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THESIS EXPLORING THE POTENTIAL OF DIGITAL TWIN
TECHNOLOGY TO IMPROVE FACTORS AFFECTING CONSTRUCTION
PRODUCTIVITY DURING THE CONSTRUCTION PHASE

SUMMARY

In the construction industry, productivity has been a challenging and significant
problem. Despite its significant economic importance, the construction sector often
underperforms due to inefficiencies observed across various project stages. Low
productivity is caused by a variety of problems, including insufficient
communication, labor shortages, inadequate planning and a limited integration of
digital technologies. These serious problems eventually decrease the general
efficiency and sustainability of construction projects by causing delays, cost
overruns, risk factors and resource waste, particularly during the building stage. As a
result of these problems the construction sector is becoming more interested in
advanced technologies in order to experience a digital transformation. Thus, the
industry may achieve better site control, more effective decision making, and
improved collaboration. Digital twin (DT) technology is one of these innovations
that is currently gaining attention as an exciting concept that could help with major
inefficiencies during the building phase. DT makes it possible for virtual and
physical environments to synchronize in current time while offering insights based
on data for performance enhancement. When integrated with Construction 4.0
technologies such as internet of things (loT), artificial intelligence (Al), machine
learning (ML) and others, DT systems can enable predictive maintenance, better
visualization, dynamic planning and modelling construction processes. According to
current literature, the DT concept may be particularly beneficial during the building
stage since the construction phase is characterized by complicated resource
allocation, changing scheduling and critical cost, time and safety performance goals.
DT implementation during this stage might facilitate real time site management,
decrease rework, enhance safety conditions and allow for a more prepared decision
making process. Despite these encouraging advantages, the implementation of DT in
the construction stage remains limited, largely due to high costs, technical barriers
and lack of awareness.

This research investigates the potential of DT technology to improve productivity in
the construction phase by examining how its capabilities align with the factors
negatively affecting project performance. To achieve this goal, the objectives of the
study are (1) to explore the role of DT throughout the building life cycle in the
construction sector (2) to identify its benefits, challenges, and key application areas
in the construction stage (3) to determine the factors affecting productivity during the
construction phase (4) to compare these factors with the DT system's identified
capabilities to assess its potential in overcoming productivity challenges. To
accomplish these goals, the research adopts a two step method. First, a
comprehensive literature review was conducted to identify the most critical
productivity related factors and discover the present knowledge of DT system’s role
in construction such as its opportunities, obstacles and major application areas. As a
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second step, the questionnaire was designed based on the literature findings to
understand the perception of sector experts and distributed to professionals in the
construction industry. This resulted in 76 valid responses. The data were analyzed
using SPSS v.29. The collected data were analyzed using several statistical methods
including descriptive statistics, Cronbach’s alpha reliability analysis, normality tests,
correlation analysis, independent samples t-tests and one-way ANOVA. These
methods enabled a detailed evaluation of relationships between variables and the
identification of notable variations in perceptions across participant groups.

Findings from the survey suggest that industry professionals recognize the high
potential of DT technology to address key productivity challenges in the construction
phase. According to the survey results, professionals identified labor, management
systems and design related issues as the most influential and frequently occurring
productivity factors. However, when assessing DT system’s potential impact,
participants believed the greatest improvements would occur in design related issues
and management systems. These areas where DT capabilities such as integration
with emerging technologies and time, cost optimizations are particularly effective.
Despite labor being the most important productivity factor, the associated DT
application area workforce monitoring was ranked lowest. This may indicate that DT
was not believed to have much of an impact on labor concerns. In the statistical
analyses, strong correlations for the benefits of DT concept were found between risk
management, real time digital representation and resource management, as well as
between time and cost management and resource management. In the challenges of
the DT category, the highest correlations appeared among data integration, data
management and high-fidelity modeling. For key application areas of DT, strong
links were observed between material and equipment management, site monitoring
and time and cost optimization.

In addition to descriptive and correlation analyses, the study conducted independent
samples t-tests and one-way ANOVA to explore differences in perceptions among
participant groups. According to t-tests and ANOVA, there were minor variations
between the participant groups. For the t-test, participants were divided into two
groups based on their prior knowledge of DT technology (DT-informed and
uninformed). Although no significant differences were observed in perceptions of
respondents on the productivity factors and the opportunities of the DT system,
significant differences emerged in specific areas. Regarding the potential impact of
DT on productivity related factors, a statistically significant difference was identified
for the communication factor, suggesting that DT-informed participants believed DT
implementation could more strongly improve communication during the construction
phase. In the challenges, DT-informed participants rated obstacles such as data
integration, high-fidelity modeling and the need for skill and training more critically
than non-informed participants. Similarly in the key application areas of DT in the
construction phase, a significant difference was observed for the enhanced decision
making processes variable, where DT-informed participants rated this application
area more highly than non-informed participants. For the one-way ANOVA,
participants were categorized according to their professional experience: less than 2
years, 2-5 years and more than 5 years. Even though opinions were generally the
same among the groups, two notable distinctions were found. First, participants with
more than 5 years of experience reported a higher mean score for DT’s adaptability
performance compared to those with 2-5 years of experience. Second, in the
integration with the emerging technologies application area, those with more than 5
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years of experience again rated the application area significantly higher compared to
participants with 2-5 years of experience. These findings may imply that more
experienced professionals tend to perceive a more positive view of DT as more
adaptable and better suited for integration with advanced technologies in
construction processes.

According to the results obtained from the study, industry experts are optimistic
about the DT technology and believe that it can significantly influence the factors
determining efficiency and positively affect the productivity in the construction
phase.
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TURKCE YAPIM ASAMASINDA iNSAAT VERIMLILiGINI ETKILEYEN
FAKTORLERIN IYILESTIRILMESINDE DIJITAL iKiZ
TEKNOLOJISININ POTANSIYELININ INCELENMESI

OZET

Insaat sektoriinde verimlilik, bu alanda uzun siiredir hem 6nemli hem de zorluk teskil
eden bir problem olarak goriilmektedir. Ekonomik agidan biiylik 6nem tasimasina
ragmen, ingaat sektorli c¢ogu zaman proje siireclerinin ¢esitli asamalarinda
gbzlemlenen verimsizlikler nedeniyle diisiikk performans sergilemektedir. Diisiik
verimlilik, yetersiz iletisim, is giicii eksiklikleri, yetersiz planlama ve dijital
teknolojilerin smirli entegrasyonu gibi c¢esitli sorunlardan kaynaklanmaktadir.
Ozellikle yapim asamasinda ortaya ¢ikan gecikmeler, maliyet asimu, risk unsurlari ve
kaynak israfi gibi etkiler sonucunda bu sorunlar insaat projelerinin genel
verimliligini ve siirdiiriilebilirligini olumsuz yodnde etkilemektedir. Bu sorunlar
nedeniyle, sektor dijital doniisiim siirecine yonelik olarak ileri teknolojilere giderek
daha fazla ilgi gostermektedir. Bu baglamda sektdr, santiye kontrolii ve izleme, karar
alma siirecleri ve is birligini iyilestirme yoniinde ilerleme kaydedebilir.

Bu teknolojik yenilikler arasinda yer alan dijital ikiz (DT) teknolojisi, 6zellikle
yapim asamasindaki ciddi verimsizlikleri giderebilecek potansiyele sahip, dikkat
¢ekici bir kavram olarak 6ne ¢ikmaktadir. DT teknolojisi, sanal ve fiziksel ortamlar
arasinda es zamanli senkronizasyon saglayarak performans iyilestirmeye yonelik veri
temelli i¢goriiler sunar. Nesnelerin interneti (IoT), yapay zeka (AI), makine
ogrenmesi (ML) gibi Endiistri 4.0 teknolojileriyle entegre edildiginde, DT sistemleri
tahmine dayali bakim, gelismis gorsellestirme, dinamik planlama ve insaat
siireglerinin modellenmesini miimkiin kilmaktadir. Giincel literatiire gore, DT
kavram1 ozellikle yapim asamasinda 6nemli faydalar sunabilir; ¢linkii bu asama,
kaynak tahsisi, degisken zaman tahmini ve maliyet, zaman, giivenlik hedefleri
acisindan en karmasik siire¢lerin yasandigi donemdir. Bu teknoloji sayesinde, santiye
yonetimi gergek zamanli olarak yiiriitiilebilir, yeniden is yapma orani azaltilabilir,
giivenlik kosullart iyilestirilebilir ve daha hazirlikli bir karar alma siireci saglanabilir.
Ancak bu avantajlara ragmen, DT’nin yapim asamasindaki uygulamalar1 hala
sinirlidir, bunun baslica nedenleri arasinda yiiksek maliyetler, teknik engeller ve
farkindalik eksikligi yer almaktadir.

Bu c¢alisma, DT teknolojisinin yapim asamasinda verimliligi artirma potansiyelini
arastirmakta ve bu teknolojinin yeteneklerinin, proje performansini olumsuz
etkileyen faktorlerle ne derece Ortiistiigiinii incelemektedir. Bu ama¢ dogrultusunda
calismanin hedefleri sunlardir: (1) DT nin insaat sektoriindeki yapt yasam dongiisii
boyunca oynadigi rolii incelemek, (2) Yapim asamasindaki avantajlarini, zorluklarin
ve Onemli uygulama alanlarin1 belirlemek, (3) Yapim asamasinda verimliligi
etkileyen faktorleri ortaya koymak, (4) Bu faktorleri DT sisteminin ozellikleri ile
karsilagtirarak, s6z konusu teknolojinin verimlilik sorunlarin1 ¢6zmedeki
potansiyelini degerlendirmektir.
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Bu hedefleri gerceklestirmek amaciyla iki asamali bir yontem benimsenmistir. ilk
olarak, verimlilik ile iligkili temel faktorleri ve DT sistemlerinin ingaat siire¢lerindeki
roliinii, firsatlar, zorluklar ve uygulama alanlar1 gibi, belirlemek amaciyla kapsamli
bir literatiir taramas1 yapilmistir. Ikinci asamada ise, literatiir bulgularina dayanarak
uzman goriislerini anlamaya yonelik bir anket formu hazirlanmis ve insaat sektorii
profesyonellerine uygulanmistir. Anket sonucunda 76 gegerli yanit elde edilmistir.
Veriler SPSS v.29 yazilimi kullanilarak analiz edilmistir. Sonrasinda ise tanimlayici
istatistikler, Cronbach’s Alpha giivenilirlik testi, normallik testleri, korelasyon
analizi, bagimsiz 6rneklemler t-testi ve tek yonlii ANOVA gibi cesitli istatistiksel
yontemler uygulanmistir. Bu analizler, degiskenler arasi iligkilerin ve katilimci
gruplar arasinda algi farkliliklariin detayli bigimde degerlendirilmesine olanak
saglamistir.

Anket bulgulari, sektor profesyonellerinin DT teknolojisinin yapim asamasindaki
temel verimlilik sorunlarin1 ¢6zme konusunda yiiksek bir potansiyele sahip oldugunu
diisindiiklerini ortaya koymaktadir. Katilmcilar, is giicli, yonetim sistemleri ve
tasarima bagli konular1 en etkili ve en sik karsilasilan verimlilik faktorleri olarak
tanimlamistir. Ancak DT sisteminin potansiyel etkileri degerlendirildiginde,
katilimcilar en biiyiik iyilestirmenin tasarim kaynakli sorunlar ve yonetim
sistemlerinde gergeklesebilecegini belirtmistir. Bu durum, DT nin 6zellikle yeni
teknolojilerle entegrasyon ve zaman, maliyet optimizasyonu gibi yeteneklerinin bu
alanlarda etkili oldugunu gdéstermektedir. Ote yandan, is giicii en énemli verimlilik
faktorli olarak goriilmesine ragmen, bu faktore karsilik gelen DT uygulama alani
olan isgiicli takibi en diisiik sirada yer almistir. Bu da DT'nin i giicli sorunlarina
yonelik etkisinin siirli algilandigini gdstermektedir.

Istatistiksel analizler kapsaminda, korelasyon analizinde, DT nin faydalarina iligkin
olarak risk yonetimi, gercek zamanli dijital temsil ve kaynak yoOnetimi arasinda,
ayrica zaman ve maliyet yonetimi ile kaynak yonetimi arasinda gii¢lii korelasyonlar
gozlemlenmistir. Zorluklar kategorisinde en yiiksek korelasyon veri entegrasyonu,
veri yonetimi ve yilksek dogruluklu modelleme arasinda bulunmustur. Onemli
uygulama alanlarinda ise malzeme ve ekipman ydnetimi, santiye izleme ve zaman,
maliyet optimizasyonu arasinda gii¢lii iliskiler belirlenmistir.

Tanimlayici ve korelasyon analizlerine ek olarak, bagimsiz 6rneklemler t-testi ve tek
yonlii ANOVA analizleri de yapilmistir. T-testinde katilimcilar, DT hakkinda bilgi
sahibi olanlar ve olmayanlar seklinde iki gruba ayrilmistir. DT teknolojisinin
faydalar1 ve verimlilik faktorleri konusunda gruplar arasinda anlamli bir fark
bulunmazken, belirli alanlarda farkliliklar gézlemlenmistir. Ozellikle, iletisim
faktorii i¢in DT den haberdar katilimcilar, teknolojinin bu alanda daha yiiksek katki
saglayacagini diislinmektedir. Ayrica, veri entegrasyonu, yiiksek dogruluklu
modelleme ve beceri, egitim ihtiyaci gibi zorluklar da DT bilgisine sahip katilimcilar
tarafindan daha elestirel bicimde degerlendirilmistir. Uygulama alanlarinda ise
gelistirilmis karar alma siirecleri degiskeni anlamli fark goéstermistir, DT bilgisi
olanlar bu uygulamay1 daha etkili gormektedir.

ANOVA analizinde katilimcilar, mesleki deneyimlerine gore {i¢ gruba ayrilmistir: 2
yildan az, 2-5 yil ve 5 yildan fazla deneyimi olanlar. Genel olarak benzer goriisler
bildirilse de iki 6nemli farklilik tespit edilmistir. Bes yildan fazla deneyime sahip
katilimcilar, adaptasyon yetenegi ve yeni teknolojilerle entegrasyon uygulama
alanlarim1 diger gruplara kiyasla daha yiliksek puanlamistir. Bu bulgular, deneyimli
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profesyonellerin DT teknolojisinin ger¢ek hayatla adaptasyon ve ileri teknolojilerle
entegrasyonu konularinda daha olumlu bir bakis a¢isina sahip olabilecegini
gostermektedir.

Calismadan elde edilen sonuglara gore sektdr uzmanlari, DT teknolojisine iyimser
yaklasmakta ve bu teknolojinin verimliligi belirleyen temel faktorler izerinde olumlu
etkiler yaratabilecegine inanmaktadir.
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1. INTRODUCTION

Productivity remains one of the most critical, complicated and persistent issues in the
construction industry. The productivity performance of the sector has remained
below that of other important industries despite making an enormous economic
contribution (Turner et al., 2021; Laszig et al., 2020Therefore, the industry continues
to experience low levels of efficiency, frequent delays and high resource waste.
Numerous studies have identified a number of variables that adversely affect
construction productivity, including inadequate planning, poor communication,
insufficient skills, shortages of workers, technological diversity, material waste and
safety incidents (Mehta et al., 2022; Hasan et al., 2018; Ghoddousi and Hosseini,
2012). Additionally, the complex and multidisciplinary nature of construction
projects, together with uncertainties and constant changes, leads to cost overruns,
project delays and poor employee output, particularly during the construction phase.
Contributing factors such as delayed digitalization and innovation resistance
intensify the productivity gap in the sector. Moreover, the lack of real time
information, unconnected systems and a restricted usage of smart technologies
during operation phases contributes to the sector’s strong productivity challenges.
Furthermore these inefficiencies constrain financial results, achievement of time,
cost, quality and sustainability standards (Teisserenc and Sepasgozar, 2021; Naoum,
2016). Due to these consistent difficulties, the construction sector has been growing
attention to digital transformation with the goal of improving performance. These
persistent inefficiencies have created a requirement for advanced digital technologies
that can enhance coordination, monitoring and management methods during
construction processes. Within this context, digital twin (DT) technology has
emerged as a highly exciting development. Among the most recent digital solutions,
DT technology has gained significant attention for its ability to establish a real time
data connection between the physical and virtual worlds (Wang et al., 2021; Liu et
al., 2022). The data flow enables continuous synchronization for monitoring,

simulation and optimization purposes (Boje et al., 2020). Through integration with



internet of things (loT), artificial intelligence (Al), deep learning (DL), machine
learning (ML) and other innovative technologies, DT systems can process large
datasets, predict outcomes and provide feedback for ongoing performance
improvement in a project’s life cycle (Elfarri et al., 2022; Lu et al., 2020a; Austin et
al., 2020). DT allows stakeholders to calculate possible hazards and make data driven
decisions early in the project. In addition, it provides real time visualization and
predictive monitoring. This helps reduce interruptions and improve planning by
offering an extensive overview of site conditions and activities. Additionally, DT
provides a number of advantages, including life cycle cost reductions, enhanced
safety performance, energy optimization, predictive maintenance and sustainability
benefits from more effective resource usage. These advantages support long term
environmental goals as well. Compared to other industries, the architecture,
engineering and construction (AEC) sector has adopted the DT concept more
recently. The most common applications are observed in the operation and
maintenance stages of the building lifecycle (Almatared et al., 2022). However, the
construction phase presents significant opportunities for DT implementation (Opoku
et al., 2021; Boje et al. 2020). As Yang et al. (2024) emphasize that this phase
involves the high level of complexity in management systems such as resource
allocation, time, quality and cost. According to Piras et al. (2024) and Almatared et
al. (2022), DT appears as a system that may handle this complexity since it works
effectively when combined with advanced technologies to provide dynamic and
intelligent construction site modeling. However, as Construction 4.0 encourages the
digital transformation of the industry, there is rising interest in implementing DT
(Moshood et al., 2024). This is particularly during the construction phase, when its
productivity boosting effects could be most effective. In this phase, DT technologies
have the potential to address several inefficiencies. DT might encourage faster
decision making and minimize rework, delays and safety hazards by providing real
time site condition viewing, automated progress tracking, material and labor
monitoring and construction simulation. These capabilities align closely with key
productivity factors. According to Bosch-Sijtsema et al. (2021), by facilitating more
accurate simulations and data based systems, DT has the capacity to directly address
factors influencing productivity such as time, cost, safety and quality. Furthermore,
DT increased its ability to improve collaboration among project stakeholders,

decrease waste and optimize processes by integrating with tools like robotics, big



data analytics and building information modeling (BIM) (Bosch-Sijtsema et al.,
2021; Sepasgozar et al., 2021). The potential of DT and its increasing demand to
improve construction productivity is frequently highlighted in the literature.
Nevertheless, the implementation of DT technologies during the construction phase
is in early stages. This technology is a valuable approach to overcoming persistent
inefficiencies by promoting connectivity, automation and adaptability in construction
processes. The relationship between DT technology and productivity is an important

area for the future of the construction sector.

1.1 Purpose of the Study

According to existing literature, DT is most commonly applied in the operation and
maintenance phase of the building lifecycle (Almatared et al., 2022). Boje et al.
(2023) state that the DT of a structure starts to take form during the construction
phase, but it reaches more advanced degrees of development during its operational
stage. However, Yang et al. (2024) emphasize that the performance of the
construction phase directly affects key project outcomes such as quality, schedule,
cost and safety efficiency. In line with this, Akanmu et al. (2021) highlight the
significance of the construction stage, claiming that DT is essential for optimizing
several project lifecycle processes during this phase. Similarly, Boje et al. (2020)
argue that the adoption of the DT concept in the construction phase has the capacity
to revolutionize the construction industry. Building on this perspective, the study
focuses on the potential of DT in the construction phase by addressing the factors
that negatively impact productivity during this stage. It examines how DT
capabilities correspond to these challenges by identifying its advantages, main
obstacles to its adoption and significant usage areas. Thus it may contribute to a
deeper understanding of its role in enhancing project performance. More generally,
the study investigates the relationship between DT technology and productivity in the
construction phase by identifying the key productivity related factors and assessing
how DT's capabilities may contribute to addressing these challenges. Through a
combination of literature review and survey analysis, the research tries to provide
insights into the potential role of DT in enhancing efficiency in the construction
phase. To achieve this purpose, the research objectives are:



1) To explore the role of DT throughout the building life cycle in the

construction sector

2) To identify its benefits, challenges, and key application areas in the

construction stage
3) To determine the factors affecting productivity during the construction phase

4) To compare these factors with the DT system's identified capabilities to

assess its potential in overcoming productivity challenges

1.2 Scope of the Study

This study focuses on the possible role of DT in responding to productivity
challenges in the construction stage. Therefore the scope is limited to the
construction phase of the building life cycle. Also the research is based on a
comprehensive literature review and a survey conducted with professionals from the
local construction industry. The study discusses how DT could assist in reducing
these inefficiencies through an analysis of capabilities of DT technology and
alignment with productivity factors. Since DT technology is still in its early stages of
adoption within the construction sector, the survey stage of the study mostly reflects
expert opinions and projections rather than direct evaluations based on practical

experience.

1.3 Method of the Study

In order to achieve the objectives, this study combines a comprehensive literature
review and a quantitative survey. The literature review was conducted to identify
main productivity factors in the building stage as well as to examine the advantages,
challenges in adoption and major usage areas of DT systems in the same phase.
Based on the findings from the literature, a questionnaire was developed to collect
data from experts. The survey intended to discover perceptions of participants about
DT and their opinions on its possible contributions to improving productivity in the
construction phase. The data collected were analyzed using descriptive statistics,
reliability tests, normality test , correlation analysis, independent samples t-test and
one-way ANOVA. Then the data is examined in order to find relationships and

assess differences.



2. LITERATURE REVIEW

2.1 Digital Twin

A digital twin (DT) is a dynamic virtual representation of real world properties
through the use of actual time data obtained from sensors (Boje et al., 2020; Opoku
et al., 2021; Liu et al., 2021). Simply, DT is the combining of information between
an actual object and its virtual replica that functions in both directions (Fuller et al.,
2020). The DT consists of 3 main parts: the real world twin, the virtual world twin
and the connection that links twins with information and data flow (Rasheed et al.,
2020; Nguyen and Adhikari, 2023; Teizer et al., 2022). Also DT varies with 3D
modeling in terms of being current and having information exchange (Elfarri et al.,
2022; Jiang et al., 2021). DT technology was mentioned in 2003 by Grieves who was
the first person to describe the DT concept, and he was working on product lifecycle
management (Boje et al., 2020; Liu et al., 2021; Akanmu et al., 2021). At the
beginning, the concept did not garner significant attention or engagement during that
period (Wang et al., 2022). However nowadays as data generation from sensors and
communication technology develop, the concept of the DT is gaining success and
becoming popular (Wang et al., 2021; Liu et al., 2021; Kim and Ham, 2022). NASA
played a significant role by releasing a paper in 2012 and took an important step in
defining the framework of DT (Fuller et al., 2020; Khajavi et al., 2019). In that study
conducted by Glaessgen and Stargel (2012) in NASA they mentioned the DT as a
combined and complex simulation of a real vehicle or system, that includes various
physical factors and probabilities. It utilizes the most accurate physical models, data
from sensors, historical fleet information and more to replicate the entire operational
lifespan of its real-world twin. DT is currently one of the main and developing
technological advancements for Industry 4.0 and the upcoming Industry 5.0 (Lauria
and Azzalin, 2024). Sun et al. (2022) emphasize studies in this field have intensified
in recent years. They emphasize that not only the visual parameters taken from the
physical object are transferred to the DT, but also data containing all kinds of

information is transferred, and as a result, a virtual representation consisting of



multidimensional information is created. Researchers further discuss, the purpose of
a DT is to provide information and insight when making decisions and taking action
about the physical item. Likewise Zhuang et al. (2018) state DT includes virtual data
that provides a description of a physical object, spanning from the details to the
larger geometric aspects to express the multiplicity of data collected. Wang et al.
(2022) explain, DT uses digital methods including the creation of tools, simulations,
IoT devices and VR to translate the various characteristics of real world equipment
into virtual environments. This process creates a digital replica that can be taken
apart, adjusted and used multiple times. The method boosts a person’s understanding
of objects. Similarly Liu et al. (2021) indicate, in the building sector, DT offers
multiple levels of information, visualization, analyzing and estimation. Through the
use of DT, customers may see all of the details they need about the physical
construction, which improves comprehension and communication. It is also capable
of processing information well. Furthermore, data mining is a way to generate new
knowledge from huge data sets if fresh data are made accessible through DT.
Condition analysis and other emergency management procedures can benefit greatly
from this. In summary, Jiao et al. (2024) highlight DT is a key digital tool for the
construction sector, enhancing operation efficiency and quality. Additionally, Boje et
al. (2020) approach this topic from a sustainability perspective, stating that
advancing clean energy and low carbon emission goals is how the significance of
working with DT is determined. Figure 2.1 explains the working principle of the DT
between the real world and the visual representation. The four interaction
relationships between both the physical and digital worlds have been simplified into

a conceptual framework.

In examining the DT and Building information modeling (BIM) relationship, they
are both representations of actual assets, but due to the differences in their functions
and capabilities, DT of structures could be thought of as a version of BIM+, which
was created from digital descriptions (Wang et al., 2022). Autodesk (2023) expresses
that the BIM process combines data from planning and design, while DT captures
information throughout the construction and operational phases of the asset, enabling
the prediction of future projects. Abilities to communicate distinguish DT apart from
3D modeling and these skills are a necessary component of DT (Wang et al., 2021).
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Figure 2.1 : The digital twin platform's structure adapted from Sun et al. (2022).

Khajavi et al. (2019) claim, BIM is mainly employed to avoid errors in the building
design process, enhance communication among stakeholders, boost construction
efficiency and track the time and cost of construction projects. In contrast, DT has
purposes such as predictive maintenance, improving resource efficiency, enhancing
tenant comfort, conducting what-if analyses for optimizing building design and
enabling closed-loop design to transfer insights from one building to future ones. DT
has the capability to be constantly updated to mirror real time changes in the physical
object, and they can utilize predictive analytics to anticipate future conditions unlike
to BIM (Elfarri et al., 2022). Boje et al. (2020) point out that in the building sector,
there are a number of restrictions on BIM. Its lack of IoT connection is one of its
primary weaknesses. Also BIM has a static and closed data system, while DT offers
an interactive accessible online workspace that includes internet of things (loT)
integration and advanced artificial intelligence (Al) capabilities. BIM also stays
poorly in the areas of automation and interoperability. They emphasize further, BIM
helps professionals create a regular way to represent building parts and systems. In
contrast, the DT analyzes the wider picture by considering the social and technical
aspects of complex objects. It does this by using real time data connections between
the digital and physical worlds. Researchers also highlight, in the relationship
between physical and virtual aspects of DT, BIM is often seen as a part of it. These
elements that DT have can assist in resolving BIM's constraints and giving the
building sector a more complete and useful tool. BIM is a process centered on 3D

modeling that provides architects, engineers and construction experts with the means



to effectively plan, design, build and oversee buildings and infrastructure in a more
efficient manner (Eastman et al., 2011). According to Succar (2008), BIM serves as a
realistic visual representation of a building that may be utilized for design, planning
and construction phases. However, it is primarily employed during the design and
building stages of a project. On the other hand, DT technology is a lively, real time
digital copy of a real item or system using sensor data to represent the current
condition of the actual item (Tao et al., 2018). The research community is currently
shifting its attention from BIM applications to DT applications and the challenge lies
in the fact that the BIM model is disconnected between physical and virtual objects,
whereas DT intends to deal with this by creating a strong, two-way integration link
(Almatared et al., 2022). Nonetheless, the adoption of DT technology remains at an
early developmental phase (Boje et al., 2020). In brief, although both BIM and DT
offer digital representations of real property, BIM focuses mainly on design and
construction, whereas DT further by providing continuous tracking, analysis and
predictive purposes throughout an asset's lifecycle (Wang et al., 2022; Elfarri et al.,
2022; Liu et al., 2021; Tao et al., 2018). This shift from BIM to DT improves
monitoring, oversight and decision making abilities over a structure's existence
(Mashood et al., 2024).

2.1.1 Technologies supporting digital twin implementation

Advancements in technology have revolutionized the construction sector by
integrating machines, sensors and intelligent systems into the planning, building and
monitoring processes (Si et al., 2023). DT integrates several industry 4.0
technologies to the building industry, such as data collection and processing,
modeling and simulation, tools for decision support systems (Moshood et al., 2024).
In relation to this there are many technologies that help DT to operate (Piras et al.,
2024). Some of them are 10T (Sethi et al., 2017; Sun et al., 2022), Al (Elfarri et al.,
2022; Al Musaed and Yitmen, 2023), Model Visualisation (Elfarri et al., 2022; Sun
et al., 2022), Immersive Technologies (Yang et al., 2024; Piras et al., 2024), Deep
Learning (DL) & Machine Learning (ML) (Wang et al., 2022; Austin et al., 2020; Lu
et al., 2020a), Sensor Technology (Riaz et al., 2015; Austin et al., 2020; Ham and
Kim, 2020), Cloud Platforms & Data Storage (Ying et al., 2019; Fuller et al., 2020).
Together, these technologies form the foundation of the DT structure and enable

producing precise, dynamic and current time digital replicas (Yang et al., 2024).



Austin et al. (2020) and Akanmu et al. (2021) insist the key components of a
successful DT system are cloud computing, 10T and semantic modeling. On the other
hand, Yang et al. (2024) claim technologies like blockchain, cloud computing, big
data and simulation are viewed as additions and enhancements to the DT structure,

giving the system more features and abilities.

The 10T refers to the integration of internet connectivity into various devices, giving
them the ability to collect information about their environment (Yang et al., 2024).
Fuller et al. (2020) state the escalating number of 10T devices, which surpassed 17
billion in 2018, indicates the technology's significant development. According to
their projections, there will be more than 75 billion of these devices in use by 2025,
and the industry will be worth more than $5 trillion. Likewise Teisserenc and
Sepasgozar (2021) mention, in construction areas, 10T may result in annual savings
of between $160 billion and $930 billion. Madni et al. (2019) point out the increase
in connectivity fits with the idea of a connected environment on a global scale.
Additionally they explain it has positive effects on a variety of industries, including
daily life, communication, healthcare, construction, transportation, smart cities, smart
homes, wearables and manufacturing. Sun et al. (2022) indicate the 10T plays a
crucial role in the DT platform. 10T devices, collect status data from physical objects
and transmit this data for further analysis. This real time data stream enables
functions such as accurate and real time monitoring. BIM and 10T have the potential
to provide technological support for managing building operations through the DT.
Also they add the automated procedures and 10T devices are needed for effective
time management. Similarly Vemulapalli et al. (2021) claim to have the full
potential of DT, it requires a convergence of the modern technologies such as Al and
I0T. Also they express the effectiveness of DT technology in the 10T network lies in
its ability to create a virtual representation of a physical object. Moreover they state
the technologies should be standardized for their applications and long-term viability.
In a similar way Sethi et al. (2017) mention loT devices are vulnerable to cyber
attacks, because the data they collect can be sensitive. Therefore, it is essential to
ensure that the data is secure and that the privacy of the users is protected. Also it's
crucial to properly handle the huge amount of data that 10T devices produce.
Furthermore 0T devices are battery-powered and have minimal compute and storage

resources. Communication of data between devices is a power consuming task,



especially wireless communication. Therefore, researchers discuss the need for a
solution that facilitates communication with low power consumption. On the other
hand loT devices can help in cost savings by reducing energy consumption and

improving the efficiency of various processes.

The fundamental concept of Al and its general definition originated in the late 1950s,
focusing on the creation of intelligent systems (Fuller et al., 2020). Almatared et al.
(2022) express Al as one of the major fields of DT research and add that it is crucial
in helping project managers improve their choices that have an impact on costs, time
and effort. They also indicate Al plays a crucial role in decision making and in the
context of DT it enhances predictive analysis capabilities. They emphasize that while
DT often relies on simulation for predictions, the integration of Al can significantly
improve decision making within the architecture, engineering and construction
(AEC) field. Numerous studies found that the DT was assisted by 10T, making Al a
crucial element to enable the DT for prediction and better decisions (Boje et al.,
2020). Elfarri et al. (2022) state Al, along with sensor technologies and virtual reality
(VR), is examined to provide real time information about various aspects of the
house such as air quality, water leakage, occupancy and external weather conditions.
They claim Al is used to develop a DT of a construction. For this reason in their
study, they created a fully functional and highly capable DT of a contemporary home
by combining Al, innovative sensor technology and VR. Almusaed and Yitmen
(2023) point out Al simulations and DT are employed in the design and management
of tasks, structure and operations for the next era of constructions, with the aim of
improving user satisfaction and optimizing building efficiency. The idea of applying
Al in the construction of smart buildings is becoming more and more popular as
technology, particularly the 10T continues to advance. These models reflect various
design possibilities and estimate their implications. Also they assess the building's
performance and methods to enhance both user comfort and building efficiency.
Moreover artificial neural networks (ANN) have several advantages over traditional
techniques and may be utilized to develop and operate intelligent building systems.
Furthermore they mention that only a few of the many capabilities of ANN in
information processing include instability, resilience, fault and failure tolerance,

learning and managing uncertain and complex data.
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Regarding model visualization, Elfarri et al. (2022) indicate that 3D modeling
involves the use of software to create a three-dimensional representation of an object,
commonly referred to as a computer-aided design (CAD) model. This model is
composed of points, edges and surfaces, which collectively create a visual simulation
of physical objects. Also 3D rendering is a digital graphics technique where textures
are applied to the surfaces of a 3D model, resulting in a lifelike and photorealistic
appearance of the object. Furthermore they mention the importance of 3D modeling
in creating a DT. Sun et al. (2022) add that the precise recreation of physical items in
a high-fidelity digital model is the central component of a DT system. For the DT to
gain some kind of management over the actual environment, the visualization is a
crucial tool. This model includes multi-dimensional object status data and is capable
of being used for simulations and visualization, among other things. The BIM model
and application use a complex model and place a spotlight on collaboration, which
may meet the necessities of the DT model. Due to the multifaceted nature of the
building environment and the numerous services it offers, monitoring and controlling
it using a single digital replica is challenging. To address this, multiple BIM models
are generated from the original BIM files. These models store specific information

and function independently to handle various aspects effectively.

In the context of immersive technologies, technology that switches out the actual
world with a fully virtual environment is VR, improves it with simulation is
augmented reality (AR), or combines the two is mixed reality (MR) (Salih and El-
adaway, 2024). Yang et al. (2024) claim that VR offers a wide range of uses in
construction over the lifespan of a project. It enables architects to totally immerse
into the design process, assessing lighting, materials and set up. Also they emphasize
VR and AR may offer both interactive and immersive usages by combining BIM,
loT and other innovations. They further discuss AR has lasting significance in the
construction industry, particularly when combined with tools for identifying and
visualizing environmental abnormalities in building projects. Incorporating VR/AR
with BIM is anticipated to improve project awareness by allowing users to virtually
enter buildings, simplify onsite manufacturing with less errors and more (Pan et al.,
2021a). Additionally, AR enhances construction visualization by overlaying digital
data in the physical world, while VR creates simulated work settings for detailed

planning and education by offering virtual supervision throughout the construction

11



stages (Pan et al., 2021b; Sabet and Chong, 2020). Moreover, immersive
technologies promote safety and risk management during the construction stage, help
with employee education and simulate the process of construction (Pan et al., 2021b;
Piras et al., 2024). Furthermore, these tools enable people to experience actual job
conditions previous to project finish (Piras et al., 2024). As Sabet and Chong (2020)
point out VR/AR facilitate automation, reduce flaws and improve security by
allowing virtual site inspections to see possible hazards. Also VR offers an
environment that can enhance satisfaction between stakeholders as well as work
excellence by providing detailed visuals and improved comprehension of project
participants (Yang et al., 2024; Sabet and Chong, 2020). Salih and El-adaway (2024)
offer significantly, demonstrating that AR and VR are one of the essential players in
time savings. Additionally, their study shows an intense connection among DT and
AR/VR.

ML, a subset of Al, is the development of technologies that can enable the computer
to acquire knowledge and make decisions on behalf of the user without being
explicitly programmed to do so and deep learning is an element of machine learning
(Fuller et al., 2020). DT combines Al, ML and data analytics to build interactive
digital simulations that can represent and forecast the present and future states of
reality while also learning from a variety of sources (Lu et al., 2020a). Wang et al.
(2022) identify DL as a simple neural network with three or more layers. They claim
deep learning enables DT to evolve from static digital duplicates into dynamic
instruments capable of learning, adjusting and optimizing. DT are created and run
using DL as a core technology. Also they state that deep learning, as a subset of
machine learning, has the capacity to examine the extensive data gathered by DT for
prediction, operational enhancement and facilitating the self-improvement and
adaptability of DT over time. As researchers state numerous Al programs and
services rely on DL to increase automation and carry out both physical and mental
duties without any human participation. In their study, in order to evaluate
inhabitants' environmental peacefulness, the deep learning approach is used to
evaluate the impact of DT applications in intelligent buildings. Austin et al. (2020)
point out the operation and optimization of the DT system greatly benefits from
machine learning. ML systems can examine data gathered from physical objects or

their surroundings and use it to estimate outcomes or discover movements.
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Furthermore it gives the DT the analytical capability required to make insightful
conclusions from the data it has acquired, improving its ability to reflect and monitor

the condition of the real world item or system.

Sensor technology involves employing a variety of sensors to identify and react to
specific signs in the physical surroundings, such as light, temperature, movement,
moisture, pressure, or numerous other environmental factors. (Riaz et al., 2015;
Austin et al., 2020). Austin et al. (2020) indicate sensor technology is essential for
both building and running a DT. Sensors that are integrated into the physical object
or its surroundings gather real time information regarding different aspects and
variables. This information is afterward sent to the DT, which utilizes it to adjust its
condition and actions to mirror those of the physical counterpart. They discuss,
sensor technology acts as the crucial data bridge connecting the physical object to its
DT, ensuring the digital representation accurately mirrors the current status of the
real-world counterpart. This makes it possible to observe, assess and improve the
physical system or object in real time using its DT. As Riaz et al. (2015) point out,
nevertheless, sensor data flows will provide challenges for conventional approaches
to data management due to the enormous amounts of data. Similarly Ham and Kim
(2020) mention the challenges that may present an issue, and one of them is the
precision of the gathered data, which can impact the overall dependability of both the
collected data and the subsequent analysis. Additionally, the process of gathering
data can be lengthy and may lead to notable reluctance or discomfort among
participants, particularly in participatory sensing methods. This might influence the

extent to which these technologies can be effectively utilized.

Ying et al. (2019) mention that cloud technology involves employing distant servers
on the internet for data storage, management and processing, instead of relying on
local servers or personal computers. This offers users the ability to access data and
applications from any location with an internet connection, enabling advantages like
capacity, adaptability and cost-efficiency. They further state DT technology typically
utilizes cloud computing for the storage and processing of extensive data. This
technology requires generating a virtual duplicate of a physical entity or system,
enabling examination, modeling and optimization. As they indicate, collecting and
processing the substantial data essential for this purpose can be achieved more

efficiently and economically by taking advantage of cloud computing resources.
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Moreover researchers emphasize, cloud technology facilitates universal access to DT
models and services via an internet connection, simplifying collaboration and
information sharing among multiple locations and organizations. Additionally
Akanmu et al. (2021) assert that the amount and diversity of DT data make
traditional databases unsuitable for storing it, which leads to growing interest in big
data storage options like cloud platforms.

The technologies that contribute to the formation and operation of the DT are
visualized in Figure 2.2. By combining these technologies, DT creates interactive
virtual worlds that can predict and depict the current and future situations of reality.
Also how these different technologies contribute is briefly described in the figure.
Moreover each technology is rapidly evolving so it is directly increasing the potential

of the DT in this process.
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Figure 2.2 : Technologies form the foundation of the digital twin system.

The use of DT solutions is growing in popularity as the construction industry looks
to increase effectiveness and competitiveness (Moshood et al., 2024; Laszig et al.,
2020). This strategy makes use of Industry 4.0 technologies customized for the
building sector (Moshood et al., 2024). Figure 2.3 examines the ways in which these
technologies assist the 4 defining features of DT: data acquisition, data processing,
modeling and simulation and decision support enablers. Data acquisition is gathering
unprocessed data and sending it to the database or cloud-based system using essential
technologies. Data processing is crucial in order to effectively model and analyze
large, live databases and turn them into useful information. 3D models and

simulations are employed in modeling and simulation, two essential components of

14



DT technologies, to view and evaluate scenarios. Decision support enables
construction systems to handle interruptions and guarantee seamless lifecycle

transitions by using Al and semantic tools.

Figure 2.3 : 4 fundamental characteristics of the DT system adapted from Moshood
et al. (2024).

2.1.2 Digital twin in diverse industry contexts

Other than building applications there are some other areas such as transportation,
scheduling, adaptive traffic control, production, healthcare, smart city and aerospace
industry. DTs are used by a variety of industrial sectors to improve the management
of physical assets, physical systems and production processes (Wang et al., 2022).
Manufacturing, aerospace industry, healthcare and infrastructure systems are the
industries that benefit from the DT (Azfar et al., 2023; Akanmu et al., 2021).

Azfar et al. (2023) mention that it has been proven in a study conducted in Atlanta
that the use of DT in city transportation increases driving safety and reduces
transportation time. In the study called North Avenue Smart Corridor, traffic flow

was tried to be regulated effectively by using loT and cameras, so a better
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environment was created for pedestrians, cyclists and car drivers. Sensors detect
vehicles and pedestrians and transfer their location to the 3D model whereas cameras
transfer traffic density information to the digital model. As a result, Al synchronizes
guiding elements such as traffic lights and regulates traffic flow. Apart from this, the
model, which receives data from car driving, can also learn information about

driving, leading to a better functioning transportation idea for the future.

Deria et al. (2022) examined the DT to explore the feasibility of automatically
generating the best work scheduling and planning resource allocation for pavement
in roadway construction sites. Thus, they expect it to provide benefits by reducing
the need for human labor, human error and unproductive times in the work plan in

road construction.

As an example of sensor usage in traffic, The Istanbul Metropolitan Municipality
Transport Department (2018) created the adaptive traffic management system to
minimize traffic density and boost traffic flow in Istanbul. This system dynamically
regulates traffic based on the real time density of vehicles at intersections. Initially,
magnetic sensors at crossings count vehicles and send data to the intersection's traffic
signal controller. Then the controller transmits it to the adaptive traffic management
system, managed by the transportation management center. Using a real time
optimization algorithm, the system calculates traffic density and adjusts green light
durations for each direction.This results in reducing delays by %15 to %30 when
compared to traffic data from intersections where the adaptive traffic management
system is not employed. This improvement leads to a %20 reduction in travel times
and a %35 increase in traffic flow. Beyond just time saved in traffic, there's also a
%15 decrease in fuel consumption rate. As a result of its implementation,
approximately $700,000 worth of fuel is conserved annually. On average, each

intersection benefits from a time-saving of approximately 1.7 billion per year.

Fuller et al. (2020) express DT are frequently used in the manufacturing industry to
integrate data throughout physical and virtual machines, enabling simulation,
evaluation and improvement of production processes. They also point out DT is able
to offer current information on machine efficiency, identify struggles previously and
increase reliability and performance. In addition, a number of industry leaders have
used DT in everyday manufacturing and have applied appropriate patents for

advances in technology in manufacturing (Pan et al., 2021a). Wang et al. (2017)
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emphasize the importance of human-robot collaboration since it is very useful in
industrial production and creates a safe and optimized production environment
especially in assembly tasks. Collaboration between humans and robots may be
observed in a variety of ways such as guiding the robot with 3D bare hand gestures
and helping humans with physical tasks. According to them, DT is a virtual model of
a production unit used for monitoring, analyzing, planning and control. It interacts
with the real world by receiving real time sensor data and influencing the physical
environment via robotics. They indicate this technology has the potential to be a
valuable tool for continuous process assessment, improvement and engineering

support during process changes.

DT technology offers a wide range of uses in the healthcare sector (Erol et al., 2020;
Akanmu et al., 2021). Akanmu et al. (2021) point out, in healthcare, DT are
frequently applied to simulate environments that are adapted to the needs of
researchers, doctors, hospitals and healthcare providers. DT might be adopted to
analyze the human body in real time, simulate the effects of medications and prepare
for and execute surgeries (Fuller et al., 2020). Erol et al. (2020) mention it allows the
creation of virtual copies of patients, leading to personalized diagnosis, treatment,
and monitoring. Thus, DT can help hospitals optimize resource allocation and
streamline processes. They also discuss that DT enables continuous monitoring of
vital signs, providing valuable health information in the pharmaceutical industry
when integrated with wearable devices. Furthermore they state, DT plays a
significant role in developing personalized medicine and enhancing production
efficiency. Moreover, they hold promise for improving organ transplantation

outcomes and expediting vaccine and medicine development.

Additionally DT has various applications in smart cities; however, the studies
primarily focused on the following areas: infrastructure management, urban planning
and design, maintenance management and services (Lu et al., 2020a; Shahat et al.,
2021). Lu et al. (2020a) express DT can be used to manage various aspects of city
infrastructure, such as transportation systems, water and energy networks and waste
management. Actual time data can be collected and analyzed to optimize their
performance, detect anomalies and improve maintenance and resource allocation by
creating a virtual replica of these systems. Furthermore they indicate that during the

urban planning and design phase, DT plays a role by modeling various situations and
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assessing how they affect the city. Additionally they show DT has the potential to
enhance citizen services and participation by offering individualized insights and
suggestions. As researchers highlight, by integrating data from transportation
systems, weather forecasts, and event calendars, DT provides public transport
updates, suggests personalized activities, and enables interactive communication
between residents and city officials. Moreover Austin et al. (2020) give an example
of a data driven municipal operations center in Rio de Janeiro, Brazil, which collects
live information from 30 companies, such as emergency, transit, utility, and security
services, into one place. A team of 180 data operators oversees these records,
keeping an eye on and responding to environmental and urban events. In another
study, Kim and Ham (2020) collected image data via drones and created a DT and
investigated the physical damage from the environment to the utility poles. Thus,
with the data and information they obtained from research, they applied
improvements regarding the positions and angles of the utility poles which is for
better smart city applications. Fuller et al. (2020) state DT in smart cities can
optimize energy consumption, improve infrastructure management, and enhance
urban planning. They enable actual time analysis of data from various sources, such
as sensors and loT devices, to monitor and optimize the performance of city
infrastructure, including transportation systems, utilities and public services. They
further highlight that DT can help city planners make informed decisions, improve
efficiency and enhance the overall quality of life in smart cities by simulating and
analyzing different scenarios. Therefore they demonstrate, DT can be used for city
wide simulations and monitoring, including areas like traffic management and
renewable energy. DT in smart cities provide living analysis, simulation and
prediction based on accurate analytics, contributing to more efficient and sustainable
urban environments. (Fuller et al., 2020; Lu et al., 2020a; Kim et al., 2022)

In the aerospace industry, DT is utilized for upcoming NASA vehicles. They
combine highly accurate simulations with integrated vehicle health management
systems, maintenance records and past data to guarantee safety and dependability
(Glaessgen and Stargel 2012).
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2.1.3 Architectural and construction applications of digital twin

Construction sector, with its large labor force and GDP contribution, is a vital
industry for all economies having an average contribution of %9 to national
economies (Ellul et al., 2024; Nguyen and Adhikari, 2023). However, Arowoiya et
al. (2023) highlight, the construction industry experiences various challenges such as
low productivity, insufficient communication, limited technological advancement,
inadequate project performance and low innovation. Moreover, despite the
availability of technologies aimed at enhancing productivity and performance, the
construction sector is reported to be slow in adopting innovative technologies
compared to other industries (Hasan et al., 2018). With the rising need for greater
efficiency and competitiveness in construction, the adoption of DT solutions is
becoming increasingly common (Moshood et al., 2024). DT concepts are significant
in the architecture, engineering, construction, and facility management (AEC/FM)
sectors (Lu et al., 2020b). DT helps reduce the long-term impacts of buildings and
makes the construction process more efficient (Boje et al., 2020). Furthermore, there
are numerous applications for DT technology in the construction and architectural
industries, and the field of architecture can greatly benefit from its utilization (Lu et
al., 2020a; Wang et al., 2022). A review of the literature revealed a wide range of
architectural applications of DT technology. These are include design visualization
and simulation (Lu et al.,, 2020a; Wang et al., 2022), indoor environmental
monitoring and optimization (Opoku et al., 2024; Hu et al., 2023; Khajavi et al.,
2019), and energy performance and sustainability analysis (Zhang et al., 2022; Lu et
al.,, 2020a; Debrah et al., 2022). Additionally, integrated technologies for
performance forecasting (Almusaed & Yitmen, 2023; Elfarri et al., 2022; Boje et al.,
2020), real time monitoring and facility management (Sun et al., 2022; Lu et al.,
2020b), and anomaly detection (Lu et al., 2020b; Hosamo et al., 2022) are commonly
discussed applications. Furthermore, reducing construction errors and enhancing on
site coordination (Wang et al., 2022; Deria et al., 2022; Boje et al., 2020), enabling
human robot collaboration in construction tasks (Wang et al., 2021), and managing
lifecycle data (Opoku et al., 2024; Lu et al., 2020b) are also among the notable areas
of implementation in architectural practice. Lu et al. (2020a) emphasize that the
operation and maintenance phase, which lasts the longest in the property's life cycle,

has received less attention in studies, so the key initial step for efficiently managing
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and sustaining buildings is to establish a well-structured framework, supported by
real world examples, for creating a DT. But in contrast, Almatared et al. (2022) claim
that the operation and maintenance phases of the building's life cycle are where DT
technologies are most commonly used particularly. The reason for these two
different opinions might be the increasing demand for research on this subject in the
last 2 years. Applications and advantages of DT for establishing smart construction
services are numerous such as enhanced site sensing, real time data visualization and
increased application of Al (Bosch-Sijtsema et al., 2021; Wang et al., 2021). Some
researchers have analyzed the architectural applications of DT focusing on indoor
conditions whereas others discuss energy efficiency in terms of sustainability, site
sensing and human robot collaboration. Boje et al. (2020) mention that DT offers a
significant enhancement in site sensing. Furthermore they indicate DT offers real
time data visualization, which allows for the careful monitoring and control of assets
throughout their entire lifespan. Lastly, the study adds using Al into DT can enhance
human involvement in negotiation heavy construction processes. Similarly Almusaed
and Yitmen (2023) highlight Al simulators and DT are used in smart building design
ideas to improve building performance and client satisfaction. The models simulate
various design options and forecast their effects on building efficiency, comfort and
security using data about structure use, architectural form and functions, plus
environmental factors. The models are able to evaluate several design possibilities,

identify any problems and improve building operations and satisfaction for users.

Wang et al. (2022) express buildings using DT programs have immediate access to
constructed models. This means that they will be actual time connected, current
status work tracking is possible for companies. They mention the use of DT in
construction has the potential to address typical issues in the construction process,
such as minimizing errors and redundancies by providing real time information
updates to construction sites. Furthermore as Sun et al. (2022) indicate, DT can make
it simple to access elements for managing building operations, allowing for improved
efficiency of building operations and the early identification of emergency situations.
Also by converting management system choices into practical actions, they may
control the operation in the real world. In addition they express that the information
stored digitally plays a crucial role in making building operations more efficient and

provides a system for managing operations more effectively.
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As Lu et al. (2020a) state DT finds application in the design and construction stages
of building projects. They offer architects a digital representation of the structure,
enabling them to visualize the design, spot potential problems and implement
required modifications before starting construction. The study shows DT is also
valuable during a building's operational and maintenance phase. Researchers supply
real time information on the building's performance, assisting facility managers in
overseeing its state, forecasting maintenance requirements and optimizing
operational processes. Moreover they state that the DT can play a role in promoting
sustainability in architecture through giving information on a building's energy
consumption, water use and waste production. This data helps architects and building
owners in developing plans to reduce the building's ecological footprint. As Debrah
et al. (2022) reveal, sustainability, involving the effective use of resources, is
extremely problematic for the AEC industry because construction activity generates
the majority of global energy consumption (36%) and carbon emissions (37%).

Wang et al. (2021) designed a task for DT application where participants
collaborated with a robot to install drywall panels. The case study involved vertically
installing four panels on a wall frame, with participants choosing the order and type
of drywall for each task. In conclusion, they highlight that DT provides a virtual
representation of the real environment, integrating crucial real world data to facilitate
construction tasks and enable instant changes and revisions. The research concludes
that human-robot collaboration reduces human error and enhances the benefits of
technology as Deria et al. (2022) emphasize the importance of reducing human errors

by using DT.

Similarly Khajavi et al. (2019) gather, examine and use over 25,000 sensor
measurement examples to develop and confirm a restricted DT of a facade piece for
an office building. They conducted the study to illustrate the implementation strategy
and emphasize the advantages of the DT. In the experiment, after processing the light
sensor data, software was used to represent the current condition of facade
brightness. Consequently, they express that the lighting system's daily energy
consumption can be significantly reduced. In the study, they concentrated on
applications of a DT aimed at reducing maintenance costs, enhancing tenants'
comfort and decreasing the overall management and operational expenses of a

building. Furthermore they mention the DT equipped with sensors that measure air
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quality, temperature and relative humidity can provide the necessary data for
implementing an air conditioning system in indoor spaces. Likewise Zhang et al.
(2022) state measurement and management of energy performance as the most
important application factor for buildings and how DT can help us accomplish
control over energy efficiency. Energy analysis for buildings in the design stage and
implementing energy management in close to real time during the operational phase
are examples. Moreover, they mention that the DT in the workplace can facilitate the
best possible design and use of office space through the use of performance and
health information from people inside. The result can improve user happiness and

provide owners more control over the workspace.

Opoku et al. (2024) focus on creating DT to track interior conditions in a university
library, campus of Western Sydney University. To do this, technologies for the 10T
and BIM integrated to produce a semiotic representation of the internal parameters of
the library. Improving air quality, the lighting and temperature control inside the
building is the goal. The paper discusses the difficulties in incorporating current time
tools for data collecting and graphical representation in the construction sector. Hu et
al. (2023) particularly intend to improve the automation and accuracy of preserving
indoor air quality by developing a parallel deep learning approach for failure
forecasting and a system of prediction facilitated by DT. The goal of the project is to
increase comfort for tenants, reduce hazards and quicker repair processes in building

settings while filling the research gap in predicting failures for interior conditions.

In a study conducted by Elfarri et al. (2022), they utilize data derived from a
contemporary residence, encompassing diverse parameters associated with the
home's surroundings and functions. Afterward, machine learning models are
developed and trained with this data to construct predictive models capable of
anticipating the future states of the house. The evaluation of these models focuses on
performance metrics, including accuracy in predicting various conditions within the

residential environment.

Besides Lu et al. (2020b) point out efficient asset management is crucial for ensuring
the optimal performance and serviceability of buildings. Despite this importance,
there is a shortage of effective strategies and comprehensive methods for handling
assets and their data in a way that facilitates the monitoring, detection, recording and

communication of operation and maintenance issues. This study introduces a DT-
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enabled anomaly detection system to improve asset monitoring in daily operations
and maintenance. The heating, ventilation and air conditioning (HVAC) system of
the Institute for Manufacturing building at the University of Cambridge serves as a
case study. To demonstrate the DT's capabilities in data integration, anomaly
detection and visualization, the system monitors the building's centrifugal pumps.
Similarly Hosamo et al. (2022) focus on the HVAC system of the building and
examine its operation with DT. Although the researchers work on a similar topic,
they approach it with different methodologies. Hosamo et al. (2022) adopt predictive
maintenance technology with BIM, 10T and ML techniques to monitor errors
whereas Lu et al. (2020b) employ the Bayesian online change point detection

methodology for anomaly detection.

A bibliographic analysis was conducted to understand the research trends and status
of the DT concept in the literature. Research related to DT and the construction
sector was gathered from the Scopus database. All types of documents, including
conference papers, articles, reviews, book chapters, books and conference reviews
were considered to capture the perspectives of researchers. No time constraints were
imposed on accessing information in the literature, but the focus of the paper is on
research conducted in English. The advanced search engine on Scopus was utilized,
with filtering based on Title-Abstract-Keywords. The search code employed was
TITLE-ABS-KEY ("digital twin") AND TITLE-ABS-KEY ("construction project"
OR "construction industry” OR “construction sector”) AND (LIMIT-TO
(LANGUAGE, "English™)). A total of 340 publications were identified during the
search. Subsequently, the publication data from the Scopus database for the current
search was exported as a CSV file for bibliometric mapping using VOSviewer
software. In the Scopus search, information related to a total of 340 publications was
obtained and Figure 2.4 illustrates the distribution of these documents across
different years. The earliest data available in Scopus dates back to 2018. The chart
depicts a steady increase in publications since 2018, with a notable rise in 2020.
Although the publication count has been doubling on average each year until 2022,
the publication counts for 2022 and 2023 are very close to each other. This result
may mean that due to the publication count reaching a certain point, the number of
publications related to the topic may not show a steep increase in the coming years

on the graph; this might indicate a saturation level. It's important to note that the
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analysis concluded in the early months of 2024, and the statistics for that year may
not fully represent the current circumstances. Therefore, the apparent decline in the
figure might not signify an actual reduction in numbers. Nevertheless, it can be
inferred that interest in the DT concept experienced a significant expansion between
2018 and 2023.
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Figure 2.4 : Amount of publications for DT in AEC during 2018-2024.

Figure 2.5 shows the document type distribution. Among the 340 papers addressing
digital twin applications in the construction industry, articles and conference papers
constitute approximately 82%. Reviews (10.9%) and conference reviews (4.1%)
come next, with 37 and 14 publications, respectively. Books (0.9%) and book

chapters (2.6%) are the least preferred types in the table.
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Figure 2.5 : Type of publications.

For citation analysis, VOSviewer was employed to analyze citations in AEC industry
documents related to DT. According to Scopus, 5 major contributors in this area are
identified and listed in Table 2.1. These are: Boje et al. (2020), Opoku et al. (2021),
Pan et al. (2021a), Lee et al. (2021), Sepasgozar (2021).
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Table 2.1 : The most cited publications on DT in construction industry.

No  Author Title Citation Research Focus
1 Bojeetal. Towards asemantic 476  Authors emphasize the necessity
(2020) construction digital of a construction digital twin
twin: Directions for (CDT), identifies capabilities and
future research highlight key research issues in
the domain. Also they address
BIM's weaknesses and
limitations.
2 Opokuet Digital twin application 214  The paper examines the DT idea,
al. (2021) in the construction growth of the concept, essential
indusrty: A literature technologies and six application
review area in the lifecycle stages of a
project and implementation in the
construction industry.
3 Panetal. A BIM-data mining 212  The study presents DT structure
(2021) integrated digital twin that incorporates data mining, 10T
framework for and BIM to enhance intelligent
advanced project construction project management.
management Moreover future perspectives on
construction through the
application of DT and Al are
given in the paper.
4 Leeetal. Integrated digital twin 178  The paper aims to establish an
(2021) and blockchain integrated framework that
framework to support combines DT technology with
accountable blockchain for improved data
information sharing in communication and enhanced
construction projects information sharing among
construction project stakeholders.
5 Sepasgozar Differentiating digital 129 Emphasizing its importance in

(2021)

twin from digital
shadow: Elucidating a
paradigm shift to
expedite a smart,
sustainable built
environment

implementing Industry 4.0 to
differentiate DT from other
digital modeling practices. It also
highlights integrating DT with
blockchain and deep learning,
demonstrating benefits in
improving efficiency.

Among these publications, the work of Opoku et al. (2021) is featured in the Journal
of Building Engineering, the contribution of Sepasgozar (2021) is found in Building,
whereas the remaining ones are published in Automation in Construction. The
documents commonly focus on discussing the influence of DT on productivity and
efficiency, as well as the potential of collaboration with other emerging technologies
in shaping the future of the construction sector. We may determine the widespread
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use of particular themes and the focus of research by examining the co-occurrence
data of author keywords in papers. Utilizing VOSviewer, we generated a co-
occurrence network of author keywords, where the size of keywords reflects their
popularity, colors distinguish clusters, and the distance indicates similarity.
Furthermore, the connections between terms indicate relationships inside the DT and
the construction industry. With 2 being the minimum number of keyword
occurrences,155 keywords out of 868 meet this criterion. Figure 2.6 displays a

bibliometric map illustrating the co-occurrence of author keywords.
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Figure 2.6 : Bibliometric map of author keywords co-occurrence network.

Based on the analysis, the term digital twin emerges as the most frequent keyword,
appearing 132 times, in cluster 1, indicating a significant association with other
relevant concepts. Following closely is BIM, the second most common keyword,
occurring 57 times and placed in cluster 11. The third, digital twins, is part of cluster
6 with 41 occurrences. In this map, several terms that are associated with the
computer and machinery industries are found in minor clusters, including cyber
physical systems, fault detection, neural network, smart contract, petri net and more.
According to the definition of the National Institute of Standards and Technology,

cyber-physical systems involve the interaction of various components, including
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physical, digital, analog and human elements and are designed with integrated logic
and physics to ensure effective functionality (NIST, 2024). International Business
Machines defines a neural network as a model or machine learning program that
mimics the way the human brain makes choices (IBM, 2024). Also a petri net tool is
capable of being used to simulate the system, produce code, examine its
performance, and verify the model (Thong, 2015). This occurrence may be attributed
to the direct impact of advancements in computer science and technology on the
application of DT in the construction sector. Moreover, research on DT spans across
interdisciplinary areas, including engineering, information science, and computing.
Nodes of smaller size indicate a less frequent discussion in academic publications
compared to larger nodes. Nevertheless, if a topic is a recent development, it may
have future growth potential. To gain insights into this matter, it is necessary to
closely examine the historical development of keywords. In response to this goal,
Figure 2.7 was generated by integrating historical data into the analysis.
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Figure 2.7 : Bibliometric map of author keywords co-occurrence overlay.

The addition of a time option to the overlay visualization map causes the colors to

change, but the screen, point size and clusters stay the same (McAllister et al., 2021).
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The cluster colors transition from blue to yellow as the years approach the present.
Examining the keywords published annually as an overlay, terms such as digital
twin, BIM, construction industry, internet of things and industry 4.0 stand out as
being crucial in the field; they are frequently used in academic papers and indicate
the largest clusters. Furthermore, these terms are predominantly shaded in either
green or blue, signifying their extended usage by researchers. Notably, within the
notable blue clusters, the most significant ones include BIM, construction, big data,
blockchain and facility management each featuring in 57, 14, 11, 11, and 10
documents, respectively. On the other hand, within the expansive green clusters,
aside from the terms digital twin, BIM and construction industry, we find internet of
things, artificial intelligence, virtual reality and deep learning noticeable each with
15, 10, 8, and 8 occurrences, respectively. Lastly, we note that greatest terms within
the yellow cluster are predictive maintenance (9), sustainable construction (6),
construction management (6) and ontology (6). Moreover, there are keywords that
are primarily observed within the yellow clusters, which are highly specialized in the
field of DT technology such as semantic web, industry foundation classes (IFC),
intelligent construction, scan to BIM and automation. Recent research predominantly
utilizes the keywords found in the yellow clusters. However, this does not guarantee
their sustained relevance in the future. Future studies might reveal an expansion in
their significance or they could remain relatively small. We can state that future
modifications in their dimensions could occur. Moreover, according to the analysis,
yellow, which is currently chosen keywords, refers to more specific topics compared
to terms found in other colors. Table 2.2 has been created to enhance the distinction
among the keywords found in the clusters shown in Figure 5. It clearly depicts the
clusters, their colors and the keywords associated with each cluster in a list format.
These 15 clusters were titled with DT to more accurately represent the application
area of the construction sector. The first cluster, "DT and Construction,” consists of
22 keywords, making it the group with the most keywords. Cluster 2, "DT &
Technological Advancements” has 15 keywords. Cluster 3, "DT & Management"
consists of 14 keywords. The top 3 clusters have the most keywords, followed by the
clusters C4 (12), C5 (12), C6 (11), C7 (10), C8 (10), C9 (10), C11 (10), C12 (9), C13
(6), C14 (3) and C15 (2).
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Table 2.2 : Clarification of the clusters.

Top 3
No Cluster Name  Colour Keywords
Keyword Occurences
1 DT & Red blockchain, building construction, building information model (bim), construction  Digital Twin 132
Construction logistics, cyber-physical system (cps), digital twin (dt), digital twin construction Interoperability 7
(dtc), ifc, interoperability, linked data, literature review, modular integrated
construction (mic), ontology, openbim, petri net, prefabrication, semantic web, Ontology 6
smart construction, structural equation modelling, supply chain, sustainable
construction
2 DT & Dark artificial intelligent (ai), building information modeling (bim), building Internet of things 6
Technological ~ Green information modelling (bim), collaboration, construction safety, construction site, (iot)
advancements digital twins (dt), framework, industry foundation classes (ifc), internet of things Review 6
(iot), lean construction, mixed reality, review, systematic literature review (slr), .
visulisation Construction
safety
3 DT & Dark building information model, construction management, construction project Internet of things 15
Management Blue management, cyber- physical system, energy management, engineering project Facility 10
management, facility management, fault detection, internet of things, management
optimization, predictive maintanence, risk management, simulation, smart Predictive 9

building _
maintanence
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Table 2.2 (continued) : Clarification of the clusters.

Top 3
No Cluster Name Colour Keywords
Keyword Occurences
4 DT & Yellow bibliometric analysis, building, building information modeling, built Circular economy 9
Sustainability environment, case study, circular economy, consruction and demolition waste, Sustainability 6
construction sites, digitalization, knowledge graph, sustainability, waste i )
minimization Built environment 4
5 DT & Purple bridge, civil engineering, decision-making, digital maturity, infrastructure, Infrastructure 8
Engineering inspection, life cycle, neural network, smart cities, survey, systematic Bridge 4
literature review, wireless sensor network o
Systematic literature 4
review
6 DT & Decision Blue building information modelling, building information modelling, decision Digital twins 41
making making, deep learning, digital twins, geometry, internet of things, Deep learnin
occupational health and safety, safety management, scan-to-bim, scan-vs-bim o .
Building information
modelling
7 DT & Bigdata Orange 3d reconstruction, big data, building digital twin, computer vision, data model, Big data 11
digitalisation, maintenance, modeling, sensor, structural health monitoring Maintenance 4
Sensor 4
8 DT & Brown automation, barriers, building information modelling (bim), construction, Construction 14
Automation construction industry, construction sector, design, information systems, Technology 6

management, technology

Construction idustry
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Table 2.2 (continued) : Clarification of the clusters.

Top 3
No Cluster Name Colour Keywords
Keyword Occurences
9 DT & Pink a1, digital futures, digital transformation, digitization, energy efficiency, green  Project management 5)
Digitalization buildings, industry 4.0, machine learning, productivity, project management Machine learning 5
Digital transformation 4
10 DT & Cyber  Light building information modeling, construction 4.0, cyber- phsical systems, Building information 12
systems Red cybersecurity, digital models, intelligent buildings, intelligent constructin, off- modeling
site construction, scientometric analysis, smart buildings Construction 4.0
Cyber-phsical
systems
11 DT & Virtual  Green arhitecture, augmented reality, bim, covid-19, engineering, gis, 10t, smart city, Bim 57
design virtual design and construction, virtual reality Virtual design and 1
construction
lot 10
12 DT & Light artificial intelligence, building information modeling (bim), construction Building information 11
Innovation Blue technology, digital construction, digital technologies, innovation, modular modeling (bim)
construction, offsite construction, process mining Artificial intelligence 10
Modular construction 5
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Table 2.2 (continued) : Clarification of the clusters.

Top 3
No Cluster Name Colour Keywords
Keyword Occurences
13 DT & Industry Light 3d printing, construction industry, decentralization, industry 4.0, plm, Construction 21
4.0 Yellow  smart contract industry
Industry 4.0 11
Smart contract 4
14 DT & Lilac  bridges, prototyping, synthetic fair data Bridges 4
Prototyping Prototyping 2
Synthetic fair data 5
15 DT & Grey digital fabrication Digital fabrication 2
Fabrication
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Keywords like petri net, linked data, openBIM and structural equation modeling as
well as terms such as energy management, predictive maintenance, simulation and
risk management are present in these clusters, showcasing a notable expertise in the
relevant fields. These keywords are seen in the yellow cluster in Figure 6, further
demonstrating how studies have become more specialized and in-depth recently.
Table 2.3 presents the numerical data about the author keywords in the map. Within
the table, the most frequently used top 20 keywords are clearly visible, which the
map created with VOSviewer might not be very obvious and easy to distinguish.
Similar or synonymous words have been included in the study to demonstrate how
the words appear in different contexts and forms in research papers. The results

simply indicate the research trends of DT in the construction sector.

Table 2.3 : Top Keywords in DT for the AEC Sector.

No Keywords Occurences Links Total Link  Avg. Pub.
Strenght Year
1 Digital twin 132 116 331 2021.96
2 BIM 57 68 152 2021.72
3 Digital twins 41 68 111 2022.05
4 Construction industry 21 41 69 2022.19
5 Internet of things 15 35 56 2022.07
6 Construction 14 28 45 2021.57
7 Building information modeling 12 26 35 2021.25
8 Big data 11 33 49 2021.64
9 Blockchain 11 24 43 2021.73
10 Industry 4.0 11 22 42 2021.64
11 Building information modeling 11 17 22 2022.27
12 loT 10 21 38 2021.70
13 Atrtificial intelligence 10 22 34 2021.80
14 Facility management 10 19 31 2021.70
15 Construction 4.0 9 17 25 2021.89
16 Predictive Maintenance 9 14 24 2022.44
17 Circular economy 9 18 22 2021.89
18 Building information modelling 8 24 29 2021.62
19 Deep learning 8 22 27 2022.38
20 Virtual reality 8 15 24 2022.38
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Although BIM and related topics continue to maintain their prominence in the
literature, we can observe the emergence of Al and related subjects such as IoT,
predictive maintenance, deep learning and virtual reality in recent research trends.
With the increased presence of these terms related to various technologies in the
building sector, positive effects on productivity and efficiency are observed. This
bibliometric analysis provides the vyearly distribution and classification of
publications, a co-occurrence network of author keywords, and a list of the top 20
terms connected to DT in the construction industry in order to identify current
research trends. The analysis used research article keywords to examine DT's
potential. At various phases of the building life cycle, these terms may have different
purposes in the construction industry. In the design stage, terms like BIM and risk
management may be the most popular, but in operation and maintenance, cyber-
physical systems and facility management could be more important. The construction
phase might be impacted by loT, sensors, smart contracts, optimization and
simulation, while the end of life phase could be influenced by circular economy and
waste minimization. As Komar et al. (2024) indicate, these emerging terms might
show that research on construction is becoming more specialized in the topic. Their
presence could emphasize its strategic significance in the AEC sector and ability to

influence future developments in the sector.

2.1.4 Digital twin throughout the building life cycle

Many phases of the building lifecycle have been the subject of research examining
the potential and preliminary scenarios for the implementation of DT (Chen et al.,
2024). The potential of the idea of DT to improve building lifecycle management has
been highlighted (Khajavi et al., 2019). Akanmu et al. (2021) discuss, in the building
sector, DT enhances lifecycle management from planning to operations by providing
a digital model that supports process optimization and decision making. Likewise as
Boje et al. (2023) indicate the main objective of the DT is to assist in improving the
management of the structures or procedures associated with them. However, they
further state that there are various applications of DT related to different stages of the
life cycle of a building in the construction sector. They claim the DT for a
construction asset is intended to span its entire lifecycle; nevertheless, there exists a
significant contrast in the dynamics between the construction and operational phases.

As a result, they mention distinct implementations are required for the DT during the
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construction phase as opposed to the operational stage. They define the goal of a DT
as a construction strategy to build things more efficiently. Also they highlight that
the DT of the building starts to form during the construction phase but attains more
advanced levels of development during the operational stage. Akanmu et al. (2021)
show that DT is essential for optimizing project lifecycle steps, particularly in the
stages of design, construction, operations and maintenance. Additionally, Menegon
and Filho (2022) state in the planning and management phase, the incorporation of
new technologies typically brings about a significant transformation with the
construction stage following it. In addition to all, Khajavi et al. (2019) discuss that
implementing a DT for building life cycle management offers various benefits
including enhanced construction efficiency, predictive maintenance, improved
resource efficiency, increased tenants' comfort and optimized building design.
Moreover, they claim DT can provide valuable insights for designing future
buildings based on identified flaws and improvement areas during the use phase.
Thus, architects can utilize a DT to enhance the performance of upcoming buildings
during modifications, renovations and when planning future constructions. Also they
state a significant point that DT might play a role in reducing maintenance costs and
decreasing the overall management and operational expenses of a building. Figure
2.8 conceptually shows the life cycle of a building, the roles of DT and the usage

phases of different types of DT.
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Figure 2.8 : The framework diagram illustrating the relationship between digital
twins and the building life cycle adapted from Boje et al. (2023).
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Firstly, the product DT might be overseen and controlled apart from the location or
structure, and it can also give its maker input at a different point in the product's life
cycle. Advanced products may include built-in sensing and/or actuation capabilities.
However, this situation is not yet widespread in the sector. Secondly, the
construction digital twin (CDT) is responsible for controlling the progress and
ongoing activities at the construction site. Just-in-time delivery, the use of equipment
on site, work environment like pollution, weather and worker risks, as well as
working conditions including hours worked and contact with hazards, can all be
monitored by the CDT. The costs are reviewed and updated to account for the most
recent occurrences. Lastly, building DT uses sensing technology to observe indoor
conditions similarly to the CDT, but primarily an emphasis on building tenants.
Predictions could be made for conditions at work, the effects on people's health and
security. Expenses to the property owner and residents may be computed more
precisely when considering environmental effects. For the end of life stages in
actuality, the building DT’s function is over there, but the life cycle information it
has collected can be saved and used as a knowledge base for upcoming projects,
uses, and studies (Chen et al., 2024; Boje et al., 2023; Yoon et al., 2023; Khajavi et
al., 2019).

In brief, throughout the lifespan of a project, DT can be extremely valuable because
they facilitate process permits, automate recording, control as-designed and as-built
details, optimize scheduling of resources, enhance logistics and security tracking,
enable predictive maintenance, guarantee assurance of quality and encourage legality

(Teisserenc and Sepasgozar, 2021).

2.1.5 Applications of digital twin in the construction phase

Opoku et al. (2021) assert in the building life cycle, the construction phase is
extremely important because it’s the stage that creates the final output. They state
construction sector activities are effectively handled with the help of DT. In a
different way Yang et al. (2024) emphasize the building stage of a project’s lifespan
includes not only converting designs and plans into a real building but also
performing at the highest levels of resource, budget and time management to
guarantee the project's successful completion. Additionally, they point out that the

project's safety, quality, time and cost effectiveness will all be directly impacted by
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the construction stage's performance. Boje et al. (2020) point out adoption of
construction DT could revolutionize the construction industry. This would enable
cost reductions, greater ecological responsibility and improved lifecycle
management. Plus, DT should access all project data, understand the big picture and
provide useful information. Almatared et al. (2022) propose integrating DT in
construction stages by using the numerical results. In the construction stage, by
combining innovations such as BIM, drone surveys and laser scanning, a DT of the
job site is created, enabling efficient site management, scenario estimation and
decision making through the integration of IoT devices with the BIM model (Piras et
al., 2024). DT might be utilized to support construction monitoring and management,
involving progress, security, quality, workforce, equipment and materials by
applying it to surrounding environments, current projects and even partially
constructed buildings (Jiang et al., 2021; Yang et al., 2024). Although there are
numerous applications and benefits of DT in the construction stage as CDT; the
literature primarily focuses on following areas: workforce oversight, material and
equipment management, site monitoring, optimization of time and cost, enhanced
decision making processes, integration with emerging technologies and
comprehensive participation. The applications and details are presented in Table 2.4.

Table 2.4 : Key applications of DT in the construction phase.

Key Application Area Implementation Purposes References

Workforce Oversight Reducing human errors Ellul et al. (2024), Wu et
Gathering health data from  @l- (2024), Deriaetal.
(2022), Hu et al. (2022),

Sensors Wang et al. (2021), Jian
Fixing body posture et al 9(2021.) o

Labor location detect

Material and Equipment Waste management Arsecularatne et al. (2024),
Management Yang et al. (2024), Boje et
) al. (2023), Hu et al. (2022),
Location detect Deria et al. (2022), Jiang et

Optimization of workflow  al. (2021), Akanmu and
Anumba, (2015)

Lojistic and supply chain

Situation monitoring
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Table 2.4 (continued) : Key applications of DT in the construction phase.

Key Application Area Implementation Purposes

References

Site Monitoring

Optimization of Time
and Cost

Enhanced Decision
Making Processes

Integration With
Emerging
Technologies

Comprehensive
Participation

Real-time data collection
Control of machines
Dynamic virtual illustration
Safety and risk management

Enhancement via DT-integrated

technologies

Upgrade current decision-
making strategies

Employing greater data and
innovative technologies into
process

Ability to incorporate (Al, loT,

ML, VR, AR, DL, CPS etc.)

The equal involvement of
various stakeholders

Moshood et al. (2024),
Yang et al. (2024),
Arowoiya et al. (2023),
Boje et al. (2023), Hosamo
et al. (2022), Wang et al.
(2022)

Salih and El-adaway
(2024), Lauria and Azzalin
(2024), Piras et al. (2024),
Yang et al. (2024), Jiang et
al. (2021)

Lauria and Azzalin (2024),
Moshood et al. (2024),
Arsecularatne et al. (2024),
Wang et al. (2022),
Bakhshi et al. (2024),
Wang et al. (2021)

Piras et al. (2024), Yang et
al. (2024), Wu et al.
(2024), Hu et al. (2022),
Begi¢ et al. (2022), Wang
etal. (2021), Boje et al.
(2020)

Zhang et al. (2024),
Bakhshi et al. (2024),
Arowoiya et al. (2023),
Nguyen and Adhikari
(2023), Jiang et al. (2021)

2.1.5.1 Workforce oversight

The DT approach in the construction stage aims to prevent losses from delays,

hazards and rework due to human errors while reducing unproductive time and

reliance on manual processes (Deria et al., 2022; Hu et al., 2022). Wang et al. (2021)

express in the DT system, labor can be rescued from repeated and physically

exhausting jobs by working with robotics. In addition it decreases the necessity of

being actually present on possibly dangerous building locations for humans. Ellul et

al. (2024) investigate the use of wearable technology for real time labor location

tracking in order to improve jobsite security by anticipating hazards and detecting
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incidents narrowly. They claim human centered DT are crucial for the security of
workers and it has a lot of promise for better safety and health standards in building
projects. Also in their study Jiang et al. (2021) explain a DT framework created to
understand labor movements in dynamic building environments by gathering real
time data and analyzing worker motions with a BIM model. Furthermore, they
mention a posture education platform that was created to assist employees in
practicing jobs with lower hazards from ergonomics utilizing wearable technology,
machine learning and virtual reality. Wu et al. (2024) discuss that real time danger
identification is possible by combining DT with AR to produce 3D representations of
hazard sources, AR alerts, human locations and line of sight directions. This
enhances the awareness of circumstances and safety of the workers on the job site.
Moreover DT keeps records of circumstances at work, including the total amount of

hours spent on activities and the risks encountered (Boje et al., 2023).
2.1.5.2 Material and Equipment Management

Boje et al. (2023) indicate further services, such as monitoring and transport
optimization to guarantee on-time delivery, are made possible via DT. Also the CDT
can oversee on-site equipment usage and working conditions, such as pollution,
weather and worker safety hazards. It calculates the impact on human health and
greenhouse gases produced by machines. By increasing efficiency in energy use and
decreasing waste, DT improves sustainability by facilitating continuous monitoring
and optimization (Arsecularatne et al., 2024; Yang et al., 2024; Hu et al., 2022).
Similarly Deria et al. (2022) state in order to reduce resource waste, the DT system
uses current sensor information from building sites to improve resource allocation.
Also they indicate the traditional methods in the construction operations lead to
delays and inefficiencies. However, the goal of integrating Al and DT systems is to
minimize those human mistakes by automatically allocating resources and
rationalizing workflow cycles. Jiang et al. (2021) state for secure, precise and
effective construction, DT can track, operate and regulate machines. Also DT assists
contractors in keeping an eye on material requirements and informing suppliers as
needed. Additionally, it can provide a lean theory-aligned workflow for managing
building supplies. The current time visual data can also assist in conducting various
planning simulations, such as equipment allocation plans, temporary logistics and
construction tasks (Boje et al., 2020). Akanmu and Anumba, (2015) discuss that
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material monitoring and activity observation by combining digital representations
with real construction, might enhance on-site safety and efficiency. They suggest
sensors to track item location, delivering geographical coordinates and status reports.
Predicting skills of DT, which are powered by location data to solve a variety of
Issues, present enormous promise for construction scheduling, including elimination

of waste, procurement and the construction workflow (Ellul et al., 2024).
2.1.5.3 Site monitoring

DT are essential throughout the construction phase because it provides real time
monitoring and synchronization with the simulation (Wang et al., 2022; Boje et al.,
2023; Akanmu and Anumba, 2015). DT enables rapid site issue resolution and actual
time viewing of construction site conditions (Hu et al., 2022; Akanmu and Anumba,
2015). Boje et al. (2020) discuss that while current methods rely on periodic laser
scans and manual updates from people, DT utilizes real time sensor data to offer
more precise and timely information. This enhances the accuracy of DT in
representing the construction site's status. Methods such as Al and visualization
could be employed in site monitoring to observe specific progress using object-based
methods so that as constructed photos and as planned simulation can be compared
(Jiang et al., 2021). Similarly Boje et al. (2023) state the Construction Digital Twin
(CDT) is essential for ensuring an efficient construction process by aligning the as-
designed models with real time project execution. Thus DT might prevent
undesirable situations that cause delays (Hosamo et al., 2022). By integrating DT
with industry 4.0 technology, an accurate digital duplicate of the site is produced,
allowing efficient control and continuous tracking throughout the project lifespan
thereby enhancing safety measures (Moshood et al.,, 2024). Regarding the
construction phase, Arowoiya et al. (2023) state that implementing the DT in the
construction process, in terms of safety, will help create a less hazardous atmosphere
and increase productivity by giving laborers access to real time information and
visualize what's happening in the construction area. Yang et al. (2024) state the
proper simulation, observing and evaluation of building situations at various periods
are made possible by DT. During the building stage, DT can be utilized to take
pictures or videos of the actual site by integrating AR and VR technologies with

sensors to provide remote instruction, safety monitoring, and risk alert. Also the
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existing state of traditional safety monitoring methods can be modified by this
technology.

2.1.5.4 Optimization of time and cost

DT is one of the greatest factors influencing reduction of expenses (Salih and El-
adaway, 2024). For time and cost management, DT measures the amount of the task
finished as intended and evaluates its completion status (Jiang et al., 2021). Boje et
al. (2020) assert Al serves as a bridge between various planning systems and
different datasets, raising the integration of information at all levels. Additionally, Al
contributes to optimizing construction scheduling and logistics, leading to increased
construction productivity. By incorporating schedule and cost factors, a deeper link
between the design and construction phases is established, while lowering the
possibility of additional expenses brought on by rework (Yang et al., 2024). DT may
enable process optimization for the building industry, improving quality and
lowering expenses (Lauria and Azzalin, 2024). Salih and El-adaway (2024) propose
a decision-support model to help generate both cost and time progress or reductions
associated with the use of construction innovations. Therefore, by more precisely
forecasting project performance outcomes, the model enhances decision making on
the implementation of technology for building. Eventually, it maximizes the success
of construction projects. Piras et al. (2024) suggest the digital management
methodology that is a strategy method incorporating digital technologies including
DT, BIM, 10T and Al in order to enhance building steps and solve problems resulting
from traditional time and cost management techniques such as work breakdown
structure. It enables graphical identification of construction activities, real time
progress tracking, insight into resource allocation. Via DT in this stage, the
construction process can be accurately analyzed, human resource utilization
monitored, cash flow trends reviewed to adjust the project budget, and quality and

timelines ensured.
2.1.5.5 Enhanced decision making processes

The integration of DT with Industry 4.0 technologies improves decision making
based on data throughout the project lifecycle (Lauria and Azzalin, 2024; Moshood
et al., 2024). Deep learning-based DT systems may enhance automatic understanding

and decision assistance during the design and building stages (Yang et al. 2024).
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Experts might employ DT to observe progress on construction during actual time and
make well-informed decisions depending on the condition of the structure
(Arsecularatne et al., 2024; Wang et al., 2022). Wang et al. (2022) explain that by
utilizing predictive features, DT offers future simulations that allow for the
evaluation of different scenarios, calculation of their probabilities and cost
assessments to identify the most optimal options for future work. The system helps
site managers track progress, anticipate and address potential challenges, optimize
resource use and ultimately boost project efficiency while minimizing risks
(Moshood et al., 2024). Bakhshi et al. (2024) claim that although the difficulties in
adopting DT into practice because of the large initial expense and significant
technical know-how needed, several studies have found its benefits in terms of better
decision making, management and teamwork. Furthermore they state DT makes it
possible to simulate many situations, assisting stakeholders in forecasting results and
making wise choices. The capacity is very helpful for handling logistics and
foreseeing possible interruptions. Also, Wang et al. (2021) state the DT system
continuously monitors the workspace and robot states using sensors, transmitting
data to a VR interface for virtual scans. This allows experts to compare the as-built
environment with the BIM, facilitating organizing tasks and decision making without

physical hazards and stress.
2.1.5.6 Integration with emerging technologies

Effective use of DT during construction requires integration with smart technologies
(Boje et al., 2020). The incorporation of digital technologies, including BIM, 10T, Al
and DT into the construction industry improves efficiency, minimizes delays and
develops sustainability (Piras et al., 2024; Hu et al., 2022). Immersive technology
and DT can enhance construction safety, decision making, risk perception,
productivity and together they encourage equal involvement by enabling remote
collaboration and minimizing the requirement for on-site participation resulting in a
more secure workplace (Wang et al., 2021; Yang et al., 2024; Wu et al., 2024). The
DT system, which aims to enhance human-robot cooperation in the building industry,
combines VR for activity planning, presentation and ongoing interaction, allowing
human workers to efficiently oversee and direct robots (Wang et al., 2021). Moshood
et al. (2024) express, by incorporating cutting-edge technologies like VR, AR, 10T

sensors and radio frequency identification (RFID) tags, a smart construction site uses
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DT technology to improve building steps. They state several research priorities arise,
including the development of strong Al and ML algorithms for predictive capabilities
and the exploration of blockchain for data privacy and traceability. Likewise
Arsecularatne et al. (2024) state DT and blockchain integration is already popular
across various sectors and it can successfully address concerns about possession of
data, privacy, stakeholder availability and reliability. Also Yang et al. (2024) state
DT offers notable enhancements in managing projects and execution when combined
with BIM and Al. Additionally they investigate how ML can be used for autonomous
evaluation of harm and predictive maintenance. The construction process offers
considerable room for improvement, especially with the integration of automated
systems that can perform various tasks, although single-function robots still depend
on human supervision (Begi¢ et al., 2022). Furthermore, building components can be
autonomously examined by on-site discoveries, which can record flaws,

modifications and updates based on IFC schema (Jiang et al., 2021).
2.1.5.7 Comprehensive participation

The application of DT can improve stakeholder participation during construction and
the project management process (Arowoiya et al., 2023). DT may serve to help
different stakeholders and make integration easier (Jiang et al., 2021). Yang et al.
(2024) mention DT allows it to be simpler for project members to collaborate and
communicate information effectively. As they point out, stakeholders in construction
projects can model, track and evaluate the building's condition over time, improving
comprehension of its operation, connections and performance. Zhang et al. (2024)
highlight the value of multidisciplinary collaboration in order to improve building
processes which combine expertise from several disciplines like mechanical
engineering, civil engineering and Al. Bakhshi et al. (2024) discuss that in order to
overcome obstacles and boost efficiency, coordination between stakeholders in a
building chain of supply is essential. By offering one central location for interaction
and knowledge sharing, DT helps stakeholders collaborate more effectively. This
collaborative platform facilitates goal alignment and increases trust between supply
chain participants. Nguyen and Adhikari (2023) summarize that the construction
phase is characterized by continuous changes in facilities, equipment, materials,

human and design, necessitating enhanced coordination and collaboration.
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2.1.6 Advantages of digital twin technology in the construction industry

The advancements in DT technology influence a variety of areas, leading to diverse
opinions. As Sepasgozar (2021) emphasizes, increasing productivity is DT's primary
goal. However, there are numerous studies in the literature examining the threats as
well as opportunities of DT technology in the building sector. Some primarily
examine the cost aspect, few take a human centered approach, and others discuss it
from the perspective of environmental impacts. Turner et al. (2021) indicate, the
construction sector's productivity numbers will surely rise as a result of all the
features it has. The benefits of DT in construction projects can be categorized as
follows according to research in the literature: real time digital representation (Deria
et al., 2022; Ellul et al., 2024), remote monitoring (Elfarri et al., 2022; Jiang et al.,
2021), resource management (Hu et al., 2022; Orozco-Messana et al., 2022), safety
management (Wu et al., 2022; Akanmu et al., 2021; Hosamo et al., 2022), risk
management (Genc, 2021; Salem and Dragomir, 2023; Yang et al., 2024),
collaboration with autonomous robots (Moshood et al., 2024; Hu et al., 2022; Li et
al., 2021), waste reduction (Lydon et al., 2019; Lu et al., 2020a; Debrah et al., 2022),
predictive decision making (Elfarri et al., 2022; Jiang et al., 2022; Turner et al.,
2021), time and cost management (Genc, 2021; Bakhshi et al., 2024; Piras et al.
2024), communication and collaboration (Sabet and Chong, 2020; Zhang et al.,
2024).

According to the literature, a key feature of a DT for real time digital representation
is the dynamic visual simulation that integrates relevant data from the real
environment (Deria et al., 2022). By combining history and present data from a
building site, real time DT acts as only one source of knowledge (Ellul et al., 2024).
The capacity to refresh modeled data in current time is essential for delivering
current decision assistance (Yang et al., 2024). DT relies on actual time data to
forecast future outcomes and enhance performance, which sets them apart from BIM
(Nguyen and Adhikari, 2023). DT can provide a current picture of property status by
monitoring metrics (Piras et al., 2024). Turner et al. (2021) give an example in their
study that DT provides live captioned pictures with comments for people to see while
watching particular spots on location, and it allows construction experts to observe

overlays of details of construction in actual time on incomplete structures.
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Elfarri et al. (2022) state, with DT, remote monitoring goes beyond observation to
enable interaction with assets. This flexible framework supports diagnostics and
analytics, such as tracking room occupancy and temperature variations in a house
through sensor data. Additionally, digital twins can assist with equipment
monitoring, guaranteeing precise and effective construction procedures (Jiang et al.,
2021). Via remote monitoring, it improves failure prevention and identifies structural
problems in the operation and maintenance stage (Hu et al., 2022; Chiachio et al.,
2022). Similarly Khajavi et al. (2019) indicate also the DT might offer information

on the structure's maintenance requirements.

In the context of resource management, Hu et al. (2022) state that DT offers
advantages related to material use, such as optimizing structural design, reducing
material consumption, and minimizing waste generation throughout the design and
engineering stages. Furthermore, in the on-site construction phase it enhances the
traceability of building materials. Similarly in the operation and maintenance period,
durability monitoring is possible. Through quantitative evaluation, DT lead material
flows in the direction of a sustainable material movement, for reuse and recycling
after the end of life of the building (Hu et al., 2022; Orozco-Messana et al., 2022).
Likewise, Sun et al. (2022) point out that assessing the material's condition is a time-
consuming and labor intensive process therefore DT is very advantageous. By
providing real time reliable data, a DT enables adaptive resource management by
facilitating well informed decisions on workforce planning, material management
and resource allocation (Piras et al., 2024). DT makes it possible to respond to output
uncertainty by allocating resources efficiently like labor and materials (Bakhshi et al.
2024). Also in the construction stage, DT optimizes construction logistics (Hu et al.,
2022; Yang et al., 2024).

Regarding safety management, DT helps reduce training-related risks and improve
learning outcomes for construction professionals by offering a virtual practice
platform during the construction phase of the building life cycle (Hu et al., 2022; Wu
et al., 2022). Akanmu et al. (2021) state a DT framework aimed at reducing muscle
injuries in construction labor by establishing an interactive mapping between
employees’ physical postures and their digital counterparts. In their study Hosamo et
al. (2022) showed that through the detection of the operating errors, a few thousand

dollars in yearly savings in energy were achieved. In the same way, Teizer et al.
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(2022) suggest that it is important to consider DT for construction safety as a system
based strategy that improves overall security performance, as opposed to only

integrating sensory data.

In construction, risk management entails recognizing, categorizing, and evaluating
hazards to understand their possible impact (Genc, 2021). In the AEC sectors, DT is
viewed as a revolutionary instrument for risk management (Salem and Dragomir,
2023). Through the use of sensors, AR and VR devices, DT during building can
improve security tracking and risk alert by taking pictures or videos of the actual site
(Yang et al., 2024). DT allows early suspicious activity identification, which helps
with predictive maintenance and building control (Akanmu et al., 2021). Hosamo et
al. (2022) point out operational reliability is guaranteed and continuous tracking of
performance is made possible via DT. It offers warnings for care and fixes, so faults

can be found early and corrected before they get worse.

Autonomous robots are one of the most significant advances in Construction 4.0
which can carry out highly hazardous and routine tasks, minimizing the need for
humans in hazardous situations (Moshood et al., 2024). Under the category of
machinery works, within on-site construction, various advantages emerge (Hu et al.,
2022). DT usage increases object detection reliability while minimizing constant
mistakes and security threats (Li et al., 2021). Also it enables real time bidirectional
performance, situational awareness capabilities for execution and workflow
efficiency, autonomous robot production and remote interaction for communication
and control between humans and robots (Hu et al., 2022; Li et al., 2021). The
implementation of robotics may minimize labor lack, diminishing labor expenses and
lowering exposure to hazardous circumstances (Akanmu et al., 2021). As the
statistics reveal, 1061 deaths in the construction sector occurred in 2019, making up
almost 20% among all job-related deaths in the US. In this context Wang et al.
(2017) emphasize the importance of human-robot cooperation, especially in the
context of assembly tasks. However, to combine the best human and robotic talents,
training is necessary (Bilberg and Malik, 2019). Furthermore, Lucchi (2023) adds
that using digitally generated predictions that combine human-computer and human-
robot interactions should be guided by ethical considerations.

In terms of waste reduction, Lydon et al. (2019) emphasize that the scarcity of

natural resources and their environmental impact are significant global concerns.

46



2050 Swiss energy targets, which require substantial upgrades in energy efficiency in
both new and restored structures, are a result of these worries. Regarding
sustainability, Lu et al. (2020a) state that with their ability to provide data on a
building's water, energy, and waste generation, DT may help in the promotion of
sustainable architecture. By allowing for improved monitoring and control of energy
use, it helps minimize waste and support sustainable behaviors (Moshood et al.,
2024). Also through real time emissions monitoring in the on-site construction phase,
DT increases the potential for developing energy saving and emission decrease
techniques (Debrah et al., 2022). In the light of the studies related to DT and energy
efficiency in buildings, Liu et al. (2021) state monitoring energy is the most common
use of DT. Overall, DT has a positive impact on sustainability concern including

increased building energy efficiency (Hu et al., 2022; Khajavi et al., 2019).

DT, by enhancing prediction skills, can assist people who make decisions in avoiding
unforeseen expenses and mistakes (Salem and Dragomir, 2023). DT can estimate
forthcoming system states, create what if situations and make prescriptive
suggestions with the help of Al and ML (Elfarri et al., 2022). DT in predictive
maintenance employs ML to forecast circumstances, detecting flaws early and
assisting in making decisions (Hosamo et al., 2022). Records from various sources
can be put together and evaluated on a contemporary networked construction site to
produce insights that better worksite management, increase safety and facilitate more
effective decision making (Turner et al., 2021). The management advantages include
site. monitoring and indoor environment management both used in on-site
construction and operation & maintenance stages (Jiang et al., 2022). Businesses that
choose to utilize digital technologies want to give management quick access to
quality information that will help them make better decisions, spot efficiency
changes and cut expenses (Love and Matthews, 2019). Additionally it promotes
smart city developments (Hu et al., 2023).

In construction, effective cost control and budgeting are essential to avoiding
overspending and disputes. Effective time management is also essential to prevent
delays brought on by scheduling mistakes (Genc, 2021). Detection of anomalies in
smart structures assists managers in determining to meet project objectives with
regard to both resources and time costs (Salem and Dragomir, 2023). DT with

blockchain technology improves budget optimization by enhancing time
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management and teamwork in building supplies and increasing process openness and
traceability (Bakhshi et al., 2024). Higher execution of time and enhanced scheduling
are achievable by visual task tracking (Sabet and Chong, 2020). DT assists in
identifying delays, inconsistencies and inefficiencies by comparing the actual site
development with the projected timelines. This makes it possible for managers to
modify plans, cut out pointless work and better distribute resources, simplifies
processes for greater time and cost control during project execution (Piras et al.
2024).

Concerning communication and collaboration, Sabet and Chong (2020) state that the
use of DT can foster a more collaborative environment and enhance interdisciplinary
teamwork. Furthermore the satisfaction of stakeholders is increased by BIM and DT
technologies' simplicity in transferring information, which helps them better
comprehend another's job scope and minimizes possible misunderstandings or
intervention. Similarly Moshood et al. (2024) mention DT enhances stakeholder
communication, which eventually boosts the efficiency of the project. They also
indicate that more organized communications are made possible by developing a DT
from the beginning of a project according to results. Zhang et al. (2024) highlight the
precise application and feedback of the concept can be ensured by effective
collaboration between designers and contractors. Also the optimal construction
solutions can be assured by effective collaboration between DT systems and
constructed components. Therefore, interdisciplinary and multidisciplinary growth
are made possible by intelligent construction.

2.1.7 Challenges of implementing digital twin in the construction industry

Adopting the notion of DT in building sectors presents problems, such as how to
apply it most effectively in changing, real time contexts and how to properly offer
data visualization to clients (Turner et al., 2021). In this context, when the concept is
examined in more detail, there are many challenges using DT in architecture and
construction sector such as adaptability (Opoku et al., 2024; Sun et al., 2022), data
integration (Lu et al., 2020a; Ryzhakova et al., 2022), data management (Yang et al.,
2024; Riaz et al., 2015), high-fidelity model (Bilberg and Malik, 2019; Lu et al.,
2020a; Sun et al., 2022), interoperability (Boje et al., 2020; Lu et al., 2020b;
Almatared et al., 2022), operation cost (Moshood et al., 2024; Ghosh et al., 2020;
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Akanmu and Anumba, 2015), cybersecurity and privacy (Huang et al., 2020; Ghosh
et al., 2020; Piras et al., 2024), skill and training (Bilberg and Malik, 2019; Arowoiya
et al., 2023) and user interface (Boje et al., 2020; Sun et al., 2022).

In relation to the adaptability challenge, Sun et al. (2022) state that, to effectively
reflect the current status of the physical world, a DT must evolve in harmony with
real world conditions. This problem is one of the challenges when constructing the
infrastructure for DT technology. Moreover they state the challenges of creating a
live, two-way interaction between the actual and virtual twin is referred to as the real
time connection problem. They claim the success of DT technology depends on this
relationship since it provides realistic physical elements without sacrificing anything.
Also as Opoku et al. (2024) indicate, for DT development to be successful,
dependable network connectivity and the right 1oT sensor devices must be selected
and established to guarantee efficient live data transfer between the virtual copy and
the actual object. Ensuring a seamless connection and precise data transfer forecast

between the actual and online worlds is crucial (Piras et al., 2024).

Lu et al. (2020a) mention there are many major challenges to the creation of DT,
especially in the topics of data integration. As they state, building a DT involves
bringing together data from various diverse and independent sources, including real
time sensors, building management systems, cloud services, and among others.
Keeping up-to-date, quality information that is precise is a requirement for the DT to
function as a trustworthy tool for making decisions. When combining data from
numerous 10T devices with multiple types of data, such as raw information like
picture and audio streams, this becomes an extremely important difficulty
(Ryzhakova et al., 2022; Yang et al., 2024). Similarly Arsecularatne et al. (2024)

claim problems with data integration still exist.

Effective data management is essential for developing DT as they rely entirely on the
data they are built upon; furthermore, ensuring compatibility among diverse norms,
procedures, and data formats across systems is a significant challenge (Yang et
al.,2024; Lu et al., 2020a). As Riaz et al. (2015) point out, combining BIM data and
sensor data flows is going to be difficult for conventional methods of data
management because of the massive amount of data. Moreover, they discuss

identifying limited values in the obtained data is one of the major challenges of
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actual time data from sensor flows, because sensor information may be lost for a

variety of causes.

Sun et al. (2022) define the high-fidelity model challenge as a difficulty in producing
a DT that exactly reproduces every characteristic of the original object. Also add that
it describes a system's capacity to precisely imitate its actual environment in the DT.
Additionally Lu et al. (2020a) state that DT is a virtual copy of real assets,
incorporating Al, machine learning and data analytics to generate dynamic digital
simulation models. These models can adapt and fix themselves using various data
sources, aiming to precisely display and predict the conditions of their physical
counterparts. Nonetheless, they highlight the challenge exists in developing these
models and guaranteeing that they properly reflect their physical counterparts. An
absence of high-fidelity modeling and the limited synchronization capabilities across

physical and digital domains are two major obstacles (Bilberg and Malik, 2019).

Data interoperability stands out as a highly significant challenge within the AEC
industry when it comes to DT (Almatared et al., 2022; Boje et al., 2020). Boje et al.
(2020) point out that while there has been considerable advancement toward solving
interoperability difficulties, such as converting model data into formats, there is still
much work to be done before DT systems can be implemented successfully.
Furthermore, Almatared et al. (2022) mention that despite a lot of effort to make data
work well together in construction using different standards and computer tools, the
industry still has trouble with losing data, data not fitting well and missing meanings
when moving data between BIM applications. Data interoperability is problematic
since it takes a lot of work to connect DT data from sensors to the model. Lu et al.
(2020b) discuss creating new IFC entities to improve operation and management
information management. Making sure the DT can use the provided data efficiently
and enhancing data interoperability depend on the operational and maintenance stage
(Nguyen and Adhikari, 2023).

Assessing the expenses linked to setting up and keeping a DT system is a challenge
and the problem arises because there is often insufficient information available for
evaluating these costs accurately, making it tough to manage DT systems effectively
(Akanmu and Anumba, 2015; Moshood et al., 2024). Moshood et al. (2024) claim
the need for advanced technology in its implementation makes it costly to operate.

This is because it involves a lot of digital changes and a considerable initial
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expenditure. Likewise Jiao et al. (2024) point out there is still an initial expense
associated with DT implementation in the construction industry and some countries
may not use DT due to their expensive cost. Ghosh et al. (2020) indicate the financial
evaluation of 10T based methods, including the anticipated long term financial gains,
returns on investment and payback timeframes, has not yet been approved or
confirmed. They add further research is necessary to determine the economic benefit

of techniques at both the company and sector levels.

Cybersecurity is a significant global problem that affects all sectors and consumers,
including the field of construction (Ghosh et al., 2020). Huang et al. (2020) indicate
that because data is gathered and passed automatically without human oversight,
there is a risk of cyber threats. This involves worries about how data is stored,
accessed, shared and verified. The fact that data is collected and transmitted
automatically can make the DT system a target for cyber-attacks, creating a serious
problem during its operation. Additionally, they describe the privacy struggle that the
worries people have about their information being collected automatically in DT
systems. They further add that 10T device data generation might lead to possession
conflicts, which is a privacy risk. Thus the vast amount of data from loT
technologies requires strong systems to manage it safely and privately (Ghosh et al.,
2020). Piras et al. (2024) claim preserving privacy and securing sensitive information
are essential components. To stop illegal access and violations, strong security
measures along with data management standards are required. Moreover, since
cyberattacks are growing more complex, deeper protections are needed. A proposal
that may handle the cybersecurity and privacy struggle is also included in the
literature. As a solution, studies propose blockchain technology to address data
security, privacy and copyright issues, while also suggesting blockchain based data
management model for DT to ensure data security (Huang et al., 2020; Sepasgozar,
2021; Teisserenc and Sepasgozar, 2021).

Bilberg and Malik (2019) point out, to effectively adopt and use DT technology, it is
necessary to have appropriate knowledge of complicated information technology
systems, which is where the skill and training challenge comes in. Training is
required to integrate the finest human and robotic operational skills. This task
highlights the significance of creating an easy to use DT interface that can be used by

someone with no experience or a multidisciplinary team. Additionally, they mention
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system complexity relates to the difficulty of managing and interpreting the vast
amount of information that is present in complex systems. Organizations need to
train their workforce in fundamental digital technology skills, including DT, to
effectively solve challenges in the construction industry (Arowoiya et al. 2023; Yang
et al., 2024). The insufficient trained person increases the need for expensive
consultants (Moshood et al., 2024).

Sun et al. (2022) express that a simple DT interface that can be applied by an
unskilled human or a multidisciplinary group is required due to the user interface
challenge. Users from various social and educational backgrounds need to be able to
interact with the DT, which can change depending on the lifespan of the software
categories. The researchers highlight that interface design itself is unable to assess
how well human operators read digital twin insights and communicate with machines
(Boje et al., 2020). When it comes to user input and the comprehension of DT
outputs, it is crucial to create platforms that seamlessly integrate human interaction
(Lu et al., 2020a).

Due to problems with integrating data, high-fidelity modeling, interoperability, real
time interaction, operating expenses, cybersecurity and privacy worries, DT usage
might be complicated (Piras et al., 2024; Almatared et al., 2022; Sepasgozar, 2021).
Hu et al. (2022) add that the absence of standards, interoperability and data quality,
in addition to the high cost of installation and maintenance, are some difficulties in
integrating DT in building and construction firms. Similarly Arowoiya et al. (2023)
identify multiple crucial elements affecting the adoption of DT, despite its

advantages.

2.1.8 The potential of digital twin

The AEC sector is increasingly adopting digital technologies like BIM, IoT and Al
for designing, constructing and managing buildings and infrastructure (Almatared et
al., 2022; Bosch-Sijtsema et al., 2021). Many businesses, especially ones that are
information intensive and need real time forecasting ability have enormous potential
for DT, and there is a great opportunity for it to improve productivity, efficiency and
making decisions in the construction sector (Liu et al., 2021). The progress of digital
technologies like DT has helped many industries and it has the potential to solve

problems in building construction projects (Nguyen and Adhikari, 2023). The
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construction industry currently uses DT, which is regarded as one of the most
effective and significant methods to improve construction using construction 4.0
connections and enhance stakeholder cooperation (Jiao et al. 2024). Similarly
Almatared et al. (2022) point out that due to the predicted advantages of DT
technologies, such as increased productivity and efficiency, the AEC sector is using
them more and more. As a result, there has been significant research focused on
utilizing DT in this sector. The operation and maintenance phase is the subject of
about 70% of the research that have been examined, and the most widely used DT
uses are facility operation and maintenance, managing energy and structural health
tracking (Liu et al., 2021). DT has continued to evolve rapidly as sensor technology
that collects data from the real world has developed, such as low power requirements
and wireless connectivity (Azfar et al. 2023). With DT adoption, 10T could also help
employees operate as productively and effectively as possible (Ghosh et al., 2020).
Elfarri et al. (2022) express the reason for exploring DT lies in their ability to
provide potential financial savings and increased effectiveness. They state DT's
capabilities span from description, diagnostics, prediction, adaptation to autonomy.
The study highlights it can be utilized for remote house monitoring, gaining insights
into the indoor environment, making predictions about future conditions, offering
recommendations based on past behavior and autonomously controlling the house.
Moreover, Akanmu et al. (2021) define the upcoming era of DT and cyber-physical
systems as the incorporation of cyber and existing physical systems. Their overview
includes possible applications of the forthcoming cyber physical system and DT for
enhancing worker productivity, lifespan operations for construction processes as well
as skills of employees, security and health. Also they state, DT may potentially
facilitate the remote operation of robots for drywall installation, monitor and adjust
worker posture, and prevent incidents between workers and construction equipment.
Furthermore Sepasgozar (2021) indicates there is a growing need to create and apply
DT since it may become a fundamental technology in numerous industrial areas.
Figure 2.9 shows a DT capability level scale. In the initial three stages, the DT can
furnish information or insights exclusively regarding past and current occurrences.
Solid objects may set up standalone DT, which might be present even before the item
is constructed. When an asset is installed and has sensors, data can be uploaded in
current time to produce a descriptive data set that provides more information on the

asset's condition.
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Standalone Descriptive Diagnostic Predictive Prescriptive Autonomous
Description of the The most recent Able to provide Can forecast the Able to offer Can take the position
asset that is separate state of the asset at diagnostic data that performance or recommendations or  of the user by shutting
from its actual any one time is helps users with future conditions suggestions based on  the control loop,
surroundings. described by CAD repair and of the system and uncertainty allowing the system to
Maybe the physical models and a condition offer prognostic measurement, risk behave autonomously
asset doesn't exist real-time stream of monitoring. features. analysis, and what-if ~ and make judgments
yet. sensor data. scenarios. and carry out control

operations.

Figure 2.9 : A summary of a digital twin's capability stages, adapted from Elfarri et
al. (2022).

Khajavi et al. (2019) state that, in terms of flexibility, even for buildings constructed
using traditional pre-BIM practices, there is potential for improvement through the
integration of a DT. This can be accomplished by using cloud based analytics tools
and equipping the buildings with sensors. According to Zhang et al. (2022), DT
technology can change how construction sites are controlled and observed by
offering a framework that combines the digital and physical worlds. The goal of the
suggested framework for applying DT to construction site management is to more
effectively meet management requirements. Similar to them Lu et al. (2020b) offers
an innovative approach for anomaly detection based on DT technology. This method
has proven effective for providing ongoing asset monitoring for operation and
maintenance, suggesting that DT can greatly enhance the identification and handling
of anomalies in structures. This shows that DT may be more widely applied in the
sector by being in line with the standards that are in place now. Unlike structure
based approaches, Ham and Kim (2020) explore the potential of DT usage on a city
level. With the help of real time data gathered from loT sensors such as traffic,
energy consumption, air pollution and water quality for controlling the complex
structures of cities, the advantages of a DT city might be evaluated. Comprehending
the physical sensitivity of cities might help policymakers analyze possible risks
connected with metropolitan regions. A DT city with enhanced hazard visibility and
urban connections is expected to aid risk-informed infrastructure decisions and
support what-if scenarios during emergencies. Likewise Austin et al. (2020)
highlight widespread implementation of sensor and communication tools that are
firmly embedded in the real urban environment is going to be necessary to allow next

generation smart city systems. They suggest creating a DT framework for smart

54



cities that integrates machine learning with semantic knowledge representation and
logic. Furthermore Hu et al. (2023) emphasize the potential for DT enhanced
predictive maintenance (PdM). They claim that it would be beneficial to develop and
include additional features, such as asset scheduling, cost savings and making
choices into the software to help the construction sector achieve sustainability,
predictability, security and effectiveness. Hosamo et al. (2022) indicate predictive
maintenance is crucial since repair expenses account for approximately 65% of
annual facility management costs. They insist predictive maintenance may lead to
longer equipment life, greater efficiency, and lower labor costs. Rafsanjani and
Nabizadeh (2023) indicate that the widespread adoption and application of these
technological advancements are expected to result in significant cost reductions
within the AEC industry. This is projected to amount to $950 million during the
design and construction stages, as well as $400 million during the operation and
maintenance phases in the non-residential AEC sector by the year 2025. Although
proof supporting DT’s effectiveness in lowering nonfatal harm, property controls,
improving security, tracking progress and output, the DT adoption in the construction

sector continues to be in its early stages (Akanmu et al., 2021).

In summary, the potential of DT includes general insights for the future, such as
increased productivity and efficiency, the predictive advantages, potential financial
savings, remote monitoring, the offering of recommendations, applicability of DT for
existing buildings and autonomous control over individual structures and even
complex urban structures. The DT provides solutions for the challenges that the
construction sector primarily faces. As technologies such as Al, machine learning,
sensor technology, cloud platforms and others continue to develop rapidly, the
adoption of DT in the AEC sectors might become inevitable. Likewise, Yoon (2023)
highlights the vast potential of DT in optimizing building operations, energy
efficiency, air quality and carbon neutrality;however, systematic discussions on

digital twin modeling in the building sector remain limited.
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2.2 Productivity

The term productivity was first used in an essay by Quesnay in 1766. Over a century
later, in 1883, Littre characterized productivity as the faculty to produce, expressing
the tendency or motivation to generate output. Also defined officially in 1950 by the
Organization for European Economic Cooperation as a ratio derived by dividing
output by one of the production factors. It is possible to think of construction
productivity as an evaluation of the outputs that result from an arrangement of inputs
(Jarkas and Bitar, 2012). Likewise Rathnayake and Middleton (2023) explain the
meaning of productivity as a crucial measure of performance that is determined by
dividing output by input. Whereas Ghoddousi and Hosseini (2012) define as the
produced units divided by the related labor hours. Vogl and Abdel-Wahab (2014)
examine effectiveness and believe that productivity is a metric of how effectively the
economy converts its inputs to output. Similar to them Hiyassat et al. (2016) state
how quickly tasks are completed is measured by productivity. Productivity has
numerous definitions given by various studies; in overall, it can be described as the
ratio of output to input (Alzubi et al., 2023). However, Hasan et al. (2018) mention
the diversity of production specifically in the construction industry, stating that the
units of measurement vary with construction activities based on input and output
types. Nevertheless, the significance of productivity in cost reduction and profit
generation is universal across all industries, including the construction sector. They
summarize that in every sector, productivity is a critical factor to take into account
and there are various ways of describing it based on the situation. Naoum (2016)
summarizes the explanation of productivity as the greatest possible amount of output
while minimizing input. The Cambridge dictionary (2024) defines productivity as the
speed at which a business or nation produces products, typically measured in relation
to the quantity of labor and resources required to generate them. Also, it gives the
meaning that the capacity to complete as much work as possible in a given amount of
time. Oxford dictionary (2024) explains the speed that an employee, business, or
nation creates items and the quantity produced in relation to the resources (money,
labor, and duration) required to generate things. Ghate et al. (2016) indicate
productivity is an essential element of the construction sector and might be used as a

measure for efficiency of output.
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2.2.1 Productivity and construction industry

Among the industries with the lowest productivity is the construction industry
(Rathnayake and Middleton, 2023; Turner et al., 2021). Globally, the construction
sector has been defined by a notable decline in productivity (Laszig et al., 2020;
Teisserenc and Sepasgozar, 2021). The industry faces a shortage of worker abilities,
an inadequate innovation and an unpredictable future as well as low productivity
(Yang et al., 2024). Moreover Alzubi et al. (2023) indicate construction projects
experience productivity declines ranging from 40% to 60%. Also the building sector
has an unimpressive history of advancing efficiency and productivity (Lydon et al.,
2019). Although improvements frequently result in higher efficiency, the
construction sector has fallen behind other industries in integrating new technologies
into its operations (Menegon and Filho, 2022; Laszig et al., 2020; Moshood et al.,
2024). As Laszig et al. (2020) claim, nonetheless, advancements are a major factor in
the rise in productivity across a wide range of sectors according to past studies and
experiences. On the other hand Akanmu et al. (2021) point out even with greater
attempts to enhance the execution of construction projects methods, the sector
continues to face challenges related to decreased productivity, security and quality.
Turner et al. (2021) state, enhancing productivity is crucial as it serves as a key
indicator of living standards within countries and their potential for economic
growth. Additionally they state low productivity and skill gaps have resulted in
increased construction costs, project delays and inadequate sustainability procedures
in the construction industry. Furthermore they point out, under the construction 2025
plan, the government of the United Kingdom has set goals for building projects that
include a %50 quicker completion time, %50 fewer emissions of greenhouse gases in
the constructed environment, and a %33 decrease in both the starting price of
construction and the property's entire lifespan expense. Likewise Teisserenc and
Sepasgozar (2021) mention the conflict pricing strategy and the weak financial
system of the sector in their paper. Hiyassat et al. (2016) add, increasing profit in the
construction industry with minimal or no expense changes can be achieved via
boosting productivity. Additionally Vogl and Abdel-Wahab (2014) mention that in
all nations, productivity is a major factor in economic expansion and success.
Moreover, enhancing productivity in the construction industry could lead to

significant cost reductions in addition to increased profits and revenues for the
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industry. Alzubi et al. (2023) indicate keeping track of construction productivity is
crucial for the success of construction projects as it enables the evaluation of project
performance. Additionally they claim poor construction productivity continues to be
considered one of the most significant problems in the construction sector, despite
the many obstacles it faces. They also emphasize automated monitoring techniques
may successfully identify and improve construction productivity variables, with
vision based technologies (37%) finding to be most efficient. Rafsanjani and
Nabizadeh (2023) claim the global AEC industry has an estimated cumulative value
of US$11.72 trillion in 2021 and is projected to reach US$12.26 trillion by 2023.
Therefore, the sector has consistently looked for ways and methods to optimize
resource utilization, improve productivity, lower project costs, increase worksite
security and reduce project completion time. Furthermore they add that the AEC
industry will see significant savings in expenses as a result of the widespread demand
for and use of technology improvements, with the non-residential AEC sector
projected to save US$400 million in operation and maintenance stages by 2025 and
US$950 million in design and build phases. Due to an increasing understanding of
the substantial role played by the construction industry in promoting an economy that
succeeds, the importance of productivity growth is gaining more significance for
stakeholders in the industry (Adebowale and Agumba, 2023). Alzubi et al. (2023)
indicate the construction sector lacks excellent timing and budget management in the
execution of megaprojects. Approximately 77% of such projects are projected to face
delays exceeding 40%, while cost overruns exceeding 30% are observed in 98% of
cases. Ineffective productivity stands out as a primary contributor to these
unsatisfactory project outcomes. Likewise Akanmu et al. (2021) express that the
AEC sector is constantly looking for new and creative ways to complete projects on
schedule, within budget and with security. They argue that industry 4.0 claims to
increase production, decrease waste and raise project efficiency; however, the
acceptance of numerous advances in technology will be crucial for the increased
productivity. Si et al. (2023) indicate using these industry 4.0 innovations lowers

operating expenses while boosting speed and accuracy.

Productivity within the construction sector is commonly measured on the levels of
activity, project, and industry (Adebowale and Agumba, 2023). According to studies

there are 3 common productivity measurements utilized in the construction industry
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(Rathnayake and Middleton, 2023; Zhan and Pan, 2020; Zhi et al., 2003; Arditi and
Mochtar, 2000). Initially, there is an economic model that characterizes productivity
as total factor productivity, representing the ratio of total outputs, in dollars, to total
inputs, also expressed in dollars. These inputs encompass labor, materials,
equipment, energy, and capital. Policymaker agencies adopt to assess the economic
condition of the country. The second model, specific to individual projects,
characterizes productivity as total productivity. This is the ratio of outputs measured
in physical units (such as square feet) to inputs expressed in dollars. The inputs in
this model encompass labor, equipment, materials, and management. This model is
more precise and applicable to both governmental agencies and the private sector.
The third model is activity-oriented, defining productivity as labor productivity. This
refers to the ratio between outputs measured in specific physical units (such as tons
of steel) and inputs expressed in labor hours, where the inputs consist just of labor.
The model proves beneficial for producers in computing project costs and monitoring
on-site activities. However, Rathnayake and Middleton (2023) underline the
requirement for multi input descriptions of productivity in order to offer an
evaluation that is deeper. The total cost of labor or employee hours is commonly
employed as a metric in construction, and the outcome is typically expressed in terms
of weight, length, or area (Hiyassat et al., 2016).

Numerous academics have shown that increasing construction productivity is a
continual, scientific process as opposed to an only once event that happens during a
project's life cycle (Ranasinghe et al., 2012). Intelligent approaches to increase
construction productivity are desperately needed, especially in terms of employee
and management concerns (Hasan et al., 2018). According to Opoku et al. (2021),
the construction sector faces many difficulties, such as low productivity, but DT
technology has the power to change this business and offer solutions for these
difficulties. In the similar way, Turner et al. (2021) state that the demand for greater
efficiency together with the complex nature of site construction projects has raised
curiosity about the possible applications of Industry 4.0 technology such as DT, Al,
sensors, automation, BIM and wearables. Moshood et al. (2024) add, facing critical
challenges requiring innovations, such as improving sustainability, efficiency and
productivity. Laszig et al. (2020) state the efficiency of the AEC sector can be

revolutionized in a number of innovative areas by major improvements already in
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use or in development of new building materials, digital technologies and robotics.
Also it is clear that innovation and new technology significantly boost productivity
and the key areas include digitalization, construction automation, resource efficient
and recyclable building products, and new service models. Ling et al. (2023)
indicated that five technologies especially give relative benefit to the firms in relation
to the closest competitors of AEC companies. The adoption of cloud-based
technology, design for manufacturing and assembly, 10T, robotic technology and Al
had a strong correlation with higher project quality, productivity, and a good brand
name. Similarly Zhan and Pan (2020) point out, the main goal of supporting
innovative technology is to speed up the process of industrialization and
mechanization by supporting labor-saving and successful construction management
innovations, which will boost productivity and make it possible to replace labor with
capital or materials. As Love and Matthews (2019) highlight, innovations boost
productivity and performance in 3 main ways: processes that are already in place are
streamlined by automation, new practices are supported alongside established ones
by extension, and traditional methods are replaced with digital alternatives by

transformation.

2.2.2 Factors affecting productivity in the construction phase

Politicians and the building sector put a high priority on increasing productivity
because it directly affects efficiency (Mehta et al., 2022). Productivity is increased in
construction projects when technology is used (Hiyassat et al., 2016). Nevertheless,
unfortunately the construction sector's rise in productivity is noticeably behind
compared to all other industries (Abdel-Wahab and Vogl, 2011). Construction
productivity might be impacted by a wide range of variables, including the climate,
work environment and situations, manpower expertise, training and motivation, as
construction projects are labor intensive that are open to interior and exterior
conditions (Hasan et al., 2018). Ghoddousi and Hosseini (2012) explore the concept
of boosting productivity by the use of factors that have beneficial consequences and
effectively dealing with or controlling those that have negative impacts. While the
primary constraints on productivity may vary across projects, businesses, and
locations, the authors identify common patterns in issues which limit efficiency.
Their research highlights that the management system and strategies, encompassing

skills in management, scheduling, material and equipment management, along with
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quality control, stand out as the most influential factors affecting construction
productivity. Additionally, following closely behind in influence are factors such as
labor force, the industry environment, and external influences. Likewise Arditi and
Mochtar (2000) state the findings show that the functions with the most potential for
productivity growth are cost control, time management, design methods, employee
training, and quality management. In contrast Alzubi et al. (2023) and Ghoddousi
and Hosseini (2012) claim the most significant elements influencing construction
productivity are those related to labor. Alzubi et al. (2023) explains the rest of the
ranking as follows; labor factors followed by management and jobsite factors which
hold equal importance, and lastly, external factors. On the other hand El-Gohary and
Aziz (2014) assert the management category rated at the top, the labor category came
in second and followed by the industrial category in third. Alzubi et al. (2023)
identified 18 factors that predominantly influence construction productivity. These
factors can be categorized into 4 groups. The first category encompasses
management-related factors, including supervision, resources, security, cost, and
schedule. The second category involves workforce related factors, such as abilities,
background, fatigue, unplanned pauses, lateness. The third classification relates to
jobsite factors, including revisions, rest areas, busy locations, site layout and
complexity of design. The final category encompasses external factors like weather,
regulations, and owner influence. The groups Rathnayake and Middleton (2023) list
that affect productivity are: labor, technology and equipment, construction site,
schedule, supervisors and materials. According to Jarkas (2015) the following factors
impact productivity: worker abilities, coordination between design professions, lack
of labor monitoring, mistakes and inaccuracies in design drawings, revision, working
additional hours, absence of a reward system and adverse weather conditions.
Similarly, Heravi and Eslamdoost (2015) mention labor competence, decision
making, motivation, site layout, and planning as the main five elements impacting
employee productivity. Even with this optimistic prediction, they claim productivity
could rise by 37% to 48% if each of these characteristics were improved. Naoum
(2016) has taken a managerial approach to the problem and explains problems
related to productivity from the management perspective. Then lists factors such as
insufficient project scheduling, delays created by mistakes in design and change
commands, workplaces, performance limitations on employees, aesthetic and

buildability-related problems, leadership and organizational methods, procurement
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techniques, absence of the adoption of the project's management information system.
Teisserenc and Sepasgozar (2021) claim that the absence of financial transparency in
the AEC sector results in poor productivity, reduced cost savings and restricted
cooperation and information sharing. Therefore they suggest smart contracts to
automate procedures in order to save money, increase efficiency and minimize time.
Hasan et al. (2018) emphasize certain variables reoccur in multiple research.
Therefore, they argue that the frequent citation of these issues in research over the
past three decades highlights their importance and continued presence as barriers to
construction project productivity. Also researchers show the top ten frequently
mentioned limiting building output worldwide the following, in decreasing sequence
of significance: Lack of access to materials, insufficient oversight, limited expertise,
poor tools and equipment, unfinished designs and specifications, weak conversations,
reworking, improper site layout, unfavorable climate circumstances and changes. As
Mehta et al. (2022) indicate, while numerous studies have explored ways to improve
specific efficiency factors in construction projects, few provide a comprehensive
view of how inefficiencies impact projects as a whole. They further explain the
sector will benefit from identifying the root causes of significant project errors and

implementing prevention strategies.

We can identify 7 key factors that challenge the AEC sector and impact productivity
during the construction phase based on the research papers reviewed as illustrated in
Table 2.5. These factors include labor, management systems, work site, industry
environment, design related issues, climate and communication. Challenges in these
areas lead to a significant decline in productivity. They can be categorized to identify

the key areas of concern.
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Table 2.5 : The factors affect productivity in the construction phase.

Category of Factors

Subcategories

References

Labor

Management System

Work Site

Skill
Training
Motivation

Cost Management

Quality Management

Time Management

Material and Equipment Management
Desicion Making Ability
Organizational Methods

Site Layout

Site Location

Alzubi et al. (2023), Hasan et al. (2018), Jarkas (2015), Durdyev et al. (2018),
Mehta et al. (2022), Ghoddousi and Hosseini (2012), Heravi and Eslamdoost
(2015), Rathnayake and Middleton (2023), Rivas et al. (2011), Adebowale and
Agumba (2021), Arditi and Mochtar (2000)

Rathnayake and Middleton (2023), Ghoddousi and Hosseini (2012), Durdyev
et al. (2018), Naoum (2016), EI-Gohary and Aziz (2014), Alzubi et al. (2023),
Heravi and Eslamdoost (2015), Hasan et al. (2018), Mehta et al. (2022), Arditi
and Mochtar (2000)

Heravi and Eslamdoost (2015), Jarkas (2015), Ghoddousi and Hosseini
(2012), Alzubi et al. (2023), Naoum (2016), Rivas et al. (2011), Rathnayake
and Middleton (2023), Hasan et al. (2018)
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Table 2.5 (continued) : The factors affect productivity in the construction phase.

Category of Factors

Subcategories

References

Industry Environment

Design Related Issues

Climate

Communication

Financial Uncertainties
Regulatory Changes

Constructability
Inaccuracies in Drawings

Adverse Weather Conditions

Misunderstanding
Commmunication Barriers

Mehta et al. (2022), Durdyev et al. (2018), Genc, (2021), Jarkas (2015),
Teisserenc and Sepasgozar (2021), Hasan et al. (2018), Ghoddousi and
Hosseini (2012)

Rivas et al. (2011), Rathnayake and Middleton (2023), Naoum (2016),
Jarkas (2015), EI-Gohary and Aziz (2014), Jarkas and Radosavljevic
(2013), Mehta et al. (2022), Hasan et al. (2018)

Jarkas (2015), Alzubi et al. (2023), Hasan et al. (2018), EI-Gohary and
Aziz (2014), Heravi and Eslamdoost (2015)

Jarkas and Radosavljevic (2013), Heravi and Eslamdoost (2015), Jarkas
(2015), Mehta et al. (2022), Mahamid (2013), Rivas et al. (2011), Hiyassat
et al. (2016)
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2.2.2.1 Labor

Labor aspects play a key role in the productivity of construction and the results show
that the labor market is currently not benefited enough to increase construction
productivity (Zhan and Pan, 2020; Lee et al., 2023). Since construction is a labor
intensive business, worker payments commonly account for between 30% and 50%
of the project's total cost (Heravi and Eslamdoost, 2015; Durdyev et al., 2018).
However Lee et al. (2023) state that the number is even higher and claim labor costs
account for approximately 40-60% of overall construction expenses. They also point
out through increasing labor productivity by 10%, companies in the UK may save
GBP 1.5 billion. Mehta et al. (2022) express that According to the Associated
General Contractors of America, worker problems that affect productivity account
for over 60% of construction project delays or cancellations. Within the labor
category, the most significant element influencing construction productivity is the
skills and expertise of the employees (Alzubi et al., 2023; Jarkas, 2015; El-Gohary
and Aziz, 2014). Durdyev et al. (2018) claim that besides the workforce's abilities
and expertise, motivation is also vital. Likewise Mehta et al. (2022) identify
motivation as one of the key factors with labor skill and experience affecting
productivity. EI-Gohary and Aziz (2014) state incapable workers with inadequate
training frequently exhibit low and inaccurate outputs. Also in the opinion of Jarkas
(2015), highly qualified staff members can solve problems logically and with
advanced technical capabilities, which leads to greater quality of final output. Expert
workers are able to do jobs faster and with greater quality (Heravi and Eslamdoost,
2015). Adebowale and Agumba (2021) also highlight issues such as workers'
abilities, insufficient training, and the need for rework in various construction
industries. Rivas et al. (2011) note that having under qualified workers in important
roles could demoralize workers in employment. While problems like not enough
education, low motivation and insufficient management lower productivity, an
experienced, motivated team increases it (Durdyev et al.,, 2018). Additionally,
regarding the other factor climate, Pamidimukkala et al. (2023) states that due to
workers performing tough physical duties in adverse weather conditions, they are
exposed to long-term health issues which cause low efficiency in the long term.
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2.2.2.2 Work site

Traffic, site layout, restricted work area and limited entry are some examples of
variables that might reduce productivity by generating logistical problems and
inefficiencies on construction sites (Jarkas, 2015; Ghoddousi and Hosseini, 2012).
Heravi and Eslamdoost (2015) draw attention that a carefully planned site layout
may boost worker productivity from 12.2% to 19.8%. They define site layout as the
strategic placement of temporary buildings, utilities, main equipment, stores, offices
and access routes. Similarly Alzubi et al. (2023) and Naoum (2016) discuss a well
planned site layout is essential. Also they indicate the site being crowded is highly
influential in this matter. Rivas et al. (2011) highlight the critical impact that the
work site has in assessing productivity. Based on the study, there is a considerable
impact on productivity from factors such as the access of materials and the
arrangement of the workplace. Likewise, Rathnayake and Middleton (2023) highlight
these factors that affect how effortlessly processes are executed on-site, greatly

impacting construction efficiency.

2.2.2.3 Management system

Durdyev et al. (2018) and El-Gohary and Aziz (2014) find the management category
the most significant in influencing productivity so rated at the top. Efficient material
and equipment management, appropriate planning, well supervision and decision
making procedures are essential variables that improve productivity (Rathnayake and
Middleton, 2023; Naoum, 2016; Durdyev et al., 2018). Reliable procurement
techniques ensure resource availability when required, minimizing delays and thus
improving the performance of the project as a whole (Rathnayake and Middleton,
2023; Heravi and Eslamdoost, 2015; Ghoddousi and Hosseini, 2012). Sustaining
productivity requires careful scheduling and inadequate oversight has adverse
consequences on it (Alzubi et al., 2023; Hasan et al., 2018). Mehta et al. (2022)
discovered a significant misunderstanding about unreasonable scheduling among
project participants. Also they point out the building sector has been troubled by
problems like inadequate management and low quality. Heravi and Eslamdoost
(2015) describe poor decision making as the result of incorrect reasoning, emotions,
insufficient knowledge, unsuitable selections or problems in modifying the sequence

and allowing approval. They claim strengthening it may raise labor productivity from
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15.6% up to 19.8%. Moreover they discuss leadership, interaction and management
techniques concentrating on organizational and individual variables to enhance
results. Similarly Naoum (2016) points out the leadership approach taken on the job
site can have a big influence on output. They further discuss that effective
management and leadership styles are crucial for controlling work activities from
design to construction, which is essential for achieving high productivity. Effective
leadership approaches can significantly reduce time and costs, with good
management style greatly influencing productivity (Durdyev et al., 2018; Naoum,
2016).

2.2.2.4 Industry environment

Mehta et al. (2022) explain that industry environment factors, often known as
political or extreme circumstances, are uncontrollable occurrences including
pandemics and political instability. Due to interruptions, increased expenses or the
need for plan modifications, these variables may have an enormous effect on
building projects. They claim these are huge inefficiencies that cause timetable and
financial conflicts because of their unpredictability. Mashood et al. (2024) claim
regulatory issues provide serious obstacles to the sector. Those obstacles that can
slow down or make execution more difficult in the construction industry. Challenges
could include handling complicated regulatory systems, getting required approvals,
and following current standards. Likewise Durdyev et al. (2018) state sustaining
productivity requires both strong financial management and predictability. They also
discuss financial circumstances and regulatory permissions that may result in
unforeseen cancellation, needing backup plans to minimize their effects on
operations. Genc, (2021) expresses uncertainties as financial issues like pricing
speculation, the rate of inflation and unforeseen modifications to laws and
regulations. Jarkas (2015) highlights how labor productivity is impacted by constant

modifications in law and delays in statutory permits.

2.2.2.5 Design related issues

Rivas et al. (2011) mention that issues with design understanding and the
requirement for more technical data can result in lost productivity. Insufficient
designs and specifications, engineers not knowing the field circumstances and doubt

frequently represent the causes of these problems. Constructability is one of the key
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factors influencing productivity (Rathnayake and Middleton, 2023; Naoum, 2016).
El-Gohary and Aziz (2014) defined it as the ability to achieve project objectives by
effectively utilizing construction experience in design, planning, procurement and
operations. They point out enhancing the degree of constructability in designs is
undoubtedly a beneficial initial move. Similarly Jarkas (2015) explains that
buildability leads to rework thus impact productivity. Furthermore, errors in
drawings that could cause delays and revisions raise project expenses (Rathnayake
and Middleton, 2023; Hasan et al., 2018; Jarkas, 2015).

2.2.2.6 Climate

As stated by Jarkas (2015), poor weather has the tenth highest impact on labor
productivity in the construction industry. He remarks that the result is in line with
research from Qatar, India, New Zealand, US and Iran. Alzubi et al. (2023) claim
since building operations usually take place outside, weather conditions including
heat, humidity, storm and rain have an enormous effect on productivity. In their
study, weather is regarded as the most significant external factor that can be observed
using automated monitoring technologies, with a weight of 50.9%. Heravi and
Eslamdoost (2015) express unsuitable weather, including extremes in humidity,
temperature and snowstorms, has been shown to have a negative impact on
production. In addition, they state location circumstances and weather are two of the

main factors influencing operating efficiency.

2.2.2.7 Communication

Although there are many variables that influence construction workers' productivity,
motivation is one of the most crucial ones (Jarkas and Radosavljevic, 2013).
Employees that are motivated are typically more effective and dedicated to their
work, which produces higher levels of production and boosting labor motivation
could lead to a 12.7% to 14.2% increase in productivity (Heravi and Eslamdoost,
2015). Ineffective communication and collaboration may result in rework which
lowers productivity and brings about disappointing results (Jarkas, 2015). Mehta et
al. (2022) state communication issues can lead to misunderstandings and arguments.
Further they emphasize effective communication and eventually a construction
project's success depends on recognizing the differences in opinion shared by

stakeholders such as engineers, contractors and architects. Mahamid (2013) notes
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that the lack of cooperation and communication among stakeholders is one of the top
five elements that have an adverse effect on labor productivity in construction
projects. Also Rivas et al. (2011) point out poor coordination can impact both

motivation and productivity.

2.2.3 Productivity and digital twin

To comprehend the trends in productivity and DT research within the literature, a
bibliometric study was conducted. We collected research from the Scopus database
about DT, productivity and the building industry. Various document types,
encompassing conference papers, articles, reviews, book chapters, books, and
conference reviews, were taken into account. No time restrictions were applied,
except for the language; only papers written in English were included. The Scopus
advanced search engine was employed, utilizing filters based on Title-Abstract-
Keywords. The code used for the search was TITLE-ABS-KEY (“digital twin™)
AND TITLE-ABS-KEY ("construction project” OR "construction industry” OR
"construction sector") AND TITLE-ABS-KEY ("productivity" OR “efficiency”)
AND (LIMIT-TO (LANGUAGE, "English™)). A total of 134 publications were
identified during the search. 10 significant contributors in this field are recognized
and presented in Table 2.6 based on Scopus. The studies generally examine the
effects of DT on productivity and the potential to boost efficiency in the construction
sector. Additionally, these studies also discuss the supporting technologies for DT in
enhancing productivity in the construction sector, as well as their use cases. Boje et
al. (2020) explain that despite advancements of BIM, its lack of integration remains
problematic. They suggest that combining Al, 10T and sensor technologies could
evolve BIM into a more advanced DT, enabling real time, intelligent and sustainable
construction practices. Opoku et al. (2021) examine DT technologies across the
construction lifecycle, identifying six key applications including BIM, monitoring,
logistics and energy simulation. They state the importance of adopting DT to
maintain industry competitiveness. Sepasgozar (2021) focuses on defining DT roles
and expanding digital shadow practices, noting the rising use of DL, robotics and
blockchain. He emphasizes the key distinction of DT’s data flow. Turner et al.
(2021) identify major research gaps toward a fully digital construction site. They
argue for a systems based approach integrating Industry 4.0 technologies and point

out the need for a deeper exploration over the next decade.
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Table 2.6 : The most cited publications on DT and productivity in the construction

industry.
No Author Title Citation Research Focus
1 Bojeetal. Towards a 622  Automation in Emphasizes the need
(2020) semantic Construction for a Construction DT
construction (CDT), identifies its
digital twin: capabilities, highlights
Directions for key research
future research challenges, and
addresses the
limitations of BIM.
2 Opokuet Digital twin 322 Journal of  Examines the
al. (2021) application in development of the DT
the construction Engineering concept, key
indusrty: A technologies, six

3 Sepasgozar
(2021)

4 Turner et
al. (2021)

literature review

Differentiating 181
digital twin

from digital

shadow:

Elucidating a

paradigm shift

to expedite a

smart,

sustainable built
environment

Utilizing 140
industry 4.0 on

the construction

site: challenges

and

opportunities

Transactions
on Industrial
Informatics

application areas across
project lifecycle stages,
and its implementation
in the construction
industry.

Distinguishes DT from
other digital modeling
approaches,
emphasizing its
integration with
blockchain and deep
learning to advance
efficiency within
Industry 4.0
frameworks.

Mentions the potential
of DT, smart wearables,
and intelligent assets to
improve construction
processes, emphasizing
the integration of data
analytics, robotics and
industrial connectivity
to enhance productivity
and safety.
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Table 2.6 (continued) : The most cited publications on DT and productivity in the
construction industry.

No Author Title Citation  Journal Research Focus
5 Loveand The "how" of 116  Automation Investigates the
Matthews benefits in importance of
(2019) management for Construction organizations engaging
digital technology: with digital technologies
from engineering to enhance their
to asset competitiveness and
management deliver assets more
effectively and
efficiently.
6 Hosamo et A digital twin 107  Energy and Highlight fault detection,
al. (2022) predictive Buildings diagnosis and predictive
maintenance maintenance across
framework of air systems, adopting Al and
handling units machine learning to
based on improve maintenance
automatic fault and operational
detection and efficiency.
diagnostics
7 Debrahet Artificial 96 Automation Highlights the integration
al. (2022) intelligence in in of Al, DT, blockchain
green building Construction and robotics to enhance
sustainability and
efficiency, while
addressing associated
legal, ethical and moral
challenges.
8 Lydonet Coupled 86 Energy and Emphasizes energy
al. (2019) simulation of Buildings efficiency and

thermally active
building systems

to support a digital

twin

productivity in
construction, using
simulation methods and a
digital twin approach
during the design and
operation phases of
building projects.
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Table 2.6 (continued) : The most cited publications on DT and productivity in the
construction industry.

No Author Title Citation Journal Research Focus
9 Akanmuet Towards next 83 Journal of  Explores the integration
al. (2021)  generation cyber- Information of Cyber-Physical
physical systems Technology in Systems and DT to
and digital twins Construction improve efficiency,
for construction safety and performance

through automation,
real-time monitoring,
risk management and
advanced technologies
like deep learning and
augmented reality.

10 Teisserenc Adoption of 79 Buildings  Examines the

and Blockchain integration of

Sepasgozar Technology blockchain with DT in

(2021) through Digital the BECOM sector
Twins in the under Industry 4.0,
Construction introducing the
Industry 4.0: A Decentralized Digital
PESTELS Twin Cycle (DDTC) to
Approach enhance collaboration,

transparency, and data
integrity through BIM
and loT.

Love and Matthews (2019) state that digital technologies can enhance asset value
over its lifecycle. They underline the need for a structured benefits management
approach as construction adopts BIM, lIoT and DT. Hosamo et al. (2022) explore
how DT can enhance facility management and maintenance through predictive and
adaptable strategies. Their model integrates IoT, BIM and ML for defect detection
and lifecycle optimization. Debrah et al. (2022) review Al in green buildings,
highlighting how data mining and Al enable real time optimization. They suggest
integrating Al with blockchain and DT to enhance sustainability. Lydon et al. (2019)
propose DT based simulation for thermal systems embedded in lightweight roofs.
They connect sensor and virtual data to reduce planning time and support
multifunctional design. Akanmu et al. (2021) discuss integrating DT and cyber
physical systems to improve construction efficiency, safety and risk management.
Real time tracking and automation are emphasized as key benefits. Teisserenc and

Sepasgozar (2021) propose the decentralized DT cycle framework to integrate
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blockchain with DT. They mention the role of smart contracts in overcoming trust
and collaboration barriers.

When we look at the most cited studies, we can commonly say that they discuss the
use of innovative technologies together with DT and its benefits for the construction
sector. DT have also been approached from different perspectives, addressing their
impact on the building life cycle, sustainability, construction economy and the future
of the building industry. The key aspects research papers primarily focus on may
consist of how DT differs from previous technologies, the innovations it introduces
and the potential applications of DT alongside current emerging technologies. The
limitations of the studies generally stem from the inability to apply the technology to
a physical structure, the lack of practical experiments, conducted experiments that

remain at the project level and cannot be more comprehensive and the limited data.
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3. METHODOLOGY

3.1 Research Design

Despite the significant body of research on digital twin (DT) in the construction
sector, there is a limited number of studies specifically exploring its impact on
productivity during the construction phase. The aim of this study is to first identify
the factors affecting productivity in the construction phase through a literature review
and then determine the benefits, challenges and major applications of DT in the
construction phase using the same approach. Based on these findings, the study
examines how DT technology can help reduce challenges associated with
construction productivity factors and evaluates its potential to enhance and improve

construction efficiency.

The objectives of this thesis are as follows:

1) To explore the role of DT throughout the building life cycle in the

construction sector

2) To identify its benefits, challenges, and key application areas in the
construction stage

3) To determine the factors affecting productivity during the construction phase

4) To compare these factors with the DT system's identified capabilities to

assess its potential in overcoming productivity challenges

To successfully achieve the research objectives, this study adopts two stage
methodology: first a literature review on DT and productivity, second a questionnaire

survey. Figure 3.1 provides a diagram of the methodology.

The literature review of this study consists of two sections: one focusing on DT and
the other on productivity.
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Research Question:
How DT technology can respond to productivity challenges in the construction phase?
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Figure 3.1 : The flowchart of the methodology.
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For an in-depth analysis, research on the construction sector, its relationship with DT
and productivity was collected from the Scopus database, including conference
papers, articles, reviews, book chapters, and books. While no time restrictions were
applied, the study focuses on English language research. The DT section of the
literature review examines several key aspects, including its definition, the
technologies it integrates with, its general applications, its architectural and
construction related applications, and its role within the building life cycle.
Additionally, the study determines the benefits of DT, the challenges associated with
its implementation, its key application areas, and its potential for future
advancements. Moreover, a bibliometric analysis was conducted to examine the
focus areas of existing studies in the literature, observe how research has developed
over time and identify key contributions and emerging trends in DT applications
within the construction industry. This literature review defined a framework by
identifying the benefits of DT, potential challenges and its primary application areas
in the construction phase. In the second section, the study reviews the literature on
productivity. Initially, the study examines the concept and definition of productivity,
followed by an analysis of its significance and current state within the construction
industry. It also discusses the possible reasons behind the insufficient improvement
in productivity within the sector. Finally, the study identifies and provides a detailed
explanation of the key factors influencing productivity during the construction phase.
Furthermore, an analysis was conducted to examine research on productivity and DT,
highlighting key focus areas and emerging trends in the field. Through this literature
review, the key factors influencing productivity during the construction phase were
identified and defined to include it into the next stages of the research. A literature
review was conducted to explore DT technology's potential impact on construction
productivity factors in order to integrate it into the research survey for assessment.
As a result of the review, a survey was designed based on the insights gained from
the existing body of knowledge. While the literature review section in the study
presents a detailed examination of the relevant factors and the existing body of

knowledge, Table 3.1 provides a summary of the key factors employed in the study.
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Table 3.1 : Summary of factors identified in the literature review.

Variable Factors Subcategories
Factors Affecting Labor Skill, Training, Motivation
Productivity During the Work Site Site layout, Site location

Construction Phase

The Benefits of DT

Management System

Industry Environment
Design Related Issues
Climate
Communication

Real Time Digital Representation
Remote Monitoring

Resource Management

Safety Management

Risk Management

Collaboration with Autonomous Robots
Waste Reduction

Predictive Decision Making

Time And Cost Management
Communication And Collaboration

Cost/Time/Quality/Material &Equipment management,
Desicion making ability,
Organizational methods

Financial uncertainties, Regulatory changes
Constructability, Inaccuracies in drawings
Adverse weather conditions
Misunderstanding, Commmunication barriers
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Table 3.1 (continued) : Summary of factors identified in the literature review.

Variable Factors Subcategories

Challenges in Adaptability
Implementing DT Data Integration
Data Management
High-Fidelity Model
Interoperability
Operation Cost
Cybersecurity and Privacy
Skill and Training
User Interface

Key Applications Workforce Oversight

of DT During the Material &Equipment Management
Construction ) o

Phase Site Monitoring

Optimization of Time and Cost
Enhanced Decision Making Processes
Integration with Emerging Technologies
Comprehensive Participation
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3.2 Survey

In this study, a questionnaire was designed and conducted among industry experts to
assess the effectiveness of DT in improving factors that impact construction
productivity in the construction stage. A pilot study was first conducted to assess the
clarity and comprehensibility of the survey. EI-Gohary and Aziz (2014) conducted
their pilot study with five participants, while Parekh and Mitchell (2024) included
seven participants in theirs. Following a similar approach, a pilot survey was
conducted with a sample of eight participants to test the clarity and effectiveness of
the questionnaire. Based on the feedback obtained, a number of changes were made
to enhance readability and comprehension in response. These included revising
questions in clearer, more exact language, giving detailed definitions and adding
extra explanations where needed. As a result of this process, the final version of the
survey was developed. An online survey platform Google Forms was utilized to
gather data from participants. The study targeted construction industry professionals,
including project managers, engineers, architects, and specialists. Participants were
asked to rate the survey statements using a 5-point Likert scale, where 1 represented
not effective and 5 indicated extremely effective. The survey began with questions
regarding participants' demographic information, obtaining data on gender, age,
education level, profession, years of experience, employing organization, and their
role within the organization. Following the demographic section, two questions
related to DT were included to assess participants' awareness of the technology and
whether they had any prior experience using it. After the first sections, the survey
continued with questions relevant to the topic. First, participants asked to assess
factors affecting productivity during the construction phase. Then they evaluated
how frequently these factors occur in construction projects. Next, the survey
explored the potential impact of DT by asking how its implementation during the
construction phase could influence the occurrence of these productivity related
factors. Subsequently, participants rated the benefits of DT in the construction sector.
A similar assessment was conducted for challenges associated with DT
implementation and its key application areas in construction. Finally, the survey

concluded with a summary question, asking participants to express their views on the
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overall effectiveness of DT in enhancing productivity during the construction phase
of construction projects.

3.3 Data Collection

The survey was shared online through direct invitations to construction professionals,
and LinkedIn was also used to reach more participants and support its distribution.
Data was collected from participants using Google Forms. The survey remained open
for responses over a period of seven weeks. A total of 76 responses were collected.
All responses considered valid and included in the analysis, resulting in the inclusion
of 100% of the provided answers in the survey. The collected data was analyzed
using Statistical Package for Social Sciences (SPSS) v.29 software.

3.4 Data Analysis

To analyze the collected data, a series of statistical methods were employed.
Descriptive statistics, including mean, median, mode and standard deviation, were
utilized to summarize participant responses. To ensure the reliability of the data,
Cronbach’s alpha reliability test was conducted. Next, the normality of the data was
assessed using multiple methods, including histogram analysis, Skewness-Kurtosis
values, the Kolmogorov-Smirnov test, and the coefficient of variation. Once
normality was confirmed, Pearson’s correlation test was performed to examine the
presence of a significant linear relationship between variables. Afterwards,
independent samples t-tests were executed to compare perceptions of DT between
users and non-users. Additionally, one-way ANOVA was performed to examine
whether experience levels influenced perceptions of DT’s benefits, challenges, and
major applications. When ANOVA results indicated statistical significance, post-hoc
tests, such as Tukey’s HSD and Gabriel’s Test, were applied to determine significant

differences among experience groups.
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4. FINDINGS AND DATA ANALYSIS

4.1 Demographic Information of Participants

To gain a better understanding of the participants in terms of gender, age, education
and occupation, seven demographic questions were asked to respondents. In the
following step, two questions were presented to evaluate their understanding of
digital twin (DT). All 76 participants' responses were considered, leading to a
participation rate of 100%. Table 4.1 provides an overview of the survey participants'
demographics. The number of female and male participants is nearly equal, with
54% being female and 46% male. In terms of age groups, the majority of
participants, 54 individuals with 71%, fall within the 25-34 age range. This is
followed by the 35-44 age group, which comprises nine participants, with 12%.
Seven participants, making up 9%, belong to the 18-24 age group. Three participants
each, representing 4%, are in the 45-54 and 55-64 age ranges. There are no
participants over the age of 64. The majority of the participants consist of young
people, which may be due to the fact that they are more active on the internet and
related sharing networks. Looking at the educational background, the majority of
respondents, 70% with 53 individuals, hold a bachelor's degree. 21 participants, 28%,
have a master's degree, while two participants, accounting for 2%, hold a doctoral
degree. In terms of profession, the majority of survey experts are architects, with 55
individuals, accounting for 72% of the group. Civil engineers make up 13%, with 10
participants in this category. Three respondents, 4%, are mechanical engineers, while
another three, also 4%, work as project managers. No participants identified as
computer/software engineers. Respondents who selected “the others™ option in the
profession question include an electronics engineer, an urban planner, a contractor,
an electrical engineer and an architect with a dual degree in civil engineering. The
participants’ experience levels vary across different ranges. Most of them, 44
individuals (58%), have 2-5 years of experience. 14 participants (18%) have less than

two years of experience, while nine (12%) have more than 15 years.
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Table 4.1 : Overview of the survey participants' demographics.

Vartale Responses ReSPOISeS(%)
Gender Female 41 54%
Male 35 46%
Age 18-24 7 9%
25-34 54 71%
35-44 9 12%
45-54 3 4%
55-64 3 4%
> 64 - -
Education Bachelor 53 70%
Degree Master 21 28%
Doctorate 2 204
Profession Architect 55 72%
Civil Engineer 10 13%
Mechanical Engineer 3 4%
Computer/Software Engineer - -
Project Manager 4%
Other 7%
Experience <2 years 14 18%
2-5 years 44 58%
6-10 years 5%
11-15 years 7%
> 15 years 12%
Organization Architecture Office 33 43%
Contracting Company 21 28%
Consulting Firm 5 7%
Quality Control&Inspection Company 4 5%
Academia 1 1%
Other 12 16%
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Table 4.1 (continued) : Overview of the survey participants' demographics.

: : Number of 0
Demographic Variable Responses Responses(%)
Role Design Architect/Engineer 49 65%

Site Manager 7 9%
Senior Manager 5 7%
Consultant 2 3%
Academic 1 1%
Other 12 15%
Informed about the DT  Yes 28 37%
No 48 63%
DT User Yes 8 11%
No 68 89%
Total 76 100%

Five participants (7%) fall within the 11-15 year range, and four (5%) have 6-10
years of experience. The respondents work in various types of organizations. The
largest group, 33 individuals (43%), are employed in architecture offices, followed
by 21 participants (28%) working in contracting companies. Five people (7%) are
part of consulting firms, while four (5%) work in quality control and inspection
companies. Only one participant (1%) is from academia. Among the respondents
working outside the specified organization, six are in the public sector, two in an
airline company, and one each in an investment firm, an energy company, a
manufacturing firm and a portfolio company. The survey experts occupy different
roles in their organizations. The majority, 49 individuals (65%), work as design
architects or engineers. Seven participants (9%) serve as site managers, while five
(7%) hold senior management positions. Two people (3%) work as consultants, and
one (1%) is in an academic role. Out of the 11 respondents who chose “the others”
for their role, the positions include a proposal architect, an avionics design engineer,
an interior designer, a specialist, a business development specialist, four project
managers, a company owner, a site architect, and an analyst. In summary, the
participant profile reveals that the majority of respondents are architects (72%),

primarily between the ages of 25 and 34 (71%). Most of them are highly educated,
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with 70% holding a bachelor's degree and 25% a master's degree. Regarding
professional experience, approximately 42% have 2-5 years, while around 32% have
less than 2 years of experience. The respondents predominantly work in architectural
offices as design professionals. Aside from the demographics, when asked about
their knowledge of DT technology, 28 participants (37%) stated they are aware of it,
whereas the other 48 respondents (63%) are not familiar with the concept. Of the 28
people informed about the DT technology, eight (11%) have had the opportunity to
use this technology before. Among the 76 participants, 68 (89%) have never used DT

technology. The details are shown in Table 4.2.

Table 4.2 : Overview of the DT users' demographics.

No DT User Education Degree Profession Experience
1 Yes  Master Architect 2-5 years
2 Yes  Master Architect& Civil Engineer  2-5 years
3 Yes  Master Project Manager > 15 years
4 Yes  Bachelor Architect < 2 years
5 Yes  Bachelor Architect 2-5 years
6 Yes  Master Architect 2-5 years
7 Yes  Master Mechanical Engineer 2-5 years
8 Yes Master Architect 2-5 years

An important feature is that the experience of these eight individuals typically falls
within the 2-5 year span. It can show that younger professionals are more involved
with such innovations within the construction industry. Moreover, this may suggest
that although their experience is not at an advanced level, they have a background in
using important technologies. Also 75% of the DT users in the questionnaire are

architects, with a majority holding a master's degree.

4.2 Statistical Analysis of Data

The literature research identified the 18 factors impacting productivity during the
construction phase. In total, these subcategories identified under seven main
categories. Afterwards survey participants were asked about the impact level of these
factors. Then, they were questioned about the frequency of their encounters with
these factors during construction. Lastly, regarding DT technology and productivity,

they were asked how these factors might have been influenced if a DT had been
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employed during the project's construction phase. Participants were requested to
reply using a five-point Likert scale. Moreover, related to DT technology, through a
literature review the benefits of DT were identified, and the relevant factors were
listed. Participants then rated these factors using a five-point Likert scale. The same
process was applied to challenges in implementing DT in construction and key
applications of DT during the construction phase. The survey was concluded with a
final question evaluating the effectiveness of DT in improving productivity during
the construction phase. Based on all of this information, for a descriptive analysis,
Table 4.3 was generated showecasing essential statistical metrics such as mean,
median, mode and standard deviation for each factor. The factors are arranged from
the highest mean to the lowest. According to the table, participants ranked labor (i.e.,
4,14) as the most influential factor impacting productivity during the construction
phase. The management system (i.e., 4,11) positioned second. Although the
management system comes second, its mean value is closely aligned with the labor
factor. This might indicate that participants consider it as important as the most
impactful factor (i.e., there is no statistical significance). Supporting this, labor
related factors are frequently emphasized in the literature as the most significant
aspect on construction productivity (Alzubi et al., 2023; Rathnayake and Middleton,
2023; Lee et al., 2023). Moreover, some researchers claim that the management
approach is ranked as having the highest impact on construction (Durdyev et al.,
2018; El-Gohary and Aziz, 2014; Ghoddousi and Hosseini, 2012). In line with the
survey results, these two factors hold similar rankings in the literature as the most
effective ones. Design related issues (i.e., 3,72) came in third place while the work
site (i.e., 3,57) and industry environment (i.e., 3,54) factors stand 4th and 5th. Alzubi
et al. (2023) state that aspects related to the construction site are ranked immediately
behind the management system. Alabdali et al. (2022) claim that construction
productivity is most affected by incomplete drawings and missing elements, followed
by inadequate site circumstances and management. However, survey results assign
less importance to these factors, in the findings these are found to be less influential.
Participants identified communication (i.e., 3,43) and climate (i.e., 3,25) as the least
impactful factors. Nevertheless, although they are in last place, their average values
are not considerably low, since both exceed 3. Additionally, the mean values of the
four lowest positioned factors are closely aligned. This may suggest that respondents

consider minimal differentiation in the importance of these four factors.
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Table 4.3 : Descriptive survey statistics.

Variables Mean Median Mode DS;S N
Factors'_lr_npact on Labor 4,14 433 500 ,750 76
Eﬁ?g;t'v'ty Management System 411 433 4,67 ,695 76
Construction Design Related Issues 3,72 4,00 4,00 ,984 76
Work Site 357 350 3,00 ,877 76
Industry Environment 354 350 4,00 ,944 76
Communication 3,43 350 4,00 ,941 76
Climate 3,25 3,00 3,00 1,047 76
Occurrence Labor 3,85 400 4,00 ,850 76
E;itgg;ncyof Management System 3,60 3,58 3,67 ,882 76
Design Related Issues 3,31 350 350 1,052 76
Industry Environment 3,20 3,00 3,00 ,96 76
Communication 3,06 3,00 200 1,144 76
Work Site 296 3,00 200 1,032 76
Climate 295 3,00 2,00 1,253 76
The Level of Design Related Issues 3,84 400 4,00 ,956 76
Influence on Management System 3,77 3,92 4,00 ,784 76
These Factors If
DT Were Used ~ Work Site 326 3,00 300 ,978 76
Communication 3,11 3,00 3,00 1,293 76
Labor 3,02 3,00 3,00 1,012 76
Industry Environment 256 250 2,00 1,080 76
Climate 2,37 2,00 1,00 1,295 76
The Benefits of ~ Remote Monitoring 432 500 500 ,867 76
DT Time And Cost Management 430 500 500 ,848 76
Resource Management 418 4,00 5,00 ,843 76
Real Time Digital
Representation 417 4,00 500 ,985 76
Predictive Decision Making 410 5,00 500 ,974 76
Risk Management 409 400 4,00 ,819 76
Collaboration with Autonomous 396 4,00 4,00 1,025 76
Robots
Communication and 389 400 400 ,932 76
Collaboration
Waste Reduction 3,68 4,00 4,00 1,022 76
Safety Management 3,64 400 4,00 ,975 76

88



Table 4.3 (continued) : Descriptive survey statistics.

Variables Mean Median Mode DS(:?/ N
Challenges_in Skill and Training 354 4,00 5,00 1,259 76
Implementing DT e Interface 320 300 400 1,118 76
Cybersecurity and Privacy 3,20 3,00 4,00 1,244 76
Operation Cost 3,20 3,00 2,00 1,276 76
Adaptability 299 3,00 3,00 1,089 76
Interoperability 2,89 3,00 3,00 1,138 76
Data Integration 2,83 3,00 2,00 1,248 76
Data Management 2,82 3,00 2,00 1,262 76
High-Fidelity Model 282 3,00 2,00 1,283 76

Key Applications  Optimization of Time and Cost 4,17 4,00 5,00 ,971 76
of DT During the

. Integration with Emerging 409 400 500 ,882 76
Construction Phase Technologies
Site Monitoring 407 4,00 5,00 1,024 76
Enhanced Decision Making 403 4,00 5,00 1,006 76
Processes
Material &Equipment 400 4,00 5,00 ,924 76
Management
Comprehensive Participation 3,84 4,00 500 1,020 76
Workforce Oversight 3,51 4,00 3,00 1,026 76

The effectiveness of DT in improving productivity 4,09 4,00 4,00 ,636 76
during construction phase

Alongside the claims of Alzubi et al. (2023), Hasan et al. (2018), and Rivas et al.
(2011), climate was listed last in the outcomes of the survey. Nonetheless, unlike the
survey results, Rathnayake and Middleton (2023) emphasize that the climate factor
has a more significant impact. Some researchers indicate that the influence of the
communication factor on productivity is regarded as more significant than what the
survey findings show (Mehta et al., 2022; Naoum, 2016; Jarkas and Bitar, 2012).
This may be due to participants’ insufficient understanding of the critical role of
communication in the construction sector. The average mean values for the factors'
impact on productivity during construction and their occurrence frequency exhibit a
similar ranking, with the top three factors being labor, management system and

design related issues. These three are the both the most influential and the most
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widespread factors according to survey results. Even though Rathnayake and
Middleton (2023) identify labor, equipment & technology and construction site
factors as the three most frequently cited factors affecting construction productivity,
the survey data claim it is labor, management system and design related issues. This
difference may be due to the study of Rathnayake and Middleton (2023) being based
on a systematic review that integrates findings from diverse cultural contexts,
whereas our survey reflects a more localized perspective. When comparing the
occurrence frequency and factors affecting productivity results, the work site (i.e.,
2,96) factor falls from 4th to 6th position, whereas the industry environment (i.e.,
3,20) rises from 5th to 4th in the occurrence frequency. Based on the responses,
while the impact of the work site factor on efficiency was reported to be high, its
frequency of occurrence was noted to be low. On the other hand, the industry
environment had a higher frequency of occurrence despite having a smaller effect.
Communication (i.e., 3,05) advances from 6th to 5th place, while climate (i.e., 2,95)
stays at the bottom. According to respondents, in projects, the occurrence frequency
of the communication factor is higher compared to its influence. Contrary to the
survey results Hasan et al. (2018) indicate the most common factor affecting
construction productivity is material shortages, followed by inadequate supervision
and skill gaps. Despite the top three, other attributes they listed in descending order
in line with the survey findings: incomplete drawings and specifications, poor

communication, inefficient site layout and adverse weather.

In the context of the level of influence on these factors if DT were used, a shift in the
mean values is observed. Despite labor being the most influential and frequently
encountered factor in productivity, its potential impact on productivity when DT
technology is applied is not rated as highly. With a mean value of 3,02 it ranks 5th
according to the participants' average. In support of this, workforce oversight,
associated with the labor factor, was identified as the lowest ranked area among the
key application areas of DT in the construction phase. According to the participants,
DT technology may not be expected to have a strong influence on labor.
Respondents perceive that design related issues would be the most impacted factor
by the use of DT, with a mean value of 3,84. However, despite agreeing this, when
asked about the key application area for DT, they ranked comprehensive

participation, which facilitates process integration and simplifies drawing error
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resolution, second to last. Instead, they prioritized optimization of time and cost as
the most crucial application area. The management system aspect stands in second
place, having a mean value of 3,77. Among the factors affecting productivity in the
construction industry, considering both their impact and frequency of occurrence, the
management system was identified as the second most critical factor too. A
comparison of the responses can show that participants consider management system
factor highly influential on productivity and believe that the use of DT technology
may offer considerable benefits and lead to notable improvements in this area. Work
site (i.e., 3,26) holds the third position in the table. While the work site was not
among the most frequently observed factors affecting productivity, its impact level
ranked fourth when it was asked. Despite this, participants believed that DT
technologies might have a high level of influence on this factor, placing it third in the
rankings. This can suggest that they may consider DT effective in improving site
planning. Although the communication places 4th for this question, participants may
show uncertainty regarding the influence of DT on communication, as evidenced by
a mean value of 3,11. Communication was already not considered by participants as
a highly influential or frequently observed factor. Similarly, when asked in detail
about survey experts’ perception of DT, communication related variables also ranked
towards the bottom in both the advantages of DT (communication and collaboration)
and the key application areas (comprehensive participation). The industry
environment and climate factors are listed 6th and 7th, respectively, with mean
values of 2,56 and 2,37. Respondents might consider that these two factors would not
be significantly affected by DT, as shown by their lower mean ratings. Since these

are external factors, lower mean scores were expected.

Overall, when participants were asked about the factors affecting productivity and
their frequency of occurrence during the construction phase, the top three factors
they identified were the same: labor, management system and design-related issues.
In contrast, when asked which factors would be most influenced by the use of DT
technologies, two of these three factors (management system and design related
issues) were again ranked in the top three. This may indicate that the use of DT
technologies could be a highly effective solution for addressing the most common

and impactful factors reducing productivity during the construction phase.

91



Upon reaching the questions related to the perception of DT, when examining the
benefits of DT, participants listed remote monitoring (i.e., 4,32) as the most
significant benefit, closely followed by time and cost management (i.e., 4,30), with
almost identical values. Resource management (i.e., 4,18) comes in third, while real
time digital representation (i.e., 4,17) ranks 4th, nearly equal to the third factor.
Predictive decision making comes 5th (i.e., 4,10) with risk management (i.e., 4,09)
just behind. Since the mean values of the first six benefits are all greater than the
value of 4, it can be concluded that participants regard the benefits of DT as highly
valuable. In the survey results, schedule optimization and predictive maintenance,
which received high scores, are also described by Hu et al. (2022) as advanced
contributions of DT technology for the construction industry. The two final benefits
are waste reduction (i.e., 3,68) and safety management (i.e., 3,64). Their average
values are not low, even though they place in the bottom two. The reason waste
reduction is in the lower ranks could be that sustainability is not considered a high
priority among the participants. Likewise, the positioning of safety management at
the last place may be due to the lack of sufficient attention given to this factor during
the construction phase. Opposed to questionnaire results, Moshood et al. (2024)
highlight the vitality of DT in sustainability by claiming that DT will be essential to
creating sustainable urban settings in the future. Similarly, Teizer et al. (2022)
emphasize the importance of the integration of DT technology in construction safety

in contrast to participants’ opinions.

In the analysis of the challenges in implementing DT, a score of 5 would typically
indicate a high level of difficulty. Nonetheless, the participants' scores for these
challenges were not particularly high. This might imply that respondents generally
believe the implementation of DT does not involve considerable difficulties. The
highest ranked challenge, skill and training, received a mean score of 3,54. Parallel to
the survey results, Jiao et al. (2024) state that the role of each stakeholder cannot be
considered in isolation, as DT implementation requires collaboration across various
professions and disciplines. Consequently, ensuring that everyone is skilled in this
area may emerge as one of the key challenges that may be encountered. The
challenges of user interface, cybersecurity & privacy, and operational costs,
positioned second, third and fourth respectively, all share the same mean value of

3,20. An examination of the three main challenges identified by participants may
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show widespread worries about data privacy and usability of the technology.
Adaptability (i.e., 2,99) and interoperability (i.e., 2,89) are listed as the 5th and 6th
challenges in the table. Given that the mean values are below 3, it can be concluded
that the experts participating in the survey do not regard these two challenges as
major concerns. The challenges holding the last three positions are data integration
(i.e., 2,83), data management (i.e., 2,82) and high-fidelity models (i.e., 2,82).
Participants perceive these ones as less likely to cause significant issues.
Technological advancements in data processing and modeling may have contributed
to participants' confidence in these areas. Nevertheless, while participants do not
view the data management challenge as a major obstacle, Jiao et al. (2024) assert that
the accessibility of new data sets, data security and data analysis during the DT
implementation process make the data management system a primary barrier at the
project level. When asked in the survey whether they had any general comments
about DT technology, a few participants expressed concerns regarding its challenges.
One respondent expressed concerns regarding the current applicability of DT,
because it is still in an early stage of development and adoption in the country.
Another pointed out that a significant obstacle is the companies' reluctance to share
data in the industry. The third concern focused on the possibly high initial investment
cost of DT, which would limit its use in small scale projects. The fact that the
participants who provided general comments mostly focused on its challenges may
indicate that, despite its increasing popularity, people may still have uncertainties and
doubts about its integration and adoption.

According to respondents, during the construction phase, the main priority among the
key applications of DT is time and cost optimization (i.e., 4,17). This aligns with
respondents’ earlier ranking of time and cost management as the second most
significant benefit of DT. This may be highlighting their strong belief in its potential
advantage. Integration with emerging technologies (i.e., 4,09) follows closely in
second place, which might reflect the growing importance of technological
advancements in the industry. Additionally, site monitoring (i.e., 4,07) is located
third, emphasizing the significance of remote monitoring, which was previously
identified by respondents as the most valuable benefit of DT. Yang et al. (2024)
explain DT integrates with advanced technologies and their implementation in

buildings enables real time monitoring. This relationship is also evident in the survey
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findings where factors ranked second and third respectively, with similar values.
Enhanced decision making processes (i.e., 4,03) ranks 4th, while material &
equipment management (i.e., 4,00) comes in 5th. In response to the question about
the benefits of DT, decision making processes also ranked in the middle according to
the participants' answers. Nonetheless Yang et al. (2024) examines DT systems’
potential to revolutionize decision making in the construction industry. The last two
factors, comprehensive participation (i.e., 3,84) and workforce oversight (i.e., 3,51),
listed the lowest. Comprehensive participation is related to communication and it
was also placed low in the factors affecting productivity. While the researchers
(Hasan et al., 2018; Zhang et al., 2024; Yang et al., 2024) highlight its importance,
survey respondents did not view it as a highly effective application of DT. This may
stem from inadequate focus on task distribution among stakeholders and an
underestimate of its significance for promoting a collaborative construction process.
Jiao et al. (2024) mention that one of the biggest problems the sector faces is the
failure to finish a project on schedule, which is mostly caused by the combined
activities and tasks of the owner, contractor, and other stakeholders. That's why
researchers suggest these two factors should not be considered too separately, as they
can be interconnected. However, in the survey results optimization of time and cost
ranks first among key application areas, while comprehensive participation is the
second lowest. Furthermore, even though labor was previously identified as the most
influential factor on productivity, it did not receive a high rating in terms of the areas
of application that DT technology would bring. This might suggest that participants

may not perceive DT as greatly impacting labor.

With a mean score of 4,09, the effectiveness of DT in enhancing productivity during
the construction stage was firmly confirmed by participants. This may indicate that
they regard the DT system as a valuable technology for boosting productivity in the

construction sector.

Eight participants in the survey indicated that they had previous experience with DT
technology. To assess their perspectives, the mean values of their Likert scale
responses were analyzed across five categories: the influence of DT on factors
affecting productivity if applied, the benefits of DT, challenges in implementing DT,
key applications of DT during the construction phase, and the effectiveness of DT in

improving productivity during the construction phase. Firstly the influence of DT on
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factors affecting productivity was analyzed. The ranking of factors remained
consistent with the overall dataset, except for a position swap between
communication and worksite factors. Participants ranked communication third and
worksite fourth, reversing their order in the overall results. The mean values for each
factor were: design related issues (i.e., 4.50), management system (i.e., 4.02),
communication (i.e., 3.56), worksite (i.e., 3.44), labor (i.e., 3.21), industry
environment (i.e., 2.50), and climate (i.e., 2.50). When comparing the results with the
general evaluation, the mean value for design related issues is significantly higher.
Additionally, management system and communication factors also have higher mean
values, indicating that participants with DT experience believe these factors would
be more impacted by DT implementation. The remaining factors show only minor
differences. When examining the analysis of the benefits of DT, real time digital
representation was rated significantly higher, indicating a stronger emphasis on its
importance according to DT users. They perceive it as the most valuable benefit of
DT. Meanwhile, remote monitoring, time and cost management, resource
management, and risk management were also rated higher, but with minor
differences. In contrast, predictive decision making and waste reduction received
notably lower ratings. DT users might not view these advantages as transformative
and critical as others. The remaining factors showed minimal variation and remained
almost the same. The mean values for each factor were as follows: real time digital
representation (i.e., 4.50), remote monitoring (i.e., 4.50), time and cost management
(i.e., 4.50), resource management (i.e., 4.25), risk management (i.e., 4.25),
communication and collaboration (i.e., 4.00), collaboration with autonomous robots
(i.e., 4.00), safety management (i.e., 3.75), predictive decision making (i.e., 3.75),
and waste reduction (i.e., 2.88). Third, the challenges in implementing DT were
examined. Interoperability, data integration, data management, and high fidelity
model received dramatically higher ratings from DT users. They regard these
challenges to be more complex compared to respondents who have not used DT
before. Whereas, skill and training and user interface were also rated higher, but with
only slight differences. Although these two received higher ratings, factors still do
not rank among the top three challenges identified by DT users. Conversely,
cybersecurity and privacy were rated notably lower. DT users do not consider it as a
significant obstacle compared to non DT users. The remaining variables showed little

shift and remained mostly unchanged. The mean values for each factor were as
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follows: skill and training requirements (i.e., 3.88), high-fidelity modeling (i.e.,
3.63), data integration (i.e., 3.50), user interface (i.e., 3.50), integration with other
technologies (i.e., 3.25), data management (i.e., 3.13), adaptability (i.e., 3.13),
operational cost (i.e., 3.00), and cybersecurity and privacy (i.e., 2.75). In the analysis
of DT's key application during the construction stage, comprehensive participation
and workforce oversight received notably higher ratings from DT users. This might
show that their familiarity with DT on project coordination, labor tracking and
stakeholder management with DT contributes to their more positive assessment of
these application areas. Meanwhile, optimization of time and cost, site monitoring,
and material & equipment management were also rated higher, but with only slight
differences. The other factors exhibited minimal variation. The average ratings for
each factor were as follows: optimization of time and cost (i.e., 4.50), site monitoring
(i.e., 4.38), material and equipment management (i.e., 4.25), comprehensive
participation (i.e., 4.25), enhanced decision making process (i.e., 4.13), integration
with emerging technologies (i.e., 4.13), and workforce oversight (i.e., 4.00). When
examining the question regarding the effectiveness of DT in improving productivity
during the construction phase, it was found that although the overall mean value was
4.09, DT users rated it slightly higher, with a mean of 4.38. According to DT users

and with a lower degree all participants, DT is perceived as highly effective.

4.2.1 Reliability analysis

A reliability analysis was performed using Cronbach's Alpha to evaluate the internal
consistency of the responses provided in the survey. A high Cronbach's Alpha value,
ranging from 0 to 1, indicates that the factors or questions being tested are highly
consistent with each other. A Cronbach's Alpha of 0.9 or higher indicates excellent
reliability, while a value between 0.8 and 0.9 reflects good consistency. An Alpha
between 0.7 and 0.8 suggests acceptable reliability. Table 4.4 presents Cronbach's
Alpha values for the questions included in the survey. The Cronbach's Alpha values
for the first three questions exceed 0.9, signifying excellent reliability, while for the
last three questions, the values surpass 0.8, demonstrating good consistency.
Generally the number of statements in the scale also influences Cronbach’s alpha, as
the number of items increases alpha tends to rise. A Cronbach’s alpha above 0.9 may
be attributed to a large number of statements, making a high alpha expected. Overall,

the survey exhibits high reliability based on these Cronbach's Alpha scores.
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Table 4.4 : Cronbach’s alpha values.

Number of  Cronbach’s Alpha

Variables Statements Value
Factors' Impact on Productivity During 18 ,932
Construction

Occurrence Frequency of Factors 18 ,913
The Level of Influence on These Factors If DT 18 ;909
Were Used

The Benefits of DT 10 ,870
Challenges in Implementing DT 9 ,896
Key Applications of DT During the 7 ,833

Construction Phase

4.2.2 Normal distribution analysis

A normality test was conducted to assess whether the sample data followed a normal
distribution, guiding the selection of further analyses such as correlation analysis,
independent samples t-test and one-way ANOVA. Tabachnick and Fidell (2013)
state that Skewness-Kurtosis values need to fall within the range of +1.5 and -1.5.
Orcan (2020) mentions assessing normality solely based on Skewness-Kurtosis
values is unreliable; therefore, they should not be used as the only criteria. The
normal distribution is a symmetric probability distribution with a bell shaped curve
that shows that data closer to the mean occur more often than data far away (Maity
and Saha 2022). Yap and Sim, (2011) claim graphical techniques can be helpful in
determining if sample data is normal, but they cannot offer recognized, final proof
that the normal assumption is true. Therefore they recommend the Kolmogorov-
Smirnov test which evaluates normality, where a p-value above 0.05 indicates that
the null hypothesis is not rejected, suggesting the data follows a normal distribution.
Moreover the coefficient of variation serves as a valuable metric for assessing scale
reliability by evaluating the degree to which measurements are distributed around a
central value (Seeletse and Miyambu, 2017; Thangjai et al., 2021). Koch and Link
(1971) specifically suggest that a coefficient of variation lower than 0.50 reinforces
the assumption of normality whereas Hayya et al. (1975) claim 0.39. Overall, several
techniques are employed in data analysis to determine whether a data collection is
normally distributed, including Skewness-Kurtosis values, bell curve shape of the

histogram graph, Kolmogorov-Smirnov test result and coefficient of variation. In this
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study, datasets that satisfied at least half of the mentioned techniques were assumed
to exhibit a normal distribution.

As a first step, the skewness and kurtosis values of the variables were assessed to
determine whether they lay between +1.5 and -1.5. Since the skewness and kurtosis
values for all variables fall within the range of +1.5 to -1.5, it can be concluded that
the data have a normal distribution according to the values. In the second step, the
histogram graphs were examined. Figure 4.1 illustrates the histogram charts of the

variables.
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Figure 4.1 : Histogram graphs of the variables.

G

Based on the histograms, graphs B (occurrence frequency of factors), C (the level of
influence on these factors if DT were used), E (challenges in implementing DT) and
G (the effectiveness of DT in improving productivity during construction phase)
demonstrate a bell shaped curve representing a normal distribution, whereas graphs
A (factors' impact on productivity during construction) , D (the benefits of DT) and F
(key applications of DT during the construction phase) do not indicate normality
when evaluated only through histograms. Since there are 76 participants in the
survey, the Kolmogorov-Smirnov normality test which is recommended for sample

sizes exceeding 50, was conducted as a third step. As a result, the p-values of A
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(factors' impact on productivity during construction), B (occurrence frequency of
factors), C (the level of influence on these factors if DT were used), E (challenges in
implementing DT) variables were found to be greater than 0.05, indicating that they
meet the normality assumption. However, variables D (the benefits of DT), F (key
applications of DT during the construction phase) and G (the effectiveness of DT in
improving productivity during construction phase) did not satisfy this criterion, as
their p-values were below 0.05. Lastly, the coefficient of variation was computed for
each factor in the survey data. Since the coefficients for all variables were found to
be less than 0.50, it may be concluded that the survey data satisfied the normality
assumption. Considering all these results, while some variables (B, C, E) were found
to meet all the conditions, others meet three of the conditions (A, G), and some
satisfied half of the criteria (D, F). Therefore, the overall data was assumed to follow
a normal distribution. Table 4.5 presents a summary of the normality analysis
conducted in this study. Thus, the analyses of correlation, independent samples t-test,

and ANOVA were conducted using methods suitable for normally distributed data.

Table 4.5 : Normality test of the survey data.

No Variables Descriptive Results
A. Factors' Impact on Productivity Skewness&Kurtosis -613 ,215
During Construction Histogram graphic Not bell curve
Kolmogorov-Smirnov ,099
Coefficient of variation 0,168
B. Occurrence Frequency of Skewness&Kurtosis ,101  -,153
Factors Histogram graphic Bell curve
Kolmogorov-Smirnov ,079
Coefficient of variation 0,215
C. The Level of Influence on Skewness&Kurtosis 172 -,299
These Factors If DT Were Used Histogram graphic Bell curve
Kolmogorov-Smirnov ,200
Coefficient of variation 0,218
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Table 4.5 (continued) : Normality test of the survey data.

No Variables Descriptive Results
D. The Benefits of DT Skewness&Kurtosis -562  -,335
Histogram graphic Not bell curve
Kolmogorov-Smirnov ,018
Coefficient of variation 0,157
E. Challenges in Implementing Skewness&Kurtosis -121 -424
DT Histogram graphic Bell curve
Kolmogorov-Smirnov ,167
Coefficient of variation 0,296
F. Key Applications of DT Skewness&Kurtosis -, 721 ,082
During the Construction Histogram graphic Not bell curve
Phase Kolmogorov-Smirnov ,001
Coefficient of variation 0,175
G. The Effectiveness of DT in  Skewness&Kurtosis -072  -,480
Improving Productivity Histogram graphic Bell curve
During Construction Phase .
Kolmogorov-Smirnov ,001
Coefficient of variation 0,155

4.2.3 Correlation analysis

In order to assess the relationships between the variables, a Pearson correlation
analysis was executed. The correlations were examined under six different categories
based on the framework of the study. The Pearson correlation varies between -1 and
+1, where a value of 0 signifies the absence of any relationship between the
variables. Positive coefficients indicate a direct linear relationship, meaning that as
one variable increases, the other also increases. In contrast, negative coefficients
reflect an inverse linear relationship, where an increase in one variable corresponds
to a decrease in the other. In this study, correlation values higher than 0.60 are
accepted as reflecting a strong association between the variables; thus, factors with a
correlation value above 0,60 were highlighted in bold in related tables for detailed

discussion. Table 4.6 presents the Pearson correlation results for the categories of
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factors affecting productivity during the construction phase. As shown in the table,
all variables exhibit significant correlations at the 0.01 level. Nevertheless, three high
level strong positive correlations with coefficients exceeding 0.60 are notable, all of
which are significant at the 0.01 level. The first very strong positive correlation is
found between the management system and labor factors, with a coefficient of 0.639,
which is significant at the 0.01 level. This may indicate that participants who
considered the management system to have a significant impact on productivity also
perceived labor related factors as important. In their study, Alzubi et al. (2023) found
that the workforce factor ranked as the most influential on construction productivity,
followed by management. They explain that this relationship can be attributed to the
significant influence of management decisions on workers' performance. Parallel to
this information survey results show similar relations. Similarly, the second highly
significant positive correlation is found between the design related issues and work
site factors, with a coefficient of 0.605, which is also significant at the 0.01 level.
This may be due to the fact that both factors are related to the quality of planning and
efficient workflow. Design related factors, including incomplete or inaccurate
drawings may directly affect worksite conditions by causing difficulties in
constructability and implementation. Likewise Naoum (2016) highlights, inefficient
designs may disrupt worksite operations by complicating construction and causing
poor utilization of resources. Therefore, participants who found design related issues
important were likely to value the work site factor as well. Lastly, the final high level
strong positive correlation in this category is observed between the design related
issues and management system factors, with a coefficient of 0.616, again significant
at the 0.01 level. Design and management processes can be seen closely
interconnected. When management quality improves, design outputs usually improve
as well, supporting higher standards and greater productivity rate across the project.
Moreover, in well managed projects, design results are generally reliable, accurate
and constructible for construction. For this reason we may conclude that participants
who rated design related issues as highly influential on productivity also perceived
the management system as important. Consistent with the survey findings, Naoum
(2016) points out that delays caused by design errors and variations are among the
leading factors affecting productivity, underlining the need for a strong management
system. Table 4.7 presents the correlation analysis of the occurrence frequency of

factors.
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Table 4.6 : Correlations between the factors affecting productivity during the construction phase.

Category Variables Lbr Wrk_st Mngmt_Sys Indsrt Env. Dsgn_ R I Clmt Commctn
Factors' Impact on Productivity  Labor 1
During Construction Work Site 421% 1

Management System ,639** ,559** 1

Industry Environment ,541** ,351** ,496** 1

Design Related Issues ,508** ,605** ,616** ,\D72** 1

Climate ,458** ,541** ,506** A21%* ,D87** 1

Communication ,370** ,A54** A491** ,405** ,536**  54T7** 1

** Correlation is significant at the 0.01 level.

Table 4.7 : Correlations between occurrence frequency of factors.

Category Variables Lbr Wrk st Mngmt_Sys Indsrt Env Dsgn R_I CIimt Commctn
Occurrence Frequency of Factors Labor 1

Work Site ,188 1

Management System ,591** ,D43** 1

Industry Environment ,369** A39** ,445** 1

Design Related Issues A00%* ,340%* ,521** A5T** 1

Climate ,318** ,571** ,415%* ,625%* ,331** 1

Communication A14** AT79** ,D44** ,456** ,D45%*  A462** 1

** Correlation is significant at the 0.01 level.
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All correlations are significant at the 0.01 level, except for the worksite and labor
correlation, which is not significant with a value of 0.188. Additionally, there is only
one highly significant positive correlation exceeding 0.60, found between the climate
and industry environment factors, with a coefficient of 0.625, which is significant at
the 0.01 level. The results suggest that participants perceive a parallel increase or
decrease between the occurrence frequencies of these two external factors, climate
and industry environment. According to the respondents, difficulties in the industry
environment, such as financial uncertainty and regulatory obstacles, frequently occur
with adverse climate conditions. This correlation may be coincidental; however, it is
also possible that adverse climate conditions affect the industry environment by
creating financial uncertainties within the sector. Extreme weather can cause
interruptions to the supply chain, project delays and cost increases, all of which can
contribute to an unstable business environment. Table 4.8 illustrates the correlations
of participants’ evaluations of how these factors would be influenced if DT
technologies were applied. All correlations are significant at the 0.01 level, except
for the correlation between climate and design related issues, which has a coefficient
of 0.254 and significant at the 0.05 level. Two high level strong positive correlations
greater than 0.60 are identified. The first is observed between the climate and work
site factors, with a coefficient of 0.665, significant at the 0.01 level. Although DT
technology cannot control climate conditions, the strong positive correlation between
climate and work site factors may suggest that participants considered DT may assist
in managing the impact of climate on work site operations rather than the climate
itself. In this way, DT might be seen as an effective strategy for reducing the impact
of weather conditions on work site performance, even though it cannot change the
environment itself. The second high level significant positive correlation is between
climate and industry environment factors, with a coefficient of 0.652, significant at
the 0.01 level. Even while DT cannot influence the climate itself, this result might
indicate that participants suppose DT technology may help the industry with
handling the adverse impacts of climate issues such as supply chains and
uncertainties. Even though climate was addressed directly in the survey, the strong
correlations with both the work site and industry environment factors show that
participants may have unintentionally taken climate effects into account when
evaluating the question. Table 4.9 provides the correlation results for the benefits of
DT.

103



Table 4.8 : Correlations between the levels of influence on these factors if DT were used.

Category Variables Lbr Wrk_st  Mngmt_Sys Indsrt Env Dsgn_R_I Clmt Commctn
The Level of Influence on These Labor 1
Factors If DT Were Used Work Site 514%* 1
Management System 317** AT3** 1
Industry Environment ,D68** ,D4T** ,382** 1
Design Related Issues ,361** ,A487** ,D97** ,254* 1
Climate ,575%* ,665** ,310** ,652** ,236* 1
Communication ,530** ,485** ,373** ,D95** ,397**  585** 1

* Correlation is significant at the 0.05 level.
** Correlation is significant at the 0.01 level.
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Table 4.9 : Correlations between the benefits of DT.

Category Variables RealT_ D R Rmt_ Mnt Rsrc_Mngmt Sfy Mngmt Risk_Mng Collb_Auto R Wst Red Prdc_Dcs M -I\r/lgr:gc;:r?lt Com_Collb
The Real Time Digital
Benefits Representation 1
of DT Remote Monitoring 545%* 1
Resource Management AL1** 484 1
Safety Management ,300%* 481%* ,485** 1
Risk Management B41** ,409%* ,650%* ,508** 1
Collaboration with 520%* 449%* 409%* 319%* 449%* 1
Autonomous Robots
Waste Reduction ,253* ,114 ,408** ,207 ,369** ,382%* 1
Predictive Decision
Making ,A481** ,307** ,495** ,278* AT12%* ,365** ,543** 1
Time And Cost
Management ,511** ,A430** ,666** ,293* ,592** ,397** ,373** ,493** 1
Communication And
Collaboration 223 ,207 A32%* ,208 ,310** 177 ,A440%* A24%* ,546** 1

* Correlation is significant at the 0.05 level.

** Correlation is significant at the 0.01 level.
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In addition, it includes strong correlations that are significant at the 0.01 and
correlation at 0.05 levels, as well as some correlations that are not significant. The
first highly strong positive correlation, exceeding 0.60, is identified between risk
management and real time digital representation factors (r =,641, p<,001). Real time
digital representation has a high potential to support risk management in projects;
therefore, the positive correlation between them could indicate that participants likely
perceive these factors as interrelated in this context. Likewise Salem and Dragomir
(2023) highlight the relation between them as claiming DT improves risk
management by enabling fast planning and forecasting through the integration of real
time and historical data. Another high level significant positive correlation is
identified between risk management and resource management (r = ,650, p < ,001).
Similarly, participants may have viewed a comparable perception regarding the
relationship between risk management and resource management. As resources are
managed more effectively, associated risks may decrease accordingly. Therefore, the
positive correlation between these factors could suggest that respondents believe the
advantages of DT in resource management also contribute to its effectiveness in risk
management. The last highly strong positive correlation appears between time and
cost management and resource management (r = ,666, p < ,001). The strong
correlation between them may be explained by the close connection between these
areas in the construction phase. Participants who considered resource management
valuable could be likely regarded time and cost management as equally important in
maximizing project efficiency. In parallel to this, Salem and Dragomir (2023) assert,
DT technology can guide resource management by monitoring financial items based
on the project’s financial plan stored in BIM, allowing for accurate tracking of
expenditures across specific budget categories, such as worker salaries and raw
material costs. Table 4.10 shows the correlation analysis of the challenges associated
with implementing DT. These challenges were found to be highly correlated with
each other. The table reports 13 highly strong positive correlations exceeding 0.60,
which are all significant at the 0.01 level. It also presents other correlations, some of
them are significant at the 0.01 and 0.05 levels, while some of others are not

significant.
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Table 4.10 : Correlations between the challenges in implementing DT.

Category Variables Adpt Dt _Intg Dt Mngt Hgh_Fd_M Introprblt Opr_Cst Cybsc Priv Skil_Trng Usr_Intfc
Challenges in  Adaptability 1
:)rr_lrplementmg Data Integration ,685** 1

Data Management ,648**  869** 1

High-Fidelity Model ,561**  730** | 737** 1

Interoperability ,601**  626** 655** ,662** 1

Operation Cost ,626*%*  516**  503** ,495%* ,676** 1

Cybersecurity and Privacy ~ ,297**  263* 219 224 ,335**  488** 1

Skill and Training A14%*  AQT7** 357 ,368** A31**  B14**  62]** 1

User Interface ,262*  350** 375** ,280* ,354**  311**  B4G** ,674** 1

* Correlation is significant at the 0.05 level.
** Correlation is significant at the 0.01 level.
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Among the highly strong correlations identified, the highest three were observed
between data integration and data management (r = ,869, p < ,001), data integration
and the high fidelity model (r =,730, p < ,001), and data management and the high
fidelity model (r = ,737, p < ,001). Since the effective handling of data integration
processes plays a critical role in determining the overall quality of data management,
the two variables directly influence each other. Thus participants are likely to have
evaluated them in parallel, resulting in very strong positive correlations. As Hosamo
et al. (2022) state, data must be properly managed after the integration to guarantee
its security, availability, and reliability. Without effective data integration, data
management becomes challenging. The other strong correlation between data
integration and the high-fidelity model can be explained by the need to combine
different types of data during the creation of the model, such as visual information
(images, 3D scans) and numerical data (sensor outputs). This process may require
effective data integration, which strengthens the relationship between these two
variables. Jiang et al. (2021) highlight that, together with a high-fidelity model and
data integration, DT greatly enhances the precision and quality of design.
Furthermore, the last strong correlation reflects the importance of high quality data
management in ensuring the accuracy of the high fidelity model, as the model's
performance depends on the data it receives. As Opoku et al. (2024) indicate,
building and sustaining high-fidelity models requires the availability and accuracy of
the data, which is ensured by effective data management. Table 4.11 displays the
correlation analysis of the key applications of DT during the construction phase. The
table shows three strong positive correlations above 0.60, significant at the 0.01
level, along with other strong correlations significant at the 0.01 and 0.05 levels, and
some non significant correlations. The first very strong positive correlation is
between material and equipment management, and site monitoring (r = ,620, p <
,001). This may indicate that improved control on construction sites might be
significantly assisted by the successful integration of DT in material and equipment
management. Jiang et al. (2021) point out, effective material management ensures
materials meet site needs by tracking supply status, directly impacting site efficiency.
Therefore, respondents consider site monitoring and material management to
strongly influence each other. Material and equipment management is also strongly

and significantly correlated with optimization of time and cost (r =,669, p <,001).
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Table 4.11 : Correlations between the key applications of DT during the construction phase.

Category Variables Wrkfc_Ov Mtr_Eq_M St Mnt Opt T&C Enh_DcM_P Int Emg_Tech Comp_Pp

Key Workforce Oversight 1
Applications of

DT During the Material and Equipment Management ,408** 1

Construction  Site Monitoring ,500** ,620** 1

Phase Optimization of Time and Cost ,245* ,669**  605** 1
Enhanced Decision Making Processes A452** ,344**  490**  568** 1
Integration with Emerging Technologies ,168 311**  347**  417** ,433** 1
Comprehensive Participation ,244* 297**  380**  377** ,329** ,579** 1

* Correlation is significant at the 0.05 level.
** Correlation is significant at the 0.01 level.
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Effective management of materials and equipment employing DT can contribute to
improved project efficiency by reducing time and cost overruns. Similarly Piras et al.
(2024) mention, efficient material management through DT allows contractors to
track materials in real time, ensuring optimal stock levels and reducing costs related
to oversupply or shortages. This finding demonstrates the close relationship between
material and equipment management, and the optimization of time and cost,
suggesting that better control of resources plays a key role in meeting project
timelines and budgets. The last significant strong correlation occurs between site
monitoring and optimization of time and cost (r = ,605, p <,001). Potential delays or
budget overruns can be detected early with site monitoring, by the application of DT,
enabling immediate action. As Sabet and Chong (2020) indicate, tracking project
progress through visual comparisons of completed work and planned designs helps
enhance schedule control and boost time efficiency. Likewise survey experts view

these two application areas strongly correlated.

4.2.4 Independent samples t-test analysis

In this study, an independent-samples t-test was conducted to determine whether
there is a statistically significant difference between participants with knowledge of
DT technology and those without. Participants’ answers were examined in seven
categories, including factors affecting productivity, their frequency, the potential
impact of DT on these factors, the benefits and challenges of DT, key DT
applications during construction, and DT’s effectiveness in enhancing productivity.
The analysis was conducted with a sample of 28 participants informed about DT and

48 participants not informed.

At a 95% confidence interval, no significant differences were found between the two
groups regarding factors affecting productivity and their frequency of occurrence, as
all p-values were above 0.05. Table 4.12 summarizes the group statistics for the
factors affecting productivity, and Table 4.13 shows the results of the independent

samples t-test for these factors.
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Table 4.12 : Group statistics of the factors affecting productivity in the construction

phase.
Variables Sample Group N Mean Std. Deviation
Labor Informed about the DT 28 3,94 ,780
Not informed 48 4,26 ,715
Work Site Informed about the DT 28 3,66 ,913
Not informed 48 3,51 ,860
Management System  Informed about the DT 28 4,08 ,645
Not informed 48 4,12 129
Industry Environment Informed about the DT 28 3,48 ,957
Not informed 48 3,57 ,945
Design Related Issues Informed about the DT 28 3,55 ,936
Not informed 48 3,81 1,008
Climate Informed about the DT 28 3,10 ,916
Not informed 48 3,33 1,117
Communication Informed about the DT 28 3,39 ,994
Not informed 48 3,44 ,918

Table 4.13 : Independent samples t-test results for the factors affecting productivity
in the construction phase.

Variables Levene's Test for Equality of  T-test for Equality of
Variances Means
F Sig. t p
Labor 0,228 0,634 -1,799 ,076
Work Site 0,226 0,636 0,718 475
Management System 0,082 0,775 -0,230 ,819
Industry Environment 0,052 0,82 -0,402 ,689
Design Related Issues 0,201 0,656 -1,108 272
Climate 1,625 0,206 -0,907 ,367
Communication 0,014 0,527 -0,245 ,807

In addition, Table 4.14 presents the group statistics for the occurrence frequency of
the same factors, while Table 4.15 displays the associated t-test results. This result
was expected, as the questions in this section did not directly involve areas where
knowledge of DT technology would have an impact. Although an indirect effect

could have been possible, the t-test results did not reveal any significant difference.
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Table 4.14 : Group statistics for the occurrence frequency of the factors.

Variables Sample Group N Mean Std. Deviation
Labor Informed about the DT 28 3,89 754
Not informed 48 3,83 909
Work Site Informed about the DT 28 2,98 1,067
Not informed 48 2,95 1,022
Management System Informed about the DT 28 3,58 ,692
Not informed 48 3,61 983
Industry Environment  Informed about the DT 28 3,11 975
Not informed 48 3,25 967
Design Related Issues  Informed about the DT 28 3,50 1,009
Not informed 48 3,20 1,070
Climate Informed about the DT 28 2,64 1,282
Not informed 48 3,13 1,213
Communication Informed about the DT 28 3,13 1,033
Not informed 48 3,00 1,211
Table 4.15 : Independent samples t-test results for the occurrence frequency of the
factors.
Variables Levene's Test for Equality of  T-test for Equality of
Variances Means
F Sig. t p
Labor 1,672 0,200 0,327 372
Work Site 0,014 0,907 0,139 ,890
Management System 4,991 0,029 -0,193 ,848
Industry Environment 0,254 0,615 -0,619 ,538
Design Related Issues 0,680 0,412 1,211 ,230
Climate 0,060 0,807 -1,636 ,106
Communication 1,016 0,317 0,457 ,649

For the question examining the potential impact of DT on these factors, Table 4.16
presents the group statistics while Table 4.17 displays the results of the independent

samples t-test assessing this impact.
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Table 4.16 : Group statistics for the potential impact of DT on factors.

Variables Sample Group N Mean Std. Deviation
Labor Informed about the DT 28 3,26 899
Not informed 48 2,88 1,055
Work Site Informed about the DT 28 3,29 ,956
Not informed 48 3,25 1,000
Management System Informed about the DT 28 3,92 ,634
Not informed 48 3,68 ,854
Industry Environment  Informed about the DT 28 2,57 ,997
Not informed 48 2,55 1,135
Design Related Issues  Informed about the DT 28 4,11 975
Not informed 48 3,69 ,920
Climate Informed about the DT 28 2,32 1,306
Not informed 48 2,40 1,300
Communication Informed about the DT 28 3,54 1,062
Not informed 48 2,86 1,360

A statistically notable difference was identified in one factor. While no significant
differences were found for the other factors (p > 0.05), a critical difference emerged
in the communication factor (p < 0.05). In this analysis, since the p-values for
Levene’s test exceeded the conventional 0.05 threshold, the assumption of

homogeneity of variances was considered satisfied.

Table 4.17 : Independent samples t-test results for the potential impact of DT on
these factors.

Levene's Test for Equality of T-test for Equality of

Variables Variances Means
F Sig. t p

Labor 0,430 0,514 1,625 ,108
Work Site 0,099 0,754 0,153 ,879
Management System 3,924 0,051 1,252 214
Industry Environment 0,571 0,452 0,075 ;941
Design Related Issues 0,025 0,874 1,876 ,065
Climate 0,061 0,805 -0,240 811
Communication 3,406 0,069 2,241 ,028*

* T-test result is significant at the 0.05 level.

113



Consequently, participants with knowledge of DT rated the communication factor
significantly higher (i.e., 3.54) than those without (i.e., 2.86). This difference may be
attributed to the fact that individuals with knowledge of DT technology recognize its
potential benefits for communication related issues, thus perceiving a positive
outcome if it were implemented. Moving on to questions related to DT perception,
Table 4.18 provides the group statistics on DT benefits, while Table 4.19 presents the

independent samples t-test results for these benefits.

Table 4.18 : Group statistics for the DT benefits.

Variables Sample Group N Mean Std. Deviation
Real Time Digital Informed aboutthe DT 28 4,36 ,826
Representation Not informed 48 4,06 1,060
Remote Monitoring Informed about the DT 28 4,50 577
Not informed 48 421 ,988
Resource Management Informed about the DT 28 4,32 772
Not informed 48 4,10 ,881
Safety Management Informed about the DT 28 3,75 927
Not informed 48 3,58 1,007
Risk Management Informed aboutthe DT 28 4,11 ,831
Not informed 48 4,08 ,820
Collaboration With Informed about the DT 28 3,86 ,970
Autonomous Robots Not informed 48 402 1,061
Waste Reduction Informed aboutthe DT 28 3,39 1,065
Not informed 48 3,85 ,967
Predictive Decision Making  Informed about the DT 28 4,21 875
Not informed 48 4,04 1,030
Time And Cost Management Informed aboutthe DT 28 4,39 ,628
Not informed 48 4,25 ,956
Communication And Informed about the DT 28 4,07 ,899
Collaboration Not informed 48 3,79 944

All variables show no statistically significant difference between the two groups, as
their p-values exceed 0.05. These findings suggest that perceptions of DT benefits do
not significantly differ based on knowledge about DT. Some participants may know
about DT concepts but some of them lack practical experience in real world

construction. This lack of direct exposure could lead to similar perceptions between
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informed and uninformed groups. However, since the mean values of DT benefits are
high, the lack of direct exposure may not be considered a negative influence on
perceptions. Instead, this might suggest that other factors, such as collective
professional awareness and a positive attitude toward new technologies in the sector,

may contribute to similar perceptions between informed and uninformed groups.

Table 4.19 : Independent samples t-test results for the benefits of DT.

Variables Levene's Test for T-test for Equality
Equality of Variances of Means
F Sig. t p
Real Time Digital Representation 0,882 0,351 1,263 211
Remote Monitoring 5,104 0,027 1,424 ,109
Resource Management 0,467 0,497 1,084 ,282
Safety Management 0,960 0,330 0,716 476
Risk Management 0,356 0,553 0,121 ,904
Collaboration With Autonomous Robots 0,503 0,480 -0,669 ,506
Waste Reduction 0,265 0,608 -1,931 ,057
Predictive Decision Making 1,475 0,228 0,743 ,460
Time And Cost Management 6,184 0,015 0,705 ,435
Communication And Collaboration 0,636 0,428 1,267 ,209

To assess whether there is a statistically significant difference in the perception of
challenges in implementing DT between participants who are informed about DT and
those who are not, an independent sample t-test was conducted. The group statistics
for the challenges associated with DT implementation are displayed in Table 4.20
and the results are presented in Table 4.21. The findings indicate that for most
challenges there is no statistically significant difference between the two groups (p >
0.05). However, three variables, data integration (p = ,008), high-fidelity model (p =
,038), and skill and training (p = ,007) show a statistically significant difference (p <
0.05). The question evaluates responses using a Likert scale, a lower mean indicates
greater difficulty in the related challenges. Because for accurate assessment, the
study's mean values have been reverse-coded in the t-test analysis of challenges in
implementing DT. For data integration, the informed group reported a lower mean
(i.e., 2.68) compared to the not informed group (3.46). Similarly, for high-fidelity
models, the informed group had a lower mean (i.e., 2.79) than the not informed

group (i.e., 3.42).
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Table 4.20 : Group statistics for the challenges in implementing DT.

Variables Sample Group N Mean Std. Deviation
Adaptability Informed aboutthe DT 28 2,71 1,117
Not informed 48 3,19 1,044
Data Integration Informed about the DT 28 2,68 1,123
Not informed 48 3,46 1,236
Data Management Informed about the DT 28 2,82 1,156
Not informed 48 3,40 1,283
High-Fidelity Model Informed about the DT 28 2,79 1,315
Not informed 48 3,42 1,217
Interoperability Informed about the DT 28 2,82 1,020
Not informed 48 3,27 1,180
Operation Cost Informed aboutthe DT 28 2,50 1,374
Not informed 48 2,98 1,194
Cybersecurity and Privacy Informed about the DT 28 2,57 1,200
Not informed 48 2,94 1,262
Skill and Training Informed aboutthe DT 28 2,00 1,122
Not informed 48 2,73 1,267
User Interface Informed about the DT 28 2,54 1,071
Not informed 48 2,96 1,220

Table 4.21 : Independent samples t-test results for the challenges in implementing

DT.

Levene's Test for Equality of ~ T-test for Equality of

Variables Variances Means
F Sig. t p

Adaptability 0,814 0,37 -1,856 ,067
Data Integration 0,323 0,571 -2,739 ,008*
Data Management 0,279 0,599 -1,95 ,055
High-Fidelity Model 0,992 0,322 -2,116 ,038*
Interoperability 0,718 0,400 -1,681 ,097
Operation Cost 1,326 0,253 -1,596 ,115
Cybersecurity and Privacy 0,022 0,883 -1,242 ,218
Skill and Training 2,099 0,152 -2,521 ,007*
User Interface 0,437 0,511 -1,522 ,132

* T-test result is significant at the 0.05 level.
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Lastly, for skill and training, the informed group reported a mean of 2.00, while the
not informed group scored 2.73, indicating that individuals who are knowledgeable
about DT perceive these aspects as greater challenges compared to those who are
not. According to outputs we may state, informed participants can be more aware of
the complexities involved in integrating DT within existing systems, achieving high
resolution digital models and the need for specialized training about it. Their
familiarity with DT may provide them with a deeper understanding of the technical,
operational and skill related challenges involved in its implementation. Similarly,
their awareness highlights a more critical perspective on the technological constraints
of DT adoption. An independent sample t-test was performed to determine whether
perceptions of key DT application areas in the construction phase differ between
informed and uninformed participants. These are statistically overviewed in Table
4.22, while the results are detailed in Table 4.23. In this analysis, as the p-values
from Levene’s test were greater than the standard 0.05 threshold, the assumption of

equal variances was considered satisfied.

Table 4.22 : Group statistics for the key applicaiton area of DT in the construction

phase.
Variables Sample Group N Mean S.td'.
Deviation

Workforce Oversight Informed about the DT 28 3,79 ,994

Not informed 48 3,35 1,021
Material and Equipment Informed aboutthe DT~ 28 4,14 755
Management Not informed 48 3,92 1,007
Site Monitoring Informed about the DT~ 28 4,32 772

Not informed 48 3,92 1,127
Optimization of Time and Cost  Informed about the DT~ 28 4,39 685

Not informed 48 4,04 1,091
Enhanced Decision Making Informed about the DT
Processes 28 4,36 ,826

Not informed 48 3,83 1,059
Integration with Emerging Informed about the DT 28 4,00 ,942
Technologies

Not informed 48 4,15 ,850
Comprehensive Participation Informed about the DT 28 3,89 1,031

Not informed 48 3,81 1,024
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Table 4.23 : Independent samples t-test results for the key applicaiton area of DT in
the construction phase.

Levene's Test for Equality of T-test for Equality of

Variables Variances Means

F Sig. t p
Workforce Oversight 0,076 0,783 1,794 ,077
Material and Equipment
Management 2,631 0,109 1,03 ,306
Site Monitoring 1,759 0,189 1,682 ,097
Optimization of Time and Cost 4,538 0,036 1,534 ,089
Enhanced Decision Making 1,34 0,251 2,247 ,028*
Processes
Integration with Emerging
Technologies 0,138 0,711 -0,693 491
Comprehensive Participation 0,375 0,542 0,329 743

* T-test result is significant at the 0.05 level.

The findings indicate that except for one variable, the DT application areas show no
statistically significant difference between the two groups (p > 0.05). At a 95%
confidence interval, no significant differences were found between the two groups
regarding most DT application areas. Nevertheless, enhanced decision making
processes show a statistically significant difference (p = ,028). The mean scores
indicate that participants who are informed about DT perceive this application area
as more effective (i.e., 4.36) compared to those who are not informed (i.e., 3.83).
This might mean that those who are already familiar with DT may be more aware of
its capacity to enhance decision making effectiveness through the features of DT.
Also they can be more familiar with how DT systems work, especially their capacity
to combine huge amounts of project data into actionable insights. Lastly, an
independent-samples t-test was conducted to determine whether there is a
statistically significant difference in the perception of DT's effectiveness in
improving productivity during the construction phase between participants who are
informed about DT and those who are not. The group statistics for this assessment
are presented in Table 4.24, while the results of the t-test are displayed in Table 4.25.
Since the p-value of the independent samples t-test (p = 0,099) is greater than 0.05,
there is no statistically significant difference between the two groups in their
perception of DT's effectiveness in enhancing productivity during the construction

phase.

118



Table 4.24 : Statistic for the assessment of DT's effectiveness.

. Std.
Variables Sample Group N Mean Deviation
The effectiveness of DT in  Informed about the DT 28 4,25 585
improving productivity .
during construction phase Not informed 48 4,00 ,652

Although the mean score for participants informed about DT (i.e., 4.25) is slightly
higher than that of those who are not informed (i.e., 4.00), the difference is not
statistically significant. This may indicate that regardless of their past familiarity
with the technology, both groups generally acknowledge DT's potential to increase

construction productivity.

Table 4.25 : Independent samples t-test results for the assessment of DT's
effectiveness.

Levene's Test for t-test for Equality

Variables Equality of Variances of Means
F Sig. t p
The effectiveness of DT in improving 0,389 0,535 1672 099

productivity during construction phase

4.2.5 One-way ANOVA

In order to determine whether different levels of expertise in the sector lead to
different opinions on DT system’ perception , a One-Way ANOVA test was
conducted. This statistical method allows for the comparison of means among three
or more independent groups to assess whether there is a statistically significant
difference. By applying this test, the study aims to identify potential variations in DT
perception based on expertise levels, providing deeper insights into how different
levels of professional experience influence views on the benefits, challenges and key
application areas of DT technology in the construction industry. The initial grouping
for the ANOVA tests was determined based on the respondents’ level of expertise in
the sector. Participants were classified into three distinct categories: those with less
than two years of experience, those with two to five years of experience, and those
with more than five years of experience. Accordingly, the 76 participants were
distributed as follows: 14 with less than 2 years of experience, 44 with 2 to 5 years

experience, and 18 with more than 5 years experience.
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The results for the benefits of DT are presented in Table 4.26.

Table 4.26 : One-way ANOVA results for the benefits of DT.

Std.  ANOVA-p

Variables Group N- Mean  hoviation  value
Real Time Digital <2years 14 4,14 1,167 939
Representation 2-5years 44 4,20 851
> 5 years 18 411 1,183
Remote Monitoring <2years 14 4,00 1,038 325
2-5 years 44 4,39 ,813
> 5 years 18 4,39 ,850
Resource Management <2years 14 4,14 864 968
2-5 years 44 4,20 ,878
> 5 years 18 4,17 ,7186
Safety Management <2years 14 3,43 ,938 189
2-5 years 44 3,57 ,998
> 5 years 18 4,00 ,907
Risk Management <2years 14 4,07 616 991
2-5 years 44 4,09 ,910
> 5 years 18 411 , 758
Collaboration with <2years 14 3,93 1,328 986
Autonomous Robots 2-5years 44 3.98 902
> 5 years 18 3,94 1,110
Waste Reduction <2years 14 4,07 ,829 244
2-5 years 44 3,55 1,109
> 5 years 18 3,72 ,895
Predictive Decision Making ~ <2years 14 4,00 1,038 903
2-5 years 44 4,14 ,930
> 5 years 18 4,11 1,079
Time And Cost Management < 2 years 14 4,43 ,646 , 7194
2-5 years 44 4,30 ,930
> 5 years 18 4,22 ,808
Communication And <2years 14 414 770 522
Collaboration 2-5years 44 386 955

> 5 years 18 3,78 1,003

In the evaluation of the questionnaire, which assessed a total of ten benefits, no

statistically significant differences were found between the groups, as all the p-values
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were greater than 0.05. We can conclude that opinions of the benefits of DT
technology do not differ statistically significantly depending on their level of
experience. The similarity in view may be explained by the fact that people of all
experience levels are generally aware of DT's benefits. Less experienced
professionals may recognize the potential benefits of DT due to educational
resources and conferences, while more experienced professionals, through their
practical knowledge, may be more aware of the need for the benefits that DT
technology provides. Overall, the findings show that opinions toward the positive
aspects of DT are not significantly influenced by their level of expertise. For a
further analysis a larger sample size might provide clearer insights into whether
experience influences perceptions of these challenges. Table 4.27 displays One-way
ANOVA results for the challenges in implementing DT. In the ANOVA results, the
mean values are based on a Likert scale, higher mean scores (closer to 5) indicate
less difficulty, while lower scores (closer to 1) indicate greater difficulty.

Table 4.27 : One-way ANOVA results for the challenges in implementing DT.

Variables Group N Mean Std. Deviation ANOVA-p value

Adaptability <2years 14 286 1,167 ,052*
2-5years 44 2,84 1,033
>5years 18 3,56 1,042

Data Integration <2years 14 3,07 1,492 330
2-5years 44 3,05 1,160
>5years 18 3,56 1,247

Data Management <2years 14 3,14 1,460 354
2-5years 44 3,05 1,257
>5years 18 3,56 1,097

High-Fidelity Model <2years 14 2,93 1,592 608
2-5years 44 3,18 1,187
>5years 18 3,39 1,290

Interoperability <2years 14 2,93 1,269 240
2-5years 44 3,00 1,121
>5years 18 3,50 1,043

* ANOVA result is significant at the 0.05 level.
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Table 4.27 (continued): One-way ANOVA results for the challenges in
implementing DT.

Variables Group N Mean Std. Deviation ANOVA-p value
Operation Cost < 2 years 14 264 1,216 281
2-5 years 44 2,68 1,360
> 5 years 18 3,22 1,060
Cybersecurity and < 2 years 14 2,36 1,008 ,212
Privacy 2-5years 44 3,00 1,201
> 5 years 18 2,67 1,455
Skill and Training < 2 years 14 2,29 ,994 ,463
2-5 years 44 2,39 1,298
> 5 years 18 2,78 1,353
User Interface < 2 years 14 2,57 1,284 ,716
2-5 years 44 2,84 1,140
> 5 years 18 2,89 1,231

* ANOVA result is significant at the 0.05 level.

In the analysis, nine challenges were examined, and no significant differences in
perceptions were observed among the groups except for one variable, adaptability, as
their p-values were greater than 0.05. The variable that showed a borderline
significance was adaptability performance, with a p-value of 0.052. Since this value
is very close to the 0.05 significance threshold, further analysis may provide more
insight into potential differences. As the next step, post-hoc analyses were conducted
to determine which groups were responsible for this difference. To determine the
appropriate post-hoc test, Levene's test for homogeneity of variances performed on

the adaptability performance variable and the results are presented in Table 4.28.

Table 4.28 : Levene Statistic results for homogeneity of variances for adaptability.

Variable Levene Statistic Sig.
Adaptability 0,029 ,972

The p-value of Levene's test was ,972. Since this value is greater than 0.05, it
indicates that the data is homogeneously distributed. Therefore, Gabriel’s Test and
Tukey’s Test were applied to analyze differences in adaptability performance. The
test results shown in Table 4.29. In the post-hoc analysis, a statistically significant

difference was identified between the perceptions of individuals with 2-5 years of
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experience and those with more than 5 years of experience. This difference was
confirmed with a significance value of 0.048 in Tukey’s test and 0.047 in Gabriel’s
test. The findings of both tests were equal as given in 4.24 with only minor numerical
differences. The mean difference of 0.715 between the more than 5 years of
experience and 2-5 years of experience groups indicates that participants with more
than 5 years of experience rated the adaptability variable higher than the other group.
Since the mean difference is positive (i.e., 0.715) and statistically significant (p =
0.048 in Tukey and p = 0.047 in Gabriel, both < 0.05) it suggests that respondents
with more than 5 years of experience perceive adaptability challenge more positively
than those with 2-5 years of experience. This might signify that more experienced
professionals might have a better understanding of adaptability challenges in DT
applications and may perceive this issue as easily manageable. In contrast, those with
moderate experience, 2-5 years, may have greater concerns regarding adaptability,
which may stem from their tendency to perceive it as a fundamental issue rather than
a manageable challenge. Additionally, for most variables the sample size for each
experience group may not be large enough to detect statistically significant

differences.

Table 4.29 : Tukey’s and Gabriel’s post-hoc tests results for adaptability.

Post-Hoc Test Group(l) Group (J) Mean Difference (1-J) Std. Error Sig.

Tukey HSD <2years 2-5years ,016 0,325 ,999
> 5 years -,698 0,378 ,161
2-5years <2 years -,016 0,325 ;999
> 5 years -, 715** 0,297 ,048**
>5years <2 years ,698 0,378 ,161
2-5 years ,[15%* 0,297 ,048**
Gabriel <2years 2-5years ,016 0,325 1,000
> 5 years -,698 0,378 ,189
2-5years <2 years -016 0,325 1,000
> 5 years -, 715** 0,297 ,047**
>5years <2 years ,698 0,378 ,189
2-5 years ,[15** 0,297 ,047**

** The mean difference is highly significant at the 0.05 level, p < 0.05.
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Table 4.30 presents the One-Way ANOVA results for the key applications of DT
during the construction phase. In the analysis, seven major application areas were
examined, and no significant differences in perceptions were found among the

groups for six of these variables, as their p-values were greater than 0.05.

Table 4.30 : One-way ANOVA results for the key applications of DT during the
construction phase.

Std.  ANOVA-p

Variables Group N Mean Deviation value
Workforce Oversight <2years 14 3,14 1,099 296
2-5years 44 3,64 ,892
>5years 18 3,50 1,249
Material &Equipment <2years 14 4,29 726 ,308
ManageTnig 2.5years 44 400 889
>5years 18 3,78 1,114
Site Monitoring <2years 14 3,93 1,207 770
2-5years 44 414 ,878
>5years 18 4,00 1,237
Optimization of Time and Cost <2years 14 4,29 914 674
2-5years 44 4,20 ,904
>5years 18 4,00 1,188
Enhanced Decision Making <2years 14 4,14 663 ,768
Processes

2-5years 44 4,05 1,011
>5years 18 3,89 1,231

Integration with Emerging <2years 14 4,29 726 ,049*
Technologies 25years 44 389 920
>5years 18 4,44 , 7184
Comprehensive Participation <2years 14 3,79 1,122 444
2-5years 44 3,75 ,991

>5years 18 4,11 1,023

* ANOVA result is significant at the 0.05 level.

However, a statistically significant difference was observed in integration with
emerging technologies, with a p-value of 0.049. To further investigate this
difference, post-hoc analyses were conducted to identify which groups contributed to
the variation. To select the appropriate post-hoc test, Levene’s test for homogeneity

of variances was applied to the integration with emerging technologies variable, and
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the results are displayed in Table 4.31. The p-value of Levene’s test was 0.194,
indicating that the data was homogeneously distributed (p > 0.05). Therefore Tukey's

and Gabriel's tests were employed to examine how perceptions varied among groups.

Table 4.31 : Levene Statistic results for homogeneity of variances for integration
with emerging technologies.

Variable Levene Statistic Sig.
Integration with Emerging Technologies 1,675 194

As shown in Table 4.32, with a few minor number variations, the results of the two
tests were the same. The post-hoc results revealed a borderline significant difference
between participants with 2-5 years of experience and those with more than 5 years
of experience, with p-values of 0.059 in Tukey’s test and 0.058 in Gabriel’s test.
Although these values are slightly above the 0.05 significance threshold, these
numbers indicate a possible trend where respondents with more than 5 years of
experience rated the application of integration with emerging technologies more
positively than those with 2-5 years of experience as indicated by the mean
difference of 0.558.

Table 4.32 : Tukey’s and Gabriel’s post-hoc tests results for integration with
emerging technologies.

Post-Hoc Test  Group(l) Group (J) Mean Difference (I-J)  Std. Error Sig.

Tukey HSD <2years  2-5years ,399 0,263 ,289
> 5 years -,159 0,306 ,862
2-5years <2 years -,399 0,263 ,289
> 5 years -,558* 0,240  ,059*
>5years <2 years ,159 0,306 ,862
2-5 years ,558* 0,240 ,059*
Gabriel <2years 2-5years ,399 0,263 ,315
> 5 years -,159 0,306 ,937
2-5years <2 years -,399 0,263 315
> 5 years -,558* 0,240 ,058*
>5years <2 years ,159 0,306 ,937
2-5 years ,558* 0,240 ,058*

* The mean difference is significant at the 0.05 level, p < 0.05.
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Nevertheless, since the results do not have a p-value below 0.05, the differences
between responses cannot be considered statistically significant. There is a
possibility that it may reveal a meaningful pattern. Nonetheless, it can be clearly
stated that no statistically significant differences exist in other major application
areas based on years of experience. This may be due to the fact that these key areas
are widely recognized and reflect a shared understanding across all participants.
Neither increased experience in the sector nor recent education and information
about technologies appears to influence their perceived importance, as they are
accepted within the industry. Overall, if the study had included a larger sample
size, this uncertainty in the results might not have occurred, as the ANOVA p-value,
despite being close to 0.05 (p = 0.058), does not indicate a statistically significant

difference between groups.
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5. CONCLUSION

Productivity is a major concern in the construction industry, as the sector consistently
faces low performance levels. A common explanation for the efficiency gap is the
construction sector’s resistance to adopting new technologies and its continued
reliance on traditional methods (Menegon and Filho, 2022; Laszig et al., 2020). This
reliance on conventional practices limits the industry’s ability to benefit from
innovations that could optimize operations, improve coordination and reduce errors.
While advancements usually enhance productivity, the industry's slow adoption of
innovative technologies might be a contributing factor to its slower development.
Nevertheless, technological developments continue to play a crucial role in
improving productivity within the construction sector (Alzubi et al., 2023; Akanmu
et al.,, 2021). Recent studies emphasize the growing role of DT technology in
transforming the construction industry through its integration with emerging
technologies such as Al, 1oT, DL/ML, immersive technologies, robotics and
blockchain. Among these innovations, DT technology is a noteworthy concept to
provide a centralized platform for real time insights, performance tracking,
simulation, forecasting and analysis. DT notably brings together advanced
technologies, employing them both as enabling technologies and as critical
contributors to the creation of DT. Therefore, the DT concept is gaining popularity
for its potential to enhance efficiency. Moreover it is also recognized for its ability to
provide current time, dynamic representations of physical assets throughout the
project lifecycle. Its capacity to combine data from multiple sources contributes
significantly to its growing attraction. The integration of data from various sources
such as BIM models and loT sensors enables a comprehensive understanding of
project status and performance. Researchers highlight its potential to improve
lifecycle management, efficiency, sustainability and predictive maintenance. The
need of DT technology becomes especially clear during the construction stage, when

rework, uncertainty and inefficiencies are most common. Despite the potential, the
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literature also notes barriers to DT system adoption such as economic, technical and
organizational obstacles. Although still in the early phases of integration in the
sector, the rising curiosity in DT underlines its capacity for enhancing industry
performance. In general, the literature demonstrates that DT is regarded as a key

innovation and plays an important role in the context of smart construction.

The objectives of this thesis were as follows: (1) to explore the role of DT throughout
the building life cycle in the construction sector; (2) to identify its benefits,
challenges and key application areas in the construction stage; (3) to determine the
factors affecting productivity during the construction phase; and (4) to compare these
factors with the DT system's identified capabilities to assess its potential in
overcoming productivity challenges. In this context, this study aims to investigate
how DT technology can address productivity challenges in the construction phase.
Aligned with the objectives, a comprehensive literature review was conducted to
identify the key factors influencing productivity during the construction stage, and to
analyze the benefits, challenges and major application areas of DT in this phase. In
this study, the methodology involved a survey to examine the potential impact of DT
on construction productivity factors and to assess how DT is perceived by industry
professionals. The survey aimed to explore views of respondents on the advantages,
obstacles in implementing the technology and the main application areas of DT. Also
it is gathering opinions on how these features may influence productivity related
factors during the construction phase. To support the research objective, the
questionnaire was developed based on a literature review that identified productivity
factors and outlined DT technology in terms of its opportunities, implementation
challenges and applications. These elements were then incorporated into the survey
design. Following its distribution to professionals across the industry, the survey
received 76 responses. All responses were considered valid and included in the
analysis. Then, the results were examined using the SPSS v.29 software to evaluate

the collected data and obtain meaningful statistical insights.

In accordance with the research objectives, the study first examined the role of DT
throughout the building life cycle in the construction sector. To achieve this goal, the
study conducted a literature review and a bibliometric analysis. The analysis reveals
that the concept of DT has gained increasing importance in the building life cycle.

According to an examination of articles, an essential increase in academic studies
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related to DT has been observed in recent years. Moreover, although traditional
themes remain significant, it can be revealed that emerging technologies such as Al
and the loT are rapidly gaining adoption in the sector. Also the research trends are
increasingly shifting toward more specialized areas. For instance, it has been
identified that over time, the focus of keywords has shifted from broader topics such
as BIM, Industry 4.0 and construction to more specialized and technical subjects like
predictive maintenance, big data and Al. This may indicate that technological
advancements related to DT have the potential to rapidly introduce new concepts and
applications in the construction sector. Keyword co-occurrence maps have
demonstrated that DT technology in construction related studies is closely associated
with disciplines such as computer science, Al, 10T and machine learning systems.
Moreover, the analyzed keywords might play different roles across various stages of
the construction life cycle. For instance, risk management and BIM are more
commonly emphasized in the design phase, whereas loT, smart contracts,
optimization and simulation are mainly linked to the construction phase.
Advancements such as cyber-physical systems and facility management are likely to
play a significant role during the operation and maintenance stages, while concepts
like circular economy and waste minimization are expected to be more relevant in
the end-of-life stage of a building’s life cycle. In addition, enhancements in
information technologies may directly influence the development of DT technology
in the construction sector, as the literature frequently highlights a close connection
between the improvement of DT in the building industry and digital infrastructure.
Also in the literature researchers emphasize that DT technology can significantly
enhance construction processes by enabling more effective management of
resources, budgets and schedules. The adoption of construction DT systems (CDT) is
regarded as a transformative development for the industry, offering advantages such
as cost reduction, improved environmental responsibility and advanced lifecycle
management (Boje et al., 2020). It also supports decision making, progress tracking
and site coordination (Piras et al., 2024; Jiang et al., 2021). DT begins to take form
during the construction phase and facilitates the monitoring of progress, management
of site operations and tracking of safety, environmental and cost related parameters
(Chen et al., 2024). Additionally, DT supports predictive maintenance, optimizes
resource use and improves overall building performance. In summary, DT

contributes to more efficient construction management through real time monitoring,
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data driven planning and enhanced coordination (Teisserenc and Sepasgozar, 2021).
Furthermore, the construction phase plays a vital role in the building life cycle, since
it is the stage where design concepts are transformed into physical structures, and
where time, cost, quality and safety performance directly influence project outcomes
(Opoku et al., 2021; Yang et al., 2024). Therefore, the construction phase of the
building life cycle was selected as the focus of the research.

As the second objective, the study identifies the benefits, challenges and key
application areas of DT in the construction stage. DT technology offers various
advantages that can be effectively utilized in the construction sector (Ellul et al.,
2024; Elfarri et al., 2022; Hosamo et al., 2022). The literature highlights several of
these benefits. For instance, its real time digital representation enables accurate and
current visualization of construction progress and site conditions (Deria et al., 2022).
Remote monitoring allows stakeholders to manage activities from off site locations,
which improves oversight (Jiang et al., 2021). Resource management is enhanced
through more efficient allocation and tracking of labor, materials and equipment (Hu
et al., 2022). DT also strengthens safety management by identifying potential hazards
early and simulating risk scenarios, thereby helping to prevent accidents (Wu et al.,
2022). Its predictive capabilities support risk management by allowing professionals
to anticipate and address issues before they become more serious (Salem and
Dragomir, 2023). Another notable advantage is its ability to collaborate with
autonomous robots, increasing productivity by automating repetitive or hazardous
tasks (Li et al., 2021). Additionally, DT contributes to waste reduction by optimizing
material usage and minimizing errors (Debrah et al., 2022). Furthermore its use of
data driven algorithms supports predictive decision making and improves forecasting
accuracy (Turner et al., 2021). Time and cost management benefit from its ability to
enhance scheduling and more effective resource utilization (Bakhshi et al., 2024).
Finally, communication and collaboration are improved through a centralized
platform that enables real time information sharing among project stakeholders
(Zhang et al., 2024). Together, these features demonstrate the growing potential of
DT concept to enhance efficiency in construction projects. While DT technology
offers numerous advantages for the construction industry, the literature also
highlights several challenges that may restrict its effective adoption. Despite its

potential, certain areas present significant barriers to integration (Sun et al., 2022).
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One of these challenges is the need for adaptability, data integration and data
management, all of which require reliable systems capable of handling large volumes
of complex information (Opoku et al., 2024; Lu et al., 2020a; Riaz et al., 2015). Also
developing high-fidelity models is another challenge, since it is necessary for
generating accurate simulations (Bilberg and Malik, 2019). In addition,
interoperability between different digital tools and platforms is a critical issue (Lu et
al., 2020b). Moreover, operational costs associated with DT implementation can be
high, particularly for smaller firms (Moshood et al., 2024). Furthermore, concerns
related to cybersecurity and data privacy present risks that must be carefully
addressed (Ghosh et al., 2020). The need for specialized skills and training leads to
another challenge, as many professionals may lack the technical expertise required to
operate DT systems effectively (Bilberg and Malik, 2019). Usability challenges, such
as the complexity of user interfaces, also affect how well stakeholders interact with
the technology (Boje et al., 2020). Despite these challenges, the literature emphasizes
a variety of applications for DT technology in both architecture and construction.
When focusing specifically on its applications during the construction phase, key
application areas are identified in the literature. These include workforce oversight,
allowing better management and coordination of labor on site (Boje et al., 2023);
material and equipment management, which supports efficient tracking and
allocation of resources (Jiang et al., 2021); site monitoring, which ensures current
time monitoring of progress and performance (Akanmu and Anumba, 2015).
Additionally, DT contributes to the optimization of time and cost (Salih and El-
adaway, 2024), enhances the decision making process through insights gained from
data (YYang et al., 2024) and facilitates integration with emerging technologies such
as 1oT and Al (Moshood et al., 2024). Another important aspect is comprehensive
participation, where DT enables improved collaboration among various stakeholders
throughout the construction process (Arowoiya et al., 2023). These applications
underline the growing importance of DT in transforming traditional construction

practices into more intelligent and efficient systems.

Afterwards, to evaluate the findings from the literature in light of industry
professionals' perspectives, descriptive statistics were applied to the survey results to
illustrate data distribution and identify fundamental patterns. Survey results indicate

that according to participants the most valued benefits of DT technology are remote
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monitoring, time and cost management, and resource management. These are
followed by real time digital representation, predictive decision making and risk
management. Benefits such as safety management and waste reduction received
relatively lower scores but are still recognized as meaningful contributions of DT in
the construction phase. Even the lowest rated opportunities received relatively high
mean scores. This may reflect appreciation of participants for their usefulness.
Furthermore, according to participants the main challenges in implementing DT
technology are skill and training, user interface, cybersecurity and privacy, and
operation cost. These are followed by adaptability, interoperability, data integration,
data management and lastly high-fidelity modeling. These findings can suggest that
participants are more concerned with human, privacy and usability obstacles than
with technical issues. As reported by industry experts, the major application areas of
the DT system during the construction phase include the optimization of time and
cost, integration with emerging technologies, site monitoring, enhanced decision
making processes, material and equipment management, comprehensive participation
and workforce oversight, respectively. Moreover, participants expressed a strong
agreement on the effectiveness of DT in enhancing productivity during the
construction phase, as reflected in the high mean score. After the descriptive
statistics, the reliability of the survey scales was assessed using Cronbach’s Alpha,
which revealed acceptable levels of internal consistency across all scales. In the next
step, normality tests were applied to the data, and it was normally distributed. The
correlation analysis revealed that a majority of the variables showed statistically
significant relationships. When correlations above 0.60 were considered highly
significant at the 0.01 level, in the benefits of the DT group, significant correlations
were found between risk management and both real time digital representation and
resource management. In addition, a correlation was also observed between time and
cost management, and resource management. In contrast, the challenges in
implementing DT category revealed a greater number of highly significant
correlations. Among these, the strongest three were observed between data
integration and both data management and high-fidelity model, as well as between
data management and high-fidelity model. Finally, in the key applications of DT
during the construction phase group, strong statistical correlations were observed
between material and equipment management and both site monitoring and

optimization of time and cost. Additionally, a similar strong relationship was
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observed between site monitoring and time and cost optimization. Following the
correlation analysis between the scales, further analysis was conducted to examine
whether there were significant differences in participants’ perceptions by
categorizing them into relevant groups. For the independent samples t-test, the
responses of DT-informed and non-informed participants were compared. In the
examination of the responses related to the benefits of the DT category, no
statistically significant difference was detected between DT-informed and non-
informed participants. As the mean scores were high for both groups, this result may
indicate that participants regardless of their awareness of DT, have a strong
understanding of its benefits, which could explain the lack of notable difference
between the groups. In the challenges in implementing the DT category, more
statistically significant differences were discovered between the two groups
compared to the other categories. These were found in the variables of data
integration, high-fidelity model and skill and training. The DT-informed group
reported lower mean scores for data integration, high-fidelity model and skill and
training. This may demonstrate that respondents with DT knowledge perceive greater
challenges in these areas compared to the non-informed group. Within the key
application areas of DT in the construction phase category, a statistically significant
difference was found only in the enhanced decision making processes variable.
Participants with prior knowledge of DT rated the application area more highly than
those without such knowledge. This could show that participants familiar with DT
have greater insight into how it supports decision making, leading them to value this
application area more highly. Lastly, in the assessment of DT's general effectiveness
in improving productivity during the construction phase, similarly no statistically
significant difference was found between the two groups. Since the mean scores were
high in both groups, it might reveal that participants shared a common understanding
of DT’s overall effectiveness, which explains the absence of a significant difference.
An additional analysis was conducted to examine whether experience levels affected
views of professionals and attitudes toward DT technology. Thus, for the ANOVA
analysis, the respondents were divided into three groups based on their level of
expertise: less than 2 years of experience, 2-5 years, and more than 5 years. Their
responses were then compared to determine whether any statistically significant
differences existed between the groups. Responses were examined with a focus on

three categories: the benefits of DT, the challenges in implementing DT, and the key
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application areas of DT during the construction phase. First, in the analysis of the
benefits of DT, no statistically significant differences were found among the three
experience groups. All groups reported high mean scores for the related variables,
indicating that DT's benefits were assessed generally highly positive. In the next step
of the analysis, focusing on the challenges in implementing DT, a significant
difference emerged only in the adaptability variable. Participants with more than 5
years of experience reported a higher mean score compared to those with 2-5 years
of experience. This could suggest that more experienced professionals hold a more
positive view regarding adaptability performance in the context of DT
implementation. In terms of the final category, key application areas of DT during
the construction phase, only one statistically significant difference was identified.
Participants with more than 5 years of experience gave the variable integration with
emerging technologies a higher mean score than those with 2-5 years of experience.
This finding may imply that more experienced professionals place greater
importance on DT’s potential to integrate with emerging technologies. The limited
variation in responses and the absence of major differences between the groups,
along with consistently high mean scores, may reflect a shared perception and a
generally optimistic attitude toward DT technology among the participants.

The third objective of the study is to identify the factors that influence productivity in
the construction phase. In the literature, there are several factors that influence
productivity during the construction phase. However, the main factors influencing
productivity were revealed to include labor, work site, management systems, industry
environment, design related issues, climate, and communication (Alzubi et al., 2023;
Mehta et al., 2022; Hasan et al., 2018; Heravi and Eslamdoost, 2015). According to
the research, each productivity factor in the construction sector consists of
subcategory elements. The labor factor includes subcategories such as skill, training,
and motivation. The worksite factor includes elements like site layout and site
location. For management systems, the significant variables are cost management,
quality management, time management, material and equipment management,
decision making ability, and organizational methods. The design related issues factor
involves financial uncertainties and regulatory changes. Within the industry
environment category, constructability and inaccuracies in drawings are noted as

significant subcomponents. The climate factor is represented by adverse weather
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conditions, while the communication factor includes challenges such as
misunderstandings and communication barriers. These subcategory elements provide
a more detailed understanding of how each factor can influence productivity in
construction projects. To analyze respondents’ answers to the relevant survey
questions, descriptive statistics were applied to examine the distribution of responses.
According to the results of the survey, the impact of seven key factors on
productivity during the construction phase was ranked based on their mean scores.
The findings reveal that labor was perceived as the most influential factor. This was
followed by the management system and design related issues. Then, the factors
were ranked as follows: work site conditions, industry environment, communication,
and climate. In terms of occurrence frequency, the same factors were ranked based
on their mean scores as follows: Labor, management system, design-related issues,
industry environment, communication, work site and climate. According to
professionals; labor, management systems and design related issues were not only
ranked as the top three factors affecting productivity but were also the most
frequently reported problem areas in construction projects. Following the descriptive
analysis, the reliability of the survey scales was evaluated using Cronbach’s Alpha,
which indicated acceptable internal consistency across all measurement items. A
normal distribution of the data was observed. The correlation analysis demonstrated
that most variables were significantly related at the 0.01 level. The analysis,
considering correlations above 0.60 as highly significant, showed strong relations
between the management system and both labor and design factors, also between

work site conditions and design-related issues.

In the occurrence frequency of the factors group, a strong significant correlation was
found only between climate and industry environment. After examining the
correlations between the scales, additional analyses were performed to determine
whether perceptions of industry experts differed across defined groups. An
independent samples t-test was used to compare the responses of participants with
prior knowledge of DT and those without. No statistically significant difference was
observed between the two groups in their responses regarding factors impacting
productivity during the construction phase and the occurrence frequency of these
factors. This finding was expected, since awareness of DT technology may not affect

participants' views in this area.
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The fourth objective of the study is to compare these factors with the identified
capabilities of the DT system in order to evaluate its potential for addressing
productivity challenges. Descriptive analysis was conducted to interpret the response
patterns to relevant questions in the survey. When participants were asked how the
productivity related factors might be affected if DT technology were implemented in
the construction phase, the ranking based on mean scores was as follows: Design
related issues, management system , work site, communication, labor, industry
environment and climate. According to industry experts, although labor is regarded
as the most critical and frequently observed factor affecting productivity during the
construction stage, the use of DT technology is believed to have its greatest impact
on design related issues and management systems. Moreover, since design related
issues and management systems identified as the two factors most positively
impacted by DT also rank among the top three productivity factors in both impact
and frequency in construction phase, this supports a positive perception that DT can
effectively enhance productivity in construction. Furthermore, a comparative
analysis of participants’ responses concerning the factors influencing productivity
and the key application areas of DT enables a more informed evaluation. Although
labor was identified as the most influential factor affecting productivity during the
construction phase, its related application area, workforce oversight, was ranked last
among DT system’s key application areas. This may suggest that participants do not
perceive DT as particularly beneficial in addressing labor related issues. In contrast,
management systems, previously identified by respondents as the second most
problematic area, are closely linked to the top ranked application area of time and
cost optimization, supporting the view that DT may significantly enhance efficiency
in the management area. Similarly, another management related application area,
enhanced decision making processes, also received a high mean score, further
strengthening this view. Additionally, design related issues, ranked as the third most
important factor affecting productivity, can be linked to the second ranked DT
application area, integration with emerging technologies. Respondents may have
thought that technologies such as AR, VR, Al, and loT can help address design
problems by enabling real time comparisons between architectural drawings, models
and on-site implementation in the construction phase. Among the application areas,
site monitoring and material & equipment management can be associated with the

work site factor, ranked fourth in terms of its impact on efficiency. This indicates
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that DT may offer notable benefits in managing on site activities. Since industry
environment and climate are external factors, a high level of impact from DT in these
areas was not expected, which is also reflected in the results. Moreover the low
ranking of communication as a productivity factor aligns with the similarly low
position of comprehensive participation among DT applications. This may suggest
that professionals do not perceive stakeholder communication as a major challenge
during the construction phase, and therefore consider this application area less

essential compared to others.

In the next evaluation, Cronbach’s Alpha confirmed acceptable reliability across the
survey scales measuring how the implementation of DT in the construction phase
could impact productivity related factors. The data showed a normal distribution. For
the correlation analysis, it revealed significant relationships among most variables.
Highly strong correlations were observed between climate and both work site and
industry environment. Following the correlation analysis, a t-test was conducted to
compare perceptions between DT-informed and non-informed participants. An
analysis of the group responses related to the category revealed that a statistically
significant difference was found only for the communication factor. The mean score
of the DT-informed group was higher than the non-informed group. This finding
might suggest that participants who are knowledgeable about DT are more likely to
understand the role of DT in enhancing communication during the construction

phase.

This study has a few limitations. First, although the sample size was sufficient for
analysis, it may not fully reflect the diversity of the construction industry. Also the
findings are limited to a local context. Another limitation is the relatively small
number of participants who had direct experience with DT technology. This restricts

the ability to assess real performance results based on practical application.

For future research, this examination can be extended to other phases of a
construction project's lifecycle such as the design, operation, and end of life stages,
since the current study focuses on the construction phase. Moreover, alongside
survey based techniques, methodological approaches such as case studies or
interviews with professionals from companies actively using DT may provide deeper

insights and more detailed evaluations.
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The research examines the impact of DT technology on productivity during the
construction phase. Distinct from previous research, it first identifies the key factors
that influence productivity in the construction stage and then investigates whether
DT can have a direct effect on these factors. Insights were collected through a survey
of industry professionals to assess DT’s perceived potential. The results reveal that
professionals generally maintain a positive and curious attitude toward DT,
recognizing its potential to address existing problems and enhance construction
efficiency.
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APPENDIX A

Ingaat Verimliligi ve Dijital Ikiz Teknolojisi
Sayin kathmes

Bu anket galismas: istanbul Teknik Universitesi Mimarkk Anabilim Dah Proje ve Yapim
‘Yanetimi yiksek lisans programanda ylritilen bir aragtrma projesi kapsaminda digital
twin teknolojisinin ingaat projelerinde verimililije etkisini aragtrmak amaciyla
yapmaktadir. Vereceginiz cevaplar tamamen bilimsel amagla kullanilacak obup Gginc
taraflarla paylagiimayacaktr. Anket slresi yaklagik 7 dakikader, katilmaniz igin tegekkir
ederiz.

Yiiksek lisans Ggrencisi irem KOMAR

Prof. Dr. Hisnd Murat GUNAYDIN

iremkomar@gmail.com Hesap degistir =y
E& Paylaglmiyor

* Zorunlu soruyu belirtir

Bu gahgmaya gandlld olarak katilmay ve verdigim bilgilerin bilimsel amagh
yayinlarda anonim olarak kullarilmasim

() Kabul ediyorum

() Kabul etmiyorum

Cinsiyetiniz

(7)) Kadin
() Erkek

() Belirtmek istemiyorum

Yagimz *

1824
2534
3544
45334

3564

OO0OO0OO0O0OO0

63 ve Ozerinde

Egitim durumunuz *

(C) Lisans derecesi
(C) ¥iksek lisans derecesi

{0) Doktora derecesi

Figure A.1 : Questionnaire personal information part.
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Mesleginiz *

O Mimar

O Ingaat Minendisi

(O Makine Mihendisi

(O Bsilgisayar/Yazibm Mihendisi
(O Proje Yoneticisi

(O Diger.

Tecribeniz *
(O 2yidanez
O 25y
O 610yl
O 1nasyl
O 15yl

Calighiguniz organizasyon *

(O Mimarik ofisi

(O Yiklenici girket

(O Damgmanlik girketi

(O Kalite kontrol ve denetim firmas:
(O Akademi

O o%er

Figure A.2 : Questionnaire career information part.
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Roliniiz *

Tasanm mimar,muhendisi
Santiye gefi

(st diizey yonetici
Danigman

Akademisyen

O O0OO0O0O0O0

Diger:

Digital Twin Nedir?

Digital twin {(DT) teknobojisi, gergek zamanh venler kullanarak fiziksel dinyamn sanal bir
temisilini olugturur, Bu teknobojinin amac, sireclen analiz etmek, operasyonel verimliligi
artrmiak ve riskleri Gnoeden ongdrmektir. Aynca gergek nesne ile ilgili karar alma
sireclering bilgi we dngéri saflayarak daha hizh ve etkili sonuglar elde etmeye yardimes
olur. Temelde 3 ana bilegenden olusur: gergek dunya ikizi, sanal dunya ikizi ve ikisi
arasindaki weri akigi. DT, 30 modellerden gincel kalabilme, gergek dinya ile etkilegim
kurabilme we yapay zeka yeteneklerini igerebime gibi dzellikleriyle aynhr. Bu teknalaji,
fiziksel dinyadaki ozeliklerin sanal ortamda dodru bir sekilde yansitlmas: igin konum
teknolojileri (GPS, Bluetooth, vb.), sensarier (loT, vb.) ve dider yenilikgi gézimlerden (BIM,
Drone, Al VR, vb.) faydalamr.

Digital Twin teknolojisinden haberdar miziniz, bu konuda bilginiz var mi?

() Evet
() Hayr

Daha Gnce Digital Twin teknolojisini kullandimz ma? *

() Ewer
() Hayr

Figure A.3 : Questionnaire digital twin information part.
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Agagidaki faktorlerin yapim agamasmnda verimliligi ne derecede etkiledigini
digiiniyorsunuz? (1: Hig etkilemiyor 5 Cok etkiliyor)

1 2 3 4 5

el @ ® ® ® @)

Is giiciindn

l::urla igili O O O O O
bilgi seviyesi

Is plicinin

seviyesi
ingaat alam
dilizen ve
yerlegimi

O
O
O
O
O

ingaat alaninin
konumu

Maliyet yanetim
sistemi

Kalite yonetim
sistemi

Zaman yanetim
sistemi

c O O O
c O O O
c O O O
(S)} IN(sIIN (1l I(s)

Malzeme ve
ekipman
yanetim sistemi

o o O O O

O
O
O
O

Ydnetimin karar
verme yetenedi

O
o
O
O
O

Organizasyanel

yontemler

ey O O O O O
stratejiker)

Sektsrdeki

finansal - ] ) 8 ]

belirsizikler

Mevzuat

SR O O @) @) ®
Mimari

I:IEBI'I'.T?II'II inga [::' D G G ':-"
ediebilirdik

Sizei

Memari

sizimberdeki O O O O O
yanhghklar
el @) o o) o) ®

) ) ®) o ®

lletigim engeleri
{dil farklan,
kiiltiirel engeller O Q Q O O

Figure A.4 : Questionnaire productivity part 1.
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Agadidaki faktrlerin verimliligi etkiledigi durumlarla ne sikdikta
kargilagiyorsunuz? (1: Hig karsilasmiyorem 5 Cok kargilagiyorum)

1 2 3 4 5
is glcondn
]:-“g"u:*u :“,-m-, O O O O O

ig glicindn

konuyla igili ] ) ) ) ]
bilgi seviyesi
ig glicindn
motivasyon
seviyesi

O
O
O
O
O

inszat alam
dilzen ve
yerlegimi

O
O
O

ingzat alaninin
konumu
Maliyet ydnetim
sigtemi

Kzlite yanetim
sitemi

(0 ST SIS RESTN BNCe)
O O O O
O O O O
O O O O
o O O 0 O

Zaman yonetim
sistemni

Malzeme ve
ekipman
yonetim sistemni

O
O
O
O
O

Yanetimin karar
verme yetenedi

O
O
O
O
O

Organizasyonel

= O O O O O
stratejiber)
Seknindeki
ﬁI'II.I'II.-IJ. 0 O O O O
belirsizhikler
e, @ @ © @ @
Mimari

) 0 0 0 ®
dizeyi
Mimari

siimierdeki O O O O O

yanlghklar
oqulen O O O O O

‘Yaganan yanhg

anlagidmalar D C:I O O C}
iletigim engelleri

(dil farkian,

kultirel engeller D C:I O O C}

Figure A.5 : Questionnaire productivity part 2.
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Projelerin yapsm agamasinda Digital Twin kullanimass, bu konulards yaganan

sorunlann azeltimasinda ne dereceds foyda sadlar? (1: Hig saglomaz 5

Fazlasylo sadlar)

iy glcinin
FEIRNER SRS
Iy glcling
konuyla ilgili
motvasyon

R
ingaat alam
dizen ve

g

ingas laninin
konumuy

ety

Kalite yonetim
s !

Zaman yonetim
sigtemi
Malzems ve
thipman
yonetim sistemi
Yanetimin karar
VeI yetenedi
w
m
(kurum igi
stratejiler)
Selndodehi
finansal
belirsizhkier

Mevzuat
Siyiklikler:
Mirmari
WSRTETIN NG
eddgbilirik
Miman
yanhghidar

Kot have
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Yaganan yanhy
anlagimalar
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@
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Figure A.6 : Questionnaire productivity part 3.
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Digital Twinin ingaat Projelerine Faydalan

Digital Twin, ingaat projelerine gegitli faydalar sajlar. Bunlar u sekilde gruplandiniabilir:

* Gergek Zamanh Dijtal Temsik DT, fiziksel nesneleri sirekli gncellanen cijital
temsillerie gerpek zamanh olarak yansmr.

= Uzskian izieme: Uzmaniann her yerden erigebilecedi detayh bilgi ve kontrol imkani

sajlar.
= Kaynak Yonetimi: Malzerne izlenebilirligini aronr, atiklan azalur ve ig glcd
maliyetierini optimize eder.

« ig Guvenlidi Tenlikeleri Gnceden tespit ederek isgilerin givenlidini artine ve kazalan

+ Risk Yonetimi: Potansiyel riskleri erken tespit ederek anormalliklerin yonetimini
iyibegtirir ve acil durum planlamalanns gl lendirir.

« Otorom Robotiarla Ikarlifi Robetiaria birlikte caligir aynea robot insan etkilegimini

giclendirir.
«  Ank Minimizasyonu: Gergek zamanh veriyle sirdlrilebilir malzeme ve enerji
kullanimi sadlar.

= Ongériye Dayah Karar Verme: Similasyoniar ve yapay zeka destediyle bilingli ve

etkili kararlar alinmasin destekler.

= Zaman ve Maliyet Yanetimic Sreq takibiyle zaman ve maliyet optimizasyonuny
kolaylagunr.

= lletisim ve ishirligic Projede paydasglar arasinda uyumu ve verimli iletisimi saflar.

Bu konu hakkinda daha gok bilgiye linkten engebilirsiniz: Digital Twir'in Faydalan

Agadida belirtilen Gzellikleriyle Digital Twin, verimliligi ne kadar etkiler? (1: Hig
etkilemez 5 ok etkiler)

1 2 3 4 5
==t @ 0 @) @) @)
Uzsktan izieme O @] O O O
Kaynak yonetimi (D) @] O O @)
s quieni o) o) O @) O
Risk yGnetimi @) Q QO @) @]
ﬁ 0 o) o) @) O
e ags O O O O O
e 5 0 O O O
| o) O O @)
e 0 O O O O

Figure A.7 : Questionnaire digital twin part 1.
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Digital Twin ve Yapim Agamasinda One Cikan Kullanim Alanlan
Digrtal Twin teknodojisinin yapim agamasindaki kullanim alanlan gu gekildedir:

+ Iy Gul Denetimic Dinamik ortamlarda iggi hareketberin izleyersk iy gich kontroling
saglar ve gen bildirimbe kas hareketlerini iyilegtirir.

+ Malzems ve Ekipman Yanetimi: Malzeme izleme ve ekipman ydnetimini sensérier ve
dijital temsiller aracibdnyla iyilegtitie. malzeme konumunu izher ve tedarikei
bigilendirmelenni otomatiklegtiric.

= Santiye Alam izlemne: Ingaat sahas kogullanni gergek zamanl izler ve gantiye
sorunlanni hazla gaoerek proje takibani iyibegtine.

= Zaman ve Maliyet Optimizasyony: Tamamilanan garevieri deferendinic ve butqe
agimlann, gecikmeleni Sngdrenek zaman ve maliyet optimizasyonu sajlar.

* Geligtirilmig Karar Verme Sirect ingaat sirecini gergek 2amanls izler. tahminler ve
simdlasyoniaria en iyi kararlan almaya yardmc olur.

* Nikselen Teknolojilerls Entegragyon: loT, Al DL. ML ve dijer teknolcjilerie entegre
olarak daha kritik bir hale gelir, tahmin ve veri analizi yeteneklerini geligtinic.

+ Eapsamh Kaphen Ingast sureglennde paydag kanhmin arirarak ven paylagamin
hizlandine ve koordinasyony iyilegtirir.

Bu konu hakkuinda daha ok bilgiye linkten engebilirsiniz: DT ve Yapim Agamasindaki
Kuyllanm Alanlgn

Digital Twinin yapsm agamasinda Sne grkan kullanim alanlannin verimililik -
uzennde ne dlcide etkili clacagim disuntyorsunuz? (1: Hig etkilemez 5:
Fazlasiyla etkiler)

1 2 3 4 5
lggict danetims ) o) O o) o)
Malzemne ve
expman O o O ) o)
yhnetimi
e o) o) o) o) o)
. O o O o o
optimizasyonu
“”m“f-‘m” O o o o o
Yukselen
teknalojilerle C) (:}
enegrasyon
b 0 o) @) e) o)

Figure A.8 : Questionnaire digital twin part 2.
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Digital Twin'in yapsm agamasinda Sne ¢ikan kullanim alanlannin verimlilik
Gzerinde ne Sigide etkil olacagni digintyorsunuz? (1: Hig etkilemez S
Fazlasiyla etkiler)

i
@) e S (o T Hi(o]
© 09 ©
G O 6 |©
@)oo (@)
@] l(e /o Bl ©)

:
§
@
®
®
O
®

Digital twin'in ingaal projelerinin yapim agamasinda verimliligi iyillegtirme
konusunda ne kadar etkili olacagw diglinUyorsunuz?

1 2 3 < ]

medda O O O O O cokeus

Digital Twin konusunda bahsetmek istediginiz bagka bir konu var me?

Yantinz

Figure A.9 : Questionnaire digital twin part 3.
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