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ÖZET 

Neredeyse her şey (zamana bağlı bir fonksiyon ya da sinyal, elektromanyetik 

dalgalar, ses dalgaları, hisse senetlerinin fiyat değişimi gibi) bir dalga formu şeklinde 

tanımlanabilir. Fourier dönüşümü bu formlarla işlem ve değerlendirme yapmak üzere 

kullandığımız oldukça güçlü bir araçtır. Sürekli ve ayrık olarak iki farklı şekilde 

incelenebilir. Kullanılan iki dönüşüm de bir nesneyi ortogonal iki uzay arasında 

eşlemektedir. Sürekli değişkenler için Fourier dönüşümü: 𝐹(𝑘) =
1

√2𝜋
∫ 𝑓(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥

∞

−∞
 

ve ters Fourier dönüşümü 𝑓(𝑥) =
1

√2𝜋
∫ 𝐹(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘

∞

−∞
 şeklinde verilmiştir. Fourier 

dönüşümü 𝑓(𝑥) → 𝐹(𝑘), ters Fourier dönüşümü ise 𝐹(𝑘) → 𝑓(𝑥) eşlemesi ile gösterilir. 

Biz bu tezde diferansiyel denklemlerin çözümünü elde ederken verilen denklemin Fourier 

uzayında olduğunu düşünerek, yeni bir çözüm yöntemi sunacağız. Bu çalışmayı yaparken 

Fourier dönüşümlerinin özelliklerinden ve Dirac delta fonksiyonundan faydalanacağız. 

Bu yeni yöntem ile bazı diferansiyel denklemlerin çözümünü elde edeceğiz. 

Anahtar kelimeler: Diferansiyel denklemler, Fourier dönüşümü, Dirac delta fonksiyonu, 

Genelleştirilmiş fonksiyonlar  
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ABSTRACT 

Almost everything (a time-dependent function or signal, electromagnetic waves, 

sound waves, stock price changes, etc.) can be described as a waveform. The Fourier 

Transform is a powerful tool for manipulating and evaluating these forms. It can be 

analyzed in two different ways: continuous and discrete. Both transforms map an object 

between two orthogonal spaces. The Fourier transform for continuous variables is given 

by: 𝐹(𝑘) =
1

√2𝜋
∫ 𝑓(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥

∞

−∞
 and the inverse Fourier transform 𝑓(𝑥) =

1

√2𝜋
∫ 𝐹(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘

∞

−∞
. The Fourier transform is denoted by the mapping 𝑓(𝑥) → 𝐹(𝑘),  

and the inverse Fourier transform by the mapping 𝐹(𝑘) → 𝑓(𝑥). In this thesis, we present 

a new solution method for differential equations by considering that the given equation is 

in Fourier space. We utilize the properties of Fourier transforms and the Dirac Delta 

function. By the new method we present, we obtain the solutions of some differential 

equations. 

Keywords: Differential equations, Fourier transform, Dirac delta function, Generalized 

functions. 
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1.GİRİŞ 

Matematikte, bir ya da birden fazla fonksiyonun türevleri arasında oluşan ilişkiyi 

ifade eden denklemlere diferansiyel denklem denir. Diferansiyel denklemler sadece bir 

matematik denkleminden çok daha fazlasıdır. Günümüzde birçok yerde diferansiyel 

denklemlerin varlığından söz edebiliriz örneğin mühendislikte, biyolojide, ekonomide 

aslında bilimin olduğu her alanda bizlere çalışma alanı sağlamaktadır. Diferansiyel 

denklemler değişim ve hareketin temel dinamiklerini anlamamızı sağlar [1]. 

Isaac Newton, 1671 yılında yayınlanan kitabında diferansiyel denklemlerin üç 

farklı tipteki tanımını yapmıştır. 

 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥) 

 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

 

𝑥1

𝜕𝑦

𝜕𝑥1
+ 𝑥2

𝜕𝑦

𝜕𝑥2
= 𝑦 

 

Tanımlanan üç farklı diferansiyel denklemde 𝑦, 𝑥’in bilinmeyen bir fonksiyonu 

olduğu ve 𝑓’in bilinen bir fonksiyon olduğu ifade edilmiştir. Newton Sonsuz Seriler 

metodunu kullanarak örneklere çözüm getirdiği bilinmektedir, ayrıca bu çözümlerin bir 

tane olup olmadığını da araştırmıştır [2]. 

Maxwell’in elektromanyatizmayı açıkladığı çalışmada veya Einstein’ın genel 

görelilik teorisinin yer çekimini tanımlayan denklemlerinde de diferansiyel denklemlere 

yer verilmiştir. Bu da gösteriyor ki temel yasaları anlamamızda da diferansiyel 

denklemlerin rolü büyüktür [3]. 

Fourier dönüşümleri diferansiyel denklemlerde sıklıkla kullanılır. İsmini bir 

dönem matematik öğretmeni olarak da görev almış olan uygulamalı matematik alanında 

önemli çalışmalara sahip Fransız bilim insanı Jean-Baptiste Joseph Fourier dan almıştır. 

https://tr.wikipedia.org/wiki/Isaac_Newton
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Fourier, isminide verdiği Fourier dönüşümleri çalışmalarını Analytical Theory of Heat 

kapsamında 1822’de yayınlanmıştır [4]. 

Sürekli değişkenler için Fourier dönüşümü: 

 

𝐹(𝑘) =
1

√2𝜋
∫ 𝑓(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥

∞

−∞

 

 

ve ters Fourier dönüşümü 

 

𝑓(𝑥) =
1

√2𝜋
∫ 𝐹(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘

∞

−∞

 

 

şeklinde verilmiştir. Anlaşıldığı üzere 𝑓(𝑥) → 𝐹(𝑘) eşlemesine Fourier dönüşümü, 

𝐹(𝑘) → 𝑓(𝑥) eşlemesine de ters Fourier dönüşümü adı verilmiştir. 

Fourier dönüşümü, diferansiyel denklemlerin analitik çözümünü kolaylaştıran 

güçlü bir tekniktir ve özellikle sınır koşulları ve başlangıç koşulları altında kullanışlıdır 

[5]. 

Fourier dönüşümünü elementer fonksiyonlara uygularken genellikle integral 

ıraksak olur. Bu yüzden bu dönüşümü Dirac delta fonksiyonu olmadan uygulamak pek 

mümkün değildir. 

Dirac delta fonksiyonu bir genelleştirilmiş fonksiyondur ve 𝛿 ile gösterilir. 𝛿(𝑥); 

𝑥 = 0 hariç her yerde değeri sıfır olan, fakat 𝑥 = 0’da sonsuz büyüklüğe sahip olan ve 

toplam integrali 1’e eşit olan fonksiyondur: ∫ 𝛿(𝑥)𝑑𝑥 = 1
∞

−∞
. Bu fonksiyonun en önemli 

özelliği ∫ 𝑓(𝑥)𝛿(𝑥)𝑑𝑥 = 𝑓(0)
∞

−∞
 eşitliğidir [6]. 

Dirac delta fonksiyonu ile Fourier dönüşümü arasında önemli bir ilişki vardır. 

Dirac delta fonksiyonunun Fourier dönüşümü ℱ[𝛿(𝑥)] =
1

√2𝜋
∫ 𝛿(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥

∞

−∞
 şeklinde 

hesaplanır ve ℱ[(𝛿(𝑥) )] =
1

√2𝜋
 olarak buluruz. Ayrıca buradan yola çıkarak 

1

√2𝜋
’nin ters 

Fourier dönüşümünün Dirac delta fonksiyonuna eşit olduğunu söyleyebiliriz [7]. 
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Diferansiyel denklemlerin çözümünü kolaylaştırmak maksadıyla Fourier 

dönüşümünden ve Dirac delta fonksiyonundan faydalanılmaktadır. Fourier dönüşümünün 

basit türev formülü, diferansiyel denklemlerde sonuca ulaşmamızı kolaylaştıran bir 

yöntem sunar. Örneğin; 𝑓(𝑥) fonksiyonunun Fourier dönüşümünün 𝐹(𝑘) olduğunu 

söylersek birinci türevinin Fourier dönüşümünü ℱ(
𝑑

𝑑𝑥
𝑓(𝑥)) = 𝑖𝑘𝐹(𝑘) olarak, ikinci 

türevinin Fourier dönüşümünü ℱ (
𝑑2

𝑑𝑥2 𝑓(𝑥)) = −𝑘2𝐹(𝑘) olarak buluruz. Fourier 

dönüşümü kullanmak burada bize basit bir hesaplama sunmaktadır [8]. 

Diferansiyel denklem, başlangıç değer problemi veya sınır koşulları içerdiği 

takdirde de Fourier dönüşümü kullanılabilmektedir. Bunun yanı sıra parçalı fonksiyonlar 

için diferansiyel denklem, bir fonksiyonda bir alanın içindeki farklı bölgelerde farklı 

fiziksel koşullar olduğunda, bu bölgeler için Fourier dönüşümleri ayrı ayrı uygulanıp 

sonucu birleştirebiliriz. Bu sebeple Fourier dönüşümleri diferansiyel denklemler için 

sağladığı avantajlardan dolayı iyi bir yöntemdir [9]. 

Fourier dönüşümü klasik anlamda diferansiyel denklemlerin çözümünde 

kullanılırken önce diferansiyel denklemin 2 taraftan Fourier dönüşümü alınır. Daha sonra 

genelde karşımıza, cebirsel bir denklem çıkar. Bu cebirsel denklem çözülür ve ters 

Fourier dönüşümü alınırsa diferansiyel denklemin çözümü elde edilir. Biz farklı bir bakış 

açısı kullanarak, diferansiyel denklemin ve diferansiyel denklemin çözümünün de Fourier 

uzayında olduğunu varsayacağız. Bunun için aradığımız 𝑦 çözümünün 𝑦(𝑘) =

ℱ{𝑓(𝑥)}(𝑘) biçiminde bilinmeyen bir fonksiyonun Fourier dönüşümü olduğunu 

varsayacağız ve çözümleri buna göre arayacağız. Bu yöntemi biraz açıklayalım. 

Belirtelim ki yöntem ilerleyen bölümlerde daha detaylı verilecektir. 

𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 𝑞(𝑥) gibi bir diferansiyel denklemi ele alalım. Varsayalım ki 

𝑦 = ℱ{𝑓(𝑥)}(𝑘) olacak şekilde denklemin bir çözümü vardır. O halde denklem 

 

𝑎.
𝑑2

𝑑𝑘2
ℱ{𝑓(𝑥)}(𝑘) + 𝑏.

𝑑

𝑑𝑘
ℱ{𝑓(𝑥)}(𝑘) + 𝑐. ℱ{𝑓(𝑥)}(𝑘) = 𝑞(𝑘) 

 

şeklinde olur. Buradan, Fourier dönüşümün özelliklerinden yararlanılarak 
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𝑎. ℱ{−𝑥2𝑓(𝑥)} + 𝑏. ℱ{−𝑖𝑥𝑓(𝑥)} + 𝑐. ℱ{𝑓(𝑥)} = 𝑞(𝑘) 

⇒ ℱ{−𝑎𝑥2𝑓(𝑥) − 𝑏𝑖𝑥𝑓(𝑥) + 𝑐𝑓(𝑥)} = 𝑞(𝑘) 

 

elde edilir. Bu denklemin ters Fourier dönüşümü alınırsa, 

 

−𝑎𝑥2𝑓(𝑥) − 𝑏𝑖𝑥𝑓(𝑥) + 𝑐𝑓(𝑥) = ℱ−1{𝑞(𝑘)}(𝑥) 

⇒ 𝑓(𝑥)(−𝑎𝑥2 − 𝑏𝑖𝑥 + 𝑐) = ℱ−1{𝑞(𝑘)}(𝑥) 

⇒ 𝑓(𝑥) =
ℱ−1{𝑞(𝑘)}(𝑥)

−𝑎𝑥2 − 𝑏𝑖𝑥 + 𝑐
 

 

eşitliği sağlanmış olur. Buradan, Fourier dönüşümü alınırsa denklemin çözümü elde 

edilmiş olur. 

Tezde sunduğumuz yöntem bu şekildedir. Bulgular ve tartışma başlığında daha 

detaylı verilecektir. 
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2.MATERYAL VE YÖNTEM 

2.1. Diferansiyel Denklemler 

Tanım 2.1. Bilinmeyen bir fonksiyon ve onun türevlerini içeren denklemler diferansiyel 

denklem olarak ifade edilir. Diferansiyel denklemler bilinmeyenlerine ve katsayılarına 

göre doğrusal diferansiyel denklemler ya da doğrusal olmayan diferansiyel denklemler 

olarak ayrılabilir. Doğrusal olmayan diferansiyel denklemler trigonometrik, logaritmik 

veya yüksek mertebeden terimlerden oluşmaktadır. Bu durum doğrusal olma durumunu 

bozar. Bir diferansiyel denklemden bahsederken bilinmeyen fonksiyon sadece bir 

bağımsız değişkene bağlı ise, bu diferansiyel denkleme adi diferansiyel denklem; iki veya 

daha çok bağımsız değişkene bağlı ise bu diferansiyel denkleme kısmi diferansiyel 

denklem denir [9]. 

 Bağımlı değişkeni 𝑦, bağımsız değişkeni 𝑥 olan adi diferansiyel denklem 

örnekleri; [9]. 

 

𝑑𝑦

𝑑𝑥
= 𝑥 + 2 

 

𝑑2𝑦

𝑑𝑥2
+ 5

𝑑𝑦

𝑑𝑥
+ 𝑦 = 0 

 

𝑥𝑦′ + 𝑦 = 4 

 

2𝑦′′′ + 2𝑦′′ + 𝑦′ = 2 cos 𝑥 

 

Birden fazla değişkenlere sahip olan kısmi diferansiyel denklemler örneği; [12]. 

 

𝑥
𝜕𝑧

𝜕𝑦
+ 𝑦

𝜕𝑧

𝜕𝑥
= 𝑧 
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Tanım2.2: Bir diferansiyel denklemde en yüksek türevin olduğu terim o diferansiyel 

denklemin mertebesini gösterir. 

Lineer (doğrusal) diferansiyel denklem örnekleri; [12]. 

 

3𝑦′′ + 2𝑦′ − 𝑦 = 0 

 

𝑦′′ + 𝑥𝑦′ = 0 

 

𝑦(5) − 2𝑦′′ + 𝑦′′′ = 𝑥 − 5 

 

Lineer (doğrusal) olmayan diferansiyel denklem örnekleri; [12]. 

 

𝑦′′′ − 𝑥𝑦′ = 𝑐𝑜𝑠𝑦 

 

𝑡′′ − 𝑎𝑡′ + 𝑡 = sin 𝑡 

 

Tanım2.3: Bir diferansiyel denklemde verilen koşullar eğer tek bir noktada veriliyorsa 

bunun bir başlangıç değer problemi olduğunu görürüz. Eğer diferansiyel denklemde 

verilen koşullar birden fazla nokta ile birlikte veriliyorsa bunun bir sınır değer problemi 

olduğunu söyleriz. 

Örneğin; 

𝑥′′ + 5𝑥′ = 3𝑒𝑡,   𝑥(1) = 1    𝑥′(1) = 0 

 

ise bu bir başlangıç değer problemidir. 

 

𝑥′′ + 5𝑥 = 3𝑒𝑡      , 𝑥(1) = 3,   𝑥(3) = 5 
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ise bu bir sınır değer problemidir[12]. 

2.2. Fourier Dönüşümü: 

Fourier dönüşümü, fizik, mühendislik ve matematikte sıklıkla kullanılan bir 

integral dönüşümüdür. Bir müzik akordunun sesini, onu oluşturan tonlara ayırmaya 

benzer. Sürekli ve ayrık olarak ikiye ayrılabilir. İki dönüşüm de bir nesneyi ortogonal iki 

uzay arasında eşler. Sürekli nesneler için Fourier dönüşümü 

 

𝐹(𝑘) =
1

√2𝜋
∫ 𝑓(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥

∞

−∞

 

 

ve ters Fourier dönüşümü 

 

𝑓(𝑥) =
1

√2𝜋
∫ 𝐹(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘

∞

−∞

 

 

şeklinde verilir. 

   𝑓(𝑥) → 𝐹(𝑘) eşlemesine Fourier dönüşümü, 

𝐹(𝑘) → 𝑓(𝑥) eşlemesine de ters Fourier dönüşümü adı verilir [6]. 

2.2.1. Fourier Dönüşümünün Temel Özellikleri: 

Teorem 2.1. Lineerlik Özelliği: [10] 

 

𝑓1(𝑥) ↔ 𝐹1(𝑘) 𝑣𝑒 𝑓2(𝑥) ↔ 𝐹2(𝑘) 

 

olmak üzere 

 

𝑎1𝑓1(𝑥) + 𝑎2𝑓2(𝑥) ↔ 𝑎1𝐹1(𝑘) + 𝑎2𝐹2(𝑘) 

 



8 

 

özelliği sağlamaktadır. 

Teorem 2.2. Simetri Özelliği: [10] 

Simetri özelliği, 𝑓(𝑥) fonksiyonunun reel eksen üzerinde tanımlı ve reel değerli 

olması durumunda geçerlilik kazanır. 𝑓 bir çift fonksiyon ise  

 

𝐹(−𝑘) = 𝐹(𝑘)̅̅ ̅̅ ̅̅  

 

eşitliği doğrudur. 

Teorem 2.3. Öteleme (Kaydırma) Özelliği: [10] 

Fourier dönüşümü alınırken verilen bağımsız değişkene bir sabitin eklenmesi veya 

çıkarılması durumunda integral dönüşümü ötelemeye uğrar. 

ℱ{𝑓(𝑥 − 𝑎)} = ∫ 𝑓(𝑥 − 𝑎). 𝑒−𝑖𝑥𝑘𝑑𝑥
∞

−∞

 

 

= 𝑒−𝑖𝑘𝑎𝐹(𝑥) 

 

olur. 

Teorem 2.4. Modülasyon Özelliği: [10] 

𝑓(𝑥) ve 𝑔(𝑥) reel eksende tanımlı sürekli fonksiyonlar olduğunda 

 

ℱ{𝑓(𝑥). 𝑔(𝑥)} = 𝐹(𝑓) ∗ 𝐺(𝑓) 

 

eşitliği doğrudur. Burada, 

 

𝑓(𝑥) ∗ 𝑔(𝑥) = ∫ 𝑓(𝜏)𝑔(𝑥 − 𝑟)𝑑𝜏
∞

−∞
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işlemi konvolüsyon olarak bilinir. 

Teorem 2.5. Skalerlik Özelliği: [10] 

𝑎 ≠ 0 için 

 

ℎ(𝑥) = 𝑓(𝑎𝑥) 

 

ise 

 

ℱ{ℎ(𝑥)} = ℱ{𝑓(𝑎𝑥)} =
1

|𝑎|
ℱ (

𝑘

𝑎
) =

ℱ (
𝑘

𝑎
)

|𝑎|
 

 

𝑎 = −1 

durumu ele alındığında 

𝑓(−𝑥) ↔ 𝐹(−𝑘) 

sonucuna ulaşılır. 

Teorem 2.5. Eşlenik Özelliği: [10] 

 

ℎ(𝑥) = 𝑓(𝑥)̅̅ ̅̅ ̅̅  

 

ise 

 

𝐻(𝑘) = 𝐹(−𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 

görüntüsüdür. 
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Teorem 2.6. İntegrasyon Özelliği: [10] 

𝑔(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥

−∞

 

 

alındığında 

 

𝑔(𝑥) ↔
𝐹(𝑘)

𝑖𝑘
+ √2𝜋𝑐𝛿(𝑘) 

 

olur. Burada 𝑐, 

 

∫ (𝑓(𝑥) − 𝑐)𝑑𝑥 = 0

∞

−∞

 

 

özelliğini sağlayan sayıdır. 

Teorem 2.7. Türev Özelliği: 

Türevinin Fourier özelliği: Fourier dönüşümünün basit türev formünden 𝑓(𝑥) 

fonksiyonunun Fourier dönüşümünün 𝐹(𝑘) olduğunu söylersek birinci türevinin Fourier 

dönüşümünü ℱ(
𝑑

𝑑𝑥
𝑓(𝑥)) = 𝑖𝑘𝐹(𝑘) olarak, ikinci türevinin Fourier dönüşümünü 

ℱ (
𝑑2

𝑑𝑥2 𝑓(𝑥)) = −𝑘2𝐹(𝑘) olarak buluruz. 

Fourier’in türev özelliği: Bir fonksiyonun Fourier dönüşümünün n. mertebeden 

türevi formülü  

ℱ{(−𝑖)𝑛𝑥𝑛𝑓(𝑥)} =
𝑑𝑛

𝑑𝑘𝑛
ℱ{𝑓(𝑥)} 

 

bu şekildedir.  
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2.3.Bazı Özel Fonksiyonların Fourier Dönüşümü Örnekleri 

2.3.1.Dirac Delta Fonksiyonu: [11] 

𝑓(𝑥) = 𝛿(𝑥) fonksiyonunun Fourier dönüşümü incelenirse; 

 

ℱ(𝑘) =
1

√2𝜋
∫ 𝛿(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥

∞

−∞

 

 

elde edilir. Burada 𝛿(𝑥) fonksiyonunun temel özelliği olan 

 

∫ 𝛿(𝑥). 𝑔(𝑥). 𝑑𝑥 = 𝑔
∞

−∞

(0) 

 

eşitliği kullanılırsa, 

 

ℱ(𝑘) =
1

√2𝜋
𝑒−𝑖𝑘.0 =

1

√2𝜋
 

 

ve sonuç olarak: 

𝐹(𝑘) =
1

√2𝜋
 

 

olduğu görülür. 
1

√2𝜋
 fonksiyonunun ters Fourier dönüşümünü alırsak 

 

ℱ−1 [
1

√2𝜋
] 

 

𝛿(𝑥) =
1

√2𝜋
∫

1

√2𝜋

∞

−∞

𝑒𝑖𝑘𝑥𝑑𝑥 =
1

2𝜋
∫ 𝑒𝑖𝑘𝑥𝑑𝑘

∞

−∞
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∫ 𝑒𝑖𝑘𝑥𝑑𝑘
∞

−∞

= 2𝜋𝛿(𝑥) 

 

eşitliğini buluruz. 

2.3.2. 𝒇(𝒙) = 𝟏 ile verilen Fourier dönüşümünün incelenmesi 

Daha önce 𝛿(𝑥)’nin ters fourier fonksiyonunu 
1

√2𝜋
 olarak bulmuştuk. 

 

𝐹−1(𝛿(𝑤)) =
1

√2𝜋
 

 

Fourier ve ters Fourier transformasyonları arasında karşılıklı dönüşüm özelliği 

 

𝑓(𝑥) ⟺ 𝐹(𝑘) 

 

olduğundan buna göre; 

 

1

√2𝜋
⟺ 𝛿(𝑥) 

yazabiliriz. Ayrıca, 

1 ⟺ √2𝜋𝛿(𝑥) 

 

bulunur. 

2.3.3. 𝑭(𝒌) = 𝜹(𝒌 − 𝒌𝟎) ile verilen ters Fourier dönüşümünün incelenmesi [11] 

 

𝐹(𝑘) = 𝛿(𝑘 − 𝑘0) 
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Delta fonksiyonunun özelliğini kullanalım 

 

∫ 𝛿(𝑘 − 𝑘0). 𝑔(𝑘). 𝑑𝑘 = 𝑔
∞

−∞

(𝑥0) 

 

Buradan; 𝑔(𝑘) = 𝑒𝑖𝑘𝑥 yazarsak 

 

𝑓(𝑥) =
1

√2𝜋
𝑒𝑖𝑘0𝑥 

 

Burada 𝑓(𝑥) =
1

√2𝜋
𝑒𝑖𝑘0𝑥’in Fourier Dönüşümünü alacak olursak  

 

𝐹(𝑘) =
1

√2𝜋
∫ (

1

√2𝜋
𝑒𝑖𝑘0𝑥)

∞

−∞

𝑒−𝑖𝑘𝑥. 𝑑𝑥 

 

=
1

2𝜋
∫ 𝑒𝑖𝑥(𝑘0−𝑘)). 𝑑𝑥

∞

−∞

 

 

= 2𝜋𝛿(𝑘 − 𝑘0) 

 

buradan; 

 

𝐹(𝑘) =
1

2𝜋
. 2𝜋. 𝛿(𝑘 − 𝑘0) = 𝛿(𝑘 − 𝑘0) 

 

Sonuç olarak; 

 

𝐹(𝑘) = 𝛿(𝑘 − 𝑘0) 
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olduğunu söyleriz. 

2.4.Bazı parçalı fonksiyonların Fourier dönüşümünün incelenmesi 

Örnek 1: 

𝑓(𝑥) = {
1 − |𝑥|, |𝑥| ≤ 1
0,             |𝑥| > 1

 fonksiyonunun Fourier dönüşümünün incelenmesi: 

𝐹(𝑘) =
1

√2𝜋
∫ 𝑓(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥

∞

−∞
 formülündeki 𝑒−𝑖𝑘𝑥 yerine Euler formülünü 

kullanacağız. 

𝑒−𝑖𝑘𝑥 için 𝑐𝑜𝑠𝑥 − 𝑖𝑠𝑖𝑛𝑥 eşitliğinden faydalanarak 

 

𝐹(𝑘) =
1

√2𝜋
∫ (1 − |𝑥|)

1

−1

cos 𝑘𝑥 . 𝑑𝑥 

 

yazılır. 

𝐹(𝑘) =
2

√2𝜋
∫ (1 − 𝑥)

1

0

cos 𝑘𝑥 . 𝑑𝑥 

 

=
2

√2𝜋𝑘
∫ (1 − 𝑥)

1

0

. 𝑑 sin 𝑘𝑥 

 

=
2(1 − 𝑥) sin 𝑘𝑥

𝑘√2𝜋
+

2

√2𝜋𝑘
∫ sin 𝑘𝑥

1

0

𝑑𝑥 

 

= −
2

√2𝜋𝑘2
𝑐𝑜𝑠𝑘𝑥|0

1 

 

=
2

√2𝜋𝑘2
(1 − cos 𝑘) 
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=
4𝑠𝑖𝑛2 𝑘

2

√2𝜋𝑘2
 

 

Örnek 2: 

𝑓(𝑥) = {
1, |𝑥| ≤ 1
0, |𝑥| > 1

  parçalı fonksiyonunu Fourier dönüşümünün incelenmesi 

 

𝐹(𝑘) =
1

√2𝜋
∫ 𝑓(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥

∞

−∞

 

 

=
1

√2𝜋
∫ 𝑒−𝑖𝑘𝑥𝑑𝑥

1

−1

 

 

=
2

√2𝜋
∫ cos 𝑘𝑥 𝑑𝑥

1

0

 

 

=
2

√2𝜋𝑘
sin 𝑘𝑥|0

1 

 

=
√2 sin 𝑘

√𝜋𝑘
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3. BULGULAR VE TARTIŞMA 

Bu bölümde bazı diferansiyel denklemlerin çözümlerini elde etmek için Fourier 

dönüşümünün özelliklerini ve Dirac delta fonksiyonunun özelliklerinden yararlanarak 

çözümler elde edeceğiz, 

 

𝑦′ = 𝑦 

 

diferansiyel denklemini inceleyelim. Bu denklemi değişkenlerine ayırarak 

çözdüğümüzde 

 

𝑦′ − 𝑦 = 0 

 

𝑑𝑦

𝑑𝑥
= 𝑦 ⇒ ∫

𝑑𝑦

𝑦
= ∫ 𝑑𝑥 

 

ln 𝑦 = 𝑥 + ln 𝑐 

 

𝑦 = 𝑒𝑥+ln 𝑐 

 

𝑦 = 𝑒𝑥. 𝑐 

sonucunu elde ederiz. Biz farklı bir yöntem kullanarak diferansiyel denklemin kendisinin 

ve aradığımız 𝑦 çözümünün Fourier uzayında olduğunu varsayacağız. Şimdi, 𝑦(𝑘) =

ℱ{𝑓(𝑥)}(𝑘) olacak şekilde diferansiyel denklemde çözümü arayalım. Bu durumda ele 

aldığımız 𝑦′ = 𝑦 denklemi 

 

𝑑

𝑑𝑘
ℱ{𝑓(𝑥)}(𝑘) = ℱ{𝑓(𝑥)}(𝑘) 

biçimini alır. Fourier dönüşümünün türevi özelliğinden 
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ℱ{−𝑖𝑥𝑓(𝑥)} = ℱ{𝑓(𝑥)} 

 

elde ederiz. Bu denklemi aşağıdaki şekilde inceleyelim: 

 

ℱ{−𝑖𝑥𝑓(𝑥) − 𝑓(𝑥)} = 0 

 

𝑓(𝑥)(−𝑖𝑥 − 1) = 0 

 

−𝑖𝑓(𝑥)(𝑥 − 𝑖) = 0 

 

𝑓(𝑥)(𝑥 − 𝑖) = 0 

 

Biz Dirac delta fonksiyonunun özelliklerinden 𝑥. 𝛿(𝑥) = 0 olduğunu biliyoruz, 

buradan yola çıkarak 

 

0

𝑥
= 𝛿(𝑥) 

 

elde ederiz. Her tarafı 𝑐 sabiti ile çarparsak, 

 

0

𝑥
= 𝑐𝛿(𝑥) 

 
(3.1) 

 

sonucunu ve her 𝑎 ∈ ℝ için 

 

0

𝑥 − 𝑎
= 𝑐𝛿(𝑥 − 𝑎) (3.2) 
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sonucunu elde ederiz. O halde, 

 

𝑓(𝑥) =
0

𝑥 − 𝑖
= 𝑐. 𝛿(𝑥 − 𝑖) 

 

𝑦 = ℱ{𝑐. 𝛿(𝑥 − 𝑖)} = 𝑐. ℱ{𝛿(𝑥 − 𝑖)} 

 

= 𝑐.
1

√2𝜋
∫ 𝛿(𝑥 − 𝑖). 𝑒−𝑖𝑘𝑥𝑑𝑥

∞

−∞

 

 

=
𝑐

√2𝜋
𝑒𝑘 = 𝑐1𝑒𝑘 

 

elde edilir. Bu, klasik yöntemlerle elde edilen çözüm ile aynıdır. 

Teorem.3.1. Her 𝑎 ∈ ℝ ve her 𝑛 ∈ ℕ için  

 

0

(𝑥 − 𝑎)𝑛
= 𝑐0𝛿(𝑥 − 𝑎) + 𝑐1𝛿′(𝑥 − 𝑎) + ⋯ + 𝑐𝑛−1𝛿(𝑛−1)(𝑥 − 𝑎) 

 

eşitliği doğrudur. Bu formül (3.1)’in bir genelleştirilmesidir. 

İspat. (3.1)’den 
0

𝑥−𝑎
= 𝑐1𝛿(𝑥 − 𝑎) olduğunu biliyoruz. Bu eşitlikte her iki tarafın türevi 

alındığında 

 

0. (𝑥 − 𝑎) − 0

(𝑥 − 𝑎)2
= 𝑐1𝛿′(𝑥 − 𝑎) 

 

0

(𝑥 − 𝑎)
−

0

(𝑥 − 𝑎)2
= 𝑐1𝛿′(𝑥 − 𝑎) 
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0

(𝑥 − 𝑎)2
=

0

(𝑥 − 𝑎)
− 𝑐1𝛿′(𝑥 − 𝑎) 

 

0

(𝑥 − 𝑎)2
= 𝑐0𝛿(𝑥 − 𝑎) + 𝑐1𝛿′(𝑥 − 𝑎) 

 

elde etmiş oluruz (Burada sabitler yeniden işaretlenmiştir).  

Tümevarım varsayımı olarak 𝑛 için 
0

(𝑥−𝑎)𝑛 = 𝑐0𝛿(𝑥 − 𝑎) + 𝑐1𝛿′(𝑥 − 𝑎) +

𝑐2𝛿′′(𝑥 − 𝑎) + ⋯ + 𝑐𝑛−2𝛿(𝑛−2)(𝑥 − 𝑎) + 𝑐𝑛−1𝛿(𝑛−1)(𝑥 − 𝑎) olduğunu kabul edip, 𝑛 +

1 için ispatı yapalım. Varsaydığımız eşitlikte 2 taraftan türev alalım. 

 

0. (𝑥 − 𝑎)𝑛 − 0. 𝑛(𝑥 − 𝑎)𝑛−1

(𝑥 − 𝑎)2𝑛
= 𝑐0𝛿′(𝑥 − 𝑎) + 𝑐1𝛿′′(𝑥 − 𝑎) + ⋯ + 𝑐𝑛−1𝛿(𝑛)(𝑥 − 𝑎) 

 

0

(𝑥 − 𝑎)𝑛
−

0. 𝑛

(𝑥 − 𝑎)𝑛+1
= 𝑐0𝛿′(𝑥 − 𝑎) + 𝑐1𝛿′′(𝑥 − 𝑎) + ⋯ + 𝑐𝑛−1𝛿(𝑛)(𝑥 − 𝑎) 

 

0. 𝑛

(𝑥 − 𝑎)𝑛+1
= −

0

(𝑥 − 𝑎)𝑛
− 𝑐0𝛿′(𝑥 − 𝑎) − 𝑐1𝛿′′(𝑥 − 𝑎) − ⋯ − 𝑐𝑛−1𝛿(𝑛)(𝑥 − 𝑎) 

 

0. 𝑛

(𝑥 − 𝑎)𝑛+1
= −𝑐0𝛿(𝑥 − 𝑎) − 𝑐1𝛿′(𝑥 − 𝑎) − ⋯ − 𝑐𝑛−1𝛿(𝑛−1)(𝑥 − 𝑎) − 𝑐0𝛿′(𝑥 − 𝑎)

− 𝑐1𝛿′′(𝑥 − 𝑎) − ⋯ − 𝑐𝑛−1𝛿(𝑛)(𝑥 − 𝑎) 

 

elde edilir. Sabitleri düzenlediğimiz zaman 

 

= 𝑑0𝛿(𝑥 − 𝑎) + 𝑑1𝛿′(𝑥 − 𝑎) + 𝑑2𝛿′′(𝑥 − 𝑎) + ⋯ + 𝑑𝑛𝛿(𝑛)(𝑥 − 𝑎) 

 

olur ve ispat biter. 
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Sonuç.3.1. Teorem.3.1’de 𝑎 sabiti sıfır olduğu zaman aşağıdaki eşitlikler elde edilir. 

 

0

𝑥2
= 𝑐0𝛿(𝑥) + 𝑐1𝛿′(𝑥) 

0

𝑥3
= 𝑐0𝛿(𝑥) + 𝑐1𝛿′(𝑥) + 𝑐2𝛿′′(𝑥) 

0

𝑥4
= 𝑐0𝛿(𝑥) + 𝑐1𝛿′(𝑥) + 𝑐2𝛿′′(𝑥) + 𝑐3𝛿′′′(𝑥) 

.

.

.
 

0

𝑥𝑛
= 𝑐0𝛿(𝑥) + 𝑐1𝛿′(𝑥) + 𝑐2𝛿′′(𝑥) + ⋯ + 𝑐𝑛−2𝛿(𝑛−2)(𝑥)𝑐𝑛−1𝛿(𝑛−1)(𝑥) 

 

Örnek3.1:𝑦′′ − 3𝑦′ − 4𝑦 = 0 diferansiyel denklemini çözelim. 

Çözüm: Klasik yöntemlerle çözüldüğü zaman diferansiyel denklemin çözümü 

𝑦 = 𝑐1𝑒4𝑥 + 𝑐2𝑒−𝑥 şeklindedir. Şimdi kendi yöntemimizle diferansiyel denklemi tekrar 

çözelim. 

 

𝑦 = ℱ{𝑓(𝑥)}(𝑘) 

olsun. 

𝑑2

𝑑𝑘2
ℱ{𝑓(𝑥)}(𝑘) − 3

𝑑

𝑑𝑘
ℱ{𝑓(𝑥)}(𝑘) − 4ℱ{𝑓(𝑥)}(𝑘) = 0 

 

ℱ{−𝑥2𝑓(𝑥)} − 3ℱ{(−𝑖𝑥. 𝑓(𝑥)} − 4ℱ{𝑓(𝑥)} = 0 

 

ℱ{−𝑥2𝑓(𝑥) + 3. 𝑖𝑥𝑓(𝑥) − 4𝑓(𝑥)} = 0 

 

−𝑥2𝑓(𝑥) + 3𝑖𝑥𝑓(𝑥) − 4𝑓(𝑥) = 0 
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𝑓(𝑥)(−𝑥2 + 3𝑖𝑥 − 4) = 0 

 

𝑓(𝑥) =
0

𝑥2 − 3𝑖𝑥 + 4
=

0

(𝑥 − 4𝑖)(𝑥 + 𝑖)
=

0

𝑥 − 4𝑖
+

0

𝑥 + 𝑖
 

 

= 𝑐1𝛿(𝑥 − 4𝑖) + 𝑐2𝛿(𝑥 + 𝑖). 

 

şimdi, 𝑦 = ℱ{𝑓(𝑥)}(𝑘) bağıntısı ile çözümü bulalım. 

 

𝑦 = ℱ{𝑓(𝑥)}(𝑘) = 𝑐1.
1

√2𝜋
∫ 𝛿(𝑥 − 4𝑖). 𝑒−𝑖𝑘𝑥. 𝑑𝑥 + 𝑐2

1

√2𝜋
∫ 𝛿(𝑥 + 𝑖). 𝑒−𝑖𝑘𝑥

∞

−∞

∞

−∞

. 𝑑𝑥 

 

𝑐1

√2𝜋
𝑒4𝑘 +

𝑐2

√2𝜋
𝑒−𝑘 = 𝑐3𝑒4𝑘 + 𝑐4𝑒−𝑘 

 

olur. Bu, mevcut çözüm ile tutarlıdır. 

 

Örnek3.2: 𝑦′′ − 4𝑦′ + 4𝑦 = 0 diferansiyel denklem çözümü: 

Çözüm: Klasik yöntemlerle çözüldüğü zaman diferansiyel denklemin çözümü 

𝑦 = 𝑐1𝑒2𝑥 + 𝑐2𝑥𝑒2𝑥şeklindedir. Şimdi kendi yöntemimizle diferansiyel denklemi tekrar 

çözelim. 

 

𝑦 = ℱ{𝑓(𝑥)}(𝑘) 

 

olsun  

𝑑2

𝑑𝑘2
ℱ{𝑓(𝑥)}(𝑘) − 4

𝑑

𝑑𝑘
ℱ{𝑓(𝑥)}(𝑘) + 4ℱ{𝑓(𝑥)}(𝑘) = 0 
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ℱ[(−𝑥2. 𝑓(𝑥)) − 4(−𝑖𝑥. 𝑓(𝑥)) + 4𝑓(𝑥)] = 0 

 

𝑓(𝑥). (−𝑥2 + 4𝑖𝑥 + 4) = 0 

 

𝑓(𝑥) =
0

−𝑥2 + 4𝑖𝑥 + 4
=

0

𝑥2 − 4𝑖𝑥 − 4
=

0

(𝑥 − 2𝑖)2
 

 

=
0

(𝑥 − 2𝑖)2
= 𝑐1𝛿(𝑥 − 2𝑖) + 𝑐2𝛿′(𝑥 − 2𝑖) 

 

şimdi, 𝑦 = ℱ{𝑓(𝑥)}(𝑘) bağıntısı ile çözümü bulalım. 

 

𝑦 = ℱ{𝑓(𝑥)}(𝑘) =
𝑐1

√2𝜋
𝑒2𝑘 −

𝑐2𝑖𝑘

√2𝜋
𝑒2𝑘 = 𝑐3𝑒2𝑘 + 𝑐4𝑘𝑒2𝑘 

 

olur. Bu, mevcut çözüm ile tutarlıdır.  

 

Örnek3.3:𝑦′′ − 𝑦′ − 2𝑦 = 1 diferansiyel denklem çözümü: 

Çözüm: Klasik yöntemlerle çözüldüğü zaman diferansiyel denklemin çözümü 𝑦 =
−1

2
+

𝑐1𝑒2𝑥 + 𝑐2𝑒−𝑥 şeklindedir. Şimdi kendi yöntemimizle diferansiyel denklemi tekrar 

çözelim. 

 

𝑦 = ℱ{𝑓(𝑥)}(𝑘) 

 

olsun  

 

𝑑2

𝑑𝑘2
ℱ{𝑓(𝑥)}(𝑘) −

𝑑

𝑑𝑘
ℱ{𝑓(𝑥)}(𝑘) + ℱ{𝑓(𝑥)}(𝑘) = 1 
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ℱ{−𝑥2𝑓(𝑥) + 𝑖𝑥𝑓(𝑥) − 2𝑓(𝑥)}(𝑘) = ℱ{√2𝜋𝛿(𝑥)}(𝑘) 

 

−𝑓(𝑥)(𝑥2 − 𝑖𝑥 + 2) = √2𝜋𝛿(𝑥) 

 

𝑓(𝑥) =
−√2𝜋𝛿(𝑥)

(𝑥 − 2𝑖)(𝑥 + 𝑖)
 

 

=
−√2𝜋𝛿(𝑥) + 0

(𝑥 − 2𝑖)(𝑥 + 𝑖)
 

 

şimdi, 𝑦 = ℱ{𝑓(𝑥)}(𝑘) bağıntısı ile çözümü bulalım. 

 

𝑦 = ℱ{𝑓(𝑥)}(𝑘)  =
−√2𝜋𝛿(𝑥)

(𝑥 − 2𝑖)(𝑥 + 𝑖)
+ 𝑐1𝛿(𝑥 − 2𝑖) + 𝑐2𝛿(𝑥 + 𝑖) 

 

𝑦 = ℱ{𝑓(𝑥)}(𝑘)  = − ∫
𝛿(𝑥)𝑒−𝑖𝑘𝑥

(𝑥 − 2𝑖)(𝑥 + 𝑖)
𝑑𝑥 + 𝑐1𝑒2𝑘 + 𝑐2𝑒−𝑘

∞

−∞

 

 

𝑦 =
−1

2
+ 𝑐1𝑒2𝑘 + 𝑐2𝑒−𝑘 

 

olur. Bu, mevcut çözüm ile tutarlıdır. 

Örnek3.4. 𝑦′′ + 𝑦 = 𝑥2 diferansiyel denklem çözümü 

Çözüm: Klasik yöntemlerle çözüldüğü zaman diferansiyel denklemin çözümü 𝑦 = 𝑥2 −

2 + 𝑐1 cos 𝑥 + 𝑐2 sin 𝑥 şeklindedir. Şimdi kendi yöntemimizle diferansiyel denklemi 

tekrar çözelim. 

 

𝑦 = ℱ{𝑓(𝑥)}(𝑘) 
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olsun  

 

𝑑2𝐹{𝐹(𝑥)}(𝑘)

𝑑𝑥2
+ 𝐹{𝑓(𝑥)}(𝑘) = 𝑘2 

 

𝐹{(−𝑖𝑘)2𝑓(𝑥)} + 𝐹{𝑓(𝑥)}(𝑘) = 𝐹{−√2𝜋𝛿′′}(𝑘) 

 

𝐹{−𝑥2𝑓(𝑥) + 𝑓(𝑥)} = 𝐹{−√2𝜋𝛿′′(𝑥)} 

 

(−𝑥2 + 1)𝑓(𝑥) = −√2𝜋𝛿′′(𝑥) 

 

𝑓(𝑥) =
√2𝜋𝛿′′(𝑥) + 0

(𝑥2 − 1)
 

şimdi, 𝑦 = ℱ{𝑓(𝑥)}(𝑘) bağıntısı ile çözümü bulalım 

 

𝑦 = ℱ{𝑓(𝑥)}(𝑘) =
√2𝜋𝛿′′(𝑥)

(𝑥2 − 1)
+

0

𝑥 − 1
+

0

𝑥 + 1
 

 

𝑦 = ℱ{𝑓(𝑥)}(𝑘)  =
√2𝜋𝛿′′(𝑥) + 0

(𝑥2 − 1)
+ 𝐴𝛿(𝑥 − 1) + 𝐵𝛿(𝑥 + 1) 

 

𝑦(𝑘) = 𝐹 {
√2𝜋𝛿′′(𝑥) + 0

(𝑥2 − 1)
+ 𝐴𝛿(𝑥 − 1) + 𝐵𝛿(𝑥 + 1)} 

 

= ∫
𝛿′′(𝑥)𝑒−𝑖𝑘𝑥

𝑥2 − 1

∞

−∞

𝑑𝑥 + 𝐴 ∫ 𝑒−𝑖𝑘𝑥𝛿(𝑥 − 1)𝑑𝑥 + 𝐵 ∫ 𝑒−𝑖𝑘𝑥𝛿(𝑥 + 1)𝑑𝑥
∞

−∞

∞

−∞

 

 

= 𝑘2 − 2 + 𝐴𝑒−𝑖𝑘 + 𝐵𝑒𝑖𝑘 
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= 𝑘2 − 2 + 𝐴(cos 𝑘 − 𝑖 sin 𝑘) + 𝐵(cos 𝑘 + 𝑖 sin 𝑘) 

 

= 𝑘2 − 2 + 𝑐1 cos 𝑘 + 𝑐2 sin 𝑘 

 

olur. Bu, mevcut çözüm ile tutarlıdır. 

 

Örnek3.5. 𝑦′′ + 6𝑦′ + 5𝑦 = 𝑥 diferansiyel denklem çözümü 

Çözüm: Klasik yöntemlerle çözüldüğü zaman diferansiyel denklemin çözümü 𝑦 =

1

25
(−6 + 5𝑥) + 𝑒−5𝑥𝑐1 + 𝑒−𝑥𝑐2 şeklindedir. Şimdi kendi yöntemimizle diferansiyel 

denklemi tekrar çözelim. 

 

𝑦 = ℱ{𝑓(𝑥)}(𝑘) 

 

olsun  

𝑑2ℱ{𝑓(𝑥)}(𝑘)

𝑑𝑘2
+ 6

𝑑ℱ{𝑓(𝑥)}(𝑘)

𝑑𝑘
+ 5ℱ{𝑓(𝑥)}(𝑘) = 𝑘 

 

ℱ{−𝑥2𝑓(𝑥)} + 6ℱ{−𝑖𝑥. 𝑓(𝑥)} + 5ℱ{𝑓(𝑥)} = ℱ{√2𝜋. 𝑖. 𝛿′(𝑥)}(𝑘) 

 

ℱ{𝑓(𝑥). (−𝑥2 − 6𝑖𝑥 + 5)} = ℱ{√2𝜋. 𝑖𝛿′(𝑥)} 

 

𝑓(𝑥) =
√2𝜋. 𝑖𝛿′(𝑥) + 0

(−𝑥 − 5𝑖). (𝑥 + 𝑖)
 

 

şimdi, 𝑦 = ℱ{𝑓(𝑥)}(𝑘) bağıntısı ile çözümü bulalım 
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𝑦 = ℱ{𝑓(𝑥)}(𝑘) =
√2𝜋. 𝑖𝛿′(𝑥)

(−𝑥 − 5𝑖). (𝑥 + 𝑖)
+

0

(−𝑥 − 5𝑖)
+

0

(𝑥 + 𝑖)
 

 

∫
𝑖𝛿′(𝑥)

(−𝑥 − 5𝑖). (𝑥 + 𝑖)
. 𝑒−𝑖𝑘𝑥. 𝑑𝑥 +

∞

−∞

𝐴 ∫ 𝛿(−𝑥 − 5𝑖). 𝑒−𝑖𝑘𝑥𝑑𝑥
∞

−∞

+ ∫ (𝑥 + 𝑖)
∞

−∞

. 𝑒−𝑖𝑘𝑥𝑑𝑥 

 

𝑦 =
1

25
(−6 + 5𝑥) + 𝑒−5𝑥𝑐1 + 𝑒−𝑥𝑐2 

 

olur. Bu, mevcut çözüm ile tutarlıdır. 
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4.SONUÇ VE ÖNERİLER 

4.1 Sonuç 

Bu tez çalışmasında klasik yöntemlerin aksine diferansiyel denklem 

çözümlerinde, Fourier dönüşüm uzayında çözüm yöntemi geliştirerek uygulamanın daha 

pratik çözümler verdiğini ortaya koymaya çalıştık. Çalışmamızın temel amacı, 

diferansiyel denklemlerin Fourier uzayında doğrudan analiz edilmesiyle çözüm sürecini 

sadeleştirmek ve bu yöntemin sağlayabileceği avantajları göstermektir. 

Bunun için öncelikle diferansiyel denklemleri, Dirac delta fonksiyonunun 

işlevlerini, Fourier dönüşümünün temel özelliklerini detaylı bir şekilde ele aldık; ardından 

bu araçlar kullanılarak diferansiyel denklemlerin Fourier uzayında nasıl çözülebileceği 

sistematik olarak inceledik. Bu bağlamda diferansiyel denklemin ve çözümünün Fourier 

uzayında tanımlı olduğunu varsaydık, bu çözümle elde ettiğimiz sonuçlar ile klasik 

yöntemden elde edilen sonuçların birebir örtüştüğünü görerek yöntemimizin doğruluğunu 

ortaya koymuş olduk. 

Bu çalışma kapsamında, diferansiyel denklemlerin çözümünü elde etmeye 

çalışırken 
0

𝑥
, 

0

𝑥−1
, 

0

𝑥+𝑖
 gibi fonksiyonlarla karşılaştık. Ancak bu fonksiyonları doğrudan 0 

sabit fonksiyonu olarak kabul etmedik. Zira böyle bir yaklaşım, çözümün ilerlemesini 

engelleyecekti. Bunun yerine, 0 elde ettiğimiz noktalarda Dirac delta fonksiyonunun 

özelliklerinden faydalanarak 0’ın gücünü kullandık, böylece çözüme ulaşmada önemli bir 

adım atmış olduk. 

Çalışmamızda verilen örneklerde, çözüm süreci klasik yöntemlere kıyasla daha 

kısa ve analitik olarak daha doğrudan bir şekilde sonuçlar vermiştir. Fourier 

dönüşümünün özellikle türev ve integral işlemleri üzerindeki etkisi sayesinde, 

diferansiyel denklemler cebirsel biçime dönüştürülerek daha kolay çözümleyebildiğimizi 

gördük. Bu yönüyle çalışmamız, Fourier dönüşümünün sadece teorik değil, aynı zamanda 

pratik bir çözüm aracı olduğunu bir kez daha ortaya koymaktadır.. 

4.2 Öneriler 

Bu çalışmada ulaştığımız sonuçlar doğrultusunda, hem kuramsal hem de 

uygulamaya dönük bazı önerileri aşağıda detaylandıracağız. 
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1.Daha Geniş Diferansiyel Denklem Sınıflarına Uygulama: Bu tezde ağırlıklı olarak sabit 

katsayılı doğrusal diferansiyel denklemleri ele aldık. Gelecek çalışmalarda değişken 

katsayılı, doğrusal olmayan ya da zamana bağlı katsayılara sahip denklemler üzerinde 

Fourier uzayında çözüm yöntemlerinin uygulanabilirliği araştırılabilir. 

2.Kısmi Diferansiyel Denklemlerde Kullanım: Fourier dönüşümünün özellikle kısmi 

diferansiyel denklemlerde (örneğin ısı, dalga ve Laplace denklemleri) güçlü bir çözüm 

aracı olduğu bilinmektedir. Bu yöntemin çok boyutlu problemlerde ne derece etkin 

olduğu detaylı bir şekilde incelenebilir. 

3.Sayısal Yöntemlerle Entegrasyon: Geliştirilen çözüm yöntemi, sayısal Fourier 

dönüşümleriyle (FFT gibi) birlikte kullanılarak, bilgisayar destekli çözümler için bir 

algoritma haline getirilebilir. Böylece karmaşık sistemlerin çözümleri için hızlı ve etkin 

yazılımlar geliştirilebilir. 

4.Alternatif Dönüşüm Teknikleriyle Kıyaslama: Fourier dönüşümü dışında Laplace 

dönüşümü, Mellin dönüşümü ve Z-dönüşümü gibi diğer integral dönüşümlerle 

karşılaştırmalı analizler yapılarak, her bir yöntemin güçlü ve zayıf yönleri belirlenebilir. 

Bu sayede hangi tür denklemler için hangi dönüşümün daha uygun olduğu konusunda 

sistematik bir yaklaşım geliştirilebilir. 

5.Eğitim ve Öğretim İçin Katkı: Fourier dönüşüm uzayında diferansiyel denklemlerin 

çözüm yöntemi, lisansüstü matematik eğitiminde alternatif bir çözüm yaklaşımı olarak 

ders içeriklerine entegre edilebilir. Özellikle analitik düşünme ve dönüşüm yöntemlerine 

dair uygulamalı örneklerle bu kavramlar daha iyi pekiştirilebilir. 

6.Fiziksel ve Mühendislik Problemlerine Uygulama: Bu tezde geliştirilen yöntem, sadece 

matematiksel teoride değil, elektromanyetizma, kuantum mekaniği ve sinyal işleme gibi 

alanlarda karşılaşılan diferansiyel denklemlere de uygulanabilir. Bu tür disiplinler arası 

uygulamalarla yöntemin kapsamı genişletilebilir. 
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