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BOLUM 1

GIRIS

Yogunluk fonksiyonel teorisi(DFT) son yillarda malzemelerin dinamik,
elektronik, optik, manyetik ve termo kimyasal 6zelliklerini hesaplamada basarili ve
dogru sonuglar verdigi igin pek cok teorik ¢alisan arastirmacinin ilgi odagi
olmustur[1-3].

Maddelerin kuantum mekanigi yaklasimlari ile incelenmesinde, DFT en basarili
teorilerinden biridir. Bu konuda yapilan ilk uygulamalar, genel olarak kuantum
mekaniginden daha uzak dusiiniilirdi. Daha sonralar1 stperiletkenlik, gucli lazer
atimlarinin odagindaki atomlar, agir elementlerdeki ve atom ¢ekirdegindeki rolativistik
etkiler, klasik sivilar ve alasimlarin manyetik Ozelliklerinin tamaminda kuantum
mekanigini iceren DFT ile ¢alisilmaktadir[4].

Bu teorinin ¢ok yonliligl, temel kavramlarinin genelligine ve tamamlayici
ozelliklerinin esnekligine baghidir. Bu genellik ve esneklige ragmen DFT tamamiyla
kat1 bir kavramsal g¢ergeve tlizerine kurulmustur. Genelde, DFT’nin iki temel unsuru
Hohenberg-Kohn ve Kohn-Sham teoremleridir[5,6]. Bu teoremler hakkinda genis
bilgiler boliim 2’°de verilecektir.

Atomlari, molekiillerin, kristallerin, yiizeylerin ve bunlarin etkilesimlerinin
birgok 6zellikleri ‘ab initio’ i¢in kullanighi olan DFT ile hesaplanabilir[7]. Atomlarin ve
molekiillerin yapisal ve elektronik 6zelliklerinin hesaplanmasinda olduk¢a basarilidir.
Bundan dolayi, DFT yogun madde sisteminin &zelliklerinin bulunmasina ve
tanimlanmasina yonelik ilk ilke hesaplamalarinda(first-principles calculations) 6nemli
bir teori olmustur[8]. Bu o&zelliklerinin iyi bir tanimini, Genel Gradiyent
Yaklasiminda(GGA) degisim korelasyon potansiyeli olarak adlandirilan yaklasgimlar
kullanilmaktadir[9].



Yariiletken malzemelerden olan Galyum Selenyum(GaSe) ve Indiyum
Selenyum(InSe) son yillarda kendine elektronik ve optoelektronikte genis uygulama
alanlar1 bulmustur. Nonlineer optik 06zellikleri sebebiyle de biylk ilgi gérmeye
baglamistir. Galyum Siilfiir(GaS) ve Galyum Tellir(GaTe) gibi 1lI-VI yariiletken
grubundadirlar. GaSe ve InSe yariiletken bilesikleri tabakali bir yapiya sahiptir. Her bir
tabakada Se-X-X-Se dizilimindedirler. Tabakali yapilarindan dolayr kimyasal
baglarinda gii¢lii bir anizotropi vardir. Tabakalarin siralanisina gore birkag politipi
bulunur[10]. Tabakalar zayif Van Der Waals baglari ile bagli iken tabakalardaki atomlar
birbirlerine kovalent baglartyla baghdir. GaSe ve InSe’nin farkli politiplerinin
ozelliklerini incelemek amaciyla birgok arastirmaci tarafindan farkli yontemlerle teorik
ve deneysel caligmalar yapilmistir[11-23]. Bunun yaninda Lang ve arkadaslari
InSe/GaSe heteroyapisinin kuantum kuyusunun o6zelliklerini Van Der Waals epitaksi
yontemiyle arastirmislardir[24]. Chen ve Kelley GaSe/InSe nanopargacik
heterojonksiyonunun fotofiziksel 6zelliklerini incelemislerdir[25]. Erkog ve arkadaslar
InSe/GaSe siiperorgiisiinde katman kalinliklar1 tizerinde optik gegislerin ve enerji
seviyelerinin bagliligini1 ve InSe/GaSe siiperorgiisiiniin elektronik yapisinin kendisi ile
uyumlu alan(self-consistent-field) hesaplamalarin1 yapmislardir[26,27].

InSe/GaSe heteroyapisinin ara yiizey potansiyeli hesaplanan bu tezde planlama
su sekilde yapilmistir. BOlim 1°de yogunluk fonksiyonel teorisine kisa bir giris
yapilmis ve c¢alisilan malzemeler hakkinda bilgiler verilmistir. Boliim 2’de kullanilan
DFT teorisi ele alinarak, bu teoride yaklasimlar ve teoremler ayrintili bir sekilde
sunulmustur. Son bolimde ise InSe ve GaSe yariiletkenlerin 6rgli sabitleri ve toplam
enerji hesaplar1 yapilmistir. Bu hesaplamalar kullanilarak InSe/GaSe bulk heteroyapisi
incelenmis ve heteroyapinin teorik modellemesi yapilarak 6rgii sabiti ve toplam enerjisi
bulunmustur. Ayrica heteroyapinin ara ylizeyindeki atomik yapr ve potansiyeli

hesaplanmistir. Sonuglar yorumlanarak tez ¢aligmasi tamamlanmuistir.



BOLUM 2

YOGUNLUK FONKSIYONEL TEORISi

Atomlar, molekiiller ve katilar gibi ¢ok parcacikli sistemlerin fiziksel
oOzelliklerinin belirlenmesini amaglamak, ¢ok pargacikli bir sistem i¢in Schrodinger
denkleminin c¢ozilmesini gerektirmektedir. Cok elektronlu sistemlerin serbestlik
dereceleri biiyiik oldugundan dolay1 bdyle sistemler i¢in Schrodinger denkleminin
¢Oziml oldukca zordur. Bu durumda dalga fonksiyonu yerine pargacik yogunlugu
Uzerine odaklanan teorik bir yaklasim kullanmanin bir¢ok avantaji vardir. Maddelerin
fiziksel 6zellikleri ¢ogunlukla sahip olduklar: elektronlarin dagilimlar ile belirlenir. Bu
konuda ileri siiriilen ilk yaklasim yogunluk fonksiyonel teorisinin temellerini olusturan
Thomas-Fermi yaklasimidir[28,29]. Bu yaklagima gore ¢ok cisim probleminin temel
degiskeninin elektron yogunlugu oldugu fikri ileri stirtilmiistiir. Bu yaklagimin onciilitk
ettigi yogunluk fonksiyonel teorisinin temel prensibi ise etkilesen ¢ok pargacikli bir
sistemin herhangi bir 6zelliginin, taban durum yogunlugu n(r)'nin bir fonksiyoneli
olarak incelenebilmesi olarak tanimlanabilir. Yogunluk fonksiyonel teorisi iizerine
yapilan ilk modern ¢alismalar ise Hohenberg-Kohn ve ardindan Kohn-Sham tarafindan

gerceklestirilmistir[30].

2.1 Cok Parcacik Problemi ve Schrodinger Denklemi

Cok parcaciklt sistemlerin (atomlar, molekiiller ve katilar) 6zelliklerini tam
olarak tanimlayabilmek ic¢in elektronik yapilarini belirlemek gerekir. Bunun icin
kuantum mekanigi yasalarindan yararlanilir. Fakat sistemdeki elektron sayisi arttik¢a
¢Oziim karmasik bir hal almaya baslar. Cok elektron problemini ¢ozebilmek igin
genellikle kullanilan {i¢ yontem vardir. Bunlar; dalga fonksiyonu yaklagimi, Green
fonksiyonlart yontemi ve elektronik yogunluk yontemidir. Dalga fonksiyonu
yaklasiminda temel degisken dalga fonksiyonu iken elektronik yogunluk yonteminde ise

elektron yogunlugudur.



Atomlarin elektronik yapilari, molekiiller ve katilarda kullanilan elektronik yap1
hesaplama yontemleri kuantum mekanigi yasalarini temel alir. Bunun i¢in Oncelikle
Schrodinger denklemini ¢ozmek gerekmektedir. N tane elektrondan olusan molekiiler

bir sistem i¢in Schrodinger denklemi (zamandan bagimsiz, rélativistik olmayan),
HY = EY (2.1)

seklindedir. Burada H Hamiltoniyen operatorii, ¥ dalga fonksiyonu, E ise molekiiler

sistemin farkli kararli durumlarmma karsilik gelen enerjilerdir. Cok parcacikli bir

sistemde elektronlarin koordinatlar1 T, ¢ekirdegin koordinatlari ﬁ)l konumlarina bagl

oldugu durumda sistemin dalga fonksiyonu,

¥ = 9%, R)) (2.2)
iken dis alandaki hamiltoniyeni,

H=Te+ T+ Voo + Vo + Ve + Ve (2.3)
formundadir. Schrodinger denklemi,

HY(R, 1y) = E¥(R, 1)) (2.4)
seklindedir. Elektronlarin kinetik enerjisi,

=~ 1
T,=— =
€ 2

S Vi (25)
cekirdegin kinetik enerjisi,

. 1 N
T=-a T2 Vi (2.6)

elektron-elektron etkilesme enerjisi,



N _l Ne 1

e-e — 2 i#] |F1—?]| (27)
cekirdek-gekirdek etkilesme enerjisi,
_ 1 Z1Z;
ZI:t]lRI R]| (28)
elektron-gekirdek etkilesme enerjisi,
V = - Z 21 1 |r Rl| (29)
tiim pargaciklarin dis alandaki enerjileri,
vext = V(Fl,Fz,...;_R)l,ﬁz,...) (210)

formundadir. (h = e =m, = 4me, = 1) buradaki atomik birimlerdir.

Cogu zaman bu sistem igindeki elektronlarin olusturdugu ¢ok pargacik
sisteminin  Schrodinger denklemini ¢ozmek i¢in baz1 yaklasimlara ihtiyac
duyulmaktadir. Cekirdek toplulugunun alaninda hareket eden elektron toplulugundaki
elektronlarin, taban durumu olarak bilinen, en diisiik enerji konfiglirasyonu
bulunmalidir. Cekirdek ve elektronlarin farkli matematiksel problemlere ayrildig
yaklasim Born-Oppenheimer yaklasimidir. Bu yaklasimda elektronlarin kiitlesinin
cekirdegin kiitlesinden daha hafif ve hizli olmasi sebebiyle -¢ekirdegin hareketsiz
oldugu kabul edilerek- elektronlarin hareketinden etkilenmedigi varsayilir[31].
Cekirdekler elektronlarin hareketinin ortalamasindan etkilenebilirler ve elektronlarin
olusturdugu ortalama alanda hareket ederler. Cekirdegin konumu elektronun ani
hareketi ile degismez. Bu nedenle ¢ekirdegin kinetik enerjisi sifir olacaktir. Cekirdegin
etkilesme terimi -sabit oldugundan dolayi- ve Ve sifir alinirsa sistemin hamiltoniyeni,

H=Te+ Veee + Ve (2.11)

olur. Elektronik hamiltoniyen,
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seklinde yazilabilir. Burada elektron-elektron etkilesme potansiyeli olan {igiincii terimi
¢ozebilmek igin kullanilan iki yaklasim vardir. Bunlar: Hartree ve Hartree-Fock

Yaklagimi ve tez ¢alismasinda kullanilan yogunluk fonksiyon yaklasimidir.

2.2 Hartree ve Hartree-Fock Yaklasim
Hartree yaklasimi[32], cok elektronlu sistemin dalga fonksiyonunu tek elektron
dalga fonksiyonlarinin (orbitallerin) ¢arpimi olarak yazmaya dayanir. Sistemin dalga

fonksiyonu,

W (), Ty, ..., By) = [IN; Wi(®) (2.13)

formundadir. 1. elektrona etki eden potansiyel,

Vi (F) = Viyon (P) + Vy (F) (2.14)

ile verilebilir. Potansiyel, iyon ve Hartree potansiyelinin toplamidir. Hartree yaklagimi
elektronlarin, sistemdeki diger elektronlarin olusturdugu alan i¢inde bagimsiz olarak
hareket ettigini sOyler, ancak Coulomb etkilesmeleri dikkate alindiginda elektronlarin
hareketlerinin birbirine bagli oldugu goriliir. Burada elektronlar ayirtedilebilir
parcaciklar olarak alinmistir, fakat ayirtedilemezler ve Paulie disarlama ilkesine uyarlar.
Bu da Hartree yaklagiminin, elektronlarin antisimetrik dalga fonksiyonlarina sahip
olduklarint dahil etmedigini gosterir[33].

Oz-uyumlu alan metodu(self-consistent field) olarak da bilinen Hartree-Fock
yaklasiminda ise Paulie disarlama ilkesi Hartree yaklasimina dahil edilerek (1930°da
Fock ve Slater tarafindan) sistemin dalga fonksiyonu, antisimetri 06zelligini de
saglayacak sekilde secilmistir. Elektronlardan olusan sistemin dalga fonksiyonu, Paulie
disarlama ilkesi geregi, sistemdeki iki elektronun yerdegistirmesi altinda antisimetrik

olmalidir.



l'p(...,f')i B ...,Fj, ) = —lp(,?] B ...,Fi, ) (215)

(2.15)’1 saglayan en basit dalga fonksiyonu Slater determinati,

W, (7)) Wi (F) - Wity
W( 1y, Ty, o Ty) = \/% Lpz(E r1) Lst( r;) lpz(EI'N) (2.16)
Wn(Ty) Wn(Ty) .. Wn(Tw)

ifadesi ile verilir[34]. Bu yaklasimin 6nemli 6zellikleri denklem (2.16)’daki gibi tek
elektron dalga fonksiyonu igeren slater determinanti kullanmasi, varyasyonel olmasi ve
toplam enerjiyi minimize eden bir deneme dalga fonksiyonu kullaniyor olmasidir. Yine
de Hartree-Fock denkleminin ¢6ziimii gok zordur ve elektronlar arasindaki korelasyonu
dikkate almaz, bu yiizden elektron sistemlerinin tanimlanmasinda elektron yogunlugu

kullanilir.

2.3 Yogunluk Fonksiyon Yaklasimi

Ozellikle metallerin, yariiletkenlerin ve yalitkanlarin taban durum 6zelliklerini
tanimlamak i¢in olduk¢a basarili bir yaklagimdir. Bu yaklasim c¢ok elektronlu
sistemlerin taban durum o6zelliklerini belirlemek igin elektron yiik yogunlugu n(7)’yi
temel degisken kabul eder ve ilk ¢alismalari 1920’lerde Thomas ve Fermi modeli ile

baslar. [28,29]
2.3.1 Thomas-Fermi Teorisi
Thomas ve Fermi bu teoride elektronlarin toplam kinetik enerjisini ¢ok elektron

dalga fonksiyonu ile degil, elektron yik yogunlugu n(7¥)’nin bir fonksiyonu olarak

tanimlar. Sistemin toplam kinetik enerjisi,
3 202/ 5 5/
(T) = o (3n?)7/3 [dF n(¥) /3 (2.17)

formunda verilebillir.



Thomas-Fermi enerjisi ise,

E™ = = (3n)%s [di n(®%5+ [dip+ [ drar X050 (2.18)

formundadir. Denklem (2.18)’deki birinci terim toplam kinetik enerji, ikinci terimi
cekirdek-elektron etkilesmesi, ligiincli terimde Hartree enerji terimidir. Thomas ve
Fermi bu teoriye elektronlar arasindaki degis-tokus ve korelasyonu katmamistir.
Dirac[35] bu teoriye bir degisim terimi eklemesine ragmen elektronlarin davraniglarini

aciklamada yetersiz kalmaktadir.

2.3.2 Yogunluk Fonksiyonel Teori

[Ik DFT caligsmalar1 Thomas ve Fermi ile baslayip Hohenberg-Kohn[5] ve Kohn-
Sham[6] tarafindan gelistirilmistir. Bu teorinin temel diisiincesi, V(¥) dis potansiyeli
icerisinde bulunan etkilesim halindeki elektronlarin taban durum eclektron

yogunlugunun dis potansiyeli belirlemesi,

n(®) = V(@) (2.19)

seklinde gosterilir. Bundan bdyle dalga fonksiyonu yerine taban durum yogunlugu
fonksiyoneli ile tanimlanan ifade kullanilir.

Hohenberg ve Kohn tarafindan ispatlanan ilk teorem, Schrédinger
denkleminden elde edilen taban durum enerjisinin elektron yogunlugunun tek bir
fonksiyoneli olmasidir. Fonksiyonel, bir fonksiyonu reel veya karmasik sayilara

doniistiirebilen bagmtilardir. Degiskene bagl bir fonksiyon olarak fonksiyonel,

fx) :x-y fonksiyon
FIf(x)] : f(x) =y fonksiyonel

seklinde gosterilebilir. Bu durumda elektron yogunlugu n(r) olmak uzere, taban durum
enerjisi E, E[n(r)] olarak yazilabilir. Cok pargacikli bir sistem igin, ¢ok cisim dalga
fonksiyonu i¢in tek parcacik elektron yiikk yogunlugunun beklenen degerinin

hesaplanmasi ile bulunur.



Yogunluk operatorii,
A(F) = Yi= n6(F — 1) (2.20)

formundadir. Yogunluk operatorii ile elektron yogunlugunun beklenen degeri

hesaplanirsa,
N = (P|A(@)|¥Y) = z 1NJ 8§ — 1) |W(Fy ... Ty)|? dFy ...dFy
1=1,

= fll'p(F, Fz, FN)lz szdF3 dFN + fll'I'I(Fl, F, FN)lz dfldF3 dFN
= N[IWE, ... T2 dFy ... diy (2.21)

ifadesi elde edilir. Burada 7, elektronlarin her birine etki eden degiskendir. Elektron
sayist igin, elektron ylik yogunlugunun normalize edilmis formunun tiim uzay iizerinden

integrali alindiginda,
N = [dfn(Y) (2.22)

ifadesine ulasilir. Boylece enerji terimi yogunluga bagli olarak yazilabilir. Yogunluk
fonksiyonel teori, taban durumdaki toplam enerjiyi dalga fonksiyonu terimleri yerine
yogunluk terimleri cinsinden ifade etmeyi amaclar. Bu yilizden elektronik enerjinin,
uygun elektron yogunlugu ve taban durum enerjisini saglayabilmesi i¢in yogunluk
cinsinden minimize edilmesi gerekir.

Schrédinger denkleminin ¢oziimiiyle bir sistemin enerjisine kolayca ulasilabilir.
Denklem (2.12)’de verilen hamiltoniyen kullanilarak ¢ekirdek-elektron etkilesmesi igin

beklenen deger,

(W, B Ve [W(Fy, o Bn)) = — T8, T [ WF (R, ... Ty) ﬁw@l, PNy ... dPy (2.23)



formundadir. Bu denklemdeki dalga fonksiyonu ve eslenigi ortak bir norm kare altinda

toplanirsa,
(WL, T | Vne [P Fy o Fo)) = — TR TN [ W2 (7, .. rN)r WG, BIPdE, . diy (2.24)

formunu alir. Denklem (2.24)’deki toplam, i indisi {izerinden agilirsa,

WGy ) TP B = = 30 [ 2 (G PPyl +

[ R WG, . F) Py ...dFN+---] (2.25)

seklinde yazilabilir. Bu denklemdeki terimlerin ayr1 ayr1 integralleri alindiktan sonra her

terimin icindeki ikinci integral terimi, n(¥)’yi yani yogunlugu verir.

(lp(f:l, ---Fn)lvnelqj(Flﬁ Fn)) = — flﬁ) drl |‘P(I‘1, . FN)lzsz, dF3 dFN +

Z > - > - - -
fﬁdrzlq’(rl, Iy |2dE, dEs APy + - | (2.26)

Elektron-gekirdek etkilesmesinden elde edilen fonksiyonel,

NS n(?)lF:—lﬁIldf" = [n@®V,, (®)dF (2.27)

formunda olur.

Elektron-elektron enerjisi, iki pargacik yogunluk teriminde yazildiginda,

(2)
=~ [ J didi* q(i,rl) (2.28)
formunda olur.
n® () = SC2 [ drydE, diy|[WEE B (2.29)
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Denklem (2.29)’daki n®® ifadesi, bir elektronun ¥ noktasinda, ikinci bir elektronunda &’

noktasinda bulunma olasiligini verir. Denklem (2.28)’deki elektron-elektron enerjisi,
2
=~ [ J didi* fﬁ,rl ) 4 AR, (2.30)

formunda olur. Kinetik enerji operatorii tiirev igerdiginden dolay1 dalga fonksiyonlar1 ve
eslenigi tek bir norm kare altinda toplanamaz. Bu sebepten o6tiirii yogunluk terimleriyle

yazilamaz. Boylece kinetik enerji,
T=— [ dFW* (fy, .. ) V2P (Fy, o ) (2.31)

formunda olur. Tek pargacik orbitallerinin toplanmasiyla norm karelerinin toplami

alinarak yogunluk,

NOEMNIINGIE (2.32)

formunda yazilir. Bu orbitaller Kohn-Sham orbitalleridir. Kohn-Sham orbitallerinin
kinetik enerjilerinin toplami sistemin Kinetik enerjisidir. Bu enerji sistemin gercek
kinetik enerjisine esit degildir. Tek parcacikli kinetik enerjiye bir diizeltme terimi

eklenerek enerji,
T=—-3ndF 9, (®)V20, () + AT (2.33)

formunu alir. Sistemin toplam taban durum enerjisi i¢in tiim terimler yerine yazilirsa

enerji,

= L[ 3N a7 0, OV20n(® + [ n(®)Ve (D +1 [ [ didF “Sr)f,|)+AT+AEee (2.34)

seklinde elde edilir. Elde edilen enerji ifadesindeki AE.. ve AT terimlerinin toplami

degis-tokus korelasyon enerjisini verir;

11



Eye = AEg + AT (2.35)

Bu enerji, Hartree terimlerinin ihmal edildigi Pauli itmesidir. Korelasyon enerjisi de
elektronlar arasindaki itmedir. Bu duruma uygun birka¢ yaklagim gelistirilmistir. Kohn-
Sham yaklagimi olarak bilinen bu yaklasim Yerel Yogunluk Yaklasimi(LDA) ve GGA

olmak tizere iki kisimda incelenir. Yerel yogunluk yaklasimi fonksiyoneli,

Eye = [ dfn(P)eg(n) (2.36)

formundadir. Burada ki €,.(n), n’nin bir fonksiyonudur. Toplam enerjiyle birlikte bu

yaklasim,

n(®r')

[F—r'|

E= _g [¥Nedt @, " (®)V20, (B + [ n(R)Vpe (D)dF + % [ [ drde’ + [ dEn(®)eyc(n) (2.37)
formunda yazilir. Hohenberg ve Kohn teoremlerini bulmak icin de bu sonuclar

kullanilmaktadir.

2.3.3 Hohenberg-Kohn Teoremleri

Hohenberg ve Kohn 1964 yilinda ¢ok parcacik sistemini ¢ozen yogunluk
fonksiyonel teorisini formiile etmislerdir. Bir Vg () dis potansiyeli altindaki
pargaciklarin etkilestigi herhangi bir sisteme uygulanabilmektedir[33]. Bu durumda

sistemin hamiltoniyeni,
A= = 2 SV 4 B Vet () + 2k Do e (2.38)
2me 1Vi 1 Vext\'1 2 j#i |F1)_ Fﬂ .

formunda olur. Hohenberg ve Kohn tarafindan yogunluk fonksiyonel teorisi iki teorem

olarak incelenmistir. Teoremler arasindaki iliski Sekil 2.1°de gdsterilmistir.
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HK
Vext (F) —— Iy (F)
) T
vi({fh - we({rd)

Sekil 2.1. Hohenberg ve Kohn teoremlerinin sematik gosterimi

Sekil 2.1” deki kiigiik oklar, ¥, ({F}) taban durumunu ve ny(¥) taban durum
yogunlugunu iceren W;({f}) sisteminin tiim durumlarini belirleyen Vo (¥) dis
potansiyelinin oldugu, Schrodinger denkleminin genel ¢oziminu ifade eder. Cemberi
tamamlayan ve HK olarak adlandirilan biiylik ok ise Hohenberg ve Kohn teoremini

ifade etmektedir.

I.Teorem: Bir V., (f) dis potansiyeli altinda etkilesen parcaciklarin sistemi igin bir

sabit ile bu dis potansiyel, ny(7) taban durum yogunlugu tarafindan belirlenir.

I.Teorem Sonucu: Sistemin hamiltoniyeni tamamen belirlendigi i¢in taban ve
uyarilmis haldeki tiim durumlarda sistemin ¢ok-cisim dalga fonksiyonlari belirlenebilir.
Bu sebeple sistemin tim ozellikleri, sadece verilen ny(¥) taban durum yogunlugu ile

biatinayle belirlenir.

I1.Teorem: Herhangi bir V. (¥) dis potansiyel altinda enerji igin , n(¥) yogunlugunun
fonksiyoneli olarak bir E[n] evrensel fonksiyonel tanimlanabilir. Taban durum enerjisi,
herhangi bir V.. (F) dis potansiyel i¢in bu fonksiyonelin global minimum degeridir.
Enerji fonksiyonelini minimize eden n(¥) yogunlugu sistemin taban durum

yogunlugudur.
I1.Teoremin Sonucu: Tek basina E[n] fonksiyoneli taban durum enerjisini ve taban
durum yogunlugunu belirlemede yeterlidir. Uyarilmis olan elektronlarin durumlari

baska yollarla belirlenmelidir.
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2.3.4 Kohn-Sham Denklemleri

Kohn ve Sham toplam elektronik enerji E’yi, elektron yogunlugu n(¥)’nin bir
fonksiyoneli olarak hesaplamada yeni ¢o6ziimler Onermislerdir. Kohn-Sham
yaklasiminda etkilesen elektronlardan olusan bir sistem yerine etkilesmeyen
elektronlardan olusan yardimeci bir sistem daha tanimlamaktadir[6]. Bu sistemlerin
taban durum yogunluklarini birbirine esit kabul eder. Bu durum da etkilesmeyen sistem
icin bagimsiz pargacik denklemlerini dogurur. Bu denklemler ¢ok-cisim terimlerini
igeren, yogunlugun bir degis-tokus fonksiyoneli ile tam olarak ¢oziilebilir.

Hohenberg-Kohn’nun ikinci teoreminde, enerjinin global minimum degeri taban
durum yogunlugunda elde edilir. Minimum degerde, yogunluktaki kiigiik degisimler

sebebiyle enerji fonksiyonelindeki kii¢iik degisimlerde sifir olmalidir. Bu denklem,
S8E.[n] = E.[n+ 6n] — E.[n] =0 (2.39)

formunda olur. Enerji minimizasyonu, tek parcacik orbitallerinin ortonormal olmasi

kosulunda belirsiz Lagrange ¢arpanlart metodu ile yapilir,
§{Ee[n(®] — Xi;Ai;((2:]05) — 8;)} =0 (2.40)

formunda verilir. @;(f) yerine ©;"(f)’ye varyasyon tercih edildiginde hem

hesaplamalarda ayni sonucu verir hem de avantaj saglar. Bu durumda denklem (2.40),
5o, (a){ o[n(@®] = i, ((0i]0;) — 8;5)} = 0 (2.41)

formunda yazilir. Bu denklemdeki terimler agik ifadeleriyle yazildiginda,

[__ZNefer BV, (r)] [fn(l“)Vext(r)d 4+ 1 ﬂ' n(l;)nﬁ(,li)df:d?, n

6(2). ® 8n(r)
- - - 1) -
[ n@®)die(n(®)] s = &) (2.42)

esitligi saglanir. Denklem (2.42)’deki &, degis-tokus korelasyon fonksiyonelidir. Bu

denklem diizenlendiginde,
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1920, + Ve + [ 2 0 4 e, n@®] +n® 2L g, 1) = gi0,() (243

[F—7| sn()

VHartree ch

esitligi elde edilir. Vegt, VHartree V€ Vic yogunluga ve de orbitallere baghdir. Bu

terimlerin toplami Vg etkin potansiyelini verir. Bu durumda

Veff(F) = Vext(F) + VHartree [n] + ch [n] (2-44)

formunda olur. Denklem (2.44) Kohn-Sham denklemi olarak bilinir. Diger Kohn-Sham
denklemi de,

His @i (1) = &@; (@) (2.45)
formundadir. €; 6z degerleri gosterir.

2.3.5 Degis-Tokus Korelasyon Fonksiyoneli

Kohn-Sham yaklagiminda ki 6nemli niceliklerden biri yogunlugun fonksiyoneli
olan degis-tokus korelasyon enerjisi Ey.[n]’dir. Kohn-Sham  yaklasimi  bagimsiz
pargacik denklemlerini ¢6zmektense etkilesen ¢ok-cisim problemini ¢ozmeyi daha ¢cok
kolaylastirir. Ayrica bagimsiz pargacik kinetik enerjisi ve hartree terimlerini ayirdiktan
sonra degis-tokus korelasyon fonksiyonelini E,.[n]’yi yerel bir fonksiyonele
yaklastirabilmek bu yaklasimi istiin kilar. Kohn ve Sham E,.[n] i¢in birgok yaklasim
da oOnermistir. Bunlar LDA ve GGA’dir. Simdi bu yaklagimlar1 ele almak faydali

olacaktir.
a) Yerel Yogunluk Yaklasimi
LDA’da degisim korelasyon potansiyeli, degisim korelasyon enerjisinin yerel

yogunluga gore fonksiyonel tiirevidir. Ayrica homojen elektron gazi i¢in elektron

yogunluguna baglidir. LDA fonksiyonelleri genel olarak,

Ex?*[n] = [ din(®ez™ (n) (2.46)
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formundadir. Burada ki €,.(n) elektron basina diisen degisim-korelasyon enerjisidir,

n(r)’ nin bir fonksiyonudur ve
hom — ¢chom hom 247
Exc (M) = & 1 (n) +€e°(n) (2.47)

formundadir. Burada €l°™ degis-tokus, 1™ korelasyon kismudir. €,.’yi hesaplamak
igin en ¢ok kullanilan yaklasim Ceperley-Alder yaklasimidir ve Kuantum Monte Carlo

(QMC) hesaplamalart ile kesin sonuglar bulmuslardir[36].

b) Genel Gradiyent Yaklasimi
LDA’nin bazi smirlamalarimi gidermek igin GGA gelistirilmistir. LDA’nin

lizerine yogunlugun gradiyenti |Vn(¥)| eklenerek GGA’nin genel formu,
EZe?n] = [ Fyc[n@®|Vn@|]dr (2.48)

ifadesi ile verilir. Yerel yogunluk yaklagimina artig ifadesi F,. eklenerek GGA’nin

degis-tokus korelasyon enerjisi,
ESSAIn] = [ dF n(¥)el°™(n) Fyc(rs, s) (2.49)

formunu alir.

Genel gradiyent yaklagimi i¢in farkli degisim-korelasyon fonksiyonelleri birgok
aragtirmaci tarafindan ¢alisilmistir. Bunlar arasinda, Perdew ve Wang [37-39], Becke
[40], Becke ve ark.[41,42] ve Perdew ve ark.[43,44] tarafindan Gnerilen fonksiyoneller

ornek gosterilebilir.

2.4 DUzlem-Dalga Metodu
Diizlem dalgalar periyodik yapida olan katilarin hesabinda kullanilmaktadir.
Bloch teoremine gore periyodik yapidaki kati igerisinde her bir elektronik dalga

fonksiyonu,

WD) = Ygcp, g ®HOF (2.50)
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formundadir. Bu denklemdeki G, ters orgii vektoridur. Bloch teoremi her bir k
noktasindaki elektronik dalga fonksiyonlarinin ayrik diizlem-dalga baz seti seklinde
acilabilecegini anlatir[45]. Bunun igin sonsuz sayida diizlem-dalga baz setine ihtiyac
vardir. Ayrik diizlem-dalga baz setine kesme enerjisi girdiginde sonlu bir baz seti elde

edilir. E.,; kesme enerjisi kinetik enerjiye olan maksimum katki olarak tanimlanir ve

hesaplamalarin dogrulugu kesme enerjisi ile saglanir. Sonsuz sayida ki G vektorii belli

- —,2
bir degerde kesilmelidir. Bdylece bu deger, %|k + G| < E.yt sartint kinetik enerjinin

maksimum degeri ile simirlandirilarak saglar. Bu durumda diizlem-dalga baz seti, bu

enerji sartini saglayan diizlem dalgalari igerir.

2.5 Pseudopotansiyel Metodu

Pseudopotansiyel metodunun temeli 1960’11 yillarda atilmistir. Biitiin elektron
hesaplamalarin1 yapabilmek i¢in genis bir diizlem-dalga baz setine ihtiya¢ vardir ve
dalga fonksiyonlarini hesaplamak fazla zaman alacaktir. Pseudopotansiyel metodu, daha
az dizlem-dalga baz seti kullanilarak elektronik dalga fonksiyonlarinin hesaplanmasini

saglar. Bu metotta baz setini kiigiiltmek hesaplamay1 hizlandirmaktadir.

Cekirdek

Valans

Kor

Sekil 2.2. Atomun yapisi

Atom c¢ekirdek, kor elektronlar1 ve valans elektronlarindan olusur. Bir kristalin
elektronik  ozelliklerinin ~ belirlenmesinde  valans  elektronlar1  etkili  olur.
Pseudopotansiyel yaklagimi kor elektronlarini hareketsiz sayarak valans elektronlarini

ele alir. Hesaba katilan elektron sayis1 azaldigindan dolay1 daha az sayida diizlem dalga
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icin hesap yapilacaktir. Elektron dalga fonksiyonlarmi bulabilmek i¢in Kohn-Sham

denklemlerini pseudopotansiyeller ile ¢ozmek pratik bir yaklagimdir.

2.6 Oz Uyum Alan Uygulamalar

Bu tez ¢alismasinin hesaplamalarinda, diizlem dalga 6z uyum alan yaklagimini
baz alan Quantum Espresso programi kullanilmistir. Bu program Kohn-Sham(KS)
denklemlerinin 6z-uyumlu olarak ¢oziilmesini amaglamaktadir. Oncelikle molekiillerde
atom tlrune ve atomik konuma bagl olarak bir ilk yogunluk secilir. Daha sonra bazi
uygun temel durumlar icin KS denklemleri, genellikle gelistirilen KS orbitalleri
tarafindan ¢oziilir. KS denklemlerinin ¢6ziimiinden elde edilen yogunluk bir dnceki
yogunlukla karsilastirilir. Bu iki yogunluk birbiriyle uyusuyorsa hesap bitirilir.
Yogunluklar uyusmadig1 takdirde bu yogunluk ile ikinci adima gecilir. Yogunluklar
arasinda uyum saglanana kadar bu igslemlere devam edilir. Bu dongiliye 6z uyum alan

dongusu denir. Sekil 2.3’de bu dongiiniin sematik gosterimi verilmistir.
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Ik Tahmin
n(r)
— |

Etkin Potansiyelini Hesapla

Vet = Vext(F) + Viartree (F) + Vic (n)

I

Kohn-Sham Denklemini C6z

IT + Vee|0:(®) = £0:(®

I

Elektron Yogunlugunu Hesapla

Vetr = Vext(F) + VHartree (F) + Vic (n)

HAYIR l
Oz-Uyum var m1?

|l Ever

Cikis Nicelikleri

Kuvvet, Enerji, Stress, Ozdegerler...

Sekil 2.3. Kohn-Sham denklemlerinin ¢éziimiiniin sematik gosterimi (Oz-Uyum

Alan Dongusi)

2.7 Yapisal Gevseme (Relaxation) ve Bant Yapi1 Hesaplamalar:

Sistemin enerjisini minimize eden birka¢ 0z-uyum alan dongiisii yapisal
gevseme hesabini olusturur. Sistemin O6zellikleri DFT ile belirlenmek isteniyorsa
oncelikle yapisal gevseme hesab1 yapilmalidir. Yapilan her 6z-uyum hesabindan sonra
atomlar Gzerine etki eden kuvvetler, enerjinin ¢ekirdek konumuna gore birinci tirevi

alinarak elde edilir ve
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O0E

Fi=-2 (2.51)

formundadir. Kuvvetleri elde etmek i¢in Hellmann-Feynman teoremi kullanilir[46, 47].

Atomlar yakinlastikga atomik enerji seviyeleri yarilmaya baglar. Boyle bir
durumda tstiiste ortiisen dalga fonksiyonlar1 ve band dedigimiz surekli enerji seviyeleri
olusur. Bir kat1 farkli atomik enerji seviyelerinden dogan ¢ok sayida izinli enerji
bantlarina sahiptir. Izinli enerji bandlarinin dolum sekline gére yalitkan, yariiletken ve
iletkenlerin band yapilar1 sekil 2.4’de gosterilmektedir. Katilarin optik ve elektronik
ozelliklerinin belirlenmesinde band yap1 hesaplamalarinin yeri biiyliktiir. Band

araliklaria bakilarak katinin iletken, yariiletken veya yalitkan olup olmadigi anlasilir.

Enerji
Enerji
Enerji
Enerji
Arahg | | Ee E
Valans Bandi Valans Bandi Valans Bandi
YALITKAN YARIILETKEN ILETKEN

Sekil 2.4. Yalitkan, yaniletken ve iletkende band yapisinin sematik gosterimi
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2.8 Genisletilmis Sistemler: Birim Hucreler ve StuperHucreler

Miikemmel kristallerin atom dizilisi periyodik olarak tekrarlanan birim hicre
tarafindan tarif edilir. Ancak bir¢cok ilging fiziksel sistemler i¢in miikemmel
periyodiklik yoktur, fakat sistem kiigiik bir bolimii disinda bir veya iki yonde ya
yaklasik periyodik ya da periyodiktir. Bu sistemlerin 6rneklerine dahil olan yiizeyler
kristallerin kusurlu noktalar1 yerine konan alasimlar, heteroyapilardir(siiperérgiler ve
kuantum kuyular1). Bu tir durumlarda hayali stperhiicre periyodik olarak
tekrarlanmakla birlikte sistem similasyonu buna uygundur. Stperhicrenin formu ve
boyutu incelenen fiziksel sisteme baglidir.

Sonlu sistemler (molekiiller) siiperhiicre kullanilarak arastirilabilir. Sonlu
sistemlerin periyodik kopyalari arasinda yeterli bos alan vardir boylece aralarindaki
etkilesim zayiftir. Molekiillerin ya da tamamen periyodik olmayan sistemlerin
simiilasyonu i¢in siiperhiicrelerin kullanimi son yillarda olduk¢a yaygin hale gelmistir
ve kullanilan PW (Diizlem Dalga) temel diizeni ilk simiilasyon ilkeleri ile baglantilidir
(6zellikle molekiiler dinamik simiilasyonlari). Aslinda burada PW’nin kullaniminin
onemli avantajlart vardir. Kohn-Sham dalga fonksiyonlarmin diizlem-dalga agilimy,
kristalin periyodikliginin getirdigi bir avantajdan dolay:r katilarin toplam enerjisini
hesaplamak i¢in ¢ok kullaniglidir[48-50].

Birim hicrenin boyutu, atomlarin sayist ve hacmi ¢ok dnemlidir. Atomlarin tipi
ile birlikte onu hesaplamalarin zorlugu belirler. Biiyilk birim hiicreler biiyiik
hesaplamalar demektir ve ilgin¢ olan da fiziksel sistemlerin tam veya yaklasik olarak
blyuk birim hiicreler tarafindan agiklanir olmasidir[51].

Stiperhiicrelerde meydana gelen ara yiizeylerin yapilan 6z-uyum hesaplar ile
elektronik yiik yogunlugu dagilimli ve buna bagli olarak elektrostatik potansiyel
bulunmaktadir. Geometrik olarak ara ylizeyler (x, y diizlemi) paralel diizlemlerde

periyodik oldugundan sadece z koordinatinin fonksiyonu olarak,
= 1
f@)=¢ j f(x, y, z)dxdy (2.52)
S

seklinde verilir. Denklem (2.52) dizlemsel averaj olarak bilinmektedir. Ug boyutlu

elektronik yiikk yogunlugundan, tek boyutlu olan yiik yogunlugu n(z) ve ortalama
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elektrostatik potansiyel V(z) elde edilmektedir. Ara yiizey etkisi buradaki periyodik
fonksiyonlar arasindaki farkla iligkilidir. Boyle bir farklilik makroskobik averaj teknigi
ile bulk yapidaki salinimdan kurtularak gelistirilebilir[52,53]. Bu makroskobik averaj

klasik elektromagnetizmanin temel bir kavramidir[54].
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BOLUM 3

SONUCLAR VE TARTISMA

Bu bolimde, ele alinan sistemlerin hesaplamalari Quantum Espresso paket
programi kullanilarak yapilmistir[55]. Baslangigta, GaSe ve InSe yariiletkenlerinin
kristal ozellikleri ve yakinsama galismalar1 verilmistir. Daha sonra bu sistemlerin z
yoniinde InSe/GaSe bulk heteroyapisi olusturulmus ve bu heteroyapinin 6rgi sabiti ve
toplam enerjisi hesaplanmistir. Son durumda ise heteroyapimin ara yiizeyindeki

potansiyeli hesaplanmuistir.

3.1 GaSe Kristal Yapisi

GaSe, IlI-A grubundaki Ga ve VI-A grubundaki Se atomlarindan olusur. IT11-VI
grubundaki InSe ve GaS bilesikleri gibi tabakali yapiya sahiptir ve bir tabakasi Se-Ga-
Ga-Se dizilimindedir. Bu sistemin birim hiicresi, 4 Ga ve 4 Se atomu olmak Uzere 8
atoma sahiptir. Kimyasal baglarinda gii¢lii anizotropi vardir[56,57]. Bu gruptaki ikili
tabakalarin siralanis1 bakimindan birbirinden farkli politipleri vardir. GaSe’nin tiim
politipleri (8, y, € ve §) genis band aralikli yariiletkenlerdir. Bu tez ¢alismasinda -
GaSe politipi ile ¢alisiimistir. B-GaSe yiksek simetriye sahiptir. Uzay grubu D, olup,
a=3.730A =7.051 a.u. ve c=15.90A =30.06 a.u. drgii parametrelerine sahip hekzagonal
yapidadir[11]. Ga ve Se atomlarindan olusan S-GaSe kristalinin birim hiicre yapisi sekil
3.1°de gosterilmektedir.
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Sekil 3.1. f-GaSe birim hiicre 6rgust

Atomlarin konumlarina gore yerlestirilmesi Octave kodu ile yapilmistir. Birim
hiicre x, y ve z yonlerinde istenildigi sekilde periyodik olarak dizilirse o boyutlarda

B-GaSe bulk yapis1 elde edilebilinir. Bunun 6rnekleri sekil 3.2°de verilmistir.

Sekil 3.2. f-GaSe bulk yapisi: a) (1x1x4) ebath b) (4x4x4) ebath
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3.2 GaSe Yariiletkeni icin Orgii Sabiti ve Yakinsama Hesaplamalari
Hesaplamalarda oncelikle DFT’nin onemli parametreleri olan Kinetik enerji
kesme degeri(Ecy) ve k noktasi(kpoint) yakinsama hesaplart yapilmistir. Bu parametreler

daha sonra ki hesaplamalar icinde 6nemlidir.

a) Ecut Yakinsamasi
Burada farkli kesme enerji degerlerine karsilik gelen toplam enerjiler
hesaplanmistir. Sistemin toplam enerjisi belirli bir minimum degere yakinsandiginda
kesme enerjisini daha fazla arttirmaya gerek yoktur. Bu isleme kinetik enerji kesme
degeri yakinsamasi denir. Toplam enerjinin kesme enerjisine gore degisimi sekil 3.3°de

gosterilmistir.

-781 + 2

-782

-783

-784

E(Ry)

-785

-786

*

-787 SU—6— 06— 06— 66—

10 20 30 40 50 60 70
E..(RY)

cut
Sekil 3.3. f-GaSe bulk igin toplam enerjinin E,’a gore degisimi.
Sekilden de goriildiigi gibi Egy degerinin 15 Ry’den sonraki degerlerinde toplam

enerji degerleri iyi bir sekilde yakinsamaya baslamistir. Bu degerler arasinda uygun Ec

degeri 35Ry olarak segilmistir.
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b) Kpoint Yakinsamasi
Burada farkli k nokta setleri i¢in toplam enerjiler hesaplanarak sekil 3.4’de
verilmistir. Bu hesaplama da 6rgii sabiti a=3.730A =7.051 a.u. ve ¢c=15.90A =30.06 a.u.

bir onceki asamada bulunan kesme enerjisi 35Ry kullanilmustir.

-786,70

-786,75

-786,80

-786,85

E(Ry)

-786,90

-786,95

-787,00

noktasl

Sekil 3.4. §-GaSe bulk igin toplam enerjinin farkh k noktalaria gore degisimi.

Sekil 3.4 incelendiginde k noktasinin 2’den sonraki degerlerinde ani bir diislis oldugu
goriilmektedir. 4 ve 4’den sonraki degerler icinde toplam enerji degerleri birbirine ¢ok
yakindir. Bu k nokta setleri arasindan 6 ya da 8 degerlerinden birini almak uygun bir
secim olacaktir. Bu yakinsama g¢alismalarindan sonra k nokta seti (8x8x8) ve kesme
enerjisi Eq= 35Ry alinarak toplam enerjinin Orgii sabiti a ve c’ye gore degisimi
hesaplanmastir.

Sekil 3.5°de [-GaSe bulk yapisinin farkli c/a degerleri igin toplam enerjinin a
Orgii sabitine gore degisimi verilmistir. Yakinsamanin daha iyi goriilebilmesi i¢in 7-7.6
degerleri arasinda kiiciik bir grafik eklenmistir. Buna ragmen karmagikligir gidermek

icin yakinsamaya yakin ii¢ c/a degeri grafikleri Sekil 3.6.’da gosterilmistir.
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-786,76 ] —m—c/a=4.20
-786,78 - . - —e-—cla=4.22
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] —v—cla=4.26
-786,82 ] c/a=4.28
-786,84 —%*—c/a=4.30
] ' ' —4—c/a=4.32
-786,86
786,68 ] 74 c/a=4.34
] —v—cla=4.36
> -786,90 —0—c/a=4.38
e ]
o -786.92 —m—c/a=4.40
1 —A-—cla=4.42
786,94 7 —e-cla=4 44
-786,96 -
786,98 - . _m
-787,00 4 f=g_g—
-787,02
-787,04
T T T T T T T T T T
6,4 6,6 6,8 7,0 7,2 7.4 7,6

Sekil 3.5. B-GaSe bulk yapisinin farkh c/a degerleri icin toplam enerjinin a

a(a.u.)

orgii sabitine gore degisimi
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—m—c/a=4.34
786,86 - —v—cla=4.36
1 —m—c/a=4.38
-786,88
-786,90 =i ——
y | %ﬁ-.—_——g.
-786,92 -
5 -786,94 - ' I ' I
o | 7.2 74
-786,96 - \'
-786,98 - \
] \‘ /l
-787,00 - \l\. —"
787,02 -
I ! I ! I ! I ! I !
6,6 6,8 7,0 7.2 7.4 7.6

a(a.u.)
Sekil 3.6. f-GaSe bulk yapisinin ii¢ tane c¢/a degeri icin toplam enerjinin a

orgii sabitine gore degisimi

Sekil 3.6 dikkatlice incelendiginde c/a degeri 4.362 olarak bulunmustur. Bu deger i¢in
sistemin toplam enerjisinin a 0rgu sabitine gore degisimi hesaplanmis ve Sekil 3.7°de

verilmistir.
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-786,86 c/a=4.362

-786,88 -
-786,90 —
-786,92

-786,94 —

E(Ry)

-786,96 —

-786,98 -

-787,00 —

-787,02

6,3 6,6 6,9 7.2 75 7.8 8,1
a(a.u.)

Sekil 3.7. f-GaSe bulk yapisimin ¢/a=4.362 i¢in toplam enerjinin a 6rgi sabitine

gore degisimi

Sonug olarak c/a=4.362 degeri igin minimum enerjiyi veren a 0rgu sabiti sekil 3.7°de

7.309 a.u. olarak belirlenmistir.

3.3 InSe Kristal Yapis1

InSe, I1I-A grubundaki In ve VI-A grubundaki Se atomlarindan olusur. III-VI
grubundaki GaSe ve GaS bilesikleri gibi tabakali yapiya sahiptir. Bir tabaka Se-In-In-Se
dizilimindedir[58]. Kimyasal baglarinda gii¢lii anizotropi vardir[20,21]. Birim
hiicresinde 4 adet In atomu, 4 adet Se atomu olmak iizere toplam 8 atom vardir. Bu
gruptaki ikili tabakalarin siralanist bakimindan birbirinden farkli politipleri vardir.
InSe’nin politipleri B, ¥, € ve & olusur. Bu tez ¢alismasinda S-InSe politipi ile
calistlmistir. SB-InSe ylksek simetriye sahiptir. InSe kristali rombohedral ya da
hekzagonal yapida olabilir. Bu galismada uzay grubu DZ,, olup, a=4.050A =7.655 a.u. ve
c=16.929A =32.003 a.u. 6rgii parametrelerine sahip hekzagonal yapidadir[59,60]. In ve
Se atomlarindan olusan [-InSe kristalinin  birim hiicre yapist sekil 3.8’de

gosterilmektedir.
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Sekil 3.8. B-InSe birim hiicre 6rgusi

Atomlarin konumlarina gore yerlestirilmesi Octave kodu ile yapilmistir. Birim
hiicre x, y ve z yonlerinde istenildigi sekilde periyodik olarak dizilirse o boyutlarda InSe

bulk yapist elde edilebilinir. Bunun 6rnekleri sekil 3.9°da verilmistir.

Vo D iy ®:n
1444
gH
1434
gH
14134
P4

H[:ﬁl

Sekil 3.9. B-InSe bulk yapisi: a) (1x1x4) ebath b) (4x4x4) ebath
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3.4 InSe Yaniiletkeni icin Orgii Sabiti ve Yakinsama Hesaplamalar
Hesaplamalarda 6ncelikle DFT’nin 6nemli parametreleri olan E¢y ve k noktasi
yakinsama hesaplar1 yapilmistir. Bu parametreler daha sonra ki hesaplamalar i¢inde

onemlidir.

a) Ecut Yakinsamasi
Burada farkli kesme enerji degerlerine karsilik gelen toplam enerjiler
hesaplanmistir. Sistemin toplam enerjisi belirli bir minimum degere yakinsandiginda
kesme enerjisini daha fazla arttirmaya gerek yoktur. Bu isleme kinetik enerji kesme
degeri yakinsamasi denir. Toplam enerjinin kesme enerjisine gore degisimi sekil

3.10°da gosterilmistir.

-560
-570
-580

-590

E(Ry)

-600
-610
>

-620 - \

-630 T T T T T T T T T T T T
10 20 30 40 50 60 70

E_.(Ry)

>——>—— >

Sekil 3.10. B-InSe bulk yapisi i¢in toplam enerjinin Eqy’a gore degisimi.
Sekil 3.10°da goriildigi gibi Eqy degerinin 15 Ry’den sonraki degerlerinde

toplam enerji degerleri iyi bir sekilde yakinsamaya baslamigtir. Bu degerler arasinda

uygun Ecy degeri 40 Ry olarak segilmistir.
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b) Kpoint Yakinsamasi
Burada farkli k nokta setleri i¢in toplam enerjiler hesaplanarak sekil 3.10°da

verilmistir. Bu hesaplama da orgii sabiti a=4.050A =7.655 a.u. ve c=16.929A =32.003

a.u. bir dnceki asamada bulunan kesme enerjisi Eq = 40Ry kullanilmistir.

-621,66
-621,68—-
-621,70—-
-621,72—-
-621,74—-
-621,76—-
-621,78—-

E(Ry)

621,80 -
621,82 -
621,84 ]
621,86 ] '\_
-621,88 ]

noktasl

Sekil 3.11. B-InSe bulk yapasi igin toplam enerjinin farkh k noktalarina gore

degisimi.

Sekil 3.11 incelendiginde k noktasinin 2’den sonraki degerlerinde ani bir diisiis
oldugu goriilmektedir. 4 ve 4’den sonraki degerler icinde toplam enerji degerleri
birbirine ¢ok yakindir. Bu k nokta setleri arasindan 6 ya da 8 degerlerinden birini almak
uygun bir se¢im olacaktir. Bu yakinsama calismalarindan sonra k nokta seti (8x8x8) ve
kesme enerjisi Eq,—= 40Ry alinarak farkli c/a degerleri igin toplam enerjinin orgi sabiti
a’ ya gore degisimi hesaplanmistir. Bu hesaplamalar sonucu elde edilen degerler sekil
3.12°de verilmistir. GaSe sisteminde yapilan yakinsama hesaplari bu sistem iginde

tekrarlanmistir.
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—eo—cl/a=4.14
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—p»—cl/a=4.20
—eo—cl/a=4.22
—%—cla=4.24
—e—cl/a=4.26

c/a=4.28
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Sekil 3.12. -InSe bulk yapisinin farkh c¢/a degerleri icin toplam enerjinin a

0rgu sabitine gore degisimi

Benzer sekilde farkl ii¢ c¢/a degeri igin yapilan hesaplamalar sekil 3.13’de verilmistir.

Bu sekilden minimum enerjiyi veren c/a degeri 4.367 olarak belirlenmistir. Bu deger

kullanilarak sistemin toplam enerjisinin 6rgili sabiti a’ya gore degisim hesaplanmis ve

sekil 3.14’de gosterilmistir. Sekil incelendiginde bu degeri karsilik gelen minimum

enerjiyi veren a orgii sabiti degeri 7.825 a.u. olarak belirlenmistir.
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Sekil 3.13. B-InSe bulk yapisinin ii¢ tane c/a degeri icin toplam enerjinin a 6rgu

sabitine gore degisimi
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Sekil 3.14. B-InSe bulk yapisinin ¢/a=4.367 igin toplam enerjinin a 6rgu sabitine

gore degisimi
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3.5 InSe/GaSe Heteroyapisi

z yoninde genisletilmis InSe/GaSe bulk heteroyapisi ele alinmistir. Bu sistemin
0rgu sabiti olarak InSe ve GaSe’nin hesaplanarak bulunan 6rgl sabitlerinin ortalamasi
alimmistir. Bu Orgii sabiti heteroyapimnin ilk Orgii sabiti olarak alinmustir. Bu
heteroyapinin birim hiicre orglisii ve (2x2x1) ebatli 6rgili yapist sirasi ile Sekil 3.15 ve

Sekil 3.16’da verilmislerdir.

- ": ® G

& %y ‘:In

:g} ":Se
|

& &

® Y% ¥

Lt

3.15. InSe/GaSe birim hicre 6rgusu
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3.16. InSe/GaSe sisteminin (2x2x1) ebath heteroyapisi

3.5.1 InSe/GaSe Orgii Sabiti Hesabi
InSe ve GaSe sistemleri igin belirlenen 6rgii sabiti degerleri ajns.=7.825 a.u. ve

acase=7-309 a.u. hesaplanmisti. Bu iki sistem arasindaki 6rgii sabiti uyumsuzlugu,

AInSe —dGaSe

_ |7.825—7.309
- 7.309

| =0.07 = %7 (3.1)

dGaSe

olarak bulunur. ki yapmnm arasindaki &rgii sabiti uyumsuzlugu %?1’den biiyiik oldugu
durumlarda InSe ve GaSe Orgii sabiti uyusmayan yapilar olarak adlandirilir. Bu
yapilarin arka arkaya biiyiitiilmesiyle heteroyap1 olusturulabilir.

Bu tez calismasinda InSe ve GaSe yapilarmin Orgili sabitleri ele alinarak

modellenen heteroyapi i¢in alinan ilk a 6rgii sabiti degeri,

aInSe taGasSe 7.825+7.309

: = . = 7567 a.u.= 4.003 A (3.2)
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bulunur. Ayrica bu sistemlerin ortalama c¢ degeri 33.026 a.u. hesapland1 ve
heteroyapinin c/a degeri ise 8.729 olarak hesaplandi.

Yukarida hesaplanan a ve ¢ 0rgl sabiti degerlerinin yakinlarinda degerler
aliarak yapilan optimizasyonda, farkli 6rgii sabitlerine karsilik gelen toplam enerjiler
hesaplanarak InSe/GaSe heteroyapist i¢in minimum enerjiyi veren a 0rgu sabiti ve c
degerleri bulunmustur. Bulunan a ve ¢ degerleri minimum enerjiyi veren degerler
oldugu i¢in sistemin denge durumundaki degerleri olarak kabul edilir. Heteroyap1 icin
yapilan hesaplamalarda kinetik enerji kesme degeri E.;=30 Ry, k nokta seti

Kpoint=(6X6X3) olarak alinmustir.

-1408,74
- —@—/a=8.70
-1408,75 —m—/a=8.73
E —A—c/a=8.77
-1408,76 - —w—c/a=8.80
1 c/a=8.83
-1408,77 - —®-c/a=8.86
-1408,78 d
> -1408,79
x ]
W _1408,80
-1408,81
-1408,82 -
-1408,83
-1408,84 . r . r . r . r .
7.0 7.2 74 7.6 7.8 8,0

a(a.u.)
Sekil 3.17. InSe/GaSe heteroyapisimin farkh c¢/a degerleri icin toplam

enerjinin a orgii sabitine gore degisimi

Sekil 3.17’den minimum enerjiyi veren c/a degeri 8.769 olarak bulunmustur. Bu
c/a degeri kullanilarak sistemin toplam enerjisinin Orgii sabiti a ya gore degisimi

hesaplanmis ve elde edilen veriler sekil 3.18’de verilmistir.
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Sekil 3.18. InSe/GaSe heteroyapisinin ¢/a=8.769 icin toplam enerjinin a 6rgu

sabitine gore degisimi

Buradan c/a=8.769 degeri kullanilarak minimum enerji degeri Emin=-1408,826 Ry ve bu

degere karsilik gelen orgii sabiti degeri a=7.528 a.u. olarak belirlenmistir.

Tablo 3.1. Bulk yapilar i¢in hesaplanan parametreler

Bulk Yap1 Orgu Sabiti (a.u.) c(a.u.) cla

InSe 7.825 34.172 4.367
GaSe 7.309 31.882 4.362
InSe/GaSe 7.528 33.026 8.769

Tablodaki verilere bakildiginda InSe/GaSe bulk heteroyapisinda InSe 6rgii sabiti

7.825 a.u. degerinden 7.528 a.u. degerine sikismaya zorlanmaktadir. GaSe orgii

sabitinin 7.309 a.u. degerinden 7.528 a.u. degerine genislemeye zorlanmakta oldugu
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goriilmektedir. InSe ve GaSe’un olusturdugu InSe/GaSe bulk heteroyapisinda InSe’nin

sikisma etkisi, GaSe’nin ise genigleme etkisi altinda oldugu sdylenebilir.

3.5.2 Elektrostatik Potansiyel Kaymasi (Offset)

Bir heteroyapi, farkli iki yariiletken maddenin kendi elektriksel ve elektro-
optiksel karakteristikleri olan heterojonksiyon bdlgesinde birbirlerine temas etmesiyle
olusur. Makroskobik averaj teknigi ile iki yapmin ara Yizeyindeki elektrostatik
potansiyel kaymalari1 gozlenebilir.

Sistemin elektrostatik potansiyellerini ve elektronik yiikk yogunlugunu
hesaplamak i¢in Oncelikle optimize edilmis sistemler i¢in relax(gevseme) hesabi yapilir.
Bu Kohn-Sham denklemlerinin ¢6ziimiine dayanmaktadir. Gevseme haline dikkat
edilerek, sistemdeki her bir atom {lizerindeki kuvvet sifir olana kadar, atomlarin
konumlar1 degistirilir ve Kohn-Sham denklemleriyle 6z uyumlu olarak ¢ozulur. Daha
sonra makroskobik averaj teknigi uygulanir. InSe/GaSe heteroyapisinin elektrostatik

potansiyellerinin ortalama degerleri hesaplanarak sekil 3.19°da verilmistir.

0 10 20 30 40 50 60
z(a.u.)

Sekil 3.19. InSe/GaSe heteroyapisinin elektrostatik potansiyelinin I. ve II.

ortalamalar
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Sekilde z yoniinde modellenmis InSe/GaSe yariiletken heteroyapisinin |l.
potansiyel egrisinde ara ylzeydeki fark AV=0.365 Ry bulunmustur. Ara yuzeydeki
potansiyel farktan dolayr bu heteroyapilar diisiik boyutta kuantum kuyulari
olusturmaktadir. Yariiletken heteroyapinin |. ortalamasi ara yuzeyle ilgili bilgi
vermektedir. II. ortalama ise birinci ortalamanin ortalamasi oldugundan ara yilizeyde

olusan potansiyel farki gdstermekte ve ara yiizey bilgisinin detayini vermektedir.

3.6 Sonuclar

Oz uyum alan programi kullanilarak yapilan hesaplamalarda hekzagonal
yapidaki $-GaSe ve B-InSe sistemleri incelendi. Bu yapilar igin a 6rgu sabitleri sira ile
7.309 a.u. ve 7.825 a.u. bulundu. Ayrica hekzagonal yapiyr olusturan c/a degerleri
sirasiyla 4.362 ve 4.367 olarak hesaplandi. Bunlarin hesaplanmasi yogun bilgisayar
kullanim1 ve simiilasyon hesaplamalarina dayanmaktadir.

Bu hesaplamalardan elde edilen bilgiler kullanilarak, z yonundeki InSe/GaSe
bulk heteroyapis1 olusturuldu. Ayrica tezin 6zgiin degeri olan bu sistemde yapilan
optimizasyon hesaplamalar sonucunda a 6rgl sabiti 7.528 a.u. ve c/a degeri 8.769
bulundu. Bu yapmin elektrostatik potansiyel egrilerinin I. ve II. ortalamalar
hesaplanmistir. II. potansiyel egrileri arasindaki fark AV=0.365 Ry bulunmustur. Bu
potansiyel farktan dolayr bu heteroyapilar, diisik boyutta kuantum kuyularin
olusturmaya elverislidir. Boylece bu sistemler opto-elektronik ve nano-elektronik

aletlerin yapiminda kullanilacag: diisiiniilmektedir.
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