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ÖZET 

 

 

Bu tez kapsamında, InSe/GaSe yarıiletken heteroyapısının elektronik 

özelliklerini incelemek amacıyla yapılan çalışmalar sunulmaktadır. z yönünde 

InSe/GaSe bulk heteroyapısı, örgü sabitleri uyuşmayan III-VI yarıiletkenlerinden InSe 

ve GaSe ile oluşturulmuştur. Teorik olarak modellenmiş bu bulk heteroyapının, örgü 

sabiti, toplam enerjisi ve elektrostatik potansiyel eğrileri hesaplanmıştır. Bu 

hesaplamalar yoğunluk fonksiyonel teorisine dayanan düzlem dalga öz uyum alan 

programı kullanılarak yapılmıştır.  
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BÖLÜM 1 
 

 

GİRİŞ 

 

 

Yoğunluk fonksiyonel teorisi(DFT) son yıllarda malzemelerin dinamik, 

elektronik, optik, manyetik ve termo kimyasal özelliklerini hesaplamada başarılı ve 

doğru  sonuçlar verdiği için  pek çok  teorik çalışan araştırmacının ilgi odağı 

olmuştur[1-3]. 

Maddelerin kuantum mekaniği yaklaşımları ile incelenmesinde, DFT en başarılı 

teorilerinden biridir. Bu konuda yapılan ilk uygulamalar, genel olarak kuantum 

mekaniğinden daha uzak düşünülürdü. Daha sonraları süperiletkenlik, güçlü lazer 

atımlarının odağındaki atomlar, ağır elementlerdeki ve atom çekirdeğindeki rölativistik 

etkiler, klasik sıvılar ve alaşımların manyetik özelliklerinin tamamında kuantum 

mekaniğini içeren DFT ile çalışılmaktadır[4]. 

Bu teorinin çok yönlülüğü, temel kavramlarının genelliğine ve tamamlayıcı 

özelliklerinin esnekliğine bağlıdır. Bu genellik ve esnekliğe rağmen DFT tamamıyla 

katı bir kavramsal çerçeve üzerine kurulmuştur. Genelde, DFT’nin iki temel unsuru 

Hohenberg-Kohn ve Kohn-Sham teoremleridir[5,6]. Bu teoremler hakkında geniş 

bilgiler bölüm 2’de verilecektir. 

Atomların, moleküllerin, kristallerin, yüzeylerin ve bunların etkileşimlerinin 

birçok özellikleri ‘ab initio’ için kullanışlı olan DFT ile hesaplanabilir[7]. Atomların ve 

moleküllerin yapısal ve elektronik özelliklerinin hesaplanmasında oldukça başarılıdır. 

Bundan dolayı, DFT yoğun madde sisteminin özelliklerinin bulunmasına ve 

tanımlanmasına yönelik ilk ilke hesaplamalarında(first-principles calculations) önemli 

bir teori olmuştur[8]. Bu özelliklerinin iyi bir tanımını, Genel Gradiyent 

Yaklaşımında(GGA) değişim korelasyon potansiyeli olarak adlandırılan yaklaşımlar 

kullanılmaktadır[9].  
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Yarıiletken malzemelerden olan Galyum Selenyum(GaSe) ve İndiyum 

Selenyum(InSe) son yıllarda kendine elektronik ve optoelektronikte geniş uygulama 

alanları bulmuştur. Nonlineer optik özellikleri sebebiyle de büyük ilgi görmeye 

başlamıştır. Galyum Sülfür(GaS) ve Galyum Tellür(GaTe) gibi III-VI yarıiletken 

grubundadırlar. GaSe ve InSe yarıiletken bileşikleri tabakalı bir yapıya sahiptir. Her bir 

tabakada Se-X-X-Se dizilimindedirler. Tabakalı yapılarından dolayı kimyasal 

bağlarında güçlü bir anizotropi vardır. Tabakaların sıralanışına göre birkaç politipi 

bulunur[10]. Tabakalar zayıf Van Der Waals bağları ile bağlı iken tabakalardaki atomlar 

birbirlerine kovalent bağlarıyla bağlıdır. GaSe ve InSe’nin farklı politiplerinin 

özelliklerini incelemek amacıyla birçok araştırmacı tarafından farklı yöntemlerle teorik 

ve deneysel çalışmalar yapılmıştır[11-23]. Bunun yanında Lang ve arkadaşları 

InSe/GaSe heteroyapısının kuantum kuyusunun özelliklerini Van Der Waals epitaksi 

yöntemiyle araştırmışlardır[24]. Chen ve Kelley GaSe/InSe nanoparçacık 

heterojonksiyonunun fotofiziksel özelliklerini incelemişlerdir[25]. Erkoç ve arkadaşları 

InSe/GaSe süperörgüsünde katman kalınlıkları üzerinde optik geçişlerin ve enerji 

seviyelerinin bağlılığını ve InSe/GaSe süperörgüsünün elektronik yapısının kendisi ile 

uyumlu alan(self-consistent-field) hesaplamalarını yapmışlardır[26,27].  

InSe/GaSe  heteroyapısının ara yüzey potansiyeli hesaplanan bu tezde planlama 

şu şekilde yapılmıştır. Bölüm 1’de yoğunluk fonksiyonel teorisine kısa bir giriş 

yapılmış ve çalışılan malzemeler hakkında bilgiler verilmiştir. Bölüm 2’de kullanılan 

DFT teorisi ele alınarak, bu teoride yaklaşımlar ve teoremler ayrıntılı bir şekilde 

sunulmuştur. Son bölümde ise InSe ve GaSe yarıiletkenlerin örgü sabitleri ve toplam 

enerji hesapları yapılmıştır. Bu hesaplamalar kullanılarak InSe/GaSe bulk heteroyapısı 

incelenmiş ve heteroyapının teorik modellemesi yapılarak örgü sabiti ve toplam enerjisi 

bulunmuştur. Ayrıca heteroyapının ara yüzeyindeki atomik yapı ve potansiyeli 

hesaplanmıştır. Sonuçlar yorumlanarak tez çalışması tamamlanmıştır.   

 

 

 

 

 

 

 



3 
 

 

 

BÖLÜM 2 
 

 

YOĞUNLUK FONKSİYONEL TEORİSİ 

 

 

Atomlar, moleküller ve katılar gibi çok parçacıklı sistemlerin fiziksel 

özelliklerinin belirlenmesini amaçlamak, çok parçacıklı bir sistem için Schrödinger 

denkleminin çözülmesini gerektirmektedir. Çok elektronlu sistemlerin serbestlik 

dereceleri büyük olduğundan dolayı böyle sistemler için Schrödinger denkleminin 

çözümü oldukça zordur. Bu durumda dalga fonksiyonu yerine parçacık yoğunluğu 

üzerine odaklanan teorik bir yaklaşım kullanmanın birçok avantajı vardır. Maddelerin 

fiziksel özellikleri çoğunlukla sahip oldukları elektronların dağılımları ile belirlenir. Bu 

konuda ileri sürülen ilk yaklaşım yoğunluk fonksiyonel teorisinin temellerini oluşturan 

Thomas-Fermi yaklaşımıdır[28,29]. Bu yaklaşıma göre çok cisim probleminin temel 

değişkeninin elektron yoğunluğu olduğu fikri ileri sürülmüştür. Bu yaklaşımın öncülük 

ettiği yoğunluk fonksiyonel teorisinin temel prensibi ise etkileşen çok parçacıklı bir 

sistemin herhangi bir özelliğinin, taban durum yoğunluğu      nin bir fonksiyoneli 

olarak incelenebilmesi olarak tanımlanabilir. Yoğunluk fonksiyonel teorisi üzerine 

yapılan ilk modern çalışmalar ise Hohenberg-Kohn ve ardından Kohn-Sham tarafından 

gerçekleştirilmiştir[30]. 

 

2.1 Çok Parçacık Problemi ve Schrödinger Denklemi  

 Çok parçacıklı sistemlerin (atomlar, moleküller ve katılar) özelliklerini tam 

olarak tanımlayabilmek için elektronik yapılarını belirlemek gerekir. Bunun için 

kuantum mekaniği yasalarından yararlanılır. Fakat sistemdeki elektron sayısı arttıkça 

çözüm karmaşık bir hal almaya başlar. Çok elektron problemini çözebilmek için 

genellikle kullanılan üç yöntem vardır. Bunlar; dalga fonksiyonu yaklaşımı, Green 

fonksiyonları yöntemi ve elektronik yoğunluk yöntemidir. Dalga fonksiyonu 

yaklaşımında temel değişken dalga fonksiyonu iken elektronik yoğunluk yönteminde ise 

elektron yoğunluğudur. 
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Atomların elektronik yapıları, moleküller ve katılarda kullanılan elektronik yapı 

hesaplama yöntemleri kuantum mekaniği yasalarını temel alır. Bunun için öncelikle 

Schrödinger denklemini çözmek gerekmektedir. N tane elektrondan oluşan moleküler 

bir sistem için Schrödinger denklemi (zamandan bağımsız, rölativistik olmayan), 

 

 Ψ = EΨ                                  (2.1) 

 

şeklindedir. Burada H Hamiltoniyen operatörü, Ψ dalga fonksiyonu, E ise moleküler 

sistemin farklı kararlı durumlarına karşılık gelen enerjilerdir. Çok parçacıklı bir 

sistemde elektronların koordinatları    , çekirdeğin koordinatları  ⃗⃗   konumlarına bağlı 

olduğu durumda sistemin dalga fonksiyonu, 

 

       ,  ⃗⃗  )                                     (2.2) 

 

iken dış alandaki hamiltoniyeni, 

 

 ̂   ̂    ̂    ̂      ̂      ̂      ̂                                              (2.3) 

 

formundadır. Schrödinger denklemi, 

 

 ̂                                                              (2.4) 

 

şeklindedir. Elektronların kinetik enerjisi, 

 

 ̂     
 

 
  ∑   

   
                                                         (2.5) 

 

çekirdeğin kinetik enerjisi, 

 

 ̂    
 

   
 ∑   

   
                                                                                                                 (2.6) 

 

elektron-elektron etkileşme enerjisi,                                                                                   
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 ̂     
 

 
 ∑

 

| ⃗    ⃗  |

  
                                                                                                                 (2.7) 

 

çekirdek-çekirdek etkileşme enerjisi, 

 

 ̂     
 

 
 ∑

    

| ⃗⃗    ⃗⃗  |
                                                                                                                (2.8) 

 

elektron-çekirdek etkileşme enerjisi, 

 

 ̂      
 

 
 ∑ ∑

  

| ⃗    ⃗⃗  |

  
   

  
                                                                                                   (2.9) 

 

tüm parçacıkların dış alandaki enerjileri, 

 

 ̂      (           ⃗⃗    ⃗⃗    )                                                                                          (2.10) 

 

formundadır. (ħ = e =    = 4     )  buradaki atomik birimlerdir. 

 Çoğu zaman bu sistem içindeki elektronların oluşturduğu çok parçacık 

sisteminin Schrödinger denklemini çözmek için bazı yaklaşımlara ihtiyaç 

duyulmaktadır. Çekirdek topluluğunun alanında hareket eden elektron topluluğundaki 

elektronların, taban durumu olarak bilinen, en düşük enerji konfigürasyonu 

bulunmalıdır. Çekirdek ve elektronların farklı matematiksel problemlere ayrıldığı 

yaklaşım Born-Oppenheimer yaklaşımıdır. Bu yaklaşımda elektronların kütlesinin 

çekirdeğin kütlesinden daha hafif ve hızlı olması sebebiyle -çekirdeğin hareketsiz 

olduğu kabul edilerek- elektronların hareketinden etkilenmediği varsayılır[31]. 

Çekirdekler elektronların hareketinin ortalamasından etkilenebilirler ve elektronların 

oluşturduğu ortalama alanda hareket ederler. Çekirdeğin konumu elektronun ani 

hareketi ile değişmez. Bu nedenle çekirdeğin kinetik enerjisi sıfır olacaktır. Çekirdeğin 

etkileşme terimi -sabit olduğundan dolayı- ve Vext sıfır alınırsa sistemin hamiltoniyeni,  

 

 ̂    ̂    ̂     ̂                                                                                                          (2.11)  

 

olur. Elektronik hamiltoniyen, 
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 ̂    
 

 
 ∑   

   
    

 

 
 ∑ ∑

  

| ⃗    ⃗⃗  |

  
   

  
     

 

 
 ∑

 

| ⃗    ⃗  |

  
                                                 (2.12)  

 

şeklinde yazılabilir. Burada elektron-elektron etkileşme potansiyeli olan üçüncü terimi 

çözebilmek için kullanılan iki yaklaşım vardır. Bunlar: Hartree ve Hartree-Fock 

Yaklaşımı ve tez çalışmasında kullanılan yoğunluk fonksiyon yaklaşımıdır. 

 

2.2 Hartree ve Hartree-Fock Yaklaşımı 

 Hartree yaklaşımı[32], çok elektronlu sistemin dalga fonksiyonunu tek elektron 

dalga fonksiyonlarının (orbitallerin) çarpımı olarak yazmaya dayanır. Sistemin dalga 

fonksiyonu, 

 

                  ∏        
 
                                                                                            (2.13) 

 

formundadır. i. elektrona etki eden potansiyel, 

 

                                                                                                                          (2.14) 

 

ile verilebilir. Potansiyel, iyon ve Hartree potansiyelinin toplamıdır. Hartree yaklaşımı 

elektronların, sistemdeki diğer elektronların oluşturduğu alan içinde bağımsız olarak 

hareket ettiğini söyler, ancak Coulomb etkileşmeleri dikkate alındığında elektronların 

hareketlerinin birbirine bağlı olduğu görülür. Burada elektronlar ayırtedilebilir 

parçacıklar olarak alınmıştır, fakat ayırtedilemezler ve Paulie dışarlama ilkesine uyarlar. 

Bu da Hartree yaklaşımının, elektronların antisimetrik dalga fonksiyonlarına sahip 

olduklarını dahil etmediğini gösterir[33]. 

  Öz-uyumlu alan metodu(self-consistent field) olarak da bilinen Hartree-Fock 

yaklaşımında ise Paulie dışarlama ilkesi Hartree yaklaşımına dahil edilerek (1930’da 

Fock ve Slater tarafından) sistemin dalga fonksiyonu, antisimetri özelliğini de 

sağlayacak şekilde seçilmiştir. Elektronlardan oluşan sistemin dalga fonksiyonu, Paulie 

dışarlama ilkesi gereği, sistemdeki iki elektronun yerdeğiştirmesi altında antisimetrik 

olmalıdır. 

 



7 
 

 (              )    (              )                                                                     (2.15) 

 

(2.15)’i sağlayan en basit dalga fonksiyonu Slater determinatı, 

 

                 
 

√  
|

                                     

                                     
                             

                                             

|                                    (2.16) 

 

ifadesi ile verilir[34]. Bu yaklaşımın önemli özellikleri denklem (2.16)’daki gibi tek 

elektron dalga fonksiyonu içeren slater determinantı kullanması, varyasyonel olması ve 

toplam enerjiyi minimize eden bir deneme dalga fonksiyonu kullanıyor olmasıdır. Yine 

de Hartree-Fock denkleminin çözümü çok zordur ve elektronlar arasındaki korelasyonu 

dikkate almaz, bu yüzden elektron sistemlerinin tanımlanmasında elektron yoğunluğu 

kullanılır. 

 

2.3 Yoğunluk Fonksiyon Yaklaşımı  

Özellikle metallerin, yarıiletkenlerin ve yalıtkanların taban durum özelliklerini 

tanımlamak için oldukça başarılı bir yaklaşımdır. Bu yaklaşım çok elektronlu 

sistemlerin taban durum özelliklerini belirlemek için elektron yük yoğunluğu      ’yi 

temel değişken kabul eder ve ilk çalışmaları 1920’lerde Thomas ve Fermi modeli ile 

başlar. [28,29] 

 

2.3.1 Thomas-Fermi Teorisi  

 Thomas ve Fermi bu teoride elektronların toplam kinetik enerjisini çok elektron 

dalga fonksiyonu ile değil, elektron yük yoğunluğu      ’nin bir fonksiyonu olarak 

tanımlar.  Sistemin toplam kinetik enerjisi, 

 

〈 〉   
 

  
      

 
 ⁄  ∫          

 
 ⁄                                                                                (2.17) 

 

formunda verilebillir.  

 

 



8 
 

Thomas-Fermi enerjisi ise, 

 

    
 

  
      

 
 ⁄  ∫          

 
 ⁄   ∫    

   ⃗   

| ⃗   ⃗⃗ |
  ∫        

   ⃗     ⃗   

| ⃗   ⃗  |
                             (2.18) 

 

formundadır. Denklem (2.18)’deki birinci terim toplam kinetik enerji, ikinci terimi 

çekirdek-elektron etkileşmesi, üçüncü terimde Hartree enerji terimidir. Thomas ve 

Fermi bu teoriye elektronlar arasındaki değiş-tokuş ve korelasyonu katmamıştır. 

Dirac[35] bu teoriye bir değişim terimi eklemesine rağmen elektronların davranışlarını 

açıklamada yetersiz kalmaktadır. 

 

2.3.2 Yoğunluk Fonksiyonel Teori 

 İlk DFT çalışmaları Thomas ve Fermi ile başlayıp Hohenberg-Kohn[5] ve Kohn-

Sham[6] tarafından geliştirilmiştir. Bu teorinin temel düşüncesi,       dış potansiyeli 

içerisinde bulunan etkileşim halindeki elektronların taban durum elektron 

yoğunluğunun dış potansiyeli belirlemesi, 

  

                                                                                                                          (2.19) 

 

şeklinde gösterilir. Bundan böyle dalga fonksiyonu yerine taban durum yoğunluğu 

fonksiyoneli ile tanımlanan ifade kullanılır. 

 Hohenberg ve Kohn tarafından ispatlanan ilk teorem, Schrödinger 

denkleminden elde edilen taban durum enerjisinin elektron yoğunluğunun tek bir 

fonksiyoneli olmasıdır. Fonksiyonel, bir fonksiyonu reel veya karmaşık sayılara 

dönüştürebilen bağıntılardır. Değişkene bağlı bir fonksiyon olarak fonksiyonel,  

 

                            fonksiyon                                   

 [    ]                 fonksiyonel 

 

şeklinde gösterilebilir. Bu durumda elektron yoğunluğu      olmak üzere, taban durum 

enerjisi E,  [    ] olarak yazılabilir. Çok parçacıklı bir sistem için, çok cisim dalga 

fonksiyonu için tek parçacık elektron yük yoğunluğunun beklenen değerinin 

hesaplanması ile bulunur.  
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Yoğunluk operatörü, 

 

 ̂     ∑                                                                                                             (2.20) 

 

formundadır. Yoğunluk operatörü ile elektron yoğunluğunun beklenen değeri 

hesaplanırsa,  

 

      〈 | ̂    | 〉  ∑ ∫         
     

|           |
            

 

          ∫|               |
                ∫|               |

                 

 

           ∫|           |
                                                                                    (2.21) 

 

ifadesi elde edilir. Burada    , elektronların her birine etki eden değişkendir. Elektron 

sayısı için, elektron yük yoğunluğunun normalize edilmiş formunun tüm uzay üzerinden 

integrali alındığında, 

 

   ∫                                                                                                                     (2.22) 

 

ifadesine ulaşılır. Böylece enerji terimi yoğunluğa bağlı olarak yazılabilir. Yoğunluk 

fonksiyonel teori, taban durumdaki toplam enerjiyi dalga fonksiyonu terimleri yerine 

yoğunluk terimleri cinsinden ifade etmeyi amaçlar. Bu yüzden elektronik enerjinin, 

uygun elektron yoğunluğu ve taban durum enerjisini sağlayabilmesi için yoğunluk 

cinsinden minimize edilmesi gerekir.  

 Schrödinger denkleminin çözümüyle bir sistemin enerjisine kolayca ulaşılabilir. 

Denklem (2.12)’de verilen hamiltoniyen kullanılarak çekirdek-elektron etkileşmesi için 

beklenen değer, 

 

〈           | ̂  |           〉   ∑ ∑ ∫            
  
   

  
   

  

| ⃗    ⃗⃗  |
                                 (2.23) 
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formundadır. Bu denklemdeki dalga fonksiyonu ve eşleniği ortak bir norm kare altında 

toplanırsa, 

 

〈           | ̂  |           〉   ∑ ∑ ∫            
  
   

  
   

  

| ⃗    ⃗⃗  |
|           |

                      (2.24) 

 

formunu alır. Denklem (2.24)’deki toplam, i indisi üzerinden açılırsa, 

 

  〈           | ̂  |           〉    ∑ [∫
  

| ⃗    ⃗⃗  |
|           |

           
  
    

                                                               ∫
  

| ⃗    ⃗⃗  |
|           |

            ]                (2.25) 

 

şeklinde yazılabilir. Bu denklemdeki terimlerin ayrı ayrı integralleri alındıktan sonra her 

terimin içindeki ikinci integral terimi,      ’yi yani yoğunluğu verir. 

 

〈           | ̂  |           〉    ∑ [∫
  

| ⃗    ⃗⃗  |
    |           |

                 
  
     

                                                                ∫
  

| ⃗    ⃗⃗  |
    |           |

                 ]   (2.26) 

 

Elektron-çekirdek etkileşmesinden elde edilen fonksiyonel, 

 

     ∑  
  
   ∫      

  

| ⃗    ⃗⃗  |
    ∫                                                                   (2.27) 

 

formunda olur. 

Elektron-elektron enerjisi, iki parçacık yoğunluk teriminde yazıldığında, 

 

    
 

 
∫∫       

    ( ⃗   ⃗  )

| ⃗   ⃗  |
                                                                                           (2.28) 

 

formunda olur. 

   

             
      

 
∫                |             |

                                                     (2.29) 
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Denklem (2.29)’daki n
(2)

 ifadesi, bir elektronun    noktasında, ikinci bir elektronunda     

noktasında bulunma olasılığını verir. Denklem (2.28)’deki elektron-elektron enerjisi, 

 

    
 

 
∫∫       

    ( ⃗   ⃗  )

| ⃗   ⃗  |
                                                                                   (2.30) 

 

formunda olur. Kinetik enerji operatörü türev içerdiğinden dolayı dalga fonksiyonları ve 

eşleniği tek bir norm kare altında toplanamaz. Bu sebepten ötürü yoğunluk terimleriyle 

yazılamaz. Böylece kinetik enerji,    

 

   
 

 
∫                

                                                                               (2.31) 

 

formunda olur. Tek parçacık orbitallerinin toplanmasıyla norm karelerinin toplamı 

alınarak yoğunluk, 

 

      ∑ |      |
   

                                                                                                    (2.32) 

 

formunda yazılır. Bu orbitaller Kohn-Sham orbitalleridir. Kohn-Sham orbitallerinin 

kinetik enerjilerinin toplamı sistemin kinetik enerjisidir. Bu enerji sistemin gerçek 

kinetik enerjisine eşit değildir. Tek parçacıklı kinetik enerjiye bir düzeltme terimi 

eklenerek enerji, 

 

   
 

 
∑    

  
   

                                                                                        (2.33) 

 

formunu alır. Sistemin toplam taban durum enerjisi için tüm terimler yerine yazılırsa 

enerji, 

 

   
 

 
∫∑    

  
   

              ∫                
 

 
∫∫       

 ( ⃗   ⃗  )

| ⃗   ⃗  |
              (2.34) 

 

şeklinde elde edilir. Elde edilen enerji ifadesindeki      ve    terimlerinin toplamı 

değiş-tokuş korelasyon enerjisini verir; 
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                                                                                                                  (2.35) 

 

Bu enerji, Hartree terimlerinin ihmal edildiği Pauli itmesidir. Korelasyon enerjisi de 

elektronlar arasındaki itmedir. Bu duruma uygun birkaç yaklaşım geliştirilmiştir. Kohn-

Sham yaklaşımı olarak bilinen bu yaklaşım Yerel Yoğunluk Yaklaşımı(LDA) ve GGA 

olmak üzere iki kısımda incelenir. Yerel yoğunluk yaklaşımı fonksiyoneli, 

 

    ∫                                     (2.36) 

 

formundadır. Burada ki       , n’nin bir fonksiyonudur. Toplam enerjiyle birlikte bu 

yaklaşım, 

 

   
 

 
∫∑    

  
   

              ∫                 
 

 
∫∫        

 ( ⃗   ⃗  )

| ⃗   ⃗  |
 ∫                           (2.37) 

 

formunda yazılır. Hohenberg ve Kohn teoremlerini bulmak için de bu sonuçlar 

kullanılmaktadır. 

   

2.3.3 Hohenberg-Kohn Teoremleri 

 Hohenberg ve Kohn 1964 yılında çok parçacık sistemini çözen yoğunluk 

fonksiyonel teorisini formüle etmişlerdir. Bir           dış potansiyeli altındaki 

parçacıkların etkileştiği herhangi bir sisteme uygulanabilmektedir[33]. Bu durumda 

sistemin hamiltoniyeni, 

 

     
  

   
 ∑   

 
   ∑             

 

 
  ∑

  

|  ⃗⃗⃗      ⃗⃗⃗  |
                                                       (2.38) 

 

formunda olur. Hohenberg ve Kohn tarafından yoğunluk fonksiyonel teorisi iki teorem 

olarak incelenmiştir. Teoremler arasındaki ilişki Şekil 2.1’de gösterilmiştir. 
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←             

                                                                                       

       {  }                {  }       

 

 

                  Şekil 2.1. Hohenberg ve Kohn teoremlerinin şematik gösterimi 

 

 Şekil 2.1’ deki küçük oklar,    {  }  taban durumunu ve        taban durum 

yoğunluğunu içeren    {  }  sisteminin tüm durumlarını belirleyen          dış 

potansiyelinin olduğu, Schrödinger denkleminin genel çözümünü ifade eder. Çemberi 

tamamlayan ve HK olarak adlandırılan büyük ok ise Hohenberg ve Kohn teoremini 

ifade etmektedir. 

 

I.Teorem: Bir          dış potansiyeli altında etkileşen parçacıkların sistemi için bir 

sabit ile bu dış potansiyel,        taban durum yoğunluğu tarafından belirlenir. 

 

I.Teorem Sonucu: Sistemin hamiltoniyeni tamamen belirlendiği için taban ve 

uyarılmış haldeki tüm durumlarda sistemin çok-cisim dalga fonksiyonları belirlenebilir. 

Bu sebeple sistemin tüm özellikleri, sadece verilen        taban durum yoğunluğu ile 

bütünüyle belirlenir. 

 

II.Teorem: Herhangi bir          dış potansiyel altında enerji için ,       yoğunluğunun 

fonksiyoneli olarak bir  [ ] evrensel fonksiyonel tanımlanabilir. Taban durum enerjisi, 

herhangi bir          dış potansiyel için bu fonksiyonelin global minimum değeridir. 

Enerji fonksiyonelini minimize eden       yoğunluğu sistemin taban durum 

yoğunluğudur. 

 

II.Teoremin Sonucu: Tek başına  [ ] fonksiyoneli taban durum enerjisini ve taban 

durum yoğunluğunu belirlemede yeterlidir. Uyarılmış olan elektronların durumları 

başka yollarla belirlenmelidir.  
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2.3.4 Kohn-Sham Denklemleri 

 Kohn ve Sham toplam elektronik enerji E’yi, elektron yoğunluğu      ’nin bir 

fonksiyoneli olarak hesaplamada yeni çözümler önermişlerdir. Kohn-Sham 

yaklaşımında etkileşen elektronlardan oluşan bir sistem yerine etkileşmeyen 

elektronlardan oluşan yardımcı bir sistem daha tanımlamaktadır[6]. Bu sistemlerin 

taban durum yoğunluklarını birbirine eşit kabul eder. Bu durum da etkileşmeyen sistem 

için bağımsız parçacık denklemlerini doğurur. Bu denklemler çok-cisim terimlerini 

içeren, yoğunluğun bir değiş-tokuş fonksiyoneli ile tam olarak çözülebilir. 

 Hohenberg-Kohn’nun ikinci teoreminde, enerjinin global minimum değeri taban 

durum yoğunluğunda elde edilir. Minimum değerde, yoğunluktaki küçük değişimler 

sebebiyle enerji fonksiyonelindeki küçük değişimlerde sıfır olmalıdır. Bu denklem, 

  

   [ ]    [    ]    [ ]                                                                               (2.39) 

 

formunda olur. Enerji minimizasyonu, tek parçacık orbitallerinin ortonormal olması 

koşulunda belirsiz Lagrange çarpanları metodu ile yapılır, 

 

 {  [     ]  ∑     (⟨  |  ⟩     )   }                                                                     (2.40) 

 

formunda verilir.        yerine   
     ’ye varyasyon tercih edildiğinde hem 

hesaplamalarda aynı sonucu verir hem de avantaj sağlar. Bu durumda denklem (2.40), 

 

 

   
   ⃗  

{  [     ]  ∑     (⟨  |  ⟩     )   }                                                             (2.41) 

 

formunda yazılır. Bu denklemdeki terimler açık ifadeleriyle yazıldığında, 

 

 
 

   
   ⃗  

[ 
 

 
∑ ∫     

   
             ]  

 

    ⃗  
[∫                 

 

 
∬

   ⃗   ( ⃗  )

| ⃗   ⃗  |
        

                                                                  ∫            (     )]
    ⃗  

   
   ⃗  

                         (2.42) 

 

eşitliği sağlanır. Denklem (2.42)’deki     değiş-tokuş korelasyon fonksiyonelidir. Bu 

denklem düzenlendiğinde, 
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         [         ∫

 ( ⃗  )

| ⃗   ⃗  |
    

⏟      
        

    [     ]       
    [   ⃗  ]

    ⃗  ⏟                
   

]                          (2.43) 

 

eşitliği elde edilir.               ve     yoğunluğa ve de orbitallere bağlıdır. Bu 

terimlerin toplamı      etkin potansiyelini verir. Bu durumda  

 

                          [ ]     [ ]                                                                   (2.44) 

 

formunda olur. Denklem (2.44) Kohn-Sham denklemi olarak bilinir. Diğer Kohn-Sham 

denklemi de, 

 

 ̂                                                                           (2.45) 

 

formundadır.    öz değerleri gösterir. 

 

2.3.5 Değiş-Tokuş Korelasyon Fonksiyoneli 

 Kohn-Sham yaklaşımında ki önemli niceliklerden biri yoğunluğun fonksiyoneli 

olan değiş-tokuş korelasyon enerjisi     [ ]’dir. Kohn-Sham yaklaşımı bağımsız 

parçacık denklemlerini çözmektense etkileşen çok-cisim problemini çözmeyi daha çok 

kolaylaştırır. Ayrıca bağımsız parçacık kinetik enerjisi ve hartree terimlerini ayırdıktan 

sonra değiş-tokuş korelasyon fonksiyonelini    [ ]’yi yerel bir fonksiyonele 

yaklaştırabilmek bu yaklaşımı üstün kılar. Kohn ve Sham    [ ] için birçok yaklaşım 

da önermiştir. Bunlar LDA ve GGA’dır. Şimdi bu yaklaşımları ele almak faydalı 

olacaktır. 

 

a) Yerel Yoğunluk Yaklaşımı  

 LDA’da değişim korelasyon potansiyeli, değişim korelasyon enerjisinin yerel 

yoğunluğa göre fonksiyonel türevidir. Ayrıca homojen elektron gazı için elektron 

yoğunluğuna bağlıdır. LDA fonksiyonelleri genel olarak, 

 

   
   ⌈ ⌉  ∫           

                                                           (2.46) 
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formundadır. Burada ki        elektron başına düşen değişim-korelasyon enerjisidir, 

     ’nin bir fonksiyonudur ve 

 

   
          

         
                                     (2.47) 

 

formundadır. Burada   
    değiş-tokuş,   

    korelasyon kısmıdır.     ’yi hesaplamak 

için en çok kullanılan yaklaşım Ceperley-Alder yaklaşımıdır ve Kuantum Monte Carlo 

(QMC) hesaplamaları ile kesin sonuçlar bulmuşlardır[36].  

 

b) Genel Gradiyent Yaklaşımı  

 LDA’nın bazı sınırlamalarını gidermek için GGA geliştirilmiştir. LDA’nın 

üzerine yoğunluğun gradiyenti |      | eklenerek GGA’nın genel formu, 

 

   
   ⌈ ⌉  ∫    [     |      |]                         (2.48) 

 

ifadesi ile verilir. Yerel yoğunluk yaklaşımına artış ifadesi     eklenerek GGA’nın 

değiş-tokuş korelasyon enerjisi, 

 

   
   ⌈ ⌉  ∫           

                                      (2.49) 

 

formunu alır. 

 Genel gradiyent yaklaşımı için farklı değişim-korelasyon fonksiyonelleri birçok 

araştırmacı tarafından çalışılmıştır. Bunlar arasında, Perdew ve Wang [37-39], Becke 

[40], Becke ve ark.[41,42] ve Perdew ve ark.[43,44] tarafından önerilen fonksiyoneller 

örnek gösterilebilir. 

 

2.4 Düzlem-Dalga Metodu 

 Düzlem dalgalar periyodik yapıda olan katıların hesabında kullanılmaktadır. 

Bloch teoremine göre periyodik yapıdaki katı içerisinde her bir elektronik dalga 

fonksiyonu, 

        ∑     ⃗⃗   ⃗⃗  
   ⃗⃗   ⃗⃗   ⃗ 

 ⃗⃗                      (2.50)
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formundadır. Bu denklemdeki  ⃗⃗ , ters örgü vektörüdür. Bloch teoremi her bir  ⃗  

noktasındaki elektronik dalga fonksiyonlarının ayrık düzlem-dalga baz seti şeklinde 

açılabileceğini anlatır[45]. Bunun için sonsuz sayıda düzlem-dalga baz setine ihtiyaç 

vardır. Ayrık düzlem-dalga baz setine kesme enerjisi girdiğinde sonlu bir baz seti elde 

edilir.      kesme enerjisi kinetik enerjiye olan maksimum katkı olarak tanımlanır ve 

hesaplamaların doğruluğu kesme enerjisi ile sağlanır. Sonsuz sayıda ki   ⃗⃗  vektörü belli 

bir değerde kesilmelidir. Böylece bu değer, 
 

 
| ⃗   ⃗⃗ |

 
       şartını kinetik enerjinin 

maksimum değeri ile sınırlandırılarak sağlar. Bu durumda düzlem-dalga baz seti, bu 

enerji şartını sağlayan düzlem dalgaları içerir. 

 

2.5 Pseudopotansiyel Metodu 

Pseudopotansiyel metodunun temeli 1960’lı yıllarda atılmıştır. Bütün elektron 

hesaplamalarını yapabilmek için geniş bir düzlem-dalga baz setine ihtiyaç vardır ve 

dalga fonksiyonlarını hesaplamak fazla zaman alacaktır. Pseudopotansiyel metodu, daha 

az düzlem-dalga baz seti kullanılarak elektronik dalga fonksiyonlarının hesaplanmasını 

sağlar. Bu metotta baz setini küçültmek hesaplamayı hızlandırmaktadır. 

 

 

 

 

    Valans 

 

 

 

                 

                                               

                                    Şekil 2.2. Atomun yapısı 

 

 Atom çekirdek, kor elektronları ve valans elektronlarından oluşur. Bir kristalin 

elektronik özelliklerinin belirlenmesinde valans elektronları etkili olur. 

Pseudopotansiyel yaklaşımı kor elektronlarını hareketsiz sayarak valans elektronlarını 

ele alır. Hesaba katılan elektron sayısı azaldığından dolayı daha az sayıda düzlem dalga 

 

Çekirdek 

Kor 
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için hesap yapılacaktır. Elektron dalga fonksiyonlarını bulabilmek için Kohn-Sham 

denklemlerini pseudopotansiyeller ile çözmek pratik bir yaklaşımdır. 

 

2.6 Öz Uyum Alan Uygulamaları 

 Bu tez çalışmasının hesaplamalarında, düzlem dalga öz uyum alan yaklaşımını 

baz alan Quantum Espresso programı kullanılmıştır. Bu program Kohn-Sham(KS)  

denklemlerinin öz-uyumlu olarak çözülmesini amaçlamaktadır. Öncelikle moleküllerde 

atom türüne ve atomik konuma bağlı olarak bir ilk yoğunluk seçilir. Daha sonra bazı 

uygun temel durumlar için KS denklemleri, genellikle geliştirilen KS orbitalleri 

tarafından çözülür. KS denklemlerinin çözümünden elde edilen yoğunluk bir önceki 

yoğunlukla karşılaştırılır. Bu iki yoğunluk birbiriyle uyuşuyorsa hesap bitirilir. 

Yoğunluklar uyuşmadığı takdirde bu yoğunluk ile ikinci adıma geçilir. Yoğunluklar 

arasında uyum sağlanana kadar bu işlemlere devam edilir. Bu döngüye öz uyum alan 

döngüsü denir. Şekil 2.3’de bu döngünün şematik gösterimi verilmiştir. 
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Şekil 2.3. Kohn-Sham denklemlerinin çözümünün şematik gösterimi (Öz-Uyum    

                Alan Döngüsü) 

 

2.7 Yapısal Gevşeme (Relaxation) ve Bant Yapı Hesaplamaları 

 Sistemin enerjisini minimize eden birkaç öz-uyum alan döngüsü yapısal 

gevşeme hesabını oluşturur. Sistemin özellikleri DFT ile belirlenmek isteniyorsa 

öncelikle yapısal gevşeme hesabı yapılmalıdır. Yapılan her öz-uyum hesabından sonra 

atomlar üzerine etki eden kuvvetler, enerjinin çekirdek konumuna göre birinci türevi 

alınarak elde edilir ve  

      

İlk Tahmin 

                                  

Etkin Potansiyelini Hesapla 

⌊ ̂      ⌋                

Kohn-Sham Denklemini Çöz 

                                  

Elektron Yoğunluğunu Hesapla 

Öz-Uyum var mı? 

 

Çıkış Nicelikleri 

Kuvvet, Enerji, Stress, Özdeğerler… 

EVET 
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                                                                                                             (2.51)  

 

formundadır. Kuvvetleri elde etmek için Hellmann-Feynman teoremi kullanılır[46, 47]. 

 Atomlar yakınlaştıkça atomik enerji seviyeleri yarılmaya başlar. Böyle bir 

durumda üstüste örtüşen dalga fonksiyonları ve band dediğimiz sürekli enerji seviyeleri 

oluşur. Bir katı farklı atomik enerji seviyelerinden doğan çok sayıda izinli enerji 

bantlarına sahiptir. İzinli enerji bandlarının dolum şekline göre yalıtkan, yarıiletken ve 

iletkenlerin band yapıları şekil 2.4’de gösterilmektedir. Katıların optik ve elektronik 

özelliklerinin belirlenmesinde band yapı hesaplamalarının yeri büyüktür. Band 

aralıklarına bakılarak katının iletken, yarıiletken veya yalıtkan olup olmadığı anlaşılır. 
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       Şekil 2.4. Yalıtkan, yarıiletken ve iletkende band yapısının şematik gösterimi 
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2.8 Genişletilmiş Sistemler: Birim Hücreler ve SüperHücreler 

 Mükemmel kristallerin atom dizilişi periyodik olarak tekrarlanan birim hücre 

tarafından tarif edilir. Ancak birçok ilginç fiziksel sistemler için mükemmel 

periyodiklik yoktur, fakat sistem küçük bir bölümü dışında bir veya iki yönde ya 

yaklaşık periyodik ya da periyodiktir. Bu sistemlerin örneklerine dahil olan yüzeyler 

kristallerin kusurlu noktaları yerine konan alaşımlar, heteroyapılardır(süperörgüler ve 

kuantum kuyuları). Bu tür durumlarda hayali süperhücre periyodik olarak 

tekrarlanmakla birlikte sistem simülasyonu buna uygundur. Süperhücrenin formu ve 

boyutu incelenen fiziksel sisteme bağlıdır. 

 Sonlu sistemler (moleküller) süperhücre kullanılarak araştırılabilir. Sonlu 

sistemlerin periyodik kopyaları arasında yeterli boş alan vardır böylece aralarındaki 

etkileşim zayıftır. Moleküllerin ya da tamamen periyodik olmayan sistemlerin 

simülasyonu için süperhücrelerin kullanımı son yıllarda oldukça yaygın hale gelmiştir 

ve kullanılan PW (Düzlem Dalga) temel düzeni ilk simülasyon ilkeleri ile bağlantılıdır 

(özellikle moleküler dinamik simülasyonları). Aslında burada PW’nin kullanımının 

önemli avantajları vardır. Kohn-Sham dalga fonksiyonlarının düzlem-dalga açılımı, 

kristalin periyodikliğinin getirdiği bir avantajdan dolayı katıların toplam enerjisini 

hesaplamak için çok kullanışlıdır[48-50].  

 Birim hücrenin boyutu, atomların sayısı ve hacmi çok önemlidir. Atomların tipi 

ile birlikte onu hesaplamaların zorluğu belirler. Büyük birim hücreler büyük 

hesaplamalar demektir ve ilginç olan da fiziksel sistemlerin tam veya yaklaşık olarak 

büyük birim hücreler tarafından açıklanır olmasıdır[51]. 

 Süperhücrelerde meydana gelen ara yüzeylerin yapılan öz-uyum hesapları ile 

elektronik yük yoğunluğu dağılımlı ve buna bağlı olarak elektrostatik potansiyel 

bulunmaktadır. Geometrik olarak ara yüzeyler (x, y düzlemi) paralel düzlemlerde 

periyodik olduğundan sadece z koordinatının fonksiyonu olarak, 

 


s

dxdyzyxf
S

zf ),,(
1

)(                                                                                           (2.52) 

 

 şeklinde verilir. Denklem (2.52) düzlemsel averaj olarak bilinmektedir. Üç boyutlu 

elektronik yük yoğunluğundan, tek boyutlu olan yük yoğunluğu      ve ortalama 
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elektrostatik potansiyel      elde edilmektedir. Ara yüzey etkisi buradaki periyodik 

fonksiyonlar arasındaki farkla ilişkilidir. Böyle bir farklılık makroskobik averaj tekniği 

ile bulk yapıdaki salınımdan kurtularak geliştirilebilir[52,53]. Bu makroskobik averaj 

klasik elektromagnetizmanın temel bir kavramıdır[54]. 
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BÖLÜM 3 

 

 

SONUÇLAR VE TARTIŞMA 

 

 

Bu bölümde, ele alınan sistemlerin hesaplamaları Quantum Espresso paket 

programı kullanılarak yapılmıştır[55]. Başlangıçta, GaSe ve InSe yarıiletkenlerinin 

kristal özellikleri ve yakınsama çalışmaları verilmiştir. Daha sonra bu sistemlerin z 

yönünde InSe/GaSe bulk heteroyapısı oluşturulmuş ve bu heteroyapının örgü sabiti ve 

toplam enerjisi hesaplanmıştır. Son durumda ise heteroyapının ara yüzeyindeki 

potansiyeli hesaplanmıştır.  

 

3.1 GaSe Kristal Yapısı 

 GaSe, III-A grubundaki Ga ve VI-A grubundaki Se atomlarından oluşur. III-VI 

grubundaki InSe ve GaS bileşikleri gibi tabakalı yapıya sahiptir ve bir tabakası Se-Ga-

Ga-Se dizilimindedir. Bu sistemin birim hücresi, 4 Ga ve 4 Se atomu olmak üzere 8 

atoma sahiptir.  Kimyasal bağlarında güçlü anizotropi vardır[56,57]. Bu gruptaki ikili 

tabakaların sıralanışı bakımından birbirinden farklı politipleri vardır. GaSe’nin tüm 

politipleri (𝛽, 𝛾, 𝜀 ve 𝛿) geniş band aralıklı yarıiletkenlerdir. Bu tez çalışmasında 𝛽-

GaSe politipi ile çalışılmıştır. 𝛽-GaSe yüksek simetriye sahiptir. Uzay grubu    
  olup, 

a=3.730Å =7.051 a.u. ve c=15.90Å =30.06 a.u. örgü parametrelerine sahip hekzagonal 

yapıdadır[11]. Ga ve Se atomlarından oluşan 𝛽-GaSe kristalinin birim hücre yapısı şekil 

3.1’de gösterilmektedir. 
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                                    Şekil 3.1. 𝛽-GaSe birim hücre örgüsü                         

 

 Atomların konumlarına göre yerleştirilmesi  Octave kodu ile yapılmıştır. Birim 

hücre x, y ve z yönlerinde istenildiği şekilde periyodik olarak dizilirse o boyutlarda      

𝛽-GaSe bulk yapısı elde edilebilinir. Bunun örnekleri şekil 3.2’de verilmiştir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Şekil 3.2. 𝛽-GaSe bulk yapısı: a) (1x1x4) ebatlı  b) (4x4x4) ebatlı  

                                        

a) b) 
 : Ga 

: Se 

                 

: Se 

 : Ga 
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3.2 GaSe Yarıiletkeni için Örgü Sabiti ve Yakınsama Hesaplamaları 

Hesaplamalarda öncelikle DFT’nin önemli parametreleri olan kinetik enerji 

kesme değeri(Ecut) ve k noktası(kpoint) yakınsama hesapları yapılmıştır. Bu parametreler 

daha sonra ki hesaplamalar içinde önemlidir. 

 

a) Ecut Yakınsaması 

  Burada farklı kesme enerji değerlerine karşılık gelen toplam enerjiler 

hesaplanmıştır. Sistemin toplam enerjisi belirli bir minimum değere yakınsandığında 

kesme enerjisini daha fazla arttırmaya gerek yoktur. Bu işleme kinetik enerji kesme 

değeri yakınsaması denir. Toplam enerjinin kesme enerjisine göre değişimi şekil 3.3’de 

gösterilmiştir. 
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                 Şekil 3.3. 𝛽-GaSe bulk için toplam enerjinin Ecut’a göre değişimi. 

  

 Şekilden de görüldüğü gibi Ecut değerinin 15 Ry’den sonraki değerlerinde toplam 

enerji değerleri iyi bir şekilde yakınsamaya başlamıştır. Bu değerler arasında uygun Ecut 

değeri 35Ry olarak seçilmiştir. 
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b) kpoint Yakınsaması 

Burada farklı k nokta setleri için toplam enerjiler hesaplanarak şekil 3.4’de 

verilmiştir. Bu hesaplama da örgü sabiti a=3.730Å =7.051 a.u. ve c=15.90Å =30.06 a.u. 

bir önceki aşamada bulunan kesme enerjisi 35Ry kullanılmıştır. 
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       Şekil 3.4. 𝛽-GaSe bulk için toplam enerjinin farklı k noktalarına göre değişimi.  

 

Şekil 3.4 incelendiğinde k noktasının 2’den sonraki değerlerinde ani bir düşüş olduğu 

görülmektedir. 4 ve 4’den sonraki değerler içinde toplam enerji değerleri birbirine çok 

yakındır. Bu k nokta setleri arasından 6 ya da 8 değerlerinden birini almak uygun bir 

seçim olacaktır. Bu yakınsama çalışmalarından sonra k nokta seti (8x8x8) ve kesme 

enerjisi Ecut= 35Ry alınarak toplam enerjinin örgü sabiti a ve c’ye göre değişimi 

hesaplanmıştır.  

 Şekil 3.5’de  𝛽-GaSe bulk yapısının farklı c/a değerleri için toplam enerjinin a 

örgü sabitine göre değişimi verilmiştir. Yakınsamanın daha iyi görülebilmesi için 7-7.6 

değerleri arasında küçük bir grafik eklenmiştir. Buna rağmen karmaşıklığı gidermek 

için yakınsamaya yakın üç c/a değeri grafikleri Şekil 3.6.’da gösterilmiştir. 
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           Şekil 3.5. 𝛽-GaSe bulk yapısının farklı c/a değerleri için toplam enerjinin a   

                            örgü sabitine göre değişimi  
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             Şekil 3.6. 𝛽-GaSe bulk yapısının üç tane c/a değeri için toplam enerjinin a  

                             örgü sabitine göre değişimi  

 

Şekil 3.6 dikkatlice incelendiğinde c/a değeri 4.362 olarak bulunmuştur. Bu değer için 

sistemin toplam enerjisinin a örgü sabitine göre değişimi hesaplanmış ve Şekil 3.7’de 

verilmiştir. 
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      Şekil 3.7. 𝛽-GaSe bulk yapısının c/a=4.362 için toplam enerjinin a örgü sabitine  

                       göre  değişimi  

 

Sonuç olarak c/a=4.362 değeri için minimum enerjiyi veren a örgü sabiti şekil 3.7’de 

7.309 a.u. olarak belirlenmiştir. 

 

3.3 InSe Kristal Yapısı 

 InSe, III-A grubundaki In ve VI-A grubundaki Se atomlarından oluşur. III-VI 

grubundaki GaSe ve GaS bileşikleri gibi tabakalı yapıya sahiptir. Bir tabaka Se-In-In-Se 

dizilimindedir[58]. Kimyasal bağlarında güçlü anizotropi vardır[20,21]. Birim 

hücresinde 4 adet In atomu, 4 adet Se atomu olmak üzere toplam 8 atom vardır. Bu 

gruptaki ikili tabakaların sıralanışı bakımından birbirinden farklı politipleri vardır. 

InSe’nin politipleri 𝛽, 𝛾, 𝜀 ve 𝛿 oluşur. Bu tez çalışmasında 𝛽-InSe politipi ile 

çalışılmıştır. 𝛽-InSe yüksek simetriye sahiptir. InSe kristali rombohedral ya da 

hekzagonal yapıda olabilir. Bu çalışmada uzay grubu    
  olup, a=4.050Å =7.655 a.u. ve 

c=16.929Å =32.003 a.u. örgü parametrelerine sahip hekzagonal yapıdadır[59,60]. In ve 

Se atomlarından oluşan 𝛽-InSe kristalinin birim hücre yapısı şekil 3.8’de 

gösterilmektedir. 
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                                Şekil 3.8. 𝛽-InSe birim hücre örgüsü 

 

 Atomların konumlarına göre yerleştirilmesi  Octave kodu ile yapılmıştır. Birim 

hücre x, y ve z yönlerinde istenildiği şekilde periyodik olarak dizilirse o boyutlarda InSe 

bulk yapısı elde edilebilinir. Bunun örnekleri şekil 3.9’da verilmiştir.    

 

 

 

 

 

 

 

 

 

 

         

  

 

            

                 

                 Şekil 3.9. 𝛽-InSe bulk yapısı: a) (1x1x4) ebatlı   b) (4x4x4) ebatlı   
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3.4 InSe Yarıiletkeni için Örgü Sabiti ve Yakınsama Hesaplamaları 

Hesaplamalarda öncelikle DFT’nin önemli parametreleri olan Ecut ve k noktası 

yakınsama hesapları yapılmıştır. Bu parametreler daha sonra ki hesaplamalar içinde 

önemlidir. 

 

a) Ecut Yakınsaması 

         Burada farklı kesme enerji değerlerine karşılık gelen toplam enerjiler 

hesaplanmıştır. Sistemin toplam enerjisi belirli bir minimum değere yakınsandığında 

kesme enerjisini daha fazla arttırmaya gerek yoktur. Bu işleme kinetik enerji kesme 

değeri yakınsaması denir. Toplam enerjinin kesme enerjisine göre değişimi şekil 

3.10’da gösterilmiştir. 
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             Şekil 3.10. 𝛽-InSe bulk yapısı için toplam enerjinin Ecut’a göre değişimi. 

 

 Şekil 3.10’da görüldüğü gibi Ecut değerinin 15 Ry’den sonraki değerlerinde 

toplam enerji değerleri iyi bir şekilde yakınsamaya başlamıştır. Bu değerler arasında 

uygun Ecut değeri 40 Ry olarak seçilmiştir. 
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b) kpoint Yakınsaması 

Burada farklı k nokta setleri için toplam enerjiler hesaplanarak şekil 3.10’da 

verilmiştir. Bu hesaplama da örgü sabiti a=4.050Å =7.655 a.u. ve c=16.929Å =32.003 

a.u. bir önceki aşamada bulunan kesme enerjisi Ecut= 40Ry kullanılmıştır. 
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        Şekil 3.11. 𝛽-InSe bulk yapısı için toplam enerjinin farklı k noktalarına göre  

                          değişimi. 

 

Şekil 3.11 incelendiğinde k noktasının 2’den sonraki değerlerinde ani bir düşüş 

olduğu görülmektedir. 4 ve 4’den sonraki değerler içinde toplam enerji değerleri 

birbirine çok yakındır. Bu k nokta setleri arasından 6 ya da 8 değerlerinden birini almak 

uygun bir seçim olacaktır. Bu yakınsama çalışmalarından sonra k nokta seti (8x8x8) ve 

kesme enerjisi Ecut= 40Ry alınarak farklı c/a değerleri için toplam enerjinin örgü sabiti 

a’ ya göre değişimi hesaplanmıştır. Bu hesaplamalar sonucu elde edilen değerler şekil 

3.12’de verilmiştir. GaSe sisteminde yapılan yakınsama hesapları bu sistem içinde 

tekrarlanmıştır.  



33 
 

     

7,2 7,4 7,6 7,8 8,0 8,2

-621,88

-621,87

-621,86

-621,85

-621,84

-621,83

-621,82

-621,81

-621,80

-621,79

-621,78
E

(R
y
)

a(a.u.)

c/a=4.08

c/a=4.09

c/a=4.10

c/a=4.12

c/a=4.14

c/a=4.16

c/a=4.18

c/a=4.20

c/a=4.22

c/a=4.24

c/a=4.26

c/a=4.28

c/a=4.30

c/a=4.32

c/a=4.34

c/a=4.36

c/a=4.38

c/a=4.40

c/a=4.42

c/a=4.44

            Şekil 3.12. 𝛽-InSe bulk yapısının farklı c/a değerleri için toplam enerjinin a  

                              örgü sabitine göre değişimi 

 

 Benzer şekilde farklı üç c/a değeri için yapılan hesaplamalar şekil 3.13’de verilmiştir. 

Bu şekilden minimum enerjiyi veren c/a değeri 4.367 olarak belirlenmiştir. Bu değer 

kullanılarak sistemin toplam enerjisinin örgü sabiti a’ya göre değişim hesaplanmış ve 

şekil 3.14’de gösterilmiştir. Şekil incelendiğinde bu değeri karşılık gelen minimum 

enerjiyi veren a örgü sabiti değeri 7.825 a.u. olarak belirlenmiştir. 
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     Şekil 3.13. 𝛽-InSe bulk yapısının üç tane c/a değeri için toplam enerjinin a örgü                    

                       sabitine göre değişimi                         

 

     Şekil 3.14. 𝛽-InSe bulk yapısının c/a=4.367 için toplam enerjinin a örgü sabitine  

                       göre değişimi 

7,0 7,2 7,4 7,6 7,8 8,0 8,2 8,4

-621,88

-621,87

-621,86

-621,85

-621,84

-621,83

-621,82

E
(R

y
)

a(a.u.)

c/a=4.367

 



35 
 

3.5 InSe/GaSe Heteroyapısı  

 z yönünde genişletilmiş InSe/GaSe bulk heteroyapısı ele alınmıştır. Bu sistemin 

örgü sabiti olarak InSe ve GaSe’nin hesaplanarak bulunan örgü sabitlerinin ortalaması 

alınmıştır. Bu örgü sabiti heteroyapının ilk örgü sabiti olarak alınmıştır. Bu 

heteroyapının birim hücre örgüsü ve (2x2x1) ebatlı örgü yapısı sırası ile Şekil 3.15 ve 

Şekil 3.16’da verilmişlerdir. 

 

                     

        

                         

 

 

 

 

 

 

 

 

 

                      

   

                              

                                   

                                 

         3.15. InSe/GaSe birim hücre örgüsü 
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                       3.16. InSe/GaSe sisteminin (2x2x1) ebatlı heteroyapısı   

 

3.5.1 InSe/GaSe Örgü Sabiti Hesabı 

 InSe ve GaSe sistemleri için belirlenen örgü sabiti değerleri aInSe=7.825 a.u. ve 

aGaSe=7.309 a.u. hesaplanmıştı. Bu iki sistem arasındaki örgü sabiti uyumsuzluğu, 

 

|
           

     
|  |

           

     
|                                                                            (3.1) 

 

olarak bulunur. İki yapının arasındaki örgü sabiti uyumsuzluğu   ’den büyük olduğu 

durumlarda InSe ve GaSe örgü sabiti uyuşmayan yapılar olarak adlandırılır. Bu 

yapıların arka arkaya büyütülmesiyle heteroyapı oluşturulabilir. 

 Bu tez çalışmasında InSe ve GaSe yapılarının örgü sabitleri ele alınarak 

modellenen heteroyapı için alınan ilk a örgü sabiti değeri, 

 

           

 
 

           

 
                  Å                                                       (3.2) 
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bulunur. Ayrıca bu sistemlerin ortalama c değeri 33.026 a.u. hesaplandı ve 

heteroyapının c/a değeri ise 8.729 olarak hesaplandı.   

Yukarıda hesaplanan a ve c örgü sabiti değerlerinin yakınlarında değerler 

alınarak yapılan optimizasyonda, farklı örgü sabitlerine karşılık gelen toplam enerjiler 

hesaplanarak InSe/GaSe heteroyapısı için minimum enerjiyi veren a örgü sabiti ve c 

değerleri bulunmuştur. Bulunan a ve c değerleri minimum enerjiyi veren değerler 

olduğu için sistemin denge durumundaki değerleri olarak kabul edilir. Heteroyapı için 

yapılan hesaplamalarda kinetik enerji kesme değeri Ecut=30 Ry, k nokta seti 

kpoint=(6x6x3) olarak alınmıştır. 
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           Şekil 3.17. InSe/GaSe heteroyapısının farklı c/a değerleri için toplam   

                enerjinin a örgü sabitine göre değişimi 

 

Şekil 3.17’den minimum enerjiyi veren c/a değeri 8.769 olarak bulunmuştur. Bu 

c/a değeri kullanılarak sistemin toplam enerjisinin örgü sabiti a ya göre değişimi 

hesaplanmış ve elde edilen veriler şekil 3.18’de verilmiştir. 
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Şekil 3.18. InSe/GaSe heteroyapısının c/a=8.769 için toplam enerjinin a örgü  

                   sabitine göre değişimi 

 

Buradan c/a=8.769 değeri kullanılarak minimum enerji değeri Emin=-1408,826 Ry ve bu 

değere karşılık gelen örgü sabiti değeri a=7.528 a.u. olarak belirlenmiştir. 

 

     Tablo 3.1. Bulk yapılar için hesaplanan parametreler 

 

 Bulk Yapı Örgü Sabiti (a.u.)        c (a.u.)            c/a 

InSe 7.825 34.172 4.367 

GaSe 7.309 31.882 4.362 

InSe/GaSe 7.528 33.026 8.769 

  

Tablodaki verilere bakıldığında InSe/GaSe bulk heteroyapısında InSe örgü sabiti 

7.825 a.u. değerinden 7.528 a.u. değerine sıkışmaya zorlanmaktadır. GaSe örgü 

sabitinin 7.309 a.u. değerinden 7.528 a.u. değerine genişlemeye zorlanmakta olduğu 
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görülmektedir. InSe ve GaSe’un oluşturduğu InSe/GaSe bulk heteroyapısında InSe’nin 

sıkışma etkisi, GaSe’nin ise genişleme etkisi altında olduğu söylenebilir. 

 

3.5.2 Elektrostatik Potansiyel Kayması (Offset) 

Bir heteroyapı, farklı iki yarıiletken maddenin kendi elektriksel ve elektro-

optiksel karakteristikleri olan heterojonksiyon bölgesinde birbirlerine temas etmesiyle 

oluşur. Makroskobik averaj tekniği ile iki yapının ara yüzeyindeki elektrostatik 

potansiyel kaymaları gözlenebilir.  

Sistemin elektrostatik potansiyellerini ve elektronik yük yoğunluğunu 

hesaplamak için öncelikle optimize edilmiş sistemler için relax(gevşeme) hesabı yapılır. 

Bu Kohn-Sham denklemlerinin çözümüne dayanmaktadır. Gevşeme haline dikkat 

edilerek, sistemdeki her bir atom üzerindeki kuvvet sıfır olana kadar, atomların 

konumları değiştirilir ve Kohn-Sham denklemleriyle öz uyumlu olarak çözülür. Daha 

sonra makroskobik averaj tekniği uygulanır. InSe/GaSe heteroyapısının elektrostatik 

potansiyellerinin ortalama değerleri hesaplanarak şekil 3.19’da verilmiştir.  
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          Şekil 3.19. InSe/GaSe heteroyapısının elektrostatik potansiyelinin I. ve II.  

                            ortalamaları 
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Şekilde z yönünde modellenmiş InSe/GaSe yarıiletken heteroyapısının II. 

potansiyel eğrisinde ara yüzeydeki fark  V=0.365 Ry bulunmuştur. Ara yüzeydeki 

potansiyel farktan dolayı bu heteroyapılar düşük boyutta kuantum kuyuları 

oluşturmaktadır. Yarıiletken heteroyapının I. ortalaması ara yüzeyle ilgili bilgi 

vermektedir. II. ortalama ise birinci ortalamanın ortalaması olduğundan ara yüzeyde 

oluşan potansiyel farkı göstermekte ve ara yüzey bilgisinin detayını vermektedir.   

 

3.6 Sonuçlar 

 Öz uyum alan programı kullanılarak yapılan hesaplamalarda hekzagonal 

yapıdaki 𝛽-GaSe ve 𝛽-InSe sistemleri incelendi. Bu yapılar için a örgü sabitleri sıra ile 

7.309 a.u. ve 7.825 a.u. bulundu. Ayrıca hekzagonal yapıyı oluşturan c/a değerleri 

sırasıyla 4.362 ve 4.367 olarak hesaplandı. Bunların hesaplanması yoğun bilgisayar 

kullanımı ve simülasyon hesaplamalarına dayanmaktadır. 

 Bu hesaplamalardan elde edilen bilgiler kullanılarak, z yönündeki InSe/GaSe 

bulk heteroyapısı oluşturuldu. Ayrıca tezin özgün değeri olan bu sistemde yapılan 

optimizasyon hesaplamalar sonucunda a örgü sabiti 7.528 a.u. ve c/a değeri 8.769 

bulundu. Bu yapının elektrostatik potansiyel eğrilerinin I. ve II. ortalamaları 

hesaplanmıştır. II. potansiyel eğrileri arasındaki fark  V=0.365 Ry bulunmuştur.  Bu 

potansiyel farktan dolayı bu heteroyapılar, düşük boyutta kuantum kuyuların 

oluşturmaya elverişlidir. Böylece bu sistemler opto-elektronik ve nano-elektronik 

aletlerin yapımında kullanılacağı düşünülmektedir.                  
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