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SUMMARY

In this thesis, dynamic systems on time scales is studied. The basic definitions
and theorems about the time scales are given. Dynamic inequalities and comparison
methods are developed on arbitrary time scales with initial time difference. Stability
theory of dynamical systems on time scales that have initial time difference is
developed with the help of Lyapunov-like functions. Boundedness criteria of
dynamic system on time scales is established with initial time difference by
employing Lyapunov-like functions. The behavior of solutions of perturbed dynamic
system with respect to original unperturbed dynamic system that have initial time
difference are investigated on arbitrary time scales. Notions of stability, asymptotic
stability and instability with initial time difference are introduced. Sufficient

conditions of stability properties are given with the help of Lyapunov like functions.

Key Words: Time Scales; Stability; Initial Time Difference (ITD); Lyapunov
Functions; Boundedness; Comporison Method.



OZET

Bu tezde zaman skalasinda dinamik sistemler ¢aligildi. Zaman skalas1 hakkinda
temel tanim ve teoremler verildi. Baslangic zaman farkli dinamik esitsizlikler ve
karsilastirma metodu keyfi zaman skalasinda gelistirildi. Liapunov (Lyapunov)
fonksiyonlar1 yardimiyla baslangi¢ zaman farki olan dinamik sistemler icin keyfi
zaman skalasinda kararlilik teorisi gelistirildi. Lyapunov fonksiyonlari ile baglangig
zaman farki olan dinamik sistemler i¢cin keyfi zaman skalasinda simrlihk kriteri
verildi. Keyfi zaman skalasinda baslangic zaman farki olan pertdrb dinamik
¢Oziimleri orijinal pertdrb olmayan dinamik sistemin ¢oziimlerine gére davranmisi
incelendi. Baslangic zaman farkli kararlilik, asimptotik kararlilik ve kararsizlik
kavramlar1 tanitildi. Liapunov fonksiyonlar1 yardimiyla kararlilik 6zellikleri igin

yeterli kosullar verildi.

Anahtar Kelimeler: Zaman Skalasi1; Kararhlik; Baslangic Zaman Farki (ITD);
Lyapunov Fonksiyonu; Simrhhik; Karsilastrma Metodu.
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1. INTRODUCTION

Differential and difference equations are among the most important
mathematical tools used in producing models of physical and biological sciences and
engineering. Difference equations are also appears in the study of discretization
methods for differential equations. Several results of differential equations do just
translate themselves into analogous results in difference equations. This naturally
raises the question whether it is possible to unify the theory of differential and
difference equations into a single set up. The answer is yes and we now hawe
necessary calculus and the fundamental existence theory for dynamic systems on
times scales [1] - [3], [11], [14]. A brief of results of this theory is given in Chapter
2. From a modeling point of view, it is perhaps more realistic to model a
phenomenon by a dynamic system which incorporates both continuous and discrete
times, namely, time as an arbitrary closed set of real called time scales. Many
phenomenons in physical and biological sciences and engineering are interpreted in
terms of dynamic equations and their solutions. As a result, stability theory plays a
central role in systems theory and engineering. There are different kinds of stability
problems that arise in the study of dynamical systems on time scale. Asymptotic
stability, exponentially asymptotic stability, eventual stability, Lipschitz stability,
practical stability, stability of conditionally invariant sets are examples of stability
problems that studied in the literature [4] - [6], [9], [10], [12] - [14].

The investigation of initial value problems with a perturbation in the space
variable is well known when the perturbation is restricted to the space variable with
initial time unchanged [4] - [6], [9], [10], [12] - [14]. Howewer, in real world
applications, it is possible to make an error in the initial time in addition to the initial
position. This results in a problem of measuring the difference of two solutions
which differ in initial time and initial position. So far, several studies have been
made on this problem to explore the stability, boundedness, etc., criteria for
differential systems relative to initial time difference [17], [19] - [22], [24], [26],
[27]. In Chapter 3, we investigate stability and boundedness criteria for dynamic
systems on time scales relative to initial time difference by using comparison
method. In Subsections, we present definitions and necessary background material.

We discuss and compare the differences between classical notion of stability and the



notion of initial time difference (ITD) stability. We obtain new dynamic inequalities
and comparison results on time scales relative to initial time difference. In the
framework of these results we obtain several ITD-stability and 1TD-boundedness
properties from the stability and boundedness properties of the comparison dynamic
system. Finally, as an application of these new results we give examples.

In real world applications, it is necessary to consider a particular dynamic
system with a perturbation term. In addition to perturbing the given particular
dynamic system, it is possible to make an error in initial times as well as in initial
positions. Therefore, one needs to investigate the qualitative and quantitative
properties of a given particular dynamic system under these perturbations. A
principal technique employed in stability theory is investigating stability properties
of a particular dynamic system under small perturbations. This technique is
employed in many ways [5], [9], [13] - [15]. Another techniques are also used in [5],
[7]1 - 9], [13] - [15]. In [21], [22], [26], [27] the authors considered the case that
perturbed dynamic system and original unperturbed dynamic system which have
different initial time. In Chapter 4, we consider the problem of determining the
behavior of solutions of a perturbed dynamic equation with respect to those of
original unperturbed dynamic system that have initial time difference (ITD). We
consider this problem on arbitrary time scales, nonempty closed subset of real
numbers, and therefore we obtained a general result that can be applied discrete and
continuous cases simultaneously. We begin with a preliminary section which

includes the basic concepts and definitions. Then we give the obtained nowvel results.



2. TIME SCALES FUNDAMENTALS

In this chapter we give the main definitions and characteristics of the calculus
on time scales initiated by Aulbach and Hilger [1], [11] which comprise those
features of the differential and difference calculus as they are relevant for the
development of a qualitative theory of dynamical systems. We note that the contents
of such a development of some higher ranging calculus is quite extensive. So we
suffice only with giving the essentials necessary for the further aims of this work and
refer to [2], [3], [14] for more details.

We begin this chapter with basic definitions of time scales and give the special
type of Induction Principle that is used as a main tool in the arguments. Next, we
continue by paying special attention to concepts of differentiability of a function on
time scales. After that, we introduce the integrability of a function on time scales. In
this section we give the concepts such as continuity, right dense (rd)- continuity,
regularity of a function which posses important roles in the analysis of discrete and
continuous scales in a unified manner. As a result of these concepts, we end this
chapter by considering exponential functions on time scales, structure of dynamical
systems on time scales and some dynamic inequalities that will be employed
throughout the thesis.

2.1. Basic Definitions of Time Scales

A time scale is an arbitrary nonempty closed subset of real numbers. It is
denoted by T. Thus R, Z, i.e., the real numbers, the integers and the closed interval
[0,1] are examples of time scales. Q, R\Q, i.e., the rational numbers, the irrational
numbers and the open interval (0,1) are not time scales. We assume throughout that
a time scale T has the topology that it inherits from the real numbers with the
standard topology and, for our future purposes, unbounded from above with to =0
as a minimal element.

Because of the fact that a time scale is not necessarily connected, we define the

forward and backward jump operators on T as follows.



Definition 2.1: Let T be a time scale. For t € T we define the forward jump operator
o:T - T by

o(t)=inf{s€T,s >t} (21)
while the backward jump operator p: T — T is defined by
p(t) = sup{s € T,s < t} (2.2)

Apoint t € T is called right dense if o (t) = ¢, right-scattered if o(t) > t, left
dense if p(t) =t, left scattered if p(t) <t, dense if t = o(t) = p(t), isolated if
o(t) >t > p(t).

Finally, the graininess function u: T — R,, which measure the gap between a

point t and its right neighbor, is defined by

u(t) =o(t) —t. (2.3)

We need below the set T* is derived from the time scale T as follows : If a
time scale T has a maximal element which is also left-scattered then it is called a
degenerate point. T* represents the set of all non-degenerate points of T. This set

cuts off an eventually existing isolated maximum of T. In summary,

« _ (T\(p(supT),supT] if supT < oo
= { T if supT = o0 (24)

Example 2.1: Let us briefly consider the two examples T =R and T = Z.
o If T= R,then we haveforanyt e R
o) =inf{seT,s>t}=inf(t,o) =t (25)

and similarly p(t) = t. Hence every point t € R is dense. The graininess function
u turns outto be



u(t) =0 forall teR; (2.6)

o If T = Z,then we have forany t € Z

ot) =inf{seT,s>t}=inf{t+1,t+2,..}=t+1 (2.7)

and similarly p(t) =t —1 . Hence every point t € Z is isolated. The graininess

function u is the case is

u(t) =1 forall ter. (2.8)

A basic tool which will be employed in the proofs later is contained in the

following theorem as an induction principle.

Theorem 2.1: Let t, € Z and assume that {A(t): t € [to, o)} is a family of statements
satisfying:

1) The statement A(t,) is true.

1) If t € [to, ) is right-scattered and A(t) is true, then A(a(t)) is also true.

1) If t € [to,0) is right-dense and A(t) is true, then there is a neighborhood U of
t such that A(s) is true forall s € U n (t, ).

IV) If t € (to, o) is left-dense and A(s) is true for all s € [to, t), then A(t) is true.

Then A(t) is true for all t € [to, ).

Proof 2.1: See [2], [3].0

2.2. Differentiation of Functions on Time Scales

In this section we consider a function u: T — R and define the so-called delta

(or Hilger) derivative of u at apoint t € T*



Definition 2.2: Assume that u: T — R is a function and let t € T*. Then we define
delta derivative u2(t) at t to be the number (provided it exists) with the property that

given any € > 0, there is a neighborhood N of t such that
[[u(e(®) —u(s)] — b (O (O)[a(t) — sl < elo(t) —s| VSEN (2.9)
Alternatively one can define,

u(o (D) ~u(s)

s—t,s#0(t) O'(t) —S

UA(t) = (2.10)

Theorem 2.2: Assume u: T — R is a function and let t € T*. Then we have the

following:

i) If u is differentiable at ¢, then u is continuous at t.

i) If wis continuous at t and t is right-scattered, then u is differentiable at t with

u(o(®) ~u(®)

ul(t) = 211
1i) If t is right-dense, then u is differentiable at t iff the limit
1imw (2.12)
s>t t—s
exists as a finite number. In this case
t —_
WA(0) = 1im XD TS (2.13)
st t —
iv) If w isdifferentiable at ¢, then
u(a () = ule) + p®)u(0). (2.14)

Proof2.2: See [2], [3].0



Example 2.2: We consider thetwo cases T =R and T = Z.

o If T = R, then Theorem 2.2 (iii) yields that u: R — R is delta differentiable at
t € Riff

u (t) = lim—u(t) —us)

215
lim—— (2.15)

exists, i.e., iff u is differentiable (in the ordinary sense) at t. In this case we then
have

u(t) —u(s) _
t—s

ul(t) = lim u'(t) (2.16)

by Theorem 2.1 (iii).

olIf T =7, then Theorem 2.1 (ii) yields that that w:Z - R is delta
differentiable at t € Z with

_u(e@®)—u@®)  ult+1) —u@)
IG) B 1 B

ut(t) u(t +1) —u(®) = Au()  (2.17)

where A is the usual forward difference operator defined by the last equation

above.

Theorem 2.3: Assume u, w: T — R are differentiable at t € T¥. Then:

i) Thesumu +w: T = R is differentiable at t € T* with

(u+ w)2(t) = ul(t) + wh(); (2.18)

i) For any constant @ € R, the function au: T — R is differentiable at t € T* with

(aw)(t) = au(t); (2.19)



iii) The product uw: T — R is differentiable at t € T* with
Ww)2 () = ut(Ow(D) + u(a(@®))wa () = u@w(®) + v* Ow(o(@®));  (220)

iv) If u(t)u(a(t)) # 0, then % is differentiable at t € T* with

1\A B —ul(t) _
(@) ©= 1 (Ou(o®)’ (221)
v) If w@®w(a(t)) # 0, then % is differentiable at t € T* with
UN\A A Ow(t) —u(®)wl(@®)
(=) = . (222)

w(®)w(a(t))
Proof 2.3: See [2], [3].0

In the course of this thesis, we frequently employ the generalized delta

derivatives corresponding to Dini derivatives.

Definition 2.3: For each t € T, let N be a neighborhood of t. Then we define the
upper right Dini derivative D*u (t) by the condition: for a given € > 0, there exists

a right neighborhood N, c N of t such that

u(a(t)) —u(s)

+ub 2.23
T OET < D*ul(t)+¢ for seN,, (2.23)

in case t € T is right-scattered and u(t) is continuous at t we have

u(o(t)) — u(t)

bt =—5

(2.24)

where u(t) = a(t) — t. Alternatively one can define,



u(a(t)) — u(S)_

DTul(t) := su
( ) s—t,s#0(t) o(t)—s

(2.25)

2.3. Integration of Functions on Time Scales

Now, we define a class of functions which are integrable on arbitrary time

scales. To achiewve this, we first introduce the following two concepts.

Definition 2.4: A function u: T — R is called regulated provided its right-sided
limits exist (finite) at all right-dense points in T and its left-sided limits exist (finite)

atall left dense points in T.

Definition 2.5: A function u: T — R is called rd-continuous provided it is continuous
at right-dense points in T and its left-sided limits exist (finite) at left-dense points in

T. The set of rd-continuous functions u: T — R will be denoted by C, (T, R).

The following theorem gives some result about rd-continuous functions and
regulated functions.

Theorem 24: Assumeu: T - R

1) If uis continuous, then u is rd-continuous.

i) If w isrd-continuous, then w is regulated.

1ii) The jump operator o is rd-continuous.

iv) If w is regulated or rd-continuous, then so is u( o (t)).

v) Assume u is continuous. If w:T — R is regulated or rd-continuous, then u o w

has that property too.

Definition 2.6: A continuous function u: T — R is pre-differentiable with (region of
differentiation) D, provided D c T*, T*\D is countable and contains no right-

scattered elements of T, and u is differentiable ateach t € D.



Theorem 25: Let u be regulated. Then there exists a function U which is pre-

differentiable with region of differentiation D such that
UA(t) = u(t) (2.26)
holds forall t € D.

Definition 2.7: Assume u:T — R is a regulated function. Any function as in

Theorem 2.5 is called a pre-antiderivative of w.

We define the indefinite integral of a regulated function u by
fu(t)At =U)+C (2.27)

where C is an arbitrary constant and U is a pre-antiderivative of u.
We define the Cauchy integral by

jsu(t)At =U(s) —U(r) forallr,seT (2.28)

Afunction U: T — R s called an anti-derivative of u: T — R provided
UA(t) = u(t) holds for all t € T*. (2.29)
Definition 2.8: The mapping f: T* x R — R is called rd-continuous if it
i) is continuous at each (t, x) with right-dense or maximal t

and
i) the limits f(t7,x) = limey)-ex f(s,¥) and lim,,_,, f(t,y) exist at each (t,x)
s<t

with left-dense t.

10



2.4. The Exponential Function

In this section we will study linear first order dynamic equations and initial
value problems for them. In fact, we will construct the solution of the initial value
problem

yi=p®)y yt) = (2.30)

explicitly, and we will call this solution the exponential function associated with the
given time scale. Many of the results in this section can be found in [2], [3] and for
more details we refer to them. Before defining the exponential function on time
scales, we must introduce some terminology. So, we now introduce what we call the
Hilger complex plane.

Definition 2.9: For h > 0 we define the Hilger complex numbers, the Hilger real
axis, the Hilger alternating axis, and the Hilger imaginary circle as

e C, :={zE(C:Z¢%},
.]haz{ze(ch:zE]R andz>—%},
o Ay :={ZE(Ch:ZE]R andz<—%},

1 1
ol :={ZE(Ch:|Z+E| =ﬁ}’
respectively. Forh = 0,letCy :=C, R ;:= R, [, := i R,and A, := .

For h > 0, let Z, be the strip Z, :=z € C: —% < Im(2) <% and for h =0

Definition 2.10: For h > 0, we define the cylinder transformation &, : C, — Z, by

& (2) = %Log(l + zh), (231)

11



where Log is the principal logarithm function. For h = 0, we define &,(z) = z for

all z € C.

We call &, the cylinder transformation because when h > 0 we can view Z,
as a cylinder if we glue the bordering lines Im(z) = —% and Im(z) =% of Z,

together to form acylinder.

Definition 2.11: We say that a function p: T — R is regressive provided
14+ u(®)p() #0 forallteT* (2.32)

holds. The set of all regressive and rd-continuous functions p: T — R will be
denoted by R = R(T) = R(T,R).

Definition 2.12: The set R* of all positively regressive elements of R is defined by
e RT=RT(T,R):={peR:1+ ut)p(t) >0 forallt €T}

We now ready to define the generalized exponential function e, (¢,s) on time

scales.

Definition 2.13: If p € R, then we define the exponential function by

e, (t,s) = exp (ftfﬂ(r) (p(r))Ar) fors,t €T (2.33)

where the cylinder transformation &, (z) is introduced in Definition 2.10.

In the following theorem, we list some properties of the generalized

exponential function.

12



Theorem 26: If p,q € R, then

i) ey(t,s) =1and e,(t,t) =1,
ii) e, (a(t),s) = (1 + u(®)p(t))e, (t,s);
iii)

1 .
) = egp (£,5);

. 1
|V) ep (t,S) = m
p ”!

V) e, (t, s)ep (s,r) = e, (t,7r);

vi) e, (t,5)e, (t,5) = e,q,(t,s);

= eep (SI t)y

ey (ts)
vu);m = epeq(t,s)

Proof 2.6: See [2], [3].0
2.4.1. Structure of Dynamical Systems on Time Scales

In this subsection, we introduce the structure of a dynamical system on time
scales.

Definition 2.14: The first order linear dynamic equation
y* =p®)y(® (2.34)
is called regressive if p € R.

Theorem 2.7: Suppose (2.34) is regressive. Let t, € T and y, € R. Then the unique
solution of the initial value problem

yAi=p@®Oy®)  y(ty) =y, (2.35)

is given by
y() =e,(tto)¥ (2.36)

13



Definition 2.15: If p e Rand f:T — R is rd-continuous, then the dynamic equation
y*=p®y® + f(t) (2.37)
is called regressive.

Theorem 2.8: Suppose (2.37) is regressive. Let t, € T and y, € R. Then the unique
solution of the initial value problem

yi=p@®y®+ () y(ty) =y (2.38)

IS given by
y(t) = yoe, (t,ty) + f e, (t,0(0)f(v)AT (2.39)

For more details about the dynamical systems on time scales, we refer to [2],
[3], [14].

2.5. Dynamic Inequalities and Comparison Results

In this section, we consider the fundamental dynamic inequalities that are
needed for our future purposes. We restrict ourselves to scalar dynamic equations.
In the following theorem, we give a result relative to a system of strict dynamic

inequalities.

Theorem 29: Let T be a time scale. Let v,w: T - R be mappings that are
differentiable at each t € T* satistying

A < g(t,v(®), forteT (2.40)
wi(®) > g(tw(t)), forteT (241)

14



where g € C,,;[T X R,R] and g(¢t,x)u(t) is nondecreasing in x for each t € T.
Then v(t) < w(t), forallt € T whenever v(t,) < w(t).

Proof 2.9: See [14].0

Corollary 2.1: If in Theorem 2.9 the inequalities (2.40) and (2.41) is replaced by
vA(t) < g(t,v(®), wi(®) = g(t,w(D)), the conclusion v(t) < w(t), for t € Tis

still valid.

In the next theorem, we give a result similar to that of Theorem 2.9 but in this

case we consider non-strict dynamic inequalities.

Theorem 2.10: Assume the hypotheses of Theorem 2.9 with (2.40) and (2.41)
replaced by

vA@) < g(t,v(®), forteT (242)
wh(® = g(t,w(t)), forteT (243)

Suppose further that for x > y and t € T is right dense

gt x)—gt,y) SLlx—y), L>0 (2.44)

Thenv(t) < w(t), for all t € T whenever v(t,) < w(t,).

Proof 2.10: See [14].0

Definition 2.16: Let r(t) be a solution of the scalar dynamic equation u® =
gt, u(t)) u(ty) =wugyon|ty,ty+a). Then r(t)is said to be a maximal solution if,
for every solution of u? = g(t,u(t)) wu(ty)=u, existing on [t,,t, + a), the
inequality

u(t) <r(v), t € [tg,ty+a) (245)

holds. A minimal solution p(t) may be defined similarly by reversing the inequality
(2.45).

15



An important technique in the theory of differential equations is concerned
with estimating a function satisfying a differential inequality by the extremal
solutions, of the corresponding differential equation. One of the results that is widely

used is the following comparison theorem:

Theorem 2.11: Let g € C,4[T X R,R] and g(t,x)u(t) is nondecreasing in x for
each t € T. Let m:[¢t,, ty +a)r = R be a mapping that is differentiable for each
t € [ty to + a)y satisfying

mt(©) < g(t,m()),  fort€ [ty ty+ a). (2.46)

Then, m(t,) < u, implies that m(t) < r(t), t € [ty t, + a), where r(t) is the
maximal solution of the scalar dynamic equation u® = g(t,u(t)) u(ty)=1u,

existing on [ty,ty + a)g.
Proof 2.11: See [14].0
We now give Gronwall inequality on time scales.

Theorem2.12: Lety,f € C,;andp € R*, p = 0. Then

t

y() < f(t) +j y(@p(t)At forallt €T (247)

to
implies

t

y() < f(t) +f e, (t, O'(T))f(‘[)p(‘[) At forallteT (2.48)

0

Proof 2.12: See [2], [3].
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Corollary2.2: Lety € C,4, p € R*, p = 0 and a € R. Then

y@®)<a+ jty(r)p(r) At forallteT

to

implies
y(t) <ae,(t,ty) forallteT

Proof2.2: See [2], [3].C

(2.49)

(2.50)
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3. STABILITY and BOUNDEDNESS of DYNAMIC
EQUATIONS on TIME SCALES with INITIAL
TIME DIFFERENCE

3.1. Introduction

The qualitative behavior of differential-difference systems has been explored
extensively by employing Lyapunov-like functions and corresponding inequalities
[13], [15], [16]. The inwvestigation of initial value problems with a perturbation in the
space variable is well known when the perturbation is restricted to the space variable
with initial time unchanged [9], [10], [13], [15], [16]. Howewer, in real world
applications, it is possible to make an error in the initial time in addition to the initial
position. This results in a problem of measuring the difference of two solutions
which differ in initial time and initial position. So far, several studies have been
made on this problem to explore the stability, boundedness, etc., criteria for
differential systems relative to initial time difference [13], [20] - [22], [24], [26],
[27].

In this chapter, we investigate stability and boundedness criteria for dynamic
systems on time scales relative to initial time difference by using comparison
method. In Section 2, we present basic definitions and necessary background
material. In Section 3, we discuss and compare the differences between classical
notion of stability and the notion of initial time difference (ITD) stability. In Section
4, we obtain new dynamic inequalities and comparison results on time scales relative
to initial time difference. In the framework of of these results, we obtain several ITD-
stability and ITD-boundedness properties from the stability and boundedness
properties of the comparison dynamic system. Moreover, as an application of these

new results, we give an example.
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3.2. Basic Definitions and Concepts

Consider the dynamic systems

XA =f(t,x), x(ty) =x, fort=t,=0, tt,€T, (3.1)
yA=f(ty), y(@y)=y, fort=1y=0, tTH€T (3.2)

where f € C,4[T xR",R"]. Suppose that the function f is smooth enough to
guarantee existence, uniqueness and right dense (rd)-continuous depence of solutions
x(t) = x(t, to,x0) and y(t) = y(t, 10,y0) (3.1), (3.2); respectively. Assume that
x(t) = x(t, to,x0) is the solution that we shall study stability and boundedness
criteria with respect to it. Set n = 7o — to > 0 and denote S(p) = {x € R™: ||x|| < p}
and S¢(p) = {x € R™||x|| = p} forsome p > 0.

Before we can establish our comparison theorem, stability and boundedness

criteria for dynamic systems we need to introduce the following definitions.
Definition 3.1: The solution x(t) = x(t, to,x,) 0Of (3.1) is said to be

S1) equistable with ITD, if given € > 0 and to € T, there exists § = &(e, to) > 0 and
8 = 8(g,to) > 0 such that ||y (t + 1,Te, Vo) — x(t, to, Xo)|| < & for t > to, whenever
lyo — %ol < § and |n| < &;

$2) uniformly stable with ITD, if (S1) holds with § and § independent of t, € T;

S3) attractive with ITD, if for each € > 0 and ¢, € T, there exist §o = §o(to) > 0,
80 =1230(te) >0 and a T = T(e,to) > 0 such that if ||y, — xol|| < 8o and |n| < &
implies that ||y (t +n,To,Y0) —x(t, to, Xo)|| < efort =ty + T;

S4) uniformly attractive with ITD, if §, and T in (S3) are independent of t, € T;

S5) asymptotically stable with ITD, if (S1) and (S3) hold simultaneously;

S6) uniformly asymptotically stable with ITD, if (S;) and (S,) hold simultaneously.
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Definition 3.2: The dynamic system (3.1) is said to be

B1) equibounded with I1TD, if given & > 0 and t, € T, there exists § = §(a, to) > 0
and B = pB(a,ty) >0 such that |ly(t+n,TeYyo)—x(t to,x0)|| <B for t=t,
whenever ||y, — xo|| < @ and || < 6;

B2) uniformly bounded with ITD, if (B1) holds with 8 and & independent of t, € T;
B3) quasi-ultimately equibounded with ITD, if for each a« > 0 and t, € T, there
exists §,=8,(to)>0 and B, = B,(to) >0 and a T = T(a,to) > 0 such that
[y (t +n,70,V0) — x(t, to,x0)|| < By for t = to+ T whenever |y, — xo|| < a and
Il < 8p;

B4) quasi-uniformly ultimately equibounded with ITD, if g, and T in (B3) are
independent of ty € T;

B5) ultimately equibounded with ITD, if (B1) and (B1) hold simultaneously;

B6) uniformly ultimately equibounded with ITD, if (B2) and (B4) hold

simultaneously.

We now introduce a certain class of function which we need in the sequel.

Definition 3.3: A function ¢(r) is said to belong to the class X if € C,4[T,R,],

©(0) =0, @(r) - oasr — oo and ¢(r) is strictly monotone increasing in .
Definition 3.4: A real-valued function V(t,x) € C,4[T X S(p),R,] with V(t,0) =0

Is said to be positive definite (negative definite)if there exists a function ¢(r) € X

such that the relations holds for (t,x) € T x S(p) respectively;

e V(t,x) = o(llx])
e V(t,x) < —o(llxID

Definition 3.5: A real-valued function V(t,x) € C,4[T X S(p),R,] is said to be

decrescent if a function ¢ (r) € K exists such that

o V(t,x) Z o(llxID), for (tx) €T xS(p).
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Definition 3.6: For a real real-valued function V(¢t,x) € C,4[T X S(p), R,] we
define the Dini-derivatives along the trajectories of (3.1) as follows:

for a given € > 0, there exists a neighborhood V' (¢) of t € T such that

V (o), x(a(®)) =V (s,x(a(6)) = (a(t) = $)f (£, x(1)))
o) —s (3:3)
< DYVA(t,x) + ¢, seN(e), s>t

for (t,x) € T xS(p) incase t € T is right-scattered and V' (t, x(t)) is continuous at

t € T, we have

|4 (J(t),x(a(t))) -V (t,x(t))

+yA = (34)
D*TVA(t, x) o)
where u(t) = o(t) — t. Alternatively one can define;
D*VA(t,x):= lim _sup Y (a(t),x(a(t))) ~V(sx®) (35)

sots#a(t) o(t)—s
Definition 3.7: For a real real-valued function V(t,x) € C,4[T X S(p), R,] we
define the generalized derivatives (Dini-like derivatives) as follows there exists a

neighborhood V'(¢) of t € T such that

A (60.5(0®) - (o)
_V(S,y(O'(t)) — X(O'(t)) — u(t, S){f(t + n,ﬁ(t)) . f(t,x(t))}) ]

<D'VA({t Y —x)+¢, seN(e), s>t

(36)

where u(t,s) = a(t) —s,n > 0andy(t,ty,v,) = y(t +1,79, Vo)
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3.3. Classical and Initial Time Difference (ITD) Notions of
Stability on Time Scales

3.3.1. Classical Notion of Stability

Consider the followings I'VPs on time scales T,

x? = f(t, x), x(ty)=x, fort=ty, te€T (3.7)
x? = f(t, x), x(ty) =y, fort=ty, teT (3.8)

where f € C,4[T X S(p),R"] and S(p) = {x € R":|[x]| < p < o0}.

Assume that f(t,0) = 0 for all t € T so that x = 0 is a null solution of (3.7)
through (t,,0). Now, we can state the well known definitions concerning the
stability of the null solution.

Definition 3.8: The null solution x = 0 of (3.7) is said to be stable if and only if for
each e > 0 and for all t, € T, there exists a positive function § = 6(¢, t,) that is rd-
continuous in ty € T for each € such that

oIl <& implies ||x(t, to, xo)|l < &, for t =ty (39)

If & is independent of t,, then the null solution x = 0 of (3.7) is said to be uniformly

stable. with respect to the solution x (¢, to,xo)-

Definition 3.9: The solution x(t, to,yo) of (3.8) is said to be stable with respect to the
solution x(t, to, xo) of (3.7) for t > t, if and only if given any e >0 and t, €T
there exists a positive function § = § (g, to) > 0 that is rd-continuous in t, for each
€ > 0 such that

lyo— xoll <& implies ||x(t,to,y0) —x(t, to,x0)ll <& for t=t, (3.10)

If § is independent of t,, then the solution of the system is uniformly stable with

respect to the solution x(t, to, xo).
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We remark that for the purpose of studying the classical stability of a given
solution x(t, to, yo) of the system (3.8), it is convenient to make a change of variable.
Let x(t to,xo) and x(t,to,yo) be the unique solutions of (3.7) and (3.8);
respectively. Setting

z(t, to, Yo — xo) = x(t,to,y0) — x(t,to,xo) fort >toand ty € T (3.11)

Then

ZA(t, to,yo - xo) = xA(t, to, yo) - xA(t,to, xO) (312)

ZA(tJ to;)’o - xO) = f(t,Z(t, tO'yO - xO) + x(tl tOr xO)) - f(t,X(t, tO' xO))

) ) (3.13)
z°(t, to, Yo — Xo) = f (£, 2(t, to, Yo — Xo))

It is easy to observe that z(t, to, yo — xo) = 0 is a solution of the transformed system
if yo — xo = 0 which implies that £(t,0) = 0. Since z2(t) = 0 and z(t, t,,0) = 0 is
the null solution, the solution x(t, to,0) = 0 of (3.7) corresponds to the identically
null solution of z2 = f(t,z) where f(t,z(t, to, Yo — Xo)) = f(t, z(t, to, Yo — Xo) +
x(t,to, x0)) — f(t,x(t, to,x0)). Hence, we can always assume, without any loss of
generality, that x(t, to,xo) = 0 is the null solution of the given system (3.7) and we
can limit our study of stability to that of the null solution. Howewer, it is impossible

to do the same transformation for (ITD) stability.
3.3.2. New Notion of (ITD) Stability

Let x(t,to, x0) be a solution of (3.1) and X(t, to,yo) = x(t + 1, To, Vo) Where
x(t, 7o, Yo) IS any solution of the system (3.2) for t > 7, > 0. Let us make a
transformation similar to that in (3.11). Set

Z(t, to, Yo — Xo) = x(t, to,x0) — x(t +1,70,y0)fOrt > toand t, €T (3.14)

Then
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z2(t,to, Yo — x0) = x2(t, to,x0) — x2(t + 1,70, Vo)

) 5 (3.15)
Z2(t,to, Yo —x0) = f(m; t,2(t, to, Yo — X0))

One can observe that even if yo, = x,, z(t,t,,0) is not zero and is not the null
solution of the transformed system and x(t + n,7o,y0), Where x(t,7o,Y0) IS any
solution of the system (3.2) for t > 7o, = 0, does not correspond to the identically
zero solution of z2(t) = f(n; t, z). Therefore, we do not use the stability properties

of the null solution in order to find (ITD) stability properties using this approach.

3.4. Main Results

3.4.1. Dynamic Inequalities and Comparison Results

3.4.1.1. Dynamic Inequalities

We start with the fundamental result in the theory of differential inequalities

parallel to the well known results [13], [14].

Theorem 3.1: Assume that

i)a, B €Cy4[T,R] f €C,y[TxR R]and a,p are a-differentiable for each t € T
and satisfy

B <flta), alt)<x, to=0 (3.16)

BA>f(t.B), Bt >x, To=0 (317)

i) f(t,x)u(t) is non-decreasing in x € Rfor eacht € T;

i) 7o > to and f(t, x) is non-decreasing in t € T for each x € R.

Then

ca®) <p(t+mn), t=to
00((t—77)<ﬁ(t), tZTo,WhereT] =T0—t0>0.
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Proof 3.1: We now prove this cases seperately.

e For convenience let So(t) = B(t +n) so that Bo(te) = B(to+1n) = L(T0) >
xo = a(te). Also BA(t) = BA(t+1n) > f(t +1,Bo(b)), t=t,. We apply the
induction principle to the statement: {A(t):a(t) < B(t+n),t €T, t = to}

—Lett = t,. Since a(to) < Bo(to) = B(to+ 1), it follows that A(t,) is true.

— Let t be right-scattered and A(t) is true. We shall show that A(a(t)) is true.
Using the definition of the derivative for right-scattered point and by (i), (iii), we
have

a(o(t)) — Bo(a(t)) = (@ (t) — B (DIK(E) + (a(t) — Bo(1))
<t a®) = fE+nBo(Nu(®) + (a(t) —Bo(t))  (318)
< (f(ta(t)) = f(&Bo()u(t) + (a(t) — Bo(1))

Then since A(t) is true, by assumptions (ii) it follows that a(a(t)) — Bo(a(t)) <
0. Hence A(a(t)) is true.

— Let t be right-dense and U be a neighborhood of t. Assume that A(t) is true. We
need to show that A(s) istruefors > t,s € U, i.e, a(s) < Bo(s),s >t,s € U.If
this is not true, then there exists a point s, > t, s, € U such that
a(so) = Po(so) and a(s) < Po(s) t <s <so (3.19)
Hence, since the point in U are dense, for sufficiently small h > 0,
a(so —h) —a(so) < Bo(so—h) — Bo(s0) (3.20)

which implies that

a®(so) = Bf(so) (321)
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it follows that f(so, a(s0)) = a®(so) = B8 (s0) > f(so + 1, Bo(50)). Then by (iii)
and (3.19) we obtain that

f(so,a(s0)) > f(so+ 1, Bo(s0)) > f (S0, Bo(s0)) = f(s0,a(s0))  (322)

which is a contradiction. So this proves that a(s) < Bo(s) for s > t, s € U, and

therefore A(s) is true.
— Let ¢t be left-dense and A(s) is true for s < t. We need to show that A(t) is true.

Since a(t) and Bo(t) are A-differentiable, they are continuous. Hence it follows
that

a(t) = lima(s) < lim fo(s) = Fo(t) (329

It remains to show that a(t) = Bo(t) is not possible. Assume to the contrary that

(t) = Bo(t) . Then by (i), (iii)

at(t) = B6 (O < f(t,a(®) — f(t +7.Bo(t))
<fta®) = f(tBo(t)) =0

(3.24)

On the other hand since A(s) is true for s <t and a(t) = fo(t) we have
a(s) — a(t) < Bo(s) — Bo(t). Hence it follows that a”(t) = B§(t). But this
contradict with (3.24).

Therefore we obtain that A(t) is true. Thus by induction principle, we conclude
thata(t) < f(t +1n),t € T, t = to.

e For convenience let ao(t) = a(t —n) so that ay(to) = a(to—1n) = a(ty) <
xo < B(t0). Also af(t) =a’(t—n) < f(t—n,ao(t)) t=10. We apply the
induction principle to the statement: {A(t): a(t —n) < B(t),t € T,t = 10}.

— Lett = to. Since ap(t0) = a(to) < B(70), it follows that A(zo) is true.

— Let t be right-scattered and A(t) is true. We shall show that A(a(t)) is true.
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Using the definition of the derivative for right-scattered point and by (i), (iii), we

have

ao(a(t)) = B(a()) = (af (t) — BAENU() + (ao(t) — B())
<t =nao(®) — f(&BONUE) + (ao(t) — B (D)) (325)
< (f&ao(®)) = f (& B0 + (ao(t) — B(D))

Then since A(t) is true, by assumptions (ii) it follows that ay(o(t)) — B(a(t)) <
0. Hence A(a(t)) is true.

—Let t be right-dense and U be a neighborhood of t. Assume that A(t) is true.
We need to show that A(s) istrue fors >t, s € U, i.e, ap(t) < f(t),s=t, s €

U. If this is not true there exists a point s > t, so € U such that
Ao(So) = P(so) and ay(s) < B(s) t < s < sy (3.26)
Hence, since the point in U are dense, for sufficiently h > 0,
ao(So—h) — ao(so) < B(so —h) — B(so) (3.27)
which implies that
ag (so) = B*(s0) (3.28)
it follows that f(so — 1, @o(S0)) = ab(so) = B2(s0) > f (S0, B(S0)).
Then by (iii) and (3.26) we obtain that f(so, @o(S0)) = f(so — 1, @o(S0)) >
f(so, B(s0)) = f(s0,a0(s0)), Which is a contradiction. So this proves that
ao(s) < B(s)fors > t,s € U, and therefore A(s) is true.
— Let t be left-dense and A(s) is true for s < t. We need to show that A(t) is true.

Since a(t) and B(t) are A-differentiable, they are continuous. Hence it follows
that
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o (t) = lim ao(s) < lim A(s) = B(©) (329)

It remains to show that a,(t) = B(t) is not possible. Assume to the contrary that

o(t) = B(t) . Then by (i), (iii)

ay(t) — A < f(t —n,a0(®) — f(t. B(1))

(3.30)
<fta®) —f(tLo() =0

On the other hand since A(s) is true and a,(t) = B(t) we have ao(s) — ao(t) <
B(s) — B(t) which implies that af(t) = p2(t). But this contradict with (3.30).
Therefore we obtain that A(t) is true. Thus by induction principle, we conclude
thata(t —n) <B(t), teT, t=r100

Theorem 3.2: Assume that

)a, B €Cy4[T,R], feC,4[TxR,R] and a, B are A-differentiable for each t € T
and satisfy

a’ < f(t,a), a(to) <xo te=0

(331)
A= f(t.B), BEo)=x0 To=0

i ftx)—ft,y)<L(x—y),x=y, L>0andte€T;
i) f(t, x)u(t) is non-decreasing in x € Rfor eacht € T,

IV) To > toand f(t,x) is non-decreasingint € T for each x € R.

Then

sa(t) < B(t+n)t=ty
ea(t—mn) < B(t), t =10, Wheren =19—to> 0.
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Proof 3.2:

e For convenience let So(t) = B(t +n) so that Bo(te) = B(to+1n) = L(T0) =
xo = a(te). Also BE(t) = BA(t+n) = f(t +n,Bo(t)), t=t,. We apply the

induction principle to the statement: {A(t): a(t) < B(t +1n),t € T,t = to}.
—Lett = to. Since a(to) < Lo(to) = L(to + 1), it follows that A(t,) is true.
— Let t be right-scattered and A(t) is true. We shall show that A(o(t)) is true.

Using the definition of the derivative for right-scattered point and by (i), (iv), we
have

a(o(t)) — Bo(a(t)) = (@ (t) — B (DIK(E) + (a(t) — Bo(1))
< (f&a(®) = f(E+n,Bo(®))ut) + (a(t) — Bo(t)) (332)
< (fa(®) = f (& Bo(O)u(t) + (a(t) — Bo(1))

Then since A(t) is true, by assumptions (iii) it follows that a(a(t)) — Bo(a(t)) <
0. Hence A(a(t)) is true.

— Let t be right-dense and U be a neighborhood of ¢t. Assume that A(t) is true. We
need to show that A(s) is true for s > t, s € U. Set fo(s) = Bo(s) + £Q(s), for

s>t,s € Uand e > 0 sufficiently small, where Q(s) > 0 satisfies

Q%(s) > LQ(s), Q(t) > 0. (333)

Then clearly

Eo(s) > Bo(s) (3.34)

We shall show that a(s) < So(s) for s > t,s € U. Then by (i), (ii) and (iv), we
have
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B3 (s) = B3 (s) + £Q4(s)

> f(5,B0(s)) + €LQ(5)

> f(5,B0(5)) = L(Bo(s) = Bo(s)) + £LQ(S)
=f(5,Bo(s))

(3.35)

Also Bo(t) > Bo(t) = a(t). Hence by Theorem 3.1, we obtain

a(s) < Bo(s) s>t,seU (3.36)
Since € > 0 is arbitrary letting e » 0* we obtain

a(s) < Bo(s) s>t seU. (3.37)
This proves that A(s) is true for s > t,s € U.

— Let t be left-dense and A(s) is true for s < t. We need to show that A(t) is true.
Since a(t) and B(t) are A-differentiable, they are continuous. Hence it follows
that

a(t) = lim a(s) < limf(s +n) = (¢t +) (339)

proving A(t) is true.
Thus by induction principle, we conclude that a(t) < f(t+n),t € T,t > to

e For convenience let ao(t) = a(t —n) so that ay(to) = a(to—1n) = a(ty) <
X0 < B(T0). Also af(t) =a’(t—n) < f(t —n,ao(t)),t =10. We apply the

induction principle to the statement: {A(t): a(t —n) < B(t),t € T,t = 7o}

—Let t = to. Since ag(to) = a(to—1n) = a(to) < B(70), it follows that A(z,) is
true.
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—Let t be right-scattered and A(t) is true. We shall show that A(a(t)) is true.
Using the definition of the derivative for right-scattered point and by (i), (iv), we
have

ao(a(t)) = B(a()) = (af () — BAENU(E) + (ao(t) — B())
< (Ft =n @o(t)) — f(& B(ONu) + (ao(t) — (D) (339)
= (f (& ao() — f (& B(O)u(E) + (ao(t) — B(D))

Then since A(t) is true, by assumption (iii) it follows that a,(o(t)) — £(a(t)) <
0. Hence A(a(t)) is true.

—Let t be right-dense and U be a neighborhood of t. Assume that A(t) is true.

We need to show that A(s) is true for s > t,s € U. Set @(s) = ao(s) — €Q(s),
for s > t,s € U and ¢ > 0 sufficiently small, where Q(s) > 0 satisfies

Q4(s) > LQ(s), Q()>0 (340)

Then clearly

ao(s) < ap(s). (341)

We shall show that @,(s) < B(s) for s > t,s € U. Then by (i), (ii) and (iv), we
have

ay(s) = ab(s) — €Q”(s)
< f(s,ao(s)) — €LQ(s) (342)
< f(s,@0(s)) + L(ag(s) — @o(s)) — eLQ(s)
= f(s,@o(s)) (343)
Also &@,(t) < ao(t) < B(t). Hence by Theorem 3.1, we obtain

ao(s) <pB(s)fors >t,sel (3.44)
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Since € > 0 is arbitrary letting € » 0" we obtain

ao(s) < B(s) fors>t,seU. (345)
This proves that A(s) is true for s > t,s € U.
— Let t be left-dense and A(s) is true for s < t. We need to show that A(t) is true.

Since a(t) and S(t) are A-differentiable, they are continuous. Hence it follows
that

a(t —n) = lima(s —n) < lim B(s) = B(t) (346)

proving A(t) is true.
Thus by induction principle, we conclude that a(t —n) < f(t),t € T, t = to.O

Remark 3.1: It is possible to weaken the hypotheses in above Theorem 3.1 and
Theorem 3.2. The conclusions of the theorems remain true if the functions «(t) and
B (t) are only assumed to be rd-continuous. In this case the first condition Theorem
3.1 and Theorem 3.2 are replaced by

DYa* < f(t,a), a(te)<xy, to=0

(347)
D+ﬁA > f(t' :8)' IB(TO) > X0, To 2 0
and
Dt < f(t,a), a(ty) <x,  to= (348)
D+ﬁA = f(t' .8)' ﬁ(TO) > Xo, T0=>0

respectively. Here D* is the upper right hand Dini derivative defined as in Definition
2.4.

Remark 3.2: The conclusion of the Theorem 3.1 remains true if the first condition is
replaced by
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at < f(t,a), alt))<xy; t=0

349
BAZF(6B),  Bt)>%0 To20 (349)

3.4.1.2. Comparison Results

The most commonly used technique in the theory of dynamic equations is
concerned with estimating a function satisfying a dynamic inequality by the extremal
solutions of the related dynamic equation. The following theorem gives such a
estimate with initial time difference on time scales.
Theorem 3.3: Assume that
iym € C,,[T,R,], g € C,4[T x R,,R] and

D*mA(t) < g(t,m(t)), m(ty) <wg tp =0 (3.50)

ii)the maximal solution r(t) =r(t,To,woe) Of w2 =g(t,w),w(to) =wo=0
To = 0 exists for t = 1¢;
1il) 7o > to and g(t, w) is non-decreasing in t € T for eachw € R,;

Iv) g(t,w)u(t) is non-decreasing inw € R, for eacht € T.

Then

em(t) <r(t+1n), t= to;

em(t—n) <r(t), t= 1,
Proof 3.3: It is well known that [14] if w(t,¢) isany solution of
wh =g(t,w)+e¢, w(To) =wo+¢€ (351)
for € > 0 is sufficiently small, then lim,_,w(t, &) = r(t, 7o, wo) On every compact

interval [to,7o + ] N'T, &€ > 0. Hence setting wo(t, &) = w(t +n, &) we have
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Wo(to &) =w(to+1n,€) =w(Te, &) = Wo+ € > wo =m(to) (352)
and also
wi(t,e) = wa(t+n,8) = g(t+ n,wo(t,&)) +& > g(t +n,wo(tg)) (3.53)
then since n > 0 by (iii)
wg(t,e) > g(t,wo(t,€)). (3.54)
On the other hand by (i) we get
D*m2 () < g(t,m(t)) and m(to) < wo(to, ). (355)
Therefore by Theorem 3.1, we obtain
m(t) < wy(t,e) =w(t+n,¢). (3.56)

Since ¢ > 0 is arbitrary, we obtain by letting € = 0 that m(t) < r(t+n)t = t,.
This proves (a). For the proof of (b) set mq(t) = m(t —n) so that

mo(To) = m(to—1n) = m(to) < wo < wo+ & =w(Tg, &) (3.57)

and also by (i) and (iii)
D*mg(t) = D*mA(t —n) < g(t —n,mo()) < g(t,mo(0)). (358)
On the other hand we have w{ (t,€) > g(t,wo(t, €)). Therefore by Theorem 3.1, we
have m(t — n) < w(t,¢). Since € > 0 is arbitrary, we obtain by letting ¢ — 0 that

m(t —n) <r(t) t = t,. This proves (b).o

In the following theorem, we obtain a comparison result in terms of Lyapunov-
like functions with ITD.
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Theorem 3.4: Assume that

)V eC,[TxRY,R,], V(tx) is locally Lipschitzian in x € R" for each t € T,
g €C4[TxR, R]and

D*VAty(t+m) — x(1) < g(t, V(v (t+1) — x(t))) (3.59)
ii) the maximal solution r(t) = 7(t, 7o, uo) Of u® = g(t, ), u(ro) = upe = 0, exists
fort >ty => 0;
1il) 7o > to and g(t, u) is non-decreasing int € T for eachu € R,;
Iv) g (t,w)u(t) is non-decreasing inu € R, foreacht € T.
Then
V(to,yo - xo) < Uo (360)
implies that
V(t,y(t+n,T0,Y0) — x(t, to,xo)) < T(t+n,Toup) for t=tg (3.61)
Proof 3.4: Define m(t) = V(t,y(t +1n,70,Y0) — x(t, to,Xo0)) SO that

m(to) = V(to,yo— Xo) < Uo. (362)

Further set ro(t) = r(t + 1, To, Uo) SO that ro(te) = r(70) = ue and also 7 (t) =
r8(t+n) = g(t+1n,70(t)). We apply the induction principle to the statement:
{A):V(t,y(t+ 1,70, Y0) — x(t, t0,X0)) < 7(t + 1,70, Uo),t ET,t = to}

—Let t = to. Since m(to) = V(to,yo - xo) < Ug= T'(to + n, 7o, uo), it follows
that A(to) is true.

— Let t be right-scattered and A(t) is true. We shall show that A(a(t)) is true.
Using the definition of the derivative for right-scattered point and by (iii), we have
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m(o(t)) — ro(a(t)) = (D*mA(t) — rg* (O))u(t) + (m(t) — ro(t))
< (gt,m(t)) — gt +n,1o(®)))u(t) + (m(t) — ro(t)) (363)
< (g(t,m(t)) — g(t,ro(t)))u(t) + (m(t) —ro(t))

Then since A(t) is true, by assumption (iv) it follows that
m(o(t)) —ro(a(t)) <0 (3.64)

In view of the fact that

m(a(t)) —m(t)
u(t)
Y (0@,y(® +1) —x(o®)) — V(£ ¥t +m) —x(0)
B u(t)

(3.65)

we see that A(a(t)) is true.

— Let t be right-dense and U be a neighborhood of t. Assume that A(t) is true. We
need to show that A(s) is true for s > t,s € U. Let z(¢t,to, yo— Xxo) = y(t +

n, 7o, yo) — X(t, to,Xo) so that

8 =ftzn) = [f(t+nyE+m)—f(tx®)]

Z(to) = Yo — Xo

(3.66)

m(s + h) —m(s)
h
_V(s+hz(s+h)—-V(s+hz(s)+ hf (s, 2(s)))
B h
4 V(s + h, z(s) + hf (s,2(5))) = V(s,2(s))
h
_ V(s +h z(s) + hf (s,2(s)) + he(h)) = V(s + h,z(s) + hf(s,2(s)))
h h
4 V(s + h, z(s) + hf (s,2(5))) = V(s,2(s))
h

(367)
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Since V is locally Lipschitzian in x and L > 0 is the Lipschitz constant and ¢ is

error term, we have

D+mA(S)
< lim Llle(h)|
, V(s+h,z(s) + hf(s,z(s))) —V(s,z(s)) (3.68)
+ lim _sup
h—0*,s+heT h

=D*VA(s,y(s + 1) = x(s5)) < g(s,m(s))

Since A(t) is true, by Theorem 3.3, we obtain that

m(s) =V(s,y(s +1,70,Y0) — x(S, to,X0)) < 1r(s+ 1n,To, Uo),
for s>t,selU

(3.69)

— Let t be left-dense and A(s) is true for s < t. We need to show that A(t) is true.
This follows by rd-continuity of V (¢, z) and r(t).
Thus by induction principle, we conclude that

V(t' y(t + W;TO»YO) - X(t, tOer)) < T(t +n, To,U.o) teT t=t,. (370)
3.4.2. Stability and Boundedness Criteria
A very general comparison principle is obtained under much less limiting
assumption by using the notion of Lyapunov function together with theory of
dynamic inequalities. In this setup, one can see Lyapunov function as a
transformation which reduces the study of stability, boundedness properties relative
to ITD of a given complicated dynamic system to the study of stability, boundedness
properties of a relatively simpler scalar dynamic equation.
Let us consider the following scalar dynamic equation
ub =gt,w), u(t))=uo=0 for teT, t=1 (3.71)

where g € C,4[T X R,, R].
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3.4.2.1. Stability Criteria

Theorem 3.5: Assume that

NV eEC4[TxS(p)R,], V(t x) is locally Lipschitzian in x € R" for each t € T,
g€ C,4[TxR, R]and

D*VALy(t+n) —x(t)) < g(t,V(t,y(t+n) —x(t))) (372

ii) the maximal solution r(t) = r(t, To,uo) Of (3.71) exists for t > 1o;
Iii) there exists a, b € K such that b(||x||) < V(t,x) < a(||x|]) for (t,x) € T X

S(p);
iv) g(t,w)u(t) is non-decreasing inu € R, for each t € T,

V) To > to and g(t, u) is non-decreasing int € T for eachu € R, and g(t,0) = 0.

Then the stability properties of the null solution of (3.71) imply the corresponding

initial time difference stability properties of the solution x(t, to, xo).

Proof 3.5: Firstly, let the null solution of the (3.71) is equistable. Let 0 < ¢ < p and
To € T be given. Then by definition of equistability given b(¢) >0, 7, € T, 36, =
61(g,10) > 0 such that

u(t) < b(e) provided that uy< 6, t = 7o, teT (3.73)

where u(t, o, ug) IS any solution of the (3.71). Choose &, = 8,(g,70) >0 as
0 <a(6z) < &1 Obviously; lime; ,yoeoxe) 1V (E+ 7, T0,Y0) — X (¢ Lo, X0) || = 0.

Then given € > 0 and 7, € T, there exist § = §(¢, 7o) > 0 and 83 = 83(g, 7o) > 0
such that

lyt+n) —x(Oll <& if |yo—xoll <83 and |n| <$ (374)
for to<t<rtg '

Letuo = a(]|yo — xol|) and choose § = min(8,,63). Then we claim that
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ly(t+m —x®Oll <& if llyo—xoll <83 and |n| <8 for t=t, (375)

If it is not true, becasuse of (3.74), there exist a t; > 7o and a solution y(t, 7o, yo) of
(3.2) with ||yo — x| < & and || < & such that

lyti+m) —x(t)llze  lly@E+n) —x@ll <&  for to<t <t (376)

Moreover since ||yo — xof| < &, by (iii) we have

V(to,yo—x0) < a(|[yo— xoll) <a(d) <61 (3.77)

Hence, by (i), (ii), (3.76) and Theorem 3.4, we obtain the following estimate

V(t,y(t+mn)—x(t)) <r(t+mn,1oUo), to<t<t, (3.78)

Consequently, the relations (3.73), (3.76), (3.78) and (iii) leads to the contradiction

b(e) < b(lly(t1+mn) —x(@)|) < V(tr, y(ts+ 1) — x(t1)) (379)
< r(ty+1n,7To,uUo) < b(€)

which proves that the solution x(t, to,x0) of (3.1) is equistable with ITD. Secondly,
let the null solution of the (3.71) is uniformly equistable, then &, is independent of 7,
it follows that § is independent of t,, thus by the same procedure above we obtain
uniform stability with ITD of x(¢, to, xo) of (3.1). Thirdly, let the null solution of the
(3.71) is asymptotically equistable. It follows that x(t,to,xo) of (3.1) is equistable
with ITD. Consequently, it can be chosen that € = p and &y, = §o(¢,70) > 0,
80 = 6o(e, 7o) > 0 such that

lyE+m) —x@Oll <p if llyo—xoll <o and [n| <&, t=to (3.80)
To prove attractivity, we let 0 < & < p. Since u = 0 of (3.71) is asymptotically
equistable, given b(e) >0, 1o €T there exist 6; =381(c,79) >0 and T =

T(g, To) > 0 such that
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u(t) < b(e) providedthat uy< 8y, t>10+T (3.81)

Choose ug = a(|lyo— xoll) and &, = 62(g,70) >0 as 0<a(d,) < ;. Since
Mz 5o ctoxe) 1Y (E 1,70, Y0) — X(E, to, Xo) || = 0, it follows that given ¢ > 0 and

To € T, there exist §; = §1(¢, 7o) > 0 and 85 = 85(e, 7o) > 0 such that

ly(t+n) —x@ll <& if |[yo—xoll <3 and |n| <d;

(3.82)
for t,<t<T1

Let § = min(8o, 82, 85) and 6 = min(8,,64), and by (i), (ii), (3.80), Theorem 3.4,

we have the estimate
V(t,y(t+n) —x(t)) <r(t+n,TouUo), t = to, teT (3.83)

Now, suppose that there exists a sequence {t,} € T,t, 20 ask - oo, t, > 1o+ T

and a solution y (t, o, yo) 0f (3.2) with ||y — xo|| < & and || < & such that

ly (e +m) —x ()l = € (3:84)

The relations (iii), (3.81), (3.83), (3.84), leads to the contradiction,

b(e) < b(lly(t, +m) —x(t)ID) < V(e ¥yt +1) —x(t,)) (385)
< r(ty +1,To,Uo) < b(e)
which proves that the solution x(t, to,xo) of (3.1) is asymptotically equistable with
ITD. Finally, assume that u = 0 of (3.71) is uniformly asymptotically equistable.
Therefore § and T are independent of 7,. It follows that x(t,to, xo) of (3.1) is
uniformly asymptotically equistable with ITD.o
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3.4.2.2. Boundedness Criteria

In this section we shall discuss boundedness criteria of dynamic systems by
employing comparison method. For boundedness properties of solutions, we do not
have to need the existence of null solutions.

Theorem 3.6: Assume that

NV eEC4[TxS(p),R,], V(t,x)is locally Lipschitzian in x € R"for each t € T,
gE€C,4[TxR,, R]and

D VAL y(t+n) —x() < gtV (t,y(t+n) —x(1))) (3:86)

ii) the maximal solution r(t) = r(t, To,ue) Of (3.71) exists for t > t,;

i) there exists a, b € K such that b(||x|]) < V(t,x) < a(||lx|]) for (t,x) € T X
S(p);

iv) g (t,uw)u(t) is non-decreasing inu € R, foreach t € T;

V) 7o > to and g(t,u) is non-decreasing in t € T for each u € R,.

Then boundedness property of (3.71) imply the corresponding boundedness
property with ITD of (3.1)

Proof 3.6: Assume that the dynamic equation (3.71) is equibounded. Let « > p and
7o €T be given and let ||yo— x| < a. Define a; =a(a)>0. From the
equiboundedness of (3.71), it follows that, given a; >0 there exist B; =
B1(ay, o) > 0such that

B

> provided that uo < ay, t =1 (3.87)

u(t, to, Uo) <

B1

Obviously; lim, - [u(t + 1) —u(t)| = 0. Therefore, given > 0 there exists a

5 = §(a, 7o) > 0 such that
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lu(t +n) —u(®)| < % provided that |n| <9, t =1 (3.88)

Since b(r) - o asr — oo, there exist § = B(a, 7o) > 0 such that

b(B) = b1 (3.89)

Now we claim that
ly(t+n) —x@OI<p if lyo—xoll<a and n|<8§ t=to (3.90)

If this were false, there would exist some solutions y(t,7o,yo) of (3.2) with ||y, —
Xo|| £ a@and|n| < § and t; > t, > 7, such that

ly(tz+n) —x(t)ll = a [ly(ts+n) —xt)|l =B (391)

and
p<a<l|yt+n) —x@®I<pB, for t;<t<t, (3.92)
Set z(t, to,yo— x0) = y(t +1,79,Y0) — x(t, to, Xo) SO that z(t) is solution of
2% = f(t,z;m) (3.93)

where f(t, Z, T]) = f(t,Z(t, to,Yo— xo) + x(t, to,Xo)) — f(t,X(t, to,Xo)). Choose
uo = a(||z(t2)||), where z(t;) = z(t2,to, Yo — Xo) SO that by (iii)

V(t2,z(t2)) < a(llz(t)]) = a(a) = a1 (3.94)
Hence the condition (i) and Theorem 3.4 shows that, because of (3.91) and (3.92)

V(t,Z(t, t2,z(t2))) < r(t+n,tzup), for t,<t<t, (3.95)
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where Z(t, t,, z(t,)) is any solutions of z2 = £(t, z;n) through (t,, z(t,)). Thus the
estimate (3.95) is true for y(t +n,70,Y0) — x(t, to,x0) ON the interval [t,,t1] N T.
We therefore obtain, from the foregoing considerations, using (3.87), (3.88), (3.89),
(3.91), (3.92), (3.95) and condition (iii)

b(ﬁ) < V(t]_,Y(t]_ + T]) — X(tl)) < T(tl + n, tz,UO) < T(tl,tz, uo) + &

2 (3.96)

<B1=b(B)
This contradiction proves (B1l). For the case that the scalar system is uniformly
equibounded, B, is independent of 7o Therefore in a similar way, we obtain the
uniformly equiboundedness with ITD of (3.1). Now assume that the dynamic equation

(3.71) is ultimately equibounded. This implies that the dynamic system (3.1) is

equibounded. Hence given p > 0, t, € T, there exist B > 0 and §, > 0 such that
ly+n) —x@I<B if lyo—xoll<p and |n| <& t=to (3.97)

Let now a > p and to € T be given, and let p < ||yo— xo|| < a. Define a; =
a(a) > 0. By the definition of quasi-equi-ultimately boundedness, it follows that,

given a; > 0, 7o € T, there exists positive numbers N, and T = T(a, To) such that
Ni |
u(t, To, Uo) < > if uo<a; t=t10+T (3.998)

Obviously lim, - |u(t +n) —u(t)| = 0. Therefore, given % > 0 there exists a

51 = 61(a, 7o) > 0 such that
N4 :
lu(t +n) —u(t)| < - provided that |n| < 64, t =1 (3.99)

Let N* = max(N, B), where N is chosen so as to satisfy the inequality

b(N) > N, (3.100)
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and & = min(8,,641). Clearly, N* > p, and the choice of N is possible since
b(u) — oo as u — oo, We claim that, with this N*, § and T the definition (B3) holds.
Suppose that this is false. Since the solutions y(t, 7o, y0), x(t,to,xo) With ||y, —
Xol| < p satisfy ||y(t+n) —x(t)|| < N*, it is enough to consider only solutions
y(t,T0,Y0) With p < ||yo— xo|| < a. Set up = a(||yo— xol|), then assumption (i)
and Theorem 3.4 yields, for such solutions, because of (3.97), the inequality

V(t,y(t+n)—x(t)) <r(t+n,10,uUop), t =t (3.101)

Let there exists a sequence {t;}, t;, > To, t; > To+ T, t;, = o as k — oo and some
solutions y(t,to,y0) Of (3.2) with p <||lyo—xo||<a and |n| <& such that
ly(t, +n) —x(t,)|| = N*. Then we get the following inequality, using (3.98)-
(3.101)

b(N*) S V(t, ,y(tx +m) —x(t,)) < r(ty +1,To, Uo)
N, (3.102)
< r(tk,To,uO) + 7 <N; < b(N)

whence we have N* < N. This is absurd in view of the definition of N*, since
N* = N. Thus the system (3.1) is equi-ultimately bounded with ITD. Next let the
dynamic equation (3.71) be uniformly ultimately equibounded. Then N; is

independent of 7,. Hence, in a similar way, we obtain the uniformly ultimately
equiboundedness with ITD of (3.1). This completes the proof.o

3.4.3. Applications

In this section we give an example that applies the results of the preceding

section.

Example 3.1: Consider the scalar dynamic system

x2 = —x+ h(t), x(to) =x0, for t=t,, teT (3.103)
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2
where h(t) is a non-increasing function. Let V(x) = x* and b(r) = % a(r) = 2r%,
so that
b(x) <V(x) <a(x) (3.104)

Then

DTVAt T —x) =2(F —x)(F* —x2) + u(®) (G — x2)?
=2(7—2)(-@F —x) + h(t +1) — h(@))

+ u(®O (=G = x) + h(t +1) = h(®))" (3.105)
< (u(t)—2)(y —x)"2 since h(t) isdecreasing
= u@®)—-2)v

where y = y(t) = y(t + 1, To, Vo), Where y(t, To,yo) is solution of (3.103) through
(To, ¥o), and x = x(t) = x(t, to,xo) is solution of (3.103) through (to,xo). Then the

corresponding scalar comparison equation is

ult = (u®) —2Du,  u(to) = uo, t>1, (3.106)

If 14+ u®)(u(t) —2) #0,t € T i.e, the function u(t) — 2 is regressive, then the
solution of comparison equation is

“Log((u(s) — 1)* AS) (3.107)

u(t, 7o, Uo) = U0y (-2 (¢, To) = UoeXP (f u(s)

where e, ), (¢, 7o) is the generalized exponential function on time scales, Log is the
principal logarithm function.

Now it is easy to see that:

1. The null solution of (3.106) is stable if

As < N(to), t>To (3.108)

f “Log((u(s) — 1?
- u(s)
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where N(t,) is finite for any 7, = 0. It follows by Theorem (3.5) that the solution
x(t, to, x0) Of (3.103) is stable with ITD.

2. The null solution of (3.106) is uniformly stable if

thog((u(S) - 1)2As <N t > 1, (3.109)

. u(s)

with N is constant. It follows by Theorem (3.5) that the solution x(t,to,x,) of
(3.103) is uniformly stable with ITD.

3. The null solution of (3.106) is asymptotically stable if

lim

t—>o0

‘Log() -1*
f TS As = (3.110)

It follows by Theorem (3.5) that the solution x(t,te,x,) of (3.103) is
asymptotically stable with ITD.o
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4. STABILITY OF PERTURBED DYNAMIC
SYSTEM ON TIME SCALES WITH INITIAL
TIME DIFFERENCE

4.1. Introduction

In real world applications, it is necessary to consider a particular dynamic
system with a perturbation term. In addition to perturbing the given particular
dynamic system, it is possible to make an error in initial times as well as in initial
positions. Therefore, one need to investigate the qualitative and quantitative
properties of a given particular dynamic system under these perturbations.

A principal technique employed in stability theory is investigating stability
properties of a particular dynamic system under small perturbations. This technique
is employed in many ways [5], [13]. Another techniques are also used in [5], [7], [8],
[13]. In [21], [22], [26], [27], the authors considered the case that perturbed dynamic
system and original unperturbed dynamic system which have different initial time.

In the present paper, we consider the problem of determining the behavior of
solutions of a perturbed dynamic equation with respect to those of original
unperturbed dynamic system that have initial time difference (ITD). We consider this
problem on arbitrary time scales, nonempty closed subset of real numbers, and
therefore we obtained a general result that can be applied discrete and continuous
cases simultaneously

We begin with a preliminary section which includes the basic concepts and
definitions. After that, we give the obtained nowvel results.

4.2. Basic Definitions and Concepts
We will consider the dynamic system
xh = f(tx), x(to) = Xo (4.1)

where f € C,4[T % S(p),R"], S(p) = {x € R™||x|| < p}. Here ||x]|| denotes any n-
dimensional norm of the vector x.
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In addition to dynamical system (4.1), we also consider the associated

perturbed dynamical system

yA=fty) +R(EtYy),  y(T0) =Yo (42)

where R € C,4[T X S(p), R"] is called the perturbation term.
We assume that f,R € C,4[T x S(p), R"] are smooth enough to guarantee the
existence, uniqueness and rd-continuous dependence of solutions of (4.1) and (4.2).
We now give the definitions of stability which identify the possible behavior

for solution of perturbed dynamic system (4.2) which we will need later.

Definition 4.1: The solutions of the perturbed dynamic system (4.2) are said to be
stable with respect to unperturbed dynamic system (4.1) with initial time difference
if, given € >0 and 7, € T, there exist §(g, 7o) > 0 and §(e, 7o) > 0 such that

lyo — xo|| < & and |to—to| < & implies

1y (&, 70, y0) —x(t =1, to,xo)|| < & (43)

for t > t,, for every solution y(t,to,y0) Of the perturbed dynamic system (4.2),

wheren =19 —to > 0.

Definition 4.2: The solutions of the perturbed dynamic system (4.2) are said to be
asymptotically stable with respect to unperturbed dynamic system (4.1) with initial
time difference if, they are stable with respect to equation (4.1) with initial time
difference and if, given € > 0 and 7, € T, there exist §4(to) > 0, §0(7o) > 0 and

T = T(e, 7o) > 0 such that ||y — xo|| < 8o and |z — to| < &, implies

”y(t'TO'yO) _x(t_rlrtleO)” <¢ (44)

for t > 7o+ T, for every solution y(t, 7o,y0) Of the perturbed system (4.2).
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Definition 4.3: The solutions of the perturbed dynamic system (4.2) are said to be
unstable with respect to unperturbed dynamic system (4.1) with initial time
difference if, they are not stable with respect to unperturbed dynamic system (4.1)

with initial time difference.

Definition (4.1) and Definition (4.2) are equivalent to the statement that all
solutions of the perturbed dynamic system (4.2) which start sufficiently close to the
initial conditions of the unperturbed solution respectively remain close to it or
eventually approach it. Definition (4.3) requires that for each solution of the
unperturbed equation (4.1), a solution of the perturbed equation (4.2) can be found
which starts arbitrarily close to the unperturbed solution and which eventually
diverges from it.

We stress that all of the above definitions are independent of the behavior of
the solutions of the unperturbed dynamic system. Indeed, we particularly show that
the equilibria of the original dynamic equations may be stable, asymptotically stable
or even unstable. We illustrate this situations as the following on different time
scales.

Example 4.1: Let T = Z. Consider the dynamic equation
xd=ax=c,  x(to) = xo (45)

where c is any constant, whose solution is given by x(t,to, Xxo) = xo + c(t — to)
which is unstable. In addition, consider the perturbed equation

Ay=c+g(t+1), y(T)=Yo (4.6)

where {g(t)} is any sequence for which }* g(t) = 0. The corresponding solution is
then given by y(t, 70,y0) = Yo + c(t — 7o) + X%, g(k). Then the difference is

t
Y(t,70,0) = X(t =1, tox0) = Yo —Xo + > g(k) @47

k=T0
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which can be made arbitrarily small. Therefore the solution of the perturbed
equation is stable with respect to unperturbed equation with initial time difference.o

Example 4.2: Let T = R. Consider the dynamic equation

X% =x = —ax, x(to) = Xo (4.8)

where a > 0, whose asymptotically stable solution is given by

x(t, to,x0) = xoexpif—a(t —to)). (4.9)

Further, consider the associated perturbed equation

y =—=(a+b)y,  y(@)=yo (4.10)

whose solution is y(t, To,y0) = yoeexpif—(a + b)(t — to)). As a consequence,

y(t,70,Y0) _x(t_77":”to,xo) (411)
= expif—a(t — to))[yoexpili-b(t — to)) — xo].

o If b >0, this difference approaches 0 as t - coand thus the perturbed
solutions are asymptotically stable with respect to unperturbed equation with
ITD.

o If b < 0, then the perturbed solutions are unstable with respect to unperturbed
equation with ITD.

Considering the dynamical systems (4.1) and (4.2), for V(t,x) € C,4[T X

S(p), R, ], we define the generalized derivative with respect to the systems (4.1) and
(4.2).
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Definition 4.4: LetV € C,4[T X S(p),R.], V(¢t,u) is locally Lipschitzian in w.

DYVA(t,u,n)
| V(E+p),ul) + uOF Cu@®;m) —Visu@®) (412
= lim sup
sot,s#0 (t) O'(t) —S

for (t,u,n) € TXxS(p) XR, where u(t) =a(t) —t, u(t,to,uo) =y(t, 7o, Vo) —
x(t — 1, to,xo) for t = 1o, and f(t,u(t);n) = f(t, u(t) +x(t —n)) + R(t, u(t) +
x(t —m) = f(t—n,x(t—n)).

4.3. Main Results

We now present several theorems which supply sufficient conditions for the
abowe types of behavior to hold in terms of the existence of rd-continuous real scalar,
Lyapunov-type, functions V(t,x). We first give the comparison result in terms of

Lyapunov-like functions which we employ frequently later.
Theorem 4.1: Assume that
NV eC,4[TxS(p)R,],V(tuw)islocally Lipschitzian in u and

D*VA(t,u,n) < gt V(tw),Inl),  for (tun) eTxS(p)xR (4.13)
where u =u(t) =y(t,to,y0) —x(t—1n,t0,%0), N=To—to>0, g€C4[TX
R?,R.];
ii)the maximal solution 7(t,to,wo,|n]) of w?=g(t,w,Inl), w(te) =we=0
existsfort > 7, > 0;
i) g(t,w, |[nu(t) is non-decreasing inw € Rforeachn € Randt € T.

Then V(to,¥0 — X0) < wo implies

V(t,y(t,To,¥0) — x(t — 1, to,%0)) < (¢, To,Wo, 1), t =1 (4.14)
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Proof 4.1: Set u(t) = y(t,to,yo) — x(t — 1, to, x0) fOr t = 74 s0 that u(ty) = yo —

xo and

B (E) = £t (6,70, Y0)) + R(EY(E,T0,¥0)) = f(E = 0, X(E =1, to,%0)
= ft,u(®) +x(t —n, to,x0)) + R(t, u(t) + x(t — n,to, X0)) — f(t (4.15)
- nlx(t -, tOer)) = f(tr u(t); r]), fOT t = To.

We apply induction principle to the statement: {A(t):V(t,u(t, o, up)) <

r(t, To,Wo,|nl), t =70, t, 7o € T}
o Lett = 1o Since V(to, Yo — X0) < Wy, it follows that A(z,) is true.
o Let t be right-scattered and A(t) is true. We shall show that A(a(t)) is true. Set

m(t) = V(t,u(t)). Then using the definition of the derivative for right-scattered
point, we have the inequality

m(o(t)) —r(o(t)) = (DTmA(t) —rA(OIu®) + (m(t) — (1))

(4.16)
< (g(t,m(t)) — g(t, r(©)))u(t) + (m(t) — ().
Then since A(t) is true, by assumption (i) it follows that
m(a(t)) — r(a(t)) < 0. (4.17)
In view of the fact that
me(®) —m(t) _V(e®),ue®) - V(Eu®) @18)

u(t) ©(®)

we see that A(a(t)) is true.

e Let ¢ be right-dense and U be a neighborhood of t. Assume that A(t) is true. We
need to show that A(s) istruefors > t,s € U.
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m(s + h) —m(s)
=V(s +hu(s+h)) = V(s + hu(s) + hf (s,u(s);n))
+ V(s + hu(s) + hf(s,u(s);n) — V(s,u(s))
= V(s + h,u(s) + hf(s,u(s);n) + he(h)) = V(s
+ h,u(s) + hf(s,u(s);n)) + V(s + hu(s)
+hf(s,u(s);m) = V(s,u(s))

(4.19)

Since V is locally Lipschitzian in u and L > 0 is the Lipschitz constant and ¢ is
the error term, we have

DtmA(s)
< lim, Llle()]
| V(s+h),u(s) + hf (s u(s)m) —V(su) 20
lim  sup
h—0%1 s+heT h

= DTVA(s,u(s)) < g(s,m(s))
Since A(t) is true, by Theorem 2.11, we obtain that
m(s) = V(s,u(s, to, uo)) <7(s,To,Wo,|1|), for s>t, seU (421)
e Let t be left-dense and A(s) is true for s < t. We need to show that A(t) is true.
This follows by rd-continuity of V(t,u) and r(¢t).

Thus by induction principle, we conclude that

V(t,u(t,to,uo)) < 1r(t, To,Wo, 1), teT, t > 1. (4.22)

Remark 4.1: If the inequality (i) is reversed and V (o, yo— Xo0) = Wy, then we have

to replace the conclusion by V(t,u(t, 7o, uo)) = 1.(t,70,Wo,|n]) Lt ET, t =1,

where 7, (t, To,Wo,|n|) is the minimal solution of comparison equation.
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The following theorem satisfies the requirement that both the function
V(t,y(t)—x(t—mn)) remains well defined and that the difference y(t, 1o, y0)—
x(t —n, to,xo) Of the solution of the perturbed dynamic system (4.2) with shifted

solution of the original unperturbed dynamic system (4.1) remains on S(p).
Theorem 4.2: Assume that

1) f € C.4[T x R", R"] is Lipschitzian in time and space such that

Il f (E, u(t, To,uo) + x(t — 1, to,%0)) — f(t — 1, x(t —1,t0,X0))|

(4.23)
< LO|u®)||+ N@©)|n|

where u(t, 7o, uo) = ¥(t,70,¥0) — x(t —1,to,x0) fOr t =10, Uo=yo—x, and
N =719—te>0;

ii) The perturbation term R(t,y) satisfies |R(t, y)|| < a||h(t)]| for sufficiently small
positive constant a;

iii) There exist constants M, M, and M5 such that

ftL(s) As < Ml,JtN(s) As < Mz,ft||h(s)|| As< M (4.24)

To To

for t = 1,.

iv) L(t) e R*,L(t) >0and N(t) >0fort € T.
Then

|y (t, To, Vo) — x(t — 1, to, x0)|| < p, forall t=r1, (4.25)
provided that y, and 7, are chosen sufficiently close to x, and t,, respectively.

Proof 4.2: We have
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ﬂtmwﬂ=ym+ff@J®DAS+fR@J@DAS (4.26)

To

and

x(t—1,to,%0) = xo + th(s —nx(s—n))As. (4.27)

As a consequence;

”y(t' TO;YO) - x(t -n, tO'xO)”

< llyo = xoll

+ f If (s, y(s,70,¥0)) = F(s —m,x(s = n,t0,%0)) || A

+[ IRGy©)] a5

t t (4.28)
sm@—mn+aan@nAs+mny@)As

+[ LG - xG-nllas

0

< llyo — xol| + aM3 + |n|M;

+[ LOIyE -2 -mlas

0

Setm(t) = |ly(t) —x(t —n)|l and A = ||yo — xol| + aMs + |n|M. Then
t
m(t) < A +f L(s)m(s) As (4.29)

0

Then by Corollary 2.2, we obtain the inequality
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tLog(1 + u(s)L(s)) R s)
u(s)

ly(®) = x(t — ]| < Aexp ( f

, (4.30)
< Aexp <f L(s) A s) < Aexp(M,)

0

which can be made smaller than any given p by choosing the constant a sufficiently

small and by choosing y, and 7, sufficiently close to x, and t,, respectively.o
Theorem 4.3: Assume that
NV eC,4[TxS(p)R,],V(tuw)islocally Lipschitzian in u and

D*VA(t,u,m) < g(t,V(t,w),[n)) (4.31)

for (t,Lun) ETXS(P)XR, where u=u(t)=y(ttoYo)—x(t—n,toXo),
n= To— to > O,g € Crd[TXRZ,R+];
i) g(t,w, |nu(t) is non-decreasing inw € R foreachn € Rand t € T;

1ii) There exista function b € K such that

V(t,u) = b(llull) for (t,u)€ T X S(p); (4.32)
iv) The scalar equation w2 = g(t,w,In]) w(te) =wo=0 t>71, t,T0€T is
stable;
v) The maximal solution r(t, To,wo, |n|) of w2 = g(t,w, [n]) w(to) = wo = 0 exists

for t>19=>0.

Then the solutions of the perturbed dynamic system are stable with respect to
unperturbed dynamic system with ITD, provided that

ly(t, 0, Vo) —x(t—1n,to,x)|| <p,  forall t=1,. (4.33)
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Proof4.3: Let 0 < € < p and 7y € T be given. Since the scalar dynamic equation is
equistable, we have for a given b(g) > 0 there exists a &1 = d1(g,70) > 0 and
5 = 6(g,7o) > 0 such that

wo < 8y and |n| <6 implies w(t,to,wo,|n]) < b(e) for t=r1, (4.34)
Choose wo =V (to,Y0 — Xo). Since V(t,u) is rd-continuous and V(t,0) =0 it is
possible to find a positive function § = 6(¢, o) that is rd-continuous in t, for each
€ > 0, satisfying the inequalities

lyo—xoll <8,  V(To,y0—%0) <81 (4.35)

simultaneously. We claim that

[y (t, 70, ¥0) —x(t — 7, to,x0)|| < € for t=1,

(4.36)
provided that |lyo— Xo|| <& and |n| < §

Suppose that this is not true. Then there would exists a solution y(t, 7o, yo) of (4.2)
with ||yo — xo|| < 8, |n| < 6 and a t; > 7, such that

|y (t1,T0,y0) — x(t1 — 1, to,Xo)|| = €

(4.37)
ly(t, 7o, yo) —x(t =N, to,x0)l| <& for t € [tot1]

The choice wo =V (7o, y0 — x0) and condition (i) give, as a consequence of the
Theorem 4.1, the estimate

V(t,y(t,To,Yo) — x(t —1,t0,%0)) < 1(t, To,Wo,|n|),  t € [To t1] (4.38)

where r(t, 7o, wo,|n]) is the maximal solution of the comparison equation. Then
condition (iii) and the relations (4.34), (4.37), (4.38) lead to the contradiction

b(g) < V(t]_,y(tl, To,yo) — X(tl -7, t(), xO)) < T‘(tl, To,Wo, |T]|) < b(s) (439)
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This proves that the solutions of the perturbed system is stable with respect to the

unperturbed system with ITD.o

Theorem 4.4: Assume that

)V eEC.4[TxS(p)R,], V(tu)islocally Lipschitzian in u and

DYVA(tu,n) < g(t,V(t,w),In]),  for (t,u,n) ETxS(p) xR  (440)

where u =u(t) =y(t,to,y0) —x(t —1n,t0,%0), N=To—to>0, g€C4[TX
Rz; R+]1
i) g(t,w, |n|u(t) is non-decreasing inw € R foreachn € Randt € T,

1ii) There exist a function b € ¥ such that

V(t,u) = b([lul) for (tu)€TxS(p); (441)

iv) The scalar equation w2 = g(t,w,|n]) w(te) =wo=0 t>1o t,To€T is
asymptotically stable;
v) the maximal solution r(t, 7o, wo,|n|) of w2 = g(t,w, |n|) w(to) = wo = 0 exists

fort > 15> 0.

Then the solutions of the perturbed dynamic system are asymptotically stable with

respect to unperturbed dynamic system with ITD, provided that

|y (t,t0,¥0) —x(t =7, to, x0)|| < p forall t=rt,. (4.42)

Proof 4.4: Since the scalar system is asymptotically stable it is also stable. Hence by
Theorem 4.3, the solution of perturbed system is stable with respect to unperturbed
system with ITD. Therefore, we can choose that e = p > 0, 8o = do(p, 7o) > 0 and
80 = 80(p, 7o) > 0 such that

|y (t,T0,Y0) —x(t—7n,to,x0)|| < p for t =19

. (4.43)
provided that ||yo— Xo|| < 8¢ and |to—to| < b0
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To prove quasi-asymptotic stability, let 0 < e < p and 7o € T be given. It then
follow from quasi-asymptotic stability of scalar equation that given b(¢) > 0, 7o € T

there exist positive numbers §; = 81(7o), 61 = 81(to) and T = T (e, 7o) such that

w(t, To, Wo, <b(e) for t=1,+T
(t, To,wo, 1) ) f 0 (4.44)
provided that wo < §; and |n| < 64

Since V(t,u) is rd-continuous and V(t,0) = 0, we can find a positive number

62 = 8,(¢, Tp) satisfying the inequalities

lyo— x0l| <62, V(to,Y0— X0) < 61 (4.45)

simultaneously. The choice wo =V (T, Y0 — Xo), assumption (i) and the relation
(4.43) gives as a consequence of Theorem 4.1, the estimate

V(t,y(t,To,V0)— x(t =1, te,x0)) < 1(t,To,Wo,|nl), for t=r1,. (4.46)
Set § = min{8,,8,} and § = min{8,, §1}. Suppose now that there exists a sequence
{t,JET, t, =10+T, t, > ©0ask - oo and a solution y(t,7o,yo) Of perturbed

system with ||y, — xo|| < & and || < & such that

|y (tx, T, Yo) — x(t, — 1, to, X0)|| = & (4.47)

This lead to the contradiction

b(e) < V(ty, y(t,T0,Y0) = X(t, =1, t0,%0)) S 7(tk, To,Wo, [n]) <b(e)  (448)

because of (4.43), (4.44), (4.46) and (iii). Thus the solutions of the perturbed system
is asymptotically stable with respect to unperturbed system with ITD.o

Finally, we conclude this section with a criterion for the solution of the

perturbed dynamic system (4.2) to be unstable with respect to the original
unperturbed dynamic system (4.1) with ITD.
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Theorem 4.4: Assume that there exist functions V (t,u) and g(t,w, |n|) satisfying the

following properties:

i)V EC,,[GR,], V(t,u) is locally Lipschitzian in w on G, V(t,u) =0 for all
(t,u) € G — G and V(t,u) is positive and bounded on G, where G c T X S(p) is
some open set such that G has at least one boundary point (7,0),T > 0;
i)

DTVA(tu,n) =g, V(t,w),In]) =0, for (tun)€GxR (4.49)

where u =u(t) =y(t,to,Yo0) —x(t —1n,t0,%0), N=To—to >0, g€C4[TX
R% R.];

i) g(t,w, |[nu(t) is non-decreasing inw € Rforeachn € Randt € T;

iv) For o > T, the solutions w(t, to, wo,|n|) of comparison equation, for arbitrarily

small w, > 0, are either unbounded or indeterminate, for t > 7,.

Then the solutions of the perturbed dynamic system are unstable with respect to

unperturbed dynamic system with ITD.

Proof 4.4: Let x(t,to,x0) be any solution of the unperturbed system. Choose a point
(To,Yo— xo) In the vicinity of (T, 0). Consider the solution y(t,to,y0) Of the
perturbed system. Then the lipschitzian nature of VV(t,u) and condition (ii) yield

V(t,y(t,t0,y0) —x(t —1,t0,X0)) = V(T0,Yo— X0) =Wo >0 (4.50)
for all t = 0, for which (t,y(t, 7o, Y0) — x(t —1,to,X0)) € G. Since V(t,u) = 0 for

all (t,u) € G — G, it follows from (4.50) that (¢, y(t,To,¥o) — x(t — 1, to,X0)) € G

for t = 7,. Moreover, we also have

DHVA(Ly(t) —x(t —m) = g(t,V(t,y (&) — x(t —m), In]) (451)

which in view of Remark 4.1, implies that

Vit,y@®) —x(t—m) 2 pttowoelnl), t=10 (452)
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where p(t,to,Wo,|n|) is the minimal solution of the comparison equation. Since
V(t,u) is bounded by assumption the estimate (4.52) leads to a absurdity, if we
assume the solutions of the perturbed system is stable with respect to unperturbed
system with ITD. This proves the theorem.o
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5. CONCLUDING REMARKS

In this thesis, in Chapter 3, we dewvelop dynamic inequalities and a new
comparison principle for dynamic equations on time scales relative to initial time
difference, then we prove several stability and boundedness criteria relative to initial
time difference by employing comparison method. In Chapter 4, we develop a new
approach to determine behavior of solutions of perturbed dynamic system relative to
original unperturbed dynamic system which have different initial time on arbitrary
time scales. We give some stability properties. It is obvious that the notions
introduced here can be extended to include in addition all of the various refinements
of the stability properties such as uniform stability with ITD, uniform asymptotic
stability with ITD and so forth.
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