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Over the centuries, Japanese candlestick (JC) patterns have garnered considerable
interest from market participants because of their capacity to illuminate the underlying
psychology of financial markets. Originating in 17th-century Japan, where rice traders
first developed this illustrative method of charting—candlestick patterns, it evolved
into a cornerstone of contemporary technical analysis, shaping countless trading
strategies across global markets. The present investigation advances this venerable
tradition by proposing an innovative framework that leverages convolutional neural
networks (CNNs) to forecast the directional movements of subsequent candlesticks.
This comprehensive study underscores the critical role of historical pattern recognition
in anticipating price fluctuations, substantively contributing to the literature on

algorithmic trading and intelligent financial forecasting.



Methodologically, this research employed a meticulous three-tiered approach to
construct a high-fidelity dataset. First, the raw price data were parsed into subcharts
using a sliding window technique, which enabled the capture of temporal dynamics
within bounded intervals. Next, the Ta-lib library was harnessed to validate the
presence of predefined candlestick patterns within each subchart, thereby infusing the
dataset with qualitative indicators of market sentiment and potential trend reversals.
Finally, each window’s directional inclination was determined through an integrative
process involving technical indicators such as moving averages that collectively
furnished robust evidence regarding prospective price trajectories. These carefully
curated data elements form a solid foundation for the subsequent model training phase,
wherein a CNN is developed to automatically extract salient visual and temporal

features, ultimately achieving an impressive predictive accuracy of up to 99.3 percent.

Crucially, the reliability and generalizability of these findings were verified using a
rigorous cross-validation scheme. In this validation protocol, the dataset is split into
multiple distinct subsets, and iterative rounds of model training and testing are
conducted on various combinations of these partitions. Through this systematic
procedure, the capacity of the model to generalize was ascertained, thereby
diminishing the risk of overfitting and solidifying the robustness of the observed
predictive performance. The consistently high accuracy rates recorded across different
training—testing folds testify to the adaptability of this approach in real-world trading

environments.

From a broader perspective, this study demonstrates how modern artificial intelligence
techniques can augment, refine, and potentially supersede traditional technical analysis
methods. By blending the timeless insights of candlestick charting with the
computational power of CNNs, traders and analysts can derive more nuanced data-
driven strategies designed to anticipate inflection points and capitalize on emerging

trends.

Keywords : Stock market, Buy-sell strategy, CNN, Cross-validation, Japanese
candlestick.
Science Code : 915.1.092
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Doktora Tezi

DERIN OGRENME VE BiLGIiSAYARLi GORU TABANLI TEKNIK
ANALIZ KULLANARAK FINANSAL PiYASA TAHMINLERININ
GELISTIiRILMESI

Edrees Ramadan MERSAL MORCELI

Karabiik Universitesi
Lisansiistii Egitim Enstitiisii

Bilgisayar Miihendisligi Anabilim Dal

Tez Danismanai:
Dog. Dr. Hakan KUTUCU
Nisan 2025, 102 sayfa

Yiizyillar boyunca Japon mum (JC) formasyonlari, finansal piyasalarin temel
psikolojisini aydmlattiklar diisiincesiyle yatirrmeilarin yogun ilgisini ¢ekmistir. Ilk
kez 17. yiizyilda Japonya’daki piring tiiccarlar tarafindan gelistirilen bu gosterim
yontemi, giiniimiiz teknik analiz yaklasimlarinin temel direklerinden biri haline
gelerek kiresel piyasalarda sayisiz yatirim stratejisine esin kaynagi olmustur. Bu
caligma, s6z konusu koklii gelenegi ileriye tasiyarak, gelecek mum g¢ubuklarinin
yonelimlerini tahmin edebilmek amaciyla evrisimli sinir aglarint (CNN) kullanan
yenilik¢i bir cerceve dnermektedir. Arastirma kapsaminda, tarihi formasyon tespitinin
fiyat oynakligin1 ongdrmedeki dnemini vurgulayarak, algoritmik alim-satim ve yapay

zeka odakli finansal tahmin literatiiriine kayda deger bir katki sunulmaktadir.

Vi



Yontemsel olarak, yiiksek dogruluklu bir veri kiimesi olusturmak amaciyla ti¢ asamali
titiz bir yaklasim benimsenmistir. Ik asamada, kayan pencere yontemi araciligiyla
ham fiyat verileri alt grafiklere ayrilmis ve bdylece zamana yayilan dinamikler belirli
araliklar iginde yakalanmustir. Ikinci asamada ise Ta-lib kiitiiphanesi kullanilarak,
onceden tanimlanmis mum formasyonlarinin her alt grafikte mevcut olup olmadig:
dogrulanmis ve veri kiimesine piyasa duyarliligi ile muhtemel trend doniislerini
yansitan nitel gostergeler eklenmistir. Son asamada, her pencerenin yonsel egilimi,
hareketli ortalamalar ve momentum osilatorleri gibi teknik gostergelerin bittnsel bir
sekilde degerlendirilmesiyle belirlenmistir. Bu 6zenli veri isleme siireci, onemli gorsel
ve zamansal Ozellikleri otomatik olarak ¢ikaran bir CNN modelinin egitimi i¢in saglam
bir temel olusturmus ve neticede %99,3’e varan etkileyici bir tahmin dogrulugu elde

edilmistir.

Modelin giivenilirligi ve genellenebilirligi, ¢oklu ¢apraz dogrulama yoOntemiyle
pekistirilmistir. Bu dogrulama siirecinde, veri kiimesi birden fazla farkl alt kiimeye
ayrilmis ve egitme ile test asamalar1 farkli boélimler {izerinde tekrarli olarak
gerceklestirilmistir. Boylece, modelin asir1 uyum (overfitting) riskini en aza indirgeme
ve Ongorii performansini gliglendirme amacina hizmet eden sistematik bir yontem
devreye sokulmustur. Farkli egitim—test katmanlarinda elde edilen siirekli yiiksek
dogruluk oranlari, yaklagimin gergek piyasa kosullarina uyarlanabilirligine dair giiglii

kanitlar sunmaktadir.

Daha genis bir agidan bakildiginda, bu arastirma, yapay zeka temelli tekniklerin
geleneksel teknik analiz yontemlerini nasil gliglendirebilecegini ve hatta ileride yer yer
gecersiz kilabilecegini gostermektedir. Mum ¢ubugu analizinin zamansiz i¢goriileri,
CNN’nin hesaplama giiciiyle harmanlanarak, yatirimcilarin kritik doniis noktalarini
ongorebilecegi ve gelismekte olan trendlerden yararlanabilecegi daha incelikli, veri

odakli stratejiler gelistirmelerine olanak tanimaktadir.
Anahtar Sozcukler : Borsa, Al-sat stratejisi, CNN, Capraz dogrulama, Japon mum

cubugu.
Science Code 1 915.1.092
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PART 1

INTRODUCTION

1.1. BACKGROUND

Forecasting underpins strategic decision-making in financial markets. Through
advanced predictive models, traders and institutions endeavor to anticipate future
scenarios, mitigate risks, and optimize investment outcomes. Thus, effective market
analysis relies on a solid grasp of historical price behavior, mastery of analytical

frameworks, and proficiency with technical tools.

Broadly speaking, market analysis can be categorized into fundamental analysis (FA)
and technical analysis (TA). An FA entails an in-depth review of an entity’s financial
statements, assessing revenue streams, cost structures, and overall financial
performance to derive its intrinsic value. By contrast, TA employs historical market
data and statistical patterns to forecast price movements [1]. Specifically, TA leverages
insights into price actions, trading volumes, and technical indicators to detect signals

of pending shifts in market direction.

Financial markets have evolved over centuries, shaping global economic development
and enabling capital formation. Although rudimentary trade mechanisms existed in
ancient Mesopotamia, more formalized stock exchanges emerged in the 17th century.
The Amsterdam Stock Exchange (1602) was among the first to trade equity securities,
most notably for the Dutch East India Company, and it marked a seminal milestone in

modern finance.

Within the TA, candlestick charting is particularly important because of its visual
depth and historical significance. Originating in 17th-century Japan, candlestick

techniques gained prominence when rice traders observed recurring formations that

1



signaled probable price reversals [2] . Introduced to Western markets in the 1990s,
candlestick patterns such as hammer (indicating potential bullish reversals) and doji
(suggesting indecision) have become indispensable across trading platforms [3] & [4]
& [5]. Each candlestick represents four primary pieces of information: opening,
closing, and the highest and lowest prices over a specified interval. The body denotes
the range between the opening and closing prices, whereas the upper and lower
shadows indicate high and low values, respectively, for that period [6], as shown in

Figure 1.1.

Bullish Candle Bearish Candle
High
Close Open
' o '
Open Close

Figure 1.1. The components for bullish and bearish candles

Despite its utility, the identification of candlestick formation poses statistical and
operational complexities [7]. Short-term fluctuations and noise can distort pattern
recognition, whereas overlapping formations complicate systematic analysis. The
exponential growth of the possible geometric variations adds to this difficulty.
Furthermore, aligning historical candlestick patterns with current market data remains
challenging, given the emergence of new serial formations and the constant evolution

of price behaviors [8] .

Crucially, candlestick patterns derive greater significance when analyzed as part of a
sequence rather than in isolation. Grouped candlesticks may form shapes resembling
2



everyday objects such as a hammer or doji that signal potential reversals or
continuations. These visual cues help traders make informed decisions about buying
and sell orders [9] . For instance, doji highlights the balance of power between buyers

and sellers, frequently presaging a trend reversal.

Recent advances in machine learning (ML) have further enhanced technical analysis.
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and
other modified architectures show promise in detecting and categorizing price
variations [10]. Most current research involving candlestick charts focuses on
technical indicators, such as candlestick color, shadow length, and the collective shape
of candlesticks, to build predictive models. Typically, these data are converted into
tensors or vectors, allowing numerical representation of the chart patterns. However,
such vectorization may underutilize the visual context embedded in candlestick charts,
underscoring the potential of image-based ML methodologies to capture both numeric

and graphical dimensions of market data.

In summary, candlestick charting provides a rich tapestry of historical insights and
future forecasting potential, particularly when applied alongside robust ML
algorithms. Analysts can derive more comprehensive and accurate assessments of
market dynamics by integrating domain knowledge from TAs with advanced neural
network architectures, thereby facilitating better-informed trading strategies and

investment decisions.

1.2. CONTEXT AND MOTIVATION

1.2.1. Context and Motivation: Leveraging Candlestick Patterns and Computer
Vision in Stock Market Analysis

Candlestick charts and their underlying patterns have long served as a cornerstone of
technical analysis, providing traders with a visually intuitive means of interpreting
market sentiments. By capturing four key price points, opening, closing, high, and low,
each candlestick conveys both intra-period market dynamics and broader trend

information. When multiple candlesticks form recognizable patterns (Doji, Hammer,
3



Engulfing), they often signal pivotal market shifts, offering traders actionable insights

into potential reversals or continuations.

1.2.2. Ta-lib Integration for Pattern Detection

The Ta-lib library further enhances the utility of candlestick charts by automating the
pattern identification. Instead of manually scanning hundreds or thousands of candles,
researchers and traders can employ the built-in functions of Ta-lib to systematically
detect established patterns (Morning Star and Three White Soldiers). Automation
significantly reduces human error and subjectivity, enabling more robust and
repeatable strategies. Moreover, Ta-lib’s straightforward integration with popular
programming languages (such as Python) streamlines data processing, making it
simpler to incorporate candlestick pattern recognition into the existing trading

algorithms and research pipelines.

1.2.3. Computer Vision for Next-Candle Prediction

While Ta-lib assists in identifying patterns, computer vision techniques offer an
additional layer of insight by analyzing the visual features of candlestick charts. For
instance, Convolutional Neural Networks (CNNs) can learn high-level representations
of chart movements that extend beyond the preset rules or signal thresholds. By
processing candlestick formations as images rather than numeric series, computer
vision models can capture nuances such as slight variations in candle bodies or

shadows, which might go unnoticed in purely numerical approaches.

However, computer vision applications in financial markets remain relatively
underexplored compared with other fields, such as healthcare or autonomous driving,
where image-based models have already achieved remarkable results. The high
volatility and noise inherent in stock market data present unique challenges, including
non-stationarity and regime shifts. These factors underscore the need for further
research and specialized model adaptations that account for financial-specific

complexities such as sudden macroeconomic events or institutional trading behaviors.



1.3. PROBLEM STATEMENT

Despite the long-recognized usefulness of Japanese Candlestick (JC) patterns in
signaling potential market shifts, accurately predicting the direction of the next
candlestick whether bullish (up) or bearish (down) remains a significant challenge.
Existing technical analysis methods and earlier-generation machine learning models
often struggle to accommodate the high volatility and diverse external forces that shape
financial markets, leading to inconsistent or incomplete forecasts. Moreover, many
prior studies have focused only on a handful of these patterns, overlooking the
comprehensive set of 61 JC patterns available through the Ta-lib library. This narrow

scope limits predictive power and fails to leverage modern data-driven approaches.

To address these gaps, this research proposes employing computer vision techniques
to interpret Japanese Candlestick charts as full-fledged images rather than simple
numeric series. By capturing visual nuances and leveraging the entire range of
recognized patterns, we aimed to construct an automated system that classifies the next
candle as upward or downwards with greater accuracy. This approach requires
seamless integration of real market data, multiple timeframes, and advanced technical
indicators such as moving averages to ensure a robust trend correlation. Through this
holistic methodology, we seek to overcome current limitations and offer a more

reliable and comprehensive framework for next-candle-direction forecasting.

1.4. AIM OF THE STUD

This study aims to design and implement a robust candlestick pattern recognition
framework that leverages Convolutional Neural Networks (CNNSs) to enhance market
trend forecasting. By integrating deep learning techniques with the established practice

of candlestick analysis, this study seeks to

A comprehensive dataset, featuring 61 distinct candlestick patterns, was constructed.
A sliding window technique was employed to segment the data into subcharts, and a

technical analysis library was used to validate the identified formations.



Develop and train a CNN-based predictive model to classify these patterns as
bullish or bearish, incorporating additional technical indicators such as Simple Moving

Averages (SMAS) to reinforce trend validation.
Evaluation of model performance across various time windows, shift sizes, and
validation methods. The goal is to surpass conventional forecasting techniques,

achieve high predictive accuracy, and present a dependable framework for market

prediction.

1.5. CONTRIBUTIONS

e Extensive Candlestick Coverage

This study encompasses 61 distinct candlestick patterns, significantly more than many
earlier studies, thus offering a more granular view of potential signals in the market.

e Structured Data Preparation
By combining a sliding window approach with technical indicator validation, this
method ensures that each subchart is accurately labeled, aligning chart appearance with
actual price dynamics.

e High-Precision Forecasting
The proposed CNN model consistently demonstrates high accuracy (up to 99.3% in
certain configurations), outperforming the existing methods reported in the literature,
which often exceed 92%.

e Robust Validation
Cross-validation strategies were used to verify the consistency and reliability of the

model. Multiple temporal configurations with varying window sizes and shifts were

evaluated systematically.



e Practical Applicability

Although designed and tested on forex data, the framework can be adapted to other
markets and time frames. It offers a scalable pathway toward real-time automated
candlestick analysis, equipping traders and analysts with a powerful tool for informed

decision-making.

1.6. THESIS OUTLINE

The present study was conducted in this context. The remainder of this dissertation is

structured as follows:

Chapter 1

This chapter presents an overview of market forecasting, particularly focusing on
Japanese Candlestick (JC) patterns and deep learning techniques. This highlights the

research problem, principal objectives, and specific contributions of the study.

Chapter 2

We reviewed the literature on candlestick pattern analysis, technical indicators, and
deep-learning-based predictive models in financial markets. This chapter discusses
relevant studies, identifies gaps, and situates our research within the existing body of

knowledge.

Chapter 3

The concepts, methods, and algorithms employed for candlestick chart detection and
next-candle-direction prediction are explained in detail. This includes an in-depth
discussion of Convolutional Neural Networks (CNNSs), sliding window techniques,

and the role of Ta-lib in automated pattern identification.



Chapter 4

The implementation details of the proposed methodology are proposed, outlining the
data preprocessing steps, model architecture, and training process. Technical specifics,
such as hyperparameter tuning, validation strategies, and the experimental setup, are
also discussed.

Chapter 5

Analysis of the experimental results Metrics such as accuracy, precision, and recall are
presented alongside visual aids (confusion matrices and ROC curves) to evaluate
model performance and justify its effectiveness.

Chapter 6

This dissertation is excluded by summarizing the key findings and contributions. This

chapter also introduces future research perspectives, highlighting potential extensions

and improvements to the current work.



PART 2

LITRATURE SURVEY

2.1. HISTORICAL REVIEW

Financial market forecasting and candlestick analysis are inherently dynamic and are
influenced by economic, political, and behavioral factors that can trigger rapid price
fluctuations [11]. Traditional analytical techniques, such as fundamental and statistical
modeling, often struggle to capture the complexity of these fluctuations. Consequently,
researchers have increasingly turned to Japanese Candlestick (JC) patterns, a charting
method with roots in 17th-century rice trading, to gain insights into potential price
reversals, continuations, or sentiment shifts [12], [13]. These patterns, ranging from
Doji and Hammer to more complex formations, such as Kicking and Mat Hold, have

been extensively used in technical analyses to anticipate future trend movements [9].

2.1.1. Prior Studies on Candlestick Pattern Recognition

Numerous studies have highlighted candlestick-based approaches, each focusing on
different aspects of pattern identification, predictive modeling, and trade decision-
making. [14] integrated object detection methods and Gramian Angular Field (GAF)
encoding to detect chart patterns and examine their correlation with price movements.
[15] adapted a YOLO-based architecture for candlestick detection, illustrating how
time-series encoding and deep neural networks can facilitate pattern categorization.
Similarly, [16] built a candle-pattern recognition system to classify daily candlestick
types (24 distinct patterns) and then used XGBoost to predict directional trends. Many
of these studies underscore the importance of analyzing multiple patterns, often

beyond a handful, to capture a richer set of market signals [13].



2.1.2. Deep Learning Approaches for Market Trend Prediction

The rapid proliferation of Artificial Intelligence (Al) and data availability has
prompted researchers to explore deep learning models, notably Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs), and LSTMs, for market
prediction.

2.1.2.1. CNN-Based Methods:

A growing body of research uses CNNs on candlestick chart images to detect spatial
features. [17] utilized CNNs within a Double Deep Q-Network framework to interpret
candlestick patterns, achieving better returns than a benchmark S&P 500 strategy. [18]
divided candlestick charts into subparts and employed CNN autoencoders to extract
features before using RNNs for final predictions.

2.1.2.2. RNN and LSTM Approaches

Various researchers [19] have integrated LSTMs or RNNs to handle sequential
dependencies in candlestick data. Although these architectures effectively model
temporal patterns, they sometimes require larger datasets and meticulous
hyperparameter tuning to avoid vanishing or exploding the gradients.

2.1.2.3. Hybrid and Ensemble Models

Several studies merged CNNs with LSTMs or ensemble algorithms (e.g., XGBoost,

Random Forest) to capture both the spatial patterns in candlestick images and the
temporal nuances of time-series data [20], [21].

2.1.3. Integrating Technical Indicators and Feature Engineering

For instance, [22] combined daily candlestick patterns with multiple indicators in a

deep neural network to enhance intraday price forecasts. Similarly, [21] revealed that
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certain candlestick formations used in tandem with indicators or substitutes improved

the predictive performance of crypto-asset forecasts.

Feature Extraction Techniques

Image-based: Transforming candlestick charts into image data (e.g., GAF or wavelet-
transformed charts) enables CNNs to detect geometric and textural features that

numeric-only approaches can overlook [7], [23]

Vector-based: Some models rely on numeric encoding of candlestick attributes (body
length and shadow ratios) and technical indicators to feed into conventional ML or

hybrid neural networks ([6].

2.1.4. Comparative Insights on Pattern Recognition Techniques

Research comparing classical approaches (e.g., manual chart scanning and rule-based
detection) with Al-driven methods has concluded that deep learning models generally
outperform simpler systems, albeit at a higher computational cost [9]. [24] noted that
MLP and CNN performed better than random forests and AdaBoost in certain
candlestick tasks but cautioned that ensemble methods such as XGBoost can surpass

deep networks if the data are imbalanced, or patterns are rare.

The key limitations identified in prior studies include the following.

Data Imbalance and Noise: Less frequent patterns, such as the Kicker or Concealing

Baby Swallow, can be overlooked in training and skewing predictions [25].

High-Frequency Volatility: Standard models may struggle in real-time contexts with

abrupt price swings unless a specialized architecture is used.

Overfitting Risks: Deep models trained on limited datasets can latch onto noise unless

robust validation (e.g., stratified k-fold) or regularization is enforced.
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2.2. RELATED WORKS

In recent years, the integration of artificial intelligence with traditional technical
analysis has transformed financial forecasting. A significant body of research has
focused on leveraging Japanese Candlestick (JC) patterns, which encapsulate key price
points, such as opening, closing, high, and low values, to extract actionable market
signals. Early studies by Andriyanto (2020) [26] demonstrated that image-based
approaches using Convolutional Neural Networks (CNNs) can effectively predict
short-term directional movements by analyzing three-day candlestick sequences,
highlighting the potential of deep learning for automating what was once a manual

process.

Barra et al. (2020) [23] extended this idea by employing an ensemble of CNNs on
images generated via Gramian Angular Field (GAF) transformations. Their
multiresolution approach to Standard & Poor’s 500 index data revealed that such visual
encoding techniques can capture subtle geometrical features in candlestick charts,
resulting in a robust predictive performance that outperforms traditional buy-and-hold

strategies.

In the context of real-time object detection, Birogul et al. (2020) [27] applied the
YOLO algorithm to 2D candlestick charts to extract buy—sell signals. Their work
demonstrated how deep learning can shift traditional technical analysis toward more
automated, visually driven systems, offering traders a dynamic decision-making tool.

Efforts to integrate reinforcement learning with candlestick analysis are exemplified
by Brim and Flann (2022), [17] who combined a CNN with a Double Deep Q-Network
(DDQN) to capture and act upon features extracted from recent candles. Their model,
trained on S&P 500 data, consistently produced superior returns, thereby illustrating

the effectiveness of hybrid approaches in volatile markets.
To address the challenges of noise and false signals, Cagliero et al. (2023) [28]

proposed a framework that separates machine learning from the pattern recognition

process. They developed a more reliable system for market forecasting under volatile

12



conditions by fine-tuning the classification pipeline to reduce redundant and
conflicting signals.

Two influential studies by Chen and Tsai (2020, 2022) [25], [29] paved the way for
modern candlestick analysis using image-based deep learning. In their 2020 study,
they converted time-series candlestick data into GAF images for classification using
CNNs, demonstrating improved accuracy over traditional LSTM models. Their 2022
study builds on this foundation by adapting a YOLO-based architecture to dynamically
detect multiple candlestick patterns, underscoring the evolving nature of visual pattern

recognition in financial contexts.

Chen et al. (2024) [30] integrated candlestick pattern inputs with a Sparrow Search
Algorithm (SSA) and a BIGRU network, resulting in a system that significantly
reduced forecasting errors (e.g., lower MAPE and RMSE) in Chinese stock markets.
This study exemplifies how evolutionary optimization can enhance deep learning

models for financial predictions.

Exploring the profitability of classical patterns, Cohen (2020) [11] investigated
formations such as “stairs” and Harami. His findings reveal that, while some patterns
consistently yield profits, others do not, emphasizing the need for models that can

differentiate between robust and less reliable signals.

Dakalbab et al. (2024) [11] provide context by linking macroeconomic and political
factors to trader sentiment, suggesting that external events can significantly influence
candlestick patterns. This underscores the challenge of isolating purely technical

signals in an environment characterized by frequent disruptions.

To mitigate noise in high-frequency data, Du et al. (2020) [7] applied wavelet
transforms to denoise log returns before feeding the cleaned data into CNNs for
classification. Their method effectively enhanced the signal-to-noise ratio, thereby
improving the reliability of intraday trading of candlestick patterns.
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Focusing on short-term predictive power, Heinz et al. (2021) [31] evaluated the
conditions under which bullish and bearish engulfing patterns performed reliably.
They noted that specific price criteria are critical for maximizing accuracy, although

some formations, such as Harami, remain inconsistent.

Hung and Chen (2021) [18] introduced a multistage approach in which candlestick
charts were first segmented into subcharts, processed via a CNN autoencoder, and then
analyzed using a recurrent neural network (RNN) for sequential prediction. Their
method achieved higher accuracy on the Taiwan Exchange data by effectively

capturing both the spatial and temporal features.

The “Deep Candlestick Predictor” developed by Hung et al. (2020) [9] further
demonstrates that CNN autoencoders can extract vital local features from candlestick
subcharts, which, when combined with 1D-CNN layers, lead to more robust trend

forecasts compared to traditional methods.

In a comparative analysis, Jearanaitanakij and Passaya (2019) [4] collected over 1,800
labeled candlestick images to train a dedicated CNN model. Their findings suggest
that custom-designed CNNs can offer faster training and higher accuracy for

classifying candlestick charts into bullish, bearish, or sideways categories.

To address the issue of imbalanced datasets, Karmelia et al. (2022) [32] employed
techniques, such as undersampling and SMOTE, to better represent rare candlestick
patterns within their Feed-forward Neural Network framework. Although the overall
classification accuracy is high, the study reveals challenges in achieving a balanced F1
score, indicating that further refinement is required to capture less frequent but critical

patterns.

A comparative study by Kusuma et al. (2019) [33] investigated the influence of chart
image dimensions and feature sets on prediction accuracy. Their evaluation across
Taiwanese and Indonesian stock markets demonstrated that choices regarding image
resolution and the inclusion of volume data significantly affected model performance,

highlighting the sensitivity of deep learning models to input parameter configurations.

14



Lee et al. (2019) [34] merge CNNs with deep Q-networks to approximate stock chart
images and generate trading signals across multiple international markets. Their cross-
market validation showed that image-based reinforcement learning strategies can

effectively adapt to diverse global market conditions.

Liang et al. (2022) [20] propose a method that mines sequential patterns from
multidimensional candlestick data, introducing a novel similarity measure to align new
sequences with historical patterns. This method shows that combining geometric
pattern recognition with temporal sequence alignment can enhance the adaptability of

forecasting models under dynamic market conditions.

An ensemble approach by Lin et al. (2021) [6] automatically selects optimal prediction
methods, such as random forest, gradient boosting, and LSTMto, to forecast daily
candlestick patterns. Their findings suggest that integrating various models guided by
both technical indicators and candlestick features leads to improved risk-adjusted

returns compared to traditional strategies.

Madbouly et al. (2020) [35] explore an alternative representation by integrating
Heikin-Ashi candlesticks with fuzzy time series and a cloud model. Their method
smooths volatile data and manages uncertainty through fuzzy logic, yielding higher

forecast stability and accuracy in markets with significant noise.

For intraday forecasting, Naik and Mohan (2020) [22] integrated multiple technical
indicators with candlestick chart data within a deep neural network framework. Their
method improves upon standard numeric-only models by providing a richer feature set
that captures both the directional movement and underlying momentum of the market.

Nakayama et al. (2019) [36] address the incorporation of order-flow information into
candlestick-like images. By encoding market microstructure events and using logistic
regression combined with CNNs, they showed that granular trading details can be

effectively visualized and used to predict short-term price trends.
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Nguyen et al. (2023) [14] merge object detection with GAF time-series encoding to
identify complex candlestick formations, including overlapping patterns and multiple
chart events. Their advanced detection algorithm increases the detection rate of
nuanced candlestick features, underscoring the capability of modern computer vision

techniques to manage complex financial data.

Orquin-Serrano (2020) [37] targeted the adaptive classification of candlestick patterns
for the EUR-USD pair using statistical inference methods. Despite sophisticated
labeling, this study reveals that net returns may remain suboptimal when transaction
costs are factored in, highlighting the inherent challenges of relying solely on

candlestick data under certain market conditions.

Orte et al. (2023) [21] compare input strategies candlestick-only, technical indicators-
only, and a combination using a random forest model for crypto futures markets. Their
iterative retraining approach demonstrated that candlestick patterns can offer critical

insights and often outperform traditional indicators under volatile conditions.

Pan et al. (2020) [38] develop a deep learning portfolio model by transforming
candlestick data into images and using convolutional autoencoders to extract latent
features. By clustering these features and selecting stocks based on Sharpe ratios, this
study demonstrates that sophisticated image-based feature engineering can support

effective portfolio management.

Ramadhan et al. (2022) [39] proposed a hybrid CNN-LSTM model in which CNN
layers capture spatial candlestick features and LSTM layers process temporal
dependencies. This combined approach yields robust accuracy in short-term
predictions, even amidst high market volatility, thereby demonstrating the benefits of

merging spatial and sequential deep learning techniques.
Santur (2022) [16] employed a multiphase process that classifies 24 candlestick

patterns using one-hot encoding and then applies XGBoost for trend prediction.

Testing various global indices, this method consistently outperformed traditional buy-
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and-hold strategies, illustrating the efficacy of ensemble learning in capturing dynamic
market signals.

Thammakesorn and Sornil (2019) [2] proposed a feature-based extraction method that
integrates candlestick pattern signals with a Chi-square Automatic Interaction Detector
to construct profitable trading strategies. Their work suggests that rule-based systems
grounded in candlestick features can achieve competitive returns compared to

conventional technical indicators.

Table 2. 1. Overview of recent research on candlestick pattern recognition and trading

models.

Ref Market Model Performance Metric
Indonesian Mining Directional accuracy
[26] CNN o
Index (JKMING) (qualitative)
) Outperforms buy-and-
Ensemble CNN with GAF ) S
[23] S&P 500 Index Future ) hold; high classification
encoding
accuracy
General stock ) Detection of “buy-sell”
[27] d YOLO algorithm ] .
market/investment tools signals (qualitative)
CNN + Double Deep Q- Returns above S&P 500
[17] S&P 500
Network (DDQN) benchmark
[26] General financial Machine learning with Reduction in false signals
markets separated pattern recognition (qualitative)
Reduction in MAPE,
[40] Chinese stock market SSA-CPBIGRU RMSE; +2.05%
improvement in R2
[20] General financial CNN with Gramian Angular Improved accuracy over
markets Field (GAF) encoding LSTM
[25] General financial YOLO-based dynamic Improved detection speed
markets detection and accuracy
Rule-based candlestick Profitability varies by
[41] Stocks (20 tested) ]
analysis pattern
. Qualitative impact on
[11] General markets N/A (contextual analysis) )
trader sentiment
Binary classification
[7] Intraday stock data Wavelet transform + CNN

accuracy
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Fuzzy algorithms and

Improved robustness

[42] Stock market (K-line) ) o
clustering (qualitative)
Analysis of Engulfing/Harami  Improved prediction under
[31] Stocks S
patterns specific criteria
. Higher trend forecasting
[18] Taiwan Exchange CNN autoencoder + RNN
accuracy
. Deep Candlestick Predictor .
Taiwan Exchange Outperforms traditional
9] ) (CNN autoencoder + 1D
Weighted Stock Index methods
CNN)
High classification
[4]  General stock market Custom CNN o
accuracy; faster training
o Feed-forward Neural Network  High overall accuracy;
[32] Historical stock data )
with SMOTE lower F1 score
Taiwanese & F . .
] CNN, Random Forest, VGG Sensitivity to image size
[33] Indonesian stock ) i
networks and volume inclusion
markets
U.S. stocks (global 0.1% to 1.0% return per
[34] o ] CNN + Deep Q-Network .
testing in 31 countries) transaction
Sequential pattern mining + Correlation with future
[8] General stocks r o
similarity measure trends (qualitative)
(6] Various indices/stock Ensemble ML (RF, GBDT, Improved Sharpe ratio;
markets LSTM, etc.) reduced drawdown
Heikin-Ashi + Fuzzy time ) )
[35] General stock markets ) High forecasting accuracy
series + Cloud model
Deep Neural Network (with 10 Improved prediction
[22] Intraday stock data o
technical indicators) performance
[36] High-frequency trading  Logistic Regression + CNN on  Short-term prediction
data order-flow images accuracy
Object detection + GAF Improved detection rate of
[14] General stock market . .
encoding overlapping patterns
Adaptive candlestick o
o o Net returns not positive
[37] Forex (EUR-USD) classification (statistical )
) after transaction costs
inference)
) ) Candlestick patterns often
Random Forest (iteratively )
[21] Crypto futures ) outperform technical
retrained) o
indicators
] High Sharpe ratio;
. Convolutional autoencoder + ) ) )
[38] Chinese stock market improved risk-adjusted

K-means clustering

returns
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Short-term trading

Robust accuracy in short-

[39] - Hybrid CNN-LSTM o
positions term predictions
Candlestick pattern
o . Outperforms buy-and-hold
[16] Global indices recognition + One Hot
. strategy

Encoding + XGBoost
Feature extraction + Chi- Superior profitability

[2] Stock trading strategies ~ square Automatic Interaction relative to common

Detector

technical indicators
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PART 3

MATERIAL AND METHODS

3.1. TIME SERIES

A time series is an ordered sequence of observations recorded over time, often viewed
as the realization of a stochastic process (a sequence of random variables indexed by
time). Unlike independent observations, time-series data points are temporally

correlated; what happens at time t depends on previous times.

In analyzing time series, statisticians examine properties such as stationarity and
autocorrelation to characterize the data-generating process and inform suitable

modeling and forecasting techniques.

3.1.1. Forcasting Methods

Time series forecasting aims to predict future values X,,.1, X,+2, .. given observed
data X, X,, ..., X;,. Forecasting methods can range from simple empirical techniques
to complex stochastic models.

e Autoregressive Integrated Moving Average (ARIMA) Models: These are
classic statistical models that combine autoregression (AR) and moving
average (MA) components to capture different aspects of autocorrelation
. The ARMA (p, q) model assumes that the time series can be modeled as a
linear function of its previous p values and previous g random shocks (errors).

In equation form, an ARMA model appears as follows:

Xt =90 + ¢1Xt_1 + ¢2Xt_2 + ... + ¢pXt—p + At— 91At_1— e qut—q (31)
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Where ¢, are the autoregressive coefficients, 6y, are the moving average
coefficients, § is a constant term (drift), and A, represents the white noise error term at
time t. The AR part (the ¢ terms) captures persistence illustrating how past values
influence the current observation while the MA part (the 6 terms) reflects the effect of
previous shock residuals on the current value. If the series is nonstationary,
differencing can be applied d times to achieve stationarity, resulting in an ARIMA
(p, d, q) model. ARIMA models (and their seasonal variants, SARIMA) are based on
the Box-Jenkins methodology for model identification, estimation, and diagnostic
checking. This approach leverages the ACF and PACF patterns to select suitable
orders for p and q. stochastic foundation, ARIMA models provide not only point

forecasts but also confidence intervals based on the underlying probability model [43].

e Exponential Smoothing Methods: In exponential smoothing, forecasts are
constructed using exponentially weighted averages of past observations, giving
more weight to recent data. Methods such as Simple Exponential Smoothing
(for level forecasting), Holt’s linear method (which adds a trend component),
and Holt-Winters (which add seasonal components) are effective for patterns
with trends and seasonality. These methods are not explicitly stochastic models
but can be interpreted in state-space form with certain error assumptions. They
are valued for their simplicity and strong empirical performance, especially for
short-term forecasts in business contexts [44].

e Machine Learning and Neural Networks: Modern approaches treat
forecasting as a general prediction problem and use machine-learning
algorithms to capture possible nonlinear relationships. Feedforward neural
networks or recurrent neural networks (RNNs) can be trained on the sliding
window inputs of past values to predict future values. More recent techniques
include Long Short-Term Memory (LSTM) networks and transformers that are
adept at learning long-range dependencies in sequential data. These models do
not assume a specific stochastic structure a priori; instead, they learn patterns
directly from data, which can be advantageous if the true data-generating
process is highly complex or nonlinear. However, they typically require large

amounts of data and careful regularization to avoid overfitting.
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In practice, the model choice depends on the characteristics of the time series and the
forecasting horizon. For instance, ARIMA models are often effective for the short-
term forecasting of stationary or different series, leveraging well-understood statistical
properties and diagnostic checks. On the other hand, when data show regime changes
or nonlinear patterns that are difficult to capture with linear models, machine learning
methods might offer improvements, albeit at the cost of interpretability. Ultimately,
evaluating the forecast accuracy on held-out time periods (e.g., via rolling forecast
origin evaluation) and checking residuals are crucial steps, regardless of the method

used, to ensure that the model has captured the signal and not just overfit noise.

3.1.1.1. Time Series Forecasting vs. Regression Analysis

Although both time-series forecasting and regression analysis are used to predict future
values, they fundamentally differ in their methodologies and objectives.

3.1.1.2. Time-Series Forecasting

Time series forecasting is an extrapolation technique. It relies on inherent temporal
ordering and autocorrelation of past observations to predict future outcomes. In this
approach, models such as ARIMA, exponential smoothing, or even advanced neural
network architectures explicitly incorporate the time-dependent structure of the data.
These models were designed to extend the observed sequence beyond its current range
by capturing the trends, seasonality, and cyclical patterns inherent in the data [43].

3.1.1.3. Regression Analysis

In contrast, regression analysis is typically viewed as an interpolation method that aims
to explain the relationships between two or more variables based on the observed data.
A regression model quantifies how changes in one or more independent variables are
associated with changes in dependent variables. While regression models can be used
to predict future values, their primary purpose is to uncover and mathematically
describe the historical relationships among variables, rather than relying on the

sequential dependency found in time-series data [45].
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3.2. THE SLIDING WINDOW MECHANISM: CONCEPT AND
APPLICATION

The sliding-window mechanism is a fundamental technique for transforming a time
series into a collection of fixed-length segments. This approach not only facilitates the
use of supervised learning algorithms by converting sequential data into independent

samples but also enables detailed analysis of localized patterns within the data [46].

3.2.1. Defining the Sliding Window

At its core, this method involves defining a “window” as a consecutive block of
observations of fixed length, denoted by L. For a given timeseries X, each window
captures a contiguous segment starting at time ¢ and ending at time t+ L — 1.

Mathematically, this can be expressed as:

X(@®) =[x Xpq1s ooor Xeg-1],
(3.2)
wheret = 1,2,..., N — L + 1 in atime series of length N.

3.2.2. Creating the Windows

The process was initiated at the beginning of the series. The first window is simply the
sequence X (1) = [xq, x5,...,x]. Once the initial segment is defined, the window is
systematically moved forward by a fixed step size—commonly referred to as the

“stride.” When the stride is set to 1, the subsequent window is

X(Z) = [XZ,X3,...,XL+1] (33)

This sliding operation is repeated until the entire time series is segmented into

overlapping or, if desired, into disjoint windows.
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3.2.3. Overlap and Its Significance

A key characteristic of the sliding window method is its potential for overlapping
consecutive windows. Adjacent windows share a substantial portion of their data, with
a stride smaller than the window length. This overlapping is not a drawback; rather, it
ensures that subtle transitions or transient patterns in the time series are
comprehensively captured. The redundancy inherent in overlapping windows
increases the robustness of pattern recognition and forecasting tasks, albeit at the cost
of introducing dependence among samples, which must be carefully considered in
subsequent analyses [47].

3.2.4. Application in Forecasting

One of the most common applications of the sliding window technique is time series
forecasting. In this context, each window served as an input sample for the predictive
model. The immediate next value in the series, denoted by x;.;, is used as the target
output. This strategy converts the problem into a supervised learning task where input-

output pairs (X(t),y(t)) are formed, with:

y(t) = xe4L (3.4)
Thus, the model was trained to predict the next time point based on the historical data

encapsulated within each window. For example, with daily observationsand L = 3, a

sample could be constructed as

[X¢ ) Xe41 ) Xera] = Xpy3. (3.5)

3.2.5. Design Configurations: Stride, Window Size, and Beyond

When employing sliding windows, several configuration choices significantly impact

the performance and efficiency:
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e Window Size (L): The choice of L determines the amount of historical data
used for forecasting or pattern analysis. A small window may capture only
short-term dynamics, potentially missing longer-term trends, whereas a large
window may incorporate extraneous or non-stationary information. Often, the
optimal window size is determined empirically or through domain expertise
[48].

e Stride (Step Size): Stride defines the extent to which the window moves at
each step. A stride of 1 maximizes the number of training samples but also
increases the overlap between windows. Larger strides can reduce redundancy
and computational load but may sacrifice important details.

e Overlapping versus Disjoint Windows: While overlapping windows (stride
<L) are commonly preferred for their comprehensive data representation,
disjoint windows (stride =L) might be used in certain signal processing
applications where independence between samples is crucial [46].

e Expanding vs. Fixed Windows: In forecasting, one might choose between a
fixed (rolling) window that maintains a constant length L, or an expanding
window that gradually incorporates all past observations. The former can adapt
to local changes, whereas the latter benefits from a larger historical context, if
the process is relatively stable.

e Multivariate and multistep forecasting: For multivariate time series, the
window can include lagged values for several variables, forming a lagged
feature matrix. In multistep forecasting, the window might be used to predict a
sequence of future values, which requires either separate models for each

forecast horizon or an integrated sequence-to-sequence approach [49].

3.2.6. Computational Considerations

In practical implementations, efficiency is paramount, particularly for large datasets.
Instead of physically copying overlapping data for each window, algorithms often
employ rolling computations that incrementally update statistics (such as moving
averages or variances) incrementally. This approach minimizes computational

overhead and memory usage, enabling real-time or large-scale applications.
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3.3. PATTERN IDENTIFICATION USING TA-LIB

A comprehensive summary of the candlestick pattern functions provided by TA-Lib is
provided below. While TA-Lib defines 55 functions, many of these functions return
distinct signals depending on whether a bullish or bearish variant is detected, yielding
61 distinct pattern signals. Each pattern is based on specific mathematical relationships
between the Open, High, Low, and Close (OHLC) values for one or more periods. The
following list summarizes each pattern by its TA-Lib function name and provides a

brief description of its conceptual criteria [50].
For any candle with index i (and previous candles as i- 1, i- 2, etc.), define:
e 0; = Open price
e H; = High price
e [;=Lowprice
e (; = Close price
e Real Body
(RBy) = |Ci- O (3.6)
e  Upper Shadow
(USI) = Hi - max(Oi, Cl) (37)
e Lower Shadow
(LSI) = min(Oi, Cl) - Li (38)

Tolerances:

e § (delta) is a small tolerance for Doji conditions (i.e., |Ci — Oi <9).

® ¢ (epsilon) is a small value used for “near” comparisons.
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e Terms such as Avg Short Body and Avg Long Shadow represent adaptive
averages computed over recent candles.
e TA-Lib functions typically return +100 for bullish signals and —100 for bearish

signals.

CDL2CROWS

Concept: Two consecutive bearish candles signal a potential reversal in an uptrend.

Equations:

Ci-» < Og-nand C; < 0; (3.9)
01 < C(i—l) and RBI > RB(i_l) (310)
CDL3BLACKCROWS

Concept: Three consecutive long-bearish candles with progressively lower closes,
indicating strong seller control.

Equations:

fork = i-2,i-1,i

For each candle:

Ck < Ok;O(i—l) = C(i—2) and Oi = C(i_l),With C(i—Z) > C(i—l) > Ci (311)

CDL3INSIDE

Concept: A small candle whose body is entirely contained within the body of the

previous candle; the bearish variant indicates a pause in an uptrend, whereas the bullish

version (colors reversed) indicates a reversal from a downtrend.
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Equations:

min(Oi, Cl) > min(O(i_l), C(i—l)) and max(Oi, Cl) < max(Oci_l), C(i—l)) (312)

CDL3LINESTRIKE

Concept: Three-candle formation, where the final candle (with reversal) closes near or

beyond the opening of the first candle.

Equations:

Ci < O¢-3and RB;is long relative to the intermediate candles. (3.13)

CDL3OUTSIDE

Concept: A pattern in which a candle’s body is wider than that of the previous candle,

with the final candle reversing the preceding trend.

Equations:

Oi < min(O(i_l), C(i—l)) and Ci = mCLX(O(i_l), C(i—l)) (314)

CDL3STARSINSOUTH

Concept: A three-candle pattern at the bottom of a downwards trend, where the final
candle is bullish.

Equations:

let Candle i- 2 and i — 1 be small indecisive) and Candle i is bullish

C(i—Z) < 0(1_2) ,|RB(1_1) I < 5, Ci > Oi (315)
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CDL3WHITESOLDIERS

Concept: Three consecutive long bullish candles with progressively higher closes

indicating strong upward momentum.

Equations:

fork = i-2,i-1,i:
Ck > Ck+1 ,Ck — & ,and Ci—Z < Ci—l < Ci (316)

CDLABANDONEDBABY

Concept: A three-candle pattern with a doji isolated by gaps from its neighbors

signaling a sharp reversal.

Equations:

Cc( V- 0G™V| < §,and gaps exists that :
OG-y > Hzy + €,06-1y < Li- ¢ (3.17)
CDLADVANCEBLOCK

Concept: In an uptrend, a series of bullish candles with diminishing strength,

suggesting that the uptrend may soon reverse.

Equations:

RB(i-2y > RB(-1y > RB;(bodies become progressively smaller) (3.18)

CDLBELTHOLD

Concept: A long bullish candle with little or no shadow, indicating strong buyer

control from open to close.
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Equation (Bullish):

0; ~ L,C; ~ H,withUS; =~ 0Oand LS; ~ 0 (3.19)

CDLBREAKAWAY

Concept: A pattern in which the current candle “breaks away” from the previous

trend’s range, signaling a potential reversal.

quations:

Candle i satisfies C; > H-1y (bullish) or C; < L¢-1y (bearish) (3.20)

CDLCLOSINGMARUBOZU

Concept: A candle with virtually no shadows closing at the extreme of its range

reinforces the current trend.

Equation (Bullish):

0; ~ Liand C; ~ H; (3.21)
CDLCONCEALBABYSWALL

Concept: A two-candle pattern in which a small candle is completely contained within
the body of a preceding large candle, indicating potential reversal.

Equations:

max(Oi, Cl) < max(O(i_l), C(i—l)) and min(Oi, Cl) > min(O(i_D, C(i—l)) (322)
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CDLCOUNTERATTACK

Concept: Two consecutive candles with nearly identical closes follow a trend,

suggesting a potential reversal.

Equations:

|Ci - Ci-1y] < €and after a sustained trend (3.23)
CDLDARKCLOUDCOVER

Concept: A bearish reversal pattern in which a bullish candle is followed by a bearish
candle that opens above the previous height but closes below the midpoint of the

candle’s body.

Equations:

(Od-1y + Ci-1)

i-1: Ci-1y > O0¢-1),0i > Hgopy,Ci < .

(3.24)
CDLDOJI

Concept: A candle where the open and close are nearly identical, reflecting market

indecision.

Equations:

ICi- 0i] <6 (3.25)

CDLDOJISTAR

Concept: A doji appears with a gap relative to the previous candle, suggesting a

potential reversal when found after a trend.
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Equations:
|Ci- 0i] < & and a gap exists (0; is not approximately equal to O-1y)(3.26)
CDLDRAGONFLYDOJI

Concept: A doji with a long lower shadow and no upper shadow indicates that sellers

drove prices down, but buyers typically regained control and bullish in a downtrend.

Equations:

|Ci- 05| < 6,US; = 0, LS; » RB; (3.27)
CDLENGULFING

Concept: A two-candle pattern where the second candle’s body completely engulfs the
previous candle’s body; bullish signals reverse upward, and bearish signals reverse
downwards.

Equation (Bullish):

Ci-n < Oi-1y,Ci > 04,0; < Ci-pand C; = Og-y (3.28)

CDLEVENINGDOJISTAR

Concept: A variant of Evening Star, where the middle candle is a doji, signals a bearish

reversal in an uptrend.
Equations:

Candle i-2: C(i—Z) > O(i_z)Candle i-1: |C(i_1) - O(i_1)| <é

Candle i: C; < O;jand C; < W (3.29)
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CDLEVENINGSTAR

Concept: A classic three-candle-bearish reversal pattern: a long bullish candle is
followed by a small candle (star), followed by a long bearish candle that closes well
into the first candle’s body.

Equations:

Candle i-2: Ci-2y > Og-Candle i- 1: RB -1y is small

Candle i: C; < 0;and ¢; < 2=t Ce) (3.30)

CDLGAPSIDESIDEWHITE

Concept: A bullish gap pattern in which the second candle opens above the first candle,

and both have similar closing levels. The bearish variant is the inverse.

Equation (Bullish):

Oi > C(i—l) + gand ICi_ C(i—l)l < ¢ (331)
CDLGRAVESTONEDOQJI

Concept: A doji with a long upper shadow and no lower shadow, indicating the
rejection of higher prices and potential bearish reversal.

Equations:

|Ci— 01| < 6, USI > RBi, and LSI =0 (332)

CDLHAMMER

Concept: A single bullish reversal candle with a small body near the top, long lower

shadow, and little or no upper shadow.
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Equations:

RB; < AvgShortBody,US; < AvgVeryShortShadow
LS; > AvglLongShadow,and min(0;,C;) < Lg-1) + € (3.33)

CDLHANGINGMAN

Concept: Similar in shape to the Hammer but appearing in an uptrend, suggesting a

bearish reversal.

Equations:

RB; < AvgShortBody,US; < AvgVeryShortShadow
LS; > AvgLongShadow,and min(0;,C;) = Hg-1y)- € (3.34)
CDLHARAMI

Concept: A two-candle pattern in which a large candle is followed by a small candle

entirely contained within its body.

Equation (Bullish):

Ci-n < Od-n, Ci > 0;
And:max(Oi, Cl) < max(O(i_l), C(i—l)) and min(Oi, Cl) > min(O(i_l), C[i—l)) (335)

CDLHARAMICROSS

Concept: A variation of the Harami pattern, in which the second candle is a doji,

emphasizing indecision.

Equations:

|Ci- Oi] < 6,with Harami containment as CDLHARAMI (3.36)
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CDLHIGHWAVE

Concept: A candle with extremely long shadows on both sides and a very small body

suggests market indecision that may precede a reversal.

Equations:

RBi 1G4 USI and LSI (337)

CDLHIKKAKE

Concept: A pattern that identifies false breakouts. If the candle movement contradicts

the expected breakout, it signals a reversal.
Equations:

I |RBj|

< AvgShortBody and a gap occurs that is later invalidated, the Hikkake
condition is met. (3.38)

CDLHIKKAKE2

Concept: A refined version of the Hikkake pattern with adjusted thresholds for

breakout and reversal.

Equations:

Similar to CDLHIKKAKE Pattern, but with |RB;| < k X
AvgShortBody (k < 1) and adjusted gap conditions. (3.39)
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CDLHOMINGPIGEON

Concept: A two-candle pattern in which the second candle’s body is completely

contained within the first candle’s body suggests potential bullish reversal.

Equations:

min(Oi, Cl) > min(O(i_l), C(i—l)) and max(Oi, Cl) < max(O(i_l), C(i—l)) (340)

CDLIDENTICAL3CROWS

Concept: A variant of three black crows where three bearish candles have nearly

identical shapes and sizes, reinforcing the bearish signal.

Equations:

RB(i—Z) = RB(i_l) = RBI,Wlth C(i—Z) > C(i—l) > Ci (341)

CDLINNECK

Concept: A two-candle pattern in which the second candle opens near the previous

candle’s close and closes near its open, suggesting a reversal.

Equations:

|0i - Ca-y| < €and [Ci- Og-n| < ¢ (3.42)

CDLONNECK

Concept: Similar to the In-Neck pattern, the second candle’s body does not exceed the

previous candle’s body.

Equations:
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min(0;, C;)) = min(0 -1y, Ci-1y) (Within g) (3.43)

CDLKICKING

Concept: Two-candle reversal pattern featuring a gap. In the bullish variant, a bearish
candle is followed by a bullish candle with gaps in opposite directions.

Equations (Bullish variants)

Oi < C(i—l) and Ci > 0(1_1) + A, (344)

where A is the threshold gap.

CDLLADDERBOTTOM

Concept: A bullish reversal pattern in which successive candles form progressively

lower lows with shrinking bodies, suggesting a weakening of selling pressure.

Equations:

Li-2y > Lg-1y > Liand RB-1y < RB(-2), RBi < RBg-1) (3.45)

CDLLONGLEGGEDDOJI

Concept: A doji with exceptionally long shadows on both sides, representing extreme

indecision.

Equations:

|Ci— Oll < 5, USl >> RBi,and LSl >> RBI (346)

CDLLONGLINECANDLE
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Concept: A candle with a very long body and minimal shadows. In the bullish variant,

strong upward movement was observed.

Equations (Bullish variants)

RB; >> AvgBody,US; = 0,LS; = 0,and C; > 0; (3.47)

CDLMARUBOZU

Concept: A candle with no shadows; a bullish marubozu is open at the low and close
at the high, showing complete control by buyers.

Equation (Bullish):

Oi = Li and Ci = Hi (348)

CDLMATCHINGLOW

Concept: Two consecutive candles with nearly identical lows indicate a firm support
level that may lead to bullish reversal.

Equations:

|Li - Li-v| < ¢ (3.49)
CDLMATHOLD

Concept: A three-candle pattern in which a long bullish candle is followed by a
consolidation phase (small bodies), then another bullish candle that resumes the trend,;

failure can signal a bearish reversal.

Equations (Bullish variants)
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Candle i-2: Ci-py > Oz, Candlesi-1: RB(D < 6§,

Candle i: C; > O;and C; > Oz * Co-z) (3.50)

2

CDLMORNINGDOJISTAR

Concept: A variant of the morning star pattern with a doji as the middle candle,
indicating indecision before a strong bullish reversal.

Equations:

Candle i- 2: C(i_z) < 0(1_2) ,Candle i-1: IC(i—l) - O(i_1)| <6 ,

Candle i: C; > 0;and C; > W (3.51)

CDLMORNINGSTAR

Concept: A classic three-candle bullish reversal pattern, in which a long bearish candle
is followed by a small candle and a long bullish candle that closes well into the first
candle’s body.

Equations:

Candle i-2: C-2y < Og-pnCandle i-1: RB -1y is small

Candle i: C; > 0yand ¢; > CuntCon) (3.52)

CDLPIERCING
Concept: A bullish two-candle reversal pattern in which a bearish candle is followed
by a bullish candle that opens below the previous low and closes above the midpoint

of the body of the previous candle.

Equations:
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Ci-1n < Oq-ny

0; < L(i—l) and C; > (0(1—1)2;6'(1—1)) (353)

CDLRICKSHAWMAN

Concept: A pattern with a long lower shadow and a very small body, interpreted as a
bullish reversal when appearing after a downtrend.

Equations:
RBi < 5,LSi >> RBi,and USI ~ 0 (354)
CDLRISEBMETHODS

Concept: A bullish continuation pattern: a long bullish candle is followed by three

small candles within its range, and another long bullish candle resumes the trend.
Equations:
Candle i- 3: C(i_g) > 0(1_3) , Candles i- 2 and i- 1: max(Ok, Ck)
< H(i_g) and min(Ok, Ck) = L(i—3) ,
Candle i: Ci > Oi and Ci > C(i_g) (355)

CDLTakuri

Concept: Also known as the Dragonfly Doji with a long lower shadow; when it appears

after a downtrend, it suggests a bullish reversal.
Equations:

|Ci— Oll < 5, USI = 0,and LSI >> RBI (356)
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CDLTASUKIGAP

Concept: Gap pattern. In its bearish variant, it confirms a gap down with subsequent

bearish actions.

Equations (Bearish variants)

(0¢-1 + Ci-1y)

01 > H(i—l) + cand Ci < >

(3.57)

CDLTHRUSTING

Concept: A bearish reversal pattern in which a bullish candle is followed by a bearish

candle that closes significantly lower than the body of the previous candle.

Equations:

Ci-1n > 0¢-1,0i > Hy-ny,

(Od-1y + Cii-1y)

Ci <
2

(3.58)
CDLTRISTAR

Concept: A three-candle pattern with a doji in the middle, signaling indecision that

may precede a bearish move.

Equations:

|Ci-1) - Og-1| < 6,with Candle i- 2 bullish and Candle i bearish (3.59)

CDLUNIQUES3RIVER

Concept: A complex three-candle pattern indicating decisive downwards movement

after consolidation.
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Equations:

The conditions involve relative body sizes and gap conditions, such that the final

candle closes significantly lower than the first.

CDLUPSIDEGAP2CROWS

Concept: A gap followed by two bearish candles that confirm a downtrend after an up

move.

Equations:

0; > Ci-1y + &,and C; < O0;with significant gap conditions. (3.60)

CDLUPSIDEGAP3METHODS

Concept: A bearish continuation pattern with a gap followed by three candles that

reinforce the downtrend.

Equations:

Candle i- 2: Long bullishCandles i- 1 and i: Small and within the gap range
Final candle: Bearish, with C.1y < Ogs1 (3.61)

CDLPIERCING (Bearish interpretation)

Concept: Although it is typically bullish, if the conditions are reversed, it can be

interpreted as bearish.

Equations:

(O4-1) + Cii-1y)

If Oi > H(i—l) and Ci < >

,then it may signal bearish pressure.  (3.62)
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CDLRICKSHAWMAN (Bearish interpretation)

Concept: When appearing in an uptrend, this variant of the rickshaw pattern can signal

a bearish reversal.

Equations:

RB; < §,LS; >> RB;,US; = 0 (in an uptrend context) (3.63)

CDLRISE3METHODS (Bearish Variant — Falling Three Methods)

Concept: The bearish counterpart to Rise Three Methods: A long bearish candle is

followed by three small candles, and then another bearish candle confirming the trend.
Equations:
Candle i-3: C-3y < O-3),Candles i- 2 and i- 1: max(Oy, Cx)
< H(i_3) and min(Ok, Ck) = L(i_g) ,
Candlei: C; < Ojand C; < Ci_3) (3.64)

CDLTakuri (Bearish interpretation)

Concept: Although typically bullish, if the Takuri pattern appears in an uptrend, it may

be interpreted as bearish.

Equations:

|Ci- 04| < 6,US; = 0,LS; >> RB;,with context indicating reversal. (3.65)
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CDLTASUKIGAP (Bearish variant)

Concept: A gap pattern that, in a bearish context, confirms a gap reduction with

subsequent bearish actions.

Equations:

01 > H(i—l) + cand Ci <M (366)

CDLTHRUSTING

Concept: A bearish reversal pattern in which a bullish candle is followed by a bearish

candle that closes significantly lower than the body of the previous candle.
Equations:

Ci-1 > Od-n

01 > H(i—l) and Ci < M (367)

CDLTRISTAR (Bearish)

Concept: A three-candle pattern with the middle candle as a doji, signaling indecision

before a bearish move.

Equations:

|Ci—1 — 0;_1] < 8, with C;_, > 0;_, and C; < 0; (3.68)
CDLUNIQUE3RIVER (Bearish variant)

Concept: A complex three-candle pattern indicating decisive downwards movement

after consolidation.
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Equations:

Conditions involve relative body sizes and gaps across three candles,

such that the final candle closes significantly lower than the first.

The following table provides a visual representation of these formations, after
presenting the definitions and equations that underpin each candlestick pattern. For
instance, Table 3.1. presents a collection of Japanese Candlestick patterns that signal

a bullish trend, while Table 3.2. shows cases that indicate a bearish market [51].

Table 3.1. Bullish candlestick patterns: structural examples and components of candle

types.

Abandoned Baby Belt-hold Breakaway Closing Marubozu
__-' ’ I '",',":,""'i' '
e | .

Concealing Baby . .

Counterattack Doji Star Dragonfly Doji
Swallow
lil | . .
Engulfing Hammer Harami Harami Cross
|
|
Homing Pigeon Inverted Hammer Kicking Ladder Bottom

L

1,

Iy,

Long Line Candle

Marubozu

Mat Hold

Matching Low

il

T

Morning Doji Star

Morning Star

Piercing Line

Rising Three Methods
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______ A it | -

Separating Lines Side by Side White Lines Stick Sandwich Takuri
|

- . . b,

n T L ?

Tasuki Gap Three Inside Up Three Line Strike  Three Outside Up
" I . I -
Three Stars in The South  Three White Soldiers Tri-Star Unique Three-River

l!- -“ iﬁi IT*

Upside Gap Three Methods

Table 3.2. Bearish candlestick patterns: structural examples and components of candle

types.
Abandoned Baby Advance Block Belt-hold Breakaway
s - sty
L I -
| I
Closing Marubozu Counterattack Dark Cloud Cover Deliberation
L '
o . .
. Downside Gap Three ) ) .
Doji Star Engulfing Evening Doji Star
Methods
I - ' |
Evening Star Falling Three Methods Gravestone Doji Hanging Man
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Harami Harami Cross In Neck Kicking
I- I + ‘ - l‘ ::: :
l l . "
Long Line Candle Marubozu On Neck Separating Lines
. .
n n
Shooting Star Side by Side White Lines Tasuki Gap Three Black Crows
. n L .l
Three Inside Down Three Line Strike Three Outside Down Thrusting
T wl oy
|
A " 0 .
Tri-Star Upside Gap Two Crows

T ,

3.4. CNN MODEL ARCHITECTURE

CNNs have evolved significantly over the past few decades, driven by advancements
in theory, computational power, and data availability. The earliest precursor to modern
CNNs was proposed by Kunihiko Fukushima in the early 1980s, known as
Neocognitron, which is a framework designed to recognize visual patterns through
hierarchical layers of feature extraction. However, it was not until the work of Yann
LeCun in the late 1980s and the early 1990s that CNNs gained traction, particularly
with the development of LeNet for digit recognition using the MNIST dataset. LeNet
demonstrated the effectiveness of local receptive fields and shared weights in reducing

the computational costs of image processing.
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The field witnessed a major breakthrough in 2012 when AlexNet, created by Alex
Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, achieved a remarkable reduction in
the error rate in the ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC). Several key innovations have underpinned AlexNet’s success.

e GPU Acceleration: Leveraging parallel computation significantly sped up
training.

e RelLU Activation: Mitigated vanishing gradients enabling the training of
deeper networks.

e Dropout Regularization: Helped prevent overfitting by randomly disabling

neuron connections.

Subsequent architectures, such as VGG (2014), GoogLeNet/Inception (2014-2015),
and ResNet (2015), further pushed the boundaries by increasing the network depth,
introducing novel layer designs, and optimizing the parameter efficiency. These
innovations have cemented CNNs as a cornerstone of deep learning, powering

breakthroughs in image classification, object detection, and semantic segmentation.

3.4.1. Biological Inspiration: Similarities to the Human Brain

At the conceptual level, CNNs are inspired by the organization of neurons in the
human brain, particularly in the visual cortex. In the early visual processing layers of
the brain, neurons respond primarily to local regions of the visual field, similar to how

convolutional layers in a CNN operate on localized patches of an image.

These neurons exhibit a receptive field and detect edges, lines, or simple patterns
within their small regions. As signals propagate deeper into the visual cortex, neurons
begin to respond to increasingly complex features (e.g., shapes or faces) constructed
by combining simpler responses. This mirrors hierarchical feature extraction in CNNs,

in which deeper layers integrate low-level features into higher-level concepts.
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Furthermore, the neurons in the CNN were loosely analogous to the biological neurons
as shown in figure 3.1.

e Weighted Inputs: Each CNN neuron computes a weighted sum of inputs
similar to the synaptic connections in biological neurons.

e Activation Function: The nonlinear activation in a CNN neuron acts like a
neuron firing mechanism when the summed input exceeds a certain threshold,
it "fires.”

e Learning Through Adjustment of Weights: Synaptic plasticity in the brain
(where synapse strengths change over time) is loosely mirrored by
backpropagation in CNNs, which updates the filter weights to minimize the

loss function.

Although CNNs do not capture the full complexity of biological neural processes, the
core principles of local receptive fields, hierarchical feature learning, and trainable
connections reflect a simplified model of how the human visual cortex processes the

visual information.

Convolutional Neural Networks (CNNs) are a powerful class of deep learning models
designed to process grid-structured data such as images and time-series signals.

Unlike fully connected neural networks, CNNs incorporate two key principles.

e Local Connectivity via convolutional layers
e Spatial Pooling

These design choices enable an efficient feature extraction and translational

invariance.

A CNN transforms an input tensor (an image represented by height, width, and
channels) through a sequence of layers, each with a specific function, culminating in
an output (class probability). The lower layers detected simple patterns, whereas the
deeper layers learned more complex abstract features.
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Figure 3.1. (A) Diagram of a biological neuron. (B) a perceptron.

3.4.2. CNN Layers:

3.4.2.1. Input Layer

The input layer serves as the interface between the raw input data and CNN. For

images, the input is typically a three-dimensional array of shapes (H, W, C), where

e H represents the height (number of pixel rows)
e W represents the width (number of pixel columns)

e C represents the number of channels (C = 3 for RGB images)

For univariate time-series data, the input can be a two-dimensional array of shapes (L,
C), where

e L isthe sequence length

e C =1ifdealing with a single variable, or higher if multiple features exist
The input layer does not perform computations but prepares the structured data tensor

for the subsequent layers. Preprocessing techniques such as normalization (scaling

values to [0, 1]) or standardization are often applied to enhance learning efficiency.
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3.4.2.2. Convolutional Layers

Convolutional layers are the backbone of CNNs and are responsible for extracting
features from input data. Each convolution layer applies multiple filters (kernels) to
the input volume to detect spatial patterns such as edges, textures, and shapes.

Mathematical Representation

Given an input tensor X(~Dof shape (H,W,C;,), a convolutional layer with

C,y filters, each of shape (ky, k,,, Ci,,), computes the output feature map Z® as:
(Equation 1)
200, q) = Lo Tiret Taeet W ww) XV (0 +uq + ) + by (3.69)

where:

e WW represents the filter weights

e b isthe bias term
Each filter spatially scans the input by applying the same weights throughout, thereby

enforcing translational invariance. Stride and padding hyperparameters control the

size of the output feature map as in figure 3.2.
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Figure 3.2. Illustration of convolutional padding.

Connection to Other Layers
e The convolutional layer outputs a set of feature maps that typically pass
through the activation function.
e The result is then moved to a pooling layer to reduce spatial dimensions and
computational complexity.

3.4.2.3. Activation Functions

Nonlinear activation functions were applied after convolutions to introduce
complexity into learning representations. The most common type of activation is a
Rectified Linear Unit (ReLU).

(Equation 2)

ReLU(z) = max (0, z) (3.70)
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This keeps the positive values unchanged while setting the negative values to zero,
thereby mitigating the vanishing gradient problem.

Alternative activations include the following.

e Leaky ReLU: Allows small negative values, preventing neuron inactivation.

e Sigmoid and Tanh: Used in certain cases but less common due to saturation
issues.

e Figure 3.3. illustration graphical activation’s function.

(Equation 3)

1/2
| | | | w
0 [ 4 0 4 " 4" 7
RelLU Sigmoid Tanh

Figure 3.3. lllustration of relu sigmoid and tanh function.

3.4.2.4. Pooling Layers

Pooling layers downsample feature maps and reduce the spatial dimensions while
retaining important information. The two primary types are as follows.

e Max Pooling: Retains the maximum value in each pooling window.

e Average pooling: Compute the average values within each pooling window.

Mathematical Formulation
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For a pooling window of size (m X n) and stride s:

(Equation 4)

Y(i,j) = maxocy<mosv<n X({.S +u,j.s + v) (3.71)
for max pooling, and:

(Equation 5)

Y(ij) = - B0 I8 X(s+u,j.s+v) (3.72)

for average pooling.

Max pooling Average pooling

29 16 28 184 12 17 6 184

0 100 60 38 38 45 60 70

12 14 8 9 12 14 12 36

31 16 7 2 31 16 12 28
Stride =2 Stride =2

A Y
100 184 28 80
3 9 18 22

Figure 3.4. lllustrate how 2D max pooling and avg pooling work, with the following
setting: kernel size [2, 2], stride [2, 2].

Connection to Other Layers

e Pooling layers typically follow convolutional layers to progressively reduce
the feature map size.
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e The output then proceeds to the fully connected layers for final classification

or regression.
3.4.2.5. Fully Connected Layers

Fully connected (FC) layers combine extracted features and perform classification or

regression. If the last pooling layer outputs feature maps of shape (Hg, Wy, Cy), they

are flattened into a vector X € RN, where:

(Equation 6)

N = Hf X Wr X Cf (3.73)
An FC layer with MM output neurons computes

(Equation 7)

Z=W,+b (3.74)
where:

e WW is a weight matrix of shape (M, N)

e D isabias vector
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Figure 3.5. Fully connected (FC) layers.
3.4.2.6. Output Layer
The output layer depends on the following tasks:

e Classification: Softmax activation is used to convert raw scores into

probabilities

(Equation 8)

eZl

3K, oo

softmax(z); = (3.75)

e Regression uses linear activation for continuous value prediction.

56



PART 4

THE PROPOSED SYSTEM DESIGN AND ALGORITHMS

INTRODUCTION

This chapter details the methodology used for candlestick chart pattern detection and
next-candle direction prediction using Convolutional Neural Networks (CNNSs).
Figure 4.1. shows the entire system proposed in this study. It covers the process, from
data collection and preparation to model design and evaluation. First, the data source
and its characteristics are described, followed by preprocessing steps, such as cleaning
and segmenting the time series into candlestick chart windows. Next, the approach for
identifying candlestick patterns using a technical analysis library is explained, along
with how these patterns and additional indicators are used to label each chart with a
bullish or bearish trend indication. The CNN model architecture is then presented in
depth, including its layers, activation functions, regularization through dropout, and
image augmentation strategies applied to improve the generalization. Finally, this
chapter outlines the training procedure and evaluation protocol, including cross-
validation, and defines the performance metrics (accuracy, precision, recall, and F1-

score) used to assess the model.
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Figure 4.1. The proposed system.

4.1. DATA COLLECTION
The dataset for this study consists of historical Foreign Exchange (Forex) market data

obtained from the Forex Historical Data repository. Specifically, we utilize price data

for the EUR/USD currency pair over a long continuous period (from March 2, 2007,
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to January 1, 2024) sampled at 15-minute intervals. This high-frequency dataset
provides a rich sequence of candlestick data that captures intraday market dynamics
over many years. Each data record contains the standard fields required for candlestick
charting: the opening price, highest price, lowest price, and closing price (OHLC)
within each 15-minute interval, along with the trading volume for that interval. The
choice of the 15-minute timeframe balances the need for detailed pattern formation
(finer than daily or hourly charts) with the practical limits of data size and model
complexity. Using such an extensive and granular dataset ensures that the model is
exposed to a wide variety of market conditions including different volatility regimes,
trends, and outlier events, thereby improving the robustness of pattern detection and

prediction.

Before using the data for pattern analysis and model training, initial quality checks
were performed. The dataset was inspected for completeness and consistency to ensure
that it accurately reflected the market behavior over the selected period. By selecting
a well-established historical data source and a major currency pair, we aimed to
minimize the issues of data quality and maximize the relevance of the patterns learned

by the model to real-world trading scenarios.

4.1.1. Data Preprocessing

Raw financial time-series data often contain irregularities that must be addressed prior
to analysis. In this study, data preprocessing was a crucial step in cleaning the historical
Forex dataset and preparing it for candlestick pattern detection. Preprocessing focused
on handling missing or corrupt records, filtering out anomalies, and then segmenting
the continuous series into fixed-length candlestick chart samples suitable for model

input. The key preprocessing steps are as follows:

e Missing Data and Incomplete Records: Any missing values in the OHLC or
volume data were identified and handled to maintain continuity of the time
series. For isolated missing entries (e.g., a single 15-minute record missing due
to a data glitch), forward filling was applied; the missing price values were

replaced with the last known values, under the assumption that a very short gap
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can be reasonably imputed by the previous state. However, for larger gaps or
periods of missing data (e.g., if data transmission was interrupted, resulting in
several consecutive missing intervals), the affected records were removed from
the dataset to avoid introducing false information. Additionally, a filtering
criterion ensured that each candlestick entry was complete; any record lacking
any of the OHLC fields or having obviously invalid values was discarded. This
step guarantees the integrity of each candlestick so that no malformed
candlestick passes into the analysis (each interval must have a valid open, high,
low, or close).

Candlestick Chart Segmentation (Sliding Window): After ensuring the time
series was clean and regular, the data was segmented into smaller windows to
create candlestick chart samples. We used a sliding window technique to
generate segments. Each window spans a fixed number of consecutive 15-
minute candlesticks and represents a subchart of the price series. A window
size of 20 corresponds to a chart of 20 consecutive candlesticks (covering 20 x
15 minutes = 5 hours of price data). The window is then slid forward through
the dataset in a certain step (scroll size) to create the next sample. In our
approach, a moderate overlap between windows is allowed to increase the
number of training samples while still providing new information. Specifically,
we used a step size equal to half the window length (50% overlap) to balance
the sample diversity with the efficient use of data. This means that if, say, a
window covers time steps t=1 to t=20, the next window starts at t=11 (half
overlap) and covers t=11 to t=30, and so on. The use of overlapping windows
ensures that important patterns that may span across window boundaries can

be captured in at least one window, as shown in Figure 4.2.
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Figure 4.2. Sliding window for window =10 and shift size =5.

We experimented with multiple window sizes (5, 10, 15, 20, 25, and 30
candlesticks per window) to determine which length best captured the relevant
patterns for prediction. Figure 4.3. shows the window sizes used in this search.
These window sizes correspond to different trend durations (from short-term
patterns lasting 1.25 hours up to longer patterns spanning 7.5 hours). By evaluating
various window lengths, we ensured that the model was not unduly biased by an
arbitrary timeframe choice. Instead, we c.an select an optimal window size that
provides the highest predictive performance (this selection process is discussed in
the results, but the methodology of testing various sizes is part of our approach).
Once the window size was decided, all time-series data were segmented
accordingly, yielding a large collection of candlestick chart samples ready for

pattern identification and labeling.
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Figure 4.3. Different window sizes with (5,10,15,20,25, and 30).

Each resulting window of data was then converted into a candlestick chart image. To
do this, the OHLC values in the window were used to draw candlesticks (typically
green/white for bullish candles and red/black for bearish candles) on a fixed-size image
canvas. For consistency, all chart images were generated at the same resolution (in our
case, 150x150 pixels with three color channels to mimic an RGB candlestick chart).
This transformation from raw numerical data to images allows us to leverage image-
based CNN techniques for pattern recognition. Visual encoding preserves the shape
and sequence of candlesticks, enabling the CNN to learn from chart patterns in a

manner similar to how a human trader might visually identify patterns.

4.1.2. Image Augmentation Strategies

When training image-based CNNSs, it is beneficial to artificially augment the dataset
to improve generalization. We employed real-time image augmentation on candlestick

chart images using Keras ImageDataGenerator. Several augmentation techniques were
randomly applied to each training image during the training epochs, including.
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e Rescaling: As previously mentioned, all images were normalized by scaling
the pixel intensities by 1/255. This is standard preprocessing rather than
augmentation, but it ensures a uniform input range.

e Random Shear: A small shear transformation (skewing the image) was
applied with a shear intensity up to 0.2 (20%). This can tilt the candlesticks
slightly, which simulates minor variations in how the chart might be rendered
or small timing misalignments, helping the model to not rely on exact
symmetric shapes.

e Random Zoom: We applied random zoom-in or zoom-out of up to 20%.
Zooming changes the scale of candlestick shapes in the image. By training on
slightly zoomed versions, the model learns to recognize patterns at different
scales (a pattern that is a bit larger or smaller in terms of pixel size should still
be recognized as the same pattern).

e Shifts/Flips: The charts were not flipped horizontally because a mirror-image
reversal in time would not represent a valid scenario (time cannot reverse), and
vertical flips would invert upward moves downwards, which is not meaningful
for pattern integrity. However, we allowed slight horizontal or vertical
translations (shifting the image by a few pixels) as a part of the shear/zoom

combination.

These augmentation techniques were applied on-the-fly during training, meaning that
each epoch saw a new random variation in some charts. Augmentation increased the
effective size of the training set and exposed the model to a broader set of input
conditions, thereby reducing overfitting. By the end of the training, the CNN becomes
more robust to variations in chart appearance that are not relevant to the pattern (for
instance, slight changes in scale or alignment), focusing instead on the essential visual

features of bullish or bearish patterns.

4.2. PATTERN IDENTIFICATION USING TA-LIB

With the candlestick chart segments prepared, the next step was to identify the known
candlestick patterns within each segment. We utilized the Technical Analysis Library

(TA-Lib), a widely used library for financial data analysis that includes a
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comprehensive set of functions for recognizing candlestick chart patterns. TA-Lib
provides algorithms to detect 61 distinct classical candlestick patterns,
encompassing a broad range of single-day and multi-day formations commonly
studied by technical analysts. These include patterns such as Doji, Hammer, Shooting
Star, Engulfing Pattern, Morning Star, Three White Soldiers, and many others, as
defined in the technical analysis literature.

For each candlestick window, the OHLC data were input into TA-Lib's pattern
recognition functions of the TA-Lib. Each pattern function examined a specific
configuration of one or more consecutive candlesticks. For example, the Hammer
pattern function evaluates whether a given candlestick in the window has a long lower
wick and short body positioned near the top (typical of a bullish hammer), whereas the
engulfing pattern function looks at two consecutive candlesticks to see if the second
candle’s body fully engulfs the previous one. TA-Lib functions typically return an
indicator value (often an integer flag), signaling the presence of a pattern and
sometimes the direction (bullish or bearish nature) of that pattern. By running through
all relevant TA-Lib candlestick functions in each window, we automatically detected
which, if any, of the 61 patterns were present in that sequence of candlesticks. In many
cases, no known pattern might be present in a given window; in other cases, one or
more patterns could be identified (for instance, a window might contain both a "Doji"

and an "Engulfing" pattern, if those occur in overlapping fashion).

This programmatic pattern identification ensured objectivity and consistency in
recognizing patterns compared to manual visual inspection, which could be error-
prone or subjective. It also significantly expanded the scope of the patterns considered,
as our methodology is not limited to a small subset of patterns; virtually all well-
documented candlestick formations were included. The outcome of this step is an
annotation for each window indicating which candlestick pattern(s) it contains and the
nominal interpretation of those patterns (each pattern inherently has a bullish or bearish

implication, as per technical analysis theory).
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4.3. DATASET LABELING FOR TREND PREDICTION

Once the candlestick patterns were identified in each window, the next crucial step
was to label each window with the outcome. We wanted the model to predict whether
the pattern in that window would signal a bullish or bearish trend in the immediate
future. The goal is to classify each candlestick chart (window) as either bullish
(expected uptrend) or bearish (expected downtrend), which corresponds to
predicting the direction of the next candlestick or near-term price movement following

that window.

Labeling was performed using a combination of pattern interpretation and technical

indicator confirmation to increase the reliability.

4.3.1. Pattern-Based Trend Inference

Each detected candlestick pattern has a known, traditional interpretation. A Hammer
or a Morning Star pattern is typically considered a bullish reversal signal (anticipating
an upward move), whereas a Shooting Star or a Dark Cloud Cover is considered
bearish. Initially, we assigned a tentative label to the window based on the identified
primary pattern. If multiple patterns were found in the window, the most significant or
latest pattern (often the one formed by the last few candlesticks in the window) was
used for trend indication. This gives an initial bullish/bearish label derived from
classical technical analysis.

4.3.2. Technical Indicator Confirmation

Relying solely on patterns can be misleading, because candlestick patterns do not
always correctly predict market movements in isolation. To improve labeling
accuracy, we incorporated additional technical indicators as confirmation signals for
the pattern indication. In our methodology, we use a Simple Moving Average (SMA)
for key confirmation. The SMA has a smoothed average of closing prices over a recent
period and helps indicate short-term trend momentum. For each window, we computed

a short-term SMA (e.g., a moving average spanning a small multiple of the window
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length or another relevant period). If the pattern was bullish, we checked whether the
price relative to this SMA or the slope of the SMA supported an upward momentum
(for instance, the closing price moving above the SMA or the SMA curve turning
upward). Similarly, for a bearish pattern, we verified whether the SMA indicated
downwards momentum (price breaking below the average or sloping downwards).
These indicators serve as a confirmatory filter; if a recognized pattern suggests a
trend, but the indicators contradict it, the trend signal is deemed weak or possibly false.
In such cases, the window might be labeled according to the indicator (or even
excluded if uncertain), whereas when both the pattern and indicators align, the label is
assigned high confidence.

Through this combined approach, each candlestick window was classified into one of
two classes: bullish (meaning that the next candle or short-term movement is expected
to go up) or bearish (meaning that a downwards movement is expected). By using
technical indicators to guide labeling, we ensured that the model's training data
reflected scenarios in which a pattern’s implication was corroborated by market
momentum, thereby focusing the learning on more reliable pattern outcomes. This is
important because candlestick patterns can occasionally appear without resulting in
the expected trend change; including these cases as positive examples could confuse
the model. Our labeling strategy mitigates this by providing the model with labels that

have a higher probability of being correct, given additional confirmation.

The final labeled dataset consisted of thousands of candlestick chart images, each with
an associated binary label (uptrend or downtrend). These labeled data serve as the
ground truth for training the CNN model to recognize patterns and predict the next-
candle direction. Figure 4.4. shows the labeling process using a simple average
indicator.
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Figure 4.4. The labeling process.

4.4. CNN MODEL ARCHITECTURE

To automatically classify candlestick chart images as bullish or bearish, we designed
a Convolutional Neural that is tailored for image-based pattern recognition. The CNN
model uses the generated candlestick chart images as input and learns to output a
prediction of the trend class. The architecture was implemented using TensorFlow and
Keras deep learning frameworks, and it comprises several layers that progressively
extract visual features from the candlestick charts and then perform binary
classification, figure 4.5. present The CNN architecture representing the sequential
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processing of an input image. In constructing the CNN architecture, a series of
carefully curated layers was incorporated, each serving a distinct function while
encompassing a specific set of parameters. The layout of these layers is
comprehensively depicted in Table 4.1., which details each layer’s type, resultant
output shape, number of trainable parameters, and overall contribution to the
functionality of the model.

The key components of the model architecture are described in detail below:
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Figure 4.5. CNN architecture representing sequential processing of the input image.

e Input Layer: The input to the model is an image of a candlestick chart with a fixed
size of 150x150 pixels and three-color channels (RGB). Each image encodes the
sequence of candlesticks in the window, and is drawn in a standard candlestick
chart format. Before feeding the images into the network, pixel values were
normalized (rescaled) to the range [0, 1] to facilitate faster and more stable training
(original pixel intensities 0—255 were divided by 255).

e Convolutional layers: CNN use multiple convolutional layers to automatically
learn features from candlestick images. The first convolutional layer applied a set
of learnable filters (kernels) to the input image. In our architecture, this layer uses
32 filters of size 3x3, with each filter scanning across a 150x150 image. As the
filter slides over the image, it performs convolution operations (dot products
between the filter weights and local patch of the image), producing a feature map
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as the output. Each filter can learn to detect basic visual features such as vertical
or horizontal edges, shapes of candlestick bodies/wicks, or texture in the chart. The
rectified linear unit (ReL.U) activation function was applied to the convolution
output, introducing nonlinearity by eliminating negative responses. This helps the
network model complex patterns and interactions between pixels, beyond linear

combinations.

Following the first convolution, a max-pooling layer was used. We apply 2x2 max
pooling, which reduces the spatial dimensions of the feature maps by taking the
maximum value in each 2x2 region. In effect, the 150150 feature map is down-
sampled (pooled) to roughly 75x75 (if using 'same' padding, exact dimensions may be
75 or 74 depending on rounding). Pooling serves two main purposes: it reduces the
computational load for subsequent layers by decreasing the number of activations and
it provides a form of translation invariance (small shifts in the input candle position
will not drastically change the pooled representation). It also helps generalize by

abstracting the features.

After pooling, we stacked additional convolutional layers to learn higher-level
representations. The second convolutional layer might use 64 filters (also of size 3x3)
applied to the pooled feature maps from layer one. This layer can capture more
complex combinations of features detected by the first layer (for example, it may
recognize parts of candlestick formations or edges of patterns). Again, ReLU
activation is applied, and another pooling layer reduces the output (e.g., down to
~37x37). A third convolutional layer with an even larger number of filters, such as
128 filters of size 3x3, can capture even more abstract patterns (potentially learning to
recognize entire candlestick shapes or arrangements corresponding to specific
patterns). We included three convolutional layers in our model (with 32, 64, and 128
filters), each followed by a max-pooling layer of size 2x2. At the end of this
convolutional stack, the image was transformed into a set of distilled feature maps.
The progressive increase in filter count allows the model to learn a richer set of features
at each stage, while pooling gradually reduces the spatial size, focusing the model on
what patterns are present rather than their exact position in the image. This is useful

because, for example, a hammer pattern can occur at different vertical positions in the
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chart, depending on the price scale, and we want the model to recognize it regardless
of the exact pixel location.

e Flattening and Fully Connected Layers: After last pooling layer, the feature
maps were "flattened” into a one-dimensional vector. This flattening converts
spatially organized features into a format that can be fed into dense (fully
connected) layers. The first dense layer in the architecture contained 512
neurons. Each neuron in this layer receives input from all the features of the
previous layer, allowing it to combine them in arbitrary ways. We also use
ReLU activation on this layer, which enables the network to learn nonlinear
combinations of convolutional features. In essence, this layer learns to interpret
high-level features (extracted by the convolutional layers) in the context of the
classification task. For instance, it might learn neurons that activate strongly
when certain combinations of edges and shapes corresponding to a "bullish
engulfing" pattern are present.

e Dropout Regularization: To prevent overfitting (where the model memorizes
training examples rather than generalizing them), we incorporate a dropout
layer after the first dense layer. The dropout randomly sets a fraction of the
neurons of the layer to zero for each training batch. We used a dropout rate of
0.5 (50%), that is, half of the neurons in the dense layer were dropped at each
training step. This forces the network to not rely too heavily on any single
feature or a co-dependent set of features, improving its ability to generalize to
unseen charts. Essentially, dropout simulates an ensemble of many smaller
networks and helps to ensure that the learned features are robust and not
specific to particular training samples.

e Output Layer: The final layer of the CNN is a dense output layer that produces
a prediction. Because this is a binary classification (bullish vs. bearish), we
used a single neuron in the output layer with a sigmoid activation function.
The sigmoid squashes the output to a value between 0 and 1, which can be
interpreted as the probability of the input image belonging to the "Bullish” class
(for example). A threshold (typically 0.5) would then be used to decide the
class label: outputs >= 0.5 are categorized as bullish, and outputs < 0.5 as

bearish. (Alternatively, the network could be designed with two output neurons
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and a softmax activation for the two classes, but the single sigmoid is a simpler
equivalent approach for binary outcomes.) The goal of the model during
training is to adjust the weights such that these output probabilities align with

the true labels of the training images.

Table 4. 1. Architectural details of CNN model.

N.
Layers Output Shape Description and Functionality
Parameters
Accepts input images with
(None, 150, 150, . . .
Input Layer 3 0 dimensions 150x150 pixels and
three-color channels (RGB).
Convolutional (None, 148, 148, 06 32 filters of size (3x3), Activation:
Layer 1 32) ReLU. Extracts basic edge features.
MaxPooling Pool Size: (2x2). Reduces spatial
(None, 74, 74, 32) 0 . .
Layer 1 dimensions by half.
. 64 filters of size (3%3), Activation:
Convolutional )
(None, 72, 72, 64) 18,496 ReLU. Captures higher-level
Layer 2
features.
) Pool Size: (2x2). Further
MaxPooling ) )
(None, 36, 36, 64) 0 downsampling for computational
Layer 2 o
efficiency.
Convolutional (None, 34, 34, 13856 128 filters of size (3%3), Activation:
Layer 3 128) ’ ReLU. Detects complex patterns.
. Pool Size: (2x2). Compresses
MaxPooling (None, 17, 17, ) o
0 feature maps while retaining
Layer 3 128) . . .
important information.
Convert 3D feature maps into a 1D
Flatten Layer (None, 36,992) 0
vector for fully connected layers.
Dense Layer: 512 units, Activation:
Fully Connected ) )
(None, 512) 18,940,416  RelLU. Learning high-level abstract
Layer 1
features.
Dropout Rate: 0.5. Mitigates
Dropout Layer (None, 512) 0 overfitting by randomly
deactivating nodes.
Dense Layer: 1 unit, Activation:
Output Layer (None, 1) 513 Sigmoid. Produces binary

classification output.
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Total
19,034,177 (72.61 MB)
Parameters:

Trainable
19,034,177 (72.61 MB)
Parameters:

Non-trainable
0 (0.00 Byte)
Parameters:

4.5. TRAINING AND EVALUATION PROCEDURE

Furthermore, Table 4.2 delineates the key training and compilation parameters that
guided model development. These parameters encompass data preprocessing
techniques such as rescaling and data augmentation alongside the chosen optimizer,
loss function, batch size, and performance metric. In concert, they form the
experimental framework, ensuring reproducibility and bolstering the robustness of the
training process. When considered alongside the information provided in the preceding
table, these details collectively offer a comprehensive picture of the CNN'’s

architecture and the methodological foundation for its training and evaluation.

Following the construction and compilation of the CNN model, the next phase
involved training on a curated dataset of candlestick chart images labeled as bullish or
bearish. This stage was meticulously organized to both optimize the model’s
performance and thoroughly gauge its predictive capabilities. Several pivotal aspects

of the training workflow and validation strategies are summarized below.

e Training/Validation/Test Split: The labeled dataset was divided into three
subsets to enable unbiased evaluation of the model. We used a typical split,
where the majority of the data were used for training and smaller portions were
reserved for validation during training and final testing. Approximately 70%
of the candlestick chart samples were used for training, 10% for validation, and
20% were used as the test set. The training set was used by the model to learn
the patterns (the model weights were updated by running through these data).
The validation set is not used to update the model weights; rather, it monitors
the model's performance on unseen data during training, which helps in tuning

the hyperparameters and deciding when to stop training (if the validation

72



accuracy stops improving, it may indicate that the model is starting to overfit
the training data). Finally, the test set was kept completely untouched during
training and was used to evaluate how well the trained model generalizes
entirely new data.

Model Compilation and Hyperparameters: CNN was compiled using an
appropriate loss function and optimizer for binary classification. Binary Cross-
Entropy was used as the loss function, which is the standard for probabilistic
binary output models. This loss function measures the divergence between the
predicted probabilities and the actual binary labels, penalizing incorrect
predictions as they become confident and wrong. Minimizing this loss guides
the model to output probabilities close to 1 for bullish charts that are truly
bullish and close to 0 for bearish charts, and vice versa. We employed the
Adaptive Moment Estimation (Adam) optimization algorithm with a
carefully chosen learning rate as the optimizer. Adam is well-suited for this
task as it adapts the learning rate for each parameter and generally converges
faster and more reliably than basic stochastic gradient descent. Initially, we
tried the default learning rate (0.001) but found that a slightly lower learning
rate (such as 0.0003) provided more stable learning for our model, likely due
to the complexity of the model and the risk of overshooting the minimum with
too large steps. The training was performed in mini-batches (we set a batch size
of 64 images per gradient update), which balances noise in the gradient
estimation with computational efficiency (a batch of 64 was a good fit for the
hardware memory and provided stable convergence). We trained the model for
a fixed number of epochs (e.g., 20 epochs initially) while monitoring
performance. The number of epochs was determined based on the observations
when the validation loss/accuracy leveled off. In some runs, we also employed
an early stopping strategy: if the validation performance did not improve for
a certain number of consecutive epochs, the training was halted to prevent
overfitting and save time.

Hyperparameter Tuning: Several hyperparameters (parameters of the
training process or model architecture that are not learned from the data but set
by the researcher) were tuned to achieve the best performance. These include

the learning rate, batch size, number of training epochs, and architecture
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choices, such as the number of layers or neurons in the dense layer. We
performed a combination of manual and systematic search. For instance, we
tried batch sizes of 32 and 64 and found that 64 gave slightly better
generalization. We experimented with learning rates in the range of 1e-2 to le-
4 and discovered that too high a learning rate caused the training to diverge or
oscillate, while too low made convergence very slow; hence, the choice of 3e-
4 as a middle ground yielded smooth learning curves. We also validated the
choice of the 512-neuron dense layer by trying a smaller dense layer (256
neurons) and noted a minor drop in accuracy, indicating that 512 was
appropriate for capturing the complexity of the patterns. The window size for
candlestick charts, as mentioned earlier, was also a critical hyperparameter, and
our experiments with different window lengths on a validation set guided the
selection of an optimal window size that the model used for the final training.
All of these decisions were made based on the model’s performance on the

validation set to avoid biasing the model to the test data.

Table 4.2. Training hyperparameters and compilation parameters used in the CNN

model.
Parameter Value
Input image dimensions 150 x 150
Batch size 64
Image rescaling factor 1/255
Data augmentation Shear = 0.2, Zoom = 0.2
Optimizer Adam
Loss function Binary Crossentropy
Performance metric Accuracy
Number of epochs 20
Learning rate 0.0003

4.6. K-FOLD CROSS-VALIDATION

In addition to the single hold-out validation set, k-fold cross-validation was employed
to verify the robustness of the model further. Specifically, we used a 5-fold cross-
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validation approach for the training dataset. In 5-fold cross-validation, the training data
were split into five equally sized folds (subsets). The model is trained five separate
times, each time using a different fold as a validation set and the remaining four folds
as the training data. As shown in Figure 4.6., this represents a K-fold. After these five
training runs, we obtained five validation performance scores (accuracy and F1-score
for each fold). We computed the average and standard deviation of these scores to
assess the sensitivity of the model to a particular composition of the training data. This
technique ensures that the performance of our model is consistent and not a fluke of a
particular train validation split. It also aids in hyperparameter tuning; if a certain
hyperparameter setting yields consistently high validation performance across all
folds, it is likely a robust choice. In our methodology, the cross-validation results
provided additional confidence in the chosen model configuration and insight into the
variance. For instance, a small variance in performance across folds indicates that the
model generalizes well, whereas a high variance might have suggested overfitting to

some data patterns or the need for more data/regularization.

Fold 1 Fold2 Fold3 Foldd Fold5

Split 1 [ test I train I train I train I train ]—)[ performance ]
Split 2 [ train I test I train I train I train H performance ]
Train Data Split 3 [ train I train I test I train I train ]—)[ performance ]:> Average
Performance
Split 4 [ train I train I train I test I train H performance ]
Split 5 [ train I train I train I train I test ]—)[ performance ]

Figure 4.6. k-fold data partitioning.

e Training Process: During training, at each epoch, the CNN processed all
training batches and updated their weights via backpropagation to minimize
the loss. After each epoch, the model was evaluated using the validation set.
We plotted the learning curves of training versus validation loss and accuracy
to monitor the training progress. Typically, we observed that training accuracy

increases over epochs and eventually plateaus, whereas validation accuracy
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follows a similar trend up to a point where it might start to diverge (indicating
overfitting). We used validation metrics to determine the final model (for
instance, we could roll back to the model weights from the epoch with the best
validation accuracy if early stopping was not triggered automatically).

e Model Selection and Testing: After training, we selected the model with the
best validation performance (either the final epoch if no overfitting was
observed or an earlier epoch if the early stopping criterion was triggered) as the
final model. This model was then evaluated on an independent test set that was
previously set aside. Importantly, the test set consists of chart samples that the
model has never seen during training or validation. We used this set to compute
the final performance metrics, providing an unbiased assessment of how the
model would perform on new real-world data. This step simulates the scenario
of deploying the model for live predictions and tests whether the model can
correctly classify unseen candlestick charts as bullish or bearish based on
learned patterns.

Throughout the training and evaluation, careful measures were taken to ensure that the
results were reliable and not due to random chance or overfitting. The combination of
a separate test set and cross-validation provided a comprehensive view of the

performance of the model.

4.7. PERFORMANCE METRICS

To evaluate the effectiveness of the candlestick pattern prediction model, we measured
several performance metrics commonly used in binary classifications. These metrics

provide insight into the different aspects of a model’s predictive performance.

e Accuracy: This metric measures the overall correctness of the model and is
defined as the number of correct predictions divided by the total number of
predictions. In terms of confusion matrix components (True Positives, True
Negatives, False Positives, False Negatives), the accuracy is (TP + TN) / (TP
+ TN + FP + FN). An accuracy of, say, 0.90 indicates that 90% of all

candlestick chart instances (bullish or bearish) were correctly classified by the
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model. While accuracy provides a quick summary of performance, it can be
misleading if classes are imbalanced. In our dataset, we tried to maintain a
balance between bullish and bearish examples through the data collection and
labeling process, but we still considered additional metrics for a nuanced
evaluation.

Precision: Precision focuses on the quality of positive predictions (for instance,
we can arbitrarily define “bullish” predictions as the positive class). It is
calculated as TP / (TP + FP). Precision answers the question: "Of all the
instances that the model predicted as bullish, what fraction were actually
bullish?" High precision means that when the model predicts an uptrend, it is
usually correct, that is, there are few false alarms. This is particularly important
in the trading context because a false positive (predicting a bullish trend when
none occurs) might lead to poor trade. For example, if our model identifies 100
chart patterns as bullish and 90 of them truly lead to upward movement, the
precision is 0.90, indicating a fairly reliable bullish signal.

Recall: Recall (also known as sensitivity or true positive rate) looks at how
well the model captures actual positive instances. It was computed as TP / (TP
+ FN). Recall answers: "Of all the truly bullish instances (patterns that did lead
to an uptrend), what fraction did the model successfully detect as bullish?" A
high recall indicates that the model misses very few true bullish signals (i.e.,
few false negatives). In market terms, a false negative would be missing a
profitable bullish pattern (the model predicts bearish or fails to act when an
uptrend is coming). For instance, if there were 100 actual bullish cases, and the
model caught 80 of them, the recall was 0.80. There is often a trade-off between
precision and recall (capturing more positives can lower precision, and vice
versa), so both are important to consider.

F1-Score: The F1-score is the harmonic mean of Precision * Recall, calculated
as 2 x (Precision x Recall) / (Precision + Recall). It provides a single metric
that balances the precision and recall. The F1-score is particularly useful when
the class distribution is uneven or when one wants to seek a balance between
avoiding false alarms and missing true signals. The F1-score reaches its best
value at 1 and the worst at 0. For instance, if the precision is 0.9, and recall is
0.8, the F1-score is 2*(0.9*0.8)/ (0.9+0.8) = 0.847. We considered the F1-score
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as a primary metric for model selection because it ensures that the model
performs well in identifying bullish patterns without too many false positives,
and does not miss a large portion of them. In other words, it summarizes the
ability of the model to make accurate and comprehensive predictions for the
positive class. (For binary classification, we can also compute precision, recall,
and F1 for the negative class if needed, but usually one focuses on the
"interesting™ class, here bullish, or reports metrics for both classes separately.
In our case, because bullish vs bearish were roughly balanced and equally
important, we report the overall precision/recall which is effectively the same
for one class if we treat the other as negative.)

In addition, we also examined the confusion matrix to see the breakdown of predicted
versus actual classes and monitored if there was any bias toward predicting one class
over the other. By analyzing precision and recall together, we ensured that our model
was not only accurate overall but also behaved well in terms of trade-off. For instance,
if the model had very high accuracy but low recall, it would mean it was very
conservative in predicting bullish (perhaps only calling very obvious patterns bullish
and missing many subtle ones). We aimed for a model with both high precision and
high recall, leading to a high F1 score, indicating a reliable and consistent performance.

Overall, these performance metrics provided a comprehensive evaluation of the CNN
model. In the following chapter, we will present the results obtained using these
metrics and discuss how well the model performed in predicting next-candle directions
from candlestick chart patterns, as well as compare it with benchmarks or other
approaches, if applicable. The methodological rigor outlined in this chapter, from data
preparation to validation, is intended to ensure that the results are credible and that the

model can be trusted for practical use in analyzing financial market trends.
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PART 5

THE RESULT AND DISCUSSION

5.1. THE RESULT

In the methodology section, we explain how subcharts containing JCs patterns were
generated to enhance the analysis. Our initial objective was to identify the most
suitable window size for training our CNN model because the window size is among

the most critical hyperparameters for capturing meaningful time-series patterns.

We evaluated multiple window sizes, specifically 5, 10, 15, 20, 25, and 30, to find the
optimal choice. The type of data modeled by each window size differs; a smaller
window size may capture finer short-term trends, whereas a larger window size can
reflect more general long-term patterns. In addition, we fixed the transformation size
to half the window size across all configurations, creating a 50% overlap between
consecutive windows. This overlap is crucial for preserving data continuity, allowing
the model to shift from one window to another without discarding essential
information. Such an approach not only bolsters the model’s ability to generalize
across various data segments but also avoids abrupt changes that can negatively affect

learning.

We constructed our dataset meticulously, emphasizing the chosen window sizes and
strategic overlapping to best represent the underlying temporal dynamics of the JCs
charts. These intricate patterns are central to the accurate classification or prediction
in our binary tasks. This comprehensive approach laid the groundwork for the
successful training and evaluation of the CNN models. Once a window with
recognized candlestick patterns was identified, the Technical Analysis Library (Ta-lib)
helped determine whether any of the 61 predefined patterns were present. If so, the

window was progressed for further investigation. The next phase entailed classifying

79



the window as bullish or bearish. Market trend classification is supported by an array
of technical indicators that mainly focus on the price of the final candle relative to the
moving average. We tested moving averages of 20, 50, and 200 periods but ultimately
selected a 20-period moving average for this study. If the last candle price was higher
than the moving average, the window indicated an upward trend, whereas a lower price
signaled a downward trend. This framework integrates both candlestick pattern
detection and pivotal technical indicators to analyze trends. In the Forex market,
trading patterns evolve continuously, with each pattern emerging differently. This
ever-shifting pattern landscape challenges traders and analysts, complicating any
attempt to track them. The ongoing nature of pattern mining has highlighted the
complexity and fluidity of the market.

Table 5.1. demonstrates how TA-Lib contributed to the pattern analysis, revealing how
often each pattern in the library appeared. The table displays the names of each pattern
along with the frequency with which it emerged in our dataset, offering a direct view
of which patterns are dominant and possibly indicative of specific trends. Notably,

some patterns became more frequent, whereas others diminished.

Table 5.1. Frequency of various candlestick patterns within a 15-min timeframe.

Pattern Occurrences Pattern Occurrences
Spinning Top 19,678 Stalled Pattern 346
Long Line Candle 19,058 Evening Star 340
Belt-Hold 17,318 Three-Line Strike 337
Short Line Candle 15,741 Identical Three Crows 250
Closing Marubozu 14,445 Morning Doji Star 106
Doji 14,133 Evening Doji Star 104
Hikkake Pattern 11,894 Modified Hikkake Pattern 119
High-Wave Candle 11,640 Thrusting Pattern 117
Rickshaw Man 9,553 Three Advancing White 86

Soldiers

Engulfing Pattern 7,990 Piercing Pattern 76
Marubozu 5,659 Dark Cloud Cover 68
Harami attern 4,370 Homing Pigeon 47
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Three Outside Up/Down 3,854 On-Neck Pattern 32

Hammer 2,776 Stick Sandwich 32
Gravestone Daji 2,047 In-Neck Pattern 27
Dragonfly Doji 1,942 Tristar Pattern 24

Takuri {Dragontly Doji 1,906 Three Black Crows 24

with long lower shadow)

Hanging Man 1,537 Tasuki Gap 19
Matching Low 1,474 Unique 3 River 9
Harami Cross Pattern 1,082 Ladder Bottom 7
Doji Star 967 Breakaway 4
Three Inside Up/Down 793 Abandoned Baby 1
Upside/Downside Gap
719 Two Crows 1
Three Methods
. Counterattack
Shooting Star 699 1

Separating Lines 624

Within our 15-minute historical forex dataset, a few patterns did not appear at all, such
as “Kicking,” “Kicking-bull/bear determined by the longer marubozu,” “Three Stars
in the South,” “Concealing Baby Swallow,” “Mat Hold,” and “Upside Gap Two
Crows.” Their absence suggests that neither the market conditions nor the timeframe
fulfilled the requirements for their formation. Some patterns occur rarely (as seen in
Table 5.1.), which, while uncommon during normal market activity, may become

essential indicators for significant market shifts.

To understand how varying window sizes and shifts affect the image dataset creation
process for CNN-based binary classification, we tested six unique window size and
shift configurations. Our goal was to determine how each combination modified a

time-series dataset.

e Window Size 5, Shift 2: Yielded 6,292 images across two classes. These were
partitioned into 4,403 for training, 628 for validation, and 1,261 for testing.
e Window Size 10, shift 5: produced 4,970 images, with 3,478 for training, 496

for validation, and 996 for testing.
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e Window Size 15, Shift 7: 11, 130 images were created, with 7,790 images for
training, 1,112 for validation, and 2,228 for testing.

e Window Size 20, Shift 10: This resulted in 3,675 images, split into 2,572 for
training, 366 for validation, and 737 for testing.

e Window Size 25, Shift 12: Generated 6,541 images, allocated as 4,578 for
training, 653 for validation, and 1,310 for testing.

e Window Size 30, shift 15: Created 5,181 images, with 3,626 for training, 517
for validation, and 1,038 for testing.

Each configuration helped assess the CNN’s ability to recognize and classify pattern
changes with different window sizes and overlaps. These datasets informed the
training, validation, and testing processes factors that affect how well the model
generalizes to new, unseen data. This extensive exploration of window sizes and shifts
informs the best practices in data preparation for CNNs, particularly in tasks that rely
on detecting subtle temporal patterns. We also compiled a table detailing the resolution
of each window (see Table 5.2.), which adds further insight into how window
dimensions can shape the overall model performance and offer future directions for
optimal configurations. Figure 5.1. highlights the CNN model’s training performance,
illustrating how accuracy and loss evolve over successive epochs for both the training
and validation sets. Figure 5.2. presents the receiver operating characteristic (ROC)
curves, which reveal the classification model’s effectiveness. In nearly all scenarios,
the ROC curves approached an area under the curve (AUC) of 1.00, indicating an
almost ideal classifier that achieves a high true positive rate across multiple thresholds

while maintaining a negligible false positive rate.

Table 5.2. The performance results according to common metrics obtained from the
implemented model

Window size Shift size Precision Recall F1-Score Accuracy
5 2 0.993 0.993 0.993 0.993
10 5 0.977 0.977 0.977 0.977
15 7 0.988 0.988 0.988 0.988
20 10 0.969 0.969 0.969 0.969
25 12 0.982 0.982 0.982 0.982
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Figure 5.1. Illustrates how the CNN was performed during training, charting both

Window size =5, Shift =2

Window size =10, Shift =5

accuracy and loss over the course of the training and validation epochs.
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Figure 5.2. Presents the ROC curves indicating classification effectiveness. In almost
every scenario, the ROC curves approached a perfect AUC of 1.00,
suggesting an outstanding classifier that displayed minimal false positives.

Regarding the model performance, we further investigated the effect of changing
window sizes and shifts by applying a cross-validation binary classification setup. We
conducted experiments on six configurations of window size and shift in a time-series
dataset, implementing stratified k-fold cross-validation (k = 5) to reduce the
overestimation of outcomes. Table 5.3. provides a broad comparison of the model
performance across these six configurations, each with distinct (W) window sizes and

(S) Shift parameters.
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Table 5.3. Performance evaluation of loss and accuracy across multiple configurations
and cross-validation folds.

Fold Config 1 (W=5, Config 2 Config 3 (W=15, Config 4 Config 5 Config 6 (W=30,
0
S=2) (W=10, S=5) S=7) (W=20, S=10) (W=25, S=12) S=15)
Loss ACC Loss ACC Loss ACC Loss ACC Loss ACC Loss ACC
0.029 0.992 0.028 0.987 0.100 0.963 0.048 0.981 0.038
1 0.017  0.9933 0.9875
3 9 4 9 2 3 1 6 5
0.012 0.994 0.060 0.982 0.113 0.971 0.053 0.990 0.065
2 0.9816  0.077 0.9817
4 4 4 9 1 4 6 6 8
0.037 0.987 0.046 0.988 0.042 0.993 0.075 0.992 0.084
3 0.9906  0.024 0.9788
4 3 1 9 8 2 3 4 5
0.033 0.991 0.060 0.978 0.064 0.979 0.046 0.993
4 0.026  0.9924 0.099 0.9624
9 3 1 9 2 6 6 3
0.993 0.065 0.981 0.025 0.050 0.064 0.063
5 0.014 0.9933 0.985 0.985 0.9826

Averag 0.025

0.991

0.052

0.984

0.044

0.9902

0.063

0.978

0.057

0.982

0.070

0.9786

e 4 9 2 1 9 1 5 6 3 3

Our findings showed different levels of effectiveness. Configuration 1 (W =5, S = 2)
showed outstanding metrics, with the best average accuracy (0.9919) and lowest mean
loss (0.0254). It also showed remarkable stability across all five folds (accuracy ranged
from 0.9873 to 0.9944). Examination of Configuration 1 revealed strong consistency,
with fold 2 displaying the highest accuracy (0.9944) and lowest loss (0.0124).
Meanwhile, Fold 3 posted a slightly lower accuracy (0.9873) and a marginally higher
loss (0.0374). This pronounced steadiness in a variety of data subsets suggests
excellent generalization and robust model behavior under different data conditions. In
comparison, configuration 2 (W = 10, S = 5) experienced a slight decline in
performance (mean accuracy ~ 0.9841, mean loss ~ 0.0522). Configuration 3 (W = 15,
S =7) also remained strong, with a mean accuracy of 0.9902 and mean loss of 0.0449.
As the window size increased, the performance slowly decreased: configuration 4 (W
= 20, S = 10) reached 0.9785 accuracy; configuration 5 (W = 25, S = 12) attained
0.9823 accuracy; and configuration 6 (W = 30, S = 15) finished at 0.9786 accuracy
with a higher mean loss (0.0703). This pattern suggests that smaller windows and
proportionally smaller shifts tend to capture the relevant temporal signals more

effectively, thereby sustaining strong classification scores. Regardless, all six
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configurations managed to exceed 0.96 in accuracy, although larger windows also
corresponded to higher loss and larger variations between folds. Configuration 1’s low
standard deviation for both accuracy and loss further demonstrated its superiority in

this specific context.

Table 5.4. summarizes the performance of the model for each configuration.
Configuration 1 (window = 5, shift = 2) again showed the highest accuracy (0.9919)
and the lowest loss (0.0254). Configuration 3 (window size = 15, shift = 7) was runner-
up (accuracy = 0.9902, loss = 0.0449). Meanwhile, window sizes of 20, 25, and 30 still
achieved high accuracies (> 0.97), but with marginally higher loss values, culminating

in Configuration 6’s 0.0703 as the peak loss.

Table 5.4. The summary of average accuracy and loss for each configuration.

Configuration Window size Shift Average loss Average accuracy
Config 1 5 2 0.0254 0.9919
Config 2 10 5 0.0522 0.9841
Config 3 15 7 0.0449 0.9902
Config 4 20 10 0.0631 0.9785
Config 5 25 12 0.0576 0.9823
Config 6 30 15 0.0703 0.786

The graphs in Figure 5.3. illustrate the evolution of the training and validation
performance metrics (accuracy and loss) over time for the CNN model, which was
tested experimentally using the 5-fold cross-validation technique. Each graph

corresponds to a specific training set-up or configuration.

To assess the classification performance of various CNN model configurations,
Receiver Operating Characteristic (ROC) curves were plotted, as shown in Figure 5.4..
The analysis, conducted through 5-fold cross-validation on time-series data, indicated
strong discriminative power across all configurations. Each configuration’s ROC
curve approached the ideal classification point (top-left corner), reflecting high
sensitivity and specificity. Additionally, the performance metrics remain consistent

across different windows and shift parameters, demonstrating a stable model behavior.
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The configurations consistently achieved high true-positive rates while maintaining
low false-positive rates, indicating robust binary-classification capabilities. These
findings, visualized through ROC curves for six distinct configurations (with window
sizes from 5 to 30 and corresponding shifts from 2 to 15), offer a thorough perspective

of the model’s classification efficacy across varying temporal scales.
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Figure 5.3. Shows the training and validation accuracy/loss metrics at different points
during the experimental run with 5-fold cross-validation, with each panel
indicating a particular configuration.
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Figure 5.4. ROC curve graphs for various window and shift sizes after using the
cross-validation.
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Table 5.5. expands on the comparison by contrasting nine pre-trained architectures
along the metrics of precision, recall, Fl-score, and accuracy. Among these,
MobileNet stands out, securing the best numbers across all measures (precision: 0.935;
recall: 0.933; F1-score: 0.933; accuracy: 0.933). VGG19 also recorded good results
(accuracy: 0.925), followed by VGG16 (accuracy: 0.925). EfficientNetBO0 consistently
exceeded 0.920 for its metrics, whereas ResNet50 and MobileNetV2 hovered around
0.907. DenseNet121 displayed a moderate performance (accuracy 0.812), and the
inception-based models demonstrated significantly lower accuracies (~0.509 for
InceptionResNetV2, ~0.586 for InceptionVV3). Hence, MobileNet was the best among
the tested pre-trained models, but the task-specific CNN described here outperformed

these baselines overall.

Table 5.5. Performance metrics of pre-trained CNN models.

Model Precision Recall F1-Score Accuracy
VGG19 0.927 0.926 0.925 0.925
VGG16 0.925 0.925 0.925 0.925
ResNet50 0.912 0.908 0.907 0.907
MobileNet 0.935 0.933 0.933 0.933
EfficientNetBO 0.922 0.921 0.920 0.920
InceptionResNetV2 0.255 0.500 0.337 0.509
MobileNetV2 0.907 0.907 0.907 0.907
DenseNet121 0.863 0.809 0.804 0.812
InceptionV3 0.690 0.592 0.528 0.586

5.2. DISCUSSION

This section dives deeper into the candlestick chart forecasting approach and
highlights its distinguishing features, computational complexity, and practical
applicability. This discussion is divided into three subsections: Comparative

Analysis, Model Complexity Evaluation, and Real-Time Market Implementation.

5.2.1. Comparative Analysis With Existing Literature
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Comparing this candlestick chart forecasting methodology to the established literature
reveals multiple key differences (see Table 5.6.). In this study, 61 candlestick patterns
were used in tandem with a CNN model, diverging from conventional studies that rely
on ensemble machine learning, other deep networks, graph-based models, or
optimization algorithms. For example, Lin et al. (2021) employed a combination of
random forest, GBDT, LR, KNN, SVM, and LSTM, whereas Chen and Tsai (2022)
adopted YOLO for dynamic pattern recognition.

The main methodological distinction here is the targeted 15-minute Forex data
interval, unlike other studies featuring daily or hourly data from places like China’s
Stock Market (CSI 300, CSI 500), the Taiwan Stock Exchange, the Nikkei 225, or
social media sources. Frequent sampling in our data yields more granular insights, in
contrast to the daily/hourly intervals in Lin et al. (2021), Behar & Sharma (2022), and
Wang et al. (2022), the 1-minute intervals from the Dynamic Deep Convolutional
Candlestick Learner, or the 4-hour windows for SVM-based forex forecasting.
Moreover, unlike many previous studies that explored multiple models (such as CNN-
autoencoders, RNN, ensemble learners, or advanced optimization schemes), this study
focuses exclusively on CNNSs. Although other studies use an assortment of data types
(historical prices, sentiment, or graph embeddings), ours centers specifically on OHLC
candlestick information. Critically, the approach introduced here excels in accuracy
(~99.3%), far surpassing the 56-91.51% range typically reported. By merging a
systematic window and shift strategy with a single strong CNN model and a
comprehensive analysis of 61 patterns, this study breaks the new ground in the

literature.

Table 5.6. The comprehensive comparison of the related studies using candlestick

charts.

Authors Stock market ~ Timeframe  Model used Input dataset Classification  Accuracy
Historical stock

Linetal. . RF, GBDT, LR, KNN, prices, .

China’s Daily . Categorical 0.6

[52] SVM, LSTM technical
indicators

Hung & Taiwan and . CNN-autoencoder, Candlestick .

Daily Binary 0.84
Chen [18] Tokyo RNN Charts
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Apple, Tesla, Candlestick
Ho & . 1-D CNN and 2-D .
IBM, Amazon, Daily charts + Binary 0.7538
Huang [53] CNN .
and Google Twitter Text
Avrdiyanti,
Palupi & . ANN+K-Fold Cross- Candlestick .
o IDX Daily o Binary 0.8596
Indwiarti Validation Pattern data
[54]
Foreign GAF encoded
Chen & . . .
. exchange 1-min YOLO model candlestick Binary 0.8835
Tsai [15]
(EUR/USD) charts
Liang et 56.04% and
China’s Daily K-line K-line patterns Binary
al.[55] 55.56%
11 world . Ensemble Learning- Candlestick .
Santur [16] Daily Binary 0.538
indices Xgboost Chart
Candlestick is
Wangetal. China’s (CSI . represented by .
Daily Graph Neural Network Categorical -
[56] 300) graph
embedding
Indian(BSE
Behar & and NIFTY
Candlestick
Sharma 50) and US Daily KNN - Binary 0.614
charts
[57] (S&P500
and DJIA)
Ramadhan, GAF encoded
Palupl & Nasdaq100 Hourl CNN-LSTM Bi 90%and
asda our - ; ina
Wahyudi q y candlestick y 93%
[39] charts
. OHLC
Puterietal.  Forex . .
4-h SVM candlestick Binary 0.9072
[58] (GBP/USD)
data
Ruixun Exchange- Channel and Spatial- . Sharpe ratios
. . Candlestick .
Zhang & traded funds Daily Attention CNN (CS- hart Binary between 1.57
charts
Lin [59] (ETF) ACNN) and 3.03
Vijayababu
VGG16, ResNet50, OHLC
, Bennur & . . . .
. Ahihi Dataset Daily AlexNet, GoogleNet, candlestick Binary 0.9151
Vijayababu
YOLOvV8 pattern
[60]
Bidirectional GRU
with Candlestick OHLC
Chen, Hu . . . .
Chinese Daily Patterns and Sparrow candlestick Categorical -
& Xue [40] .
Search Algorithm data
(SSA-CPBIGRU)
Chinese
. Vector auto-regression
Huang, (Kweichow OHLC
. . (VAR), Vector error . .
Wang & Moutai, CSI Daily candlestick Binary -
correction model
Wang [61] 100, and 50 data
(VECM)
ETF)
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Proposed Forex . Candlestick .
15-min CNN Binary 0.993
model (EUR/USD) charts

5.2.2. Model Complexity Evaluation

Table 5.7. provides a robust examination of the complexity of a CNN. The architecture
has a total of 19,034,177 parameters and requires ~221 million Floating Point
Operations (FLOPs), all of which consuming approximately 72.65 MB of memory.
Composed of five layers, the architecture balances depth and computational demands.
It includes three sequential Conv2D layers, each paired with a MaxPooling2D layer,
followed by flattening and two dense layers, the latter separated by a dropout layer to
curb overfitting. A closer look reveals that the second Conv2D layer has the highest
FLOPs (95,883,264), whereas the largest param count (18,940,416) occurs in the first
dense layer. Despite these significant demands, MaxPooling2D substantially reduces
dimensionality while retaining vital features, boosting overall efficiency.
Benchmarking with inference times underscores real-time feasibility, yielding a mean
latency of ~570 ms and standard deviation of ~84 ms, which is reasonable in practical

trading scenarios.

Table 5.7. CNN model complexity analysis.

Model overview

Total

19,034,177
Parameters:
Total FLOPs: 221,008,385
Parameter

72.61 MB
Memory:
Model Size: 72.65 MB
Model Deth: 5 Layers

Layer-wise Analysis

Layer type Parameters FLOPs Output shape
Conv2D 896 19,625,984 (64,148,148,32)
MaxPooling2D 0 700,928 (64,72,72,32)
Conv2D 18,496 95,883,264 (64,72,72,64)
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MaxPooling2D 0 331,776 (64,36,36,64)

Conv2D 73,856 85,377,536 (64,34,34,128)
MaxPooling2D 0 147,968 (64,17,17,128)
Flatten 0 0 (64,36,992)
Dense 18,940,416 18,940,416 (64,512)
Dropout 0 0 (64,512)
Dense 513 513 (64,1)

Inference time analysis

Mean Inference Time: 570.20 ms
Std Inference Time: 84.14 ms

Min Inference Time: 397.73 ms
Max Inference Time: 741.64 ms

5.2.3. Real-Time Market Analysis and Results

Figure 5.5. illustrates an algorithm’s performance in a real trading environment,
specifically on the EUR/USD pair from October 28 (12:00) to November 1 (00:00),
2024. Markers “U” (Up) and “D” (Down) denote trend reversals. Throughout these 84
hours, prices oscillated between 1.078 and 1.088. A sharp drop occurred on October
29 (at approximately 12:00), bottoming near 1.078 before rebounding. The pair then
embarked on an upward track, testing 1.086-1.088. These observations show that the
trend detection algorithm works effectively in live, volatile conditions, thus carrying
risk-management implications for institutional investors. The algorithm’s higher
sensitivity to turning points compared to some standard technical tools suggests an
advancement in Al-driven trading systems. Future investigations could extend these

tests to other timespans and instruments to improve the adaptability of the model.
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Up/Down Trend Signals for EUR/USD
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Figure 5.5. Algorithmic trend detection signals on EUR/USD parity over 84-h period
with 15-min intervals (October 28—November 1, 2024).
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PART 6

CONCLUSION AND FUTURE WORKS

6.1. CONCLUSION

This study integrates historical Japanese candlestick (JC) knowledge from the 17th
century with a modern CNN, thereby enhancing the prediction of financial market
behavior. The comprehensive three-stage approach we adopt establishes a novel path
for market analysis, especially in the EUR/USD Forex domain. First, we introduced
an innovative sliding window strategy that allows systematic time-series exploration,
enabling the creation of detailed subgraphs and identifying 61 separate candlestick
patterns. This step broadens conventional approaches and offers a more refined
perspective on how markets evolve. Second, automated pattern detection via the Ta-
lib library was combined with the selection of technical indicators and an adaptable
window-shift mechanism (six intervals). Third, our sophisticated CNN architecture,
comprising ~19 million parameters and ~221 million FLOPs, achieves remarkable

efficiency, averaging an inference time of ~ 570 ms.

Our experiments confirm the efficacy of this combined approach, reaching ~99.3%
accuracy, a figure substantially above that of existing methods that usually fall
between 56% and 91.51%. This impressive rate was demonstrated through a rigorous
5-fold cross-validation on 15-minute data and validated in a real-time context (October
28—November 1, 2024). The model’s robust performance on novel data cements its
suitability for scenarios demanding a rapid response, such as high-frequency trading,
where classic technical analysis can falter amid rapid shifts.
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The key contributions of this study include (1) a pattern-recognition framework
encapsulating 61 candlestick formations, (2) an adaptive window-shift mechanism
tailored to high-frequency data, and (3) quantitative trend detection using SMAs.
These enhancements are significant for automated software trading and risk

management methods.

6.2. FUTURE WORKS

Directions for future work include several aspects.

First, testing the model on different instruments (cryptocurrencies and commodities)

and diverse markets (volatile or crisis periods) can foster broader applicability.

Second, further synergy with technical or fundamental signals could refine the model,

especially if macroeconomic or sentiment-based data are integrated.

Third, advanced optimization (e.g., neural architecture search or pruning) can
preserve or enhance the accuracy while reducing the computational overhead. Fourth,
unsupervised or semi-supervised methods may uncover heretofore undocumented

patterns, amplifying the model’s insight.

Fifth, to strengthen real-world validation, performance evaluations should address

more risk metrics, transaction costs, and additional market states.

Sixth, exploring longer time horizons or multiple time frames expands the scope of

the model.

Lastly, advanced adaptive learning that recalibrates shifting market conditions might

ensure sustained relevance over time.

In summary, this study merges legacy technical techniques with state-of-the-art Al to
significantly improve the accuracy of financial forecasting. The resulting system holds

promise for automated trading and real-time analytics, enhancing both practical
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outcomes and the broader financial modeling field. By merging historical expertise
with modern deep learning, we set a stage for robust next-generation market-prediction

frameworks.
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