location with an internet connection, enabling advantages like 

capacity, adaptability and cost-efficiency. They further state DT technology typically 

utilizes cloud computing for the storage and processing of extensive data. This 

technology requires generating a virtual duplicate of a physical entity or system, 

enabling examination, modeling and optimization. As they indicate, collecting and 

processing the substantial data essential for this purpose can be achieved more 

efficiently and economically by taking advantage of cloud computing resources. 
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Moreover researchers emphasize, cloud technology facilitates universal access to DT 

models and services via an internet connection, simplifying collaboration and 

information sharing among multiple locations and organizations. Additionally 

Akanmu et al. (2021) assert that the amount and diversity of DT data make 

traditional databases unsuitable for storing it, which leads to growing interest in big 

data storage options like cloud platforms.  

The technologies that contribute to the formation and operation of the DT are 

visualized in Figure 2.2. By combining these technologies, DT creates interactive 

virtual worlds that can predict and depict the current and future situations of reality. 

Also how these different technologies contribute is briefly described in the figure. 

Moreover each technology is rapidly evolving so it is directly increasing the potential 

of the DT in this process.  

 

Figure 2.2 : Technologies form the foundation of the digital twin system. 

The use of DT solutions is growing in popularity as the construction industry looks 

to increase effectiveness and competitiveness (Moshood et al., 2024; Laszig et al., 

2020). This strategy makes use of Industry 4.0 technologies customized for the 

building sector (Moshood et al., 2024). Figure 2.3 examines the ways in which these 

technologies assist the 4 defining features of DT: data acquisition, data processing, 

modeling and simulation and decision support enablers. Data acquisition is gathering 

unprocessed data and sending it to the database or cloud-based system using essential 

technologies. Data processing is crucial in order to effectively model and analyze 

large, live databases and turn them into useful information. 3D models and 

simulations are employed in modeling and simulation, two essential components of 
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DT technologies, to view and evaluate scenarios. Decision support enables 

construction systems to handle interruptions and guarantee seamless lifecycle 

transitions by using AI and semantic tools.  

 

Figure 2.3 : 4 fundamental characteristics of the DT system adapted from Moshood 

et al. (2024). 

2.1.2 Digital twin in diverse industry contexts 

Other than building applications there are some other areas such as transportation, 

scheduling, adaptive traffic control, production, healthcare, smart city and aerospace 

industry. DTs are used by a variety of industrial sectors to improve the management 

of physical assets, physical systems and production processes (Wang et al., 2022). 

Manufacturing, aerospace industry, healthcare and infrastructure systems are the 

industries that benefit from the DT (Azfar et al., 2023; Akanmu et al., 2021).  

Azfar et al. (2023) mention that it has been proven in a study conducted in Atlanta 

that the use of DT in city transportation increases driving safety and reduces 

transportation time. In the study called North Avenue Smart Corridor, traffic flow 

was tried to be regulated effectively by using IoT and cameras, so a better 
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environment was created for pedestrians, cyclists and car drivers. Sensors detect 

vehicles and pedestrians and transfer their location to the 3D model whereas cameras 

transfer traffic density information to the digital model. As a result, AI synchronizes 

guiding elements such as traffic lights and regulates traffic flow. Apart from this, the 

model, which receives data from car driving, can also learn information about 

driving, leading to a better functioning transportation idea for the future. 

Deria et al. (2022) examined the DT to explore the feasibility of automatically 

generating the best work scheduling and planning resource allocation for pavement 

in roadway construction sites. Thus, they expect it to provide benefits by reducing 

the need for human labor, human error and unproductive times in the work plan in 

road construction.  

As an example of sensor usage in traffic, The Istanbul Metropolitan Municipality 

Transport Department (2018) created the adaptive traffic management system to 

minimize traffic density and boost traffic flow in Istanbul. This system dynamically 

regulates traffic based on the real time density of vehicles at intersections. Initially, 

magnetic sensors at crossings count vehicles and send data to the intersection's traffic 

signal controller. Then the controller transmits it to the adaptive traffic management 

system, managed by the transportation management center. Using a real time 

optimization algorithm, the system calculates traffic density and adjusts green light 

durations for each direction.This results in reducing delays by %15 to %30 when 

compared to traffic data from intersections where the adaptive traffic management 

system is not employed. This improvement leads to a %20 reduction in travel times 

and a %35 increase in traffic flow. Beyond just time saved in traffic, there's also a 

%15 decrease in fuel consumption rate. As a result of its implementation, 

approximately ₺700,000 worth of fuel is conserved annually. On average, each 

intersection benefits from a time-saving of approximately ₺1.7 billion per year.  

Fuller et al. (2020) express DT are frequently used in the manufacturing industry to 

integrate data throughout physical and virtual machines, enabling simulation, 

evaluation and improvement of production processes. They also point out DT is able 

to offer current information on machine efficiency, identify struggles previously and 

increase reliability and performance. In addition, a number of industry leaders have 

used DT in everyday manufacturing and have applied appropriate patents for 

advances in technology in manufacturing (Pan et al., 2021a). Wang et al. (2017) 
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emphasize the importance of human-robot collaboration since it is very useful in 

industrial production and creates a safe and optimized production environment 

especially in assembly tasks. Collaboration between humans and robots may be 

observed in a variety of ways such as guiding the robot with 3D bare hand gestures 

and helping humans with physical tasks. According to them, DT is a virtual model of 

a production unit used for monitoring, analyzing, planning and control. It interacts 

with the real world by receiving real time sensor data and influencing the physical 

environment via robotics. They indicate this technology has the potential to be a 

valuable tool for continuous process assessment, improvement and engineering 

support during process changes.   

DT technology offers a wide range of uses in the healthcare sector (Erol et al., 2020; 

Akanmu et al., 2021). Akanmu et al. (2021) point out, in healthcare, DT are 

frequently applied to simulate environments that are adapted to the needs of 

researchers, doctors, hospitals and healthcare providers. DT might be adopted to 

analyze the human body in real time, simulate the effects of medications and prepare 

for and execute surgeries (Fuller et al., 2020). Erol et al. (2020) mention it allows the 

creation of virtual copies of patients, leading to personalized diagnosis, treatment, 

and monitoring. Thus, DT can help hospitals optimize resource allocation and 

streamline processes. They also discuss that DT enables continuous monitoring of 

vital signs, providing valuable health information in the pharmaceutical industry 

when integrated with wearable devices. Furthermore they state, DT plays a 

significant role in developing personalized medicine and enhancing production 

efficiency. Moreover, they hold promise for improving organ transplantation 

outcomes and expediting vaccine and medicine development. 

Additionally DT has various applications in smart cities; however, the studies 

primarily focused on the following areas: infrastructure management, urban planning 

and design, maintenance management and services (Lu et al., 2020a; Shahat et al., 

2021). Lu et al. (2020a) express DT can be used to manage various aspects of city 

infrastructure, such as transportation systems, water and energy networks and waste 

management. Actual time data can be collected and analyzed to optimize their 

performance, detect anomalies and improve maintenance and resource allocation by 

creating a virtual replica of these systems. Furthermore they indicate that during the 

urban planning and design phase, DT plays a role by modeling various situations and 
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assessing how they affect the city. Additionally they show DT has the potential to 

enhance citizen services and participation by offering individualized insights and 

suggestions. As researchers highlight, by integrating data from transportation 

systems, weather forecasts, and event calendars, DT provides public transport 

updates, suggests personalized activities, and enables interactive communication 

between residents and city officials. Moreover Austin et al. (2020) give an example 

of a data driven municipal operations center in Rio de Janeiro, Brazil, which collects 

live information from 30 companies, such as emergency, transit, utility, and security 

services, into one place. A team of 180 data operators oversees these records, 

keeping an eye on and responding to environmental and urban events. In another 

study, Kim and Ham (2020) collected image data via drones and created a DT and 

investigated the physical damage from the environment to the utility poles. Thus, 

with the data and information they obtained from research, they applied 

improvements regarding the positions and angles of the utility poles which is for 

better smart city applications. Fuller et al. (2020) state DT in smart cities can 

optimize energy consumption, improve infrastructure management, and enhance 

urban planning. They enable actual time analysis of data from various sources, such 

as sensors and IoT devices, to monitor and optimize the performance of city 

infrastructure, including transportation systems, utilities and public services. They 

further highlight that DT can help city planners make informed decisions, improve 

efficiency and enhance the overall quality of life in smart cities by simulating and 

analyzing different scenarios. Therefore they demonstrate, DT can be used for city 

wide simulations and monitoring, including areas like traffic management and 

renewable energy. DT in smart cities provide living analysis, simulation and 

prediction based on accurate analytics, contributing to more efficient and sustainable 

urban environments. (Fuller et al., 2020; Lu et al., 2020a; Kim et al., 2022) 

In the aerospace industry, DT is utilized for upcoming NASA vehicles. They 

combine highly accurate simulations with integrated vehicle health management 

systems, maintenance records and past data to guarantee safety and dependability 

(Glaessgen and Stargel 2012).  
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2.1.3 Architectural and construction applications of digital twin 

Construction sector, with its large labor force and GDP contribution, is a vital 

industry for all economies having an average contribution of %9 to national 

economies (Ellul et al., 2024; Nguyen and Adhikari, 2023). However, Arowoiya et 

al. (2023) highlight, the construction industry experiences various challenges such as 

low productivity, insufficient communication, limited technological advancement, 

inadequate project performance and low innovation. Moreover, despite the 

availability of technologies aimed at enhancing productivity and performance, the 

construction sector is reported to be slow in adopting innovative technologies 

compared to other industries (Hasan et al., 2018). With the rising need for greater 

efficiency and competitiveness in construction, the adoption of DT solutions is 

becoming increasingly common (Moshood et al., 2024). DT concepts are significant 

in the architecture, engineering, construction, and facility management (AEC/FM) 

sectors (Lu et al., 2020b). DT helps reduce the long-term impacts of buildings and 

makes the construction process more efficient (Boje et al., 2020). Furthermore, there 

are numerous applications for DT technology in the construction and architectural 

industries, and the field of architecture can greatly benefit from its utilization (Lu et 

al., 2020a; Wang et al., 2022). A review of the literature revealed a wide range of 

architectural applications of DT technology. These are include design visualization 

and simulation (Lu et al., 2020a; Wang et al., 2022), indoor environmental 

monitoring and optimization (Opoku et al., 2024; Hu et al., 2023; Khajavi et al., 

2019), and energy performance and sustainability analysis (Zhang et al., 2022; Lu et 

al., 2020a; Debrah et al., 2022). Additionally, integrated technologies for 

performance forecasting (Almusaed & Yitmen, 2023; Elfarri et al., 2022; Boje et al., 

2020), real time monitoring and facility management (Sun et al., 2022; Lu et al., 

2020b), and anomaly detection (Lu et al., 2020b; Hosamo et al., 2022) are commonly 

discussed applications. Furthermore, reducing construction errors and enhancing on 

site coordination (Wang et al., 2022; Deria et al., 2022; Boje et al., 2020), enabling 

human robot collaboration in construction tasks (Wang et al., 2021), and managing 

lifecycle data (Opoku et al., 2024; Lu et al., 2020b) are also among the notable areas 

of implementation in architectural practice. Lu et al. (2020a) emphasize that the 

operation and maintenance phase, which lasts the longest in the property's life cycle, 

has received less attention in studies, so the key initial step for efficiently managing 
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and sustaining buildings is to establish a well-structured framework, supported by 

real world examples, for creating a DT. But in contrast, Almatared et al. (2022) claim 

that the operation and maintenance phases of the building's life cycle are where DT 

technologies are most commonly used particularly. The reason for these two 

different opinions might be the increasing demand for research on this subject in the 

last 2 years. Applications and advantages of DT for establishing smart construction 

services are numerous such as enhanced site sensing, real time data visualization and 

increased application of AI (Bosch-Sijtsema et al., 2021; Wang et al., 2021). Some 

researchers have analyzed the architectural applications of DT focusing on indoor 

conditions whereas others discuss energy efficiency in terms of sustainability, site 

sensing and human robot collaboration. Boje et al. (2020) mention that DT offers a 

significant enhancement in site sensing. Furthermore they indicate DT offers real 

time data visualization, which allows for the careful monitoring and control of assets 

throughout their entire lifespan. Lastly, the study adds using AI into DT can enhance 

human involvement in negotiation heavy construction processes. Similarly Almusaed 

and Yitmen (2023) highlight AI simulators and DT are used in smart building design 

ideas to improve building performance and client satisfaction. The models simulate 

various design options and forecast their effects on building efficiency, comfort and 

security using data about structure use, architectural form and functions, plus 

environmental factors. The models are able to evaluate several design possibilities, 

identify any problems and improve building operations and satisfaction for users.  

Wang et al. (2022) express buildings using DT programs have immediate access to 

constructed models. This means that they will be actual time connected, current 

status work tracking is possible for companies. They mention the use of DT in 

construction has the potential to address typical issues in the construction process, 

such as minimizing errors and redundancies by providing real time information 

updates to construction sites. Furthermore as Sun et al. (2022) indicate, DT can make 

it simple to access elements for managing building operations, allowing for improved 

efficiency of building operations and the early identification of emergency situations. 

Also by converting management system choices into practical actions, they may 

control the operation in the real world. In addition they express that the information 

stored digitally plays a crucial role in making building operations more efficient and 

provides a system for managing operations more effectively. 



21 

As Lu et al. (2020a) state DT finds application in the design and construction stages 

of building projects. They offer architects a digital representation of the structure, 

enabling them to visualize the design, spot potential problems and implement 

required modifications before starting construction. The study shows DT is also 

valuable during a building's operational and maintenance phase. Researchers supply 

real time information on the building's performance, assisting facility managers in 

overseeing its state, forecasting maintenance requirements and optimizing 

operational processes. Moreover they state that the DT can play a role in promoting 

sustainability in architecture through giving information on a building's energy 

consumption, water use and waste production. This data helps architects and building 

owners in developing plans to reduce the building's ecological footprint. As Debrah 

et al. (2022) reveal, sustainability, involving the effective use of resources, is 

extremely problematic for the AEC industry because construction activity generates 

the majority of global energy consumption (36%) and carbon emissions (37%).  

Wang et al. (2021) designed a task for DT application where participants 

collaborated with a robot to install drywall panels. The case study involved vertically 

installing four panels on a wall frame, with participants choosing the order and type 

of drywall for each task. In conclusion, they highlight that DT provides a virtual 

representation of the real environment, integrating crucial real world data to facilitate 

construction tasks and enable instant changes and revisions. The research concludes 

that human-robot collaboration reduces human error and enhances the benefits of 

technology as Deria et al. (2022) emphasize the importance of reducing human errors 

by using DT.   

Similarly Khajavi et al. (2019) gather, examine and use over 25,000 sensor 

measurement examples to develop and confirm a restricted DT of a facade piece for 

an office building. They conducted the study to illustrate the implementation strategy 

and emphasize the advantages of the DT. In the experiment, after processing the light 

sensor data, software was used to represent the current condition of facade 

brightness. Consequently, they express that the lighting system's daily energy 

consumption can be significantly reduced. In the study, they concentrated on 

applications of a DT aimed at reducing maintenance costs, enhancing tenants' 

comfort and decreasing the overall management and operational expenses of a 

building. Furthermore they mention the DT equipped with sensors that measure air 
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quality, temperature and relative humidity can provide the necessary data for 

implementing an air conditioning system in indoor spaces. Likewise Zhang et al. 

(2022) state measurement and management of energy performance as the most 

important application factor for buildings and how DT can help us accomplish 

control over energy efficiency. Energy analysis for buildings in the design stage and 

implementing energy management in close to real time during the operational phase 

are examples. Moreover, they mention that the DT in the workplace can facilitate the 

best possible design and use of office space through the use of performance and 

health information from people inside. The result can improve user happiness and 

provide owners more control over the workspace.  

Opoku et al. (2024) focus on creating DT to track interior conditions in a university 

library, campus of Western Sydney University. To do this, technologies for the IoT 

and BIM integrated to produce a semiotic representation of the internal parameters of 

the library. Improving air quality, the lighting and temperature control inside the 

building is the goal. The paper discusses the difficulties in incorporating current time 

tools for data collecting and graphical representation in the construction sector. Hu et 

al. (2023) particularly intend to improve the automation and accuracy of preserving 

indoor air quality by developing a parallel deep learning approach for failure 

forecasting and a system of prediction facilitated by DT. The goal of the project is to 

increase comfort for tenants, reduce hazards and quicker repair processes in building 

settings while filling the research gap in predicting failures for interior conditions.  

In a study conducted by Elfarri et al. (2022), they utilize data derived from a 

contemporary residence, encompassing diverse parameters associated with the 

home's surroundings and functions. Afterward, machine learning models are 

developed and trained with this data to construct predictive models capable of 

anticipating the future states of the house. The evaluation of these models focuses on 

performance metrics, including accuracy in predicting various conditions within the 

residential environment.  

Besides Lu et al. (2020b) point out efficient asset management is crucial for ensuring 

the optimal performance and serviceability of buildings. Despite this importance, 

there is a shortage of effective strategies and comprehensive methods for handling 

assets and their data in a way that facilitates the monitoring, detection, recording and 

communication of operation and maintenance issues. This study introduces a DT-
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enabled anomaly detection system to improve asset monitoring in daily operations 

and maintenance. The heating, ventilation and air conditioning (HVAC) system of 

the Institute for Manufacturing building at the University of Cambridge serves as a 

case study. To demonstrate the DT's capabilities in data integration, anomaly 

detection and visualization, the system monitors the building's centrifugal pumps. 

Similarly Hosamo et al. (2022) focus on the HVAC system of the building and 

examine its operation with DT. Although the researchers work on a similar topic, 

they approach it with different methodologies. Hosamo et al. (2022) adopt predictive 

maintenance technology with BIM, IoT and ML techniques to monitor errors 

whereas Lu et al. (2020b) employ the Bayesian online change point detection 

methodology for anomaly detection.  

A bibliographic analysis was conducted to understand the research trends and status 

of the DT concept in the literature. Research related to DT and the construction 

sector was gathered from the Scopus database. All types of documents, including 

conference papers, articles, reviews, book chapters, books and conference reviews 

were considered to capture the perspectives of researchers. No time constraints were 

imposed on accessing information in the literature, but the focus of the paper is on 

research conducted in English. The advanced search engine on Scopus was utilized, 

with filtering based on Title-Abstract-Keywords. The search code employed was 

TITLE-ABS-KEY ("digital twin") AND TITLE-ABS-KEY ("construction project" 

OR "construction industry" OR "construction sector") AND (LIMIT-TO 

(LANGUAGE, "English")). A total of 340 publications were identified during the 

search. Subsequently, the publication data from the Scopus database for the current 

search was exported as a CSV file for bibliometric mapping using VOSviewer 

software. In the Scopus search, information related to a total of 340 publications was 

obtained and Figure 2.4 illustrates the distribution of these documents across 

different years. The earliest data available in Scopus dates back to 2018. The chart 

depicts a steady increase in publications since 2018, with a notable rise in 2020. 

Although the publication count has been doubling on average each year until 2022, 

the publication counts for 2022 and 2023 are very close to each other. This result 

may mean that due to the publication count reaching a certain point, the number of 

publications related to the topic may not show a steep increase in the coming years 

on the graph; this might indicate a saturation level. It's important to note that the 
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analysis concluded in the early months of 2024, and the statistics for that year may 

not fully represent the current circumstances. Therefore, the apparent decline in the 

figure might not signify an actual reduction in numbers. Nevertheless, it can be 

inferred that interest in the DT concept experienced a significant expansion between 

2018 and 2023. 

 

Figure 2.4 : Amount of publications for DT in AEC during 2018-2024. 

Figure 2.5 shows the document type distribution. Among the 340 papers addressing 

digital twin applications in the construction industry, articles and conference papers 

constitute approximately 82%. Reviews (10.9%) and conference reviews (4.1%) 

come next, with 37 and 14 publications, respectively. Books (0.9%) and book 

chapters (2.6%) are the least preferred types in the table.  

 

Figure 2.5 : Type of publications. 

For citation analysis, VOSviewer was employed to analyze citations in AEC industry 

documents related to DT. According to Scopus, 5 major contributors in this area are 

identified and listed in Table 2.1. These are: Boje et al. (2020), Opoku et al. (2021), 

Pan et al. (2021a), Lee et al. (2021), Sepasgozar (2021). 
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Table 2.1 : The most cited publications on DT in construction industry. 

No Author Title Citation Research Focus 

1 Boje et al. 

(2020) 

Towards a semantic 

construction digital 

twin: Directions for 

future research 

476 Authors emphasize the necessity 

of a construction digital twin 

(CDT), identifies capabilities and 

highlight key research issues in 

the domain. Also they address 

BIM's weaknesses and 

limitations.  

2 Opoku et 

al. (2021) 

Digital twin application 

in the construction 

indusrty: A literature 

review 

214 The paper examines the DT idea, 

growth of the concept, essential 

technologies and six application 

area in the lifecycle stages of a 

project and implementation in the 

construction industry. 

3 Pan et al. 

(2021) 

A BIM-data mining 

integrated digital twin 

framework for 

advanced project 

management 

212 The study presents DT structure 

that incorporates data mining, IoT 

and BIM to enhance intelligent 

construction project management. 

Moreover future perspectives on 

construction through the 

application of DT and AI are 

given in the paper. 

4 Lee et al. 

(2021) 

Integrated digital twin 

and blockchain 

framework to support 

accountable 

information sharing in 

construction projects 

178 The paper aims to establish an 

integrated framework that 

combines DT technology with 

blockchain for improved data 

communication and enhanced 

information sharing among 

construction project stakeholders. 

5 Sepasgozar 

(2021) 

Differentiating digital 

twin from digital 

shadow: Elucidating a 

paradigm shift to 

expedite a smart, 

sustainable built 

environment 

129 Emphasizing its importance in 

implementing Industry 4.0 to 

differentiate DT from other 

digital modeling practices. It also 

highlights integrating DT with 

blockchain and deep learning, 

demonstrating benefits in 

improving efficiency. 

 

Among these publications, the work of Opoku et al. (2021) is featured in the Journal 

of Building Engineering, the contribution of Sepasgozar (2021) is found in Building, 

whereas the remaining ones are published in Automation in Construction. The 

documents commonly focus on discussing the influence of DT on productivity and 

efficiency, as well as the potential of collaboration with other emerging technologies 

in shaping the future of the construction sector. We may determine the widespread 
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use of particular themes and the focus of research by examining the co-occurrence 

data of author keywords in papers. Utilizing VOSviewer, we generated a co-

occurrence network of author keywords, where the size of keywords reflects their 

popularity, colors distinguish clusters, and the distance indicates similarity. 

Furthermore, the connections between terms indicate relationships inside the DT and 

the construction industry. With 2 being the minimum number of keyword 

occurrences,155 keywords out of 868 meet this criterion. Figure 2.6 displays a 

bibliometric map illustrating the co-occurrence of author keywords.  

 

Figure 2.6 : Bibliometric map of author keywords co-occurrence network. 

Based on the analysis, the term digital twin emerges as the most frequent keyword, 

appearing 132 times, in cluster 1, indicating a significant association with other 

relevant concepts. Following closely is BIM, the second most common keyword, 

occurring 57 times and placed in cluster 11. The third, digital twins, is part of cluster 

6 with 41 occurrences. In this map, several terms that are associated with the 

computer and machinery industries are found in minor clusters, including cyber 

physical systems, fault detection, neural network, smart contract, petri net and more. 

According to the definition of the National Institute of Standards and Technology, 

cyber-physical systems involve the interaction of various components, including 
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physical, digital, analog and human elements and are designed with integrated logic 

and physics to ensure effective functionality (NIST, 2024).  International Business 

Machines defines a neural network as a model or machine learning program that 

mimics the way the human brain makes choices (IBM, 2024). Also a petri net tool is 

capable of being used to simulate the system, produce code, examine its 

performance, and verify the model (Thong, 2015). This occurrence may be attributed 

to the direct impact of advancements in computer science and technology on the 

application of DT in the construction sector. Moreover, research on DT spans across 

interdisciplinary areas, including engineering, information science, and computing. 

Nodes of smaller size indicate a less frequent discussion in academic publications 

compared to larger nodes. Nevertheless, if a topic is a recent development, it may 

have future growth potential. To gain insights into this matter, it is necessary to 

closely examine the historical development of keywords. In response to this goal, 

Figure 2.7 was generated by integrating historical data into the analysis.  

 

Figure 2.7 : Bibliometric map of author keywords co-occurrence overlay. 

The addition of a time option to the overlay visualization map causes the colors to 

change, but the screen, point size and clusters stay the same (McAllister et al., 2021). 
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The cluster colors transition from blue to yellow as the years approach the present. 

Examining the keywords published annually as an overlay, terms such as digital 

twin, BIM, construction industry, internet of things and industry 4.0 stand out as 

being crucial in the field; they are frequently used in academic papers and indicate 

the largest clusters. Furthermore, these terms are predominantly shaded in either 

green or blue, signifying their extended usage by researchers. Notably, within the 

notable blue clusters, the most significant ones include BIM, construction, big data, 

blockchain and facility management each featuring in 57, 14, 11, 11, and 10 

documents, respectively. On the other hand, within the expansive green clusters, 

aside from the terms digital twin, BIM and construction industry, we find internet of 

things, artificial intelligence, virtual reality and deep learning noticeable each with 

15, 10, 8, and 8 occurrences, respectively. Lastly, we note that greatest terms within 

the yellow cluster are predictive maintenance (9), sustainable construction (6), 

construction management (6) and ontology (6). Moreover, there are keywords that 

are primarily observed within the yellow clusters, which are highly specialized in the 

field of DT technology such as semantic web, industry foundation classes (IFC), 

intelligent construction, scan to BIM and automation. Recent research predominantly 

utilizes the keywords found in the yellow clusters. However, this does not guarantee 

their sustained relevance in the future. Future studies might reveal an expansion in 

their significance or they could remain relatively small. We can state that future 

modifications in their dimensions could occur. Moreover, according to the analysis, 

yellow, which is currently chosen keywords, refers to more specific topics compared 

to terms found in other colors. Table 2.2 has been created to enhance the distinction 

among the keywords found in the clusters shown in Figure 5. It clearly depicts the 

clusters, their colors and the keywords associated with each cluster in a list format. 

These 15 clusters were titled with DT to more accurately represent the application 

area of the construction sector. The first cluster, "DT and Construction," consists of 

22 keywords, making it the group with the most keywords. Cluster 2, "DT & 

Technological Advancements" has 15 keywords. Cluster 3, "DT & Management" 

consists of 14 keywords. The top 3 clusters have the most keywords, followed by the 

clusters C4 (12), C5 (12), C6 (11), C7 (10), C8 (10), C9 (10), C11 (10), C12 (9), C13 

(6), C14 (3) and C15 (1).  
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Table 2.2 : Clarification of the clusters. 

No Cluster Name Colour Keywords 

Top 3 

Keyword Occurences 

1 DT & 

Construction 

Red blockchain, building construction, building information model (bim), construction 

logistics, cyber-physical system (cps), digital twin (dt), digital twin construction 

(dtc), ifc, interoperability, linked data, literature review, modular integrated 

construction (mic), ontology, openbim, petri net, prefabrication, semantic web, 

smart construction, structural equation modelling, supply chain, sustainable 

construction 

Digital Twin  132 

Interoperability 7 

Ontology 6 

2 DT & 

Technological 

advancements 

Dark 

Green 

artificial intelligent (ai), building information modeling (bim), building 

information modelling (bim), collaboration, construction safety, construction site, 

digital twins (dt), framework, industry foundation classes (ifc), internet of things 

(iot), lean construction, mixed reality, review, systematic literature review (slr), 

visulisation 

Internet of things 

(iot) 

6 

Review 6 

Construction 

safety 

5 

3 DT & 

Management 

Dark 

Blue 

building information model, construction management, construction project 

management, cyber- physical system, energy management, engineering project 

management, facility management, fault detection, internet of things, 

optimization, predictive maintanence, risk management, simulation, smart 

building 

Internet of things 15 

Facility 

management 

10 

Predictive 

maintanence 

9 
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Table 2.2 (continued) : Clarification of the clusters. 

No Cluster Name Colour Keywords 
Top 3 

Keyword Occurences 

4 DT & 

Sustainability 

Yellow bibliometric analysis, building, building information modeling, built 

environment, case study, circular economy, consruction and demolition waste, 

construction sites, digitalization, knowledge graph, sustainability, waste 

minimization 

Circular economy 9 

Sustainability 6 

Built environment 4 

5 DT & 

Engineering 

Purple bridge, civil engineering, decision-making, digital maturity, infrastructure, 

inspection, life cycle, neural network, smart cities, survey, systematic 

literature review, wireless sensor network 

Infrastructure 8 

Bridge 4 

Systematic literature 

review 

4 

6 DT & Decision 

making 

Blue building ınformation modelling, building information modelling, decision 

making, deep learning, digital twins, geometry, internet of things, 

occupational health and safety, safety management, scan-to-bım, scan-vs-bım 

Digital twins 41 

Deep learnin 8 

Building ınformation 

modelling 

8 

7 DT & Big data Orange 3d reconstruction, big data, building digital twin, computer vision, data model, 

digitalisation, maintenance, modeling, sensor, structural health monitoring 

Big data 11 

Maintenance 4 

Sensor 4 

8 DT & 

Automation 

Brown automation, barriers, building ınformation modelling (bım), construction, 

construction ındustry, construction sector, design, ınformation systems, 

management, technology 

Construction  14 

Technology 6 

Construction ındustry 4 
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Table 2.2 (continued) : Clarification of the clusters. 

No Cluster Name Colour Keywords 
Top 3 

Keyword Occurences 

9 DT & 

Digitalization 

Pink aı, digital futures, digital transformation, digitization, energy efficiency, green 

buildings, industry 4.0, machine learning, productivity, project management 

Project management 5 

Machine learning 5 

Digital transformation 4 

10 DT & Cyber 

systems 

Light 

Red 

building information modeling, construction 4.0, cyber- phsical systems, 

cybersecurity, digital models, ıntelligent buildings, intelligent constructin, off-

site construction, scientometric analysis, smart buildings 

Building information 

modeling 

12 

Construction 4.0 9 

Cyber-phsical 

systems 

6 

11 DT & Virtual 

design 

Green arhitecture, augmented reality, bım, covid-19, engineering, gıs, ıot, smart city, 

virtual design and construction, virtual reality 

Bım 57 

Virtual design and 

construction 

11 

Iot 10 

12 DT & 

Innovation 

Light 

Blue 

artificial intelligence, building information modeling (bım), construction 

technology, digital construction, digital technologies, ınnovation, modular 

construction, offsite construction, process mining 

Building information 

modeling (bım) 

11 

Artificial intelligence 10 

Modular construction 5 
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Table 2.2 (continued) : Clarification of the clusters. 

No Cluster Name Colour Keywords 
Top 3 

Keyword Occurences 

13 DT & Industry 

4.0 

Light 

Yellow 

3d printing, construction industry, decentralization, ındustry 4.0, plm, 

smart contract 

Construction 

industry 

21 

Industry 4.0 11 

Smart contract 4 

14 DT & 

Prototyping 

Lilac bridges, prototyping, synthetic faır data Bridges 4 

Prototyping 2 

Synthetic faır data 
2 

15 DT & 

Fabrication 

Grey digital fabrication Digital fabrication 2 
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Keywords like petri net, linked data, openBIM and structural equation modeling as 

well as terms such as energy management, predictive maintenance, simulation and 

risk management are present in these clusters, showcasing a notable expertise in the 

relevant fields. These keywords are seen in the yellow cluster in Figure 6, further 

demonstrating how studies have become more specialized and in-depth recently. 

Table 2.3 presents the numerical data about the author keywords in the map. Within 

the table, the most frequently used top 20 keywords are clearly visible, which the 

map created with VOSviewer might not be very obvious and easy to distinguish. 

Similar or synonymous words have been included in the study to demonstrate how 

the words appear in different contexts and forms in research papers. The results 

simply indicate the research trends of DT in the construction sector.  

Table 2.3 : Top Keywords in DT for the AEC Sector. 

No Keywords Occurences Links Total Link 

Strenght 

Avg. Pub. 

Year 

1 Digital twin 132 116 331 2021.96 

2 BIM 57 68 152 2021.72 

3 Digital twins 41 68 111 2022.05 

4 Construction industry 21 41 69 2022.19 

5 Internet of things 15 35 56 2022.07 

6 Construction 14 28 45 2021.57 

7 Building information modeling 12 26 35 2021.25 

8 Big data 11 33 49 2021.64 

9 Blockchain 11 24 43 2021.73 

10 Industry 4.0 11 22 42 2021.64 

11 Building information modeling 11 17 22 2022.27 

12 IoT 10 21 38 2021.70 

13 Artificial intelligence 10 22 34 2021.80 

14 Facility management 10 19 31 2021.70 

15 Construction 4.0 9 17 25 2021.89 

16 Predictive Maintenance 9 14 24 2022.44 

17 Circular economy 9 18 22 2021.89 

18 Building information modelling 8 24 29 2021.62 

19 Deep learning 8 22 27 2022.38 

20 Virtual reality 8 15 24 2022.38 
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Although BIM and related topics continue to maintain their prominence in the 

literature, we can observe the emergence of AI and related subjects such as IoT, 

predictive maintenance, deep learning and virtual reality in recent research trends. 

With the increased presence of these terms related to various technologies in the 

building sector, positive effects on productivity and efficiency are observed. This 

bibliometric analysis provides the yearly distribution and classification of 

publications, a co-occurrence network of author keywords, and a list of the top 20 

terms connected to DT in the construction industry in order to identify current 

research trends. The analysis used research article keywords to examine DT's 

potential. At various phases of the building life cycle, these terms may have different 

purposes in the construction industry. In the design stage, terms like BIM and risk 

management may be the most popular, but in operation and maintenance, cyber-

physical systems and facility management could be more important. The construction 

phase might be impacted by IoT, sensors, smart contracts, optimization and 

simulation, while the end of life phase could be influenced by circular economy and 

waste minimization. As Komar et al. (2024) indicate, these emerging terms might 

show that research on construction is becoming more specialized in the topic. Their 

presence could emphasize its strategic significance in the AEC sector and ability to 

influence future developments in the sector. 

2.1.4 Digital twin throughout the building life cycle 

Many phases of the building lifecycle have been the subject of research examining 

the potential and preliminary scenarios for the implementation of DT (Chen et al., 

2024). The potential of the idea of DT to improve building lifecycle management has 

been highlighted (Khajavi et al., 2019). Akanmu et al. (2021) discuss, in the building 

sector, DT enhances lifecycle management from planning to operations by providing 

a digital model that supports process optimization and decision making. Likewise as 

Boje et al. (2023) indicate the main objective of the DT is to assist in improving the 

management of the structures or procedures associated with them. However, they 

further state that there are various applications of DT related to different stages of the 

life cycle of a building in the construction sector. They claim the DT for a 

construction asset is intended to span its entire lifecycle; nevertheless, there exists a 

significant contrast in the dynamics between the construction and operational phases. 

As a result, they mention distinct implementations are required for the DT during the 
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construction phase as opposed to the operational stage. They define the goal of a DT 

as a construction strategy to build things more efficiently. Also they highlight that 

the DT of the building starts to form during the construction phase but attains more 

advanced levels of development during the operational stage. Akanmu et al. (2021) 

show that DT is essential for optimizing project lifecycle steps, particularly in the 

stages of design, construction, operations and maintenance. Additionally, Menegon 

and Filho (2022) state in the planning and management phase, the incorporation of 

new technologies typically brings about a significant transformation with the 

construction stage following it. In addition to all, Khajavi et al. (2019) discuss that 

implementing a DT for building life cycle management offers various benefits 

including enhanced construction efficiency, predictive maintenance, improved 

resource efficiency, increased tenants' comfort and optimized building design. 

Moreover, they claim DT can provide valuable insights for designing future 

buildings based on identified flaws and improvement areas during the use phase. 

Thus, architects can utilize a DT to enhance the performance of upcoming buildings 

during modifications, renovations and when planning future constructions. Also they 

state a significant point that DT might play a role in reducing maintenance costs and 

decreasing the overall management and operational expenses of a building. Figure 

2.8 conceptually shows the life cycle of a building, the roles of DT and the usage 

phases of different types of DT.  

 

Figure 2.8 : The framework diagram illustrating the relationship between digital 

twins and the building life cycle adapted from Boje et al. (2023). 
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Firstly, the product DT might be overseen and controlled apart from the location or 

structure, and it can also give its maker input at a different point in the product's life 

cycle. Advanced products may include built-in sensing and/or actuation capabilities. 

However, this situation is not yet widespread in the sector. Secondly, the 

construction digital twin (CDT) is responsible for controlling the progress and 

ongoing activities at the construction site. Just-in-time delivery, the use of equipment 

on site, work environment like pollution, weather and worker risks, as well as 

working conditions including hours worked and contact with hazards, can all be 

monitored by the CDT. The costs are reviewed and updated to account for the most 

recent occurrences. Lastly, building DT uses sensing technology to observe indoor 

conditions similarly to the CDT, but primarily an emphasis on building tenants. 

Predictions could be made for conditions at work, the effects on people's health and 

security. Expenses to the property owner and residents may be computed more 

precisely when considering environmental effects. For the end of life stages in 

actuality, the building DT’s function is over there, but the life cycle information it 

has collected can be saved and used as a knowledge base for upcoming projects, 

uses, and studies (Chen et al., 2024; Boje et al., 2023; Yoon et al., 2023; Khajavi et 

al., 2019).  

In brief, throughout the lifespan of a project, DT can be extremely valuable because 

they facilitate process permits, automate recording, control as-designed and as-built 

details, optimize scheduling of resources, enhance logistics and security tracking, 

enable predictive maintenance, guarantee assurance of quality and encourage legality 

(Teisserenc and Sepasgozar, 2021). 

2.1.5 Applications of digital twin in the construction phase  

Opoku et al. (2021) assert in the building life cycle, the construction phase is 

extremely important because it’s the stage that creates the final output. They state 

construction sector activities are effectively handled with the help of DT. In a 

different way Yang et al. (2024) emphasize the building stage of a project's lifespan 

includes not only converting designs and plans into a real building but also 

performing at the highest levels of resource, budget and time management to 

guarantee the project's successful completion. Additionally, they point out that the 

project's safety, quality, time and cost effectiveness will all be directly impacted by 
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the construction stage's performance. Boje et al. (2020) point out adoption of 

construction DT could revolutionize the construction industry. This would enable 

cost reductions, greater ecological responsibility and improved lifecycle 

management. Plus, DT should access all project data, understand the big picture and 

provide useful information. Almatared et al. (2022) propose integrating DT in 

construction stages by using the numerical results. In the construction stage, by 

combining innovations such as BIM, drone surveys and laser scanning, a DT of the 

job site is created, enabling efficient site management, scenario estimation and 

decision making through the integration of IoT devices with the BIM model (Piras et 

al., 2024). DT might be utilized to support construction monitoring and management, 

involving progress, security, quality, workforce, equipment and materials by 

applying it to surrounding environments, current projects and even partially 

constructed buildings (Jiang et al., 2021; Yang et al., 2024). Although there are 

numerous applications and benefits of DT in the construction stage as CDT; the 

literature primarily focuses on following areas: workforce oversight, material and 

equipment management, site monitoring, optimization of time and cost, enhanced 

decision making processes, integration with emerging technologies and 

comprehensive participation. The applications and details are presented in Table 2.4. 

Table 2.4 : Key applications of DT in the construction phase. 

Key Application Area Implementation Purposes References 

Workforce Oversight  Reducing human errors Ellul et al. (2024), Wu et 

al. (2024), Deria et al. 

(2022), Hu et al. (2022), 

Wang et al. (2021), Jiang 

et al. (2021) 

 Gathering health data from 

sensors 

 Fixing body posture 

 Labor location detect 

Material and Equipment 

Management 

Waste management Arsecularatne et al. (2024), 

Yang et al. (2024), Boje et 

al. (2023), Hu et al. (2022), 

Deria et al. (2022), Jiang et 

al. (2021), Akanmu and 

Anumba, (2015) 

Lojistic and supply chain 

 Location detect 

 Optimization of workflow 

 Situation monitoring 
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Table 2.4 (continued) : Key applications of DT in the construction phase. 

Key Application Area Implementation Purposes References 

Site Monitoring Real-time data collection Moshood et al. (2024), 

Yang et al. (2024), 

Arowoiya et al. (2023), 

Boje et al. (2023), Hosamo 

et al. (2022), Wang et al. 

(2022) 

 Control of machines 

 Dynamic virtual illustration 

 Safety and risk management 

Optimization of Time 

and Cost 

Enhancement via DT-integrated 

technologies 

Salih and El-adaway 

(2024), Lauria and Azzalin 

(2024), Piras et al. (2024), 

Yang et al. (2024), Jiang et 

al. (2021) 

Enhanced Decision 

Making Processes 

Upgrade current decision-

making strategies 

Lauria and Azzalin (2024), 

Moshood et al. (2024), 

Arsecularatne et al. (2024), 

Wang et al. (2022), 

Bakhshi et al. (2024), 

Wang et al. (2021) 

Employing greater data and 

innovative technologies into 

process 

Integration With 

Emerging 

Technologies 

Ability to incorporate (AI, IoT, 

ML, VR, AR, DL, CPS etc.) 

Piras et al. (2024), Yang et 

al. (2024), Wu et al. 

(2024), Hu et al. (2022), 

Begić et al. (2022), Wang 

et al. (2021), Boje et al. 

(2020) 

  

Comprehensive 

Participation 

The equal involvement of 

various stakeholders 

Zhang et al. (2024), 

Bakhshi et al. (2024), 

Arowoiya et al. (2023), 

Nguyen and Adhikari 

(2023), Jiang et al. (2021) 

 

 

2.1.5.1 Workforce oversight 

The DT approach in the construction stage aims to prevent losses from delays, 

hazards and rework due to human errors while reducing unproductive time and 

reliance on manual processes (Deria et al., 2022; Hu et al., 2022). Wang et al. (2021) 

express in the DT system, labor can be rescued from repeated and physically 

exhausting jobs by working with robotics. In addition it decreases the necessity of 

being actually present on possibly dangerous building locations for humans. Ellul et 

al. (2024) investigate the use of wearable technology for real time labor location 

tracking in order to improve jobsite security by anticipating hazards and detecting 
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incidents narrowly. They claim human centered DT are crucial for the security of 

workers and it has a lot of promise for better safety and health standards in building 

projects. Also in their study Jiang et al. (2021) explain a DT framework created to 

understand labor movements in dynamic building environments by gathering real 

time data and analyzing worker motions with a BIM model. Furthermore, they 

mention a posture education platform that was created to assist employees in 

practicing jobs with lower hazards from ergonomics utilizing wearable technology, 

machine learning and virtual reality. Wu et al. (2024) discuss that real time danger 

identification is possible by combining DT with AR to produce 3D representations of 

hazard sources, AR alerts, human locations and line of sight directions. This 

enhances the awareness of circumstances and safety of the workers on the job site. 

Moreover DT keeps records of circumstances at work, including the total amount of 

hours spent on activities and the risks encountered (Boje et al., 2023).  

2.1.5.2 Material and Equipment Management 

Boje et al. (2023) indicate further services, such as monitoring and transport 

optimization to guarantee on-time delivery, are made possible via DT. Also the CDT 

can oversee on-site equipment usage and working conditions, such as pollution, 

weather and worker safety hazards. It calculates the impact on human health and 

greenhouse gases produced by machines. By increasing efficiency in energy use and 

decreasing waste, DT improves sustainability by facilitating continuous monitoring 

and optimization (Arsecularatne et al., 2024; Yang et al., 2024; Hu et al., 2022). 

Similarly Deria et al. (2022) state in order to reduce resource waste, the DT system 

uses current sensor information from building sites to improve resource allocation. 

Also they indicate the traditional methods in the construction operations lead to 

delays and inefficiencies. However, the goal of integrating AI and DT systems is to 

minimize those human mistakes by automatically allocating resources and 

rationalizing workflow cycles. Jiang et al. (2021) state for secure, precise and 

effective construction, DT can track, operate and regulate machines. Also DT assists 

contractors in keeping an eye on material requirements and informing suppliers as 

needed. Additionally, it can provide a lean theory-aligned workflow for managing 

building supplies. The current time visual data can also assist in conducting various 

planning simulations, such as equipment allocation plans, temporary logistics and 

construction tasks (Boje et al., 2020). Akanmu and Anumba, (2015) discuss that 
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material monitoring and activity observation by combining digital representations 

with real construction, might enhance on-site safety and efficiency. They suggest 

sensors to track item location, delivering geographical coordinates and status reports. 

Predicting skills of DT, which are powered by location data to solve a variety of 

issues, present enormous promise for construction scheduling, including elimination 

of waste, procurement and the construction workflow (Ellul et al., 2024).  

2.1.5.3 Site monitoring 

DT are essential throughout the construction phase because it provides real time 

monitoring and synchronization with the simulation (Wang et al., 2022; Boje et al., 

2023; Akanmu and Anumba, 2015). DT enables rapid site issue resolution and actual 

time viewing of construction site conditions (Hu et al., 2022; Akanmu and Anumba, 

2015). Boje et al. (2020) discuss that while current methods rely on periodic laser 

scans and manual updates from people, DT utilizes real time sensor data to offer 

more precise and timely information. This enhances the accuracy of DT in 

representing the construction site's status. Methods such as AI and visualization 

could be employed in site monitoring to observe specific progress using object-based 

methods so that as constructed photos and as planned simulation can be compared 

(Jiang et al., 2021). Similarly Boje et al. (2023) state the Construction Digital Twin 

(CDT) is essential for ensuring an efficient construction process by aligning the as-

designed models with real time project execution. Thus DT might prevent 

undesirable situations that cause delays (Hosamo et al., 2022). By integrating DT 

with industry 4.0 technology, an accurate digital duplicate of the site is produced, 

allowing efficient control and continuous tracking throughout the project lifespan 

thereby enhancing safety measures (Moshood et al., 2024). Regarding the 

construction phase, Arowoiya et al. (2023) state that implementing the DT in the 

construction process, in terms of safety, will help create a less hazardous atmosphere 

and increase productivity by giving laborers access to real time information and 

visualize what's happening in the construction area. Yang et al. (2024) state the 

proper simulation, observing and evaluation of building situations at various periods 

are made possible by DT. During the building stage, DT can be utilized to take 

pictures or videos of the actual site by integrating AR and VR technologies with 

sensors to provide remote instruction, safety monitoring, and risk alert. Also the 
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existing state of traditional safety monitoring methods can be modified by this 

technology.  

2.1.5.4 Optimization of time and cost 

DT is one of the greatest factors influencing reduction of expenses (Salih and El-

adaway, 2024). For time and cost management, DT measures the amount of the task 

finished as intended and evaluates its completion status (Jiang et al., 2021). Boje et 

al. (2020) assert AI serves as a bridge between various planning systems and 

different datasets, raising the integration of information at all levels. Additionally, AI 

contributes to optimizing construction scheduling and logistics, leading to increased 

construction productivity. By incorporating schedule and cost factors, a deeper link 

between the design and construction phases is established, while lowering the 

possibility of additional expenses brought on by rework (Yang et al., 2024). DT may 

enable process optimization for the building industry, improving quality and 

lowering expenses (Lauria and Azzalin, 2024). Salih and El-adaway (2024) propose 

a decision-support model to help generate both cost and time progress or reductions 

associated with the use of construction innovations. Therefore, by more precisely 

forecasting project performance outcomes, the model enhances decision making on 

the implementation of technology for building. Eventually, it maximizes the success 

of construction projects. Piras et al. (2024) suggest the digital management 

methodology that is a strategy method incorporating digital technologies including 

DT, BIM, IoT and AI in order to enhance building steps and solve problems resulting 

from traditional time and cost management techniques such as work breakdown 

structure. It enables graphical identification of construction activities, real time 

progress tracking, insight into resource allocation. Via DT in this stage, the 

construction process can be accurately analyzed, human resource utilization 

monitored, cash flow trends reviewed to adjust the project budget, and quality and 

timelines ensured.  

2.1.5.5  Enhanced decision making processes 

The integration of DT with Industry 4.0 technologies improves decision making 

based on data throughout the project lifecycle (Lauria and Azzalin, 2024; Moshood 

et al., 2024). Deep learning-based DT systems may enhance automatic understanding 

and decision assistance during the design and building stages (Yang et al. 2024). 
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Experts might employ DT to observe progress on construction during actual time and 

make well-informed decisions depending on the condition of the structure 

(Arsecularatne et al., 2024; Wang et al., 2022). Wang et al. (2022) explain that by 

utilizing predictive features, DT offers future simulations that allow for the 

evaluation of different scenarios, calculation of their probabilities and cost 

assessments to identify the most optimal options for future work. The system helps 

site managers track progress, anticipate and address potential challenges, optimize 

resource use and ultimately boost project efficiency while minimizing risks 

(Moshood et al., 2024). Bakhshi et al. (2024) claim that although the difficulties in 

adopting DT into practice because of the large initial expense and significant 

technical know-how needed, several studies have found its benefits in terms of better 

decision making, management and teamwork. Furthermore they state DT makes it 

possible to simulate many situations, assisting stakeholders in forecasting results and 

making wise choices. The capacity is very helpful for handling logistics and 

foreseeing possible interruptions. Also, Wang et al. (2021) state the DT system 

continuously monitors the workspace and robot states using sensors, transmitting 

data to a VR interface for virtual scans. This allows experts to compare the as-built 

environment with the BIM, facilitating organizing tasks and decision making without 

physical hazards and stress.  

2.1.5.6 Integration with emerging technologies 

Effective use of DT during construction requires integration with smart technologies 

(Boje et al., 2020). The incorporation of digital technologies, including BIM, IoT, AI 

and DT into the construction industry improves efficiency, minimizes delays and 

develops sustainability (Piras et al., 2024; Hu et al., 2022). Immersive technology 

and DT can enhance construction safety, decision making, risk perception, 

productivity and together they encourage equal involvement by enabling remote 

collaboration and minimizing the requirement for on-site participation resulting in a 

more secure workplace (Wang et al., 2021; Yang et al., 2024; Wu et al., 2024). The 

DT system, which aims to enhance human-robot cooperation in the building industry, 

combines VR for activity planning, presentation and ongoing interaction, allowing 

human workers to efficiently oversee and direct robots (Wang et al., 2021). Moshood 

et al. (2024) express, by incorporating cutting-edge technologies like VR, AR, IoT 

sensors and radio frequency identification (RFID) tags, a smart construction site uses 
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DT technology to improve building steps. They state several research priorities arise, 

including the development of strong AI and ML algorithms for predictive capabilities 

and the exploration of blockchain for data privacy and traceability. Likewise 

Arsecularatne et al. (2024) state DT and blockchain integration is already popular 

across various sectors and it can successfully address concerns about possession of 

data, privacy, stakeholder availability and reliability. Also Yang et al. (2024) state 

DT offers notable enhancements in managing projects and execution when combined 

with BIM and AI. Additionally they investigate how ML can be used for autonomous 

evaluation of harm and predictive maintenance. The construction process offers 

considerable room for improvement, especially with the integration of automated 

systems that can perform various tasks, although single-function robots still depend 

on human supervision (Begić et al., 2022). Furthermore, building components can be 

autonomously examined by on-site discoveries, which can record flaws, 

modifications and updates based on IFC schema (Jiang et al., 2021). 

2.1.5.7 Comprehensive participation 

The application of DT can improve stakeholder participation during construction and 

the project management process (Arowoiya et al., 2023). DT may serve to help 

different stakeholders and make integration easier (Jiang et al., 2021). Yang et al. 

(2024) mention DT allows it to be simpler for project members to collaborate and 

communicate information effectively. As they point out, stakeholders in construction 

projects can model, track and evaluate the building's condition over time, improving 

comprehension of its operation, connections and performance. Zhang et al. (2024) 

highlight the value of multidisciplinary collaboration in order to improve building 

processes which combine expertise from several disciplines like mechanical 

engineering, civil engineering and AI. Bakhshi et al. (2024) discuss that in order to 

overcome obstacles and boost efficiency, coordination between stakeholders in a 

building chain of supply is essential. By offering one central location for interaction 

and knowledge sharing, DT helps stakeholders collaborate more effectively. This 

collaborative platform facilitates goal alignment and increases trust between supply 

chain participants. Nguyen and Adhikari (2023) summarize that the construction 

phase is characterized by continuous changes in facilities, equipment, materials, 

human and design, necessitating enhanced coordination and collaboration. 
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2.1.6 Advantages of digital twin technology in the construction industry 

The advancements in DT technology influence a variety of areas, leading to diverse 

opinions. As Sepasgozar (2021) emphasizes, increasing productivity is DT's primary 

goal. However, there are numerous studies in the literature examining the threats as 

well as opportunities of DT technology in the building sector. Some primarily 

examine the cost aspect, few take a human centered approach, and others discuss it 

from the perspective of environmental impacts. Turner et al. (2021) indicate, the 

construction sector's productivity numbers will surely rise as a result of all the 

features it has. The benefits of DT in construction projects can be categorized as 

follows according to research in the literature: real time digital representation (Deria 

et al., 2022; Ellul et al., 2024),  remote monitoring (Elfarri et al., 2022; Jiang et al., 

2021), resource management (Hu et al., 2022; Orozco-Messana et al., 2022), safety 

management (Wu et al., 2022; Akanmu et al., 2021; Hosamo et al., 2022), risk 

management (Genc, 2021; Salem and Dragomir, 2023; Yang et al., 2024), 

collaboration with autonomous robots (Moshood et al., 2024; Hu et al., 2022; Li et 

al., 2021), waste reduction (Lydon et al., 2019; Lu et al., 2020a; Debrah et al., 2022), 

predictive decision making (Elfarri et al., 2022; Jiang et al., 2022; Turner et al., 

2021), time and cost management (Genc, 2021; Bakhshi et al., 2024; Piras et al. 

2024), communication and collaboration (Sabet and Chong, 2020; Zhang et al., 

2024). 

According to the literature, a key feature of a DT for real time digital representation 

is the dynamic visual simulation that integrates relevant data from the real 

environment (Deria et al., 2022). By combining history and present data from a 

building site, real time DT acts as only one source of knowledge (Ellul et al., 2024). 

The capacity to refresh modeled data in current time is essential for delivering 

current decision assistance (Yang et al., 2024). DT relies on actual time data to 

forecast future outcomes and enhance performance, which sets them apart from BIM 

(Nguyen and Adhikari, 2023). DT can provide a current picture of property status by 

monitoring metrics (Piras et al., 2024). Turner et al. (2021) give an example in their 

study that DT provides live captioned pictures with comments for people to see while 

watching particular spots on location, and it allows construction experts to observe 

overlays of details of construction in actual time on incomplete structures. 
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Elfarri et al. (2022) state, with DT, remote monitoring goes beyond observation to 

enable interaction with assets. This flexible framework supports diagnostics and 

analytics, such as tracking room occupancy and temperature variations in a house 

through sensor data. Additionally, digital twins can assist with equipment 

monitoring, guaranteeing precise and effective construction procedures (Jiang et al., 

2021). Via remote monitoring, it improves failure prevention and identifies structural 

problems in the operation and maintenance stage (Hu et al., 2022; Chiachío et al., 

2022). Similarly Khajavi et al. (2019) indicate also the DT might offer information 

on the structure's maintenance requirements. 

In the context of resource management, Hu et al. (2022) state that DT offers 

advantages related to material use, such as optimizing structural design, reducing 

material consumption, and minimizing waste generation throughout the design and 

engineering stages. Furthermore, in the on-site construction phase it enhances the 

traceability of building materials. Similarly in the operation and maintenance period, 

durability monitoring is possible. Through quantitative evaluation, DT lead material 

flows in the direction of a sustainable material movement, for reuse and recycling 

after the end of life of the building (Hu et al., 2022; Orozco-Messana et al., 2022). 

Likewise, Sun et al. (2022) point out that assessing the material's condition is a time-

consuming and labor intensive process therefore DT is very advantageous. By 

providing real time reliable data, a DT enables adaptive resource management by 

facilitating well informed decisions on workforce planning, material management 

and resource allocation (Piras et al., 2024). DT makes it possible to respond to output 

uncertainty by allocating resources efficiently like labor and materials (Bakhshi et al. 

2024). Also in the construction stage, DT optimizes construction logistics (Hu et al., 

2022; Yang et al., 2024). 

Regarding safety management, DT helps reduce training-related risks and improve 

learning outcomes for construction professionals by offering a virtual practice 

platform during the construction phase of the building life cycle (Hu et al., 2022; Wu 

et al., 2022). Akanmu et al. (2021) state a DT framework aimed at reducing muscle 

injuries in construction labor by establishing an interactive mapping between 

employees’ physical postures and their digital counterparts. In their study Hosamo et 

al. (2022) showed that through the detection of the operating errors, a few thousand 

dollars in yearly savings in energy were achieved. In the same way, Teizer et al. 
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(2022) suggest that it is important to consider DT for construction safety as a system 

based strategy that improves overall security performance, as opposed to only 

integrating sensory data. 

In construction, risk management entails recognizing, categorizing, and evaluating 

hazards to understand their possible impact (Genc, 2021). In the AEC sectors, DT is 

viewed as a revolutionary instrument for risk management (Salem and Dragomir, 

2023). Through the use of sensors, AR and VR devices, DT during building can 

improve security tracking and risk alert by taking pictures or videos of the actual site 

(Yang et al., 2024). DT allows early suspicious activity identification, which helps 

with predictive maintenance and building control (Akanmu et al., 2021).  Hosamo et 

al. (2022) point out operational reliability is guaranteed and continuous tracking of 

performance is made possible via DT. It offers warnings for care and fixes, so faults 

can be found early and corrected before they get worse.  

Autonomous robots are one of the most significant advances in Construction 4.0 

which can carry out highly hazardous and routine tasks, minimizing the need for 

humans in hazardous situations (Moshood et al., 2024). Under the category of 

machinery works, within on-site construction, various advantages emerge (Hu et al., 

2022). DT usage increases object detection reliability while minimizing constant 

mistakes and security threats (Li et al., 2021). Also it enables real time bidirectional 

performance, situational awareness capabilities for execution and workflow 

efficiency, autonomous robot production and remote interaction for communication 

and control between humans and robots (Hu et al., 2022; Li et al., 2021). The 

implementation of robotics may minimize labor lack, diminishing labor expenses and 

lowering exposure to hazardous circumstances (Akanmu et al., 2021). As the 

statistics reveal, 1061 deaths in the construction sector occurred in 2019, making up 

almost 20% among all job-related deaths in the US. In this context Wang et al. 

(2017) emphasize the importance of human-robot cooperation, especially in the 

context of assembly tasks. However, to combine the best human and robotic talents, 

training is necessary (Bilberg and Malik, 2019). Furthermore, Lucchi (2023) adds 

that using digitally generated predictions that combine human-computer and human-

robot interactions should be guided by ethical considerations. 

In terms of waste reduction, Lydon et al. (2019) emphasize that the scarcity of 

natural resources and their environmental impact are significant global concerns. 
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2050 Swiss energy targets, which require substantial upgrades in energy efficiency in 

both new and restored structures, are a result of these worries. Regarding 

sustainability, Lu et al. (2020a) state that with their ability to provide data on a 

building's water, energy, and waste generation, DT may help in the promotion of 

sustainable architecture. By allowing for improved monitoring and control of energy 

use, it helps minimize waste and support sustainable behaviors (Moshood et al., 

2024). Also through real time emissions monitoring in the on-site construction phase, 

DT increases the potential for developing energy saving and emission decrease 

techniques (Debrah et al., 2022). In the light of the studies related to DT and energy 

efficiency in buildings, Liu et al. (2021) state monitoring energy is the most common 

use of DT. Overall, DT has a positive impact on sustainability concern including 

increased building energy efficiency (Hu et al., 2022; Khajavi et al., 2019).  

DT, by enhancing prediction skills, can assist people who make decisions in avoiding 

unforeseen expenses and mistakes (Salem and Dragomir, 2023). DT can estimate 

forthcoming system states, create what if situations and make prescriptive 

suggestions with the help of AI and ML (Elfarri et al., 2022). DT in predictive 

maintenance employs ML to forecast circumstances, detecting flaws early and 

assisting in making decisions (Hosamo et al., 2022). Records from various sources 

can be put together and evaluated on a contemporary networked construction site to 

produce insights that better worksite management, increase safety and facilitate more 

effective decision making (Turner et al., 2021). The management advantages include 

site monitoring and indoor environment management both used in on-site 

construction and operation & maintenance stages (Jiang et al., 2022). Businesses that 

choose to utilize digital technologies want to give management quick access to 

quality information that will help them make better decisions, spot efficiency 

changes and cut expenses (Love and Matthews, 2019). Additionally it promotes 

smart city developments (Hu et al., 2023). 

In construction, effective cost control and budgeting are essential to avoiding 

overspending and disputes. Effective time management is also essential to prevent 

delays brought on by scheduling mistakes (Genc, 2021). Detection of anomalies in 

smart structures assists managers in determining to meet project objectives with 

regard to both resources and time costs (Salem and Dragomir, 2023). DT with 

blockchain technology improves budget optimization by enhancing time 
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management and teamwork in building supplies and increasing process openness and 

traceability (Bakhshi et al., 2024). Higher execution of time and enhanced scheduling 

are achievable by visual task tracking (Sabet and Chong, 2020). DT assists in 

identifying delays, inconsistencies and inefficiencies by comparing the actual site 

development with the projected timelines. This makes it possible for managers to 

modify plans, cut out pointless work and better distribute resources, simplifies 

processes for greater time and cost control during project execution (Piras et al. 

2024).  

Concerning communication and collaboration, Sabet and Chong (2020) state that the 

use of DT can foster a more collaborative environment and enhance interdisciplinary 

teamwork.  Furthermore the satisfaction of stakeholders is increased by BIM and DT 

technologies' simplicity in transferring information, which helps them better 

comprehend another's job scope and minimizes possible misunderstandings or 

intervention. Similarly Moshood et al. (2024) mention DT enhances stakeholder 

communication, which eventually boosts the efficiency of the project. They also 

indicate that more organized communications are made possible by developing a DT 

from the beginning of a project according to results. Zhang et al. (2024) highlight the 

precise application and feedback of the concept can be ensured by effective 

collaboration between designers and contractors. Also the optimal construction 

solutions can be assured by effective collaboration between DT systems and 

constructed components. Therefore, interdisciplinary and multidisciplinary growth 

are made possible by intelligent construction. 

2.1.7 Challenges of implementing digital twin in the construction industry 

Adopting the notion of DT in building sectors presents problems, such as how to 

apply it most effectively in changing, real time contexts and how to properly offer 

data visualization to clients (Turner et al., 2021). In this context, when the concept is 

examined in more detail, there are many challenges using DT in architecture and 

construction sector such as adaptability (Opoku et al., 2024; Sun et al., 2022), data 

integration (Lu et al., 2020a; Ryzhakova et al., 2022), data management (Yang et al., 

2024; Riaz et al., 2015),  high-fidelity model (Bilberg and Malik, 2019; Lu et al., 

2020a; Sun et al., 2022), interoperability (Boje et al., 2020; Lu et al., 2020b; 

Almatared et al., 2022), operation cost (Moshood et al., 2024; Ghosh et al., 2020; 
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Akanmu and Anumba, 2015), cybersecurity and privacy (Huang et al., 2020; Ghosh 

et al., 2020; Piras et al., 2024), skill and training (Bilberg and Malik, 2019; Arowoiya 

et al., 2023) and user interface (Boje et al., 2020; Sun et al., 2022). 

In relation to the adaptability challenge, Sun et al. (2022) state that, to effectively 

reflect the current status of the physical world, a DT must evolve in harmony with 

real world conditions. This problem is one of the challenges when constructing the 

infrastructure for DT technology. Moreover they state the challenges of creating a 

live, two-way interaction between the actual and virtual twin is referred to as the real 

time connection problem. They claim the success of DT technology depends on this 

relationship since it provides realistic physical elements without sacrificing anything. 

Also as Opoku et al. (2024) indicate, for DT development to be successful, 

dependable network connectivity and the right IoT sensor devices must be selected 

and established to guarantee efficient live data transfer between the virtual copy and 

the actual object. Ensuring a seamless connection and precise data transfer forecast 

between the actual and online worlds is crucial (Piras et al., 2024).  

Lu et al. (2020a) mention there are many major challenges to the creation of DT, 

especially in the topics of data integration. As they state, building a DT involves 

bringing together data from various diverse and independent sources, including real 

time sensors, building management systems, cloud services, and among others. 

Keeping up-to-date, quality information that is precise is a requirement for the DT to 

function as a trustworthy tool for making decisions. When combining data from 

numerous IoT devices with multiple types of data, such as raw information like 

picture and audio streams, this becomes an extremely important difficulty 

(Ryzhakova et al., 2022; Yang et al., 2024). Similarly Arsecularatne et al. (2024) 

claim problems with data integration still exist.  

Effective data management is essential for developing DT as they rely entirely on the 

data they are built upon; furthermore, ensuring compatibility among diverse norms, 

procedures, and data formats across systems is a significant challenge (Yang et 

al.,2024; Lu et al., 2020a). As Riaz et al. (2015) point out, combining BIM data and 

sensor data flows is going to be difficult for conventional methods of data 

management because of the massive amount of data. Moreover, they discuss 

identifying limited values in the obtained data is one of the major challenges of 
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actual time data from sensor flows, because sensor information may be lost for a 

variety of causes.  

Sun et al. (2022) define the high-fidelity model challenge as a difficulty in producing 

a DT that exactly reproduces every characteristic of the original object. Also add that 

it describes a system's capacity to precisely imitate its actual environment in the DT. 

Additionally Lu et al. (2020a) state that DT is a virtual copy of real assets, 

incorporating AI, machine learning and data analytics to generate dynamic digital 

simulation models. These models can adapt and fix themselves using various data 

sources, aiming to precisely display and predict the conditions of their physical 

counterparts. Nonetheless, they highlight the challenge exists in developing these 

models and guaranteeing that they properly reflect their physical counterparts. An 

absence of high-fidelity modeling and the limited synchronization capabilities across 

physical and digital domains are two major obstacles (Bilberg and Malik, 2019).  

Data interoperability stands out as a highly significant challenge within the AEC 

industry when it comes to DT (Almatared et al., 2022; Boje et al., 2020).  Boje et al. 

(2020) point out  that while there has been considerable advancement toward solving 

interoperability difficulties, such as converting model data into formats, there is still 

much work to be done before DT systems can be implemented successfully. 

Furthermore, Almatared et al. (2022) mention that despite a lot of effort to make data 

work well together in construction using different standards and computer tools, the 

industry still has trouble with losing data, data not fitting well and missing meanings 

when moving data between BIM applications. Data interoperability is problematic 

since it takes a lot of work to connect DT data from sensors to the model. Lu et al. 

(2020b) discuss creating new IFC entities to improve operation and management 

information management. Making sure the DT can use the provided data efficiently 

and enhancing data interoperability depend on the operational and maintenance stage 

(Nguyen and Adhikari, 2023).   

Assessing the expenses linked to setting up and keeping a DT system is a challenge 

and the problem arises because there is often insufficient information available for 

evaluating these costs accurately, making it tough to manage DT systems effectively 

(Akanmu and Anumba, 2015; Moshood et al., 2024). Moshood et al. (2024) claim 

the need for advanced technology in its implementation makes it costly to operate. 

This is because it involves a lot of digital changes and a considerable initial 



51 

expenditure. Likewise Jiao et al. (2024) point out there is still an initial expense 

associated with DT implementation in the construction industry and some countries 

may not use DT due to their expensive cost. Ghosh et al. (2020) indicate the financial 

evaluation of IoT based methods, including the anticipated long term financial gains, 

returns on investment and payback timeframes, has not yet been approved or 

confirmed. They add further research is necessary to determine the economic benefit 

of techniques at both the company and sector levels.  

Cybersecurity is a significant global problem that affects all sectors and consumers, 

including the field of construction (Ghosh et al., 2020). Huang et al. (2020) indicate 

that because data is gathered and passed automatically without human oversight, 

there is a risk of cyber threats. This involves worries about how data is stored, 

accessed, shared and verified. The fact that data is collected and transmitted 

automatically can make the DT system a target for cyber-attacks, creating a serious 

problem during its operation. Additionally, they describe the privacy struggle that the 

worries people have about their information being collected automatically in DT 

systems. They further add that IoT device data generation might lead to possession 

conflicts, which is a privacy risk. Thus the vast amount of data from IoT 

technologies requires strong systems to manage it safely and privately (Ghosh et al., 

2020). Piras et al. (2024) claim preserving privacy and securing sensitive information 

are essential components. To stop illegal access and violations, strong security 

measures along with data management standards are required. Moreover, since 

cyberattacks are growing more complex, deeper protections are needed. A proposal 

that may handle the cybersecurity and privacy struggle is also included in the 

literature. As a solution, studies propose blockchain technology to address data 

security, privacy and copyright issues, while also suggesting blockchain based data 

management model for DT to ensure data security (Huang et al., 2020; Sepasgozar, 

2021; Teisserenc and Sepasgozar, 2021).  

Bilberg and Malik (2019) point out, to effectively adopt and use DT technology, it is 

necessary to have appropriate knowledge of complicated information technology 

systems, which is where the skill and training challenge comes in. Training is 

required to integrate the finest human and robotic operational skills. This task 

highlights the significance of creating an easy to use DT interface that can be used by 

someone with no experience or a multidisciplinary team. Additionally, they mention 
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system complexity relates to the difficulty of managing and interpreting the vast 

amount of information that is present in complex systems. Organizations need to 

train their workforce in fundamental digital technology skills, including DT, to 

effectively solve challenges in the construction industry (Arowoiya et al. 2023; Yang 

et al., 2024). The insufficient trained person increases the need for expensive 

consultants (Moshood et al., 2024).  

Sun et al. (2022) express that a simple DT interface that can be applied by an 

unskilled human or a multidisciplinary group is required due to the user interface 

challenge. Users from various social and educational backgrounds need to be able to 

interact with the DT, which can change depending on the lifespan of the software 

categories. The researchers highlight that interface design itself is unable to assess 

how well human operators read digital twin insights and communicate with machines 

(Boje et al., 2020). When it comes to user input and the comprehension of DT 

outputs, it is crucial to create platforms that seamlessly integrate human interaction 

(Lu et al., 2020a). 

Due to problems with integrating data, high-fidelity modeling, interoperability, real 

time interaction, operating expenses, cybersecurity and privacy worries, DT usage 

might be complicated (Piras et al., 2024; Almatared et al., 2022; Sepasgozar, 2021). 

Hu et al. (2022) add that the absence of standards, interoperability and data quality, 

in addition to the high cost of installation and maintenance, are some difficulties in 

integrating DT in building and construction firms. Similarly Arowoiya et al. (2023) 

identify multiple crucial elements affecting the adoption of DT, despite its 

advantages. 

2.1.8 The potential of digital twin 

The AEC sector is increasingly adopting digital technologies like BIM, IoT and AI 

for designing, constructing and managing buildings and infrastructure (Almatared et 

al., 2022; Bosch-Sijtsema et al., 2021). Many businesses, especially ones that are 

information intensive and need real time forecasting ability have enormous potential 

for DT, and there is a great opportunity for it to improve productivity, efficiency and 

making decisions in the construction sector (Liu et al., 2021). The progress of digital 

technologies like DT has helped many industries and it has the potential to solve 

problems in building construction projects (Nguyen and Adhikari, 2023). The 
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construction industry currently uses DT, which is regarded as one of the most 

effective and significant methods to improve construction using construction 4.0 

connections and enhance stakeholder cooperation (Jiao et al. 2024). Similarly 

Almatared et al. (2022) point out that due to the predicted advantages of DT 

technologies, such as increased productivity and efficiency, the AEC sector is using 

them more and more. As a result, there has been significant research focused on 

utilizing DT in this sector. The operation and maintenance phase is the subject of 

about 70% of the research that have been examined, and the most widely used DT 

uses are facility operation and maintenance, managing energy and structural health 

tracking (Liu et al., 2021). DT has continued to evolve rapidly as sensor technology 

that collects data from the real world has developed, such as low power requirements 

and wireless connectivity (Azfar et al. 2023). With DT adoption, IoT could also help 

employees operate as productively and effectively as possible (Ghosh et al., 2020). 

Elfarri et al. (2022) express the reason for exploring DT lies in their ability to 

provide potential financial savings and increased effectiveness. They state DT's 

capabilities span from description, diagnostics, prediction, adaptation to autonomy. 

The study highlights it can be utilized for remote house monitoring, gaining insights 

into the indoor environment, making predictions about future conditions, offering 

recommendations based on past behavior and autonomously controlling the house. 

Moreover, Akanmu et al. (2021) define the upcoming era of DT and cyber-physical 

systems as the incorporation of cyber and existing physical systems. Their overview 

includes possible applications of the forthcoming cyber physical system and DT for 

enhancing worker productivity, lifespan operations for construction processes as well 

as skills of employees, security and health. Also they state, DT may potentially 

facilitate the remote operation of robots for drywall installation, monitor and adjust 

worker posture, and prevent incidents between workers and construction equipment. 

Furthermore Sepasgozar (2021) indicates there is a growing need to create and apply 

DT since it may become a fundamental technology in numerous industrial areas. 

Figure 2.9 shows a DT capability level scale. In the initial three stages, the DT can 

furnish information or insights exclusively regarding past and current occurrences. 

Solid objects may set up standalone DT, which might be present even before the item 

is constructed. When an asset is installed and has sensors, data can be uploaded in 

current time to produce a descriptive data set that provides more information on the 

asset's condition. 
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Figure 2.9 : A summary of a digital twin's capability stages, adapted from Elfarri et 

al. (2022). 

Khajavi et al. (2019) state that, in terms of flexibility, even for buildings constructed 

using traditional pre-BIM practices, there is potential for improvement through the 

integration of a DT. This can be accomplished by using cloud based analytics tools 

and equipping the buildings with sensors. According to Zhang et al. (2022), DT 

technology can change how construction sites are controlled and observed by 

offering a framework that combines the digital and physical worlds. The goal of the 

suggested framework for applying DT to construction site management is to more 

effectively meet management requirements. Similar to them Lu et al. (2020b) offers 

an innovative approach for anomaly detection based on DT technology. This method 

has proven effective for providing ongoing asset monitoring for operation and 

maintenance, suggesting that DT can greatly enhance the identification and handling 

of anomalies in structures. This shows that DT may be more widely applied in the 

sector by being in line with the standards that are in place now. Unlike structure 

based approaches, Ham and Kim (2020) explore the potential of DT usage on a city 

level. With the help of real time data gathered from IoT sensors such as traffic, 

energy consumption, air pollution and water quality for controlling the complex 

structures of cities, the advantages of a DT city might be evaluated. Comprehending 

the physical sensitivity of cities might help policymakers analyze possible risks 

connected with metropolitan regions. A DT city with enhanced hazard visibility and 

urban connections is expected to aid risk-informed infrastructure decisions and 

support what-if scenarios during emergencies. Likewise Austin et al. (2020) 

highlight widespread implementation of sensor and communication tools that are 

firmly embedded in the real urban environment is going to be necessary to allow next 

generation smart city systems. They suggest creating a DT framework for smart 
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cities that integrates machine learning with semantic knowledge representation and 

logic. Furthermore Hu et al. (2023) emphasize the potential for DT enhanced 

predictive maintenance (PdM). They claim that it would be beneficial to develop and 

include additional features, such as asset scheduling, cost savings and making 

choices into the software to help the construction sector achieve sustainability, 

predictability, security and effectiveness. Hosamo et al. (2022) indicate predictive 

maintenance is crucial since repair expenses account for approximately 65% of 

annual facility management costs. They insist predictive maintenance may lead to 

longer equipment life, greater efficiency, and lower labor costs. Rafsanjani and 

Nabizadeh (2023) indicate that the widespread adoption and application of these 

technological advancements are expected to result in significant cost reductions 

within the AEC industry. This is projected to amount to $950 million during the 

design and construction stages, as well as $400 million during the operation and 

maintenance phases in the non-residential AEC sector by the year 2025. Although 

proof supporting DT’s effectiveness in lowering nonfatal harm, property controls, 

improving security, tracking progress and output, the DT adoption in the construction 

sector continues to be in its early stages (Akanmu et al., 2021). 

In summary, the potential of DT includes general insights for the future, such as 

increased productivity and efficiency, the predictive advantages, potential financial 

savings, remote monitoring, the offering of recommendations, applicability of DT for 

existing buildings and autonomous control over individual structures and even 

complex urban structures. The DT provides solutions for the challenges that the 

construction sector primarily faces. As technologies such as AI, machine learning, 

sensor technology, cloud platforms and others continue to develop rapidly, the 

adoption of DT in the AEC sectors might become inevitable. Likewise, Yoon (2023) 

highlights the vast potential of DT in optimizing building operations, energy 

efficiency, air quality and carbon neutrality;however, systematic discussions on 

digital twin modeling in the building sector remain limited.  
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 Productivity 2.2

The term productivity was first used in an essay by Quesnay in 1766. Over a century 

later, in 1883, Littre characterized productivity as the faculty to produce, expressing 

the tendency or motivation to generate output. Also defined officially in 1950 by the 

Organization for European Economic Cooperation as a ratio derived by dividing 

output by one of the production factors. It is possible to think of construction 

productivity as an evaluation of the outputs that result from an arrangement of inputs 

(Jarkas and Bitar, 2012). Likewise Rathnayake and Middleton (2023) explain the 

meaning of productivity as a crucial measure of performance that is determined by 

dividing output by input. Whereas Ghoddousi and Hosseini (2012) define as the 

produced units divided by the related labor hours. Vogl and Abdel-Wahab (2014) 

examine effectiveness and believe that productivity is a metric of how effectively the 

economy converts its inputs to output. Similar to them Hiyassat et al. (2016) state 

how quickly tasks are completed is measured by productivity. Productivity has 

numerous definitions given by various studies; in overall, it can be described as the 

ratio of output to input (Alzubi et al., 2023). However, Hasan et al. (2018) mention 

the diversity of production specifically in the construction industry, stating that the 

units of measurement vary with construction activities based on input and output 

types. Nevertheless, the significance of productivity in cost reduction and profit 

generation is universal across all industries, including the construction sector. They 

summarize that in every sector, productivity is a critical factor to take into account 

and there are various ways of describing it based on the situation. Naoum (2016) 

summarizes the explanation of productivity as the greatest possible amount of output 

while minimizing input. The Cambridge dictionary (2024) defines productivity as the 

speed at which a business or nation produces products, typically measured in relation 

to the quantity of labor and resources required to generate them. Also, it gives the 

meaning that the capacity to complete as much work as possible in a given amount of 

time. Oxford dictionary (2024) explains the speed that an employee, business, or 

nation creates items and the quantity produced in relation to the resources (money, 

labor, and duration) required to generate things. Ghate et al. (2016) indicate 

productivity is an essential element of the construction sector and might be used as a 

measure for efficiency of output. 
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2.2.1 Productivity and construction industry 

Among the industries with the lowest productivity is the construction industry 

(Rathnayake and Middleton, 2023; Turner et al., 2021). Globally, the construction 

sector has been defined by a notable decline in productivity (Laszig et al., 2020; 

Teisserenc and Sepasgozar, 2021). The industry faces a shortage of worker abilities, 

an inadequate innovation and an unpredictable future as well as low productivity 

(Yang et al., 2024). Moreover Alzubi et al. (2023) indicate construction projects 

experience productivity declines ranging from 40% to 60%. Also the building sector 

has an unimpressive history of advancing efficiency and productivity (Lydon et al., 

2019). Although improvements frequently result in higher efficiency, the 

construction sector has fallen behind other industries in integrating new technologies 

into its operations (Menegon and Filho, 2022; Laszig et al., 2020; Moshood et al., 

2024). As Laszig et al. (2020) claim, nonetheless, advancements are a major factor in 

the rise in productivity across a wide range of sectors according to past studies and 

experiences. On the other hand Akanmu et al. (2021) point out even with greater 

attempts to enhance the execution of construction projects methods, the sector 

continues to face challenges related to decreased productivity, security and quality. 

Turner et al. (2021) state, enhancing productivity is crucial as it serves as a key 

indicator of living standards within countries and their potential for economic 

growth. Additionally they state low productivity and skill gaps have resulted in 

increased construction costs, project delays and inadequate sustainability procedures 

in the construction industry. Furthermore they point out, under the construction 2025 

plan, the government of the United Kingdom has set goals for building projects that 

include a %50 quicker completion time, %50 fewer emissions of greenhouse gases in 

the constructed environment, and a %33 decrease in both the starting price of 

construction and the property's entire lifespan expense. Likewise Teisserenc and 

Sepasgozar (2021) mention the conflict pricing strategy and the weak financial 

system of the sector in their paper. Hiyassat et al. (2016) add, increasing profit in the 

construction industry with minimal or no expense changes can be achieved via 

boosting productivity. Additionally Vogl and Abdel-Wahab (2014) mention that in 

all nations, productivity is a major factor in economic expansion and success. 

Moreover, enhancing productivity in the construction industry could lead to 

significant cost reductions in addition to increased profits and revenues for the 
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industry. Alzubi et al. (2023) indicate keeping track of construction productivity is 

crucial for the success of construction projects as it enables the evaluation of project 

performance. Additionally they claim poor construction productivity continues to be 

considered one of the most significant problems in the construction sector, despite 

the many obstacles it faces. They also emphasize automated monitoring techniques 

may successfully identify and improve construction productivity variables, with 

vision based technologies (37%) finding to be most efficient. Rafsanjani and 

Nabizadeh (2023) claim the global AEC industry has an estimated cumulative value 

of US$11.72 trillion in 2021 and is projected to reach US$12.26 trillion by 2023. 

Therefore, the sector has consistently looked for ways and methods to optimize 

resource utilization, improve productivity, lower project costs, increase worksite 

security and reduce project completion time. Furthermore they add that the AEC 

industry will see significant savings in expenses as a result of the widespread demand 

for and use of technology improvements, with the non-residential AEC sector 

projected to save US$400 million in operation and maintenance stages by 2025 and 

US$950 million in design and build phases. Due to an increasing understanding of 

the substantial role played by the construction industry in promoting an economy that 

succeeds, the importance of productivity growth is gaining more significance for 

stakeholders in the industry (Adebowale and Agumba, 2023). Alzubi et al. (2023) 

indicate the construction sector lacks excellent timing and budget management in the 

execution of megaprojects. Approximately 77% of such projects are projected to face 

delays exceeding 40%, while cost overruns exceeding 30% are observed in 98% of 

cases. Ineffective productivity stands out as a primary contributor to these 

unsatisfactory project outcomes. Likewise Akanmu et al. (2021) express that the 

AEC sector is constantly looking for new and creative ways to complete projects on 

schedule, within budget and with security. They argue that industry 4.0 claims to 

increase production, decrease waste and raise project efficiency; however, the 

acceptance of numerous advances in technology will be crucial for the increased 

productivity. Si et al. (2023) indicate using these industry 4.0 innovations lowers 

operating expenses while boosting speed and accuracy.  

Productivity within the construction sector is commonly measured on the levels of 

activity, project, and industry (Adebowale and Agumba, 2023). According to studies 

there are 3 common productivity measurements utilized in the construction industry 
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(Rathnayake and Middleton, 2023; Zhan and Pan, 2020; Zhi et al., 2003; Arditi and 

Mochtar, 2000). Initially, there is an economic model that characterizes productivity 

as total factor productivity, representing the ratio of total outputs, in dollars, to total 

inputs, also expressed in dollars. These inputs encompass labor, materials, 

equipment, energy, and capital. Policymaker agencies adopt to assess the economic 

condition of the country. The second model, specific to individual projects, 

characterizes productivity as total productivity. This is the ratio of outputs measured 

in physical units (such as square feet) to inputs expressed in dollars. The inputs in 

this model encompass labor, equipment, materials, and management. This model is 

more precise and applicable to both governmental agencies and the private sector. 

The third model is activity-oriented, defining productivity as labor productivity. This 

refers to the ratio between outputs measured in specific physical units (such as tons 

of steel) and inputs expressed in labor hours, where the inputs consist just of labor. 

The model proves beneficial for producers in computing project costs and monitoring 

on-site activities. However, Rathnayake and Middleton (2023) underline the 

requirement for multi input descriptions of productivity in order to offer an 

evaluation that is deeper. The total cost of labor or employee hours is commonly 

employed as a metric in construction, and the outcome is typically expressed in terms 

of weight, length, or area (Hiyassat et al., 2016).  

Numerous academics have shown that increasing construction productivity is a 

continual, scientific process as opposed to an only once event that happens during a 

project's life cycle (Ranasinghe et al., 2012). Intelligent approaches to increase 

construction productivity are desperately needed, especially in terms of employee 

and management concerns (Hasan et al., 2018). According to Opoku et al. (2021), 

the construction sector faces many difficulties, such as low productivity, but DT 

technology has the power to change this business and offer solutions for these 

difficulties. In the similar way, Turner et al. (2021) state that the demand for greater 

efficiency together with the complex nature of site construction projects has raised 

curiosity about the possible applications of Industry 4.0 technology such as DT, AI, 

sensors, automation, BIM and wearables. Moshood et al. (2024) add, facing critical 

challenges requiring innovations, such as improving sustainability, efficiency and 

productivity. Laszig et al. (2020) state the efficiency of the AEC sector can be 

revolutionized in a number of innovative areas by major improvements already in 
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use or in development of new building materials, digital technologies and robotics. 

Also it is clear that innovation and new technology significantly boost productivity 

and the key areas include digitalization, construction automation, resource efficient 

and recyclable building products, and new service models. Ling et al. (2023) 

indicated that five technologies especially give relative benefit to the firms in relation 

to the closest competitors of AEC companies. The adoption of cloud-based 

technology, design for manufacturing and assembly, IoT, robotic technology and AI 

had a strong correlation with higher project quality, productivity, and a good brand 

name. Similarly Zhan and Pan (2020) point out, the main goal of supporting 

innovative technology is to speed up the process of industrialization and 

mechanization by supporting labor-saving and successful construction management 

innovations, which will boost productivity and make it possible to replace labor with 

capital or materials. As Love and Matthews (2019) highlight, innovations boost 

productivity and performance in 3 main ways: processes that are already in place are 

streamlined by automation, new practices are supported alongside established ones 

by extension, and traditional methods are replaced with digital alternatives by 

transformation. 

2.2.2 Factors affecting productivity in the construction phase 

Politicians and the building sector put a high priority on increasing productivity 

because it directly affects efficiency (Mehta et al., 2022). Productivity is increased in 

construction projects when technology is used (Hiyassat et al., 2016). Nevertheless, 

unfortunately the construction sector's rise in productivity is noticeably behind 

compared to all other industries (Abdel-Wahab and Vogl, 2011). Construction 

productivity might be impacted by a wide range of variables, including the climate, 

work environment and situations, manpower expertise, training and motivation, as 

construction projects are labor intensive that are open to interior and exterior 

conditions (Hasan et al., 2018). Ghoddousi and Hosseini (2012) explore the concept 

of boosting productivity by the use of factors that have beneficial consequences and 

effectively dealing with or controlling those that have negative impacts. While the 

primary constraints on productivity may vary across projects, businesses, and 

locations, the authors identify common patterns in issues which limit efficiency. 

Their research highlights that the management system and strategies, encompassing 

skills in management, scheduling, material and equipment management, along with 
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quality control, stand out as the most influential factors affecting construction 

productivity. Additionally, following closely behind in influence are factors such as 

labor force, the industry environment, and external influences. Likewise Arditi and 

Mochtar (2000) state the findings show that the functions with the most potential for 

productivity growth are cost control, time management, design methods, employee 

training, and quality management. In contrast Alzubi et al. (2023) and Ghoddousi 

and Hosseini (2012) claim the most significant elements influencing construction 

productivity are those related to labor. Alzubi et al. (2023) explains the rest of the 

ranking as follows; labor factors followed by management and jobsite factors which 

hold equal importance, and lastly, external factors. On the other hand El-Gohary and 

Aziz (2014) assert the management category rated at the top, the labor category came 

in second and followed by the industrial category in third. Alzubi et al. (2023) 

identified 18 factors that predominantly influence construction productivity. These 

factors can be categorized into 4 groups. The first category encompasses 

management-related factors, including supervision, resources, security, cost, and 

schedule. The second category involves workforce related factors, such as abilities, 

background, fatigue, unplanned pauses, lateness. The third classification relates to 

jobsite factors, including revisions, rest areas, busy locations, site layout and 

complexity of design. The final category encompasses external factors like weather, 

regulations, and owner influence. The groups Rathnayake and Middleton (2023) list 

that affect productivity are: labor, technology and equipment, construction site, 

schedule, supervisors and materials. According to Jarkas (2015) the following factors 

impact productivity: worker abilities, coordination between design professions, lack 

of labor monitoring, mistakes and inaccuracies in design drawings, revision, working 

additional hours, absence of a reward system and adverse weather conditions. 

Similarly, Heravi and Eslamdoost (2015) mention labor competence, decision 

making, motivation, site layout, and planning as the main five elements impacting 

employee productivity. Even with this optimistic prediction, they claim productivity 

could rise by 37% to 48% if each of these characteristics were improved. Naoum 

(2016) has taken a managerial approach to the problem and explains problems 

related to productivity from the management perspective. Then lists factors such as 

insufficient project scheduling, delays created by mistakes in design and change 

commands, workplaces, performance limitations on employees, aesthetic and 

buildability-related problems, leadership and organizational methods, procurement 
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techniques, absence of the adoption of the project's management information system. 

Teisserenc and Sepasgozar (2021) claim that the absence of financial transparency in 

the AEC sector results in poor productivity, reduced cost savings and restricted 

cooperation and information sharing. Therefore they suggest smart contracts to 

automate procedures in order to save money, increase efficiency and minimize time. 

Hasan et al. (2018) emphasize certain variables reoccur in multiple research. 

Therefore, they argue that the frequent citation of these issues in research over the 

past three decades highlights their importance and continued presence as barriers to 

construction project productivity. Also researchers show the top ten frequently 

mentioned limiting building output worldwide the following, in decreasing sequence 

of significance: Lack of access to materials, insufficient oversight, limited expertise, 

poor tools and equipment, unfinished designs and specifications, weak conversations, 

reworking, improper site layout, unfavorable climate circumstances and changes. As 

Mehta et al. (2022) indicate, while numerous studies have explored ways to improve 

specific efficiency factors in construction projects, few provide a comprehensive 

view of how inefficiencies impact projects as a whole. They further explain the 

sector will benefit from identifying the root causes of significant project errors and 

implementing prevention strategies.  

We can identify 7 key factors that challenge the AEC sector and impact productivity 

during the construction phase based on the research papers reviewed as illustrated in 

Table 2.5. These factors include labor, management systems, work site, industry 

environment, design related issues, climate and communication. Challenges in these 

areas lead to a significant decline in productivity. They can be categorized to identify 

the key areas of concern. 
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Table 2.5 : The factors affect productivity in the construction phase. 

Category of Factors Subcategories References 

Labor Skill Alzubi et al. (2023), Hasan et al. (2018), Jarkas (2015), Durdyev et al. (2018), 

Mehta et al. (2022), Ghoddousi and Hosseini (2012), Heravi and Eslamdoost 

(2015), Rathnayake and Middleton (2023), Rivas et al. (2011), Adebowale and 

Agumba (2021), Arditi and Mochtar (2000) 
 

Training 

 

Motivation 

Management System Cost Management Rathnayake and Middleton (2023), Ghoddousi and Hosseini (2012), Durdyev 

et al. (2018), Naoum (2016), El-Gohary and Aziz (2014), Alzubi et al. (2023), 

Heravi and Eslamdoost (2015), Hasan et al. (2018), Mehta et al. (2022), Arditi 

and Mochtar (2000) 
 

Quality Management 

 

Time Management 

 

Material and Equipment Management 

 

Desicion Making Ability 

 

Organizational Methods 

Work Site Site Layout Heravi and Eslamdoost (2015), Jarkas (2015), Ghoddousi and Hosseini 

(2012), Alzubi et al. (2023), Naoum (2016), Rivas et al. (2011), Rathnayake 

and Middleton (2023), Hasan et al. (2018) 

 

Site Location  
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Table 2.5 (continued) : The factors affect productivity in the construction phase. 

Category of Factors Subcategories References 

Industry Environment Financial Uncertainties Mehta et al. (2022), Durdyev et al. (2018), Genc, (2021), Jarkas (2015), 

Teisserenc and Sepasgozar (2021), Hasan et al. (2018), Ghoddousi and 

Hosseini (2012) 

 

Regulatory Changes 

Design Related Issues Constructability Rivas et al. (2011), Rathnayake and Middleton (2023), Naoum (2016), 

Jarkas (2015), El-Gohary and Aziz (2014), Jarkas and Radosavljevic 

(2013), Mehta et al. (2022), Hasan et al. (2018) 

 

Inaccuracies in Drawings 

Climate Adverse Weather Conditions Jarkas (2015), Alzubi et al. (2023), Hasan et al. (2018), El-Gohary and 

Aziz (2014), Heravi and Eslamdoost (2015) 

Communication Misunderstanding Jarkas and Radosavljevic (2013), Heravi and Eslamdoost (2015), Jarkas 

(2015), Mehta et al. (2022), Mahamid (2013), Rivas et al. (2011), Hiyassat 

et al. (2016) 

 

Commmunication Barriers 
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2.2.2.1 Labor 

Labor aspects play a key role in the productivity of construction and the results show 

that the labor market is currently not benefited enough to increase construction 

productivity (Zhan and Pan, 2020; Lee et al., 2023). Since construction is a labor 

intensive business, worker payments commonly account for between 30% and 50% 

of the project's total cost (Heravi and Eslamdoost, 2015; Durdyev et al., 2018). 

However Lee et al. (2023) state that the number is even higher and claim labor costs 

account for approximately 40–60% of overall construction expenses. They also point 

out through increasing labor productivity by 10%, companies in the UK may save 

GBP 1.5 billion. Mehta et al. (2022) express that According to the Associated 

General Contractors of America, worker problems that affect productivity account 

for over 60% of construction project delays or cancellations. Within the labor 

category, the most significant element influencing construction productivity is the 

skills and expertise of the employees (Alzubi et al., 2023; Jarkas, 2015; El-Gohary 

and Aziz, 2014). Durdyev et al. (2018) claim that besides the workforce's abilities 

and expertise, motivation is also vital. Likewise Mehta et al. (2022) identify 

motivation as one of the key factors with labor skill and experience affecting 

productivity. El-Gohary and Aziz (2014) state incapable workers with inadequate 

training frequently exhibit low and inaccurate outputs. Also in the opinion of Jarkas 

(2015), highly qualified staff members can solve problems logically and with 

advanced technical capabilities, which leads to greater quality of final output. Expert 

workers are able to do jobs faster and with greater quality (Heravi and Eslamdoost, 

2015). Adebowale and Agumba (2021) also highlight issues such as workers' 

abilities, insufficient training, and the need for rework in various construction 

industries. Rivas et al. (2011) note that having under qualified workers in important 

roles could demoralize workers in employment. While problems like not enough 

education, low motivation and insufficient management lower productivity, an 

experienced, motivated team increases it (Durdyev et al., 2018). Additionally, 

regarding the other factor climate, Pamidimukkala et al. (2023) states that due to 

workers performing tough physical duties in adverse weather conditions, they are 

exposed to long-term health issues which cause low efficiency in the long term. 
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2.2.2.2 Work site 

Traffic, site layout, restricted work area and limited entry are some examples of 

variables that might reduce productivity by generating logistical problems and 

inefficiencies on construction sites (Jarkas, 2015; Ghoddousi and Hosseini, 2012). 

Heravi and Eslamdoost (2015) draw attention that a carefully planned site layout 

may boost worker productivity from 12.2% to 19.8%. They define site layout as the 

strategic placement of temporary buildings, utilities, main equipment, stores, offices 

and access routes. Similarly Alzubi et al. (2023) and Naoum (2016) discuss a well 

planned site layout is essential. Also they indicate the site being crowded is highly 

influential in this matter. Rivas et al. (2011) highlight the critical impact that the 

work site has in assessing productivity. Based on the study, there is a considerable 

impact on productivity from factors such as the access of materials and the 

arrangement of the workplace. Likewise, Rathnayake and Middleton (2023) highlight 

these factors that affect how effortlessly processes are executed on-site, greatly 

impacting construction efficiency. 

2.2.2.3 Management system 

Durdyev et al. (2018) and El-Gohary and Aziz (2014) find the management category 

the most significant in influencing productivity so rated at the top. Efficient material 

and equipment management, appropriate planning, well supervision and decision 

making procedures are essential variables that improve productivity (Rathnayake and 

Middleton, 2023; Naoum, 2016; Durdyev et al., 2018). Reliable procurement 

techniques ensure resource availability when required, minimizing delays and thus 

improving the performance of the project as a whole (Rathnayake and Middleton, 

2023; Heravi and Eslamdoost, 2015; Ghoddousi and Hosseini, 2012). Sustaining 

productivity requires careful scheduling and inadequate oversight has adverse 

consequences on it (Alzubi et al., 2023; Hasan et al., 2018). Mehta et al. (2022) 

discovered a significant misunderstanding about unreasonable scheduling among 

project participants. Also they point out the building sector has been troubled by 

problems like inadequate management and low quality. Heravi and Eslamdoost 

(2015) describe poor decision making as the result of incorrect reasoning, emotions, 

insufficient knowledge, unsuitable selections or problems in modifying the sequence 

and allowing approval. They claim strengthening it may raise labor productivity from 
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15.6% up to 19.8%. Moreover they discuss leadership, interaction and management 

techniques concentrating on organizational and individual variables to enhance 

results. Similarly Naoum (2016) points out the leadership approach taken on the job 

site can have a big influence on output. They further discuss that effective 

management and leadership styles are crucial for controlling work activities from 

design to construction, which is essential for achieving high productivity. Effective 

leadership approaches can significantly reduce time and costs, with good 

management style greatly influencing productivity (Durdyev et al., 2018; Naoum, 

2016).  

2.2.2.4 Industry environment 

Mehta et al. (2022) explain that industry environment factors, often known as 

political or extreme circumstances, are uncontrollable occurrences including 

pandemics and political instability. Due to interruptions, increased expenses or the 

need for plan modifications, these variables may have an enormous effect on 

building projects. They claim these are huge inefficiencies that cause timetable and 

financial conflicts because of their unpredictability. Mashood et al. (2024) claim 

regulatory issues provide serious obstacles to the sector. Those obstacles that can 

slow down or make execution more difficult in the construction ındustry. Challenges 

could include handling complicated regulatory systems, getting required approvals, 

and following current standards. Likewise Durdyev et al. (2018) state sustaining 

productivity requires both strong financial management and predictability. They also 

discuss financial circumstances and regulatory permissions that may result in 

unforeseen cancellation, needing backup plans to minimize their effects on 

operations. Genc, (2021) expresses uncertainties as financial issues like pricing 

speculation, the rate of inflation and unforeseen modifications to laws and 

regulations. Jarkas (2015) highlights how labor productivity is impacted by constant 

modifications in law and delays in statutory permits. 

2.2.2.5 Design related issues 

Rivas et al. (2011) mention that issues with design understanding and the 

requirement for more technical data can result in lost productivity. Insufficient 

designs and specifications, engineers not knowing the field circumstances and doubt 

frequently represent the causes of these problems. Constructability is one of the key 



68 

factors influencing productivity (Rathnayake and Middleton, 2023; Naoum, 2016). 

El-Gohary and Aziz (2014) defined it as the ability to achieve project objectives by 

effectively utilizing construction experience in design, planning, procurement and 

operations. They point out enhancing the degree of constructability in designs is 

undoubtedly a beneficial initial move. Similarly Jarkas (2015) explains that 

buildability leads to rework thus impact productivity.  Furthermore, errors in 

drawings that could cause delays and revisions raise project expenses (Rathnayake 

and Middleton, 2023; Hasan et al., 2018; Jarkas, 2015).  

2.2.2.6 Climate 

As stated by Jarkas (2015), poor weather has the tenth highest impact on labor 

productivity in the construction industry. He remarks that the result is in line with 

research from Qatar, India, New Zealand, US and Iran. Alzubi et al. (2023) claim 

since building operations usually take place outside, weather conditions including 

heat, humidity, storm and rain have an enormous effect on productivity. In their 

study, weather is regarded as the most significant external factor that can be observed 

using automated monitoring technologies, with a weight of 50.9%. Heravi and 

Eslamdoost (2015) express unsuitable weather, including extremes in humidity, 

temperature and snowstorms, has been shown to have a negative impact on 

production. In addition, they state location circumstances and weather are two of the 

main factors influencing operating efficiency. 

2.2.2.7 Communication 

Although there are many variables that influence construction workers' productivity, 

motivation is one of the most crucial ones (Jarkas and Radosavljevic, 2013). 

Employees that are motivated are typically more effective and dedicated to their 

work, which produces higher levels of production and boosting labor motivation 

could lead to a 12.7% to 14.2% increase in productivity (Heravi and Eslamdoost, 

2015). Ineffective communication and collaboration may result in rework which 

lowers productivity and brings about disappointing results (Jarkas, 2015). Mehta et 

al. (2022) state communication issues can lead to misunderstandings and arguments. 

Further they emphasize effective communication and eventually a  construction 

project's success depends on recognizing the differences in opinion shared by 

stakeholders such as engineers, contractors and architects. Mahamid (2013) notes 
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that the lack of cooperation and communication among stakeholders is one of the top 

five elements that have an adverse effect on labor productivity in construction 

projects. Also Rivas et al. (2011) point out poor coordination can impact both 

motivation and productivity. 

2.2.3 Productivity and digital twin 

To comprehend the trends in productivity and DT research within the literature, a 

bibliometric study was conducted. We collected research from the Scopus database 

about DT, productivity and the building industry. Various document types, 

encompassing conference papers, articles, reviews, book chapters, books, and 

conference reviews, were taken into account.  No time restrictions were applied, 

except for the language; only papers written in English were included. The Scopus 

advanced search engine was employed, utilizing filters based on Title-Abstract-

Keywords. The code used for the search was TITLE-ABS-KEY ("digital twin") 

AND TITLE-ABS-KEY ("construction project" OR "construction industry" OR 

"construction sector") AND TITLE-ABS-KEY ("productivity" OR “efficiency”) 

AND (LIMIT-TO (LANGUAGE, "English")). A total of 134 publications were 

identified during the search. 10 significant contributors in this field are recognized 

and presented in Table 2.6 based on Scopus. The studies generally examine the 

effects of DT on productivity and the potential to boost efficiency in the construction 

sector. Additionally, these studies also discuss the supporting technologies for DT in 

enhancing productivity in the construction sector, as well as their use cases. Boje et 

al. (2020) explain that despite advancements of BIM, its lack of integration remains 

problematic. They suggest that combining AI, IoT and sensor technologies could 

evolve BIM into a more advanced DT, enabling real time, intelligent and sustainable 

construction practices. Opoku et al. (2021) examine DT technologies across the 

construction lifecycle, identifying six key applications including BIM, monitoring, 

logistics and energy simulation. They state the importance of adopting DT to 

maintain industry competitiveness. Sepasgozar (2021) focuses on defining DT roles 

and expanding digital shadow practices, noting the rising use of DL, robotics and 

blockchain. He emphasizes the key distinction of DT’s data flow. Turner et al. 

(2021) identify major research gaps toward a fully digital construction site. They 

argue for a systems based approach integrating Industry 4.0 technologies and point 

out the need for a deeper exploration over the next decade.  
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Table 2.6 : The most cited publications on DT and productivity in the construction 

industry. 

No Author Title Citation Journal  Research Focus 

1 Boje et al. 

(2020) 

Towards a 

semantic 

construction 

digital twin: 

Directions for 

future research 

622 Automation in 

Construction 

Emphasizes the need 

for a Construction DT 

(CDT), identifies its 

capabilities, highlights 

key research 

challenges, and 

addresses the 

limitations of BIM. 

2 Opoku et 

al. (2021) 

Digital twin 

application in 

the construction 

indusrty: A 

literature review 

322 Journal of 

Building 

Engineering 

Examines the 

development of the DT 

concept, key 

technologies, six 

application areas across 

project lifecycle stages, 

and its implementation 

in the construction 

industry. 

3 Sepasgozar 

(2021) 

Differentiating 

digital twin 

from digital 

shadow: 

Elucidating a 

paradigm shift 

to expedite a 

smart, 

sustainable built 

environment 

181 Buildings Distinguishes DT from 

other digital modeling 

approaches, 

emphasizing its 

integration with 

blockchain and deep 

learning to advance 

efficiency within 

Industry 4.0 

frameworks. 

4 Turner et 

al. (2021) 

Utilizing 

industry 4.0 on 

the construction 

site: challenges 

and 

opportunities 

140 IEEE 

Transactions 

on Industrial 

Informatics 

Mentions the potential 

of DT, smart wearables, 

and intelligent assets to 

improve construction 

processes, emphasizing 

the integration of data 

analytics, robotics and 

industrial connectivity 

to enhance productivity 

and safety. 
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Table 2.6 (continued) : The most cited publications on DT and productivity in the 

construction industry. 

No Author Title Citation Journal  Research Focus 

5 Love and 

Matthews 

(2019) 

The "how" of 

benefits 

management for 

digital technology: 

from engineering 

to asset 

management 

116 Automation 

in 

Construction 

Investigates the 

importance of 

organizations engaging 

with digital technologies 

to enhance their 

competitiveness and 

deliver assets more 

effectively and 

efficiently. 

6 Hosamo et 

al. (2022) 

A digital twin 

predictive 

maintenance 

framework of air 

handling units 

based on 

automatic fault 

detection and 

diagnostics 

107 Energy and 

Buildings 

Highlight fault detection, 

diagnosis and predictive 

maintenance across 

systems, adopting AI and 

machine learning to 

improve maintenance 

and operational 

efficiency. 

7 Debrah et 

al. (2022) 

Artificial 

intelligence in 

green building  

96 Automation 

in 

Construction 

Highlights the integration 

of AI, DT, blockchain 

and robotics to enhance 

sustainability and 

efficiency, while 

addressing associated 

legal, ethical and moral 

challenges. 

8 Lydon et 

al. (2019) 

Coupled 

simulation of 

thermally active 

building systems 

to support a digital 

twin 

86 Energy and 

Buildings 

Emphasizes energy 

efficiency and 

productivity in 

construction, using 

simulation methods and a 

digital twin approach 

during the design and 

operation phases of 

building projects. 
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Table 2.6 (continued) : The most cited publications on DT and productivity in the 

construction industry. 

No Author Title Citation Journal  Research Focus 

9 Akanmu et 

al. (2021) 

Towards next 

generation cyber-

physical systems 

and digital twins 

for construction 

83 Journal of 

Information 

Technology in 

Construction 

Explores the integration 

of Cyber-Physical 

Systems and DT to 

improve efficiency, 

safety and performance 

through automation, 

real-time monitoring, 

risk management and 

advanced technologies 

like deep learning and 

augmented reality. 

10 Teisserenc 

and 

Sepasgozar 

(2021) 

Adoption of 

Blockchain 

Technology 

through Digital 

Twins in the 

Construction 

Industry 4.0: A 

PESTELS 

Approach 

79 Buildings Examines the 

integration of 

blockchain with DT in 

the BECOM sector 

under Industry 4.0, 

introducing the 

Decentralized Digital 

Twin Cycle (DDTC) to 

enhance collaboration, 

transparency, and data 

integrity through BIM 

and IoT. 

Love and Matthews (2019) state that digital technologies can enhance asset value 

over its lifecycle. They underline the need for a structured benefits management 

approach as construction adopts BIM, IoT and DT. Hosamo et al. (2022) explore 

how DT can enhance facility management and maintenance through predictive and 

adaptable strategies. Their model integrates IoT, BIM and ML for defect detection 

and lifecycle optimization. Debrah et al. (2022) review AI in green buildings, 

highlighting how data mining and AI enable real time optimization. They suggest 

integrating AI with blockchain and DT to enhance sustainability. Lydon et al. (2019) 

propose DT based simulation for thermal systems embedded in lightweight roofs. 

They connect sensor and virtual data to reduce planning time and support 

multifunctional design. Akanmu et al. (2021) discuss integrating DT and cyber 

physical systems to improve construction efficiency, safety and risk management. 

Real time tracking and automation are emphasized as key benefits. Teisserenc and 

Sepasgozar (2021) propose the decentralized DT cycle framework to integrate 
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blockchain with DT. They mention the role of smart contracts in overcoming trust 

and collaboration barriers.  

When we look at the most cited studies, we can commonly say that they discuss the 

use of innovative technologies together with DT and its benefits for the construction 

sector. DT have also been approached from different perspectives, addressing their 

impact on the building life cycle, sustainability, construction economy and the future 

of the building industry. The key aspects research papers primarily focus on may 

consist of how DT differs from previous technologies, the innovations it introduces 

and the potential applications of DT alongside current emerging technologies. The 

limitations of the studies generally stem from the inability to apply the technology to 

a physical structure, the lack of practical experiments,  conducted experiments that 

remain at the project level and cannot be more comprehensive and the limited data. 
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 METHODOLOGY 3. 

 Research Design 3.1

Despite the significant body of research on digital twin (DT) in the construction 

sector, there is a limited number of studies specifically exploring its impact on 

productivity during the construction phase. The aim of this study is to first identify 

the factors affecting productivity in the construction phase through a literature review 

and then determine the benefits, challenges and major applications of DT in the 

construction phase using the same approach. Based on these findings, the study 

examines how DT technology can help reduce challenges associated with 

construction productivity factors and evaluates its potential to enhance and improve 

construction efficiency. 

The objectives of this thesis are as follows:  

1) To explore the role of DT throughout the building life cycle in the 

construction sector 

2) To identify its benefits, challenges, and key application areas in the 

construction stage 

3) To determine the factors affecting productivity during the construction phase 

4) To compare these factors with the DT system's identified capabilities to 

assess its potential in overcoming productivity challenges 

To successfully achieve the research objectives, this study adopts two stage 

methodology: first a literature review on DT and productivity, second a questionnaire 

survey. Figure 3.1 provides a diagram of the methodology.   

The literature review of this study consists of two sections: one focusing on DT and 

the other on productivity.  
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Figure 3.1 : The flowchart of the methodology. 
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For an in-depth analysis, research on the construction sector, its relationship with DT 

and productivity was collected from the Scopus database, including conference 

papers, articles, reviews, book chapters, and books. While no time restrictions were 

applied, the study focuses on English language research. The DT section of the 

literature review examines several key aspects, including its definition, the 

technologies it integrates with, its general applications, its architectural and 

construction related applications, and its role within the building life cycle. 

Additionally, the study determines the benefits of DT, the challenges associated with 

its implementation, its key application areas, and its potential for future 

advancements. Moreover, a bibliometric analysis was conducted to examine the 

focus areas of existing studies in the literature, observe how research has developed 

over time and identify key contributions and emerging trends in DT applications 

within the construction industry. This literature review defined a framework by 

identifying the benefits of DT, potential challenges and its primary application areas 

in the construction phase. In the second section, the study reviews the literature on 

productivity. Initially, the study examines the concept and definition of productivity, 

followed by an analysis of its significance and current state within the construction 

industry. It also discusses the possible reasons behind the insufficient improvement 

in productivity within the sector. Finally, the study identifies and provides a detailed 

explanation of the key factors influencing productivity during the construction phase. 

Furthermore, an analysis was conducted to examine research on productivity and DT, 

highlighting key focus areas and emerging trends in the field. Through this literature 

review, the key factors influencing productivity during the construction phase were 

identified and defined to include it into the next stages of the research. A literature 

review was conducted to explore DT technology's potential impact on construction 

productivity factors in order to integrate it into the research survey for assessment. 

As a result of the review, a survey was designed based on the insights gained from 

the existing body of knowledge. While the literature review section in the study 

presents a detailed examination of the relevant factors and the existing body of 

knowledge, Table 3.1 provides a summary of the key factors employed in the study.  
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Table 3.1 : Summary of factors identified in the literature review. 

Variable 
 

Factors  Subcategories 

Factors Affecting 

Productivity During the 

Construction Phase 
 

Labor Skill, Training, Motivation 

 

Work Site Site layout, Site location  

 

Management System Cost/Time/Quality/Material&Equipment management,  

Desicion making ability,  

Organizational methods 
 

 

  

  

Industry Environment Financial uncertainties, Regulatory changes 

  

Design Related Issues Constructability, Inaccuracies in drawings 

  

Climate Adverse weather conditions 

  

Communication Misunderstanding, Commmunication barriers 

    
The Benefits of DT 

 

Real Time Digital Representation  

 

Remote Monitoring  

  

Resource Management  

  

Safety Management  

  

Risk Management  

 

 Collaboration with Autonomous Robots  

  

Waste Reduction  

  

Predictive Decision Making  

  

Time And Cost Management  

 

 Communication And Collaboration  
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Table 3.1 (continued) : Summary of factors identified in the literature review. 

Variable 
 

Factors  Subcategories 

Challenges in 

Implementing DT  

Adaptability 

 

 

Data Integration 

 

 

Data Management 

 

  

High-Fidelity Model 

 

  

Interoperability 

 

  

Operation Cost 

 

  

Cybersecurity and Privacy 

 

  

Skill and Training 

 

  

User Interface 

 
  

 
 

Key Applications 

of DT During the 

Construction 

Phase 

 

Workforce Oversight 

 

 

Material&Equipment Management 

 

 

Site Monitoring 

 

 

Optimization of Time and Cost 

  Enhanced Decision Making Processes 

 

 

 Integration with Emerging Technologies 

 

  

Comprehensive Participation 
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 Survey 3.2

In this study, a questionnaire was designed and conducted among industry experts to 

assess the effectiveness of DT in improving factors that impact construction 

productivity in the construction stage. A pilot study was first conducted to assess the 

clarity and comprehensibility of the survey. El-Gohary and Aziz (2014) conducted 

their pilot study with five participants, while Parekh and Mitchell (2024) included 

seven participants in theirs. Following a similar approach, a pilot survey was 

conducted with a sample of eight participants to test the clarity and effectiveness of 

the questionnaire. Based on the feedback obtained, a number of changes were made 

to enhance readability and comprehension in response. These included revising 

questions in clearer, more exact language, giving detailed definitions and adding 

extra explanations where needed. As a result of this process, the final version of the 

survey was developed. An online survey platform Google Forms was utilized to 

gather data from participants. The study targeted construction industry professionals, 

including project managers, engineers, architects, and specialists. Participants were 

asked to rate the survey statements using a 5-point Likert scale, where 1 represented 

not effective and 5 indicated extremely effective. The survey began with questions 

regarding participants' demographic information, obtaining data on gender, age, 

education level, profession, years of experience, employing organization, and their 

role within the organization. Following the demographic section, two questions 

related to DT were included to assess participants' awareness of the technology and 

whether they had any prior experience using it. After the first sections, the survey 

continued with questions relevant to the topic. First, participants asked to assess 

factors affecting productivity during the construction phase. Then they evaluated 

how frequently these factors occur in construction projects. Next, the survey 

explored the potential impact of DT by asking how its implementation during the 

construction phase could influence the occurrence of these productivity related 

factors. Subsequently, participants rated the benefits of DT in the construction sector. 

A similar assessment was conducted for challenges associated with DT 

implementation and its key application areas in construction. Finally, the survey 

concluded with a summary question, asking participants to express their views on the 
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overall effectiveness of DT in enhancing productivity during the construction phase 

of construction projects.  

 Data Collection 3.3

The survey was shared online through direct invitations to construction professionals, 

and LinkedIn was also used to reach more participants and support its distribution. 

Data was collected from participants using Google Forms. The survey remained open 

for responses over a period of seven weeks. A total of 76 responses were collected. 

All responses considered valid and included in the analysis, resulting in the inclusion 

of 100% of the provided answers in the survey. The collected data was analyzed 

using Statistical Package for Social Sciences (SPSS) v.29 software. 

 Data Analysis 3.4

To analyze the collected data, a series of statistical methods were employed. 

Descriptive statistics, including mean, median, mode and standard deviation, were 

utilized to summarize participant responses. To ensure the reliability of the data, 

Cronbach’s alpha reliability test was conducted. Next, the normality of the data was 

assessed using multiple methods, including histogram analysis, Skewness-Kurtosis 

values, the Kolmogorov-Smirnov test, and the coefficient of variation. Once 

normality was confirmed, Pearson’s correlation test was performed to examine the 

presence of a significant linear relationship between variables. Afterwards, 

independent samples t-tests were executed to compare perceptions of DT between 

users and non-users. Additionally, one-way ANOVA was performed to examine 

whether experience levels influenced perceptions of DT’s benefits, challenges, and 

major applications. When ANOVA results indicated statistical significance, post-hoc 

tests, such as Tukey’s HSD and Gabriel’s Test, were applied to determine significant 

differences among experience groups.  
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 FINDINGS AND DATA ANALYSIS 4. 

 Demographic Information of Participants 4.1

To gain a better understanding of the participants in terms of gender, age, education 

and occupation, seven demographic questions were asked to respondents. In the 

following step, two questions were presented to evaluate their understanding of 

digital twin (DT). All 76 participants' responses were considered, leading to a 

participation rate of 100%. Table 4.1 provides an overview of the survey participants' 

demographics. The number of female and male participants is nearly equal, with 

54% being female and 46% male. In terms of age groups, the majority of 

participants, 54 individuals with 71%, fall within the 25-34 age range. This is 

followed by the 35-44 age group, which comprises nine participants, with 12%. 

Seven participants, making up 9%, belong to the 18-24 age group. Three participants 

each, representing 4%, are in the 45-54 and 55-64 age ranges. There are no 

participants over the age of 64. The majority of the participants consist of young 

people, which may be due to the fact that they are more active on the internet and 

related sharing networks. Looking at the educational background, the majority of 

respondents, 70% with 53 individuals, hold a bachelor's degree. 21 participants, 28%, 

have a master's degree, while two participants, accounting for 2%, hold a doctoral 

degree. In terms of profession, the majority of survey experts are architects, with 55 

individuals, accounting for 72% of the group. Civil engineers make up 13%, with 10 

participants in this category. Three respondents, 4%, are mechanical engineers, while 

another three, also 4%, work as project managers. No participants identified as 

computer/software engineers. Respondents who selected “the others” option in the 

profession question include an electronics engineer, an urban planner, a contractor, 

an electrical engineer and an architect with a dual degree in civil engineering. The 

participants' experience levels vary across different ranges. Most of them, 44 

individuals (58%), have 2-5 years of experience. 14 participants (18%) have less than 

two years of experience, while nine (12%) have more than 15 years.  
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Table 4.1 : Overview of the survey participants' demographics. 

Demographic 

Variable  

Number of 

Responses 
Responses(%) 

Gender Female 41 54% 

 Male 35 46% 

  

  Age 18-24 7 9% 

 25-34 54 71% 

 35-44 9 12% 

 45-54 3 4% 

 55-64 3 4% 

 > 64 - - 

  

  Education 

Degree 

Bachelor 53 70% 

Master 21 28% 

 Doctorate 2 2% 

  

  Profession Architect 55 72% 

 Civil Engineer 10 13% 

 Mechanical Engineer 3 4% 

 Computer/Software Engineer - - 

 Project Manager 3 4% 

 Other 5 7% 

  

  Experience < 2 years 14 18% 

 2-5 years 44 58% 

 6-10 years 4 5% 

 11-15 years 5 7% 

 > 15 years 9 12% 

  

  Organization Architecture Office 33 43% 

 Contracting Company 21 28% 

 Consulting Firm 5 7% 

 Quality Control&Inspection Company 4 5% 

 Academia 1 1% 

 Other 12 16% 
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Table 4.1 (continued) : Overview of the survey participants' demographics. 

Demographic Variable 
 

Number of 

Responses 
Responses(%) 

Role Design Architect/Engineer 49 65% 

 Site Manager 7 9% 

 Senior Manager 5 7% 

 Consultant 2 3% 

 Academic 1 1% 

 Other 12 15% 

  

  

Informed about the DT Yes 28 37% 

 

No 48 63% 

    
DT User Yes 8 11% 

 

No 68 89% 

    

 

Total 76 100% 

Five participants (7%) fall within the 11-15 year range, and four (5%) have 6-10 

years of experience. The respondents work in various types of organizations. The 

largest group, 33 individuals (43%), are employed in architecture offices, followed 

by 21 participants (28%) working in contracting companies. Five people (7%) are 

part of consulting firms, while four (5%) work in quality control and inspection 

companies. Only one participant (1%) is from academia. Among the respondents 

working outside the specified organization, six are in the public sector, two in an 

airline company, and one each in an investment firm, an energy company, a 

manufacturing firm and a portfolio company. The survey experts occupy different 

roles in their organizations. The majority, 49 individuals (65%), work as design 

architects or engineers. Seven participants (9%) serve as site managers, while five 

(7%) hold senior management positions. Two people (3%) work as consultants, and 

one (1%) is in an academic role. Out of the 11 respondents who chose “the others” 

for their role, the positions include a proposal architect, an avionics design engineer, 

an interior designer, a specialist, a business development specialist, four project 

managers, a company owner, a site architect, and an analyst. In summary, the 

participant profile reveals that the majority of respondents are architects (72%), 

primarily between the ages of 25 and 34 (71%). Most of them are highly educated, 
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with 70% holding a bachelor's degree and 25% a master's degree. Regarding 

professional experience, approximately 42% have 2–5 years, while around 32% have 

less than 2 years of experience. The respondents predominantly work in architectural 

offices as design professionals. Aside from the demographics, when asked about 

their knowledge of DT technology, 28 participants (37%) stated they are aware of it, 

whereas the other 48 respondents (63%) are not familiar with the concept. Of the 28 

people informed about the DT technology, eight (11%) have had the opportunity to 

use this technology before. Among the 76 participants, 68 (89%) have never used DT 

technology. The details are shown in Table 4.2. 

Table 4.2 : Overview of the DT users' demographics. 

No DT User Education Degree Profession Experience 

1 Yes Master Architect 2-5 years 

2 Yes Master Architect& Civil Engineer 2-5 years 

3 Yes Master Project Manager > 15 years 

4 Yes Bachelor Architect < 2 years 

5 Yes Bachelor Architect 2-5 years 

6 Yes Master Architect 2-5 years 

7 Yes Master Mechanical Engineer 2-5 years 

8 Yes Master Architect 2-5 years 

An important feature is that the experience of these eight individuals typically falls 

within the 2-5 year span. It can show that younger professionals are more involved 

with such innovations within the construction industry. Moreover, this may suggest 

that although their experience is not at an advanced level, they have a background in 

using important technologies. Also 75% of the DT users in the questionnaire are 

architects, with a majority holding a master's degree.  

 Statistical Analysis of Data 4.2

The literature research identified the 18 factors impacting productivity during the 

construction phase. In total, these subcategories identified under seven main 

categories. Afterwards survey participants were asked about the impact level of these 

factors. Then, they were questioned about the frequency of their encounters with 

these factors during construction. Lastly, regarding DT technology and productivity, 

they were asked how these factors might have been influenced if a DT had been 
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employed during the project's construction phase. Participants were requested to 

reply using a five-point Likert scale. Moreover, related to DT technology, through a 

literature review the benefits of DT were identified, and the relevant factors were 

listed. Participants then rated these factors using a five-point Likert scale. The same 

process was applied to challenges in implementing DT in construction and key 

applications of DT during the construction phase. The survey was concluded with a 

final question evaluating the effectiveness of DT in improving productivity during 

the construction phase. Based on all of this information, for a descriptive analysis, 

Table 4.3 was generated showcasing essential statistical metrics such as mean, 

median, mode and standard deviation for each factor. The factors are arranged from 

the highest mean to the lowest. According to the table, participants ranked labor (i.e., 

4,14) as the most influential factor impacting productivity during the construction 

phase. The management system (i.e., 4,11) positioned second. Although the 

management system comes second, its mean value is closely aligned with the labor 

factor. This might indicate that participants consider it as important as the most 

impactful factor (i.e., there is no statistical significance). Supporting this, labor 

related factors are frequently emphasized in the literature as the most significant 

aspect on construction productivity (Alzubi et al., 2023; Rathnayake and Middleton, 

2023; Lee et al., 2023). Moreover, some researchers claim that the management 

approach is ranked as having the highest impact on construction (Durdyev et al., 

2018; El-Gohary and Aziz, 2014; Ghoddousi and Hosseini, 2012). In line with the 

survey results, these two factors hold similar rankings in the literature as the most 

effective ones. Design related issues (i.e., 3,72) came in third place while the work 

site (i.e., 3,57) and industry environment (i.e., 3,54) factors stand 4th and 5th. Alzubi 

et al. (2023) state that aspects related to the construction site are ranked immediately 

behind the management system. Alabdali et al. (2022) claim that construction 

productivity is most affected by incomplete drawings and missing elements, followed 

by inadequate site circumstances and management. However, survey results assign 

less importance to these factors, in the findings these are found to be less influential. 

Participants identified communication (i.e., 3,43) and climate (i.e., 3,25) as the least 

impactful factors. Nevertheless, although they are in last place, their average values 

are not considerably low, since both exceed 3. Additionally, the mean values of the 

four lowest positioned factors are closely aligned. This may suggest that respondents 

consider minimal differentiation in the importance of these four factors.  
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Table 4.3 : Descriptive survey statistics. 

Variables 
 

Mean Median Mode 
Std 

Dev. 
N 

Factors' Impact on 

Productivity 

During 

Construction 

Labor 4,14 4,33 5,00 ,750 76 

Management System 4,11 4,33 4,67 ,695 76 

Design Related Issues 3,72 4,00 4,00 ,984 76 

 

Work Site 3,57 3,50 3,00 ,877 76 

 

Industry Environment 3,54 3,50 4,00 ,944 76 

 

Communication 3,43 3,50 4,00 ,941 76 

 

Climate 3,25 3,00 3,00 1,047 76 

Occurrence 

Frequency of 

Factors 

Labor 3,85 4,00 4,00 ,850 76 

Management System 3,60 3,58 3,67 ,882 76 

Design Related Issues 3,31 3,50 3,50 1,052 76 

 

Industry Environment 3,20 3,00 3,00 ,966 76 

 

Communication 3,05 3,00 2,00 1,144 76 

 

Work Site 2,96 3,00 2,00 1,032 76 

 

Climate 2,95 3,00 2,00 1,253 76 

The Level of 

Influence on 

These Factors If 

DT Were Used 

Design Related Issues 3,84 4,00 4,00 ,956 76 

Management System 3,77 3,92 4,00 ,784 76 

Work Site 3,26 3,00 3,00 ,978 76 

 

Communication 3,11 3,00 3,00 1,293 76 

 

Labor 3,02 3,00 3,00 1,012 76 

 

Industry Environment 2,56 2,50 2,00 1,080 76 

 

Climate 2,37 2,00 1,00 1,295 76 

The Benefits of 

DT 
Remote Monitoring 4,32 5,00 5,00 ,867 76 

Time And Cost Management 4,30 5,00 5,00 ,848 76 

 

Resource Management 4,18 4,00 5,00 ,843 76 

 

Real Time Digital 

Representation 4,17 4,00 5,00 ,985 76 

 

Predictive Decision Making 4,10 5,00 5,00 ,974 76 

 

Risk Management 4,09 4,00 4,00 ,819 76 

 

Collaboration with Autonomous 

Robots 
3,96 4,00 4,00 1,025 76 

      

 

Communication and 

Collaboration 
3,89 4,00 4,00 ,932 76 

      

 

Waste Reduction 3,68 4,00 4,00 1,022 76 

 

Safety Management 3,64 4,00 4,00 ,975 76 
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Table 4.3 (continued) : Descriptive survey statistics. 

Variables 
 

Mean Median Mode 
Std 

Dev. 
N 

Challenges in 

Implementing DT 
Skill and Training 3,54 4,00 5,00 1,259 76 

User Interface 3,20 3,00 4,00 1,118 76 

 

Cybersecurity and Privacy 3,20 3,00 4,00 1,244 76 

 

Operation Cost 3,20 3,00 2,00 1,276 76 

 

Adaptability 2,99 3,00 3,00 1,089 76 

 

Interoperability 2,89 3,00 3,00 1,138 76 

 

Data Integration 2,83 3,00 2,00 1,248 76 

 

Data Management 2,82 3,00 2,00 1,262 76 

 

High-Fidelity Model 2,82 3,00 2,00 1,283 76 

 
 

     Key Applications 

of DT During the 

Construction Phase 

Optimization of Time and Cost 4,17 4,00 5,00 ,971 76 

Integration with Emerging 

Technologies 
4,09 4,00 5,00 ,882 76 

      Site Monitoring 4,07 4,00 5,00 1,024 76 

 

Enhanced Decision Making 

Processes 
4,03 4,00 5,00 1,006 76 

      

 

Material&Equipment 

Management 

4,00 4,00 5,00 ,924 76 

 

Comprehensive Participation 3,84 4,00 5,00 1,020 76 

 

Workforce Oversight 3,51 4,00 3,00 1,026 76 

       The effectiveness of DT in improving productivity 

during construction phase 

4,09 4,00 4,00 ,636 76 

     

Alongside the claims of Alzubi et al. (2023), Hasan et al. (2018), and Rivas et al. 

(2011), climate was listed last in the outcomes of the survey. Nonetheless, unlike the 

survey results, Rathnayake and Middleton (2023) emphasize that the climate factor 

has a more significant impact. Some researchers indicate that the influence of the 

communication factor on productivity is regarded as more significant than what the 

survey findings show (Mehta et al., 2022; Naoum, 2016; Jarkas and Bitar, 2012). 

This may be due to participants' insufficient understanding of the critical role of 

communication in the construction sector. The average mean values for the factors' 

impact on productivity during construction and their occurrence frequency exhibit a 

similar ranking, with the top three factors being labor, management system and 

design related issues. These three are the both the most influential and the most 
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widespread factors according to survey results. Even though Rathnayake and 

Middleton (2023) identify labor, equipment & technology and construction site 

factors as the three most frequently cited factors affecting construction productivity, 

the survey data claim it is labor, management system and design related issues. This 

difference may be due to the study of Rathnayake and Middleton (2023) being based 

on a systematic review that integrates findings from diverse cultural contexts, 

whereas our survey reflects a more localized perspective. When comparing the 

occurrence frequency and factors affecting productivity results, the work site (i.e., 

2,96) factor falls from 4th to 6th position, whereas the industry environment (i.e., 

3,20) rises from 5th to 4th in the occurrence frequency. Based on the responses, 

while the impact of the work site factor on efficiency was reported to be high, its 

frequency of occurrence was noted to be low. On the other hand, the industry 

environment had a higher frequency of occurrence despite having a smaller effect. 

Communication (i.e., 3,05) advances from 6th to 5th place, while climate (i.e., 2,95) 

stays at the bottom. According to respondents, in projects, the occurrence frequency 

of the communication factor is higher compared to its influence. Contrary to the 

survey results Hasan et al. (2018) indicate the most common factor affecting 

construction productivity is material shortages, followed by inadequate supervision 

and skill gaps. Despite the top three, other attributes they listed in descending order 

in line with the survey findings: incomplete drawings and specifications, poor 

communication, inefficient site layout and adverse weather. 

In the context of the level of influence on these factors if DT were used, a shift in the 

mean values is observed. Despite labor being the most influential and frequently 

encountered factor in productivity, its potential impact on productivity when DT 

technology is applied is not rated as highly. With a mean value of 3,02 it ranks 5th 

according to the participants' average. In support of this, workforce oversight, 

associated with the labor factor, was identified as the lowest ranked area among the 

key application areas of DT in the construction phase. According to the participants, 

DT technology may not be expected to have a strong influence on labor. 

Respondents perceive that design related issues would be the most impacted factor 

by the use of DT, with a mean value of 3,84. However, despite agreeing this, when 

asked about the key application area for DT, they ranked comprehensive 

participation, which facilitates process integration and simplifies drawing error 
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resolution, second to last. Instead, they prioritized optimization of time and cost as 

the most crucial application area. The management system aspect stands in second 

place, having a mean value of 3,77. Among the factors affecting productivity in the 

construction industry, considering both their impact and frequency of occurrence, the 

management system was identified as the second most critical factor too. A 

comparison of the responses can show that participants consider management system 

factor highly influential on productivity and believe that the use of DT technology 

may offer considerable benefits and lead to notable improvements in this area. Work 

site (i.e., 3,26) holds the third position in the table. While the work site was not 

among the most frequently observed factors affecting productivity, its impact level 

ranked fourth when it was asked. Despite this, participants believed that DT 

technologies might have a high level of influence on this factor, placing it third in the 

rankings. This can suggest that they may consider DT effective in improving site 

planning. Although the communication places 4th for this question, participants may 

show uncertainty regarding the influence of DT on communication, as evidenced by 

a mean value of 3,11. Communication was already not considered by participants as 

a highly influential or frequently observed factor. Similarly, when asked in detail 

about survey experts’ perception of DT, communication related variables also ranked 

towards the bottom in both the advantages of DT (communication and collaboration) 

and the key application areas (comprehensive participation). The industry 

environment and climate factors are listed 6th and 7th, respectively, with mean 

values of 2,56 and 2,37. Respondents might consider that these two factors would not 

be significantly affected by DT, as shown by their lower mean ratings. Since these 

are external factors, lower mean scores were expected.  

Overall, when participants were asked about the factors affecting productivity and 

their frequency of occurrence during the construction phase, the top three factors 

they identified were the same: labor, management system and design-related issues. 

In contrast, when asked which factors would be most influenced by the use of DT 

technologies, two of these three factors (management system and design related 

issues) were again ranked in the top three. This may indicate that the use of DT 

technologies could be a highly effective solution for addressing the most common 

and impactful factors reducing productivity during the construction phase. 
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Upon reaching the questions related to the perception of DT, when examining the 

benefits of DT, participants listed remote monitoring (i.e., 4,32) as the most 

significant benefit, closely followed by time and cost management (i.e., 4,30), with 

almost identical values. Resource management (i.e., 4,18) comes in third, while real 

time digital representation (i.e., 4,17) ranks 4th, nearly equal to the third factor. 

Predictive decision making comes 5th (i.e., 4,10) with risk management (i.e., 4,09) 

just behind. Since the mean values of the first six benefits are all greater than the 

value of 4, it can be concluded that participants regard the benefits of DT as highly 

valuable. In the survey results, schedule optimization and predictive maintenance, 

which received high scores, are also described by Hu et al. (2022) as advanced 

contributions of DT technology for the construction industry. The two final benefits 

are waste reduction (i.e., 3,68) and safety management (i.e., 3,64). Their average 

values are not low, even though they place in the bottom two. The reason waste 

reduction is in the lower ranks could be that sustainability is not considered a high 

priority among the participants. Likewise, the positioning of safety management at 

the last place may be due to the lack of sufficient attention given to this factor during 

the construction phase. Opposed to questionnaire results, Moshood et al. (2024) 

highlight the vitality of DT in sustainability by claiming that DT will be essential to 

creating sustainable urban settings in the future. Similarly, Teizer et al. (2022) 

emphasize the importance of the integration of DT technology in construction safety 

in contrast to participants' opinions.  

In the analysis of the challenges in implementing DT, a score of 5 would typically 

indicate a high level of difficulty. Nonetheless, the participants' scores for these 

challenges were not particularly high. This might imply that respondents generally 

believe the implementation of DT does not involve considerable difficulties. The 

highest ranked challenge, skill and training, received a mean score of 3,54. Parallel to 

the survey results, Jiao et al. (2024) state that the role of each stakeholder cannot be 

considered in isolation, as DT implementation requires collaboration across various 

professions and disciplines. Consequently, ensuring that everyone is skilled in this 

area may emerge as one of the key challenges that may be encountered. The 

challenges of user interface, cybersecurity & privacy, and operational costs, 

positioned second, third and fourth respectively, all share the same mean value of 

3,20. An examination of the three main challenges identified by participants may 
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show widespread worries about data privacy and usability of the technology. 

Adaptability (i.e., 2,99) and interoperability (i.e., 2,89) are listed as the 5th and 6th 

challenges in the table. Given that the mean values are below 3, it can be concluded 

that the experts participating in the survey do not regard these two challenges as 

major concerns. The challenges holding the last three positions are data integration 

(i.e., 2,83), data management (i.e., 2,82) and high-fidelity models (i.e., 2,82). 

Participants perceive these ones as less likely to cause significant issues. 

Technological advancements in data processing and modeling may have contributed 

to participants' confidence in these areas. Nevertheless, while participants do not 

view the data management challenge as a major obstacle, Jiao et al. (2024) assert that 

the accessibility of new data sets, data security and data analysis during the DT 

implementation process make the data management system a primary barrier at the 

project level. When asked in the survey whether they had any general comments 

about DT technology, a few participants expressed concerns regarding its challenges. 

One respondent expressed concerns regarding the current applicability of DT, 

because it is still in an early stage of development and adoption in the country. 

Another pointed out that a significant obstacle is the companies' reluctance to share 

data in the industry. The third concern focused on the possibly high initial investment 

cost of DT, which would limit its use in small scale projects. The fact that the 

participants who provided general comments mostly focused on its challenges may 

indicate that, despite its increasing popularity, people may still have uncertainties and 

doubts about its integration and adoption.  

According to respondents, during the construction phase, the main priority among the 

key applications of DT is time and cost optimization (i.e., 4,17). This aligns with 

respondents’ earlier ranking of time and cost management as the second most 

significant benefit of DT. This may be highlighting their strong belief in its potential 

advantage. Integration with emerging technologies (i.e., 4,09) follows closely in 

second place, which might reflect the growing importance of technological 

advancements in the industry. Additionally, site monitoring (i.e., 4,07) is located 

third, emphasizing the significance of remote monitoring, which was previously 

identified by respondents as the most valuable benefit of DT. Yang et al. (2024) 

explain DT integrates with advanced technologies and their implementation in 

buildings enables real time monitoring. This relationship is also evident in the survey 
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findings where factors ranked second and third respectively, with similar values. 

Enhanced decision making processes (i.e., 4,03) ranks 4th, while material & 

equipment management (i.e., 4,00) comes in 5th. In response to the question about 

the benefits of DT, decision making processes also ranked in the middle according to 

the participants' answers. Nonetheless Yang et al. (2024) examines DT systems’ 

potential to revolutionize decision making in the construction industry. The last two 

factors, comprehensive participation (i.e., 3,84) and workforce oversight (i.e., 3,51), 

listed the lowest. Comprehensive participation is related to communication and it 

was also placed low in the factors affecting productivity. While the researchers 

(Hasan et al., 2018; Zhang et al., 2024; Yang et al., 2024) highlight its importance, 

survey respondents did not view it as a highly effective application of DT. This may 

stem from inadequate focus on task distribution among stakeholders and an 

underestimate of its significance for promoting a collaborative construction process. 

Jiao et al. (2024) mention that one of the biggest problems the sector faces is the 

failure to finish a project on schedule, which is mostly caused by the combined 

activities and tasks of the owner, contractor, and other stakeholders. That's why 

researchers suggest these two factors should not be considered too separately, as they 

can be interconnected. However, in the survey results optimization of time and cost 

ranks first among key application areas, while comprehensive participation is the 

second lowest. Furthermore, even though labor was previously identified as the most 

influential factor on productivity, it did not receive a high rating in terms of the areas 

of application that DT technology would bring. This might suggest that participants 

may not perceive DT as greatly impacting labor.  

With a mean score of 4,09, the effectiveness of DT in enhancing productivity during 

the construction stage was firmly confirmed by participants. This may indicate that 

they regard the DT system as a valuable technology for boosting productivity in the 

construction sector.  

Eight participants in the survey indicated that they had previous experience with DT 

technology. To assess their perspectives, the mean values of their Likert scale 

responses were analyzed across five categories: the influence of DT on factors 

affecting productivity if applied, the benefits of DT, challenges in implementing DT, 

key applications of DT during the construction phase, and the effectiveness of DT in 

improving productivity during the construction phase. Firstly the influence of DT on 
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factors affecting productivity was analyzed. The ranking of factors remained 

consistent with the overall dataset, except for a position swap between 

communication and worksite factors. Participants ranked communication third and 

worksite fourth, reversing their order in the overall results. The mean values for each 

factor were: design related issues (i.e., 4.50), management system (i.e., 4.02), 

communication (i.e., 3.56), worksite (i.e., 3.44), labor (i.e., 3.21), industry 

environment (i.e., 2.50), and climate (i.e., 2.50). When comparing the results with the 

general evaluation, the mean value for design related issues is significantly higher. 

Additionally, management system and communication factors also have higher mean 

values, indicating that participants with DT experience believe these factors would 

be more impacted by DT implementation. The remaining factors show only minor 

differences. When examining the analysis of the benefits of DT, real time digital 

representation was rated significantly higher, indicating a stronger emphasis on its 

importance according to DT users. They perceive it as the most valuable benefit of 

DT. Meanwhile, remote monitoring, time and cost management, resource 

management, and risk management were also rated higher, but with minor 

differences. In contrast, predictive decision making and waste reduction received 

notably lower ratings. DT users might not view these advantages as transformative 

and critical as others. The remaining factors showed minimal variation and remained 

almost the same. The mean values for each factor were as follows: real time digital 

representation (i.e., 4.50), remote monitoring (i.e., 4.50), time and cost management 

(i.e., 4.50), resource management (i.e., 4.25), risk management (i.e., 4.25), 

communication and collaboration (i.e., 4.00), collaboration with autonomous robots 

(i.e., 4.00), safety management (i.e., 3.75), predictive decision making (i.e., 3.75), 

and waste reduction (i.e., 2.88). Third, the challenges in implementing DT were 

examined. Interoperability, data integration, data management, and high fidelity 

model received dramatically higher ratings from DT users. They regard these 

challenges to be more complex compared to respondents who have not used DT 

before. Whereas, skill and training and user interface were also rated higher, but with 

only slight differences. Although these two received higher ratings, factors still do 

not rank among the top three challenges identified by DT users. Conversely, 

cybersecurity and privacy were rated notably lower. DT users do not consider it as a 

significant obstacle compared to non DT users. The remaining variables showed little 

shift and remained mostly unchanged. The mean values for each factor were as 
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follows: skill and training requirements (i.e., 3.88), high-fidelity modeling (i.e., 

3.63), data integration (i.e., 3.50), user interface (i.e., 3.50), integration with other 

technologies (i.e., 3.25), data management (i.e., 3.13), adaptability (i.e., 3.13), 

operational cost (i.e., 3.00), and cybersecurity and privacy (i.e., 2.75). In the analysis 

of DT's key application during the construction stage, comprehensive participation 

and workforce oversight received notably higher ratings from DT users. This might 

show that their familiarity with DT on project coordination, labor tracking and 

stakeholder management with DT contributes to their more positive assessment of 

these application areas. Meanwhile, optimization of time and cost, site monitoring, 

and material & equipment management were also rated higher, but with only slight 

differences. The other factors exhibited minimal variation. The average ratings for 

each factor were as follows: optimization of time and cost (i.e., 4.50), site monitoring 

(i.e., 4.38), material and equipment management (i.e., 4.25), comprehensive 

participation (i.e., 4.25), enhanced decision making process (i.e., 4.13), integration 

with emerging technologies (i.e., 4.13), and workforce oversight (i.e., 4.00). When 

examining the question regarding the effectiveness of DT in improving productivity 

during the construction phase, it was found that although the overall mean value was 

4.09, DT users rated it slightly higher, with a mean of 4.38. According to DT users 

and with a lower degree all participants, DT is perceived as highly effective.  

4.2.1 Reliability analysis 

A reliability analysis was performed using Cronbach's Alpha to evaluate the internal 

consistency of the responses provided in the survey. A high Cronbach's Alpha value, 

ranging from 0 to 1, indicates that the factors or questions being tested are highly 

consistent with each other. A Cronbach's Alpha of 0.9 or higher indicates excellent 

reliability, while a value between 0.8 and 0.9 reflects good consistency. An Alpha 

between 0.7 and 0.8 suggests acceptable reliability. Table 4.4 presents Cronbach's 

Alpha values for the questions included in the survey. The Cronbach's Alpha values 

for the first three questions exceed 0.9, signifying excellent reliability, while for the 

last three questions, the values surpass 0.8, demonstrating good consistency. 

Generally the number of statements in the scale also influences Cronbach’s alpha, as 

the number of items increases alpha tends to rise. A Cronbach’s alpha above 0.9 may 

be attributed to a large number of statements, making a high alpha expected. Overall, 

the survey exhibits high reliability based on these Cronbach's Alpha scores. 
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Table 4.4 : Cronbach’s alpha values. 

Variables 
Number of 

Statements 

Cronbach’s Alpha 

Value 

Factors' Impact on Productivity During 

Construction 

18 ,932 

Occurrence Frequency of Factors 18 ,913 

The Level of Influence on These Factors If DT 

Were Used 

18 ,909 

The Benefits of DT 10 ,870 

Challenges in Implementing DT 9 ,896 

Key Applications of DT During the 

Construction Phase 

7 ,833 

 

4.2.2 Normal distribution analysis 

A normality test was conducted to assess whether the sample data followed a normal 

distribution, guiding the selection of further analyses such as correlation analysis, 

independent samples t-test and one-way ANOVA. Tabachnick and Fidell (2013) 

state that Skewness-Kurtosis values need to fall within the range of +1.5 and -1.5. 

Orcan (2020) mentions assessing normality solely based on Skewness-Kurtosis 

values is unreliable; therefore, they should not be used as the only criteria. The 

normal distribution is a symmetric probability distribution with a bell shaped curve 

that shows that data closer to the mean occur more often than data far away (Maity 

and Saha 2022). Yap and Sim, (2011) claim graphical techniques can be helpful in 

determining if sample data is normal, but they cannot offer recognized, final proof 

that the normal assumption is true. Therefore they recommend the Kolmogorov-

Smirnov test which evaluates normality, where a p-value above 0.05 indicates that 

the null hypothesis is not rejected, suggesting the data follows a normal distribution. 

Moreover the coefficient of variation serves as a valuable metric for assessing scale 

reliability by evaluating the degree to which measurements are distributed around a 

central value (Seeletse and Miyambu, 2017; Thangjai et al., 2021). Koch and Link 

(1971) specifically suggest that a coefficient of variation lower than 0.50 reinforces 

the assumption of normality whereas Hayya et al. (1975) claim 0.39. Overall, several 

techniques are employed in data analysis to determine whether a data collection is 

normally distributed, including Skewness-Kurtosis values, bell curve shape of the 

histogram graph, Kolmogorov-Smirnov test result and coefficient of variation. In this 
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study, datasets that satisfied at least half of the mentioned techniques were assumed 

to exhibit a normal distribution. 

As a first step, the skewness and kurtosis values of the variables were assessed to 

determine whether they lay between +1.5 and -1.5. Since the skewness and kurtosis 

values for all variables fall within the range of +1.5 to -1.5, it can be concluded that 

the data have a normal distribution according to the values. In the second step, the 

histogram graphs were examined. Figure 4.1 illustrates the histogram charts of the 

variables.  

 

Figure 4.1 : Histogram graphs of the variables. 

Based on the histograms, graphs B (occurrence frequency of factors), C (the level of 

influence on these factors if DT were used), E (challenges in implementing DT) and 

G (the effectiveness of DT in improving productivity during construction phase) 

demonstrate a bell shaped curve representing a normal distribution, whereas graphs 

A (factors' impact on productivity during construction) , D (the benefits of DT) and F 

(key applications of DT during the construction phase) do not indicate normality 

when evaluated only through histograms. Since there are 76 participants in the 

survey, the Kolmogorov-Smirnov normality test which is recommended for sample 

sizes exceeding 50, was conducted as a third step. As a result, the p-values of A 
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(factors' impact on productivity during construction), B (occurrence frequency of 

factors), C (the level of influence on these factors if DT were used), E (challenges in 

implementing DT) variables were found to be greater than 0.05, indicating that they 

meet the normality assumption. However, variables D (the benefits of DT), F (key 

applications of DT during the construction phase) and G (the effectiveness of DT in 

improving productivity during construction phase) did not satisfy this criterion, as 

their p-values were below 0.05. Lastly, the coefficient of variation was computed for 

each factor in the survey data. Since the coefficients for all variables were found to 

be less than 0.50, it may be concluded that the survey data satisfied the normality 

assumption. Considering all these results, while some variables (B, C, E) were found 

to meet all the conditions, others meet three of the conditions (A, G), and some 

satisfied half of the criteria (D, F). Therefore, the overall data was assumed to follow 

a normal distribution. Table 4.5 presents a summary of the normality analysis 

conducted in this study. Thus, the analyses of correlation, independent samples t-test, 

and ANOVA were conducted using methods suitable for normally distributed data. 

Table 4.5 : Normality test of the survey data. 

No Variables Descriptive         Results 

A. Factors' Impact on Productivity 

During Construction 
Skewness&Kurtosis -,613 ,215 

 Histogram graphic Not bell curve 
  

 

Kolmogorov-Smirnov ,099 
  

 

Coefficient of variation 0,168 
  

 
 

  B. Occurrence Frequency of 

Factors 
Skewness&Kurtosis ,101 -,153 

 Histogram graphic Bell curve 
  

 

Kolmogorov-Smirnov ,079 
  

 

Coefficient of variation 0,215 
  

 
 

  C. The Level of Influence on 

These Factors If DT Were Used 
Skewness&Kurtosis ,172 -,299 

 

Histogram graphic Bell curve 
 

 

Kolmogorov-Smirnov ,200 
 

  

Coefficient of variation 0,218 
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Table 4.5 (continued) : Normality test of the survey data. 

No Variables Descriptive          Results 

D. The Benefits of DT Skewness&Kurtosis -,562 -,335 

  

Histogram graphic Not bell curve 
 

  

Kolmogorov-Smirnov ,018 
 

  

Coefficient of variation 0,157 
 

  
 

  
E. Challenges in Implementing 

DT 
Skewness&Kurtosis -,121 -,424 

 

Histogram graphic Bell curve 
 

  

Kolmogorov-Smirnov ,167 
 

  

Coefficient of variation 0,296 
 

  
 

  F. Key Applications of DT 

During the Construction 

Phase 

Skewness&Kurtosis -,721 ,082 

 

Histogram graphic Not bell curve 
 

 

Kolmogorov-Smirnov ,001 
 

  

Coefficient of variation 0,175 
 

  
 

  G. The Effectiveness of DT in 

Improving Productivity 

During Construction Phase 

Skewness&Kurtosis -,072 -,480 

 

Histogram graphic Bell curve 
 

 

Kolmogorov-Smirnov ,001 
 

 

Coefficient of variation 0,155 
 

 

4.2.3 Correlation analysis 

In order to assess the relationships between the variables, a Pearson correlation 

analysis was executed. The correlations were examined under six different categories 

based on the framework of the study. The Pearson correlation varies between -1 and 

+1, where a value of 0 signifies the absence of any relationship between the 

variables. Positive coefficients indicate a direct linear relationship, meaning that as 

one variable increases, the other also increases. In contrast, negative coefficients 

reflect an inverse linear relationship, where an increase in one variable corresponds 

to a decrease in the other. In this study, correlation values higher than 0.60 are 

accepted as reflecting a strong association between the variables; thus, factors with a 

correlation value above 0,60 were highlighted in bold in related tables for detailed 

discussion. Table 4.6 presents the Pearson correlation results for the categories of 
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factors affecting productivity during the construction phase. As shown in the table, 

all variables exhibit significant correlations at the 0.01 level. Nevertheless, three high 

level strong positive correlations with coefficients exceeding 0.60 are notable, all of 

which are significant at the 0.01 level. The first very strong positive correlation is 

found between the management system and labor factors, with a coefficient of 0.639, 

which is significant at the 0.01 level. This may indicate that participants who 

considered the management system to have a significant impact on productivity also 

perceived labor related factors as important. In their study, Alzubi et al. (2023) found 

that the workforce factor ranked as the most influential on construction productivity, 

followed by management. They explain that this relationship can be attributed to the 

significant influence of management decisions on workers' performance. Parallel to 

this information survey results show similar relations. Similarly, the second highly 

significant positive correlation is found between the design related issues and work 

site factors, with a coefficient of 0.605, which is also significant at the 0.01 level. 

This may be due to the fact that both factors are related to the quality of planning and 

efficient workflow. Design related factors, including incomplete or inaccurate 

drawings may directly affect worksite conditions by causing difficulties in 

constructability and implementation. Likewise Naoum (2016) highlights, inefficient 

designs may disrupt worksite operations by complicating construction and causing 

poor utilization of resources. Therefore, participants who found design related issues 

important were likely to value the work site factor as well. Lastly, the final high level 

strong positive correlation in this category is observed between the design related 

issues and management system factors, with a coefficient of 0.616, again significant 

at the 0.01 level. Design and management processes can be seen closely 

interconnected. When management quality improves, design outputs usually improve 

as well, supporting higher standards and greater productivity rate across the project. 

Moreover, in well managed projects, design results are generally reliable, accurate 

and constructible for construction. For this reason we may conclude that participants 

who rated design related issues as highly influential on productivity also perceived 

the management system as important. Consistent with the survey findings, Naoum 

(2016) points out that delays caused by design errors and variations are among the 

leading factors affecting productivity, underlining the need for a strong management 

system. Table 4.7 presents the correlation analysis of the occurrence frequency of 

factors.
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Table 4.6 : Correlations between the factors affecting productivity during the construction phase. 

Category Variables Lbr Wrk_st Mngmt_Sys Indsrt_Env Dsgn_R_I Clmt Commctn 

Factors' Impact on Productivity 

During Construction 
Labor 1 

      
Work Site  ,421** 1 

     
Management System  ,639** ,559** 1 

    
Industry Environment ,541** ,351** ,496** 1 

   
Design Related Issues ,508** ,605** ,616** ,572** 1 

  

 

Climate ,458** ,541** ,506** ,421** ,587** 1 
 

 

Communication ,370** ,454** ,491** ,405** ,536** ,547** 1 

 

** Correlation is significant at the 0.01 level. 

    

Table 4.7 : Correlations between occurrence frequency of factors. 

Category Variables Lbr Wrk_st Mngmt_Sys Indsrt_Env Dsgn_R_I Clmt Commctn 

Occurrence Frequency of Factors Labor 1 
      

Work Site  ,188 1 
     

Management System  ,591** ,543** 1 
    

 

Industry Environment ,369** ,439** ,445** 1 
   

 

Design Related Issues ,400** ,340** ,521** ,457** 1 
  

 

Climate ,318** ,571** ,415** ,625** ,331** 1 
 

 

Communication ,414** ,479** ,544** ,456** ,545** ,462** 1 

 

** Correlation is significant at the 0.01 level. 
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All correlations are significant at the 0.01 level, except for the worksite and labor 

correlation, which is not significant with a value of 0.188. Additionally, there is only 

one highly significant positive correlation exceeding 0.60, found between the climate 

and industry environment factors, with a coefficient of 0.625, which is significant at 

the 0.01 level. The results suggest that participants perceive a parallel increase or 

decrease between the occurrence frequencies of these two external factors, climate 

and industry environment. According to the respondents, difficulties in the industry 

environment, such as financial uncertainty and regulatory obstacles, frequently occur 

with adverse climate conditions. This correlation may be coincidental; however, it is 

also possible that adverse climate conditions affect the industry environment by 

creating financial uncertainties within the sector. Extreme weather can cause 

interruptions to the supply chain, project delays and cost increases, all of which can 

contribute to an unstable business environment. Table 4.8 illustrates the correlations 

of participants’ evaluations of how these factors would be influenced if DT 

technologies were applied. All correlations are significant at the 0.01 level, except 

for the correlation between climate and design related issues, which has a coefficient 

of 0.254 and significant at the 0.05 level. Two high level strong positive correlations 

greater than 0.60 are identified. The first is observed between the climate and work 

site factors, with a coefficient of 0.665, significant at the 0.01 level. Although DT 

technology cannot control climate conditions, the strong positive correlation between 

climate and work site factors may suggest that participants considered DT may assist 

in managing the impact of climate on work site operations rather than the climate 

itself. In this way, DT might be seen as an effective strategy for reducing the impact 

of weather conditions on work site performance, even though it cannot change the 

environment itself. The second high level significant positive correlation is between 

climate and industry environment factors, with a coefficient of 0.652, significant at 

the 0.01 level. Even while DT cannot influence the climate itself, this result might 

indicate that participants suppose DT technology may help the industry with 

handling the adverse impacts of climate issues such as supply chains and 

uncertainties. Even though climate was addressed directly in the survey, the strong 

correlations with both the work site and industry environment factors show that 

participants may have unintentionally taken climate effects into account when 

evaluating the question. Table 4.9 provides the correlation results for the benefits of 

DT.  
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Table 4.8 : Correlations between the levels of influence on these factors if DT were used. 

Category Variables Lbr Wrk_st Mngmt_Sys Indsrt_Env Dsgn_R_I Clmt Commctn 

The Level of Influence on These 

Factors If DT Were Used 
Labor 1 

      
Work Site  ,514** 1 

     
Management System  ,317** ,473** 1 

    
Industry Environment ,568** ,547** ,382** 1 

   

 

Design Related Issues ,361** ,487** ,597** ,254* 1 
  

 

Climate ,575** ,665** ,310** ,652** ,236* 1 
 

 

Communication ,530** ,485** ,373** ,595** ,397** ,585** 1 

 

* Correlation is significant at the 0.05 level. 
   

 

** Correlation is significant at the 0.01 level. 
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Table 4.9 : Correlations between the benefits of DT. 

Category Variables RealT_D_R Rmt_Mnt Rsrc_Mngmt Sfy_Mngmt Risk_Mng Collb_Auto_R Wst_Red Prdc_Dcs_M 
T&C_

Mngmt 
Com_Collb 

The 

Benefits 

of DT 

Real Time Digital 

Representation 1 

         
Remote Monitoring  ,545** 1 

        

 

Resource Management  ,411** ,484** 1 

       

 

Safety Management  ,300** ,481** ,485** 1 

      

 

Risk Management ,641** ,409** ,650** ,508** 1 

     

 

Collaboration with 

Autonomous Robots  
,522** ,449** ,409** ,319** ,449** 1 

    

 

Waste Reduction ,253* ,114 ,408** ,207 ,369** ,382** 1 

   

 

Predictive Decision 

Making ,481** ,307** ,495** ,278* ,472** ,365** ,543** 1 

  

 

Time And Cost 

Management ,511** ,430** ,666** ,293* ,592** ,397** ,373** ,493** 1 

 

 

Communication And 

Collaboration ,223 ,207 ,432** ,208 ,310** ,177 ,440** ,424** ,546** 1 

 

* Correlation is significant at the 0.05 level. 
 

    

 

** Correlation is significant at the 0.01 level. 
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In addition, it includes strong correlations that are significant at the 0.01 and 

correlation at 0.05 levels, as well as some correlations that are not significant. The 

first highly strong positive correlation, exceeding 0.60, is identified between risk 

management and real time digital representation factors (r =,641, p< ,001). Real time 

digital representation has a high potential to support risk management in projects; 

therefore, the positive correlation between them could indicate that participants likely 

perceive these factors as interrelated in this context. Likewise Salem and Dragomir 

(2023) highlight the relation between them as claiming DT improves risk 

management by enabling fast planning and forecasting through the integration of real 

time and historical data. Another high level significant positive correlation is 

identified between risk management and resource management (r = ,650, p < ,001). 

Similarly, participants may have viewed a comparable perception regarding the 

relationship between risk management and resource management. As resources are 

managed more effectively, associated risks may decrease accordingly. Therefore, the 

positive correlation between these factors could suggest that respondents believe the 

advantages of DT in resource management also contribute to its effectiveness in risk 

management. The last highly strong positive correlation appears between time and 

cost management and resource management (r = ,666, p < ,001). The strong 

correlation between them may be explained by the close connection between these 

areas in the construction phase. Participants who considered resource management 

valuable could be likely regarded time and cost management as equally important in 

maximizing project efficiency. In parallel to this, Salem and Dragomir (2023) assert, 

DT technology can guide resource management by monitoring financial items based 

on the project’s financial plan stored in BIM, allowing for accurate tracking of 

expenditures across specific budget categories, such as worker salaries and raw 

material costs. Table 4.10 shows the correlation analysis of the challenges associated 

with implementing DT. These challenges were found to be highly correlated with 

each other. The table reports 13 highly strong positive correlations exceeding 0.60, 

which are all significant at the 0.01 level. It also presents other correlations, some of 

them are significant at the 0.01 and 0.05 levels, while some of others are not 

significant.  
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Table 4.10 : Correlations between the challenges in implementing DT. 

Category Variables Adpt Dt_Intg Dt_Mngt Hgh_Fd_M Introprblt Opr_Cst Cybsc_Priv Skll_Trng Usr_Intfc 

Challenges in 

Implementing 

DT 

Adaptability  1 
        

Data Integration  ,685** 1 
       

Data Management ,648** ,869** 1 
      

 

High-Fidelity Model  ,561** ,730** ,737** 1 
     

 

Interoperability  ,601** ,626** ,655** ,662** 1 
    

 

Operation Cost  ,626** ,516** ,503** ,495** ,676** 1 
   

 

Cybersecurity and Privacy ,297** ,263* ,219 ,224 ,335** ,488** 1 
  

 

Skill and Training  ,414** ,407** ,357** ,368** ,431** ,514** ,621** 1 
 

 

User Interface ,262* ,350** ,375** ,280* ,354** ,311** ,546** ,674** 1 

 

* Correlation is significant at the 0.05 level. 
 

    

 

** Correlation is significant at the 0.01 level. 
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Among the highly strong correlations identified, the highest three were observed 

between data integration and data management (r = ,869, p < ,001), data integration 

and the high fidelity model (r = ,730, p < ,001), and data management and the high 

fidelity model (r = ,737, p < ,001). Since the effective handling of data integration 

processes plays a critical role in determining the overall quality of data management, 

the two variables directly influence each other. Thus participants are likely to have 

evaluated them in parallel, resulting in very strong positive correlations. As Hosamo 

et al. (2022) state, data must be properly managed after the integration to guarantee 

its security, availability, and reliability. Without effective data integration, data 

management becomes challenging. The other strong correlation between data 

integration and the high-fidelity model can be explained by the need to combine 

different types of data during the creation of the model, such as visual information 

(images, 3D scans) and numerical data (sensor outputs). This process may require 

effective data integration, which strengthens the relationship between these two 

variables. Jiang et al. (2021) highlight that, together with a high-fidelity model and 

data integration, DT greatly enhances the precision and quality of design. 

Furthermore, the last strong correlation reflects the importance of high quality data 

management in ensuring the accuracy of the high fidelity model, as the model's 

performance depends on the data it receives. As Opoku et al. (2024) indicate, 

building and sustaining high-fidelity models requires the availability and accuracy of 

the data, which is ensured by effective data management. Table 4.11 displays the 

correlation analysis of the key applications of DT during the construction phase. The 

table shows three strong positive correlations above 0.60, significant at the 0.01 

level, along with other strong correlations significant at the 0.01 and 0.05 levels, and 

some non significant correlations. The first very strong positive correlation is 

between material and equipment management, and site monitoring (r = ,620, p < 

,001). This may indicate that improved control on construction sites might be 

significantly assisted by the successful integration of DT in material and equipment 

management. Jiang et al. (2021) point out, effective material management ensures 

materials meet site needs by tracking supply status, directly impacting site efficiency. 

Therefore, respondents consider site monitoring and material management to 

strongly influence each other. Material and equipment management is also strongly 

and significantly correlated with optimization of time and cost (r = ,669, p < ,001).  
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Table 4.11 : Correlations between the key applications of DT during the construction phase. 

Category Variables Wrkfc_Ov Mtr_Eq_M St_Mnt Opt_T&C Enh_DcM_P Int_Emg_Tech Comp_Pp 

Key 

Applications of 

DT During the 

Construction 

Phase 

Workforce Oversight  ,1 
      

Material and Equipment Management  ,408** 1 
     

Site Monitoring ,500** ,620** 1 
    

Optimization of Time and Cost  ,245* ,669** ,605** 1 
   

 

Enhanced Decision Making Processes ,452** ,344** ,490** ,568** 1 
  

 

Integration with Emerging Technologies ,168 ,311** ,347** ,417** ,433** 1 
 

 

Comprehensive Participation ,244* ,297** ,380** ,377** ,329** ,579** 1 

 

* Correlation is significant at the 0.05 level. 
 

 

 

** Correlation is significant at the 0.01 level. 
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Effective management of materials and equipment employing DT can contribute to 

improved project efficiency by reducing time and cost overruns. Similarly Piras et al. 

(2024) mention, efficient material management through DT allows contractors to 

track materials in real time, ensuring optimal stock levels and reducing costs related 

to oversupply or shortages. This finding demonstrates the close relationship between 

material and equipment management, and the optimization of time and cost, 

suggesting that better control of resources plays a key role in meeting project 

timelines and budgets. The last significant strong correlation occurs between site 

monitoring and optimization of time and cost (r = ,605, p < ,001). Potential delays or 

budget overruns can be detected early with site monitoring, by the application of DT, 

enabling immediate action. As Sabet and Chong (2020) indicate, tracking project 

progress through visual comparisons of completed work and planned designs helps 

enhance schedule control and boost time efficiency. Likewise survey experts view 

these two application areas strongly correlated. 

4.2.4 Independent samples t-test analysis  

In this study, an independent-samples t-test was conducted to determine whether 

there is a statistically significant difference between participants with knowledge of 

DT technology and those without. Participants’ answers were examined in seven 

categories, including factors affecting productivity, their frequency, the potential 

impact of DT on these factors, the benefits and challenges of DT, key DT 

applications during construction, and DT’s effectiveness in enhancing productivity. 

The analysis was conducted with a sample of 28 participants informed about DT and 

48 participants not informed.  

At a 95% confidence interval, no significant differences were found between the two 

groups regarding factors affecting productivity and their frequency of occurrence, as 

all p-values were above 0.05. Table 4.12 summarizes the group statistics for the 

factors affecting productivity, and Table 4.13 shows the results of the independent 

samples t-test for these factors.  
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Table 4.12 : Group statistics of the factors affecting productivity in the construction 

phase. 

Variables Sample Group N Mean Std. Deviation 

Labor Informed about the DT 28 3,94   ,780 

 Not informed 48 4,26   ,715 

Work Site Informed about the DT 28 3,66   ,913 

 Not informed 48 3,51   ,860 

Management System Informed about the DT 28 4,08   ,645 

 Not informed 48 4,12   ,729 

Industry Environment Informed about the DT 28 3,48   ,957 

 Not informed 48 3,57   ,945 

Design Related Issues Informed about the DT 28 3,55   ,936 

 Not informed 48 3,81 1,008 

Climate Informed about the DT 28 3,10   ,916 

 Not informed 48 3,33 1,117 

Communication Informed about the DT 28 3,39   ,994 

 

Not informed 48 3,44   ,918 

Table 4.13 : Independent samples t-test results for the factors affecting productivity 

in the construction phase. 

Variables Levene's Test for Equality of 

Variances 

T-test for Equality of 

Means 

 

F Sig. t p 

Labor 0,228 0,634 -1,799 ,076 

Work Site 0,226 0,636 0,718 ,475 

Management System 0,082 0,775 -0,230 ,819 

Industry Environment 0,052 0,82 -0,402 ,689 

Design Related Issues 0,201 0,656 -1,108 ,272 

Climate 1,625 0,206 -0,907 ,367 

Communication 0,014 0,527 -0,245 ,807 

In addition, Table 4.14 presents the group statistics for the occurrence frequency of 

the same factors, while Table 4.15 displays the associated t-test results. This result 

was expected, as the questions in this section did not directly involve areas where 

knowledge of DT technology would have an impact. Although an indirect effect 

could have been possible, the t-test results did not reveal any significant difference. 
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Table 4.14 : Group statistics for the occurrence frequency of the factors. 

Variables Sample Group N Mean Std. Deviation 

Labor Informed about the DT 28 3,89   ,754 

 
Not informed 48 3,83   ,909 

Work Site Informed about the DT 28 2,98 1,067 

 
Not informed 48 2,95 1,022 

Management System Informed about the DT 28 3,58   ,692 

 
Not informed 48 3,61   ,983 

Industry Environment Informed about the DT 28 3,11   ,975 

 
Not informed 48 3,25   ,967 

Design Related Issues Informed about the DT 28 3,50 1,009 

 
Not informed 48 3,20 1,070 

Climate Informed about the DT 28 2,64 1,282 

 
Not informed 48 3,13 1,213 

Communication Informed about the DT 28 3,13 1,033 

 

Not informed 48 3,00 1,211 

Table 4.15 : Independent samples t-test results for the occurrence frequency of the 

factors. 

Variables Levene's Test for Equality of 

Variances 

T-test for Equality of 

Means 

 

F Sig. t p 

Labor 1,672 0,200 0,327 ,372 

Work Site 0,014 0,907 0,139 ,890 

Management System 4,991 0,029 -0,193 ,848 

Industry Environment 0,254 0,615 -0,619 ,538 

Design Related Issues 0,680 0,412 1,211 ,230 

Climate 0,060 0,807 -1,636 ,106 

Communication 1,016 0,317 0,457 ,649 

For the question examining the potential impact of DT on these factors, Table 4.16 

presents the group statistics while Table 4.17 displays the results of the independent 

samples t-test assessing this impact.  
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Table 4.16 : Group statistics for the potential impact of DT on factors. 

Variables Sample Group N Mean Std. Deviation 

Labor Informed about the DT 28 3,26   ,899 

 
Not informed 48 2,88 1,055 

Work Site Informed about the DT 28 3,29   ,956 

 
Not informed 48 3,25 1,000 

Management System Informed about the DT 28 3,92   ,634 

 
Not informed 48 3,68   ,854 

Industry Environment Informed about the DT 28 2,57   ,997 

 
Not informed 48 2,55 1,135 

Design Related Issues Informed about the DT 28 4,11   ,975 

 
Not informed 48 3,69   ,920 

Climate Informed about the DT 28 2,32 1,306 

 
Not informed 48 2,40 1,300 

Communication Informed about the DT 28 3,54 1,062 

 
Not informed 48 2,86 1,360 

A statistically notable difference was identified in one factor. While no significant 

differences were found for the other factors (p > 0.05), a critical difference emerged 

in the communication factor (p < 0.05). In this analysis, since the p-values for 

Levene’s test exceeded the conventional 0.05 threshold, the assumption of 

homogeneity of variances was considered satisfied.  

Table 4.17 : Independent samples t-test results for the potential impact of DT on 

these factors. 

Variables 

Levene's Test for Equality of 

Variances 

T-test for Equality of 

Means 

 

F Sig. t p 

Labor 0,430 0,514 1,625 ,108 

Work Site 0,099 0,754 0,153 ,879 

Management System 3,924 0,051 1,252 ,214 

Industry Environment 0,571 0,452 0,075 ,941 

Design Related Issues 0,025 0,874 1,876 ,065 

Climate 0,061 0,805 -0,240 ,811 

Communication 3,406 0,069 2,241   ,028* 

 
* T-test result is significant at the 0.05 level. 
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Consequently, participants with knowledge of DT rated the communication factor 

significantly higher (i.e., 3.54) than those without (i.e., 2.86). This difference may be 

attributed to the fact that individuals with knowledge of DT technology recognize its 

potential benefits for communication related issues, thus perceiving a positive 

outcome if it were implemented. Moving on to questions related to DT perception, 

Table 4.18 provides the group statistics on DT benefits, while Table 4.19 presents the 

independent samples t-test results for these benefits. 

Table 4.18 : Group statistics for the DT benefits. 

Variables Sample Group N Mean Std. Deviation 

Real Time Digital 

Representation  

Informed about the DT 28 4,36   ,826 

Not informed 48 4,06 1,060 

Remote Monitoring  Informed about the DT 28 4,50  ,577 

 
Not informed 48 4,21  ,988 

Resource Management  Informed about the DT 28 4,32  ,772 

 
Not informed 48 4,10  ,881 

Safety Management  Informed about the DT 28 3,75  ,927 

 
Not informed 48 3,58 1,007 

Risk Management Informed about the DT 28 4,11  ,831 

 
Not informed 48 4,08  ,820 

Collaboration With 

Autonomous Robots 

Informed about the DT 28 3,86  ,970 

Not informed 48 4,02 1,061 

Waste Reduction  Informed about the DT 28 3,39 1,065 

 

Not informed 48 3,85  ,967 

Predictive Decision Making  Informed about the DT 28 4,21  ,875 

 
Not informed 48 4,04 1,030 

Time And Cost Management  Informed about the DT 28 4,39  ,628 

 

Not informed 48 4,25  ,956 

Communication And 

Collaboration  

Informed about the DT 28 4,07  ,899 

Not informed 48 3,79  ,944 

All variables show no statistically significant difference between the two groups, as 

their p-values exceed 0.05. These findings suggest that perceptions of DT benefits do 

not significantly differ based on knowledge about DT. Some participants may know 

about DT concepts but some of them lack practical experience in real world 

construction. This lack of direct exposure could lead to similar perceptions between 
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informed and uninformed groups. However, since the mean values of DT benefits are 

high, the lack of direct exposure may not be considered a negative influence on 

perceptions. Instead, this might suggest that other factors, such as collective 

professional awareness and a positive attitude toward new technologies in the sector, 

may contribute to similar perceptions between informed and uninformed groups. 

Table 4.19 : Independent samples t-test results for the benefits of DT. 

Variables Levene's Test for 

Equality of Variances 

T-test for Equality 

of Means 

 

F Sig. t p 

Real Time Digital Representation  0,882 0,351 1,263 ,211 

Remote Monitoring 5,104 0,027 1,424 ,109 

Resource Management  0,467 0,497 1,084 ,282 

Safety Management  0,960 0,330 0,716 ,476 

Risk Management  0,356 0,553 0,121 ,904 

Collaboration With Autonomous Robots 0,503 0,480 -0,669 ,506 

Waste Reduction 0,265 0,608 -1,931 ,057 

Predictive Decision Making  1,475 0,228 0,743 ,460 

Time And Cost Management  6,184 0,015 0,705 ,435 

Communication And Collaboration  0,636 0,428 1,267 ,209 

To assess whether there is a statistically significant difference in the perception of 

challenges in implementing DT between participants who are informed about DT and 

those who are not, an independent sample t-test was conducted. The group statistics 

for the challenges associated with DT implementation are displayed in Table 4.20 

and the results are presented in Table 4.21. The findings indicate that for most 

challenges there is no statistically significant difference between the two groups (p > 

0.05). However, three variables, data integration (p = ,008), high-fidelity model (p = 

,038), and skill and training (p = ,007) show a statistically significant difference (p < 

0.05). The question evaluates responses using a Likert scale, a lower mean indicates 

greater difficulty in the related challenges. Because for accurate assessment, the 

study's mean values have been reverse-coded in the t-test analysis of challenges in 

implementing DT. For data integration, the informed group reported a lower mean 

(i.e., 2.68) compared to the not informed group (3.46). Similarly, for high-fidelity 

models, the informed group had a lower mean (i.e., 2.79) than the not informed 

group (i.e., 3.42).  
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Table 4.20 : Group statistics for the challenges in implementing DT. 

Variables Sample Group N Mean Std. Deviation 

Adaptability  Informed about the DT 28 2,71 1,117 

 
Not informed 48 3,19 1,044 

Data Integration  Informed about the DT 28 2,68 1,123 

 
Not informed 48 3,46 1,236 

Data Management Informed about the DT 28 2,82 1,156 

 
Not informed 48 3,40 1,283 

High-Fidelity Model  Informed about the DT 28 2,79 1,315 

 
Not informed 48 3,42 1,217 

Interoperability  Informed about the DT 28 2,82 1,020 

 
Not informed 48 3,27 1,180 

Operation Cost  Informed about the DT 28 2,50 1,374 

 
Not informed 48 2,98 1,194 

Cybersecurity and Privacy  Informed about the DT 28 2,57 1,200 

 
Not informed 48 2,94 1,262 

Skill and Training  Informed about the DT 28 2,00 1,122 

 
Not informed 48 2,73 1,267 

User Interface  Informed about the DT 28 2,54 1,071 

 

Not informed 48 2,96 1,220 

Table 4.21 : Independent samples t-test results for the challenges in implementing 

DT. 

Variables 

Levene's Test for Equality of 

Variances 

T-test for Equality of 

Means 

 

F Sig. t p 

Adaptability  0,814 0,37 -1,856 ,067 

Data Integration 0,323 0,571 -2,739   ,008* 

Data Management  0,279 0,599 -1,95 ,055 

High-Fidelity Model  0,992 0,322 -2,116  ,038* 

Interoperability  0,718 0,400 -1,681 ,097 

Operation Cost  1,326 0,253 -1,596 ,115 

Cybersecurity and Privacy 0,022 0,883 -1,242 ,218 

Skill and Training  2,099 0,152 -2,521  ,007* 

User Interface  0,437 0,511 -1,522 ,132 

 

* T-test result is significant at the 0.05 level. 
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Lastly, for skill and training, the informed group reported a mean of 2.00, while the 

not informed group scored 2.73, indicating that individuals who are knowledgeable 

about DT perceive these aspects as greater challenges compared to those who are 

not. According to outputs we may state, informed participants can be more aware of 

the complexities involved in integrating DT within existing systems, achieving high 

resolution digital models and the need for specialized training about it. Their 

familiarity with DT may provide them with a deeper understanding of the technical, 

operational and skill related challenges involved in its implementation. Similarly, 

their awareness highlights a more critical perspective on the technological constraints 

of DT adoption. An independent sample t-test was performed to determine whether 

perceptions of key DT application areas in the construction phase differ between 

informed and uninformed participants. These are statistically overviewed in Table 

4.22, while the results are detailed in Table 4.23. In this analysis, as the p-values 

from Levene’s test were greater than the standard 0.05 threshold, the assumption of 

equal variances was considered satisfied.  

Table 4.22 : Group statistics for the key applicaiton area of DT in the construction 

phase. 

Variables Sample Group N Mean 
Std. 

Deviation 

Workforce Oversight  Informed about the DT 28 3,79 ,994 

 
Not informed 48 3,35 1,021 

Material and Equipment 

Management 

Informed about the DT 28 4,14 ,755 

Not informed 48 3,92 1,007 

Site Monitoring Informed about the DT 28 4,32 ,772 

 
Not informed 48 3,92 1,127 

Optimization of Time and Cost Informed about the DT 28 4,39  ,685 

 
Not informed 48 4,04 1,091 

Enhanced Decision Making 

Processes  

Informed about the DT 

28 4,36  ,826 

 
Not informed 48 3,83 1,059 

Integration with Emerging 

Technologies  

Informed about the DT 28 4,00 ,942 

 
Not informed 48 4,15 ,850 

Comprehensive Participation  Informed about the DT 28 3,89 1,031 

 

Not informed 48 3,81 1,024 
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Table 4.23 : Independent samples t-test results for the key applicaiton area of DT in 

the construction phase. 

Variables 

Levene's Test for Equality of 

Variances 

T-test for Equality of 

Means 

 

F Sig. t p 

Workforce Oversight  0,076 0,783 1,794 ,077 

Material and Equipment 

Management  2,631 0,109 1,03 ,306 

Site Monitoring 1,759 0,189 1,682 ,097 

Optimization of Time and Cost  4,538 0,036 1,534 ,089 

Enhanced Decision Making 

Processes 

1,34 0,251 2,247  ,028* 

Integration with Emerging 

Technologies  0,138 0,711 -0,693  ,491 

Comprehensive Participation  0,375 0,542 0,329 ,743 

 

* T-test result is significant at the 0.05 level. 

The findings indicate that except for one variable, the DT application areas show no 

statistically significant difference between the two groups (p > 0.05). At a 95% 

confidence interval, no significant differences were found between the two groups 

regarding most DT application areas. Nevertheless, enhanced decision making 

processes show a statistically significant difference (p = ,028). The mean scores 

indicate that participants who are informed about DT perceive this application area 

as more effective (i.e., 4.36) compared to those who are not informed (i.e.,  3.83). 

This might mean that those who are already familiar with DT may be more aware of 

its capacity to enhance decision making effectiveness through the features of DT. 

Also they can be more familiar with how DT systems work, especially their capacity 

to combine huge amounts of project data into actionable insights. Lastly, an 

independent-samples t-test was conducted to determine whether there is a 

statistically significant difference in the perception of DT's effectiveness in 

improving productivity during the construction phase between participants who are 

informed about DT and those who are not. The group statistics for this assessment 

are presented in Table 4.24, while the results of the t-test are displayed in Table 4.25. 

Since the p-value of the independent samples t-test (p = 0,099) is greater than 0.05, 

there is no statistically significant difference between the two groups in their 

perception of DT's effectiveness in enhancing productivity during the construction 

phase.  
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Table 4.24 : Statistic for the assessment of DT's effectiveness. 

Variables Sample Group N Mean 
Std. 

Deviation 

The effectiveness of DT in 

improving productivity 

during construction phase 

Informed about the DT 28 4,25 ,585 

Not informed 
48 4,00 ,652 

Although the mean score for participants informed about DT (i.e., 4.25) is slightly 

higher than that of those who are not informed (i.e., 4.00), the difference is not 

statistically significant. This may indicate that regardless of their past familiarity 

with the technology, both groups generally acknowledge DT's potential to increase 

construction productivity. 

Table 4.25 : Independent samples t-test results for the assessment of DT's 

effectiveness. 

Variables 

Levene's Test for 

Equality of Variances 

t-test for Equality 

of Means 

 

F Sig. t p 

The effectiveness of DT in improving 

productivity during construction phase 
0,389 0,535 1,672 ,099 

 

4.2.5 One-way ANOVA 

In order to determine whether different levels of expertise in the sector lead to 

different opinions on DT system’ perception , a One-Way ANOVA test was 

conducted. This statistical method allows for the comparison of means among three 

or more independent groups to assess whether there is a statistically significant 

difference. By applying this test, the study aims to identify potential variations in DT 

perception based on expertise levels, providing deeper insights into how different 

levels of professional experience influence views on the benefits, challenges and key 

application areas of DT technology in the construction industry. The initial grouping 

for the ANOVA tests was determined based on the respondents' level of expertise in 

the sector. Participants were classified into three distinct categories: those with less 

than two years of experience, those with two to five years of experience, and those 

with more than five years of experience. Accordingly, the 76 participants were 

distributed as follows: 14 with less than 2 years of experience, 44 with 2 to 5 years 

experience, and 18 with more than 5 years experience. 
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The results for the benefits of DT are presented in Table 4.26.  

Table 4.26 : One-way ANOVA results for the benefits of DT. 

Variables Group N Mean 
Std. 

Deviation 

ANOVA-p 

value 

Real Time Digital 

Representation 
< 2 years 14 4,14 1,167 ,939 

2-5 years 44 4,20  ,851 

 > 5 years 18 4,11 1,183 

Remote Monitoring < 2 years 14 4,00 1,038 ,325 

 2-5 years 44 4,39  ,813 

 > 5 years 18 4,39  ,850 

Resource Management < 2 years 14 4,14  ,864 ,968 

 2-5 years 44 4,20  ,878 

 > 5 years 18 4,17  ,786 

Safety Management < 2 years 14 3,43  ,938 ,189 

 2-5 years 44 3,57  ,998 

 > 5 years 18 4,00  ,907 

Risk Management < 2 years 14 4,07  ,616 ,991 

 2-5 years 44 4,09  ,910 

 > 5 years 18 4,11  ,758 

Collaboration with 

Autonomous Robots 
< 2 years 14 3,93 1,328 ,986 

2-5 years 44 3,98  ,902 

 > 5 years 18 3,94 1,110 

Waste Reduction < 2 years 14 4,07  ,829 ,244 

 2-5 years 44 3,55 1,109 

 > 5 years 18 3,72  ,895 

Predictive Decision Making < 2 years 14 4,00 1,038 ,903 

 2-5 years 44 4,14  ,930 

 > 5 years 18 4,11 1,079 

Time And Cost Management < 2 years 14 4,43  ,646 ,794 

 2-5 years 44 4,30 ,930 

 > 5 years 18 4,22 ,808 

Communication And 

Collaboration 
< 2 years 14 4,14 ,770 ,522 

2-5 years 44 3,86 ,955 

 

> 5 years 18 3,78 1,003 

In the evaluation of the questionnaire, which assessed a total of ten benefits, no 

statistically significant differences were found between the groups, as all the p-values 
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were greater than 0.05. We can conclude that opinions of the benefits of DT 

technology do not differ statistically significantly depending on their level of 

experience. The similarity in view may be explained by the fact that people of all 

experience levels are generally aware of DT's benefits. Less experienced 

professionals may recognize the potential benefits of DT due to educational 

resources and conferences, while more experienced professionals, through their 

practical knowledge, may be more aware of the need for the benefits that DT 

technology provides. Overall, the findings show that opinions toward the positive 

aspects of DT are not significantly influenced by their level of expertise. For a 

further analysis a larger sample size might provide clearer insights into whether 

experience influences perceptions of these challenges. Table 4.27 displays One-way 

ANOVA results for the challenges in implementing DT. In the ANOVA results, the 

mean values are based on a Likert scale, higher mean scores (closer to 5) indicate 

less difficulty, while lower scores (closer to 1) indicate greater difficulty.  

Table 4.27 : One-way ANOVA results for the challenges in implementing DT. 

Variables Group N Mean Std. Deviation ANOVA-p value 

Adaptability  < 2 years 14 2,86 1,167 ,052* 

 
2-5 years 44 2,84 1,033 

 
> 5 years 18 3,56 1,042 

Data Integration  < 2 years 14 3,07 1,492 ,330 

 
2-5 years 44 3,05 1,160 

 
> 5 years 18 3,56 1,247 

Data Management  < 2 years 14 3,14 1,460 ,354 

 
2-5 years 44 3,05 1,257 

 
> 5 years 18 3,56 1,097 

High-Fidelity Model  < 2 years 14 2,93 1,592 ,608 

 
2-5 years 44 3,18 1,187 

 
> 5 years 18 3,39 1,290 

Interoperability < 2 years 14 2,93 1,269 ,240 

 
2-5 years 44 3,00 1,121 

 

> 5 years 18 3,50 1,043 

                                 * ANOVA result is significant at the 0.05 level. 
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Table 4.27 (continued): One-way ANOVA results for the challenges in 

implementing DT. 

Variables Group N Mean Std. Deviation ANOVA-p value 

Operation Cost < 2 years 14 2,64 1,216 ,281 

 
2-5 years 44 2,68 1,360 

 
> 5 years 18 3,22 1,060 

Cybersecurity and 

Privacy 

< 2 years 14 2,36 1,008 ,212 

2-5 years 44 3,00 1,201 

 
> 5 years 18 2,67 1,455 

Skill and Training < 2 years 14 2,29   ,994 ,463 

 
2-5 years 44 2,39 1,298 

 
> 5 years 18 2,78 1,353 

User Interface < 2 years 14 2,57 1,284 ,716 

 

2-5 years 44 2,84 1,140 

 

> 5 years 18 2,89 1,231 

 

* ANOVA result is significant at the 0.05 level. 

In the analysis, nine challenges were examined, and no significant differences in 

perceptions were observed among the groups except for one variable, adaptability, as 

their p-values were greater than 0.05. The variable that showed a borderline 

significance was adaptability performance, with a p-value of 0.052. Since this value 

is very close to the 0.05 significance threshold, further analysis may provide more 

insight into potential differences. As the next step, post-hoc analyses were conducted 

to determine which groups were responsible for this difference. To determine the 

appropriate post-hoc test, Levene's test for homogeneity of variances performed on 

the adaptability performance variable and the results are presented in Table 4.28.  

Table 4.28 : Levene Statistic results for homogeneity of variances for adaptability. 

Variable Levene Statistic Sig. 

Adaptability 0,029 ,972 

The p-value of Levene's test was ,972. Since this value is greater than 0.05, it 

indicates that the data is homogeneously distributed. Therefore, Gabriel’s Test and 

Tukey’s Test were applied to analyze differences in adaptability performance. The 

test results shown in Table 4.29. In the post-hoc analysis, a statistically significant 

difference was identified between the perceptions of individuals with 2–5 years of 
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experience and those with more than 5 years of experience. This difference was 

confirmed with a significance value of 0.048 in Tukey’s test and 0.047 in Gabriel’s 

test. The findings of both tests were equal as given in 4.24 with only minor numerical 

differences. The mean difference of 0.715 between the more than 5 years of 

experience and 2–5 years of experience groups indicates that participants with more 

than 5 years of experience rated the adaptability variable higher than the other group. 

Since the mean difference is positive (i.e., 0.715) and statistically significant (p = 

0.048 in Tukey and p = 0.047 in Gabriel, both < 0.05) it suggests that respondents 

with more than 5 years of experience perceive adaptability challenge more positively 

than those with 2–5 years of experience. This might signify that more experienced 

professionals might have a better understanding of adaptability challenges in DT 

applications and may perceive this issue as easily manageable. In contrast, those with 

moderate experience, 2–5 years, may have greater concerns regarding adaptability, 

which may stem from their tendency to perceive it as a fundamental issue rather than 

a manageable challenge. Additionally, for most variables the sample size for each 

experience group may not be large enough to detect statistically significant 

differences.  

Table 4.29 : Tukey’s and Gabriel’s post-hoc tests results for adaptability. 

Post-Hoc Test Group(I) Group (J)  Mean Difference (I-J) Std. Error Sig. 

Tukey HSD < 2 years 2-5 years ,016 0,325 ,999 

  
> 5 years -,698 0,378 ,161 

 
2-5 years < 2 years -,016 0,325 ,999 

  
> 5 years    -,715** 0,297    ,048** 

 
> 5 years < 2 years ,698 0,378 ,161 

  
2-5 years    ,715** 0,297    ,048** 

   
   

Gabriel < 2 years 2-5 years ,016 0,325 1,000 

 
 

> 5 years -,698 0,378 ,189 

 

2-5 years < 2 years -,016 0,325 1,000 

 
 

> 5 years    -,715** 0,297     ,047** 

 

> 5 years < 2 years ,698 0,378 ,189 

 
 

2-5 years    ,715** 0,297     ,047** 

 

** The mean difference is highly significant at the 0.05 level, p < 0.05.  
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Table 4.30 presents the One-Way ANOVA results for the key applications of DT 

during the construction phase. In the analysis, seven major application areas were 

examined, and no significant differences in perceptions were found among the 

groups for six of these variables, as their p-values were greater than 0.05.  

Table 4.30 : One-way ANOVA results for the key applications of DT during the 

construction phase. 

Variables Group N Mean 
Std. 

Deviation 

ANOVA-p 

value 

Workforce Oversight < 2 years 14 3,14 1,099 ,296 

 

2-5 years 44 3,64   ,892 

 

> 5 years 18 3,50 1,249 

Material&Equipment 

Management 
< 2 years 14 4,29   ,726 ,308 

2-5 years 44 4,00   ,889 

 

> 5 years 18 3,78 1,114 

Site Monitoring < 2 years 14 3,93 1,207 ,770 

 

2-5 years 44 4,14   ,878 

 

> 5 years 18 4,00 1,237 

Optimization of Time and Cost < 2 years 14 4,29   ,914 ,674 

 

2-5 years 44 4,20   ,904 

 

> 5 years 18 4,00 1,188 

Enhanced Decision Making 

Processes 
< 2 years 14 4,14   ,663 ,768 

2-5 years 44 4,05 1,011 

 

> 5 years 18 3,89 1,231 

Integration with Emerging 

Technologies 
< 2 years 14 4,29   ,726   ,049* 

2-5 years 44 3,89   ,920 

 

> 5 years 18 4,44   ,784 

Comprehensive Participation < 2 years 14 3,79 1,122 ,444 

 

2-5 years 44 3,75   ,991 

 

> 5 years 18 4,11 1,023 

 

* ANOVA result is significant at the 0.05 level. 

However, a statistically significant difference was observed in integration with 

emerging technologies, with a p-value of 0.049. To further investigate this 

difference, post-hoc analyses were conducted to identify which groups contributed to 

the variation. To select the appropriate post-hoc test, Levene’s test for homogeneity 

of variances was applied to the integration with emerging technologies variable, and 
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the results are displayed in Table 4.31. The p-value of Levene’s test was 0.194, 

indicating that the data was homogeneously distributed (p > 0.05). Therefore Tukey's 

and Gabriel's tests were employed to examine how perceptions varied among groups. 

Table 4.31 : Levene Statistic results for homogeneity of variances for integration 

with emerging technologies. 

Variable Levene Statistic Sig. 

Integration with Emerging Technologies 1,675 ,194 

As shown in Table 4.32, with a few minor number variations, the results of the two 

tests were the same. The post-hoc results revealed a borderline significant difference 

between participants with 2–5 years of experience and those with more than 5 years 

of experience, with p-values of 0.059 in Tukey’s test and 0.058 in Gabriel’s test. 

Although these values are slightly above the 0.05 significance threshold, these 

numbers indicate a possible trend where respondents with more than 5 years of 

experience rated the application of integration with emerging technologies more 

positively than those with 2–5 years of experience as indicated by the mean 

difference of 0.558.  

Table 4.32 : Tukey’s and Gabriel’s post-hoc tests results for integration with 

emerging technologies. 

Post-Hoc Test Group(I) Group (J)  Mean Difference (I-J) Std. Error Sig. 

Tukey HSD < 2 years 2-5 years      ,399 0,263 ,289 

  
> 5 years     -,159 0,306 ,862 

 
2-5 years < 2 years     -,399 0,263 ,289 

  
> 5 years      -,558* 0,240 ,059* 

 
> 5 years < 2 years     ,159 0,306 ,862 

  
2-5 years      ,558* 0,240  ,059* 

   
   

Gabriel < 2 years 2-5 years     ,399 0,263 ,315 

  
> 5 years   -,159 0,306 ,937 

 

2-5 years < 2 years   -,399 0,263 ,315 

 
 

> 5 years    -,558* 0,240  ,058* 

 

> 5 years < 2 years   ,159 0,306 ,937 

 
 

2-5 years     ,558* 0,240  ,058* 

 
* The mean difference is significant at the 0.05 level, p < 0.05.  
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Nevertheless, since the results do not have a p-value below 0.05, the differences 

between responses cannot be considered statistically significant. There is a 

possibility that it may reveal a meaningful pattern. Nonetheless, it can be clearly 

stated that no statistically significant differences exist in other major application 

areas based on years of experience. This may be due to the fact that these key areas 

are widely recognized and reflect a shared understanding across all participants. 

Neither increased experience in the sector nor recent education and information 

about technologies appears to influence their perceived importance, as they are 

accepted within the industry. Overall, if the study had included a larger sample 

size,  this uncertainty in the results might not have occurred, as the ANOVA p-value, 

despite being close to 0.05 (p = 0.058), does not indicate a statistically significant 

difference between groups.  
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 CONCLUSION 5. 

Productivity is a major concern in the construction industry, as the sector consistently 

faces low performance levels. A common explanation for the efficiency gap is the 

construction sector’s resistance to adopting new technologies and its continued 

reliance on traditional methods (Menegon and Filho, 2022; Laszig et al., 2020). This 

reliance on conventional practices limits the industry’s ability to benefit from 

innovations that could optimize operations, improve coordination and reduce errors. 

While advancements usually enhance productivity, the industry's slow adoption of 

innovative technologies might be a contributing factor to its slower development. 

Nevertheless, technological developments continue to play a crucial role in 

improving productivity within the construction sector (Alzubi et al., 2023; Akanmu 

et al., 2021).  Recent studies emphasize the growing role of DT technology in 

transforming the construction industry through its integration with emerging 

technologies such as AI, IoT, DL/ML, immersive technologies, robotics and 

blockchain. Among these innovations, DT technology is a noteworthy concept to 

provide a centralized platform for real time insights, performance tracking, 

simulation, forecasting and analysis. DT notably brings together advanced 

technologies, employing them both as enabling technologies and as critical 

contributors to the creation of DT. Therefore, the DT concept is gaining popularity 

for its potential to enhance efficiency. Moreover it is also recognized for its ability to 

provide current time, dynamic representations of physical assets throughout the 

project lifecycle. Its capacity to combine data from multiple sources contributes 

significantly to its growing attraction. The integration of data from various sources 

such as BIM models and IoT sensors enables a comprehensive understanding of 

project status and performance. Researchers highlight its potential to improve 

lifecycle management, efficiency, sustainability and predictive maintenance. The 

need of DT technology becomes especially clear during the construction stage, when 

rework, uncertainty and inefficiencies are most common. Despite the potential, the 
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literature also notes barriers to DT system adoption such as economic, technical and 

organizational obstacles. Although still in the early phases of integration in the 

sector, the rising curiosity in DT underlines its capacity for enhancing industry 

performance. In general, the literature demonstrates that DT is regarded as a key 

innovation and plays an important role in the context of smart construction.  

The objectives of this thesis were as follows: (1) to explore the role of DT throughout 

the building life cycle in the construction sector; (2) to identify its benefits, 

challenges and key application areas in the construction stage; (3) to determine the 

factors affecting productivity during the construction phase; and (4) to compare these 

factors with the DT system's identified capabilities to assess its potential in 

overcoming productivity challenges. In this context, this study aims to investigate 

how DT technology can address productivity challenges in the construction phase. 

Aligned with the objectives, a comprehensive literature review was conducted to 

identify the key factors influencing productivity during the construction stage, and to 

analyze the benefits, challenges and major application areas of DT in this phase. In 

this study, the methodology involved a survey to examine the potential impact of DT 

on construction productivity factors and to assess how DT is perceived by industry 

professionals. The survey aimed to explore views of respondents on the advantages, 

obstacles in implementing the technology and the main application areas of DT. Also 

it is gathering opinions on how these features may influence productivity related 

factors during the construction phase. To support the research objective, the 

questionnaire was developed based on a literature review that identified productivity 

factors and outlined DT technology in terms of its opportunities, implementation 

challenges and applications. These elements were then incorporated into the survey 

design. Following its distribution to professionals across the industry, the survey 

received 76 responses. All responses were considered valid and included in the 

analysis. Then, the results were examined using the SPSS v.29 software to evaluate 

the collected data and obtain meaningful statistical insights. 

In accordance with the research objectives, the study first examined the role of DT 

throughout the building life cycle in the construction sector. To achieve this goal, the 

study conducted a literature review and a bibliometric analysis. The analysis reveals 

that the concept of DT has gained increasing importance in the building life cycle. 

According to an examination of articles, an essential increase in academic studies 
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related to DT has been observed in recent years. Moreover, although traditional 

themes remain significant, it can be revealed that emerging technologies such as AI 

and the IoT are rapidly gaining adoption in the sector. Also the research trends are 

increasingly shifting toward more specialized areas. For instance, it has been 

identified that over time, the focus of keywords has shifted from broader topics such 

as BIM, Industry 4.0 and construction to more specialized and technical subjects like 

predictive maintenance, big data and AI. This may indicate that technological 

advancements related to DT have the potential to rapidly introduce new concepts and 

applications in the construction sector. Keyword co-occurrence maps have 

demonstrated that DT technology in construction related studies is closely associated 

with disciplines such as computer science, AI, IoT and machine learning systems. 

Moreover, the analyzed keywords might play different roles across various stages of 

the construction life cycle. For instance, risk management and BIM are more 

commonly emphasized in the design phase, whereas IoT, smart contracts, 

optimization and simulation are mainly linked to the construction phase. 

Advancements such as cyber-physical systems and facility management are likely to 

play a significant role during the operation and maintenance stages, while concepts 

like circular economy and waste minimization are expected to be more relevant in 

the end-of-life stage of a building’s life cycle. In addition, enhancements in 

information technologies may directly influence the development of DT technology 

in the construction sector, as the literature frequently highlights a close connection 

between the improvement of DT in the building industry and digital infrastructure. 

Also in the literature researchers emphasize that DT technology can significantly 

enhance construction processes by enabling more effective management of 

resources, budgets and schedules. The adoption of construction DT systems (CDT) is 

regarded as a transformative development for the industry, offering advantages such 

as cost reduction, improved environmental responsibility and advanced lifecycle 

management (Boje et al., 2020). It also supports decision making, progress tracking 

and site coordination (Piras et al., 2024; Jiang et al., 2021). DT begins to take form 

during the construction phase and facilitates the monitoring of progress, management 

of site operations and tracking of safety, environmental and cost related parameters 

(Chen et al., 2024). Additionally, DT supports predictive maintenance, optimizes 

resource use and improves overall building performance. In summary, DT 

contributes to more efficient construction management through real time monitoring, 
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data driven planning and enhanced coordination (Teisserenc and Sepasgozar, 2021). 

Furthermore, the construction phase plays a vital role in the building life cycle, since 

it is the stage where design concepts are transformed into physical structures, and 

where time, cost, quality and safety performance directly influence project outcomes 

(Opoku et al., 2021; Yang et al., 2024). Therefore, the construction phase of the 

building life cycle was selected as the focus of the research.  

As the second objective, the study identifies the benefits, challenges and key 

application areas of DT in the construction stage. DT technology offers various 

advantages that can be effectively utilized in the construction sector (Ellul et al., 

2024; Elfarri et al., 2022; Hosamo et al., 2022). The literature highlights several of 

these benefits. For instance, its real time digital representation enables accurate and 

current visualization of construction progress and site conditions (Deria et al., 2022). 

Remote monitoring allows stakeholders to manage activities from off site locations, 

which improves oversight (Jiang et al., 2021). Resource management is enhanced 

through more efficient allocation and tracking of labor, materials and equipment (Hu 

et al., 2022). DT also strengthens safety management by identifying potential hazards 

early and simulating risk scenarios, thereby helping to prevent accidents (Wu et al., 

2022). Its predictive capabilities support risk management by allowing professionals 

to anticipate and address issues before they become more serious (Salem and 

Dragomir, 2023). Another notable advantage is its ability to collaborate with 

autonomous robots, increasing productivity by automating repetitive or hazardous 

tasks (Li et al., 2021). Additionally, DT contributes to waste reduction by optimizing 

material usage and minimizing errors (Debrah et al., 2022). Furthermore its use of 

data driven algorithms supports predictive decision making and improves forecasting 

accuracy (Turner et al., 2021). Time and cost management benefit from its ability to 

enhance scheduling and more effective resource utilization (Bakhshi et al., 2024). 

Finally, communication and collaboration are improved through a centralized 

platform that enables real time information sharing among project stakeholders 

(Zhang et al., 2024). Together, these features demonstrate the growing potential of 

DT concept to enhance efficiency in construction projects. While DT technology 

offers numerous advantages for the construction industry, the literature also 

highlights several challenges that may restrict its effective adoption. Despite its 

potential, certain areas present significant barriers to integration (Sun et al., 2022). 
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One of these challenges is the need for adaptability, data integration and data 

management, all of which require reliable systems capable of handling large volumes 

of complex information (Opoku et al., 2024; Lu et al., 2020a; Riaz et al., 2015). Also 

developing high-fidelity models is another challenge, since it is necessary for 

generating accurate simulations (Bilberg and Malik, 2019). In addition, 

interoperability between different digital tools and platforms is a critical issue (Lu et 

al., 2020b). Moreover, operational costs associated with DT implementation can be 

high, particularly for smaller firms (Moshood et al., 2024). Furthermore, concerns 

related to cybersecurity and data privacy present risks that must be carefully 

addressed (Ghosh et al., 2020). The need for specialized skills and training leads to 

another challenge, as many professionals may lack the technical expertise required to 

operate DT systems effectively (Bilberg and Malik, 2019). Usability challenges, such 

as the complexity of user interfaces, also affect how well stakeholders interact with 

the technology (Boje et al., 2020). Despite these challenges, the literature emphasizes 

a variety of applications for DT technology in both architecture and construction. 

When focusing specifically on its applications during the construction phase, key 

application areas are identified in the literature. These include workforce oversight, 

allowing better management and coordination of labor on site (Boje et al., 2023); 

material and equipment management, which supports efficient tracking and 

allocation of resources (Jiang et al., 2021); site monitoring, which ensures current 

time monitoring of progress and performance (Akanmu and Anumba, 2015). 

Additionally, DT contributes to the optimization of time and cost (Salih and El-

adaway, 2024), enhances the decision making process through insights gained from 

data (Yang et al., 2024) and facilitates integration with emerging technologies such 

as IoT and AI (Moshood et al., 2024). Another important aspect is comprehensive 

participation, where DT enables improved collaboration among various stakeholders 

throughout the construction process (Arowoiya et al., 2023). These applications 

underline the growing importance of DT in transforming traditional construction 

practices into more intelligent and efficient systems.  

Afterwards, to evaluate the findings from the literature in light of industry 

professionals' perspectives, descriptive statistics were applied to the survey results to 

illustrate data distribution and identify fundamental patterns. Survey results indicate 

that according to participants the most valued benefits of DT technology are remote 
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monitoring, time and cost management, and resource management. These are 

followed by real time digital representation, predictive decision making and risk 

management. Benefits such as safety management and waste reduction received 

relatively lower scores but are still recognized as meaningful contributions of DT in 

the construction phase. Even the lowest rated opportunities received relatively high 

mean scores. This may reflect appreciation of participants for their usefulness. 

Furthermore, according to participants the main challenges in implementing DT 

technology are skill and training, user interface, cybersecurity and privacy, and 

operation cost. These are followed by adaptability, interoperability, data integration, 

data management and lastly high-fidelity modeling. These findings can suggest that 

participants are more concerned with human, privacy and usability obstacles than 

with technical issues. As reported by industry experts, the major application areas of 

the DT system during the construction phase include the optimization of time and 

cost, integration with emerging technologies, site monitoring, enhanced decision 

making processes, material and equipment management, comprehensive participation 

and workforce oversight, respectively. Moreover, participants expressed a strong 

agreement on the effectiveness of DT in enhancing productivity during the 

construction phase, as reflected in the high mean score. After the descriptive 

statistics, the reliability of the survey scales was assessed using Cronbach’s Alpha, 

which revealed acceptable levels of internal consistency across all scales. In the next 

step, normality tests were applied to the data, and it was normally distributed. The 

correlation analysis revealed that a majority of the variables showed statistically 

significant relationships. When correlations above 0.60 were considered highly 

significant at the 0.01 level, in the benefits of the DT group, significant correlations 

were found between risk management and both real time digital representation and 

resource management. In addition, a correlation was also observed between time and 

cost management, and resource management. In contrast, the challenges in 

implementing DT category revealed a greater number of highly significant 

correlations. Among these, the strongest three were observed between data 

integration and both data management and high-fidelity model, as well as between 

data management and high-fidelity model. Finally, in the key applications of DT 

during the construction phase group, strong statistical correlations were observed 

between material and equipment management and both site monitoring and 

optimization of time and cost. Additionally, a similar strong relationship was 
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observed between site monitoring and time and cost optimization. Following the 

correlation analysis between the scales, further analysis was conducted to examine 

whether there were significant differences in participants’ perceptions by 

categorizing them into relevant groups. For the independent samples t-test, the 

responses of DT-informed and non-informed participants were compared. In the 

examination of the responses related to the benefits of the DT category, no 

statistically significant difference was detected between DT-informed and non-

informed participants. As the mean scores were high for both groups, this result may 

indicate that participants regardless of their awareness of DT, have a strong 

understanding of its benefits, which could explain the lack of notable difference 

between the groups. In the challenges in implementing the DT category, more 

statistically significant differences were discovered between the two groups 

compared to the other categories. These were found in the variables of data 

integration, high-fidelity model and skill and training. The DT-informed group 

reported lower mean scores for data integration, high-fidelity model and skill and 

training. This may demonstrate that respondents with DT knowledge perceive greater 

challenges in these areas compared to the non-informed group. Within the key 

application areas of DT in the construction phase category, a statistically significant 

difference was found only in the enhanced decision making processes variable. 

Participants with prior knowledge of DT rated the application area more highly than 

those without such knowledge. This could show that participants familiar with DT 

have greater insight into how it supports decision making, leading them to value this 

application area more highly. Lastly, in the assessment of DT's general effectiveness 

in improving productivity during the construction phase, similarly no statistically 

significant difference was found between the two groups. Since the mean scores were 

high in both groups, it might reveal that participants shared a common understanding 

of DT’s overall effectiveness, which explains the absence of a significant difference. 

An additional analysis was conducted to examine whether experience levels affected 

views of professionals and attitudes toward DT technology. Thus, for the ANOVA 

analysis, the respondents were divided into three groups based on their level of 

expertise: less than 2 years of experience, 2–5 years, and more than 5 years. Their 

responses were then compared to determine whether any statistically significant 

differences existed between the groups. Responses were examined with a focus on 

three categories: the benefits of DT, the challenges in implementing DT, and the key 
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application areas of DT during the construction phase. First, in the analysis of the 

benefits of DT, no statistically significant differences were found among the three 

experience groups. All groups reported high mean scores for the related variables, 

indicating that DT's benefits were assessed generally highly positive. In the next step 

of the analysis, focusing on the challenges in implementing DT, a significant 

difference emerged only in the adaptability variable. Participants with more than 5 

years of experience reported a higher mean score compared to those with 2–5 years 

of experience. This could suggest that more experienced professionals hold a more 

positive view regarding adaptability performance in the context of DT 

implementation. In terms of the final category, key application areas of DT during 

the construction phase, only one statistically significant difference was identified. 

Participants with more than 5 years of experience gave the variable integration with 

emerging technologies a higher mean score than those with 2–5 years of experience. 

This finding may imply that more experienced professionals place greater 

importance on DT’s potential to integrate with emerging technologies. The limited 

variation in responses and the absence of major differences between the groups, 

along with consistently high mean scores, may reflect a shared perception and a 

generally optimistic attitude toward DT technology among the participants.  

The third objective of the study is to identify the factors that influence productivity in 

the construction phase. In the literature, there are several factors that influence 

productivity during the construction phase. However, the main factors influencing 

productivity were revealed to include labor, work site, management systems, industry 

environment, design related issues, climate, and communication (Alzubi et al., 2023; 

Mehta et al., 2022; Hasan et al., 2018; Heravi and Eslamdoost, 2015). According to 

the research, each productivity factor in the construction sector consists of 

subcategory elements. The labor factor includes subcategories such as skill, training, 

and motivation. The worksite factor includes elements like site layout and site 

location. For management systems, the significant variables are cost management, 

quality management, time management, material and equipment management, 

decision making ability, and organizational methods. The design related issues factor 

involves financial uncertainties and regulatory changes. Within the industry 

environment category, constructability and inaccuracies in drawings are noted as 

significant subcomponents. The climate factor is represented by adverse weather 
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conditions, while the communication factor includes challenges such as 

misunderstandings and communication barriers. These subcategory elements provide 

a more detailed understanding of how each factor can influence productivity in 

construction projects. To analyze respondents' answers to the relevant survey 

questions, descriptive statistics were applied to examine the distribution of responses. 

According to the results of the survey, the impact of seven key factors on 

productivity during the construction phase was ranked based on their mean scores. 

The findings reveal that labor was perceived as the most influential factor. This was 

followed by the management system and design related issues. Then, the factors 

were ranked as follows: work site conditions, industry environment, communication, 

and climate. In terms of occurrence frequency, the same factors were ranked based 

on their mean scores as follows: Labor, management system, design-related issues, 

industry environment, communication, work site and climate. According to 

professionals; labor, management systems and design related issues were not only 

ranked as the top three factors affecting productivity but were also the most 

frequently reported problem areas in construction projects. Following the descriptive 

analysis, the reliability of the survey scales was evaluated using Cronbach’s Alpha, 

which indicated acceptable internal consistency across all measurement items. A 

normal distribution of the data was observed. The correlation analysis demonstrated 

that most variables were significantly related at the 0.01 level. The analysis, 

considering correlations above 0.60 as highly significant, showed strong relations 

between the management system and both labor and design factors, also between 

work site conditions and design-related issues. 

In the occurrence frequency of the factors group, a strong significant correlation was 

found only between climate and industry environment. After examining the 

correlations between the scales, additional analyses were performed to determine 

whether perceptions of industry experts differed across defined groups. An 

independent samples t-test was used to compare the responses of participants with 

prior knowledge of DT and those without. No statistically significant difference was 

observed between the two groups in their responses regarding factors impacting 

productivity during the construction phase and the occurrence frequency of these 

factors. This finding was expected, since awareness of DT technology may not affect 

participants' views in this area.  
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The fourth objective of the study is to compare these factors with the identified 

capabilities of the DT system in order to evaluate its potential for addressing 

productivity challenges. Descriptive analysis was conducted to interpret the response 

patterns to relevant questions in the survey. When participants were asked how the 

productivity related factors might be affected if DT technology were implemented in 

the construction phase, the ranking based on mean scores was as follows: Design 

related issues, management system , work site, communication, labor, industry 

environment and climate. According to industry experts, although labor is regarded 

as the most critical and frequently observed factor affecting productivity during the 

construction stage, the use of DT technology is believed to have its greatest impact 

on design related issues and management systems. Moreover, since design related 

issues and management systems identified as the two factors most positively 

impacted by DT also rank among the top three productivity factors in both impact 

and frequency in construction phase, this supports a positive perception that DT can 

effectively enhance productivity in construction. Furthermore, a comparative 

analysis of participants’ responses concerning the factors influencing productivity 

and the key application areas of DT enables a more informed evaluation. Although 

labor was identified as the most influential factor affecting productivity during the 

construction phase, its related application area, workforce oversight, was ranked last 

among DT system’s key application areas. This may suggest that participants do not 

perceive DT as particularly beneficial in addressing labor related issues. In contrast, 

management systems, previously identified by respondents as the second most 

problematic area, are closely linked to the top ranked application area of time and 

cost optimization, supporting the view that DT may significantly enhance efficiency 

in the management area. Similarly, another management related application area, 

enhanced decision making processes, also received a high mean score, further 

strengthening this view. Additionally, design related issues, ranked as the third most 

important factor affecting productivity, can be linked to the second ranked DT 

application area, integration with emerging technologies. Respondents may have 

thought that technologies such as AR, VR, AI, and IoT can help address design 

problems by enabling real time comparisons between architectural drawings, models 

and on-site implementation in the construction phase.  Among the application areas, 

site monitoring and material & equipment management can be associated with the 

work site factor, ranked fourth in terms of its impact on efficiency. This indicates 
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that DT may offer notable benefits in managing on site activities. Since industry 

environment and climate are external factors, a high level of impact from DT in these 

areas was not expected, which is also reflected in the results. Moreover the low 

ranking of communication as a productivity factor aligns with the similarly low 

position of comprehensive participation among DT applications. This may suggest 

that professionals do not perceive stakeholder communication as a major challenge 

during the construction phase, and therefore consider this application area less 

essential compared to others.  

In the next evaluation, Cronbach’s Alpha confirmed acceptable reliability across the 

survey scales measuring how the implementation of DT in the construction phase 

could impact productivity related factors. The data showed a normal distribution. For 

the correlation analysis, it revealed significant relationships among most variables. 

Highly strong correlations were observed between climate and both work site and 

industry environment. Following the correlation analysis, a t-test was conducted to 

compare perceptions between DT-informed and non-informed participants. An 

analysis of the group responses related to the category revealed that a statistically 

significant difference was found only for the communication factor. The mean score 

of the DT-informed group was higher than the non-informed group. This finding 

might suggest that participants who are knowledgeable about DT are more likely to 

understand the role of DT in enhancing communication during the construction 

phase.  

This study has a few limitations. First, although the sample size was sufficient for 

analysis, it may not fully reflect the diversity of the construction industry. Also the 

findings are limited to a local context. Another limitation is the relatively small 

number of participants who had direct experience with DT technology. This restricts 

the ability to assess real performance results based on practical application.  

For future research, this examination can be extended to other phases of a 

construction project's lifecycle such as the design, operation, and end of life stages, 

since the current study focuses on the construction phase. Moreover, alongside 

survey based techniques, methodological approaches such as case studies or 

interviews with professionals from companies actively using DT may provide deeper 

insights and more detailed evaluations.  
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The research examines the impact of DT technology on productivity during the 

construction phase. Distinct from previous research, it first identifies the key factors 

that influence productivity in the construction stage and then investigates whether 

DT can have a direct effect on these factors. Insights were collected through a survey 

of industry professionals to assess DT’s perceived potential. The results reveal that 

professionals generally maintain a positive and curious attitude toward DT, 

recognizing its potential to address existing problems and enhance construction 

efficiency.  
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Figure A.1 : Questionnaire personal information part. 
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Figure A.2 : Questionnaire career information part. 
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Figure A.3 : Questionnaire digital twin information part. 
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Figure A.4 : Questionnaire productivity part 1.  
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Figure A.5 : Questionnaire productivity part 2. 
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Figure A.6 : Questionnaire productivity part 3. 
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Figure A.7 : Questionnaire digital twin part 1. 
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Figure A.8 : Questionnaire digital twin part 2. 
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Figure A.9 : Questionnaire digital twin part 3. 
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