DUZLEMSEL ORTAMLARDA ELEKTROMANYETIK
DALGALARIN YAYILIMININ FDTDM iLE
ANALIZI

Gokhan OZTURK

Yiiksek Lisans Tezi
Elektrik ve Elektronik Miihendisligi Ana Bilim Dal
Yrd. Dog. Dr. Saffet Gokcen SEN
2014
Her hakki sakhdir



ATATURK UNIVERSITESI
FEN BILIMLERI ENSTITUSU

YUKSEK LiSANS TEZIi

DUZLEMSEL ORTAMLARDA ELEKTROMANYETIK
DALGALARIN YAYILIMININ FDTDM iLE ANALIZi

Gokhan OZTURK

ELEKTRIK ve ELEKTRONIK MUHENDISLiGi ANA BiLiM DALI

ERZURUM
2014

Her hakki sakhdir



BE,
ATATURK ﬁNiVERsiTEsi
FEN BILIMLERI ENSTITUSU

TEZ ONAY FORMU

DUZLEMSEL ORTAMLARDA ELEKTROMANYETH_{ DALGALARIN
YAYILIMININ FDTDM iLE ANALIZIi

Yrd. Dog. Dr. Saffet Gokgen SEN danismanlhiginda, Gokhan OZTURK tarafindan
hazirlanan bu ¢alisma 18/02/2014 tarihinde asagidaki jiiri tarafindan Elektrik-Elektronik
Mihendisligi Anabilim Dali’'nda Yiiksek Lisans tezi olarak oybirligi/oy ¢oklugu (3/0)
ile kabul edilmistir.

Bagkan : Yrd. Dog. Dr. Saffet Gékgen SEN Imza : @QD )
Uye : Yrd. Dog. Dr. Emin Argun ORAL Imza &@N v
Uye : Yrd. Dog. Dr. Tolga AYDIN Imza

Yukaridaki sonucu onayliyorum

—

Prof. Dr. Ihsan EFEOGLU
Enstitii Miidiiri

Not: Bu tezde kullanilan 6zgiin ve baska kaynaklardan yapilan bildirislerin, ¢izelge, sekil ve fotograflarin kaynak
olarak kullanimi, 5846 sayili Fikir ve Sanat Eserleri Kanunundaki hiikiimlere tabidir.



OZET

Yiiksek Lisans Tezi

DUZLEMSEL ORTAMLARDA ELEKTROMANYETIK DALGALARIN
YAYILIMININ FDTDM iLE ANALIZI

Gokhan OZTURK

Atatiirk Universitesi
Fen Bilimleri Enstitiisi
Elektrik-Elektronik Miihendisligi Ana Bilim Dali

Danisman : Yrd. Dog. Dr. Saffet Gokgen SEN

Bu tezde, literatiirde ismini Finite-Difference Time Domain Method (FDTD Method)
olarak alan Sonlu Fark Zaman Kiimesi Metodu yardimi ile 1 boyutta elektromanyetik
dalgalarin diizlemsel ortamlardaki davranmiglart MATLAB kullanilarak bilgisayar
ortaminda incelenmistir. Kayipsiz ortamlarin dielektrik gegirgenlik katsayilarinin
degistirilmesiyle dalganin verdigi tepkiler, TASA kullanilarak, FDTD yontemi ile

bilgisayar ortaminda ¢6ziimlenmistir.
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In this thesis, the propagation of electromagnetic wawes in one dimension is studied by
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1. GIRIS

FDTDM yontemi ilk kez Yee (1966) tarafindan sonlu farklar yoOnteminin
EM(Elektromanyetik) dalga problemlerine uygulanmasi ile literatiirde yerini almistir.
Kullanilan yontemin ismi Finite Difference Time Domain Method olup, metodun bas
harfleri kisaltilarak zamanla FDTDM olarak genel bir kavram haline gelmistir.
FDTDM, uzayin ii¢ noktasinda secilen 3 manyetik alan ve 3 elektrik alanin uzayin ayrik
konumlarinda ayrik zaman araliklarinda hesaplanmasi temeline dayanir (Sevgi 1999).
Yapi istenildigi kadar es hiicrelere boliinerek zamanda iteratif hesaplamalar yapilir.
Kaynak olarak genellikle Gaussian veya siniis kaynaklar kullanilir. Bu yontemin etkin
bir sekilde kullanilmasi i¢in hizli ve yiiksek hafizali bilgisayarlara ihtiya¢ duyuldugu
icin, bu yontem iizerine 1980 lere kadar ¢ok fazla arastirma olmamustir. Bilgisayar
teknolojisinde meydana gelen gelismeler ile FDTDM-‘e olan ilgi 1980’lerden itibaren
giderek artmaktadir (Chew et al. 2001).

FDTDM, iletken malzemeler ve iletken olmayan malzemelerde EM dalganin ilerleyis
analizi; dalga kilavuzu, radar sacilma yiizeyi (RSY) modelleme; rezonator tasarimi;
mikrogerit anten tasarimi; acgik ya da kapali dalga kilavuzlarinda dalga iletimi ve
stireksizlikler; biyolojik dokularda elektromanyetik yutulma hesaplari, mikrodalga firin
simiilasyonu; aktif ve pasif mikrodalga devre analizi gibi alanlarda kullanilmaktadir
(Erol 2007).

FDTDM, Yee’nin c¢alismalar1 ile elde edilen sonuglar zamanla gelistirilerek,
elektromanyetik problemlerinin ¢dziimiinde sik¢a kullanilan bir metod halinde

gelmistir.

Yee, FDTDM’de kaynak olarak baslangic kosullari yaklagimini kullanmigtir. Bu
yaklasim, FDTDM’de baz1 kisitlamalara sebep olmaktadir. Bu kisitlamalar1 kaldirmak
icin kaynak {iretiminde Toplam Alan Sagilan Alan (TASA) kavrami, ilk kez
Merewether and Smith (1980) tarafindan kullanilmistir.



Umashankar and Taflove (1982), uzak alan yakin alan doniistimlerini kullanarak, yakin
sacilan alanlar1 elde etmek icin, kompleks objelerden sa¢ilimi FDTDM ile analiz

etmistir.

Bilgisayarlarin kisitli depolama alanlarindan dolayl, FDTDM yalnizca sinirli alanlarda
kullanilir. FDTDM’de agik sinir elektromanyetik alan yayilimi saglamak i¢in Absorbing
Boundary Condiation (ABC) yani yutucu smir kosullart tanimlanmalidir. Boylece
1zgara sinirlarinda elektromanyetik dalgalar yansimamis olacaktir. Bayliss and Turkel
(1980) tarafindan ilk kez yutucu sinir kosullar1 tanimlanmistir. Yutucu sinir kosullarinin
FDTDM’de uygulanmasi ise Mur (1981) tarafindan gerceklestirilmistir. Higdon (1986)
tarafindan ¢ok boyutlu dalga denklemi i¢in, FDTDM ile yutucu smnir sartlari
saglanmistir. Higdon (1987), ek olarak bir boyuttaki diferansiyel operatorleri
ayriklastirmis ve bunlar1 sinir sartlarinin ayriklastirilmasinda kullanmistir. Ramahi
(1997), FDTDM simiilasyonunda hesaplama kiimesinin bitiminde sanal simnirlarda

olusan yansimalar1 yok etmek i¢in metod gelistirmistir.

Yutucu smir kosullarinin gelistirilmesine yonelik Berenger (1994) tarafindan, PML
(Miikemmel Uyumlu Tabaka) yutucu sinir kosullar1 ilk kez ortaya atilmistir. PML
tabakasi, FDTDM hesap uzayinin her tarafini kaplayan sanal bir yutucu tabakadir. PML
tabakasi ile her a¢1 ve frekansta dalgalarin yutulmasi saglanmaktadir. PML, FDTDM
1zgarasindan yansiyan dalgalar1 eksponansiyel olarak azaltabildigi i¢in, cok daha iyi
sonuclar vermektedir. Caligsmalarina devam eden Berenger (1996), bosluk kosullari i¢in
PML tasarlamistir. Bu ¢aligmanin devami olarak Berenger(1996) ii¢ boyutlu bir PML
tasarlamistir. Teixeira and Chew (1997), FDTDM ile silindirik ve kiiresel koordinatlar
icin PML tasarlamiglardir. Gedney (1996) tarafindan ilk kez tanitilan UPML (Tek
eksenli milkkemmel uyumlu tabaka) ile Berenger’in PML yontemi daha da
gelistirilmistir. UPML ile PML yo6nteminin modelleyemedigi, kayipli dagitici ortamlar

da modellenebilmistir.

FDTDM simiilasyonlarinda smir kosullart hesaplamalarinda, sinirlar uzun siire dik

koordinat sistemlerinde ifade edilebilir olarak kabul edilmistir. Boyle olmayan FDTDM



siir yapilari i¢in dik olmayan grid (nonorthogonal grid) yapist ilk kez Holland (1983)
tarafindan tasarlanmistir. Sheen (1991) tarafindan, sdzde diizgiin olmayan grid (quasi-
nonuniform) FDTDM algoritmalar1 tanitilmistir. Bu yontemle grid boyutu {i¢te birine
indirilmistir. Tulintseff (1992), bu yontemi mikrodalga akim ve anten problemlerine
uygulamistir. Zivanovic et al. (1991), FDTDM 1zgarasi i¢in alt 1zgara tanimlayarak
(subgridding) bilgisayarda fazla yer kaplayan grid alani, daha kiigiik 1zgaralama yaparak

azaltmustir.

FDTDM‘in gelisen teknoloji ve diisen bilgisayar fiyatlari ile popiiler hale gelmesini,
1989 yilindan itibaren FDTD metodu kullanilarak yapilan makale (SCI ve SCIE)

sayilarina bakarak anlayabiliriz.
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Sekil 1.1. 1989-2013 yillar1 arasinda FDTD metodu kullanilarak yapilan makale sayilar

FDTDM ile birgok alanda uygulamalar yapilmistir. En ¢ok uygulama, biyomedikal ve
yeralt1 niifuslu radar(YNR) alanlarindadir.




Biyomedikal alaninda FDTDM ile iki temel amag iizerinde arastirmalar yapilmistir.
Bunlardan birincisi elektromanyetik alana maruz kalan viicut dokularinin zarar
gorebilecegi elektromanyetik alan esik degeri ile alakali giivenlik degerlendirmesidir.
Diinya genelinde RF (Radyo Frekansi) giivenlik standartlarinin belirledigi degerler,
dokularin elektromanyetik alan enerjisini absorbe etme degerlerini belirten SAR
(Specific Absorption Rate) agisindan, elektromanyetik alana maruz kalma sinirlarini
asmamalidir. Uzak alan ya da yakin alana maruz kalma sartlar1 agisindan insan bazl
dokular etkileyen SAR oranlarin1 hesaplamak i¢in FDTDM kullanilmaktadir. 100 kH e
kadar diisiik frekanslar i¢in SAR ‘lar genellikle goz ardi edilir ve biyolojik uygunluk i¢in
indiiklenen akim yogunluguna bakilir (Taflove 1998).

Gandhi (1995) yakin ve uzak alanlar i¢in viicudun maruz kaldigi akim yogunlugunu

FDTDM ile doz 6l¢limleri yaparak hesaplamistir.

Biyomedikal alaninda FDTDM’in ikinci en yaygin kullanim alani kanser tedavisinde
hiperterma sistemleri gibi fiziksel elektromanyetik alan sistem dizaynidir. Son yillarda
yapilan ¢aligmalarla tiimorlii ve kanserli viicut dokularinin yiiksek sicaklikla
ilerlemesinin durduruldugu hatta bu sekilde kanserin tedavisinin tamamen yapildigi
ispatlanilmistir. Insan viicudu heterojen yapiya sahip oldugu igin sadece kanserli
dokularin gerekli manyetik alan ile doyurulmasi islemi olduk¢a zordur. Kétii huylu
kanser olarak adlandirilan kanserlerin X-ray goriintiileme teknigi olan mamaogram ile
fark edilmesi oldukg¢a zordur. Ayrica MRI (Magnetic Rezonans Images) in maliyetli
olmasi ve tedavi siirecinde hastanin X-ray 1sinlarina maruz kalmasi kanser tedavisi igin
alternatif yontemlerin arayisina sebep olmus, FDTDM ile bu dogrultuda bircok
arastirma yapilmistir (Karpat 2009).

Converce et al. (2006), mikrodalga hipertermi‘de dar band ve ultra genis band
mikrodalganin hangisinin meme kanseri i¢in daha etkili oldugu iizerine ¢alismislardir.
Gogiis lizerine yerlestirilen iki anten dar band ve genis band sinyalleri gogse génderip
sonuclari FDTDM ve MRI ile kiyaslamiglardir. Sonu¢ olarak genis bandl

mikrodalgalarin dar bantliya gore daha iyi odaklandigi ve sicak noktalar1 azalttigi



goriilmiistiir. Miyazaki and Kouno (2009), bilgisayarli goriintii islemenin medikal
uygulamasi iizerine calisip FDTDM ile optik dalgalarin gogiis icindeki dokulardaki

yayilimini simiile etmistir.

Tofighi (2009), FDTDM kullanarak biyolojik dokular i¢in 0,5-30 GHz frekans araligi
icin Cole-Cole dagilim modelinin rahatlama zamaninin simiilasyonunu yapmustir.
Rahatlama zaman dagilimi, tek terimli cole cole baginitisinda ¢ok terimli cole cole
bagintisina gore daha iyi sonug vermistir. Costen and Bérenger (2009), koblosuz aglarin
insan viicuduna olan etkisini goérmek istemis ve FDTDM ile Huygens teknigini

kullanarak elektromanyetik dalganin dokulardaki dagilimini gozlemlemistir.

Drezek et al. (2000), biyolojik dokularin 1s1k sagim ozelliklerini hesaplamak igin pulse
cevap teknikleri ile FDTDM’1 birlestirmistir. Elde edilen veriler ile Mie ¢oziimlerinden

daha iyi sonuglar elde etmistir.

Sullivan (1990), hipertermi i¢in kaynak tasarlamis ve bu kaynak ile derin yerlere nufiiz

eden kanser i¢in FDTDM ile niimerik sonuglar elde etmistir.

Hagness et al. (1998) tarafindan yapilan c¢alismada FDTDM ile dokularin
heterojenligine ragmen zamanda siiziilme teknigi ve ortak odak noktasi sistemi
kullanilarak 2mm‘den daha kii¢iik tiimoriin algilanmasi saglanmigtir. Li and Hagness
(2001) bu calismanin devami olarak FDTDM ile modellenen yap: iizerine yapay bir
odak noktas1 koyarak kotli huylu kanserlerin teshisini kolaylastirmistir. Bu calismalara
yakin ¢alismalar Fear et al. (2002) tarafindan diizlemsel ve silindirik antenler
kullanilarak hastanin sirtiistli veya yiiziistii durumlarina gore enine ve boyuna goriintii

kesitleri alinarak 1cm‘den kiigiik timoriin tespiti saglanmistir.

Saglikli dokular ile tiimorli dokular mikrodalgaya maruz birakildiginda farkli
elektriksel oOzellikler gostermektedir. Bindu et al. (2006) dokularin bu 6zelliginden
yararlanarak dokulara gonderilen elektromanyetik dalgalarin 6lgililen ve yansiyan

isaretlerini kullanarak FDTDM ile timor tespiti yapmuistir.



FDTDM ile YNR (Yeralt1 Nufuzlu Radar) alanlarinda yapilan ilk ¢alismalar Bourgeois
and Smith (1998)’e aittir. Yapilan bu caligmalar mayin tespit amachdir. FDTDM ile

simiilasyonu yapilan bélgenin altindaki mayinin konumu elde edilir.

Teixeira et al. (1998) tarafindan homojen olmayan, dispersiyon igeren, iletken toprak
yapisinda ii¢ boyutlu bir YNR sistemi simiilasyonu tasarlanmistir. Toprak, Lorentz ve
Deby modelleriyle modellenmistir.

Giirel ve Oguz (2001), homojen olmayan, kayipli ve piiriizlii bir zemin simiilasyonu
tasarlayip, simiilasyonda zemin igerisinde gomiilii nesnelerin konumunu FDTDM ile

hesaplamistir.

Giirel ve Oguz (2003), 2001°de homojen olmayan kayipli ortam i¢in yapmis olduklar
simiilasyon tizerinden giderek, ortam {izerinde 2 verici anten ve 1 alic1 anten koyarak
yer altinda bulunan cismi tespit etmeye calismislardir. Antenler aras1 acikligin etkileri,

farkl1 YNR’ler lizerinde incelenmistir.

Uduwawala et al. (2005), Debye modeli ile bow-tie anteni kullanarak kayipli ve daginik

YNR ortami tasarlamistir.

Bu tezde, FDTDM ile diizlemsel, homojen ve kayipsiz ortamlara gonderilen bir boyutlu
elektromanyetik alanin, diizlemsel ortamlardaki hareketlerinin MATLAB ile
simiilasyonu yapilmistir. Birinci kisimda, FDTDM’in gelisimi ve uygulama alanlar ile
alakal literatiir taramas1 verilmistir. ikinci kistmda, bir boyutlu skalar dalga denklemi
tanitilip, sonlu farklar a¢ilimi yapilmistir ve sonlu farklar yonteminin bir boyutlu dalga
denklemini tam olarak ¢ozdiigii gosterilmistir. Uciincii kisimda, Sonlu farklarm
Maxwell denklemlerine uyarlanmis hali olan FDTDM tanmitilip, bir boyuttaki
elektromanyetik dalgalarin FDTDM ¢6ziimi yapilmistir. FDTDM’de kullanilan kaynak
tipleri de tamitilip, her biri icin MATLAB’ta program yazilarak simiilasyonlar
yapilmustir. Ayrica sert kaynak Kullanilarak, elektromanyetik dalgalarin PEC ve PMC

tabakalarindan nasil yansidiklart goézlemlenmistir. Dordiinci kisimda, dielektrik



malzemeleri farkli olan birden fazla diizlemsel, homojen ve kayipsiz ortamlara bir
boyutlu elektromanyetik dalga gonderilerek, bir boyutta FDTDM simiilasyonu ile

elektromanyetik dalgalarin ortamlardaki hareketleri gézlemlenmistir.



2. KURAMSAL TEMELLER

FDTDM, Maxwell denklemlerindeki tiirev operatoriiniin = sayisallastirilmas: ile
olusturulur. Sayisallastirma islemi sonlu farklar algoritmalar1 ile yapilir. Bu kisimda,
bahsi gecen sonlu farklar algoritmalar1 tanitilip, 1 boyutta dalga denklemi ¢6ziimii
anlatilacaktir. Dalga denkleminin sonlu farklar acilimi yapilacak ve FDTDM‘in bir

boyutta dalga denklemini sagladig1 gosterilecektir.

2.1. Tiirevin Sonlu Farklar ifadesi

f fonksiyonun x = x, merkezli Taylor serisi agihmmm x, +6/2 ve xo—38/2

noktalarinda yapilmis hali asagidaki gibidir:

) 8 N 106\
fxo+5) = Fa) + 500 +5:(5) P +5(5) FO@)++ @D

) ) N 1/6\°
fx-3) = fo0) =5 f D) +5(5) P -5(5) O+ @2)

f™(x,), f fonksiyonun n. dereceden x‘e gére tiirevinin x = x,, ‘da hesaplanmasim

temsil eder. (2.1)’den (2.2) ¢ikarilirsa

FlrtD)- r(n-2)= ooy +2 () fo+- @y

Esitlik & ile boliiniirse;

) ) 5
f(x0+7)_ f(xo_f) — f(l)(xo)-l-%é‘f(;# 4 .

(2.4)



(2.4)%in sol tarafindaki terim, fonksiyonun x, noktasindaki tiirevi, §2 li bir terim ve
gosterilmeyen sonsuz sayida terimin toplamina esittir. Sonraki gosterilmeyen ilk terim
5% ‘e baghdir ve tiim siradaki gosterilmeyen terimler § ’nin daha yiiksek dereceden

terimlerine baghdir. Kiigiik bir diizenleme ile bu iligki asagidaki sekilde ifade edilir;

5 5
=f(x° +2)~ fln-3) + 0(5%) (2.5)

X=Xo 6

df (x)
dx

Biiyiik O sembolii, gdsterilmeyen tiim terimleri temsil eder ve parantez i¢indeki 62, bu
gizli terimlerde 6§ ‘nin en biiyiik katkisin1 gosterir. Eger §’nin yeterince kiigiikse, tiireve
uygun bir yaklasim, biiyiik O terimi tarafindan temsil edilen tiim terimler yok sayilarak

elde edilebilir (Schneider 2012).

af (x)
dx

= _ _ (2.6)

X=Xo 6

2.2. Bir Boyutta Skalar Dalga Denklemi

Bu kisimda 1 boyutta skalar dalga denkleminin, dalga hareketini tanimlayan basit kismi
diferansiyel esitligin FDTDM ¢oziimii incelenecek. Ilk olarak dalga denklemi elde
edilip, daha sonra sonlu farklar uygulanacaktir. Bir boyutta skalar dalga denkleminin
FDTDM c¢oziimii agirlikli olarak, Taflove and Hagness (2005)’dan refans alinarak

aciklanmustir.

2.1.1. Dalga Denkleminin Coziimii

Bir boyutta skalar dalga denklemi asagidaki gibidir.

0’u  ,0%u
F: C ﬁ (27)



10

burada u = u(x, t) ‘dir. t zamani; x konumu temsile eder. ¢ 1s18in serbest uzayda
yayllma hizidir. Bu denklemin dalga denklemi oldugunu ve c¢oziimiin de dalga
fonksiyonlar1 oldugunu géstermek i¢in u(x, t) ‘yi asagidaki gibi ifade edelim.

u(x,t) =F(x+ct) + G(x — ct) (2.8)

F(x + ct), —x yoniinde ¢ hiziyla yayilan skalar dalgayi; G(x — ct) de +x yoniinde ¢
hiziyla yayilan skalar dalgay1 temsil eder.

(2.7)‘de u(x, t) ile ilgili ifade yerine konursa

du dF(x+ct)d(x + ct) N dG(x — ct) d(x — ct)
ot d(x +ct) ot d(x — ct) ot

=cFD(x+ct) —cGV(x = ct) (2.9)

0’u  dFO(x+ct)d(x+ct) dGD(x —ct)d(x —ct)

otz < d(x +ct) ot “Tdlx —ct) at

2

u
577 = COFP G+ ct) = c(=)6P(x — ct)

= c2F@(x + ct) + c26P (x — ct) (2.10)

u dF(x + ct) d(x + ct) N dG(x — ct) 0(x — ct)
dx  d(x +ct) 0x d(x — ct) 0x

=FD(x +ct) + 6D (x —ct) (2.11)

0%u _ dFW(x +ct) 0(x + ct) N dG™® (x — ct) d(x — ct)
ax2  d(x+ct) dx d(x — ct) 0x

d%u
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elde edilir. (2.7)‘de sirasiyla yerine yazilirsa,

PF@(x +ct) + 6P (x —ct) = ?[FP(x + ct) + 6P (x — ct)] (2.13)

elde edilir. Boylece (2.7)‘nin bir dalga denklemi oldugu, u(x,t) ‘nin de bir dalga

fonksiyonu oldugu gosterilmis olur (Taflove and Hagness 2005).

2.1.2. Skalar Dalga Denklemine Sonlu Farklar Yaklasimi

(x, t) uzaymnn (x;, t,) noktasi etrafinda u(x, t)‘nin x’e gore Taylor agilimi asagidaki

gibidir.

u (Ax)? 0%u (Ax)3 03u
ux; + Ax) ¢, = Ulx,e, + Axa lx,tn > 3% lx,tn 6 3 lxcs 60
(Ax)* 0*u )14
24 ox* f1tn (2.14)

Burada en son terim olan hata terimindeki &;, (x;, x; + Ax) araliginda herhangi bir yerde
konumlanmis x noktasidir. Benzer sekilde (x; — t,,) noktas1 etrafinda x‘e gore Taylor

serisi acilimi yapilirsa,

ou (Ax)? 0%u (Ax)3 03u
ulx; = Ax)|¢, = wlx,e, — Axa lx; 6 T 32 it T TG 33 it
(Ax)* 0*u
24 9t latn

(2.15)

Hata terimindeki &,, (x;, x; — Ax) araliginda konumlanmis herhangi bir x noktasidir. Bu

iki denklemi toplanirsa
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0%u (Ax)* 0%u

u(x; + Ax) g, +ulx; — AX)|g, = 2uly,,, + (Ax)? 32 lx, 6, + 12 95t P

(2.16)

Elde edilir. Ortalama deger teoremine gore &3 , (x; — Ax,x; + Ax) araliginda

konumlanmig herhangi bir x noktasidir. Terimler tekrar diizenlenirse,

0%u u(x; + Ax) — 2u(x;) + u(x; — Ax)

t =
dx? ot Ax?

le, + O[(Ax)?] (2.17)

elde edilir. O[(Ax)?] terimi hatayr gostermektedir ve kiigiik bir Ax igin, ¢ok kiiciik
oldugundan ihmal edilir. Bu denklem asagida daha kisa ve genel formda ifade

edilmistir.

0%u uly, —2ul +ult,
dx2 Xitn Ax?

+ 0[(A%)?] (2.18)

Bu sonlu farklar ifadesinde u', nAt zamaninda ve iAx konumunda hesaplanan dalgayi

gosterir.

(x, t) uzaymnn (x;, t,) noktasi etrafinda u(x,t)‘nin t’ye gore Taylor agilimi asagidaki

gibidir.

ou (At)?2 0%u (At)3 03u

u(ty +At) |y, = uly,e, + At— P — 32 lx,tn T % e lx;tn

(AD)* 0*u
24 3¢t s

(2.19)

Burada en son terim olan hata terimindeki &;, (t,, t, + At) araliginda herhangi bir
zamanda konumlanmis t noktasidir. Benzer sekilde (x; — t,,) noktasi etrafinda t‘ye gore

Taylor serisi ac¢ilimi yapilirsa,
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(At)2 9%u (At)3 83u

ou
u(ty, — A |y, = Ulx,e, — Ata P S 3T T 3@ lxes b

(A)* 0*u 220
24 9r% e (220)
(2.19) ve (2.20) toplanirsa,
,0%u (A)* 0*u
u(ty, + At) |y, + ulty — Ay, = 2uly,¢, + (AD) Frel lx, e, + T2 3t le,e, (2.21)

elde edilir. Ortalama deger teoremine gore &3 , (t, — At t, + At) aralifinda

konumlanmis herhangi bir t noktasidir. Terimler tekrar diizenlerse,

0%u u™t —2ul +ul !
Frel iyt = — Atlz — + 0[(AD)?] (2.22)

elde edilir.

(2.18) ve (2.22)‘deki iki merkezi farklar ifadesi bir boyutta skalar dalga esitliginde

yerlerine yazilirsa,

u™t —2ul +ul

[ i Uipq — 2u; + Uiy
At?

Ax?

+ 0[(AD)?] = ¢?[ + 0[(Ax)?] (2.23)

elde edilir. Bu denklem, u*** igin ¢oziiliirse

n n n
i1 — 2 Uiy
Ax?

ul = (cAt)? ¢ +2ul —up 7t + 0[(AD2] + O[(Ax)*]  (2.24)

elde edilir. Burada O[(At)?] ve O[(Ax)?] terimleri hatalar olup ihmal edilebilecek kadar

kiigiiktiir. Dolayistyla u*** ifadesi
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n n n
i1~ 2U; Uy
Ax?

u
u™t = (cAt)? + 2ul —ul ! (2.25)

olarak diizenlenebilir. ul****i elde etmek igin n-1 ve n.’ci zamanlardaki degerlere ihtiyag

vardir. Bu denklem, skalar dalga esitliginin FDTDM ¢06ziimiinde problem uzayi

boyunca kullanilir.

cAt/Ax = 1 oldugu durum i¢in yani sihirli(magic) zaman adimi1 durumu i¢in (2.25)’in

sag tarafi tekrar diizenlerse

uly, —2ul +ult H2ul —ul =l A, —ultt (2.26)
elde edilir.
u(x,t) = F(x + ct) + G(x — ct) esitligi (2.26)da kullanilirsa

— n n-—1
= Ul + Uiy - uj

= [F(xip1 + cty) + G(xpp1 — ctn)] + [F (o + cty) + G(ox—q — cty)] =
FI(x; + cty_1) + G(x; — ctpy)] (2.27)

elde edilir. Sag tarafin agilmis hali,

[F(( + 1)Ax + ncAt) + G((i + 1)Ax — ncAt)] + [F((i — 1)Ax + ncAt) +
G((i + 1DAx — ncAt)] — [F((iAx + (n — 1)cAt) + G(idx — (n — 1)cAb)] (2.28)

seklindedir. Sihirli adim 6zelliginin, cAt = Ax, (2.28)‘de kullanilmasi
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[F(G + 1)Ax + nAx) + G((i + DAx — nAy )| + [F(( — 1)Ax + nAx) +
G((i + 1)Ax — nAx)| — [F((iAx + (n — 1)Ax) + G(iAx — (n — 1)Ax)] (2.29)

=[F(((+1+nAx)+G6((+1—n)A)]+[F(I-1+n)Ax)+G6G((I—1—
n)Ax)] — [F(({ +n—1DAx) + G((i —n + 1)Ax)] (2.30)

=[F(I(+1+n)Ax)+G((I —1-n)Ax)] (2.31)
ile sonuglanir. ul*** fonksiyonunun matematiksel ifadesi asagidaki gibi bulunabilir.
ul™t = [F(x; + Ctpiq) + G(ox; — Ctyyq)]

= F((iAx + (n+ 1)Ax) + G(iAx — (n + 1)Ax)

=[F(({+1+n)Ax)+G((i —1—n)Ax)] (2.32)

(2.31) ile (2.32) yani, (2.31) ile u/"*' tamamen aynidir (Taflove and Hagness 2005).
Yani sihirli adimda, FDTDM esitligi, yani (2.25), skalar dalga denklemini yaklasik

olarak degil de tam dogru olarak ¢ozer.
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3. MATERYAL ve YONTEM

Bu kisimda, Yee‘nin Maxwell denklemlerine uyarladigi ve ismi literatiirde FDTDM
olarak gecen yontem, Maxwell denklemleri lizerinden anlatilacaktir. Bu tezde 1 boyutta
calisildigi i¢in, Maxwell denklemlerinin 1 boyutlu halleri dikkate alinacaktir. 1 boyutlu
diizlem icin elde edilen elektrik ve manyetik alan ifadelerine FDTDM agilimi
uygulanacaktir. FDTDM‘in kararli ¢alisabilmesi i¢in kararlilik kriteri ve FDTDM‘de
kullanilan kaynak tipleri anlatilacaktir. Bu boliimiin hazirlanmasinda agirlikli olarak

Schneider (2012)’den yararlanilmistir.

3.1. FDTDM

FDTDM elektromanyetik problemleri ¢dzmek igin kullanilan tam dalga teknikleri
arasinda uygulama ac¢isindan tartismasiz en basit ve popiilerlerinden biridir. FDTDM ile
yalnizca bir simiilasyonla genis frekans araligindaki EM dalgalarini zaman kiimesinde

dogrudan analiz etmek miimkiindiir (Schneider 2012).

FDTDM tiirev operatoriiniin sayisallastirilmasina dayanir. Bu metodla Maxwell’in

esitliklerinde belirtilen konumsal ve zamansal tiirevlerin her ikisi de sayisallagtirilir

(Sevgi 1999).

3.1.1. Maxwell Denklemlerinin 1 Boyutta FDTDM icin Ozellestirilmesi

Maxwell denklemlerinden Faraday ve Amper Kanunlari, o iletkenligine sahip kaynaksiz

bir ortam i¢in

——VXE (3.1)
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% _loyii-75 3.2
it ¢ € 3.2)

seklindedir.

Faraday ve Amper kanunlarinin Kartezyen koordinatlarda yazilmis hali asagidaki

gibidir.

0H  1[_(90E, 0E, +A(6Ex aEZ)_I_A dE, OE, (3.3)
at ,ux oy 0z Yoz ~ox) T\ ox oy '

0E 1[_(dH, 0H,\ _(0H, 0H,\ _(dH, 0H,
——=—|x —— |ty ( - ) +Z|————
at ¢ dy 0z 0z 0x dx dy

o— ~ ~ N
-2 (RE, + 9E, + ZE,) (3.4)

Karsilikl1 bilesenler birbirine esitlendiginde asagidaki denklemler elde edilir.

0H,  1(0E, OE, .
at  u\dy 0z (3:5)
oH, 1 (6Ex aEZ) 36
at  u\dz ox (3.6)
0H,  1(9E, OE, .
at  u\dox dy (3.7)

dE, 1(0H, OH
"=—< ——y—aEx> (3.8)
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dE, 1(0H, 0H,
ot _E( 9z ox _"Ey> (39)
dE, 1(dH, 0H,
3t 7(%‘@“’@ (3.10)

Bu 6 denklem, FDTDM’in iskeletini olusturur. Yalnizca x yoniinde degisimin oldugu 1-
boyutlu uzayr dikkate alalim ve elektrik alanin sadece z yoniinde bir bilesene sahip
oldugunu varsayalim. Faraday kanunu yeniden yazilirsa, sadece d/dx oOperatorii ve E,

elektrik alaninin sifir olmadig1 durum ile

0H, OE,
Hor T ox

(3.11)

elde edilir. Boylece H,,, manyetik alanin sifir olmayan bileseni olmak zorundadir. Yine
sadece 0/0dx operatoriiniin ve H, manyetik alan bileseninin sifir olmadigi durum igin

Ampere kanunu yazilirsa,

0E, 0H,
ot Ox

¢ (3.12)

elde edilir ( Taflove and Hagness 2005).

3.1.2. Bir Boyutta FDTDM Algoritmalari

Denklem (3.11), elektrik alanin konum tiirevini, manyetik alanin zamansal tiirevini
icerir. Denklem (3.12), manyetik alanin konumsal tiirevini, elektrik alanin zamansal
tiirevini icerir. ilk esitlik manyetik alanin ve ikinci esitlik de elektrik alanin zamanda
ilerletilmesi icin kullanilabilir. Once bir alan daha sonra diger alan iteratif olarak

ilerletilir ve bu metoda leap-frog metodu denir.
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Bir sonraki adim bu denklemlerde tiirev operatorleri ile sonlu farklarin yer
degistirmesidir. Bunu yapmak icin zaman ve konum kiimelerinde ayriklastirmaya

ihtiyag vardir.

Elektrik ve manyetik alanlarin bir boyutta zaman ve konum kiimesinde dérneklenmis hali
Sekil 3.1°de goriilebilir. Sekil 3.1°de kullanilan semboller asagidaki gibi tanimlanir
(Schneider 2012).

E,(x,t) = E,(mAx, qAt) = E][m] (3.13a)
H,(x,t) = H,(mAx, qAt) = H} [m] (3.13h)
Zaman
PaN PN
HIPPm =372 HIPPm-1/2]  HIPm+1/2]
° ° °
Ef  m—1] E} " [m] Ef" m+1]
PaN PaN
HIT Y2 [m - 3/2] HIY2 m - 1/2] HIY[m + 1/2) I Gelecek
q o q q o
E[m — 1] E%[m] «’» Ef[m + 1] Gegmis
Zrs Zx Z » Konum

HIT Y m=3/21  HI Y m-1/21 HIYm+1/2)

Sekil 3.1. Orneklenmis konum-zaman uzayinda Faraday kanununun sonlu farklarla
yazildig1 nokta gosteriliyor
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Ax, konum eksenindeki 6rnekleme periyodu, At ise zaman eksenindeki O6rnekleme
periyodudur. m indeksi, konum adimini, g indeksi de zaman adimini ifade eder. Sekil
3.1’de kesikli ¢izginin altindaki alanlar ge¢cmis yani hesaplanmis alanlari, kesikli
cizginin Ustiindeki alanlar ise gelecek alanlari yani heniiz hesaplanmayan alanlari
gosterir. FDTDM algoritmalar1 gegmis alanlardan gelecek alanlarin bulunmasini saglar.
Sekil 3.1’de gegmis alan bolgesinde isaretlenen ((m + 1/2)Ax,qAt ) koordinath
noktada Faraday kanunu asagidaki gibi yazilabilir.

oH, dE,

H e mebarase = Gy (med)araqae (3.14)

Zamansal tiirev operatdrii ve konumsal tiirev operatorii sonlu farklar ile yer degistirirse,

1/2 1 —1/2 m
I [m+7]—H§ Im +1/2] _ E}fm+1]— E][m]
. ! _ - (3.15)

denklemi ortaya cikar. H;’ *1/2 [m + %] i¢in denklemi ¢ozersek,

+1/2 1 -1/2 1 At
Y2 mo 5] = B [m o4 3]+ DB D+ 1] - B Dm)) (3.16)
bulunur (Schneider 2012). Bu denklem, H,, nin gelecek bir zaman aninda bulunabilmesi
icin gegmisteki H, ve E, degerlerine ihtiyag oldugunu gosterir. Iteratif olarak tiim

diigiimlere, yarim zaman adimu ilerletilerek denklemler uygulanir.

Sonraki asamada, Ampere kanunu, Sekil 3.2°de gosterilen kesikli ¢izginin altinda

bulunan, yani gegmis zaman bolgesinde gosterilen nokta igin yazilir.
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Zaman
PaN PaN
PP m =372 HIPPm—-1/21  HIPm+1/2]
° ° °
EJ*'m —1] EI ' m] EX ' m + 1] I Gelecek
- ‘ o l Gegmis
HI 2 [m - 3/2] HIYm—1/2]  HT'?[m+1/2]
° °
El[m —1] EJ[m] EJ[m + 1]
T — — > Konum

HIT Y m—-3/21  HI Y m-1/21  HIVm+1/2]

Sekil 3.2. Orneklenmis konum-zaman uzaymnda Amper kanununun yazildig1 nokta
gosteriliyor

oF, _0H,
£ ot lmAx,(q%)At T TOx 'mAx(q+At (3.17)

denklemi elde edilir. Zamansal tiirev operatorii ve konumsal tiirev operatorii sonlu

farklar ile yer degistirirse,

1 1
CI+§ 1 Q+§ 1
ES*[m] — Ef[m] Hy Z|m+5|—Hy 2[m—5]
e = (3.18)
At Ax

denklemi ortaya ¢ikar. EZ™'[m] i¢in denklemi ¢ozersek,
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1

Hi? [m + %] - H;”% [m - %]] (3.19)

y

bulunur (Schneider 2012). Bu denklemden anlasilacagi iizere E, nin bulunabilmesi igin

gegmis zamanlardan elde edilen E, ve H,, lerin bilinmesi gerekir.

Sekil 3.2°deki kesikli ¢izgiye en yakin, gelecek zaman kiimesindeki alanlar, q+1
zamaninda bulunan elektrik alanlardir. Denklem (3.19) g+1 zamani i¢in her diigiime
uygulanir ve elektrik alanlar hesap edilir. Bu islemden sonra kesikli ¢izgi q+1 ile q+3/2
arasina gelecek sekilde yarim adim ilerletilir. Son durumda kesikli ¢izgiye en yakin
gelecek zaman kiimesindeki alanlar, q+3/2 zamaninda bulunan manyetik alanlardir ve
bu zaman boyunca tiim alanlar denklem (3.16) kullanilarak hesap edilir. Belirlenen
zaman boyunca zamanda yarim adim ilerletilerek, 1zgara yapisindaki FDTDM

modelinde bulunan tiim elektrik ve manyetik alanlar hesap edilir.

3.1.3. FDTDM Kararhlik Kriteri

(2.7) 1ile belirtilen skalar dalga denklemi, eger simirli girise karst smirli ¢ikis
iiretebiliyorsa, (2.7)’nin (2.25)’deki gibi sayisal ¢6ziimii kararlidir.

Uzayda yayilan dalga 151k hizindan daha hizli yayillamaz. Dolayisiyla FDTDM
1zgarasinda elektromanyetik dalga minimum hiicre mesafesini At = Ax/c zamaninda
alir. Yani, At’nin maksimum degeri, Ax/c’dir. Bir FDTDM simiilasyonunun kararl

olabilmesi i¢in agagidaki kosulun saglanmasi gerekir (Taflove and Hagness 2005).

cAt
S.=—<1 )
c= oS (3.20)

S ile gosterilen ifadeye Courant sabiti ad1 verilir. Courant sabitinin kararhilik kriterini
sagladig1 ve saglamadigi durumlar i¢in Gaussian isareti, Sekil 3.3, Sekil 3.4 ve Sekil

3.5’de gosteriliyor.
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Ez(50)
1.2¢ r

0.8

0.6

Genlik
\

0.4

m

-0.2 5 L 5 L . . 2 -
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Konum, x
a)
Ez(50)
1.2¢ r

i

|

0.4

O.z / \ ANAAANA AN
\/ VV YV VYUV

Genlik

0 20 40 60 80 100 120 140 160 180 200
Konum, x

b)

Sekil 3.3. a) g=50. zaman adiminda kararlilik kriterinin, S, nin, 0.5 olmast durumunda kare
dalga isaretinin yayilmasi b) q=50. zaman adiminda kararlilik kriterinin, S.’nin, 0.5 olmasi
durumunda Gaussian isaretinin yayilmasi
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Ez(50)
1r /\ r
|
|
||
0.6
|
S 0.5
. |
0.4 \
0.3 / \
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0.1
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Konum, x
a)
Ez(50)
1.5 r
1
=
=
(5]
(©)
0.5
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Konum, x
b)

Sekil 3.4. a) g=50. zaman adiminda kararlilik kriterinin, S.’nin, 1 olmasi durumunda Gaussian

isaretinin yayilmasi b) g=50. zaman adiminda kararlilik kriterinin, S.’nin, 1 olmasi durumunda
kare dalga isaretinin yayilmasi
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Ez(50)
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Sekil 3.5. a) g=50. zaman adiminda kararlilik kriterinin, S, ’nin, 1,003 olmasi durumunda

olmas1 durumunda kare dalga isaretinin yayilmasi

Gaussian isaretinin yayilmast b) q=50. zaman adiminda kararlilik kriterinin, S;’nin, 1,003
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Sayisal kararsizlik, sayisal diferansiyel esitlik ¢oziiciileri i¢in istenilmeyen durumdur.
Zaman ilerlerken, hesaplamalarin asir1 olarak diizensiz bigimde artmasina sebep olur

(Taflove and Hagness 2005).

Sekil 3.3, Courant sabiti, S, = 0.5 durumu i¢in FDTDM simiilasyonudur. Kare dalga
isareti ile Gaussian isaretinin spektrumlari farkli oldugu igin, bozucu unsurlardan kare

dalga isareti Gaussian igaretine nazaran daha fazla etkilenmistir.

Sekil 3.4’te Courant sabiti, S, =1 oldugu durum i¢in FDTDM simiilasyonudur.
Kararlilik kriterinin tam olarak saglandigi durum oldugu i¢in, hem kare dalga hemde

Gaussian igareti bozulmadan yayilmaktadir.

Sekil 3.5’de Courant sabiti, S, > 1 i¢in, FDTDM simiilasyonunu gosterir. S, = 1.003
icin, zaman adimm ilerletildikge kare dalga ve Gaussian isaretinin girilti ve

osilasyonlarla kirletildigi goriilmektedir.
3.1.4. Bir Boyutta FDTD’in Bilgisayar Uygulamasi

Oncelikle denklem (3.16) ve (3.19) ‘daki At/(uAx) ve At/(sAx) sabitleri S, cinsinden

yazilir. 4 = Uoly, € = €&, VE g = +/ Uo/ &y Olmak tizere,

At At UoEoAt B A HoEoCAL B 1 [gycAt _ 1

uAX — pAx o JlegoAx  HolrAx iy [Ho Ax T peng

S, (3.21)

= = == — — c
eAx  pbx  gye, /oo AX Eo&rAx & | & Ax &

At At g0t JHoEoCcAt 1 ’ cAt
Ho€o __ v Hoéo _ 1 @__77_05 (3.22)

elde edilir. Denklem(3.21) ve (3.22)‘de ¢ikarilan ifadeler kullanilarak, denklem (3.16)
ve (3.19) bilgisayarin anlayacagi formata asagidaki gibi doniistiiriiliir (Schneider 2012).
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hy[m] = hy[m] + (ez[m + 1] — ez[m]) * p icn (3.23)
ez[m] = ez[m] + (hy[m] — hy[m — 1]) * SC: To (3.24)

Programin ilk kisminda, hesaplanan manyetik ve elektrik alanlarin bilgisayarda kayit
edilmesi i¢in, 1x200°lik tim degerleri sifir olan matrisler olusturulur. (3.23) ve (3.24)
denklemleri, MATLAB‘ta q;;;, = 0 anindan itibaren dongiiler kullanilarak her zaman
adimi igin, tiim konum adimlarindaki elektrik ve manyetik alanlar hesaplanilir.
Kaynagin konuldugu diigiim noktasindan itibaren datalar hesaplanilir. Zaman adimi
qson anina ulastiginda biitiin elektrik ve manyetik alanlar hesap edilir. MATLABta
1x200°lik matrislere depolanan elektrik ve manyetik alan datalar1 grafige dokiilerek

kaynak olarak kullandigimiz isaret gbzlemlenilir.

Temel FDTDM simiilasyon programinin kabaca akis semasi1 agagidaki gibidir.
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Basla
v )
Sl Elektrik Alan
imilasyon
y . » Bilesenlerini » t=t+At/2
Parametrelerini Ayarla
Hesapla
v
Manyetik
Alan
Bilesenlerini
H Hesapla

v

t=t+At/2

Kaynak

isaretini Ciz [

Sekil 3.6. FDTDM algoritmalarinin kabaca akis semasi

Sekil 3.6°da gosterilen akis semast FDTDM algoritmasinin temel yapisint olusturur.
Kaynagn tipi, konulacag: diiglim noktas1 ve sinir parametreleri degistirilerek probleme

uygun hale getirilir.

3.1.5. FDTDM’de Kaynak Secimi

Elektromanyetik enerjiyi FDTDM izgarasinda bir noktadan yaymak i¢in iki tip kaynak
kullanilir. Bunlar sert kaynak ve yumusak kaynaktir.
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Sert kaynak ile bir boyutta FDTDM c¢oziimlerinde, kaynagin elektrik alan baslangi¢
degeri bir diigiime yerlestirilir ve elektrik alan bu diiglimden itibaren +z yoniinde

hareket eder.

At =1/cveAx =1, qson = 200 ve m = 200 olan bir boyutta FDTDM 1zgarasinin,
Ax = 1 noktasma yerlestirilen Gaussian ve kare dalga isaretli sert kaynagin m =
50.ve 90.’c1t konumundaki elektrik ve manyetik alanlarinin sekilleri, MATLAB’ta EK 1
Program 3.1 kullanilarak Sekil 3.8’deki gibi elde ediliyor. ( Ek 1’de Program 3.1,
Program 3.2, Program 3.3, Program 3.4, Program 3.5, Program 3.6, Program 3.7,

Program 3.8, Program 3.9, Program 4.1 ve Program 4.2 bulunmaktadir.)
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Sekil 3.7. a) Program 3.1 ile FDTDM 1zgarasinda g = 50. ve 90. zaman adimlarinda Gaussian
isaretli elektrik ve manyetik alanlarin yayilimi: b)Program 3.1 ile FDTDM 1zgarasinda g = 50.
ve 90. zaman adimlarinda kare dalga isaretli elektrik ve manyetik alanlarn yayilimi
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Program 3.1°de for dongiisii ile FDTDM modelinin zaman adimi tamamlaniyor. Zaman
dongiisiiniin igerisine yerlestirilen 2 for dongiisii ile elektrik ve manyetik alanlarin her
bir zaman i¢in konumda ilerletilmesi saglaniyor. FDTDM 1zgarasinin Ax = 1 noktasina
konulan Gaussian sert kaynak isareti, her zaman adiminda, konumda saga dogru bir

adim ilerleyecektir. Zaman adimi ilerledik¢e konumdaki ilerleyisi Sekil 3.8 ile

gosterilmistir.
x 10° x10°
~ 10
10
5
0
24 26 28 3 32 34 3.6 3.8 4
x 10-4 a)t=1/c icin konum « 10-4 b)t=2/c icin konum
3 T 8
6
2 4
1 2
0
0 -2
3 35 4 45 5 2 a4 A
« 10" ©)t=3/cicin konum « 10° d)t=4/c icin konum
6 15
4 10
2 5
0 0
20 . . 5k . —
4 5 6 7 8 2 4 6 8 10
e)t=5/cicin konum f)t=6/c icin konum

Sekil 3.8. m = 0 noktasina sert kaynak konulan FDTDM 1zgarasinin, zaman adimi birer
birer ilerleletildikge her zaman adimi ile Gaussian isaretinin konumda ilerleyisi

Sekil 3.8’deki gibi zaman adimi ile saga dogru ilerleyis, tiim 1zgara boyunca

qson = 200°e kadar siirecektir.
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Yumusak kaynak, FDTDM 1zgarasinda herhangi bir konum diigiimiine akim yogunlugu

konularak elde edilir. Amper Kanunu akim yogunlugu, T, oldugu kosullar i¢in asagidaki

gibidir.
— aE -

VXH = EE-F] (325)
E 1- - 1.

Amper Kanunu‘nun, (3.26) denklemi i¢in kartezyen koordinatlarda yazilmis hali

asagidaki gibidir.
aaEtx _ %(c?aliz ~ aaiy _ ]x> (3.27)
el

Denklem (3.12)‘nin elde edilmesine benzer sekilde, yalnizca x yoniinde degisimin
oldugu 1-boyutlu uzayda, elektrik alanin sadece z yoniinde bir bilesene sahip oldugu

varsayilir. Bu kosul i¢in, yani sadece d/dx operatorii ve H, manyetik alan bileseninin

sifir olmadig1 durum i¢in Amper kanunu asagidaki gibi yazilir.

dE, 1(0H, 20
ot e\ dx z (3.30)
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Denklem (3.30)‘u FDTDM algoritmalari i¢in uygun forma doniistirmek i¢in konumsal

tiirevler sonlu farklar cinsinden yazilir ve gegmis zamanlar cinsinden gelecek zamanlar

hesap edilir.
dE, 10H, 1
ot |mAx.(Q+%)At £ Ox 'max, (Q+—)Af E]Z|mAx'(Q+%)M G20
E]" [m] — El[m] _ lHy [m + 7] — A, [m 20 1] ‘“%[m] (3.32)
At & Ax € ? .
- : At | g+ 11 a4 q+l
EI*m] = EJ[m] e H, [m +§] —H, [m - ] ——]z 2[m] (3.33)

Denklem (3.19)‘da verilen E ;’“ [m], ortamdaki elektrik alanin yayilimi ile elde edilir.

1

At q+§ q+—
e T s |

EJ*'[m] = EJ[m] +E

esitligi denklem (3.33)‘te yerine konulursa asagidaki esitlik elde edilir. (Schneider
2012)

ES [m] = ES[m] — /" 2[m) (334)

Denklem (3.34), J akim kaynagi ile yayilan alanin, (3.19)’da elde edilen elektrik alan

1
ifadesinden farkli olarak her zaman ve konum adimi igin % J7*2[m] kadar negatif etki

olusturdugunu gosterir.

Denklem (3.34) ile yumusak kaynak esitligi, FDTDM algoritmalar1 i¢in uygun forma
sokulmustur. Ax = 1ve At = 1/c, qson = 200 ve m = 200 olan bir boyutta FDTDM
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1zgarasinin, m = 100 noktasina yerlestirilen Gaussian ve kare dalga isaretli yumusak
kaynagm t=10/c , t=20/c, t=30/c, t=40/c , t=50/c ve t=60/c

zamanlarindaki elektrik ve manyetik alanlarin goriiniimleri, MATLAB‘ta Ek 1
Program 3.2 kullanilarak alttaki gibi elde ediliyor.

x 10°  9=10igin Ez

x 10°  9=20igin Ez
1 2
X X
g 0.5 jk g 1
0 - - (0} - L
0 50 100 150 200 0 50 100 150 200
Konum, x Konum, x
q=30 igin Ez g=40 i¢in Ez
0.2 " 1
X X
€ 01 $ 05
O O
0 - - 0+ - -
0 50 100 150 200 0 50 100 150 200
Konum, x Konum, x
g=50 i¢in Ez g=60 igin Ez
1 - 1
x =
g 05 g 05
s \ s SAVAN
0 - (0}
0 50 100 150

200 0 50 100 150 200

Konum, X
a)

Konum, X
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r 1 WW\

0

50 100 150 200 50 100 150 200
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Genlik
o
(@] (6)] =
=

Genlik
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Sekil 3.9. a) Program 3.2 ile FDTDM 1zgarasinda m = 100°e yerlestirilen Gaussian isaretli
yumugak kaynak ile g = 10.,20.,30.,40.,50.ve 60. zaman adimlarinda elektrik alanin
FDTDM 1zgarasindaki yayilimi b) FDTDM 1zgarasinda m = 100’e yerlestirilen kare dalga

isaretli yumusak kaynak ile ¢ = 10.,20.,30.,40.,50.ve 60. zaman adimlarinda elektrik alanin
FDTDM 1zgarasindaki yayilimi

Sekil 3.9‘dam = 100 konumuna yerlestirilen Gaussian ve kare dalga isaretli yumusak
kaynak ile g = 10.,20.,30.,40.,50.ve 60. zaman adimlarinda elektrik alanlarin
konumlarim1 gostermektedir. Yumusak kaynakta zaman adimlari artirildik¢a enerji
kaynak noktasindan itibaren —z ve +z yoniinde ikiye ayrilir. Sekil 3.9.a’da Gaussian
isaretli yumusak kaynagin genligi yariya diiserek kaynak noktasindan itibaren saga ve
sola dogru 2’ye boliinmiistir. Sekil 3.9.b’de 10 birimlik 1’lerle olusturulan kare
dalganin, 5’erli olarak 1’lere sahip kare dalga olarak kaynak noktasindan itibaren saga

ve sola dogru 2’ye boliinmiistiir.
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FDTDM’de kaynak iiretmek i¢in kullanilan kavramlardan biri de Toplam Alan Sagilan
Alan (TASA)’dur.

TASA kullanilarak, sadece bir yone yayilan yumusak kaynak elde edilecektir. Ilk dnce
zaman ve konumun bir fonksiyonu olarak iletilen alan belirlenecektir. Kaynak
fonksiyonu Gaussian isareti i¢in argiiman olarak t kullanilir ve denklem asagidaki gibi

elde edilir (Schneider 2012).

_(th—40At q—40

f) = f(qar) = e Cmae ) =e T8 ) = f[q] (3.35)

+x yoniinde yayilan alani elde etmek i¢in, argiimani t—x/c olan dalga fonksiyonunu

kullanabiliriz. S, = 1 igin:

q— —) = At(q —m) (3.36)

pirefm, q) = o (T _ A

(3.37)
(3.37)’e benzer sekilde H},”C [m, q] asagidaki gibidir.
. £ 1 _(W)Z
Hy*[m,q] = - ;Ezmc[m, ql = € 8 (3.38)

Burada E™[m,q] gelen alam temsil etmektedir. TASA smr formiilasyonunu
gostermek i¢in rastgele bir sekilde siir belirlenilir. Belirlenilen TASA sinir1, yalnizca
sacilan alan1 temsil eden sagilan alan bdlgesi ve gelen alan ile herhangi sagilan alam

temsil eden toplam alan bdlgesi olarak hesaplama kiimesini ikiye ayirir. Gelen alan,
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toplam alan ve sagilan alan bolgesi arasindaki sinirda tanimlanilir. Gelen alan ile sagilan

alanin birlesimi toplam alan1 vermektedir.

Sacilan Alan <«— — 5 Toplam Alan

|
l (Gelen Alan +
: Sagilan Alan)
E,[48] E,[49] | E,[50]
—9 N\ o A i @ Z~—» Konum, X
H,[48] H,[49] | H,[50]
|
|
|
|

Sekil 3.10. Bir boyutta TASA sinirt

Sekil 3.10°da gosterildigi gibi toplam alan bolgesi sinirin saginda, sacilan alan bolgesi

gridin solunda yer alir. H,,[49] indeksi, konum olarak Ax (49 + 1/2)‘yi gosterir.

TASA hesaplamalarinda alanlar giincellenirken siirekli olmalidir. Sagilan alan
bolgesindeki alan giincellemelerinde yalnizca sagilan alanlar, toplam alan bolgesindeki

alan giincellemelerinde yalnizca toplam alanlar olmak zorundadirlar (Schneider 2012).

m = 50 ‘de konumlanan elektrik alan esitligi, denklem (3.19)‘dan yararlanilarak

asagidaki gibi yazilir.

EI*1[50] = E[50] + — e [50+1] o'z [50 1] 3.39
z - ehx \ Y 2 y 2 (3:39)

Denklem (3.39)da EZ*'[50], HJ*/?[50 + 1/2], toplam alanlar olup Hy*'/?[50 —
1/2] digiimii sagilan alan bolgesinde oldugu igin, sagilan alani temsil etmektedir.

H; *1/2 [50 — 1/2]‘ye gelen alan eklenerek toplam alana doniistiiriilmiis olur.
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1 1
E{*1[50] = EJ[50] + sAA—iC(H;”Z [50+1] - {H;”Z [50 =]+ (— B [50 - 3,q +
1/2]>} (3.40)

Denklem (3.19) yardimui ile (3.40) asagidaki gibi diizenlenilir.

1 1 At 1 1
EF*[50] = EZ*H[50] + ST B [50 ~2.q+ 1/2] (3.41)
At At Jio At 1S,
eAx  gyeAx UoEoEoEy AX &

At 1 noSc V& Se
edxn & Moy  Verl,

= 1 olarak bulunur. (S, = 1,&, = 1,4, = 1)

Denklem (3.41), bilgisayar index formunda asagidaki gibi yazilir.

At 1
Ez(50) = Ez(50) + —— ¢
eAxn

8

_((q +%—(50—%)—40>2

(q—89)2

Ez(50) = Ez(50) + e"<T (3.42)

Denklem (3.16) yardimi ile H;f 1/ ?[50 — 1 /2] asagidaki gibi elde edilir.

q+5 1 - At
H, [50 _ 5] = HI™*[50 — 1/2] + = (EF[50] - EF[49]) (3.43)
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Denklem (3.43)‘de H;I“/Z[SO —-1/2], H;I_I/Z[SO —1/2], E][49] sacilan alan olup,
E][50] diigiimii, toplam alan bélgesine denk geldigi icin toplam alandir. Toplam

alandan gelen alan ¢ikartilarak sacilan alan elde edilir.

A
PA

1
Hi'2 [50 - %] = HI V?[50 — 1/2] + —— (EJ[50] — Ei*[50,q] — EZ[49])  (3.44)

Denklem (3.16) yardimiyla (3.44) asagidaki gibi diizenlenir.

At

1
q+3 _ l] — q+1/2 _
HY [50 5| =m0 — 1721 -

E;*[50,4q] (3.45)

At & 1 At 1 & At cAt
_ \/_0 - \/_0 — = = — olarak elde edilir.

ubx — [egtoltr Dx  [feoe Jie A% Mobx Mo

1
q+3 1 _ pya+1/2 1
H, 2 [50 - E] =H, [50 —1/2] — %E}nc [50,q] (3.46)

Denklem (3.45), bilgisayar index formunda asagidaki gibi yazilir.

1 _(((q—50)—40 (q—90)2

Hy(49) = Hy(49) —— e 8 ) = Hy(49) — 1 e‘< 8 (3.47)
Mo Mo
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Sekil 3.11. Program 3.3 ile m = 50’ye yerlestirilen TASA kaynaginin q = 50. ve
q = 80. zaman adimlari i¢in elde edilen elektrik ve manyetik alanlarin konumlari

Denklem (3.42) ve (3.47) TASA simiilasyonu i¢in, Ek 1 Program 3.3‘te kullanilmisgtir.
Program 3.3 calistirildigi zaman m = 50’ye konulan TASA kaynaginin g = 50. ve 80.
zaman adimlarindaki elektrik ve manyetik alanlar Sekil 3.11°deki gibi elde edilmistir.
Sekil 3.11°de goriildiigli gibi tek yone ve genligi ikiye bolinmeyen yumusak kaynak
elde edilmistir.

Sert kaynak, yumusak kaynak ve TASA, qson = 200vem = 200 ’lik FDTDM
1zgarasinin m = 50 konum noktasina yerlestirilsin. Bu durumda her bir kaynagin

1zgarada nasil hareket ettigi ¢ = 50.ve q = 80. zaman adimlar i¢in Sekil 3.12 ve Sekil
3.13¢de goriilmektedir.
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Sekil 3.12. m = 50 noktasina yerlestirilen sert, yumusak ve TASA kaynaklarmin
q = 50 zaman adimindaki konumlari
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Sekil 3.13. m = 50 noktasina yerlestirilen sert, yumusak ve TASA kaynaklarmin
q = 80 zaman adimindaki konumlari

Ek 1 Program 3.4 ile sert, yumusak ve TASA kaynaklari FDTDM 1zgarasinin m = 50
konumuna yerlestirilmistir. ¢ = 50 ve q = 80 zaman adimlarinda, kaynaklarin FDTDM
1zgarasindaki yayilimi Sekil 3.12 ve Sekil 3.13’te gosterilmistir. Sert ve yumusak
kaynaklar, zaman adimi ilerledik¢e saga ve sola dogru yayilmaktadir. Sert kaynagin
genligi degismeden yayilirken, yumusak kaynak genligi yariya diiserek yayilmaktadir.
TASA kaynagi ise saga dogru (+z yoniinde) genligi degismeden yayilmaktadir.

3.1.6. PEC veya PMC Simir Sartlar1 i¢cin FDTDM Uygulamalari

Sag ve sol smirlart PEC( Miikemmel Elektrik iletken) veya PMC(Miikemmel Manyetik
lletken) dzelliklere sahip malzemelerle kapli FDTDM 1zgarasinda, elektrik ve manyetik
alanin hareketi sinir malzemesine bagh olarak degismektedir. PEC‘nin elektrik alana

kars1 ve PMC*nin manyetik alana karsi yansima katsayist -1°dir.
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3.1.6.a. PEC - PEC ile Cevrili Ortamda Elektrik ve Manyetik Alanlar

Sag ve sol sinir bolgeleri Sekil 3.15°deki gibi PEC malzeme ile kapli m = 200 konum
adiml ve qg,, = 1000 zaman adimli FDTDM 1zgarasinin m = 1 noktasina, Gaussian

sert kaynak yerlestiriliyor.

PEC PEC
Malzeme Malzeme
ile kapli - lle kapli
Sinir Sinir bélge
bolge

mAx

Sekil 3.14. Sag ve sol sinirlart PEC-PEC malzemeyle kapli FDTDM 1zgarasindaki sert
kaynagin qs,,, zaman adim siiresince FDTDM 1zgarasinda ilerleyisi

Ek 1 Program 3.5, Sekil 3.14‘de gosterilen ortam FDTDM ile saglanilarak, m = 50
konumundaki elektrik ve manyetik alanlarin sinir bolgelerinden nasil yansidiginm
gostermektedir. Elektrik ve manyetik alanlarin gg,, = 1000 zaman adim elektrik ve
manyetik alanlar Program 3.5 ile Sekil 3.15 ve Sekil 3.16’da gosterildigi gibi elde
edilmistir. Program 3.5. calistirildiginda, 200 elemente sahip x 1zgarasinin sonunda
bulunan, €z(200), sifir degerini aldig1 i¢cin, FDTDM 1zgarasinin sonunda PEC duvari
varmig gibi davranacaktir. Ayni sekilde, 1zgaranin sol duvari olan ez(1) degeri sifir
degeri aldig1 icin, FDTDM’in sol sinir1 da PEC duvartymis gibi davranacaktir. PEC*nin
elektrik alan i¢in yansima katsayist -1 oldugu icin, elektrik alan1 gosteren Gaussian
isareti FDTDM 1zgarasinin sag ve sol sinirlarina ulastigi zamanlarda yon degistirerek
yanstyacaktir. PEC‘nin manyetik alan i¢in yansima katsayis1 1 oldugu icin, manyetik
alan1 gosteren Gaussian isareti, FDTDM 1zgarasinin sag ve sol sinirlarina ulastigi zaman

yon degistirmeden yansiyacaktir.
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Sekil 3.15. Program 3.5 ile FDTDM kullanilarak saglanilan Sekil 3.14 ortaminda saga dogru
yayilan elektrik alanin FDTDM 1zgarasinda, ¢ = 50., 250., 450., 650. ve 850. zaman
adimlarida sinir bolgelerdeki PEC malzemelerden yansimis halleri

Ek 1 Program 3.6, FDTDM ile Sekil 3.14°de gosterilen saga dogru yayilan Gaussian
isaretinin, manyetik alan bileseninin hareketi i¢in diizenlenmistir. Manyetik alan PEC-

PEC duvarlarindan Sekil 3.16’da gosterildigi gibi yansimustir.
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Sekil 3.16. Program 3.6 ile FDTDM kullanilarak saglanilan Sekil 3.14 ortaminda saga dogru
yayilan manyetik alanin FDTDM 1zgarasinda, g = 50., 250., 450., 650. ve 850. zamanlarinda
sir bolgelerdeki PEC malzemelerden yansimis halleri

Sekil 3.16°da goriildiigli gibi manyetik alan yansima katsayisi 1 olan PEC duvarlarina

carptigl zaman yon degistirmeden yansiyacaktir.
3.1.6.b. PEC — PMC ile Cevrili Ortamda Elektrik ve Manyetik Alanlar

Ek 1 Program 3.7 ve Ek 1 Program 3.8 ile Sekil 3.17°de gosterilen ortam
saglanilarak, elektrik ve manyetik alanlarin sinir bolgelerinden nasil yansidigini
gostermektedir. Elektrik ve manyetik alanlarin g,,,, = 1000 zaman adimi sonunda,
1zgara boyunca yansimalari, Program 3.7 ve Program 3.8 ile Sekil 3.18 ve Sekil
3.19’daki gibi elde edilmistir.
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Sekil 3.17. Sag sinir1 PEC ve sol sinir1t PMC malzemeyle kapli FDTDM 1zgarasindaki
sert kaynagin q,,,4, zaman adimi siiresince mAx sinirli 1zgarasinda ilerleyisi

Program 3.7 calistirildiginda, 200 konum adimina sahip 1zgaranin sonunda bulunan,
H,, (200), sifir degerini aldig1 i¢in, FDTDM konum izgarasmin sag smrt PMC
duvartymis gibi davranacaktir. Konum 1zgarasinin sol duvari olan ez(1) degeri sifir
degeri aldig1 i¢in, FDTDM’in konum 1zgarasinin sol sinirt da PEC duvariymis gibi
davranacaktir. PEC*nin elektrik alan i¢in yansima katsayis1 -1 oldugu i¢in, elektrik alan
gosteren Gaussian isareti FDTDM konum 1zgarasinin sol sinirina ulastigi zamanlarda
yon degistirerek yansiyacaktir. PMC*nin manyetik alan i¢in yansima katsayisi -1 oldugu
icin, manyetik alani1 gosteren Gaussian isareti FDTDM konum 1zgarasinin sag sinirina
ulagtigi zamanlarda yon degistirerek yansiyacaktir. PMC‘nin elektrik alan i¢in ve
PEC*nin manyetik alan i¢in yansima katsayist 1 oldugu icin, elektrik alani gosteren
Gaussian igsareti FDTDM konum 1zgarasinin sag sinirina ulastigi zaman, manyetik alani
gosteren Gaussian isareti FDTDM konum izgarasinin sol sinirina ulastigi zaman yon

degistirmeden yansiyacaktir.
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Sekil 3.18. Program 3.7 ile FDTDM kullanilarak saglanilan Sekil 3.17 ortaminda saga dogru
yayilan elektrik alaméin FDTDM 1zgarasinda, ¢ = 50., 250., 450., 650. ve 850. Zamanlar
adimlarmda sinir bolgelerdeki PEC-PMC malzemelerden yansimis halleri

Sekil 3.18’de goriildiigii gibi FDTDM 1zgarasinda saga dogru yayilan elektrik alanlar
PMC duvarmna ¢arpmis ve yon degistirmeden yansimustir. Sol duvara ¢arpan elektrik

alanlar ise PEC duvarina ¢arpmis ve yon degistirerek yansimislardir.
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Sekil 3.19. Program 3.8 ile FDTDM kullanilarak saglanilan Sekil 3.17 ortaminda saga dogru
yayllan manyetik alanin FDTDM 1zgarasinda, ¢ = 50, 250., 450., 650. ve 850. zaman
adimlarinda sinir bolgelerdeki PEC-PMC malzemelerden yansimis halleri

Sekil 3.19°da goriildiigii gibi m = 200 konum 1zgarasindaki PMC duvarina carpan
manyetik alanlar yon degistirerek yansimiglardir. m = 1 konum 1zgarasindaki PEC

duvarina ¢arpan manyetik alanlar ise yon degistirmeden yansimiglardir.
3.1.7. Yutucu Simr Kosullar1 (Absorbing Boundary Conditions-ABC)

FDTDM’de smir ortamlarmin PEC veya PMC olmasina gore elektrik ve manyetik
alanlar, 1zgara sinirlarinin baslangic ve bitis noktalarindan yansimaktadir. Siirh
FDTDM 1zgaras: ile yapilan simiilasyonlar, 1zgaraya geri yansiyan alanlardan dolay1
yanlis sonuglara neden olabilir. FDTDM 1zgarasinin sinirsiz bir ortammis gibi

davranmasi i¢in konum sinirlarinin baslangi¢ ve bitis kisimlarina yutucu siir kosullari
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tanitilmalidir. Yutucu smir kosullart kabaca, m konum adimli FDTDM 1zgarasi igin

asagidaki gibi tanimlanabilir.(m = i,i + 1,i + 2, ... . e.. Mypay)

ex[i] = ex[i + 1], ex[Mmy,q — 1] = ex[mg,] (3.47)

Denklem (3.47)’de belirtilen kosul, EK 1 Program 3.9’a uygulanirsa Sekil 3.20’deki
gibi sonuglar elde edilir.
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Sekil 3.20. Program 3.9 ile tasarlanan FDTDM simiilasyonu m = 200 konum 1zgarasina
sahiptir. m =1 ve m =200 konumlarina ABC konuldugu i¢in bu diigiimlerde isaret
sogurulmaktadir.
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Sekil 3.20°de m = 1 noktasina sert kaynak yerlestirilen kaynagin ¢ = 100., g = 170.
ve q = 240. zaman adimlarindaki elektrik alanin konumlar1 gdsterilmektedir. Saga
dogru ilerleyen elektrik alan, m = 200. diigiime denk geldigi zaman Sekil 3.20°de
gosterildigi gibi yansima yapmadan sogurulmaktadir. Elektrik alan sonsuza giden

alanmig gibi davranip, sinirsiz bir 1zgara modellenmis olunur.
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4. ARASTIRMA BULGULARI

FDTDM‘in kaynak cinsine ve 1zgara siir bdlgelerinin PEC veya PMC o6zellik
gostermelerine gore simiilasyonlar1 yontem kisminda anlatilmisti. Ayni zamanda
homojen, u, =1 ve & =1 ortamda (boslukta) dalga yayilim hizinin 151k hizinda
oldugu goriilmiistii. Bu kisimda dalganin farkli karakteristik empedansa sahip ortamlara

gecisi ve bu ortamlarda nasil ilerledigi FDTDM simiilasyonlar1 ile anlatilacaktir.

4.1. Homojen Olmayan Ortamlar icin FDTDM Simiilasyonu

TASA smin ile elde edilen kaynak bazi kisimlarda kendi iginde homojen olan fakat
biitiin olarak homojen olmayan bir ortama gonderilecektir. Dalga farkli karakteristik
empedansa sahip her ortama denk geldigi zaman, yansiyan ve iletilen alanlarin toplami
toplam alana esit olacak sekilde yansimalar ve diger ortama iletilmeler olacaktir. Iletilen
alanlar ise ortamin karakteristigine gore, ortam icinde farkli hiz, genlik ve genislikle

(Gaussian isaretinin genigligi) ilerleyecektir.

4.1.1. Dielektrik Ortamda Tek Boyutlu Dalga Simiilasyonu

Bagil dielektrik sabiti 1°den farkli olan ortamlarin modellemesi, 1 boyutta kaynaksiz bir
ortam i¢in Maxwell denklemlerinde, € yerine gye, ve u yerine pou, yazilarak elde

edilir. Denklem (3.16) ve (3.19) bu duruma gore tekrar asagidaki gibi giincellenirler.

At
Moty Ax

Hy'? [m + %] = HI 'V m+1/2] + (EfIm + 1] — E{[m]) (41

1

At = 1 1
%2 [m n E] _ gtz [m _ ] (4.2)

EQ+1 — Eq
$0m] = Bl +

y y
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Sekil 4.1. Dielektrik ortam modellemesi

Sekil 4.1°deki gibi kayipsiz dielektrik ortamda m = 50‘de TASA sinir kaynag ile
Gaussian isareti gonderiliyor. Isaret, dielektrik ortamla FDTDM 1zgarasinin m = 100
konumunda karsilasmaktadir. Bu noktada isaretin bir kismi dielektrik ortama iletilirken,
bir kismi ise geri yansimaktadir. Iletilen dalganin hizi, kayipsiz dielektrik ortamin
Uy ‘Sine bagimhi bir sekilde degisecektir. Dielektrik ortam igerisinde artan zaman
adimlar ile ilerleyen iletilen alan, m = 140 konumunda bosluk ile karisilacaktir.
m = 140°da, m = 100°de iletilen dalganin bir kism1 bosluga iletilecek, bir kism1 da
dielektrik ortama geri yansiyacaktir. iletilen ve yansiyan dalgalarin yonii ve genligi

asagidaki gibi hesaplanir (Schneider 2012).

r= N2 —M (4.3)
M2t m
2
T=_2" (4.4)
M2 tMm

Denklem (4.3) ve (4.4)’de I" yansima katsayisini, T iletim katsayisini ifade eder. 7,
ikinci ortamin karakteristik empedansini ve 74 birinci ortamin karakteristik empedansini

gosterir. Sekil 4.2°deki birinci ortamin, yani boslugun, karakteristik empedansi n, =

No = +/ Uo/ &y dir. Dielektrik malzemeyi modelleyen ikinci ortam igin &, = 9ve yu, = 1



53

olsun. Bu durumda ikinci ortamin karakteristik empedans1 n, = /1o/(9¢9) = n,/3 olarak

elde edilir. Denklem (4.3) ve (4.4) n, ve n,’ler n, cinsinden yazilip ¢oziiliirse,

Mo

— = —To 1
21 == nz 771 == 3 = - = _05 (45)

M2 +M 7?3—0 + 1, 2

2 Do
Up) 3

T,, = = =— =05 4.6
P+ 773—0 + 1, 2 (4.6)

I',;, 2. ortamdan 1. ortama yansiyan dalgayr ve T;, , l.ortamdan 2. ortama iletilen
dalgay1 temsil eder. Sekil 4.2°de gosterilen ortamin FDTDM ile simiilasyonu, Ek 1
Program 4.1 ile gergeklestiriliyor. Program 4.1 calistirildigi zaman, (4.5) ve (4.6) ile
elde edilen sonuglar dogrultusunda, kaynagin ortamlar boyunca hareketi Sekil 4.3’teki

gibi elde edilmistir.

S\ —

g=Lu =1 & =9%u =1 &g=Lpu =1

R 3
|
|
by
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m=0 m = 100 m = 140 m = 200

Sekil 4.2. FDTDM ile Program 4.1’in modelledigi ortam
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Sekil 4.3. Elektrik alan g = 50,100 ve 160. zaman adimlar i¢in saga dogru ilerleyen
elektrik alanin konumlar1

Sekil 4.3°te de goriildiigi gibi, m = 100 konumunda dielektrik ortama g¢arpan dalga,
Denklem (4.5) ve (4.6)‘da hesaplanildig1 gibi, iletilmis ve yansimistir. Boslukta ¢

hiziyla ilerleyen dalganin hizi, dielektrik ortamda 3 kat azalmistir.

1 c
ve ¢; = ——— olduguna gore ¢, = 9 icinc; = 2 olur. (4.7)

v €réolo 3

Sekil 4.3’te FDTDM 1zgarasinda iletilen Ez(50) dalgas1 n, ortaminda Ez(80) olacak
sekilde 30 zaman adimi saga dogru ilerlerken, m = 100 konumundan m = 120
konumuna gelmistir. Yansiyan Ez(50) dalgas1 ise n; ortaminda sola dogru ilerleyerek,
30 zaman adimi sonrasinda m = 100 konumundan m = 40 konumuna gelmistir.
Iletilen dalga, 17, ortaminda 20 birim yol alirken, yansiyan dalga 7, ortaminda 60 birim

yol almistir. Yani bogluga gore n, ortaminda ilerleyen dalganin hiz1 3 kat azalmstir.
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Dielektrik malzeme igerisinde ilerleyen, iletilen dalga, m = 140 ‘ta bosluk ortamina

gecmek ister. Bu durum igin n; = n,‘dir ve 3. ortamdan yansiyan ve 3. ortama iletilen

dalgalarin genligi ve yonii asagidaki gibidir.

- No — o 1
773 + 7]2 7]0 + ?0 4
2 2 3
T,3 = (0.5) iE = (0.5) Uon =-=0.75 (4.9)
N3+ 1 No + ?0 4

Denklem (4.8) ve (4.9)‘de buldugumuz teorik sonuglari, Program 4.1°’in q = 180,q =

220 ve q = 260 zaman adimlar1 i¢inE,(180), E,(220) ve E,(260) elektrik alanlar
Sekil 4.4’°teki gibi elde edilmistir.
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Sekil 4.4. Program 4.1 ile hazirlanan FDTDM simiilasyonunda elektrik alanlarin
q = 180,220 ve 260. zaman adimlar1 i¢in konumlart.
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Sekil 4.4‘te de goriildiigi gibi, m = 140 konumunda dielektrik ortama g¢arpan dalga,
Denklem (4.8) ve (4.9)‘de hesaplanilan genlik katsayilarina yakin degerler ile iletilmis
ve yansimistir. Dielektrik ortamda ¢y /3 hiziyla ilerleyen dalganin hizi, denklem (4.7)’y1

dogrulayacak sekilde, bosluk ortamina gegince 3 kat artmis ve ¢y hizina ulagsmstir.

Sekil 4.3 ve Sekil 4.4‘te dielektrik malzemeye gAt = 100 aninda ve m = 100
konumunda kaynak tarafindan iletilen elektrik alan, siirekli sag (m = 140) ve sol
(m = 100) sinirlara garparak genliginin yarisina inmektedir. Zaman adimi istenildigi
kadar artirilirsa, elektrik alanin kayipsiz dielektrik alan igerisinde FDTDM algoritmasi
ile sontimlenmesi saglanacaktir. Program 4.1.‘te zaman adim sayisini ifade eden n sayisi
deneysel olarak 6435°‘e ulastigi zaman elektrik alanin dielektrik malzeme igerisinde

soniimlendigi gdzlenmistir.

4.1.2. iki Dielektrik Ortamda Tek Boyutlu Dalga Simiilasyonu

Sekil 4.5’deki gibi modellenen kendi i¢ginde homojen, kayipsiz, &, = 4 ve &, = 9 olan
iki farkli dielektrik ortama gonderilen TASA kaynagi ortam degistirirken, ortamlarin
gecis siir yiizeylerine carparak iletilen ve yansiyan seklinde dalgalara boliintiyor. Sekil
4.5’te genlik blyilikligi A olan dalganin gonderilmesiyle baslayan carpma ve
yansimalar, dielektrik malzemeler icerisinde dalga genliginin ihmal edilir derecede

azaldig1 ana kadar devam edecektir.
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Sekil 4.5. Program 4.2°’nin FDTDM ile modelledigi, iki farkli dielektrik ortama TASA
kaynaginin gonderilmesi

Sekil 4.5’teki ortamin Sekil 4.2dekinden farki, konum 1zgarasinin 250 adima boliinmiis
olmasidir. Bosluktan gelen TASA kaynak isareti, m = 100°de &, = 4 olan 1.dielektrik
ortam sinir1 ile karsilagir. Bu sinirda kaynak isaretinin bir kism1 2.ortama iletilecektir ve
bir kismi ise l.ortama geri yansiyacaktir. 2. ortama iletilen dalga, m = 140 ‘da
2.dielektrik ortam smur1 ile karsilasacaktir. Iletilen dalga bu smira garpinca, bir kismi
3.ortama iletilecek ve bir kismi ise 2.ortama geri yansiyacaktir. 3.ortama iletilen dalga
m = 180 °‘de bulunan 4.ortam smir ile karsilasacaktir. Bu sinira ¢arpan 3. ortamin
iletilen dalgasinin bir kismi 4.ortama iletilecektir ve bir kismi da 3. ortama geri

yanstyacaktir.

Sinir yiizeylerine ¢arpan dalgalarin nasil yansima yapacagi, FDTDM ile Ek 1 Program
4.2 calistirilarak Sekil 4.6, Sekil 4.7 ve Sekil 4.8’de gosterildigi gibi elde edilmistir.
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Sekil 4.6. Program 4.2 ile hazirlanan FDTDM simiilasyonunda elektrik alanlarin
q = 50,100,150 ve 200. zaman adimlari i¢in konumlari.
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Genlik

0 50 100 150 200 250

Sekil 4.7. Program 4.2 ile hazirlanan FDTDM simiilasyonunda elektrik alanlarin
q = 150,200, 250 ve 330. zaman adimlar1 i¢in konumlart.
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Sekil 4.8. Program 4.2 ile hazirlanan FDTDM simiilasyonunda elektrik alanlarin
q = 330,380,430 ve 500. zaman adimlar1 i¢in konumlari.

Program 4.2°nin dogrulugu, yansiyan ve iletilen dalgalarin genlikleri hesaplanarak
saglanir. Tiim yansiyan ve iletilen dalgalarin hesab1 ¢ok uzun siirecegi i¢in, her sinir
yiizeyine 2 kez ¢arpan dalgalarin genligi denklem (4.10) ve (4.11)‘lerde hesaplanmisir.
Bulunan sonuglar Sekil 4.6, Sekil 4.7 ve Sekil 4.8’deki dalga genlikleriyle
uyusmaktadir. A=1 ve ny =1y, N, =1o/2, N3 =0¢/3, N3 =1ny olmak iizere,

yanstyan ve iletilen dalgalarin formiilasyonu asagidaki gibi olacaktir.

2n,  2x1/2
n+n, 1+4+1/2

Ty, = A = 0,66 (4.10.a)

1
—ple " & = -0,333 (4.10.b)
2
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2, 2 2%1/3
T23 = le— = § * 1 = 0,528 (4‘.10.C)
N2+ 173 >+1/3
1
— 2 x—1/2
Ly, = Ty, 22 5+ i = —0,133 (4.10.d)
3T M2 3+1/2
21, 1
Tyq = Tys = 0,533 * = 0,792 (4.10.e)
3 + N4 =+1
Ny — M3 1-1/3
[43 = T)3— = 0,533 = 0,266 4.10.
43 237]4"‘113 *1+1/3 ( 1))

3. ortamdan yansiyan dalganin 1. ortam smirindaki ve 4. ortamdan yansiyan dalganin
2.ortam simirindaki yansima ve iletilmeleri, yani sinir yiizeylerine ikinci kez c¢arpan

dalgalarin iletim ve yansimalar1 dikkate alinirsa, formiilasyon asagidaki gibi olur.

2n, 2x1
Ty, = T3, = (—0,133) * =-0,177 (4.11.a)
N1 N2 1+ 1
2
N1 — M2 1-1/2
I, =T = (-0,133 = —0,044 4.11.b
12 32711"'712 ( )*1+1/2 ( )
21, 2%1/2
T32 = 1-‘43— = 0,266 * 1 = 0,316 (411C)
M2+ 13 5 +1/3
1
— 5—1/3
s = Tis o0 = 0,2665 2 — 0,052 (4.11.d)

N2 +M3 <
S +1/3
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Program 4.2 ile elde edilen verilerle, yukaridaki teorik sonuglar birbirini

dogrulamaktadir.
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5. SONUC

Bu calismada bir boyutta FDTDM ile diizlemsel ortamlarda elektromanyetik alanlarin
nasil hareket ettigi MATLAB kullanilarak simiile edildi.

Kaynak olarak TASA sinir kaynagi kullanildi. Bu amagla TASA sinir kaynagi boslukta
yumusak kaynaktan elde edildi. TASA smir kaynagi ile tek yonde yayilimi saglanan
elektromanyetik dalgalarin, kendi i¢inde homojen, kayipsiz dielektrik bdlgede nasil
hareket ettigi FDTFM ile MATLAB‘ta simiile edildi. Kayipsiz dielektrik bdlgenin

sinirlarindan siirekli yansiyan dalgalarin zamanla soniimlendigi belirlendi.

Dielektrik ortam sayist artirilarak, ortamlarin sinir ylizeyine carparak yansiyan ve
iletilen dalgalarin hareketi simiile edilmis ve bu hareketin dogrulugu, her sinir yiizeyine
2 kez carpan dalgalar i¢in teorik olarak ispatlanmistir. Sonu¢ olarak FDTDM ile

dalganin, dielektrik sabitleri farkli olan ortamlarda nasil ilerledigi simiile edilmistir.
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