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FOREWORD 

In this thesis, the accuracy of the material balance calculations due to errors in PVT 

data, production data and the ratio of the initial gas cap volume to the oil volume was 

investigated on a hypothetical gas cap reservoir which was constructed and simulated 

using 3D simulators. The effects of different parameters on the errors in the 

calculated Original Oil in Place values were examined by introducing systematic 

error to only one parameter while taking the others at their true value.  
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ERROR ANALYSIS ON THE PARAMETERS OF THE MATERIAL 

BALANCE EQUATIONS FOR A SYNTHETIC GAS CAP RESERVOIR 

SUMMARY 

Nowadays, for modeling reservoirs, the petroleum industry uses numerical 

simulators, which are basically multi-dimensional, multi-phase, dynamic material 

balance programs. The advancement of computer hardware and software technology 

and development of numerical solution methods have been also the factor for the 

increased use of reservoir simulation in petroleum industry. On the other hand, the 

application of the classical material balance approach is very simple and it provides a 

valuable insight into the behaviour of hydrocarbon reservoirs. Material balance 

methods, especially straight-line material-balance plots, are still routinely used in 

analyzing reservoir performance and estimate the OOIP and OGIP.  

Either the classical material balance approach or numerical simulations use the same 

type of data to analyze the performance of the reservoirs and these data have 

uncertainty due to various reasons. Since data uncertainty is unavoidable, its effects 

should be carefully analyzed before making an important desicion. Data uncertainty 

in material balance techniques includes error in the measurement of laboratory 

pressure-volume-temperature (PVT) properties, field production data, aquifer 

properties and average reservoir pressures. Although the effect of pressure errors on 

material balance and the errors in water influx calculations have been extensively 

studied, the discussion of the effect of PVT errors on material balance calculations in 

the petroleum engineering literature is rather limited. Due to the lack of data, very 

often non-representative PVT correlations are selected for use or incorrect PVT data 

are used in material balance calculations.  

In this thesis, the accuracy of the material balance calculations due to errors in PVT 

data were mainly investigated on a hypothetical gas cap reservoir which was 

constructed using 3D simulators. The possible errors in the production data and in 

the ratio of the initial gas cap volume to the initial oil volume (m) were also 

analyzed. A systematic error of +/-2% was added to each PVT parameter (Rs, Rsi, Bo, 

Boi, Bg and Bgi) to account for typical laboratory error. The amount of systematic 

error applied was -10% for production data (Np and Gp) and +/-50% for the m value. 

Material balance calculations with different methods were performed using the 

erroneous data and the errors on the original oil in place (N) values were calculated 

according to the base case value of the output of simulator. The effects of different 

parameters on the errors in calculated N values were examined by introducing 

systematic error to only one parameter while taking the others at their true value.  

Sensitivity coefficients are analyzed to provide explainations of the behavior of the 

errors with time.  
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The results of the study showed that impact of PVT errors on material balance 

calculations can be very significant if the recovery factor of the reservoir is quite 

small. However, the errors on the calculated values of N is approaching to zero for 

all PVT cases studied towards the end of the production period. It was observed that 

the effects of the errors in production data were relatively low compared to the 

results of the PVT data analysis. The effect of the error in Np in N calculations was 

lower than the effect of Gp. It was seen that the estimation of m value 50% higher 

than the orginial value m causes the N values 20 % less than the base value and the 

estimation of m value 50 % more yields +40% error in the calculated values of N. 
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SENTETİK BİR GAS BAŞLIKLI REZERVUARDA MATERYAL DENGE 

DENKLEMİ PARAMETRELERİNDEKİ HATA ANALİZİ  

ÖZET 

Günümüzde çok boyutlu, çok fazlı dinamik materyal denge programları olan 

nümerik simulatörler petrol endüstrisinde yaygın olarak kullanılmaktadır. Petrol 

endüstrisindeki nümerik simulatörlerin kullanımının yaygınlaşmasında bilgisayar 

donanımlarındaki, yazılım teknolojilerindeki ve ayrıca nümerik çözüm 

yöntemlerindeki gelişmeler etkendir. Diğer taraftan, klasik materyal denge teknikleri 

uygulamada basit olup, hidrokarbon rezervuarlarının davranışlarının içyüzünü 

anlamada değerli fikirler sunmaktadır. Materyal denge teknikleri ve özellikle 

doğrusal materyal denge grafikleri rezervuar performanslarının analizinde, itim 

mekanizmalarının belirlenmesinde ve en önemlisi yerinde petrol ve gaz miktarlarının 

hesaplanmasında rutin olarak kullanılmaktadır.  

Hem klasik materyal denge yaklaşımı hem de nümerik simülasyonlar rezervuarın 

performansını analiz etmek için ayni tip verileri kullanmakta ve bu veriler bazı 

sebeplerden ötürü belirsizlikler içermektedir. Veriler üzerindeki belirsizlikler 

kaçınılmaz olduğundan, önemli kararlar alınmadan önce belirsizliklerin etkileri 

dikkatlice araştırılmalıdır. Materyal denge tekniklerindeki veri belirsizlikleri 

laboratuvar basınç-sıcaklık-hacim (PVT) özelliklerinde, üretim verilerinde, akifer 

özelliklerinde ve ortalama rezervuar basıncında bulunabilir. Yeterli veri olmaması 

nedeniyle materyal denge hesaplamalarında rezervuar koşullarına uygun PVT 

korelasyonları kullanım için seçilmekte veya hesaplamalarda bazen yanlış PVT 

verileri kullanılmaktadır. Yeterli sayıda kuyudan kuyudibi basınç ölçümü 

yapılamaması veya yapılan kuyu testlerinin dizaynlarının iyi yapılamaması (üretim 

kaybı ve dolayısıyla gelir kaybını azaltmak için kuyuların test sürelerinin gerekenden 

az tutulması) veya kuyu sağım alanlarının doğru şekilde belirlenememesi, rezervuarı 

temsil eden ortalama basınç değerlerinin doğru olarak hesaplanamamasına neden 

olabilmektedir. Bunun yanı sıra, rezervuara komşu olan akiferin tipinin ve akifer 

özelliklerinin doğru tahmin edilememesi rezervuara giren su miktarının 

hesaplanmasında yanlış sonuçlar verebilmektedir. Materyal denge üzerindeki basınç 

belirsizliği ve rezervuara su girişi (We) hesaplamalarındaki hatalar geniş olarak 

çalışıldığı halde, materyal denge hesaplamalarındaki PVT hatalarının etkileri ile ilgili 

petrol mühendisliği literatüründeki tartışmalar daha sınırlıdır. 

Bu tezdeki asıl amaç, 3B simülatörler kullanılarak oluşturulan sanal bir gaz başlıklı 

rezervuarda hatalı PVT verileri ile yapılan materyal denge hesaplamalarından elde 

edilen yerinde petrol miktarı miktarı (OIIP veya N) üzerindeki hataların 

büyüklüklerinin araştırılmasıdır. Üretim verilerindeki ve başlangıç gaz başlığı 

hacminin başlangıç petrol hacmine oranı olan m değerindeki muhtemel hataların 

yerinde petrol miktarı üzerindeki etkileri ayrıca analiz edilmiştir.  
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Tipik laboratuvar hatasını yansıtmak için her bir PVT parametresine (Rs, Rsi, Bo, Boi, 

Bg ve Bgi) % +/-2 sistematik hata eklenmiştir. Rs ile Rsi, Bo ile Boi ve Bg ile Bgi 

çiftlerinin her birinde % +/-2 hata olduğu varsayılarak yerinde petrol miktarı 

üzerindeki hatalar ayrıca analiz edilmiştir. Petrol üreticilerinin gelirlerini petrol ve 

gazın satışından elde etmeleri üretilen petrol ve gazın mümkün olan en doğru şekilde 

ölçülmesini zorunlu kılmıştır. Günümüzde kullanılan ölçüm ekipmanları geçmişe 

göre daha teknolojik olsalar da ölçtükleri değerlerde sistematik hata olma olasılığı 

her zaman bulunmaktadır. Üretim verilerindeki (Np ve Gp) hataların yerinde petrol 

miktarı üzerindeki etkilerini araştırabilmek için, simülatörden elde edilen üretim 

verilerinin % 10 düşük ölçüldüğü varsayımı yapılmıştır. Başlangıç gaz başlığı 

hacminin başlangıç petrol hacmine oranı olan m değeri, özellikle ilk üretim 

safhalarındaki en belirsiz parametredir. Çalışmada kurulan model sentetik model 

olduğu için m değeri kesin olarak bilinmektedir. Ancak m değerindeki hataların 

hesaplanan yerinde petrol miktarı üzerindeki etkisini araştırabilmek için m değerinin 

%+/-50 hatalı hesaplandığı varsayılmıştır.  

Materyal denge denkleminin doğrusal olarak ifade edilmesi ile elde edilen doğrusal 

materyal denge yöntemleri ile rezervuarın itim mekanizmalarına göre farklı şekilde 

doğru denklemleri üretilmekte ve materyal denklemindeki bilinmeyenler olan N, m 

ve We değerleri hesaplanabilmektedir. Bu çalışmada oluşturulan rezervuar modeli 

rezervuara su girişinin olmadığı gaz başlıklı bir rezervuardır. Doğrusal materyal 

denge denklemlerinin bu modele uyarlanması ile iki farklı yöntemle N 

hesaplanmıştır. Birinci durumda m değerinin bilindiği ancak N değerinin 

bilinmediği, ikinci durumda ise m ve N değerlerinin bilinmediği varsayılmıştır. Hata 

eklenmiş parametreler kullanılarak, materyal denge denklemi ve iki farklı doğrusal 

materyal denge denklemi ile yerinde petrol miktarı hesaplamaları yapılmıştır. 

Simülatöre hesaplattırılan yerinde petrol miktarı değeri baz alınarak N üzerindeki 

hatalar hesaplanmıştır. Farklı parametrelerin hesaplanan N değerleri üzerindeki 

etkilerini incelemek için etkisi araştırılan parametre veya parametrelerin değerine 

sistematik hata eklenirken diğer tüm parametreler kendi doğru değerlerinde 

bırakılmıştır.  

Farklı parametrelerdeki hataların yerinde petrol miktarı üzerindeki etkilerini anlamak 

ve materyal denge hesaplamalarındaki hata analizi sonuçlarını doğrulamak için 

duyarlılık katsayıları ile hata analizi ayrıca tartışılmıştır. Duyarlılık katsayıları ile 

hangi parametrenin yerinde petrol miktarı üzerindeki etkisinin daha fazla olduğu ve 

grafiklerle yapılan analizlerde grafiklerin davranışları açıklanabilmiştir.  

Çalışmanın sonuçları materyal denge metodları ile hesaplanan yerinde petrol 

miktarının, denklemlerdeki hatalı parametrelerden çok etkilendiğini göstermiştir. 

Özellikle rezervuardaki kurtarım faktörünün çok düşük olduğu durumlarda materyal 

denge hesaplamalarındaki PVT hatalarının etkilerinin çok önemli olduğu 

görülmüştür. Oluşturulan sentetik gaz başlıklı rezervuar modeli için PVT 

parametreleri içerisindeki en etkin parametrenin Boi olduğu ortaya çıkmıştır.  Boi, Bgi 

ve Rs değerlerine pozitif hata eklenmesi durumunda N değerlerinin arttığı; Bo, Bg ve 

Rsi değerlerine pozitif hata eklenmesi durumunda ise N değerlerinin azaldığı 

gözlenmiştir. Benzer şekilde, Boi, Bgi ve Rs değerlerine negatif hata eklenmesinin N 

değerlerinin azalmasına neden olduğu; Bo, Bg ve Rsi değerlerine negatif hata 

eklenmesinin ise hesaplanan N değerlerinin referans alınan değerden yüksek 

olmasına neden olduğu görülmüştür. Bununla beraber, hesaplanan N değerleri 

üzerindeki hataların çalışılan tüm PVT durumlarında üretim periyodunun sonuna 

doğru sıfıra yaklaştığı görülmüştür. Hatalı parametreler kullanılarak materyal denge 
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denklemi ile yapılan hesaplamaların doğrusal materyal denge yöntemlerine göre daha 

doğru sonuçlar verdiği gözlenmiştir. PVT hata miktarlarına göre daha yüksek hatalar 

eklenmesine rağmen, üretim verileri ve m değeri üzerindeki hataların etkileri PVT 

parametreleri üzerindeki hata etkileri ile karşılaştırıldığında, üretim verileri ve m 

değerindeki hatalarla hesaplanan N değerlerindeki hataların PVT parametrelerindeki 

hatalarla hesaplanan N değerlerinden çok daha düşük olduğu gözlenmiştir. Ayrıca, 

üretim verilerindeki hataların N üzerindeki etkilerinin, PVT parametrelerindeki 

hataların N üzerindeki hataya etkilerinin aksine, rezervuardan yapılan üretim miktarı 

arttıkça azalmadığı, gaz üretimindeki artışa bağlı olarak değişim gösterdiği 

gözlenmiştir. Ancak, m değerindeki hataya bağlı hesaplanan N değerlerindeki 

hatanın üretim periyodu boyunca çok fazla değişmediği gözlenmiştir. Petrol üretimi 

(Np) üzerindeki hataların etkilerinin gaz üretimi (Gp) üzerindeki hatalara göre daha az 

olduğu tespit edilmiştir. Oluşturulan senteki modelde, m değerinin % 50 fazla tahmin 

edilmesinin, N değerlerinin baz alınan değere göre % 20 daha az olmasına neden 

olduğu; % 50 daha az tahmin edilmesinin ise hesaplanan N değerinin % 40 daha 

fazla olmasına neden olduğu görülmüştür.  

PVT hataları içeren N değerindeki hataların davranışlarının duyarlılık katsayıları 

davranışları ile aşağı yukarı aynı parallellikte olduğu gözlenmiştir. Duyarlılık 

katsayısı en yüksek parametrenin Boi olduğu tespit edilmiştir.  
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1. INTRODUCTION 

The material balance equation has long been regarded as one of the basic tools of 

reservoir engineers for interpreting and predicting reservoir performance. The 

material balance equation (MBE) can be used to estimate initial hydrocarbon 

volumes in place or to predict future reservoir performance or to predict ultimate 

hydrocarbon recovery under various types of primary driving mechanisms. 

Nowadays, numerical simulators are used for modeling reservoirs, which are 

basically multi-dimensional, multi-phase, dynamic material balance programs. The 

advancement of computer hardware and software technology and development of 

numerical solution methods have been also the factor for the increased use of 

reservoir simulation in petroleum industry. On the other hand, the classical material 

balance approach is very simple and it provides a valuable insight into the behaviour 

of hydrocarbon reservoirs. It is necessary to accept that material balance is 

complementary to simulation. 

The material balance (MB) calculations require production/injection data, pressure, 

PVT data, aquifer properties in order to quantify the original oil in place (OOIP or N) 

and drive mechanisms. OOIP calculations based on material balance calculations are 

strongly affected by data uncertainty. Uncertainty due to data errors can be found in 

the above mentioned data seperately or together. Usually it is expected that 

production data (oil or gas) are measured with confidence since the measurement 

equipments are highly technologic and can be trusted as compared to the past. 

Another point is that the companies gain their revenues from the sale of oil or gas, 

accordingly, oil and gas production are in general measured quite accurately and the 

errors in production data are small. Reservoir pressure is more uncertain due to lack 

of pressure measurements from the wells in the field to find an average value of 

reservoir pressure. PVT data can also be uncertain since very often PVT correlations 

which may be non-representative or incorrect PVT data are selected for use in 

material balance calculations. PVT data can include errors since it may not be 

possible to have a representative fluid sample of the reservoir. Laboratory 

measurements can also have errors. Although the effect of pressure errors on material 
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balance has been extensively studied, there is very little discussion of the effect of 

PVT errors on material balance calculation in the petroleum engineering literature.  

1.1 Main Objective 

In this thesis, as well as the the effect of errors in PVT parameters, the effect of 

production data errors and the error in the ratio of the initial gas cap volume to the 

initial oil volume on MB calculations were investigated for a saturated synthetic gas 

cap reservoir created using the Petrel 2009.1 software. Systematic errors of +/-2% 

were introduced into the reservoir PVT properties. -10% systematic error was 

introduced for Np and Gp and finally +/-50% error for m values. The systematic error 

was introduced in such a way that one parameter contained error while all other data 

were held constant at their true values. Eclipse 2009.1 black-oil simulator was used 

to produce all necessary data for material balance calculations. A MATLAB 2008 

based program was coded for the calculation of OOIP values with Havlena and Odeh 

(1963, 1964) technique.  

Systematic percentage errors on OOIP were calculated according to the formula,  

       
                           

               
     (1.1) 

Eclipse 2009.1 output for OOIP was chosen as reference value in error calculations. 

The results of all works were illustrated graphically. The direction of change 

(increase or decrease) in OOIP due to the systematic errors in the data was also 

analysed to see how OOIP is affected.  

1.2 Outline of the Thesis 

This thesis is divided into six main parts including this first part. 

In the first part of the thesis, a brief introduction will be given about the need for 

analyzing of the uncertainty of the parameters used in material balance equation and 

their concequences on the calculations of OOIP.  

In the second chapter, the literature survey on the topic selected will be presented 

briefly. The methodology of analyzing uncertainty will be given at the end of the 

chapter.  
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In the third part, a general theory of material balance equation will be given. The 

material balance equation for gas cap reservoir without water injection and water 

influx case will be derived. The Havlena-Odeh straight line methods will be 

presented for the reservoir described above. 

In the fourth part of the thesis, a synthetic gas cap reservoir will be described in 

detail. The construction of 3D geological model and the simulation model will be 

explained in detail. The grid sensitivity study and the simulation results will be 

presented. 

In the fifth part of the thesis, error analysis of material balance parameters; such as 

PVT data, production data and m value will be studied to show the effects of the 

uncertainty of each parameter on the results of material balance calculations of N.  

The last chapter will cover the conclusions derived from the study.  
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2. STATEMENT OF THE PROBLEM 

Data quality is very important in material balance calculations. Material balance 

calculations may include data errors which can be found in PVT data, production 

data, geological data (m value) and average reservoir pressure. Production data errors 

are usually expected to be less than the others, since revenues of the companies are 

based on oil and gas sales and hence their measurements were performed with 

minimal errors. So, it is expected that production data errors should be minimal in 

material balance calculations. Average reservoir pressure is expected to be uncertain 

due to the lack of enough well measurements and heterogeneties throughout the 

reservoir. Similarly, PVT properties preferably are determined from laboratory 

studies conducted on the samples which are collected from the bottomhole or on the 

recombined samples collected from surface facility tanks. However, PVT analysis of 

these samples are not always available due to some reasons: a) samples collected are 

not reliable enough to use them in MB calculations, b) there may be no samples due 

to cost saving purposes. In such cases PVT properties are obtained by using emprical 

correlations (Ghetto et al.,1994). Although the effect of pressure errors on material 

balance has been widely studied, there is very little discussion of the effect of PVT 

errors and production data errors on material balance calculation in the petroleum 

engineering literature.  

2.1 Literature Survey 

The effects of different parameters on material balance calculations have been 

studied by several investigators. These studies are mainly on: 

 Pressure uncertainty  

  The influence of drive mechanism  

  The reliability of emprical PVT correlations  

  PVT uncertainty effects  
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  The effect of data errors on typical reservoir engineering calculations  

Charles (1951) studied the effect of data errors on typical reservoir engineering 

calculations. He notes that important parameters such as reservoir pressure, oil in 

place and well damage are calculated directly from measured quantities and each 

measurement error has an effect on the calculated results. Material balance 

calculations need data which are all measured or taken from emprical correlations. 

Hence it is very crucial to use them as correct as possible to minimize the errors on 

material balance calculations.  

McEwen (1961) studied pressure uncertainy for water influx reservoirs and his 

results showed that material balance calculations are not reliable when there is even 

small uncertainty in pressure. He mentioned that Havlena and Odeh’s method of 

plotting F/Eo vs. ∑pWD/Eo to find the OOIP and aquifer constant in initially-

undersaturated,  water-drive oil reservoirs is not reliable if the rereservoir pressure 

has much uncertainty. To make the results better, he recommended plotting F vs. 

Eow, where 

       
           

     
 (2.1) 

for radial aquifers. 

Tehrani (1976) reaarranged the material balance equation in different forms for a 

reservoir with water influx with small pressure uncertainty. He mentioned that 

material balance errors can be introduced thorough reaarranging a MBE from a 3-

variable equation to a 2-variable equation. His work showed that these forms of the 

material balance equations were not applicable if there is uncertainty in pressure and 

some of them are very influenced by small pressure uncertainty. 

Ghetto et al (1994) studied the reliability of emprical PVT correlations for the 

estimation of bubble point pressure, oil formation volume factor and solution gas oil 

ratio at bubble point pressure, dead oil viscosity, gas-saturated oil viscosity, 

undersaturated oil viscosity and isothermal compressibility. He suggested some 

modified emprical correlations to improve the reliability of the correlations used in 

the petroleum literature.  
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Wang and Hwan (1997) studied the influence of drive mechanisms on the OOIP 

estimates. According to them, the estimation of OOIP for reservoirs with water 

influx is more difficult than volumetric reservoirs. For a strong water drive reservoir, 

water influx can be estimated more accurately than OHIP. They also mentioned that 

if the ratio of the initial gas cap volume to the initial oil volume (m) is known, OOIP 

can be certainly estimated for a gas cap reservoir. However, if m is unknown, the 

calculation of OOIP is not reliable for high values of m (greater than 0.25) even 

without any water influx. On the other hand, OGIP can be calculated much more 

accurate than OOIP for a gas cap reservoir.  

Walsh (1999) examined the effects of pressure errors on material balance plots for 

volumetric reservoirs and his results showed that pressure uncertainty can 

considerably affect the reliability of certain plots. He found that Havlena and Odeh 

graphical methods for reservoirs with initial gas cap have no tolerance to pressure 

uncertainty.  

Baker et al. (2003) studied PVT uncertainty effects on material balance estimates. He 

found that the impact of PVT uncertainty on material balance estimates can be 

significant if the decline of reservoir pressure is small or if the used PVT correlation 

is not adjusted to field data. His results also indicated one of the reasons why a 

reservoir should have a significant amount of production and pressure drop before it 

is used for MBE calculations. 

Carlos and Jose (2007) have shown the combined effects of PVT and pressure 

uncertainties on the material balance estimates for reservoirs wtih different drive 

mechanisms. Their results showed that the method F-We vs. Et is the most usable 

method when pressure and PVT data have uncertainty. Another conclusion they 

presented was that the method (F-We)/(Eo+Ef,w) vs. (Eg+Ef,w)/(Eo+Ef,w) shows 

hypersensitivity to all uncertainty ranges in pressure and PVT data. However, the 

method F/Et vs. We/Et shows hypersensitivity to uncertainty of pressure data and 

moderate sensitivity to uncertainty in PVT data. According to them, pressure errors 

are the main source of uncertainty in material balance estimates. İn their models, Rs 

errors are the main source of uncertainty of PVT data in material balance estimates. 
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2.2 Methodology 

This work focused on analyzing the errors on initial oil in place when errors are 

present in PVT properties of the fluid, production data or m value. A geological 

model for a syntethic square shaped reservoir was created with Petrel 2009.1. Grid 

size sensitivity was performed to find the ideal grid size that minimizes the 

discretization errors. Porosity, horizontal and vertical permeability values were taken 

as constant in the model to be able to check the results with hand calculations. The 

initial water saturation (Swi), formation compressibility and capillary pressure were 

set to zero for simplicity. End points for relative permeability vs saturation data were 

given to Petrel 2009.1. PVT data tables were constructed according to the 

correlations within Petrel 2009.1.  

One well of 700 STB/day production rate was completed at the bottom half of the oil 

zone to ensure that the effects of gas coning were eliminated. A 40-year development 

strategy (starting from 01.01.2013) was defined for the production well where an 

abondonment pressure for the well was chosen as 1000 psi and the minimum 

production rate of the well was set to 100 STB/day. Injection or adjacent aquifer 

support were not considered to improve the production. Grid properties, fluid PVT 

model, rock physics functions (relative permeability data and rock compressibility) 

and development strategy were imported to Eclipse 2009.1 simulator.  The dynamic 

model was run for 40-year production period. The reporting time step was set to one 

year. The production data, pressure data and PVT data were recorded for 40 years 

annually.  

In the first part of the thesis, material balance calculations for OOIP were performed 

by MB equation and Havlena and Odeh technique with the Eclipse 2009.1 yearly 

outputs.  

The second part covers the error analysis on PVT parameters, production data and m 

value. All PVT parameters (Rsi, Rs, Boi, Bo, Bgi and Bg), production data (Np and Gp) 

and the ratio of the initial gas cap volume to the initial oil volume (m) will be 

analyzed individually. Sensitivity coefficients were calculated for each error 

introduced parameter at each time step.  

Using synthetic field with known dimensions and known porosity values enables us 

to calculate the original oil in place volume accurately by hand. Assuming that all 
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data produced from the simulator are true and there is no uncertainty on the data, the 

effect of errors introduced to the parameters will show how OOIP values are effected 

by the introduction of systematic errors. The results are compared with reference 

value of OOIP volume.  
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3. MATERIAL BALANCE THEORY 

The material balance equation (MBE) has been used as one of the basic tools of 

reservoir engineers for many years for interpreting and predicting reservoir 

performance. The MBE can be used to estimate initial hydrocarbon volumes in place, 

to predict future reservoir performance and to predict ultimate hydrocarbon recovery 

under various types of drive mechanisms.  

The equation is simply based on the principle of conservation of mass. The concept 

of the material balance equation was first developed by Schilthuis (1936). It is a 

volume balance between an underground withdrawal (cumulative production) and 

the expansion of the reservoir fluids resulting from a pressure drop in the reservoir 

and can be expressed in its simplest form as: 

(

          
       

           
        

)   

(

 
 

 
         

       
         

       
         )

 
 

 (
          
         

       

)   (3.1) 

3.1 Basic Assumptions in the MBE 

The basic assumptions in the material balance equation (MBE) are as follows: 

Constant temperature: Changes in a reservoir generally are accepted to be at 

isothermal (constant temperature) conditions. Pressure-volume changes in the 

reservoir are assumed to be isothermal. If any temperature changes occur, they are 

usually small enough to be ignored without significant error. 

Hydraulic connectivity: All parts of the reservoir are assumed to be hydraulically 

connected. 

Constant reservoir volume: Reservoir volume is assumed to be constant and the 

formation is considered to be sufficiently competent that no significant volume 

change will occur through movement or reworking of the formation due to 

overburden pressure as the internal reservoir pressure is reduced.  
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Reliable production data: It is important in the application of the MB calculations 

to have reliable production data of oil, gas and water.  

Dake (1978) points out the following characteristics regarding the material balance 

equation: 

 it is zero dimensional which means that it is evaluated at a point in the 

reservoir, 

 its parameters generally are not time dependent except the water influx term, 

 the pressure appears explicitly in the water and pore compressibility term. 

However, it is implicit in the PVT parameters since Bo, Rs and Bg are 

functions of pressure. The water influx is also pressure dependent, 

 the equation is always evaluated by comparing the current volumes at 

pressure p to the original volumes at pi.  

3.2 Derivation of MBE 

Considering the reservoir as a tank model as illustrated in Figure 3.1., volumetric 

balance expressions can be derived to take into account all volumetric changes which 

occurs during the withdrawal of the fluids from the reservoir. 

 

Figure 3.1 : Tank model. 

The general expression of MBE is as follows: 
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The terms in Equation 3.2 can be determined from the fluid PVT and reservoir rock 

properties as follows:  

Pore Volume Occupied by the Oil Initially in Place at Initial Pressure 

                                              (3.3) 

where  N is the oil initially in place (STB) and Boi is the oil formation volume factor 

at initial reservoir pressure pi (rb/STB). 

Pore Volume Occupied by the Gas in the Gas Cap 

                         (3.4) 

where m is a dimensionless parameter and defined as the ratio of gas-cap volume to 

the oil zone volume. 

Pore Volume Occupied by the Remaining Oil 

                                       (3.5) 

where Np is the cumulative oil production (STB) and Bo is the oil formation volume 

factor at reservoir pressure p (rb/STB). 

Pore Volume Occupied by the Gas Cap at Reservoir Pressure p 

As the reservoir pressure (pi)  drops to a lower pressure (p), the gas in the gas cap 

expands and fills a larger volume. Assuming no gas is produced from the gas cap 
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during the pressure decline form pi to p, the gas cap volume after pressure drop can 

be determined as: 

                            [
     

   
]    (3.6) 

where Bgi is the gas formation volume factor at initial reservoir pressure (rb/scf) and 

Bg is the current gas formation volume factor at pressure p (rb/scf). 

Pore Volume Occupied by the Evolved Solution Gas 

This term can be determined by applying the material balance on the solution gas as 

follows: 

(
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) (3.7) 

or 

                                   [                  ]   (3.8) 

where Rp is the net cumulative produced gas-oil ratio (scf/STB), Rs is the current 

dissolved gas-oil ratio at pressure p (scf/STB) and Rsi is the initial dissolved gas to 

oil ratio at initial reservoir pressure (scf/STB). 

Pore Volume Occupied by the Net Water Influx 

                            (3.9) 

where We  is the cumulative water influx (rb), Wp is the cumulative water produced 

(STB) and Bw is the formation volume factor of water (rb/STB). 

Reduction in Pore Volume Due to Initial Water and Rock Expansion 

The reduction in the hydrocarbon pore volume due to the expansion of initial water 

and the reservoir rock can be generally neglected for gas-cap-drive reservoir or when 

the reservoir pressure drops below the bubble-point pressure. The effect of these two 

components, however, cannot be neglected for an undersaturated oil reservoir. The 

water compressibility (cw) and rock compressibility (cf) are generally of the same 

order of magnitude as the compressibility of the oil.  
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The expansion of initial (connate) water and the reservoir rock are controlled by the 

compressibility of water and rock. The hydrocarbon pore volume (HCPV) 

compressibility as the compressibility for connate water and formation matrix can be 

expressed based on the general law of isothermal compressibility: 

  
 

 
(
  

  
)
 

  (3.10) 

The reduction in the pore volume due to the expansion of the connate water in the oil 

zone and the gas cap is given by: 

                        [
       m 

     
]           (3.11) 

where Δp is the change in reservoir pressure (psi), cw is the water compressibility 

coefficient (psi
-1

) and Swi is the initial (connate) water saturation (fraction). 

Similarly, the reduction in the pore volume due to the expansion of the reservoir rock 

is given by: 

                      [
       m 

     
]       (3.12) 

where cf  is the formation (rock) compressibility coefficient (psi
-1

). 

Combining the expansions of the connate water and reservoir rock as represented by 

Equations-3.11 and 3.12 gives: 

                                    m [
        

     
] p  (3.13) 

Pore Volume Occupied by the Injection Gas and Water 

Assuming that gas and water are injected for pressure maintenance purposes, the 

total pore volume occupied by the two injected fluids is given by: 

                                                      (3.14) 

where Ginj is the cumulative injected gas (scf), Bginj is the injected gas formation 

volume factor (rb/scf) and Winj is the cumulative water injected (STB). 
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Combining Equations from 3.3 to 3.14 gives: 

  
  [            ]  (       )                  

                        [
  

   
  ]         [

        
     

]   

  
(3.15) 

The above relationship is referred to as the material balance equation (MBE). 

3.2.1 The MBE for gas cap reservoir  

For a reservoir in which gas cap drive is the main drive mechanism and assuming 

that there is no adjacent aquifer to the reservoir (We = 0) and, there is no injection of 

water or gas for pressure support, Equation 3.15 can be written as 

N 
N [            ]      

                    m   [
  

   
  ]       m [

        
     

] P

  
(3.16) 

Assuming that the effect of water and pore compressibilities is also negligible as 

compared to the compressibility of the gas, Equation 3.16 can be reduced to 

N 
N [            ]      

                    m   [
  

   
  ]

  
(3.17) 

3.3 The MBE as an equation of a straight line 

Havlena and Odeh (1963, 1964) described the technique of interpreting the material 

balance as the equation of a straight line with two papers, the first paper describing 

the technique and the second illustrating the application to reservoir case histories
 

(Craft and Hawkins, 1991). 

The straight line starts with the MBE in the form written as: 

N [   (     )  ]            N[                   ] 

  m    [
  

   
  ]         m [

        

     
] P     G                 

(3.18) 

Havlena and Odeh expressed Equation 3.18 in a form of straight line equation as: 
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                                                      (3.19) 

in which the terms F, Eo, Eg, and Ef,w are defined by the following relationships: 

• F represents the underground withdrawal and given by: 

      [   (     )  ]       (3.20) 

• Eo is the term which describes the expansion of oil and its originally dissolved gas 

and is expressed in terms of the oil formation volume factor as: 

                          (3.21) 

• Eg is the term used for the expansion of the gas-cap gas and is defined by the 

following expression: 

      [
  

   
  ]   (3.22) 

• Ef,w represents the expansion of the initial water and the reduction in the pore 

volume and is given by: 

             [
        

     
]     (3.23) 

3.3.1 The straight-line solution method to the MBE 

The straight-line solution method is based on the plotting of a variable group versus 

another variable group. The selection of the variable group depends on the drive 

mechanism under which the reservoir is producing (Tarek, 2001). The importance of 

the straight-line method lies on the sequence of plotting. The deviation of data from 

the straight line should be carefully analyzed to find the reason for it. The future 

reservoir performance can be predicted by the extrapolation of a straight line. The 

parameters of the straight line are used to determine the unknowns which are initial 

oil in place (N), size of the gas cap (m), water influx (We) and driving mechanism of 

the reservoir. 

Havlena and Odeh (1963, 1964) investigated several cases of varying reservoir types 

with Equation 3.19 and expressed that the relationship can be rearranged into the 



18 
 

form of a straight line. For the case studied in our thesis, Havlena-Odeh straight line 

material balance equation can be expressed as follows: 

For a reservoir in which the gas cap expansion is the most effective driving 

mechanism and assuming that there is no natural water influx and the effect of water 

and pore compressibilities are negligible and no water injection or gas injection are 

applied for pressure support, the Havlena-Odeh material balance equation (Equation 

3.19) can be written as: 

                    (3.24) 

Equation 3.24 can be used according to the number of unknowns in the equation 

which can be described in three ways: 

1- N is unknown, m is known 

Equation 3.24 indicates that a plot of F versus (Eo + mEg) on a Cartesian scale 

produces a straight line through the origin with a slope of N, as shown in Figure 3.2.  

 

Figure 3.2 : F vs Eo+mEg plot. 

2- Both N and m are unknown 

If both the values of N and m are not known, Equation 3.24 can be reexpressed as: 
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)   (3.25) 
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A plot of F/Eo versus Eg/Eo gives a straight line with intercept N and slope mN. m 

can simply be found by dividing slope to intercept. This plot is illustrated in Figure 

3.3. 

 

Figure 3.3 : F/ Eo vs Eg/Eo plot. 

3- m is unknown, N is known  

If N is known by volumetric methods but m is unknown, Equation 3.24 can be 

rearranged as an equation of straight line as follows: 

(
 

 
   )           (3.26) 

Equation 3.26 states that a plot of the term (F/N - Eo) versus Eg produces a straight 

line passing through the origin with a slope of m. See Figure 3.4. 

 

Figure 3.4 : F/N-Eo vs Eg plot. 
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In our case, since m is known, we will analyze mainly the case when N is unknown 

and m is known.  

However, assuming that m is unknown, the plots of F/Eo vs Eg/Eo will also be 

analyzed and the results will be compared with the case where m is known.  

3.4 Error Analysis 

The synonymous terms uncertainty, error, or deviation are used to represent the 

variation in measured data. Every measurement has an uncertainty and not all 

uncertainties are equal. In many cases, the value of the experimental result is not 

measured. Actually, we measure the values of several variables and combine these 

data in a data reduction equation to obtain the values of the desired result. Therefore, 

the ability of proper combination of uncertainties from different measurements is 

important. Uncertainty in measurement takes place in a variety of ways: different 

instruments used for measurements, different observers, differences in samples, 

measurements taken at different times of day, etc.  

Two types of errors are possible. Systematic error results from a mis-calibrated 

device, or a measuring technique making the measured value larger (or smaller) than 

the "true" value. There will remain a second type of variation in measured values of a 

single quantity, even when systematic errors are eliminated. These remaining 

variations can be classed as random errors, and can be dealt within a statistical 

manner.  

Differential analysis is the backbone of all other sensitivity analysis techniques. 

Differential analysis of parameter sensitivity is based on partial differentiation of the 

model in aggregated form. It can be thought of as the propagation of uncertainties 

(Cunningham et al., 1980). 

Given a functional relationship between several measured variables (x, y, z) to 

calculate Q what is the uncertainty in Q if the uncertainties in x, y, and z are known? 

The answer can get a little complicated, but it should be no surprise that the 

uncertainties of x, y and z “propagate” to the uncertainty of Q. It can be written that 

Q is a function of these variables: 

            (3.27) 
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Equation 3.27 is a data reduction equation which is used for determining Q from the 

measured values of the variables x, y and z. Assuming that the variables x, y and z 

are uncorrelated, the uncertainty in Q is given by 

  
  (

  

  
)
 

  
  (

  

  
)
 

  
  (

  

  
)
 

  
  (3.28) 

where x
2
, y

2
 and y 

2
 are the uncertainties in the measured variables x, y and z and 

  

  
, 

  

  
 and 

  

  
 are the derivatives of Q with respect to the variables x, y and z. 

A sensitivity coefficient is basically the ratio of the change in output to the change in 

input while all other parameters remain constant (Krieger et al., 1977).  

The sensitivity coefficient,  , for a particular independent variable can be calculated 

from the partial derivative of the dependent variable with respect to the independent 

variable, i.e., 

   
  

  
  (3.29) 

If we take the ln derivative of Q with respect to the independent variable to remove 

the effects of units, we have 

    
  

  
   (3.30) 

It should be noted that from Equation 3.28, the magnitude of the uncertainty on the 

function Q is dependent on the uncertainty of the independent parameters x, y or z 

and also on their sensitivity coefficients. In other words, if a certain parameter has a 

larger sensitivity coefficient, then the uncertainty of this particular parameter will be 

more influencial on the uncertainty of Q. 

3.4.1 Application of error analysis 

Systematic errors were introduced into the reservoir PVT properties, m value and 

production data of the gas cap reservoir in such a way that one parameter  contained 

error while all other parameters in MBE were held constant at their true value. 

Systematic percentage errors were calculated using Equation 1.1. 
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3.4.1.1 Calculation method 

Assuming that the natural net water influx is negligible (We-WpBw = 0), the effect of 

water and pore compressibilities are also negligible and there is no water injection or 

gas injection, the material balance equation for a gas cap reservoir can be expressed 

as: 

N 
N [            ]

                    m   [
  

   
  ]

  (3.31) 

Examining Equation 3.31 reveals that there are several components of material 

balance that can cause errors in the calculations. The error in N in Equation 3.31 

depends on drive mechanism, total pressure drop in the reservoir, pressure 

measurement accuracy, PVT accuracy, and production measurement accuracy (Baker 

et al., 2003). 

In Equation 3.31 it is seen that N is a function of Bo, Boi, Bg, Bgi, Rs, Rsi, Np, Gp 

(since Rp=Gp/Np) and m. To analyze the effects of each variable in Equation 3.31 the 

sensitivity coefficients will be calculated and then the magnitudes of them will be 

compared to see which parameters have the biggest effect on N value.  

The derivation of sensitivity coefficients based on the parameters of MBE is given in 

Appendix A. 
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4. 3D RESERVOIR MODELING 

To conduct a simulation study, it is necessary to choose a simulator and to create a 

reservoir model. The first step in preparing a simulation case is to determine the 

representative values of the main parameters, which should reflect reservoir 

characteristics and operational conditions in a hypothetical gas cap field. 

4.1 Introduction 

For the construction of our model, the Petrel 2009.1 software was used. Petrel 2009.1 

software allows the user to build reservoir models suitable for simulation, visualize 

simulation results, calculate volumes and design development strategies to maximize 

reservoir exploitation. 

Eclipse 2009.1 simulator was used for dynamic simulation. Eclipse 2009.1 uses the 

finite difference method to solve material and energy balance equations modelling a 

subsurface petroleum reservoir.  

4.1.1 Model description 

In this study, a simple square-shaped gas cap reservoir was created with Petrel 

2009.1. The dimensions of the reservoir are 3000 ft x 3000 ft x 300 ft. The gas 

column heigth was taken as 100 ft while the height of the oil column was 200 ft so 

that the ratio of the initial gas cap volume to the initial oil volume is to be 0.5. The 

reservoir depth is chosen in order not to have any abnormal pressure regimes. The 

general information for the reservoir is given in Table 4.1.  

Table 4.1 : General information for the reservoir. 

Surface area,ft
2
 9,000,000 

Net pay thickness,ft 300 

Bulk volume, ft
3
 2,700,000,000 

Top of reservoir, ft 6550 

Bottom of reservoir, ft 6850 

Gas-oil contact, ft 6650 

http://en.wikipedia.org/wiki/Finite_volume_method
http://en.wikipedia.org/wiki/Petroleum_reservoir
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4.1.2 Well information 

A single vertical well was drilled at the center of the reservoir. The total depth of the 

well is 6900 ft. The well was completed at the bottom half of the oil column between 

6750 ft and 6850 ft in order to minimize the gas production from the expanding gas 

cap. Well completion data are given in Figure 4.1. 

 

Figure 4.1 : Well completion data. 

4.2 3D Geological Modeling 

A simple 3D grid model was generated for the gas cap reservoir in Petrel 2009.1. 

Optimum grid size was decided to be 120 ft x 120 ft x 20 ft as decribed in Section 

4.5. 2D framework of the generated grids can be seen in Figure 4.2. 

 

Figure 4.2 : 2D grid framework. 
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4.2.1 Zones and layers generation 

One zone was chosen for the reservoir. “Proportional layering method” was used to 

identify the layers. The number of layers is chosen as 15 with equal thicknesses (20 

ft). Layering of the selected model is given in Figure 4.3. 

 

Figure 4.3 : Layering. 

4.3 Petrophysical Modeling 

Porosity, permeabilities in x,y and z direction, water saturation, net to gross ratio 

were all taken as constant and their values are given in Table 4.2. 

Table 4.2 : Petrophysical data. 

Porosity, fraction 0.1 

Permeability in x direction, md 50 

Permeability in y direction, md 50 

Permeability in z direction, md 5 

Water Saturation, fraction 0.0 

Net to gross ratio, fraction 1.0 

4.4 Volume calculation 

The volume calculation results of gas cap gas (Free GIIP), dissolved gas (Dissolved 

GIIP) and reservoir oil (OIIP) are presented in Table 4.3. 

Table 4.3 : Volume calculation results. 

OIIP (STB) 22,874,560 

Free GIIP (scf) 17,176,426,000 

Dissolved GIIP (scf) 18,711,390,000 
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4.5 Grid Sensitivity 

Since this study analyzes the effects of the error on the material balance equation 

parameters (PVT parameters, production data and m value), grid size sensitivity were 

performed to find the ideal grid size which minimizes the discretization errors as 

much as possible. The finite-difference equations are basically the well-known mass 

balance equations written for each phase for each grid block. The process of 

obtaining finite-difference equations that approximate a given differential equation is 

called “discretization”. This discretization introduces error to the finite-difference 

solutions where its magnitude greatly depends on the size of grid and timestep used. 

Roache (1997) states that a consistent numerical method will tend to zero 

discretization error as the number of grid points increases and the size of the grid 

spacing tends to zero. The smaller the grid and timestep used, the more accurate the 

finite-difference solutions will be. Grid sensitivity analysis is usually performed to 

determine the practical values of grid and timestep size. So we will start from the 

biggest grid size and decrease the size of it to the acceptable size when there are no 

remarkable changes in the behaviour of production and pressure values between the 

last two grid sizes studied. The grid sizes used in grid sensitivity study are given in 

Table 4.4. 

Table 4.4 : Grid sizes for grid sensitivity study. 

Case # 2D Grid size (ft x ft) Grid Thickness, ft Number of 3D grids 

1 3000 x 3000 20 15 

2 1000 x 1000 20 135 

3 600 x 600 20 375 

4 200 x 200 20 3375 

5 120 x 120 20 9375 

6 120 x 120 10 18750 

The grid sizes were chosen so that the location of the well does not coincide with 

grid boundaries. Starting from Case#1, the reservoir was produced at the same rate 

for 40 years production period and the same constraints applied for bottom hole 

pressure (1000 psi) and minimum production rate (100 STB/day) for all cases. Five 

different plots were analyzed to decide the optimum grid size:  

1. Pressure vs time (Figure 4.4), 

2. Oil production rate vs time (Figure 4.5), 

3. Gas production rate vs time (Figure 4.6), 
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4. Cumulative oil production vs time (Figure 4.7), 

5. Cumulative gas production vs time (Figure 4.8). 

 

Figure 4.4 : The plot of pressure vs time. 

Figure 4.4 shows that reservoir pressure does not change too much for Case#4 and 

Case#5. Change in layer thickness to 10 ft (Case#6) had no remarkable effect on the 

reservoir pressure behaviour of the field.  

 

Figure 4.5 : The plot of oil production rate vs time. 
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Figure 4.5 and 4.6 show that the oil production and gas production rates show almost 

the same behaviour for Cases #4, 5 and 6. The oil production rates start to decrease at 

the same point in all cases (year 2043). The gas production rates for the Cases#4, 5 

and 6 reaches to the peak values at year 2043 and they start to decrease as the oil 

production rates decrease.  

 

Figure 4.6 : The plot of gas production rate vs time. 

The cumulative oil production and the cumulative gas production values for Cases#4, 

5 and 6 are very close to each other as shown in Figures-4.7 and 4.8. 

 

Figure 4.7 : The plot of cumulative oil production vs time.  
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The simulation results for Case#4 and Case#5 are quite close to each other. It means 

that further decrease in grid size will not contribute a remarkable decrease in 

discretization error, but it will significantly increase the computational time for 

simulation. The same procedure was applied for the vertical direction by increasing 

layer numbers. Layer numbers were increased for Case#5 (120ft x 120ft) grid sized 

model. 

 

Figure 4.8 : The plot of cumulative gas production vs time. 

The simulation results for Case#5 and Case#6 were very similar to each other. 

Therefore, Case#5 was selected for our hypothetical gas cap reservoir.  

4.6 Dynamic (Simulation) Model 

Simulation model was constructed by using Petrel 2009.1 simulation processes. This 

section includes the review of the basic reservoir engineering data used for the 

construction of dynamic (simulation) model, including initial reservoir conditions, 

PVT analysis of fluids, relative permeability data and rock properties. 

4.6.1 Initial reservoir conditions 

The reservoir pressure is below bubble point pressure and has an average value of 

3017.54 psi. The bubble point pressure is 3500 psi. The temperature is 170 
o
F and it 

is assumed to be constant during the life of the field production.   

0

5,000,000,000

10,000,000,000

15,000,000,000

20,000,000,000

25,000,000,000

2
0

1
3

2
0

1
5

2
0

1
7

2
0

1
9

2
0

2
1

2
0

2
3

2
0

2
5

2
0

2
7

2
0

2
9

2
0

3
1

2
0

3
3

2
0

3
5

2
0

3
7

2
0

3
9

2
0

4
1

2
0

4
3

2
0

4
5

2
0

4
7

2
0

4
9

2
0

5
1

2
0

5
3

G
p
, s

cf

Time, years

Grid Sensitivity (Cumulative gas production vs time)

Case#1 Case#2 Case#3 Case#4 Case#5 Case#6



30 
 

4.6.2 PVT analysis 

A fluid model for 40 API light oil and 0.6636 gravity gas was created in Petrel 

2009.1 to define basic PVT parameters such as; Bo, Bg and Rs. Bo vs pressure plot,  

Bg vs pressure plot and Rs vs pressure plot are given in Figures-4.9, 4.10 and 4.11, 

respectively.  

 

Figure 4.9 : Bo vs Pressure. 

As seen in Figure 4.9, Bo values decrease as the pressure goes down from bubble 

point pressure (3500 psi). The initial oil formation volume factor (Boi) is 1.40153 

scf/STB at 3017.54 psi (average initial reservoir pressure, Pi).  

The initial gas formation volume factor, Bgi, is 0.00093324 rb/scf at 3017.54 psi.  

 

Figure 4.10 : Bg vs Pressure. 
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The initial gas oil ratio, Rsi, is 818 scf/STB at initial pressure of 3017.54 psi. 

 

Figure 4.11 : Rs vs Pressure. 

4.6.3 Relative permeability data 

Relative permeability curves of reservoir fluids were created for clean sand reservoir 

(default) in Petrel 2009.1. Since there is no water present in our reservoir, gas and oil 

are two phases flowing in the reservoir. Relative permeability of oil and gas vs gas 

saturation curve is given in Figure 4.12. Capillary pressure was set to zero.  

 

Figure 4.12 : Gas-oil relative permeability. 
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4.6.4 Rock properties 

Rock properties were also created in Petrel 2009.1 for a consolidated sandstone 

(default) reservoir. The rock is considered to be incompressible for all practical 

purposes.  

4.7 Simulation Results of the Selected Model 

Table 4.5 summarizes the parameters used for the development strategy of gas cap 

reservoir which has grid size dimensions of 120 ft x 120 ft x 20 ft. The pressure and 

production data of the reservoir can be seen from Figure 4.14 to Figure 4.18. 

Table 4.5 : Development strategy for simulation. 

Parameters Values 

Number of production wells 1 

Target production rate of  a well, STB/day 700 

Minimum production rate of a well, STB/day 100 

Well abondonment pressure, psia 1000 

Production period, years 40 

The simulation starts with an oil production rate of 700 STB/day. It continues 

production while bottom hole pressure (BHP) of the well drops to a value of 1000 

psi. At this pressure, control is changed to oil rate control. The well continues to 

produce at constant BHP till the oil rate of the well drops to 100 STB/day. At this 

time the simulation stops. 

 

Figure 4.13 : Reservoir pressure vs time plot. 
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Figure 4.13 shows the change in average reservoir pressure with time. In year 2050, 

the reservoir pressure stabilizes since the production ceases due to the minimum 

production rate constraint for the well.  

 

Figure 4.14 : Oil production rate vs time plot. 

In Figure 4.14, oil production rate starts to decrease after year 2043 since the bottom 

hole pressure of the well reaches to 1000 psi which is the minimum BHP set for the 

well. In year 2050, the oil rate drops to zero since at this time step the minimum rate 

constraint of the well has been satisfied and the simulation stops. 

 

Figure 4.15 : Gas production rate vs time plot. 
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The cumulative oil production curve given in Figure 4.16 stabilizes towards the end 

of the production period since the production rate reaches to the minimum 

production rate assigned for the well and the simulation stops. The same behaviour is 

also seen in the cumulative gas production vs time plot. See Figure 4.17.  

 

Figure 4.16 : Cumulative oil production vs time plot. 

 

Figure 4.17 : Cumulative oil production vs time plot. 
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The cumulative oil production from the reservoir is 8,372,870 STB and the recovery 

factor (RF) is 36.6% at the end of the production period. The cumulative gas 

production is 21,397,670,000 scf.  
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5. ERROR ANALYSIS 

In this part, effects of PVT data (Rs, Rsi, Bo, Boi, Bg, Bgi), production data (Np and Gp) 

and the ratio of the initial gas cap volume to the initial oil volume (m)  will be 

performed on original oil in place (N) calculations. The original oil in place is 

computed to be 22,874,560 STB. This value will serve as a reference to the N values 

computed from the material balance equation and the errors will be computed based 

on this number. MBE is used to calculate N values at each time step. Furthermore, N 

is also determined using the Havlena and Odeh straight line method for both cases 

where m is treated as known and unknown. Figure 5.1 shows the results of N 

calculations from Schilthuis MBE and HO. 

 

Figure 5.1 : Calculations of N from MBE and HO. 

As it is seen clearly in Figure 5.1, the values of the computed N values with MBE 

and HO technique (m is assumed to be known) are very close to each other during 

the whole production period. On the other hand, the results of HO calculations for N 

values in the case where m is unknown are at an average of 0.12 % lower than the 

results of HO calculations of the case where m is known.  
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5.1 Effects of parameters on N (m is known) 

Reference value was taken as the volumetric computation of original oil in place 

(N=22,874,560 STB). The effects of the parameters were presented graphically with 

the results of HO and MBE to compare the results. Errors were considered in the 

following parameters: Bo, Boi, Bg, Bgi, Rs, Rsi, Np, Gp and m. All these parameters 

were multiplied by systematic errors given in Table 5.1 while taking the others 

constant.  

Table 5.1 : Systematic errors applied for the error analysis of MB parameters. 

Sensitivity 
parameter 

Systematic 
error, % 

Rs +2 / -2 

Rsi +2 / -2 

Rs & Rsi +2 / -2 / +10 

Bo +2 / -2 

Boi +2 / -2 

Bo & Boi +2 / -2 / +10 

Bg +2 / -2 

Bgi +2 / -2 

Bg& Bgi +2 / -2 /+10 

Np -10 

Gp -10 

m +50 / -50 

5.1.1 Effects of PVT data 

All PVT parameters were checked twice for +2 % and -2 % systematic errors. When 

analyzing two parameters together such as, Bo and Boi or Rs and Rsi or Bg and Bgi, 

+10 % error was also applied.  

5.1.1.1  Effect of Rs 

Rs value at each time step was multiplied with 1.02 before calculating N value. It is 

important to remember that the initial gas-oil ratio (Rsi) is 818 scf/STB. After one 

year production, pressure decreases to 2965.8 psia and Rs value is 810.5 scf/STB at 

this pressure. If we multiply this value with 1.02, Rs value is getting bigger than Rsi 

and the calculated N value for the first time step is not valid when systematic error is 

applied. So the first calculated value of N is ignored for the analysis of Rs effect on N 

calculations. The errors on N value under the effect of Rs are given in Figure 5.2. 
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Figure 5.2 : Effect of Rs. 

In Figure 5.2, it is seen that MBE calculations results are parallel with HO 

calculation results. +2% error of Rs value and -2 % error of Rs value have opposite 

effects on the N value. +2% error in Rs values increase N values of MBE and HO 

calculations, whereas -2% errors applied to Rs decrease the calculated N values. The 

increase of N value due to +2% error in Rs is 95.4 % after 2 years of production and 

it is getting smaller as recovery factor of the field increases. But it is important to 

note that the error on N value is still around 20% after a 7-year production period 

when recovery factor is 7.8%.  

5.1.1.2  Effect of Rsi 

+/- 2% error was introduced to Rsi value before making material balance calculations. 

The first value of error calculations of N (1
st
 time step) is omitted for -2% error in Rsi 

value case. When we decrease Rsi value by 2 %, this Rsi value is getting smaller than 

the Rs value at this time step. Figure 5.3 shows that a 2 % decrease in Rsi value 

increases N value approximately 100 % after 2 years of production and this increase 

is getting smaller as recovery factor of the field increases. Another point in Figure 

5.3 is that +2 percent systematic error in Rsi decreases N values about 50 % at the 

first time step and this decrease is getting smaller as production continues.  
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Figure 5.3 : Effect of Rsi. 

5.1.1.3  Effects of Rs&Rsi 

If we assume that +2% or -2% of systematic error is applied to Rs and Rsi values 

together, the error on N values are very small compared to their single cases (Figure 

5.4). The magnitude of the error on N is maximum 2.5 % during the entire 

production period. It means that N value is not affected too much when systematic 2 

percent error on Rs and Rsi is applied together. It can be thought that these errors of 

Rsi and Rs on N value are cancelling each other.  

 

Figure 5.4 : Effects of Rs&Rsi.  
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Figure 5.5 shows the effects of Rs, Rsi and Rs&Rsi on N on the same graph. Note that 

the error on N when +2 percent error is introduced to Rs and Rsi is very close to zero 

as if the errors in Rs and Rsi are cancelling each other. However when the systematic 

error is increased to 10%, the error on N is getting larger.  

 

Figure 5.5 : Effects of Rs, Rsi and Rs&Rsi. 

5.1.1.4  Effect of Bo 

When Bo values are multiplied by 1.02 to include 2% systematic errors, it is seen that 

Bo values from year 2014 to 2018 (included) are bigger than the Boi value. Table 5.2 

gives the calculations of Bo values at these time steps. So these calculations of N 

values with +2% systematic errors are excluded in the plots.   

Table 5.2 : Error introduced Bo values. 
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Date P,psi Bo,rb/STB
Bo,rb/STB (+2% 

error introduced)

2013 Pi=3017.54 Boi=1.40153

2014 2965.80 1.3990 1.4270

2015 2926.21 1.3935 1.4214

2016 2888.35 1.3883 1.4160

2017 2851.44 1.3831 1.4108

2018 2815.70 1.3782 1.4057

2019 2781.34 1.3734 1.4009
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Figure 5.6 illustrates the results of the effect of Bo on N calculations. +2% and -2% 

systematic errors were applied to Bo values. -2% systematic error on Bo gives 

hypersensitivity (hypersensitivity is a term used to define the errors greater than 

100%) on Havlena-Odeh calculated N values and MBE calculated N values in the 

first 3 years production period.  Table 5.3 gives these hypersensitivity values.  

Table 5.3 : Hypersensitivity values of -2% of Bo errors on N. 

 

When +2% error on Bo applied, the resulting N values  are 29 % and 21.1 %  smaller 

than the reference value at the end of a 6-year production period (year 2019) for 

Havlena - Odeh and MBE calculations, respectively. 

  

Figure 5.6 : Effect of Bo. 

5.1.1.5  Effect of Boi 

Table 5.4 tabulates the Bo values which are greater than Boi value when Boi value is 

multiplied by 0.98 to include -2% systematic errors for Boi effect on N. For that 

reason, MB calculations from year 2014 to 2018 (included) were not shown in the 

plot of Boi effect (Figures-5.7 and 5.8). 
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Table 5.4 : Error introduced Boi value. 

 

Boi effect of +2% systematic error on N value shows hypersensitivity when recovery 

factor is low (Figure 5.7). Table 5.5 gives these hypersensitivity values.  

Table 5.5 : Hypersensitivity values of +2% of Boi errors on N. 

 

 

Figure 5.7 : Effect of Boi (Hypersensitivity). 
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that N value resulted from Havlena-odeh calculations under the influence of +2 % of 

Boi error is 77% higher than the reference value in the year 2017 when the recovery 

factor is 4.47% and it is 31.8 % higher than the reference value when RF is 10%. The 

influence of -2% error on Boi has relatively low effect than +2% error on Boi. At the 

end of 6-year production period, the error on N is 50% when +2% error on Boi, 

however, it is 30% when -2% error on Boi is applied.  

 

Figure 5.8 : Effect of Boi. 

5.1.1.6  Effects of Bo&Boi 

If +2% or -2% of systematic error is applied to each of Bo and Boi values together, 

the errors on N are very small compared to their single cases (Figure 5.9). The 

magnitude of the error on N is maximum 1.4 % during the entire production period. 

It means that N value is not affected too much when systematic 2 percent error on Bo 

and Boi is applied together.  

+10% error for Bo and Boi was also applied on the calculated values of N to see 

whether they are offsetting each other or not in the model given (Figure 5.10). This 

has proved that if systematic error was applied to Bo and Boi values together, the 

magnitude of error on N does not change too much. It means that the effects of the 

same magnitude of errors for Bo and Boi are small on the calculated values of N.  
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Figure 5.9 : Effects of Bo&Boi. 

 

Figure 5.10 : Effects of Bo, Boi and Bo&Boi. 
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As shown in Table 5.6, when Bg value is multiplied by 0.98 to include -2% 

systematic errors for Bg effect on N value, Bg value at the first time step becomes 

lower than Bgi value. Since it is unphysical to have such a Bg value, MB calculations 

at -2% of Bg error on N at the first time step (year 2014) is excluded and not shown 

in the plot of Bg effect (Figure 5.11). 
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Table 5.6 : Error introduced Bg values. 

  

Figure 5.11 says that the error on N when -2% error of Bg value is applied is much 

more higher than the errors on N when +2% error of Bg value is applied at the end of 

2-year production period. At this time step, the error on N (HO result) is nearly 95% 

when -2% error applied to Bg.   

 

Figure 5.11 : Effect of Bg. 

5.1.1.8  Effect of Bgi 

As discussed in the case of -2% systematic errors for Bg effect on N value,  when Bgi 

value is multiplied by 1.02 to include +2% systematic errors for Bgi effect on N 

value, Bg value at the first time step becomes lower than Bgi value (Table 5.7). 

Therefore, MB calculations at +2% of Bgi error on N at the first time step (year 2014) 

are excluded in the plot of Bgi effect (Figure 5.12). 

  

Date P,psi Bg, rb/scf
Bg, rb/scf (-2% 

error introduced)

2013 Pi=3017.54 Bgi=0.00093324

2014 2965.80 0.000947962 0.000929002

2015 2926.21 0.000959522 0.000940332

2016 2888.35 0.000971042 0.000951621
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Table 5.7 : Error introduced Bgi value. 

  

Figure 5.12 illustrates the results of Bgi effect on N value. +2% and -2% systematic 

errors were applied to Bo values. The plots of the Bgi effect are very similar to the 

plot of Bg effect (Figure 5.11). However, the error values on N are reversed for +2% 

error of Bgi and -2% error of Bgi.  

 

Figure 5.12 : Effect of Bgi. 

5.1.1.9  Effects of Bg&Bgi 

As shown in Figure 5.13, when +2% or -2% of systematic error is applied to each of 

Bg and Bgi values together, the maximum error on N values is 1.4 % during the entire 

production period.  

One can see from Figure 5.14 that although +2% error applied to Bg and Bgi together 

has small effect on the calculated values of N, the effect increases when +10% error 

for Bg and Bgi is used in the calculations.   
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Figure 5.13 : Effects of Bg&Bgi. 

 

Figure 5.14 : Effects of Bg, Bgi and Bg&Bgi. 

5.1.1.10  Effects of all PVT data 

In order to see the effects of each PVT on the calculated values of N together, 

Havlena-Odeh results were illustrated in this section.  
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Comparison of all PVT parameters (+2 % error) 

Figure 5.15 shows the comparison of the errors on N value when +2% systematic 

error is introduced to PVT parameters.  

N value decreases when one of Bo, Bg and Rsi is increased by +2 %. On the other 

hand, as we increase the values of one of Boi, Rs and Bgi by 2%, N values increase. 

The most effective parameter is Boi in the error on N. Bgi and Rs are less effective 

than Boi on the results of error calculations on N and their magnitudes are nearly the 

same during the whole production period. Another point in Figure 5.15 that, all 

errors on N converges to zero towards the end of the production period.  

 

Figure 5.15 : Comparison of the effects of all PVT data (+2%).  

Comparison of all PVT parameters (-2 % error) 

As seen in Figure 5.16, when we decrease the value of a PVT parameter by 2 %, 

results are completely opposite to the results shown in Figure 5.15. N values increase 

when one of Bo, Bg , Rsi, is decreased by 2 %. On the other hand, the decrease in the 

values of each Boi, Rs or Bgi by 2% causes the calculated N values decrease. When -

2% error for a PVT parameter is introduced to material balance calculation, we see 

that the most effective parameter is Bo in this case. The effects of Bg and Rsi are very 

similar to each other.  
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Figure 5.16 : Comparison of the sensitivities of all PVT data (-2%). 

5.1.2 Effects of production data (Np&Gp) 

Production data (Np&Gp) are generally measured correctly since the companies gain 

their revenues from the sales of oil and gas. In our case, assuming that the 

equipments used for measurement are not well calibrated and some measurement 

errors occur in the measurement of production of oil and gas and -10% error exist on 

the measured values of Np and Gp. The errors on N values from MBE and Havlena-

Odeh due to the effects of Np and Gp are represented in Figure 5.17.  

 

Figure 5.17 : Effects of Np and Gp. 
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The errors on N due to the error on Np is less than the error due to the error in Gp. It 

is also important to note that the error on N due to Np is getting smaller after 20% 

recovery of oil. However, the error on N due to the error on Gp is increasing after 

20% of recovery. The reason for this behaviour may be related to the increase in gas 

production. See Figure 4.16. 

5.1.3 Effect of m value 

The ratio of initial gas volume to initial oil volume (m) is higly uncertain parameter 

in the material balance calculations. In our case, although we exactly know the value 

of m, we will introduce +/- 50% error to the value of m in order to analyze the effect 

of m on N. The errors on N value resulting from the effect of m are represented in 

Figure 5.18. 

 

Figure 5.18 : Effect of m. 

As shown in Figure 5.18, when m value is estimated 50 % higher than the original 

value, the calculated N values decrease by an average of 22%. However, the 

underestimation of m value 50% lower than the true value gives N values 

approximately 40% more than the reference value of N. The errors on N are 

stabilizing after 5-year production period when errors of m are introduced to each 

time step calculations. In other words, the errors on N are nearly the same during the 

entire production period and the errors are not converging to zero as in the case of 

the effects of PVT data on N.  
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5.2 Effects of parameters on N (m is unknown) 

In this section, assuming that m value is not known, HO technique described in 

Section 3.4.1 will be applied to estimate the values of N and m values from the plot 

of F/Eo versus Eg/Eo. +2% systematic errors for PVT and -10% systematic errors for 

production data will be applied.  Figure 5.19 shows the results of these sensitivity 

results.  

 

Figure 5.19 : Error on N values for PVT data from F/Eo vs Eg/Eo plot. 

In Figure 5.19, it is seen that the calculated N values when applied +2 error to Rsi or 

Bo are all more than 100% less than the reference value of N. The errors on N for 

other PVT parameters are between -80% to 200%. Another important point is that 

the errors on N are nearly constant during the entire production period for all PVT 

parameters.  

The results of production data effect can be depicted in Figure 5.20. The behaviour 

of the plots are parallel with the method of HO when m is known. The maximum 

errors on N resulting from the errors in Np and Gp are more than the case where m is 

known.  
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Figure 5.20 : Error on N values for production data from F/Eo vs Eg/Eo plot. 

Figure 5.21 shows the results of m calculations from the plot of F/Eo vs. Eg/Eo for 

different parameters. All errors on m are more than 100 %.  

 

Figure 5.21 : Calculation of m from F/Eo vs Eg/Eo plot. 

The comparison of the results of the methods of HO when m is known or m is 

unknown states that the method of plotting F/Eo vs. Eg/Eo for our gas cap reservoir 

with no water injection or aquifer support shows poor tolerance to PVT data 
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uncertainty. On the other hand, F/Eo vs. Eg/Eo plot gives more tolerable results to 

production data uncertainty. 

5.3 Error Analysis by Sensitivity Coefficients 

Sensitivity coefficients can be used to understand the behaviour of the effects of the 

parameters to material balance calculations. They are used to determine which 

parameter has more effect on N value calculations and to understand the behaviour of 

the plots. Appendix-A summarizes the derivation of sensitivity coefficients for each 

variable in MBE for a gas cap reservoir without water influx and compressibility 

terms. It is important to note that the derivatives are taken with respect to ln 

parameter to be able to compare the results with the same unit on the same graph. 

The procedure for analyzing the sensitivity coefficients of Bo, Bg, Rs, Boi, Bgi, Rsi, Np, 

Gp and m value is the same as material balance calculations when error introduced to 

a parameter while taking the other parameters at their true values. Systematic 

positive errors were applied based on Table 5.1. The calculations giving unphysical 

values for PVT data were not shown in the plots as explained in above sections. 

Figure 5.22 shows the plots of sensitivity coefficients of each PVT variable in the 

MBE at each time step. In Figure 5.22, the hypersensitivity of Boi appears to be 

analogous to the hypersensitivity of the error on N plot (refer to Figure 5.7). Figure 

5.23 is just a magnified view of Figure 5.22 to see the results better.  

Figure 5.23 reveals that the most effective PVT parameter in MBE is Boi. Bgi and Rs 

are the parameters which show also big influences on N calculations. The effects of 

other PVT parameters (Bo, Bg, Rsi) to N calculations are rather less than Bgi and Rs 

sentivities. The results of sensitivity coefficients vs time plot are parallel with all 

PVT sensitivities (+2%) plot given in Figure 5.15. While the errors on the PVT 

parameters such as Boi, Bgi and Rs are increasing the N values, the other PVT 

parameters such as Bo, Bg and Rsi are decreasing the values of N. The magnitudes of 

the sensitivity coefficients for Bgi and Rs are nearly the same through the entire 

production life of the field. The same situation is true for the sensitivity coefficients 

of Bg and Rsi.  
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Figure 5.22 : Sensitivity coefficients for PVT data vs time plot. 

 

Figure 5.23 : Sensitivity coefficients for PVT data vs time plot (magnified). 

As shown in Figure 5.24, the order of magnitudes of the sensitivity coefficients for 

production data (Np and Gp) and m value are very low as compared to the order of 

magnitudes of the sensitivity coefficients of PVT parameters although the error 

values introduced to production data and m value were chosen bigger than errors 

chosen for PVT parameters. The behaviours of Gp and m curves are in line with the 

curves given in Figure 5.17 and Figure 5.18. In other words, the curve for m is nearly 
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constant during the entire production period, the values of sensitivity coefficient for 

Gp are increasing after 20% recovery. The behaviour of Np curve is different than the 

curve given in Figure 5.17.  

 

Figure 5.24 : Sensitivity coefficients for production data and m value vs time plot. 
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6. CONCLUSIONS 

This study presents an analysis of the errors on the original oil in place calculated 

from material balance methos when errors are present in PVT, production data and m 

value. Mainly, the following conclusions can be drawn from the study: 

OOIP calculations based on material balance methods are strongly affected by data 

uncertainty. Uncertainty due to data errors can be found in production data, PVT data 

and the geological parameter m.  

The impacts of PVT errors on material balance calculations are observed to be 

significant during the early life of the reservoir for the cases considered in this study. 

However, the errors on the calculated values of N is approaching zero for all PVT 

cases studied towards the end of the production period. 

MBE gives better results of OIIP than HO calculations when errors are introduced in 

the material balance parameters. It is an expected result since HO technique, applied 

for the case where m is known, uses several points to calculate OIIP value from the 

slope of the F vs Eo+mEg line and all these points include errors. However, MBE 

uses only two sets of data points (at pressures pi and p) and hence is only affected by 

the errors of the parameters at these data points. 

When Rs and Rsi values contain +/-2 percent of systematic errors together in the MB 

calculations, the magnitude of the error on N is small during the entire production 

period. It means that N value is not affected too much when +/-2 percent of 

systematic error on Rs and Rsi is applied together. It can be thought that these errors 

in Rsi and Rs have a cancelling effect on the calculated N values. However when the 

systematic error of +10 % introduced to Rs and Rsi values together, the error on the 

calculated N values is also around 10% while the well produces at constant rate. The 

error on N decreases as the production rate of the well decreases. 

The combined effect of Bo and Boi or Bg and Bgi errors (+/-2%) on the calculations of 

N values from both MBE and HO methods is smaller than the combined effect of Rs 

and Rsi errors.  
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A general conclusion can be drawn from the results of the error analysis on PVT 

parameters that when one of the Bo, Bg or Rsi is increased by +2 %, the calculated N 

values are lower than true OIIP and N values are greater than the true OIIP if we 

introduce +2% error in the one of PVT parameters Boi, Rs and Bgi. Similarly, N 

values increase when Bo or Bg or Rsi is decreased by 2 %. On the other hand, as we 

decrease the values of one of Boi, Rs, Bgi by 2%, N values decrease. The error on N is 

very huge mainly at the early life of the production period and continuously 

decreases towards the end of the production period. 

In the case of error analysis of the production data (Np and Gp), the error on N due to 

error of Np is less than the error due to Gp. It is also important to note that the error 

on N due to Np is getting smaller after 20% recovery of oil for the case studied. 

However, the error on N due to the error on Gp is increasing after 20% of recovery.  

The estimation of m value 50 % higher than the true value of m resulted in calculated 

values of N that are lower than the reference value and the error on N is nearly 

constant during the entire production period. On the other hand, the underestimation 

of m value gives the calculated values of N higher and the error is 2 times more than 

the overestimated m values case. The errors on N are also constant during the whole 

production period as in the case of overestimated m case.  

The method of plotting F/Eo vs. Eg/Eo for gas cap reservoir with no water injection 

and without aquifer support shows poor tolerance to PVT data uncertainty. On the 

other hand, F/Eo vs. Eg/Eo plot gives more tolerable results to production data 

uncertainty.  

Sensitivity coefficients explain the effects of each parameter in material balance 

calculations. The results of the sensitivity coefficient calculations show that Boi, Bgi 

and Rs are the parameters which have large effects on N calculations.  The other PVT 

parameters have rather less sensitivity to N calculations. All results are in line with 

the behaviour of percentage error curves of N for the error analysis of PVT 

parameters. 
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APPENDIX A:  

Derivation of Sensitivity Coefficients  

Assuming that the natural net water influx is negligible (We-WpBw = 0), the effect of 

water and pore compressibilities can be considered negligible and there is no water 

injection or gas injection, the material balance equation for a gas cap reservoir can be 

expressed as: 
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Rearranging Equation-A.2 for Bo gives, 
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Taking derivative of N with respect to Bo gives, 
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Here, it is important to note that the unit of        is STB
2
/rb. If we take the 

derivative of N with respect to ln(Bo) then we have 
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The unit of the derivative of N with respect to ln of any parameter will be STB. 

Hence, it is more consistent to compare the results with ln derivatives. 

In the same way, taking the derivatives of N with respect to ln of other variables 

gives the following sensitivity coefficients: 
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Sensitivity coefficient based on Boi 
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Sensitivity coefficient based on Bg 
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Sensitivity coefficient based on Bgi 
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Sensitivity coefficient based on Rs 
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Sensitivity coefficient based on Rsi 
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Sensitivity coefficient based on Np 
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Sensitivity coefficient based on m 

 N

       
 

 m   (
  

   
  ) [         (     )]

[                     (
  

   
  )]

    (A.12) 

Sensitivity coefficient based on Gp 

If we write Equation-A.2 in terms of Gp by putting Gp/Np instead of Rp, we get 
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(A.13) 

Taking the derivative of N with respect to lnGp gives 
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