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1. GİRİŞ 

FDTDM yöntemi ilk kez Yee (1966) tarafından sonlu farklar yönteminin 

EM(Elektromanyetik) dalga problemlerine uygulanması ile literatürde yerini almıştır. 

Kullanılan yöntemin ismi Finite Difference Time Domain Method olup, metodun baş 

harfleri kısaltılarak zamanla FDTDM olarak genel bir kavram haline gelmiştir. 

FDTDM, uzayın üç noktasında seçilen 3 manyetik alan ve 3 elektrik alanın uzayın ayrık 

konumlarında ayrık zaman aralıklarında hesaplanması temeline dayanır (Sevgi 1999). 

Yapı istenildiği kadar eş hücrelere bölünerek zamanda iteratif hesaplamalar yapılır. 

Kaynak olarak genellikle Gaussian veya sinüs kaynaklar kullanılır. Bu yöntemin etkin 

bir şekilde kullanılması için hızlı ve yüksek hafızalı bilgisayarlara ihtiyaç duyulduğu 

için, bu yöntem üzerine 1980 lere kadar çok fazla araştırma olmamıştır. Bilgisayar 

teknolojisinde meydana gelen gelişmeler ile FDTDM‘e olan ilgi 1980’lerden itibaren 

giderek artmaktadır (Chew et al. 2001). 

FDTDM, iletken malzemeler ve iletken olmayan malzemelerde EM dalganın ilerleyiş 

analizi; dalga kılavuzu, radar saçılma yüzeyi (RSY) modelleme; rezonatör tasarımı; 

mikroşerit anten tasarımı; açık ya da kapalı dalga kılavuzlarında dalga iletimi ve 

süreksizlikler; biyolojik dokularda elektromanyetik yutulma hesapları, mikrodalga fırın 

simülasyonu; aktif ve pasif mikrodalga devre analizi gibi alanlarda kullanılmaktadır 

(Erol 2007). 

FDTDM, Yee’nin çalışmaları ile elde edilen sonuçlar zamanla geliştirilerek, 

elektromanyetik problemlerinin çözümünde sıkça kullanılan bir metod halinde 

gelmiştir. 

Yee, FDTDM’de kaynak olarak başlangıç koşulları yaklaşımını kullanmıştır. Bu 

yaklaşım, FDTDM’de bazı kısıtlamalara sebep olmaktadır. Bu kısıtlamaları kaldırmak 

için kaynak üretiminde Toplam Alan Saçılan Alan (TASA) kavramı, ilk kez 

Merewether and Smith (1980) tarafından kullanılmıştır.  
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Umashankar and Taflove (1982),  uzak alan yakın alan dönüşümlerini kullanarak, yakın 

saçılan alanları elde etmek için, kompleks objelerden saçılımı FDTDM ile analiz 

etmiştir. 

Bilgisayarların kısıtlı depolama alanlarından dolayı, FDTDM yalnızca sınırlı alanlarda 

kullanılır. FDTDM’de açık sınır elektromanyetik alan yayılımı sağlamak için Absorbing 

Boundary Condiation (ABC) yani yutucu sınır koşulları tanımlanmalıdır. Böylece 

ızgara sınırlarında elektromanyetik dalgalar yansımamış olacaktır. Bayliss and Turkel 

(1980) tarafından ilk kez yutucu sınır koşulları tanımlanmıştır. Yutucu sınır koşullarının 

FDTDM’de uygulanması ise Mur (1981) tarafından gerçekleştirilmiştir. Higdon (1986) 

tarafından çok boyutlu dalga denklemi için, FDTDM ile yutucu sınır şartları 

sağlanmıştır. Higdon (1987), ek olarak bir boyuttaki diferansiyel operatörleri 

ayrıklaştırmış ve bunları sınır şartlarının ayrıklaştırılmasında kullanmıştır. Ramahi 

(1997), FDTDM simülasyonunda hesaplama kümesinin bitiminde sanal sınırlarda 

oluşan yansımaları yok etmek için metod geliştirmiştir. 

Yutucu sınır koşullarının geliştirilmesine yönelik Berenger (1994) tarafından, PML 

(Mükemmel Uyumlu Tabaka) yutucu sınır koşulları ilk kez ortaya atılmıştır. PML 

tabakası, FDTDM hesap uzayının her tarafını kaplayan sanal bir yutucu tabakadır. PML 

tabakası ile her açı ve frekansta dalgaların yutulması sağlanmaktadır. PML, FDTDM 

ızgarasından yansıyan dalgaları eksponansiyel olarak azaltabildiği için, çok daha iyi 

sonuçlar vermektedir. Çalışmalarına devam eden Berenger (1996), boşluk koşulları için 

PML tasarlamıştır. Bu çalışmanın devamı olarak Berenger(1996) üç boyutlu bir PML 

tasarlamıştır. Teixeira and Chew (1997), FDTDM ile silindirik ve küresel koordinatlar 

için PML tasarlamışlardır. Gedney (1996) tarafından ilk kez tanıtılan UPML (Tek 

eksenli mükemmel uyumlu tabaka) ile Berenger’in PML yöntemi daha da 

geliştirilmiştir. UPML ile PML yönteminin modelleyemediği, kayıplı dağıtıcı ortamlar 

da modellenebilmiştir.  

FDTDM simülasyonlarında sınır koşulları hesaplamalarında, sınırlar uzun süre dik 

koordinat sistemlerinde ifade edilebilir olarak kabul edilmiştir. Böyle olmayan FDTDM 
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sınır yapıları için dik olmayan grid (nonorthogonal grid) yapısı ilk kez Holland (1983) 

tarafından tasarlanmıştır. Sheen (1991) tarafından, sözde düzgün olmayan grid (quasi-

nonuniform) FDTDM algoritmaları tanıtılmıştır. Bu yöntemle grid boyutu üçte birine 

indirilmiştir. Tulintseff (1992), bu yöntemi mikrodalga akım ve anten problemlerine 

uygulamıştır. Zivanovic et al. (1991), FDTDM ızgarası için alt ızgara tanımlayarak 

(subgridding) bilgisayarda fazla yer kaplayan grid alanı, daha küçük ızgaralama yaparak 

azaltmıştır.  

FDTDM‘in gelişen teknoloji ve düşen bilgisayar fiyatları ile popüler hale gelmesini, 

1989 yılından itibaren FDTD metodu kullanılarak yapılan makale (SCI ve SCIE) 

sayılarına bakarak anlayabiliriz. 

 

Şekil 1.1. 1989-2013 yılları arasında FDTD metodu kullanılarak yapılan makale sayıları 

FDTDM ile birçok alanda uygulamalar yapılmıştır. En çok uygulama, biyomedikal ve 

yeraltı nüfuslu radar(YNR) alanlarındadır. 
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Biyomedikal alanında FDTDM ile iki temel amaç üzerinde araştırmalar yapılmıştır. 

Bunlardan birincisi elektromanyetik alana maruz kalan vücut dokularının zarar 

görebileceği elektromanyetik alan eşik değeri ile alakalı güvenlik değerlendirmesidir. 

Dünya genelinde RF (Radyo Frekansı) güvenlik standartlarının belirlediği değerler, 

dokuların elektromanyetik alan enerjisini absorbe etme değerlerini belirten SAR 

(Specific Absorption Rate) açısından, elektromanyetik alana maruz kalma sınırlarını 

aşmamalıdır. Uzak alan ya da yakın alana maruz kalma şartları açısından insan bazlı 

dokuları etkileyen SAR oranlarını hesaplamak için FDTDM kullanılmaktadır. 100 kH‘e 

kadar düşük frekanslar için SAR‘lar genellikle göz ardı edilir ve biyolojik uygunluk için 

indüklenen akım yoğunluğuna bakılır (Taflove 1998). 

Gandhi (1995) yakın ve uzak alanlar için vücudun maruz kaldığı akım yoğunluğunu 

FDTDM  ile doz ölçümleri yaparak hesaplamıştır. 

Biyomedikal alanında FDTDM’in ikinci en yaygın kullanım alanı kanser tedavisinde 

hiperterma sistemleri gibi fiziksel elektromanyetik alan sistem dizaynıdır. Son yıllarda 

yapılan çalışmalarla tümörlü ve kanserli vücut dokularının yüksek sıcaklıkla 

ilerlemesinin durdurulduğu hatta bu şekilde kanserin tedavisinin tamamen yapıldığı 

ispatlanılmıştır. İnsan vücudu heterojen yapıya sahip olduğu için sadece kanserli 

dokuların gerekli manyetik alan ile doyurulması işlemi oldukça zordur. Kötü huylu 

kanser olarak adlandırılan kanserlerin X-ray görüntüleme tekniği olan mamaogram ile 

fark edilmesi oldukça zordur. Ayrıca MRI (Magnetic Rezonans Images) in maliyetli 

olması ve tedavi sürecinde hastanın X-ray ışınlarına maruz kalması kanser tedavisi için 

alternatif yöntemlerin arayışına sebep olmuş, FDTDM ile bu doğrultuda birçok 

araştırma yapılmıştır (Karpat 2009). 

 Converce et al. (2006), mikrodalga hipertermi‘de dar band ve ultra geniş band 

mikrodalganın hangisinin meme kanseri için daha etkili olduğu üzerine çalışmışlardır. 

Göğüs üzerine yerleştirilen iki anten dar band ve geniş band sinyalleri göğse gönderip 

sonuçları FDTDM ve MRI ile kıyaslamışlardır. Sonuç olarak geniş bandlı 

mikrodalgaların dar bantlıya göre daha iyi odaklandığı ve sıcak noktaları azalttığı 
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görülmüştür. Miyazaki and Kouno (2009), bilgisayarlı görüntü işlemenin medikal 

uygulaması üzerine çalışıp FDTDM ile optik dalgaların göğüs içindeki dokulardaki 

yayılımını simüle etmiştir.  

Tofighi (2009), FDTDM kullanarak biyolojik dokular için 0,5-30 GHz frekans aralığı 

için Cole-Cole dağılım modelinin rahatlama zamanının simülasyonunu yapmıştır. 

Rahatlama zaman dağılımı, tek terimli cole cole bağınıtısında çok terimli cole cole 

bağıntısına göre daha iyi sonuç vermiştir. Costen and Bérenger (2009), koblosuz ağların 

insan vücuduna olan etkisini görmek istemiş ve FDTDM ile Huygens tekniğini 

kullanarak elektromanyetik dalganın dokulardaki dağılımını gözlemlemiştir.  

Drezek et al. (2000), biyolojik dokuların ışık saçım özelliklerini hesaplamak için pulse 

cevap teknikleri ile FDTDM’i birleştirmiştir. Elde edilen veriler ile Mie çözümlerinden 

daha iyi sonuçlar elde etmiştir.  

Sullivan (1990), hipertermi için kaynak tasarlamış ve bu kaynak ile derin yerlere nufüz 

eden kanser için FDTDM ile nümerik sonuçlar elde etmiştir.   

Hagness et al. (1998) tarafından yapılan çalışmada FDTDM ile dokuların 

heterojenliğine rağmen zamanda süzülme tekniği ve ortak odak noktası sistemi 

kullanılarak 2mm‘den daha küçük tümörün algılanması sağlanmıştır. Li and Hagness 

(2001) bu çalışmanın devamı olarak FDTDM ile modellenen yapı üzerine yapay bir 

odak noktası koyarak kötü huylu kanserlerin teşhisini kolaylaştırmıştır. Bu çalışmalara 

yakın çalışmalar Fear et al. (2002) tarafından düzlemsel ve silindirik antenler 

kullanılarak hastanın sırtüstü veya yüzüstü durumlarına göre enine ve boyuna görüntü 

kesitleri alınarak 1cm‘den küçük tümörün tespiti sağlanmıştır.  

Sağlıklı dokular ile tümörlü dokular mikrodalgaya maruz bırakıldığında farklı 

elektriksel özellikler göstermektedir. Bindu et al. (2006) dokuların bu özelliğinden 

yararlanarak dokulara gönderilen elektromanyetik dalgaların ölçülen ve yansıyan 

işaretlerini kullanarak FDTDM ile tümör tespiti yapmıştır. 
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FDTDM ile YNR (Yeraltı Nufuzlu Radar) alanlarında yapılan ilk çalışmalar Bourgeois 

and Smith (1998)’e aittir. Yapılan bu çalışmalar mayın tespit amaçlıdır. FDTDM ile 

simülasyonu yapılan bölgenin altındaki mayının konumu elde edilir.  

Teixeira et al. (1998) tarafından homojen olmayan, dispersiyon içeren, iletken toprak  

yapısında üç boyutlu bir YNR sistemi simülasyonu tasarlanmıştır. Toprak, Lorentz ve 

Deby modelleriyle modellenmiştir.  

Gürel ve Oğuz (2001), homojen olmayan, kayıplı ve pürüzlü bir zemin simülasyonu 

tasarlayıp, simülasyonda zemin içerisinde gömülü nesnelerin konumunu FDTDM ile 

hesaplamıştır.  

Gürel ve Oğuz (2003), 2001’de homojen olmayan kayıplı ortam için yapmış oldukları 

simülasyon üzerinden giderek, ortam üzerinde 2 verici anten ve 1 alıcı anten koyarak 

yer altında bulunan cismi tespit etmeye çalışmışlardır. Antenler arası açıklığın etkileri, 

farklı YNR’ler üzerinde incelenmiştir. 

Uduwawala et al. (2005), Debye modeli ile bow-tie anteni kullanarak kayıplı ve dağınık 

YNR ortamı tasarlamıştır. 

Bu tezde, FDTDM ile düzlemsel, homojen ve kayıpsız ortamlara gönderilen bir boyutlu 

elektromanyetik alanın, düzlemsel ortamlardaki hareketlerinin MATLAB ile 

simülasyonu yapılmıştır. Birinci kısımda, FDTDM’in gelişimi ve uygulama alanları ile 

alakalı literatür taraması verilmiştir. İkinci kısımda, bir boyutlu skalar dalga denklemi 

tanıtılıp, sonlu farklar açılımı yapılmıştır ve sonlu farklar yönteminin bir boyutlu dalga 

denklemini tam olarak çözdüğü gösterilmiştir. Üçüncü kısımda, Sonlu farkların 

Maxwell denklemlerine uyarlanmış hali olan FDTDM tanıtılıp, bir boyuttaki 

elektromanyetik dalgaların FDTDM çözümü yapılmıştır. FDTDM’de kullanılan kaynak 

tipleri de tanıtılıp, her biri için MATLAB’ta program yazılarak simülasyonları 

yapılmıştır. Ayrıca sert kaynak kullanılarak, elektromanyetik dalgaların PEC ve PMC 

tabakalarından nasıl yansıdıkları gözlemlenmiştir. Dördüncü kısımda, dielektrik 
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malzemeleri farklı olan birden fazla düzlemsel, homojen ve kayıpsız ortamlara bir 

boyutlu elektromanyetik dalga gönderilerek, bir boyutta FDTDM simülasyonu ile 

elektromanyetik dalgaların ortamlardaki hareketleri gözlemlenmiştir. 
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2. KURAMSAL TEMELLER  

FDTDM, Maxwell denklemlerindeki türev operatörünün sayısallaştırılması ile 

oluşturulur. Sayısallaştırma işlemi sonlu farklar algoritmaları ile yapılır. Bu kısımda, 

bahsi geçen sonlu farklar algoritmaları tanıtılıp, 1 boyutta dalga denklemi çözümü 

anlatılacaktır. Dalga denkleminin sonlu farklar açılımı yapılacak ve FDTDM‘in bir 

boyutta dalga denklemini sağladığı gösterilecektir. 

2.1. Türevin Sonlu Farklar İfadesi 

f fonksiyonun      merkezli Taylor serisi açılımının      ⁄  ve      ⁄  

noktalarında yapılmış hali aşağıdaki gibidir: 

 (   
 

 
)   (  )  

 

 
 ( )(  )  

 

  
(
 

 
)
 

 ( )(  )  
 

  
(
 

 
)
 

 ( )(  )           (   ) 

  (   
 

 
)   (  )  

 

 
 ( )(  )  

 

  
(
 

 
)
 

 ( )(  )  
 

  
(
 

 
)

 

 ( )(  )          (   ) 

 ( )(  ) , f fonksiyonun n. dereceden x‘e göre türevinin     ‘da hesaplanmasını 

temsil eder. (2.1)’den (2.2) çıkarılırsa 

   (   
 

 
)     (   

 

 
)     ( )(  )  

 

  
(
 

 
)
 

 ( )(  )                   (   ) 

Eşitlik   ile bölünürse; 

  
 (   

 
 )     (   

 
 )

 
   ( )(  )  

 

  

   ( )(  ) 

  
                         (   ) 
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(2.4)‘ün sol tarafındaki terim, fonksiyonun    noktasındaki türevi,    li bir terim ve 

gösterilmeyen sonsuz sayıda terimin toplamına eşittir. Sonraki gösterilmeyen ilk terim 

  ‘e bağlıdır ve tüm sıradaki gösterilmeyen terimler  ’nın daha yüksek dereceden 

terimlerine bağlıdır. Küçük bir düzenleme ile bu ilişki aşağıdaki şekilde ifade edilir; 

  ( )

  
|
    

 
 (   

 
 )     (   

 
 )

 
   (  )                         (   ) 

Büyük   sembolü, gösterilmeyen tüm terimleri temsil eder ve parantez içindeki   , bu 

gizli terimlerde  ‘nın en büyük katkısını gösterir. Eğer  ’nın yeterince küçükse, türeve 

uygun bir yaklaşım, büyük   terimi tarafından temsil edilen tüm terimler yok sayılarak 

elde edilebilir (Schneider 2012). 

  ( )

  
|
    

 
 (   

 
 )     (   

 
 )

 
                                     (   ) 

2.2. Bir Boyutta Skalar Dalga Denklemi 

Bu kısımda 1 boyutta skalar dalga denkleminin, dalga hareketini tanımlayan basit kısmi 

diferansiyel eşitliğin FDTDM çözümü incelenecek. İlk olarak dalga denklemi elde 

edilip, daha sonra sonlu farklar uygulanacaktır. Bir boyutta skalar dalga denkleminin 

FDTDM çözümü ağırlıklı olarak, Taflove and Hagness (2005)’dan refans alınarak 

açıklanmıştır. 

2.1.1. Dalga Denkleminin Çözümü 

Bir boyutta skalar dalga denklemi aşağıdaki gibidir. 

   

   
   

   

   
                                                                      (   ) 
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burada     (   ) ‘dir.   zamanı;   konumu temsile eder. c ışığın serbest uzayda 

yayılma hızıdır. Bu denklemin dalga denklemi olduğunu ve çözümün de dalga 

fonksiyonları olduğunu göstermek için  (   )‘yi aşağıdaki gibi ifade edelim. 

 (   )   (    )   (    )                             (   ) 

 (    ),    yönünde c hızıyla yayılan skalar dalgayı;  (    ) de    yönünde c 

hızıyla yayılan skalar dalgayı temsil eder. 

(2.7)‘de  (   ) ile ilgili ifade yerine konursa 

  

  
 

  (    )

 (    )

 (    )

  
 

  (    )

 (    )

 (    )

  
                                                     

   ( )(    )    ( )(    )                                                                                         (   ) 

   

   
  

  ( )(    )

 (    )

 (    )

  
  

  ( )(    )

 (    )

 (    )

  
                                              

   

   
   ( ) ( )(    )   (  ) ( )(    )                                                             

    ( )(    )     ( )(    )                                                                                  (    )  

  

  
 

  (    )

 (    )

 (    )

  
 

  (    )

 (    )

 (    )

  
                                                   

  ( )(    )   ( )(    )                                                                                           (    ) 

   

   
 

  ( )(    )

 (    )

 (    )

  
 

  ( )(    )

 (    )

 (    )

  
      

   

   
   ( )(    )   ( )(    )                                                                                 (    ) 
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elde edilir. (2.7)‘de sırasıyla yerine yazılırsa, 

   ( )(    )     ( )(    )      ( )(    )   ( )(    )                      (    ) 

elde edilir. Böylece (2.7)‘nin bir dalga denklemi olduğu,  (   ) ‘nin de bir dalga 

fonksiyonu olduğu gösterilmiş olur (Taflove and Hagness 2005). 

2.1.2. Skalar Dalga Denklemine Sonlu Farklar Yaklaşımı 

(   ) uzayının (     ) noktası etrafında   (   )‘nin x’e göre Taylor açılımı aşağıdaki 

gibidir. 

 (     )           
   

  

  
      

 
(  ) 

 

   

   
      

 
(  ) 

 

   

   
      

 

 
(  ) 

  

   

   
                                                                                                                            (    ) 

                                                                                                                                    

Burada en son terim olan hata terimindeki   , (        ) aralığında herhangi bir yerde 

konumlanmış x noktasıdır. Benzer şekilde (     ) noktası etrafında x‘e göre Taylor 

serisi açılımı yapılırsa, 

 (     )           
   

  

  
      

 
(  ) 

 

   

   
      

 
(  ) 

 

   

   
      

                       

 
(  ) 

  

   

   
                                                                                                                         (    ) 

Hata terimindeki   , (        ) aralığında konumlanmış herhangi bir x noktasıdır. Bu 

iki denklemi toplanırsa 
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 (     )     (     )            
 (  ) 

   

   
      

 
(  ) 

  

   

   
        (    ) 

Elde edilir. Ortalama değer teoremine göre   , (           )  aralığında 

konumlanmış herhangi bir x noktasıdır. Terimler tekrar düzenlenirse, 

   

   
      

  
 (     )    (  )   (     )

   
       (  )               (    ) 

elde edilir.    (  )   terimi hatayı göstermektedir ve küçük bir    için, çok küçük 

olduğundan ihmal edilir. Bu denklem aşağıda daha kısa ve genel formda ifade 

edilmiştir. 

   

   
      

 
    

     
      

 

   
    (  )                                  (    ) 

Bu sonlu farklar ifadesinde   
 ,     zamanında ve     konumunda hesaplanan dalgayı 

gösterir. 

(   ) uzayının (     ) noktası etrafında   (   )‘nin t’ye göre Taylor açılımı aşağıdaki 

gibidir. 

 (     )   
        

   
  

  
      

 
(  ) 

 

   

   
      

 
(  ) 

 

   

   
      

 

 
(  ) 

  

   

   
      

                                                                                                                   (    ) 

Burada en son terim olan hata terimindeki   , (        )  aralığında herhangi bir 

zamanda konumlanmış t noktasıdır. Benzer şekilde (     ) noktası etrafında t‘ye göre 

Taylor serisi açılımı yapılırsa, 
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 (     )   
        

   
  

  
      

 
(  ) 

 

   

   
      

 
(  ) 

 

   

   
      

 

 
(  ) 

  

   

   
      

                                                                                                                   (    ) 

 (2.19) ve (2.20) toplanırsa, 

 (     )   
  (     )   

         
 (  ) 

   

   
      

 
(  ) 

  

   

   
           (    ) 

elde edilir. Ortalama değer teoremine göre   , (           )  aralığında 

konumlanmış herhangi bir t noktasıdır. Terimler tekrar düzenlerse, 

   

   
      

 
  

       
    

   

   
    (  )                                      (    ) 

elde edilir. 

(2.18) ve (2.22)‘deki iki merkezi farklar ifadesi bir boyutta skalar dalga eşitliğinde 

yerlerine yazılırsa, 

 
  

       
    

   

   
    (  )      

    
     

      
 

   
    (  )                  (    ) 

elde edilir. Bu denklem,   
    için çözülürse  

  
    (   ) [

    
     

      
 

   
]     

    
      (  )     (  )           (    ) 

elde edilir. Burada   (  )        (  )   terimleri hatalar olup ihmal edilebilecek kadar 

küçüktür. Dolayısıyla   
    ifadesi 
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    (   ) [

    
     

      
 

   
]     

    
                           (    ) 

olarak düzenlenebilir.   
   ‘i elde etmek için n-1 ve n.’ci zamanlardaki değerlere ihtiyaç 

vardır. Bu denklem, skalar dalga eşitliğinin FDTDM çözümünde problem uzayı 

boyunca kullanılır. 

         olduğu durum için yani sihirli(magic) zaman adımı durumu için (2.25)’in 

sağ tarafı tekrar düzenlerse 

    
     

      
     

    
        

      
    

                         (    ) 

elde edilir.  

 (   )   (    )   (    )  eşitliği (2.26)‘da kullanılırsa 

      
                                        

                                          
    

   (        )   (        )    (        )   (        )  

  (        )   (        )]                                                                             (2.27) 

elde edilir. Sağ tarafın açılmış hali, 

[ ((   )       )   ((   )       )]  [ ((   )       )  

 ((   )       )]    ((    (   )   )   (    (   )   )]          (2.28) 

şeklindedir. Sihirli adım özelliğinin,       , (2.28)‘de kullanılması 
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[ ((   )      )   ((   )       )]  [ ((   )      )  

 ((   )      )]    ((    (   )  )   (    (   )  )]             (2.29) 

   ((     )  )   ((     )  )    ((     )  )   ((    

 )  )    ((     )  )   ((     )  )]                                                (2.30)          

   ((     )  )   ((     )  )                                                                     (    )  

ile sonuçlanır.   
    fonksiyonunun matematiksel ifadesi aşağıdaki gibi bulunabilir. 

  
      (        )   (        )                                                                         

   ((    (   )  )   (    (   )  )                                                           

   ((     )  )   ((     )  )                                                                     (    )  

(2.31) ile (2.32) yani, (2.31) ile   
    tamamen aynıdır (Taflove and Hagness 2005). 

Yani sihirli adımda, FDTDM eşitliği, yani (2.25), skalar dalga denklemini yaklaşık 

olarak değil de tam doğru olarak çözer. 
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3. MATERYAL ve YÖNTEM 

Bu kısımda, Yee‘nin Maxwell denklemlerine uyarladığı ve ismi literatürde FDTDM 

olarak geçen yöntem, Maxwell denklemleri üzerinden anlatılacaktır. Bu tezde 1 boyutta 

çalışıldığı için, Maxwell denklemlerinin 1 boyutlu halleri dikkate alınacaktır. 1 boyutlu 

düzlem için elde edilen elektrik ve manyetik alan ifadelerine FDTDM açılımı 

uygulanacaktır. FDTDM‘in kararlı çalışabilmesi için kararlılık kriteri ve FDTDM‘de 

kullanılan kaynak tipleri anlatılacaktır. Bu bölümün hazırlanmasında ağırlıklı olarak 

Schneider (2012)’den yararlanılmıştır.  

3.1. FDTDM 

FDTDM elektromanyetik problemleri çözmek için kullanılan tam dalga teknikleri 

arasında uygulama açısından tartışmasız en basit ve popülerlerinden biridir. FDTDM ile 

yalnızca bir simülasyonla geniş frekans aralığındaki EM dalgalarını zaman kümesinde 

doğrudan analiz etmek mümkündür (Schneider 2012). 

FDTDM türev operatörünün sayısallaştırılmasına dayanır. Bu metodla Maxwell’in 

eşitliklerinde belirtilen konumsal ve zamansal türevlerin her ikisi de sayısallaştırılır 

(Sevgi 1999). 

3.1.1. Maxwell Denklemlerinin 1 Boyutta FDTDM için Özelleştirilmesi 

Maxwell denklemlerinden Faraday ve Amper Kanunları,   iletkenliğine sahip kaynaksız 

bir ortam için 

  ⃗⃗ 

  
  

 

 
 ⃗⃗    ⃗                                                                (   ) 
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 ⃗⃗    ⃗⃗  

 

 
 ⃗                                                        (   ) 

şeklindedir. 

Faraday ve Amper kanunlarının Kartezyen koordinatlarda yazılmış hali aşağıdaki 

gibidir. 
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[ ̂ (

   

  
 

   

  
)   ̂ (

   

  
 

   

  
)   ̂ (

   

  
 

   

  
)]                                           

  
 

 
( ̂    ̂    ̂  )                                                                              (   ) 

Karşılıklı bileşenler birbirine eşitlendiğinde aşağıdaki denklemler elde edilir. 

   

  
  

 

 
(
   

  
 

   

  
)                                                            (   ) 

   

  
  

 

 
(
   

  
 

   

  
)                                                             (   ) 

   

  
  

 

 
(
   

  
 

   

  
)                                                            (   ) 

   

  
 

 

 
(
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    )                                                    (   ) 

   

  
 

 

 
(
   

  
 

   

  
    )                                                 (    ) 

Bu 6 denklem, FDTDM’in iskeletini oluşturur. Yalnızca x yönünde değişimin olduğu 1-

boyutlu uzayı dikkate alalım ve elektrik alanın sadece z yönünde bir bileşene sahip 

olduğunu varsayalım. Faraday kanunu yeniden yazılırsa, sadece          operatörü ve    

elektrik alanının sıfır olmadığı durum ile 

 
   

  
 

   

  
                                                                                (    ) 

elde edilir. Böylece   , manyetik alanın sıfır olmayan bileşeni olmak zorundadır. Yine 

sadece       operatörünün ve    manyetik alan bileşeninin sıfır olmadığı durum için 

Ampere kanunu yazılırsa, 

  
   

  
 

   

  
                                                                                (    ) 

elde edilir ( Taflove and Hagness 2005). 

3.1.2. Bir Boyutta FDTDM Algoritmaları 

Denklem (3.11), elektrik alanın konum türevini, manyetik alanın zamansal türevini 

içerir. Denklem (3.12), manyetik alanın konumsal türevini, elektrik alanın zamansal 

türevini içerir. İlk eşitlik manyetik alanın ve ikinci eşitlik de elektrik alanın zamanda 

ilerletilmesi için kullanılabilir. Önce bir alan daha sonra diğer alan iteratif olarak 

ilerletilir ve bu metoda leap-frog metodu denir. 



19 
 

 
 

Bir sonraki adım bu denklemlerde türev operatörleri ile sonlu farkların yer 

değiştirmesidir. Bunu yapmak için zaman ve konum kümelerinde ayrıklaştırmaya 

ihtiyaç vardır.  

Elektrik ve manyetik alanların bir boyutta zaman ve konum kümesinde örneklenmiş hali 

Şekil 3.1’de görülebilir. Şekil 3.1‘de kullanılan semboller aşağıdaki gibi tanımlanır 

(Schneider 2012). 

  (   )    (       )    
                                          (     )              

  (   )    (       )    
                                        (     )                     

 

Şekil 3.1. Örneklenmiş konum-zaman uzayında Faraday kanununun sonlu farklarla 

yazıldığı nokta gösteriliyor 
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  , konum eksenindeki örnekleme periyodu,     ise zaman eksenindeki örnekleme 

periyodudur.  m indeksi, konum adımını, q indeksi de zaman adımını ifade eder. Şekil 

3.1’de kesikli çizginin altındaki alanlar geçmiş yani hesaplanmış alanları, kesikli 

çizginin üstündeki alanlar ise gelecek alanları yani henüz hesaplanmayan alanları 

gösterir. FDTDM algoritmaları geçmiş alanlardan gelecek alanların bulunmasını sağlar. 

Şekil 3.1’de geçmiş alan bölgesinde işaretlenen ((     )      ) koordinatlı 

noktada Faraday kanunu aşağıdaki gibi yazılabilir.  

 
   

  
 
(  

 
 
)      

 
   

  
 
(  

 
 
)      

                                   (    ) 

Zamansal türev operatörü ve konumsal türev operatörü sonlu farklar ile yer değiştirirse, 

 
  

     
[  

 
 ]    

     
        

  
 

   
          

     

  
               (    ) 

denklemi ortaya çıkar.   
     

[  
 

 
] için denklemi çözersek, 

  
     

[  
 

 
]    

     
[  

 

 
]  

  

   
(  

          
    )                 (3.16) 

bulunur (Schneider 2012). Bu denklem,    nin gelecek bir zaman anında bulunabilmesi 

için geçmişteki    ve    değerlerine ihtiyaç olduğunu gösterir. İteratif olarak tüm 

düğümlere, yarım zaman adımı ilerletilerek denklemler uygulanır. 

Sonraki aşamada, Ampere kanunu, Şekil 3.2’de gösterilen kesikli çizginin altında 

bulunan, yani geçmiş zaman bölgesinde gösterilen nokta için yazılır. 
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Şekil 3.2. Örneklenmiş konum-zaman uzayında Amper kanununun yazıldığı nokta 

gösteriliyor 
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)  

                                          (    ) 

denklemi elde edilir. Zamansal türev operatörü ve konumsal türev operatörü sonlu 

farklar ile yer değiştirirse, 
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                        (    ) 

denklemi ortaya çıkar.   
       için denklemi çözersek, 
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[  

  
 
 [  

 

 
]    

  
 
 [  

 

 
]]                        (    ) 

bulunur (Schneider 2012). Bu denklemden anlaşılacağı üzere    nin bulunabilmesi için 

geçmiş zamanlardan elde edilen          lerin bilinmesi gerekir. 

Şekil 3.2’deki kesikli çizgiye en yakın, gelecek zaman kümesindeki alanlar, q+1 

zamanında bulunan elektrik alanlardır. Denklem (3.19) q+1 zamanı için her düğüme 

uygulanır ve elektrik alanlar hesap edilir. Bu işlemden sonra kesikli çizgi q+1 ile q+3/2 

arasına gelecek şekilde yarım adım ilerletilir. Son durumda kesikli çizgiye en yakın 

gelecek zaman kümesindeki alanlar, q+3/2 zamanında bulunan manyetik alanlardır ve 

bu zaman boyunca tüm alanlar denklem (3.16) kullanılarak hesap edilir. Belirlenen 

zaman boyunca zamanda yarım adım ilerletilerek, ızgara yapısındaki FDTDM 

modelinde bulunan tüm elektrik ve manyetik alanlar hesap edilir. 

3.1.3. FDTDM Kararlılık Kriteri 

 (2.7) ile belirtilen skalar dalga denklemi, eğer sınırlı girişe karşı sınırlı çıkış 

üretebiliyorsa, (2.7)’nin (2.25)’deki gibi sayısal çözümü kararlıdır. 

Uzayda yayılan dalga ışık hızından daha hızlı yayılamaz. Dolayısıyla FDTDM 

ızgarasında elektromanyetik dalga minimum hücre mesafesini         zamanında 

alır. Yani,   ’nin maksimum değeri,     ’dir. Bir FDTDM simülasyonunun kararlı 

olabilmesi için aşağıdaki koşulun sağlanması gerekir (Taflove and Hagness 2005). 

   
   

  
                                                                           (    ) 

   ile gösterilen ifadeye Courant sabiti adı verilir. Courant sabitinin kararlılık kriterini 

sağladığı ve sağlamadığı durumlar için  Gaussian işareti, Şekil 3.3, Şekil 3.4 ve Şekil 

3.5’de gösteriliyor. 
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Şekil 3.3. a) q=50. zaman adımında kararlılık kriterinin,   ’nin, 0.5 olması durumunda kare 

dalga işaretinin yayılması b) q=50. zaman adımında kararlılık kriterinin,   ’nin, 0.5 olması 

durumunda Gaussian işaretinin yayılması 
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Şekil 3.4. a) q=50. zaman adımında kararlılık kriterinin,   ’nin, 1 olması durumunda Gaussian 

işaretinin yayılması b) q=50. zaman adımında kararlılık kriterinin,   ’nin, 1 olması durumunda 

kare dalga işaretinin yayılması 
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Şekil 3.5. a) q=50. zaman adımında kararlılık kriterinin,   ’nin, 1,003 olması durumunda 

Gaussian işaretinin yayılması b) q=50. zaman adımında kararlılık kriterinin,   ’nin, 1,003 

olması durumunda kare dalga işaretinin yayılması  
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Sayısal kararsızlık, sayısal diferansiyel eşitlik çözücüleri için istenilmeyen durumdur. 

Zaman ilerlerken, hesaplamaların aşırı olarak düzensiz biçimde artmasına sebep olur  

(Taflove and Hagness 2005). 

Şekil 3.3, Courant sabiti,         durumu için FDTDM simülasyonudur. Kare dalga 

işareti ile Gaussian işaretinin spektrumları farklı olduğu için, bozucu unsurlardan kare 

dalga işareti Gaussian işaretine nazaran daha fazla etkilenmiştir. 

 Şekil 3.4’te Courant sabiti,      olduğu durum için FDTDM simülasyonudur. 

Kararlılık kriterinin tam olarak sağlandığı durum olduğu için, hem kare dalga hemde 

Gaussian işareti bozulmadan yayılmaktadır. 

Şekil 3.5’de Courant sabiti,      için, FDTDM simülasyonunu gösterir.          

için, zaman adımı ilerletildikçe kare dalga ve Gaussian işaretinin gürültü ve 

osilasyonlarla kirletildiği görülmektedir.  

3.1.4. Bir Boyutta FDTD’in Bilgisayar Uygulaması 

Öncelikle denklem (3.16) ve (3.19) ‘daki    (   ) ve    (   ) sabitleri    cinsinden 

yazılır.       ,        , ve    √    ⁄  olmak üzere, 

  

   
 

  

   
 

√      

    √      
 

√       

      
 

 

  
√

  

  

   

  
 

 

    
                         (    ) 

  

   
 

  

   
 

√      

    √      
 

√       

      
 

 

  
√

  

  

   

  
 

  

  
                                (    ) 

elde edilir. Denklem(3.21) ve (3.22)‘de çıkarılan ifadeler kullanılarak, denklem (3.16) 

ve (3.19) bilgisayarın anlayacağı formata aşağıdaki gibi dönüştürülür (Schneider 2012). 
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            (             )  
  

     
                              (    ) 

            (             )  
     

  
                              (    ) 

Programın ilk kısmında, hesaplanan manyetik ve elektrik alanların bilgisayarda kayıt 

edilmesi için,      ‘lük tüm değerleri sıfır olan matrisler oluşturulur. (3.23) ve (3.24) 

denklemleri, MATLAB‘ta        anından itibaren döngüler kullanılarak her zaman 

adımı için, tüm konum adımlarındaki elektrik ve manyetik alanlar hesaplanılır. 

Kaynağın konulduğu düğüm noktasından itibaren datalar hesaplanılır. Zaman adımı 

     anına ulaştığında bütün elektrik ve manyetik alanlar hesap edilir. MATLAB’ta  

     ‘lük matrislere depolanan elektrik ve manyetik alan dataları grafiğe dökülerek 

kaynak olarak kullandığımız işaret gözlemlenilir.  

Temel FDTDM simülasyon programının kabaca akış şeması aşağıdaki gibidir. 
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Şekil 3.6. FDTDM algoritmalarının kabaca akış şeması 

Şekil 3.6‘da gösterilen akış şeması FDTDM algoritmasının temel yapısını oluşturur. 

Kaynağın tipi, konulacağı düğüm noktası ve sınır parametreleri değiştirilerek probleme 

uygun hale getirilir. 

3.1.5. FDTDM’de Kaynak Seçimi 

Elektromanyetik enerjiyi FDTDM ızgarasında bir noktadan yaymak için iki tip kaynak 

kullanılır. Bunlar sert kaynak ve yumuşak kaynaktır.  

  Başla 

Simülasyon 

Parametrelerini  Ayarla 

Elektrik Alan 

Bileşenlerini 

Hesapla 

         

Manyetik 

Alan 

Bileşenlerini 

Hesapla 

         
       

H 

Kaynak 

İşaretini Çiz 
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Sert kaynak ile bir boyutta FDTDM çözümlerinde, kaynağın elektrik alan başlangıç 

değeri bir düğüme yerleştirilir ve elektrik alan bu düğümden itibaren    yönünde 

hareket eder.  

       ve     ,           ve       olan bir boyutta FDTDM ızgarasının, 

     noktasına yerleştirilen Gaussian ve kare dalga işaretli sert kaynağın   

        .’cı konumundaki elektrik ve manyetik alanlarının şekilleri, MATLAB’ta Ek 1 

Program 3.1 kullanılarak Şekil 3.8’deki gibi elde ediliyor. ( Ek 1’de Program 3.1, 

Program 3.2, Program 3.3, Program 3.4, Program 3.5, Program 3.6, Program 3.7, 

Program 3.8, Program 3.9, Program 4.1 ve Program 4.2 bulunmaktadır.) 
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Şekil 3.7. a) Program 3.1 ile FDTDM ızgarasında       ve 90.  zaman adımlarında Gaussian 

işaretli elektrik ve manyetik alanların yayılımı b)Program 3.1 ile FDTDM ızgarasında       
ve 90.  zaman adımlarında kare dalga işaretli elektrik ve manyetik alanların yayılımı 
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Program 3.1’de for döngüsü ile FDTDM modelinin zaman adımı tamamlanıyor. Zaman 

döngüsünün içerisine yerleştirilen 2 for döngüsü ile elektrik ve manyetik alanların her 

bir zaman için konumda ilerletilmesi sağlanıyor. FDTDM ızgarasının Δ    noktasına 

konulan Gaussian sert kaynak işareti, her zaman adımında, konumda sağa doğru bir 

adım ilerleyecektir. Zaman adımı ilerledikçe konumdaki ilerleyişi Şekil 3.8 ile 

gösterilmiştir.  

 

Şekil 3.8.     noktasına sert kaynak konulan FDTDM ızgarasının, zaman adımı birer 

birer ilerleletildikçe her zaman adımı ile Gaussian işaretinin konumda ilerleyişi 

Şekil 3.8’deki gibi zaman adımı ile sağa doğru ilerleyiş, tüm ızgara boyunca           

        ‘e kadar sürecektir. 
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Yumuşak kaynak, FDTDM ızgarasında herhangi bir konum düğümüne akım yoğunluğu 

konularak elde edilir. Amper Kanunu akım yoğunluğu,   , olduğu koşullar için aşağıdaki 

gibidir. 

 ⃗⃗   ⃗⃗   
  ⃗ 

  
                                                                        (    ) 

  ⃗ 

  
 

 

 
 ⃗⃗   ⃗⃗  

 

 
                                                                      (    ) 

Amper Kanunu‘nun, (3.26) denklemi için kartezyen koordinatlarda yazılmış hali 

aşağıdaki gibidir. 
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Denklem (3.12)‘nin elde edilmesine benzer şekilde, yalnızca x yönünde değişimin 

olduğu 1-boyutlu uzayda, elektrik alanın sadece z yönünde bir bileşene sahip olduğu 

varsayılır. Bu koşul için, yani sadece       operatörü ve    manyetik alan bileşeninin 

sıfır olmadığı durum için Amper kanunu aşağıdaki gibi yazılır. 
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Denklem (3.30)‘u FDTDM algoritmaları için uygun forma dönüştürmek için konumsal 

türevler sonlu farklar cinsinden yazılır ve geçmiş zamanlar cinsinden gelecek zamanlar 

hesap edilir. 
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Denklem (3.19)‘da verilen   
      , ortamdaki elektrik alanın yayılımı ile elde edilir.  

  
          

     
  

   
[  

  
 
 [  

 

 
]    

  
 
 [  

 

 
]] 

eşitliği denklem (3.33)‘te yerine konulursa aşağıdaki eşitlik elde edilir. (Schneider 

2012) 

  
          

       
  

 
   

 
                                                           (    ) 

Denklem (3.34),   akım kaynağı ile yayılan alanın, (3.19)’da elde edilen elektrik alan 

ifadesinden farklı olarak her zaman ve konum adımı için  
  

 
   

 

     kadar negatif etki 

oluşturduğunu gösterir. 

Denklem (3.34) ile yumuşak kaynak eşitliği, FDTDM algoritmaları için uygun forma 

sokulmuştur.      ve       ,           ve       olan bir boyutta FDTDM 
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ızgarasının,       noktasına yerleştirilen Gaussian ve kare dalga işaretli yumuşak 

kaynağın       ,       ,       ,       ,        ve        

zamanlarındaki elektrik ve manyetik alanların görünümleri, MATLAB‘ta Ek 1 

Program 3.2 kullanılarak alttaki gibi elde ediliyor. 
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Şekil 3.9. a) Program 3.2 ile FDTDM ızgarasında      ’e yerleştirilen Gaussian işaretli 

yumuşak kaynak ile                             zaman adımlarında elektrik alanın 

FDTDM ızgarasındaki yayılımı b) FDTDM ızgarasında      ’e yerleştirilen kare dalga 
işaretli yumuşak kaynak ile                             zaman adımlarında elektrik alanın 
FDTDM ızgarasındaki yayılımı 

Şekil 3.9‘da       konumuna yerleştirilen Gaussian ve kare dalga işaretli yumuşak 

kaynak ile                             zaman adımlarında elektrik alanların 

konumlarını göstermektedir. Yumuşak kaynakta zaman adımları artırıldıkça enerji 

kaynak noktasından itibaren –z ve +z yönünde ikiye ayrılır. Şekil 3.9.a’da Gaussian 

işaretli yumuşak kaynağın genliği yarıya düşerek kaynak noktasından itibaren sağa ve 

sola doğru 2’ye bölünmüştür. Şekil 3.9.b’de 10 birimlik 1’lerle oluşturulan kare 

dalganın, 5’erli olarak 1’lere sahip kare dalga olarak kaynak noktasından itibaren sağa 

ve sola doğru 2’ye bölünmüştür. 
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FDTDM’de kaynak üretmek için kullanılan kavramlardan biri de Toplam Alan Saçılan 

Alan (TASA)’dır. 

TASA kullanılarak, sadece bir yöne yayılan yumuşak kaynak elde edilecektir. İlk önce 

zaman ve konumun bir fonksiyonu olarak iletilen alan belirlenecektir. Kaynak 

fonksiyonu Gaussian işareti için argüman olarak   kullanılır ve denklem aşağıdaki gibi 

elde edilir (Schneider 2012). 

 ( )   (   )    (
        

   
)    (

    
 

)                                     (    ) 

   yönünde yayılan alanı elde etmek için, argümanı t     olan dalga fonksiyonunu 

kullanabiliriz.      için: 
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(3.37)’e benzer şekilde   
         aşağıdaki gibidir. 

  
           √

 

 
  

          
 

 
  

 (
(   )   
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                              (    ) 

Burada   
         gelen alanı temsil etmektedir. TASA sınır formülasyonunu 

göstermek için rastgele bir şekilde sınır belirlenilir. Belirlenilen TASA sınırı, yalnızca 

saçılan alanı temsil eden saçılan alan bölgesi ve gelen alan ile herhangi saçılan alanı 

temsil eden toplam alan bölgesi olarak hesaplama kümesini ikiye ayırır. Gelen alan, 
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toplam alan ve saçılan alan bölgesi arasındaki sınırda tanımlanılır. Gelen alan ile saçılan 

alanın birleşimi toplam alanı vermektedir.  

 

Şekil 3.10. Bir boyutta TASA sınırı  

Şekil 3.10‘da gösterildiği gibi toplam alan bölgesi sınırın sağında, saçılan alan bölgesi 

gridin solunda yer alır.        indeksi, konum olarak   (      )‘yi gösterir. 

TASA hesaplamalarında alanlar güncellenirken sürekli olmalıdır. Saçılan alan 

bölgesindeki alan güncellemelerinde yalnızca saçılan alanlar, toplam alan bölgesindeki 

alan güncellemelerinde yalnızca toplam alanlar olmak zorundadırlar (Schneider 2012). 

    ‘de konumlanan elektrik alan eşitliği, denklem (3.19)‘dan yararlanılarak 

aşağıdaki gibi yazılır. 
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Denklem (3.39)‘da   
       ,   

             , toplam alanlar olup   
         

     düğümü saçılan alan bölgesinde olduğu için, saçılan alanı temsil etmektedir. 

  
             ‘ye gelen alan eklenerek toplam alana dönüştürülmüş olur.  
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Toplam Alan                

(Gelen Alan + 

Saçılan Alan) 
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Denklem (3.19) yardımı ile (3.40) aşağıdaki gibi düzenlenilir. 
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Denklem (3.41), bilgisayar index formunda aşağıdaki gibi yazılır. 
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Denklem (3.16) yardımı ile   
              aşağıdaki gibi elde edilir.                                                                                                             

  

  
 

 [   
 

 
]    

              
  

   
(  

        
     )                    (    )              



39 
 

 
 

Denklem (3.43)‘de   
             ,   

             ,    
       saçılan alan olup, 

  
      düğümü, toplam alan bölgesine denk geldiği için toplam alandır. Toplam 

alandan gelen alan çıkartılarak saçılan alan elde edilir. 
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Denklem (3.16) yardımıyla (3.44) aşağıdaki gibi düzenlenir. 
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Denklem (3.45), bilgisayar index formunda aşağıdaki gibi yazılır. 
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Şekil 3.11. Program 3.3 ile     ’ye yerleştirilen TASA kaynağının       ve 

      zaman adımları için elde edilen elektrik ve manyetik alanların konumları 

Denklem (3.42) ve (3.47) TASA simülasyonu için,  Ek 1 Program 3.3‘te kullanılmıştır. 

Program 3.3 çalıştırıldığı zaman     ’ye konulan TASA kaynağının             

zaman adımlarındaki elektrik ve manyetik alanlar Şekil 3.11‘deki gibi elde edilmiştir. 

Şekil 3.11‘de görüldüğü gibi tek yöne ve genliği ikiye bölünmeyen yumuşak kaynak 

elde edilmiştir. 

Sert kaynak, yumuşak kaynak ve TASA,                  ’lük FDTDM 

ızgarasının      konum noktasına yerleştirilsin. Bu durumda her bir kaynağın 

ızgarada nasıl hareket ettiği               zaman adımları için Şekil 3.12 ve Şekil 

3.13‘de görülmektedir. 
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Şekil 3.12.      noktasına yerleştirilen sert, yumuşak ve TASA kaynaklarının 

     zaman adımındaki konumları 
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Şekil 3.13.      noktasına yerleştirilen sert, yumuşak ve TASA kaynaklarının 

     zaman adımındaki konumları 

Ek 1 Program 3.4 ile sert, yumuşak ve TASA kaynakları FDTDM ızgarasının      

konumuna yerleştirilmiştir.              zaman adımlarında, kaynakların FDTDM 

ızgarasındaki yayılımı Şekil 3.12 ve Şekil 3.13’te gösterilmiştir. Sert ve yumuşak 

kaynaklar, zaman adımı ilerledikçe sağa ve sola doğru yayılmaktadır. Sert kaynağın 

genliği değişmeden yayılırken, yumuşak kaynak genliği yarıya düşerek yayılmaktadır. 

TASA kaynağı ise sağa doğru (+z yönünde) genliği değişmeden yayılmaktadır. 

3.1.6. PEC veya PMC Sınır Şartları için FDTDM Uygulamaları 

Sağ ve sol sınırları PEC( Mükemmel Elektrik İletken) veya PMC(Mükemmel Manyetik 

İletken) özelliklere sahip malzemelerle kaplı FDTDM ızgarasında, elektrik ve manyetik 

alanın hareketi sınır malzemesine bağlı olarak değişmektedir. PEC‘nin elektrik alana 

karşı ve PMC‘nin manyetik alana karşı yansıma katsayısı -1’dir. 
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3.1.6.a. PEC – PEC ile Çevrili Ortamda Elektrik ve Manyetik Alanlar 

Sağ ve sol sınır bölgeleri Şekil 3.15’deki gibi PEC malzeme ile kaplı       konum 

adımlı ve           zaman adımlı FDTDM ızgarasının     noktasına, Gaussian 

sert kaynak yerleştiriliyor.  

 

Şekil 3.14. Sağ ve sol sınırları PEC-PEC malzemeyle kaplı FDTDM ızgarasındaki sert 

kaynağın      zaman adımı süresince FDTDM ızgarasında ilerleyişi 

Ek 1 Program 3.5, Şekil 3.14‘de gösterilen ortam FDTDM ile sağlanılarak,      

konumundaki elektrik ve manyetik alanların sınır bölgelerinden nasıl yansıdığını 

göstermektedir. Elektrik ve manyetik alanların           zaman adımı elektrik ve 

manyetik alanlar Program 3.5 ile Şekil 3.15 ve Şekil 3.16’da gösterildiği gibi elde 

edilmiştir. Program 3.5. çalıştırıldığında, 200 elemente sahip x ızgarasının sonunda 

bulunan, ez(200),  sıfır değerini aldığı için, FDTDM ızgarasının sonunda PEC duvarı 

varmış gibi davranacaktır. Aynı şekilde, ızgaranın sol duvarı olan ez(1) değeri sıfır 

değeri aldığı için, FDTDM’in sol sınırı da PEC duvarıymış gibi davranacaktır. PEC‘nin 

elektrik alan için yansıma katsayısı -1 olduğu için, elektrik alanı gösteren Gaussian 

işareti FDTDM ızgarasının sağ ve sol sınırlarına ulaştığı zamanlarda yön değiştirerek 

yansıyacaktır. PEC‘nin manyetik alan için yansıma katsayısı 1 olduğu için, manyetik 

alanı gösteren Gaussian işareti, FDTDM ızgarasının sağ ve sol sınırlarına ulaştığı zaman 

yön değiştirmeden yansıyacaktır. 
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Şekil 3.15. Program 3.5 ile FDTDM kullanılarak sağlanılan Şekil 3.14 ortamında sağa doğru 

yayılan elektrik alanın FDTDM ızgarasında,      , 250., 450., 650. ve 850. zaman 

adımlarında sınır bölgelerdeki PEC malzemelerden yansımış halleri 

Ek 1 Program 3.6, FDTDM ile Şekil 3.14’de gösterilen sağa doğru yayılan Gaussian 

işaretinin, manyetik alan bileşeninin hareketi için düzenlenmiştir. Manyetik alan PEC-

PEC duvarlarından Şekil 3.16’da gösterildiği gibi yansımıştır. 
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Şekil 3.16. Program 3.6 ile FDTDM kullanılarak sağlanılan Şekil 3.14 ortamında sağa doğru 

yayılan manyetik alanın FDTDM ızgarasında,      , 250., 450., 650. ve 850. zamanlarında 

sınır bölgelerdeki PEC malzemelerden yansımış halleri 

Şekil 3.16’da görüldüğü gibi manyetik alan yansıma katsayısı 1 olan PEC duvarlarına 

çarptığı zaman yön değiştirmeden yansıyacaktır. 

3.1.6.b. PEC – PMC ile Çevrili Ortamda Elektrik ve Manyetik Alanlar 

Ek 1 Program 3.7 ve Ek 1 Program 3.8 ile Şekil 3.17’de gösterilen ortam 

sağlanılarak, elektrik ve manyetik alanların sınır bölgelerinden nasıl yansıdığını 

göstermektedir. Elektrik ve manyetik alanların           zaman adımı sonunda, 

ızgara boyunca yansımaları, Program 3.7 ve Program 3.8 ile Şekil 3.18 ve Şekil 

3.19’daki gibi elde edilmiştir. 

0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-3

G
e
n
lik

PEC duvarlarından yansıyan Hy

 

 
Hy(50)

Hy(250)

Hy(450)

Hy(650)

Hy(850)



46 
 

 
 

 

Şekil 3.17. Sağ sınırı PEC ve sol sınırı PMC malzemeyle kaplı FDTDM ızgarasındaki 

sert kaynağın      zaman adımı süresince     sınırlı ızgarasında ilerleyişi 

Program 3.7 çalıştırıldığında, 200 konum adımına sahip ızgaranın sonunda bulunan, 

  (200),  sıfır değerini aldığı için, FDTDM konum ızgarasının sağ sınırı PMC 

duvarıymış gibi davranacaktır. Konum ızgarasının sol duvarı olan ez(1) değeri sıfır 

değeri aldığı için, FDTDM’in konum ızgarasının sol sınırı da PEC duvarıymış gibi 

davranacaktır. PEC‘nin elektrik alan için yansıma katsayısı -1 olduğu için, elektrik alanı 

gösteren Gaussian işareti FDTDM konum ızgarasının sol sınırına ulaştığı zamanlarda 

yön değiştirerek yansıyacaktır. PMC‘nin manyetik alan için yansıma katsayısı -1 olduğu 

için, manyetik alanı gösteren Gaussian işareti FDTDM konum ızgarasının sağ sınırına 

ulaştığı zamanlarda yön değiştirerek yansıyacaktır. PMC‘nin elektrik alan için ve 

PEC‘nin manyetik alan için yansıma katsayısı 1 olduğu için, elektrik alanı gösteren 

Gaussian işareti FDTDM konum ızgarasının sağ sınırına ulaştığı zaman, manyetik alanı 

gösteren Gaussian işareti FDTDM konum ızgarasının sol sınırına ulaştığı zaman yön 

değiştirmeden yansıyacaktır. 
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Şekil 3.18. Program 3.7 ile FDTDM kullanılarak sağlanılan Şekil 3.17 ortamında sağa doğru 

yayılan elektrik alanın FDTDM ızgarasında,      , 250., 450., 650. ve 850. Zamanlar 

adımlarında sınır bölgelerdeki PEC-PMC malzemelerden yansımış halleri 

Şekil 3.18’de görüldüğü gibi FDTDM ızgarasında sağa doğru yayılan elektrik alanlar 

PMC duvarına çarpmış ve yön değiştirmeden yansımıştır. Sol duvara çarpan elektrik 

alanlar ise PEC duvarına çarpmış ve yön değiştirerek yansımışlardır. 

 

0 100 200 300 400 500 600 700 800 900 1000
-1.5

-1

-0.5

0

0.5

1

1.5

Konum

G
e
n
lik

PEC duvarlarından yansıyan Ez

 

 
Ez(50)

Ez(250)

Ez(450)

Ez(650)

Ez(850)



48 
 

 
 

 

Şekil 3.19. Program 3.8 ile FDTDM kullanılarak sağlanılan Şekil 3.17 ortamında sağa doğru 

yayılan manyetik alanın FDTDM ızgarasında,     , 250., 450., 650. ve 850. zaman 

adımlarında sınır bölgelerdeki PEC-PMC malzemelerden yansımış halleri 

Şekil 3.19’da görüldüğü gibi       konum ızgarasındaki PMC duvarına çarpan 

manyetik alanlar yön değiştirerek yansımışlardır.     konum ızgarasındaki PEC 

duvarına çarpan manyetik alanlar ise yön değiştirmeden yansımışlardır. 

3.1.7. Yutucu Sınır Koşulları (Absorbing Boundary Conditions-ABC) 

FDTDM’de sınır ortamlarının PEC veya PMC olmasına göre elektrik ve manyetik 

alanlar, ızgara sınırlarının başlangıç ve bitiş noktalarından yansımaktadır. Sınırlı 

FDTDM ızgarası ile yapılan simülasyonlar, ızgaraya geri yansıyan alanlardan dolayı 

yanlış sonuçlara neden olabilir. FDTDM ızgarasının sınırsız bir ortammış gibi 

davranması için konum sınırlarının başlangıç ve bitiş kısımlarına yutucu sınır koşulları 
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tanıtılmalıdır. Yutucu sınır koşulları kabaca, m konum adımlı FDTDM ızgarası için 

aşağıdaki gibi tanımlanabilir.(                    ) 

                                                                          (    ) 

Denklem (3.47)’de belirtilen koşul, Ek 1 Program 3.9’a uygulanırsa Şekil 3.20’deki 

gibi sonuçlar elde edilir. 

 

Şekil 3.20. Program 3.9 ile tasarlanan FDTDM simülasyonu       konum ızgarasına 

sahiptir.     ve       konumlarına ABC konulduğu için bu düğümlerde işaret 

soğurulmaktadır. 
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Şekil 3.20’de     noktasına sert kaynak yerleştirilen kaynağın       ,        

ve        zaman adımlarındaki elektrik alanın konumları gösterilmektedir. Sağa 

doğru ilerleyen elektrik alan,        düğüme denk geldiği zaman Şekil 3.20’de 

gösterildiği gibi yansıma yapmadan soğurulmaktadır. Elektrik alan sonsuza giden 

alanmış gibi davranıp, sınırsız bir ızgara modellenmiş olunur. 
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4. ARAŞTIRMA BULGULARI 

FDTDM‘in kaynak cinsine ve ızgara sınır bölgelerinin PEC veya PMC özellik 

göstermelerine göre simülasyonları yöntem kısmında anlatılmıştı. Aynı zamanda 

homojen,      ve      ortamda (boşlukta) dalga yayılım hızının ışık hızında 

olduğu görülmüştü. Bu kısımda dalganın farklı karakteristik empedansa sahip ortamlara 

geçişi ve bu ortamlarda nasıl ilerlediği FDTDM simülasyonları ile anlatılacaktır. 

4.1. Homojen Olmayan Ortamlar için FDTDM Simülasyonu 

TASA sınırı ile elde edilen kaynak bazı kısımlarda kendi içinde homojen olan fakat 

bütün olarak homojen olmayan bir ortama gönderilecektir. Dalga farklı karakteristik 

empedansa sahip her ortama denk geldiği zaman, yansıyan ve iletilen alanların toplamı 

toplam alana eşit olacak şekilde yansımalar ve diğer ortama iletilmeler olacaktır. İletilen 

alanlar ise ortamın karakteristiğine göre, ortam içinde farklı hız, genlik ve genişlikle 

(Gaussian işaretinin genişliği) ilerleyecektir. 

4.1.1. Dielektrik Ortamda Tek Boyutlu Dalga Simülasyonu 

Bağıl dielektrik sabiti 1‘den farklı olan ortamların modellemesi, 1 boyutta kaynaksız bir 

ortam için Maxwell denklemlerinde,   yerine      ve   yerine      yazılarak elde 

edilir. Denklem (3.16) ve (3.19) bu duruma göre tekrar aşağıdaki gibi güncellenirler. 
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Şekil 4.1. Dielektrik ortam modellemesi 

Şekil 4.1’deki gibi kayıpsız dielektrik ortamda     ‘de TASA sınır kaynağı ile 

Gaussian işareti gönderiliyor. İşaret, dielektrik ortamla FDTDM ızgarasının       

konumunda karşılaşmaktadır. Bu noktada işaretin bir kısmı dielektrik ortama iletilirken, 

bir kısmı ise geri yansımaktadır. İletilen dalganın hızı, kayıpsız dielektrik ortamın 

  ‘sine bağımlı bir şekilde değişecektir. Dielektrik ortam içerisinde artan zaman 

adımları ile ilerleyen iletilen alan,       konumunda boşluk ile karışılacaktır. 

     ’da,       ‘de iletilen dalganın bir kısmı boşluğa iletilecek, bir kısmı da 

dielektrik ortama geri yansıyacaktır. İletilen ve yansıyan dalgaların yönü ve genliği 

aşağıdaki gibi hesaplanır (Schneider 2012). 

  
     

     
                                                                       (   ) 

  
   

     
                                                                       (   ) 

Denklem (4.3) ve (4.4)’de   yansıma katsayısını,   iletim katsayısını ifade eder.    

ikinci ortamın karakteristik empedansını ve    birinci ortamın karakteristik empedansını 

gösterir. Şekil 4.2‘deki birinci ortamın, yani boşluğun, karakteristik empedansı    

   √    ⁄ ‘dır. Dielektrik malzemeyi modelleyen ikinci ortam için      ve      
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olsun. Bu durumda ikinci ortamın karakteristik empedansı    √  (   )⁄       olarak 

elde edilir. Denklem (4.3) ve (4.4)    ve   ’ler    cinsinden yazılıp çözülürse, 

    
     

     
 

  

    

  

    

  
 

 
                                         (   ) 

    
   

     
  

   

 
  

    

 
 

 
                                              (   ) 

   , 2. ortamdan 1. ortama yansıyan dalgayı ve     , 1.ortamdan 2. ortama iletilen 

dalgayı temsil eder. Şekil 4.2’de gösterilen ortamın FDTDM ile simülasyonu, Ek 1 

Program 4.1 ile gerçekleştiriliyor. Program 4.1 çalıştırıldığı zaman, (4.5) ve (4.6) ile 

elde edilen sonuçlar doğrultusunda, kaynağın ortamlar boyunca hareketi Şekil 4.3’teki 

gibi elde edilmiştir.  

 

Şekil 4.2. FDTDM ile Program 4.1’in modellediği ortam  
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Şekil 4.3. Elektrik alan                  zaman adımları için sağa doğru ilerleyen 
elektrik alanın konumları 

Şekil 4.3’te de görüldüğü gibi,       konumunda dielektrik ortama çarpan dalga, 

Denklem (4.5) ve (4.6)‘da hesaplanıldığı gibi, iletilmiş ve yansımıştır. Boşlukta   

hızıyla ilerleyen dalganın hızı, dielektrik ortamda 3 kat azalmıştır.  

   
 

√    

        
 

√      

                             
  

 
                       (   ) 

Şekil 4.3’te FDTDM ızgarasında iletilen Ez(50) dalgası    ortamında Ez(80) olacak 

şekilde 30 zaman adımı sağa doğru ilerlerken,       konumundan       

konumuna gelmiştir. Yansıyan Ez(50) dalgası ise    ortamında sola doğru ilerleyerek, 

30 zaman adımı sonrasında       konumundan      konumuna gelmiştir. 

İletilen dalga,    ortamında 20 birim yol alırken, yansıyan dalga    ortamında 60 birim 

yol almıştır. Yani boşluğa göre    ortamında ilerleyen dalganın hızı 3 kat azalmıştır. 
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Dielektrik malzeme içerisinde ilerleyen, iletilen dalga,      ‘ta boşluk ortamına 

geçmek ister. Bu durum için      ‘dır ve 3. ortamdan yansıyan ve 3. ortama iletilen 

dalgaların genliği ve yönü aşağıdaki gibidir. 

    (   )
     

     
 (   )

   
  

 

   
  

 

 
 

 
                                          (   ) 

    (   )
   

     
 (   )

   

   
  

 

 
 

 
                                        (   )  

Denklem (4.8) ve (4.9)‘de bulduğumuz teorik sonuçları, Program 4.1’in         

    ve       zaman adımları için  (   ) ,   (   )  ve   (   )  elektrik alanları 

Şekil 4.4’teki gibi elde edilmiştir. 

 

Şekil 4.4. Program 4.1 ile hazırlanan FDTDM simülasyonunda elektrik alanların 

                  zaman adımları için konumları.  
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Şekil 4.4‘te de görüldüğü gibi,       konumunda dielektrik ortama çarpan dalga, 

Denklem (4.8) ve (4.9)‘de hesaplanılan genlik katsayılarına yakın değerler ile iletilmiş 

ve yansımıştır. Dielektrik ortamda      hızıyla ilerleyen dalganın hızı, denklem (4.7)’yi 

doğrulayacak şekilde, boşluk ortamına geçince 3 kat artmış ve    hızına ulaşmıştır.   

Şekil 4.3 ve Şekil 4.4‘te dielektrik malzemeye         anında ve       

konumunda kaynak tarafından iletilen elektrik alan, sürekli sağ (     )  ve sol 

(     ) sınırlara çarparak genliğinin yarısına inmektedir. Zaman adımı istenildiği 

kadar artırılırsa, elektrik alanın kayıpsız dielektrik alan içerisinde FDTDM algoritması 

ile sönümlenmesi sağlanacaktır. Program 4.1.‘te zaman adım sayısını ifade eden n sayısı 

deneysel olarak 6435‘e ulaştığı zaman elektrik alanın dielektrik malzeme içerisinde 

sönümlendiği gözlenmiştir. 

4.1.2. İki Dielektrik Ortamda Tek Boyutlu Dalga Simülasyonu 

Şekil 4.5’deki gibi modellenen kendi içinde homojen, kayıpsız,       ve      olan 

iki farklı dielektrik ortama gönderilen TASA kaynağı ortam değiştirirken, ortamların 

geçiş sınır yüzeylerine çarparak iletilen ve yansıyan şeklinde dalgalara bölünüyor. Şekil 

4.5’te genlik büyüklüğü A olan dalganın gönderilmesiyle başlayan çarpma ve 

yansımalar, dielektrik malzemeler içerisinde dalga genliğinin ihmal edilir derecede 

azaldığı ana kadar devam edecektir.  
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Şekil 4.5. Program 4.2’nin FDTDM ile modellediği, iki farklı dielektrik ortama TASA 

kaynağının gönderilmesi 

Şekil 4.5’teki ortamın Şekil 4.2‘dekinden farkı, konum ızgarasının 250 adıma bölünmüş 

olmasıdır. Boşluktan gelen TASA kaynak işareti,      ‘de       olan 1.dielektrik 

ortam sınırı ile karşılaşır. Bu sınırda kaynak işaretinin bir kısmı 2.ortama iletilecektir ve 

bir kısmı ise 1.ortama geri yansıyacaktır. 2. ortama iletilen dalga,      ‘da 

2.dielektrik ortam sınırı ile karşılaşacaktır. İletilen dalga bu sınıra çarpınca, bir kısmı 

3.ortama iletilecek ve bir kısmı ise 2.ortama geri yansıyacaktır. 3.ortama iletilen dalga 

     ‘de bulunan 4.ortam sınırı ile karşılaşacaktır. Bu sınıra çarpan 3. ortamın 

iletilen dalgasının bir kısmı 4.ortama iletilecektir ve bir kısmı da 3. ortama geri 

yansıyacaktır. 

Sınır yüzeylerine çarpan dalgaların nasıl yansıma yapacağı, FDTDM ile Ek 1 Program 

4.2 çalıştırılarak Şekil 4.6, Şekil 4.7 ve Şekil 4.8’de gösterildiği gibi elde edilmiştir. 

     

     

     

     

     

     

     

     

                  

1.ortam 2.ortam 3.ortam 4.ortam 
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Şekil 4.6. Program 4.2 ile hazırlanan FDTDM simülasyonunda elektrik alanların 

                     zaman adımları için konumları. 
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Şekil 4.7. Program 4.2 ile hazırlanan FDTDM simülasyonunda elektrik alanların 

                      zaman adımları için konumları. 
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Şekil 4.8. Program 4.2 ile hazırlanan FDTDM simülasyonunda elektrik alanların 

                      zaman adımları için konumları. 

Program 4.2’nin doğruluğu, yansıyan ve iletilen dalgaların genlikleri hesaplanarak 

sağlanır. Tüm yansıyan ve iletilen dalgaların hesabı çok uzun süreceği için, her sınır 

yüzeyine 2 kez çarpan dalgaların genliği denklem (4.10) ve (4.11)‘lerde hesaplanmışır. 

Bulunan sonuçlar Şekil 4.6, Şekil 4.7 ve Şekil 4.8’deki dalga genlikleriyle 

uyuşmaktadır.     ve      ,        ,        ,       olmak üzere, 

yansıyan ve iletilen dalgaların formülasyonu aşağıdaki gibi olacaktır. 
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                                      (      ) 

3. ortamdan yansıyan dalganın 1. ortam sınırındaki ve 4. ortamdan yansıyan dalganın 

2.ortam sınırındaki yansıma ve iletilmeleri, yani sınır yüzeylerine ikinci kez çarpan 

dalgaların iletim ve yansımaları dikkate alınırsa, formülasyon aşağıdaki gibi olur. 
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Program 4.2 ile elde edilen verilerle, yukarıdaki teorik sonuçlar birbirini 

doğrulamaktadır. 
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5. SONUÇ 

Bu çalışmada bir boyutta FDTDM ile düzlemsel ortamlarda elektromanyetik alanların 

nasıl hareket ettiği MATLAB kullanılarak simüle edildi. 

Kaynak olarak TASA sınır kaynağı kullanıldı. Bu amaçla TASA sınır kaynağı boşlukta 

yumuşak kaynaktan elde edildi. TASA sınır kaynağı ile tek yönde yayılımı sağlanan 

elektromanyetik dalgaların, kendi içinde homojen, kayıpsız dielektrik bölgede nasıl 

hareket ettiği FDTFM ile MATLAB‘ta simüle edildi. Kayıpsız dielektrik bölgenin 

sınırlarından sürekli yansıyan dalgaların zamanla sönümlendiği belirlendi. 

Dielektrik ortam sayısı artırılarak, ortamların sınır yüzeyine çarparak yansıyan ve 

iletilen dalgaların hareketi simüle edilmiş ve bu hareketin doğruluğu, her sınır yüzeyine 

2 kez çarpan dalgalar için teorik olarak ispatlanmıştır. Sonuç olarak FDTDM ile 

dalganın, dielektrik sabitleri farklı olan ortamlarda nasıl ilerlediği simüle edilmiştir. 
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