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METRIC BASED MESH ADAPTATION METHODOLOGY
APPLIED TO HEMLAB ALGORITHM

SUMMARY

This dissertation presents a detailed study on metric-based mesh adaptation
methodologies applied to high-lift aerodynamic simulations within the HEMLAB
framework. The research integrates advanced computational techniques to enhance the
accuracy and efficiency of computational fluid dynamics (CFD) solvers, particularly
for high-lift configurations analyzed in the AIAA High Lift Prediction Workshop
Series (HLPW). The primary focus is on improving numerical predictions by refining
computational meshes dynamically in response to flow characteristics.

A key contribution of this research is the development and integration of metric-based
anisotropic mesh adaptation strategies. These techniques refine computational grids in
regions of high flow gradients, such as boundary layers and wake structures, ensuring
improved resolution without excessive computational cost. The numerical studies
conducted on HLPW-3, HLPW-4, and HLPW-5 test cases illustrate the impact of these
adaptation methods on aerodynamic loads, particularly in improving lift and pressure
coefficient distributions.

In addition to mesh adaptation, this study incorporates solution methodologies through
the integration of the Scalable Nonlinear Equations Solvers (SNES) framework.
By utilizing nonlinear Newton-Krylov methods with efficient preconditioners the
computational cost of solving nonlinear equations is significantly reduced. The
accurate Jacobian evaluation as a preconditiner further enchance solver efficiency.

Turbulence modeling is another aspect of this research. The initial version of
HEMLAB was limited to the standard Spalart-Allmaras (SA) model. This study
extends its turbulence modeling capabilities by incorporating SA-neg, SA-neg-ft2,
and SA-QCR-2000 models. These modifications improve the solver’s accuracy
and convergence in predicting separated flows, transitional effects, and streamline
curvature influences. A second-order discretization scheme is also introduced to the
SA model, enhancing numerical precision and reducing diffusion errors.

Furthermore, this thesis highlights the significance of machine precision in
high-fidelity simulations. The methodologies developed in this work contribute to
the broader field of CFD by providing improved numerical accuracy, efficiency,
and adaptability. Future research directions include refining transition modeling
techniques, extending adaptive meshing strategies such as goal based adaptation
strategies and improving sensor function and further investigation of cross diffusion
effects on highly anisotropic meshes for the aircraft configurations.
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METRIK TABANLI AG UYARLAMA YONTEMININ
HEMLAB COZUCUSUNE UYGULANMASI

OZET

Bu doktora tezi, kenar tabanli sonlu hacimler yOntemini kullanan hesaplamali
akigkanlar dinami8i (HAD) ¢oziiclisi HEMLAB algoritmasimin yiiksek tasima kon-
figiirasyonlarinda kullanilmak iizere gelistirilmesine yonelik kapsamli bir arastirmay1
sunmaktadir. Bu baglamda, mevcut ¢oziiciiniin aerodinamik simiilasyonlardaki dogru-
luk ve verimliligini artirmak amaciyla cesitli yenilik¢i yaklagimlar gelistirilmistir.
Ozellikle AIAA High Lift Prediction Workshop (HLPW) serilerinde ele alinan
karmagik geometriler lizerinde odaklanilarak, metrik tabanli ag uyarlama teknikleri,
tiirbiilans modeli iyilestirmeleri ve ileri sayisal ¢oziim yontemleri detayli bir sekilde
incelenmistir. Calismada gelistirilen yontemlerin 6zgiin katkilar1 {i¢ ana baslikta
toplanabilir: (1) Metrik tabanli ve hibrid sensor destekli adaptif ag stratejilerdi,
(i1) Gelismis sayisal ¢oziim yOntemleri ile hesaplama verimliliginde artig, ve (iii)
Tiirbiilans modellemesinde saglanan dogruluk iyilestirmeleri.

Giintimiiz havacilik endiistrisinde operasyonel maliyetlerin azaltilmasi, yakit ver-
imliliginin artirllmasi1 ve aerodinamik performansin iyilestirilmesi gibi hedefler,
yiiksek tasima sistemlerinin tasarimini kritik hale getirmistir. Bu sistemler, temel
kanat yapisina ek olarak slat, flap, fairing gibi baglanti elemanlarindan olusan
oldukca karmasik geometrilere sahiptir. Bu tasarimsal karmagiklik, akig alaninin dogru
sekilde modellenmesini zorlastirmakta ve geleneksel HAD yontemlerinin sinirlarini
zorlamaktadir. Ozellikle smir tabakasi ayrilmalart ve kanat ucu girdaplarmin bir
arada bulundugu bu sistemlerde, hesaplamali aglarin optimal dagilimi biiyiikk 6nem
tasimaktadir. Bu tez calismasi, s6z konusu zorluklara yonelik HEMLAB algorit-
masinda gerceklestirilen iyilestirmeleri HLPW’de sunulan geometriler iizerinden
kapsamli bi¢imde dogrulamayr amaclamaktadir. Temel motivasyon, endiistriyel
uygulamalarda karsilasilan yiiksek hesaplama maliyetlerini diisiiriirken, ayn1 zamanda
sonu¢ dogrulugunu artirmaktir.

Tezin en Onemli katkilarindan biri, hesaplamali aglarin akis o6zelliklerine gore
dinamik olarak yeniden diizenlenmesini saglayan metrik tabanli anizotropik ag
uyarlama stratejilerinin gelistirilmesi ve HEMLAB coziiciisiine entegre edilmesidir.
Bu kapsamda INRIA tarafindan gelistirilen pyAMG ve NASA'nin REFINE
algoritmalar1 basariyla entegre edilmistir. Bu entegrasyon sayesinde ¢oziiciiniin adaptif
ag yeteneklerinde onemli gelismeler saglanmistir. Ozellikle sinir tabakalari, sok
dalgalari, ayrilma bolgeleri ve kanat ucu girdaplart gibi kritik akis yapilarinin
bulundugu bolgelerde ag otomatik olarak iyilestirilirken, diger bolgelerde daha az ag
elemani kullanilarak verimli bir dagilim elde edilmistir.

Ag adaptasyon siirecinde, geometrik karmagikligin yiiksek oldugu bolgelerde hiicre
boyutlarinin otomatik olarak kiigiiltiilmesi ve akisin fiziksel 6zelliklerine gore agin
yeniden diizenlenmesi gibi islevler kazandirilmistir. Mach, entropi, basing, mesafe
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gibi cesitli akig 6zelliklerine dayali fonksiyonlarla ag uyarlamasi yapilabilmektedir.
Bu siirecgte klasik Mach sayis1 sensoriine ek olarak gelistirilen hibrid sensor yaklagimi
uygulanmigtir. Bu yontem, ozellikle geometriye yakin bolgelerde daha yogun bir
ag dagilimi saglamig ve sinir tabakasi ¢oziiniirliigiinde kayda deger iyilesmeler elde
edilmesini miimkiin kilmistir. Geleneksel yontemlerde yiiksek hiz gradyanlarinin
oldugu bolgelerde ag yogunlugu artirilirken, geometriye yakin bolgelerde yeterli
coziiniirlik saglanamamas1 onemli bir sorundu. Hibrid sensor yaklagimi bu sorunu
cozerek hem sinir tabakasi icinde hem de serbest akis bolgesinde optimal ag dagilimi
saglamistir. Bu baglamda, geometrik yakinlik ile akis Ozelliklerini birlestiren yeni
bir ag adaptasyon metrigi gelistirilmistir. Bu metrik, yiizey egrilikleriyle birlikte akis
degiskenlerindeki gradyanlar1 dikkate alarak ¢ok yonlii bir optimizasyon sunmaktadir.

Ayrica ag kalitesinin adaptasyon sonrasi korunmasi amaciyla hiicre sekil bozulmalar
minimize edilmig ve yiizey geometrisine bagli ag bozulmalarimi engelleyen 0zel
projeksiyon algoritmalart kullanilmigtir. Bu algoritmalar, adaptif aglarin fiziksel
dogrulugunu korurken, sayisal ¢oziimiin kararliligim da desteklemigtir. Tiim bu
gelistirmeler, hem ag olusturma siiresini azaltmis hem de manuel miidahale ihtiyacim
minimuma indirerek kullanict bagimsizligini artirmistir. Bu sayede HEMLAB,
tamamen otomatik caligan, uctan uca ¢oziim saglayan bir HAD araci héline gelmistir.
Bu otomasyon, 6zellikle endiistriyel projelerde farkli konfigiirasyonlara hizlica adapte
olunmasini kolaylastirmastir.

HEMLAB algoritmasinin  ¢oziim verimliligini artirmak amaciyla PETSc
kiitiiphanesinin Scalable Nonlinear Equations Solvers (SNES) cercevesi entegre
edilmistir. Bu entegrasyon, dogrusal olmayan denklem sistemlerinin ¢oziimiinde
onemli avantajlar saglamistir. GMRES (Generalized Minimal Residual) ve FGMRES
(Flexible GMRES) gibi ileri iteratif ¢oziiciilerin kullanimi, yiliksek Reynolds sayili
akiglarda kararli ve hizli yakinsama saglamistir. Bu coziiciiler, karmagik akis
yapilarinda geleneksel yontemlere gore daha iyi performans gostermistir. Coziicii
parametrelerinin dinamik olarak ayarlanabilmesi sayesinde farkli akis rejimlerinde
otomatik optimizasyon saglanmustir. ILU(k), blok Jacobi ve eklemeli Schwarz gibi
cesitli 6n kosullandiricilar karsilastirilarak problem tipine gore en uygun yontemler
belirlenmistir. Bu karsilastirmalar sonucunda yakinsama hizinda 6nemli iyilesmeler ve
biiyiik 6lgekli 3B simiilasyonlarda ciddi hesaplama siiresi kazanimlar1 elde edilmistir.
Ayrica, Jacobian matrisinin agik¢a olusturulmasindan kaynaklanan hesaplama yiikiinii
azaltmak icin Jacobian-Free Newton-Krylov (JFNK) yontemi uygulanmistir. Bu
yontemde sonlu fark yaklagimlariyla bellek tiiketimi optimize edilmistir. Yiiksek
dogruluk gerektiren durumlar i¢in ise el ile hesaplanan analitik Jacobian matrisleri
gelistirilmis ve bu matrisler sonlu fark yaklasimi ile karsilastirilarak dogruluklar: test
edilmistir. JFNK yonteminde sonlu fark adim boyutunun dinamik optimizasyonu,
yakinsama karakteristigini 6nemli Sl¢iide iyilestirmisgtir.

HEMLAB’in ilk versiyonu yalmzca standart Spalart-Allmaras (SA) tiirbiilans
modeliyle sinirliyken, bu tezde dnemli modelleme iyilestirmeleri gerceklestirilmistir.
Ayrilmig akis bolgelerinde negatif tiirbiilans viskozitesini isleyebilen SA-neg modeli,
Newton metodunun quadratic yakinsama oOzelligini yakalamamiza olanak verdigi
icin stall bolgesindeki akislar daha dogru tahmin edilebilmistir. Gegis akislarinin
modellenmesinde kullanilan f;> fonksiyonu iizerinde yapilan iyilestirmeler, 6zellikle
slat ve flap gibi elemanlar {izerindeki laminer-tiirbiilans gecis bolgelerindeki ¢oziim
dogrulugunu artirmistir. Ayrica, donel akiglar ve akis ¢izgisi egriliklerini dikkate
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alan SA-QCR-2000 modeli, kanat ucu girdaplar1 gibi karmasik akig yapilarinin
simiilasyonunda basarili sonuclar vermistir. SA modeline uygulanan ikinci mertebeden
ayriklastirma semasi, sayisal difiizyonu azaltarak ince sinir tabakalarinin ¢oziim
kalitesini artirmistir.

HLPW-3, HLPW-4 ve HLPW-5 test vakalar1 iizerinde yapilan kapsamli simiilasyonlar,
gelistirilen adaptif yontemlerin aerodinamik yiikler tizerindeki olumlu etkisini ac¢ikca
ortaya koymustur. Tasima katsayist (Cr), siriikleme katsayist (Cp) ve basing
dagilimlarinda 6nemli iyilestirmeler elde edilmistir. CRM-HL geometrisi i¢in yapilan
simiilasyonlarda, adaptif aglar sayesinde geleneksel sabit aglara kiyasla daha az
ag noktasiyla daha dogru sonuglara ulasilmis ve hesaplama maliyetlerinde 6nemli
tasarruf saglanmugtir. Farkli hiicum acilariyla yapilan testler, 6zellikle stall bolgelerinde
gelistirilen yontemlerin etkinligini ortaya koymustur. Riizgar tiineli verileriyle yapilan
karsilastirmalar, elde edilen sonuclarin deneysel verilerle uyum icinde oldugunu
gostermistir. Ayrica, JAXA Standard Model (JSM) ve NASA Common Research
Model (CRM) geometrileri iizerinde yapilan 2B ve 3B simiilasyonlar, adaptif ag
yontemlerinin farkli konfigiirasyonlarda sagladigi basariyr kamtlamistir. Bu testler
sayesinde ag adaptasyonunun ag eleman sayisindan bagimsiz c¢oziime katkisi da
gosterilmis; farkli baglangic aglariyla yapilan analizler sonrasinda sonuclarin agdan
bagimsiz hale geldigi ortaya konmustur. CRM-HL Wing-Body konfigiirasyonunda
farkli tiirbiilans modellerinin kargsilastirilmasi, Onerilen metodolojinin ¢esitli ge-
ometrilerdeki basarisin1 desteklemistir.

Bu tez kapsaminda gelistirilen metrik tabanli ag uyarlama metodolojilerinin HEMLAB
coziiciisiine entegre edilmesi, sayisal yontemlerin iyilestirilmesi ve tiirbiilans modeli
seceneklerinin artirilmasi sayesinde yiiksek tasima aerodinamigi simiilasyonlarinda
onemli gelismeler elde edilmistir. Elde edilen bulgular, hem akademik arastirmalar
hem de endiistriyel uygulamalar agisindan degerli katkilar sunmaktadir. Calismanin
sonuclari, yiiksek tagima sistemlerinin tasarimi ve optimizasyonu siireclerinde 6nemli
zaman ve maliyet tasarrufu saglama potansiyeline sahiptir. Gelecek caligmalar
kapsaminda, gecis modelleme tekniklerinin daha da gelistirilmesi, laminer-tiirbiilans
gecisinin daha dogru tahmin edilmesini saglayabilir. Ayrica paralel hesaplama ve GPU
tabanl ¢oziicii entegrasyonu, biiyiik olcekli simiilasyonlarin hizini artirabilir. Yiiksek
mertebeden ayriklastirma semalarinin uygulanmasi, sayisal difiizyonu azaltarak ¢oziim
dogrulugunu 1iyilestirebilir. Makine 68renmesi tabanli yontemlerin ag adaptasyon
siireclerine entegrasyonu ise hesaplama verimliligini daha da artirma potansiyeline
sahiptir.

Sonug olarak, bu ¢alisma yiiksek tasima sistemlerinin tasarim ve analiz siireclerinde
HAD yoOntemlerinin giivenilirligini 6nemli Olc¢iide artirmaktadir. Tezde gelistirilen
metodolojiler, yalnizca havacilik degil; otomotiv, enerji ve riizgar tiirbini tasarimi gibi
alanlarda da uyarlanabilir niteliktedir.
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1. INTRODUCTION

Many developments and research efforts are still ongoing to achieve efficient civil
transportation systems in terms of operational costs, payloads, fuel consumption,
weight, and aerodynamic noise emissions. Therefore, high-lift configurations are still
being developed to meet these requirements. These configurations as shown in Figure
1.1 can provide a higher lift coefficient before an aircraft enters the stall region.
However, the challenge lies in the fact that the flow physics are quite complex due to
the complexity of the geometry. This complexity arises from additional equipment such
as slat, slat bracket, flap, fairing, nacelle, leading edge strake, pylon as shown in Figure
1.2. These multi-element systems have multiple boundary layers, as indicated in Figure
1.3, and the interactions between these regions need to be studied in detail to achieve
the most realistic results. The same figure also highlights that flow separations and the
tip vortexes which are crucial and must be accurately simulated using an appropriate

numerical model.

Figure 1.1 : Wing tip vortex occured on the High Lift Configuration [1]

Several studies on high-lift configurations have been conducted so far, as higher lift
coefficients offer numerous benefits. For instance, findings in the literature show that a

1% increase in the maximum lift coefficient results in an additional payload capacity of
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22 passengers or 4,400 1bs under landing conditions [16]. The same study also analyzed
the results in terms of the lift-to-drag ratio (L/D). It was found that a 1% increase in
L/D leads to an additional payload capacity of 14 passengers or 2,800 1bs under take-off

conditions.

Slat bracket

Flap Fairing

Figure 1.2 : Main parts for the high-lift configurations [2]

local supersonic region
confluent shear layers

. high angle of attack
o

Figure 1.3 : Flow field around the wing section of a three element wing [3]

Apart from Figure 1.3, multi-element airfoils can have various configurations, such as
only a slat, only a flap, or both. However, the observed behaviors will differ since their
efficiencies are not the same. This phenomenon can be examined in Figure 1.4, which
compares regular airfoils without any attachments, airfoils with only a slat, only a flap,
and both slat and flap configurations in terms of lift coefficient for various angles of
attack. It can be seen that the classical airfoil without any attachments has the minimum

lift coefficient, while the maximum is achieved with the slat-flap combination.
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Figure 1.4 : Comparision of Multi Element Airfoils [4]

It should also be noted that the slat-only configuration increases the stall angle. The
curve’s trend moves horizontally with the addition of a slat, but it shifts vertically
with the addition of a flap. As shown in Figure 1.3, there are gaps between the airfoil
elements which can be increased or decreased depending on the flight condition.
Therefore the lift coefficient can vary for each condition. The possible effects of these

geometric variations are briefly explained by [17] in five major points:

e Slat Effect
Using a slat decreases the pressure peaks on the leading edge of the main body due to

the circulation occurring behind the trailing edge of the slat.

e Circulation Effect

Each part of the airfoil creates a high-velocity region for the element located behind it.
For instance, in the main body and flap area, a higher inclined velocity region forms
at the trailing edge of the main body, strongly influencing the leading edge of the flap.
Briefly, the trailing edge of the forward element induces larger circulation due to the

inclined velocity affecting the leading edge of the downstream element.

e Dumping Effect

The high-speed flow exiting the trailing edge of an upstream element (such as the
main airfoil) enters the gap between elements and effectively “dumps” into the region
ahead of the downstream element (such as a flap). This process increases the pressure

at the trailing edge of the upstream element and helps to decrease the adverse pressure
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gradient, thereby delaying or preventing flow separation. By allowing for more
efficient pressure recovery, the dumping effect enhances overall lift performance and

contributes to the cooperative aerodynamic behavior between multiple elements.

o Off-the-Surface Pressure Recovery

The velocity generated by the forward elements reduces the backward velocity to
near free-stream velocity levels. This occurs due to the absence of wall effects on the
downstream element. The reduction in velocity creates a wake region, but the absence
of the downstream element prevents a sudden drop in velocity. Thus, this is an efficient

way to reduce the strength of wakes formed behind the elements.

e Fresh Boundary Layer Effect

Each airfoil element is independent, this is allowing the creation of new boundary
layers for each element. The boundary layers of these elements are thinner compared to
regular airfoils, it keeps them stable against to the adverse pressure gradient better than
thick boundary layers. Consequently, the gap distances must be optimized to minimize

flow separation.

Another critical point that requires detailed examination is the occurrence of
the transition region. Accurate simulation of the boundary layer is essential to
capture correct flow properties. Generally, Tollmien-Schlichting inflectional instability,
laminar separation, and turbulence contamination effects are the primary causes
of transition in 2D high-lift configurations. However, it has been emphasized that
attachment-line instability must be considered for transition modeling in 3D high-lift
configurations [18]. There is no single flow regime for attachment-line transition—it
could be laminar, transitional, or turbulent. The flow field is influenced by the

attachment-line transition.

The same study also identified factors contributing to attachment-line transition,
including pressure distribution, leading-edge sweep angle, Reynolds number, surface
roughness, and flow contamination. Some of these effects will be briefly discussed in

the following sections.



1.1 Turbulence Effects on High-Lift Simulations

Among the various turbulence models, the literature suggests that the Spalart-Allmaras
(SA) turbulence model provides more accurate results. Therefore, several modifica-
tions of the SA model have been investigated. Since these models are quite complex
and non-linear, there are still aspects that need improvement. One significant finding in
the study [19] shows that the SA and SST models show good agreement at low angles
of attack (AoAs), but the SA model performs much better at higher AoAs .

For the 2D multi-element airfoil case, the effect of turbulence models on the results was
also investigated. Three different turbulence models were selected (SARC, SST k-,
and k-¢€), and all of them predicted similar results before stall. However, the maximum
lift coefficient was over-predicted by all of the models. A detailed examination of
the results revealed that the SST k- turbulence model provided the most accurate
predictions in terms of lift, drag, and moment coefficients, as well as the maximum lift

coefficient and stall angles.

The SA model over-predicted the results in this 2D case, while the k-€& model estimated
higher friction drag. Similar results were obtained for several 3D high-lift geometries
in [20]. The SA and Menter’s SST model were applied to an unstructured grid system,
and similar outcomes to the previous 2D case were achieved for the 3D simulations as
well. It was stated that the prediction of the maximum lift coefficient and stall angle
is highly sensitive to the selected turbulence model. Additionally, it was found that the

SST model provides more accurate results, especially at higher AoAs.

Another interesting outcome regarding turbulence model verification was obtained
using several turbulence models in [21]. It was shown that one of the modified models
(k- Wilcox) gave the most accurate results. Several turbulence model results were
also compared for high-lift cases in another paper in [22]. SST, TNT, and linear and
non-linear EARSM variations of the k-w turbulence models were investigated. It was
observed that there was no significant effect on the results in terms of using linear
or non-linear EARSM models. However, lift was still over-predicted, especially at

lower AoAs. These turbulence models were also utilized in [23], and the pressure



distributions were in good agreement with each other at higher AoAs. It was stated

that the k- LEA model predicts the lift coefficient more accurately than the others.

To reduce total simulation time, some turbulence models were improved, and unsteady
effects were investigated in detail using wall function approaches studied in [24]. The
results obtained with this updated turbulence model showed that computational costs
could be reduced by approximately 50%. However, the maximum lift was predicted to
be higher than the experimental data, although there was good agreement in the linear
range. Effects of the variation of k- turbulence models were also investigated by [25].
Edwards and Chandra’s modification was used for take-off cases, and the standard
Wilcox k- two-equation model was used for landing cases. The lift coefficient results
were in good agreement with experiments, while there were some discrepancies for
the drag coefficient. These results prove that the turbulence model selected has an
obvious effect on aerodynamic coefficients, so this issue should be carefully considered
in high-lift simulations. It would be beneficial to improve current turbulence models
in terms of computational cost and accuracy, as they may fail to predict aerodynamic
coefficients, stall angles, and pressure distributions accurately, especially for separated

flows.

1.2 Transition Effects on High-Lift Simulations

Accurately capturing transition effects is particularly critical for high-lift configu-
rations due to their strong influence on aerodynamic performance, including lift,
drag, and separation characteristics. A boundary layer transition model is highly
recommended for high-lift cases because the flow on slat and flap surfaces has a smaller
Reynolds number and can be considered laminar in these regions [26]. Therefore,
flow solvers that use fully turbulent conditions do not predict the transition effects

as accurately.

There are also some additional implementations performed in [25] to predict the
flow field in transition regions more accurately. The RANS-based laminar boundary
layer model and eV database method were integrated to predict the transition. This
system also automatically predicts whether the flow regions are laminar, turbulent,
or transitional. The results obtained with this model show excellent agreement with

experimental data. However, in some cases, the model needs to be improved to capture
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the transition point of laminar separations and wake regions. Also, all transition lengths

were predicted in the correct order.

1.3 Reynolds Number Effects on High-Lift Simulations

The Reynolds number effect is one of the topics investigated by researchers for high-lift
geometries. For instance, the results provided by [5] show that the Reynolds number
has two important impacts on the linear and stall regions. The first is the increase in
lift in the linear region as the free-stream velocity increases. The second impact is that
stall behavior depends on the free-stream velocity. For example, stall occurs at 12° for
a 60m/s free-stream velocity, but C, does not drop in this region. It stays at the same
level for a while and then begins to decrease. This was explained by the separation
that dominates the stall. Additionally, there are two peaks in Figure 1.5 for 40m/s and
50m/s free-stream velocities [5]. It was shown that the higher peak occurs at a lower
AoA, while the lower peak occurs at a higher AoA. The second-highest peak occurs

where the initial velocity has the lowest value (30m/s).
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Figure 1.5 : Lift coefficient distribution according to Reynolds number [5]

1.4 Grid Effects on High-Lift Simulations

In terms of grid systems, numerical simulations are carried out with both structured
and unstructured grid designs. For instance, high-lift geometries are investigated using
multi-block structured and unstructured meshes in [27]. Multi-element airfoils are used
to investigate grid dependency. To implement this, a mesh refinement approach is

applied to the unstructured mesh cases. The results obtained in [27] prove that the
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accuracy of drag prediction is strongly related to the mesh density away from the body,
where large circulations and wake regions occur. Cy, is less sensitive to grid density,
so the results obtained are similar for both structured and unstructured grids, unlike
Cp. The objective function is selected as entropy increment for the mesh refinement
process. This is an effective method since it increases the grid elements where the

number of points is crucial for accuracy.

A three-element trapezoidal wing attached to a fuselage with a full-span flap and
part-span flaps was used for 3D simulations in [27]. These were performed with both
structured and unstructured grid systems. The results were in good agreement even
for the unstructured mesh. It is also noted that unstructured grid systems require more
refinement steps to capture the wake near the trailing edge, wingtip vortices, and flow

separations, compared to structured grid systems.

In [20], 3D high-lift models were analyzed with multi-block structured and
unstructured grid systems using the SA and Menter’s Shear Stress Transport models.
Two geometries (three-element trapezoidal wing) were used, with full-span and
part-span flaps. A comparison of structured and unstructured grid systems using the
same turbulence model (SA) was provided. As an important outcome of this study,
the importance of mesh density was emphasized, especially where flow starts to
separate around the wing-fuselage junction. Another study on this topic was performed
using hybrid unstructured and block-structured grids [21]. The results showed that the
predicted lift coefficient increases as the grid is refined. It was also stated that the
accuracy of results can be improved with the adaptive grid method when using an

unstructured mesh design.

One other study emphasized the importance of the provided initial solution [28]. A
different approach for simulation was proposed for the mesh adaptation process. In
this approach, the solution starts with a certain angle of attack. Each flow solution uses
the previous one’s information through linear interpolation. It was recommended to

use a lower angle for the initial solution since it helps prevent flow separations.

The AIAA Draft Prediction Workshop series also highlights the fact that the accuracy
of numerical results is highly dependent on grid quality and resolution issues to obtain

more accurate results for aerodynamic loads. Therefore, many mesh adaptation studies



have been performed for high-lift configurations to improve grid resolution in regions

with high flow gradients.

Considering all the complex flow modeling of high-lift configurations explained so
far, it is quite challenging to accurately mimic the real flow around the wing to obtain
precise results. Hence, several high-lift workshops are organized to understand the

reliability and capabilities of CFD solvers for high-lift cases.

1.5 AIAA High Lift Workshops

The AIAA High Lift Prediction Workshop (HLPW) series is a collection of
organized events aimed at improving the understanding and accuracy of computational
fluid dynamics (CFD) simulations for high-lift configurations. These workshops
provide a structured platform for researchers and industry experts to evaluate
and compare existing CFD models against high-quality experimental data, offering
valuable insights into the strengths and limitations of different turbulence models,
numerical techniques, and meshing strategies for high-lift prediction. Each workshop
in the series focuses on specific test cases, ranging from two-dimensional high-lift
airfoils to full-scale three-dimensional aircraft configurations, often incorporating
realistic industrial geometries. Participants employ various computational approaches,
including Reynolds Averaged Navier-Stokes (RANS), large-eddy simulation (LES)
and hybrid RANS-LES methods, to predict aerodynamic performance and flow
structures. The results are then systematically analyzed to identify key sources of
discrepancies between CFD predictions and experimental measurements. Additionally,
these workshops encourage discussions on best practices, mesh adaptation techniques,

grid convergence studies, and the role of transition modeling in high-lift aerodynamics.

By encouraging collaboration between academia, industry, and government organi-
zations, the HLPW series helps earning progress in computational methodologies,
ultimately contributing to more reliable and efficient aircraft designs. The insights
gained from these workshops have led to continuous improvements in CFD solvers,
turbulence models, and meshing strategies applied for high-lift applications. In the

following sections, each workshop in the series will be briefly explained, highlighting



the key test cases, methodologies, and findings that have shaped the field of high-lift

aerodynamics.

1.5.1 High-lift prediction workshop -1

The first workshop was organized by AIAA in June 2010. The objective of the
workshop was to assess the capability of CFD solvers for predicting the performance of
swept, medium, and high-aspect-ratio wings in landing and takeoff configurations. The
NASA Trapezoidal Wing that is shown in Figure 1.6 was selected as the benchmark

geometry, and a total of 39 different results were submitted for comparison.

Figure 1.6 : NASA Langley Subsonic Wind Tunnel, AIAA 1st High Lift Prediction
Workshop [6]

To understand the effects of grid design on the results, both structured and unstructured
grid systems were used. Grid convergence studies were also performed for both grid
systems with different turbulence models at an angle of attack (AoA) of 13°. The
outcomes show that the structured grid results converge to lower values than the
experimental data, providing more accurate results with the SA turbulence model. On
the other hand, the unstructured grid results do not yield a clear outcome in terms of
the turbulence model used. Both grid systems align more closely with the experimental
data as the grid resolution increases. However, as shown in Figure 1.7, the unstructured
grid results are more accurate than those of the structured grid at the coarse level. The
grid convergence study was also conducted for an AoA of 28°. As illustrated in Figure
1.8, the results were similar to those at 13°. However, some participants predicted lower

lift coefficients compared to others. It was observed that these participants did not
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restart the converged solution obtained at lower angles of attack as the initial solution
for higher angle-of-attack simulations. This highlights the sensitivity of CFD solvers

to the initial solutions provided in simulations.
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Figure 1.7 : Convergence of the grid in terms of C; with structured [a] and
unstructured [b] grid systems for o= 13°, AIAA 1st High Lift Prediction
Workshop [6].

32¢ 3.2 & CFD, d, not SA
- F ===-m---- CFD, unstructured, SA
3 N 3 L [ ] experiment
p MRz @
B 2.8F :
6 26F -
2.4 [ : .'
o - . 003.01 3 2'4: i
22 fu O L,f ;
i “r mooomN b =
2 r 00B.01
- 2 o
1.8 [ CFD, d,notSA |- F
! ----m---- CFD, structured, SA 1.8F
16 f o cxerment - N S L
1.4 E - . | + * : | ; ' E
) 2E-05 4E-05 14 ' — —
2 a 0 2E-05 4E-05
3 [a] - [b]

Figure 1.8 : Convergence of the grid in terms of C; with structured and unstructured
grid systems o= 28°, AIAA 1st High Lift Prediction Workshop [6]

To assess the prediction capabilities of CFD solvers for stall angles, results were
presented at various AoAs using different turbulence models for two distinct wing
configurations. “Configuration-1" and “Configuration-8” correspond to "slat 30°/ flap
25°" and "slat 30°/ flap 20°", respectively. The experimental results for Configuration-8
show lower lift compared to Configuration-1. Numerically predicted results were more
accurate for Configuration-8 before the stall region. As shown in Figure 1.9, the SA
turbulence model provides more accurate predictions around the stall region compared

to the other turbulence models used.
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Figure 1.9 : Comparision of the results for several angle of attacks, using (a) SA and
(b) Other turbulence models for two configurations, AIAA 1st High Lift Prediction
Workshop [6]

Another important aerodynamic parameter that needs to be examined in detail is the
surface pressure coefficient. It is calculated for selected sections for each element
shown in Figure 1.10 separately. Obtained results were calculated by participants for
a selected location at two angles of attack using the finest structured and unstructured
grids. The results shown in Figure 1.11 were obtained using the SA turbulence model
and were captured at the 85% span position for AoA 28°. It can be clearly seen that all
results are in excellent agreement except for the flap element, particularly around the

trailing edge.

slat

main

flap

Figure 1.10 : Locations of the pressure stations, AIAA 1st High Lift Prediction
Workshop [6]
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Figure 1.11 : Distribution of the pressure COGfﬁCiCElt]fOI‘ structured (a-b-c) and
unstructured (d-e-f) grid systems in slat (a & d), main (b & e), and flap (c & f)
locations at the 85% span station for Configuration 1 with a = 28°, ATAA 1st High
Lift Prediction Workshop [6].

In Figure 1.12 [a] and [b], results are compared for two different turbulence models
at the 85% flap position for AoA 13° using several structured grid densities. The
results in Figure 1.12 [a] were obtained with the SST model, while Figure 1.12 [b]
shows results using the SA model. The obtained results reveal that the SST turbulence
model predicts flow separation more accurately around the trailing edge of the flap,
whereas the SA turbulence model fails to capture it. It can also be observed that the
results are independent of grid density for structured grid systems, suggesting that grid
convergence is achieved for structured meshes. However, for unstructured grids, shown
in Figure 1.12 [c] and [d], accuracy improves as grid resolution increases, highlighting
the importance of finer grids in capturing flow behavior. Figure 1.12 further shows
that the results obtained using tetrahedral elements [c] and hybrid elements [d] are
nearly identical on the finest grid. However, on the coarse grid, tetrahedral elements
provide better agreement with experimental data, suggesting that tetrahedral grids may
offer a more reliable solution when resolution is limited. Unlike the structured grid
results, the pressure coefficient around the trailing edge of the flap does not match

the experimental data for unstructured grid systems. This discrepancy indicates that
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the unstructured grids struggle to capture the separation and wake effects accurately,
particularly at lower resolutions. The comparison of turbulence models highlights
the superior performance of the SST model in predicting flow separation, as seen in
Figure 1.12 [a]. The SA model, shown in Figure 1.12 [b], underpredicts the extent of
separation, leading to discrepancies with experimental data. This suggests that while
the SA model is widely used for its computational efficiency, it may not be the most
suitable choice for accurately capturing high-lift flow physics, especially in regions of

strong adverse pressure gradients and separation.
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Figure 1.12 : Distribu':(ion of the pressure coefficient for structured grids with SST
and SA turbulence models, respectively (a-b), and unstructured full tet and hybrid
grid systems with the SA turbulence model (c-d) at the 85% flap station for
Configuration 1 with o = 13°, ATAA 1st High Lift Prediction Workshop [6].

Another important factor in improving the accuracy of predictions around the wingtip
is investigating the effect of viscous cross-derivative terms. This is one of the most
significant findings from the workshops for future studies. The results obtained while
neglecting these terms are shown in Figure 1.13 [a], whereas Figure 1.13 [b] presents
the solution of the full Navier-Stokes equations. Note that the same turbulence model

and grid structures are used in both cases. It can be clearly seen that the pressure
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coefficients on the wingtip show better agreement with experimental data when the

viscous cross-derivative terms are taken into consideration.
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Figure 1.13 : Effects of the cross derivative terms on the wing tip at & = 28°, using
SA turbulence model, AIAA 1st High Lift Prediction Workshop [6].
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Figure 1.14 : Effects of the turbulence models on the wing tip at oo = 28°, using
unstructured tetrahedral grids, AIAA 1st High Lift Prediction Workshop [6].

The full Navier-Stokes solution was applied using both the SA and k- turbulence
models to understand the effect of turbulence models on the wingtip. As shown in
Figure 1.14, the results obtained using the SA turbulence model are closer to the
experimental data on a fine grid. Even though the SA model provides better predictions,
some discrepancies with the experimental results remain. This issue is attributed to the
presence of brackets on the wing geometry, as shown in Figure 1.15. It was stated
that these brackets were not included in the numerical results shared so far. Only one
study accounted for the bracket effects, and its results captured the flap behavior more
accurately. However, differences were still observed at the forward span stations of the

flap.
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Figure 1.15 : Brackets on the underside of the wing that are not
included in the numerical calculations, AIAA 1st High Lift
Prediction Workshop [6]

1.5.2 High-lift prediction workshop -2

The second High-Lift Workshop continued with similar test cases, but different
aircraft were selected as benchmark geometries. The DLR-F11 model that is shown
in the Figure 1.16 is used for the test cases. This geometry is a more realistic
aircraft geometry than the previous NASA trapezoidal model. It is studied in landing
conditions with two different Reynolds numbers and the participants attended to
the workshop are listed in Table 1.1. In addition, the 2D bumps case was used for

turbulence model verification.

5

Figure 1.16 : DLR-F11 in the B-LWST Wind Tunnel, AIAA 2nd High Lift Prediction
Workshop [7]
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Table 1.1 : AIAA HLPW-2 Commitee List

Entry Number Code Name Turbulence Model

002.1 FUN3D SA

002.2 CFL3D SA

003.1+ OVERFLOW SA, SA+AFT
003.2 OVERFLOW SA-RC

003.3+ OVERFLOW SA-QCR+AFT
004.1 CFD++ SA-RC

004.2* CFD++ SA-RC

005.1 HiFUN SA

005.2+ HiFUN SA

006 FUN3D SA-RC

007.1+ CFLOW SA

007.2+ UG3 SA

007.3* CFLOW SA

008 CRUNCH CFD SST

009.1+ OVERFLOW SA

009.2* OVERFLOW SST

009.3* OVERFLOW SST-GRET
010.1+ CFD++ SA

010.2* CFD++ SST

010.3+ CFD++ K-e-Rt

011.1+ NSMB SA

011.2+ NSMB SA-Edwards
011.3* NSMB SA-salsa
012.1+ PowerFLOW LBM-VLES
012.2%* PowerFLOW LBM-VLES+trans
013.1+ UPACS SA-noft2-R
013.2* UPACS SA-noft2-R-QCR
013.3* UPACS SST-V

013.4* UPACS SST-V-QCR
013.5% TAS SA-noft2-R
013.6* TAS SA-noft2-R-QCR
014 UNICORN SGS

015.1+ CFX SST

015.2+ Fluent SST

016.1+ elsa SA

016.2%* elsa SA

017 COBRA SA

018 VULCAN Wilcox 1988

Similar to the first workshop, the effects of grid density, Reynolds number, and bracket

effects on the results were investigated.
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The SA and other turbulence models were used to validate the turbulence model. The
results denoted as 002.1 (SA) and 002.2 (SA) are the validated benchmark results for
this case, as shown in Figure 1.17 [a]. The only difference between these two results is
the grid structure: 002.1 uses an unstructured grid, while 002.2 uses a structured grid.
The dataset 013.1 (SA-noft2-R) captured the most accurate results compared to the
benchmark data. Datasets 007.1, 007.2, and 011.1 used the classical SA turbulence
model with different flow solvers. However, it is evident that the datasets 011.2
(SA-Edwards) and 011.3 (SA-SALSA) require correction. On the other hand, Figure
1.17 [b] provides insight into the grid convergence results for various test cases. The
expected behavior is for the results to converge to those of datasets 002.1 and 002.2
as the grid is refined. The figure shows that only dataset 013.1 correctly predicts the

results among the three models.
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Figure 1.17 : Validation of the turbulence model with 2D bump case, AIAA 2nd High
Lift Prediction Workshop [7].
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C, at x=0.6322

In Figure 1.18, the geometric configuration without brackets was used to compare
the results in terms of Cy, Cp, and Cy,. It can be seen that most of the results are
consistent with the experimental data for lower AoAs. However, the lift coefficient
is over-predicted as the AoA increases. Some of the results fail to capture the stall
even at AoA 22.4°. A possible reason for this issue is the exclusion of the brackets.
Subsequently, all test cases were performed under the same conditions with the
brackets. Most of the participants predicted a lower lift coefficient compared to the
experimental results. As shown in Figure 1.19, the results obtained spread out at higher

AO0AsS.
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Figure 1.19 : Force and moment calculations for the case bracket effects included for
Re =1.35 x 10° and Re = 15.1 x 10%, AIAA 2nd High Lift Prediction Workshop [7]

Transition effects on the results submitted were investigated. In Figure 1.20, a
significant increase in lift is observed due to the transition effects. The lift coefficients
were compared, and it was found that they are consistent with those of the NASA
trapezoidal wing. Another finding was that including pressure tube bundles had a small

effect, except in the stall region [7]. To observe the convergence, some participants
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analyzed the residuals. It was emphasized that high-lift cases are generally difficult to

converge for most CFD codes due to the complex flow physics around the wing.
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Figure 1.20 : Stall behavior including the transition for Re = 1.35 x 10° with the
brackets, AIAA 2nd High Lift Prediction Workshop [7]

Velocity profiles were examined at certain locations and compared with the
experimental data in Figure 1.21. It is observed that the CFD results are in good
agreement with each other at an angle of attack of 7°. However, there are some
differences at higher angles of attack, such as 18.5° degrees. It was observed that
the results were under-predicted compared to the experimental data. As shown in the
Figure 1.22, CFD results for the pressure coefficients are consistent with each other
and with the experimental data around the slat and main elements near the mid-span.
However, the results on the flap are spread out. Again, the experimental results could

not be captured, especially around the flap region.
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1.5.3 High-lift prediction workshop -3

In the 3rd High-Lift Workshop, the JAXA Standard Model and NASA-CRM (Common
Research Model) were used as benchmark geometries, and nacelle/pylon effects were
also taken into account when comparing the CFD results with the experimental data.
Additionally, 2D verification was performed for the DSMAG66 airfoil. The effects of
structured and unstructured grid systems on the results were also investigated. The
organizations attended to the workshop and their codes and turbulence models were
listed in the Table 1.2. a and b notation in the entry number field represents the new
submission added after workshop and modified after workshop, respectively. There

were three main test cases during the workshop, and the details are explained below.

Table 1.2 : HLPW3 Committee Data

Entry number Primary organization Code name Turbulence model

001.1 CARDC Mflow SA

002.1% U. Oxford OpenFOAM  SA

002.2¢ U. Oxford Star-CCM+  SA

003.1 Siemens Star-CCM+ SST

003.2 Siemens Star-CCM+ SA

003.3 Siemens Star-CCM+  Lag-EB-ke
003.4 Siemens Star-CCM+ SST-gamma
004.15 U. Tenn. COFFE SA-neg
004.2° U. Tenn. COFFE SA-neg
004.3% U. Tenn. Kestrel SA

004.4% U. Tenn. Kestrel SA

004.5° U. Tenn. KCFD BSL

004.6° U. Tenn. KCFD SA

005.1? U. Tenn. OVERFLOW SA-RC-QCR-
005.2¢ U. Tenn. OVERFLOW  SA-noft2-RC-QCR
006.1 Metacomp CFD++ SA-RC-QCR
006.2 Metacomp CFD++ SA

007.1% Boeing GGNS SA-QCR
008.1 Kawasaki Cflow SA-noft2
009.1 ISCFDC Arion SST-2003
009.2 ISCFDC Arion SST-2003
010.1% ANSYS Fluent SA

010.2% ANSYS Fluent SST[t = 1]
011.14 ANSYS Fluent BSL

012.1 JAXA TAS SA-noft2-RC
012.2 JAXA TAS SA-noft2-RC-QCR
012.3 Boeing GGNS SA-QCR
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Table 1.2 (continued) : HLPW-3 Commitee Data

013.1
016.1
016.2
016.3
017.17
017.2°
018.1
019.17
019.2¢
019.3¢
019.4¢
021.1°
022.17
022.2P
022.3¢4
023.1
023.2
023.3
023.4
024.1
025.17
026.17
026.2°
028.1
030.17
030.2°
030.3°
030.4°
030.5°
030.6°
031.1
032.1
033.1°
033.2°
034.1
035.1¢
035.2¢
035.3¢
036.17
036.2°
036.3°
036.4°
036.5"
038.1¢
039.2¢
040.1

Exa

MAI

MAI

MAI

ARA

ARA
ONERA
EMBRAER
EMBRAER
EMBRAER
EMBRAER
IAE

NASA Ames
NASA Ames
NASA Ames
Boeing
Boeing
Boeing
Boeing

U. Tokyo
CFMS

DLR

DLR

NASA LaRC
Bombardier
Bombardier
Bombardier
Bombardier
Bombardier
Bombardier
Dassault
CSC

NASA Ames
NASA Ames
U. Los Andes
U. Colorado
U. Colorado
U. Colorado
TotalSim
TotalSim
TotalSim
TotalSim
TotalSim
TotalSim
Gulfstream
ILight

PowerFLOW
LOGOS
LOGOS
LOGOS
TAU

TAU

elsa

SU2

CFD++
CFD++
CFD++
BRU3D
OVERFLOW
OVERFLOW
OVERFLOW
BCFD
BCFD
BCFD
BCFD
UTCart
zCFD

TAU

TAU
PowerFLOW
Dragon
Dragon
Dragon
Dragon
Dragon
Dragon
XFlow
Unicorn
LAVA

LAVA

SU2
PHASTA
PHASTA
PHASTA
FUN3D
FUN3D
OpenFOAM
OpenFOAM
OpenFOAM
FUN3D
FUN3D
OVERFLOW

LBM VLES

SSG/LRR-RSM-w2012

SA

SST

SA

SA-neg

SA

SA
SA-RC-QCR
SA-RC-QCR
SA-RC-QCR
SA
SA-noft2-RC-QCR
SA-noft2
SA-noft2-RC-QCR
SA-RC-QCR
SA-RC

SA

SST
SA-noft2-R
SST-V-sust
SA-neg

SA-neg
LBM-VLES
Wilcox1988CC
Wilcox1988CC
Wilcox1988CC
Wilcox1988CC
SST
Wilcox1998
WALE

Implicit SGS
SA-noft2
SA-noft2

SA

SA-noft2
SA-noft2-QCR
SA-noft2

SST

SA-neg
Y-Ret-SST

SA

SST[mod]

SA

SA

SA-noft2
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e Case 1: Grid Convergence Study

In this test case, the committee provided fixed grids, and the capability of the
CFD solvers was measured for at least one family of coarse, medium, and fine
workshop-provided meshes. The NASA-CRM wing-body system which is shown in
Figure 1.23 was used as the geometry for a nominal landing configuration without the

nacelle, pylon, tail, or support brackets.

z

A

X Y

Figure 1.23 : NASA CRM, AIAA 3rd High Lift Prediction Workshop [8]

Case la: Full Chord Flap Gap

The test case involves a configuration with a high-lift system that features a full-chord
flap on a wing with a gap between the flap and the wing surface. The flow conditions for
this case are detailed in Table 1.3. The purpose of this test case is to evaluate the ability
of aerodynamic prediction methods to accurately simulate the flow characteristics and
performance of a high-lift system with a significant gap between the flap and the wing.
This gap affects the airflow around the wing, particularly the lift, drag, and moment
coefficients, and plays a role in the overall aerodynamic efficiency of the high-lift
configuration.

Case 1b: Full Chord Flap Gap with Adaptation

It is requested to conduct the necessary grid convergence study by employing
grid refinement through automatic solution adaptation and/or solution-guided grid
regeneration, using the parameters specified in Case 1a.

Case Ic: Fartially-sealed Chord Flap Gap

It is requested to obtain numerical solutions specifically for the medium grid, using the

flow conditions outlined in Case la. The solution should include a partial chord seal
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Table 1.3 : Flow conditions for Case la

Mach Number 0.2
Re Number 3.26 x 10°
Angle of Attack 8.0°,16.0°

Mean Aerodynamic Chord 275.8inch

Reference Static Pressure 14.7psi

Reference Static Temperature 518.67°R

between the inboard and outboard flaps, as well as between the inboard flap and the
side of the body.

Case 1d: Partially-sealed Chord Flap Gap with Adaptation

It is requested to conduct the necessary grid convergence study by implementing
grid refinement through automatic solution adaptation and/or solution-guided grid
regeneration, using the parameters specified in Case Ic.

e Case 2: Nacelle Installation Study

As shown in the Figure 1.24, the JAXA Standard Model (JSM), which represents a
wing-body high-lift system, is examined in a nominal landing configuration, featuring
a single-segment baseline slat and a single-segment 30° flap, with support brackets
and the option for nacelle/pylon inclusion or exclusion. The experiment utilized a
semi-span model with a 60 mm peniche standoff, but the requested computations are

to be conducted in “free air.”

Figure 1.24 : JAXA, AIAA 3rd High Lift Prediction Workshop [8]
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Case 2a: Nacelle/Pylon OFF

This test case examines a wing-body high-lift configuration without the nacelle and
pylon and the flow conditions are detailed in Table 1.4. The configuration is modeled
with the wing-body system as the baseline, and the effects of the nacelle and pylon
on the aerodynamic performance are excluded. This case is designed to evaluate
the performance of the high-lift system under ideal conditions, where the additional
drag and flow interference caused by the nacelle/pylon assembly are not present.
The primary goal of this case is to assess the baseline aerodynamic characteristics of
the wing-body system in its clean form and provide a reference for comparison with

configurations that include nacelle/pylon components.

Table 1.4 : Flow conditions for Case 2a

Mach Number 0.172

Re Number 1.93 x 106

Angle of Attack 4.36°, 10.47°, 14.54°, 18.58°, 20.59°, 21.57°
Mean Aerodynamic Chord 529.2 mm

Reference Static Pressure 14.458 psi

Reference Static Temperature 551.79°R

Case 2b: Nacelle/Pylon OFF with Adaptation

It is requested to implement grid refinement through automatic solution adaptation
and/or solution-guided grid regeneration to obtain the necessary flow solutions, using
the parameters specified in Case 2a.

Case 2c: Nacelle/Pylon ON

It is requested to obtain flow solutions for a high-lift configuration with the
nacelle/pylon assembly activated, using the parameters outlined in Case 2a.

Case 2d: Nacelle/Pylon ON with Adaptation

It is requested to generate flow solutions for a high-lift configuration with the
nacelle/pylon assembly activated, using the parameters specified in Case 2a.
Grid refinement will be performed through automatic solution adaptation and/or

solution-guided grid regeneration for this purpose.
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e Case 3: Turbulence Model Verification Study

B I

Figure 1.25 : DSMAG661, ATAA 3rd High Lift Prediction Workshop

Turbulence model verification was performed for the DSMAG661 airfoil which is given
in the Figure 1.25. The main focus was on measuring the flow field in the near
wake region, as well as the forces acting on the airfoil. This airfoil was selected for
the verification process because it has multiple elements, providing insight into the
flow physics of high-lift configurations. The wakes from upstream elements affect the
downstream elements in high-lift geometries, which is useful for investigating a 2D
case. On the other hand, the verification of 3D cases is more difficult due to the fact
that a very high number of grids are required, which increases simulation time and

computational cost.

Most of the participants in the third workshop used a computational domain with a 20c
length. Domains with a 500c length were also used, but only a small increase in lift

was observed (around 0.0006).

The results obtained with the solvers CFL3D and FUN3D, both of which use the SA
turbulence model, were validated with the manufactured solutions. Therefore, these
results were considered as the reference benchmark results. It was noted that the
turbulence models SA-noft2 and SA-neg had no impact on the results compared to
the standard SA solution. Six of the 19 results were successfully verified in terms of
the SA turbulence model, as shown in Figure 1.26. Figure 1.27 shows that eight of the
solvers (CFL3D, FUN3D, Kestrel/COFFE, CFD++, OVERFLOW, BCFD, TAU, and
LAVA) have excellent agreement in terms of the velocity profiles. These are calculated

using the SA, SA-noft2, and SA-neg turbulence models.

As can be seen in Figure 1.28, the CFD results for the HL-CRM did not converge to an
exact solution as the grid was refined. The trend of the curve showed an increase in lift,
but a decrease was observed for the moment coefficient. For the drag coefficient, there

was no clear trend, unlike the lift curve. On the other hand, the adaptive grid results,
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shown with the red lines in Figure 1.28, indicate that the grid starts to adapt in regions
where a finer mesh is needed. Therefore, fewer grid points are sufficient to obtain more

accurate results.

Numerical solvers and turbulence models were verified with the 2D case, and the
results obtained appear to be more consistent than those of the 3D HL-CRM case.
The JSM (JAXA Standard Model), both with and without nacelle/pylons, was also
selected as the benchmark geometry for validation. It was concluded that the grid has
a significant impact on the results, especially in regions where the lift is maximum.
Transition effects were also found to be important for the JSM in terms of the lift
coefficient. Figure 1.29 shows oil flow visualization for the JSM. The oil flow patterns
reveal surface streamlines, boundary layer separation, and vortex structures on the

high-lift wing configuration with deployed slats and flaps.
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Figure 1.26 : Verification of the drag coefficient for several grid resolutions, AIAA
3rd High Lift Prediction Workshop [8]
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Figure 1.27 : Verification of the velocity profiles for several grid resolutions, ATAA
3rd High Lift Prediction Workshop [8]

30



20 25

24
2.3 =~
g'22 \
i \
2.1
I I \\,\\
\;H
15 2.0 \
b
— [10M] [100M] [10M]
1'4| 1 1— 1 ) 19 = el
PR R I S R e I S R | I M B —
0 1E-05 2E-05 3E-05 4E-05 0 1E-05 2E-05 3E-05 4E-05
N-2/3 N-2/3
[b]
0.20
0.19
o 0.17
0.16
0.15
| (foom 5 | [foom ow]
—_ T R R R R M R
0 1E-05 2E-05 3E-05 4E-05 0 1E-05 2E-05 3E-05 4E-05
N-213 N-213
[c] [d]
01r 01 F
P
i | /
02 0.2F /!
R

T

L1 - L L1 I - L
2E-05 3E-05 4E-05 2E-05 3E-05 4E-05
N3 N2°

[e] [f]

Figure 1.28 : Grid convergence results for HL-CRM where o=8° and a=16°, AIAA
3rd High Lift Prediction Workshop [8]
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[b]

[l [d]
Figure 1.29 : Oil flow pictures for JSM, AIAA 3rd High Lift Prediction Workshop [8]

1.5.4 High-lift prediction workshop -4

The High-Lift Workshop-4 was organized in 2021. The NASA High Lift Common
Research Model (CRM-HL), shown in Figure 1.30, was investigated by participants
to calculate the maximum lift coefficients and high-lift characteristics at pre- and

post-stall angles of attack in landing/take-off configurations.

Another 2D geometry, shown in Figure 1.39, derived from the flap, main, and slat
sections, was used for validation cases. The studies conducted during the workshop
will be explained in the results section, including our studies, as we also participated
in the workshop as committee members. All the test cases studied by the committee
members are listed below and compared with the wind tunnel data shown in the Figure
1.31. The participants attended to this workshop and the code used by them are listed
in the Table 1.5.
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Figure 1.30 : High lift NASA Common Research Model (CRM).

Table 1.5 : HLPW-4 Commitee Members

Entry Number Primary Organization Code Name

H-004 MIT SANS

H-005 U. Tennessee Kestrel/COFFE
H-012 ONERA NXO CC-CV
H-013 Princeton maDG

H-023 Boeing GGNS-T1
A-002 INRIA Wolf

A-004 NASA LaRC FUN3D
A-013 MIT SANS

R-004 JAXA TAS

R-008 NASA LaRC FUN3D
R-009 Hexagon scFLOW
R-011 Indian Inst. Sci. HiFUN
R-015 NASA LaRC USM3D
R-019 Embraer CFD++
R-021 Zenotech zCFD

R-025 NASA Ames LAVA

R-028 ICUBE NSMB

R-032 Seoul Nat. U. ACTFlow
R-034 Poly. Montreal CHAMPS
R-037 Boeing OVERFLOW
R-043 ARA TAU

R-050 TU Braunschweig TAU

R-054 QinetiQ Fluent

R-057 Kawasaki Heavy Cflow

R-059 Siemens STAR-CCM+
R-060 Flexcompute Flow360
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Table 1.5 (continued) : HLPW-4 Commitee Members

Entry Number

Primary Organization Code Name

A-025
A-026
A-031
L-001
L-004
L-005
L-016
L-038
L-053
W-020
W-021
W-030
W-031
W-032
W-034
W-047
W-049
W-050

Boeing

Istanbul Tech. U.
U. Tennessee
Amazon

Virgin Galactic
U. Tennessee
NASA Ames
DLR

Kawasaki Heavy
NASA Ames
Stanford

KTH

Boeing

Dassault Sys.
BSC

U. Kansas
Tohoku U.
NASA LaRC

GGNS-T1+EPIC
HEMLAB+PyAMG
Kestrel/COFFE
CFD++

FUN3D
Kestrel/KCFD
LAVA

TAU

Cflow

LAVA

charLES

Euler Real Flight Sim
BCFD
PowerFLOW

Alya

hpMusic
FVHFC-ACE
FUN3D

Figure 1.31 : CRM-HL in QinetiQ 5m Wind Tunnel [9]

e Case 1 - Flap Deflection Study

In order to compare and assess the capability of CFD methods around the trailing

edge, flap deflection increments are studied. All simulations are requested from the

committee members at three flap deflections with a constant angle of attack and
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Reynolds number.

Case la: Comparison with QinetiQ WT Data

In this sub-case the results obtained with the flow conditions given in the Table 1.6 are

compared with the wind tunnel data.

Table 1.6 : Flow conditions for Case la

Mach Number 0.2

Re Number 5.4910°

Angle of Attack 7.05° (wall corrected)
Mean Aerodynamic Chord 275.8inch
Reference Static Pressure 24.67 psi
Reference Static Temperature 521.0°R
Semi-Span Reference Area 29736.0in?

Moment Reference Center x = 1325.9 inches,y = 0.0 inches, z = 177.95 inches

3 diffrerent geometries:
40° /37° inboard/outboard (nominal)
37°/34° inboard/outboard
Flap Deflection 43° /40° inboard/outboard

Case 1b: Grid Convergence for Nominal Landing Configuration

Flow solutions are requested for the CRM-HL landing configuration with a nominal
40°/37° inboard/outboard TE flap setting, using refined fixed grids to evaluate grid
convergence. At a minimum, three mesh-family files provided by the workshop should

be used by committee members.

The results obtained for this case during the workshop are compared in terms of
lift, drag, and moment coefficients, as shown in Figure 1.32. The x— axis represents

the characteristic length, calculated as h = N-1/3

since it is a 3D geometry. As
the mesh spacing decreases, the differences between submissions become smaller,
and the general trend is towards higher lift. Although the variation in the drag
coefficient, shown in Figure 1.32 [b], decreases with mesh refinement, the trends of
each submission appear more distinct compared to those for lift and pitching moment.

Figure 1.32 [c] presents the pitching moment coefficient, where the differences
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between submissions decrease with smaller 7 , and the trend indicates a more negative

pitching moment with mesh refinement.

In Figure 1.33, total skin friction contours for four submissions are presented. Each
subfigure caption includes the submission identifier, mesh size, and metric formulation.
On the wing’s upper surface, slat bracket wakes form stripes, while the wakes of flap
track fairings disrupt the flow through the gap between the main element and flaps,
creating a separated flow region with low skin friction, represented by a black contour
on the flap. The steps in the leading edge generate vortices that scrape the upper surface
boundary layer. Nacelle chine corner vortices leave an imprint on the nacelle. These
features are consistent across submissions, with A-025.1 in Figure 1.33 [c] and A-026

in Figure 1.33 [e] showing less distinct slat bracket wakes.

The pressure coefficient for each section is given in Figure 1.35, 1.36 and 1.37. The

locations of the sections can also be seen in Figure 1.34.
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Figure 1.32 : Mesh convergence in terms of lift, drag, and moment coefficient for
Case 1 [10]
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Skin friction 1:\_ X

CFD VIEW 1 CFD VIEW 1
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[e] (f]
Figure 1.33 : CRM-HL skin friction contours at 7.05° angle of attack where [a] uses
the lift metric by A-002, [b] is the multiscale metric by A-004, [c] is the multiscale
metric by A-025.1, [d] is the drag metric by A-025.2, [e] is the multiscale metric by
A-026, and [f] is the multiscale metric by A-031 [10].
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Figure 1.34 : CRM-HL pressure coefficients measurement locations [10].
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Figure 1.35 : CRM-HL pressure coefficients for the slat [a], wing [b] , and flap [c] at

Section B [10].
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Figure 1.36 : CRM-HL pressure coefficients for the slat [a], wing [b], and flap [c] at
Section E [10].
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Figure 1.37 : CRM-HL pressure coefficients for the slat [a] and wing [b] at Section

G [10].



o Case 2 -Cy gy Study

In order to measure the maximum lift coefficient using CFD methods, numerical
solutions are requested. Simulations should be performed in free air with the CRM-HL
flow physics, and the wind tunnel walls should be modeled to compare the results with
wind tunnel data.

Case 2a: Flow Physics Exploration for Future WT Testing

This case focuses on investigating key flow physics relevant to future wind tunnel (WT)
testing of high-lift configurations. The objective is to analyze critical aerodynamic
phenomena, such as flow separation, wake interactions, and boundary layer behavior,
to guide the design of future experimental campaigns. Numerical simulations are
performed in a free-air setting to assess potential challenges and refine WT testing

strategies. The flow conditions are detailed in Table 1.7.

Table 1.7 : Flow conditions for Case 2a.

Mach Number 0.2
Re Number 5.4910°
2.78°,7.05°,11.29°, 17.05°,
Angle of Attacks 19.57°, 20.55°, 21.47° (wall corrected)
Mean Aerodynamic Chord 275.8 inch
Reference Static Pressure 24.67 psi
Reference Static Temperature 521.0°R
Semi-Span Reference Area 29736.0 in?
Moment Reference Center x = 1325.9 inches,y = 0.0 inches,z = 177.95 inches
Flap Deflection 40° /37° inboard/outboard (nominal)

Case 2b: Comparison with QinetiQ WT Data

This case involves comparing CFD predictions with experimental data obtained from
QinetiQ wind tunnel tests. The primary goal is to evaluate the accuracy of different
numerical methods in replicating measured aerodynamic forces, moments, and surface
pressure distributions. By benchmarking CFD results against QinetiQ data, this case
aims to assess model fidelity and identify areas for improvement in high-lift flow
simulations. The details of the simulations are listed in Table 1.8.

The results obtained for Case 2 are compared in terms of angle of attack, lift, and drag
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Table 1.8 : Flow conditions for Case 2b

Mach Number 0.2

Re Number 5.49109
1.99°,5.98°,9.98°, 15.48°,

Angles of incidence in tunnel 17.98°, 18.97°, 19.98° (uncorrected)

Mean Aerodynamic Chord 275.8 inch

Reference Static Pressure 24.67 psi

Reference Static Temperature 521.0°R

Semi-Span Reference Area 29736.0 in®

Moment Reference Center x = 1325.9 inches,y = 0.0 inches, z = 177.95 inches
Flap Deflection 40°/37° inboard/outboard (nominal)

coefficients. Figure 1.38 [a] shows the lift coefficient results for each angle of attack.
A-004.1 experienced incomplete iterative convergence, especially for the SA equation,
which might be preventing the sudden loss of lift and more negative pitching moment
observed post-stall in other submissions with complete iterative convergence. In Figure
1.38 [b], the drag polar is shown, and the scatter at 2.78° narrows the difference with
the experiment at 11.29° for some participants. A-004.1 exhibits higher lift/drag and
a more negative pitching moment in Figure 1.38 [c], approaching the maximum lift
coefficient compared to submissions with machine-level iterative convergence. The
results obtained with the adaptation committee submissions predicted lower lift than
the experiment at high angles of attack, both before and at maximum lift, possibly due

to variations in flow separation patterns.
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Figure 1.38 : Distribution of the lift, drag, and moment coefficients in terms of angle

e Case 3 -Turbulence Model Verification Study

of attack for Case 2 [10].

The test case features a simplified two-dimensional (2-D) multi-element airfoil

configuration, previously employed in the 2020 AIAA Aviation GMGW Special

Session. Flow conditions for this case are listed in Table 1.9. The primary objective

of this exercise is to demonstrate the accurate and consistent implementation

of the standard Spalart-Allmaras (SA) turbulence model within the context of

Reynolds-Averaged Navier-Stokes (RANS), as outlined on the NASA TMR website.

Case 3a: Turbulence Model Verification

((C =

Figure 1.39 : 2D-CRM Multi Element Airfoil.
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Table 1.9 : Flow conditions for Case3a

Mach Number 0.2
Re Number 5.0 x 109
Angle of Attacks 16°
Mean Aerodynamic Chord 1.0m
Ratio of Specific Heats y 1.4
Reference Static Temperature 272.1°K
Prandtl Number 0.72
Turbulent Prandtl Number 0.9
Reference Static Pressure 14.7 psi
Vfreestream/ Voo 3.0

The results obtained by the mesh adaptation committee are presented in the figures

below. Figure 1.40 [a] illustrates the lift coefficient, while Figure 1.40 [b] shows the

drag coefficient. The x-axis represents the characteristic length, which is calculated

as h=N"Y2  since it is a 2D geometry. The gray lines without symbols, identified

as Turbulence Modeling Resource (TMR), represent results obtained using uniformly

refined, expert-crafted meshes. The adapted-mesh results demonstrate convergence

within the range Cy, = [3.799 — 3.802] and Cp = [0.0605 — 0.0607] .

Notably, the TMR results have not converged. On the other hand, the results obtained

with goal-oriented adaptation methods exhibit more rapid convergence to fine-mesh

forces compared to multi-scale methods.
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Figure 1.40 : Convergence of the lift and drag coefficients for 2D-CRM case [10].
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1.5.5 High-lift prediction workshop -5

The last High-Lift Prediction Workshop (HLPW-5) is organized in August 2024. This
workshop is the final installment in a series of workshops focused on advancing
the accuracy and reliability of high-lift prediction methods. It aims to assess the
performance of computational fluid dynamics (CFD) models and turbulence models
in predicting aerodynamic forces, moments, and flow characteristics for high-lift
configurations, such as multi-element airfoils and complex geometries. The attendees

listed in the Table 1.10 for adaptation focus group.

Table 1.10 : Attendee List for the HLPW-5 Adaptation Focus Group

Submission Turbulence Model Solver Mesher
A-002 SA HEMLAB pYAMG
A-003.1 SA T1 EPIC
A-003.2 SA-R-QCR2000 TI EPIC
A-003.3 SA BCFD EPIC
A-004.1 SA WOLF FEFLO.A
A-004.2 SA-R-QCR2000  WOLF FEFLO.A
A-006.1 SA Fluent PUMA
A-006.2 SST Fluent PUMA
W-001 None Adaptive Euler -

Figure 1.41 : CRM-HL Wind Tunnel
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Three main test cases have been requested from the committee members, which are
explained below. As with previous workshops, participants will provide simulation
results for a set of predefined test cases. These results will be compared with
experimental data which is studied in the wind tunnel shown in Figure 1.41 to evaluate
the effectiveness of different computational approaches. The goal of HLPW-5 is to
push the boundaries of high-lift prediction, offering valuable insights for the design of

future aircraft configurations.

e Case 1 - CRM-HL Wing-Body Verification

This test case uses the CRM-HL Wing Body (CRM-HL-WB) geometry, as given in
Figure 1.42. This configuration closely resembles the simplest version of Test Case
2, excluding the empennage and flap fairings. Details of the flow conditions can be
found in Table 1.11. The results obtained for Case 1 are analyzed separately for SA

and SA-QCR-2000 models in terms of mesh convergence.

Figure 1.42 : CRM-HL Wing Body Configuration

Figure 1.43 presents the mesh convergence trends for Test Case 1 using the SA model.

1/3 , where N

The x-axis represents a characteristic mesh length, defined as h = N~
corresponds to the number of control volumes or degrees of freedom. As h approaches
zero, the characteristic mesh length diminishes, representing an infinitely refined
mesh with an extremely large N. Submissions A-002, A-003.1, and A-004.1 exhibit
a mesh convergence pattern similar to most of the selected Fixed Grid RANS TFG
submissions. However, A-003.1 and A-004.1, which employ a goal-based adaptation
strategy, achieve fine-mesh accuracy on relatively coarser meshes than A-002, which

follows a multiscale adaptation approach. The convergence of A-006 stalls, likely due

to the subdivision of interior mesh polyhedra while the surface and boundary layer
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Table 1.11 : Flow conditions for Test Case 1 (CRM-HL-Wing-Body)

Mach Number 0.2

Re Number 5.6 x 106
Angle of Attacks 11.0°
Mean Aerodynamic Chord 275.8 inch
Reference Static Temperature 521.0°R
Semi-Span Reference Area 29736.0 in?
Moment Reference Center x = 1325.9 inches,y = 0.0 inches,z = 177.95 inches
Prandtl Number 0.72
Turbulent Prandtl Number 0.9
Vfreestream/ Voo 3.0
Ratio of Specific Heats 7y 1.4

mesh remain unchanged. A-002, A-003.1, and A-004.1 refine tetrahedral meshes to

ensure metric conformity across the interior, boundary layers, and surfaces.
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Figure 1.43 : Distribution of the lift, drag, and moment coefficients with SA model
for Case 1 [11].
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Additionally, Figure 1.44 illustrates the same case using the SA-R-QCR2000 (C,o; =
1.0) model. Submission A-003.2 shows a trend toward fine-mesh values of the selected
Fixed Grid RANS TFG submissions, even at larger 4 or smaller N. The differences in
fine-mesh lift, drag, and pitching moment between SA-R-QCR2000 (C,,; = 1.0) and
SA highlight the sensitivity of this test case to variations in SA turbulence models. This
sensitivity suggests that Test Case 1 serves as a valuable verification case for assessing

the impact of different SA variants.
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Figure 1.44 : Distribution of the lift, drag, and moment coefficients with QCR model
for Case 1 [11].

e Case 2 - Configuration Build-up

It was requested to perform numerical simulations using four different configurations
of the classical CRM-HL Wing-Body configuration. Each configuration used in this
case is shown in Figure 1.45 [a], [b], [c], and [d], and their flow conditions are listed

in Table 1.12.
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Table 1.12 : Flow conditions for Test Case 2

Mach Number 0.2
Re Number 5.4 x 10° (subcase 2.1), 5.6 x 10° (subcases 2.2 - 2.4)

6.0°,10.0°,12.0°,13.0°,14.0° (subcase 2.1)
6.0°,10.0°,17.7°,20.0°,21.5°,23.0°,23.8° (subcase 2.2)
6.0°,10.0°,14.0°,16.0°,17.7°,20.7°,23.5° (subcase 2.3)

Angle of Attacks 7.6°,10.0°,14.0°,16.0°,17.7°,19.7°,23.6° (subcase 2.4)
Reference Static Temperature 518.67°R
Reference Static Pressure 14.696 psi

S

Case 2.1 - Wing-Body with HV Case 2.2 - Wing-Body-Slat with HV
(CRM-HL-WBHV) [a] (ONERA_LRM-WBSHV) [b]

Wing-Body-Slat-Flaps-Nacelle with HV
(ONERA_LRM-LDG) [d]

Figure 1.45 : Various configurations for CRM-HL Case 2, each labeled with their
respective case numbers and descriptions.

Case 2.3 - Wing-Body-Slat-Flaps with
HV (ONERA_LRM-WBSFHV) [c]

Figure 1.46 presents the ADAPT TFG submissions for Case 2.1 alongside for selected
submissions. Due to the clean wing and body configuration in Case 2.1, the differences
among the ADAPT TFG submissions remain minimal. Below a 14° angle of attack,
the variation between methods is relatively low and aligns with the trends observed in
Case 1. This suggests that incorporating the vertical and horizontal tail surfaces does

not substantially increase the level of variation in the results.
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Figure 1.46 : Distribution of the lift, drag, and moment coefficients for Case 2.1 [11].

Figure 1.47 shows the submissions for Case 2.2. Among these results, W-001 utilizes
an adapted unsteady inviscid approach, while the remaining entries employ adapted
steady RANS methods. While W-001 exhibits similar lift and drag characteristics to

the RANS methods, its pitching moment trends differ.

Generally, the ADAPT TFG submissions demonstrate higher lift, lower drag, and
a more negative pitching moment compared to the Fixed Grid RANS submissions.
Additionally, the variation among ADAPT TFG submissions is lower than that
observed in the Fixed Grid RANS cases.
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Figure 1.47 : Distribution of the lift, drag, and moment coefficients for Case 2.2 [11].

Figure 1.48 gives information for the Case 2.3 alongside Fixed Grid RANS TFG
submissions. Compared to the simpler Case 2 geometries, the number of submissions
is lower, while the differences between them have increased. The presence of trailing
edge flaps in Case 2.3 leads to higher lift and circulation, which contributes to the
increased variation among methods. Submission A-004.1 produces lower lift and
drag compared to submission A-006.1. Additionally, A-004.1 exhibits an increase in
drag and pitching moment slopes at a lower angle of attack than A-006.1, indicating
different aerodynamic behavior. The adapted inviscid method, W-001, shows distinct
lift and pitching moment trends compared to the RANS-based methods, further

emphasizing the effect of different modeling approaches in this case.
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Figure 1.48 : Distribution of the lift, drag, and moment coefficients for Case 2.3 [11].

The results for the Case 2.4 can be found in the Figure 1.49. Compared to other simpler
Case 2 geometries, the number of submissions is lower, and the differences between

them are similar to those observed in Case 2.3.

The introduction of the nacelle and pylon in Case 2.4 results in a smaller increase
in variation compared to the addition of trailing edge flaps in Case 2.3. Similar to
Case 2.3, submission A-004.1 produces lower lift and drag than submission A-006.1.
Additionally, A-004.1 shows an increase in pitching moment slope at a lower angle of
attack than A-006.1, indicating a shift in aerodynamic behavior. While the adapted
inviscid submission W-001 captures overall trends, its drag and pitching moment
deviate from the RANS submissions at higher angles of attack. W-001 aligns with
some lift and drag characteristics of the RANS submissions, but its pitching moment

remains more negative at higher angles of attack.

The addition of the nacelle and chine in Case 2.4 may enhance the influence of large

vortical structures, which are more prominently captured by the inviscid method. This
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could explain the differences in angle-of-attack trends between W-001 and the RANS

submissions, distinguishing Case 2.4 from Case 2.3, where such trends were more

aligned.
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Figure 1.49 : Distribution of the lift, drag, and moment coefficients for Case 2.4 [11].

e Case 3 - Reynolds Number Study

Test Case 3 employs the NASA 5.2% model geometry in the standard LDG
configuration, as shown in Figure 1.50. This setup includes nominal inboard/outboard
trailing edge (TE) flap deflections of 40°/37°, nominal 30°/30° inboard/outboard
leading-edge (LE) slat settings, along with the inclusion of the nacelle, pylon, nacelle
chine, LE brackets, and TE support fairings, while omitting the landing gear, vertical
tail, and horizontal tail. Further details about the flow conditions can be found in Table
1.13. No results were obtained for this case by the committee members during the

workshop.
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Figure 1.50 : NASA 5.2% model geometry in the standard LDG

configuration

Table 1.13 : Flow conditions for Test Case 3

Mach Number 0.2
1.05 x 10° (subcase 3.1)
5.49 x 10 (subcase 3.2)
16.0 x 10° (subcase 3.3)
Re Number 30.0 x 10° (subcase 3.4)
Angle of Attacks 6—10°
Reference Static Temperature 518.67°R
Reference Static Pressure 14.696 psi
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2. REVIEW OF FLOW SOLVERS AND ANISOTROPIC MESH
ADAPTATION LIBRARIES

In this study, a Computational Fluid Dynamics (CFD) method based on the
Reynolds-Averaged Navier-Stokes (RANS) equations is used to capture a realistic flow
field around high-lift bodies. Several CFD methods can be applied to convert governing
equations, which are in partial differential form, into an algebraic format. These
methods include the Finite Difference Method (FDM), Finite Element Method (FEM),
Finite Volume Method (FVM), Spectral Element Method (SEM), and Discontinuous
Galerkin Method (DGM), among others. Figure 2.1 illustrates the most common

models based on Molecular and Continuum Models.

l Mathematical Models for Fluids |

Molecular Models Continium Model

! | }

[Determlnlstlc] [Stallsllcal] [ Euler Equation J [" ier Stokes Equati .] [ Buinet Equation J

A4

[Molecular Dynamics] [ Liouville I

——

[ DsSMC ] [Bolumunn]

Figure 2.1 : Mathematical Model for Fluid [12]

The Knudsen number, which is the ratio of the mean free path length to the
representative physical length scale, determines whether the flow should be modeled
using a Molecular or Continuum Model. Figure 2.2 explains that if the Knudsen
number is greater than 1, the molecular model should be applied. When the Knudsen
number approaches zero, the Euler equation is used. This equation, based on inviscid
theory, can be considered a governing equation but does not account for viscous
effects, making it unsuitable for complex flow simulations. On the other hand, when the

Knudsen number is lower than 0.1, the Navier-Stokes equations under the Continuum
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Model can be used. These equations govern viscous flows and generally provide more

accurate results.

Molecular
model

Figure 2.2 : Flow Regimes according to Kn number [13]

This study aims to obtain realistic results that align with experimental data for high-lift
geometries. Therefore, the physical modeling is based on the Navier-Stokes equations

within the Continuum Model, which will be explained in detail in the next chapter.

2.1 Literature Review on CFD Algorithms

In this section, several effective CFD solver algorithms available in the literature and
their methodologies will be examined. The algorithms used in high-lift simulations
have been selected for comparison purposes. First, the solvers FUN3D, SU2,

Kestrel/COFFE, DLR TAU, and EDGE will be discussed.

2.1.1 FUN3D

FUN3D is a finite volume solver developed by researchers at NASA, USA. It is
capable of solving the governing equations for various grid structures, including mixed
elements, tetrahedral, pyramidal, prismatic, hexahedral, and triangular/quadrilateral
grid systems [19]. The unknowns are located at the vertices or nodes of each grid
element. The inviscid flux calculations are performed using a Riemann solver, and

several flux schemes are available in the latest version, including Roe flux-difference
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splitting, Van Leer flux-vector splitting, AUSM, and HLLC. For second-order

accuracy, the unweighted least squares method is used to calculate interface values.

The algorithm includes various limiter options to improve numerical stability and
accuracy. These include the Venkatakrishnan limiter, Bath limiter, and stencil-based
limiters such as min-mod, van Leer, and van Albada, each augmented with a heuristic
pressure limiter. Additional options include the standard min-mod, van Leer, and
van Albada limiters, with an option that enables Green-Gauss gradients for inviscid

reconstruction.

Viscous fluxes are computed using a finite volume approach, where velocity gradients
on the dual faces are calculated with the Green-Gauss method for tetrahedral grids. Due
to odd-even decoupling issues in the code, the Green-Gauss method has been updated
for non-tetrahedral elements. The solver employs the backward Euler time-integration

approach to update results at each time step.

For turbulence modeling, FUN3D provides multiple options, including the
Spalart-Allmaras model, Menter k-omega SST model, Wilcox k-omega model, and
Detached Eddy Simulation (DES). Additional turbulence models are also available,
including specified or predicted transition models, allowing users flexibility in their

simulations.

2.1.2 SU2

SU2 [29] is an open-source CFD solver developed at Stanford University. It consists of
several packages designed for different purposes, including multi-physics simulations,
design optimization, and fluid-structure interaction. This review focuses on its
unstructured finite volume solver. SU2 is a vertex-based finite volume algorithm
that supports mixed-element meshes. It incorporates both explicit and implicit time
integration methods, along with central or upwind spatial integration schemes. Inviscid
and viscous fluxes are computed at the midpoints of each edge. Various upwind and
central schemes, such as Jameson-Schmidt-Turkel (JST), Roe, AUSM, HLLC, and
Roe-Turkel, are available for inviscid flux calculations, with multiple limiter options
for upwind schemes. Gradient calculations for viscous fluxes can be performed using

either the Green-Gauss method or the weighted least-squares method. SU2 provides
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turbulence modeling capabilities with both the Spalart-Allmaras (SA) and Menter’s

Shear-Stress Transport (SST) models.

2.1.3 Kestrel/COFFE

COFFE (Conservative Field Finite Element) is a CFD solver that is a component
of Kestrel, developed under the Department of Defense (DoD) High-Performance
Computing Modernization Program (HPCMP) CREATE-AV initiative [30]. The solver
employs the Streamline Upwind/Petrov-Galerkin (SUPG) finite-element method
to discretize partial differential equations and is suitable for both steady and
unsteady simulations. It utilizes the negative variant of the Spalart-Allmaras (SA-neg)
turbulence model. Several linear solvers are included, such as Generalized Minimum
Residual (GMRES), Gauss-Seidel, and Point Jacobi. As a preconditioner, incomplete
LU decomposition is available for GMRES, along with an unstructured linear
Gauss-Seidel solver applicable to both preconditioning and solving. To enhance
convergence efficiency for implicit solutions, a quasi-Newton method is employed for

pseudo-transient residual calculations.

2.1.4 DLR TAU

The German Aerospace Center (DLR) TAU [31] algorithm is a comprehensive system
designed to analyze flow physics around complex geometries. It is suitable for both
viscous and inviscid flow simulations across all flow regimes, from subsonic to
hypersonic. The solver employs a vertex-based scheme with an edge-based data
structure and supports both hybrid unstructured and block-structured grid systems. For
time integration, it uses an explicit Runge-Kutta algorithm, with an additional LU-SGS
implicit approximate factorization option. A dual time-stepping approach is available
for time-sensitive cases. Viscous fluxes are computed using a second-order central
scheme, and the code offers a low Mach number preconditioning option for solving

the Navier-Stokes equations.

DLR TAU supports grid adaptation on hybrid meshes using local grid refinement
and wall-normal mesh movement within the semi-structured near-wall layers. The
solver can also re-refine previously refined elements. The turbulence modeling

options include Spalart-Allmaras with Edwards modification and several two-equation
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turbulence models, such as kK — w, Menter SST, Wilcox, and Kok-TNT. Recently, a
model-specific “universal” wall function was integrated into the solver, improving
accuracy while reducing simulation time by approximately 75% and memory usage
by 40%. Additionally, the algorithm offers Detached Eddy Simulation (DES) and
Extra-Large Eddy Simulation (XLES) capabilities. Given the importance of transition
modeling, especially at high Mach numbers, DLR TAU includes multiple transition

prediction approaches.

2.1.5 EDGE

EDGE [32] is a vertex-based finite volume solver developed by the Swedish Defence
Research Agency (FOI). It operates on unstructured grid systems and supports various
grid types, including hexahedral, triangular prism, and tetrahedral elements for 3D
simulations, as well as quadrilateral and triangular grids for 2D cases. The solver
employs second-order spatial discretization, and time integration is performed using

the fourth-order Runge-Kutta method.

2.2 Review of Anisotropic Mesh Adaptation Libraries

Anisotropic mesh adaptation plays a crucial role in computational fluid dynamics
(CFD) and finite element analysis (FEA) by dynamically refining and coarsening
mesh elements to optimize computational accuracy and efficiency. Unlike isotropic
approaches, which adjust mesh resolution uniformly in all directions, anisotropic
adaptation tailors element sizes and shapes according to local flow features, such as
shocks, boundary layers, or vortices. This results in improved solution fidelity while
reducing the overall computational cost. The adaptation process is typically guided
by a metric field that encodes local anisotropy and stretching ratios, ensuring that the

mesh aligns with the dominant flow structures while maintaining numerical stability.

Various anisotropic mesh adaptation libraries have been developed to address different
computational challenges, ranging from industrial aerodynamics to academic research.
These libraries employ distinct algorithms, strategies, and numerical techniques to
achieve optimal mesh refinement. Some focus on edge-based operations such as
insertion, collapse, and swapping, while others incorporate higher-order methods to

reconstruct gradients and Hessians for improved adaptation accuracy. Additionally,
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many modern tools integrate parallel processing capabilities, enabling them to
efficiently handle large-scale simulations. The following sections provide an overview

of three widely used anisotropic mesh adaptation libraries.

2.2.1 EPIC

EPIC (Edge Primitive Insertion and Collapse) is an algorithm developed at Boeing
[33] for anisotropic mesh adaptation that can be integrated with external flow
solvers. The algorithm updates mesh elements through a sequence of operations
including edge break, edge collapse, element reconnection, and vertex movement
to progressively refine the grid. EPIC implements three types of mesh operations:
EPIC-IC (insertion and collapse), EPIC-ICS (insertion, collapse, and element-face
connectivity swapping), and EPIC-ICSM (insertion, collapse, swapping, and node
movement). Studies have shown that connectivity swapping significantly improves
grid quality at a relatively low computational cost, while node movement, although
beneficial, is the most computationally expensive option. The edge length is calculated
through numerical integration of the metric field along an edge [34] for instance,
using an expression such as L, = fol \/st, where v represents the edge
direction and M(x(s)) is the metric tensor along the edge ensuring higher accuracy in
the measurement of mesh anisotropy. The metric field from the initial mesh is used to
interpolate that of the adapted mesh, which can be prepared using methods that limit
minimum and maximum local metric sizes, control stretching rates and anisotropy, and
ensure smooth transitions in the metric distribution; surface curvature information from
the original geometry or the initial mesh can also be incorporated to further refine this
distribution. EPIC preserves the original model through geometric projection and local
remeshing techniques, and a linear-elastic mesh deformation procedure is available to
project the adapted mesh onto the geometry surface, maintaining the fidelity of the

original design.

2.2.2 REFINE

REFINE is an algorithm developed at NASA [35] that serves as an open-source, metric
field-based mesh adaptation tool, primarily designed for triangular and tetrahedral

meshes. The algorithm employs edge splitting and collapse methods to iteratively
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generate adapted meshes, focusing computational effort where it is most needed. In this
process, the location of each node is determined based on its adjacent elements, and
these individual contributions are combined to update the new node positions, thereby
improving the shape and quality of elements in accordance with the anisotropic metric.
REFINE computes mesh adaptation metrics by reconstructing gradients and Hessians
from a given field, enabling the algorithm to accurately capture solution behavior and
local curvature, which drives the anisotropic refinement process. Additionally, the tool
has the capability to interpolate solutions between meshes, ensuring continuity and
accuracy during adaptation. It supports interfaces for working with multiple geometry
sources or surrogate geometry representations, enhancing its versatility in handling
complex geometries. Furthermore, REFINE is designed for parallel execution, a
feature that significantly enhances computational efficiency, making it well-suited for
large-scale simulations. Its open-source nature encourages collaboration and ongoing
development within the scientific community, ensuring that the tool remains adaptable

to evolving computational needs and simulation frameworks.

In addition to the metric based adaptation, the REFINE algorithm also supports the
goal oriented anisotropic refinement. This is primarily achieved through adjoint-based
error estimation which is a process that calculates the sensitivity of a quantity of
interest (Qol), such as lift or drag, to numerical errors in the simulation. This adjoint
solution provides error indicators that highlight regions in the domain where errors
have the most significant impact on the Qol, enabling the refinement of these areas to
improve overall accuracy. For instance, in a supersonic flow over a blunt body, regions
around the shock wave and boundary layer are identified and refined by considering
the sharp gradients. NASA-REFINE employs metric tensor-based adaptation, which
is another key aspect of its methodology. The metric tensor specifies the desired
size, shape, and orientation of mesh elements throughout the domain. This allows for
anisotropic mesh refinement, where elements are stretched or compressed to align with
directional flow gradients. This technique is particularly useful in capturing vortices or
wakes. In order to get accurate solutions the large and uniform meshes will require
excessive computational cost, however the adaptation technique sets the mesh density

dynamically so this reduces the computational cost.
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2.2.3 pyAMG

PYAMG is a metric-based anisotropic mesh adaptation algorithm developed at INRIA
[36] that operates within a Riemannian metric space using a multiscale approach to
compute edge lengths and element volumes. By directly incorporating the anisotropic
metric into the adaptation process, pyAMG supports standard mesh operations
such as point insertion and deletion, edge swapping and collapse, and other local
mesh adjustments as shown in the Figure 2.3. All these are implemented using a
single-cavity-based operator for efficiency and consistency. This approach ensures that
the adaptation process aligns the mesh elements with the underlying flow physics while

maintaining the desired anisotropic resolution.

Collapse edge Point insertion

Figure 2.3 : Standard Mesh Operations [14]

The mesh adaptation process composed of in two main steps. In the first step, the
algorithm generates a unit mesh by evaluating the edge lengths in the metric space. If
the edges are too long they are being splited into smaller segments. On the otherhand
if these are too short then they are collapsed to form longer edges, thereby aligning
the mesh with the desired metric specifications.This step ensures that the mesh adapts
to the anisotropic properties defined by the metric field. The approximate edge length

"%" of an element in the metric space is determined using the following integral:
1
I(ab) = / Vab™(@ +1ab) b ar @.1)
0

where M (7) is a metric tensor, which is a symmetric positive definite 3 x 3 matrix

in three dimensions. This formulation allows pyAMG to transform an unstructured
uniform mesh into an anisotropic one by ensuring that all edges have an average
unit length in the metric space. It also enforces the alignment of edges with the local

eigenvectors of the metric tensor, generating highly structured anisotropic meshes.
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In the second step, the unit mesh is further optimized by inserting additional points
to smooth the mesh and performing edge swaps to enhance element quality. This
optimization helps prevent numerical errors due to poorly shaped elements and
improves overall solution accuracy. The metric tensor formulation plays a crucial
role in guiding these operations, enforcing mesh alignment with flow gradients and

anisotropic structures in the domain.

This comprehensive, metric-driven approach enables pyAMG to effectively handle
complex geometries and capture fine-scale features, making it a robust tool for various
simulation applications. The adaptation method minimizes interpolation errors in the
L, norm, ensuring that solution accuracy is preserved while reducing computational

overhead.

One of the defining aspects of pyAMG is its feature-based adaptation strategy,
where the refinement process is guided by a sensor function derived from key flow
variables. This sensor function, which can be based on Mach number, pressure,
entropy, Finite-Time Lyapunov Exponent (FTLE), or other flow properties, identifies

how mesh elements are redistributed to resolve critical flow features.

Moreover, pyAMG’s capability to operate within a Riemannian metric space allows
it to maintain a consistent level of accuracy across highly anisotropic flow regions.
The metric field can be computed from the Hessian of a scalar flow variable, scaled
by the determinant of the Hessian to control adaptation in regions with rapid changes.
This method enables automatic refinement of areas requiring higher resolution while

coarsening the mesh in less critical regions, optimizing the computational effort.

By enforcing local edge alignment with the principal directions of the metric
tensor, pyAMG ensures that the mesh elements are naturally oriented along the
most significant flow gradients. This leads to improved stability and accuracy in
numerical simulations, particularly for high Reynolds number flows and complex
aerodynamic configurations. The anisotropic cavity-based operators used in pyAMG
further refine mesh quality by preserving local smoothness and preventing excessive
element distribution during adaptation cycles. However, it should be noted that it is not

possible to run publicly available version of the pyAMG in parallel.
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3. MATHEMATICAL MODELING

In order to explain the mathematical approach used in the HEMLAB code, the
fundamental equations must first be presented. The set of equations provided below
represents the conservative form of the governing equations for fluid dynamics,
combines continuity, momentum conservation in the x, y, and z directions, and energy
conservation. The state vector Q contains the unknown variables, including the density
p, the velocity components pu, pv, and pw, and the total energy E. These governing
equations are expressed in three-dimensional integral form, where the time derivative
of the volume integral of the state vector is balanced by the surface integrals of the
inviscid flux F; and the viscous flux F,. The inviscid flux F; is presented in component
form, with each element corresponding to the flux in the x, y, and z directions. The
terms involve the density p, the velocity components u, v, w, the pressure p, and the
total energy E, while the dot notation (%,y,Z) represents the grid velocity. Similarly,
the viscous flux F, is provided in component form, incorporating the components of

the stress tensor 7 and the heat flux q.

gfijdv+@n-Fids—§n-deS:o 3.1)
! Q oQ 2Q
P
pu
Q= |pv (3.2)
pw
E
p(u—x) p(v—y) p(w—2)
pu(u—x)+p pu(v—y) pu(w—z)
F;, = pv(u—x) i+<¢ pv(v—y)+p (j+ pv(w—z2) k (3.3)
pw(u—x) pw(v—7y) pww—2)+p
(E(u—1x)+ pu (E(v—y)+pv (E(w—2)+pw

65



0 ( 0
Txx Txy
F, = Ty i+ Tyy j (3.4)
Tox sz
UTex +VTxy +WT; — Gx [ UTyx +VTyy +WTy; — gy
( 0
Txz
+ Tyz k
TZZ
UTy + VT +WTz — g2

\
The presented set of equations in 3.5 defines the components of the stress tensor (Tyy,
Tyys Tzz» Tays Taz> and Ty;) and the heat flux (gy, gy, and g;) in the context of compressible
fluid dynamics. These quantities are derived from the Navier-Stokes equations and
energy conservation principles. The parameters involved include the free-stream Mach
number (M.), the Reynolds number at infinity (Re.), the dynamic viscosity (u*),
the thermal conductivity (A*), and the Prandtl number at infinity (Pr.). The stress
tensor components express the shear and normal stresses in the x, y, and z directions
by incorporating velocity gradients and material properties. Similarly, the heat flux
components represent the rate of heat transfer in the x, y, and z directions, influenced

by temperature gradients and the thermophysical properties of the fluid.

Toe = ]%2:2u*%+1*(%+3—;+88—j)] (3.5)
Ty = 2472:2u*§—;+1*(%+§—;+%—j)} (3.6)
T, = 2472:2u*3—j+l*(%+g—;+3—j)] (3.7
W= e G (38)
Ty = I]:ITZ:M*((;—ZJrg—V:)} 3.9)
T, = %:u*(g_;+%)} (3.10)
q: = _(}/—IZ)V;.;OPrw _u*aa—? (3.13)

66



where

M. = Yo _ U (3.14)
a YRT
Re., — PU=L_ U (3.15)
u \
Cplt M
Pr., = —£= = 1
S S (T (10
u? +v* 4+ w?
p = -D[E-p ST G.17)
o p _(r-1 B u? +v? +w?
T = ’0 = Rp [E—p 5 ] (3.18)
" H 14+8/T
= = 77—~ 3.1
K oo \/_T+S/Too (3.19)
2 *
AF = _‘3‘ (3.20)

The equations given above represent a fundamental set of aerodynamic and
thermodynamic relations for compressible flows. In Equation 3.14, M., represents
the free-stream Mach number, defined as the ratio of the free-stream velocity U, to
the local speed of sound a, where a is given by the square root of the product of
the specific heat ratio (y, the gas constant (R), and the temperature (7). Equation
3.15 introduces the Reynolds number at infinity (Re.), which measures the relative
significance of inertial forces compared to viscous forces. Here, p is the density, U
is the free-stream velocity, / is a characteristic length, u is the dynamic viscosity, and
v is the kinematic viscosity. Moving on, Equation 3.16 defines the Prandtl number
at infinity (Pr.), a dimensionless parameter characterizing the ratio of momentum
diffusivity to thermal diffusivity. In this context, C,, denotes the specific heat at
constant pressure, U is the dynamic viscosity, and k represents the thermal conductivity.
Equations 3.17 and 3.18 describe the relationships between pressure (p), temperature
(T'), and specific internal energy (E). The pressure is expressed in terms of the specific
gas constant (R), density (p), and the velocity components u, v, and w. Equation 3.19
defines the non-dimensional temperature dependent laminar viscosity which can be
calculated with the Sutherland’s law. The parameter given with S defines the Sutherland
constant, S = 110.4°K. The temperature is then determined as a function of pressure,
density, and internal energy. These equations provide a comprehensive framework for

understanding the thermodynamic and aerodynamic aspects of compressible flows,
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where the involved parameters play crucial roles in characterizing the behavior of the

fluid.

3.1 HEMLAB Algorithm

The HEMLAB algorithm [37, 38] is a vertex-based unstructured finite volume
approach designed for hybrid meshes, supporting both triangular and quadrilateral
elements in 2D as well as hexahedral, prismatic, tetrahedral, and pyramidal elements
in 3D. The fluxes required for this method are evaluated over the edges of these hybrid
unstructured meshes. This algorithm uses the first-order Euler implicit method in time
for the implicit calculations. For a vertex-based finite volume formulation, the residual

vector can be written as:

R(Q):%ijdVJrgn-FidS—gn.deS:o, (3.21)

and the residual vector is required to be zero at time level n+ 1. Using the backward
Euler for time discretization, the first term becomes:

8_Q N Qn-H _Qn

ot At (3.22)

In order to resolve the Q”Jrl , Newton’s method is used. Here m denotes the m'" Newton
iteration.

Q"' =Q"+aQ"! (3.23)
Expanding R(Q""1) using a first-order Taylor series:

R(Q" ) ~R(Q™)+ g—gAQ’"“ (3.24)

Since R is the residual vector and it should go to zero at the mth iteration R(Q"*!) = 0.

JR

m+1 _ m
5oM" = ~R(@Q") (3.25)

The Jacobian matrix g—g is obtained by differentiating R(Q). The time derivative

contribution comes from the first term, which is ﬁ ff QdV . The following expression
Q
can be obtained by taking its derivative with respect to Q:
d (M M
—(—=0)=— 3.26
20 <At Q) At (3.26)
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where M is the mass matrix. The remaining terms involve fluxes:

/aQn-Fi(Q)dS—/mn-FV(Q)dS (3.27)

Since F;(Q) and F,(Q) are nonlinear functions of Q and their Jacobian is:

0
’=35 (Y n-F;(Q)S—) n-F,(0)S) (3.28)
After combining both contributions, the full Jacobian matrix becomes:
JR M
—=—+J 3.29
0Q At + (3.29)
where % comes from the time derivative discretization, and J accounts for the Jacobian

of the fluxes.

a_R m+1 % mtl 4
502" = {Aﬁ-]} AQ"! = —R(Q") (3.30)
Yy [MQT‘tv+Zn-Fi<Q"’>S—Zn-FV(Qm)S

The convergence of the Newton method is highly sensitive to the accuracy of the
Jacobian matrix evaluation, so special care is taken to compute these Jacobian matrices

exactly.

Next, the algorithm addresses the computation of both inviscid and viscous fluxes.
For the inviscid fluxes, the Roe scheme [39], HLLC [40], and AUSM"-up [41]
are implemented. The required left and right state vectors are determined through
unweighted first-, second-, or third-order upwind least squares interpolations [42].
The inviscid flux Jacobian matrices are computed precisely using source code

transformations provided by the Tepaneda library [43,44].

For viscous fluxes, gradients of the primitive variables are computed using the
Green-Gauss theorem at edge midpoints, rather than using simple averages, to prevent

odd-even decoupling.

Additionally, various versions of the Spalart-Allmaras turbulence model [45] are
available within the algorithm, with wall distance calculations implemented using the
Alternating Digital Tree (ADT) algorithm [46] for anisotropic meshes. The resulting
system, which comprises the compressible Navier-Stokes equations coupled with

a one-equation Spalart-Allmaras turbulence model, is solved using a monolithic
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approach with the restricted additive Schwarz method and the flexible generalized

conjugate residual algorithm within the PETSc library [47].

Further, the construction of the Jacobian matrix can be performed using either first-
or second-order upwind least squares, although the latter requires more memory. The
Jacobian matrix-vector multiplication is executed using a Jacobian-free approach with
Fréchet derivatives, due to the unavailability of analytical contributions related to

limiters and the CFL number.

The nonlinear Newton method is implemented using PETSc’s Scalable Nonlinear
Equations Solvers (SNES) with a line search technique, supporting both Jacobian-free
finite differences and direct approaches for the Jacobian-vector product. Although
hand-coded Jacobian programming is time-consuming, it ensures computational
efficiency, and any implementation errors are minimized by comparing the hand-coded
Jacobian with the finite difference approach available in PETSc. With this way
simulations can be done with high CFL numbers and achieving machine precision
in pseudo-transient continuation (PTC) is possible since the Jacobians are calculated
more accurately. In addition, the algorithm explores adaptive time-stepping (ATS).
Although the ATS algorithm was attempted, it did not significantly increase time steps
in 3D—despite yielding better convergence in 2D as the solution approached a steady
state. However, combining ATS with the PTC algorithm may enhance robustness in

3D, as noted in [48].

The computational domain is decomposed into sub-domains using the METIS library
[49] for balanced domain decomposition, with an ILU(k) preconditioner employed
for the restricted additive Schwarz method. The default Venkatakrishnan-Wang limiter

[50] is deactivated due to adaptive mesh refinement.

Finally, the numerical method relies on a quad-edge data structure [51] and a half-edge
data structure [52] to enhance cache efficiency. Although the method is capable
of handling arbitrary polyhedra in 3D, it is currently applied only to tetrahedra,

hexahedra, wedges, and pyramids.

In Sections 3.1.1 and 3.1.2, the Least Squares method used for the inviscid fluxes and
the Green-Gauss approach used for the viscous fluxes are explained, while the inviscid

and viscous Jacobians are discussed in Sections 3.1.3 and 3.1.4.
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3.1.1 Least squares method

In order to achieve second-order spatial accuracy for the inviscid flux, it is necessary
to obtain accurate gradients of the state variables. One recommended approach is to
employ a Taylor series approximation to evaluate the inviscid flux. Using this method,
accurate approximations of the state variables at the faces of the control volume are
obtained—even if the gradients at the nodes are not perfectly computed. Since the
convective flux evaluation relies solely on the state variables at the control volume
faces, obtaining a better approximation for these face values is crucial for minimizing

errors [53].

An accurate approximation of the face-center values can be achieved by using the
gradient information at a node to obtain second-order spatial accuracy. The values
at neighboring nodes are approximated using a Taylor series expansion. In order to
solve this system of equations with the least squares method, the number of equations
must exceed the number of unknowns. Generally, there are more neighboring points
than unknowns for both 2D and 3D mesh designs. Additionally, it is recommended
to have at least three neighbors for a point in 2D to attain a second-order accurate

reconstruction [54].

Although the resulting overdetermined system can be solved by multiplying both sides
by the transpose of the matrix, this approach may lead to errors due to round-off. An
analytical solution for this problem has been provided in [53], [55], and the procedure

is outlined below.

The system of equations, represented in matrix form, is designed to express the spatial
gradient terms in terms of the differences between the values at a reference node x; and
the values at its neighboring nodes x;,x»,...,x, for a given variable g. The matrix A;
is constructed from the differences between the coordinates of the neighboring nodes

and the reference node in each dimension. This system can be expressed as

A,'X:b,',

where X is a column vector containing the partial derivatives of ¢ with respect to x, y,
and z, and b; is a column vector representing the differences in the values of g between

the neighboring nodes and the reference node.
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The matrix system is explicitly given by

X] —X; 01— 0i

X2 —Xi| rao 02— 0

x3=xi| |95 |03 Qi

X4—X;| [y |~ |Qs—0Qi
: Jz :

| Xn — X | | On — Q]

(3.31)

The gradient terms at the reference node can then be calculated using the following

expressions:
0]
x| = k:1VVik(Qk_Qt)»
220) i
Ll Y wio-0),
d i
P = Y wio-o)
< i k=1

(3.32)

(3.33)

(3.34)

where N; is the number of first-level neighbors around node i, and Q; and Qj are the

state variable values at the reference node and its neighbors, respectively. Because

the geometric coefficients remain constant as long as the mesh remains unchanged,

the corresponding weights are constant. Consequently, they are computed once at the

outset and stored for each outgoing edges. However, since the state variables at the

nodes change at each timestep, the gradient values must be updated before each flux

calculation.

The weighting coefficients are initially stored on the outgoing edges and then used for

the fast evaluation of nodal gradients, which is exact for linear functions. With these

gradients available, the left and right state vectors can be evaluated as

N;
QL=Qi+¢; ) Wy(Qr—Q;),
k=1

N;j
Qr=Q;+0; ) Wi(Q—Qy)
=1

where
1
Wi = = [Wiklej = x0) + Wo (v = i) + Wiz — )]
1
Wi = 5 [Wilxi—x) + W 0i—) + Wi(ai—2)]

(3.35)

(3.36)

(3.37)

(3.38)

An analytic formulation for the least squares problem in 2D geometry is given in [53]:
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Wi = (3.39)
W = (3.40)
ri = (3.41)
1 Na
ra = — Y AxijAyij (3.42)
1 j=1
Ny , 2
o= Y {Ayij—mijﬁ} . (3.43)
j=1

These equations define the weight coefficients Wl); and Wli for calculating spatial
gradients. The weights are determined by the distances and relative positions between
a reference node and its neighboring nodes. In W;}, the x coordinate differences Ax;;
are incorporated, while Wz involves both Ax;; and Ay;;. The parameters ryy, ri2, and
ryo represent, respectively, the Euclidean norm of the x coordinate differences, the dot

product of Ax;; and Ay;; normalized by ry1, and the adjusted Euclidean norm of the y

coordinate differences.

An analytic formulation for the least squares problem in 3D geometry is presented

X

in [55]. This set of equations describes the calculation of the weight coefficients W,

w?.

1 and W, for spatial gradient calculations in three dimensions. The expressions for

J
0;j.1, Qjj 2, and ¢;; 3 involve combinations of the coordinate differences Ax;;, Ay;;, and
Az;; along with the Euclidean norms 7y, 727, and r33. The parameter f8 is introduced

to capture additional geometric relationships between the nodes.

Similar to the 2D case, the weight coefficients in 3D are determined as linear

combinations of @;; 1, @;j2, and @;; 3:

r2

Wi = oja— ot s, (3.44)
r33

W = oijo— =03, (3.45)
22

Wi = a3, (3.46)
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where

Ax;j
0j1 = —2, (3.47)
M
1 r2
Qijo = %(Ayij_mmij)7 (3.48)
1 3
®ij3 = — | Azij——Ayij+BAx; |, (3.49)
7‘33 k)
B = r12r23—r13r227 (3.50)
T2
rqg = (3.51)
1 M
r; = — Y AxijAyij, (3.52)
r j=1
Ny
rpp = Z(Ayij>2—r%2, (353)
j=1
1 24
riz = — Y AxijAz, (3.54)
r1 j=1
ry = — AyiiAzii— —) Ax;iAz; |, (3.55)
r22 (jzl ylj L] ]"11 JZ] l] 1]
Ny
r3z = Z(M,-j)z—(r%—kr%). (356)
j=1

The provided equations define the weight coefficients Wl’j‘, Wz

and ij used in the
calculation of spatial gradients in 3D. These weights are determined by the distances
and relative positions between a reference node and its neighboring nodes, ensuring

that the geometric relationships between nodes are appropriately captured.

The limiter function ¢; is computed using the Venkatakrishnan-Wang limiter [50] as

follows:

®; = min(Py), (3.57)

where
1 [(A2 +eD)A_+2A%2A
= [ GEEE) S| (3.58)
Al A2 +2A2 +ALA te

74



and

Ao = O—0i (3.59)

imax —Qi, 1fA_>0,
N P (3.60)
Qi,min —Q;, ifA_<O.

Here, € = K,(Q™ — Q™"), where K, is a limiter constant, and Q™" and Q™ are the

global minimum and maximum values, respectively.

The second-order inviscid Jacobian construction leads to

[AQi]
AQpn
BOWa  oWe o L(—0XN W) TkeWa  ke;Wa . k(-2 Wi | | A, [Ri]
—JLGiWi —JLeiWn ... —J (1= GXe Wi) —JrO;Wi —Jr;Wp ... —JR(1—¢jZkNilek) igjl —R;
2
_AQj_
(3.61)
where the local inviscid Jacobian matrices are defined as
d (n-F;(QL,Qr))
JL = d 3.62
L 90, , (3.62)
d (n-F;(Qr,Qr))
Jr = d ) (3.63)
dQr

3.1.2 Green-Gauss approach

Due to the presence of viscous forces, the calculation of diffusive fluxes is necessary.
For RANS-based solvers, the diffusion term originates from the right-hand side
of the Navier-Stokes equations. Since the diffusive fluxes are elliptic in nature, a
central numerical scheme must be used. However, accurate evaluation of the velocity
and temperature gradients at the control volume faces is required. Therefore, the

Green-Gauss approach is employed for gradient evaluation.

To compute the viscous flux, the derivatives of the primitive variables at the edge
centers must first be determined. The accuracy of the viscous fluxes is directly related
to the precision of these derivative approximations. Because the Green-Gauss approach
yields more accurate gradients than a Taylor series expansion, it is preferred in the
HEMLAB algorithm. In this approach, the derivative calculations at the edge centers
require a linear interpolation of the state variables at the control volume faces adjacent

to each edge. Figure 3.1 illustrates the dual volume construction in 2D, which is created
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using the midpoint of each edge of the control volume. The Green-Gauss theorem
provides an alternative method for integrating over the shaded area by converting an
area integration into a line integration. Consequently, to calculate the gradient at the
center of this area, only linear interpolation to the edge centers of the dual volume is

necessary.

Figure 3.1 : Dual Volume Schema for 2D

Similarly, in 3D, integration is performed over the faces surrounding the volume
element, reducing the overall numerical cost. Figure 3.2 shows the dual volume
construction for 3D cases. In this figure, the midpoint of the purple edge is the location
where the gradients must be computed. The dual control area is constructed around
the purple edge using the centers of cells and faces from adjacent elements. The
green edges indicate the boundaries between nodal control volumes where the code
integrates the stresses; this is the same region used for calculating the viscous fluxes at
those edges. Importantly, the gradient evaluation method does not cause any odd-even

oscillations.

Figure 3.2 : Dual Volume Schema for 3D [15]
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In a manner similar to the determination of weights in the least squares method, the
Green-Gauss approach can compute and store constant weights for non-deforming
meshes. This approach is particularly applied in the 3D solver, while in 2D the
situation is relatively straightforward and such weights are not necessary. In cases
where the mesh remains unchanged (as in many 2D scenarios), the face areas of
the dual control volume surrounding the purple edge in Figure 3.2 remain constant.
Initially, the computation involves linearly interpolating between the enclosing vertices
to determine the face areas; these values are then stored for each edge. For the purple
edge in Figure 3.2, 11 surrounding nodes contribute, involving 33 double-precision
variables. Despite the increased memory usage, this method significantly accelerates

the overall computation.

The gradient at the midpoint of an edge is evaluated as

20 i
A = W ¢, (3.64)
0x |4p Z=Zi
20 N
4 = W ¢, (3.65)
9y |4p z=21

N
2y, (3.66)
dz AB i=1

where N represents the total number of nodes belonging to the elements sharing the
active edge, ¢ is a scalar quantity at each node, and V¢ denotes the dual volume
constructed around the edge. The gradient at the edge midpoint is influenced by all
nodes in the surrounding elements; each node contributes three components, and these
contributions are computed once and stored for every edge. During gradient evaluation,
the stored coefficients are multiplied by the corresponding scalar values, eliminating
the need to recompute the dual volume areas at every time step, which significantly

improves performance.

3.1.3 Inviscid jacobian calculation

The convective term in the Navier-Stokes equations represents the inviscid component
of the flow. Because convective equations transfer information in only one direction,
any mathematical discretization must account for this unidirectional nature; otherwise,
the applied model may not accurately capture the physical behavior. To ensure

consistency between the mathematical formulation and the underlying physics, an
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upwinding approach is used. Upwinding involves applying forward or backward
differentiation based on the direction of information flow. Numerous schemes exist
in the literature for computing the convective part of the Navier-Stokes equations.
When evaluating convective fluxes, neglecting the viscous component yields the Euler
equations. The inviscid Jacobian, denoted as A;, is then defined as follows. The
mathematical expressions describe the inviscid terms in the context of fluid dynamics,
particularly within the Navier-Stokes framework. Equation 3.67 presents a matrix
formulation that involves various parameters related to the flow, including the flow
variables and the speed of sound (a). The variable K is defined as Yy — 1, where 7 is
the ratio of specific heats. Equation 3.69 introduces the eigenvalues (A) of the inviscid
Jacobian matrix, which are essential for analyzing the fluid system’s behavior. The
matrix A is diagonal, with its components corresponding to different flow directions
and the speed of sound. Equations 3.71 and 3.70 provide the left eigenvector matrix (P)
and its inverse (P~ 1), respectively. These matrices are instrumental in diagonalizing the
Jacobian matrix and simplifying the analysis of fluid dynamics by defining the wave

properties and interactions within the flow.

—V; Ny ny n, 0
¢ —uV V-V, —aznau  nyv—axnyu nw—asn;u  nya; —auV
[A] = nyo nu—any  V—Vi—aznyy  myw—ammy  nya; —apV | (3.67)
n;¢ N U — AW ny—aynyw V=V, —aznw nza; —awV
V(p—ay) nwa;—auV nya; —axvV n.a; —aywV YW -V
[A] = [PIA[P] (3.68)
At 0 0 O O
0 A, O O O
A = 0 0 A3 O O (3.69)
0 0 0 A4 O
0 0 0 0 As
Ny ny n; asz as
A Nyl nyu —nzp nzu+nyp az(u+ngc) az(u—nec)
P = nev+n;p nyv 1V — NP az(v+nyc)  az(v—nyc) (3.70)
W — 1y nyw +nyp nw az(w+nzc) az(w—ngc)
nyag +p(ny—nyw) nyag+p(new—nzu) nag+p(nyu—nw) az(az+cV) az(as—cV)
(ny—nyw) (nxw—ngu) (nyu—nyv) R R
Myls — === myas — SSSSm ns — o a (¢ —cV) a(+cV)
s n;calu ﬂ}’:zllrl _ % nz:zm + H‘ —az(alu _ nxc) —ag(a1u+nxc)
P = =+ HE e -k —ay(a1v—nyc)  —ax(arv+nyc) 3.71)
-2 2+ a g —ay(ayw—nzc) —ay(ayw—+nge)
nyaj nya nzap
—mgt = - ayay ayaz
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The following auxiliary variables are defined:

a = y—1, (3.72)
1
= — 3.73
a eV (3.73)
P
= , 3.74
as A (3.74)
_ ¢+
as = — (3.75)
as = 1— %, (3.76)
c
¢
ag = T (3.77)
V = nu+nyw+nw, (3.78)
dx dy dz
Vi, = nxg +l’ly§ +I’lz§, (379)
o = %(y— 1) (u? +v* +w?), (3.80)
Al = AM=A3=V-V, (3.81)
Ay = V—Vi+c, (3.82)
As = V-V,—c. (3.83)

In this thesis, the Roe scheme [39, 55] is selected as the flux scheme for solving fluid
dynamics problems. The inviscid flux is expressed as a function of the left (Qy) and

right (Qg) state vectors:

|F(Qu)+F(Qr) ~ PIAIP (Qr—Qu)|. (3.84)

N | —

F(Q.,Qr) =

Roe-averaged values, such as density (p), velocity (0U), total enthalpy (H), and speed

of sound (&), are computed based on the left and right states:

p = \PLPr, (3.85)

0 - YPUrtvprUs (3.86)
VPL+ /PR

a - VPLHL + /PrHR (3.87)
VPL+ /PR

\/(y— 1) [H—-0.522]. (3.88)

IS
Il

During computations using the Roe flux method [39], the Harten correction [56]
(Equation 3.89) is applied to modify eigenvalues below a threshold 4 = € max(|A;]):
h*+ A2
A=A
2h
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3.1.4 Viscous jacobian calculation

The viscous fluxes in Equation 3.4 are functions of the gradients of both velocity
and temperature. However, the solution vector contains only conservative variables.
In the HEMLAB algorithm, the viscous Jacobian is computed by first assuming
that the solution vector is based on primitive variables. The resulting Jacobian is
then multiplied by the primitive-to-conservative Jacobian to obtain the correct global

matrix.

For example, consider the x-momentum equation:

grxxA;JrrxyA;Jrrszg Z,u[er/l @Jr/lg;le(zw]
[ay ax}
+u[ ] (3.90)

Similarly, the y- and z-momentum equations and the energy equation are formulated

using appropriate combinations of stress components, gradients, and face areas.

In the explicit algorithm, values for u, v, w, and T are taken from the current time
step, and the corresponding weights are simply multiplied by these values. In the
implicit solution, where u, v, w, and T at the next time step are computed, a matrix
is constructed using only the weights associated with neighboring nodes. This matrix
is then incorporated into the implicit global matrix. In the implicit case, the nodes
of the elements surrounding an edge contribute to the coupled system (denoted N;,
i=1,2,...,N), resulting in a wider Jacobian for the viscous flux compared to the
inviscid flux. The contribution of the viscous flux for each edge is calculated by solving

the following matrix system:

AQr

AQp
N [ S [ : : RL
: : : : : : : : X ) = 1. (391
. . . . . . . . AQR . ( )
—Jr, ... =JIyv1 ... =Jr ... =JInv2 ... : Rg

AQn,
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The transformation from conservative variables Q to primitive variables W is

performed via:

JR JR IW

where

p
pu

Q= |pv W=
pw
E

(3.93)

NS < =

The method increases memory usage and the time required for matrix-vector
multiplication but yields a more precise evaluation of the Jacobian matrix. This
precision allows for the use of larger CFL numbers and facilitates convergence in fewer
iterations, in line with current trends toward achieving machine-zero convergence
[57, 58]. It is important to note that while the Green-Gauss approximation yields
first-order accuracy on boundaries, it is not used for constructing the Jacobian at
these locations because of the imposed physical no-slip and adiabatic/isothermal
boundary conditions. For aerodynamic loads and moments, a conservative approach
is preferred—obtaining forces and moments by summing the control volume fluxes
adjacent to solid walls [59]. The accuracy of boundary-edge gradients can also be
enhanced by methods described in [60]. Strongly enforced boundary conditions impose
no-slip conditions at boundary nodes, while far-field boundary conditions can be

weakly imposed using either inviscid flux values or Riemann variables [61].

3.2 Turbulence Model

Turbulence modeling plays a crucial role in computational fluid dynamics (CFD),
especially in aerospace applications, where accurate predictions of aerodynamic
performance are essential. Among the various turbulence models, the Spalart-Allmaras
(SA) model is widely used due to its robustness and efficiency in handling external
aerodynamic flows, particularly around airfoils, wings, and full aircraft configurations.
Originally developed for aerospace applications, the SA model is a one-equation
turbulence model that provides a good balance between accuracy and computational

cost. Over time, variations and enhancements of the SA model, such as the Negative
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Spalart-Allmaras (SA-neg) model, have been introduced to improve stability and

accuracy, particularly in regions of separated flow and adverse pressure gradients.

3.2.1 Negative Spalart-Allmaras model

This model divides the turbulence equations based on the value of the turbulent
viscosity. The most common form of the SA-neg model is given below. The right-hand
side of the turbulence equation consists of three parts: production, destruction, and

diffusion.

av N ) . o -
5 +u-VV = Production+ Destruction + Diffusion (3.94)

For the case when V > 0:

ov N
— Vv = Sv
5 +u Chl
M,

Re [Cwl fw] <

M.,
Reo

y

V. [(Ofn—i—V)Vf/} +cpp VV-VV

QU=

(3.95)

For vV < O:
av N N
—+u-VV = ¢y 0|V

ot
L M % Za
_c —
Re wl d

M.,
Reo

+ VAVt V)V +cpp VIV (3.96)

Unlike the classical Spalart-Allmaras model, the SA-neg model does not include a wall
function calculation for f,, in the destruction term when V is negative. Additionally, the
production term in the negative model does not use the S parameter; it only requires
the vorticity term. The final difference between the two sets of equations is the o
parameter, which is proposed to be o = 10 as suggested in [62]. There is no difference

in the diffusion term between the positive and negative models.

The turbulent viscosity is defined as

w=pvf. (3.97)

https://turbmodels.larc.nasa.gov/
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The S parameter, which is essential for computing the production

determined based on a vorticity limit:

s o]+ S, if § > —c o),
fr—y 2 o
o] (1 + M) , otherwise.

Cy3 72C172) ‘CO‘ 7§

Other auxiliary parameters are defined as follows:

v Vp

X = Fi 0w

= )ﬁXTcg]’
fo = 1—%)“%1»
S = ARLZ szdzfvz

The wall function parameter f,, in the destruction term is calculated by:

i 110 M, V
r = min e AN
"Re.. SKk2d2

g = r+cm (r6—r),
1/6
6

14—cW3

g6 + cfﬁ

The parameter f,,, which modifies the diffusion coefficient, is given by:

_ Cnl +%3
- —’
Cnl _%3

Ja

term, can be

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)
(3.104)

(3.105)

(3.106)

where f,, = 1 in regions where the turbulent viscosity is positive, and ¢, is set to 16.

The remaining coefficients are specified as:

o = 2/3, cp1 =0.1355, ¢ =0.622, k=041,
1 Ltem

Cwl = + ;v ow2=03, cu3=2, ¢, =71,

K2 o

s = 12, ca=05, cu=16, cn=07, c3=09. (3.107)

The previous version of the HEMLAB code assumed the turbulent viscosity was set to

zero for negative values. This has been corrected by implementing the SA-negative

model, which improves convergence of the Newton method. The basic turbulence

equations are formulated in a finite volume format and solved using Newton’s
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method. This requires adding an infinitesimal value for each unknown—denoted by
A—integrated over the control volume. The implicit Euler method combined with
Newton’s method is applied for both positive and negative V. After computing all
coefficients and terms, the production, destruction, and diffusion parts are calculated
separately according to the unknowns (v, p, ®) and then inserted into the appropriate

locations in the Jacobian matrix.

For example, if ¥ > 0, the finite volume discretization yields:

_Uf dV+@ u-n)AV + ¥ (n-Au)] dS—jﬂ (V-u)AD+ (V- Au) 9] dV
_HjcblASvdv jfjcbISAvdv+jij = cut [ZvaAv+v Afw}

—@%n VO fu A0+ AS,+Av]dS - @1% [n-V(A9) (fy ¥+ V)| ds
o0Q
- j [ I%cbz [2v(a9)-vo]av (3.108)

:—@n uvds+ﬂj (V-u vdv+ﬂjcblsvdv jﬂR = et fu 92V
Rw[ V(fu¥+v }dS%—ffj

if ¥ < 0 then

Uj dv+@[u n)AV) + ¥(n- Au) | - Uj (V-w)AV + (V- Au)0dV
. j {[ enlao|vav — jﬂ cp1|0|AVAV — ﬂj = [20AV]adV
—@Vn vV[f,,Av+vAfn+Av}ds @%[n-V(AQ)(an—I—v)]dS
_ m s |2V(A9) - VY| av = @Sna.iws (3.109)
+ﬂj vdv+ﬂfcb1|m|vdv+ﬂf e PadV
s )o  e vn

o

5%) Vv-Vvdv
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The residual on the right-hand side represents the contributions from all A terms and

derivatives, as expressed by:

szg—gAer‘;’fAerg—’TcAT

A= ar.

Afvzzazif;AXv

af =0 ar.

Afw—%z,—gA

AS:R;Z‘; d2[ ];VCZA;HAV fvz]

AS:a(f ’|Aa)| gi AS,

- Sl

Ao = |—;| [wx (a(aAyw) = a;AZV)) + o,
(Av)

A (aanv y 8(8Ayu)>],

d(Av) J(Au)

|Aa)|:sgn(a))[ x oy } in 2D.

The partial derivatives are provided as follows:

dy Vv
dp H
IN_p
v u
dfpn 3¢ 1

@ (x Jr031)2

Y

dafy
dfo _ -0
dxy — (1+fux)
d
d—f =1+4cu(6r°—1),
dfy — 6cu X

dx (Cnl —X3)27

A

\%
—§AS],

A

d(Au)

dz

1/6
df, [ 1+ S5 / c
dg g0 +c8, g0 +c8,
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(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)

(3.121)

(3.122)

(3.123)

(3.124)

(3.125)
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35 p, 0o 3.127
0V Re k242§ (3.127)
or M. V
28 ~ Re PERYR (3.128)
The partial derivatives of S are computed as follows:
o5 _ M. ¥ _(9)a ok (3.129)
ap Re (kd)2\ dx dp )’ :
85 M. V ava 3%
% R. e . 3.130
oV Re (xd)? ( 9y v 2 (3.130)
5 [ _ 5> e,
% = 3_§ | | Cva[(cv3—2cv2)|(D\—S]+[cg_2 \Za)H—cvg S], otherwise, (3.131)
p [(cr3—2¢10) || 3]
25 % if§> —colo),
= G r 37 2 &
av 3—0 o] =2 [(@—2e5)i0 S]+[cv_2 ‘Zme S], otherwise, (3.132)
[(e13—2¢12) || =S5]
aSA 17 ifSZ_CV2|w|7
Jlo| ~ 1+ (2632‘wHC‘BS_)[(Cﬁ—chz)Iw\—g]_(cvizcﬁ)\w\[632|w|+cv35_], otherwise.
[(c13—2¢10) |@| 5]
(3.133)
98 1, if $> —cpn o),
a5 alolf(en—2c0) ‘w‘_g]Hw'[C%'wHC”S_], otherwise. (3.134)

[(e3—2¢0) || 5]

As mentioned earlier, the turbulence equation is divided into three parts—production,

destruction, and diffusion—which are given below.

For v > 0:
Production = ¢ SV, (3.135)
AN 2
7 \%
Destruction = —cp1ful =) (3.136)
Re d
e M., N N N o
Diffusion = ﬁ[V-((vfn+v)Vv)+cb2Vv-Vv]. (3.137)
e
For vV < 0:
Production = c¢p|0|V, (3.138)
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AN 2
Mo, \%
Destructi = — - o 3.139
estruction e Cwl <d) , ( )
e M., N N R
Diffusion = Reo V- (Vfu+V)VV)+cpp V-V, (3.140)
e

The implementation of the production term is explained as follows. Since the
production term depends on three unknowns (v, p, ®), three production derivatives

are defined based on the sign of V.

For v > 0:
OP 2S .
% = ¢ % , (3.141)
oP oS . 4
5% = Cpl (8\7 V+S) , (3.142)
OP as .
2 (3.143)
For v < 0O:
oP
3 - 0, (3.144)
oP
5% = cp1 | @], (3.145)
oP .
% = Cp1 V. (3.146)

A similar approach is applied to the destruction term.

For v > 0:
dD  Mwcy ,0dfy dg (O 9S
dp  Re a2 dg dr \9Sadp)’ (3.147)
dD  Mecy (,,0fy dg dr S .
39 ~ Re & <V 9g arasav TV (3.148)
dD M cy o, dfy dg (O 28
00  Re &2 dg dr \9Sodw ) (3.149)
For v < 0:
oD
% = 0, (3.150)
oD B Mo Cy1 A
o= ), (3.151)
aD
o =0 (3.152)
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Finally, the production and destruction terms are merged into the source term, which

is then incorporated into the Jacobian matrix for the left and right nodes.

In addition to the improvements in the SA turbulence model, updates are required in
the Navier-Stokes equations to solve the system in a coupled manner. The method
used in this work is two-way coupled, allowing simulations at higher CFL numbers.
All calculations are performed with a second-order discretization. When updating the

turbulence model, the definition of the turbulent viscosity is revised as follows:

S =p VSl (3.153)

All terms using the new turbulent viscosity definition must be updated in the
Navier-Stokes equations to provide a coupled solution method. Therefore, the viscous

Jacobian is corrected for each viscous flux according to the changes in the turbulent

. . ay,
V1SCOSI1ty. A new vector,

aW (see Equation 3.154), is defined to store the derivatives of

the turbulent viscosity with respect to the primitive variables. Recall that ;" = p vV f,,;
and that f,; is a function of temperature, density, and viscosity. Using this vector, the
Jacobian corrections are applied for both the left and right nodes. The derivatives of
temperature with respect to the conservative variables are given in Equation 3.155.
This term is calculated for ensuring that temperature-dependent effects are accurately

accounted for in the viscous Jacobian corrections.

df, 0
fvlv+vp 3];(1 g
0

0

*

Iy _
ow 0

(3.154)
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g—g — Vp;Rlv (3.155)

3.2.2 f;» modification

In turbulence modeling, the f;» term which is called as laminar suppression term [63]
refers to a component in the Spalart-Allmaras turbulence model that helps suppress
turbulence in regions of strong flow rotation and streamline curvature. The SA model
is particularly effective at predicting both attached and separated flows. It is based
on a single transport equation for the eddy viscosity, which represents the effect of
turbulence on the mean flow. The transition term is added to this transport equation to

incorporate the effects of flow transition.

During flow transition, the flow evolves from laminar (smooth and ordered) to turbulent
(chaotic and irregular). This transition is influenced by local flow conditions, pressure
gradients, and surface roughness. In the SA model, the transition term acts as a source
or sink in the eddy viscosity transport equation, modifying the turbulence production
and damping rates. The specific form of the transition term depends on the model
variant; various modifications have been proposed based on empirical correlations and

experimental data.

Overall, the transition term plays a crucial role in accurately simulating flow transition
and capturing the effects of laminar-to-turbulent change. It enables the model to handle
a wide range of flow conditions, making it suitable for diverse engineering applications.
Consequently, this feature has been added to the current version of the HEMLAB
algorithm. As described in the first chapter, the SA-negative model consists of two
different equations based on the sign of the turbulent viscosity. Similarly, the equations

for the Spalart-Allmaras turbulence model with the transition term are given below. For
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<>
Vv
)

ov
- Vv
9 +u
For V < 0:
ov
_ .Vv
9 +u
Here,

Chl (1 —ftz)S'\A/

e few -] ()

Reo, d
Mo (& (0 1+ V)IVD) + e VO - V9]
Rewo n Cp2

Re..
M., . N N on
ooV (VI tV)VV) +cpp V- VY]
fo = cpe WX
C3 = 12
Ci4g — 05

(3.156)

(3.157)

(3.158)
(3.159)
(3.160)

The production term and its implementation are explained below. Since the production

term depends on three unknowns (v, p, @), separate production derivatives are defined

based on the sign of V.

For v > 0:

JdP

JoP
v
JoP
X0)

For V < 0O:

0
oS . . A dfin dx
Cbl(l_fﬂ) (%V—l—S) —c;,lSv—x 30
2S .
Cbl(l—ftz)—wv
0P
% =0
0P
5 = cp1 (1 —c3) | o)
o
% = 0Cpl
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(3.162)

(3.163)

(3.164)
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where

dfpn 2
—= = 2c¢pcy)e X 3.167
dx 3Ca X ( )
A similar approach is applied to the destruction term. The modified production and
destruction terms are then merged into the source term and incorporated into the

Jacobian matrix.

For v > 0:
dD  Mecy ,dfw dg (O 28
dp  Re &2 9g ar\3sap (3.168)
 Ma cn adfpdy
Re k2d? " dy dp
D Macy (,0fydg (drdS ar\ ..
7 T Re & (V 9¢ ar \agav Tav ) T2V (3.169)
_ Me cor sodfindy
Re x%2d* " dy dv
dD M.y ,dfy dg (Or 0S
90 ~ Re &' 9g ar\ a3 9w ©-170)
For v < 0:
oD
% =0 3.171)
8D Moo Cywl A
55 = (e (3.172)
JoD
o 0. (3.173)

3.2.3 Rotation correction (SA-R)

The SA-R model [64] was developed to improve the prediction of flows with significant
rotation and curvature, such as swirling flows or flows around curved surfaces.
These flows exhibit additional complexities compared to the original SA model,
which assumes predominantly irrotational flow. In the SA-R model, two primary
modifications are introduced: the curvature correction term and the rotation correction
term. These terms adjust the turbulent viscosity and production/dissipation rates to
capture the anisotropic behavior induced by rotation and curvature effects.

The curvature correction term accounts for the influence of flow curvature on the

turbulence field. It is designed to enhance the representation of secondary flows,
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vortex generation, and the redistribution of turbulence in curved flows. The curvature
correction term modifies the production and dissipation of turbulent eddy viscosity by
considering the effects of flow curvature.

The rotation correction term aims to capture the effects of flow rotation on the
turbulence field. It improves the prediction of the anisotropic behavior induced by
rotation, such as the elongation of turbulent structures in the direction of rotation.
This term modifies the production and dissipation of turbulent eddy viscosity by
incorporating the rotational effects. Both the curvature correction term and the
rotation correction term are typically formulated based on empirical correlations or
experimental data. The specific functional forms of these terms may vary depending
on the version or variant of the SA-R model used. By including these additional
corrections, the SA-R model offers improved accuracy in predicting turbulent flows
with rotation and curvature. It enables better simulation of complex flow phenomena,
such as swirling flows, flows around curved surfaces, or flows with significant
rotational effects, where the original SA model may not capture the flow characteristics
accurately. So, the rotational correction has been added to the current version of the
HEMLAB code in order to capture the flow characteristics such reagions. The equation

form of the rotational correction is given below.

If ¥ > 0 then

av N A N
5, Tu VY = (1= f)(S+erminf0,5 ~ |0])? (3.174)

M., Chl v 2
- E[Cwlfw—gftz](z>

M., X ) o
* e gV VA VIVI] VeV
if v < 0 then
80 {’ . A
5, Tu VY = cp (1-cp) [@+cromin(0,5 —[o]|? (3.175)
M. ¥
+ e G (0f VIV ]+ eV V]
. Vo
Reo.C " b2

Equations below are obtained by doing very similar updates on the code for the

production, destruction and diffusion parts for the rotation correction modification.
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If v > 0 then

oP 98 asS .
Fr Cbl(l_ftZ)(ﬁ%V) (3.176)
opP 089S . . .
5 = @l (1 _ﬁz)(ﬁ_\?‘”r S+ cromin[0,S —|®]]) (3.177)
JoP 38 d(cromin[0,S —|o]]) . .
o - Cbl(l_ftz)(%-f— o X% (3.178)
If V < 0 then
opP
b - 0 (3.179)
opP .
50 = il —ca)(o]+cpminf0.5 —|ol]) (3.180)
JdP d(crosminl0,S — |@|]) . .
oo = an(l—an)(1+ (e tmma[m @)y g (3.181)

Nothing is changed for the destruction terms.

3.2.4 QCR-2000 modification

The Spalart-Allmaras One-Equation Model with Quadratic Constitutive Relation,
2000 version (SA-QCR2000), is an enhanced version of the original SA turbulence
model detailed in [65]. It incorporates a quadratic constitutive relation to improve
the representation of turbulence production and dissipation rates. This model was
developed to address limitations in predicting flows with adverse pressure gradients
and separation, providing better accuracy in regions where the flow transitions from

attached to separated or recirculating.

The SA-QCR2000 model introduces a quadratic term in the constitutive relation for
the turbulent eddy viscosity, which relates the Reynolds stresses to the mean strain
rate. Unlike the original SA model’s linear constitutive relation, the quadratic relation
captures turbulence anisotropy more effectively by considering nonlinear interactions
between Reynolds stresses and strain rates. Since this model has been recommended
for the AIAA High Lift Prediction Workshop Series V, it has been implemented in the
current version of the HEMLAB algorithm. The equations for the SA-QCR2000 model

are given below.

For v > 0:

v . fo
E—}-u-vv = Cp1 (1 —ftz)SV
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For vV < 0:

AN\ 2

M., Ch1 \%
e (3)
M.,
Re.. 0

V- (9 o+ V)VO) +cpp VI - V.

cp1 (I —c3) |o|V

M., % 2a
J— _C —

Reo wl d

M.,

+ Re.. o

[V- ((f/fn + V)Vf/) +cppVV- Vf/] .

(3.182)

(3.183)

In these equations, the SA-QCR2000 model does not only modify the transport

equation but also alters the turbulent stress tensor. The QCR turbulent stress tensor

is defined differently from the classical model. For example:

with

Txx,qcr
Tyy,qer
Tzz.qcr
Txy,qcr
Txz,gcr

Tyz,qcr

Tyx — 2¢71 (Oxy Tey + Oxz Trz),
Tyy +2¢71 (Oxy Tyx — Oy Tyz),
Tz + 2041 (Ox; Tox + Oy Ty ),
Ty — Cr1 (Oxy(Tyy — Tux) + Oy Te; + Ox: Ty2)
Tz — Cr1 (Oxz(Toz — Tax) + Oxy Toy — Oy Ty )

Tyz —Crl <0yz(fzz - Tyy) — Oy Tpx — Oy Tyx) )

Cr1 = 0.3,

Oy = Oyy:OzzZO»

Oy = —Op="""

Oxz = _OZx: Zb x,
dv __ dw
dz dy

Oyz = _OZy— b )

(3.184)
(3.185)
(3.186)
(3.187)
(3.188)
(3.189)

(3.190)
(3.191)

(3.192)

(3.193)

(3.194)

2 2 2 2 2 2 2
B () e () (5 () + (5) + (5)
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3.3 Integration of Scalable Nonlinear Equations Solvers (SNES)

The present nonlinear Newton method is implemented using PETSc’s Scalable
Nonlinear Equations Solvers (SNES) with a line search technique [47], integrated
into the implicit vertex-based unstructured finite volume algorithm on hybrid meshes.
PETSc-SNES provides a user-friendly interface for Newton methods to solve nonlinear
equations [66], offering various Newton-like solvers based on line search and trust
region methods. For the current fully coupled system of nonlinear equations, we use

the line search Newton method (SNESNEWTONLYS).

The computational domain is divided into sub-domains using the METIS library [49]
for balanced domain decomposition. After decomposition, vertices are renumbered
using the reverse Cuthill-McKee algorithm from PARSEPACK [67]. To enhance cache
efficiency, edges are constructed in increasing order based on the node number at one
end of each edge [68]. In addition, sub-domain boundary vertices required for parallel
communication are ordered by their destination processor ID, which allows for more

efficient data packaging during parallel communication.

The application of the fully coupled Newton method with pseudo-transient

continuation (PTC) leads to the following system:

_ m+1 _ m
{At + Acre —|—J] AQ = —R(Q")

Q"-qQ" Q"-Q"
M~——=V+M~—
A TMEL Y (3.196)

+Y n-F(Q")S- ZH-FV(Q’")S]-

The pseudo time step computed from the CFL number is defined as

. Vi Vi
Atcrpp = min , CFL, (3.197)
(Ziv_l Ae Sk 2XN Ak S;%)

where A, = max(|A4;|) and

_ K AELE
)Lv_pV,-maX(?)’Pr) R

The solver also offers CFL options based on the minimum outgoing edge length and

a distance function, in which the minimum outgoing edge length is replaced by a
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slightly modified wall distance function. This option can be especially useful for highly

irregular anisotropic boundary layer meshes.

As Atcpp, is gradually increased to infinity, the above approximation converges to
the classical Newton method. This approach leads to a consistent Newton method
similar to that of Thompson and O’Connell [69], where the derivation of the right-hand
side exactly matches the left-hand side. The advantage is that the residual can be
significantly reduced in just a few Newton sub-iterations, and the block ILU(0O)
preconditioner is usually robust enough for three-dimensional problems. Additionally,
it allows for larger CFL numbers at startup due to the damping effect of the time
derivative on the right-hand side. However, as the solution approaches the final
steady state, the convergence of the Newton method may slow if the ramped CFL
number is not sufficiently high. The transient term (i.e., the second term with Atcry
on the right-hand side) is generally not included in pseudo-transient continuation
algorithms, which require more robust preconditioners. This term can compromise
time accuracy when the final CFL number is not infinite and must be removed
for unsteady calculations. Although the current algorithm supports both consistent
and non-consistent approaches, we prefer the consistent approach in our numerical

simulations.

PETSc-SNES is implemented using both the Jacobian-free approach and the direct
approach, with either first- or second-order Jacobian matrix construction for the
matrix-vector product. The following FORTRANO9O subroutine which is given in

Figure 3.3 demonstrates the implementation.

In this implementation, the right-hand side residual vector is computed in
the Form Residual function, while the Jacobian matrix is evaluated in the
Form_Jacobian function. The current PETSc-SNES setup typically uses the
first-order Jacobian matrix as a preconditioner in the matrix-free approach (via the
Fréchet derivative). The method for computing the differencing parameters for the
finite difference Jacobian-free formulation follows the default approach proposed by
Walker and Pernice [70] with e,,; = 1 X 10°. The matrix-free approach can be
sensitive to the e,,; parameter, and we observed convergence difficulties at high CFL
numbers with the default value e,,; = 1 x 10~8. While the first-order Jacobian matrix

is usually employed as a preconditioner in the Jacobian-free approach, constructing
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the second-order Jacobian is also possible, though it significantly increases memory

requirements.

subroutine Implicit_Euler( A0OO, mesh_info, solver_vrbls, rms,
dt_min, dt_max )

#include <petsc/finclude/petsc.h>

use petsc

CALL SNESCreate (PETSC_COMM_WORLD, snes, ierr)

CALL SNESSetFunction (snes,RHO,Form_Residual,mesh_info,ierr)

IF ( solver_vrbls%Matrix_Free_Jacob ) THEN

CALL MatCreateSNESMF (snes,AA, ierr)

CALL MatMFFDSetFunction (AA,Form_MFFDFunction,mesh_info, ierr)
CALL SNESSetUpdate (snes,Form Update, ierr)

CALL SNESSetJacobian (snes,AA,A00,Form_Jacobian,mesh_info,ierr)
CALL MatMFFDSetType (AA, MATMFFD_WP, ierr)

CALL MatMFFDSetFunctionError (AA,le-6,1ierr)

CALL MatMFFDDSSetUmin (AA,le-4,ierr)

ELSE

CALL SNESSetJacobian (snes,A00,A00,Form_Jacobian,mesh_info,ierr)
END IF

end subroutine solve_implicit_euler

Figure 3.3 : Pseudo-code of the Implicit_Euler subroutine using PETSc SNES.

Additionally, the first- or second-order Jacobian matrix can be used directly for
the Jacobian-vector product, which is beneficial when finite difference round-off
errors become significant in the Jacobian-free method. To implement this, replace
the symbolic Jacobian-free matrix AA with the Jacobian matrix A0O in the

SNESSet Jacobian function, as illustrated above.

The Jacobian matrix is constructed using the PETSc sparse parallel matrix in block
compressed row (MATBAIJ) format, which significantly reduces memory usage and
speeds up matrix-vector multiplications. The impact of different PETSc matrix formats
on computational efficiency is detailed in [52]. The Jacobian matrix can be computed

at each SNES iteration or frozen for several iterations to accelerate the calculations.

Although the Jacobian matrix can be computed using the finite difference
approximation within PETSc, this approach is computationally expensive and is
recommended only for debugging purposes. The current algorithm has been compiled
in both double- and quad-precision, with quad-precision (—with-precision=__float128)
used to validate the Jacobian matrix implementation for the compressible RANS

equations. Tests on a small three-dimensional mesh showed that the relative error
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in the Frobenius norm (IlJ - J ¢4llp/INllF) is 7.252 x 1074, where J¢, is the Jacobian
evaluated using the finite difference approach provided by PETSc. For the laminar
Navier-Stokes equations, this error is reduced to 1.20512 x 107!6. Running the
same test case with double precision results in larger truncation errors, making it
difficult to assess accuracy due to very small or large off-diagonal block entries
between the Navier-Stokes equations and the turbulence model. The preconditioning
method is based on the restricted additive Schwarz method with block incomplete LU
factorization with k levels of fill (ILU(k)) within each sub-block. The block ILU(k)
preconditioner can be obtained directly from the PETSc library or from the HYPRE
[71] Euclid ILU(k) preconditioner, accessed through the PETSc interface.

The linear solver can use various Krylov subspace methods, such as the flexible
generalized minimal residual method (FGMRES) [72], the flexible generalized
conjugate residual method (KSPGCR) [73], or the stabilized biconjugate gradient
method (KSPBCGS) [74]. The Newton method employs the default backtracking
line search algorithm (SNESLINESEARCHBT), which is essential for preventing

divergence during startup caused by aggressive CFL ramping.

If a consistent Newton approach is used with a constant CFL number at each
iteration, the PETSc-SNES algorithm requires only these two functions. However,
updating the CFL within Newton sub-iterations and implementing the dual-time

method necessitates additional modifications.

For the unsteady dual-time approach, the Form_Residual function handles the
right-hand side evaluation, while the Form_ MFFDFunction subroutine performs
the matrix-free Jacobian-vector multiplications. This same method is applied for the
non-consistent implementation of the PTC algorithm. Although this approach can con-
verge faster to a steady state, the restricted additive Schwarz method with the ILU(0)
preconditioner is typically not robust enough for three-dimensional cases. Moreover, it
requires evaluating an additional vector from the Form_MFFDFunct ion subroutine
since the right-hand side vector cannot be used in finite differencing for the

Jacobian-vector multiplication.

While agglomeration multigrid approaches with line smoothers are known to be robust

for anisotropic meshes [75], their overall effectiveness remains uncertain. However,
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successive anisotropic mesh refinement, with increasing complexity, significantly
reduces the burden on the linear solver by interpolating the converged solution from the
previous level, leading to better startup conditions. This is crucial for the convergence
of the Newton method, as the initial guess must be sufficiently close to the final steady

state to achieve quadratic convergence.

Another challenge with the PETSc-SNES solver is achieving proper scaling to ensure
convergence for the coupled algebraic equations. We tested several scaling methods,

1/3 , minimum

including scaling by the Jacobian diagonal, 1/volume, (1/volume)
outgoing edge length/volume, 1/maximum Jacobian row entry absolute value, and
1/sum of the absolute values in each Jacobian row. We found that scaling by

the maximum Jacobian row absolute value sum and (1/ Volume)l/ 3

provided good
convergence. The latter is also used in the Hierarchical Adaptive Nonlinear Iteration
Method (HANIM) framework [76]. However, PETSc does not permit scaling changes
between SNES iterations because this disrupts the convergence of the line search

algorithm; therefore, scaling must be applied externally.

Complex CFL update and ramping strategies based on line search algorithms are
discussed in the literature [69, 77, 78], but our current approach employs a simpler
strategy. Here, the CFL number is multiplied by a factor (between 1 and 1.5) if the
initial residual is reduced by an order of magnitude. If the reduction is less than 0.8,
the CFL number is reduced by a factor of 0.1; otherwise, no modification is made
during that Newton iteration. This CFL ramping strategy is implemented within the
Implicit_Euler subroutine for both the consistent Newton approach and the dual

approach, thereby keeping the CFL number fixed within the Newton sub-iterations.

Another approach to modifying the CFL number is to implement it within the
Form_Update function, which would allow for CFL ramping within Newton
sub-iterations. However, this method requires careful consideration of the line search
algorithm, as increasing the CFL number during sub-iterations can initially increase the
residual, which the line search algorithm may interpret as divergence and potentially
halt the updates. This issue is particularly challenging for the turbulence model,
where the residual initially increases before eventually decreasing. Some authors have

explored excluding the turbulence residual from the line search algorithm [79] to
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address this problem. Additionally, scaling the Jacobian matrix presents challenges,

as scaling cannot be altered within the SNES solver.

Alternatively, PETSc-SNES can be used as a one-step classical Newton method
without a line search algorithm (via the SNESKSPONLY option), as described in
[38]. This setup is suitable for solving relatively simple problems at low angles of
attack. Moreover, the algorithm has been integrated with the SLEPc library [80] to
explore leading eigenvalues, typically using the Jacobi-Davidson method to compute

the smallest eigenvalue.

3.4 Improvements on the Mesh Adaptation Process

The integration of pyAMG and NASA-REFINE into the HEMLAB algorithm has
significantly enhanced the mesh adaptation process, improving both accuracy and
efficiency in computational fluid dynamics (CFD) simulations. By using the strengths
of these advanced mesh adaptation tools, the process now incorporates multiscale
anisotropic refinement techniques, better geometric preservation, and optimized
boundary layer generation. This integration ensures that the computational resources
are allocated more effectively to regions of interest, such as shock waves, boundary
layers, and separation zones, leading to improved solution quality while maintaining
manageable computational costs. Additionally, the combination of these tools provides
a more adaptive and flexible refinement framework, allowing automated adjustment
of mesh resolution based on flow physics, thereby reducing the reliance on manual

meshing strategies.

One of the key advantages of this integration is the ability to leverage different
adaptation methodologies for various flow regimes. pyAMG’s multiscale anisotropic
adaptation excels at preserving fine-scale flow structures by efficiently redistributing
mesh density, whereas NASA-REFINE’s metric tensor-based approach ensures
targeted refinement in critical flow regions without excessive computational overhead.
The synergy between these two methods enables a comprehensive refinement strategy,

balancing localized resolution enhancement with global mesh quality control.

Furthermore, this integration enhances boundary layer handling, a crucial aspect

in high-fidelity simulations involving high Reynolds number flows. By utilizing
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metric-based refinement and structured adaptation techniques, the computational mesh
is better aligned with wall-bounded flow characteristics, reducing numerical diffusion
and improving accuracy in turbulence modeling. The automated adaptation workflow
reduces preprocessing time and ensures consistent mesh quality across multiple

adaptation cycles.

The adaptation methodology also incorporates recent advancements in anisotropic
mesh refinement algorithms. The feature-based adaptation technique relies on a
Riemannian metric space formulation, allowing edge lengths and element volumes to
be determined based on the metric field [81]. This ensures alignment of mesh elements
with local eigenvectors of the metric tensor, generating highly optimized anisotropic
meshes. Additionally, the adaptation process utilizes Hessian-based multiscale metric
computation, where the metric field is scaled using the Hessian determinant to

minimize interpolation errors in the L, norm.

In practical applications, the sensor function plays a crucial role in guiding mesh
adaptation. The sensor function can utilize flow variables such as Mach number,
pressure, entropy, and FTLE. The current implementation employs an exponential
distance-based sensor function:

0.25 ¢~ 100x10'd (3.198)
1

4
Sensor —=

1

where d represents the minimum wall distance. This enables the refinement process
to begin even without an initial boundary layer, progressively forming a structured
boundary layer mesh. Once established, further adaptation incorporates the Mach

number as a refinement criterion:

Sensor = Mach (3.199)

This multistage approach ensures an efficient and accurate refinement process,
focusing computational effort on critical flow regions while preserving geometric
fidelity. Additional sensor functions, including entropy-based and entropy-Mach
combined metrics, are available for capturing wake shear layers and complex flow

structures [38, 82].

Moreover, special attention is given to the challenges of anisotropic adaptation in

high-lift configurations and complex geometries. The adaptation process prevents
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numerical issues such as tetrahedral elements with all nodes on solid walls, which
can cause singularities in the flux computations. The NASA-REFINE library enforces
conditions ensuring proper edge connectivity to non-boundary nodes, mitigating

potential numerical instabilities [83].

The following sections provide a detailed discussion of the HEMLAB-pyAMG and
HEMLAB-REFINE integrations, outlining the methodologies, implementation details,

and their impact on the adaptation process.

3.4.1 HEMLAB-pyAMG integration

To further enhance numerical accuracy, the anisotropic mesh adaptation library
pYAMG from INRIA [36] is integrated into the HEMLAB solver. The edge lengths
and element volumes inside the mesh generator are computed in the Riemannian
metric space defined by the given metric field using a multiscale approach. It employs
anisotropic cavity-based operators, where standard operations such as collapse,
insertion, and swaps are recast within this cavity framework to perform anisotropic

mesh adaptation.

This feature-based adaptation technique can utilize one variable of the flow fields, such
as Mach number, pressure, entropy, FTLE, etc. In the current multiscale approach, the
Mach number is modified by adding exponential functions based on the minimum wall

distance, which is then used as a sensor function, as shown below:

5 .
Mach Sensor = BMach+ Y 0.25 ¢~ 10010 (3.200)
i=1

In this equation, if B is set to zero, only the distance function is considered during
adaptation. If 3 is set to 1, both the distance function and the Mach number are taken
into account. With this approach, mesh refinement can begin even without an initial
boundary layer. In this case, several successive refinements based solely on the distance
function are applied to form the boundary layer mesh. Once a well-refined boundary
layer mesh is obtained, the refinement process can continue using the sensor function,
incorporating both the Mach number and wall distance. Additionally, a p—norm, which
controls the interpolation error in the sensor function in the L norm, is used to manage

error control.
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The classical mesh adaptation process described above tends to lose some parts of the
original geometry during interpolation, leading to inaccuracies in the adapted mesh. To
overcome this issue, a background mesh finer than the initial mesh has been used as a
reference during the adaptation process. This feature is referred to as "adap_back" in
the original pyAMG library. Using this feature, the results obtained protect the original

geometry during the refinement.

The adapted surface mesh is projected onto the background mesh in Gamma mesh
format which is given in the Figure 3.5. The MeshLink library [84], which provides
mesh-geometry associativity in an open framework, is utilized to obtain the edge
and corner data required for the Gamma mesh format. The current multiscale mesh
adaptation is performed using the Gamma mesh format instead of the SU2 format,
where such data is lost after mesh refinement. Therefore, additional code has been
written to convert and build the Gamma mesh format. Furthermore, the NASA Refine
anisotropic mesh adaptation library [83] is used to facilitate the conversion of mesh
file formats. The updated mesh adaptation code parameters have been added to the

refinement part of the input file of HEMLAB, as shown below in Figure 3.4.

&ADAP_OPTS

adap_sizes = (400000 ; 800000 ; 2000000 ; 4000000) ;
adap_norm = 4,

adap_subite = (9 ; 1 ; 3 ; 1),

adap_ext_ite = (0 ; 400 ; 200 ; 200),
adap_residual_reduction = (3 ; 3 ; 3 ; 3),
adap_sensor = (DIST; DIST; MACH_DIST; MACH_DIST),

adap_hmin = le-6,

adap_hmax = 4.0,

adap_hgrad = 1.2,

adap_ridge= false,

adap_back back_reoriented.mesh

Figure 3.4 : Adaptation part of the input file of HEMLAB used for pyAMG-based
mesh adaptation.
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Vertices
1534333
-22.83464
-17.50000
-15.50000
Triangles
578006
2380

2381

2382
Tetrahedra
8668795
22193
698945
398945

Dimension 3

MeshVersionFormatted

0.00000
0.00000
0.00000
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22119
698944
398944

22
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698947
398947
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.32464

1349447
1407227
1207227

o

Edges
21581
1 2 0
2
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w
(@]

Corners
289

1

2

Figure 3.5 : Sample Gamma Mesh format showing vertices, triangles, tetrahedra,
edges, and corners.

3.4.2 HEMLAB-REFINE integration

NASA-REFINE is a widely used adaptation tool in the aerospace industry that
enhances the quality and efficiency of computational fluid dynamics (CFD) simulations
through dynamic and adaptive mesh refinements. These tools are essential for
addressing challenges associated with high Reynolds numbers, compressible flows,
and complex geometries. The primary goal of mesh adaptation is to optimize
computational resources, focusing refinement efforts on critical flow features such as
shock waves, boundary layers, and separation zones, which are crucial for accurately

capturing aerodynamic forces and heat transfer [85].
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NASA-REFINE employs a metric tensor-based adaptation approach, which is central
to its methodology. The metric tensor defines the desired size, shape, and orientation
of mesh elements throughout the computational domain, enabling anisotropic mesh
refinement. This allows elements to be stretched or compressed in alignment with
directional flow gradients, significantly improving accuracy in resolving vortices,
wakes, and other complex flow structures. Large, uniform meshes would otherwise
require excessive computational cost, but adaptation dynamically sets mesh density,

optimizing computational efficiency.

A particularly challenging aspect of CFD is resolving viscous layers near solid
boundaries, where high velocity and temperature gradients exist. NASA-REFINE
addresses this challenge through viscous layer refinement, ensuring proper resolution
and alignment of mesh elements within boundary layers. The refinement process
incorporates models such as the “Spalding” formula for boundary-layer thickness to
guide mesh refinement, ensuring accurate computation of aerodynamic forces and heat

transfer at walls [86].

Unlike its traditional implementation, where adjoint-based error estimation is used to
identify refinement regions based on sensitivities to a quantity of interest (Qol), the
current framework does not utilize this approach. Instead, our framework integrates
NASA-REFINE as an adaptation tool by directly leveraging metric tensors computed
for a specific sensor function. The sensor function captures critical flow characteristics,
such as Mach number gradients, and guides the refinement process accordingly. This
approach eliminates the need for adjoint solutions while still ensuring that mesh
adaptation efficiently captures important flow features. The adaptation workflow in
our framework consists of several steps, beginning with the conversion of mesh and
solution files into formats compatible with NASA-REFINE. Mesh files are transformed
between .mesh and .meshb formats, while solution files are converted to .sol and .solb.

These conversions ensure seamless integration into the adaptation process.

In order to run the HEMLAB with NASA-REFINE following parameters needs to be

entered in to the adaptation part of the config file as shown in Figure 3.6.
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&ADAP_OPTS

adap_sizes = (2000 ; 4000; 40000 ; 200000),
adap_norm = 4,

adap_subite = (3 ; 1 ; 3 ; 1),

adap_ext_ite = (200 ; 2000 ; 2000; 2000),
adap_residual_reduction = (3 ; 3 ; 3 ; 3),
adap_sensor = (MACH_DIST; MACH_DIST; MACH; MACH),

adap_hmin = le-6,

adap_hmax = 100.,

adap_hgrad = (1.2; 1.2; 1.2; 1.2),
adap_aspect_ratio= 1000,
adap_refine_ite_max = 1,

adap_exit_iteration =3,

adap_spalding = 0.0001,
adap_bl_exit_iteration = 2,
adap_viscous_tags = 1,

bl_creation= true,

delete_ _files= true,
additional_refine_metric_options= ""
additional_refine_adap_options= "" ,
additional_refine_adap_bl_options= "",

Figure 3.6 : Adaptation part of the input file of HEMLAB for REFINE-based mesh
adaptation.

The first step in the framework involves generating a metric file, which provides a
mathematical description of the desired mesh refinement. The following command was

used for this step:

mpirun -np 24 refmpi multiscale mesh_file.meshb
Mach_sensor.solb 8000 output-metric.solb
—-—-norm-power 4 —--gradation 1.2 —-—aspect-ratio 1000

Figure 3.7 : Command-line execution of multiscale metric generation using REFINE

with 24 MPI processes.
Here, the — — norm — power parameter controls the sensitivity of the metric to
solution gradients, — — gradation specifies the smoothness of mesh transitions, and

— —aspect —ratio defines the maximum allowable stretching of mesh elements. These
parameters are being used to control the generation of a metric tensor, which ensures

efficient and accurate refinement of critical flow regions, such as shocks or vortices.
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With the metric file generated, the adaptation process begins using the command:

mpirun -np 24 refmpi adap mesh_file.meshb -m
output-metric.solb -x mesh_adap.meshb -s 1

Figure 3.8 : Execution of REFINE adaptation step using 24 MPI processes with input
metric file and output adapted mesh.

In this step, NASA-REFINE modifies the mesh according to the specified metric,
creating an adapted mesh (mesh_adap.meshb). However, if the original mesh lacks a
boundary layer, this step does not create one. Boundary layers are crucial for resolving

sharp gradients near walls, such as velocity and temperature changes.

To incorporate a boundary layer, the following command is executed:

mpirun -np 24 refmpi adap mesh_adap.meshb -x
mesh_adap_bl.meshb -s 15.0 -—--viscous-tags 1
—--spalding 0.00001 400000

Figure 3.9 : Execution of REFINE boundary layer adaptation.

This step creates a boundary layer using viscous tags and the Spalding boundary-layer
thickness model. The — — spalding parameter determines the thickness of the layer,
and the — — viscous —tags option ensures the mesh elements align properly within the

layer. The adapted mesh with the boundary layer is output as mesh_adap_bl.meshb.

Finally, the adapted mesh must be interpolated to the solution file. This is achieved

using the following command:

mpirun -np 24 refmpi interpolate
mesh_adap_bl.meshb initial_solution.solb mesh_final.mesh]
receptor-field.solb

Figure 3.10 : REFINE command for interpolating the solution from adapted mesh to
final mesh.

Interpolation transfers the solution from the original mesh to the refined mesh, ensuring
continuity of simulation data. The resulting mesh_final.meshb serves as the starting

point for the next adaptation step or the subsequent CFD simulation. These steps
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complete the mesh adaptation process. Once the adapted mesh and solution are ready,
the HEMLAB solver can be executed to simulate the flow on the refined mesh. This
iterative process of adaptation and simulation ensures that computational resources are

relatively dense in regions of high interest, accurate and efficient CFD solutions.
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4. NUMERICAL RESULTS FOR HLPW-3

As described in Section 1.5.3, there are three main test cases proposed for this
workshop. Due to limited computational resources, only two of them were studied
during this thesis. Validation of HEMLAB algorithm was performed using the
two-dimensional L1T2 (NHLP) geometry which is given in Figure 4.1 and the
three-dimensional JAXA Standard Model high-lift configuration cases [87]. Details
for each test case are provided in Tables 4.1 and 4.2. In this study, the SU2 solver
integrated with the pyAMG library is used as the RANS solver. The final adapted

mesh results were also validated using the HEMLAB algorithm.

(( P

N

Figure 4.1 : 2D Multi Element Airfoil L1T2 (NHLP).

Table 4.1 : Flow conditions for 2D Test Case (L1T2/NHLP)

Mach Number 0.197

Re Number 3.52x 10°

Angle of Attacks 4.01°,20.18°

Mean Aerodynamic Chord 1.0m

Moment Location x=025m,y=0m,z=0m
Reference Area 1.0m?

Prandtl Number 0.78

Turbulent Prandtl Number 1.0
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Figure 4.2 : High lift JAXA Standard Model (JSM) (Nacelle/Pylon-Off model, Case
2b).

Table 4.2 : Flow conditions for 3D Test Case (JAXA-SM)

Mach Number 0.172

Re Number 1.93 x 10°

Angle of Attacks 4.36°,10.47°,18.58°
Mean Aerodynamic Chord 0.5292m

Moment Location x=23757Tm,y=0m,z=0m
Reference Static Pressure 747.710mmHg
Reference Static Temperature 551.79°R

Reference Area 2.2466m*

Prandtl Number 0.78

Turbulent Prandtl Number 1.0

The LIT2 is a three-element airfoil consisting of a main element, a slat (located
forward of the main element), and a flap (located aft of the main element). Calculations
for the 2D cases were performed at a free-stream Mach number of M., = 0.197 and a
Reynolds number of Re = 3.52 x 10°. To validate the numerical setup, simulations
were conducted using a well-designed unstructured mesh with a boundary layer. Both
the SU2 and HEMLAB solutions agreed well with the experimental data and with each

other.

After validating the numerical setup, the adaptation process was studied. It should be
noted that the initial mesh used in the simulations did not include a boundary layer.
After four levels of refinement using only the distance function, a boundary layer

mesh was generated with the pyAMG algorithm. Then, eight additional refinement
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levels were performed using both the distance function and Mach number to achieve
an adapted mesh. The development of the wake region is illustrated in Figure 4.3.
Results were obtained for two angles of attack, o« = 4.01° and o = 20.18°. Details of

the each refinement level are given in the Table 4.3.

The high mesh resolution on the solid walls of the initial mesh was employed
to maintain geometric accuracy. Computed pressure coefficient contours for both
solvers are provided in Figures 4.4 and 4.5. A comparison of the computed pressure
coefficients on the L1T2 is also presented in Figure 4.6, and the results are in good

agreement with each other.

Although there is a slight deviation between the two solvers around the leading-edge
suction peak at oc = 4.01°, the use of rotational correction [64] in the Spalart-Allmaras
model (SA-R) eliminates this difference, and the modified model significantly reduces
the turbulence viscosity within high-lift cavities. The lift and drag coefficients obtained
with SU2 and HEMLAB are tabulated in Table 4.4. It can be seen that the numerical

results are compatible for both angles of attack.

Table 4.3 : Refinement data for oo = 4.01°

Refinement Level Number of Number of Number of
(Sensor Function) Vertices Elements Surface Elements
ite0 (Initial Mesh) 59,657 113,600 5,662
itel (Distance) 107,742 208,409 7,045
ite2 (Distance) 108,909 210,537 7,249
ite3 (Distance) 100,267 193,581 6,922
ite4 (Distance) 87,955 169,531 6,346
ite5 (Distance + Mach) 87,621 170,505 4,533
ite6 (Distance + Mach) 93,404 182,264 4,274
ite7 (Distance + Mach) 97,564 190,575 4,225
ite8 (Distance + Mach) 98,467 192,343 4,235
ite9 (Distance + Mach) 293,080 577,376 8,131
ite10 (Distance + Mach) 295,892 582,730 8,384
itel1 (Distance + Mach) 296,018 582,883 8,481
ite12 (Distance + Mach) 296,247 583,303 8,510
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d
Figure 4.3 : Progress of mesh adaptation at M., = 0.197, Re = 3.52 x 10° and -
o =4.01° around L1T2 (NHLP) high lift system: [a] Initial mesh with no boundary
layer, [b] 4th iteration with distance only, [c] 8th iteration with distance and Mach, [d]
12th iteration with distance and Mach.
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o =4.01° [a] and ¢ = 20.18° [b].
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Table 4.4 : CL and CD results for given AoAs

CL CD
AoA SU2 HEMLAB SU2 HEMLAB

4.01° 2.0944 21053 0.0325  0.0326
20.18° 4.0300  4.0448  0.0851 0.0782

On the other hand, the same calculations were applied to the JAXA Standard Model,
which is the geometry proposed for the 3rd AIAA CFD High Lift Prediction Workshop
[88]. Figure 4.2 shows the high-lift JAXA Standard Model in the nacelle/pylon-off
configuration (Case 2b). The top view of the model, along with approximate wing
sections, is presented in Figure 4.7 to facilitate comparison with the experimental data

of Yokokawa et al. [89].

Figure 4.7 : High lift JAXA Standard Model (JSM) approximate wing sections.

The RANS equations can be efficiently solved using Newton’s method combined
with an accurate Jacobian evaluation, reducing the residual to machine precision
[58]. However, this approach has a notable drawback: multiple solutions to the
RANS equations may exist—even when the residual is reduced to machine zero
[58,90,91]—making it difficult to identify non-physical solutions. These non-physical
steady solutions are generally unstable to infinitesimal temporal disturbances and may
not occur in URANS simulations. Furthermore, this method is relatively expensive; for
example, the convergence of moment data is slow and requires a large number of time

steps [58].
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In the literature, several authors [91-93] use an alpha continuation approach, wherein
the solution is restarted from a previously converged solution at a slightly lower angle
of attack rather than starting impulsively with uniform free-stream conditions. Others
[91] use time-accurate transient simulations. Both approaches delay premature flow
separation and result in flow predictions and lift computations that better agree with

experimental data.

In the present study, the SU2 calculations are carried out using the Euler implicit
method in time with a constant CFL of 2 and Ar = 1; larger CFL numbers lead to
divergence. Additionally, the gradient terms required for the inviscid/viscous fluxes
and turbulence source terms are evaluated with the Green-Gauss approach, since
the weighted least squares approximation for the turbulence source terms is highly

inaccurate and leads to divergence on anisotropic tetrahedral meshes.

Similarly, the HEMLAB calculations are performed using the Euler implicit method
with At = 1; however, the CFL number is exponentially ramped to 100 to accelerate
the numerical calculations. The larger CFL number with initial free-stream values
also results in premature separation, so the solutions are restarted from a previously
converged solution at a lower angle of attack. The sensor function for anisotropic mesh

refinement is similar to that used for two-dimensional cases and is arranged as follows:

4 .
Sensor:ﬁMach—FZO.ZSe_IOOXIOId 4.1)
i=1

where d is the minimum wall distance function. The value of f3 is zero for the initial
four adaptation levels and is set to 1 thereafter. Using several exponential functions
allows us to account for different initial mesh sizes on solid walls. The minimum edge

length is set to 1 x 10~® with an exponential size variation factor of 1.2.

The initial calculation was carried out at M. = 0.172, Re = 1.93 x 10°%, and a =
4.36°. In the present simulations, the free-stream turbulent viscosity for the classical
Spalart-Allmaras turbulence model was set to 0.05, as in the two-dimensional cases.
The progress of the mesh adaptation is shown in Figure 4.8 on the y = —0.66 plane.
Although the geometry is relatively complex, the boundary layers and wakes are
captured well. Mesh resolutions for each refinement level are provided in Table 4.5.
The final adapted mesh consists of 29,174,966 vertices and 169,747,550 tetrahedral
elements (175,049,796 DOF). In these simulations, the full JSM model was used
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instead of the half-span JSM model, and there are 2,805,424 triangular elements on

the solid walls.

The computed pressure coefficients are presented in Figure 4.9. The results show
relatively good agreement on the main wing section; however, there is some
discrepancy in the outboard H-H section for the HEMLAB solver. This discrepancy is
attributed to the separation that occurs behind the second-most outboard slat bracket. It
should also be noted that the pressure coefficients along the stagnation lines are lower
than one compared to the two-dimensional cases, and the leading part of the main wing

experiences a less favorable pressure gradient.

In Figure 4.9, the experimental wing sections do not exactly correspond to constant
y-planes. Consequently, there is some difference on the slats. Although it is possible to
interpolate the pressure values at the experimental points using NASA’s open source
adt_utilities.f90 module, the number of experimental points is limited. We observed
better agreement with this approximation since some sections are very close to the

brackets (see section D-D, for example).

Subsequently, the angle of attack was increased to o = 10.47° and o = 18.58°, and the
computed pressure coefficients for these cases are provided in Figures 4.10 and 4.11,
respectively. The agreement is relatively good for o« = 10.47°, but for oc = 18.58° very

large separation is observed in the outboard portion of the main wing.

There is no certain explanation about the source of this discrepancy. One possibility is
poor mesh resolution within the boundary layers; another possibility is inappropriate

wake behavior in the turbulence model.

The computed skin friction lines for both the HEMLAB and SU2 solutions are shown
in Figures 4.12 and 4.13 which are also compared with experimental data. The skin
friction lines indicate small separation at the flap tips, where the flow tends to move
toward the outboard wing tips at low angles of attack. At higher angles of attack,

significant separation is observed in the outboard portion of the main wing.

The complete skin friction lines around the JSM model are presented in Figure 4.14,
where separation lines can be observed on the JAXA main body at high angles of

attack. The constant entropy isosurface is shown in Figure 4.15 for o = 4.36°, along
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with a mesh slice at the x = 5 plane, to demonstrate the wake resolution. The roll-up

behavior of the wake is clearly visible.

At high angles of attack, the wing-body junction vortex merges with the vortex from
the inboard slat tip to form a relatively stronger vortex. At the outboard wing tips, the

vortex from the outboard slat tip rolls around the main wing tip vortex.

The present calculations indicate very good accuracy near stall angles for the inboard
sections, including the separation bubble at the wing-body junction; however, further

improvement is required for the outboard sections.

To assess the required normal mesh resolution, the y* values for a = 4.36° are
presented in Figure 4.16. The maximum y™ value is computed to be less than 5, with

the highest values occurring near the main wing tips.

It is also observed that using the SA model without the transition model (SA-noft2)
does not result in a fully turbulent simulation at the current free-stream turbulence level
[94]. Even when the free-stream turbulent viscosity is increased to 3, no significant
difference in the separation lines on the flap surfaces is observed. Nevertheless, the
computed lift, drag, and moment coefficients — calculated with respect to the moment

location as defined in 4.2 — are 1.6860, 0.1657, and -0.5260, respectively. The lift

coefficient shows better agreement with the experimental value.

Table 4.5 : Refinement data for AoA=4.36°

Refinement Level Number of Number of Number of
(Sensor Function) Vertices Elements  Surface Elements
iteO (Initial Mesh) 16,591,604 98,181,146 896,704
itel (Distance) 13,691,577 79,581,271 1,435,956
ite2 (Distance) 15,157,646 88,126,699 1,548,066
ite3 (Distance) 16,345,926 95,104,769 1,621,898
ite4 (Distance) 12,600,773 73,338,581 1,284,372
ite5 (Distance + Mach) 13,657,242 79,376,223 1,436,600
ite6 (Distance + Mach) 15,133,152 87,975,397 1,551,246
ite7 (Distance + Mach) 16,309,510 94,876,430 1,626,188
ite8 (Distance + Mach) 17,164,661 99,897,529 1,679,616
ite9 (Distance + Mach) 22,844,559 132,861,764 2,196,918
ite10 (Distance + Mach) 25,833,893 150,171,226 2,525,996
itel1 (Distance + Mach) 27,820,608 161,770,118 2,705,578
ite12 (Distance + Mach) 29,174,966 169,747,550 2,805,424
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Figure 4.12 : Comparison of computed HEMLAB streamtraces with experiments at
M., =0.172 and Re = 1.93 x 10° for o0 = 4.36° [a], @ = 10.47° [b] and o = 18.58°
[c]. The contours correspond to Cp, values (0 < Cp, < 0.020281).

[b]

Figure 4.13 : Comparison of computed SU2 streamtraces with experiments at
M., =0.172 and Re = 1.93 x 10° for o = 4.36° [a], & = 10.47° [b], and o = 18.58°
[c]. The contours correspond to Cy, values (0 < Cp, < 0.020281).
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[a]

[b]

[c]
Figure 4.14 : Effect of AoA on computed streamtraces at M., = 0.172,
Re = 1.93 x 10 around the JAXA high lift system (HEMLAB) for o = 4.36° [a],
o = 10.47° [b] and or = 18.58° [c]. The contours correspond to C,, values
(—4.3<C,<29).
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Figure 4.15 : Computed entropy isosurface (As = 0.001) with a slice at x = 5 plane at
M., =0.172, Re = 1.93 x 10° and o = 4.36° around the JAXA high lift system
(HEMLAB).

Table 4.6 : CL, CD and CM results for given AoAs

CL CD CM
AoA Exp SU2  HEMLAB Exp SU2  HEMLAB Exp SU2 HEMLAB

4.36° 1.6818  1.6899 1.6860 0.1563  0.1691 0.1657 -0.5496  -0.5343 -0.5260
10.47° 223268 2.19666  2.2301 0.22592 0.25607  0.2417  -0.46323 -0.42042  -0.4464
18.58° 2.74305 2.62894 25088  0.38710 0.40823  0.4029  -0.23318 -0.17097 -0.1321

Figure 4.16 : Computed y* values for HEMLAB at M., = 0.172, Re = 1.93 x 10°
and @ = 4.36° around the JAXA high lift system.
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5. NUMERICAL RESULTS FOR HLPW-4

In this workshop, a turbulence verification study was conducted for the 2D-CRM
model as shown in 5.1. Figure 5.2 shows the 3D-CRM model was used for the other test
cases as detailed Section in 1.5.4. The parameters used in these test cases are provided
in Tables 5.1 and 5.2. In performing the simulations, HEMLAB was integrated with
pYAMG which is an anisotropic mesh adaptation library so SU2 was not used as the
flow solver as in the HLPW-3 studies. Another change from the HLPW-3 studies
is in the turbulence modeling. The updated code uses the SA-negative model with
second-order discretization. All calculations were performed by solving the turbulence

model equations coupled with the Navier-Stokes equations.

Figure 5.1 : 2D-CRM Multi Element Airfoil.

Table 5.1 : Flow conditions for 2D Test Case (2D-CRM)

Mach Number 0.2
Re Number 5.0 x 100
Angle of Attacks 16°
Mean Aerodynamic Chord 1.0m
Moment Location x=025m,y=0m,z=0m
Ratio of Specific Heats y 1.4
Reference Static Temperature 272.1°K
Prandtl Number 0.72
Turbulent Prandtl Number 0.9
Reference Static Pressure 14.7 psi
Vereestream/ Veo 3.0
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Figure 5.2 : High lift NASA Common Research Model (CRM).

Table 5.2 : Flow conditions for 3D Test Case (3DCRM)

Mach Number 0.2

Re Number 5.49 x 10°
Angle of Attacks 7.05°
Mean Aerodynamic Chord 275.8inch
Reference Static Pressure 24.67 psi
Reference Static Temperature 521.0°R
Semi-Span Reference Area 29736.0in?

Moment Reference Center x = 1325.9inches, y = 0.0inches, z = 177.95inches

The initial mesh has no boundary layer, and the flow conditions are M., = 0.20, Re =
5% 10° Pr=0.72, o« = 16°, and T., = 272.1K was the 2D-CRM calculations. The
boundary layer is generated during the mesh adaptation process. The computational
domain is set to 1000 chord lengths of the airfoil. Time-dependent simulations were

run with a maximum CFL number of 1000.

4 .
Mach Sensor = BMach + Z 0.25 ¢~ 100x10'd 5.1
i=1

For the mesh adaptation, a Mach sensor was used. In the first four iterations, only the
distance function was employed (8 = 0) to obtain the boundary layer; subsequently,
the remaining steps were carried out using the full Mach sensor (8 = 1). In the end,
the results captured the wake region and the pressure distribution correctly, as shown

in Figure 5.3.
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Figure 5.3 : Mesh adaptation at Mo, = 0.2, Re =5 X 10%, Pr=0.72, and o = 161e]
around 2D-CRM: Initial mesh with no boundary layer [a], 4th [b], 8th [c], 12th [d],
and 16th [e] iterations with distance and Mach.
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The lift and drag coefficients obtained are compared with the results presented
in the ATAA 4th High Lift Prediction Workshop. The label A-026 represents the
results obtained with the new version of the HEMLAB algorithm, while the other
labels correspond to A-002 (INRIA), A-004 (NASA), A-013 (MIT), A-025 (Boeing),
and A-031 (UT). The B value, which serves as a blending parameter between
upwind and central interpolations (8 = 0 representing a central approximation and
B =1 corresponding to upwind least-squares interpolation), is shown in Figure 5.4.
This parameter governs the degree of upwinding and has a significant impact on
convergence. Details of the grid elements for each mesh adaptation level, along with
the corresponding lift, drag, and moment coefficients — calculated with respect to the

moment location given in Table 5.1 — are provided in Table 5.3.

Table 5.3 : Refinement data for L4, ¢ = 16° and 8 = 1/48.

Refinement Level Number of  Number of Number of CL Cp Cy
(Sensor Function) Vertices Elements Surface Elements
ite0 (Initial Mesh) 325,794 136,785,487 9,156
itel (Distance) 80,517 153,908 7,051
ite2 (Distance) 75,179 144,383 5,900
ite3 (Distance) 69,850 134,398 5,227
ite4 (Distance) 66,769 127,951 5,512
iteS (Mach) 59,075 114,701 3,374 3.787990 0.061144 -0.380541
ite6 (Mach) 62,788 122,495 3,001 3.791839 0.061114 -0.381260
ite7 (Mach) 65,084 127,163 2918 3.792202 0.061097 -0.381325
ite8 (Mach) 66,556 130,135 2,879 3.791986 0.061087 -0.381277
ite9 (Mach) 535,817 1,063,137 8,272 3.801085 0.060595 -0.382779
ite10 (Mach) 545,380 1,081,172 9,347 3.801261 0.060581 -0.382805
itel1 (Mach) 546,086 1,082,540 9,394 3.801343 0.060581 -0.382823
ite12 (Mach) 545,482 1,081,333 9,398 3.801392  0.060581 -0.382831
ite13 (Mach) 4,931,609 9,834,558 28,020 3.802472  0.060527 -0.383015
ite14 (Mach) 4,902,898 9,776,620 28,523 3.802529 0.060524 -0.383026
itel5 (Mach) 4,880,518 9,731,785 28,587 3.802536  0.060524 -0.383027
ite16 (Mach) 4,865,985 9,702,708 28,601 3.802536 0.060524 -0.383027
ite17 (Mach) 18,734,411 37,404,255 62,930 3.802598 0.060521 -0.383037
Ref [95] 3.802952  0.060529
382 - : 0.066 T
3.8 0.065
| | A-002, GO Lift+trb
A-004.1
A-004.2
s A013.1
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Figure 5.4 : Convergence of lift coefficient [a] and drag coefficient [b] at M., = 0.2,
Re =5 x10%, Pr=0.72, and o = 16° around a two-dimensional high-lift system
compared with several other workshop benchmark data, N corresponds to the total
number of vertices.
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Table 5.4 : Effect of numerical methods on aerodynamic loads for ite8 mesh (66,556

nodes).

Inviscid fluxes B (Ky) Harten (¢) Cp Cp Cy

Roe second-order 1 K,=0.01 &£=0.001 3.740486 0.065880 -0.373570
Roe second-order 1 K,=0.1 &=0.001 3.769412 0.063391 -0.377939
Roe second-order 1 K, =1 €=0.001 3.771079 0.063262 -0.378203
Roe second-order 1 no limiter & =0.1 3.749120 0.064479 -0.374499
Roe second-order 1 no limiter € =0.01 3.769094 0.063367 -0.377864
Roe second-order 1 no limiter €=0.001 3.771098 0.063260 -0.378206
Roe second-order 1 no limiter € =0.0 3.771222  0.063254 -0.378227
Roe second-order 2/3  nolimiter €=0.001 3.777978 0.062528 -0.379212
Roe second-order 1/2  nolimiter €=0.001 3.781486 0.062159 -0.379728
Roe second-order 1/3  nolimiter &€=0.001 3.785052 0.061789 -0.380254
Roe second-order 1/6  nolimiter €=0.001 3.788678 0.061415 -0.380790
Roe second-order 1/12  no limiter €=0.001 3.790539 0.061226 -0.381066
Roe second-order 1/48 nolimiter €=0.001 3.791986 0.061087 -0.381277
HLLC second-order 1 no limiter - 3771212 0.063255 -0.378225
HLLC second-order 1/48 no limiter - 3.791989 0.061087 -0.381277
AUSM™-up second-order 1 no limiter - 3.773094 0.063263 -0.378618
AUSM ™ -up second-order 1/48 no limiter - 3.791942 0.061260 -0.381356

The other sources of numerical dissipation such as the use of the Harten correction
coefficient €, the limiter coefficient used in the Venkatakrishnan limiter Ky are also
investigated on a relatively coarse mesh and the results are provided in Table 5.4.
The results clearly indicate that the amount of upwinding strongly affects the resulting
aerodynamic forces. The large value of the Harten correction coefficient also adversely
affects the aerodynamic loads. The third-order upwind least squares interpolations
for the convective fluxes is also used and it shows significant improvement on the
drag coefficient. During the simulations, it has been noted that our refinement is
relatively aggressive compared to the other benchmark results and the number of levels
is increased in three-dimensions. The use of several more iterative refinement levels
can help to achieve a better mesh convergence since mesh adaptation convergence is
relatively slow. In addition, it can be improved the convergence of Newton iterations

since the initial solution will be closer to final converged solution.

The computed surface pressure coefficient and x-component of skin friction coefficient
are provided in Figure 5.5 and the computed results are compared with the results

provided by MIT.

The computed Mach contours along with streamlines are shown in Figure 5.6
multi-element airfoil and the flow is attached over the main wing and the flap. The

entropy contours with streamlines are also provided to illustrate viscous dissipation
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effects. The entropy function is also used as a sensor function during the adaptation, but

it leads to excessive coarsening in inviscid regions, hence the computed aerodynamic

loads are not better than those of Mach number.

For the present two-dimensional calculations, the conservation equation residuals

are reduced to 1 x 1078 or 1 x 107, The residuals for the governing equations are

computed and they are given in Figure 5.7, also the same figure provides information

about the convergence of the lift, drag and moment coefficients for each mesh

adaptation level.
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Figure 5.5 : Computed pressure [a] and x-component of skin friction [b] coefficients.
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Figure 5.6 : Computed Mach [a] and entropy [b] contours at M., = 0.2, Re = 5 x 10°,
Pr=0.72, and a = 16° around a two-dimensional high-lift system.
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Figure 5.7 : Convergence of forces and residuals for each adaptation level at
M. =0.2,Re =5x 10% Pr=0.72, and a = 16° with L4 norm, = 1/48, and
€ =0.001.

To evaluate the performance of the monolithic nonlinear Newton method under differ-
ent configurations, a series of calculations were conducted using various combinations.
These include: a first-order preconditioner with first-order Jacobian-vector multipli-
cation, a first-order preconditioner with second-order Jacobian-vector multiplication,
and a second-order preconditioner with second-order Jacobian-vector multiplication,
as illustrated in Figure 5.8. The assessments were carried out using both the finite
difference method and the direct approach on the ite8 mesh described in Table 5.3.
The preconditioner is implemented using the restricted additive Schwarz method, with
ILU(S) applied within each sub-block, and a maximum Krylov subspace dimension
set to 80. When constructing a first-order accurate Jacobian matrix, the calculations
exhibit poor convergence, as illustrated in Figure 5.8-[a-b]. These cases often require
thousands of iterations, and it emphasizes the importance of the accurate Jacobian
evaluation. At higher angles of attack, this approach may even fail to converge to

machine precision.

In contrast, using a second-order accurate Jacobian matrix with a first-order
preconditioner achieves the best residual convergence, as shown in Figure 5.8-[c-d].
The results indicate minimal differences in convergence between the finite difference
and direct approaches, with the direct method performing slightly better when errors
drop below the truncation threshold of the finite difference method. However, solver
time is significantly influenced by specified tolerances. While the finite difference

method requires higher computational cost for matrix-vector multiplication, the direct
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approach is more expensive due to constructing the second-order Jacobian matrix.
Despite these costs, the direct method is approximately 24% faster, though it demands

significantly more memory.

On the other hand, coupling a second-order preconditioner matrix with the ILU(S)
preconditioner significantly slows down the residual convergence, as shown in Figure
5.8-[e-f]. This issue caused from limitations in achieving higher CFL numbers.
While the second-order preconditioner matrix offers a more accurate approximation
of the Jacobian, convergence can theoretically occur within two iterations if an
ideal preconditioner is used. This approach reduces the cost of Jacobian-vector
multiplications during Krylov subspace iterations in the finite difference method, but

such efficiency is not possible with a first-order preconditioner.

Surprisingly, the Krylov subspace iterations often stall when using the ILU(k)
preconditioner in two-dimensional cases, it causing a significant reduction in the
maximum achievable CFL number. To better understand the iterative convergence
issues with the second-order Jacobian as a preconditioner, leading minimum and
maximum eigenvalues were computed using the SLEPc library [80] without matrix
scaling. The eigenvalue spectrum for both approaches is summarized in Table 5.5
and Table 5.6. The second-order Jacobian exhibits a large complex component in its
maximum eigenvalue, which likely contributes to the poor convergence [96]. These
results were validated through the Arnoldi process explained in PETSc [47], which
further confirmed that preconditioned eigenvalues from the second-order Jacobian
demonstrate greater scatter in the complex plane. Increasing the ILU(k) preconditioner
level improves this convergence issue. This observation aligns with the findings of
Nejat and Ollivier-Gooch [97], who reported that higher-order preconditioners require
greater ILU(k) fill levels for optimal convergence in two-dimensional Euler equations.
They also noted that first-order Jacobians tend to be better conditioned than their

higher-order calculations.

Therefore, employing a second-order accurate Jacobian with a first-order precondi-
tioner matrix seems the most effective approach for residual convergence. Although
the direct method is slightly faster—by approximately 24%—the computational time

difference between direct and finite difference methods is relatively minor.
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The influence of the blending parameter S on convergence is shown in Figure
5.9, where the upwind method consistently outperforms others. Adjustments
to parameters such as 8 = 1, larger Harten coefficients, and smaller CFL,ax
values [78] in the preconditioner matrix construction enhance ILU(k) stability and
convergence. However, consistent preconditioner construction remains critical during

the simulations.

These calculations employ the default backtracking line search algorithm, yet a
full-step Newton method, which avoids line search, may have better convergence for
similar cases. Notably, the turbulence residual dominates the total residual on finely
adapted meshes, even with a large scaling factor of 1 x 10° for the turbulence working
variable. This negatively impacts overall convergence and becomes more clear at
higher angles of attack. Future studies may investigate removing turbulence residuals

from the line search algorithm, as suggested in [79].

Table 5.5 : Leading minimum and maximum eigenvalues at M., = 0.2, Re = 5 X 100,
Pr=0.72 and o = 16° with L4 norm, 8 = 1/48 and € = 0.001 using CFL = 10,000
for ite® mesh for the First-order Jacobian matrix.

Index Smallest Eigenvalue Largest Eigenvalue
1 4.394522x 1078 2.591630 x 10?
2 4.790529 x 108 2.554619 x 10?
3 4.831292x 1078 2.507811 x 10?
4 5.483217x 1078 2.501795 x 10?
5 6.003424 x 10~8 2.491021 x 10?

Table 5.6 : Leading minimum and maximum eigenvalues at M., = 0.2, Re = 5 X 106,
Pr=0.72 and o = 16° with L4 norm, 8 = 1/48 and € = 0.001 using CFL = 10,000
for ite& mesh for the Second-order Jacobian matrix.

Index Smallest Eigenvalue Largest Eigenvalue
1 3.311019 x 108 1.796677 +1.192024 x 10%i
2 3.318570x 1078 1.796677 — 1.192024 x 102
3 3.537033x 1078 2.047810+ 1.183090 x 10%i
4 3.697612x 1078 2.047810 — 1.183090 x 102%i
5  3.990653 x 1078 1.852557 4 1.164716 x 10%i
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Figure 5.8 : Convergence of residuals for ite8 mesh using the first-order

preconditioner and the first-order Jacobian vector multiplication [a-b], the first-order
preconditioner and the second-order Jacobian vector multiplication [c-d], and the

second-order preconditioner and the second-order Jacobian vector multiplication [e-f]
with finite difference (left) and direct approach (right) at M., = 0.2, Re =5 X 106,

Pr=0.72, and a = 16° with L4 norm, B = 1/48, and € = 0.001.
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Figure 5.9 : Convergence of residuals for ite§ mesh using the first-order
preconditioner and the second-order Jacobian vector multiplication with finite
difference using blending parameter 8 = 1/48 [a] and = 1 (upwind) [b] at
M., =0.2, Re =5 x 10°, Pr=0.72, and o = 16° with L4 norm, and € = 0.001.

The second test case, designated as Case 1b, involves conducting mesh convergence
studies on the three-dimensional NASA High Lift Common Research Model
(CRM-HL) in a landing configuration as detailed in the Section 1.5.4.

The physical parameters for this simulation are M., = 0.2, Re = 5.49 x 10°%, Pr = 0.72,
and a = 7.05°. Similar to the two-dimensional cases, the mesh adaptation process
gradually increases in complexity, with refinement levels increasing by a factor of
two across four successive iterations. This approach ensures stability for the Newton
method in three-dimensional calculations. The minimum edge length in the adapted
mesh is set to 1 x 107, and the pyAMG stretching factor is maintained at 1.2 to ensure

enough resolution in critical regions.

Boundary layer formation, which is relatively slow using the classical Mach sensor,
is accelerated in the first ten adaptation levels by employing an exponential
distance-based sensor function. Subsequent calculations continued with the Mach
sensor function to refine the mesh further. The computational domain at the farfield,
scaled by the mean chord length, spans [—82.794198,110.630203] x [0,82.794198] x
[82.794198,82.794198|, maintaining a similar body-length-to-far-field ratio as used in
the JAXA case for the third AIAA CFD High-Lift Prediction Workshop [87]. A smaller

computational domain is used compared to the one proposed on the workshop to reduce
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the large number of vertices in the far-field wake, which can reduce the quality of mesh

resolution near the body.

The compressible Navier-Stokes equations are solved using the Roe scheme [39], with
an upwinding parameter f3 initially set to 1/3 to minimize cross-diffusion effects. The
turbulence model employs second-order upwind interpolation with = 1. Simulations
start from free-stream conditions (cold start) with a large physical time step (Ar =
1 x 10%%) and an initial CFL number of 10, ramped up using a multiplier of 1.25 to a
maximum CFL of 10,000. To address issues of negative density values arising from
excessively small volumes on fine meshes, the Harten correction coefficient € = 0.001

is used, along with a modification proposed by Harten and Hyman [98].

The preconditioner is the PETSc restricted additive Schwarz method with ILU(0)
applied to each sub-block. The Krylov subspace solver utilizes a restarted flexible
generalized conjugate residual method, with a maximum of 80 stored vectors. This
choice is informed by studies such as those by Yildirim et al. [99], which emphasize
the importance of appropriate solver tolerances which is set as rtol = 1078 and
atol = 10720, These values are stricter than typically seen in the literature [78], but

they helped to address convergence challenges for this complex geometry.

Several adapted meshes using the L4 norm are presented at the y/¢ = 1.417693 plane
in Figure 5.10, with additional details provided in Table 5.8. The progress of surface
mesh refinement is also illustrated in Figure 5.11, highlighting the extensive refinement
within boundary layers, sharp corners, and wakes. Notably, mesh refinement is clear
in the wake region of flap brackets on the upper surface of the main wing, as shown in
Figure 5.11. Predicting these regions in advance using only theoretical knowledge is
particularly difficult. In earlier work [100], these refinement regions in the flap bracket
wakes were entirely absent due to the use of an exponential distance sensor combined
with the Mach number, in contrast to the current Mach-only sensor. These small yet
critical refinement regions are essential for accurately capturing aerodynamic loads,

demonstrating the importance of sensor selection in mesh adaptation processes.

The final adapted mesh consists of 92,993,470 vertices and 543,825,694 tetrahedral
elements.The calculation for the finest mesh is repeated using a lower f3 value of 1/48,

and the corresponding lift, drag, and moment coefficients — calculated with respect
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to the moment reference center given in Table 5.2 — are detailed in Table 5.7. The
convergence behavior of lift and drag coefficients with successive mesh refinement is

depicted in Figure 5.12, with numerical values provided in Table 5.8.

Table 5.7 : Refinement data at M. = 0.2, Re = 5.49 x 10°, Pr = 0.72 and o = 7.05°
with L4 norm, 8 = 1/48 and € = 0.001.

Refinement Level Number of Number of Number of Cl Cd Cm
(Sensor Function) Vertices Elements Surface Elements
ite27 (Mach) 92,993,470 543,825,694 10,203,212 1.769122 0.186155 -0.353909

Exp. 1.778620 0.186706 -0.370599

Table 5.8 : Refinement data for L2, o =7.05° and 8 = 1/3.

Refinement Level Number of  Number of Number of Cl Cd Cm
(Sensor Function) Vertices Elements  Surface Elements

ite0 (Initial Mesh) 2,618,827 14,509,928 843,643

itel (Initial Mesh) 5,660,885 13,196,847 1,003,329

ite2 (Distance) 6,021,693 14,987,885 830,244

ite3 (Distance) 6,643,490 18,463,634 811,506

ite4 (Distance) 7,496,239 22,941,616 880,928

ite5 (Distance) 8,572,758 28,193,846 998,814

ite6 (Distance) 9,713,500 33,388,392 1,132,785

ite7 (Distance) 10,712,948 37,694,004 1,252,267

ite8 (Distance) 11,490,737 40,712,295 1,349,091

ite9 (Distance) 12,034,853 42,756,610 1,424,385

ite10 (Mach) 12,449,392 72,478,755 1,482,386 1.704234 0.180114 -0.311449
itel1 (Mach) 12,721,876 73,923,462 1,640,066 1.708239 0.178125 -0.315657
ite12 (Mach) 13,286,148 77,446,487 1,552,871 1.733436 0.181784 -0.324712
ite13 (Mach) 13,876,245 80,978,130 1,555,917 1.744635 0.183299 -0.330147
ite14 (Mach) 14,336,919 83,725,144 1,564,116 1.737834 0.182961 -0.328728
itel5 (Mach) 19,901,979 116,649,283 1,955,555 1.744465 0.183693 -0.334081
ite16 (Mach) 22,008,855 128,949,870 2,117,485 1.745356 0.184149 -0.335724
ite17 (Mach) 23,339,823 136,785,487 2,210,317 1.741864 0.183549 -0.336332
ite18 (Mach) 24,069,842 141,072,890 2,269,402 1.740719 0.183466 -0.336205
ite19 (Mach) 32,106,767 188,019,314 3,223,728 1.745157 0.183651 -0.340011
ite20 (Mach) 34,808,438 203,794,362 3,445,091 1.746952 0.183873 -0.341205
ite21 (Mach) 36,330,510 212,756,204 3,553,626 1.747490 0.183924 -0.341603
ite22 (Mach) 37,103,098 217,289,371 3,621,617 1.747814 0.183989 -0.341658
ite23 (Mach) 50,399,305 294,965,511 5,156,653 1.752651 0.184323 -0.344492
ite24 (Mach) 55,001,010 321,856,921 5,536,462 1.754142 0.184579 -0.345350
ite25 (Mach) 57,335,167 335,582,845 5,721,636 1.758472 0.185291 -0.346369
ite26 (Mach) 58,528,316 342,562,218 5,839,797 1.759224 0.185333 -0.346673
ite27 (Mach) 92,993,470 543,825,694 10,203,212 1.763347 0.185624 -0.349474
Exp. 1.778620 0.186706 -0.370599

137



Figure 5.10 : Progress of mesh adaptation at y = 393.70 plane for M., = 0.2,
Re =5.49 x 10%, Pr = 0.72 and & = 7.05° around 3D-CRM high-lift system: [a]
Initial mesh with no boundary layer, [b] 10th iteration with distance only, [c] 14th [d],
18th [e] and 22nd iteration with distance and Mach.
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[c]
Figure 5.11 : Progress of surface mesh adaptation at M., = 0.2, Re = 5.49 x 10°,

Pr=0.72 and o = 7.05° with L4 norm, § = 1/3 and € = 0.001 around
three-dimensional NASA CRM-HL system: [a] Initial mesh with no boundary layer,
[b] 10th iteration with exponential distance sensor, and [c] 22nd iteration with Mach

Sensor.
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For multiscale mesh adaptation, the L4 norm is employed in both two- and
three-dimensional analyses. Typically, the L4 norm yields a higher mesh resolution
within the boundary layer, resulting in improved aerodynamic load calculations,
particularly for the drag coefficient [83, 101]. However, the L2 norm tends to deliver
better mesh resolution in the wake regions. In the case of the NASA CRM high-lift
system, the nacelle strake generates significant vortex lift over the main wing, making
accurate capture of its wake region critically important. As a result, the L2 norm may
offer advantages in achieving a more precise lift coefficient, particularly for resolving
the wakes of slat brackets located close to the main wing. However, the L2 norm
often requires a substantial number of vertices to resolve the wake region adequately,

particularly in cases involving a relatively large far-field domain.

Alauzet and Frazza [101] observed that starting with coarser meshes is highly
beneficial since the convergence process involves extensive iterations, which are
significantly less computationally expensive compared to those required for finer
meshes. Additionally, mesh adaptation tends to converge more slowly on finer meshes.
However, in this study, starting with an extremely coarse mesh was not feasible due to
the potential for meshing errors, particularly around the sharp leading edge of the main

wing.

To address inaccuracies associated with Green-Gauss gradient values near boundaries,
aerodynamic loads in this work are computed using a conservative approach. This
method involves summing the control volume momentum fluxes at vertices adjacent to
boundaries, enabling accurate computation of aerodynamic forces on solid walls [59].
The computed aerodynamic loads are also compared against the results submitted by
the ATAA ADAPT Technology Focus Group (TFG) during the workshop, as shown
in Figure 5.12. The details of the codes and participants are given in the Table 1.5
in section 1.5.4. Boeing’s computed drag coefficient (A-0025.2) on coarse meshes
demonstrates relatively good agreement with the experimental data, largely due to
the use of objective-based mesh adaptation combined with boundary layer insertion
and anisotropic refinement in the EPIC software [33]. The current adaptive results
shows the aerodynamic loads that are closely aligned with one another, demonstrating
improved consistency when compared to the RANS TFG results. However, the fine

mesh solutions exhibit slightly lower values than those observed in the experimental
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data. A similar trend was reported during the 7th AIAA CFD Drag Prediction
Workshop (DPW?7) for adaptive results [102]. This discrepancy may be attributed to the
large turbulence variables within vortex cores, which can cause excessive dissipation

and adversely impact the effective angle of attack.

The convergence of aerodynamic loads and residuals is depicted in Figure 5.13,
as a function of the Newton iteration number. For the complex three-dimensional
NASA High Lift Common Research Model (case 1b), residual values approaching
machine precision can be achieved, provided that the CFL number is sufficiently
large (on the order of 10,000). During the 4th AIAA CFD High Lift Prediction
Workshop, achieving machine-precision residual convergence presented significant
challenges. Even the HANIM solver, used in conjunction with the NASA FUN3D
solver, could only achieve residual convergence to approximately 1 x 10~° for
case 1b [103]. This underscores the complexity of ensuring convergence for
intricate high-lift configurations. Machine-precision convergence was achieved for
the three-dimensional wing-body configuration of the CRM-HL (case 2.1) at the 5th
AIAA CFD High Lift Prediction Workshop with a maximum CFL number of 1,000.
However, more complex configurations, such as those incorporating slats and slat
brackets (case 2.2), failed to reach machine precision under the same conditions,
exhibiting residual oscillations around 1 x 10~7. Notably, both cases successfully
converged to machine precision when the maximum CFL number was increased to
10,000 [104]. To emphasize the critical role of higher CFL values, a calculation for the
ite15 mesh in Table 5.8 was repeated with CFL,,,, = 1,000 and CFL,,,, = 10,000. As
shown in Figure 5.14, the lower CFL,,,» = 1,000 value caused the residuals to stall at
approximately 1 x 10~7. This shows the importance of utilizing high CFL values to

enforce steady-state and achieve machine-precision convergence.

141



18 0.19 B
Exp. — |
N P _ [ Betar1/d48 yo o |« * = i, Exp.
L Betaz1/48 i g ! <|7[X
- S H
| oif N S 0.185 s —y
175 i I 4y N
I N Fafar r Beta=1/3 0o
Beta=1/ \ - A\
eta=1/3 T 0.18 L .
b - l N
; | 1
17 i e 5
| 0.175
I | \ - .
= | \ a L )
o 165 7 017}
i | o
It \ I
AN N 0.165 |
P N -
= A002 casetb flap:40/37 ALPHA=7 05 freeair FT 7 3
« A004.1 casetb flap:40/37 ALPHA=7 .05 freeair FT |/
A-004.2 case1b flap:40/37 ALPHA=7 05 freeair FT / 1 I = A-002 caseb flap:40/37 ALPHA=7.05 freeair FT
> A-025.1 caselb flap:40/37 ALPHA=7 05 freeair FT |/ 0.16 4 A-004.1 caselb flap:40/37 ALPHA=7.05 freeair FT —
< A025. caselb flap:40/37 ALPHA=7.05 freeair FT Iy I A-004.2 case1b flap:40/37 ALPHA=7.05 freeair FT
©  A-026 case1b flap:40/37 ALPHA=7.05 freeair FT Beta=1/3 i | > A-025.1 case1b flap:40/37 ALPHA=7.05 freeair FT
& A-026 caselb flap:40/37 ALPHA=7.05 freeair FT Beta=1/48 | < A-025.2 case1b flap:40/37 ALPHA=7.05 freeair FT
0.155 o A-026 caselb flap:40/37 ALPHA=7.05 freeair FT Beta=1/3
[ l N | a A-026 case1b flap:40/37 ALPHA=7.05 freeair FT Beta=1/48
15 L L L L L L L n L L L L L L L ) 0.15 n n L n L L L n L L L P L L
0 0.002 0.004 0.006 0.008 0.0 0 0.002 0.004 0.006 0.008 0.01
1/N"™ 1/N™
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Figure 5.13 : Convergence of forces and residuals for each adaptation level at
M., =0.2, Re =5 x 10°, Pr=0.72, and o« = 7.05° with L4 norm, B =1/3, and
€ =0.001.

The convergence behavior of high-order preconditioner construction in three
dimensions was also examined using the direct approach with first- and second-order
preconditioner reconstructions, as illustrated in Figure 5.15. Interestingly, the behavior
of the second-order preconditioner in three dimensions differed significantly from that
in two dimensions. It did not require a high level of fill in the block incomplete
Lower Upper factorization (ILU(k)) preconditioner to achieve optimal convergence.
Moreover, the second-order preconditioner allowed for slightly higher maximum CFL

values, resulting in improved convergence.

The computation time analysis for the direct and finite difference approaches,

employing the first-order preconditioner reconstruction, reveals that the direct
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approach is approximately 14% more computationally expensive. It is worth noting
that at high CFL numbers, the linear solver struggles to achieve the specified relative
tolerance within the maximum limit of 80 Krylov subspace iterations. However, lower
relative tolerances are generally sufficient to ensure the convergence of the Newton

method [99].

Both first- and second-order preconditioning approaches exhibit a consistent trend
toward achieving machine-precision convergence, even for geometrically complex
three-dimensional cases. The finite difference-based approach holds a distinct
advantage in its ability to capture solution variations during Krylov subspace iterations,

therefore making it less likely to stall during SNES iterations.

In contrast, the direct approach delivers faster computation times by performing
more efficient Jacobian-vector multiplications. This eliminates the need for costly
residual vector evaluations and becomes particularly advantageous as the number of
multiplications increases, such as under higher CFL conditions. However, this benefit
is counterbalanced by the significantly higher memory requirements of the direct

method.

The computed pressure coefficients at various sections are compared with experimental
data, as shown in Figure 5.16. While the results indicate a slight underprediction of
the pressure coefficients on the upper surface of the main wing, particularly near the
trailing edges, the computed total lift coefficient on the finest mesh aligns closely with

the experimental value. The exact cause of this inconsistency remains unclear.

Figure 5.17 presents the computed skin friction coefficient contours using several
workshop view formats. The flow over the outboard flap shows separation, and a
significant separation bubble is observed on the inner flap surface. Figure 5.18 shows
the comparison of these skin friction coefficient contours obtained with HEMLAB at

Figure 5.18 [f] and the other committee members.

Additionally, Figure 5.17 and Figure 5.20 illustrates the skin friction contours with
streamlines and the wake structure represented by entropy isosurfaces around the
NASA CRM-HL model. These visualizations highlight a prominent vortical structure
generated by the nacelle-strake, along with another strong vortical structure originating

from the nacelle-pylon.
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The vorticity contours with the adapted meshes are displayed at multiple planes in
Figure 5.19, following the workshop’s postprocessing guidelines. Despite the inherent
complexity of the three-dimensional wake structure, the adapted mesh effectively

captures these regions, demonstrating its capability to resolve intricate flow features

accurately.
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Figure 5.15 : Convergence of residuals for ite15 mesh using the first-order
preconditioner [a] and the second-order preconditioner [b] using the second-order
Jacobian vector multiplication with direct approach at M., = 0.2, Re = 5.49 x 109,

Pr=0.72 and o¢ = 7.05° with L4 norm, § = 1/3 and € = 0.001.

144



5. SE
ASE — HEWL._AB 4SF — HENLAB
g . . o

4 F 4 E E: riment|
35F - 35 F .
3 [h\ af .”"
25F Y { 25F \
2 2f o
o 2F . o 2F
[5) 15E \ \ [($) 15k \_ \
o e A N i =
F A = m s o F I —"_—— -\
05 X 05k
of ] oF
; R —— f ; -
05F ] T 7 o05f = ‘,./)
1F 1F
%50 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 15 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1650 1600
X X
[a] [b]
-5 -5
ASE — HENL._AB ASE — HENL,AB
4F : 4 :
35 F 35 n
F . F -
3t 3 = ¢
25 F = 25
; . j t !
2F -2 F
o 2F o 2F
ot h\ . gt |8 a4\
A5F 5F - .

f 4k ; {

-0.5 g \ 05 \
o "+ o E \Q
F j F

F V\_ ] o el e g |
05 V‘ 05 U L
1E 1F
1'1,7: 1_1,’: N i I . I NITET INTIET AV AN e
050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 16! 100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700
x x

[c] [d]

5 5
Asr — HENLAB 45E — HEWL._AB
4k = 4 .
35k 35F
3 f *\. 3F 3 -
25F \ 25F \
2F 2
o s AN k 23 E \\, t
15 F L5 15 F
F LN T \ E v . L \
AF -1F
-0.5 E \- -05 f \
E b ’% F
0F } 0F
E - E B
05 ; o e » 05 g b :
1k 1F r
ST T FTY Y PR I P PR SUTTE FUTEE PR S WU NS NS P N SRS S NN SN S S
19200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 17 19300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900
X X
[e] (f]
-5 -5
ASF . — HEWLAB 45F © | —— wEWAB
4F . -4 .
35F 35k
3 3F
25 E -2.5 f
E E Y
o 2F s 2F v
(8] E . o E
15 s 15 F
-1 F - 1 ]
F . F .
05 05F \
’ i W L ; ; yd
05 - = 05 f
1F 1k
L 1 bbb b b b b b b N L
19400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 19 9450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050
X X

[g] (h]
Figure 5.16 : Computed pressure coefficients at sections A to H [a-h] for M., = 0.2,

Re =5.49 x 10%, Pr =0.72, and o = 7.05° around the NASA CRM high-lift system.
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c
Figure 5.17 : Computed skin friction contours with streamtraces around the NASA
CRM high-lift system: [a] overall view, [b] wing root (viewS5), and [c] wing tip
(view6) at M., = 0.2, Re = 5.49 x 10°, Pr=10.72, and o = 7.05°.

146



Skin friction 1:\_ X

CFD VIEW 1 CFD VIEW 1

SkinFrictionMagnitude

0.015
0.014
0.013
0.012
0.011
0.01
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0

SkinFrictionMagnitude

0.015
0.014
0.013
0.012
0.011
0.01

0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

[f]

Figure 5.18 : CRM-HL skin friction contours at 7.05° angle of attack where [a] uses
the lift metric by A-002, [b] is the multiscale metric by A-004, [c] is the multiscale
metric by A-025.1, [d] is the drag metric by A-025.2, [e] is the multiscale metric by

A-026 (HEMLAB), and [f] is the multiscale metric by A-031 [10].
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Figure 5.19 : Adapted meshes (left) and computed non-dimensional vorticity

magnitude (J®|¢/U.) contours (right) at x/¢ = 3.970268 (view 11) [a],
x/¢ =4.296591 (view 12) [b] and x/¢é = 4.622915 (view 13) [c] planes for M., = 0.2,
0.72 and ¢ = 7.05° around NASA CRM-HL system.

Re =5.49 x 10, Pr
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Figure 5.20 : Computed entropy isosurface (As = 0.001) at M., = 0.2,
Re =5.49 x 10%, Pr = 0.72, and o = 7.05° around the NASA CRM high-lift system.
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6. NUMERICAL RESULTS FOR HLPW-5

As explained in Section 1.5.5, three main test cases will be investigated by the
committee members in the High Lift Prediction Workshop-5. The first test case
was announced in February 2023, with results collected during a mini-workshop
in July 2023 and subsequently shared by the committee members, including those
obtained with HEMLAB. This test case investigates the numerical results for the
NASA-CRM-Wing-Body (CRM-HL-WB) configuration at Re = 5.6 x 10®, M = 0.2,
o = 11°, and T.. = 521°R. Although the Spalart-Allmaras-QCR-2000 turbulence
model, which is available in the latest version of HEMLAB, is highly recommended,
convergence problems necessitated that all calculations presented below were obtained
using the Negative Spalart-Allmaras model. A similar mesh adaptation process was
performed for this configuration as was done in HLPW-4. The results obtained with
the HEMLAB framework also use the adap_back feature of HEMLAB, as described
in Section 3.4. As detailed in Section 3.3, the numerical solution was obtained using
the new version of HEMLAB, which employs the SNES solver. All parameters used

in the first test case are summarized in Table 6.1.

Table 6.1 : Flow conditions for Test Case 1 (CRM-HL-Wing-Body)

Mach Number 0.2

Re Number 5.6 x 10°
Angle of Attacks 11.0°
Mean Aerodynamic Chord 275.8inch
Reference Static Temperature 521.0°R
Semi-Span Reference Area 29736.0in>
Moment Reference Center x = 1325.9inches, y = 0.0inches, z = 177.95inches
Prandtl Number 0.72
Turbulent Prandtl Number 0.9

V freestream/ Voo 3.0
Ratio of Specific Heats y 1.4
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Table 6.2 : Refinement data for L2, ¢ = 7.05° and 8 = 1/3.

Refinement Level Number of  Number of CL Cp Cu
(Sensor Function) Vertices Elements

iteQ (Initial Mesh) 10,630,135 62,254,785 - -

itel (Distance) 3,170,048 18,313,665 - - -
ite2 (Distance) 2,119,011 12,146,828 - - -
ite9 (Distance) 2,861,878 16,455,322 - - -
ite10 (Distance + Mach) 2,904,264 16,696,572 1.06213 0.07046 -0.05423
itel1 (Distance + Mach) 5,024,686 28,889,937 1.06951 0.06504 -0.05946
ite12 (Distance + Mach) 6,076,128 34,912,258 1.07016 0.06474 -0.05947
ite13 (Distance + Mach) 7,023,176 40,402,638 1.07046 0.06466 -0.05948
ite14 (Distance + Mach) 7,729,280 44,485,066 1.07048 0.06460 -0.05943
ite15 (Distance + Mach) 12,243,163 70,559,034 1.07357 0.06430 -0.06189
ite16 (Distance + Mach) 14,246,766 81,848,987 1.07344 0.06422 -0.06188
ite17 (Distance + Mach) 15,704,381 90,133,089 1.07336 0.06418 -0.06181
ite18 (Distance + Mach) 16,572,243 95,071,016 1.07342 0.06417 -0.06182
ite19 (Distance + Mach) 23,462,103 134,864,961 1.07473 0.06404 -0.06297
ite20 (Distance + Mach) 25,963,210 149,000,809 1.07462 0.06402 -0.06294
ite21 (Distance + Mach) 27,687,592 158,861,434 1.07457 0.06400 -0.06296
ite22 (Distance + Mach) 28,702,161 164,628,045 1.07462 0.06400 -0.06300
ite23 (Distance + Mach) 40,904,253 235,017,809 1.07549 0.06392 -0.06381
ite24 (Distance + Mach) 45,391,256 260,457,584 1.07532 0.06390 -0.06372
ite25 (Distance + Mach) 48,284,598 276,999,225 1.07530 0.06389 -0.06374
ite26 (Distance + Mach) 49,936,010 286,411,899 1.07528 0.06388 -0.06374
ite27 (Distance + Mach) 81,121,147 465,956,049 1.07603 0.06380 -0.06446

The numerical results — in terms of lift, drag, and moment coefficients calculated
with respect to the moment reference center given in Table 6.1 — converged as the
mesh was refined. The corresponding lift and drag coefficients, calculated using the
L2 norm, are shown in Figure 6.1 with and without adap_back module. The black
lines show calculations with an approach that uses the previous mesh level instead
of projecting onto a finer surface mesh. This method can introduce small errors on
the surface, especially near the outboard section of the leading edge. However, the
overall aerodynamic forces remain largely unchanged, and the drag coefficient clearly
improves as the mesh is refined. The comparison of the results with the other committee
members can be found in Figure 6.2. The results indicated with A-002 are the ones
obtained with HEMLAB with adap_back feature. Details of the skin friction coefficient
and the corresponding surface skin friction lines are displayed in Figure 6.3 and 6.4.

The flow exhibits a small separation bubble at the wing—body junction and a minor
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reverse flow region at the trailing edge. Vorticity contours at several x—locations, along
with the final anisotropic adapted mesh, are presented in Figure 6.5 and 6.6. The
adapted mesh clearly captures the boundary layer wake. As computed earlier, pressure
coefficients and skin friction coefficients were obtained on several sections of the wing,
as presented in Figure 6.7. Figure 6.8 shows the convergence of the residuals with

iteration number, and the numerical method converges to machine precision.
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Figure 6.1 : Convergence of lift coefficient [a] and drag coefficient [b] at M., = 0.2,
Re =5.49 x 105, Pr = 0.72, and o = 7.05° around NASA CRM high-lift system

compared with several other workshop benchmark data.
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Figure 6.2 : Convergence of lift coefficient [a] and drag coefficient [b] at M. = 0.2,
Re =5.49 x 10%, Pr =0.72, and o = 7.05° around NASA CRM high-lift system
compared with several other workshop benchmark data and HEMLAB (A-002)

results.
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[e] [f]
Figure 6.3 : Skin friction lines and contours around CRM-HL Wing Body

configuration for Viewl [a]&[b], View2 [c]&[d], and View3 [e]&[f].
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[k] (1]
Figure 6.4 : Skin friction lines and contours around CRM-HL Wing Body

configuration for View4 [g]&[h], View5 [i]&[j], and View SP1.1 [k]&[1]. (continued).
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Figure 6.5 : Vorticity contours and mesh distribution on several x-planes for
CRM-HL Wing Body configuration for View11 (x=1095 inch) [a]&[b], View12
(x=1185 inch) [c]&[d], and View13 (x=1275 inch) [e]&[f].
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CRM-HL Wing Body configuration (continued) for View14 (x=1485 inch) [g]&[h]

and View15 (x=1735 inch) [i]&[]].

0.02

-8

L 0.01

a

CcP
A
F

-2

-0.02

\}<P/B<f -0.03

1200 1400 1600 1800

L . . L L L .
%00 1000 1000 1200 14;?0 1600

'2ooo[a] 00450 EE T 'zooo[b]
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Figure 6.8 : Convergence of residual values with iteration number for each
refinement level for CRM-HL Wing Body configuration.

After the turbulence verification model (Case-1), geometric effects were investigated
during the workshop at Re = 5.9 x 10%, Pr=0.72, M.. = 0.2, and T. = 518.67°R. The
calculations were performed similarly to the previous case, using a 10-level refinement
to construct the boundary layer mesh. However, this time the calculations employed
a Mach-only sensor instead of a Mach+distance sensor. This adjustment allowed to
capture better results on the wake region behind the flap brackets and to minimize
cross-diffusion effects within highly anisotropic boundary layer meshes. In the solver,
PETSc’s Scalable Nonlinear Equations Solvers (SNES) with a line search algorithm
is used, rather than the previous PETSc Krylov Subspace Methods (KSP). This robust
nonlinear solver is crucial for achieving machine-precision convergence at high angles
of attack in under 100 Newton iterations. The initial CFL number was set to 10 and
increased by a factor of 1.125 each time the residual vector was reduced by an order of

magnitude.

The initial calculation was conducted at a 6° angle of attack. Subsequent calculations
used the alpha continuation method, starting from the previously converged angle.
Calculations were performed at 6°, 10°, 14°, 16°, and 17.7°, with the computed

aerodynamic loads presented in Figure 6.9 and Table 6.3.
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Figure 6.9 : Comparison of computed aerodynamic loads for case 2.2 CRM-HL

configuration.

Table 6.3 : Aerodynamic loads for Case 2.2.

Alpha Nodes Cr Cp Cyu

6.0° 19,620,617 0.629437 0.044356 -0.121557
10.0° 20,259,448 1.018601 0.071470 -0.258877
14.0° 20,537,562 1.388209 0.111988 -0.376624
16.0° 21,084,912 1.555762 0.137893 -0.439587
17.7° 21,179,493 1.653319 0.168740 -0.453178

The results showed good agreement up to 16°
separation caused deviations in the computed aerodynamic loads, preventing further
calculations at higher angles of attack. The computed skin friction coefficients and
streamlines are shown in Figure 6.10, where the pizza slice—shaped separation pattern
is clearly visible in Figures 6.10-[e-f]. A comparison of pressure coefficients with
ONERA experimental data are provided in Figure 6.11, 6.12 and 6.13 for sections
A-I, showing good agreement. Strong pressure and skin friction coefficient peaks
were observed near the leading edge at the outboard section of the main wing, and
the separation pattern is also apparent on the adapted surface mesh (Figure 6.14). The

residual convergence of the PETSc SNES solver is shown in Figure 6.15, indicating
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some convergence difficulty at 10° (attached flow) for the fine mesh, despite the final
density residual dropping to 1 x 1078, At high angles of attack, there was a significant
increase in the turbulence model residual, even with a constant scaling factor of 1 x 100

for the turbulence variable.

Y

L.

[
Figure 6.10 : Computed skin friction coefficient contours (left) and streamlines
(right) at ¢ = 6° [a-b], 10° [c-d], and 17.7° [e-f] for case2.2 configuration.
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[b]

Figure 6.14 : Adapted surface meshes at oo = 10° [a] and @ = 17.7° [b] for case2.2
configuration.
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configuration (view13).
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The computed vorticity contours at the x = 1275 plane, shown in Figure 6.16, along
with the adapted meshes, demonstrate how mesh adaptation effectively captures the

boundary layer and wake regions.
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In this study, it has been aimed to understand the early separation pattern observed
in the numerical results. A similar separation pattern was observed in Boeing results
obtained with the GGNS solver [58] and the EPIC anisotropic mesh adaptation library
[33]. However, this pattern was absent in the impulsively started CFX converged results
with isentropic refinement, where initial separation patterns reattached with increased
refinement. In the ONERA experiments, the separation pattern was associated with
a lambda-type trailing edge separation, which was also seen in the present adapted
surface meshes (Figure 6.14). At 17.7°, the separation pattern began with a double
wake structure (Figure 6.17), with wake shedding from both the inboard and outboard
sides of the flap bracket, leading to a wider wake region. The outboard wake was
either absent or very weak for attached flap bracket wakes, suggesting potential issues
with turbulence modeling affecting the prediction of double wake behavior. Another
possibility involves the negative Spalart-Allmaras turbulence model, where numerical
inaccuracies might result in excessive negative V values, causing locally very low
turbulence viscosity (laminarization) and early leading-edge flow separation. Similar
trends were also observed in results from other committee members, as compared
in Figure 6.18. This figure shows results for & = 17.7° obtained using HEMLAB
[a], ANSYS [b], and INRIA [c]. Here, the early separation pattern is only visible in
HEMLAB’s results. On the other hand, Figures 6.19 [a] and [b] present results obtained
at o = 16° using HEMLAB and Boeing, respectively. While both results show similar
flow characteristics at this angle of attack, early separation appears in Boeing’s results

at @ = 16.5°, as shown in Figure 6.18 [d].

On the solver side, it has been examined both the numerical discretization and
the PETSc SNES nonlinear solver. For PETSc SNES, the second-order Jacobian is
constructed exactly and used it directly for matrix-vector multiplication instead of the
matrix-free approach; however, it did not alter the final flow pattern. In the HEMLAB
solver, it has been used the Green-Gauss method rather than the unweighted least
squares method and reduced the upwinding parameter 3 for both the Navier-Stokes
equation and the negative Spalart-Allmaras turbulence model. While this resulted in
a slight delay in the formation of the separation pattern, further reduction in the 3
parameter led to negative density values. At this point it is not possible to address

mesh quality issues due to a lack of access to the INRIA pyAMG library source code.
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Another possibility is that mesh adaptation should be performed after several Newton

iterations rather than on the final converged solution, as the flow pattern may change

ht not properly represent the solution.
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aj
Figure 6.17 : Computed transient [a] and final converged [b] skin friction contours at
o = 17.7° for case2.2 CRM-HL Wing Body configuration (view13).
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Figure 6.18 : Computed skin friction [CC(])ntours at a = 17.7° with HEMLAB [a],
A-006 (TFG Results with ANSYS) [b], A-004 (TFG Results with INRIA) [c] and
o = 16.5° A-003 (TFG Results with BOEING) [d] case 2.2 CRM-HL Wing Body

configuration [11].
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[a] [b]
Figure 6.19 : Computed skin friction contours at &« = 16° with HEMLAB [a] , A-003
(TFG Results with BOEING) [b] case 2.2 CRM-HL Wing Body configuration [11].
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7. NUMERICAL RESULTS FOR REFINE

As discussed in Chapter 5, the 2D high-lift configuration was also examined using the
NASA REFINE mesh adaptation framework. This tool provides a robust and highly
parallelizable anisotropic adaptation methodology, capable of capturing complex flow
features with fewer mesh elements than uniform refinement. The simulation was
carried out at a freestream Mach number M., = 0.2, Reynolds number Re = 5 x 100,
Prandtl number Pr = 0.72, and an angle of attack o = 16°. The adaptation procedure
utilized a hybrid refinement strategy — starting with distance-based sensors for
establishing wall resolution and progressing to Mach-based sensors. The adaptation
statistics are provided in Table 7.1. A total of 17 refinement levels were executed,
and the corresponding values for aerodynamic coefficients Cz, Cp, and Cy; are
presented. Notably, convergence in aerodynamic performance is achieved by the
final iterations, where the lift coefficient reaches 3.8026 and the drag coefficient
stabilizes at 0.06052, both closely matching the reference value C;, = 3.802952 from
the reference results presented in [95]. As illustrated in Figure 7.1, the computed
lift and drag coefficients demonstrate monotonic convergence with mesh refinement.
Similar to the pyAMG-HEMLAB framework, early adaptations (from Oth iteration to
the 4th iteration) focus on resolving the near-wall regions with the distance sensor.
Subsequent iterations (from 5Sth iteration to the 17th iteration), using the Mach sensor,
enhance the resolution in flow regions with strong gradients such as shock waves
and wakes. The refinement levels beyond 13th level iteration show minimal change
in the computed aerodynamic coefficients, confirming mesh-independent results. The
deviation from the reference lift coefficient at the final refinement level is less than
0.01%, demonstrating the high fidelity achieved through REFINE. Figure 7.2 present
pressure coefficients and skin friction distribution where Figure 7.4 shows the Mach
number, and entropy contours. The high-resolution mesh captures boundary-layer
behavior, separation zones, and wake dynamics with clarity. Especially, the entropy
contours in Figure 7.4(b) show well-resolved entropy layers downstream of the

trailing edge, which are indicative of accurate shock capturing and viscous interaction
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modeling. In Figure 7.3, the residual convergence and force history across refinement
iterations are plotted. The solver exhibits stable and monotonic residual reduction
across all adaptation stages, highlighting the robustness of the SNES-based nonlinear
solver when combined with meshes generated by REFINE. Residuals show rapid decay
after each adaptation step, indicating good metric compatibility and preserved mesh

quality. No oscillations or stagnation are observed in the convergence history.

Figure 7.5 illustrates the mesh structures at the 8th adaptation level obtained from
the REFINE [a] and pyAMG [b] frameworks. Although both methods apply the same
flow sensors without any explicit boundary-layer generation routines, generated mesh
by REFINE exhibits more directional stretching near the walls and wake region.
This difference likely arises from internal remeshing strategies and more aggressive
anisotropy enforcement during metric projection. In contrast, the pyAMG mesh

appears smoother and more isotropic, particularly around the trailing edge.

Table 7.1 : Refinement data for L4, ¢ = 16° and 3 = 1/48.

Refinement Level Number of Number of Number of CL Cp Cy
(Sensor Function) Vertices Elements  Surface Elements

iteO (Initial Mesh) 325,794 642,357 9,156 - - -

itel (Distance) 54,274 101,897 6,576 - - -
ite2 (Distance) 40,758 76,535 4,906 - - -
ite3 (Distance) 53,469 101,964 4,899 - - -
ite4 (Distance) 54,590 103,784 5,321 - - -
ite5 (Mach) 54,487 103,898 5,001 3.782751 0.061166 0.379569
ite6 (Mach) 56,020 107,248 4,717 3.790154 0.061144 0.380961
ite7 (Mach) 57,090 109,418 4,683 3.789870 0.061194 0.380922
ite8 (Mach) 57,458 110,180 4,646 3.788992 0.061210 0.380755
ite9 (Mach) 573,351 1,137,745 8,736 3.800873 0.060605 0.382748
ite10 (Mach) 574,940 1,138,977 10,677 3.801294 0.060583 0.382828
itel1 (Mach) 575,158 1,139,414 10,675 3.801299 0.060582 0.382821
ite12 (Mach) 574,558 1,138,231 10,653 3.801394 0.060582 0.382840
ite13 (Mach) 5,464,790 10,895,465 33,388 3.802502 0.060526 0.383025
ite14 (Mach) 5,477,291 10,915,256 38,466 3.802531 0.060525 0.383031
ite15 (Mach) 5,498,440 10,956,603 39,203 3.802529 0.060524 0.383032
ite16 (Mach) 5,506,133 10,971,522 39,523 3.802533 0.060524 0.383032
ite17 (Mach) 22,498,153 44,913,272 80,182 3.802596 0.060520 0.383042
Ref [95] 3.802952 0.060529 -
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In addition to the 2D studies, three-dimensional (3D) simulations were performed
using the NASA-REFINE framework for the CRM-HL Wing-Body (CRMHL-WB)
configuration. The simulations were conducted at M., = 0.2, Re = 5.49 x 100, Pr =
0.72, and o¢ = 7.05°. Distinct from the pyAMG approach, the REFINE simulations
employed the Ly norm for error estimation, enhancing refinement focus on critical
flow features. Furthermore, both the initial mesh and solution file were sourced
from the 10th refinement level of the pyAMG framework. Subsequent refinement
levels proceeded exclusively with the Mach sensor to effectively resolve wall-bounded
layers and freestream phenomena. The adaptation statistics, detailed in Table 7.2,
show a systematic increase in mesh resolution, achieves over 40 million vertices
and 224 million elements by iteration 23. The lift and drag coefficients converged
to Cr = 1.07578 and Cp = 0.06379, respectively, demonstrating close alignment with
workshop benchmarks and confirming mesh independence, as illustrated in Figures 7.6
and 7.7. Residual histories (Figure 7.8) exhibit smooth and rapid convergence
across all refinement levels, validating the efficiency and stability of the REFINE
adaptation process when integrated with a SNES-based solver. To further analyze
surface flow characteristics, Figures 7.10 and 7.11 provide skin-friction lines and
near-wall contours from multiple viewpoints. These visualizations shows detailed flow
separation, reattachment, and complex shear layer interactions, particularly around slat
and flap cove regions, as well as at the wing-body junction. Cross-sectional vorticity
contours, presented in Figures 7.12 and 7.13, highlight the development of wingtip
vortices, wake roll-up, and trailing-edge shedding across several axial planes. The
alignment of refined mesh regions with areas of high vorticity confirms effective
metric-driven targeting of critical flow features. Grid overlays in selected subfigures
demonstrate the anisotropic refinement strategy, ensuring high element density within
vortical cores and wake structures. Finally, Figure 7.9 presents the computed pressure

and skin friction coefficients over the CRM-HL configuration for several sections.
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Table 7.2 : Refinement data for L2, & = 7.05° and 8 = 1/3.

Refinement Level Number of  Number of Number of CL Cp Cy
(Sensor Function) Vertices Elements Surface Elements

ite0 (Initial Mesh) 10,630,135 62,254,785 - -

itel (Distance) 3,170,048 18,313,665 - - -

ite2 (Distance) 2,119,011 12,146,828 - - -

ite9 (Distance) 2,861,878 16,455,322 - - -

ite10 (Distance) 2,904,264 16,696,572 442,766 1.06213 0.07046 -0.05423
itel1 (Mach) 4,364,826 23,557,552 1,268,264 1.06922 0.06489 -0.05752
ite12 (Mach) 4,486,723 24,129,314 1,349,978 1.06806 0.06475 -0.05628
ite13 (Mach) 4,494,562 24,191,567 1,361,317 1.06761 0.06478 -0.05569
ite14 (Mach) 4,492,884 24,200,267 1,334,163 1.06744 0.06481 -0.05549
ite15 (Mach) 8,466,110 46,130,018 2,220,800 1.07160 0.06427 -0.05947
ite16 (Mach) 8,569,112 46,677,188 2,255,172 1.07181 0.06422 -0.05981
ite17 (Mach) 8,579,941 46,692,011 2,291,436 1.07181 0.06421 -0.05972
ite18 (Mach) 8,579,795 46,669,793 2,304,239 1.07187 0.06421 -0.05982
ite19 (Mach) 16,412,920 90,489,126 3,670,843 1.07405 0.06396 -0.06191
ite20 (Mach) 16,704,761 91,814,017 3,931,316 1.07415 0.06395 -0.06206
ite21 (Mach) 16,744,639 91,959,488 3,986,137 1.07421 0.06394 -0.06202
ite22 (Mach) 16,767,908 92,024,225 4,029,809 1.07430 0.06395 -0.06205
ite23 (Mach) 40,206,567 224,244,705 7,638,331 1.07578 0.06379 -0.06364
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Figure 7.6 : Convergence of lift coefficient [a] and drag coefficient [b] at M., = 0.2,
Re =5.49 x 10°, Pr =0.72, and o = 7.05° around NASA CRM high-lift system
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le] [f]
Figure 7.10 : Skin friction lines and contours around CRM-HL Wing Body

configuration for Viewl [a]&[b], View2 [c]&[d], and View3 [e]&[f].
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(k] (1]
Figure 7.11 : Skin friction lines and contours around CRM-HL Wing Body

configuration for View4 [g]&[h], View5 [i]&[j], and View SP1.1 [k]&[1]. (continued).
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Figure 7.12 : Vorticity contours and mesh distribution on several x-planes for
CRM-HL Wing Body configuration for View11 (x=1095 inch) [a]&[b], View12
(x=1185 inch) [c]&[d], and View13 (x=1275 inch) [e]&[f].
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8. CONCLUSION

This study presents a detailed worked on metric-based mesh adaptation methodologies
applied to the HEMLAB algorithm, with a focus on high-lift aerodynamic simulations.
The research integrates advanced computational techniques to improve the accuracy
and efficiency of computational fluid dynamics (CFD) solvers, particularly for complex

high-lift configurations analyzed in the AIAA High Lift Prediction Workshops.

A major aspect of this research is the development and integration of metric-based
anisotropic mesh adaptation strategies, which enable the refinement of computational
grids in regions of high flow gradients while maintaining computational efficiency. The
implementation of these techniques within the HEMLAB framework has demonstrated
significant improvements in capturing flow physics, particularly in predicting lift
coefficients, pressure distributions, and separation effects in high-lift aerodynamic

configurations.

The numerical studies have been performed for HLPW-3, HLPW-4, and HLPW-5
test cases illustrate the impact of mesh adaptation techniques on the accuracy of
aerodynamic predictions. Furthermore, the integration of HEMLAB with external
solvers such as pyAMG and REFINE has enhanced the efficiency of numerical

computations, enabling more precise turbulence modeling and transition capturing.

The results of this research emphasize the importance of accurately resolving
complex flow phenomena, particularly in the context of high-lift aerodynamics where
interactions between multi-element airfoils, boundary layer transitions, and wake
dynamics play a crucial role. The findings confirm that metric-based mesh adaptation
techniques lead to significant improvements in the prediction of aerodynamic
coefficients, reducing errors associated with under-resolved flow features. The study
also highlights the need for careful selection of turbulence models and solver

configurations to optimize computational efficiency without compromising accuracy.
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A crucial component of this research is the integration of the Scalable Nonlinear
Equations Solvers (SNES) framework within the HEMLAB algorithm. SNES provides
robust and efficient solution techniques for nonlinear systems, enabling the accurate
resolution of governing equations in CFD applications. The implementation covers
advanced iterative solvers, including Newton-Krylov methods, to enhance the stability
and convergence of numerical computations. By utilizing SNES, this research has
improved the handling of complex aerodynamic phenomena, particularly in cases

involving strong nonlinearities and flow separation.

Preconditioners play a significant role in accelerating convergence and improving
solver performance. The selection of the appropriate preconditioner was based on
the problem characteristics and computational efficiency requirements. By coupling
SNES with optimized preconditioning strategies, the computational cost of high-lift

simulations was significantly reduced, making large-scale simulations more feasible.

A significant part of this research also involves the implementation and analysis of
the Jacobian-Free Newton-Krylov (JENK) method, which offers an efficient approach
for solving large nonlinear systems without explicitly constructing the Jacobian
matrix. JENK leverages finite-difference approximations to estimate matrix-vector
products, reducing memory consumption and computational effort compared to
direct Jacobian construction methods. This approach is particularly beneficial for
high-fidelity aerodynamic simulations where the Jacobian matrix can be prohibitively

large and costly to compute.

In addition to JENK, this research investigates direct approaches for solving nonlinear
equations, where the Jacobian is explicitly constructed and factorized Schwarz
method with block incomplete LU factorization with k levels of fill (ILU(k)) within
each sub-block. While direct methods provide highly accurate solutions, they are
often computationally expensive, particularly for large-scale problems. The trade-offs
between direct and iterative methods are analyzed in detail, highlighting scenarios
where each approach is most effective. In cases with well-conditioned systems, direct
methods provide robust and reliable results, whereas JENK proves advantageous in

handling highly nonlinear and large-scale problems due to its lower memory footprint.
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Furthermore, the research explores advanced Jacobian construction techniques,
including analytical differentiation, automatic differentiation, and finite-difference
approximations. Each method’s impact on solver efficiency and accuracy is
systematically evaluated. Analytical Jacobian construction offers the highest
accuracy but requires substantial derivation effort, whereas automatic differentiation
provides a balance between accuracy and ease of implementation. Finite-difference
approximations, while straightforward to implement, may introduce numerical errors
if not carefully tuned. The comparative analysis of these techniques informs best
practices for choosing an appropriate Jacobian representation depending on the
problem characteristics. After all these improvements it is possible to achieve quadratic

convergence with the recent version of the code.

The initial version of HEMLAB was limited to the standard Spalart-Allmaras
(SA) turbulence model. This research expanded its turbulence modeling capabilities
by implementing several advanced SA-based variations. The SA-neg model was
integrated to enhance the solver’s ability to predict separated flows and recirculation
regions more accurately. Additionally, the SA-neg-ft2 model was introduced to
improve the robustness of turbulence modeling for transitional flows by incorporating
ft2 modifications. Furthermore, the SA-QCR-2000 model was implemented to account
for quadratic constitutive relations, which provide better predictions of secondary flows

and streamline curvature effects.

A major contribution of this research is the development and implementation of a
second-order discretization scheme for these turbulence models. The second-order
formulation improves solution accuracy, particularly in capturing turbulence
anisotropy and near-wall effects. These enhancements allow for better resolution
of high-lift aerodynamic features, reducing numerical diffusion and improving the
overall predictive capability of the HEMLAB solver. The integration of these
turbulence models, coupled with metric-based mesh adaptation, has led to more
reliable aerodynamic simulations, particularly in predicting stall point, flow separation,

and wake interactions.

An essential aspect of high-fidelity computational modeling is the role of machine
precision in ensuring numerical accuracy and stability. The sensitivity of numerical

methods to floating-point precision can significantly impact the robustness of iterative
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solvers, particularly for ill-conditioned systems. In this study, the effects of machine
precision were also examined in the context of matrix-vector operations, residual
convergence, and solution stability. The results show that using lower precision
arithmetic can cause small rounding errors that build up over many iterations,
potentially causing nonlinear solvers to fail. Conversely, higher precision arithmetic
improves accuracy but at an increased computational cost. This research shows
that balancing computational cost and precision is key for reliable and efficient
CFD simulations. Future improvements in adaptive precision computing may further
optimize solver performance, making large-scale aerodynamic simulations more

practical.

In future, additional studies can be conducted to explore the impact of different
adaptation criteria on the accuracy of high-lift aerodynamic predictions. Investigating
alternative metric formulations, refining transition modeling techniques, and applying
the framework to full aircraft configurations will contribute to the ongoing evolution
of computational aerodynamics. Also, adjoint-based mesh adaptation techniques will
be investigated and developed to enhance the sensitivity-driven refinement of the
computational grid. These techniques will allow targeted resolution improvements in
regions that most significantly influence key aerodynamic outputs, such as lift and
drag. Furthermore, the integration of additional turbulence models, such as the k—®
SST model, will be considered to improve the robustness and accuracy of simulations,

particularly for flows involving strong adverse pressure gradients and separation.
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