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NOKTA BULUTU İLE ELDE EDİLEN ALTYAPI
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Nokta Bulutu ile Elde Edilen Altyapı Elemanlarının Sınıflandırılmasında
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İÇİNDEKİLER
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3.1 Sınıflandırma Yöntemleri . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Piksel Tabanlı Sınıflandırma . . . . . . . . . . . . . . . . . 15
3.1.2 Obje Tabanlı Sınıflandırma . . . . . . . . . . . . . . . . . . 16
3.1.3 Nokta Tabanlı sınıflandırma . . . . . . . . . . . . . . . . . 16
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Etiketlenmesi . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.3 Özelliklerin Çıkarılması . . . . . . . . . . . . . . . . . . . 45
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Sınıflandırıcıları ile Sınıflandırılması . . . . . . . . . . . . . . . . . 53
7.1.1 YTU Hidrolik Laboratuvarının Sınıflandırma Sonuçlarına

Etki Eden Özelliklerin Belirlenmesi . . . . . . . . . . . . . 65
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Şekil 5.4 Gradyan iniş ile optimizasyon . . . . . . . . . . . . . . . . . . . 35
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Şekil 7.38 a) KPConv ile sınıflandırma; b) Etiketli test verisi . . . . . . . . . 93
Şekil 7.39 S2 senaryonuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık

sonuçları . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
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Şekil 7.52 a) KPConv ile sınıflandırma; b) Etiketli test verisi . . . . . . . . . 101
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noktalar; b) S3 senaryosunda KPConv ile doğru ve yanlış tahmin
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karşılaştırılması . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
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ÖZET

Nokta Bulutu ile Elde Edilen Altyapı Elemanlarının
Sınıflandırılmasında Makine Öğrenmesi ve Derin

Öğrenme Algoritmalarının Performanslarının
Değerlendirilmesi

Yalçın YILMAZ

Harita Mühendisliği Anabilim Dalı
Doktora Tezi

Danışman: Doç. Dr. Arzu SOYCAN

Üç boyutlu (3B) as-built modelleri, teknik altyapı projeleri kapsamında kentsel
dinamiklerde önemli bir rol oynamaktadır. Dinamik kentsel alanlarda 3B veri
analizinin sağlanması, tasarımdan imalata kadar inşaat süreçlerin izlenmesi ve
yönetimi için avantajlar sağlamaktadır. Nokta bulutları, her bir noktanın konum
ve renk bilgilerini içeren bir dizi 3B nokta kullanarak bir ortamı temsil eder. Bu
noktalara anlamsal bilgi atamak, yani nokta bulutu sınıflandırması yapmak, 3B
ortamın belgelenmesi ve izlenmesi için kritik öneme sahiptir. Her bir noktanın çok
ölçekli geometrik özelliklerini kullanan makine öğrenimi (MÖ) sınıflandırıcıları
ve derin öğrenme (DÖ) modelleri, nokta bulutu sınıflandırması için sıklıkla
kullanılmaktadır. Bu çalışma, karmaşık altyapı alanlarında MÖ ve DÖ sınıflandırma
performansını değerlendirmeyi ve hedef ortam farkındalığını tanımlamada en
etkili olan geometrik özellikleri belirlemeyi amaçlamaktadır. Uygulama çalışması
Yıldız Teknik Üniversitesi (YTÜ) Hidrolik Laboratuvarı ve Britanya Kolumbiyası
İçmesuyu hattı gibi altyapı unsurlarını içeren iki farklı alanda gerçekleştirilmiştir
ve her alan için 5 farklı senaryo oluşturulmuştur. Her iki alan için, Rastgele
Orman (Random Forest-RF), Aşırı Gradyan Artırma (eXtreme Gradient Boosting
Machines -XGBoost), Hafif Gradyan Artırma (Light Gradient Boosting Machines
-LightGBM) MÖ sınıflandırıcıları ve çekirdek nokta konvolüsyonu (Kernel Point
Convolution - KPConv) DÖ modelinin sınıflandırma performansları 5 farklı senaryo
(S1, S2, S3, S4, S5) üzerinden irdelenmiştir. YTÜ Hidrolik Laboratuvarında RF,
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XGBoost ve LightGBM ile gerçekleştirilen senaryo bazlı sınıflandırma doğrulukları
sırasıyla; S1 (0.948, 0.963, 0.961), S2 (0.894, 0.935, 0.924), S3 (0.901, 0.941,
0.905), S4 (0.885, 0.935, 0.848) ve S5 (0.739, 0.840, 0.831) olarak elde
edilmiştir. Britanya Kolumbiyası İçmesuyu hattında RF, XGBoost ve LightGBM
ile gerçekleştirilen senaryo bazlı sınıflandırma doğrulukları; S1 (0.885, 0.871,
0.886), S2 (0.910,.898, 0.896), S3 (0.781, 0.769, 0.789), S4 (0.831, 0.815,
0.830) ve S5 (0.738, 0.661, 0.618) olarak elde edilmiştir. YTÜ Laboratuvarında
KPConv ile gerçekleştirilen senaryo bazlı sınıflandırma doğrulukları sırasıyla; S1
(0.972), S2 (0.989), S3 (0.993), S4 (0.989), ve S5 (0.990) olarak bulunmuştur.
Britanya Kolumbiyası İçmesuyu hattında KPConv ile gerçekleştirilen senaryo
bazlı sınıflandırma doğrulukları sırasıyla; S1 (0.957), S2 (0.967), S3 (0.905), S4
(0.976), ve S5 (0.968) olarak elde edilmiştir. Makine öğrenmesi sınıflandırıcılarının
sınıflandırma sonuçlarına göre YTÜ veri seti için genel olarak XGBoost üstünlüğü
göze çarparken, Britanya Kolumbiyası veri setinde RF’nin daha fazla senaryoda
üstün olduğu görülmüştür. Ayrıca, bu sınıflandırıcılar farklı yaklaşımlara sahip
olsalar da, bu sınıflandırıcıların sınıflandırmada önemli olarak belirledikleri
geometrik özelliklerde benzerlikler olduğu tespit edilmiştir. Her iki çalışma
bölgesinin derin öğrenme ve makine öğrenme yöntemleri ile elde edilen doğruluk
sonuçları kıyaslandığında bütün senaryolarda KPConv derin öğrenme modelinin
sınıflandırma performansının oldukça üstün olduğu görülmüştür.

Anahtar Kelimeler: Derin öğrenme, makine öğrenmesi, altyapı sınıflandırma,
rastgele orman, hafif gradyan artırma, aşırı gradyan artırma
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ABSTRACT

Evaluation of the Performance of Machine Learning
and Deep Learning Algorithms in the Classification of
Infrastructure Elements Obtained With Point Cloud

Yalçın YILMAZ

Department of Geomatic
Doctor of Philosophy Thesis

Supervisor: Assoc. Prof. Dr. Arzu SOYCAN

Three-dimensional (3D) as-built models play a crucial role in urban dynamics
within the scope of technical infrastructure projects. Enabling 3D data analysis
in dynamic urban areas provides advantages for monitoring and managing
construction processes, from design to production. Point clouds represent an
environment using a set of 3D points, each containing location and color
information. Assigning semantic information to these points, known as point
cloud classification, is critical for documenting and monitoring 3D environments.
Machine learning (ML) classifiers and deep learning (DL) models, which utilize
multi-scale geometric features of each point, are frequently used for point cloud
classification. This study aims to evaluate the performance of ML and DL classifiers
in complex infrastructure areas and to identify the most effective geometric features
for defining target environment awareness. The case study was conducted in
two different areas involving infrastructure elements: the Hydraulic Laboratory
at Yıldız Technical University (YTU) and the potable water pipeline in British
Columbia, with five different scenarios created for each area. The classification
performances of the Random Forest (RF), eXtreme Gradient Boosting Machines
(XGBoost), Light Gradient Boosting Machines (LightGBM) ML classifiers, and the
Kernel Point Convolution (KPConv) DL model were examined over five different
scenarios (S1, S2, S3, S4, S5) for each area. In the YTU Hydraulic Laboratory,
the scenario-based classification accuracies for RF, XGBoost, and LightGBM were
as follows: S1 (0.948, 0.963, 0.961), S2 (0.894, 0.935, 0.924), S3 (0.901, 0.941,
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0.905), S4 (0.885, 0.935, 0.848), and S5 (0.739, 0.840, 0.831). In the British
Columbia potable water pipeline, the scenario-based classification accuracies for
RF, XGBoost, and LightGBM were as follows: S1 (0.885, 0.871, 0.886), S2 (0.910,
0.898, 0.896), S3 (0.781, 0.769, 0.789), S4 (0.831, 0.815, 0.830), and S5 (0.738,
0.661, 0.618). The scenario-based classification accuracies with KPConv in the
YTU Laboratory were as follows: S1 (0.972), S2 (0.989), S3 (0.993), S4 (0.989),
and S5 (0.990). In the British Columbia potable water pipeline, the scenario-based
classification accuracies with KPConv were as follows: S1 (0.957), S2 (0.967), S3
(0.905), S4 (0.976), and S5 (0.968). Based on the classification results of the ML
classifiers, XGBoost generally showed superiority for the YTU dataset, while RF
was more dominant in more scenarios for the British Columbia dataset. Moreover,
despite having different approaches, these classifiers were found to have similarities
in the geometric features they identified as significant for classification. When
comparing the accuracy results obtained with DL and ML methods in both study
areas, the classification performance of the KPConv DL model was found to be
significantly superior in all scenarios.

Keywords: Deep learning, machine learning, infrastructure classification, random
forest, eXtreme gradient boosting machine, light gradient boosting machines
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1
GİRİŞ

Altyapı, bir toplumun veya ekonominin sorunsuz işleyişini sağlamak için gereken
temel fiziksel ve organizasyonel yapılar ve tesisler bütünüdür. Ulaştırma
sistemleri, su ve atık yönetimi, enerji dağıtımı ve telekomünikasyon gibi
çeşitli temel hizmetler bu kapsamda değerlendirilir. Altyapı ayrıca, okullar,
hastaneler ve acil durum hizmetleri gibi kamu hizmetlerini de içerir [1].
Altyapı projeleri, modern toplumların sürdürülebilirliği ve gelişimi için hayati
öneme sahiptir. Bu projelerin tasarımı, inşası ve bakımı, yüksek düzeyde
doğruluk ve detay gerektirir. Günümüzde, altyapı elemanlarının 3 boyutlu
nokta bulutlarından sınıflandırılması,bu ihtiyaçları karşılamada önemli bir rol
oynamaktadır.3B nokta bulutları, gerçek dünya nesnelerinin yüksek çözünürlüklü
dijital ikizlerini oluşturarak, mühendislerin ve planlayıcıların altyapıyı daha etkin
bir şekilde tasarlamalarına, inşa etmelerine ve yönetmelerine olanak tanırlar.
Bu, mühendislerin ve projeci ekiplerinin, altyapı projelerini daha verimli bir
şekilde planlamalarına, uygulamalarına ve idare etmelerine imkan tanır. Nokta
bulutlarından elde edilen sınıflandırma, yapıların ve arazilerin detaylı incelenmesine
yardımcı olur, maliyet analizlerini daha doğru yapmaya olanak verir, tasarımdaki
potansiyel hataları minimize eder ve bakım süreçlerini daha etkin hale getirir. Bu
bağlamda, altyapı elemanlarının 3 boyutlu nokta bulutları ile sınıflandırılmasının
önemi, hem teknik detayların iyileştirilmesi hem de genel proje yönetiminin
optimizasyonu açısından açıkça ortadadır [2].

1.1 Literatür Özeti
Teknik altyapı ve inşaat projelerinde 3 boyutlu (3B) as-built modellerinin kullanımı
son dönemde önemli bir yere sahiptir [2, 3]. Kentselleşmenin ayrılmaz bir
parçası olan teknik altyapı projeleri, kent dinamikleri üzerinde büyük bir etkiye
sahip olup, bu projelerin sağlayıcıdan kullanıcıya kadar tüm yaşam döngüsünü
kapsayan bir bütünlük içinde gerçekleştirilmesi gerekmektedir. Bu doğrultuda,
bu altyapı çalışmalarının etkinliğini artırmak için hassas 3B as-built modellerin
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geliştirilmesi zorunludur. Geleneksel olarak, bu modeller manuel ölçümler (GNSS,
total station vb. ekipmanlarla) ve bilgisayar destekli tasarım (CAD) yazılımları
kullanılarak oluşturulabilir. Ancak, bu süreç iş gücü yoğun, zaman alıcı ve
derin öğrenme uygulamaları için veri hazırlığı aşamasında hatalara açık bir yapıya
sahiptir. Geleneksel yöntemler ile elde edilen verilerin yerine lazer tarayıcı ve
görüntülerden elde edilen nokta bulutlarının kullanılması, nesnelerin şekli hakkında
daha fazla 3B bilgi sağlamaktadır. Bu durum, son dönemde inşaat ve altyapı ile ilgili
uygulamalarda noktalar bulutları kullanarak bilgi çıkarımının artan önemini açıkça
ortaya koymaktadır [4].

Nokta bulutları, sahne anlama alanında popüler hale gelmiş olup, ölçülen nesne
veya sahnenin noktalarına ait 3B konum, renk ve yoğunluk bilgilerini içermektedir.
Nokta bulutlarındaki her bir noktaya anlamsal bilgi atama süreci, nokta bulutu
sınıflandırması olarak tanımlanabilir. Geleneksel yöntemlerde, nokta bulutu
sınıflandırması, her bir noktanın belirli kurallara göre tanımlanmasına dayanır [5].
Bu kurallar, düzenli yapılar için faydalı olsa da, karmaşık durumlar için yetersiz
kalmaktadır [6]. Son yıllarda, makine öğrenmesi (Machine Learning - ML) ve derin
öğrenme(Deep Learning - DL) tabanlı algoritmalar bu tür problemleri çözmede
yaygın olarak kullanılmaktadır.

Literatürde makine öğrenmesi tabanlı 3B nokta bulutu çalışmaları kentsel, inşaat
ve altyapı nesneleri üzerinden gerçekleştirilmiştir. Kentsel çalışmalarda genellikle
zemin, binalar, ağaçlar, araçlar ve sokak gibi nesnelerin sınıflandırılmasına
odaklanılmıştır. Bu tür nesnelerin sınıflandırılmasında komşuluk ve ölçek
parametreleri büyük önem taşımaktadır. Parametre nokta bulutu çözünürlüğüne
nispeten yakınsa (nispeten daha küçük arama yarıçapı), hesaplama süresini
azaltır ancak farklı boyutlardaki nesneler için bilgi kaybına neden olur. Daha
büyük (nispeten daha yüksek arama yarıçapı) bir parametre ise hesaplama
süresini artırır ve daha küçük nesneler için bilgi kaybına neden olmaktadır.
Bu nedenle, çalışmalar farkı ölçek ve komşuluk değerlerine bağlı olarak
yapılmıştır [6–13]. Weinmann vd. [9] geometrik özellikleri kullanarak komşuluk
parametrelerindeki değişimlerin ve komşuluk türlerinin 3 boyutlu nokta bulutu
sınıflandırma üzerindeki etkisini incelemiştir. Çalışmalarında 3 boyutlu nokta
bulutu sınıflandırma için doğrusal diskriminant analizi (Linear Discriminant
Analysis - LDA), rastgele orman (Random Forest - RF) ve en yakın komşu
(Nearest Neighbor - NN) algoritmaları kullanılmıştır. Komşuluk türü açısından
silindirik komşuluk tipinin yersel veya mobil lazer tarama verileri için uygun
olmadığını belirtilmiş ve kullanılan algoritmalar arasında RF algoritmasının tercih
edilebilir olduğu tespit edilmiştir. Becker vd. [10] 3 boyutlu nokta bulutu
sınıflandırma için RF ve hafif gradyan artırma makinesi (Light Gradient Boosting
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Machine - LightGBM) sınıflandırıcılarını kullanarak geometrik özelliklerin ve renk
bilgilerinin sınıflandırma sonuçları üzerindeki etkisini irdelemiştir. Çalışmada renk
bilgisinin geometrik özelliklerle birlikte kullanılmasının sınıflandırma sonuçlarına
olumlu yönde katkı sağladığı ifade edilmiştir. Shi vd. [13] kentsel 3B nokta bulutu
sınıflandırması için LightGBM tabanlı bir algoritma önermişlerdir. Algoritmayı
değerlendirmek için destek vektör makineleri (Support Vector Machines - SVM)
ve RF ile karşılaştırmış ve önerilen yöntem sonuçlarının diğerlerine kıyasla daha
iyi performans gösterdiğini tespit etmişlerdir. Duran vd. [11], insansız hava aracı
(İHA) fotogrametrisi ve havadan LiDAR ile elde edilen iki farklı nokta bulutu veri
kümelerinin sınıflandırılması için 9 makine öğrenme sınıflandırıcısı kullanmıştır.
Çok katmanlı algılayıcı (Multilayer Perception - MLP) en iyi sınıflandırma
sonucunu elde ederken, AdaBoost yöntemi ise başarısız bir performans göstermiştir.
Perez-Perez vd. [14],ticari ve endüstriyel bina projelerine özgü nokta bulutu
sahnelerinde yakın mesafedeki yapısal, mimari ve MEP (Mekanik, Elektrik,
Tesisat) bileşenlerine semantik etiketler atamak için nokta bulutunun geometrik
özelliklerini kullanan yeni bir yaklaşım önermişlerdir.Bu yöntem, Destek Vektör
Makinesi (SVM), AdaBoost sınıflandırıcıları, Koşullu Rastgele Alan (CRF) ve
Markov Rastgele Alan (MRF) optimizasyonlarının bir kombinasyonunu kullanarak
hem semantik (örneğin, kiriş, kolon, duvar, tavan, zemin, boru) hem de geometrik
(örneğin, yatay, dikey, silindirik) özellikleri entegre etmektedir. Yöntem, genel
olarak ortalama %90 doğruluk oranına ve tavan, duvar, boru, zemin, kiriş ve
kolon kategorileri için sırasıyla %99, %96, %87, %100, %89 ve %18 kategori
doğruluğuna ulaşmıştır. Sonuç olarak, CRF ve MRF yöntemlerinin ardışık
kullanımının, semantik etiketleme doğruluğunu önemli ölçüde artırılabileceği
vurgulanmıştır. Sevgen ve Abdikan [12], Weinmeann vd. [9] çalışmasına benzer
şekilde, komşuluk tanımı, çok ölçekli özellik çıkarımı ve büyük veri kümeleri
için LightGBM sınıflandırıcısını kullanarak bir sınıflandırma analizi yapmıştır.
Geleneksel makine öğrenmesi tabanlı yöntemlere göre daha başarılı sonuçların elde
edildiğini ve geometrik özelliklerin seçiminin sonuçları olumlu yönde etkilediğini
tespit etmişlerdir.

İnşaat ve altyapı üzerine gerçekleştirilen nokta bulutu sınıflandırma çalışmaları
kentsel alanlara nazaran daha az ilgi görmüştür. Huynh vd. [15], Sidney
Liman Köprüsü’nün koruyucu kaplamalarındaki bozulmaları değerlendirmek için
hiperspektral görüntüleme ve çok sınıflı SVM kullanmış ve bu yöntemin kaplama
ve erozyon arasında ayrım yapmada daha iyi sonuçlar verdiğini göstermiştirlerdir.
Mansour vd. [16] altyapı ortamlarındaki nokta bulutlarını analiz etmek ve
bölütlemek için komşuluk parametreli SVM’nin kullanımını incelemiştir. 3B
lazer tarayıcıları tarafından elde edilen altyapı nesnelerinin 3B nokta bulutlarının
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otomatik semantik segmentasyonunun, SVM kullanılarak gerçekleştirilebileceğini
ifade etmişlerdir. Çalışma altyapı nesnelerinin daha detaylı analiz ve işlenmesi
için önemli bir adım niteliğindedir ve makine öğrenimi tekniklerinin bu alandaki
uygulamalarını genişletme potansiyeline işaret etmektedir.

Derin öğrenme tabanlı 3B nokta bulutu sınıflandırma uygulamaları nokta tabanlı
[17–20], grafik tabanlı [21, 22] ve voksel tabanlı[23] olmak üzere üç farklı
şekilde yapılmaktadır.Nokta tabanlı yöntemler, şekil dönüştürme yerine nokta
bulutunu doğrudan kullanmaktadır. Bu alanda göze çarpan çalışmalardan biri,
Qi vd. [17] tarafından gerçekleştirilmiştir. Yazarlar noktaların permütasyon
değişmezliğine dikkat ederek nokta bulutu verilerini doğrudan işleyen bir sinir
ağı mimarisi olan PointNet’i kullanmıştır. PointNet’in 3 boyutlu sınıflandırma
ve bölümleme görevleri için umut verici bir sinir ağı mimarisi olduğunu, %89.2
model doğruluğu ile diğer yöntemlere göre güçlü performans ve verimliliğe sahip
olduğunu ifade etmişlerdir. Daha sonrasında noktaların yerel olarak toplanması
nedeniyle PointNet’i hiyerarşik seviyelerde kullanan ve gelişmiş bir versiyonu
olan PointNet++ önerilmiştir [18]. Wu vd. [24] 3B nokta bulutları için
doğrudan nokta bulutları üzerinde derin konvolüsyonel ağların oluşturulmasına
olanak tanıyan PointConv’u önermiştir. PointConv modelinde permütasyon ve
öteleme değişmemekte ve düzensiz ve sırasız nokta bulutu verileri için uygunluğu
artmaktadır. Bir başka model Thomas vd. [19] tarafından çekirdek nokta
konvolüsyonu (Kernel Point Convolution - KPConv) olarak ortaya atılmıştır.
Düzenli alt örnekleme stratejisi ve çekirdek noktalarını yerel geometriye uyarlama
yeteneği sayesiyle değişen nokta bulutu yoğunlukları için başarılı sonuçlar elde
etmişlerdir. Hu vd. [20] büyük ölçekli nokta bulutlarında anlamsal segmentasyonu
verimli bir şekilde gerçekleştirmek için rastgele nokta örnekleme ve yeni bir yerel
özellik toplama modülü kullanmış ve hafif bir sinir mimarisi olan RandLA-Net
modelini önermiştirler. Perez-Perez vd. [25] altyapı elemanı sınıflandırması için bir
evrişimli sinir ağı ve tekrarlayan bir sinir ağı kullanılarak nokta tabanlı bir yaklaşım
sunmuşturlar. Çalışma, endüstriyel ve ticari binalardaki 83 odadan toplanan verilere
dayanan altı sınıflı bir 3B nokta bulutu sınıflandırma analizini içermektedir. Grafik
tabanlı ağlar 3B nokta bulutu sınıflandırma analizlerinde öne çıkan bir stratejidir. Bu
ağlar, nokta bulutu verilerinden üretilen düğümleri analiz etmek için kullanılmakta
ve türetilmiş grafikler içindeki yerel yapıların daha derin bir şekilde anlaşılmasını
sağlamaktadır.

Xu vd. [26] çalışmalarında, SHOT (Yönelim Histogramlarının İmzaları) ve
spin görüntüler gibi geleneksel şekil özelliklerini derin evrişimli sinir ağları
(CNN) ile birleştirerek, 3B nokta bulutlarından boru bileşenlerini sınıflandırmak
için özellik tabanlı bir derin öğrenme ağı önermiştirler. Ağ, küresel ve
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yerel özelliklerin ön işlenmesi için UnitNet ve FeatureNet, ardından özellik
çıkarma ve sınıflandırma için FinalNet kullanılmıştır. Lazer taramalı nokta
bulutlarından oluşan veri seti, yoğun MEP (Mekanik, Elektrik, Tesisat) sistemlerine
sahip karmaşık sahnelere odaklanmaktadır. Bu sahneler, gürültü ve eksik
veri nedeniyle geleneksel algoritmalar için önemli zorluklar oluşturmaktadır.
Önerilen yöntem, nokta bulutlarından hem küresel hem de yerel özelliklerin
çıkarılmasıyla başlar. UnitNet, her noktanın küresel koordinatlarını işlerken,
FeatureNet geleneksel şekil özelliklerini kullanarak her noktanın etrafındaki
yerel geometrileri tanımlar. Bu özellikler daha sonra FinalNet’te birleştirilir
ve derin CNN’ler özellik birleştirme ve sınıflandırma işlemlerini gerçekleştirir.
Bu yaklaşım, geleneksel özellik tabanlı derin ağ kullanan bir kontrol deneyi ile
karşılaştırılarak doğrulanmıştır. Sonuç olarak, önerilen yöntemin %98’in üzerinde
sınıflandırma doğruluğuna ulaştığını, kontrol deneyinin ise yalnızca %84 doğruluğa
ulaştığını belirtmiştirler. Bu yüksek doğruluk, ağın karmaşık inşaat sahnelerinde
boru bileşenlerini doğru bir şekilde tanımlama yeteneğini artıran sağlam özellik
çıkarma ve birleştirme sürecine atfedilmektedir. Yöntem, özellikle as-built
yapı bilgi modellerinin (Building Information Model-BIM) oluşturulmasında
inşaat süreçlerinin dijitalleştirilmesinde verimliliği artırma ve elle müdahaleyi
azaltma potansiyeli gösterdiğini belirtmiştirler. Bu yaklaşımla, genellikle manuel
giriş gerektiren, gürültülü ve eksik verilerle başa çıkmakta zorlanan geleneksel
nokta bulutu işleme yöntemlerinin sınırlamalarını ele almışlardır. Geleneksel
şekil özellikleri ve derin öğrenmeden yararlanarak önerilen bu ağı, inşaat
bileşenlerinin sınıflandırılmasını otomatikleştirmek için güçlü bir araç sunmuşlardır
ve nihayetinde inşaat projelerinde MEP sistemlerinin ve diğer kritik altyapı
elemanlarının daha iyi yönetimini ve bakımını kolaylaştırdığını ileri sürmüşlerdir.
Wang vd. [21] nokta bulutlarının temsilini iyileştirmek için küresel bir şekil
yapısını yerel komşuluk bilgileriyle birleştiren dinamik bir grafik evrişimli sinir
ağı (Dynamic Graph Convolutional Neural Network - DGCNN) yaklaşımını
önermişlerdir. Yaklaşım, PointNet, PointCNN gibi yöntemler ile kıyaslanmış ve
%84.1 model doğruluğu ile daha üstün sonuç almıştır.

Literatür taramasından görüldüğü üzere, makine öğrenimi sınıflandırıcıları (ML) ve
derin öğrenme (DL) yöntemleri, inşaat ve altyapı sektörlerinde 3B veri sorunlarının
çözümünde yaygın olarak kullanılmamaktadır. Ayrıca belirli geometrik özelliklerin
kullanılması sınıflandırma süresini kısaltmakta ve işlem yükünü azaltmaktadır. Bu
tür durumlar inşaat ve altyapı sektörleriyle ilgili çalışmalarda henüz yeterince
vurgulanmamıştır. Weinmann vd. [27] çalışmasında geometrik özelliklerin 3B
ortamda nesne türüyle ilişkilendirilmesine dair bilgiler yer almakla birlikte, bu
alanlarda henüz kapsamlı bir çalışma gerçekleştirilmemiştir.
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1.2 Tezin Amacı
Bu tezin amacı, 3B nokta bulutlarından makine öğrenimi (MÖ) ve derin
öğrenme (DÖ) yöntemleri kullanılarak altyapı unsurlarının sınıflandırılması
ve sınıflandırıcılardan bağımsız olarak altyapı sınıflandırmasında kullanılacak
geometrik özelliklerden ortak değerlerin olup olmadığının araştırılmasıdır. Bu
amaç doğrultusunda iki çalışma alanı seçilmiştir: Birincisi, YTÜ Davutpaşa
Kampüsü’nde yer alan hidrolik laboratuvarının havalandırma sistemi; ikincisi ise
Britanya Kolumbiyası’nda yer alan içmesuyu hattıdır. Her iki veri setinde de altyapı
bileşenleri (boru, te, dirsek vb.) MÖ ve DÖ yöntemleri ile sınıflandırılacaktır. Bu
süreçte, her iki veri seti için geometrik özelliklerin belirlenmesi ve sınıflandırmada
kullanılacak sınıflandırıcı parametrelerinin ızgara arama yaklaşımı (grid search)
ile optimize edilmesi hedeflenmiştir. En uygun parametreler belirlendikten
sonra MÖ ve DÖ yöntemleri kullanılarak her iki çalışma alanındaki altyapı
unsurları sınıflandırılacak ve doğruluk analizi ile sınıflandırıcıların sınıflandırma
performansları karşılaştırılacaktır. Ayrıca makine öğrenmesi ve derin öğrenmenin
altyapı sınıflandırma performansları değerlendirilecektir.

1.3 Hipotez
Bu tez;

• Makine öğrenmesi ve derin öğrenme yöntemleri nokta bulutlarından altyapı
elemanlarının sınıflandırılmasında kullanılabilir,

• Farklı makine öğrenmesi yöntemleri aynı geometrik özellikleri, altyapı
elemanlarının sınıflandırılmasında önemli özellik olarak tespit edebilir
hipotezi üzerine kurulmuştur.
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2
3B NOKTA BULUTU ELDE ETME YÖNTEMLERİ

Üç boyutlu nokta bulutu elde etme yöntemleri, modern teknoloji ve bilimsel
araştırmalarda kritik bir rol oynamaktadır. Bu yöntemler, nesnelerin, yapıların
ve çevresel özelliklerin hassas bir şekilde modellenmesini sağlar. Bu bölümde
tez kapsamında kullanılmış olan yersel lazer tarayıcı (YLT) ve insansız hava aracı
(İHA) fotogrametrisine değinilicektir.

2.1 LiDAR Sistemleri
LiDAR (Işık Algılama ve Mesafe Belirleme), ışık dalgalarını kullanarak nesne
ve yüzeylerin mesafelerini belirlemek için kullanılan bir uzaktan algılama
teknolojisidir. Temel olarak, bir LiDAR sistemi lazer ışını yayar; bu ışın,
çevredeki nesnelere çarparak geri yansır. Yansıyan ışığın geri dönüş süresi ölçülerek
nesnelerin konumu, mesafesi ve diğer özellikleri hakkında detaylı bilgiler elde edilir
[28]. Böylece, LiDAR sistemleri ile yüksek yoğunluklu ve doğruluklu üç boyutlu
(3B) veriler elde edilebilmektedir [29]. Lidar verileri, geniş alanlar için hızlı ve
doğru 3B nokta verilerini yakalar; dahası, ışığın varlığından etkilenmezler ve bitki
örtüsüne nüfuz edebilir ve orman örtüsünün altındaki zeminlere ulaşabilir [30].
Bu özellikler, arazi ölçümleri ve fotogrametri gibi geleneksel ölçüm yöntemlerinin
dezavantajlarını aşmada büyük avantajlar sunar. LiDAR sistemlerinin yoğun bitki
örtüsü altındaki yüzeyleri bile detaylı bir şekilde tespit edebilme yeteneği ve
yüksek doğrulukta veri toplama kapasitesi, bu teknolojiyi haritalama, orman bilimi,
jeoloji ve şehir planlaması gibi çeşitli alanlarda vazgeçilmez kılar [31]. Gelişen
teknolojiye paralel olarak, farklı uygulama alanlarında yararlanılabilmesi amacıyla
yersel, mobil ve hava tabanlı LiDAR sistemleri geliştirilmiştir [32].

LiDAR temelli ölçüm sistemleri, temel olarak Hava Tabanlı LiDAR (ALS), Mobil
LiDAR (MLS) ve Yer Tabanlı LiDAR (TLS) olmak üzere üç ana kategoriye
ayrılmaktadır. Bu üç sistemde kullanılan temel prensipler benzer olmakla birlikte,
MLS ve ALS sistemleri, taranan verileri GPS ve IMU gibi konum ve durum
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sensörleri ile desteklenen hareketli bir platformdan (tekne, otomobil veya uçak
gibi) toplar [33]. Yersel lazer tarayıcılar (TLS), sabit bir konumdan çevresindeki
nesne ve yüzeylerin 3B dijital haritalarını oluşturmak için lazer ışını kullanmaktadır.
Bu sistemler, elde edilen nokta bulutu verilerinin koordinatlandırılması amacıyla
genellikle çevrelerinde belirlenmiş ve koordinatları önceden bilinen kontrol
noktalarına yansıttıkları lazer ışınları aracılığıyla tarayıcının verilerini gerçek dünya
koordinatlarına entegre etmek için kullanılır [34].

ALS (Airborne LiDAR System) teknolojisi, algılama görevlerini başarıyla
tamamlamak ve kısa sürede geniş bir alan üzerinde son derece doğru yüzey
bilgileri elde etmek amacıyla genellikle bir uçak platformu ile LiDAR’ı birleştirir.
Geleneksel olarak ALS sistemleri, uçaklara ve helikopterlere monte edilen LiDAR
sistemlerinden oluşur. Ancak son zamanlarda popülerlik kazanan UAV (İnsansız
Hava Aracı) LiDAR sistemleri, daha düşük maliyetli olup erişilmesi zor alanlarda
kullanım için idealdir. Araştırmacılar, bu sistemler aracılığıyla karmaşık coğrafi
bölgelerde ve dar alanlarda detaylı veri toplamaktadır [35].

Mobil LiDAR sistemleri, araçlara monte edilerek konfigüre edilmiş, LiDAR
sensörleri, GNSS birimleri, IMU ve mesafe ölçüm göstergeleri gibi çoklu yerleşik
sensörlerle entegre bir mobil haritalama teknolojisidir. Bu sistemler, yüksek hızda
geniş alanlardaki veri toplama kabiliyetleri sayesinde, profil tarama tekniklerini
kullanarak ve hedef yüzeylerden yansıyan lazer darbelerinin yoğunluğunu analiz
ederek konumlandırma, navigasyon, nesne tespiti ve algılama gibi fonksiyonları
icra eder. Ayrıca, mimari ve cephe ölçümü, tünel araştırmaları, akıllı ulaşım
sistemleri ve inşaat mühendisliği gibi çeşitli alanlarda üç boyutlu (3B) kentsel dijital
modelleme görevlerini destekler [36].

Yukarıda da ifade edildiği gibi ALS/MLS sistemlerinde üç ana bileşen bulunur:
a) bir lazer tarayıcı cihazı, b) GPS ve c) IMU bunların yanısıra bazı
sistemlerde kamerada entegre edilebimektedir. Bu sistemlerin doğrudan coğrafi
referanslandırılması (geo-referencing) mekanizması Şekil 2.1’de açıklanmıştır.
Belirli bir P noktasına elde edilen tarama açısı α, tarama mesafesi d’ye göre,
koordinat sistemindeki konumu Eşitlik 2.1’de formüller yardımıyla belirlenebilir
[37].

XP

YP

ZP

 = RIMU
M (ω, φ, κ) ·


lXlY
lZ

+

LX

LY

LZ

+ rSp (αd) ·RS
IMU (∆ω,∆φ,∆κ)

+

XGNSS

YGNSS

ZGNSS

 (2.1)

Eşitlik 2.1’deki, [XP , YP , ZP ]
T belirli bir haritalama sisteminde hedef P’nin
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konumlandırma bilgisini sunar; [XGNSS, YGNSS,ZGNSS]T aynı haritalama
sistemindeki GNSS anteninin konum bilgisini gösterir; w, f , k, haritalama
koordinat sistemindeki IMU’nun dönüş, eğim ve sapma ayrıntılarıdır; ∆ω, ∆φ, ∆κ,
tarayıcıları IMU ile uyumlu hale getiren yönlendirme açılarıdır (bore sight angles) ;
α ve d, lazer darbelerinin geliş açısını ve atış aralığını belirtir; ve diğer parametreler
sistem kalibrasyonu yoluyla tanımlanır.

Şekil 2.1 Coğrafi konumlandırma prensibi ([37]’den düzenlenmiştir.)

2.1.1 Yersel Lazer Tarama Sistemleri

Yersel lazer tarayıcılar, belirli bir yüzeyin üç boyutlu nokta bulutunu hızlı ve hassas
bir şekilde elde etmeyi sağlayan önemli ölçüm yöntemlerinden biridir. Tarihsel
olarak, yersel LiDAR teknolojisi, özellikle endüstriyel ve inşaat mühendisliği
uygulamalarında, binaların ve arkeolojik alanların dış yüzeylerine ait üç boyutlu
nokta bulutu verilerinin toplanmasında sıklıkla kullanılmaktadır [38]. Bu
teknolojinin temel bileşenlerinden biri olan mesafe belirleme sistemi, yersel lazer
tarayıcının etkinliğini artırmaktadır. Sistem, tarayıcıdan bir nesneye olan mesafeyi
ölçmek için bir lazer mesafe ölçer (lazer ranger) kullanır. Çalışma prensibi,
tarayıcının, sapma açısını dikey ve yatay yönlerde değiştirerek önceden ayarlanan
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taranan alana bir lazer ışını göndermesine dayanır. Lazer ışını yolu üzerindeki bir
yansıtıcı yüzeye çarptığında, alıcıya geri döner. Menzil ölçümünde kullanılan farklı
yöntemler, tarayıcı ile nesne arasındaki mesafenin (S) hesaplanmasına olanak tanır.
Son olarak, ışığın azimut (yatay) ve yükseklik (dikey) açılarına (α, β) göre yansıtıcı
noktanın konumu (Xp, Yp, Zp), alet koordinat sistemine dayalı olarak Eşitlik 2.2 ile
belirlenir [39].

Xp = S.cosβ.cosα, Yp = S.cosβ.sinα, Zp = S.cosβ (2.2)

Şekil 2.2’de yersel lazer tarayıcının çalışma prensbi gösterilmektedir.

Şekil 2.2 Yersel lazer tarayıcının çalışma prensibi.

Lazer tarayıcılarda kullanılan iki temel mesafe ölçüm yöntemi bulunmaktadır: uçuş
süresi (’darbe bazlı - pulse-based’ olarak da bilinir) ve faz bazlı. Her tarayıcı
tipi, proje gereksinimlerine bağlı olarak farklı senaryolarda uygun uygulamalar
sunar. Uçuş süresi tarayıcılarının gücü, çok daha uzun ölçüm aralıklarında ve
azaltılmış sahte nokta gürültüsünde yatmaktadır. Öte yandan, darbe bazlı tarayıcılar
ölçüm doğruluğu ve hız açısından önemli avantajlar sağlar. Bu teknik, bir lazer
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enerjisi darbesinin seyahat süresinin kaydedilmesine dayanan klasik bir yöntemdir.
Lazerin hızı çok kesin olarak bilindiğinden, yayılan darbenin gidiş-dönüş süresi
kaydedildiğinde, mesafe Eşitlik 2.3 kullanılarak hesaplanabilir; burada c lazerin
hızını, t ise lazerin gidiş-dönüş süresini temsil eder [40].

S =
1

2
.c.t (2.3)

Yersel Lazer tarama ölçümlerinde iki temel tarama protokolü tanımlanabilir:
tek tarama ve çoklu tarama. Tek tarama metodunda, lazer tarayıcı sabit bir
konuma yerleştirilir ve yalnızca bir defa tarama gerçekleştirilir. Bu yöntem,
süre açısından en verimli olsa da, elde edilen nokta bulutu nesnelerin yalnızca
tek bir yüzeyini temsil eder. Çoklu tarama metodunda, nesnelerin çevresinde
genellikle üç veya dört kez tarama yapılır. Bu yöntemde, farklı taramaların
birleştirilmesi, sahnede yerleştirilmiş ve her tarama için ortak referans noktaları
olan en az üç referans hedefin koordinatları kullanılarak gerçekleştirilen geometrik
bir dönüşüm ile sağlanır [41]. Her tarama ile elde edilen nokta bulutu
verileri tarayıcı merkezli yerel koordinat sistemini temsil eder. Tüm verilerin,
“registration” kayıt olarak bilinen bir süreç aracılığıyla ortak küresel bir koordinat
sistemine dönüştürülmesi gerekmektedir. Literatür çalışmalarında otomatik kayıt
yöntemleri geliştirilmiş olmasına ragmen, genel uygulamalarda kayıt işlemi hala
yarı otomatik olarak gerçekleştirilmektedir. Tipik olarak, registration İşleminin
gerçekleştirlebilmesi için ölçüm yapılan alana yerleştirlen özel hedeflerin yaklaşık
3B konumları klasik ölçme yöntemleri ile tespit edilerek ilgili yazılımlara gerekli
tanımlamaların yapılması gerekmektedir. Veri ön işleme adımı olarak ayrıca
hareketli nesnelerden gelen noktalar, yansımalar veya sensör yapaylıkları gibi
istenmeyen verileri kaldırmak için manuel veya otomatik filtrelemeyi de içerebilir.
Bu geometrik entegrasyon, saha ölçüm sürelerini (tarama sayısına bağlı olarak)
ve işlem adımlarını (hedef sayısına ve nokta bulutunda tespit yöntemine, yani
otomatik veya manuel olarak gerçekleştirilen tespitlere bağlı olarak) artırmakla
birlikte, nesnelerin üç boyutlu yapısının en kapsamlı tanımını sunar.

Bu tez çalışması kapsamında ilk çalışma bölgesine ait 3 boyutlu nokta bulutu
verisinin elde edilmesi için Leica RTC360 yersel lazer tarayıcı sistemi kullanılmıştır
(Şekil 2.3).
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Şekil 2.3 Leica RTC360 yersel lazer tarayıcı.

Leica RTC360 yersel lazer tarayıcının teknik özellikleri aşağıda listelenmiştir:

• Tek oturumda 2 dakikadan daha az tarama süresi

• Gerçek zamankı veri birleştirme

• Hareket eden objelerin taramadan otomatik atılması

• 360 derece yatay, 300 derece düşey görüş açısı

• 0.5 m – 130 m mesafe aralığında tarama menzili

• Saniyede 2 milyon noktaya kadar tarama yapabilme

• 10 metre mesafede 3 farklı çözünürlük (3 mm/6 mm/12 mm)

• 18 saniye açısal doğruluk, 1 mm + 10 ppm mesafe doğruluğu,

• 10 metrede 1.9 mm 3B nokta doğruluğu

• 36 MP(megapiksel) kamera çözünürlüğü

• Ardışık oturumlar arası bağıl konum takibi

• 4 saate kadar batarya süresi.
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2.2 İHA Fotogrametrisi
İHA fotogrametrisi, insan taşımayan, otonom veya manuel olarak yönlendirilebilen
hava araçlarına entegre edilmiş kameralarla çekilen fotoğrafların kullanıldığı
fotogrametrik süreci ifade eder. Bu süreç, İHA’lar tarafından toplanan görüntülerle
gerçekleştirilir. Kameralarla donatılmış insansız hava araçları tarafından çekilen
fotoğraflar üzerinden yürütülen fotogrametrik analizler, İHA fotogrametrisinin
temelini oluşturur [42]. Geleneksel yöntemlere göre İHA kullanımı, hem
esneklik hem de ekonomik açıdan büyük avantajlar sunmaktadır [43]. Geçmişte
askeri amaçlar ile geliştirilen İHA’lar, ilk olarak [44] tarafından geomatik amaçlı
kullanılmıştır.

İHA’lar ile farklı konumlardan çekilen ve örtüşen bir dizi görüntü kullanılarak 3
boyutlu nokta bulutu elde etmek için hareketten yapı (SfM) algoritması kullanılır.
Bu algoritmada, kamera konumu, yönelim parametreleri ve sahne geometrisi,
bir dizi örtüşen görüntüden otomatik olarak çıkarılan özellik noktalarına dayalı
olarak yüksek yedeklilik içeren iteratif demet dengelemesi kullanılarak eşzamanlı
olarak belirlenir [45, 46]. Bu işlemin gerçekleştirilmesinde yer kontrol noktasına
ihtiyaç duyulmaz [47]. Örtüşen görüntülerde anahtar noktaların belirlenmesi
sırasında, [48] tarafından geliştirilen Ölçek Değişmez Özellik Dönüşümü (SIFT)
yöntemi yaygın olarak kullanılmaktadır. SIFT algoritmasının yardımıyla, örtüşen
görüntülerdeki eşleşen özelliklerin tespiti ile sensör konumu ve yönelim geometrisi
yeniden modellenir. Anahtar noktaların tespit edilmesinin ardından, seyrek demet
dengeleme sistemi ile kamera pozisyonları tahmin edilir ve aynı zamanda seyrek
nokta bulutu üretilir. Kamera pozisyonlarındaki hatalar, doğrusal olmayan en
küçük kareler yöntemiyle minimize edildikten sonra, sahne geometrisini yeniden
oluşturmak ve noktaların konumlarını hesaplamak için üçgenleme işlemi yapılır.
SfM yaklaşımının klasik fotogrametriye göre en önemli avantajı, anahtar nokta
tespitinden 3 boyutlu modellemeye kadar olan sürecin tamamen otomatik olmasıdır
[47, 49]. Şekil 2.4’de İHA ile elde edilen görüntülerden yoğun nokta bulutunun
üretim sürecini gösteren iş akış diyagramı gösterilmektedir.

Tez kapsamında ikinci veri seti olarak [51] tarafından çekilen İHA görüntüleri
kullanılmış ve 3 boyutlu nokta bulutu bu görüntüler kullanılarak elde edilmiştir.
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Şekil 2.4 İHA ile çekilen görüntülerden yoğun nokta bulutunun elde edilmesinde
izlenilen işlem adımları ([46, 50]’den düzenlenmiştir.)
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3
SINIFLANDIRMA VE DOĞRULUK ANALİZİ

Uzaktan algılama ve coğrafi analiz bağlamında "sınıflandırma" terimi,
görüntülerdeki piksellerin, nesnelerin veya noktaların niteliklerine göre kategorilere
veya sınıflara ayrılması sürecini ifade eder. Bu nitelikler, spektral verileri
(gözün veya sensörlerin gördükleri), dokusal bilgileri, uzamsal desenleri veya
çeşitli görüntüleme işlemleriyle fark edilebilen diğer özellikleri içerebilir. Bu
bölümde sınıflandırma yöntemlerine değinilecek, nokta bulutu sınıflandırması ve
sınıflandırmanın doğruluk analizine ilişkin bilgiler verilecektir.

3.1 Sınıflandırma Yöntemleri
Sınıflandırma yöntemleri, üç ana başlıkla incelenebilir. Bunlar; piksel tabanlı
sınıflandırma, obje tabanlı sınıflandırma ve nokta tabanlı sınıflandırmadır.

3.1.1 Piksel Tabanlı Sınıflandırma

Gözetimli sınıflandırma, belirlenen sınıflar için önceden seçilmiş eğitim
alanlarından faydalanır. Eğitim verileri, algoritmanın görüntünün geri kalanındaki
pikselleri sınıflandırması için kullanılır ve genellikle Maksimum Olabilirlik
Sınıflandırıcısı (Maximum Likelihood Classifier, MLC) gibi algoritmalar uygulanır.
MLC, her bir sınıfın her bantta normal dağılım gösterdiğini varsayar [52].
Gözetimsiz sınıflandırma ise, kullanıcı tarafından belirlenmiş sınıflar olmaksızın,
algoritmanın kendi başına veri kümesinde doğal olarak oluşan grupları
tanımlamasına izin verir. Bu yaklaşımda, K-means ve ISODATA (Iterative
Self Organizing Data Analysis Technique) gibi algoritmalar, pikselleri spektral
benzerliklerine göre otomatik olarak gruplar [53, 54].

Piksel bazlı sınıflandırmanın uygulamaları arasında arazi örtüsü ve kullanımı
haritalarının oluşturulması, tarımsal alanların izlenmesi ve su kalitesi
değerlendirmeleri bulunmaktadır. Ancak, bu yöntem, özellikle karışık piksellerin
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ve spektral örtüşmenin olduğu durumlarda sınırlamalara sahiptir. Yüksek
çözünürlüklü görüntülerde bir piksel içinde birden fazla nesne tipi bulunabilir, bu
durum da sınıflandırma doğruluğunu azaltabilir. Bu tür sorunlar, spektral karışım
analizi gibi yöntemlerle ele alınabilir; bu yaklaşım, bir piksel içindeki farklı
materyallerin oranlarını tahmin ederek daha kesin sonuçlar elde etmeyi amaçlar
[55].

3.1.2 Obje Tabanlı Sınıflandırma

Obje tabanlı sınıflandırmada (OBC), görüntülerdeki belirli nesneler veya objeler
tanımlanarak sınıflandırma yapılır. Geleneksel piksel tabanlı tekniklerin aksine,
OBC, benzer özelliklere sahip pikselleri gruplayarak daha büyük ve anlamlı
"objeler" oluşturur. Bu yaklaşım, verileri daha anlamlı bir şekilde yorumlamayı
sağlar, çünkü objeler gerçek dünya nesnelerinin daha doğru birer temsili olarak
işlev görür [56]. Burada ilk adım olan segmentasyon süreci, benzerlik kriterlerine
(renk, doku, yoğunluk) göre piksellerin objeler halinde gruplandırılmasını içerir
ve bu işlem belirli bir algoritma veya istatistiksel yöntemle gerçekleştirilir [57].
Objeler oluşturulduktan sonra, çeşitli sınıflandırma teknikleri kullanılarak her bir
obje, önceden tanımlanmış sınıflara atanır. Bu sınıflandırma, genellikle objenin
spektral imzası, şekil, doku ve bağlamsal ilişkiler gibi özelliklerine dayanır.
Özellikle, Rastgele Orman ve Destek Vektör Makineleri gibi algoritmalar, obje
tabanlı sınıflandırma bağlamında sıkça kullanılan yöntemler arasında yer alır [58,
59]. OBC, tarım, orman yönetimi, kentsel planlama ve afet izleme gibi çeşitli
alanlarda kullanılmaktadır. Tarım sektöründe, bitki örtüsü türlerinin ve sağlık
durumlarının belirlenmesi, verim tahminleri yapılması gibi konularda kullanılırken;
orman yönetiminde ağaç türlerinin sınıflandırılması, hasar tespiti ve biyolojik
çeşitliliğin izlenmesi için önemli bir araçtır [60–62]. Kentsel bölgelerde ise,
yapıların ve yüzey kaplamalarının sınıflandırılması, kentsel büyümenin izlenmesi
ve planlama süreçlerinde önemli bilgiler sağlamaktadır [63].

3.1.3 Nokta Tabanlı sınıflandırma

Nokta tabanlı sınıflandırma, özellikle lazer tarama sistemleri (LiDAR) ve
fotogrametri yöntemleriyle elde edilen nokta bulutu verilerinin analizinde yaygın
olarak kullanılan bir yöntemdir. Bu yöntem, tekil pikseller veya nesneler yerine,
noktaların kendilerine özgü özelliklerine dayanarak sınıflandırılmasını amaçlar.
Noktalar, üç boyutlu koordinatlar (x, y, z) ve genellikle renk bilgileri (RGB) gibi
özellikler içerir. Nokta tabanlı sınıflandırma yöntemleri, piksellerin en küçük birim
olarak ele alındığı piksel tabanlı yaklaşımlara benzer bir şekilde çalışır, ancak
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burada analiz edilen birimler noktalar olduğundan daha yüksek çözünürlükte ve
detaylı bir sınıflandırma sağlanır [64]. Noktaya dayalı sınıflandırmada makine
öğrenme ve derin öğrenme gibi çeşitli yöntemler ve algoritmalar kullanılmaktadır.
Bu tez çalışması kapsamında kullanılan yöntemler ve bunlara ilişkin bilgiler Bölüm
4’te detaylı olarak anlatılacaktır.

3.2 Doğruluk Analizi
Bir makine öğrenmesi modelinin tahmin performansının değerlendirilmesi,
sınıflandırmanın önemli bir parçasıdır. Literatürde, bir makine öğrenmesi
sınıflandırıcısının tahmin performansını değerlendirmek için çeşitli ölçümler
bulunmaktadır. Bu çalışmada doğruluk, kesinlik, duyarlılık ve F1-Skor,
değerlendirme ölçütleri olarak kullanılmıştır. Bu değerler, gerçek sınıf ile tahmin
edilen sınıf verilerinin bir matrisi olan hata/karışıklık matrisinden (Confusion
matrix) elde edilir [65].

Karışıklık matrisi, sınıflandırma doğruluğunu ve hatalarını görselleştirmek için
kullanılan temel araçlardan biridir. Karışıklık matrisi [66], bir sınıflandırma sistemi
tarafından yapılan gerçek ve tahmin edilen sınıflandırmalar hakkında bilgi içeren
bir kavramdır. Karışıklık matrisinin iki boyutu vardır; bir boyut bir nesnenin gerçek
sınıfı tarafından indekslenir, diğeri ise sınıflandırıcının tahmin ettiği sınıf tarafından
indekslenir. Şekil 3.1’de karışıklık matrisinin temel formu gösterilmektedir. Burada
Nij gerçekte Ci sınıfına ait olan ancak Cj sınıfı olarak sınıflandırılan örneklerin
sayısını temsil eder [67].

Şekil 3.1 Karışıklık Matrisi
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Karışıklık matrisi ile sınıflandırma sonucunun değerlendirilmesinde kullanılacak
olan değerlendirme ölçütleri; doğruluk, duyarlılık, kesinlik ve F1-Skor
hesaplanabilir. Bu ölçütler 0-1 arasında değer almaktadır. Bu metriklerde 1’e yakın
değerler daha iyi sınıflandırma performansını, 0’a yakın değerler ise daha düşük
sınıflandırma performansını göstermektedir [68].

Doğruluk, doğru tahminlerin, tüm tahminlere oranı olarak ifade edilmektedir ve
Eşitlik 3.1 ile hesaplanmaktadır.

Doğruluk =

∑n
i=1 Nii∑n

i=1

∑n
j=1 Nij

(3.1)

Kesinlik, her sınıf için doğru pozitif tahminlerin toplam pozitif tahminlere oranıdır
ve Eşitlik 3.2 ile hesaplanmaktadır.

Kesinliki =
Nii∑n
k=1 Nki

(3.2)

Duyarlılık, her sınıf için doğru pozitif tahminlerin gerçek pozitif örneklere oranıdır
ve Eşitlik 3.3 ile hesaplanmaktadır.

Duyarlılıki =
Nii∑n
k=1Nik

(3.3)

F1-Skor ise kesinlik ve duyarlılığın harmonik ortalamasıdır ve Eşitlik 3.4 ile
hesaplanmaktadır.

F -Skori =
2× Kesinliki × Duyarlılıki

Kesinliki + Duyarlılıki

(3.4)
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4
MAKİNE ÖĞRENMESİ

Makine öğrenmesi, çevredeki ortamdan öğrenerek insan zekasını taklit etmek
için tasarlanmış, verileri akıllı eylemlere dönüştürmeyi amaçlayan bilgisayar
algoritmalarının oluşturulmasına ve geliştirilmesine odaklanan disiplin olarak
tanımlanır [69, 70]. Bu bölümde makine öğrenmesinin temeli, türleri ve
yöntemlerine değinilecek, tez kapsamında kullanılan yöntemler detaylı şekilde
açıklanacaktır.

4.1 Makine Öğrenmesinin Temelleri
Doğal insan davranışı olan öğrenme genel olarak, yeni davranışların, değerlerin,
bilgilerin, becerilerin veya tercihlerin kazanılması ya da mevcut davranışların
değiştirilmesiyle ilgilidir. Makine öğrenimi ise, doğal insan öğrenme sürecine
paralel olarak, bilgisayarların kendi başlarına düşünmelerini ve öğrenmelerini
sağlayan bir yapay zeka kategorisini temsil eder. Bilgisayarların eylemlerini
daha doğru hale getirmek için bu eylemleri değiştirmeye odaklanır; bu bağlamda
doğruluk, yapılan eylemlerin doğru sonuçlanma sıklığıyla ölçülür [71]. Yapay
zekanın bir alt kategorisi olan makine öğrenmesi, verilerden öğrenme ve bu
öğrenimleri yeri verilerde uygulama temeline dayanır.

Makine öğrenmesinin genel modeli, algoritmadan bağımsız olarak altı bileşenden
oluşur. Bunlar;

• Verilerin toplanması ve hazırlanması,

• Özellik seçimi,

• Algoritma seçimi,

• Model ve parametre seçimi,

• Eğitim ve ,
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• Performans analizi/değerlendirmesidir [64, 71, 72].

Makine öğrenmesinin temel kavramları, tanımlanan bir problemi çözmek için
kullanılan bir prosedür seti olan algoritma, algortimanın verilerden öğrendiklerini
temsil eden model, modelin öğrenmesi için kullanılan ekiketli ve çeşitli özelliklere
sahip olan eğitim verisi ve eğitilen modelin genelleme kabiliyetini değerlendirmek
için kullanılan test verisidir. Modelin eğitimi, problem tanımında kullanılan veriye
bağlıdır. Bu nedenle makine öğrenmesinde kullanılan verinin önemi büyüktür;
verinin doğru ve problemle ilişkili olması gereklidir. Eğitim için kullanılan veri,
tahmin için kullanılacak test verisinden büyük ölçüde farklılık gösterirse, elde
edilecek tahminlerin doğruluğu olumsuz etkilenir. Bu tür olumsuz sonuçların
oluşmaması için eğitim ve test verisinin doğru bir şekilde etiketlenmiş olması
önemlidir [73].

Makine öğrenmesi, geniş bir uygulama sahasına sahip ve sürekli gelişen bir alandır.
Örneğin, otonom teknolojileri, robotik teknolojileri, e-posta filtreleme, tıbbi tanı ve
hastalık tahminleri, ses ve görüntü tanıma, finansal hizmetler (dolandırıcılık, kredi
puanlama vb.) gibi birçok alanda sıkça kullanılmaktadır [71, 73, 74].

Güçlü matematiksel altyapısı nedeniyle karmaşık verilerin analizinde oldukça
kullanışlıdır. Kullanıcıya ihtiyaç duyan, çözüm için kullanılacak parametrelerin
doğrudan kullanıcı tarafından belirlendiği kural tabanlı sistemlerin aksine, çözüm
için gerekli parametreleri etiketlenmiş eğitim verisi üzerinden kendisi otomatik
olarak belirler [6].

4.2 Makine Öğrenmesinin Yöntemleri
Makine öğrenmesi, geçmiş deneyimlerden oluşan ve bu deneyimlenen verilerden
geliştirilen bir dizi algoritmadır. Eğitim verileri üzerinde çalışır ve tahmin
veya kararlar için kullanılır.Yapay zekanın alt kategorisi olan makine öğrenmesi,
öğrenme yöntemlerine göre 3 alt kategoriye ayrılır.

• Denetimli Öğrenme (Supervised Learning),

• Denetimsiz Öğrenme (Unsupervised Learning),

• Pekiştirmeli Öğrenme (Reinforcement Learning) [75, 76].
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4.2.1 Denetimli Öğrenme

Sınıflandırma problemlerinde en yaygın kullanılanan tekniktir ve makineye
kullanıcı tarafından üretilen bir sınıflandırma sisteminin öğretilmesine dayanır.
Burada amaç, bir özellik dizi ile tanımlanan obje etiketini tahmin edebilen bir
tahminci oluşturmaktır. Algoritma doğru çıktılar ile birlikte bir dizi özelliği girdi
olarak alır ve hataları bulmak için gerçek çıktı ile düzeltilmiş çıktıyı karşılaştırarak
öğrenir [77, 78]. Şekil 4.1’de denetimli öğrenmeye ilişkin bir görsel verilmiştir.

Şekil 4.1 Denetimli Öğrenme

Bu çalışma kapsamında rastgele orman (Random Forest), hafif gradyan artırma
(Light Gradient-Boosting Machine) ve aşırı gradyan artırma ( eXtreme Gradient
Boosting) kullanılmıştır. Bu kısımda bu yöntemlere ilişkin detaylı açıklama
verilecektir.
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4.2.1.1 Rastgele Orman

Rastgele Orman (Random Forest-RF) algoritması [79], girdi veri setinden farklı
örnekler kullanarak oluşturulan karar ağaçlarının sonuçlarını bir oylama tekniği
ile birleştirerek girdi verilerinin sınıf sonucunu belirler (Şekil 4.2) . Algoritma,
oluşturulacak karar ağaçlarının sayısı, bir düğümde göz önünde bulundurulabilecek
maksimum özellik sayısı ve bir düğümün ne kadar detaylı bölünebileceğini
gösteren minimum yaprak sayısı gibi girdi parametrelerini içerir. RF algoritması,
temel olarak torbalama (bagging) ve güçlendirme (boosting) olmak üzere iki
ana aşamadan oluşur. Her bir karar ağacı, orijinal veri setinden bağımsız
olarak seçilen rastgele önyükleme (bootstrap) örnekleri kullanılarak inşa edilir.
Bu süreç, torbalama (bagging) olarak adlandırılan bir yöntemle gerçekleştirilir
ve amacı, modelin farklı veri yönlerini öğrenmesini sağlayarak genel tahmin
yeteneğini artırmaktır. Torbalama yöntemi, veri setinden rastgele alt kümeler
oluşturarak birden çok karar ağacının eğitilmesini sağlar. Her bir alt küme, aynı
veri setinden seçilse de, rastgelelik nedeniyle birbirinden farklıdır. Bu süreç,
modelin farklı veri özelliklerini öğrenmesine ve daha sağlam bir yapıya sahip
olmasına olanak tanır. Karar ağaçlarında sınıf tahmini, çoğunluk oyu kavramına
dayanarak yapılır. Sınıflandırma için, her bir karar ağacının çıktısı bir oydur.
Bir veri noktası için en çok oyu alan sınıf, modelin tahmini olarak kabul edilir.
Performans güçlendirme aşamasında ise, ardışık modeller oluşturulur ve en yüksek
sınıflandırma doğruluğuna sahip karar ağacı seçilir.

Şekil 4.2 Karar Ağacı
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Veri setinden seçilen örneklerin yaklaşık üçte biri, torba dışı (Out-of-Bag - OOB)
örnekler olarak saklanır. Bu örnekler, herhangi bir karar ağacının oluşturulması
sırasında kullanılmazlar. Bunun yerine, modelin doğruluğunu değerlendirmek
için bir tür doğrulama seti olarak işlev görürler. Modelin eğitilmesi sırasında
hiç kullanılmayan bu OOB örnekleri üzerinde yapılan tahminler, modelin genel
performansının bir ölçütü olarak kullanılabilir [80]. Bu ölçüt bir sınıflandırma
modelinin verinin doğru sınıfa ne kadar "güvenle" atandığını ölçen kenar
fonksiyonu ile ölçütü ile belirlenir. Bu fonksiyon modelin doğru sınıfı ne kadar
kesin bir şekilde "tercih ettiğini" gösterir. Kenar fonksiyonu;

mg(X, Y ) = Dogru sinif skoru− En yuksek yanlis sinif skoru (4.1)

Burada mg() kenar fonksiyonu, X girdi özelliklerini, Y ise gerçek sınıf etiketlerini
temsil eder. Kenar değeri ne kadar yüksekse, modelin o veri noktasını doğru
sınıfa atama konusunda o kadar emin olduğu anlamına gelir. RF modelinin
genelleştirilmiş hatası;

PE∗ = PX,Y (mg(X, Y ) < 0) (4.2)

Bu yaklaşım, ayrı bir doğrulama veya test setine ihtiyaç duymadan modelin ne kadar
iyi genelleme yaptığının bir göstergesi olarak değerlendirilebilir [79].

RO her nokta için geometrik özellikleri bir giriş vektörü (x) olarak alır, K sayıda
ağaç oluşturur ve tahmin edilen sınıflar için sonuçların ortalamasını alır. K ağaç
oluşturulduktan sonra ağaçlar T (x)K1 , RF sınıflandırıcısı şu şekilde ifade edilebilir.

fK
ro(x) =

1

K

K∑
k=1

T (x) (4.3)

4.2.1.2 Aşırı Gradyan Artırma

Aşırı gradyan artırma (eXtreme Gradient Boosting-XGBoost), gradyan artırma
çerçevesi(Gradient Boosting Framework) temelinde güvenilir ve verimli bir makine
öğrenimi olduğu kanıtlanmış, ölçeklenebilir bir topluluk tekniği olan bu algoritma
[81], karar ağaçları kullanarak iteratif bir şekilde modelin performansını artırmayı
hedefler. Temel amacı, bir dizi zayıf tahmin modelini, güçlü bir tahmin modeline
dönüştürmektir.. Birden fazla karar ağacını bir araya getirerek çalışır. Her
adımda, önceki tüm ağaçların tahminlerinin hatalarını düzeltmek için yeni bir ağaç
eklenir. Bu süreç, belirlenen sayıda ağaç oluşturulana veya bir durdurma kriteri
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karşılanana kadar devam eder. XGBoost, modelin karmaşıklığını kontrol etmek
ve aşırı uyumu (overfitting) önlemek için L1 (Lasso Regrasyonu) ve L2 (Ridge
Regrasyonu) düzenlileştirmeleri içerir [82, 83]. L1 (Lasso Regresyonu), regresyon
modelindeki özelliklerin ağırlıklarını sıfıra eğilimli hale getirerek, bazı özellikleri
modelden tamamen çıkarabilen bir tür düzenlileştirme (regularization) tekniğidir.
Bu, modelin daha basit hale gelmesine ve aşırı uyumun (overfitting) önlenmesine
yardımcı olur [84]. XGBoost algoritmasında bu değer α ile kontrol edilir ve α

sıfır ile sonsuz aralığında değer alır. Bu parametrenin değeri arttıkça, modeldeki
ağaçların dallarının ağırlıkları daha fazla sıfıra doğru itilir, bu da modelin daha
basit ve genelleştirilmiş hale gelmesine yardımcı olur. L2 düzenlemesi(Ridge
Regrasyonu), ağaç yapısındaki yaprak düğümlerinin ağırlıklarına ikinci dereceden
bir ceza uygulayarak kullanılır. Bu, modelin daha az karmaşık hale gelmesine ve
aşırı uyumun azalmasına yardımcı olur [84]. XGBoost sınıflandırıcısında bu değer
λ ile kontrol edilir ve lambda sıfır ile sonsuz aralığında değer alır. Bu parametredeki
değer artışı ile yaprak ağırlıkları üzerindeki düzenleme artar, bu da modelin daha
robust olmasını sağlar. Algoritmanın temel çalışma prensibini gösteren eşitlikler
aşağıda verilmiştir.

F =
{
f(x) = w(x)

}
(4.4)

Bu denklem x örneğinin bir yaprak düğüme atanmasını, w ise o yaprak düğümünün
ağırlığı ifade etmektedir.

L (Φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω (fk) Ω (f) = ΥT +
1

2
λ ∥w∥2 (4.5)

Ω (f) = ΥT +
1

2
λ ∥w∥2 (4.6)

4.5 ve 4.6 denklemleri XGBoost sınıflandırıcısının amaç fonksiyonunu ifade
etmektedir. Burada T yaprak düğüm sayısını, yi referans etiketi, ŷi tahmin
edilen sınıfı, λ düzenlileştirme avans katsayısını, Υ yaprak düğümü ile ilgili avans
faktörünü ifade etmektedir.

Denklem iteratif olarak devam ettirildiğinde amaç fonksiyonu:

Lt =
∑
i

l(y, ŷt−1
i ) + ft(xi) + Ω(ft) (4.7)

burada gi kayıp fonksiyonunun birinci türevi ve hi kayıp fonksiyonunun ikinci
türevidir [83].
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Lt ≈
∑
i

[l(y, ŷt−1
i ) + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft) (4.8)

Amaç fonksiyonunun minimum değerini elde etmek ve türevini 0’a eşitlemek için,
tüm zayıf öğrenenler (I) için her bir yaprak düğümün ağırlığı aşağıdaki şekilde
hesaplanır:

w∗
j = −

∑
iϵIj

gi∑
iϵIj

hi + λ
(4.9)

Amaç fonksiyonu yerine konulduğunda, çözüm minimum kaybı Eşitlik 4.10’daki
gibi ifade edilir [82]:

L̃t = −1

2

T∑
j=1

(
∑

iϵIj
gi)

2∑
iϵIj

hi + λ
(4.10)

4.2.1.3 Hafif Gradyan Artırma

Hafif gradyan artırma (Light Gradient-Boosting Machine-LightGBM), Microsoft
tarafından yüksek boyutlu özelliklere sahip geniş veri setlerinde hızlı ve etkili
tahmin sorunu çözümü için üretilen bir ağaç tabanlı yöntemdir. LightGBM,
birbirine yakın ilişkili özellikleri (yani, veri setindeki değişkenleri) tespit edip,
bu özellikleri "benzersiz özellik gruplarına" düzenler. Bu gruplama işlemi,
her bir özellik için ayrı ayrı bölünme noktaları bulma ihtiyacını azaltır çünkü
yakın ilişkili özellikler tek bir grup olarak değerlendirilir. Sonuç olarak, ağaç
yapısında gerçekleştirilmesi gereken toplam bölünme sayısı azalır. Bu azalma,
hem hesaplama süresini hem de gerekli bellek miktarını önemli ölçüde düşürür,
çünkü algoritma artık daha az bölünme noktası üzerinde çalışmak zorundadır.
LigtGBM’in bu yaklaşımı, veri setlerinin daha hızlı ve daha etkin bir şekilde
işlenmesini sağlayarak, büyük veri üzerinde makine öğrenimi uygulamalarının
daha erişilebilir ve uygulanabilir olmasına katkıda bulunur [85]. LightGBM,
modelin aşırı uyum (overfitting) riskini azaltmak ve modelin genelleme kabiliyetini
artırmak için iki popüler düzenleme (regulation) teknikleri olan L1 ve L2 norm
düzenlemesini kullanır. Bu teknikler, modelin karmaşıklığını kontrol ederek,
modelin eğitim verisine fazla uyum sağlamasını ve böylece daha önce görmediği
verilere iyi genelleme yapabilmesini sağlar. L1 düzenlemesi özellik seçimi
yaparken tercih edilirken, L2 düzenlemesi model ağırlıklarını düzenleyerek daha
stabil ve genelleme kabiliyeti yüksek modeller oluşturmak için kullanılır [85, 86].

LightGBM sabit bir ağaç modeliyle başlar ve ek ağaç modellerini sırayla eğiterek
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kayıp fonksiyonunu en aza indirir:

Y
(t)
i = Y

(t−1)
i + ft(Xi) (4.11)

burada Y
(t)
i yeni modeli, Y

(t−1)
i önceki iterasyonun ağaç modelini ve ft(Xi) bir

sonraki adımda eklenmesi gereken yeni ağaç modelini temsil eder, şu şekilde
gösterilir:

ft = minL = min(
n∑

i=1

l(yi, Yi)) (4.12)

Burada L kayıp fonksiyonunu, yi noktaların ve standart sapmaların etiketini ve Y i

ise i. örnek için tahmin edilen değerini temsil eder [69].

4.2.2 Denetimsiz Öğrenme

Denetimsiz öğrenme, makine öğrenimi algoritmalarının etiketlenmemiş verilerden,
veri setindeki yapıları, desenleri veya kümeleri öğrenmesini sağlayan bir yöntemdir
[87, 88]. Denetimli öğrenmede model, hem girdi verilerini hem de karşılık
gelen çıktıları (etiketleri) içeren bir veri kümesi üzerinde eğitilirken, denetimsiz
öğrenme yalnızca girdi verileri ile ilgilenir. Etiketli veri olmadığı için, sistemden
beklenilen sonuçlar bilinmemektedir. Yani önceden tanımlanmış ön bilgi
olmadan veri yapısının anlaşılması ve veriden anlamlı sonuçların çıkarılması için
kullanılmaktadır. Etiketli verinin olmadığı, etiketlemenin imkansız olduğu veya
etiketlemenin zaman alacağı durumlarda, zamandan tasarruf etmek için tercih
edilebilir. Veriler içindeki ilişkilerin ve yapıların, bir etiketi tahmin etmekten daha
önemli olduğu her alanda güçlü bir yöntemdir. Bu yöntemde modelin başarısı, veri
setinin kalitesine ve seçilen algoritmanın veriye uygunluğuna bağlıdır. Bu yöntemin
temel uygumaları, kümeleme, boyut azaltma, derinlik analizi ve özellik çıkarımıdır.
Kümeleme için; K-means [89], DBSCAN [90] (Density-Based Spatial Clustering
of Applications with Noise), boyut azaltma için; temel bileşen analizi (PCA) [89,
91], doğrusal diskriminant analizi (LDA) [92], derinlik algılama için; izalasyon
ormanı [93], özellik çıkarımı için; tekil değer ayrışımı (SVD) [91] gibi yöntemler
bulunmaktadır.

4.2.3 Pekiştirmeli Öğrenme

Pekiştirmeli öğrenme, çevreleriyle etkileşimde bulunarak ve farklı eylemlerle
pozitif ve negatif ödülleri ilişkilendirerek, insanların öğrenme biçimine benzer
teknikler kullanarak öğrenmeyi amaçlayan bir hesaplama yaklaşımıdır. Tipik olarak
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bir pekiştirmeli öğrenme tabanlı sistem bir ajan olarak adlandırılır ve belirli bir
zamanda alabileceği sabit sayıda eyleme sahiptir. Her eylemle ilişkilendirilmiş
bir ödül veya ceza vardır. Yani yapılan işlemler için geri bildirim alınır, doğru
adımlar için ödül, yanlış adımlar için ceza uygulanır. Sistemin amacı, bir dizi
eylem boyunca kümülatif ödülü en üst düzeye çıkarmaktır. Ajan tarafından
kazanılan bilgi, ajanın belirli bir durumla karşılaştığında hangi eylemlerin alınması
gerektiğini belirleyen politikalar kümesi olarak temsil edilir [73, 94]. Pekiştirmeli
öğrenme algoritmaları model tabanlı ve modelden bağımsız olmak üzere ikiye
ayrılır. Model tabanlı bir algoritmada, bir ajan denemelere güvenmez, bunun yerine
önceden öğrenilmiş modeli kullanır. Modelden bağımsız yöntemler, etkileşimde
bulundukları çevreden gelen bilgiler ve deneyimler ile öğrenirler. Bu nedenle
sistem dinamikleri, çevre ile kurdurkları çok sayıda etkileşim ile belirlenir [95].
Tez kapsamında denetimli öğrenme algoritmaları kullanıldığı için pekiştirmeli ve
denetimsiz öğrenme detaylarına yer verilmemiştir.
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5
DERİN ÖĞRENME

Derin öğrenme, pek çok katmanın belirli konfigürasyonlarla ve bir sırayla
birleştirilerek oluşturduğu derin sinir ağlarını tanımlamak için kullanılan terimdir
[96]. Çok katmanlı doğrusal olmayan işlem birimleri aracılığıyla öğrenen bir
makine öğrenme stratejisidir [97]. 2012 yılında AlexNet modelinin [98] piyasaya
sürülmesiyle birlikte, derin öğrenme modelleri giderek daha popüler hale gelmiştir.
Bu modeller, büyük miktarda verinin olduğu uygulamalar için özellikle faydalıdır.
Etiketli eğitim veri seti kullanılarak derin sinir ağ modeli, problemi ele almak üzere
eğitilir ve test için hazır hale getirilir.

Derin öğrenme tekniklerinin belirgin bir özelliği, Rastgele Orman [79] gibi makine
öğrenmesi sınıflandırıcılarının aksine özelliklerin otomatik olarak üretilmesidir.
Geleneksel makine öğrenme yöntemlerine kıyasla, kavramların daha etkin bir
şekilde soyutlanmasını ve hiyerarşik olarak düzenlenmesini sağlar [99]. Evrişimli
sinir ağları (Convolutional Neural Networks (CNN)), farklı ölçeklerde evrişimsel
filtreler kullanarak ayrıt edici özellikleri otomatik olarak çıkartan, en yaygın
derin öğrenme modelidir [100–104]. Model, eğitim veri setini kullanarak filtre
ağırlıklarını ayarlar. Ağırlıklar, hata geri yayılımı (backpropagation) yöntemiyle
optimize edilir [105]. Eğitim aşaması tamamlandıktan sonra konvolüsyon
filtrelerinin ağırlakları sabitlenir [98] ve bu ağırlıklar kullanılarak test veri seti
üzerinde değerlendirme yapılmaktadır [96, 106]. Özellikle görüntü tanıma, nesne
algılama ve sınıflandırma uygulamalarında kullanılmaktadır [107].

5.1 Evrişim Katmanı
Evrişim katmanı (Convolutional Layer), derin öğrenme modellerinde, özellikle de
görüntü işleme ve tanıma görevlerinde yaygın olarak kullanılan bir katman türüdür.
Bir evrişim işleminde, mevcut katmanla aynı derinliğe sahip ancak daha düşük
bir uzaysal boyuta sahip 3 boyutlu bir ağırlık filtresi kullanılır. Bu filtreler, bir
katmandan diğerine aktivasyon fonksiyonlarını eşlemek için kullanılır. Düzeltilmiş
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doğrusal birim (Rectified Linear Unit/ReLU) [108] gibi bir aktivasyon fonksiyonu
kullanıldıktan sonra, bir sonraki katmandaki gizli durumun değeri, filtredeki tüm
ağırlıklar ile aynı boyuttaki uzamsal bölgenin nokta çarpımı ile hesaplanır [96, 109].
Yani filtre içerisinde kalan piksel değerleri filtre değerleri iler çarpılıp toplanır. Şekil
5.1’de evrişim işlemin gösterilmiştir.

Şekil 5.1 Evrişim İşlemi

Derin sinir ağları içinde evrişim katmanlarının ardışık kullanımı, çok katmanlı
özellik çıkarımı ve daha yüksek seviyeli soyutlama sağlar, bu da modelin karmaşık
veri yapılarıyla başa çıkabilme yeteneğini artırır [110]. Alt seviyedeki katmanlardan
üst seviyedeki katmanlara gidildikçe ayırt etme özelliği artmaktadır. Üst seviye
katmanlarda daha karmaşık yapılar elde edilebilirken, alt seviyelerde çizgi gibi basit
özellikler (çizgi gibi) yakalanabilir. Bu basit özelliklerdeki formlar birleştirilerek
sonrakı katmanlar sayıları oluşturulabilir. Yani basit yapılar birleştirilerek daha
karmaşık yapılar tanımlanabilir.

5.2 Aktivasyon Katmanı
Evrimsel sinir ağları içerisinde, non-lineer katmanlar, sıklıkla aktivasyon
fonksiyonları olarak adlandırılır ve karmaşık veri desenlerini işlemek için büyük
önem taşımaktadırlar. Modelin doğrusal olmayan yetenekler kazanması amacıyla
doğrusal evrişimli katmanlar arasına yerleştirilirler. Evrişimli sinir ağlarında en çok
kullanılan aktivasyonları, düzeltilmiş doğrusal birim fonksiyonu (ReLU) [109] ve
sızıntılı düzeltilmiş doğrusal birim (Leaky ReLU)’dir [111]. Bunlara ek olarak, ikili
sınıflandırmada kullanılan ve girdileri 0 ile 1 arasında değerlere eşleyen Sigmoid
foksiyonu ve Sigmoid fonksiyonuna benzer bir yapıya sahip ancak -1 ile +1 arasında
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değer alan Hiperbolik Tanjant Fonksiyonu (Tanh) bulunmaktadır.

ReLU aktivasyon fonksiyonu, her katmanın çıktısına uygulanarak eşiklenmiş
değerler oluşturur. Bu işlem, aktivasyon değerlerinin doğrudan bir sonraki katmana
aktarılmasını sağlar, çünkü ReLU bir-bir eşleme yaptığı için katman boyutlarını
değiştirmez. Geleneksel sinir ağlarında aktivasyonlar, lineer dönüşüm ve ağırlıklar
matrisinin kombinasyonu ile oluşturulur, bu süreçte ReLU genellikle bir evrişim
işlemi takiben uygulanır (Aggarwal, 2018). Ancak, ReLU katmanı evrişimli sinir
ağlarının görsel temsillerinde açıkça belirtilmez [112].

ReLU fonksiyonu, pozitif bir girdi değerini doğrudan aynı değer olarak alırken,
negatif değeri 0’a çevirir ve diğer katmana aktarır. Matematiksel olarak fx =

max(0, x) tanımlanan ReLU, 0’dan sonsuza değer almaktadır [113]. ReLU’nun
negatif değerlere 0 ataması, eğitim sürecini hızlandırırken, eğitim başlangıcında
önemli miktarda ölü nöronların oluşmasına sebep olabilir. Bu durum ağın öğrenme
yeteneğini olumsuz etkileyebilmektedir [114].

[111] tarafından geliştirilen sızıntılı ReLU, ölü nöron olayını çözmek ve negatif
değerleri eğtime dahil etmek üzere ReLU’nun bir varyantı olarak tasarlanmıştır.
Sızıntılı ReLU’nun matematiksel modeli Eşitlik5.1’de verilmiştir.

f(x) =

{
x if x ≥ 0

αx if x ≤ 0
(5.1)

Fonksiyon, girdi x sıfırdan büyük veya eşit olduğunda x olarak, x sıfırdan küçük
olduğunda ise αx olarak tanımlanır, burada α genellikle 0.01 gibi küçük bir sabit
değerdir [115]. Bu yapı sayesinde, negatif girdilerde bile nöronlar tamamen inaktif
hale gelmez ve ağın daha etkin bir şekilde öğrenmesine olanak tanır. Şekil 5.2’de
Relu ve sızıntılı ReLU karşılaştırmasına örnek bir grafik verilmiştir.
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Şekil 5.2 ReLU ve Sızıntılı ReLU karşılaştırması

5.3 Havuzlama Katmanı
Havuzlama katmanı (Pooling layer), evrişimli sinir ağlarının (CNN) yapısal bir
öğesidir ve genellikle evrişim katmanlarından sonra gelir. Bu katman, ağın özellik
haritalarını küçültmek ve hesaplama yükünü azaltmak için kullanılır. Temel işlevi,
girdi özellik haritasındaki bilgiyi yoğunlaştırarak daha az hassas, ancak daha genel
bilgileri korumaktır [109].

İki ana tür havuzlama işlemi vardır: maksimum havuzlama (max pooling)
ve ortalama havuzlama (average pooling). Maksimum havuzlama, bir özellik
haritasındaki belirli bir pencere içindeki maksimum değeri alır ve bu maksimum
değer, havuzlanmış çıktının ilgili elemanı olur [116]. Ortalama havuzlama ise,
aynı penceredeki tüm değerlerin ortalamasını alır. Bu işlemler, özellik haritasının
boyutlarını küçültürken temsil edilen bilginin önemli kısmını korumaya yardımcı
olur.

Havuzlama katmanlarının kullanılmasının bir avantajı, elde edilen özelliklerin
konumsal değişikliklere karşı daha dirençli olmasıdır. Örneğin, maksimum
havuzlama, girdideki küçük kaymaların etkisini azaltır ve böylece modelin yer
değiştirmelere karşı daha dayanıklı olmasını sağlar [106]. Bu, ağın daha genel ve
esnek bir öğrenme yeteneğine sahip olmasına olanak tanır. Şekil 5.3’te havuzlama
işlemine ait görsel sunulmaktadır.
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Şekil 5.3 a) Maksimum havuzlama , b) Ortalama havuzlama
[117]’den uyarlanmıştır.
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5.4 Softmax Sınıflandırıcısı
Softmax sınıflandırıcısı, çok sınıflı sınıflandırma görevlerinde yaygın olarak
kullanılan bir aktivasyon fonksiyonudur. Bu fonksiyon, bir sinir ağının son
katmanında yer alır ve nöronların çıktılarını, sınıf olasılıkları anlamına gelecek
şekilde normalize eder. Bu normalizasyon, çıktıları 0 ile 1 arasında bir değere
dönüştürür ve tüm çıktıların toplamı 1 olacak şekilde düzenler [118].

Softmax fonksiyonu, genellikle logitler olarak adlandırılan ham puanları alır ve her
sınıf için bir olasılık hesaplar. Bu hesaplama, her bir çıktının üstelini alarak ve bu
üstel değerlerin toplamına bölerek yapılır. Matematiksel olarak ifade edildiğinde
softmax fonksiyonu şu şekildedir:

σ(z)i =
ezi∑K
j=1 e

zj
(5.2)

Burada zi i’nci sınıf için logit, K toplam sınıf sayısıdır. Bu işlem, her bir sınıf
için bir olasılık üretir, bu olasılıklar toplamda 1’e eşittir ve modelin tahminlerinin
yorumlanmasını kolaylaştırır.

Softmax sınıflandırıcısının kullanımı, özellikle derin öğrenme modellerinde,
modelin çeşitli sınıflar arasındaki seçimi daha kesin bir temele oturtmasına
olanak tanır. Modelin güvenilirliği ve yorumlanabilirliği artırarak, daha karmaşık
sınıflandırma problemlerinin üstesinden gelinmesine yardımcı olur [109].

5.5 Kayıp Fonksiyonu
Eğitim sürecinin temel amacı, eğitim veri setindeki olasılıkların dağılımı ile
modelin tahmin ettiği dağılım arasındaki farkı en aza indiren bir parametre kümesi
bulmaktır. Kayıp fonksiyonları, belirli bir sinir ağının eğitim sırasında hedeflediği
ideale ne kadar yakın olduğunu ölçer. Kayıp fonksiyonu, çıktının gerçek veriden
sapmasını belirlemek için kullanılır ve hatalar tüm veri seti boyunca ortalama
alınır, toplanır ve sinir ağının idealine ne kadar yakın olduğunu gösteren tek bir
sayı elde edilir. Kayıp fonksiyonları, sinir ağlarının eğitimini bir optimizasyon
problemi olarak yeniden şekillendirmeye yardımcı olur. Bu parametreler genellikle
analitik çözüme uygun değildir, ancak iteratif optimizasyon teknikleri sıklıkla iyi
yaklaşımlar sağlayabilir [103, 109].

En yaygın kullanılan kayıp fonksiyonlarından biri Ortalama Karesel Hata (Mean
Squared Error - MSE) fonksiyonudur. MSE, gerçek değerler ile tahmin edilen
değerler arasındaki farkların karelerinin ortalamasını alır. Matematiksel gösterimi
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Eşitlik 5.3 ifade edilmiştir.

MSE =
1

n

∑
i

(ti − xi)
2 (5.3)

Burada ti gerçek değerleri, xi model tarafından tahmin edilen değerleri, n ise örnek
sayısını ifade etmektedir.

5.6 Optimizasyon Algoritmaları
Optimizasyon algoritmaları, bir makinenin deneyimleri aracılığıyla
öğrenebilmesinin temelini oluşturur. Bu algoritmalar,gradyanları hesaplar ve
kayıp fonksiyonunu en aza indirmeye çalışırlar [119].

Sinir ağlarında bir problemin çözümü milyonlarca parametre içerir. Bu nedenle
mükemmel bir parametre setinin belirlenmesi olanaksızdır. Optimizasyon
algoritmalarının kullanılmasının temel sebebi ya da gerekliliği, çözüm için optimal
parametrelerin belirlenmesidir. Kademeli iniş (Gradient descent), kaybı azaltmak
amacıyla ağın çekirdekler ve ağırlıklar gibi öğrenilebilir parametrelerini yinelemeli
olarak değiştiren popüler bir optimizasyon yaklaşımıdır. Öğrenilebilir parametreler
için gradyan, kayıp fonksiyonunun kısmi türevidir [120]. Eşitlik 5.4’te tek bir
parametrenin güncelleme adımı gösterilmiştir.

w := w − α ∗ ∂L

∂w
(5.4)

Burada w her bir öğrenilebilir parametreyi, α öğrenme hızını, ve L kayıp
fonksiyonunu ifade etmektedir.

Şekil 5.4’te örnek bir L(w) = (w− 3)2+2 ∗ sin(3w) kayıp fonksiyonun minimum
değere yakınsaması, w = −2 ile başlanmış ve öğrenme hızı 0.05 alınarak iteratif
olarak gösterilmiştir.

Tek bir parametrenin güncellemesi için, bütün eğitim verilerinden kayıp
fonksiyonunun hesaplanması hem oldukça zaman harcanmasına hemde alan
karmaşıklığına neden olmaktadır. Bu sorunun çözümü için stokastik gradyan
inişi (Stochastic gradient descent/SGD) [121] tarafından önerilmiştir. SGD’nin
uygulanması sırasında, her bir eğitim iterasyonunda veri setinden rastgele bir
örnek seçilir, bu örneğin gradyanı hesaplanır ve model parametreleri (ağırlıklar)
bu gradyan doğrultusunda güncellenir. Bu süreç, belirli bir kriter karşılanana kadar
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Şekil 5.4 Gradyan iniş ile optimizasyon
.

(örneğin, belirli bir doğruluk seviyesine ulaşılana kadar veya belirli bir iterasyon
sayısına ulaşılana kadar) tekrar edilir [105]. SGD, her adımda bir örnek üzerinden
gradyan hesapladığı için, her iterasyon çok daha hızlı tamamlanır, bu da özellikle
büyük veri kümeleri üzerinde çalışırken algoritmanın çok daha hızlı sonuçlar
üretmesini sağlar [122]. Algoritma, büyük ve karmaşık veri setleri üzerinde etkili
çalışabilmekte ve genellikle iyi sonuçlar vermektedir [109]. Çalışmanın çok sınıflı
olması nedeniyle derin öğrenme ile sınıflandırmada SGD optimizayon algoritması
kullanılmıştır.

5.6.1 Stotastik Gradyan İniş Algoritması ile Kullanılan Hiperparametreler

5.6.1.1 Çapraz Entropi Kaybı

Özellikle sınıflandırma problemlerinde yaygın olarak kullanılan bir kayıp
fonksiyonudur. İki olasılık dağılımı arasındaki farkı ölçer (Genellikle gerçek
etiketlerin ve model tahminlerinin olasılık dağılımları). Bu kayıp fonksiyonu,
modelin sınıflandırma doğruluğunu maksimize etmek için özellikle faydalıdır
çünkü yanlış tahminler üzerinde daha yüksek ceza uygular. Bu, modelin doğru
sınıfları tahmin etme olasılığını artırır ve sınıflandırma görevlerinde sıkça tercih
edilir [109]

5.6.1.2 Öğrenme Hızı

Eşitlik 5.4’de olduğu gibi α ile gösterilmektedir. Stokastik Gradyan İniş’in en
önemli parametrelerinden biridir. Bu değer, her gradyan adımında parametrelerin
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ne kadar güncelleneceğini belirler. Çok düşük bir öğrenme hızı, algoritmanın çok
yavaş öğrenmesine ve hızlı bir öğrenme hızı ise algoritmanın optimum çözümü aşırı
sıçrayarak bulamamasına neden olabilir [105].

5.6.1.3 Öğrenme Hızı Azalımı

Öğrenme hızının zamanla azaltılması işlemidir. Bu, algoritmanın başlangıçta
büyük adımlar atmasına ve zamanla adımlarını küçülterek minimum bir değere
daha hassas bir şekilde yaklaşmasına olanak tanır. Bu parametrenin kullanımı,
algoritmanın hızlı başlayıp yavaşlamasını ve böylece optimuma stabil bir şekilde
yaklaşmasını sağlar [123]. Momentum, modelin ağırlıklarını güncellerken önceki
adımlardaki güncellemelerin bir kısmını dikkate alarak yapılan bir iyileştirme
yöntemidir. Bu parametre, modelin mevcut gradyanlara dayanarak değil, aynı
zamanda önceki gradyanların birikimini de kullanarak ağırlıklarını güncellemesini
sağlamaktadır.

5.6.1.4 Yığın Boyutu

Yığın boyutunun belirlenmesi, modelin performansı ve eğitim süresi açısından
kritik öneme sahiptir. Küçük bir yığın boyutu, modelin parametrelerinin daha
sık güncellenmesine neden olur ve bu da daha hızlı öğrenme sağlayabilir, ancak
hesaplama yükünü artırır. Öte yandan, büyük bir yığın boyutu, daha az güncelleme
ile eğitim sürecini hızlandırabilir, ancak modelin öğrenme süreci yavaşlayabilir
[124]

5.6.1.5 Epok Sayısı

Epok sayısı, bir eğitim veri setinin, model tarafından kaç kez işlendiğini gösterir.
Her epokta modelin ağırlıkları tekrar hesaplanarak güncellenir.

5.7 Çekirdek Nokta Konvolüsyon (KPConv)
KPConv (Kernel Point Convolution), nokta bulutu verileri üzerinde derin öğrenme
işlemleri yapmak için geliştirilen özel bir konvolüsyon türüdür. Bu yöntem,
3D nokta bulutları üzerinde daha etkili ve verimli bir şekilde işlem yapabilmek
amacıyla tasarlanmıştır. KPConv’un temel prensibi, klasik 2D konvolüsyonlardan
farklı olarak, nokta bulutları üzerinde doğrudan çalışarak, her bir noktanın
çevresindeki noktalarla ilişkisini modellemektir. KPConv, nokta bulutu verilerinin
düzensiz ve dağınık yapısını dikkate alarak, her bir nokta ve onun komşuları
arasındaki ilişkileri daha doğru bir şekilde öğrenir. Bu da, nokta bulutu verileri
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üzerinde daha hassas ve doğru sonuçlar elde edilmesini sağlar. KPConv, özellikle
büyük ve karmaşık 3D veri kümeleri üzerinde başarılı performans göstermektedir.

xi ve fi sırasıyla girdi noktalar ve noktalara karşılık gelen öznitelikler olup
KPConv’un [19] nokta evrişimi Eşitlik 5.5’deki gibidir.

(F ∗ g)(x) =
∑
xi∈Nx

g(xi − x)fi (5.5)

Yoğunluk değişikliklerine karşı dayanıklılığı sağlamak için yarıçap komşuluklarını
öneren [125] yaklaşım KPConv’ da da uygulanmakta olup Nx, bu arama yarıçapı
içerisinde kalan noktaları temsil etmektedir. Ek olarak, [126]’ de en yakın
komşuluk ve arama yarıçapı ile türetilen 3B öznitelikler karşılaştırıldığında
arama yarıçapının daha etkili bir ifade yeteneğini sağladığı gözlemlenmiştir. Bu
sebeple, çekirdek fonksiyonu g’nin küresel bir alanda olması prensibine dayalı
bir gösterime dayanmaktadır. KPConv’un özelliği çekirdek fonksiyon g’nin
tanımından kaynaklanmaktadır. g, x merkezli komşuların konum bilgilerini girdi
olarak alır ve yi = xi−x olarak ifade edilmektedir. Komşuluk ilişkileri r yarıçapında
ifade edilmek üzere 3B bir küresel girdi sunmaktadır.

x̃k küre içindeki noktaları, Wk ise girdi ve çıktı boyutları arasındaki öznitelik
haritaları olmak üzere; çekirdek fonksiyonu g Eşitlik 5.6 deki gibi ifade
edilmektedir.

g(yi) =
∑
k<K

h(yi, x̃k)Wk (5.6)

k evrişimin kayma bölgelerini, h ise x̃k ve yi arasındaki korelasyonu göstermektedir.
Bu kısımda bilinear enterpolasyon [127] kullanılarak doğrusal korelasyon işlemi
uygulanmaktadır:

h(yi, x̃k) = max

(
0, 1− ∥yi − x̃k∥

σ

)
(5.7)

σ etki mesafesini göstermekte olup girdi verinin yoğunluğuna göre seçilmektedir.
Gaussian korelasyonuyla kıyaslandığı zaman doğrusal korelasyon daha basit bir
temsil sağlamaktadır. Basit gösterim sayesinde optimizasyon aşamasında çekirdek
deformasyonlarının öğrenilmesini kolaylaştırmaktadır.

KPConv’ un kodlayıcı kısmı olan KP-CNN (Kernel Point Convolutional Neural
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Network), 5 katmanlı bir evrişim ağıdır (Şekil 5.5). Her katman, ilki hariç
diğerleri adımlı (strided) olan iki evrişim katmanı içerir. Bu katmanlar, batch
normalizasyonu ve Leaky ReLu aktivasyonlu ResNet bloklarından [128, 129]
oluşmaktadır. Kodlayıcı kısmı KP-CNN’deki ile aynıdır ve kod çözücü kısmı, nokta
bazlı öznitelikleri elde etmek için en yakın yukarı örneklemeyi kullanır. Kodlayıcı
ve kod çözücü arasındaki ara katmanlar arasında özellikleri geçirmek için Aktarım
(Concatenate) bağlantıları kullanılır. Bu özellikler, yukarı örneklenmiş olanlarla
birleştirilirerek 1x1’ lik bir evrişim filtresine tabi tutulur ki bu işlem; PointNet’teki
[17] paylaşılan Multi-Layer Perception (MLP) ile eşdeğerdir. Son katmandan
sonra, özellikler global ortalama havuzlama ile birleştirilir ve bir görüntü CNN’inde
olduğu gibi tam bağlantılı ve softmax katmanları ile her bir piksele ait sınıf tahmin
işlemi yapılır.

Şekil 5.5 KPConv ağ yapısı

KPConv’ da sabit ve değişken (deformable) olmak üzere iki adet çekirdek
fonksiyonu kullanılmaktadır. Çekirdek noktaların konumları, evrişim işlemi ve
özellik çıkarımı için kritiktir. KPConv’un değişken çekirdeklerinin kullanılabilmesi
için sabit çekirdeğe eklenen ve çekirdekler arasındaki alanları kapsayarak örtüşme
sağlanması için çevredeki noktalar; 1.5σ yarıçapına yeniden ölçeklenir. Bu sebeple
katı çekirdek fonksiyonu hesaplama yükü açısından verimli olsa da değişken
çekirdek fonksiyonu daha başarılı sonuçlar üretmektedir. Değişken fonksiyonda her
evrişim merkezinde K kayma seti ∆(x) üretilerek Eşitlik 5.5’ deki gibi KPConv ve
değişken çekirdek fonksiyonu Eşitlik 5.8 ve 5.9’ daki gibi hesaplanmaktadır.

(F ∗ g)(x) =
∑
xi∈Nx

gdegisken (x− xi,∆(x)) fi (5.8)

gdegisken(yi,∆(x)) =
∑
k<K

h(yi, x̃k +∆k(x))Wk (5.9)
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6
VERİLERİN HAZIRLANMASI

6.1 Çalışma Alanı
Bu tez çalışması kapsamında altyapı ve bileşenlerine ait sınıflandırma işlemi
2 ayrı çalışma bölgesinden elde edilen 3 boyutlu nokta bulutları kullanılarak
gerçekleştirilmiştir.

6.1.1 Çalışma Alanı 1

Bu çalışma kapsamında, Yıldız Teknik Üniversitesi (YTÜ) Davutpaşa Kampüsü
içerisinde yer alan İnşaat Fakültesi Hidrolik Laboratuvarı’nın güney cephesi ilk
çalışma bölgesi seçilmiştir. Seçilen bina cephe yüzeyi, altyapı bileşenlerinin yanı
sıra farklı türde pek çok obje içermektedir. Şekil 6.1’de çalışma alanına ilişkin
görsel gösterilmektedir.

Sınıflandırma işleminde kullanılacak olan veri seti Leica RCT360 yersel lazer
tarayıcı kullanılarak elde edilmiştir. Toplamda 15 oturum ile gerçekleştirilen
tarama işlemi 5 adet yer kontrol noktası kullanılarak birleştirilmiştir. Birleştirme
işlemi sonucunda elde edilen nokta bulutunun konum hatası yaklaşık ±1.5 cm’dir.
Elde edilen 3 boyutlu nokta bulutu verisinin boyutunun büyük olması nedeniyle,
işlem kolaylığı sağlanması için 3 boyutlu nokta bulutu Cloud Compare (CC)
[130] yazılımı kullanılarak 1 cm örnekleme aralığı ile seyrekleştirilmiştir. CSF
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Şekil 6.1 Yıldız Teknik Üniversitesi Davutpaşa Kampüsü İnşaat Fakültesi Hidrolik
Laboratuvarı

(Cloth Simulation Filter) algoritması kullanılarak zemin 3 boyutlu nokta bulutundan
çıkarılmıştır. Elde edilen 3 boyutlu nokta bulutunun yoğunluğu yaklaşık 25000
nokta/m2 ve 10317915 adet noktadan oluşmaktadır. Oluşturulan tarama verisi Şekil
6.2’de gösterilmiştir.

Şekil 6.2 Yersel lazer tarayıcı ile elde edilen nokta bulutu

6.1.2 Çalışma Alanı 2

Bu çalışma kapsamında seçilen ikinci çalışma alanı kullanıma açık olarak [51]
tarafından paylaşılan 122.516 batı boylamı, 53.140 kuzey enleminde bulunan
Britanya Kolumbiyası’nda yer alan Quesnel şehri yakınlarındaki içme suyu hattında
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(Şekil 6.3) gerçekleştirilmiş insansız hava aracı ile çekilen görüntüler kullanılarak
üretilmiştir.

Şekil 6.3 Britanya Kolumbiyası içme suyu hattına ilişkin oluşturulan 3 boyutlu
nokta bulutu.

Elde edilen 3 boyutlu nokta bulutu verisinin boyutunun yüksek olamsı nedeniyle ilk
çalışma alanında olduğu gibi 1 cm örnekleme aralığı ile seyrekleştirilmiştir. Elde
edilen 3 boyutlu nokta bulutunun yoğunluğu yaklaşık 15000 nokta/m2 ve 7725503
adet noktadan oluşmaktadır. Oluşturulan 3 boyutlu nokta bulutu verisi Şekil 6.4’te
gösterilmiştir.
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Şekil 6.4 Britanya Kolumbiyası içme suyu hattına ilişkin oluşturulan 3 boyutlu
nokta bulutu.

6.2 Sınıflandırma için Verilerin Hazırlanması
Bu bölümde sınıflandırma işleminin gerçekleştirilmesi için her iki çalışma
bölgesinden elde edilen verilerin etiketlenmesi, özellik çıkarımı (Makine öğrenmesi
için), eğitim ve test verilerinin oluşturulması konularına değinilecektir. Ayrıca MÖ
ve DÖ için kullanılan her bir yöntem için tanımlanan parametrelere ilişkin bilgi
verilecektir.

6.2.1 YTÜ Hidrolik Laboratuvarı Verilerinin Etiketlenmesi

Öncelikle veri setlerinin sınıflandırma işlemine uygun hale getirilmesi
gerekmektedir. Bu bağlamda sınıflandırma işleminde kullanılacak olan sınıflar
belirlenmiştir. Cephe yüzeyinde yer alan objelerden oluşan 9 adet sınıf oluşturulmuş
ve etiketleme işlemi CC yazılımu kullanılarak manuel olarak gerçekleştirilmiştir.
Oluşturulan sınıflara ilişkin örnek görsellere Şekil 6.5’te yer verilmiştir.
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Şekil 6.5 3 boyutlu nokta bulutundan oluşturulan sınıflar (YTÜ Hidrolik
Laboratuvarı
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Tablo 6.1’de etiketleme işlemi sonucu oluşan her bir sınıfa ilişkin nokta sayıları ve
veri seti içindeki dağılım oranları gösterilmektedir.

Tablo 6.1 3 boyutlu nokta bulutundan oluşturulan sınıflar ve dağılımları

Sınıf Nokta Sayısı Sınıf Dağılımı (%) Sınıf Numarası
Büyük Boru (B.B) 1279288 12.40 0

Kaplama 3493246 33.86 1
Dirsek 891444 8.64 2

Küçük Boru (K.B) 82471 0.80 3
Güç Kaynağı 1298825 12.59 4

Duvar 2697755 26.15 5
Demir 173855 1.68 6

Pencere 83470 0.81 7
Kapı 317561 3.08 8

6.2.2 Britanya Kolumbiyası İçmesuyu Hattı Verilerinin Etiketlenmesi

İlk çalışma bölgesinde olduğu gibi sınıflandırması gerçekleştirilecek olan
objelere yönelik etiketleme işlemi CC yazılımı kullanılarak manuel olarak
gerçekleştirilmiştir. Toplamda 11 sınıf oluşturulmuş olup buna ilişkin görsel Şekil
6.6’da sunulmuştur.

Şekil 6.6 3 boyutlu nokta bulutundan oluşturulan sınıflar (Britanya Kolumbiyası
İçme Suyu Hattı)

Tablo 6.2’de etiketleme sonrasında oluşan her bir sınıfa ait nokta sayısı, veri seti
içerisindeki dağılımı ve sınıf numaraları verilmiştir.
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Tablo 6.2 3 boyutlu nokta bulutundan oluşturulan sınıflar ve dağılımları

Sınıf Nokta Sayısı Sınıf Dağılımı (%) Sınıf Numarası
Zemin 4490666 58.13 0

Su borusu 1100769 14.25 1
Dirsek 90148 1.17 2

Bağlantı elemanları 105583 1.37 3
Merdiven 81850 1.06 4

Çit 308799 4.00 5
İskele 513461 6.65 6

Destek kolonları 239777 3.10 7
Te 92597 1.20 8

Diğer 208387 2.70 9
Düşey Yüzey 493466 6.39 10

6.2.3 Özelliklerin Çıkarılması

Etiketleme işlemi tamamlanmış olan 3 boyutlu nokta bulutu verileri, makine
öğrenimi algoritmalarının sınıflandırma yapabilmesi için oldukça önemlidir. Bu
süreçte, her bir noktanın özelliklerinin doğru bir şekilde belirlenmesi gerekir.
Makine öğrenimi algoritmaları, bu etiketlenmiş veriler üzerinden eğitilerek, yeni ve
bilinmeyen veriler üzerinde doğru sınıflandırma yapabilme yeteneği kazanır. Eğitim
aşamasında kullanılan sınıflandırma özellikleri, algoritmanın veri seti içindeki
çeşitli nesne ve yapıları ayırt etmesini sağlar. Bu özellikler genellikle geometrik,
yoğunluk ve renk gibi nokta özelliklerini içerir.

Komşu noktaların mekansal konumlarından elde edilen bilgiler, 3 boyutlu
yapı tensörünün özdeğerlerinin hesaplanması için temel teşkil etmektedir [131].
Hesaplanan buu özdeğerler, yerel 3 boyutlu şekil özelliklerinin belirlenmesinde
kullanır. Elde edilen bu şekil özellikleri, 3 boyutlu yapıların sezgisel olarak
tanımlanmasına imkan tanır ve bu yapıların sınıflandırılmasında kritik bir rol
oynar. Bunlara ek olarak, açısal özellikler, yükseklik ve düzlem karakteristikleri,
momentler, eğim ve dikey profiller gibi çeşitli faktörler, yapıların daha detaylı bir
biçimde tanımlanmasını sağlar [132–135].

Bu çalışma kapsamında sınıflandırma işleminin eğitimi için kullanılmak üzere
yüksek ve renk değerlerine ek olarak CC yazılımı içerisinde yer alan geometrik
özellikler farklı küresel komşuluk yarıçaplarına (r=0.02m, r=0.10m, r=0.30m,
r=0.50m ve r=1m) göre hesaplanmıştır. Hesaplanan özellikler Şekil 6.7’de
listelenmiştir. Komşuluk yarıçapları seçilirken cephe üzerinde bulunan obje
boyutları, objeler arası mesafe ve 3 boyutlu nokta bulutunun yoğunluğu göz önünde
bulundurulmuştur. Her iki çalışma bölgesinden elde edilen 3 boyutlu nokta bulut
verisi için aynı geometrik özellikler hesaplanmıştır. Bütün geometrik özelliklerin
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hesaplatılması ve sınıflandırmada kullanılmasındaki temel etken ise altyapı ve
bileşenlerinin sınıflandırılmasında baskın olan özelliklerin belirlenmesi ve bu
özelliklerin makine öğrenme sınıflandırıcısına bağlı olup olmadığının irdelenmesini
sağlamaktır.

Şekil 6.7 Her bir objenin sınıflandırılması için hesaplanan özellikler

Şekil 6.8 ve Şekil 6.9’de her iki bölgeye ait veri için düzlemsellik özelliğinin farklı
yarıçaplardaki etkisi görsel olarak sunulmuştur.
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Şekil 6.8 Farklı yarıçaplarda düzlemselliğin etkisi (a) r=1m, b) r=0.50m, c)
r=0.30m, d) r=0.10m, e) r=0.02m) (YTÜ Hidrolik)

Şekil 6.9 Farklı yarıçaplarda düzlemselliğin etkisi (a) r=1m, b) r=0.50m, c)
r=0.30m, d) r=0.10m, e) r=0.02m) (Britanya Kolumbiyası)
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6.2.4 Eğitim ve Test Verilerinin Oluşturulması

Tez kapsamında her iki veri seti içinde 5 farklı senaryo oluşturulmuştur. Oluşturulan
senaryolar hem derin öğrenme hem de makine öğrenme için aynı şekilde
kullanılmıştır. Bunlara ilişkin görseller Şekil A.1, Şekil A.2, Şekil A.3, Şekil A.4,
Şekil A.5, Şekil A.6, Şekil A.7, Şekil A.8, Şekil A.9’ ve Şekil A.10’de sunulmuştur.

6.2.4.1 YTÜ Hidrolik Laboratuvarı

Geometrik özellikleri hesaplanmış olan 3 boyutlu nokta bulutu verisi kullanılarak
gerçekleştirilecek olan sınıflandırma işlemi için 5 farklı senaryo tasarlanmıştır.
Tasarlanan her bir senaryoya göre oluşturulan eğitim ve test verilerine ilişkin sayısal
veriler Tablo 6.3’te sunulmuştur. Burada amaç farklı nokta sayılarına sahip eğitim
setlerinin sınıflandırma sonucuna etkisini incelemek ve bu senaryolarda uygulanan
sınıflandırma algoritmalarının performansını değerlendirmektir.

Tablo 6.3 Her bir senaryoya göre oluşturulan eğim ve test nokta sayıları(YTÜ
Hidrolik Laboratuvarı)

Senaryo Eğitim ve Test Dağılımı Nokta sayısı

S1
Eğitim (%90) 9230212

Test (%10) 1087703

S2
Eğitim (%70) 7281498

Test (%30) 3036417

S3
Eğitim (%50) 5038567

Test (%50) 5279348

S4
Eğitim (%30) 3092731

Test (%70) 7225184

S5
Eğitim (%10) 1187198

Test (%90) 9130717

Her bir senaryodaki eğitim ve veri setleri içerinde sınıflara ait oransal
dağılım Şekil 6.10’da gösterilmektedir. Şekil incelendiğinde verilerin homojen
dağılmadığı görülmektedir. Bu çalışmada makine öğrenmesi sınıflandırıcılarının
ve derin öğrenme algoritmalarının sınıflandırma performansı, homojen bir dağılım
göstermeyen ve gerçek dünyayı yansıtan bir veri seti üzerinde analiz edilmiştir.
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Şekil 6.10 Her bir senaryodaki eğitim ve test verileri içindeki sınıfların oransal
dağılımı(YTÜ Hidrolik Laboratuvarı)

6.2.4.2 Britanya Kolumbiyası İçmesuyu Hattı

İlk çalışma alanı ile benzer şekilde 5 farklı senaryo oluşturulmuştur. Oluşturulan
eğitim ve test verilerinin senaryolara göre dağılımı gösteren sayısal veriler Tablo
6.4’te verilmiştir. Ayrıca her senaryodaki eğitim ve test setleri içerisinde bulunan
sınıfların oransal dağılımı Şekil 6.11’de gösterilmektedir.

Tablo 6.4 Her bir senaryoya göre oluşturulan eğim ve test nokta sayıları (Britanya
Kolumbiyası)

Senaryo Eğitim ve Test Dağılımı Nokta sayısı

S1
Eğitim (%90) 6934407

Test (%10) 791096

S2
Eğitim (%70) 5336516

Test (%30) 2388987

S3
Eğitim (%50) 3860167

Test (%50) 3865336

S4
Eğitim (%30) 2322439

Test (%70) 5403064

S5
Eğitim (%10) 791096

Test (%90) 6934407
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Şekil 6.11 Her bir senaryodaki eğitim ve test verileri içindeki sınıfların oransal
dağılımı (Britanya Kolumbiyası)

6.2.5 Makine Öğrenmesi Sınıflandırıcılarına ait Parametrelerin Belirlenmesi

Eğtim ve test verileri oluşturulmuş nokta bulutunun sınıflandırması için 3 farklı
makine öğrenme algoritması kullanılmıştır. Bu algoritmalar; RF, LightGBM ve
XGBoost’tur. Sınıflandırma işlemini için kullanılacak algoritma parametreleri grid
search işlemi ile belirlenmiştir. Bu parametreler Tablo 6.5, Tablo 6.6 ve Tablo 6.7’de
verilmiştir.

Tablo 6.5 Aşırı gradyan artırma için grid search parametreleri

Yöntem Ağaç Sayısı Minimum Ağırlık Öğrenme Hızı
XGBoost 100 ve 200 1 ve 5 0.1 ve 0.2

Tablo 6.6 Hafif gradyan artırma için grid search parametreleri

Yöntem Ağaç Sayısı Minimum Ağırlık Öğrenme Hızı Artırıcı Türü
LightGBM 100 ve 200 0.001 ve 0.002 0.1 ve 0.2 gbdt ve rf

Tablo 6.7 Rastgele orman için grid search parametreleri

Yöntem Ağaç Sayısı Ayırma Kriteri
RF 100 ve 200 gini ve entropy

Her iki veri seti içinde aynı parametreler kullanılarak, grid search işlemi
gerçekleştirilmiştir. Bu işlem sonucunda elde edilen parametreler, RF algoritaması
için ağaç sayısı: 100, ayırma kritesi: gini, XGBoost için ağaç sayısı:100,
minimum ağırlık:1, öğrenme hızı:0.1, LightGBM için ağaç sayısı:100, minimum
ağırlık:0.001, ve artırıcı türü:gbdt, öğrenme hızı:0.1 olarak elde edilmiştir. Bulgular
kısmında verilecek sonuçlar bu parametrelerden elde edilmiştir.
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6.2.6 Derin Öğrenme Yöntemlerinine ait Parametrelerin Belirlenmesi

KPConv için kullanılan parametreler Tablo 6.8 verilmiştir. Girdi yarıçapı (Input
Radius), nokta bulutunda modelin konvolüsyon filtreleriyle özellik çıkarmak için
dikkate aldığı yarıçap boyutunu ifade eder. Diğer bir deyişle, her bir girdi
noktası etrafında öznitelik hesaplama yapılan bölgelerin maksimum mesafesini
belirtir. Model, bu yarıçap içindeki noktaları kullanarak yerel özellikleri tespit
eder. Yarıçapın büyüklüğü, hesaplama yükünü doğrudan etkiler. Daha küçük
bir yarıçap, daha detaylı yerel özelliklerin çıkarılmasını sağlarken, daha büyük
bir yarıçap, global özellikleri yakalamaya yardımcı olur. Çekirdek nokta sayısı,
konvolüsyon işlemi sırasında kullanılan çekirdek (kernel) noktalarının toplam
sayısını ifade etmektedir. Giriş verisi üzerinden yerel özellikleri yakalamak
için kullanılan sabit veya öğrenilebilir pozisyonlardaki noktalardır. Çekirdek
noktalarının sayısı, çıkartılan özelliklerin detay seviyesini belirler. İlk aşağı
örnekleme çözünürlüğü, modelin girdi veri setini ilk aşamada ne kadar yoğunluğa
indirgediğini gösterir. Veri setinin boyutunu azaltarak modelin daha hızlı ve
verimli bir şekilde eğitilmesini sağlamak için yapılır. Aşağı örnekleme, nokta
bulutu verilerindeki detayları azaltırken, önemli yapısal özellikleri korumak için
tasarlanmıştır. Esnek yarıçap (Deformable radius), konvolüsyon çekirdeklerinin,
eğitim süreci boyunca konumlarının dinamik olarak değişebileceği maksimum
yarıçapı ifade eder. Bu yaklaşım sayesinde model, veri setindeki karmaşık veya
değişken bölgelerdeki özellik farklarını öğrenmektedir.

Tablo 6.8 KPConv için kullanılan parameterler

Parametreler Değer
Girdi Yarıçapı 15 metre

Çekirdek Nokta Sayısı 15
İlk Aşağı Örnekleme Çözünürlüğü 2 santimetre

Konvolüsyon Yarıçapı 2.5 metre
Esnek Yarıçap (Deformable Radius) 6 metre

Epok Sayısı 300
Öğrenme Hızı 0.01

Momentum 0.98
Yığın Boyutu 6
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Eğitim aşamasında her bir epok sonrası öğrenme hızı 0.001 ile çarpılarak eğitim
işlemine devam edilmiştir. Bu işlem, eğitim sürecinin ilerleyen aşamalarında
modelin ağırlık güncellemelerinde daha hassas olmasına ve aşırı uyum durumunun
önlenmesine katkı sağlamaktadır. Ayrıca eğitim verisinde veri artırma (renk,
ölçeklendirme, gürültü ve aynalama) işlemi uygulanmıştır. Bu işlem nokta
bulutu sınıflandırma modellerinin, eğitim verilerinde doğrudan temsil edilmeyen
durumlarla başa çıkabilmesine olanak tanımaktadır. Renk için 0.8, gürültü
için 0.001, düşey eksende 0.95-1.05 ölçeklendirme ve yatay eksende aynalama
yapılmıştır.
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7
ALTYAPILARIN SINIFLANDIRILMASI

Bu bölümde makine öğrenmesi sınıflandırıcıları ve derin öğrenme sınıflandırıcıları
ile elde edilen her iki çalışma bölgesine ait sınıflandırma sonuçları paylaşılacaktır.

7.1 YTÜ Hidrolik Laboratuvarı Verilerinin Makine Öğrenmesi
Sınıflandırıcıları ile Sınıflandırılması

Beş farklı senaryo ve üç farklı makine öğrenmesi sınıflandırıcısı kullanılarak
gerçekleştirilen sınıflandırma işleminin sonuçları doğruluk, kesinlik,
duyarlılık ve F1-Skor sonuçlarına göre incelenmiştir. S1 senaryosuna ilişkin
sınıflandırma sonuçları analiz edildiğinde RF sınıflandırıcısının 0.948, XGBoost
sınıflandırıcısının 0.963, ve LightGBM sınıflandırıcısının 0.961 model doğruluğu
elde ettiği görülmüştür. S2 senaryosuna ilişkin sonuçlar irdelendiğinde en yüksek
model doğruluğuna 0.935 ile XGBoost sınıflandırıcısı kullanılarak ulaşıldığı,
LightGBM sınıflandırıcısının 0.924, RF sınıflandırıcısının 0.894 model doğruluğu
elde ettiği görülmüştür. Şekil 7.1’de her bir senaryoya ait sınıflandırıcı bazlı model
doğrulukları gösterilmiştir.

S3 senaryosu incelendiğinde XGBoost sınıflandırıcısı ile 0.941 model doğruluğu
elde edilirken, LightGBM ile 0.905, RF ile 0.901 model doğruluğu elde
edilmiştir. S4 senaryosu sonuçlarına göre XGBoost (0.924) en yüksek sonuca
ulaşırken, LightGBM (0.848) ile en düşük model doğruluğu elde edilmiştir. S5
senaryosunda ise en düşük model doğruluğu RF (0.739) ile elde edilirken, XGBoost
sınıflandırıcısı ile 0.840, LightGBM sınıflandırıcısı ile 0.831 sonucuna ulaşılmıştır.
Model doğrulukları incelendiğinde eğitilen veri sayısı düştükçe elde edilen model
doğruluklarında azalmaların olduğu gözlenmiştir.

53



Şekil 7.1 Her bir senaryo için sınıflandırıcılarının elde ettiği model doğrulukları

Her yönteme ilişkin F1-Skor değerleri incelendiğinde XGBoost sınıflandırıcısının
beş senaryoda da en yüksek sonucu verdiği görülmektedir. Şekil 7.2’de beş farklı
seanryodan elde edilmiş F1-Skor değerleri gösterilmektedir. Model doğruluğunda
olduğu gibi F1-Skor değerlerinde de eğitilen veri sayısı azaldıkça, genel olarak
düşüşlerin yaşandığı görülmüştür. S1 senaryosunda en yüksek değer XGBoost ile
elde edilirken, en düşük değer RF ile elde edilmiştir. S2 ve S5 senaryolarında da
benzer durum gözlenmiştir. S3 ve S4 seanryolarında ise XGBoost en yüksek değere
ulaşırken, LightGBM en düşük değeri elde etmiştir.

Şekil 7.2 Her bir senaryo için sınıflandırıcılarının elde ettiği F1-Skor değerleri

Her bir senaryoya ilişkin sınıf bazlı F1-Skor, kesinlik ve duyarlılık değerleri
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görselleştirilmiş, Sonuçlar ayrıca sınıf bazındada incelenmiştir.

Şekil 7.3 S1 senaryosuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

Şekil 7.3 üç farklı makine öğrenmesi sınıflandırıcısı (RF, LightGBM, XGBoost)
için S1 senaryosuna ait 9 sınıfın F1-Skor, Kesinlik (Precision) ve Duyarlılık
(Recall) metriklerini göstermektedir. verilen sonuçlar altyapı ve bileşenleri özelinde
incelendiğinde büyük boru sınıfında en yüksek F1-Skor değerine LightGBM
(0.965) ile, en düşük değer F1-Skor değerine RF (0.953) ile ulaşılmıştır. Dirsek
sınıfı incelendiğinde LightGBM (0.941) ile en yüksek sonuç elde ederken, RF
(0.921) en düşük değeri elde etmiştir. Küçük boru sınıfında ise XGBoost (0.781) ile
en yüksek sonuca ulaşırken, en düşük değer RF (0.694) ile alınmıştır. Diğer sınıflara
ait sonuçlar incelendiğinde duvar, demir, pencere ve kapı sınıfında XGBoost
üstünlük sağlarken, kaplama sınıfında LightGBM, güç kaynağı sınıfında ise RF’nun
üstün olduğu görülmüştür. Her üç sınıflandırıcı ile elde edilen sonuçlara göre
düşük F1-Skor değerine sahip olan küçük boru, demir ve pencere sınıflarının
kesinlik ve duyarlılık değerleri incelendiğinde, küçük boru ve pencere değerlerinin
yüksek kesinlik değerine sahip olduğu ancak duyarlılık değerlerinin düşük olduğu
görülmüştür. Bu durum modelin pozitif olarak etiketlediği değerleri doğru tahmin
ettiğini, ancak gerçekte pozitif olan birçok değeri gözardı ettiğini ya da yanlış
sınıflandırdığını göstermektedir. Demir sınıfında ise yüksek duyarlılık ancak düşük
kesinlik değeri elde edilmiştir. Yani model gerçek pozitif değeri kaçırmamak adına
yanlış pozitiflere tolerans göstermiştir.

Şekil 7.4’te sınıflandırıcılar ile elde edilmiş sınıflandırma sonuçları verilmiştir.
Şekil 7.4a’da etiketli test verisi, Şekil 7.4b’de XGBoost sınıflandırıcısı ile elde
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edilen sınıflandırma görseli, Şekil 7.4c’de LightGBM ile elde edilen sınıflandırma
görseli, Şekil 7.4d’de ise RF ile elde edilen sınıflandırma görseli sunulmuştur.

Şekil 7.4 a) Etiketli test verisi; b) XGBoost ile sınıflandırma; c) LightGBM ile
sınıflandırma; d) RF ile sınıflandırma
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Şekil 7.5 üç farklı makine öğrenmesi sınıflandırıcısı (RF, LightGBM, XGBoost)
için S2 senaryosuna ait 9 sınıfın F1-Skor, Kesinlik (Precision) ve Duyarlılık
(Recall) metriklerini göstermektedir. S2 senaryo sonuçları altyapı ve bileşenleri
açısından incelendiğinde en yüksek F1-Skor değerinin XGBoost (0.960) ile elde
edildiği görülmektedir. En düşük değer ise RF (0.896) ile elde edilmiştir. Dirsek
sınıfı incelendiğinde ise XGBoost (0.892) en yüksek değere ulaşırken, en düşük
değer ise RF(0.794) sınıflandırıcısı ile elde edilmiştir. Küçük boru sınıfında
LightGBM(0.597) ile en yüksek değer elde edilirken, en düşük değere RF (0.407)
ile ulaşılmıştır. Diğer sınıflara ait sonuçlar irdelendiğinde kaplama, güç kaynağı,
demir ve pencere sınıfında XGBoost üstünlüğü göze çarparken, duvar ve kapı
sınıfında RF sınıflandırıcısı en yüksek değeri elde etmiştir.

Şekil 7.5 S2 senaryosuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

Şekil 7.6’da S2 senaryosuna göre etiketli test verisi(a), XGBoost ile sınıflandırma
sonucu (b), LightGBM ile sınıflandırma sonucu(c) ve RF ile sınıflandırma sonucu
(d) gösterilmektedir. Şekil incelendiğinde RF sınıflandırıcısının tahminlerinde boru
sınıfının kimi yerlerde dirsek sınıfı olarak tahmin edildiği, güç kaynağı sınıfının da
duvar olarak tahmin edildiği görülmektedir.
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Şekil 7.6 a) Etiketli test verisi; b) XGBoost ile sınıflandırma; c) LightGBM ile
sınıflandırma; d) RF ile sınıflandırma
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Şekil 7.7 üç farklı makine öğrenmesi sınıflandırıcısı (RF, LightGBM, XGBoost) için
S3 senaryosuna ait 9 sınıfın F1-Skor, Kesinlik (Precision) ve Duyarlılık (Recall)
metriklerini göstermektedir. S3 senaryo sonuçları altyapı ve bileşenleri açısından
incelendiğinde en yüksek F1-Skor değeri büyük boru sınıfında 0.969 olarak
XGBoost sınıflandırıcısı ile elde edildiği görülmektedir (Şekil 5.9). LightGBM
ve RF sınıflandırıcısı bu sınıfta sırasıyla 0.915 ve 0.914 F1-Skor değerine
ulaşmışlardır. Küçük boru sınıfında ise 0.715 değeri ile XGBoost en yüksek sonuca
ulaşırken 0.369 ile LightGBM en düşük değeri elde etmiştir. Dirsek sınıfında en
yüksek F1-Skor değerine XGBoost(0.841) ile ulaşılırken, en düşük sonuç 0.744
olarak RF sınıflandırıcısı ile alınmıştır. Diğer sınıflar incelendiğinde, kapı sınıfında
RF sınıflandırıcısının üstün olduğu görülürken, kaplama,güç kaynağı, duvar, demir
ve pencere sınfında XGBoost sınıflandırıcısı en yüksek değerleri elde etmiştir.

Şekil 7.7 S3 senaryosuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

S3 senaryosuna ilişkin sınıflandırma sonuçları görselleştirilerek Şekil 7.8’de
sunulmuştur. Şekil incelendiğinde LightGBM ile elde edilen sonuçlarda duvar ve
kaplama sınıfında karışmaların olduğu görülmektedir.
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Şekil 7.8 a) Etiketli test verisi; b) XGBoost ile sınıflandırma; c) LightGBM ile
sınıflandırma; d) RF ile sınıflandırma
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Şekil 7.9’da S4 senaryosuna ilişkin sınıf bazlı F1-Skor, kesinlik ve duyarlılık
değerleri verilmiştir. Sonuçlar altyapı ve bileşenleri açısından irdelendiğinde
büyük boru sınıfında XGBoost (0.925) sınıflandırıcısının en yüksek F1-Skor değeri
elde ettiği, LightGBM(0.861) sınıflandırıcısının ise en düşük değeri elde ettiği
görülmüştür. Dirsek sınıfında ise 0.829 ile en yüksek değer XGBoost sınıflandırıcısı
ile elde edilirken, en düşük değere 0.761 ile RF sınıflandırıcısı ile ulaşılmıştır.
Küçük boru sınıfında ait sonuçlar incelendiğinde en yüksek değere XGBoost
(0.726) ile, en düşük değere ise RF (0.445) ile ulaşıldığı görülmüştür. Eğitilen
veri sayısı azaldıkça, XGBoost sınıflandırıcısının, sınıflandırma sonuçlarına diğer
sınıflandırıcılara göre daha iyi sonuçlar elde ettiği görülmüştür. Diğer sınıflara
ait sonuçlara bakıldığında RF sınıflandırıcısı kapı sınfında üstünlük sağlarken,
XGBoost sınıflandırıcısının kalan sınıflarda diğer sınıflandırıcılara göre daha
yüksek değer elde etmiştir.

Şekil 7.9 S4 senaryosuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

Şekil 7.10’da üç sınıflandırıcıdan elde edilen sınıflandırma sonuçları verilmiştir.
Şekil incelendiğinde, eğitim verisi azaldıkça LightGBM sınıflandırıcısının
sınıflandırma sonuçlarının kötüleştiği, karmaşıklığın arttığı görülmektedir.
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Şekil 7.10 a) Etiketli test verisi; b) XGBoost ile sınıflandırma; c) LightGBM ile
sınıflandırma; d) RF ile sınıflandırma
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Şekil 7.11’de S5 senaryosuna ilişkin sınıf bazlı F1-Skor, kesinlik ve duyarlılık
değerleri verilmiştir. S5 senaryosuna ilişkin sonuçlar incelendğinde büyük boru
sınıfında XGBoost sınıflandırıcısının 0.668 F1-Skor değeri ile en yüksek sonucu
aldığı, 0.432 değeri ile RF sınıflandırıcısının en düşük değeri aldığı görülmüştür.
Dirsek sınıfında yine benzer şekilde XGBoost (0.597) sınıflandırıcısı en yüksek
sonuca ulaşırken, RF (0.522) sınıflandırıcısının en düşük sonucu elde ettiği
görülmüştür. Küçük boru sınıfında ise RF (0.353) en yüksek değeri elde ederken,
LightGBM (0.323) sınıflandırıcısı en düşük sonucu elde etmiştir. Diğer sınıflar
incelendiğinde S2, S3, ve S4 senaryolarına benzer şekilde RF sınıflandırıcısı kapı
sınıfında üstünlük göstermiştir. Demir ve kaplama sınıfında LightGBM en yüksek
değere ulaşırken, güç kaynağı, duvar ve pencere sınıfında XGBoost üstünlüğü göze
çarpmaktadır.

Şekil 7.11 S5 senaryosuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

Şekil 7.11’de gösterilen sonuçlara bakıldığında çoğu sınıf yüksek kesinlik değerine
sahipken, düşük duyarlılık değeri elde etmiştir. Model gerçek pozitiflerin çoğunu
doğru tahmin etmiştir ancak, model pozitif tahmin sırasında birçok doğru olmayan
pozitif tahmin yapmıştır. Bu durum eğitim seti içerinde sınıfı temsil eden noktaların
yetersiz olduğu ve sınıflandırıcıların bu nedenle sınıf ayrımında başarısız olduğunu
göstermektedir.

Üç sınıflandırıcıdan elde edilen sınıflandırma sonuçları Şekil 7.12’de
gösterilmektedir. Görsel incelendiğinde eğitilen veri sayısında azalma olduğunda
hatalı sınıflandırmaların olduğu anlaşılmaktadır. Örneğin, XGBoost sınıflandırıcısı
büyük boru sınıfında en yüksek F1-Skor değeri elde etmesine rağmen Şekil
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7.12b’de dirsek sınıfı ile büyük ölçüde karışmaların olduğu görülmektedir.
Şekil 7.12d’de RF sınıflandırıcısının duvar ve güç kaynağı sınıflarında hatalı
sınıflandırmalar yaptığı, büyük boru sınıfının dirsek sınıfı olarak tahmin edildiği
anlaşılmaktadır. Altyapılar haricinde kalan sınıflar incelendiğinde, kapı sınıfında
RF üstünlüğü göze çarparken, demir ve kaplama sınıflarında LightGBM, pencere,
güç kaynağı ve duvar sınıflarında XGBoost üstünlüğü görülmektedir.

Şekil 7.12 a) Etiketli test verisi; b) XGBoost ile sınıflandırma; c) LightGBM ile
sınıflandırma; d) RF ile sınıflandırma
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7.1.1 YTU Hidrolik Laboratuvarının Sınıflandırma Sonuçlarına Etki Eden
Özelliklerin Belirlenmesi

Makine öğrenimi sınıflandırıcıları hedef sınıfın veriseti içerisindeki oranından ve
geometrik özelliklerden etkilenmektedir. Geometrik özellik kıyaslaması yapılırken,
en iyi 30 parametre seçilerek değerlendirmeler bunun üzerinden gerçekleştirilmiştir.
Her bir sınıflandırıcının 5 senaryoda kullanmış olduğu en iyi 30 özellik belirlenmiş
ve görselleştirilmiştir. Şekil 7.13’da S1 senaryosuna göre sınıflandırmada kullanılan
en iyi 30 özellik gösterilmektedir.

S1 senaryasuna göre özellikler incelendiğinde, 3 sınıflandırıcının, sınıflandırmada
farklı yarıçaplarda 9 geometrik özellik ile Z, Rf ve Bf olmak üzere 12 özelliği
ortak olarak kullandıkları anlaşılmaktadır. Aynı komşuluk yarıçapları bazında
incelendiğinde ise 3.özdeğer (r=1m), ortalama eğrilik (r=0.10m), normal değişim
oranı (r=0.30m), düzlemsellik (r=1m), dikeylik (r=0.10m ve r=0.30m) ve yüzey
değişimi (r=1m) geometrik özelliklerinin ortak olduğu görülmüştür.

Şekil 7.14’de S2 senaryosuna göre sınıflandırmada kullanılan en iyi 30 özellik
görselleştirilmiştir. Sonuçlar incelendiğinde 3 sınıflandırıcının, sınıflandırmada
farklı yarıçaplarda 6 geometrik özellik ile Z, Rf ve Bf olmak üzere 9 özelliği ortak
olarak kullandıkları görülmüştür. Komşuluk yarıçapına göre incelendiğinde, gauss
eğriliği (r=0.10m ve r=0.30m), ortalama eğrilik (r=0.10m), dikeylik (r=0.02m,
r=0.10m ve r=0.30m) ve düzlemsellik (r=1m) geometrik özelliklerinin ortak olduğu
anlaşılmıştır.

S3 senaryosuna ilişkin sınıflandırıcıların kullanmış olduğu en iyi 30 özellik
Şekil 7.15’de sunulmuştur. Görsel incelendiğinde farklı yarıçaplarda olmak
üzere 5 geometrik özellik ile Z, Rf ve Bf olmak üzere 8 özellik ortak olarak
kullanılmıştır. Komşuluk yarıçaplarına göre analiz edildiğinde, gauss eğrliği
(r=0.30 ve r=0.50), ortalama eğrilik (r=0.10m, r=0.30m ve r=0.50m), düzlemsellik
(r=1m), yüzey değişimi (r=0.10m ve r=1m) ve dikeylik (r=0.10m, r=0.30m ve
r=0.50m) özelliklerinin ortak olduğu göze çarpmaktadır.

Şekil 7.16’de S4 senaryosunda sınıflandırıcıların kullanmış olduğu özellikler
verilmiştir. Sonuçlar incelendiğinde farklı yarıçaplarda 6 geometrik özellik ile Z,
Rf ve Bf olmak üzere 9 özelliğin ortak olduğu görülmektedir. Komşuluk yarıçapları
özelinde bakıldığında ise gauss eğriliği (r=0.30m ve r=0.50m), ortalama eğrilik
(r=0.10m), omnivaryans (r=1m), düzlemsellik (r=1m), yüzey değişimi (r=1m)
ve dikeylik (r=0.02m, r=0.10m, r=0.30m ve r=0.50m) özellikleri ortak olarak
kullanıldığı anlaşılmaktadır.
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Şekil 7.13 S1 senaryosunda 3 farklı sınıflandırıcının kullanmış olduğu en iyi 30
özellik
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Şekil 7.14 S2 senaryosunda 3 farklı sınıflandırıcının kullanmış olduğu en iyi 30
özellik
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Şekil 7.15 S3 senaryosunda 3 farklı sınıflandırıcının kullanmış olduğu en iyi 30
özellik
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Şekil 7.16 S4 senaryosunda 3 farklı sınıflandırıcının kullanmış olduğu en iyi 30
özellik
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Şekil 7.17 S5 senaryosunda 3 farklı sınıflandırıcının kullanmış olduğu en iyi 30
özellik
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Son eğitim seti olan S5 senaryosuna ilişkin özellik görseli Şekil 7.17’te verilmiştir.
Komşuluk yarıçapına bakılmaksızın sınıflandırıcılar 8 geometrik özellik ile Z, Rf
ve Bf olmak üzere 11 özelliği sınıflandırmada ortak kullanmışlardır. Komşuluk
yarıçapına göre bakıldığında, ortalama eğrilik (r=0.10m), normal değişim oranı
(r=0.30m), omnivaryans (r=1m), düzlemsellik (r=1m), küresellik (r=0.10m), yüzey
değişimi (r=0.10m) ve dikeylik (r=0.02m, r=0.30m ve r=0.50m) özelliklerinin
ortaklığı göze çarpmaktadır.
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7.2 Britanya Kolumbiyası İçmesuyu Hattı Verilerinin Makine
Öğrenmesi Sınıflandırıcıları ile Sınıflandırılması

YTÜ Hidrolik veri setinde olduğu gibi beş farklı senaryo ve üç farklı makine
öğrenmesi sınıflandırıcısı kullanılarak sınıflandırma işlemi gerçekleştirilmiş ve
sınıflandırma sonuçları doğruluk, kesinlik, duyarlılık ve F1-Skor sonuçlarına göre
incelenmiştir.

Şekil 7.18, beş farklı senaryo (S1, S2, S3, S4, S5) üzerinde üç farklı makine
öğrenmesi sınıflandırıcısı (RF, LightGBM, XGBoost) için doğruluk (accuracy)
değerlerini göstermektedir. S1 senaryosunda, RF 0.885, LightGBM 0.871
ve XGBoost 0.886 doğruluk değerlerine ulaşmıştır. S2 senaryosunda, RF
0.910, LightGBM 0.898 ve XGBoost 0.896 doğruluk değerlerine sahiptir. S3
senaryosunda, RF 0.781, LightGBM 0.769 ve XGBoost 0.789 doğruluk değerleri ile
sonuçlanmıştır. S4 senaryosunda, RF 0.831, LightGBM 0.815 ve XGBoost 0.830
doğruluk değerlerine ulaşmıştır. Son olarak, S5 senaryosunda RF 0.738, LightGBM
0.661 ve XGBoost 0.618 doğruluk değerleri elde etmiştir. Genel olarak, RF, çoğu
senaryosunda en yüksek doğruluk değerlerine sahip olup, özellikle S2 (0.910) ve
S5 (0.738) veri setlerinde diğer modellerden daha üstün performans göstermiştir.
LightGBM çoğunlukla daha düşük doğruluk değerleri sunarken, XGBoost bazı veri
setlerinde iyi performans göstermiş olsa da, genellikle RF’nin gerisinde kalmıştır.

Şekil 7.18 Her bir senaryo için sınıflandırıcılarının elde ettiği model doğrulukları

Şekil 7.19, beş farklı senaryo (S1, S2, S3, S4, S5) üzerinde üç farklı makine
öğrenmesi sınıflandırıcısı (XGBoost, LightGBM, RF) için F1-Skor değerlerini
göstermektedir. S1 senaryosunda, XGBoost 0.883, LightGBM 0.868 ve RF 0.882
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F1-Skor değerlerine ulaşmıştır. S2 senaryosunda, XGBoost 0.893, LightGBM
0.836 ve RF 0.907 F1-Skor değerlerine sahiptir. S3 senaryosunda, XGBoost
0.777, LightGBM 0.757 ve RF 0.763 F1-Skor değerleri ile sonuçlanmıştır. S4
senaryosunda, XGBoost 0.825, LightGBM 0.811 ve RF 0.824 F1-Skor değerlerine
ulaşmıştır. Son olarak, S5 senaryosunda XGBoost 0.677, LightGBM 0.707 ve RF
0.756 F1-Skor değerleri elde etmiştir.

Genel olarak, RF çoğu senaryosunda yüksek F1-Skor değerlerine sahip olup,
özellikle S2 (0.907) ve S5 (0.756) senaryolarda diğer modellerden daha üstün
performans göstermiştir. LightGBM bazı senaryolarda (S1 ve S4) karşılaştırılabilir
F1-Skor değerleri sunarken, genel olarak XGBoost ve RF modellerinin gerisinde
kalmıştır. XGBoost ise bazı senaryolarda (S1 ve S3) yüksek F1-Skor değerleri
göstermiş olsa da, genelde RF performansını altında kalmıştır.

Şekil 7.19 Her bir senaryo için sınıflandırıcılarının elde ettiği F1-Skor değerleri

Şekil 7.20 üç farklı makine öğrenmesi sınıflandırıcısı (RF, LightGBM, XGBoost)
için S1 seanryosuna ait F1-Skor, Kesinlik (Precision) ve Duyarlılık (Recall)
metriklerine göre değerlendirilmiş 11 farklı sınıfı göstermektedir. Sonuçlar altyapı
ve bileşenleri açısından incelendiğinde, su borusu sınıfında en yüksek F1-Skor
değeri XGBoost (0.945) ile elde ederken, en düşük F1-Skor değere LightGBM
(0.914) ile ulaşmıştır. Dirsek sınıfı özelinde incelendiğinde, su borusu sınıfında
olduğu gibi XGBoost (0.818) ile en yüksek değere sahip iken, LightGBM
(0.734)’nin en düşük değere sahip olduğu görülmüştür. Te sınıfına ait sonuçlara
bakıldığında RF (0.930) ile en yüksek skora ulaşırken, LightGBM(0.854) ile en
düşük değeri elde etmiştir. Bağlantı elemanları açısından sonuçlar irdelendiğinde
XGBoost (0.894) sınıflandırıcısının en yüksek sonucu aldığı, LightGBM (0.816)
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sınıflandırıcısının en düşük değeri elde ettiği görülmüştür. Altyapı haricindeki
sınıflara ait sonuçlar incelendiğinde, zemin, çit ve iskele sınıfında XGBoost
üstünlüğü göze çarparken, merdiven, düşey yüzey ve taşıyıcı kolon sınıfında RF
sınıflandırıcısı en yüksek sonucu elde etmiştir. Diğer sınıfında ise LightGBM
sınıflandırıcısının en yüksek F1-Skor değerini elde ettiği görülmüştür. Dirsek
sıfında bütün sınıflandırıcılar yüksek kesinlik değerine sahip iken, düşük duyarlılık
elde ettikleri görülmektedir. Yani model pozitif değerlerin büyük çoğunluğunu
doğru tahmin ederken, gerçekte pozitif olan değerlerin bir çoğunu tespit etmekte
yetersiz kalmıştır.

Şekil 7.20 S1 senaryosuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

Şekil 7.21’de sınıflandırıcılar ile elde edilmiş sınıflandırma sonuçları verilmiştir.
Şekil 7.21a etiketli test verisi, Şekil 7.21b XGBoost sınıflandırıcısının elde ettiği
sınıflandırma görseli, Şekil 7.21c LightGBM ile elde edilen sınıflandırma görseli ve
Şekil 7.21d RF ile elde edilen sınıflandırma görselidir.
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Şekil 7.21 a) Etiketli test verisi; b) XGBoost ile sınıflandırma; c) LightGBM ile
sınıflandırma; d) RF ile sınıflandırma

Şekil 7.22 üç farklı makine öğrenmesi sınıflandırıcısı (RF, LightGBM, XGBoost)
için S2 seanryosuna ait 11 sınıfın F1-Skor, Kesinlik (Precision) ve Duyarlılık
(Recall) metriklerini göstermektedir. Sonuçlar altyapı ve bileşenleri açısından
incelendiğinde, su borusu sınıfında en yüksek F1-Score değeri XGBoost (0.945) ile
elde ederken, en düşük F1-Score değere LightGBM (0.914) ile ulaşmıştır. Dirsek
sınıfı özelinde incelendiğinde, su borusu sınıfında olduğu gibi XGBoost (0.818)
ile en yüksek değere sahip iken, LightGBM (0.734)’nin en düşük değere sahip
olduğu görülmüştür. Te sınıfına ait sonuçlara bakıldığında RF(0.930) ile en yüksek
skora ulaşırken, LightGBM (0.854) ile en düşük değeri elde etmiştir. Bağlantı
elemanları açısından sonuçlar irdelendiğinde XGBoost (0.894) sınıflandırıcısının
en yüksek sonucu aldığı, LightGBM(0.816) sınıflandırıcısının en düşük değeri elde
ettiği görülmüştür. Altyapı haricindeki sınıflara ait sonuçlar incelendiğinde, zemin,
çit ve iskele sınıfında XGBoost üstünlüğü göze çarparken, merdiven, düşey yüzey
ve taşıyıcı kolon sınıfında RF sınıflandırıcısı en yüksek sonucu elde etmiştir. Diğer
sınıfında ise LightGBM sınıflandırıcısının en yüksek F1-Score değerini elde ettiği
görülmüştür. Dirsek sıfında bütün sınıflandırıcılar yüksek kesinlik değerine sahip
iken, düşük duyarlılık elde ettikleri görülmektedir. Yani model pozitif değerlerin
büyük çoğunluğunu doğru tahmin ederken, gerçekte pozitif olan değerlerin bir
çoğunu tespit etmekte yetersiz kalmıştır.
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Şekil 7.22 S2 senaryosuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

Şekil 7.23’de sınıflandırıcılar ile elde edilmiş sınıflandırma sonuçları verilmiştir.
Şekil 7.23a etiketli test verisi, Şekil 7.21b XGBoost sınıflandırıcısının elde ettiği
sınıflandırma görseli, Şekil 7.23c LightGBM ile elde edilen sınıflandırma görseli ve
Şekil 7.23d RF ile elde edilen sınıflandırma görselidir.
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Şekil 7.23 a) Etiketli test verisi; b) XGBoost ile sınıflandırma; c) LightGBM ile
sınıflandırma; d) RF ile sınıflandırma
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Şekil 7.24 S3 senaryosuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

Şekil 7.24’te S3 senaryosuna ilişkin sınıf bazlı F1-Skor, kesinlik ve duyarlılık
değerleri verilmiştir. Altyapı ve bileşenleri açısından sonuçlar incelendiğinde su
borusu sınıfında en yüksek F1-Skor değeri XGBoost(0.731) ile elde edilirken, en
düşük değer RF (0.702) sınıflandırıcı ile elde edilmiştir. Dirsek sınıfı sonuçları
irdelendiğinde RF (0.737) sınıflandırıcısı en yüksek F1-Skor değerine ulaşırken,
LightGBM (0.623)’in en düşük F1-Skor değerine ulaştığı görülmektedir. Te
sınıfında elde edilen en yüksek F1-Skor değeri LightGBM ile elde edilmesine
rağmen her üç sınıflandırıcıda bu sınıfta oldukça düşük değer elde etmiştir.
Bağlantı elemanları incelendiğinde en yüksek F1-Skor değeri XGBoost (0.744)
ile elde edilirken, LightGBM (0.694) ile en düşük F1-Skor değerine ulaşılmıştır.
Altyapı haricindeki diğer sınıf sonuçlarına bakıldığında, zemin, merdiven ve iskele
sınıflarında RF sınıflandırıcısının üstünlüğü ön plana çıkarken, çit, düşey yüzey ve
taşıyıcı kolon sınıflarında XGBoost üstünlüğü göze çarpmaktadır.

Her üç sınıflandırıcı ile elde edilen sonuçlar görselleştirilerek Şekil 7.25’de
sunulmuştur. Su borusunun toprak örtülü olan kısımlarında zemin sınıfının su
borusu olarak tahmin edildiği, su borusu ile direk sınıfın yer yer karışıklık gösterdiği
ve gerçekte su borusu olan noktaların dirsek olarak tahmin edildiği görülmektedir.
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Şekil 7.25 a) Etiketli test verisi; b) XGBoost ile sınıflandırma; c) LightGBM ile
sınıflandırma; d) RF ile sınıflandırma

79



Şekil 7.26 S4 senaryosuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

Şekil 7.26’de S4 senaryosuna ilişkin sınıf bazlı F1-Skor, kesinlik ve duyarlılık
değerleri verilmiştir. S4 senaryo sonuçları altyapı ve bileşenleri açısından
incelendiğinde, su borusu sınıfında ulaşılan en yüksek F1-Score değeri XGBoost
(0.761) ile, en düşük değer ise RF (0.751) ile elde edilmiştir. Dirsek sınıfı
özelinde incelendiğinde RF (0.521) en yükek F1-Score değerini elde eder iken,
XGBoost (0.445)’un en düşük değeri elde ettiği görülmüştür. Te sınıfı sonuçları
irdelendiğinde F1-Score değerlerinin kıyaslanamayacak ölçüde küçük ölduğu
görülmüştür. Bağlantı elemanları açısından sonuçlar incelendiğinde RF (0.626)
sınıflandırıcısının en yüksek F1-Score değerine ulaştığı, en düşük değerin ise
LightGBM (0.559) ile elde edildiği görülmüştür.

Şekil 7.26’de verilen değerler incelendiğinde dirsek sınıfının yüksek duyarlılığa
sahip olmasına rağmen, F1-Skor değerinin düşük oludğu görülmektedir. Bu durum
modelin gerçek pozitif değerleri doğru şekilde tanımladığı ancak, bir çok yanlış
pozitif değerde ürettiğini göstermektedir.
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Şekil 7.27 a) Etiketli test verisi; b) XGBoost ile sınıflandırma; c) LightGBM ile
sınıflandırma; d) RF ile sınıflandırma

81



Her üç sınıflandırıcı ile elde edilen sonuçlar görselleştirilerek Şekil 7.27’de
sunulmuştur. Sınıflandırıcıların su borusu ve dirsek sınıfında karışıklık
gösterdiği, yine zemin ve su borusu sınıflarında yanlış tahminler gerçekleştirdiği
görülmektedir.

Şekil 7.28 S5 senaryosuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

S5 senaryosuna ilişkin sınıf bazlı F1-Skor, keskinlik ve duyarlılık değerleri Şekil
7.28’te verilmiştir. Sonuçlar altyapı bileşenleri açısından incelendiğinde su borusu
sınıfında en yüksek F1-Skor değeri RF (0.748) sınıflandırıcı ile elde edilmiştir.
Bu sınıfra alınan en düşük değere XGBoost (0.728) sınıflandırıcısı ile ulaşıldığı
görülmektedir. Dirsek sınıfı açısından incelendiğinde en yüksek F1-Skor değeri
RF (0.543) sınıflandırıcısı ile alınırken, en düşük değer XGBoost (0.428) ile elde
edilmiştir. Te sınıfında en yüksek değer XGBoost (0.424) ile elde edilirken, en
düşük değere LightGBM (0.358) ile ulaşılmıştır. Bağlantı elemanları özelinde
incelendiğinde en yüksek F1-Skor değeri XGBoost (0.586) sınıflandırıcısı ile en
düşük değer ise RF (0.547) sınıflandırıcı ile elde edilmiştir. Altyapı bileşenleri
haricindeki sınıf sonuçları incelendiğinde, zemin, çit, iskele, taşıyıcı kolon ve diğer
sınıflarında RF üstünlüğü görülürken, düşey yüzey sınıfında XGBoost ve merdiven
sınıfında LightGBM üstünlüğü göze çarpmaktadır.

Her üç sınıflandırıcı ile elde edilen sonuçlar görselleştirilerek Şekil 7.29’de
sunulmuştur.
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Şekil 7.29 a) Etiketli test verisi; b) XGBoost ile sınıflandırma; c) LightGBM ile
sınıflandırma; d) RF ile sınıflandırma
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7.2.1 Britanya Kolumbiyası İçmesuyu Hattı Sınıflandırma Sonuçlarına Etki
Eden Özelliklerin Belirlenmesi

YTÜ Hidrolik Laboratuvarında olduğu gibi, burada da en iyi 30 özellik dikkate
alınarak, her bir senaryo için etkin olan özellikler görsel olarak sunulmuştur.

Şekil 7.30’de Britanya Kolumbiyası S1 senaryosuna ilişkin 3 farklı sınıflandırıcının
sınıflandırmada kullandığı en iyi 30 özellik gösterilmektedir. Komşuluk yarıçapı
dikkate alınmadan 9 geometrik özellik ile Z, Rf ve Bf özellikleri olmak üzere
12 özelliğin sınıflandırıcılar tarafından ortak kullanıldığı göze çarpmaktadır.
Komşuluk yarıçapları dikkate alındığında,PCA2 (r=1m), hacim yoğunluğu(r=1m),
omnivaryans (r=1m), düzlemsellik (r=1m), yüzey değişimi (r=1m), normal
değişim oranı (r=0.30m ve r=0.50m) ve dikeylik (r=0.10m, r=0.30m ve r=0.50m)
özelliklerinin ortak olarak kullanıldığı görülmektedir.

S2 senaryosunun eğitiminde 3 farklı sınıflandırıcı tarafından kullanılan en iyi 30
özellik listenmiş ve Şekil 7.31’de sunulmuştur. Sınıflandırıcıların 7 geometrik
özellik ile Z, Rf ve Gf özelliklerini ortak olarak kullandıkları ve komşuluk
yarıçapları dikkate alındığında komşu sayısı (r=0.30m), normal değişim oranı
(r=0.30m ve r=0.50m), yüzey değişimi (r=1m), düzlemsellik (r=0.50m ve r=1m) ve
dikeylik (r=0.10m, r=0.30m ve r=0.50m) özelliklerinin ortak olduğu görülmüştür.

S3 senaryosuna ilişkin sınıflandırıcıların eğitimde kullandıkları en iyi 30 özellik
Şekil 7.32’te verilmiştir. Sonuçlar incelendiğinde 10 geometrik özellik ile Z
olmak üzere 11 özelliğin sınıflandırmada ortak olduğu, komşuluk yarıçapı dikkate
alındığında ise özdeğerler toplamı (r=1m), PCA2 (r=1m), hacim yoğunluğu
(r=1m), yüzey değişimi (r=1m), düzlemsellik (r=0.50m ve r=1m) ve dikeylik
(r=0.10m, r=0.30m ve r=0.50m) özelliklerinin 3 sınıflandırıcı içinde ortak olduğu
anlaşılmaktadır.

Sınıflandırıcıların eğitim için kullandıkları özellikler S4 senaryosu bazında
incelendiğinde 6 geometrik özellik ile Z ve Rf olmak üzere 8özelliğin ortak olduğu
görülmektedir (Şekil 7.33). Komşuluk yarıçapı dikkate alındığında omnivaryans
(r=1m), 2.özdeğer (r=1m), 3.özdeğer (r=1m), öz entropi (r=1m), komşu sayısı
(r=0.30m ve r=0.50m), yüzey değişimi (r=1m) ve dikeylik (r=0.10m, r=0.30m ve
r=0.50m) özelliklerinin 3 sınıflandırıcı içinde aynı olduğu belirlenmiştir.

Şekil 7.34’te S5 senaryosuna ilişkin sınıflandırıcıların eğitim için kullandığı
en iyi özellikler verilmiştir. Şekil incelendiğinde komşuluk yarıçapı dikkate
alınmadığında 9 geometrik özellik ile Z ve Rf olmak üzere 11 özelliğin
ortak olduğu, komşuluk yarıçapları dikkate alındığında omnivaryans (r=1m),
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komşu sayısı (r=0.30m ve r=0.50m), hacim yoğunluğu (r=1m), öz entropi
(1m), düzlemsellik (1m), küresellik (r=1m) ve dikeylik (r=0.02m, r=0.10m,
r=0.30m, r=0.50m ve r=1m), yüzey değişimi (r=1m), özdeğerler toplamı (r=1m)
özelliklerinin 3 sınıflandırıcı için aynı olduğu görülmüştür.
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Şekil 7.30 S1 senaryosunda 3 farklı sınıflandırıcının kullanmış olduğu en iyi 30
özellik
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Şekil 7.31 S2 senaryosunda 3 farklı sınıflandırıcının kullanmış olduğu en iyi 30
özellik
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Şekil 7.32 S3 senaryosunda 3 farklı sınıflandırıcının kullanmış olduğu en iyi 30
özellik
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Şekil 7.33 S4 senaryosunda 3 farklı sınıflandırıcının kullanmış olduğu en iyi 30
özellik
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Şekil 7.34 S5 senaryosunda 3 farklı sınıflandırıcının kullanmış olduğu en iyi 30
özellik
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7.3 YTÜ Hidrolik Laboratuvarı Verilerinin Derin Öğrenme
Yöntemleri ile Sınıflandırılması

Beş farklı senaryo ve KPConv derin öğrenme sınıflandırıcısı ile gerçekleştirilen
sınıflandırma sounçları, doğruluk, kesinlik, duyarlılık ve F1-skor değerlerine
göre incelenmiştir. KPConv ile yapılan sınıflandırmada, S1 senaryosunda 0.972,
S2 senaryosunda 0.989, S3 senaryosunda 0.993, S4 senaryosunda 0.989 ve S5
senaryosunda 0.990 model doğruluğu elde edilmiştir. Şekil 7.35’da her bir
senaryoda KPConv ile elde edilen model doğrulukları verilmiştir. Sonuçalr
incelendiğinde eğitilen veri seti azalmasına rağmen model doğruluklarında artışın
olduğu gözlemlenmiştir.

Şekil 7.35 Her bir senaryonun KPConv ile elde edilmiş model doğrulukları

Her senaryoya göre F1-Skor değerleri incelendiğinde S1 senaryosunda 0.972,
S2 senaryosunda 0.976, S3 senaryosunda 0.984, S4 senaryosunda 0.976 ve S5
senaryosunda 0.978 olarak elde edildiği görülmektedir (Şekil 7.36).

Her bir senaryoya ait sınıf bazlı sonuçları F1-Skor, kesinlik ve duyarlılık sonuçları
görselleştirilerek Şekil 7.37, Şekil 7.39, Şekil 7.41, Şekil 7.43 ve Şekil 7.45’de
sunulmuştur.

S1 senaryosuna ilişkin sonuçlar altyapı ve bileşenleri özelinde incelendiğinde en
yüksek F1-Skor(0.978) ile büyük boru sınıfında, en düşük F1-Skor değerinin(0.668)
ise küçük boru sınıfınde elde edildiği görülmüştür. Dirsek sınıfında ise 0.959
F1-skor değerine ulaşılmıştır. Diğer sınıflara ait sonuçlara bakıldığında kapı sınıfı
en yüksek F1-Skor değerine ulaşırken, demir sınıfı en düşük F1-Skor değeri elde
etmiştir. Düşük F1-Skor değeri elde eden küçük boru sınıfında kesinlik ve duyarlılık
değerlerinin de düşük olduğu görülmketedir. Model bu sınıfa ait noktaların doğru
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Şekil 7.36 Her bir senaryonun KPConv ile elde edilmiş F1-Skor değerleri

Şekil 7.37 S1 senaryonuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları
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tespitinde diğer sınıflara göre düşük performans göstermiştir.

Şekil 7.38’da S1 senaryosuna ait sınıflandırma görseli verilmiştir. Şekil 7.38a’da
hatalı sınıflandırma yapılmış noktalar kırmızı çember içine alınarak gösterilmiştir.
Şekil incelendiğinde kaplama sınıfının duvar olarak tahmin edildiği, demir sınıfının
ise boruya temas eden yerlerde boru olarak tahmin edildiği görülmektedir.

Şekil 7.38 a) KPConv ile sınıflandırma; b) Etiketli test verisi

S2 senaryosu altyapı ve bileşenleri açısından ele alındığında en yüksek F1-Skor
değeri (0.990) ile küçük boru sınıfında elde edilirken, en düşük değer(0.905) ile
dirsek sınıfında elde edilmiştir. Diğer sınıflara ilişkin sonuçlar incelendiğinde en
yüksek değerin güç kaynağı sınıfında, en düşük değerin demir sınıfında elde edildiği
görülmüştür.

Şekil 7.40’da S2 senaryosuna ait sınıflandırma görseli verilmiştir. Şekil 7.40a’da
hatalı sınıflandırma yapılmış noktalar kırmızı çember içine alınarak gösterilmiştir.
Şekil incelendiğinde demir sınıfının boruya temas eden yerlerde boru olarak tahmin
edildiği ve boru sınıfının dirsek olarak tahmin edildiği görülmüştür.

S3 senaryosu özelinde sonuçlar altyapı ve bileşenleri açısından ele alındığında,en
yüksek F1-Skor değerinin(0.990)ile büyük boru sınıfında, endüşük değerin (0.976)
ile dirsek sınıfında elde edildiği görülmüştür. Diğer sınıflara ait sonuçlar
incelendiğinde kapı ve güç kaynağı sınıfının en yüksek F1-Skor değeri, demir
sınıfının en düşük F1-Skor değeri elde ettiği belirlenmiştir.
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Şekil 7.39 S2 senaryonuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

Şekil 7.40 a) KPConv ile sınıflandırma; b) Etiketli test verisi
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Şekil 7.41 S3 senaryonuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

Şekil 7.42’da S3 senaryosuna ait sınıflandırma görseli verilmiştir. Şekil 7.42a’da
hatalı sınıflandırma yapılmış noktalar kırmızı çember içine alınarak gösterilmiştir.
Şekil incelendiğinde demir sınıfının boruya temas eden yerlerde boru olarak tahmin
edildiği ve dirsek sınıfının boru olarak tahmin edildiği görülmüştür.
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Şekil 7.42 a) KPConv ile sınıflandırma; b) Etiketli test verisi

Şekil 7.43 S4 senaryonuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları
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Şekil 7.43’de verilen sonuçlar altapı ve bileşenleri açısından incelendiğinde küçük
boru sınıfının en yüksek F1-Skor değeri(0.990), dirsek sınıfının en düşük F1-Skor
değeri (0.976) elde ettiği tespit edilmiştir. Diğer sınıflara ait sonuçlar incelendiğinde
güç kaynağı sınıfının en yüksek F1-Skor değerine ulaştığı, demir sınıfının ise en
düşük F1-Skor değeri elde ettiği görülmüştür.

Şekil 7.44 a) KPConv ile sınıflandırma; b) Etiketli test verisi

Şekil 7.44’da S4 senaryosuna ait sınıflandırma görseli verilmiştir. Şekil 7.44a’da
hatalı sınıflandırma yapılmış noktalar kırmızı çember içine alınarak gösterilmiştir.
Şekil incelendiğinde demir sınıfının boruya temas eden yerlerde boru olarak tahmin
edildiği, dirsek sınıfının ise boru olarak tahmin edildiği görülmüştür.

Şekil 7.45 S5 senaryonuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

Şekil 7.45’de verilen sonuçlar altapı ve bileşenleri açısından incelendiğinde küçük
boru sınıfının en yüksek F1-Skor değeri(0.989), dirsek sınıfının en düşük F1-Skor
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değeri (0.974) elde ettiği belirlenmiştir. Diğer sınıflara ait sonuçlar incelendiğinde
kapı sınıfının en yüksek F1-Skor değerine ulaştığı, demir sınıfının ise en düşük
F1-Skor değeri elde ettiği görülmüştür.

Şekil 7.46 a) KPConv ile sınıflandırma; b) Etiketli test verisi

Şekil 7.46’da S5 senaryosuna ait sınıflandırma görseli verilmiştir. Şekil 7.46a’da
hatalı sınıflandırma yapılmış noktalar kırmızı çember içine alınarak gösterilmiştir.
Şekil incelendiğinde demir sınıfının boru, güç kaynağı ve kaplama olarak tahmin
edildiği ve dirsek sınıfının boru olarak tahmin edildiği görülmüştür.

7.4 Britanya Kolumbiyası İçmesuyu Hattı Verilerinin Derin
Öğrenme Yöntemleri ile Sınıflandırılması

5 farklı senaryoya ilişkin sınıflandırma işlemi, doğruluk, F1-skor, kesinlik ve
duyarlılık sonuçlarına göre incelenmiştir. S1 senaryosunda 0.957, S2 senaryosunda
0.967, S3 senaryosunda 0.905, S4 senaryosunda 0.976 ve S5 senaryosunda 0.968
model doğruluğu elde edilmiştir. Buna ilişkin görsel Şekil 7.47’de sunulmuştur.

KPConv ile elde edilmiş 5 farklı senaryoya ilişkin F1-Skor değerleri Şekil 7.48’da
verilmiştir. Görsel incelendiğinde en yüksek F1-Skor değerinin S1 senaryosunda,
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Şekil 7.47 Her bir senaryo için KPConv ile elde edilen model doğrulukları

en düşük F1-Skor değerinin ise S3 senaryosunda elde edilidği görülmektdir.

Şekil 7.48 Her bir senaryo için KPConv ile elde edilen model doğrulukları

Sınıf bazlı kıyaslama yapılabilmesi ve sonuçların yorumlanabilmesi açısından
her bir senaryoya ilişkin sınıf bazlı F1-Skor, kesinlik ve duyarlılık sonuçları
görselleştirilmiştir. Şekil 7.49’de S1 senayosuna ilişkin sonuçlar verilmiştir. S1
senaryo sonuçları altyapı ve bileşenleri açısından incelendiğinde su borusunu
sınıfının 0.981 ile en yüksek F1-skor değerine ulaştığı belirlenmiştir. En düşük
F1-Skor değeri(0.929) ise te sınıfında elde edilmiştir. Dirsek sınıfında 0.976
F1-Skor değeri elde edilirken, bağlantı elemanları sınıfında bu değerin 0.979 olduğu
görülmüştür. Altyapılar dışında kalan diğer sınıf sonuçlarına bakıldığında, 0.976
F1-Skor değeri ile iskele sınıfının en yüksek değeri elde ettiği, çit sınıfının ise en
düşük F1-Skor değerine(0.914) ulaştığı tespit edilmiştir.
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Şekil 7.49 S1 senaryosuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

S1 senaryosuna ait sınıflandırma sonuçları görselleştiirldiğinde te sınıfının su
borusu sınıfı olarak hatalı sınıflandırıldığı, düşey yüzey sınıfının taşıyıcı kolon sınıfı
ile karıştığı ve zemin sınıfının diğer sınıfı ile karışlık gösterdiği anlaşılmıştır. Şekil
7.50a’da beyaz çember içinde hatalı sınıflandırma bölgeleri gösterilmiştir.

Şekil 7.50 a) KPConv ile sınıflandırma; b) Etiketli test verisi

S2 senaryosuna ilişkin sınıf bazlı F1-Skor, kesinlik ve duyarlılık sonuçları Şekil
7.51’de verilmiştir. Altyapı ve bileşenleri açısından sonuçlar incelendiğinde, su
borusu sınıfının 0.962 ile en yüksek F1-skor değerini, te sınfının 0.902 ile en
düşük F1-Skor değerini elde ettiği tespit edilmiştir. Dirsek sınıfının 0.949, bağlantı
elemanları sınıfının 0.929 F1-Skor değerine ulaştığı görülmüştür. Geriye kalan
sınıf sonuçlarına bakıldığında, zemin sınıfı 0.988 ile en yüksek F1-Skor değerine
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ulaştığı, en düşük F1-Skor değerinin(0.884) ise diğer sınıfı ile elde edilmiş olduğu
belirlenmiştir.

Şekil 7.51 S2 senaryosuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

S2 senaryosunun sınıflandırma görseli Şekil 7.52’de verilmiştir. Te ve dirsek
sınıfının su borusu sınıfı, dğşey düzey sınıfının merdiven sınıfı olaraj hatalı
sınıflandırıldığı görülmektedir. Hatalı sınıflandırma yapılmış yerler Şekil 7.52a’da
beyaz çember içine alınmıştır.

Şekil 7.52 a) KPConv ile sınıflandırma; b) Etiketli test verisi

Şekil 7.53’te S3 senaryosuna ilişkin sınıf bazlı F1-Skor, kesinlik ve duyarlılık
değerleri verilmiştir. S2 senaryosuna benzer şekilde en yüksek F1-Skor
değeri(0.907) su borusu sınıfında elde edilirken, en düşük F1-Skor değerin(0.771)
te sınıfında elde edildiği belirlenmiştir. Dirsek sınıfının 0.853, bağlantı elemanları
sınıfı 0.892 F1-Skor değeri elde ettiği görülmüştür. Altyapılar dışında kalan
sınıflarda en yüksek F1-Skor değeri zemin sınıfında elde edilirken, en düşük Fı-Skor
değeri merdiven sınıfında elde edilmiştir
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Şekil 7.53 S3 senaryosuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

S3 senaryosuna ilişkin KPConv ile elde edilen sınıflandırma görseli Şekil 7.54’te
verilmiştir. Görsel incelendiğinde, iskele sınıfının taşıyıcı kolon olarak hatalı
sınıflandırıldığı, te ve su borusu sınıfı ile karışıklık gösterdiği, ve diğer sınıfının
zemin sınıfı olarak tahmin edildiği yerlerin olduğu belirlenmiştir. Şekil 7.54a’da
hatalı sınıflandırma yapılan yerler beyaz çember ile gösterilmiştir.

Şekil 7.54 a) KPConv ile sınıflandırma; b) Etiketli test verisi

S4 senaryo sonuçları altyapı ve bileşenleri açıısndan incelendiğinde su borusu
sınıfının 0.975 ile en yüksek, te sınıfının 0.941 ile en düşük F1-Skor değeri elde
ettiği belirlenmiştir (Şekil 7.55). Bağlantı elemanları sınıfı 0.964, dirsek sınıfı ise
0.958 F1-skor değeri elde etmiştir. Geri kalan sınıf sonuçlarına bakıldığında zemin
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sınıfı S3 senaryosuna benzer şekilde en yüksek F1-Skor değeri elde ederken, en
düşük F1-Skor değerin çit sınıfında elde ettiği görülmüştür.

Şekil 7.55 S4 senaryosuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

S4 senaryosunda diğer 3 senaryoya benzer şekilde su borusu, dirsek ve te
sınıflarında hatalı sınıflandırmaların olduğu, düşey yüzey ile zemin sınıfının
karışıklık gösterdiği, iskele sınıfının çit sınıfı olarak hatalı sınıfılandırıldığı
görülmüştür. Şekil 7.56a’da hatalı sınıflandırma yapılmış alanlar beyaz çember
içerisinde gösterilmektedir.

Şekil 7.56 a) KPConv ile sınıflandırma; b) Etiketli test verisi

S5 senaryosuna ilişkin sınıf bazlı F1-Skor, kesinlik ve duyarlılık sonuçları altyapı
ve bileşenleri açısından incelendiğinde diğer 4 senaryoya benzer şekilde su borusu
sınıfı en yüksek F1-Skor değerini (0.963) elde ettiği tespit edilmiştir. En düşük
F1-Skor(0.905) te sınıfında elde edilirken, dirsek sınıfı 0.934, bağlantı elemanları
sınıfı 0.962 F1-Skor değerine ulaşmıştır. Altyapı dışındaki sınıflara ilişkin sonuçlar
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incelendiğinde zemin sınıfının en yüksek F1-Skor değerine ulaştığı, en düşük
F1-skor değerin diğer sınıfında elde edildiği görülmüştür (Şekil 7.57)

Şekil 7.57 S5 senaryosuna göre her bir sınıfın F1-Skor, kesinlik ve duyarlılık
sonuçları

S5 senaryosuna ilişkin sınıflandırma görseli Şekil 7.58’da sunulmuştur. Şekil
7.58a incelendiğinde demir sınıfının kaplama ve güç kaynağı olarak hatalı
sınıflandırıldığı, dirsek sınıfının boru sınıfı olarak tahmin edildiği görülmüştür, ilgili
kısımlar şekil üzerinde beyaz çember içerisinde belirtilmiştir.

Şekil 7.58 a) KPConv ile sınıflandırma; b) Etiketli test verisi

104



8
BULGULAR VE TARTIŞMA

Bu bölümde makine öğrenmesi sınıflandırıcıları ve derin öğrenme algoritması
ile elde edilen sınıflandırma sonuçları yorumlanacaktır. Sınıflandırıcı bazlı
karşılaştıma yapılacak ve ortak özelliklerin incelenmesi gerçekleştirilecektir.
Daha sonra makine öğrenimi ve derin öğrenme sınıflandrıma sonuçlarının
karşılaştırılması gerçekleştirilecektir.

8.1 Makine Öğrenmesi Sınıflandırıcıları ile Elde Edilen
Sınıflandırma Sonuçlarının Yorumlanması

Hatalı sınıflandırılan noktalara ilişkin karşılaştırma yorum yapılabilmesi için en iyi
ve en kötü model doğruluğu elde eden senaryolara ait sonuçlar doğru ve yanlış
sınıflandırılmış nokta şeklinde iki sınıfa indirgenmiş ve sınıflandırma görselleri
oluşturulmuştur (Şekil 8.1). Şekil 8.1a’da YTU Hidrolik Laboratuvarı için en iyi
sonuç elde eden S1 senaryosu ve Şekil 8.1b’de YTU Hidrolik Laboratuvarı için en
kötü sonuç elde eden S5 senaryosu verilmiştir.

Şekil 8.1a’ incelendiğinde hatalı sınıflandırmaların olduğu bölgelerin, sınıfların
kesişim noktalarında olduğu ya da birbirine yakın objelerin olduğu görülmektedir.
Bu durumun geometrik özelliklerin kesişim noktalarında doğru tahmin yapamadığı
ya da sınıfı temsil eden nokta sayısının yetersiz olmasından kaynaklandığı
söylenebilir. Ayrıca özellikle küçük bölgelerde çok fazla sınıf değişimi varsa,
geometrik benzerlik ve sınıfsal noktalar arası yakınlık sebebiyle ya da objeyi temsil
eden nokta sayısının azlığı sebebiyle MÖ sınıflandırıcıları sınıf ayırt etmede yetersiz
kalabilmekte ve yanlış sınıflandırmaya sebep olabilmektedir. Bu nedenle farklı
açıalrdan çoklu oturum yapılarak objeyi temsil eden nokta sayısının artırtılması
bir çözüm olabilir. Bu duruma örnek olarak Şekil 8.1b’de sağ üst köşede bulunan
pencere çerçevesinin hata sınıflandırılması ve küçük boru sınıfı yakınındaki demir
sınıfı ile karışması verilebilir. Yine Şekil 8.1a’da alt köşede kaplama sınıfının
bir bölümünün hatalı sınıflandırılması bu duruma örnek olarak verilebilir. Yine
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Şekil 8.1 a) S1 senaryosunda en iyi sonuç veren sınıflandırıcı (XGBoost) ile doğru
ve yanlış tahmin edilen noktalar; b) S5 senaryosunda en iyi sonuç veren

sınıflandırıcı (XGBoost) ile doğru ve yanlış tahmin edilen noktalar

şekil incelendiğinde düzlemsel objelere ait doğru tahminlerinin fazla olduğu
görülmektedir. Bu durum, doğrusallığı ve düzlemselliği stabile yakın olan bu
sınıfların (duvar ve kaplama gibi) veri setinde yoğun olması nedeniyle bu sınıflara
ait özelliklerin daha iyi öğrenildiği yorumu ile açıklanabilir.

Şekil 8.2’de Britanya Kolumbiyası İçmesuyu Hattı için en iyi ve en kötü
model doğruluğu elde eden senaryolar doğru ve yanlış sınıfa atanan noktalar
kullanılarak oluşturulmuştur. Şekil 8.2a’da en iyi model doğruluğuna sahip
S1 senaryosuna ait sonuçlar, ekil8.2b’de en kötü model doğruluğuna sahip
S5 senaryosu gösterilmektedir. Şekil 8.2a incelendiğinde, YTÜ sonuçlarına
benzer şekilde boru-dirsek, boru-te kesişimlerinde hatalı sınıflandırmaların olduğu
görülmektedir. Sınıflandırıcılar bu bölgelerdeki noktaları ayırt etmede, geometrik
özelliklerin benzerliği ve nokta yakınlığı nedeniyle yetersiz kalmaktadır. Şekil
8.2b’de buna ek olarak zemin sınıfının, boruyla temas ettiği yerlerde boru olarak
tahmin edildiği, sağ üst bölgede ise iskele sınıfı ile karışıklık gösterdiği karışıklık
matrisi incelendiğinde görülmektedir (Şekil A.11).

Şekil 8.3 ve Şekil 8.4’te verilen özellikler incelendiğinde RF ve LightGBM
için baskın özellik 5 senaryo için "Z" özelliğidir. XGBoost için bu durum
senaryo bazlı değişiklik göstermiştir. S1-S3 senaryoları arasında Bf (mavi renk
faktörü) baskın iken, S4’te omnivaryans (r=1m), S5’te ise küresellik (r=1m)
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Şekil 8.2 a) S1 senaryosunda en iyi sonuç veren sınıflandırıcı (XGBoost) ile doğru
ve yanlış tahmin edilen noktalar; b) S5 senaryosunda en iyi sonuç veren

sınıflandırıcı (RF) ile doğru ve yanlış tahmin edilen noktalar
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Şekil 8.3 YTÜ Hidrolik Laboratuvarı için oluşturulan S1, S2 ve S3 senaryolarının
eğitiminde sınıflandırıcıların kullandığı ortak özelliklerin önem sıralaması
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Şekil 8.4 YTÜ Hidrolik Laboratuvarı için oluşturulan S4 ve S5 senaryolarının
eğitiminde sınıflandırıcıların kullandığı ortak özelliklerin önem sıralaması
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özellikleri baskındır. 5 senaryonun sınıflandırılmasında kullanılan ortak özellikler
incelendiğinde Z, Bf, ortalama eğrilik (r=0.10m), düzlemsellik (r=1m) ve dikeylik
(r=0.30m) özelliklerinin ortak olduğu ve algoritmadan bağımsız olarak bu veri
seti için bu özelliklerin eğitim için kullanılması gerektiği söylenebilir. Z ile
düzlemselliğin birlikte kullanımı, duvar ve kaplama gibi sınıfların tahmininde etkili
olurken, ortalama eğrilik ve Z’nin kullanımı altyapı elemanlarının tahmininde etkili
olmaktadır.

Şekil 8.5 ve Şekil 8.6 ’te verilen sonuçlara göre, RF ve LightGBM için baskın
özellik 5 senaryo için "Z" özelliğidir. XGBoost için bu durum senaryo bazlı
değişiklik göstermiştir. S1 senaryosunda normal değişim oranı (r=0.3m), S2’de
düzlemsellik (r=0.5m), S3’te düzlemsellik (r=1m), S4’te yüzey değişimi (r=1m)
ve S5’te ise Z özelliği baskın özelliktir.

5 senaryonun sınıflandırılmasında kullanılan ortak özellikler incelendiğinde Z,
yüzey değişimi (r=1m) ve dikeylik (r=0.10m, r=0.30m ve r=0.50m) özelliklerinin
ortak olduğu ve algoritmadan bağımsız olarak bu veri seti için bu özelliklerin veri
setinin eğitiminde bulunması gereken özellikler olduğu söylenilebilir.

Her iki çalışma bölgesi için sonuçlar birlikte değerlendirildiğinde Z ve dikeylik
(r=0.30) özelliklerinin her iki veri setinden oluşturulan 5 senaryoda ortak özellik
olduğu tespit edilmiştir.

Makine öğrenmesi çalışmalarında sıkça rastlanılan %90 eğitim - %10 test ve %70
eğitim - %30 test yaklaşımları açısından sonuçlar incelendiğinde, sınıflandırıcıların
her iki bölge için S1 ve S2 senaryolarına ilişkin kullandıkları ortak özellikler; Z, Rf,
dikeylik (r=0.10m ve r=0.30m) ve düzlemsellik (r=1m) olarak tespit edilmiştir.
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Şekil 8.5 Britanya Kolumbiyası İçmesuyu Hattı için oluşturulan S1, S2 ve S3
senaryolarının eğitiminde sınıflandırıcıların kullandığı ortak özelliklerin önem

sıralaması
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Şekil 8.6 Britanya Kolumbiyası İçmesuyu Hattı için oluşturulan S4 ve S5
senaryolarının eğitiminde sınıflandırıcıların kullandığı ortak özelliklerin önem

sıralaması
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8.2 Derin Öğrenme Yöntemi (KPConv) ile Elde Edilen
Sınıflandırma Sonuçlarının Yorumlanması

KPConv ile hatalı sınıflandırılan noktalara ilişkin karşılaştırma yorum yapılabilmesi
için en iyi ve en kötü model doğruluğu elde eden senaryolara ait sonuçlar, doğru
ve yanlış sınıflandırılmış nokta şeklinde iki sınıfa indirgenmiş ve sınıflandırma
görselleri oluşturulmuştur (Şekil 8.7). Şekil 8.7 incelendiğinde hatalı sınıf

Şekil 8.7 a) S3 senaryosunda KPConv ile doğru ve yanlış tahmin edilen noktalar;
b) S1 senaryosunda KPConv ile doğru ve yanlış tahmin edilen noktalar

tahminlerinin makine öğrenmesi sonuçlarında olduğu gibi sınıflar arası kesişim
noktalarında olduğu görülmektedir. Şekil 8.7a’da kaplama sınıfı olması gereken
sınfın hatalı tahmin edildiği görülmektedir. Bu durum, DÖ yöntemleri ile yapılan
sınıflandırmada geometrik özelliklerin renk bilgisi göre daha baskın olduğunu
göstermektedir. Bu sonuç Bayrak vd. [136]’in yapmış olduğu çalışma ile de
desteklenmektedir.

Şekil 8.8 incelendiğinde hatalı sınıflandırmaların genellikle iki sınıfın kesişim
bölgesinde gerçekleştiği görülmektedir. S4 senaryosunda bu karışıklık daha az
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Şekil 8.8 a) S4 senaryosunda KPConv ile doğru ve yanlış tahmin edilen noktalar;
b) S3 senaryosunda KPConv ile doğru ve yanlış tahmin edilen noktalar
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iken S3 senaryosunda daha fazladır. Bu durum eğitim veri setinde sınıfları temsil
eden noktaların, 2 sınıf arasındaki farkı ayırt edemeyecek geometrik yakınlğa sahip
olduğu ile açıklanabilir. Buna örnek olarak, zemin ile su borusunun kesişim noktası
verilebilir. Su borusunun yüzeyini kaplayan toprak yapı, model tarafından su
borusu olarak yanlış sınıflandırılmıştır. Yine zeminle aynı doğrultuda olan diğer
katmanında yer alan tahtalarda, yer yer zemin olarak tahmin edilmiştir.

8.3 Derin Öğrenme ve Makine Öğrenmesi Sonuçlarının
Karşılaştırılması

YTÜ Hidrolik Laboratuvarı senaryolarına ilşikin makine öğrenmesi ve derin
öğrenme yöntemleri ile elde edilen model doğruluklarının karşılaştırılması
Tablo8.9’de verilmiştir. Tablo incelendiğinde KPConv bütün senaryolarda makiane
öğrenmesi sınıflandırıcısına göre daha üstün performans göstermiştir.

Şekil 8.9 YTÜ veri seti için derin öğrenme ve makine öğrenmesi yöntemlerinin
sınıflandırma model doğruluklarının karşılaştırılması

Tablo8.10’de Britanya Kolumbiyası İçmesuyu Hattına ilişkin sınıflandırma
doğruluklarının kıyaslanması gösterilmektedir. YTÜ senaryo sonuçlarına benzer
şekilde derin öğrenme yönteminin her senaryo için sınıflandırma performasının
oldukça üstün olduğu görülmektedir. Özellikle düşük eğitim verisinin olduğ
S5 senaryosunda derin öğrenmenin yüksek doğruluk elde etmesi, seçilen eğitim
alanının, bütün veriyi kapsayacak nitelikte olması ve veri içerisindeki sınıfsal
varyasyonların az olması nedeniyle açıklanabilir. Ayrıca makine öğrenmesinin
geometrik özelliklere göre sınıflandırma yapması, derin öğrenmenin ise geoemtrik
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Şekil 8.10 Britanya Kolumbiyası veri seti için derin öğrenme ve makine öğrenmesi
yöntemlerinin sınıflandırma model doğruluklarının karşılaştırılması

özelliklere ek olarak semantik ilişkiyi de irdelemesi model doğruluğunu artıran
bir diğer unsur olarak belirtilebilir. Yani boru sınıfı dirsek ile etkileşim halinde
bulunabilir ancak bir çit sınıfı ile doğrudan bir bağlantı içinde bulunmaz. Bu
sebeple makine öğrenmesinde güç kaynağı sınıfı ile duvar ya da kapı sınıfı karışıklık
gösterirken, derin öğrenme ile sınıflandırmada bu duruma rastlanma olasılığı bu
sınıflar bitişik olmadığı sürece oldukça düşüktür.
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Bu çalışmada, yersel lazer tarayıcı ile elde edilen bir yapı üzerindeki altyapı
unsurları ve bir İHA ile elde edilen su boru hattının nokta bulutlarının
sınıflandırılmasında üç farklı makine öğrenmesi ve bir derin öğrenme
algoritmasının performansı incelenmiştir. Karmaşık yapılardaki altyapı
nesnelerinin sınıflandırılması araştırılmış ve derin öğrenme yöntemi, makine
öğrenmesi sınıflandırıcılarına göre daha üstün sonuçlar elde etmiştir. Her
iki çalışma bölgesinde yer alan altyapı elemanlarından büyük boru ve su
borusu sınıfının F1-Skor değerlerinin yüksek olması, arazi kullanımı ve binalar
ile ağaçlar gibi unsurların nokta bulutlarından sınıflandırılması gibi birçok
çalışmada kullanılan makine öğrenmesi sınıflandırıcılarının, altyapı elemanlarının
sınıflandırılmasında da kullanılabilir olduğunu göstermiştir. Çalışma kapsamında
kullanılan XGBoost sınıflandırıcısı genelde yüksek sonuçlar elde etse de, eğitim
süresi açısıdan RF ve LightGBM’e kıyasla daha fazla zamana gereksinim
duymaktadır. Bu nedenle, istenen sınıflandırma kalitesine dayalı olarak bir
sınıflandırıcı seçmek, hesaplama maliyetlerini azaltabilir.

Eğitim setinde yer alan sınıfların homojen dağılım göstermemesi nedeniyle, elde
edilen model doğrulukları yanıltıcı olabilir. Çünkü, veri seti içerinde nokta sayısı
az olan sınıfların model doğruluğuna etkisi az olacaktır. Bu nedenle bu tarz
veri setlerinin sınıflandırılmasında doğruluk analizi gerçekleştirilirken F1-Skor
değerinin göz önüne alınması daha doğru bir analiz sağlayacaktır.

Çalışmada kullanılan makine öğrenmesi sınıflandırıcıların, önemli ortak geometrik
özellikler konusunda benzer çıktılara sahip olduğu görülmüştür. Prensiplerindeki
farklılıklara rağmen, bu yöntemlerin bu özellikleri etkin bir şekilde tespit etmesi,
bu parametrelerin doğrudan bu sınıfları tespit edebileceğine dair bir gösterge
olabilir. Sınıflandırıcıların %90 eğitim - %10 test ve %70 eğitim - %30 test
yaklaşımına göre elde ettikleri ortak özellikler; Z, dikeylik ve düzlemselliktir. Bu
durum iki farklı test alanı olmasına rağmen makine öğrenmesinin genelleştirme
yeteneğini ön plana çıkarmaktadır. Mevcut çalışmalarda, ortak parametreler henüz
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nesne bazında analiz edilmemiştir ve sunulan çalışmanın, gelecekteki araştırmalara
her sınıf için geometrik özellikleri belirleme konusunda bir fikir açabileceği
düşünülmektedir. Bununla birlikte, bu çalışmanın sonuçları, özellikle iki farklı test
çalışması bağlamında, diğer benzer araştırma odakları ve nokta bulutu veri setleri
için önemli bir öneme sahiptir. Bu sınıflandırıcıların, sınıflandırma performansları
ve özellik analizleri,

• Etiketleme sürecinin zaman alıcı ve dikkat gerektiren bir süreç olması,

• Literatürde altyapı elemanlarının 3B sınıflandırılması için az sayıda veya hiç
halka açık veri bulunmaması,

• Tüm sınıfların farklı bölgelerde yaygın olma olasılığının düşük olması
nedeniyle, bu iki test alanı ile sınırlı kalmıştır.

Test alanlarında derin öğrenme yöntemi KPConv ile elde edilen sınıflandırma
doğruluğu sonuçları, makine öğrenmesi sınıflandırıcıları ile kıyaslandığında daha
iyi performans elde etiğini göstermektedir. Bu durum, derin öğrenmenin
eğitim aşamasında hem geometrik hemde semantik ilişkiyi birlikte ele almasıyla
açıklanabilir. Ayrıca senaryo sonuçları incelendiğinde eğitim setindeki nokta
sayıları azalma gösterdiğinde makine öğrenmesi ile elde edilen sonuçlarda
(XGBoost; S1(0.963), S5(0.840) düşüş görülürken, derin öğrenme sonuçlarının
(KPConv; S1(0.972), S5(0.990)) bu durumdan etkilenmediği görülmüştür.

Eğitim süresi açısından derin öğrenmenin, makine öğrenmesine kıyasla daha
kısa olduğu söylenebilir. Bunun en temel nedeni, derin öğrenmenin GPU
(Graphics processing unit)’yu, makine öğrenmesinin CPU (Central Process
Unit)’yu kullanmasıdır. Bu açıdan bakıldığında düşük maliyetli çalışmalarda
makine öğrenmesi tercih edilebileceği söylenebilir.
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A
EKLER

YTÜ Hidrolik Laboratuvarına ilişkin oluşturulan eğitim ve test görselleri Şekil A.1,
Şekil A.2, Şekil A.3, Şekil A.4 ve Şekil A.5’de sunulmuştur.

Şekil A.1 S1 Eğitim ve Test (YTÜ Hidrolik Laboratuvarı)

Şekil A.2 S2 Eğitim ve Test (YTÜ Hidrolik Laboratuvarı)

Şekil A.3 S3 Eğitim ve Test (YTÜ Hidrolik Laboratuvarı)
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Şekil A.4 S4 Eğitim ve Test (YTÜ Hidrolik Laboratuvarı)

Şekil A.5 S5 Eğitim ve Test (YTÜ Hidrolik Laboratuvarı)

Britanya Kolumbiyası içmesuyu hattına ilişkin oluşturulan eğitim ve test görselleri
Şekil A.6, Şekil A.7,Şekil A.8, Şekil A.9’ ve Şekil A.10’de sunulmuştur.

Şekil A.6 S1 Eğitim ve Test (Britanya Kolumbiyası)
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Şekil A.7 S2 Eğitim ve Test (Britanya Kolumbiyası)

Şekil A.8 S3 Eğitim ve Test (Britanya Kolumbiyası)
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Şekil A.9 S4 Eğitim ve Test (Britanya Kolumbiyası)

Şekil A.10 S5 Eğitim ve Test (Britanya Kolumbiyası)
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Şekil A.11 S5 senaryosuna ilişkin karışıklık matrisi (Biritanya Kolumbiyası)
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