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SUMMARY 

 

 
In this thesis, dynamic systems on time  scales is studied. The basic definitions 

and theorems about the time scales are given. Dynamic inequalities and comparison 

methods are developed on arbitrary time scales with initial time difference. Stability 

theory of dynamical systems on time scales that have initial time difference is 

developed with the help of Lyapunov-like functions. Boundedness  criteria of 

dynamic system on time scales is established with initial time difference by 

employing Lyapunov-like functions. The behavior of solutions of perturbed dynamic 

system with respect to original unperturbed dynamic system that have initial time 

difference are investigated on arbitrary time scales. Notions of stability, asymptotic 

stability and instability with initial time difference are introduced. Sufficient 

conditions of stability properties are given with the help of Lyapunov like functions. 
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ÖZET 

 

 
Bu tezde zaman skalasında dinamik sistemler çalışıldı. Zaman skalası hakkında 

temel tanım ve teoremler verildi. Başlangıç zaman farklı dinamik eşitsizlikler ve 

karşılaştırma metodu keyfi zaman skalasında geliştirildi. Liapunov (Lyapunov) 

fonksiyonları yardımıyla başlangıç zaman farkı olan dinamik sistemler için keyfi 

zaman skalasında kararlılık teorisi geliştirildi. Lyapunov fonksiyonları ile başlangıç 

zaman farkı olan dinamik sistemler için keyfi zaman skalasında sınırlılık kriteri 

verildi. Keyfi zaman skalasında başlangıç zaman farkı olan pertörb dinamik 

çözümleri orijinal  pertörb olmayan dinamik sistemin çözümlerine göre davranışı 

incelendi. Başlangıç zaman farklı kararlılık, asimptotik kararlılık ve kararsızlık 

kavramları tanıtıldı. Liapunov fonksiyonları yardımıyla kararlılık özellikleri için 

yeterli koşullar verildi.  
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1. INTRODUCTION 

 

Differential and difference equations are among the most important 

mathematical tools used in producing models of physical and biological sciences and 

engineering. Difference equations are also appears in the study of discretization 

methods for differential equations. Several results of differential equations do just 

translate themselves into analogous results in difference equations. This naturally 

raises the question whether it is possible to unify the theory of differential and 

difference equations into a single set up. The answer is yes and we now have 

necessary calculus and the fundamental existence theory for dynamic systems on 

times scales [1] - [3], [11], [14]. A brief of results of this theory is given in Chapter 

2. From a modeling point of view, it is perhaps more realistic to model a 

phenomenon by a dynamic system which incorporates both continuous and discrete 

times, namely, time as an arbitrary closed set of real called time scales. Many 

phenomenons in physical and biological sciences and engineering are interpreted in 

terms of dynamic equations and their solutions. As a result, stability theory plays a 

central role in systems theory and engineering. There are different kinds of stability 

problems that arise in the study of dynamical systems on time scale. Asymptotic 

stability, exponentially asymptotic stability, eventual stability, Lipschitz stability, 

practical stability, stability of conditionally invariant sets are examples of stability 

problems that studied in the literature [4] - [6], [9], [10], [12] - [14].  

The investigation of initial value problems with a perturbation in the space 

variable is well known when the perturbation is restricted to the space variable with 

initial time unchanged [4] - [6], [9], [10], [12] - [14]. However, in real world 

applications, it is possible to make an error in the initial time in addition to the initial 

position. This results in a problem of measuring the difference of two solutions 

which differ in initial time and initial position. So far, several studies have been 

made on this problem to explore the stability, boundedness, etc., criteria for 

differential systems relative to initial time difference [17], [19] - [22], [24], [26], 

[27]. In Chapter 3, we investigate stability and boundedness criteria for dynamic 

systems on time scales relative to initial time difference by using comparison 

method. In Subsections, we present definitions and necessary background material. 

We discuss and compare the differences between classical notion of stability and the 
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notion of initial time difference (ITD) stability. We obtain new dynamic inequalities 

and comparison results on time scales relative to initial time difference. In the 

framework of these results we obtain several ITD-stability and ITD-boundedness 

properties from the stability and boundedness properties of the comparison dynamic 

system. Finally, as an application of these new results we give examples.  

In real world applications, it is necessary to consider a particular dynamic 

system with a perturbation term. In addition to perturbing the given particular 

dynamic system, it is possible to make an error in initial times as well as in initial 

positions. Therefore, one needs to investigate the qualitative and quantitative 

properties of a given particular dynamic system under these perturbations. A 

principal technique employed in stability theory is investigating stability properties 

of a particular dynamic system under small perturbations. This technique is 

employed in many ways [5], [9], [13] - [15]. Another  techniques are also used in [5], 

[7] - [9], [13] - [15]. In [21], [22], [26], [27] the authors considered the case that 

perturbed dynamic system and original unperturbed dynamic system which have 

different initial time. In Chapter 4, we consider the problem of determining the 

behavior of solutions of a perturbed dynamic equation with respect to those of 

original unperturbed dynamic system that have initial time difference (ITD). We 

consider this problem on arbitrary time scales, nonempty closed subset of real 

numbers, and therefore we obtained a general result that can be applied discrete and 

continuous cases simultaneously. We begin with a preliminary section which 

includes the basic concepts and definitions. Then we give the obtained novel results. 
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2. TIME SCALES FUNDAMENTALS 

 

In this chapter we give the main definitions and characteristics of the calculus 

on time scales initiated by Aulbach and Hilger [1], [11] which comprise those 

features of the differential and difference calculus as they are relevant for the 

development of a qualitative theory of dynamical systems. We note that the contents 

of such a development of some higher ranging calculus is quite extensive. So we 

suffice only with giving the essentials necessary for the further aims of this work and 

refer to [2], [3], [14] for more details.  

We begin this chapter with basic definitions of time scales and give the special 

type of Induction Principle that is used as a main tool in the arguments. Next, we 

continue by paying special attention to concepts of differentiability of a function on 

time scales. After that, we introduce  the integrability of a function on time scales. In 

this section we give the concepts such as continuity, right dense (rd)- continuity, 

regularity of a function which posses important roles in the analysis of discrete and 

continuous scales in a unified manner. As a result of these concepts, we end this 

chapter by considering exponential functions on time scales, structure of dynamical 

systems on time scales and some dynamic inequalities that will be employed 

throughout the thesis.    

 

2.1. Basic Definitions of Time Scales 
 

A time scale is an arbitrary nonempty closed subset of real numbers. It is 

denoted by 𝕋. Thus ℝ, ℤ, i.e., the real numbers, the integers and  the closed  interval   

 0,1  are examples of time scales. ℚ, ℝ\ℚ, i.e., the rational numbers, the irrational 

numbers and the open interval   0,1   are not time scales. We assume throughout that 

a time scale 𝕋 has the topology that it inherits from the real numbers with the 

standard topology and, for our future purposes, unbounded from above with 𝑡₀ ≥ 0 

as a minimal element. 

Because of the fact that a time scale is not necessarily connected, we define the 

forward and backward jump operators on 𝕋 as follows. 
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Definition 2.1: Let 𝕋 be a time scale. For 𝑡 ∈ 𝕋 we define the forward jump operator 

𝜍: 𝕋 → 𝕋 by 

 

𝜍(𝑡) = 𝑖𝑛𝑓{𝑠 ∈ 𝕋,𝑠 > 𝑡} (2.1) 

 

while the backward jump operator  𝜌: 𝕋 → 𝕋 is defined by 

 

𝜌(𝑡) = 𝑠𝑢𝑝{𝑠 ∈ 𝕋,𝑠 < 𝑡} (2.2) 

 

A point 𝑡 ∈ 𝕋 is called right dense if 𝜍(𝑡) = 𝑡, right-scattered if 𝜍(𝑡) > 𝑡, left 

dense if 𝜌(𝑡) = 𝑡, left scattered if 𝜌(𝑡) < 𝑡, dense if 𝑡 = 𝜍(𝑡) = 𝜌(𝑡), isolated if 

𝜍(𝑡) > 𝑡 > 𝜌(𝑡). 

Finally, the graininess function 𝜇: 𝕋 → ℝ₊, which measure the gap between a 

point 𝑡 and its right neighbor, is defined by  

 

𝜇 𝑡 = 𝜍 𝑡 − 𝑡. (2.3) 

 

We need below the set 𝕋𝜅 is derived from the time scale 𝕋 as follows : If a 

time scale 𝕋 has a maximal element which is also left-scattered then it is called a 

degenerate point. 𝕋𝜅 represents the set of all non-degenerate points of 𝕋. This set 

cuts off an eventually existing isolated maximum of 𝕋. In summary, 

 

𝕋𝜅 =  
𝕋\(ρ(sup𝕋),sup𝕋]          if sup𝕋 < ∞
                𝕋                           if sup𝕋 = ∞

  (2.4) 

 

Example 2.1: Let us briefly consider the two examples 𝕋 = ℝ  and 𝕋 = ℤ. 

 

 If  𝕋 = ℝ, then we have for any 𝑡 ∈ ℝ   

 

𝜍 𝑡 = 𝑖𝑛𝑓 𝑠 ∈ 𝕋, 𝑠 > 𝑡 = 𝑖𝑛𝑓 𝑡, ∞ = 𝑡 (2.5) 

 

and similarly 𝜌 𝑡 = 𝑡. Hence every point  𝑡 ∈ ℝ  is dense. The graininess function 

𝜇 turns out to be 
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𝜇 𝑡 ≣ 0  𝑓𝑜𝑟 𝑎𝑙𝑙    𝑡 ∈ ℝ; (2.6) 

 

 If  𝕋 = ℤ, then we have for any 𝑡 ∈ ℤ 

 

𝜍 𝑡 = 𝑖𝑛𝑓 𝑠 ∈ 𝕋, 𝑠 > 𝑡 = 𝑖𝑛𝑓 𝑡 + 1, 𝑡 + 2, …  = 𝑡 + 1 (2.7) 

 

and similarly 𝜌 𝑡 = 𝑡 − 1 . Hence every point 𝑡 ∈ ℤ is isolated. The graininess 

function 𝜇 is the case is 

 

𝜇 𝑡 ≣ 1   𝑓𝑜𝑟 𝑎𝑙𝑙   𝑡 ∈ ℤ. (2.8) 

 

          A basic tool which will be employed in the proofs later is contained in the 

following theorem as an induction principle.  

 

Theorem 2.1: Let 𝑡0 ∈ ℤ and assume that {𝐴(𝑡): 𝑡 ∈ [𝑡₀, ∞)} is a family of statements 

satisfying: 

 

i) The statement 𝐴(𝑡₀) is true. 

ii) If 𝑡 ∈ [𝑡₀, ∞) is right-scattered and 𝐴(𝑡) is true, then 𝐴(𝜍(𝑡)) is also true. 

iii) If 𝑡 ∈ [𝑡₀,∞) is right-dense and 𝐴(𝑡) is true, then there is a neighborhood 𝑈 of 

𝑡 such that 𝐴(𝑠) is true for all 𝑠 ∈ 𝑈 ∩ (𝑡, ∞). 

iv) If 𝑡 ∈ (𝑡₀, ∞) is left-dense and 𝐴(𝑠) is true for all 𝑠 ∈ [𝑡₀, 𝑡), then 𝐴(𝑡) is true. 

 

Then 𝐴(𝑡) is true for all 𝑡 ∈ [𝑡₀,∞). 

 

Proof 2.1: See [2], [3].□ 

 

2.2. Differentiation of Functions on Time Scales  
 

In this section we consider a function 𝑢: 𝕋 → ℝ and define the so-called delta 

(or Hilger) derivative of 𝑢 at a point 𝑡 ∈ 𝕋𝜅 
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Definition 2.2: Assume that 𝑢: 𝕋 → ℝ is a function and let 𝑡 ∈ 𝕋𝜅. Then we define 

delta derivative 𝑢∆(𝑡) at 𝑡 to be the number (provided it exists) with the property that 

given any 𝜀 > 0, there is a neighborhood 𝑁 of  𝑡 such that    

 

|[𝑢(𝜍(𝑡)) − 𝑢(𝑠)] − 𝑢∆(𝑡)(𝑡)[𝜍(𝑡) − 𝑠]| ≤ 𝜀|𝜍(𝑡) − 𝑠|   ∀𝑠 ∈ 𝑁 (2.9) 

 

Alternatively one can define, 
 

𝑢∆(𝑡) ∶= lim
𝑠→𝑡,𝑠≠𝜍(𝑡)

𝑢(𝜍(𝑡)) − 𝑢(𝑠)

𝜍(𝑡) − 𝑠
. (2.10) 

 

Theorem 2.2: Assume 𝑢: 𝕋 → ℝ is a function and let 𝑡 ∈ 𝕋𝜅 . Then we have the 

following: 

 

i) If u is differentiable at 𝑡, then 𝑢 is continuous at 𝑡. 

ii) If  𝑢 is continuous at 𝑡 and 𝑡 is right-scattered, then 𝑢 is differentiable at 𝑡  with 

 

𝑢∆ 𝑡 =
𝑢(𝜍(𝑡)) − 𝑢(𝑡)

𝜇(𝑡)
. (2.11) 

 

iii) If 𝑡 is right-dense, then 𝑢 is differentiable at 𝑡 iff the limit 

 

lim
𝑠→𝑡

𝑢 𝑡 − 𝑢(𝑠)

𝑡 − 𝑠
 (2.12) 

 

exists as a  finite number. In this case 

 

𝑢∆ 𝑡 = lim
𝑠→𝑡

𝑢 𝑡 − 𝑢(𝑠)

𝑡 − 𝑠
. (2.13) 

 

iv) If  𝑢 is differentiable at 𝑡, then  

 

𝑢 𝜍 𝑡  = 𝑢 𝑡 + 𝜇 𝑡 𝑢∆ 𝑡 . (2.14) 

 

Proof 2.2: See [2], [3].□ 
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Example 2.2: We consider the two cases 𝕋 = ℝ  and 𝕋 = ℤ. 

 

 If  𝕋 = ℝ, then Theorem 2.2 (iii) yields that  𝑢: ℝ → ℝ  is delta differentiable at 

𝑡 ∈ ℝ iff  

 

𝑢′ 𝑡 = lim
𝑠→𝑡

𝑢 𝑡 − 𝑢(𝑠)

𝑡 − 𝑠
 (2.15) 

 

     exists, i.e., iff 𝑢 is differentiable (in the ordinary sense) at 𝑡. In this case we then   

have  

 

𝑢∆ 𝑡 = lim
𝑠→𝑡

𝑢 𝑡 − 𝑢(𝑠)

𝑡 − 𝑠
= 𝑢′ 𝑡  (2.16) 

 

by Theorem 2.1 (iii). 

 

 If  𝕋 = ℤ, then Theorem 2.1 (ii) yields that  that  𝑢: ℤ → ℝ  is delta 

differentiable at 𝑡 ∈ ℤ with  

 

𝑢∆ 𝑡 =
𝑢(𝜍(𝑡)) − 𝑢(𝑡)

𝜇(𝑡)
=

𝑢 𝑡 + 1 − 𝑢(𝑡)

1
= 𝑢 𝑡 + 1 − 𝑢 𝑡 = ∆𝑢(𝑡) (2.17) 

 

     where ∆ is the usual forward difference operator defined by the last equation 

above. 

  

Theorem 2.3: Assume 𝑢, 𝑤: 𝕋 → ℝ are differentiable at 𝑡 ∈ 𝕋𝜅 . Then: 

 

i) The sum 𝑢 + 𝑤: 𝕋 → ℝ  is differentiable at 𝑡 ∈ 𝕋𝜅 with  

 

 𝑢 + 𝑤 ∆ 𝑡 = 𝑢∆ 𝑡 + 𝑤∆ 𝑡 ; (2.18) 

 

ii) For any constant 𝛼 ∈ ℝ, the function 𝛼𝑢: 𝕋 → ℝ is differentiable at 𝑡 ∈ 𝕋𝜅 with 

 

 𝛼𝑢 ∆ 𝑡 = 𝛼𝑢∆ 𝑡 ; (2.19) 
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iii) The product 𝑢𝑤: 𝕋 → ℝ is differentiable at 𝑡 ∈ 𝕋𝜅 with 

 

 𝑢𝑤 ∆ 𝑡 = 𝑢∆ 𝑡 𝑤 𝑡 + 𝑢 𝜍 𝑡  𝑤∆ 𝑡 = 𝑢 𝑡 𝑤∆ 𝑡 + 𝑢∆ 𝑡 𝑤(𝜍 𝑡 ); (2.20) 

 

iv) If  𝑢 𝑡 𝑢 𝜍 𝑡  ≠ 0, then  
1

𝑢
 is differentiable at 𝑡 ∈ 𝕋𝜅 with 

 

 
1

𝑢
 

∆

 𝑡 =
−𝑢∆ 𝑡 

 𝑢 𝑡 𝑢 𝜍 𝑡  
; (2.21) 

 

v) If  𝑤 𝑡 𝑤 𝜍 𝑡  ≠ 0, then 
𝑢

𝑤
  is differentiable at 𝑡 ∈ 𝕋𝜅  with 

 

 
𝑢

𝑤
 

∆

 𝑡 =
𝑢∆ 𝑡 𝑤 𝑡 − 𝑢 𝑡 𝑤∆ 𝑡 

 𝑤 𝑡 𝑤 𝜍 𝑡  
. (2.22) 

 

Proof 2.3: See [2], [3].□ 

 

In the course of this thesis, we frequently employ the generalized delta 

derivatives corresponding to Dini derivatives. 

  

Definition 2.3: For each 𝑡 ∈ 𝕋, let 𝑁 be a neighborhood of 𝑡. Then we define the 

upper right Dini derivative 𝐷⁺𝑢△(𝑡)  by the condition: for a given 𝜀 > 0, there exists 

a right neighborhood 𝑁𝜀 ⊂ 𝑁 of  𝑡 such that 

 

𝑢(𝜍(𝑡)) − 𝑢(𝑠)

𝜍(𝑡) − 𝑠
<  𝐷+𝑢∆ 𝑡 + 𝜀  𝑓𝑜𝑟  𝑠 ∈ 𝑁𝜀 , (2.23) 

 

in case 𝑡 ∈ 𝕋 is right-scattered and 𝑢(𝑡) is continuous at 𝑡 we have 

 

𝐷+𝑢∆ 𝑡 =
𝑢(𝜍(𝑡)) − 𝑢(𝑡)

𝜇(𝑡)
 (2.24) 

 

where 𝜇(𝑡) = 𝜍(𝑡) − 𝑡. Alternatively one can define, 
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𝐷+𝑢∆ 𝑡 ∶= lim
𝑠→𝑡,𝑠≠𝜍(𝑡)

𝑠𝑢𝑝
𝑢(𝜍(𝑡)) − 𝑢(𝑠)

𝜍(𝑡) − 𝑠
. (2.25) 

 

2.3. Integration of Functions on Time Scales 
 

Now, we define a class of functions which are integrable on arbitrary time 

scales. To achieve this, we first introduce the following two concepts.  

 

Definition 2.4: A function  𝑢: 𝕋 → ℝ is called regulated provided its right-sided 

limits exist (finite) at all right-dense points in 𝕋  and its left-sided limits exist (finite) 

at all left dense points in 𝕋. 

 

Definition 2.5: A function 𝑢: 𝕋 → ℝ is called rd-continuous provided it is continuous 

at right-dense points in 𝕋 and its left-sided limits exist (finite) at left-dense points in 

𝕋. The set of rd-continuous functions 𝑢: 𝕋 → ℝ will be denoted by 𝐶𝑟𝑑(𝕋,ℝ). 

 

The following theorem gives some result about rd-continuous functions and 

regulated functions. 

 

Theorem 2.4: Assume 𝑢: 𝕋 → ℝ  

 

i) If  𝑢 is continuous, then 𝑢 is rd-continuous. 

ii) If  𝑢 is rd-continuous, then 𝑢 is regulated. 

iii) The jump operator 𝜍 is rd-continuous. 

iv) If  𝑢 is regulated or rd-continuous, then so is 𝑢 𝜍 𝑡  . 

v) Assume 𝑢 is continuous. If  w: 𝕋 → ℝ is regulated or rd-continuous, then 𝑢 ∘ 𝑤 

has that property too. 

 

Definition 2.6:  A continuous function  𝑢: 𝕋 → ℝ is pre-differentiable with (region of 

differentiation) 𝐷, provided 𝐷 ⊂ 𝕋𝜅, 𝕋𝜅\𝐷 is countable and contains no right-

scattered elements of  𝕋,  and 𝑢 is differentiable at each 𝑡 ∈ 𝐷. 
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Theorem 2.5: Let 𝑢 be regulated. Then there exists a function 𝑈 which is pre-

differentiable with region of differentiation 𝐷 such that  

 

𝑈∆ 𝑡 = 𝑢(𝑡) (2.26) 

 

holds for all 𝑡 ∈ 𝐷. 

 

Definition 2.7: Assume  𝑢: 𝕋 → ℝ is a regulated function. Any function as in 

Theorem 2.5 is called a pre-antiderivative of 𝑢. 

 

We define the indefinite integral of a regulated function 𝑢 by 

 

 𝑢 𝑡 ∆𝑡 = 𝑈 𝑡 + 𝐶 (2.27) 

 

where  𝐶 is an arbitrary constant and 𝑈 is a pre-antiderivative of 𝑢. 

We define the Cauchy integral by  

 

 𝑢 𝑡 ∆𝑡 =
𝑠

𝑟

𝑈 𝑠 − 𝑈 𝑟    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑠 ∈ 𝕋 (2.28) 

 

A function 𝑈: 𝕋 → ℝ is called an anti-derivative of u: 𝕋 → ℝ provided  

 

𝑈∆ 𝑡 = 𝑢 𝑡   𝑕𝑜𝑙𝑑𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝕋𝜅 . (2.29) 

 

Definition 2.8: The mapping 𝑓: 𝕋𝜅 × ℝ → ℝ is called rd-continuous if it 

 

i) is continuous at each (𝑡, 𝑥) with right-dense or maximal 𝑡 

and 

ii) the limits 𝑓 𝑡−,𝑥 = lim 𝑠,𝑦 →(𝑡 ,𝑥)
𝑠<𝑡

𝑓(𝑠, 𝑦) and lim𝑦→𝑥 𝑓(𝑡, 𝑦) exist at each (𝑡, 𝑥) 

with left-dense 𝑡. 
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2.4. The Exponential Function 
 

In this section we will study linear first order dynamic equations and initial 

value problems  for  them.  In  fact, we will construct the solution of the initial value 

problem 

 

𝑦∆ = 𝑝 𝑡 𝑦       𝑦 𝑡0 = 𝑦0  (2.30) 

 

explicitly,  and we will call this solution the exponential function associated with the 

given time scale. Many of the results in this section can be found in [2], [3] and for 

more details we refer to them. Before defining the exponential function on time 

scales, we must introduce some terminology. So, we now introduce what we call the 

Hilger complex plane. 

 

Definition 2.9: For 𝑕 >  0 we define the Hilger complex numbers, the Hilger real  

axis, the Hilger alternating axis, and the Hilger imaginary circle as 

 

 ℂ𝑕 ∶=  𝑧 ∈ ℂ: 𝑧 ≠
1

𝑕
 , 

 ℝ 𝑕 ∶=  𝑧 ∈ ℂ𝑕 : 𝑧 ∈ ℝ  𝑎𝑛𝑑 𝑧 > −
1

𝑕
 , 

 𝔸𝑕 ∶=  𝑧 ∈ ℂ𝑕: 𝑧 ∈ ℝ  𝑎𝑛𝑑 𝑧 < −
1

𝑕
 , 

 𝕀𝑕 ∶=  𝑧 ∈ ℂ𝑕 :  𝑧 +
1

𝑕
 =

1

𝑕
 , 

 

respectively. For 𝑕 = 0, let ℂ0 ∶= ℂ, ℝ 0 ∶= ℝ, 𝕀0 ∶= 𝑖 ℝ, and 𝔸0 ∶= ∅.  

 

For 𝑕 >  0, let 𝑍𝑕  be the strip ℤ𝑕 ∶= 𝑧 ∈ ℂ: −
𝜋

𝑕
< 𝐼𝑚 𝑧 <

𝜋

𝑕
 and for 𝑕 = 0  

let ℤ𝑕 ∶= ℂ.  

 

Definition 2.10: For 𝑕 >  0, we define the cylinder transformation 𝜉𝑕 : ℂ𝑕 → ℤ𝑕  by 

 

𝜉𝑕 (𝑧) =
1

𝑕
𝐿𝑜𝑔 1 + 𝑧𝑕 , (2.31) 
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where Log is the principal logarithm function. For 𝑕 =  0, we define 𝜉0(𝑧) = 𝑧 for 

all 𝑧 ∈ ℂ.  

 

We call 𝜉𝑕  the cylinder transformation because when h >  0 we can view ℤ𝑕  

as a cylinder if we glue the bordering lines Im z = −
1

h
 and Im z =

1

h
 of ℤ𝑕  

together  to form a cylinder.  

 
Definition 2.11: We say that a function  p: 𝕋 → ℝ  is regressive provided 

 

1 + 𝜇 𝑡 𝑝 𝑡 ≠ 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝕋𝜅  (2.32) 

 

holds. The set of all regressive and rd-continuous functions  p: 𝕋 → ℝ will be 

denoted by ℛ = ℛ 𝕋 = ℛ 𝕋,ℝ .  

 

Definition 2.12: The set ℛ+ of all positively regressive elements of  ℛ is defined by 

 

 ℛ+ = ℛ+ 𝕋,ℝ ∶=  𝑝 ∈ ℛ: 1 + 𝜇 𝑡 𝑝 𝑡 > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝕋 . 

 

We now ready to define the generalized exponential function 𝑒𝑝 (𝑡, 𝑠) on time 

scales. 

 

Definition 2.13: If 𝑝 ∈ ℛ, then we define the exponential function by 

 

𝑒𝑝  𝑡,𝑠 = exp   𝜉𝜇 𝜏  𝑝 𝜏  ∆𝜏
𝑡

𝑠

  𝑓𝑜𝑟 𝑠, 𝑡 ∈ 𝕋 (2.33) 

 

where the cylinder transformation 𝜉𝑕 (𝑧) is introduced in Definition 2.10. 

 

In the following theorem, we list some properties of the generalized 

exponential function.  
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Theorem 2.6: If  𝑝, 𝑞 ∈ ℛ, then 

 

i) 𝑒0 𝑡,𝑠 ≡ 1 and 𝑒𝑝 (𝑡, 𝑡) ≡ 1; 

ii) 𝑒𝑝  𝜍 𝑡 , 𝑠 = (1 + 𝜇 𝑡 𝑝 𝑡 )𝑒𝑝  𝑡, 𝑠 ; 

iii) 
1

𝑒𝑝 𝑡,𝑠 
= 𝑒⊖𝑝  𝑡,𝑠 ; 

iv) 𝑒𝑝  𝑡,𝑠 =
1

𝑒𝑝 𝑠,𝑡 
= 𝑒⊖𝑝  𝑠,𝑡 ; 

v) 𝑒𝑝  𝑡, 𝑠 𝑒𝑝  𝑠, 𝑟 = 𝑒𝑝  𝑡, 𝑟 ; 

vi) 𝑒𝑝  𝑡,𝑠 𝑒𝑞  𝑡,𝑠 = 𝑒𝑝⊕𝑞 𝑡,𝑠 ; 

vii) 
𝑒𝑝 𝑡,𝑠 

𝑒𝑞  𝑡,𝑠 
= 𝑒𝑝⊖𝑞 𝑡, 𝑠  

 

Proof 2.6: See [2], [3].□ 

 

2.4.1. Structure of Dynamical Systems on Time Scales 

 

In this subsection, we introduce the structure of a dynamical system on time 

scales. 

 

Definition 2.14: The first order linear dynamic equation  

 

𝑦∆ = 𝑝 𝑡 𝑦(𝑡) (2.34) 

 

is called regressive if 𝑝 ∈ ℛ.  

 

Theorem 2.7: Suppose (2.34) is regressive. Let 𝑡0 ∈ 𝕋 and 𝑦0 ∈ ℝ. Then the unique 

solution of the initial value problem  

 

𝑦∆ = 𝑝 𝑡 𝑦 𝑡         𝑦 𝑡0 = 𝑦0 (2.35) 

 

is given by 

 

𝑦 𝑡 = 𝑒𝑝 (𝑡, 𝑡0)𝑦0 (2.36) 



 

14 

Definition 2.15: If  𝑝 ∈ ℛ and  𝑓: 𝕋 → ℝ is rd-continuous, then the dynamic equation  

 

𝑦∆ = 𝑝 𝑡 𝑦 𝑡 + 𝑓(𝑡) (2.37) 

 

is called regressive.   

  

Theorem 2.8: Suppose (2.37) is regressive. Let 𝑡0 ∈ 𝕋 and 𝑦0 ∈ ℝ. Then the unique 

solution of the initial value problem  

 

𝑦∆ = 𝑝 𝑡 𝑦 𝑡 + 𝑓(𝑡)        𝑦 𝑡0 = 𝑦0 (2.38) 

 

is given by 

 

𝑦 𝑡 = 𝑦0𝑒𝑝  𝑡, 𝑡0 +  𝑒𝑝  𝑡, 𝜍 𝜏  𝑓(𝜏)∆𝜏
𝑡

𝑡0

 (2.39) 

 

For more details about the dynamical systems on time scales, we refer to [2], 

[3], [14]. 

 

2.5. Dynamic Inequalities and Comparison Results  

 

In this section, we consider the fundamental dynamic inequalities that are 

needed for our future purposes. We restrict ourselves to scalar dynamic equations.  

In the following theorem, we give a result relative to a system of strict dynamic 

inequalities. 

 

Theorem 2.9: Let 𝕋 be a time scale. Let 𝑣, 𝑤: 𝕋 → ℝ be mappings that are 

differentiable at each  t ∈ 𝕋κ satisfying  

 

𝑣∆ 𝑡 ≤ 𝑔 𝑡,𝑣 𝑡  , 𝑓𝑜𝑟 𝑡 ∈ 𝕋 

𝑤∆ 𝑡 > 𝑔 𝑡,𝑤 𝑡  , 𝑓𝑜𝑟 𝑡 ∈ 𝕋 

(2.40) 

(2.41) 
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where 𝑔 ∈ 𝐶𝑟𝑑  𝕋 × ℝ, ℝ  and 𝑔 𝑡, 𝑥 𝜇(𝑡) is nondecreasing in 𝑥 for each 𝑡 ∈ 𝕋. 

Then 𝑣 𝑡 < 𝑤 𝑡 ,  for all 𝑡 ∈ 𝕋  whenever  𝑣 𝑡0 < 𝑤 𝑡0 .  

 

Proof 2.9: See [14].□ 

 

Corollary 2.1: If in Theorem 2.9 the inequalities (2.40) and (2.41) is replaced by 

𝑣∆ 𝑡 < 𝑔 𝑡,𝑣 𝑡  , 𝑤∆ 𝑡 ≥ 𝑔 𝑡,𝑤 𝑡  , the conclusion 𝑣 𝑡 < 𝑤 𝑡 , 𝑓𝑜𝑟 𝑡 ∈ 𝕋 is 

still valid. 

 

In the next theorem, we give a result similar to that of Theorem 2.9 but in this 

case we consider non-strict dynamic inequalities. 

 

Theorem 2.10: Assume the hypotheses of Theorem 2.9 with (2.40) and (2.41) 

replaced by 

 

𝑣∆ 𝑡 ≤ 𝑔 𝑡,𝑣 𝑡  , 𝑓𝑜𝑟 𝑡 ∈ 𝕋 

𝑤∆ 𝑡 ≥ 𝑔 𝑡,𝑤 𝑡  , 𝑓𝑜𝑟 𝑡 ∈ 𝕋 

(2.42) 

(2.43) 

 

Suppose further that for 𝑥 ≥ 𝑦 and 𝑡 ∈ 𝕋 is right dense  
 

𝑔 𝑡, 𝑥 − 𝑔 𝑡, 𝑦 ≤ 𝐿 𝑥 − 𝑦 , 𝐿 > 0 (2.44) 
 
Then 𝑣 𝑡 ≤ 𝑤 𝑡 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝕋  whenever  𝑣 𝑡0 ≤ 𝑤 𝑡0 . 

 
Proof 2.10: See [14].□ 

 

Definition 2.16: Let 𝑟(𝑡) be a solution of the scalar dynamic equation 𝑢∆ =

𝑔(𝑡, 𝑢(𝑡))  𝑢 𝑡0 = 𝑢0 on [𝑡0 ,𝑡0 + 𝑎). Then  𝑟(𝑡) is said to be a maximal solution if, 

for every solution of 𝑢∆ = 𝑔(𝑡, 𝑢(𝑡))  𝑢 𝑡0 = 𝑢0 existing on [𝑡0 ,𝑡0 + 𝑎), the 

inequality  

 

𝑢 𝑡 ≤ 𝑟 𝑡 , 𝑡 ∈ [𝑡0 ,𝑡0 + 𝑎) (2.45) 

 

holds. A minimal solution 𝜌(𝑡) may be defined similarly by reversing the inequality 

(2.45). 
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An important technique in the theory of differential equations is concerned 

with estimating a function satisfying a differential inequality by the extremal 

solutions, of the corresponding differential equation. One of the results that is widely 

used is the following comparison theorem: 

 

Theorem 2.11: Let 𝑔 ∈ 𝐶𝑟𝑑  𝕋 × ℝ, ℝ  and 𝑔 𝑡, 𝑥 𝜇(𝑡) is nondecreasing in 𝑥 for 

each 𝑡 ∈ 𝕋. Let 𝑚: [𝑡0, 𝑡0 + 𝑎)𝕋 → ℝ be a mapping that is differentiable for each  

𝑡 ∈ [𝑡0, 𝑡0 + 𝑎)𝕋 satisfying  

 

𝑚∆ 𝑡 ≤ 𝑔 𝑡,𝑚 𝑡  , 𝑓𝑜𝑟 𝑡 ∈ [𝑡0 ,𝑡0 + 𝑎)𝕋. (2.46) 

 

Then, 𝑚(𝑡0) ≤  𝑢0 implies that  𝑚 𝑡 ≤ 𝑟 𝑡 , 𝑡 ∈ [𝑡0 ,𝑡0 + 𝑎)𝕋, where 𝑟 𝑡  is the 

maximal solution of the scalar dynamic equation 𝑢∆ = 𝑔(𝑡, 𝑢(𝑡))  𝑢 𝑡0 = 𝑢0 

existing on [𝑡0 ,𝑡0 + 𝑎)𝕋.  

 

Proof 2.11: See [14].□ 

 

We now give Gronwall inequality on time scales. 

 

Theorem 2.12: Let 𝑦, 𝑓 ∈ 𝐶𝑟𝑑 and 𝑝 ∈ ℛ+, 𝑝 ≥ 0. Then 

 

𝑦 𝑡 ≤ 𝑓 𝑡 +  𝑦 𝜏 𝑝(𝜏)
𝑡

𝑡0

∆𝜏   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝕋 (2.47) 

 

implies 

 

𝑦 𝑡 ≤ 𝑓 𝑡 +  𝑒𝑝  𝑡, 𝜍 𝜏  𝑓 𝜏 𝑝(𝜏)
𝑡

𝑡0

∆𝜏   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝕋 (2.48) 

 

Proof 2.12: See [2], [3]. 
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Corollary 2.2: Let 𝑦 ∈ 𝐶𝑟𝑑,  𝑝 ∈ ℛ+, 𝑝 ≥ 0 and α ∈ ℝ. Then  

 

𝑦 𝑡 ≤ 𝛼 +  𝑦 𝜏 𝑝(𝜏)
𝑡

𝑡0

∆𝜏   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝕋 (2.49) 

implies 

 

𝑦 𝑡 ≤ 𝛼𝑒𝑝  𝑡, 𝑡0    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝕋 (2.50) 

 

Proof 2.2: See [2], [3].□ 
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3. STABILITY and BOUNDEDNESS of DYNAMIC 

EQUATIONS on TIME SCALES with INITIAL 

TIME DIFFERENCE 
 

3.1. Introduction 

 

The qualitative behavior of differential-difference systems has been explored 

extensively by employing Lyapunov-like functions and corresponding inequalities 

[13], [15], [16]. The investigation of initial value problems with a perturbation in the 

space variable is well known when the perturbation is restricted to the space variable 

with initial time unchanged [9], [10], [13], [15], [16]. However, in real world 

applications, it is possible to make an error in the initial time in addition to the initial 

position. This results in a problem of measuring the difference of two solutions 

which differ in initial time and initial position. So far, several studies have been 

made on this problem to explore the stability, boundedness, etc., criteria for 

differential systems relative to initial time difference [13], [20] - [22], [24], [26], 

[27]. 

In this chapter, we investigate stability and boundedness criteria for dynamic 

systems on time scales relative to initial time difference by using comparison 

method. In Section 2, we present basic definitions and necessary background 

material. In Section 3, we discuss and compare the differences between classical 

notion of stability and the notion of initial time difference (ITD) stability. In Section 

4, we obtain new dynamic inequalities and comparison results on time scales relative 

to initial time difference. In the framework of of these results, we obtain several ITD-

stability and ITD-boundedness properties from the stability and boundedness 

properties of the comparison dynamic system. Moreover, as an application of these 

new results, we give an example.  
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3.2. Basic Definitions and Concepts 

 

Consider the dynamic systems 

 

𝑥∆ = 𝑓 𝑡, 𝑥 , 𝑥 𝑡0 = 𝑥0 ,     𝑓𝑜𝑟  𝑡 ≥ 𝑡0 ≥ 0, 𝑡, 𝑡0 ∈ 𝕋, 

𝑦∆ = 𝑓 𝑡, 𝑦 , 𝑦 𝜏0 = 𝑦0 ,     𝑓𝑜𝑟  𝑡 ≥ 𝜏0 ≥ 0, 𝑡, 𝜏0 ∈ 𝕋 

(3.1) 

(3.2) 

 

where 𝑓 ∈ 𝐶𝑟𝑑  𝕋 × ℝ𝑛 , ℝ𝑛  . Suppose that the function 𝑓 is smooth enough to 

guarantee existence, uniqueness and right dense (rd)-continuous depence of solutions 

𝑥(𝑡) = 𝑥(𝑡, 𝑡₀, 𝑥₀) and 𝑦(𝑡) = 𝑦(𝑡, 𝜏₀,𝑦₀) (3.1), (3.2); respectively. Assume that 

𝑥(𝑡) = 𝑥(𝑡, 𝑡₀, 𝑥₀) is the solution that we shall study stability and boundedness 

criteria with respect to it. Set 𝜂 = 𝜏₀ − 𝑡₀ > 0 and denote 𝑆(𝜌) = {𝑥 ∈ 𝑅ⁿ: ‖𝑥‖ < 𝜌} 

and 𝑆𝑐(𝜌) = {𝑥 ∈ 𝑅ⁿ:‖𝑥‖ ≥ 𝜌} for some 𝜌 > 0. 

Before we can establish our comparison theorem, stability and boundedness 

criteria for dynamic systems we need to introduce the following definitions. 

 

Definition 3.1: The solution 𝑥(𝑡) = 𝑥(𝑡, 𝑡₀,𝑥₀) of (3.1) is said to be 

 

S1) equistable with ITD, if given 𝜀 > 0 and 𝑡₀ ∈ 𝕋, there exists 𝛿 = 𝛿(𝜀, 𝑡₀) > 0 and 

𝛿 = 𝛿 (𝜀, 𝑡₀) > 0 such that ‖𝑦(𝑡 + 𝜂, 𝜏₀, 𝑦₀)− 𝑥(𝑡, 𝑡₀, 𝑥₀)‖ < 𝜀 for 𝑡 ≥ 𝑡₀ whenever 

‖𝑦₀ − 𝑥₀‖ < 𝛿 and |𝜂| < 𝛿 ; 

S2) uniformly stable with ITD, if (S1) holds with 𝛿 and 𝛿  independent of 𝑡₀ ∈ 𝕋; 

S3) attractive with ITD, if for each 𝜀 > 0 and 𝑡₀ ∈ 𝕋, there exist 𝛿₀ = 𝛿₀(𝑡₀) > 0, 

𝛿 ₀ = 𝛿 ₀(𝑡₀) > 0 and a 𝑇 = 𝑇(𝜀, 𝑡₀) > 0 such that if ‖𝑦₀− 𝑥₀‖ < 𝛿₀ and |𝜂| < 𝛿₀ 

implies that  ‖𝑦(𝑡 + 𝜂, 𝜏₀, 𝑦₀) − 𝑥(𝑡, 𝑡₀, 𝑥₀)‖ < 𝜀 for 𝑡 ≥ 𝑡₀ + 𝑇; 

S4) uniformly attractive with ITD, if 𝛿₀ and 𝑇 in (S3) are independent of 𝑡₀ ∈ 𝕋; 

S5) asymptotically stable with ITD, if (S1) and (S3) hold simultaneously; 

S6) uniformly asymptotically stable with ITD, if (S₂) and (S₄) hold simultaneously. 
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Definition 3.2: The dynamic system (3.1) is said to be 

 

B1) equibounded with ITD, if given 𝛼 > 0 and 𝑡₀ ∈ 𝕋, there exists 𝛿 = 𝛿  𝛼, 𝑡₀ > 0 

and 𝛽 = 𝛽 𝛼, 𝑡₀ > 0 such that ‖𝑦(𝑡 + 𝜂, 𝜏₀,𝑦₀) − 𝑥(𝑡, 𝑡₀,𝑥₀)‖ < 𝛽 for 𝑡 ≥ 𝑡₀  

whenever ‖𝑦₀ − 𝑥₀‖ < 𝛼 and |𝜂| < 𝛿 ; 

B2) uniformly bounded with ITD, if (B1) holds with 𝛽 and 𝛿  independent of 𝑡₀ ∈ 𝕋; 

B3) quasi-ultimately equibounded with ITD, if for each 𝛼 > 0 and 𝑡₀ ∈ 𝕋, there 

exists 𝛿 0 = 𝛿 0  𝑡₀ > 0 and 𝛽0 = 𝛽0 𝑡₀ > 0 and a 𝑇 = 𝑇(𝛼, 𝑡₀) > 0 such that 

‖𝑦(𝑡 + 𝜂, 𝜏₀,𝑦₀) − 𝑥(𝑡, 𝑡₀,𝑥₀)‖ < 𝛽0   for  𝑡 ≥ 𝑡₀ + 𝑇 whenever ‖𝑦₀ − 𝑥₀‖ < 𝛼 and 

|𝜂| < 𝛿 0; 

B4) quasi-uniformly ultimately equibounded with ITD , if 𝛽0  and 𝑇 in (B3) are 

independent of 𝑡₀ ∈ 𝕋; 

B5) ultimately equibounded with ITD, if (B1) and (B1) hold simultaneously; 

B6) uniformly ultimately equibounded with ITD, if (B2) and (B4) hold 

simultaneously. 

 

We now introduce a certain class of function which we need in the sequel. 

 

Definition 3.3: A function 𝜑(𝑟) is said to belong to the class 𝒦 if ∈ 𝐶𝑟𝑑 [𝕋,ℝ₊], 

𝜑(0) = 0, 𝜑(𝑟) → ∞ as 𝑟 → ∞ and 𝜑(𝑟) is strictly monotone increasing in 𝑟. 

 

Definition 3.4: A real-valued function 𝑉(𝑡, 𝑥) ∈ 𝐶𝑟𝑑 [𝕋 × 𝑆(𝜌),ℝ₊] with 𝑉 𝑡, 0 ≡ 0 

is said to be positive definite (negative definite)if there exists a function 𝜑(𝑟) ∈ 𝒦 

such that the relations holds for (𝑡, 𝑥) ∈ 𝕋 × 𝑆(𝜌) respectively; 

 

 𝑉(𝑡, 𝑥) ≥ 𝜑(‖𝑥‖) 

 𝑉 𝑡, 𝑥 ≤ −𝜑(‖𝑥‖) 

 

Definition 3.5: A real-valued function 𝑉(𝑡, 𝑥) ∈ 𝐶𝑟𝑑 [𝕋 × 𝑆(𝜌),ℝ₊] is said to be 

decrescent if a function 𝜑(𝑟) ∈ 𝒦 exists such that 

 

 𝑉 𝑡, 𝑥 ≥ 𝜑 ‖𝑥‖ ,    𝑓𝑜𝑟    (𝑡, 𝑥) ∈ 𝕋 × 𝑆(𝜌). 
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Definition 3.6: For a real  real-valued function 𝑉(𝑡, 𝑥) ∈ 𝐶𝑟𝑑 [𝕋 × 𝑆(𝜌), ℝ₊] we 

define the Dini-derivatives along the trajectories of (3.1) as follows:                          

for a given 𝜀 > 0, there exists a neighborhood 𝒩 𝜀  of  𝑡 ∈ 𝕋 such that  

 

𝑉  𝜍 𝑡 , 𝑥 𝜍 𝑡   − 𝑉  𝑠, 𝑥 𝜍 𝑡  −  𝜍 𝑡 − 𝑠 𝑓 𝑡, 𝑥 𝑡   

𝜍 𝑡 − 𝑠
 

< 𝐷+𝑉∆ 𝑡, 𝑥 + 𝜀, 𝑠𝜖 𝒩 𝜀 , 𝑠 > 𝑡                                

(3.3) 

 

for (𝑡, 𝑥) ∈ 𝕋 × 𝑆(𝜌) in case 𝑡 ∈ 𝕋 is right-scattered and 𝑉(𝑡, 𝑥(𝑡)) is continuous at 

𝑡 ∈ 𝕋, we have  

 

𝐷+𝑉∆ 𝑡, 𝑥 =
𝑉  𝜍 𝑡 , 𝑥 𝜍 𝑡   − 𝑉(𝑡, 𝑥(𝑡))

𝜇(𝑡)
 (3.4) 

 

where 𝜇 𝑡 = 𝜍 𝑡 − 𝑡.  Alternatively one can define; 

 

𝐷+𝑉∆ 𝑡,𝑥 ∶= lim
𝑠→𝑡,𝑠≠𝜍 𝑡 

𝑠𝑢𝑝
𝑉 𝜍 𝑡 , 𝑥 𝜍 𝑡   − 𝑉 𝑠, 𝑥 𝑡  

𝜍 𝑡 − 𝑠
 (3.5) 

 

Definition 3.7: For a real  real-valued function 𝑉(𝑡, 𝑥) ∈ 𝐶𝑟𝑑 [𝕋 × 𝑆(𝜌), ℝ₊] we 

define the generalized derivatives (Dini-like derivatives) as follows there exists a 

neighborhood 𝒩 𝜀  of 𝑡 ∈ 𝕋 such that  

 

1

𝜇 𝑡, 𝑠 
 𝑉  𝜍 𝑡 , 𝑦  𝜍 𝑡  − 𝑥 𝜍 𝑡     

 −𝑉 𝑠, 𝑦  𝜍 𝑡  − 𝑥 𝜍 𝑡  − 𝜇 𝑡, 𝑠  𝑓 𝑡 + 𝜂, 𝑦  𝑡  − 𝑓 𝑡,𝑥 𝑡       

< 𝐷+𝑉∆ 𝑡, 𝑦 − 𝑥 + 𝜀, 𝑠𝜖 𝒩 𝜀 , 𝑠 > 𝑡    

(3.6) 

 

where 𝜇 𝑡, 𝑠 = 𝜍 𝑡 − 𝑠, 𝜂 > 0 and 𝑦  𝑡, 𝑡0, 𝑦0 = 𝑦 𝑡 + 𝜂, 𝜏0 , 𝑦0 . 
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3.3. Classical and Initial Time Difference (ITD) Notions of 

Stability on Time Scales 
 

3.3.1. Classical Notion of Stability 

 

Consider the followings IVPs on time scales 𝕋, 

 

𝑥∆ = 𝑓 𝑡, 𝑥 , 𝑥 𝑡0 = 𝑥0    𝑓𝑜𝑟  𝑡 ≥ 𝑡0 ,   𝑡 ∈ 𝕋 (3.7) 

𝑥∆ = 𝑓 𝑡, 𝑥 , 𝑥 𝑡0 = 𝑦0    𝑓𝑜𝑟  𝑡 ≥ 𝑡0 ,   𝑡 ∈ 𝕋 (3.8) 

 

where 𝑓 ∈ 𝐶𝑟𝑑 [𝕋 × 𝑆(𝜌),ℝ𝑛 ]  and  𝑆 𝜌 =  𝑥 ∈ ℝ𝑛 : ‖𝑥‖ < 𝜌 < ∞ .  

Assume that 𝑓 𝑡, 0 = 0 for all 𝑡 ∈ 𝕋 so that 𝑥 ≡ 0 is a null solution of (3.7) 

through  𝑡0 ,0 . Now, we can state the well known definitions concerning the 

stability of the null solution. 

 

Definition 3.8: The null solution 𝑥 ≡ 0 of (3.7) is said to be stable if and only if for 

each 𝜀 > 0 and for all 𝑡0 ∈ 𝕋, there exists a positive function 𝛿 = 𝛿(𝜀, 𝑡0) that is rd-

continuous in 𝑡₀ ∈ 𝕋 for each 𝜀 such that  

 

‖𝑥0‖ < 𝛿    𝑖𝑚𝑝𝑙𝑖𝑒𝑠     ‖𝑥 𝑡,𝑡₀, 𝑥0 ‖ < 𝜀, 𝑓𝑜𝑟  𝑡 ≥ 𝑡₀. (3.9) 

 

If 𝛿 is independent of 𝑡0, then the null solution 𝑥 ≡ 0 of (3.7) is said to be uniformly 

stable. with respect to the solution 𝑥(𝑡, 𝑡₀,𝑥₀). 

 

Definition 3.9: The solution 𝑥(𝑡, 𝑡₀,𝑦₀) of (3.8) is said to be stable with respect to the 

solution 𝑥(𝑡, 𝑡₀, 𝑥₀) of (3.7) for 𝑡 ≥ 𝑡₀ if and only if given any 𝜀 > 0 and  𝑡0 ∈ 𝕋 

there exists a positive function 𝛿 = 𝛿(𝜀, 𝑡₀) > 0 that is rd-continuous in 𝑡₀ for each 

𝜀 > 0 such that 

 

‖𝑦₀ − 𝑥₀‖ < 𝛿    𝑖𝑚𝑝𝑙𝑖𝑒𝑠    ‖𝑥 𝑡, 𝑡₀,𝑦₀ − 𝑥 𝑡, 𝑡₀,𝑥₀ ‖ < 𝜀   𝑓𝑜𝑟   𝑡 ≥ 𝑡₀. (3.10) 

 

If 𝛿 is independent of 𝑡₀, then the solution of the system  is uniformly stable with 

respect to the solution 𝑥(𝑡, 𝑡₀, 𝑥₀). 
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We remark that for the purpose of studying the classical stability of a given 

solution 𝑥(𝑡, 𝑡₀, 𝑦₀) of the system (3.8), it is convenient to make a change of variable. 

Let 𝑥(𝑡, 𝑡₀,𝑥₀) and 𝑥(𝑡, 𝑡₀, 𝑦₀) be the unique solutions of (3.7) and (3.8); 

respectively. Setting  

 

𝑧(𝑡, 𝑡₀, 𝑦₀ − 𝑥₀) = 𝑥(𝑡, 𝑡₀,𝑦₀) − 𝑥(𝑡, 𝑡₀,𝑥₀) for 𝑡 ≥ 𝑡₀ and 𝑡0 ∈ 𝕋 (3.11) 

 

Then 

 

𝑧∆(𝑡, 𝑡₀,𝑦₀ − 𝑥₀) = 𝑥∆(𝑡,𝑡₀, 𝑦₀) − 𝑥∆(𝑡,𝑡₀, 𝑥₀) (3.12) 

 

𝑧∆(𝑡, 𝑡₀,𝑦₀ − 𝑥₀) = 𝑓(𝑡, 𝑧(𝑡, 𝑡₀,𝑦₀ − 𝑥₀) + 𝑥(𝑡, 𝑡₀, 𝑥₀)) − 𝑓(𝑡, 𝑥(𝑡, 𝑡₀, 𝑥₀)) 

𝑧∆(𝑡, 𝑡₀,𝑦₀ − 𝑥₀) = 𝑓 (𝑡, 𝑧(𝑡, 𝑡₀,𝑦₀ − 𝑥₀)) 
(3.13) 

 

It is easy to observe that 𝑧(𝑡, 𝑡₀, 𝑦₀ − 𝑥₀) ≡ 0 is a solution of the transformed system 

if 𝑦₀ − 𝑥₀ = 0 which implies that 𝑓 (𝑡, 0) = 0. Since 𝑧∆(𝑡) = 0 and 𝑧(𝑡, 𝑡₀,0) = 0 is 

the null solution, the solution 𝑥(𝑡, 𝑡₀,0) ≡ 0 of (3.7) corresponds to the identically 

null solution of 𝑧∆ = 𝑓 (𝑡, 𝑧) where 𝑓 (𝑡, 𝑧(𝑡, 𝑡₀,𝑦₀ − 𝑥₀)) = 𝑓(𝑡, 𝑧(𝑡, 𝑡₀, 𝑦₀ − 𝑥₀) +

𝑥(𝑡, 𝑡₀, 𝑥₀)) − 𝑓(𝑡, 𝑥(𝑡, 𝑡₀,𝑥₀)). Hence, we can always assume, without any loss of 

generality, that 𝑥(𝑡, 𝑡₀,𝑥₀) ≡ 0 is the null solution of the given system (3.7) and we 

can limit our study of stability to that of the null solution. However, it is impossible 

to do the same transformation for (ITD) stability. 

 

3.3.2. New Notion of (ITD) Stability 

 

Let 𝑥(𝑡, 𝑡₀, 𝑥₀) be a solution of (3.1) and 𝑥 (𝑡, 𝑡₀,𝑦₀) = 𝑥(𝑡 + 𝜂, 𝜏₀,𝑦₀) where 

𝑥(𝑡, 𝜏₀, 𝑦₀) is any solution of the system (3.2) for 𝑡 ≥ 𝜏₀ ≥ 0. Let us make a 

transformation similar to that in (3.11). Set 

 

𝑧(𝑡, 𝑡₀, 𝑦₀ − 𝑥₀) = 𝑥(𝑡, 𝑡₀,𝑥₀) − 𝑥(𝑡 + 𝜂, 𝜏₀, 𝑦₀) for 𝑡 ≥ 𝑡₀ and  𝑡0 ∈ 𝕋 (3.14) 

 

Then 
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𝑧∆(𝑡,𝑡₀, 𝑦₀ − 𝑥₀) = 𝑥∆(𝑡, 𝑡₀,𝑥₀) − 𝑥∆(𝑡 + 𝜂, 𝜏₀, 𝑦₀) 

𝑧∆(𝑡,𝑡₀, 𝑦₀ − 𝑥₀) = 𝑓 (𝜂; 𝑡, 𝑧(𝑡, 𝑡₀,𝑦₀ − 𝑥₀)) 
(3.15) 

 

One can observe that even if 𝑦₀ = 𝑥₀, 𝑧(𝑡, 𝑡₀,0) is not zero and is not the null 

solution of the transformed system and 𝑥(𝑡 + 𝜂, 𝜏₀, 𝑦₀), where 𝑥(𝑡, 𝜏₀,𝑦₀) is any 

solution of the system (3.2) for 𝑡 ≥ 𝜏₀ ≥ 0, does not correspond to the identically 

zero solution of 𝑧∆(𝑡) = 𝑓 (𝜂; 𝑡, 𝑧). Therefore, we do not use the stability properties 

of the null solution in order to find (ITD) stability properties using this approach. 

 

3.4. Main Results 
 

3.4.1. Dynamic Inequalities and Comparison Results 

 

3.4.1.1. Dynamic Inequalities 

 

We start with the fundamental result in the theory of differential inequalities 

parallel to the well known results [13], [14]. 

 

Theorem 3.1: Assume that 

 

i) 𝛼, 𝛽 ∈ 𝐶𝑟𝑑  𝕋,ℝ , 𝑓 ∈ 𝐶𝑟𝑑  𝕋 × ℝ, ℝ  and 𝛼, 𝛽 are △-differentiable for each 𝑡 ∈ 𝕋 

and satisfy 

 

𝛼∆ ≤ 𝑓 𝑡, 𝛼 , 𝛼 𝑡₀ ≤ 𝑥0 , 𝑡₀ ≥ 0 (3.16) 

𝛽∆ > 𝑓 𝑡, 𝛽 , 𝛽 𝜏₀ > 𝑥0 , 𝜏₀ ≥ 0 (3.17) 

 

ii) 𝑓(𝑡, 𝑥)𝜇(𝑡) is non-decreasing in 𝑥 ∈ ℝ for each 𝑡 ∈ 𝕋; 

iii) 𝜏₀ > 𝑡₀ and 𝑓(𝑡, 𝑥) is non-decreasing in 𝑡 ∈ 𝕋 for each 𝑥 ∈ ℝ. 

 

Then 

 

 𝛼(𝑡) < 𝛽(𝑡 + 𝜂),   𝑡 ≥ 𝑡₀ 

 𝛼(𝑡 − 𝜂) < 𝛽(𝑡),   𝑡 ≥ 𝜏₀, where 𝜂 = 𝜏₀ − 𝑡₀ > 0. 
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Proof 3.1: We now prove this cases seperately. 

 

 For convenience let 𝛽₀(𝑡) = 𝛽(𝑡 + 𝜂) so that 𝛽₀(𝑡₀) = 𝛽(𝑡₀ + 𝜂) = 𝛽(𝜏₀) >

𝑥₀ ≥ 𝛼(𝑡₀). Also 𝛽0
∆(𝑡) = 𝛽∆(𝑡 + 𝜂) > 𝑓(𝑡 + 𝜂, 𝛽₀(𝑡)), 𝑡 ≥ 𝑡₀. We apply the 

induction principle to the statement:  {𝐴(𝑡): 𝛼(𝑡) < 𝛽(𝑡 + 𝜂), 𝑡 ∈ 𝑇, 𝑡 ≥ 𝑡₀} 

 

 Let 𝑡 = 𝑡₀. Since 𝛼(𝑡₀) < 𝛽₀(𝑡₀) = 𝛽(𝑡₀ + 𝜂), it follows that 𝐴(𝑡₀) is true. 

 

 Let 𝑡 be right-scattered and 𝐴(𝑡) is true. We shall show that 𝐴(𝜍(𝑡)) is true. 

Using the definition of the derivative for right-scattered point and by (i), (iii), we 

have  

 

𝛼(𝜍(𝑡)) − 𝛽₀(𝜍(𝑡)) = (𝛼∆(𝑡) − 𝛽0
∆(𝑡))𝜇(𝑡) + (𝛼(𝑡) − 𝛽₀(𝑡)) 

                         < (𝑓(𝑡, 𝛼(𝑡)) − 𝑓(𝑡 + 𝜂, 𝛽₀(𝑡)))𝜇(𝑡) + (𝛼(𝑡) − 𝛽₀(𝑡)) 

                 < (𝑓(𝑡, 𝛼(𝑡)) − 𝑓(𝑡, 𝛽₀(𝑡)))𝜇(𝑡) + (𝛼(𝑡) − 𝛽₀(𝑡)) 

(3.18) 

 

     Then since 𝐴(𝑡) is true, by assumptions (ii) it follows that 𝛼(𝜍(𝑡)) − 𝛽₀(𝜍(𝑡)) <

0. Hence 𝐴(𝜍(𝑡)) is true. 

 

 Let 𝑡 be right-dense and 𝑈 be a neighborhood of 𝑡. Assume that 𝐴(𝑡) is true. We 

need to show that 𝐴(𝑠) is true for 𝑠 > 𝑡, 𝑠 ∈ 𝑈, i.e,  𝛼(𝑠) < 𝛽₀(𝑠), 𝑠 > 𝑡, 𝑠 ∈ 𝑈. If 

this is not true, then there exists a point 𝑠₀ > 𝑡, 𝑠₀ ∈ 𝑈 such that 

 

𝛼(𝑠₀) = 𝛽₀(𝑠₀)  and 𝛼(𝑠) < 𝛽₀(𝑠)  𝑡 ≤ 𝑠 < 𝑠₀ (3.19) 

 

Hence, since the point in 𝑈 are dense, for sufficiently small 𝑕 > 0, 

 

𝛼(𝑠₀ − 𝑕) − 𝛼(𝑠₀) < 𝛽₀(𝑠₀ − 𝑕) − 𝛽₀(𝑠₀) (3.20) 

 

which implies that 

 

𝛼∆(𝑠₀) ≥ 𝛽0
∆(𝑠₀) (3.21) 
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     it follows that 𝑓(𝑠₀, 𝛼(𝑠₀)) ≥ 𝛼∆(𝑠₀) ≥ 𝛽0
∆(𝑠₀) > 𝑓(𝑠₀ + 𝜂, 𝛽₀(𝑠₀)). Then by (iii) 

and (3.19) we obtain that 

 

𝑓(𝑠₀, 𝛼(𝑠₀)) > 𝑓(𝑠₀ + 𝜂, 𝛽₀(𝑠₀)) > 𝑓(𝑠₀, 𝛽₀(𝑠₀)) = 𝑓(𝑠₀, 𝛼(𝑠₀)) (3.22) 

 

     which is a contradiction. So this proves that 𝛼(𝑠) < 𝛽₀(𝑠) for 𝑠 > 𝑡, 𝑠 ∈ 𝑈, and 

therefore 𝐴(𝑠) is true. 

 

 Let 𝑡 be left-dense and 𝐴(𝑠) is true for 𝑠 < 𝑡. We need to show that 𝐴(𝑡) is true. 

Since 𝛼(𝑡) and 𝛽₀(𝑡) are △-differentiable, they are continuous. Hence it follows 

that 

 

𝛼(𝑡) = lim
𝑠→𝑡⁻

𝛼(𝑠) ≤ lim
𝑠→𝑡⁻

𝛽₀(𝑠) = 𝛽₀(𝑡) (3.23) 

 

     It remains to show that 𝛼(𝑡) = 𝛽₀(𝑡) is not possible. Assume to the contrary that 

(𝑡) = 𝛽₀(𝑡) . Then by (i), (iii)  

 

𝛼∆(𝑡) − 𝛽0
∆(𝑡) < 𝑓(𝑡, 𝛼(𝑡)) − 𝑓(𝑡 + 𝜂, 𝛽₀(𝑡)) 

                             < 𝑓(𝑡, 𝛼(𝑡)) − 𝑓(𝑡, 𝛽₀(𝑡)) = 0 
(3.24) 

 

     On the other hand since 𝐴(𝑠) is true for 𝑠 < 𝑡 and 𝛼(𝑡) = 𝛽₀(𝑡) we have 

𝛼(𝑠) − 𝛼(𝑡) < 𝛽₀(𝑠) − 𝛽₀(𝑡). Hence it follows that 𝛼∆(𝑡) ≥ 𝛽0
∆(𝑡). But this 

contradict with (3.24). 

     Therefore we obtain that 𝐴(𝑡) is true. Thus by induction principle, we conclude 

that 𝛼(𝑡) < 𝛽(𝑡 + 𝜂), 𝑡 ∈ 𝕋, 𝑡 ≥ 𝑡₀.  

 

 For convenience let 𝛼₀(𝑡) = 𝛼(𝑡 − 𝜂) so that 𝛼₀(𝜏₀) = 𝛼(𝜏₀ − 𝜂) =  𝛼(𝑡₀) ≤

𝑥₀ < 𝛽(𝜏₀). Also 𝛼0
∆ 𝑡 = 𝛼∆(𝑡 − 𝜂) ≤ 𝑓(𝑡 − 𝜂, 𝛼₀(𝑡))  𝑡 ≥ 𝜏₀. We apply the 

induction principle to the statement: {𝐴(𝑡): 𝛼(𝑡 − 𝜂) < 𝛽(𝑡), 𝑡 ∈ 𝕋,𝑡 ≥ 𝜏₀}. 

 

 Let 𝑡 = 𝑡₀. Since 𝛼₀(𝜏₀) = 𝛼(𝑡₀) < 𝛽(𝜏₀), it follows that 𝐴(𝜏₀) is true. 

 

 Let 𝑡 be right-scattered and 𝐴(𝑡) is true. We shall show that 𝐴(𝜍(𝑡)) is true. 
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     Using the definition of the derivative for right-scattered point and by (i), (iii), we 

have  

 

𝛼₀(𝜍(𝑡)) − 𝛽(𝜍(𝑡)) = (𝛼0
∆(𝑡) − 𝛽∆(𝑡))𝜇(𝑡) + (𝛼₀(𝑡) − 𝛽(𝑡)) 

       < (𝑓(𝑡 − 𝜂, 𝛼₀(𝑡)) − 𝑓(𝑡, 𝛽(𝑡)))𝜇(𝑡) + (𝛼₀(𝑡) − 𝛽(𝑡)) 

< (𝑓(𝑡, 𝛼₀(𝑡)) − 𝑓(𝑡, 𝛽(𝑡)))𝜇(𝑡) + (𝛼₀(𝑡) − 𝛽(𝑡)) 

(3.25) 

 

     Then since 𝐴(𝑡) is true, by assumptions (ii) it follows that  𝛼₀(𝜍(𝑡)) − 𝛽(𝜍(𝑡)) <

0. Hence 𝐴(𝜍(𝑡)) is true. 

 

 Let 𝑡 be right-dense  and 𝑈 be a neighborhood of 𝑡. Assume that 𝐴(𝑡) is true. 

We need to show that 𝐴(𝑠) is true for 𝑠 ≥ 𝑡, 𝑠 ∈ 𝑈, i.e, 𝛼₀(𝑡) < 𝛽(𝑡), 𝑠 ≥ 𝑡, 𝑠 ∈

𝑈. If this is not true there exists a point 𝑠₀ > 𝑡, 𝑠₀ ∈ 𝑈 such that 

 

𝛼₀(𝑠₀) = 𝛽(𝑠₀) 𝑎𝑛𝑑 𝛼₀(𝑠) < 𝛽(𝑠)  𝑡 ≤ 𝑠 < 𝑠₀ (3.26) 

 

Hence, since the point in 𝑈 are dense, for sufficiently 𝑕 > 0, 

 

𝛼₀(𝑠₀ − 𝑕) − 𝛼₀(𝑠₀) < 𝛽(𝑠₀ − 𝑕) − 𝛽(𝑠₀) (3.27) 

 

which implies that 

 

𝛼0
∆(𝑠₀) ≥ 𝛽∆(𝑠₀) (3.28) 

 

it follows that  𝑓(𝑠₀ − 𝜂, 𝛼₀(𝑠₀)) ≥ 𝛼0
∆(𝑠₀) ≥ 𝛽∆(𝑠₀) > 𝑓(𝑠₀, 𝛽(𝑠₀)).  

    Then by (iii) and (3.26) we obtain that 𝑓(𝑠₀, 𝛼₀(𝑠₀)) ≥ 𝑓(𝑠₀ − 𝜂, 𝛼₀(𝑠₀)) >

𝑓(𝑠₀, 𝛽(𝑠₀)) =  𝑓(𝑠₀,𝛼₀(𝑠₀)), which is a contradiction. So this proves that  

𝛼₀(𝑠) < 𝛽(𝑠) for 𝑠 ≥ 𝑡, 𝑠 ∈ 𝑈, and therefore 𝐴(𝑠) is true. 

 

 Let 𝑡 be left-dense and 𝐴(𝑠) is true for 𝑠 < 𝑡. We need to show that 𝐴(𝑡) is true. 

Since 𝛼(𝑡) and 𝛽(𝑡) are ∆-differentiable, they are continuous. Hence it follows 

that 
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𝛼₀(𝑡) = lim
𝑠→𝑡⁻

𝛼₀(𝑠) ≤ lim
𝑠→𝑡⁻

𝛽(𝑠) = 𝛽(𝑡) (3.29) 

 

     It remains to show that 𝛼₀(𝑡) = 𝛽(𝑡) is not possible. Assume to the contrary that 

₀(𝑡) = 𝛽(𝑡) . Then by (i), (iii) 

 

𝛼0
∆(𝑡) − 𝛽∆(𝑡) < 𝑓(𝑡 − 𝜂, 𝛼₀(𝑡)) − 𝑓(𝑡, 𝛽(𝑡)) 

                             < 𝑓(𝑡, 𝛼(𝑡)) − 𝑓(𝑡, 𝛽₀(𝑡)) = 0 
(3.30) 

 

    On the other hand since 𝐴(𝑠) is true and 𝛼₀(𝑡) = 𝛽(𝑡) we have  𝛼₀(𝑠) − 𝛼₀(𝑡) <

𝛽(𝑠) − 𝛽(𝑡) which implies that 𝛼0
∆(𝑡) ≥ 𝛽∆(𝑡). But this contradict with (3.30). 

Therefore we obtain that 𝐴(𝑡) is true.  Thus by induction principle, we conclude 

that 𝛼(𝑡 − 𝜂) < 𝛽(𝑡),     𝑡 ∈ 𝕋,     𝑡 ≥ 𝜏₀.□ 

 

Theorem 3.2: Assume that 

 

i) 𝛼, 𝛽 ∈ 𝐶𝑟𝑑 [𝕋,ℝ],  𝑓 ∈ 𝐶𝑟𝑑 [𝕋 × ℝ, ℝ]  and 𝛼, 𝛽 are ∆-differentiable for each 𝑡 ∈ 𝕋 

and satisfy  

 

𝛼∆ ≤ 𝑓(𝑡, 𝛼), 𝛼(𝑡₀) ≤ 𝑥₀, 𝑡₀ ≥ 0 

𝛽∆ ≥  𝑓(𝑡, 𝛽), 𝛽(𝜏₀) ≥ 𝑥₀, 𝜏₀ ≥ 0 
(3.31) 

 

ii) 𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦) ≤ 𝐿(𝑥 − 𝑦),𝑥 ≥ 𝑦,  𝐿 > 0 and 𝑡 ∈ 𝕋 ; 

iii) 𝑓(𝑡, 𝑥)𝜇(𝑡) is non-decreasing in  𝑥 ∈ ℝ for each 𝑡 ∈ 𝕋; 

iv) 𝜏₀ > 𝑡₀ and  𝑓(𝑡, 𝑥) is non-decreasing in 𝑡 ∈ 𝕋 for each 𝑥 ∈ ℝ. 

 

Then 

 

 𝛼(𝑡) ≤ 𝛽(𝑡 + 𝜂), 𝑡 ≥ 𝑡₀ 

 𝛼(𝑡 − 𝜂) ≤ 𝛽(𝑡), 𝑡 ≥ 𝜏₀, where 𝜂 = 𝜏₀ − 𝑡₀ > 0. 
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Proof 3.2:  

 

 For convenience let 𝛽₀(𝑡) = 𝛽(𝑡 + 𝜂) so that 𝛽₀(𝑡₀) = 𝛽(𝑡₀ + 𝜂) = 𝛽(𝜏₀) ≥

𝑥₀ ≥ 𝛼(𝑡₀). Also 𝛽0
∆(𝑡) = 𝛽∆(𝑡 + 𝜂) ≥ 𝑓(𝑡 + 𝜂, 𝛽₀(𝑡)), 𝑡 ≥ 𝑡₀. We apply the 

induction principle to the statement: {𝐴(𝑡): 𝛼(𝑡) ≤ 𝛽(𝑡 + 𝜂), 𝑡 ∈ 𝕋,𝑡 ≥ 𝑡₀}. 

 

 Let 𝑡 = 𝑡₀. Since 𝛼(𝑡₀) ≤ 𝛽₀(𝑡₀) = 𝛽(𝑡₀ + 𝜂), it follows that 𝐴(𝑡₀) is true. 

 

 Let t be right-scattered and 𝐴(𝑡) is true. We shall show that 𝐴(𝜍(𝑡)) is true. 

Using the definition of the derivative for right-scattered point and by (i), (iv), we 

have 

 

𝛼(𝜍(𝑡)) − 𝛽₀(𝜍(𝑡)) = (𝛼∆(𝑡) − 𝛽0
∆(𝑡))𝜇(𝑡) + (𝛼(𝑡) − 𝛽₀(𝑡)) 

       ≤ (𝑓(𝑡, 𝛼(𝑡)) − 𝑓(𝑡 + 𝜂, 𝛽₀(𝑡)))𝜇(𝑡) + (𝛼(𝑡) − 𝛽₀(𝑡)) 

≤ (𝑓(𝑡, 𝛼(𝑡)) − 𝑓(𝑡, 𝛽₀(𝑡)))𝜇(𝑡) + (𝛼(𝑡) − 𝛽₀(𝑡)) 

(3.32) 

 

     Then since 𝐴(𝑡) is true, by assumptions (iii) it follows that 𝛼(𝜍(𝑡)) − 𝛽₀(𝜍(𝑡)) ≤

0. Hence 𝐴(𝜍(𝑡)) is true. 

 

 Let 𝑡 be right-dense and 𝑈 be a neighborhood of 𝑡. Assume that 𝐴(𝑡) is true. We 

need to show that 𝐴(𝑠) is true for 𝑠 > 𝑡 , 𝑠 ∈ 𝑈. Set 𝛽 ₀(𝑠) = 𝛽₀(𝑠) + 𝜀𝑄(𝑠), for 

𝑠 ≥ 𝑡, 𝑠 ∈ 𝑈 and 𝜀 > 0 sufficiently small, where 𝑄(𝑠) > 0 satisfies 

 

𝑄∆(𝑠) > 𝐿𝑄(𝑠),   𝑄(𝑡) > 0. (3.33) 

 

Then clearly 

 

𝛽 ₀(𝑠) > 𝛽₀(𝑠) (3.34) 

 

    We shall show that 𝛼(𝑠) < 𝛽₀(𝑠) for 𝑠 > 𝑡, 𝑠 ∈ 𝑈. Then by (i), (ii) and (iv), we  

have 
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𝛽 0
∆(𝑠) = 𝛽0

∆(𝑠) + 𝜀𝑄∆(𝑠) 

> 𝑓(𝑠, 𝛽₀(𝑠)) + 𝜀𝐿𝑄(𝑠) 

                                      ≥ 𝑓(𝑠, 𝛽 ₀(𝑠)) − 𝐿(𝛽 ₀(𝑠) − 𝛽₀(𝑠)) + 𝜀𝐿𝑄(𝑠) 

= 𝑓(𝑠, 𝛽 ₀(𝑠)) 

(3.35) 

 

Also 𝛽 ₀(𝑡) > 𝛽₀(𝑡) ≥ 𝛼(𝑡). Hence by Theorem 3.1, we obtain 

 

𝛼(𝑠) < 𝛽 ₀(𝑠)   𝑠 > 𝑡, 𝑠 ∈ 𝑈 (3.36) 

 

Since 𝜀 > 0 is arbitrary letting 𝜀 → 0⁺ we obtain 

 

𝛼(𝑠) ≤ 𝛽₀(𝑠)   𝑠 > 𝑡, 𝑠 ∈ 𝑈. (3.37) 

 

This proves that 𝐴(𝑠) is true for 𝑠 > 𝑡, 𝑠 ∈ 𝑈. 

 

 Let 𝑡 be left-dense and 𝐴(𝑠) is true for 𝑠 < 𝑡. We need to show that 𝐴(𝑡) is true. 

Since 𝛼(𝑡) and 𝛽(𝑡) are △-differentiable, they are continuous. Hence it follows 

that 

 

𝛼(𝑡) = lim
𝑠→𝑡⁻

𝛼(𝑠) ≤ lim
𝑠→𝑡⁻

𝛽(𝑠 + 𝜂) = 𝛽(𝑡 + 𝜂) (3.38) 

 

proving A(t) is true. 

Thus by induction principle, we conclude that 𝛼(𝑡) ≤ 𝛽(𝑡 + 𝜂), 𝑡 ∈ 𝕋, 𝑡 ≥ 𝑡₀ 

 

 For convenience let 𝛼₀(𝑡) = 𝛼(𝑡 − 𝜂) so that 𝛼₀(𝜏₀) = 𝛼(𝜏₀ − 𝜂) =  𝛼(𝑡₀) ≤

𝑥₀ ≤ 𝛽(𝜏₀). Also 𝛼0
∆(𝑡) = 𝛼∆(𝑡 − 𝜂) ≤ 𝑓(𝑡 − 𝜂, 𝛼₀(𝑡)), 𝑡 ≥ 𝜏₀. We apply the 

induction principle to the statement: {𝐴 𝑡 : 𝛼 𝑡 − 𝜂 ≤ 𝛽 𝑡 , 𝑡 ∈ 𝕋,𝑡 ≥ 𝜏₀}.  

 

 Let 𝑡 = 𝑡₀. Since 𝛼₀(𝜏₀) = 𝛼(𝜏₀ − 𝜂) =  𝛼(𝑡₀) ≤ 𝛽(𝜏₀), it follows that 𝐴(𝜏₀) is 

true. 
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 Let 𝑡 be right-scattered and 𝐴(𝑡) is true. We shall show that 𝐴(𝜍(𝑡)) is true. 

Using the definition of the derivative for right-scattered point and by (i), (iv), we 

have 

 

𝛼₀(𝜍(𝑡)) − 𝛽(𝜍(𝑡)) = (𝛼0
∆(𝑡) − 𝛽∆(𝑡))𝜇(𝑡) + (𝛼₀(𝑡) − 𝛽(𝑡)) 

≤ (𝑓(𝑡 − 𝜂, 𝛼₀(𝑡)) − 𝑓(𝑡, 𝛽(𝑡)))𝜇(𝑡) + (𝛼₀(𝑡) − 𝛽(𝑡)) 

≤ (𝑓(𝑡, 𝛼₀(𝑡)) − 𝑓(𝑡, 𝛽(𝑡)))𝜇(𝑡) + (𝛼₀(𝑡) − 𝛽(𝑡)) 

(3.39) 

 

     Then since 𝐴(𝑡) is true, by assumption (iii) it follows that 𝛼₀(𝜍(𝑡)) − 𝛽(𝜍(𝑡)) ≤

0. Hence 𝐴(𝜍(𝑡)) is true. 

 

 Let 𝑡 be right-dense  and 𝑈 be a neighborhood of 𝑡. Assume that 𝐴(𝑡) is true. 

We need to show that 𝐴(𝑠) is true for 𝑠 ≥ 𝑡, 𝑠 ∈ 𝑈. Set 𝛼 ₀(𝑠) = 𝛼₀(𝑠) − 𝜀𝑄(𝑠), 

for 𝑠 ≥ 𝑡, 𝑠 ∈ 𝑈 and 𝜀 > 0 sufficiently small, where 𝑄(𝑠) > 0 satisfies  

 

𝑄∆(𝑠) > 𝐿𝑄(𝑠),   𝑄(𝑡) > 0 (3.40) 

 

Then clearly 

 

𝛼 ₀(𝑠) <  𝛼₀(𝑠). (3.41) 

 

    We shall show that 𝛼 ₀(𝑠) < 𝛽(𝑠) for 𝑠 > 𝑡, 𝑠 ∈ 𝑈. Then by (i), (ii) and (iv), we 

have 

 

𝛼 0
∆ 𝑠 = 𝛼0

∆ 𝑠 − 𝜀𝑄∆(𝑠) 

< 𝑓 𝑠, 𝛼₀(𝑠) −  𝜀𝐿𝑄(𝑠) 

≤ 𝑓 𝑠, 𝛼 ₀(𝑠) + 𝐿 𝛼₀(𝑠) − 𝛼 ₀(𝑠) − 𝜀𝐿𝑄(𝑠) 

(3.42) 

 

= 𝑓 𝑠, 𝛼 ₀(𝑠)  (3.43) 

 

Also 𝛼 ₀(𝑡) < 𝛼₀(𝑡) ≤ 𝛽(𝑡). Hence by Theorem 3.1, we obtain 

 

𝛼 ₀(𝑠) < 𝛽(𝑠) for 𝑠 > 𝑡, 𝑠 ∈ 𝑈 (3.44) 
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Since 𝜀 > 0 is arbitrary letting 𝜀 → 0⁺ we obtain 

 

𝛼₀(𝑠) ≤ 𝛽 𝑠     𝑓𝑜𝑟 𝑠 > 𝑡, 𝑠 ∈ 𝑈. (3.45) 

 

This proves that 𝐴(𝑠) is true for 𝑠 > 𝑡, 𝑠 ∈ 𝑈. 

 

 Let 𝑡 be left-dense and 𝐴(𝑠) is true for 𝑠 < 𝑡. We need to show that 𝐴(𝑡) is true. 

Since 𝛼(𝑡) and 𝛽(𝑡) are △-differentiable, they are continuous. Hence it follows 

that 

 

𝛼(𝑡 − 𝜂) = lim
𝑠→𝑡⁻

𝛼(𝑠 − 𝜂) ≤ lim
𝑠→𝑡⁻

𝛽(𝑠) = 𝛽(𝑡) (3.46) 

 

proving A(t) is true. 

Thus by induction principle, we conclude that 𝛼(𝑡 − 𝜂) ≤ 𝛽(𝑡), 𝑡 ∈ 𝕋, 𝑡 ≥ 𝑡₀.□ 

 

Remark 3.1: It is possible to weaken the hypotheses in above Theorem 3.1 and 

Theorem 3.2. The conclusions of the theorems remain true if the functions 𝛼(𝑡) and 

𝛽(𝑡) are only assumed to be rd-continuous. In this case the first condition Theorem 

3.1 and Theorem 3.2 are replaced by 

 

𝐷+𝛼∆ ≤ 𝑓 𝑡, 𝛼 , 𝛼 𝑡₀ ≤ 𝑥0 , 𝑡₀ ≥ 0 

𝐷⁺𝛽∆ > 𝑓(𝑡, 𝛽), 𝛽(𝜏₀) > 𝑥₀, 𝜏₀ ≥ 0 
(3.47) 

 

and  

 

𝐷+𝛼∆ ≤ 𝑓 𝑡, 𝛼 , 𝛼 𝑡₀ ≤ 𝑥0 , 𝑡₀ ≥ 0 

𝐷⁺𝛽∆ ≥ 𝑓(𝑡, 𝛽), 𝛽(𝜏₀) > 𝑥₀, 𝜏₀ ≥ 0 
(3.48) 

 

respectively. Here 𝐷⁺ is the upper right hand Dini derivative defined as in Definition 

2.4. 

 

Remark 3.2: The conclusion of the Theorem 3.1 remains true if the first condition is 

replaced by 
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𝛼∆ < 𝑓 𝑡, 𝛼 , 𝛼 𝑡₀ ≤ 𝑥0 , 𝑡₀ ≥ 0 

𝛽∆ ≥ 𝑓(𝑡, 𝛽), 𝛽(𝜏₀) > 𝑥₀, 𝜏₀ ≥ 0 
(3.49) 

 

3.4.1.2. Comparison Results 

 

The most commonly used technique in the theory of dynamic equations is 

concerned with estimating a function satisfying a dynamic inequality by the extremal 

solutions of the related dynamic equation. The following theorem gives such a 

estimate with initial time difference on time scales. 

 

Theorem 3.3: Assume that 

 

i) 𝑚 ∈ 𝐶𝑟𝑑[𝕋,ℝ₊], 𝑔 ∈ 𝐶𝑟𝑑 [𝕋 × ℝ₊,ℝ] and 

 

𝐷⁺𝑚△(𝑡) ≤ 𝑔(𝑡, 𝑚(𝑡)), 𝑚(𝑡₀) ≤ 𝑤₀   𝑡₀ ≥ 0 (3.50) 

 

ii) the maximal solution 𝑟(𝑡) = 𝑟(𝑡, 𝜏₀,𝑤₀) of 𝑤△ = 𝑔(𝑡, 𝑤), 𝑤(𝜏₀) = 𝑤₀ ≥ 0 

𝜏₀ ≥ 0 exists for 𝑡 ≥ 𝜏₀; 

iii) 𝜏₀ > 𝑡₀ and 𝑔(𝑡, 𝑤) is non-decreasing in 𝑡 ∈ 𝕋 for each 𝑤 ∈ ℝ₊; 

iv) 𝑔(𝑡, 𝑤)𝜇(𝑡) is non-decreasing in 𝑤 ∈ ℝ₊ for each 𝑡 ∈ 𝕋. 

 

Then 

 

 𝑚 𝑡 ≤ 𝑟 𝑡 + 𝜂 , 𝑡 ≥ 𝑡₀; 

 𝑚 𝑡 − 𝜂 ≤ 𝑟 𝑡 , 𝑡 ≥ 𝜏₀. 

 

Proof 3.3: It is well known that [14] if  𝑤(𝑡,𝜀) is any solution of 

 

𝑤△ = 𝑔 𝑡, 𝑤 + 𝜀, 𝑤(𝜏₀) = 𝑤₀ + 𝜀 (3.51) 

 

for 𝜀 > 0 is sufficiently small, then lim𝜀→0 𝑤(𝑡, 𝜀) = 𝑟(𝑡, 𝜏₀, 𝑤₀) on every compact 

interval [𝜏₀,𝜏₀ + 𝜉] ∩ 𝕋, 𝜉 > 0. Hence setting 𝑤₀(𝑡,𝜀) = 𝑤(𝑡 + 𝜂, 𝜀) we have 
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𝑤₀(𝑡₀, 𝜀) = 𝑤(𝑡₀ + 𝜂, 𝜀) = 𝑤(𝜏₀, 𝜀) = 𝑤₀+ 𝜀 > 𝑤₀ ≥ 𝑚(𝑡₀) (3.52) 

 

and also 

 

𝑤0
∆(𝑡,𝜀) = 𝑤△(𝑡 + 𝜂, 𝜀) = 𝑔(𝑡 + 𝜂, 𝑤₀(𝑡,𝜀)) + 𝜀 > 𝑔(𝑡 + 𝜂, 𝑤₀(𝑡, 𝜀)) (3.53) 

 

then since  𝜂 > 0 by (iii) 

 

𝑤0
∆(𝑡,𝜀) > 𝑔(𝑡, 𝑤₀(𝑡, 𝜀)). (3.54) 

 

On the other hand by (i) we get 

 

𝐷⁺𝑚△(𝑡) ≤ 𝑔 𝑡,𝑚 𝑡     𝑎𝑛𝑑     𝑚(𝑡₀) < 𝑤₀(𝑡₀,𝜀). (3.55) 

 

Therefore by Theorem 3.1, we obtain 

 

𝑚(𝑡) < 𝑤₀(𝑡,𝜀) = 𝑤(𝑡 + 𝜂, 𝜀). (3.56) 

 

Since 𝜀 > 0 is arbitrary, we obtain by letting 𝜀 → 0 that 𝑚(𝑡) ≤ 𝑟(𝑡 + 𝜂) 𝑡 ≥ 𝑡₀. 

This proves (a). For the proof of (b) set 𝑚₀(𝑡) = 𝑚(𝑡 − 𝜂) so that 

 

𝑚₀(𝜏₀) = 𝑚(𝜏₀ − 𝜂) = 𝑚(𝑡₀) ≤ 𝑤₀ < 𝑤₀+ 𝜀 = 𝑤(𝜏₀, 𝜀) (3.57) 

 

and also by (i) and (iii) 

 

𝐷⁺𝑚0
∆(𝑡) = 𝐷⁺𝑚∆(𝑡 − 𝜂) ≤ 𝑔(𝑡 − 𝜂, 𝑚₀(𝑡)) ≤ 𝑔(𝑡, 𝑚₀(𝑡)). (3.58) 

 

On the other hand we have 𝑤0
∆(𝑡,𝜀) > 𝑔(𝑡, 𝑤₀(𝑡, 𝜀)). Therefore by Theorem 3.1, we 

have 𝑚(𝑡 − 𝜂) < 𝑤(𝑡,𝜀). Since 𝜀 > 0 is arbitrary, we obtain by letting 𝜀 → 0 that 

𝑚(𝑡 − 𝜂) ≤ 𝑟(𝑡) 𝑡 ≥ 𝜏₀. This proves (b).□ 

 

In the following theorem, we obtain a comparison result in terms of Lyapunov-

like functions with ITD. 
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Theorem 3.4: Assume that 

 

i) 𝑉 ∈ 𝐶𝑟𝑑 [𝕋 × ℝⁿ,ℝ₊] , 𝑉(𝑡, 𝑥) is locally Lipschitzian in 𝑥 ∈ ℝ  n for each 𝑡 ∈ 𝕋, 

𝑔 ∈ 𝐶𝑟𝑑 [𝕋 × ℝ₊, ℝ] and 

 

𝐷⁺𝑉∆(𝑡,𝑦(𝑡 + 𝜂) − 𝑥(𝑡)) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥(𝑡))) (3.59) 

 

ii) the maximal solution 𝑟(𝑡) = 𝑟(𝑡, 𝜏₀,𝑢₀) of 𝑢∆ = 𝑔(𝑡, 𝑢), 𝑢(𝜏₀) = 𝑢₀ ≥ 0, exists 

for 𝑡 ≥ 𝜏₀ ≥ 0; 

iii) 𝜏₀ > 𝑡₀ and 𝑔(𝑡, 𝑢) is non-decreasing in 𝑡 ∈ 𝕋 for each 𝑢 ∈ ℝ₊; 

iv) 𝑔(𝑡, 𝑢)𝜇(𝑡) is non-decreasing in 𝑢 ∈ ℝ₊ for each 𝑡 ∈ 𝕋. 

 

Then 

 

𝑉(𝑡₀,𝑦₀ − 𝑥₀) ≤ 𝑢₀ (3.60) 

 

implies that 

 

𝑉(𝑡, 𝑦(𝑡 + 𝜂, 𝜏₀,𝑦₀) − 𝑥(𝑡, 𝑡₀,𝑥₀)) ≤ 𝑟(𝑡 + 𝜂, 𝜏₀,𝑢₀)  𝑓𝑜𝑟  𝑡 ≥ 𝑡₀ (3.61) 

 

Proof 3.4: Define 𝑚(𝑡) = 𝑉(𝑡, 𝑦(𝑡 + 𝜂, 𝜏₀, 𝑦₀)− 𝑥(𝑡, 𝑡₀,𝑥₀)) so that 

 

𝑚(𝑡₀) = 𝑉(𝑡₀,𝑦₀ − 𝑥₀) ≤ 𝑢₀. (3.62) 

 

Further set 𝑟₀(𝑡) = 𝑟(𝑡 + 𝜂, 𝜏₀, 𝑢₀) so that 𝑟₀(𝑡₀) = 𝑟(𝜏₀) = 𝑢₀ and also 𝑟0
∆(𝑡) =

𝑟∆(𝑡 + 𝜂) = 𝑔(𝑡 + 𝜂, 𝑟₀(𝑡)). We apply the induction principle to the statement: 

{𝐴(𝑡):𝑉(𝑡, 𝑦(𝑡 + 𝜂, 𝜏₀, 𝑦₀)− 𝑥(𝑡, 𝑡₀, 𝑥₀)) ≤ 𝑟(𝑡 + 𝜂, 𝜏₀, 𝑢₀),𝑡 ∈ 𝕋,𝑡 ≥ 𝑡₀}. 

 

 Let 𝑡 = 𝑡₀. Since 𝑚(𝑡₀) = 𝑉(𝑡₀,𝑦₀ − 𝑥₀) ≤ 𝑢₀ = 𝑟(𝑡₀ + 𝜂, 𝜏₀, 𝑢₀), it follows 

that 𝐴(𝑡₀) is true. 

 

 Let 𝑡 be right-scattered and 𝐴(𝑡) is true. We shall show that 𝐴(𝜍(𝑡)) is true. 

Using the definition of the derivative for right-scattered point and by (iii), we have 
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𝑚(𝜍(𝑡)) − 𝑟₀(𝜍(𝑡)) = (𝐷⁺𝑚∆(𝑡) − 𝑟0
∆(𝑡))𝜇(𝑡) + (𝑚(𝑡) − 𝑟₀(𝑡)) 

≤ (𝑔(𝑡, 𝑚(𝑡)) − 𝑔(𝑡 + 𝜂, 𝑟₀(𝑡)))𝜇(𝑡) + (𝑚(𝑡) − 𝑟₀(𝑡)) 

≤ (𝑔(𝑡, 𝑚(𝑡)) − 𝑔(𝑡, 𝑟₀(𝑡)))𝜇(𝑡) + (𝑚(𝑡) − 𝑟₀(𝑡)) 

(3.63) 

 

Then since 𝐴(𝑡) is true, by assumption (iv) it follows that 

 

𝑚(𝜍(𝑡)) − 𝑟₀(𝜍(𝑡)) ≤ 0 (3.64) 

 

In view of the fact that 

 

                                           
𝑚 𝜍 𝑡  − 𝑚 𝑡 

𝜇 𝑡 

=
𝑉  𝜍 𝑡 , 𝑦 𝜍 𝑡 + 𝜂 − 𝑥 𝜍 𝑡   − 𝑉 𝑡, 𝑦 𝑡 + 𝜂 − 𝑥 𝑡  

𝜇 𝑡 
 

(3.65) 

 

we see that 𝐴(𝜍(𝑡)) is true. 

 

 Let 𝑡 be right-dense and 𝑈 be a neighborhood of 𝑡. Assume that 𝐴(𝑡) is true. We 

need to show that 𝐴(𝑠) is true for 𝑠 > 𝑡, 𝑠 ∈ 𝑈. Let 𝑧(𝑡, 𝑡₀, 𝑦₀ − 𝑥₀) = 𝑦(𝑡 +

𝜂, 𝜏₀, 𝑦₀)− 𝑥(𝑡, 𝑡₀,𝑥₀) so that 

 

𝑧∆ = 𝑓  𝑡, 𝑧; 𝜂 =  𝑓 𝑡 + 𝜂, 𝑦 𝑡 + 𝜂  − 𝑓 𝑡, 𝑥 𝑡   ,

𝑧(𝑡₀) = 𝑦₀ − 𝑥₀ 
(3.66) 

 

𝑚(𝑠 + 𝑕) − 𝑚(𝑠)

𝑕

=
𝑉(𝑠 + 𝑕, 𝑧(𝑠 + 𝑕)) − 𝑉(𝑠 + 𝑕, 𝑧(𝑠) + 𝑕𝑓 (𝑠, 𝑧(𝑠)))

𝑕
             

+
𝑉(𝑠 + 𝑕, 𝑧(𝑠) + 𝑕𝑓 (𝑠, 𝑧(𝑠))) − 𝑉(𝑠, 𝑧(𝑠))

𝑕

=
𝑉(𝑠 + 𝑕, 𝑧(𝑠) + 𝑕𝑓 (𝑠, 𝑧(𝑠)) + 𝑕𝜀(𝑕)) − 𝑉(𝑠 + 𝑕, 𝑧(𝑠) + 𝑕𝑓 (𝑠, 𝑧(𝑠)))

𝑕

+
𝑉(𝑠 + 𝑕, 𝑧(𝑠) + 𝑕𝑓 (𝑠, 𝑧(𝑠))) − 𝑉(𝑠, 𝑧(𝑠))

𝑕
 

(3.67) 
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     Since 𝑉 is locally Lipschitzian in 𝑥 and 𝐿 > 0 is the Lipschitz constant and 𝜀 is 

error term, we have 

 

𝐷+𝑚∆ 𝑠 

≤ lim
𝑕→0+

𝐿‖𝜀 𝑕 ‖

+ lim
𝑕→0⁺,𝑠+𝑕∈𝕋

𝑠𝑢𝑝
𝑉(𝑠 + 𝑕, 𝑧(𝑠) + 𝑕𝑓(𝑠, 𝑧(𝑠))) − 𝑉(𝑠, 𝑧(𝑠))

𝑕

= 𝐷⁺𝑉∆(𝑠,𝑦(𝑠 + 𝜂) − 𝑥(𝑠)) ≤ 𝑔(𝑠, 𝑚(𝑠)) 

(3.68) 

 

Since 𝐴(𝑡) is true, by Theorem 3.3, we obtain that 

 

𝑚(𝑠) = 𝑉(𝑠, 𝑦(𝑠 + 𝜂, 𝜏₀,𝑦₀) − 𝑥(𝑠, 𝑡₀,𝑥₀)) ≤ 𝑟(𝑠 + 𝜂, 𝜏₀, 𝑢₀),

𝑓𝑜𝑟   𝑠 ≥ 𝑡, 𝑠 ∈ 𝑈 
(3.69) 

 

 Let 𝑡 be left-dense and 𝐴(𝑠) is true for 𝑠 < 𝑡. We need to show that 𝐴(𝑡) is true. 

This follows by rd-continuity of 𝑉(𝑡, 𝑧) and 𝑟(𝑡). 

Thus by induction principle, we conclude that 

 

𝑉(𝑡, 𝑦(𝑡 + 𝜂, 𝜏₀,𝑦₀) − 𝑥(𝑡, 𝑡₀,𝑥₀)) ≤ 𝑟(𝑡 + 𝜂, 𝜏₀, 𝑢₀)    𝑡 ∈ 𝕋     𝑡 ≥ 𝑡₀. (3.70) 

 

3.4.2. Stability and Boundedness Criteria  

 

A very general comparison principle is obtained under much less limiting 

assumption by using the notion of Lyapunov function together with theory of 

dynamic inequalities. In this setup, one can see Lyapunov function as a 

transformation which reduces the study of stability, boundedness properties relative 

to ITD of a given complicated dynamic system to the study of stability, boundedness 

properties of a relatively simpler scalar dynamic equation. 

Let us consider the following scalar dynamic equation 

 

𝑢∆ = 𝑔 𝑡, 𝑢 , 𝑢(𝜏₀) = 𝑢₀ ≥ 0  𝑓𝑜𝑟    𝑡 ∈ 𝕋, 𝑡 ≥ 𝜏₀ (3.71) 

 

where 𝑔 ∈ 𝐶𝑟𝑑 [𝕋 × ℝ₊, ℝ]. 



 

38 

3.4.2.1. Stability Criteria  

 

Theorem 3.5: Assume that 

 

i) 𝑉 ∈ 𝐶𝑟𝑑 [𝕋 × 𝑆(𝜌),ℝ₊], 𝑉(𝑡, 𝑥) is locally Lipschitzian in 𝑥 ∈ ℝ  n for each 𝑡 ∈ 𝕋, 

𝑔 ∈ 𝐶𝑟𝑑 [𝕋 × ℝ₊, ℝ] and 

 

𝐷⁺𝑉∆(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥(𝑡)) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥(𝑡))) (3.72) 

 

ii) the maximal solution 𝑟(𝑡) = 𝑟(𝑡, 𝜏₀,𝑢₀) of (3.71) exists for 𝑡 ≥ 𝜏₀; 

iii) there exists 𝑎, 𝑏 ∈ 𝒦 such that 𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖) for (𝑡, 𝑥) ∈ 𝕋 ×

𝑆(𝜌); 

iv) 𝑔(𝑡, 𝑢)𝜇(𝑡) is non-decreasing in 𝑢 ∈ ℝ₊ for each 𝑡 ∈ 𝕋; 

v) 𝜏₀ > 𝑡₀ and 𝑔(𝑡, 𝑢) is non-decreasing in 𝑡 ∈ 𝕋 for each 𝑢 ∈ ℝ₊ and 𝑔(𝑡, 0) = 0. 

 

Then the stability properties of the null solution of (3.71) imply the corresponding 

initial time difference stability properties of the solution 𝑥(𝑡, 𝑡₀, 𝑥₀). 

 

Proof 3.5: Firstly, let the null solution of the (3.71) is equistable. Let  0 < 𝜀 < 𝜌 and 

𝜏₀ ∈ 𝕋 be given. Then by definition of equistability given 𝑏(𝜀) > 0, 𝜏₀ ∈ 𝕋, ∃𝛿₁ =

𝛿₁(𝜀, 𝜏₀) > 0 such that 

 

𝑢 𝑡 < 𝑏 𝜀      𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡𝑕𝑎𝑡     𝑢₀ < 𝛿₁, 𝑡 ≥ 𝜏₀, 𝑡 ∈ 𝕋 (3.73) 

 

where 𝑢(𝑡, 𝜏₀, 𝑢₀) is any solution of the (3.71). Choose 𝛿₂ = 𝛿₂(𝜀, 𝜏₀) > 0 as 

0 < 𝑎(𝛿₂) < 𝛿₁. Obviously; lim(𝜏₀,𝑦₀)→(𝑡₀,𝑥₀) ‖𝑦(𝑡 + 𝜂, 𝜏₀,𝑦₀) − 𝑥(𝑡, 𝑡₀,𝑥₀)‖ = 0. 

Then given 𝜀 > 0 and 𝜏₀ ∈ 𝕋, there exist 𝛿 = 𝛿 (𝜀, 𝜏₀) > 0 and 𝛿₃ = 𝛿₃(𝜀, 𝜏₀) > 0 

such that  

 

‖𝑦 𝑡 + 𝜂 − 𝑥 𝑡 ‖ < 𝜀   𝑖𝑓  ‖𝑦₀ − 𝑥₀‖ < 𝛿₃  𝑎𝑛𝑑   |𝜂| < 𝛿  

𝑓𝑜𝑟    𝑡₀ ≤ 𝑡 ≤ 𝜏₀ 
(3.74) 

 

Let 𝑢₀ = 𝑎(‖𝑦₀ − 𝑥₀‖) and choose 𝛿 = 𝑚𝑖𝑛(𝛿₂,𝛿₃). Then we claim that 
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‖𝑦 𝑡 + 𝜂 − 𝑥 𝑡 ‖ < 𝜀   𝑖𝑓  ‖𝑦₀ − 𝑥₀‖ < 𝛿₃  𝑎𝑛𝑑   |𝜂| < 𝛿   𝑓𝑜𝑟    𝑡 ≥ 𝑡₀ (3.75) 

 

If it is not true, becasuse of (3.74), there exist a 𝑡₁ > 𝜏₀ and a solution 𝑦(𝑡,𝜏₀, 𝑦₀) of 

(3.2) with ‖𝑦₀ − 𝑥₀‖ < 𝛿 and |𝜂| < 𝛿  such that 

 

‖𝑦(𝑡₁ + 𝜂) − 𝑥(𝑡₁)‖ ≥ 𝜀, ‖𝑦(𝑡 + 𝜂) − 𝑥(𝑡)‖ < 𝜀, 𝑓𝑜𝑟   𝑡₀ ≤ 𝑡 < 𝑡₁ (3.76) 

 

Moreover since ‖𝑦₀ − 𝑥₀‖ < 𝛿, by (iii) we have 

 

𝑉(𝑡₀, 𝑦₀ − 𝑥₀) ≤ 𝑎(‖𝑦₀− 𝑥₀‖) < 𝑎(𝛿) < 𝛿₁ (3.77) 

 

Hence, by (i), (ii), (3.76) and Theorem 3.4, we obtain the following estimate 

 

𝑉(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥(𝑡)) ≤ 𝑟(𝑡 + 𝜂, 𝜏₀, 𝑢₀), 𝑡₀ ≤ 𝑡 < 𝑡₁ (3.78) 

 

Consequently, the relations (3.73), (3.76), (3.78) and (iii) leads to the contradiction 

 

𝑏(𝜀) ≤ 𝑏(‖𝑦(𝑡₁+ 𝜂) − 𝑥(𝑡₁)‖) ≤ 𝑉(𝑡₁, 𝑦(𝑡₁+ 𝜂) − 𝑥(𝑡₁))

≤ 𝑟(𝑡₁ + 𝜂, 𝜏₀, 𝑢₀) < 𝑏(𝜀) 
(3.79) 

 

which proves that the solution 𝑥(𝑡, 𝑡₀,𝑥₀) of (3.1) is equistable with ITD. Secondly, 

let the null solution of the (3.71) is uniformly equistable, then 𝛿₁ is independent of 𝜏₀, 

it follows that 𝛿 is independent of 𝜏₀, thus by the same procedure above we obtain 

uniform stability with ITD of 𝑥(𝑡, 𝑡₀, 𝑥₀) of (3.1). Thirdly, let the null solution of the 

(3.71) is asymptotically equistable. It follows that 𝑥(𝑡, 𝑡₀, 𝑥₀) of (3.1) is equistable 

with ITD. Consequently, it can be chosen that 𝜀 = 𝜌 and 𝛿₀ = 𝛿₀(𝜀, 𝜏₀) > 0, 

𝛿 ₀ = 𝛿 ₀(𝜀, 𝜏₀) > 0 such that  

 

‖𝑦 𝑡 + 𝜂 − 𝑥 𝑡 ‖ < 𝜌  𝑖𝑓   ‖𝑦₀− 𝑥₀‖ < 𝛿₀   𝑎𝑛𝑑    |𝜂| < 𝛿₀, 𝑡 ≥ 𝑡₀ (3.80) 

 

To prove attractivity, we let 0 < 𝜀 < 𝜌. Since 𝑢 ≡ 0 of (3.71) is asymptotically 

equistable, given 𝑏(𝜀) > 0, 𝜏₀ ∈ 𝕋 there exist 𝛿₁ = 𝛿₁(𝜀, 𝜏₀) > 0 and 𝑇 =

𝑇(𝜀, 𝜏₀) > 0 such that  
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𝑢 𝑡 < 𝑏 𝜀      𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡𝑕𝑎𝑡     𝑢₀ < 𝛿₁, 𝑡 ≥ 𝜏₀ + 𝑇 (3.81) 

 

Choose 𝑢₀ = 𝑎(‖𝑦₀− 𝑥₀‖) and 𝛿₂ = 𝛿₂(𝜀, 𝜏₀) > 0 as 0 < 𝑎(𝛿₂) < 𝛿₁. Since 

lim(𝜏₀,𝑦₀)→(𝑡₀,𝑥₀) ‖𝑦(𝑡 + 𝜂, 𝜏₀, 𝑦₀) − 𝑥(𝑡, 𝑡₀, 𝑥₀)‖ = 0, it follows that given 𝜀 > 0 and 

𝜏₀ ∈ 𝕋, there exist 𝛿 ₁ = 𝛿 ₁(𝜀, 𝜏₀) > 0 and 𝛿₃ = 𝛿₃(𝜀, 𝜏₀) > 0 such that  

 

‖𝑦 𝑡 + 𝜂 − 𝑥 𝑡 ‖ < 𝜀    𝑖𝑓   ‖𝑦₀− 𝑥₀‖ < 𝛿₃    𝑎𝑛𝑑      |𝜂| < 𝛿₁ 

𝑓𝑜𝑟     𝑡₀ ≤ 𝑡 ≤ 𝜏₀ 
(3.82) 

 

Let 𝛿 = 𝑚𝑖𝑛(𝛿₀, 𝛿₂, 𝛿₃) and 𝛿 = 𝑚𝑖𝑛(𝛿 ₀, 𝛿 ₁), and by (i), (ii), (3.80), Theorem 3.4, 

we have the estimate 

 

𝑉(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥(𝑡)) ≤ 𝑟(𝑡 + 𝜂, 𝜏₀, 𝑢₀), 𝑡 ≥ 𝑡₀, 𝑡 ∈ 𝕋 (3.83) 

 

Now, suppose that there exists a sequence {𝑡𝑘} ∈ 𝕋, 𝑡𝑘 → ∞ 𝑎𝑠 𝑘 → ∞, 𝑡𝑘 > 𝜏₀ + 𝑇 

and a solution 𝑦(𝑡,𝜏₀, 𝑦₀) of (3.2) with ‖𝑦₀ − 𝑥₀‖ < 𝛿 and |𝜂| < 𝛿  such that 

 

‖𝑦(𝑡𝑘 + 𝜂) − 𝑥(𝑡𝑘)‖ ≥ 𝜀 (3.84) 

 

The relations (iii), (3.81), (3.83), (3.84), leads to the contradiction, 

 

𝑏(𝜀) ≤ 𝑏(‖𝑦(𝑡𝑘 + 𝜂) − 𝑥(𝑡𝑘)‖) ≤ 𝑉(𝑡𝑘 ,𝑦(𝑡𝑘 + 𝜂) − 𝑥(𝑡𝑘))

≤ 𝑟(𝑡𝑘 + 𝜂, 𝜏₀,𝑢₀) < 𝑏(𝜀) 
(3.85) 

 

which proves that the solution 𝑥(𝑡, 𝑡₀,𝑥₀) of (3.1) is asymptotically equistable with 

ITD. Finally, assume that 𝑢 ≡ 0 of (3.71) is uniformly asymptotically equistable. 

Therefore 𝛿 and 𝑇 are independent of 𝜏₀. It follows that 𝑥(𝑡, 𝑡₀, 𝑥₀) of (3.1) is 

uniformly asymptotically equistable with ITD.□ 
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3.4.2.2. Boundedness Criteria  

 

In this section we shall discuss boundedness criteria of dynamic systems by 

employing comparison method. For boundedness properties of solutions, we do not 

have to need the existence of null solutions. 

 

Theorem 3.6: Assume that 

 

i) 𝑉 ∈ 𝐶𝑟𝑑 [𝕋 × 𝑆𝑐(𝜌),ℝ₊], 𝑉(𝑡, 𝑥) is locally Lipschitzian in 𝑥 ∈ ℝ  nfor each 𝑡 ∈ 𝕋, 

𝑔 ∈ 𝐶𝑟𝑑 [𝕋 × ℝ₊, ℝ] and 

 

𝐷⁺𝑉∆(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥(𝑡)) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥(𝑡))) (3.86) 

 

ii) the maximal solution 𝑟(𝑡) = 𝑟(𝑡, 𝜏₀,𝑢₀) of (3.71) exists for 𝑡 ≥ 𝜏₀; 

iii) there exists 𝑎, 𝑏 ∈ 𝒦 such that 𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖) for (𝑡, 𝑥) ∈ 𝕋 ×

𝑆(𝜌); 

iv) 𝑔(𝑡, 𝑢)𝜇(𝑡) is non-decreasing in 𝑢 ∈ ℝ₊ for each 𝑡 ∈ 𝕋; 

v) 𝜏₀ > 𝑡₀ and 𝑔(𝑡, 𝑢) is non-decreasing in 𝑡 ∈ 𝕋 for each 𝑢 ∈ ℝ₊. 

 

Then boundedness property of (3.71) imply the corresponding boundedness 

property with ITD of (3.1) 

 

Proof 3.6: Assume that the dynamic equation (3.71) is equibounded. Let 𝛼 > 𝜌 and 

𝜏₀ ∈ 𝕋 be given and let ‖𝑦₀− 𝑥₀‖ ≤ 𝛼. Define 𝛼₁ = 𝑎(𝛼) > 0. From the 

equiboundedness of (3.71), it follows that, given 𝛼₁ > 0 there exist 𝛽₁ =

𝛽₁(𝛼₁, 𝜏₀) > 0 such that  

 

𝑢(𝑡, 𝜏₀, 𝑢₀) <
𝛽₁

2
     𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡𝑕𝑎𝑡      𝑢₀ ≤ 𝛼₁, 𝑡 ≥ 𝜏₀ (3.87) 

 

Obviously; lim𝜂→0⁺ |𝑢(𝑡 + 𝜂) − 𝑢(𝑡)| = 0. Therefore, given 
𝛽₁

2
> 0  there exists a 

𝛿 = 𝛿 (𝛼, 𝜏₀) > 0 such that  
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|𝑢(𝑡 + 𝜂) − 𝑢(𝑡)| <
𝛽₁

2
       𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡𝑕𝑎𝑡       |𝜂| < 𝛿, 𝑡 ≥ 𝜏₀ (3.88) 

 

Since 𝑏(𝑟) → ∞ as 𝑟 → ∞, there exist 𝛽 = 𝛽(𝛼, 𝜏₀) > 0 such that 

 

𝑏(𝛽) ≥ 𝛽₁ (3.89) 

 

Now we claim that 

 

‖𝑦 𝑡 + 𝜂 − 𝑥 𝑡 ‖ < 𝛽     𝑖𝑓    ‖𝑦₀− 𝑥₀‖ ≤ 𝛼   𝑎𝑛𝑑   |𝜂| < 𝛿     𝑡 ≥ 𝑡₀ (3.90) 

 

If this were false, there would exist some solutions 𝑦(𝑡,𝜏₀, 𝑦₀) of (3.2) with ‖𝑦₀ −

𝑥₀‖ ≤ 𝛼 and |𝜂| < 𝛿 and 𝑡₁ > 𝑡₂ > 𝜏₀ such that 

 

‖𝑦(𝑡₂ + 𝜂) − 𝑥(𝑡₂)‖ = 𝛼   ‖𝑦(𝑡₁ + 𝜂) − 𝑥(𝑡₁)‖ = 𝛽 (3.91) 

 

and 

 

𝜌 < 𝛼 ≤ ‖𝑦 𝑡 + 𝜂 − 𝑥 𝑡 ‖ ≤ 𝛽, 𝑓𝑜𝑟      𝑡₂ ≤ 𝑡 ≤ 𝑡₁ (3.92) 

 

Set 𝑧(𝑡, 𝑡₀, 𝑦₀− 𝑥₀) = 𝑦(𝑡 + 𝜂, 𝜏0 ,𝑦₀) − 𝑥(𝑡, 𝑡₀, 𝑥₀) so that 𝑧(𝑡) is solution of 

 

𝑧∆ = 𝑓 (𝑡, 𝑧; 𝜂) (3.93) 

 

where 𝑓 (𝑡, 𝑧; 𝜂) = 𝑓(𝑡, 𝑧(𝑡, 𝑡₀, 𝑦₀ − 𝑥₀) + 𝑥(𝑡, 𝑡₀,𝑥₀)) − 𝑓(𝑡, 𝑥(𝑡, 𝑡₀,𝑥₀)). Choose 

𝑢₀ = 𝑎(‖𝑧(𝑡₂)‖), where 𝑧(𝑡₂) = 𝑧(𝑡₂,𝑡₀, 𝑦₀− 𝑥₀) so that by (iii) 

 

𝑉(𝑡₂,𝑧(𝑡₂)) ≤ 𝑎(‖𝑧(𝑡₂)‖) = 𝑎(𝛼) = 𝛼₁ (3.94) 

 

Hence the condition (i) and Theorem 3.4 shows that, because of (3.91) and (3.92)  

 

𝑉(𝑡, 𝑧 (𝑡, 𝑡₂,𝑧(𝑡₂))) ≤ 𝑟(𝑡 + 𝜂, 𝑡₂, 𝑢₀), 𝑓𝑜𝑟    𝑡₂ ≤ 𝑡 ≤ 𝑡₁ (3.95) 
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where 𝑧 (𝑡, 𝑡₂, 𝑧(𝑡₂)) is any solutions of 𝑧∆ = 𝑓 (𝑡, 𝑧; 𝜂) through (𝑡₂, 𝑧(𝑡₂)). Thus the 

estimate (3.95) is true for 𝑦(𝑡 + 𝜂, 𝜏₀,𝑦₀) − 𝑥(𝑡, 𝑡₀,𝑥₀) on the interval [𝑡₂,𝑡₁] ∩ 𝕋. 

We therefore obtain, from the foregoing considerations, using (3.87), (3.88), (3.89), 

(3.91), (3.92), (3.95) and condition (iii) 

 

𝑏(𝛽) ≤ 𝑉(𝑡₁, 𝑦(𝑡₁+ 𝜂) − 𝑥(𝑡₁)) ≤ 𝑟(𝑡₁ + 𝜂, 𝑡₂,𝑢₀) < 𝑟(𝑡₁,𝑡₂, 𝑢₀) +
𝛽₁

2

< 𝛽₁ ≤ 𝑏(𝛽) 

(3.96) 

 

This contradiction proves (B1). For the case that the scalar system is uniformly 

equibounded, 𝛽₁ is independent of 𝜏₀. Therefore in a similar way, we obtain the 

uniformly equiboundedness with ITD of (3.1). Now assume that the dynamic equation 

(3.71) is ultimately equibounded. This implies that the dynamic system (3.1) is 

equibounded. Hence given 𝜌 > 0, 𝑡₀ ∈ 𝕋, there exist 𝐵 > 0 and 𝛿 ₀ > 0 such that 

 

‖𝑦 𝑡 + 𝜂 − 𝑥 𝑡 ‖ < 𝐵   𝑖𝑓  ‖𝑦₀ − 𝑥₀‖ ≤ 𝜌   𝑎𝑛𝑑    |𝜂| < 𝛿    𝑡 ≥ 𝑡₀ (3.97) 

 

Let now 𝛼 > 𝜌 and 𝜏₀ ∈ 𝕋 be given, and let 𝜌 ≤ ‖𝑦₀− 𝑥₀‖ ≤ 𝛼. Define 𝛼₁ =

𝑎(𝛼) > 0. By the definition of quasi-equi-ultimately boundedness, it follows that, 

given 𝛼₁ > 0, 𝜏₀ ∈ 𝕋, there exists positive numbers 𝑁₁ and 𝑇 = 𝑇(𝛼, 𝜏₀) such that 

 

𝑢(𝑡, 𝜏₀, 𝑢₀) <
𝑁₁

2
   𝑖𝑓     𝑢₀ ≤ 𝛼₁   𝑡 ≥ 𝜏₀ + 𝑇 (3.98) 

 

Obviously lim𝜂→0⁺ |𝑢(𝑡 + 𝜂) − 𝑢(𝑡)| = 0. Therefore, given 
𝑁₁

2
> 0 there exists a 

𝛿 ₁ = 𝛿 ₁(𝛼, 𝜏₀) > 0 such that  

 

|𝑢(𝑡 + 𝜂) − 𝑢(𝑡)| <
𝑁₁

2
   𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡𝑕𝑎𝑡     |𝜂| < 𝛿₁, 𝑡 ≥ 𝜏₀ (3.99) 

 

Let 𝑁∗ = 𝑚𝑎𝑥(𝑁, 𝐵), where 𝑁 is chosen so as to satisfy the inequality 

 

𝑏(𝑁) ≥ 𝑁₁ (3.100) 
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and 𝛿 = 𝑚𝑖𝑛(𝛿 ₀, 𝛿 ₁). Clearly, 𝑁∗ > 𝜌, and the choice of 𝑁 is possible since 

𝑏(𝑢) → ∞ as 𝑢 → ∞. We claim that, with this 𝑁∗, 𝛿  and 𝑇 the definition (B3) holds. 

Suppose that this is false. Since the solutions 𝑦(𝑡, 𝜏₀, 𝑦₀), 𝑥(𝑡, 𝑡₀, 𝑥₀) with ‖𝑦₀−

𝑥₀‖ ≤ 𝜌 satisfy ‖𝑦(𝑡 + 𝜂) − 𝑥(𝑡)‖ < 𝑁∗, it is enough to consider only solutions 

𝑦(𝑡, 𝜏₀,𝑦₀) with 𝜌 ≤ ‖𝑦₀− 𝑥₀‖ ≤ 𝛼. Set 𝑢₀ = 𝑎(‖𝑦₀− 𝑥₀‖), then assumption (i) 

and Theorem 3.4 yields, for such solutions, because of (3.97), the inequality 

 

𝑉(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥(𝑡)) ≤ 𝑟(𝑡 + 𝜂, 𝜏₀,𝑢₀), 𝑡 ≥ 𝑡₀ (3.101) 

 

Let there exists a sequence {𝑡𝑘}, 𝑡𝑘 > 𝜏₀, 𝑡𝑘 > 𝜏₀ + 𝑇, 𝑡𝑘 → ∞ as 𝑘 → ∞ and some 

solutions 𝑦(𝑡, 𝜏₀, 𝑦₀) of (3.2) with 𝜌 ≤ ‖𝑦₀ − 𝑥₀‖ ≤ 𝛼 and |𝜂| < 𝛿 such that 

‖𝑦(𝑡𝑘 + 𝜂) − 𝑥(𝑡𝑘)‖ ≥ 𝑁∗. Then we get the following inequality, using (3.98)-

(3.101) 

 

𝑏(𝑁∗) ≤ 𝑉(𝑡𝑘  ,𝑦(𝑡𝑘 + 𝜂) − 𝑥(𝑡𝑘)) ≤ 𝑟(𝑡𝑘 + 𝜂, 𝜏₀, 𝑢₀)

< 𝑟(𝑡𝑘 ,𝜏₀, 𝑢₀) +
𝑁₁

2
< 𝑁₁ ≤ 𝑏(𝑁) 

(3.102) 

 

whence we have 𝑁∗ < 𝑁. This is absurd in view of the definition of 𝑁∗, since 

𝑁∗ ≥ 𝑁. Thus the system (3.1) is equi-ultimately bounded with ITD. Next let the 

dynamic equation (3.71) be uniformly ultimately equibounded. Then 𝑁₁ is 

independent of 𝜏₀. Hence, in a similar way, we obtain the uniformly ultimately 

equiboundedness with ITD of (3.1). This completes the proof.□ 

 

3.4.3. Applications 

 

In this section we give an example that applies the results of the preceding 

section. 

 

Example 3.1: Consider the scalar dynamic system 

 

𝑥∆ = −𝑥 + 𝑕 𝑡 , 𝑥(𝑡₀) = 𝑥₀ , 𝑓𝑜𝑟   𝑡 ≥ 𝑡₀, 𝑡 ∈ 𝕋 (3.103) 

 



 

45 

where 𝑕(𝑡) is a non-increasing function. Let 𝑉(𝑥) = 𝑥² and 𝑏 𝑟 =
𝑟2

2
, 𝑎(𝑟) = 2𝑟², 

so that 

𝑏(𝑥) ≤ 𝑉(𝑥) ≤ 𝑎(𝑥) (3.104) 

 

Then 

 

𝐷+𝑉∆ 𝑡, 𝑦 − 𝑥 = 2 𝑦 − 𝑥  𝑦 ∆ − 𝑥∆ + 𝜇 𝑡  𝑦 ∆ − 𝑥∆ 2

= 2 𝑦 − 𝑥  − 𝑦 − 𝑥 + 𝑕 𝑡 + 𝜂 − 𝑕 𝑡  

+ 𝜇 𝑡  − 𝑦 − 𝑥 + 𝑕 𝑡 + 𝜂 − 𝑕 𝑡  
2

≤  𝜇 𝑡 − 2 (𝑦 − 𝑥)^2   𝑠𝑖𝑛𝑐𝑒   𝑕 𝑡     𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔

= (𝜇(𝑡) − 2)𝑉 

(3.105) 

 

where 𝑦 = 𝑦 (𝑡) = 𝑦(𝑡 + 𝜂, 𝜏₀, 𝑦₀), where 𝑦(𝑡, 𝜏₀,𝑦₀) is solution of (3.103)  through 

(𝜏₀, 𝑦₀), and 𝑥 = 𝑥(𝑡) = 𝑥(𝑡, 𝑡₀,𝑥₀) is solution of  (3.103) through (𝑡₀,𝑥₀). Then the 

corresponding scalar comparison equation is 

 

𝑢∆ =  𝜇 𝑡 − 2 𝑢, 𝑢(𝜏₀) = 𝑢₀, 𝑡 ≥ 𝜏₀ (3.106) 

 

If 1 + 𝜇(𝑡)(𝜇(𝑡) − 2) ≠ 0, 𝑡 ∈ 𝕋𝜅, i.e, the function 𝜇(𝑡) − 2 is regressive, then the 

solution of comparison equation is 

𝑢(𝑡, 𝜏₀, 𝑢₀) = 𝑢₀𝑒𝜇 𝑡 −2(𝑡, 𝜏₀) = 𝑢₀𝑒𝑥𝑝  
𝐿𝑜𝑔((𝜇(𝑠) − 1)²

𝜇(𝑠)

𝑡

𝜏₀

∆𝑠  (3.107) 

 

where 𝑒𝜇 𝑡 −2(𝑡, 𝜏₀) is the generalized exponential function on time scales, 𝐿𝑜𝑔 is the 

principal logarithm function. 

Now it is easy to see that: 

 

1. The null solution of (3.106) is stable if 

 

 
𝐿𝑜𝑔((𝜇(𝑠) − 1)²

𝜇(𝑠)

𝑡

𝜏₀

∆𝑠 ≤ 𝑁(𝜏₀), 𝑡 ≥ 𝜏₀ (3.108) 
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     where 𝑁(𝜏₀) is finite for any 𝜏₀ ≥ 0. It follows by Theorem (3.5) that the solution 

𝑥(𝑡, 𝑡₀, 𝑥₀) of (3.103) is stable with ITD. 

 

2. The null solution of (3.106) is uniformly stable if 

 

 
𝐿𝑜𝑔((𝜇(𝑠) − 1)²

𝜇(𝑠)

𝑡

𝜏₀

∆𝑠 ≤ 𝑁, 𝑡 ≥ 𝜏₀ (3.109) 

 

     with 𝑁 is constant. It follows by Theorem (3.5) that the solution 𝑥(𝑡, 𝑡₀,𝑥₀) of 

(3.103) is uniformly stable with ITD. 

 

3. The null solution of (3.106) is asymptotically stable if 

 

lim
𝑡→∞

 
𝐿𝑜𝑔((𝜇(𝑠) − 1)²

𝜇(𝑠)

𝑡

𝜏₀

∆𝑠 = −∞ (3.110) 

 

     It follows by Theorem (3.5) that the solution 𝑥(𝑡, 𝑡₀,𝑥₀) of (3.103) is 

asymptotically stable with ITD.□ 
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4. STABILITY OF PERTURBED DYNAMIC 

SYSTEM ON TIME SCALES WITH INITIAL 

TIME DIFFERENCE 
 

4.1. Introduction 

 

In real world applications, it is necessary to consider a particular dynamic 

system with a perturbation term. In addition to perturbing the given particular 

dynamic system, it is possible to make an error in initial times as well as in initial 

positions. Therefore, one need to investigate the qualitative and quantitative 

properties of a given particular dynamic system under these perturbations. 

A principal technique employed in stability theory is investigating stability 

properties of a particular dynamic system under small perturbations. This technique 

is employed in many ways [5], [13]. Another techniques are also used in [5], [7], [8], 

[13]. In [21], [22], [26], [27], the authors considered the case that perturbed dynamic 

system and original unperturbed dynamic system which have different initial time. 

In the present paper, we consider the problem of determining the behavior of 

solutions of a perturbed dynamic equation with respect to those of original 

unperturbed dynamic system that have initial time difference (ITD). We consider this 

problem on arbitrary time scales, nonempty closed subset of real numbers, and 

therefore we obtained a general result that can be applied discrete and continuous 

cases simultaneously 

We begin with a preliminary section which includes the basic concepts and 

definitions. After that, we give the obtained novel results. 

 

4.2. Basic Definitions and Concepts 

 

We will consider the dynamic system 

 

𝑥∆ = 𝑓 𝑡, 𝑥 ,           𝑥(𝑡₀) = 𝑥₀ (4.1) 

 

where 𝑓 ∈ 𝐶𝑟𝑑 [𝕋 × 𝑆(𝜌),ℝⁿ], 𝑆(𝜌) = {𝑥 ∈ ℝⁿ:‖𝑥‖ ≤ 𝜌}. Here ‖𝑥‖ denotes any 𝑛-

dimensional norm of the vector 𝑥. 
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In addition to dynamical system (4.1), we also consider the associated 

perturbed dynamical system 

 

𝑦∆ = 𝑓 𝑡, 𝑦 + 𝑅 𝑡, 𝑦 , 𝑦(𝜏₀) = 𝑦₀ (4.2) 

 

where 𝑅 ∈ 𝐶𝑟𝑑[𝕋 × 𝑆(𝜌), ℝⁿ] is called the perturbation term. 

We assume that 𝑓, 𝑅 ∈ 𝐶𝑟𝑑[𝕋 × 𝑆(𝜌), ℝⁿ] are smooth enough to guarantee the 

existence, uniqueness and rd-continuous dependence of solutions of (4.1) and (4.2). 

We now give the definitions of stability which identify the possible behavior 

for solution of perturbed dynamic system (4.2) which we will need later. 

 

Definition 4.1: The solutions of the perturbed dynamic system (4.2) are said to be 

stable with respect to unperturbed dynamic system (4.1) with initial time difference 

if, given 𝜀 > 0 and 𝜏₀ ∈ 𝕋, there exist 𝛿(𝜀, 𝜏₀) > 0 and 𝛿 (𝜀, 𝜏₀) > 0 such that 

‖𝑦₀ − 𝑥₀‖ < 𝛿  and  |𝜏₀ − 𝑡₀| < 𝛿  implies 

 

‖𝑦(𝑡, 𝜏₀,𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀)‖ < 𝜀 (4.3) 

 

 for 𝑡 ≥ 𝜏₀, for every solution 𝑦(𝑡, 𝜏₀,𝑦₀) of the perturbed dynamic system (4.2), 

where 𝜂 = 𝜏₀ − 𝑡₀ > 0. 

 

Definition 4.2: The solutions of the perturbed dynamic system (4.2) are said to be 

asymptotically stable with respect to unperturbed dynamic system (4.1) with initial 

time difference if, they are stable with respect to equation (4.1) with initial time 

difference and if, given 𝜀 > 0 and 𝜏₀ ∈ 𝕋, there exist 𝛿₀(𝜏₀) > 0, 𝛿 ₀(𝜏₀) > 0 and 

𝑇 = 𝑇(𝜀, 𝜏₀) > 0 such that ‖𝑦₀− 𝑥₀‖ < 𝛿₀ and |𝜏₀ − 𝑡₀| < 𝛿 ₀ implies 

 

‖𝑦(𝑡, 𝜏₀,𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀)‖ < 𝜀 (4.4) 

 

for 𝑡 ≥ 𝜏₀ + 𝑇, for every solution 𝑦(𝑡, 𝜏₀,𝑦₀) of the perturbed system (4.2). 
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Definition 4.3: The solutions of the perturbed dynamic system (4.2) are said to be 

unstable with respect to unperturbed dynamic system (4.1) with initial time 

difference if, they are not stable with respect to unperturbed dynamic system (4.1) 

with initial time difference. 

 

Definition (4.1) and Definition (4.2) are equivalent to the statement that all 

solutions of the perturbed dynamic system (4.2) which start sufficiently close to the 

initial conditions of the unperturbed solution respectively remain close to it or 

eventually approach it. Definition (4.3) requires that for each solution of the 

unperturbed equation (4.1), a solution of the perturbed equation (4.2) can be found 

which starts arbitrarily close to the unperturbed solution and which eventually 

diverges from it. 

We stress that all of the above definitions are independent of the behavior of 

the solutions of the unperturbed dynamic system. Indeed, we particularly show that 

the equilibria of the original dynamic equations may be stable, asymptotically stable 

or even unstable. We illustrate this situations as the following on different time 

scales. 

 

Example 4.1: Let 𝕋 = ℤ. Consider the dynamic equation 

 

𝑥∆ =△𝑥 = 𝑐, 𝑥(𝑡₀) = 𝑥₀ (4.5) 

 

where c is any constant, whose solution is given by 𝑥(𝑡, 𝑡₀, 𝑥₀) = 𝑥₀ + 𝑐(𝑡 − 𝑡₀) 

which is unstable. In addition, consider the perturbed equation 

 

△ 𝑦 = 𝑐 + 𝑔 𝑡 + 1 , 𝑦(𝜏₀) = 𝑦₀ (4.6) 

 

where {𝑔(𝑡)} is any sequence for which  𝑔(𝑡)∞ = 0. The corresponding solution is 

then given by 𝑦(𝑡, 𝜏₀,𝑦₀) = 𝑦₀ + 𝑐(𝑡 − 𝜏₀) +  𝑔(𝑘)𝑡
𝜏₀ . Then the difference is 

 

𝑦(𝑡, 𝜏₀,𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀) = 𝑦₀ − 𝑥₀ +  𝑔(𝑘)

𝑡

𝑘=𝜏₀

 (4.7) 
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which can be made arbitrarily small. Therefore the solution of the perturbed 

equation is stable with respect to unperturbed equation with initial time difference.□ 

Example 4.2: Let 𝕋 = ℝ. Consider the dynamic equation 

 

𝑥∆ = 𝑥 ′ = −𝑎𝑥, 𝑥(𝑡₀) = 𝑥₀ (4.8) 

 

where 𝑎 > 0, whose asymptotically stable solution is given by 

 

𝑥(𝑡, 𝑡₀,𝑥₀) = 𝑥₀exp⁡(−𝑎(𝑡 − 𝑡₀)). (4.9) 

 

Further, consider the associated perturbed equation 

 

𝑦 ′ = − 𝑎 + 𝑏 𝑦, 𝑦(𝜏₀) = 𝑦₀ (4.10) 

 

whose solution is 𝑦(𝑡, 𝜏₀,𝑦₀) = 𝑦₀exp⁡(−(𝑎 + 𝑏)(𝑡 − 𝑡₀)). As a consequence, 

 

𝑦(𝑡, 𝜏₀,𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀)

= exp⁡(−𝑎(𝑡 − 𝑡₀))[𝑦₀exp⁡(−𝑏(𝑡 − 𝑡₀))− 𝑥₀]. 
(4.11) 

 

 If 𝑏 > 0, this difference approaches 0 as 𝑡 → ∞ and thus the perturbed 

solutions are asymptotically stable with respect to unperturbed equation with 

ITD. 

 If 𝑏 < 0, then the perturbed solutions are unstable with respect to unperturbed 

equation with ITD. 

□ 

Considering the dynamical systems (4.1) and (4.2), for 𝑉(𝑡, 𝑥) ∈ 𝐶𝑟𝑑 [𝕋 ×

𝑆(𝜌), ℝ+], we define the generalized derivative with respect to the systems (4.1) and 

(4.2).  
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Definition 4.4: Let 𝑉 ∈ 𝐶𝑟𝑑 [𝕋 × 𝑆(𝜌),ℝ+], 𝑉(𝑡, 𝑢) is locally Lipschitzian in 𝑢. 

 

𝐷+𝑉∆(𝑡,𝑢, 𝜂)

∶= lim
𝑠→𝑡,𝑠≠𝜍(𝑡)

𝑠𝑢𝑝
𝑉(𝑡 + 𝜇(𝑡), 𝑢(𝑡) + 𝜇(𝑡)𝑓 (𝑡, 𝑢(𝑡); 𝜂)) − 𝑉(𝑠, 𝑢(𝑡))

𝜍(𝑡) − 𝑠
 

(4.12) 

 

for (𝑡, 𝑢, 𝜂) ∈ 𝕋 × 𝑆(𝜌) × ℝ, where 𝜇(𝑡) = 𝜍(𝑡) − 𝑡, 𝑢(𝑡, 𝜏₀, 𝑢₀) = 𝑦(𝑡,𝜏₀, 𝑦₀) −

𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀) for 𝑡 ≥ 𝜏₀, and 𝑓 (𝑡, 𝑢(𝑡); 𝜂) = 𝑓(𝑡, 𝑢(𝑡) + 𝑥(𝑡 − 𝜂)) + 𝑅(𝑡, 𝑢(𝑡) +

𝑥(𝑡 − 𝜂)) − 𝑓(𝑡 − 𝜂, 𝑥(𝑡 − 𝜂)). 

 

4.3. Main Results 

 

We now present several theorems which supply sufficient conditions for the 

above types of behavior to hold in terms of the existence of rd-continuous real scalar, 

Lyapunov-type, functions 𝑉(𝑡, 𝑥). We first give the comparison result in terms of 

Lyapunov-like functions which we employ frequently later. 

 

Theorem 4.1: Assume that 

 

i) 𝑉 ∈ 𝐶𝑟𝑑 [𝕋 × 𝑆(𝜌),ℝ+], 𝑉(𝑡, 𝑢) is locally Lipschitzian in 𝑢 and 

 

𝐷+𝑉∆ 𝑡, 𝑢, 𝜂 ≤ 𝑔 𝑡, 𝑉 𝑡, 𝑢 ,  𝜂  , 𝑓𝑜𝑟    (𝑡, 𝑢, 𝜂) ∈ 𝕋 × 𝑆(𝜌) × ℝ (4.13) 

 

where 𝑢 = 𝑢(𝑡) = 𝑦(𝑡, 𝜏₀,𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀), 𝜂 = 𝜏₀ − 𝑡₀ > 0, 𝑔 ∈ 𝐶𝑟𝑑 [𝕋 ×

ℝ²,ℝ₊]; 

ii) the maximal solution 𝑟(𝑡, 𝜏₀,𝑤₀, |𝜂|) of 𝑤∆ = 𝑔 𝑡, 𝑤,  𝜂  ,   𝑤(𝜏₀) = 𝑤₀ ≥ 0 

exists for 𝑡 ≥ 𝜏₀ ≥ 0; 

iii) 𝑔(𝑡, 𝑤, |𝜂|)𝜇(𝑡) is non-decreasing in 𝑤 ∈ ℝ for each 𝜂 ∈ ℝ and 𝑡 ∈ 𝕋. 

 

Then 𝑉(𝜏₀,𝑦₀ − 𝑥₀) ≤ 𝑤₀ implies 

 

𝑉(𝑡, 𝑦(𝑡,𝜏₀, 𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀, 𝑥₀)) ≤ 𝑟(𝑡, 𝜏₀,𝑤₀,|𝜂|), 𝑡 ≥ 𝜏₀ (4.14) 
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Proof 4.1: Set 𝑢(𝑡) = 𝑦(𝑡,𝜏₀, 𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀, 𝑥₀) for 𝑡 ≥ 𝜏₀ so that 𝑢(𝜏₀) = 𝑦₀ −

𝑥₀  and 

 

𝑢∆(𝑡) = 𝑓(𝑡, 𝑦(𝑡,𝜏₀, 𝑦₀)) + 𝑅(𝑡, 𝑦(𝑡, 𝜏₀,𝑦₀)) − 𝑓(𝑡 − 𝜂, 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀)) 

= 𝑓(𝑡, 𝑢(𝑡) + 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀)) + 𝑅(𝑡, 𝑢(𝑡) + 𝑥(𝑡 − 𝜂, 𝑡₀, 𝑥₀)) − 𝑓(𝑡

− 𝜂, 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀)) = 𝑓 (𝑡, 𝑢(𝑡); 𝜂), 𝑓𝑜𝑟 𝑡 ≥ 𝜏₀. 

(4.15) 

 

We apply induction principle to the statement:  𝐴(𝑡): 𝑉(𝑡, 𝑢(𝑡, 𝜏₀,𝑢₀)) ≤

𝑟(𝑡, 𝜏₀, 𝑤₀,|𝜂|),   𝑡 ≥ 𝜏₀, 𝑡, 𝜏₀ ∈ 𝕋 . 

 

 Let 𝑡 = 𝜏₀. Since 𝑉(𝜏₀, 𝑦₀ − 𝑥₀) ≤ 𝑤₀, it follows that 𝐴(𝜏₀) is true. 

 

 Let 𝑡 be right-scattered and A(t) is true. We shall show that 𝐴(𝜍(𝑡)) is true. Set 

𝑚(𝑡) = 𝑉(𝑡, 𝑢(𝑡)). Then using the definition of the derivative for right-scattered 

point, we have the inequality 

 

𝑚(𝜍(𝑡)) − 𝑟(𝜍(𝑡)) = (𝐷+𝑚∆(𝑡) − 𝑟∆(𝑡))𝜇(𝑡) + (𝑚(𝑡) − 𝑟(𝑡))

≤ (𝑔(𝑡, 𝑚(𝑡)) − 𝑔(𝑡, 𝑟(𝑡)))𝜇(𝑡) + (𝑚(𝑡) − 𝑟(𝑡)). 
(4.16) 

 

Then since 𝐴(𝑡) is true, by assumption (iii) it follows that  

 

𝑚(𝜍(𝑡)) − 𝑟(𝜍(𝑡)) ≤ 0. (4.17) 

 

In view of the fact that 

 

𝑚(𝜍(𝑡)) − 𝑚(𝑡)

𝜇(𝑡)
=

𝑉(𝜍(𝑡), 𝑢(𝜍(𝑡))) − 𝑉(𝑡, 𝑢(𝑡))

𝜇(𝑡)
 (4.18) 

 

we see that 𝐴(𝜍(𝑡)) is true. 

 

 Let 𝑡 be right-dense and 𝑈 be a neighborhood of 𝑡. Assume that 𝐴(𝑡) is true. We 

need to show that 𝐴(𝑠) is true for 𝑠 > 𝑡, 𝑠 ∈ 𝑈. 
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𝑚(𝑠 + 𝑕) − 𝑚(𝑠)

= 𝑉(𝑠 + 𝑕, 𝑢(𝑠 + 𝑕)) − 𝑉(𝑠 + 𝑕, 𝑢(𝑠) + 𝑕𝑓 (𝑠, 𝑢(𝑠); 𝜂))

+ 𝑉(𝑠 + 𝑕, 𝑢(𝑠) + 𝑕𝑓 (𝑠, 𝑢(𝑠); 𝜂)) − 𝑉(𝑠, 𝑢(𝑠))

= 𝑉(𝑠 + 𝑕, 𝑢(𝑠) + 𝑕𝑓 (𝑠, 𝑢(𝑠); 𝜂) + 𝑕𝜀(𝑕)) − 𝑉(𝑠

+ 𝑕, 𝑢(𝑠) + 𝑕𝑓 (𝑠, 𝑢(𝑠); 𝜂)) + 𝑉(𝑠 + 𝑕, 𝑢(𝑠)

+ 𝑕𝑓 (𝑠, 𝑢(𝑠); 𝜂)) − 𝑉(𝑠, 𝑢(𝑠)) 

(4.19) 

      

     Since 𝑉 is locally Lipschitzian in 𝑢 and 𝐿 > 0 is the Lipschitz constant and 𝜀 is 

the error term, we have 

 

𝐷+𝑚∆(𝑠)

≤ lim
𝑕→0+

𝐿‖𝜀 𝑕 ‖

+ lim
𝑕→0+,𝑠+𝑕∈𝕋

𝑠𝑢𝑝
𝑉(𝑠 + 𝑕), 𝑢(𝑠) + 𝑕𝑓 (𝑠, 𝑢(𝑠); 𝜂)) − 𝑉(𝑠, 𝑢(𝑠))

𝑕

= 𝐷+𝑉∆(𝑠, 𝑢(𝑠)) ≤ 𝑔(𝑠, 𝑚(𝑠)) 

(4.20) 

 

Since 𝐴(𝑡) is true, by Theorem 2.11, we obtain that 

 

𝑚(𝑠) = 𝑉(𝑠, 𝑢(𝑠, 𝜏₀, 𝑢₀)) ≤ 𝑟(𝑠, 𝜏₀, 𝑤₀,|𝜂|), 𝑓𝑜𝑟  𝑠 ≥ 𝑡, 𝑠 ∈ 𝑈 (4.21) 

 

 Let 𝑡 be left-dense and 𝐴(𝑠) is true for 𝑠 < 𝑡. We need to show that 𝐴(𝑡) is true. 

This follows by rd-continuity of 𝑉(𝑡, 𝑢) and 𝑟(𝑡). 

Thus by induction principle, we conclude that 

 

𝑉(𝑡, 𝑢(𝑡, 𝜏₀,𝑢₀)) ≤ 𝑟(𝑡, 𝜏₀,𝑤₀, |𝜂|), 𝑡 ∈ 𝕋, 𝑡 ≥ 𝜏₀. (4.22) 

□ 

 

Remark 4.1: If the inequality (i) is reversed and 𝑉(𝜏₀, 𝑦₀− 𝑥₀) ≥ 𝑤₀, then we have 

to replace the conclusion by 𝑉(𝑡, 𝑢(𝑡, 𝜏₀, 𝑢₀)) ≥ 𝑟∗(𝑡,𝜏₀, 𝑤₀,|𝜂|) ,𝑡 ∈ 𝕋, 𝑡 ≥ 𝜏₀, 

where 𝑟∗(𝑡, 𝜏₀,𝑤₀,|𝜂|) is the minimal solution of comparison equation. 

 

 

 



 

54 

The following theorem satisfies the requirement that both the function 

𝑉(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂)) remains well defined and that the difference 𝑦(𝑡, 𝜏₀, 𝑦₀)−

𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀) of the solution of the perturbed dynamic system (4.2) with shifted 

solution of the original unperturbed dynamic system (4.1) remains on 𝑆(𝜌). 

 

Theorem 4.2: Assume that 

 

i) 𝑓 ∈ 𝐶𝑟𝑑 [𝕋 × ℝⁿ, ℝⁿ] is Lipschitzian in time and space such that 

 

‖𝑓(𝑡, 𝑢(𝑡, 𝜏₀,𝑢₀) + 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀)) − 𝑓(𝑡 − 𝜂, 𝑥(𝑡 − 𝜂, 𝑡₀, 𝑥₀))‖

≤ 𝐿(𝑡)‖𝑢(𝑡)‖ + 𝑁(𝑡)|𝜂| 
(4.23) 

 

where 𝑢(𝑡, 𝜏₀, 𝑢₀) = 𝑦(𝑡,𝜏₀, 𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀, 𝑥₀) for 𝑡 ≥ 𝜏₀, 𝑢₀ = 𝑦₀ − 𝑥₀ and 

𝜂 = 𝜏₀ − 𝑡₀ > 0; 

ii) The perturbation term 𝑅(𝑡, 𝑦) satisfies ‖𝑅(𝑡, 𝑦)‖ ≤ 𝑎‖𝑕(𝑡)‖ for sufficiently small 

positive constant 𝑎; 

iii) There exist constants 𝑀₁, 𝑀₂ and 𝑀₃ such that 

 

 𝐿(𝑠) △ 𝑠
𝑡

𝜏₀

≤ 𝑀₁,  𝑁 𝑠 △ 𝑠
𝑡

𝜏₀

≤ 𝑀₂,  ‖𝑕(𝑠)‖ △ 𝑠
𝑡

𝜏₀

≤ 𝑀₃ (4.24) 

 

𝑓𝑜𝑟  𝑡 ≥ 𝜏₀. 

iv) 𝐿(𝑡) ∈ ℛ⁺, 𝐿(𝑡) > 0 and 𝑁(𝑡) > 0 for 𝑡 ∈ 𝕋. 

 

Then 

 

‖𝑦(𝑡, 𝜏₀, 𝑦₀)− 𝑥(𝑡 − 𝜂, 𝑡₀, 𝑥₀)‖ ≤ 𝜌, 𝑓𝑜𝑟 𝑎𝑙𝑙      𝑡 ≥ 𝜏₀ (4.25) 

 

provided that 𝑦₀ and 𝜏₀ are chosen sufficiently close to 𝑥₀ and 𝑡₀, respectively. 

 

Proof 4.2: We have 
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𝑦(𝑡, 𝜏₀, 𝑦₀) = 𝑦₀ +  𝑓 𝑠, 𝑦 𝑠  △ 𝑠
𝑡

𝜏₀

+  𝑅(𝑠, 𝑦(𝑠)) △ 𝑠
𝑡

𝜏₀

 (4.26) 

 

and 

 

𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀) = 𝑥₀ +  𝑓(𝑠 − 𝜂, 𝑥(𝑠 − 𝜂)) △ 𝑠
𝑡

𝜏₀

. (4.27) 

 

As a consequence; 

 

‖𝑦(𝑡, 𝜏₀,𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀)‖

≤ ‖𝑦₀ − 𝑥₀‖

+   𝑓 𝑠, 𝑦 𝑠,𝜏₀, 𝑦₀  − 𝑓 𝑠 − 𝜂, 𝑥 𝑠 − 𝜂, 𝑡₀, 𝑥₀   △ 𝑠
𝑡

𝜏₀

+   𝑅 𝑠, 𝑦 𝑠   △ 𝑠
𝑡

𝜏₀

≤ ‖𝑦₀ − 𝑥₀‖ + 𝑎  ‖𝑕 𝑠 ‖ △𝑠
𝑡

𝜏₀

+  𝜂  𝑁 𝑠 △ 𝑠
𝑡

𝜏₀

+  𝐿(𝑠)‖𝑦(𝑠) − 𝑥(𝑠 − 𝜂)‖ △ 𝑠
𝑡

𝜏₀

≤ ‖𝑦₀ − 𝑥₀‖ + 𝑎𝑀₃ + |𝜂|𝑀₂

+  𝐿(𝑠)‖𝑦(𝑠)− 𝑥(𝑠 − 𝜂)‖ △ 𝑠
𝑡

𝜏₀

 

(4.28) 

 

Set 𝑚(𝑡) = ‖𝑦(𝑡) − 𝑥(𝑡 − 𝜂)‖ and 𝐴 = ‖𝑦₀ − 𝑥₀‖ + 𝑎𝑀₃ + |𝜂|𝑀₂. Then 

 

𝑚(𝑡) ≤ 𝐴 +  𝐿(𝑠)𝑚(𝑠) △ 𝑠
𝑡

𝜏₀

 (4.29) 

 

Then by Corollary 2.2, we obtain the inequality 
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‖𝑦(𝑡) − 𝑥(𝑡 − 𝜂)‖ ≤ 𝐴𝑒𝑥𝑝  
𝐿𝑜𝑔 1 + 𝜇 𝑠 𝐿 𝑠  

𝜇 𝑠 

𝑡

𝜏₀

△ 𝑠 

≤ 𝐴𝑒𝑥𝑝  𝐿(𝑠) △ 𝑠
𝑡

𝜏₀

 ≤ 𝐴𝑒𝑥𝑝(𝑀₁) 

(4.30) 

 

which can be made smaller than any given 𝜌 by choosing the constant 𝑎 sufficiently 

small and by choosing 𝑦₀ and 𝜏₀ sufficiently close to 𝑥₀ and 𝑡₀, respectively.□ 

 

Theorem 4.3: Assume that 

 

i) 𝑉 ∈ 𝐶𝑟𝑑 [𝕋 × 𝑆(𝜌),ℝ+], 𝑉(𝑡, 𝑢) is locally Lipschitzian in 𝑢 and 

 

𝐷+𝑉∆(𝑡,𝑢, 𝜂) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑢), |𝜂|) (4.31) 

 

𝑓𝑜𝑟 (𝑡, 𝑢, 𝜂) ∈ 𝕋 × 𝑆(𝜌) × ℝ, where 𝑢 = 𝑢(𝑡) = 𝑦(𝑡, 𝜏₀, 𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀, 𝑥₀), 

𝜂 = 𝜏₀ − 𝑡₀ > 0, 𝑔 ∈ 𝐶𝑟𝑑 [𝕋 × ℝ², ℝ+]; 

ii) 𝑔(𝑡, 𝑤, |𝜂|)𝜇(𝑡) is non-decreasing in 𝑤 ∈ ℝ for each 𝜂 ∈ ℝ and 𝑡 ∈ 𝕋; 

iii) There exist a function 𝑏 ∈ 𝒦 such that 

 

𝑉 𝑡, 𝑢 ≥ 𝑏 ‖𝑢‖     𝑓𝑜𝑟    (𝑡, 𝑢) ∈ 𝕋 × 𝑆(𝜌); (4.32) 

 

iv) The scalar equation 𝑤∆ = 𝑔 𝑡, 𝑤,  𝜂       𝑤(𝜏₀) = 𝑤₀ ≥ 0   𝑡 ≥ 𝜏₀, 𝑡, 𝜏₀ ∈ 𝕋 is 

stable; 

v) The maximal solution 𝑟(𝑡, 𝜏₀,𝑤₀,|𝜂|) of 𝑤∆ = 𝑔(𝑡, 𝑤, |𝜂|) 𝑤(𝜏₀) = 𝑤₀ ≥ 0 exists 

for  𝑡 ≥ 𝜏₀ ≥ 0. 

 

Then the solutions of the perturbed dynamic system are stable with respect to 

unperturbed dynamic system with ITD, provided that 

 

‖𝑦(𝑡, 𝜏₀,𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀)‖ ≤ 𝜌, 𝑓𝑜𝑟 𝑎𝑙𝑙   𝑡 ≥ 𝜏₀. (4.33) 
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Proof 4.3: Let 0 < 𝜀 < 𝜌 and 𝜏₀ ∈ 𝕋 be given. Since the scalar dynamic equation is 

equistable, we have for a given 𝑏(𝜀) > 0 there exists a 𝛿₁ = 𝛿₁(𝜀,𝜏₀) > 0 and 

𝛿 = 𝛿 (𝜀, 𝜏₀) > 0 such that 

 

𝑤₀ < 𝛿₁  𝑎𝑛𝑑  |𝜂| < 𝛿  𝑖𝑚𝑝𝑙𝑖𝑒𝑠   𝑤(𝑡,𝜏₀, 𝑤₀,|𝜂|) < 𝑏 𝜀    𝑓𝑜𝑟    𝑡 ≥ 𝜏₀ (4.34) 

 

Choose 𝑤₀ = 𝑉(𝜏₀,𝑦₀ − 𝑥₀). Since 𝑉(𝑡, 𝑢) is rd-continuous and 𝑉(𝑡, 0) = 0 it is 

possible to find a positive function 𝛿 = 𝛿(𝜀, 𝜏₀) that is rd-continuous in 𝜏₀ for each 

𝜀 > 0, satisfying the inequalities 

 

‖𝑦₀− 𝑥₀‖ < 𝛿, 𝑉(𝜏₀, 𝑦₀ − 𝑥₀) < 𝛿₁ (4.35) 

 

simultaneously. We claim that 

 

‖𝑦(𝑡,𝜏₀, 𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀)‖ < 𝜀   𝑓𝑜𝑟  𝑡 ≥ 𝜏₀ 

𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡𝑕𝑎𝑡  ‖𝑦₀− 𝑥₀‖ < 𝛿  𝑎𝑛𝑑  |𝜂| < 𝛿 
(4.36) 

 

Suppose that this is not true. Then there would exists a solution 𝑦(𝑡, 𝜏₀, 𝑦₀) of (4.2) 

with ‖𝑦₀ − 𝑥₀‖ < 𝛿, |𝜂| < 𝛿  and a 𝑡₁ > 𝜏₀ such that 

 

‖𝑦(𝑡₁,𝜏₀, 𝑦₀) − 𝑥(𝑡₁ − 𝜂, 𝑡₀,𝑥₀)‖ = 𝜀 

‖𝑦(𝑡, 𝜏₀, 𝑦₀)− 𝑥(𝑡 − 𝜂, 𝑡₀, 𝑥₀)‖ ≤ 𝜀, 𝑓𝑜𝑟  𝑡 ∈ [𝜏₀,𝑡₁] 
(4.37) 

 

The choice 𝑤₀ = 𝑉(𝜏₀,𝑦₀ − 𝑥₀) and condition (i) give, as a consequence of the 

Theorem 4.1, the estimate 

 

𝑉(𝑡, 𝑦(𝑡, 𝜏₀,𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀)) ≤ 𝑟(𝑡, 𝜏₀, 𝑤₀,|𝜂|), 𝑡 ∈ [𝜏₀,𝑡₁] (4.38) 

 

where 𝑟(𝑡, 𝜏₀, 𝑤₀,|𝜂|) is the maximal solution of the comparison equation. Then 

condition (iii) and the relations (4.34), (4.37), (4.38) lead to the contradiction 

 

𝑏(𝜀) ≤ 𝑉(𝑡₁,𝑦(𝑡₁, 𝜏₀,𝑦₀) − 𝑥(𝑡₁ − 𝜂, 𝑡₀, 𝑥₀)) ≤ 𝑟(𝑡₁, 𝜏₀,𝑤₀,|𝜂|) < 𝑏(𝜀). (4.39) 
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This proves that the solutions of the perturbed system is stable with respect to the 

unperturbed system with ITD.□ 

 

Theorem 4.4: Assume that 

 

i) 𝑉 ∈ 𝐶𝑟𝑑 [𝕋 × 𝑆(𝜌),ℝ₊], 𝑉(𝑡, 𝑢) is locally Lipschitzian in 𝑢 and 

 

𝐷+𝑉∆ 𝑡, 𝑢, 𝜂 ≤ 𝑔 𝑡, 𝑉 𝑡, 𝑢 ,  𝜂  , 𝑓𝑜𝑟  (𝑡, 𝑢, 𝜂) ∈ 𝕋 × 𝑆(𝜌) × ℝ (4.40) 

 

where 𝑢 = 𝑢(𝑡) = 𝑦(𝑡, 𝜏₀,𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀), 𝜂 = 𝜏₀ − 𝑡₀ > 0, 𝑔 ∈ 𝐶𝑟𝑑 [𝕋 ×

ℝ²,ℝ₊]; 

ii) 𝑔(𝑡, 𝑤, |𝜂|)𝜇(𝑡) is non-decreasing in 𝑤 ∈ ℝ for each 𝜂 ∈ ℝ and 𝑡 ∈ 𝕋; 

iii) There exist a function 𝑏 ∈ 𝒦 such that 

 

𝑉 𝑡, 𝑢 ≥ 𝑏 ‖𝑢‖   𝑓𝑜𝑟   (𝑡, 𝑢) ∈ 𝕋 × 𝑆(𝜌); (4.41) 

 

iv) The scalar equation 𝑤∆ = 𝑔(𝑡, 𝑤, |𝜂|) 𝑤(𝜏₀) = 𝑤₀ ≥ 0 𝑡 ≥ 𝜏₀, 𝑡, 𝜏₀ ∈ 𝕋 is 

asymptotically stable; 

v) the maximal solution 𝑟(𝑡, 𝜏₀, 𝑤₀,|𝜂|) of 𝑤∆ = 𝑔(𝑡, 𝑤, |𝜂|) 𝑤(𝜏₀) = 𝑤₀ ≥ 0 exists 

for 𝑡 ≥ 𝜏₀ ≥ 0. 

 

Then the solutions of the perturbed dynamic system are asymptotically stable with 

respect to unperturbed dynamic system with ITD, provided that 

 

‖𝑦(𝑡,𝜏₀, 𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀, 𝑥₀)‖ ≤ 𝜌   𝑓𝑜𝑟 𝑎𝑙𝑙   𝑡 ≥ 𝜏₀. (4.42) 

 

Proof 4.4: Since the scalar system is asymptotically stable it is also stable. Hence by 

Theorem 4.3, the solution of perturbed system is stable with respect to unperturbed 

system with ITD. Therefore, we can choose that 𝜀 = 𝜌 > 0, 𝛿₀ = 𝛿₀(𝜌, 𝜏₀) > 0 and 

𝛿 ₀ = 𝛿 ₀(𝜌,𝜏₀) > 0 such that 

 

‖𝑦(𝑡, 𝜏₀,𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀)‖ < 𝜌  𝑓𝑜𝑟  𝑡 ≥ 𝜏₀ 

𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡𝑕𝑎𝑡  ‖𝑦₀− 𝑥₀‖ < 𝛿₀   𝑎𝑛𝑑  |𝜏₀ − 𝑡₀| < 𝛿 ₀ 
(4.43) 
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To prove quasi-asymptotic stability, let 0 < 𝜀 < 𝜌 and 𝜏₀ ∈ 𝕋 be given. It then 

follow from quasi-asymptotic stability of scalar equation that given 𝑏(𝜀) > 0, 𝜏₀ ∈ 𝕋 

there exist positive numbers 𝛿₁ = 𝛿₁(𝜏₀), 𝛿 ₁ = 𝛿 ₁(𝜏₀) and 𝑇 = 𝑇(𝜀, 𝜏₀) such that 

 

𝑤(𝑡, 𝜏₀, 𝑤₀,|𝜂|) < 𝑏 𝜀   𝑓𝑜𝑟   𝑡 ≥ 𝜏₀ + 𝑇 

𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡𝑕𝑎𝑡 𝑤₀ < 𝛿₁  𝑎𝑛𝑑   |𝜂| < 𝛿₁ 
(4.44) 

 

Since 𝑉(𝑡, 𝑢) is rd-continuous and 𝑉(𝑡, 0) = 0, we can find a positive number 

𝛿₂ = 𝛿₂(𝜀, 𝜏₀) satisfying the inequalities 

 

‖𝑦₀− 𝑥₀‖ < 𝛿₂, 𝑉(𝜏₀, 𝑦₀− 𝑥₀) < 𝛿₁ (4.45) 

 

simultaneously. The choice 𝑤₀ = 𝑉(𝜏₀,𝑦₀ − 𝑥₀), assumption (i) and the relation 

(4.43) gives as a consequence of Theorem 4.1, the estimate 

𝑉(𝑡, 𝑦(𝑡, 𝜏₀, 𝑦₀)− 𝑥(𝑡 − 𝜂, 𝑡₀, 𝑥₀)) ≤ 𝑟(𝑡, 𝜏₀, 𝑤₀,|𝜂|), 𝑓𝑜𝑟    𝑡 ≥ 𝜏₀. (4.46) 

Set 𝛿 = 𝑚𝑖𝑛{𝛿₀,𝛿₂} and 𝛿 = 𝑚𝑖𝑛{𝛿 ₀, 𝛿 ₁}. Suppose now that there exists a sequence 

 𝑡𝑘 ∈ 𝕋, 𝑡𝑘 ≥ 𝜏₀ + 𝑇, 𝑡𝑘 → ∞ as 𝑘 → ∞ and a solution 𝑦(𝑡,𝜏₀, 𝑦₀) of perturbed 

system with ‖𝑦₀ − 𝑥₀‖ < 𝛿 and |𝜂| < 𝛿  such that 

 

‖𝑦(𝑡𝑘 ,𝜏₀, 𝑦₀)− 𝑥(𝑡𝑘 − 𝜂, 𝑡₀,𝑥₀)‖ ≥ 𝜀. (4.47) 

 

This lead to the contradiction 

 

𝑏(𝜀) ≤ 𝑉(𝑡𝑘 , 𝑦(𝑡𝑘 ,𝜏₀, 𝑦₀) − 𝑥(𝑡𝑘 − 𝜂, 𝑡₀,𝑥₀)) ≤ 𝑟(𝑡𝑘 , 𝜏₀,𝑤₀,|𝜂|) < 𝑏(𝜀) (4.48) 

 

because of (4.43), (4.44), (4.46) and (iii). Thus the solutions of the perturbed system 

is asymptotically stable with respect to unperturbed system with ITD.□ 

 

Finally, we conclude this section with a criterion for the solution of the 

perturbed dynamic system (4.2) to be unstable with respect to the original 

unperturbed dynamic system (4.1) with ITD. 
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Theorem 4.4: Assume that there exist functions 𝑉(𝑡, 𝑢) and 𝑔(𝑡, 𝑤, |𝜂|) satisfying the 

following properties: 

 

i) 𝑉 ∈ 𝐶𝑟𝑑 [𝐺 ,ℝ₊], 𝑉(𝑡, 𝑢) is locally Lipschitzian in 𝑢 on 𝐺 , 𝑉(𝑡, 𝑢) = 0 for all 

(𝑡, 𝑢) ∈ 𝐺 − 𝐺  and 𝑉(𝑡, 𝑢) is positive and bounded on 𝐺, where 𝐺 ⊂ 𝕋 × 𝑆(𝜌) is 

some open set such that 𝐺 has at least one boundary point (𝑇, 0), 𝑇 > 0; 

ii)  

𝐷+𝑉∆ 𝑡, 𝑢, 𝜂 ≥ 𝑔 𝑡, 𝑉 𝑡, 𝑢 ,  𝜂  ≥ 0, 𝑓𝑜𝑟    (𝑡,𝑢, 𝜂) ∈ 𝐺 × ℝ (4.49) 

 

where 𝑢 = 𝑢(𝑡) = 𝑦(𝑡, 𝜏₀,𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀), 𝜂 = 𝜏₀ − 𝑡₀ > 0, 𝑔 ∈ 𝐶𝑟𝑑 [𝕋 ×

ℝ²,ℝ₊]; 

iii) 𝑔(𝑡, 𝑤, |𝜂|)𝜇(𝑡) is non-decreasing in 𝑤 ∈ ℝ for each 𝜂 ∈ ℝ and 𝑡 ∈ 𝕋; 

iv) For 𝜏₀ > 𝑇, the solutions 𝑤(𝑡, 𝜏₀, 𝑤₀,|𝜂|) of comparison equation, for arbitrarily 

small 𝑤₀ > 0, are either unbounded or indeterminate, for 𝑡 ≥ 𝜏₀. 

 

Then the solutions of the perturbed dynamic system are unstable with respect to 

unperturbed dynamic system with ITD. 

 

Proof 4.4: Let 𝑥(𝑡, 𝑡₀,𝑥₀) be any solution of the unperturbed system. Choose a point 

(𝜏₀, 𝑦₀− 𝑥₀) in the vicinity of (𝑇, 0). Consider the solution 𝑦(𝑡, 𝜏₀,𝑦₀) of the 

perturbed system. Then the lipschitzian nature of 𝑉(𝑡, 𝑢) and condition (ii) yield 

 

𝑉(𝑡, 𝑦(𝑡, 𝜏₀,𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀)) ≥ 𝑉(𝜏₀,𝑦₀ − 𝑥₀) = 𝑤₀ > 0 (4.50) 

 

for all 𝑡 ≥ 0, for which (𝑡, 𝑦(𝑡, 𝜏₀, 𝑦₀)− 𝑥(𝑡 − 𝜂, 𝑡₀, 𝑥₀)) ∈ 𝐺. Since 𝑉(𝑡, 𝑢) = 0 for 

all (𝑡, 𝑢) ∈  𝐺 − 𝐺 , it follows from (4.50) that (𝑡, 𝑦(𝑡,𝜏₀, 𝑦₀) − 𝑥(𝑡 − 𝜂, 𝑡₀,𝑥₀)) ∈ 𝐺  

for 𝑡 ≥ 𝜏₀. Moreover, we also have 

 

𝐷+𝑉∆(𝑡,𝑦(𝑡) − 𝑥(𝑡 − 𝜂)) ≥ 𝑔(𝑡, 𝑉(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂)), |𝜂|) (4.51) 

 

which in view of Remark 4.1, implies that 

 

𝑉(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂)) ≥ 𝜌(𝑡, 𝜏₀, 𝑤₀,|𝜂|), 𝑡 ≥ 𝜏₀ (4.52) 
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where 𝜌(𝑡, 𝜏₀,𝑤₀, |𝜂|) is the minimal solution of the comparison equation. Since 

V(t,u) is bounded by assumption the estimate (4.52) leads to a absurdity, if we 

assume the solutions of the perturbed system is stable with respect to unperturbed 

system with ITD. This proves the theorem.□ 
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5. CONCLUDING REMARKS 

 

In this thesis, in Chapter 3, we develop dynamic inequalities and a new 

comparison principle for dynamic equations on time scales relative to initial time 

difference, then we prove several stability and boundedness criteria relative to initial 

time difference by employing comparison method. In Chapter 4, we develop a new 

approach to determine behavior of solutions of perturbed dynamic system relative to 

original unperturbed dynamic system which have different initial time on arbitrary 

time scales. We give some stability properties. It is obvious that the notions 

introduced here can be extended to include in addition all of the various refinements 

of the stability properties such as uniform stability with ITD, uniform asymptotic 

stability with ITD and so forth. 
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