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METRIC BASED MESH ADAPTATION METHODOLOGY
APPLIED TO HEMLAB ALGORITHM

SUMMARY

This dissertation presents a detailed study on metric-based mesh adaptation
methodologies applied to high-lift aerodynamic simulations within the HEMLAB
framework. The research integrates advanced computational techniques to enhance the
accuracy and efficiency of computational fluid dynamics (CFD) solvers, particularly
for high-lift configurations analyzed in the AIAA High Lift Prediction Workshop
Series (HLPW). The primary focus is on improving numerical predictions by refining
computational meshes dynamically in response to flow characteristics.

A key contribution of this research is the development and integration of metric-based
anisotropic mesh adaptation strategies. These techniques refine computational grids in
regions of high flow gradients, such as boundary layers and wake structures, ensuring
improved resolution without excessive computational cost. The numerical studies
conducted on HLPW-3, HLPW-4, and HLPW-5 test cases illustrate the impact of these
adaptation methods on aerodynamic loads, particularly in improving lift and pressure
coefficient distributions.

In addition to mesh adaptation, this study incorporates solution methodologies through
the integration of the Scalable Nonlinear Equations Solvers (SNES) framework.
By utilizing nonlinear Newton-Krylov methods with efficient preconditioners the
computational cost of solving nonlinear equations is significantly reduced. The
accurate Jacobian evaluation as a preconditiner further enchance solver efficiency.

Turbulence modeling is another aspect of this research. The initial version of
HEMLAB was limited to the standard Spalart-Allmaras (SA) model. This study
extends its turbulence modeling capabilities by incorporating SA-neg, SA-neg-ft2,
and SA-QCR-2000 models. These modifications improve the solver’s accuracy
and convergence in predicting separated flows, transitional effects, and streamline
curvature influences. A second-order discretization scheme is also introduced to the
SA model, enhancing numerical precision and reducing diffusion errors.

Furthermore, this thesis highlights the significance of machine precision in
high-fidelity simulations. The methodologies developed in this work contribute to
the broader field of CFD by providing improved numerical accuracy, efficiency,
and adaptability. Future research directions include refining transition modeling
techniques, extending adaptive meshing strategies such as goal based adaptation
strategies and improving sensor function and further investigation of cross diffusion
effects on highly anisotropic meshes for the aircraft configurations.
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METRİK TABANLI AĞ UYARLAMA YÖNTEMİNİN
HEMLAB ÇÖZÜCÜSÜNE UYGULANMASI

ÖZET

Bu doktora tezi, kenar tabanlı sonlu hacimler yöntemini kullanan hesaplamalı
akışkanlar dinamiği (HAD) çözücüsü HEMLAB algoritmasının yüksek taşıma kon-
figürasyonlarında kullanılmak üzere geliştirilmesine yönelik kapsamlı bir araştırmayı
sunmaktadır. Bu bağlamda, mevcut çözücünün aerodinamik simülasyonlardaki doğru-
luk ve verimliliğini artırmak amacıyla çeşitli yenilikçi yaklaşımlar geliştirilmiştir.
Özellikle AIAA High Lift Prediction Workshop (HLPW) serilerinde ele alınan
karmaşık geometriler üzerinde odaklanılarak, metrik tabanlı ağ uyarlama teknikleri,
türbülans modeli iyileştirmeleri ve ileri sayısal çözüm yöntemleri detaylı bir şekilde
incelenmiştir. Çalışmada geliştirilen yöntemlerin özgün katkıları üç ana başlıkta
toplanabilir: (i) Metrik tabanlı ve hibrid sensör destekli adaptif ağ stratejileri,
(ii) Gelişmiş sayısal çözüm yöntemleri ile hesaplama verimliliğinde artış, ve (iii)
Türbülans modellemesinde sağlanan doğruluk iyileştirmeleri.

Günümüz havacılık endüstrisinde operasyonel maliyetlerin azaltılması, yakıt ver-
imliliğinin artırılması ve aerodinamik performansın iyileştirilmesi gibi hedefler,
yüksek taşıma sistemlerinin tasarımını kritik hâle getirmiştir. Bu sistemler, temel
kanat yapısına ek olarak slat, flap, fairing gibi bağlantı elemanlarından oluşan
oldukça karmaşık geometrilere sahiptir. Bu tasarımsal karmaşıklık, akış alanının doğru
şekilde modellenmesini zorlaştırmakta ve geleneksel HAD yöntemlerinin sınırlarını
zorlamaktadır. Özellikle sınır tabakası ayrılmaları ve kanat ucu girdaplarının bir
arada bulunduğu bu sistemlerde, hesaplamalı ağların optimal dağılımı büyük önem
taşımaktadır. Bu tez çalışması, söz konusu zorluklara yönelik HEMLAB algorit-
masında gerçekleştirilen iyileştirmeleri HLPW’de sunulan geometriler üzerinden
kapsamlı biçimde doğrulamayı amaçlamaktadır. Temel motivasyon, endüstriyel
uygulamalarda karşılaşılan yüksek hesaplama maliyetlerini düşürürken, aynı zamanda
sonuç doğruluğunu artırmaktır.

Tezin en önemli katkılarından biri, hesaplamalı ağların akış özelliklerine göre
dinamik olarak yeniden düzenlenmesini sağlayan metrik tabanlı anizotropik ağ
uyarlama stratejilerinin geliştirilmesi ve HEMLAB çözücüsüne entegre edilmesidir.
Bu kapsamda INRIA tarafından geliştirilen pyAMG ve NASA’nın REFINE
algoritmaları başarıyla entegre edilmiştir. Bu entegrasyon sayesinde çözücünün adaptif
ağ yeteneklerinde önemli gelişmeler sağlanmıştır. Özellikle sınır tabakaları, şok
dalgaları, ayrılma bölgeleri ve kanat ucu girdapları gibi kritik akış yapılarının
bulunduğu bölgelerde ağ otomatik olarak iyileştirilirken, diğer bölgelerde daha az ağ
elemanı kullanılarak verimli bir dağılım elde edilmiştir.

Ağ adaptasyon sürecinde, geometrik karmaşıklığın yüksek olduğu bölgelerde hücre
boyutlarının otomatik olarak küçültülmesi ve akışın fiziksel özelliklerine göre ağın
yeniden düzenlenmesi gibi işlevler kazandırılmıştır. Mach, entropi, basınç, mesafe
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gibi çeşitli akış özelliklerine dayalı fonksiyonlarla ağ uyarlaması yapılabilmektedir.
Bu süreçte klasik Mach sayısı sensörüne ek olarak geliştirilen hibrid sensör yaklaşımı
uygulanmıştır. Bu yöntem, özellikle geometriye yakın bölgelerde daha yoğun bir
ağ dağılımı sağlamış ve sınır tabakası çözünürlüğünde kayda değer iyileşmeler elde
edilmesini mümkün kılmıştır. Geleneksel yöntemlerde yüksek hız gradyanlarının
olduğu bölgelerde ağ yoğunluğu artırılırken, geometriye yakın bölgelerde yeterli
çözünürlük sağlanamaması önemli bir sorundu. Hibrid sensör yaklaşımı bu sorunu
çözerek hem sınır tabakası içinde hem de serbest akış bölgesinde optimal ağ dağılımı
sağlamıştır. Bu bağlamda, geometrik yakınlık ile akış özelliklerini birleştiren yeni
bir ağ adaptasyon metriği geliştirilmiştir. Bu metrik, yüzey eğrilikleriyle birlikte akış
değişkenlerindeki gradyanları dikkate alarak çok yönlü bir optimizasyon sunmaktadır.

Ayrıca ağ kalitesinin adaptasyon sonrası korunması amacıyla hücre şekil bozulmaları
minimize edilmiş ve yüzey geometrisine bağlı ağ bozulmalarını engelleyen özel
projeksiyon algoritmaları kullanılmıştır. Bu algoritmalar, adaptif ağların fiziksel
doğruluğunu korurken, sayısal çözümün kararlılığını da desteklemiştir. Tüm bu
geliştirmeler, hem ağ oluşturma süresini azaltmış hem de manuel müdahale ihtiyacını
minimuma indirerek kullanıcı bağımsızlığını artırmıştır. Bu sayede HEMLAB,
tamamen otomatik çalışan, uçtan uca çözüm sağlayan bir HAD aracı hâline gelmiştir.
Bu otomasyon, özellikle endüstriyel projelerde farklı konfigürasyonlara hızlıca adapte
olunmasını kolaylaştırmıştır.

HEMLAB algoritmasının çözüm verimliliğini artırmak amacıyla PETSc
kütüphanesinin Scalable Nonlinear Equations Solvers (SNES) çerçevesi entegre
edilmiştir. Bu entegrasyon, doğrusal olmayan denklem sistemlerinin çözümünde
önemli avantajlar sağlamıştır. GMRES (Generalized Minimal Residual) ve FGMRES
(Flexible GMRES) gibi ileri iteratif çözücülerin kullanımı, yüksek Reynolds sayılı
akışlarda kararlı ve hızlı yakınsama sağlamıştır. Bu çözücüler, karmaşık akış
yapılarında geleneksel yöntemlere göre daha iyi performans göstermiştir. Çözücü
parametrelerinin dinamik olarak ayarlanabilmesi sayesinde farklı akış rejimlerinde
otomatik optimizasyon sağlanmıştır. ILU(k), blok Jacobi ve eklemeli Schwarz gibi
çeşitli ön koşullandırıcılar karşılaştırılarak problem tipine göre en uygun yöntemler
belirlenmiştir. Bu karşılaştırmalar sonucunda yakınsama hızında önemli iyileşmeler ve
büyük ölçekli 3B simülasyonlarda ciddi hesaplama süresi kazanımları elde edilmiştir.
Ayrıca, Jacobian matrisinin açıkça oluşturulmasından kaynaklanan hesaplama yükünü
azaltmak için Jacobian-Free Newton-Krylov (JFNK) yöntemi uygulanmıştır. Bu
yöntemde sonlu fark yaklaşımlarıyla bellek tüketimi optimize edilmiştir. Yüksek
doğruluk gerektiren durumlar için ise el ile hesaplanan analitik Jacobian matrisleri
geliştirilmiş ve bu matrisler sonlu fark yaklaşımı ile karşılaştırılarak doğrulukları test
edilmiştir. JFNK yönteminde sonlu fark adım boyutunun dinamik optimizasyonu,
yakınsama karakteristiğini önemli ölçüde iyileştirmiştir.

HEMLAB’ın ilk versiyonu yalnızca standart Spalart-Allmaras (SA) türbülans
modeliyle sınırlıyken, bu tezde önemli modelleme iyileştirmeleri gerçekleştirilmiştir.
Ayrılmış akış bölgelerinde negatif türbülans viskozitesini işleyebilen SA-neg modeli,
Newton metodunun quadratic yakınsama özelliğini yakalamamıza olanak verdiği
için stall bölgesindeki akışlar daha doğru tahmin edilebilmiştir. Geçiş akışlarının
modellenmesinde kullanılan ft2 fonksiyonu üzerinde yapılan iyileştirmeler, özellikle
slat ve flap gibi elemanlar üzerindeki laminer-türbülans geçiş bölgelerindeki çözüm
doğruluğunu artırmıştır. Ayrıca, dönel akışlar ve akış çizgisi eğriliklerini dikkate
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alan SA-QCR-2000 modeli, kanat ucu girdapları gibi karmaşık akış yapılarının
simülasyonunda başarılı sonuçlar vermiştir. SA modeline uygulanan ikinci mertebeden
ayrıklaştırma şeması, sayısal difüzyonu azaltarak ince sınır tabakalarının çözüm
kalitesini artırmıştır.

HLPW-3, HLPW-4 ve HLPW-5 test vakaları üzerinde yapılan kapsamlı simülasyonlar,
geliştirilen adaptif yöntemlerin aerodinamik yükler üzerindeki olumlu etkisini açıkça
ortaya koymuştur. Taşıma katsayısı (CL), sürükleme katsayısı (CD) ve basınç
dağılımlarında önemli iyileştirmeler elde edilmiştir. CRM-HL geometrisi için yapılan
simülasyonlarda, adaptif ağlar sayesinde geleneksel sabit ağlara kıyasla daha az
ağ noktasıyla daha doğru sonuçlara ulaşılmış ve hesaplama maliyetlerinde önemli
tasarruf sağlanmıştır. Farklı hücum açılarıyla yapılan testler, özellikle stall bölgelerinde
geliştirilen yöntemlerin etkinliğini ortaya koymuştur. Rüzgar tüneli verileriyle yapılan
karşılaştırmalar, elde edilen sonuçların deneysel verilerle uyum içinde olduğunu
göstermiştir. Ayrıca, JAXA Standard Model (JSM) ve NASA Common Research
Model (CRM) geometrileri üzerinde yapılan 2B ve 3B simülasyonlar, adaptif ağ
yöntemlerinin farklı konfigürasyonlarda sağladığı başarıyı kanıtlamıştır. Bu testler
sayesinde ağ adaptasyonunun ağ eleman sayısından bağımsız çözüme katkısı da
gösterilmiş; farklı başlangıç ağlarıyla yapılan analizler sonrasında sonuçların ağdan
bağımsız hâle geldiği ortaya konmuştur. CRM-HL Wing-Body konfigürasyonunda
farklı türbülans modellerinin karşılaştırılması, önerilen metodolojinin çeşitli ge-
ometrilerdeki başarısını desteklemiştir.

Bu tez kapsamında geliştirilen metrik tabanlı ağ uyarlama metodolojilerinin HEMLAB
çözücüsüne entegre edilmesi, sayısal yöntemlerin iyileştirilmesi ve türbülans modeli
seçeneklerinin artırılması sayesinde yüksek taşıma aerodinamiği simülasyonlarında
önemli gelişmeler elde edilmiştir. Elde edilen bulgular, hem akademik araştırmalar
hem de endüstriyel uygulamalar açısından değerli katkılar sunmaktadır. Çalışmanın
sonuçları, yüksek taşıma sistemlerinin tasarımı ve optimizasyonu süreçlerinde önemli
zaman ve maliyet tasarrufu sağlama potansiyeline sahiptir. Gelecek çalışmalar
kapsamında, geçiş modelleme tekniklerinin daha da geliştirilmesi, laminer-türbülans
geçişinin daha doğru tahmin edilmesini sağlayabilir. Ayrıca paralel hesaplama ve GPU
tabanlı çözücü entegrasyonu, büyük ölçekli simülasyonların hızını artırabilir. Yüksek
mertebeden ayrıklaştırma şemalarının uygulanması, sayısal difüzyonu azaltarak çözüm
doğruluğunu iyileştirebilir. Makine öğrenmesi tabanlı yöntemlerin ağ adaptasyon
süreçlerine entegrasyonu ise hesaplama verimliliğini daha da artırma potansiyeline
sahiptir.

Sonuç olarak, bu çalışma yüksek taşıma sistemlerinin tasarım ve analiz süreçlerinde
HAD yöntemlerinin güvenilirliğini önemli ölçüde artırmaktadır. Tezde geliştirilen
metodolojiler, yalnızca havacılık değil; otomotiv, enerji ve rüzgar türbini tasarımı gibi
alanlarda da uyarlanabilir niteliktedir.
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1. INTRODUCTION

Many developments and research efforts are still ongoing to achieve efficient civil

transportation systems in terms of operational costs, payloads, fuel consumption,

weight, and aerodynamic noise emissions. Therefore, high-lift configurations are still

being developed to meet these requirements. These configurations as shown in Figure

1.1 can provide a higher lift coefficient before an aircraft enters the stall region.

However, the challenge lies in the fact that the flow physics are quite complex due to

the complexity of the geometry. This complexity arises from additional equipment such

as slat, slat bracket, flap, fairing, nacelle, leading edge strake, pylon as shown in Figure

1.2. These multi-element systems have multiple boundary layers, as indicated in Figure

1.3, and the interactions between these regions need to be studied in detail to achieve

the most realistic results. The same figure also highlights that flow separations and the

tip vortexes which are crucial and must be accurately simulated using an appropriate

numerical model.

Figure 1.1 : Wing tip vortex occured on the High Lift Configuration [1]

Several studies on high-lift configurations have been conducted so far, as higher lift

coefficients offer numerous benefits. For instance, findings in the literature show that a

1% increase in the maximum lift coefficient results in an additional payload capacity of

1



22 passengers or 4,400 lbs under landing conditions [16]. The same study also analyzed

the results in terms of the lift-to-drag ratio (L/D). It was found that a 1% increase in

L/D leads to an additional payload capacity of 14 passengers or 2,800 lbs under take-off

conditions.

Figure 1.2 : Main parts for the high-lift configurations [2]

Figure 1.3 : Flow field around the wing section of a three element wing [3]

Apart from Figure 1.3, multi-element airfoils can have various configurations, such as

only a slat, only a flap, or both. However, the observed behaviors will differ since their

efficiencies are not the same. This phenomenon can be examined in Figure 1.4, which

compares regular airfoils without any attachments, airfoils with only a slat, only a flap,

and both slat and flap configurations in terms of lift coefficient for various angles of

attack. It can be seen that the classical airfoil without any attachments has the minimum

lift coefficient, while the maximum is achieved with the slat-flap combination.
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Figure 1.4 : Comparision of Multi Element Airfoils [4]

It should also be noted that the slat-only configuration increases the stall angle. The

curve’s trend moves horizontally with the addition of a slat, but it shifts vertically

with the addition of a flap. As shown in Figure 1.3, there are gaps between the airfoil

elements which can be increased or decreased depending on the flight condition.

Therefore the lift coefficient can vary for each condition. The possible effects of these

geometric variations are briefly explained by [17] in five major points:

• Slat Effect

Using a slat decreases the pressure peaks on the leading edge of the main body due to

the circulation occurring behind the trailing edge of the slat.

• Circulation Effect

Each part of the airfoil creates a high-velocity region for the element located behind it.

For instance, in the main body and flap area, a higher inclined velocity region forms

at the trailing edge of the main body, strongly influencing the leading edge of the flap.

Briefly, the trailing edge of the forward element induces larger circulation due to the

inclined velocity affecting the leading edge of the downstream element.

• Dumping Effect

The high-speed flow exiting the trailing edge of an upstream element (such as the

main airfoil) enters the gap between elements and effectively “dumps” into the region

ahead of the downstream element (such as a flap). This process increases the pressure

at the trailing edge of the upstream element and helps to decrease the adverse pressure
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gradient, thereby delaying or preventing flow separation. By allowing for more

efficient pressure recovery, the dumping effect enhances overall lift performance and

contributes to the cooperative aerodynamic behavior between multiple elements.

• Off-the-Surface Pressure Recovery

The velocity generated by the forward elements reduces the backward velocity to

near free-stream velocity levels. This occurs due to the absence of wall effects on the

downstream element. The reduction in velocity creates a wake region, but the absence

of the downstream element prevents a sudden drop in velocity. Thus, this is an efficient

way to reduce the strength of wakes formed behind the elements.

• Fresh Boundary Layer Effect

Each airfoil element is independent, this is allowing the creation of new boundary

layers for each element. The boundary layers of these elements are thinner compared to

regular airfoils, it keeps them stable against to the adverse pressure gradient better than

thick boundary layers. Consequently, the gap distances must be optimized to minimize

flow separation.

Another critical point that requires detailed examination is the occurrence of

the transition region. Accurate simulation of the boundary layer is essential to

capture correct flow properties. Generally, Tollmien-Schlichting inflectional instability,

laminar separation, and turbulence contamination effects are the primary causes

of transition in 2D high-lift configurations. However, it has been emphasized that

attachment-line instability must be considered for transition modeling in 3D high-lift

configurations [18]. There is no single flow regime for attachment-line transition—it

could be laminar, transitional, or turbulent. The flow field is influenced by the

attachment-line transition.

The same study also identified factors contributing to attachment-line transition,

including pressure distribution, leading-edge sweep angle, Reynolds number, surface

roughness, and flow contamination. Some of these effects will be briefly discussed in

the following sections.
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1.1 Turbulence Effects on High-Lift Simulations

Among the various turbulence models, the literature suggests that the Spalart-Allmaras

(SA) turbulence model provides more accurate results. Therefore, several modifica-

tions of the SA model have been investigated. Since these models are quite complex

and non-linear, there are still aspects that need improvement. One significant finding in

the study [19] shows that the SA and SST models show good agreement at low angles

of attack (AoAs), but the SA model performs much better at higher AoAs .

For the 2D multi-element airfoil case, the effect of turbulence models on the results was

also investigated. Three different turbulence models were selected (SARC, SST k-ω ,

and k-ε), and all of them predicted similar results before stall. However, the maximum

lift coefficient was over-predicted by all of the models. A detailed examination of

the results revealed that the SST k-ω turbulence model provided the most accurate

predictions in terms of lift, drag, and moment coefficients, as well as the maximum lift

coefficient and stall angles.

The SA model over-predicted the results in this 2D case, while the k-ε model estimated

higher friction drag. Similar results were obtained for several 3D high-lift geometries

in [20]. The SA and Menter’s SST model were applied to an unstructured grid system,

and similar outcomes to the previous 2D case were achieved for the 3D simulations as

well. It was stated that the prediction of the maximum lift coefficient and stall angle

is highly sensitive to the selected turbulence model. Additionally, it was found that the

SST model provides more accurate results, especially at higher AoAs.

Another interesting outcome regarding turbulence model verification was obtained

using several turbulence models in [21]. It was shown that one of the modified models

(k-ω Wilcox) gave the most accurate results. Several turbulence model results were

also compared for high-lift cases in another paper in [22]. SST, TNT, and linear and

non-linear EARSM variations of the k-ω turbulence models were investigated. It was

observed that there was no significant effect on the results in terms of using linear

or non-linear EARSM models. However, lift was still over-predicted, especially at

lower AoAs. These turbulence models were also utilized in [23], and the pressure
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distributions were in good agreement with each other at higher AoAs. It was stated

that the k-ω LEA model predicts the lift coefficient more accurately than the others.

To reduce total simulation time, some turbulence models were improved, and unsteady

effects were investigated in detail using wall function approaches studied in [24]. The

results obtained with this updated turbulence model showed that computational costs

could be reduced by approximately 50%. However, the maximum lift was predicted to

be higher than the experimental data, although there was good agreement in the linear

range. Effects of the variation of k-ω turbulence models were also investigated by [25].

Edwards and Chandra’s modification was used for take-off cases, and the standard

Wilcox k-ω two-equation model was used for landing cases. The lift coefficient results

were in good agreement with experiments, while there were some discrepancies for

the drag coefficient. These results prove that the turbulence model selected has an

obvious effect on aerodynamic coefficients, so this issue should be carefully considered

in high-lift simulations. It would be beneficial to improve current turbulence models

in terms of computational cost and accuracy, as they may fail to predict aerodynamic

coefficients, stall angles, and pressure distributions accurately, especially for separated

flows.

1.2 Transition Effects on High-Lift Simulations

Accurately capturing transition effects is particularly critical for high-lift configu-

rations due to their strong influence on aerodynamic performance, including lift,

drag, and separation characteristics. A boundary layer transition model is highly

recommended for high-lift cases because the flow on slat and flap surfaces has a smaller

Reynolds number and can be considered laminar in these regions [26]. Therefore,

flow solvers that use fully turbulent conditions do not predict the transition effects

as accurately.

There are also some additional implementations performed in [25] to predict the

flow field in transition regions more accurately. The RANS-based laminar boundary

layer model and eN database method were integrated to predict the transition. This

system also automatically predicts whether the flow regions are laminar, turbulent,

or transitional. The results obtained with this model show excellent agreement with

experimental data. However, in some cases, the model needs to be improved to capture
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the transition point of laminar separations and wake regions. Also, all transition lengths

were predicted in the correct order.

1.3 Reynolds Number Effects on High-Lift Simulations

The Reynolds number effect is one of the topics investigated by researchers for high-lift

geometries. For instance, the results provided by [5] show that the Reynolds number

has two important impacts on the linear and stall regions. The first is the increase in

lift in the linear region as the free-stream velocity increases. The second impact is that

stall behavior depends on the free-stream velocity. For example, stall occurs at 12◦ for

a 60m/s free-stream velocity, but CL does not drop in this region. It stays at the same

level for a while and then begins to decrease. This was explained by the separation

that dominates the stall. Additionally, there are two peaks in Figure 1.5 for 40m/s and

50m/s free-stream velocities [5]. It was shown that the higher peak occurs at a lower

AoA, while the lower peak occurs at a higher AoA. The second-highest peak occurs

where the initial velocity has the lowest value (30m/s).

Figure 1.5 : Lift coefficient distribution according to Reynolds number [5]

1.4 Grid Effects on High-Lift Simulations

In terms of grid systems, numerical simulations are carried out with both structured

and unstructured grid designs. For instance, high-lift geometries are investigated using

multi-block structured and unstructured meshes in [27]. Multi-element airfoils are used

to investigate grid dependency. To implement this, a mesh refinement approach is

applied to the unstructured mesh cases. The results obtained in [27] prove that the
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accuracy of drag prediction is strongly related to the mesh density away from the body,

where large circulations and wake regions occur. CL is less sensitive to grid density,

so the results obtained are similar for both structured and unstructured grids, unlike

CD. The objective function is selected as entropy increment for the mesh refinement

process. This is an effective method since it increases the grid elements where the

number of points is crucial for accuracy.

A three-element trapezoidal wing attached to a fuselage with a full-span flap and

part-span flaps was used for 3D simulations in [27]. These were performed with both

structured and unstructured grid systems. The results were in good agreement even

for the unstructured mesh. It is also noted that unstructured grid systems require more

refinement steps to capture the wake near the trailing edge, wingtip vortices, and flow

separations, compared to structured grid systems.

In [20], 3D high-lift models were analyzed with multi-block structured and

unstructured grid systems using the SA and Menter’s Shear Stress Transport models.

Two geometries (three-element trapezoidal wing) were used, with full-span and

part-span flaps. A comparison of structured and unstructured grid systems using the

same turbulence model (SA) was provided. As an important outcome of this study,

the importance of mesh density was emphasized, especially where flow starts to

separate around the wing-fuselage junction. Another study on this topic was performed

using hybrid unstructured and block-structured grids [21]. The results showed that the

predicted lift coefficient increases as the grid is refined. It was also stated that the

accuracy of results can be improved with the adaptive grid method when using an

unstructured mesh design.

One other study emphasized the importance of the provided initial solution [28]. A

different approach for simulation was proposed for the mesh adaptation process. In

this approach, the solution starts with a certain angle of attack. Each flow solution uses

the previous one’s information through linear interpolation. It was recommended to

use a lower angle for the initial solution since it helps prevent flow separations.

The AIAA Draft Prediction Workshop series also highlights the fact that the accuracy

of numerical results is highly dependent on grid quality and resolution issues to obtain

more accurate results for aerodynamic loads. Therefore, many mesh adaptation studies
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have been performed for high-lift configurations to improve grid resolution in regions

with high flow gradients.

Considering all the complex flow modeling of high-lift configurations explained so

far, it is quite challenging to accurately mimic the real flow around the wing to obtain

precise results. Hence, several high-lift workshops are organized to understand the

reliability and capabilities of CFD solvers for high-lift cases.

1.5 AIAA High Lift Workshops

The AIAA High Lift Prediction Workshop (HLPW) series is a collection of

organized events aimed at improving the understanding and accuracy of computational

fluid dynamics (CFD) simulations for high-lift configurations. These workshops

provide a structured platform for researchers and industry experts to evaluate

and compare existing CFD models against high-quality experimental data, offering

valuable insights into the strengths and limitations of different turbulence models,

numerical techniques, and meshing strategies for high-lift prediction. Each workshop

in the series focuses on specific test cases, ranging from two-dimensional high-lift

airfoils to full-scale three-dimensional aircraft configurations, often incorporating

realistic industrial geometries. Participants employ various computational approaches,

including Reynolds Averaged Navier-Stokes (RANS), large-eddy simulation (LES)

and hybrid RANS-LES methods, to predict aerodynamic performance and flow

structures. The results are then systematically analyzed to identify key sources of

discrepancies between CFD predictions and experimental measurements. Additionally,

these workshops encourage discussions on best practices, mesh adaptation techniques,

grid convergence studies, and the role of transition modeling in high-lift aerodynamics.

By encouraging collaboration between academia, industry, and government organi-

zations, the HLPW series helps earning progress in computational methodologies,

ultimately contributing to more reliable and efficient aircraft designs. The insights

gained from these workshops have led to continuous improvements in CFD solvers,

turbulence models, and meshing strategies applied for high-lift applications. In the

following sections, each workshop in the series will be briefly explained, highlighting
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the key test cases, methodologies, and findings that have shaped the field of high-lift

aerodynamics.

1.5.1 High-lift prediction workshop -1

The first workshop was organized by AIAA in June 2010. The objective of the

workshop was to assess the capability of CFD solvers for predicting the performance of

swept, medium, and high-aspect-ratio wings in landing and takeoff configurations. The

NASA Trapezoidal Wing that is shown in Figure 1.6 was selected as the benchmark

geometry, and a total of 39 different results were submitted for comparison.

Figure 1.6 : NASA Langley Subsonic Wind Tunnel, AIAA 1st High Lift Prediction
Workshop [6]

To understand the effects of grid design on the results, both structured and unstructured

grid systems were used. Grid convergence studies were also performed for both grid

systems with different turbulence models at an angle of attack (AoA) of 13◦. The

outcomes show that the structured grid results converge to lower values than the

experimental data, providing more accurate results with the SA turbulence model. On

the other hand, the unstructured grid results do not yield a clear outcome in terms of

the turbulence model used. Both grid systems align more closely with the experimental

data as the grid resolution increases. However, as shown in Figure 1.7, the unstructured

grid results are more accurate than those of the structured grid at the coarse level. The

grid convergence study was also conducted for an AoA of 28◦. As illustrated in Figure

1.8, the results were similar to those at 13◦. However, some participants predicted lower

lift coefficients compared to others. It was observed that these participants did not
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restart the converged solution obtained at lower angles of attack as the initial solution

for higher angle-of-attack simulations. This highlights the sensitivity of CFD solvers

to the initial solutions provided in simulations.

[a] [b]
Figure 1.7 : Convergence of the grid in terms of CL with structured [a] and
unstructured [b] grid systems for α= 13◦, AIAA 1st High Lift Prediction

Workshop [6].

[a] [b]
Figure 1.8 : Convergence of the grid in terms of CL with structured and unstructured

grid systems α= 28◦, AIAA 1st High Lift Prediction Workshop [6]

To assess the prediction capabilities of CFD solvers for stall angles, results were

presented at various AoAs using different turbulence models for two distinct wing

configurations. “Configuration-1” and “Configuration-8” correspond to "slat 30◦/ flap

25◦" and "slat 30◦/ flap 20◦", respectively. The experimental results for Configuration-8

show lower lift compared to Configuration-1. Numerically predicted results were more

accurate for Configuration-8 before the stall region. As shown in Figure 1.9, the SA

turbulence model provides more accurate predictions around the stall region compared

to the other turbulence models used.
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[a] [b]
Figure 1.9 : Comparision of the results for several angle of attacks, using (a) SA and
(b) Other turbulence models for two configurations, AIAA 1st High Lift Prediction

Workshop [6]

Another important aerodynamic parameter that needs to be examined in detail is the

surface pressure coefficient. It is calculated for selected sections for each element

shown in Figure 1.10 separately. Obtained results were calculated by participants for

a selected location at two angles of attack using the finest structured and unstructured

grids. The results shown in Figure 1.11 were obtained using the SA turbulence model

and were captured at the 85% span position for AoA 28◦. It can be clearly seen that all

results are in excellent agreement except for the flap element, particularly around the

trailing edge.

Figure 1.10 : Locations of the pressure stations, AIAA 1st High Lift Prediction
Workshop [6]
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[a] [b] [c]

[d] [e] [f]
Figure 1.11 : Distribution of the pressure coefficient for structured (a-b-c) and
unstructured (d-e-f) grid systems in slat (a & d), main (b & e), and flap (c & f)

locations at the 85% span station for Configuration 1 with α = 28◦, AIAA 1st High
Lift Prediction Workshop [6].

In Figure 1.12 [a] and [b], results are compared for two different turbulence models

at the 85% flap position for AoA 13◦ using several structured grid densities. The

results in Figure 1.12 [a] were obtained with the SST model, while Figure 1.12 [b]

shows results using the SA model. The obtained results reveal that the SST turbulence

model predicts flow separation more accurately around the trailing edge of the flap,

whereas the SA turbulence model fails to capture it. It can also be observed that the

results are independent of grid density for structured grid systems, suggesting that grid

convergence is achieved for structured meshes. However, for unstructured grids, shown

in Figure 1.12 [c] and [d], accuracy improves as grid resolution increases, highlighting

the importance of finer grids in capturing flow behavior. Figure 1.12 further shows

that the results obtained using tetrahedral elements [c] and hybrid elements [d] are

nearly identical on the finest grid. However, on the coarse grid, tetrahedral elements

provide better agreement with experimental data, suggesting that tetrahedral grids may

offer a more reliable solution when resolution is limited. Unlike the structured grid

results, the pressure coefficient around the trailing edge of the flap does not match

the experimental data for unstructured grid systems. This discrepancy indicates that
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the unstructured grids struggle to capture the separation and wake effects accurately,

particularly at lower resolutions. The comparison of turbulence models highlights

the superior performance of the SST model in predicting flow separation, as seen in

Figure 1.12 [a]. The SA model, shown in Figure 1.12 [b], underpredicts the extent of

separation, leading to discrepancies with experimental data. This suggests that while

the SA model is widely used for its computational efficiency, it may not be the most

suitable choice for accurately capturing high-lift flow physics, especially in regions of

strong adverse pressure gradients and separation.

[a] [b]

[c] [d]
Figure 1.12 : Distribution of the pressure coefficient for structured grids with SST
and SA turbulence models, respectively (a-b), and unstructured full tet and hybrid

grid systems with the SA turbulence model (c-d) at the 85% flap station for
Configuration 1 with α = 13◦, AIAA 1st High Lift Prediction Workshop [6].

Another important factor in improving the accuracy of predictions around the wingtip

is investigating the effect of viscous cross-derivative terms. This is one of the most

significant findings from the workshops for future studies. The results obtained while

neglecting these terms are shown in Figure 1.13 [a], whereas Figure 1.13 [b] presents

the solution of the full Navier-Stokes equations. Note that the same turbulence model

and grid structures are used in both cases. It can be clearly seen that the pressure
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coefficients on the wingtip show better agreement with experimental data when the

viscous cross-derivative terms are taken into consideration.

[a] [b]
Figure 1.13 : Effects of the cross derivative terms on the wing tip at α = 28◦, using

SA turbulence model, AIAA 1st High Lift Prediction Workshop [6].

[a] [b]
Figure 1.14 : Effects of the turbulence models on the wing tip at α = 28◦, using

unstructured tetrahedral grids, AIAA 1st High Lift Prediction Workshop [6].

The full Navier-Stokes solution was applied using both the SA and k-ω turbulence

models to understand the effect of turbulence models on the wingtip. As shown in

Figure 1.14, the results obtained using the SA turbulence model are closer to the

experimental data on a fine grid. Even though the SA model provides better predictions,

some discrepancies with the experimental results remain. This issue is attributed to the

presence of brackets on the wing geometry, as shown in Figure 1.15. It was stated

that these brackets were not included in the numerical results shared so far. Only one

study accounted for the bracket effects, and its results captured the flap behavior more

accurately. However, differences were still observed at the forward span stations of the

flap.

15



Figure 1.15 : Brackets on the underside of the wing that are not
included in the numerical calculations, AIAA 1st High Lift

Prediction Workshop [6]

1.5.2 High-lift prediction workshop -2

The second High-Lift Workshop continued with similar test cases, but different

aircraft were selected as benchmark geometries. The DLR-F11 model that is shown

in the Figure 1.16 is used for the test cases. This geometry is a more realistic

aircraft geometry than the previous NASA trapezoidal model. It is studied in landing

conditions with two different Reynolds numbers and the participants attended to

the workshop are listed in Table 1.1. In addition, the 2D bumps case was used for

turbulence model verification.

Figure 1.16 : DLR-F11 in the B-LWST Wind Tunnel, AIAA 2nd High Lift Prediction
Workshop [7]
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Table 1.1 : AIAA HLPW-2 Commitee List

Entry Number Code Name Turbulence Model
002.1 FUN3D SA
002.2 CFL3D SA
003.1+ OVERFLOW SA, SA+AFT
003.2 OVERFLOW SA-RC
003.3+ OVERFLOW SA-QCR+AFT
004.1 CFD++ SA-RC
004.2* CFD++ SA-RC
005.1 HiFUN SA
005.2+ HiFUN SA
006 FUN3D SA-RC
007.1+ CFLOW SA
007.2+ UG3 SA
007.3* CFLOW SA
008 CRUNCH CFD SST
009.1+ OVERFLOW SA
009.2* OVERFLOW SST
009.3* OVERFLOW SST-GRET
010.1+ CFD++ SA
010.2* CFD++ SST
010.3+ CFD++ K-e-Rt
011.1+ NSMB SA
011.2+ NSMB SA-Edwards
011.3* NSMB SA-salsa
012.1+ PowerFLOW LBM-VLES
012.2* PowerFLOW LBM-VLES+trans
013.1+ UPACS SA-noft2-R
013.2* UPACS SA-noft2-R-QCR
013.3* UPACS SST-V
013.4* UPACS SST-V-QCR
013.5* TAS SA-noft2-R
013.6* TAS SA-noft2-R-QCR
014 UNICORN SGS
015.1+ CFX SST
015.2+ Fluent SST
016.1+ elsa SA
016.2* elsa SA
017 COBRA SA
018 VULCAN Wilcox1988

Similar to the first workshop, the effects of grid density, Reynolds number, and bracket

effects on the results were investigated.
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The SA and other turbulence models were used to validate the turbulence model. The

results denoted as 002.1 (SA) and 002.2 (SA) are the validated benchmark results for

this case, as shown in Figure 1.17 [a]. The only difference between these two results is

the grid structure: 002.1 uses an unstructured grid, while 002.2 uses a structured grid.

The dataset 013.1 (SA-noft2-R) captured the most accurate results compared to the

benchmark data. Datasets 007.1, 007.2, and 011.1 used the classical SA turbulence

model with different flow solvers. However, it is evident that the datasets 011.2

(SA-Edwards) and 011.3 (SA-SALSA) require correction. On the other hand, Figure

1.17 [b] provides insight into the grid convergence results for various test cases. The

expected behavior is for the results to converge to those of datasets 002.1 and 002.2

as the grid is refined. The figure shows that only dataset 013.1 correctly predicts the

results among the three models.

[a] [b]
Figure 1.17 : Validation of the turbulence model with 2D bump case, AIAA 2nd High

Lift Prediction Workshop [7].

In Figure 1.18, the geometric configuration without brackets was used to compare

the results in terms of CL, CD, and CM. It can be seen that most of the results are

consistent with the experimental data for lower AoAs. However, the lift coefficient

is over-predicted as the AoA increases. Some of the results fail to capture the stall

even at AoA 22.4◦. A possible reason for this issue is the exclusion of the brackets.

Subsequently, all test cases were performed under the same conditions with the

brackets. Most of the participants predicted a lower lift coefficient compared to the

experimental results. As shown in Figure 1.19, the results obtained spread out at higher

AoAs.
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[a] [b]

[c] [d]

[e] [f]
Figure 1.18 : Force and moment calculations for the case bracket effects excluded

Re = 15.1×106, AIAA 2nd High Lift Prediction Workshop [7]
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[a] [b]

[c] [d]

[e] [f]
Figure 1.19 : Force and moment calculations for the case bracket effects included for
Re = 1.35×106 and Re = 15.1×106, AIAA 2nd High Lift Prediction Workshop [7]

Transition effects on the results submitted were investigated. In Figure 1.20, a

significant increase in lift is observed due to the transition effects. The lift coefficients

were compared, and it was found that they are consistent with those of the NASA

trapezoidal wing. Another finding was that including pressure tube bundles had a small

effect, except in the stall region [7]. To observe the convergence, some participants
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analyzed the residuals. It was emphasized that high-lift cases are generally difficult to

converge for most CFD codes due to the complex flow physics around the wing.

Figure 1.20 : Stall behavior including the transition for Re = 1.35×106 with the
brackets, AIAA 2nd High Lift Prediction Workshop [7]

Velocity profiles were examined at certain locations and compared with the

experimental data in Figure 1.21. It is observed that the CFD results are in good

agreement with each other at an angle of attack of 7◦. However, there are some

differences at higher angles of attack, such as 18.5◦ degrees. It was observed that

the results were under-predicted compared to the experimental data. As shown in the

Figure 1.22, CFD results for the pressure coefficients are consistent with each other

and with the experimental data around the slat and main elements near the mid-span.

However, the results on the flap are spread out. Again, the experimental results could

not be captured, especially around the flap region.
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[a] [b]

[c] [d]

[e] [f]
Figure 1.21 : Velocity profiles where only the case bracket (C2a) effects, both

brackets and bundles effects included (C3a) for Re = 1.35×106 with medium grids,
AIAA 2nd High Lift Prediction Workshop [7]
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[a] [b]

[c] [d]

[e] [f]

Figure 1.22 : Pressure coefficient for the case bracket effects excluded with
Re = 1.35×106 and Re = 15.1×106 for slat (a,b), main (c,d), and flap (e,f) regions

where α=20◦, AIAA 2nd High Lift Prediction Workshop [7]
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1.5.3 High-lift prediction workshop -3

In the 3rd High-Lift Workshop, the JAXA Standard Model and NASA-CRM (Common

Research Model) were used as benchmark geometries, and nacelle/pylon effects were

also taken into account when comparing the CFD results with the experimental data.

Additionally, 2D verification was performed for the DSMA66 airfoil. The effects of

structured and unstructured grid systems on the results were also investigated. The

organizations attended to the workshop and their codes and turbulence models were

listed in the Table 1.2. a and b notation in the entry number field represents the new

submission added after workshop and modified after workshop, respectively. There

were three main test cases during the workshop, and the details are explained below.

Table 1.2 : HLPW3 Committee Data

Entry number Primary organization Code name Turbulence model
001.1 CARDC Mflow SA
002.1b U. Oxford OpenFOAM SA
002.2b U. Oxford Star-CCM+ SA
003.1 Siemens Star-CCM+ SST
003.2 Siemens Star-CCM+ SA
003.3 Siemens Star-CCM+ Lag-EB-ke
003.4 Siemens Star-CCM+ SST-gamma
004.1b U. Tenn. COFFE SA-neg
004.2b U. Tenn. COFFE SA-neg
004.3b U. Tenn. Kestrel SA
004.4b U. Tenn. Kestrel SA
004.5b U. Tenn. KCFD BSL
004.6b U. Tenn. KCFD SA
005.1b U. Tenn. OVERFLOW SA-RC-QCR-
005.2a U. Tenn. OVERFLOW SA-noft2-RC-QCR
006.1 Metacomp CFD++ SA-RC-QCR
006.2 Metacomp CFD++ SA
007.1b Boeing GGNS SA-QCR
008.1 Kawasaki Cflow SA-noft2
009.1 ISCFDC Arion SST-2003
009.2 ISCFDC Arion SST-2003
010.1b ANSYS Fluent SA
010.2b ANSYS Fluent SST[t = 1]
011.1a ANSYS Fluent BSL
012.1 JAXA TAS SA-noft2-RC
012.2 JAXA TAS SA-noft2-RC-QCR
012.3 Boeing GGNS SA-QCR
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Table 1.2 (continued) : HLPW-3 Commitee Data
013.1 Exa PowerFLOW LBM VLES
016.1 MAI LOGOS SSG/LRR-RSM-w2012
016.2 MAI LOGOS SA
016.3 MAI LOGOS SST
017.1b ARA TAU SA
017.2b ARA TAU SA-neg
018.1 ONERA elsa SA
019.1b EMBRAER SU2 SA
019.2a EMBRAER CFD++ SA-RC-QCR
019.3a EMBRAER CFD++ SA-RC-QCR
019.4a EMBRAER CFD++ SA-RC-QCR
021.1b IAE BRU3D SA
022.1b NASA Ames OVERFLOW SA-noft2-RC-QCR
022.2b NASA Ames OVERFLOW SA-noft2
022.3a NASA Ames OVERFLOW SA-noft2-RC-QCR
023.1 Boeing BCFD SA-RC-QCR
023.2 Boeing BCFD SA-RC
023.3 Boeing BCFD SA
023.4 Boeing BCFD SST
024.1 U. Tokyo UTCart SA-noft2-R
025.1b CFMS zCFD SST-V-sust
026.1b DLR TAU SA-neg
026.2b DLR TAU SA-neg
028.1 NASA LaRC PowerFLOW LBM-VLES
030.1b Bombardier Dragon Wilcox1988CC
030.2b Bombardier Dragon Wilcox1988CC
030.3b Bombardier Dragon Wilcox1988CC
030.4b Bombardier Dragon Wilcox1988CC
030.5b Bombardier Dragon SST
030.6b Bombardier Dragon Wilcox1998
031.1 Dassault XFlow WALE
032.1 CSC Unicorn Implicit SGS
033.1b NASA Ames LAVA SA-noft2
033.2b NASA Ames LAVA SA-noft2
034.1 U. Los Andes SU2 SA
035.1a U. Colorado PHASTA SA-noft2
035.2a U. Colorado PHASTA SA-noft2-QCR
035.3a U. Colorado PHASTA SA-noft2
036.1b TotalSim FUN3D SST
036.2b TotalSim FUN3D SA-neg
036.3b TotalSim OpenFOAM γ-Ret-SST
036.4b TotalSim OpenFOAM SA
036.5b TotalSim OpenFOAM SST[mod]
038.1a TotalSim FUN3D SA
039.2a Gulfstream FUN3D SA
040.1 ILight OVERFLOW SA-noft2
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• Case 1: Grid Convergence Study

In this test case, the committee provided fixed grids, and the capability of the

CFD solvers was measured for at least one family of coarse, medium, and fine

workshop-provided meshes. The NASA-CRM wing-body system which is shown in

Figure 1.23 was used as the geometry for a nominal landing configuration without the

nacelle, pylon, tail, or support brackets.

Figure 1.23 : NASA CRM, AIAA 3rd High Lift Prediction Workshop [8]

Case 1a: Full Chord Flap Gap

The test case involves a configuration with a high-lift system that features a full-chord

flap on a wing with a gap between the flap and the wing surface. The flow conditions for

this case are detailed in Table 1.3. The purpose of this test case is to evaluate the ability

of aerodynamic prediction methods to accurately simulate the flow characteristics and

performance of a high-lift system with a significant gap between the flap and the wing.

This gap affects the airflow around the wing, particularly the lift, drag, and moment

coefficients, and plays a role in the overall aerodynamic efficiency of the high-lift

configuration.

Case 1b: Full Chord Flap Gap with Adaptation

It is requested to conduct the necessary grid convergence study by employing

grid refinement through automatic solution adaptation and/or solution-guided grid

regeneration, using the parameters specified in Case 1a.

Case 1c: Partially-sealed Chord Flap Gap

It is requested to obtain numerical solutions specifically for the medium grid, using the

flow conditions outlined in Case 1a. The solution should include a partial chord seal

26



Table 1.3 : Flow conditions for Case 1a

Mach Number 0.2

Re Number 3.26×106

Angle of Attack 8.0◦, 16.0◦

Mean Aerodynamic Chord 275.8inch

Reference Static Pressure 14.7psi

Reference Static Temperature 518.67◦R

between the inboard and outboard flaps, as well as between the inboard flap and the

side of the body.

Case 1d: Partially-sealed Chord Flap Gap with Adaptation

It is requested to conduct the necessary grid convergence study by implementing

grid refinement through automatic solution adaptation and/or solution-guided grid

regeneration, using the parameters specified in Case 1c.

• Case 2: Nacelle Installation Study

As shown in the Figure 1.24, the JAXA Standard Model (JSM), which represents a

wing-body high-lift system, is examined in a nominal landing configuration, featuring

a single-segment baseline slat and a single-segment 30◦ flap, with support brackets

and the option for nacelle/pylon inclusion or exclusion. The experiment utilized a

semi-span model with a 60 mm peniche standoff, but the requested computations are

to be conducted in “free air.”

Figure 1.24 : JAXA, AIAA 3rd High Lift Prediction Workshop [8]
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Case 2a: Nacelle/Pylon OFF

This test case examines a wing-body high-lift configuration without the nacelle and

pylon and the flow conditions are detailed in Table 1.4. The configuration is modeled

with the wing-body system as the baseline, and the effects of the nacelle and pylon

on the aerodynamic performance are excluded. This case is designed to evaluate

the performance of the high-lift system under ideal conditions, where the additional

drag and flow interference caused by the nacelle/pylon assembly are not present.

The primary goal of this case is to assess the baseline aerodynamic characteristics of

the wing-body system in its clean form and provide a reference for comparison with

configurations that include nacelle/pylon components.

Table 1.4 : Flow conditions for Case 2a

Mach Number 0.172

Re Number 1.93×106

Angle of Attack 4.36◦, 10.47◦, 14.54◦, 18.58◦, 20.59◦, 21.57◦

Mean Aerodynamic Chord 529.2 mm

Reference Static Pressure 14.458 psi

Reference Static Temperature 551.79◦R

Case 2b: Nacelle/Pylon OFF with Adaptation

It is requested to implement grid refinement through automatic solution adaptation

and/or solution-guided grid regeneration to obtain the necessary flow solutions, using

the parameters specified in Case 2a.

Case 2c: Nacelle/Pylon ON

It is requested to obtain flow solutions for a high-lift configuration with the

nacelle/pylon assembly activated, using the parameters outlined in Case 2a.

Case 2d: Nacelle/Pylon ON with Adaptation

It is requested to generate flow solutions for a high-lift configuration with the

nacelle/pylon assembly activated, using the parameters specified in Case 2a.

Grid refinement will be performed through automatic solution adaptation and/or

solution-guided grid regeneration for this purpose.
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• Case 3: Turbulence Model Verification Study

Figure 1.25 : DSMA661, AIAA 3rd High Lift Prediction Workshop

Turbulence model verification was performed for the DSMA661 airfoil which is given

in the Figure 1.25. The main focus was on measuring the flow field in the near

wake region, as well as the forces acting on the airfoil. This airfoil was selected for

the verification process because it has multiple elements, providing insight into the

flow physics of high-lift configurations. The wakes from upstream elements affect the

downstream elements in high-lift geometries, which is useful for investigating a 2D

case. On the other hand, the verification of 3D cases is more difficult due to the fact

that a very high number of grids are required, which increases simulation time and

computational cost.

Most of the participants in the third workshop used a computational domain with a 20c

length. Domains with a 500c length were also used, but only a small increase in lift

was observed (around 0.0006).

The results obtained with the solvers CFL3D and FUN3D, both of which use the SA

turbulence model, were validated with the manufactured solutions. Therefore, these

results were considered as the reference benchmark results. It was noted that the

turbulence models SA-noft2 and SA-neg had no impact on the results compared to

the standard SA solution. Six of the 19 results were successfully verified in terms of

the SA turbulence model, as shown in Figure 1.26. Figure 1.27 shows that eight of the

solvers (CFL3D, FUN3D, Kestrel/COFFE, CFD++, OVERFLOW, BCFD, TAU, and

LAVA) have excellent agreement in terms of the velocity profiles. These are calculated

using the SA, SA-noft2, and SA-neg turbulence models.

As can be seen in Figure 1.28, the CFD results for the HL-CRM did not converge to an

exact solution as the grid was refined. The trend of the curve showed an increase in lift,

but a decrease was observed for the moment coefficient. For the drag coefficient, there

was no clear trend, unlike the lift curve. On the other hand, the adaptive grid results,
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shown with the red lines in Figure 1.28, indicate that the grid starts to adapt in regions

where a finer mesh is needed. Therefore, fewer grid points are sufficient to obtain more

accurate results.

Numerical solvers and turbulence models were verified with the 2D case, and the

results obtained appear to be more consistent than those of the 3D HL-CRM case.

The JSM (JAXA Standard Model), both with and without nacelle/pylons, was also

selected as the benchmark geometry for validation. It was concluded that the grid has

a significant impact on the results, especially in regions where the lift is maximum.

Transition effects were also found to be important for the JSM in terms of the lift

coefficient. Figure 1.29 shows oil flow visualization for the JSM. The oil flow patterns

reveal surface streamlines, boundary layer separation, and vortex structures on the

high-lift wing configuration with deployed slats and flaps.

Figure 1.26 : Verification of the drag coefficient for several grid resolutions, AIAA
3rd High Lift Prediction Workshop [8]

Figure 1.27 : Verification of the velocity profiles for several grid resolutions, AIAA
3rd High Lift Prediction Workshop [8]
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[a] [b]

[c] [d]

[e] [f]

Figure 1.28 : Grid convergence results for HL-CRM where α=8◦ and α=16◦, AIAA
3rd High Lift Prediction Workshop [8]
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[a] [b]

[c] [d]

Figure 1.29 : Oil flow pictures for JSM, AIAA 3rd High Lift Prediction Workshop [8]

1.5.4 High-lift prediction workshop -4

The High-Lift Workshop-4 was organized in 2021. The NASA High Lift Common

Research Model (CRM-HL), shown in Figure 1.30, was investigated by participants

to calculate the maximum lift coefficients and high-lift characteristics at pre- and

post-stall angles of attack in landing/take-off configurations.

Another 2D geometry, shown in Figure 1.39, derived from the flap, main, and slat

sections, was used for validation cases. The studies conducted during the workshop

will be explained in the results section, including our studies, as we also participated

in the workshop as committee members. All the test cases studied by the committee

members are listed below and compared with the wind tunnel data shown in the Figure

1.31. The participants attended to this workshop and the code used by them are listed

in the Table 1.5.
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Figure 1.30 : High lift NASA Common Research Model (CRM).

Table 1.5 : HLPW-4 Commitee Members

Entry Number Primary Organization Code Name
H-004 MIT SANS
H-005 U. Tennessee Kestrel/COFFE
H-012 ONERA NXO CC-CV
H-013 Princeton maDG
H-023 Boeing GGNS-T1
A-002 INRIA Wolf
A-004 NASA LaRC FUN3D
A-013 MIT SANS
R-004 JAXA TAS
R-008 NASA LaRC FUN3D
R-009 Hexagon scFLOW
R-011 Indian Inst. Sci. HiFUN
R-015 NASA LaRC USM3D
R-019 Embraer CFD++
R-021 Zenotech zCFD
R-025 NASA Ames LAVA
R-028 ICUBE NSMB
R-032 Seoul Nat. U. ACTFlow
R-034 Poly. Montreal CHAMPS
R-037 Boeing OVERFLOW
R-043 ARA TAU
R-050 TU Braunschweig TAU
R-054 QinetiQ Fluent
R-057 Kawasaki Heavy Cflow
R-059 Siemens STAR-CCM+
R-060 Flexcompute Flow360
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Table 1.5 (continued) : HLPW-4 Commitee Members
Entry Number Primary Organization Code Name
A-025 Boeing GGNS-T1+EPIC
A-026 Istanbul Tech. U. HEMLAB+PyAMG
A-031 U. Tennessee Kestrel/COFFE
L-001 Amazon CFD++
L-004 Virgin Galactic FUN3D
L-005 U. Tennessee Kestrel/KCFD
L-016 NASA Ames LAVA
L-038 DLR TAU
L-053 Kawasaki Heavy Cflow
W-020 NASA Ames LAVA
W-021 Stanford charLES
W-030 KTH Euler Real Flight Sim
W-031 Boeing BCFD
W-032 Dassault Sys. PowerFLOW
W-034 BSC Alya
W-047 U. Kansas hpMusic
W-049 Tohoku U. FVHFC-ACE
W-050 NASA LaRC FUN3D

Figure 1.31 : CRM-HL in QinetiQ 5m Wind Tunnel [9]

• Case 1 - Flap Deflection Study

In order to compare and assess the capability of CFD methods around the trailing

edge, flap deflection increments are studied. All simulations are requested from the

committee members at three flap deflections with a constant angle of attack and
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Reynolds number.

Case 1a: Comparison with QinetiQ WT Data

In this sub-case the results obtained with the flow conditions given in the Table 1.6 are

compared with the wind tunnel data.

Table 1.6 : Flow conditions for Case 1a

Mach Number 0.2

Re Number 5.49106

Angle of Attack 7.05◦ (wall corrected)

Mean Aerodynamic Chord 275.8inch

Reference Static Pressure 24.67psi

Reference Static Temperature 521.0◦R

Semi-Span Reference Area 29736.0in2

Moment Reference Center x = 1325.9 inches,y = 0.0 inches,z = 177.95 inches

Flap Deflection

3 diffrerent geometries:
40◦/37◦ inboard/outboard (nominal)

37◦/34◦ inboard/outboard
43◦/40◦ inboard/outboard

Case 1b: Grid Convergence for Nominal Landing Configuration

Flow solutions are requested for the CRM-HL landing configuration with a nominal

40◦/37◦ inboard/outboard TE flap setting, using refined fixed grids to evaluate grid

convergence. At a minimum, three mesh-family files provided by the workshop should

be used by committee members.

The results obtained for this case during the workshop are compared in terms of

lift, drag, and moment coefficients, as shown in Figure 1.32. The x− axis represents

the characteristic length, calculated as h = N−1/3 since it is a 3D geometry. As

the mesh spacing decreases, the differences between submissions become smaller,

and the general trend is towards higher lift. Although the variation in the drag

coefficient, shown in Figure 1.32 [b], decreases with mesh refinement, the trends of

each submission appear more distinct compared to those for lift and pitching moment.

Figure 1.32 [c] presents the pitching moment coefficient, where the differences
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between submissions decrease with smaller h , and the trend indicates a more negative

pitching moment with mesh refinement.

In Figure 1.33, total skin friction contours for four submissions are presented. Each

subfigure caption includes the submission identifier, mesh size, and metric formulation.

On the wing’s upper surface, slat bracket wakes form stripes, while the wakes of flap

track fairings disrupt the flow through the gap between the main element and flaps,

creating a separated flow region with low skin friction, represented by a black contour

on the flap. The steps in the leading edge generate vortices that scrape the upper surface

boundary layer. Nacelle chine corner vortices leave an imprint on the nacelle. These

features are consistent across submissions, with A-025.1 in Figure 1.33 [c] and A-026

in Figure 1.33 [e] showing less distinct slat bracket wakes.

The pressure coefficient for each section is given in Figure 1.35, 1.36 and 1.37. The

locations of the sections can also be seen in Figure 1.34.

[a] [b]

[c]
Figure 1.32 : Mesh convergence in terms of lift, drag, and moment coefficient for

Case 1 [10]
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[a] [b]

[c] [d]

[e] [f]

Figure 1.33 : CRM-HL skin friction contours at 7.05◦ angle of attack where [a] uses
the lift metric by A-002, [b] is the multiscale metric by A-004, [c] is the multiscale
metric by A-025.1, [d] is the drag metric by A-025.2, [e] is the multiscale metric by

A-026, and [f] is the multiscale metric by A-031 [10].
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Figure 1.34 : CRM-HL pressure coefficients measurement locations [10].

[a] [b]

[c]
Figure 1.35 : CRM-HL pressure coefficients for the slat [a], wing [b] , and flap [c] at

Section B [10].
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[a] [b]

[c]

Figure 1.36 : CRM-HL pressure coefficients for the slat [a], wing [b], and flap [c] at
Section E [10].

[a] [b]

Figure 1.37 : CRM-HL pressure coefficients for the slat [a] and wing [b] at Section
G [10].
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• Case 2 -CL,max Study

In order to measure the maximum lift coefficient using CFD methods, numerical

solutions are requested. Simulations should be performed in free air with the CRM-HL

flow physics, and the wind tunnel walls should be modeled to compare the results with

wind tunnel data.

Case 2a: Flow Physics Exploration for Future WT Testing

This case focuses on investigating key flow physics relevant to future wind tunnel (WT)

testing of high-lift configurations. The objective is to analyze critical aerodynamic

phenomena, such as flow separation, wake interactions, and boundary layer behavior,

to guide the design of future experimental campaigns. Numerical simulations are

performed in a free-air setting to assess potential challenges and refine WT testing

strategies. The flow conditions are detailed in Table 1.7.

Table 1.7 : Flow conditions for Case 2a.

Mach Number 0.2

Re Number 5.49106

Angle of Attacks
2.78◦, 7.05◦, 11.29◦, 17.05◦,

19.57◦, 20.55◦, 21.47◦ (wall corrected)

Mean Aerodynamic Chord 275.8 inch

Reference Static Pressure 24.67 psi

Reference Static Temperature 521.0◦R

Semi-Span Reference Area 29736.0 in2

Moment Reference Center x = 1325.9 inches,y = 0.0 inches,z = 177.95 inches

Flap Deflection 40◦/37◦ inboard/outboard (nominal)

Case 2b: Comparison with QinetiQ WT Data

This case involves comparing CFD predictions with experimental data obtained from

QinetiQ wind tunnel tests. The primary goal is to evaluate the accuracy of different

numerical methods in replicating measured aerodynamic forces, moments, and surface

pressure distributions. By benchmarking CFD results against QinetiQ data, this case

aims to assess model fidelity and identify areas for improvement in high-lift flow

simulations. The details of the simulations are listed in Table 1.8.

The results obtained for Case 2 are compared in terms of angle of attack, lift, and drag
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Table 1.8 : Flow conditions for Case 2b

Mach Number 0.2

Re Number 5.49106

Angles of incidence in tunnel
1.99◦, 5.98◦, 9.98◦, 15.48◦,

17.98◦, 18.97◦, 19.98◦ (uncorrected)

Mean Aerodynamic Chord 275.8 inch

Reference Static Pressure 24.67 psi

Reference Static Temperature 521.0◦R

Semi-Span Reference Area 29736.0 in2

Moment Reference Center x = 1325.9 inches,y = 0.0 inches,z = 177.95 inches

Flap Deflection 40◦/37◦ inboard/outboard (nominal)

coefficients. Figure 1.38 [a] shows the lift coefficient results for each angle of attack.

A-004.1 experienced incomplete iterative convergence, especially for the SA equation,

which might be preventing the sudden loss of lift and more negative pitching moment

observed post-stall in other submissions with complete iterative convergence. In Figure

1.38 [b], the drag polar is shown, and the scatter at 2.78◦ narrows the difference with

the experiment at 11.29◦ for some participants. A-004.1 exhibits higher lift/drag and

a more negative pitching moment in Figure 1.38 [c], approaching the maximum lift

coefficient compared to submissions with machine-level iterative convergence. The

results obtained with the adaptation committee submissions predicted lower lift than

the experiment at high angles of attack, both before and at maximum lift, possibly due

to variations in flow separation patterns.
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[a] [b]

[c]

Figure 1.38 : Distribution of the lift, drag, and moment coefficients in terms of angle
of attack for Case 2 [10].

• Case 3 -Turbulence Model Verification Study

The test case features a simplified two-dimensional (2-D) multi-element airfoil

configuration, previously employed in the 2020 AIAA Aviation GMGW Special

Session. Flow conditions for this case are listed in Table 1.9. The primary objective

of this exercise is to demonstrate the accurate and consistent implementation

of the standard Spalart-Allmaras (SA) turbulence model within the context of

Reynolds-Averaged Navier-Stokes (RANS), as outlined on the NASA TMR website.

Case 3a: Turbulence Model Verification

Figure 1.39 : 2D-CRM Multi Element Airfoil.
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Table 1.9 : Flow conditions for Case3a

Mach Number 0.2

Re Number 5.0×106

Angle of Attacks 16◦

Mean Aerodynamic Chord 1.0 m

Ratio of Specific Heats γ 1.4

Reference Static Temperature 272.1◦K

Prandtl Number 0.72

Turbulent Prandtl Number 0.9

Reference Static Pressure 14.7 psi

ν̂ f reestream/ν∞ 3.0

The results obtained by the mesh adaptation committee are presented in the figures

below. Figure 1.40 [a] illustrates the lift coefficient, while Figure 1.40 [b] shows the

drag coefficient. The x-axis represents the characteristic length, which is calculated

as h = N−1/2 , since it is a 2D geometry. The gray lines without symbols, identified

as Turbulence Modeling Resource (TMR), represent results obtained using uniformly

refined, expert-crafted meshes. The adapted-mesh results demonstrate convergence

within the range CL = [3.799−3.802] and CD = [0.0605−0.0607] .

Notably, the TMR results have not converged. On the other hand, the results obtained

with goal-oriented adaptation methods exhibit more rapid convergence to fine-mesh

forces compared to multi-scale methods.

[a] [b]

Figure 1.40 : Convergence of the lift and drag coefficients for 2D-CRM case [10].
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1.5.5 High-lift prediction workshop -5

The last High-Lift Prediction Workshop (HLPW-5) is organized in August 2024. This

workshop is the final installment in a series of workshops focused on advancing

the accuracy and reliability of high-lift prediction methods. It aims to assess the

performance of computational fluid dynamics (CFD) models and turbulence models

in predicting aerodynamic forces, moments, and flow characteristics for high-lift

configurations, such as multi-element airfoils and complex geometries. The attendees

listed in the Table 1.10 for adaptation focus group.

Table 1.10 : Attendee List for the HLPW-5 Adaptation Focus Group

Submission Turbulence Model Solver Mesher
A-002 SA HEMLAB pyAMG
A-003.1 SA T1 EPIC
A-003.2 SA-R-QCR2000 T1 EPIC
A-003.3 SA BCFD EPIC
A-004.1 SA WOLF FEFLO.A
A-004.2 SA-R-QCR2000 WOLF FEFLO.A
A-006.1 SA Fluent PUMA
A-006.2 SST Fluent PUMA
W-001 None Adaptive Euler -

Figure 1.41 : CRM-HL Wind Tunnel
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Three main test cases have been requested from the committee members, which are

explained below. As with previous workshops, participants will provide simulation

results for a set of predefined test cases. These results will be compared with

experimental data which is studied in the wind tunnel shown in Figure 1.41 to evaluate

the effectiveness of different computational approaches. The goal of HLPW-5 is to

push the boundaries of high-lift prediction, offering valuable insights for the design of

future aircraft configurations.

• Case 1 - CRM-HL Wing-Body Verification

This test case uses the CRM-HL Wing Body (CRM-HL-WB) geometry, as given in

Figure 1.42. This configuration closely resembles the simplest version of Test Case

2, excluding the empennage and flap fairings. Details of the flow conditions can be

found in Table 1.11. The results obtained for Case 1 are analyzed separately for SA

and SA-QCR-2000 models in terms of mesh convergence.

Figure 1.42 : CRM-HL Wing Body Configuration

Figure 1.43 presents the mesh convergence trends for Test Case 1 using the SA model.

The x-axis represents a characteristic mesh length, defined as h = N−1/3 , where N

corresponds to the number of control volumes or degrees of freedom. As h approaches

zero, the characteristic mesh length diminishes, representing an infinitely refined

mesh with an extremely large N. Submissions A-002, A-003.1, and A-004.1 exhibit

a mesh convergence pattern similar to most of the selected Fixed Grid RANS TFG

submissions. However, A-003.1 and A-004.1, which employ a goal-based adaptation

strategy, achieve fine-mesh accuracy on relatively coarser meshes than A-002, which

follows a multiscale adaptation approach. The convergence of A-006 stalls, likely due

to the subdivision of interior mesh polyhedra while the surface and boundary layer
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Table 1.11 : Flow conditions for Test Case 1 (CRM-HL-Wing-Body)

Mach Number 0.2

Re Number 5.6×106

Angle of Attacks 11.0◦

Mean Aerodynamic Chord 275.8 inch

Reference Static Temperature 521.0◦R

Semi-Span Reference Area 29736.0 in2

Moment Reference Center x = 1325.9 inches,y = 0.0 inches,z = 177.95 inches

Prandtl Number 0.72

Turbulent Prandtl Number 0.9

ν̂ f reestream/ν∞ 3.0

Ratio of Specific Heats γ 1.4

mesh remain unchanged. A-002, A-003.1, and A-004.1 refine tetrahedral meshes to

ensure metric conformity across the interior, boundary layers, and surfaces.

[a] [b]

[c]

Figure 1.43 : Distribution of the lift, drag, and moment coefficients with SA model
for Case 1 [11].
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Additionally, Figure 1.44 illustrates the same case using the SA-R-QCR2000 (Crot =

1.0) model. Submission A-003.2 shows a trend toward fine-mesh values of the selected

Fixed Grid RANS TFG submissions, even at larger h or smaller N. The differences in

fine-mesh lift, drag, and pitching moment between SA-R-QCR2000 (Crot = 1.0) and

SA highlight the sensitivity of this test case to variations in SA turbulence models. This

sensitivity suggests that Test Case 1 serves as a valuable verification case for assessing

the impact of different SA variants.

[a] [b]

[c]

Figure 1.44 : Distribution of the lift, drag, and moment coefficients with QCR model
for Case 1 [11].

• Case 2 - Configuration Build-up

It was requested to perform numerical simulations using four different configurations

of the classical CRM-HL Wing-Body configuration. Each configuration used in this

case is shown in Figure 1.45 [a], [b], [c], and [d], and their flow conditions are listed

in Table 1.12.
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Table 1.12 : Flow conditions for Test Case 2

Mach Number 0.2

Re Number 5.4×106 (subcase 2.1), 5.6×106 (subcases 2.2 - 2.4)

Angle of Attacks

6.0◦,10.0◦,12.0◦,13.0◦,14.0◦ (subcase 2.1)
6.0◦,10.0◦,17.7◦,20.0◦,21.5◦,23.0◦,23.8◦ (subcase 2.2)
6.0◦,10.0◦,14.0◦,16.0◦,17.7◦,20.7◦,23.5◦ (subcase 2.3)
7.6◦,10.0◦,14.0◦,16.0◦,17.7◦,19.7◦,23.6◦ (subcase 2.4)

Reference Static Temperature 518.67◦R

Reference Static Pressure 14.696 psi

Case 2.1 - Wing-Body with HV
(CRM-HL-WBHV) [a]

Case 2.2 - Wing-Body-Slat with HV
(ONERA_LRM–WBSHV) [b]

Case 2.3 - Wing-Body-Slat-Flaps with
HV (ONERA_LRM–WBSFHV) [c]

Case 2.4 -
Wing-Body-Slat-Flaps-Nacelle with HV

(ONERA_LRM–LDG) [d]

Figure 1.45 : Various configurations for CRM-HL Case 2, each labeled with their
respective case numbers and descriptions.

Figure 1.46 presents the ADAPT TFG submissions for Case 2.1 alongside for selected

submissions. Due to the clean wing and body configuration in Case 2.1, the differences

among the ADAPT TFG submissions remain minimal. Below a 14◦ angle of attack,

the variation between methods is relatively low and aligns with the trends observed in

Case 1. This suggests that incorporating the vertical and horizontal tail surfaces does

not substantially increase the level of variation in the results.
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[a] [b]

[c]

Figure 1.46 : Distribution of the lift, drag, and moment coefficients for Case 2.1 [11].

Figure 1.47 shows the submissions for Case 2.2. Among these results, W-001 utilizes

an adapted unsteady inviscid approach, while the remaining entries employ adapted

steady RANS methods. While W-001 exhibits similar lift and drag characteristics to

the RANS methods, its pitching moment trends differ.

Generally, the ADAPT TFG submissions demonstrate higher lift, lower drag, and

a more negative pitching moment compared to the Fixed Grid RANS submissions.

Additionally, the variation among ADAPT TFG submissions is lower than that

observed in the Fixed Grid RANS cases.
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[a] [b]

[c]

Figure 1.47 : Distribution of the lift, drag, and moment coefficients for Case 2.2 [11].

Figure 1.48 gives information for the Case 2.3 alongside Fixed Grid RANS TFG

submissions. Compared to the simpler Case 2 geometries, the number of submissions

is lower, while the differences between them have increased. The presence of trailing

edge flaps in Case 2.3 leads to higher lift and circulation, which contributes to the

increased variation among methods. Submission A-004.1 produces lower lift and

drag compared to submission A-006.1. Additionally, A-004.1 exhibits an increase in

drag and pitching moment slopes at a lower angle of attack than A-006.1, indicating

different aerodynamic behavior. The adapted inviscid method, W-001, shows distinct

lift and pitching moment trends compared to the RANS-based methods, further

emphasizing the effect of different modeling approaches in this case.
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[a] [b]

[c]

Figure 1.48 : Distribution of the lift, drag, and moment coefficients for Case 2.3 [11].

The results for the Case 2.4 can be found in the Figure 1.49. Compared to other simpler

Case 2 geometries, the number of submissions is lower, and the differences between

them are similar to those observed in Case 2.3.

The introduction of the nacelle and pylon in Case 2.4 results in a smaller increase

in variation compared to the addition of trailing edge flaps in Case 2.3. Similar to

Case 2.3, submission A-004.1 produces lower lift and drag than submission A-006.1.

Additionally, A-004.1 shows an increase in pitching moment slope at a lower angle of

attack than A-006.1, indicating a shift in aerodynamic behavior. While the adapted

inviscid submission W-001 captures overall trends, its drag and pitching moment

deviate from the RANS submissions at higher angles of attack. W-001 aligns with

some lift and drag characteristics of the RANS submissions, but its pitching moment

remains more negative at higher angles of attack.

The addition of the nacelle and chine in Case 2.4 may enhance the influence of large

vortical structures, which are more prominently captured by the inviscid method. This
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could explain the differences in angle-of-attack trends between W-001 and the RANS

submissions, distinguishing Case 2.4 from Case 2.3, where such trends were more

aligned.

[a] [b]

[c]

Figure 1.49 : Distribution of the lift, drag, and moment coefficients for Case 2.4 [11].

• Case 3 - Reynolds Number Study

Test Case 3 employs the NASA 5.2% model geometry in the standard LDG

configuration, as shown in Figure 1.50. This setup includes nominal inboard/outboard

trailing edge (TE) flap deflections of 40◦/37◦, nominal 30◦/30◦ inboard/outboard

leading-edge (LE) slat settings, along with the inclusion of the nacelle, pylon, nacelle

chine, LE brackets, and TE support fairings, while omitting the landing gear, vertical

tail, and horizontal tail. Further details about the flow conditions can be found in Table

1.13. No results were obtained for this case by the committee members during the

workshop.
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Figure 1.50 : NASA 5.2% model geometry in the standard LDG
configuration

Table 1.13 : Flow conditions for Test Case 3

Mach Number 0.2

Re Number

1.05×106 (subcase 3.1)
5.49×106 (subcase 3.2)
16.0×106 (subcase 3.3)
30.0×106 (subcase 3.4)

Angle of Attacks 6−10◦

Reference Static Temperature 518.67◦R

Reference Static Pressure 14.696 psi
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2. REVIEW OF FLOW SOLVERS AND ANISOTROPIC MESH
ADAPTATION LIBRARIES

In this study, a Computational Fluid Dynamics (CFD) method based on the

Reynolds-Averaged Navier-Stokes (RANS) equations is used to capture a realistic flow

field around high-lift bodies. Several CFD methods can be applied to convert governing

equations, which are in partial differential form, into an algebraic format. These

methods include the Finite Difference Method (FDM), Finite Element Method (FEM),

Finite Volume Method (FVM), Spectral Element Method (SEM), and Discontinuous

Galerkin Method (DGM), among others. Figure 2.1 illustrates the most common

models based on Molecular and Continuum Models.

Figure 2.1 : Mathematical Model for Fluid [12]

The Knudsen number, which is the ratio of the mean free path length to the

representative physical length scale, determines whether the flow should be modeled

using a Molecular or Continuum Model. Figure 2.2 explains that if the Knudsen

number is greater than 1, the molecular model should be applied. When the Knudsen

number approaches zero, the Euler equation is used. This equation, based on inviscid

theory, can be considered a governing equation but does not account for viscous

effects, making it unsuitable for complex flow simulations. On the other hand, when the

Knudsen number is lower than 0.1, the Navier-Stokes equations under the Continuum
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Model can be used. These equations govern viscous flows and generally provide more

accurate results.

Figure 2.2 : Flow Regimes according to Kn number [13]

This study aims to obtain realistic results that align with experimental data for high-lift

geometries. Therefore, the physical modeling is based on the Navier-Stokes equations

within the Continuum Model, which will be explained in detail in the next chapter.

2.1 Literature Review on CFD Algorithms

In this section, several effective CFD solver algorithms available in the literature and

their methodologies will be examined. The algorithms used in high-lift simulations

have been selected for comparison purposes. First, the solvers FUN3D, SU2,

Kestrel/COFFE, DLR TAU, and EDGE will be discussed.

2.1.1 FUN3D

FUN3D is a finite volume solver developed by researchers at NASA, USA. It is

capable of solving the governing equations for various grid structures, including mixed

elements, tetrahedral, pyramidal, prismatic, hexahedral, and triangular/quadrilateral

grid systems [19]. The unknowns are located at the vertices or nodes of each grid

element. The inviscid flux calculations are performed using a Riemann solver, and

several flux schemes are available in the latest version, including Roe flux-difference
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splitting, Van Leer flux-vector splitting, AUSM, and HLLC. For second-order

accuracy, the unweighted least squares method is used to calculate interface values.

The algorithm includes various limiter options to improve numerical stability and

accuracy. These include the Venkatakrishnan limiter, Bath limiter, and stencil-based

limiters such as min-mod, van Leer, and van Albada, each augmented with a heuristic

pressure limiter. Additional options include the standard min-mod, van Leer, and

van Albada limiters, with an option that enables Green-Gauss gradients for inviscid

reconstruction.

Viscous fluxes are computed using a finite volume approach, where velocity gradients

on the dual faces are calculated with the Green-Gauss method for tetrahedral grids. Due

to odd-even decoupling issues in the code, the Green-Gauss method has been updated

for non-tetrahedral elements. The solver employs the backward Euler time-integration

approach to update results at each time step.

For turbulence modeling, FUN3D provides multiple options, including the

Spalart-Allmaras model, Menter k-omega SST model, Wilcox k-omega model, and

Detached Eddy Simulation (DES). Additional turbulence models are also available,

including specified or predicted transition models, allowing users flexibility in their

simulations.

2.1.2 SU2

SU2 [29] is an open-source CFD solver developed at Stanford University. It consists of

several packages designed for different purposes, including multi-physics simulations,

design optimization, and fluid-structure interaction. This review focuses on its

unstructured finite volume solver. SU2 is a vertex-based finite volume algorithm

that supports mixed-element meshes. It incorporates both explicit and implicit time

integration methods, along with central or upwind spatial integration schemes. Inviscid

and viscous fluxes are computed at the midpoints of each edge. Various upwind and

central schemes, such as Jameson-Schmidt-Turkel (JST), Roe, AUSM, HLLC, and

Roe-Turkel, are available for inviscid flux calculations, with multiple limiter options

for upwind schemes. Gradient calculations for viscous fluxes can be performed using

either the Green-Gauss method or the weighted least-squares method. SU2 provides
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turbulence modeling capabilities with both the Spalart-Allmaras (SA) and Menter’s

Shear-Stress Transport (SST) models.

2.1.3 Kestrel/COFFE

COFFE (Conservative Field Finite Element) is a CFD solver that is a component

of Kestrel, developed under the Department of Defense (DoD) High-Performance

Computing Modernization Program (HPCMP) CREATE-AV initiative [30]. The solver

employs the Streamline Upwind/Petrov-Galerkin (SUPG) finite-element method

to discretize partial differential equations and is suitable for both steady and

unsteady simulations. It utilizes the negative variant of the Spalart-Allmaras (SA-neg)

turbulence model. Several linear solvers are included, such as Generalized Minimum

Residual (GMRES), Gauss-Seidel, and Point Jacobi. As a preconditioner, incomplete

LU decomposition is available for GMRES, along with an unstructured linear

Gauss-Seidel solver applicable to both preconditioning and solving. To enhance

convergence efficiency for implicit solutions, a quasi-Newton method is employed for

pseudo-transient residual calculations.

2.1.4 DLR TAU

The German Aerospace Center (DLR) TAU [31] algorithm is a comprehensive system

designed to analyze flow physics around complex geometries. It is suitable for both

viscous and inviscid flow simulations across all flow regimes, from subsonic to

hypersonic. The solver employs a vertex-based scheme with an edge-based data

structure and supports both hybrid unstructured and block-structured grid systems. For

time integration, it uses an explicit Runge-Kutta algorithm, with an additional LU-SGS

implicit approximate factorization option. A dual time-stepping approach is available

for time-sensitive cases. Viscous fluxes are computed using a second-order central

scheme, and the code offers a low Mach number preconditioning option for solving

the Navier-Stokes equations.

DLR TAU supports grid adaptation on hybrid meshes using local grid refinement

and wall-normal mesh movement within the semi-structured near-wall layers. The

solver can also re-refine previously refined elements. The turbulence modeling

options include Spalart-Allmaras with Edwards modification and several two-equation

58



turbulence models, such as k −ω , Menter SST, Wilcox, and Kok-TNT. Recently, a

model-specific “universal” wall function was integrated into the solver, improving

accuracy while reducing simulation time by approximately 75% and memory usage

by 40%. Additionally, the algorithm offers Detached Eddy Simulation (DES) and

Extra-Large Eddy Simulation (XLES) capabilities. Given the importance of transition

modeling, especially at high Mach numbers, DLR TAU includes multiple transition

prediction approaches.

2.1.5 EDGE

EDGE [32] is a vertex-based finite volume solver developed by the Swedish Defence

Research Agency (FOI). It operates on unstructured grid systems and supports various

grid types, including hexahedral, triangular prism, and tetrahedral elements for 3D

simulations, as well as quadrilateral and triangular grids for 2D cases. The solver

employs second-order spatial discretization, and time integration is performed using

the fourth-order Runge-Kutta method.

2.2 Review of Anisotropic Mesh Adaptation Libraries

Anisotropic mesh adaptation plays a crucial role in computational fluid dynamics

(CFD) and finite element analysis (FEA) by dynamically refining and coarsening

mesh elements to optimize computational accuracy and efficiency. Unlike isotropic

approaches, which adjust mesh resolution uniformly in all directions, anisotropic

adaptation tailors element sizes and shapes according to local flow features, such as

shocks, boundary layers, or vortices. This results in improved solution fidelity while

reducing the overall computational cost. The adaptation process is typically guided

by a metric field that encodes local anisotropy and stretching ratios, ensuring that the

mesh aligns with the dominant flow structures while maintaining numerical stability.

Various anisotropic mesh adaptation libraries have been developed to address different

computational challenges, ranging from industrial aerodynamics to academic research.

These libraries employ distinct algorithms, strategies, and numerical techniques to

achieve optimal mesh refinement. Some focus on edge-based operations such as

insertion, collapse, and swapping, while others incorporate higher-order methods to

reconstruct gradients and Hessians for improved adaptation accuracy. Additionally,
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many modern tools integrate parallel processing capabilities, enabling them to

efficiently handle large-scale simulations. The following sections provide an overview

of three widely used anisotropic mesh adaptation libraries.

2.2.1 EPIC

EPIC (Edge Primitive Insertion and Collapse) is an algorithm developed at Boeing

[33] for anisotropic mesh adaptation that can be integrated with external flow

solvers. The algorithm updates mesh elements through a sequence of operations

including edge break, edge collapse, element reconnection, and vertex movement

to progressively refine the grid. EPIC implements three types of mesh operations:

EPIC-IC (insertion and collapse), EPIC-ICS (insertion, collapse, and element-face

connectivity swapping), and EPIC-ICSM (insertion, collapse, swapping, and node

movement). Studies have shown that connectivity swapping significantly improves

grid quality at a relatively low computational cost, while node movement, although

beneficial, is the most computationally expensive option. The edge length is calculated

through numerical integration of the metric field along an edge [34] for instance,

using an expression such as Le =
∫ 1

0

√
vT M(x(s))vds, where v represents the edge

direction and M(x(s)) is the metric tensor along the edge ensuring higher accuracy in

the measurement of mesh anisotropy. The metric field from the initial mesh is used to

interpolate that of the adapted mesh, which can be prepared using methods that limit

minimum and maximum local metric sizes, control stretching rates and anisotropy, and

ensure smooth transitions in the metric distribution; surface curvature information from

the original geometry or the initial mesh can also be incorporated to further refine this

distribution. EPIC preserves the original model through geometric projection and local

remeshing techniques, and a linear-elastic mesh deformation procedure is available to

project the adapted mesh onto the geometry surface, maintaining the fidelity of the

original design.

2.2.2 REFINE

REFINE is an algorithm developed at NASA [35] that serves as an open-source, metric

field-based mesh adaptation tool, primarily designed for triangular and tetrahedral

meshes. The algorithm employs edge splitting and collapse methods to iteratively
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generate adapted meshes, focusing computational effort where it is most needed. In this

process, the location of each node is determined based on its adjacent elements, and

these individual contributions are combined to update the new node positions, thereby

improving the shape and quality of elements in accordance with the anisotropic metric.

REFINE computes mesh adaptation metrics by reconstructing gradients and Hessians

from a given field, enabling the algorithm to accurately capture solution behavior and

local curvature, which drives the anisotropic refinement process. Additionally, the tool

has the capability to interpolate solutions between meshes, ensuring continuity and

accuracy during adaptation. It supports interfaces for working with multiple geometry

sources or surrogate geometry representations, enhancing its versatility in handling

complex geometries. Furthermore, REFINE is designed for parallel execution, a

feature that significantly enhances computational efficiency, making it well-suited for

large-scale simulations. Its open-source nature encourages collaboration and ongoing

development within the scientific community, ensuring that the tool remains adaptable

to evolving computational needs and simulation frameworks.

In addition to the metric based adaptation, the REFINE algorithm also supports the

goal oriented anisotropic refinement. This is primarily achieved through adjoint-based

error estimation which is a process that calculates the sensitivity of a quantity of

interest (QoI), such as lift or drag, to numerical errors in the simulation. This adjoint

solution provides error indicators that highlight regions in the domain where errors

have the most significant impact on the QoI, enabling the refinement of these areas to

improve overall accuracy. For instance, in a supersonic flow over a blunt body, regions

around the shock wave and boundary layer are identified and refined by considering

the sharp gradients. NASA-REFINE employs metric tensor-based adaptation, which

is another key aspect of its methodology. The metric tensor specifies the desired

size, shape, and orientation of mesh elements throughout the domain. This allows for

anisotropic mesh refinement, where elements are stretched or compressed to align with

directional flow gradients. This technique is particularly useful in capturing vortices or

wakes. In order to get accurate solutions the large and uniform meshes will require

excessive computational cost, however the adaptation technique sets the mesh density

dynamically so this reduces the computational cost.
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2.2.3 pyAMG

pyAMG is a metric-based anisotropic mesh adaptation algorithm developed at INRIA

[36] that operates within a Riemannian metric space using a multiscale approach to

compute edge lengths and element volumes. By directly incorporating the anisotropic

metric into the adaptation process, pyAMG supports standard mesh operations

such as point insertion and deletion, edge swapping and collapse, and other local

mesh adjustments as shown in the Figure 2.3. All these are implemented using a

single-cavity-based operator for efficiency and consistency. This approach ensures that

the adaptation process aligns the mesh elements with the underlying flow physics while

maintaining the desired anisotropic resolution.

Figure 2.3 : Standard Mesh Operations [14]

The mesh adaptation process composed of in two main steps. In the first step, the

algorithm generates a unit mesh by evaluating the edge lengths in the metric space. If

the edges are too long they are being splited into smaller segments. On the otherhand

if these are too short then they are collapsed to form longer edges, thereby aligning

the mesh with the desired metric specifications.This step ensures that the mesh adapts

to the anisotropic properties defined by the metric field. The approximate edge length

"
−→
ab" of an element in the metric space is determined using the following integral:

lM(
−→
ab) =

∫ 1

0

√−→
ab⊤M(−→a + t

−→
ab)

−→
ab dt (2.1)

where M(−→x ) is a metric tensor, which is a symmetric positive definite 3× 3 matrix

in three dimensions. This formulation allows pyAMG to transform an unstructured

uniform mesh into an anisotropic one by ensuring that all edges have an average

unit length in the metric space. It also enforces the alignment of edges with the local

eigenvectors of the metric tensor, generating highly structured anisotropic meshes.
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In the second step, the unit mesh is further optimized by inserting additional points

to smooth the mesh and performing edge swaps to enhance element quality. This

optimization helps prevent numerical errors due to poorly shaped elements and

improves overall solution accuracy. The metric tensor formulation plays a crucial

role in guiding these operations, enforcing mesh alignment with flow gradients and

anisotropic structures in the domain.

This comprehensive, metric-driven approach enables pyAMG to effectively handle

complex geometries and capture fine-scale features, making it a robust tool for various

simulation applications. The adaptation method minimizes interpolation errors in the

Lp norm, ensuring that solution accuracy is preserved while reducing computational

overhead.

One of the defining aspects of pyAMG is its feature-based adaptation strategy,

where the refinement process is guided by a sensor function derived from key flow

variables. This sensor function, which can be based on Mach number, pressure,

entropy, Finite-Time Lyapunov Exponent (FTLE), or other flow properties, identifies

how mesh elements are redistributed to resolve critical flow features.

Moreover, pyAMG’s capability to operate within a Riemannian metric space allows

it to maintain a consistent level of accuracy across highly anisotropic flow regions.

The metric field can be computed from the Hessian of a scalar flow variable, scaled

by the determinant of the Hessian to control adaptation in regions with rapid changes.

This method enables automatic refinement of areas requiring higher resolution while

coarsening the mesh in less critical regions, optimizing the computational effort.

By enforcing local edge alignment with the principal directions of the metric

tensor, pyAMG ensures that the mesh elements are naturally oriented along the

most significant flow gradients. This leads to improved stability and accuracy in

numerical simulations, particularly for high Reynolds number flows and complex

aerodynamic configurations. The anisotropic cavity-based operators used in pyAMG

further refine mesh quality by preserving local smoothness and preventing excessive

element distribution during adaptation cycles. However, it should be noted that it is not

possible to run publicly available version of the pyAMG in parallel.
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3. MATHEMATICAL MODELING

In order to explain the mathematical approach used in the HEMLAB code, the

fundamental equations must first be presented. The set of equations provided below

represents the conservative form of the governing equations for fluid dynamics,

combines continuity, momentum conservation in the x, y, and z directions, and energy

conservation. The state vector Q contains the unknown variables, including the density

ρ , the velocity components ρu, ρv, and ρw, and the total energy E. These governing

equations are expressed in three-dimensional integral form, where the time derivative

of the volume integral of the state vector is balanced by the surface integrals of the

inviscid flux Fi and the viscous flux Fv. The inviscid flux Fi is presented in component

form, with each element corresponding to the flux in the x, y, and z directions. The

terms involve the density ρ , the velocity components u, v, w, the pressure p, and the

total energy E, while the dot notation (ẋ, ẏ, ż) represents the grid velocity. Similarly,

the viscous flux Fv is provided in component form, incorporating the components of

the stress tensor τ and the heat flux q.

∂

∂ t

y

Ω

QdV +
{

∂Ω

n ·Fi dS−
{

∂Ω

n ·Fv dS = 0 (3.1)

Q =


ρ

ρu
ρv
ρw
E

 (3.2)

Fi =


ρ(u− ẋ)

ρu(u− ẋ)+ p
ρv(u− ẋ)
ρw(u− ẋ)

(E(u− ẋ)+ pu

 i+


ρ(v− ẏ)
ρu(v− ẏ)

ρv(v− ẏ)+ p
ρw(v− ẏ)

(E(v− ẏ)+ pv

 j+


ρ(w− ż)

ρu(w− ż)
ρv(w− ż)

ρw(w− ż)+ p
(E(w− ż)+ pw

k (3.3)
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Fv =


0

τxx
τyx
τzx

uτxx + vτxy +wτxz −qx

 i+


0

τxy
τyy
τzy

uτyx + vτyy +wτyz −qy

 j (3.4)

+


0

τxz
τyz
τzz

uτzx + vτzy +wτzz −qz

k

The presented set of equations in 3.5 defines the components of the stress tensor (τxx,

τyy, τzz, τxy, τxz, and τyz) and the heat flux (qx, qy, and qz) in the context of compressible

fluid dynamics. These quantities are derived from the Navier-Stokes equations and

energy conservation principles. The parameters involved include the free-stream Mach

number (M∞), the Reynolds number at infinity (Re∞), the dynamic viscosity (µ∗),

the thermal conductivity (λ ∗), and the Prandtl number at infinity (Pr∞). The stress

tensor components express the shear and normal stresses in the x, y, and z directions

by incorporating velocity gradients and material properties. Similarly, the heat flux

components represent the rate of heat transfer in the x, y, and z directions, influenced

by temperature gradients and the thermophysical properties of the fluid.

τxx =
M∞

Re∞

[
2µ

∗∂u
∂x

+λ
∗(

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

)

]
(3.5)

τyy =
M∞

Re∞

[
2µ

∗∂v
∂y

+λ
∗(

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

)

]
(3.6)

τzz =
M∞

Re∞

[
2µ

∗∂w
∂ z

+λ
∗(

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

)

]
(3.7)

τxy =
M∞

Re∞

[
µ
∗(

∂u
∂y

+
∂v
∂x

)

]
(3.8)

τxz =
M∞

Re∞

[
µ
∗(

∂u
∂ z

+
∂w
∂x

)

]
(3.9)

τyz =
M∞

Re∞

[
µ
∗(

∂v
∂ z

+
∂w
∂y

)

]
(3.10)

qx = − M∞

(γ −1)Re∞Pr∞

[
µ
∗∂T

∂x

]
(3.11)

qy = − M∞

(γ −1)Re∞Pr∞

[
µ
∗∂T

∂y

]
(3.12)

qz = − M∞

(γ −1)Re∞Pr∞

[
µ
∗∂T

∂ z

]
(3.13)
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where

M∞ =
U∞

a
=

U∞√
γRT

(3.14)

Re∞ =
ρU∞l

µ
=

U∞l
ν

(3.15)

Pr∞ =
Cpµ

k
=

µ

(γ −1)k
(3.16)

p = (γ −1)
[
E −ρ

u2 + v2 +w2

2
]

(3.17)

T =
p

Rρ
=

(γ −1)
Rρ

[
E −ρ

u2 + v2 +w2

2
]

(3.18)

µ
∗ =

µ

µ∞

= T
√

T
1+S/T∞

T +S/T∞

(3.19)

λ
∗ = −2µ∗

3
(3.20)

The equations given above represent a fundamental set of aerodynamic and

thermodynamic relations for compressible flows. In Equation 3.14, M∞ represents

the free-stream Mach number, defined as the ratio of the free-stream velocity U∞ to

the local speed of sound a, where a is given by the square root of the product of

the specific heat ratio (γ , the gas constant (R), and the temperature (T ). Equation

3.15 introduces the Reynolds number at infinity (Re∞), which measures the relative

significance of inertial forces compared to viscous forces. Here, ρ is the density, U∞

is the free-stream velocity, l is a characteristic length, µ is the dynamic viscosity, and

ν is the kinematic viscosity. Moving on, Equation 3.16 defines the Prandtl number

at infinity (Pr∞), a dimensionless parameter characterizing the ratio of momentum

diffusivity to thermal diffusivity. In this context, Cp denotes the specific heat at

constant pressure, µ is the dynamic viscosity, and k represents the thermal conductivity.

Equations 3.17 and 3.18 describe the relationships between pressure (p), temperature

(T ), and specific internal energy (E). The pressure is expressed in terms of the specific

gas constant (R), density (ρ), and the velocity components u, v, and w. Equation 3.19

defines the non-dimensional temperature dependent laminar viscosity which can be

calculated with the Sutherland’s law. The parameter given with S defines the Sutherland

constant, S = 110.4◦K. The temperature is then determined as a function of pressure,

density, and internal energy. These equations provide a comprehensive framework for

understanding the thermodynamic and aerodynamic aspects of compressible flows,
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where the involved parameters play crucial roles in characterizing the behavior of the

fluid.

3.1 HEMLAB Algorithm

The HEMLAB algorithm [37, 38] is a vertex-based unstructured finite volume

approach designed for hybrid meshes, supporting both triangular and quadrilateral

elements in 2D as well as hexahedral, prismatic, tetrahedral, and pyramidal elements

in 3D. The fluxes required for this method are evaluated over the edges of these hybrid

unstructured meshes. This algorithm uses the first-order Euler implicit method in time

for the implicit calculations. For a vertex-based finite volume formulation, the residual

vector can be written as:

R(Q) =
∂

∂ t

y

Ω

QdV +
{

∂Ω

n ·Fi dS−
{

∂Ω

n ·Fv dS = 0, (3.21)

and the residual vector is required to be zero at time level n+ 1. Using the backward

Euler for time discretization, the first term becomes:

∂Q
∂ t

≈ Qn+1 −Qn

∆t
(3.22)

In order to resolve the Qn+1, Newton’s method is used. Here m denotes the mth Newton

iteration.

Qm+1 = Qm +∆Qm+1 (3.23)

Expanding R(Qm+1) using a first-order Taylor series:

R(Qm+1)≈ R(Qm)+
∂R
∂Q

∆Qm+1 (3.24)

Since R is the residual vector and it should go to zero at the mth iteration R(Qm+1) = 0.

∂R
∂Q

∆Qm+1 =−R(Qm) (3.25)

The Jacobian matrix ∂R
∂Q is obtained by differentiating R(Q). The time derivative

contribution comes from the first term, which is 1
∆t

y

Ω

QdV . The following expression

can be obtained by taking its derivative with respect to Q:

∂

∂Q

(
M
∆t

Q
)
=

M
∆t

(3.26)
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where M is the mass matrix. The remaining terms involve fluxes:∫
∂Ω

n ·Fi(Q)dS−
∫

∂Ω

n ·Fv(Q)dS (3.27)

Since Fi(Q) and Fv(Q) are nonlinear functions of Q and their Jacobian is:

J =
∂

∂Q

(
∑n ·Fi(Q)S−∑n ·Fv(Q)S

)
(3.28)

After combining both contributions, the full Jacobian matrix becomes:

∂R
∂Q

=
M
∆t

+ J (3.29)

where M
∆t comes from the time derivative discretization, and J accounts for the Jacobian

of the fluxes.

∂R
∂Q

∆Qm+1 =

[
M
∆t

+ J
]

∆Qm+1 =−R(Qm) (3.30)

= −
[

M
Qm −Qn

∆t
V +∑n ·Fi(Qm)S−∑n ·Fv(Qm)S

]

The convergence of the Newton method is highly sensitive to the accuracy of the

Jacobian matrix evaluation, so special care is taken to compute these Jacobian matrices

exactly.

Next, the algorithm addresses the computation of both inviscid and viscous fluxes.

For the inviscid fluxes, the Roe scheme [39], HLLC [40], and AUSM+-up [41]

are implemented. The required left and right state vectors are determined through

unweighted first-, second-, or third-order upwind least squares interpolations [42].

The inviscid flux Jacobian matrices are computed precisely using source code

transformations provided by the Tepaneda library [43, 44].

For viscous fluxes, gradients of the primitive variables are computed using the

Green-Gauss theorem at edge midpoints, rather than using simple averages, to prevent

odd-even decoupling.

Additionally, various versions of the Spalart-Allmaras turbulence model [45] are

available within the algorithm, with wall distance calculations implemented using the

Alternating Digital Tree (ADT) algorithm [46] for anisotropic meshes. The resulting

system, which comprises the compressible Navier-Stokes equations coupled with

a one-equation Spalart-Allmaras turbulence model, is solved using a monolithic
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approach with the restricted additive Schwarz method and the flexible generalized

conjugate residual algorithm within the PETSc library [47].

Further, the construction of the Jacobian matrix can be performed using either first-

or second-order upwind least squares, although the latter requires more memory. The

Jacobian matrix-vector multiplication is executed using a Jacobian-free approach with

Fréchet derivatives, due to the unavailability of analytical contributions related to

limiters and the CFL number.

The nonlinear Newton method is implemented using PETSc’s Scalable Nonlinear

Equations Solvers (SNES) with a line search technique, supporting both Jacobian-free

finite differences and direct approaches for the Jacobian-vector product. Although

hand-coded Jacobian programming is time-consuming, it ensures computational

efficiency, and any implementation errors are minimized by comparing the hand-coded

Jacobian with the finite difference approach available in PETSc. With this way

simulations can be done with high CFL numbers and achieving machine precision

in pseudo-transient continuation (PTC) is possible since the Jacobians are calculated

more accurately. In addition, the algorithm explores adaptive time-stepping (ATS).

Although the ATS algorithm was attempted, it did not significantly increase time steps

in 3D—despite yielding better convergence in 2D as the solution approached a steady

state. However, combining ATS with the PTC algorithm may enhance robustness in

3D, as noted in [48].

The computational domain is decomposed into sub-domains using the METIS library

[49] for balanced domain decomposition, with an ILU(k) preconditioner employed

for the restricted additive Schwarz method. The default Venkatakrishnan-Wang limiter

[50] is deactivated due to adaptive mesh refinement.

Finally, the numerical method relies on a quad-edge data structure [51] and a half-edge

data structure [52] to enhance cache efficiency. Although the method is capable

of handling arbitrary polyhedra in 3D, it is currently applied only to tetrahedra,

hexahedra, wedges, and pyramids.

In Sections 3.1.1 and 3.1.2, the Least Squares method used for the inviscid fluxes and

the Green-Gauss approach used for the viscous fluxes are explained, while the inviscid

and viscous Jacobians are discussed in Sections 3.1.3 and 3.1.4.
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3.1.1 Least squares method

In order to achieve second-order spatial accuracy for the inviscid flux, it is necessary

to obtain accurate gradients of the state variables. One recommended approach is to

employ a Taylor series approximation to evaluate the inviscid flux. Using this method,

accurate approximations of the state variables at the faces of the control volume are

obtained—even if the gradients at the nodes are not perfectly computed. Since the

convective flux evaluation relies solely on the state variables at the control volume

faces, obtaining a better approximation for these face values is crucial for minimizing

errors [53].

An accurate approximation of the face-center values can be achieved by using the

gradient information at a node to obtain second-order spatial accuracy. The values

at neighboring nodes are approximated using a Taylor series expansion. In order to

solve this system of equations with the least squares method, the number of equations

must exceed the number of unknowns. Generally, there are more neighboring points

than unknowns for both 2D and 3D mesh designs. Additionally, it is recommended

to have at least three neighbors for a point in 2D to attain a second-order accurate

reconstruction [54].

Although the resulting overdetermined system can be solved by multiplying both sides

by the transpose of the matrix, this approach may lead to errors due to round-off. An

analytical solution for this problem has been provided in [53], [55], and the procedure

is outlined below.

The system of equations, represented in matrix form, is designed to express the spatial

gradient terms in terms of the differences between the values at a reference node xi and

the values at its neighboring nodes x1,x2, . . . ,xn for a given variable q. The matrix Ai

is constructed from the differences between the coordinates of the neighboring nodes

and the reference node in each dimension. This system can be expressed as

Ai x = bi,

where x is a column vector containing the partial derivatives of q with respect to x, y,

and z, and bi is a column vector representing the differences in the values of q between

the neighboring nodes and the reference node.
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The matrix system is explicitly given by

x1 −xi
x2 −xi
x3 −xi
x4 −xi

...
xn −xi




∂Q
∂x
∂Q
∂y
∂Q
∂ z

=



Q1 −Qi
Q2 −Qi
Q3 −Qi
Q4 −Qi

...
Qn −Qi


. (3.31)

The gradient terms at the reference node can then be calculated using the following

expressions:

∂Q
∂x

∣∣∣∣
i

=
Ni

∑
k=1

W x
ik(Qk −Qi), (3.32)

∂Q
∂y

∣∣∣∣
i

=
Ni

∑
k=1

W y
ik(Qk −Qi), (3.33)

∂Q
∂ z

∣∣∣∣
i

=
Ni

∑
k=1

W z
ik(Qk −Qi), (3.34)

where Ni is the number of first-level neighbors around node i, and Qi and Qk are the

state variable values at the reference node and its neighbors, respectively. Because

the geometric coefficients remain constant as long as the mesh remains unchanged,

the corresponding weights are constant. Consequently, they are computed once at the

outset and stored for each outgoing edges. However, since the state variables at the

nodes change at each timestep, the gradient values must be updated before each flux

calculation.

The weighting coefficients are initially stored on the outgoing edges and then used for

the fast evaluation of nodal gradients, which is exact for linear functions. With these

gradients available, the left and right state vectors can be evaluated as

QL = Qi +φi

Ni

∑
k=1

Wik(Qk −Q j), (3.35)

QR = Q j +φ j

N j

∑
k=1

Wjk(Qk −Q j) (3.36)

where

Wik =
1
2
[
W x

ik(x j − xi)+W y
ik(y j − yi)+W z

ik(z j − zi)
]

(3.37)

Wjk =
1
2

[
W x

jk(xi − x j)+W y
jk(yi − y j)+W z

jk(zi − z j)
]

(3.38)

An analytic formulation for the least squares problem in 2D geometry is given in [53]:
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W x
i j =

∆xi j

r2
11

− r12

r11 r2
22

[
∆yi j −∆xi j

r12

r11

]
, (3.39)

W y
i j =

1
r2

22

[
∆yi j −∆xi j

r12

r11

]
, (3.40)

r11 =

√√√√ NA

∑
j=1

(∆xi j)2, (3.41)

r12 =
1

r11

NA

∑
j=1

∆xi j∆yi j (3.42)

r22 =

√√√√ NA

∑
j=1

[
∆yi j −∆xi j

r12

r11

]2

. (3.43)

These equations define the weight coefficients W x
i j and W y

i j for calculating spatial

gradients. The weights are determined by the distances and relative positions between

a reference node and its neighboring nodes. In W x
i j, the x coordinate differences ∆xi j

are incorporated, while W y
i j involves both ∆xi j and ∆yi j. The parameters r11, r12, and

r22 represent, respectively, the Euclidean norm of the x coordinate differences, the dot

product of ∆xi j and ∆yi j normalized by r11, and the adjusted Euclidean norm of the y

coordinate differences.

An analytic formulation for the least squares problem in 3D geometry is presented

in [55]. This set of equations describes the calculation of the weight coefficients W x
i j,

W y
i j, and W z

i j for spatial gradient calculations in three dimensions. The expressions for

αi j,1, αi j,2, and αi j,3 involve combinations of the coordinate differences ∆xi j, ∆yi j, and

∆zi j along with the Euclidean norms r11, r22, and r33. The parameter β is introduced

to capture additional geometric relationships between the nodes.

Similar to the 2D case, the weight coefficients in 3D are determined as linear

combinations of αi j,1, αi j,2, and αi j,3:

W x
i j = αi j,1 −

r12

r11
αi j,2 +β αi j,3, (3.44)

W y
i j = αi j,2 −

r33

r22
αi j,3, (3.45)

W z
i j = αi j,3, (3.46)
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where

αi j,1 =
∆xi j

r2
11

, (3.47)

αi j,2 =
1

r2
22

(
∆yi j −

r12

r11
∆xi j

)
, (3.48)

αi j,3 =
1

r2
33

(
∆zi j −

r23

r22
∆yi j +β ∆xi j

)
, (3.49)

β =
r12 r23 − r13 r22

r11 r22
, (3.50)

r11 =

√√√√ NA

∑
j=1

(∆xi j)2, (3.51)

r12 =
1

r11

NA

∑
j=1

∆xi j ∆yi j, (3.52)

r22 =

√√√√ NA

∑
j=1

(∆yi j)2 − r2
12, (3.53)

r13 =
1

r11

NA

∑
j=1

∆xi j ∆zi j, (3.54)

r23 =
1

r22

(
NA

∑
j=1

∆yi j ∆zi j −
r12

r11

NA

∑
j=1

∆xi j ∆zi j

)
, (3.55)

r33 =

√√√√ NA

∑
j=1

(∆zi j)2 −
(
r2

13 + r2
23
)
. (3.56)

The provided equations define the weight coefficients W x
i j, W y

i j, and W z
i j used in the

calculation of spatial gradients in 3D. These weights are determined by the distances

and relative positions between a reference node and its neighboring nodes, ensuring

that the geometric relationships between nodes are appropriately captured.

The limiter function φi is computed using the Venkatakrishnan-Wang limiter [50] as

follows:

Φi = min(Φik), (3.57)

where

Φik =
1

∆−

[
(∆2

++ ε2)∆−+2∆2
−∆+

∆2
++2∆2

−+∆+∆−+ ε2

]
, (3.58)
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and

∆− = Qk −Qi, (3.59)

∆+ =

{
Qi,max −Qi, if ∆− ≥ 0,
Qi,min −Qi, if ∆− < 0.

(3.60)

Here, ε = Kv(Qmax −Qmin), where Kv is a limiter constant, and Qmin and Qmax are the

global minimum and maximum values, respectively.

The second-order inviscid Jacobian construction leads to

 JL φiWi1 JL φiWi2 . . . JL (1−φi ∑
Ni
k=1Wik) JR φ j Wj1 JR φ j Wj2 . . . JR (1−φ j ∑

N j
k=1Wjk)

...
...

...
...

...
...

...
...

−JL φiWi1 −JL φiWi2 . . . −JL (1−φi ∑
Ni
k=1Wik) −JR φ j Wj1 −JR φ j Wj2 . . . −JR (1−φ j ∑

N j
k=1Wjk)





∆Qi1
∆Qi2

...
∆Qi

...
∆Q j1
∆Q j2

...
∆Q j


=−

 Ri
...

−R j



(3.61)

where the local inviscid Jacobian matrices are defined as

JL =
∂ (n ·Fi(QL,QR))

∂QL
, (3.62)

JR =
∂ (n ·Fi(QL,QR))

∂QR
. (3.63)

3.1.2 Green-Gauss approach

Due to the presence of viscous forces, the calculation of diffusive fluxes is necessary.

For RANS-based solvers, the diffusion term originates from the right-hand side

of the Navier-Stokes equations. Since the diffusive fluxes are elliptic in nature, a

central numerical scheme must be used. However, accurate evaluation of the velocity

and temperature gradients at the control volume faces is required. Therefore, the

Green-Gauss approach is employed for gradient evaluation.

To compute the viscous flux, the derivatives of the primitive variables at the edge

centers must first be determined. The accuracy of the viscous fluxes is directly related

to the precision of these derivative approximations. Because the Green-Gauss approach

yields more accurate gradients than a Taylor series expansion, it is preferred in the

HEMLAB algorithm. In this approach, the derivative calculations at the edge centers

require a linear interpolation of the state variables at the control volume faces adjacent

to each edge. Figure 3.1 illustrates the dual volume construction in 2D, which is created
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using the midpoint of each edge of the control volume. The Green-Gauss theorem

provides an alternative method for integrating over the shaded area by converting an

area integration into a line integration. Consequently, to calculate the gradient at the

center of this area, only linear interpolation to the edge centers of the dual volume is

necessary.

Figure 3.1 : Dual Volume Schema for 2D

Similarly, in 3D, integration is performed over the faces surrounding the volume

element, reducing the overall numerical cost. Figure 3.2 shows the dual volume

construction for 3D cases. In this figure, the midpoint of the purple edge is the location

where the gradients must be computed. The dual control area is constructed around

the purple edge using the centers of cells and faces from adjacent elements. The

green edges indicate the boundaries between nodal control volumes where the code

integrates the stresses; this is the same region used for calculating the viscous fluxes at

those edges. Importantly, the gradient evaluation method does not cause any odd-even

oscillations.

Figure 3.2 : Dual Volume Schema for 3D [15]
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In a manner similar to the determination of weights in the least squares method, the

Green-Gauss approach can compute and store constant weights for non-deforming

meshes. This approach is particularly applied in the 3D solver, while in 2D the

situation is relatively straightforward and such weights are not necessary. In cases

where the mesh remains unchanged (as in many 2D scenarios), the face areas of

the dual control volume surrounding the purple edge in Figure 3.2 remain constant.

Initially, the computation involves linearly interpolating between the enclosing vertices

to determine the face areas; these values are then stored for each edge. For the purple

edge in Figure 3.2, 11 surrounding nodes contribute, involving 33 double-precision

variables. Despite the increased memory usage, this method significantly accelerates

the overall computation.

The gradient at the midpoint of an edge is evaluated as

∂φ

∂x

∣∣∣∣
AB

=
N

∑
i=1

W x
i φi, (3.64)

∂φ

∂y

∣∣∣∣
AB

=
N

∑
i=1

W y
i φi, (3.65)

∂φ

∂ z

∣∣∣∣
AB

=
N

∑
i=1

W z
i φi, (3.66)

where N represents the total number of nodes belonging to the elements sharing the

active edge, φ is a scalar quantity at each node, and V d denotes the dual volume

constructed around the edge. The gradient at the edge midpoint is influenced by all

nodes in the surrounding elements; each node contributes three components, and these

contributions are computed once and stored for every edge. During gradient evaluation,

the stored coefficients are multiplied by the corresponding scalar values, eliminating

the need to recompute the dual volume areas at every time step, which significantly

improves performance.

3.1.3 Inviscid jacobian calculation

The convective term in the Navier-Stokes equations represents the inviscid component

of the flow. Because convective equations transfer information in only one direction,

any mathematical discretization must account for this unidirectional nature; otherwise,

the applied model may not accurately capture the physical behavior. To ensure

consistency between the mathematical formulation and the underlying physics, an
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upwinding approach is used. Upwinding involves applying forward or backward

differentiation based on the direction of information flow. Numerous schemes exist

in the literature for computing the convective part of the Navier-Stokes equations.

When evaluating convective fluxes, neglecting the viscous component yields the Euler

equations. The inviscid Jacobian, denoted as Ai, is then defined as follows. The

mathematical expressions describe the inviscid terms in the context of fluid dynamics,

particularly within the Navier-Stokes framework. Equation 3.67 presents a matrix

formulation that involves various parameters related to the flow, including the flow

variables and the speed of sound (a). The variable K is defined as γ − 1, where γ is

the ratio of specific heats. Equation 3.69 introduces the eigenvalues (Λ) of the inviscid

Jacobian matrix, which are essential for analyzing the fluid system’s behavior. The

matrix Λ is diagonal, with its components corresponding to different flow directions

and the speed of sound. Equations 3.71 and 3.70 provide the left eigenvector matrix (P)

and its inverse (P−1), respectively. These matrices are instrumental in diagonalizing the

Jacobian matrix and simplifying the analysis of fluid dynamics by defining the wave

properties and interactions within the flow.

[A] =


−Vt nx ny nz 0

nxφ −uV V −Vt −a3nxu nxv−a2nyu nxw−a2nzu nxa1 −a2uV
nyφ nyu−a2nxv V −Vt −a3nyv nyw−a2nzv nya1 −a2vV
nzφ nzu−a2nxw nzv−a2nyw V −Vt −a3nzw nza1 −a2wV

V (φ −a1) nxa1 −a2uV nya1 −a2vV nza1 −a2wV γV −Vt

(3.67)

[A] = [P]Λ [P]−1 (3.68)

Λ =


Λ1 0 0 0 0
0 Λ2 0 0 0
0 0 Λ3 0 0
0 0 0 Λ4 0
0 0 0 0 Λ5

 (3.69)

P̂ =


nx ny nz a3 a3

nxu nyu−nzρ nzu+nyρ a3(u+nxc) a3(u−nxc)
nxv+nzρ nyv nzv−nxρ a3(v+nyc) a3(v−nyc)
nxw−nyρ nyw+nxρ nzw a3(w+nzc) a3(w−nzc)

nxa6 +ρ(nzv−nyw) nya6 +ρ(nxw−nzu) nza6 +ρ(nyu−nxv) a3(a4 + cV ) a3(a4 − cV )

(3.70)

P̂−1 =


nxa5 −

(nzv−nyw)
ρ

nya5 − (nxw−nzu)
ρ

nza5 −
(nyu−nxv)

ρ
a2(φ − cV ) a2(φ + cV )

nxa1u
c2

nya1u
c2 − nz

ρ

nza1u
c2 +

ny
ρ

−a2(a1u−nxc) −a2(a1u+nxc)
nxa1v

c2 + nz
ρ

nya1v
c2

nza1v
c2 − nx

ρ
−a2(a1v−nyc) −a2(a1v+nyc)

nxa1w
c2 − ny

ρ

nya1w
c2 + nx

ρ

nza1w
c2 −a2(a1w−nzc) −a2(a1w+nzc)

−nxa1
c2 −nya1

c2 −nza1
c2 a1a2 a1a2

(3.71)
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The following auxiliary variables are defined:

a1 = γ −1, (3.72)

a2 =
1

ρ c
√

2
, (3.73)

a3 =
ρ

c
√

2
, (3.74)

a4 =
φ + c2

γ −1
, (3.75)

a5 = 1− φ

c2 , (3.76)

a6 =
φ

γ −1
, (3.77)

V = nxu+nyv+nzw, (3.78)

Vt = nx
∂x
∂ t

+ny
∂y
∂ t

+nz
∂ z
∂ t

, (3.79)

φ =
1
2
(γ −1)(u2 + v2 +w2), (3.80)

Λ1 = Λ2 = Λ3 =V −Vt , (3.81)

Λ4 = V −Vt + c, (3.82)

Λ5 = V −Vt − c. (3.83)

In this thesis, the Roe scheme [39, 55] is selected as the flux scheme for solving fluid

dynamics problems. The inviscid flux is expressed as a function of the left (QL) and

right (QR) state vectors:

F(QL,QR) =
1
2

[
F(QL)+F(QR)− P̂ |Λ̂| P̂−1(QR −QL)

]
. (3.84)

Roe-averaged values, such as density (ρ̂), velocity (Û), total enthalpy (Ĥ), and speed

of sound (â), are computed based on the left and right states:

ρ̂ =
√

ρL ρR, (3.85)

Û =

√
ρL UL +

√
ρR UR√

ρL +
√

ρR
, (3.86)

Ĥ =

√
ρL HL +

√
ρR HR√

ρL +
√

ρR
, (3.87)

â =
√

(γ −1)
[
Ĥ −0.5 û2

]
. (3.88)

During computations using the Roe flux method [39], the Harten correction [56]

(Equation 3.89) is applied to modify eigenvalues below a threshold h = ε max(|λi|):

λi =
h2 +λ 2

i
2h

. (3.89)
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3.1.4 Viscous jacobian calculation

The viscous fluxes in Equation 3.4 are functions of the gradients of both velocity

and temperature. However, the solution vector contains only conservative variables.

In the HEMLAB algorithm, the viscous Jacobian is computed by first assuming

that the solution vector is based on primitive variables. The resulting Jacobian is

then multiplied by the primitive-to-conservative Jacobian to obtain the correct global

matrix.

For example, consider the x-momentum equation:

N

∑
i=1

τxx Ac
x + τxy Ac

y + τxz Ac
z =

N

∑
i=1

µ

[
(2+λ )

∂u
∂x

+λ
∂v
∂y

+λ
∂w
∂ z

]
Ac

x

+µ

[
∂u
∂y

+
∂v
∂x

]
Ac

y

+µ

[
∂u
∂ z

+
∂w
∂x

]
Ac

z. (3.90)

Similarly, the y- and z-momentum equations and the energy equation are formulated

using appropriate combinations of stress components, gradients, and face areas.

In the explicit algorithm, values for u, v, w, and T are taken from the current time

step, and the corresponding weights are simply multiplied by these values. In the

implicit solution, where u, v, w, and T at the next time step are computed, a matrix

is constructed using only the weights associated with neighboring nodes. This matrix

is then incorporated into the implicit global matrix. In the implicit case, the nodes

of the elements surrounding an edge contribute to the coupled system (denoted Ni,

i = 1,2, . . . ,N), resulting in a wider Jacobian for the viscous flux compared to the

inviscid flux. The contribution of the viscous flux for each edge is calculated by solving

the following matrix system:

. . . JL . . . JN1 . . . JR . . . JN2 . . .
...

...
...

...
...

...
...

...
...

. . . −JL . . . −JN1 . . . −JR . . . −JN2 . . .

×



∆QL
...

∆QN1
...

∆QR
...

∆QN2
...


=

RL
...

RR

 . (3.91)
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The transformation from conservative variables Q to primitive variables W is

performed via:

∂R
∂Q

=
∂R
∂W

∂W
∂Q

, (3.92)

where

Q =


ρ

ρu
ρv
ρw
E

 W =


ρ

u
v
w
T

 . (3.93)

The method increases memory usage and the time required for matrix-vector

multiplication but yields a more precise evaluation of the Jacobian matrix. This

precision allows for the use of larger CFL numbers and facilitates convergence in fewer

iterations, in line with current trends toward achieving machine-zero convergence

[57, 58]. It is important to note that while the Green-Gauss approximation yields

first-order accuracy on boundaries, it is not used for constructing the Jacobian at

these locations because of the imposed physical no-slip and adiabatic/isothermal

boundary conditions. For aerodynamic loads and moments, a conservative approach

is preferred—obtaining forces and moments by summing the control volume fluxes

adjacent to solid walls [59]. The accuracy of boundary-edge gradients can also be

enhanced by methods described in [60]. Strongly enforced boundary conditions impose

no-slip conditions at boundary nodes, while far-field boundary conditions can be

weakly imposed using either inviscid flux values or Riemann variables [61].

3.2 Turbulence Model

Turbulence modeling plays a crucial role in computational fluid dynamics (CFD),

especially in aerospace applications, where accurate predictions of aerodynamic

performance are essential. Among the various turbulence models, the Spalart-Allmaras

(SA) model is widely used due to its robustness and efficiency in handling external

aerodynamic flows, particularly around airfoils, wings, and full aircraft configurations.

Originally developed for aerospace applications, the SA model is a one-equation

turbulence model that provides a good balance between accuracy and computational

cost. Over time, variations and enhancements of the SA model, such as the Negative
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Spalart-Allmaras (SA-neg) model, have been introduced to improve stability and

accuracy, particularly in regions of separated flow and adverse pressure gradients.

3.2.1 Negative Spalart-Allmaras model

This model divides the turbulence equations based on the value of the turbulent

viscosity. The most common form of the SA-neg model is given below. The right-hand

side of the turbulence equation consists of three parts: production, destruction, and

diffusion.

∂ ν̂

∂ t
+u ·∇ν̂ = Production+Destruction+Diffusion (3.94)

For the case when ν̂ ≥ 0:

∂ ν̂

∂ t
+u ·∇ν̂ = cb1 Ŝ ν̂

− M∞

Re
[cw1 fw]

(
ν̂

d

)2

+
M∞

Reσ

[
∇ ·
[
(ν̂ fn +ν)∇ν̂

]
+ cb2 ∇ν̂ ·∇ν̂

]
(3.95)

For ν̂ < 0:

∂ ν̂

∂ t
+u ·∇ν̂ = cb1 |ω| ν̂

+
M∞

Re
cw1

(
ν̂

d

)2

α

+
M∞

Reσ

[
∇ ·
[
(ν̂ fn +ν)∇ν̂

]
+ cb2 ∇ν̂ ·∇ν̂

]
(3.96)

Unlike the classical Spalart-Allmaras model, the SA-neg model does not include a wall

function calculation for fw in the destruction term when ν̂ is negative. Additionally, the

production term in the negative model does not use the Ŝ parameter; it only requires

the vorticity term. The final difference between the two sets of equations is the α

parameter, which is proposed to be α = 10 as suggested in [62]. There is no difference

in the diffusion term between the positive and negative models.

The turbulent viscosity is defined as

µ
∗
t = ρ ν̂ fv1. (3.97)

https://turbmodels.larc.nasa.gov/
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The Ŝ parameter, which is essential for computing the production term, can be

determined based on a vorticity limit:

Ŝ =

{
|ω|+ S̄, if S̄ ≥−cv2 |ω|,
|ω|
(

1+ c2
v2 |ω|+cv3 S̄

(cv3−2cv2) |ω|−S̄

)
, otherwise.

(3.98)

Other auxiliary parameters are defined as follows:

χ =
ν̂

ν∗ =
ν̂ ρ

µ∗
t
, (3.99)

fv1 =
χ3

χ3 + c3
v1
, (3.100)

fv2 = 1− χ

1+χ fv1
, (3.101)

S̄ =
M∞

Re
ν̂

κ2 d2 fv2. (3.102)

The wall function parameter fw in the destruction term is calculated by:

r = min

[
10,

M∞

Re∞

ν̂

Ŝκ2 d2

]
, (3.103)

g = r+ cw2 (r6 − r), (3.104)

fw = g

[
1+ c6

w3

g6 + c6
w3

]1/6

. (3.105)

The parameter fn, which modifies the diffusion coefficient, is given by:

fn =
cn1 +χ3

cn1 −χ3 , (3.106)

where fn = 1 in regions where the turbulent viscosity is positive, and cn1 is set to 16.

The remaining coefficients are specified as:

σ = 2/3, cb1 = 0.1355, cb2 = 0.622, κ = 0.41,

cw1 =
cb1

κ2 +
1+ cb2

σ
, cw2 = 0.3, cw3 = 2, cv1 = 7.1,

ct3 = 1.2, ct4 = 0.5, cn1 = 16, cv2 = 0.7, cv3 = 0.9. (3.107)

The previous version of the HEMLAB code assumed the turbulent viscosity was set to

zero for negative values. This has been corrected by implementing the SA-negative

model, which improves convergence of the Newton method. The basic turbulence

equations are formulated in a finite volume format and solved using Newton’s
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method. This requires adding an infinitesimal value for each unknown—denoted by

∆—integrated over the control volume. The implicit Euler method combined with

Newton’s method is applied for both positive and negative ν̂ . After computing all

coefficients and terms, the production, destruction, and diffusion parts are calculated

separately according to the unknowns (ν , ρ , ω) and then inserted into the appropriate

locations in the Jacobian matrix.

For example, if ν̂ ≥ 0, the finite volume discretization yields:

y

Ω

∆ν̂

∆t
dV +

{

∂Ω

[(u ·n)∆ν̂ + ν̂ (n ·∆u)] dS−
y

Ω

[(∇ ·u)∆ν̂ +(∇ ·∆u) ν̂ ] dV

−
y

Ω

cb1 ∆Ŝ ν̂ dV −
y

Ω

cb1 Ŝ∆ν̂ dV +
y

Ω

M∞

Red2 cw1

[
2 fw ν̂ ∆ν̂ + ν̂

2
∆ fw

]
dV

−
{

∂Ω

M∞

Reσ
n ·∇ν̂

[
fn ∆ν̂ + ν̂ ∆ fn +∆ν

]
dS−

{

∂Ω

M∞

Reσ

[
n ·∇(∆ν̂)( fn ν̂ +ν)

]
dS

−
y

Ω

M∞

Reσ
cb2

[
2∇(∆ν̂) ·∇ν̂

]
dV (3.108)

=−
{

∂Ω

n ·u ν̂ dS+
y

Ω

(∇ ·u) ν̂ dV +
y

Ω

cb1 Ŝ ν̂ dV −
y

Ω

M∞

Red2 cw1 fw ν̂
2 dV

+
{

∂Ω

M∞

Reσ

[
n ·∇ν̂ ( fn ν̂ +ν)

]
dS+

y

Ω

M∞

Reσ
cb2 ∇ν̂ ·∇ν̂ dV

if ν̂ < 0 then

y

Ω

∆ν̂

∆t
dV +

{

∂Ω

[
(u ·n)∆ν̂)+ ν̂(n ·∆u)

]
dS−

y

Ω

(∇ ·u)∆ν̂ +(∇ ·∆u)ν̂dV

−
y

Ω

cb1|∆ω|ν̂dV −
y

Ω

cb1|ω|∆ν̂dV −
y

Ω

M∞

Red2 cw1[2ν̂∆ν̂ ]αdV

−
{

∂Ω

M∞

Reσ
n ·∇ν̂

[
fn∆ν̂ + ν̂∆ fn +∆ν

]
dS−

{

∂Ω

M∞

Reσ

[
n ·∇(∆ν̂)

(
fnν̂ +ν

)]
dS

−
y

Ω

M∞

Reσ
cb2

[
2∇(∆ν̂) ·∇ν̂

]
dV =−

{

∂Ω

n ·uν̂dS (3.109)

+
y

Ω

(∇ ·u)ν̂dV +
y

Ω

cb1|ω|ν̂dV +
y

Ω

M∞

Red2 cw1ν̂
2
αdV

+
{

∂Ω

M∞

Reσ

[
n ·∇ν̂

(
fnν̂ +ν

)]
dS+

y

Ω

M∞

Reσ
cb2∇ν̂ ·∇ν̂dV
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The residual on the right-hand side represents the contributions from all ∆ terms and

derivatives, as expressed by:

∆χ =
∂ χ

∂ρ
∆ρ +

∂ χ

∂ ν̂
∆ν̂ +

∂ χ

∂T
∆T, (3.110)

∆ fv1 =
d fv1

dχ
∆χ, (3.111)

∆ fv2 =
d fv2

dχ
∆χ, (3.112)

∆ fn =
d fn

dχ
∆χ, (3.113)

∆ fw =
d fw

dg
dg
dr

∆r, (3.114)

∆S̄ =
M∞

Reκ2 d2

[
ν̂

d fv2

dχ
∆χ +∆ν̂ fv2

]
, (3.115)

∆Ŝ =
∂ Ŝ

∂ |ω|
|∆ω|+ ∂ Ŝ

∂ S̄
∆S̄, (3.116)

∆r =
∂ r
∂ ν̂

∆ν̂ +
∂ r
∂ Ŝ

∆Ŝ =
M∞

Reκ2 d2

[
1
Ŝ

∆ν̂ − ν̂

Ŝ2
∆Ŝ
]
, (3.117)

|∆ω|= 1
|ω|

[
ωx

(
∂ (∆w)

∂y
− ∂ (∆v)

∂ z

)
+ωy

(
∂ (∆u)

∂ z
− ∂ (∆w)

∂x

)

+ωz

(
∂ (∆v)

∂x
− ∂ (∆u)

∂y

)]
, (3.118)

|∆ω|= sgn(ω)

[
∂ (∆v)

∂x
− ∂ (∆u)

∂y

]
in 2D. (3.119)

The partial derivatives are provided as follows:

∂ χ

∂ρ
=

ν̂

µ
, (3.120)

∂ χ

∂ ν̂
=

ρ

µ
, (3.121)

d fv1

dχ
=

3c3
v1 χ2(

χ3 + c3
v1
)2 , (3.122)

d fv2

dχ
=−

1−χ2 d fv1
dχ

(1+ fv1 χ)2 , (3.123)

dg
dr

= 1+ cw2 (6r5 −1), (3.124)

d fn

dχ
=

6cn1 χ2

(cn1 −χ3)
2 , (3.125)

d fw

dg
=

(
1+ c6

w3

g6 + c6
w3

)1/6
c6

w3

g6 + c6
w3

, (3.126)
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∂ r
∂ ν̂

=
M∞

Re
1

κ2 d2 Ŝ
, (3.127)

∂ r
∂ Ŝ

=
M∞

Re
ν̂

κ2 d2 Ŝ2
. (3.128)

The partial derivatives of Ŝ are computed as follows:

∂ S̄
∂ρ

=
M∞

Re
ν̂

(κd)2

(
∂ fv2

∂ χ

∂ χ

∂ρ

)
, (3.129)

∂ S̄
∂ ν̂

=
M∞

Re
ν̂

(κd)2

(
∂ fv2

∂ χ

∂ χ

∂ ν̂
+ fv2

)
. (3.130)

∂ Ŝ
∂ρ

=


∂ S̄
∂ρ

, if S̄ ≥−cv2 |ω|,
∂ S̄
∂ρ

|ω| cv3[(cv3−2cv2) |ω|−S̄]+[c2
v2 |ω|+cv3 S̄]

[(cv3−2cv2) |ω|−S̄]
2 , otherwise,

(3.131)

∂ Ŝ
∂ ν̂

=


∂ S̄
∂ ν̂

, if S̄ ≥−cv2 |ω|,
∂ S̄
∂ ν̂

|ω| cv3[(cv3−2cv2) |ω|−S̄]+[c2
v2 |ω|+cv3 S̄]

[(cv3−2cv2) |ω|−S̄]
2 , otherwise,

(3.132)

∂ Ŝ
∂ |ω|

=


1, if S̄ ≥−cv2 |ω|,

1+ (2c2
v2 |ω|+cv3 S̄)[(cv3−2cv2) |ω|−S̄]−(cv3−2cv2) |ω|[c2

v2 |ω|+cv3 S̄]

[(cv3−2cv2) |ω|−S̄]
2 , otherwise.

(3.133)

∂ Ŝ
∂ S̄

=

1, if S̄ ≥−cv2 |ω|,
cv3 |ω|[(cv3−2cv2) |ω|−S̄]+|ω|[c2

v2 |ω|+cv3 S̄]

[(cv3−2cv2) |ω|−S̄]
2 , otherwise.

(3.134)

As mentioned earlier, the turbulence equation is divided into three parts—production,

destruction, and diffusion—which are given below.

For ν̂ ≥ 0:

Production = cb1 Ŝ ν̂ , (3.135)

Destruction =
M∞

Re
cw1 fw

(
ν̂

d

)2

, (3.136)

Diffusion =
M∞

Reσ
[∇ · ((ν̂ fn +ν)∇ν̂)+ cb2 ∇ν̂ ·∇ν̂ ] . (3.137)

For ν̂ < 0:

Production = cb1 |ω| ν̂ , (3.138)
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Destruction =
M∞

Re
cw1

(
ν̂

d

)2

α, (3.139)

Diffusion =
M∞

Reσ
[∇ · ((ν̂ fn +ν)∇ν̂)+ cb2 ∇ν̂ ·∇ν̂ ] . (3.140)

The implementation of the production term is explained as follows. Since the

production term depends on three unknowns (ν , ρ , ω), three production derivatives

are defined based on the sign of ν̂ .

For ν̂ ≥ 0:

∂P
∂ρ

= cb1
∂ Ŝ
∂ρ

ν̂ , (3.141)

∂P
∂ ν̂

= cb1

(
∂ Ŝ
∂ ν̂

ν̂ + Ŝ
)
, (3.142)

∂P
∂ω

= cb1
∂ Ŝ
∂ω

ν̂ . (3.143)

For ν̂ < 0:

∂P
∂ρ

= 0, (3.144)

∂P
∂ ν̂

= cb1 |ω|, (3.145)

∂P
∂ω

= cb1 ν̂ . (3.146)

A similar approach is applied to the destruction term.

For ν̂ ≥ 0:

∂D
∂ρ

=
M∞

Re
cw1

d2 ν̂
2 ∂ fw

∂g
∂g
∂ r

(
∂ r
∂ Ŝ

∂ Ŝ
∂ρ

)
, (3.147)

∂D
∂ ν̂

=
M∞

Re
cw1

d2

(
ν̂

2 ∂ fw

∂g
∂g
∂ r

∂ r
∂ Ŝ

∂ Ŝ
∂ ν̂

+2ν̂ fw

)
, (3.148)

∂D
∂ω

=
M∞

Re
cw1

d2 ν̂
2 ∂ fw

∂g
∂g
∂ r

(
∂ r
∂ Ŝ

∂ Ŝ
∂ω

)
. (3.149)

For ν̂ < 0:

∂D
∂ρ

= 0, (3.150)

∂D
∂ ν̂

= −M∞

Re
cw1

d2 (2ν̂), (3.151)

∂D
∂ω

= 0. (3.152)
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Finally, the production and destruction terms are merged into the source term, which

is then incorporated into the Jacobian matrix for the left and right nodes.

In addition to the improvements in the SA turbulence model, updates are required in

the Navier-Stokes equations to solve the system in a coupled manner. The method

used in this work is two-way coupled, allowing simulations at higher CFL numbers.

All calculations are performed with a second-order discretization. When updating the

turbulence model, the definition of the turbulent viscosity is revised as follows:

µ
∗
t = ρ ν̂ fv1. (3.153)

All terms using the new turbulent viscosity definition must be updated in the

Navier-Stokes equations to provide a coupled solution method. Therefore, the viscous

Jacobian is corrected for each viscous flux according to the changes in the turbulent

viscosity. A new vector, ∂ µ∗
t

∂W (see Equation 3.154), is defined to store the derivatives of

the turbulent viscosity with respect to the primitive variables. Recall that µ∗
t = ρ ν̂ fv1

and that fv1 is a function of temperature, density, and viscosity. Using this vector, the

Jacobian corrections are applied for both the left and right nodes. The derivatives of

temperature with respect to the conservative variables are given in Equation 3.155.

This term is calculated for ensuring that temperature-dependent effects are accurately

accounted for in the viscous Jacobian corrections.

∂ µ∗
t

∂W
=



fv1ν̂ + ν̂ρ
∂ fv1
∂ χ

∂ χ

∂ρ

0

0

0

ν̂ρ
∂ fv1
∂ χ

∂ χ

∂ µ

∂ µ

∂T

ρ fv1 +ρν̂
d fv1
dχ

dχ

dν̂



(3.154)
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∂T
∂Q

=



γ−1
ρR

(
u2 + v2 +w2 − 1

2ρ
(EL +ER)

)
γ−1
ρR u

γ−1
ρR v

γ−1
ρR w

γ−1
ρR



(3.155)

3.2.2 ft2 modification

In turbulence modeling, the ft2 term which is called as laminar suppression term [63]

refers to a component in the Spalart-Allmaras turbulence model that helps suppress

turbulence in regions of strong flow rotation and streamline curvature. The SA model

is particularly effective at predicting both attached and separated flows. It is based

on a single transport equation for the eddy viscosity, which represents the effect of

turbulence on the mean flow. The transition term is added to this transport equation to

incorporate the effects of flow transition.

During flow transition, the flow evolves from laminar (smooth and ordered) to turbulent

(chaotic and irregular). This transition is influenced by local flow conditions, pressure

gradients, and surface roughness. In the SA model, the transition term acts as a source

or sink in the eddy viscosity transport equation, modifying the turbulence production

and damping rates. The specific form of the transition term depends on the model

variant; various modifications have been proposed based on empirical correlations and

experimental data.

Overall, the transition term plays a crucial role in accurately simulating flow transition

and capturing the effects of laminar-to-turbulent change. It enables the model to handle

a wide range of flow conditions, making it suitable for diverse engineering applications.

Consequently, this feature has been added to the current version of the HEMLAB

algorithm. As described in the first chapter, the SA-negative model consists of two

different equations based on the sign of the turbulent viscosity. Similarly, the equations

for the Spalart-Allmaras turbulence model with the transition term are given below. For
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ν̂ ≥ 0:

∂ ν̂

∂ t
+u ·∇ν̂ = cb1 (1− ft2) Ŝν̂

− M∞

Re∞

[
cw1 fw − cb1

κ2 ft2
](

ν̂

d

)2

+
M∞

Re∞ σ
[∇ · ((ν̂ fn +ν)∇ν̂)+ cb2 ∇ν̂ ·∇ν̂ ] (3.156)

For ν̂ < 0:

∂ ν̂

∂ t
+u ·∇ν̂ = cb1 (1− ct3) |ω| ν̂

+
M∞

Re∞

cw1

(
ν̂

d

)2

α

+
M∞

Re∞ σ
[∇ · ((ν̂ fn +ν)∇ν̂)+ cb2 ∇ν̂ ·∇ν̂ ] (3.157)

Here,

ft2 = ct3 e−ct4 χ2
(3.158)

ct3 = 1.2 (3.159)

ct4 = 0.5 (3.160)

The production term and its implementation are explained below. Since the production

term depends on three unknowns (ν , ρ , ω), separate production derivatives are defined

based on the sign of ν̂ .

For ν̂ ≥ 0:

∂P
∂ρ

= cb1 (1− ft2)
∂ Ŝ
∂ρ

ν̂ − cb1 Ŝ ν̂
d ft2
dχ

∂ χ

∂ρ
(3.161)

∂P
∂ ν̂

= cb1 (1− ft2)
(

∂ Ŝ
∂ ν̂

ν̂ + Ŝ
)
− cb1 Ŝ ν̂

d ft2
dχ

∂ χ

∂ ν̂
(3.162)

∂P
∂ω

= cb1 (1− ft2)
∂ Ŝ
∂ω

ν̂ (3.163)

For ν̂ < 0:

∂P
∂ρ

= 0 (3.164)

∂P
∂ ν̂

= cb1 (1− ct3) |ω| (3.165)

∂P
∂ω

= cb1 ν̂ (3.166)
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where

d ft2
dχ

= 2ct3 ct4 χ e−ct4χ2
(3.167)

A similar approach is applied to the destruction term. The modified production and

destruction terms are then merged into the source term and incorporated into the

Jacobian matrix.

For ν̂ ≥ 0:

∂D
∂ρ

=
M∞

Re
cw1

d2 ν̂
2 ∂ fw

∂g
∂g
∂ r

(
∂ r
∂ Ŝ

∂ Ŝ
∂ρ

)
(3.168)

− M∞

Re
cb1

κ2 d2 ν̂
2 d ft2

dχ

dχ

dρ

∂D
∂ ν̂

=
M∞

Re
cw1

d2

(
ν̂

2 ∂ fw

∂g
∂g
∂ r

(
∂ r
∂ Ŝ

∂ Ŝ
∂ ν̂

+
∂ r
∂ ν̂

)
+2ν̂ fw

)
(3.169)

− M∞

Re
cb1

κ2 d2 ν̂
2 d ft2

dχ

dχ

dν̂

∂D
∂ω

=
M∞

Re
cw1

d2 ν̂
2 ∂ fw

∂g
∂g
∂ r

(
∂ r
∂ Ŝ

∂ Ŝ
∂ω

)
(3.170)

For ν̂ < 0:

∂D
∂ρ

= 0 (3.171)

∂D
∂ ν̂

= −M∞

Re
cw1

d2 (2ν̂)α (3.172)

∂D
∂ω

= 0. (3.173)

3.2.3 Rotation correction (SA-R)

The SA-R model [64] was developed to improve the prediction of flows with significant

rotation and curvature, such as swirling flows or flows around curved surfaces.

These flows exhibit additional complexities compared to the original SA model,

which assumes predominantly irrotational flow. In the SA-R model, two primary

modifications are introduced: the curvature correction term and the rotation correction

term. These terms adjust the turbulent viscosity and production/dissipation rates to

capture the anisotropic behavior induced by rotation and curvature effects.

The curvature correction term accounts for the influence of flow curvature on the

turbulence field. It is designed to enhance the representation of secondary flows,
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vortex generation, and the redistribution of turbulence in curved flows. The curvature

correction term modifies the production and dissipation of turbulent eddy viscosity by

considering the effects of flow curvature.

The rotation correction term aims to capture the effects of flow rotation on the

turbulence field. It improves the prediction of the anisotropic behavior induced by

rotation, such as the elongation of turbulent structures in the direction of rotation.

This term modifies the production and dissipation of turbulent eddy viscosity by

incorporating the rotational effects. Both the curvature correction term and the

rotation correction term are typically formulated based on empirical correlations or

experimental data. The specific functional forms of these terms may vary depending

on the version or variant of the SA-R model used. By including these additional

corrections, the SA-R model offers improved accuracy in predicting turbulent flows

with rotation and curvature. It enables better simulation of complex flow phenomena,

such as swirling flows, flows around curved surfaces, or flows with significant

rotational effects, where the original SA model may not capture the flow characteristics

accurately. So, the rotational correction has been added to the current version of the

HEMLAB code in order to capture the flow characteristics such reagions. The equation

form of the rotational correction is given below.

If ν̂ ≥ 0 then

∂ ν̂

∂ t
+u ·∇ ν̂ = cb1(1− ft2)(Ŝ+ crotmin[0,S−|ω])ν̂ (3.174)

− M∞

Re∞

[cw1 fw − cb1

κ2 ft2](
ν̂

d
)2

+
M∞

Re∞σ
[∇ · [(ν̂ fn +ν)∇ν̂ ] + cb2∇ν̂ ·∇ν̂ ]

if ν̂ < 0 then

∂ ν̂

∂ t
+u ·∇ ν̂ = cb1 (1− ct3) |ω + crotmin[0,S−|ω]|ν̂ (3.175)

− M∞

Re∞

cw1(
ν̂

d
)2

α

+
M∞

Re∞σ
[∇ · [(ν̂ fn +ν)∇ν̂ ] + cb2∇ν̂ ·∇ν̂ ]

Equations below are obtained by doing very similar updates on the code for the

production, destruction and diffusion parts for the rotation correction modification.
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If ν̂ ≥ 0 then

∂P
∂ρ

= cb1(1− ft2)(
∂ Ŝ
∂ S̄

∂ S̄
∂ρ

ν̂) (3.176)

∂P
∂ ν̂

= cb1 (1− ft2)(
∂ Ŝ
∂ S̄

∂ S̄
∂ ν̂

ν̂ + Ŝ+ crotmin[0,S−|ω|]) (3.177)

∂P
∂ω

= cb1 (1− ft2)(
∂ Ŝ
∂ω

+
∂ (crotmin[0,S−|ω|])

∂ω
)ν̂ (3.178)

If ν̂ < 0 then

∂P
∂ρ

= 0 (3.179)

∂P
∂ ν̂

= cb1(1− ct3)(|ω|+ crotmin[0,S−|ω|]) (3.180)

∂P
∂ω

= cb1(1− ct3)(1+
∂ (crotmin[0,S−|ω|])

∂ω
) ν̂ (3.181)

Nothing is changed for the destruction terms.

3.2.4 QCR-2000 modification

The Spalart-Allmaras One-Equation Model with Quadratic Constitutive Relation,

2000 version (SA-QCR2000), is an enhanced version of the original SA turbulence

model detailed in [65]. It incorporates a quadratic constitutive relation to improve

the representation of turbulence production and dissipation rates. This model was

developed to address limitations in predicting flows with adverse pressure gradients

and separation, providing better accuracy in regions where the flow transitions from

attached to separated or recirculating.

The SA-QCR2000 model introduces a quadratic term in the constitutive relation for

the turbulent eddy viscosity, which relates the Reynolds stresses to the mean strain

rate. Unlike the original SA model’s linear constitutive relation, the quadratic relation

captures turbulence anisotropy more effectively by considering nonlinear interactions

between Reynolds stresses and strain rates. Since this model has been recommended

for the AIAA High Lift Prediction Workshop Series V, it has been implemented in the

current version of the HEMLAB algorithm. The equations for the SA-QCR2000 model

are given below.

For ν̂ ≥ 0:

∂ ν̂

∂ t
+u ·∇ν̂ = cb1 (1− ft2) Ŝν̂
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− M∞

Re∞

[
cw1 fw − cb1

κ2 ft2
](

ν̂

d

)2

+
M∞

Re∞ σ
[∇ · ((ν̂ fn +ν)∇ν̂)+ cb2 ∇ν̂ ·∇ν̂ ] . (3.182)

For ν̂ < 0:

∂ ν̂

∂ t
+u ·∇ν̂ = cb1 (1− ct3) |ω|ν̂

− M∞

Re∞

cw1

(
ν̂

d

)2

α

+
M∞

Re∞ σ
[∇ · ((ν̂ fn +ν)∇ν̂)+ cb2 ∇ν̂ ·∇ν̂ ] . (3.183)

In these equations, the SA-QCR2000 model does not only modify the transport

equation but also alters the turbulent stress tensor. The QCR turbulent stress tensor

is defined differently from the classical model. For example:

τxx,qcr = τxx −2cr1 (Oxy τxy +Oxz τxz), (3.184)

τyy,qcr = τyy +2cr1 (Oxy τyx −Oyz τyz), (3.185)

τzz,qcr = τzz +2cr1 (Oxz τzx +Oyz τzy), (3.186)

τxy,qcr = τxy − cr1 (Oxy(τyy − τxx)+Oyz τxz +Oxz τyz) , (3.187)

τxz,qcr = τxz − cr1 (Oxz(τzz − τxx)+Oxy τzy −Oyz τxy) , (3.188)

τyz,qcr = τyz − cr1 (Oyz(τzz − τyy)−Oxy τzx −Oxz τyx) , (3.189)

with

cr1 = 0.3, (3.190)

Oxx = Oyy = Ozz = 0, (3.191)

Oxy = −Oyx =

∂u
∂y −

∂v
∂x

b
, (3.192)

Oxz = −Ozx =
∂u
∂ z −

∂w
∂x

b
, (3.193)

Oyz = −Ozy =

∂v
∂ z −

∂w
∂y

b
, (3.194)

b =
√(

∂u
∂x

)2
+
(

∂u
∂y

)2
+
(

∂u
∂ z

)2
+
(

∂v
∂x

)2
+
(

∂v
∂y

)2
+
(

∂v
∂ z

)2
+
(

∂w
∂x

)2
+
(

∂w
∂y

)2
+
(

∂w
∂ z

)2
(3.195)
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3.3 Integration of Scalable Nonlinear Equations Solvers (SNES)

The present nonlinear Newton method is implemented using PETSc’s Scalable

Nonlinear Equations Solvers (SNES) with a line search technique [47], integrated

into the implicit vertex-based unstructured finite volume algorithm on hybrid meshes.

PETSc-SNES provides a user-friendly interface for Newton methods to solve nonlinear

equations [66], offering various Newton-like solvers based on line search and trust

region methods. For the current fully coupled system of nonlinear equations, we use

the line search Newton method (SNESNEWTONLS).

The computational domain is divided into sub-domains using the METIS library [49]

for balanced domain decomposition. After decomposition, vertices are renumbered

using the reverse Cuthill-McKee algorithm from PARSEPACK [67]. To enhance cache

efficiency, edges are constructed in increasing order based on the node number at one

end of each edge [68]. In addition, sub-domain boundary vertices required for parallel

communication are ordered by their destination processor ID, which allows for more

efficient data packaging during parallel communication.

The application of the fully coupled Newton method with pseudo-transient

continuation (PTC) leads to the following system:[
M
∆t

+
M

∆tCFL
+ J
]

∆Qm+1 =−R(Qm)

=−

[
M

Qm −Qn

∆t
V +M

Qm −Qn

∆tCFL
V

+∑n ·Fi(Qm)S−∑n ·Fv(Qm)S

]
.

(3.196)

The pseudo time step computed from the CFL number is defined as

∆tCFL = min

(
Vi

∑
N
k=1 λc,k Sk

,
Vi

2∑
N
k=1 λv,k S2

k

)
CFL, (3.197)

where λc = max(|λi|) and

λv =
µ

ρ Vi
max

(
4
3
,

γ

Pr

)
M∞

Re
.

The solver also offers CFL options based on the minimum outgoing edge length and

a distance function, in which the minimum outgoing edge length is replaced by a

95



slightly modified wall distance function. This option can be especially useful for highly

irregular anisotropic boundary layer meshes.

As ∆tCFL is gradually increased to infinity, the above approximation converges to

the classical Newton method. This approach leads to a consistent Newton method

similar to that of Thompson and O’Connell [69], where the derivation of the right-hand

side exactly matches the left-hand side. The advantage is that the residual can be

significantly reduced in just a few Newton sub-iterations, and the block ILU(0)

preconditioner is usually robust enough for three-dimensional problems. Additionally,

it allows for larger CFL numbers at startup due to the damping effect of the time

derivative on the right-hand side. However, as the solution approaches the final

steady state, the convergence of the Newton method may slow if the ramped CFL

number is not sufficiently high. The transient term (i.e., the second term with ∆tCFL

on the right-hand side) is generally not included in pseudo-transient continuation

algorithms, which require more robust preconditioners. This term can compromise

time accuracy when the final CFL number is not infinite and must be removed

for unsteady calculations. Although the current algorithm supports both consistent

and non-consistent approaches, we prefer the consistent approach in our numerical

simulations.

PETSc-SNES is implemented using both the Jacobian-free approach and the direct

approach, with either first- or second-order Jacobian matrix construction for the

matrix-vector product. The following FORTRAN90 subroutine which is given in

Figure 3.3 demonstrates the implementation.

In this implementation, the right-hand side residual vector is computed in

the Form_Residual function, while the Jacobian matrix is evaluated in the

Form_Jacobian function. The current PETSc-SNES setup typically uses the

first-order Jacobian matrix as a preconditioner in the matrix-free approach (via the

Fréchet derivative). The method for computing the differencing parameters for the

finite difference Jacobian-free formulation follows the default approach proposed by

Walker and Pernice [70] with erel = 1 × 10−6. The matrix-free approach can be

sensitive to the erel parameter, and we observed convergence difficulties at high CFL

numbers with the default value erel = 1×10−8. While the first-order Jacobian matrix

is usually employed as a preconditioner in the Jacobian-free approach, constructing
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the second-order Jacobian is also possible, though it significantly increases memory

requirements.

subroutine Implicit_Euler( A00, mesh_info, solver_vrbls, rms,
dt_min, dt_max )
#include <petsc/finclude/petsc.h>
use petsc
CALL SNESCreate(PETSC_COMM_WORLD,snes,ierr)
CALL SNESSetFunction(snes,RH0,Form_Residual,mesh_info,ierr)
IF ( solver_vrbls%Matrix_Free_Jacob ) THEN
CALL MatCreateSNESMF(snes,AA,ierr)
CALL MatMFFDSetFunction(AA,Form_MFFDFunction,mesh_info,ierr)
CALL SNESSetUpdate(snes,Form_Update,ierr)
CALL SNESSetJacobian(snes,AA,A00,Form_Jacobian,mesh_info,ierr)
CALL MatMFFDSetType(AA,MATMFFD_WP,ierr) !MATMFFD_DS
CALL MatMFFDSetFunctionError(AA,1e-6,ierr)
CALL MatMFFDDSSetUmin(AA,1e-4,ierr)
ELSE
CALL SNESSetJacobian(snes,A00,A00,Form_Jacobian,mesh_info,ierr)
END IF
end subroutine solve_implicit_euler

Figure 3.3 : Pseudo-code of the Implicit_Euler subroutine using PETSc SNES.

Additionally, the first- or second-order Jacobian matrix can be used directly for

the Jacobian-vector product, which is beneficial when finite difference round-off

errors become significant in the Jacobian-free method. To implement this, replace

the symbolic Jacobian-free matrix AA with the Jacobian matrix A00 in the

SNESSetJacobian function, as illustrated above.

The Jacobian matrix is constructed using the PETSc sparse parallel matrix in block

compressed row (MATBAIJ) format, which significantly reduces memory usage and

speeds up matrix-vector multiplications. The impact of different PETSc matrix formats

on computational efficiency is detailed in [52]. The Jacobian matrix can be computed

at each SNES iteration or frozen for several iterations to accelerate the calculations.

Although the Jacobian matrix can be computed using the finite difference

approximation within PETSc, this approach is computationally expensive and is

recommended only for debugging purposes. The current algorithm has been compiled

in both double- and quad-precision, with quad-precision (–with-precision=__float128)

used to validate the Jacobian matrix implementation for the compressible RANS

equations. Tests on a small three-dimensional mesh showed that the relative error
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in the Frobenius norm (||J - J f d ||F /||J||F ) is 7.252× 10−14, where J f d is the Jacobian

evaluated using the finite difference approach provided by PETSc. For the laminar

Navier-Stokes equations, this error is reduced to 1.20512 × 10−16. Running the

same test case with double precision results in larger truncation errors, making it

difficult to assess accuracy due to very small or large off-diagonal block entries

between the Navier-Stokes equations and the turbulence model. The preconditioning

method is based on the restricted additive Schwarz method with block incomplete LU

factorization with k levels of fill (ILU(k)) within each sub-block. The block ILU(k)

preconditioner can be obtained directly from the PETSc library or from the HYPRE

[71] Euclid ILU(k) preconditioner, accessed through the PETSc interface.

The linear solver can use various Krylov subspace methods, such as the flexible

generalized minimal residual method (FGMRES) [72], the flexible generalized

conjugate residual method (KSPGCR) [73], or the stabilized biconjugate gradient

method (KSPBCGS) [74]. The Newton method employs the default backtracking

line search algorithm (SNESLINESEARCHBT), which is essential for preventing

divergence during startup caused by aggressive CFL ramping.

If a consistent Newton approach is used with a constant CFL number at each

iteration, the PETSc-SNES algorithm requires only these two functions. However,

updating the CFL within Newton sub-iterations and implementing the dual-time

method necessitates additional modifications.

For the unsteady dual-time approach, the Form_Residual function handles the

right-hand side evaluation, while the Form_MFFDFunction subroutine performs

the matrix-free Jacobian-vector multiplications. This same method is applied for the

non-consistent implementation of the PTC algorithm. Although this approach can con-

verge faster to a steady state, the restricted additive Schwarz method with the ILU(0)

preconditioner is typically not robust enough for three-dimensional cases. Moreover, it

requires evaluating an additional vector from the Form_MFFDFunction subroutine

since the right-hand side vector cannot be used in finite differencing for the

Jacobian-vector multiplication.

While agglomeration multigrid approaches with line smoothers are known to be robust

for anisotropic meshes [75], their overall effectiveness remains uncertain. However,
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successive anisotropic mesh refinement, with increasing complexity, significantly

reduces the burden on the linear solver by interpolating the converged solution from the

previous level, leading to better startup conditions. This is crucial for the convergence

of the Newton method, as the initial guess must be sufficiently close to the final steady

state to achieve quadratic convergence.

Another challenge with the PETSc-SNES solver is achieving proper scaling to ensure

convergence for the coupled algebraic equations. We tested several scaling methods,

including scaling by the Jacobian diagonal, 1/volume, (1/volume)1/3, minimum

outgoing edge length/volume, 1/maximum Jacobian row entry absolute value, and

1/sum of the absolute values in each Jacobian row. We found that scaling by

the maximum Jacobian row absolute value sum and (1/volume)1/3 provided good

convergence. The latter is also used in the Hierarchical Adaptive Nonlinear Iteration

Method (HANIM) framework [76]. However, PETSc does not permit scaling changes

between SNES iterations because this disrupts the convergence of the line search

algorithm; therefore, scaling must be applied externally.

Complex CFL update and ramping strategies based on line search algorithms are

discussed in the literature [69, 77, 78], but our current approach employs a simpler

strategy. Here, the CFL number is multiplied by a factor (between 1 and 1.5) if the

initial residual is reduced by an order of magnitude. If the reduction is less than 0.8,

the CFL number is reduced by a factor of 0.1; otherwise, no modification is made

during that Newton iteration. This CFL ramping strategy is implemented within the

Implicit_Euler subroutine for both the consistent Newton approach and the dual

approach, thereby keeping the CFL number fixed within the Newton sub-iterations.

Another approach to modifying the CFL number is to implement it within the

Form_Update function, which would allow for CFL ramping within Newton

sub-iterations. However, this method requires careful consideration of the line search

algorithm, as increasing the CFL number during sub-iterations can initially increase the

residual, which the line search algorithm may interpret as divergence and potentially

halt the updates. This issue is particularly challenging for the turbulence model,

where the residual initially increases before eventually decreasing. Some authors have

explored excluding the turbulence residual from the line search algorithm [79] to
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address this problem. Additionally, scaling the Jacobian matrix presents challenges,

as scaling cannot be altered within the SNES solver.

Alternatively, PETSc-SNES can be used as a one-step classical Newton method

without a line search algorithm (via the SNESKSPONLY option), as described in

[38]. This setup is suitable for solving relatively simple problems at low angles of

attack. Moreover, the algorithm has been integrated with the SLEPc library [80] to

explore leading eigenvalues, typically using the Jacobi-Davidson method to compute

the smallest eigenvalue.

3.4 Improvements on the Mesh Adaptation Process

The integration of pyAMG and NASA-REFINE into the HEMLAB algorithm has

significantly enhanced the mesh adaptation process, improving both accuracy and

efficiency in computational fluid dynamics (CFD) simulations. By using the strengths

of these advanced mesh adaptation tools, the process now incorporates multiscale

anisotropic refinement techniques, better geometric preservation, and optimized

boundary layer generation. This integration ensures that the computational resources

are allocated more effectively to regions of interest, such as shock waves, boundary

layers, and separation zones, leading to improved solution quality while maintaining

manageable computational costs. Additionally, the combination of these tools provides

a more adaptive and flexible refinement framework, allowing automated adjustment

of mesh resolution based on flow physics, thereby reducing the reliance on manual

meshing strategies.

One of the key advantages of this integration is the ability to leverage different

adaptation methodologies for various flow regimes. pyAMG’s multiscale anisotropic

adaptation excels at preserving fine-scale flow structures by efficiently redistributing

mesh density, whereas NASA-REFINE’s metric tensor-based approach ensures

targeted refinement in critical flow regions without excessive computational overhead.

The synergy between these two methods enables a comprehensive refinement strategy,

balancing localized resolution enhancement with global mesh quality control.

Furthermore, this integration enhances boundary layer handling, a crucial aspect

in high-fidelity simulations involving high Reynolds number flows. By utilizing
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metric-based refinement and structured adaptation techniques, the computational mesh

is better aligned with wall-bounded flow characteristics, reducing numerical diffusion

and improving accuracy in turbulence modeling. The automated adaptation workflow

reduces preprocessing time and ensures consistent mesh quality across multiple

adaptation cycles.

The adaptation methodology also incorporates recent advancements in anisotropic

mesh refinement algorithms. The feature-based adaptation technique relies on a

Riemannian metric space formulation, allowing edge lengths and element volumes to

be determined based on the metric field [81]. This ensures alignment of mesh elements

with local eigenvectors of the metric tensor, generating highly optimized anisotropic

meshes. Additionally, the adaptation process utilizes Hessian-based multiscale metric

computation, where the metric field is scaled using the Hessian determinant to

minimize interpolation errors in the Lp norm.

In practical applications, the sensor function plays a crucial role in guiding mesh

adaptation. The sensor function can utilize flow variables such as Mach number,

pressure, entropy, and FTLE. The current implementation employs an exponential

distance-based sensor function:

Sensor =
4

∑
i=1

0.25 e−100×10id (3.198)

where d represents the minimum wall distance. This enables the refinement process

to begin even without an initial boundary layer, progressively forming a structured

boundary layer mesh. Once established, further adaptation incorporates the Mach

number as a refinement criterion:

Sensor = Mach (3.199)

This multistage approach ensures an efficient and accurate refinement process,

focusing computational effort on critical flow regions while preserving geometric

fidelity. Additional sensor functions, including entropy-based and entropy-Mach

combined metrics, are available for capturing wake shear layers and complex flow

structures [38, 82].

Moreover, special attention is given to the challenges of anisotropic adaptation in

high-lift configurations and complex geometries. The adaptation process prevents
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numerical issues such as tetrahedral elements with all nodes on solid walls, which

can cause singularities in the flux computations. The NASA-REFINE library enforces

conditions ensuring proper edge connectivity to non-boundary nodes, mitigating

potential numerical instabilities [83].

The following sections provide a detailed discussion of the HEMLAB-pyAMG and

HEMLAB-REFINE integrations, outlining the methodologies, implementation details,

and their impact on the adaptation process.

3.4.1 HEMLAB-pyAMG integration

To further enhance numerical accuracy, the anisotropic mesh adaptation library

pyAMG from INRIA [36] is integrated into the HEMLAB solver. The edge lengths

and element volumes inside the mesh generator are computed in the Riemannian

metric space defined by the given metric field using a multiscale approach. It employs

anisotropic cavity-based operators, where standard operations such as collapse,

insertion, and swaps are recast within this cavity framework to perform anisotropic

mesh adaptation.

This feature-based adaptation technique can utilize one variable of the flow fields, such

as Mach number, pressure, entropy, FTLE, etc. In the current multiscale approach, the

Mach number is modified by adding exponential functions based on the minimum wall

distance, which is then used as a sensor function, as shown below:

Mach Sensor = βMach+
5

∑
i=1

0.25 e−100x10id (3.200)

In this equation, if β is set to zero, only the distance function is considered during

adaptation. If β is set to 1, both the distance function and the Mach number are taken

into account. With this approach, mesh refinement can begin even without an initial

boundary layer. In this case, several successive refinements based solely on the distance

function are applied to form the boundary layer mesh. Once a well-refined boundary

layer mesh is obtained, the refinement process can continue using the sensor function,

incorporating both the Mach number and wall distance. Additionally, a p−norm, which

controls the interpolation error in the sensor function in the L norm, is used to manage

error control.
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The classical mesh adaptation process described above tends to lose some parts of the

original geometry during interpolation, leading to inaccuracies in the adapted mesh. To

overcome this issue, a background mesh finer than the initial mesh has been used as a

reference during the adaptation process. This feature is referred to as "adap_back" in

the original pyAMG library. Using this feature, the results obtained protect the original

geometry during the refinement.

The adapted surface mesh is projected onto the background mesh in Gamma mesh

format which is given in the Figure 3.5. The MeshLink library [84], which provides

mesh-geometry associativity in an open framework, is utilized to obtain the edge

and corner data required for the Gamma mesh format. The current multiscale mesh

adaptation is performed using the Gamma mesh format instead of the SU2 format,

where such data is lost after mesh refinement. Therefore, additional code has been

written to convert and build the Gamma mesh format. Furthermore, the NASA Refine

anisotropic mesh adaptation library [83] is used to facilitate the conversion of mesh

file formats. The updated mesh adaptation code parameters have been added to the

refinement part of the input file of HEMLAB, as shown below in Figure 3.4.

&ADAP_OPTS
adap_sizes = (400000 ; 800000 ; 2000000 ; 4000000) ;
adap_norm = 4,
adap_subite = (9 ; 1 ; 3 ; 1 ),
adap_ext_ite = (0 ; 400 ; 200 ; 200),
adap_residual_reduction = (3 ; 3 ; 3 ; 3),
adap_sensor = (DIST; DIST; MACH_DIST; MACH_DIST),
adap_hmin = 1e-6,
adap_hmax = 4.0,
adap_hgrad = 1.2,
adap_ridge= false,
adap_back = back_reoriented.mesh

Figure 3.4 : Adaptation part of the input file of HEMLAB used for pyAMG-based
mesh adaptation.
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MeshVersionFormatted 3
Dimension 3

Vertices
1534333
-22.83464 0.00000 22.83464 0
-17.50000 0.00000 22.53564 0
-15.50000 0.00000 12.32464 0
----
Triangles
578006
2380 2381 39348 1
2381 2382 39349 1
2382 23823 39350 1
----
Tetrahedra
8668795
22193 22119 22118 1349447 0
698945 698944 698947 1407227 0
398945 398944 398947 1207227 0
----
Edges
21581
1 2 0
2 3 0
3 4 0
----
Corners
289
1
2
----

Figure 3.5 : Sample Gamma Mesh format showing vertices, triangles, tetrahedra,
edges, and corners.

3.4.2 HEMLAB-REFINE integration

NASA-REFINE is a widely used adaptation tool in the aerospace industry that

enhances the quality and efficiency of computational fluid dynamics (CFD) simulations

through dynamic and adaptive mesh refinements. These tools are essential for

addressing challenges associated with high Reynolds numbers, compressible flows,

and complex geometries. The primary goal of mesh adaptation is to optimize

computational resources, focusing refinement efforts on critical flow features such as

shock waves, boundary layers, and separation zones, which are crucial for accurately

capturing aerodynamic forces and heat transfer [85].
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NASA-REFINE employs a metric tensor-based adaptation approach, which is central

to its methodology. The metric tensor defines the desired size, shape, and orientation

of mesh elements throughout the computational domain, enabling anisotropic mesh

refinement. This allows elements to be stretched or compressed in alignment with

directional flow gradients, significantly improving accuracy in resolving vortices,

wakes, and other complex flow structures. Large, uniform meshes would otherwise

require excessive computational cost, but adaptation dynamically sets mesh density,

optimizing computational efficiency.

A particularly challenging aspect of CFD is resolving viscous layers near solid

boundaries, where high velocity and temperature gradients exist. NASA-REFINE

addresses this challenge through viscous layer refinement, ensuring proper resolution

and alignment of mesh elements within boundary layers. The refinement process

incorporates models such as the “Spalding” formula for boundary-layer thickness to

guide mesh refinement, ensuring accurate computation of aerodynamic forces and heat

transfer at walls [86].

Unlike its traditional implementation, where adjoint-based error estimation is used to

identify refinement regions based on sensitivities to a quantity of interest (QoI), the

current framework does not utilize this approach. Instead, our framework integrates

NASA-REFINE as an adaptation tool by directly leveraging metric tensors computed

for a specific sensor function. The sensor function captures critical flow characteristics,

such as Mach number gradients, and guides the refinement process accordingly. This

approach eliminates the need for adjoint solutions while still ensuring that mesh

adaptation efficiently captures important flow features. The adaptation workflow in

our framework consists of several steps, beginning with the conversion of mesh and

solution files into formats compatible with NASA-REFINE. Mesh files are transformed

between .mesh and .meshb formats, while solution files are converted to .sol and .solb.

These conversions ensure seamless integration into the adaptation process.

In order to run the HEMLAB with NASA-REFINE following parameters needs to be

entered in to the adaptation part of the config file as shown in Figure 3.6.
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&ADAP_OPTS
adap_sizes = (2000 ; 4000; 40000 ; 200000),
adap_norm = 4,
adap_subite = (3 ; 1 ; 3 ; 1),
adap_ext_ite = (200 ; 2000 ; 2000; 2000),
adap_residual_reduction = (3 ; 3 ; 3 ; 3),
adap_sensor = (MACH_DIST; MACH_DIST; MACH; MACH),
adap_hmin = 1e-6,
adap_hmax = 100.,
adap_hgrad = (1.2; 1.2; 1.2; 1.2),
adap_aspect_ratio= 1000,
adap_refine_ite_max = 1,
adap_exit_iteration =3,
adap_spalding = 0.0001,
adap_bl_exit_iteration = 2,
adap_viscous_tags = 1,
bl_creation= true,
delete_files= true,
additional_refine_metric_options= "" ,
additional_refine_adap_options= "" ,
additional_refine_adap_bl_options= "",

Figure 3.6 : Adaptation part of the input file of HEMLAB for REFINE-based mesh
adaptation.

The first step in the framework involves generating a metric file, which provides a

mathematical description of the desired mesh refinement. The following command was

used for this step:

mpirun -np 24 refmpi multiscale mesh_file.meshb
Mach_sensor.solb 8000 output-metric.solb
--norm-power 4 --gradation 1.2 --aspect-ratio 1000

Figure 3.7 : Command-line execution of multiscale metric generation using REFINE
with 24 MPI processes.

Here, the −− norm − power parameter controls the sensitivity of the metric to

solution gradients, −− gradation specifies the smoothness of mesh transitions, and

−−aspect−ratio defines the maximum allowable stretching of mesh elements. These

parameters are being used to control the generation of a metric tensor, which ensures

efficient and accurate refinement of critical flow regions, such as shocks or vortices.
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With the metric file generated, the adaptation process begins using the command:

mpirun -np 24 refmpi adap mesh_file.meshb -m
output-metric.solb -x mesh_adap.meshb -s 1

Figure 3.8 : Execution of REFINE adaptation step using 24 MPI processes with input
metric file and output adapted mesh.

In this step, NASA-REFINE modifies the mesh according to the specified metric,

creating an adapted mesh (mesh_adap.meshb). However, if the original mesh lacks a

boundary layer, this step does not create one. Boundary layers are crucial for resolving

sharp gradients near walls, such as velocity and temperature changes.

To incorporate a boundary layer, the following command is executed:

mpirun -np 24 refmpi adap mesh_adap.meshb -x
mesh_adap_bl.meshb -s 15.0 --viscous-tags 1
--spalding 0.00001 400000

Figure 3.9 : Execution of REFINE boundary layer adaptation.

This step creates a boundary layer using viscous tags and the Spalding boundary-layer

thickness model. The −− spalding parameter determines the thickness of the layer,

and the −−viscous− tags option ensures the mesh elements align properly within the

layer. The adapted mesh with the boundary layer is output as mesh_adap_bl.meshb.

Finally, the adapted mesh must be interpolated to the solution file. This is achieved

using the following command:

mpirun -np 24 refmpi interpolate
mesh_adap_bl.meshb initial_solution.solb mesh_final.meshb
receptor-field.solb

Figure 3.10 : REFINE command for interpolating the solution from adapted mesh to
final mesh.

Interpolation transfers the solution from the original mesh to the refined mesh, ensuring

continuity of simulation data. The resulting mesh_ f inal.meshb serves as the starting

point for the next adaptation step or the subsequent CFD simulation. These steps
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complete the mesh adaptation process. Once the adapted mesh and solution are ready,

the HEMLAB solver can be executed to simulate the flow on the refined mesh. This

iterative process of adaptation and simulation ensures that computational resources are

relatively dense in regions of high interest, accurate and efficient CFD solutions.
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4. NUMERICAL RESULTS FOR HLPW-3

As described in Section 1.5.3, there are three main test cases proposed for this

workshop. Due to limited computational resources, only two of them were studied

during this thesis. Validation of HEMLAB algorithm was performed using the

two-dimensional L1T2 (NHLP) geometry which is given in Figure 4.1 and the

three-dimensional JAXA Standard Model high-lift configuration cases [87]. Details

for each test case are provided in Tables 4.1 and 4.2. In this study, the SU2 solver

integrated with the pyAMG library is used as the RANS solver. The final adapted

mesh results were also validated using the HEMLAB algorithm.

Figure 4.1 : 2D Multi Element Airfoil L1T2 (NHLP).

Table 4.1 : Flow conditions for 2D Test Case (L1T2/NHLP)

Mach Number 0.197

Re Number 3.52×106

Angle of Attacks 4.01◦,20.18◦

Mean Aerodynamic Chord 1.0m

Moment Location x = 0.25 m, y = 0 m, z = 0 m

Reference Area 1.0m2

Prandtl Number 0.78

Turbulent Prandtl Number 1.0
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Figure 4.2 : High lift JAXA Standard Model (JSM) (Nacelle/Pylon-Off model, Case
2b).

Table 4.2 : Flow conditions for 3D Test Case (JAXA-SM)

Mach Number 0.172

Re Number 1.93×106

Angle of Attacks 4.36◦,10.47◦,18.58◦

Mean Aerodynamic Chord 0.5292m

Moment Location x = 2.3757 m, y = 0 m, z = 0 m

Reference Static Pressure 747.70mmHg

Reference Static Temperature 551.79◦R

Reference Area 2.2466m2

Prandtl Number 0.78

Turbulent Prandtl Number 1.0

The L1T2 is a three-element airfoil consisting of a main element, a slat (located

forward of the main element), and a flap (located aft of the main element). Calculations

for the 2D cases were performed at a free-stream Mach number of M∞ = 0.197 and a

Reynolds number of Re = 3.52× 106. To validate the numerical setup, simulations

were conducted using a well-designed unstructured mesh with a boundary layer. Both

the SU2 and HEMLAB solutions agreed well with the experimental data and with each

other.

After validating the numerical setup, the adaptation process was studied. It should be

noted that the initial mesh used in the simulations did not include a boundary layer.

After four levels of refinement using only the distance function, a boundary layer

mesh was generated with the pyAMG algorithm. Then, eight additional refinement
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levels were performed using both the distance function and Mach number to achieve

an adapted mesh. The development of the wake region is illustrated in Figure 4.3.

Results were obtained for two angles of attack, α = 4.01◦ and α = 20.18◦. Details of

the each refinement level are given in the Table 4.3.

The high mesh resolution on the solid walls of the initial mesh was employed

to maintain geometric accuracy. Computed pressure coefficient contours for both

solvers are provided in Figures 4.4 and 4.5. A comparison of the computed pressure

coefficients on the L1T2 is also presented in Figure 4.6, and the results are in good

agreement with each other.

Although there is a slight deviation between the two solvers around the leading-edge

suction peak at α = 4.01◦, the use of rotational correction [64] in the Spalart-Allmaras

model (SA-R) eliminates this difference, and the modified model significantly reduces

the turbulence viscosity within high-lift cavities. The lift and drag coefficients obtained

with SU2 and HEMLAB are tabulated in Table 4.4. It can be seen that the numerical

results are compatible for both angles of attack.

Table 4.3 : Refinement data for α = 4.01◦

Refinement Level Number of Number of Number of
(Sensor Function) Vertices Elements Surface Elements

ite0 (Initial Mesh) 59,657 113,600 5,662

ite1 (Distance) 107,742 208,409 7,045
ite2 (Distance) 108,909 210,537 7,249
ite3 (Distance) 100,267 193,581 6,922
ite4 (Distance) 87,955 169,531 6,346

ite5 (Distance + Mach) 87,621 170,505 4,533
ite6 (Distance + Mach) 93,404 182,264 4,274
ite7 (Distance + Mach) 97,564 190,575 4,225
ite8 (Distance + Mach) 98,467 192,343 4,235

ite9 (Distance + Mach) 293,080 577,376 8,131
ite10 (Distance + Mach) 295,892 582,730 8,384
ite11 (Distance + Mach) 296,018 582,883 8,481
ite12 (Distance + Mach) 296,247 583,303 8,510
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[a]

[b]

[c]

[d]
Figure 4.3 : Progress of mesh adaptation at M∞ = 0.197, Re = 3.52×106 and

α = 4.01◦ around L1T2 (NHLP) high lift system: [a] Initial mesh with no boundary
layer, [b] 4th iteration with distance only, [c] 8th iteration with distance and Mach, [d]

12th iteration with distance and Mach.
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[a] [b]

Figure 4.4 : Pressure coefficient contours of adapted mesh with SU2 [a] and
HEMLAB [b] at Mach=0.197, Re=3.52×106, and α = 4.01◦.

[a] [b]

Figure 4.5 : Pressure coefficient contours of adapted mesh with SU2 [a] and
HEMLAB [b] at Mach=0.197, Re=3.52×106 and α = 20.18◦.

[a] [b]
Figure 4.6 : Comparison of computed pressure coefficients with wind tunnel data for

α = 4.01◦ [a] and α = 20.18◦ [b].
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Table 4.4 : CL and CD results for given AoAs

CL CD

AoA SU2 HEMLAB SU2 HEMLAB

4.01◦ 2.0944 2.1053 0.0325 0.0326
20.18◦ 4.0300 4.0448 0.0851 0.0782

On the other hand, the same calculations were applied to the JAXA Standard Model,

which is the geometry proposed for the 3rd AIAA CFD High Lift Prediction Workshop

[88]. Figure 4.2 shows the high-lift JAXA Standard Model in the nacelle/pylon-off

configuration (Case 2b). The top view of the model, along with approximate wing

sections, is presented in Figure 4.7 to facilitate comparison with the experimental data

of Yokokawa et al. [89].

Figure 4.7 : High lift JAXA Standard Model (JSM) approximate wing sections.

The RANS equations can be efficiently solved using Newton’s method combined

with an accurate Jacobian evaluation, reducing the residual to machine precision

[58]. However, this approach has a notable drawback: multiple solutions to the

RANS equations may exist—even when the residual is reduced to machine zero

[58,90,91]—making it difficult to identify non-physical solutions. These non-physical

steady solutions are generally unstable to infinitesimal temporal disturbances and may

not occur in URANS simulations. Furthermore, this method is relatively expensive; for

example, the convergence of moment data is slow and requires a large number of time

steps [58].
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In the literature, several authors [91–93] use an alpha continuation approach, wherein

the solution is restarted from a previously converged solution at a slightly lower angle

of attack rather than starting impulsively with uniform free-stream conditions. Others

[91] use time-accurate transient simulations. Both approaches delay premature flow

separation and result in flow predictions and lift computations that better agree with

experimental data.

In the present study, the SU2 calculations are carried out using the Euler implicit

method in time with a constant CFL of 2 and ∆t = 1; larger CFL numbers lead to

divergence. Additionally, the gradient terms required for the inviscid/viscous fluxes

and turbulence source terms are evaluated with the Green-Gauss approach, since

the weighted least squares approximation for the turbulence source terms is highly

inaccurate and leads to divergence on anisotropic tetrahedral meshes.

Similarly, the HEMLAB calculations are performed using the Euler implicit method

with ∆t = 1; however, the CFL number is exponentially ramped to 100 to accelerate

the numerical calculations. The larger CFL number with initial free-stream values

also results in premature separation, so the solutions are restarted from a previously

converged solution at a lower angle of attack. The sensor function for anisotropic mesh

refinement is similar to that used for two-dimensional cases and is arranged as follows:

Sensor = β Mach+
4

∑
i=1

0.25e−100×10i d (4.1)

where d is the minimum wall distance function. The value of β is zero for the initial

four adaptation levels and is set to 1 thereafter. Using several exponential functions

allows us to account for different initial mesh sizes on solid walls. The minimum edge

length is set to 1×10−6 with an exponential size variation factor of 1.2.

The initial calculation was carried out at M∞ = 0.172, Re = 1.93 × 106, and α =

4.36◦. In the present simulations, the free-stream turbulent viscosity for the classical

Spalart-Allmaras turbulence model was set to 0.05, as in the two-dimensional cases.

The progress of the mesh adaptation is shown in Figure 4.8 on the y = −0.66 plane.

Although the geometry is relatively complex, the boundary layers and wakes are

captured well. Mesh resolutions for each refinement level are provided in Table 4.5.

The final adapted mesh consists of 29,174,966 vertices and 169,747,550 tetrahedral

elements (175,049,796 DOF). In these simulations, the full JSM model was used
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instead of the half-span JSM model, and there are 2,805,424 triangular elements on

the solid walls.

The computed pressure coefficients are presented in Figure 4.9. The results show

relatively good agreement on the main wing section; however, there is some

discrepancy in the outboard H-H section for the HEMLAB solver. This discrepancy is

attributed to the separation that occurs behind the second-most outboard slat bracket. It

should also be noted that the pressure coefficients along the stagnation lines are lower

than one compared to the two-dimensional cases, and the leading part of the main wing

experiences a less favorable pressure gradient.

In Figure 4.9, the experimental wing sections do not exactly correspond to constant

y-planes. Consequently, there is some difference on the slats. Although it is possible to

interpolate the pressure values at the experimental points using NASA’s open source

adt_utilities.f90 module, the number of experimental points is limited. We observed

better agreement with this approximation since some sections are very close to the

brackets (see section D-D, for example).

Subsequently, the angle of attack was increased to α = 10.47◦ and α = 18.58◦, and the

computed pressure coefficients for these cases are provided in Figures 4.10 and 4.11,

respectively. The agreement is relatively good for α = 10.47◦, but for α = 18.58◦ very

large separation is observed in the outboard portion of the main wing.

There is no certain explanation about the source of this discrepancy. One possibility is

poor mesh resolution within the boundary layers; another possibility is inappropriate

wake behavior in the turbulence model.

The computed skin friction lines for both the HEMLAB and SU2 solutions are shown

in Figures 4.12 and 4.13 which are also compared with experimental data. The skin

friction lines indicate small separation at the flap tips, where the flow tends to move

toward the outboard wing tips at low angles of attack. At higher angles of attack,

significant separation is observed in the outboard portion of the main wing.

The complete skin friction lines around the JSM model are presented in Figure 4.14,

where separation lines can be observed on the JAXA main body at high angles of

attack. The constant entropy isosurface is shown in Figure 4.15 for α = 4.36◦, along
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with a mesh slice at the x = 5 plane, to demonstrate the wake resolution. The roll-up

behavior of the wake is clearly visible.

At high angles of attack, the wing-body junction vortex merges with the vortex from

the inboard slat tip to form a relatively stronger vortex. At the outboard wing tips, the

vortex from the outboard slat tip rolls around the main wing tip vortex.

The present calculations indicate very good accuracy near stall angles for the inboard

sections, including the separation bubble at the wing-body junction; however, further

improvement is required for the outboard sections.

To assess the required normal mesh resolution, the y+ values for α = 4.36◦ are

presented in Figure 4.16. The maximum y+ value is computed to be less than 5, with

the highest values occurring near the main wing tips.

It is also observed that using the SA model without the transition model (SA-noft2)

does not result in a fully turbulent simulation at the current free-stream turbulence level

[94]. Even when the free-stream turbulent viscosity is increased to 3, no significant

difference in the separation lines on the flap surfaces is observed. Nevertheless, the

computed lift, drag, and moment coefficients — calculated with respect to the moment

location as defined in 4.2 — are 1.6860, 0.1657, and -0.5260, respectively. The lift

coefficient shows better agreement with the experimental value.

Table 4.5 : Refinement data for AoA=4.36◦

Refinement Level Number of Number of Number of
(Sensor Function) Vertices Elements Surface Elements

ite0 (Initial Mesh) 16,591,604 98,181,146 896,704

ite1 (Distance) 13,691,577 79,581,271 1,435,956
ite2 (Distance) 15,157,646 88,126,699 1,548,066
ite3 (Distance) 16,345,926 95,104,769 1,621,898
ite4 (Distance) 12,600,773 73,338,581 1,284,372

ite5 (Distance + Mach) 13,657,242 79,376,223 1,436,600
ite6 (Distance + Mach) 15,133,152 87,975,397 1,551,246
ite7 (Distance + Mach) 16,309,510 94,876,430 1,626,188
ite8 (Distance + Mach) 17,164,661 99,897,529 1,679,616

ite9 (Distance + Mach) 22,844,559 132,861,764 2,196,918
ite10 (Distance + Mach) 25,833,893 150,171,226 2,525,996
ite11 (Distance + Mach) 27,820,608 161,770,118 2,705,578
ite12 (Distance + Mach) 29,174,966 169,747,550 2,805,424
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[a]

[b]

[c]

[d]
Figure 4.8 : Progress of mesh adaptation at y =−0.66 plane at M∞ = 0.172,

Re = 1.93×106 and α = 4.36◦ around the JAXA high lift system: Initial mesh with
boundary layer [a], 4th iteration with distance only [b], 8th iteration with distance and

Mach [c], and 12th iteration with distance and Mach [d].
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[a] [b]

[c] [d]

[e] [f]

[g]
Figure 4.9 : Comparison of pressure coefficients at sections AA [a], BB [b], CC [c],
DD [d], EE [e], GG [f] and HH [g] at M∞ = 0.172, Re = 1.93×106 and α = 4.36◦

around the JAXA high lift system.
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[a] [b]

[c] [d]

[e] [f]

[g]
Figure 4.10 : Comparison of pressure coefficients at sections AA [a], BB [b], CC [c],
DD [d], EE [e], GG [f] and HH [g] at M∞ = 0.172, Re = 1.93×106 and α = 10.47◦

around the JAXA high lift system.
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[a] [b]

[c] [d]

[e] [f]

[g]
Figure 4.11 : Comparison of pressure coefficients at sections AA [a], BB [b], CC [c],
DD [d], EE [e], GG [f] and HH [g] at M∞ = 0.172, Re = 1.93×106 and α = 18.58◦

around the JAXA high lift system.
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[a]

[b]

[c]
Figure 4.12 : Comparison of computed HEMLAB streamtraces with experiments at
M∞ = 0.172 and Re = 1.93×106 for α = 4.36◦ [a], α = 10.47◦ [b] and α = 18.58◦

[c]. The contours correspond to C f x values (0 <C f x < 0.020281).

[a]

[b]

[c]

Figure 4.13 : Comparison of computed SU2 streamtraces with experiments at
M∞ = 0.172 and Re = 1.93×106 for α = 4.36◦ [a], α = 10.47◦ [b], and α = 18.58◦

[c]. The contours correspond to C f x values (0 <C f x < 0.020281).
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[a]

[b]

[c]
Figure 4.14 : Effect of AoA on computed streamtraces at M∞ = 0.172,

Re = 1.93×106 around the JAXA high lift system (HEMLAB) for α = 4.36◦ [a],
α = 10.47◦ [b] and α = 18.58◦ [c]. The contours correspond to Cp values

(−4.3 <Cp < 2.9).
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Figure 4.15 : Computed entropy isosurface (∆s = 0.001) with a slice at x = 5 plane at
M∞ = 0.172, Re = 1.93×106 and α = 4.36◦ around the JAXA high lift system

(HEMLAB).

Table 4.6 : CL, CD and CM results for given AoAs

CL CD CM

AoA Exp SU2 HEMLAB Exp SU2 HEMLAB Exp SU2 HEMLAB

4.36◦ 1.6818 1.6899 1.6860 0.1563 0.1691 0.1657 -0.5496 -0.5343 -0.5260
10.47◦ 2.23268 2.19666 2.2301 0.22592 0.25607 0.2417 -0.46323 -0.42042 -0.4464
18.58◦ 2.74305 2.62894 2.5088 0.38710 0.40823 0.4029 -0.23318 -0.17097 -0.1321

Figure 4.16 : Computed y+ values for HEMLAB at M∞ = 0.172, Re = 1.93×106

and α = 4.36◦ around the JAXA high lift system.
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5. NUMERICAL RESULTS FOR HLPW-4

In this workshop, a turbulence verification study was conducted for the 2D-CRM

model as shown in 5.1. Figure 5.2 shows the 3D-CRM model was used for the other test

cases as detailed Section in 1.5.4. The parameters used in these test cases are provided

in Tables 5.1 and 5.2. In performing the simulations, HEMLAB was integrated with

pyAMG which is an anisotropic mesh adaptation library so SU2 was not used as the

flow solver as in the HLPW-3 studies. Another change from the HLPW-3 studies

is in the turbulence modeling. The updated code uses the SA-negative model with

second-order discretization. All calculations were performed by solving the turbulence

model equations coupled with the Navier-Stokes equations.

Figure 5.1 : 2D-CRM Multi Element Airfoil.

Table 5.1 : Flow conditions for 2D Test Case (2D-CRM)

Mach Number 0.2

Re Number 5.0×106

Angle of Attacks 16◦

Mean Aerodynamic Chord 1.0m

Moment Location x = 0.25 m, y = 0 m, z = 0 m

Ratio of Specific Heats γ 1.4

Reference Static Temperature 272.1◦K

Prandtl Number 0.72

Turbulent Prandtl Number 0.9

Reference Static Pressure 14.7 psi

ν̂ f reestream/ν∞ 3.0
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Figure 5.2 : High lift NASA Common Research Model (CRM).

Table 5.2 : Flow conditions for 3D Test Case (3DCRM)

Mach Number 0.2

Re Number 5.49×106

Angle of Attacks 7.05◦

Mean Aerodynamic Chord 275.8inch

Reference Static Pressure 24.67 psi

Reference Static Temperature 521.0◦R

Semi-Span Reference Area 29736.0 in2

Moment Reference Center x = 1325.9 inches, y = 0.0 inches, z = 177.95 inches

The initial mesh has no boundary layer, and the flow conditions are M∞ = 0.20, Re =

5× 106, Pr = 0.72, α = 16◦, and T∞ = 272.1K was the 2D-CRM calculations. The

boundary layer is generated during the mesh adaptation process. The computational

domain is set to 1000 chord lengths of the airfoil. Time-dependent simulations were

run with a maximum CFL number of 1000.

Mach Sensor = βMach+
4

∑
i=1

0.25 e−100x10id (5.1)

For the mesh adaptation, a Mach sensor was used. In the first four iterations, only the

distance function was employed (β = 0) to obtain the boundary layer; subsequently,

the remaining steps were carried out using the full Mach sensor (β = 1). In the end,

the results captured the wake region and the pressure distribution correctly, as shown

in Figure 5.3.
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[a]

[b]

[c]

[d]

[e]Figure 5.3 : Mesh adaptation at M∞ = 0.2, Re = 5×106, Pr = 0.72, and α = 16◦

around 2D-CRM: Initial mesh with no boundary layer [a], 4th [b], 8th [c], 12th [d],
and 16th [e] iterations with distance and Mach.
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The lift and drag coefficients obtained are compared with the results presented

in the AIAA 4th High Lift Prediction Workshop. The label A-026 represents the

results obtained with the new version of the HEMLAB algorithm, while the other

labels correspond to A-002 (INRIA), A-004 (NASA), A-013 (MIT), A-025 (Boeing),

and A-031 (UT). The β value, which serves as a blending parameter between

upwind and central interpolations (β = 0 representing a central approximation and

β = 1 corresponding to upwind least-squares interpolation), is shown in Figure 5.4.

This parameter governs the degree of upwinding and has a significant impact on

convergence. Details of the grid elements for each mesh adaptation level, along with

the corresponding lift, drag, and moment coefficients — calculated with respect to the

moment location given in Table 5.1 — are provided in Table 5.3.

Table 5.3 : Refinement data for L4, α = 16◦ and β = 1/48.

Refinement Level Number of Number of Number of CL CD CM
(Sensor Function) Vertices Elements Surface Elements

ite0 (Initial Mesh) 325,794 136,785,487 9,156 - - -

ite1 (Distance) 80,517 153,908 7,051 - - -
ite2 (Distance) 75,179 144,383 5,900 - - -
ite3 (Distance) 69,850 134,398 5,227 - - -
ite4 (Distance) 66,769 127,951 5,512 - - -

ite5 (Mach) 59,075 114,701 3,374 3.787990 0.061144 -0.380541
ite6 (Mach) 62,788 122,495 3,001 3.791839 0.061114 -0.381260
ite7 (Mach) 65,084 127,163 2,918 3.792202 0.061097 -0.381325
ite8 (Mach) 66,556 130,135 2,879 3.791986 0.061087 -0.381277

ite9 (Mach) 535,817 1,063,137 8,272 3.801085 0.060595 -0.382779
ite10 (Mach) 545,380 1,081,172 9,347 3.801261 0.060581 -0.382805
ite11 (Mach) 546,086 1,082,540 9,394 3.801343 0.060581 -0.382823
ite12 (Mach) 545,482 1,081,333 9,398 3.801392 0.060581 -0.382831

ite13 (Mach) 4,931,609 9,834,558 28,020 3.802472 0.060527 -0.383015
ite14 (Mach) 4,902,898 9,776,620 28,523 3.802529 0.060524 -0.383026
ite15 (Mach) 4,880,518 9,731,785 28,587 3.802536 0.060524 -0.383027
ite16 (Mach) 4,865,985 9,702,708 28,601 3.802536 0.060524 -0.383027

ite17 (Mach) 18,734,411 37,404,255 62,930 3.802598 0.060521 -0.383037

Ref [95] 3.802952 0.060529 -

[a] [b]
Figure 5.4 : Convergence of lift coefficient [a] and drag coefficient [b] at M∞ = 0.2,
Re = 5×106, Pr = 0.72, and α = 16◦ around a two-dimensional high-lift system
compared with several other workshop benchmark data, N corresponds to the total

number of vertices.
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Table 5.4 : Effect of numerical methods on aerodynamic loads for ite8 mesh (66,556
nodes).

Inviscid fluxes β (Kv) Harten (ε) CL CD CM

Roe second-order 1 Kv = 0.01 ε = 0.001 3.740486 0.065880 -0.373570
Roe second-order 1 Kv = 0.1 ε = 0.001 3.769412 0.063391 -0.377939
Roe second-order 1 Kv = 1 ε = 0.001 3.771079 0.063262 -0.378203

Roe second-order 1 no limiter ε = 0.1 3.749120 0.064479 -0.374499
Roe second-order 1 no limiter ε = 0.01 3.769094 0.063367 -0.377864
Roe second-order 1 no limiter ε = 0.001 3.771098 0.063260 -0.378206
Roe second-order 1 no limiter ε = 0.0 3.771222 0.063254 -0.378227

Roe second-order 2/3 no limiter ε = 0.001 3.777978 0.062528 -0.379212
Roe second-order 1/2 no limiter ε = 0.001 3.781486 0.062159 -0.379728
Roe second-order 1/3 no limiter ε = 0.001 3.785052 0.061789 -0.380254
Roe second-order 1/6 no limiter ε = 0.001 3.788678 0.061415 -0.380790
Roe second-order 1/12 no limiter ε = 0.001 3.790539 0.061226 -0.381066
Roe second-order 1/48 no limiter ε = 0.001 3.791986 0.061087 -0.381277

HLLC second-order 1 no limiter - 3.771212 0.063255 -0.378225
HLLC second-order 1/48 no limiter - 3.791989 0.061087 -0.381277
AUSM+-up second-order 1 no limiter - 3.773094 0.063263 -0.378618
AUSM+-up second-order 1/48 no limiter - 3.791942 0.061260 -0.381356

The other sources of numerical dissipation such as the use of the Harten correction

coefficient ε , the limiter coefficient used in the Venkatakrishnan limiter KV are also

investigated on a relatively coarse mesh and the results are provided in Table 5.4.

The results clearly indicate that the amount of upwinding strongly affects the resulting

aerodynamic forces. The large value of the Harten correction coefficient also adversely

affects the aerodynamic loads. The third-order upwind least squares interpolations

for the convective fluxes is also used and it shows significant improvement on the

drag coefficient. During the simulations, it has been noted that our refinement is

relatively aggressive compared to the other benchmark results and the number of levels

is increased in three-dimensions. The use of several more iterative refinement levels

can help to achieve a better mesh convergence since mesh adaptation convergence is

relatively slow. In addition, it can be improved the convergence of Newton iterations

since the initial solution will be closer to final converged solution.

The computed surface pressure coefficient and x-component of skin friction coefficient

are provided in Figure 5.5 and the computed results are compared with the results

provided by MIT.

The computed Mach contours along with streamlines are shown in Figure 5.6

multi-element airfoil and the flow is attached over the main wing and the flap. The

entropy contours with streamlines are also provided to illustrate viscous dissipation
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effects. The entropy function is also used as a sensor function during the adaptation, but

it leads to excessive coarsening in inviscid regions, hence the computed aerodynamic

loads are not better than those of Mach number.

For the present two-dimensional calculations, the conservation equation residuals

are reduced to 1× 10−8 or 1× 10−9. The residuals for the governing equations are

computed and they are given in Figure 5.7, also the same figure provides information

about the convergence of the lift, drag and moment coefficients for each mesh

adaptation level.

[a] [b]
Figure 5.5 : Computed pressure [a] and x-component of skin friction [b] coefficients.

[a]

[b]
Figure 5.6 : Computed Mach [a] and entropy [b] contours at M∞ = 0.2, Re = 5×106,

Pr = 0.72, and α = 16◦ around a two-dimensional high-lift system.
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[a] [b]
Figure 5.7 : Convergence of forces and residuals for each adaptation level at

M∞ = 0.2, Re = 5×106, Pr = 0.72, and α = 16◦ with L4 norm, β = 1/48, and
ε = 0.001.

To evaluate the performance of the monolithic nonlinear Newton method under differ-

ent configurations, a series of calculations were conducted using various combinations.

These include: a first-order preconditioner with first-order Jacobian-vector multipli-

cation, a first-order preconditioner with second-order Jacobian-vector multiplication,

and a second-order preconditioner with second-order Jacobian-vector multiplication,

as illustrated in Figure 5.8. The assessments were carried out using both the finite

difference method and the direct approach on the ite8 mesh described in Table 5.3.

The preconditioner is implemented using the restricted additive Schwarz method, with

ILU(5) applied within each sub-block, and a maximum Krylov subspace dimension

set to 80. When constructing a first-order accurate Jacobian matrix, the calculations

exhibit poor convergence, as illustrated in Figure 5.8-[a-b]. These cases often require

thousands of iterations, and it emphasizes the importance of the accurate Jacobian

evaluation. At higher angles of attack, this approach may even fail to converge to

machine precision.

In contrast, using a second-order accurate Jacobian matrix with a first-order

preconditioner achieves the best residual convergence, as shown in Figure 5.8-[c-d].

The results indicate minimal differences in convergence between the finite difference

and direct approaches, with the direct method performing slightly better when errors

drop below the truncation threshold of the finite difference method. However, solver

time is significantly influenced by specified tolerances. While the finite difference

method requires higher computational cost for matrix-vector multiplication, the direct
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approach is more expensive due to constructing the second-order Jacobian matrix.

Despite these costs, the direct method is approximately 24% faster, though it demands

significantly more memory.

On the other hand, coupling a second-order preconditioner matrix with the ILU(5)

preconditioner significantly slows down the residual convergence, as shown in Figure

5.8-[e-f]. This issue caused from limitations in achieving higher CFL numbers.

While the second-order preconditioner matrix offers a more accurate approximation

of the Jacobian, convergence can theoretically occur within two iterations if an

ideal preconditioner is used. This approach reduces the cost of Jacobian-vector

multiplications during Krylov subspace iterations in the finite difference method, but

such efficiency is not possible with a first-order preconditioner.

Surprisingly, the Krylov subspace iterations often stall when using the ILU(k)

preconditioner in two-dimensional cases, it causing a significant reduction in the

maximum achievable CFL number. To better understand the iterative convergence

issues with the second-order Jacobian as a preconditioner, leading minimum and

maximum eigenvalues were computed using the SLEPc library [80] without matrix

scaling. The eigenvalue spectrum for both approaches is summarized in Table 5.5

and Table 5.6. The second-order Jacobian exhibits a large complex component in its

maximum eigenvalue, which likely contributes to the poor convergence [96]. These

results were validated through the Arnoldi process explained in PETSc [47], which

further confirmed that preconditioned eigenvalues from the second-order Jacobian

demonstrate greater scatter in the complex plane. Increasing the ILU(k) preconditioner

level improves this convergence issue. This observation aligns with the findings of

Nejat and Ollivier-Gooch [97], who reported that higher-order preconditioners require

greater ILU(k) fill levels for optimal convergence in two-dimensional Euler equations.

They also noted that first-order Jacobians tend to be better conditioned than their

higher-order calculations.

Therefore, employing a second-order accurate Jacobian with a first-order precondi-

tioner matrix seems the most effective approach for residual convergence. Although

the direct method is slightly faster—by approximately 24%—the computational time

difference between direct and finite difference methods is relatively minor.
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The influence of the blending parameter β on convergence is shown in Figure

5.9, where the upwind method consistently outperforms others. Adjustments

to parameters such as β = 1, larger Harten coefficients, and smaller CFLmax

values [78] in the preconditioner matrix construction enhance ILU(k) stability and

convergence. However, consistent preconditioner construction remains critical during

the simulations.

These calculations employ the default backtracking line search algorithm, yet a

full-step Newton method, which avoids line search, may have better convergence for

similar cases. Notably, the turbulence residual dominates the total residual on finely

adapted meshes, even with a large scaling factor of 1×106 for the turbulence working

variable. This negatively impacts overall convergence and becomes more clear at

higher angles of attack. Future studies may investigate removing turbulence residuals

from the line search algorithm, as suggested in [79].

Table 5.5 : Leading minimum and maximum eigenvalues at M∞ = 0.2, Re = 5×106,
Pr = 0.72 and α = 16◦ with L4 norm, β = 1/48 and ε = 0.001 using CFL = 10,000

for ite8 mesh for the First-order Jacobian matrix.

Index Smallest Eigenvalue Largest Eigenvalue
1 4.394522×10−8 2.591630×102

2 4.790529×10−8 2.554619×102

3 4.831292×10−8 2.507811×102

4 5.483217×10−8 2.501795×102

5 6.003424×10−8 2.491021×102

Table 5.6 : Leading minimum and maximum eigenvalues at M∞ = 0.2, Re = 5×106,
Pr = 0.72 and α = 16◦ with L4 norm, β = 1/48 and ε = 0.001 using CFL = 10,000

for ite8 mesh for the Second-order Jacobian matrix.

Index Smallest Eigenvalue Largest Eigenvalue
1 3.311019×10−8 1.796677+1.192024×102i
2 3.318570×10−8 1.796677−1.192024×102i
3 3.537033×10−8 2.047810+1.183090×102i
4 3.697612×10−8 2.047810−1.183090×102i
5 3.990653×10−8 1.852557+1.164716×102i
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[a] [b]

[c] [d]

[e] [f]
Figure 5.8 : Convergence of residuals for ite8 mesh using the first-order

preconditioner and the first-order Jacobian vector multiplication [a-b], the first-order
preconditioner and the second-order Jacobian vector multiplication [c-d], and the

second-order preconditioner and the second-order Jacobian vector multiplication [e-f]
with finite difference (left) and direct approach (right) at M∞ = 0.2, Re = 5×106,

Pr = 0.72, and α = 16◦ with L4 norm, β = 1/48, and ε = 0.001.
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[a] [b]
Figure 5.9 : Convergence of residuals for ite8 mesh using the first-order

preconditioner and the second-order Jacobian vector multiplication with finite
difference using blending parameter β = 1/48 [a] and β = 1 (upwind) [b] at

M∞ = 0.2, Re = 5×106, Pr = 0.72, and α = 16◦ with L4 norm, and ε = 0.001.

The second test case, designated as Case 1b, involves conducting mesh convergence

studies on the three-dimensional NASA High Lift Common Research Model

(CRM-HL) in a landing configuration as detailed in the Section 1.5.4.

The physical parameters for this simulation are M∞ = 0.2, Re = 5.49×106, Pr = 0.72,

and α = 7.05◦. Similar to the two-dimensional cases, the mesh adaptation process

gradually increases in complexity, with refinement levels increasing by a factor of

two across four successive iterations. This approach ensures stability for the Newton

method in three-dimensional calculations. The minimum edge length in the adapted

mesh is set to 1×10−6, and the pyAMG stretching factor is maintained at 1.2 to ensure

enough resolution in critical regions.

Boundary layer formation, which is relatively slow using the classical Mach sensor,

is accelerated in the first ten adaptation levels by employing an exponential

distance-based sensor function. Subsequent calculations continued with the Mach

sensor function to refine the mesh further. The computational domain at the farfield,

scaled by the mean chord length, spans [−82.794198,110.630203]× [0,82.794198]×

[82.794198,82.794198], maintaining a similar body-length-to-far-field ratio as used in

the JAXA case for the third AIAA CFD High-Lift Prediction Workshop [87]. A smaller

computational domain is used compared to the one proposed on the workshop to reduce
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the large number of vertices in the far-field wake, which can reduce the quality of mesh

resolution near the body.

The compressible Navier-Stokes equations are solved using the Roe scheme [39], with

an upwinding parameter β initially set to 1/3 to minimize cross-diffusion effects. The

turbulence model employs second-order upwind interpolation with β = 1. Simulations

start from free-stream conditions (cold start) with a large physical time step (∆t =

1× 1020) and an initial CFL number of 10, ramped up using a multiplier of 1.25 to a

maximum CFL of 10,000. To address issues of negative density values arising from

excessively small volumes on fine meshes, the Harten correction coefficient ε = 0.001

is used, along with a modification proposed by Harten and Hyman [98].

The preconditioner is the PETSc restricted additive Schwarz method with ILU(0)

applied to each sub-block. The Krylov subspace solver utilizes a restarted flexible

generalized conjugate residual method, with a maximum of 80 stored vectors. This

choice is informed by studies such as those by Yildirim et al. [99], which emphasize

the importance of appropriate solver tolerances which is set as rtol = 10−8 and

atol = 10−20. These values are stricter than typically seen in the literature [78], but

they helped to address convergence challenges for this complex geometry.

Several adapted meshes using the L4 norm are presented at the y/c̄ = 1.417693 plane

in Figure 5.10, with additional details provided in Table 5.8. The progress of surface

mesh refinement is also illustrated in Figure 5.11, highlighting the extensive refinement

within boundary layers, sharp corners, and wakes. Notably, mesh refinement is clear

in the wake region of flap brackets on the upper surface of the main wing, as shown in

Figure 5.11. Predicting these regions in advance using only theoretical knowledge is

particularly difficult. In earlier work [100], these refinement regions in the flap bracket

wakes were entirely absent due to the use of an exponential distance sensor combined

with the Mach number, in contrast to the current Mach-only sensor. These small yet

critical refinement regions are essential for accurately capturing aerodynamic loads,

demonstrating the importance of sensor selection in mesh adaptation processes.

The final adapted mesh consists of 92,993,470 vertices and 543,825,694 tetrahedral

elements.The calculation for the finest mesh is repeated using a lower β value of 1/48,

and the corresponding lift, drag, and moment coefficients — calculated with respect
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to the moment reference center given in Table 5.2 — are detailed in Table 5.7. The

convergence behavior of lift and drag coefficients with successive mesh refinement is

depicted in Figure 5.12, with numerical values provided in Table 5.8.

Table 5.7 : Refinement data at M∞ = 0.2, Re = 5.49×106, Pr = 0.72 and α = 7.05◦

with L4 norm, β = 1/48 and ε = 0.001.

Refinement Level Number of Number of Number of Cl Cd Cm
(Sensor Function) Vertices Elements Surface Elements
ite27 (Mach) 92,993,470 543,825,694 10,203,212 1.769122 0.186155 -0.353909
Exp. 1.778620 0.186706 -0.370599

Table 5.8 : Refinement data for L2, α = 7.05◦ and β = 1/3.

Refinement Level Number of Number of Number of Cl Cd Cm
(Sensor Function) Vertices Elements Surface Elements
ite0 (Initial Mesh) 2,618,827 14,509,928 843,643
ite1 (Initial Mesh) 5,660,885 13,196,847 1,003,329
ite2 (Distance) 6,021,693 14,987,885 830,244
ite3 (Distance) 6,643,490 18,463,634 811,506
ite4 (Distance) 7,496,239 22,941,616 880,928
ite5 (Distance) 8,572,758 28,193,846 998,814
ite6 (Distance) 9,713,500 33,388,392 1,132,785
ite7 (Distance) 10,712,948 37,694,004 1,252,267
ite8 (Distance) 11,490,737 40,712,295 1,349,091
ite9 (Distance) 12,034,853 42,756,610 1,424,385
ite10 (Mach) 12,449,392 72,478,755 1,482,386 1.704234 0.180114 -0.311449
ite11 (Mach) 12,721,876 73,923,462 1,640,066 1.708239 0.178125 -0.315657
ite12 (Mach) 13,286,148 77,446,487 1,552,871 1.733436 0.181784 -0.324712
ite13 (Mach) 13,876,245 80,978,130 1,555,917 1.744635 0.183299 -0.330147
ite14 (Mach) 14,336,919 83,725,144 1,564,116 1.737834 0.182961 -0.328728
ite15 (Mach) 19,901,979 116,649,283 1,955,555 1.744465 0.183693 -0.334081
ite16 (Mach) 22,008,855 128,949,870 2,117,485 1.745356 0.184149 -0.335724
ite17 (Mach) 23,339,823 136,785,487 2,210,317 1.741864 0.183549 -0.336332
ite18 (Mach) 24,069,842 141,072,890 2,269,402 1.740719 0.183466 -0.336205
ite19 (Mach) 32,106,767 188,019,314 3,223,728 1.745157 0.183651 -0.340011
ite20 (Mach) 34,808,438 203,794,362 3,445,091 1.746952 0.183873 -0.341205
ite21 (Mach) 36,330,510 212,756,204 3,553,626 1.747490 0.183924 -0.341603
ite22 (Mach) 37,103,098 217,289,371 3,621,617 1.747814 0.183989 -0.341658
ite23 (Mach) 50,399,305 294,965,511 5,156,653 1.752651 0.184323 -0.344492
ite24 (Mach) 55,001,010 321,856,921 5,536,462 1.754142 0.184579 -0.345350
ite25 (Mach) 57,335,167 335,582,845 5,721,636 1.758472 0.185291 -0.346369
ite26 (Mach) 58,528,316 342,562,218 5,839,797 1.759224 0.185333 -0.346673
ite27 (Mach) 92,993,470 543,825,694 10,203,212 1.763347 0.185624 -0.349474
Exp. 1.778620 0.186706 -0.370599
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[a]

[b]

[c]

[d]

[e]
Figure 5.10 : Progress of mesh adaptation at y = 393.70 plane for M∞ = 0.2,

Re = 5.49×106, Pr = 0.72 and α = 7.05◦ around 3D-CRM high-lift system: [a]
Initial mesh with no boundary layer, [b] 10th iteration with distance only, [c] 14th [d],

18th [e] and 22nd iteration with distance and Mach.
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[a]

[b]

[c]
Figure 5.11 : Progress of surface mesh adaptation at M∞ = 0.2, Re = 5.49×106,

Pr = 0.72 and α = 7.05◦ with L4 norm, β = 1/3 and ε = 0.001 around
three-dimensional NASA CRM-HL system: [a] Initial mesh with no boundary layer,
[b] 10th iteration with exponential distance sensor, and [c] 22nd iteration with Mach

sensor.
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For multiscale mesh adaptation, the L4 norm is employed in both two- and

three-dimensional analyses. Typically, the L4 norm yields a higher mesh resolution

within the boundary layer, resulting in improved aerodynamic load calculations,

particularly for the drag coefficient [83, 101]. However, the L2 norm tends to deliver

better mesh resolution in the wake regions. In the case of the NASA CRM high-lift

system, the nacelle strake generates significant vortex lift over the main wing, making

accurate capture of its wake region critically important. As a result, the L2 norm may

offer advantages in achieving a more precise lift coefficient, particularly for resolving

the wakes of slat brackets located close to the main wing. However, the L2 norm

often requires a substantial number of vertices to resolve the wake region adequately,

particularly in cases involving a relatively large far-field domain.

Alauzet and Frazza [101] observed that starting with coarser meshes is highly

beneficial since the convergence process involves extensive iterations, which are

significantly less computationally expensive compared to those required for finer

meshes. Additionally, mesh adaptation tends to converge more slowly on finer meshes.

However, in this study, starting with an extremely coarse mesh was not feasible due to

the potential for meshing errors, particularly around the sharp leading edge of the main

wing.

To address inaccuracies associated with Green-Gauss gradient values near boundaries,

aerodynamic loads in this work are computed using a conservative approach. This

method involves summing the control volume momentum fluxes at vertices adjacent to

boundaries, enabling accurate computation of aerodynamic forces on solid walls [59].

The computed aerodynamic loads are also compared against the results submitted by

the AIAA ADAPT Technology Focus Group (TFG) during the workshop, as shown

in Figure 5.12. The details of the codes and participants are given in the Table 1.5

in section 1.5.4. Boeing’s computed drag coefficient (A-0025.2) on coarse meshes

demonstrates relatively good agreement with the experimental data, largely due to

the use of objective-based mesh adaptation combined with boundary layer insertion

and anisotropic refinement in the EPIC software [33]. The current adaptive results

shows the aerodynamic loads that are closely aligned with one another, demonstrating

improved consistency when compared to the RANS TFG results. However, the fine

mesh solutions exhibit slightly lower values than those observed in the experimental
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data. A similar trend was reported during the 7th AIAA CFD Drag Prediction

Workshop (DPW7) for adaptive results [102]. This discrepancy may be attributed to the

large turbulence variables within vortex cores, which can cause excessive dissipation

and adversely impact the effective angle of attack.

The convergence of aerodynamic loads and residuals is depicted in Figure 5.13,

as a function of the Newton iteration number. For the complex three-dimensional

NASA High Lift Common Research Model (case 1b), residual values approaching

machine precision can be achieved, provided that the CFL number is sufficiently

large (on the order of 10,000). During the 4th AIAA CFD High Lift Prediction

Workshop, achieving machine-precision residual convergence presented significant

challenges. Even the HANIM solver, used in conjunction with the NASA FUN3D

solver, could only achieve residual convergence to approximately 1 × 10−9 for

case 1b [103]. This underscores the complexity of ensuring convergence for

intricate high-lift configurations. Machine-precision convergence was achieved for

the three-dimensional wing-body configuration of the CRM-HL (case 2.1) at the 5th

AIAA CFD High Lift Prediction Workshop with a maximum CFL number of 1,000.

However, more complex configurations, such as those incorporating slats and slat

brackets (case 2.2), failed to reach machine precision under the same conditions,

exhibiting residual oscillations around 1 × 10−7. Notably, both cases successfully

converged to machine precision when the maximum CFL number was increased to

10,000 [104]. To emphasize the critical role of higher CFL values, a calculation for the

ite15 mesh in Table 5.8 was repeated with CFLmax = 1,000 and CFLmax = 10,000. As

shown in Figure 5.14, the lower CFLmax = 1,000 value caused the residuals to stall at

approximately 1× 10−7. This shows the importance of utilizing high CFL values to

enforce steady-state and achieve machine-precision convergence.
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[a] [b]
Figure 5.12 : Mesh convergence of conservative lift coefficient [a] and drag

coefficient [b] at M∞ = 0.2, Re = 5.49×106, Pr = 0.72, and α = 7.05◦ with L4 norm,
β = 1/3, and ε = 0.001 around the three-dimensional NASA CRM-HL system.

[a] [b]
Figure 5.13 : Convergence of forces and residuals for each adaptation level at

M∞ = 0.2, Re = 5×106, Pr = 0.72, and α = 7.05◦ with L4 norm, β = 1/3, and
ε = 0.001.

The convergence behavior of high-order preconditioner construction in three

dimensions was also examined using the direct approach with first- and second-order

preconditioner reconstructions, as illustrated in Figure 5.15. Interestingly, the behavior

of the second-order preconditioner in three dimensions differed significantly from that

in two dimensions. It did not require a high level of fill in the block incomplete

Lower Upper factorization (ILU(k)) preconditioner to achieve optimal convergence.

Moreover, the second-order preconditioner allowed for slightly higher maximum CFL

values, resulting in improved convergence.

The computation time analysis for the direct and finite difference approaches,

employing the first-order preconditioner reconstruction, reveals that the direct
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approach is approximately 14% more computationally expensive. It is worth noting

that at high CFL numbers, the linear solver struggles to achieve the specified relative

tolerance within the maximum limit of 80 Krylov subspace iterations. However, lower

relative tolerances are generally sufficient to ensure the convergence of the Newton

method [99].

Both first- and second-order preconditioning approaches exhibit a consistent trend

toward achieving machine-precision convergence, even for geometrically complex

three-dimensional cases. The finite difference-based approach holds a distinct

advantage in its ability to capture solution variations during Krylov subspace iterations,

therefore making it less likely to stall during SNES iterations.

In contrast, the direct approach delivers faster computation times by performing

more efficient Jacobian-vector multiplications. This eliminates the need for costly

residual vector evaluations and becomes particularly advantageous as the number of

multiplications increases, such as under higher CFL conditions. However, this benefit

is counterbalanced by the significantly higher memory requirements of the direct

method.

The computed pressure coefficients at various sections are compared with experimental

data, as shown in Figure 5.16. While the results indicate a slight underprediction of

the pressure coefficients on the upper surface of the main wing, particularly near the

trailing edges, the computed total lift coefficient on the finest mesh aligns closely with

the experimental value. The exact cause of this inconsistency remains unclear.

Figure 5.17 presents the computed skin friction coefficient contours using several

workshop view formats. The flow over the outboard flap shows separation, and a

significant separation bubble is observed on the inner flap surface. Figure 5.18 shows

the comparison of these skin friction coefficient contours obtained with HEMLAB at

Figure 5.18 [f] and the other committee members.

Additionally, Figure 5.17 and Figure 5.20 illustrates the skin friction contours with

streamlines and the wake structure represented by entropy isosurfaces around the

NASA CRM-HL model. These visualizations highlight a prominent vortical structure

generated by the nacelle-strake, along with another strong vortical structure originating

from the nacelle-pylon.

143



The vorticity contours with the adapted meshes are displayed at multiple planes in

Figure 5.19, following the workshop’s postprocessing guidelines. Despite the inherent

complexity of the three-dimensional wake structure, the adapted mesh effectively

captures these regions, demonstrating its capability to resolve intricate flow features

accurately.

[a] [b]
Figure 5.14 : Convergence of residuals for ite15 mesh using the first-order

preconditioner and the second-order Jacobian vector multiplication with finite
difference with CFLmax = 10,000 [a] and CFLmax = 1,000 [b] at M∞ = 0.2,

Re = 5.49×106, Pr = 0.72, and α = 7.05◦ with L4 norm, β = 1/3, and ε = 0.001.

[a] [b]
Figure 5.15 : Convergence of residuals for ite15 mesh using the first-order

preconditioner [a] and the second-order preconditioner [b] using the second-order
Jacobian vector multiplication with direct approach at M∞ = 0.2, Re = 5.49×106,

Pr = 0.72 and α = 7.05◦ with L4 norm, β = 1/3 and ε = 0.001.
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[a] [b]

[c] [d]

[e] [f]

[g] [h]
Figure 5.16 : Computed pressure coefficients at sections A to H [a-h] for M∞ = 0.2,
Re = 5.49×106, Pr = 0.72, and α = 7.05◦ around the NASA CRM high-lift system.
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[a]

[b] [c]
Figure 5.17 : Computed skin friction contours with streamtraces around the NASA

CRM high-lift system: [a] overall view, [b] wing root (view5), and [c] wing tip
(view6) at M∞ = 0.2, Re = 5.49×106, Pr = 0.72, and α = 7.05◦.
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[a] [b]

[c] [d]

[e] [f]

Figure 5.18 : CRM-HL skin friction contours at 7.05◦ angle of attack where [a] uses
the lift metric by A-002, [b] is the multiscale metric by A-004, [c] is the multiscale
metric by A-025.1, [d] is the drag metric by A-025.2, [e] is the multiscale metric by

A-026 (HEMLAB), and [f] is the multiscale metric by A-031 [10].

147



[a]

[b]

[c]
Figure 5.19 : Adapted meshes (left) and computed non-dimensional vorticity

magnitude (|ω|c̄/U∞) contours (right) at x/c̄ = 3.970268 (view 11) [a],
x/c̄ = 4.296591 (view 12) [b] and x/c̄ = 4.622915 (view 13) [c] planes for M∞ = 0.2,

Re = 5.49×106, Pr = 0.72 and α = 7.05◦ around NASA CRM-HL system.
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Figure 5.20 : Computed entropy isosurface (∆s = 0.001) at M∞ = 0.2,
Re = 5.49×106, Pr = 0.72, and α = 7.05◦ around the NASA CRM high-lift system.
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6. NUMERICAL RESULTS FOR HLPW-5

As explained in Section 1.5.5, three main test cases will be investigated by the

committee members in the High Lift Prediction Workshop-5. The first test case

was announced in February 2023, with results collected during a mini-workshop

in July 2023 and subsequently shared by the committee members, including those

obtained with HEMLAB. This test case investigates the numerical results for the

NASA-CRM-Wing-Body (CRM-HL-WB) configuration at Re = 5.6× 106, M = 0.2,

α = 11◦, and T∞ = 521◦R. Although the Spalart-Allmaras-QCR-2000 turbulence

model, which is available in the latest version of HEMLAB, is highly recommended,

convergence problems necessitated that all calculations presented below were obtained

using the Negative Spalart-Allmaras model. A similar mesh adaptation process was

performed for this configuration as was done in HLPW-4. The results obtained with

the HEMLAB framework also use the adap_back feature of HEMLAB, as described

in Section 3.4. As detailed in Section 3.3, the numerical solution was obtained using

the new version of HEMLAB, which employs the SNES solver. All parameters used

in the first test case are summarized in Table 6.1.

Table 6.1 : Flow conditions for Test Case 1 (CRM-HL-Wing-Body)

Mach Number 0.2

Re Number 5.6×106

Angle of Attacks 11.0◦

Mean Aerodynamic Chord 275.8inch

Reference Static Temperature 521.0◦R

Semi-Span Reference Area 29736.0 in2

Moment Reference Center x = 1325.9inches, y = 0.0inches, z = 177.95inches

Prandtl Number 0.72

Turbulent Prandtl Number 0.9

ν̂ f reestream/ν∞ 3.0

Ratio of Specific Heats γ 1.4
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Table 6.2 : Refinement data for L2, α = 7.05◦ and β = 1/3.

Refinement Level Number of Number of CL CD CM
(Sensor Function) Vertices Elements

ite0 (Initial Mesh) 10,630,135 62,254,785 - -
ite1 (Distance) 3,170,048 18,313,665 - - -
ite2 (Distance) 2,119,011 12,146,828 - - -
... ... ... ... ... ...
ite9 (Distance) 2,861,878 16,455,322 - - -

ite10 (Distance + Mach) 2,904,264 16,696,572 1.06213 0.07046 -0.05423
ite11 (Distance + Mach) 5,024,686 28,889,937 1.06951 0.06504 -0.05946
ite12 (Distance + Mach) 6,076,128 34,912,258 1.07016 0.06474 -0.05947
ite13 (Distance + Mach) 7,023,176 40,402,638 1.07046 0.06466 -0.05948
ite14 (Distance + Mach) 7,729,280 44,485,066 1.07048 0.06460 -0.05943
ite15 (Distance + Mach) 12,243,163 70,559,034 1.07357 0.06430 -0.06189
ite16 (Distance + Mach) 14,246,766 81,848,987 1.07344 0.06422 -0.06188
ite17 (Distance + Mach) 15,704,381 90,133,089 1.07336 0.06418 -0.06181
ite18 (Distance + Mach) 16,572,243 95,071,016 1.07342 0.06417 -0.06182
ite19 (Distance + Mach) 23,462,103 134,864,961 1.07473 0.06404 -0.06297
ite20 (Distance + Mach) 25,963,210 149,000,809 1.07462 0.06402 -0.06294
ite21 (Distance + Mach) 27,687,592 158,861,434 1.07457 0.06400 -0.06296
ite22 (Distance + Mach) 28,702,161 164,628,045 1.07462 0.06400 -0.06300
ite23 (Distance + Mach) 40,904,253 235,017,809 1.07549 0.06392 -0.06381
ite24 (Distance + Mach) 45,391,256 260,457,584 1.07532 0.06390 -0.06372
ite25 (Distance + Mach) 48,284,598 276,999,225 1.07530 0.06389 -0.06374
ite26 (Distance + Mach) 49,936,010 286,411,899 1.07528 0.06388 -0.06374
ite27 (Distance + Mach) 81,121,147 465,956,049 1.07603 0.06380 -0.06446

The numerical results — in terms of lift, drag, and moment coefficients calculated

with respect to the moment reference center given in Table 6.1 — converged as the

mesh was refined. The corresponding lift and drag coefficients, calculated using the

L2 norm, are shown in Figure 6.1 with and without adap_back module. The black

lines show calculations with an approach that uses the previous mesh level instead

of projecting onto a finer surface mesh. This method can introduce small errors on

the surface, especially near the outboard section of the leading edge. However, the

overall aerodynamic forces remain largely unchanged, and the drag coefficient clearly

improves as the mesh is refined. The comparison of the results with the other committee

members can be found in Figure 6.2. The results indicated with A-002 are the ones

obtained with HEMLAB with adap_back feature. Details of the skin friction coefficient

and the corresponding surface skin friction lines are displayed in Figure 6.3 and 6.4.

The flow exhibits a small separation bubble at the wing–body junction and a minor
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reverse flow region at the trailing edge. Vorticity contours at several x–locations, along

with the final anisotropic adapted mesh, are presented in Figure 6.5 and 6.6. The

adapted mesh clearly captures the boundary layer wake. As computed earlier, pressure

coefficients and skin friction coefficients were obtained on several sections of the wing,

as presented in Figure 6.7. Figure 6.8 shows the convergence of the residuals with

iteration number, and the numerical method converges to machine precision.

[a] [b]
Figure 6.1 : Convergence of lift coefficient [a] and drag coefficient [b] at M∞ = 0.2,

Re = 5.49×106, Pr = 0.72, and α = 7.05◦ around NASA CRM high-lift system
compared with several other workshop benchmark data.

[a] [b]
Figure 6.2 : Convergence of lift coefficient [a] and drag coefficient [b] at M∞ = 0.2,

Re = 5.49×106, Pr = 0.72, and α = 7.05◦ around NASA CRM high-lift system
compared with several other workshop benchmark data and HEMLAB (A-002)

results.
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[a] [b]

[c] [d]

[e] [f]
Figure 6.3 : Skin friction lines and contours around CRM-HL Wing Body

configuration for View1 [a]&[b], View2 [c]&[d], and View3 [e]&[f].
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[g] [h]

[i] [j]

[k] [l]
Figure 6.4 : Skin friction lines and contours around CRM-HL Wing Body

configuration for View4 [g]&[h], View5 [i]&[j], and View SP1.1 [k]&[l]. (continued).
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[a] [b]

[c] [d]

[e] [f]
Figure 6.5 : Vorticity contours and mesh distribution on several x-planes for

CRM-HL Wing Body configuration for View11 (x=1095 inch) [a]&[b], View12
(x=1185 inch) [c]&[d], and View13 (x=1275 inch) [e]&[f].

156



[g] [h]

[i] [j]
Figure 6.6 : Vorticity contours and mesh distribution on several x-planes for

CRM-HL Wing Body configuration (continued) for View14 (x=1485 inch) [g]&[h]
and View15 (x=1735 inch) [i]&[j].

[a] [b]
Figure 6.7 : Pressure [a] and skin friction coefficient [b] at M∞ = 0.2,

Re = 5.49×106, Pr = 0.72, and α = 7.05◦ around NASA CRM high-lift system
compared with several other workshop benchmark data.
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Figure 6.8 : Convergence of residual values with iteration number for each
refinement level for CRM-HL Wing Body configuration.

After the turbulence verification model (Case-1), geometric effects were investigated

during the workshop at Re = 5.9×106, Pr = 0.72, M∞ = 0.2, and T∞ = 518.67◦R. The

calculations were performed similarly to the previous case, using a 10-level refinement

to construct the boundary layer mesh. However, this time the calculations employed

a Mach-only sensor instead of a Mach+distance sensor. This adjustment allowed to

capture better results on the wake region behind the flap brackets and to minimize

cross-diffusion effects within highly anisotropic boundary layer meshes. In the solver,

PETSc’s Scalable Nonlinear Equations Solvers (SNES) with a line search algorithm

is used, rather than the previous PETSc Krylov Subspace Methods (KSP). This robust

nonlinear solver is crucial for achieving machine-precision convergence at high angles

of attack in under 100 Newton iterations. The initial CFL number was set to 10 and

increased by a factor of 1.125 each time the residual vector was reduced by an order of

magnitude.

The initial calculation was conducted at a 6◦ angle of attack. Subsequent calculations

used the alpha continuation method, starting from the previously converged angle.

Calculations were performed at 6◦, 10◦, 14◦, 16◦, and 17.7◦, with the computed

aerodynamic loads presented in Figure 6.9 and Table 6.3.
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Figure 6.9 : Comparison of computed aerodynamic loads for case 2.2 CRM-HL
configuration.

Table 6.3 : Aerodynamic loads for Case 2.2.

Alpha Nodes CL CD CM

6.0◦ 19,620,617 0.629437 0.044356 -0.121557
10.0◦ 20,259,448 1.018601 0.071470 -0.258877
14.0◦ 20,537,562 1.388209 0.111988 -0.376624
16.0◦ 21,084,912 1.555762 0.137893 -0.439587
17.7◦ 21,179,493 1.653319 0.168740 -0.453178

The results showed good agreement up to 16◦. However, at 17.7◦, early leading-edge

separation caused deviations in the computed aerodynamic loads, preventing further

calculations at higher angles of attack. The computed skin friction coefficients and

streamlines are shown in Figure 6.10, where the pizza slice–shaped separation pattern

is clearly visible in Figures 6.10-[e-f]. A comparison of pressure coefficients with

ONERA experimental data are provided in Figure 6.11, 6.12 and 6.13 for sections

A–I, showing good agreement. Strong pressure and skin friction coefficient peaks

were observed near the leading edge at the outboard section of the main wing, and

the separation pattern is also apparent on the adapted surface mesh (Figure 6.14). The

residual convergence of the PETSc SNES solver is shown in Figure 6.15, indicating
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some convergence difficulty at 10◦ (attached flow) for the fine mesh, despite the final

density residual dropping to 1×10−8. At high angles of attack, there was a significant

increase in the turbulence model residual, even with a constant scaling factor of 1×106

for the turbulence variable.

[a] [b]

[c] [d]

[e] [f]
Figure 6.10 : Computed skin friction coefficient contours (left) and streamlines

(right) at α = 6◦ [a-b], 10◦ [c-d], and 17.7◦ [e-f] for case2.2 configuration.
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[a] [b]

[c] [d]

[e] [f]

[g]
Figure 6.11 : Computed pressure coefficients at selected locations for case 2.2

configuration for α = 6◦.
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[a] [b]

[c] [d]

[e] [f]

[g]
Figure 6.12 : Computed pressure coefficients at selected locations for case 2.2

configuration for α = 10◦.
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[a] [b]

[c] [d]

[e] [f]

[g]
Figure 6.13 : Computed pressure coefficients at selected locations for case 2.2

configuration for α = 17.7◦.
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[a]

[b]

Figure 6.14 : Adapted surface meshes at α = 10◦ [a] and α = 17.7◦ [b] for case2.2
configuration.

[a] [b]
Figure 6.15 : Residual convergence at α = 10◦ [a] and α = 17.7◦ [b] for case2.2

configuration (view13).

The computed vorticity contours at the x = 1275 plane, shown in Figure 6.16, along

with the adapted meshes, demonstrate how mesh adaptation effectively captures the

boundary layer and wake regions.
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In this study, it has been aimed to understand the early separation pattern observed

in the numerical results. A similar separation pattern was observed in Boeing results

obtained with the GGNS solver [58] and the EPIC anisotropic mesh adaptation library

[33]. However, this pattern was absent in the impulsively started CFX converged results

with isentropic refinement, where initial separation patterns reattached with increased

refinement. In the ONERA experiments, the separation pattern was associated with

a lambda-type trailing edge separation, which was also seen in the present adapted

surface meshes (Figure 6.14). At 17.7◦, the separation pattern began with a double

wake structure (Figure 6.17), with wake shedding from both the inboard and outboard

sides of the flap bracket, leading to a wider wake region. The outboard wake was

either absent or very weak for attached flap bracket wakes, suggesting potential issues

with turbulence modeling affecting the prediction of double wake behavior. Another

possibility involves the negative Spalart-Allmaras turbulence model, where numerical

inaccuracies might result in excessive negative ν̂ values, causing locally very low

turbulence viscosity (laminarization) and early leading-edge flow separation. Similar

trends were also observed in results from other committee members, as compared

in Figure 6.18. This figure shows results for α = 17.7◦ obtained using HEMLAB

[a], ANSYS [b], and INRIA [c]. Here, the early separation pattern is only visible in

HEMLAB’s results. On the other hand, Figures 6.19 [a] and [b] present results obtained

at α = 16◦ using HEMLAB and Boeing, respectively. While both results show similar

flow characteristics at this angle of attack, early separation appears in Boeing’s results

at α = 16.5◦, as shown in Figure 6.18 [d].

On the solver side, it has been examined both the numerical discretization and

the PETSc SNES nonlinear solver. For PETSc SNES, the second-order Jacobian is

constructed exactly and used it directly for matrix-vector multiplication instead of the

matrix-free approach; however, it did not alter the final flow pattern. In the HEMLAB

solver, it has been used the Green-Gauss method rather than the unweighted least

squares method and reduced the upwinding parameter β for both the Navier-Stokes

equation and the negative Spalart-Allmaras turbulence model. While this resulted in

a slight delay in the formation of the separation pattern, further reduction in the β

parameter led to negative density values. At this point it is not possible to address

mesh quality issues due to a lack of access to the INRIA pyAMG library source code.
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Another possibility is that mesh adaptation should be performed after several Newton

iterations rather than on the final converged solution, as the flow pattern may change

significantly and the adapted mesh might not properly represent the solution.

[a] [b]

[c] [d]

[e] [f]
Figure 6.16 : Computed vorticity contours (left) and adapted mesh (right) at α = 6◦

[a-b], α = 10◦ [c-d], and α = 17.7◦ [e-f] for case2.2 configuration (view13).
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[a] [b]
Figure 6.17 : Computed transient [a] and final converged [b] skin friction contours at

α = 17.7◦ for case2.2 CRM-HL Wing Body configuration (view13).

[a] [b]

[c] [d]
Figure 6.18 : Computed skin friction contours at α = 17.7◦ with HEMLAB [a],

A-006 (TFG Results with ANSYS) [b], A-004 (TFG Results with INRIA) [c] and
α = 16.5◦ A-003 (TFG Results with BOEING) [d] case 2.2 CRM-HL Wing Body

configuration [11].
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[a] [b]
Figure 6.19 : Computed skin friction contours at α = 16◦ with HEMLAB [a] , A-003
(TFG Results with BOEING) [b] case 2.2 CRM-HL Wing Body configuration [11].
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7. NUMERICAL RESULTS FOR REFINE

As discussed in Chapter 5, the 2D high-lift configuration was also examined using the

NASA REFINE mesh adaptation framework. This tool provides a robust and highly

parallelizable anisotropic adaptation methodology, capable of capturing complex flow

features with fewer mesh elements than uniform refinement. The simulation was

carried out at a freestream Mach number M∞ = 0.2, Reynolds number Re = 5× 106,

Prandtl number Pr = 0.72, and an angle of attack α = 16◦. The adaptation procedure

utilized a hybrid refinement strategy — starting with distance-based sensors for

establishing wall resolution and progressing to Mach-based sensors. The adaptation

statistics are provided in Table 7.1. A total of 17 refinement levels were executed,

and the corresponding values for aerodynamic coefficients CL, CD, and CM are

presented. Notably, convergence in aerodynamic performance is achieved by the

final iterations, where the lift coefficient reaches 3.8026 and the drag coefficient

stabilizes at 0.06052, both closely matching the reference value CL = 3.802952 from

the reference results presented in [95]. As illustrated in Figure 7.1, the computed

lift and drag coefficients demonstrate monotonic convergence with mesh refinement.

Similar to the pyAMG-HEMLAB framework, early adaptations (from 0th iteration to

the 4th iteration) focus on resolving the near-wall regions with the distance sensor.

Subsequent iterations (from 5th iteration to the 17th iteration), using the Mach sensor,

enhance the resolution in flow regions with strong gradients such as shock waves

and wakes. The refinement levels beyond 13th level iteration show minimal change

in the computed aerodynamic coefficients, confirming mesh-independent results. The

deviation from the reference lift coefficient at the final refinement level is less than

0.01%, demonstrating the high fidelity achieved through REFINE. Figure 7.2 present

pressure coefficients and skin friction distribution where Figure 7.4 shows the Mach

number, and entropy contours. The high-resolution mesh captures boundary-layer

behavior, separation zones, and wake dynamics with clarity. Especially, the entropy

contours in Figure 7.4(b) show well-resolved entropy layers downstream of the

trailing edge, which are indicative of accurate shock capturing and viscous interaction
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modeling. In Figure 7.3, the residual convergence and force history across refinement

iterations are plotted. The solver exhibits stable and monotonic residual reduction

across all adaptation stages, highlighting the robustness of the SNES-based nonlinear

solver when combined with meshes generated by REFINE. Residuals show rapid decay

after each adaptation step, indicating good metric compatibility and preserved mesh

quality. No oscillations or stagnation are observed in the convergence history.

Figure 7.5 illustrates the mesh structures at the 8th adaptation level obtained from

the REFINE [a] and pyAMG [b] frameworks. Although both methods apply the same

flow sensors without any explicit boundary-layer generation routines, generated mesh

by REFINE exhibits more directional stretching near the walls and wake region.

This difference likely arises from internal remeshing strategies and more aggressive

anisotropy enforcement during metric projection. In contrast, the pyAMG mesh

appears smoother and more isotropic, particularly around the trailing edge.

Table 7.1 : Refinement data for L4, α = 16◦ and β = 1/48.

Refinement Level Number of Number of Number of CL CD CM
(Sensor Function) Vertices Elements Surface Elements

ite0 (Initial Mesh) 325,794 642,357 9,156 - - -

ite1 (Distance) 54,274 101,897 6,576 - - -
ite2 (Distance) 40,758 76,535 4,906 - - -
ite3 (Distance) 53,469 101,964 4,899 - - -
ite4 (Distance) 54,590 103,784 5,321 - - -

ite5 (Mach) 54,487 103,898 5,001 3.782751 0.061166 0.379569
ite6 (Mach) 56,020 107,248 4,717 3.790154 0.061144 0.380961
ite7 (Mach) 57,090 109,418 4,683 3.789870 0.061194 0.380922
ite8 (Mach) 57,458 110,180 4,646 3.788992 0.061210 0.380755

ite9 (Mach) 573,351 1,137,745 8,736 3.800873 0.060605 0.382748
ite10 (Mach) 574,940 1,138,977 10,677 3.801294 0.060583 0.382828
ite11 (Mach) 575,158 1,139,414 10,675 3.801299 0.060582 0.382821
ite12 (Mach) 574,558 1,138,231 10,653 3.801394 0.060582 0.382840

ite13 (Mach) 5,464,790 10,895,465 33,388 3.802502 0.060526 0.383025
ite14 (Mach) 5,477,291 10,915,256 38,466 3.802531 0.060525 0.383031
ite15 (Mach) 5,498,440 10,956,603 39,203 3.802529 0.060524 0.383032
ite16 (Mach) 5,506,133 10,971,522 39,523 3.802533 0.060524 0.383032

ite17 (Mach) 22,498,153 44,913,272 80,182 3.802596 0.060520 0.383042

Ref [95] 3.802952 0.060529 -
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[a] [b]
Figure 7.1 : Convergence of lift coefficient [a] and drag coefficient [b] at M∞ = 0.2,
Re = 5×106, Pr = 0.72, and α = 16◦ around a two-dimensional high-lift system
compared with several other workshop benchmark data, N corresponds to the total

number of vertices.

[a] [b]
Figure 7.2 : Computed pressure [a] and x-component of skin friction [b] coefficients.

[a] [b]
Figure 7.3 : Convergence of forces and residuals for each adaptation level at

M∞ = 0.2, Re = 5×106, Pr = 0.72, and α = 16◦ with L4 norm, β = 1/48, and
ε = 0.001.
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[a]

[b]
Figure 7.4 : Computed Mach [a] and entropy [b] contours at M∞ = 0.2, Re = 5×106,

Pr = 0.72, and α = 16◦ around a two-dimensional high-lift system.

[a]

[b]Figure 7.5 : Mesh adaptation at M∞ = 0.2, Re = 5×106, Pr = 0.72, and α = 16◦

around 2D-CRM at 8th refinement level with REFINE [a] and pyAMG [b].
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In addition to the 2D studies, three-dimensional (3D) simulations were performed

using the NASA-REFINE framework for the CRM-HL Wing-Body (CRMHL-WB)

configuration. The simulations were conducted at M∞ = 0.2, Re = 5.49× 106, Pr =

0.72, and α = 7.05◦. Distinct from the pyAMG approach, the REFINE simulations

employed the L4 norm for error estimation, enhancing refinement focus on critical

flow features. Furthermore, both the initial mesh and solution file were sourced

from the 10th refinement level of the pyAMG framework. Subsequent refinement

levels proceeded exclusively with the Mach sensor to effectively resolve wall-bounded

layers and freestream phenomena. The adaptation statistics, detailed in Table 7.2,

show a systematic increase in mesh resolution, achieves over 40 million vertices

and 224 million elements by iteration 23. The lift and drag coefficients converged

to CL = 1.07578 and CD = 0.06379, respectively, demonstrating close alignment with

workshop benchmarks and confirming mesh independence, as illustrated in Figures 7.6

and 7.7. Residual histories (Figure 7.8) exhibit smooth and rapid convergence

across all refinement levels, validating the efficiency and stability of the REFINE

adaptation process when integrated with a SNES-based solver. To further analyze

surface flow characteristics, Figures 7.10 and 7.11 provide skin-friction lines and

near-wall contours from multiple viewpoints. These visualizations shows detailed flow

separation, reattachment, and complex shear layer interactions, particularly around slat

and flap cove regions, as well as at the wing-body junction. Cross-sectional vorticity

contours, presented in Figures 7.12 and 7.13, highlight the development of wingtip

vortices, wake roll-up, and trailing-edge shedding across several axial planes. The

alignment of refined mesh regions with areas of high vorticity confirms effective

metric-driven targeting of critical flow features. Grid overlays in selected subfigures

demonstrate the anisotropic refinement strategy, ensuring high element density within

vortical cores and wake structures. Finally, Figure 7.9 presents the computed pressure

and skin friction coefficients over the CRM-HL configuration for several sections.
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Table 7.2 : Refinement data for L2, α = 7.05◦ and β = 1/3.

Refinement Level Number of Number of Number of CL CD CM
(Sensor Function) Vertices Elements Surface Elements

ite0 (Initial Mesh) 10,630,135 62,254,785 - -
ite1 (Distance) 3,170,048 18,313,665 - - -
ite2 (Distance) 2,119,011 12,146,828 - - -
... ... ... ... ... ...
ite9 (Distance) 2,861,878 16,455,322 - - -
ite10 (Distance) 2,904,264 16,696,572 442,766 1.06213 0.07046 -0.05423

ite11 (Mach) 4,364,826 23,557,552 1,268,264 1.06922 0.06489 -0.05752
ite12 (Mach) 4,486,723 24,129,314 1,349,978 1.06806 0.06475 -0.05628
ite13 (Mach) 4,494,562 24,191,567 1,361,317 1.06761 0.06478 -0.05569
ite14 (Mach) 4,492,884 24,200,267 1,334,163 1.06744 0.06481 -0.05549
ite15 (Mach) 8,466,110 46,130,018 2,220,800 1.07160 0.06427 -0.05947
ite16 (Mach) 8,569,112 46,677,188 2,255,172 1.07181 0.06422 -0.05981
ite17 (Mach) 8,579,941 46,692,011 2,291,436 1.07181 0.06421 -0.05972
ite18 (Mach) 8,579,795 46,669,793 2,304,239 1.07187 0.06421 -0.05982
ite19 (Mach) 16,412,920 90,489,126 3,670,843 1.07405 0.06396 -0.06191
ite20 (Mach) 16,704,761 91,814,017 3,931,316 1.07415 0.06395 -0.06206
ite21 (Mach) 16,744,639 91,959,488 3,986,137 1.07421 0.06394 -0.06202
ite22 (Mach) 16,767,908 92,024,225 4,029,809 1.07430 0.06395 -0.06205
ite23 (Mach) 40,206,567 224,244,705 7,638,331 1.07578 0.06379 -0.06364

[a] [b]
Figure 7.6 : Convergence of lift coefficient [a] and drag coefficient [b] at M∞ = 0.2,

Re = 5.49×106, Pr = 0.72, and α = 7.05◦ around NASA CRM high-lift system
compared with several other workshop benchmark data.
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[a] [b]
Figure 7.7 : Convergence of lift coefficient [a] and drag coefficient [b] at M∞ = 0.2,

Re = 5.49×106, Pr = 0.72, and α = 7.05◦ around NASA CRM high-lift system
compared with several other workshop benchmark data and HEMLAB (A-002)

results.

Figure 7.8 : Convergence of residual values with iteration number for each
refinement level for CRM-HL Wing Body configuration.

[a] [b]
Figure 7.9 : Pressure [a] and skin friction coefficient [b] at M∞ = 0.2,

Re = 5.49×106, Pr = 0.72, and α = 7.05◦ around NASA CRM high-lift system
compared with several other workshop benchmark data.
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[a] [b]

[c] [d]

[e] [f]
Figure 7.10 : Skin friction lines and contours around CRM-HL Wing Body

configuration for View1 [a]&[b], View2 [c]&[d], and View3 [e]&[f].
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[g] [h]

[i] [j]

[k] [l]
Figure 7.11 : Skin friction lines and contours around CRM-HL Wing Body

configuration for View4 [g]&[h], View5 [i]&[j], and View SP1.1 [k]&[l]. (continued).
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[a] [b]

[c] [d]

[e] [f]
Figure 7.12 : Vorticity contours and mesh distribution on several x-planes for

CRM-HL Wing Body configuration for View11 (x=1095 inch) [a]&[b], View12
(x=1185 inch) [c]&[d], and View13 (x=1275 inch) [e]&[f].
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[g] [h]

[i] [j]
Figure 7.13 : Vorticity contours and mesh distribution on several x-planes for

CRM-HL Wing Body configuration (continued) for View14 (x=1485 inch) [g]&[h]
and View15 (x=1735 inch) [i]&[j].
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8. CONCLUSION

This study presents a detailed worked on metric-based mesh adaptation methodologies

applied to the HEMLAB algorithm, with a focus on high-lift aerodynamic simulations.

The research integrates advanced computational techniques to improve the accuracy

and efficiency of computational fluid dynamics (CFD) solvers, particularly for complex

high-lift configurations analyzed in the AIAA High Lift Prediction Workshops.

A major aspect of this research is the development and integration of metric-based

anisotropic mesh adaptation strategies, which enable the refinement of computational

grids in regions of high flow gradients while maintaining computational efficiency. The

implementation of these techniques within the HEMLAB framework has demonstrated

significant improvements in capturing flow physics, particularly in predicting lift

coefficients, pressure distributions, and separation effects in high-lift aerodynamic

configurations.

The numerical studies have been performed for HLPW-3, HLPW-4, and HLPW-5

test cases illustrate the impact of mesh adaptation techniques on the accuracy of

aerodynamic predictions. Furthermore, the integration of HEMLAB with external

solvers such as pyAMG and REFINE has enhanced the efficiency of numerical

computations, enabling more precise turbulence modeling and transition capturing.

The results of this research emphasize the importance of accurately resolving

complex flow phenomena, particularly in the context of high-lift aerodynamics where

interactions between multi-element airfoils, boundary layer transitions, and wake

dynamics play a crucial role. The findings confirm that metric-based mesh adaptation

techniques lead to significant improvements in the prediction of aerodynamic

coefficients, reducing errors associated with under-resolved flow features. The study

also highlights the need for careful selection of turbulence models and solver

configurations to optimize computational efficiency without compromising accuracy.
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A crucial component of this research is the integration of the Scalable Nonlinear

Equations Solvers (SNES) framework within the HEMLAB algorithm. SNES provides

robust and efficient solution techniques for nonlinear systems, enabling the accurate

resolution of governing equations in CFD applications. The implementation covers

advanced iterative solvers, including Newton-Krylov methods, to enhance the stability

and convergence of numerical computations. By utilizing SNES, this research has

improved the handling of complex aerodynamic phenomena, particularly in cases

involving strong nonlinearities and flow separation.

Preconditioners play a significant role in accelerating convergence and improving

solver performance. The selection of the appropriate preconditioner was based on

the problem characteristics and computational efficiency requirements. By coupling

SNES with optimized preconditioning strategies, the computational cost of high-lift

simulations was significantly reduced, making large-scale simulations more feasible.

A significant part of this research also involves the implementation and analysis of

the Jacobian-Free Newton-Krylov (JFNK) method, which offers an efficient approach

for solving large nonlinear systems without explicitly constructing the Jacobian

matrix. JFNK leverages finite-difference approximations to estimate matrix-vector

products, reducing memory consumption and computational effort compared to

direct Jacobian construction methods. This approach is particularly beneficial for

high-fidelity aerodynamic simulations where the Jacobian matrix can be prohibitively

large and costly to compute.

In addition to JFNK, this research investigates direct approaches for solving nonlinear

equations, where the Jacobian is explicitly constructed and factorized Schwarz

method with block incomplete LU factorization with k levels of fill (ILU(k)) within

each sub-block. While direct methods provide highly accurate solutions, they are

often computationally expensive, particularly for large-scale problems. The trade-offs

between direct and iterative methods are analyzed in detail, highlighting scenarios

where each approach is most effective. In cases with well-conditioned systems, direct

methods provide robust and reliable results, whereas JFNK proves advantageous in

handling highly nonlinear and large-scale problems due to its lower memory footprint.
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Furthermore, the research explores advanced Jacobian construction techniques,

including analytical differentiation, automatic differentiation, and finite-difference

approximations. Each method’s impact on solver efficiency and accuracy is

systematically evaluated. Analytical Jacobian construction offers the highest

accuracy but requires substantial derivation effort, whereas automatic differentiation

provides a balance between accuracy and ease of implementation. Finite-difference

approximations, while straightforward to implement, may introduce numerical errors

if not carefully tuned. The comparative analysis of these techniques informs best

practices for choosing an appropriate Jacobian representation depending on the

problem characteristics. After all these improvements it is possible to achieve quadratic

convergence with the recent version of the code.

The initial version of HEMLAB was limited to the standard Spalart-Allmaras

(SA) turbulence model. This research expanded its turbulence modeling capabilities

by implementing several advanced SA-based variations. The SA-neg model was

integrated to enhance the solver’s ability to predict separated flows and recirculation

regions more accurately. Additionally, the SA-neg-ft2 model was introduced to

improve the robustness of turbulence modeling for transitional flows by incorporating

ft2 modifications. Furthermore, the SA-QCR-2000 model was implemented to account

for quadratic constitutive relations, which provide better predictions of secondary flows

and streamline curvature effects.

A major contribution of this research is the development and implementation of a

second-order discretization scheme for these turbulence models. The second-order

formulation improves solution accuracy, particularly in capturing turbulence

anisotropy and near-wall effects. These enhancements allow for better resolution

of high-lift aerodynamic features, reducing numerical diffusion and improving the

overall predictive capability of the HEMLAB solver. The integration of these

turbulence models, coupled with metric-based mesh adaptation, has led to more

reliable aerodynamic simulations, particularly in predicting stall point, flow separation,

and wake interactions.

An essential aspect of high-fidelity computational modeling is the role of machine

precision in ensuring numerical accuracy and stability. The sensitivity of numerical

methods to floating-point precision can significantly impact the robustness of iterative
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solvers, particularly for ill-conditioned systems. In this study, the effects of machine

precision were also examined in the context of matrix-vector operations, residual

convergence, and solution stability. The results show that using lower precision

arithmetic can cause small rounding errors that build up over many iterations,

potentially causing nonlinear solvers to fail. Conversely, higher precision arithmetic

improves accuracy but at an increased computational cost. This research shows

that balancing computational cost and precision is key for reliable and efficient

CFD simulations. Future improvements in adaptive precision computing may further

optimize solver performance, making large-scale aerodynamic simulations more

practical.

In future, additional studies can be conducted to explore the impact of different

adaptation criteria on the accuracy of high-lift aerodynamic predictions. Investigating

alternative metric formulations, refining transition modeling techniques, and applying

the framework to full aircraft configurations will contribute to the ongoing evolution

of computational aerodynamics. Also, adjoint-based mesh adaptation techniques will

be investigated and developed to enhance the sensitivity-driven refinement of the

computational grid. These techniques will allow targeted resolution improvements in

regions that most significantly influence key aerodynamic outputs, such as lift and

drag. Furthermore, the integration of additional turbulence models, such as the k–ω

SST model, will be considered to improve the robustness and accuracy of simulations,

particularly for flows involving strong adverse pressure gradients and separation.
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