

T.C.

SAKARYA UNIVERSITY

INSTITUTE OF SCIENCE AND TECHNOLOGY

SDN INTEGRATION FOR INTERNET OF THINGS
USING WSN AND RFID

Ph.D. THESIS

Mohammed Hussein Al-HUBAISHI

Department : COMPUTER AND INFORMATION

ENGINEERING

Supervisor : Prof. Dr. Celal ÇEKEN

November 2019

i

ACKNOWLEDGEMENT

Firstly, thank you, Almighty Allah, for giving me enough strength to perform and

complete my Ph.D. thesis study successfully.

Secondly, I would like to give credit with deep appreciation and respect to my advisor

Prof. Dr. Celal Çeken for his valuable efforts, unprecedented support and priceless

advice since the first day we met. Also, I would like to express my thanks to the jury

members.

Furthermore, I would like to extend my thanks to YTB (Yurtdışı Türkler ve Akraba

Topluluklar Başkanlığı) for financial support during my Ph.D. study. Also, I would

like to acknowledge that this work was supported by the Scientific and Technological

Research Council of Turkey (TÜBİTAK) with project number (116E008). Likewise,

to my friends in Sakarya, and my colleagues in the IoT Research Laboratory, many

thanks for you, especially to Ali Burhan and Nur Banu OĞUR for their work with us

in the projects.

Finally, I deeply thank all my family members especially my lovely mother, father,

my wife and my children for their unconditional love, valuable advice, encouragement,

trust, prayers, for giving me a reason to keep moving forward. Thank you, my friends,

in Sakarya and Sakarya University for the happy time they have shared with me.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENT.………………………………………...................... i

TABLE OF CONTENTS …………………………………………………….... ii

LIST OF SYMBOLS AND ABBREVIATIONS …………………………….... v

LIST OF FIGURES ………………………………………………………….... vi

LIST OF TABLES …………………………………………………………….. viii

SUMMARY ………………………………………………………………….... ix

ÖZET ……………………………………………………………………….….. x

CHAPTER 1.

INTRODUCTION ……………………………………………….............................. 1

1.1. Motivation and Problem Statement………………………………… 1

1.1.1. Motivation…………………………………………………... 1

1.1.2. Problem statement…………………………………………... 2

1.2. Thesis Goals……………………………………………………….. 3

1.3. Research Contributions…………………………………………….. 3

1.4. Related Work………………………………………………………. 4

1.4.1. WSN routing………………………………………………… 4

1.4.2. SDN-based WSN routing protocols………………………… 6

1.5. Thesis Structure……………………………………………………. 7

CHAPTER 2.

THE INTEGRATION OF SDN-WSAN FOR INTERNET OF THINGS USING

IEEE 802.15.4……………………………………………………………………

8

2.1. Introduction………………………………………………………... 8

2.2. SDN-based WSAN for Internet of Things………………………… 9

2.3. Software-Defined Networking Architecture for IoT………………. 11

2.3.1. SDN application plane………………………………………. 12

iii

2.3.2. SDN control plane…………………………………………... 13

2.3.3. SDN data plane……………………………………………… 13

2.3.4. OpenFlow (WSANFlow) protocol stack……………………. 16

CHAPTER 3.

THE SDNC FUZZY-BASED ROUTING DECISION …………………..…… 17

3.1. Introduction………………………………………………………... 17

3.2. The SDNC Fuzzy-based Routing Decision………………………..... 18

3.3. Combined Flow Tables…………………………………………….. 21

3.4. Network Topology……………………………………………….… 22

3.5. Node Status Aggregation (NSA) …………………………………. 23

3.6. Fuzzy Logic……………………………………………………….. 24

3.6.1. Fuzzification………………………………………………… 25

3.6.2. Rule evaluation……………………………………………... 27

3.6.3. Defuzzification……………………………………………… 29

3.7. Dijkstra’s Algorithm……………………………………………….. 32

3.7.1. Flow tables layout…………………………………………… 34

3.8. Simulation Results and Discussion………………………………… 36

3.8.1. Simulation environment: parameters and scenarios……….. 36

3.8.2. Simulation results and discussion…………………………. 37

CHAPTER 4.

INTERACTING THE VERTICAL DOMAIN DEVICES OF IOT SYSTEM

WITH HORIZONTAL DOMAIN SYSTEM …………………..……………..

43

4.1. IoT Technologies Related Work…………………………………… 43

4.2. Vertical Domain Devices ………………………………………….. 45

4.2.1. Software-defined networking based WSN………………… 47

4.2.2. Radio frequency identification……………………………... 48

4.3. Horizontal Domain System………………………………………… 50

4.3.1. Kafka………………………………………………………... 50

4.3.2. Apache spark………………………………………………. 54

4.4. Case Study: Real-Time Disease Diagnosis by Logistic Regression 54

iv

4.4.1. Electrocardiogram…………………………………………... 54

4.5. Experimental Results and Discussions………………….…………. 55

4.5.1. Simulation environment and hypothesis…………………… 57

CHAPTER 5.

ENHANCED SDN TOPOLOGY DISCOVERY AND IOT GATEWAY 63

5.1. Introduction………………………………………………………... 63

5.1.1. Related research……………………………………………. 63

5.2. The Proposed ESWFD for IoT Applications………………………. 64

5.2.1. Components of the ESWFD system………………………… 65

5.2.2. SDN Topology Discovery…………………………………... 66

5.2.3. Message queue telemetry transport………………………. 68

5.2.4. The ESWFD system operations……………………………. 70

5.3. Experimental Results and Discussions………………………….…. 71

5.3.1. Simulation scenario and discussion…………………….…. 72

5.3.2. Performance analysis and scenario results…………….…. 73

CHAPTER 6.

OVERALL CONCLUSION AND FUTURE WORK……………………..…… 76

REFERENCES……………………………………………………………….…. 79

RESUME………………………………………………………………………… 86

v

LIST OF SYMBOLS AND ABBREVIATIONS

SDN : Software Defined Networking

IoT : Internet of Things

MQTT : Message Queue Telemetry Transport

WSN : Wireless Sensor Networks

WSAN : Wireless Sensor and Actuator Network

ESWFD : Enhanced SDN-WSAN Fuzzy-based Dijkstra

SD : Superframe Duration

FDB : Fuzzy-based Dijkstra’s Beacon

FD : Fuzzy-based Dijkstra's

RDFT : Routing Decision and Flow Table

RFID : Radio frequency identification

SNR : Signal-to-Noise Ratio

BI : Beacon interval

vi

LIST OF FIGURES

Figure 1.1. Routing Energy Problem in WSAN .. 3

Figure 2.1. The Architecture of the SDN-based WSN clusters for IoT 12

Figure 2.2. IEEE 802.15.4 superframe [43] ... 15

Figure 2.3. Superframe inactive period (sleep time) .. 16

Figure 3.1. Architecture design of routing protocol in the SDN controller 19

Figure 3.2. Sequence diagram of the system processes ... 20

Figure 3.3. Combined flow table class ... 21

Figure 3.4. The network topology .. 23

Figure 3.5. Node status aggregation .. 24

Figure 3.6. Fuzzy logic with inputs and output.. 25

Figure 3.7. Fuzzy inputs SNR and battery level memberships 25

Figure 3.8. SNR, battery membership functions map the input values 26

Figure 3.9. Rule evaluation results .. 28

Figure 3.10. Fuzzy output cost membership .. 29

Figure 3.11. Example fuzzy results .. 30

Figure 3.12. The flowchart of the defuzzification procedures 31

Figure 3.13. Dijkstra's with fuzzy routing algorithm ... 33

Figure 3.14. Dijkstra’s algorithm ... 34

Figure 3.15. Network topology Scenario 1 .. 35

Figure 3.16. Network topology Scenario 2 .. 35

Figure 3.17. Network topology Scenario 3 .. 36

Figure 3.18. First ED deaths with number of EDs and number of applications 38

Figure 3.19. Scenario for 50 EDs and one application .. 39

Figure 3.20. Number of ED deaths over time .. 40

Figure 3.21. Network loads for the intermediate end devices 41

Figure 3.22. Throughput (bit/sec) and end-to-end delay ... 41

vii

Figure 4.1. Outline of the RFID in vertical domain architecture. 47

Figure 4.2. SN with RFID reader node model and RFID reader process model. 48

Figure 4.3. RFID tag node model and process model. ... 49

Figure 4.4. Streaming gateway and Kafka (producer/consumer). 51

Figure 4.5. The commands to run zookeeper and Kafka servers 52

Figure 4.6. Include the c-based socket in riverbed node model 52

Figure 4.7. The destination SN (gateway) use the socket to send packet to Kafka ... 53

Figure 4.8. Java based socket ... 53

Figure 4.9. The Sequence diagram for end-to-end data delivery operations. 55

Figure 4.10. NodeJS patient information interface. ... 57

Figure 4.11. Streaming scenario for IoT healthcare applications. 58

Figure 4.12. Logistic regression predicted results. .. 60

Figure 4.13. The end to end delay for the three applications 62

Figure 4.14. Throughput (bit/s) for the three applications ... 62

Figure 5.1. The general description of the ESWFD proposed IoT architecture. 65

Figure 5.2. The system components, the node model of SDN (a) and the node model

of sensor node (b). .. 66

Figure 5.3. Flowchart of two algorithms to calculate the SD, Fuzzy-based Dijkstra (A)

and Fuzzy-based Dijkstra Beacon (B). ... 67

Figure 5.4. MQTT broker and client communication. ... 69

Figure 5.5. The sequence diagram for end-to-end data delivery operations. 70

Figure 5.6. NodeJS information interface. ... 72

Figure 5.7. The simulation model of the SDN controller and 50 sensor nodes 73

Figure 5.8. Throughput (bit/s) for 50 nodes ... 74

Figure 5.9. End‐to‐End Delay for 50 nodes .. 74

Figure 5.10. Jitter for 50 nodes .. 75

Figure 5.11. Delay, Jitter and Throughput on different network sizes 75

viii

LIST OF TABLES

Table 2.1. Beacon interval and superframe duration evaluation 15

Table 3.1. Fuzzy logic rule base .. 28

Table 3.2. Cost vs battery level .. 31

Table 3.3. Flow table entries .. 34

Table 3.4. Simulation parameters .. 37

Table 3.5. Path information ... 39

Table 4.1. Logistic regression algorithm parameters. .. 59

Table 4.2. Classification table. ... 59

Table 4.3. Data streaming. ... 59

Table 4.4. Total average of the input rate. ... 60

Table 4.5. Streaming Data with Number of Partitions. .. 61

Table 5.1. Algorithms Configurations ... 68

Table 5.2. Parameters of the Simulation .. 73

ix

SDN INTEGRATION FOR INTERNET OF THINGS USING WSN

AND RFID

SUMMARY

Keywords: Software-Defined Networking, SDN, Wireless Sensor Networks, WSN,

Internet of Things, IoT, RFID, Apache Kafka, Apache Spark.

Internet of Things (IoT) has started to touch every aspect of our lives, from home

automation, smart factories, energy management systems, precision agriculture to

smart city systems, etc. Wireless Sensor Networks (WSN) play an important role in

various IoT applications. One of the challenging problems for any WSN design is lack

of flexibility in network management. Software-Defined Networking (SDN) is a new

approach that promises a more flexible and dynamically reconfigurable network

structures. When designing WSN, energy problem must also be considered since each

device in the network has limited battery capacity.

This study proposes a new routing discovery algorithm which allows the SDN-enabled

WSN to make smarter routing decisions considering the received signal strength and

remaining energy of the devices. The new architecture employs a fuzzy-based

Dijkstra’s algorithm when deciding the best path between the source and the

destination. The study also introduces a new real-time data analytics architecture for

IoT applications, consisting of a WSN and radio frequency identification (RFID)

technology in the vertical domain. The platform proposed also has highly scalable and

high-performance data analytics tools such as Apache Kafka, Apache Spark and

MongoDB, in the horizontal domain.

Simulation results show that the proposed routing discovery mechanism can provide

effective clustering routing for SDN-based WSN and can prolong the network lifetime

by reducing the energy consumption of the nodes in the network. The results also show

that the proposed IoT data analytics system can process data in real-time, successfully,

and is capable of handling large amounts of data easily, owing to the scalable

technologies deployed.

x

ÖZET

Anahtar Kelimeler: Yazılım Tanımlı Ağlar, Kablosuz Algılayıcı Ağlar, Nesnelerin

İnterneti, Radyo Frekanslı Tanımlama, Apache Kafka, Apache Spark.

Nesnelerin İnterneti (Nİ) ev otomasyonundan akıllı fabrikalara, enerji yönetim

sistemlerine, hassas tarımdan akıllı şehir sistemlerine vb. kadar hayatımızın her

alanına dokunmaya başladı. Kablosuz Algılayıcı Ağlar (KAA) çeşitli Nİ

uygulamalarında önemli bir rol oynamaktadır. KAA tasarımları için en önemli

sorunlardan biri, ağ yönetiminin oldukça zor olmasıdır. Yazılım Tanımlı Ağlar

(YTA), daha esnek ve dinamik olarak yeniden yapılandırılabilir bir ağ yapıları vaat

eden yeni bir yaklaşımdır. KAA’ı tasarlarken, ağdaki her cihazın sınırlı pil kapasitesi

olduğundan, enerji sorunu da göz önünde bulundurulması gereken önemli sorunlardan

biridir.

Bu çalışma, YTA özellikli KAA'ın alınan sinyal gücü ve cihazların kalan enerjisi

dikkate alınarak daha akıllı yönlendirme kararları vermesini sağlayan yeni bir

yönlendirme keşif algoritması önermektedir. Yeni mimari, kaynak ve hedef arasındaki

en iyi yolu belirlerken bulanık tabanlı bir Dijkstra algoritmasını kullanır. Çalışma

ayrıca, dikey alanında KAA ve radyo frekanslı tanımlama (RFID) teknolojileri içeren

Nİ uygulamaları için yeni bir gerçek zamanlı veri analitiği mimarisi de içermektedir.

Önerilen platform yatay alanda Apache Kafka, Apache Spark ve MongoDB gibi

yüksek düzeyde ölçeklenebilir ve yüksek performanslı veri analizi araçlarına sahiptir.

Benzetim sonuçları, önerilen yönlendirme keşif mekanizmasının YTA tabanlı KAA

için etkili kümelenme yönlendirmesi sağlayabildiğini ve ağdaki düğümlerin enerji

tüketimini azaltarak ağ ömrünü uzatabileceğini göstermektedir. Sonuçlar ayrıca

önerilen Nİ veri analitiği sisteminin verileri gerçek zamanlı olarak başarılı bir şekilde

işleyebildiğini ve konuşlandırılan ölçeklendirilebilir teknolojiler sayesinde büyük

miktardaki verileri kolayca ele alabildiğini göstermektedir.

1

CHAPTER 1. INTRODUCTION

This chapter provides an introduction containing a motivation and problem statement,

the goal of the research, research contributions, and the related work to the thesis. In

this chapter, the problem statement identifies the main issue that this research attempts

to address.

1.1. Motivation and Problem Statement

1.1.1. Motivation

The Internet of Things (IoT) has increased the number of devices on the internet,

largely because of the need to obtain information from these devices for various IoT

applications, so that the number of these devices is expected to continue to rise [1].

Cisco [2] expects that the number of Internet-connected devices will rise to

approximately 50 billion by next year.

Nowadays, wireless sensor and actuator networks (WSANs) [3][4] play a significant

role in data transfer from several systems through their various applications.

Applications include environmental monitoring data such as air temperature, humidity,

smog-like gasses and precision agriculture [5]. WSAN networks have become very

important and preferred for several applications due to characteristics such as their low

cost, small size, low power consumption, mobility, and multifunctional sensors. For

these reasons, integration of WSAN and IoT networks is useful for IoT applications,

but there are also challenges to meet IoT application requirements such as energy

efficiency, flexible management, and network reconfiguration after deployment [6][7].

2

The most important design constraints when constructing a WSAN is energy

efficiency, because each device operates with limited power resources. These devices

consume more power when they send or receive data depending on the routing

protocol used [8][9]. Therefore, the routing mechanism has to take in energy

consumption parameters to be controlled. Thus, a smart and flexible network is needed

for forwarding data among those devices.

Moreover, the routing protocol must be designed in such a way as to maximise the

lifetime of the network by saving energy [10][11]. The routing decision used in

traditional wireless network sensors [4] does not take into account energy consumption

during communication, which results in unmeasured energy consumption, unwanted

delays and a great deal of overhead traffic. These results are required for some IoT

applications, since IoT applications’ performance relies on the forwarding and routing

methods. Therefore, IoT applications need to make appropriate decisions based on the

lowest possible path cost to send data through WSN nodes from the source to the

target. This challenge requires an intelligent network energy administration for WSAN

devices.

Network management and control design form the key part of the solution, the

software-defined networking (SDN) architecture [12], which aims to provide solutions

such as flexible management and network reconfiguration after deployment to WSAN.

Since management of the limited battery is the most important task of a WSAN, as we

will see in the literature, there are many different proposals for this purpose.

The research interest of this thesis is to integrate the concept of SDN for IoT

technologies and perform better flexible network energy management for WSAN

devices.

1.1.2. Problem statement

The integration of the SDN-based WSAN for IoT, is expected to improve the energy

management of WSAN via a flexible and programmable network and to support IoT

3

applications requirements [11-40]. However, based on the literature survey aimed at

establishing a centralised network of sensor networks, there are two main problems

with the implementation of SDN-based WSAN, as shown in Figure 1.1.: efficient

routing of energy for WSAN devices, and the integration of IoT technologies. The

purpose of this study is to overcome these problems and propose a new structure to

improve system performance.

Figure 1.1. Routing Energy Problem in WSAN

1.2. Thesis Goals

The research goal of this thesis is to develop a new energy‐aware routing mechanism

in the SDN controller and to combine IoT technologies into the system, so that the

SDN controller can act as a smart and flexible network energy manager using a new

routing discovery mechanism for WSAN devices. In addition, to integrate IoT

technology – namely radio frequency identification (RFID) – into the WSAN source

devices as part of vertical domain devices. Furthermore, the communication and

implementation between the vertical and horizontal domain devices will be included

in the research.

1.3. Research Contributions

The most important component in the SDN controller is the routing decision model.

In this study, we use Riverbed Modeler as a practical performance evaluation for better

4

performance evaluation. The main contributions of this research can be summarised

as follows:

- A simple and flexible network structure and management was developed to

reduce energy consumption for SDN‐based WSAN architectures.

- An SDN-inspired approach, a new framework for WSAN, was designed.

- An RFID model integrated with WSAN was developed.

- Node status aggregation and fuzzy-based Dijkstra's algorithms were developed

in the SDN controller to take a routing decision approach to maximising the

network lifetime.

- A new real-time IoT-based data analytics architecture for smart healthcare is

proposed. This new platform has an SDN-based WSAN and an RFID structure,

in the vertical domain.

- To enhance the performance of the system, a new routing discovery strategy

via cross-layer (Topology Discovery and MAC layers) was developed.

- To link IoT vertical and horizontal systems, two different getaways were

developed, one using TCP/IP socket client/server programs and the other using

MQTT broker/client, allowing the system to send WSAN data to the IoT cloud.

- An IoT web interface using NodeJS was developed for monitoring network

configuration from the SDN controller and data of the IoT application from

destination node.

1.4. Related Work

In the following literature review, we discuss the current work on WSN routing

protocols and SDN-based WSN routing protocols.

1.4.1. WSN routing

Traditional wireless sensor networks are widely used by many applications in different

areas. A survey on WSN applications and energy is given in [9], in which WSN

applications were distributed into five major groups: node deployment, targets, service

area, required measurements, and data transmission requirements. The routing

5

protocol applications for WSN in [13] are classified into three groups: environment-

specific, task-specific, and general. Routing challenges are presented in [14] [15] for

WSNs that affect routing in the matter of power consumption, sensor deployment, link

diversity, adaptability, fault sufferance, broadcasting, communication, encasement,

quality of service and data collection.

Although many investigations have been conducted into WSN routing protocols, they

are still un-reprogrammable and unconfigurable during real-time operations for new

variables in the network to keep up with the applications requirements. Below, we

summarise the surveys performed on the routing protocols designed for WSN with

regard to network topology information, divided into three groups: hierarchical, flat,

and location-based routing.

Hierarchical routing: In this type of protocol, which is a cluster-based routing

protocol, the nodes are divided into parent node as cluster head (CH) and child node

as sensor node. The CH behaves as a router to decide on routes in order to pick the

best route. The network is also divided into several clusters, so that the parent node

aggregates the information of its child nodes. It uses the higher energy to process and

send the information [15]. The CH coordinate is selected between the clusters and the

routing activities and transmits information among the cluster nodes. Child nodes use

the low energy to send their status information to the parent node and subsequently

turn off to save energy. The CH collects the data and transmits it to the base station,

which means that the CH reduces the number of packets sent to the sink or reduces the

number of packets from a lower clustered layer to a higher one. This helps to reduce

power consumption in the network [16] [17]. While sensor nodes have different roles

in hierarchical routing, clustering forwarding is an efficient way to lower power

consumption and extends the network lifetime [8] [18].

Flat-based routing: In this type of protocol, each node at the same level acts as a router

for forwarding data, so that the same role is shared by, and the sensing task is equally

divided among all sensor nodes [15]. The routing procedures for each node lead to

more power consumption. This method is good for maintaining network problems.

6

Flat-based routing uses the flooding packets to forward data toward the destination

node [16]. Therefore, it also suffers from packet overhead between communicating

sensor nodes, and limited scalability. In this approach, the base station sends queries

to a certain node’s area, and the node that received the query information will relay to

the base station in that area [18] [8].

Location-based routing: In these protocols, the routing mechanism depends on the

location of the sensor nodes. During the broadcast processes, the incoming signal

strengths are used to estimate the distances between neighbouring nodes. This method

is considered to be very useful in applications that require the location of sensor nodes

to route their data. Some location-based schemes for the sensor nodes that do not have

any activities in the network are asked to sleep to save energy [15], the energy

consumption having been calculated using the sensor node’s location information [16].

Location-based routing reduces the overhead involved in finding the route to base

station and increases scalability.

1.4.2. SDN-based WSN Routing Protocols

Recently, the possibility has opened up of reprogramming networks depending

on the SDN concept [19]. Here, we present some research which discusses

routing protocols in SDN-based WSN where the routing is based on flow table.

In the traditional SDN approach, the article [20] proposes a hierarchy-based

architecture routing protocol to solve control plane scalability for possible paths

between source to destination sensor nodes; the concept of SDN follows the

hierarchical architecture in terms of an inter-AS routing approach.

The authors of [21] propose an SDN-enabled WSN architecture where the SDN

controller runs the SPIN routing protocol using the Cooja simulator. The SPIN

protocol generates a neighbours table, and the SDN selects the best of these neighbours

based on its voltage level and link quality to forward the sensor data. Differences of

7

routing approaches between traditional wired SDN and SDN-based wireless sensor

network can be found in [22].

SDN-ECCKN is proposed in [11], where the routing method includes the time interval

of each node, divided into beacon and execution slices to save energy. In this study,

there is no broadcasting between each pair of nodes.

The SensorSDN framework in [23] proposes a new control layer service to support

topology discovery and management of network policies. For routing purposes, the

packets pass from the network layer to the MAC layer and the latest matching rules

based on the technologies of LR-WPAN are introduced for SensorSDN.

μSDN proposes in [24] to extend the current AODV and LARP routing protocols to a

centralised routing method based on the SDN. This work modifies the current routing

messages and identifies new types of message for the SDN controller to perform

routing with.

The authors in [25] propose FJAPSO to offer a green routing algorithm for SDN-based

WSN. The SDN controller uses FJAPSO to select the parent nodes as cluster heads to

perform routing processes. The FJAPSO’s selection procedure is performed during

the iteration loop: by using a mutation operator, each particle is subdivided into

multiple sub-particles and subsequently incorporated into a root particle based on their

fitness with the best sub-particle patterns. FJAPSO works on two levels for automatic

optimisation, optimal number and optimal cluster of the control nodes.

1.5. Thesis Structure

In Chapter 2, we discuss the SDN controller architecture and SDN sensors in detail.

We also discuss the SDNC fuzzy-based routing decision in Chapter 3. Chapter 4

discuss the integration of the RFID model into the sensor model. Chapter 5 covers the

enhanced SDNC topology discovery model used in this thesis. Finally, Chapter 6

concludes the thesis.

8

CHAPTER 2. THE INTEGRATION OF SDN-WSAN FOR

INTERNET OF THINGS USING IEEE 802.15.4

2.1. Introduction

In the last few years, software-defined networking (SDN) has been a growing interest

within computer network communities as a new solution for reconfiguring and

controlling a network according to application requirements [26][27]. In the SDN

architecture, which aims to separate data and control planes [28], all the control

functions of the network are performed by a centralised device referred to as the SDN

controller (SDNC). On the other hand, network devices in the data plane are

responsible only for forwarding the data using the related entry in their flow tables.

The advantage of using the SDNC is that the applications’ data relies on the forwarding

and routing method’s performance. Besides that, the SDNC device should make an

appropriate decision based on the lowest cost path from the source to the destination,

since paths with higher costs make devices consume a great deal of energy in a short

time.

Software-defined networking developed as an intelligent solution to many wired

network issues: troubleshooting, traffic management, and resources on the network

deployed in cloud data centres [29][23]. Despite these developments, SDN is creating

tremendous enhancements in network programming that do not require any hardware

replacement.

Although the SDN concept was built on wired networks, it was not planned to

implement the SDN concept in a WSAN. Many researchers have recently discussed

the issues with integrating SDN into a WSAN network structure.

9

On one hand, WSANs contain a variety of applications that have become essential

parts of our lives [9]. On the other hand, the IoT has greatly expanded the number of

application areas, particularly in the smart home, healthcare, transportation,

surveillance, security, and other industrial necessities [30][31]. These applications are

deployed in numerous environments and areas, so that their requirements are various,

enlarging the management challenges for the network and devices.

The integration of SDN-based WSANs poses many challenges, most importantly

energy routing management [32] [33]. The WSAN devices can range from the edge

for the IoT cloud, actuator devices and wireless sensors. The IoT edge is used to collect

data in order to send it to the cloud, which contains tools to convert this data into

meaningful information [30]. The IoT cloud requires a network to support real-time

data transfer in order to analyse the data for some IoT applications. Therefore, an

effective data routing strategy with low power consumption for WSANs should be

smart and flexible in the SDN controller to meet IoT requirements.

In this chapter, we discuss the proposed SDN-based WSAN for IoT. The SDN

controller, sensor node and SDN integration for IoT are described in detail in the

following sections.

2.2. SDN-based WSAN for Internet of Things (IoT)

There are many challenges involved in gathering extensive data in real time from IoT

technologies in order to analyse this data and make appropriate decisions on a large

scale. Software-defined networking is proposed as a flexible network architecture to

face these challenges for IoT requirements.

The authors in [26] discuss the challenges of SDN integration with IoT in terms of

security and scalability. SDN-SPS [34] designed a gateway node (SITL) to transfer

the data from OPNET simulator nodes to an IoT data centre using UDP protocol. In

this work, the SDN controls the time, frequency and data types.

10

The routing method of RPL and TinySDN protocols in [35] uses a collection tree

protocol to perform routing and operates based on DODAG control messages. RPL

works to improve TinySDN by supporting point-to-point and point-to-multipoint

traffic patterns for IoT. Each child node determines its parent node to find a way to the

coordinator node to forward its packets, and subsequently will not send DIO messages.

The SDN model is used in this work to improve WSN and IoT deployment through its

flexible management and control on the sharing resource.

The paper in [36] presented SDN controller for WSNs as a floodlight controller in the

Mininet network emulator tool. The sensor nodes of the WSNs are implemented in

NS2, another simulation network, and both systems are connected via port-to-port

communication. In this research, the packet routing processes are achieved through

multi pipeline stages; for routing commands, it uses the command line interface to pass

the flow rules.

 The SDN/NFV model in [37] used Mininet and POX controller to support the services

of IoT applications, such as smart home, self-driving cars, and e-healthcare. The IoT

services were hosted on HomeGWs as network gateways to decrease core network

traffic. The HomeGWs played important roles for routing purposes, forwarding

packets to the destination.

The S-MANAGE protocol is proposed in [38]; it features an interface to control the

management messages between the SDN controller and the virtual IoT sensors. The

routing operations in this protocol are underpinned by OpenFlow and OF-CONFIG.

Soft-WSN in [39] is a proposed integration of device and topology managements into

SDN controller for managing IoT devices based on the IEEE 802.15.4 and IEEE

802.11 protocols. The device management is responsible for active-sleep scheduling,

sensing tasks, and sensing delay. The topology management module is used for routing

purposes in two different rules, such as node-specific and network-specific

managements.

11

 The authors in [40] propose SD-WSN6Lo for 6LoWPAN network to enable IoT

connectivity. They used Contiki COOJA simulator to follow the SD-WSN paradigm.

In this work, the routing between nodes was achieved using control messages such as

request message (packet-in), response message (packet-out) and broadcast message

(neighbours’ message); these messages of control were exchanged between the SDN

controller and sensor nodes using the UDP protocol.

2.3. Software-Defined Networking (SDN) Architecture for IoT

In general, the separation of the control plane from the data plane is the essential idea

of the SDN concept and how it is distinguished from traditional networks. This process

is called the abstraction of the control plane and data plane. In the past, the autonomous

system used the traditional network, where each switch or router made decisions based

solely on the local logic regarding how to forward the packets. In this case, with SDN,

a more centralised model brings direct software programmability to the network. This

concept is based on a central controller that can manage and monitor network

behaviour. OpenFlow was designed in SDN to allow applications to manage network

devices with software that works on servers and communicates directly with switches

rather than the control of the switches or routers [19].

Our SDN structure is designed in three planes [12], as shown in Figure 2.1.: the

application, control, and data plane. The application plane is the place of the IoT

applications need without knowing the basic infrastructure of the network. The data

plane is responsible for packet forwarding using the IoT devices based on the IEEE

802.15 protocol. The control plane is the place to control routing decisions for each

network device.

12

Figure 2.1. The Architecture of the SDN-based WSN clusters for IoT

As shown in Figure 2.1., the proposal framework has three layers, including IEEE

802.15.4 used by IoT sensor nodes to collect data, and SDNC as a flexible network to

meet IoT applications’ requirements.

2.3.1. SDN application plane

The application plane is the place to meet the needs of IoT applications without

knowing the underlying network infrastructure. It includes the requirements and

services of the IoT applications [19] [41]. IoT applications rely on the performance of

forwarding and routing methods to achieve their services and tasks within the network.

Therefore, the SDN controller must make the appropriate decision based on the lowest

possible cost from source to destination sensors. To send data from source to target

sensors, there must be a specific path between the nodes. For this reason, the

application’s path should be as short as possible and consider the energy of the sensors.

In our system, the path is built from sensor statuses using smart models in the SDN

controller. Moreover, the SDN controller allows applications to configure the network

from the application plane instead of the distributed policy that requires individual

13

configuration. For that, SDN sets up APIs to allow communication between the

application plane and control plane. The different applications use the APIs in the SDN

stack to formulate new flow rules to the controller.

2.3.2. SDN control plane

The control plane handles configuration management for SDN-conformable devices

and realises the network topology. The control plane configures connection paths or

flows into the data plane. The control plane connects the application plane and the data

plane [40]. It receives the IoT application’s tasks from the application plane and

converts them into instruction sets, which are sent to the data plane using the

OpenFlow protocol [33]. It provides the application plane with a comprehensive view

of data layer resources, such as status and attributes. The control plane is the right place

to control the routing decision for each device in the network [23].

In our proposed system [12], the SDN controller in the control plane contains many

models, such as the network topology, routing decision model, and node status model.

The network topology is used to sort the IoT devices’ data into clusters and make a

routing decision, using the Dijkstra algorithm and fuzzy logic models to perform smart

routing based on energy. Node status is used to collect the status of the IoT devices. In

addition, the data structures are organised in a combined flow tables model consisting

of three classes: network topology, flow table, and nodes classes. The details of these

classes are explained in later chapters.

2.3.3. SDN data plane

The data plane authorizes the SDN controller to manage and control the resources of

the IoT forwarding devices [23]. Additionally, the data plane is responsible for

forwarding packets to the selected target. The data plane in our proposed model

consists of the IoT devices using the IEEE 802.15.4 standard protocol; these devices

are the main means of data collection, collecting data such as the status of the devices.

The SDN controller injects the flow entries into the IoT forwarding devices using

14

OpenFlow protocol. The data plane devices apply the required actions of the entries to

the forwarded incoming based on matching rules. Therefore, IoT forwarding devices

forward or drop a packet based on the flow entries from the control plane. The SDN

can also update or replace flow entries with new entries when the IoT application

requirements change.

2.3.3.1. IEEE 802.15.4

IEEE 802.15.4 is the most important communication technology for low-power

wireless networking [42]. In IEEE 802.15.4, the medium access control (MAC)

protocol enables the transmission of MAC frames using the physical channel, which

supports two operational modes: non-beacon- and beacon-enabled modes. In the non-

beacon-enabled mode, which does not support beacon and superframe mechanisms,

medium access is controlled by an unslotted CSMA/CA protocol. In the beacon-

enabled mode, which supports beacon and superframe mechanisms, the coordinator or

router periodically sends beacons to synchronise nodes associated with its own cluster

coverage area. However, this mode also enables the allocation of contention free

period (CFP) slots, called guaranteed time slots (GTSs) for nodes that provide a timing

guarantee for bandwidth.

2.3.3.2. Superframe Structure

The superframe impacts upon the performance and quality of services on the network

[43]. The superframe structure includes an active and an inactive period, determined

for one cycle between two beacon frames. The superframe structure is presented in

Figure 2.2.; the beacon interval (BI) defines the time between two consecutive beacon

frames and contains an active and inactive period. In the superframe active period, the

beacon frame starts the transmission at slot 0. The superframe duration (SD) specifies

the active portion of the BI period; the length of the active period is determined

manually by the SD settings from the upper layer. Superframe duration is divided into

16 equally sized time slots, during which frame transmissions are allowed. Superframe

duration contains the contention access period (CAP), which is used to share the

15

channel between nodes competitively and the CFP that used to allocate GTS for some

nodes. The CFP starts immediately after the CAP has finished and must be completed

at the end of the active period.

 (2.1)

Figure 2.2. IEEE 802.15.4 superframe [43]

Beacon order (BO) and superframe order (SO) are used to change the length of BI and

SD. These parameters must be previously allocated by coordinator or router [44]. The

current WSN configures these parameters manually, which does not fit the changes of

network size, neighbours, and number of nodes.

In our proposed system, these configurations are at the control plane. During topology

discovery, the SDN controller (SDNC) assigns BO and SO parameters according to

current network size, neighbours, and number of nodes, which are discussed in more

detail in subsequent chapters. Table 2.1 shows the effect of BO and SO values on

beacon interval and superframe duration. This period defines the start time of the child

node in order to start sending data or command frame.

Table 2.1. Beacon interval and superframe duration evaluation

BO/SO Equation 2.1 BI/SD start time

1 960*2*1*4 /250000= 0.03072

2 960*2^2*4 /250000= 0.06144

3 960*2^3*4 /250000= 0.12288

4 960*2^4*4 /250000= 0.24576

16

In the inactive period (sleep time) of the superframe, the child node starts a

transmission according to its start time. For example, when SDNC BO=4 SO=1 is

applied to (Equation 2.1), the SDNC starts at 0 time and sleep time will be available

to several child nodes whose BO=SO=1, as shown in Figure 2.3.

Figure 2.3. Superframe inactive period (sleep time)

2.3.4. OpenFlow (WSANFlow) protocol stack

OpenFlow is a protocol that relies on flow tables, developed by researchers into SDN

[45][46]. Since OpenFlow’s origins, it has been based on the idea of creating

forwarding tables to guide packets from source to target through the next hop, and

determines the actions to be taken on the flow [26]. Our WSANFlow protocol uses

the forwarded tables between the control plane and the data plane. On the data plane,

the flow table contains flow entries that are redirected between the forwarding IoT

devices. Each flow entry includes match rule field, actions, and statistics; according to

these entries, it will decide how to handle incoming packets.

17

CHAPTER 3. THE SDNC FUZZY-BASED ROUTING DECISION

3.1. Introduction

In this study, we propose a new fuzzy-based routing discovery algorithm inside the

SDNC for clustered networks over an IEEE 802.15.4 superframe structure, supporting

many applications’ requirements. Fuzzy logic can play an important role in allowing

SDNC to handle routing decisions intelligently. Using fuzzy logic to improve network

connection costs by considering available network edges as neighbour devices’ signal-

to-noise ratio (SNR) and devices’ energy levels collected from device statuses. This is

intended to integrate these elements into a uniform cost for later use in the Dijkstra

algorithm to create an IoT application path. Each application has a source and a

destination sensor [47][48]. The source device represents the detected sensor device

that needs to send data to the destination. The destination device represents the sink or

gateway device to forward data to internet access.

The main objective of this study is to establish the path with the minimum energy cost

resulting from fuzzy-based Dijkstra’s algorithm, the other devices not in this path can

keep their energy using sleep time from the schedule mechanism cluster-tree WSN

[49]. The limitation on the battery power lifetime is a challenging issue for sensor

networks, due to the very high cost of battery replacement and the fact that some

sensors cannot be replaced. Therefore, efficient routing protocols over WSN must

counter important issues such as unnecessary power consumption and absence of fault

tolerance.

This study also presents a new method for routing decisions in SDWSANs: during the

transmission time, an interruption according to any device’s energy level will inform

the SDNC to change the existing application’s path. Once the best path has been built

18

up with the smallest energy cost, other devices keep their battery energy, which can be

used by another application.

3.2. The SDNC Fuzzy-based Routing Decision

Routing on the cluster-tree network topology is a new challenge for forwarding packets

between EDs to reach the ED destination. Because the network operates in the cluster-

tree structure and superframe structure, the cluster can have active mode or sleep mode

during runtime. Therefore, the forwarding data process must work between the active

clusters; from one active cluster to another active cluster to avoid dropping packets

during the cluster sleep mode.

The study proposes a new approach which adds fuzzy logic into routing to improve

SDNC decisions regarding cluster-tree topology. In SDNC, Dijkstra’s algorithm uses

the links cost resulting from fuzzy logic to generate the shortest path from the

application’s source requests to the destination (gateway), with associated energy in

this path according to the fuzzy rule base in Table 3.1. These paths distribute energy

between devices using flow tables which take into consideration the number of active

clusters and the application’s ID. Moreover, in SDNC, node status aggregation (NSA)

receives ED statuses; statuses such as device energy level and neighbour device SNR

are updated periodically in real time.

In network topology, devices broadcast beacon frames; each device has a beacon frame

and reacts with its own beacon frame to SDNC in order to update NSA. Moreover, the

devices add to the beacon frames their devices’ battery levels and SNR, and the

addresses of neighbour devices.

In fuzzy-based Dijkstra’s, if there is a change in devices’ energy levels past a certain

threshold, SDNC will be interrupted to reselect another device by redefining the

application path, in order to gain energy across the total network topology. In regular

Dijkstra’s, the path does not change, and the path selected will remain fixed over time

once selected. During transmission time, the intermediate devices in this path consume

19

much more energy, and other neighbour devices in the topology still have a high level

of energy, meaning the path must be reconfigured and reselected, incurring new costs.

Reselecting paths will make a lifetime balance across the entire network; devices that

expend a great deal of energy will enter sleep time to save energy. The SDNC has the

ability to reconfigure WSANs after deployment using open flow protocol.

In additional, fuzzy logic and Dijkstra’s are working together in order to have a greater

effect on energy for the routing process. Dijkstra’s algorithm calculates the link cost

output based on fuzzy logic. The fuzzy system includes two inputs and one output

(more details in Section 3.6.). The simple procedures are summarised in Figure 3.1. on

the cluster-tree architecture.

Figure 3.1. Architecture design of routing protocol in the SDN controller

20

Figure 3.2. Sequence diagram of the system processes

When an application wants to send data over the network, the following steps are

generally performed, as shown in Figure 3.1. and Figure 3.2.:

1) Application uses SRC-ED to send a request connection to SDNC towards

parent ED address.

2) Parent ED forwards request to SDNC via intermediate ED addresses.

3) SDNC records the application info and connection requests from the ED

sources and uses EDSA to read network topology info. The intelligent network

module receives this request and checks the available network resources. At

this moment, the SDNC should be fully aware of the network and its EDS

states, so that it uses certain algorithms to arrive at the most appropriate

decision for a specific route for the current transmission request.

4) SDNC collects SNR and battery values by NSA (see Section 3.5.) to make a

routing decision based on link costs using fuzzy logic (see Section 3.6.) and

performs routing using Dijkstra’s algorithm (see Section 3.7.) to generate the

shortest path.

21

5) SDNC converts the resulting path to WSANFlow [4] in order to distribute flow

entries to the related EDs.

6) Each ED checks the flow entry and adds its own entry.

7) Source ED begins to send the data packet through its flow entry to reach the

sink ED (gateway).

8) Sink sends data as a gateway to IoT cloud.

9) An alternative path is reselected by SDNC routing decision during running

time.

This chapter, the most important in this thesis, describes the components of the SDN

controller. The SDN controller guides and manages the network in a smart way to

make the right decisions. As can be seen in the figure, the SDN controller contains five

main components: combined flow tables, network topology, node status, Dijkstra’s

algorithm, and fuzzy logic.

3.3. Combined Flow Tables

Figure 3.3. Combined flow table class

The combined flow tables component consists of three main classes, structured as a

C++ object-oriented program, as shown in Figure 3.3. The node class includes all the

codes and functions related to nodes such as address, energy level, number of

neighbours, and their data. Flow table class includes data structure and code about the

22

flow tables and entries, whose objects are created from this type to other classes. The

network topology class includes the functions of node operations on the network,

Dijkstra’s algorithm, and fuzzy logic algorithm, about which we will see more details

in the following sections. Objects are created from different classes according to the

needs of the functions and procedures required to perform the necessary tasks. When

an application request is sent to the SDNC for data transmission, SDNC uses the

combined flow tables class to create application’s path and to link this to flow tables.

Each application can have a special path in the network from source to target sensors.

The path is built depending on the node, flow table and network topology classes,

generated by the smart algorithms in the SDN controller.

3.4. Network Topology

Network topology uses the topology discovery method to determine the clusters in the

network which collect the status information of all nodes and their neighbour list

information. In the network discovery process, when nodes see the beacon frame, they

respond with their own beacon frame to join the network. The responding node adds

into the frame the node battery level and SNR as a distance from other neighbour

nodes, including their addresses.

The network topology sets up the SDN controller beacon settings, such as BO and SO

parameters, and starts time. These settings determine the sleep time of each cluster

according to its number of child nodes. Meanwhile, the type of nodes (forwarding node

or child node) in the network is determined by SO and BO parameters. For example,

if the node has BO=SO=1 or more, then it is a forwarding node; if the node has

BO=SO=-1, then it is a child node. As shown in Figure 3.4., the network topology

performs this process by checking all nodes so that the settings are given only to the

nodes with children in their clusters. Eventually, these settings determine the length of

the active superframe duration SD to fit the number of forwarding devices in the

network.

23

Figure 3.4. The network topology

3.5. Node Status Aggregation (NSA)

When the network starts to work, the broadcasting packets process starts between all

devices, according to the settings determined by the network topology. At the first

time, the SDNC network discovery dynamically generates a time slot (i.e. BO and SO)

for each cluster device with children devices, which makes devices broadcasting

beacon frames. Each device receives a beacon frame and reacts with its own beacon

frame to SDNC in order to update node status aggregation (NSA). Moreover, the EDs

insert their device’s battery level and SNR and the addresses of neighbour devices into

the beacon frames. In this case, the beacon frames are distinguished from other

beacons using NDP flag field. Once a device receives the neighbour device beacon

frame, it generates a command frame and adds device status information, then sends it

to SDNC. Moreover, each device stores a neighbour list containing a list of all SNR

values for each connection between the device and its neighbourhood addresses,

resulting from network discovery. Subsequently, when the SDNC receives all devices’

command frames, NSA begins to work, as shown in Figure 3.5.

In Figure 3.5., as each node status arrives at the node status algorithm, it checks the

arrived node status against the node class list. Moreover, each node stores a neighbour

24

list containing a list of all SNR values for each connection between the node and its

neighbourhood addresses. In order to keep the neighbour list up to date, the SDNC

node status algorithm compares the incoming node status to its node class list and adds

it if a node does not exist. Otherwise, it will update the node status information in the

list. The battery level is overwritten each time a packet is received, because each node

consumes battery and resends the packet. At that time, if the ED battery level is less

than the threshold, it will interrupt to reroute the path (making a routing decision) by

SDNC using fuzzy-based Dijkstra’s algorithms and generate a new path including EDs

with higher battery levels. Subsequently, a list node containing all the nodes’ statuses

is sent to the Dijkstra fuzzy algorithm to create a topology cost based on this list.

Figure 3.5. Node status aggregation

3.6. Fuzzy Logic

Fuzzy logic [50] is an active system of artificial intelligence which plays an important

role in the SDNC to extend the network lifetime; fuzzy logic with inputs and output is

illustrated in Figure 3.6. Fuzzy logic is used to improve network connection costs by

considering the available network edges (link quality, power consumption, link cost,

etc.).

25

Figure 3.6. Fuzzy logic with inputs and output

3.6.1. Fuzzification

Fuzzification checks the input values of SNR and battery level into input fuzzy set

values; each fuzzy set has several membership functions denoted by linguistic

variables. The SNR fuzzy set has three membership functions (weak, medium, and

strong) and the battery fuzzy set has three membership functions (low, medium, and

high), represented in Figure 3.7. as the input membership functions.

Figure 3.7. Fuzzy inputs SNR and battery level memberships

When fuzzy logic is activated, the input values are calculated for fuzzy input sets of

the membership functions (Equations 3.1. and 3.2.). An example of determining the

relevant fuzzy sets is shown for fuzzy input data (SNR, battery level) = (16, 4). In

Figure 3.8., the example of SNR value belongs to the weak and medium membership

functions and the battery level value belongs to the high membership function:

26

SNR (x1) =∑ 𝜇𝑖(𝑥1)/𝑖 (3.1)3
𝑖∈𝑀𝑆𝑁𝑅

Using (Equation 3.1) SNR (16) =16/ Weak + 16/Medium + 0/ Strong

Battery (x2) =∑ 𝜇𝑖(𝑥2)/𝑖 (3.2)3
𝑖∈𝑀𝐵𝑡

Using (Equation 3.2) Battery (4) =0/Low + 0/Medium + 4/High

Where i is the linguistic (low or weak, medium, strong or high).

Figure 3.8. SNR, battery membership functions map the input values

In fuzzification, the activation process for antecedents’ SNR and battery level is

computed by the membership degree function. Fuzzy operation can be calculated using

the membership compute degree (Mf(v)) function, as given by (Equation 3.3). We can

apply it in this example as follows:

𝜇𝑓(𝑥) = min (min (𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒 × (
𝑥 − 𝑎

𝑏 − 𝑎
) , 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒 × (

𝑑 − 𝑥

𝑑 − 𝑐
)) , 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒) (3.3)

Using (3.3), we can explain the examples of SNR and battery level values and apply

this to the resulting membership degree functions. For SNR, a weak membership

function, which has a range of {a, b, c, d} = {0,10,10,20}, the SNRweak (16) is

represented by

𝜇𝑓(16) = min (min (50 × (
16 − 0

10 − 0
) , 50 × (

20 − 16

20 − 10
)) , 50)

𝜇𝑓(16) = min (min(50 × 1.6 , 50 × 0.4)) , 50)

𝜇𝑓(16) = min (min(80 , 20)) , 50)

𝜇𝑓(16) = mi n(20,50)

27

𝜇𝑓(16) = 20

For an SNR medium membership function, which has range of {a, b, c, d} = {10, 20,

20, 40}, the SNRM (16) is represented by

𝜇𝑓(16) = mi n(min (50 × (
16 − 10

20 − 10
) , 50 × (

40 − 16

40 − 20
)) , 50)

𝜇𝑓(16) = mi n(min(50 × 0.6 , 50 × 1.2)) , 50)

𝜇𝑓(16) = min (min(30 , 56)) , 50)

𝜇𝑓(16) = min (30,60)

𝜇𝑓(16) = 30

For a battery high membership function, which has a range of {a, b, c, d} = {3, 4, 4,

5}, the BatteryH(4) is represented by

𝜇𝑓(4) = mi n(min (50 × (
4 − 3

4 − 3
) , 50 × (

5 − 4

5 − 4
)) , 50)

𝜇𝑓(4) = mi n(min(50 × 1 , 50 × 1)) , 50)

𝜇𝑓(4) = mi n(min(50 , 50)) , 50)

𝜇𝑓(4) = mi n(50 ,50)

𝜇𝑓(4) = (50)

The results of the SNR weak, SNR medium and battery high membership function for

this example is shown in Figure 3.8. Input variables are assigned degrees of

membership in various classes. The purpose of fuzzification is to map the inputs from

a set of sensors to values from 0 to 1 using a set of input membership functions.

3.6.2. Rule evaluation

A fuzzy inference produces a relationship between input and output fuzzy sets using a

knowledge base that contains fuzzy rules and membership functions. The rule consists

of two main parts: the ‘If’ side and the ‘Then’ side: If (antecedent) Then (consequent).

Table 3.1. shows nine rules of the fuzzy rule to produce an output fuzzy set linguistic

value. These rules are structured as a condition (IF-THEN).

28

Table 3.1. Fuzzy logic rule base

Rule

Base

IF-side (Antecedents) THEN-side

(Consequence)

1 (SNR is weak) and (Battery is low) (Cost is VeryHigh)

2 (SNR is Weak) and (Battery is Medium) (Cost is Average)

3 (SNR is Weak) and (Battery is High) (Cost is Low)

4 (SNR is Medium) and (Battery is Low) (Cost is High)

5 (SNR is Medium) and (Battery is Medium) (Cost is Average)

6 (SNR is Medium) and (Battery is High) (Cost is Low)

7 (SNR is strong) and (Battery is Low) (Cost is High)

8 (SNR is strong) and (Battery is Medium) (Cost is Medium)

9 (SNR is strong) and (Battery is High) (Cost is VeryLow)

As mentioned in our previous example, the SNR is between weak and medium and the

battery is high, which means that the 3 and 6 rules from Table 3.1. can be applied; in

this case, the rule evaluation is shown in Figure 3.9. Before the rules can be evaluated,

the inputs must be fuzzified according to each of these linguistic sets.

Figure 3.9. Rule evaluation results

Rule evaluation is part of the implication method which defines the rule's conclusion.

We use the implication method by taking the minimum degree of membership for two

sets as µA∩B(x) = min(µA(x), µB(x)). The activation degree process in the implication

method takes the minimum degree of the variables among the SNR and battery

memberships involved in the rule evaluation as the cost membership degree. We use

the activation degree to multiply them with the linguistic in terms of consequences to

determine the rule’s conclusion [51].

29

Consider the example in Figure 3.9.: according to the rule match found in Rule 6, the

activation degree trims the SNR (weak and medium memberships) and battery (high

membership) by taking the minimum value between SNR and battery, [cost = min

(30, 50)], as the cost (low membership). Hereafter, in order to find the output value

for each rule involved, the aggregation process sums up the membership functions into

the K variable by taking the maximum of the membership functions of the resulting

cost. The K value will be used later in the defuzzification process. Therefore,

K=30= max (min (SNR, Battery), cost) (3.4)

3.6.3. Defuzzification

The last step is known as the defuzzification process, in which the fuzzy output is

converted to a single value. Figure 3.10. shows the fuzzy output of a cost set with six

membership functions (very low, low, medium, average, high, and very high).

Figure 3.10. Fuzzy output cost membership

The Mamdani system is used in the defuzzification process as a typical module, and

the centre of gravity (CoG) method is used to resolve conflict issues such as ‘cost is

medium/low’, using membership functions. The CoG method computes the centre of

the area below the curve to find a final output for the cost’s crisp, as described in

(Equation 3.5).

30

𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑠𝑝 =
∑ (𝐴𝑟𝑒𝑎 𝑖 ∗ 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑖) 6

𝑖∈ Cost𝜇𝑓

∑ 𝐴𝑟𝑒𝑎 𝑖 6
𝑖∈ Cost𝜇𝑓

 (3.5)

Where i = {1, 2... 6} is the output membership, and Area is computed for each output

membership. 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑠𝑝 is the final desired output. As a result of the previous example,

we substitute the K =30 value in (Equation 3.4) and the low cost membership resulting

from rules 3 and 6. The following equations convert the fuzzy output to the cost crisp

value as final results:

base1 = d − a (3.6)

base2 = base1 − (
𝐾

𝐿𝑣1
) − (

𝐾

𝐿𝑣2
) (3.7)

Area= K*
𝑏𝑎𝑠𝑒1+𝑏𝑎𝑠𝑒2

2
 (3.8)

Centroid = 𝑎 +
𝑑−𝑎

2
 (3.9)

Figure 3.11. shows the implementation of the previous example on these equations.

The range of Cost Low membership is Cost Low {a, b, c, d}, represented in our example

as {5,10,10,15}, where the first and last values, a and d, are used as inputs in the

(Equations 3.6, 3.7, 3.8 and 3.9).

Figure 3.11. Example fuzzy results

The flowchart of the defuzzification procedures is shown in Figure 3.12.

31

Figure 3.12. The flowchart of the defuzzification procedures

Now let us see how the battery level changed for this ED and the effect that

accompanies cost value during the network life cycle. Through the process of

transmitting and receiving, the device gradually loses its energy, as shown in Table

3.2.:

Table 3.2. Cost vs battery level

Cost SNR Battery level

10 16 5

10 16 4

20 16 3

27 16 2

27 16 1

As seen in the table, the low cost is the best candidate for Dijkstra’s algorithm for

building application paths, therefore the ED is selected based on the cost value of the

connection link between a device and its neighbour. However, when the level of

energy is lower, the output cost value is higher, which means that it is not a good

32

candidate for Dijkstra’s algorithm, because as we will see later, Dijkstra’s algorithm

prefers to select the minimum values of these connection links between ED and its

neighbours. In this way, we have established the relationship between cost and energy

level in fuzzy rules, as illustrated in Table 3.2.

3.7. Dijkstra’s Algorithm

Dijkstra’s algorithm [52] is an algorithm which finds the route with the lowest possible

cost in order to determine the best path from source to destination node in the network.

When the SDNC receives the status of each node, the NSA in SDNC starts to collect

these statuses for each node, including its neighbours’ information in the class node

representing the collected information of all nodes. if there is a connection request

from an application or an interrupt from NSA to change the route according to the ED

battery level, Dijkstra starts working with the fuzzy logic shown in Figure 3.13.

Dijkstra’s input is the cost for each connection resulting from fuzzy logic. A lower

cost value means that the ED neighbourhood is very close to the device, while a high

cost value means that the ED neighbourhood is far away; these decisions are

determined by the fuzzy rule base in Table 3.1.

However, SDNC is able to dynamically build the network topology and select the best

route between nodes based on the resulting cost from the fuzzy system. As our fuzzy

system includes two inputs and one output, when these fuzzy input values change then

cost will change for each node connection. The fuzzy logic inputs are updated when

new nodes’ statuses arrive at SDNC, then the output cost is inserted concurrently as

the input for Dijkstra’s algorithm.

33

Figure 3.13. Dijkstra's with fuzzy routing algorithm

Dijkstra’s algorithm chooses the nearest device to the source using the find device

function and runs over neighbours in the loop. Subsequently, it compares the nearest

device with its neighbours, selected from the devices list presented in Figure 3.14.

(Steps 6, 7, 8, and 9). For each cycle in the loop, the minimum cost for the best path is

aggregated as the total path cost from the EDs to source ED which Dijkstra’s algorithm

returns.

34

Figure 3.14. Dijkstra’s algorithm

3.7.1. Flow tables layout

Table 3.3. shows a flow table formed by the SDNC; the entries represent each

application that resulted in its path from Dijkstra’s algorithm. Each ED address in the

application’s path receives an entry contained next hop and an action to forward or

drop packets arrived.

Table 3.3. Flow table entries

A
p

p
lica

tio
n

 ID

D
ev

ice A
d

d
ress

Matching Rule Action Statistics

C
o

m
p

arato
r

S
rc A

d
d

ress

M
atch

 R
u

le

F
o

rw
ard

 /D
ro

p

N
ex

t H
o

p

C
lu

ster D
ir

N
u

m
b

er o
f

P
ack

ets

1 13 ‘=’ 13 Forward 2 0 34

1 4 ‘≠’ 1 Drop - - 81

2 5 ‘=’ 1 Forward 4 0 33

2 4 ‘≠’ 1 Drop - - 94

3 6 ‘=’ 7 Forward 4 0 32

3 15 ‘≠’ 7 Drop - - 81

2 5 ‘=’ 2 Modify 8 0 65

35

Figure 3.15. Network topology Scenario 1

As seen in Figure 3.15., the first network topology scenario represents SDNC and six

nodes. In this scenario, the IoT application wants to send data from the source ED with

address 11 to destination ED with address 12, and the Dijkstra’s algorithm result of

our system as total end-to-end costs is 32, with a path running from 11=> 1 =>2 =>4

=>12.

Figure 3.16. Network topology Scenario 2

Figure 3.16. shows the second network topology scenario, in which we change the

position of node R3 in order to see the change of SNR represented by the distance

between nodes. The Dijkstra’s algorithm result of this scenario shows that the path has

changed to 11=> 1 =>3 =>4 =>12 and the total end-to-end cost remains the same

because of the vertically equal distance and energy to the first scenario.

36

Figure 3.17. Network topology Scenario 3

Figure 3.17. shows the third network topology scenario, which has position changes

to nodes R2 and R3 respectively. The Dijkstra’s algorithm result of this scenario as

total end-to-end costs is 46 with the path from 11=> 1 =>2=>3 =>4 =>12. In this case,

the cost is high because the nodes have limited coverage area and the nodes are far

away from each other, so the path becomes longer than before.

3.8. Simulation Results and Discussion

In all experiments, we used a free space channel propagation model in the simulation

environment, allowing us to predict the received signal strength of a path with direct

line of sight between the transmitter and the receiver. Experiments were performed

using fuzzy-based Dijkstra’s algorithm, and an SDNC with a regular Dijkstra's

algorithm in the first scenario. The second scenario includes a ZigBee‐based WSAN

equivalent. Through these scenarios, simulation results can be extracted to see the

effect of the proposed routing discovery algorithm.

3.8.1. Simulation environment: parameters and scenarios

The configurations of the applications’ requests to SDNC are shown in Table 3.4.,

when an ED’s battery level passes the threshold, the SDNC alerts an administrator to

change the battery of this ED. As shown in Table 3.4., there are four applications,

which differ in the start time and packet inter-arrival time for performance testing.

37

Table 3.4. Simulation parameters

Items Name Value

Network Topology Number of End Devices 10, 20, 30, 40, 50

Network coverage area 300 m X 300 m

SDNC location (x, y) (150, 150)

Simulation time 10800 s

Max. No of EDs in Cluster 15

Path re-establishment threshold 2 J

Device settings for both the

proposal and ZigBee‐based

WSAN

Data Rate 250 Kbps

ED status transmission period 25 s

Initial Energy 5 J

Channel model Free-space propagation

model (LoS)

Power threshold -76 dBm (80 mW)

Battery parameters (Micaz

mode) for both the proposal and

ZigBee‐based WSAN

Transmission Mode (0 dBm) 17.4 mA

Receive Mode 27.7 mA

Idle Mode 35 µA

Sleep Mode 16 µA

Application 1

(Src. 11 in Figure 23)

Start time 50 s

Packet payload size 30 bytes

Packet inter arrival time 2 sx

Application 2

(R 34 in Figure 23)

Start time 200 s

Packet payload size 30 bytes

Packet inter arrival time 3 sx

Application 3

(R 43 in Figure 23)

Start time 300 sec

Packet payload size 30 bytes

Packet inter arrival time 5 sx

Application 4

(R 36 in Figure 23)

Start time 400 s

Packet payload size 30 bytes

Packet inter arrival time 4 sx

ZigBee‐based WSAN ZC beacon configurations BO = 4, SO = 1

Tree routing configurations Lm = 2, Rm = 4, Cm = 4

Number of end devices 50

Network coverage area 300 m × 300 m

ZC location (x, y) (150, 150)

Simulation time 10 800 s

Initial energy 5 J

Application 1 (Src. 2) Start time 50 s

Abbreviations: ED, end device; SDNC, Software‐Defined Networking Controller; WSAN, wireless sensor and actuator network.

x Generated using the exponential distribution function exp (mean).

3.8.2. Simulation results and discussion

Figure 3.18. shows that the first ED dies after 5500 seconds of simulation time and

four applications which are shared among 40 EDs. For one application, the network

lifetime is longer than with two or more applications running, because EDs forward

data from one source to one destination and traffic is light.

38

Figure 3.18. First ED deaths with number of EDs and number of applications

When the number of applications increases, the number of traffic sources increases

and some intermediate EDs forward data to more applications, leading them to

consume more energy. Moreover, every application has one path, so that when the

number of applications increases, battery level decreases faster, especially for EDs

shared in these paths, which die in a short time.

The proposed fuzzy-based Dijkstra’s can find an alternative path after EDs’ batteries

have passed path recall threshold, to prolong network lifetime. Figure 3.18. illustrates

a different number of EDs with one application, the ED dying after 7000 seconds of

simulation time. Fuzzy-based Dijkstra’s shows better results in all cases than regular

Dijkstra’s algorithm, because the path is selected based on rule base to re-prolong

network lifetime. With 10, 20 and 30 EDs, the first ED dies due to cluster tree topology

limitation, being the only path found in time. The advantage of an exchange is that the

path can use a large number of ED batteries during the running time. Figure 3.19.

outlines an example of system implementation; the study of SDNC routing algorithms

in different clusters for the scenario is represented by one application and 50 EDs. The

results display a comparison of the routing algorithms on the network in terms of

number of ED deaths, delay, and throughput.

39

Figure 3.19. Scenario for 50 EDs and one application

Table 3.5. displays the paths for fuzzy-based Dijkstra’s and for regular Dijkstra’s. The

simulation results indicate that regular Dijkstra’s algorithm selects the shortest path

according to the SNR as a cost, without considering the battery level of EDs. In fact,

the EDs’ batteries decrease over time. Therefore, fuzzy-based Dijkstra’s selects paths

using the fuzzy rule base and the consumed power of the EDs’ batteries can be

distributed among more EDs in the same time. Moreover, fuzzy-based Dijkstra’s re-

establish alternative path at 5089 seconds to prolong network lifetime as illustrated in

Table 3.5.

Table 3.5. Path information

No of applications Path

establishment

time, s

Path details Total

Cost

Fuzzy-based Dijkstra

1 50 Src11=>R9 =>R10=>R15=>Dest12 16

1 5089 Src11=>R9 =>R8 =>R15=>Dest12 95

Regular Dijkstra

1 50 Src11=>R9 =>R13 =>R19=>Dest12 273

ZigBee‐based WSAN

1 50 Src2=>R1=>PAN coordinator=>R11=>14 -

40

The EDs in the path consume more energy than other EDs not involved in the

application’s path, therefore when EDs die over time, this can reduce the network

lifetime. Moreover, other EDs in this topology remain live and their battery level

remains higher than EDs in the path. For that reason, an alternative ED should be used

during the transmission time to prolong network lifetime. Figure 3.20. displays the

results when there is only one application running and there are 50 EDs in the network

for aforementioned three models. The Figure shows that in a short time, the ZigBee-

based WSAN model contains a large number of death nodes more than the regular

Dijkstra algorithm and the fuzzy based Dijkstra algorithm. Because there is no

effective energy management strategy in the ZigBee-based WSAN model.

Moreover, the regular Dijkstra algorithm over time has increases the number of death

nodes more than the fuzzy based Dijkstra algorithm, as expected. Since the path

selected by regular Dijkstra’s remains fixed over time because the SNR values do not

indicate which EDs die more quickly over time. During transmission time, the

intermediate EDs in this path continue to forward data and consume much more

energy, and other neighbour devices in the topology still have a high level of energy,

so that the path ought to be reconfigured and reselected using the new costs.

Figure 3.20. Number of ED deaths over time for 50 EDs and one application

41

Figure 3.21. exhibits network loads of intermediate nodes on the path. Some nodes

that have a higher battery level take place instead of other nodes in the path. Therefore,

the data transfer switches from node R10 to R8. this is because the SDNC rebuilds

new path at 5089 s of the simulation runtime as shown in Table 3.5., to prolong the

network lifetime.

Figure 3.21. Network loads for the intermediate end devices for 50 EDs and one application

Fuzzy-based Dijkstra’s reselects the path and creates a balance of lifetime battery

consumption of the entire network for the devices that spend a great deal of energy,

leading to sleep time to save energy. The throughput and end-to-end delay for 50 EDs

are shown in Figure 3.22.; the expected results during prolonged network lifetime are

the end-to-end delay test for 50 EDs.

Figure 3.22. Throughput (bit/sec) and end-to-end delay for 50 EDs and one application

42

Thus, because fuzzy-based Dijkstra selects the best path according to the rule base

which has a higher level of battery for related EDs, the delay increases. Regular

Dijkstra selected the best path according to distance (SNR only) which decreases the

end to end delay. Also, the ZigBee-based WSAN has only one path that does not

change over time similar to the Regular Dijkstra. This indicates the similarity of the

end to end delay results. In Chapter 5 we develop the fuzzy-based Dijkstra to improve

the delay results well.

43

CHAPTER 4. INTERACTING THE VERTICAL DOMAIN

DEVICES OF IOT SYSTEM WITH HORIZONTAL

DOMAIN SYSTEM

Hybrid systems require interaction between different IoT technologies to create

intelligent services and smart environment. For the effective performance of IoT

applications, IoT technology such as radio frequency identification (RFID) which is

widely used to identify and track the location of RFID tags in various environments.

For example, the healthcare system required a hybrid system to improve its services

and access to healthcare information in real-time. In this chapter, we provide the

communication between the vertical domain of IoT devices with the horizontal domain

system. In the vertical domain system, the RFID technology is integrated into the

SDN-based WSAN as new platform to the healthcare system, the proposed is

presented with simulation environment details and results.

4.1. IoT Technologies Related Work

Several projects also are proposed in the literature to integrate IoT technology such as

RFID and facilitate interaction between the cloud and the vertical domain devices of

IoT systems in real time. The following literature references on RFID are diverse;

various solutions have been proposed to address the problems of RFID technology.

Radio frequency identification technology is widely used in a large number of IoT

applications; the authors in [53] propose combining smart parking solutions (SPS) with

innovative IoT technologies such as RFID and WSN. The system collects real-time

data on parking conditions and guides drivers to the nearest vacant parking space.

The IoT hybrid monitoring system presented in [54] proposes an RFID gateway for

healthcare environments. The RFID gateway is designed for both WSN and RFID

readers to transfer asset and patient data to the WSN network, using passive RFID tags

44

with sensors to track assets and patients in terms of location and condition. RFID

technology has improved the cost effectiveness of the system and simplified the

management of asset and patient data.

Radio-frequency identification and WSN integration into supply chains provides

system intelligence, since WSN is multi-hop and RFID technology is single-hop [55].

An intelligent system is proposed in order to enhance system performance; a

combination of RFID and sensors is applied. Radio-frequency identification is used

for identifying tags and WSN is applied to sensing environmental variables such as

humidity, temperature, and air quality. Some products should be protected against

humidity and some must be kept at a certain temperature.

The paper [56] proposed a fire IoT service-oriented architecture consisting of four

layers to connect fire tools to IoT networks. In the sensor layer, a smart sensor

connected to the RFID reader/tags was provided to give warning data in order to send

it to the base station. The RFID reader reads fire tools tagged with the RFID tag and

can activate fire system devices such as water hoses to fight fires. The sensor senses

data such as smoke, temperature, humidity and light, and uses fuzzy logic to detect the

level of fire risk.

A security solution is proposed for IoT RFID Technology in [57]. The RFID

authentication system includes a TSMMA PUF structure and bidirectional RFID

authentication based on PUF. TSMCA PUF needs certain hardware resources to

perform a four-way procedure between the arbitrator and the transmitter. The PUF

works in two directions of authentication, from server to tag and from tag to server.

In [58], a framework is proposed to improve IoT applications’ performance, and smart

tag location tracking is applied to networks integrating both WSN and RFID. In this

framework, the fuzzy q-algorithm and the fuzzy system-based route classifier are

considered. The fuzzy q-algorithm is used to enhance the anti-collision protocol for

RFID, and the fuzzy system-based route classifier to classify the paths and assist

routing protocols.

45

The project described in [59] is an MQTT communication protocol and RFID

technology in which a steel beam product has an EPC code in its RFID tag. It uses

MQTT to send messages from RFID and IoT sensors. The RFID tag is tracked and

sent from the warehouse using IoT sensors connected to the RFID/IoT system. This

structure is extended to the IoT domain based on the EPCGlobal/GS1 framework.

The paper in [60] introduces the structure and components of a WSID heterogeneous

network integrating WSN, RFID, and GIS technologies together. The platform uses

four layers: (1) a detection layer including smart tags and RFID tags; (2) a monitoring

layer including WSN gateways; (3) a management layer including a monitoring centre,

data server, and application server; and (4) backup interfaces handling the interface

between the WSID and external networks. The RFID tags in this work save

information such as material category, serial number, personnel ID, and location, so

that a different RFID reader in the system can collect it.

In [61], cybersecurity seeks to design smart and secure parking solutions based on

technologies such as WSN, RFID, Ad-hoc network, and the IoT. They rely on RFID

to determine vehicle registration numbers and related data including parking number,

parking period, parking fee, and password assigned for security purposes.

4.2. Vertical Domain Devices

In this section, a new real-time IoT-based data analytics architecture for smart

healthcare is proposed. The new platform includes the SDN-based WSAN as explained

in chapter 3 and RFID structure, which are the key contribution of the study in the

vertical domain. The patient's related Electrocardiogram (ECG) data is sensed by the

sensing nodes in WSAN and delivered to the gateway (destination) node through the

path established by SDN controller so that it could be employed in data analytics

operations.

The RFID technology in the proposed structure is in charge of identifying the patients.

We assume that each patient is given an RFID wristband. For more realistic

performance evaluation all the vertical domain components have been modeled and

46

simulated using Riverbed Modeler. Since any IoT enabling technologies in the vertical

domain can be modeled using a simulation software, the proposed architecture has a

big potential to be used as a time-saving experimental environment and, this case can

be considered as the other contribution of this study.

Using RFID tags with sensors to track assets and patients in terms of location and

condition. RFID technology can improve the cost-effectiveness of the system and add

simplicity to manage the data of assets and patients. The proposed real-time data

analytics architecture for smart healthcare consists of two domains, namely the vertical

domain (SDN-based WSAN and an RFID structure), and a horizontal domain (Kafka,

Spark, NodeJS, and Mongo database) as outlined in Figure 4.1. The patient-related

ECG data is sensed by the source sensors (source SN) in the WSAN and is delivered

to the gateway so that the data can be transferred to the Kafka platform using the TCP

socket. The Kafka messaging system distributes incoming data to three different

consumers associated with it, as can be seen from Figure 4.1. The first Kafka consumer

is the Spark platform for real-time data analysis. The second one is NodeJS web

application that visualizes the patient's data in the web browser, and the last consumer

is the MongoDB database that stores the incoming data for future usage.

47

Figure 4.1. Outline of the RFID in vertical domain architecture.

4.2.1. Software-defined networking based wireless sensor network

As stated earlier in chapters 2 and 3, the SDN based WSAN is developed through the

study given in [12]. In this study, each SDN-enabled sensor node (SN) is connected to

the RFID reader and the patients’ heart rate device to collect data. These sensors which

are represented as source sensors then delivers the measured data to the gateway via

the WSAN in real-time.

48

4.2.2. Radio frequency identification

RFID is a widely used IoT enabling technology for data collection. Figure 4.2.

illustrates the Riverbed node model that integrates RFID reader into the SN. While the

RFID related components of the vertical domain modelled here in this study, the SDN-

based WSAN part was modelled through the study given in chapter 2.

Figure 4.2. SN with RFID reader node model and RFID reader process model.

The followings are a brief explanation of the RFID reader module that is embedded

into the SN:

1.The sensor application layer module was developed to receive patient data from the

MAC module of the RFID reader and to integrate this data with patient PR data in

the packet generator process.

2.The RFID MAC module was developed and presented in [62]. We have modified

this MAC module to meet the proposed SDN-WSN design requirements. RFID

reader can communicate with RFID Tag using the main functions which are:

a) ReaderSelect() is a function to select RFID Tag with number.

b) ReaderQuery() is a function to query a packet with a query value.

c) Query_rep() is a function to create a “queryAdjust” packet format and create

a “queryReply” packet format as requested by an RFID tag.

49

d) Reader_Received_Packet() is a function that is used when the packet is received

for the ACK packet, which will be generated and replied to each valid type of

packet: RN16, EPC, XPC, CRC16, and patient data.

e) Reader_kill() is a function to kill the packet when the session ends.

3.The RFID reader’s application module collects statistical information about the

RFID tag.

Figure 4.3. RFID tag node model and process model.

The RFID tag node model contains two modules [62] as illustrated in Figure 4.3. A

brief explanation of the model is given below:

1.The MAC module is developed for the RFID tag. This MAC module collects patient

data for sending to an RFID reader. In this model, the main functions to communicate

with an RFID reader are:

a) Receive_packet() is a function to receive and respond to any type of RFID reader

command packets.

b) QueryTag() is a function that responds to the query for any type of packets in the

case of a tag query.

50

c) ReplyTag() is a function in the reply state to create a 16-bit random number

(RN16) packet and send it to an RFID reader.

d) AckTag() is a function in the case of the ACK’s state to receive an acknowledged

packet from an RFID reader.

2.The RFID Tag’s application module collects statistical information about the

patient’s data.

4.3. Horizontal Domain System

Nowadays, the growing volume of data on the internet has also increased the

importance of big data analytics, which makes sense from this data. It is obvious that

this large amount of data will increase further with the widespread use of the internet

of things which would incorporate numerous devices into the existing internet

infrastructure. In the horizontal domain system, the platform developed in this study

has a real data analysis structure. Therefore, the proposed platform contains high-

scaled and high-performance data analysis tools such as Kafka, NodeJS, Spark, and

MongoDB in the horizontal domain. The components used in this domain are; i) a

Kafka messaging system that distributes incoming data to different consumers, ii) a

web application which was developed using NodeJS to visualize the patient data, in

real-time, iii) a Spark platform for real-time data analytics, and v) a NoSQL database

that stores incoming data.

4.3.1. Kafka

Kafka (version 2.11) [63] is the actual distribution system, a high-throughput

distributor for messages, dealing with the enormous amount of data and supporting a

huge number of consumers and producers. Kafka uses a number of partitions and a

number of brokers to perform parallelism. The parallelism accelerates the processes

effectively. In addition, it automatically retrieves data in cases where the broker fails.

Through these characteristics of Kafka, the real-time data streaming requirements is

supported.

51

Figure 4.4. Streaming gateway and Kafka (producer/consumer).

Figure 4.4. shows the system gateway (destination SN) associated with the Kafka

producer, through this portal, the flow of data directed from the vertical domain in

real-time to the horizontal domain. This gateway is a part of the vertical domain system

and is connected to Apache Kafka server using a TCP socket server program. Using

TCP socket program (server and client connection) makes communication reliable and

oriented. Kafka producer receives data stream from the TCP client sockets program,

which in turn listens to a particular port and IP address. Thereafter, Kafka producer

sends the streaming data to Kafka's consumers.

4.3.1.1. Kafka Server and Kafka Client Setup

Kafka server and client are connecting from different platform using TCP socket

client/server programs. Kafka producer is using java-based socket program while

Kafka producer is using c-based socket program. Figure 4.5. shown the start running

steps of zookeeper and Kafka servers.

52

Figure 4.5. The commands to run zookeeper and Kafka servers

Riverbed node model connects to the Kafka server using TCP socket client/server

programs. The following steps include setting up Kafka to create a topic as well as the

connections between Riverbed node model and the Kafka server.

1.To create a topic with name "testing1" in apache Kafka use the following command:

./kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --

partitions 1 --topic testing1

2.When Riverbed simulation starts working, the source SN generates data to send it to

the destination SN. Riverbed node model includes the c-based socket file in header

of the SN application layer as illustrated in Figure 4.6.

Figure 4.6. Include the c-based socket in riverbed node model

3.The destination SN receives data packets and executes c-based socket client program

by using the script to send number of messages to the Kafka server as shown in

Figure 4.7.

53

Figure 4.7. The destination SN (gateway) use the socket to send packet to Kafka

4.The java-based server socket gets these messages from c-based client socket to

Kafka producer as shown in Figure 4.8. Meanwhile, The Kafka producer sends

messages to Kafka consumer.

Figure 4.8. Java based socket

54

4.3.2. Apache spark

Apache spark (version 2.11) [64] is an open source computing platform developed

using scala, which enables parallel processing of large data sets. Because apache

spark’s operations are performed in memory, it supports data analysis with high

performance and high speed for various formats (static or streaming). Moreover, it

includes machine learning libraries.

4.3.2.1. Apache spark streaming

Apache spark processes real-time streaming data very quickly because of maximum

efficiency during operations, therefore, it processes a large amount of data in a short

time.

4.3.2.2. Apache spark machine learning library

Machine learning library (MLlib) is scalable library in the apache spark that contains

common machine learning algorithms, including classification, regression, and

aggregation. The logistic regression algorithm is one of the regression machine

learning algorithms, which is selected in this study to classify patient data and provide

better results for IoT healthcare applications.

4.4. Case Study: Real-Time Disease Diagnosis Using Logistic Regression

Real-time diagnosis is a new and important way to diagnose a patient's condition. In

order to perform real-time disease diagnosis, we used a logistic regression algorithm

that is machine learning technique in apache spark to predict patient's condition.

4.4.1. Electrocardiogram

ECG refers mainly to the electrical activity of the heart. ECG consists of 5 waves: P,

Q, R, S, T corresponding to different stages. ECG allows us to record the activities of

55

the heart muscle from several points on the surface of the body [65]. In this case, ECG

plays an important role in the diagnosis of various heart diseases. In our study we

considered about QRS and PR intervals which are related to Wolff Parkinson white

(WPW) disease.

Wolff Parkinson white syndrome is a conduction disorder where the atrial pulse passes

to the ventricle through an extension path along the normal ventricular atrium junction.

Patients with WPW may suffer from palpitations, fainting, and sudden death [66]. The

symptoms of this disease are a PR interval of less than 120 (shorter than 0.12 seconds)

and a QRS compound that is greater than 110 (greater than 0.11 seconds). In order to

assess and classify WPW disease, the QRS and PR intervals are selected from the

arrhythmia dataset in the UCI database [67]. This dataset consists of the ECG data

from 452 people, each with 279 attributes.

4.5. Experimental Results and Discussions

Figure 4.9. The Sequence diagram for end-to-end data delivery operations.

The sequence diagram shown in Figure 4.9. presents the end-to-end data delivery

operation of the proposed system. It clarifies the main operations performed to transfer

the patient’s data from the vertical domain to the horizontal domain. The vertical

56

domain that has been modelled and simulated using Riverbed Modeler has source SNs,

RFIDs and a gateway, as can be seen from the figure. On the other hand, the horizontal

domain of the proposed architecture has been built using real-world technologies such

as Kafka, Spark, NodeJS and MongoDB. The simulation of the WSAN and RFID was

run for 3600 seconds. The source SN generates QRS and PR data of any patient once

in every 2 s during the simulation run time. This data is read from a file including test

data. In the meantime, RFID reader that is embedded into the SN gets other related

information from the RFID tag like tagID, patientID, age, gender, height (cm), and

weight (kg). All of these pieces are combined and then, forwarded to the gateway using

SDN-based WSAN. The gateway delivers this data to the Kafka Producer to be

distributed to the related Kafka Consumers. The communication between WSAN

(gateway) and Kafka (Kafka Producer) is provided using TCP/IP TCP sockets. As

soon as the Kafka Producer pushes incoming data into the Kafka Broker, all Kafka

Consumers fetch it for use in their individual job.

As can be seen from Figure 4.9., the Kafka consumers are connected to the web

application, Spark engine, and MongoDB, respectively. When Apache Spark gets the

patient related ECG data, it tries to diagnosis disease using Logistic Regression model,

in real-time. NodeJS web application sends the data from Kafka instantly to the

connected client browsers using socket.io module. The illustration of the web-based

user interface in Figure 4.10. shows the last record of patient data that is delivered by

NodeJS application. Finally, all data introduced to the cloud is stored in the high-

performance MongoDB database for future use.

57

Figure 4.10. NodeJS patient information interface.

4.5.1. Simulation environment and hypothesis

In this study, the simulation scenario is examined to look into the performances of the

developed models using the simulation model in [12]. An explanation of the network,

together with the developed components, is shown in Figure 4.11.

58

Figure 4.11. Streaming scenario for IoT healthcare applications.

Figure 4.11. shows the simulation streaming scenario; patient data comes from three

RFID tags and three sensor sources. Each RFID tag is associated with SN to collect

patient information such as patient identification, age, gender, height (cm) and weight

(kg). SN source generates patient’s data such as QRS and PR as test data.

4.5.1.1. Numerical results and argumentations

In this part, the composition of the logistic regression algorithm tested under the

parameters as shown in Table 4.1. In Table 4.2., we can see the classification type for

the diagnosis of WPW by a logistic regression algorithm. Training data is the correct

data that logistic regression algorithm learned and build model. Testing data is the

streaming data which generated randomly from the vertical domain system as shown

in Table 4.3. These data are evaluated in real-time and the logistic regression algorithm

predicted the results for each group of patients depicted as shown in Figure 4.12. The

total average of the data (Input Rate) in Kafka/Spark streaming processes tested and

59

investigated in different partitions as shown in Table 4.4. Finally, the proposed system

can deal with unexpected failures using number of partitions as explained in Table 4.5.

Table 4.1. Logistic regression algorithm parameters.

Parameter Value

set max iterations 10

set regularization parameter 0.3

set elasticnet mixing parameter 0.8

Table 4.1. shows the parameters used in the logistic regression algorithm settings. Max

Iterations is the maximum number of runs. The Regularization parameter is an input

value of lambda in the model, which reduces the variance of the estimated regression

parameters. The regularization path is computed for the elasticnet penalty at a grid of

values for the regularization parameter lambda.

Table 4.2. Classification table.

Class Number Patient Sate

0 Not Wolf Parkinson White

1 Wolf Parkinson White

Table 4.2. shows the data classification of the logistic regression algorithm, which

classified the data into two categories of WPW disease.

Table 4.3. Data streaming.

Data Record Numbers

Training Data 350

Testing Data 15000

In Table 4.3., the logistic regression builds the trainer model from 350 patients as

training data. The algorithm was also tested on 15,000 data streaming of patient

records as testing data.

60

Figure 4.12. Logistic regression predicted results.

Figure 4.12. displays patients’ incoming data, as well as the logistic regression

algorithm’s classification of the data in real time and the predicted results according

to the data training model. Patient data are patientID, age, gender (0 for males and 1

for females), height, weight, QRS, and PR. The ‘label’ column is the estimated class

rating. For example, for patientID (335) in the second row, which shows a QRS

interval of 124 milliseconds and a PR interval of 129 milliseconds, the label rating

value is equal to the expected value of the logistic regression. In this case, the logistic

regression classifies this record as negative for WPW disease (patient = 1, healthy =

0). When the data for this patientID (335) changes to a QRS interval of 86 milliseconds

and a PR interval of 33 milliseconds, as seen in the fifth row of Figure 4.12., the label

value is not equal to the expected logistic regression. In this case, the logistic

regression classifies this record as positive for WPW disease. The accuracy of the

model resulting from this set of records is about 70%.

Table 4.4. Total average of the input rate.

Streaming Partition 1 Partition 2 Partition 3

Input Rate 123.25 records /sec 140.10 records /sec 165.18 records/sec

Table 4.4. shows the total average of streaming data which is tested in three topics

with different number of partitions. Each topic of Kafka distributes the incoming data

received across a number of partitions that is created with this topic. The Kafka topic

61

receives data across a distributed set of partitions. As can be seen in Table 4.4., when

the number of partitions increases, the number of records also increases.

Table 4.5. Streaming Data with Number of Partitions.

Input data size Partition Offset 1 Offset 2 Offset 3

120 records 1 16552 to 16671 - -

120 records 2 10300 to 10365 10182 to 10237 -

120 records 3 34506 to 34548 34668 to 34707 34503 to 34542

The Kafka’s offsets management help to restore the state of the stream throughout

Spark direct streaming’s lifecycle and deal with unexpected failures. Table 4.5.

indicates the input data size of 120 records, which contains the offset numbers for each

partition. When the number of partitions in the Kafka data streaming was increased,

the number of offsets was increased; for example, partition 1 included one offset,

whereas partition 2 included two groups of offsets and partition 3 included three

groups of offsets. The benefit of increasing the number of partitions is if one of the

partition’s offsets fails, Kafka continues processing by using the other offsets.

We tested several scenarios by setting the number of patients in each application where

is one application includes the source SN and RFID reader. First scenario with one

application and second with two applications and the third with three applications,

each application include two patients. The end to end delay and throughput results for

three scenarios are shown in Figure 4.13. and Figure 4.14. respectively.

62

Figure 4.13. The end to end delay for the three applications

Figure 4.14. Throughput (bit/s) for the three applications

It is possible that the path is changing during transmission time using the SDN based

WSAN to prolong network lifetime as discussed in previous chapters. We can be

observed from the figures when number of applications increased lead to a higher end

to end delay, as well as the throughput results.

63

CHAPTER 5. ENHANCED SDN TOPOLOGY DISCOVERY AND

IOT GATEWAY

5.1. Introduction

The beacon frame is the key factor to configure the IEEE 802.15.4 superframe. The

components of the IEEE 802.15.4 superframe structure were discussed in chapter 2.

The beacon settings have a power of influencing the WSAN performance such as

throughput and delay which are essential elements to meet the requirements of IoT

applications. The SDN network topology discussed in chapter 3, which involved the

topology discovery process to configure the beacon frame.

In this chapter, we improve the topology discovery process in a way that relies on the

resulting path of the Fuzzy-based Dijkstra algorithm. This method is called an

Enhanced SDN-WSAN Fuzzy-based Dijkstra (ESWFD).

Another issue is to connect the system to the cloud via an IoT gateway. As we have

seen in chapter 4, we provided the communication between the vertical domain of IoT

devices with the horizontal domain system using the gateway. The system gateway

directed the data flow in real-time from the vertical domain to the horizontal domain.

This gateway is part of a vertical domain system that uses a single client / server TCP

socket program. In this chapter, we enhance the system gateway using message queue

telemetry transport (MQTT) protocol. The MQTT is a simple messaging protocol with

low bandwidth to connect sensors (resource-constrained) devices to the internet. In

MQTT, we can create many topics and from any system, many senders and receivers

can share either a single topic or multiple topics.

64

5.1.1. Related research

The following literature references on the MQTT protocol are diverse. An application

programming interfaces of MQTT and API web for IoT cloud is presented in [68]

which the results are evaluated in term of average response time, average transmission

delay and memory occupation for many tasks of IoT applications. An application layer

protocols such as MQTT and CoAP protocols are analysed with respect to the cloud

in [69] which their IoT architectures consists of 6 levels. The authors of [70] propose

a real-time problem-oriented solution through IoT technologies and vehicle cloud

service, therefore, the cloud parking service is designed according to the MQTT

communication principle. The implementation of MQTT-S tested on the IBM wireless

sensor networking testbed [71], which is integrated to ZigBee-based networks.

In this chapter, the main contributions can be summarized as follows:

1. To enhance Fuzzy-based Dijkstra's algorithm in SDN beacons structures via

cross-layer (Topology Discovery and MAC layers).

2. Develop an interface between MQTT [72] and Riverbed Modeler simulation

allowing the system to send WSAN data to IoT cloud.

3. Develop a IoT web interface using NodeJS [73] for monitoring application to

receive the network data from SDN and application data from destination node.

5.2. The Proposed ESWFD for IoT Applications

The proposed ESWFD architecture consists of two domains, namely the vertical

domain (SDN and WSAN structure), and a horizontal domain (MQTT, and NodeJS)

as outlined in Figure 5.1.

65

Figure 5.1. The general description of the ESWFD proposed IoT architecture.

5.2.1. Components of the ESWFD system

 As stated earlier, the SDN-based WSAN is developed through the study given in [12]

and chapter 3. The new components of SDN node model as shown in Figure 5.2. (a),

which consist of four main modules as the following:

1. The MAC module [12]. This module modified to reconfigure beacon according to

the topology discovery.

2. The Routing Decision and Flow Table (RDFT) module modified to allow the SDN

controller to send node status information and flow table information to be

monitored over the internet using MQTT broker.

3. The topology discovery module includes new procedures to configure SDN beacon

frame.

4. The MQTT publish module was developed to send data to MQTT broker.

66

Figure 5.2. The system components, the node model of SDN (a) and the node model of sensor node (b).

In Figure 5.2. (b), the components of sensor node model consist of six modules, in this

chapter, the new and modified modules are explained as the following:

1. The application layer module is for both source and destination nodes. Source node

uses this module to generate data such as the temperature, humidity and carbon

dioxide (CO2) [74] data and sends it to the Packet Switch (PKSW) module. When

this data arrived at this module, destination node (gateway) sends it to IoT could via

his MQTT publish module.

2. The MQTT publish module was developed to send data to MQTT broker.

5.2.2. SDN topology discovery

Topology discovery in SDN supports a cluster topology for the active routing nodes,

which every node transmits beacons utilized in the MAC and the Physical layers. In

order to save energy and establish a synchronized network, the IEEE 802.15.4 beacon-

enable mode is considered in [12]. Beacon-enable mode has active and inactive

periods in the superframe [4]. The IEEE 802.15.4 standard active Superframe Duration

(SD) [75] is defined in (Equation 5.1).

67

 𝑆𝐷 = aBaseSuperframeDuration ∗ (2)𝑆𝑂 (5.1)

The aBaseSuperframeDuration indicates the minimum duration of the superframe,

corresponding to superframe order (SO) when it is equal zero. The SD active period

should change the SD length to the number of routers in each cluster, especially when

the application path is established between routers. This path aims to transfer data

between number of clusters from source to destination nodes.

Figure 5.3. Flowchart of two algorithms to calculate the SD, Fuzzy-based Dijkstra (A) and Fuzzy-based Dijkstra

Beacon (B).

Equation 5.3

Equation 5.2

68

The topology discovery procedures as shown in Figure 5.3. has two methods to

calculate the SD in order to improve the network performance. The first method is the

Fuzzy-based Dijkstra's (FD) [12] shown in Figure 5.3. (A), is checking the network

structures according to the number of routers (NR) that have children nodes. In this

method, the SD active period calculated in (Equation 5.2) according to NR and

multiplied by (Equation 5.1). The second method is a Fuzzy-based Dijkstra’s Beacon

(FDB) shown in Figure 5.3. (B). This new method calculates the SD active period in

(Equation 5.3), according to the cluster number (CN) divided by the routers counter

(RC) that are in the application’s path. Moreover, the beacon configuration of ZigBee-

based WSAN is shown in (Equation 5.1), which is the default setting for IEEE

802.15.4 standard. The Beacon’s option of the three methods summarized in Table 5.1.

Table 5.1. Algorithms Configurations

𝑆𝐷 = NR ∗ aBaseSuperframeDuration ∗ (2)𝑆𝑂 (5.2)

𝑆𝐷 =
CN

RC
∗ aBaseSuperframeDuration ∗ (2)𝑆𝑂 (5.3)

5.2.3. Message queue telemetry transport

Message queue telemetry transport (MQTT) is an IoT connectivity protocol used in

the vertical domain gateway sensors to send data to cloud. Therefore, MQTT provides

a lightweight method that uses publish and subscribe operations to exchange data

between clients and the server. There are many types of MQTT brokers, in this study

we use the open-source mosquitto [72] MQTT broker to provide communication

between WSAN devices and the cloud.

No Name Beacon’s option

1 Fuzzy-based Dijkstra’s Beacon (FDB) Cluster Number/ Routers Counter

2 Fuzzy-based Dijkstra’s (FD) Number of Routers

3 ZigBee-based WSAN 1

69

5.2.3.1. MQTT Communication

The MQTT mosquitto broker is responsible for sending the message from the publisher

to the client subscribed via a specific topic. Figure 5.4. shows the communication

between the MQTT broker and MQTT clients which these clients can be as publish or

subscribe. Many MQTT receivers can subscribe to different topics, and mosquitto

distributes messages from publishers according to their topics to the correct

subscribers.

Figure 5.4. MQTT broker and client communication.

In our system, we build MQTT publish in the gateways (SDNC and destination SN),

through these portals, the flow of data directed from the vertical domain to the

horizontal domain in real-time. These gateways are a part of the vertical domain

system and is connected to MQTT broker (mosquitto). MQTT subscribe receives the

data stream from the MQTT broker to NodeJS application server. Thereafter, NodeJS

sends the streaming data to the web application as shown in Figure 5.6.

70

5.2.4. The ESWFD system operations

The sequence diagram shown in Figure 5.5. presents the end-to-end data delivery

operation of the proposed system. It clarifies the main operations performed to transfer

the data and the flow table from the vertical domain to the horizontal domain. The

vertical domain that is designed and simulated using the Riverbed Modeler has source

node, SDN controller node, intermediate nodes and destination node, as can be seen

from the Figure 5.1. and Figure 5.5. On the other hand, the horizontal domain of the

proposed architecture has been built using real-world technologies such as MQTT, and

NodeJS.

Figure 5.5. The sequence diagram for end-to-end data delivery operations.

The system operations related to connection establishment and data transfer are

described in the diagram shown in Figure 5.5. After the topology discovery operation

has been completed, the source node uses the Application layer module to send a

connection request packet to the to the Packet Switch (PKSW) module (step 1.1-1.4).

71

The request is transmitted into a command frame during the contention access period

until it reaches the SDNC node model. SDNC receives this connection request at the

Routing Decision Flow Table (RDFT) module. RDFT then uses the Fuzzy-based

Dijkstra algorithm to create the optimal path between the source and destination nodes.

Through this path, it builds a flow table for the application and the relevant nodes on

the path (step 1.5). Accordingly, RDFT unit sends the flow table, nodes’ status

information, and application path to MQTT publish module and the flow table to MAC

module (steps 1.6 and 1.7) respectively. At the same time, RDFT also sends the routing

path to the topology discovery to check the structure (steps 1.8-1.9). After that,

topology discovery unit sends a new beacon configuration to the MAC module (step

1.10). When routers receive the beacon, they check and add the entry to its flow table

and then redirect the flow table according to the next address to other nodes (steps

1.10, 2.3 and 2.4). When the source node receives a flow entry at the MAC module,

the MAC unit forwards it to the PKSW module. PKSW unit inserts this entry into its

flow table and then connection establishment procedure is completed (steps 1.11-

1.13). At this point, the source node begins to send data packets (steps 2.1 and 2.2).

Next, the PKSW module checks the address of the next hop using its flow entries to

forward packets. The same procedures are repeated for each router node to forward the

packets (steps 2.3‐2.5). After that, the destination node receives the data, it sends this

data to the MQTT publish module (steps 2.5‐2.8) to be handed out to the cloud.

5.3. Experimental Results and Discussions

In Figure 5.7. the Riverbed Modeler simulation of the system was run for 1800

seconds. The source node generates data (i.e., temperature, humidity, and CO2) in

every 2 seconds. The SDN controller data are the status information of the nodes (i.e.,

remaining energy and neighbours of the node with related SNR), flow table and

application’ path. The SDN controller and the source nodes send their data to MQTT

mosquito broker using the MQTT publisher. NodeJS web interface as shown in Figure

5.6. receives these data using MQTT subscribe. arrived at NodeJS web interface and

the application’s data arrived at NodeJS web interface from the source node

application.

72

Figure 5.6. NodeJS information interface.

5.3.1. Simulation scenario and discussion

In this scenario, the simulation model in [12] was enhanced to evaluate the network's

scenario as shown in Figure 5.7., which includes 50 sensor nodes and SDN controller

node. The data travelled from source node to destination node via the routers in the

application path that has generated from SDN controller node.

73

Figure 5.7. The simulation model of the SDN controller and 50 sensor nodes

5.3.2. Performance analysis and scenario results

The Simulation configuration for this scenario made for Fuzzy-based Dijkstra's (FD),

Fuzzy-based Dijkstra's Beacon (FDB) and Zigbee shown in the Table 5.2. The results

show that FDB performs better than FD and Zigbee in terms of Throughput, End‐to‐

End Delay and Jitter shown in Figures (5.8, 5.9 and,5.10) respectively.

Table 5.2. Parameters of the Simulation

 Group Name Name Value

Topology of the Network

scenario

Number of end devices 50

Network coverage area 300 m × 300 m

SDNC location (x, y) (150, 150)

Simulation time 1800 s

Application configuration Start time 50 s

Packet interarrival time 2 s

Packet Size 280 bits

74

Figure 5.8. Throughput (bit/s) for 50 nodes and one application

Figure 5.9. End‐to‐End Delay for 50 nodes and one application

75

Figure 5.10. Jitter for 50 nodes and one application

Figure 5.11. Delay, Jitter and Throughput on different network sizes

76

CHAPTER 6. OVERALL CONCLUSION AND FUTURE WORK

We have made a number of contributions and investigations into this thesis, where the

SDN-based WSAN proposed as a new structure to solve the problem statement of the

thesis. We discussed the main problems of this research, namely, the development of

a new energy-aware routing mechanism in the SDN controller. Secondly, the

integration of the SDN-based WSAN for the Internet of Things using WSAN and

RFID technologies. The thesis contains of six chapters. The main contributions are

involved in four chapters. In this chapter, we summarize the overall conclusion for

each chapter and future work.

Chapter 1 provided a motivation, problem statement, the goal of the research, research

contributions, and the related work to the thesis. Moreover, the SDN-based WSN

routing protocols were discussed in this chapter.

Chapter 2 discussed the integration of SDN-based WSAN for Internet of Things. Also,

we explained the challenges of this integration, most importantly energy routing

management. The software-defined networking architecture for IoT is discussed in this

chapter which contained SDN application plane, SDN control plane, SDN data plane

and WSANFlow protocol stack. IEEE 802.15.4 and superframe structure are described

in detail.

Chapter 3 presented the architecture design of routing protocol in the SDN controller.

the SDN controller components and algorithms such as combined flow tables, network

topology, node status, Dijkstra’s algorithm, and fuzzy logic are discussed in this

chapter. The components of the proposed system are modelled and simulated using the

Riverbed Modeler software for more realistic performance evaluation.

77

Simulation results showed software-defined networking in the proposed system have

provided a management and control solution to WSANs. In addition, the proposed

system can reconfigure WSANs after deployment and is capable of both providing an

effective cluster routing when finding the most efficient route and prolonging the

network lifetime.

The energy consumption results showed the proposed SDN-based WSAN with a

fuzzy-based Dijkstra algorithm is performed better than the regular Dijkstra's and

ZigBee counterparts. Furthermore, the SDN appeared as the most powerful candidate

to solve the problem of network flexibility in WSAN among deployment options.

The performance metrics are the power consumption ratio and SNR used in the

proposed system when the application path is established between WSAN devices.

Therefore, in future work, the proposed system needs to increase the number of

performance metrics according to the needs of the IoT application.

Chapter 4 presented a new real-time IoT data analytics architecture for healthcare

architecture. The proposed system composed of an SDN-enabled WSAN and RFID in

the vertical domain and of data analytics tools such as Kafka, Spark, MongoDB and

NodeJS in the horizontal domain. The developed system has been tested for real-time

detection of Wolf Parkinson White syndrome using logistic regression method. The

obtained results on the Arrhythmia dataset revealed that this disease can be predicted

with high accuracy (i.e. %70 in average) using the proposed architecture, in real-time.

Considering the fact that the proposed system includes high performance and scalable

data analytics technologies such as Kafka and Spark, it is not difficult to conclude that

this new architecture can be used effectively in real-time big data processing

applications. To model and simulate any IoT enabling technology, the developed

system also communicates with Riverbed Modeler using TCP sockets. So, the

proposed architecture can be used as a time-saving experimental environment for any

IoT-based system.

78

In addition, to integrate IoT technology – namely radio frequency identification into

the WSAN source devices as part of vertical domain devices. Furthermore, the

communication and implementation between the vertical and horizontal domain

devices will be included in the chapter.

Therefore, an effective data routing strategy with low power consumption for WSANs

should be smart and flexible in the SDN controller to meet IoT requirements.

Chapter 5 presented an enhanced SDN-based WSAN fuzzy-based Dijkstra, ESWFD,

which can reconfigure the SDNC’s beacon after the application path is established.

ESWFD is also designed with an IoT gateway between ESWFD and MQTT to support

IoT applications in real-time. The IoT gateway is used to collect data in order to send

it to the cloud. The IoT cloud requires a network to support real-time data transfer in

order to analyse the data for some IoT applications.

The ESWFD improves the system performance, which was compared with a

traditional ZigBee, and the Fuzzy-based Dijkstra. The results increased the capacity of

network throughput and reduced packet delay and jitter.

The improvement in delay results is required for some applications, where each

application requires different QoS support. For example, delay is another important

measure of performance, especially for time-critical services. For future work need to

evaluate the QoS requirements for applications and to be able to manage the network

using a web interface.

79

REFERENCES

[1] C. Buratti et al., “Testing Protocols for the Internet of Things on the EuWIn

Platform,” IEEE Internet Things J., vol. 3, no. 1, pp. 124–133, Feb. 2016.

[2] D. Evans, “The Internet of Things How the Next Evolution of the Internet Is

Changing Everything,” CISCO White Pap., no. April, pp. 1–11, 2011.

[3] L. Mainetti, L. Patrono, and A. Vilei, “Evolution of wireless sensor networks

towards the Internet of Things: A survey,” SoftCOM, pp. 1–6, 2011.

[4] A. B. Al-Shaikhli, C. Çeken, and M. Al-Hubaishi, “WSANFlow: An Interface

Protocol Between SDN Controller and End Devices for SDN-Oriented

WSAN,” Wirel. Pers. Commun., vol. 101, no. 2, pp. 755–773, 2018.

[5] A. W. Burange and H. D. Misalkar, “Review of Internet of Things in

development of smart cities with data management &amp; privacy,” in

2015 International Conference on Advances in Computer Engineering and

Applications, 2015, pp. 189–195.

[6] R. Gorrepotu, N. S. Korivi, K. Chandu, and S. Deb, “Sub-1GHz miniature

wireless sensor node for IoT applications,” Internet of Things, vol. 1–2, pp. 27–

39, 2018.

[7] E. G. M. Petrakis, S. Sotiriadis, T. Soultanopoulos, P. T. Renta, R. Buyya, and

N. Bessis, “Internet of Things as a Service (iTaaS): Challenges and Solutions

for Management of Sensor Data on the Cloud and the Fog,” Internet of Things,

vol. 3–4, pp. 156–174, 2018.

[8] M. M. Warrier and A. Kumar, “An Energy Efficient Approach for Routing in

Wireless Sensor Networks,” Procedia Technol., vol. 25, no. Raerest, pp. 520–

527, 2016.

[9] R. E. Mohamed, A. I. Saleh, M. Abdelrazzak, and A. S. Samra, “Survey on

Wireless Sensor Network Applications and Energy Efficient Routing

Protocols,” Wirel. Pers. Commun., vol. 101, no. 2, pp. 1019–1055, 2018.

[10] W. Xiang, N. Wang, and Y. Zhou, “An Energy-Efficient Routing Algorithm for

Software-Defined Wireless Sensor Networks,” IEEE Sens. J., vol. 16, no. 20,

pp. 7393–7400, 2016.

80

[11] Y. Wang, H. Chen, X. Wu, and L. Shu, “An energy-efficient SDN based sleep

scheduling algorithm for WSNs,” J. Netw. Comput. Appl., vol. 59, pp. 39–45,

2016.

[12] M. Al-Hubaishi, C. Çeken, and A. Al-Shaikhli, “A novel energy-aware routing

mechanism for SDN-enabled WSAN,” Int. J. Commun. Syst., p. e3724, Jun.

2018.

[13] A. Sarkar and T. Senthil Murugan, “Routing protocols for wireless sensor

networks: What the literature says?,” Alexandria Eng. J., vol. 55, no. 4, pp.

3173–3183, 2016.

[14] J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless sensor

networks: A survey,” IEEE Wirel. Commun., vol. 11, no. 6, pp. 6–27, 2004.

[15] D. P. Bhoomika and D. P. Ashish, “Hierarchical Routing Protocols in Wireless

Sensor,” Int. Joural Comput. Technol. Appl. an open access Int. J. peer Rev.

online J., vol. 6, no. 1, pp. 47–52, 2012.

[16] S. Saranya and M. Princy, “Routing techniques in sensor network -a survey,”

Procedia Eng., vol. 38, pp. 2739–2747, 2012.

[17] A. S. Toor and A. K. Jain, “A survey of routing protocols in Wireless Sensor

Networks: Hierarchical routing,” 2016 Int. Conf. Recent Adv. Innov. Eng.

ICRAIE 2016, pp. 1–6, 2017.

[18] S. P. Singh and S. C. Sharma, “A survey on cluster based routing protocols in

wireless sensor networks,” Procedia Comput. Sci., vol. 45, no. C, pp. 687–695,

2015.

[19] M. Sood, “Software defined network - Architectures,” in 2014 International

Conference on Parallel, Distributed and Grid Computing, 2014, pp. 451–456.

[20] M. Karakus and A. Durresi, “A scalable inter-AS QoS routing architecture in

software defined network (SDN),” in Proceedings - International Conference

on Advanced Information Networking and Applications, AINA, 2015, vol. 2015-

April, pp. 148–154.

[21] R. Pradeepa and M. Pushpalatha, “SDN Enabled SPIN Routing Protocol for

Wireless Sensor Networks,” 2016 Int. Conf. Wirel. Commun. Signal Process.

Netw., vol. 10, no. 6, pp. 639–643, 2016.

[22] R. C. A. Alves, D. A. G. Oliveira, G. C. C. F. Pereira, B. C. Albertini, and C.

B. Margi, “WS 3 N : Wireless Secure SDN-Based Communication for Sensor

Networks,” Secur. Commun. Networks, vol. 2018, pp. 1–14, Aug. 2018.

81

[23] A. Hakiri and A. Gokhale, “Rethinking the design of LR-WPAN IoT systems

with software-defined networking,” in Proceedings - 12th Annual International

Conference on Distributed Computing in Sensor Systems, DCOSS 2016, 2016,

pp. 238–243.

[24] L. F. D. S. Santos, F. F. De Mendonca, and K. L. Dias, “SDN: An SDN-Based

Routing Architecture for Wireless Sensor Networks,” Brazilian Symp. Comput.

Syst. Eng. SBESC, vol. 2017-Novem, pp. 63–70, 2017.

[25] N. Kumar and D. P. Vidyarthi, “A Green Routing Algorithm for IoT-Enabled

Software Defined Wireless Sensor Network,” IEEE Sens. J., vol. 18, no. 22, pp.

9449–9460, 2018.

[26] K. Sood, S. Yu, and Y. Xiang, “Software-Defined Wireless Networking

Opportunities and Challenges for Internet-of-Things: A Review,” IEEE Internet

Things J., vol. 3, no. 4, pp. 453–463, 2016.

[27] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubramanian, “A

software defined networking architecture for the internet-of-things,” IEEE/IFIP

NOMS 2014 - IEEE/IFIP Netw. Oper. Manag. Symp. Manag. a Softw. Defin.

World, 2014.

[28] A. De Gante, M. Aslan, and A. Matrawy, “Smart wireless sensor network

management based on software-defined networking,” 2014 27th Bienn. Symp.

Commun., pp. 71–75, 2014.

[29] Z. Kerravala, “The Top Five Network Problems Solved by SDNs,” 2019.

[Online]. Available: https://blog.silver-peak.com/the-top-five-network-

problems-solved-by-sdn. [Accessed: 29-Jul-2019].

[30] I. Journal, “Internet of Things : A Survey of IoT Applications based on their

desirable device characteristics,” Int. J. Recent Eng. Res. Dev., vol. 02, no. 10,

pp. 10–20, 2017.

[31] G. Sinnapolu and S. Alawneh, “Integrating wearables with cloud-based

communication for health monitoring and emergency assistance,” Internet of

Things, vol. 1–2, pp. 40–54, 2018.

[32] W. Stallings, Foundations of Modern Networking: SDN, NFV, QoE, IoT, and

Cloud, vol. 4301, no. 3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.

[33] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubramanian, “A

Software Defined Networking architecture for the Internet-of-Things,” in 2014

IEEE Network Operations and Management Symposium (NOMS), 2014, no. 5-

9 May 2014, pp. 1–9.

82

[34] L. Hu, J. Wang, E. Song, A. Ksentini, A. Hossain, and M. Rawashdeh, “SDN-

SPS : Semi-Physical Simulation for Software-Defined Networks,” vol. 16, no.

20, pp. 7355–7363, 2016.

[35] B. Trevizan de Oliveira, R. Cerqueira Afonso Alves, and C. Borges Margi

Universidade de São Paulo São Paulo, “Software-Defined Wireless Sensor

Networks and Internet of Things Standardization Synergism,” 2015 IEEE Conf.

Stand. Commun. Netw., pp. 60–65, 2015.

[36] P. Jayashree and F. Infant Princy, “Leveraging SDN to conserve energy in

WSN-An analysis,” 2015 3rd Int. Conf. Signal Process. Commun. Netw., 2015.

[37] D. Sinh, L. Le, B. P. Lin, and L. Tung, “SDN / NFV - A new approach of

deploying network infrastructure for IoT,” 2018 27th Wirel. Opt. Commun.

Conf., pp. 1–5, 2018.

[38] T. Minh, C. Nguyen, and D. B. Hoang, “S-MANAGE Protocol For Software-

Defined IoT,” 2018 28th Int. Telecommun. Networks Appl. Conf., pp. 1–6, 2018.

[39] S. Bera, G. S. Member, S. Misra, and S. Member, “Soft-WSN : Software-

Defined WSN Management System for IoT Applications,” IEEE Syst. J., vol.

12, no. 3, pp. 2074–2081, 2018.

[40] F. F. J. Lasso, K. Clarke, and A. Nirmalathas, “A software-defined networking

framework for IoT based on 6LoWPAN,” in Wireless Telecommunications

Symposium, 2018, vol. 2018-April, pp. 1–7.

[41] X.-Y. Chen and Z.-G. Jin, “Research on Key Technology and Applications for

Internet of Things,” Phys. Procedia, vol. 33, pp. 561–566, 2012.

[42] S. Tennina et al., IEEE 802.15.4 and ZigBee as Enabling Technologies for Low-

Power Wireless Systems with Quality-of-Service Constraints, vol. 1. 2013.

[43] T. Ok, S. Baek, and B. Dae, “Performance analysis of IEEE 802 . 15 . 4

superframe structure with the inactive period,” Perform. Eval., vol. 106, pp. 50–

69, 2016.

[44] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol for

wireless sensor networks,” 21st Conf. IEEE Comput. Commun. Soc., vol. 3, no.

3, pp. 1567–1576, 2002.

[45] W. Braun and M. Menth, “Software-Defined Networking Using OpenFlow:

Protocols, Applications and Architectural Design Choices,” pp. 302–336, 2014.

[46] A. S. Yuan, H.-T. Fang, and Q. Wu, “OpenFlow Based Hybrid Routing in

Wireless Sensor Networks,” Intell. Sensors, Sens. Networks Inf. Process.

(ISSNIP), 2014 IEEE Ninth Int. Conf., vol. 1, no. April, pp. 21–24, 2014.

83

[47] Y. Dasgupta and P. M. G. Darshan, “Application of Wireless Sensor Network

in remote monitoring: Water-level sensing and temperature sensing, and their

application in agriculture,” 1st Int. Conf. Autom. Control. Energy Syst. - 2014,

ACES 2014, 2014.

[48] L. Hu, J. Wang, E. Song, A. Ksentini, M. A. Hossain, and M. Rawashdeh,

“SDN-SPS: Semi-Physical Simulation for Software-Defined Networks,” IEEE

Sens. J., vol. 16, no. 20, pp. 7355–7363, 2016.

[49] A. Koubâa, A. Cunha, M. Alves, and E. Tovar, “TDBS: A time division beacon

scheduling mechanism for ZigBee cluster-tree wireless sensor networks,” Real-

Time Syst., vol. 40, no. 3, pp. 321–354, 2008.

[50] A. Lotfizadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338–353, 1965.

[51] J. Mocq, A. St-Hilaire, and R. A. Cunjak, “Assessment of Atlantic salmon

(Salmo salar) habitat quality and its uncertainty using a multiple-expert fuzzy

model applied to the Romaine River (Canada),” Ecol. Modell., vol. 265, no.

September, pp. 14–25, 2013.

[52] E. W. Dijkstra, “A Note on T w o Problems in Connexion with Graphs,” vol.

271, no. 1, pp. 269–271, 1959.

[53] L. Mainetti, L. Palano, L. Patrono, M. L. Stefanizzi, and R. Vergallo,

“Integration of RFID and WSN technologies in a Smart Parking System,” 2014

22nd Int. Conf. Software, Telecommun. Comput. Networks, SoftCOM 2014, pp.

104–110, 2014.

[54] T. Adame, A. Bel, A. Carreras, J. Melià-Seguí, M. Oliver, and R. Pous,

“CUIDATS: An RFID–WSN hybrid monitoring system for smart health care

environments,” Futur. Gener. Comput. Syst., vol. 78, pp. 602–615, 2018.

[55] S. Mirshahi and S. Uysal, “Integration of RFID and WSN for Supply Chain

Intelligence System,” in Electronics, Computers and Artificial Intelligence

(ECAI), 2013 International Conference on, 2013, no. 27-29 June 2013, pp. 1–

6.

[56] S. R. Vijayalakshmi and S. Muruganand, “A survey of Internet of Things in fire

detection and fire industries,” Proc. Int. Conf. IoT Soc. Mobile, Anal. Cloud, I-

SMAC 2017, pp. 703–707, 2017.

[57] W. Liang, S. Xie, J. Long, K.-C. Li, D. Zhang, and K. Li, “A Double PUF-based

RFID Identity Authentication Protocol in Service-Centric Internet of Things

Environments,” Inf. Sci. (Ny)., vol. 503, pp. 129–147, 2019.

[58] J. V. V. Sobral et al., “A framework for enhancing the performance of Internet

of Things applications based on RFID and WSNs,” J. Netw. Comput. Appl., vol.

107, no. January, pp. 56–68, 2018.

84

[59] F. J. Valente and A. C. Neto, “Intelligent steel inventory tracking with IoT /

RFID,” 2017 IEEE Int. Conf. RFID Technol. Appl. RFID-TA 2017, pp. 158–

163, 2017.

[60] C. P. Tang, Z. Y. Tang, Y. H. Yang, and Y. J. Zhan, “WSID identification

platform of heterogeneous networks based on RFID and WSN,” Proc. 2010

IEEE Int. Conf. RFID-Technology Appl. RFID-TA 2010, no. June, pp. 217–221,

2010.

[61] O. Abdulkader, A. M. Bamhdi, V. Thayananthan, K. Jambi, and M. Alrasheedi,

“A novel and secure smart parking management system (SPMS) based on

integration of WSN, RFID, and IoT,” 2018 15th Learn. Technol. Conf. L T

2018, pp. 102–106, 2018.

[62] F. Aktas, C. Ceken, and Y. E. Erdemli, “IoT-Based Healthcare Framework for

Biomedical Applications,” J. Med. Biol. Eng., pp. 1–14, Dec. 2017.

[63] N. Garg, Apache Kafka. 2014.

[64] Apache Spark, “Apache SparkTM - Unified Analytics Engine for Big Data,”

spark.apache.org, 2018. [Online]. Available: https://spark.apache.org/.

[Accessed: 21-Oct-2018].

[65] L. Ganz, “Electrocardiography,” Goldman’s Cecil Med. Twenty Fourth Ed.,

vol. 1, pp. 272–278, 2011.

[66] M. G. Kaya, I. Ozdogru, M. Yarlioglues, T. Inanc, A. Dogan, and N. K. Eryol,

“Coronary ischemia induced Wolf Parkinson White syndrome,” Int. J. Cardiol.,

vol. 129, no. 1, pp. 3–4, 2008.

[67] B. H. Williams, “UCI Machine Learning Repository: Character Trajectories

Data Set,” 2008. [Online]. Available:

https://archive.ics.uci.edu/ml/datasets/arrhythmia. [Accessed: 26-Oct-2018].

[68] L. Hou, S. Zhao, X. Li, P. Chatzimisios, and K. Zheng, “Design and

implementation of application programming interface for Internet of things

cloud,” Int. J. Netw. Manag., vol. 27, no. 3, pp. 1–15, 2017.

[69] P. C. Prabhu Kumar and G. Geetha, “Web-cloud architecture levels and

optimized MQTT and COAP protocol suites for web of things,” Concurr.

Comput. , no. April, pp. 1–8, 2018.

[70] P. Dhar and P. Gupta, “Intelligent parking Cloud services based on IoT using

MQTT protocol,” Int. Conf. Autom. Control Dyn. Optim. Tech. ICACDOT

2016, pp. 30–34, 2017.

85

[71] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S - A

publish/subscribe protocol for wireless sensor networks,” 3rd IEEE/Create-Net

Int. Conf. Commun. Syst. Softw. Middleware, COMSWARE, pp. 791–798, 2007.

[72] R. A Light, “Mosquitto: server and client implementation of the MQTT

protocol,” J. Open Source Softw., vol. 2, no. 13, p. 265, May 2017.

[73] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to Build High-

Performance Network Programs,” IEEE Internet Comput., vol. 14, no. 6, pp.

80–83, Nov. 2010.

[74] S. Zhang, X. Chen, and S. Wang, “Research on the monitoring system of wheat

diseases, pests and weeds based on IOT,” in 2014 9th International Conference

on Computer Science & Education, 2014, no. Iccse 22-24 August, pp. 981–985.

[75] O. León, J. Hernández-Serrano, and M. Soriano, “An efficient energy-aware

predictive clustering approach for vehicular ad hoc networks Rasmeet,” Int. J.

Commun. Syst., vol. 23, no. 5, pp. 633–652, 2015.

86

RESUME

Mohammed Al-Hubaishi is a lecturer and researcher at the faculty of computer science

and information system, Thamar University, Yemen. He received his B.Sc. degree in

computer science from Thamar University, Yemen, in 2002. In December 2010, he

has M.Sc. degree in wireless ad hoc network from department of electronic and

informatics engineering faculty of university of Algarve, Portugal. His research

interests include wireless network, ad hoc network, routing protocols, Fuzzy logic,

SDN, IoT, WSAN, Kafka, Spark, NodeJS, machine learning and Riverbed simulation.

He is currently pursuing his Ph.D. degree in computer and information engineering at

Sakarya University. He is expected to be graduated in 2019.

	my PhD Thesis - final version
	20191211104039215
	my PhD Thesis - final version

