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Abstract

Object detection and tracking problem has long been an important topic in the literature.
The importance of this subject continues to increase due to the advantages that object
detection and tracking provides especially for every day practical life and hence the
need for its pervasive use. There are numerous different types of object tracking and

various different tracking methods for each type of tracking.

This thesis presents a moving object detection and tracking system with a Particle Filter
algorithm. The goal is to build an infrastructure that will allow following an unknown

moving object in a region with numerous other dynamic objects.

Several components are used to determine objects; to estimate self-localization; and
match the determined objects in the next iteration with the previously determined
objects in order to tag each object with a particular identification. Specifically, LIDAR
is used to determine the objects, IMU(Inertial Measurement Unit) to estimate relative
translation and rotation, Odometer and GPS to help increase the accuracy of the self-

position that is calculated by the IMU.

The Particle Filter algorithm predicts self-position, utilizing the data received from both
the IMU, the Odometer and the GPS. Computational cost is also taken into account
during the clustering and matching stages. Performance and detection accuracy tests are
carried out using various sized objects, as well as different environmental settings in

order to conduct a comparison analysis for the gathered data.



Résumé

La détection et la poursuite des objets est I'un des problémes les plus connus dans la
littérature depuis longtemps. Surtout, dans la vie quotidienne, grace aux nombreux
avantages, l'utilisation des applications de détection et de poursuite des objets, est

devenue une quasi-nécessité aujourd’hui.

Cette thése se sert de 'algorithme de Filtre de Particules pour la détection et la poursuite
des objets dynamiques. Le but essentiel, est de préparer une infrastructure pour la
poursuite des objets qui entrent dans la vue de I'observateur et qui sont inconnus avant,

spécialement dans les environnements ou il y a plusieurs différents types d'objets.

Toujours restant sur la ligne du but essentiel, différents composants ont été pris en
compte pour la détection des objets, pour le calcul du déplacement de I'observateur et
pour la comparaison des objets détectés en temps t avec les objets détectés en temps t-1
afin de faire l'identification et donc la poursuite. LIDAR est utilisé pour trouver 1'angle
et la distance des objets par rapport a sa position. IMU (Inertial Measurement Unit) est
utilisé pour trouver la translation et la rotation de l'observateur par rapport a la position
précédente afin de pouvoir calculer les nouvelles positions des objets qui sont trouvés
en temps précédent acceptant qu'ils sont immobiles. Derni¢rement, Odometre et GPS
sont utilisés afin d'améliorer la précision de la position calculée de l'observateur et de

minimiser la faute de la translation qui sont trouvés par I'aide de IMU.

Les données regues par IMU, Odomeétre et GPS sont passées a l'algorithme de Filtre de
Particules, cette transition de données diminue la faute cumulative qui pourrait
apparaitre sans cet algorithme. Durant toutes ces procédures, l'utilisation de CPU et
temps d'opération total sont tenus en compte pendant les périodes de détection et de
l'identification. Il faut aussi clarifier que pour tester le systéme en entier, plusieurs
objets avec des types et des dimensions différents sont utilisés et que tous ces résultats

ont été comparés les uns aux autres.



Ozet

Nesne tespiti ve takibi literatiirde wuzun zamandir arastirma konusu olan
problemlerdendir. Ozellikle giindelik hayatta, nesnelerin tespit ve takip edilmesinin
sagladigi bircok avantaj oldugundan, kullanimina ¢ok yaygin sekilde ihtiyag
duyulmakta bu da konunun 6nemini iyiden iyiye arttirmaktadir. Nesne takibi i¢in ¢esitli
takip tiirleri mevcut olup, her takip tiirtine gore kullanilacak takip yontemleri farklilik

gostermektedir.

Bu tez Pargacik Filtrelemesi Algoritmasi'ndan yararlanarak hareketli nesnelerin tespit ve
takip edilmesini konu alir. Temel amag, hareketli bir¢ok farkli nesnenin oldugu
ortamlarda goriis alanina giren ve daha Onceden taninmayan nesnelerin takip

edilebilmesi i¢in bir altyap1 hazirlamaktir.

Temel amag¢ dogrultusunda nesnelerin tespiti, gozlemcinin konum degisiminin
hesaplanmas1 ve sonraki adimda tespit edilen nesnelerin bir dnceki adimda tespit
edilenlerle karsilastirilarak yapilacak takibi i¢in ¢esitli donanimlar kullanilmistir.
Detaylandirmak gerekirse, LIDAR, nesnelerin goézlemciye gore pozisyonunun
hesaplanmasi, dolayisiyla nesnelerin tespiti i¢in kullanilirken, IMU (Inertial
Measurement Unit) gozlemcinin bir onceki pozisyona gore olan rotasyon ve
translasyonunun hesaplanmasi amaciyla kullanilir. Son olarak Odometre ve GPS
kullanilarak, IMU yardimiyla hesaplanan translasyondaki hatanin minimize edilmesi ve

gbzlemcinin yer degisiminin daha keskin sekilde hesaplanmasi hedeflenmistir.

IMU, Odometre ve GPS'den alinan veriler Parcacik Filtresi Algoritmasi'na sokulmakta
ve bu sayede filtre kullanilmadig: taktirde ortaya c¢ikacak olan toplamsal hata en aza
indirgenmektedir. Tim bunlarin yaninda nesnelerin tespiti ve eslenmesi sirasinda
uygulama tarafindan kullanilan iglemci giicli, islem zamani gibi veriler de dikkate
almmustir. Son olarak c¢esitli biiytlikliik ve tipteki nesneler kullanilarak farkli ¢cevrelerde

testler yapilmis ve sonuglar birbirleriyle karsilagtirilmigtir.



1. Introduction

Object detection and moving object tracking have captured the attention of researchers
for many years. Besides its broad application, object detection is often used in
autonomous intelligent robots, monitoring and surveillance services, smart rooms,
vehicle tracking and biomedical image analysis. Nevertheless, it is difficult to
identify/classify objects in environments that are comprised of a large number of
moving or colliding agents. It is still a challenging problem to detect and track dynamic
objects, in particular for the locations with numerous pedestrians; yet there have been

significant improvements.

In the past, many object detection systems were developed. Most of them use digital
cameras or imaging techniques with 2D/3D image models for modeling the clusters to
increase the detection accuracy. The second approach takes into consideration the use
of laser imaging detection which is an optical remote sending technology. It is mainly
used to measure the distance to targets by illuminating the target with laser light and
then analyzing the reflected light for which the range can vary from 22mm to
305meters. However, the accuracy of the device is negatively correlated with the

distance. This thesis is based on the latter approach.

In a more detailed outlook, object tracking has become an important issue for the field
of computer vision. With the evolution of computers, many algorithms have been
developed to identify objects’ movements. As the number of these algorithms
increased, navigation systems, tracking systems and surveillance systems have become
extremely common. For example, people can be tracked for security purposes, such as
at pedestrian crossing zones, using particular object tracking tools and algorithms.
Similarly, car tracking systems can be developed to keep a secure distance between two

cars with the use of aforementioned techniques.

The current difficulty in this area is the insufficiency of data in tracking particular



objects. This is due to the fact that a single device is not capable of collecting the
adequate data required to make accurate detections and approximations. Hence, fusion
of measurement devices and combination of their data are required key factors (Durrant-
Whyte, 2006). The aim here is to provide better detections, positions, clustering and
predictions (Tamas & Lazea, 2010).

Commonly, to detect, identify and track objects, camera and video based systems are
used because the shape, color and movement can be really characteristic and can be
used to distinguish particular objects. Tracking systems are used for security
surveillance systems for banks, stores etc. Using cameras, the whole area can be
observed, and after a movement, objects like humans can be distinguished, following
the application of several algorithms and functions, and detection of several threats. For
example, in (Shan et al., 2007), hand control interface for a robotic wheelchair is
developed using several video based devices and algorithms, which can be used to

develop people motion detection.

Besides camera-video based systems, laser scanners like LIDAR (Light Detection and
Ranging or Laser Imaging Detection and Ranging) can also be used in tracking systems,
as in this dissertation. LIDAR can measure the distance to targets by sending laser light
to targets by measuring reflected light duration.

In this thesis, 2D-LIDAR is used, but there is also a 3D-LIDAR to detect objects in 3
dimensions. 3D-LIDAR, can also analyze objects by their shape, height and width.
Like in (Lee et al., 2010), marine environments are detected and can be tracked using a

3D-LIDAR.

Using LIDAR, Adapted Cruise Control system is implemented into a vehicle using
IBEO LUX LIDAR and Monocular Monochrome Camera to observe a vehicle in front
of a particular vehicle, and by controlling the brakes, several security reasons can be
handled for driver assistance.(Weigel et al., 2009) Overall, there are numerous devices
that can be used to accomplish tracking and various examples of object detection

systems that can be seen in urban life.



Many studies have been conducted to detect and track objects. Some of these works are
based on the LIDAR scanner whereas others are done with a camera. Vision systems
are commonly used for object detection, without the use of a LIDAR like in (Franke &
Heinrich, 2002). Visual object detection and tracking methods are generally based on a
simple segmentation procedure such as the temporal difference of background analysis
(Toth & Aach, 2003), while on the contrary, background changes affect these
approaches adversely because of the camera motion. There are also some examples of
the use of vision systems in combination with LIDAR like in (Neira et al., 1999;
Premebida et al., 2007). In (Premebida et al., 2007) Camera and LIDAR are used

separately and then the results are combined together with the Bayesian Filter approach.

In detection and tracking, the general focus area is the tracking of pedestrians as in
(Broggi et al., 2000; Oren et al., 2000; Sotelo et al. 2006). But vehicle tracking is also
one of the popular subjects as in (Fortin et al., 2012). Also, as it is stated in (Premebida
et al., 2007), there are several approaches to track vehicles and pedestrians at the same

time.

Some approaches like (Gao & Coifman, 2006) only focus on vehicle detection on the
road. The method presented in (Gao & Coifman, 2006) is based on the detection of
road boundaries. The aim here is to classify cars and road boundaries with the help of
image processing techniques without the requirement of a digital map. This approach
does not cover any cluster identification, but is used for distinguishing between a non-

vehicle cluster and a vehicle-cluster, if they are both present on the road.

There are various different methods that are used for cluster tracking. The most
common use is that the calculations are based on center of gravity position of clusters,
as in (Yu et al., 2008) and objects are tracked by watching the changes of position of
their center of gravity. Differently in (Fortin et al., 2012), instead of the center of
gravity approach; clusters are tracked by their line segments and the chosen modeling.
The disadvantage of approach is that a model must be chosen and analysed prior to

implementing any detection or tracking.



Detection and tracking can be carried out in different circumstances where LIDAR can
be mobile or objects can be mobile (Fortin et al., 2012) or LIDAR and objects can be
mobile at the same time (Yu et al., 2008). In proposed papers, the approaches generally
use a LIDAR on a fixed position while the objects are mobile. Our approach is quite
similar with (Yu et al., 2008) in terms of the general concept; but in (Yu et al., 2008), k-
nearest neighbors method is used for clustering where we introduce a new clustering

algorithm for the clustering stage.

Particle Filter algorithm is commonly used in detection and tracking at different stages.
In (Fortin et al., 2012), Particle Filter algorithm is used for the detection of a line
segment in scanning laser range data, however, in (Yu et al., 2008), it is used in the

tracking stage for attaining the movement condition of the objects.

Yet, it is decided that the main objective of this thesis requires a 2D-LIDAR, an IMU
(Inertial Measurement Unit) and an Odometer running within a Particle Filter
Algorithm. A 2D-LIDAR is sufficient in detection of moving objects in 3D space with
the application of a good clustering and a good prediction of the cluster movement.

Thus, the additional video-based system will not be given a role in our implementation.

The main difference between the approach of this thesis and the other approaches in
literature is that there is not any calculation with any vision based system in this thesis,
however, after examining approaches which does not use any vision based system like
in this thesis, it can be clearly said that this thesis approach differ from other approaches
mainly on clustering algorithm. Besides, the ability of tracking totally different type of
objects without the need of modifying the general algorithm or modelling the shapes of
objects to track, is another important difference of this thesis approach. Furthermore,
compared to others, a new algorithm is implemented in this thesis approach to handle
situations which require dynamic LIDAR positioning. In fact, each of the main
differences mentioned in this paragraph can be found in several approaches seperately,
but this thesis apprach combines all of these differences. However, because of the
difficulty to not only focus on a unique type of object but also on other different objects,

this thesis approach can be supported with a vision-based sensor especially to increase



detection and tracking accuracy in situations with changing LIDAR position.

The motivation for considering yet another object detection and tracking method comes
from the possibility to extend the current used algorithms with a self-developed
algorithm and to build a robot which is controlled by our own implementation. There
are many methods for clustering and object tracking, and the difference between each
method can be ascribed to the LIDAR-IMU-Odometer data fusion and various
clustering algorithm implementations. Also, CPU load caused by each algorithm is

distinct and therefore a subject that needs more attention from researchers.

The rest of this thesis is organized as follows. In section II, common usage of object
detection and tracking will be analyzed. In section III, related works on object detection
and tracking will be briefly described within the literature review. In section II, the
principles of the thesis approach will be described and the system design will be
reviewed. Section III will explain the implementation of the approach and detailed
algorithm including fusion and detection methodology. In section IV, experimental
results will be analyzed in detail. Software overview and performance analysis will be
presented in sections V and VI respectively. In the final section, conclusions will be

drawn and possible directions for future work will be proposed.



2. System Design and Approach

2.1. System Design

The main hardware components that will be presented in this section are chosen upon
their usability, object detection accuracy and self-position estimation accuracy. Taking
into consideration possibility of being in different external environments, movement
detection problems and necessity of data fusion from different components, the

following components are chosen:

— SICK LIDAR LMS -500

— Crossbow Technology IMU440CA-200

— Roboteq AX 1500 Motor Controller & Odometer
— SiRFstarlll GPS Receiver

Owing to fusion of data coming from both IMU and GPS receiver, it's targeted that
LIDAR's self-position accuracy will increase. Not only is LIDAR's self-position
estimated with the data coming from IMU and GPS, but also with the odometer data
which is another important component mainly used for self-position estimation with the
aid of calculated distance from rotation numbers of tires and tire perimeter. By the way,
the most important component of all is LIDAR without doubt since the data coming
from LIDAR is used as a basis for all components. In fact, the data received from
LIDAR is first processed in the clustering stage and then used in fusion with the data
received from IMU, GPS and Odometer. Each of the component described in this

paragraph will be presented in detail in the incoming stages.



2.1.1. SICK LIDAR LMS -500

2.1.1.1. Whatis LIDAR?

Lidar stands for Light Detection and Ranging and is very similar to the better known
Radar. LIDAR is a better choice than radar, because it has a greater ability to reflect
images, making more objects visible. LIDAR uses waves ten to one hundred thousand
times shorter than radar waves, which means that it is able to collect much more data.
LIDAR is an optical remote sensing technology that can measure the distance to, or
other properties of a target by illuminating the target with light, often using pulses from
a laser. LIDAR technology has a wide range of applications. The short form LADAR
(Laser Detection and Ranging) is often used in military contexts. The term "laser radar"
is sometimes used even though LIDAR does not employ microwaves or radio waves
and is not therefore in reality related to radar. LIDAR uses ultraviolet, visible, or near
infrared light to image objects and can be used with a wide range of targets, including
non-metallic objects, rocks, rain, chemical compounds, aerosols, clouds and even single
molecules. A narrow laser beam can be used to map physical features with very high
resolution. LIDAR has been used extensively for atmospheric research and
meteorology. Downward-looking LIDAR instruments fitted to aircraft and satellites are
used for surveying and mapping. A recent example is the NASA Experimental
Advanced Research Lidar. Wavelengths in a range from about 10 micrometers to the

UV are used to suit the target. Typically light is reflected via backscattering.

2.1.1.2 . General/Technical Description

In the following section, there is some technical information about LIDAR and it's
architecture. Fig. 2.1. is a screenshot from front view of LIDAR LMS-500.



Fig. 2.1. LIDAR LMS-500

Table 2.1. LIDAR LMS-500 Technical Details

Features

Model: LMS-500

Field of application: Indoor

Version: Mid Range
Variant: PRO

Resolution power: High Resolution

Light source:

Infrared (905 nm)

Laser class:

1 (IEC 60825-1 (2007-6)), eye-safe

Field of view:

190 °

Scanning frequency:

25Hz/35Hz/50Hz/75Hz/ 100 Hz

Angular resolution: 0.167°
0.25°
0.333°
0.5°
0.667 °
1 o

Operating range: Om... 80 m

Max. range with 10 % reflectivity: 26 m

Spot size: 4.7 mrad

Amount of evaluated echoes: 5




Fog correction:

No

Performance

Response time:

Detectable object shape:

Systematic error 1):

+25mm (1 m... 10 m)
+35mm (10 m ... 20 m)

Statistical error 2):

+7mm (1l m... 10 m)
+9mm (10 m ... 20 m)

Integrated application:

Field evaluation

Number of field sets: 10 fields
Simultaneous processing cases: 10
Interfaces

Serial (RS-232, RS-422): YES
Function (Serial (RS-232, RS-422)): | Host

Data transmission rate (Serial (RS-232,
RS-422)):

9.6 kBaud ... 500 kBaud

Ethernet: YES

Function (Ethernet): Host

Data transmission rate (Ethernet): 10/100 Mbit
Protocol (Ethernet): TCP/1P, OPC
CAN bus: YES

Function (CAN bus): Outputs extension
PROFIBUS DP: -

PROFINET: -

DeviceNet: -

USB: YES

Function (USB): AUX

Data transmission rate (USB): 9.6 kBaud ... 500 kBaud
Remark (USB): Mini-USB
Switching inputs: 4 (Encoder)
Switching outputs: 6

Optical indicators:

5 LEDs (additional 7-segment display)
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Mechanics/electronics

Electrical connection:

1 system plug with screw terminal block

Operating voltage:

24V DC

Power consumption: 22W

Housing color: Light blue (RAL 5012)
Enclosure rating: IP 65

Protection class: I

Weight: 3.7kg

Dimensions: 160 mm x 155 mm x 185 mm
Ambient data

Object remission:

2 % ...> 1,000 % (reflectors)

Electromagnetic compatibility (EMC):

EN 61000-6-2:2005 / EN 61000-6-3 (2001-10)

Vibration resistance:

EN 60068-2-6 (1995-04)

Shock resistance:

EN 60068-2-27 (1993-03) / EN 60068-2-29
(1993-04)

Ambient operating temperature: 0°C...50°C
Storage temperature: -12°C ... 50°C
Ambient light safety: 70,000 1x

Used packet rate for LIDAR is 25 Hz in the application.

2.1.1.3. LIDAR Operating Principles

The LIDAR is an electro-optical laser measurement system that electro-sensitively

scans the perimeter of its surroundings in a plane with the aid of laser beams. The

LIDAR measures its surroundings in two-dimensional polar coordinates.

If a laser

beam is incident on an object, the position is determined in the form of distance and

direction.
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Fig. 2.2. Measuring principle of the LIDAR

Scanning takes place in a sector of 190°. The scanning range of the LIDAR used is
maximum 65 m (213.25 ft) on light, natural surfaces with an object remission > 100%

(e.g. a white house wall).

Distance measurement

The LIDAR emits pulsed laser beams using a laser diode. If such a laser pulse is
incident on an object or a person, it is reflected at its surface. The reflection is detected
in the laser

measurement system’s receiver using a photodiode.
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Fig. 2.3. Principle of operation for pulse propagation time measurement

The distance to the object is calculated from the propagation time that the light requires
from emission to reception of the reflection at the sensor. This principle of “pulse

propagation time measurement” is used by radar systems in a similar manner.

Direction Measurement

The emitted laser beams are deflected using a mirror and scan the surroundings in a
circular manner. The measurements are triggered at regular angular steps using an

angular encoder.

The LIDAR scans with a scanning frequency of 25, 35, 50, 75 or 100 Hz. During this
process, a laser pulse and therefore a measurement is triggered after an angular step of

0.167°,0.25°, 0.33°,0.5°, 0.66° or 1°.



Influences of object surfaces on the measurement

The signal received from a perfectly diffuse reflecting white surface corresponds to the
definition of a remission of 100%. As a result of this definition, the remissions for
surfaces

that reflect the light bundled (mirrored surfaces, reflectors), are more than 100%.

Fig. 2.4. Reflection of the laser beam at the surface of an object

The majority of surfaces reflect the laser beam diffusely in all directions. The reflection
of the laser beam will vary as a function of the surface structure and colour. Light
surfaces reflect the laser beam better than dark surfaces and can be detected by the
LIDAR over larger distances. Brilliant white plaster reflects approx. 100% of the
incident light, black foam rubber approx. 2.4%. On very rough surfaces, part of the
energy is lost due to shading. The scanning range of the LIDAR will be reduced as a

result.
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Fig. 2.5. Reflection angle

The reflection angle is the same as the angle of incidence. If the laser beam is incident
perpendicularly on a surface, the energy is optimally reflected (Fig. 2.4.). If the
beam is incident at an angle, a corresponding energy and scanning range loss is

incurred.

Fig. 2.6. Degree of reflection

If the reflected energy returned is over 100% the incident beam is not reflected diffusely
in all directions, but is reflected in a specific direction. As a result a large portion of the
energy emitted can be received by the laser distance measurement device. Plastic

reflectors (“cats’ eyes”), reflective tape and triple prisms have these properties.



Fig. 2.7. Mirror surfaces

At mirror surfaces the laser beam is almost entirely deflected. Instead of the surface of
the mirror, it is possible that the object on which the deflected laser beam is incident

may be detected.

Fig. 2.8. Object smaller than diameter of the laser beam

Objects that are smaller than the diameter of the laser beam cannot reflect all the energy
of the laser light. The energy in the portion of the laser light that is not
reflected is lost. This means that the scanning range is less than would be possible

theoretically based on the surface of the object.
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Scanning range of the LIDAR

The scanning range of the LIDAR is dependent on the remission of the objects to be
detected. The better a surface reflects the incident radiation, the greater the scanning

range of the LIDAR. The diagrams in Fig. 2.9. indicate the relationship between

remission and detectability.

B
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Fig. 2.9. Scanning range of the LIDAR as a function of the target remission

Up to a distance of 10 m (32.81 ft) the LIDAR can detect objects from 3% remission.

At a distance of 65 m (213.25 ft) objects are only detected if they have a remission >
100%.
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2.1.2. Crossbow Technology IMU440CA-200

2.1.2.1. Whatis IMU ( Inertial Measurement Unit) ?

The IMU is a single unit in the electronics module which collects angular velocity and
linear acceleration data which is sent to the main processor. The IMU housing actually
contains two separate sensors. The first sensor is the accelerometer triad. It generates
three analog signals describing the accelerations along each of its axes produced by,
and acting on the vehicle. Due to thruster system and physical limitations, the most
significant of these sensed accelerations is caused by gravity. The second sensor is the
angular rate sensor triad. It also outputs three analog signals. These signals describe
the vehicle angular rate about each of the sensor axes. Even though the IMU is not
located at the vehicle center of mass, the angular rate measurements are not effected by
linear or angular accelerations. The data from these sensors is collected by the IMU
6811 microprocessor through a 12 bit ADC board. The sensor information is then
returned to the main processor via a RS422 serial communications interface at a rate of

about 200 Hz.

The accelerometer triad, and angular rate sensors within the IMU are mounted such that
their sensor coordinate axes are not aligned with those of the vehicle. This is due to the
fact that the two sensors in the IMU are mounted in two different orientations in the
housing, along with the fact that the axes of the IMU are not aligned with the vehicle
axes.

The Figure 2.10. shows two pictures of the IMU, and depicts the direction of the axes
of each of the two sensors each with respect to the IMU housing.
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Accelerometer Angular Rate Sensor

Fig. 2.10. IMU accelerometer and angular axis directions

The IMU440 is offered in standard and high-range sensor configurations and it
combines highly-reliable gyros and accelerometers with high-speed DSP electronics to
provide a fully calibrated dynamic measurement system in a small and rugged
environmentally-sealed enclosure and, with output data also available in delta theta and
delta velocity format. It can also provide consistent performance in challenging

operating environments and is user-configurable for a wide variety of applications.

2.1.2.2 . General/Technical Specifications

Fig. 2.11. Crossbow IMU440CA-200
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Table 2.2. Crossbow IMU440CA-200 Technical Details

General Specifications

Gyro Range
In-Run Stability
Non-Linearity
Bandwidth
Accel Range
In-Run Stability
Non-Linearity
Bandwidth

Performance

Angulare Rate

Range: Roll, Pitch, Yaw (°/sec)
Bias Stability In-Run (°/hr)

Bias Stability Over Temp (°/sec)
Scale Factor Accuracy (%)
Non-Linearity (% FS)
Resolution (°/sec)

Angle Random Walk (°/~hr)
Bandwidth (Hz)

Acceleration

Input Range: X/Y/Z (g)

Bias Stability In-Run (mg)

Bias Stability Over Temp (mg)
Scale Factor Accuracy (%)
Non-Linearity (% FS)
Resolution (mg)

Velocity Random Walk (m/s/\hr)
Bandwith (Hz)

200
10

25

25

+ 200 (£ 400 option available)
<10

<0.2

<1

<0.5

<0.02

<4.5

25

+ 4 (£ 10 option available)
<1

<4

<1

<1

<0.5

<1.0

25



Specifications

Environment

Operating Temperature (°C)
Non-Operating Temperature (°C)

Enclosure

Electrical

Input Voltage (VDC)
Power Consumption (W)

Digital Interface

Physical

Size  (in)
(cm)
Weight (Ibs)

(kg)
Connector

20

-40 to +71
-55to +85
IP66 Compliant

9 to 42
<3
RS-232

3x3.75x2.50
7.62x9.53 x 6.43

<1.2

<0.55

DB15, D-sub 15-pin Male

Used packet rate for LIDAR is 25 Hz in the application.
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2.1.3. Roboteq AX 1500 Motor Controller & Odometer

Fig. 2.12. Roboteq AX1500 mainboard

Roboteq’s AX1500 controller is designed to convert commands received from a R/C
radio, Analog Joystick, wireless modem, or microcomputer into high voltage and high

current output for driving one or two DC motors.

The controller's two channels can either be operated independently or mixed to set the
direction and rotation of a vehicle by coordinating the motion on each side of the
vehicle. The motors may be operated in open or closed loop speed mode. Using low-

cost position sensors, they may also be set to operate as heavy-duty position servos.



Table 2.3. Roboteq AX1500 Technical Details

Technical Features

Power Stage

Operating Voltage
Number of Channels
Max Current

30s

Imin

3min

lh
Surge Current
MOSFETs per Channel
ON Resistance

Current Limiting

Synchronous Rectification

Temperature protection

Voltage protection

Power Wiring

Command

R/C Inputs

Serial Interface

Analog Interface

12V to 40V DC

2

30A 40A
25A 35A
20A 30A
20A 30A

>150A

4

10 mOhm

By automatic power output reduction
according to user preset limit and
temperature

Yes - Allows regenerative braking
Automated current limit reduction
starting at 800 C (1750 F) heat sink
temperature

Output shut off below 12V and above
43V

Terminal strip. AWG 12 max cable

2 + 1 accessories (1.0ms - 1.5ms center -
2ms, Adjustable)

RS232. 9600 bauds

2 inputs (0V - 2.5V center - 5V)



Input Corrections

Input/Outputs

Optical Encoder Interface
Analog Inputs

Digital Outputs

Digital Inputs

5V Supply Output
Operating Modes

Open Loop Speed

Closed Loop Speed

Position Mode

Controller Configuration

Phsyical

Operating Temperature
Enclosure

Controller size

Cables

Weight

23

Chl & Ch2 mixing for tank steering.
Programmable deadband. 4 Exponent &

Logarithmic command curves.

Yes

4 inputs, 8-bit resolution

1 output, 24V 1A max

up to 3 general purpose inputs

100mA max for Radio or other devices

Forward & Reverse Speed Control.
Separate or Mixed

Use Tachometer on analog inputs & PID
Use Potentiometer on analog inputs &
PID

Jumper-less using PC utility

-40 to +850C heat sink temperature
Unenclosed, board level

4.2" (106mm) wide x 4.2" (106mm) long
x 1.5" tall (38mm) tall including heat
sink

10" (25cm) RC cable to Radio. 4' (1m)
RS232 cable for PC connection

3 0z (85g)
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2.1.4 . SiRFstarlll GPS Receiver

2.1.4.1. Whatis GPS?

The Global Positioning System(GPS) is one of the key components of the project. GPS
is used to find absolute position and velocity. It is a satellite-based navigation system
made up of a network of 24 satellites placed into orbit by the U.S. Department of
Defense. GPS was originally intended for military applications, but in the 1980s, the
government made the system available for civilian use. GPS works in any weather
conditions, anywhere in the world, 24 hours a day. There are no subscription fees or

setup charges to use GPS.

GPS satellites circle the earth twice a day in a very precise orbit and transmit signal
information to earth. GPS receivers take this information and use triangulation to
calculate the user's exact location. Essentially, the GPS receiver compares the time a
signal was transmitted by a satellite with the time it was received. The time difference
tells the GPS receiver how far away the satellite is. Now, with distance measurements
from a few more satellites, the receiver can determine the user's position and display it
on the unit's electronic map. Today's GPS receivers are extremely accurate, thanks to

their parallel multi-channel design.

GPS satellites transmit two low power radio signals, designated L1 and L2. Civilian
GPS uses the L1 frequency of 1575.42 MHz in the UHF band. The signals travel by
line of sight, meaning they will pass through clouds, glass and plastic but will not go

through most solid objects such as buildings and mountains.

A GPS signal contains three different bits of information - a pseudorandom code,
ephemeris data and almanac data. The pseudorandom code is simply an [.D. code that
identifies which satellite is transmitting information. Ephemeris data, which is
constantly transmitted by each satellite, contains important information about the status
of the satellite (healthy or unhealthy), current date and time. This part of the signal is
essential for determining a position. The almanac data tells the GPS receiver where

each GPS satellite should be at any time throughout the day. Each satellite transmits
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almanac data showing the orbital information for that satellite and for every other

satellite in the system.

There are some factors that can degrade the GPS signal and thus affect accuracy include

the following:

1) Ionosphere and troposphere delays:
The satellite signal slows as it passes through the atmosphere. The GPS system uses a
built-in model that calculates an average amount of delay to partially correct for this

type of error.

2) Signal multipath:
This occurs when the GPS signal is reflected off objects such as tall buildings or large
rock surfaces before it reaches the receiver. This increases the travel time of the signal,

thereby causing errors.

3) Receiver clock errors:
A receiver's built-in clock is not as accurate as the atomic clocks onboard the GPS

satellites. Therefore, it may have very slight timing errors.

4) Orbital errors:
Also known as ephemeris errors, these are inaccuracies of the satellite's reported

location.

5) Number of satellites visible:

The more satellites a GPS receiver can "see," the better the accuracy. Buildings, terrain,
electronic interference, or sometimes even dense foliage can block signal reception,
causing position errors or possibly no position reading at all. GPS units typically will

not work indoors, underwater or underground.

6) Satellite geometry/shading:

This refers to the relative position of the satellites at any given time. Ideal satellite
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geometry exists when the satellites are located at wide angles relative to each other.

Poor geometry results when the satellites are located in a line or in a tight grouping.

7) Intentional degradation of the satellite signal:

Selective Availability (SA) is an intentional degradation of the signal once imposed by
the U.S. Department of Defense. SA was intended to prevent military adversaries from
using the highly accurate GPS signals. The government turned off SA in May 2000,

which significantly improved the accuracy of civilian GPS receivers.

2.1.4.2. General/Technical Details

Fig. 2.13. SiRFstarlll GPS Receiver



Table 2.4. SiRFstarlll GPS Receiver Technical Details

Technical Details

Horizontal Position Accuracy

Velocity Accuracy

Time To First Fix

Sensitivity

Receiver

System Integration

Power

Size

e Autonomous <2.5 m
* SBAS <2.0m

* Speed <0.01 m/s
* Heading <0.01

* Hot start - Autonomous <1 s

e Warm start - Autonomous <35 s

e Cold start - Autonomous <35 s

e With SiRInstantFix - as low as 5 s

* Autonomous acquisition -142 dBm
* Tracking -159 dBm

* Tracking - L1, CA Code
* Channels - up to 20
* Max update rate - 1 Hz

* Max altitude/velocity - <60,000 ft/<1,000
knots

* Protocol support - SiRF Binary, NMEA

 I/O Interface - UART

» External reference clock - 16.369 and 26
MHz

* RTC input - 32.768 kHz

» Continuous Autonomous operation - 62
mW
* TricklePower - 40 mW

10x 10 x 1.4 mm
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2.1.5. Entire System Overview

When the system is observed as a whole, one can find a metal platform, located at the
base of the system and attached to the wheels which allow movements, that carries all
the components involved. The IMU and the Odometer are placed on the interior part,
that is not visible in the photographs, of the metal platform; and just above this division
there exists 3 power supplies which are connected to all of the components in the
system. LIDAR is located at the top of the system and the GPS is placed in the open
area at the front of the system in order for it to establish connections with the satellites
in the most efficient and effective way. As the system does not incorporate any
embedded software, enough space is reserved at the front section of the system for the
computer from which the software will be run. The design of the system are shown in

the pictures below.

Fig. 2.14. A screen-shot of system
design from front view
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Fig. 2.15. A screen-shot of system design from
back view

Fig. 2.16. A screen-shot of IMU
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2.2. Main Steps

Out of numerous different options, in our approach, the main component used is LIDAR
because of the initial need to detect the union of points reflected from objects which are
then grouped together and named as a “cluster”, after applying different algorithms.
After receiving the reflected points which are received from LIDAR as a pair of degrees
(between -5 / 185 ) and distance, 3 main steps are performed in order to achieve a list of
most valuable clusters, assuming that the environment is urban, road-network based or

with many pedestrians:

1- Place each point in clusters to form a group of returns that are within a specified
distance from each other. If a point is not within the specified distance from a point in
the currently calculated cluster, then open a new cluster and place the point into the

newly opened cluster. Each cluster is assigned a unique ID.

2- Find a centroid for each cluster; calculate the distance between that centroid and each
cluster centroid. If the calculated distance is less than the threshold, get the combination

of these two clusters as they will form a single cluster.

3- Find the points which are most distant to each other for each cluster; calculate this
distance as an Euclidian distance; and eliminate the clusters which are less than the
threshold. Also, eliminating clusters which have less than a threshold number of points

can sometimes give more accurate results.

On the other hand, getting data from LIDAR and clustering the points are not sufficient
in terms of detecting dynamic objects when LIDAR's position is fixed. The movement
of each cluster must also be estimated considering the environment and nature of the
objects to be tracked. It is important to notice that we know nothing but the objects
returned by LIDAR. Thus, the result is not 100% accurate but the main goal is
achieving the maximum accuracy. With these considerations, a minimum-maximum
movement of a cluster's centroid in a particular time interval is calculated, giving us an

idea about the possible trajectory of an object. Afterwards, some time-related data
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about different clusters are obtained.

After the stage of object detection, object tracking must be performed in order to match
clusters in a time with the clusters in the previous time. To do that, each cluster found
in time t is compared with the clusters found in time t+1 by analyzing the centroid
displacement, the possible path of the object and the cluster's start-end angles. All of
these calculations are valid where the position of the LIDAR is fixed. Where LIDAR's
position is not fixed, the use of the IMU, Odometer and Particle Filter Algorithm is
obligatory. Use of GPS can be optional but it is also added to the system in order to

increase accuracy.

As stated above, the data received from LIDAR is insufficient without finding the
relative position changes when comparing/rotating already found clusters before
comparing with the ones in the previous time. Therefore, the IMU (Inertial
Measurement Unit) is used to calculate the acceleration and rotation of the observer.
Especially when counting the cumulative error tolerance of the acceleration, Odometer
data is needed which is used in particular with the IMU data in the Particle Filter
Algorithm. Knowing that the Odometer data gives the rotation changes in a given time
interval, a more accurate result is obtained when it is in use with the IMU data. GPS
data is also added to the Particle Filter Algorithm to help reducing the cumulative error

tolerance of the IMU.

The figure 2.17. represents the entire data flow of the system:
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Get Lidar Returns as distance and angle
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Convert Lidar Returns to positions relative
to Lidar Position
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Filter points by max and min distance

h 4

Detect clusters from filkered points

h

Filter clusters by length

y
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Translate and rotate centreid of each
cluster with IMU. Cdometer. GPS data

v

Calculate the possible displacement of
existing centroids with Max Displacement
variable

Does any newly calculated
centroid is in possible

displacement
range of existing centroid?

Find the closest of matched
centroids

A

Give ID of this cluster to
newly calculated one

Fig. 2.17. Entire system data flow

Y

Give a new ID to
newly calculated cluster




3. Fusion and Detection Methodology

3.1. General Concept

The whole object detection and tracking implementation is done by 6 general steps as

follows:

1- Getting LIDAR returns,

2- Detecting clusters from LIDAR returns,

3- Normalizing existing clusters with IMU, Odometer and GPS data,
4- Implementation of the Particle Filter Algorithm,

5- Comparison and identification of clusters

6- Repeat steps 1-5 until the end of program execution

Before the clustering period, some environment variables must be sent, according to the
type of object, to track distance, possible movement and object structure. The main
environment variables are minimum range, maximum range, minimum length of the
cluster, maximum length between two points in a cluster and maximum possible

displacement of the cluster's centroid.

Each step of the algorithm is explained in the following section of the thesis.

3.2. Getting LIDAR Returns

The whole operation starts with receiving the data from LIDAR. The data is a subset of
the distance and the angle, which gives us the relative position of the points from
LIDAR’s position. Having received the data set for all points, we first filter the points
by considering the minimum and maximum distances that we want to examine.

Although the LMS-500 LIDAR generates data between -5° and 185°, we only use the
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range between 0° and 180°, in order to not implicate the output of the application. LMS
500's resolution of the angular step width is a minimum of 0.1680; hence we will be in
contact with 1,137 points in each LIDAR return, with a scanning frequency of 25 Hz.

To decrease the CPU load, we will implement the clustering at 10 Hz.

3.3. Detecting Clusters from LIDAR Returns

After receiving LIDAR returns, before doing the clustering, LIDAR data subsets must
be converted to a global coordinate system with the following equations where (0,0) is

the position of LIDAR :

LIDAR data subset = (d,, &) (3.1
x,;=d cos(,) (3.2)
y,=d sin () fori=1..N (3.3)

The clustering process starts with the decision of whether a point is in a point union
(cluster) or not. In doing so, the minimum cluster length, and the maximum length
between two points in a cluster must be taken into account. In addition to these

Min(d,) for the distance

considerations, there must also be a minimum tolerance
between two points in a cluster due to the fact that the distance and the angle resolution

of LIDAR affect the possible minimum distance for the consecutive points.
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L
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Fig. 3.1. Shows how the calculation is done for minimum
possible distance between two consecutive points of
LIDAR data

R, R, =Distance from LIDAR to P1 and P2 respectively

d, = Distance between P1 and P2

The minimum distance @, which is named as tolerance is calculated as follows:

LIDAR minimum angular resolution is:

Min(x)=0.168 (3.4)

Min(d,)=2sin(0.084) (3.5)

If the distance from a point to any point in a cluster is less than or equal to the default
tolerance plus the maximum possible length between two points in a cluster, the
distance is calculated as d, in Fig. 3.1. This intermediate point is added into the
candidate cluster and this step is repeated until every point in a filtered LIDAR

measurement is processed.

After grouping points together as clusters, we calculate a centroid for all of the clusters

by:
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Cyzzx" C :% fori=1...N (3.6)

In the third stage, each cluster is filtered by their length, which is found by calculating
two points that are furthest away from each other in a cluster. If the calculated distance

is less than the threshold, the cluster is eliminated.

Last stage of the clustering is the joining of the clusters, which have centroids that are
closer to each other than the threshold. If the distance from the centroid of a cluster to
another is less than the half of the maximum length between two points in a cluster, two
clusters are combined. The purpose of this stage is to eliminate the clusters which are
very close to each other in order to not to adversely affect the cluster comparison and

identification stage.

3.4. Normalizing Existing Clusters with IMU and Odometer Data

In order to calculate relative movements of each cluster from time t to t+1, LIDAR's
relative position must be known or predicted. The relative position of LIDAR can be
calculated by the use of the IMU (Inertial Measurement Unit), which gives the x,y,z
accelerations and x,y,z yaw rates. In our situation, we assume that there is no change in
x and y yaw rates and we only take z yaw rate into account. Due to the noticeable noise
especially in the acceleration data, the Particle Filter Algorithm is integrated into the
project, which requires also another real time movement data in our system, the
Odometer and the GPS. The calculations are done in the Implementation of Particle

Filter.

3.5. Implementation of Particle Filter

Use of the Particle Filter Algorithm allows us to estimate recursively the displacement
of the LIDAR’s position. The main goal is to track a moving vehicle whose motion can
be described as a dynamic system. State and measurement model of the vehicle can be

described as follows:
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x,ZAxt_l+But_l+wt_1 (37)
Zt:h(xtfl)—i_ez—l (38)

where x,,u, ,,w, ,,z,,e,_;, denotes the state vector, measured inputs, faults,
measurement vector and measurement error respectively. Tracking state is represented
as vector x=[C_,C v «;] where the three arguments present the centroid's coordinates,
orientation and it's range, respectively. The vectors u is the wheel odomoter and z

represents the measurements of LIDAR and IMU sensors.
- Setting up the general system equation

X,y =Ax,+ Bu,+w, (3.9)

where A and B are identity matrix and w, is the noise.

X=X tu+w, (3.10)
where Y: is the value calculated from wheel odometer as follows:

t
ut: f 16]31\4t*letire*‘rr
1 (3.11)

where RPM , is rounds per minute at time ¢ and R, is the diameter of vehicle tire.
- Initialization of the particles x; for i=1....N where N=1000
- Translation of all particles by using IMU z yaw rate and x,y acceleration (z

acceleration is taken into account while calculating x,y acceleration where the

environment is not flat)
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t+1

Axdep:ffa
t

(3.12)
where a is the acceleration data coming from IMU.
z=x, ,+AXy, fori=1...N (3.13)

- A weight is calculated for each of the particles by the use of normal distribution as

follows:
w,=w,_, p(z(t)lx(2),) fori=1....N (3.14)
- Weight normalization and position estimation is given by:
X ()= wix, (3.15)
Yo ()=2, Wiy, fori=1..N (3.16)

- An effectiveness value is calculated in every step to sustain the calculation accuracy:

N, =—=—— fori=1....N (3.17)
g Wl

If N, < 0.25 then particles which have small weights are replaced with the bigger

weights.

Every LIDAR return will be translated with the estimation obtained from the Particle
Filter and rotated with the value received from the IMU, which has a great accuracy in

comparison with the IMU acceleration data.
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3.6 . Comparison and Identification of Clusters

In order to match the cluster with the existing ones and decide which of them are the
same as the previous ones, following actions need to be taken. Firstly, a cluster array
for a specified time interval is required. This will help us to match a cluster which has
just disappeared and then quickly reappeared. In case there is not any cluster array, the
matching becomes more and more inaccurate, keeping in mind the noise factor and the
possibility of two different objects falling at the same LIDAR angle for a short period of
time. Besides, the distance between every cluster centroid and the ones in the history
are checked by considering the maximum possible displacement in a second and the
elapsed time between the formation of the compared clusters. If it is found that the
distance from the centroid of a new cluster to another cluster, taken from cluster array, is
less than the maximum possible displacement, the corresponding cluster is added to a
subset of clusters. We repeat the same operation for every cluster in the cluster array
and we take the one which minimizes the distance in this subset. Once a cluster is
matched with another, all the clusters with the same IDs as the matched one are
eliminated from the cluster array, in order to prevent matching the same object with the
same ID to more than one object. If no cluster is found for matching, a newly generated

incremental unique ID is given to the cluster.



4. Experimental Results

4.1. Test Conditions, Metrics and Summary

We conducted several experiments to evaluate our implementation in different
environments. SICK LMS-500 LIDAR is used for the tests. The general test purpose is
to check the accuracy of cluster detection in different environments. Cluster centroids
are the key factors of the tracking and need to be focused on in order to obtain better

results.(Fig. 4.1.)
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Fig. 4.1. Shows a screen-shot from centroid changes of 4 different fixed objects after 70
degree clockwise rotation of the Lidar. IMU yaw rate data is used to rotate the existing
cluster centroids.

The tests show in summary that when LIDAR is mobile the tracking accuracy is
decreased significantly. The tracking accuracy is also decreased with increasing max
range. In tight areas, excessive number of clusters affects the tracking as seen when
comparing the Table 4.1 and Table 4.3. It can be also detected from Table 4.3 and Table

4.4. that detection accuracy is decreased while measurement time interval is increased
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because of possible collisions of detected objects and possible cumulative error and
noise. The best results are obtained with fixed LIDAR position, minimum range and

minimum measurement time interval.

Table 4.1. Detection accuracy in summary for fixed positions of clusters and LIDAR
scanner in 15 seconds interval.

LIDAR and Clusters have fixed positions (Time Interval 15 seconds)

Clusters
Max Range(mm) |Observed|Detected |Successfully tracked Accuracy
1500 1 1 1 100,00%
5000 1 1 1 100,00%
10000 3 3 3 100,00%
30000 3 3 3 100,00%

Table 4.2. Detection accuracy in summary for fixed positions of clusters and LIDAR
scanner in 30 seconds interval.

LIDAR and Clusters have fixed positions (Time Interval 30 seconds)

Clusters
Max Range(mm) |Observed |Detected |Successfully tracked Accuracy
1500 1 1 1 100,00%
5000 1 1 1 100,00%
10000 3 3 3 100,00%
30000 3 3 2 66,60%

Table 4.3. Detection accuracy in summary for fixed LIDAR and dynamic Clusters in 15
seconds interval.

LIDAR has fixed position, Clusters are mobile (Time Interval 15 seconds)
Clusters

Max Range(mm) |Observed |Detected Successfully tracked | Accuracy

1500 4 4 3 75,00%

10000 4 4 3 75,00%
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30000

33,33%

Table 4.4. Detection accuracy in summary for fixed LIDAR and dynamic Clusters in 30

seconds interval.

LIDAR has fixed position, Clusters are mobile (Time Interval 30 seconds)
Clusters

Max Range(mm) |Observed |Detected Successfully tracked | Accuracy

1500 4 4 3 75,00%

10000 4 4 2 50,00%

30000 6 5 1 16,66%

Table 4.5. Detection accuracy in summary for mobile LIDAR and dynamic Clusters in

15 seconds interval.

LIDAR and Clusters are mobile (7ime Interval 15 seconds)

Clusters
Max Range(mm) Observed |Detected |Successfully tracked |Accuracy
1500 3 3 2 66,66%
10000 6 5 3 50,00%
30000 6 5 1 16,66%

Table 4.6. Detection accuracy in summary for mobile LIDAR and dynamic Clusters in
30 seconds interval.

LIDAR and Clusters are mobile (7ime Interval 30 seconds)

Clusters
Max Range(mm) Observed |Detected |Successfully tracked |Accuracy
1500 3 3 2 66,66%
10000 6 5 2 33,33%
30000 6 5 0 0,00%

To better evaluate test results, the performance of detection and tracking is calculated by
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the following metrics: Detection Rate, Tracking Rate, Range Detection Rate, Range

Tracking Rate, Time Detection Rate, Time Tracking Rate .

DR (Detection Rate) is the rate of detected objects per total objects and is calculated as

follows:

_ detected objects
total objects (4.1)

TR (Tracking Rate) is the rate of successfully tracked objects per detected objects and is

calculated as follows:

_ successfully tracked
detected objects (4.2)

RDR (Range Detection Rate) is the rate of undetected of objects per mm and is

calculated is as follows:

RDR = _1=-DR
range (mm) (4.3)
RTR (Range Tracking Rate) is the rate of untracked objects per mm and is calculated as

follows:

RTR=—1ZTR
range(mm) (4.4)
TDR (Time Detection Rate) is the rate of undetected objects per second and is

calculated as follows:

TDR= 1= DR
elapsed time (sec) (4.5)
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TTR (Time Tracking Rate) is the rate of untracked objects per sec and is calculated as

follows:
TTR= L-TR
elapsed time( sec) (4.6)
4.2 . Tests

4.2.1. Range Test

Range tests are applied for 30 seconds time interval with dynamic clusters and fixed
LIDAR.

Table 4.7. Range Test

Rates
Max Range(mm) DR TR RDR RTR
1500 1 1 0 0
10000 1 0.88 0 0.000012
20000 0.9 0.72 0.000005 0.000014

In range tests, increasing RDR shows that rate of failed detections increases with
increasing range which means that range increases possible detection error rate.
Increasing RTR shows that rate of failed trackings increases with time which means that

with increasing range, tracking error rate becomes higher.

4.2.2 . Time Test

Time tests are applied in 10000 mm range with dynamic clusters and fixed LIDAR.
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Table 4.8. Time Test

Rates
Time(sec) DR TR RDR RTR
30 1 0.88 0 0.0040
60 0.97 0.83 0.00005 0.0028
120 0.90 0.82 0.00083 0.0015

In time tests, increasing TDR shows that rate of failed detections increases with
increasing time which means that possible detection error rate is increasing with time.
Decreasing TTR shows that rate of failed trackings decreases with time which means

that possible tracking error rate becomes smaller.

4.2.3. Test with Fixed LIDAR Position + Fixed Clusters

Two tests are done with fixed LIDAR and cluster position from different views and with

different environment variables.

Environment variables used for the application are:

Min range: 22mm,

Max range: 12000mm,

Minimum cluster length: 800mm,

Max length between 2 points in a cluster: 90mm,

Max displacement: S0mm/sec
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Fig. 4.2. A camera view of a dynamic environment which will be analyzed with LIDAR

and clustered
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Fig. 4.3. Non-clustered view of Figure 4.2.
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Fig. 4.4. Clustered view of Figure 4.2.

For the second test in the same environment after changing LIDAR position, here are

the environment variables used:

Min range: 22mm,

Max range: 12000mm,

Minimum cluster length: 1500mm,

Max length between 2 points in a cluster: 150mm,

Max displacement: 50mm/sec
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Fig. 4.5. A camera view of the second test from a dynamic environment
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Fig. 4.6. Non-clustered view of Figure 45.
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Fig. 4.7. Clustered view of Figure 4.5.

Minimum cluster length for clustering LIDAR returns for a car must adopt the car
dimensions while it is different when detecting walking humans. In the case where we
only want to filter car-shaped objects, minimum cluster length must be larger than
1500mm taking into account the two most distant points in a car cluster. Second test is

done for detecting and tracking multiple walking humans.

4.2.4. Test with Fixed LIDAR Position + Dynamic Clusters (Human)

Two tests are done with fixed LIDAR and moving humans. First test is with a single
walking human while the second is with two walking humans. The main difference to
detect a walking human from detecting a car is that while walking, length between legs
are increased and this cause the need of increasing maximum length between 2 points in
a cluster in comparison with car clustering. Also, as the tracked objects don't have fixed
positions, their maximum possible displacement must be as higher as 1500mm/sec.
These tests are done especially with a maximum range of 1500mm to check the

detection and tracking accuracy in tight areas.

The environment variables for this test are:
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Min range: 22mm,

Max range: 1500mm,

Minimum cluster length: 300mm,

Max length between 2 points in a cluster: 150mm,

Max displacement: 1500mm/sec

The following Fig. 4.8 and Fig. 4.9 are the outputs from an environment with single

walking human:
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Fig. 4.8. Clustered view of a moving human in a dynamic environment
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Fig. 4.9. Clustered view of a moving human after 2 seconds from screenshot time of
Figure 4.8.

The second test is done with two humans. Test is kept going for 30 seconds while two
humans continue walking without colliding and every one in his area. The humans are
successfully clustered. If the moving clusters fall into the 150 mm range from each
other's centroid and keep their position fixed for more than a second, they are classified

as one cluster and their ID is changed. The results are shown in Fig. 4.10. and Fig. 4.11.
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Fig. 4.10. Clustered view of two moving humans
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Fig. 4.11. Clustered view of two moving humans after 2 seconds from screenshot time
of Figure 4.10.
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4.2.5. Test with Fixed LIDAR Position + Dynamic Clusters (Car)

Another test is made with fixed LIDAR and a moving car as well as an immobile car in
a dynamic environment. First test is with a single walking human while the second is
with two walking humans. Moving car has a dynamic speed between 0-10km/h.

Environemental variables are given below:

Min range: 22mm,

Max range: 40000mm,

Minimum cluster length: 1000mm,

Max length between 2 points in a cluster: 500mm,

Max displacement: 2000mm/sec

Figures 4.12, 4.13, 4.14 and 4.15 show LIDAR detection output as well as filtered
clusters. The tracking of a moving car is demonstrated by the help of camera images

and can be distinguished with the unique ID 470 from LIDAR outputs.
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Fig. 4.12. Shows detection and tracking of test scene 1.
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Fig. 4.13. Shows detection and tracking of test scene 2.
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Fig. 4.14. Shows detection and trackingpof test scene 3.
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Fig. 4.15. Shows detection and tracking of test scene 4.

4.2.6 . Second Test with Fixed LIDAR Position + Dynamic Clusters (Car)

Another test is made with fixed LIDAR and a moving car as well as an immobile car in

a dynamic environment. Moving car has a dynamic speed between 0-30km/h.

Environemental variables are given below:
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Min range: 22mm,

Max range: 40000mm,

Minimum cluster length: 800mm,

Max length between 2 points in a cluster: 500mm,

Max displacement: 2000mm/sec

Figures between 4.16 — 4.23 show LIDAR detection output as well as filtered clusters.
The tracking of a moving car is demonstrated by the help of camera images and can be

distinguished with the unique ID 11 from LIDAR outputs.
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Fig. 4.16. Shows detection and tracking of test 2 scene 1.
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Fig. 4.17. Shows occlusion between cars with ID 29 and 11 of test 2 scene 2.
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Fig. 4.18. Shows occlusion between cars with ID 29 and 11 of test 2 scene 3.
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Fig. 4.19. Shows occlusion between cars with ID 29 and 11 of test 2 scene 4.
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Fig. 4.20. Shows occlusion between cars with ID 29 and 11 of test 2 scene 5.
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Fig. 4.21. Shows occlusion between cars with ID 29 and 11 of test 2 scene 6.
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Fig. 4.22. Shows occlusion between cars with ID 29 and 11 of test 2 scene 7.
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Fig. 4.23. Shows occlusion between cars with ID 29 and 11 of test 2 scene 8.

4.2.7 . Test with IMU, Odometer, GPS and Particle Filter

As the use of IMU is necessary for tracking clusters with dynamic LIDAR position,
several tests are done. Especially the use of Particle Filter combined with Odometer
and GPS has noticeable effect when correcting IMU acceleration rates. As it can be
seen in Fig. 4.24., there is a graph of dynamic LIDAR position, which is accelerated and
then stopped suddenly. Although the velocity is zero after stopping, without the use of
Particle Filter, Odometer and GPS, the data from IMU has lot of noise even though bias

values are correctly calculated.
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Fig. 4.24. Shows the Particle Filter effect to the velocity of a
dynamic LIDAR.



5. Application

5.1. Overview

The application is written using C# using Microsoft Visual Studio 2010. Net
Framework 3.5 must be installed in order to run the application. Basically, the
application consists of four principal stages. It is designed to be multi-threaded and
non-blocking. A different thread is used for each of the principal stages and the GUI

thread. The principal stages are as follows:

« LIDAR

« IMU

« ODOMETER
« GPS

5.2. Detailed Description

5.2.1. LIDAR Communication

LIDAR connection stage is used to establish communication with LIDAR scanner. As
LIDAR scanner in our implementation communicates via the ethernet port, IP and Port
of the device must be set before establishing the communication. Data flow starts once
the Start Capture is clicked. Parameters can be set from the control panel on the left
hand side. On the right side, the effects of objects, clusters and Particle Filter on the

clusters are shown in the LIDAR range. The main parameters that can be set are :

1. Minimum LIDAR range in mm
2. Maximum LIDAR range in mm
3. Minimum Cluster length in mm which is a calculated distance of two most

distant points of Cluster.
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Maximum length between two points in a cluster in mm
Maximum deplacement of Cluster centroid in mm/sec

Whether to show only Cluster or not

NS » ok

Whether to combine Clusters of which the centroids are closer than the
maximum length between two points in a cluster parameter.

8. Whether to filter clusters by the minimum cluster length or not

9. Whether to show Particle Filter’s effect on the clusters or not

10. Whether to show historical Particle Filter effect data or not

11. Whether to show historical centroid position data or not

o2 LidarConnect E=8|Ech

;LUDAR [IMu_ | oDOMETER [GPS |
Main Settings

Console Output
P 165.254.55.35

pot 2171 Lidar Range

7 i e [ B o

DISCONNECTED

Start Capture Stop Capture

Min Range(mm) 22 [T] Only Clusters

Join Cloge Clusters
Fitter Clusters By Length
[Z] Show Particles

[7] Show Old Patticles v
Max Deplacementimm/sec) 1000 [F] Show Centroid Changes /' \

Max Range(mm) 3000
Min Cluster Lengthimm) 200

Max Length In Clusterimm) 50

Zoom U %100

Fig. 5.1. Shows the LIDAR control window of the software

5.2.2. IMU Communication

IMU connection stage is used to communicate with the IMU. After chosing the
corresponding COM port, the connection to the device occurs automatically. Data flow
starts once the Start Capture is clicked. Before carrying out any calculations, first, the
application attempts to compute bias values which are then used for more accurate
acceleration, yaw rate and speed calculations. X/Y/Z acceleration rates and X/Y/Z yaw
rates are received from the IMU. X/Y/Z speed rates are calculated by using acceleration

and time values.
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Fig. 5.2. Shows the IMU control window of the software

5.2.3. Odometer Communication

ODOMETER connection stage is used to communicate with the Roboteq Odometer and
Motor Controllers. The connection is made after chosing the related COM port. Data
flow starts after clicking the Start Capture button. In the command control panel, robot
movements can be controlled. On the right-hand side, the information shown includes
left/right motor rotations, left/right motor speeds, total distance covered and robot

general status.



70

o' LidarConnect

=)=

[uDAR [y [[OBEWETER | Gps |

Main Settings

oM Port [comi =
[ Console Logging Disconnect

DISCONNECTED

Left Motor Rotation

Left Motor Speed

Right Motor Retation

Right Motor Speed
Start Capture Stop Capture
Total Distance Covered
Console Output
FORWARD
LEFT STOP RIGHT
BACKWARD

0mpm Status Stopped

Om/s

0mpm

Om/s

Om

Fig. 5.3. Shows the Odometer control window of the software

5.2.4. GPS Communication

GPS connection stage is used to communicate with the GPS device. After the COM

port of the device is selected, data flow begins automatically. Location, antenna

altitude, Geoidal separation, Velocity and communicated satellites are shown on the

right of the information panel.

o LidarConnect

LIDAR | IMU ODOMETER | GPS

Main Settings Foc UTC
Antenna altitude
CONNECTED

Geoidal ssparation:
Track'n'Speed
Extra info:

PRN: 29, Elevation: 66°, Azimuth: 037°, SNR: -01dB
PRN: 21, Elevation: 53°, Azimuth: 221°, SNR: -01dB
PRN: 25, Blevation: 43°, Azimuth: 1457, SNR: -01 dB
PRN: 31, Blevation: 34°, Azimuth: 257, SNR: -01 dB
PRN: 05, Elevation: 26°, Azimuth: 059°, SNR: -01dB
PRN: 12, Blevation: 11°, Azimuth: 138°, SNR: -01dB
PRN: 16, Bevation: 07", Azimuth: 3157, SNR: -01 dB
PRN: 18, Blevation: 06°, Azimuth: 177, SNR: -01 dB

NaN. M

0.00. M

Track fue/magnetic): NaN*/NaN*, Speed: NaN, Km/h (NaN, nk/h)
GPS Quality: Fix not availible, satelites in use: 0, HDOP: NaM, DRS: -1

Fig. 5.4. Shows the GPS control window of the software



6 . Performance Analysis

Software performance tests are done in 3 stages including CPU sampling by monitoring
CPU usage of the software as well as usage of different cores, memory allocation by
tracking managed memory allocation and concurrency by detecting threads which are
waiting for other threads. The tests are applied in a computer with the following

hardware specifications:

- Intel Core 2 Duo CPU 2.8 GHz
-4 GB DDR2 Ram

Visual Studio 2010 analyzer tool is used for performing tests.

6.1. CPU Sampling

CPU sampling tests are done especially to detect CPU usage with and without Particle
Filter. Methods that are most expensive for the CPU are also analysed to reduce the
time spent by optimizing them. Fig.6.1 and Fig.6.2 show the CPU usage of the software
with and without Particle Filter. It can be inferred that the average CPU usage with
Particle Filter is greater than the average CPU usage without Particle Filter.
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Fig. 6.1. Shows CPU usage of the software without Particle Filter

Besides, %48 of the total CPU usage without Particle Filter is occupied by a function
that gets points from Lidar and then match with the previous points in order to identify
each cluster. This is the most expensive operation of all methods. It contains methods
to detect clusters, compare clusters and rotate/translate each point by receiving data
from IMU. In fact, by analyzing the CPU usage of these sub methods, it can be clearly
seen that the most expensive sub method is the cluster detection stage with %37 of the
entire CPU usage. While the cluster comparison method takes %4.18,
translation/rotation stage takes only %0.06. A considerable amount of time is also spent

to receive data from LIDAR which is up to %4.38.
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Fig. 6.2. Shows CPU usage of the software with Particle Filter

6.2 . Tracking Memory Allocation

Memory allocation tracking is done in two consecutive tests to compute the average
memory allocation of the software and also to compare memory allocations with and
without Particle Filter. After 33 seconds of usage, 182,925,776 total bytes are allocated
by the software while Particle Filter is not in use. However, this allocation amount is
increased to 225,471,309 total bytes with Particle Filter. When analyzing functions that
allocate most memory, the first place is taken by a generic list which stores cluster
histories with %25.21 of the total bytes used. Furthermore binary reading operations
take %18.73 of the allocated memory and can be reduced with optimization. Memory

allocation of Particle Filter algorithm is up to %7.50 when is in use.

6.3. Concurrency

It is possible that the computer may be simultaneously serving thousands of clients with
thousands of processes in execution. In such a scenario, it is possible that the CPU may
enter into a dead-lock situation. Dead-lock is a situation on a computer when one
process (say A) locks a dedicated resource (say X) and waits for another dedicated

resource (say Y) locked by another process (say B) which is looking for the resource
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(X) locked by the first process (A) rendering both the processes in an infinite wait for
the non-available resource. Handling such situations is referred to as concurrency
control in software development circles. There are many methods for handling
concurrency but these situations cannot be detected by normal functional testing. This

issue needs to be detected using the concurrent testing.

Analyzing the concurrency tests, no dead-lock is detected as the software is coded
entirely to be non-blocking. Average CPU utilization by the software is %30 of the
entire CPU. %79 of this CPU time is spent in synchronization while Execution takes %6
and UI Processing %5. In Fig.6.5., it can be clearly seen that there is not any blocking
thread that comes forward. Despite disadvantages of a blocking software, a blocking
design could have also been adopted for that project due to the fact that much more
effort needs to be shown during data capture from different hardware devices such as
LIDAR and IMU which generally are working with different frequencies. In fact, to
synchronize them easily and with a less effort, a blocking design could be developed,

although, the results of concurrency test would not be as good as non-blocking case.

Time [ms|

(4] (e ) =t (] [Ea] [ ] o (5" (e ) [ea] (4] oo [t =t

o (£ ) =X = =t oo L [n ] [Ea ] [ ] L = — o

('] ™ I~ (4] [y Lo L (<] o [y (=] o [ [ ]

(e ) L - [ea] (=] — (e ) =5 (e ] [ea] [ea] [Ea] L [y]
Thread 1D

Fig. 6.3. Shows per-thread summary
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Fig. 6.4. Shows the timeline profile
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Fig. 6.5. Shows timeline for different worker threads as well as disk read/write.



7. Conclusion

This thesis describes a distinct approach and implementation for dynamic object
detection and tracking. The key idea is to predict a cluster's possible trajectories, taking
into account the relative position/rotation changes of the LIDAR scanner, utilizing the
Particle Filter Algorithm. We have the ability to detect and track objects in a specified
range, especially with a good accuracy in a large environment, where clusters do not
collide with each other and do not fall into the same angle at the same time.
Furthermore, objects that are needed to be tracked must be known in advance (whether
they are cars, humans, etc.), since their maximum displacement in a given time interval
should be calculated and their approximate shape must be estimated, in order to
accurately predict their possible trajectories. In summary, multiple dynamic clusters
allow us to detect and track objects despite the presence of changing ranges and

different object types. Future work can be mainly focused on:

— Extracting the algorithm with a specific detection system for different object
types and implementing an edge detection system.

— Developing a new algorithm which will analyze the cluster's position changes
and help calculating the position prediction of each cluster.

— Implementing more LIDARS to extract the view

— Integrating a camera which will help increasing the detection accuracy in fusion

with LIDAR data
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