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SDN INTEGRATION FOR INTERNET OF THINGS USING WSN 

AND RFID 

SUMMARY 

 

 

Keywords: Software-Defined Networking, SDN, Wireless Sensor Networks, WSN, 

Internet of Things, IoT, RFID, Apache Kafka, Apache Spark. 

 

Internet of Things (IoT) has started to touch every aspect of our lives, from home 

automation, smart factories, energy management systems, precision agriculture to 

smart city systems, etc. Wireless Sensor Networks (WSN) play an important role in 

various IoT applications.  One of the challenging problems for any WSN design is lack 

of flexibility in network management. Software-Defined Networking (SDN) is a new 

approach that promises a more flexible and dynamically reconfigurable network 

structures. When designing WSN, energy problem must also be considered since each 

device in the network has limited battery capacity.  

 

This study proposes a new routing discovery algorithm which allows the SDN-enabled 

WSN to make smarter routing decisions considering the received signal strength and 

remaining energy of the devices. The new architecture employs a fuzzy-based 

Dijkstra’s algorithm when deciding the best path between the source and the 

destination. The study also introduces a new real-time data analytics architecture for 

IoT applications, consisting of a WSN and radio frequency identification (RFID) 

technology in the vertical domain. The platform proposed also has highly scalable and 

high-performance data analytics tools such as Apache Kafka, Apache Spark and 

MongoDB, in the horizontal domain.  

 

Simulation results show that the proposed routing discovery mechanism can provide 

effective clustering routing for SDN-based WSN and can prolong the network lifetime 

by reducing the energy consumption of the nodes in the network. The results also show 

that the proposed IoT data analytics system can process data in real-time, successfully, 

and is capable of handling large amounts of data easily, owing to the scalable 

technologies deployed. 

 
 

 

 

 

  



 

x 
 

 

 

 

ÖZET 

 

 

Anahtar Kelimeler: Yazılım Tanımlı Ağlar, Kablosuz Algılayıcı Ağlar, Nesnelerin 

İnterneti, Radyo Frekanslı Tanımlama, Apache Kafka, Apache Spark. 

 

Nesnelerin İnterneti (Nİ) ev otomasyonundan akıllı fabrikalara, enerji yönetim 

sistemlerine, hassas tarımdan akıllı şehir sistemlerine vb. kadar hayatımızın her 

alanına dokunmaya başladı. Kablosuz Algılayıcı Ağlar (KAA) çeşitli Nİ 

uygulamalarında önemli bir rol oynamaktadır. KAA tasarımları için en önemli 

sorunlardan biri, ağ yönetiminin oldukça zor olmasıdır.  Yazılım Tanımlı Ağlar 

(YTA), daha esnek ve dinamik olarak yeniden yapılandırılabilir bir ağ yapıları vaat 

eden yeni bir yaklaşımdır. KAA’ı tasarlarken, ağdaki her cihazın sınırlı pil kapasitesi 

olduğundan, enerji sorunu da göz önünde bulundurulması gereken önemli sorunlardan 

biridir. 

  

Bu çalışma, YTA özellikli KAA'ın alınan sinyal gücü ve cihazların kalan enerjisi 

dikkate alınarak daha akıllı yönlendirme kararları vermesini sağlayan yeni bir 

yönlendirme keşif algoritması önermektedir. Yeni mimari, kaynak ve hedef arasındaki 

en iyi yolu belirlerken bulanık tabanlı bir Dijkstra algoritmasını kullanır. Çalışma 

ayrıca, dikey alanında KAA ve radyo frekanslı tanımlama (RFID) teknolojileri içeren 

Nİ uygulamaları için yeni bir gerçek zamanlı veri analitiği mimarisi de içermektedir. 

Önerilen platform yatay alanda Apache Kafka, Apache Spark ve MongoDB gibi 

yüksek düzeyde ölçeklenebilir ve yüksek performanslı veri analizi araçlarına sahiptir. 

  

Benzetim sonuçları, önerilen yönlendirme keşif mekanizmasının YTA tabanlı KAA 

için etkili kümelenme yönlendirmesi sağlayabildiğini ve ağdaki düğümlerin enerji 

tüketimini azaltarak ağ ömrünü uzatabileceğini göstermektedir. Sonuçlar ayrıca 

önerilen Nİ veri analitiği sisteminin verileri gerçek zamanlı olarak başarılı bir şekilde 

işleyebildiğini ve konuşlandırılan ölçeklendirilebilir teknolojiler sayesinde büyük 

miktardaki verileri kolayca ele alabildiğini göstermektedir. 
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CHAPTER 1. INTRODUCTION 

 

 

This chapter provides an introduction containing a motivation and problem statement, 

the goal of the research, research contributions, and the related work to the thesis. In 

this chapter, the problem statement identifies the main issue that this research attempts 

to address.  

 

1.1.  Motivation and Problem Statement  

 

1.1.1. Motivation 

 

The Internet of Things (IoT) has increased the number of devices on the internet, 

largely because of the need to obtain information from these devices for various IoT 

applications, so that the number of these devices is expected to continue to rise [1]. 

Cisco [2] expects that the number of Internet-connected devices will rise to 

approximately 50 billion by next year.  

 

Nowadays, wireless sensor and actuator networks (WSANs) [3][4] play a significant 

role in data transfer from several systems through their various applications. 

Applications include environmental monitoring data such as air temperature, humidity, 

smog-like gasses and precision agriculture [5]. WSAN networks have become very 

important and preferred for several applications due to characteristics such as their low 

cost, small size, low power consumption, mobility, and multifunctional sensors. For 

these reasons, integration of WSAN and IoT networks is useful for IoT applications, 

but there are also challenges to meet IoT application requirements such as energy 

efficiency, flexible management, and network reconfiguration after deployment [6][7]. 
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The most important design constraints when constructing a WSAN is energy 

efficiency, because each device operates with limited power resources. These devices 

consume more power when they send or receive data depending on the routing 

protocol used [8][9]. Therefore, the routing mechanism has to take in energy 

consumption parameters to be controlled. Thus, a smart and flexible network is needed 

for forwarding data among those devices. 

 

Moreover, the routing protocol must be designed in such a way as to maximise the 

lifetime of the network by saving energy [10][11]. The routing decision used in 

traditional wireless network sensors [4] does not take into account energy consumption 

during communication, which results in unmeasured energy consumption, unwanted 

delays and a great deal of overhead traffic. These results are required for some IoT 

applications, since IoT applications’ performance relies on the forwarding and routing 

methods. Therefore, IoT applications need to make appropriate decisions based on the 

lowest possible path cost to send data through WSN nodes from the source to the 

target. This challenge requires an intelligent network energy administration for WSAN 

devices. 

 

Network management and control design form the key part of the solution, the 

software-defined networking (SDN) architecture [12], which aims to provide solutions 

such as flexible management and network reconfiguration after deployment to WSAN. 

Since management of the limited battery is the most important task of a WSAN, as we 

will see in the literature, there are many different proposals for this purpose. 

 

The research interest of this thesis is to integrate the concept of SDN for IoT 

technologies and perform better flexible network energy management for WSAN 

devices. 

 

1.1.2. Problem statement 

 

The integration of the SDN-based WSAN for IoT, is expected to improve the energy 

management of WSAN via a flexible and programmable network and to support IoT 
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applications requirements [11-40]. However, based on the literature survey aimed at 

establishing a centralised network of sensor networks, there are two main problems 

with the implementation of SDN-based WSAN, as shown in Figure 1.1.: efficient 

routing of energy for WSAN devices, and the integration of IoT technologies. The 

purpose of this study is to overcome these problems and propose a new structure to 

improve system performance. 

 
Figure 1.1. Routing Energy Problem in WSAN 

1.2.  Thesis Goals 

 

The research goal of this thesis is to develop a new energy‐aware routing mechanism 

in the SDN controller and to combine IoT technologies into the system, so that the 

SDN controller can act as a smart and flexible network energy manager using a new 

routing discovery mechanism for WSAN devices. In addition, to integrate IoT 

technology – namely radio frequency identification (RFID) – into the WSAN source 

devices as part of vertical domain devices. Furthermore, the communication and 

implementation between the vertical and horizontal domain devices will be included 

in the research. 

 

1.3.  Research Contributions 

 

The most important component in the SDN controller is the routing decision model. 

In this study, we use Riverbed Modeler as a practical performance evaluation for better 
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performance evaluation. The main contributions of this research can be summarised 

as follows:     

- A simple and flexible network structure and management was developed to 

reduce energy consumption for SDN‐based WSAN architectures. 

- An SDN-inspired approach, a new framework for WSAN, was designed. 

- An RFID model integrated with WSAN was developed.  

- Node status aggregation and fuzzy-based Dijkstra's algorithms were developed 

in the SDN controller to take a routing decision approach to maximising the 

network lifetime. 

- A new real-time IoT-based data analytics architecture for smart healthcare is 

proposed. This new platform has an SDN-based WSAN and an RFID structure, 

in the vertical domain. 

- To enhance the performance of the system, a new routing discovery strategy 

via cross-layer (Topology Discovery and MAC layers) was developed. 

- To link IoT vertical and horizontal systems, two different getaways were 

developed, one using TCP/IP socket client/server programs and the other using 

MQTT broker/client, allowing the system to send WSAN data to the IoT cloud.  

- An IoT web interface using NodeJS was developed for monitoring network 

configuration from the SDN controller and data of the IoT application from 

destination node. 

 

1.4.  Related Work 

 

In the following literature review, we discuss the current work on WSN routing 

protocols and SDN-based WSN routing protocols. 

 

1.4.1. WSN routing 

 

Traditional wireless sensor networks are widely used by many applications in different 

areas. A survey on WSN applications and energy is given in [9], in which WSN 

applications were distributed into five major groups: node deployment, targets, service 

area, required measurements, and data transmission requirements. The routing 
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protocol applications for WSN in [13] are classified  into three groups: environment-

specific, task-specific, and general. Routing challenges are presented in [14] [15] for 

WSNs that affect routing in the matter of power consumption, sensor deployment, link 

diversity, adaptability, fault sufferance, broadcasting, communication, encasement, 

quality of service and data collection. 

 

Although many investigations have been conducted into WSN routing protocols, they 

are still un-reprogrammable and unconfigurable during real-time operations for new 

variables in the network to keep up with the applications requirements. Below, we 

summarise the surveys performed on the routing protocols designed for WSN with 

regard to network topology information, divided into three groups: hierarchical, flat, 

and location-based routing. 

 

Hierarchical routing:  In this type of protocol, which is a cluster-based routing 

protocol, the nodes are divided into parent node as cluster head (CH) and child node 

as sensor node. The CH behaves as a router to decide on routes in order to pick the 

best route. The network is also divided into several clusters, so that the parent node 

aggregates the information of its child nodes. It uses the higher energy to process and 

send the information [15].  The CH coordinate is selected between the clusters and the 

routing activities and transmits information among the cluster nodes. Child nodes use 

the low energy to send their status information to the parent node and subsequently 

turn off to save energy.  The CH collects the data and transmits it to the base station, 

which means that the CH reduces the number of packets sent to the sink or reduces the 

number of packets from a lower clustered layer to a higher one. This helps to reduce 

power consumption in the network [16] [17].   While sensor nodes have different roles 

in hierarchical routing, clustering forwarding is an efficient way to lower power 

consumption and extends the network lifetime [8] [18]. 

 

Flat-based routing: In this type of protocol, each node at the same level acts as a router 

for forwarding data, so that the same role is shared by, and the sensing task is equally 

divided among all sensor nodes [15]. The routing procedures for each node lead to 

more power consumption. This method is good for maintaining network problems. 
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Flat-based routing uses the flooding packets to forward data toward the destination 

node [16]. Therefore, it also suffers from packet overhead between communicating 

sensor nodes, and limited scalability. In this approach, the base station sends queries 

to a certain node’s area, and the node that received the query information will relay to 

the base station in that area [18] [8].  

 

Location-based routing: In these protocols, the routing mechanism depends on the 

location of the sensor nodes. During the broadcast processes, the incoming signal 

strengths are used to estimate the distances between neighbouring nodes. This method 

is considered to be very useful in applications that require the location of sensor nodes 

to route their data. Some location-based schemes for the sensor nodes that do not have 

any activities in the network are asked to sleep to save energy [15], the energy 

consumption having been calculated using the sensor node’s location information [16]. 

Location-based routing reduces the overhead involved in finding the route to base 

station and increases scalability. 

 

1.4.2. SDN-based WSN Routing Protocols 

 

Recently, the possibility has opened up of reprogramming networks depending 

on the SDN concept [19]. Here, we present some research which discusses 

routing protocols in SDN-based WSN where the routing is based on flow table. 

  

In the traditional SDN approach, the article [20] proposes a hierarchy-based 

architecture routing protocol to solve control plane scalability for possible paths 

between source to destination sensor nodes; the concept of SDN follows the 

hierarchical architecture in terms of an inter-AS routing approach. 

 

The authors of [21] propose an SDN-enabled WSN architecture where the SDN 

controller runs the SPIN routing protocol using the Cooja simulator. The SPIN 

protocol generates a neighbours table, and the SDN selects the best of these neighbours 

based on its voltage level and link quality to forward the sensor data. Differences of 
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routing approaches between traditional wired SDN and SDN-based wireless sensor 

network can be found in [22]. 

SDN-ECCKN is proposed in [11], where the routing  method includes the time interval 

of each node, divided into beacon and execution slices to save energy. In this study, 

there is no broadcasting between each pair of nodes. 

 

The SensorSDN framework in [23] proposes a new control layer service to support 

topology discovery and management of network policies. For routing purposes, the 

packets pass from the network layer to the MAC layer and the latest matching rules 

based on the technologies of LR-WPAN are introduced for SensorSDN.  

 

μSDN proposes in [24] to extend the current AODV and LARP routing protocols to a 

centralised routing method based on the SDN. This work modifies the current routing 

messages and identifies new types of message for the SDN controller to perform 

routing with. 

 

The authors in [25] propose FJAPSO to offer a green routing algorithm for SDN-based 

WSN. The SDN controller uses FJAPSO to select the parent nodes as cluster heads to 

perform routing processes.  The FJAPSO’s selection procedure is performed during 

the iteration loop: by using a mutation operator, each particle is subdivided into 

multiple sub-particles and subsequently incorporated into a root particle based on their 

fitness with the best sub-particle patterns. FJAPSO works on two levels for automatic 

optimisation, optimal number and optimal cluster of the control nodes. 

  

1.5.  Thesis Structure 

 

In Chapter 2, we discuss the SDN controller architecture and SDN sensors in detail. 

We also discuss the SDNC fuzzy-based routing decision in Chapter 3. Chapter 4 

discuss the integration of the RFID model into the sensor model.  Chapter 5 covers the 

enhanced SDNC topology discovery model used in this thesis. Finally, Chapter 6 

concludes the thesis. 
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CHAPTER 2. THE INTEGRATION OF SDN-WSAN FOR 

INTERNET OF THINGS USING IEEE 802.15.4 
 

 

2.1.  Introduction 

 

In the last few years, software-defined networking (SDN) has been a growing interest 

within computer network communities as a new solution for reconfiguring and 

controlling a network according to application requirements [26][27]. In the SDN 

architecture, which aims to separate data and control planes [28], all the control 

functions of the network are performed by a centralised device referred to as the SDN 

controller (SDNC). On the other hand, network devices in the data plane are 

responsible only for forwarding the data using the related entry in their flow tables. 

The advantage of using the SDNC is that the applications’ data relies on the forwarding 

and routing method’s performance. Besides that, the SDNC device should make an 

appropriate decision based on the lowest cost path from the source to the destination, 

since paths with higher costs make devices consume a great deal of energy in a short 

time.  

 

Software-defined networking developed as an intelligent solution to many wired 

network issues: troubleshooting, traffic management, and resources on the network 

deployed in cloud data centres [29][23]. Despite these developments, SDN is creating 

tremendous enhancements in network programming that do not require any hardware 

replacement.  

 

Although the SDN concept was built on wired networks, it was not planned to 

implement the SDN concept in a WSAN. Many researchers have recently discussed 

the issues with integrating SDN into a WSAN network structure. 
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On one hand, WSANs contain a variety of applications that have become essential 

parts of our lives [9]. On the other hand, the IoT has greatly expanded the number of 

application areas, particularly in the smart home, healthcare, transportation, 

surveillance, security, and other industrial necessities [30][31]. These applications are 

deployed in numerous environments and areas, so that their requirements are various, 

enlarging the management challenges for the network and devices.  

 

The integration of SDN-based WSANs poses many challenges, most importantly 

energy routing management [32] [33]. The WSAN devices can range from the edge 

for the IoT cloud, actuator devices and wireless sensors. The IoT edge is used to collect 

data in order to send it to the cloud, which contains tools to convert this data into 

meaningful information [30]. The IoT cloud requires a network to support real-time 

data transfer in order to analyse the data for some IoT applications. Therefore, an 

effective data routing strategy with low power consumption for WSANs should be 

smart and flexible in the SDN controller to meet IoT requirements.  

 

In this chapter, we discuss the proposed SDN-based WSAN for IoT. The SDN 

controller, sensor node and SDN integration for IoT are described in detail in the 

following sections. 

 

2.2.  SDN-based WSAN for Internet of Things (IoT) 

 

There are many challenges involved in gathering extensive data in real time from IoT 

technologies in order to analyse this data and make appropriate decisions on a large 

scale. Software-defined networking is proposed as a flexible network architecture to 

face these challenges for IoT requirements. 

 

The authors in [26] discuss the challenges of SDN integration with IoT in terms of 

security and scalability.  SDN-SPS [34] designed a gateway node (SITL) to transfer 

the data from OPNET simulator nodes to an IoT data centre using UDP protocol. In 

this work, the SDN controls the time, frequency and data types. 
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The routing method of RPL and TinySDN protocols in [35] uses a collection tree 

protocol to perform routing and operates based on DODAG control messages. RPL 

works to improve TinySDN by supporting point-to-point and point-to-multipoint 

traffic patterns for IoT. Each child node determines its parent node to find a way to the 

coordinator node to forward its packets, and subsequently will not send DIO messages. 

The SDN model is used in this work to improve WSN and IoT deployment through its 

flexible management and control on the sharing resource. 

 

The paper in [36] presented SDN controller for WSNs as a floodlight controller in the 

Mininet network emulator tool. The sensor nodes of the WSNs are implemented in 

NS2, another simulation network, and both systems are connected via port-to-port 

communication. In this research, the packet routing processes are achieved through 

multi pipeline stages; for routing commands, it uses the command line interface to pass 

the flow rules. 

 

 The SDN/NFV model in [37] used Mininet and POX controller to support the services 

of IoT applications, such as smart home, self-driving cars, and e-healthcare. The IoT 

services were hosted on HomeGWs as network gateways to decrease core network 

traffic. The HomeGWs played important roles for routing purposes, forwarding 

packets to the destination. 

 

The S-MANAGE protocol is proposed in [38]; it features an interface to control the 

management messages between the SDN controller and the virtual IoT sensors.  The 

routing operations in this protocol are underpinned by OpenFlow and OF-CONFIG. 

 

Soft-WSN in [39] is a proposed integration of device and topology managements into 

SDN controller for managing IoT devices based on the IEEE 802.15.4 and IEEE 

802.11 protocols. The device management is responsible for active-sleep scheduling, 

sensing tasks, and sensing delay. The topology management module is used for routing 

purposes in two different rules, such as node-specific and network-specific 

managements.   
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 The authors in [40] propose SD-WSN6Lo for 6LoWPAN network to enable IoT 

connectivity. They used Contiki COOJA simulator to follow the SD-WSN paradigm. 

In this work, the routing between nodes was achieved using control messages such as 

request message (packet-in), response message (packet-out) and broadcast message 

(neighbours’ message); these messages of control were exchanged between the SDN 

controller and sensor nodes using the UDP protocol.  

 

2.3.  Software-Defined Networking (SDN) Architecture for IoT   

 

In general, the separation of the control plane from the data plane is the essential idea 

of the SDN concept and how it is distinguished from traditional networks. This process 

is called the abstraction of the control plane and data plane. In the past, the autonomous 

system used the traditional network, where each switch or router made decisions based 

solely on the local logic regarding how to forward the packets.  In this case, with SDN, 

a more centralised model brings direct software programmability to the network. This 

concept is based on a central controller that can manage and monitor network 

behaviour. OpenFlow was designed in SDN to allow applications to manage network 

devices with software that works on servers and communicates directly with switches 

rather than the control of the switches or routers [19]. 

 

Our SDN structure is designed in three planes [12], as shown in Figure 2.1.: the 

application, control, and data plane. The application plane is the place of the IoT 

applications need without knowing the basic infrastructure of the network. The data 

plane is responsible for packet forwarding using the IoT devices based on the IEEE 

802.15 protocol. The control plane is the place to control routing decisions for each 

network device.  
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Figure 2.1. The Architecture of the SDN-based WSN clusters for IoT 

 

As shown in Figure 2.1., the proposal framework has three layers, including IEEE 

802.15.4 used by IoT sensor nodes to collect data, and SDNC as a flexible network to 

meet IoT applications’ requirements.  

 

2.3.1. SDN application plane 

 

The application plane is the place to meet the needs of IoT applications without 

knowing the underlying network infrastructure. It includes the requirements and 

services of the IoT applications [19] [41]. IoT applications rely on the performance of 

forwarding and routing methods to achieve their services and tasks within the network. 

Therefore, the SDN controller must make the appropriate decision based on the lowest 

possible cost from source to destination sensors. To send data from source to target 

sensors, there must be a specific path between the nodes. For this reason, the 

application’s path should be as short as possible and consider the energy of the sensors. 

 

In our system, the path is built from sensor statuses using smart models in the SDN 

controller. Moreover, the SDN controller allows applications to configure the network 

from the application plane instead of the distributed policy that requires individual 
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configuration. For that, SDN sets up APIs to allow communication between the 

application plane and control plane. The different applications use the APIs in the SDN 

stack to formulate new flow rules to the controller. 

 

2.3.2. SDN control plane  

 

The control plane handles configuration management for SDN-conformable devices 

and realises the network topology. The control plane configures connection paths or 

flows into the data plane. The control plane connects the application plane and the data 

plane [40]. It receives the IoT application’s tasks from the application plane and 

converts them into instruction sets, which are sent to the data plane using the 

OpenFlow protocol [33]. It provides the application plane with a comprehensive view 

of data layer resources, such as status and attributes. The control plane is the right place 

to control the routing decision for each device in the network [23].  

 

In our proposed system [12], the SDN controller in the control plane contains many 

models, such as the network topology, routing decision model, and node status model. 

The network topology is used to sort the IoT devices’ data into clusters and make a 

routing decision, using the Dijkstra algorithm and fuzzy logic models to perform smart 

routing based on energy. Node status is used to collect the status of the IoT devices. In 

addition, the data structures are organised in a combined flow tables model consisting 

of three classes: network topology, flow table, and nodes classes. The details of these 

classes are explained in later chapters. 

 

2.3.3. SDN data plane 

 

The data plane authorizes the SDN controller to manage and control the resources of 

the IoT forwarding devices [23]. Additionally, the data plane is responsible for 

forwarding packets to the selected target. The data plane in our proposed model 

consists of the IoT devices using the IEEE 802.15.4 standard protocol; these devices 

are the main means of data collection, collecting data such as the status of the devices. 

The SDN controller injects the flow entries into the IoT forwarding devices using 
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OpenFlow protocol. The data plane devices apply the required actions of the entries to 

the forwarded incoming based on matching rules. Therefore, IoT forwarding devices 

forward or drop a packet based on the flow entries from the control plane. The SDN 

can also update or replace flow entries with new entries when the IoT application 

requirements change.   

 

2.3.3.1.  IEEE 802.15.4 

 

IEEE 802.15.4 is the most important communication technology for low-power 

wireless networking [42].  In IEEE 802.15.4, the medium access control (MAC) 

protocol enables the transmission of MAC frames using the physical channel, which 

supports two operational modes: non-beacon- and beacon-enabled modes. In the non-

beacon-enabled mode, which does not support beacon and superframe mechanisms, 

medium access is controlled by an unslotted CSMA/CA protocol. In the beacon-

enabled mode, which supports beacon and superframe mechanisms, the coordinator or 

router periodically sends beacons to synchronise nodes associated with its own cluster 

coverage area.  However, this mode also enables the allocation of contention free 

period (CFP) slots, called guaranteed time slots (GTSs) for nodes that provide a timing 

guarantee for bandwidth.  

 

2.3.3.2.  Superframe Structure 

 

The superframe impacts upon the performance and quality of services on the network 

[43]. The superframe structure includes an active and an inactive period, determined 

for one cycle between two beacon frames. The superframe structure is presented in 

Figure 2.2.; the beacon interval (BI) defines the time between two consecutive beacon 

frames and contains an active and inactive period. In the superframe active period, the 

beacon frame starts the transmission at slot 0. The superframe duration (SD) specifies 

the active portion of the BI period; the length of the active period is determined 

manually by the SD settings from the upper layer. Superframe duration is divided into 

16 equally sized time slots, during which frame transmissions are allowed. Superframe 

duration contains the contention access period (CAP), which is used to share the 
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channel between nodes competitively and the CFP that used to allocate GTS for some 

nodes. The CFP starts immediately after the CAP has finished and must be completed 

at the end of the active period. 

 

        (2.1)

  

 

 

Figure 2.2. IEEE 802.15.4 superframe [43] 

 

Beacon order (BO) and superframe order (SO) are used to change the length of BI and 

SD.  These parameters must be previously allocated by coordinator or router [44].  The 

current WSN configures these parameters manually, which does not fit the changes of 

network size, neighbours, and number of nodes.  

 

In our proposed system, these configurations are at the control plane. During topology 

discovery, the SDN controller (SDNC) assigns BO and SO parameters according to 

current network size, neighbours, and number of nodes, which are discussed in more 

detail in subsequent chapters. Table 2.1 shows the effect of BO and SO values on 

beacon interval and superframe duration. This period defines the start time of the child 

node in order to start sending data or command frame.  

 

Table 2.1. Beacon interval and superframe duration evaluation 

BO/SO Equation 2.1 BI/SD start time 

1 960*2*1*4 /250000= 0.03072 

2 960*2^2*4 /250000= 0.06144 

3 960*2^3*4 /250000= 0.12288 

4 960*2^4*4 /250000= 0.24576 
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In the inactive period (sleep time) of the superframe, the child node starts a 

transmission according to its start time. For example, when SDNC BO=4 SO=1 is 

applied to (Equation 2.1), the SDNC starts at 0 time and sleep time will be available 

to several child nodes whose BO=SO=1, as shown in Figure 2.3. 

 

 

Figure 2.3. Superframe inactive period (sleep time) 

 

2.3.4. OpenFlow (WSANFlow) protocol stack 

 

OpenFlow is a protocol that relies on flow tables, developed by researchers into SDN 

[45][46]. Since OpenFlow’s origins, it has been based on the idea of creating 

forwarding tables to guide packets from source to target through the next hop, and 

determines the actions to be taken on the flow [26].  Our WSANFlow protocol uses 

the forwarded tables between the control plane and the data plane. On the data plane, 

the flow table contains flow entries that are redirected between the forwarding IoT 

devices. Each flow entry includes match rule field, actions, and statistics; according to 

these entries, it will decide how to handle incoming packets. 
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CHAPTER 3. THE SDNC FUZZY-BASED ROUTING DECISION  
 

 

3.1.  Introduction 

 

In this study, we propose a new fuzzy-based routing discovery algorithm inside the 

SDNC for clustered networks over an IEEE 802.15.4 superframe structure, supporting 

many applications’ requirements. Fuzzy logic can play an important role in allowing 

SDNC to handle routing decisions intelligently. Using fuzzy logic to improve network 

connection costs by considering available network edges as neighbour devices’ signal-

to-noise ratio (SNR) and devices’ energy levels collected from device statuses. This is 

intended to integrate these elements into a uniform cost for later use in the Dijkstra 

algorithm to create an IoT application path. Each application has a source and a 

destination sensor [47][48]. The source device represents the detected sensor device 

that needs to send data to the destination. The destination device represents the sink or 

gateway device to forward data to internet access.  

 

The main objective of this study is to establish the path with the minimum energy cost 

resulting from fuzzy-based Dijkstra’s algorithm, the other devices not in this path can 

keep their energy using sleep time from the schedule mechanism cluster-tree WSN 

[49]. The limitation on the battery power lifetime is a challenging issue for sensor 

networks, due to the very high cost of battery replacement and the fact that some 

sensors cannot be replaced. Therefore, efficient routing protocols over WSN must 

counter important issues such as unnecessary power consumption and absence of fault 

tolerance.  

 

This study also presents a new method for routing decisions in SDWSANs: during the 

transmission time, an interruption according to any device’s energy level will inform 

the SDNC to change the existing application’s path. Once the best path has been built 
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up with the smallest energy cost, other devices keep their battery energy, which can be 

used by another application.  

 

3.2.  The SDNC Fuzzy-based Routing Decision 

 

Routing on the cluster-tree network topology is a new challenge for forwarding packets 

between EDs to reach the ED destination. Because the network operates in the cluster-

tree structure and superframe structure, the cluster can have active mode or sleep mode 

during runtime. Therefore, the forwarding data process must work between the active 

clusters; from one active cluster to another active cluster to avoid dropping packets 

during the cluster sleep mode. 

 

The study proposes a new approach which adds fuzzy logic into routing to improve 

SDNC decisions regarding cluster-tree topology.  In SDNC, Dijkstra’s algorithm uses 

the links cost resulting from fuzzy logic to generate the shortest path from the 

application’s source requests to the destination (gateway), with associated energy in 

this path according to the fuzzy rule base in Table 3.1. These paths distribute energy 

between devices using flow tables which take into consideration the number of active 

clusters and the application’s ID. Moreover, in SDNC, node status aggregation (NSA) 

receives ED statuses; statuses such as device energy level and neighbour device SNR 

are updated periodically in real time.  

 

In network topology, devices broadcast beacon frames; each device has a beacon frame 

and reacts with its own beacon frame to SDNC in order to update NSA. Moreover, the 

devices add to the beacon frames their devices’ battery levels and SNR, and the 

addresses of neighbour devices.  

 

In fuzzy-based Dijkstra’s, if there is a change in devices’ energy levels past a certain 

threshold, SDNC will be interrupted to reselect another device by redefining the 

application path, in order to gain energy across the total network topology. In regular 

Dijkstra’s, the path does not change, and the path selected will remain fixed over time 

once selected. During transmission time, the intermediate devices in this path consume 
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much more energy, and other neighbour devices in the topology still have a high level 

of energy, meaning the path must be reconfigured and reselected, incurring new costs. 

Reselecting paths will make a lifetime balance across the entire network; devices that 

expend a great deal of energy will enter sleep time to save energy. The SDNC has the 

ability to reconfigure WSANs after deployment using open flow protocol.  

 

In additional, fuzzy logic and Dijkstra’s are working together in order to have a greater 

effect on energy for the routing process. Dijkstra’s algorithm calculates the link cost 

output based on fuzzy logic. The fuzzy system includes two inputs and one output 

(more details in Section 3.6.). The simple procedures are summarised in Figure 3.1. on 

the cluster-tree architecture. 

 

 

Figure 3.1. Architecture design of routing protocol in the SDN controller 
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Figure 3.2. Sequence diagram of the system processes 

 

When an application wants to send data over the network, the following steps are 

generally performed, as shown in Figure 3.1. and Figure 3.2.: 

1) Application uses SRC-ED to send a request connection to SDNC towards 

parent ED address.  

2) Parent ED forwards request to SDNC via intermediate ED addresses. 

3) SDNC records the application info and connection requests from the ED 

sources and uses EDSA to read network topology info. The intelligent network 

module receives this request and checks the available network resources. At 

this moment, the SDNC should be fully aware of the network and its EDS 

states, so that it uses certain algorithms to arrive at the most appropriate 

decision for a specific route for the current transmission request. 

4) SDNC collects SNR and battery values by NSA (see Section 3.5.) to make a 

routing decision based on link costs using fuzzy logic (see Section 3.6.) and 

performs routing using Dijkstra’s algorithm (see Section 3.7.) to generate the 

shortest path.  
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5) SDNC converts the resulting path to WSANFlow [4] in order to distribute flow 

entries to the related EDs. 

6) Each ED checks the flow entry and adds its own entry.  

7) Source ED begins to send the data packet through its flow entry to reach the 

sink ED (gateway).  

8) Sink sends data as a gateway to IoT cloud. 

9) An alternative path is reselected by SDNC routing decision during running 

time. 

 

This chapter, the most important in this thesis, describes the components of the SDN 

controller. The SDN controller guides and manages the network in a smart way to 

make the right decisions. As can be seen in the figure, the SDN controller contains five 

main components: combined flow tables, network topology, node status, Dijkstra’s 

algorithm, and fuzzy logic. 

 

3.3.  Combined Flow Tables 

 

Figure 3.3. Combined flow table class 

 

The combined flow tables component consists of three main classes, structured as a 

C++ object-oriented program, as shown in Figure 3.3. The node class includes all the 

codes and functions related to nodes such as address, energy level, number of 

neighbours, and their data. Flow table class includes data structure and code about the 



22 

 

 
 

flow tables and entries, whose objects are created from this type to other classes. The 

network topology class includes the functions of node operations on the network, 

Dijkstra’s algorithm, and fuzzy logic algorithm, about which we will see more details 

in the following sections. Objects are created from different classes according to the 

needs of the functions and procedures required to perform the necessary tasks. When 

an application request is sent to the SDNC for data transmission, SDNC uses the 

combined flow tables class to create application’s path and to link this to flow tables. 

Each application can have a special path in the network from source to target sensors. 

The path is built depending on the node, flow table and network topology classes, 

generated by the smart algorithms in the SDN controller.  

 

3.4.  Network Topology 

 

Network topology uses the topology discovery method to determine the clusters in the 

network which collect the status information of all nodes and their neighbour list 

information. In the network discovery process, when nodes see the beacon frame, they 

respond with their own beacon frame to join the network. The responding node adds 

into the frame the node battery level and SNR as a distance from other neighbour 

nodes, including their addresses.  

 

The network topology sets up the SDN controller beacon settings, such as BO and SO 

parameters, and starts time. These settings determine the sleep time of each cluster 

according to its number of child nodes. Meanwhile, the type of nodes (forwarding node 

or child node) in the network is determined by SO and BO parameters. For example, 

if the node has BO=SO=1 or more, then it is a forwarding node; if the node has 

BO=SO=-1, then it is a child node. As shown in Figure 3.4., the network topology 

performs this process by checking all nodes so that the settings are given only to the 

nodes with children in their clusters. Eventually, these settings determine the length of 

the active superframe duration SD to fit the number of forwarding devices in the 

network.   
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Figure 3.4. The network topology 

 

3.5.  Node Status Aggregation (NSA) 

 

When the network starts to work, the broadcasting packets process starts between all 

devices, according to the settings determined by the network topology. At the first 

time, the SDNC network discovery dynamically generates a time slot (i.e. BO and SO) 

for each cluster device with children devices, which makes devices broadcasting 

beacon frames. Each device receives a beacon frame and reacts with its own beacon 

frame to SDNC in order to update node status aggregation (NSA). Moreover, the EDs 

insert their device’s battery level and SNR and the addresses of neighbour devices into 

the beacon frames. In this case, the beacon frames are distinguished from other 

beacons using NDP flag field. Once a device receives the neighbour device beacon 

frame, it generates a command frame and adds device status information, then sends it 

to SDNC. Moreover, each device stores a neighbour list containing a list of all SNR 

values for each connection between the device and its neighbourhood addresses, 

resulting from network discovery. Subsequently, when the SDNC receives all devices’ 

command frames, NSA begins to work, as shown in Figure 3.5.  

 

In Figure 3.5., as each node status arrives at the node status algorithm, it checks the 

arrived node status against the node class list. Moreover, each node stores a neighbour 
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list containing a list of all SNR values for each connection between the node and its 

neighbourhood addresses.  In order to keep the neighbour list up to date, the SDNC 

node status algorithm compares the incoming node status to its node class list and adds 

it if a node does not exist. Otherwise, it will update the node status information in the 

list. The battery level is overwritten each time a packet is received, because each node 

consumes battery and resends the packet. At that time, if the ED battery level is less 

than the threshold, it will interrupt to reroute the path (making a routing decision) by 

SDNC using fuzzy-based Dijkstra’s algorithms and generate a new path including EDs 

with higher battery levels. Subsequently, a list node containing all the nodes’ statuses 

is sent to the Dijkstra fuzzy algorithm to create a topology cost based on this list. 

 

 

Figure 3.5. Node status aggregation 

 

3.6.  Fuzzy Logic 

 

Fuzzy logic [50] is an active system of artificial intelligence which plays an important 

role in the SDNC to extend the network lifetime; fuzzy logic with inputs and output is 

illustrated in Figure 3.6. Fuzzy logic is used to improve network connection costs by 

considering the available network edges (link quality, power consumption, link cost, 

etc.). 
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Figure 3.6. Fuzzy logic with inputs and output 

 

3.6.1. Fuzzification 

 

Fuzzification checks the input values of SNR and battery level into input fuzzy set 

values; each fuzzy set has several membership functions denoted by linguistic 

variables. The SNR fuzzy set has three membership functions (weak, medium, and 

strong) and the battery fuzzy set has three membership functions (low, medium, and 

high), represented in Figure 3.7. as the input membership functions.  

  

 

Figure 3.7. Fuzzy inputs SNR and battery level memberships 

 

When fuzzy logic is activated, the input values are calculated for fuzzy input sets of 

the membership functions (Equations 3.1. and 3.2.). An example of determining the 

relevant fuzzy sets is shown for fuzzy input data (SNR, battery level) = (16, 4).  In 

Figure 3.8., the example of SNR value belongs to the weak and medium membership 

functions and the battery level value belongs to the high membership function: 
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SNR (x1) =∑ 𝜇𝑖(𝑥1)/𝑖                                                                           (3.1)3
𝑖∈𝑀𝑆𝑁𝑅  

Using (Equation 3.1) SNR (16) =16/ Weak + 16/Medium + 0/ Strong  

 

Battery (x2) =∑ 𝜇𝑖(𝑥2)/𝑖                                                                         (3.2)3
𝑖∈𝑀𝐵𝑡  

 

Using (Equation 3.2) Battery (4) =0/Low + 0/Medium + 4/High  

Where i is the linguistic (low or weak, medium, strong or high). 

 

 

Figure 3.8. SNR, battery membership functions map the input values 

 

In fuzzification, the activation process for antecedents’ SNR and battery level is 

computed by the membership degree function. Fuzzy operation can be calculated using 

the membership compute degree (Mf(v)) function, as given by (Equation 3.3). We can 

apply it in this example as follows: 

𝜇𝑓(𝑥) = min (min (𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒 ×  (
𝑥 − 𝑎

𝑏 − 𝑎
) ,  𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒 × (

𝑑 − 𝑥

𝑑 − 𝑐
)) , 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒)        (3.3) 

Using (3.3), we can explain the examples of SNR and battery level values and apply 

this to the resulting membership degree functions.  For SNR, a weak membership 

function, which has a range of {a, b, c, d} = {0,10,10,20}, the SNRweak (16) is 

represented by 

𝜇𝑓(16) = min (min (50 ×  (
16 − 0

10 − 0
) ,  50 × (

20 − 16

20 − 10
)) , 50)  

𝜇𝑓(16) = min (min(50 × 1.6  ,  50 × 0.4)) , 50)  

𝜇𝑓(16) = min (  min(80  ,  20)) , 50)  

𝜇𝑓(16) = mi n( 20,50)  
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𝜇𝑓(16) = 20 

 

For an SNR medium membership function, which has range of {a, b, c, d} = {10, 20, 

20, 40}, the SNRM (16) is represented by 

𝜇𝑓(16) = mi n( min (50 ×  (
16 − 10

20 − 10
) ,  50 × (

40 − 16

40 − 20
)) , 50)  

𝜇𝑓(16) = mi n( min(50 × 0.6  ,  50 × 1.2)) , 50)  

𝜇𝑓(16) = min (min(30  ,  56)) , 50)  

𝜇𝑓(16) = min (30,60)  

𝜇𝑓(16) = 30 

For a battery high membership function, which has a range of {a, b, c, d} = {3, 4, 4, 

5}, the BatteryH(4)  is represented by 

𝜇𝑓(4) = mi n( min (50 ×  (
4 − 3

4 − 3
) ,  50 × (

5 − 4

5 − 4
)) , 50)  

𝜇𝑓(4) = mi n( min(50 × 1 ,  50 × 1)) , 50)  

𝜇𝑓(4) = mi n( min(50 ,  50)) , 50)  

𝜇𝑓(4) = mi n( 50 ,50) 

𝜇𝑓(4) = (50 ) 

 

The results of the SNR weak, SNR medium and battery high membership function for 

this example is shown in Figure 3.8. Input variables are assigned degrees of 

membership in various classes. The purpose of fuzzification is to map the inputs from 

a set of sensors to values from 0 to 1 using a set of input membership functions. 

 

3.6.2. Rule evaluation 

 

A fuzzy inference produces a relationship between input and output fuzzy sets using a 

knowledge base that contains fuzzy rules and membership functions. The rule consists 

of two main parts: the ‘If’ side and the ‘Then’ side: If (antecedent) Then (consequent).  

Table 3.1. shows nine rules of the fuzzy rule to produce an output fuzzy set linguistic 

value. These rules are structured as a condition (IF-THEN). 
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Table 3.1. Fuzzy logic rule base 

Rule 

Base 

IF-side (Antecedents)  THEN-side 

(Consequence) 

1 (SNR is weak) and (Battery is low)  (Cost is VeryHigh) 

2 (SNR is Weak) and (Battery is Medium)  (Cost is Average) 

3 (SNR is Weak) and (Battery is High)  (Cost is Low) 

4 (SNR is Medium) and (Battery is Low) (Cost is High) 

5 (SNR is Medium) and (Battery is Medium) (Cost is Average) 

6 (SNR is Medium) and (Battery is High) (Cost is Low) 

7 (SNR is strong) and (Battery is Low) (Cost is High) 

8 (SNR is strong) and (Battery is Medium) (Cost is Medium) 

9 (SNR is strong) and (Battery is High)  (Cost is VeryLow) 

 

  

As mentioned in our previous example, the SNR is between weak and medium and the 

battery is high, which means that the 3 and 6 rules from Table 3.1. can be applied; in 

this case, the rule evaluation is shown in Figure 3.9. Before the rules can be evaluated, 

the inputs must be fuzzified according to each of these linguistic sets. 

 

 

Figure 3.9. Rule evaluation results 

 

Rule evaluation is part of the implication method which defines the rule's conclusion. 

We use the implication method by taking the minimum degree of membership for two 

sets as µA∩B(x) = min(µA(x), µB(x)). The activation degree process in the implication 

method takes the minimum degree of the variables among the SNR and battery 

memberships involved in the rule evaluation as the cost membership degree. We use 

the activation degree to multiply them with the linguistic in terms of consequences to 

determine the rule’s conclusion [51].  
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Consider the example in Figure 3.9.: according to the rule match found in Rule 6, the 

activation degree trims the SNR (weak and medium memberships) and battery (high 

membership) by taking the minimum value between SNR and battery, [cost =  min 

(30, 50) ], as the cost (low membership). Hereafter, in order to find the output value 

for each rule involved, the aggregation process sums up the membership functions into 

the K variable by taking the maximum of the membership functions of the resulting 

cost. The K value will be used later in the defuzzification process. Therefore,  

 

K=30= max (min (SNR, Battery), cost)                 (3.4)  

 

3.6.3. Defuzzification  

 

The last step is known as the defuzzification process, in which the fuzzy output is 

converted to a single value. Figure 3.10. shows the fuzzy output of a cost set with six 

membership functions (very low, low, medium, average, high, and very high). 

 

 

Figure 3.10. Fuzzy output cost membership 

 

The Mamdani system is used in the defuzzification process as a typical module, and 

the centre of gravity (CoG) method is used to resolve conflict issues such as ‘cost is 

medium/low’, using membership functions. The CoG method computes the centre of 

the area below the curve to find a final output for the cost’s crisp, as described in 

(Equation 3.5). 
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𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑠𝑝  =
∑ (𝐴𝑟𝑒𝑎 𝑖 ∗ 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑖) 6

𝑖∈ Cost𝜇𝑓

∑  𝐴𝑟𝑒𝑎 𝑖  6
𝑖∈ Cost𝜇𝑓

                                                            (3.5) 

 

Where i = {1, 2... 6} is the output membership, and Area is computed for each output 

membership. 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑠𝑝 is the final desired output.  As a result of the previous example, 

we substitute the K =30 value in (Equation 3.4) and the low cost membership resulting 

from rules 3 and 6.  The following equations convert the fuzzy output to the cost crisp 

value as final results: 

base1 =  d − a                                                                                                (3.6) 

base2 = base1 − (
𝐾

𝐿𝑣1
) − (

𝐾

𝐿𝑣2
)                                                                                        (3.7) 

Area= K* 
𝑏𝑎𝑠𝑒1+𝑏𝑎𝑠𝑒2

2
                                                                                                    (3.8) 

Centroid =  𝑎 +
𝑑−𝑎

2
                                                                                               (3.9) 

Figure 3.11. shows the implementation of the previous example on these equations. 

The range of  Cost Low membership is Cost Low {a, b, c, d}, represented in our example 

as {5,10,10,15}, where the first and last values, a and d, are used as inputs in the 

(Equations 3.6, 3.7, 3.8 and 3.9).  

 

Figure 3.11. Example fuzzy results 

The flowchart of the defuzzification procedures is shown in Figure 3.12. 
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Figure 3.12. The flowchart of the defuzzification procedures 

 

Now let us see how the battery level changed for this ED and the effect that 

accompanies cost value during the network life cycle. Through the process of 

transmitting and receiving, the device gradually loses its energy, as shown in Table 

3.2.: 

Table 3.2. Cost vs battery level 

Cost SNR Battery level 

10 16 5 

10 16 4 

20 16 3 

27 16 2 

27 16 1 

 

As seen in the table, the low cost is the best candidate for Dijkstra’s algorithm for 

building application paths, therefore the ED is selected based on the cost value of the 

connection link between a device and its neighbour. However, when the level of 

energy is lower, the output cost value is higher, which means that it is not a good 
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candidate for Dijkstra’s algorithm, because as we will see later, Dijkstra’s algorithm 

prefers to select the minimum values of these connection links between ED and its 

neighbours. In this way, we have established the relationship between cost and energy 

level in fuzzy rules, as illustrated in Table 3.2. 

 

3.7.  Dijkstra’s Algorithm 

 

Dijkstra’s algorithm [52] is an algorithm which finds the route with the lowest possible 

cost in order to determine the best path from source to destination node in the network. 

When the SDNC receives the status of each node, the NSA in SDNC starts to collect 

these statuses for each node, including its neighbours’ information in the class node 

representing the collected information of all nodes. if there is a connection request 

from an application or an interrupt from NSA to change the route according to the ED 

battery level, Dijkstra starts working with the fuzzy logic shown in Figure 3.13. 

Dijkstra’s input is the cost for each connection resulting from fuzzy logic. A lower 

cost value means that the ED neighbourhood is very close to the device, while a high 

cost value means that the ED neighbourhood is far away; these decisions are 

determined by the fuzzy rule base in Table 3.1. 

 

However, SDNC is able to dynamically build the network topology and select the best 

route between nodes based on the resulting cost from the fuzzy system. As our fuzzy 

system includes two inputs and one output, when these fuzzy input values change then 

cost will change for each node connection. The fuzzy logic inputs are updated when 

new nodes’ statuses arrive at SDNC, then the output cost is inserted concurrently as 

the input for Dijkstra’s algorithm.  
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Figure 3.13. Dijkstra's with fuzzy routing algorithm 

 

Dijkstra’s algorithm chooses the nearest device to the source using the find device 

function and runs over neighbours in the loop. Subsequently, it compares the nearest 

device with its neighbours, selected from the devices list presented in Figure 3.14. 

(Steps 6, 7, 8, and 9). For each cycle in the loop, the minimum cost for the best path is 

aggregated as the total path cost from the EDs to source ED which Dijkstra’s algorithm 

returns.  
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Figure 3.14. Dijkstra’s algorithm 

 

3.7.1. Flow tables layout  

 

Table 3.3. shows a flow table formed by the SDNC; the entries represent each 

application that resulted in its path from Dijkstra’s algorithm. Each ED address in the 

application’s path receives an entry contained next hop and an action to forward or 

drop packets arrived. 

 

Table 3.3. Flow table entries 

A
p

p
lica

tio
n

 ID
 

D
ev

ice A
d

d
ress 

Matching Rule Action Statistics 

C
o

m
p

arato
r 

S
rc A

d
d

ress 

M
atch

 R
u

le 

F
o

rw
ard

 /D
ro

p
 

N
ex

t H
o

p
 

C
lu

ster D
ir 

N
u

m
b

er o
f 

P
ack

ets 

1 13 ‘=’ 13 Forward 2 0 34 

1 4 ‘≠’ 1 Drop - - 81 

2 5 ‘=’ 1 Forward 4 0 33 

2 4 ‘≠’ 1 Drop - - 94 

3 6 ‘=’ 7 Forward 4 0 32 

3 15 ‘≠’ 7 Drop - - 81 

2 5 ‘=’ 2 Modify 8 0 65 
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Figure 3.15. Network topology Scenario 1 

As seen in Figure 3.15., the first network topology scenario represents SDNC and six 

nodes. In this scenario, the IoT application wants to send data from the source ED with 

address 11 to destination ED with address 12, and the Dijkstra’s algorithm result of 

our system as total end-to-end costs is 32, with a path running from 11=> 1 =>2 =>4 

=>12. 

 

Figure 3.16. Network topology Scenario 2 

 

Figure 3.16. shows the second network topology scenario, in which we change the 

position of node R3 in order to see the change of SNR represented by the distance 

between nodes. The Dijkstra’s algorithm result of this scenario shows that the path has 

changed to 11=> 1 =>3 =>4 =>12 and the total end-to-end cost remains the same 

because of the vertically equal distance and energy to the first scenario. 
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Figure 3.17. Network topology Scenario 3 

 

Figure 3.17. shows the third network topology scenario, which has position changes 

to nodes R2 and R3 respectively. The Dijkstra’s algorithm result of this scenario as 

total end-to-end costs is 46 with the path from 11=> 1 =>2=>3 =>4 =>12. In this case, 

the cost is high because the nodes have limited coverage area and the nodes are far 

away from each other, so the path becomes longer than before. 

 

3.8.  Simulation Results and Discussion 

 

In all experiments, we used a free space channel propagation model in the simulation 

environment, allowing us to predict the received signal strength of a path with direct 

line of sight between the transmitter and the receiver. Experiments were performed 

using fuzzy-based Dijkstra’s algorithm, and an SDNC with a regular Dijkstra's 

algorithm in the first scenario. The second scenario includes a ZigBee‐based WSAN 

equivalent. Through these scenarios, simulation results can be extracted to see the 

effect of the proposed routing discovery algorithm. 

 

3.8.1. Simulation environment: parameters and scenarios 

 

The configurations of the applications’ requests to SDNC are shown in Table 3.4., 

when an ED’s battery level passes the threshold, the SDNC alerts an administrator to 

change the battery of this ED. As shown in Table 3.4., there are four applications, 

which differ in the start time and packet inter-arrival time for performance testing. 
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Table 3.4. Simulation parameters 

Items Name Value 

Network Topology Number of End Devices 10, 20, 30, 40, 50 

Network coverage area 300 m X 300 m 

SDNC location (x, y) (150, 150) 

Simulation time 10800 s 

Max. No of EDs in Cluster 15 

Path re-establishment threshold 2 J 

Device settings for both the 

proposal and ZigBee‐based 

WSAN 

Data Rate  250 Kbps 

ED status transmission period 25 s 

Initial Energy 5 J 

Channel model Free-space propagation 

model (LoS) 

Power threshold  -76 dBm (80 mW) 

Battery parameters (Micaz 

mode) for both the proposal and 

ZigBee‐based WSAN 

Transmission Mode (0 dBm)  17.4 mA 

Receive Mode 27.7 mA 

Idle Mode 35 µA 

Sleep Mode 16 µA 

Application 1 

(Src. 11 in Figure 23) 

Start time 50 s 

Packet payload size 30 bytes 

Packet inter arrival time  2 sx 

Application 2 

(R 34 in Figure 23) 

Start time 200 s 

Packet payload size 30 bytes 

Packet inter arrival time  3 sx 

Application 3 

(R 43 in Figure 23) 

Start time 300 sec 

Packet payload size 30 bytes 

Packet inter arrival time  5 sx 

Application 4 

(R 36 in Figure 23) 

Start time 400 s 

Packet payload size 30 bytes 

Packet inter arrival time  4 sx 

ZigBee‐based WSAN ZC beacon configurations BO = 4, SO = 1 

Tree routing configurations Lm = 2, Rm = 4, Cm = 4 

Number of end devices 50 

Network coverage area 300 m × 300 m 

ZC location (x, y) (150, 150) 

Simulation time 10 800 s 

Initial energy 5 J 

Application 1 (Src. 2) Start time 50 s 
 

Abbreviations: ED, end device; SDNC, Software‐Defined Networking Controller; WSAN, wireless sensor and actuator network. 

x Generated using the exponential distribution function exp (mean). 

 

3.8.2. Simulation results and discussion 

 

Figure 3.18. shows that the first ED dies after 5500 seconds of simulation time and 

four applications which are shared among 40 EDs. For one application, the network 

lifetime is longer than with two or more applications running, because EDs forward 

data from one source to one destination and traffic is light.  
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Figure 3.18. First ED deaths with number of EDs and number of applications 

 

When the number of applications increases, the number of traffic sources increases 

and some intermediate EDs forward data to more applications, leading them to 

consume more energy. Moreover, every application has one path, so that when the 

number of applications increases, battery level decreases faster, especially for EDs 

shared in these paths, which die in a short time.   

 

The proposed fuzzy-based Dijkstra’s can find an alternative path after EDs’ batteries 

have passed path recall threshold, to prolong network lifetime.  Figure 3.18. illustrates 

a different number of EDs with one application, the ED dying after 7000 seconds of 

simulation time. Fuzzy-based Dijkstra’s shows better results in all cases than regular 

Dijkstra’s algorithm, because the path is selected based on rule base to re-prolong 

network lifetime. With 10, 20 and 30 EDs, the first ED dies due to cluster tree topology 

limitation, being the only path found in time. The advantage of an exchange is that the 

path can use a large number of ED batteries during the running time. Figure 3.19. 

outlines an example of system implementation; the study of SDNC routing algorithms 

in different clusters for the scenario is represented by one application and 50 EDs. The 

results display a comparison of the routing algorithms on the network in terms of 

number of ED deaths, delay, and throughput. 
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Figure 3.19. Scenario for 50 EDs and one application 

 

Table 3.5. displays the paths for fuzzy-based Dijkstra’s and for regular Dijkstra’s. The 

simulation results indicate that regular Dijkstra’s algorithm selects the shortest path 

according to the SNR as a cost, without considering the battery level of EDs. In fact, 

the EDs’ batteries decrease over time. Therefore, fuzzy-based Dijkstra’s selects paths 

using the fuzzy rule base and the consumed power of the EDs’ batteries can be 

distributed among more EDs in the same time. Moreover, fuzzy-based Dijkstra’s re-

establish alternative path at 5089 seconds to prolong network lifetime as illustrated in 

Table 3.5. 

Table 3.5. Path information 

No of applications Path 

establishment 

time, s  

Path details Total 

Cost 

Fuzzy-based Dijkstra 

1  50 Src11=>R9 =>R10=>R15=>Dest12 16 

1 5089 Src11=>R9 =>R8 =>R15=>Dest12 95 

Regular Dijkstra 

1 50 Src11=>R9 =>R13 =>R19=>Dest12 273 

ZigBee‐based WSAN 

1 50 Src2=>R1=>PAN coordinator=>R11=>14 - 
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The EDs in the path consume more energy than other EDs not involved in the 

application’s path, therefore when EDs die over time, this can reduce the network 

lifetime. Moreover, other EDs in this topology remain live and their battery level 

remains higher than EDs in the path. For that reason, an alternative ED should be used 

during the transmission time to prolong network lifetime. Figure 3.20. displays the 

results when there is only one application running and there are 50 EDs in the network 

for aforementioned three models. The Figure shows that in a short time, the ZigBee-

based WSAN model contains a large number of death nodes more than the regular 

Dijkstra algorithm and the fuzzy based Dijkstra algorithm. Because there is no 

effective energy management strategy in the ZigBee-based WSAN model. 

 

Moreover, the regular Dijkstra algorithm over time has increases the number of death 

nodes more than the fuzzy based Dijkstra algorithm, as expected. Since the path 

selected by regular Dijkstra’s remains fixed over time because the SNR values do not 

indicate which EDs die more quickly over time. During transmission time, the 

intermediate EDs in this path continue to forward data and consume much more 

energy, and other neighbour devices in the topology still have a high level of energy, 

so that the path ought to be reconfigured and reselected using the new costs. 

 

Figure 3.20. Number of ED deaths over time for 50 EDs and one application 
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Figure 3.21. exhibits network loads of intermediate nodes on the path. Some nodes 

that have a higher battery level take place instead of other nodes in the path. Therefore, 

the data transfer switches from node R10 to R8. this is because the SDNC rebuilds 

new path at 5089 s of the simulation runtime as shown in Table 3.5., to prolong the 

network lifetime. 

 

Figure 3.21. Network loads for the intermediate end devices for 50 EDs and one application 

 

Fuzzy-based Dijkstra’s reselects the path and creates a balance of lifetime battery 

consumption of the entire network for the devices that spend a great deal of energy, 

leading to sleep time to save energy. The throughput and end-to-end delay for 50 EDs 

are shown in Figure 3.22.; the expected results during prolonged network lifetime are 

the end-to-end delay test for 50 EDs. 

 

Figure 3.22. Throughput (bit/sec) and end-to-end delay for 50 EDs and one application 
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Thus, because fuzzy-based Dijkstra selects the best path according to the rule base 

which has a higher level of battery for related EDs, the delay increases. Regular 

Dijkstra selected the best path according to distance (SNR only) which decreases the 

end to end delay. Also, the ZigBee-based WSAN has only one path that does not 

change over time similar to the Regular Dijkstra. This indicates the similarity of the 

end to end delay results. In Chapter 5 we develop the fuzzy-based Dijkstra to improve 

the delay results well. 
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CHAPTER 4. INTERACTING THE VERTICAL DOMAIN 

DEVICES OF IOT SYSTEM WITH HORIZONTAL 

DOMAIN SYSTEM 
 

 

Hybrid systems require interaction between different IoT technologies to create 

intelligent services and smart environment. For the effective performance of IoT 

applications, IoT technology such as radio frequency identification (RFID) which is 

widely used to identify and track the location of RFID tags in various environments. 

For example, the healthcare system required a hybrid system to improve its services 

and access to healthcare information in real-time. In this chapter, we provide the 

communication between the vertical domain of IoT devices with the horizontal domain 

system. In the vertical domain system, the RFID technology is integrated into the 

SDN-based WSAN as new platform to the healthcare system, the proposed is 

presented with simulation environment details and results.  

 

4.1.  IoT Technologies Related Work 

 

Several projects also are proposed in the literature to integrate IoT technology such as 

RFID and facilitate interaction between the cloud and the vertical domain devices of 

IoT systems in real time.  The following literature references on RFID are diverse; 

various solutions have been proposed to address the problems of RFID technology. 

Radio frequency identification technology is widely used in a large number of IoT 

applications; the authors in [53] propose combining smart parking solutions (SPS) with 

innovative IoT technologies such as RFID and WSN. The system collects real-time 

data on parking conditions and guides drivers to the nearest vacant parking space. 

 

The IoT hybrid monitoring system presented in [54] proposes an RFID gateway for 

healthcare environments. The RFID gateway is designed for both WSN and RFID 

readers to transfer asset and patient data to the WSN network, using passive RFID tags 
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with sensors to track assets and patients in terms of location and condition. RFID 

technology has improved the cost effectiveness of the system and simplified the 

management of asset and patient data. 

 

Radio-frequency identification and WSN integration into supply chains provides 

system intelligence, since WSN is multi-hop and RFID technology is single-hop [55]. 

An intelligent system is proposed in order to enhance system performance; a 

combination of RFID and sensors is applied. Radio-frequency identification is used 

for identifying tags and WSN is applied to sensing environmental variables such as 

humidity, temperature, and air quality. Some products should be protected against 

humidity and some must be kept at a certain temperature.  

 

The paper [56] proposed a fire IoT service-oriented architecture consisting of four 

layers to connect fire tools to IoT networks. In the sensor layer, a smart sensor 

connected to the RFID reader/tags was provided to give warning data in order to send 

it to the base station. The RFID reader reads fire tools tagged with the RFID tag and 

can activate fire system devices such as water hoses to fight fires. The sensor senses 

data such as smoke, temperature, humidity and light, and uses fuzzy logic to detect the 

level of fire risk.  

 

A security solution is proposed for IoT RFID Technology in [57]. The RFID 

authentication system includes a TSMMA PUF structure and bidirectional RFID 

authentication based on PUF. TSMCA PUF needs certain hardware resources to 

perform a four-way procedure between the arbitrator and the transmitter. The PUF 

works in two directions of authentication, from server to tag and from tag to server. 

 

In [58], a framework is proposed to improve IoT applications’ performance, and smart 

tag location tracking is applied to networks integrating both WSN and RFID. In this 

framework, the fuzzy q-algorithm and the fuzzy system-based route classifier are 

considered. The fuzzy q-algorithm is used to enhance the anti-collision protocol for 

RFID, and the fuzzy system-based route classifier to classify the paths and assist 

routing protocols.  
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The project described in [59] is an MQTT communication protocol and RFID 

technology in which a steel beam product has an EPC code in its RFID tag. It uses 

MQTT to send messages from RFID and IoT sensors. The RFID tag is tracked and 

sent from the warehouse using IoT sensors connected to the RFID/IoT system. This 

structure is extended to the IoT domain based on the EPCGlobal/GS1 framework. 

The paper in [60] introduces the structure and components of a WSID heterogeneous 

network integrating WSN, RFID, and GIS technologies together. The platform uses 

four layers: (1) a detection layer including smart tags and RFID tags; (2) a monitoring 

layer including WSN gateways; (3) a management layer including a monitoring centre, 

data server, and application server; and (4) backup interfaces handling the interface 

between the WSID and external networks. The RFID tags in this work save 

information such as material category, serial number, personnel ID, and location, so 

that a different RFID reader in the system can collect it. 

 

In [61], cybersecurity seeks to design smart and secure parking solutions based on 

technologies such as WSN, RFID, Ad-hoc network, and the IoT. They rely on RFID 

to determine vehicle registration numbers and related data including parking number, 

parking period, parking fee, and password assigned for security purposes. 

 

4.2.  Vertical Domain Devices 

 

In this section, a new real-time IoT-based data analytics architecture for smart 

healthcare is proposed. The new platform includes the SDN-based WSAN as explained 

in chapter 3 and RFID structure, which are the key contribution of the study in the 

vertical domain. The patient's related Electrocardiogram (ECG) data is sensed by the 

sensing nodes in WSAN and delivered to the gateway (destination) node through the 

path established by SDN controller so that it could be employed in data analytics 

operations. 

 

The RFID technology in the proposed structure is in charge of identifying the patients. 

We assume that each patient is given an RFID wristband. For more realistic 

performance evaluation all the vertical domain components have been modeled and 
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simulated using Riverbed Modeler. Since any IoT enabling technologies in the vertical 

domain can be modeled using a simulation software, the proposed architecture has a 

big potential to be used as a time-saving experimental environment and, this case can 

be considered as the other contribution of this study.  

 

Using RFID tags with sensors to track assets and patients in terms of location and 

condition. RFID technology can improve the cost-effectiveness of the system and add 

simplicity to manage the data of assets and patients. The proposed real-time data 

analytics architecture for smart healthcare consists of two domains, namely the vertical 

domain ( SDN-based WSAN and an RFID structure), and a horizontal domain (Kafka, 

Spark, NodeJS, and Mongo database) as outlined in Figure 4.1. The patient-related 

ECG data is sensed by the source sensors (source SN) in the WSAN and is delivered 

to the gateway so that the data can be transferred to the Kafka platform using the TCP 

socket. The Kafka messaging system distributes incoming data to three different 

consumers associated with it, as can be seen from Figure 4.1. The first Kafka consumer 

is the Spark platform for real-time data analysis. The second one is NodeJS web 

application that visualizes the patient's data in the web browser, and the last consumer 

is the MongoDB database that stores the incoming data for future usage. 



47 

 

 
 

 

Figure 4.1. Outline of the RFID in vertical domain architecture. 

 

4.2.1. Software-defined networking based wireless sensor network  

 

As stated earlier in chapters 2 and 3, the SDN based WSAN is developed through the 

study given in [12]. In this study, each SDN-enabled sensor node (SN) is connected to 

the RFID reader and the patients’ heart rate device to collect data. These sensors which 

are represented as source sensors then delivers the measured data to the gateway via 

the WSAN in real-time.   
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4.2.2. Radio frequency identification 

 

RFID is a widely used IoT enabling technology for data collection. Figure 4.2. 

illustrates the Riverbed node model that integrates RFID reader into the SN. While the 

RFID related components of the vertical domain modelled here in this study, the SDN-

based WSAN part was modelled through the study given in chapter 2. 

 

 

Figure 4.2. SN with RFID reader node model and RFID reader process model. 

 

The followings are a brief explanation of the RFID reader module that is embedded 

into the SN: 

1.The sensor application layer module was developed to receive patient data from the 

MAC module of the RFID reader and to integrate this data with patient PR data in 

the packet generator process. 

2.The RFID MAC module was developed and presented in [62]. We have modified 

this MAC module to meet the proposed SDN-WSN design requirements. RFID 

reader can communicate with RFID Tag using the main functions which are: 

a) ReaderSelect() is a function to select RFID Tag with number. 

b) ReaderQuery() is a function to query a packet with a query value. 

c) Query_rep() is a function to create a “queryAdjust” packet format and create 

a “queryReply” packet format as requested by an RFID tag. 
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d) Reader_Received_Packet() is a function that is used when the packet is received 

for the ACK packet, which will be generated and replied to each valid type of 

packet: RN16, EPC, XPC, CRC16, and patient data. 

e) Reader_kill() is a function to kill the packet when the session ends. 

3.The RFID reader’s application module collects statistical information about the 

RFID tag. 

 

 

Figure 4.3. RFID tag node model and process model. 

 

The RFID tag node model contains two modules [62] as illustrated in Figure 4.3. A 

brief explanation of the model is given below: 

1.The MAC module is developed for the RFID tag. This MAC module collects patient 

data for sending to an RFID reader. In this model, the main functions to communicate 

with an RFID reader are:  

a) Receive_packet() is a function to receive and respond to any type of RFID reader 

command packets. 

b) QueryTag() is a function that responds to the query for any type of packets in the 

case of a tag query. 
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c) ReplyTag() is a function in the reply state to create a 16-bit random number 

(RN16) packet and send it to an RFID reader. 

d) AckTag() is a function in the case of the ACK’s state to receive an acknowledged 

packet from an RFID reader. 

2.The RFID Tag’s application module collects statistical information about the 

patient’s data. 

 

4.3.  Horizontal Domain System 

 

Nowadays, the growing volume of data on the internet has also increased the 

importance of big data analytics, which makes sense from this data. It is obvious that 

this large amount of data will increase further with the widespread use of the internet 

of things which would incorporate numerous devices into the existing internet 

infrastructure. In the horizontal domain system, the platform developed in this study 

has a real data analysis structure. Therefore, the proposed platform contains high-

scaled and high-performance data analysis tools such as Kafka, NodeJS, Spark, and 

MongoDB in the horizontal domain. The components used in this domain are; i) a 

Kafka messaging system that distributes incoming data to different consumers, ii) a 

web application which was developed using NodeJS to visualize the patient data, in 

real-time, iii) a Spark platform for real-time data analytics, and v) a NoSQL database 

that stores incoming data. 

 

4.3.1. Kafka 

 

Kafka (version 2.11) [63] is the actual distribution system, a high-throughput 

distributor for messages, dealing with the enormous amount of data and supporting a 

huge number of consumers and producers. Kafka uses a number of partitions and a 

number of brokers to perform parallelism. The parallelism accelerates the processes 

effectively. In addition, it automatically retrieves data in cases where the broker fails. 

Through these characteristics of Kafka, the real-time data streaming requirements is 

supported.  
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Figure 4.4. Streaming gateway and Kafka (producer/consumer). 

 

Figure 4.4. shows the system gateway (destination SN) associated with the Kafka 

producer, through this portal, the flow of data directed from the vertical domain in 

real-time to the horizontal domain. This gateway is a part of the vertical domain system 

and is connected to Apache Kafka server using a TCP socket server program. Using 

TCP socket program (server and client connection) makes communication reliable and 

oriented. Kafka producer receives data stream from the TCP client sockets program, 

which in turn listens to a particular port and IP address. Thereafter, Kafka producer 

sends the streaming data to Kafka's consumers. 

 

4.3.1.1.  Kafka Server and Kafka Client Setup 

 

Kafka server and client are connecting from different platform using TCP socket 

client/server programs. Kafka producer is using java-based socket program while 

Kafka producer is using c-based socket program. Figure 4.5. shown the start running 

steps of zookeeper and Kafka servers.  
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Figure 4.5. The commands to run zookeeper and Kafka servers 

 

Riverbed node model connects to the Kafka server using TCP socket client/server 

programs. The following steps include setting up Kafka to create a topic as well as the 

connections between Riverbed node model and the Kafka server.  

1.To create a topic with name "testing1" in apache Kafka use the following command: 

./kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --

partitions 1 --topic testing1 

2.When Riverbed simulation starts working, the source SN generates data to send it to 

the destination SN. Riverbed node model includes the c-based socket file in header 

of the SN application layer as illustrated in Figure 4.6.  

 

 

Figure 4.6. Include the c-based socket in riverbed node model 

 

3.The destination SN receives data packets and executes c-based socket client program 

by using the script to send number of messages to the Kafka server as shown in 

Figure 4.7. 
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Figure 4.7. The destination SN (gateway) use the socket to send packet to Kafka 

4.The java-based server socket gets these messages from c-based client socket to 

Kafka producer as shown in Figure 4.8. Meanwhile, The Kafka producer sends 

messages to Kafka consumer.  

 

 

Figure 4.8. Java based socket 
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4.3.2. Apache spark 

 

Apache spark (version 2.11) [64] is an open source computing platform developed 

using scala, which enables parallel processing of large data sets. Because apache 

spark’s operations are performed in memory, it supports data analysis with high 

performance and high speed for various formats (static or streaming). Moreover, it 

includes machine learning libraries. 

 

4.3.2.1.   Apache spark streaming 

 

Apache spark processes real-time streaming data very quickly because of maximum 

efficiency during operations, therefore, it processes a large amount of data in a short 

time.  

 

4.3.2.2.   Apache spark machine learning library  

 

Machine learning library (MLlib) is scalable library in the apache spark that contains 

common machine learning algorithms, including classification, regression, and 

aggregation. The logistic regression algorithm is one of the regression machine 

learning algorithms, which is selected in this study to classify patient data and provide 

better results for IoT healthcare applications. 

 

4.4.  Case Study: Real-Time Disease Diagnosis Using Logistic Regression 

 

Real-time diagnosis is a new and important way to diagnose a patient's condition. In 

order to perform real-time disease diagnosis, we used a logistic regression algorithm 

that is machine learning technique in apache spark to predict patient's condition.   

 

4.4.1.  Electrocardiogram  

 

ECG refers mainly to the electrical activity of the heart. ECG consists of 5 waves: P, 

Q, R, S, T corresponding to different stages. ECG allows us to record the activities of 
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the heart muscle from several points on the surface of the body [65]. In this case, ECG 

plays an important role in the diagnosis of various heart diseases. In our study we 

considered about QRS and PR intervals which are related to Wolff Parkinson white 

(WPW) disease. 

 

Wolff Parkinson white syndrome is a conduction disorder where the atrial pulse passes 

to the ventricle through an extension path along the normal ventricular atrium junction. 

Patients with WPW may suffer from palpitations, fainting, and sudden death [66]. The 

symptoms of this disease are a PR interval of less than 120 (shorter than 0.12 seconds) 

and a QRS compound that is greater than 110 (greater than 0.11 seconds). In order to 

assess and classify WPW disease, the QRS and PR intervals are selected from the 

arrhythmia dataset in the UCI database [67]. This dataset consists of the ECG data 

from 452 people, each with 279 attributes.  

 

4.5.  Experimental Results and Discussions 

 

Figure 4.9. The Sequence diagram for end-to-end data delivery operations. 

 

The sequence diagram shown in Figure 4.9. presents the end-to-end data delivery 

operation of the proposed system. It clarifies the main operations performed to transfer 

the patient’s data from the vertical domain to the horizontal domain. The vertical 
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domain that has been modelled and simulated using Riverbed Modeler has source SNs, 

RFIDs and a gateway, as can be seen from the figure. On the other hand, the horizontal 

domain of the proposed architecture has been built using real-world technologies such 

as Kafka, Spark, NodeJS and MongoDB. The simulation of the WSAN and RFID was 

run for 3600 seconds.  The source SN generates QRS and PR data of any patient once 

in every 2 s during the simulation run time. This data is read from a file including test 

data. In the meantime, RFID reader that is embedded into the SN gets other related 

information from the RFID tag like tagID, patientID, age, gender, height (cm), and 

weight (kg). All of these pieces are combined and then, forwarded to the gateway using 

SDN-based WSAN. The gateway delivers this data to the Kafka Producer to be 

distributed to the related Kafka Consumers. The communication between WSAN 

(gateway) and Kafka (Kafka Producer) is provided using TCP/IP TCP sockets. As 

soon as the Kafka Producer pushes incoming data into the Kafka Broker, all Kafka 

Consumers fetch it for use in their individual job. 

 

As can be seen from Figure 4.9., the Kafka consumers are connected to the web 

application, Spark engine, and MongoDB, respectively. When Apache Spark gets the 

patient related ECG data, it tries to diagnosis disease using Logistic Regression model, 

in real-time. NodeJS web application sends the data from Kafka instantly to the 

connected client browsers using socket.io module. The illustration of the web-based 

user interface in Figure 4.10. shows the last record of patient data that is delivered by 

NodeJS application. Finally, all data introduced to the cloud is stored in the high-

performance MongoDB database for future use. 
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Figure 4.10. NodeJS patient information interface. 

 

4.5.1. Simulation environment and hypothesis 

 

In this study, the simulation scenario is examined to look into the performances of the 

developed models using the simulation model in [12]. An explanation of the network, 

together with the developed components, is shown in Figure 4.11.  
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Figure 4.11. Streaming scenario for IoT healthcare applications. 

 

Figure 4.11. shows the simulation streaming scenario; patient data comes from three 

RFID tags and three sensor sources. Each RFID tag is associated with SN to collect 

patient information such as patient identification, age, gender, height (cm) and weight 

(kg). SN source generates patient’s data such as QRS and PR as test data.  

 

4.5.1.1.  Numerical results and argumentations 

 

In this part, the composition of the logistic regression algorithm tested under the 

parameters as shown in Table 4.1. In Table 4.2., we can see the classification type for 

the diagnosis of WPW by a logistic regression algorithm. Training data is the correct 

data that logistic regression algorithm learned and build model. Testing data is the 

streaming data which generated randomly from the vertical domain system as shown 

in Table 4.3. These data are evaluated in real-time and the logistic regression algorithm 

predicted the results for each group of patients depicted as shown in Figure 4.12. The 

total average of the data (Input Rate) in Kafka/Spark streaming processes tested and 
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investigated in different partitions as shown in Table 4.4. Finally, the proposed system 

can deal with unexpected failures using number of partitions as explained in Table 4.5.  

 

Table 4.1. Logistic regression algorithm parameters. 

Parameter Value 

set max iterations 10 

set regularization parameter 0.3 

set elasticnet mixing parameter 0.8 

 

Table 4.1. shows the parameters used in the logistic regression algorithm settings. Max 

Iterations is the maximum number of runs. The Regularization parameter is an input 

value of lambda in the model, which reduces the variance of the estimated regression 

parameters. The regularization path is computed for the elasticnet penalty at a grid of 

values for the regularization parameter lambda. 

 

Table 4.2. Classification table. 

Class Number Patient Sate 

0 Not Wolf Parkinson White 

1 Wolf Parkinson White 

 

Table 4.2. shows the data classification of the logistic regression algorithm, which 

classified the data into two categories of WPW disease. 

 

Table 4.3. Data streaming. 

Data Record Numbers 

Training Data 350 

Testing Data 15000 

 

In Table 4.3., the logistic regression builds the trainer model from 350 patients as 

training data. The algorithm was also tested on 15,000 data streaming of patient 

records as testing data. 



60 

 

 
 

 

Figure 4.12. Logistic regression predicted results. 

Figure 4.12. displays patients’ incoming data, as well as the logistic regression 

algorithm’s classification of the data in real time and the predicted results according 

to the data training model. Patient data are patientID, age, gender (0 for males and 1 

for females), height, weight, QRS, and PR. The ‘label’ column is the estimated class 

rating. For example, for patientID (335) in the second row, which shows a QRS 

interval of 124 milliseconds and a PR interval of 129 milliseconds, the label rating 

value is equal to the expected value of the logistic regression. In this case, the logistic 

regression classifies this record as negative for WPW disease (patient = 1, healthy = 

0). When the data for this patientID (335) changes to a QRS interval of 86 milliseconds 

and a PR interval of 33 milliseconds, as seen in the fifth row of Figure 4.12., the label 

value is not equal to the expected logistic regression. In this case, the logistic 

regression classifies this record as positive for WPW disease. The accuracy of the 

model resulting from this set of records is about 70%.  

 

Table 4.4. Total average of the input rate. 

Streaming Partition 1 Partition 2 Partition 3 

Input Rate 123.25 records /sec 140.10 records /sec 165.18 records/sec 

 

Table 4.4. shows the total average of streaming data which is tested in three topics 

with different number of partitions. Each topic of Kafka distributes the incoming data 

received across a number of partitions that is created with this topic. The Kafka topic 
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receives data across a distributed set of partitions. As can be seen in Table 4.4., when 

the number of partitions increases, the number of records also increases. 

 

Table 4.5. Streaming Data with Number of Partitions. 

Input data size Partition  Offset 1 Offset 2 Offset 3 

120 records 1 16552 to 16671 - - 

120 records 2 10300 to 10365 10182 to 10237 - 

120 records 3 34506 to 34548 34668 to 34707 34503 to 34542 

 

The Kafka’s offsets management help to restore the state of the stream throughout 

Spark direct streaming’s lifecycle and deal with unexpected failures. Table 4.5. 

indicates the input data size of 120 records, which contains the offset numbers for each 

partition. When the number of partitions in the Kafka data streaming was increased, 

the number of offsets was increased; for example, partition 1 included one offset, 

whereas partition 2 included two groups of offsets and partition 3 included three 

groups of offsets. The benefit of increasing the number of partitions is if one of the 

partition’s offsets fails, Kafka continues processing by using the other offsets.  

 

We tested several scenarios by setting the number of patients in each application where 

is one application includes the source SN and RFID reader. First scenario with one 

application and second with two applications and the third with three applications, 

each application include two patients. The end to end delay and throughput results for 

three scenarios are shown in Figure 4.13. and Figure 4.14. respectively.  
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Figure 4.13. The end to end delay for the three applications 

 

 

Figure 4.14. Throughput (bit/s) for the three applications 

 

It is possible that the path is changing during transmission time using the SDN based 

WSAN to prolong network lifetime as discussed in previous chapters. We can be 

observed from the figures when number of applications increased lead to a higher end 

to end delay, as well as the throughput results. 
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CHAPTER 5. ENHANCED SDN TOPOLOGY DISCOVERY AND 

IOT GATEWAY 

 

 

5.1.  Introduction 

 

The beacon frame is the key factor to configure the IEEE 802.15.4 superframe. The 

components of the IEEE 802.15.4 superframe structure were discussed in chapter 2. 

The beacon settings have a power of influencing the WSAN performance such as 

throughput and delay which are essential elements to meet the requirements of IoT 

applications. The SDN network topology discussed in chapter 3, which involved the 

topology discovery process to configure the beacon frame.  

 

In this chapter, we improve the topology discovery process in a way that relies on the 

resulting path of the Fuzzy-based Dijkstra algorithm. This method is called an 

Enhanced SDN-WSAN Fuzzy-based Dijkstra (ESWFD).  

 

Another issue is to connect the system to the cloud via an IoT gateway. As we have 

seen in chapter 4, we provided the communication between the vertical domain of IoT 

devices with the horizontal domain system using the gateway. The system gateway 

directed the data flow in real-time from the vertical domain to the horizontal domain. 

This gateway is part of a vertical domain system that uses a single client / server TCP 

socket program. In this chapter, we enhance the system gateway using message queue 

telemetry transport (MQTT) protocol. The MQTT is a simple messaging protocol with 

low bandwidth to connect sensors (resource-constrained) devices to the internet. In 

MQTT, we can create many topics and from any system, many senders and receivers 

can share either a single topic or multiple topics. 
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5.1.1. Related research 

 

The following literature references on the MQTT protocol are diverse. An application 

programming interfaces of MQTT and API web for IoT cloud is presented in [68] 

which the results are evaluated in term of average response time, average transmission 

delay and memory occupation for many tasks of IoT applications. An application layer 

protocols such as MQTT and CoAP protocols are analysed with respect to the cloud 

in [69] which their IoT architectures consists of 6 levels. The authors of [70] propose 

a real-time problem-oriented solution through IoT technologies and vehicle cloud 

service, therefore, the cloud parking service is designed according to the MQTT 

communication principle. The implementation of MQTT-S tested on the IBM wireless 

sensor networking testbed [71], which is integrated to ZigBee-based networks. 

 

In this chapter, the main contributions can be summarized as follows: 

1. To enhance Fuzzy-based Dijkstra's algorithm in SDN beacons structures via 

cross-layer (Topology Discovery and MAC layers). 

2. Develop an interface between MQTT [72] and Riverbed Modeler simulation 

allowing the system to send WSAN data to IoT cloud. 

3. Develop a IoT web interface using NodeJS [73] for monitoring application to 

receive the network data from SDN and application data from destination node. 

 

5.2.  The Proposed ESWFD for IoT Applications 

 

The proposed ESWFD architecture consists of two domains, namely the vertical 

domain (SDN and WSAN structure), and a horizontal domain (MQTT, and NodeJS) 

as outlined in Figure 5.1.   
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Figure 5.1. The general description of the ESWFD proposed IoT architecture. 

 

5.2.1. Components of the ESWFD system  

 

 As stated earlier, the SDN-based WSAN is developed through the study given in [12] 

and chapter 3. The new components of SDN node model as shown in Figure 5.2. (a), 

which consist of four main modules as the following: 

1. The MAC module [12].  This module modified to reconfigure beacon according to 

the topology discovery. 

2. The Routing Decision and Flow Table (RDFT) module modified to allow the SDN 

controller to send node status information and flow table information to be 

monitored over the internet using MQTT broker.  

3. The topology discovery module includes new procedures to configure SDN beacon 

frame. 

4. The MQTT publish module was developed to send data to MQTT broker.  
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Figure 5.2. The system components, the node model of SDN (a) and the node model of sensor node (b). 

 

In Figure 5.2. (b), the components of sensor node model consist of six modules, in this 

chapter, the new and modified modules are explained as the following: 

1. The application layer module is for both source and destination nodes. Source node 

uses this module to generate data such as the temperature, humidity and carbon 

dioxide (CO2) [74] data and sends it to the Packet Switch (PKSW) module. When 

this data arrived at this module, destination node (gateway) sends it to IoT could via 

his MQTT publish module. 

2. The MQTT publish module was developed to send data to MQTT broker.  

 

5.2.2. SDN topology discovery 

 

Topology discovery in SDN supports a cluster topology for the active routing nodes, 

which every node transmits beacons utilized in the MAC and the Physical layers. In 

order to save energy and establish a synchronized network, the IEEE 802.15.4 beacon-

enable mode is considered in [12].  Beacon-enable mode has active and inactive 

periods in the superframe [4]. The IEEE 802.15.4 standard active Superframe Duration 

(SD) [75] is defined in (Equation 5.1).  
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  𝑆𝐷 = aBaseSuperframeDuration ∗ ( 2)𝑆𝑂                                                                 (5.1) 

 

The aBaseSuperframeDuration indicates the minimum duration of the superframe, 

corresponding to superframe order (SO) when it is equal zero. The SD active period 

should change the SD length to the number of routers in each cluster, especially when 

the application path is established between routers. This path aims to transfer data 

between number of clusters from source to destination nodes.   

 

Figure 5.3. Flowchart of two algorithms to calculate the SD, Fuzzy-based Dijkstra (A) and Fuzzy-based Dijkstra 

Beacon (B). 

Equation 5.3 

Equation 5.2 
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The topology discovery procedures as shown in Figure 5.3. has two methods to 

calculate the SD in order to improve the network performance. The first method is the 

Fuzzy-based Dijkstra's (FD) [12] shown in Figure 5.3. (A), is checking the network 

structures according to the number of routers (NR) that have children nodes. In this 

method, the SD active period calculated in (Equation 5.2) according to NR and 

multiplied by (Equation 5.1). The second method is a Fuzzy-based Dijkstra’s Beacon 

(FDB) shown in Figure 5.3. (B). This new method calculates the SD active period in 

(Equation 5.3), according to the cluster number (CN) divided by the routers counter 

(RC) that are in the application’s path. Moreover, the beacon configuration of ZigBee-

based WSAN is shown in (Equation 5.1), which is the default setting for IEEE 

802.15.4 standard. The Beacon’s option of the three methods summarized in Table 5.1. 

Table 5.1. Algorithms Configurations 

 

 

 

𝑆𝐷 = NR ∗ aBaseSuperframeDuration ∗ ( 2)𝑆𝑂                                                        (5.2) 

𝑆𝐷 =
CN

RC
∗ aBaseSuperframeDuration ∗ ( 2)𝑆𝑂                                                        (5.3) 

 

 

5.2.3. Message queue telemetry transport  

 

Message queue telemetry transport (MQTT) is an IoT connectivity protocol used in 

the vertical domain gateway sensors to send data to cloud. Therefore, MQTT provides 

a lightweight method that uses publish and subscribe operations to exchange data 

between clients and the server. There are many types of MQTT brokers, in this study 

we use the open-source mosquitto [72] MQTT broker to provide communication 

between WSAN devices and the cloud.  

 

 

 

 

No  Name Beacon’s option 

1 Fuzzy-based Dijkstra’s Beacon (FDB) Cluster Number/ Routers Counter 

2 Fuzzy-based Dijkstra’s (FD) Number of Routers 

3 ZigBee-based WSAN 1 
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5.2.3.1.  MQTT Communication 

 

The MQTT mosquitto broker is responsible for sending the message from the publisher 

to the client subscribed via a specific topic. Figure 5.4. shows the communication 

between the MQTT broker and MQTT clients which these clients can be as publish or 

subscribe. Many MQTT receivers can subscribe to different topics, and mosquitto 

distributes messages from publishers according to their topics to the correct 

subscribers.  

 

Figure 5.4. MQTT broker and client communication. 

 

In our system, we build MQTT publish in the gateways (SDNC and destination SN), 

through these portals, the flow of data directed from the vertical domain to the 

horizontal domain in real-time. These gateways are a part of the vertical domain 

system and is connected to MQTT broker (mosquitto).  MQTT subscribe receives the 

data stream from the MQTT broker to NodeJS application server. Thereafter, NodeJS 

sends the streaming data to the web application as shown in Figure 5.6. 
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5.2.4. The ESWFD system operations 

 

The sequence diagram shown in Figure 5.5. presents the end-to-end data delivery 

operation of the proposed system. It clarifies the main operations performed to transfer 

the data and the flow table from the vertical domain to the horizontal domain. The 

vertical domain that is designed and simulated using the Riverbed Modeler has source 

node, SDN controller node, intermediate nodes and destination node, as can be seen 

from the Figure 5.1. and Figure 5.5. On the other hand, the horizontal domain of the 

proposed architecture has been built using real-world technologies such as MQTT, and 

NodeJS. 

 

 

Figure 5.5. The sequence diagram for end-to-end data delivery operations. 

 

The system operations related to connection establishment and data transfer are 

described in the diagram shown in Figure 5.5. After the topology discovery operation 

has been completed, the source node uses the Application layer module to send a 

connection request packet to the to the Packet Switch (PKSW) module (step 1.1-1.4). 
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The request is transmitted into a command frame during the contention access period 

until it reaches the SDNC node model. SDNC receives this connection request at the 

Routing Decision Flow Table (RDFT) module. RDFT then uses the Fuzzy-based 

Dijkstra algorithm to create the optimal path between the source and destination nodes. 

Through this path, it builds a flow table for the application and the relevant nodes on 

the path (step 1.5). Accordingly, RDFT unit sends the flow table, nodes’ status 

information, and application path to MQTT publish module and the flow table to MAC 

module (steps 1.6 and 1.7) respectively. At the same time, RDFT also sends the routing 

path to the topology discovery to check the structure (steps 1.8-1.9). After that, 

topology discovery unit sends a new beacon configuration to the MAC module (step 

1.10). When routers receive the beacon, they check and add the entry to its flow table 

and then redirect the flow table according to the next address to other nodes (steps 

1.10, 2.3 and 2.4). When the source node receives a flow entry at the MAC module, 

the MAC unit forwards it to the PKSW module. PKSW unit inserts this entry into its 

flow table and then connection establishment procedure is completed (steps 1.11-

1.13). At this point, the source node begins to send data packets (steps 2.1 and 2.2). 

Next, the PKSW module checks the address of the next hop using its flow entries to 

forward packets. The same procedures are repeated for each router node to forward the 

packets (steps 2.3‐2.5). After that, the destination node receives the data, it sends this 

data to the MQTT publish module (steps 2.5‐2.8) to be handed out to the cloud. 

 

5.3.  Experimental Results and Discussions 

 

In Figure 5.7. the Riverbed Modeler simulation of the system was run for 1800 

seconds.  The source node generates data (i.e., temperature, humidity, and CO2) in 

every 2 seconds. The SDN controller data are the status information of the nodes (i.e., 

remaining energy and neighbours of the node with related SNR), flow table and 

application’ path. The SDN controller and the source nodes send their data to MQTT 

mosquito broker using the MQTT publisher. NodeJS web interface as shown in Figure 

5.6. receives these data using MQTT subscribe. arrived at NodeJS web interface and 

the application’s data arrived at NodeJS web interface from the source node 

application. 
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Figure 5.6. NodeJS information interface. 

 

5.3.1. Simulation scenario and discussion 

 

In this scenario, the simulation model in [12] was enhanced to evaluate the network's 

scenario as shown in Figure 5.7., which includes 50 sensor nodes and SDN controller 

node. The data travelled from source node to destination node via the routers in the 

application path that has generated from SDN controller node.  
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Figure 5.7. The simulation model of the SDN controller and 50 sensor nodes 

  

5.3.2. Performance analysis and scenario results 

 

The Simulation configuration for this scenario made for Fuzzy-based Dijkstra's (FD), 

Fuzzy-based Dijkstra's Beacon (FDB) and Zigbee shown in the Table 5.2. The results 

show that FDB performs better than FD and Zigbee in terms of Throughput, End‐to‐

End Delay and Jitter shown in Figures (5.8, 5.9 and,5.10) respectively. 

 

Table 5.2. Parameters of the Simulation 

 Group Name Name Value 

Topology of the Network 

scenario  

Number of end devices 50 

Network coverage area 300 m × 300 m 

SDNC location (x, y) (150, 150) 

Simulation time 1800 s 

Application configuration Start time 50 s 

Packet interarrival time   2 s  

Packet Size 280 bits 
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Figure 5.8. Throughput (bit/s) for 50 nodes and one application 

 

Figure 5.9.  End‐to‐End Delay for 50 nodes and one application 
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Figure 5.10. Jitter for 50 nodes and one application 

 

Figure 5.11. Delay, Jitter and Throughput on different network sizes  
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CHAPTER 6. OVERALL CONCLUSION AND FUTURE WORK 
 

 

We have made a number of contributions and investigations into this thesis, where the 

SDN-based WSAN proposed as a new structure to solve the problem statement of the 

thesis. We discussed the main problems of this research, namely, the development of 

a new energy-aware routing mechanism in the SDN controller. Secondly, the 

integration of the SDN-based WSAN for the Internet of Things using WSAN and 

RFID technologies. The thesis contains of six chapters. The main contributions are 

involved in four chapters. In this chapter, we summarize the overall conclusion for 

each chapter and future work. 

 

Chapter 1 provided a motivation, problem statement, the goal of the research, research 

contributions, and the related work to the thesis. Moreover, the SDN-based WSN 

routing protocols were discussed in this chapter. 

 

Chapter 2 discussed the integration of SDN-based WSAN for Internet of Things. Also, 

we explained the challenges of this integration, most importantly energy routing 

management. The software-defined networking architecture for IoT is discussed in this 

chapter which contained SDN application plane, SDN control plane, SDN data plane 

and WSANFlow protocol stack. IEEE 802.15.4 and superframe structure are described 

in detail.  

 

Chapter 3 presented the architecture design of routing protocol in the SDN controller. 

the SDN controller components and algorithms such as combined flow tables, network 

topology, node status, Dijkstra’s algorithm, and fuzzy logic are discussed in this 

chapter. The components of the proposed system are modelled and simulated using the 

Riverbed Modeler software for more realistic performance evaluation.  
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Simulation results showed software-defined networking in the proposed system have 

provided a management and control solution to WSANs. In addition, the proposed 

system can reconfigure WSANs after deployment and is capable of both providing an 

effective cluster routing when finding the most efficient route and prolonging the 

network lifetime.   

 

The energy consumption results showed the proposed SDN-based WSAN with a 

fuzzy-based Dijkstra algorithm is performed better than the regular Dijkstra's and 

ZigBee counterparts. Furthermore, the SDN appeared as the most powerful candidate 

to solve the problem of network flexibility in WSAN among deployment options.  

 

The performance metrics are the power consumption ratio and SNR used in the 

proposed system when the application path is established between WSAN devices. 

Therefore, in future work, the proposed system needs to increase the number of 

performance metrics according to the needs of the IoT application.  

 

Chapter 4 presented a new real-time IoT data analytics architecture for healthcare 

architecture. The proposed system composed of an SDN-enabled WSAN and RFID in 

the vertical domain and of data analytics tools such as Kafka, Spark, MongoDB and 

NodeJS in the horizontal domain. The developed system has been tested for real-time 

detection of Wolf Parkinson White syndrome using logistic regression method. The 

obtained results on the Arrhythmia dataset revealed that this disease can be predicted 

with high accuracy (i.e. %70 in average) using the proposed architecture, in real-time. 

Considering the fact that the proposed system includes high performance and scalable 

data analytics technologies such as Kafka and Spark, it is not difficult to conclude that 

this new architecture can be used effectively in real-time big data processing 

applications.  To model and simulate any IoT enabling technology, the developed 

system also communicates with Riverbed Modeler using TCP sockets. So, the 

proposed architecture can be used as a time-saving experimental environment for any 

IoT-based system. 
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In addition, to integrate IoT technology – namely radio frequency identification into 

the WSAN source devices as part of vertical domain devices. Furthermore, the 

communication and implementation between the vertical and horizontal domain 

devices will be included in the chapter. 

 

Therefore, an effective data routing strategy with low power consumption for WSANs 

should be smart and flexible in the SDN controller to meet IoT requirements.  

 

Chapter 5 presented an enhanced SDN-based WSAN fuzzy-based Dijkstra, ESWFD, 

which can reconfigure the SDNC’s beacon after the application path is established. 

ESWFD is also designed with an IoT gateway between ESWFD and MQTT to support 

IoT applications in real-time. The IoT gateway is used to collect data in order to send 

it to the cloud. The IoT cloud requires a network to support real-time data transfer in 

order to analyse the data for some IoT applications. 

 

The ESWFD improves the system performance, which was compared with a 

traditional ZigBee, and the Fuzzy-based Dijkstra. The results increased the capacity of 

network throughput and reduced packet delay and jitter. 

 

The improvement in delay results is required for some applications, where each 

application requires different QoS support. For example, delay is another important 

measure of performance, especially for time-critical services. For future work need to 

evaluate the QoS requirements for applications and to be able to manage the network 

using a web interface. 
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