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Abstract
 

Object detection and tracking problem has long been an important topic in the literature. 

The importance of this subject continues to increase due to the advantages that object 

detection and tracking provides especially for every day practical life and hence the 

need for its pervasive use.  There are numerous different types of object tracking and 

various different tracking methods for each type of tracking.  

This thesis presents a moving object detection and tracking system with a Particle Filter 

algorithm.  The goal is to build an infrastructure that will allow following an unknown 

moving object in a region with numerous other dynamic objects.  

Several components are used to  determine objects;  to estimate self-localization; and 

match  the  determined  objects  in  the  next  iteration  with  the  previously  determined 

objects in order to tag each object with a particular identification.  Specifically, LIDAR 

is used to determine the objects, IMU(Inertial Measurement Unit) to estimate relative 

translation and rotation, Odometer and GPS to help increase the accuracy of the self-

position that is calculated by the IMU.  

The Particle Filter algorithm predicts self-position, utilizing the data received from both 

the IMU, the Odometer and the GPS.  Computational cost is also taken into account 

during the clustering and matching stages.  Performance and detection accuracy tests are 

carried out using various sized objects, as well as different environmental settings in 

order to conduct a comparison analysis for the gathered data. 



Résumé

La détection et la poursuite des objets est l'un des problèmes les plus connus dans la 

littérature depuis  longtemps.  Surtout,  dans la  vie  quotidienne,  grâce aux nombreux 

avantages,  l'utilisation  des  applications  de  détection  et  de  poursuite  des  objets,  est 

devenue  une quasi-nécessité aujourd’hui.

Cette thèse se sert de l'algorithme de Filtre de Particules pour la détection et la poursuite 

des  objets  dynamiques.   Le but  essentiel,  est  de préparer  une infrastructure pour la 

poursuite des objets qui entrent dans la vue de l'observateur et qui sont inconnus avant, 

spécialement dans les environnements où il y a plusieurs différents types d'objets.

Toujours  restant  sur  la  ligne du but  essentiel,  différents  composants  ont  été  pris  en 

compte pour la détection des objets, pour le calcul du déplacement de l'observateur et 

pour la comparaison des objets détectés en temps t avec les objets détectés en temps t-1 

afin de faire l'identification et donc la poursuite.  LIDAR est utilisé pour trouver l'angle 

et la distance des objets par rapport à sa position.  IMU (Inertial Measurement Unit) est 

utilisé pour trouver la translation et la rotation de l'observateur par rapport à la position 

précédente afin de pouvoir calculer les nouvelles positions des objets qui sont trouvés 

en temps précédent acceptant qu'ils sont immobiles.  Dernièrement, Odomètre et GPS 

sont utilisés afin d'améliorer la précision de la position calculée de l'observateur et de 

minimiser la faute de la translation qui sont trouvés par l'aide de IMU.

Les données reçues par IMU, Odomètre et GPS sont passées à l'algorithme de Filtre de 

Particules,  cette  transition  de  données  diminue  la  faute  cumulative  qui  pourrait 

apparaitre sans cet algorithme.  Durant toutes ces procédures, l'utilisation de CPU et 

temps d'opération total sont tenus en compte pendant les périodes de détection et de 

l'identification.   Il  faut  aussi  clarifier  que pour tester  le système en entier,  plusieurs 

objets avec des types et des dimensions différents sont utilisés et que tous ces résultats 

ont été comparés les uns aux autres.



Özet

Nesne  tespiti  ve  takibi  literatürde  uzun  zamandır  araştırma  konusu  olan 

problemlerdendir.   Özellikle  gündelik  hayatta,  nesnelerin tespit  ve  takip edilmesinin 

sağladığı  birçok  avantaj  olduğundan,  kullanımına  çok  yaygın  şekilde  ihtiyaç 

duyulmakta bu da konunun önemini iyiden iyiye arttırmaktadır.  Nesne takibi için çeşitli  

takip türleri mevcut olup, her takip türüne göre kullanılacak takip yöntemleri farklılık 

göstermektedir.  

Bu tez Parçacık Filtrelemesi Algoritması'ndan yararlanarak hareketli nesnelerin tespit ve 

takip  edilmesini  konu  alır.   Temel  amaç,  hareketli  birçok  farklı  nesnenin  olduğu 

ortamlarda  görüş  alanına  giren  ve  daha  önceden  tanınmayan  nesnelerin  takip 

edilebilmesi için bir altyapı hazırlamaktır.  

Temel  amaç  doğrultusunda  nesnelerin  tespiti,  gözlemcinin  konum  değişiminin 

hesaplanması  ve  sonraki  adımda  tespit  edilen  nesnelerin  bir  önceki  adımda  tespit 

edilenlerle  karşılaştırılarak  yapılacak  takibi  için  çeşitli  donanımlar  kullanılmıştır. 

Detaylandırmak  gerekirse,  LIDAR,  nesnelerin  gözlemciye  göre  pozisyonunun 

hesaplanması,  dolayısıyla  nesnelerin  tespiti  için  kullanılırken,  IMU  (Inertial 

Measurement  Unit)  gözlemcinin  bir  önceki  pozisyona  göre  olan  rotasyon  ve 

translasyonunun  hesaplanması  amacıyla  kullanılır.   Son  olarak  Odometre  ve  GPS 

kullanılarak, IMU yardımıyla hesaplanan translasyondaki hatanın minimize edilmesi ve 

gözlemcinin yer değişiminin daha keskin şekilde hesaplanması hedeflenmiştir.  

IMU, Odometre ve GPS'den alınan veriler Parçacık Filtresi Algoritması'na sokulmakta 

ve bu sayede filtre kullanılmadığı taktirde ortaya çıkacak olan toplamsal hata en aza 

indirgenmektedir.   Tüm  bunların  yanında  nesnelerin  tespiti  ve  eşlenmesi  sırasında 

uygulama  tarafından  kullanılan  işlemci  gücü,  işlem  zamanı  gibi  veriler  de  dikkate 

alınmıştır.  Son olarak çeşitli büyüklük ve tipteki nesneler kullanılarak farklı çevrelerde 

testler yapılmış ve sonuçlar birbirleriyle karşılaştırılmıştır.
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 1 .   Introduction

Object detection and moving object tracking have captured the attention of researchers 

for  many  years.   Besides  its  broad  application,  object  detection  is  often  used  in 

autonomous  intelligent  robots,  monitoring  and  surveillance  services,  smart  rooms, 

vehicle  tracking  and  biomedical  image  analysis.   Nevertheless,  it  is  difficult  to 

identify/classify  objects  in  environments  that  are  comprised  of  a  large  number  of 

moving or colliding agents.  It is still a challenging problem to detect and track dynamic 

objects, in particular for the locations with numerous pedestrians; yet there have been 

significant improvements.

In the past, many object detection systems were developed.  Most of them use digital  

cameras or imaging techniques with 2D/3D image models for modeling the clusters to 

increase the detection accuracy.  The second approach takes into consideration the use 

of laser imaging detection which is an optical remote sending technology.  It is mainly 

used to measure the distance to targets by illuminating the target with laser light and 

then  analyzing  the  reflected  light  for  which  the  range  can  vary  from  22mm  to 

305meters.  However,  the  accuracy  of  the  device  is  negatively  correlated  with  the 

distance.  This thesis is based on the latter approach. 

In a more detailed outlook, object tracking has become an important issue for the field 

of  computer  vision.   With  the  evolution  of  computers,  many algorithms have  been 

developed  to  identify  objects’  movements.   As  the  number  of  these  algorithms 

increased, navigation systems, tracking systems and surveillance systems have become 

extremely common.  For example, people can be tracked for security purposes, such as 

at  pedestrian  crossing  zones,  using  particular  object  tracking  tools  and  algorithms. 

Similarly, car tracking systems can be developed to keep a secure distance between two 

cars with the use of aforementioned techniques.

The current  difficulty  in  this  area  is  the  insufficiency of  data  in  tracking particular 
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objects.  This is due to the fact that a single device is not capable of collecting the 

adequate data required to make accurate detections and approximations.  Hence, fusion 

of measurement devices and combination of their data are required key factors (Durrant-

Whyte, 2006).  The aim here is to provide better detections, positions, clustering and 

predictions (Tamas & Lazea, 2010). 

Commonly, to detect, identify and track objects, camera and video based systems are 

used because the shape, color and movement can be really characteristic and can be 

used  to  distinguish  particular  objects.   Tracking  systems  are  used  for  security 

surveillance  systems  for  banks,  stores  etc.   Using  cameras,  the  whole  area  can  be 

observed, and after a movement, objects like humans can be distinguished, following 

the application of several algorithms and functions, and detection of several threats.  For 

example,  in  (Shan  et  al.,  2007),  hand  control  interface  for  a  robotic  wheelchair  is 

developed using several  video based devices  and algorithms,  which can be used  to 

develop people motion detection.

Besides camera-video based systems, laser scanners like LIDAR (Light Detection and 

Ranging or Laser Imaging Detection and Ranging) can also be used in tracking systems, 

as in this dissertation.  LIDAR can measure the distance to targets by sending laser light 

to targets by measuring reflected light duration.

In this thesis, 2D-LIDAR is used, but there is also a 3D-LIDAR to detect objects in 3 

dimensions.  3D-LIDAR, can also analyze objects by their shape,  height and width. 

Like in (Lee et al., 2010), marine environments are detected and can be tracked using a 

3D-LIDAR.

Using LIDAR, Adapted  Cruise Control  system is  implemented  into  a  vehicle  using 

IBEO LUX LIDAR and Monocular Monochrome Camera to observe a vehicle in front 

of a particular vehicle, and by controlling the brakes, several security reasons can be 

handled for driver assistance.(Weigel et al., 2009)  Overall, there are numerous devices 

that  can  be  used  to  accomplish  tracking  and  various  examples  of  object  detection 

systems that can be seen in urban life.    
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Many studies have been conducted to detect and track objects.  Some of these works are 

based on the LIDAR scanner whereas others are done with a camera.  Vision systems 

are commonly used for object detection, without the use of a LIDAR like in (Franke & 

Heinrich, 2002).  Visual object detection and tracking methods are generally based on a 

simple segmentation procedure such as the temporal difference of background analysis 

(Toth  &  Aach,  2003),  while  on  the  contrary,  background  changes  affect  these 

approaches adversely because of the camera motion.  There are also some examples of 

the  use  of  vision  systems  in  combination  with  LIDAR like  in  (Neira  et  al.,  1999; 

Premebida et  al.,  2007).   In  (Premebida et  al.,  2007)  Camera and LIDAR are used 

separately and then the results are combined together with the Bayesian Filter approach. 

In detection and tracking, the general focus area is the tracking of pedestrians as in 

(Broggi et al., 2000; Oren et al., 2000; Sotelo et al. 2006).  But vehicle tracking is also 

one of the popular subjects as in (Fortin et al., 2012).  Also, as it is stated in (Premebida 

et al., 2007), there are several approaches to track vehicles and pedestrians at the same 

time.

Some approaches like (Gao & Coifman, 2006) only focus on vehicle detection on the 

road.  The method presented in (Gao & Coifman, 2006) is based on the detection of 

road boundaries.  The aim here is to classify cars and road boundaries with the help of 

image processing techniques without the requirement of a digital map.  This approach 

does not cover any cluster identification, but is used for distinguishing between a non-

vehicle cluster and a vehicle-cluster, if they are both present on the road.

There  are  various  different  methods  that  are  used  for  cluster  tracking.   The  most 

common use is that the calculations are based on center of gravity position of clusters,  

as in (Yu et al., 2008) and objects are tracked by watching the changes of position of 

their  center  of  gravity.   Differently in  (Fortin  et  al.,  2012),  instead of  the center  of 

gravity approach; clusters are tracked by their line segments and the chosen modeling. 

The disadvantage of approach is that a model must be chosen and analysed prior to 

implementing any detection or tracking.
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Detection and tracking can be carried out in different circumstances where LIDAR can 

be mobile or objects can be mobile (Fortin et al., 2012) or LIDAR and objects can be 

mobile at the same time (Yu et al., 2008).  In proposed papers, the approaches generally 

use a LIDAR on a fixed position while the objects are mobile. Our approach is quite 

similar with (Yu et al., 2008) in terms of the general concept; but in (Yu et al., 2008), k-

nearest neighbors method is used for clustering where we introduce a new clustering 

algorithm for the clustering stage.

Particle Filter algorithm is commonly used in detection and tracking at different stages. 

In (Fortin et  al.,  2012), Particle Filter  algorithm is used for  the detection of a line 

segment in scanning laser range data, however, in (Yu et al., 2008), it is used in the 

tracking stage for attaining the movement condition of the objects.

Yet, it is decided that the main objective of this thesis requires a 2D-LIDAR, an IMU 

(Inertial  Measurement  Unit)  and  an  Odometer  running  within  a  Particle  Filter 

Algorithm.  A 2D-LIDAR is sufficient in detection of moving objects in 3D space with 

the application of a good clustering and a good prediction of the cluster movement. 

Thus, the additional video-based system will not be given a role in our implementation.

The main difference between the approach of this thesis and the other approaches in 

literature is that there is not any calculation with any vision based system in this thesis, 

however, after examining approaches which does not use any vision based system like 

in this thesis, it can be clearly said that this thesis approach differ from other approaches 

mainly on clustering algorithm.  Besides, the ability of tracking totally different type of 

objects without the need of modifying the general algorithm or modelling the shapes of 

objects to track, is another important difference of this thesis approach.  Furthermore, 

compared to others, a new algorithm is implemented in this thesis approach to handle 

situations which require dynamic LIDAR positioning.  In fact, each of the main 

differences mentioned in this paragraph can be found in several approaches seperately, 

but this thesis apprach combines all of these differences.  However, because of the 

difficulty to not only focus on a unique type of object but also on other different objects, 

this thesis approach can be supported with a vision-based sensor especially to increase 
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detection and tracking accuracy in situations with changing LIDAR position.

The motivation for considering yet another object detection and tracking method comes 

from  the  possibility  to  extend  the  current  used  algorithms  with  a  self-developed 

algorithm and  to build a robot which is controlled by our own implementation.  There 

are many methods for clustering and object tracking, and the difference between each 

method  can  be  ascribed  to  the  LIDAR-IMU-Odometer  data  fusion  and  various 

clustering algorithm implementations.   Also,  CPU load caused by each algorithm is 

distinct and therefore a subject that needs more attention from researchers.

The rest of this thesis is organized as follows.  In section II, common usage of object 

detection and tracking will be analyzed.  In section III, related works on object detection 

and tracking will be briefly described within the literature review.  In section II,  the 

principles  of  the  thesis  approach  will  be  described  and  the  system design  will  be 

reviewed.  Section III  will  explain the implementation of the approach and detailed 

algorithm including fusion  and detection  methodology.   In  section  IV,  experimental 

results will be analyzed in detail.  Software overview and performance analysis will be 

presented in sections V and VI respectively.  In the final section, conclusions will be 

drawn and possible directions for future work will be proposed.



 2 .   System Design and Approach

 2.1 .   System Design

The main hardware components that will be presented in this section are chosen upon 

their usability, object detection accuracy and self-position estimation accuracy.  Taking 

into consideration possibility of being in  different external environments,  movement 

detection  problems  and  necessity  of  data  fusion  from  different  components,  the 

following components are chosen:

– SICK LIDAR LMS -500

– Crossbow Technology  IMU440CA-200

– Roboteq AX 1500 Motor Controller & Odometer

– SiRFstarIII GPS Receiver

Owing to fusion of data coming from both IMU and GPS receiver, it's targeted that 

LIDAR's  self-position  accuracy  will  increase.   Not  only  is  LIDAR's  self-position 

estimated with the data coming from IMU and GPS, but also with the odometer data 

which is another important component mainly used for self-position estimation with the 

aid of calculated distance from rotation numbers of tires and tire perimeter.  By the way, 

the most important component of all is LIDAR without doubt since the data coming 

from LIDAR is used as a basis for all components.  In fact,  the data received from 

LIDAR is first processed in the clustering stage and then used in fusion with the data 

received from IMU, GPS and Odometer.   Each of  the component  described in  this 

paragraph will be presented in detail in the incoming stages.
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 2.1.1 .   SICK LIDAR LMS – 500

 2.1.1.1 .   What is LIDAR?

Lidar stands for Light Detection and Ranging and is very similar to the better known 

Radar.  LIDAR is a better choice than radar, because it has a greater ability to reflect  

images, making more objects visible.  LIDAR uses waves ten to one hundred thousand 

times shorter than radar waves, which means that it is able to collect much more data. 

LIDAR is an optical remote sensing technology that can measure the distance to, or 

other properties of a target by illuminating the target with light, often using pulses from 

a laser. LIDAR technology has a wide range of applications.  The short form LADAR 

(Laser Detection and Ranging) is often used in military contexts.  The term "laser radar" 

is sometimes used even though LIDAR does not employ microwaves or radio waves 

and is not therefore in reality related to radar.  LIDAR uses ultraviolet, visible, or near 

infrared light to image objects and can be used with a wide range of targets, including 

non-metallic objects, rocks, rain, chemical compounds, aerosols, clouds and even single 

molecules.  A narrow laser beam can be used to map physical features with very high 

resolution.   LIDAR  has  been  used  extensively  for  atmospheric  research  and 

meteorology.  Downward-looking LIDAR instruments fitted to aircraft and satellites are 

used  for  surveying  and  mapping.   A recent  example  is  the  NASA Experimental 

Advanced Research Lidar.  Wavelengths in a range from about 10 micrometers to the 

UV are used to suit the target.  Typically light is reflected via backscattering. 

 2.1.1.2 .   General/Technical Description

In the following section,  there is  some technical  information about  LIDAR and it's 
architecture.  Fig. 2.1. is a screenshot from front view of LIDAR LMS-500.
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Table 2.1.  LIDAR LMS-500 Technical Details

Features

Model: LMS-500
Field of application: Indoor
Version: Mid Range
Variant: PRO
Resolution power: High Resolution
Light source: Infrared (905 nm)
Laser class: 1 (IEC 60825-1 (2007-6)), eye-safe
Field of view: 190 °
Scanning frequency: 25 Hz / 35 Hz / 50 Hz / 75 Hz / 100 Hz
Angular resolution: 0.167 °

0.25 °
0.333 °
0.5 °
0.667 °
1 °

Operating range: 0 m ... 80 m
Max. range with 10 % reflectivity: 26 m
Spot size: 4.7 mrad
Amount of evaluated echoes: 5

Fig. 2.1. LIDAR LMS-500
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Fog correction: No

Performance

Response time:
Detectable object shape:
Systematic error 1): ± 25 mm (1 m ... 10 m)

± 35 mm (10 m ... 20 m)
Statistical error 2): ± 7 mm (1 m ... 10 m)

± 9 mm (10 m ... 20 m)
Integrated application: Field evaluation
Number of field sets: 10 fields
Simultaneous processing cases: 10

Interfaces

Serial (RS-232, RS-422): YES
Function (Serial (RS-232, RS-422)): Host
Data transmission rate (Serial (RS-232, 
RS-422)):

9.6 kBaud ... 500 kBaud

Ethernet: YES
Function (Ethernet): Host
Data transmission rate (Ethernet): 10/100 Mbit
Protocol (Ethernet): TCP/IP, OPC
CAN bus: YES
Function (CAN bus): Outputs extension
PROFIBUS DP: -
PROFINET: -
DeviceNet: -
USB: YES
Function (USB): AUX
Data transmission rate (USB): 9.6 kBaud ... 500 kBaud
Remark (USB): Mini-USB
Switching inputs: 4 (Encoder)
Switching outputs: 6
Optical indicators: 5 LEDs (additional 7-segment display)
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Mechanics/electronics

Electrical connection: 1 system plug with screw terminal block
Operating voltage: 24 V DC
Power consumption: 22 W
Housing color: Light blue (RAL 5012)
Enclosure rating: IP 65
Protection class: III
Weight: 3.7 kg
Dimensions: 160 mm x 155 mm x 185 mm

Ambient data

Object remission: 2 % ... > 1,000 % (reflectors)
Electromagnetic compatibility (EMC): EN 61000-6-2:2005 / EN 61000-6-3 (2001-10)
Vibration resistance: EN 60068-2-6 (1995-04)
Shock resistance: EN  60068-2-27  (1993-03)  /  EN  60068-2-29 

(1993-04)
Ambient operating temperature: 0 °C ... 50 °C
Storage temperature: -12 °C ... 50 °C
Ambient light safety: 70,000 lx

Used packet rate for LIDAR is 25 Hz in the application.

 2.1.1.3 .   LIDAR Operating Principles

The  LIDAR  is  an  electro-optical  laser  measurement  system that  electro-sensitively 

scans the perimeter of its surroundings in a plane with the aid of laser beams.  The 

LIDAR measures  its  surroundings in  two-dimensional  polar  coordinates.   If  a  laser 

beam is incident on an object, the position is determined in the form of distance and 

direction.
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Scanning takes place in a sector of 190°.  The scanning range of the LIDAR used is 

maximum 65 m (213.25 ft) on light, natural surfaces with an object remission > 100% 

(e.g. a white house wall).

Distance measurement

The LIDAR emits pulsed laser beams using a laser diode.   If  such a  laser  pulse is 

incident on an object or a person, it is reflected at its surface.  The reflection is detected 

in the laser

measurement system’s receiver using a photodiode.

Fig. 2.2. Measuring principle of the LIDAR
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The distance to the object is calculated from the propagation time that the light requires

from emission to reception of the reflection at the sensor.  This principle of  “pulse

propagation time measurement” is used by radar systems in a similar manner.

Direction Measurement

The emitted laser beams are deflected using a mirror and scan the surroundings in a

circular  manner.   The measurements  are  triggered at  regular  angular  steps  using  an 

angular encoder.

The LIDAR scans with a scanning frequency of 25, 35, 50, 75 or 100 Hz.  During this 

process, a laser pulse and therefore a measurement is triggered after an angular step of 

0.167°, 0.25°, 0.33°, 0.5°, 0.66° or 1°.

Fig. 2.3. Principle of operation for pulse propagation time measurement
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Influences of object surfaces on the measurement

The signal received from a perfectly diffuse reflecting white surface corresponds to the

definition of a remission of 100%.  As a result of this definition, the remissions for 

surfaces

that reflect the light bundled (mirrored surfaces, reflectors), are more than 100%.

The majority of surfaces reflect the laser beam diffusely in all directions.  The reflection 

of the laser beam will vary as a function of the surface structure and colour.  Light  

surfaces reflect the laser beam better than dark surfaces and can be detected by the 

LIDAR over  larger  distances.   Brilliant  white  plaster  reflects  approx.  100% of  the 

incident light, black foam rubber approx. 2.4%.  On very rough surfaces, part of the 

energy is lost due to shading.  The scanning range of the LIDAR will be reduced as a 

result.

Fig. 2.4. Reflection of the laser beam at the surface of an object
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The reflection angle is the same as the angle of incidence.  If the laser beam is incident

perpendicularly on a surface, the energy is optimally reflected (Fig. 2.4.).  If the

beam  is  incident  at  an  angle,  a  corresponding  energy  and  scanning  range  loss  is 

incurred.

If the reflected energy returned is over 100% the incident beam is not reflected diffusely 

in all directions, but is reflected in a specific direction.  As a result a large portion of the 

energy emitted  can  be  received  by the  laser  distance  measurement  device.   Plastic 

reflectors (“cats’ eyes”), reflective tape and triple prisms have these properties.

Fig. 2.5. Reflection angle

Fig. 2.6. Degree of reflection
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At mirror surfaces the laser beam is almost entirely deflected.  Instead of the surface of 

the mirror, it is possible that the object on which the deflected laser beam is incident 

may be detected.

Objects that are smaller than the diameter of the laser beam cannot reflect all the energy

of the laser light.  The energy in the portion of the laser light that is not

reflected is lost.  This means that the scanning range is less than would be possible

theoretically based on the surface of the object.

Fig. 2.7. Mirror surfaces

Fig. 2.8. Object smaller than diameter of the laser beam
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Scanning range of the LIDAR

The scanning range of the LIDAR is dependent on the remission of the objects to be 

detected.  The better a surface reflects the incident radiation, the greater the scanning 

range  of  the  LIDAR.   The  diagrams  in  Fig.  2.9.  indicate  the  relationship  between 

remission and detectability.

Up to a distance of 10 m (32.81 ft) the LIDAR can detect objects from 3% remission. 

At a distance of 65 m (213.25 ft) objects are only detected if they have a remission >  

100%.

Fig. 2.9. Scanning range of the LIDAR as a function of the target remission
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 2.1.2 .   Crossbow Technology  IMU440CA-200

 2.1.2.1 .   What is IMU ( Inertial Measurement Unit) ?

The IMU is a single unit in the electronics module which collects angular velocity and 

linear acceleration data which is sent to the main processor.  The IMU housing actually 

contains two separate sensors.  The first sensor is the accelerometer triad.  It generates 

three analog signals describing the accelerations along each of its axes produced by, 

and acting on the vehicle.  Due to thruster system and physical limitations, the most 

significant of these sensed accelerations is caused by gravity.  The second sensor is the 

angular rate sensor triad.  It also outputs three analog signals.  These signals describe 

the vehicle angular rate about each of the sensor axes.  Even though the IMU is not 

located at the vehicle center of mass, the angular rate measurements are not effected by 

linear or angular accelerations.  The data from these sensors is collected by the IMU 

6811 microprocessor through a 12 bit  ADC board.   The sensor information is  then 

returned to the main processor via a RS422 serial communications interface at a rate of 

about 200 Hz.

The accelerometer triad, and angular rate sensors within the IMU are mounted such that 

their sensor coordinate axes are not aligned with those of the vehicle.  This is due to the 

fact that the two sensors in the IMU are mounted in two different orientations in the 

housing, along with the fact that the axes of the IMU are not aligned with the vehicle 

axes.

 The Figure 2.10. shows two pictures of the IMU, and depicts the direction of the axes 

of each of the two sensors each with respect to the IMU housing. 
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The  IMU440  is  offered  in  standard  and  high-range  sensor  configurations  and  it 

combines highly-reliable gyros and accelerometers with high-speed DSP electronics to 

provide  a  fully  calibrated  dynamic  measurement  system  in  a  small  and  rugged 

environmentally-sealed enclosure and, with output data also available in delta theta and 

delta  velocity  format.   It  can  also  provide  consistent  performance  in  challenging 

operating environments and is user-configurable for a wide variety of applications. 

 2.1.2.2 .   General/Technical Specifications

Fig. 2.10. IMU accelerometer and angular axis directions

Fig. 2.11. Crossbow IMU440CA-200
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Table 2.2.  Crossbow IMU440CA-200 Technical Details

General Specifications

Gyro Range 200
In-Run Stability 10
Non-Linearity 1
Bandwidth 25
Accel Range 4
In-Run Stability 1
Non-Linearity 1
Bandwidth 25

Performance

Angulare Rate

Range: Roll, Pitch, Yaw (°/sec) ± 200 (± 400 option available)
Bias Stability In-Run (°/hr) < 10
Bias Stability Over Temp (°/sec) < 0.2 
Scale Factor Accuracy (%) < 1 
Non-Linearity (% FS) < 0.5
Resolution (°/sec) < 0.02
Angle Random Walk (°/√hr) < 4.5
Bandwidth (Hz) 25

Acceleration

Input Range: X/Y/Z (g) ± 4 (± 10 option available)
Bias Stability In-Run (mg) < 1
Bias Stability Over Temp (mg) < 4
Scale Factor Accuracy (%) < 1
Non-Linearity (% FS) < 1
Resolution (mg) < 0.5
Velocity Random Walk (m/s/√hr) <1.0
Bandwith (Hz) 25
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Specifications

Environment

Operating Temperature (°C) -40 to +71
Non-Operating Temperature (°C) -55 to +85
Enclosure IP66 Compliant

Electrical

Input Voltage (VDC) 9 to 42
Power Consumption (W) < 3
Digital Interface RS-232

Physical

Size      (in) 3 x 3.75 x 2.50
             (cm) 7.62 x 9.53 x 6.43
Weight (lbs)

             (kg)

< 1.2

< 0.55
Connector DB15, D-sub 15-pin Male

Used packet rate for LIDAR is 25 Hz in the application.
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 2.1.3 .   Roboteq AX 1500 Motor Controller & Odometer

Roboteq’s AX1500 controller is designed to convert commands received from a R/C 

radio, Analog Joystick, wireless modem, or microcomputer into high voltage and high 

current  output  for  driving  one  or  two  DC  motors.

The controller's two channels can either be operated independently or mixed to set the 

direction  and rotation  of  a  vehicle  by coordinating  the  motion  on each  side  of  the 

vehicle.  The motors may be operated in open or closed loop speed mode.  Using low-

cost position sensors, they may also be set to operate as heavy-duty position servos.

Fig. 2.12. Roboteq AX1500 mainboard
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Table 2.3.  Roboteq AX1500 Technical Details

Technical Features

Power Stage

Operating Voltage 12V to 40V DC 
Number of Channels 2
Max Current

          30s

          1min

          3min

          1h

30A                   40A

25A                   35A

20A                   30A

20A                   30A

Surge Current >150A 
MOSFETs per Channel 4 
ON Resistance 10 mOhm 
Current Limiting By  automatic  power  output  reduction 

according  to  user  preset  limit  and 

temperature 
Synchronous Rectification Yes - Allows regenerative braking 
Temperature protection Automated  current  limit  reduction 

starting  at  80o  C  (175o  F)  heat  sink 

temperature 
Voltage protection Output  shut  off  below 12V and  above 

43V 
Power Wiring Terminal strip. AWG 12 max cable 

Command

R/C Inputs 2 + 1 accessories (1.0ms - 1.5ms center - 

2ms, Adjustable) 
Serial Interface RS232. 9600 bauds 
Analog Interface 2 inputs (0V - 2.5V center - 5V) 
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Input Corrections Ch1  &  Ch2  mixing  for  tank  steering. 

Programmable deadband. 4 Exponent & 

Logarithmic command curves. 

Input/Outputs

Optical Encoder Interface Yes 
Analog Inputs 4 inputs, 8-bit resolution 
Digital Outputs 1 output, 24V 1A max 
Digital Inputs up to 3 general purpose inputs 
5V Supply Output 100mA max for Radio or other devices 

Operating Modes

Open Loop Speed Forward  &  Reverse  Speed  Control. 

Separate or Mixed 
Closed Loop Speed Use Tachometer on analog inputs & PID 
Position Mode Use  Potentiometer  on  analog  inputs  & 

PID 
Controller Configuration Jumper-less using PC utility 

Phsyical

Operating Temperature -40 to +85oC heat sink temperature 
Enclosure Unenclosed, board level 
Controller size 4.2" (106mm) wide x 4.2" (106mm) long 

x  1.5"  tall  (38mm)  tall  including  heat 

sink 
Cables 10" (25cm) RC cable to Radio. 4' (1m) 

RS232 cable for PC connection 
Weight 3 oz (85g) 
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 2.1.4 .   SiRFstarIII GPS Receiver

 2.1.4.1 .   What is GPS?

The Global Positioning System(GPS) is one of the key components of the project.  GPS 

is used to find absolute position and velocity.  It is a satellite-based navigation system 

made up of  a  network  of  24 satellites  placed into orbit  by the U.S.  Department  of 

Defense.  GPS was originally intended for military applications, but in the 1980s, the 

government made the system available for civilian use.  GPS works in any weather 

conditions, anywhere in the world, 24 hours a day.  There are no subscription fees or 

setup charges to use GPS. 

GPS satellites circle the earth twice a day in a very precise orbit and transmit signal 

information  to  earth.   GPS receivers  take  this  information  and  use  triangulation  to 

calculate the user's exact location.  Essentially, the GPS receiver compares the time a 

signal was transmitted by a satellite with the time it was received.  The time difference 

tells the GPS receiver how far away the satellite is.  Now, with distance measurements 

from a few more satellites, the receiver can determine the user's position and display it 

on the unit's electronic map.  Today's GPS receivers are extremely accurate, thanks to 

their parallel multi-channel design.

GPS satellites transmit two low power radio signals, designated L1 and L2.  Civilian 

GPS uses the L1 frequency of 1575.42 MHz in the UHF band.  The signals travel by 

line of sight, meaning they will pass through clouds, glass and plastic but will not go 

through most solid objects such as buildings and mountains.

A GPS  signal  contains  three  different  bits  of  information  -  a  pseudorandom code, 

ephemeris data and almanac data.  The pseudorandom code is simply an I.D. code that 

identifies  which  satellite  is  transmitting  information.   Ephemeris  data,  which  is 

constantly transmitted by each satellite, contains important information about the status 

of the satellite (healthy or unhealthy), current date and time.  This part of the signal is  

essential for determining a position.  The almanac data tells the GPS receiver where 

each GPS satellite should be at any time throughout the day.  Each satellite transmits 
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almanac  data  showing  the  orbital  information  for  that  satellite  and  for  every  other 

satellite in the system.

There are some factors that can degrade the GPS signal and thus affect accuracy include 

the following:

1) Ionosphere and troposphere delays:

The satellite signal slows as it passes through the atmosphere.  The GPS system uses a 

built-in model that calculates an average amount of delay to partially correct for this 

type of error.

2) Signal multipath:

This occurs when the GPS signal is reflected off objects such as tall buildings or large 

rock surfaces before it reaches the receiver.  This increases the travel time of the signal, 

thereby causing errors.

3) Receiver clock errors:

A receiver's  built-in clock is  not as accurate  as the atomic clocks onboard the GPS 

satellites.  Therefore, it may have very slight timing errors.

4) Orbital errors:

Also  known  as  ephemeris  errors,  these  are  inaccuracies  of  the  satellite's  reported 

location.

5) Number of satellites visible:

The more satellites a GPS receiver can "see," the better the accuracy.  Buildings, terrain, 

electronic interference,  or  sometimes even dense foliage can block signal  reception, 

causing position errors or possibly no position reading at all.  GPS units typically will 

not work indoors, underwater or underground.

6) Satellite geometry/shading:

This refers to the relative position of the satellites at any given time.  Ideal satellite 
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geometry exists when the satellites are located at wide angles relative to each other. 

Poor geometry results when the satellites are located in a line or in a tight grouping.

7) Intentional degradation of the satellite signal:

Selective Availability (SA) is an intentional degradation of the signal once imposed by 

the U.S. Department of Defense.  SA was intended to prevent military adversaries from 

using the highly accurate GPS signals.  The government turned off SA in May 2000, 

which significantly improved the accuracy of civilian GPS receivers.

 2.1.4.2 .   General/Technical Details

Fig. 2.13. SiRFstarIII GPS Receiver 
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Table 2.4.  SiRFstarIII GPS Receiver Technical Details

Technical Details

Horizontal Position Accuracy • Autonomous <2.5 m
• SBAS <2.0m

Velocity Accuracy • Speed <0.01 m/s
• Heading <0.01

Time To First Fix • Hot start - Autonomous <1 s
• Warm start - Autonomous <35 s
• Cold start - Autonomous <35 s
• With SiRInstantFix - as low as 5 s

Sensitivity • Autonomous acquisition -142 dBm
• Tracking -159 dBm

Receiver • Tracking - L1, CA Code
• Channels - up to 20
• Max update rate - 1 Hz
• Max altitude/velocity - <60,000 ft/<1,000 
knots
• Protocol support - SiRF Binary, NMEA

System Integration • I/O Interface - UART
• External reference clock - 16.369 and 26 
MHz
• RTC input - 32.768 kHz

Power • Continuous  Autonomous  operation  -  62 
mW
• TricklePower - 40 mW

Size 10 x 10 x 1.4 mm 
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 2.1.5 .   Entire System Overview

When the system is observed as a whole, one can find a metal platform, located at the 

base of the system and attached to the wheels which allow movements, that carries all  

the components involved. The IMU and the Odometer are placed on the interior part, 

that is not visible in the photographs, of the metal platform; and just above this division 

there  exists  3  power supplies  which  are  connected  to  all  of  the  components  in  the 

system. LIDAR is located at the top of the system and the GPS is placed in the open 

area at the front of the system in order for it to establish connections with the satellites 

in  the  most  efficient  and  effective  way.  As  the  system  does  not  incorporate  any 

embedded software, enough space is reserved at the front section of the system for the 

computer from which the software will be run. The design of the system are shown in 

the pictures below. 

Fig.  2.14.  A  screen-shot  of   system 
design from front view
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Fig.  2.15. A screen-shot of  system design from 
back view

Fig. 2.16. A screen-shot of IMU
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 2.2 .   Main Steps

Out of numerous different options, in our approach, the main component used is LIDAR 

because of the initial need to detect the union of points reflected from objects which are 

then grouped together and named as a “cluster”,  after  applying different algorithms. 

After receiving the reflected points which are received from LIDAR as a pair of degrees 

(between -5 / 185 ) and distance, 3 main steps are performed in order to achieve a list of 

most valuable clusters, assuming that the environment is urban, road-network based or 

with many pedestrians:

1- Place each point in clusters to form a group of returns that are within a specified 

distance from each other.  If a point is not within the specified distance from a point in 

the currently calculated cluster, then open a new cluster and place the point into the 

newly opened cluster.  Each cluster is assigned a unique ID.

2- Find a centroid for each cluster; calculate the distance between that centroid and each 

cluster centroid.  If the calculated distance is less than the threshold, get the combination 

of these two clusters as they will form a single cluster.

3- Find the points which are most distant to each other for each cluster; calculate this 

distance as an Euclidian distance; and eliminate the clusters which are less than the 

threshold.  Also, eliminating clusters which have less than a threshold number of points 

can sometimes give more accurate results.

On the other hand, getting data from LIDAR and clustering the points are not sufficient 

in terms of detecting dynamic objects when LIDAR's position is fixed.  The movement 

of each cluster must also be estimated considering the environment and nature of the 

objects to be tracked.  It is important to notice that we know nothing but the objects 

returned  by  LIDAR.   Thus,  the  result  is  not  100%  accurate  but  the  main  goal  is 

achieving the maximum accuracy.  With these considerations, a minimum-maximum 

movement of a cluster's centroid in a particular time interval is calculated, giving us an 

idea about  the possible  trajectory of  an  object.   Afterwards,  some time-related data 
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about different clusters are obtained.

After the stage of object detection, object tracking must be performed in order to match 

clusters in a time with the clusters in the previous time.  To do that, each cluster found 

in time t is compared with the clusters found in time t+1 by analyzing the centroid 

displacement, the possible path of the object and the cluster's start-end angles.  All of 

these calculations are valid where the position of the LIDAR is fixed.  Where LIDAR's 

position is not fixed, the use of the IMU, Odometer and Particle Filter Algorithm is 

obligatory.  Use of GPS can be optional but it is also added to the system in order to 

increase accuracy.

 As stated above,  the data  received from LIDAR is  insufficient  without  finding the 

relative  position  changes  when  comparing/rotating  already  found  clusters  before 

comparing  with  the  ones  in  the  previous  time.   Therefore,  the  IMU  (Inertial 

Measurement Unit) is used to calculate the acceleration and rotation of the observer. 

Especially when counting the cumulative error tolerance of the acceleration, Odometer 

data  is  needed which  is  used  in  particular  with  the  IMU data  in  the  Particle  Filter 

Algorithm.  Knowing that the Odometer data gives the rotation changes in a given time 

interval, a more accurate result is obtained when it is in use with the IMU data.  GPS 

data is also added to the Particle Filter Algorithm to help reducing the cumulative error 

tolerance of the IMU.

The figure 2.17. represents the entire data flow of the system:
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Fig. 2.17. Entire system data flow



 3 .   Fusion and Detection Methodology

 3.1 .   General Concept

The whole object detection and tracking implementation is done by 6 general steps as 

follows:

1- Getting LIDAR returns,

2- Detecting clusters from LIDAR returns,

3- Normalizing existing clusters with IMU, Odometer and GPS data, 

4- Implementation of the Particle Filter Algorithm,

5- Comparison and identification of clusters

6- Repeat steps 1-5 until the end of program execution

Before the clustering period, some environment variables must be sent, according to the 

type of object, to track distance, possible movement and object structure.  The main 

environment variables are minimum range,  maximum range,  minimum length of the 

cluster,  maximum  length  between  two  points  in  a  cluster  and  maximum  possible 

displacement of the cluster's centroid.

Each step of the algorithm is explained in the following section of the thesis.

 3.2 .   Getting LIDAR Returns

The whole operation starts with receiving the data from LIDAR.  The data is a subset of 

the  distance  and the  angle,  which  gives  us  the  relative  position  of  the  points  from 

LIDAR’s position.  Having received the data set for all points, we first filter the points  

by  considering  the  minimum  and  maximum  distances  that  we  want  to  examine. 

Although the LMS-500 LIDAR generates data between -5º and 185º, we only use the 
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range between 0º and 180º, in order to not implicate the output of the application.  LMS 

500's resolution of the angular step width is a minimum of 0.168o; hence we will be in  

contact with 1,137 points in each LIDAR return, with a scanning frequency of 25 Hz. 

To decrease the CPU load, we will implement the clustering at 10 Hz.

 3.3 .   Detecting Clusters from LIDAR Returns

After receiving LIDAR returns, before doing the clustering,  LIDAR data subsets must 

be converted to a global coordinate system with the following equations where (0,0) is 

the position of LIDAR :

LIDAR data subset = d i ,i  (3.1)

x i=d i cos i  (3.2)

y i=d isin i  for i=1...N (3.3)

The clustering process starts with the decision of whether a point is in a point union 

(cluster) or not.  In doing so, the minimum cluster length, and the maximum length 

between  two  points  in  a  cluster  must  be  taken  into  account.   In  addition  to  these 

considerations,  there  must  also  be  a  minimum  tolerance  Mind 1 for  the  distance 

between two points in a cluster due to the fact that the distance and the angle resolution 

of LIDAR affect the possible minimum distance for the consecutive points.
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R1, R2  = Distance from LIDAR to P1 and P2 respectively

d 1 = Distance between P1 and P2

The minimum distance d 1  which is named as tolerance is calculated as follows:

LIDAR minimum angular resolution is:

Min=0.168 (3.4)

Mind 1=2 sin 0.084  (3.5)

If the distance from a point to any point in a cluster is less than or equal to the default  

tolerance  plus  the  maximum  possible  length  between  two  points  in  a  cluster,  the 

distance is  calculated as  d 1  in  Fig.  3.1.   This intermediate  point  is  added into the 

candidate  cluster  and  this  step  is  repeated  until  every  point  in  a  filtered  LIDAR 

measurement is processed.

After grouping points together as clusters, we calculate a centroid for all of the clusters 

by:

Fig. 3.1. Shows how the calculation is done for minimum 
possible  distance  between  two  consecutive  points  of 
LIDAR data
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C x=
∑ x i

N
  C y=

∑ y i

N
 for i=1....N (3.6)

In the third stage, each cluster is filtered by their length, which is found by calculating 

two points that are furthest away from each other in a cluster.  If the calculated distance 

is less than the threshold, the cluster is eliminated.

Last stage of the clustering is the joining of the clusters, which have centroids that are  

closer to each other than the threshold.  If the distance from the centroid of a cluster to 

another is less than the half of the maximum length between two points in a cluster, two 

clusters are combined.  The purpose of this stage is to eliminate the clusters which are 

very close to each other in order to not to adversely affect the cluster comparison and 

identification stage.

         

 3.4 .   Normalizing Existing Clusters with IMU and Odometer Data

In order to calculate relative movements of each cluster from time t to t+1, LIDAR's 

relative position must be known or predicted.  The relative position of LIDAR can be 

calculated by the use of the IMU (Inertial Measurement Unit), which gives the x,y,z 

accelerations and x,y,z yaw rates.  In our situation, we assume that there is no change in 

x and y yaw rates and we only take z yaw rate into account.  Due to the noticeable noise  

especially in the acceleration data, the Particle Filter Algorithm is integrated into the 

project,  which  requires  also  another  real  time  movement  data  in  our  system,  the 

Odometer and the GPS. The calculations are done in the Implementation of Particle 

Filter.

 3.5 .   Implementation of Particle Filter

Use of the Particle Filter Algorithm allows us to estimate recursively the displacement 

of the LIDAR’s position.  The main goal is to track a moving vehicle whose motion can  

be described as a dynamic system.  State and measurement model of the vehicle can be 

described as follows:
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x t=A x t−1B ut−1w t−1  (3.7)

z t=h x t−1et−1  (3.8)

where  x t , u t−1 , w t−1 , z t ,e t−1  denotes  the  state  vector,  measured  inputs,  faults, 

measurement vector and measurement error respectively. Tracking state is represented 

as vector x=[C x ,C y ,i]  where the three arguments present the centroid's coordinates, 

orientation and it's range, respectively. The vectors  u  is the wheel odomoter and  z  

represents the measurements of LIDAR and IMU sensors.

- Setting up the general system equation

x t1=Ax tButw t  (3.9)

where A and B are identity matrix and w t  is the noise.

x t1=x tutwt  (3.10)

where u t  is the value calculated from wheel odometer as follows:

u t=∫
t−1

t

RPM t∗Rtire∗
 (3.11)

where RPM t  is rounds per minute at time t  and Rtire  is the diameter of vehicle tire.

- Initialization of the particles x i  for i=1....N where N=1000

-  Translation  of  all  particles  by  using  IMU  z  yaw  rate  and  x,y  acceleration  (z 

acceleration  is  taken  into  account  while  calculating  x,y  acceleration  where  the 

environment is not flat)
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 xdep=∬
t

t1

a
 (3.12)

where a  is the acceleration data coming from IMU.

z t
i=x t−1

i  xdep  for i=1....N (3.13)

- A weight is calculated for each of the particles by the use of normal distribution as 

follows:

w t
i=w t−1

i p 〈 z t ∣x t i〉  for i=1....N (3.14)

- Weight normalization and position estimation is given by:

X estt =∑ w t
i x t

i
 (3.15)

Y est t =∑ w t
i yt

i  for i=1....N (3.16)

- An effectiveness value is calculated in every step to sustain the calculation accuracy:

N eff=
1

∑ w t
i2

 for i=1.....N (3.17)

If  N eff  < 0.25 then particles which have small weights are replaced with the bigger 

weights.

Every LIDAR return will be translated with the estimation obtained from the Particle 

Filter and rotated with the value received from the IMU, which has a great accuracy in 

comparison with the IMU acceleration data.
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 3.6 .   Comparison and Identification of Clusters

In order to match the cluster with the existing ones and decide which of them are the 

same as the previous ones, following actions need to be taken.  Firstly, a cluster array 

for a specified time interval is required.  This will help us to match a cluster which has 

just disappeared and then quickly reappeared.  In case there is not any cluster array, the 

matching becomes more and more inaccurate, keeping in mind the noise factor and the 

possibility of two different objects falling at the same LIDAR angle for a short period of 

time.  Besides, the distance between every cluster centroid and the ones in the history 

are checked by considering the maximum possible displacement in a second and the 

elapsed time between the formation of the compared clusters.  If it is found that the 

distance from the centroid of a new cluster to another cluster, taken from cluster array, is 

less than the maximum possible displacement, the corresponding cluster is added to a 

subset of clusters.  We repeat the same operation for every cluster in the cluster array 

and we take the one which minimizes the distance in this subset.  Once a cluster is 

matched  with  another,  all  the  clusters  with  the  same  IDs  as  the  matched  one  are 

eliminated from the cluster array, in order to prevent matching the same object with the 

same ID to more than one object.  If no cluster is found for matching, a newly generated 

incremental unique ID is given to the cluster.



 4 .   Experimental Results

 4.1 .   Test Conditions, Metrics and Summary

We  conducted  several  experiments  to  evaluate  our  implementation  in  different 

environments. SICK LMS-500 LIDAR is used for the tests.  The general test purpose is 

to check the accuracy of cluster detection in different environments.  Cluster centroids 

are the key factors of the tracking and need to be focused on in order to obtain better 

results.(Fig. 4.1.)

The  tests  show  in  summary  that  when  LIDAR is  mobile  the  tracking  accuracy  is 

decreased significantly.  The tracking accuracy is also decreased with increasing max 

range.  In tight areas, excessive number of clusters affects the tracking as seen when 

comparing the Table 4.1 and Table 4.3. It can be also detected from Table 4.3 and Table 

4.4. that detection accuracy is decreased while measurement time interval is increased 

Fig. 4.1. Shows a screen-shot from centroid changes of 4 different fixed objects after 70 
degree clockwise rotation of the Lidar.  IMU yaw rate data is used to rotate the existing 
cluster centroids.
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because of possible collisions of detected objects  and possible cumulative error and 

noise.  The best results are obtained with fixed LIDAR position,  minimum range and 

minimum measurement time interval. 

Table 4.1. Detection accuracy in summary for fixed positions of clusters and LIDAR 
scanner in 15 seconds interval.

LIDAR and Clusters have fixed positions (Time Interval 15 seconds)
Clusters

Max Range(mm) Observed Detected Successfully tracked Accuracy
1500 1 1 1 100,00%
5000 1 1 1 100,00%
10000 3 3 3 100,00%
30000 3 3 3 100,00%

Table 4.2. Detection accuracy in summary for fixed positions of clusters and LIDAR 
scanner in 30 seconds interval.

LIDAR and Clusters have fixed positions (Time Interval 30 seconds)
Clusters

Max Range(mm) Observed Detected Successfully tracked Accuracy
1500 1 1 1 100,00%
5000 1 1 1 100,00%
10000 3 3 3 100,00%
30000 3 3 2 66,60%

Table 4.3. Detection accuracy in summary for fixed LIDAR and dynamic Clusters in 15 
seconds interval.

LIDAR has fixed position, Clusters are mobile (Time Interval 15 seconds)
Clusters

Max Range(mm) Observed Detected Successfully tracked Accuracy
1500 4 4 3 75,00%
10000 4 4 3 75,00%
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30000 6 5 2 33,33%

Table 4.4. Detection accuracy in summary for fixed LIDAR and dynamic Clusters in 30 
seconds interval.

LIDAR has fixed position, Clusters are mobile (Time Interval 30 seconds)
Clusters

Max Range(mm) Observed Detected Successfully tracked Accuracy
1500 4 4 3 75,00%
10000 4 4 2 50,00%
30000 6 5 1 16,66%

Table 4.5. Detection accuracy in summary for mobile LIDAR and dynamic Clusters in 
15 seconds interval.

LIDAR and Clusters are mobile (Time Interval 15 seconds)
Clusters

Max Range(mm) Observed Detected Successfully tracked Accuracy
1500 3 3 2 66,66%
10000 6 5 3 50,00%
30000 6 5 1 16,66%

Table 4.6. Detection accuracy in summary for mobile LIDAR and dynamic Clusters in 
30 seconds interval.

LIDAR and Clusters are mobile (Time Interval 30 seconds)
Clusters

Max Range(mm) Observed Detected Successfully tracked Accuracy
1500 3 3 2 66,66%
10000 6 5 2 33,33%
30000 6 5 0 0,00%

To better evaluate test results, the performance of detection and tracking is calculated by 
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the following metrics:  Detection Rate,  Tracking Rate,  Range Detection Rate,  Range 

Tracking Rate, Time Detection Rate, Time Tracking Rate .

DR (Detection Rate)  is the rate of detected objects per total objects and is calculated as 

follows:

DR=detected objects
total objects  (4.1)

TR (Tracking Rate) is the rate of successfully tracked objects per detected objects and is 

calculated as follows:

TR= successfully tracked
detected objects  (4.2)

RDR  (Range  Detection  Rate)  is  the  rate  of  undetected  of  objects  per  mm  and  is 

calculated is as follows:

RDR= 1−DR
range mm  (4.3)

RTR (Range Tracking Rate) is the rate of untracked objects per mm and is calculated as 

follows:

RTR= 1−TR
range mm  (4.4)

TDR  (Time  Detection  Rate)  is  the  rate  of  undetected  objects  per  second  and  is 

calculated as follows:

TDR= 1−DR
elapsed time sec   (4.5)
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TTR (Time Tracking Rate) is the rate of untracked objects per sec and is calculated as 

follows:

TTR= 1−TR
elapsed time sec  (4.6)

 4.2 .   Tests

 4.2.1 .   Range Test

Range tests are applied for 30 seconds time interval with dynamic clusters and fixed 

LIDAR.

Table 4.7. Range Test

Max Range(mm)

Rates
DR TR RDR RTR

1500 1 1 0 0
10000 1 0.88 0 0.000012 
20000 0.9 0.72 0.000005 0.000014

In  range  tests,  increasing  RDR shows  that  rate  of  failed  detections  increases  with 

increasing  range  which  means  that  range  increases  possible  detection  error  rate. 

Increasing RTR shows that rate of failed trackings increases with time which means that 

with increasing range, tracking error rate becomes higher.

 4.2.2 .   Time Test

Time tests are applied in 10000 mm range with dynamic clusters and fixed LIDAR.
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Table 4.8. Time Test

Time(sec)

Rates
DR TR RDR RTR

30 1 0.88 0 0.0040 
60 0.97 0.83 0.00005 0.0028  
120 0.90 0.82 0.00083 0.0015 

In  time  tests,  increasing  TDR  shows  that  rate  of  failed  detections  increases  with 

increasing time which means that possible detection error rate is increasing with time. 

Decreasing TTR shows that rate of failed trackings decreases with time which means 

that possible tracking error rate becomes smaller.

 4.2.3 .   Test with Fixed LIDAR Position + Fixed Clusters

Two tests are done with fixed LIDAR and cluster position from different views and with 

different environment variables.

Environment variables used for the application are:

Min range: 22mm,

Max range: 12000mm,

Minimum cluster length: 800mm,

Max length between 2 points in a cluster: 90mm,

Max displacement: 50mm/sec
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Fig. 4.2. A camera view of a dynamic environment which will be analyzed with LIDAR 
and clustered

Fig. 4.3. Non-clustered view of Figure 4.2.
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For the second test in the same environment after changing LIDAR position, here are 

the environment variables used:

Min range: 22mm,

Max range: 12000mm,

Minimum cluster length: 1500mm,

Max length between 2 points in a cluster: 150mm,

Max displacement: 50mm/sec

Fig. 4.4. Clustered view of Figure 4.2.
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Fig. 4.5. A camera view of the second test from a dynamic environment

Fig. 4.6. Non-clustered view of Figure 4.5.
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Minimum cluster  length for  clustering LIDAR returns  for  a  car  must  adopt  the car 

dimensions while it is different when detecting walking humans.  In the case where we 

only want  to  filter  car-shaped  objects,  minimum cluster  length  must  be  larger  than 

1500mm taking into account the two most distant points in a car cluster.  Second test is 

done for detecting and tracking multiple walking humans.

 4.2.4 .   Test with Fixed LIDAR Position + Dynamic Clusters (Human)

Two tests are done with fixed LIDAR and moving humans.  First test is with a single 

walking human while the second is with two walking humans.  The main difference to 

detect a walking human from detecting a car is that while walking, length between legs 

are increased and this cause the need of increasing maximum length between 2 points in 

a cluster in comparison with car clustering.  Also, as the tracked objects don't have fixed 

positions,  their  maximum possible  displacement  must  be  as  higher  as  1500mm/sec. 

These  tests  are  done  especially  with  a  maximum  range  of  1500mm  to  check  the 

detection and tracking accuracy in tight areas.

The environment variables for this test are:

Fig. 4.7. Clustered view of Figure 4.5.
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Min range: 22mm,

Max range: 1500mm,

Minimum cluster length: 300mm,

Max length between 2 points in a cluster: 150mm,

Max displacement: 1500mm/sec

The following Fig. 4.8 and Fig. 4.9 are the outputs from an environment with single 

walking human:

Fig. 4.8. Clustered view of a moving human in a dynamic environment
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The second test is done with two humans.  Test is kept going for 30 seconds while two 

humans continue walking without colliding and every one in his area.  The humans are 

successfully clustered.  If the moving clusters fall into the 150 mm range from each 

other's centroid and keep their position fixed for more than a second, they are classified 

as one cluster and their ID is changed.  The results are shown in Fig. 4.10. and Fig. 4.11.

Fig. 4.9. Clustered view of a moving human after 2 seconds from screenshot time of 
Figure 4.8.
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Fig. 4.10. Clustered view of two moving humans

Fig. 4.11. Clustered view of two moving humans after 2 seconds from screenshot time 
of Figure 4.10.
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 4.2.5 .   Test with Fixed LIDAR Position + Dynamic Clusters (Car)

Another test is made with fixed LIDAR and a moving car as well as an immobile car in 

a dynamic environment.  First test is with a single walking human while the second is 

with  two  walking  humans.   Moving  car  has  a  dynamic  speed  between  0-10km/h. 

Environemental variables are given below:

Min range: 22mm,

Max range: 40000mm,

Minimum cluster length: 1000mm,

Max length between 2 points in a cluster: 500mm,

Max displacement: 2000mm/sec

Figures  4.12,  4.13,  4.14 and 4.15 show LIDAR detection output  as well  as  filtered 

clusters.  The tracking of a moving car is demonstrated  by the help of  camera images 

and can be distinguished with the unique ID 470 from LIDAR outputs.
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Fig. 4.12. Shows detection and tracking of test scene 1.
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Fig. 4.13. Shows detection and tracking of test scene 2.
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Fig. 4.14. Shows detection and tracking of test scene 3.
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 4.2.6 .   Second Test with Fixed LIDAR Position + Dynamic Clusters (Car)

Another test is made with fixed LIDAR and a moving car as well as an immobile car in 

a  dynamic  environment.   Moving  car  has  a  dynamic  speed  between  0-30km/h. 

Environemental variables are given below:

Fig. 4.15. Shows detection and tracking of test scene 4.
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Min range: 22mm,

Max range: 40000mm,

Minimum cluster length: 800mm,

Max length between 2 points in a cluster: 500mm,

Max displacement: 2000mm/sec

Figures between 4.16 – 4.23 show LIDAR detection output as well as filtered clusters. 

The tracking of a moving car is demonstrated  by the help of  camera images and can be 

distinguished with the unique ID 11 from LIDAR outputs. 

Fig. 4.16. Shows detection and tracking of test 2 scene 1.
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Fig. 4.17. Shows occlusion between cars with ID 29 and 11 of test 2 scene 2.
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Fig. 4.18. Shows occlusion between cars with ID 29 and 11 of test 2 scene 3.
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Fig. 4.19. Shows occlusion between cars with ID 29 and 11 of test 2 scene 4.
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Fig. 4.20. Shows occlusion between cars with ID 29 and 11 of test 2 scene 5.
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Fig. 4.21. Shows occlusion between cars with ID 29 and 11 of test 2 scene 6.
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Fig. 4.22. Shows occlusion between cars with ID 29 and 11 of test 2 scene 7.
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 4.2.7 .   Test with IMU, Odometer, GPS and Particle Filter

As the use of IMU is necessary for tracking clusters with dynamic LIDAR position, 

several tests are done.  Especially the use of Particle Filter combined with Odometer 

and GPS has noticeable effect when correcting IMU acceleration rates.  As it can be 

seen in Fig. 4.24., there is a graph of dynamic LIDAR position, which is accelerated and 

then stopped suddenly.  Although the velocity is zero after stopping, without the use of 

Particle Filter, Odometer and GPS, the data from IMU has lot of noise even though bias 

values are correctly calculated.

Fig. 4.23. Shows occlusion between cars with ID 29 and 11 of test 2 scene 8.
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Fig.  4.24.  Shows the Particle Filter effect to the velocity of a 
dynamic LIDAR.



 5 .   Application

 5.1 .   Overview

The  application  is  written  using  C#  using  Microsoft  Visual  Studio  2010.   Net 

Framework  3.5  must  be  installed  in  order  to  run  the  application.   Basically,  the 

application consists of four principal stages.  It is designed to be multi-threaded and 

non-blocking.  A different thread is used for each of the principal stages and the GUI 

thread.  The principal stages are as follows:

• LIDAR

• IMU

• ODOMETER

• GPS

 5.2 .   Detailed Description

 5.2.1 .   LIDAR Communication

LIDAR connection stage is used to  establish communication with LIDAR scanner.  As 

LIDAR scanner in our implementation communicates via the ethernet port, IP and Port 

of the device must be set before establishing the communication.  Data flow starts once 

the Start Capture is clicked.  Parameters can be set from the control panel on the left 

hand side.  On the right side, the effects of objects, clusters and Particle Filter on the 

clusters are shown in the LIDAR range.  The main parameters that can be set are :

1. Minimum LIDAR range in mm

2. Maximum LIDAR range in mm

3. Minimum Cluster  length  in  mm which is  a  calculated  distance  of  two most 

distant points of Cluster.
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4. Maximum length between two points in a cluster in mm

5. Maximum deplacement of Cluster centroid in mm/sec

6. Whether to show only Cluster or not

7. Whether  to  combine  Clusters  of  which  the  centroids  are  closer  than  the 

maximum length between two points in a cluster parameter.

8. Whether to filter clusters by the minimum cluster length or not

9. Whether to show Particle Filter’s effect on the clusters or not

10. Whether to show historical Particle Filter effect data or not

11. Whether to show historical centroid position data or not

 5.2.2 .   IMU Communication

IMU  connection  stage  is  used  to  communicate  with  the  IMU.   After  chosing  the 

corresponding COM port, the connection to the device occurs automatically.  Data flow 

starts once the Start Capture is clicked.  Before carrying out any calculations, first, the 

application attempts  to  compute  bias  values  which are then used for  more accurate 

acceleration, yaw rate and speed calculations.  X/Y/Z acceleration rates and X/Y/Z yaw 

rates are received from the IMU.  X/Y/Z speed rates are calculated by using acceleration 

and time values. 

Fig. 5.1. Shows the LIDAR control window of the software
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 5.2.3 .   Odometer Communication

ODOMETER connection stage is used to communicate with the Roboteq Odometer and 

Motor Controllers.  The connection is made after chosing the related COM port.  Data 

flow starts after clicking the Start Capture button.  In the command control panel, robot 

movements can be controlled.  On the right-hand side, the information shown includes 

left/right  motor  rotations,  left/right  motor  speeds,  total  distance  covered  and  robot 

general status.

Fig. 5.2. Shows the IMU control window of the software
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 5.2.4 .   GPS Communication

GPS connection stage is used to communicate with the GPS device.  After the COM 

port  of  the  device  is  selected,  data  flow  begins  automatically.   Location,  antenna 

altitude,  Geoidal  separation,  Velocity and communicated satellites  are  shown on the 

right of the information panel.  

Fig. 5.3. Shows the Odometer control window of the software

Fig. 5.4. Shows the GPS control window of the software



 6 .   Performance Analysis

Software performance tests are done in 3 stages including CPU sampling by monitoring 

CPU usage of the software as well as usage of different cores, memory allocation by 

tracking managed memory allocation and concurrency by detecting threads which are 

waiting  for  other  threads.   The  tests  are  applied  in  a  computer  with  the  following 

hardware specifications:

- Intel Core 2 Duo CPU 2.8 GHz 

- 4 GB DDR2 Ram

Visual Studio 2010 analyzer tool is used for performing tests.

 6.1 .   CPU Sampling

CPU sampling tests are done especially to detect CPU usage with and without Particle 

Filter.  Methods that are most expensive for the CPU are also analysed to reduce the 

time spent by optimizing them.  Fig.6.1 and Fig.6.2 show the CPU usage of the software 

with and without Particle Filter.  It can be inferred that the average CPU usage with 

Particle Filter is greater than the average CPU usage without Particle Filter.
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Besides, %48 of the total CPU usage without Particle Filter is occupied by a function 

that gets points from Lidar and then match with the previous points in order to identify 

each cluster.  This is the most expensive operation of all methods.  It contains methods 

to detect clusters, compare clusters and rotate/translate each point by receiving data 

from IMU.  In fact, by analyzing the CPU usage of these sub methods, it can be clearly 

seen that the most expensive sub method is the cluster detection stage with %37 of the 

entire CPU usage.  While the cluster comparison method takes %4.18, 

translation/rotation stage takes only %0.06. A considerable amount of time is also spent 

to receive data from LIDAR which is up to %4.38.

Fig. 6.1. Shows CPU usage of the software without Particle Filter
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 6.2 .   Tracking Memory Allocation

Memory allocation tracking is done in two consecutive tests to compute the average 

memory allocation of the software and also to compare memory allocations with and 

without Particle Filter. After 33 seconds of usage, 182,925,776 total bytes are allocated 

by the software while Particle Filter is not in use.  However, this allocation amount is 

increased to 225,471,309 total bytes with Particle Filter.  When analyzing functions that 

allocate most memory, the first place is taken by a generic list which stores cluster 

histories with %25.21 of the total bytes used.  Furthermore binary reading operations 

take %18.73 of the allocated memory and can be reduced with optimization.  Memory 

allocation of Particle Filter algorithm is up to %7.50 when is in use.

 6.3 .   Concurrency

It is possible that the computer may be simultaneously serving thousands of clients with 

thousands of processes in execution.  In such a scenario, it is possible that the CPU may 

enter into a dead-lock situation.  Dead-lock is a situation on a computer when one 

process (say A) locks a dedicated resource (say X) and waits for another dedicated 

resource (say Y) locked by another process (say B) which is looking for the resource 

Fig. 6.2. Shows CPU usage of the software with Particle Filter
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(X) locked by the first process (A) rendering both the processes in an infinite wait for 

the non-available resource.  Handling such situations is referred to as concurrency 

control in software development circles.  There are many methods for handling 

concurrency but these situations cannot be detected by normal functional testing. This 

issue needs to be detected using the concurrent testing. 

Analyzing the concurrency tests, no dead-lock is detected as the software is coded 

entirely to be non-blocking.  Average CPU utilization by the software is %30 of the 

entire CPU. %79 of this CPU time is spent in synchronization while Execution takes %6 

and UI Processing %5.  In Fig.6.5., it can be clearly seen that there is not any blocking 

thread that comes forward.  Despite disadvantages of a blocking software, a blocking 

design could have also been adopted for that project due to the fact that much more 

effort needs to be shown during data capture from different hardware devices such as 

LIDAR and IMU which generally are working with different frequencies.  In fact, to 

synchronize them easily and with a less effort, a blocking design could be developed, 

although, the results of concurrency test would not be as good as non-blocking case.

Fig. 6.3. Shows per-thread summary
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Fig. 6.4. Shows the timeline profile

Fig. 6.5. Shows timeline for different worker threads as well as disk read/write.



 7 .   Conclusion

This  thesis  describes  a  distinct  approach  and  implementation  for  dynamic  object 

detection and tracking.  The key idea is to predict a cluster's possible trajectories, taking 

into account the relative position/rotation changes of the LIDAR scanner, utilizing the 

Particle Filter Algorithm.  We have the ability to detect and track objects in a specified 

range, especially with a good accuracy in a large environment, where clusters do not 

collide  with  each  other  and  do  not  fall  into  the  same  angle  at  the  same  time. 

Furthermore, objects that are needed to be tracked must be known in advance (whether 

they are cars, humans, etc.), since their maximum displacement in a given time interval 

should  be  calculated  and  their  approximate  shape  must  be  estimated,  in  order  to 

accurately predict their possible trajectories.   In summary, multiple dynamic clusters 

allow  us  to  detect  and  track  objects  despite  the  presence  of  changing  ranges  and 

different object types.  Future work can be mainly focused on:

− Extracting the algorithm with a specific  detection system for different  object 

types and implementing an edge detection system.

− Developing a new algorithm which will analyze the cluster's position changes 

and help calculating the position prediction of each cluster.

− Implementing more LIDARs to extract the view

− Integrating a camera which will help increasing the detection accuracy in fusion 

with LIDAR data 
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