T.C.
SAKARYA UNIVERSITY

INSTITUTE OF SCIENCE AND TECHNOLOGY

SDN INTEGRATION FOR INTERNET OF THINGS
USING WSN AND RFID

Ph.D. THESIS
Mohammed Hussein AI-HUBAISHI

Department . COMPUTER AND INFORMATION
ENGINEERING
Supervisor - Prof. Dr. Celal CEKEN

November 2019

T.C.
SAKARYA UNIVERSITY

INSTITUTE OF SCIENCE AND TECHNOLOGY

SDN INTEGRATION FOR INTERNET OF THINGS
USING WSN AND RFID

Ph.D. THESIS

Mohammed Hussein Al-HUBAISHI

Department : COMPUTER AND INFORMATION
ENGINEERING
Supervisor : Prof. Dr. Celal CEKEN

This thesis has been acceptedunanimously)/ with majority of votes by the
examination committee on 29/11 /2019

J N = A;\m/-\ /E i el
(W \])/ l: (- e & ; " Ly :
Prof. Dr. elal?}"eken Prof. Dr. Emine Dogru Asst. Prof. Dr. Seckin Ar1

Head of Jury Bolat Jury Member
Jury Member
LA N Ay ~—
Assoc. Prof. Dr. Ali Calhan Assoc. Prof. Dr. Devrim Akgiin

Jury Member Jury Member

DECLERATION

I declare that all the data.in this thesis was obtained by myself in academic rules, all
visual and written information and results were presented in accordance with academic
and ethical rules, there is no distortion in the presented data, in case of utilizing other
people’s works they were refereed properly to scientific norms, the data presented in
this thesis has not been used in any other thesis in this university or in any other

university.

Mohammed Hussein Al-Hubaishi

ACKNOWLEDGEMENT

Firstly, thank you, Almighty Allah, for giving me enough strength to perform and

complete my Ph.D. thesis study successfully.

Secondly, I would like to give credit with deep appreciation and respect to my advisor
Prof. Dr. Celal Ceken for his valuable efforts, unprecedented support and priceless
advice since the first day we met. Also, | would like to express my thanks to the jury

members.

Furthermore, | would like to extend my thanks to YTB (Yurtdis1 Tiirkler ve Akraba
Topluluklar Baskanligi) for financial support during my Ph.D. study. Also, | would
like to acknowledge that this work was supported by the Scientific and Technological
Research Council of Turkey (TUBITAK) with project number (116E008). Likewise,
to my friends in Sakarya, and my colleagues in the 10T Research Laboratory, many
thanks for you, especially to Ali Burhan and Nur Banu OGUR for their work with us

in the projects.

Finally, I deeply thank all my family members especially my lovely mother, father,
my wife and my children for their unconditional love, valuable advice, encouragement,
trust, prayers, for giving me a reason to keep moving forward. Thank you, my friends,

in Sakarya and Sakarya University for the happy time they have shared with me.

TABLE OF CONTENTS

ACKNOWLEDGEMENT ...
TABLE OF CONTENTS ... e
LIST OF SYMBOLS AND ABBREVIATIONS ...,
LISTOF FIGURES ... e
LIST OF TABLES ... e,

CHAPTER 1.
1.1. Motivation and Problem Statement...................coooeiiiiiiiinl.
111 MOtIVALION. ...
1.1.2. Problem statement.............ooiiiiiiiii
1.2. TheSiS GOalS.eeiie e
1.3. Research Contributions............c.cooviiiiiiiiii e,
14 Related WOrK. ..o,
1AL WSN FOULING. ..ot
1.4.2. SDN-based WSN routing protocols.........................e.e.
1.5, TheSIS StrUCIUIE. vt

CHAPTER 2.

THE INTEGRATION OF SDN-WSAN FOR INTERNET OF THINGS USING

IEEE 802.15.4. . ..o ittt
2.1 INtrodUCtioNn. ..o
2.2. SDN-based WSAN for Internet of Things......................oooeet.
2.3. Software-Defined Networking Architecture for 1oT...................

2.3.1. SDN applicationplane.............ccooviiiiiiiiiiiiieeene,

8

2.3.2.SDNcontrol plane.............ooooiiiii
2.3.3. SDN dataplane.........ccoooviiiiiiiii e
2.3.4. OpenFlow (WSANFlow) protocol stack.........................

CHAPTER 3.
THE SDNC FUZZY-BASED ROUTING DECISION ...,

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

3.7.

3.8.

INtrodUCTION. ...
The SDNC Fuzzy-based Routing Decision................c.ccceevevine.
Combined Flow Tables..........c.ooiiiii
NEetWOrk TOPOIOQYovirie e
Node Status Aggregation (NSA)ccooevriiiiiiiiiiiieeen,
FUZZY LOQIC. .. e e
3.6.1. FUzzification.........oooiii i
3.6.2. Ruleevaluation..............ocoeiiiiiii e,
3.6.3. Defuzzification...........cooevuiiiiii i
Dijkstra’s Algorithm. ..o,
3.7.1. Flowtables layout...............cooiiiii
Simulation Results and DiSCUSSION.............covviiiiiiiiiiinennes.
3.8.1. Simulation environment: parameters and scenarios...........

3.8.2. Simulation results and disCUSSION..........ooeviiiiiieee..

CHAPTER 4.
INTERACTING THE VERTICAL DOMAIN DEVICES OF I0T SYSTEM
WITH HORIZONTAL DOMAIN SYSTEM ...

4.1.
4.2.

4.3.

4.4,

0T Technologies Related Work..............coooviiiiiiiiiiiiiiin,
Vertical Domain DeVICESc.iviiiiiiii e
4.2.1. Software-defined networking based WSN.....................
4.2.2. Radio frequency identification.....................ccoeeinene.
Horizontal Domain System.............cooiiiiiiiiiiie
431 KafKa. ...
4.3.2. Apache spark........cocooviiiiiii
Case Study: Real-Time Disease Diagnosis by Logistic Regression

43
43
45
47
48
50
50
54
54

4.4.1. Electrocardiogram...........coooiiriiriiiiiiiie e
4.5. Experimental Results and DisCUSSIONS...............ccoviiiiiniinenn...

4.5.1. Simulation environment and hypothesis........................

CHAPTER 5.
ENHANCED SDN TOPOLOGY DISCOVERY AND IOT GATEWAY
5.1, INtrOdUCTION. ...eee e
5.1.1. Related research...........ccooviiiiiiiiiiieee,
5.2. The Proposed ESWFD for IoT Applications............................
5.2.1. Components of the ESWFD system..............................
5.2.2. SDN Topology DiSCOVErY.........cvvveeniiiiiiiiiiiiiieianann,
5.2.3. Message queue telemetry transport............................
5.2.4. The ESWFD system operations..................cccoevenenn...
5.3. Experimental Results and DisCUSSIONS...............ccevviiininnnnn...
5.3.1. Simulation scenario and diSCUSSION................cceovvueenn.

5.3.2. Performance analysis and scenario results....................

CHAPTER 6.
OVERALL CONCLUSION AND FUTUREWORK........cccooiiiiiiiiiienes

REFERENCES. ...
RESUME . .

LIST OF SYMBOLS AND ABBREVIATIONS

SDN
loT
MQTT
WSN
WSAN
ESWFD
SD
FDB
FD
RDFT
RFID
SNR
Bl

: Software Defined Networking

. Internet of Things

: Message Queue Telemetry Transport

: Wireless Sensor Networks

: Wireless Sensor and Actuator Network
: Enhanced SDN-WSAN Fuzzy-based Dijkstra
: Superframe Duration

: Fuzzy-based Dijkstra’s Beacon

: Fuzzy-based Dijkstra's

: Routing Decision and Flow Table

: Radio frequency identification

: Signal-to-Noise Ratio

: Beacon interval

LIST OF FIGURES

Figure 1.1. Routing Energy Problem in WSAN ... 3
Figure 2.1. The Architecture of the SDN-based WSN clusters for 10T 12
Figure 2.2. IEEE 802.15.4 superframe [43]cccooiiirininieeiee e 15
Figure 2.3. Superframe inactive period (Sleep time)........cccoceveveiineniniiicieeee, 16
Figure 3.1. Architecture design of routing protocol in the SDN controller............... 19
Figure 3.2. Sequence diagram of the SyStem ProCeSSEScccevverveiieeieeriesieeseerieanns 20
Figure 3.3. Combined flow table Class...........ccccooiiiiiieiiiie e 21
Figure 3.4. The network tOPOI0gY........ccoeiiiriiiiiiiiii st 23
Figure 3.5. Node Status aggregationcceoererinenenieiee e 24
Figure 3.6. Fuzzy logic with inputs and OULPUL............cccceevveiieieiie e 25
Figure 3.7. Fuzzy inputs SNR and battery level memberships........cccccoevvvieinennne. 25
Figure 3.8. SNR, battery membership functions map the input values 26
Figure 3.9. Rule evaluation reSUILScoeiiiiiiiiiiieeee e 28
Figure 3.10. Fuzzy output cost membershipccecvveieeieiiese e 29
Figure 3.11. EXample fuzzy reSUILS.........cccccoveiieiieiicce e 30
Figure 3.12. The flowchart of the defuzzification procedures............cc.ccoovvvrrrnnnnnn. 31
Figure 3.13. Dijkstra's with fuzzy routing algorithm ..., 33
Figure 3.14. Dijkstra’s al@orithm...........cccooiiiiiiiiiieicee e 34
Figure 3.15. Network topology SCenario 1........cccccevveieeiieiieie e 35
Figure 3.16. Network topology SCeNario 2..........ccocvvvvirieiiieieic e 35
Figure 3.17. Network topology SCenario 3..........ccocevirerieieieiene e 36
Figure 3.18. First ED deaths with number of EDs and number of applications........ 38
Figure 3.19. Scenario for 50 EDs and one applicationcccceevveviieiieevie e 39
Figure 3.20. Number of ED deaths OVer tiMe.........ccocovviriiieiene e 40
Figure 3.21. Network loads for the intermediate end devicesc.ccocvvvrirveiennen. 41
Figure 3.22. Throughput (bit/sec) and end-to-end delayccccocovevieiiiiiiieiiieninnn 41

Vi

Figure 4.1. Outline of the RFID in vertical domain architecture.cc..ccceovennne. 47

Figure 4.2. SN with RFID reader node model and RFID reader process model. 48

Figure 4.3. RFID tag node model and process model..............cccooeieniniiiiiiicnenen, 49
Figure 4.4. Streaming gateway and Kafka (producer/consumer).ccccoeeeervenenne 51
Figure 4.5. The commands to run zookeeper and Kafka servers..........c..ccccccevvenenne. 52
Figure 4.6. Include the c-based socket in riverbed node model.............cccccvevnene. 52

Figure 4.7. The destination SN (gateway) use the socket to send packet to Kafka... 53

Figure 4.8. Java hased SOCKEL............coiiiiiee e 53
Figure 4.9. The Sequence diagram for end-to-end data delivery operations. 55
Figure 4.10. NodeJS patient information interface.cccoocevviveiieii e 57
Figure 4.11. Streaming scenario for 10T healthcare applications.c.ccccevneee. 58
Figure 4.12. Logistic regression predicted results.ccoovvvieneienininienieeee, 60
Figure 4.13. The end to end delay for the three applications............c.cccccccevvvevvenenne. 62
Figure 4.14. Throughput (bit/s) for the three applications............c.c.ccceveveiieereenenne. 62

Figure 5.1. The general description of the ESWFD proposed IoT architecture. 65
Figure 5.2. The system components, the node model of SDN (a) and the node model
0f $eNSOr NOAE (D)....ccveeiicece e 66

Figure 5.3. Flowchart of two algorithms to calculate the SD, Fuzzy-based Dijkstra (A)

and Fuzzy-based Dijkstra Beacon (B).cccccovviiiinencieniiiseeeees 67
Figure 5.4. MQTT broker and client communiCation.ccccooererenineniniieeen, 69
Figure 5.5. The sequence diagram for end-to-end data delivery operations............... 70
Figure 5.6. NodelS information interface.cccocveieeviiii i 72
Figure 5.7. The simulation model of the SDN controller and 50 sensor nodes......... 73
Figure 5.8. Throughput (bit/s) for 50 NOUES...........ccceriririiieieiee e, 74
Figure 5.9. End-to-End Delay for 50 n0desccccereirieniiinincnieinc s 74
Figure 5.10. Jitter for 50 NOAESccveivieiieiieie e 75
Figure 5.11. Delay, Jitter and Throughput on different network sizes 75

vii

LIST OF TABLES

Table 2.1.
Table 3.1.
Table 3.2.
Table 3.3.
Table 3.4.
Table 3.5.
Table 4.1.
Table 4.2.
Table 4.3.
Table 4.4.
Table 4.5.
Table 5.1.
Table 5.2.

Beacon interval and superframe duration evaluationcc.ccccvenie.n. 15
FUZZY 10gIC TUIE DASEeeveeiiecec e 28
Cost vs battery 1eVel...........oooiie 31
FIOW tah1€ BNTIIES.....ocei e e 34
SIMUIALION PArAMELETScvieieciiccie e enees 37
Path INFOrMALIONoiiiiiicice e 39
Logistic regression algorithm parameters.c.ccoevvevviieiierecieseeenn, 59
ClasSifiCation TADIE.coeiiee e 59
Data STrEAMING. ..c.eeueeeeitiiterieeeee et bbb 59
Total average of the INPUL Fate.coeveiieeie e 60
Streaming Data with Number of Partitions.............ccccccvvveveiiieiieiniinennn, 61
Algorithms Configurationscccooeiiiiiinineee e, 68
Parameters of the SIMUlationcccooeviiii i 73

viii

SDN INTEGRATION FOR INTERNET OF THINGS USING WSN
AND RFID
SUMMARY

Keywords: Software-Defined Networking, SDN, Wireless Sensor Networks, WSN,
Internet of Things, 10T, RFID, Apache Kafka, Apache Spark.

Internet of Things (10T) has started to touch every aspect of our lives, from home
automation, smart factories, energy management systems, precision agriculture to
smart city systems, etc. Wireless Sensor Networks (WSN) play an important role in
various loT applications. One of the challenging problems for any WSN design is lack
of flexibility in network management. Software-Defined Networking (SDN) is a new
approach that promises a more flexible and dynamically reconfigurable network
structures. When designing WSN, energy problem must also be considered since each
device in the network has limited battery capacity.

This study proposes a new routing discovery algorithm which allows the SDN-enabled
WSN to make smarter routing decisions considering the received signal strength and
remaining energy of the devices. The new architecture employs a fuzzy-based
Dijkstra’s algorithm when deciding the best path between the source and the
destination. The study also introduces a new real-time data analytics architecture for
loT applications, consisting of a WSN and radio frequency identification (RFID)
technology in the vertical domain. The platform proposed also has highly scalable and
high-performance data analytics tools such as Apache Kafka, Apache Spark and
MongoDB, in the horizontal domain.

Simulation results show that the proposed routing discovery mechanism can provide
effective clustering routing for SDN-based WSN and can prolong the network lifetime
by reducing the energy consumption of the nodes in the network. The results also show
that the proposed IoT data analytics system can process data in real-time, successfully,
and is capable of handling large amounts of data easily, owing to the scalable
technologies deployed.

OZET

Anahtar Kelimeler: Yazilim Tanimli Aglar, Kablosuz Algilayict Aglar, Nesnelerin
Interneti, Radyo Frekansli Tanimlama, Apache Kafka, Apache Spark.

Nesnelerin Interneti (NI) ev otomasyonundan akilli fabrikalara, enerji yonetim
sistemlerine, hassas tarimdan akilli sehir sistemlerine vb. kadar hayatimizin her
alanma dokunmaya basladi. Kablosuz Algilayict Aglar (KAA) g¢esitli NI
uygulamalarinda onemli bir rol oynamaktadir. KAA tasarimlari i¢in en Onemli
sorunlardan biri, ag yoOnetiminin olduk¢a zor olmasidir. Yazilim Tanimli Aglar
(YTA), daha esnek ve dinamik olarak yeniden yapilandirilabilir bir ag yapilari vaat
eden yeni bir yaklagimdir. KAA’1 tasarlarken, agdaki her cihazin siirli pil kapasitesi
oldugundan, enerji sorunu da géz dniinde bulundurulmasi gereken 6nemli sorunlardan

biridir.

Bu calisma, YTA oOzellikli KAA'!n alinan sinyal giicii ve cihazlarin kalan enerjisi
dikkate alinarak daha akilli yonlendirme kararlar1 vermesini saglayan yeni bir
yonlendirme kesif algoritmasi 6nermektedir. Yeni mimari, kaynak ve hedef arasindaki
en iyi yolu belirlerken bulanik tabanli bir Dijkstra algoritmasini kullanir. Calisma
ayrica, dikey alaninda KAA ve radyo frekansli tanimlama (RFID) teknolojileri iceren
NI uygulamalari i¢in yeni bir gercek zamanli veri analitigi mimarisi de icermektedir.
Onerilen platform yatay alanda Apache Kafka, Apache Spark ve MongoDB gibi
yiksek diizeyde o6lceklenebilir ve yliksek performansli veri analizi araglarina sahiptir.

Benzetim sonuglari, 6nerilen yonlendirme kesif mekanizmasinin YTA tabanli KAA
icin etkili kiimelenme yonlendirmesi saglayabildigini ve agdaki diigiimlerin enerji
tilketimini azaltarak ag Omriinii uzatabilecegini gostermektedir. Sonuglar ayrica
onerilen NI veri analitigi sisteminin verileri ger¢ek zamanl olarak basaril bir sekilde
isleyebildigini ve konuslandirilan &lgeklendirilebilir teknolojiler sayesinde biyik
miktardaki verileri kolayca ele alabildigini gostermektedir.

CHAPTER 1. INTRODUCTION

This chapter provides an introduction containing a motivation and problem statement,
the goal of the research, research contributions, and the related work to the thesis. In
this chapter, the problem statement identifies the main issue that this research attempts

to address.

1.1. Motivation and Problem Statement

1.1.1. Motivation

The Internet of Things (IoT) has increased the number of devices on the internet,
largely because of the need to obtain information from these devices for various 10T
applications, so that the number of these devices is expected to continue to rise [1].
Cisco [2] expects that the number of Internet-connected devices will rise to

approximately 50 billion by next year.

Nowadays, wireless sensor and actuator networks (WSANS) [3][4] play a significant
role in data transfer from several systems through their various applications.
Applications include environmental monitoring data such as air temperature, humidity,
smog-like gasses and precision agriculture [5]. WSAN networks have become very
important and preferred for several applications due to characteristics such as their low
cost, small size, low power consumption, mobility, and multifunctional sensors. For
these reasons, integration of WSAN and 10T networks is useful for I0T applications,
but there are also challenges to meet 10T application requirements such as energy
efficiency, flexible management, and network reconfiguration after deployment [6][7].

The most important design constraints when constructing a WSAN is energy
efficiency, because each device operates with limited power resources. These devices
consume more power when they send or receive data depending on the routing
protocol used [8][9]. Therefore, the routing mechanism has to take in energy
consumption parameters to be controlled. Thus, a smart and flexible network is needed

for forwarding data among those devices.

Moreover, the routing protocol must be designed in such a way as to maximise the
lifetime of the network by saving energy [10][11]. The routing decision used in
traditional wireless network sensors [4] does not take into account energy consumption
during communication, which results in unmeasured energy consumption, unwanted
delays and a great deal of overhead traffic. These results are required for some loT
applications, since loT applications’ performance relies on the forwarding and routing
methods. Therefore, 10T applications need to make appropriate decisions based on the
lowest possible path cost to send data through WSN nodes from the source to the
target. This challenge requires an intelligent network energy administration for WSAN

devices.

Network management and control design form the key part of the solution, the
software-defined networking (SDN) architecture [12], which aims to provide solutions
such as flexible management and network reconfiguration after deployment to WSAN.
Since management of the limited battery is the most important task of a WSAN, as we

will see in the literature, there are many different proposals for this purpose.

The research interest of this thesis is to integrate the concept of SDN for IoT
technologies and perform better flexible network energy management for WSAN
devices.

1.1.2. Problem statement

The integration of the SDN-based WSAN for 10T, is expected to improve the energy
management of WSAN via a flexible and programmable network and to support 10T

applications requirements [11-40]. However, based on the literature survey aimed at
establishing a centralised network of sensor networks, there are two main problems
with the implementation of SDN-based WSAN, as shown in Figure 1.1.: efficient
routing of energy for WSAN devices, and the integration of IoT technologies. The
purpose of this study is to overcome these problems and propose a new structure to

improve system performance.

- §)
What is the Routing
an Efficient Routing Energy Strategies
- ~ ™ \¢
' B B [
R @

RFID integrated in WSN | | O

Spark
Mongoe DB
NodeJs
i Kafka

IoT Pl
cloud

Figure 1.1. Routing Energy Problem in WSAN

1.2. Thesis Goals

The research goal of this thesis is to develop a new energy-aware routing mechanism
in the SDN controller and to combine 10T technologies into the system, so that the
SDN controller can act as a smart and flexible network energy manager using a new
routing discovery mechanism for WSAN devices. In addition, to integrate IoT
technology — namely radio frequency identification (RFID) — into the WSAN source
devices as part of vertical domain devices. Furthermore, the communication and
implementation between the vertical and horizontal domain devices will be included

in the research.

1.3. Research Contributions

The most important component in the SDN controller is the routing decision model.
In this study, we use Riverbed Modeler as a practical performance evaluation for better

performance evaluation. The main contributions of this research can be summarised

as follows:

1.4.

A simple and flexible network structure and management was developed to
reduce energy consumption for SDN-based WSAN architectures.

An SDN-inspired approach, a new framework for WSAN, was designed.

An RFID model integrated with WSAN was developed.

Node status aggregation and fuzzy-based Dijkstra's algorithms were developed
in the SDN controller to take a routing decision approach to maximising the
network lifetime.

A new real-time loT-based data analytics architecture for smart healthcare is
proposed. This new platform has an SDN-based WSAN and an RFID structure,
in the vertical domain.

To enhance the performance of the system, a new routing discovery strategy
via cross-layer (Topology Discovery and MAC layers) was developed.

To link 10T vertical and horizontal systems, two different getaways were
developed, one using TCP/IP socket client/server programs and the other using
MQTT broker/client, allowing the system to send WSAN data to the 10T cloud.
An loT web interface using NodeJS was developed for monitoring network
configuration from the SDN controller and data of the 10T application from
destination node.

Related Work

In the following literature review, we discuss the current work on WSN routing

protocols and SDN-based WSN routing protocols.

1.4.1. WSN routing

Traditional wireless sensor networks are widely used by many applications in different

areas. A survey on WSN applications and energy is given in [9], in which WSN

applications were distributed into five major groups: node deployment, targets, service

area, required measurements, and data transmission requirements. The routing

protocol applications for WSN in [13] are classified into three groups: environment-
specific, task-specific, and general. Routing challenges are presented in [14] [15] for
WSNs that affect routing in the matter of power consumption, sensor deployment, link
diversity, adaptability, fault sufferance, broadcasting, communication, encasement,

quality of service and data collection.

Although many investigations have been conducted into WSN routing protocols, they
are still un-reprogrammable and unconfigurable during real-time operations for new
variables in the network to keep up with the applications requirements. Below, we
summarise the surveys performed on the routing protocols designed for WSN with
regard to network topology information, divided into three groups: hierarchical, flat,
and location-based routing.

Hierarchical routing: In this type of protocol, which is a cluster-based routing
protocol, the nodes are divided into parent node as cluster head (CH) and child node
as sensor node. The CH behaves as a router to decide on routes in order to pick the
best route. The network is also divided into several clusters, so that the parent node
aggregates the information of its child nodes. It uses the higher energy to process and
send the information [15]. The CH coordinate is selected between the clusters and the
routing activities and transmits information among the cluster nodes. Child nodes use
the low energy to send their status information to the parent node and subsequently
turn off to save energy. The CH collects the data and transmits it to the base station,
which means that the CH reduces the number of packets sent to the sink or reduces the
number of packets from a lower clustered layer to a higher one. This helps to reduce
power consumption in the network [16] [17]. While sensor nodes have different roles
in hierarchical routing, clustering forwarding is an efficient way to lower power

consumption and extends the network lifetime [8] [18].

Flat-based routing: In this type of protocol, each node at the same level acts as a router
for forwarding data, so that the same role is shared by, and the sensing task is equally
divided among all sensor nodes [15]. The routing procedures for each node lead to

more power consumption. This method is good for maintaining network problems.

Flat-based routing uses the flooding packets to forward data toward the destination
node [16]. Therefore, it also suffers from packet overhead between communicating
sensor nodes, and limited scalability. In this approach, the base station sends queries
to a certain node’s area, and the node that received the query information will relay to
the base station in that area [18] [8].

Location-based routing: In these protocols, the routing mechanism depends on the
location of the sensor nodes. During the broadcast processes, the incoming signal
strengths are used to estimate the distances between neighbouring nodes. This method
is considered to be very useful in applications that require the location of sensor nodes
to route their data. Some location-based schemes for the sensor nodes that do not have
any activities in the network are asked to sleep to save energy [15], the energy
consumption having been calculated using the sensor node’s location information [16].
Location-based routing reduces the overhead involved in finding the route to base

station and increases scalability.

1.4.2. SDN-based WSN Routing Protocols

Recently, the possibility has opened up of reprogramming networks depending
on the SDN concept [19]. Here, we present some research which discusses

routing protocols in SDN-based WSN where the routing is based on flow table.

In the traditional SDN approach, the article [20] proposes a hierarchy-based
architecture routing protocol to solve control plane scalability for possible paths
between source to destination sensor nodes; the concept of SDN follows the
hierarchical architecture in terms of an inter-AS routing approach.

The authors of [21] propose an SDN-enabled WSN architecture where the SDN
controller runs the SPIN routing protocol using the Cooja simulator. The SPIN
protocol generates a neighbours table, and the SDN selects the best of these neighbours

based on its voltage level and link quality to forward the sensor data. Differences of

routing approaches between traditional wired SDN and SDN-based wireless sensor

network can be found in [22].
SDN-ECCKN is proposed in [11], where the routing method includes the time interval
of each node, divided into beacon and execution slices to save energy. In this study,

there is no broadcasting between each pair of nodes.

The SensorSDN framework in [23] proposes a new control layer service to support
topology discovery and management of network policies. For routing purposes, the
packets pass from the network layer to the MAC layer and the latest matching rules
based on the technologies of LR-WPAN are introduced for SensorSDN.

uSDN proposes in [24] to extend the current AODV and LARP routing protocols to a
centralised routing method based on the SDN. This work modifies the current routing
messages and identifies new types of message for the SDN controller to perform

routing with.

The authors in [25] propose FJAPSO to offer a green routing algorithm for SDN-based
WSN. The SDN controller uses FJAPSO to select the parent nodes as cluster heads to
perform routing processes. The FJAPSO’s selection procedure is performed during
the iteration loop: by using a mutation operator, each particle is subdivided into
multiple sub-particles and subsequently incorporated into a root particle based on their
fitness with the best sub-particle patterns. FJAPSO works on two levels for automatic

optimisation, optimal number and optimal cluster of the control nodes.

1.5. Thesis Structure

In Chapter 2, we discuss the SDN controller architecture and SDN sensors in detail.
We also discuss the SDNC fuzzy-based routing decision in Chapter 3. Chapter 4
discuss the integration of the RFID model into the sensor model. Chapter 5 covers the
enhanced SDNC topology discovery model used in this thesis. Finally, Chapter 6

concludes the thesis.

CHAPTER 2. THE INTEGRATION OF SDN-WSAN FOR
INTERNET OF THINGS USING IEEE 802.15.4

2.1. Introduction

In the last few years, software-defined networking (SDN) has been a growing interest
within computer network communities as a new solution for reconfiguring and
controlling a network according to application requirements [26][27]. In the SDN
architecture, which aims to separate data and control planes [28], all the control
functions of the network are performed by a centralised device referred to as the SDN
controller (SDNC). On the other hand, network devices in the data plane are
responsible only for forwarding the data using the related entry in their flow tables.
The advantage of using the SDNC is that the applications’ data relies on the forwarding
and routing method’s performance. Besides that, the SDNC device should make an
appropriate decision based on the lowest cost path from the source to the destination,
since paths with higher costs make devices consume a great deal of energy in a short

time.

Software-defined networking developed as an intelligent solution to many wired
network issues: troubleshooting, traffic management, and resources on the network
deployed in cloud data centres [29][23]. Despite these developments, SDN is creating
tremendous enhancements in network programming that do not require any hardware

replacement.

Although the SDN concept was built on wired networks, it was not planned to
implement the SDN concept in a WSAN. Many researchers have recently discussed

the issues with integrating SDN into a WSAN network structure.

On one hand, WSANSs contain a variety of applications that have become essential
parts of our lives [9]. On the other hand, the 10T has greatly expanded the number of
application areas, particularly in the smart home, healthcare, transportation,
surveillance, security, and other industrial necessities [30][31]. These applications are
deployed in numerous environments and areas, so that their requirements are various,

enlarging the management challenges for the network and devices.

The integration of SDN-based WSANs poses many challenges, most importantly
energy routing management [32] [33]. The WSAN devices can range from the edge
for the 10T cloud, actuator devices and wireless sensors. The 10T edge is used to collect
data in order to send it to the cloud, which contains tools to convert this data into
meaningful information [30]. The loT cloud requires a network to support real-time
data transfer in order to analyse the data for some loT applications. Therefore, an
effective data routing strategy with low power consumption for WSANSs should be

smart and flexible in the SDN controller to meet 10T requirements.

In this chapter, we discuss the proposed SDN-based WSAN for loT. The SDN
controller, sensor node and SDN integration for I0T are described in detail in the

following sections.

2.2. SDN-based WSAN for Internet of Things (l1oT)

There are many challenges involved in gathering extensive data in real time from IoT
technologies in order to analyse this data and make appropriate decisions on a large
scale. Software-defined networking is proposed as a flexible network architecture to

face these challenges for 10T requirements.

The authors in [26] discuss the challenges of SDN integration with 10T in terms of
security and scalability. SDN-SPS [34] designed a gateway node (SITL) to transfer
the data from OPNET simulator nodes to an 10T data centre using UDP protocol. In

this work, the SDN controls the time, frequency and data types.

10

The routing method of RPL and TinySDN protocols in [35] uses a collection tree
protocol to perform routing and operates based on DODAG control messages. RPL
works to improve TinySDN by supporting point-to-point and point-to-multipoint
traffic patterns for 10T. Each child node determines its parent node to find a way to the
coordinator node to forward its packets, and subsequently will not send DIO messages.
The SDN model is used in this work to improve WSN and IoT deployment through its

flexible management and control on the sharing resource.

The paper in [36] presented SDN controller for WSNs as a floodlight controller in the
Mininet network emulator tool. The sensor nodes of the WSNs are implemented in
NS2, another simulation network, and both systems are connected via port-to-port
communication. In this research, the packet routing processes are achieved through
multi pipeline stages; for routing commands, it uses the command line interface to pass

the flow rules.

The SDN/NFV model in [37] used Mininet and POX controller to support the services

of 10T applications, such as smart home, self-driving cars, and e-healthcare. The loT
services were hosted on HomeGWs as network gateways to decrease core network
traffic. The HomeGWs played important roles for routing purposes, forwarding
packets to the destination.

The S-MANAGE protocol is proposed in [38]; it features an interface to control the
management messages between the SDN controller and the virtual 10T sensors. The
routing operations in this protocol are underpinned by OpenFlow and OF-CONFIG.

Soft-WSN in [39] is a proposed integration of device and topology managements into
SDN controller for managing 10T devices based on the IEEE 802.15.4 and IEEE
802.11 protocols. The device management is responsible for active-sleep scheduling,
sensing tasks, and sensing delay. The topology management module is used for routing
purposes in two different rules, such as node-specific and network-specific

managements.

11

The authors in [40] propose SD-WSN6Lo for 6LOWPAN network to enable 10T
connectivity. They used Contiki COOJA simulator to follow the SD-WSN paradigm.
In this work, the routing between nodes was achieved using control messages such as
request message (packet-in), response message (packet-out) and broadcast message
(neighbours’ message); these messages of control were exchanged between the SDN

controller and sensor nodes using the UDP protocol.

2.3. Software-Defined Networking (SDN) Architecture for 10T

In general, the separation of the control plane from the data plane is the essential idea
of the SDN concept and how it is distinguished from traditional networks. This process
is called the abstraction of the control plane and data plane. In the past, the autonomous
system used the traditional network, where each switch or router made decisions based
solely on the local logic regarding how to forward the packets. In this case, with SDN,
a more centralised model brings direct software programmability to the network. This
concept is based on a central controller that can manage and monitor network
behaviour. OpenFlow was designed in SDN to allow applications to manage network
devices with software that works on servers and communicates directly with switches

rather than the control of the switches or routers [19].

Our SDN structure is designed in three planes [12], as shown in Figure 2.1.: the
application, control, and data plane. The application plane is the place of the loT
applications need without knowing the basic infrastructure of the network. The data
plane is responsible for packet forwarding using the 10T devices based on the IEEE
802.15 protocol. The control plane is the place to control routing decisions for each

network device.

12

fa i i -.\
I e
Applicati(m | EVILSY 10T Applications |) Traffics
e
g
FlowTables

1oT Application o
I APIs
Controller Routing Decision
Netwark Dijkstra’s algorithm
Topology Fuzzy logic
Node Status (SNR,Battery)
Op enFlowI

Control Plane

Data Plane o P r—
= if Address== Sre Forward layer 69
=11 If Address— Dest Farward mp Tyee 1 167
If Address<> Dest T 3

T3
™~
o
0
[VN]
[S¥)
=
o
<
=

PHY IEEE 802.15.4

Figure 2.1. The Architecture of the SDN-based WSN clusters for 10T

As shown in Figure 2.1., the proposal framework has three layers, including IEEE
802.15.4 used by 0T sensor nodes to collect data, and SDNC as a flexible network to

meet 10T applications’ requirements.

2.3.1. SDN application plane

The application plane is the place to meet the needs of IoT applications without
knowing the underlying network infrastructure. It includes the requirements and
services of the 10T applications [19] [41]. 10T applications rely on the performance of
forwarding and routing methods to achieve their services and tasks within the network.
Therefore, the SDN controller must make the appropriate decision based on the lowest
possible cost from source to destination sensors. To send data from source to target
sensors, there must be a specific path between the nodes. For this reason, the

application’s path should be as short as possible and consider the energy of the sensors.

In our system, the path is built from sensor statuses using smart models in the SDN
controller. Moreover, the SDN controller allows applications to configure the network
from the application plane instead of the distributed policy that requires individual

13

configuration. For that, SDN sets up APIs to allow communication between the
application plane and control plane. The different applications use the APIs in the SDN

stack to formulate new flow rules to the controller.

2.3.2. SDN control plane

The control plane handles configuration management for SDN-conformable devices
and realises the network topology. The control plane configures connection paths or
flows into the data plane. The control plane connects the application plane and the data
plane [40]. It receives the loT application’s tasks from the application plane and
converts them into instruction sets, which are sent to the data plane using the
OpenFlow protocol [33]. It provides the application plane with a comprehensive view
of data layer resources, such as status and attributes. The control plane is the right place

to control the routing decision for each device in the network [23].

In our proposed system [12], the SDN controller in the control plane contains many
models, such as the network topology, routing decision model, and node status model.
The network topology is used to sort the IoT devices’ data into clusters and make a
routing decision, using the Dijkstra algorithm and fuzzy logic models to perform smart
routing based on energy. Node status is used to collect the status of the 10T devices. In
addition, the data structures are organised in a combined flow tables model consisting
of three classes: network topology, flow table, and nodes classes. The details of these

classes are explained in later chapters.

2.3.3. SDN data plane

The data plane authorizes the SDN controller to manage and control the resources of
the 10T forwarding devices [23]. Additionally, the data plane is responsible for
forwarding packets to the selected target. The data plane in our proposed model
consists of the 10T devices using the IEEE 802.15.4 standard protocol; these devices
are the main means of data collection, collecting data such as the status of the devices.

The SDN controller injects the flow entries into the loT forwarding devices using

14

OpenFlow protocol. The data plane devices apply the required actions of the entries to
the forwarded incoming based on matching rules. Therefore, loT forwarding devices
forward or drop a packet based on the flow entries from the control plane. The SDN
can also update or replace flow entries with new entries when the 10T application

requirements change.

2.3.3.1. IEEE 802.15.4

IEEE 802.15.4 is the most important communication technology for low-power
wireless networking [42]. In IEEE 802.15.4, the medium access control (MAC)
protocol enables the transmission of MAC frames using the physical channel, which
supports two operational modes: non-beacon- and beacon-enabled modes. In the non-
beacon-enabled mode, which does not support beacon and superframe mechanisms,
medium access is controlled by an unslotted CSMA/CA protocol. In the beacon-
enabled mode, which supports beacon and superframe mechanisms, the coordinator or
router periodically sends beacons to synchronise nodes associated with its own cluster
coverage area. However, this mode also enables the allocation of contention free
period (CFP) slots, called guaranteed time slots (GTSs) for nodes that provide a timing

guarantee for bandwidth.

2.3.3.2. Superframe Structure

The superframe impacts upon the performance and quality of services on the network
[43]. The superframe structure includes an active and an inactive period, determined
for one cycle between two beacon frames. The superframe structure is presented in
Figure 2.2.; the beacon interval (BI) defines the time between two consecutive beacon
frames and contains an active and inactive period. In the superframe active period, the
beacon frame starts the transmission at slot 0. The superframe duration (SD) specifies
the active portion of the Bl period; the length of the active period is determined
manually by the SD settings from the upper layer. Superframe duration is divided into
16 equally sized time slots, during which frame transmissions are allowed. Superframe

duration contains the contention access period (CAP), which is used to share the

15

channel between nodes competitively and the CFP that used to allocate GTS for some
nodes. The CFP starts immediately after the CAP has finished and must be completed

at the end of the active period.

BI = aBaseSuperframeDuration x 25°
) o (for 0<SSO<BO<14 (2.1)
SD = aBaseSuperframeDuration X 2

beacon

-
-

—— GTS — M1

inactive period

K
L CAP = aminCAPLength |, CFP

L4

SD = aBaseSuperframDuration x 25°
(active period)

B| = aBaseSuperframDuration x 25°
(superframe)

v v

r

Figure 2.2. IEEE 802.15.4 superframe [43]

Beacon order (BO) and superframe order (SO) are used to change the length of Bl and
SD. These parameters must be previously allocated by coordinator or router [44]. The
current WSN configures these parameters manually, which does not fit the changes of

network size, neighbours, and number of nodes.

In our proposed system, these configurations are at the control plane. During topology
discovery, the SDN controller (SDNC) assigns BO and SO parameters according to
current network size, neighbours, and number of nodes, which are discussed in more
detail in subsequent chapters. Table 2.1 shows the effect of BO and SO values on
beacon interval and superframe duration. This period defines the start time of the child

node in order to start sending data or command frame.

Table 2.1. Beacon interval and superframe duration evaluation

BO/SO Equation 2.1 BI/SD start time
1 960*2*1*4 /250000= 0.03072
2 960*272*4 /250000= 0.06144
3 960*2/3*4 /250000= 0.12288
4 960*274*4 /250000= 0.24576

16

In the inactive period (sleep time) of the superframe, the child node starts a
transmission according to its start time. For example, when SDNC BO=4 SO=1 is
applied to (Equation 2.1), the SDNC starts at 0 time and sleep time will be available

to several child nodes whose BO=SO=1, as shown in Figure 2.3.

0.03072 Sleep (0.24576)

51 BO=1 SO=1 RRENS
N2 BO=150=1

N3 BO=150=1 i

N4 BO=150=1

0.03072

0.03072

N5 BO=150=1 |
. D6 BO=150=1 NS
Time ‘
0 0.03072 0.06144 0.09216 0.12288 0.1536 0.18432

Figure 2.3. Superframe inactive period (sleep time)

2.3.4. OpenFlow (WSANFlow) protocol stack

OpenFlow is a protocol that relies on flow tables, developed by researchers into SDN
[45][46]. Since OpenFlow’s origins, it has been based on the idea of creating
forwarding tables to guide packets from source to target through the next hop, and
determines the actions to be taken on the flow [26]. Our WSANFlow protocol uses
the forwarded tables between the control plane and the data plane. On the data plane,
the flow table contains flow entries that are redirected between the forwarding loT
devices. Each flow entry includes match rule field, actions, and statistics; according to

these entries, it will decide how to handle incoming packets.

CHAPTER 3. THE SDNC FUZZY-BASED ROUTING DECISION

3.1. Introduction

In this study, we propose a new fuzzy-based routing discovery algorithm inside the
SDNC for clustered networks over an IEEE 802.15.4 superframe structure, supporting
many applications’ requirements. Fuzzy logic can play an important role in allowing
SDNC to handle routing decisions intelligently. Using fuzzy logic to improve network
connection costs by considering available network edges as neighbour devices’ signal-
to-noise ratio (SNR) and devices’ energy levels collected from device statuses. This is
intended to integrate these elements into a uniform cost for later use in the Dijkstra
algorithm to create an IoT application path. Each application has a source and a
destination sensor [47][48]. The source device represents the detected sensor device
that needs to send data to the destination. The destination device represents the sink or

gateway device to forward data to internet access.

The main objective of this study is to establish the path with the minimum energy cost
resulting from fuzzy-based Dijkstra’s algorithm, the other devices not in this path can
keep their energy using sleep time from the schedule mechanism cluster-tree WSN
[49]. The limitation on the battery power lifetime is a challenging issue for sensor
networks, due to the very high cost of battery replacement and the fact that some
sensors cannot be replaced. Therefore, efficient routing protocols over WSN must
counter important issues such as unnecessary power consumption and absence of fault

tolerance.

This study also presents a new method for routing decisions in SDWSANS: during the
transmission time, an interruption according to any device’s energy level will inform

the SDNC to change the existing application’s path. Once the best path has been built

18

up with the smallest energy cost, other devices keep their battery energy, which can be

used by another application.

3.2. The SDNC Fuzzy-based Routing Decision

Routing on the cluster-tree network topology is a new challenge for forwarding packets
between EDs to reach the ED destination. Because the network operates in the cluster-
tree structure and superframe structure, the cluster can have active mode or sleep mode
during runtime. Therefore, the forwarding data process must work between the active
clusters; from one active cluster to another active cluster to avoid dropping packets

during the cluster sleep mode.

The study proposes a new approach which adds fuzzy logic into routing to improve
SDNC decisions regarding cluster-tree topology. In SDNC, Dijkstra’s algorithm uses
the links cost resulting from fuzzy logic to generate the shortest path from the
application’s source requests to the destination (gateway), with associated energy in
this path according to the fuzzy rule base in Table 3.1. These paths distribute energy
between devices using flow tables which take into consideration the number of active
clusters and the application’s ID. Moreover, in SDNC, node status aggregation (NSA)
receives ED statuses; statuses such as device energy level and neighbour device SNR

are updated periodically in real time.

In network topology, devices broadcast beacon frames; each device has a beacon frame
and reacts with its own beacon frame to SDNC in order to update NSA. Moreover, the
devices add to the beacon frames their devices’ battery levels and SNR, and the

addresses of neighbour devices.

In fuzzy-based Dijkstra’s, if there is a change in devices’ energy levels past a certain
threshold, SDNC will be interrupted to reselect another device by redefining the
application path, in order to gain energy across the total network topology. In regular
Dijkstra’s, the path does not change, and the path selected will remain fixed over time

once selected. During transmission time, the intermediate devices in this path consume

19

much more energy, and other neighbour devices in the topology still have a high level
of energy, meaning the path must be reconfigured and reselected, incurring new costs.
Reselecting paths will make a lifetime balance across the entire network; devices that
expend a great deal of energy will enter sleep time to save energy. The SDNC has the

ability to reconfigure WSANSs after deployment using open flow protocol.

In additional, fuzzy logic and Dijkstra’s are working together in order to have a greater
effect on energy for the routing process. Dijkstra’s algorithm calculates the link cost
output based on fuzzy logic. The fuzzy system includes two inputs and one output
(more details in Section 3.6.). The simple procedures are summarised in Figure 3.1. on

the cluster-tree architecture.

[SDN Controller :
App Path info
(3) combined / \ |
FlowTables

[App Flow Table

[Routing Decision (4)

Network Dijkstra algorithm
Topology [Fuzzy logic]

Node Status (SNR,Battery)
| T
| (@) WSANFlow

| [E e {5) \\ .r;
| \‘.;; \ ‘ ‘*‘ Q/(}\
(&) =\ @/ Es —| ED |

-

| _ep) V (7y o)

) N _1 \. 5)] =)
Sink © . %
% ED O T~ ®

. { =

)
E (6) ED flow table ED

Figure 3.1. Architecture design of routing protocol in the SDN controller

20

Source ED 1st Router (Parent) in route SDNC
Application Routing Decision
[PKSW MAC MAC PKSW MAC | Flow Tabl

i ——».:
| 1.1: App Request Connection()
s 0 o
1.2:Fwd App Request() '
i 1.3: send App Request() = 1.4: Fwd App Request ()

1.5: FWdAPP_ROUTE REQ() |

Extract Flow Entery() 1.7: Send Flow Tables to MIEI

.8: EncapsulateFT send_beacon_frame ()

' e —
' 1.9: A Flow Ent
Extract Flow Entery() dgsFiow Entery

CCHJO: send_beacon_ frame ()

R i
! 1.11 Add myFlow Entery()
-

1 1.12: app Reply()

Z.i: packet generate| hec;il::;ﬁa E‘;‘y() ' '
i z.z:iepd packet to MAC() | 2.4:Fwd data packet . check Flow Enteries()

' 2.3: Encapsulate FT. send b frame ()
‘ —— 25:Forward Data ()

() uoisiwag Bunnoy ayew :9'T

nTh Router (Parent) in route | — — Destination ED]
Next MAC PKSW — MAC PKSW Application
Hop : _layer
2.3: Encapsulate FT send_beacon_frame () ,_check Flow Enteries()

—_
2.4:Fwd data packe
. 2.5:Forward Data ()
N ———————

: ; | _check Flow Ent
2.3: Encapsulate FT sénd_b frame () | checl owE:nenes()

Ry
2.4:Fwd data packet | '

2.5:Fojward Data {) |

Figure 3.2. Sequence diagram of the system processes

When an application wants to send data over the network, the following steps are
generally performed, as shown in Figure 3.1. and Figure 3.2.:

1) Application uses SRC-ED to send a request connection to SDNC towards
parent ED address.

2) Parent ED forwards request to SDNC via intermediate ED addresses.

3) SDNC records the application info and connection requests from the ED
sources and uses EDSA to read network topology info. The intelligent network
module receives this request and checks the available network resources. At
this moment, the SDNC should be fully aware of the network and its EDS
states, so that it uses certain algorithms to arrive at the most appropriate
decision for a specific route for the current transmission request.

4) SDNC collects SNR and battery values by NSA (see Section 3.5.) to make a
routing decision based on link costs using fuzzy logic (see Section 3.6.) and
performs routing using Dijkstra’s algorithm (see Section 3.7.) to generate the

shortest path.

21

5) SDNC converts the resulting path to WSANFlow [4] in order to distribute flow
entries to the related EDs.

6) Each ED checks the flow entry and adds its own entry.

7) Source ED begins to send the data packet through its flow entry to reach the
sink ED (gateway).

8) Sink sends data as a gateway to 10T cloud.

9) An alternative path is reselected by SDNC routing decision during running

time.

This chapter, the most important in this thesis, describes the components of the SDN
controller. The SDN controller guides and manages the network in a smart way to
make the right decisions. As can be seen in the figure, the SDN controller contains five
main components: combined flow tables, network topology, node status, Dijkstra’s

algorithm, and fuzzy logic.

3.3. Combined Flow Tables

Flow Table Class
* Rule
= Action
= Statistic
|
Combined)
FlowTables Combined Flow
Tables Class
« App ID Network Topology
Network Nodes Class « App Path Class
Topology « Source address * APP Flow Table = Node Class * nodes
Node Status (SN = Energy level « Find Node(node address)
T : h\\ = Neighbors number + Add Node(node address)
L 1)
= Neighbors List « Dijkstra(Target, Neighbors)
« Fuzzy (Battery Level , SNR)
Node's address
Mode's SNR

Figure 3.3. Combined flow table class

The combined flow tables component consists of three main classes, structured as a
C++ object-oriented program, as shown in Figure 3.3. The node class includes all the
codes and functions related to nodes such as address, energy level, number of

neighbours, and their data. Flow table class includes data structure and code about the

22

flow tables and entries, whose objects are created from this type to other classes. The
network topology class includes the functions of node operations on the network,
Dijkstra’s algorithm, and fuzzy logic algorithm, about which we will see more details
in the following sections. Objects are created from different classes according to the
needs of the functions and procedures required to perform the necessary tasks. When
an application request is sent to the SDNC for data transmission, SDNC uses the
combined flow tables class to create application’s path and to link this to flow tables.
Each application can have a special path in the network from source to target sensors.
The path is built depending on the node, flow table and network topology classes,

generated by the smart algorithms in the SDN controller.

3.4. Network Topology

Network topology uses the topology discovery method to determine the clusters in the
network which collect the status information of all nodes and their neighbour list
information. In the network discovery process, when nodes see the beacon frame, they
respond with their own beacon frame to join the network. The responding node adds
into the frame the node battery level and SNR as a distance from other neighbour

nodes, including their addresses.

The network topology sets up the SDN controller beacon settings, such as BO and SO
parameters, and starts time. These settings determine the sleep time of each cluster
according to its number of child nodes. Meanwhile, the type of nodes (forwarding node
or child node) in the network is determined by SO and BO parameters. For example,
if the node has BO=SO=1 or more, then it is a forwarding node; if the node has
BO=S0=-1, then it is a child node. As shown in Figure 3.4., the network topology
performs this process by checking all nodes so that the settings are given only to the
nodes with children in their clusters. Eventually, these settings determine the length of
the active superframe duration SD to fit the number of forwarding devices in the

network.

23

[Check Straucture J

RouterCounter=0
T

Is Router has child?

SDN Controller
Combined
FlowTables

Network
Topology

[]

]

[set BO,S0, and start time]

Change BO,S0 and start
time for this router to -1

—
Add to the router list

I Send the new configration to MAC I—o[5D = NR + aBasesuperframeDuration « (2)*]

Figure 3.4. The network topology

3.5. Node Status Aggregation (NSA)

When the network starts to work, the broadcasting packets process starts between all
devices, according to the settings determined by the network topology. At the first
time, the SDNC network discovery dynamically generates a time slot (i.e. BO and SO)
for each cluster device with children devices, which makes devices broadcasting
beacon frames. Each device receives a beacon frame and reacts with its own beacon
frame to SDNC in order to update node status aggregation (NSA). Moreover, the EDs
insert their device’s battery level and SNR and the addresses of neighbour devices into
the beacon frames. In this case, the beacon frames are distinguished from other
beacons using NDP flag field. Once a device receives the neighbour device beacon
frame, it generates a command frame and adds device status information, then sends it
to SDNC. Moreover, each device stores a neighbour list containing a list of all SNR
values for each connection between the device and its neighbourhood addresses,
resulting from network discovery. Subsequently, when the SDNC receives all devices’

command frames, NSA begins to work, as shown in Figure 3.5.

In Figure 3.5., as each node status arrives at the node status algorithm, it checks the

arrived node status against the node class list. Moreover, each node stores a neighbour

24

list containing a list of all SNR values for each connection between the node and its
neighbourhood addresses. In order to keep the neighbour list up to date, the SDNC
node status algorithm compares the incoming node status to its node class list and adds
it if a node does not exist. Otherwise, it will update the node status information in the
list. The battery level is overwritten each time a packet is received, because each node
consumes battery and resends the packet. At that time, if the ED battery level is less
than the threshold, it will interrupt to reroute the path (making a routing decision) by
SDNC using fuzzy-based Dijkstra’s algorithms and generate a new path including EDs
with higher battery levels. Subsequently, a list node containing all the nodes’ statuses

is sent to the Dijkstra fuzzy algorithm to create a topology cost based on this list.

¢ (oo imeo] L.
Yes
L

App Path info
Combined No, Read neighbours_no
= e

Make Routing
[Routing Decision [.H_] Decision()
¥

Dijkstra’s algorithm
NO

Network
Topology | Fuzzy logic |
Node Status (SNR,Battery)
L
t
Figure 3.5. Node status aggregation

N

Add_nighbourListSNR()

3.6. Fuzzy Logic

Fuzzy logic [50] is an active system of artificial intelligence which plays an important
role in the SDNC to extend the network lifetime; fuzzy logic with inputs and output is
illustrated in Figure 3.6. Fuzzy logic is used to improve network connection costs by
considering the available network edges (link quality, power consumption, link cost,

etc.).

SDN Controller
App Path info
Combined
FlowTables

| Routing Decision

Dijkstra’s algorithm
Fuzzy logic

Network

Topology
Node Status (SNR,
L

Battery)

AN

—~

N

N

Low Medium High

Fuzzy Logic
(Mamdani)

25

ED's neighbors SNR \raluel [ED’s battery level ‘

I |
{

Fuzzification

Knowlegde Base
Fuzzy Rules
“IF... THEN..."
Membership
Functions

Defuzzification

Cost

Figure 3.6. Fuzzy logic with inputs and output

3.6.1. Fuzzification

Fuzzification checks the input values of SNR and battery level into input fuzzy set

values; each fuzzy set has several membership functions denoted by linguistic

variables. The SNR fuzzy set has three membership functions (weak, medium, and

strong) and the battery fuzzy set has three membership functions (low, medium, and

high), represented in Figure 3.7. as the input membership functions.

Weak

0.5

Medium

Strong

0.5

Low Medium High

10

30

SNR Membership

2 4
Battery Membership

Figure 3.7. Fuzzy inputs SNR and battery level memberships

When fuzzy logic is activated, the input values are calculated for fuzzy input sets of

the membership functions (Equations 3.1. and 3.2.). An example of determining the

relevant fuzzy sets is shown for fuzzy input data (SNR, battery level) = (16, 4). In

Figure 3.8., the example of SNR value belongs to the weak and medium membership

functions and the battery level value belongs to the high membership function:

26

SNR (x1) =X emsnr 1i(x1)/i (3.1)
Using (Equation 3.1) SNR (16) =16/ Weak + 16/Medium + 0/ Strong

Battery (x2) =X 3ype wi(x2) /i (3.2)

Using (Equation 3.2) Battery (4) =0/Low + 0/Medium + 4/High

Where i is the linguistic (low or weak, medium, strong or high).

Figure 3.8. SNR, battery membership functions map the input values

In fuzzification, the activation process for antecedents’ SNR and battery level is
computed by the membership degree function. Fuzzy operation can be calculated using
the membership compute degree (Mf(v)) function, as given by (Equation 3.3). We can

apply it in this example as follows:

xX—a d—x
uf (x) = min (min <maxValue X (b — a) , maxValue X (d — C)),maxValue) (3.3)

Using (3.3), we can explain the examples of SNR and battery level values and apply
this to the resulting membership degree functions. For SNR, a weak membership
function, which has a range of {a, b, ¢, d} = {0,10,10,20}, the SNRweak (16) is

represented by

uf (16) = min (min (50 X (10 0) 50 ><(12)) 50)

pf (16) = min (min(50 x 1.6 , 50 X 0.4)),50)
pf (16) = min (min(80 , 20)),50)
uf(16) = min(20,50)

27

uf(16) = 20
For an SNR medium membership function, which has range of {a, b, c, d} = {10, 20,

20, 40}, the SNRwm (16) is represented by
16 — 10 50 x 40 — 16) 50
20 — 10) ' (40 —-20/)’

uf (16) = min(min (50 X (

pf (16) = min(min(50 X 0.6 , 50 x 1.2)),50)
uf (16) = min (min(30 , 56)),50)
uf (16) = min (30,60)
uf (16) = 30
For a battery high membership function, which has a range of {a, b, ¢, d} = {3, 4, 4,
5}, the Batteryn(4) is represented by
4—-3 5—-4
uf (4) = min(min (50 X (m), 50 x 5T4)>'50>
pf(4) = min(min(50 x 1, 50 x 1)), 50)
uf(4) = min(min(SO, 50)),50)
uf (4) = min(50,50)
uf(4) = (50)

The results of the SNR weak, SNR medium and battery high membership function for
this example is shown in Figure 3.8. Input variables are assigned degrees of
membership in various classes. The purpose of fuzzification is to map the inputs from

a set of sensors to values from 0 to 1 using a set of input membership functions.
3.6.2. Rule evaluation

A fuzzy inference produces a relationship between input and output fuzzy sets using a
knowledge base that contains fuzzy rules and membership functions. The rule consists
of two main parts: the ‘If’ side and the ‘Then’ side: If (antecedent) Then (consequent).
Table 3.1. shows nine rules of the fuzzy rule to produce an output fuzzy set linguistic

value. These rules are structured as a condition (IF-THEN).

Table 3.1. Fuzzy logic rule base

Rule IF-side (Antecedents)

Base
(SNR is weak) and (Battery is low)
(SNR is Weak) and (Battery is Medium)
(SNR is Weak) and (Battery is High)
(SNR is Medium) and (Battery is Low)
(SNR is Medium) and (Battery is Medium)
(SNR is Medium) and (Battery is High)
(SNR is strong) and (Battery is Low)
(SNR is strong) and (Battery is Medium)
(SNR is strong) and (Battery is High)

© 00 N O OB~ W N B

28

THEN-side
(Consequence)
(Cost is VeryHigh)
(Cost is Average)
(Cost is Low)
(Cost is High)
(Cost is Average)
(Cost is Low)
(Cost is High)
(Cost is Medium)
(Cost is VeryLow)

As mentioned in our previous example, the SNR is between weak and medium and the

battery is high, which means that the 3 and 6 rules from Table 3.1. can be applied; in

this case, the rule evaluation is shown in Figure 3.9. Before the rules can be evaluated,

the inputs must be fuzzified according to each of these linguistic sets.

Figure 3.9. Rule evaluation results

Rule evaluation is part of the implication method which defines the rule's conclusion.

We use the implication method by taking the minimum degree of membership for two

sets as pans(X) = min(pa(x), us(Xx)). The activation degree process in the implication

method takes the minimum degree of the variables among the SNR and battery

memberships involved in the rule evaluation as the cost membership degree. We use

the activation degree to multiply them with the linguistic in terms of consequences to

determine the rule’s conclusion [51].

29

Consider the example in Figure 3.9.: according to the rule match found in Rule 6, the
activation degree trims the SNR (weak and medium memberships) and battery (high
membership) by taking the minimum value between SNR and battery, [cost = min
(30, 50)], as the cost (low membership). Hereafter, in order to find the output value
for each rule involved, the aggregation process sums up the membership functions into
the K variable by taking the maximum of the membership functions of the resulting
cost. The K value will be used later in the defuzzification process. Therefore,

K=30= max (min (SNR, Battery), cost) (3.4)

3.6.3. Defuzzification

The last step is known as the defuzzification process, in which the fuzzy output is

converted to a single value. Figure 3.10. shows the fuzzy output of a cost set with six

membership functions (very low, low, medium, average, high, and very high).

VeryLow Low Medium Average High VeryHigh

0.5

10 20 30
Cost Membership

Figure 3.10. Fuzzy output cost membership

The Mamdani system is used in the defuzzification process as a typical module, and
the centre of gravity (CoG) method is used to resolve conflict issues such as ‘cost is
medium/low’, using membership functions. The CoG method computes the centre of
the area below the curve to find a final output for the cost’s crisp, as described in
(Equation 3.5).

30

_ Yie cOsth(ATea i * Centroid i)
cost crisp — 3 f
i€ Costu

3.5
Areai (3:5)

Where i = {1, 2... 6} is the output membership, and Area is computed for each output
membership. cost ¢y IS the final desired output. As aresult of the previous example,
we substitute the K =30 value in (Equation 3.4) and the low cost membership resulting
from rules 3 and 6. The following equations convert the fuzzy output to the cost crisp

value as final results:

basel = d —a (3.6)
K K

base2 = basel — (Lv_l) — (Lv—z) (3.7)

Area= K* basel;—basez (3.8)

Centroid = a + d%a (3.9

Figure 3.11. shows the implementation of the previous example on these equations.
The range of Cost 1, membership is Cost zow {a, b, ¢, d}, represented in our example
as {5,10,10,15}, where the first and last values, a and d, are used as inputs in the

(Equations 3.6, 3.7, 3.8 and 3.9).

Figure 3.11. Example fuzzy results

The flowchart of the defuzzification procedures is shown in Figure 3.12.

31

— "
void Defuzzification()
| —

so-LinkedlistOutput

sol=NULL

sum_of products=0
sum_of areas=0

mi=so->membership_functions

mA-NULL
False
area-TrapezaidComputeArealm) sum_of areas=—0

True False

centroid=mf->FirstColumn+mf-*LastColumn-mf->FirstColumn)/2 printf{"Sum of Areas = 0, will cause div error\n”) so->value=sum_of products/sum_of areas

sum_of_productst=areacentroid printf{"Sum of Products= %d\n",sum_of products) S0=50->next

sum_of areast=area so->value=D

mif=mf-next

Figure 3.12. The flowchart of the defuzzification procedures

Now let us see how the battery level changed for this ED and the effect that
accompanies cost value during the network life cycle. Through the process of

transmitting and receiving, the device gradually loses its energy, as shown in Table

3.2
Table 3.2. Cost vs battery level

Cost SNR Battery level
10 16 5
10 16 4
20 16 3
27 16 2
27 16 1

As seen in the table, the low cost is the best candidate for Dijkstra’s algorithm for
building application paths, therefore the ED is selected based on the cost value of the
connection link between a device and its neighbour. However, when the level of

energy is lower, the output cost value is higher, which means that it is not a good

32

candidate for Dijkstra’s algorithm, because as we will see later, Dijkstra’s algorithm
prefers to select the minimum values of these connection links between ED and its
neighbours. In this way, we have established the relationship between cost and energy
level in fuzzy rules, as illustrated in Table 3.2.

3.7. Dijkstra’s Algorithm

Dijkstra’s algorithm [52] is an algorithm which finds the route with the lowest possible
cost in order to determine the best path from source to destination node in the network.
When the SDNC receives the status of each node, the NSA in SDNC starts to collect
these statuses for each node, including its neighbours’ information in the class node
representing the collected information of all nodes. if there is a connection request
from an application or an interrupt from NSA to change the route according to the ED
battery level, Dijkstra starts working with the fuzzy logic shown in Figure 3.13.
Dijkstra’s input is the cost for each connection resulting from fuzzy logic. A lower
cost value means that the ED neighbourhood is very close to the device, while a high
cost value means that the ED neighbourhood is far away; these decisions are

determined by the fuzzy rule base in Table 3.1.

However, SDNC is able to dynamically build the network topology and select the best
route between nodes based on the resulting cost from the fuzzy system. As our fuzzy
system includes two inputs and one output, when these fuzzy input values change then
cost will change for each node connection. The fuzzy logic inputs are updated when
new nodes’ statuses arrive at SDNC, then the output cost is inserted concurrently as

the input for Dijkstra’s algorithm.

33

Network Topology Information ’
ﬁ—l

y

End Device Status Aggregation

H E

Device's Neighbors
SNR

=

[Fuzzy Logic J

Device Battery

Y

(Dijsktra‘s Algorit@
Geénerate shortest path

Flow Tables

//\

[EDl ED3 EDN’

Figure 3.13. Dijkstra's with fuzzy routing algorithm

Dijkstra’s algorithm chooses the nearest device to the source using the find device
function and runs over neighbours in the loop. Subsequently, it compares the nearest
device with its neighbours, selected from the devices list presented in Figure 3.14.
(Steps 6, 7, 8, and 9). For each cycle in the loop, the minimum cost for the best path is
aggregated as the total path cost from the EDs to source ED which Dijkstra’s algorithm
returns.

34

~ 1 cost[s] <0

for each vertex v € N-{s}

cost [v] <co

2

3

4 Plvl<©@

5 while size (N) #@:
6

7

8

Combined

SDN Controller -
App Path info
-

FlowTables App Flow Tablg

| Routing Decision u « NearestToSrc()
Network Dijkstra’s algorithm < for each neighbor v € u:
Topology Fuzzy logic

Node Status (SNR,Battery) \ w « cost [u] + Fuzzy (v {SNR},

T u {battery})

\ 9 cost [v]«<Min (cost [v], cost [u]
+w)

10 P[v]<u

11 return P
¥ I

Figure 3.14. Dijkstra’s algorithm

3.7.1. Flow tables layout

Table 3.3. shows a flow table formed by the SDNC; the entries represent each
application that resulted in its path from Dijkstra’s algorithm. Each ED address in the
application’s path receives an entry contained next hop and an action to forward or

drop packets arrived.

Table 3.3. Flow table entries

Matching Rule Action Statistics
> g
S 3 o z9) o
= v S zZ
8 > 5 &9 : & 5 FE
¢ & < 8z 31 % § &8
= = = o < I = 3 @
= 3 s 23 S, S > & g
) & =} >4 g © = =
1 13 ‘=’ 13 Forward 2 0 34
1 4 ‘£ 1 Drop - - 81
2 5 ‘= 1 Forward 4 0 33
2 4 ‘£ 1 Drop - - 94
3 6 ‘=’ 7 Forward 4 0 32
3 15 ‘£ 7 Drop - - 81
2 5 ‘=’ 2 Modify 8 0 65

35

Sce n a ri O 1 neare-st=12cos1: before for node=4cost=24

cost After for node=4cost=24

Cost from the Source: 32
12 4 2 1 11

Figure 3.15. Network topology Scenario 1

As seen in Figure 3.15., the first network topology scenario represents SDNC and six
nodes. In this scenario, the 10T application wants to send data from the source ED with
address 11 to destination ED with address 12, and the Dijkstra’s algorithm result of
our system as total end-to-end costs is 32, with a path running from 11=> 1 =>2 =>4
=>12.

S . 2 d R3 d cost 'Afr.er for node=12cost=32
12 T £ £ d

Cena rl O a n move cost A;cerc::r node=éco::=24

Cost from the Source: 32

12 4 31 11

Figure 3.16. Network topology Scenario 2

Figure 3.16. shows the second network topology scenario, in which we change the
position of node R3 in order to see the change of SNR represented by the distance
between nodes. The Dijkstra’s algorithm result of this scenario shows that the path has
changed to 11=> 1 =>3 =>4 =>12 and the total end-to-end cost remains the same

because of the vertically equal distance and energy to the first scenario.

36

Console |Model | Progress |

Scena rio 3’ R2 and R3 moved cost Aftei for node=12cost=46

nearest=l2cost before for node=4c
cost After for node=4cost=38
Cost from the Source: 46
12432111

®

_Q .rQ“)

Figure 3.17. Network topology Scenario 3

Figure 3.17. shows the third network topology scenario, which has position changes
to nodes R2 and R3 respectively. The Dijkstra’s algorithm result of this scenario as
total end-to-end costs is 46 with the path from 11=> 1 =>2=>3 =>4 =>12. In this case,
the cost is high because the nodes have limited coverage area and the nodes are far

away from each other, so the path becomes longer than before.
3.8. Simulation Results and Discussion

In all experiments, we used a free space channel propagation model in the simulation
environment, allowing us to predict the received signal strength of a path with direct
line of sight between the transmitter and the receiver. Experiments were performed
using fuzzy-based Dijkstra’s algorithm, and an SDNC with a regular Dijkstra's
algorithm in the first scenario. The second scenario includes a ZigBee-based WSAN
equivalent. Through these scenarios, simulation results can be extracted to see the

effect of the proposed routing discovery algorithm.
3.8.1. Simulation environment: parameters and scenarios

The configurations of the applications’ requests to SDNC are shown in Table 3.4.,
when an ED’s battery level passes the threshold, the SDNC alerts an administrator to
change the battery of this ED. As shown in Table 3.4., there are four applications,

which differ in the start time and packet inter-arrival time for performance testing.

Items
Network Topology

Device settings for both the

proposal and
WSAN
Battery parameters

ZigBee-based

(Micaz

mode) for both the proposal and

ZigBee-based WSAN

Application 1
(Src. 11in Figure 23)

Application 2
(R 34 in Figure 23)

Application 3
(R 43 in Figure 23)

Application 4
(R 36 in Figure 23)

ZigBee-based WSAN

Application 1 (Src. 2)

Table 3.4. Simulation parameters

Name
Number of End Devices

Network coverage area

SDNC location (X, y)
Simulation time

Max. No of EDs in Cluster
Path re-establishment threshold
Data Rate

ED status transmission period
Initial Energy

Channel model

Power threshold
Transmission Mode (0 dBm)
Receive Mode

Idle Mode

Sleep Mode

Start time

Packet payload size
Packet inter arrival time
Start time

Packet payload size
Packet inter arrival time
Start time

Packet payload size
Packet inter arrival time
Start time

Packet payload size
Packet inter arrival time
ZC beacon configurations
Tree routing configurations
Number of end devices
Network coverage area
ZC location (X, Y)
Simulation time

Initial energy

Start time

37

Value
10, 20, 30, 40, 50

300 m X 300 m
(150, 150)
10800 s
15

2]

250 Kbps
25s

5]
Free-space
model (LoS)
-76 dBm (80 mW)
17.4 mA

27.7 mA

35 A

16 pA

50s

30 bytes

25"

200 s

30 bytes

3s¥

300 sec

30 bytes

5%

400 s

30 bytes

4 s*

BO=4,S0=1
Lm=2,Rm=4,Cm=4
50

300 m x 300 m

(150, 150)

10 800 s

5J

50s

propagation

Abbreviations: ED, end device; SDNC, Software-Defined Networking Controller; WSAN, wireless sensor and actuator network.

X Generated using the exponential distribution function exp (mean).

3.8.2. Simulation results and discussion

Figure 3.18. shows that the first ED dies after 5500 seconds of simulation time and

four applications which are shared among 40 EDs. For one application, the network

lifetime is longer than with two or more applications running, because EDs forward

data from one source to one destination and traffic is light.

38

® Fuzzy-based Dijkstra's Regular Dijkstra's ® Fuzzy-based Dijkstra's # Regular Dijkstra's
9500 9500

9000

9000
8500

Z 8500

H
7000 8000
6500
6000 7500
5500 l
5000 7000

10 20 30 40 50

1 2 3 4
(a) Number of Applications (b) Number of End Devices

Time (sencond)

- =

> B

g 8

2 2
(second)

Time

Figure 3.18. First ED deaths with number of EDs and number of applications

When the number of applications increases, the number of traffic sources increases
and some intermediate EDs forward data to more applications, leading them to
consume more energy. Moreover, every application has one path, so that when the
number of applications increases, battery level decreases faster, especially for EDs

shared in these paths, which die in a short time.

The proposed fuzzy-based Dijkstra’s can find an alternative path after EDs’ batteries
have passed path recall threshold, to prolong network lifetime. Figure 3.18. illustrates
a different number of EDs with one application, the ED dying after 7000 seconds of
simulation time. Fuzzy-based Dijkstra’s shows better results in all cases than regular
Dijkstra’s algorithm, because the path is selected based on rule base to re-prolong
network lifetime. With 10, 20 and 30 EDs, the first ED dies due to cluster tree topology
limitation, being the only path found in time. The advantage of an exchange is that the
path can use a large number of ED batteries during the running time. Figure 3.19.
outlines an example of system implementation; the study of SDNC routing algorithms
in different clusters for the scenario is represented by one application and 50 EDs. The
results display a comparison of the routing algorithms on the network in terms of
number of ED deaths, delay, and throughput.

39

Figure 3.19. Scenario for 50 EDs and one application

Table 3.5. displays the paths for fuzzy-based Dijkstra’s and for regular Dijkstra’s. The
simulation results indicate that regular Dijkstra’s algorithm selects the shortest path
according to the SNR as a cost, without considering the battery level of EDs. In fact,
the EDs’ batteries decrease over time. Therefore, fuzzy-based Dijkstra’s selects paths
using the fuzzy rule base and the consumed power of the EDs’ batteries can be
distributed among more EDs in the same time. Moreover, fuzzy-based Dijkstra’s re-
establish alternative path at 5089 seconds to prolong network lifetime as illustrated in

Table 3.5.
Table 3.5. Path information

Fuzzy-based Dijkstra

1 50 Src11=>R9 =>R10=>R15=>Dest12 16
1 5089 Src11=>R9 =>R8 =>R15=>Dest12 95
Regular Dijkstra

1 50 © Src11=>R9 =>R13 =>R19=>Dest12 - 273

ZigBee-based WSAN
1 50 ~ Src2=>R1=>PAN coordinator=>R11=>14 -

40

The EDs in the path consume more energy than other EDs not involved in the
application’s path, therefore when EDs die over time, this can reduce the network
lifetime. Moreover, other EDs in this topology remain live and their battery level
remains higher than EDs in the path. For that reason, an alternative ED should be used
during the transmission time to prolong network lifetime. Figure 3.20. displays the
results when there is only one application running and there are 50 EDs in the network
for aforementioned three models. The Figure shows that in a short time, the ZigBee-
based WSAN model contains a large number of death nodes more than the regular
Dijkstra algorithm and the fuzzy based Dijkstra algorithm. Because there is no

effective energy management strategy in the ZigBee-based WSAN model.

Moreover, the regular Dijkstra algorithm over time has increases the number of death
nodes more than the fuzzy based Dijkstra algorithm, as expected. Since the path
selected by regular Dijkstra’s remains fixed over time because the SNR values do not
indicate which EDs die more quickly over time. During transmission time, the
intermediate EDs in this path continue to forward data and consume much more
energy, and other neighbour devices in the topology still have a high level of energy,

so that the path ought to be reconfigured and reselected using the new costs.

|

—Fuzzy-based Dijkstra's +Regular Dijkstra's ——ZigBee
50 : 0

w - -»
v o v

w
o

M
o

Number of the Death Nodes
-]
w w

-
o

(=] w
¥
4+
+
*
b4
+
+
+
1
£
1
¥

324

648

972
1296
1620
1944
2268
2592
2916
3240
3564
3888

10044
10368
10692

Time(second)

Figure 3.20. Number of ED deaths over time for 50 EDs and one application

41

Figure 3.21. exhibits network loads of intermediate nodes on the path. Some nodes
that have a higher battery level take place instead of other nodes in the path. Therefore,
the data transfer switches from node R10 to R8. this is because the SDNC rebuilds
new path at 5089 s of the simulation runtime as shown in Table 3.5., to prolong the

network lifetime.

FuzzyR8 —+— NoFuzzyR8 FuzzyR10
—e— NoFuzzyR10 FuzzyR13 —o— NoFuzzyR13
-=o=-=PAN Coordinator —x— ZR1 -===ZR11

g

g

oy 5 S, sSSP e

: % 3

Network Output Load (bits /sec)
g

°cSgfggigangdagapgigaaasRnrRe8IINARIEY
- - " N NN ™Mmm T <« w o n o ~ K~ «© © mm“g”

Time(Second)

Figure 3.21. Network loads for the intermediate end devices for 50 EDs and one application

Fuzzy-based Dijkstra’s reselects the path and creates a balance of lifetime battery
consumption of the entire network for the devices that spend a great deal of energy,
leading to sleep time to save energy. The throughput and end-to-end delay for 50 EDs
are shown in Figure 3.22.; the expected results during prolonged network lifetime are

the end-to-end delay test for 50 EDs.

EFWI)"'"‘“‘“ Dijkstra's —— Regular Dijkstra's ——ZigBee : z—Fuu)-Imscd Dijkstra's —+ Regular Dijkstra's ——ZigBee
E 120 ohemapragh Ao B AT A e b / 1 "’J\'A’W’W"\/\,\"’W\/J\’\/\A'W
> -

s 110 =
< 100 & 0.8 . =
- 1
Z 90 S06
'Ex 80 S
S —é 0.4
B 70 | (=}
o 60 0.2
50 0
C NIRRT eBe NS NTI LR NS
SEAR3RSEERAREGIIREIEREE
" EHNNMMHO M e T NN O w's'smmmu\a\g
Time(second) Time (second)

Figure 3.22. Throughput (bit/sec) and end-to-end delay for 50 EDs and one application

42

Thus, because fuzzy-based Dijkstra selects the best path according to the rule base
which has a higher level of battery for related EDs, the delay increases. Regular
Dijkstra selected the best path according to distance (SNR only) which decreases the
end to end delay. Also, the ZigBee-based WSAN has only one path that does not
change over time similar to the Regular Dijkstra. This indicates the similarity of the
end to end delay results. In Chapter 5 we develop the fuzzy-based Dijkstra to improve
the delay results well.

CHAPTER 4. INTERACTING THE VERTICAL DOMAIN
DEVICES OF IOT SYSTEM WITH HORIZONTAL
DOMAIN SYSTEM

Hybrid systems require interaction between different 10T technologies to create
intelligent services and smart environment. For the effective performance of loT
applications, 10T technology such as radio frequency identification (RFID) which is
widely used to identify and track the location of RFID tags in various environments.
For example, the healthcare system required a hybrid system to improve its services
and access to healthcare information in real-time. In this chapter, we provide the
communication between the vertical domain of 0T devices with the horizontal domain
system. In the vertical domain system, the RFID technology is integrated into the
SDN-based WSAN as new platform to the healthcare system, the proposed is

presented with simulation environment details and results.

4.1. 10T Technologies Related Work

Several projects also are proposed in the literature to integrate 10T technology such as
RFID and facilitate interaction between the cloud and the vertical domain devices of
loT systems in real time. The following literature references on RFID are diverse;
various solutions have been proposed to address the problems of RFID technology.

Radio frequency identification technology is widely used in a large number of 10T
applications; the authors in [53] propose combining smart parking solutions (SPS) with
innovative 10T technologies such as RFID and WSN. The system collects real-time

data on parking conditions and guides drivers to the nearest vacant parking space.

The 10T hybrid monitoring system presented in [54] proposes an RFID gateway for
healthcare environments. The RFID gateway is designed for both WSN and RFID

readers to transfer asset and patient data to the WSN network, using passive RFID tags

44

with sensors to track assets and patients in terms of location and condition. RFID
technology has improved the cost effectiveness of the system and simplified the

management of asset and patient data.

Radio-frequency identification and WSN integration into supply chains provides
system intelligence, since WSN is multi-hop and RFID technology is single-hop [55].
An intelligent system is proposed in order to enhance system performance; a
combination of RFID and sensors is applied. Radio-frequency identification is used
for identifying tags and WSN is applied to sensing environmental variables such as
humidity, temperature, and air quality. Some products should be protected against

humidity and some must be kept at a certain temperature.

The paper [56] proposed a fire 10T service-oriented architecture consisting of four
layers to connect fire tools to IoT networks. In the sensor layer, a smart sensor
connected to the RFID reader/tags was provided to give warning data in order to send
it to the base station. The RFID reader reads fire tools tagged with the RFID tag and
can activate fire system devices such as water hoses to fight fires. The sensor senses
data such as smoke, temperature, humidity and light, and uses fuzzy logic to detect the

level of fire risk.

A security solution is proposed for loT RFID Technology in [57]. The RFID
authentication system includes a TSMMA PUF structure and bidirectional RFID
authentication based on PUF. TSMCA PUF needs certain hardware resources to
perform a four-way procedure between the arbitrator and the transmitter. The PUF

works in two directions of authentication, from server to tag and from tag to server.

In [58], a framework is proposed to improve 10T applications’ performance, and smart
tag location tracking is applied to networks integrating both WSN and RFID. In this
framework, the fuzzy g-algorithm and the fuzzy system-based route classifier are
considered. The fuzzy g-algorithm is used to enhance the anti-collision protocol for
RFID, and the fuzzy system-based route classifier to classify the paths and assist

routing protocols.

45

The project described in [59] is an MQTT communication protocol and RFID
technology in which a steel beam product has an EPC code in its RFID tag. It uses
MQTT to send messages from RFID and 10T sensors. The RFID tag is tracked and
sent from the warehouse using IoT sensors connected to the RFID/10T system. This
structure is extended to the IoT domain based on the EPCGlobal/GS1 framework.

The paper in [60] introduces the structure and components of a WSID heterogeneous
network integrating WSN, RFID, and GIS technologies together. The platform uses
four layers: (1) a detection layer including smart tags and RFID tags; (2) a monitoring
layer including WSN gateways; (3) a management layer including a monitoring centre,
data server, and application server; and (4) backup interfaces handling the interface
between the WSID and external networks. The RFID tags in this work save
information such as material category, serial number, personnel ID, and location, so

that a different RFID reader in the system can collect it.

In [61], cybersecurity seeks to design smart and secure parking solutions based on
technologies such as WSN, RFID, Ad-hoc network, and the IoT. They rely on RFID
to determine vehicle registration numbers and related data including parking number,

parking period, parking fee, and password assigned for security purposes.

4.2. Vertical Domain Devices

In this section, a new real-time loT-based data analytics architecture for smart
healthcare is proposed. The new platform includes the SDN-based WSAN as explained
in chapter 3 and RFID structure, which are the key contribution of the study in the
vertical domain. The patient's related Electrocardiogram (ECG) data is sensed by the
sensing nodes in WSAN and delivered to the gateway (destination) node through the
path established by SDN controller so that it could be employed in data analytics

operations.

The RFID technology in the proposed structure is in charge of identifying the patients.
We assume that each patient is given an RFID wristband. For more realistic

performance evaluation all the vertical domain components have been modeled and

46

simulated using Riverbed Modeler. Since any 10T enabling technologies in the vertical
domain can be modeled using a simulation software, the proposed architecture has a
big potential to be used as a time-saving experimental environment and, this case can

be considered as the other contribution of this study.

Using RFID tags with sensors to track assets and patients in terms of location and
condition. RFID technology can improve the cost-effectiveness of the system and add
simplicity to manage the data of assets and patients. The proposed real-time data
analytics architecture for smart healthcare consists of two domains, namely the vertical
domain (SDN-based WSAN and an RFID structure), and a horizontal domain (Kafka,
Spark, NodeJS, and Mongo database) as outlined in Figure 4.1. The patient-related
ECG data is sensed by the source sensors (source SN) in the WSAN and is delivered
to the gateway so that the data can be transferred to the Kafka platform using the TCP
socket. The Kafka messaging system distributes incoming data to three different
consumers associated with it, as can be seen from Figure 4.1. The first Kafka consumer
is the Spark platform for real-time data analysis. The second one is NodelS web
application that visualizes the patient's data in the web browser, and the last consumer

is the MongoDB database that stores the incoming data for future usage.

47

Analytics Engine

AAAAAA

no Je (o | socketio

NodeJS
Application
Server

mongoDB

(Message (Distributor)

‘-:Horizontal 1
. Domain

Wire':les::v Seknsor ") Vertical
etwor Domain
a é. a - (Things)
B
“ { > pTe)
Clustert. 189 «» \;'\' 6 "| «o.
5% g8
m @ = " - &) Cluster3
®. ® ® @ ®
®

Figure 4.1. Outline of the RFID in vertical domain architecture.

4.2.1. Software-defined networking based wireless sensor network

As stated earlier in chapters 2 and 3, the SDN based WSAN is developed through the
study given in [12]. In this study, each SDN-enabled sensor node (SN) is connected to
the RFID reader and the patients’ heart rate device to collect data. These sensors which
are represented as source sensors then delivers the measured data to the gateway via
the WSAN in real-time.

48

4.2.2. Radio frequency identification

RFID is a widely used 10T enabling technology for data collection. Figure 4.2.
illustrates the Riverbed node model that integrates RFID reader into the SN. While the
RFID related components of the vertical domain modelled here in this study, the SDN-

based WSAN part was modelled through the study given in chapter 2.

RFID READER

Figure 4.2. SN with RFID reader node model and RFID reader process model.

The followings are a brief explanation of the RFID reader module that is embedded

into the SN:

1.The sensor application layer module was developed to receive patient data from the
MAC module of the RFID reader and to integrate this data with patient PR data in
the packet generator process.

2.The RFID MAC module was developed and presented in [62]. We have modified
this MAC module to meet the proposed SDN-WSN design requirements. RFID
reader can communicate with RFID Tag using the main functions which are:
a) ReaderSelect() is a function to select RFID Tag with number.
b) ReaderQuery() is a function to query a packet with a query value.
c) Query_rep() is a function to create a “queryAdjust” packet format and create

a “queryReply” packet format as requested by an RFID tag.

49

d) Reader_Received_Packet() is a function that is used when the packet is received
for the ACK packet, which will be generated and replied to each valid type of
packet: RN16, EPC, XPC, CRC16, and patient data.

e) Reader_kill() is a function to kill the packet when the session ends.

3.The RFID reader’s application module collects statistical information about the

RFID tag.

RFID Tag

1071

I

{Ra:\ei\'egktm
\

hhhhh

.
“u %, (NEWRPLY)

. 1
(ReczivaRkiRY) \‘
", 1

.

Figure 4.3. RFID tag node model and process model.

The RFID tag node model contains two modules [62] as illustrated in Figure 4.3. A
brief explanation of the model is given below:
1.The MAC module is developed for the RFID tag. This MAC module collects patient
data for sending to an RFID reader. In this model, the main functions to communicate
with an RFID reader are:
a) Receive_packet() is a function to receive and respond to any type of RFID reader
command packets.
b) QueryTag() is a function that responds to the query for any type of packets in the

case of a tag query.

50

¢) ReplyTag() is a function in the reply state to create a 16-bit random number
(RN16) packet and send it to an RFID reader.
d) AckTag() is a function in the case of the ACK’s state to receive an acknowledged
packet from an RFID reader.
2.The RFID Tag’s application module collects statistical information about the

patient’s data.

4.3. Horizontal Domain System

Nowadays, the growing volume of data on the internet has also increased the
importance of big data analytics, which makes sense from this data. It is obvious that
this large amount of data will increase further with the widespread use of the internet
of things which would incorporate numerous devices into the existing internet
infrastructure. In the horizontal domain system, the platform developed in this study
has a real data analysis structure. Therefore, the proposed platform contains high-
scaled and high-performance data analysis tools such as Kafka, NodeJS, Spark, and
MongoDB in the horizontal domain. The components used in this domain are; i) a
Kafka messaging system that distributes incoming data to different consumers, ii) a
web application which was developed using NodeJS to visualize the patient data, in
real-time, iii) a Spark platform for real-time data analytics, and v) a NoSQL database

that stores incoming data.

4.3.1. Kafka

Kafka (version 2.11) [63] is the actual distribution system, a high-throughput
distributor for messages, dealing with the enormous amount of data and supporting a
huge number of consumers and producers. Kafka uses a number of partitions and a
number of brokers to perform parallelism. The parallelism accelerates the processes
effectively. In addition, it automatically retrieves data in cases where the broker fails.
Through these characteristics of Kafka, the real-time data streaming requirements is

supported.

51

Kafka Server

Consumer 1| [Consumer 2| |Consumer 3

~\

Broker 0
e
— — — - T

Producer

estination

L — — = — d

Figure 4.4. Streaming gateway and Kafka (producer/consumer).

Figure 4.4. shows the system gateway (destination SN) associated with the Kafka
producer, through this portal, the flow of data directed from the vertical domain in
real-time to the horizontal domain. This gateway is a part of the vertical domain system
and is connected to Apache Kafka server using a TCP socket server program. Using
TCP socket program (server and client connection) makes communication reliable and
oriented. Kafka producer receives data stream from the TCP client sockets program,
which in turn listens to a particular port and IP address. Thereafter, Kafka producer

sends the streaming data to Kafka's consumers.

4.3.1.1. Kafka Server and Kafka Client Setup

Kafka server and client are connecting from different platform using TCP socket
client/server programs. Kafka producer is using java-based socket program while
Kafka producer is using c-based socket program. Figure 4.5. shown the start running

steps of zookeeper and Kafka servers.

52

Figure 4.5. The commands to run zookeeper and Kafka servers

Riverbed node model connects to the Kafka server using TCP socket client/server
programs. The following steps include setting up Kafka to create a topic as well as the
connections between Riverbed node model and the Kafka server.
1.To create a topic with name "testingl" in apache Kafka use the following command:
Jkafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --
partitions 1 --topic testingl
2.When Riverbed simulation starts working, the source SN generates data to send it to
the destination SN. Riverbed node model includes the c-based socket file in header
of the SN application layer as illustrated in Figure 4.6.

Ible Edit View Scenarios Topology Traffic Services Protogr'=—*'—m————Si——a s mre ameasomo e
Qo sl m el e olm s ol e
= | File Edit Interfaces FSM CodeBlocks Compile Windows Help

File Edit Intefaces Objects Windows Help NERa B M EDEEEEE D
ECEEI BT T ET 2l
75 J
ey

SDNBWSANEndDeviceAppLayer2.header block - u] x

File Edit Options

2 < »|HD8|
8

9
= 10

11 #1n
12 using namespace std;

13 /* Node configuration constants */

175

| 23

Figure 4.6. Include the c-based socket in riverbed node model

3.The destination SN receives data packets and executes c-based socket client program
by using the script to send number of messages to the Kafka server as shown in

Figure 4.7.

53

[+
File Edit Interfaces Objects
EDE DNBWSANEndDeviceAppLayer2.receive pek.Enter Execut
—— File Edit Options

Al s
1 wpan_receive_pck_from_nwk();
2

SDNBWSANEndDeviceAppLayer2 function block

Windows _Help

File Edit Options

2 < 808

61; op_stat_write (pktssec_rcvd_gstathandle, 1.0); Fleemesa
61¢ op_stat_write (pktssec_rcvd_gstathandle, 0.0);)

61¢

62(/™ Here we are send‘ing the info of packets to Kafka

62: char sendThismsgToxkafka[100];

62:

621 sprintf (sendThismsgTokaftka, "t=%f hbi-> from opnet

62¢

62! ELREENE (sendThisMsgTokatka) ;

62¢

62; /* Destroy the received packet */
62¢ op_pk_destroy (packet_MsDU_ptr);
62¢ F

63(op_ici_destroy (iciptr); r '(

Figure 4.7. The destination SN (gateway) use the socket to send packet to Kafka

4.The java-based server socket gets these messages from c-based client socket to
Kafka producer as shown in Figure 4.8. Meanwhile, The Kafka producer sends

messages to Kafka consumer.

& Mohammed Hussein - Java based socket/src/JbasedSocket java - Eclipse
File Edit Source Refactor Mavigate Search Project Run Window Help

il @ im0 -Q-AW-F OG-S VP A RETIH G
[% Package Explorer 5% =N ‘ & T = O i lavaCkafkajava 4d] JoasedSacketjava 31 =
J 29
1= Java based socket
V= ;:IEJRES;S:;: Library JavaSE-18] ;C try (Socket clientSocket = serverSocket.accept()) |
v B src 32 debug(clientSocket.getInetAddress().getHostName() + " : " + clientSocket.getPort()+ " Co
v i (default package) 33 debug(clientSocket.getOutputStream() + " : " + clientSocket.getPort());
m JavaChafka.java 34 debug(clientSocket.getInputStream() + " @ " + clientSocket.getPort());
T JbasedSacketjava 35 out = new PrintWriter{clientSocket.getOutputStream(), true);
Ret b 36 Date now = new Date();
B, Referenced Libraries 37 out.write(now.toString() +"\rin");
13 kafka-connect-jdbc-master 38 out.write("This Massage from server” +"\r\n");
17 Kafkal 39 debug(“After T write Message in the client side ");
3 Mongolava 48 BufferedReader in = new BufferedReader(new InputStreamReader(clientSocket.getInputStream

String textFromClient = null;
String textToClient = null;

a3 textFromClient = in.readLine(); // read the text from client
a4 out.print(textToClient + "\r\n"}; // send the response to client
45 debug(textFromClient + "|| client output ..."); |
a KefbarannartdnnltavtEram1ianth .

< >

n B Console 32 ties -]

JavaCkafka [Java Application] C:\Program Files\Java\jrel 8.0_152\bin'\javaw.exe (Decl, 2017, 6:47:30 PM)

Client: java.net.SocketInputStream@3bad87bs : 51277

Client: After I write Message in the client side

Client: t=686.350368 hbi-> from Opnet send this MSG to Kafka [Destl2 (#12)] packets=319 || client outpL
: ©:0:0:8:8:1 : 51280 Connected.

Client: java.net.SocketOutputStream@3fl91845 : 51288

Client: java.net.SocketInputStream@Sfe49esal : 51280

Client: After I write Message in the client side

688.315808 hbi-> from Opnet send this MSG to Kafka [Dest12 (#12)] packets=328 || client cutpt
©:0:0:0:8:08:1 : 51283 Connected.

: java.net.SocketOutputStream@72cc7esf : 51283

Client: java.net.SocketInputStream@Safa3c9 : 51283

Client: After I write Message in the client side

Client: t=690.484448 hbi-> from Opnet send this MSG to Kafka [Destl2 (#12)] packets=321 || client outp.
Client: ©:9:0:8:2:8:0:1 : 51286 Connected.

Client: java.net.SocketOutputStream@72@35809 : 51286

Client: java.net.SocketInputStream@9@9217e : 51286

Client: After I write Message in the client side

Figure 4.8. Java based socket

54

4.3.2. Apache spark

Apache spark (version 2.11) [64] is an open source computing platform developed
using scala, which enables parallel processing of large data sets. Because apache
spark’s operations are performed in memory, it supports data analysis with high
performance and high speed for various formats (static or streaming). Moreover, it

includes machine learning libraries.

4.3.2.1. Apache spark streaming

Apache spark processes real-time streaming data very quickly because of maximum
efficiency during operations, therefore, it processes a large amount of data in a short

time.

4.3.2.2. Apache spark machine learning library

Machine learning library (MLIib) is scalable library in the apache spark that contains
common machine learning algorithms, including classification, regression, and
aggregation. The logistic regression algorithm is one of the regression machine
learning algorithms, which is selected in this study to classify patient data and provide

better results for 10T healthcare applications.

4.4. Case Study: Real-Time Disease Diagnosis Using Logistic Regression

Real-time diagnosis is a new and important way to diagnose a patient's condition. In
order to perform real-time disease diagnosis, we used a logistic regression algorithm

that is machine learning technique in apache spark to predict patient's condition.

4.4.1. Electrocardiogram

ECG refers mainly to the electrical activity of the heart. ECG consists of 5 waves: P,

Q, R, S, T corresponding to different stages. ECG allows us to record the activities of

55

the heart muscle from several points on the surface of the body [65]. In this case, ECG
plays an important role in the diagnosis of various heart diseases. In our study we
considered about QRS and PR intervals which are related to Wolff Parkinson white
(WPW) disease.

Wolff Parkinson white syndrome is a conduction disorder where the atrial pulse passes
to the ventricle through an extension path along the normal ventricular atrium junction.
Patients with WPW may suffer from palpitations, fainting, and sudden death [66]. The
symptoms of this disease are a PR interval of less than 120 (shorter than 0.12 seconds)
and a QRS compound that is greater than 110 (greater than 0.11 seconds). In order to
assess and classify WPW disease, the QRS and PR intervals are selected from the
arrhythmia dataset in the UCI database [67]. This dataset consists of the ECG data
from 452 people, each with 279 attributes.

4.5. Experimental Results and Discussions

I e —————) 7| [o e o i . | o e e e S e e e e e e e a
| |
| ‘1 ! KAFKA KAFKA !
| | | [PROPUCER BROKER 1 TAFKA H R, @ |
ICONSUMER|
) . I		
getPatient Info()	I	
getQRSandPR()	I fetchMessage()— ~—dataAnalytics()	
e o T —’[
	‘ I LJ alarm() ..	
l 1 ! :		=
i = i g [~ KAFKA ‘MONGO '		
' } send i smd‘rloxl ! apmdutﬂ%)—__")ﬁ ICONSUMER		
	1 g	
! sendToDestination() S5 !	T ’ﬂh‘lleiageg[_ ~L.store()	
		l {7
—		
	[KAFKA	
i ‘ i	{CONSUMERJ‘ NODEJS‘ ’BROWSER!	
i 1 il :		
L N & fetchMessage()	!	
' . I	— produgzeGraph()	
Vertlcal I [T+ pendrociients	I	
Domain	i L~	
; ! Horizontal Domain ! '		
(Things)		

Figure 4.9. The Sequence diagram for end-to-end data delivery operations.

The sequence diagram shown in Figure 4.9. presents the end-to-end data delivery
operation of the proposed system. It clarifies the main operations performed to transfer

the patient’s data from the vertical domain to the horizontal domain. The vertical

56

domain that has been modelled and simulated using Riverbed Modeler has source SNs,
RFIDs and a gateway, as can be seen from the figure. On the other hand, the horizontal
domain of the proposed architecture has been built using real-world technologies such
as Kafka, Spark, NodeJS and MongoDB. The simulation of the WSAN and RFID was
run for 3600 seconds. The source SN generates QRS and PR data of any patient once
in every 2 s during the simulation run time. This data is read from a file including test
data. In the meantime, RFID reader that is embedded into the SN gets other related
information from the RFID tag like taglD, patientlD, age, gender, height (cm), and
weight (kg). All of these pieces are combined and then, forwarded to the gateway using
SDN-based WSAN. The gateway delivers this data to the Kafka Producer to be
distributed to the related Kafka Consumers. The communication between WSAN
(gateway) and Kafka (Kafka Producer) is provided using TCP/IP TCP sockets. As
soon as the Kafka Producer pushes incoming data into the Kafka Broker, all Kafka

Consumers fetch it for use in their individual job.

As can be seen from Figure 4.9., the Kafka consumers are connected to the web
application, Spark engine, and MongoDB, respectively. When Apache Spark gets the
patient related ECG data, it tries to diagnosis disease using Logistic Regression model,
in real-time. NodeJS web application sends the data from Kafka instantly to the
connected client browsers using socket.io module. The illustration of the web-based
user interface in Figure 4.10. shows the last record of patient data that is delivered by
NodeJS application. Finally, all data introduced to the cloud is stored in the high-
performance MongoDB database for future use.

57

Internet of Things Research Laboratory

Data Visualization for loT

Real-Time Patient Monitoring

Patient Information

PatientlD 122
Age 75

Gender 0

Height 190 -

Weight 80 u
QRs 12

PR 19

Real-Time Patient Data

* {"topic""testing1”,"value":"1,122,75,0,190,80,112,119" "offset":199,"partition":0,"highWaterOffset":200,"key":"20"}

Figure 4.10. NodeJS patient information interface.

4.5.1. Simulation environment and hypothesis

In this study, the simulation scenario is examined to look into the performances of the
developed models using the simulation model in [12]. An explanation of the network,

together with the developed components, is shown in Figure 4.11.

58

Figure 4.11. Streaming scenario for 10T healthcare applications.

Figure 4.11. shows the simulation streaming scenario; patient data comes from three
RFID tags and three sensor sources. Each RFID tag is associated with SN to collect
patient information such as patient identification, age, gender, height (cm) and weight

(kg). SN source generates patient’s data such as QRS and PR as test data.

4.5.1.1. Numerical results and argumentations

In this part, the composition of the logistic regression algorithm tested under the
parameters as shown in Table 4.1. In Table 4.2., we can see the classification type for
the diagnosis of WPW by a logistic regression algorithm. Training data is the correct
data that logistic regression algorithm learned and build model. Testing data is the
streaming data which generated randomly from the vertical domain system as shown
in Table 4.3. These data are evaluated in real-time and the logistic regression algorithm
predicted the results for each group of patients depicted as shown in Figure 4.12. The
total average of the data (Input Rate) in Kafka/Spark streaming processes tested and

59

investigated in different partitions as shown in Table 4.4. Finally, the proposed system

can deal with unexpected failures using number of partitions as explained in Table 4.5.

Table 4.1. Logistic regression algorithm parameters.

Parameter Value
set max iterations 10
set regularization parameter 0.3
set elasticnet mixing parameter 0.8

Table 4.1. shows the parameters used in the logistic regression algorithm settings. Max
Iterations is the maximum number of runs. The Regularization parameter is an input
value of lambda in the model, which reduces the variance of the estimated regression
parameters. The regularization path is computed for the elasticnet penalty at a grid of

values for the regularization parameter lambda.

Table 4.2. Classification table.

Class Number Patient Sate
0 Not Wolf Parkinson White
1 Wolf Parkinson White

Table 4.2. shows the data classification of the logistic regression algorithm, which

classified the data into two categories of WPW disease.

Table 4.3. Data streaming.

Data Record Numbers
Training Data 350
Testing Data 15000

In Table 4.3., the logistic regression builds the trainer model from 350 patients as
training data. The algorithm was also tested on 15,000 data streaming of patient
records as testing data.

60

$eemmm- $ecemmmea D ST e e e b T e e ecc e e $ecmmmmeean +
IColumnIPatxentIDIAgeIGenderIHexghtIwexghtIORSIP R| features|label| rawPredlctxonl probabxlltylpredlctlonl
#eoooe- goccccnnn- docodocccocdocccangancan- #o--docodeococonncaccan $ommn- dececcccecccccccccencgeccccccccacccacaionadoccccacan- +
| = | 1423| 55| BI l68| 64| 52| 59| [52.0,59.0]|] e.e|[e. 49163867179775.‘.|[6 62049224418433...| 0.0]
| 2 335| 45| 1] 146| 69]124|129|[124.6,129.0]1| ©0.8|[0.35863812706202. .. | [0.58871072309332. . . | 0.0]
| 3 | 1111] 22| (1] 160 | 65| 34| 85| [34.0,85.0]| ©.0]|[0.86381485878467...|[0.70345707098266... | 0.0]
| & 7 1423| 55| o] 168| 64|101|143|[101.0,143.0]| ©.0|[0.68442893466572...|[0.66472647179666... | 0.0]
| = | 335| 45| 1| 146| 69| 86| 33| [86.0,33.0]| ©.0]|[-0.0312941363457...|[0.49217710433158... | 1.0|
| e | 1111] 22| 1] 160 | 65| 19| 27| [19.0,27.0]| ©.0]|[0.55324566472960...|[0.63488828168387... | 0.0]
[= | 1423| 55| (1] 168| 64| 86|135| [86.0,135.0]| ©.0|[0.76343077614570...|[0.68209812854168... | 0.0]
| s | 335| 45| 1| 146| 69|146|138|[146.0,138.0]| ©.0]|[0.22147220961547...|[0.55514284036741... | 0.0]
[e] 1111] 22| o] 160| 65| 98| 15| [98.0,15.0]| ©.0|[-0.2846062748768...|[0.42932485005444... | 1.0]
| 10 | 1423| 55| 1] 168| 64| 31|106| [31.0,106.0]| 1.0]|[1.65570133514251...|[0.74186820823050... | 0.0]
[rax | 335] 45| 1| 146| 69| 95| 3| [95.0,3.0]] 1.0|[-0.3498366819661...|[0.41342202584060... | 1.0]
| 22 19 1111] 22| (1] 160 | 65| 65| 71| [65.0,71.0]| 1.0]|[0.46264634069266...|[0.61364177364493...| 0.0]
| 13 | 1423| 55| o] 168| 64| 4| se| [4.0,50.0]| ©.0|[0.87378154824131...|[0.70553194983074...| 0.0]
| 1 | 335| 45| 1| 146| 69|132|128|[132.0,128.0]| ©.0|[0.27546899586301...|[0.56843503966074... | 0.0]
| 15 | 1111] 22| o] 160| 65| 52| 4| [52.0,4.0]| ©.0|[0.06310993261921...|[0.51577224860936... | 0.0]|
[28 1423| 55| 1] 168| 64|127|108|[127.0,108.0]| ©.0]|[0.16675165070418...|[0.54159158229028... | 0.0]
I 22 1 335| 45| 1| 146| 69| 70|142| [70.0,142.0]| ©.0]|[0.96872614209722...|[0.72486551808961... | 0.0]
| 18 | 1111] 22| (1] 160 | 65| 43|118| [43.0,118.0]| ©.0|[1.63613181793845...|[60.73810294845955...| 0.0]
| 19 | 1423| 55| (1] 168| 64| 66| 75| [66.0,75.0]| ©.0|[0.48438980972442...|[0.61878392722149...| 0.0]
| 20 | 335| 45| 1| 146| 69| 52|128| [52.0,128.0]| ©.0|[1.02924610074611...|[0.73676971063467... | 0.0]
D B D e o B - Frrmmmmme e B e +

only showing top 20 rows

Test Error = 0.29850746268656714
Model Accuracy = ©.7014925373134329

Figure 4.12. Logistic regression predicted results.
Figure 4.12. displays patients’ incoming data, as well as the logistic regression
algorithm’s classification of the data in real time and the predicted results according
to the data training model. Patient data are patientID, age, gender (O for males and 1
for females), height, weight, QRS, and PR. The ‘label’ column is the estimated class
rating. For example, for patientID (335) in the second row, which shows a QRS
interval of 124 milliseconds and a PR interval of 129 milliseconds, the label rating
value is equal to the expected value of the logistic regression. In this case, the logistic
regression classifies this record as negative for WPW disease (patient = 1, healthy =
0). When the data for this patientID (335) changes to a QRS interval of 86 milliseconds
and a PR interval of 33 milliseconds, as seen in the fifth row of Figure 4.12., the label
value is not equal to the expected logistic regression. In this case, the logistic
regression classifies this record as positive for WPW disease. The accuracy of the

model resulting from this set of records is about 70%.

Table 4.4. Total average of the input rate.
Streaming Partition 1 Partition 2 Partition 3

Input Rate 123.25 records /sec 140.10 records /sec 165.18 records/sec

Table 4.4. shows the total average of streaming data which is tested in three topics
with different number of partitions. Each topic of Kafka distributes the incoming data

received across a number of partitions that is created with this topic. The Kafka topic

61

receives data across a distributed set of partitions. As can be seen in Table 4.4., when

the number of partitions increases, the number of records also increases.

Table 4.5. Streaming Data with Number of Partitions.

Input data size Partition Offset 1 Offset 2 Offset 3

120 records 1 16552 to 16671 - -

120 records 2 10300 to 10365 10182 to 10237 -

120 records 3 34506 to 34548 34668 to 34707 34503 to 34542

The Kafka’s offsets management help to restore the state of the stream throughout
Spark direct streaming’s lifecycle and deal with unexpected failures. Table 4.5.
indicates the input data size of 120 records, which contains the offset numbers for each
partition. When the number of partitions in the Kafka data streaming was increased,
the number of offsets was increased; for example, partition 1 included one offset,
whereas partition 2 included two groups of offsets and partition 3 included three
groups of offsets. The benefit of increasing the number of partitions is if one of the

partition’s offsets fails, Kafka continues processing by using the other offsets.

We tested several scenarios by setting the number of patients in each application where
is one application includes the source SN and RFID reader. First scenario with one
application and second with two applications and the third with three applications,
each application include two patients. The end to end delay and throughput results for

three scenarios are shown in Figure 4.13. and Figure 4.14. respectively.

62

[E3 application layer of Campus Network Dest12 - X
B SDMCandRFiD-ArealKm10EDoneTag-DES-1
B SDNCandRFiD-ArealKmDEDTvwoTags-DES-1
O SDNCandRFiD-Area K 0EDTwoTags3Rooms-DES-1
0 time_average (in Application End-to-End Delay - best-effort (sec))
i}
0.
i}
: il —_
i}
0. F‘J_‘
i} f
1) ’JJ_'_;IJ
v
. [aN e
. [V
. |
. [
’ 'I
i}
. T~
. |
0.
N T ————
01 l’
0. +
i}
0,
0.
0.
i}
20 4n B0 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
time (5ec)
Figure 4.13. The end to end delay for the three applications
[E3 =pplication layer of Campus Network.Dest12 - X
B SDMCancRFID-Areat Km1 DEDTwoTags-DES-1
O SDNCandRFID-Areat Kmi DEDTwoTags3Rooms-DES-1
q time_average (in Application. Traffic Received - best-effort NSDU (bt}
1
17
17
1
1
N— </
time (zec)

Figure 4.14. Throughput (bit/s) for the three applications

It is possible that the path is changing during transmission time using the SDN based
WSAN to prolong network lifetime as discussed in previous chapters. We can be
observed from the figures when number of applications increased lead to a higher end

to end delay, as well as the throughput results.

CHAPTERS5. ENHANCED SDN TOPOLOGY DISCOVERY AND
I0T GATEWAY

5.1. Introduction

The beacon frame is the key factor to configure the IEEE 802.15.4 superframe. The
components of the IEEE 802.15.4 superframe structure were discussed in chapter 2.
The beacon settings have a power of influencing the WSAN performance such as
throughput and delay which are essential elements to meet the requirements of I0T
applications. The SDN network topology discussed in chapter 3, which involved the

topology discovery process to configure the beacon frame.

In this chapter, we improve the topology discovery process in a way that relies on the
resulting path of the Fuzzy-based Dijkstra algorithm. This method is called an
Enhanced SDN-WSAN Fuzzy-based Dijkstra (ESWFD).

Another issue is to connect the system to the cloud via an 10T gateway. As we have
seen in chapter 4, we provided the communication between the vertical domain of 10T
devices with the horizontal domain system using the gateway. The system gateway
directed the data flow in real-time from the vertical domain to the horizontal domain.
This gateway is part of a vertical domain system that uses a single client / server TCP
socket program. In this chapter, we enhance the system gateway using message queue
telemetry transport (MQTT) protocol. The MQTT is a simple messaging protocol with
low bandwidth to connect sensors (resource-constrained) devices to the internet. In
MQTT, we can create many topics and from any system, many senders and receivers

can share either a single topic or multiple topics.

64

5.1.1. Related research

The following literature references on the MQTT protocol are diverse. An application
programming interfaces of MQTT and API web for 10T cloud is presented in [68]
which the results are evaluated in term of average response time, average transmission
delay and memory occupation for many tasks of 1oT applications. An application layer
protocols such as MQTT and CoAP protocols are analysed with respect to the cloud
in [69] which their 10T architectures consists of 6 levels. The authors of [70] propose
a real-time problem-oriented solution through 10T technologies and vehicle cloud
service, therefore, the cloud parking service is designed according to the MQTT
communication principle. The implementation of MQTT-S tested on the IBM wireless
sensor networking testbed [71], which is integrated to ZigBee-based networks.

In this chapter, the main contributions can be summarized as follows:
1. To enhance Fuzzy-based Dijkstra's algorithm in SDN beacons structures via
cross-layer (Topology Discovery and MAC layers).
2. Develop an interface between MQTT [72] and Riverbed Modeler simulation
allowing the system to send WSAN data to 1oT cloud.
3. Develop a IoT web interface using NodeJS [73] for monitoring application to
receive the network data from SDN and application data from destination node.

5.2. The Proposed ESWFD for 10T Applications

The proposed ESWFD architecture consists of two domains, namely the vertical

domain (SDN and WSAN structure), and a horizontal domain (MQTT, and NodelS)

as outlined in Figure 5.1.

Wireless Sensor
Network

(]
8.
. Cluster2

 Vertical 1
Domain
. (Things).

MQTT
Subscribe

Server

65

nd("se\o

NodeJS
Application

MQTT
Broker

Horizontal
Domain

Figure 5.1. The general description of the ESWFD proposed 10T architecture.

5.2.1. Components of the ESWFD system

As stated earlier, the SDN-based WSAN is developed through the study given in [12]

and chapter 3. The new components of SDN node model as shown in Figure 5.2. (a),

which consist of four main modules as the following:

1.

The MAC module [12]. This module modified to reconfigure beacon according to

the topology discovery.
The Routing Decision and Flow Table (RDFT) module modified to allow the SDN

controller to send node status information and flow table information to be

monitored over the internet using MQTT broker.

The topology discovery module includes new procedures to configure SDN beacon

frame.

The MQTT publish module was developed to send data to MQTT broker.

66

Figure 5.2. The system components, the node model of SDN (a) and the node model of sensor node (b).

In Figure 5.2. (b), the components of sensor node model consist of six modules, in this

chapter, the new and modified modules are explained as the following:

1. The application layer module is for both source and destination nodes. Source node
uses this module to generate data such as the temperature, humidity and carbon
dioxide (CO>) [74] data and sends it to the Packet Switch (PKSW) module. When
this data arrived at this module, destination node (gateway) sends it to IoT could via
his MQTT publish module.

2. The MQTT publish module was developed to send data to MQTT broker.

5.2.2. SDN topology discovery

Topology discovery in SDN supports a cluster topology for the active routing nodes,
which every node transmits beacons utilized in the MAC and the Physical layers. In
order to save energy and establish a synchronized network, the IEEE 802.15.4 beacon-
enable mode is considered in [12]. Beacon-enable mode has active and inactive
periods in the superframe [4]. The IEEE 802.15.4 standard active Superframe Duration
(SD) [75] is defined in (Equation 5.1).

67

SD = aBaseSuperframeDuration * (2)5° (5.1)

The aBaseSuperframeDuration indicates the minimum duration of the superframe,
corresponding to superframe order (SO) when it is equal zero. The SD active period
should change the SD length to the number of routers in each cluster, especially when
the application path is established between routers. This path aims to transfer data

between number of clusters from source to destination nodes.

[Check Straucture]

Select FDB

RouterCounter=0

Change BO,S0 and start
time for all routers to -1

| NO? Is Router has child?

Get the router address
frem path and set BO,S0,
and start time

H YES [1
i ¥ o i

. [set BO,S0, and start time l ! ! !
| 1 Send the new configration to MAC
[RouterCounter++]_ ! ! [g]

o

Change BO,S0 and start
time for this router to -1

Equation 5.3

: Y b :
i [Add to the router list] i i '

Send the new configration to MAC]

Equation 5.2

Figure 5.3. Flowchart of two algorithms to calculate the SD, Fuzzy-based Dijkstra (A) and Fuzzy-based Dijkstra

Beacon (B).

68

The topology discovery procedures as shown in Figure 5.3. has two methods to
calculate the SD in order to improve the network performance. The first method is the
Fuzzy-based Dijkstra's (FD) [12] shown in Figure 5.3. (A), is checking the network
structures according to the number of routers (NR) that have children nodes. In this
method, the SD active period calculated in (Equation 5.2) according to NR and
multiplied by (Equation 5.1). The second method is a Fuzzy-based Dijkstra’s Beacon
(FDB) shown in Figure 5.3. (B). This new method calculates the SD active period in
(Equation 5.3), according to the cluster number (CN) divided by the routers counter
(RC) that are in the application’s path. Moreover, the beacon configuration of ZigBee-
based WSAN is shown in (Equation 5.1), which is the default setting for IEEE

802.15.4 standard. The Beacon’s option of the three methods summarized in Table 5.1.
Table 5.1. Algorithms Configurations

No Name Beacon’s option
1 Fuzzy-based Dijkstra’s Beacon (FDB) Cluster Number/ Routers Counter
2 Fuzzy-based Dijkstra’s (FD) Number of Routers
3 ZigBee-based WSAN 1
SD = NR = aBaseSuperframeDuration * (2)%° (5.2)
CN) 0
SD = "™ aBaseSuperframeDuration * (2) (5.3)

5.2.3. Message queue telemetry transport

Message queue telemetry transport (MQTT) is an 10T connectivity protocol used in
the vertical domain gateway sensors to send data to cloud. Therefore, MQTT provides
a lightweight method that uses publish and subscribe operations to exchange data
between clients and the server. There are many types of MQTT brokers, in this study
we use the open-source mosquitto [72] MQTT broker to provide communication
between WSAN devices and the cloud.

69

5.2.3.1. MQTT Communication

The MQTT mosquitto broker is responsible for sending the message from the publisher
to the client subscribed via a specific topic. Figure 5.4. shows the communication
between the MQTT broker and MQTT clients which these clients can be as publish or
subscribe. Many MQTT receivers can subscribe to different topics, and mosquitto
distributes messages from publishers according to their topics to the correct

subscribers.

MQTT

MQTT Client MQTT Broker

7 Connect]

Connect Acknowledge

. Subscribe —

Subscribe Acknowledge

— Publish —

Publish Acknowledge

Figure 5.4. MQTT broker and client communication.

In our system, we build MQTT publish in the gateways (SDNC and destination SN),
through these portals, the flow of data directed from the vertical domain to the
horizontal domain in real-time. These gateways are a part of the vertical domain
system and is connected to MQTT broker (mosquitto). MQTT subscribe receives the
data stream from the MQTT broker to NodeJS application server. Thereafter, NodeJS

sends the streaming data to the web application as shown in Figure 5.6.

5.2.4. The ESWFD system operations

70

The sequence diagram shown in Figure 5.5. presents the end-to-end data delivery

operation of the proposed system. It clarifies the main operations performed to transfer

the data and the flow table from the vertical domain to the horizontal domain. The

vertical domain that is designed and simulated using the Riverbed Modeler has source

node, SDN controller node, intermediate nodes and destination node, as can be seen

from the Figure 5.1. and Figure 5.5. On the other hand, the horizontal domain of the

proposed architecture has been built using real-world technologies such as MQTT, and

NodeJS.
Source Node Software-Defined Networking Controller
Application MQTT Routing Decision .
Topology D
Layer EKSW ’ MAC ‘ ‘ LI ‘ | Publish and Flow Table Opolagy Bscovery
1|1: App Request Conhection() !
1.3: Forward pkt between routers ' 1 :
1.2:Create pkt and set sls) 'send App Request to SDNG 1.4: Extract Packet 7 1.5: Make Routing Decision
& get viaues ' !

1.13: app Reply()

to start data transfer

Check the Flow Entry() ?
.1{ packet generate —
2.2:Send packet -

1
: |
i i
f |
! = 1.11: Send Beacon
— with new configuation
1.12: Forward app reply

1.7: Send Flow Tables

1
to the related routers

“w

.6: Send Flow Tabl - H
L_Inode status, and Path |3 g. genq routing path,

1.9: Run CheckStrac

1.10: Send new Beacon configuration

Destination Node

MQTT
Publish

Application
Layer

‘ PKSW ‘ ‘ MAC

D 2.8:Send Data]Z.?;Receive Data
-— ~

2.6: Checkl Flow Entery

2.5:Forward Data

to the all routers
1

1.11 : Forward Flow Table and New Configuration for the Beacon

nTh Router in the Path

MAC PKSW

Chegk the Option of the Beacén
I]
2.4: Add Flaw Enteries

2.5: Forward Data

2.3: Forward Flow Table ‘

2.5:Forward Data | ‘

Figure 5.5. The sequence diagram for end-to-end data delivery operations.

The system operations related to connection establishment and data transfer are

described in the diagram shown in Figure 5.5. After the topology discovery operation

has been completed, the source node uses the Application layer module to send a

connection request packet to the to the Packet Switch (PKSW) module (step 1.1-1.4).

71

The request is transmitted into a command frame during the contention access period
until it reaches the SDNC node model. SDNC receives this connection request at the
Routing Decision Flow Table (RDFT) module. RDFT then uses the Fuzzy-based
Dijkstra algorithm to create the optimal path between the source and destination nodes.
Through this path, it builds a flow table for the application and the relevant nodes on
the path (step 1.5). Accordingly, RDFT unit sends the flow table, nodes’ status
information, and application path to MQTT publish module and the flow table to MAC
module (steps 1.6 and 1.7) respectively. At the same time, RDFT also sends the routing
path to the topology discovery to check the structure (steps 1.8-1.9). After that,
topology discovery unit sends a new beacon configuration to the MAC module (step
1.10). When routers receive the beacon, they check and add the entry to its flow table
and then redirect the flow table according to the next address to other nodes (steps
1.10, 2.3 and 2.4). When the source node receives a flow entry at the MAC module,
the MAC unit forwards it to the PKSW module. PKSW unit inserts this entry into its
flow table and then connection establishment procedure is completed (steps 1.11-
1.13). At this point, the source node begins to send data packets (steps 2.1 and 2.2).
Next, the PKSW module checks the address of the next hop using its flow entries to
forward packets. The same procedures are repeated for each router node to forward the
packets (steps 2.3-2.5). After that, the destination node receives the data, it sends this
data to the MQTT publish module (steps 2.5-2.8) to be handed out to the cloud.

5.3. Experimental Results and Discussions

In Figure 5.7. the Riverbed Modeler simulation of the system was run for 1800
seconds. The source node generates data (i.e., temperature, humidity, and CO3) in
every 2 seconds. The SDN controller data are the status information of the nodes (i.e.,
remaining energy and neighbours of the node with related SNR), flow table and
application’ path. The SDN controller and the source nodes send their data to MQTT
mosquito broker using the MQTT publisher. NodeJS web interface as shown in Figure
5.6. receives these data using MQTT subscribe. arrived at NodeJS web interface and
the application’s data arrived at NodelJS web interface from the source node

application.

72

Internet of Things Research Laboratory

Department of Computer Engineering, Sakarya University

Arriving Status of the End Devices

Node Address =1
Neighbors SNR
Flow Table 0 38.271820
23 42.736358
NO ApplD | AppNO | SrcHop | Node NextHop | Action | Cluster 3 1.000000
Address 43 40.139486
47 135.602780
7 13147076
|D|1‘1| 1 ‘11|5|1‘0‘ 5 0T
17 139.778320
| 1 | 1 ‘ 1 | 1 ‘ 5 | a7 ‘ 1 | 0 ‘ 30 [35.126267
12 136.851895
e[+ o] s @] o] |c0]
| 3 | 1 | 1 ‘ A7 ‘ 1 | 12 ‘ 1 | 1 ‘
| 4 | 1 ‘ 1 | 1 | 12 | 12 ‘ 1 | 0 ‘

Application Path
11=>5=>47=>1=>12

~Temperaturg=

-
e/

Figure 5.6. NodeJS information interface.

5.3.1. Simulation scenario and discussion

In this scenario, the simulation model in [12] was enhanced to evaluate the network's
scenario as shown in Figure 5.7., which includes 50 sensor nodes and SDN controller
node. The data travelled from source node to destination node via the routers in the

application path that has generated from SDN controller node.

73

Figure 5.7. The simulation model of the SDN controller and 50 sensor nodes

5.3.2. Performance analysis and scenario results

The Simulation configuration for this scenario made for Fuzzy-based Dijkstra's (FD),
Fuzzy-based Dijkstra's Beacon (FDB) and Zigbee shown in the Table 5.2. The results
show that FDB performs better than FD and Zigbee in terms of Throughput, End-to-
End Delay and Jitter shown in Figures (5.8, 5.9 and,5.10) respectively.

Table 5.2. Parameters of the Simulation

Topology of the Network Number of end devices 50
scenario Network coverage area 300 m x 300 m
SDNC location (X, y) (150, 150)
Simulation time 1800 s
Application configuration Start time 50s
Packet interarrival time 2s
Packet Size 280 bits

Throughput (bit/s)

180 1

160 o

140 o

120 4

100 -

80 4

60 4

40 4

20 4

End-to-End Delay

—o—Zighee —»—FDB —+—FD

© %832 EREB3FIE LB AN g ERBREBEERERR
Time(second)
Figure 5.8. Throughput (bit/s) for 50 nodes and one application
——Zighee —=—FDB —e—FD
1.2 4
14 ee s .-- "'.. ".... ol.\o
'Y o @ o e o 4 H « o *
AN H '/V\.’- .‘./\/. WY .l\o ./\/\/\' e\ /S /\." Sres
"./\./ T \.A'//V\"!\! . /\/\.) o . $e T : \./\‘. \!\.“o ¢ b ' °
08 1 T\ .t : : . :
06 1|
0.4 A
] /.I'-l-l.-'l.'--'l.'nnl.'-'-nll'“-l-'I'“-'-'-'.'I“l'.“'-lll.'l'llnll.'-‘.ll“--llll'-"ll'-
o
c38YIRIRE8SFILBIESN 58883888888

Time(second)

Figure 5.9. End-to-End Delay for 50 nodes and one application

74

Jitter

0.8

0.7

0.6

0.5

—o—Zighee ——FDB =—e—FD

Figure 5.10. Jitter for 50 nodes and one application

B Zighee EFDB OFD @Zighee BFDB CIFD

10 20 30 a0 50
Network Size

@ Zighee BFDB CFD

10 20 30 40 50
Network Size

Figure 5.11. Delay, Jitter and Throughput on different network sizes

75

CHAPTER 6. OVERALL CONCLUSION AND FUTURE WORK

We have made a number of contributions and investigations into this thesis, where the
SDN-based WSAN proposed as a new structure to solve the problem statement of the
thesis. We discussed the main problems of this research, namely, the development of
a new energy-aware routing mechanism in the SDN controller. Secondly, the
integration of the SDN-based WSAN for the Internet of Things using WSAN and
RFID technologies. The thesis contains of six chapters. The main contributions are
involved in four chapters. In this chapter, we summarize the overall conclusion for

each chapter and future work.

Chapter 1 provided a motivation, problem statement, the goal of the research, research
contributions, and the related work to the thesis. Moreover, the SDN-based WSN

routing protocols were discussed in this chapter.

Chapter 2 discussed the integration of SDN-based WSAN for Internet of Things. Also,
we explained the challenges of this integration, most importantly energy routing
management. The software-defined networking architecture for 10T is discussed in this
chapter which contained SDN application plane, SDN control plane, SDN data plane
and WSANFIlow protocol stack. IEEE 802.15.4 and superframe structure are described
in detail.

Chapter 3 presented the architecture design of routing protocol in the SDN controller.
the SDN controller components and algorithms such as combined flow tables, network
topology, node status, Dijkstra’s algorithm, and fuzzy logic are discussed in this
chapter. The components of the proposed system are modelled and simulated using the

Riverbed Modeler software for more realistic performance evaluation.

77

Simulation results showed software-defined networking in the proposed system have
provided a management and control solution to WSANS. In addition, the proposed
system can reconfigure WSANS after deployment and is capable of both providing an
effective cluster routing when finding the most efficient route and prolonging the

network lifetime.

The energy consumption results showed the proposed SDN-based WSAN with a
fuzzy-based Dijkstra algorithm is performed better than the regular Dijkstra's and
ZigBee counterparts. Furthermore, the SDN appeared as the most powerful candidate

to solve the problem of network flexibility in WSAN among deployment options.

The performance metrics are the power consumption ratio and SNR used in the
proposed system when the application path is established between WSAN devices.
Therefore, in future work, the proposed system needs to increase the number of

performance metrics according to the needs of the 10T application.

Chapter 4 presented a new real-time I0oT data analytics architecture for healthcare
architecture. The proposed system composed of an SDN-enabled WSAN and RFID in
the vertical domain and of data analytics tools such as Kafka, Spark, MongoDB and
NodeJS in the horizontal domain. The developed system has been tested for real-time
detection of Wolf Parkinson White syndrome using logistic regression method. The
obtained results on the Arrhythmia dataset revealed that this disease can be predicted
with high accuracy (i.e. %70 in average) using the proposed architecture, in real-time.
Considering the fact that the proposed system includes high performance and scalable
data analytics technologies such as Kafka and Spark, it is not difficult to conclude that
this new architecture can be used effectively in real-time big data processing
applications. To model and simulate any 10T enabling technology, the developed
system also communicates with Riverbed Modeler using TCP sockets. So, the
proposed architecture can be used as a time-saving experimental environment for any

loT-based system.

78

In addition, to integrate 10T technology — namely radio frequency identification into
the WSAN source devices as part of vertical domain devices. Furthermore, the
communication and implementation between the vertical and horizontal domain

devices will be included in the chapter.

Therefore, an effective data routing strategy with low power consumption for WSANs

should be smart and flexible in the SDN controller to meet IoT requirements.

Chapter 5 presented an enhanced SDN-based WSAN fuzzy-based Dijkstra, ESWFD,
which can reconfigure the SDNC’s beacon after the application path is established.
ESWEFD is also designed with an 10T gateway between ESWFD and MQTT to support
loT applications in real-time. The 10T gateway is used to collect data in order to send
it to the cloud. The 10T cloud requires a network to support real-time data transfer in

order to analyse the data for some loT applications.

The ESWFD improves the system performance, which was compared with a
traditional ZigBee, and the Fuzzy-based Dijkstra. The results increased the capacity of

network throughput and reduced packet delay and jitter.

The improvement in delay results is required for some applications, where each
application requires different QoS support. For example, delay is another important
measure of performance, especially for time-critical services. For future work need to
evaluate the QoS requirements for applications and to be able to manage the network

using a web interface.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

C. Buratti et al., “Testing Protocols for the Internet of Things on the EuWIn
Platform,” IEEE Internet Things J., vol. 3, no. 1, pp. 124-133, Feb. 2016.

D. Evans, “The Internet of Things How the Next Evolution of the Internet Is
Changing Everything,” CISCO White Pap., no. April, pp. 1-11, 2011.

L. Mainetti, L. Patrono, and A. Vilei, “Evolution of wireless sensor networks
towards the Internet of Things: A survey,” SoftCOM, pp. 1-6, 2011.

A. B. Al-Shaikhli, C. Ceken, and M. Al-Hubaishi, “WSANFlow: An Interface
Protocol Between SDN Controller and End Devices for SDN-Oriented
WSAN,” Wirel. Pers. Commun., vol. 101, no. 2, pp. 755-773, 2018.

A. W. Burange and H. D. Misalkar, “Review of Internet of Things in
development of smart cities with data management &amp; privacy,” in
2015 International Conference on Advances in Computer Engineering and
Applications, 2015, pp. 189-195.

R. Gorrepotu, N. S. Korivi, K. Chandu, and S. Deb, “Sub-1GHz miniature
wireless sensor node for IoT applications,” Internet of Things, vol. 1-2, pp. 27—
39, 2018.

E. G. M. Petrakis, S. Sotiriadis, T. Soultanopoulos, P. T. Renta, R. Buyya, and
N. Bessis, “Internet of Things as a Service (iTaaS): Challenges and Solutions
for Management of Sensor Data on the Cloud and the Fog,” Internet of Things,
vol. 3-4, pp. 156-174, 2018.

M. M. Warrier and A. Kumar, “An Energy Efficient Approach for Routing in
Wireless Sensor Networks,” Procedia Technol., vol. 25, no. Raerest, pp. 520—
527, 2016.

R. E. Mohamed, A. I. Saleh, M. Abdelrazzak, and A. S. Samra, “Survey on
Wireless Sensor Network Applications and Energy Efficient Routing
Protocols,” Wirel. Pers. Commun., vol. 101, no. 2, pp. 1019-1055, 2018.

W. Xiang, N. Wang, and Y. Zhou, “An Energy-Efficient Routing Algorithm for
Software-Defined Wireless Sensor Networks,” IEEE Sens. J., vol. 16, no. 20,
pp. 7393-7400, 2016.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

80

Y. Wang, H. Chen, X. Wu, and L. Shu, “An energy-efficient SDN based sleep
scheduling algorithm for WSNs,” J. Netw. Comput. Appl., vol. 59, pp. 39-45,
2016.

M. Al-Hubaishi, C. Ceken, and A. Al-Shaikhli, “A novel energy-aware routing
mechanism for SDN-enabled WSAN,” Int. J. Commun. Syst., p. e3724, Jun.
2018.

A. Sarkar and T. Senthil Murugan, “Routing protocols for wireless sensor
networks: What the literature says?,” Alexandria Eng. J., vol. 55, no. 4, pp.
3173-3183, 2016.

J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless sensor
networks: A survey,” IEEE Wirel. Commun., vol. 11, no. 6, pp. 6-27, 2004.

D. P. Bhoomika and D. P. Ashish, “Hierarchical Routing Protocols in Wireless
Sensor,” Int. Joural Comput. Technol. Appl. an open access Int. J. peer Rev.
online J., vol. 6, no. 1, pp. 47-52, 2012.

S. Saranya and M. Princy, “Routing techniques in sensor network -a survey,”
Procedia Eng., vol. 38, pp. 2739-2747, 2012.

A. S. Toor and A. K. Jain, “A survey of routing protocols in Wireless Sensor
Networks: Hierarchical routing,” 2016 Int. Conf. Recent Adv. Innov. Eng.
ICRAIE 2016, pp. 1-6, 2017.

S. P. Singh and S. C. Sharma, “A survey on cluster based routing protocols in
wireless sensor networks,” Procedia Comput. Sci., vol. 45, no. C, pp. 687—695,
2015.

M. Sood, “Software defined network - Architectures,” in 2014 International
Conference on Parallel, Distributed and Grid Computing, 2014, pp. 451-456.

M. Karakus and A. Durresi, “A scalable inter-AS QoS routing architecture in
software defined network (SDN),” in Proceedings - International Conference
on Advanced Information Networking and Applications, AINA, 2015, vol. 2015-
April, pp. 148-154.

R. Pradeepa and M. Pushpalatha, “SDN Enabled SPIN Routing Protocol for
Wireless Sensor Networks,” 2016 Int. Conf. Wirel. Commun. Signal Process.
Netw., vol. 10, no. 6, pp. 639-643, 2016.

R. C. A. Alves, D. A. G. Oliveira, G. C. C. F. Pereira, B. C. Albertini, and C.
B. Margi, “WS 3 N : Wireless Secure SDN-Based Communication for Sensor
Networks,” Secur. Commun. Networks, vol. 2018, pp. 1-14, Aug. 2018,

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

81

A. Hakiri and A. Gokhale, “Rethinking the design of LR-WPAN 10T systems
with software-defined networking,” in Proceedings - 12th Annual International
Conference on Distributed Computing in Sensor Systems, DCOSS 2016, 2016,
pp. 238-243.

L. F. D. S. Santos, F. F. De Mendonca, and K. L. Dias, “SDN: An SDN-Based
Routing Architecture for Wireless Sensor Networks,” Brazilian Symp. Comput.
Syst. Eng. SBESC, vol. 2017-Novem, pp. 6370, 2017.

N. Kumar and D. P. Vidyarthi, “A Green Routing Algorithm for loT-Enabled
Software Defined Wireless Sensor Network,” IEEE Sens. J., vol. 18, no. 22, pp.
9449-9460, 2018.

K. Sood, S. Yu, and Y. Xiang, “Software-Defined Wireless Networking
Opportunities and Challenges for Internet-of-Things: A Review,” IEEE Internet
Things J., vol. 3, no. 4, pp. 453463, 2016.

Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubramanian, “A
software defined networking architecture for the internet-of-things,” IEEE/IFIP
NOMS 2014 - IEEE/IFIP Netw. Oper. Manag. Symp. Manag. a Softw. Defin.
World, 2014.

A. De Gante, M. Aslan, and A. Matrawy, “Smart wireless sensor network
management based on software-defined networking,” 2014 27th Bienn. Symp.
Commun., pp. 71-75, 2014.

Z. Kerravala, “The Top Five Network Problems Solved by SDNs,” 2019.
[Online]. Available: https://blog.silver-peak.com/the-top-five-network-
problems-solved-by-sdn. [Accessed: 29-Jul-2019].

I. Journal, “Internet of Things: A Survey of 10T Applications based on their
desirable device characteristics,” Int. J. Recent Eng. Res. Dev., vol. 02, no. 10,
pp. 10-20, 2017.

G. Sinnapolu and S. Alawneh, “Integrating wearables with cloud-based
communication for health monitoring and emergency assistance,” Internet of
Things, vol. 1-2, pp. 40-54, 2018.

W. Stallings, Foundations of Modern Networking: SDN, NFV, QoE, loT, and
Cloud, vol. 4301, no. 3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.

Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubramanian, “A
Software Defined Networking architecture for the Internet-of-Things,” in 2014
IEEE Network Operations and Management Symposium (NOMS), 2014, no. 5-
9 May 2014, pp. 1-9.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

82

L. Hu, J. Wang, E. Song, A. Ksentini, A. Hossain, and M. Rawashdeh, “SDN-
SPS : Semi-Physical Simulation for Software-Defined Networks,” vol. 16, no.
20, pp. 7355-7363, 2016.

B. Trevizan de Oliveira, R. Cerqueira Afonso Alves, and C. Borges Margi
Universidade de Sdo Paulo Sdo Paulo, “Software-Defined Wireless Sensor
Networks and Internet of Things Standardization Synergism,” 2015 IEEE Conf.
Stand. Commun. Netw., pp. 60-65, 2015.

P. Jayashree and F. Infant Princy, “Leveraging SDN to conserve energy in
WSN-An analysis,” 2015 3rd Int. Conf. Signal Process. Commun. Netw., 2015.

D. Sinh, L. Le, B. P. Lin, and L. Tung, “SDN / NFV - A new approach of
deploying network infrastructure for IoT,” 2018 27th Wirel. Opt. Commun.
Conf., pp. 1-5, 2018.

T. Minh, C. Nguyen, and D. B. Hoang, “S-MANAGE Protocol For Software-
Defined IoT,” 2018 28th Int. Telecommun. Networks Appl. Conf., pp. 1-6, 2018.

S. Bera, G. S. Member, S. Misra, and S. Member, “Soft-WSN : Software-
Defined WSN Management System for IoT Applications,” IEEE Syst. J., vol.
12, no. 3, pp. 2074-2081, 2018.

F. F. J. Lasso, K. Clarke, and A. Nirmalathas, “A software-defined networking
framework for IoT based on 6LoWPAN,” in Wireless Telecommunications
Symposium, 2018, vol. 2018-April, pp. 1-7.

X.-Y. Chen and Z.-G. Jin, “Research on Key Technology and Applications for
Internet of Things,” Phys. Procedia, vol. 33, pp. 561-566, 2012.

S. Tenninaetal., IEEE 802.15.4 and ZigBee as Enabling Technologies for Low-
Power Wireless Systems with Quality-of-Service Constraints, vol. 1. 2013.

T. Ok, S. Baek, and B. Dae, “Performance analysis of IEEE 802 . 15 . 4
superframe structure with the inactive period,” Perform. Eval., vol. 106, pp. 50—
69, 2016.

W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol for
wireless sensor networks,” 21st Conf. IEEE Comput. Commun. Soc., vol. 3, no.
3, pp. 1567-1576, 2002.

W. Braun and M. Menth, “Software-Defined Networking Using OpenFlow:
Protocols, Applications and Architectural Design Choices,” pp. 302-336, 2014.

A. S. Yuan, H.-T. Fang, and Q. Wu, “OpenFlow Based Hybrid Routing in
Wireless Sensor Networks,” Intell. Sensors, Sens. Networks Inf. Process.
(ISSNIP), 2014 IEEE Ninth Int. Conf., vol. 1, no. April, pp. 21-24, 2014,

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

83

Y. Dasgupta and P. M. G. Darshan, “Application of Wireless Sensor Network
in remote monitoring: Water-level sensing and temperature sensing, and their
application in agriculture,” 1st Int. Conf. Autom. Control. Energy Syst. - 2014,
ACES 2014, 2014.

L. Hu, J. Wang, E. Song, A. Ksentini, M. A. Hossain, and M. Rawashdeh,
“SDN-SPS: Semi-Physical Simulation for Software-Defined Networks,” IEEE
Sens. J., vol. 16, no. 20, pp. 7355-7363, 2016.

A. Koubaa, A. Cunha, M. Alves, and E. Tovar, “TDBS: A time division beacon
scheduling mechanism for ZigBee cluster-tree wireless sensor networks,” Real-
Time Syst., vol. 40, no. 3, pp. 321-354, 2008.

A. Lotfizadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338-353, 1965.

J. Mocq, A. St-Hilaire, and R. A. Cunjak, “Assessment of Atlantic salmon
(Salmo salar) habitat quality and its uncertainty using a multiple-expert fuzzy
model applied to the Romaine River (Canada),” Ecol. Modell., vol. 265, no.
September, pp. 14-25, 2013.

E. W. Dijkstra, “A Note on T w o Problems in Connexion with Graphs,” vol.
271, no. 1, pp. 269271, 1959.

L. Mainetti, L. Palano, L. Patrono, M. L. Stefanizzi, and R. Vergallo,
“Integration of RFID and WSN technologies in a Smart Parking System,” 2014
22nd Int. Conf. Software, Telecommun. Comput. Networks, SoftCOM 2014, pp.
104-110, 2014.

T. Adame, A. Bel, A. Carreras, J. Melia-Segui, M. Oliver, and R. Pous,
“CUIDATS: An RFID-WSN hybrid monitoring system for smart health care
environments,” Futur. Gener. Comput. Syst., vol. 78, pp. 602615, 2018.

S. Mirshahi and S. Uysal, “Integration of RFID and WSN for Supply Chain
Intelligence System,” in Electronics, Computers and Artificial Intelligence
(ECAI), 2013 International Conference on, 2013, no. 27-29 June 2013, pp. 1-
6.

S. R. Vijayalakshmi and S. Muruganand, “A survey of Internet of Things in fire
detection and fire industries,” Proc. Int. Conf. 1oT Soc. Mobile, Anal. Cloud, I-
SMAC 2017, pp. 703-707, 2017.

W. Liang, S. Xie, J. Long, K.-C. Li, D. Zhang, and K. Li, “A Double PUF-based
RFID Identity Authentication Protocol in Service-Centric Internet of Things
Environments,” Inf. Sci. (Ny)., vol. 503, pp. 129-147, 2019.

J. V. V. Sobral et al., “A framework for enhancing the performance of Internet
of Things applications based on RFID and WSNs,” J. Netw. Comput. Appl., vol.
107, no. January, pp. 5668, 2018.

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

84

F. J. Valente and A. C. Neto, “Intelligent steel inventory tracking with [oT /
RFID,” 2017 IEEE Int. Conf. RFID Technol. Appl. RFID-TA 2017, pp. 158—
163, 2017.

C. P. Tang, Z. Y. Tang, Y. H. Yang, and Y. J. Zhan, “WSID identification
platform of heterogeneous networks based on RFID and WSN,” Proc. 2010
IEEE Int. Conf. RFID-Technology Appl. RFID-TA 2010, no. June, pp. 217-221,
2010.

O. Abdulkader, A. M. Bamhdi, V. Thayananthan, K. Jambi, and M. Alrasheedi,
“A novel and secure smart parking management system (SPMS) based on
integration of WSN, RFID, and IoT,” 2018 15th Learn. Technol. Conf. L T
2018, pp. 102-106, 2018.

F. Aktas, C. Ceken, and Y. E. Erdemli, “IoT-Based Healthcare Framework for
Biomedical Applications,” J. Med. Biol. Eng., pp. 1-14, Dec. 2017.

N. Garg, Apache Kafka. 2014.

Apache Spark, “Apache Spark™ - Unified Analytics Engine for Big Data,”
spark.apache.org, 2018. [Online]. Available: https://spark.apache.org/.
[Accessed: 21-Oct-2018].

L. Ganz, “Electrocardiography,” Goldman’s Cecil Med. Twenty Fourth Ed.,
vol. 1, pp. 272-278, 2011.

M. G. Kaya, I. Ozdogru, M. Yarlioglues, T. Inanc, A. Dogan, and N. K. Eryol,
“Coronary ischemia induced Wolf Parkinson White syndrome,” Int. J. Cardiol.,
vol. 129, no. 1, pp. 34, 2008.

B. H. Williams, “UCI Machine Learning Repository: Character Trajectories
Data Set,” 2008. [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/arrhythmia. [Accessed: 26-Oct-2018].

L. Hou, S. Zhao, X. Li, P. Chatzimisios, and K. Zheng, “Design and
implementation of application programming interface for Internet of things
cloud,” Int. J. Netw. Manag., vol. 27, no. 3, pp. 1-15, 2017.

P. C. Prabhu Kumar and G. Geetha, “Web-cloud architecture levels and
optimized MQTT and COAP protocol suites for web of things,” Concurr.
Comput. , no. April, pp. 1-8, 2018.

P. Dhar and P. Gupta, “Intelligent parking Cloud services based on 10T using
MQTT protocol,” Int. Conf. Autom. Control Dyn. Optim. Tech. ICACDOT
2016, pp. 30-34, 2017.

[71]

[72]

[73]

[74]

[75]

85

U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S - A
publish/subscribe protocol for wireless sensor networks,” 3rd IEEE/Create-Net
Int. Conf. Commun. Syst. Softw. Middleware, COMSWARE, pp. 791-798, 2007.

R. A Light, “Mosquitto: server and client implementation of the MQTT
protocol,” J. Open Source Softw., vol. 2, no. 13, p. 265, May 2017.

S. Tilkov and S. Vinoski, ‘“Node.js: Using JavaScript to Build High-
Performance Network Programs,” IEEE Internet Comput., vol. 14, no. 6, pp.
80-83, Nov. 2010.

S. Zhang, X. Chen, and S. Wang, “Research on the monitoring system of wheat
diseases, pests and weeds based on IOT,” in 2014 9th International Conference
on Computer Science & Education, 2014, no. lccse 22-24 August, pp. 981-985.

O. Ledn, J. Hernandez-Serrano, and M. Soriano, “An efficient energy-aware
predictive clustering approach for vehicular ad hoc networks Rasmeet,” Int. J.
Commun. Syst., vol. 23, no. 5, pp. 633-652, 2015.

RESUME

Mohammed Al-Hubaishi is a lecturer and researcher at the faculty of computer science
and information system, Thamar University, Yemen. He received his B.Sc. degree in
computer science from Thamar University, Yemen, in 2002. In December 2010, he
has M.Sc. degree in wireless ad hoc network from department of electronic and
informatics engineering faculty of university of Algarve, Portugal. His research
interests include wireless network, ad hoc network, routing protocols, Fuzzy logic,
SDN, loT, WSAN, Kafka, Spark, NodeJS, machine learning and Riverbed simulation.
He is currently pursuing his Ph.D. degree in computer and information engineering at

Sakarya University. He is expected to be graduated in 2019.

	my PhD Thesis - final version
	20191211104039215
	my PhD Thesis - final version

