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ABSTRACT

AN EFFICIENT EVOLUTIONARY CLUSTERING AND

PREDICTION MODEL FOR GENE EXPRESSION TIME

SERIES DATA

Because of using manual methods in some parts of gene expression experiments,

reliability of the data is low. If this data is directly utilized as input to a data mining

algorithm or a model for evaluating gene expression data, then the adverse affects to

the desired results will be inevitable. In order to eliminate aforementioned adverse

affects and reduce the fuzziness, we represent the data with sample data sets that are

generated by using uncertain data management techniques. Sample data approach

not only reduces the percentage of fuzziness, but also it causes the output generation

time to be increased due to an increase in the amount of processed data, which is

directly proportional to the cardinality of the sample data set. In the first part of the

study, we introduce an uncertain data clustering algorithm, named M-FDBSCAN, for

enabling one to cluster uncertain data rapidly, which runs on multi-core systems in a

concurrent fashion. We show that by using the proposed method, the algorithm yields

considerable performance improvement on single core systems, as well. In the second

part of the study, M-FDBSCAN algorithm is converted into an evolutionary clustering

algorithm, named E-MFDBSCAN, by which time series data can be processed rapidly

and efficiently. This new algorithm enables to generate global clusters. In the last

part of the study, using time-based evolutionary patterns of global clusters a prediction

model is constructed. The proposed prediction model enables us to predict the patterns

and the similarities of a global cluster that will be generated at the next time point.
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ÖZET

GEN İFADESİ ZAMAN SERİSİ VERİLERİ İÇİN ETKİN BİR

EVRİMSEL KÜMELEME VE ÖNGÖRÜ MODELİ

Gen ifadesi deneylerinin bir aşamasında veriler manuel yöntemlerle elde edildiği

için verilerin güvenilirliği düşüktür. Bu verilerin bir veri madenciliği algoritmasına

ya da modele direkt girdi olması durumunda varılmak istenen sonuçların güvenilir-

liğinin olumsuz yönde etkilemesi kaçınılmazdır. Çalışmamızda, elde edilen verilerin

belirsizliğini azaltmak için her verinin, örnek veri üretme teknikleriyle elde edilen

veri kümeleriyle temsil edilmesini sağladık. Örnek veri yaklaşımı verilerin belirsi-

zlik yüzdesini azaltırken işlem yapılan veri setinin örnek veri kümesi eleman sayısı

oranında artmasına, dolayısıyla da ilgili veri işleme algoritmalarının sonuç üretme za-

manının artmasına neden olmaktadır. Çalışmamızın ilk kısmında belirsiz verilerin hızlı

bir biçimde kümelenebilmesi için çok çekirdekli sistemler üzerinde eş zamanlı çalışabilen

M-FDBSCAN adını verdiğimiz bir “belirsiz veri kümeleme” algoritması geliştirdik. Al-

goritmada önerilen yöntemle yalnızca çok çekirdekli sistemlerde değil tek çekirdekli

sistemlerde de veri işleme hızında büyük artışlar sağlandığı gösterdik. Çalışmamızın

ikinci kısmında M-FDBSCAN algoritmasını, zaman serisi verilerinin hızlı ve etkin

bir biçimde işlenebildiği, E-MFDBSCAN adı verilen bir “evrimsel kümeleme” algo-

ritmasına dönüştürdük. Bu yeni algoritma global kümelerin oluşturulmasını sağlamak-

tadır. Çalışmamızın son aşamasında oluşturulan global kümelerin zaman bazlı evrimsel

desenlerini kullanarak bir öngörü modeli geliştirdik. Bu öngörü modeliyle bir sonraki

zaman noktasına ait bir global kümenin benzerlik ve desen bilgilerinin kestiriminin

yapılabilmesini sağladık.
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1. INTRODUCTION

A microarray is a solid surface to which DNA is immobilised upon; each frag-

ment of DNA fixed on to the microarray surface is called a probe and is designed

to be uniquely complementary to the RNA/DNA target present in a given sample of

interest. The RNA/DNA target is labelled with fluorophores and is then hybridised

to the array. Microarrays are capable of simultaneously measuring the expression

levels for thousands of genes. They provide a large quantity of information about

an organism/cell/tissue –whether it be mutational studies (monitoring the effects of

gene expression by knocking out/in a particular gene), conditional (monitoring the

effects on gene expression when presenting the organism/cell to a particular environ-

ment/stress) and/or comparative (compare the presence/absence of genes in different

organisms/strains). The advantage of studying many genes and many transcripts at the

same time is that it provides a systematic view of how organisms/cells/tissues react in

response to certain stimuli, or a global view of genome organisation (presence/absence

of genes). Since microarray experiments are associated with many sources of experi-

mental and biological variation, the resulting gene expression data is therefore noisy.

In our thesis study, we propose an efficient evolutionary clustering and prediction

model for gene expression time series data which is achieved by microarray experiments.

Clustering gene expression data has several limitations. One of them is that, due to the

nature of microarray experiments, the produced gene expression data is fuzzy. Thus,

the clusters may be diffuse and interpenetrating. In other words, for the same database,

different cluster structures may be obtained by different clustering algorithms. The

other limitation is that the conventional clustering approaches deal with instantaneous

similarities among gene expressions, but time-based evolutionary patterns are not taken

into consideration.

Several clustering techniques have been widely used for gene expression clustering.

The most commonly used one is hierarchical clustering. Basically, the idea behind this

approach is to build a binary tree by merging similar groups of points successively.
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The main drawbacks of this approach are lack of robustness, non-uniqueness,

complicated hierarchy interpretation due to inversion problems and local decision based

grouping without clustering reevaluation capability [1]. The other widely used clus-

tering technique in grouping gene expressions is density-based clustering approach. In

density-based clustering algorithms, the essential task is to discover high-density re-

gions that are separated by low-density regions in a data space. This approach is more

robust than the other approaches against noisy and diffused data. Thus, unambiguous

clustering performance is better than the other approaches. Because of this feature,

we choose density-based clustering as clustering approach, in our study.

There are several density-based clustering algorithms such as K-Means [2], Self-

organizing maps (SOMs) [3] and Density-Based Spatial Clustering of Applications with

Noise (DBSCAN) [4]. One of the most popular one used for gene expression cluster-

ing is SOMs algorithm. In order to observe the pattern interpretation performance of

SOMs, Tamayo et al. [1] develop a computer package, named as GENECLUSER. Ac-

cording to the execution results, they claim that SOMs are well suited for exploratory

data analysis. Similarly, Fang et al. [5] develop a computer package, supraHex, which

is an implementation of a derivation of SOMs algorithm, for training, analyzing and

visualizing omics data. In spite of its popularity, SOMs approach has two major draw-

backs. One of them is inaccurate clustering in case of noisy and missing data, and

the other is high computational cost. Since missing and noisy data are the essential

problems of microarray experiments, with this perspective, SOMs is not an appropriate

solution for gene expression data. In [6], it is shown that DBSCAN produce correct

set of clusters and is more robust to noisy data when compared to SOMs and k-means

algorithms. Since gene expression data is uncertain, handling only noisy data problem

is not sufficient. For this purpose, FDBSCAN (Fuzzy DBSCAN) algorithm [7], which

clusters uncertain data via density-based clustering approach, is proposed by Kriegel.

In our study, we customize the uncertain data clustering method of FBSCAN.

After deciding on the clustering approach , we develop an uncertain data clustering

algorithm M-FDBSCAN [8] which is devised for multi-core systems. To manage un-

certainty, we represent a fuzzy object with a set of sample data which is derived by a
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probability density function. Increasing the cardinality of a sample data set improves

the performance of uncertain data management. But, since the data size enlarges with

respect to cardinality of the set, the time performance of data processing decreases.

Unfortunately, even if processing huge amounts of data efficiently is a challenging

problem, it is not considered in most of the uncertain data processing algorithms. Cus-

tomizing the current algorithms for parallel execution is an effective method to speed

up uncertain data processing. M-FDBSCAN is one of the first on adapting uncertain

data clustering algorithms for multi-core systems. We also prove that the algorithm

demonstrates a dramatic performance improvement for single-core systems.

After developing a time-efficient uncertain data clustering algorithm, in the sec-

ond part of our study we develop an evolutionary clustering algorithm for gene ex-

pression time series data domain. For this purpose, we customize M-FDBSCAN and

name the new algorithm as E-MFDBSCAN which is the abbrivaiation of “Evolutinary

M-FDBSCAN ”. As an evolutionary clustering algorithm, E-MFDBSCAN generates

global clusters with time series data. In the last part of our study, we propose a predic-

tion model. Using the similarity values extracted from the patterns of global clusters,

an autoregressive time series prediction model is constructed.

According to the composition of the report in order of section numbers is as

below. In Chapter 2, background information about protein functions, gene expression

data and DNA microarray experiments is given. In the same section, gene expression

data processing approaches are also mentioned.

In Chapter 3, the approaches, methods and algorithms which we utilize in our

study are described. For this purpose, in Section 3.1, general concepts of uncertain

data management and mining are summarized. Density-Based clustering approach

and the FDBSCAN algorithm is explained in Sections 3.2 and 3.3. In Section 3.4,

general information about clustering gene expression time series data is given.

In Chapter 4, the thesis study is explained in detail. TheM-FDBSCAN algorithm

is explained in Section 4.1. E-MFDBSCAN algorithm and the proposed prediction
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model are explained in Section 4.2.

Finally, the conclusion of the study is given in Chapter 5.
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2. BACKGROUND

In this chapter, the biological concepts relevant to our study is described briefly.

The proposed clustering and prediction solutions in this study are applied on gene

expression data domain. For this purpose, before the explanation of the proposed so-

lutions, general information about protein funtions, protein sequences, gene expression

data and current experimental techniques and data processing approaches and tools

are given below.

2.1. Proteins

Proteins are macromolecules that serve as building blocks and functional com-

ponents of a cell, and account for the second largest fraction of the cellular weight

after water. Proteins are responsible for some of the most important functions in an

organism, such as constitution of the organs (structural proteins), the catalysis of bio-

chemical reactions necessary for metabolism (enzymes), and the maintenance of the

cellular environment (transmembrane proteins). Thus, proteins are the most essential

and versatile macromolecules of life, and the knowledge of their functions is a crucial

link in the development of new drugs, better crops.

The early approaches to predicting protein function were experimental and usu-

ally focused on a specific target gene or protein, or a small set of proteins forming

natural groups such as protein complexes. These approaches included gene knockout,

targeted mutations and the inhibition of gene expression [9]. However, irrespective

of the details, these approaches are low-throughput because of the huge experimental

and human effort required in analyzing a single gene or protein. As a result, even

large-scale experimental annotation initiatives, such as the EUROFAN project [10],

are inadequate for annotating a non-trivial fraction of the proteins that are becoming

available due to rapid advances in genome sequencing technology. This has resulted in

a continually expanding sequence-function gap for the discovered proteins [11].
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In an attempt to close this gap, numerous high-throughput experimental proce-

dures have been invented to investigate the mechanisms leading to the accomplishment

of a protein’s function. These procedures have generated a wide variety of useful data

that ranges from simple protein sequences to complex high-throughput data, such as

gene expression data sets and protein interaction networks. These data offer different

types of insights into a protein’s function and related concepts. For instance, protein

interaction data shows which proteins come together to perform a particular function,

while three-dimensional structure of a protein determines the precise sites to which the

interacting protein binds itself.

Following the success of computational approaches in solving important problems

such as sequence alignment and comparison [12], and genome fragment assembly [13],

and given the importance of protein function, numerous computational techniques have

also been proposed for predicting protein function. Early approaches used sequence

similarity tools such as BLAST to transfer functional annotation from the most similar

proteins. Subsequently, several other approaches have been proposed that utilize other

types of biological data for computational protein function prediction, such as gene

expression data, protein interaction networks and phylogenetic profiles.

2.1.1. Protein Function

The concept of protein function is highly context-sensitive and not very well

defined. In fact, this concept acts typically as an umbrella term for all types of activities

that a protein is involved in, be it cellular, molecular or physiological. One such

categorization of the types of functions, a protein can perform, has been suggested by

Bork [14].

Molecular function: The biochemical functions performed by a protein, such as

ligand binding, catalysis of biochemical reactions and conformational changes.

Cellular function: Many proteins come together to perform complex physiological

functions, such as operation of metabolic pathways and signal transduction, to keep
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the various components of the organism working well.

Phenotypic function: The integration of the physiological subsystems, consisting

of various proteins performing their cellular functions, and the interaction of this in-

tegrated system with environmental stimuli determines the phenotypic properties and

behavior of the organism.

Figure 2.1. A possible hierarchical organization of the categories of protein function.

Clearly these three categories are not independent, but rather are hierarchically

related as shown in Figure 2.1. Also, this is not the only categorization that has been

proposed. For instance, the Gene Ontology classification scheme categorizes protein

function into cellular component, molecular function and biological process.

2.1.2. Protein Sequences

The central dogma of molecular biology is the conversion of a gene to protein

via the transcription and translation phases, as shown in Figure 2.2. The result of

this process is a sequence constructed from twenty amino acids, and is known as the

protein’s primary structure. This sequence is the most fundamental form of information
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available about the protein since it determines different characteristics of the protein

such as its sub-cellular localization, structure and function. Even though a sequence

Figure 2.2. The central dogma of molecular biology: conversion of gene to protein via

mRNA.

forms a unique characterization of protein, it is still a weak representation for complex

operations such as prediction of its function. In comparison, more complex forms of

data such as gene expression and protein interaction networks offer a deeper insight

into the mechanisms leading to the performance of a protein’s function, and are thus

more useful for predicting function.

2.2. Gene Expression Data

Protein synthesis from genes occurs in prokaryotic organisms in two phases as

shown in Figure 2.2. In the transcription phase, an mRNA is created from the original

gene by converting the latter to the corresponding RNA code. The protein is then

synthesized from mRNA by translating the RNA code to the corresponding amino

acid sequence according to the codon translation rules.



9

Gene expression experiments are a method to quantitatively measure the tran-

scription phase of protein synthesis Nguyen et al. [15]. The most common category of

these experiments uses square-shaped glass chips measuring as little as 1 inch on either

side, also known as cDNA microarrays, and hence the alternate name microarray ex-

periments. The experiment is carried out in the following stages. In the first stage, the

chip is laid out with a matrix of dots of cDNAs, usually several thousands in number,

one corresponding to each of the gene being measured. In parallel, mRNA is extracted

from both the normal as well as the cells of the organism that have been exposed to

the condition being studied. Next, these mRNA are reverse-transcripted to cDNA and

colored with green and red colors respectively. These colored cDNAs are then spread

on the microarray chip, leading to a hybridization of the cDNA already on the chip

with those produced by the genes in the two types of cells. This generates a spot of a

certain color on the chip for each gene, which denotes its expression level. In the final

stage of the experiment, the intensity of this region is measured by a laser scanner,

connected to a computer, which generates a real valued measurement of the expression

of each gene as the ratio of the log intensities of red and blue colors in the region.

The result of the experiment thus is a measurement of the transcription activity of the

genes under the specified condition. A detailed illustration of this procedure is shown

in Figure 2.3.

The primary advantage of gene expression experiments are that they offer an

effective method for observing the simultaneous activity of thousands of genes under

a given experimental condition. Using these activity measurements, several important

inferences can be drawn about the underlying biological phenomena, such as the active

pathways under the given condition. This ability to observe a global pattern of ac-

tivity of genes, particularly when observed over several multiple related experimental

conditions, has motivated the use of microarrays for a variety of biological studies [16].

Also, since data generated from one experiment can be useful for several other studies,

several repositories have been set up in order to make such data publicly accessible.

Usually, the format of gene expression data is very simple, i.e., a rectengular

matrix, in which the rows correspond to genes, the columns to conditions, and the
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Figure 2.3. An illustration of the microarray experimental procedure.

entries denote the expression measurement of a gene under a particular condition.

However, since the data is generated experimentally, there may be several phenomena

that may affect the quality of data produced by an experiment. Some such problems

are varying degrees of hybridization across the chip, background noise in the images

produced, and a difference of scale between the different experiments constituting a

microarray data set. Several statistical methods have been developed for addressing

these problems [17], which use the information in the experimental design, as well as

the data generated, in order to reduce the effect of these factors in the processed data

set. Another important factor to consider in microarray data analysis is that the data

used in research is generally of two kinds: static and temporal [18]. The first category

consists of data sets containing snapshots of the expression of certain genes in different

samples under the same conditions, while the latter, also known as time-series gene

expression data [19], consists of data sets capturing the expression of certain genes of

the same organism at different instances of time. It is important to consider these

characteristics of the data when it is used for computational analysis, such as running

analysis algorithms to infer protein function from gene expression data.
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Early approaches identified functional associations between genes by measuring

the similarity between their expression profiles using statistical methods. In a study

focused on identifying novel genes which may contribute to prostate cancer in hu-

mans [20], 40,000 genes were examined for co-expression with five genes known to be

associated with prostate cancer using the Guilt by Association (GBA) principle. As

a result, eight novel genes that are significantly co-expressed with at least one known

prostate cancer causing gene are identified and are verified as being related to processes

leading to the disease. However, these studies were usually very narrow in scope, and

involved significant human intervention in identifying the seed or the target genes.

This allowed the application of more generic techniques from data mining for this task.

These can be grouped into the following three categories:

Clustering-based approaches: An underlying hypothesis of gene expression anal-

ysis is that functionally similar genes have similar expression profiles, since they are

expected to be activated and repressed under the same conditions. Because clustering

is a natural approach for grouping similar data points, approaches in this category

cluster genes on the basis of their gene expression profiles, and assign functions to the

non-annotated proteins using the most dominant function for the respective clusters

containing them.

Classification-based approaches: A more direct solution to the problem of pre-

dicting protein function from gene expression profiles is the data mining approach of

classification. Thus, approaches in this category build various types of models for

expression-function mapping using classifiers, such as neural networks, SVMs and the

naive Bayes classifier, and the use these models to annotate novel proteins.

Temporal analysis-based approaches: Temporal gene expression experiments mea-

sure the activity of genes at different instances of time, for instance, during a disease.

This behavior can also be used to predict the protein function. Thus, approaches in

this category derive features from this temporal data and use classification techniques

to predict the functions of non-annotated proteins.
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3. RELATED APPROACHES AND ALGORITHMS

In our study, we utilize several approaches and algorithms to establish the pro-

posed methodology. In this section, we mention about these approaches and algo-

rithms. Since, gene expression data is uncertain data, in some part of our study we

propose some solutions about managing this uncertainty. Thus, in the first part of

the section, we give short information about uncertain data management and mining

concepts. On the other hand, the developed clustering algorithms, M-FDBSCAN and

E-MFDBSCAN are density-based uncertain data clustering algorithms. Thus, in the

second part of the section we briefly explain the idea behind density-based uncertain

data clustering approach and give the descriptions of several algorithms developed ac-

cording to this approach. FDBSCAN algorithm is in the focus of the next part of the

section. An elaborated description of the algorithm is given in this part. Since our pro-

posed algorithms M-FDBSCAN and E-MFDBSCAN are the variants of FDBSCAN,

this algirotihm has an important place in our study. In the last part of the section,

general concepts of clustering of gene expression time series data are given.

3.1. Uncertain Data Management and Mining

Uncertain data management has been a revival in interest in recent years because

of a number of new fields which utilize this kind of data. For example, in fields such

as privacy preserving data mining, additional errors may be added to data in order

to mask the identity of the records. Often the data may be imputed using statistical

methods such as forecasting. In such cases, the data is uncertain in nature. Such data

sets may often be probabilistic in nature. In other cases, databases may show existen-

tial uncertainty in which one or more records may be present or absent from the data

set. Such data sets lead to a number of unique challenges in processing and managing

the underlying data. The field of uncertain data management presents a number of

challenges in terms of collecting, modeling, representing, querying, indexing and min-

ing the data. Many of these issues are inter-related and cannot easily be addressed

independently. While many of these issues have been addressed in recent research, the
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research in this area is often quite varied in its scope. For example, even the underlying

assumptions of uncertainty are different across different papers. It is often difficult for

researchers to find a single place containing a coherent discussion on the topic. The

essential research issues of uncertain data can be grouped as below:

• Modeling and System Design for Uncertain Data: The nature of complexity cap-

tured by the uncertain data representation relies on the model used in order to

capture it. The most general model for uncertain data is the possible worlds

model [21], which tries to capture all the possible states of a database which are

consistent with a given schema. The generality of the underlying scheme pro-

vides the power of the model. On the other hand, it is often difficult to leverage

a very general representation for application purposes. In practice, a variety of

simplifying assumptions (independence of tuples or independence of attributes)

are used in order to model the behavior of the uncertain data. On the other hand,

more sophisticated techniques such as probabilistic graphical models can be used

in order to model complex dependencies. This is a natural tradeoff between rep-

resentation power and utility. Furthermore, the design of the system used for

representing, querying and manipulating uncertain data critically depends upon

the model used for representation.

• Management of Uncertain Data: The process of managing uncertain data is much

more complicated than that for traditional databases. This is because the uncer-

tainty information needs to be represented in a form which is easy to process and

query. Different models for uncertain data provide different tradeoffs between

usability and expressiveness. Clearly, the best model to use depends upon the

application at hand. Furthermore, effective query languages need to be designed

for uncertain data and index structures need to be constructed. Most data man-

agement operations, such as indexing, join processing or query processing need

to be fundamentally re-designed.

• Mining Uncertain Data: The uncertainty information in the data is useful infor-

mation which can be leveraged in order to improve the quality of the underlying

results. For example, in a classification application, a feature with greater uncer-
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tainty may not be as important as one which has a lower amount of uncertainty.

Many traditional applications such as classification, clustering, and frequent pat-

tern mining may need to re-designed in order to take the uncertainty into account.

3.2. Density-Based Uncertain Data Clustering

The presence of uncertainty changes the nature of the underlying clusters, since it

affects the distance function computations between different data points. A technique

has been proposed in [7] in order to find density-based clusters from uncertain data.

Figure 3.1. Density-Based profile with lower density threshold.

The key idea in this approach is to compute uncertain distances effectively be-

tween objects which are probabilistically specified. The fuzzy distance is defined in

terms of the distance distribution function. This distance distribution function encodes

the probability that the distances between two uncertain objects lie within a certain

user-defined range. Let d(X, Y ) be the random variable representing the distance

between X and Y. The distance distribution function is formally defined as follows:
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Figure 3.2. Density-Based profile with higher density threshold.

Definition: Let X and Y be two uncertain records, and let p(X,Y) represent

the distance density function between these objects. Then, the probability that the

distance lies within the range ( a, b) is given by the following relationship, 3.1:

P (a 6 d(X, Y ) 6 b) =
b

∫
a
p(X, Y )(z)dz (3.1)

Based on this technique and the distance density function, the method in [7] de-

fines a reachability probability between two data points. This defines the probability

that one data point is directly reachable from another with the use of a path, such

that each point on it has density greater than a particular threshold. The data points

are grouped into clusters when they are reachable from one another by a path which

is such that every point on this path has a minimum threshold data density. To this

effect, the algorithm uses the condition that the e-neighborhood of a data point should

contain at least MinPts data points. The algorithm starts off at a given data point
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and checks if the µ-neighborhood contains MinPts data points. If this is the case, the

algorithm repeats the process for each point in this cluster and keeps adding points

until no more points can be added. One can plot the density profile of a data set

by plotting the number of data points in the µ-neighborhood of various regions, and

plotting a smoothed version of the curve. This is similar to the concept of probabilistic

density estimation. Intuitively, this approach corresponds to the continuous contours

of intersection between the density thresholds of Figures 3.1 and 3.2 with the corre-

sponding density profiles. The density threshold depends upon the value of MinPts.

As it is noted, the data points in any contiguous region will have density greater than

the threshold. Also it is noted that the use of a higher density threshold (Figure 3.2)

results in 3 clusters, whereas the use of a lower density threshold results in 2 clusters.

In the following section, FDBSCAN, is explained in detail.

Another related technique discussed in [22] is that of hierarchical density based

clustering. An effective (deterministic) density-based hierarchical clustering algorithm

is OPTICS [23]. The core idea in OPTICS is quite similar to DBSCAN and is based

on the concept of reachability distance between data points. While the method in

DBSCAN defines a global density parameter which is used as a threshold in order to

define reachability, the work in [22] points out that different regions in the data may

have different data density, as a result of which it may not be possible to define the

clusters effectively with a single density parameter. Rather, many different values of the

density parameter define different (hierarchical) insights about the underlying clusters.

The goal is to define an implicit output in terms of ordering data points, so that when

the DBSCAN is applied with this ordering, once can obtain the hierarchical clustering

at any level for different values of the density parameter. The key is to ensure that

the clusters at different levels of the hierarchy are consistent with one another. As a

result of an observation, the clusters defined over a lower value of ε are completely

contained in clusters defined over a higher value of ε, if the value of MinPts is not

varied. Therefore, the data points are ordered based on the value of ε required in order

to obtain MinPts in the ε-neighborhood. If the data points with smaller values of ε

are processed first, then it is assured that higher density regions are always processed

before lower density regions. This ensures that if the DBSCAN algorithm is used for
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different values of ε with this ordering, then a consistent result is obtained. Thus, the

output of the the data points are processed. Since the OPTICS algorithm shares so

many characteristics with the DBSCAN algorithm, it is fairly easy to extend the used

for extending the DBSCAN algorithm. This is referred to as the FOPTICS algorithm.

One of the core-concepts needed to order to data points is to determine the value of ε

which is needed in order to obtain MinPts in the corresponding neighborhood. In the

uncertain case, this value is defined probabilistically, and the corresponding expected

values are used to order the data points.

3.3. FDBSCAN

FDBSCAN [7] is a density-based uncertain data clustering algorithm which is an

extension of DBSCAN [4]. The proposed algorithmsM-FDBSCAN and E-MFDBSCAN,

in our study, are based on the uncertain data clustering method of FDBSCAN. Thus,

before the elaborated explanations of the two algorithms, we present the proposed un-

certain data clustering solution of of FDBSCAN. For the sake of understandability, the

relevant definitions used in the algorithm are given below.

3.3.1. Definitions

Definition 3.1. Object o is called a core object w.r.t. ε and µ in a set of objects D,

if |Nε(o)| > µ, where Nε(o) denotes the subset of D contained in the ε-neighborhood of

o.

Definition 3.2. Object p is directly density-reachable from object o w.r.t. ε and µ in

a set of objects D, if o is a core object and p ∈ Nε(o), where again Nε(o) denotes the

subset of D contained in the µ-neighborhood of o.

Definition 3.3. An object p is density-reachable from object o w.r.t. ε and µ in a set

of objects D, if there is a chain of objects p1,. . . ,pn, p1 =o, pn =p such that pi ∈ D and

pi+1 is directly density-reachable from pi w.r.t. ε and µ. Object p is density-connected

to object q w.r.t. ε and µ in the set of objects D, if there is an object o ∈ D such that

both p and q are density-reachable from o w.r.t. ε and µ in D.
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Definition 3.4. Let d: D × D → IR+
0 be a distance function, and let P(d(o,o’) 6 b)

denote the probability that d(o,o′) is smaller than b. Then a probability distribution

function Pd : O×O→ (IR+
0 → [0..1]) is called a distance distribution function if the

following condition holds:

Pd(o, o
′)(b) = P (d(o, o′) 6 b) (3.2)

Definition 3.5. Let D be a database, and let Pd : D×D→ (IR+
0 → [0..1]) be a distance

distribution function. Then, the core object probability of an object o is defined as :

P core
ε,µ,d,D(o) =

∑
A⊆D
|A|≥µ

∏
pεA

Pd(p, o)(ε)
∏

p′εD|A

(1− Pd(p′, o)(ε)) (3.3)

Definition 3.6. Let D be a database, and let Pd:D×D→ (IR+
0 → [0..1]) be a distance

distribution function. Then, the reachability probability of an object p w.r.t. o is

defined as follows:

P reach
ε,µ,d,D(p, o) = Pcoreε,µ−1,d,D|{p}(o) • Pd(p,o)(ε) (3.4)

3.3.2. The Algorithm

Core object concept is first proposed by DBSCAN and an enhanced version of

it is also used in FDBSCAN. The core object probability of an object o indicates the

likelihood that o is a core object. Based on the core object probability definition, it

can be defined how likely it is that an object p is directly density reachable from an

object o. In the traditional density-based clustering approach, two conditions have to

hold. First, o has to be a core object, and second, the distance between p and o has

to be smaller than or equal to ε. According to FDBSCAN algorithm, both of these

conditions are fuzzy, holding only with a certain probability. An object p is added to

the current cluster, if P reach
ε,µ,d,D(p, o) > 0.5 where o is the current query object. Since, by

definition Pd(p,o)(ε) 61, if P core
ε,µ−1,d,D|{p}(o) <0.5 holds, for any object p, P reach

ε,µ,d,D(p,o)
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can never reach to 0.5. Therefore p will not be added to the current cluster. The other

problem is how to compute the reachability probability efficiently. For this purpose,

FDBSCAN proposed a generally applicable approach based on monte-carlo sampling.

If the fuzzy object is described by a continuous probability density function, it can

be easily sampled according to this function and derived thus a sequence of samples.

FDBSCAN assumes that each fuzzy object x is represented by a sequence of s sample

points, i.e. x is represented by s different representation <x 1,..,x s>. Based on the

sample sequences discrete density functions consisting of s2 many discrete distance

values can be computed. The core object and reachability probabilities are determined

with using these s2 meaningful samples.

Figure 3.3. Minimum Bounding Rectangles for X and Y fuzzy objects where s=3.

As it is illustratred in Figure 3.3, FDBSCAN propose a geometrical represen-

tation type, called minimum bounding rectangle, MBR, to represent the fuzzy objects

with their sample points in 2D-space. For each fuzzy object x in D, MBR(x) is es-

tablished, before the clustering issues. Since the distance values between the sample

points at the boundaries of the rectangles are inclusive and sufficient, MBR structure

improves the computation performance by means of minimizing the number of distance

calculations.

The other essential data structure proposed by FDBSCAN is sample matrix,

which is used for the computation of P core
ε,µ−1,d,D|{p}(o). Sample matrix is a s × s ma-

trix, where s is the number of derived sample points for a fuzzy (uncertain) data
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object o. In Figure 3.4, a sample 4×4 sample matrix SM(o) for fuzzy data objecto, is

shown. Each row oi in sample matrix represents the derived sample points of o, where

{oi|<o1,. . . ,oi,. . . ,os>}. Each column D j represents the j th database instance, where

{xj| < x1, . . . , xi, . . . , xs > ∈ D ∧ xj 6= oj} ∪ oi. Finally, each matrix element is

m i,j =|N ε,Dj(oi)|, where N ε,Dj(oi) denotes the set {x j|d(oi,x j)6 ε ∧ x j ∈ D j} and

d(.,.) denotes any distance function.

Figure 3.4. A 4×4 sample matrix.

To decide whether it is required or not to calculate the distance between two sample

points oi and x j, the rectangles MBR(o) and MBR(x ) are used. By considering the

locations of MBR(o) and MBR(x ); i) if dmax(o,x ) 6 ε holds, m i,j for all i and j is

increased by 1 or ii) if dmin(o,x ) >ε holds, none of m i,j is increased or iii) if dmin(o,x )

6µ 6 dmax(o,x ) then all the distances d(oi,xj) must be calculated. After constructing

the sample matrix SM(o), the reachability probability values of all objects x in D,

w.r.t. o, of which the usage is mentioned above, can be computed according to the

given instruction in [7].

3.4. Clustering of Gene Expression Time-Series Data

In the gene expression context, clustering is used to identify subsets of genes that

behave similarly along time under the set of test conditions; that is, to cluster gene
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expression time-series data. In clustering, as in any data analysis, issues ranging from

problem definition to a critical diagnosis of the results must be addressed.

3.4.1. Time-series

A time-series is often defined as a series of values of a variable taken in successive

periods of time. The variables come from a variety of different domains from engineering

to scientific research, finance and medicine. The range, noise, scaling and shifting

factors of the values that such variables can take depend on the nature of the variables

and the instrument utilised to measure them. The instants in time at which the

measurements are taken are known as time points. The length between time points

can vary or be constant and is called sampling interval. There is a well-established

area in statistical analysis of data dedicated to the study of time-series. The statistical

analysis of time-series accounts for the fact that data points taken over time may

have an internal structure (such as autocorrelation, trend or seasonal variation) that

should be accounted for. In general most of the analysis is focused towards uni-variate

time-series with a large number of measurements and equally distant time points.

There are many methods to model time-series. The selection of the appropriate

technique will depend on the application and the user’s preference.

An example of a model is the auto regressive (AR) model:

xt = δ + ϕ1xt−1 + ϕ2xt−2 + . . .+ ϕpxt−p + At−2 (3.5)

where x t is the time-series, At is noise, and

δ = (1−
p∑
i=1

ϕi)µ (3.6)

where µ is the process mean. An autoregressive model is a linear regression of the

current value of the series against one or more prior values of the series. The value of
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p is called the order of the AR model. In our proposed prediction model, we also use

this model for our prediction model.

One of the important properties of the time-series for their statistical analysis

is autocorrelation. Autocorrelation refers to the correlation of a time-series with its

own past and future values. It is the correlation of the time-series with itself but

shifted in time k time points, k is usually called the lag. Autocorrelation complicates

the application of statistical tests by reducing the effective sample size. There are

several tools for assessing the autocorrelation: time-series plot, lagged scatter plot and

autocorrelation function.

3.4.2. Gene expression time-series

Gene expression time-series have two main characteristics, they are very short

(i.e., four to twenty samples) and are usually unevenly sampled. The existing litera-

ture on short time-series focuses primarily on testing and estimating autocorrelation.

Samples under 50 observations are already considered too short for a classical sta-

tistical analysis. Calculation of the autocorrelation at different lags is an essential

instrument to identify the dependency structure of the series but the estimation of the

autocorrelation is biased with small samples, [24] and [25].

3.4.3. Similarity of gene expression time-series

Similarity is understood as the resemblance, likeness, or equivalence of two ob-

jects. It is a relative term, which only makes sense when comparing more than two

elements or when a threshold is utilised. Considering three different objects A, B and

C, there are three possibilities for the similarity of A. A can be more similar to B than

to C, or more similar to C than to B, or as similar to C as to B. In order to be able to

asses the similarity, a quantitative measure of likeness has to be utilised. It is a com-

mon practice to use correlation or distance metrics to quantify such resemblance. The

suitability and performance of a similarity measure for a specific comparison depend on

the nature of the objects to compare. Therefore, the requirements of similarity of gene
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expression time-series have to be considered in order to design or select the appropriate

similarity measure.

3.4.3.1. Similarity requirements for co-expression. The general objective of the clus-

tering of gene expression data is the identification of co-expressed genes. However,

there is not a clear definition of co-expression in the literature. In general, it is under-

stood that co-expressed genes have similar pat-terns of expression. The common idea

behind the concept of similar expression patterns lies in the direction of change of the

expression level across time points. Co-expression has not a common and well defined

meaning in the literature, which leaves a wide open door for the suggestion for new

and alternative clustering procedures.

Three basic similarity requirements have been identified; the similarity measure

should be able to handle:

• Scaling and shifting problems

• Unevenly distributed sampling points

• Shape (internal structure)

Scaling and shifting problems: A promoter is a structural regulatory sequence

recognised by the sigma factor of the RNA polymerase holoenzyme (the protein that

is used to read the DNA for transcription). Genes that share a common sequence, will

therefore share their expression, they will be switched on at the same time but not

necessarily at the same level. The reason is that the recognition effciency is not the

same for every gene having that promoter. This is one of the situations leading to scaled

and shifted expressions. Therefore, scaling and shifting factors in the expression level

hide similar expressions and have to be eliminated or not considered when assessing the

similarity between expression profiles. Other possible sources for scaling and shifting

problems are intrinsic of the microarray experiment (e.g. label effciency of the dyes),

which are usually eliminated in the normalisation procedure.
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Synchronisation of biological processes is not an easy task. Common processes

may unfold at different times in different experiments or individuals producing horizon-

tal shifts in the resulting time-series. For a few number of time points the identification

of horizontal shifts can possibly be made after the clusters are obtained while for longer

series temporal aligning techniques can be utilised.

Unevenly distributed sampling points: Since, gene expression time series rely on

samples of the actual biological process, the higher the sampling frequency the more

information one has to recreate the actual process. However, it is not possible to

achieve high sampling frequency in microarray experiments due mainly to the time and

resources that would require. Therefore, biological processes are sampled at shorter

intervals of time when intense biological activity or when the activity of interest is

taking place, leading to unevenly distributed sampling points. In consequence, the

length of the sampling interval is informative and should be considered in similarity

comparisons.

Shape (internal structure): The main difference between a set of measurements

and a time series, is the internal structure, therefore a time-series can not be treated

as independent identically distributed data. The internal structure can be described

by different models and in general it is reflected in the shape of the series. In microar-

ray experiments, the intensity of gene expression is not relevant, instead, the relative

change of intensity characterised by the shape of the expression profile is regarded

as characteristic and informative. A necessary condition for the existence of internal

structure or characteristic shape is the temporal order of measurements. Therefore,

the similarity function should not allow a change in the order. The internal structure

can be represented by a statistical model, by deterministic functions or by symbols

describing the series.

3.4.4. Clustering of gene expression time-series

After having described the requirements of similarity for gene expression time-

series, this section specifies the requirements for clustering the aforementioned se-
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ries.Several requirements can be identified for the clustering algorithm, in specific it

should be able to handle:

• Unknown number of clusters

• Varying membership

• Outliers

• Noise

Number of clusters: Unsupervised clustering is the most common approach for

clustering gene expression data. This means that there is no previous knowledge of

the number and characteristics of the clusters forming the data. Different clustering

algorithms have special techniques for identifying the number of clusters. A common

approach to identify the number of clusters is the use of validity measures; the data

is clustered defining different number of clusters and the best value of the validity

measure will identify the most convenient number. In fuzzy clustering the fuzziness of

the partition can be used to evaluate the goodness of the results for different number

for clusters Höppner et al. [26]. Other approaches do not have to define a number of

clusters, because it is obtained as a result of the partition, but additional parameters

have to be defined. For example, in the CAST algorithm [27], the number of clusters

has not to be determined. Instead, a parameter called affnity threshold is used to

determine what is the minimum similarity required between an object and a cluster

for that object to be a member, and not all the genes are assigned to a cluster. In this

approach each cluster is formed by alternating between adding and removing genes

from the current cluster until such time that changes no longer occur or a maximum

of iterations has been executed. Therefore, the number of clusters obtained from the

partition of the data set depends on the selection of the affinity threshold. In general,

a clustering algorithm for gene expression data should be able to identify the hidden

number of clusters by appropriate means relevant to the algorithm.

Varying membership: Several researches have identified and emphasize the im-

portance of overlapping clusters in gene expression clustering analysis, [28, 29]. The
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partition of genes into classical sets implies that each gene has been associated with

a single biological function or process which may be an oversimplification of the bi-

ological system. Therefore, genes should be allowed to have varying probability or

membership degree to different clusters to allow connection of genes to more than one

cluster, revealing distinct aspects of their function and regulation. The EM algorithm

utilised for model-based clustering allows for partial credit to different clusters, that is,

genes have varying probability to belong to different clusters. Other approach is fuzzy

clustering, which allows genes to belong to more than one group by assigning different

degrees of membership to each cluster.

Outliers: Given the restricted number of time points in gene expression time-

series, an outlier has a high influence on the similarity measure. The clustering al-

gorithm should be able to minimise this impact. A good example is [30], where the

authors use the jack-knife correlation. This measure corresponds to the minimum of

all the possible calculations of correlation between two series, where each calculation is

done with the omission of a different time point. In this way, the effects of outliers in

the clustering procedure are reduced. Another approach is the identification of outliers

as a previous step to the clustering procedure.

Noise: It is well known that microarray experiments are subject to a large exper-

imental error producing very noisy measurements. The clustering algorithm should be

able to handle these common levels of noise. There are several approaches to achieve

this. For example, in fuzzy clustering a noise cluster can be added to the partition [31].

This cluster attracts all those genes which do not show a minimum level of similarity

to the rest of the clusters and reduces the influence of this group in the whole par-

tition. Some algorithms based in stochastic models have remarked the possibility of

incorporating noise in the model [32,33].
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4. THESIS STUDY

In our study we propose a methodology to cluster gene expression time-series

data efficiently and, by the help of the evolutionary patterns of the clusters, to pre-

dict the similarity patterns of the clusters that will be generated at the next future

time point. For this purpose, we develop two uncertain data clustering algorithms,

FDBSCAN and E-MFDBSCAN and a prediction model. FDBSCAN is an algorithm

devised for multi-core systems. After publishing this study, we develop an evolutionary

clustering algorithm, E-MFDBSCAN which generates time-based global clusters. In

E-MFDBSCAN the procedures and the methods of FDBSCAN that enables parallel

execution are inherited. In the last step of the study, we develop a prediction model

which is established on the extracted evolutionary patterns of the global clusters gen-

erated by E-MFDBSCAN.

In the following sections, these algorithms and the proposed prediction model are

explained.

4.1. M-FDBSCAN

In many data mining applications, clustering algorithms are executed on a huge

amount of uncertain data. Thus, high computational cost of uncertain data requires

time-efficient algorithms. In [34], one of the most well-known clustering algorithms,

k-means algorithm, is re-implemented for multi-core systems. To each core, some part

of the dataset is assigned for clustering. After k-means algorithm is applied to the

relevant part of the datasets on each dedicated core, simultaneously, a merge operation

is run to get the final clusters. But in this study, uncertain data management is not

considered. Uncertain data handling versions of k-means, DBSCAN, and OPTICS

clustering algorithms are proposed in [7,22], and [35], respectively. Based on the fuzzy

c-means algorithm, novel fuzzy clustering solutions for different data domains and

problems are proposed in [36–38]. But the proposed algorithms in [7, 22] and [35, 38]

are devised for sequential execution.
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Recent studies are either exclude data uncertainty or not devised for multi-core

systems. In our thesis study, we process gene expression data which is assumed as

uncertain data. Thus, we aim to develop uncertain data clustering algorithm which

has parallel execution capability. For this purpose, we adapt FDBSCAN to multi-core

systems in order to have fast processing and name this new algorithm as M-FDBSCAN

(Multi-core FDBSCAN ). With this perspective, M-FDBSCAN is one of the first on

adapting uncertain data mining algorithms for multi-core systems.

In M-FDBSCAN, the data domain is split into c rectangular data regions, where

c denotes the number of cores in the multi-core system. After clustering operations

are applied to each rectangular data region concurrently, the generated set of clusters

is merged to construct the final state of the clusters.

4.1.1. Computational Aspects

Sample matrix concept, which is described in Section 3.3.2, is the core concept of

FDBSCAN. But at the same time, construction of the sample matrices for each fuzzy

data object is the most time-consuming part of the algorithm. In M-FDBSCAN, we

aim to minimize the time cost of matrix construction.For this purpose, we propose a

splitting method. According to this method, a dataset is split into c sub datasets. In

Figure 4.1, a 4×4 sample matrix illustration is given for a non-split dataset of N fuzzy

data objects. As it is illustrated in Figure 4.2, the dataset is split into 4 sub datasets

of N/4 fuzzy data objects. In M-FDBCSAN, for each sub dataset sample matrices are

construcuted concurrently. During the construction of the sample matrices, the number

of distance computations required for each sub dataset is less than the required number

of distance computations without splitting. The relevant computational aspects are

elaborated below.

For a dataset of f fuzzy data objects and s sample points per each fuzzy data
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Figure 4.1. A 4× 4 sample matrix illustration without splitting dataset.

Figure 4.2. A 4× 4 sample matrix illustration with splitting dataset into 4 sub

datasets.
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object, totally, the number of distance computaions is:

s2 × ((f − 1) + (f− 2) . . .+ 1) = s2 × (f× f − 1

2
) = s2 × f 2 − f

2
(4.1)

Please note that the result is not simply s2× f2. This is because the distances between

the fuzzy data object pairs (fdox, fdoy) and (fdoy, fdox) are obviously the same. Thus,

trivially, only one distance computation for a certain pair is sufficient.

In our proposed algorithm, we aim to parallelize the distance computation task

by splitting the dataset into c sub-datasets. Here, c is the number of cores in the

associated multi-core system. Thus, assuming that the sizes of all of the sub datasets

are equal, the number of distance computations done by each core:

s2 × (f2/c2 − f/c)/2 (4.2)

The number of total distance computation is:

c× s2 × (f2/c2 + f/c)/2. (4.3)

For any c >1:

s2 × (f 2 − f)/2 ≥ c× s2 × (f 2/c2 − f/c)/2 (4.4)

After the necessary simplifications:

f 2 > f 2/c (4.5)

In the statement (4.4), the non-splitting approach (FDBSCAN ) and the splitting

approach (M-FDBSCAN ) are compared in the context of number of distance computa-

tions. In Equation 4.5, it is shown that dataset splitting reduces the number of distance

computations. Thus, even for sequential execution, the execution time performance of
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our proposed algorithm is better than that of FDBSCAN.

After processing the c sub-datasets, the generated local sets of clusters are merged

via the proposed merge procedure to establish the final set of clusters.

4.1.2. The Algorithm

Before the explanation of the algorithm, we want to mention about two words

which are important and densely used. These are “ε-neighborhood ” and “density-

reachable”. Two fuzzy data objects are in ε-neighborhood if the distance between them

is less than or equal to ε. A pair of fuzzy data objects is density-reachable if there is at

least one path between them, such that the distance between each of the adjacent nodes

is in the ε-neighborhood. To assess the density-reachability of a pair, sample matrices

for the relavant fuzzy data objects are constructed and the computation method of

reachability probability described in Section 3.3.2, is utilized.

M-FDBSCAN is a “divide and conquer ” algorithm and basically composed of

three main steps:

• Dataset splitting

• Concurrent clustering

• Merging sub data regions

4.1.2.1. Dataset splitting. We gain significant performance improvement by splitting

the original dataset into sub-datasets. While the number of distance computations

is reduced by splitting method, as a side effect, the number of merge operations is

increased. Since merge operation is computationally expensive, determining the opti-

mum split number is very important. For several split numbers, execution times of the

merge and the split operations are given in the experimental results section.

In a 2-D space, splitting a dataset is done with respect to certain horizontal
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or vertical splitting lines. Sub-datasets are defiend according to the occurred regions

between these lines. During the experiments, we test 2 different splitting approaches:

(i) By a splitting algorithm: For splitting, we develop a special algorithm derived

from a binary search algorithm. The goal is to determine n – 1 lines that split

the dataset into n nearly equal-sized sub-datasets. The execution time of the

algorithm changes according to the distribution of the data in 2-dimensional space

which means that distribution of the data determines the number of iterations

required for getting the most appropriate splitting lines.

(ii) By setting n – 1 equal-distance splitting lines for n sub-datasets: The other ap-

proach is simply determining n – 1 equal-distance horizontal or vertical splitting

lines for n sub-datasets.

In the experiments, we observe the execution times of both of the splitting ap-

proaches. In the case of normal data distribution, execution time of the second splitting

approach is almost 0. But when the data is not well distributed, differences between

the size of the sub datasets affect the total execution time performance negatively.

When the dataset is split according to the first approach, even if a negligible amount

of time is required for splitting,since the sub-dataset sizes are nearly the same, the

overall execution time performance is better.

4.1.2.2. Concurrent clustering. After getting c sub datasets by one of the splitting

methods, where c denotes the number of cores, each sub dataset is processed for clus-

tering issues, by the assigned core concurrently. Since, some members of a cluster may

be sited in another sub dataset during splitting the dataset, the generated clusters of

the sub datasets are not at the final state. If the chosen c value is less than the optimum

number, then the sub-datasets are apportioned among the cores (i.e. some of the cores

processes more than one sub datasets for clustering issues.). As we prove, splitting

improves the overall execution time performance, even for a single-core system.
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4.1.2.3. Merging sub data regions. In the final step of the algorithm, the sub dataset

regions are merged in order to get the final clusters. During the merge operations,

the two essential constraints of density-based clustering approach are taken into con-

sideration. These are:, i) each cluster must have at least µ cluster members and ii)

among the members in a cluster, the distance can not be far than ε. In the algorithm,

parallel lines in ε distance to the splitting line, are defined as ε-neighborhood lines.

Each sub dataset has an ε-neighborhood line. The fuzzy data objects between an ε-

neighborhood line and a splitting line are called as insider fdos. Instead of all of the

fuzzy data objects of the sub datasets, traversing only the insider fdos and bringing the

relevant density-reachable fuzzy data objects of insider fdos are sufficient for merging

the sub dataset regions. This feature of the algorithm brings in a serious performans

improvement.

The pseudocodes of all of the procedures of the algorithm are given formally in

Section 4.1.3. But, since during the merge operations, it is required to handle many

complex conditional clauses, for the sake of understandability, a comprehensive and

semi-formal pseudocode of the merge procedure is also given here.

In Figures 4.4-4.7, f1 and f2 represent the insider fdos and Cx and Cy represent

the clusters of the sub datasets D1 and D2, respectively. In Figure4.4 f1 is in Cx and

f2 is in Cy and f1 is in ε-neighborhood of f2. In this case, Cx and Cy are merged under

a new cluster Cnew . In 4.5 and 4.6, again, f1 is in ε-neighborhood of f2 and one of

the insider fdos is outlier and the other is in a certain cluster. In this case, the outlier

insider fdo and the fuzzy data objects which are density-reachable from that outlier

insider fdo are inserted into the other insider fdo’s cluster. In Figure 4.7, the insider

fdos f1 and f2 are both outlier. In this case, if the number of fuzzy data objects, which

are density-reachable both from f1 and f2, is equal to or bigger than (µ − 2), then all

these fuzzy data objects are inserted into a newly created cluster Cnew.

Merge operations can be done concurrently by assigning the adjacent sub dataset

pairs to the available cores. The number of insider fdos determines the time complexity

of the merge procedure.
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1 Merge Sub-Data Regions

2 D1 , D2 : Sub dataset regions that will be merged

3 Cx : A cluster of D1

4 f1 : A fuzzy data object (of Cx) of D1

5 Cy : A cluster of D2

6 f2 : A fuzzy data object (of Cy) of D2

7 ε : Minimum distance between any pair of data objects in a cluster.

8 µ : Minimum number of fuzzy data objects in a cluster.

9 for all insider f1 of D1 do

10 for all insider f2 of D2 do

11 if f1 is in ε-neighborhood of f2 then

12 if (f1 is in Cx) and (f2 is outlier) then

13 Cx = Cx + (f2 + fdos of D2 density-reachable from f2)

14 else if (f1 is outlier) and (f2 is in Cy) then

15 Cy = Cy+ (f1 + fdos of D1 density-reachable from f1)

16 else if (f1 is in Cx) and (f2 is in Cy) then

17 Cnew =Cx + Cy

18 Dispose Cx, and Cy

19 else if (f1 is an outlier) and (f2 is an outlier) then

20 OutlierSum1=|fdos of D1 density-reachable from f1| + 1

21 OutlierSum2=|fdos of D2 density-reachable from f2|+ 1

22 if (OutlierSum1 + OutlierSum2) > µ then

23 Create a new cluster Cnew

24 Insert (fdos of D1 density-reachable from f1) into Cnew

25 Insert (fdos of D2 density-reachable from f2) into Cnew

26 Insert (f1) into Cnew, and (f2) into Cnew

27 end

28 end

29 end

30 end

Figure 4.3. Merging sub-data regions algorithm.
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Figure 4.4. Case 1: f1 and f2 belong to different clusters.

Figure 4.5. Case 2: f1 is outliers and f2 belongs to a cluster.
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Figure 4.6. Case 3: f1 belongs a cluster and f2 is outliers.

Figure 4.7. Case 4: f1 and f2 are both outliers.
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4.1.3. Pseudocodes

In Figure 4.8, the original dataset D is split into two sub-datasets, D1 and D2,

with a horizontal line. Since each fuzzy data object is represented by a sequence of

sample points, a splitting line may also split a fuzzy data object. Thus, the sample

points may be scatterred into two different sub-datasets. In this case, to avoid ambi-

guity, the fuzzy data object with all its sample points is assigned to only one of the

sub-datasets.

Figure 4.8. An illustration of dataset splitting.
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input :

D: Dataset of 2-dimensional fuzzy data objects.

ε : Minimum distance between any pair of objects in a cluster.

µ : Minimum number of fuzzy data objects in a cluster.

c: Number of cores.

D[i]: ith sub-dataset.

1 M-FDBSCAN(D , ε , µ, c);

2 SplitDataset(c);

// Beginning of the parallel section

3 for i← 1 to c do

4 FDBSCAN(D[i] ,ε ,µ);

5 end

// End of the parallel section

// k : index of core starting from 1

6 mergedDatasets ← D[1 ];

7 for j ← 1 to log2c do

// Beginning of the parallel section

8 for k ← 1 to c do

9 if k mod 2j = 0 then

10 MergeDatasets(D[k], D[k-2j−1],ε,µ) ;

11 end

12 end

// End of the parallel section

13 end

Figure 4.9. M-FDBSCAN algorithm.
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1 Split_Dataset(c) // Split_Dataset is an implementation of a binary

search like splitting algorithm

2 Sub-dataset_Size : = Size(D)/c; // Approximate size of dataset

3 m[1]: = min_y ; // min_y is the minimum y value in dataset D

4 for i← 2 to c do

5 min_temp : = m[i-1] ;

// max_y is the maximum y value in the original dataset D

6 max_temp : = max_y ;

7 Temp_Size : = 0 ;

8 while ((Temp_Size <(Sub-dataset_Size – delta) or Temp_Size

>(Sub-dataset_Size) + delta)) and (min_temp 6 max_temp) do

// delta is an approximation parameter for decreasing the

number of search steps

9 mid : = min_temp + (max_temp – min_temp) / 2 ;

10 y1 : = m[i – 1] ;

11 y2 : = mid ;

12 Temp_Size : = Number of fuzzy data objects in the region that is between

y1 and y2 lines;

13 if Temp_Size <Sub-dataset_Size then

14 min_temp : = mid +1 ;

15 else

16 max_temp : = mid - 1 ;

17 end

18 end

19 D[i-1] ← The region between y1 and y2lines ;

20 m[i]: = mid ;

21 end

22 y1 : = mid ;

23 y2 : = max_y ;

24 D[c] ← The region between y1 and y2 lines;

Figure 4.10. Split Dataset procedure.
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1 Merge_DataSets(D1, D2, ε, µ) // Merges 2 datasets by means of

cluster regions and outlier fuzzy data objects. C(fi) is the label

of the cluster region of fuzzy data object fi in Di, If C(fx) is a

null value, then this means that fx is a noisy data object.

2 Select fuzzy data objects into R1 from D1 where y > max(y)–ε;

3 foreach non-visited fuzzy data object f1 in R1 do

4 foreach non-visited fuzzy data object f2 in R2 do

5 if fuzzy_distance(f1,f2) 6 ε then

6 if C(f1) is not null and C(f2) is not null then

7 Change the cluster label of all fuzzy data objects of which the cluster

label is C(f1) in D1 as C(f2);

8 else if C(f1) is null and C(f2) is not null then

9 Set the cluster label of f1 as C(f2);

10 Set also the cluster label of all outlier fuzzy data objects that are

density-reachable from f1 as C(f2).

11 else if C(f1) is not null and C(f2) is null then

12 Set the cluster label of f2 as C(f1);

13 Set also the cluster label of all outlier fuzzy data objects that are

density-reachable from f2 as C(f1)

14 else if C(f1) is null and C(f2) is null then

15 if (
∑

(density reachable data objects from f1) + 1 +
∑

(density

reachable data objects from f2) + 1) > µ then

16 Create a new cluster label C new and set the cluster label of f1,

f2, all fuzzy data objects that are reachable from f1, and all fuzzy

data objects that are reachable from f2 as C new

17 end

18 end

19 end

20 end

Figure 4.11. Merge Dataset procedure.
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4.1.4. Experimental study

In our experiments, we use synthetic datasets of sizes 1000, 5000, 10000, 25000,

and 50000. These datasets include 2-dimensional fuzzy data objects. Each fuzzy

data object is represented by 7 sample points which are generated by using Gaussian

probability function. The tests are done on an Intel Xeon X5650 2.67 GHz 24 Core

CPU and 72 GB RAM server. The operating system of the computer is a 64-bit

Linux Centos 5.5. The performances of FDBSCAN and M-FDBSCAN algorithms are

compared with the predefined ε and µ parameter values of 120 and 7, respectively.

According to the results of the tests, even for single core systems, of splitting ap-

proach, the execution time performance is improved linearly, through splitting method.

The tests are done for 2, 4, 8, 16, and 24 split sub-datasets.

As it is given in Table 4.1, the execution time performance of M-FDBSCAN and

FDBSCAN are observed and compared according to several parameters. These are:

• Number of cores

• Number of splits

• Dataset size
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Table 4.1. Observation results.

M-FDBSCAN

Cores Splits Dataset

size

Merge (s) With a split

algorithm (s)

Without a split

algorithm (s)

FDBSCAN

(s)

1 2 1,000 0.0001 0.7033 0.7037 1.3809

1 2 5,000 0.0027 10.8570 10.8597 20.1277

1 2 10,000 0.0123 38.8254 38.8310 78.1639

1 2 25,000 0.0712 235.8166 235.8287 474.1698

1 2 50,000 0.2587 938.8371 938.8702 1884.3100

1 4 1,000 0.0007 0.3709 0.3713 1.3809

1 4 5,000 0.0086 6.0793 6.0820 20.1277

1 4 10,000 0.0369 19.2415 19.2453 78.1639

1 4 25,000 0.2175 119.0394 119.0551 474.1698

1 4 50,000 0.7744 470.4619 470.4952 1884.3100

1 8 1,000 0.0017 0.1847 0.1851 1.3809

1 8 5,000 0.0201 3.4781 3.4807 20.1277

1 8 10,000 0.0708 11.0671 11.0728 78.1639

1 8 25,000 0.4590 59.8739 59.8897 474.1698

1 8 50,000 1.8695 239.8696 239.9029 1884.3100

1 16 1,000 0.0040 0.0983 0.0988 1.3809

1 16 5,000 0.0631 2.2030 2.2056 20.1277

1 16 10,000 0.1671 6.1734 6.1790 78.1639

1 16 25,000 1.0077 31.0722 31.0828 474.1698

1 16 50,000 4.0320 124.0828 124.1158 1884.3100

1 24 1,000 0.0058 0.0698 0.0703 1.3809

1 24 5,000 0.1243 1.6332 1.6358 20.1277

1 24 10,000 0.2548 4.2852 4.2901 78.1639

1 24 25,000 1.5837 22.5020 22.5179 474.1698

1 24 50,000 6.2287 87.0127 87.0462 1884.3100

Continued on next page
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Table 4.1. – Observation results (cont.).

M-FDBSCAN

Cores Splits Dataset

size

Merge (s) With a split

algorithm (s)

Without a split

algorithm (s)

FDBSCAN

(s)

2 2 1,000 0.0001 0.3760 0.3765 1.3809

2 2 5,000 0.0029 6.1460 6.1487 20.1277

2 2 10,000 0.0133 20.1651 20.1707 78.1639

2 2 25,000 0.0667 127.9597 127.9703 474.1698

2 2 50,000 0.0989 305.3224 305.3428 1884.3100

4 4 1,000 0.0003 0.0954 0.0959 1.3809

4 4 5,000 0.0048 2.1324 2.1350 20.1277

4 4 10,000 0.0143 5.8992 5.9048 78.1639

4 4 25,000 0.0850 30.9325 30.9461 474.1698

4 4 50,000 0.2637 121.5938 121.6227 1884.3100

8 8 1,000 0.0004 0.0247 0.0251 1.3809

8 8 5,000 0.0053 0.5829 0.5855 20.1277

8 8 10,000 0.0168 2.1276 2.1333 78.1639

8 8 25,000 0.0777 8.7814 8.7973 474.1698

8 8 50,000 0.2998 32.1378 32.1629 1884.3100

16 16 1,000 0.0007 0.0141 0.0146 1.3809

16 16 5,000 0.0100 0.2602 0.2628 20.1277

16 16 10,000 0.0397 1.0904 1.0963 78.1639

16 16 25,000 0.1500 4.1285 4.1443 474.1698

16 16 50,000 0.5770 14.3250 14.3582 1884.3100

24 24 1,000 0.0287 0.0658 0.0663 1.3809

24 24 5,000 0.0253 0.2575 0.2603 20.1277

24 24 10,000 0.0747 0.6651 0.6707 78.1639

24 24 25,000 0.1760 2.8012 2.8169 474.1698

24 24 50,000 0.7157 8.6503 8.6754 1884.3100

Continued on next page
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Table 4.1. – Observation results (cont.).

M-FDBSCAN

Cores Splits Dataset

size

Merge (s) With a split

algorithm (s)

Without a split

algorithm (s)

FDBSCAN

(s)

24 24 1,000 0.0287 0.0658 0.0663 1.3809

24 24 5,000 0.0253 0.2575 0.2603 20.1277

24 24 10,000 0.0747 0.6651 0.6707 78.1639

24 24 25,000 0.1760 2.8012 2.8169 474.1698

24 24 50,000 0.7157 8.6503 8.6754 1884.3100

Figure 4.12. For 50,000 fdo records, the execution times of FDBSCAN, M-FDBSCAN

(single-core), and M-FDBSCAN (multi-core).

We observe that while the number of splits increasing,the total execution time is

reduced significantly. We notice that determining the optimum split number is very
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important and must be subject of another research study. We also test 2 splitting

methods. These are simply splitting i) with an algorithm and ii) without an algorithm.

We record a negligible amount of performance improvement when the splitting is done

with a certain algorithm.

In Figure 4.12, execution time comparison of M-FDBSCAN and FDBSCAN is

given, for the single and the multi core modes. For the single core mode, the parameter,

“number of cores”, represents the number of splits in M-FDBSCAN. As an observation

result, we can say that with the strength of the splitting method, M-FDBSCAN is

faster than FDBSCAN, even in the single core mode. Obviously, in the multi-core

mode, M-FDBSCAN provides the best execution time performance. In 4.13, merging

time performance of M-FDBSCAN for the single and the multi-core modes are given.

In the single core mode, the merge operations are done sequentially, while in the multi-

core mode, they are parallelized.

Figure 4.13. For 8 splits, the merging times needed for M-FDBSCAN for single-core

and M-FDBSCAN for multi-core systems.
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Several comments on the results of observations are:

(i) Linear performance improvements can be achieved by increasing the number of

cores and splits.

(ii) The single core performance converges to a multi-core performance with the

strength of the splitting method.

(iii) For the bigger number of splits, merge operation performance becomes critical

for the total execution time performance. By parallelizing the merge procedure,

the execution time is reduced considerably.

(iv) We observe that the performance gap between M-FDBSCAN and FDBSCAN

enlarged quickly when the dataset size goes over 10,000.

4.2. An Evolutionary Clustering and Prediction Model for Gene

Expression Data

As it is mentioned in Section 2.2, DNA microarray experiments are frequently uti-

lized in the literature due to their various advantages. However, gene expression data

obtained from DNA microarray experiments is noisy and consequently the computa-

tions based on such noisy data may lack accuracy. In this part of the thesis study, we

propose an evolutionary clustering algorithm, E-MFDBSCAN and a prediction model.

Our proposed methodology can be successfully applied on noisy gene expression data.

In our methodology, global patterns of time series data can be extracted by the help of

our evolutionary clustering approach. These patterns are used in predicting the future

similarities of the global gene expression clusters. Thus, in this study, we propose a

prediction model by constructing an autoregressive time series function (using these

patterns).In the below sections, firstly we give an elaborated information about E-

MFDBSCAN algorithm and then explain the proposed prediction model. At the end

of the section, the relevant tests done for observing the performance of the proposed

methodology and their results are presented.
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4.2.1. E-MFDBSCAN

DNA microarrays are widely used in measuring expression levels of large number

of genes. The strength of microarray experiments is due to their ability to accom-

plish many genetic tests in parallel. Due to the biological variations and the nature

of probe-level measurement, missing and noisy data is a major problem in microarray

experiments. Several studies are focused on handling the missing data problem. In

Troyanskaya et al. [39], three missing data estimation methods: K-nearest neighbors

(KNN), Singular Value Decomposition (SVD) and row average are tested and evalu-

ated using three different gene expression datasets. In order to predict the missing gene

expression time-series data, linear interpolation is proposed by Aach and Church [40].

Similarly, D’haeseleer et al. [41] propose a spline interpolation method for the estima-

tion of missing time points. Bar-Joseph et al. [42] model gene expression profiles as a

cubic spline. Using spline curves, missing data estimation is done. However, since the

measured data is fuzzy, even if the missing data is estimated somehow, it must still

be assumed as uncertain. Sivriver et al. [43] propose a dynamic modeling approach,

DynaMiteC (Dynamic Modeling and Clustering), to overcome both noisy and missing

data problems. According to their approach, time-course gene expression profiles are

modeled and clustered using biologically meaningful parameters (e.g. point of induc-

tion). With the same motivation, another modeling approach, which is an extension of

Gaussian Mixture model and named as PUMA-CLUST (Propagating Uncertainty in

Microarray Analysis-CLUSTering) is proposed by Liu [44]. Because of using manual

methods in some parts of gene expression experiments, reliability of the data is low.

If this data is directly utilized as input to a data mining algorithm or a model for

evaluating gene expression data, then the adverse affects to the desired results will

be inevitable. In order to eliminate aforementioned adverse affects and reduce the

fuzziness, we represent the gene expression data with sequence of sample points that

are generated using uncertain data management techniques. By modeling uncertainty,

our approach focuses on handling the noisy data problem rather than that of missing

data. Since E-MFDBSCAN is a density-based clustering algorithm, it returns more

accurate results for noisy datasets [6], compared to the other algorithms that are based

on different approaches.
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Gene expressions change especially during the transcription and the translation

stages. If clustering is done for only static time points, the generated clusters help to

deduce only instantaneous and local information about the overall cellular events. For

vigorously understanding and analyzing the global patterns of gene activities, besides

handling the uncertainty problem of gene expression data, a time series based dynamic

data processing should be employed to be able to extract relevant information. Thus,

recent studies are focused on evolutionary clustering and time-based dynamic modeling.

Subhani et al. [45] propose an evolutionary clustering algorithm, EMMA, that

combines the approaches of Expectation Maximization (EM) and multiple alignment

of gene expression profiles to cluster microarray time-series data. The algorithm uses

k-means clustering algorithm, which is a centroid-based clustering algorithm. But the

main drawback of the centroid-based representation is that the number of clusters has

to be specified in advance. Because of the nature of the data domain, determining

the number of clusters before the clustering process is difficult. Another evolutionary

clustering algorithm, EvoCluster is proposed by Ma et al. [46]. Proposing a fitness

function, EvoCluster aims to extract the global patterns of gene expression data. This

method is also effective for handling noisy data. However, the fitness function is not

a time-series function. This means that the time parameter is not considered during

clustering. Thus, the generated global clusters are not time-based.

Holter and Maritan [47] propose a dynamic model for gene expression data. Sin-

gular Value Decomposition (SVD) approach is used in their model which is a good

idea to define the characteristic modes that capture the essential time-based features

of the gene expression profiles. The obtained average expression patterns of each clus-

ter are used to construct the best fit time translational matrices. However, because

of the generality of this approach, it is possible to ignore the valuable inter and intra

cluster relationships. Zhao et al [48] propose statistical models to extract the genes

regulated by the cell cycle. For each periodically analyzed specific dataset, a custom

model is generated. This is the distinct weakness of their proposed method. Aach and

Church [40] focus on aligning gene expression time series. They propose time warping

methods against clustering. Global pattern extraction and prediction are not possible
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with these algorithms.

The proposed algorithm, E-MFDBSCAN, is an evolutionary clustering algorithm

which is based on the clustering method of DBSCAN. The uncertain data clustering

method proposed in FDBSCAN and the parallel computation method proposed in our

M-FDBSCAN algorithm are used in E-MFDBSCAN. As it is mentioned in the previous

sections, the clustering approach proposed in FDBSCAN is based on the sample matrix

concept of which extended version, named t-sample matrix, is also proposed and used

in E-MFDBSCAN.

Figure 4.14. A t-sample matrix with m = 5 time points and s = 3 sample data points.

Since our evolutionary clustering model is developed for gene expression time

series data, we extend the sample matrix concept by adding time dimension. The

new matrix, t-sample matrix, is a three dimensional m × s × s matrix, where m

denotes the number of points of time dimension and s denotes the number of de-

rived sample points for fuzzy data objects. In E-MFDBSCAN, for each fuzzy data
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object x, a sequence of m × s samples, <x 11,. . . ,xm1,. . . ,xms>is derived by using

Gaussian probability density function. Similar to sample matrix, in t-sample ma-

trix, oki represents the ith derived sample point for the kth time point, such that

{oki|<o11,. . . ,o1s,. . . ,oki, . . . ,oms> ∈ o}and also Dkj represents the j th database in-

stance for the the k th time point, where {x kj|< x 11,. . . ,x 1s,. . . ,x ki, . . .,xms > ∈ D

∧ x kj 6=okj} ∪ oki . Finally, each matrix element is mk,i,j =|N ε,Dkj(oki)|, where

N ε,Dkj(oki) denotes the set {x kj|d(oki,x kj)6 ε ∧ x kj ∈ Dkj} and d(.,.) denotes the

chosen distance function. In Figure 4.14, a 5× 3× 3 t-sample matrix is illustrated.

Core Object Probability

Begin

(i) For each time point tk, where {tk|<t1,. . . ,tm>}do;

(a) Decrease the mk,i,j by 1 for which d(oki,x kj)6 ε holds.

(b) Count the number of elements int the t-sample matrix T-SM(o) which

contain values higher or equal to µ −1.

(c) Normalize the result by s2.

(d) Assign the final normalized result to P core(o)k

(ii) Count the core probabilities which are higher than or equal to 0,5.

(iii) Normalize the result by m

(iv) Assign the final normalized result to P core(o)final.

End

Figure 4.15. Procedure to compute Core Object Probability.

In the first step of the algorithm, the t-sample matrices are constructed for all of

the fuzzy data objects. A t-sample matrix T-SM(o) where o is any fuzzy data object,

is a data structure utilized to compute the reachability probabilities between o and the

other fuzzy data objects in the database. In short, reachability probability w.r.t. o

and x denotes the probability of the situation that o and x are in the same cluster.

Assigning an object to a cluster or flagging it as an outliers are all decided according



51

to the value of the reachability probability.

P reach(x, o) = P core(o) • Pd(x, o)(ε) (4.6)

In the Equation 4.6, P core(o) represents the core object probability of o which de-

notes the probability of the situation that o has at least µ-1 neighbors in ε-neighborhood,

except x. This probability value is derived using t-sample matrix. We customize the

derivation procedure as in algorithm given in Figure 4.15.

Finally, the next probability that must be computed is the distance distribution

probability Pd(x,o)(ε) w.r.t. x and o, which denotes the probability of the situation

that x is in ε-neighborhood of o. As in the core object probability computation, the

computation of Pd(x,o)(ε) is customized for E-MFDBSCAN, given in algorithm given

in Figure 4.16.

Distance Distribution Probability

Begin

(i) For each time point tk of the fuzzy data object x, where {tk|<t1,. . . ,tm>}do;

(a) Count the number of events d(oki,x kj)6 ε .

(b) Normalize the result by s2.

(c) Assign the final normalized result to Pd(x,o)( ε)k

(ii) Count the distance distribution probabilities which are higher than or equal to

0,5.

(iii) Normalize the result by m

(iv) Assign the final normalized result to Pd(x,o)final.

End

Figure 4.16. Procedure to compute Distance Distribution Probability.
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Thus, the final reachability probability is

P reach(x, o)final = P core(o)final • Pd(x, o)final . (4.7)

If Preach(x,o)final > 0,5 then it is accepted that x is reachable from o. This also means

that x and o are in the same cluster. If for all x, Preach(x,o)final<0,5 , then o is flagged

as outliers With this new perspective proposed by E-MFDBSCAN, time-based global

clusters and outliers can be generated.

Since, the standard distance functions, like Euclidean, which are mostly used for

the objects in n-D spaces (n > 2), are not adequate for defining the correlations among

gene expression data which is in 1-D space. Instead of them, Pearson correlation

function is used in many gene expression researches [39, 49–51]. Thus we also choose

Pearson correlation as distance measure.

Figure 4.17. An illustration of gene expression time series database.

In Figure 4.17, an illustration of a gene expression time series database is given.

As it is seen, for each time point, the gene expression data lies on a vertical line and

each fuzzy data object is represented with a sequence of derived sample points.
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Figure 4.18. Gene expression time series database with splitting lines.

4.2.1.1. The Algorithm. E-MFDBSCAN algorithm is an advanced and composite

variant of FDBSCAN and M-FDBSCAN algorithms of which the goal is to gener-

ate time-based evolutionary sets of clusters. The sample matrix construction and the

reachability probability computation procedures are inherited from FDBSCAN and the

database splitting (as illustrated in Figure 4.18) procedure, and the merge procedure

which is applied for the temporary sets of clusters are inherited from M-FDBSCAN.

All the inherited procedures are customized according to our proposed evolutionary

clustering concept.

If E-MFDBSCAN is assumed as a function, then it returns a set of sets of clus-

ters SC, such that; SC={SC1, . . . ,SCi,. . . ,SCm}where m denotes the number of time

points and SCi denotes the set of clusters generated at the time point ti using the

database Di ⊆ D, where Di denotes the database in which the data for the time points

<t1,. . . ,ti>are stored.
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input :

D: Database, m: Number of time points, n: Number of sub-databases for

parallel execution, µ : Maximum number of objects in a cluster, ε: Minimum

distance between two objects in a cluster

1 E-MFDBSCAN (D, m, n, µ , ε, s) Returns SC

2 for i← 1 to m do // Derives Di ⊆ D so that it includes the data

values of the time points of <t1,...,ti>

3 Di := Derive_Di(D,i);

4 SCi := {}

5 end

// Initializes the set of sets of clusters

6 SC := {}// Construction of the set of sets of clusters SC

7 for i← 1 to m do // Splits Di into n optimum sub-databases

8 Split_Database (Di, n) // Start of paralel execution

9 for k ← 1 to n do // Constructs t-sample matrices for all fuzzy

data object fdo in Dik

10 Construct_t_sample_matrix(Dik) // Constructs temporary

set of clusters SCik acc. to reachability probabilities

// Preach(x,o), for each x and o where x and o denote fuzzy

data objects in Dik and x6=o

11 SCik := Construct_Temp_Clusters(Dik)

12 end

// End of the parallel section // Merges the n temporary set of

clusters <SCi1,...,SCin>to get the final set of clusters

13 for k ← 1 to n− 1 do

14 SCi := Merge_SCi(SCik , SCik+1)

15 end

16 SC := SC + SCi // Adds the constructed set of clusters SCi to

the set of sets of clusters SC

17 Return SC

18 end

Figure 4.19. E-MFDBSCAN procedure.
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4.2.2. The Prediction Model

Recently, several studies are focused on gene expression profile prediction. The

dynamic model proposed by Holter and Maritan [47] has a capability of class prediction.

The class prediction model proposed by Sorlie et al. [52] is based on prediction analysis

of micro arrays (PAM), which is a variant of nearest-centroid classification approach.

Also another classification and prediction solution based on nearest-centroid approach

was proposed by Tibshirani [53]. But, the common restriction of the models is that

they are applicable if and only if the classes are known and defined. Unfortunately, in

most of the cases, the classification of gene expression profiles is a challenging problem.

As mentioned in [53], since the number of genes to be classified and predicted is much

more than the number of samples achieved by micro array experiments, choosing the

best-fit classes for each gene is nearly impossible. Also, significant identification of the

genes that contribute to the classification is difficult. For these reasons, clustering-like

unsupervised learning methods are widely used for grouping gene expression profiles.

In several studies, evolutionary clustering approach based prediction models are

proposed. The evolutionary clustering approaches, in which the time parameter is not

considered, like EvoCluster proposed by Ma et.al. [46], are not suitable for future-time

pattern prediction models.

In our study, we propose a prediction model for gene expression time series. One

of the crucial benefits of E-MFDBSCAN is to demonstrate temporal evolution of the

gene expression clusters. Thus, this feature enables us to make prediction for a future

time point. In Figure 4.20, time-based evolutionary changes of sets of clusters are

illustrated.

To use in the proposed prediction model, we define a similarity measure between

the two timely adjacent sets of clusters. The obtained similarity values determine the

level of affinity of two sets of clusters. The proposed prediction model is represented

with the time-series function which is constructed according to autoregressive (AR)
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Figure 4.20. Illustration of time-based evolutionary change of sets of clusters.

model concept and the achieved time-based similarity values.

∆i = E −MFDBSCANi

Sim(∆i −∆i+1) = A

+ B×Sim(∆i −∆i+1)

+ Ei+1 i = 1, . . . ,m (4.8)

In Equation 4.8, “Sim” represents the BestMatch similarity function defined in

Goldberg [54], which is utilized for computing the similarity values between two timely

adjacent sets of clusters. “A” and “B” are the coefficients of the time series function

and E is the noise function. The index i represents the i th time point. For observ-

ing the prediction performance of the model, the similarity value, for the next future

time period, [tm-tm+1], is obtained from the time-series function. Then, the obtained

similarity value is compared with the similarity value which is achieved by executing

E-MFDBSCAN for the time points tm and tm+1. Notice that, though, tm+1 represents

a next future time point, the gene expression data at this time point is known and

reserved in the database for testing issues. The difference between these two similarity
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values determines the performance of the prediction model.

4.2.2.1. BestMatch. As it is mentioned above, we use BestMatch for the computation

of similarity values. It produces a similarity value between two sets of clusters. Let

SC1 and SC2 be the sets of clusters, for each cluster Ci ∈ SC1, the goal is to find the

most similar pair, C ′ in SC2 by using one to one correspondence. Symmetrically, also

the most similar pair of each Cj ∈ SC2 is searched for in SC1. For this purpose, a

difference function d was proposed, which returns the number of unmatched members,

after one to one correspondence. The most similar pairs can be found by;

d(Ci,C′ )= min
j=1,...,m

d(Ci,C ′j) where m denotes the number of members of C ′j

and

d(Cj,C′) = min
i=1,...,n

d(Cj,C ′i) where n denotes the number of members of C ′i

Thus, the total similarity value for the sets of clusters SC1 and SC2 is;

d(SC1, SC2) =
n∑
i=1

min
j=1,...,m

d(Ci, C ′j) +
m∑
j=1

min
i=1,...,n

d(Cj, C ′i) (4.9)

by normalizing this value with (m+n), we can get the final similarity value.

4.2.3. Results and discussion

Since time series of gene expression is commonly very short (i.e. 4 to 20 samples)

and usually unevenly sampled [55], extracting the time-based evolutionary patterns is

not so easy. In our study, two different time series gene expression data sets are used

for testing the issues about evolutionary clustering and prediction.The evolutionary

clustering tests are made for observing the patterns of the generated global clusters.

For each time point i, the set of global clusters SCi is established including the time
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period [t1-ti]. Thus, for m time points, m sets of global clusters are established, such

that {SCi|<SC1,. . . ,SCi,. . . ,SCm}. For the prediction, obtaining the similarity values

of each two timely adjacent sets of global clusters, the coefficients and the noise of

the time series function given in Equation 4.8 is defined. The performance tests of

the prediction capability of the model are done due to the similarity values obtained

from the time-series function. Then, these values are compared with the similarity

values achieved by executing E-MFDBSCAN for two timely adjacent time points. The

comparison results for the used datasets are given in Figures 4.21 and 4.22.

Figure 4.21. Similarities vs. Time graph for budding yeast dataset.

The first dataset is budding yeast dataset [56] that the gene expression time-

series data is obtained during the yeast cell cycle. The dataset also includes the class

information of the achieved data. For 6,220 yeast genes, expression levels are observed

during the experiments [56]. At each 10 minutes, from the time point 0 to 160 min-

utes, totally 17 distinct temporal data is achieved for each gene. The used clustering

algorithm is described in [39]. We extended this data set by generating 8 sample points

for each given gene expression data. Since E-MFDBSCAN is a density-based cluster-

ing algorithm the input parameters ε (maximum distance between two members in a

cluster) and µ (minimum number of members in a cluster) are derived from the given

class information. The values of the parameters derived from the class information
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are: ε = 0.005 and µ = 5. Starting from the 0th time point, for each time point of 17

time points, E-MFDBSCAN is executed to generate the sets of global clusters. After

computing the similarity values for each set of clusters pairs of adjacent time points, we

get the set of similarity values, S. Using S, the unknown coefficients in Equation 4.8 are

extracted. Finally, a time series function is established for the budding yeast dataset.

During the tests, the similarity values for the last three time points are predicted. As it

is shown in Figure 4.21, the actual and the predicted value bars are nearly at the same

height. Due to the stable pattern of gene expression time series data, after the con-

struction of a model with a reasonable number of time points, satisfactory prediction

results can be achieved.

Figure 4.22. Similarities vs. Time graph for breast cancer dataset.

The next dataset was a breast cancer gene expression time series dataset [57,58].

The data is the result of analysis of breast cancer MCF10A-Myc cells at four time points

up to 24 hours following a treatment with dexamethasone to activate the glucocorticoid

receptor (GR). The dataset is composed of 22283 gene expression time series values.

For each gene expression data, again, 8 sample points are derived using Gaussian
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probability density function. Contrary to the first dataset, the classes are not defined

in this dataset. Thus, we do the tests with several µ and ε parameter values. The

relevant graph is shown in Figure 4.22. As in the previous experiment, for the last

three time points, the actual and the predicted values are compared. Since the number

of time points is smaller than the first dataset, fitting ratio of the time series function

is low. For this reason, the differences between the predicted and the occurred values

are slightly bigger than the first dataset.
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5. CONCLUSION

Due to the biological variations and the nature of probe-level measurement, miss-

ing and noisy data is a major problem in micro array experiments. Since gene expres-

sion data is achieved by micro array experiments, it can be classified as uncertain data.

One of the uncertain data management methods is representing a fuzzy data with a

certain number of sample points generated by a probability density function which we

also utilize. In spite of the advantages, the method causes the original database to be

enlarged with respect to the number of sample points. Thus, to speed up data process-

ing, the relevant algorithms are needed to be adapted for multi-core systems. For this

purpose, in the first phase of our study, we adapt a widely used uncertain data cluster-

ing algorithm for multi-core systems which is named M-FDBSCAN. Even though the

algorithm is devised for multi-core systems, in case of single core executions, dramatic

performance improvement was observed.

In the second phase, we propose a methodology to predict the evolutionary pat-

terns of gene expression time-series data. For this purpose, we develop an evolution-

ary clustering algorithm, named E-MDBSCAN, and a prediction model. The distinct

contribution of the methodology is the comprehensive solutions proposed for several

problems of gene expression data processing. While some of the relevant problems

are solved by utilizing the existent approaches and algorithms, for some others, novel

algorithms and models are proposed. With this perspective, in literature, there are

only a few studies that concentrate on a complete solution. Most of them focus on a

specific problem of gene expression data processing.

In the clustering part of the methodology, we present an evolutionary clustering

algorithm. The algorithm, named E-MFDBSCAN, generates time-based global gene

expression clusters. The other features of the algorithm are (i) parallel execution

capability and (ii) uncertain data consideration and management. According to the

result of our literature survey, there is no other clustering algorithm that gathers all of

the aforementioned features in a single algorithm.
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In the prediction part of the methodology, we present a prediction model. The

similarity values between two timely adjacent set of global clusters, generated by E-

MFDBSCAN, are used to construct an autoregressive time-series function. The func-

tion is used for the prediction issues. Verification of the model is done by comparing the

predicted and the actual similarity values for the same time period. The predicted simi-

larity values are derived from the function and the actual similarity values are achieved

by executing E-MFDBSCAN for two adjacent time points. It is observed that the

prediction performance of the model depends on the size of the training dataset. Un-

fortunately, in the context of gene expression data, time series is commonly short. This

means that the training dataset has only a few time points (e.g. 4 to 20). But, despite

of this essential drawback, due to the stable pattern of gene expression time series data,

the prediction results are satisfactory.

Although, the methodology is applied to gene expression data domain, it can be

used for other data domains, such as social media data domain. As a future work, the

model will be tested for social media analysis.
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