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ÖZET 

RÜZGAR HIZI TAHMİNLEMESİNDE İKİNCİL AYRIŞTIRMALI VE DALGACIK SİNİR 

AĞI TEMELLİ YENİ BİR HİBRİT YAKLAŞIM 

 

Şenkal, Serkan 

Doktora, Mekatronik Mühendisliği Ana Bilim Dalı 

Tez Danışmanı: Doç. Dr. Cem Emeksiz 

Mayıs 2024, xix + 142 sayfa  

 

Enerji tüketimi ile küreselleşme, kentleşme, enerji politikaları ve ekonomik büyüme 

gibi çeşitli faktörler arasındaki ilişkiyi içeren çalışmalarla literatürde sıklıkla karşılaşılmaktadır. 

Bu ilişki, sürdürülebilir enerji sistemlerine ulaşmak için politika ve stratejilerin önemini 

vurgular. Yenilenebilir enerji kaynakları çevresel faydalar sunar, karbon ayak izini azaltır ve 

enerji güvenliği ve bağımsızlığı sağlar. Ancak yenilenebilir enerjiye geçiş maliyetli olabilir ve 

jeopolitik riskler de tedarik zincirlerini ve dağıtımı etkileyebilir. Bu zorlukları aşmak için 

yenilenebilir enerji kaynaklarının çeşitlendirilmesi ve bölgesel iş birliği büyük önem taşır. 

Yenilenebilir enerji, toplum ve çevre için birçok fayda sağlayan sürdürülebilir bir enerji 

kaynağıdır. İklim değişikliğine katkıda bulunan sera gazı emisyonlarını azaltır, halk sağlığını 

iyileştirir, su kirliliğini azaltır, ekosistemleri korur ve sürdürülebilir kaynak kullanımını teşvik 

eder. Ayrıca sürdürülebilir kalkınmayı destekler ve enerji sektöründe inovasyon ve 

araştırmaları ilerletir. Yenilenebilir enerji teknolojileri, tesis verimliliğini artırır ve düşük 

karbonlu teknolojilerde bir trend olarak öne çıkar.  

Rüzgar enerjisinin anlaşılması ve kullanılmasında, rüzgar hızı önemli bir faktördür. 

Rüzgar türbinlerinin verimli çalışması, hava tahmini, iklim modellemesi ve açık deniz 

operasyonları için doğru rüzgar hızı tahmini önemlidir.  

Rüzgar hızı tahmini için sinir ağları yaygın olarak kullanılır çünkü karmaşık doğrusal 

olmayan ilişkileri yakalama yetenekleri vardır. Birden fazla modelden elde edilen tahminleri 

birleştiren hibrit yaklaşımlar da umut vericidir. Değişken mod ayrıştırması (VMD) ve topluluk 

ampirik mod ayrıştırması (EEMD) gibi ayrıştırma tekniklerinin rüzgar hızı tahmininde önemli 

olduğu kanıtlanmıştır. Dalgacık sinir ağları (WNN'ler), aktivasyon işlevi olarak dalgacıkları 

kullanarak sinir ağlarının farklı giriş verisi özelliklerini yakalamasına ve performansını 

artırmasına olanak tanır. Rüzgar hızı tahmini için WNN'lere doğrudan referans olmamasına 

rağmen, mevcut çalışmalar rüzgar hızı tahmin doğruluğunu artırmak için farklı sinir ağı 
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mimarilerini dalgacık ayrıştırma teknikleriyle birleştirme potansiyelini göstermektedir. 

Çalışmamızda, çok kısa vadeli rüzgar hızı tahmininde başarımı yüksek olacak şekilde, ikincil 

ayrıştırmalı ve dalgacık sinir ağı ile oluşturulmuş bir hibrit model önerisinde bulunduk. Bu 

öneri doğrultusunda, popüler olarak kullanılan dört adet ayrıştırma modeli ile ikili olarak on altı 

adet ayrıştırma çifti ve üç tanesi yapay sinir ağı aktivasyon fonksiyonu, on üç tanesi dalgacık 

aktivasyon fonksiyonu olacak şekilde toplam on altı aktivasyon fonksiyonu ile 256 adet hibrit 

model oluşturulmuştur. Bu modeller ile dört mevsimin orta ayları için simülasyonlar yapılmış, 

ardından bu dört ayın sonuçları doğrultusunda başarımı yüksek olan 48 model ile yılın diğer 

sekiz ayı simüle edilmiştir. Bulduğumuz sonuçlar, Ampirik Mod Ayrıştırması türevi olan 

CEEMDAN yöntemi ile Değişken Mod Ayrıştırma yönetimi (VMD) ile oluşturulan ikili 

ayrıştırma modelinin, SLOG2 dalgacık aktivasyon fonksiyonu sinir ağı ile oluşturulan hibrit 

tahmin modelinin yüksek başarımlı tahminler gerçekleştirdiği doğrultusundadır. 

Anahtar Kelimeler: Rüzgar Hızı Tahmini, Veri Ayrıştırma, Yapay Sinir Ağı, Dalgacık Sinir 

Ağı  
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ABSTRACT 

A NEW HYBRID APPROACH TO WIND SPEED FORECASTING BASED ON  

TWO-STAGE DECOMPOSITION AND WAVELET NEURAL NETWORK  

 

Şenkal, Serkan 

Doctorate Thesis, Division of Mechatronics Engineering 

Advisor: Assoc. Prof. Dr. Cem Emeksiz 

May 2024, xix + 142 pages  

 

The literature is frequently encountered with studies on the relationship between energy 

consumption and various factors such as globalisation, urbanisation, energy policies and 

economic growth. This relationship emphasises the importance of policies and strategies for 

sustainable energy systems. Renewable energy sources offer environmental benefits, reduce 

carbon footprint and provide energy security and independence. However, the transition to 

renewable energy can be costly and geopolitical risks can also affect supply chains and 

distribution. Diversifying renewable energy sources and regional cooperation are crucial to 

overcome these challenges. 

Renewable energy is a sustainable energy source with many benefits for society and the 

environment. It reduces greenhouse gas emissions contributing to climate change, improves 

public health, reduces water pollution, protects ecosystems, and promotes sustainable resource 

utilization. It also supports sustainable development and advances innovation and research in 

the energy sector. Renewable energy technologies improve plant efficiency and are a trend in 

low-carbon technologies.  

Wind speed is an important factor in understanding and utilizing wind energy. Accurate 

wind speed prediction is important for the efficient operation of wind turbines, weather 

forecasting, climate modelling and offshore operations.  

Neural networks are widely used for wind speed prediction because they can capture 

complex nonlinear relationships. Hybrid approaches that combine predictions from multiple 

models are also promising. Decomposition techniques such as variable mode decomposition 

(VMD) and ensemble empirical mode decomposition (EEMD) have proven to be important in 

wind speed prediction. Wavelet neural networks (WNNs) utilize wavelets as the activation 

function, allowing neural networks to capture different input data characteristics and improve 

performance. Although there is no direct reference to WNNs for wind speed prediction, existing 
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studies show the potential of combining different neural network architectures with wavelet 

decomposition techniques to improve wind speed prediction accuracy. Our study proposes a 

hybrid model with secondary decomposition and a wavelet neural network for very short-term 

wind speed forecasting. In line with this proposal, 256 hybrid models are created with sixteen 

decomposition pairs in pairs with four popularly used decomposition models and sixteen 

activation functions, three of which are neural network activation functions and thirteen of 

which are wavelet activation functions. With these models, simulations were viibritvir the 

middle months of the four seasons, and then the other eight months of the year were simulated 

with 48 models with high performance in line with the results of these four months. Our results 

viibr that the CEEMDAN method, which is a derivative of the Empirical Mode Decomposition, 

the binary decomposition model created with the Variable Mode Decomposition management 

(VMD), and the hybrid forecasting model created with the SLOG2 wavelet activation function 

neural network perform high-performance forecasts. 

Keywords: Wind Speed Prediction, Data Decomposition, Artificial Neural Network, Wavelet 

Neural Network  
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1. GİRİŞ 

Enerji tüketimi, küresel kalkınma ve sürdürülebilirliğin önemli bir unsurudur. Birçok çalışma 

enerji tüketimi ile küreselleşme, kentleşme, enerji politikaları ve ekonomik büyüme gibi çeşitli 

faktörler arasındaki ilişkiyi araştırmıştır. 

Shahbaz ve ark. (2021) tarafından yapılan bir çalışma, küreselleşme ile enerji tüketimi 

arasındaki nedensel ilişkiyi en üst ve en alt küreselleşmiş ekonomilerde araştırmıştır. Zamanla 

değişen Granger nedensellik testlerini kullanan çalışma, küreselleşme ve enerji tüketimi 

arasındaki dinamik nedensellik ilişkisinin zamanla değiştiğini bulmuştur. Küreselleşmedeki 

pozitif ve negatif şoklar enerji tüketimini pozitif ve negatif olarak etkilemektedir. Bu çalışma, 

küreselleşmenin enerji tüketimindeki teşvik edici rolünü vurgulamaktadır. 

Zhao ve Qamruzzaman (2022) tarafından yapılan bir başka çalışma, Kuşak ve Yol ülkelerindeki 

enerji tüketiminde kentleşme, işçi dövizleri ve küreselleşmenin rolünü incelemiştir. Çalışma, 

küreselleşme ile enerji tüketimi arasında negatif ve istatistiksel olarak anlamlı bir ilişki 

bulmuştur. Küreselleşmenin enerji tüketimi üzerinde heterojen etkileri olduğunu ve siyasi, 

ekonomik ve sosyal küreselleşmenin enerji tüketimini farklı şekillerde etkilediğini öne 

sürmektedir. 

Chen ve ark. (2022), Asya-Pasifik’teki gelişmekte olan ekonomilerin enerji dönüşümünde 

enerji politikalarının heterojen rolüne odaklanmıştır. Çalışma, yasa, düzenleme ve strateji 

politikalarının enerji geçişi üzerindeki olumlu etkilerini vurgulamaktadır. Stratejiler, enerji 

dönüşümünü kolaylaştırmada yasa ve yönetmeliklerden nispeten daha önemlidir. Çalışma, 

sürdürülebilir enerji sistemlerine ulaşmak için iyi tasarlanmış enerji politikalarının, hedeflenen 

stratejilerin ve düzenlemelerin önemini vurgulamaktadır. 

Lawrence ve ark. (2013), 1980’den 2010’a kadar enerji tüketimindeki küresel eşitsizliği 

incelemiştir. Çalışma, kişi başına enerji tüketimindeki küresel eşitsizliği karakterize etmekte ve 

enerji tüketimi için üstel bir olasılık dağılımı önermektedir. Çalışma, enerji tüketiminde zengin 

ve fakir ülkeler arasındaki küresel eşitsizliği vurgulamaktadır. 
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Martinho (2018), küresel enerji üretimi ve tüketimini yakınsama teorisi perspektifinden analiz 

etmiştir. Çalışma, mutlak ve koşullu yakınsamanın neoklasik ve içsel büyüme teorilerini 

araştırmakta ve küresel enerji arzı ve talebiyle ilişkili değişkenlerde sigma yakınsamasına dair 

kanıtlar bulmuştur. Çalışma, yenilenebilir enerji kaynaklarını teşvik etmek için farklı karar alma 

düzeylerinde özelleştirilmiş politikalar önermektedir. 

Koengkan (2017), Latin Amerika ve Karayip ülkelerinde küreselleşmenin birincil enerji 

tüketimi üzerindeki etkisini araştırmıştır. Çalışma, küreselleşme ile birincil enerji tüketimi 

arasındaki pozitif ilişkiyi doğrulamakta ve bunu toplam faktör verimliliğinin ve ekonomik 

büyümenin artmasına bağlamaktadır. Ekonomik büyümenin enerji talebini artırmadaki rolünü 

vurgulamaktadır. 

Meng ve ark. (2020), tedarik zinciri boyunca küresel enerji tüketimine yapılan eşitsiz katkıyı 

tartışmıştır. Çalışma, tüketime dayalı enerji tüketimine en büyük katkıyı yapan sektör olarak 

hizmet sektörünün rolünü vurgulamıştır. Ayrıca, enerji tüketiminin hesaplanmasında enerji 

tüketimi ve uluslararası ticaretin etkileşiminin dikkate alınmasının önemini vurgulamıştır. 

Yavuz ve ark. (2022) küreselleşmenin, yükselen ve büyümede öncü ekonomilerde enerji 

tüketimi üzerindeki etkilerini incelemiştir. Çalışma, küreselleşmenin enerji tüketimini 

artırdığını bulmakta ve ekonomik büyüme, kentleşme ve kamu harcamalarındaki değişikliklerin 

enerji tüketimi üzerindeki etkilerini tanımlamaktadır. 

Shahbaz ve ark. (2017) gelişmiş ekonomilerde küreselleşme, ekonomik büyüme ve enerji 

tüketimi arasındaki nedensel ilişkiyi araştırmıştır. Çalışma, küreselleşmenin çoğu ülkede enerji 

tüketimini artırdığını ortaya koymakta ve sürdürülebilir ekonomik kalkınma için enerjinin 

verimli bir şekilde kullanılmasına yönelik politika yönergeleri sunmaktadır. 

Lang ve Gregory (2019), küresel ısınmanın neden olduğu enerji tüketimindeki değişimin 

ekonomik etkilerini analiz etmiştir. Çalışma, küresel ısınmayı azaltmaya yönelik politikaların 

küresel ekonomiye zarar verebileceğini öne sürmektedir. Ampirik verilere dayanarak enerji etki 

fonksiyonlarının değiştirilmesi ve yeniden kalibre edilmesi gerektiğini vurgulamaktadır. 
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Bu çalışmalar göstermektedir ki enerji tüketimi ile küreselleşme, kentleşme, enerji politikaları 

ve ekonomik büyüme gibi çeşitli faktörler arasındaki ilişkiye dair iç görü sağlamaktadır. Bu 

ilişkinin karmaşık ve heterojen yapısının altını çizmekte ve sürdürülebilir enerji sistemlerine 

ulaşmak için iyi tasarlanmış politika ve stratejilerin önemini vurgulamaktadır. 

Enerji kaynakları kökenlerine ve özelliklerine göre sınıflandırılır. Enerji kaynaklarının 

sınıflandırılması tipik olarak yenilenebilir ve yenilenemeyen kaynakları içerir. 

Yenilenebilir enerji kaynakları doğal olarak yenilenen ve çevre üzerinde en az etkiye sahip olan 

kaynaklardır. Bu kaynaklar arasında güneş enerjisi, rüzgar enerjisi, hidroelektrik enerji, 

biyokütle ve jeotermal enerji yer almaktadır. Güneş enerjisi, fotovoltaik hücreler veya solar 

termal sistemler gibi teknolojiler aracılığıyla güneş ışığının kullanılabilir enerjiye 

dönüştürülmesini ifade eder. Rüzgar enerjisi, rüzgar türbinlerini kullanarak elektrik üretmek 

için rüzgarın gücünden yararlanır. Hidroelektrik enerji, elektrik üretmek için akan veya düşen 

suyun enerjisini kullanır. Biyokütle enerjisi bitkiler, tarımsal atıklar ve odun gibi organik 

maddelerden elde edilir. Jeotermal enerji, elektrik üretmek veya ısıtma ve soğutma sağlamak 

için Dünya’nın çekirdeğinden gelen ısıyı kullanır. 

Öte yandan, yenilenemeyen enerji kaynakları sınırlıdır ve insan ömrü içinde yenilenemez. Bu 

kaynaklar kömür, petrol ve doğal gaz gibi fosil yakıtları içerir. Fosil yakıtlar, milyonlarca yıl 

boyunca jeolojik süreçlerden geçen eski bitki ve hayvan kalıntılarından oluşur. Enerji açığa 

çıkarmak için yakılırlar ve elektrik üretimi, ulaşım ve endüstriyel süreçler için birincil enerji 

kaynaklarıdır. Ancak fosil yakıtların yanması sera gazı salınımına neden olarak iklim 

değişikliğine ve hava kirliliğine katkıda bulunur. 

Enerji kaynaklarının yenilenebilir ve yenilenemez olarak sınıflandırılması, çevresel etkilerinin, 

sürdürülebilirliklerinin ve uzun vadeli kullanılabilirliklerinin anlaşılması açısından önemlidir. 

Yenilenebilir enerji kaynakları daha temiz ve sürdürülebilir bir enerji geleceği için potansiyel 

sunarken, yenilenemeyen kaynaklar çevresel kaygılar ve sınırlı kullanılabilirlik ile ilişkilidir. 
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Yenilenebilir enerjinin başlıca avantajları şunlardır: 

7. Çevresel Faydalar: Yenilenebilir enerji kaynakları çok az sera gazı emisyonu üretir veya 

hiç üretmez, hava kirliliğini azaltır ve iklim değişikliğini hafifletir. Fosil yakıtlara 

kıyasla daha düşük karbon ayak izine sahiptirler, ekosistemlerin korunmasına ve 

biyoçeşitliliğin korunmasına yardımcı olurlar. 

Yenilenebilir enerji, karbon ayak izinin azaltılması, ekosistemlerin korunması ve 

biyoçeşitliliğin muhafaza edilmesi açısından büyük önem taşımaktadır. İşte kanıtlarla 

desteklenen bazı önemli noktalar: 

a. Karbon Ayak İzi Azaltımı: Fosil yakıtların aksine, yenilenebilir enerji kaynakları işletme 

sırasında çok az sera gazı emisyonu üretir veya hiç üretmez. Bu da enerji üretimiyle ilişkili 

karbon ayak izini önemli ölçüde azaltır (Scherer ve Pfister, 2016). Ülkeler yenilenebilir enerjiye 

geçiş yaparak iklim değişikliğini hafifletme ve genel karbon emisyonlarını azaltma konusunda 

önemli ilerleme kaydedebilirler (Holmatov ve Hoekstra, 2020). 

b. Ekosistemlerin Korunması: Yenilenebilir enerji projeleri, uygun şekilde planlanıp 

uygulandığında, habitat tahribatını ve geleneksel enerji kaynaklarıyla ilişkili biyoçeşitlilik 

kaybını en aza indirebilir (Scherer ve Pfister, 2016). Genellikle arazi temizliğini ve 

ekosistemlerin bozulmasını içeren fosil yakıt çıkarımının aksine, yenilenebilir enerji projeleri 

doğal habitatlarla bir arada var olabilir ve biyolojik çeşitliliğin korunmasını destekleyebilir. 

c. Biyolojik Çeşitliliğin Korunması: Yenilenebilir enerji teknolojilerinin biyoçeşitlilik 

üzerindeki etkisi, fosil yakıt çıkarma ve yakmaya kıyasla daha düşüktür. Fosil yakıtlara olan 

talebi azaltarak yenilenebilir enerji, çeşitli bitki ve hayvan türlerinin hayatta kalması için çok 

önemli olan ekosistemlerin ve habitatların korunmasına yardımcı olur. Bu durum, 

biyoçeşitliliğe yönelik artan tehditler ve habitat kaybı karşısında özellikle önemlidir. 

d. Sürdürülebilir Kaynak Kullanımı: Güneş, rüzgar ve hidroelektrik enerji gibi yenilenebilir 

enerji kaynakları, doğal olarak yenilenen kaynaklardan yararlanır. Çıkarılması gereken sonlu 

fosil yakıtların aksine, yenilenebilir enerji doğal kaynakların korunmasına ve kaynak çıkarma 
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ile ilişkili çevresel bozulmanın azaltılmasına yardımcı olur. Bu sürdürülebilir kaynak kullanımı, 

ekosistemlerin ve biyolojik çeşitliliğin uzun vadede korunmasına katkıda bulunur. 

e. Çevresel Etkilerin Azaltılması: Yenilenebilir enerji teknolojileri, geleneksel enerji 

kaynaklarına göre daha düşük çevresel etkilere sahiptir. Örneğin hidroelektrik, fosil yakıt bazlı 

enerji santrallerine göre daha düşük biyojenik karbon ayak izine sahiptir (Scherer ve Pfister, 

2016). Güneş enerjisiyle çalışan elektrikli araçlar, benzinle çalışan geleneksel araçlara kıyasla 

kilometre başına daha küçük çevresel ayak izine sahiptir (Holmatov ve Hoekstra, 2020). 

Toplumlar yenilenebilir enerjiyi benimseyerek çevresel ayak izlerini azaltabilir, ekosistemler 

ve biyoçeşitlilik üzerindeki olumsuz etkileri en aza indirebilir. 

Bu noktalar, yenilenebilir enerjinin karbon emisyonlarının azaltılması, ekosistemlerin 

korunması ve biyolojik çeşitliliğin muhafaza edilmesindeki önemini vurgulamaktadır. 

Toplumlar, yenilenebilir enerji kaynaklarına geçiş yaparak daha sürdürülebilir ve çevre dostu 

bir geleceğe katkıda bulunabilirler. 

7. Enerji Güvenliği ve Bağımsızlığı: Yenilenebilir enerji kaynakları bol miktarda bulunur 

ve yaygın olarak dağıtılır, ithal fosil yakıtlara bağımlılığı azaltır. Bu da enerji 

güvenliğini artırır ve fiyat dalgalanmalarına ve jeopolitik gerilimlere karşı kırılganlığı 

azaltır. 

Enerji güvenliği, bir ülkenin veya bölgenin ihtiyaçlarını karşılamak için enerji kaynaklarının 

mevcudiyetini ve güvenilirliğini ifade eder (Alsagr ve Hemmen, 2021). Yenilenebilir enerji 

bağlamında enerji güvenliği, fosil yakıtlara olan bağımlılığı azaltmak ve fiyat dalgalanmaları 

ile jeopolitik gerilimlere karşı kırılganlığı azaltmak için yenilenebilir enerji kaynaklarının 

istikrarlı ve tutarlı bir şekilde tedarik edilmesini içerir. 

Yenilenebilir enerjideki fiyat dalgalanmaları, teknoloji maliyetlerindeki değişiklikler, hükümet 

politikaları ve piyasa dinamikleri gibi çeşitli faktörlerden etkilenebilir (Alsagr ve Hemmen, 

2021). Yenilenebilir enerji kaynaklarına geçiş, yenilenebilir enerjinin toplam maliyetini 

etkileyebilecek altyapı ve teknolojiye önemli yatırımlar gerektirmektedir. Bununla birlikte, 

yenilenebilir enerji teknolojileri ilerlemeye ve ölçeklenmeye devam ettikçe, maliyetlerin 
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düşmesi ve yenilenebilir enerjiyi geleneksel fosil yakıtlarla daha rekabetçi hale getirmesi 

beklenmektedir (Alsagr ve Hemmen, 2021). 

Jeopolitik gerilimlere karşı kırılganlık, yenilenebilir enerji bağlamında dikkate alınması 

gereken bir diğer önemli husustur. Çatışmalar, ticari anlaşmazlıklar ve siyasi istikrarsızlık gibi 

jeopolitik riskler, yenilenebilir enerji kaynaklarının tedarik zincirlerini ve dağıtımını sekteye 

uğratabilir (Flouros ve ark., 2022). Örneğin, yenilenebilir enerji teknolojileri için gerekli olan 

kritik mineral ve malzemelerin mevcudiyeti jeopolitik gerilimlerden etkilenebilir ve potansiyel 

olarak arz kıtlığına ve fiyat dalgalanmalarına yol açabilir (Flouros ve ark., 2022). Ayrıca, 

jeopolitik faktörler yenilenebilir enerji projeleri için yatırım ortamını etkileyerek yenilenebilir 

enerji sektörünün genel büyümesini ve gelişimini etkileyebilir (Flouros ve ark., 2022). 

Bu zorlukların üstesinden gelmek için yenilenebilir enerji kaynaklarını çeşitlendirmek ve 

bölgesel iş birliği ve ortak çalışmayı geliştirmek çok önemlidir (Alsagr ve Hemmen, 2021). 

Ülkeler yenilenebilir enerji karışımını çeşitlendirerek tek bir enerji kaynağına bağımlılığı 

azaltabilir ve fiyat dalgalanmaları ve jeopolitik gerilimlerle ilişkili riskleri hafifletebilir. 

Bölgesel iş birliği aynı zamanda kaynakların, uzmanlığın ve altyapının paylaşılmasına yardımcı 

olarak daha güvenli ve dirençli bir yenilenebilir enerji sistemi sağlayabilir (Alsagr ve Hemmen, 

2021). 

Yenilenebilir enerji bağlamında enerji güvenliği, fiyat dalgalanmaları ve jeopolitik gerilimlerle 

ilişkili riskleri azaltırken yenilenebilir enerji kaynaklarının istikrarlı ve güvenilir bir şekilde 

tedarik edilmesini içerir. Enerji kaynaklarının çeşitlendirilmesi ve bölgesel iş birliği, 

yenilenebilir enerji sektöründe enerji güvenliğini artırmak için kilit stratejilerdir. 

7. Ekonomik Büyüme ve İş Yaratma: Yenilenebilir enerji sektörü ekonomik büyümeyi 

teşvik etme ve istihdam yaratma potansiyeline sahiptir. Yenilenebilir enerji projelerine 

yapılan yatırımlar yerel ekonomik kalkınmayı destekleyebilir, özel yatırımları çekebilir 

ve çeşitli beceri düzeylerinde çok çeşitli istihdam fırsatları yaratabilir. 

Yenilenebilir enerjinin ekonomik büyümeyi teşvik etme ve istihdam yaratma potansiyeli 

olduğu çeşitli çalışmalarla kanıtlanmıştır. Ntanos ve ark. (2018), 25 Avrupa ülkesini incelemiş 

ve yenilenebilir enerji tüketimi ile ekonomik büyüme arasında, özellikle de yüksek Gayrisafi 
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Yurt İçi Hasıla’ya (GSYH) sahip ülkelerde pozitif bir korelasyon bulmuştur. Çalışmada, 

yenilenebilir enerji kaynakları tüketimi, kişi başına düşen GSYH, gayrisafi sabit sermaye 

oluşumu ve işgücü arasındaki ilişkiyi belirlemek için tanımlayıcı istatistikler, küme analizi ve 

otoregresif dağıtılmış gecikme (ARDL, Autoregressive Distributed Lag Bound Test) gibi 

istatistiksel analiz teknikleri kullanılmıştır. Sonuçlar, yenilenebilir enerji tüketiminin uzun 

vadede ekonomik büyüme ile ilişkili olduğunu göstermektedir. 

Kumar ve Majid (2020), Hindistan’daki yenilenebilir enerji sektörüne odaklanmış ve sektörün 

karşılaştığı çeşitli engelleri tespit etmiştir. Yenilenebilir enerji teknolojilerinin gelişimini teşvik 

etmek için belirli stratejilerin yanı sıra itme politikaları ve çekme mekanizmalarının bir 

kombinasyonunu önermişlerdir. Bu stratejiler arasında teknolojik ilerlemeler, düzenleyici 

politikalar, vergi indirimleri, araştırma ve geliştirme çabaları ve verimlilik artırımları yer 

almaktadır. Yazarlar ayrıca, vasıfsız işçiler, teknisyenler ve müteahhitler için istihdam 

yaratmak amacıyla yenilenebilir enerji sektöründeki yatırım fırsatlarının teşvik edilmesinin 

önemini de tartışmıştır. 

Ahmed ve Shimada (2019), yükselen ve gelişmekte olan ekonomilerde yenilenebilir enerji 

projelerinin başarılı bir şekilde uygulanması için uygun bir politika paketinin benimsenmesinin 

önemini vurgulamıştır. Sübvansiyonlar, yenilenebilir portföy standartları, düşük faizli krediler, 

yeşil sertifikalar ve tarife garantileri gibi çeşitli yenilenebilir enerji politikalarının altını 

çizmişlerdir. Bu politikalar, teknoloji kurulumunun ilk maliyetini azaltmayı, yenilenebilir enerji 

üretimini teşvik etmeyi ve yenilenebilir kaynaklardan üretilen elektrik için garantili bir fiyat 

sağlamayı amaçlamaktadır. Yazarlar, yenilenebilir enerji tüketiminin bu ekonomilerde 

sürdürülebilir ekonomik kalkınmaya katkıda bulunduğunu öne süren bir geri besleme hipotezini 

destekleyen kanıtlar bulmuşlardır. 

Referanslar yenilenebilir enerjinin ekonomik büyümeyi teşvik etme ve istihdam yaratma 

potansiyeline sahip olduğuna dair kanıtlar sunmaktadır. Çalışmalar, özellikle yüksek GSYH’ye 

sahip ülkelerde yenilenebilir enerji tüketimi ile ekonomik büyüme arasındaki pozitif 

korelasyonu vurgulamaktadır. Ayrıca, yenilenebilir enerji sektöründe yatırım fırsatlarını teşvik 

etmek için uygun politika ve stratejilerin uygulanmasının önemini vurgulamaktadırlar; bu da 

istihdam yaratılmasına ve sürdürülebilir ekonomik kalkınmaya yol açabilir. 
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4. Maliyet Rekabetçiliği: Yenilenebilir enerji teknolojilerinin maliyeti son yıllarda hızla 

düşmekte ve fosil yakıtlarla maliyet açısından giderek daha rekabetçi hale gelmektedir. Güneş 

ve rüzgar gibi yenilenebilir enerji kaynakları birçok bölgede şebeke paritesine ulaşmıştır, yani 

geleneksel kaynaklara benzer veya daha düşük maliyetle elektrik üretebilirler. 

Fosil yakıtlara kıyasla yenilenebilir enerji teknolojilerinin maliyetinin rekabet edebilirliği, daha 

sürdürülebilir bir enerji sistemine geçişte büyük ilgi gören bir konudur. Birçok çalışma bu 

konuyu incelemiş ve yenilenebilir enerji teknolojilerinin maliyet rekabetçiliğini destekleyen 

kanıtlar bulmuştur. 

Adlong (2012) tarafından yapılan bir çalışma, yenilenebilir enerji teknolojilerinin hızlı 

gelişimini ve bunların çevre eğitimcileri üzerindeki etkilerini vurgulamaktadır. Çalışma, birçok 

yenilenebilir enerji teknolojisinin maliyetlerinin 10-15 yıl içinde fosil yakıtlarla rekabet edebilir 

hale gelmesinin beklendiğini ve bazı tesislerin halihazırda maliyet açısından rekabet edebilir 

durumda olduğunu belirtmektedir. Bu da yenilenebilir enerji teknolojilerinin giderek daha 

uygun maliyetli hale geldiğini ve maliyet açısından fosil yakıtlarla rekabet edebileceğini 

göstermektedir. 

Kalair ve ark. (2020) tarafından yapılan bir başka çalışma, fosil yakıtlardan yenilenebilir 

enerjiye geçişte enerji depolama sistemlerinin rolünü tartışmaktadır. Çalışma, enerji depolama 

cihazlarının güneş ve rüzgâr gibi yenilenebilir enerji kaynaklarının kesintili doğasını hesaba 

katabileceğini vurgulamaktadır. Bu durum, enerji depolama sistemlerinin entegre edilmesinin, 

yenilenebilir enerji teknolojilerinin kesintili yapısını ele alarak ve güvenilir bir enerji arzı 

sağlayarak bu teknolojilerin rekabet gücünü artırabileceğine işaret etmektedir. 

Ayrıca, Khaw ve Ni (2021) tarafından yapılan çalışma, gelişmekte olan Asya ülkelerinde fosil 

yakıt fiyatları, karbondioksit emisyonları ve yenilenebilir enerji kapasitesi arasındaki ilişkiyi 

incelemektedir. Çalışma, yenilenebilir enerji kapasitesinin karbondioksit emisyonlarının 

azaltılması üzerindeki olumlu etkisine dair kanıtlar sunmaktadır. Bu durum, yenilenebilir enerji 

teknolojilerinin fosil yakıtlarla potansiyel olarak maliyet açısından rekabet edebilirken çevresel 

faydalar da sunabileceğini göstermektedir. 



9 
 

Çok sayıda çalışma yenilenebilir enerji teknolojilerinin fosil yakıtlarla maliyet açısından 

giderek daha rekabetçi hale geldiği fikrini desteklemektedir. Bu teknolojilerin hızlı gelişimi ve 

enerji depolama sistemlerindeki ilerlemeler, maliyet rekabetçiliğine katkıda bulunmaktadır. 

Yenilenebilir enerji teknolojileri gelişmeye ve ölçeklenmeye devam ettikçe, fosil yakıtlara karşı 

uygulanabilir ve ekonomik açıdan rekabetçi bir alternatif sunma potansiyeline sahiptir. 

5. Enerji Çeşitliliği ve Esneklik: Enerji karışımının yenilenebilir kaynaklarla çeşitlendirilmesi, 

tek bir enerji kaynağına olan bağımlılığı azaltarak enerji direncini ve istikrarını artırır. Çatı üstü 

güneş panelleri gibi dağıtılmış yenilenebilir enerji sistemleri, yaygın elektrik kesintisi riskini 

azaltarak şebeke direncini de artırabilir. 

Yenilenebilir enerji, tek bir enerji kaynağına bağımlılığı azaltarak enerji direncini ve istikrarını 

artırmada çok önemlidir. Bu, enerji sistemlerinin adaptif kapasitesini ve direncini artıran enerji 

kaynaklarının çeşitlendirilmesi yoluyla elde edilir (Molyneaux ve ark., 2016). 

Enerji sistemlerinde esneklik, artıklık ve çeşitlilik gibi parametrelerle ölçülür. Bu parametreler 

mevcut olduğunda, esneklik artar ve ekonomik istikrar artar (Molyneaux ve ark., 2016). Güneş 

fotovoltaik ve rüzgar enerjisi gibi yenilenebilir enerji kaynaklarının kullanılması, enerji 

karışımının çeşitlendirilmesine katkıda bulunarak fosil yakıtlara olan bağımlılığı azaltmakta ve 

genel enerji sisteminin dayanıklılığını artırmaktadır (Pagliaro, 2019). 

Yenilenebilir enerjinin esneklik ve istikrar açısından faydaları, enerji kaynaklarının 

çeşitlendirilmesiyle sınırlı değildir. Yenilenebilir enerji 9ibrit sistemlerinin (REHS, Renewable 

energy hybrid system) esnekliğini ölçmek ve paraya çevirmek için bir metodoloji önermektedir 

(Anderson ve ark., 2018). Çalışmaları, geleneksel yedek dizel jeneratörler yerine REHS’nin 

uygulanmasının kesinti beka kabiliyetini önemli ölçüde artırabileceğini ve katma değer 

sağlayabileceğini göstermektedir. Örneğin, New York’taki binalar üzerinde yapılan bir vaka 

çalışmasında, REHS’nin uygulanması, kesintiden kurtulma miktarını iki katına çıkarmış ve 

781.200 $ katma değer sağlamıştır (Anderson ve ark., 2018). Bu durum, yenilenebilir enerjinin 

dayanıklılık açısından potansiyel ekonomik faydalarını vurgulamaktadır. 

Ayrıca, geleneksel baz yük santrallerine kıyasla yenilenebilir üretimin dağıtık yapısı, enerji 

sisteminin dayanıklılığına katkıda bulunmaktadır (Anderson ve ark., 2018). Yenilenebilir 
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enerjinin merkezi olmayan yapısı, tek bir konumdaki kesintilere karşı kırılganlığı azalttığı için 

daha esnek ve sağlam bir enerji altyapısı sağlar. 

Yenilenebilir enerjiyi eleştirenler, güneş ışığı ve rüzgârın kesintili olmasının enerji üretimini 

planlamada ve talebi karşılamada zorluklar yarattığını savunmaktadır. Ancak teknolojideki ve 

endüstriyel ilerlemedeki gelişmeler bu endişeleri gidermiştir. Kamu ölçeğinde güneş ve rüzgâr 

enerjisi üretimi, geleneksel termoelektrik enerji üretimiyle rekabet edebilir hale gelmiştir ve 

enerji depolama sistemlerinin geliştirilmesiyle kesinti sorunu hafifletilmektedir (Pagliaro, 

2019). 

Yenilenebilir enerji, tek bir enerji kaynağına bağımlılığı azaltarak enerji direncini ve istikrarını 

artırmada hayati önem taşımaktadır. Yenilenebilir enerjinin yaygınlaştırılması yoluyla enerji 

kaynaklarının çeşitlendirilmesi, enerji sistemlerinin uyum kapasitesini ve dayanıklılığını 

artırmaktadır. Ayrıca, yenilenebilir enerji üretiminin dağıtık yapısı ve teknolojideki ilerlemeler 

enerji sisteminin genel dayanıklılığına katkıda bulunmaktadır. Yenilenebilir enerjinin 

dayanıklılık açısından ekonomik faydaları da yenilenebilir enerji 10ibrit sistemleri tarafından 

sağlanan dayanıklılığın ölçülmesi ve parasallaştırılmasıyla ortaya konmuştur. Genel olarak 

yenilenebilir enerji, daha dirençli ve istikrarlı bir enerji geleceğinin inşasında kilit bir bileşendir. 

6. Sağlık Faydaları: Yenilenebilir enerji kaynaklarının kullanımı hava ve su kirliliğini azaltarak 

halk sağlığı sonuçlarının iyileşmesini sağlar. Yenilenebilir kaynaklar, fosil yakıtların yanmasını 

temiz enerji ile değiştirerek solunum yolu hastalıklarını, kardiyovasküler sorunları ve kirlilikle 

ilişkili diğer sağlık sorunlarını azaltmaya yardımcı olur. 

Yenilenebilir enerji, halk sağlığını iyileştiren ve kirlilikle ilgili sağlık sorunlarını azaltan çok 

sayıda çevresel faydaya sahiptir. İşte kanıtlarla desteklenen bazı önemli noktalar: 

a. Hava Kirliliğinin Azaltılması: Yenilenebilir enerji kaynakları fosil yakıtları yakmadan 

elektrik üreterek sülfür dioksit, nitrojen oksitler ve partikül madde gibi hava kirleticilerin 

emisyonunu önemli ölçüde azaltır. Bu kirleticiler solunum yolu hastalıklarına, kardiyovasküler 

sorunlara ve diğer sağlık sorunlarına neden olmaktadır (Amk ve Ms, 2021). 
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b. Sera Gazı Emisyonlarının Azaltılması: Yenilenebilir enerji teknolojileri, atmosfere önemli 

miktarda karbondioksit gibi sera gazları salmadan elektrik üretir. Yenilenebilir enerji, sera gazı 

emisyonlarını azaltarak, ısıya bağlı hastalıklar, vektör kaynaklı hastalıklarda artış, gıda ve su 

kaynaklı hastalıklar gibi olumsuz sağlık etkileri olan iklim değişikliğinin azaltılmasına 

yardımcı olur (Gallagher ve Holloway, 2020). 

c. İç Mekan Hava Kalitesinin İyileştirilmesi: Geleneksel biyokütle yakıtlarının yemek pişirme 

ve ısınma için yaygın olarak kullanıldığı gelişmekte olan ülkelerde, biyogaz veya geliştirilmiş 

ocaklar gibi daha temiz ve daha verimli yenilenebilir enerji kaynaklarına geçiş, iç mekan hava 

kalitesini önemli ölçüde artırabilir. Bu da özellikle iç mekan hava kirliliğine en çok maruz kalan 

kadınlar ve çocuklar arasında solunum yolu hastalıkları riskini azaltır (Şenyapar, 2023). 

d. Su Kirliliğinde Azalma: Güneş ve rüzgar enerjisi gibi yenilenebilir enerji teknolojileri, 

soğutma için suya ihtiyaç duyan geleneksel enerji santrallerinin aksine, elektrik üretimi için 

suya ihtiyaç duymaz. Su kullanımını azaltarak yenilenebilir enerji, su kaynaklarının 

korunmasına yardımcı olur ve soğutma suyu ve atık su deşarjı yoluyla su kütlelerinin 

kirlenmesini azaltır (Güney, 2019). 

e. Ekosistemlerin ve Biyoçeşitliliğin Korunması: Uygun şekilde planlandığında ve 

uygulandığında, yenilenebilir enerji projeleri habitat tahribatını ve geleneksel enerji 

kaynaklarıyla ilişkili biyolojik çeşitlilik kaybını en aza indirebilir. Yenilenebilir enerji, 

madencilik ve sondaj gibi arazi yoğun faaliyetlere olan ihtiyacı azaltarak ekosistemlerin ve 

bunlara bağlı olan türlerin korunmasına yardımcı olur (Güney, 2019). 

Sonter ve ark. (2020), yenilenebilir enerji üretimi nedeniyle madenciliğin biyoçeşitliliğe 

yönelik tehditlerinin potansiyel olarak kötüleşmesine odaklanmıştır. Dünya kara yüzeyinin 50 

milyon km2 ‘sini etkileyen birçok madencilik alanının yenilenebilir enerji üretimi için gerekli 

malzemeleri hedeflediğini tespit etmişlerdir. Bu madencilik alanları genellikle korunan alanlar, 

kilit biyoçeşitlilik alanları ve kalan vahşi doğayla örtüşmektedir. Stratejik planlama yapılmadığı 

takdirde, yenilenebilir enerji üretimiyle bağlantılı olarak biyoçeşitliliğe yönelik madencilik 

tehditleri, fosil yakıt kullanımının azaltılmasıyla hafifletilen tehditleri aşabilir. 
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f. Sürdürülebilir Kaynak Kullanımı: Güneş, rüzgar ve hidroelektrik enerji gibi yenilenebilir 

enerji kaynakları, doğal olarak yenilenen kaynaklardan yararlanır. Sınırlı olan ve çıkarılması 

gereken fosil yakıtların aksine, yenilenebilir enerji doğal kaynakların korunmasına ve kaynak 

çıkarma ile ilişkili çevresel bozulmanın azaltılmasına yardımcı olur (Güney, 2019). 

g. Sürdürülebilir Kalkınmanın Teşvik Edilmesi: Yenilenebilir enerjinin benimsenmesi, 

özellikle kırsal ve uzak bölgelerde temiz ve uygun fiyatlı enerjiye erişim sağlayarak 

sürdürülebilir kalkınmaya katkıda bulunur. Güvenilir elektriğe erişim sağlık hizmetlerini 

iyileştirir, eğitimi kolaylaştırır ve ekonomik faaliyetleri destekleyerek yaşam koşullarını ve 

genel refahı iyileştirir (Liu ve Zhong, 2022). 

Yenilenebilir enerjinin bu çevresel faydaları, solunum yolu hastalıkları, kardiyovasküler 

sorunlar ve kirlilikle ilgili diğer sağlık sorunlarının azaltılmasındaki önemli rolünü 

vurgulamaktadır. Toplumlar, yenilenebilir enerji kaynaklarına geçiş yaparak halk sağlığı 

sonuçlarını iyileştirebilir, iklim değişikliğini hafifletebilir ve daha sürdürülebilir ve dirençli bir 

gelecek yaratabilir. 

7. Teknolojik Yenilik ve Araştırma: Yenilenebilir enerji teknolojilerinin geliştirilmesi ve 

yaygınlaştırılması, enerji sektöründe inovasyonu ve araştırmayı teşvik eder. Bu da enerji 

depolama, şebeke entegrasyonu ve diğer alanlarda ilerlemelere yol açarak sadece yenilenebilir 

enerji sektörüne değil ekonominin diğer sektörlerine de fayda sağlayabilir. 

Yenilenebilir enerji teknolojilerinin geliştirilmesi ve yaygınlaştırılması, enerji sektöründeki 

inovasyon ve araştırmaları önemli ölçüde etkilemiştir. Çeşitli çalışmalar bu ilişkiyi araştırmış 

ve bu etkinin çeşitli yönlerine ilişkin iç görüler sağlamıştır. 

Khan ve Su (2022) tarafından yapılan bir çalışma, teknolojik yenilik ile yenilenebilir enerjiye 

geçiş arasındaki tamamlayıcılığı incelemektedir. Yazarlar, yenilenebilir enerjinin 

genişlemesinin, yenilikçi yenilenebilir projeler için sübvansiyonları azaltan finansal kriz 

tarafından engellendiğini vurgulamaktadır. Bununla birlikte, yenilenebilir enerji 

teknolojilerinin tesis verimliliğini ve tutarlı üretimi artırdığını da belirtiyorlar. Fosil enerjiden 

daha pahalı olmasına rağmen, düşük karbonlu teknolojilerde yükselen bir eğilim söz konusudur 

ve bu da yenilenebilir enerji sektöründe inovasyona odaklanıldığını göstermektedir. 
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Xing ve ark. (2023) tarafından yapılan bir başka çalışma, sürdürülebilir yenilenebilir enerji 

geliştirme politikaları ve teknolojik inovasyona odaklanmaktadır. Yazarlar, yenilenebilir enerji 

gelişimi ile teknolojik yenilik arasında pozitif bir ilişki bulmuşlardır. Bu ilişkinin farklı 

ülkelerde ve ülke gruplarında gözlemlendiğini vurgulamaktadırlar. Bu durum, yenilenebilir 

enerji teknolojilerinin geliştirilmesi ve yaygınlaştırılmasının enerji sektöründe küresel 

inovasyonu teşvik ettiğini göstermektedir. 

Li ve ark. (2021), küresel yenilenebilir enerji inovasyon sistemlerindeki bilgi akışlarını 

araştırmıştır. Farklı yenilenebilir enerji teknolojisi inovasyon sistemlerinden gelen bilgiyi 

birleştirmek için teknolojik ve coğrafi mesafeler arasında köprü kurmanın önemini 

vurgulamaktadırlar. Yazarlar, yenilenebilir enerji teknolojilerinin karmaşık olduğunu ve çeşitli 

teknolojilerden bilgi girdisi gerektirdiğini savunmaktadır. Ayrıca, yenilenebilir enerji 

teknolojilerindeki bilginin ülkeler arasında eşit olmayan dağılımını vurgulayarak uluslararası 

bilgi akışının öneminin altını çizmektedirler. 

Ayrıca, doğrudan yabancı yatırımın (DYY) yenilenebilir enerji teknolojisi yayılımı üzerindeki 

etkisi (Liu ve ark., 2016) tarafından yapılan bir çalışmada incelenmiştir. Yazarlar, teknoloji 

yayılımında teknoloji özümseme kapasitesinin ve marka etkisinin çok önemli olduğunu 

bulmuşlardır. Ürün, süreç ve organizasyonel inovasyonun Çin’in enerji endüstrisi performansı 

üzerindeki etkilerini değerlendirerek, DYY’nin yenilenebilir enerji teknolojisi yayılımındaki 

olumlu etkilerini vurgulamaktadırlar. 

Sonuç olarak, yenilenebilir enerji teknolojilerinin geliştirilmesi ve yaygınlaştırılması, enerji 

sektöründeki inovasyon ve araştırmaları önemli ölçüde etkilemiştir. Bu etkiler arasında tesis 

verimliliğindeki iyileşmeler, istikrarlı üretim ve küresel olarak teknolojik yeniliğin teşvik 

edilmesi yer almaktadır. Ayrıca, teknolojik ve coğrafi mesafenin kapatılması ve teknoloji 

yayılımında DYY’nin rolü, yenilenebilir enerji inovasyon sisteminde önemli faktörler olarak 

tanımlanmıştır. 

Bu avantajlar, çevresel zorlukların ele alınmasında, sürdürülebilir kalkınmanın teşvik 

edilmesinde ve daha esnek ve adil bir enerji sistemi oluşturulmasında yenilenebilir enerjinin 

önemini vurgulamaktadır. 
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Hazırlamış olduğumuz tez çalışmamızda, çok kısa vadeli rüzgar hızı tahmininde başarımı 

yüksek olacak şekilde, ikincil ayrıştırmalı ve dalgacık sinir ağı ile oluşturulmuş bir 14ibrit 

model önerisinde bulunduk. Bu öneri doğrultusunda, popüler olarak kullanılan dört adet 

ayrıştırma modeli ile ikili olarak on altı adet ayrıştırma çifti ve üç tanesi yapay sinir ağı 

aktivasyon fonksiyonu, on üç tanesi dalgacık aktivasyon fonksiyonu olacak şekilde toplam on 

altı aktivasyon fonksiyonu ile 256 adet hibrit model oluşturulmuştur. Bu modeller ile dört 

mevsimin orta ayları için simülasyonlar yapılmış, ardından bu dört ayın sonuçları 

doğrultusunda başarımı yüksek olan 48 model ile yılın diğer sekiz ayı simüle edilmiştir. 

Bulduğumuz sonuçlar, Ampirik Mod Ayrıştırması türevi olan CEEMDAN yöntemi ile 

Değişken Mod Ayrıştırma yönetimi (VMD) ile oluşturulan ikili ayrıştırma modelinin, SLOG2 

dalgacık aktivasyon fonksiyonu sinir ağı ile oluşturulan hibrit tahmin modelinin yüksek 

başarımlı tahminler gerçekleştirdiği doğrultusundadır. 

Tezimizin bir sonraki bölümü olan “Kuramsal Temeller”de, çalışmamızda bilimsel temeli olan 

rüzgar hızı ve gücü arasındaki ilişki ve rüzgar hızı tahmininin önemi üzerinde durulmuştur. 

Rüzgar hızı tahmininde kullanılan başlıca yöntemler hakkında bilgilendirmeler yapılmıştır. 

Ayrıca, hibrit model önerimizde kullanmış olduğumuz yöntemler hakkında kuramsal bilgiler 

verilmiştir. 
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2. KURAMSAL TEMELLER 

2.1.  Rüzgar Hızı ve Rüzgar Gücü Arasındaki İlişki 

Rüzgar hızı ve rüzgar gücü arasındaki ilişki, rüzgar enerjisinin anlaşılması ve kullanılmasında 

çok önemli bir faktördür. Rüzgar hızı, rüzgar türbinleri tarafından üretilebilecek güç miktarını 

doğrudan etkiler. 

Wanninkhof’a (1992) göre, rüzgar hızı ile okyanus üzerindeki gaz transferi arasında ikinci 

dereceden bir ilişki vardır. Bu referans gaz alışverişine odaklansa da, rüzgar hızı ve diğer 

atmosferik süreçler arasındaki ilişki hakkında fikir vermektedir. Yazar, okyanus üzerindeki 

rüzgar hızı dağılımlarının genellikle Weibull dağılım fonksiyonları olarak ifade edildiğini ve 

izotropik rüzgarlar için Weibull dağılımının bir çözümünün Rayleigh olasılık dağılım 

fonksiyonu olduğunu belirtmektedir. Bu, rüzgar hızının olasılık dağılım fonksiyonları 

kullanılarak modellenebileceğini ve bunun rüzgar gücünü tahmin etmede yararlı olabileceğini 

göstermektedir. 

Wang ve ark. (2020), bulut modeline dayalı rüzgar gücü için bir tahmin yöntemi önermiştir. 

Rüzgar hızı ve gücü olasılık dağılımlarının düzensiz ve belirsiz olabileceğinden 

bahsetmektedirler. Bunu ele almak için, tepe noktasını güncellemek ve modelin sağlamlığını 

artırmak için L2 norm teorisini tanıtmışlardır. Bu, rüzgar hızının olasılık dağılımını analiz 

ederek rüzgar gücünün tahmin edilebileceğini göstermektedir. Yazarlar ayrıca rüzgar gücü 

tahmini için destek vektör makineleri ve Bayesian öğrenme modellerinin kullanımından 

bahsederek rüzgar hızı ve rüzgar gücü arasındaki ilişkiyi daha da vurgulamıştır. 

Wang ve ark. (2020) tarafından yapılan bir başka çalışmada, rüzgar hızı zaman kayması 

özellikleri için bir değerlendirme yöntemi önerilmiştir. Yazarlar, rüzgar hızı dizileri arasındaki 

zamansal ilişkiyi ve hız değişimini niceliksel olarak tanımlamanın önemini vurgulamıştır. 

Zaman kayması özelliklerini ölçmek için gecikme süresi ve bozulma hızı gibi değerlendirme 

indeksleri sunarlar. Bu, rüzgar hızı değişimlerinin rüzgar enerjisi üretiminin zamanlamasını ve 

süresini etkileyebileceğini göstermektedir. 

Genel olarak, referanslar rüzgar hızı ve rüzgar gücünün yakından ilişkili olduğunu 

göstermektedir. Rüzgar hızı, olasılık dağılım fonksiyonları kullanılarak modellenebilir ve 
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rüzgar hızındaki değişimler, rüzgar türbinleri tarafından üretilen gücün zamanlamasını ve 

miktarını etkileyebilir. Rüzgar hızı ve rüzgar gücü arasındaki ilişkiyi anlamak, rüzgar enerjisi 

sistemlerini optimize etmek ve güç çıkışını tahmin etmek için çok önemlidir. 

2.2.  Rüzgar Hızı Tahmininde Doğruluğun Önemi 

Rüzgar hızının doğru tahmin edilmesi birkaç nedenden dolayı önemlidir. İlk olarak, doğru 

rüzgar hızı tahmini rüzgar türbinlerinin verimli çalışması için çok önemlidir. Rüzgar türbinleri 

belirli bir rüzgar hızı aralığında en iyi şekilde çalışacak şekilde tasarlanmıştır. Rüzgar hızı 

olduğundan fazla tahmin edilirse, türbin aşırı yüklere maruz kalabilir, bu da potansiyel hasara 

veya kullanım ömrünün kısalmasına yol açabilir. Öte yandan, rüzgar hızı düşük tahmin edilirse, 

türbin istenen çıktıyı karşılamak için yeterli güç üretemeyebilir. Bu nedenle, doğru rüzgar hızı 

tahmini, rüzgar türbinlerinin optimum aralıkta çalışmasını sağlayarak enerji üretimini en üst 

düzeye çıkarır ve potansiyel hasarı en aza indirir (Østergaard ve ark., 2007). 

İkinci olarak, doğru rüzgar hızı tahmini hava tahmini ve iklim modellemesi için gereklidir. 

Rüzgar hızı, bulut oluşumu, yağış ve sıcaklık dağılımı gibi çeşitli atmosferik süreçleri etkilediği 

için hava tahmin modellerinde önemli bir parametredir. Doğru rüzgar hızı tahmini, 

meteorologların hava durumu modelleri hakkında daha kesin tahminler yapmasına olanak tanır; 

bu da tarım, havacılık ve afete hazırlık gibi çeşitli uygulamalar için çok önemlidir. Ayrıca, 

doğru rüzgar hızı verileri, araştırmacıların uzun vadeli iklim eğilimlerini ve değişkenliğini 

anlamalarına ve tahmin etmelerine yardımcı olduğu için iklim modellemesi için gereklidir 

(Shimada ve Ohsawa, 2011). 

Ayrıca, doğru rüzgar hızı tahmini, açık deniz rüzgar çiftlikleri ve açık deniz petrol ve gaz arama 

gibi açık deniz operasyonları için önemlidir. Açık deniz ortamları, karadaki konumlara kıyasla 

daha zorlu ve karmaşık rüzgar koşulları ile karakterize edilir. Doğru rüzgar hızı tahmini, açık 

deniz rüzgar türbinlerinin tasarımı ve işletimi için gereklidir, yapısal bütünlüklerini ve optimum 

performanslarını sağlar. Açık deniz petrol ve gaz operasyonları söz konusu olduğunda, doğru 

rüzgar hızı tahmini, sondaj kulelerinin konumlandırılması ve aşırı hava olaylarıyla ilişkili 

potansiyel risklerin değerlendirilmesi gibi güvenlik hususları için çok önemlidir (Shimada ve 

Ohsawa, 2011). 
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Sonuç olarak, doğru rüzgar hızı tahmini, rüzgar türbini işletimi, hava tahmini, iklim 

modellemesi ve açık deniz operasyonları dahil olmak üzere çeşitli uygulamalar için önemlidir. 

Rüzgâr türbinlerinin verimli ve güvenli çalışmasını sağlar, hava tahminlerini iyileştirir, iklim 

modellemesini geliştirir ve açık deniz faaliyetlerini destekler. Bu nedenle, doğru rüzgar hızı 

tahmini enerji üretimini optimize etmek, güvenliği artırmak ve atmosferin bilimsel anlayışını 

ilerletmek için gereklidir (Østergaard ve ark., 2007; Shimada ve Ohsawa, 2011). 

2.3.  Rüzgar Hızı Tahmininde Kullanılan Yöntemler 

Tahmin yönteminin seçiminin mevcut veriler, hesaplama kaynakları, tahmin ufku ve 

uygulamanın özel gereksinimleri dahil olmak üzere çeşitli faktörlere bağlı olduğunu belirtmek 

önemlidir. Araştırmacılar ve tahminciler, mümkün olan en iyi kısa vadeli rüzgar hızı 

tahminlerini elde etmek için genellikle bu yöntemlerin bir kombinasyonunu kullanırlar. 

• Sayısal Hava Tahmini (NWP, Numerical Weather Prediction) 

• İstatistiksel Yöntemler 

• Makine Öğrenimi 

• Topluluk Yöntemleri 

• Hibrit Yaklaşımlar 

2.3.1. Sayısal Hava Tahmini 

Rüzgar hızı tahmini, yenilenebilir enerji üretimi, hava tahmini ve bina tasarımı gibi çeşitli 

alanlarda çok önemli bir husustur. Rüzgar hızının doğru tahmini arazi, engeller, sıcaklık ve 

basınç gibi fiziksel faktörlerin dikkate alınmasını gerektirir. Bu zorluğun üstesinden gelmek 

için çeşitli yaklaşımlar önerilmiştir. 

Bu yaklaşımlardan biri, Østergaard ve ark. (2007) tarafından, etkin rüzgar hızı için önerilmiş 

bir tahmin yöntemdir. Enerji üretimini en üst düzeye çıkarmak için rüzgar türbinlerinin eğim 

açısını optimize etmeye odaklanmışlardır. Rüzgar hızı ve türbin özellikleri gibi faktörleri göz 

önünde bulundurarak, etkin rüzgar hızını tahmin etmek için matematiksel bir optimizasyon 

modeli geliştirmişlerdir. Bu yaklaşım, rüzgar hızı tahminine dayalı olarak rüzgar türbini 

performansının optimize edilmesine yönelik içgörüler sağlamaktadır. 
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Bu yaklaşımlardan biri, (Chen ve ark., 2018) tarafından gösterildiği gibi derin öğrenme 

tekniklerinin kullanılmasıdır. Rüzgar hızını tahmin etmek için evrişimsel sinir ağlarını 

(CNN'ler) ve çok katmanlı bir algılayıcıyı (MLP, Multi-Layer Perceptron) entegre eden birleşik 

bir çerçeve önermektedirler. CNN'ler uzamsal özellikleri çıkarırken, MLP bu özellikler 

arasındaki zamansal bağımlılıkları yakalar. Hem mekansal hem de zamansal yönleri dikkate 

alarak, modelleri doğru rüzgar hızı tahminine ulaşmaktadır. 

Bir başka yaklaşım da (Winstral ve ark., 2009) tarafından tartışıldığı gibi, rüzgar hızlarının 

heterojen arazi üzerindeki dağılımını içerir. Dağ manzaraları üzerinde rüzgarın yüksek 

mekansal değişkenliğini vurgulamaktadırlar, bu da kütle ve enerji akışlarında güçlü gradyanlar 

yaratabilir. Bu değişkenliği yakalamak için, rüzgar modellerini belirleyen karmaşık süreçleri 

hesaba katan dağıtılmış bir rüzgar modeli geliştirmişlerdir. Geliştirdikleri model, rüzgar 

varyansını açıklamada ve sahalar arasındaki rüzgar hızı farklılıklarını yakalamada umut verici 

sonuçlar ortaya koymaktadır. 

Buna ek olarak, (Chen ve ark., 2018) tarafından gösterildiği gibi derin öğrenme tekniklerinin 

kullanılmasıdır. Rüzgar hızını tahmin etmek için evrişimsel sinir ağlarını (CNN'ler) ve çok 

katmanlı bir algılayıcıyı (MLP, Multi-Layer Perceptron) entegre eden birleşik bir çerçeve 

önermişlerdir. CNN'ler uzamsal özellikleri çıkarırken, MLP bu özellikler arasındaki zamansal 

bağımlılıkları yakalar. Hem mekansal hem de zamansal yönleri dikkate alarak, modelleri doğru 

rüzgar hızı tahminine ulaşmıştır. 

Genel olarak, bu referanslar arazi, engeller, sıcaklık ve basınç gibi fiziksel faktörleri göz önünde 

bulundurarak rüzgar hızını tahmin etmek için farklı yaklaşımları vurgulamaktadır. Derin 

öğrenme teknikleri, dağıtık rüzgar modelleri ve matematiksel optimizasyon modellerinin 

kullanımı, çeşitli uygulamalarda doğru rüzgar hızı tahminine katkıda bulunur. Araştırmacılar 

ve uygulayıcılar, bu faktörleri rüzgar hızı tahmin modellerine dahil ederek rüzgar enerjisi 

üretimi, hava tahmini ve bina tasarımının verimliliğini ve güvenilirliğini artırabilirler. 

Verilen referanslara dayanarak, arazi, engeller, sıcaklık ve basınç gibi fiziksel faktörleri 

kullanarak rüzgar hızı tahmini için bazı ilgili yöntemler aşağıda verilmiştir. Winstral ve ark. 

(2009), heterojen arazi üzerinde rüzgar hızlarını dağıtmak için etkili bir yöntem önermiştir. 

Çalışma, dağ manzaraları üzerindeki rüzgarın yüksek mekansal değişkenliğini ve bunun kar 
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dağılımı üzerindeki etkisini yakalamaya odaklanmıştır. Yazarlar, tüm rüzgar değişkenliğini 

yakalamak için bir rüzgar sensörleri ağı kullanmış ve mevcut sensör verilerine dayanarak farklı 

konumlardaki rüzgar hızlarını tahmin etmek için modeller geliştirmiştir (Winstral ve ark., 

2009). 

Knudsen ve ark. (2011), bir rüzgar çiftliğindeki türbin konumlarında rüzgar hızı için tahmin 

modelleri geliştirmiştir. Çalışma, bir rüzgar çiftliğindeki türbinler ve rüzgar alanı arasındaki 

ilişkiyi anlamayı amaçlamıştır. Yazarlar, rüzgar türbinlerinde yorgunluk ve üretim arasındaki 

dengeyi optimize etmek için çok önemli olan rotor diski üzerindeki etkili rüzgar hızını (EWS, 

Effective Wind Speed) tahmin etmek için farklı modeller araştırmışlardır (Knudsen ve ark., 

2011). 

Ingenhorst ve arkadaşları (2021), karmaşık araziler üzerindeki uzamsal rüzgar hızı dağılımının 

havadan ölçümü için bir yöntem sunmuştur. Çalışma, karmaşık arazi üzerindeki rüzgar hızlarını 

araştırmak için hesaplamalı akışkanlar dinamiği (CFD, Computational Fluid Dynamics) 

simülasyonlarını kullanmaya odaklanmıştır. Yazarlar, CFD simülasyonlarıyla ilişkili 

zorlukların ve belirsizliklerin altını çizmiş ve doğru saha değerlendirmesi için kapsamlı 

ölçümlerin önemini vurgulamıştır (Ingenhorst ve ark., 2021). 

Østergaard ve arkadaşları (2007) etkili rüzgar hızının tahmini için bir yöntem önermiştir. 

Çalışma, rüzgar türbini kontrol algoritmaları için çok önemli bir parametre olan etkin rüzgar 

hızını tahmin etmeyi amaçlamıştır. Yazarlar, rotor hızını ve aerodinamik torku tahmin etmek 

için birleşik bir durum ve girdi gözlemcisi geliştirmiş ve bunlar daha sonra etkin rüzgar hızını 

hesaplamak için kullanılmıştır (Østergaard ve ark., 2007). 

Bu referanslar, arazi, engeller, sıcaklık ve basınç gibi fiziksel faktörleri göz önünde 

bulundurarak rüzgar hızı tahmini için çeşitli yöntemler hakkında fikir vermektedir. Bu 

yöntemler, rüzgarın mekansal değişkenliğini yakalamayı, türbinler ve rüzgar alanı arasındaki 

ilişkiyi anlamayı ve rüzgar türbini kontrolü ve optimizasyonu için etkili rüzgar hızını tahmin 

etmeyi amaçlamaktadır. 

Sayısal Hava Tahmini rüzgar hızı tahmini için fiziksel bir yaklaşımdır. Rüzgâr hızı tahmini, 

meteoroloji ve hava tahmininde çok önemli bir husustur. NWP modelleri rüzgar hızlarını 
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tahmin etmek için yaygın olarak kullanılır, ancak doğrulukları değişebilir. NWP modellerinden 

elde edilen rüzgar hızlarını uydu gözlemleri ile karşılaştırmak ve NWP rüzgar hızı 

tahminlerinin doğruluğunu artırmak için çeşitli çalışmalar yapılmıştır. 

Wallcraft ve ark. (2009) tarafından yapılan bir çalışmada, küresel okyanus üzerinde uydulardan 

ve NWP ürünlerinden elde edilen aylık ortalama 10 m rüzgar hızları karşılaştırılmıştır. Çalışma, 

NWP ürünlerinin standart analiz dönemi boyunca uydu rüzgarlarına göre neredeyse mükemmel 

beceriye sahip olduğunu bulmuştur. Bu da NWP modellerinin okyanus üzerindeki rüzgâr 

hızlarına ilişkin doğru tahminler sağlayabileceğini göstermektedir. 

Bununla birlikte, NWP modelleri genellikle çözülmemiş orografinin etkilerini parametrize 

eder, bu da özellikle yüksek zeminli alanlarda rüzgar hızı tahminlerinde yanlışlıklara yol açar. 

Howard ve Clark (2007), gözlemlenen ve modellenen rüzgar hızlarını uzlaştırmak için NWP 

rüzgar hızı tahminlerini düzeltmek ve ölçek küçültmek için bir yöntem önermiştir. Bu yöntem, 

yapay olarak artan yüzey gerilimini ve çözülmemiş zirveler üzerindeki hızlanma için 

modelleme eksikliğini ele almaktadır. Bu yaklaşım, gözlemlenen rüzgar hızlarını da dahil 

ederek, karmaşık arazilere sahip bölgelerde NWP rüzgar hızı tahminlerinin doğruluğunu 

artırabilir. 

NWP modellerinin uydu gözlemleri ile karşılaştırılmasına ek olarak, olasılıksal rüzgar hızı 

tahminleri, NWP tahminleri topluluğuna dayalı olarak oluşturulabilir. Eide ve ark. (2017), 

rüzgar hızı ve yönünü kullanarak rüzgar hızı topluluğu tahminleri için bir Bayesian Model 

Ortalaması yaklaşımı geliştirmiştir. Bu yaklaşım, rüzgar hızına ek olarak birden fazla NWP 

değişkenini dikkate alır ve bu da topluluk tahminlerinin kalibrasyonunu iyileştirebilir. Ek NWP 

değişkenlerinin dahil edilmesiyle, rüzgar hızı topluluk tahminlerinin doğruluğu artırılabilir. 

Kara ve ark. (2008) tarafından yapılan bir başka çalışma, küresel okyanus üzerinde kara-deniz 

sınırlarına yakın 10 m rüzgar hızlarının doğruluğuna odaklanmıştır. Çalışmada üç NWP 

merkezinden ve iki uydu tabanlı üründen elde edilen rüzgarlar analiz edilmiştir. Analiz 

sonuçları, bu bölgelerdeki 10 m rüzgar hızlarının güvenilirliğine ilişkin bilgiler sağlamıştır. Bu 

bilgi, kara-deniz sınırlarına yakın NWP rüzgar hızı tahminlerinin doğruluğunu artırabilir. 
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Sonuç olarak, NWP modelleri ile rüzgar hızı tahminlerinin doğruluğunu değerlendirmek ve 

geliştirmek için çeşitli çalışmalar yapılmıştır. Bu çalışmalar NWP rüzgar hızlarını uydu 

gözlemleriyle karşılaştırmış, NWP rüzgar hızı tahminlerini düzeltmek ve ölçek küçültmek için 

yöntemler önermiş, topluluk NWP tahminlerini kullanarak olasılıksal rüzgar hızı tahminleri 

geliştirmiş ve kara-deniz sınırlarına yakın NWP rüzgar hızlarının doğruluğunu analiz etmiştir. 

Meteorologlar ve hava tahmincileri bu çalışmalardan elde edilen bulguları birleştirerek NWP 

modelleri ile rüzgar hızı tahminlerinin doğruluğunu artırabilirler. 

Rüzgar hızı tahmini genellikle verileri analiz etmek ve yorumlamak için istatistiksel 

yöntemlerin kullanılmasını içerir. Birçok çalışmada rüzgar hızı tahmin doğruluğunu artırmak 

için farklı istatistiksel yaklaşımlar araştırılmıştır. 

Gilbert (1988) tarafından yapılan bir çalışmada rüzgar hızı tahmini için istatistiksel yöntemlerin 

kullanımı tartışılmıştır. Makalede, rüzgar hızı tahminine uygulanabilecek lognormal dağılım 

gibi asimetrik istatistiksel dağılımların kullanılmasından bahsedilmektedir. Makale, logaritmik 

veya karekök dönüşümleri kullanarak sağa çarpık dağılımların yaklaşık Gauss dağılımlarına 

dönüşümünü vurgulamaktadır. Bu yaklaşım, rüzgar hızı verilerini normalleştirmeye ve 

istatistiksel modellerin doğruluğunu artırmaya yardımcı olabilir. 

Thorarinsdottir ve Gneiting (2009) tarafından yapılan bir başka çalışmada, rüzgar hızı için 

topluluk model çıktı istatistikleri (EMOS, Ensemble Model Output Statistic) adı verilen 

olasılıksal bir tahmin yöntemi tanıtılmıştır. Çalışma, değişken varyanslı sensör regresyonu 

(Tobit) kullanarak topluluk sistemlerindeki kalibrasyon ve sapma sorununu ele almaktadır. Bu 

yaklaşım, rüzgar hızı tahminleri için dinamik toplulukları sonradan işlemek için topluluktan 

türetilen konum ve yayılmayı içerir. EMOS yöntemi, Kuzey Amerika Pasifik Kuzeybatısı 

üzerindeki maksimum rüzgar hızının 48 saat ileriye dönük tahminlerine uygulanmış ve rüzgar 

hızı tahminlerinin doğruluğunu artırmadaki etkinliğini göstermiştir. 

Kernel yoğunluk tahmininde, El-Dakkak ve ark. (2019) rüzgar hızı kernel yoğunluk tahmininde 

bant genişliği seçimi için kombinasyonel bir yöntem önermektedir. Bant genişliği seçimi, 

tahmin edilen yoğunluk fonksiyonunun düzgünlüğünü belirlediği için kernel yoğunluk 

tahmininde kritik bir adımdır. Çalışma, tahmin doğruluğunu optimize etmek için birden fazla 
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bant genişliğini birleştiren yeni bir yaklaşım sunmaktadır. Bu yöntem, kernel yoğunluk tahmin 

teknikleri kullanılarak rüzgar hızı tahmininin hassasiyetini artırabilir. 

Sonuç olarak, istatistiksel yöntemler rüzgar hızı tahmininde önemli bir rol oynamaktadır. 

Lognormal dağılım gibi asimetrik istatistiksel dağılımların kullanılması, rüzgar hızı verilerinin 

normalleştirilmesine yardımcı olabilir. EMOS gibi olasılıksal tahmin yöntemleri, topluluk 

rüzgar hızı tahminlerinin kalibrasyonunu ve yanlılığını iyileştirebilir. Ek olarak, çekirdek 

yoğunluk tahmininde bant genişliği seçimi için kombinatoryal yaklaşım, bu tekniği kullanarak 

rüzgar hızı tahmininin doğruluğunu artırabilir. 

2.3.2. İstatistiksel Yöntemler 

Gelecekteki rüzgar hızlarını tahmin etmek için otoregresif entegre hareketli ortalamalar 

(ARIMA, Autoregressive Integrated Moving Averages), üstel düzleştirme ve regresyon 

modelleri dahil olmak üzere çeşitli modeller kullanılabilir. 

ARIMA modelleri rüzgar hızı tahmininde yaygın olarak kullanılmaktadır. Elsaraiti ve Merabet 

(2021) tarafından yapılan karşılaştırmalı bir analiz, ARIMA modelinin kısa vadeli rüzgar hızı 

tahmini için etkili olduğunu bulmuştur. Çalışma, gerçek zamanlı serileri ARIMA modelinin 

tahminleri ile karşılaştırmış ve en az hataya sahip modeli seçmiştir. Yazarlar, ARIMA 

modelinin kısa vadeli rüzgar hızı tahmini için uygun olduğu sonucuna varmışlardır. 

ARIMA'ya ek olarak, Hussin ve ark. (2021) tarafından yapılan çalışmada, Malezya 

Yarımadası'nda gelecekteki rüzgar hızını tahmin etmek için ARIMA modeli uygulanmıştır. 

Yazarlar, 18 meteoroloji istasyonundan alınan rüzgar hızı verilerini kullanmış ve ARIMA 

modelinin üç istasyona iyi uyum sağladığını bulmuşlardır. Seri otokorelasyonu kontrol etmek 

için Ljung-Box testi ve artıklarda Otoregresif Koşullu Değişen Varyans (ARCH, 

Autoregressive Conditional Heteroscedasticity) etkisinin varlığını araştırmak için Engle'ın 

Lagrange Çarpanı (LM, Lagrange Multiplie) testi kullanılmıştır. Yazarlar, kalan istasyonlar için 

günlük rüzgar hızı serisinin doğrusal olmayan özelliklerini yakalayan ARIMA-GARCH 

(Generalized AutoRegressive Conditional Heteroskedasticity, Genelleştirilmiş Oto Regresif 

Koşullu Değişen Varyans) modelini kullanmışlardır. 
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Üstel düzeltme, rüzgar hızı tahmini için kullanılabilecek bir başka yaklaşımdır. Ancak, verilen 

referansların hiçbiri rüzgar hızı tahmininde üstel düzeltme uygulamasını özel olarak 

tartışmamaktadır. 

Regresyon modelleri de rüzgar hızı tahmini için kullanılabilir. Ancak, verilen referansların 

hiçbiri doğrudan regresyon modellerinin kullanımını ele almamaktadır. 

Gelecekteki rüzgar hızlarını tahmin etmek için, otoregresif (AR, Auto-Regressive), otoregresif 

hareketli ortalama (ARMA, Auto Regressive Moving Average), otoregresif entegre hareketli 

ortalama (ARIMA, Auto-Regressive Integrated Moving Average), üstel düzleştirme ve 

regresyon modelleri dahil olmak üzere çeşitli modeller kullanılabilir. 

Otoregresif (AR) model, gelecekteki değerleri tahmin etmek için tahmin edilen değişkenin 

geçmiş gözlemlerini kullanan bir zaman serisi modelidir. Değişkenin gelecekteki değerlerinin 

geçmişteki öneminin doğrusal bir kombinasyonu olduğunu varsayar. AR modeli jeoloji, 

biyoloji ve bilgisayar bilimleri gibi çeşitli alanlarda yaygın olarak kullanılmaktadır (Kendall, 

1971). Otoregresif hareketli ortalama (ARMA) modeli, zaman serisi verilerindeki otoregresif 

ve hareketli ortalama modellerini yakalamak için otoregresif ve hareketli ortalama bileşenlerini 

birleştirir. Meteorolojide rüzgar hızı tahmini için kullanılmıştır (Kendall, 1971). Otoregresif 

entegre hareketli ortalama (ARIMA) modeli, zaman serisini durağan hale getirmek için 

farklılaştırmayı içeren ARMA modelinin bir uzantısıdır. Rüzgar hızı tahmininde yaygın olarak 

kullanılmaktadır (Kendall, 1971). ARIMA modeli kısa vadeli rüzgar hızını etkili bir şekilde 

tahmin eder (Kendall, 1971). 

Üstel düzleştirme, geçmiş gözlemlere üstel olarak azalan ağırlıklar atayan bir zaman serisi 

tahmin yöntemidir. Jeoloji de dahil olmak üzere çeşitli alanlarda yaygın olarak kullanılmaktadır 

(Billah ve ark., 2006). Akaike'nin bilgi kriterine dayanan bilgi kriteri yaklaşımı, otomatik 

yöntem seçimi için iyi bir temel sağlar (Billah ve ark., 2006). 

Regresyon modelleri rüzgar hızı tahmini için de kullanılabilir. Olasılıksal rüzgar hızı tahmini 

için homojen olmayan regresyon modelleri karşılaştırılmıştır (Lerch ve Thorarinsdottir, 2013). 

Çalışmaları olasılıksal tahmine odaklansa da, regresyon modellerinin rüzgar hızı tahmininde 

uygulanabileceğini göstermektedir (Lerch ve Thorarinsdottir, 2013). 
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Sonuç olarak, AR, ARIMA, üstel düzleştirme ve regresyon modelleri rüzgar hızı tahmininde 

yaygın olarak kullanılmakta ve etkili olmaktadır. ARMA modeli de meteorolojide 

kullanılmıştır. ARIMA-GARCH modeli, rüzgar hızı serilerinin doğrusal olmayan özelliklerini 

yakalayabilir. Üstel düzleştirme ve regresyon modelleri verilen referanslarda açıkça 

tartışılmamıştır. Bu modeller, rüzgâr hızı verilerindeki örüntüleri ve eğilimleri yakalamak için 

farklı yaklaşımlar sağlar ve etkinlikleri belirli uygulama ve veri kümesine bağlı olarak 

değişebilir. 

2.3.3. Makine Öğrenimi 

Kısa vadeli rüzgar hızı tahmini, rüzgar türbini sahası fizibilitesinin değerlendirilmesinde çok 

önemlidir (Blanchard ve Samanta, 2019). Yapay sinir ağları (YSA), karmaşık doğrusal olmayan 

ilişkileri yakalama yetenekleri nedeniyle rüzgar hızı tahmini için yaygın olarak 

kullanılmaktadır (Blanchard ve Samanta, 2019). 

Bir çalışmada, yenilenebilir enerji sistemlerinde rüzgar hızı tahmini için akıllı bir topluluk sinir 

ağı modeli önerilmiştir (Ranganayaki ve Deepa, 2016). Bu model, rüzgar hızını tahmin etmek 

için çok katmanlı algılayıcı, çok katmanlı uyarlanabilir doğrusal nöron (Madaline, Multilayer 

Adaptive Linear Neuron), geri yayılımlı sinir ağı (BPN, Backpropagation Neural Network) ve 

olasılıksal sinir ağı (PNN, Probabilistic Neural Network) dahil olmak üzere birden fazla YSA 

modeli kullanmıştır. Bu modellerden tahmin edilen değerlerin ortalaması alınarak, akıllı 

topluluk sinir modeli minimum hata ile rüzgar hızı tahmininde daha iyi doğruluk elde etmiştir 

(Ranganayaki ve Deepa, 2016). 

Başka bir çalışma, rüzgar hızı tahmini için bir YSA'daki en uygun gizli katman ve nöron sayısını 

belirlemeye odaklanmıştır (Rachmatullah ve ark., 2021). Yazarlar, YSA modelinin 

performansına dayalı olarak en uygun gizli katman ve nöron sayısını belirlemek için küme 

analizini kullanmıştır. Bu yaklaşım, gizli nöronların rastgele seçiminden kaynaklanan aşırı 

uyum veya yetersiz uyum sorunlarının önlenmesine yardımcı olur (Rachmatullah ve ark., 

2021). 

Ayrıca, bir çalışmada YSA'lar kullanılarak rüzgar hızı tahmini araştırılmış ve iki YSA çeşidi 

karşılaştırılmıştır: doğrusal olmayan otoregresif sinir ağları ve dışsal girdili doğrusal olmayan 
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otoregresif sinir ağları (Blanchard ve Samanta, 2019). Yazarlar, Amerika Birleşik 

Devletleri'ndeki dört lokasyondan alınan bir yıllık saatlik hava durumu verilerini kullanarak bu 

ağları eğitmiş, doğrulamış ve test etmiştir. Sonuçlar, rüzgar türbini saha değerlendirmesi için 

rüzgar hızını tahmin etmede YSA'ların etkinliğini göstermiştir (Blanchard ve Samanta, 2019). 

Özetle, YSA'lar yenilenebilir enerji sistemleri için rüzgar hızı tahmininde başarıyla 

uygulanmıştır. Topluluk modellerinin kullanımı ve optimum gizli katmanların ve nöronların 

belirlenmesi, gelişmiş doğruluğa katkıda bulunur ve aşırı uyum veya yetersiz uyum sorunlarını 

önler. Bu yaklaşımlar, rüzgar türbini sahalarının fizibilitesini değerlendirmek için gerekli olan 

rüzgar hızı tahminlerinin güvenilirliğini artırmaktadır. 

Kısa vadeli rüzgar hızı tahmini, rüzgar türbini saha değerlendirmesi ve yenilenebilir enerji 

sistemleri de dahil olmak üzere çeşitli uygulamalarda çok önemlidir. Yapay sinir ağları (YSA), 

karmaşık doğrusal olmayan ilişkileri yakaladıkları için rüzgar hızı tahmininde yaygın olarak 

kullanılmaktadır (Luo ve ark., 2018). 

Bir çalışmada, kısa vadeli rüzgar hızı tahmini için genelleştirilmiş korelasyonlu yığılmış bir 

aşırı öğrenme makinesi (ELM, Extreme Learning Machine) modeli önerilmiştir (Luo ve ark., 

2018). Bu model, rüzgar hızını tahmin etmek için girdi olarak önceki geçmiş verileri 

kullanmıştır. Yazarlar, modellerinin performansını otoregresif hareketli ortalamalar, destek 

vektör makinesi regresyonu ve YSA gibi geleneksel istatistiksel modellerle karşılaştırmıştır. 

Sonuçlar, yığılmış ELM modelinin bu geleneksel modellerden daha iyi performans gösterdiğini 

ortaya koymuş ve YSA'ların rüzgar hızı tahminindeki etkinliğini vurgulamıştır (Luo ve ark., 

2018). 

Başka bir çalışma, derin öğrenme kullanarak rüzgar hızı topluluk tahminine odaklanmıştır 

(Ibrahim ve ark., 2021). Yazarlar, rüzgar hızı tahmini için yığılmış otomatik kodlayıcı (SAE, 

Stacked Auto-Encoder) ve yığılmış gürültü azaltıcı otomatik kodlayıcı (SDAE, Stacked 

Denoising Auto-Encoder) tabanlı bir derin sinir ağı (DNN, Deep Neural Network) mimarisi 

önermişlerdir. Otomatik kodlayıcının denetimsiz özellik öğrenme kabiliyeti, etiketsiz rüzgar 

verilerinden anlamlı özellikler çıkarmak için kullanılmıştır. Daha sonra rüzgar hızı tahmini için 

denetimli bir regresyon katmanı kullanılmıştır. Çalışma, DNN modelinin rüzgar hızı topluluğu 

tahminindeki etkinliğini göstermiştir (Ibrahim ve ark., 2021). 
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Ayrıca, bir çalışmada rüzgar hızı tahmini için yapay sinir ağları, destek vektör regresyonu ve 

rastgele orman dahil olmak üzere makine öğrenimi algoritmalarının kullanımı araştırılmıştır 

(Brahimi, 2019). Yazarlar, geçmiş rüzgar hızı verilerini kullanarak bu algoritmaların 

performansını karşılaştırmıştır. Sonuçlar, yapay sinir ağının rüzgar hızı tahmininde en yüksek 

doğruluğu elde ettiğini göstermiş ve bu alandaki yapay zeka tabanlı tekniklerin potansiyelini 

daha da vurgulamıştır (Brahimi, 2019). 

Ayrıca, İran'ın Tahran kentinde yapılan bir çalışmada, YSA'lar kullanılarak kısa vadeli rüzgar 

hızı tahmini araştırılmıştır (Fazelpour ve ark., 2016). Yazarlar, YSA modellerinin 

performansını otoregresif entegre hareketli ortalama ve destek vektör regresyonu dahil olmak 

üzere diğer yöntemlerle karşılaştırmıştır. Sonuçlar, parçacık sürüsü optimizasyonu 

hibridizasyonuna sahip YSA modelinin en düşük kök ortalama kare hata ve ortalama kare hata 

değerlerini elde ettiğini ve rüzgar hızı tahmininde üstün performans gösterdiğini ortaya 

koymuştur (Fazelpour ve ark., 2016). 

Özetle, YSA'lar kısa vadeli rüzgar hızı tahmininde başarıyla uygulanmıştır. Yığılmış ELM 

modellerinin kullanılması, otomatik kodlayıcılarla derin öğrenme mimarileri ve optimizasyon 

algoritmalarıyla hibridizasyon, doğruluğun artmasına ve geleneksel istatistiksel modellerden 

daha iyi performans göstermesine katkıda bulunur. Bu yaklaşımlar, rüzgar enerjisi 

sistemlerindeki çeşitli uygulamalar için çok önemli olan rüzgar hızı tahminlerinin 

güvenilirliğini artırmaktadır. 

Sağlanan referanslara dayanarak, burada rüzgar hızı tahmininde topluluk yaklaşımlarının bir 

sentezi bulunmaktadır: 

Topluluk yöntemleri, tek modellere kıyasla tahmin performansını artırmak için rüzgar hızı 

tahmininde yaygın olarak kullanılmaktadır. Bu yöntemler, daha doğru ve güvenilir bir tahmin 

oluşturmak için birden fazla modelin tahminlerini birleştirir. Yaygın bir yaklaşım, aynı modeli 

farklı konfigürasyonlarla çalıştırarak veya başka modelleri birlikte kullanarak bir topluluk 

oluşturmaktır (Deppe ve ark., 2013). 

Rüzgar hızı tahmininde, topluluk yöntemleri çeşitli teknikler kullanılarak uygulanmıştır. 

Örneğin, Hava Araştırma ve Tahmin Modeli (WRF, Weather Research and Forecasting), farklı 

gezegensel sınır tabaka (PBL, Planetary Boundary Layer) şemaları ile simülasyonlar 
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çalıştırarak bir topluluk oluşturmak için kullanılmıştır (Deppe ve ark., 2013). Bu durumda 

topluluk üyeleri rüzgar hızı tahminlerinde çok az yayılma göstermiş ve bu da gelişmiş doğruluk 

potansiyeline işaret etmiştir. 

Derin öğrenme teknikleri de rüzgar hızı topluluk tahmininde kullanılmıştır. Bir çalışma, rüzgar 

hızı tahmini için yığılmış otomatik kodlayıcılara ve gürültü azaltıcı otomatik kodlayıcılara 

dayalı bir derin sinir ağı (DNN) mimarisi önermiştir (Ibrahim ve ark., 2021). Bu otomatik 

kodlayıcıların denetimsiz özellik öğrenme kabiliyeti, etiketsiz rüzgar verilerinden anlamlı 

özellikler çıkarmak için kullanılmış ve bu da topluluk tahminlerinin iyileştirilmesine yol 

açmıştır. 

Model tabanlı topluluk yaklaşımlarına ek olarak, olasılıksal rüzgar hızı tahminleri oluşturmak 

için istatistiksel yöntemler kullanılmıştır. Örneğin, bir sayısal hava tahmini (NWP) modelinin 

çıktısı, yerel olarak kalibre edilmiş, olasılıksal rüzgar hızı tahminleri sağlamak için topluluk 

model çıktı istatistikleri (EMOS, Community Model Output Statistics) kullanılarak sonradan 

işlenebilir (Scheuerer ve Möller, 2015). Bu yaklaşım, bir topluluk tahmin sisteminin 

tahminlerini dikkate alır ve gelecekteki rüzgar hızı gözlemleri hakkında olasılıksal tahminler 

yapmak için istatistiksel dağılımları kullanır. 

Ayrıca, rüzgar hızı tahminini geliştirmek için topluluk yöntemleri diğer tekniklerle 

birleştirilmiştir. Örneğin, veri ön işleme, geliştirilmiş bir çok amaçlı optimizasyon algoritması, 

hata düzeltme ve doğrusal olmayan bir topluluk stratejisini entegre eden iki aşamalı bir tahmin 

sistemi önerilmiştir (Zhang ve ark., 2019). Bu yaklaşım, hata bilgisini kullanmayı, her bir 

bileşenin tahmin değerini entegre etmeyi ve tahmin istikrarını iyileştirmeyi amaçlamıştır. 

Genel olarak, rüzgar hızı tahmininde topluluk yaklaşımları doğruluk ve güvenilirliği artırma 

konusunda umut vaat etmektedir. Bu yöntemler, birden fazla modelin veya konfigürasyonun 

tahminlerini birleştirerek daha sağlam tahminler sağlayabilir ve rüzgar hızı tahminiyle ilişkili 

belirsizlikleri daha iyi yakalayabilir. 

Rüzgar hızı tahminine yönelik hibrit yaklaşımlar, tahmin doğruluğunu artırmak için birden 

fazla tekniğin veya modelin birleştirilmesini içerir. Burada rüzgar hızı tahmininde hibrit 

yaklaşımlarla ilgili potansiyel referansların bir sentezi yer almaktadır: 
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Yang ve ark. (2017) tarafından yapılan çalışma, 'ayrıştırma ve topluluk' stratejisi ile bulanık 

zaman serisi tahmin algoritmasını birleştiren hibrit bir tahmin sistemi önermektedir. Yöntem 

iki modülden oluşmaktadır: veri ön işleme ve tahmin. Yazarlar önerilen hibrit sistemi 

istatistiksel, yapay sinir ağları ve destek vektör regresyon modelleri ile karşılaştırmaktadır. 

Sonuçlar, hibrit sistemin özellikle gürültü ve kararsızlıktan etkilenen rüzgar hızı verileri için 

tahmin doğruluğunu ve kararlılığını önemli ölçüde artırdığını göstermektedir. 

Eide ve ark. (2017), yayınladıkları makalede, rüzgar hızı ve yönü için NWP tahminleri 

topluluğuna dayalı olasılıksal rüzgar hızı tahminleri oluşturmaya odaklanmaktadır. Yazarlar, 

diğer NWP değişkenlerini ve tahmin edilen değişkeni içeren bir Bayesian model ortalaması 

yaklaşımı önermektedir. Çalışma, güvenilirliği ve beceriyi artırmak için topluluk tahminlerine 

ek değişkenler dahil etme potansiyelini vurgulamaktadır. 

Ma ve ark. (2020) yaptıkları çalışmada, kısa vadeli rüzgar hızı tahmini için meta-öğrenme 

tabanlı bir hibrit topluluk yaklaşımı sunmaktadır. Önerilen yaklaşım, bir meta öğrenme 

çerçevesi kullanarak otoregresif entegre hareketli ortalamalar (ARIMA), uzun kısa süreli bellek 

(LSTM, Long Short-Term Memory) ve destek vektör regresyonu (SVR, Support Vector 

Regression) dahil olmak üzere birden fazla tahmin modelini birleştirmektedir. Sonuçlar, hibrit 

topluluk yaklaşımının bireysel modellerden daha iyi performans gösterdiğini ve rüzgar hızı 

tahmininde daha yüksek doğruluk elde ettiğini göstermektedir. 

Nguyen ve Phan (2022) yayınladıkları çalışmada, saatlik gün öncesi rüzgar hızı tahmini için 

hibrit bir model önermektedir. Model, topluluk ampirik mod ayrıştırması (EEMD, Ensemble 

Empirical Mode Decomposition), evrişimsel sinir ağı (CNN, Convolutional Neural Network), 

çift yönlü uzun kısa süreli bellek (Bi-LSTM, Bidirectional Long Short Term Memory) ve 

genetik algoritma (GA, Genetic Algorithm) optimizasyonunu birleştirmektedir. Sonuçlar, hibrit 

modelin karşılaştırılan diğer rüzgar hızı tahmin yöntemlerinden daha iyi performans 

gösterdiğini ve rüzgar hızı tahmininde etkinliğini ortaya koyduğunu göstermektedir. 

Bu referanslar, ayrıştırma ve topluluk stratejileri, bulanık zaman serileri, Bayesian model 

ortalaması, meta öğrenme ve optimizasyon algoritmaları gibi farklı teknikleri birleştiren rüzgar 

hızı tahminindeki hibrit yaklaşımları vurgulamaktadır. Bu hibrit modeller, bireysel modellere 
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veya geleneksel yöntemlere kıyasla rüzgar hızı tahmininde gelişmiş doğruluk ve kararlılık 

göstermektedir. 

Rüzgar hızı tahmini, rüzgar enerjisi planlaması ve yönetiminin önemli bir yönüdür. Rüzgar 

türbinlerinin performansını optimize etmek ve enerji üretimini en üst düzeye çıkarmak için 

rüzgar hızının doğru tahminleri çok önemlidir. Rüzgar hızı tahmini için ampirik mod ayrıştırma 

(EMD, Empirical Mode Decomposition) tabanlı yöntemler, destek vektör regresyonu (SVR) ve 

yapay sinir ağları (YSA) dahil olmak üzere çeşitli yöntemler önerilmiştir (Ren ve ark., 2015). 

Bir çalışmada, kısa vadeli rüzgar hızı tahmini için SVR ve YSA dahil olmak üzere farklı EMD 

tabanlı hibrit tahmin yöntemleri karşılaştırılmıştır. Sonuçlar, EMD tabanlı hibrit yöntemlerin 

rüzgar hızı tahmininde iyi performans gösterdiğini ortaya koymuştur (Ren ve ark., 2015). 

Başka bir çalışma, rüzgar hızı tahmini de dahil olmak üzere rüzgar enerjisinde SVR'nin geniş 

uygulama alanını vurgulamıştır. SVR, çalışma eğrisi analizi, rüzgar çiftliği yerleşim 

optimizasyonu ve rüzgar hızı tahmini gibi rüzgar enerjisiyle ilgili çeşitli problemler için 

kullanılmıştır (Castellani ve ark., 2021). 

Saatlik rüzgar hızı ve rüzgar gücü tahmini için SVR dahil olmak üzere farklı tahmin 

modellerinin karşılaştırıldığı bir çalışmada, SVR'nin doğruluk açısından iyi performans 

gösterdiği bulunmuştur. Çalışma, modelleri değerlendirmek için çapraz doğrulama kullanmış 

ve SVR'nin rüzgar hızı tahmini için güvenilir bir yöntem olduğu sonucuna varmıştır (Adnan ve 

ark., 2019). 

Ayrıca, bir çalışmada parçacık sürüsü optimizasyonu (PSO) ile SVR'ye dayalı bir rüzgar hızı 

tahmin modeli önerilmiştir. Model, YSA ve otoregresif entegre hareketli ortalama (ARIMA) 

dahil olmak üzere diğer tahmin modelleriyle karşılaştırılmış ve sonuçlar, SVR-PSO modelinin 

doğruluk açısından diğer modellerden daha iyi performans gösterdiğini göstermiştir. Çalışma, 

SVR-PSO modelinin rüzgar hızı tahmini için umut verici bir yaklaşım olduğu sonucuna 

varmıştır (Wang ve ark., 2020). 

Genel olarak, SVR yaygın olarak kullanılmış ve rüzgar hızı tahmininde etkili olduğu 

kanıtlanmıştır. Rüzgâr enerjisi ile ilgili çeşitli uygulamalarda kullanılmış ve diğer tahmin 
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modellerine kıyasla iyi performans göstermiştir. SVR'nin PSO gibi optimizasyon 

algoritmalarıyla kombinasyonu, rüzgar hızı tahminindeki doğruluğunu daha da artırır. 

Rastgele ormanlar, rüzgar enerjisi alanında rüzgar hızı tahmini için yaygın olarak 

kullanılmaktadır. Bir çalışmada, rüzgâr hızına bağlı olarak rüzgâr türbini gürültüsünü tahmin 

etmek için rastgele orman regresyonu uygulanmıştır (Iannace ve ark., 2019). Model, Pearson 

korelasyon katsayısının (0,981) yüksek bir değerine ulaşarak doğru tahminleri göstermiştir 

(Iannace ve ark., 2019). Bu, rüzgar hızı tahmini için rastgele orman regresyonunun 

potansiyelini göstermektedir. 

Başka bir çalışma, denetimli bir tahmin modeli olarak rastgele ormanı kullanan kısa vadeli bir 

rüzgar hızı tahmin modeli önermiştir (Huang ve ark., 2019). Model, rastgele orman 

algoritmasını optimize etmek için veri odaklı bir boyut azaltma prosedürü ve ağırlıklı bir 

oylama yöntemi içermektedir (Huang ve ark., 2019). Bu yaklaşım, düşük bilgi kaybı ile doğru 

rüzgar hızı tahminleri ile sonuçlanmıştır (Huang ve ark., 2019). 

Buna ek olarak, bir çalışma ultra kısa vadeli rüzgar gücü tahminine odaklanmış ve bir ELM 

modelini optimize etmek için salp sürüsü algoritmasını kullanmıştır (Tan ve ark., 2020). Bu 

çalışma özellikle rüzgar enerjisi tahminini ele alsa da, ELM ve optimizasyon algoritmalarının 

kullanımı, rüzgar hızı tahmini için rastgele ormanları diğer tekniklerle birleştirme potansiyelini 

vurgulamaktadır (Tan ve ark., 2020). 

Bu çalışmalar toplu olarak rastgele ormanların rüzgar hızı tahminindeki etkinliğini 

göstermektedir. Rastgele orman algoritması, rüzgar enerjisi planlaması ve yönetimindeki çeşitli 

uygulamalar için çok önemli olan rüzgar hızını doğru bir şekilde tahmin etmede umut vaat 

ettiğini göstermiştir. 

Gradyan artırma regresyonu, rüzgar enerjisi alanında rüzgar hızı tahmini için yaygın olarak 

kullanılmaktadır. Bir çalışma, gradyan artırma makineleri hakkında kapsamlı bir eğitim 

sunmuş, teorik yönlerini ve uygulamasının pratik örneklerini tartışmıştır (Natekin ve Knoll, 

2013). Eğitim, gradyan artırma modeli tasarımının tüm aşamalarını kapsamakta ve model 

karmaşıklığının ele alınmasına ilişkin içgörüler sağlamaktadır. Çalışma ayrıca rüzgâr hızı 
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tahmini için değerli olabilecek üç pratik gradyan artırma uygulaması örneği sunmaktadır 

(Natekin ve Knoll, 2013). 

Başka bir çalışma, tahmin sürecinde kategorik özelliklerin ele alınmasındaki zorlukları özellikle 

ele alan bir gradyan artırma çerçevesi olan CatBoost'u tanıtmıştır (Prokhorenkova ve ark., 

2017). CatBoost, karar ağaçları üzerinde gradyan artırmaya dayalı bir makine öğrenimi 

yöntemidir. Bu çalışma kategorik değişkenlere odaklansa da, gradyan artırmanın çeşitli veri 

türlerini işlemedeki etkinliğini vurgulamaktadır ve genellikle hem sayısal hem de kategorik 

değişkenleri içeren rüzgar hızı tahmini için uygun olabilir (Prokhorenkova ve ark., 2017). 

Bu referanslar, rüzgar hızı tahmini için gradyan artırma regresyonunun potansiyelini ve 

etkinliğini toplu olarak göstermektedir. Gradyan artırma teknikleri, rüzgar enerjisi de dahil 

olmak üzere çeşitli alanlarda yaygın olarak uygulanmış ve rüzgar hızını doğru bir şekilde 

tahmin etmede umut verici sonuçlar göstermiştir. Kapsamlı eğitim ve CatBoost gibi özel 

çerçevelerin geliştirilmesi, rüzgar hızı tahmini için gradyan artırmanın yeteneklerini daha da 

geliştirmektedir. 

2.3.4. Topluluk Yöntemleri 

Katılımcı rüzgar hızı tahmini olarak da bilinen topluluk tabanlı rüzgar hızı tahmini, rüzgar 

hızlarını tahmin etmek için bir topluluktaki bireylerin kolektif bilgi ve gözlemlerinden 

yararlanmayı içerir. Bu yaklaşım, geleneksel rüzgar hızı ölçüm altyapısının sınırlı veya 

erişilemez olduğu alanlarda değerli olabilir. 

Bir çalışma, rüzgâr hızı tahmini için kitle kaynaklı kentsel rüzgâr verilerinin potansiyelini ve 

uygulamasını değerlendirmiştir (Droste ve ark., 2020). Çalışma, kentsel alanlardaki rüzgar 

hızlarını tahmin etmek için kişisel meteoroloji istasyonlarından (PWS, Personal Weather 

Stations) gelen verileri kullanmaya odaklanmıştır. Sonuçlar, PWS anemometrelerinin sıfıra 

yakın rüzgar hızlarını ölçmede sınırlamaları olmasına rağmen, genel rüzgar hızı klimatolojisi 

tahmininin tatmin edici olduğunu göstermiştir. Bu durum, kentsel ortamlarda rüzgâr hızı 

tahmini için kitle kaynaklı verilerin kullanılma potansiyelini vurgulamaktadır (Droste ve ark., 

2020). 
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Katılımcı rüzgar hızı tahminine özel olarak odaklanmamış olsa da, başka bir çalışma, olasılık 

ön bilgisini içeren rüzgar hızı tahmini için bir SVR yöntemi önermiştir (Chen ve ark., 2014). 

Çalışma, önerilen yöntemin bir rüzgar çiftliğindeki rüzgar hızlarını tahmin etmedeki 

fizibilitesini ve etkinliğini göstermiştir. Bu durum, SVR veya benzer makine öğrenimi 

tekniklerinin, topluluk gözlemlerini modele girdi olarak dahil ederek katılımcı rüzgar hızı 

tahmininde uygulanabileceğini göstermektedir (Chen ve ark., 2014). 

Özetle, özellikle katılımcı rüzgar hızı tahminini ele alan sınırlı araştırma olmasına rağmen, kitle 

kaynaklı verilerin ve SVR gibi makine öğrenimi tekniklerinin potansiyeli, topluluk tabanlı 

rüzgar hızı tahmininin umut verici bir yaklaşım olduğunu göstermektedir. Bir topluluk içindeki 

bireylerin kolektif gözlemlerinden yararlanarak, geleneksel ölçüm altyapısının eksik 

olabileceği alanlarda rüzgar hızlarını tahmin etmek mümkündür. 

Topluluk tabanlı rüzgar hızı tahmini, bir topluluk içindeki çok sayıda bireyden rüzgar hızı 

verilerini toplamak için kitle kaynak kullanımının gücünden yararlanmayı içerir. Bu yaklaşım, 

sağlık araştırmaları Ranard ve ark. (2013) ve meteoroloji (Chen ve ark., 2021) dahil olmak 

üzere çeşitli alanlarda dikkat çekmiştir. 

Rüzgar hızı tahmini bağlamında, kitle kaynak kullanımı resmi ölçümleri tamamlayan değerli 

veriler sağlayabilir. Chen ve arkadaşları (2021) kitle kaynaklı rüzgâr hızı gözlemlerinin kalite 

kontrolü ve yanlılık düzeltmesi üzerine bir çalışma yürütmüştür. Elde ettikleri sonuçlar, kalite 

kontrol kontrolleri ve yanlılık ayarlama adımları uygulandıktan sonra kitle kaynaklı rüzgar hızı 

verilerinin resmi verilerle daha karşılaştırılabilir hale geldiğini göstermiştir. Bu durum, kitle 

kaynaklı rüzgar hızı gözlemlerinin ek rüzgar gözlemleri gerektiren uygulamalar için değerli bir 

kaynak olma potansiyelini göstermektedir. 

Chen ve ark. (2021) tarafından yapılan çalışmanın odak noktası kitle kaynaklı rüzgar hızı 

verilerinin kalite kontrolü ve yanlılık ayarlaması olsa da, topluluk tabanlı rüzgar hızı tahmini 

potansiyeli hakkında fikir vermektedir. Kitle kaynaklı verilerin güvenilirliğini ve doğruluğunu 

sağlayarak, rüzgar hızını etkili bir şekilde tahmin etmek için topluluğun kolektif gücünden 

yararlanmak mümkün hale gelir. 
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Kitle kaynak kullanımına ek olarak, sinir ağları ve genişletilmiş Kalman filtreleri gibi diğer 

yöntemler de rüzgar hızı tahmini için araştırılmıştır. Hur (2019), sinir ağları ve genişletilmiş 

Kalman filtreleri kullanarak rüzgâr türbinleri ve çiftliklerindeki faydalı değişkenleri tahmin 

etmek için bir yaklaşım önermiştir. Bu çalışmanın odak noktası özellikle topluluk tabanlı rüzgar 

hızı tahmini olmasa da, rüzgar enerjisi sistemlerinde doğru rüzgar hızı tahmini için veri 

güdümlü modellerin potansiyelini vurgulamaktadır. 

Sonuç olarak, kitle kaynak kullanımı yoluyla topluluk tabanlı rüzgar hızı tahmini, rüzgar 

enerjisi sistemleri için değerli veriler sağlama potansiyeline sahiptir. Kalite kontrol kontrolleri 

ve yanlılık düzeltme adımları uygulanarak, kitle kaynaklı rüzgar hızı gözlemleri resmi verilerle 

karşılaştırılabilir hale getirilebilir. Bu yaklaşım, sinir ağları gibi veri odaklı modellerle 

birleştirildiğinde, daha doğru ve güvenilir rüzgar hızı tahminine katkıda bulunabilir ve sonuçta 

rüzgar enerjisi sistemlerinin verimliliğini ve istikrarını artırabilir. 

2.3.5. Hibrit Yaklaşımlar 

Rüzgar hızı tahmini, rüzgar çiftliklerinin ve güç sistemlerinin verimli çalışması ve planlanması 

için çok önemli bir görevdir. Kısa vadeli rüzgar hızı tahmininin doğruluğunu artırmak için 

araştırmacılar, farklı yöntemleri ve algoritmaları birleştiren çeşitli hibrit tahmin teknikleri 

önermişlerdir. 

Bu tür hibrit tekniklerden biri (Kang ve ark., 2017) tarafından önerilen EEMD-LSSVM 

modelidir. Bu model, orijinal rüzgar hızı zaman serisini alt serilere ayırmak için Topluluk 

Ampirik Mod Ayrıştırma (EEMD, Ensemble Empirical Mode Decomposition) kullanır ve 

ardından bu alt serileri tahmin etmek için En Küçül Kareler Destek Vektör Makinesi (LSSVM, 

Least Square Support Vector Machine) uygular. EEMD ve LSSVM kombinasyonu, kısa vadeli 

rüzgar hızı tahmininin hassasiyetini artırır. 

Bir başka hibrit yaklaşım ise dalgacık dönüşümüne (WT, Wavelet Transform) dayalı bir veri 

filtreleme tekniğini bulanık ARTMAP (FA, Fuzzy ARTMA) ağına dayalı bir yumuşak 

hesaplama modeliyle birleştiren yapıdır ve Haque ve ark. (2013) tarafından sunulmuştur. Hibrit 

WT + FA modeli, diğer mevcut rüzgar hızı tahmin yöntemlerine kıyasla gelişmiş tahmin 

doğruluğu göstermektedir. 
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Tatinati ve Veluvolu (2013), rüzgar hızı tahmini için ampirik mod ayrıştırma (EMD) ile 

uyarlanabilir yöntemleri birleştiren hibrit bir yöntem önermektedir. Rüzgâr hızı verileri önce 

EMD kullanılarak içsel mod fonksiyonlarına (IMF, Intrinsic Mode Functions) ayrıştırılır ve 

daha sonra kısmi otokorelasyon faktörlerine dayalı olarak IMF'leri tahmin etmek için 

uyarlamalı yöntemler kullanılır. 

Buna ek olarak, Xu ve Yang (2020) kısa vadeli rüzgar hızı tahmini için EMD ve Çoklu Çekirdek 

Öğrenme (MKL, Multiple Kernel Learning) tabanlı hibrit bir model önermektedir. Bu model, 

MKL kullanarak birden fazla tahmin fonksiyonuna uyarlanabilir şekilde ağırlıklar atar ve bu da 

oldukça karmaşık sinyaller için rüzgar hızı tahmininin doğruluğunu artırır. 

Ayrıca, Zhao ve ark. (2020) kısa vadeli rüzgar hızı tahmini için Gauss süreci (GP, Gaussian 

Process) ve uyarlanmamış Kalman filtresini (UKF, Unscented Kalman Filter) birleştiren hibrit 

bir doğrusal olmayan tahmin yaklaşımı önermektedir. Bu yaklaşım, rüzgar hızının dinamik 

değişimlerini yakalamayı ve tahmin doğruluğunu artırmayı amaçlamaktadır. 

Bu hibrit tahmin teknikleri, rüzgar hızı tahmininin doğruluğunu artırma potansiyelini 

göstermektedir. Farklı yöntem ve algoritmaları bir araya getiren bu yaklaşımlar, tahmin 

hassasiyetini artırmak için her bir bileşenin güçlü yönlerinden yararlanmaktadır. EEMD, 

dalgacık dönüşümü, ampirik mod ayrıştırma ve çoklu çekirdek öğrenme gibi tekniklerin 

kullanımı, rüzgar hızı verilerinin doğrusal olmayan ve durağan olmayan doğasının etkili bir 

şekilde ele alınmasını sağlar. 

2.4.  Veri Ayrıştırması 

Veri ayrıştırma, sinyal işleme, biyoloji ve çevre bilimi de dahil olmak üzere çeşitli alanlarda 

temel bir kavramdır. Karmaşık veri setlerini daha küçük, daha yönetilebilir bileşenlere ayırmayı 

içerir ve daha kolay analiz ve yorumlamayı kolaylaştırır (Cusack ve ark., 2009; Cichocki ve 

ark., 2015). 

Sinyal işleme alanında, tensör ayrıştırmaları gibi veri ayrıştırma tekniklerinin oldukça değerli 

olduğu kanıtlanmıştır. Tensör ayrıştırmaları, geleneksel korelasyon ve alt uzay teknikleri, sinyal 

ayrıştırma, doğrusal regresyon, özellik çıkarma ve sınıflandırma gibi yaygın olarak kullanılan 
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sinyal işleme paradigmalarının genelleştirilmesini sağlar (Cichocki ve ark., 2015). Bu teknikler, 

verilerin altında yatan yapı ve ilişkilerin kapsamlı bir şekilde anlaşılmasını sağlayarak daha 

doğru ve verimli analizlere yol açmaktadır. 

Biyoloji ve çevre bilimi bağlamında, veri ayrıştırma, çöp ayrışma oranları gibi süreçlerin 

anlaşılmasında çok önemli bir rol oynar. Çalışmalar, karasal ekosistemlerde önemli bir karbon 

akışını temsil eden çöp ayrışmasının, iklim ve çöp kalitesi de dahil olmak üzere çeşitli 

faktörlerden etkilendiğini göstermiştir (Cusack ve ark., 2009). Araştırmacılar, verileri 

ayrıştırarak ve bu faktörlerin göreceli önemini analiz ederek, çöp ayrışma oranları üzerindeki 

kontroller hakkında bilgi edinebilir ve ekosistem dinamikleri hakkında tahminlerde 

bulunabilirler. 

Veri ayrıştırma teknikleri kimyada karmaşık kimyasal sistemleri analiz etmek ve davranışlarını 

anlamak için kullanılır. Örneğin, karma kütle spektrometresinde veri ayrıştırma yöntemleri, 

karmaşık karışımlardan tek tek kütle spektrumlarını ayırmak ve tanımlamak için kullanılır 

(Mohammed ve ark., 2012). Araştırmacılar, verileri ayrıştırarak tek tek bileşenleri izole ve 

analiz edebilir, böylece belirli bileşiklerin ve özelliklerinin tanımlanmasını sağlayabilir. 

Veri ayrıştırma, biyoinformatik ve genomik alanlarındaki büyük ölçekli biyolojik veri 

kümelerinin analizinde önemli bir rol oynamaktadır. Temel bileşen analizi (PCA, Principal 

Component Analysis) ve bağımsız bileşen analizi (ICA, Independent Component Analysis) gibi 

teknikler, gen ifadesi verilerinin analizinde veri ayrıştırma için yaygın olarak kullanılmaktadır 

(Mohammed ve ark., 2012). Bu teknikler, araştırmacıların örüntüleri tanımlamasına ve 

verilerden anlamlı özellikler çıkarmasına olanak tanıyarak gen işlevi, hastalık mekanizmaları 

ve potansiyel iyileştirici hedefler hakkında iç görüler elde edilmesini sağlar. 

Ayrıca, veri ayrıştırma konteyner iş hacmi tahmini alanında da önemlidir. COVID-19 salgını 

bağlamında, aşırı olayların liman operasyonları üzerindeki etkisini analiz etmek için iteratif 

kümülatif kareler toplamı (ISCC, Iterative Cumulative Sum of Squares) gibi veri ayrıştırma 

teknikleri kullanılmıştır (Huang ve ark., 2022). Araştırmacılar, verileri farklı özelliklere 

ayrıştırarak, salgın olayın liman performansının her bir yönü üzerindeki spesifik etkilerini 

değerlendirebilir ve böylece daha doğru tahmin ve karar alma süreçlerine olanak sağlayabilir. 
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Genel olarak, veri ayrıştırma, karmaşık veri setlerinin analiz edilmesini ve yorumlanmasını 

sağladığı için çeşitli alanlarda büyük önem taşımaktadır. Araştırmacılar, verileri daha küçük 

bileşenlere ayırarak, verilerin altında yatan yapı ve ilişkiler hakkında daha derin bir anlayış 

kazanabilir, bu da daha doğru tahminler, verimli analizler ve bilinçli karar verme süreçleri 

sağlar. 

Veri ayrıştırma tekniklerinin rüzgar hızı tahmini ve tahmininde önemli olduğu kanıtlanmıştır. 

Qu ve ark. (2016) ile Ali ve ark. (2017), bu bağlamda veri ayrıştırmanın önemini 

vurgulamaktadır. 

Ali ve ark. (2017), varyasyonel mod ayrıştırmasına (VMD, Variational Mode Decomposition) 

dayalı hibrit çok ölçekli bir rüzgar hızı tahmin yöntemi önermektedir. VMD, ampirik mod 

ayrıştırması gibi diğer yöntemlere kıyasla gelişmiş doğruluk sunan, veriye uyarlanabilir bir 

sinyal ayrıştırma tekniğidir. Yazarlar, rüzgar hızı verilerini çoklu içsel dar bant bileşenlerine 

ayrıştırmak için VMD'yi kullanmaktadır, bu da rüzgar hızının tahminini ve öngörüsünü 

kolaylaştırmaktadır. Önerilen yöntemin etkinliği, Pakistan'daki birden fazla sahadan elde edilen 

büyük bir rüzgar hızı veri kümesi üzerinde yapılan kapsamlı deneylerle gösterilmiştir (Ali ve 

ark., 2017). 

Benzer şekilde, Qu ve ark. (2016) rüzgâr hızı tahmini için EEMD meyve sineği optimizasyon 

algoritması ile birleştiren hibrit bir model sunmuştur. EEMD, rüzgar hızı serileri gibi doğrusal 

olmayan ve karmaşık sinyal dizilerini ayrıştırmak için gelişmiş ve etkili bir teknolojidir. 

Yazarlar, etkili bir tahmin modeli oluşturmak için orijinal rüzgar hızı veri setlerinin özelliklerini 

kapsamlı bir şekilde analiz etmenin ve dikkate almanın önemini vurgulamaktadır. EEMD, 

ampirik mod ayrıştırmasının eksikliklerini gidermekte ve dalgacık ayrıştırması ve Fourier 

ayrıştırması gibi diğer ayrıştırma yaklaşımlarına göre avantajlar sunmaktadır (Qu ve ark., 

2016). 

Her iki referans da VMD ve EEMD gibi veri ayrıştırma tekniklerinin rüzgar hızı tahmini ve 

öngörüsündeki önemini vurgulamaktadır. Bu teknikler, rüzgar hızı verilerinin içsel bileşenlere 

ayrıştırılmasını sağlayarak rüzgar hızı davranışının daha doğru analiz edilmesine ve tahmin 

edilmesine olanak tanır. Araştırmacılar verileri ayrıştırarak, rüzgar hızı değişimlerine katkıda 
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bulunan kalıpları, eğilimleri ve altta yatan yapıları belirleyebilir ve sonuçta rüzgar hızı tahmini 

ve tahmin modellerinin doğruluğunu artırabilir. 

2.5.  Dalgacık sinir ağları 

Dalgacık sinir ağları (WNN, Wavelet Neural Network), geleneksel sigmoid aktivasyon 

fonksiyonu yerine aktivasyon fonksiyonu olarak dalgacıkları kullanan bir sinir ağı türüdür 

(Wang ve ark., 2013). WNN'ler çeşitli uygulamalarda başarılı bir şekilde uygulanmıştır, ancak 

uygulamaları için genel bir çerçeve eksikliği vardır (Alexandridis ve Zapranis, 2013). Son 

çalışmalarda, araştırmacılar WNN'lerin tıp ve biyoloji gibi farklı alanlarda kullanımını 

araştırmışlardır. 

Bir çalışma, veri artırımı ile yeni bir derin öğrenme yaklaşımı kullanarak motor görüntü 

sinyallerini sınıflandırmaya odaklanmıştır (Zhiwen ve ark., 2019). Araştırmacılar, eğitim 

sürecini iyileştirmek için geleneksel sinir ağlarındaki konvolüsyonel katmanları dalgacıklarla 

değiştirmiştir. Deneysel sonuçlar, dalgacık sinir ağının mevcut yaklaşımlardan daha yüksek 

sınıflandırma doğrulukları elde ettiğini göstermiştir. Araştırmacılar ayrıca dalgacık sinir ağının 

performansını kararlı durum görsel uyarılmış potansiyellerin sınıflandırılmasında da test 

etmişlerdir. 

Bir başka çalışmada, hedef tehdit değerlendirmesi için bir sinir ağında çoklu dalgacık 

fonksiyonlarının kullanılması araştırılmıştır (Wang ve ark., 2013). Dalgacık sinir ağı, sinir 

ağlarının ve dalgacık dönüşümlerinin avantajlarını birleştirir. Aktivasyon fonksiyonu olarak 

birden fazla dalgacık fonksiyonu kullanarak, ağ farklı girdi veri özelliklerini yakalayabilir ve 

hedef tehdit değerlendirmesindeki performansını artırabilir. 

Ekonomi alanında araştırmacılar, Dow Jones Borsası Endüstri Endeksi (DJIA, Dow Jones 

Industrial Average) endeksi tahmini için otoregresif kesirli entegre hareketli ortalamaları 

(ARFIMA, Autoregressive Fractionally Integrated Moving Averages) ve dalgacık sinir ağlarını 

birleştiren hibrit bir model önermişlerdir (Boubaker ve ark., 2022). Dalgacık sinir ağı, 

regresyon doğruluğu ve hata tolerans kabiliyeti açısından avantajlar göstermiştir. Hibrit model, 

ARFIMA modelini dahil ederek uzun vadeli bağımlılıkları yakalayabilir ve tahmin 

doğruluğunu artırabilir. 



38 
 

Genel olarak, dalgacık sinir ağları çeşitli alanlarda ve uygulamalarda umut vaat etmektedir. 

Aktivasyon fonksiyonu olarak dalgacıkları kullanarak geleneksel sinir ağlarına farklı bir 

yaklaşım sunmaktadırlar. Dalgacıkların kullanımı, ağın farklı girdi veri özelliklerini 

yakalamasına ve performansını artırmasına olanak tanır. Bununla birlikte, dalgacık sinir 

ağlarını uygulamak için genel bir çerçeve geliştirmek ve diğer alanlardaki potansiyellerini 

keşfetmek için daha fazla araştırmaya ihtiyaç vardır. 

Rüzgar hızı zaman serisi verilerinin farklı frekans bileşenlerini çıkarmak için çalışma, rüzgar 

hızı tahmini için ayrık dalgacık dönüşümü (DWT, Discrete Wavelet Transform) ve YSA 

birleştiren hibrit bir model önermektedir (Berrezzek ve ark., 2019). Rüzgâr hızı tahmini için 

WNN'leri doğrudan uygulayan spesifik çalışmalar olmamasına rağmen, rüzgâr hızı tahmin 

doğruluğunu artırmak için dalgacık ayrıştırma veya dalgacık paket ayrıştırma teknikleriyle 

birlikte uzun kısa süreli bellek (LSTM) ve evrişimli sinir ağları (CNN'ler) gibi diğer sinir ağı 

mimarilerini kullanan ilgili çalışmalar vardır (Fukuoka ve ark., 2018; Zhang ve ark., 2020). 

Fukuoka ve ark. (2018), LSTM ve 1D-CNN (One-dimensional Convolutional Neural Network, 

Tek Boyutlu Evrişimsel Sinir Ağı) kullanarak bir rüzgar hızı tahmin modeli sunmuştur. Model, 

LSTM kullanarak rüzgar hızının geçmiş bilgilerini dikkate almakta ve verilerdeki mekansal 

bağımlılıkları yakalamak için tek boyutlu bir CNN içermektedir. Bu çalışma doğrudan bir 

dalgacık sinir ağı kullanmasa da, rüzgar hızı tahmini için farklı sinir ağı mimarilerini 

birleştirmenin etkinliğini göstermektedir. 

Zhang ve ark. (2020), dalgacık paket ayrıştırması ve aşırı makine öğrenmesini birleştiren çok 

adımlı bir rüzgar hızı tahmin sistemi önermektedir. Odak noktası dalgacık paket ayrıştırması ve 

aşırı makine öğrenmesi olsa da, çalışma, performansını artırmak için dalgacık sinir ağına 

Lorenz girişiminin eklenmesinden bahsetmektedir. Bu da dalgacık sinir ağlarının rüzgar hızı 

tahminindeki potansiyelini ortaya koymaktadır. 

Berrezzek ve ark. (2019), DWT’nin rüzgar hızı tahmininde uygulanmasını tartışmaktadır. 

Çalışma, rüzgâr hızı zaman serisi verilerinin farklı frekans bileşenlerini çıkarmak için dalgacık 

ayrıştırması uygulamakta ve tahmin için bir YSA kullanmaktadır. Dalgacık sinir ağlarından 

açıkça bahsetmemesine rağmen, dalgacık ayrışımını rüzgar hızı tahmini için bir ön işleme adımı 

olarak vurgulamaktadır. 
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Özetle, rüzgâr hızı tahmini için dalgacık sinir ağlarına ilişkin doğrudan referanslar 

bulunmamakla birlikte, mevcut çalışmalar rüzgâr hızı tahmin doğruluğunu artırmak için farklı 

sinir ağı mimarilerini dalgacık ayrıştırma teknikleriyle birleştirme potansiyelini ortaya 

koymaktadır. Dalgacık sinir ağlarının rüzgar hızı tahminindeki özel uygulamalarını keşfetmek 

ve performanslarını diğer yaklaşımlarla karşılaştırmak için daha fazla araştırmaya ihtiyaç 

vardır. 
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3. MATERYAL VE YÖNTEM 

3.1.   Atmosferik verilerin sağlanması 

Tez çalışmamızın bu safhasında işlenecek olan veri setinin basınç, sıcaklık, nem ve rüzgâr hızı 

verilerini sağlayacak, Tokat Gaziosmanpaşa Üniversitesi Taşlıçiftlik Kampüsü içerisine 

(N40o19ʹ58.73ʺ) enlemi ve (E36o29ʹ0.28ʺ) boylamına yerleştirilen ölçüm istasyonunda yer alan 

ölçüm direği Şekil 3.1’de gösterilmektedir. 

 
Şekil 3.1. Ölçüm Direği 

 

 

Ölçüm direği 12 m yüksekliğinde olup üzerinde 2 adet rüzgâr hızı ölçüm sensörü ve 1 adet 

rüzgâr yönü ölçüm sensörü bulunmaktadır. Basınç, sıcaklık ve nem sensörleri direğin alt 

kısmına montaj edilen güç kutusuna yerleştirilmiştir (Şekil 3.2). Sensörlerin ihtiyaç duyduğu 

enerji 10 W’lık solar panel ile sağlanmaktadır. Ayrıca başka çalışmalarda da kullanılmak üzere 

ölçüm direğinin üzerine AIR-X 400W rüzgâr türbini yerleştirilmiştir. 
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Şekil 3.2. Güç Kutusu 

 

Coğrafi konuma ait rüzgâr hızı, basınç, sıcaklık ve nem verileri 2017 yılı itibariyle 10’ar dakika 

aralıklar ile kaydedilmeye başlanmış ve halen veri toplanmasına devam edilmektedir. 

 

3.2.   Veri Ayrıştırma Yöntemleri 

Veri analizi alanında, veri ayrıştırma yöntemleri karmaşık veri kümelerinin analiz için daha 

basit, daha yönetilebilir parçalara ayrılmasında önemli bir rol oynar. Sinyal işleme, görüntü 

analizi ve makine öğrenimi gibi çeşitli alanlarda yaygın olarak kullanılan yöntemlerdir. Veri 

ayrıştırma yöntemleri, araştırmacıların ve uygulayıcıların karmaşık veri kümelerinden anlamlı 
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bilgiler çıkarmasına olanak tanıyan veri analizi alanında temel araçlardır. Her yöntemin kendine 

özgü güçlü yanları ve uygulamaları vardır ve yöntem seçimi veri kümesinin belirli özelliklerine 

ve analizin hedeflerine bağlıdır. Araştırmacılar bir veri ayrıştırma yöntemi seçerken verilerinin 

özelliklerini ve analizlerinin gerekliliklerini dikkatle değerlendirmelidir. 

 

3.2.1. Ampirik Mod Ayrıştırma (EMD, Empirical Mode Decomposition)  

Ampirik Mod Ayrıştırma (EMD), durağan olmayan ve doğrusal olmayan zaman serisi verilerini 

işlemek için kullanılan bir veri analizi yöntemidir. Huang ve arkadaşları tarafından 1990'ların 

sonunda bir sinyali İçsel Mod Fonksiyonları (IMF) olarak bilinen içsel salınım modlarına 

uyarlanabilir bir şekilde ayrıştırmanın bir yolu olarak geliştirilmiştir. EMD, sinyal işleme, 

finans ve biyomedikal sinyal analizi dahil olmak üzere çeşitli alanlarda uygulama alanı 

bulmuştur. 

EMD, orijinal sinyalin IMF'ler olarak bilinen içsel salınım modlarının doğrusal bir 

kombinasyonu olarak temsil edildiği gerçek dünya sinyallerinin çok ölçekli ayrıştırılması ve 

zaman frekansı analizi için kullanılan veri odaklı bir yöntemdir (Rehman ve Mandic, 2009). 

EMD, rüzgar enerjisinin şebekeye entegrasyonu sırasında güç dalgalanmalarını ele almak için 

rüzgar hızı tahmininde yaygın olarak uygulanmıştır (Zhou, 2023). Bununla birlikte, EMD'nin 

doğrudan kullanımı büyük gürültü ve mod örtüşmesi gibi sorunlara yol açabilir (Shen ve ark., 

2023). Rüzgar hızı sinyallerinin durağan olmamasını azaltmak için, uyarlanabilir gürültülü 

(ICEEMDAN, Improved Complete Ensemble Empirical Mode Decomposition with Adaptive 

Noise), bulanık entropi ve varyasyonel mod ayrıştırma (VMD) ile geliştirilmiş tam topluluk 

ampirik mod ayrıştırmaya dayalı iki kez ayrıştırmayı içeren yeni bir yaklaşım önerilmiştir (Xia 

ve Wang, 2022). Ek olarak, rüzgar hızı tahmininin doğruluğunu artırmak için hızlı bir topluluk 

ampirik mod ayrıştırma modeli geliştirilmiştir (Wang, 2021). 

Ayrıca, EMD veya EEMD modelleri, avantajları ve gelecekteki potansiyel uygulamaları 

nedeniyle rüzgar hızı ve güç tahmini için dikkat çekmiştir (Bokde ve ark., 2019). Bayesian Sırt 

Regresyonu ile birlikte topluluk ampirik mod ayrıştırmasının kullanımının, karmaşık rüzgar 

hızı zaman serilerini nispeten daha ılımlı, daha düzenli ve istikrarlı alt dizilere ayırdığı 

gösterilmiştir (Yang ve Yang, 2020). Ayrıca, çok değişkenli ampirik mod ayrışımı, rastgele 
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orman ve çekirdek sırtı regresyonunu içeren yeni geliştirilen bütünleştirici bir biyo-esinlenmiş 

yapay zeka modeli, rüzgar hızı tahmininde dikkate değer bir performans göstermiştir (Tao ve 

ark., 2020). Ayrıca, tam topluluk ampirik mod ayrıştırma uyarlanabilir gürültü, geçitli 

tekrarlayan birim ağı ve geliştirilmiş bir yarasa algoritmasına dayanan birleşik bir model, rüzgar 

hızı tahmininde umut verici sonuçlar göstermiştir (Liang ve ark., 2020). 

 

Ampirik mod ayrıştırmanın rüzgar enerjisi verilerinin ayrıştırılması ve tahmini için etkinliği, 

yöntemin en büyük Lyapunov üstel tahmin yöntemi ve gri tahmin modeli gibi diğer tahmin 

teknikleriyle birlikte kullanılmasıyla gösterilmiştir (Zhang ve ark., 2019). Ayrıca, YSA’ların 

VMD ile kombinasyonu, kısa vadeli rüzgar hızı tahmini için sunulmuş ve bu yaklaşımın 

potansiyelini göstermiştir (Gendeel ve ark., 2018). Ayrıca, ampirik mod ayrıştırması, rüzgar 

hızı zaman serilerinin rastgeleliğini azaltmak ve tahmin doğruluğunu artırmak için dalgacık 

dönüşümü ve varyasyonel mod ayrıştırması gibi diğer zaman serisi ayrıştırma yöntemleriyle 

birlikte kullanılmıştır (Huang ve ark., 2019). 

Ampirik mod ayrıştırması ile topluluk ampirik mod ayrıştırması ve tam topluluk ampirik mod 

ayrıştırması uyarlanabilir gürültü gibi EMD varyantları, rüzgar hızı tahmini ve tahmininde 

yaygın olarak uygulanmaktadır. Bu yöntemler, rüzgar hızı sinyallerinin durağan olmamasını 

ele almada ve rüzgar hızı tahmininin doğruluğunu artırmada potansiyel göstermiştir. 

Ampirik Mod Ayrıştırma işleminde yer alan temel adımlar şunlardır: 

• Ayrıştırma: EMD bir sinyali bir dizi IMF'ye ayrıştırır. Bir IMF, aynı sayıda sıfır geçişine 

ve ekstremaya sahip bir fonksiyon olarak tanımlanır ve yerel maksimum ve minimumlar 

tarafından tanımlanan zarfın ortalama değeri sıfırdır. Her bir IMF sinyalin farklı bir 

frekans bileşenini temsil eder. 

• Eleme Süreci: Ayrıştırma "eleme" adı verilen bir işlemle gerçekleştirilir. Eleme 

işleminin her bir iterasyonunda sinyalin yerel ortalaması hesaplanır ve bu ortalama daha 

sonra bir kalıntı elde etmek için orijinal sinyalden çıkarılır. Kalıntı daha sonra yeni bir 

sinyal olarak ele alınır ve elde edilen sinyal bir IMF olma kriterlerini karşılayana kadar 

işlem tekrarlanır. 
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• IMF'lerin çıkarılması: Eleme işlemi, orijinal sinyalden bir dizi IMF çıkarmak için 

yinelemeli olarak tekrarlanır. Her bir IMF, en yüksek frekanstan başlayarak en düşüğe 

doğru sinyalin farklı bir frekans bileşenini yakalar. 

• Kalıntı: Tüm IMF'ler çıkarıldıktan sonra elde edilen son kalıntı, orijinal sinyalin trendini 

veya düşük frekanslı bileşenini temsil eder. 

 

EMD'nin avantajlarından biri, bir sinyalin yerel özelliklerine uyarlanabilir olmasıdır, bu da onu 

durağan olmayan ve doğrusal olmayan bileşenlere sahip sinyalleri analiz etmek için özellikle 

yararlı kılar. Bununla birlikte, EMD'nin her zaman benzersiz olmadığını ve ayrıştırma 

sonuçlarının belirli uygulama ve parametre seçimlerine göre değişebileceğini belirtmek 

önemlidir. 

EMD zaman içinde genişletilmiş ve modifiye edilmiştir ve bazı sınırlamaları ele almak ve 

ayrıştırma sürecinin sağlamlığını artırmak için Ensemble Empirical Mode Decomposition 

(EEMD) ve Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 

(CEEMDAN) gibi varyasyonlar önerilmiştir. 

3.2.2. Topluluk Ampirik Mod Ayrıştırma (EEMD, Ensemble Empirical Mode 

Decomposition Method) 

Topluluk Ampirik Mod Ayrıştırma (EEMD), orijinal EMD yönteminin bir uzantısıdır. EMD 

ile ilişkili bazı sınırlamaları ve zorlukları ele almak için geliştirilmiştir ve özellikle gürültü 

varlığında sinyallerin daha kararlı ve güvenilir bir şekilde ayrıştırılmasını sağlar. 

EEMD'nin arkasındaki ana fikir, standart EMD işlemini uygulamadan önce sinyale bir beyaz 

gürültü gerçekleşmeleri topluluğu eklemektir. EEMD, gürültü ekleyerek, özellikle EMD'nin 

mod karışımından muzdarip olabileceği gürültü veya diğer veri düzensizlikleri nedeniyle 

tutarsız sonuçlar üretebileceği durumlarda ayrıştırmanın sağlamlığını artırmayı 

amaçlamaktadır. 

Topluluk Ampirik Mod Ayrıştırma yönteminde yer alan temel adımlar şunlardır: 



45 
 

• Topluluk Oluşturma: Bir sinyal topluluğu oluşturmak için orijinal sinyale birden fazla 

beyaz gürültü gerçekleşmesi eklenir. Her bir gerçekleşme, orijinal sinyale bağımsız ve 

aynı dağılımlı rastgele gürültü eklenerek elde edilir. 

• Her Topluluk Üyesi için EMD: EMD işlemi, topluluktaki her sinyale bağımsız olarak 

uygulanır. Bu, her bir gerçekleşme için bir dizi İçsel Mod Fonksiyonu (IMF'ler) ile 

sonuçlanır. 

• Mod Ortalaması Alma: Topluluğun her bir üyesinden elde edilen IMF'lerin nokta 

bazında ortalaması alınarak bir dizi topluluk ortalamalı IMF oluşturulur. 

• Nihai Kalıntı Hesaplaması: Nihai kalıntı, her bir gerçekleşmeden elde edilen 

kalıntıların ortalaması alınarak elde edilir. 

Topluluğun eklenmesi mod karışımının etkilerini azaltmaya yardımcı olur ve ayrıştırma 

sürecinin kararlılığını artırır. Sinyaldeki içsel salınım modlarının daha tutarlı bir temsilini 

sağlayarak EEMD'yi durağan olmayan ve gürültülü zaman serisi verilerini analiz etmek için 

sağlam bir yöntem haline getirir. 

EEMD, EMD ile ilgili bazı sorunları ele alırken, topluluk üyelerinin sayısı ve eklenen 

gürültünün genliği gibi parametrelerin seçiminin sonuçları hala etkileyebileceğini belirtmek 

gerekir. Araştırmacılar, farklı uygulamalardaki performansını artırmak için uyarlanabilir 

gürültü ve diğer modifikasyonların eklenmesi gibi EEMD yöntemindeki varyasyonları ve 

iyileştirmeleri keşfetmeye devam etmişlerdir. 

EEMD, durağan olmayan ve doğrusal olmayan zaman serisi verilerini işlemedeki etkinliği 

nedeniyle rüzgar hızı tahmini ve tahmininde yaygın olarak kullanılmaktadır. EEMD, tahmin 

doğruluğunu artırmak için çeşitli rüzgar hızı tahmin modellerinde uygulanan gürültü destekli 

bir veri analizi yöntemidir (Wu ve Huang, 2009; Wang ve ark., 2015; Wang ve ark., 2016; Ren 

ve ark., 2016; Zhi ve ark., 2016; Zhang ve ark., 2017; Kang ve ark., 2017; Chen ve ark., 2018; 

Lu ve ark., 2018; Huang ve ark., 2018; Huang ve ark., 2018; Sun ve Wang, 2018; Huang ve 

ark., 2019; Sun vd, 2019; Yang ve Yang, 2020; Jin ve ark., 2020; Xie ve ark., 2021; Saxena ve 

ark., 2021; Wang, 2021; Xia ve Wang, 2022; You ve ark., 2022; Zhu, 2022; Phan ve Tan, 2023; 



46 
 

Ai ve ark., 2023). EEMD tekniği, altta yatan salınım modlarını yakalamak için orijinal rüzgar 

hızı verilerinin bir dizi IMF'lere ayrıştırılmasını ve daha sonra bu IMF'leri tahmin etmek için 

çeşitli tahmin modellerinin kullanılmasını içerir ve bunlar daha sonra nihai rüzgar hızı 

tahminini elde etmek için birleştirilir (Huang ve ark., 2018; Huang ve ark., 2019; Zhu, 2022). 

Bazı çalışmalar, rüzgar hızı tahmin doğruluğunu artırmak için EEMD'yi dalgacık dönüşümü, 

LSSVM, LSTM, ARIMA, SVR ve meyve sineği optimizasyon algoritması gibi diğer 

tekniklerle birleştiren hibrit modeller önermiştir (Wang ve ark., 2016; Zhi ve ark., 2016; Huang 

ve ark., 2018; Lu ve ark., 2018; Sun ve ark., 2019; Huang ve ark., 2019; Xia ve Wang, 2022; 

You ve ark., 2022; Su ve ark., 2023; Ai ve ark., 2023). Bu hibrit modeller, EEMD'nin durağan 

olmama durumunu ele almadaki güçlü yönlerinden ve rüzgar hızı verilerinin farklı yönlerini 

yakalamak için diğer yöntemlerin tamamlayıcı yeteneklerinden yararlanarak daha sağlam ve 

doğru tahminlere yol açmaktadır. 

Ayrıca, EEMD, rüzgar hızını tahmin etmek için Kapı Özyinelemeli Geçitler (GRU, Gated 

Recurrent Units) ve LSTM gibi derin öğrenme modelleriyle birlikte kullanılmış ve EEMD'nin 

gelişmiş tahmin teknikleriyle entegre olma konusundaki çok yönlülüğünü göstermiştir (Huang 

ve ark., 2018; Huang ve ark., 2019; Xie ve ark., 2021; Saxena ve ark., 2021). Ayrıca EEMD, 

parametre optimizasyon sürecini geliştirmek ve genel tahmin performansını iyileştirmek için 

genetik algoritma, yerçekimsel arama algoritması (GSA, Gravitational Search Algorithm) ve 

guguk kuşu arama optimizasyon algoritması gibi optimizasyon algoritmalarıyla birleştirilmiştir 

(Zhi ve ark., 2016; Zhang ve ark., 2017; Lu ve ark., 2018; Sun ve ark., 2019). 

Literatür EEMD'nin rüzgar hızı tahmini ve tahmininde yaygın olarak kullanıldığını 

göstermekte, hibrit modellere uyarlanabilirliğini ve rüzgar hızı verilerinin karmaşıklığını ele 

almadaki etkinliğini ortaya koymaktadır. 

1 Ocak 2020 tarihine ait basınç (Şekil 7.8), sıcaklık (Şekil 7.9) ve nem (Şekil 7.10) verilerine 

ait EEMD ayrıştırma yöntemi görselleri “Ekler” bölümünde verilmiştir. 
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3.2.3. Tamamlayıcı Topluluk Ampirik Mod Ayrıştırma (CEEMD, Complementary 

Ensemble Empirical Mode Decomposition) 

Tamamlayıcı Topluluk Ampirik Mod Ayrıştırma (CEEMD), EMD’deki mod karıştırma 

sorununu ele alan gürültü ile geliştirilmiş bir veri analizi yöntemidir (Yeh ve ark., 2010). 

CEEMD, beyin haritalama, kuraklık tahmini, yağış tahmini, yapısal sağlık izleme, arıza teşhisi 

ve titreşim tabanlı yapısal sağlık izleme gibi çeşitli alanlarda uygulanmıştır (Qian ve ark., 2015; 

Liu ve ark., 2020; Li ve ark., 2021; Xu ve ark., 2022; Zhang ve ark., 2022; Eltouny ve ark., 

2023). Ayrıca endüksiyon motorlarının durumunun izlenmesinde ve gaz yalıtımlı şalt 

ekipmanlarındaki mekanik kusurların belirlenmesinde de kullanılmıştır (Valtierra-Rodriguez 

ve ark., 2019; Zhong ve ark., 2020; Bian ve ark., 2020). Yöntem, kuraklık tahmini için ARIMA 

ve kusur tanımlama için genetik algoritma geliştirilmiş çekirdek bulanık ortalama kümeleme 

gibi diğer tekniklerle birleştirilmiştir (Zhong ve ark., 2020; Xu ve ark., 2022). CEEMD'nin mod 

karıştırma problemini etkili bir şekilde ele aldığı ve orijinal verileri farklı frekanslara sahip daha 

durağan sinyallere ayrıştırdığı gösterilmiştir (Wu ve ark., 2019). 

CEEMD ayrıca deniz seviyesindeki doğrusal olmayan eğilimlerin, uçak arıza oranının ve ham 

petrol fiyatının tahmininde de kullanılmıştır (Tang ve ark., 2015; Zhao ve ark., 2019; Li ve Hou, 

2022). Normal deneklerde ve tinnitus hastalarında kararlı durum işitsel uyarılmış alanların 

çıkarılmasında ve sürtünme sinyallerinin denoize edilmesinde kullanılmıştır (Wang ve ark., 

2015; Li ve ark., 2015). Ayrıca, CEEMD hidrolik pompalarda arıza teşhisi ve rulmanlı 

yataklarda arıza tanıma için kullanılmıştır (Zhao ve ark., 2016; Li ve Ding, 2016). Yöntem, 

anlık sismik özniteliklerin temassız ölçümü ve tespiti ile sismik verilerdeki spektral desenlerin 

tanımlanmasına uygulanmıştır (Kwietniak ve ark., 2016; Huang ve ark., 2017). 

Ayrıca, CEEMD beyin ağlarının analizinde, deniz yüzeyi sıcaklığının tahmininde ve 

genelleştirilmiş tonik-klonik nöbetlerdeki fonksiyonel merkezlerin tanımlanmasında 

kullanılmıştır (Qian ve ark., 2015; Zhang ve ark., 2016; Wu ve ark., 2019). Ayrıca konuşma 

sinyallerinin gürültüsüz işlenmesi için konuşma tanıma alanında da uygulanmıştır 

(Казанферович ve Churakov, 2015). Yöntem, farklı uygulamalardaki yeteneklerini geliştirmek 

için Radyal Taban Fonksiyonu Ağı (RBFN, Radial Basis Function Network), parçacık sürüsü 

optimizasyonu (PSO) ve destek vektör makinesi (SVM) gibi çeşitli algoritmalarla 

birleştirilmiştir (Li ve Ding, 2016; Zhao ve ark., 2019; Liu ve ark., 2020). 
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Genel olarak, CEEMD'nin EMD'deki mod karıştırma sorunlarını ele almak için çok yönlü ve 

etkili bir yöntem olduğu kanıtlanmıştır ve sinyalleri farklı frekans bantlarına sahip içsel salınım 

ritimlerine ayrıştırma yeteneği nedeniyle çeşitli alanlarda yaygın bir uygulama alanı bulmuştur. 

3.2.4. Uyarlanabilir Gürültülü Tam Topluluk Ampirik Mod Ayrıştırması 

(CEEMDAN, Complete Ensemble Empirical Mode Decomposition with 

Adaptive Noise) 

Rüzgar hızı tahminini geliştirmek için, çeşitli çalışmalar EEMD ve Uyarlanabilir Gürültülü Tam 

Topluluk Ampirik Mod Ayrıştırması (CEEMDAN) gibi gelişmiş sinyal işleme tekniklerinin 

kullanılmasını önermiştir (Sun ve ark., 2019; Chen ve ark., 2020; Wang, 2021; Xia ve Wang, 

2022). Bu yöntemler, orijinal rüzgar hızı verilerini daha durağan alt serilere ayırmayı ve böylece 

rüzgar hızı tahmin modellerinin doğruluğunu artırmayı amaçlamaktadır. Ek olarak, EEMD 

kullanımının rüzgar hızını etkili bir şekilde kararlı sinyallere ayrıştırdığı ve kısa vadeli rüzgar 

hızı tahmininin iyileştirilmesine katkıda bulunduğu gösterilmiştir (Huang ve ark., 2018; Xie ve 

ark., 2021). Ayrıca, CEEMDAN uygulamasının rüzgar gücünü doğru bir şekilde tahmin etmede 

etkili olduğu gösterilmiştir, bu da rüzgar hızı tahminini geliştirme potansiyelini göstermektedir 

(You ve ark., 2022). 

Ayrıca, rüzgar hızı verilerini daha düzenli hale getirmek ve böylece rüzgar hızı tahmin 

modellerinin doğruluğunu artırmak için VMD gibi sinyal ayrıştırma tekniklerinin kullanımı 

araştırılmıştır (Vanitha ve ark., 2020). Ayrıca, EMD ve geliştirilmiş LSSVM kombinasyonu, 

rüzgar hızı tahmin doğruluğunu artırmak için hibrit bir tahmin yöntemi olarak önerilmiştir (Sun 

ve Yang, 2013). Bu yaklaşımlar, rüzgar hızı tahmin modellerinin iyileştirilmesinde gelişmiş 

sinyal işleme tekniklerinin potansiyelini vurgulamaktadır. 

Ayrıca, literatür, filtreleme performansını iyileştirmek için süreç gürültüsü kovaryansını ve 

ölçüm gürültüsü kovaryansını uyarlamalı olarak ayarlayabilen Kalman filtresi gibi uyarlamalı 

algoritmaların kullanılmasıyla rüzgar hızı tahmininin geliştirilebileceğini göstermektedir 

(Huang ve ark., 2019). Ayrıca, Genişletilmiş Kalman Filtresi (EKF, Extended Kalman Filter) 

ile birlikte sinir ağlarının kullanımının rüzgar hızını başarılı bir şekilde tahmin ettiği 

gösterilmiştir, bu da uyarlanabilir algoritmaların rüzgar hızı tahminini geliştirme potansiyelini 

daha da göstermektedir (Hur, 2019). 
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Ampirik Mod Ayrıştırması ve türevlerine ait avantajlar ve dejavantajlar Tablo 3.1’de 

verilmiştir.  

Özetle, literatür, rüzgar hızı tahmin doğruluğunu artırmak için EEMD, CEEMDAN, VMD gibi 

gelişmiş sinyal işleme tekniklerinin ve Kalman filtresi ve sinir ağları gibi uyarlanabilir 

algoritmaların kullanımını desteklemektedir. Bu yöntemler, yenilenebilir enerji sektöründeki 

çeşitli uygulamalar için çok önemli olan rüzgar hızı tahmin modellerinin hassasiyetini artırmak 

için umut verici yollar sunmaktadır. 

Tablo 3.1. EMD ve geliştirilmiş versiyonlarının karşılaştırılması. (Qian ve ark., 2019) 

METOT AVANTAJLARI DEZAVANTAJLARI 

EMD Adaptif Mod karıştırma 

EEMD Adaptif; 

Mod karıştırma problemini çözübilir. 

Yeniden oluşturulan sinyallerde ekstra 

gürültü vardır; 

Çok fazla hesaplama kaynağına ihtiyaç 

vardır. 

CEEMD Adaptif; 

Mod karıştırma problemini çözübilir; 

Yeniden oluşturulan sinyallerde ekstra 

gürültü yoktur. 

Çok fazla hesaplama kaynağına ihtiyaç 

vardır. 

CEEMDAN Adaptif; 

Mod karıştırma problemini çözübilir; 

Yeniden oluşturulan sinyallerde ekstra 

gürültü yoktur. 

Sıralı prosedür, paralel hesaplama ile 

gerçekleştirilemez. 

 

1 Ocak 2020 tarihine ait basınç (Şekil 7.1), sıcaklık (Şekil 7.2) ve nem (Şekil 7.3) verilerine ait 

CEEMDAN ayrıştırma yöntemi görselleri “Ekler” bölümünde verilmiştir. 

 



50 
 

3.2.5. Yerel Ortalama Ayrıştırması (LMD, Local Mean Decompositon) 

Yerel Ortalama Ayrıştırma (LMD), dalgacık ayrıştırma ve EMD gibi diğer yöntemlerin yanı 

sıra rüzgar hızı verilerini ayrıştırmak için önemli bir yöntemdir (Tian ve ark., 2019). Ortalama 

aylık rüzgar hızını tahmin etmek için LMD ve LSSVM kullanan hibrit bir model önermiş ve 

LMD'nin rüzgar hızı tahmininde uygulanabilirliğini göstermiştir (Tuerxun ve ark., 2022). 

Ayrıca, LMD rüzgar türbinleri için arıza teşhis yöntemlerinde kullanılarak rüzgar enerjisi 

uygulamalarındaki çok yönlülüğünü göstermiştir (Liu ve ark., 2012). 

Ayrıca, LMD'nin rüzgar hızı tahmininde kullanımının, rüzgar hızı zaman serilerinin düzensiz 

ve değişken doğasını yakalamada etkili olduğu gösterilmiştir, bu da onu rüzgar hızı tahmini için 

umut verici bir yaklaşım haline getirmektedir (Giorgi ve ark., 2014). Ayrıca, LMD ile ilgili olan 

Hilbert-Huang dönüşümü, durağan olmama durumunu ele alma kabiliyeti nedeniyle rüzgar hızı 

zaman serilerinin spektral analizi için seçilmiştir ve bu da LMD'nin rüzgar hızı analizindeki 

uygunluğunu daha da vurgulamaktadır (Vincent ve ark., 2010). 

Ayrıca, rüzgar hızı ve güç tahmini çalışmalarında ayrıştırma seviyesi genellikle küçük bir sayı 

ile sınırlıdır, bu da LMD'nin gerçek dünya tahmin senaryolarında pratik hususları ve 

uygulanabilirliğini vurgulamaktadır (Taşçıkaraoğlu ve ark., 2016). LMD'nin rüzgar hızı 

tahminindeki etkinliği, (Chen ve ark., 2013) tarafından gösterildiği gibi, diğer modellere kıyasla 

tahmin doğruluğundaki iyileşmede de açıkça görülmektedir. 

Özetle, LMD rüzgar hızı tahmin modellerinde yaygın olarak kullanılmış ve rüzgar hızı 

verilerinin karmaşık ve durağan olmayan doğasını yakalamadaki etkinliğini göstermiştir. Hibrit 

modellerde ve arıza teşhis yöntemlerinde uygulanması, rüzgar enerjisi araştırmaları alanındaki 

çok yönlülüğünü ve uygunluğunu göstermektedir. 

1 Ocak 2020 tarihine ait basınç (Şekil 7.15), sıcaklık (Şekil 7.16) ve nem (Şekil 7.17) verilerine 

ait LMD ayrıştırma yöntemi görselleri “Ekler” bölümünde verilmiştir. 

3.2.6. Varyasyonel Mod Ayrıştırma (VMD, Variational Mode Decomposition) 

Rüzgar hızı tahmininde Varyasyonel Mod Ayrışımı (VMD) uygulaması, rüzgar hızı verilerini 

uzun vadeli, dalgalanma ve rastgele bileşenler gibi kurucu modlara ayırma kabiliyeti nedeniyle 
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rüzgar hızı tahmini ve güç tahmininde yaygın olarak kullanılmaktadır (Han ve ark., 2019; , 

Zhang ve ark., 2022). VMD, rüzgar hızı tahmin doğruluğunu artırmak için YSA'lar, destek SVR 

ve derin öğrenme modelleri gibi çeşitli tekniklerle entegre edilmiştir (Ren ve ark., 2015; , 

Heydari ve ark., 2021; , Zhou ve ark., 2018; , Wang ve ark., 2021; , Vanitha ve ark., 2020). 

Ayrıca, VMD, bir enerji depolama sisteminin referans gücünü ayrıştırmak ve rüzgar gücü 

verilerinin farklı dalgalanma özelliklerini çıkarmak için kullanıldığı rüzgar gücü dalgalanma 

sinyali işleme bağlamında kullanılmıştır (Zhou, 2023; , Zhang ve ark., 2021). 

Ayrıca VMD, rüzgâr türbinlerinin arıza teşhisi gibi rüzgâr hızı tahmininin ötesinde uygulamalar 

da bulmuştur. Örneğin, rüzgar türbinlerinde rulman arızası teşhisi için her frekans bandının 

enerjisini çıkarmak için bir ön işlemci olarak kullanılmış ve rüzgar enerjisi alanındaki çok 

yönlülüğünü göstermiştir (An ve Tang, 2016; Maheswari ve Umamaheswari, 2019). Ayrıca 

VMD, rüzgâr hızını ve gücünü alternatif olarak ayrıştırmak için dalgacık dönüşümü gibi diğer 

ayrıştırma yöntemleriyle entegre edilmiş ve tahmin modellerine girdi olarak kullanılmak üzere 

farklı frekans bandı bileşenlerinin çıkarılmasına yol açmıştır (Lang, 2021). 

Sonuç olarak, VMD, rüzgar hızı verilerini çeşitli bileşenlere ayırma ve çeşitli tahmin ve arıza 

teşhis teknikleriyle entegre etme yeteneği sunarak rüzgar hızı tahmini ve rüzgar gücü 

tahmininde değerli bir araç olduğunu kanıtlamıştır. Çok yönlülüğü ve etkinliği, onu rüzgar 

enerjisi araştırmaları alanında öne çıkan bir yöntem haline getirmektedir. 

1 Ocak 2020 tarihine ait basınç (Şekil 7.36), sıcaklık (Şekil 7.37) ve nem (Şekil 7.38) verilerine 

ait VMD ayrıştırma yöntemi görselleri “Ekler” bölümünde verilmiştir. 

3.3.  Yapay Sinir Ağları 

Biyolojik sinir ağları, canlı organizmalardaki sinir sistemlerini ifade eder. Sinir ağları, sinir 

hücrelerinin (nöronlar) bir araya gelerek bilgi işleme, iletim ve depolama görevlerini yerine 

getirdiği kompleks ağlar olarak tanımlanır. İnsanlar ve diğer hayvanlar üzerinde gözlemlenen 

sinir ağları, biyolojik sistemlerin bilgi işleme kapasitelerinin temelini oluşturur. 
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Biyolojik sinir ağları hakkında genel bilgiler: 

• Nöronlar: Sinir hücreleri veya nöronlar, sinir ağlarının temel yapı taşlarıdır. Nöronlar, 

sinir impulslarını alabilir, işleyebilir ve diğer nöronlara veya hücrelere iletebilir. Her 

nöron, bir hücre gövdesi, bir akson (uzun iletişim lifi) ve dendritler (sinir impulslarını 

almak için kısa uzantılar) gibi temel yapıları içerir. Nöron (sinir hücresi) yapısı Şekil 

3.3’de verilmiştir. 

• Sinir İmpulsları: Sinir ağları, elektriksel ve kimyasal sinyallerin iletilmesi üzerine 

kuruludur. Bir nöronun uyarılması sonucunda oluşan elektriksel sinyaller, akson 

boyunca iletilir ve hedef nöronlara veya hücrelere kimyasal sinyaller (sinir iletimi) 

aracılığıyla iletilir. 

• Sinir Sistemi Bileşenleri: 

➢ Merkezi Sinir Sistemi (MSS): Beyin ve omurilikten oluşur. Bilgi işleme ve karar 

alma işlevlerini gerçekleştirir. 

➢ Periferik Sinir Sistemi (PSS): Organizmanın geri kalan kısmı ile merkezi sinir 

sistemi arasında bilgi iletimini sağlar. PSS, duyusal ve motor sinirleri içerir. 

• Sinir Ağlarının İşlevleri: 

➢ Duyu İşleme: Çevresel uyaranları algılar ve bu bilgileri merkezi sinir sistemine 

ileter. 

• Motor İşlevler: Merkezi sinir sisteminin aldığı bilgileri temel alarak kaslara 

yönlendirilen hareket sinyallerini üretir. 

• Bellek ve Öğrenme: Sinir ağları, bilgileri depolar ve deneyimlerden öğrenme yeteneğine 

sahiptir. 

• Plastisite: Biyolojik sinir ağları, plastisite adı verilen bir özellikleri sayesinde çevresel 

değişikliklere uyum sağlayabilir. Plastisite, sinir ağlarının bağlantılarını güçlendirme 

veya zayıflatma yeteneğini ifade eder. 

 

Biyolojik sinir ağları, yapısı ve işlevselliği bakımından son derece karmaşık ve adaptif 

sistemlerdir. Bu doğal sistemler, yapay sinir ağları olarak bilinen matematiksel ve bilgisayar 

tabanlı modellerin ilham kaynağı olmuştur. Yapay sinir ağları, bilgisayar biliminde öğrenme ve 

problem çözme uygulamalarında kullanılan yapay modellemelerdir. (Öztemel, 2003) 



53 
 

 

Şekil 3.3. Nöron (sinir hücresi) yapısı 

Sinir sisteminde bilgi iletimi, sinir hücreleri veya nöronlar arasında elektriksel ve kimyasal 

sinyallerin iletilmesi üzerine kuruludur. Bu iletim süreci, genellikle şu ana adımlardan oluşur: 

 

• Dendritlerde Sinir İmpulsu Alınması: 

Bir sinir hücresi genellikle birden fazla dendrite sahiptir. Dendritler, çevresel uyaranlardan 

gelen sinir impulslarını alır. Dendritler, bu gelen sinyalleri sinir hücresinin hücre gövdesine 

(soma) taşır. 

• Sinir Hücresinin Uyarılması: 

Dendritlerden gelen sinir impulsları, sinir hücresinin hücre gövdesinde toplanır. Eğer toplam 

sinyal şiddeti, bir eşik değeri aşarsa, sinir hücresi uyarılır. 

• Aksiyon Potansiyeli Oluşumu: 

Uyarılmış bir sinir hücresinde, hücre zarında bir aksiyon potansiyeli oluşur. Bu aksiyon 

potansiyeli, hücre zarındaki iyonların geçişine dayanır ve bir elektriksel sinyal olarak iletilir. 

• Akson Boyunca İletim: 

Aksiyon potansiyeli, nöronun aksonu boyunca iletilir. Akson, nöronun uzun uzantısıdır ve sinir 

impulslarını diğer nöronlara veya hücrelere taşır. 

• Sinaptik Boşlukta Kimyasal İletim: 
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Sinir impulsları, aksonun sonundaki bir sinaptik boşluk adı verilen bölgeye ulaşır. Sinaptik 

boşluk, iki nöron arasındaki boşluğu ifade eder. Sinir impulsları, burada kimyasal bir haberci 

madde olan nörotransmitterlerin salınması ile kimyasal bir iletime dönüşür. 

• Dendritlerde Yeni Bir Sinir İmpulsu Oluşumu: 

Nörotransmitterler, sonraki nöronun dendritlerine bağlanarak elektriksel sinyallerin iletimini 

başlatır. Bu süreç, sinir impulslarının bir nöron dan diğerine geçişini sağlar. 

Bu adımlar, sinir sistemi içinde bilgi iletimini temsil eder. Sinir hücreleri arasındaki iletişim, 

elektriksel sinyallerin sinir hücresi içinde, akson boyunca ve sinaptik boşlukta kimyasal 

sinyallere dönüştüğü karmaşık bir süreçtir. Sinir sisteminin bu dinamik yapısı, çeşitli uyaranlara 

hızlı ve hassas bir şekilde yanıt verme yeteneğini sağlar. (Öztemel, 2003) 

Nöronlarda bilgi iletiminin oluşabilmesi için, impuls genliğinin belirli bir eşik seviyenin 

üzerine çıkması gerekmektedir. Şekil 3.4, impulsın iletilebilmesi için gereken eşik seviyeyi 

göstermektedir (Poznyak ve ark., 2001). 

 

 

Şekil 3.4. Nöronda eşik değeri gösterimi (Poznyak et al., 2001) 

Genliği eşik seviyesinin üzerine çıkan impulslar, akson boyunca iletilirler. Bu olay, akson 

içinde bulunan potasyum iyonlarının, miyelin kılıf etrafında bulunan sodyum iyonları ile yer 

değiştirmesi ile gerçekleşir. Şekil 3.5, impulsun akson üzerinde iletimini göstermektedir 

(Poznyak et al., 2001). 
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Şekil 3.5. Akson üzerinde bilgi iletimi 

Nöron modeli 

YSA, beynin öğrenme sürecini taklit etmek için tasarlanmış, insan beyninin nöronlarından 

ilham alan hesaplama sistemleridir (Yusmartato ve ark., 2018). Bu ağlar, akıllı algoritmalar 

kullanarak büyük miktarda veriyi işleyen ve analiz eden, hızlı bilgi işlemeyi sağlayan birbirine 

bağlı nöronlardan oluşur (Jafari ve ark., 2020). Bir YSA'nın temel birimi olan nöron, bu ağlarda 

çok önemli bir rol oynamaktadır. Sigmoid fonksiyon nöronu, radyal bazlı fonksiyon (RBF, 

Radial Basis Function) nöronu ve polinom nöronu gibi farklı nöron türleri, tıbbi görüntü teşhisi 

gibi görevler için hibrit geri beslemeli Veri İşleme Grup Yöntemi (GMDH, Group Method Of 

Data Handling) tipi sinir ağı algoritmalarında kullanılmaktadır (Kondo ve ark., 2015). Ayrıca, 

temel birim olarak ferroelektrik kapasitör kullanan FeNeuron gibi yeni nöron modellerinin 

geliştirilmesi, yapay nöron modelleri oluşturmaya yönelik çeşitli yaklaşımları sergilemektedir 

(Guerreiro ve ark., 2007). 

YSA'ların performansı büyük ölçüde kullanılan öğrenme algoritmalarına bağlıdır. Yaygın 

olarak kullanılan bir öğrenme algoritması olan geri yayılım, bağlantı ağırlıklarını ayarlamak 

için hataların ağ boyunca geriye doğru yayılmasını içerir ve ağın temsilleri öğrenmesini sağlar 
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(Rumelhart ve ark., 1986). Ayrıca, nöronlarda farklı aktivasyon fonksiyonlarının 

kullanılmasının YSA'ların hesaplama gücünü artırdığı gösterilmiştir, bu da nöronun 

davranışının ağ performansındaki önemini göstermektedir (Kampakis, 2014). 

Son yıllarda, YSA'lar için alternatif nöron modellerini keşfetmeye yönelik artan bir ilgi vardır. 

Örneğin, yapay nöronların kuantum hesaplama modellerinin geliştirilmesi ve sivri kuantum 

nöronlarının araştırılması, bu alandaki sürekli yeniliği göstermektedir (Mangini, 2020; 

Kristensen ve ark., 2019). Ayrıca, memristörlerin yapay nöronlara entegrasyonu, gelişmiş 

bilişsel işlevlere sahip nöromorfik akıllı bilgisayarlar geliştirme potansiyeli nedeniyle yoğun 

ilgi görmüştür (Wu ve ark., 2022). 

Özetle, yapay nöron modellerinin incelenmesi, YSA'ların yeteneklerini geliştirmek için çok 

önemlidir. Geleneksel nöronlardan kuantum ve memristör tabanlı nöronlara kadar çok çeşitli 

nöron modelleri, YSA'ların hesaplama gücünü ve verimliliğini artırmaya yönelik sürekli 

çabaları yansıtmaktadır. 

YSA, biyolojik sinir ağlarından ilham alınarak tasarlanmış matematiksel ve istatistiksel 

modellerdir. Yapay sinir ağları, geniş bir uygulama yelpazesi olan makine öğrenmesi ve yapay 

zeka alanlarında kullanılır. Bu ağlar, genellikle katmanlar, nöronlar ve ağırlıklar arasındaki 

bağlantılar gibi bileşenler içerir.  

3.3.1. İleri Beslemeli Sinir Ağları (FNN, Feedforward Neural Networks): 

Bu tip ağlarda bilgi, bir yönden diğerine doğru ilerler. Bilgi akışı, giriş katmanından başlayarak 

gizli katman(lar) üzerinden çıkış katmanına doğru devam eder. Giriş katmanındaki nöronlar, 

veriyi alır, ardından gizli katmanlar ve sonunda çıkış katmanına ulaşır (Şekil 3.6). 

İleri Beslemeli Sinir Ağları (FNN), örüntü tanıma, sınıflandırma, fonksiyon yaklaşımı ve 

kontrol teorisindeki karmaşık problemleri çözme yetenekleri nedeniyle çeşitli alanlarda yaygın 

olarak çalışılmış ve uygulanmıştır (Nasr ve Chtourou, 2006). FNN'nin evrensel yaklaşım 

özelliği, küçük bir hata payı ile herhangi bir diferansiyel denkleme çözüm sağlamalarına olanak 

tanır (Guasti ve Santos, 2021). Ayrıca, FNN'nin sürekli fonksiyonlara yaklaşabildiği 
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gösterilmiştir, bu da onları çok çeşitli uygulamalar için uygun hale getirmektedir (Panahian ve 

Zainuddin, 2015). 

İki boyutlu şekil değişkenliği için tasarlanmış özel bir FNN türü olan CNN'lerin belge tanıma 

sistemlerinde diğer tekniklerden daha iyi performans gösterdiği gösterilmiştir (LeCun ve ark., 

1998). Ayrıca, benzer büyüklükteki katmanlara sahip standart FNN'lerle karşılaştırıldığında, 

CNN'lerin daha az bağlantı ve parametreye sahip olması, eğitilmelerini kolaylaştırırken 

yalnızca biraz daha kötü performans elde etmelerini sağlar (Krizhevsky ve ark., 2017). Bu, 

CNN'lerin 2 boyutlu şekil değişkenliğini ele almadaki etkinliğini ve eğitimdeki verimliliğini 

vurgulamaktadır. 

Kontrol teorisi bağlamında, paralel fizik güdümlü sinir ağları (PGNN, Physics-induced Graph 

Neural Network), doğrusal motorları kontrol etmek için model tabanlı temel fonksiyonların 

özellik olarak kullanıldığı ileri beslemeli kontrol için kullanılmıştır (Kon ve ark., 2022). Bu, 

doğrusal olmayan sistemlerde etkili kontrol elde etmek için fizik güdümlü modellerle entegre 

edilebildikleri kontrol uygulamalarında FNN'nin çok yönlülüğünü göstermektedir. 

Ayrıca, FNN eğitim problemlerinde Hessian'ların kötü koşullandırılması tespit edilmiştir, bu 

da FNN'nin eğitim sürecinde ele alınması gereken yaygın bir sorun olan kötü koşullandırılmış 

Hessian'lara sahip olabileceğini göstermektedir (Saarinen ve ark., 1993). Bu durum, FNN ile 

çalışırken eğitim dinamiklerini ve sayısal kararlılığı göz önünde bulundurmanın önemini 

vurgulamaktadır. 
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Şekil 3.6. İleri Beslemeli Sinir Ağı Mimarisi 

Özetle, CNN'ler de dahil olmak üzere FNN'lerin örüntü tanımadan kontrol teorisine kadar geniş 

bir yelpazedeki problemleri çözmek için güçlü araçlar olduğu kanıtlanmıştır. Evrensel yaklaşım 

özellikleri, eğitimdeki verimlilikleri ve çeşitli alanlardaki uygulanabilirlikleri, onları yapay 

zeka ve mühendislik alanında değerli bir varlık haline getirmektedir. 

3.3.2. Yinelemeli Sinir Ağları (RNN, Recurrent Neural Networks): 

Yinelemeli Sinir Ağları (RNN'ler), içerdikleri döngüsel bağlantılar sayesinde geriye doğru 

döngü yapabilirler. Bu, geçmiş bilgileri hafızasında saklayabilme ve bu bilgileri gelecekteki 

durumları tahmin etme yeteneği sağlar. RNN'ler genellikle zaman serisi verileri ve doğal dil 

işleme gibi sıralı veri problemleri için kullanılır. Yinelemeli Sinir Ağı Yapısı Şekil 3.7’de 

verilmiştir. 

RNN'ler, sıralı verileri verimli bir şekilde modelleme yetenekleri nedeniyle büyük ilgi 

görmüştür (Lee ve ark., 2018). Ancak, RNN'lerin eğitimi, kaybolan ve patlayan gradyanlar gibi 

sorunlar nedeniyle zor olabilir (Pascanu, 2012). Bu zorlukların üstesinden gelmek için 

araştırmacılar RNN'lerdeki farklı tekrarlayan birim türlerini karşılaştırmıştır (Chung, 2014). 

RNN'leri geliştirmeye yönelik bir yaklaşım, dil modelleme Mikolov ve Zweig (2012) ve güç 
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yükü tahmini (Feng ve ark., 2022) gibi görevlerde gelişmiş performans gösteren Uzun Kısa 

Süreli Bellek (LSTM) ağları gibi varyantların geliştirilmesidir. Ayrıca, girdi dizilerinin hem 

geçmiş hem de gelecek bağlamındaki bağımlılıkları yakalamak için çift yönlü RNN'ler 

önerilmiştir (Schuster ve Paliwal, 1997). 

RNN'ler konuşma tanıma, doğal dil işleme ve zaman serisi tahmini gibi çeşitli alanlarda 

başarıyla uygulanmıştır (Cao ve ark., 2017). Ayrıca, RNN'lerin konuşma dizilerini doğrudan 

modellemedeki sınırlamalarının vurgulandığı konuşma ayırma gibi görevlerde de kullanılmıştır 

(Chen ve ark., 2020). Ayrıca, RNN'ler, optik müzik tanıma için artık tekrarlayan evrişimli 

RNN'lerin geliştirilmesi gibi belirli zorlukları ele almak için genişletilmiştir (Liu ve ark., 2021). 

Belirli alanlardaki uygulamalarına ek olarak, RNN'ler, göreceli güçlü ve zayıf yönlerini 

anlamak için ileri beslemeli ağlar gibi diğer sinir ağı modelleriyle karşılaştırılmıştır 

(Sundermeyer ve ark., 2013). Ayrıca, RNN'ler, LSTM ve Gated Recurrent Unit (GRU) gibi 

RNN varyantlarının yorumlanabilirliğinin ve uygulamasının araştırıldığı lityum-iyon piller için 

şarj durumu tahmini gibi tahmin görevlerinde kullanılmıştır (Qiao ve ark., 2022). 

 

Şekil 3.7. Yinelemeli Sinir Ağı Yapısı 

Genel olarak, RNN'ler sıralı verilerin modellenmesinde etkili olduklarını göstermiştir, ancak 

devam eden araştırmalar eğitim zorluklarını ele almayı ve çeşitli uygulamalar için yeteneklerini 

genişletmeyi amaçlamaktadır. 
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3.3.3. Derin Öğrenme Modelleri: 

Yapay sinir ağlarının derinleştirilmiş versiyonları, derin öğrenme modellerini oluşturur. Derin 

öğrenme modelleri, genellikle çok sayıda gizli katman içeren derin sinir ağlarını içerir ve geniş 

veri setleri üzerinde karmaşık desenleri öğrenme yeteneğine sahiptir. 

Derin öğrenme modelleri, özellikle yapay sinir ağlarına dayalı olanlar, çeşitli alanlarda önemli 

ölçüde ilgi ve uygulama kazanmıştır. En önde gelen derin öğrenme modellerinden biri, özellikle 

2012 yılında ImageNet Büyük Ölçekli Görsel Tanıma Yarışması'ndaki başarısından sonra 

bilgisayarla görme görevlerinde dikkate değer bir performans sergileyen evrişimli sinir ağıdır 

(CNN) (Krizhevsky ve ark., 2017). Derin öğrenme, daha karmaşık öğrenme ve özellik çıkarma 

sağlayan çok katmanlı ağların kullanılmasıyla karakterize edilen geleneksel yapay sinir 

ağlarının bir ilerlemesini temsil etmektedir (Shen ve ark., 2017). Büyük, derin evrişimli sinir 

ağları gibi derin öğrenme modellerinin yüksek çözünürlüklü görüntüleri sınıflandırmadaki 

başarısı, çeşitli uygulamalardaki önemini daha da artırmıştır (Krizhevsky ve ark., 2017). 

Dahası, derin öğrenme, uçtan uca takviye öğrenme kullanarak yüksek boyutlu duyusal 

girdilerden doğrudan başarılı politikalar öğrenebilen derin Q-ağları gibi yeni yapay ajanların 

geliştirilmesinde etkili olmuştur (Mnih ve ark., 2015). Ancak, ilerlemelere rağmen, yapay sinir 

ağlarına dayalı derin öğrenmenin, kara kutu doğası nedeniyle hala anlaşılması zor olduğu 

düşünülmektedir (Nguyen ve ark., 2022). Bununla birlikte, başta CNN'ler olmak üzere derin 

öğrenme teknolojisinin yaygın kullanımı, görüntü tanıma, tıbbi görüntü analizi ve geomatik 

uygulamaları gibi çeşitli alanlarda kendini göstermektedir (Ting ve ark., 2019; Yang ve ark., 

2021; Serwa, 2022). 

Derin öğrenme modellerinin uygulanması tıp, biyoloji ve siber güvenlik gibi çeşitli alanlara 

uzanmaktadır. Örneğin, derin öğrenme algoritmaları tıbbi görüntü analizinde, çeşitli hastalıklar 

için tanı modellerinde ve metagenomik verilerden antibiyotik direnç genlerinin tahmin 

edilmesinde giderek daha fazla kullanılmaktadır (Arango-Argoty ve ark., 2018; Ting ve ark., 

2019). Ayrıca, yapay çok katmanlı sinir ağlarının başarısı, yapay sinir ağı teorisini biyolojik 

sinir ağlarına genişletme çabalarına yol açarak derin öğrenme modellerinin geniş etkisini ve 

potansiyelini göstermiştir (Bardwell, 2020). 



61 
 

Özetle, başta CNN'ler olmak üzere yapay sinir ağlarına dayalı derin öğrenme modelleri, 

bilgisayarla görme ve tıbbi görüntü analizinden siber güvenlik ve geomatik uygulamalarına 

kadar çeşitli alanlarda devrim yaratmıştır. Derin öğrenme modellerinin çok katmanlı mimarisi, 

karmaşık öğrenmeye ve özellik çıkarımına olanak tanıyarak yaygın olarak benimsenmelerine 

ve çeşitli alanlarda önemli etkilere yol açmaktadır. 

3.3.4. Evrişimli Sinir Ağları (Convolutional Neural Networks - CNN): 

CNN'ler genellikle görsel veri analizi gibi alanlarda kullanılır. Bu ağlar, evrişim katmanları 

içerir ve bu katmanlar, görüntü üzerinde özelliklerin (örneğin kenarlar, köşeler) çıkarılmasına 

yardımcı olur. CNN'ler genellikle görüntü sınıflandırma, nesne tespiti ve görüntü 

segmentasyonunda kullanılır. CNN mimarisi ve katmanları Şekil 3.8’de verilmiştir. 

Evrişimsel Sinir Ağları, 2012 yılında ImageNet Büyük Ölçekli Görsel Tanıma Yarışması'ndaki 

(ILSVRC, ImageNet Large Scale Visual Recognition Challenge) kayda değer başarılarından bu 

yana bilgisayarla görme görevlerinde baskın bir yöntem haline gelmiştir (Yamashita ve ark., 

2018). CNN'ler görüntü tanıma, tıbbi görüntü çözünürlüğünün iyileştirilmesi ve ses kaynağı 

lokalizasyonu gibi çeşitli uygulamalarda büyük potansiyel göstermiştir (Wei ve ark., 2018; 

Zhao ve ark., 2021). Duygu analizi ve konuşma komutu tanıma gibi doğal dil işleme 

görevlerinde de başarıyla uygulanmışlardır (Poudel ve Ray, 2020; Hardjita ve ark., 2022). 

Ayrıca CNN'ler, donanım dostu mimarilerde floresan yaşam süresi görüntüleme gibi belirli 

alanlara uyarlanmıştır (Xiao ve ark., 2021). 

CNN'lerin çok yönlülüğü, Kuantum Evrişimli Sinir Ağlarının (QCNN, Quantum Convolutional 

Neural Network) mevcut öğrenme modellerinin performansını artırmak için yeni bir çözüm 

olarak önerildiği kuantum hesaplama gibi farklı alanlara uyarlanmalarında açıkça 

görülmektedir (Oh ve ark., 2020). Ayrıca, CNN'ler Çin'in emlak endeksi ve hisse senedi 

trendlerinin tahmin edilmesinde kullanılarak finansal analizde uygulanabilirlikleri 

gösterilmiştir (Chen, 2023). 

Ayrıca, CNN'lerin sağlamlığı ve ölçeklenebilirliği, belirli görevlerde insan performansına 

kolayca ulaşma ve hatta aşma yetenekleriyle vurgulanmıştır (Li ve ark., 2021). 

Uyarlanabilirlikleri, görüntü sınıflandırması için verimli olay güdümlü ağlara dönüştürülmeleri 
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ve ilaç-ilaç etkileşimi çıkarımındaki uygulamaları ile daha da kanıtlanmıştır (Liu ve ark., 2016; 

Rueckauer ve ark., 2017). 

 

Şekil 3.8. CNN Mimarisi ve Katmanlar 

Sonuç olarak, CNN'lerin çeşitli alanlarda çok yönlü ve güçlü bir araç olduğu kanıtlanmış, 

bilgisayarla görme, doğal dil işleme, kuantum hesaplama, finansal analiz ve diğer birçok 

alandaki potansiyelleri ortaya çıkmıştır. 

3.3.5. Tekrarlayan Evrişimli Sinir Ağları (Recurrent Convolutional Neural 

Networks - RCNN): 

Tekrarlayan Evrişimli Sinir Ağları (RCNN), evrişimli sinir ağlarının ve yinelemeli sinir 

ağlarının özelliklerini birleştiren bir yapıya sahiptir. Genellikle zaman serisi verileri üzerinde 

çalışmak için kullanılır. Tekrarlayan Evrişimli Sinir Ağlarına ait mimari Şekil 3.9’da 

verilmiştir. 

RCNN, verilerdeki uzamsal ve zamansal bağımlılıkları yakalama yetenekleri nedeniyle çeşitli 

alanlarda büyük ilgi görmüştür. Evrişimsel ve tekrarlayan sinir ağlarının entegrasyonu, nesne 

tanıma (Liang ve Hu, 2015), vücut yüzeyi potansiyel haritalama zaman serisi tanıma 

(Rymarczyk et al, 2022), uzay yörüngeli robotik buluşma göreceli navigasyonu için LIDAR 

(Laser Imaging Detection and Ranging, Işık Tespiti ve Uzaklık Tayini) odometrisi (Kechagias-

Stamatis ve ark., 2020), ses olayı ve akustik sahne analizi (Tonami ve ark., 2021), otomatik 

modülasyon sınıflandırması (Liao ve ark., 2021) ve müzik sınıflandırması (Choi ve ark., 2017). 

RCNN'deki konvolüsyonel ve tekrarlayan katmanların kombinasyonu, etkili özellik çıkarma ve 
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dizi analizine olanak tanıyarak onu hem uzamsal hem de zamansal bilgi içeren görevler için 

uygun hale getirir. 

RCNN, bilgisayarla görme, yapay zeka ve sinyal işleme gibi çeşitli alanlarda uygulanmıştır. 

Örneğin, bilgisayarla görme alanında RCNN nesne tanıma için kullanılırken (Liang ve Hu, 

2015), yapay zekada müzik sınıflandırması Choi ve ark. (2017) ve otomatik modülasyon 

sınıflandırması (Liao ve ark., 2021) için uygulanmıştır. Ayrıca, sinyal işlemede RCNN, ses 

olayı tespiti Tonami ve ark. (2021) ve vücut yüzeyi potansiyel haritalama zaman serisi tanıma 

(Rymarczyk ve ark., 2022) için kullanılmıştır. 

RCNN'nin avantajları, hem uzamsal hem de zamansal bilgileri yakalama yeteneğinden 

kaynaklanır ve bu da onu sıralı veriler ve uzamsal bağımlılıklar içeren görevler için uygun hale 

getirir. Örneğin, glikoz tahmini bağlamında, RCNN glikoz seviyelerinin zamansal 

dinamiklerini etkili bir şekilde yakalamak için kullanılmıştır (Li ve ark., 2018). Ayrıca, 

RCNN'nin metin sınıflandırma Lai ve ark. (2015) ve müzik sınıflandırma (Choi ve ark., 2017) 

gibi görevlerde geleneksel yöntemlerden daha iyi performans gösterdiği gösterilmiş ve sıralı 

verilerdeki karmaşık bağımlılıkları yakalamadaki etkinliği vurgulanmıştır. 

Özetle, RCNN, evrişimsel ve tekrarlayan katmanların entegrasyonu yoluyla, bilgisayarla 

görme, sinyal işleme ve yapay zeka dahil olmak üzere çeşitli alanlardaki uzamsal ve zamansal 

bağımlılıkları yakalamadaki etkinliğini göstermiştir. Özellikleri etkili bir şekilde çıkarma ve 

sıralı verileri analiz etme yeteneği, onu çok çeşitli uygulamalar için değerli bir araç haline 

getirmektedir. 
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Şekil 3.9. Tekrarlayan Evrişimli Sinir Ağı Mimarisi 

3.3.6. Jeneratif Modeller: 

Jeneratif modeller, yeni veri örnekleri üretebilen yapay sinir ağlarıdır. Örnek olarak, Üretken 

Karşıt Ağlar (GAN, Generative Adversarial Networks) ve Varyasyonel Otomatik Kodlayıcılar 

(VAE, Variational Autoencoders) gibi modeller jeneratif modellere örnektir. 

GAN'ların çalışma prensibi, üretici ve ayırıcı olmak üzere iki yapay sinir ağının etkileşimine 

dayanır. Üretici ağa bir z gürültüsü girdisi verilir ve bu gürültüden rastgele ağırlıklarda bir resim 

üretir. Bu üretilen resim, gerçek resimlerin bulunduğu bir veri setindeki resimlerle 

karşılaştırılır. 

Diğer taraftan, ayırıcı ağ, gerçek ve üretilen resimleri sınıflandırma yaparak ayırt etmeye çalışır. 

Ayırıcı, sahte resimlerin gerçeklik oranını tahmin eder. Bu tahmin, ayırıcının ne kadar iyi bir 

şekilde gerçek ve sahte resimleri ayırt edebildiğini gösterir. 
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Sonuçlar, maliyet fonksiyonu kullanılarak değerlendirilir. Bu fonksiyon, üretici ve ayırıcı 

ağların performansını ölçer ve geliştirmeler yapılması gereken alanları belirler. Performansı 

değerlendirildikten sonra, üretici ve ayırıcı ağların ağırlık parametreleri güncellenir. Üretken 

Çekişmeli Ağların çalışma prensibi Şekil 3.10’da verilmiştir. 

Üretici ve ayırıcı ağlar, eş seviyelerde ilerleyerek birlikte eğitilir. Bu süreçte, her iki ağ da 

birbirlerini güçlendirir ve performanslarını artırmak için birlikte çalışır. Bu eş seviyeli eğitim, 

GAN'ların istenen sonuçları elde etmek için birlikte çalışabilme yeteneğini geliştirir (Şekil 

3.10) 

Tüm bu süreçlerin amacı, üretici ağın gerçekçi resimler üretebilme yeteneğini artırmak ve 

ayırıcı ağın gerçek ve sahte resimleri doğru bir şekilde ayırt edebilmesini sağlamaktır. GAN'lar, 

bu etkileşimli çalışma prensibi sayesinde yüksek kaliteli ve gerçekçi resimler üretebilme 

yetenekleriyle dikkat çekmektedir. 

 

Şekil 3.10. Üretken Çekişmeli Ağların çalışma prensibi 

 

Üretken Karşıt Ağlar, gerçekçi veri üretme yetenekleri nedeniyle çeşitli alanlarda büyük ilgi 

görmüştür. GAN'ların kullanımı görüntü üretimi, stil aktarımı ve düşmanca saldırılara karşı 

savunma gibi farklı uygulamalarda araştırılmıştır. GAN'lar için geliştirilmiş kalite, kararlılık ve 

varyasyonu vurgulayan yeni bir eğitim metodolojisi sunmuştur (Karras ve ark., 2017). Bu 

metodoloji, GAN'ların yüksek kaliteli çıktılar üretme performansını artırmaya katkıda 

bulunmuştur. GAN'lar için yeni mimari özellikler ve eğitim prosedürleri sunarak GAN'ların 

çeşitli ve gerçekçi veriler üretme yeteneklerini daha da geliştirmiştir (Salimans, 2016). Ayrıca, 
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mimari kısıtlamalara sahip olan ve denetimsiz öğrenme için güçlü adaylar olduğu kanıtlanan 

derin evrişimli GAN'lar (DCGAN, Deep Convolutional GAN) tanıtılmış ve GAN'ların 

uygulamaları daha da genişletilmiştir (Radford, 2015). 

Ayrıca, GAN'lar mobilite ağı oluşturma (Mauro ve ark., 2022), düşman örneklere karşı 

savunma (Choi ve ark., 2022) ve kara kutu saldırıları için kötü amaçlı yazılım örneği oluşturma 

(Hu ve Ying, 2017) gibi çeşitli alanlarda uygulanmıştır. Bu uygulamalar, GAN'ların farklı 

alanlardaki farklı zorlukları ele alma konusundaki çok yönlülüğünü göstermektedir. Ek olarak, 

GAN'ların stil aktarımı ve görüntü manipülasyonunda kullanımı araştırılmış, ikna edici sahte 

ürünler sentezleme ve görsel çekiciliği artırma konusundaki etkinlikleri gösterilmiştir (Chen ve 

ark., 2019; Xiao ve ark., 2018). 

Ayrıca, makine öğrenimi modellerinin düşmanca örneklere karşı sağlamlığı incelenmiş ve daha 

iyi modellerin düşmanca saldırılara karşı daha az savunmasız olduğunu gösteren bulgular elde 

edilmiştir (Wang ve ark., 2019). Bu durum, GAN'ların eksiksiz savunma çerçeveleri oluşturmak 

için kullanıldığı sağlam savunma mekanizmaları geliştirmenin önemini vurgulamaktadır (Sun 

ve ark., 2020). Ayrıca, GAN'ların eğitim sırasında ayırt edici olarak kullanılması, çıktıların 

gerçekçiliğini artırmak ve çeşitli uygulamalarda GAN'ların yeteneklerini daha da geliştirmek 

için önerilmiştir (Baluja ve Fischer, 2018). 

Sonuç olarak, GAN'lar görüntü üretiminden düşman saldırılarına karşı savunmaya kadar çeşitli 

uygulamalarda etkinliklerini kanıtlamıştır. GAN metodolojilerindeki sürekli ilerlemeler ve 

çeşitli alanlardaki başarılı uygulamaları, yapay zeka ve makine öğrenimi alanındaki 

önemlerinin altını çizmektedir. 

Varyasyonel Otomatik Kodlayıcılar’ın temeli otokodlayıcılardan gelir. Otokodlayıcı, geri 

yayılım yapan bir denetimsiz öğrenme algoritması olarak çalışan bir sinir ağıdır. Amacı, girdi 

değerini çıktıya eşitlemek için tanımlayıcı bir fonksiyon bulmaktır. Bu işlem, Şekil 3.11’de 

gösterilen iki farklı yapay sinir ağı olan kodlayıcı ve kod çözücü ile gerçekleştirilir. 

Otokodlayıcı, aslında girdi verisini iki aşamada yeniden oluşturur.  
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Şekil 3.11. Varyasyonel Otomatik Kodlayıcılar 

Varyasyonel Otomatik Kodlayıcılar (VAE'ler), karmaşık dağılımları modelleme yetenekleri 

nedeniyle denetimsiz öğrenme alanında önemli bir popülerlik kazanmıştır (Doersch, 2016). 

VAE'ler anomali tespiti (Shu ve ark., 2022), tıbbi analizde sağkalım tahmini (Vo ve ark., 2021) 

ve hatta 3B geometrik nesnelerin oluşturulması (Park ve Kim, 2021) gibi çeşitli uygulamalarda 

kullanılmıştır. VAE'lerin derin üretken tasarım ve topoloji optimizasyonunda kullanımı da 

araştırılmış ve mühendislik uygulamalarındaki çok yönlülükleri gösterilmiştir (Oh ve ark., 

2019; Saha ve ark., 2021). Ayrıca, VAE'ler yüksek boyutlu, sınırlı örneklemli veri 

sınıflandırması için denetimsiz uyarlamada umut vaat ettiğini göstermiş ve aşırı uyum ve küme 

analizi ile ilgili zorlukların üstesinden gelme potansiyellerini ortaya koymuştur Mahmud ve 

ark. (2021) 

(Kingma ve Welling, 2013). VAE kavramını tanıtmış, VAE'lerin kompakt temsilleri 

öğrenmedeki ve örtük uzayı düzenlemedeki rolünü vurgulamıştır (Kingma ve Welling, 2013; 

Kingma ve Welling, 2019; Robert-George ve ark., 2021). Gizli uzayın bu şekilde düzenlenmesi, 

VAE'lerin aşırı uyumdan kaçınırken altta yatan veri dağılımını etkili bir şekilde 

yakalayabilmesini sağlamak için çok önemlidir (Tucci ve ark., 2021). Ayrıca, VAE'ler, büyük 

veri kümelerini işlemedeki üstünlüklerini gösteren gürültü azaltıcı oto kodlayıcılar gibi diğer 

oto kodlayıcı varyantlarıyla karşılaştırılmıştır (Bennouna ve ark., 2021). 
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VAE'lerin pratik uygulaması, moleküler üretim (Z ve ark., 2021), kalp atışı analizinde 

anormallik tespiti (Robert-George ve ark., 2021) ve araç yörünge tahmini (Neumeier ve ark., 

2021) dahil olmak üzere çeşitli alanlarda gösterilmiştir. Ayrıca, Manyetik rezonans 

görüntülemelerde (MRI, Magnetic Resonance Imaging) beyin tümörü tespiti için özellik 

optimizasyonunda VAE'lerin kullanılması, tıbbi görüntü analizindeki potansiyellerini 

vurgulamaktadır (Aswani ve Menaka, 2020). VAE'lerin yorumlanabilirliği, araç yörüngelerinin 

tahmin edilmesinde kısmi yorumlanabilirlik sağlayan Tamamlayıcı Varyasyonel Otomatik 

Kodlayıcının (DVAE, Descriptive Variational Autoencoder) geliştirilmesi yoluyla da ele 

alınmıştır (Neumeier ve ark., 2021). 

Sonuç olarak, VAE'ler denetimsiz öğrenmede güçlü bir araç olarak ortaya çıkmış ve tıbbi 

analizden mühendislik tasarımına kadar çeşitli alanlarda uygulanabilirliklerini göstermiştir. 

Kompakt temsilleri öğrenme, gizli uzayı düzenli hale getirme ve aşırı uyum ve sınırlı 

örneklemli veri sınıflandırmasıyla ilgili zorlukları ele alma becerileri, derin öğrenme alanındaki 

önemlerinin altını çizmektedir. 

Bu sınıflandırmalar, yapay sinir ağlarının belirli görevlere nasıl özelleştirilebileceğini ve farklı 

türde veri problemleri için nasıl uyarlanabileceğini göstermektedir. Her tür, belirli bir uygulama 

veya probleme uygun avantajlara sahiptir. 

3.4.  Dalgacık Sinir Ağları (WNN, Wavelet Neural Networks) 

Dalgacık sinir ağları (WNN), dalgacık teorisi ile sinir ağı teorisini bir araya getirmektedir. Bu 

ağlar, sinir ağı teorisinin temel prensiplerini dalgacık teorisi ile birleştirerek, daha etkili bir 

yapay sinir ağı modeli sunmaktadır. Bir dalgacık sinir ağı, aktivasyon fonksiyonu olarak 

orthonormal dalgacık ailesinden seçilmiş, tek gizli katmanlı bir ileri beslemeli sinir ağından 

oluşur. Bu ağlar, karmaşık veri analizi ve işleme problemleri için özellikle etkili sonuçlar 

sağlayabilir (Katz, 1992). 

WNN, bir uygulaması olan bu orthonormal fonksiyonun tahmin edilmesi ile ilgili olarak 

oldukça önemli bir konudur. Bir fonksiyona ait bir dizi gözlenen değer verildiğinde, dalgacık 

ağı bu fonksiyonun yapısını öğrenebilme yeteneğine sahiptir ve ayrıca rastgele girişler için 



69 
 

beklenen değerleri hesaplayabilir. Bu, Katz'ın (1992) çalışmasında da belirtildiği gibi 

gerçekleştirilebilir. 

WNN, (1 + ½) katman sinir ağı ile benzer bir yapıya sahiptir. Bu yapı, bir veya daha fazla girişi 

olan, tek bir gizli katmana sahip, ileri beslemeli bir ağdır. Ayrıca çıkış katmanı, bir veya daha 

fazla doğrusal birleştirici veya toplayıcı içerir (Şekil 3.12). Gizli katmandaki nöronlar, 

aktivasyon fonksiyonları olarak dalgacık tabanlıdır. Bu dalgacık nöronları genellikle "wavelon" 

olarak adlandırılır (Veitch D., 2005). 

WNN, girişlerin işlenmesi ve çıktıların hesaplanması için kullanılır. Bu ağ, çok çeşitli 

uygulamalarda kullanılabilir ve veri analizinde büyük bir rol oynar. Dalgacık sinir ağının 

avantajları arasında esneklik, yüksek performans ve doğrusal olmayan ilişkileri modelleme 

yeteneği bulunur. 

Ağın temel prensibi, giriş verilerini gizli katmandaki dalgacık nöronları tarafından işlenmesidir. 

Bu işleme süreci, dalgaların birleştirilmesi ve çıktının hesaplanmasıyla gerçekleştirilir. 

Dalgacık nöronları, giriş verilerinin özelliklerini yakalamak ve önemli örüntüleri belirlemek 

için kullanılır. Bu sayede, dalgacık sinir ağı karmaşık veri setlerini etkili bir şekilde analiz 

edebilir ve çıktıları tahmin edebilir. 

WNN, birçok alanda kullanılan bir yapay zeka yöntemidir. Özellikle, görüntü işleme, sinyal 

işleme, ses tanıma ve finansal analiz gibi alanlarda başarıyla uygulanmıştır. Bu yöntem, veri 

analizi ve tahminlemeye yönelik birçok sorunu çözmek için kullanılabilir. 

WNN’nin gelecekteki potansiyeli oldukça yüksektir. Yenilikçi araştırmalar ve geliştirmeler, bu 

yöntemin daha da iyileştirilmesini ve genişletilmesini sağlayabilir. Bu nedenle, dalgacık sinir 

ağı, yapay zeka alanındaki ilerlemelerin bir parçası olarak önemli bir rol oynamaya devam 

edecektir. 
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Şekil 3.12. Dalgacık sinir ağı yapısı. 

WNN’yi oluşturmak için iki temel yaklaşım vardır.  

• İlkinde dalgacık ve sinir ağı işlemleri ayrı ayrı gerçekleştirilir. İlk olarak, giriş sinyali, 

gizli katmandaki dalgacık tabanlı nöronlar kullanılarak ayrıştırılır. Ardından, öğrenme 

algoritmasına uygun olarak giriş ağırlıkları değiştirilen bir ya da daha fazla toplayıcıdan 

dalgacık katsayıları çıkış olarak verilir. Bu süreç, dalgacık ve sinir ağlarının etkileşimini 

içerir ve verilerin daha iyi bir şekilde işlenmesini sağlar. Ayrıca, dalgacık tabanlı 

nöronlar sayesinde daha karmaşık örüntülerin tanınması ve analizi de mümkün hale 

gelir. 

• İkincisinde ise iki teori bir araya getirilir. Bu durumda; dalgacıkların öteleme ve 

genişlemesi, toplayıcı ağırlıkları ile birlikte, bazı öğrenme algoritmalarına uygun olarak, 

değiştirilir. Ayrıca, bu değişikliklerin sonucunda, sistemdeki performansın artması 

beklenir. Örneğin, dalgacıkların öteleme ve genişlemesi, toplayıcı ağırlıkları ile birlikte 

optimize edilebilir ve böylece daha etkili bir öğrenme süreci sağlanabilir. Bunun yanı 

sıra, bu değişikliklerin, sistemdeki hataları azaltması ve daha doğru sonuçlar elde 

edilmesini sağlaması hedeflenir. Bu sayede, öğrenme algoritmalarının daha güçlü ve 

verimli bir şekilde çalışması sağlanır. 

Genel olarak, ilk yaklaşım kullanıldığında, sadece ana dalgacığın ikili genişlemesi ve ötelemesi 

dalgacık temelini oluşturmaktadır. Bu tip dalgacık sinir ağları genellikler "wavenet" olarak 

anılmaktadır. İkinci tip yapı ise "dalgacık ağı" olarak adlandırılmaktadır (Veitch D., 2005). 
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Bu yaklaşımın kullanılması, dalgacıkların karmaşık özelliklerini daha iyi anlamamıza ve daha 

etkili sonuçlar elde etmemize yardımcı olabilir. Örneğin, WNN, ses sentezinde veya müzik 

oluşturmada kullanıldığında daha gerçekçi ve doğal sonuçlar verebilir. Ayrıca, WNN yapısı, 

veri sıkıştırma veya görüntü işleme gibi alanlarda da kullanılabilir. Bu sayede, daha fazla veri 

işleme ve analiz yapabiliriz. 

Veitch'in çalışması, dalgacık sinir ağlarının kullanımının farklı alanlarda nasıl 

uygulanabileceğini ve potansiyel faydalarını göstermektedir. Bu nedenle, WNN konseptini 

daha iyi anlamak ve uygulamalarını araştırmak önemlidir. Gelecekte, dalgacık sinir ağları ve 

dalgacık ağı yapısı, daha da geliştirilerek daha geniş bir kullanım alanına sahip olabilir. 

3.4.1. Tek boyutlu dalgacık sinir ağı 

Tek boyutlu dalgacık sinir ağı, bir giriş ile bir çıkıştan oluşan en basit formda bulunur. Bununla 

birlikte, daha fazla ayrıntı eklemek için gizli katman kullanılabilir. Gizli katmanda, giriş 

parametreleri (muhtemelen sabittir) dalgacığın öteleme ve genişleme katsayılarını içeren 

dalgacık nöronları bulunur. Bu dalgacık nöronları, girişlerin küçük bir alan içinde kalması 

durumunda sıfırdan farklı bir çıkış üretir. Bu şekilde, dalgacık sinir ağının çıkışı, dalgacık 

aktivasyon fonksiyonlarının ağırlıklı doğrusal bileşimidir. Bu yapı, daha karmaşık problemleri 

çözebilmek için kullanılabilir ve daha fazla esneklik sağlar. 

Şekil 3.13’de tek çıkışlı dalgacık nöronun yapısı gösterilmektedir. Çıkış; 

𝜓𝜆,𝑡(𝑢) = 𝜓 (
𝑢 − 𝑡

𝜆
) (3.1) 

Şeklinde ifade edilir. λ ve t sırasıyla öteleme ve genişleme parametreleridir. 

 

Şekil 3.13. Dalgacık nöronu. 
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3.4.1.1. Dalgacık ağı 

Tek giriş tek çıkış dalgacık ağı mimarisi Şekil 3.14’te gösterilmiştir. Gizli katman M adet 

dalgacık nöronu içerir. Çıkış nöronu bir toplayıcıdır ve dalgacık nöronlarının çıkışlarının 

ağırlıklı toplamını çıkış olarak verir.  

 𝑦(𝑢) =∑𝑤𝑖𝜓𝜆𝑖,𝑡𝑖(𝑢) + 𝑦̅

𝑀

𝑖=1

 (3.2) 

ȳ değerinin eklenmesinin sebebi, dalgacık fonksiyonu ψ(u) sıfır ortalamalı olduğu sürece, 

ortalaması sıfırdan farklı fonksiyonlarla başa çıkmak içindir. ȳ, ölçekleme fonksiyonu için bir 

yer değiştirme değeridir. 

Bir dalgacık ağa ait tüm parametreler bazı öğrenme algoritmaları ile ayarlanabilir (Veitch 

D., 2005). 

3.4.1.2. Wavenet 

Wavenet mimarisi dalgacık ağı ile aynıdır fakat ti ve 𝜆i parametreleri başlangıçta sabittir ve 

herhangi bir öğrenme prosedürü ile değişmez (Veitch D., 2005). 

 

Şekil 3.14. Dalgacık sinir ağı. 
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Bu kısıtlamanın ana sebeplerinden biri dalgacık analizinden gelmektedir.  Yani, aşağıda verilen 

herhangi bir f(.) fonksiyonu için yeterince büyük bir L değeri seçilerek keyfi bir ayrıntı 

seviyesine yaklaştırılabilir. 

 𝑓(𝑢) ≈∑〈𝑓, 𝜑𝐿,𝑘〉𝜑𝐿,𝑘(𝑢)

𝑘

 (3.3) 

burada φL,k(u) = 2L/2φ(2L u−k) ölçekleme fonksiyonu 2L ile genişletilmiş ve 2-L ikili aralığı ile 

ötelenmiştir.  

Bu nedenle wavenet’in çıkışı; 

 𝑦(𝑢) =∑𝑤𝑖𝜑𝜆𝑖,𝑡𝑖(𝑢)

𝑀

𝑖=1

 (3.4) 

şeklinde olacaktır. Burada M, analiz edilecek fonksiyonun kümesini kapsayacak derecede 

büyük olmalıdır. Şunu da eklemek gerekir ki, ölçekleme fonksiyonunun ortalama değeri 

sıfırdan farklı olduğu sürece düzeltme değeri olan ȳ değerine ihtiyaç olmayacaktır (Veitch D., 

2005). 

3.4.2. Çok boyutlu dalgacık sinir ağı 

Bu tip dalgacık sinir ağında, giriş çok boyutlu bir vektördür ve dalgacık nöronları çok boyutlu 

aktivasyon fonksiyonları içermektedir. Giriş vektörü, çok boyutlu giriş uzayının küçük bir 

alanında kaldığı sürece, dalgacık nöronları sıfırdan farklı bir çıkış üretir. Dalgacık sinir ağının 

çıkışı, bu çok boyutlu dalgacıkların bir tanesinin veya daha fazlasının doğrusal bileşiminden 

oluşur (Veitch D., 2005). 

Şekil 3.15’te çok boyutlu dalgacık sinir ağı için dalgacık nöronun yapısı gösterilmiştir. Çıkış;  

 𝜓(𝑢1, … , 𝑢𝑁) =∏𝜓𝜆𝑛,𝑡𝑛(𝑢𝑛)

𝑁

𝑛=1

  (3.5) 
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şeklinde ifade edilir (Seifollahi ve ark.,2021). Bu dalgacık nöronun etkisi, çok boyutlu bir 

dalgacığa eşdeğerdir.  

 

Şekil 3.15. Çok boyutlu dalgacık aktivasyon fonksiyonlu dalgacık nöronu. 

Çok boyutlu dalgacık sinir ağının mimarisi Şekil 3.15’de gösterilmiştir. Gizli katman M adet 

dalgacık nöronu, çıkış katmanı ise K adet toplayıcı içerir. Ağın çıkışı aşağıdaki gibi ifade 

edilir. 

 𝑦𝑗 =∑𝑤𝑖𝑗𝜓𝑖(𝑢1, … , 𝑢𝑁) + 𝑦̅𝑗     (𝑗 = 1,… , 𝐾)

𝑀

𝑖=1

 (3.6) 

Burada, ȳi değerine, ortalaması sınırdan farklı fonksiyonlarla başa çıkabilmek için ihtiyaç 

duyulmaktadır. 

Dolayısıyla, ağın giriş – çıkış ifadesi aşağıdaki gibi tanımlanabilir; 

 𝑦(𝑢) =∑𝑤𝑖𝜓𝑖(𝑢) + 𝑦̅

𝑀

𝑖=1

 burada 

{
 

 
𝑦 = (𝑦1, … , 𝑦𝐾)

𝑤𝑖 = (𝑤𝑖1, … , 𝑤𝑖𝐾)

𝑢 = (𝑢1, … , 𝑢𝑁)

𝑦̅ = (𝑦̅1, … , 𝑦̅𝐾)

 (3.7) 
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3.5.  Hibrit Model İşlem Adımları 

Tez çalışmamızda oluşturmak istediğimiz hibrit modelin işlem adımları Şekil 3.16’da 

verilmiştir. 

ATMOSFERİK VERİ I
(BASINÇ)

ATMOSFERİK VERİ II
(SICAKLIK)

ATMOSFERİK VERİ III
(NEM)

NORMALİZASYON NORMALİZASYON NORMALİZASYON

VERİ AYRIŞTIRMA 
MODEL I

VERİ AYRIŞTIRMA 
MODEL I

VERİ AYRIŞTIRMA 
MODEL I

VERİ AYRIŞTIRMA 
MODEL II

VERİ AYRIŞTIRMA 
MODEL II

VERİ AYRIŞTIRMA 
MODEL II

SİNİR AĞI TAHMİNLEME MODELİ

TAHMİNLENEN 
RÜZGAR HIZI

NORMALİZASYON NORMALİZASYON NORMALİZASYON

 

Şekil 3.16. Hibrit Model Algoritması 
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• Atmosferik zaman verileri için 2020 yılına ait 10 dakika çözünürlüklü basınç, sıcaklık 

ve nem verileri kullanılmıştır. Her ayın ilk gününe ait 24 saate karşılık gelen her bir 

atmosferik veri için 144 veri noktasından oluşan veri setleri oluşturulmuştur.  

• Veriler ayrıştırma ve tahminleme işlemi öncesinde normalizasyon işlemine tabi 

tutulmuştur. 

• Birincil ayrıştırma işlemine tabi tutulan verilerden içsel mod fonksiyonları elde edilecek 

şekilde ayrıştırılmıştır. 

• İlk içsel mod fonksiyonları, içsel mod fonksiyonları arasında en düzensiz ve sistematik 

olmayan kısımlar olması sebebiyle tahmin zorluğunu artırmaktadır. Bu etkiyi azaltmak 

için 1. içsel mod fonksiyonları ikincil ayrıştırma işlemine tabi tutulmuştur. 

• Birincil ve ikincil ayrıştırma sonrasında elde edilen içsel mod fonksiyonları tekrar 

normalizasyon işlemine tabi tutularak veri boyutlandırması düzenlenmiştir. 

• İkincil ayrıştırma sonucu elde edilen veri setlerinden ilk 6 zaman noktasına ait basınç, 

sıcaklık ile nem verisi (00:00-00:50) zaman aralığı ve 01:00 saatine ait rüzgar hızı verisi  

sinir ağını eğitmek için kullanılmıştır. Ardından zaman serisi verisi 1 adım ileri 

kaydırılarak (00:10-01:00) sinir ağı girişi olarak kullanılarak 01:10 zaman noktasına ait 

rüzgar hızı tahmin edilmeye çalışılmıştır. Bu işlem her döngüne 1 adım ileri kaydırılarak 

144 adet (24 saatlik) veri tahminlenene kadar sürdürülmüştür. Yapılan işlem Şekil 

3.17’de gösterilmiştir. 

 

Şekil 3.17. Sinir ağı eğitim ve tahmin süreci 
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Veri ayrıştırma yöntemleri bölümünde bahsi geçen yöntemlerden dört tanesi ile ikili 

kombinasyonlar oluşturularak, Tablo 3.2’de verilen ikili ayrıştırma yapıları oluşturulmuştur.  

Tablo 3.2. Veri ayrıştırma model listesi 

VERİ 

AYRIŞTIRMA 

MODELİ 

BİRİNCİL VERİ AYRIŞTIRMA 

YÖNTEMİ 

İKİNCİL VERİ AYRIŞTIRMA 

YÖNTEMİ 

MODEL 1 CEEMDAN CEEMDAN 

MODEL 2 CEEMDAN EEMD 

MODEL 3 CEEMDAN LMD 

MODEL 4 CEEMDAN VMD 

MODEL 5 EEMD CEEMDAN 

MODEL 6 EEMD EEMD 

MODEL 7 EEMD LMD 

MODEL 8 EEMD VMD 

MODEL 9 LMD CEEMDAN 

MODEL 10 LMD EEMD 

MODEL 11 LMD LMD 

MODEL 12 LMD VMD 

MODEL 13 VMD CEEMDAN 

MODEL 14 VMD EEMD 

MODEL 15 VMD LMD 

MODEL 16 VMD VMD 

 

3.5.1. Normalizasyon  

Yapay sinir ağlarında, ağ giriş ve çıkışlarına belirli ön işlem adımları uygulayarak yapay sinir 

ağına sunulan verilerin eğitimi daha verimli hale getirilebilir. Ağ giriş işlem fonksiyonları, ağ 

kullanımını daha iyi bir forma dönüştürür. Normalleştirme işlemi ham verilere uygulanarak ve 

bu verilerin eğitim için uygun veri setinin hazırlanmasına etkisi vardır. Yapay sinir ağların 

eğitimi, ham veri setine normalizasyon yöntemi uygulanmadan çok yavaş olabilir. 
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Normalleştirme işlemlerinde farklı teknikler kullanılabilir. Literatürde birçok veri 

normalizasyon çeşidi vardır. Bunlar; Min kuralı, Max kuralı, Medyan, Sigmoid ve Z-Score gibi 

kurallar olarak sıralanabilir (Jayalakshmi ve Santhakumaran , 2011). 

Seçilen modelin girdi ve çıktıların ölçeklendirilmesi (normalizasyon) ağın başarımını yakından 

etkilemektedir. Çünkü normalizasyon, veri setindeki değerlerin dağılımını düzenli hale 

getirmektedir. YSA girdileri arasında aşırı büyük veya küçük değerler görülebilir. Bunlar 

yanlışlıkla girdi setine girmiş olabilir. Net girdiler hesaplanırken bu değerler aşırı büyük veya 

küçük değerlerin doğmasına neden olarak ağı yanlış yönlendirebilirler. Bütün girdilerin belirli 

aralıkta (çoğunlukla 0-1 aralığında) ölçeklendirilmesi hem farklı ortamlardan gelen bilgilerin 

aynı ölçek üzerine indirgenmesine hem de yanlış girilen çok büyük ve küçük şekildeki 

değerlerin etkisinin ortadan kalkmasına neden olur. Bazı araştırmacılar ise kendi problemlerine 

özgü ölçeklendirme yöntemleri geliştirmektedir. Her problem için farklı bir ölçeklendirme 

yöntemi kullanılabilir. Tasarımcılar, ellerindeki verileri normalize edecek bir yaklaşımı 

kendileri belirleyebilir. Bu konuda bir standart koymak doğru olmayacaktır (Öztemel, 2003). 

Bu çalışmada hazırlanan basınç, sıcaklık, nem ve rüzgar hızı verilerinin normalizasyonu için 

farklı teknikler üzerinde denemeler yapılmış ve en başarılı sonuçlar D_Min_Max 

Normalizasyonu tekniğinde ortaya çıkmıştır. Normalizasyon yapılarak veriler boyutsuz hale 

getirilmiştir (Doğan ve ark., 2007). Bu yöntem için aşağıdaki eşitlik kullanılır. 

𝑥′ = 0,8 ∗
𝑥𝑖 − 𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

+ 0,1 (3.8) 

 

Bu eşitlikte;  

x'; Normalize edilmiş veriyi,  

xi; Girdi değerini,  

xmin; Girdi seti içerisinde yer alan en küçük sayıyı,  

xmax; Girdi seti içerisinde yer alan en büyük sayıyı,  ifade etmektedir. 

İkili ayrıştırma için oluşturulmuş olan 16 adet modele giriş verisini sağlayacak olan basınç, 

sıcaklık ve nem verileri, yukarıda verilen denklem ile 0,1 ile 0,9 arasında normalize edilerek 

ayrıştırma işlemine tabi tutulmuştur. 
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3.5.2. Sinir Ağı Mimarisinin Belirlenmesi  

Tokat Gaziosmanpaşa Üniversitesi Taşlıçiftlik Kampüsü yerleşkesine konuşlandırılan ölçüm 

istasyonundan alınan 10 dakika aralıklı sıcaklık, nem, basınç ve 40 m yükseklikteki hız verileri 

kullanılarak öncelikli olarak çok kısa vadeli rüzgar hızı tahmini yapılmaya çalışılmıştır. 

Seçilen mimari basınç, sıcaklık ve nem için birer giriş, rüzgar hızı için bir çıkış olacak şekilde 

bir girdi katmanı, bir çıktı katmanı ve bir gizli katmanlı ağ yapısı şeklindedir. Gizli katmandaki 

nöron sayısı ile ilgili hesaplamalarda literatürde birden fazla yöntemin olduğu ve tam olarak 

kaç olması gerektiğine ilişkin belirli bir kural olmadığı görülmektedir (Baily ve Thomson, 

1990). Bir girdi katmanı, bir gizli katman ve bir çıktı katmanından oluşan üç katmanlı bir YSA 

için, gizli nöron sayısının, girdi katmanındaki nöron sayısının %75’i olması gerektiğini ileri 

sürmüştür. Katz(1992), en uygun gizli nöron sayısının, giriş katmanındaki nöron sayısının 1,5 

katı ile 3 katı arasında olduğunu ileri sürmektedir. Doig (1999)’e göre ise gizli katmanda olması 

gereken nöron sayısının gizli katman sayısına göre çok daha fazla alternatife sahip olduğundan 

uygun sayıyı belirlemek üzere aşağıdaki formülden yararlanılabileceğini söylemiştir. 

𝑁𝑆 =

1
2 (𝑁𝑔 + 𝑁ç) + √𝑁𝑑

𝑁𝑏
 (3.9) 

Ns: Gizli katmandaki nöron sayısını  

Ng: Girdi katmanındaki nöron sayısını  

Nç: Çıktı katmanındaki nöron sayısını  

Nd: Gözlem sayısını  

Nb: Katman sayısını göstermektedir.  

Bu formüle göre çalışmada oluşturulan yapay sinir ağı modellerinde 40 m yükseklikteki rüzgar 

hızı tahmin eden model için 144 gözlem sayısı için bir gizli katmandaki nöron sayısı 14 olarak 

hesaplanmıştır.  

Gizli katmandaki nöron sayısı öncelikle 14 olarak denenmiştir ve daha sonra sayı azaltıp 

artırılarak tahmin sonuçları birbirleriyle kıyaslanmıştır. En iyi tahmin sonuçlarının 10 gizli 

nöron sayısına sahip modelde olduğu görülmüştür. Böylelikle bir girdi katmanı, bir çıktı 
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katmanı ve bir gizli katmanlı ağ yapısı için tüm modellerde 10 nöron ya da 10 dalgacık nöronu 

kullanılmıştır. 

3.5.3. Sinir Ağlarının Eğitilmesi  

İleri beslemeli ağlarda kullanılan öğrenme algoritmaları, performans fonksiyonunu en küçük 

yapacak ağırlıkları ayarlayabilmek için, performans fonksiyonunun gradyenini kullanırlar. 

Geriye yayılım algoritması da, ağ boyunca gradyen hesaplamalarını geriye doğru yapar. En 

basit geriye yayılım öğrenme algoritması gradyen azalması algoritmasıdır. Bu algoritmada 

ağırlıklar, performans fonksiyonunun azalması yönünde ayarlanır. Fakat bu yöntem, pek çok 

problem için çok yavaş kalmaktadır. Bu algoritmadan daha hızlı, daha yüksek performanslı 

algoritmalar da vardır. 

Hızlı algoritmalar genel olarak iki kategoriye ayrılabilir. İlk kategorideki algoritmalar, deneme 

yanılma tekniklerini kullanarak, standart gradyen azalması (steepest descent) yönteminden 

daha iyi sonuçlar verebilir. Deneme-yanılma işlemlerini kullanan geriye yayılım algoritmaları; 

momentum terimli geriye yayılım, öğrenme hızı değişen geriye yayılım ve esnek geriye yayılım 

algoritmalarıdır. Hızlı algoritmaların ikinci kategorisindeki algoritmalar, standart sayısal 

optimizasyon yöntemlerini kullanır. Bu algoritmalar; eşlenik gradyen öğrenme algoritması, 

Newton öğrenme algoritmaları ve Levenberg - Marquardt öğrenme algoritmasıdır.  

Öğrenme algoritmaları, kendisinden önce geliştirilen algoritmalara alternatif olarak ortaya 

çıkmıştır ve önceki algoritmaların iyi yönlerini geliştirip, kötü yönlerini azaltmaya yönelmiştir. 

Levenberg - Marquardt algoritması da, Newton ve Gradyen Azalması algoritmalarının en iyi 

özelliklerinden oluşur ve kısıtlamalarını ortadan kaldırır (Bolat ve Kalenderli, 2003). 

Seçilen ağ mimarisinde ileri beslemeli yapay sinir ağına ait nöronların eğitilmesi için 

Levenberg-Marquardt algoritması tercih edilmiştir. Geriye yayılım algoritması, yapay sinir 

ağlarında en çok kullanılan algoritmadır. Geriye yayılım öğrenmesi sırasında ağ, her giriş 

örüntüsünü, çıkış nöronlarında sonuç üretmek üzere gizli katmanlardaki nöronlardan geçirir. 

Daha sonra çıkış katmanındaki hataları bulabilmek için, beklenen sonuçla, elde edilen sonuç 

karşılaştırılır. Bundan sonra, çıkış hatalarının türevi çıkış katmanından geriye doğru gizli 

katmanlara geçirilir. Hata değerleri bulunduktan sonra, nöronlar kendi hatalarını azaltmak için 
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ağırlıklarını ayarlar. Ağırlık değiştirme denklemleri, ağdaki performans fonksiyonunu en küçük 

yapacak şekilde düzenlenir. 

3.5.4. YSA Aktivasyon Fonksiyonları 

YSA yapılarında en sık kullanılan aktivasyon fonksiyonlardan biri, Şekil 3.18a'da gösterilen 

Log-sigmoid transfer fonksiyonudur (LOGSIG). Bu transfer fonksiyonu, girdiyi (artı ve eksi 

sonsuz arasında herhangi bir değere sahip olabilir) alır ve çıktıyı 0 ile 1 aralığına sıkıştırır. Log-

sigmoid transfer işlevi, kısmen bu işlevin türevlenebilir olması nedeniyle, geri yayılım 

algoritması kullanılarak eğitilmiş çok katmanlı ağlarda yaygın olarak kullanılır. 

Sinir ağları terminolojisinde hiperbolik tanjant transfer fonksiyonu (TANSIG, Şekil 3.18b), -1 

ile +1 aralığında bir çıkışı olan iki kutuplu bir sigmoid ile ilgilidir. Bu aktivasyon matematiksel 

olarak tanh(n) fonksiyonuna eşdeğerdir. Tanh'den daha hızlı çalışması bakımından farklıdır, 

ancak sonuçlar çok küçük sayısal farklılıklara sahip olabilir. Bu fonksiyon, hızın şekilden daha 

önemli olduğu sinir ağları için tercih edilen bir transfer fonksiyonudur. 

Çoğu gerçek model, doğrusal olmayan giriş/çıkış özelliklerine sahiptir. Ancak bazı modeller, 

nominal parametreler içinde çalıştırıldığında (aşırı tahrikli değil) doğrusala yeterince yakın bir 

davranışa sahiptir. Purelin Transfer işlevi (Şekil 3.18c), bu tür durumlarda giriş/çıkış 

davranışının kabul edilebilir bir temsili olabilir. 

 

(a)                                             (b)                                            (c) 

Şekil 3.18. (a) Log-Sigmoid Transfer Fonksiyonu (b) Tan-Sigmoid Transfer Fonksiyonu (c) 

Purelin Transfer Fonksiyonu   

 

 

 



82 
 

3.5.5. DSA Aktivasyon Fonksiyonları 

Tablo 3.3’te Dalgacık Sinir Ağı oluşturmak için seçilen 13 adet dalgacık fonksiyonlarının listesi 

verilmiştir (Othmani ve ark., 2012; Seifollahi ve ark.,2021) 

Tablo 3.3. Dalgacık Aktivasyon Fonksiyonları 

Fonksiyon 

Adı 
Matematiksel Formülü 

Mexican Hat 𝑓(𝑥) = (
2

√3
𝜋1 4⁄ ) 𝑒−

𝑥2

2 (1 − 𝑥2) 

Morlet 𝑓(𝑥) = 𝑒(−(𝑥
2) 2⁄ ) ∗ cos(5 ∗ 𝑥) 

Polywog1 𝑓(𝑥) = 𝑥 ∗ 𝑒−
𝑥2

2  

Polywog2 𝑓(𝑥) = 𝑒−
𝑥2

2 (−3𝑥 + 𝑥3) 

Polywog3 𝑓(𝑥) = 𝑒−
𝑥2

2 (3 − 6𝑥2 + 𝑥4) 

Polywog4 𝑓(𝑥) = 𝑒−
𝑥2

2 (1 − 𝑥2) 

Polywog5 𝑓(𝑥) = 𝑒−
𝑥2

2 (3𝑥2 − 𝑥4) 

Rasp1 𝑓(𝑥) =
𝑥

(1 + 𝑥2)2
 

Rasp2 𝑓(𝑥) =
𝑥Cos[𝑥]

1 + 𝑥2
 

Rasp3 𝑓(𝑥) =
Sinπx

−1 + 𝑥2
 

Shannon 𝑓(𝑥) = ((sin 2𝜋𝑥) − sin(𝜋𝑥)) (𝜋𝑥)⁄  

Slog1 𝑓(𝑥) = −
1

1 + 𝑒−3−𝑥
+

1

1 + 𝑒−1−𝑥
+

1

1 + 𝑒1−𝑥
−

1

1 + 𝑒3−𝑥
 

Slog2 𝑓(𝑥) = −
1

1 + 𝑒−3−𝑥
+

3

1 + 𝑒−1−𝑥
−

3

1 + 𝑒1−𝑥
+

1

1 + 𝑒3−𝑥
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Dalgacık Sinir Ağı mimarisinde, bir önceki dönemde kullanılmış olan Yapay Sinir Ağı 

mimarisinin aynısı kullanılmıştır. DSA yine YSA’nın öğrenme algoritması ile eğitilmiştir. 

Klasik YSA aktivasyon fonksiyonları yerine Tablo 3.3’te verilen 13 adet dalgacık aktivasyon 

fonksiyonu kullanılmıştır. 16 adet ikili ayrıştırma modeli ile YSA ve DSA’nın toplam 16 

aktivasyon fonksiyonu çapraz eşleştirilerek 256 ayrı hibrit model oluşturulmuştur.  

3.5.6. Hibrit Modellerin Başarımı  

İkincil ayrıştırmalı – YSA/DSA tabanlı modellerin başarımının ölçümü için kullanılan birinci 

ölçü, (3.10) eşitliği ile verilen toplam karesel hatanın ortalaması alınarak aşağıdaki gibi 

hesaplanır (Ortalama Karesel Hata, Mean Squared Error, MSE)). Hata kareleri ortalaması 

sayısal kestirimler için en çok kullanılan başarı ölçülerinden biridir. Bu değer, her hesaplanan 

değer ve onun karşılık gelen doğru değer arasındaki farkın karelerinin ortalaması alınarak 

hesaplanır. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝜀𝑖)

2

𝑛

𝑖=1

=
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 (3.10) 

 

Model başarımının ölçümü için kullanılan ikinci ölçü (3.11) eşitliği ile verilen ortalama karesel 

hatanın karekökünün alınması suretiyle belirlenen hatadır (Kök Ortalama Kare Hatası, Root 

Mean Squared Error, RMSE). RMSE model veya kestirimci tarafından kestirimi yapılan 

değerler ve modellenen veya kestirimi yapılandan elde edilen gerçek değerler arasındaki farkın 

ölçüsü olarak sıklıkla kullanılır (Challagulla ve ark, 2005). 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝜀𝑖)2
𝑛

𝑖=1

= √
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)2
𝑛

𝑖=1

 (3.11) 

 

          RMSE basitçe MSE’nin kareköküdür. RMSE hata değerini gerçek ve kestirilen değerdeki 

gibi aynı boyutta verir. 
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4. BULGULAR VE TARTIŞMA 

4.1.  Bulgular 

Yaptığımız çalışmanın ilk edabında, 16 adet ikili ayrıştırma modeli ve 16 adet aktivasyon 

fonksiyonu (3 adet klasik YSA+13 adet DSA aktivasyon fonksiyonu) ile oluşturulmuş olan 256 

hibrit model için 1 Ocak 2020 tarihi için yapılan 10 dakika çözünürlüklü 24 saatlik rüzgar hızı 

tahminlemesi yapılmıştır. Bir sonraki adımda, oluşturmuş olduğumuz 256 hibrit modelin 

mevsim değişiklikleri sebebiyle oluşacak farklı atmosferik koşullardaki tepkilerini 

belirleyebilmek için üç farklı ay daha seçilerek simülasyonlar yapılmıştır. Öncelikli olarak 

model simülasyonları yapılacak aylar, mevsimlerin ortasına gelecek şekilde seçilerek, 

mevsimsel şartların stabilize olmasını garanti edilmiştir. İlk olarak gerçekleştirmiş olduğumuz 

1 Ocak 2020 simülasyonları kış mevsimine referans olacak şekilde, ilkbahar için 1 Nisan 2020, 

yaz için 1 Temmuz 2020 ve sonbahar için 1 Ekim 2020 tarihlerine ait veriler ile 256 hibrit 

model test edilmiştir. 

Çalışmamızın ikinci safhasında hibrit modellerin tepkilerini tüm yıl da görebilmek için 

mevsimlere ait simülasyon sonuçlarını baz alarak hem ayrıştırma modellerinin sayılarında hem 

de aktivasyon fonksiyonlarının sayılarında indirgemeye gidilerek hibrit model sayısı 

azaltırmıştır.  

Hibrit model sayısının belirlenmesinde; 4 farklı mevsime ait 256 hibrit modelin, MSE ve RMSE 

sonuçları incelenerek en düşük hata ortalamalarına ait 2 tanesi Yapay Sinir Ağı (YSA), 6 tanesi 

Dalgacık Sinir Ağı (DSA) aktivasyon fonksiyonu olacak şekilde toplam aktivasyon fonksiyonu 

sayısı 8’e indirgenmişti.  

Benzer şekilde ikili ayrıştırma modellerinin sayısı da; 256 hibrit modelin, MSE ve RMSE 

sonuçları incelenerek en düşük hata ortalamalarına sahip her mevsimsel sonuçtaki en iyi 8’er 

ayrıştırma modeli sıralanarak, 4 mevsim bazlı simülasyonun en az %75’inde ilk 8’e girebilmiş 

6 adet ayrıştırma modeli seçilmiştir. (Tablo 4.9)
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Tablo 4.1. Ocak ayı için hibrit modellere ait Ortalama Karesel Hata (MSE) değerleri  

 AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG PURELIN MORLET MEXICAN HAT POLYWOG1 POLYWOG2 POLYWOG3 POLYWOG4 POLYWOG5 RASP1 RASP2 RASP3 SHANNON SLOG1 SLOG2 

CEEMDAN+CEEMDAN 0.0131 0.0080 0.0289 0.0128 0.0078 0.0060 0.0206 0.0410 0.0072 0.0102 0.0058 0.0067 0.0201 0.0151 0.0058 0.0061 

CEEMDAN+EEMD 0.0155 0.0052 0.0369 0.0110 0.0061 0.0065 0.0167 0.0594 0.0085 0.0126 0.0050 0.0079 0.0214 0.0134 0.0043 0.0065 

CEEMDAN+LMD 0.0089 0.0112 0.0733 0.0153 0.0049 0.0075 0.0178 0.0530 0.0095 0.0167 0.0096 0.0068 0.0181 0.0120 0.0062 0.0050 

CEEMDAN+VMD 0.0129 0.0063 0.0265 0.0128 0.0068 0.0071 0.0131 0.0343 0.0089 0.0151 0.0070 0.0065 0.0229 0.0121 0.0046 0.0037 

EEMD+CEEMDAN 0.0123 0.0085 0.0242 0.0102 0.0058 0.0045 0.0129 0.0444 0.0089 0.0158 0.0079 0.0073 0.0239 0.0176 0.0048 0.0043 

EEMD+EEMD 0.0121 0.0075 0.1443 0.0087 0.0071 0.0064 0.0101 0.0440 0.0092 0.0144 0.0052 0.0069 0.0103 0.0102 0.0056 0.0067 

EEMD+LMD 0.0142 0.0055 0.0197 0.0164 0.0074 0.0074 0.0123 0.0532 0.0169 0.0084 0.0070 0.0074 0.0199 0.0166 0.0057 0.0040 

EEMD+VMD 0.0119 0.0063 0.0299 0.0087 0.0080 0.0059 0.0152 0.0335 0.0115 0.0145 0.0072 0.0080 0.0224 0.0109 0.0040 0.0038 

LMD+CEEMDAN 0.0091 0.0107 0.0160 0.0096 0.0053 0.0055 0.0199 0.0503 0.0090 0.0078 0.0051 0.0059 0.0263 0.0068 0.0055 0.0057 

LMD+EEMD 0.0127 0.0088 0.0134 0.0126 0.0074 0.0072 0.0127 0.0483 0.0121 0.0168 0.0068 0.0064 0.0190 0.0068 0.0047 0.0047 

LMD+LMD 0.0121 0.0078 0.0282 0.0114 0.0064 0.0101 0.0153 0.0381 0.0115 0.0116 0.0069 0.0058 0.0185 0.0104 0.0045 0.0044 

LMD+VMD 0.0115 0.0071 0.0232 0.0147 0.0069 0.0075 0.0082 0.0351 0.0072 0.0151 0.0064 0.0066 0.0194 0.0125 0.0049 0.0060 

VMD+CEEMDAN 0.0154 0.0070 0.0167 0.0156 0.0075 0.0049 0.0132 0.0605 0.0088 0.0158 0.0057 0.0061 0.0172 0.0079 0.0059 0.0045 

VMD+EEMD 0.0160 0.0052 0.0270 0.0120 0.0065 0.0075 0.0094 0.0496 0.0091 0.0116 0.0042 0.0068 0.0228 0.0123 0.0045 0.0052 

VMD+LMD 0.0178 0.0052 0.0338 0.0137 0.0058 0.0070 0.0126 0.0535 0.0060 0.0106 0.0079 0.0079 0.0205 0.0152 0.0054 0.0048 

VMD+VMD 0.0080 0.0052 0.0214 0.0144 0.0078 0.0059 0.0158 0.0464 0.0091 0.0117 0.0058 0.0081 0.0185 0.0134 0.0055 0.0063 

 

(Renklendirme; her bir ayrıştırma tekniği için aktivasyon fonksiyonlarının en iyi MSE değeri yeşil, en kötü MSE değeri kırmızı olacak şekilde yapılmıştır.) 
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Tablo 4.2. Ocak ayı için hibrit modellere ait Kök Ortalama Kare Hatası (RMSE) değerleri  

 AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG PURELIN MORLET MEXICAN HAT POLYWOG1 POLYWOG2 POLYWOG3 POLYWOG4 POLYWOG5 RASP1 RASP2 RASP3 SHANNON SLOG1 SLOG2 

CEEMDAN+CEEMDAN 0,1147 0,0895 0,1699 0,1132 0,0882 0,0773 0,1434 0,2025 0,0847 0,1010 0,0763 0,0817 0,1417 0,1229 0,0763 0,0780 

CEEMDAN+EEMD 0,1247 0,0718 0,1921 0,1048 0,0780 0,0808 0,1291 0,2437 0,0921 0,1121 0,0708 0,0888 0,1462 0,1157 0,0652 0,0805 

CEEMDAN+LMD 0,0944 0,1060 0,2707 0,1238 0,0699 0,0865 0,1335 0,2302 0,0972 0,1291 0,0979 0,0825 0,1347 0,1093 0,0789 0,0704 

CEEMDAN+VMD 0,1136 0,0792 0,1626 0,1129 0,0826 0,0843 0,1146 0,1852 0,0941 0,1228 0,0838 0,0809 0,1512 0,1099 0,0682 0,0610 

EEMD+CEEMDAN 0,1109 0,0924 0,1554 0,1010 0,0760 0,0669 0,1134 0,2108 0,0944 0,1259 0,0889 0,0852 0,1547 0,1327 0,0696 0,0656 

EEMD+EEMD 0,1101 0,0867 0,3799 0,0935 0,0842 0,0803 0,1005 0,2097 0,0961 0,1199 0,0720 0,0829 0,1016 0,1012 0,0748 0,0816 

EEMD+LMD 0,1193 0,0743 0,1404 0,1282 0,0860 0,0858 0,1107 0,2305 0,1301 0,0916 0,0835 0,0862 0,1410 0,1287 0,0752 0,0629 

EEMD+VMD 0,1093 0,0792 0,1728 0,0934 0,0892 0,0768 0,1234 0,1831 0,1072 0,1205 0,0850 0,0894 0,1496 0,1044 0,0631 0,0616 

LMD+CEEMDAN 0,0956 0,1033 0,1263 0,0979 0,0725 0,0739 0,1411 0,2244 0,0951 0,0880 0,0713 0,0770 0,1622 0,0822 0,0741 0,0758 

LMD+EEMD 0,1126 0,0938 0,1159 0,1123 0,0859 0,0850 0,1128 0,2198 0,1098 0,1297 0,0825 0,0803 0,1377 0,1090 0,0686 0,0685 

LMD+LMD 0,1102 0,0885 0,1680 0,1068 0,0800 0,1003 0,1236 0,1951 0,1073 0,1078 0,0829 0,0762 0,1359 0,1022 0,0672 0,0662 

LMD+VMD 0,1073 0,0843 0,1524 0,1213 0,0829 0,0867 0,0906 0,1874 0,0847 0,1231 0,0798 0,0813 0,1394 0,1117 0,0703 0,0776 

VMD+CEEMDAN 0,1241 0,0838 0,1294 0,1251 0,0868 0,0702 0,1149 0,2460 0,0940 0,1255 0,0753 0,0780 0,1313 0,0888 0,0768 0,0670 

VMD+EEMD 0,1264 0,0721 0,1643 0,1096 0,0807 0,0866 0,0970 0,2226 0,0956 0,1077 0,0649 0,0827 0,1511 0,1109 0,0673 0,0721 

VMD+LMD 0,1334 0,0786 0,1839 0,1171 0,0762 0,0837 0,1121 0,2313 0,0771 0,1031 0,0888 0,0886 0,1433 0,1234 0,0732 0,0695 

VMD+VMD 0,0894 0,0758 0,1463 0,1200 0,0883 0,0771 0,1256 0,2155 0,0953 0,1082 0,0760 0,0901 0,1360 0,1159 0,0741 0,0796 

 

(Renklendirme; her bir ayrıştırma tekniği için aktivasyon fonksiyonlarının en iyi RMSE değeri yeşil, en kötü RMSE değeri kırmızı olacak şekilde yapılmıştır.) 
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Tablo 4.3. Nisan ayı için hibrit modellere ait Ortalama Karesel Hata (MSE) değerleri 

 
AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG PURELIN MORLET MEXICAN HAT POLYWOG1 POLYWOG2 POLYWOG3 POLYWOG4 POLYWOG5 RASP1 RASP2 RASP3 SHANNON SLOG1 SLOG2 

CEEMDAN+CEEMDAN 0,0273 0,0115 0,0310 0,0163 0,0163 0,0102 0,0197 0,0677 0,0177 0,0141 0,0129 0,0084 0,0368 0,0187 0,0070 0,0084 

CEEMDAN+EEMD 0,0183 0,0090 0,0308 0,0146 0,0135 0,0089 0,0218 0,0652 0,0151 0,0141 0,0084 0,0105 0,0205 0,0126 0,0078 0,0075 

CEEMDAN+LMD 0,0208 0,0076 0,0440 0,0201 0,0121 0,0100 0,0250 0,0643 0,0135 0,0171 0,0097 0,0086 0,0226 0,0178 0,0073 0,0074 

CEEMDAN+VMD 0,0160 0,0142 0,0203 0,0158 0,0139 0,0092 0,0198 0,0952 0,0173 0,0129 0,0105 0,0079 0,0210 0,0223 0,0084 0,0064 

EEMD+CEEMDAN 0,0178 0,0081 0,0818 0,0168 0,0111 0,0108 0,0168 0,0655 0,0123 0,0178 0,0102 0,0091 0,0269 0,0170 0,0113 0,0092 

EEMD+EEMD 0,0154 0,0105 0,0314 0,0202 0,0169 0,0095 0,0238 0,0663 0,0187 0,0194 0,0086 0,0110 0,0250 0,0169 0,0089 0,0080 

EEMD+LMD 0,0232 0,0082 0,0273 0,0177 0,0111 0,0103 0,0208 0,0521 0,0118 0,0215 0,0096 0,0095 0,0198 0,0163 0,0099 0,0078 

EEMD+VMD 0,0161 0,0149 0,0289 0,0147 0,0136 0,0107 0,0298 0,0674 0,0130 0,0200 0,0106 0,0103 0,0282 0,0101 0,0096 0,0071 

LMD+CEEMDAN 0,0210 0,0100 0,0215 0,0168 0,0090 0,0084 0,0175 0,0407 0,0094 0,0246 0,0080 0,0106 0,0255 0,0124 0,0081 0,0103 

LMD+EEMD 0,0136 0,0109 0,0183 0,0177 0,0116 0,0097 0,0274 0,0564 0,0125 0,0160 0,0079 0,0086 0,0274 0,0171 0,0066 0,0103 

LMD+LMD 0,0123 0,0081 0,0199 0,0178 0,0111 0,0108 0,0203 0,0562 0,0127 0,0145 0,0072 0,0076 0,0206 0,0210 0,0081 0,0086 

LMD+VMD 0,0267 0,0126 0,0372 0,0137 0,0133 0,0086 0,0292 0,0572 0,0155 0,0192 0,0096 0,0073 0,0235 0,0140 0,0078 0,0118 

VMD+CEEMDAN 0,0135 0,0137 0,0242 0,0172 0,0088 0,0081 0,0193 0,0466 0,0095 0,0142 0,0073 0,0092 0,0255 0,0196 0,0086 0,0081 

VMD+EEMD 0,0143 0,0122 0,0173 0,0150 0,0104 0,0116 0,0221 0,0611 0,0106 0,0201 0,0064 0,0105 0,0400 0,0132 0,0064 0,0079 

VMD+LMD 0,0125 0,0152 0,0218 0,0132 0,0168 0,0108 0,0204 0,0791 0,0176 0,0163 0,0145 0,0085 0,0201 0,0148 0,0119 0,0076 

VMD+VMD 0,0168 0,0091 0,0428 0,0194 0,0110 0,0118 0,0187 0,0605 0,0128 0,0180 0,0082 0,0118 0,0266 0,0202 0,0101 0,0087 

 

(Renklendirme; her bir ayrıştırma tekniği için aktivasyon fonksiyonlarının en iyi MSE değeri yeşil, en kötü MSE değeri kırmızı olacak şekilde yapılmıştır.) 
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Tablo 4.4. Nisan ayı için hibrit modellere ait Kök Ortalama Kare Hatası (RMSE) değerleri 

 AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG PURELIN MORLET MEXICAN HAT POLYWOG1 POLYWOG2 POLYWOG3 POLYWOG4 POLYWOG5 RASP1 RASP2 RASP3 SHANNON SLOG1 SLOG2 

CEEMDAN+CEEMDAN 0,1652 0,1071 0,1761 0,1278 0,1275 0,1012 0,1404 0,2602 0,1332 0,1188 0,1137 0,0916 0,1918 0,1369 0,0838 0,0918 

CEEMDAN+EEMD 0,1354 0,0948 0,1754 0,1210 0,1164 0,0945 0,1477 0,2554 0,1227 0,1187 0,0919 0,1025 0,1431 0,1124 0,0884 0,0864 

CEEMDAN+LMD 0,1443 0,0873 0,2099 0,1419 0,1102 0,1002 0,1582 0,2536 0,1163 0,1309 0,0983 0,0928 0,1502 0,1333 0,0856 0,0860 

CEEMDAN+VMD 0,1264 0,1190 0,1424 0,1258 0,1179 0,0960 0,1408 0,3085 0,1316 0,1136 0,1025 0,0889 0,1448 0,1494 0,0914 0,0798 

EEMD+CEEMDAN 0,1334 0,0903 0,2860 0,1298 0,1055 0,1040 0,1297 0,2559 0,1107 0,1335 0,1008 0,0952 0,1641 0,1303 0,1062 0,0960 

EEMD+EEMD 0,1239 0,1023 0,1771 0,1422 0,1301 0,0975 0,1541 0,2576 0,1368 0,1394 0,0927 0,1048 0,1580 0,1299 0,0941 0,0894 

EEMD+LMD 0,1523 0,0903 0,1654 0,1329 0,1054 0,1015 0,1441 0,2283 0,1084 0,1466 0,0979 0,0974 0,1408 0,1276 0,0994 0,0886 

EEMD+VMD 0,1267 0,1222 0,1701 0,1213 0,1164 0,1033 0,1726 0,2596 0,1141 0,1415 0,1028 0,1017 0,1680 0,1007 0,0979 0,0844 

LMD+CEEMDAN 0,1448 0,0998 0,1465 0,1297 0,0948 0,0914 0,1325 0,2018 0,0972 0,1569 0,0892 0,1030 0,1598 0,1113 0,0902 0,1016 

LMD+EEMD 0,1168 0,1043 0,1352 0,1332 0,1078 0,0985 0,1656 0,2375 0,1117 0,1263 0,0888 0,0929 0,1654 0,1308 0,0813 0,1016 

LMD+LMD 0,1108 0,0901 0,1410 0,1335 0,1055 0,1038 0,1424 0,2371 0,1128 0,1203 0,0846 0,0870 0,1437 0,1448 0,0902 0,0925 

LMD+VMD 0,1634 0,1124 0,1928 0,1169 0,1152 0,0925 0,1710 0,2393 0,1244 0,1384 0,0978 0,0852 0,1534 0,1182 0,0885 0,1088 

VMD+CEEMDAN 0,1162 0,1170 0,1556 0,1311 0,0939 0,0902 0,1390 0,2158 0,0977 0,1193 0,0852 0,0962 0,1595 0,1399 0,0926 0,0898 

VMD+EEMD 0,1197 0,1103 0,1315 0,1225 0,1020 0,1079 0,1486 0,2472 0,1029 0,1418 0,0803 0,1024 0,2000 0,1151 0,0801 0,0890 

VMD+LMD 0,1119 0,1231 0,1477 0,1149 0,1294 0,1039 0,1430 0,2813 0,1325 0,1277 0,1203 0,0921 0,1419 0,1216 0,1092 0,0873 

VMD+VMD 0,1297 0,0954 0,2068 0,1395 0,1050 0,1085 0,1366 0,2460 0,1132 0,1341 0,0908 0,1086 0,1632 0,1421 0,1003 0,0934 

 

(Renklendirme; her bir ayrıştırma tekniği için aktivasyon fonksiyonlarının en iyi RMSE değeri yeşil, en kötü RMSE değeri kırmızı olacak şekilde yapılmıştır.) 
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Tablo 4.5. Temmuz ayı için hibrit modellere ait Ortalama Karesel Hata (MSE) değerleri 

 AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG PURELIN MORLET MEXICAN HAT POLYWOG1 POLYWOG2 POLYWOG3 POLYWOG4 POLYWOG5 RASP1 RASP2 RASP3 SHANNON SLOG1 SLOG2 

CEEMDAN+CEEMDAN 0,0097 0,0074 0,0163 0,0104 0,0064 0,0067 0,0139 0,0370 0,0078 0,0131 0,0047 0,0044 0,0156 0,0087 0,0066 0,0060 

CEEMDAN+EEMD 0,0113 0,0078 0,0174 0,0110 0,0066 0,0066 0,0102 0,0382 0,0072 0,0151 0,0046 0,0054 0,0218 0,0081 0,0075 0,0044 

CEEMDAN+LMD 0,0131 0,0053 0,0407 0,0083 0,0076 0,0048 0,0180 0,0366 0,0088 0,0104 0,0057 0,0051 0,0100 0,0091 0,0060 0,0041 

CEEMDAN+VMD 0,0076 0,0062 0,0228 0,0112 0,0060 0,0074 0,0129 0,0308 0,0064 0,0121 0,0046 0,0053 0,0206 0,0081 0,0057 0,0039 

EEMD+CEEMDAN 0,0095 0,0055 0,0260 0,0099 0,0067 0,0059 0,0107 0,0305 0,0074 0,0099 0,0042 0,0049 0,0133 0,0099 0,0052 0,0056 

EEMD+EEMD 0,0102 0,0061 0,0254 0,0077 0,0086 0,0056 0,0177 0,0538 0,0094 0,0100 0,0047 0,0053 0,0141 0,0121 0,0066 0,0079 

EEMD+LMD 0,0202 0,0064 0,0198 0,0111 0,0062 0,0071 0,0116 0,0373 0,0072 0,0087 0,0042 0,0047 0,0165 0,0081 0,0048 0,0049 

EEMD+VMD 0,0110 0,0066 0,0187 0,0078 0,0073 0,0045 0,0110 0,0230 0,0082 0,0104 0,0052 0,0053 0,0181 0,0095 0,0060 0,0044 

LMD+CEEMDAN 0,0119 0,0069 0,0135 0,0092 0,0105 0,0046 0,0182 0,0310 0,0098 0,0105 0,0061 0,0060 0,0153 0,0096 0,0048 0,0041 

LMD+EEMD 0,0097 0,0052 0,0210 0,0092 0,0079 0,0073 0,0120 0,0252 0,0086 0,0141 0,0043 0,0044 0,0214 0,0117 0,0068 0,0051 

LMD+LMD 0,0096 0,0065 0,0200 0,0097 0,0064 0,0052 0,0112 0,0312 0,0069 0,0121 0,0050 0,0057 0,0138 0,0084 0,0050 0,0053 

LMD+VMD 0,0123 0,0071 0,0274 0,0089 0,0052 0,0061 0,0116 0,0534 0,0060 0,0109 0,0036 0,0058 0,0125 0,0097 0,0047 0,0052 

VMD+CEEMDAN 0,0111 0,0092 0,0178 0,0102 0,0066 0,0065 0,0190 0,0317 0,0075 0,0117 0,0050 0,0050 0,0168 0,0096 0,0054 0,0050 

VMD+EEMD 0,0100 0,0091 0,0304 0,0106 0,0065 0,0056 0,0096 0,0495 0,0076 0,0080 0,0054 0,0049 0,0206 0,0095 0,0053 0,0055 

VMD+LMD 0,0083 0,0072 0,0253 0,0096 0,0064 0,0055 0,0127 0,0376 0,0068 0,0087 0,0049 0,0049 0,0147 0,0124 0,0070 0,0048 

VMD+VMD 0,0123 0,0088 0,0188 0,0102 0,0065 0,0066 0,0201 0,0339 0,0074 0,0095 0,0045 0,0046 0,0167 0,0079 0,0043 0,0055 

 

(Renklendirme; her bir ayrıştırma tekniği için aktivasyon fonksiyonlarının en iyi MSE değeri yeşil, en kötü MSE değeri kırmızı olacak şekilde yapılmıştır.) 
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Tablo 4.6. Temmuz ayı için hibrit modellere ait Kök Ortalama Kare Hatası (RMSE) değerleri 

 AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG PURELIN MORLET MEXICAN HAT POLYWOG1 POLYWOG2 POLYWOG3 POLYWOG4 POLYWOG5 RASP1 RASP2 RASP3 SHANNON SLOG1 SLOG2 

CEEMDAN+CEEMDAN 0,0982 0,0860 0,1276 0,1019 0,0802 0,0818 0,1179 0,1924 0,0885 0,1145 0,0687 0,0660 0,1247 0,0931 0,0810 0,0777 

CEEMDAN+EEMD 0,1064 0,0886 0,1320 0,1047 0,0813 0,0812 0,1008 0,1954 0,0850 0,1230 0,0675 0,0733 0,1476 0,0903 0,0864 0,0664 

CEEMDAN+LMD 0,1145 0,0731 0,2017 0,0913 0,0873 0,0693 0,1342 0,1912 0,0936 0,1018 0,0753 0,0711 0,0999 0,0956 0,0776 0,0641 

CEEMDAN+VMD 0,0872 0,0788 0,1510 0,1058 0,0772 0,0858 0,1136 0,1756 0,0802 0,1102 0,0675 0,0728 0,1436 0,0901 0,0757 0,0622 

EEMD+CEEMDAN 0,0977 0,0742 0,1612 0,0996 0,0817 0,0770 0,1035 0,1747 0,0858 0,0997 0,0651 0,0700 0,1155 0,0995 0,0724 0,0748 

EEMD+EEMD 0,1011 0,0778 0,1592 0,0877 0,0928 0,0746 0,1329 0,2320 0,0970 0,0999 0,0685 0,0728 0,1185 0,1101 0,0809 0,0888 

EEMD+LMD 0,1421 0,0800 0,1409 0,1051 0,0790 0,0845 0,1077 0,1930 0,0847 0,0931 0,0648 0,0686 0,1286 0,0899 0,0695 0,0698 

EEMD+VMD 0,1048 0,0815 0,1368 0,0886 0,0857 0,0673 0,1049 0,1517 0,0906 0,1018 0,0721 0,0731 0,1345 0,0973 0,0778 0,0662 

LMD+CEEMDAN 0,1092 0,0828 0,1164 0,0957 0,1025 0,0680 0,1348 0,1760 0,0990 0,1027 0,0782 0,0773 0,1236 0,0981 0,0693 0,0642 

LMD+EEMD 0,0986 0,0721 0,1448 0,0959 0,0891 0,0853 0,1094 0,1587 0,0930 0,1188 0,0659 0,0661 0,1462 0,1082 0,0693 0,0711 

LMD+LMD 0,0981 0,0809 0,1416 0,0987 0,0799 0,0724 0,1059 0,1587 0,0828 0,1100 0,0707 0,0754 0,1174 0,0915 0,0707 0,0727 

LMD+VMD 0,1110 0,0845 0,1655 0,0944 0,0719 0,0782 0,1078 0,2311 0,0775 0,1046 0,0596 0,0764 0,1117 0,0986 0,0685 0,0723 

VMD+CEEMDAN 0,1052 0,0962 0,1334 0,1012 0,0811 0,0808 0,1378 0,1782 0,0868 0,1082 0,0710 0,0710 0,1297 0,0982 0,0735 0,0706 

VMD+EEMD 0,1002 0,0953 0,1743 0,1029 0,0806 0,0751 0,0980 0,2224 0,0870 0,0893 0,0737 0,0697 0,1437 0,0975 0,0730 0,0741 

VMD+LMD 0,0909 0,0846 0,1590 0,0978 0,0802 0,0742 0,1126 0,1939 0,0822 0,0933 0,0703 0,0699 0,1213 0,1114 0,0835 0,0692 

VMD+VMD 0,1111 0,0937 0,1372 0,1009 0,0805 0,0812 0,1417 0,1842 0,0861 0,0973 0,0674 0,0678 0,1294 0,0887 0,0658 0,0745 

 

(Renklendirme; her bir ayrıştırma tekniği için aktivasyon fonksiyonlarının en iyi RMSE değeri yeşil, en kötü RMSE değeri kırmızı olacak şekilde yapılmıştır.) 
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Tablo 4.7. Ekim ayı için hibrit modellere ait Ortalama Karesel Hata (MSE) değerleri 

 AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG PURELIN MORLET MEXICAN HAT POLYWOG1 POLYWOG2 POLYWOG3 POLYWOG4 POLYWOG5 RASP1 RASP2 RASP3 SHANNON SLOG1 SLOG2 

CEEMDAN+CEEMDAN 0,0044 0,0038 0,0196 0,0058 0,0023 0,0053 0,0054 0,0201 0,0032 0,0064 0,0029 0,0027 0,0058 0,0054 0,0025 0,0031 

CEEMDAN+EEMD 0,0051 0,0023 0,0091 0,0047 0,0039 0,0033 0,0057 0,0409 0,0032 0,0091 0,0041 0,0036 0,0086 0,0045 0,0024 0,0024 

CEEMDAN+LMD 0,0046 0,0027 0,0084 0,0061 0,0056 0,0030 0,0067 0,0533 0,0035 0,0041 0,0025 0,0031 0,0129 0,0063 0,0030 0,0029 

CEEMDAN+VMD 0,0052 0,0038 0,0075 0,0051 0,0025 0,0033 0,0053 0,0139 0,0042 0,0091 0,0018 0,0035 0,0127 0,0061 0,0033 0,0013 

EEMD+CEEMDAN 0,0066 0,0035 0,0105 0,0066 0,0038 0,0027 0,0069 0,0160 0,0045 0,0041 0,0022 0,0032 0,0144 0,0065 0,0023 0,0020 

EEMD+EEMD 0,0044 0,0025 0,0083 0,0059 0,0036 0,0027 0,0051 0,0156 0,0045 0,0065 0,0022 0,0039 0,0078 0,0052 0,0036 0,0032 

EEMD+LMD 0,0028 0,0029 0,0068 0,0066 0,0043 0,0029 0,0083 0,0258 0,0030 0,0069 0,0038 0,0027 0,0096 0,0043 0,0032 0,0030 

EEMD+VMD 0,0073 0,0028 0,0058 0,0076 0,0027 0,0048 0,0079 0,0155 0,0040 0,0071 0,0029 0,0026 0,0050 0,0059 0,0020 0,0020 

LMD+CEEMDAN 0,0045 0,0034 0,0049 0,0041 0,0034 0,0045 0,0066 0,0382 0,0032 0,0051 0,0035 0,0021 0,0063 0,0059 0,0019 0,0023 

LMD+EEMD 0,0055 0,0034 0,0091 0,0048 0,0024 0,0024 0,0079 0,0307 0,0035 0,0026 0,0023 0,0018 0,0101 0,0051 0,0018 0,0026 

LMD+LMD 0,0045 0,0029 0,0043 0,0056 0,0020 0,0034 0,0074 0,0255 0,0036 0,0068 0,0020 0,0027 0,0075 0,0037 0,0033 0,0028 

LMD+VMD 0,0049 0,0027 0,0055 0,0043 0,0052 0,0026 0,0098 0,0215 0,0061 0,0077 0,0024 0,0014 0,0081 0,0063 0,0026 0,0029 

VMD+CEEMDAN 0,0038 0,0019 0,0092 0,0078 0,0050 0,0020 0,0050 0,0199 0,0033 0,0041 0,0028 0,0028 0,0082 0,0063 0,0032 0,0024 

VMD+EEMD 0,0089 0,0066 0,0087 0,0051 0,0060 0,0028 0,0043 0,0148 0,0052 0,0063 0,0033 0,0029 0,0088 0,0064 0,0035 0,0024 

VMD+LMD 0,0042 0,0066 0,0081 0,0042 0,0035 0,0029 0,0032 0,0187 0,0039 0,0074 0,0031 0,0030 0,0128 0,0049 0,0020 0,0032 

VMD+VMD 0,0063 0,0039 0,0053 0,0042 0,0056 0,0032 0,0073 0,0301 0,0032 0,0100 0,0029 0,0025 0,0072 0,0056 0,0023 0,0019 

 

(Renklendirme; her bir ayrıştırma tekniği için aktivasyon fonksiyonlarının en iyi MSE değeri yeşil, en kötü MSE değeri kırmızı olacak şekilde yapılmıştır.) 
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Tablo 4.8. Ekim ayı için hibrit modellere ait Kök Ortalama Kare Hatası (RMSE) değerleri 

 AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG PURELIN MORLET MEXICAN HAT POLYWOG1 POLYWOG2 POLYWOG3 POLYWOG4 POLYWOG5 RASP1 RASP2 RASP3 SHANNON SLOG1 SLOG2 

CEEMDAN+CEEMDAN 0,0663 0,0620 0,1399 0,0761 0,0477 0,0725 0,0733 0,1418 0,0568 0,0800 0,0538 0,0518 0,0762 0,0736 0,0499 0,0556 

CEEMDAN+EEMD 0,0712 0,0484 0,0954 0,0685 0,0621 0,0576 0,0757 0,2022 0,0563 0,0952 0,0643 0,0604 0,0925 0,0670 0,0491 0,0486 

CEEMDAN+LMD 0,0680 0,0519 0,0917 0,0778 0,0745 0,0547 0,0817 0,2308 0,0589 0,0637 0,0504 0,0560 0,1136 0,0791 0,0550 0,0540 

CEEMDAN+VMD 0,0719 0,0613 0,0868 0,0716 0,0503 0,0578 0,0730 0,1178 0,0652 0,0956 0,0421 0,0588 0,1125 0,0783 0,0578 0,0358 

EEMD+CEEMDAN 0,0812 0,0589 0,1022 0,0810 0,0619 0,0520 0,0828 0,1265 0,0670 0,0640 0,0472 0,0568 0,1202 0,0804 0,0478 0,0448 

EEMD+EEMD 0,0660 0,0504 0,0912 0,0768 0,0599 0,0520 0,0717 0,1247 0,0674 0,0805 0,0466 0,0623 0,0881 0,0723 0,0601 0,0568 

EEMD+LMD 0,0534 0,0543 0,0822 0,0812 0,0656 0,0539 0,0914 0,1606 0,0549 0,0828 0,0620 0,0516 0,0981 0,0656 0,0569 0,0551 

EEMD+VMD 0,0853 0,0528 0,0760 0,0870 0,0518 0,0695 0,0887 0,1245 0,0635 0,0843 0,0541 0,0508 0,0706 0,0766 0,0446 0,0453 

LMD+CEEMDAN 0,0672 0,0581 0,0703 0,0642 0,0582 0,0671 0,0813 0,1954 0,0567 0,0711 0,0588 0,0462 0,0796 0,0771 0,0442 0,0482 

LMD+EEMD 0,0741 0,0582 0,0956 0,0694 0,0495 0,0485 0,0890 0,1752 0,0596 0,0513 0,0481 0,0428 0,1007 0,0712 0,0424 0,0513 

LMD+LMD 0,0674 0,0538 0,0652 0,0752 0,0445 0,0581 0,0862 0,1596 0,0603 0,0825 0,0442 0,0517 0,0867 0,0610 0,0571 0,0532 

LMD+VMD 0,0699 0,0519 0,0745 0,0659 0,0719 0,0506 0,0990 0,1466 0,0779 0,0878 0,0486 0,0378 0,0900 0,0793 0,0512 0,0542 

VMD+CEEMDAN 0,0620 0,0432 0,0958 0,0883 0,0707 0,0446 0,0708 0,1412 0,0578 0,0638 0,0533 0,0525 0,0906 0,0794 0,0565 0,0491 

VMD+EEMD 0,0942 0,0811 0,0932 0,0715 0,0772 0,0530 0,0657 0,1218 0,0724 0,0795 0,0574 0,0540 0,0937 0,0801 0,0593 0,0485 

VMD+LMD 0,0650 0,0813 0,0898 0,0652 0,0595 0,0540 0,0563 0,1366 0,0621 0,0859 0,0557 0,0551 0,1129 0,0703 0,0450 0,0565 

VMD+VMD 0,0791 0,0623 0,0730 0,0649 0,0746 0,0562 0,0857 0,1736 0,0565 0,1000 0,0536 0,0497 0,0851 0,0748 0,0477 0,0436 

 

(Renklendirme; her bir ayrıştırma tekniği için aktivasyon fonksiyonlarının en iyi RMSE değeri yeşil, en kötü RMSE değeri kırmızı olacak şekilde yapılmıştır.) 
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Dört mevsim için seçilen 4 farklı aya ait simülasyon sonuçlarına göre, ayrıştırma modellerinde 

genel olarak, DSA aktivasyon fonksiyonlarından SLOG1, SLOG2, RASP1, RASP2, 

MEXICAN HAT ve POLYWOG1 aktivasyon fonksiyonlarının, YSA aktivasyon 

fonksiyonlarından ise TANSIG ve LOGSIG aktivasyon fonksiyonlarının diğerlerine göre daha 

başarılı olduğu gözlenmektedir. Yılın diğer ayları için yapılacak simülasyonlarda, bu 8 

aktivasyon fonksiyonu ile devam edilmesine karar verilmiştir. 

Yukarıdaki mevsim bazlı seçilen ayların MSE sonuçlarında her aya ait en iyi 8 ayrıştırma 

modeli sıralanarak istatistiksel olarak incelendiğinde aşağıdaki tabloda verilen sonuçlara 

ulaşılmıştır. 

Tablo 4.1 - 4.2 - 4.3 - 4.4 - 4.5 - 4.6 - 4.7 - 4.8’deki verilere göre en iyi 8 model arasında 

bulunma yüzdesi %75 ve üzerinde olan modeller, yılın diğer ayları için yapılacak 

simülasyonların ayrıştırma modelleri olarak seçilmiştir.  

Tablo 4.9. En iyi 8 model sıralamasında bulunma yüzdesi 

Ayrıştırma Tekniği 
Mevsimler için seçilen 4 aya ait simülasyonlarda, 

her ayın en iyi 8 modelinde bulunma yüzdesi 

CEEMDAN+VMD %100 

EEMD+VMD %75 

LMD+LMD %75 

VMD+CEEMDAN %75 

LMD+EEMD %75 

LMD+VMD %75 

EEMD+LMD %50 

VMD+EEMD %50 

EEMD+CEEMDAN %50 

LMD+CEEMDAN %50 

VMD+VMD %50 

CEEMDAN+EEMD %25 

CEEMDAN+CEEMDAN %25 

CEEMDAN+LMD %25 

 

 

6 adet ikili ayrıştırma modeli ve 8 adet aktivasyon fonksiyonu (2 adet klasik YSA+6 adet DSA 

aktivasyon fonksiyonu) ile oluşturulmuş olan 48 hibrit model için 2020 yılına ait her ayın ilk 

günü için yapılan 10 dakika çözünürlüklü 24 saatlik rüzgar hızı tahminlerinin sonuçlarının MSE 

hata oranları cinsinden değerlendirmeleri Tablo 4.10 - 4.11 - 4.12 - 4.13 - 4.14 - 4.15 - 4.16 - 
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4.17 - 4.18 - 4.19 - 4.20 - 4.21’de verilmiştir. Renklendirme; her bir ayrıştırma tekniği için 

aktivasyon fonksiyonlarının en iyi MSE değeri yeşil, en kötü MSE değeri kırmızı olacak şekilde 

yapılmıştır. Ayrıca, her ayın tüm hibrit yapılar içinde en başarılı 3  modeli pembe renk ile 

renklendirilmiştir. 

Tablo 4.10. 1 Ocak 2020 için hibrit modellere ait Ortalama Karesel Hata (MSE) değerleri 

 
AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG MEXICAN HAT POLYWOG1 RASP1 RASP2 SLOG1 SLOG2 

CEEMDAN+VMD 0,01291 0,00627 0,00682 0,00710 0,00702 0,00654 0,00465 0,00372 

EEMD+VMD 0,01194 0,00627 0,00796 0,00590 0,00722 0,00799 0,00398 0,00379 

LMD+EEMD 0,01268 0,00879 0,00739 0,00723 0,00681 0,00644 0,00470 0,00470 

LMD+LMD 0,01214 0,00783 0,00640 0,01006 0,00687 0,00581 0,00452 0,00438 

LMD+VMD 0,01152 0,00711 0,00687 0,00752 0,00637 0,00660 0,00494 0,00602 

VMD+CEEMDAN 0,01541 0,00703 0,00753 0,00493 0,00567 0,00609 0,00590 0,00449 

 

 

Tablo 4.11. 1 Şubat 2020 için hibrit modellere ait Ortalama Karesel Hata (MSE) değerleri 

 
AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG MEXICAN HAT POLYWOG1 RASP1 RASP2 SLOG1 SLOG2 

CEEMDAN+VMD 0,01015 0,00798 0,00736 0,01030 0,00617 0,00683 0,00698 0,00367 

EEMD+VMD 0,01486 0,00806 0,00809 0,00632 0,00673 0,00791 0,00458 0,00504 

LMD+EEMD 0,01189 0,00667 0,00880 0,00743 0,00659 0,00610 0,00529 0,00498 

LMD+LMD 0,01364 0,00777 0,01071 0,00684 0,00568 0,00692 0,00447 0,00531 

LMD+VMD 0,01008 0,00967 0,00714 0,00535 0,00563 0,00592 0,00441 0,00585 

VMD+CEEMDAN 0,01206 0,00979 0,00743 0,00687 0,00673 0,00515 0,00612 0,00645 

 

 

Tablo 4.12. 1 Mart 2020 için hibrit modellere ait Ortalama Karesel Hata (MSE) değerleri 

 AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG MEXICAN HAT POLYWOG1 RASP1 RASP2 SLOG1 SLOG2 

CEEMDAN+VMD 0,00262 0,00120 0,00157 0,00127 0,00132 0,00110 0,00133 0,00092 

EEMD+VMD 0,00227 0,00138 0,00127 0,00136 0,00107 0,00116 0,00100 0,00123 

LMD+EEMD 0,00225 0,00181 0,00164 0,00152 0,00121 0,00122 0,00158 0,00109 

LMD+LMD 0,00233 0,00159 0,00163 0,00156 0,00113 0,00104 0,00093 0,00135 

LMD+VMD 0,00264 0,00171 0,00117 0,00138 0,00106 0,00116 0,00113 0,00111 

VMD+CEEMDAN 0,00198 0,00170 0,00156 0,00123 0,00120 0,00135 0,00124 0,00146 
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Tablo 4.13. 1 Nisan 2020 için hibrit modellere ait Ortalama Karesel Hata (MSE) değerleri 

 AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG MEXICAN HAT POLYWOG1 RASP1 RASP2 SLOG1 SLOG2 

CEEMDAN+VMD 0,01597 0,01415 0,01389 0,00921 0,01050 0,00790 0,00836 0,00636 

EEMD+VMD 0,01605 0,01494 0,01355 0,01067 0,01057 0,01034 0,00958 0,00713 

LMD+EEMD 0,01363 0,01088 0,01162 0,00970 0,00789 0,00863 0,00662 0,01033 

LMD+LMD 0,01227 0,00812 0,01113 0,01077 0,00716 0,00757 0,00814 0,00856 

LMD+VMD 0,02670 0,01263 0,01328 0,00856 0,00957 0,00725 0,00783 0,01184 

VMD+CEEMDAN 0,01349 0,01368 0,00882 0,00814 0,00727 0,00925 0,00857 0,00806 

 

 

 

Tablo 4.14. 1 Mayıs 2020 için hibrit modellere ait Ortalama Karesel Hata (MSE) değerleri 

 AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG MEXICAN HAT POLYWOG1 RASP1 RASP2 SLOG1 SLOG2 

CEEMDAN+VMD 0,00422 0,00206 0,00203 0,00153 0,00151 0,00207 0,00128 0,00114 

EEMD+VMD 0,00203 0,00171 0,00201 0,00190 0,00133 0,00129 0,00152 0,00139 

LMD+EEMD 0,00323 0,00200 0,00293 0,00204 0,00157 0,00176 0,00140 0,00147 

LMD+LMD 0,00339 0,00176 0,00166 0,00209 0,00199 0,00152 0,00130 0,00151 

LMD+VMD 0,00276 0,00189 0,00237 0,00129 0,00169 0,00186 0,00162 0,00122 

VMD+CEEMDAN 0,00313 0,00183 0,00173 0,00172 0,00150 0,00150 0,00170 0,00145 

 

 

 

Tablo 4.15. 1 Haziran 2020 için hibrit modellere ait Ortalama Karesel Hata (MSE) değerleri 

 AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG MEXICAN HAT POLYWOG1 RASP1 RASP2 SLOG1 SLOG2 

CEEMDAN+VMD 0,01317 0,00905 0,00990 0,00781 0,00679 0,00565 0,00455 0,00373 

EEMD+VMD 0,00525 0,00640 0,01048 0,00529 0,00431 0,00697 0,00578 0,00613 

LMD+EEMD 0,00937 0,00586 0,00989 0,00389 0,00513 0,00818 0,00455 0,00582 

LMD+LMD 0,00811 0,00628 0,00574 0,00678 0,00800 0,00627 0,00485 0,00403 

LMD+VMD 0,01535 0,00844 0,00799 0,00427 0,00590 0,00503 0,00851 0,00453 

VMD+CEEMDAN 0,01018 0,00726 0,08740 0,01011 0,00549 0,00667 0,00476 0,00541 
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Tablo 4.16. 1 Temmuz 2020 için hibrit modellere ait Ortalama Karesel Hata (MSE) değerleri 

 AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG MEXICAN HAT POLYWOG1 RASP1 RASP2 SLOG1 SLOG2 

CEEMDAN+VMD 0,00760 0,00621 0,00596 0,00735 0,00455 0,00530 0,00574 0,00387 

EEMD+VMD 0,01099 0,00665 0,00734 0,00452 0,00520 0,00535 0,00605 0,00438 

LMD+EEMD 0,00973 0,00521 0,00793 0,00728 0,00434 0,00436 0,00679 0,00505 

LMD+LMD 0,00963 0,00655 0,00639 0,00524 0,00500 0,00569 0,00500 0,00528 

LMD+VMD 0,01233 0,00715 0,00516 0,00612 0,00356 0,00584 0,00469 0,00523 

VMD+CEEMDAN 0,01108 0,00925 0,00657 0,00652 0,00504 0,00504 0,00541 0,00498 

 

 

 

Tablo 4.17. 1 Ağustos 2020 için hibrit modellere ait Ortalama Karesel Hata (MSE) değerleri 

 AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG MEXICAN HAT POLYWOG1 RASP1 RASP2 SLOG1 SLOG2 

CEEMDAN+VMD 0,00348 0,00347 0,00315 0,00152 0,00252 0,00203 0,00215 0,00129 

EEMD+VMD 0,00443 0,00240 0,00157 0,00293 0,00244 0,00180 0,00218 0,00196 

LMD+EEMD 0,00412 0,00272 0,00347 0,00222 0,00169 0,00170 0,00170 0,00203 

LMD+LMD 0,00340 0,00338 0,00233 0,00250 0,00161 0,00148 0,00290 0,00195 

LMD+VMD 0,00482 0,00208 0,00267 0,00193 0,00137 0,00153 0,00159 0,00225 

VMD+CEEMDAN 0,00345 0,00217 0,00223 0,00238 0,00215 0,00221 0,00201 0,00293 

 

 

 

Tablo 4.18. 1 Eylül 2020 için hibrit modellere ait Ortalama Karesel Hata (MSE) değerleri 

 AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG MEXICAN HAT POLYWOG1 RASP1 RASP2 SLOG1 SLOG2 

CEEMDAN+VMD 0,00782 0,00436 0,00390 0,00411 0,00440 0,00279 0,00341 0,00236 

EEMD+VMD 0,00676 0,00538 0,00513 0,00270 0,00441 0,00333 0,00403 0,00308 

LMD+EEMD 0,00592 0,00427 0,00423 0,00346 0,00270 0,00387 0,00328 0,00322 

LMD+LMD 0,00682 0,00297 0,00487 0,00426 0,00353 0,00266 0,00263 0,00339 

LMD+VMD 0,00653 0,00430 0,00372 0,00344 0,00293 0,00389 0,00574 0,00329 

VMD+CEEMDAN 0,00894 0,00360 0,00343 0,00422 0,00346 0,00408 0,00310 0,00359 
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Tablo 4.19. 1 Ekim 2020 için hibrit modellere ait Ortalama Karesel Hata (MSE) değerleri 

 AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG MEXICAN HAT POLYWOG1 RASP1 RASP2 SLOG1 SLOG2 

CEEMDAN+VMD 0,00517 0,00375 0,00253 0,00335 0,00177 0,00346 0,00334 0,00128 

EEMD+VMD 0,00727 0,00279 0,00268 0,00483 0,00293 0,00258 0,00199 0,00205 

LMD+EEMD 0,00549 0,00338 0,00245 0,00235 0,00232 0,00183 0,00180 0,00263 

LMD+LMD 0,00454 0,00289 0,00198 0,00337 0,00195 0,00267 0,00326 0,00283 

LMD+VMD 0,00488 0,00269 0,00518 0,00256 0,00236 0,00143 0,00262 0,00294 

VMD+CEEMDAN 0,00384 0,00187 0,00499 0,00199 0,00284 0,00276 0,00320 0,00241 

 

 

 

Tablo 4.20. 1 Kasım 2020 için hibrit modellere ait Ortalama Karesel Hata (MSE) değerleri 

 AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG MEXICAN HAT POLYWOG1 RASP1 RASP2 SLOG1 SLOG2 

CEEMDAN+VMD 0,00058 0,00073 0,00058 0,00070 0,00044 0,00049 0,00036 0,00033 

EEMD+VMD 0,00073 0,00046 0,00057 0,00038 0,00041 0,00043 0,00049 0,00037 

LMD+EEMD 0,00076 0,00056 0,00063 0,00053 0,00046 0,00056 0,00050 0,00061 

LMD+LMD 0,00080 0,00055 0,00064 0,00044 0,00035 0,00053 0,00051 0,00045 

LMD+VMD 0,00093 0,00047 0,00067 0,00071 0,00056 0,00045 0,00047 0,00040 

VMD+CEEMDAN 0,00087 0,00067 0,00056 0,00062 0,00061 0,00043 0,00050 0,00047 

 

 

 

Tablo 4.21. 1 Aralık 2020 için hibrit modellere ait Ortalama Karesel Hata (MSE) değerleri 

 AKTİVASYON FONKSİYONLARI 

AYRIŞTIRMA TEKNİĞİ TANSIG LOGSIG MEXICAN HAT POLYWOG1 RASP1 RASP2 SLOG1 SLOG2 

CEEMDAN+VMD 0,00217 0,00097 0,00108 0,00082 0,00105 0,00111 0,00092 0,00073 

EEMD+VMD 0,00125 0,00105 0,00115 0,00119 0,00075 0,00090 0,00094 0,00082 

LMD+EEMD 0,00204 0,00147 0,00106 0,00092 0,00075 0,00082 0,00077 0,00108 

LMD+LMD 0,00271 0,00116 0,00079 0,00095 0,00087 0,00120 0,00113 0,00086 

LMD+VMD 0,00225 0,00133 0,00132 0,00097 0,00088 0,00110 0,00074 0,00098 

VMD+CEEMDAN 0,00193 0,00138 0,00095 0,00090 0,00089 0,00086 0,00091 0,00094 
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4.2.  Tartışma 

Tez çalışmasının uygulama safhasında tüm aktivasyon fonksiyonları (3 adet YSA + 13 adet 

DSA. toplam 16 adet) ve tüm ikili ayrıştırma modellerinin (16 adet) oluşturduğu tüm 

kombinasyonlar, mevsim normallerinin mevsimin ortasında stabil olacağı yaklaşımından yola 

çıkarak Ocak, Nisan, Temmuz ve Ekim aylarında, aylık 256 adet olmak üzere toplamda 1024 

adet simülasyon yapılmıştır. Bu simülasyonlarda, ikili ayrıştırma tekniklerine yapay sinir ağı 

aktivasyon fonksiyonları bağlamında bakıldığında, YSA aktivasyon fonksiyonlarının 

başarımının en iyiden başlamak üzere, Tablo 4.22’de gösterildiği üzere, LOGSIG, TANSIG VE 

PURELIN olduğu görülmektedir.  

Tablo 4.22. Mevsim ortası ayların YSA aktivasyon fonksiyonları + ikili ayrıştırma teknikleri 

yapılarında Ortalama Karesel Hata (MSE) çizelgesi 

 

 

LOGSIG aktivasyon fonksiyonu YSA aktivasyon fonksiyonları arasında öne çıkıyor olsa da 13 

adet DSA fonksiyonunun tamamından daha fazla başarım gösterememiştir. 

DSA aktivasyon fonksiyonlarına. tüm simülasyonların yapılmış olduğu Ocak, Nisan, Temmuz 

ve Ekim aylarında ikili ayrıştırma teknikleri bağlamında incelendiğinde SLOG1 ve SLOG2 

aktivasyon fonksiyonlarının açık ara en iyi başarımlara sahip oldukları görülmektedir. Bu 

aktivasyon fonksiyonları sırasıyla RASP2, RASP1, POLYWOG1 ve MEXICAN HAT 

aktivasyon fonksiyonları takip etmektedir (Tablo 4.1-4.3-4.5-4.7). 

AYRIŞTIRMA TEKNİĞİ

TANSIG LOGSIG PURELIN TANSIG LOGSIG PURELIN TANSIG LOGSIG PURELIN TANSIG LOGSIG PURELIN

CEEMDAN+CEEMDAN 0,0131 0,0080 0,0289 0,0273 0,0115 0,0310 0,0097 0,0074 0,0163 0,0044 0,0038 0,0196

CEEMDAN+EEMD 0,0155 0,0052 0,0369 0,0183 0,0090 0,0308 0,0113 0,0078 0,0174 0,0051 0,0023 0,0091

CEEMDAN+LMD 0,0089 0,0112 0,0733 0,0208 0,0076 0,0440 0,0131 0,0053 0,0407 0,0046 0,0027 0,0084

CEEMDAN+VMD 0,0129 0,0063 0,0265 0,0160 0,0142 0,0203 0,0076 0,0062 0,0228 0,0052 0,0038 0,0075

EEMD+CEEMDAN 0,0123 0,0085 0,0242 0,0178 0,0081 0,0818 0,0095 0,0055 0,0260 0,0066 0,0035 0,0105

EEMD+EEMD 0,0121 0,0075 0,1443 0,0154 0,0105 0,0314 0,0102 0,0061 0,0254 0,0044 0,0025 0,0083

EEMD+LMD 0,0142 0,0055 0,0197 0,0232 0,0082 0,0273 0,0202 0,0064 0,0198 0,0028 0,0029 0,0068

EEMD+VMD 0,0119 0,0063 0,0299 0,0161 0,0149 0,0289 0,0110 0,0066 0,0187 0,0073 0,0028 0,0058

LMD+CEEMDAN 0,0091 0,0107 0,0160 0,0210 0,0100 0,0215 0,0119 0,0069 0,0135 0,0045 0,0034 0,0049

LMD+EEMD 0,0127 0,0088 0,0134 0,0136 0,0109 0,0183 0,0097 0,0052 0,0210 0,0055 0,0034 0,0091

LMD+LMD 0,0121 0,0078 0,0282 0,0123 0,0081 0,0199 0,0096 0,0065 0,0200 0,0045 0,0029 0,0043

LMD+VMD 0,0115 0,0071 0,0232 0,0267 0,0126 0,0372 0,0123 0,0071 0,0274 0,0049 0,0027 0,0055

VMD+CEEMDAN 0,0154 0,0070 0,0167 0,0135 0,0137 0,0242 0,0111 0,0092 0,0178 0,0038 0,0019 0,0092

VMD+EEMD 0,0160 0,0052 0,0270 0,0143 0,0122 0,0173 0,0100 0,0091 0,0304 0,0089 0,0066 0,0087

VMD+LMD 0,0178 0,0052 0,0338 0,0125 0,0152 0,0218 0,0083 0,0072 0,0253 0,0042 0,0066 0,0081

VMD+VMD 0,0080 0,0052 0,0214 0,0168 0,0091 0,0428 0,0123 0,0088 0,0188 0,0063 0,0039 0,0053

OCAK NİSAN TEMMUZ EKİM

MEVSİM ORTASI YSA AKTİVASYON FONKSİYONLARI
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Tez çalışmamızın bir önceki döneminde, simülasyon yoğunluğunu azaltmak için mevsim ortası 

seçilerek tüm aktivasyon fonksiyonları ve tüm ikili ayrıştırma kombinasyonları ile yapılan 

uygulama aylarında, her ayın en iyi 8 modelinde bulunma yüzdesi %75 ve üzeri olan hibrit 

yapılara ayrıştırma modeli bağlamında bakıldığında. Uyarlanabilir Gürültüyle Tamamlanan 

Topluluk Ampirik Mod Ayrıştırma (CEEMDAN) yönteminin, ikili ayrıştırmanın ilk adımında 

seçilen tüm aktivasyon fonksiyonları için en başarılı ayrıştırma metodu görülmektedir.  

İkili ayrıştırmanın, ikinci adımında ise. Varyasyonel Mod Ayrıştırma (VMD) yönteminin tüm 

simülasyonların yapıldığı Ocak, Nisan, Temmuz ve Ekim aylarındaki en iyi 8 modelinde 

bulunma yüzdesi %75 ve üzeri olan hibrit yapılara göre seçilen 6 adet ikili ayrıştırma modelinin 

(Tablo 4.9) 3 tanesinde ikincil ayrıştırma metodu olarak karşımıza çıkmaktadır.  

Bu durum, zaten daha önce literatür çalışmamızda da karşımıza çıkan. WMD’nin ikincil 

ayrıştırma yöntemi olarak benimsendiği yaklaşımı destekler niteliktedir. 

Tez çalışmamızda ortaya koymuş olduğumuz ayrıştırma model davranışlarının ve YSA/DSA 

aktivasyon fonksiyonlarının çıktılarının rüzgar verilerinin lineer olmayan ve kendine has yapısı 

çerçevesinde şekillendiği unutulmamalıdır. Önermiş olduğumuz hibrit model ve alternatifleri 

farklı veri yapılarında aynı başarımı göstermeyebileceği unutulmamalıdır. 
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5. SONUÇLAR 

Tez çalışmamızda oluşturmuş olduğumuz 48 hibrit model ile 2020 yılına ait her ayın ilk günleri 

için yaptığımız simülasyonlar göstermiştir ki, hibrit modelin sinir ağı safhasında Dalgacık Sinir 

Ağı aktivasyon fonksiyonları, Yapay Sinir Ağı’nın klasik aktivasyon fonksiyonlarına göre daha 

başarılı sonuçlara ulaşmıştır.  

Tüm hibrit modeller bazında incelendiğinde ise 12 ayın 11’inde CEEMDAN+VMD+SLOG2 

yapısına sahip hibrit model en iyi sonuçlara ulaşmıştır. Yalnızca 1 Temmuz 2020 tarihine ait 

yapılan tahminlemede CEEMDAN+VMD+SLOG2 hibrit modeli 0.00031 MSE değer farkı ile 

ikinci sırada yer almıştır. Referans olarak seçilen 1 Ocak 2020 tarihine ait 6 adet ayrıştırma 

modeline ait atmosferik verilerin birincil ve ikincil ayrıştırma sonuçları ile bu ayrıştırma 

modellerinin SLOG2 aktivasyon fonksiyonu ile 40m yükseklikteki rüzgar hızı için yapılmış 

tahminlemeler, çalışmamızın “EKLER” kısmında verilmiştir. 

Sonuç olarak; rüzgar hızı tahminlemesinde ikincil ayrıştırmalı ve dalgacık sinir ağı temelli yeni bir 

hibrit yaklaşım önerisi ile yola çıktığımız bu yolda, yapmış olduğumuz çalışmalar göstermiştir 

ki; iki aşamalı veri ayrıştırması ile elde edilen yüksek anlamlı veriler ile dalgacık sinir ağı 

aktivasyon fonksiyonları ile oluşturulmuş sinir ağları ile yapılan tahminlemelerin başarımları 

oldukça yüksektir. Ayrıca, elde edilen sonuçlar ışığında; CEEMDAN+VMD+SLOG2 yapısına 

sahip hibrit tahmin modeli, oluşturduğumuz 256 modelli mevsim bazlı (Ocak-Nisan-Temmuz-

Ekim) tahminlemede ve 48 modelli 12 aylık (Her ayın ilk gününe ait 24 saatlik 10 dakika 

çözünürüklü) tahminlemede en başarılı model olarak, ikincil ayrıştırmalı ve dalgacık sinir ağı 

temelli tahminleme yöntemi için önerdiğimiz hibrit model olmuştur. 
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7. EKLER 

EK 1: 1 Ocak 2020 tarihine ait atmosferik verilerin ayrıştırma yapılan bileşenleri ve 

CEEMDAN+VMD+SLOG2 tahmincisi ile yapılan 40m yükseklikli rüzgar hızı tahmin 

sonuçları 

 

Şekil 7.1. 1 Ocak 2020 tarihine ait basınç verisinin CEEMDAN + VMD ayrıştırma modeline 

göre birincil ayrıştırma işlemi sonucu elde edilen IMF bileşenleri 

 

 
Şekil 7.2. 1 Ocak 2020 tarihine ait sıcaklık verisinin CEEMDAN + VMD ayrıştırma modeline 

göre birincil ayrıştırma işlemi sonucu elde edilen IMF bileşenleri 
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Şekil 7.3. 1 Ocak 2020 tarihine ait nem verisinin CEEMDAN + VMD ayrıştırma modeline göre 

birincil ayrıştırma işlemi sonucu elde edilen IMF bileşenleri 

 

 

 
Şekil 7.4. 1 Ocak 2020 tarihine ait basınç verisinin CEEMDAN + VMD ayrıştırma modeline 

göre ikincil ayrıştırma işlemi sonucu elde edilen Mod bileşenleri 
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Şekil 7.5. 1 Ocak 2020 tarihine ait sıcaklık verisinin CEEMDAN + VMD ayrıştırma modeline 

göre ikincil ayrıştırma işlemi sonucu elde edilen Mod bileşenleri 

 

 

 
Şekil 7.6. 1 Ocak 2020 tarihine ait nem verisinin CEEMDAN + VMD ayrıştırma modeline göre 

ikincil ayrıştırma işlemi sonucu elde edilen Mod bileşenleri 
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Şekil 7.7. 1 Ocak 2020 tarihine ait CEEMDAN + VMD + SLOG2 tahminci ile yapılan 40m 

yükseklikli rüzgar hızı tahmini   



123 
 

EK 2: 1 Ocak 2020 tarihine ait atmosferik verilerin ayrıştırma yapılan bileşenleri ve 

EEMD+VMD+SLOG2 tahmincisi ile yapılan 40m yükseklikli rüzgar hızı tahmin 

sonuçları 

 

Şekil 7.8. 1 Ocak 2020 tarihine ait basınç verisinin EEMD + VMD ayrıştırma modeline göre 

birincil ayrıştırma işlemi sonucu elde edilen IMF bileşenleri 

 

 
Şekil 7.9. 1 Ocak 2020 tarihine ait sıcaklık verisinin EEMD + VMD ayrıştırma modeline göre 

birincil ayrıştırma işlemi sonucu elde edilen IMF bileşenleri 

 

 

 



124 
 

 

 
Şekil 7.10. 1 Ocak 2020 tarihine ait nem verisinin EEMD + VMD ayrıştırma modeline göre 

birincil ayrıştırma işlemi sonucu elde edilen IMF bileşenleri 

 

 

 
Şekil 7.11. 1 Ocak 2020 tarihine ait basınç verisinin EEMD + VMD ayrıştırma modeline göre 

ikincil ayrıştırma işlemi sonucu elde edilen Mod bileşenleri 
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Şekil 7.12. 1 Ocak 2020 tarihine ait sıcaklık verisinin EEMD + VMD ayrıştırma modeline göre 

ikincil ayrıştırma işlemi sonucu elde edilen Mod bileşenleri 

 

 
 

Şekil 7.13. 1 Ocak 2020 tarihine ait nem verisinin EEMD + VMD ayrıştırma modeline ikincil 

göre ayrıştırma işlemi sonucu elde edilen Mod bileşenleri 
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Şekil 7.14. 1 Ocak 2020 tarihine ait EEMD + VMD + SLOG2 tahminci ile yapılan 40m 

yükseklikli rüzgar hızı tahmini  
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EK 3: 1 Ocak 2020 tarihine ait atmosferik verilerin ayrıştırma yapılan bileşenleri ve 

LMD+EEMD+SLOG2 tahmincisi ile yapılan 40m yükseklikli rüzgar hızı tahmin 

sonuçları 

 

Şekil 7.15. 1 Ocak 2020 tarihine ait basınç verisinin LMD + EEMD ayrıştırma modeline göre 

birincil ayrıştırma işlemi sonucu elde edilen üretim fonksiyonu bileşenleri 

 

 
Şekil 7.16. 1 Ocak 2020 tarihine ait sıcaklık verisinin LMD + EEMD ayrıştırma modeline göre 

birincil ayrıştırma işlemi sonucu elde edilen üretim fonksiyonu bileşenleri 
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Şekil 7.17. 1 Ocak 2020 tarihine ait nem verisinin LMD + EEMD ayrıştırma modeline göre 

birincil ayrıştırma işlemi sonucu elde edilen üretim fonksiyonu bileşenleri 

 

 

 
Şekil 7.18. 1 Ocak 2020 tarihine ait basınç verisinin LMD + EEMD ayrıştırma modeline göre 

ikincil ayrıştırma işlemi sonucu elde edilen Mod bileşenleri 
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Şekil 7.19. 1 Ocak 2020 tarihine ait sıcaklık verisinin LMD + EEMD ayrıştırma modeline göre 

ikincil ayrıştırma işlemi sonucu elde edilen Mod bileşenleri 

 

 

 
Şekil 7.20. 1 Ocak 2020 tarihine ait nem verisinin LMD + EEMD ayrıştırma modeline göre 

ikincil ayrıştırma işlemi sonucu elde edilen Mod bileşenleri 
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Şekil 7.21. 1 Ocak 2020 tarihine ait LMD + EEMD + SLOG2 tahminci ile yapılan 40m 

yükseklikli rüzgar hızı tahmini  
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EK 4: 1 Ocak 2020 tarihine ait atmosferik verilerin ayrıştırma yapılan bileşenleri ve 

LMD+LMD+SLOG2 tahmincisi ile yapılan 40m yükseklikli rüzgar hızı tahmin sonuçları 

 

Şekil 7.22. 1 Ocak 2020 tarihine ait basınç verisinin LMD + LMD ayrıştırma modeline göre 

birincil ayrıştırma işlemi sonucu elde edilen üretim fonksiyonu bileşenleri 

 

 
Şekil 7.23. 1 Ocak 2020 tarihine ait sıcaklık verisinin LMD + LMD ayrıştırma modeline göre 

birincil ayrıştırma işlemi sonucu elde edilen üretim fonksiyonu bileşenleri 
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Şekil 7.24. 1 Ocak 2020 tarihine ait nem verisinin LMD + LMD ayrıştırma modeline göre 

birincil ayrıştırma işlemi sonucu elde edilen üretim fonksiyonu bileşenleri 

 

 

 
Şekil 7.25. 1 Ocak 2020 tarihine ait basınç verisinin LMD + LMD ayrıştırma modeline göre 

ikincil ayrıştırma işlemi sonucu elde edilen üretim fonksiyonu bileşenleri 
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Şekil 7.26. 1 Ocak 2020 tarihine ait sıcaklık verisinin LMD + LMD ayrıştırma modeline göre 

ikincil ayrıştırma işlemi sonucu elde edilen üretim fonksiyonu bileşenleri 

 

 

 
Şekil 7.27. 1 Ocak 2020 tarihine ait nem verisinin LMD + LMD ayrıştırma modeline göre 

ikincil ayrıştırma işlemi sonucu elde edilen üretim fonksiyonu bileşenleri 
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Şekil 7.28. 1 Ocak 2020 tarihine ait LMD + LMD + SLOG2 tahminci ile yapılan 40m 

yükseklikli rüzgar hızı tahmini  
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EK 5: 1 Ocak 2020 tarihine ait atmosferik verilerin ayrıştırma yapılan bileşenleri ve 

LMD+VMD+SLOG2 tahmincisi ile yapılan 40m yükseklikli rüzgar hızı tahmin sonuçları 

 

Şekil 7.29. 1 Ocak 2020 tarihine ait basınç verisinin LMD + VMD ayrıştırma modeline göre 

birincil ayrıştırma işlemi sonucu elde edilen üretim fonksiyonu bileşenleri 

 

 
Şekil 7.30. 1 Ocak 2020 tarihine ait sıcaklık verisinin LMD + VMD ayrıştırma modeline göre 

birincil ayrıştırma işlemi sonucu elde edilen üretim fonksiyonu bileşenleri 
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Şekil 7.31. 1 Ocak 2020 tarihine ait nem verisinin LMD + VMD ayrıştırma modeline göre 

birincil ayrıştırma işlemi sonucu elde edilen üretim fonksiyonu bileşenleri 

 

 

 
Şekil 7.32. 1 Ocak 2020 tarihine ait basınç verisinin LMD + VMD ayrıştırma modeline göre 

ikincil ayrıştırma işlemi sonucu elde edilen Mod bileşenleri 
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Şekil 7.33. 1 Ocak 2020 tarihine ait sıcaklık verisinin LMD + VMD ayrıştırma modeline göre 

ikincil ayrıştırma işlemi sonucu elde edilen Mod bileşenleri 

 

 

 
Şekil 7.34. 1 Ocak 2020 tarihine ait nem verisinin LMD + VMD ayrıştırma modeline göre 

ikincil ayrıştırma işlemi sonucu elde edilen üretim fonksiyonu bileşenleri 
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Şekil 7.35. 1 Ocak 2020 tarihine ait LMD + VMD + SLOG2 tahminci ile yapılan 40m 

yükseklikli rüzgar hızı tahmini  
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EK 6: 1 Ocak 2020 tarihine ait atmosferik verilerin ayrıştırma yapılan bileşenleri ve 

VMD+CEEMDAN+SLOG2 tahmincisi ile yapılan 40m yükseklikli rüzgar hızı tahmin 

sonuçları 

 

Şekil 7.36. 1 Ocak 2020 tarihine ait basınç verisinin VMD + CEEMDAN ayrıştırma modeline 

göre birincil ayrıştırma işlemi sonucu elde edilen Mod bileşenleri 

 

 
Şekil 7.37. 1 Ocak 2020 tarihine ait sıcaklık verisinin VMD + CEEMDAN ayrıştırma modeline 

göre birincil ayrıştırma işlemi sonucu elde edilen Mod bileşenleri 
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Şekil 7.38. 1 Ocak 2020 tarihine ait nem verisinin VMD + CEEMDAN ayrıştırma modeline 

göre birincil ayrıştırma işlemi sonucu elde edilen Mod bileşenleri 

 

 

 
Şekil 7.39. 1 Ocak 2020 tarihine ait basınç verisinin VMD + CEEMDAN ayrıştırma modeline 

göre ikincil ayrıştırma işlemi sonucu elde edilen IMF bileşenleri 
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Şekil 7.40. 1 Ocak 2020 tarihine ait sıcaklık verisinin VMD + CEEMDAN ayrıştırma modeline 

göre ikincil ayrıştırma işlemi sonucu elde edilen IMF bileşenleri 

 

 

 
Şekil 7.41. 1 Ocak 2020 tarihine ait nem verisinin VMD + CEEMDAN ayrıştırma modeline 

göre ikincil ayrıştırma işlemi sonucu elde edilen IMF bileşenleri 
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Şekil 7.42. 1 Ocak 2020 tarihine ait VMD + CEEMDAN + SLOG2 tahminci ile yapılan 40m 

yükseklikli rüzgar hızı tahmini 


