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Over the centuries, Japanese candlestick (JC) patterns have garnered considerable 

interest from market participants because of their capacity to illuminate the underlying 

psychology of financial markets. Originating in 17th-century Japan, where rice traders 

first developed this illustrative method of charting—candlestick patterns, it evolved 

into a cornerstone of contemporary technical analysis, shaping countless trading 

strategies across global markets. The present investigation advances this venerable 

tradition by proposing an innovative framework that leverages convolutional neural 

networks (CNNs) to forecast the directional movements of subsequent candlesticks. 

This comprehensive study underscores the critical role of historical pattern recognition 

in anticipating price fluctuations, substantively contributing to the literature on 

algorithmic trading and intelligent financial forecasting.
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Methodologically, this research employed a meticulous three-tiered approach to 

construct a high-fidelity dataset. First, the raw price data were parsed into subcharts 

using a sliding window technique, which enabled the capture of temporal dynamics 

within bounded intervals. Next, the Ta-lib library was harnessed to validate the 

presence of predefined candlestick patterns within each subchart, thereby infusing the 

dataset with qualitative indicators of market sentiment and potential trend reversals. 

Finally, each window’s directional inclination was determined through an integrative 

process involving technical indicators such as moving averages that collectively 

furnished robust evidence regarding prospective price trajectories. These carefully 

curated data elements form a solid foundation for the subsequent model training phase, 

wherein a CNN is developed to automatically extract salient visual and temporal 

features, ultimately achieving an impressive predictive accuracy of up to 99.3 percent. 

 

Crucially, the reliability and generalizability of these findings were verified using a 

rigorous cross-validation scheme. In this validation protocol, the dataset is split into 

multiple distinct subsets, and iterative rounds of model training and testing are 

conducted on various combinations of these partitions. Through this systematic 

procedure, the capacity of the model to generalize was ascertained, thereby 

diminishing the risk of overfitting and solidifying the robustness of the observed 

predictive performance. The consistently high accuracy rates recorded across different 

training–testing folds testify to the adaptability of this approach in real-world trading 

environments. 

 

From a broader perspective, this study demonstrates how modern artificial intelligence 

techniques can augment, refine, and potentially supersede traditional technical analysis 

methods. By blending the timeless insights of candlestick charting with the 

computational power of CNNs, traders and analysts can derive more nuanced data-

driven strategies designed to anticipate inflection points and capitalize on emerging 

trends.  

 

Keywords : Stock market, Buy-sell strategy, CNN, Cross-validation, Japanese 

candlestick. 

Science Code : 915.1.092
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ANALİZ KULLANARAK FİNANSAL PİYASA TAHMİNLERİNİN 

GELİŞTİRİLMESİ 

 

Edrees Ramadan MERSAL MORCELI 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

 

Tez Danışmanı: 

Doç. Dr. Hakan KUTUCU  

Nisan 2025, 102 sayfa 

 

Yüzyıllar boyunca Japon mum (JC) formasyonları, finansal piyasaların temel 

psikolojisini aydınlattıkları düşüncesiyle yatırımcıların yoğun ilgisini çekmiştir. İlk 

kez 17. yüzyılda Japonya’daki pirinç tüccarları tarafından geliştirilen bu gösterim 

yöntemi, günümüz teknik analiz yaklaşımlarının temel direklerinden biri haline 

gelerek küresel piyasalarda sayısız yatırım stratejisine esin kaynağı olmuştur. Bu 

çalışma, söz konusu köklü geleneği ileriye taşıyarak, gelecek mum çubuklarının 

yönelimlerini tahmin edebilmek amacıyla evrişimli sinir ağlarını (CNN) kullanan 

yenilikçi bir çerçeve önermektedir. Araştırma kapsamında, tarihi formasyon tespitinin 

fiyat oynaklığını öngörmedeki önemini vurgulayarak, algoritmik alım-satım ve yapay 

zekâ odaklı finansal tahmin literatürüne kayda değer bir katkı sunulmaktadır.
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Yöntemsel olarak, yüksek doğruluklu bir veri kümesi oluşturmak amacıyla üç aşamalı 

titiz bir yaklaşım benimsenmiştir. İlk aşamada, kayan pencere yöntemi aracılığıyla 

ham fiyat verileri alt grafiklere ayrılmış ve böylece zamana yayılan dinamikler belirli 

aralıklar içinde yakalanmıştır. İkinci aşamada ise Ta-lib kütüphanesi kullanılarak, 

önceden tanımlanmış mum formasyonlarının her alt grafikte mevcut olup olmadığı 

doğrulanmış ve veri kümesine piyasa duyarlılığı ile muhtemel trend dönüşlerini 

yansıtan nitel göstergeler eklenmiştir. Son aşamada, her pencerenin yönsel eğilimi, 

hareketli ortalamalar ve momentum osilatörleri gibi teknik göstergelerin bütünsel bir 

şekilde değerlendirilmesiyle belirlenmiştir. Bu özenli veri işleme süreci, önemli görsel 

ve zamansal özellikleri otomatik olarak çıkaran bir CNN modelinin eğitimi için sağlam 

bir temel oluşturmuş ve neticede %99,3’e varan etkileyici bir tahmin doğruluğu elde 

edilmiştir. 

 

Modelin güvenilirliği ve genellenebilirliği, çoklu çapraz doğrulama yöntemiyle 

pekiştirilmiştir. Bu doğrulama sürecinde, veri kümesi birden fazla farklı alt kümeye 

ayrılmış ve eğitme ile test aşamaları farklı bölümler üzerinde tekrarlı olarak 

gerçekleştirilmiştir. Böylece, modelin aşırı uyum (overfitting) riskini en aza indirgeme 

ve öngörü performansını güçlendirme amacına hizmet eden sistematik bir yöntem 

devreye sokulmuştur. Farklı eğitim–test katmanlarında elde edilen sürekli yüksek 

doğruluk oranları, yaklaşımın gerçek piyasa koşullarına uyarlanabilirliğine dair güçlü 

kanıtlar sunmaktadır. 

 

Daha geniş bir açıdan bakıldığında, bu araştırma, yapay zekâ temelli tekniklerin 

geleneksel teknik analiz yöntemlerini nasıl güçlendirebileceğini ve hatta ileride yer yer 

geçersiz kılabileceğini göstermektedir. Mum çubuğu analizinin zamansız içgörüleri, 

CNN’nin hesaplama gücüyle harmanlanarak, yatırımcıların kritik dönüş noktalarını 

öngörebileceği ve gelişmekte olan trendlerden yararlanabileceği daha incelikli, veri 

odaklı stratejiler geliştirmelerine olanak tanımaktadır.  

 

Anahtar Sözcükler : Borsa, Al-sat stratejisi, CNN, Çapraz doğrulama, Japon mum 

çubuğu. 

Science Code  : 915.1.092
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PART 1 

 

INTRODUCTION 

 

1.1. BACKGROUND 

 

Forecasting underpins strategic decision-making in financial markets. Through 

advanced predictive models, traders and institutions endeavor to anticipate future 

scenarios, mitigate risks, and optimize investment outcomes. Thus, effective market 

analysis relies on a solid grasp of historical price behavior, mastery of analytical 

frameworks, and proficiency with technical tools. 

 

Broadly speaking, market analysis can be categorized into fundamental analysis (FA) 

and technical analysis (TA). An FA entails an in-depth review of an entity’s financial 

statements, assessing revenue streams, cost structures, and overall financial 

performance to derive its intrinsic value. By contrast, TA employs historical market 

data and statistical patterns to forecast price movements [1]. Specifically, TA leverages 

insights into price actions, trading volumes, and technical indicators to detect signals 

of pending shifts in market direction. 

 

Financial markets have evolved over centuries, shaping global economic development 

and enabling capital formation. Although rudimentary trade mechanisms existed in 

ancient Mesopotamia, more formalized stock exchanges emerged in the 17th century. 

The Amsterdam Stock Exchange (1602) was among the first to trade equity securities, 

most notably for the Dutch East India Company, and it marked a seminal milestone in 

modern finance. 

 

Within the TA, candlestick charting is particularly important because of its visual 

depth and historical significance. Originating in 17th-century Japan, candlestick 

techniques gained prominence when rice traders observed recurring formations that
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signaled probable price reversals [2] . Introduced to Western markets in the 1990s, 

candlestick patterns such as hammer (indicating potential bullish reversals) and doji 

(suggesting indecision) have become indispensable across trading platforms [3] & [4] 

& [5]. Each candlestick represents four primary pieces of information: opening, 

closing, and the highest and lowest prices over a specified interval. The body denotes 

the range between the opening and closing prices, whereas the upper and lower 

shadows indicate high and low values, respectively, for that period [6], as shown in 

Figure 1.1.  

 

 

 

Figure 1.1. The components for bullish and bearish candles 

 

Despite its utility, the identification of candlestick formation poses statistical and 

operational complexities [7]. Short-term fluctuations and noise can distort pattern 

recognition, whereas overlapping formations complicate systematic analysis. The 

exponential growth of the possible geometric variations adds to this difficulty. 

Furthermore, aligning historical candlestick patterns with current market data remains 

challenging, given the emergence of new serial formations and the constant evolution 

of price behaviors [8] . 

 

Crucially, candlestick patterns derive greater significance when analyzed as part of a 

sequence rather than in isolation. Grouped candlesticks may form shapes resembling 
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everyday objects such as a hammer or doji that signal potential reversals or 

continuations. These visual cues help traders make informed decisions about buying 

and sell orders [9] . For instance, doji highlights the balance of power between buyers 

and sellers, frequently presaging a trend reversal. 

 

Recent advances in machine learning (ML) have further enhanced technical analysis. 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and 

other modified architectures show promise in detecting and categorizing price 

variations [10]. Most current research involving candlestick charts focuses on 

technical indicators, such as candlestick color, shadow length, and the collective shape 

of candlesticks, to build predictive models. Typically, these data are converted into 

tensors or vectors, allowing numerical representation of the chart patterns. However, 

such vectorization may underutilize the visual context embedded in candlestick charts, 

underscoring the potential of image-based ML methodologies to capture both numeric 

and graphical dimensions of market data. 

 

In summary, candlestick charting provides a rich tapestry of historical insights and 

future forecasting potential, particularly when applied alongside robust ML 

algorithms. Analysts can derive more comprehensive and accurate assessments of 

market dynamics by integrating domain knowledge from TAs with advanced neural 

network architectures, thereby facilitating better-informed trading strategies and 

investment decisions. 

 

1.2. CONTEXT AND MOTIVATION 

 

1.2.1. Context and Motivation: Leveraging Candlestick Patterns and Computer 

Vision in Stock Market Analysis 

 

Candlestick charts and their underlying patterns have long served as a cornerstone of 

technical analysis, providing traders with a visually intuitive means of interpreting 

market sentiments. By capturing four key price points, opening, closing, high, and low, 

each candlestick conveys both intra-period market dynamics and broader trend 

information. When multiple candlesticks form recognizable patterns (Doji, Hammer, 
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Engulfing), they often signal pivotal market shifts, offering traders actionable insights 

into potential reversals or continuations. 

 

1.2.2. Ta-lib Integration for Pattern Detection 

 

The Ta-lib library further enhances the utility of candlestick charts by automating the 

pattern identification. Instead of manually scanning hundreds or thousands of candles, 

researchers and traders can employ the built-in functions of Ta-lib to systematically 

detect established patterns (Morning Star and Three White Soldiers). Automation 

significantly reduces human error and subjectivity, enabling more robust and 

repeatable strategies. Moreover, Ta-lib’s straightforward integration with popular 

programming languages (such as Python) streamlines data processing, making it 

simpler to incorporate candlestick pattern recognition into the existing trading 

algorithms and research pipelines. 

 

1.2.3. Computer Vision for Next-Candle Prediction 

 

While Ta-lib assists in identifying patterns, computer vision techniques offer an 

additional layer of insight by analyzing the visual features of candlestick charts. For 

instance, Convolutional Neural Networks (CNNs) can learn high-level representations 

of chart movements that extend beyond the preset rules or signal thresholds. By 

processing candlestick formations as images rather than numeric series, computer 

vision models can capture nuances such as slight variations in candle bodies or 

shadows, which might go unnoticed in purely numerical approaches. 

 

However, computer vision applications in financial markets remain relatively 

underexplored compared with other fields, such as healthcare or autonomous driving, 

where image-based models have already achieved remarkable results. The high 

volatility and noise inherent in stock market data present unique challenges, including 

non-stationarity and regime shifts. These factors underscore the need for further 

research and specialized model adaptations that account for financial-specific 

complexities such as sudden macroeconomic events or institutional trading behaviors. 
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1.3. PROBLEM STATEMENT  

 

Despite the long-recognized usefulness of Japanese Candlestick (JC) patterns in 

signaling potential market shifts, accurately predicting the direction of the next 

candlestick whether bullish (up) or bearish (down) remains a significant challenge. 

Existing technical analysis methods and earlier-generation machine learning models 

often struggle to accommodate the high volatility and diverse external forces that shape 

financial markets, leading to inconsistent or incomplete forecasts. Moreover, many 

prior studies have focused only on a handful of these patterns, overlooking the 

comprehensive set of 61 JC patterns available through the Ta-lib library. This narrow 

scope limits predictive power and fails to leverage modern data-driven approaches. 

 

To address these gaps, this research proposes employing computer vision techniques 

to interpret Japanese Candlestick charts as full-fledged images rather than simple 

numeric series. By capturing visual nuances and leveraging the entire range of 

recognized patterns, we aimed to construct an automated system that classifies the next 

candle as upward or downwards with greater accuracy. This approach requires 

seamless integration of real market data, multiple timeframes, and advanced technical 

indicators such as moving averages to ensure a robust trend correlation. Through this 

holistic methodology, we seek to overcome current limitations and offer a more 

reliable and comprehensive framework for next-candle-direction forecasting. 

 

1.4. AIM OF THE STUD 

 

This study aims to design and implement a robust candlestick pattern recognition 

framework that leverages Convolutional Neural Networks (CNNs) to enhance market 

trend forecasting. By integrating deep learning techniques with the established practice 

of candlestick analysis, this study seeks to 

 

A comprehensive dataset, featuring 61 distinct candlestick patterns, was constructed. 

A sliding window technique was employed to segment the data into subcharts, and a 

technical analysis library was used to validate the identified formations. 
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Develop and train a CNN-based predictive model to classify these patterns as 

bullish or bearish, incorporating additional technical indicators such as Simple Moving 

Averages (SMAs) to reinforce trend validation. 

 

Evaluation of model performance across various time windows, shift sizes, and 

validation methods. The goal is to surpass conventional forecasting techniques, 

achieve high predictive accuracy, and present a dependable framework for market 

prediction. 

 

1.5. CONTRIBUTIONS 

 

● Extensive Candlestick Coverage 

 

This study encompasses 61 distinct candlestick patterns, significantly more than many 

earlier studies, thus offering a more granular view of potential signals in the market. 

 

● Structured Data Preparation 

 

By combining a sliding window approach with technical indicator validation, this 

method ensures that each subchart is accurately labeled, aligning chart appearance with 

actual price dynamics. 

 

● High-Precision Forecasting 

 

The proposed CNN model consistently demonstrates high accuracy (up to 99.3% in 

certain configurations), outperforming the existing methods reported in the literature, 

which often exceed 92%. 

 

● Robust Validation 

 

Cross-validation strategies were used to verify the consistency and reliability of the 

model. Multiple temporal configurations with varying window sizes and shifts were 

evaluated systematically. 



 

7 

 

 

● Practical Applicability 

 

Although designed and tested on forex data, the framework can be adapted to other 

markets and time frames. It offers a scalable pathway toward real-time automated 

candlestick analysis, equipping traders and analysts with a powerful tool for informed 

decision-making. 

 

1.6. THESIS OUTLINE 

 

The present study was conducted in this context. The remainder of this dissertation is 

structured as follows: 

 

Chapter 1 

 

This chapter presents an overview of market forecasting, particularly focusing on 

Japanese Candlestick (JC) patterns and deep learning techniques. This highlights the 

research problem, principal objectives, and specific contributions of the study. 

 

Chapter 2 

 

We reviewed the literature on candlestick pattern analysis, technical indicators, and 

deep-learning-based predictive models in financial markets. This chapter discusses 

relevant studies, identifies gaps, and situates our research within the existing body of 

knowledge. 

 

Chapter 3 

 

The concepts, methods, and algorithms employed for candlestick chart detection and 

next-candle-direction prediction are explained in detail. This includes an in-depth 

discussion of Convolutional Neural Networks (CNNs), sliding window techniques, 

and the role of Ta-lib in automated pattern identification. 
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Chapter 4 

 

The implementation details of the proposed methodology are proposed, outlining the 

data preprocessing steps, model architecture, and training process. Technical specifics, 

such as hyperparameter tuning, validation strategies, and the experimental setup, are 

also discussed. 

 

Chapter 5 

 

Analysis of the experimental results Metrics such as accuracy, precision, and recall are 

presented alongside visual aids (confusion matrices and ROC curves) to evaluate 

model performance and justify its effectiveness. 

 

Chapter 6 

 

This dissertation is excluded by summarizing the key findings and contributions. This 

chapter also introduces future research perspectives, highlighting potential extensions 

and improvements to the current work. 
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PART 2 

 

LITRATURE SURVEY 

 

 

2.1. HISTORICAL REVIEW 

 

Financial market forecasting and candlestick analysis are inherently dynamic and are 

influenced by economic, political, and behavioral factors that can trigger rapid price 

fluctuations [11]. Traditional analytical techniques, such as fundamental and statistical 

modeling, often struggle to capture the complexity of these fluctuations. Consequently, 

researchers have increasingly turned to Japanese Candlestick (JC) patterns, a charting 

method with roots in 17th-century rice trading, to gain insights into potential price 

reversals, continuations, or sentiment shifts [12], [13]. These patterns, ranging from 

Doji and Hammer to more complex formations, such as Kicking and Mat Hold, have 

been extensively used in technical analyses to anticipate future trend movements [9]. 

 

2.1.1. Prior Studies on Candlestick Pattern Recognition 

 

Numerous studies have highlighted candlestick-based approaches, each focusing on 

different aspects of pattern identification, predictive modeling, and trade decision-

making. [14] integrated object detection methods and Gramian Angular Field (GAF) 

encoding to detect chart patterns and examine their correlation with price movements. 

[15] adapted a YOLO-based architecture for candlestick detection, illustrating how 

time-series encoding and deep neural networks can facilitate pattern categorization. 

Similarly, [16] built a candle-pattern recognition system to classify daily candlestick 

types (24 distinct patterns) and then used XGBoost to predict directional trends. Many 

of these studies underscore the importance of analyzing multiple patterns, often 

beyond a handful, to capture a richer set of market signals [13].
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2.1.2. Deep Learning Approaches for Market Trend Prediction 

 

The rapid proliferation of Artificial Intelligence (AI) and data availability has 

prompted researchers to explore deep learning models, notably Convolutional Neural 

Networks (CNNs), Recurrent Neural Networks (RNNs), and LSTMs, for market 

prediction. 

 

2.1.2.1. CNN-Based Methods: 

 

 A growing body of research uses CNNs on candlestick chart images to detect spatial 

features. [17] utilized CNNs within a Double Deep Q-Network framework to interpret 

candlestick patterns, achieving better returns than a benchmark S&P 500 strategy. [18] 

divided candlestick charts into subparts and employed CNN autoencoders to extract 

features before using RNNs for final predictions. 

 

2.1.2.2. RNN and LSTM Approaches 

 

Various researchers [19] have integrated LSTMs or RNNs to handle sequential 

dependencies in candlestick data. Although these architectures effectively model 

temporal patterns, they sometimes require larger datasets and meticulous 

hyperparameter tuning to avoid vanishing or exploding the gradients. 

 

2.1.2.3. Hybrid and Ensemble Models 

 

Several studies merged CNNs with LSTMs or ensemble algorithms (e.g., XGBoost, 

Random Forest) to capture both the spatial patterns in candlestick images and the 

temporal nuances of time-series data [20], [21]. 

 

 

2.1.3. Integrating Technical Indicators and Feature Engineering 

 

For instance, [22] combined daily candlestick patterns with multiple indicators in a 

deep neural network to enhance intraday price forecasts. Similarly, [21]  revealed that 
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certain candlestick formations used in tandem with indicators or substitutes improved 

the predictive performance of crypto-asset forecasts. 

 

Feature Extraction Techniques 

 

Image-based: Transforming candlestick charts into image data (e.g., GAF or wavelet-

transformed charts) enables CNNs to detect geometric and textural features that 

numeric-only approaches can overlook [7], [23] 

 

Vector-based: Some models rely on numeric encoding of candlestick attributes (body 

length and shadow ratios) and technical indicators to feed into conventional ML or 

hybrid neural networks ([6]. 

 

2.1.4. Comparative Insights on Pattern Recognition Techniques 

 

Research comparing classical approaches (e.g., manual chart scanning and rule-based 

detection) with AI-driven methods has concluded that deep learning models generally 

outperform simpler systems, albeit at a higher computational cost [9]. [24]  noted that 

MLP and CNN performed better than random forests and AdaBoost in certain 

candlestick tasks but cautioned that ensemble methods such as XGBoost can surpass 

deep networks if the data are imbalanced, or patterns are rare. 

 

The key limitations identified in prior studies include the following. 

 

Data Imbalance and Noise: Less frequent patterns, such as the Kicker or Concealing 

Baby Swallow, can be overlooked in training and skewing predictions [25]. 

 

High-Frequency Volatility: Standard models may struggle in real-time contexts with 

abrupt price swings unless a specialized architecture is used. 

 

Overfitting Risks: Deep models trained on limited datasets can latch onto noise unless 

robust validation (e.g., stratified k-fold) or regularization is enforced. 
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2.2. RELATED WORKS 

 

In recent years, the integration of artificial intelligence with traditional technical 

analysis has transformed financial forecasting. A significant body of research has 

focused on leveraging Japanese Candlestick (JC) patterns, which encapsulate key price 

points, such as opening, closing, high, and low values, to extract actionable market 

signals. Early studies by Andriyanto (2020) [26] demonstrated that image-based 

approaches using Convolutional Neural Networks (CNNs) can effectively predict 

short-term directional movements by analyzing three-day candlestick sequences, 

highlighting the potential of deep learning for automating what was once a manual 

process. 

 

Barra et al. (2020) [23] extended this idea by employing an ensemble of CNNs on 

images generated via Gramian Angular Field (GAF) transformations. Their 

multiresolution approach to Standard & Poor’s 500 index data revealed that such visual 

encoding techniques can capture subtle geometrical features in candlestick charts, 

resulting in a robust predictive performance that outperforms traditional buy-and-hold 

strategies. 

 

In the context of real-time object detection, Birogul et al. (2020) [27] applied the 

YOLO algorithm to 2D candlestick charts to extract buy–sell signals. Their work 

demonstrated how deep learning can shift traditional technical analysis toward more 

automated, visually driven systems, offering traders a dynamic decision-making tool. 

 

Efforts to integrate reinforcement learning with candlestick analysis are exemplified 

by Brim and Flann (2022), [17] who combined a CNN with a Double Deep Q-Network 

(DDQN) to capture and act upon features extracted from recent candles. Their model, 

trained on S&P 500 data, consistently produced superior returns, thereby illustrating 

the effectiveness of hybrid approaches in volatile markets. 

 

To address the challenges of noise and false signals, Cagliero et al. (2023) [28] 

proposed a framework that separates machine learning from the pattern recognition 

process. They developed a more reliable system for market forecasting under volatile 
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conditions by fine-tuning the classification pipeline to reduce redundant and 

conflicting signals. 

 

Two influential studies by Chen and Tsai (2020, 2022) [25], [29] paved the way for 

modern candlestick analysis using image-based deep learning. In their 2020 study, 

they converted time-series candlestick data into GAF images for classification using 

CNNs, demonstrating improved accuracy over traditional LSTM models. Their 2022 

study builds on this foundation by adapting a YOLO-based architecture to dynamically 

detect multiple candlestick patterns, underscoring the evolving nature of visual pattern 

recognition in financial contexts. 

 

Chen et al. (2024) [30] integrated candlestick pattern inputs with a Sparrow Search 

Algorithm (SSA) and a BiGRU network, resulting in a system that significantly 

reduced forecasting errors (e.g., lower MAPE and RMSE) in Chinese stock markets. 

This study exemplifies how evolutionary optimization can enhance deep learning 

models for financial predictions. 

 

Exploring the profitability of classical patterns, Cohen (2020) [11] investigated 

formations such as “stairs” and Harami. His findings reveal that, while some patterns 

consistently yield profits, others do not, emphasizing the need for models that can 

differentiate between robust and less reliable signals. 

 

Dakalbab et al. (2024) [11] provide context by linking macroeconomic and political 

factors to trader sentiment, suggesting that external events can significantly influence 

candlestick patterns. This underscores the challenge of isolating purely technical 

signals in an environment characterized by frequent disruptions. 

 

To mitigate noise in high-frequency data, Du et al. (2020) [7] applied wavelet 

transforms to denoise log returns before feeding the cleaned data into CNNs for 

classification. Their method effectively enhanced the signal-to-noise ratio, thereby 

improving the reliability of intraday trading of candlestick patterns. 

 



 

14 

 

Focusing on short-term predictive power, Heinz et al. (2021) [31] evaluated the 

conditions under which bullish and bearish engulfing patterns performed reliably. 

They noted that specific price criteria are critical for maximizing accuracy, although 

some formations, such as Harami, remain inconsistent. 

 

Hung and Chen (2021) [18] introduced a multistage approach in which candlestick 

charts were first segmented into subcharts, processed via a CNN autoencoder, and then 

analyzed using a recurrent neural network (RNN) for sequential prediction. Their 

method achieved higher accuracy on the Taiwan Exchange data by effectively 

capturing both the spatial and temporal features. 

 

The “Deep Candlestick Predictor” developed by Hung et al. (2020) [9] further 

demonstrates that CNN autoencoders can extract vital local features from candlestick 

subcharts, which, when combined with 1D-CNN layers, lead to more robust trend 

forecasts compared to traditional methods. 

 

In a comparative analysis, Jearanaitanakij and Passaya (2019) [4] collected over 1,800 

labeled candlestick images to train a dedicated CNN model. Their findings suggest 

that custom-designed CNNs can offer faster training and higher accuracy for 

classifying candlestick charts into bullish, bearish, or sideways categories. 

 

To address the issue of imbalanced datasets, Karmelia et al. (2022) [32] employed 

techniques, such as undersampling and SMOTE, to better represent rare candlestick 

patterns within their Feed-forward Neural Network framework. Although the overall 

classification accuracy is high, the study reveals challenges in achieving a balanced F1 

score, indicating that further refinement is required to capture less frequent but critical 

patterns. 

 

A comparative study by Kusuma et al. (2019) [33] investigated the influence of chart 

image dimensions and feature sets on prediction accuracy. Their evaluation across 

Taiwanese and Indonesian stock markets demonstrated that choices regarding image 

resolution and the inclusion of volume data significantly affected model performance, 

highlighting the sensitivity of deep learning models to input parameter configurations. 
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Lee et al. (2019) [34] merge CNNs with deep Q-networks to approximate stock chart 

images and generate trading signals across multiple international markets. Their cross-

market validation showed that image-based reinforcement learning strategies can 

effectively adapt to diverse global market conditions. 

 

Liang et al. (2022) [20] propose a method that mines sequential patterns from 

multidimensional candlestick data, introducing a novel similarity measure to align new 

sequences with historical patterns. This method shows that combining geometric 

pattern recognition with temporal sequence alignment can enhance the adaptability of 

forecasting models under dynamic market conditions. 

 

An ensemble approach by Lin et al. (2021) [6] automatically selects optimal prediction 

methods, such as random forest, gradient boosting, and LSTMto, to forecast daily 

candlestick patterns. Their findings suggest that integrating various models guided by 

both technical indicators and candlestick features leads to improved risk-adjusted 

returns compared to traditional strategies. 

 

Madbouly et al. (2020) [35] explore an alternative representation by integrating 

Heikin-Ashi candlesticks with fuzzy time series and a cloud model. Their method 

smooths volatile data and manages uncertainty through fuzzy logic, yielding higher 

forecast stability and accuracy in markets with significant noise. 

 

For intraday forecasting, Naik and Mohan (2020) [22] integrated multiple technical 

indicators with candlestick chart data within a deep neural network framework. Their 

method improves upon standard numeric-only models by providing a richer feature set 

that captures both the directional movement and underlying momentum of the market. 

 

Nakayama et al. (2019) [36] address the incorporation of order-flow information into 

candlestick-like images. By encoding market microstructure events and using logistic 

regression combined with CNNs, they showed that granular trading details can be 

effectively visualized and used to predict short-term price trends. 
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Nguyen et al. (2023) [14] merge object detection with GAF time-series encoding to 

identify complex candlestick formations, including overlapping patterns and multiple 

chart events. Their advanced detection algorithm increases the detection rate of 

nuanced candlestick features, underscoring the capability of modern computer vision 

techniques to manage complex financial data. 

 

Orquín-Serrano (2020) [37] targeted the adaptive classification of candlestick patterns 

for the EUR–USD pair using statistical inference methods. Despite sophisticated 

labeling, this study reveals that net returns may remain suboptimal when transaction 

costs are factored in, highlighting the inherent challenges of relying solely on 

candlestick data under certain market conditions. 

 

Orte et al. (2023) [21] compare input strategies candlestick-only, technical indicators-

only, and a combination using a random forest model for crypto futures markets. Their 

iterative retraining approach demonstrated that candlestick patterns can offer critical 

insights and often outperform traditional indicators under volatile conditions. 

 

Pan et al. (2020) [38] develop a deep learning portfolio model by transforming 

candlestick data into images and using convolutional autoencoders to extract latent 

features. By clustering these features and selecting stocks based on Sharpe ratios, this 

study demonstrates that sophisticated image-based feature engineering can support 

effective portfolio management. 

 

Ramadhan et al. (2022) [39] proposed a hybrid CNN-LSTM model in which CNN 

layers capture spatial candlestick features and LSTM layers process temporal 

dependencies. This combined approach yields robust accuracy in short-term 

predictions, even amidst high market volatility, thereby demonstrating the benefits of 

merging spatial and sequential deep learning techniques. 

 

Santur (2022) [16] employed a multiphase process that classifies 24 candlestick 

patterns using one-hot encoding and then applies XGBoost for trend prediction. 

Testing various global indices, this method consistently outperformed traditional buy-
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and-hold strategies, illustrating the efficacy of ensemble learning in capturing dynamic 

market signals. 

 

Thammakesorn and Sornil (2019) [2] proposed a feature-based extraction method that 

integrates candlestick pattern signals with a Chi-square Automatic Interaction Detector 

to construct profitable trading strategies. Their work suggests that rule-based systems 

grounded in candlestick features can achieve competitive returns compared to 

conventional technical indicators. 

 

Table 2. 1. Overview of recent research on candlestick pattern recognition and trading 

models. 

 

Ref Market Model Performance Metric 

[26] 
Indonesian Mining 

Index (JKMING) 
CNN 

Directional accuracy 

(qualitative) 

[23] S&P 500 Index Future 
Ensemble CNN with GAF 

encoding 

Outperforms buy-and-

hold; high classification 

accuracy 

[27] 
General stock 

market/investment tools 
YOLO algorithm 

Detection of “buy-sell” 

signals (qualitative) 

[17] S&P 500 
CNN + Double Deep Q-

Network (DDQN) 

Returns above S&P 500 

benchmark 

[28] 
General financial 

markets 

Machine learning with 

separated pattern recognition 

Reduction in false signals 

(qualitative) 

[40] Chinese stock market SSA-CPBiGRU 

Reduction in MAPE, 

RMSE; +2.05% 

improvement in R² 

[29] 
General financial 

markets 

CNN with Gramian Angular 

Field (GAF) encoding 

Improved accuracy over 

LSTM 

[25] 
General financial 

markets 

YOLO-based dynamic 

detection 

Improved detection speed 

and accuracy 

[41] Stocks (20 tested) 
Rule-based candlestick 

analysis 

Profitability varies by 

pattern 

[11] General markets N/A (contextual analysis) 
Qualitative impact on 

trader sentiment 

[7] Intraday stock data Wavelet transform + CNN 
Binary classification 

accuracy 
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[42] Stock market (K-line) 
Fuzzy algorithms and 

clustering 

Improved robustness 

(qualitative) 

[31] Stocks 
Analysis of Engulfing/Harami 

patterns 

Improved prediction under 

specific criteria 

[18] Taiwan Exchange CNN autoencoder + RNN 
Higher trend forecasting 

accuracy 

[9] 
Taiwan Exchange 

Weighted Stock Index 

Deep Candlestick Predictor 

(CNN autoencoder + 1D 

CNN) 

Outperforms traditional 

methods 

[4] General stock market Custom CNN 
High classification 

accuracy; faster training 

[32] Historical stock data 
Feed-forward Neural Network 

with SMOTE 

High overall accuracy; 

lower F1 score 

[33] 

Taiwanese & 

Indonesian stock 

markets 

CNN, Random Forest, VGG 

networks 

Sensitivity to image size 

and volume inclusion 

[34] 
U.S. stocks (global 

testing in 31 countries) 
CNN + Deep Q-Network 

0.1% to 1.0% return per 

transaction 

[8] General stocks 
Sequential pattern mining + 

similarity measure 

Correlation with future 

trends (qualitative) 

[6] 
Various indices/stock 

markets 

Ensemble ML (RF, GBDT, 

LSTM, etc.) 

Improved Sharpe ratio; 

reduced drawdown 

[35] General stock markets 
Heikin-Ashi + Fuzzy time 

series + Cloud model 
High forecasting accuracy 

[22] Intraday stock data 
Deep Neural Network (with 10 

technical indicators) 

Improved prediction 

performance 

[36] 
High-frequency trading 

data 

Logistic Regression + CNN on 

order-flow images 

Short-term prediction 

accuracy 

[14] General stock market 
Object detection + GAF 

encoding 

Improved detection rate of 

overlapping patterns 

[37] Forex (EUR–USD) 

Adaptive candlestick 

classification (statistical 

inference) 

Net returns not positive 

after transaction costs 

[21] Crypto futures 
Random Forest (iteratively 

retrained) 

Candlestick patterns often 

outperform technical 

indicators 

[38] Chinese stock market 
Convolutional autoencoder + 

K-means clustering 

High Sharpe ratio; 

improved risk-adjusted 

returns 
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[39] 
Short-term trading 

positions 
Hybrid CNN-LSTM 

Robust accuracy in short-

term predictions 

[16] Global indices 

Candlestick pattern 

recognition + One Hot 

Encoding + XGBoost 

Outperforms buy-and-hold 

strategy 

[2] Stock trading strategies 

Feature extraction + Chi-

square Automatic Interaction 

Detector 

Superior profitability 

relative to common 

technical indicators 
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PART 3 

 

MATERIAL AND METHODS 

 

3.1. TIME SERIES  

 

A time series is an ordered sequence of observations recorded over time, often viewed 

as the realization of a stochastic process (a sequence of random variables indexed by 

time). Unlike independent observations, time-series data points are temporally 

correlated; what happens at time 𝑡 depends on previous times. 

 

In analyzing time series, statisticians examine properties such as stationarity and 

autocorrelation to characterize the data-generating process and inform suitable 

modeling and forecasting techniques. 

 

3.1.1. Forcasting Methods 

 

Time series forecasting aims to predict future values 𝑋𝑛+1, 𝑋𝑛+2, …, given observed 

data 𝑋1, 𝑋2, … , 𝑋𝑛. Forecasting methods can range from simple empirical techniques 

to complex stochastic models. 

 

● Autoregressive Integrated Moving Average (ARIMA) Models: These are 

classic statistical models that combine autoregression (AR) and moving 

average (MA) components to capture different aspects of autocorrelation 

. The ARMA (𝑝, 𝑞) model assumes that the time series can be modeled as a 

linear function of its previous 𝑝 values and previous 𝑞 random shocks (errors). 

In equation form, an ARMA model appears as follows: 

 

𝑋ₜ =  𝛿 +  𝜙₁𝑋ₜ₋₁ +  𝜙₂𝑋ₜ₋₂ +  … +  𝜙ₚ𝑋ₜ₋ₚ +  𝐴ₜ –  𝜃₁𝐴ₜ₋₁ – … –  𝜃𝑞𝐴ₜ₋𝑞 (3.1)
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Where 𝜑₍ᵢ₎ are the autoregressive coefficients, 𝜃₍ⱼ₎ are the moving average 

coefficients, 𝛿 is a constant term (drift), and 𝐴ₜ represents the white noise error term at 

time 𝑡. The AR part (the 𝜑 terms) captures persistence illustrating how past values 

influence the current observation while the MA part (the 𝜃 terms) reflects the effect of 

previous shock residuals on the current value. If the series is nonstationary, 

differencing can be applied 𝑑 times to achieve stationarity, resulting in an ARIMA 

(𝑝, 𝑑, 𝑞) model. ARIMA models (and their seasonal variants, SARIMA) are based on 

the Box-Jenkins methodology for model identification, estimation, and diagnostic 

checking. This approach leverages the ACF and PACF patterns to select suitable 

orders for 𝑝 and 𝑞. stochastic foundation, ARIMA models provide not only point 

forecasts but also confidence intervals based on the underlying probability model [43]. 

 

● Exponential Smoothing Methods: In exponential smoothing, forecasts are 

constructed using exponentially weighted averages of past observations, giving 

more weight to recent data. Methods such as Simple Exponential Smoothing 

(for level forecasting), Holt’s linear method (which adds a trend component), 

and Holt-Winters (which add seasonal components) are effective for patterns 

with trends and seasonality. These methods are not explicitly stochastic models 

but can be interpreted in state-space form with certain error assumptions. They 

are valued for their simplicity and strong empirical performance, especially for 

short-term forecasts in business contexts [44]. 

● Machine Learning and Neural Networks: Modern approaches treat 

forecasting as a general prediction problem and use machine-learning 

algorithms to capture possible nonlinear relationships. Feedforward neural 

networks or recurrent neural networks (RNNs) can be trained on the sliding 

window inputs of past values to predict future values. More recent techniques 

include Long Short-Term Memory (LSTM) networks and transformers that are 

adept at learning long-range dependencies in sequential data. These models do 

not assume a specific stochastic structure a priori; instead, they learn patterns 

directly from data, which can be advantageous if the true data-generating 

process is highly complex or nonlinear. However, they typically require large 

amounts of data and careful regularization to avoid overfitting. 
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In practice, the model choice depends on the characteristics of the time series and the 

forecasting horizon. For instance, ARIMA models are often effective for the short-

term forecasting of stationary or different series, leveraging well-understood statistical 

properties and diagnostic checks. On the other hand, when data show regime changes 

or nonlinear patterns that are difficult to capture with linear models, machine learning 

methods might offer improvements, albeit at the cost of interpretability. Ultimately, 

evaluating the forecast accuracy on held-out time periods (e.g., via rolling forecast 

origin evaluation) and checking residuals are crucial steps, regardless of the method 

used, to ensure that the model has captured the signal and not just overfit noise. 

 

3.1.1.1. Time Series Forecasting vs. Regression Analysis 

 

Although both time-series forecasting and regression analysis are used to predict future 

values, they fundamentally differ in their methodologies and objectives. 

 

3.1.1.2. Time-Series Forecasting 

 

Time series forecasting is an extrapolation technique. It relies on inherent temporal 

ordering and autocorrelation of past observations to predict future outcomes. In this 

approach, models such as ARIMA, exponential smoothing, or even advanced neural 

network architectures explicitly incorporate the time-dependent structure of the data. 

These models were designed to extend the observed sequence beyond its current range 

by capturing the trends, seasonality, and cyclical patterns inherent in the data [43]. 

 

3.1.1.3. Regression Analysis 

 

In contrast, regression analysis is typically viewed as an interpolation method that aims 

to explain the relationships between two or more variables based on the observed data. 

A regression model quantifies how changes in one or more independent variables are 

associated with changes in dependent variables. While regression models can be used 

to predict future values, their primary purpose is to uncover and mathematically 

describe the historical relationships among variables, rather than relying on the 

sequential dependency found in time-series data [45]. 
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3.2. THE SLIDING WINDOW MECHANISM: CONCEPT AND 

APPLICATION 

 

The sliding-window mechanism is a fundamental technique for transforming a time 

series into a collection of fixed-length segments. This approach not only facilitates the 

use of supervised learning algorithms by converting sequential data into independent 

samples but also enables detailed analysis of localized patterns within the data [46]. 

 

3.2.1. Defining the Sliding Window 

 

At its core, this method involves defining a “window” as a consecutive block of 

observations of fixed length, denoted by 𝐿. For a given timeseries 𝑋𝑡, each window 

captures a contiguous segment starting at time 𝑡 and ending at time 𝑡 + 𝐿 − 1. 

Mathematically, this can be expressed as: 

 

𝑋(𝑡) = [ 𝑥𝑡 , 𝑥𝑡+1, … , 𝑥𝑡+𝐿−1], 

 (3.2) 

where 𝑡 = 1,2, … , 𝑁 − 𝐿 + 1  in a time series of length 𝑁. 

 

3.2.2. Creating the Windows 

 

The process was initiated at the beginning of the series. The first window is simply the 

sequence 𝑋(1) = [𝑥1, 𝑥2, . . . , 𝑥𝐿]. Once the initial segment is defined, the window is 

systematically moved forward by a fixed step size—commonly referred to as the 

“stride.” When the stride is set to 1, the subsequent window is 

 

𝑋(2) = [𝑥2, 𝑥3, . . . , 𝑥𝐿+1] (3.3) 

 

This sliding operation is repeated until the entire time series is segmented into 

overlapping or, if desired, into disjoint windows. 

 



 

24 

 

3.2.3. Overlap and Its Significance 

 

A key characteristic of the sliding window method is its potential for overlapping 

consecutive windows. Adjacent windows share a substantial portion of their data, with 

a stride smaller than the window length. This overlapping is not a drawback; rather, it 

ensures that subtle transitions or transient patterns in the time series are 

comprehensively captured. The redundancy inherent in overlapping windows 

increases the robustness of pattern recognition and forecasting tasks, albeit at the cost 

of introducing dependence among samples, which must be carefully considered in 

subsequent analyses [47]. 

 

3.2.4. Application in Forecasting 

 

One of the most common applications of the sliding window technique is time series 

forecasting. In this context, each window served as an input sample for the predictive 

model. The immediate next value in the series, denoted by 𝑥𝑡+𝐿, is used as the target 

output. This strategy converts the problem into a supervised learning task where input-

output pairs (𝑋(𝑡), 𝑦(𝑡)) are formed, with: 

 

𝑦(𝑡) = 𝑥𝑡+𝐿 (3.4) 

 

Thus, the model was trained to predict the next time point based on the historical data 

encapsulated within each window. For example, with daily observations and 𝐿 = 3 , a 

sample could be constructed as 

 

 [𝑥𝑡  , 𝑥𝑡+1 , 𝑥𝑡+2] → 𝑥𝑡+3. (3.5) 

 

3.2.5. Design Configurations: Stride, Window Size, and Beyond 

 

When employing sliding windows, several configuration choices significantly impact 

the performance and efficiency: 
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● Window Size (L): The choice of L determines the amount of historical data 

used for forecasting or pattern analysis. A small window may capture only 

short-term dynamics, potentially missing longer-term trends, whereas a large 

window may incorporate extraneous or non-stationary information. Often, the 

optimal window size is determined empirically or through domain expertise 

[48]. 

● Stride (Step Size): Stride defines the extent to which the window moves at 

each step. A stride of 1 maximizes the number of training samples but also 

increases the overlap between windows. Larger strides can reduce redundancy 

and computational load but may sacrifice important details. 

● Overlapping versus Disjoint Windows: While overlapping windows (stride 

<L) are commonly preferred for their comprehensive data representation, 

disjoint windows (stride =L) might be used in certain signal processing 

applications where independence between samples is crucial [46]. 

● Expanding vs. Fixed Windows: In forecasting, one might choose between a 

fixed (rolling) window that maintains a constant length L, or an expanding 

window that gradually incorporates all past observations. The former can adapt 

to local changes, whereas the latter benefits from a larger historical context, if 

the process is relatively stable. 

● Multivariate and multistep forecasting: For multivariate time series, the 

window can include lagged values for several variables, forming a lagged 

feature matrix. In multistep forecasting, the window might be used to predict a 

sequence of future values, which requires either separate models for each 

forecast horizon or an integrated sequence-to-sequence approach [49]. 

 

3.2.6. Computational Considerations 

 

In practical implementations, efficiency is paramount, particularly for large datasets. 

Instead of physically copying overlapping data for each window, algorithms often 

employ rolling computations that incrementally update statistics (such as moving 

averages or variances) incrementally. This approach minimizes computational 

overhead and memory usage, enabling real-time or large-scale applications. 
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3.3. PATTERN IDENTIFICATION USING TA-LIB 

 

A comprehensive summary of the candlestick pattern functions provided by TA-Lib is 

provided below. While TA-Lib defines 55 functions, many of these functions return 

distinct signals depending on whether a bullish or bearish variant is detected, yielding 

61 distinct pattern signals. Each pattern is based on specific mathematical relationships 

between the Open, High, Low, and Close (OHLC) values for one or more periods. The 

following list summarizes each pattern by its TA-Lib function name and provides a 

brief description of its conceptual criteria [50]. 

 

For any candle with index 𝑖 (and previous candles as 𝑖– 1, 𝑖– 2, 𝑒𝑡𝑐.), define: 

 

● 𝑂ᵢ = Open price  

● 𝐻ᵢ = High price  

● 𝐿ᵢ = Low price  

● 𝐶ᵢ = Close price 

● Real Body 

 

(𝑅𝐵ᵢ) =  |𝐶ᵢ –  𝑂ᵢ| (3.6) 

 

● Upper Shadow 

 

(𝑈𝑆ᵢ) =  𝐻ᵢ –  𝑚𝑎𝑥(𝑂ᵢ, 𝐶ᵢ) (3.7) 

 

● Lower Shadow  

 

(𝐿𝑆ᵢ) =  𝑚𝑖𝑛(𝑂ᵢ, 𝐶ᵢ) –  𝐿ᵢ (3.8) 

 

Tolerances: 

 

● 𝛿 (delta) is a small tolerance for Doji conditions (i.e., |Cᵢ – Oᵢ| ≤ δ). 

● 𝜀 (epsilon) is a small value used for “near” comparisons. 
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● Terms such as Avg Short Body and Avg Long Shadow represent adaptive 

averages computed over recent candles. 

● TA-Lib functions typically return +100 for bullish signals and –100 for bearish 

signals. 

 

 CDL2CROWS 

 

Concept: Two consecutive bearish candles signal a potential reversal in an uptrend. 

 

Equations: 

 

𝐶₍ᵢ₋₁₎ <  𝑂₍ᵢ₋₁₎ 𝑎𝑛𝑑 𝐶ᵢ <  𝑂ᵢ (3.9) 

 𝑂ᵢ <  𝐶₍ᵢ₋₁₎ 𝑎𝑛𝑑 𝑅𝐵ᵢ >  𝑅𝐵₍ᵢ₋₁₎ (3.10) 

 

 CDL3BLACKCROWS 

 

Concept: Three consecutive long-bearish candles with progressively lower closes, 

indicating strong seller control. 

 

Equations:  

 

for 𝑘 =  𝑖– 2, 𝑖– 1, 𝑖 

 

For each candle: 

 

𝐶ₖ <  𝑂ₖ , 𝑂₍ᵢ₋₁₎ ≥  𝐶₍ᵢ₋₂₎ 𝑎𝑛𝑑 𝑂ᵢ ≥  𝐶₍ᵢ₋₁₎, 𝑤𝑖𝑡ℎ 𝐶₍ᵢ₋₂₎ >  𝐶₍ᵢ₋₁₎ >  𝐶ᵢ (3.11) 

 

CDL3INSIDE 

 

Concept: A small candle whose body is entirely contained within the body of the 

previous candle; the bearish variant indicates a pause in an uptrend, whereas the bullish 

version (colors reversed) indicates a reversal from a downtrend. 
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Equations: 

 

 𝑚𝑖𝑛(𝑂ᵢ, 𝐶ᵢ)  >  𝑚𝑖𝑛(𝑂₍ᵢ₋₁₎, 𝐶₍ᵢ₋₁₎) 𝑎𝑛𝑑  𝑚𝑎𝑥(𝑂ᵢ, 𝐶ᵢ)  <  𝑚𝑎𝑥(𝑂₍ᵢ₋₁₎, 𝐶₍ᵢ₋₁₎) (3.12) 

 

CDL3LINESTRIKE 

 

Concept: Three-candle formation, where the final candle (with reversal) closes near or 

beyond the opening of the first candle. 

 

Equations: 

 

 𝐶ᵢ ≤  𝑂₍ᵢ₋₃₎ 𝑎𝑛𝑑  𝑅𝐵ᵢ 𝑖𝑠 𝑙𝑜𝑛𝑔 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑐𝑎𝑛𝑑𝑙𝑒𝑠. (3.13) 

 

CDL3OUTSIDE 

 

Concept: A pattern in which a candle’s body is wider than that of the previous candle, 

with the final candle reversing the preceding trend. 

 

Equations: 

 

𝑂ᵢ ≤  𝑚𝑖𝑛(𝑂₍ᵢ₋₁₎, 𝐶₍ᵢ₋₁₎) 𝑎𝑛𝑑 𝐶ᵢ ≥  𝑚𝑎𝑥(𝑂₍ᵢ₋₁₎, 𝐶₍ᵢ₋₁₎) (3.14) 

 

CDL3STARSINSOUTH 

 

Concept: A three-candle pattern at the bottom of a downwards trend, where the final 

candle is bullish. 

 

Equations: 

 

let Candle 𝑖– 2 𝑎𝑛𝑑 𝑖 − 1 be small indecisive) and Candle i is bullish 

 

𝐶₍ᵢ₋₂₎ <  𝑂₍ᵢ₋₂₎  , | 𝑅𝐵₍ᵢ₋₁₎ | ≤  𝛿, 𝐶ᵢ >  𝑂ᵢ  (3.15) 
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CDL3WHITESOLDIERS 

 

Concept: Three consecutive long bullish candles with progressively higher closes 

indicating strong upward momentum. 

 

Equations: 

 

for 𝑘 =  𝑖– 2, 𝑖– 1, 𝑖: 

𝐶ₖ >  𝐶𝑘+1 , 𝐶ₖ − 𝜀 , 𝑎𝑛𝑑 𝐶𝑖−2 < 𝐶𝑖−1 < 𝐶𝑖 (3.16) 

 

CDLABANDONEDBABY 

 

Concept: A three-candle pattern with a doji isolated by gaps from its neighbors 

signaling a sharp reversal. 

 

Equations: 

 |𝐶(ᵢ−1)– 𝑂(ᵢ−1)| ≤  𝛿, 𝑎𝑛𝑑  𝑔𝑎𝑝𝑠 𝑒𝑥𝑖𝑠𝑡𝑠 𝑡ℎ𝑎𝑡 ∶ 

 

𝑂₍ᵢ₋₁₎ >  𝐻₍ᵢ₋₂₎ +  𝜀 , 𝑂₍ᵢ₋₁₎ <  𝐿ᵢ –  𝜀 (3.17) 

 

CDLADVANCEBLOCK 

 

Concept: In an uptrend, a series of bullish candles with diminishing strength, 

suggesting that the uptrend may soon reverse. 

 

Equations: 

 

 𝑅𝐵₍ᵢ₋₂₎ >  𝑅𝐵₍ᵢ₋₁₎ >  𝑅𝐵ᵢ (bodies become progressively smaller) (3.18) 

 

CDLBELTHOLD 

 

Concept: A long bullish candle with little or no shadow, indicating strong buyer 

control from open to close. 
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Equation (Bullish): 

 

 𝑂ᵢ ≈  𝐿ᵢ, 𝐶ᵢ ≈  𝐻ᵢ, 𝑤𝑖𝑡ℎ 𝑈𝑆ᵢ ≈  0 𝑎𝑛𝑑 𝐿𝑆ᵢ ≈  0 (3.19) 

 

CDLBREAKAWAY 

 

Concept: A pattern in which the current candle “breaks away” from the previous 

trend’s range, signaling a potential reversal. 

 

quations: 

 

𝐶𝑎𝑛𝑑𝑙𝑒 𝑖 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠   𝐶ᵢ >  𝐻₍ᵢ₋₁₎ (𝑏𝑢𝑙𝑙𝑖𝑠ℎ) 𝑜𝑟 𝐶ᵢ <  𝐿₍ᵢ₋₁₎ (𝑏𝑒𝑎𝑟𝑖𝑠ℎ) (3.20) 

 

CDLCLOSINGMARUBOZU 

 

Concept: A candle with virtually no shadows closing at the extreme of its range 

reinforces the current trend. 

 

Equation (Bullish): 

 

 𝑂ᵢ ≈  𝐿ᵢ 𝑎𝑛𝑑 𝐶ᵢ ≈  𝐻ᵢ (3.21) 

 

CDLCONCEALBABYSWALL 

 

Concept: A two-candle pattern in which a small candle is completely contained within 

the body of a preceding large candle, indicating potential reversal. 

Equations: 

 

 𝑚𝑎𝑥(𝑂ᵢ, 𝐶ᵢ)  <  𝑚𝑎𝑥(𝑂₍ᵢ₋₁₎, 𝐶₍ᵢ₋₁₎) 𝑎𝑛𝑑  𝑚𝑖𝑛(𝑂ᵢ, 𝐶ᵢ)  >  𝑚𝑖𝑛(𝑂₍ᵢ₋₁₎, 𝐶₍ᵢ₋₁₎) (3.22) 
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CDLCOUNTERATTACK 

 

Concept: Two consecutive candles with nearly identical closes follow a trend, 

suggesting a potential reversal. 

 

Equations: 

 

 |𝐶ᵢ –  𝐶₍ᵢ₋₁₎|  ≤  𝜀 𝑎𝑛𝑑 𝑎𝑓𝑡𝑒𝑟 𝑎 𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑒𝑑 𝑡𝑟𝑒𝑛𝑑 (3.23) 

 

CDLDARKCLOUDCOVER 

 

Concept: A bearish reversal pattern in which a bullish candle is followed by a bearish 

candle that opens above the previous height but closes below the midpoint of the 

candle’s body. 

 

Equations: 

 

𝑖– 1: 𝐶₍ᵢ₋₁₎ >  𝑂₍ᵢ₋₁₎ , 𝑂ᵢ >  𝐻₍ᵢ₋₁₎ , 𝐶ᵢ <  
(𝑂₍ᵢ₋₁₎ + 𝐶₍ᵢ₋₁₎)

2
 (3.24) 

 

CDLDOJI 

 

Concept: A candle where the open and close are nearly identical, reflecting market 

indecision. 

 

Equations: 

 

 |𝐶ᵢ –  𝑂ᵢ|  ≤  𝛿 (3.25) 

 

CDLDOJISTAR 

 

Concept: A doji appears with a gap relative to the previous candle, suggesting a 

potential reversal when found after a trend. 
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Equations: 

 

|𝐶ᵢ –  𝑂ᵢ|  ≤  𝛿 𝑎𝑛𝑑 𝑎 𝑔𝑎𝑝 𝑒𝑥𝑖𝑠𝑡𝑠 (𝑂ᵢ 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑙𝑦 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑂₍ᵢ₋₁₎) (3.26) 

 

CDLDRAGONFLYDOJI 

 

Concept: A doji with a long lower shadow and no upper shadow indicates that sellers 

drove prices down, but buyers typically regained control and bullish in a downtrend. 

 

Equations: 

 

|𝐶ᵢ –  𝑂ᵢ| ≤  𝛿, 𝑈𝑆ᵢ ≈  0,    𝐿𝑆ᵢ ≫ 𝑅𝐵ᵢ (3.27) 

 

CDLENGULFING 

 

Concept: A two-candle pattern where the second candle’s body completely engulfs the 

previous candle’s body; bullish signals reverse upward, and bearish signals reverse 

downwards. 

 

Equation (Bullish): 

 

𝐶₍ᵢ₋₁₎ <  𝑂₍ᵢ₋₁₎ , 𝐶ᵢ >  𝑂ᵢ , 𝑂ᵢ ≤  𝐶₍ᵢ₋₁₎ 𝑎𝑛𝑑 𝐶ᵢ ≥  𝑂₍ᵢ₋₁₎ (3.28) 

 

CDLEVENINGDOJISTAR 

 

Concept: A variant of Evening Star, where the middle candle is a doji, signals a bearish 

reversal in an uptrend. 

 

Equations: 

 

𝐶𝑎𝑛𝑑𝑙𝑒 𝑖– 2: 𝐶₍ᵢ₋₂₎ >  𝑂₍ᵢ₋₂₎𝐶𝑎𝑛𝑑𝑙𝑒 𝑖– 1: |𝐶₍ᵢ₋₁₎ –  𝑂₍ᵢ₋₁₎|  ≤  𝛿 

𝐶𝑎𝑛𝑑𝑙𝑒 𝑖: 𝐶ᵢ <  𝑂ᵢ 𝑎𝑛𝑑 𝐶ᵢ ≤
 (𝑂₍ᵢ₋₂₎ + 𝐶₍ᵢ₋₂₎)

2
  (3.29) 
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CDLEVENINGSTAR 

 

Concept: A classic three-candle-bearish reversal pattern: a long bullish candle is 

followed by a small candle (star), followed by a long bearish candle that closes well 

into the first candle’s body. 

 

Equations: 

 

𝐶𝑎𝑛𝑑𝑙𝑒 𝑖– 2: 𝐶₍ᵢ₋₂₎ >  𝑂₍ᵢ₋₂₎𝐶𝑎𝑛𝑑𝑙𝑒 𝑖– 1: 𝑅𝐵₍ᵢ₋₁₎ 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙 

𝐶𝑎𝑛𝑑𝑙𝑒 𝑖: 𝐶ᵢ <  𝑂ᵢ 𝑎𝑛𝑑 𝐶ᵢ ≤  
 (𝑂₍ᵢ₋₂₎ + 𝐶₍ᵢ₋₂₎)

2
 (3.30) 

 

CDLGAPSIDESIDEWHITE 

 

Concept: A bullish gap pattern in which the second candle opens above the first candle, 

and both have similar closing levels. The bearish variant is the inverse. 

 

Equation (Bullish): 

 

𝑂ᵢ >  𝐶₍ᵢ₋₁₎ +  𝜀 𝑎𝑛𝑑 |𝐶ᵢ –  𝐶₍ᵢ₋₁₎|  ≤  𝜀 (3.31) 

 

CDLGRAVESTONEDOJI 

Concept: A doji with a long upper shadow and no lower shadow, indicating the 

rejection of higher prices and potential bearish reversal. 

 

Equations: 

 

|𝐶ᵢ –  𝑂ᵢ|  ≤  𝛿, 𝑈𝑆ᵢ ≫ 𝑅𝐵ᵢ, 𝑎𝑛𝑑 𝐿𝑆ᵢ ≈ 0 (3.32) 

 

CDLHAMMER 

 

Concept: A single bullish reversal candle with a small body near the top, long lower 

shadow, and little or no upper shadow. 
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Equations: 

 

𝑅𝐵ᵢ <  𝐴𝑣𝑔𝑆ℎ𝑜𝑟𝑡𝐵𝑜𝑑𝑦, 𝑈𝑆ᵢ <  𝐴𝑣𝑔𝑉𝑒𝑟𝑦𝑆ℎ𝑜𝑟𝑡𝑆ℎ𝑎𝑑𝑜𝑤 

𝐿𝑆ᵢ >  𝐴𝑣𝑔𝐿𝑜𝑛𝑔𝑆ℎ𝑎𝑑𝑜𝑤, 𝑎𝑛𝑑 𝑚𝑖𝑛(𝑂ᵢ, 𝐶ᵢ)  ≤  𝐿₍ᵢ₋₁₎ +  𝜀 (3.33) 

 

CDLHANGINGMAN 

 

Concept: Similar in shape to the Hammer but appearing in an uptrend, suggesting a 

bearish reversal. 

 

Equations: 

 

𝑅𝐵ᵢ <  𝐴𝑣𝑔𝑆ℎ𝑜𝑟𝑡𝐵𝑜𝑑𝑦, 𝑈𝑆ᵢ <  𝐴𝑣𝑔𝑉𝑒𝑟𝑦𝑆ℎ𝑜𝑟𝑡𝑆ℎ𝑎𝑑𝑜𝑤 

𝐿𝑆ᵢ >  𝐴𝑣𝑔𝐿𝑜𝑛𝑔𝑆ℎ𝑎𝑑𝑜𝑤, 𝑎𝑛𝑑 𝑚𝑖𝑛(𝑂ᵢ, 𝐶ᵢ)  ≥  𝐻₍ᵢ₋₁₎ –  𝜀 (3.34) 

 

CDLHARAMI 

 

Concept: A two-candle pattern in which a large candle is followed by a small candle 

entirely contained within its body. 

 

Equation (Bullish): 

 

𝐶₍ᵢ₋₁₎ <  𝑂₍ᵢ₋₁₎ , 𝐶ᵢ >  𝑂ᵢ 

𝐴𝑛𝑑: 𝑚𝑎𝑥(𝑂ᵢ, 𝐶ᵢ)  <  𝑚𝑎𝑥(𝑂₍ᵢ₋₁₎, 𝐶₍ᵢ₋₁₎) 𝑎𝑛𝑑 𝑚𝑖𝑛(𝑂ᵢ, 𝐶ᵢ)  >  𝑚𝑖𝑛(𝑂₍ᵢ₋₁₎, 𝐶₍ᵢ₋₁₎)  (3.35) 

 

CDLHARAMICROSS 

 

Concept: A variation of the Harami pattern, in which the second candle is a doji, 

emphasizing indecision. 

 

Equations: 

 

|𝐶ᵢ –  𝑂ᵢ|  ≤  𝛿, 𝑤𝑖𝑡ℎ 𝐻𝑎𝑟𝑎𝑚𝑖 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 𝑎𝑠 𝐶𝐷𝐿𝐻𝐴𝑅𝐴𝑀𝐼 (3.36) 



 

35 

 

 

CDLHIGHWAVE 

 

Concept: A candle with extremely long shadows on both sides and a very small body 

suggests market indecision that may precede a reversal. 

 

Equations: 

 

𝑅𝐵ᵢ ≪  𝑈𝑆ᵢ 𝑎𝑛𝑑 𝐿𝑆ᵢ (3.37) 

 

CDLHIKKAKE 

 

Concept: A pattern that identifies false breakouts. If the candle movement contradicts 

the expected breakout, it signals a reversal. 

 

Equations: 

 

𝐼𝑓 |𝑅𝐵ᵢ|

<  𝐴𝑣𝑔𝑆ℎ𝑜𝑟𝑡𝐵𝑜𝑑𝑦 𝑎𝑛𝑑 𝑎 𝑔𝑎𝑝 𝑜𝑐𝑐𝑢𝑟𝑠 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑙𝑎𝑡𝑒𝑟 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑑, 𝑡ℎ𝑒 𝐻𝑖𝑘𝑘𝑎𝑘𝑒  

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑚𝑒𝑡. (3.38) 

 

CDLHIKKAKE2 

 

Concept: A refined version of the Hikkake pattern with adjusted thresholds for 

breakout and reversal. 

 

Equations: 

 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑜 𝐶𝐷𝐿𝐻𝐼𝐾𝐾𝐴𝐾𝐸 𝑃𝑎𝑡𝑡𝑒𝑟𝑛, 𝑏𝑢𝑡 𝑤𝑖𝑡ℎ |𝑅𝐵ᵢ|  <  𝑘 ×

 𝐴𝑣𝑔𝑆ℎ𝑜𝑟𝑡𝐵𝑜𝑑𝑦 (𝑘 <  1) 𝑎𝑛𝑑 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑔𝑎𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠. (3.39) 
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CDLHOMINGPIGEON 

 

Concept: A two-candle pattern in which the second candle’s body is completely 

contained within the first candle’s body suggests potential bullish reversal. 

 

Equations: 

 

𝑚𝑖𝑛(𝑂ᵢ, 𝐶ᵢ)  >  𝑚𝑖𝑛(𝑂₍ᵢ₋₁₎, 𝐶₍ᵢ₋₁₎) 𝑎𝑛𝑑 𝑚𝑎𝑥(𝑂ᵢ, 𝐶ᵢ)  <  𝑚𝑎𝑥(𝑂₍ᵢ₋₁₎, 𝐶₍ᵢ₋₁₎) (3.40) 

 

CDLIDENTICAL3CROWS 

 

Concept: A variant of three black crows where three bearish candles have nearly 

identical shapes and sizes, reinforcing the bearish signal. 

 

Equations: 

 

𝑅𝐵₍ᵢ₋₂₎ ≈  𝑅𝐵₍ᵢ₋₁₎ ≈  𝑅𝐵ᵢ, 𝑤𝑖𝑡ℎ 𝐶₍ᵢ₋₂₎ >  𝐶₍ᵢ₋₁₎ >  𝐶ᵢ (3.41) 

 

CDLINNECK 

 

Concept: A two-candle pattern in which the second candle opens near the previous 

candle’s close and closes near its open, suggesting a reversal. 

 

Equations: 

 

|𝑂ᵢ –  𝐶₍ᵢ₋₁₎|  ≤  𝜀 𝑎𝑛𝑑 |𝐶ᵢ –  𝑂₍ᵢ₋₁₎|  ≤  𝜀 (3.42) 

 

CDLONNECK 

 

Concept: Similar to the In-Neck pattern, the second candle’s body does not exceed the 

previous candle’s body. 

 

Equations: 
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𝑚𝑖𝑛(𝑂ᵢ, 𝐶ᵢ)  ≈  𝑚𝑖𝑛(𝑂₍ᵢ₋₁₎, 𝐶₍ᵢ₋₁₎) (𝑤𝑖𝑡ℎ𝑖𝑛 𝜀) (3.43) 

 

CDLKICKING 

 

Concept: Two-candle reversal pattern featuring a gap. In the bullish variant, a bearish 

candle is followed by a bullish candle with gaps in opposite directions. 

 

Equations (Bullish variants) 

 

𝑂ᵢ <  𝐶₍ᵢ₋₁₎ 𝑎𝑛𝑑 𝐶ᵢ >  𝑂₍ᵢ₋₁₎ +  𝛥, (3.44) 

 

 where Δ is the threshold gap. 

 

CDLLADDERBOTTOM 

 

Concept: A bullish reversal pattern in which successive candles form progressively 

lower lows with shrinking bodies, suggesting a weakening of selling pressure. 

 

Equations: 

 

𝐿₍ᵢ₋₂₎ >  𝐿₍ᵢ₋₁₎ >  𝐿ᵢ 𝑎𝑛𝑑 𝑅𝐵₍ᵢ₋₁₎ <  𝑅𝐵₍ᵢ₋₂₎, 𝑅𝐵ᵢ <  𝑅𝐵₍ᵢ₋₁₎ (3.45) 

 

CDLLONGLEGGEDDOJI 

 

Concept: A doji with exceptionally long shadows on both sides, representing extreme 

indecision. 

 

Equations: 

 

|𝐶ᵢ –  𝑂ᵢ|  ≤  𝛿, 𝑈𝑆ᵢ >>  𝑅𝐵ᵢ, 𝑎𝑛𝑑 𝐿𝑆ᵢ >>  𝑅𝐵ᵢ  (3.46) 

 

CDLLONGLINECANDLE 
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Concept: A candle with a very long body and minimal shadows. In the bullish variant, 

strong upward movement was observed. 

 

Equations (Bullish variants) 

 

𝑅𝐵ᵢ >>  𝐴𝑣𝑔𝐵𝑜𝑑𝑦, 𝑈𝑆ᵢ ≈  0, 𝐿𝑆ᵢ ≈  0, 𝑎𝑛𝑑 𝐶ᵢ >  𝑂ᵢ (3.47) 

 

CDLMARUBOZU 

 

Concept: A candle with no shadows; a bullish marubozu is open at the low and close 

at the high, showing complete control by buyers. 

 

Equation (Bullish): 

 

𝑂ᵢ ≈  𝐿ᵢ 𝑎𝑛𝑑 𝐶ᵢ ≈  𝐻ᵢ (3.48) 

 

CDLMATCHINGLOW 

 

Concept: Two consecutive candles with nearly identical lows indicate a firm support 

level that may lead to bullish reversal. 

 

Equations: 

 

|𝐿ᵢ –  𝐿₍ᵢ₋₁₎|  ≤  𝜀 (3.49) 

 

CDLMATHOLD 

 

Concept: A three-candle pattern in which a long bullish candle is followed by a 

consolidation phase (small bodies), then another bullish candle that resumes the trend; 

failure can signal a bearish reversal. 

 

Equations (Bullish variants) 
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𝐶𝑎𝑛𝑑𝑙𝑒 𝑖– 2: 𝐶₍ᵢ₋₂₎ >  𝑂₍ᵢ₋₂₎ , 𝐶𝑎𝑛𝑑𝑙𝑒𝑠 𝑖– 1: 𝑅𝐵(ᵢ−1) ≤  𝛿 , 

𝐶𝑎𝑛𝑑𝑙𝑒 𝑖: 𝐶ᵢ >  𝑂ᵢ 𝑎𝑛𝑑 𝐶ᵢ >  
(𝑂₍ᵢ₋₂₎ + 𝐶₍ᵢ₋₂₎)

2
 (3.50) 

 

CDLMORNINGDOJISTAR 

 

Concept: A variant of the morning star pattern with a doji as the middle candle, 

indicating indecision before a strong bullish reversal. 

 

Equations: 

 

𝐶𝑎𝑛𝑑𝑙𝑒 𝑖– 2: 𝐶₍ᵢ₋₂₎ <  𝑂₍ᵢ₋₂₎ , 𝐶𝑎𝑛𝑑𝑙𝑒 𝑖– 1: |𝐶₍ᵢ₋₁₎ –  𝑂₍ᵢ₋₁₎|  ≤  𝛿 , 

𝐶𝑎𝑛𝑑𝑙𝑒 𝑖: 𝐶ᵢ >  𝑂ᵢ 𝑎𝑛𝑑 𝐶ᵢ ≥  
(𝑂₍ᵢ₋₂₎ + 𝐶₍ᵢ₋₂₎)

2
 (3.51) 

 

CDLMORNINGSTAR 

 

Concept: A classic three-candle bullish reversal pattern, in which a long bearish candle 

is followed by a small candle and a long bullish candle that closes well into the first 

candle’s body. 

 

Equations: 

 

𝐶𝑎𝑛𝑑𝑙𝑒 𝑖– 2: 𝐶₍ᵢ₋₂₎ <  𝑂₍ᵢ₋₂₎𝐶𝑎𝑛𝑑𝑙𝑒 𝑖– 1: 𝑅𝐵₍ᵢ₋₁₎ 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙 

𝐶𝑎𝑛𝑑𝑙𝑒 𝑖: 𝐶ᵢ >  𝑂ᵢ 𝑎𝑛𝑑 𝐶ᵢ ≥  
(𝑂₍ᵢ₋₂₎ + 𝐶₍ᵢ₋₂₎)

2
 (3.52) 

 

CDLPIERCING 

 

Concept: A bullish two-candle reversal pattern in which a bearish candle is followed 

by a bullish candle that opens below the previous low and closes above the midpoint 

of the body of the previous candle. 

 

Equations: 
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𝐶₍ᵢ₋₁₎ <  𝑂₍ᵢ₋₁₎ 

𝑂ᵢ <  𝐿₍ᵢ₋₁₎ 𝑎𝑛𝑑 𝐶ᵢ >  
(𝑂₍ᵢ₋₁₎ + 𝐶₍ᵢ₋₁₎)

2
 (3.53) 

 

CDLRICKSHAWMAN 

 

Concept: A pattern with a long lower shadow and a very small body, interpreted as a 

bullish reversal when appearing after a downtrend. 

 

Equations: 

 

𝑅𝐵ᵢ <  𝛿, 𝐿𝑆ᵢ >>  𝑅𝐵ᵢ, 𝑎𝑛𝑑 𝑈𝑆ᵢ ≈  0 (3.54) 

 

CDLRISE3METHODS 

 

Concept: A bullish continuation pattern: a long bullish candle is followed by three 

small candles within its range, and another long bullish candle resumes the trend. 

 

Equations: 

 

𝐶𝑎𝑛𝑑𝑙𝑒 𝑖– 3: 𝐶₍ᵢ₋₃₎ >  𝑂₍ᵢ₋₃₎ , 𝐶𝑎𝑛𝑑𝑙𝑒𝑠 𝑖– 2 𝑎𝑛𝑑 𝑖– 1: 𝑚𝑎𝑥(𝑂ₖ, 𝐶ₖ)  

≤  𝐻₍ᵢ₋₃₎ 𝑎𝑛𝑑 𝑚𝑖𝑛(𝑂ₖ, 𝐶ₖ)  ≥  𝐿₍ᵢ₋₃₎ , 

𝐶𝑎𝑛𝑑𝑙𝑒 𝑖: 𝐶ᵢ >  𝑂ᵢ 𝑎𝑛𝑑 𝐶ᵢ >  𝐶₍ᵢ₋₃₎ (3.55) 

 

CDLTakuri 

 

Concept: Also known as the Dragonfly Doji with a long lower shadow; when it appears 

after a downtrend, it suggests a bullish reversal. 

 

Equations: 

 

|𝐶ᵢ –  𝑂ᵢ|  ≤  𝛿, 𝑈𝑆ᵢ ≈  0, 𝑎𝑛𝑑 𝐿𝑆ᵢ >>  𝑅𝐵ᵢ (3.56) 
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CDLTASUKIGAP 

 

Concept: Gap pattern. In its bearish variant, it confirms a gap down with subsequent 

bearish actions. 

 

Equations (Bearish variants) 

 

𝑂ᵢ >  𝐻₍ᵢ₋₁₎ +  𝜀 𝑎𝑛𝑑 𝐶ᵢ <  
(𝑂₍ᵢ₋₁₎ + 𝐶₍ᵢ₋₁₎)

2
 (3.57) 

 

CDLTHRUSTING 

 

Concept: A bearish reversal pattern in which a bullish candle is followed by a bearish 

candle that closes significantly lower than the body of the previous candle. 

 

Equations: 

 

𝐶₍ᵢ₋₁₎ >  𝑂₍ᵢ₋₁₎, 𝑂ᵢ >  𝐻₍ᵢ₋₁₎ , 

 𝐶ᵢ <  
(𝑂₍ᵢ₋₁₎ + 𝐶₍ᵢ₋₁₎)

2
 (3.58) 

 

CDLTRISTAR 

 

Concept: A three-candle pattern with a doji in the middle, signaling indecision that 

may precede a bearish move. 

 

Equations: 

 

 |𝐶₍ᵢ₋₁₎ –  𝑂₍ᵢ₋₁₎|  ≤  𝛿, 𝑤𝑖𝑡ℎ 𝐶𝑎𝑛𝑑𝑙𝑒 𝑖– 2 𝑏𝑢𝑙𝑙𝑖𝑠ℎ 𝑎𝑛𝑑 𝐶𝑎𝑛𝑑𝑙𝑒 𝑖 𝑏𝑒𝑎𝑟𝑖𝑠ℎ (3.59) 

 

CDLUNIQUE3RIVER 

 

Concept: A complex three-candle pattern indicating decisive downwards movement 

after consolidation. 
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Equations: 

 

The conditions involve relative body sizes and gap conditions, such that the final 

candle closes significantly lower than the first. 

 

CDLUPSIDEGAP2CROWS 

 

Concept: A gap followed by two bearish candles that confirm a downtrend after an up 

move. 

 

Equations: 

 

𝑂ᵢ >  𝐶₍ᵢ₋₁₎ +  𝜀, 𝑎𝑛𝑑 𝐶ᵢ <  𝑂ᵢ 𝑤𝑖𝑡ℎ 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑔𝑎𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠. (3.60) 

 

CDLUPSIDEGAP3METHODS 

 

Concept: A bearish continuation pattern with a gap followed by three candles that 

reinforce the downtrend. 

 

Equations: 

 

𝐶𝑎𝑛𝑑𝑙𝑒 𝑖– 2: 𝐿𝑜𝑛𝑔 𝑏𝑢𝑙𝑙𝑖𝑠ℎ𝐶𝑎𝑛𝑑𝑙𝑒𝑠 𝑖– 1 𝑎𝑛𝑑 𝑖: 𝑆𝑚𝑎𝑙𝑙 𝑎𝑛𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑔𝑎𝑝 𝑟𝑎𝑛𝑔𝑒 

𝐹𝑖𝑛𝑎𝑙 𝑐𝑎𝑛𝑑𝑙𝑒: 𝐵𝑒𝑎𝑟𝑖𝑠ℎ, 𝑤𝑖𝑡ℎ 𝐶₍ᵢ₊₁₎ <  𝑂₍ᵢ₊₁₎ (3.61) 

 

CDLPIERCING (Bearish interpretation) 

 

Concept: Although it is typically bullish, if the conditions are reversed, it can be 

interpreted as bearish. 

 

Equations: 

 

𝐼𝑓 𝑂ᵢ >  𝐻₍ᵢ₋₁₎ 𝑎𝑛𝑑 𝐶ᵢ <  
(𝑂₍ᵢ₋₁₎ + 𝐶₍ᵢ₋₁₎)

2
, 𝑡ℎ𝑒𝑛 𝑖𝑡 𝑚𝑎𝑦 𝑠𝑖𝑔𝑛𝑎𝑙 𝑏𝑒𝑎𝑟𝑖𝑠ℎ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒. (3.62) 
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CDLRICKSHAWMAN (Bearish interpretation) 

 

Concept: When appearing in an uptrend, this variant of the rickshaw pattern can signal 

a bearish reversal. 

 

Equations: 

 

𝑅𝐵ᵢ <  𝛿, 𝐿𝑆ᵢ >>  𝑅𝐵ᵢ, 𝑈𝑆ᵢ ≈  0 (𝑖𝑛 𝑎𝑛 𝑢𝑝𝑡𝑟𝑒𝑛𝑑 𝑐𝑜𝑛𝑡𝑒𝑥𝑡) (3.63) 

 

CDLRISE3METHODS (Bearish Variant – Falling Three Methods) 

 

Concept: The bearish counterpart to Rise Three Methods: A long bearish candle is 

followed by three small candles, and then another bearish candle confirming the trend. 

 

Equations: 

 

𝐶𝑎𝑛𝑑𝑙𝑒 𝑖– 3: 𝐶₍ᵢ₋₃₎ <  𝑂₍ᵢ₋₃₎ , 𝐶𝑎𝑛𝑑𝑙𝑒𝑠 𝑖– 2 𝑎𝑛𝑑 𝑖– 1: 𝑚𝑎𝑥(𝑂ₖ, 𝐶ₖ)  

≤  𝐻₍ᵢ₋₃₎ 𝑎𝑛𝑑 𝑚𝑖𝑛(𝑂ₖ, 𝐶ₖ)  ≥  𝐿₍ᵢ₋₃₎ , 

𝐶𝑎𝑛𝑑𝑙𝑒 𝑖: 𝐶ᵢ <  𝑂ᵢ 𝑎𝑛𝑑 𝐶ᵢ <  𝐶₍ᵢ₋₃₎ (3.64) 

 

CDLTakuri (Bearish interpretation) 

 

Concept: Although typically bullish, if the Takuri pattern appears in an uptrend, it may 

be interpreted as bearish. 

 

Equations: 

 

|𝐶ᵢ –  𝑂ᵢ|  ≤  𝛿, 𝑈𝑆ᵢ ≈  0, 𝐿𝑆ᵢ >>  𝑅𝐵ᵢ, 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙.  (3.65) 
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CDLTASUKIGAP (Bearish variant) 

 

Concept: A gap pattern that, in a bearish context, confirms a gap reduction with 

subsequent bearish actions. 

 

Equations: 

 

𝑂ᵢ >  𝐻₍ᵢ₋₁₎ +  𝜀 𝑎𝑛𝑑 𝐶ᵢ <
(𝑂₍ᵢ₋₁₎ + 𝐶₍ᵢ₋₁₎)

2
  (3.66) 

 

CDLTHRUSTING 

 

Concept: A bearish reversal pattern in which a bullish candle is followed by a bearish 

candle that closes significantly lower than the body of the previous candle. 

 

Equations: 

 

𝐶₍ᵢ₋₁₎ >  𝑂₍ᵢ₋₁₎ 

𝑂ᵢ >  𝐻₍ᵢ₋₁₎ 𝑎𝑛𝑑 𝐶ᵢ <  
(𝑂₍ᵢ₋₁₎ + 𝐶₍ᵢ₋₁₎)

2
 (3.67) 

 

CDLTRISTAR (Bearish) 

 

Concept: A three-candle pattern with the middle candle as a doji, signaling indecision 

before a bearish move. 

 

Equations: 

 

|𝐶𝑖−1 − 𝑂𝑖−1| ≤  𝛿, 𝑤𝑖𝑡ℎ 𝐶𝑖−2 > 𝑂𝑖−2 𝑎𝑛𝑑 𝐶𝑖 < 𝑂𝑖 (3.68) 

 

CDLUNIQUE3RIVER (Bearish variant) 

 

Concept: A complex three-candle pattern indicating decisive downwards movement 

after consolidation. 
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Equations: 

 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑖𝑛𝑣𝑜𝑙𝑣𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑜𝑑𝑦 𝑠𝑖𝑧𝑒𝑠 𝑎𝑛𝑑 𝑔𝑎𝑝𝑠 𝑎𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑟𝑒𝑒 𝑐𝑎𝑛𝑑𝑙𝑒𝑠,  

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝑐𝑎𝑛𝑑𝑙𝑒 𝑐𝑙𝑜𝑠𝑒𝑠 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡𝑙𝑦 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡. 

 

The following table provides a visual representation of these formations, after 

presenting the definitions and equations that underpin each candlestick pattern. For 

instance, Table 3.1. presents a collection of Japanese Candlestick patterns that signal 

a bullish trend, while Table 3.2. shows cases that indicate a bearish market [51]. 

 

Table 3.1. Bullish candlestick patterns: structural examples and components of candle 

types. 

 

Abandoned Baby Belt-hold Breakaway Closing Marubozu 

    

Concealing Baby 

Swallow 
Counterattack Doji Star Dragonfly Doji 

    

Engulfing Hammer Harami Harami Cross 

    

Homing Pigeon Inverted Hammer Kicking Ladder Bottom 

    

Long Line Candle Marubozu Mat Hold Matching Low 

    

Morning Doji Star Morning Star Piercing Line Rising Three Methods 
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Separating Lines Side by Side White Lines Stick Sandwich Takuri 

    

Tasuki Gap Three Inside Up Three Line Strike Three Outside Up 

    

Three Stars in The South Three White Soldiers Tri-Star Unique Three-River 

    

Upside Gap Three Methods 

 

 

Table 3.2. Bearish candlestick patterns: structural examples and components of candle 

types. 

 

Abandoned Baby Advance Block Belt-hold Breakaway 

    

Closing Marubozu Counterattack Dark Cloud Cover Deliberation 

    

Doji Star 
Downside Gap Three 

Methods 
Engulfing Evening Doji Star 

    

Evening Star Falling Three Methods Gravestone Doji Hanging Man 
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Harami Harami Cross In Neck Kicking 

    

Long Line Candle Marubozu On Neck Separating Lines 

    

Shooting Star Side by Side White Lines Tasuki Gap Three Black Crows 

    

Three Inside Down Three Line Strike Three Outside Down Thrusting 

    

Tri-Star Upside Gap Two Crows 

 

 
 

 

3.4. CNN MODEL ARCHITECTURE 

 

CNNs have evolved significantly over the past few decades, driven by advancements 

in theory, computational power, and data availability. The earliest precursor to modern 

CNNs was proposed by Kunihiko Fukushima in the early 1980s, known as 

Neocognitron, which is a framework designed to recognize visual patterns through 

hierarchical layers of feature extraction. However, it was not until the work of Yann 

LeCun in the late 1980s and the early 1990s that CNNs gained traction, particularly 

with the development of LeNet for digit recognition using the MNIST dataset. LeNet 

demonstrated the effectiveness of local receptive fields and shared weights in reducing 

the computational costs of image processing. 
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The field witnessed a major breakthrough in 2012 when AlexNet, created by Alex 

Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, achieved a remarkable reduction in 

the error rate in the ImageNet Large-Scale Visual Recognition Challenge 

(ILSVRC). Several key innovations have underpinned AlexNet’s success. 

 

● GPU Acceleration: Leveraging parallel computation significantly sped up 

training. 

● ReLU Activation: Mitigated vanishing gradients enabling the training of 

deeper networks. 

● Dropout Regularization: Helped prevent overfitting by randomly disabling 

neuron connections. 

 

Subsequent architectures, such as VGG (2014), GoogLeNet/Inception (2014–2015), 

and ResNet (2015), further pushed the boundaries by increasing the network depth, 

introducing novel layer designs, and optimizing the parameter efficiency. These 

innovations have cemented CNNs as a cornerstone of deep learning, powering 

breakthroughs in image classification, object detection, and semantic segmentation. 

 

3.4.1. Biological Inspiration: Similarities to the Human Brain 

 

At the conceptual level, CNNs are inspired by the organization of neurons in the 

human brain, particularly in the visual cortex. In the early visual processing layers of 

the brain, neurons respond primarily to local regions of the visual field, similar to how 

convolutional layers in a CNN operate on localized patches of an image. 

 

These neurons exhibit a receptive field and detect edges, lines, or simple patterns 

within their small regions. As signals propagate deeper into the visual cortex, neurons 

begin to respond to increasingly complex features (e.g., shapes or faces) constructed 

by combining simpler responses. This mirrors hierarchical feature extraction in CNNs, 

in which deeper layers integrate low-level features into higher-level concepts.  
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Furthermore, the neurons in the CNN were loosely analogous to the biological neurons 

as shown in figure 3.1. 

 

● Weighted Inputs: Each CNN neuron computes a weighted sum of inputs 

similar to the synaptic connections in biological neurons. 

● Activation Function: The nonlinear activation in a CNN neuron acts like a 

neuron firing mechanism when the summed input exceeds a certain threshold, 

it "fires." 

● Learning Through Adjustment of Weights: Synaptic plasticity in the brain 

(where synapse strengths change over time) is loosely mirrored by 

backpropagation in CNNs, which updates the filter weights to minimize the 

loss function. 

 

Although CNNs do not capture the full complexity of biological neural processes, the 

core principles of local receptive fields, hierarchical feature learning, and trainable 

connections reflect a simplified model of how the human visual cortex processes the 

visual information. 

 

Convolutional Neural Networks (CNNs) are a powerful class of deep learning models 

designed to process grid-structured data such as images and time-series signals. 

Unlike fully connected neural networks, CNNs incorporate two key principles. 

 

● Local Connectivity via convolutional layers 

● Spatial Pooling 

 

These design choices enable an efficient feature extraction and translational 

invariance. 

 

A CNN transforms an input tensor (an image represented by height, width, and 

channels) through a sequence of layers, each with a specific function, culminating in 

an output (class probability). The lower layers detected simple patterns, whereas the 

deeper layers learned more complex abstract features. 
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Figure 3.1. (A) Diagram of a biological neuron. (B) a perceptron. 

 

3.4.2. CNN Layers: 

 

3.4.2.1. Input Layer 

 

The input layer serves as the interface between the raw input data and CNN. For 

images, the input is typically a three-dimensional array of shapes (H, W, C), where 

 

● H represents the height (number of pixel rows) 

● W represents the width (number of pixel columns) 

● C represents the number of channels (C = 3 for RGB images) 

 

For univariate time-series data, the input can be a two-dimensional array of shapes (L, 

C), where 

 

● L is the sequence length 

● C = 1 if dealing with a single variable, or higher if multiple features exist 

 

The input layer does not perform computations but prepares the structured data tensor 

for the subsequent layers. Preprocessing techniques such as normalization (scaling 

values to [0, 1]) or standardization are often applied to enhance learning efficiency. 
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3.4.2.2. Convolutional Layers 

 

Convolutional layers are the backbone of CNNs and are responsible for extracting 

features from input data. Each convolution layer applies multiple filters (kernels) to 

the input volume to detect spatial patterns such as edges, textures, and shapes. 

 

Mathematical Representation 

 

Given an input tensor 𝑋(𝑙−1)of shape (𝐻, 𝑊, 𝐶𝑖𝑛), a convolutional layer with 

𝐶𝑜𝑢𝑡 filters, each of shape (𝑘ℎ , 𝑘𝑤, 𝐶𝑖𝑛), computes the output feature map 𝑍(𝑙) as: 

 

(Equation 1) 

 

𝑍(𝑙,𝑘)(𝑝, 𝑞) =  ∑𝐶𝑖𝑛
𝑐=1  ∑

𝐾ℎ−1
𝑢=0  ∑

𝐾𝑤−1
𝑣=0  𝑊𝐶

(𝑙,𝑘)(𝑢, 𝑣) ∙ 𝑋𝐶
(𝑙−1)(𝑝 + 𝑢, 𝑞 + 𝑣) + 𝑏𝑘 (3.69) 

 

where: 

 

● WW represents the filter weights 

● b is the bias term 

 

Each filter spatially scans the input by applying the same weights throughout, thereby 

enforcing translational invariance. Stride and padding hyperparameters control the 

size of the output feature map as in figure 3.2. 
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Figure 3.2. Illustration of convolutional padding. 

 

Connection to Other Layers 

 

● The convolutional layer outputs a set of feature maps that typically pass 

through the activation function. 

● The result is then moved to a pooling layer to reduce spatial dimensions and 

computational complexity. 

 

3.4.2.3. Activation Functions 

 

Nonlinear activation functions were applied after convolutions to introduce 

complexity into learning representations. The most common type of activation is a 

Rectified Linear Unit (ReLU). 

 

(Equation 2) 

 

𝑅𝑒𝐿𝑈(𝑧) = 𝑚𝑎𝑥 (0,  𝑧) (3.70) 
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This keeps the positive values unchanged while setting the negative values to zero, 

thereby mitigating the vanishing gradient problem. 

 

Alternative activations include the following. 

 

● Leaky ReLU: Allows small negative values, preventing neuron inactivation. 

● Sigmoid and Tanh: Used in certain cases but less common due to saturation 

issues. 

● Figure 3.3. illustration graphical activation’s function. 

(Equation 3) 

 

 
 

Figure 3.3. Illustration of relu sigmoid and tanh function. 

 

3.4.2.4. Pooling Layers 

 

Pooling layers downsample feature maps and reduce the spatial dimensions while 

retaining important information. The two primary types are as follows. 

 

● Max Pooling: Retains the maximum value in each pooling window. 

● Average pooling: Compute the average values within each pooling window. 

 

Mathematical Formulation 
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For a pooling window of size (𝑚 × 𝑛) and stride 𝑠: 

 

(Equation 4) 

 

𝑌(𝑖, 𝑗) =  𝑚𝑎𝑥0≤𝑢<𝑚,0≤𝑣<𝑛 𝑋(𝑖. 𝑠 + 𝑢, 𝑗. 𝑠 + 𝑣) (3.71) 

 

for max pooling, and: 

 

(Equation 5) 

 

𝑌(𝑖, 𝑗) =  
1

𝑚𝑛
 ∑𝑚−1

𝑢=0  ∑𝑛−1
𝑣=0 𝑋(𝑖 . 𝑠 + 𝑢 , 𝑗 . 𝑠 + 𝑣) (3.72) 

 

for average pooling. 

 

 

 

Figure 3.4. Illustrate how 2D max pooling and avg pooling work, with the following 

setting: kernel size [2, 2], stride [2, 2]. 

 

Connection to Other Layers 

 

● Pooling layers typically follow convolutional layers to progressively reduce 

the feature map size. 
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● The output then proceeds to the fully connected layers for final classification 

or regression. 

 

3.4.2.5. Fully Connected Layers 

 

Fully connected (FC) layers combine extracted features and perform classification or 

regression. If the last pooling layer outputs feature maps of shape (𝐻𝑓 , 𝑊𝑓 , 𝐶𝑓), they 

are flattened into a vector 𝑋 ∈ 𝑅𝑁, where: 

 

(Equation 6) 

 

𝑁 =  𝐻𝑓 × 𝑊𝑓 × 𝐶𝑓 (3.73) 

 

An FC layer with MM output neurons computes 

 

(Equation 7) 

 

𝑍 =  𝑊𝑥 + 𝑏 (3.74) 

 

where: 

 

● WW is a weight matrix of shape (𝑀, 𝑁) 

● 𝑏 is a bias vector 
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Figure 3.5. Fully connected (FC) layers. 

 

3.4.2.6. Output Layer 

 

The output layer depends on the following tasks: 

 

● Classification: Softmax activation is used to convert raw scores into 

probabilities 

 

(Equation 8) 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖 =  
𝑒𝑧𝑖

∑𝐾
𝑗=1 𝑒𝑧𝑗 (3.75) 

 

● Regression uses linear activation for continuous value prediction. 
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PART 4 

 

THE PROPOSED SYSTEM DESIGN AND ALGORITHMS 

 

INTRODUCTION 

 

This chapter details the methodology used for candlestick chart pattern detection and 

next-candle direction prediction using Convolutional Neural Networks (CNNs). 

Figure 4.1. shows the entire system proposed in this study. It covers the process, from 

data collection and preparation to model design and evaluation. First, the data source 

and its characteristics are described, followed by preprocessing steps, such as cleaning 

and segmenting the time series into candlestick chart windows. Next, the approach for 

identifying candlestick patterns using a technical analysis library is explained, along 

with how these patterns and additional indicators are used to label each chart with a 

bullish or bearish trend indication. The CNN model architecture is then presented in 

depth, including its layers, activation functions, regularization through dropout, and 

image augmentation strategies applied to improve the generalization. Finally, this 

chapter outlines the training procedure and evaluation protocol, including cross-

validation, and defines the performance metrics (accuracy, precision, recall, and F1-

score) used to assess the model. 
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Figure 4.1. The proposed system. 

 

4.1. DATA COLLECTION 

 

The dataset for this study consists of historical Foreign Exchange (Forex) market data 

obtained from the Forex Historical Data repository. Specifically, we utilize price data 

for the EUR/USD currency pair over a long continuous period (from March 2, 2007, 
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to January 1, 2024) sampled at 15-minute intervals. This high-frequency dataset 

provides a rich sequence of candlestick data that captures intraday market dynamics 

over many years. Each data record contains the standard fields required for candlestick 

charting: the opening price, highest price, lowest price, and closing price (OHLC) 

within each 15-minute interval, along with the trading volume for that interval. The 

choice of the 15-minute timeframe balances the need for detailed pattern formation 

(finer than daily or hourly charts) with the practical limits of data size and model 

complexity. Using such an extensive and granular dataset ensures that the model is 

exposed to a wide variety of market conditions including different volatility regimes, 

trends, and outlier events, thereby improving the robustness of pattern detection and 

prediction. 

 

Before using the data for pattern analysis and model training, initial quality checks 

were performed. The dataset was inspected for completeness and consistency to ensure 

that it accurately reflected the market behavior over the selected period. By selecting 

a well-established historical data source and a major currency pair, we aimed to 

minimize the issues of data quality and maximize the relevance of the patterns learned 

by the model to real-world trading scenarios. 

 

4.1.1. Data Preprocessing 

 

Raw financial time-series data often contain irregularities that must be addressed prior 

to analysis. In this study, data preprocessing was a crucial step in cleaning the historical 

Forex dataset and preparing it for candlestick pattern detection. Preprocessing focused 

on handling missing or corrupt records, filtering out anomalies, and then segmenting 

the continuous series into fixed-length candlestick chart samples suitable for model 

input. The key preprocessing steps are as follows: 

 

● Missing Data and Incomplete Records: Any missing values in the OHLC or 

volume data were identified and handled to maintain continuity of the time 

series. For isolated missing entries (e.g., a single 15-minute record missing due 

to a data glitch), forward filling was applied; the missing price values were 

replaced with the last known values, under the assumption that a very short gap 
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can be reasonably imputed by the previous state. However, for larger gaps or 

periods of missing data (e.g., if data transmission was interrupted, resulting in 

several consecutive missing intervals), the affected records were removed from 

the dataset to avoid introducing false information. Additionally, a filtering 

criterion ensured that each candlestick entry was complete; any record lacking 

any of the OHLC fields or having obviously invalid values was discarded. This 

step guarantees the integrity of each candlestick so that no malformed 

candlestick passes into the analysis (each interval must have a valid open, high, 

low, or close). 

● Candlestick Chart Segmentation (Sliding Window): After ensuring the time 

series was clean and regular, the data was segmented into smaller windows to 

create candlestick chart samples. We used a sliding window technique to 

generate segments. Each window spans a fixed number of consecutive 15-

minute candlesticks and represents a subchart of the price series. A window 

size of 20 corresponds to a chart of 20 consecutive candlesticks (covering 20 × 

15 minutes = 5 hours of price data). The window is then slid forward through 

the dataset in a certain step (scroll size) to create the next sample. In our 

approach, a moderate overlap between windows is allowed to increase the 

number of training samples while still providing new information. Specifically, 

we used a step size equal to half the window length (50% overlap) to balance 

the sample diversity with the efficient use of data. This means that if, say, a 

window covers time steps t=1 to t=20, the next window starts at t=11 (half 

overlap) and covers t=11 to t=30, and so on. The use of overlapping windows 

ensures that important patterns that may span across window boundaries can 

be captured in at least one window, as shown in Figure 4.2.  
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Figure 4.2. Sliding window for window =10 and shift size =5. 

 

We experimented with multiple window sizes (5, 10, 15, 20, 25, and 30 

candlesticks per window) to determine which length best captured the relevant 

patterns for prediction. Figure 4.3. shows the window sizes used in this search. 

These window sizes correspond to different trend durations (from short-term 

patterns lasting 1.25 hours up to longer patterns spanning 7.5 hours). By evaluating 

various window lengths, we ensured that the model was not unduly biased by an 

arbitrary timeframe choice. Instead, we c.an select an optimal window size that 

provides the highest predictive performance (this selection process is discussed in 

the results, but the methodology of testing various sizes is part of our approach). 

Once the window size was decided, all time-series data were segmented 

accordingly, yielding a large collection of candlestick chart samples ready for 

pattern identification and labeling. 
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Figure 4.3. Different window sizes with (5,10,15,20,25, and 30). 

 

Each resulting window of data was then converted into a candlestick chart image. To 

do this, the OHLC values in the window were used to draw candlesticks (typically 

green/white for bullish candles and red/black for bearish candles) on a fixed-size image 

canvas. For consistency, all chart images were generated at the same resolution (in our 

case, 150×150 pixels with three color channels to mimic an RGB candlestick chart). 

This transformation from raw numerical data to images allows us to leverage image-

based CNN techniques for pattern recognition. Visual encoding preserves the shape 

and sequence of candlesticks, enabling the CNN to learn from chart patterns in a 

manner similar to how a human trader might visually identify patterns. 

 

4.1.2. Image Augmentation Strategies 

 

When training image-based CNNs, it is beneficial to artificially augment the dataset 

to improve generalization. We employed real-time image augmentation on candlestick 

chart images using Keras ImageDataGenerator. Several augmentation techniques were 

randomly applied to each training image during the training epochs, including. 
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● Rescaling: As previously mentioned, all images were normalized by scaling 

the pixel intensities by 1/255. This is standard preprocessing rather than 

augmentation, but it ensures a uniform input range. 

● Random Shear: A small shear transformation (skewing the image) was 

applied with a shear intensity up to 0.2 (20%). This can tilt the candlesticks 

slightly, which simulates minor variations in how the chart might be rendered 

or small timing misalignments, helping the model to not rely on exact 

symmetric shapes. 

● Random Zoom: We applied random zoom-in or zoom-out of up to 20%. 

Zooming changes the scale of candlestick shapes in the image. By training on 

slightly zoomed versions, the model learns to recognize patterns at different 

scales (a pattern that is a bit larger or smaller in terms of pixel size should still 

be recognized as the same pattern). 

● Shifts/Flips: The charts were not flipped horizontally because a mirror-image 

reversal in time would not represent a valid scenario (time cannot reverse), and 

vertical flips would invert upward moves downwards, which is not meaningful 

for pattern integrity. However, we allowed slight horizontal or vertical 

translations (shifting the image by a few pixels) as a part of the shear/zoom 

combination. 

 

These augmentation techniques were applied on-the-fly during training, meaning that 

each epoch saw a new random variation in some charts. Augmentation increased the 

effective size of the training set and exposed the model to a broader set of input 

conditions, thereby reducing overfitting. By the end of the training, the CNN becomes 

more robust to variations in chart appearance that are not relevant to the pattern (for 

instance, slight changes in scale or alignment), focusing instead on the essential visual 

features of bullish or bearish patterns. 

 

4.2. PATTERN IDENTIFICATION USING TA-LIB 

 

With the candlestick chart segments prepared, the next step was to identify the known 

candlestick patterns within each segment. We utilized the Technical Analysis Library 

(TA-Lib), a widely used library for financial data analysis that includes a 
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comprehensive set of functions for recognizing candlestick chart patterns. TA-Lib 

provides algorithms to detect 61 distinct classical candlestick patterns, 

encompassing a broad range of single-day and multi-day formations commonly 

studied by technical analysts. These include patterns such as Doji, Hammer, Shooting 

Star, Engulfing Pattern, Morning Star, Three White Soldiers, and many others, as 

defined in the technical analysis literature. 

 

For each candlestick window, the OHLC data were input into TA-Lib's pattern 

recognition functions of the TA-Lib. Each pattern function examined a specific 

configuration of one or more consecutive candlesticks. For example, the Hammer 

pattern function evaluates whether a given candlestick in the window has a long lower 

wick and short body positioned near the top (typical of a bullish hammer), whereas the 

engulfing pattern function looks at two consecutive candlesticks to see if the second 

candle’s body fully engulfs the previous one. TA-Lib functions typically return an 

indicator value (often an integer flag), signaling the presence of a pattern and 

sometimes the direction (bullish or bearish nature) of that pattern. By running through 

all relevant TA-Lib candlestick functions in each window, we automatically detected 

which, if any, of the 61 patterns were present in that sequence of candlesticks. In many 

cases, no known pattern might be present in a given window; in other cases, one or 

more patterns could be identified (for instance, a window might contain both a "Doji" 

and an "Engulfing" pattern, if those occur in overlapping fashion). 

 

This programmatic pattern identification ensured objectivity and consistency in 

recognizing patterns compared to manual visual inspection, which could be error-

prone or subjective. It also significantly expanded the scope of the patterns considered, 

as our methodology is not limited to a small subset of patterns; virtually all well-

documented candlestick formations were included. The outcome of this step is an 

annotation for each window indicating which candlestick pattern(s) it contains and the 

nominal interpretation of those patterns (each pattern inherently has a bullish or bearish 

implication, as per technical analysis theory). 
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4.3. DATASET LABELING FOR TREND PREDICTION 

 

Once the candlestick patterns were identified in each window, the next crucial step 

was to label each window with the outcome. We wanted the model to predict whether 

the pattern in that window would signal a bullish or bearish trend in the immediate 

future. The goal is to classify each candlestick chart (window) as either bullish 

(expected uptrend) or bearish (expected downtrend), which corresponds to 

predicting the direction of the next candlestick or near-term price movement following 

that window. 

 

Labeling was performed using a combination of pattern interpretation and technical 

indicator confirmation to increase the reliability. 

 

4.3.1. Pattern-Based Trend Inference 

 

Each detected candlestick pattern has a known, traditional interpretation. A Hammer 

or a Morning Star pattern is typically considered a bullish reversal signal (anticipating 

an upward move), whereas a Shooting Star or a Dark Cloud Cover is considered 

bearish. Initially, we assigned a tentative label to the window based on the identified 

primary pattern. If multiple patterns were found in the window, the most significant or 

latest pattern (often the one formed by the last few candlesticks in the window) was 

used for trend indication. This gives an initial bullish/bearish label derived from 

classical technical analysis. 

 

4.3.2. Technical Indicator Confirmation 

 

 Relying solely on patterns can be misleading, because candlestick patterns do not 

always correctly predict market movements in isolation. To improve labeling 

accuracy, we incorporated additional technical indicators as confirmation signals for 

the pattern indication. In our methodology, we use a Simple Moving Average (SMA) 

for key confirmation. The SMA has a smoothed average of closing prices over a recent 

period and helps indicate short-term trend momentum. For each window, we computed 

a short-term SMA (e.g., a moving average spanning a small multiple of the window 
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length or another relevant period). If the pattern was bullish, we checked whether the 

price relative to this SMA or the slope of the SMA supported an upward momentum 

(for instance, the closing price moving above the SMA or the SMA curve turning 

upward). Similarly, for a bearish pattern, we verified whether the SMA indicated 

downwards momentum (price breaking below the average or sloping downwards). 

These indicators serve as a confirmatory filter; if a recognized pattern suggests a 

trend, but the indicators contradict it, the trend signal is deemed weak or possibly false. 

In such cases, the window might be labeled according to the indicator (or even 

excluded if uncertain), whereas when both the pattern and indicators align, the label is 

assigned high confidence. 

 

Through this combined approach, each candlestick window was classified into one of 

two classes: bullish (meaning that the next candle or short-term movement is expected 

to go up) or bearish (meaning that a downwards movement is expected). By using 

technical indicators to guide labeling, we ensured that the model's training data 

reflected scenarios in which a pattern’s implication was corroborated by market 

momentum, thereby focusing the learning on more reliable pattern outcomes. This is 

important because candlestick patterns can occasionally appear without resulting in 

the expected trend change; including these cases as positive examples could confuse 

the model. Our labeling strategy mitigates this by providing the model with labels that 

have a higher probability of being correct, given additional confirmation. 

 

The final labeled dataset consisted of thousands of candlestick chart images, each with 

an associated binary label (uptrend or downtrend). These labeled data serve as the 

ground truth for training the CNN model to recognize patterns and predict the next-

candle direction. Figure 4.4. shows the labeling process using a simple average 

indicator. 



 

67 

 

 

Figure 4.4. The labeling process. 

 

4.4. CNN MODEL ARCHITECTURE 

 

To automatically classify candlestick chart images as bullish or bearish, we designed 

a Convolutional Neural that is tailored for image-based pattern recognition. The CNN 

model uses the generated candlestick chart images as input and learns to output a 

prediction of the trend class. The architecture was implemented using TensorFlow and 

Keras deep learning frameworks, and it comprises several layers that progressively 

extract visual features from the candlestick charts and then perform binary 

classification, figure 4.5. present The CNN architecture representing the sequential 
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processing of an input image. In constructing the CNN architecture, a series of 

carefully curated layers was incorporated, each serving a distinct function while 

encompassing a specific set of parameters. The layout of these layers is 

comprehensively depicted in Table 4.1., which details each layer’s type, resultant 

output shape, number of trainable parameters, and overall contribution to the 

functionality of the model. 

 

The key components of the model architecture are described in detail below: 

 

 

 

Figure 4.5. CNN architecture representing sequential processing of the input image. 

 

● Input Layer: The input to the model is an image of a candlestick chart with a fixed 

size of 150×150 pixels and three-color channels (RGB). Each image encodes the 

sequence of candlesticks in the window, and is drawn in a standard candlestick 

chart format. Before feeding the images into the network, pixel values were 

normalized (rescaled) to the range [0, 1] to facilitate faster and more stable training 

(original pixel intensities 0–255 were divided by 255). 

● Convolutional layers: CNN use multiple convolutional layers to automatically 

learn features from candlestick images. The first convolutional layer applied a set 

of learnable filters (kernels) to the input image. In our architecture, this layer uses 

32 filters of size 3×3, with each filter scanning across a 150×150 image. As the 

filter slides over the image, it performs convolution operations (dot products 

between the filter weights and local patch of the image), producing a feature map 
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as the output. Each filter can learn to detect basic visual features such as vertical 

or horizontal edges, shapes of candlestick bodies/wicks, or texture in the chart. The 

rectified linear unit (ReLU) activation function was applied to the convolution 

output, introducing nonlinearity by eliminating negative responses. This helps the 

network model complex patterns and interactions between pixels, beyond linear 

combinations. 

 

Following the first convolution, a max-pooling layer was used. We apply 2×2 max 

pooling, which reduces the spatial dimensions of the feature maps by taking the 

maximum value in each 2×2 region. In effect, the 150×150 feature map is down-

sampled (pooled) to roughly 75×75 (if using 'same' padding, exact dimensions may be 

75 or 74 depending on rounding). Pooling serves two main purposes: it reduces the 

computational load for subsequent layers by decreasing the number of activations and 

it provides a form of translation invariance (small shifts in the input candle position 

will not drastically change the pooled representation). It also helps generalize by 

abstracting the features. 

 

After pooling, we stacked additional convolutional layers to learn higher-level 

representations. The second convolutional layer might use 64 filters (also of size 3×3) 

applied to the pooled feature maps from layer one. This layer can capture more 

complex combinations of features detected by the first layer (for example, it may 

recognize parts of candlestick formations or edges of patterns). Again, ReLU 

activation is applied, and another pooling layer reduces the output (e.g., down to 

~37×37). A third convolutional layer with an even larger number of filters, such as 

128 filters of size 3×3, can capture even more abstract patterns (potentially learning to 

recognize entire candlestick shapes or arrangements corresponding to specific 

patterns). We included three convolutional layers in our model (with 32, 64, and 128 

filters), each followed by a max-pooling layer of size 2×2. At the end of this 

convolutional stack, the image was transformed into a set of distilled feature maps. 

The progressive increase in filter count allows the model to learn a richer set of features 

at each stage, while pooling gradually reduces the spatial size, focusing the model on 

what patterns are present rather than their exact position in the image. This is useful 

because, for example, a hammer pattern can occur at different vertical positions in the 
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chart, depending on the price scale, and we want the model to recognize it regardless 

of the exact pixel location. 

 

● Flattening and Fully Connected Layers: After last pooling layer, the feature 

maps were "flattened" into a one-dimensional vector. This flattening converts 

spatially organized features into a format that can be fed into dense (fully 

connected) layers. The first dense layer in the architecture contained 512 

neurons. Each neuron in this layer receives input from all the features of the 

previous layer, allowing it to combine them in arbitrary ways. We also use 

ReLU activation on this layer, which enables the network to learn nonlinear 

combinations of convolutional features. In essence, this layer learns to interpret 

high-level features (extracted by the convolutional layers) in the context of the 

classification task. For instance, it might learn neurons that activate strongly 

when certain combinations of edges and shapes corresponding to a "bullish 

engulfing" pattern are present. 

● Dropout Regularization: To prevent overfitting (where the model memorizes 

training examples rather than generalizing them), we incorporate a dropout 

layer after the first dense layer. The dropout randomly sets a fraction of the 

neurons of the layer to zero for each training batch. We used a dropout rate of 

0.5 (50%), that is, half of the neurons in the dense layer were dropped at each 

training step. This forces the network to not rely too heavily on any single 

feature or a co-dependent set of features, improving its ability to generalize to 

unseen charts. Essentially, dropout simulates an ensemble of many smaller 

networks and helps to ensure that the learned features are robust and not 

specific to particular training samples. 

● Output Layer: The final layer of the CNN is a dense output layer that produces 

a prediction. Because this is a binary classification (bullish vs. bearish), we 

used a single neuron in the output layer with a sigmoid activation function. 

The sigmoid squashes the output to a value between 0 and 1, which can be 

interpreted as the probability of the input image belonging to the "Bullish" class 

(for example). A threshold (typically 0.5) would then be used to decide the 

class label: outputs >= 0.5 are categorized as bullish, and outputs < 0.5 as 

bearish. (Alternatively, the network could be designed with two output neurons 
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and a softmax activation for the two classes, but the single sigmoid is a simpler 

equivalent approach for binary outcomes.) The goal of the model during 

training is to adjust the weights such that these output probabilities align with 

the true labels of the training images. 

 

Table 4. 1. Architectural details of CNN model. 

 

Layers Output Shape 
N. 

Parameters 
Description and Functionality 

Input Layer 
(None, 150, 150, 

3) 
0 

Accepts input images with 

dimensions 150×150 pixels and 

three-color channels (RGB). 

Convolutional 

Layer 1 

(None, 148, 148, 

32) 
896 

32 filters of size (3×3), Activation: 

ReLU. Extracts basic edge features. 

MaxPooling 

Layer 1 
(None, 74, 74, 32) 0 

Pool Size: (2×2). Reduces spatial 

dimensions by half. 

Convolutional 

Layer 2 
(None, 72, 72, 64) 18,496 

64 filters of size (3×3), Activation: 

ReLU. Captures higher-level 

features. 

MaxPooling 

Layer 2 
(None, 36, 36, 64) 0 

Pool Size: (2×2). Further 

downsampling for computational 

efficiency. 

Convolutional 

Layer 3 

(None, 34, 34, 

128) 
73,856 

128 filters of size (3×3), Activation: 

ReLU. Detects complex patterns. 

MaxPooling 

Layer 3 

(None, 17, 17, 

128) 
0 

Pool Size: (2×2). Compresses 

feature maps while retaining 

important information. 

Flatten Layer (None, 36,992) 0 
Convert 3D feature maps into a 1D 

vector for fully connected layers. 

Fully Connected 

Layer 1 
(None, 512) 18,940,416 

Dense Layer: 512 units, Activation: 

ReLU. Learning high-level abstract 

features. 

Dropout Layer (None, 512) 0 

Dropout Rate: 0.5. Mitigates 

overfitting by randomly 

deactivating nodes. 

Output Layer (None, 1) 513 

Dense Layer: 1 unit, Activation: 

Sigmoid. Produces binary 

classification output. 



 

72 

Total 

Parameters: 
19,034,177 (72.61 MB) 

Trainable 

Parameters: 
19,034,177 (72.61 MB) 

Non-trainable 

Parameters: 
0 (0.00 Byte) 

 

4.5. TRAINING AND EVALUATION PROCEDURE 

 

Furthermore, Table 4.2 delineates the key training and compilation parameters that 

guided model development. These parameters encompass data preprocessing 

techniques such as rescaling and data augmentation alongside the chosen optimizer, 

loss function, batch size, and performance metric. In concert, they form the 

experimental framework, ensuring reproducibility and bolstering the robustness of the 

training process. When considered alongside the information provided in the preceding 

table, these details collectively offer a comprehensive picture of the CNN’s 

architecture and the methodological foundation for its training and evaluation. 

 

Following the construction and compilation of the CNN model, the next phase 

involved training on a curated dataset of candlestick chart images labeled as bullish or 

bearish. This stage was meticulously organized to both optimize the model’s 

performance and thoroughly gauge its predictive capabilities. Several pivotal aspects 

of the training workflow and validation strategies are summarized below. 

 

● Training/Validation/Test Split: The labeled dataset was divided into three 

subsets to enable unbiased evaluation of the model. We used a typical split, 

where the majority of the data were used for training and smaller portions were 

reserved for validation during training and final testing. Approximately 70% 

of the candlestick chart samples were used for training, 10% for validation, and 

20% were used as the test set. The training set was used by the model to learn 

the patterns (the model weights were updated by running through these data). 

The validation set is not used to update the model weights; rather, it monitors 

the model's performance on unseen data during training, which helps in tuning 

the hyperparameters and deciding when to stop training (if the validation 
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accuracy stops improving, it may indicate that the model is starting to overfit 

the training data). Finally, the test set was kept completely untouched during 

training and was used to evaluate how well the trained model generalizes 

entirely new data. 

● Model Compilation and Hyperparameters: CNN was compiled using an 

appropriate loss function and optimizer for binary classification. Binary Cross-

Entropy was used as the loss function, which is the standard for probabilistic 

binary output models. This loss function measures the divergence between the 

predicted probabilities and the actual binary labels, penalizing incorrect 

predictions as they become confident and wrong. Minimizing this loss guides 

the model to output probabilities close to 1 for bullish charts that are truly 

bullish and close to 0 for bearish charts, and vice versa. We employed the 

Adaptive Moment Estimation (Adam) optimization algorithm with a 

carefully chosen learning rate as the optimizer. Adam is well-suited for this 

task as it adapts the learning rate for each parameter and generally converges 

faster and more reliably than basic stochastic gradient descent. Initially, we 

tried the default learning rate (0.001) but found that a slightly lower learning 

rate (such as 0.0003) provided more stable learning for our model, likely due 

to the complexity of the model and the risk of overshooting the minimum with 

too large steps. The training was performed in mini-batches (we set a batch size 

of 64 images per gradient update), which balances noise in the gradient 

estimation with computational efficiency (a batch of 64 was a good fit for the 

hardware memory and provided stable convergence). We trained the model for 

a fixed number of epochs (e.g., 20 epochs initially) while monitoring 

performance. The number of epochs was determined based on the observations 

when the validation loss/accuracy leveled off. In some runs, we also employed 

an early stopping strategy: if the validation performance did not improve for 

a certain number of consecutive epochs, the training was halted to prevent 

overfitting and save time. 

● Hyperparameter Tuning: Several hyperparameters (parameters of the 

training process or model architecture that are not learned from the data but set 

by the researcher) were tuned to achieve the best performance. These include 

the learning rate, batch size, number of training epochs, and architecture 
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choices, such as the number of layers or neurons in the dense layer. We 

performed a combination of manual and systematic search. For instance, we 

tried batch sizes of 32 and 64 and found that 64 gave slightly better 

generalization. We experimented with learning rates in the range of 1e-2 to 1e-

4 and discovered that too high a learning rate caused the training to diverge or 

oscillate, while too low made convergence very slow; hence, the choice of 3e-

4 as a middle ground yielded smooth learning curves. We also validated the 

choice of the 512-neuron dense layer by trying a smaller dense layer (256 

neurons) and noted a minor drop in accuracy, indicating that 512 was 

appropriate for capturing the complexity of the patterns. The window size for 

candlestick charts, as mentioned earlier, was also a critical hyperparameter, and 

our experiments with different window lengths on a validation set guided the 

selection of an optimal window size that the model used for the final training. 

All of these decisions were made based on the model’s performance on the 

validation set to avoid biasing the model to the test data. 

 

Table 4.2. Training hyperparameters and compilation parameters used in the CNN 

model. 

 

Parameter Value 

Input image dimensions 150 × 150 

Batch size 64 

Image rescaling factor 1/255 

Data augmentation Shear = 0.2, Zoom = 0.2 

Optimizer Adam 

Loss function Binary Crossentropy 

Performance metric Accuracy 

Number of epochs 20 

Learning rate 0.0003 

 

4.6. K-FOLD CROSS-VALIDATION 

 

In addition to the single hold-out validation set, k-fold cross-validation was employed 

to verify the robustness of the model further. Specifically, we used a 5-fold cross-
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validation approach for the training dataset. In 5-fold cross-validation, the training data 

were split into five equally sized folds (subsets). The model is trained five separate 

times, each time using a different fold as a validation set and the remaining four folds 

as the training data. As shown in Figure 4.6., this represents a K-fold. After these five 

training runs, we obtained five validation performance scores (accuracy and F1-score 

for each fold). We computed the average and standard deviation of these scores to 

assess the sensitivity of the model to a particular composition of the training data. This 

technique ensures that the performance of our model is consistent and not a fluke of a 

particular train validation split. It also aids in hyperparameter tuning; if a certain 

hyperparameter setting yields consistently high validation performance across all 

folds, it is likely a robust choice. In our methodology, the cross-validation results 

provided additional confidence in the chosen model configuration and insight into the 

variance. For instance, a small variance in performance across folds indicates that the 

model generalizes well, whereas a high variance might have suggested overfitting to 

some data patterns or the need for more data/regularization. 

 

 

Figure 4.6. k-fold data partitioning. 

  

● Training Process: During training, at each epoch, the CNN processed all 

training batches and updated their weights via backpropagation to minimize 

the loss. After each epoch, the model was evaluated using the validation set. 

We plotted the learning curves of training versus validation loss and accuracy 

to monitor the training progress. Typically, we observed that training accuracy 

increases over epochs and eventually plateaus, whereas validation accuracy 
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follows a similar trend up to a point where it might start to diverge (indicating 

overfitting). We used validation metrics to determine the final model (for 

instance, we could roll back to the model weights from the epoch with the best 

validation accuracy if early stopping was not triggered automatically). 

● Model Selection and Testing: After training, we selected the model with the 

best validation performance (either the final epoch if no overfitting was 

observed or an earlier epoch if the early stopping criterion was triggered) as the 

final model. This model was then evaluated on an independent test set that was 

previously set aside. Importantly, the test set consists of chart samples that the 

model has never seen during training or validation. We used this set to compute 

the final performance metrics, providing an unbiased assessment of how the 

model would perform on new real-world data. This step simulates the scenario 

of deploying the model for live predictions and tests whether the model can 

correctly classify unseen candlestick charts as bullish or bearish based on 

learned patterns. 

 

Throughout the training and evaluation, careful measures were taken to ensure that the 

results were reliable and not due to random chance or overfitting. The combination of 

a separate test set and cross-validation provided a comprehensive view of the 

performance of the model. 

 

4.7. PERFORMANCE METRICS  

 

To evaluate the effectiveness of the candlestick pattern prediction model, we measured 

several performance metrics commonly used in binary classifications. These metrics 

provide insight into the different aspects of a model’s predictive performance. 

 

● Accuracy: This metric measures the overall correctness of the model and is 

defined as the number of correct predictions divided by the total number of 

predictions. In terms of confusion matrix components (True Positives, True 

Negatives, False Positives, False Negatives), the accuracy is (TP + TN) / (TP 

+ TN + FP + FN). An accuracy of, say, 0.90 indicates that 90% of all 

candlestick chart instances (bullish or bearish) were correctly classified by the 
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model. While accuracy provides a quick summary of performance, it can be 

misleading if classes are imbalanced. In our dataset, we tried to maintain a 

balance between bullish and bearish examples through the data collection and 

labeling process, but we still considered additional metrics for a nuanced 

evaluation. 

● Precision: Precision focuses on the quality of positive predictions (for instance, 

we can arbitrarily define “bullish” predictions as the positive class). It is 

calculated as TP / (TP + FP). Precision answers the question: "Of all the 

instances that the model predicted as bullish, what fraction were actually 

bullish?" High precision means that when the model predicts an uptrend, it is 

usually correct, that is, there are few false alarms. This is particularly important 

in the trading context because a false positive (predicting a bullish trend when 

none occurs) might lead to poor trade. For example, if our model identifies 100 

chart patterns as bullish and 90 of them truly lead to upward movement, the 

precision is 0.90, indicating a fairly reliable bullish signal. 

● Recall: Recall (also known as sensitivity or true positive rate) looks at how 

well the model captures actual positive instances. It was computed as TP / (TP 

+ FN). Recall answers: "Of all the truly bullish instances (patterns that did lead 

to an uptrend), what fraction did the model successfully detect as bullish?" A 

high recall indicates that the model misses very few true bullish signals (i.e., 

few false negatives). In market terms, a false negative would be missing a 

profitable bullish pattern (the model predicts bearish or fails to act when an 

uptrend is coming). For instance, if there were 100 actual bullish cases, and the 

model caught 80 of them, the recall was 0.80. There is often a trade-off between 

precision and recall (capturing more positives can lower precision, and vice 

versa), so both are important to consider. 

● F1-Score: The F1-score is the harmonic mean of Precision * Recall, calculated 

as 2 × (Precision × Recall) / (Precision + Recall). It provides a single metric 

that balances the precision and recall. The F1-score is particularly useful when 

the class distribution is uneven or when one wants to seek a balance between 

avoiding false alarms and missing true signals. The F1-score reaches its best 

value at 1 and the worst at 0. For instance, if the precision is 0.9, and recall is 

0.8, the F1-score is 2*(0.9*0.8)/ (0.9+0.8) = 0.847. We considered the F1-score 
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as a primary metric for model selection because it ensures that the model 

performs well in identifying bullish patterns without too many false positives, 

and does not miss a large portion of them. In other words, it summarizes the 

ability of the model to make accurate and comprehensive predictions for the 

positive class. (For binary classification, we can also compute precision, recall, 

and F1 for the negative class if needed, but usually one focuses on the 

"interesting" class, here bullish, or reports metrics for both classes separately. 

In our case, because bullish vs bearish were roughly balanced and equally 

important, we report the overall precision/recall which is effectively the same 

for one class if we treat the other as negative.) 

 

In addition, we also examined the confusion matrix to see the breakdown of predicted 

versus actual classes and monitored if there was any bias toward predicting one class 

over the other. By analyzing precision and recall together, we ensured that our model 

was not only accurate overall but also behaved well in terms of trade-off. For instance, 

if the model had very high accuracy but low recall, it would mean it was very 

conservative in predicting bullish (perhaps only calling very obvious patterns bullish 

and missing many subtle ones). We aimed for a model with both high precision and 

high recall, leading to a high F1 score, indicating a reliable and consistent performance. 

 

Overall, these performance metrics provided a comprehensive evaluation of the CNN 

model. In the following chapter, we will present the results obtained using these 

metrics and discuss how well the model performed in predicting next-candle directions 

from candlestick chart patterns, as well as compare it with benchmarks or other 

approaches, if applicable. The methodological rigor outlined in this chapter, from data 

preparation to validation, is intended to ensure that the results are credible and that the 

model can be trusted for practical use in analyzing financial market trends.  
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PART 5 

 

THE RESULT AND DISCUSSION 

 

5.1. THE RESULT 

 

In the methodology section, we explain how subcharts containing JCs patterns were 

generated to enhance the analysis. Our initial objective was to identify the most 

suitable window size for training our CNN model because the window size is among 

the most critical hyperparameters for capturing meaningful time-series patterns. 

 

We evaluated multiple window sizes, specifically 5, 10, 15, 20, 25, and 30, to find the 

optimal choice. The type of data modeled by each window size differs; a smaller 

window size may capture finer short-term trends, whereas a larger window size can 

reflect more general long-term patterns. In addition, we fixed the transformation size 

to half the window size across all configurations, creating a 50% overlap between 

consecutive windows. This overlap is crucial for preserving data continuity, allowing 

the model to shift from one window to another without discarding essential 

information. Such an approach not only bolsters the model’s ability to generalize 

across various data segments but also avoids abrupt changes that can negatively affect 

learning. 

 

We constructed our dataset meticulously, emphasizing the chosen window sizes and 

strategic overlapping to best represent the underlying temporal dynamics of the JCs 

charts. These intricate patterns are central to the accurate classification or prediction 

in our binary tasks. This comprehensive approach laid the groundwork for the 

successful training and evaluation of the CNN models. Once a window with 

recognized candlestick patterns was identified, the Technical Analysis Library (Ta-lib) 

helped determine whether any of the 61 predefined patterns were present. If so, the 

window was progressed for further investigation. The next phase entailed classifying 
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the window as bullish or bearish. Market trend classification is supported by an array 

of technical indicators that mainly focus on the price of the final candle relative to the 

moving average. We tested moving averages of 20, 50, and 200 periods but ultimately 

selected a 20-period moving average for this study. If the last candle price was higher 

than the moving average, the window indicated an upward trend, whereas a lower price 

signaled a downward trend. This framework integrates both candlestick pattern 

detection and pivotal technical indicators to analyze trends. In the Forex market, 

trading patterns evolve continuously, with each pattern emerging differently. This 

ever-shifting pattern landscape challenges traders and analysts, complicating any 

attempt to track them. The ongoing nature of pattern mining has highlighted the 

complexity and fluidity of the market. 

 

Table 5.1. demonstrates how TA-Lib contributed to the pattern analysis, revealing how 

often each pattern in the library appeared. The table displays the names of each pattern 

along with the frequency with which it emerged in our dataset, offering a direct view 

of which patterns are dominant and possibly indicative of specific trends. Notably, 

some patterns became more frequent, whereas others diminished. 

 

Table 5.1. Frequency of various candlestick patterns within a 15-min timeframe. 

 

Pattern Occurrences Pattern Occurrences 

Spinning Top 19,678 Stalled Pattern 346 

Long Line Candle 19,058 Evening Star 340 

Belt-Hold 17,318 Three-Line Strike 337 

Short Line Candle 15,741 Identical Three Crows 250 

Closing Marubozu 14,445 Morning Doji Star 106 

Doji 14,133 Evening Doji Star 104 

Hikkake Pattern 11,894 Modified Hikkake Pattern 119 

High-Wave Candle 11,640 Thrusting Pattern 117 

Rickshaw Man 9,553 
Three Advancing White 

Soldiers 
86 

Engulfing Pattern 7,990 Piercing Pattern 76 

Marubozu 5,659 Dark Cloud Cover 68 

Harami attern 4,370 Homing Pigeon 47 
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Three Outside Up/Down 3,854 On-Neck Pattern 32 

Hammer 2,776 Stick Sandwich 32 

Gravestone Doji 2,047 In-Neck Pattern 27 

Dragonfly Doji 1,942 Tristar Pattern 24 

Takuri (Dragonfly Doji 

with long lower shadow) 
1,906 Three Black Crows 24 

Hanging Man 1,537 Tasuki Gap 19 

Matching Low 1,474 Unique 3 River 9 

Harami Cross Pattern 1,082 Ladder Bottom 7 

Doji Star 967 Breakaway 4 

Three Inside Up/Down 793 Abandoned Baby 1 

Upside/Downside Gap 

Three Methods 
719 Two Crows 1 

Shooting Star 699 
Counterattack 

 
1 

Separating Lines 624  

 

Within our 15-minute historical forex dataset, a few patterns did not appear at all, such 

as “Kicking,” “Kicking-bull/bear determined by the longer marubozu,” “Three Stars 

in the South,” “Concealing Baby Swallow,” “Mat Hold,” and “Upside Gap Two 

Crows.” Their absence suggests that neither the market conditions nor the timeframe 

fulfilled the requirements for their formation. Some patterns occur rarely (as seen in 

Table 5.1.), which, while uncommon during normal market activity, may become 

essential indicators for significant market shifts. 

 

To understand how varying window sizes and shifts affect the image dataset creation 

process for CNN-based binary classification, we tested six unique window size and 

shift configurations. Our goal was to determine how each combination modified a 

time-series dataset. 

 

● Window Size 5, Shift 2: Yielded 6,292 images across two classes. These were 

partitioned into 4,403 for training, 628 for validation, and 1,261 for testing. 

● Window Size 10, shift 5: produced 4,970 images, with 3,478 for training, 496 

for validation, and 996 for testing. 
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● Window Size 15, Shift 7: 11, 130 images were created, with 7,790 images for 

training, 1,112 for validation, and 2,228 for testing. 

● Window Size 20, Shift 10: This resulted in 3,675 images, split into 2,572 for 

training, 366 for validation, and 737 for testing. 

● Window Size 25, Shift 12: Generated 6,541 images, allocated as 4,578 for 

training, 653 for validation, and 1,310 for testing. 

● Window Size 30, shift 15: Created 5,181 images, with 3,626 for training, 517 

for validation, and 1,038 for testing. 

 

Each configuration helped assess the CNN’s ability to recognize and classify pattern 

changes with different window sizes and overlaps. These datasets informed the 

training, validation, and testing processes factors that affect how well the model 

generalizes to new, unseen data. This extensive exploration of window sizes and shifts 

informs the best practices in data preparation for CNNs, particularly in tasks that rely 

on detecting subtle temporal patterns. We also compiled a table detailing the resolution 

of each window (see Table 5.2.), which adds further insight into how window 

dimensions can shape the overall model performance and offer future directions for 

optimal configurations. Figure 5.1. highlights the CNN model’s training performance, 

illustrating how accuracy and loss evolve over successive epochs for both the training 

and validation sets. Figure 5.2. presents the receiver operating characteristic (ROC) 

curves, which reveal the classification model’s effectiveness. In nearly all scenarios, 

the ROC curves approached an area under the curve (AUC) of 1.00, indicating an 

almost ideal classifier that achieves a high true positive rate across multiple thresholds 

while maintaining a negligible false positive rate. 

 

Table 5.2. The performance results according to common metrics obtained from the 

implemented model 

 
Window size Shift size Precision Recall F1-Score Accuracy 

5 2 0.993 0.993 0.993 0.993 

10 5 0.977 0.977 0.977 0.977 

15 7 0.988 0.988 0.988 0.988 

20 10 0.969 0.969 0.969 0.969 

25 12 0.982 0.982 0.982 0.982 
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30 15 0.974 0.974 0.974 0.974 

 

 

 

Figure 5.1. Illustrates how the CNN was performed during training, charting both 

accuracy and loss over the course of the training and validation epochs. 
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Figure 5.2. Presents the ROC curves indicating classification effectiveness. In almost 

every scenario, the ROC curves approached a perfect AUC of 1.00, 

suggesting an outstanding classifier that displayed minimal false positives. 

 

Regarding the model performance, we further investigated the effect of changing 

window sizes and shifts by applying a cross-validation binary classification setup. We 

conducted experiments on six configurations of window size and shift in a time-series 

dataset, implementing stratified k-fold cross-validation (k = 5) to reduce the 

overestimation of outcomes. Table 5.3. provides a broad comparison of the model 

performance across these six configurations, each with distinct (W) window sizes and  

(S) Shift parameters. 
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Table 5.3. Performance evaluation of loss and accuracy across multiple configurations 

and cross-validation folds. 

 

Fold 
Config 1 (W=5, 

S=2) 

Config 2 

(W=10, S=5) 

Config 3 (W=15, 

S=7) 

Config 4 

(W=20, S=10) 

Config 5 

(W=25, S=12) 

Config 6 (W=30, 

S=15) 

 Loss ACC Loss ACC Loss ACC Loss ACC Loss ACC Loss ACC 

1 
0.029

3 

0.992

9 

0.028

4 

0.987

9 
0.017 0.9933 

0.100

2 

0.963

3 

0.048

1 

0.981

6 

0.038

5 
0.9875 

2 
0.012

4 

0.994

4 

0.060

4 

0.982

9 

0.113

1 
0.9816 0.077 

0.971

4 

0.053

6 

0.990

6 

0.065

8 
0.9817 

3 
0.037

4 

0.987

3 

0.046

1 

0.988

9 

0.042

8 
0.9906 0.024 

0.993

2 

0.075

3 

0.992

4 

0.084

5 
0.9788 

4 
0.033

9 

0.991

3 

0.060

1 

0.978

9 
0.026 0.9924 

0.064

2 

0.979

6 

0.046

6 

0.993

3 
0.099 0.9624 

5 0.014 
0.993

6 

0.065

9 

0.981

9 

0.025

6 
0.9933 

0.050

3 
0.985 

0.064

3 
0.985 

0.063

6 
0.9826 

Averag

e 

0.025

4 

0.991

9 

0.052

2 

0.984

1 

0.044

9 
0.9902 

0.063

1 

0.978

5 

0.057

6 

0.982

3 

0.070

3 
0.9786 

 

 

Our findings showed different levels of effectiveness. Configuration 1 (W = 5, S = 2) 

showed outstanding metrics, with the best average accuracy (0.9919) and lowest mean 

loss (0.0254). It also showed remarkable stability across all five folds (accuracy ranged 

from 0.9873 to 0.9944). Examination of Configuration 1 revealed strong consistency, 

with fold 2 displaying the highest accuracy (0.9944) and lowest loss (0.0124). 

Meanwhile, Fold 3 posted a slightly lower accuracy (0.9873) and a marginally higher 

loss (0.0374). This pronounced steadiness in a variety of data subsets suggests 

excellent generalization and robust model behavior under different data conditions. In 

comparison, configuration 2 (W = 10, S = 5) experienced a slight decline in 

performance (mean accuracy ~ 0.9841, mean loss ~ 0.0522). Configuration 3 (W = 15, 

S = 7) also remained strong, with a mean accuracy of 0.9902 and mean loss of 0.0449. 

As the window size increased, the performance slowly decreased: configuration 4 (W 

= 20, S = 10) reached 0.9785 accuracy; configuration 5 (W = 25, S = 12) attained 

0.9823 accuracy; and configuration 6 (W = 30, S = 15) finished at 0.9786 accuracy 

with a higher mean loss (0.0703). This pattern suggests that smaller windows and 

proportionally smaller shifts tend to capture the relevant temporal signals more 

effectively, thereby sustaining strong classification scores. Regardless, all six 
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configurations managed to exceed 0.96 in accuracy, although larger windows also 

corresponded to higher loss and larger variations between folds. Configuration 1’s low 

standard deviation for both accuracy and loss further demonstrated its superiority in 

this specific context. 

 

Table 5.4. summarizes the performance of the model for each configuration. 

Configuration 1 (window = 5, shift = 2) again showed the highest accuracy (0.9919) 

and the lowest loss (0.0254). Configuration 3 (window size = 15, shift = 7) was runner-

up (accuracy = 0.9902, loss = 0.0449). Meanwhile, window sizes of 20, 25, and 30 still 

achieved high accuracies (> 0.97), but with marginally higher loss values, culminating 

in Configuration 6’s 0.0703 as the peak loss. 

 

Table 5.4. The summary of average accuracy and loss for each configuration. 

 

Configuration Window size Shift Average loss Average accuracy 

Config 1 5 2 0.0254 0.9919 

Config 2 10 5 0.0522 0.9841 

Config 3 15 7 0.0449 0.9902 

Config 4 20 10 0.0631 0.9785 

Config 5 25 12 0.0576 0.9823 

Config 6 30 15 0.0703 0.786 

 

The graphs in Figure 5.3. illustrate the evolution of the training and validation 

performance metrics (accuracy and loss) over time for the CNN model, which was 

tested experimentally using the 5‑fold cross-validation technique. Each graph 

corresponds to a specific training set-up or configuration. 

 

To assess the classification performance of various CNN model configurations, 

Receiver Operating Characteristic (ROC) curves were plotted, as shown in Figure 5.4.. 

The analysis, conducted through 5‑fold cross-validation on time-series data, indicated 

strong discriminative power across all configurations. Each configuration’s ROC 

curve approached the ideal classification point (top-left corner), reflecting high 

sensitivity and specificity. Additionally, the performance metrics remain consistent 

across different windows and shift parameters, demonstrating a stable model behavior. 
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The configurations consistently achieved high true-positive rates while maintaining 

low false-positive rates, indicating robust binary-classification capabilities. These 

findings, visualized through ROC curves for six distinct configurations (with window 

sizes from 5 to 30 and corresponding shifts from 2 to 15), offer a thorough perspective 

of the model’s classification efficacy across varying temporal scales.  

 

 

 

Figure 5.3. Shows the training and validation accuracy/loss metrics at different points 

during the experimental run with 5-fold cross-validation, with each panel 

indicating a particular configuration. 
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Figure 5.4. ROC curve graphs for various window and shift sizes after using the 

cross-validation. 
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Table 5.5. expands on the comparison by contrasting nine pre-trained architectures 

along the metrics of precision, recall, F1-score, and accuracy. Among these, 

MobileNet stands out, securing the best numbers across all measures (precision: 0.935; 

recall: 0.933; F1-score: 0.933; accuracy: 0.933). VGG19 also recorded good results 

(accuracy: 0.925), followed by VGG16 (accuracy: 0.925). EfficientNetB0 consistently 

exceeded 0.920 for its metrics, whereas ResNet50 and MobileNetV2 hovered around 

0.907. DenseNet121 displayed a moderate performance (accuracy 0.812), and the 

inception-based models demonstrated significantly lower accuracies (~0.509 for 

InceptionResNetV2, ~0.586 for InceptionV3). Hence, MobileNet was the best among 

the tested pre-trained models, but the task-specific CNN described here outperformed 

these baselines overall. 

 

Table 5.5. Performance metrics of pre-trained CNN models. 

 

Model Precision Recall F1-Score Accuracy 

VGG19 0.927 0.926 0.925 0.925 

VGG16 0.925 0.925 0.925 0.925 

ResNet50 0.912 0.908 0.907 0.907 

MobileNet 0.935 0.933 0.933 0.933 

EfficientNetB0 0.922 0.921 0.920 0.920 

InceptionResNetV2 0.255 0.500 0.337 0.509 

MobileNetV2 0.907 0.907 0.907 0.907 

DenseNet121 0.863 0.809 0.804 0.812 

InceptionV3 0.690 0.592 0.528 0.586 

 

5.2. DISCUSSION 

 

This section dives deeper into the candlestick chart forecasting approach and 

highlights its distinguishing features, computational complexity, and practical 

applicability. This discussion is divided into three subsections: Comparative 

Analysis, Model Complexity Evaluation, and Real-Time Market Implementation. 

 

5.2.1. Comparative Analysis With Existing Literature 
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Comparing this candlestick chart forecasting methodology to the established literature 

reveals multiple key differences (see Table 5.6.). In this study, 61 candlestick patterns 

were used in tandem with a CNN model, diverging from conventional studies that rely 

on ensemble machine learning, other deep networks, graph-based models, or 

optimization algorithms. For example, Lin et al. (2021) employed a combination of 

random forest, GBDT, LR, KNN, SVM, and LSTM, whereas Chen and Tsai (2022) 

adopted YOLO for dynamic pattern recognition. 

 

The main methodological distinction here is the targeted 15-minute Forex data 

interval, unlike other studies featuring daily or hourly data from places like China’s 

Stock Market (CSI 300, CSI 500), the Taiwan Stock Exchange, the Nikkei 225, or 

social media sources. Frequent sampling in our data yields more granular insights, in 

contrast to the daily/hourly intervals in Lin et al. (2021), Behar & Sharma (2022), and 

Wang et al. (2022), the 1-minute intervals from the Dynamic Deep Convolutional 

Candlestick Learner, or the 4-hour windows for SVM-based forex forecasting. 

Moreover, unlike many previous studies that explored multiple models (such as CNN-

autoencoders, RNN, ensemble learners, or advanced optimization schemes), this study 

focuses exclusively on CNNs. Although other studies use an assortment of data types 

(historical prices, sentiment, or graph embeddings), ours centers specifically on OHLC 

candlestick information. Critically, the approach introduced here excels in accuracy 

(~99.3%), far surpassing the 56–91.51% range typically reported. By merging a 

systematic window and shift strategy with a single strong CNN model and a 

comprehensive analysis of 61 patterns, this study breaks the new ground in the 

literature. 

 

Table 5.6. The comprehensive comparison of the related studies using candlestick 

charts. 

 

Authors Stock market Timeframe Model used Input dataset Classification Accuracy 

Lin et al. 

[52] 
China’s Daily 

RF, GBDT, LR, KNN, 

SVM, LSTM 

Historical stock 

prices, 

technical 

indicators 

Categorical 0.6 

Hung & 

Chen [18] 

Taiwan and 

Tokyo 
Daily 

CNN-autoencoder, 

RNN 

Candlestick 

Charts 
Binary 0.84 
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Ho & 

Huang [53] 

Apple, Tesla, 

IBM, Amazon, 

and Google 

Daily 
1-D CNN and 2-D 

CNN 

Candlestick 

charts + 

Twitter Text 

Binary 0.7538 

Ardiyanti, 

Palupi & 

Indwiarti 

[54] 

IDX Daily 
ANN+K-Fold Cross-

Validation 

Candlestick 

Pattern data 
Binary 0.8596 

Chen & 

Tsai [15] 

Foreign 

exchange 

(EUR/USD) 

1-min YOLO model 

GAF encoded 

candlestick 

charts 

Binary 0.8835 

Liang et 

al.[55] 
China’s Daily K-line K-line patterns Binary 

56.04% and 

55.56% 

Santur [16] 
11 world 

indices 
Daily 

Ensemble Learning-

Xgboost 

Candlestick 

Chart 
Binary 0.538 

Wang et al. 

[56] 

China’s (CSI 

300) 
Daily Graph Neural Network 

Candlestick is 

represented by 

graph 

embedding 

Categorical - 

Behar & 

Sharma 

[57] 

Indian(BSE 

and NIFTY 

50) and US 

(S&P500 

Daily KNN 
Candlestick 

charts 
Binary 0.614 

and DJIA) 

Ramadhan, 

Palupi & 

Wahyudi 

[39] 

Nasdaq100 Hourly CNN-LSTM 

GAF encoded 

Binary 
90% and 

93% candlestick 

charts 

Puteri et al. 

[58] 

Forex 

(GBP/USD) 
4-h SVM 

OHLC 

candlestick 

data 

Binary 0.9072 

Ruixun 

Zhang & 

Lin [59] 

Exchange-

traded funds 

(ETF) 

Daily 

Channel and Spatial-

Attention CNN (CS-

ACNN) 

Candlestick 

charts 
Binary 

Sharpe ratios 

between 1.57 

and 3.03 

Vijayababu

, Bennur & 

Vijayababu 

[60] 

Ahihi Dataset Daily 

VGG16, ResNet50, 

AlexNet, GoogleNet, 

YOLOv8 

OHLC 

candlestick 

pattern 

Binary 0.9151 

Chen, Hu 

& Xue [40] 
Chinese Daily 

Bidirectional GRU 

with Candlestick 

Patterns and Sparrow 

Search Algorithm 

(SSA-CPBiGRU) 

OHLC 

candlestick 

data 

Categorical - 

Huang, 

Wang & 

Wang [61] 

Chinese 

(Kweichow 

Moutai, CSI 

100, and 50 

ETF) 

Daily 

Vector auto-regression 

(VAR), Vector error 

correction model 

(VECM) 

OHLC 

candlestick 

data 

Binary - 
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Proposed 

model 

Forex 

(EUR/USD) 
15-min CNN 

Candlestick 

charts 
Binary 0.993 

 

 

5.2.2. Model Complexity Evaluation 

 

Table 5.7. provides a robust examination of the complexity of a CNN. The architecture 

has a total of 19,034,177 parameters and requires ~221 million Floating Point 

Operations (FLOPs), all of which consuming approximately 72.65 MB of memory. 

Composed of five layers, the architecture balances depth and computational demands. 

It includes three sequential Conv2D layers, each paired with a MaxPooling2D layer, 

followed by flattening and two dense layers, the latter separated by a dropout layer to 

curb overfitting. A closer look reveals that the second Conv2D layer has the highest 

FLOPs (95,883,264), whereas the largest param count (18,940,416) occurs in the first 

dense layer. Despite these significant demands, MaxPooling2D substantially reduces 

dimensionality while retaining vital features, boosting overall efficiency. 

Benchmarking with inference times underscores real-time feasibility, yielding a mean 

latency of ~570 ms and standard deviation of ~84 ms, which is reasonable in practical 

trading scenarios. 

 

Table 5.7. CNN model complexity analysis. 

 

Model overview 

19,034,177 
Total 

Parameters: 

221,008,385 Total FLOPs: 

72.61 MB 
Parameter 

Memory: 

72.65 MB Model Size: 

5 Layers Model Deth: 

Layer-wise Analysis 

Output shape FLOPs Parameters Layer type 

(64,148,148,32) 19,625,984 896 Conv2D 

(64,72,72,32) 700,928 0 MaxPooling2D 

(64,72,72,64) 95,883,264 18,496 Conv2D 
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(64,36,36,64) 331,776 0 MaxPooling2D 

(64,34,34,128) 85,377,536 73,856 Conv2D 

(64,17,17,128) 147,968 0 MaxPooling2D 

(64,36,992) 0 0 Flatten 

(64,512) 18,940,416 18,940,416 Dense 

(64,512) 0 0 Dropout 

(64,1) 513 513 Dense 

Inference time analysis 

570.20 ms Mean Inference Time: 

84.14 ms Std Inference Time: 

397.73 ms Min Inference Time: 

741.64 ms Max Inference Time: 

 

5.2.3. Real-Time Market Analysis and Results 

 

Figure 5.5. illustrates an algorithm’s performance in a real trading environment, 

specifically on the EUR/USD pair from October 28 (12:00) to November 1 (00:00), 

2024. Markers “U” (Up) and “D” (Down) denote trend reversals. Throughout these 84 

hours, prices oscillated between 1.078 and 1.088. A sharp drop occurred on October 

29 (at approximately 12:00), bottoming near 1.078 before rebounding. The pair then 

embarked on an upward track, testing 1.086–1.088. These observations show that the 

trend detection algorithm works effectively in live, volatile conditions, thus carrying 

risk-management implications for institutional investors. The algorithm’s higher 

sensitivity to turning points compared to some standard technical tools suggests an 

advancement in AI-driven trading systems. Future investigations could extend these 

tests to other timespans and instruments to improve the adaptability of the model. 
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Figure 5.5. Algorithmic trend detection signals on EUR/USD parity over 84-h period 

with 15-min intervals (October 28–November 1, 2024). 
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PART 6 

 

CONCLUSION AND FUTURE WORKS 

 

6.1. CONCLUSION 

 

This study integrates historical Japanese candlestick (JC) knowledge from the 17th 

century with a modern CNN, thereby enhancing the prediction of financial market 

behavior. The comprehensive three-stage approach we adopt establishes a novel path 

for market analysis, especially in the EUR/USD Forex domain. First, we introduced 

an innovative sliding window strategy that allows systematic time-series exploration, 

enabling the creation of detailed subgraphs and identifying 61 separate candlestick 

patterns. This step broadens conventional approaches and offers a more refined 

perspective on how markets evolve. Second, automated pattern detection via the Ta-

lib library was combined with the selection of technical indicators and an adaptable 

window-shift mechanism (six intervals). Third, our sophisticated CNN architecture, 

comprising ~19 million parameters and ~221 million FLOPs, achieves remarkable 

efficiency, averaging an inference time of ~ 570 ms. 

 

Our experiments confirm the efficacy of this combined approach, reaching ~99.3% 

accuracy, a figure substantially above that of existing methods that usually fall 

between 56% and 91.51%. This impressive rate was demonstrated through a rigorous 

5-fold cross-validation on 15-minute data and validated in a real-time context (October 

28–November 1, 2024). The model’s robust performance on novel data cements its 

suitability for scenarios demanding a rapid response, such as high-frequency trading, 

where classic technical analysis can falter amid rapid shifts. 
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The key contributions of this study include (1) a pattern-recognition framework 

encapsulating 61 candlestick formations, (2) an adaptive window-shift mechanism 

tailored to high-frequency data, and (3) quantitative trend detection using SMAs. 

These enhancements are significant for automated software trading and risk 

management methods. 

 

6.2. FUTURE WORKS 

 

Directions for future work include several aspects.  

 

First, testing the model on different instruments (cryptocurrencies and commodities) 

and diverse markets (volatile or crisis periods) can foster broader applicability.  

 

Second, further synergy with technical or fundamental signals could refine the model, 

especially if macroeconomic or sentiment-based data are integrated.  

 

Third, advanced optimization (e.g., neural architecture search or pruning) can 

preserve or enhance the accuracy while reducing the computational overhead. Fourth, 

unsupervised or semi-supervised methods may uncover heretofore undocumented 

patterns, amplifying the model’s insight.  

 

Fifth, to strengthen real-world validation, performance evaluations should address 

more risk metrics, transaction costs, and additional market states.  

 

Sixth, exploring longer time horizons or multiple time frames expands the scope of 

the model.  

 

Lastly, advanced adaptive learning that recalibrates shifting market conditions might 

ensure sustained relevance over time. 

 

In summary, this study merges legacy technical techniques with state-of-the-art AI to 

significantly improve the accuracy of financial forecasting. The resulting system holds 

promise for automated trading and real-time analytics, enhancing both practical 
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outcomes and the broader financial modeling field. By merging historical expertise 

with modern deep learning, we set a stage for robust next-generation market-prediction 

frameworks. 
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