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 Nüfus artışı, sanayileşme ve teknolojik gelişmelerdeki eğilimler, küresel elektrik 

tüketiminde önemli bir artışa neden olmaktadır. Yenilenebilir enerji kaynaklarında 

önemli ilerlemeler kaydedilirken, sınırlı ve çevresel kaygılara neden olan fosil yakıtları 

hâlâ elektrik üretiminin birincil kaynağı olmaya devam etmektedir. Bu sorunun 

üstesinden gelmek ve enerji kullanımını optimize etmek için elektrik talebinin doğru 

tahmin edilmesi oldukça önemlidir. Bu nedenle bu tez çalışmasında, kısa vadeli (gelecek 

24 saat)  elektrik tüketimi tahmini için uzun kısa süreli bellek (LSTM) ağı, evrişimli sinir 

ağı (CNN) ve bu mimarileri birleştiren topluluk öğrenimi temelli derin öğrenme modelleri 

önerilmektedir. Modeller yalnızca elektrik tüketimi verilerini değil, aynı zamanda 

sıcaklık, bağıl nem ve rüzgar hızı gibi ilgili meteorolojik parametreleri ve zaman 

damgaları da dahil olmak üzere ek öznitelikler kullanmaktadır. Modellerin eğitimi ve 

değerlendirilmesi için coğrafi olarak farklı iki bölgeden alınan yaklaşık 2,5 yıllık saatlik 

elektrik tüketim, meteoroloji ve zaman damgası verileri kullanılmıştır. Kapsamlı deneysel 

çalışmalar, söz konusu modellerin uygun öznitelik kümeleriyle eğitilmeleri halinde, 

elektrik tüketimi tahminine yönelik normalleştirilmiş kök ortalama kare hata (N-RMSE) 

değerini “0,16”, normalleştirilmiş ortalama mutlak hata (N-MAE) değerini “0,13” ve 

ortalama mutlak yüzde hata (MAPE) değerini “%4,05” seviyesine kadar düşürebileceğini 

ortaya koymuştur. Sonuç olarak, bu tez çalışması, elektrik tüketimi tahmini için etkili 

modeller sunmasının yanı sıra meteorolojik özniteliklerin tahmin performansı üzerindeki 

etkisine ilişkin değerli bilgiler de vermektedir. Bu katkılar, daha doğru ve gürbüz tahmin 

yöntemlerinin geliştirilmesine yönelik gelecekteki araştırmalara rehberlik edebilecektir.  

Anahtar Sözcükler: Elektrik tüketimi tahmini, Derin öğrenme, Yapay zeka, LSTM, 

CNN, Topluluk öğrenmesi.   
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ABSTRACT 

ELECTRICITY CONSUMPTION FORECASTING WITH DEEP LEARNING 

MODELS 

 

Emrah DEMİR 

Department of Computer Engineering 
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Supervisor: Prof. Dr. Serkan GÜNAL 

Current trends in population growth, industrialization, and technological 

advancements are driving a significant increase in global electricity consumption. While 

renewable energy sources are making significant strides, fossil fuels still remain the 

primary source of electricity generation, posing challenges due to resource limitations 

and environmental concerns. To address these challenges and optimize energy use, 

accurate prediction of electricity demand is crucial. Therefore, in this thesis dissertation, 

deep learning models based on long short-term memory (LSTM) network, convolutional 

neural network (CNN), and ensemble learning combining both architectures are proposed 

for short-term (next 24 hours) electricity consumption forecasting. The models utilize not 

only electricity consumption data but also additional features including timestamps and 

relevant meteorological parameters such as temperature, relative humidity, and wind 

speed. Two geographically diverse datasets encompassing approximately 2.5 years of 

hourly electricity consumption data as well as meteorology and timestamp data were 

utilized for training and evaluating the models. Extensive experimental studies 

demonstrated that the proposed models utilizing appropriate feature sets can achieve 

normalized root mean square error (N-RMSE) values as low as “0.16”, normalized mean 

absolute error (N-MAE) values as low as “0.13”, and mean absolute percentage error 

(MAPE) values as low as “4.05%”. In conclusion, this dissertation presents not only 

effective models for short-term electricity consumption forecasting but also valuable 

insights into the impact of meteorological features on forecasting performance. These 

contributions can guide future research efforts in developing even more accurate and 

robust forecasting methods. 

Keywords: Electricity consumption forecasting, Deep learning, Artificial intelligence, 

LSTM, CNN, Ensemble learning.  
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1. GİRİŞ 

Modern dünyamızda yüksek nüfus yoğunluğuna sahip kentsel alanlar, dikkat 

edilmesi gereken çeşitli zorlukları bünyesinde barındırmaktadır. En kritik konulardan biri 

istikrarlı bir elektrik arzının sağlanmasıdır. Günümüz toplumlarında elektrik evlere, 

endüstrilere, ulaşıma, sağlık hizmetlerine, eğlenceye ve sanata güç vererek çağdaş 

yaşamın hayati bir unsuru haline gelmiştir. Elektriğe olan talep günden güne artmaya 

devam ederken, enerji kaynaklarımızı akıllıca kullanmak büyük bir önem taşımaktadır. 

Rüzgar, su, güneş, doğal gaz, kömür, petrol ve nükleer enerji gibi çeşitli elektrik enerjisi 

kaynakları olsa da bu kaynakları sorumlu ve sürdürülebilir bir şekilde kullanmalıyız. 

Üretilen elektriğin depolanması pahalı ve işlevsel olarak zor olduğundan, elektrik güç 

sistemi istikrarı arz ve talep arasında sarsılmaz bir denge gerektirir (Shahidehpour, 

Yamin, & Li, 2003). Enerji yönetimi verimliliği açısından elektrik üretimi ve tüketimini 

dengelemek oldukça önemlidir. Enerji ihtiyacımızı doğru bir şekilde değerlendirerek 

fazla veya eksik elektrik üretmekten kaçınmamız gerekmektedir. Kaynakların verimli ve 

sürdürülebilir kullanımı için enerji üretimi ve tüketimi arasındaki dengenin sağlanması 

büyük önem taşımaktadır. 

Yetersiz elektrik üretiminin bir dizi olumsuz etkisi olmaktadır (Kambule, 

Yessoufou, & Nwulu, 2018), (Hunt, Stilpen, & de Freitas, 2018). Örneğin enerji talebinin 

karşılanamamasına neden olabilir ve bu durum çeşitli sektörlerin işleyişini önemli ölçüde 

etkileyebilir. Elektrik talebinin karşılanamaması ile elektrik kesintileri sıklaşarak ticari 

faaliyetler ve endüstriyel üretimin durması gibi günlük yaşamın çeşitli yönleri üzerinde 

oldukça önemli olumsuzluklar ortaya çıkabilir. Bu tür kesintiler farklı sektörlerde 

operasyonel aksamalara yol açarak iş kayıplarına ve diğer olumsuz sonuçlara yol açabilir. 

Bu olumsuzluklar aynı zamanda ülkelerin ekonomik kalkınmasının önünde engel teşkil 

edebilmektedir. Yetersiz elektrik üretimi, hastanelerde ve diğer sağlık kuruluşlarında 

tıbbi cihaz ve sistemlerin düzgün çalışmasını engelleyebileceği gibi, güvenlik sistemlerini 

ve aydınlatmayı da etkisiz hale getirebilir. Elektrik kesintileri okul, üniversite ve diğer 

kurumlardaki eğitim faaliyetlerini de aksatabilir, iletişim kanallarında, ürün tedariğinde 

ve toplumsal istikrarda önemli aksamalara neden olabilir. 

İhtiyaç fazlası elektrik üretimi çevreyi ve ekonomiyi olumsuz etkileyebilir. 

Günümüzde, elektrik üretiminde kömür, petrol, doğalgaz gibi fosil yakıtların kullanımı 

yaygındır. Aşırı üretim, bu yakıtların tüketiminin artmasına ve daha yüksek sera gazı 

emisyonlarına yol açabilir. Ayrıca hidroelektrik ve nükleer enerji gibi elektrik üretiminde 
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kullanılan kaynakların aşırı tüketimi su kaynaklarının olumsuz etkilenmesinin yanında 

nükleer atık sorunlarına da yol açabilmektedir. İhtiyaç duyulandan daha fazla elektrik 

üretmenin ekonomik sonuçları da olabilir. İhtiyaçtan fazla elektrik üretmenin ekonomik 

sonuçları da bulunmaktadır. Enerji fiyatlarının düşmesine neden olarak, enerji 

şirketlerinin gelirlerini azaltabilir ve yatırımları olumsuz etkileyebilir. Ayrıca, enerji 

iletim ve dağıtım altyapısının kapasitesini aşarak elektrik piyasasında gereksiz yatırımlara 

yol açabilir. 

Gelişen toplumlarla birlikte elektrik enerjisine olan ihtiyaç her geçen gün 

artmaktadır. Bu artan talebi karşılamak ve sürdürülebilir enerji kaynaklarını güvence 

altına almak amacıyla, Uluslararası Enerji Ajansı (International Energy Agency - IEA) 

1974 yılında kurulmuştur. IEA’nın sağladığı bilgiler, hükümetler ve endüstrinin enerji arz 

güvenliğini sağlama, enerji verimliliğini artırma ve yenilenebilir enerji kaynaklarına geçiş 

gibi konularda bilinçli kararlar almasına yardımcı olmaktadır. 2021 yılında, IEA dünya 

genelinde tüketilen enerji kaynakları ve miktarları hakkında kapsamlı veriler 

paylaşmıştır, bu da enerji politikalarının ve stratejilerinin belirlenmesinde önemli bir rol 

oynamaktadır. IEA tarafından paylaşılan 1973 ve 2019 yıllarına ait dünya genelinde 

elektrik tüketiminin sektörlere göre dağılımı, sırasıyla Şekil 1.1'de ve Şekil 1.2’de 

sunulmuştur. 

 

 

Şekil 1.1. Dünya, 1973 sektörlere göre elektrik tüketim oranları (World total final consumption by source, 

2021) 
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Şekil 1.2. Dünya, 2019 sektörlere göre elektrik tüketim oranları (World total final consumption by source, 

2021) 

 

Söz konusu şekillerde görüldüğü üzere, sektörlere göre en çok elektrik tüketimi 

endüstri alanında gerçekleşmiştir. 1973 yılında, dünya genelinde endüstriyel faaliyetler 

için tüketilen elektrik, toplam tüketiminin %53,5’ini oluştururken, bu oran 2019 yılında 

%41,9’a gerilemiştir. Yıllar içinde dünya genelindeki endüstriyel sektörün toplam 

elektrik kullanım oranındaki düşüşüne karşılık, konutlar, ticari - kamu hizmetleri ve diğer 

alanlardaki elektrik kullanım oranı artarken, ulaşımda kullanılan elektriğin oranı 

düşmüştür. Endüstri sektörü gibi elektrik kullanım oranı düşen ulaşım, %2,4’ten %1,8’e 

gerilemiştir. Endüstri ve ulaşımın aksine yıllar içinde dünya genelinde elektrik kullanım 

oranı yükselen konutlardaki elektrik tüketiminin oranı %23,1’den %26,6’ya yükselmiştir. 

Ticari ve kamu hizmetlerindeki elektrik kullanım oranı %15,3’ten %21,2’ye, diğer 

alanlarda kullanılan elektriğin oranı %5,8’den %8,5’e yükselmiştir.  

IEA tarafından paylaşılan 2021 raporuna göre, Türkiye, kişi başına düşen yıllık 

elektrik tüketim miktarı açısından dünya ülkeleri arasında 63. sırada yer almaktadır. Bu 

sıralama, Türkiye'nin enerji tüketimindeki yerini ve küresel enerji piyasasındaki rolünü 

anlamamıza yardımcı olmaktadır. Kişi başı yıllık elektrik tüketim miktarının, Türkiye, 

dünya ortalaması ve sıralamada Türkiye ile benzer bölgede olan diğer ülkelerin genel 

görünümü, Şekil 1.3’te sunulmuştur.  
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Şekil 1.3. Türkiye, 2021 dünya geneli elektrik tüketim sırası (Türkiye elektrik üretim ve tüketim bilgileri, 

2021) 

 

Ülkemizin 2021 yılındaki toplam elektrik tüketiminin sektörlere göre dağılımı 

Şekil 1.4’te sunulmuştur. 

 

 

Şekil 1.4. Türkiye, 2021 sektörlere göre elektrik tüketim oranları (Türkiye elektrik üretim ve tüketim 

bilgileri, 2021) 
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Söz konusu şekilde görüldüğü üzere, 2021 yılında endüstri sektörü %47,2’lik 

elektrik tüketim oranı ile en üst sırada yer alırken, %25,6 oranı ile ticari ve kamu 

hizmetleri 2. Sırada bulunmaktadır. Bu iki sektörü, %21,8’lik elektrik tüketim oranı ile 

konut sektörü takip etmektedir.  

Elektriğe duyulan ihtiyacın artması ve toplumlarımızda hayati bir rol oynuyor 

olması sebebi ile elektrik üretim ve tüketim miktarlarının doğru tahmin edilmesi büyük 

önem taşımaktadır. Günümüzde elektrik arz ve talebinin sağlanması için hükümetler ve 

elektrik üretim firmaları çeşitli çalışmalar yapmaktadır. Son zamanlarda akademik 

çalışmaların da üzerinde yoğunlaştığı bir alan olan zaman serisi tahmin modelleri bu 

çalışmaların bir koludur. 

Zaman serisi tahmin modelleri, belirli bir zaman serisinin geçmiş verilerini analiz 

ederek gelecekteki değerlerini tahmin etmek için kullanılan modellerdir. Bu modellerin 

kullanımı çok sayıda alana yayılmaktadır; bu alanlardan biri de elektrik üretimi ve 

tüketiminin tahminidir. Bu modeller, elektrik kaynaklarının kullanımının optimize 

edilmesi ve olası olumsuz etkilerin dikkatle ele alınması açısından özellikle önemlidir. 

Tahmin modelleri, kısa vadeli, orta vadeli ve uzun vadeli (Weron, 2014) olmak üzere üç 

farklı tahmin ufkuna göre kategorize edilmiştir. Birkaç dakikadan birkaç güne kadar 

uzanan zaman aralığı içindeki tahminler, kısa vadeli tahminler olarak tanımlanır. Orta 

vadeli tahmin alanı, birkaç günden birkaç aya kadar değişen tahminleri kapsar. Daha uzun 

sürelere yönelik tahminler ise uzun vadeli tahminler olarak sınıflandırılmaktadır. 

Akademik çalışmalar, uzun bir süre boyunca bu modellerin araştırılmasına ve 

geliştirilmesine büyük önem vermiştir. 

Literatürde istatistiksel ve makine öğrenmesine dayalı tahmin modelleri yaygın 

olmakla birlikte, makine öğrenmesinin bir alt dalı olan derin öğrenme modelleri, üstün 

performansları nedeniyle gelecek vaat eden bir yaklaşım olarak ortaya çıkmıştır. 

Karmaşık sinir ağı mimarileriyle karakterize edilen derin öğrenme modelleri, zaman 

serisi verileri içindeki karmaşık kalıpları ve bağımlılıkları yakalamada üstün yetenekler 

sergilemektedir. Derin öğrenme tabanlı modellerin bu doğal yetenekleri, tahmin 

doğruluğunu artırmakta ve onları tahmin uygulamaları için cazip bir seçim haline 

getirmektedir. 

Bu tez çalışmasında, kısa vadeli elektrik tüketimi tahmini için uzun kısa süreli 

bellek ağı (LSTM), evrişimli sinir ağı (CNN) ve her iki mimariyi birleştiren bir 

topluluktan (Ensemble) oluşan derin öğrenme modelleri önerilmiştir. Önerilen modellerin 
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etkinliği, sistematik bir yaklaşım kullanılarak değerlendirilmiş ve elde edilen sonuçların 

kapsamlı bir analizi sunulmuştur. Modelleri eğitmek ve performanslarını analiz etmek 

için coğrafi olarak farklı bölgelerde bulunan iki farklı şehrin elektrik tüketimi, meteoroloji 

ve zaman verilerinden oluşan 2 farklı veri seti üzerinde kapsamlı çalışmalar 

gerçekleştirilmiştir. 

Önerilen modellerin mimarisi için, çok adımlı tahmin yaklaşımı benimsenerek, 

geçmiş 7 günün (168 saatlik veri) verileri kullanılarak, bir sonraki günün (24 saatlik 

tahmin) saatlik frekansta tahminleri yapılmıştır. Geliştirilen modellerin tahmin 

performanslarını ölçmek için çeşitli performans metriklerinden faydalanılmıştır. Bu tez 

çalışmasının ana katkıları aşağıdaki gibidir: 

 

1. Kısa vadeli elektrik tüketimi tahmini için yüksek doğruluğa sahip özgün tahmin 

modelleri geliştirilmiştir. 

2. Bu çalışma, çeşitli uygulamalar için derin öğrenme tabanlı zaman serisi tahmin 

modellerinden yararlanmak isteyen araştırmacılar, uygulayıcılar ve endüstri 

profesyonelleri için değerli bir kaynak olarak hizmet edecektir. 

3. Çalışmanın bulgularının enerji sektörüne yönelik etkileri dikkate değerdir, 

çünkü elektrik tüketiminin tahmin edilmesine yönelik daha doğru ve verimli 

modellerin geliştirilmesine yol açma potansiyeline sahiptirler. Karar verme ve 

kaynak tahsisini daha bilinçli ve stratejik bir şekilde bilgilendirebileceği için 

bunun sektöre geniş kapsamlı faydaları olacaktır. 

4. Bu çalışma, kısa vadeli elektrik tüketimi tahmini için etkili modeller sunmasının 

yanında, aynı zamanda meteorolojik ve zaman damgası gibi özniteliklerin 

tahmin performansı üzerindeki etkisine ilişkin değerli analizler sunmaktadır. 

5. Bu katkılar, daha doğru ve sağlam tahmin yöntemlerinin geliştirilmesine 

yönelik gelecekteki araştırma çabalarına ışık tutacaktır. 

 

Tez çalışmasının geri kalanı şu şekilde organize edilmiştir: İkinci bölümde, 

literatürdeki zaman serisi tahmin modellerinin kapsamlı bir incelemesi yapılmış, 

aralarındaki farklar vurgulanmış ve bu çalışmaya katkıları açıklanmıştır. Üçüncü 

bölümde, tez çalışması kapsamında önerilen tahmin modelleri tanıtılmıştır. Bu 

doğrultuda, modellerin eğitilmesi ve test edilmesi için kullanılan veri setleri açıklanmış, 

modellerin mimarileri sunulmuş ve modellerin tahmin performanslarının belirlenmesi 
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için kullanılan metrikler belirtilmiştir. Dördüncü bölümde, deneysel sonuçların kapsamlı 

bir analizi yapılmış ve önerilen modellerin performansları tartışılmıştır. Son bölümde ise 

tez çalışmasında elde edilen sonuçların bir özeti sunulmuş ve gelecek çalışma planlarına 

değinilmiştir. 
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2. LİTERATÜR TARAMASI 

Zaman serisi tahmin problemlerinin üstesinden gelmek için ilk aşamalarda, kendine 

özgü eğilimler veya mevsimsellik içermeyen durağan zaman serilerini modellemek ve 

tahminler üretmek için Otoregresif (AR) modeli önerilmiştir. AR modeli, önceki zaman 

adımlarından elde edilen gözlemlerin doğrusal bir kombinasyonunu kullanarak tahminler 

üretebilmektedir. Daha sonra bu klasik modele dayanarak Otoregresif Hareketli Ortalama 

(ARMA) modeli önerilmiştir (Pappas, et al., 2008). Ancak ARMA modeli durağan 

olmayan yani trend ve mevsimsellik içeren zaman serisi verileri için uygun değildir. Bu 

nedenle daha sonra Otoregresif Entegre Hareketli Ortalama (ARIMA) önerilmiştir 

(Bowden & Payne, 2008). ARIMA, zaman serisi verileri üzerinde bir veya daha fazla 

farklılaştırma yöntemi kullanılarak zaman serilerini durağan hale getirilebildiği için 

zaman serilerindeki trend ve mevsimsellik sorunlarının üstesinden gelebilmektedir. 

Destek Vektör Makinesi (SVM), örnekleri orijinal uzaydan yüksek boyutlu bir 

uzaya eşleyerek çalışmaktadır. SVM, bu dönüşümden yararlanarak doğrusal regresyonu 

gerçekleştirmektedir (Yan & Chowdhury, 2014). Bu model, özellikle verileri iki 

kategoriye ayırmayı hedeflediği sınıflandırma yöntemlerinde etkili olmuştur. ARIMA ve 

SVM, doğrusal seriler üzerinde çalışan geleneksel zaman serisi tahmin modelleridir. 

İlerleyen aşamalarda, verilerdeki son değişiklikleri ön plana çıkararak tahminleri 

güncelleme uygulamasını içeren Üstel Düzeltme (ES) modeli tanıtılmıştır (Rendon-

Sanchez & de Menezes, 2019). Bu zaman serisi modeli, hesaplamada yeni verilere daha 

yüksek önem atfeder ve eski verilere kıyasla onlara tahminde daha fazla ağırlık 

vermektedir. Zaman serisi tahminlerinde üstel düzeltme uygulamaları genellikle üç temel 

yöntemi kullanmaktadır: basit üstel düzeltme, trend düzeltmeli üstel düzeltme ve 

mevsimsel değişim. 

Sonrasında, doğrusal zaman serileri üzerinde iyi sonuçlar veren geleneksel zaman 

serisi modellerinden farklı olarak, doğrusal olmayan problemlerin çözümünde büyük 

avantajlara sahip olan Yapay Sinir Ağları zaman serisi modelleri sunulmuştur. Türkiye’de 

aylık elektrik talebini tahmin etmeye yönelik bir çalışma yapılmıştır (Hamzaçebi, Es, & 

Çakmak, 2019). Söz konusu çalışmada, mevsimsellik ve trendin etkilerini modellemek 

için dört farklı yapay sinir ağı (YSA) modeli kullanılmıştır. Sonrasında, en iyi performans 

gösteren YSA modelinin performansı ile mevsimsel otoregresif entegre hareketli 

ortalama (SARIMA) modelinin performansıyla karşılaştırılmıştır. İlerleyen zamanlarda, 
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iyi bilinen üç tahmin modeli kullanılarak denetimli makine öğrenimi algoritmalarının 

kapsamlı bir incelemesi yapılmıştır (Ahmad & Chen, 2020). Bayesian Düzenlileştirme 

Geri Yayılımlı Sinir Ağları (BRBNN), Levenberg-Marquardt Geri Yayılımlı Sinir Ağları 

(LMBNN) ve Eşlenik Ölçekli Gradyan Geri Yayılımlı Sinir Ağları (CSGBNN) modelleri 

arasında yapılan tahmin performanslarının analizlerinde, BRBNN ve LBMNN 

modellerinin daha iyi sonuçlar verdiği gözlemlenmiştir. 

Topluluk öğrenimi (ensembling learning) olarak da bilinen topluluk oluşturma, 

makine öğreniminde güçlü bir teknik olarak kullanılmaktadır. Bu, esasen, herhangi bir 

modelin tek başına elde edebileceğinden daha iyi sonuçlar elde etmek amacıyla birden 

fazla modeli tek bir modelde birleştirmenin bir yolu olarak öne sürülmüştür. Kısa vadeli 

gaz talebini tahminlemesi üzerine yapılan bir çalışmada 4 farklı topluluk tahmincisi 

oluşturulmuş ve temel tahmin modelleri ile karşılaştırılmıştır (Marziali, Fabbiani, & 

Nicolao, 2021). Yazarların elde ettiği sonuçlara göre topluluk öğrenimi yaklaşımı sürekli 

olarak temel modellerden daha iyi sonuç göstermiştir.  

Son yıllarda makine öğrenmesinin bir alt modeli olan derin öğrenme modelleri, 

zaman serisi tahminlerindeki yüksek performanslarıyla daha popüler hale gelmiştir. Çok 

Başlı Dikkat (MHA) ile CNN’i birleştiren hibrit bir derin öğrenme modeli, 2.075.259 

zaman serisi içeren Kaliforniya Üniversitesi, Irvine (UCI) ev elektriği veri seti 

kullanılarak test edilmiştir (Bu & Cho, 2020). Elde edilen sonuçlara göre, önerilen 

modelin performans açısından mevcut derin öğrenme modellerini geride bıraktığını 

gözlemlenmiştir. Yakın zamanda yapılan bir çalışmada, Türkiye'de Kovid-19 

dönemindeki saatlik elektrik tüketimi verileri kullanılarak GoogleNet, AlexNet, 

SqueezeNet ve ResNet18 gibi önceden eğitilmiş modellerin yanı sıra giriş sinyali 

algoritmasına sahip CNN yönteminin de yer aldığı bir araştırma gerçekleştirilmiştir (Atik, 

2022). Yazarlar, önerilen CNN modelinin doğruluk ve verimlilik açısından diğer önceden 

eğitilmiş modellerden daha iyi performans gösterdiğini ortaya koymuştur. Başka bir 

çalışmada, bir LSTM modelinin performansı üç farklı hibrit ANFIS modeliyle 

karşılaştırılmıştır (Bilgili, Arslan, Şekertekin, & Yaşar, 2022). Yazarlara göre, LSTM 

modelinin genel olarak tüm ANFIS modellerinden daha iyi performans gösterdiği 

belirtilmiştir. Başka bir çalışmada araştırmacılar, kısa vadeli elektrik tüketimini tahmin 

etmek için LSTM zaman serisi tahmin modelini kullanmışlardır (Torres, Martı́nez-

Álvarez, & Troncoso, 2022). Yazarlar, İspanya’nın 10 dakikalık elektrik üretim verilerini 
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kullanarak 4 saatlik tahminler üretmiş ve LSTM modelinin etkinliğini gözlemlemiştir. 

Başka bir çalışmada, kanal iletişimini sağlamak için bir C3 bloğu, verimli özellik çıkarımı 

için iki evrişimli katman içeren bir CNN modeli ve kesin tahmin için bir LSTM 

modelinden oluşan yeni bir hibrit yaklaşım tanıtılmıştır (Saeed, Paul, & Seo, 2022). 

Yazarların elektrik yükü verileri üzerinde yaptığı ampirik analizler sonucunda, önerilen 

hibrit modelin son derece doğru sonuçlar verdiği öne sürülmüştür. Sonrasında, gerçek 

elektrik enerjisi tüketim verilerine dayanarak kısa vadeli elektrik yüklerini tahmin etmek 

için artık CNN ve yığılmış LSTM katmanlarını birleştiren bir derin öğrenme mimarisi 

sunulmuştur (Khan, et al., 2022). Yazarlara göre önerilen model, temel modellerle 

karşılaştırıldığında en düşük hata oranını vermiştir. Yapılan başka bir çalışmada kısa 

vadeli elektrik yükü tahmini için yeni bir hibrit yaklaşım önerilmiştir (Alsharekh, et al., 

2022). Önerilen model hem konut IHEPC hem de ticari PJM veri setleri ile 

değerlendirilmiştir. Deneyler sonucunda yazarlar, Çok Katmanlı LSTM (ML-LSTM) 

mimarisi ile Artık CNN (R-CNN) modellerinin birleşiminden oluşan hibrit modelin, diğer 

temel modellere göre önemli ölçüde düşük hata oranı sergilediğini bulmuştur. Son olarak, 

Türkiye’de aylık brüt elektrik tüketimini (GEC) tahmin etmek için bir LSTM modeli 

önerilmiştir (Bilgili & Pinar, 2023). Yazarlar, önerilen modeli SARIMA ile 

karşılaştırılmış ve önerilen LSTM modelinin SARIMA’ya göre daha doğru sonuçlar 

ürettiğini belirtmiştir. 

Extreme Gradient Boosting (XgBoost), doğruluk elde etmek için Açgözlü 

Algoritmayı (GA) kullanan başka bir zaman serisi modelidir. Algoritma, verileri daha 

küçük alt kümelere böler ve modeli her bir alt kümeye uygulayarak daha iyi doğruluk 

elde edilmesini sağlamaktadır. Ancak bu aynı zamanda eğitim süresini de arttırmaktadır. 

Zheng ve arkadaşları, kısa vadeli yük tahmini için XgBoost algoritmasını Benzer Günler 

(SD) seçimi ve Ampirik Mod Ayrıştırma (EMD) yöntemleriyle birleştiren yeni bir 

hibritleştirilmiş model önermiştir (Zheng, Yuan, & Chen, 2017). Yazarlara göre, önerilen 

Xgboost-k-means yönteminin karşılaştırılan diğer modellere göre daha iyi sonuçlar 

verdiği gözlemlenmiştir. Yakın zamanda yapılan başka bir akademik çalışmada 

araştırmacılar, pencereli XGBoost modeline dayalı ultra kısa vadeli bir yük tahmin 

yöntemini önermiştir (Zhao, et al., 2022). Yapılan bu çalışma ile, Singapur elektrik 

piyasasının gerçek zamanlı elektrik fiyatı tahmin edildi ve yazarların elde ettiği sonuçlar, 

önerilen modelin karşılaştırılan diğer modellerden daha iyi performans gösterdiğini 

ortaya koymuştur. 
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Facebook’un veri bilimi ekibi, Prophet olarak bilinen ve zaman serisi verileri 

üzerinde güvenilir günlük, haftalık, periyodik ve yıllık tahminler sunabilen güçlü bir araç 

geliştirmiştir. Yakın zamanda yapılan bir çalışmada, Prophet ve ARIMA tahmin 

modellerinin doğruluğunu ve performansını değerlendirmek için Kaggle kaynaklı 

doğrulanmış vakaları, ölümleri ve iyileşmeleri içeren bir veri seti kullanılmıştır (Satrio, 

Darmawan, Nadia, & Hanafiah, 2021). Elde edilen sonuçlara göre Prophet’in 

ARIMA’dan daha iyi performans gösterdiği ve daha doğru tahminler ürettiği 

saptanmıştır. Sonrasında, yavaş geleneksel modellerin ve karmaşık yapay zeka 

modellerinin yarattığı zorlukların üstesinden gelmek için yeni bir hibrit model 

tanıtılmıştır (Bashir, Haoyong, Tahir, & Liqiang, 2022). Bu hibrit yaklaşım, Prophet ve 

LSTM modellerinin entegre edilmesiyle geliştirilmiştir. Önerilen yaklaşımın etkinliğini 

değerlendirmek için model, 2014 – 2021 yılları arasındaki gerçek zamanlı elektrik yükü 

verileri üzerinde eğitilmiş ve hibrit model tarafından oluşturulan tahminler diğer temel 

modellerin ürettiği tahminler ile karşılaştırılmıştır. Bulgular, önerilen modelin diğer temel 

modellerle karşılaştırıldığında üstün doğruluk gösterdiğini ortaya koymuştur. 

Derin Otoregresif (DeepAR), yakın zamanda Amazon tarafından geliştirilen ve 

piyasaya sürülen, otoregresif tekrarlayan sinir ağlarına dayanan olasılıksal bir tahmin 

modelidir. Salinas ve arkadaşları, birbirine bağlı beş zaman serisini kullanarak DeepAR 

ile farklı zaman serisi modelleri arasında karşılaştırmalı bir analiz gerçekleştirmiştir 

(Salinas, Flunkert, Gasthaus, & Januschowski, 2020). Yazarların yaptığı deney sonuçları, 

DeepAR’ın diğer modellere göre çok daha düşük hata oranlarına sahip tahminler 

ürettiğini göstermiştir. Başka bir çalışmada, çekirge optimizasyon algoritması (GOA) ve 

DeepAR algoritmalarını birleştirerek derin sinir ağları (DNNs) için hiperparametrelerin 

optimizasyonunu ele alan NGOA-DeepAR adı verilen yeni bir hibrit model tanıtılmıştır 

(Arora, et al., 2022). Önerilen model iki farklı rüzgar veri seti üzerinde eğitilerek test 

edilmiştir. Yazarlar, önerilen modelin diğer DeepAR tabanlı modellerden daha iyi 

performans gösterdiğini saptamıştır. Yakın zamanda yapılan bir çalışmada Li ve 

arkadaşları, bir rulmanın kalan faydalı ömrünü tahmin etme aracı olarak kapılı tekrarlayan 

birim derinliğinde otoregresif (GRU-DeepAR) modelini tanıtmıştır (Li, Wang, Liu, & 

Feng, 2023). Yazarlara göre yaklaşımları, karşılaştırılan diğer modellere kıyasla üstün 

doğruluk göstermiştir. Daha sonra önerilen farklı bir çalışmada, Deng ve arkadaşları 

araştırmalarında önerdikleri D-former modelinin rulmanların kalan kullanım ömrüne 

ilişkin oldukça doğru bir tahmin sağladığını ileri sürmüştür (Deng, Li, & Zhang, 2023). 
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Yakın zamanda yapılan bir çalışmaya göre, kısa vadeli elektrik tahmini için KNNA-

DeepAR adlı yeni bir hibrit model tanıtılmıştır (Qiu, et al., 2023). Bu model en yakın 

komşu ve DeepAR yaklaşımlarını birleştirmektedir. Deneyler, Amerika Birleşik 

Devletleri'ndeki on dört bölgenin elektrik yüklerini kapsayan zaman serisi verileri 

üzerinde gerçekleştirilmiştir. Yazarlara göre, KNNA-DeepAR modeli diğer modellere 

göre daha iyi performans göstermiştir. 

Bir başka mevcut zaman serisi modeli olan Yorumlanabilir Zaman Serisi Tahmini 

için Sinir Temelli Genişleme Analizi (N-BEATS), tek değişkenli zaman serisi noktalarını 

doğru bir şekilde tahmin etmek için geriye ve ileriye doğru kalan bağlantılardan 

yararlanan son teknoloji ürünü bir derin öğrenme algoritmasıdır. N-BEATS, gelecek vaat 

eden güncel zaman serisi modellerinden biri olmasının yanında, zaman serisi tahmininin 

doğruluk ve yorumlanma özelliklerini geliştirme potansiyeline sahiptir. Oreshkin ve 

arkadaşları, orta vadeli yük tahmini için yeni bir model olan N-BEATS’i tanıtmıştır 

(Oreshkin, Dudek, Pełka, & Turkina, 2021). Yazarlar, modelin performansını 35 aylık 

elektrik talebini içeren bir veri seti üzerinde eğiterek tahminler üretmiş ve N-BEATS’in 

rakiplerinden daha iyi performans gösterdiği sonucuna ulaşmıştır. Başka bir çalışmada, 

uzun vadeli yüksek frekanslı elektrik fiyatlarını tahmin etmek için mevsimsel ve trend 

ayrıştırmasıyla (STL), zamansal evrişimli ağla (TCN) ve N-BEATS modellerini 

birleştiren hibrit bir yaklaşım öne sürülmüştür (Zhang, Song, Jiang, & Li, 2023). Yazarlar 

tarafından belirtilen deneylerin sonuçlarına göre, önerilen modelin hassasiyet ve 

verimlilik açısından diğer modellerden daha iyi performans gösterdiğini belirtilmiştir. 

Daha sonra Olivares ve arkadaşları, N-BEATS modelinin geliştirilmiş bir versiyonu olan 

NBEATSx’i önermiştir (Olivares, Challu, Marcjasz, Weron, & Dubrawski, 2023). 

Yazarlar tarafından 5 farklı veri seti üzerinde yapılan deneylerde önerilen model, orijinal 

N-BEATS ve diğer rakiplerinden daha iyi sonuçlar vermiştir. 

Google, dikkat tabanlı derin bir sinir ağı kullanan, Zamansal Füzyon 

Transformatörü (TFT) adı verilen son teknoloji ürünü bir zaman serisi tahmin modeli 

geliştirmiştir. Lim ve arkadaşları tarafından yakın zamanda yürütülen bir çalışmada TFT 

ve diğer temel zaman serisi modelleri, elektrik, trafik ve perakende veri setleri üzerinde 

eğitilmiş ve ürettikleri tahminler karşılaştırılmıştır (Lim, Arık, Loeff, & Pfister, 2021). 

Yazarların elde ettiği sonuçlara göre, TFT rakiplerini geride bırakmış ve daha doğru 

tahminler üretmiştir. Sonrasında, Hanoi şehrine ait 2014-2020 yılları arasındaki elektrik 
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yükü verileri kullanılarak kısa vadeli elektrik yükünü tahmin etmeye yönelik bir çalışma 

yapılmıştır (Huy, Minh, Tien, & Anh, 2022). Tahmin oluşturmak için TFT ve diğer temel 

modelleri kullanan çalışmada, TFT’nin önemli ölçüde daha düşük hata oranına sahip 

tahminler üreterek diğer temel modellerden daha iyi performans gösterdiği 

gözlemlenmiştir. Yakın zamanda yapılan bir araştırmaya göre araştırmacılar, aynı 

bölgedeki binalar için kısa vadeli elektrik yükü tahminleri yapmak amacıyla transfer 

öğrenmeyi (TL) ve TFT mimarisini birleştiren hibrit bir model öne sürmüştür (Santos, et 

al., 2023). Model, saatlik geçmiş yük verileri, hava durumu verileri ve bölgeye özel 

zaman dilimi verileri kullanılarak eğitilmiştir. Çalışmanın yazarları, önerilen modelin son 

derece düşük hata oranlarıyla son derece kesin tahminler sağladığını keşfetmiştir. Daha 

sonrasında Zheng ve arkadaşları, kısa vadeli bina enerji tüketimini tahmin etmek için 

günlük enerji tüketim modeli (DECPR) ile TFT modelini birleşiminden oluşan yeni bir 

hibrit model önermiştir (Zheng, Zhou, Liu, & Nakanishi, 2023). Yazarlara göre önerilen 

hibrit model, bu alandaki diğer mevcut modellerden daha iyi performans göstermiştir. 

Son olarak, orta vadeli saatlik elektrik yükü tahmini için geliştirilmiş zamansal füzyon 

transformatör modeli (ITFT) modeli Li ve arkadaşları tarafından önerilmiştir (Li, Tan, 

Zhang, Miao, & He, 2023). Yapılan deneysel analiz sonuçlarına göre önerilen modelin, 

söz konusu diğer dört modelle karşılaştırıldığında daha üstün sonuçlar verdiği ifade 

edilmiştir. 
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3. ÖNERİLEN TAHMİN MODELLERİ 

Bu tez çalışmasında, kısa vadeli (gelecek 24 saat) elektrik tüketimi tahmini için 

LSTM ve CNN modelleri ve her iki mimariyi birleştiren bir topluluk modeli 

önerilmektedir. Önerilen modeller, elektrik tüketim verilerinin yanında meteorolojik ve 

zaman damgası gibi verileri de kullanmaktadır. Modellerin eğitimi ve değerlendirilmesi 

için coğrafi olarak farklı bölgelerde olan Ohio/Dayton ve Texas/Houston şehirlerine ait 

yaklaşık 2,5 yıllık saatlik elektrik tüketim, sıcaklık, bağıl nem ve zaman damgası 

verilerinden oluşan iki farklı veri seti kullanılmıştır. Her bir veri seti için önerilen 

modeller 16 farklı öznitelik seti ile eğitilmiş ve eğitilen modellerin performansları 

incelenmiştir. 

Bu bölümün ait bölümlerinde değinilen konular şu şekildedir: Bölüm 3.1'de, 

önerilen modelleri eğitmek ve performanslarını ölçmek için kullanılan veri setleri ayrıntılı 

olarak anlatılmıştır. Bölüm 3.2'de, önerilen tahmin modellerinin mimarisi açıklanmıştır. 

Bölüm 3.3'te, modellerin performansını ölçmek için kullanılan metrikler açıklanmıştır. 

 

3.1. Veri Setleri 

Önerilen modellerin eğitilmesi ve tahmin performanslarının analiz edilmesi için iki 

farklı veri seti kullanılmıştır. Bu veri setlerinin detayları, takip eden alt bölümlerde 

açıklanmaktadır. 

 

3.1.1. Dayton 

İlk olarak, Kaggle üzerinden açık bir şekilde paylaşılan ve Amerika Birleşik 

Devletleri’ndeki bölgesel bir iletim organizasyonu olan PJM Interconnection tarafından 

sağlanmış olan Amerika’nın Ohio eyaletindeki Dayton şehrine ait elektrik tüketimi 

verileri kullanılmıştır (Dayton, Hourly Electricity Consumption Data, 2023). Önerilen 

modellerin analizlerinde, 120.840 saatten (5.035 gün) oluşan verinin 20.424 saati (851 

gün) kullanılmıştır. Bunun sebebi, seçilen diğer şehire ait elektrik tüketimi verisi ile aynı 

miktarda verinin kullanılmak istenmesidir. Analizler için kullanılan veriler 04/01/2016 

ile 03/05/2018 arasındaki saatlik tüketim değerlerini içermektedir. Dayton şehrinin söz 

konusu zaman aralığına ait meteorolojik verilerine (sıcaklık, bağıl nem ve rüzgar hızı) ise 
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Open-Meteo üzerinden ulaşılmıştır (Dayton, Hourly Weather Data, 2023). Dayton veri 

setine ait eğitim, validasyon ve test verilerinin dağılımı Tablo 3.1’de listelenmiştir. 

 

Tablo 3.1. Dayton veri seti: eğitim, validasyon ve test verilerinin dağılımı 

Açıklama Saat 

Eğitim 9.144 

Validasyon 2.352 

Test 8.928 

Toplam 20.424 

 

Dayton şehrine ait günlük elektrik tüketimi (Elec), sıcaklık (Temp), bağıl nem 

(Humid) ve rüzgar hızı (Wind) verilerinin, söz konusu zaman aralığındaki değişimleri 

Şekil 3.1'de yer almaktadır. Günlük elektrik tüketimi verisi, ilgili günün saatlik 

tüketimlerinin toplamıyla hesaplanırken sıcaklık, bağıl nem ve rüzgar hızı verileri, ilgili 

günün saatlik değerlerinin ortalaması alınarak hesaplanmıştır. 

 

Şekil 3.1. Dayton şehrine ait günlük elektrik tüketim, sıcaklık, bağıl nem ve rüzgar hızı verisi 
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Bu veri setinde kullanılan elektrik tüketimi ve meteoroloji verilerinin aralarındaki 

ilişkiyi gösteren korelasyon matrisi Şekil 3.2’de sunulmuştur. 

 

 

Şekil 3.2. Dayton şehrine ait elektrik tüketim, sıcaklık, bağıl nem ve rüzgar hızı korelasyon matrisi 

 

Söz konusu matriste görüldüğü üzere Dayton şehrine ait elektrik tüketimi ve 

meteoroloji verileri arasındaki korelasyon oldukça düşüktür.  

 

3.1.2. Houston 

İkinci veri seti olarak, Amerika'nın Texas eyaletindeki Houston şehrine ait 20.424 

saatlik (851 gün) elektrik tüketimi verisine de Kaggle üzerinden erişilmiştir (Houston, US 

Top 10 Cities - Electricity Data, 2020). Söz konusu veriler, 01/01/2018 ve 30/04/2020 

tarihleri arasındaki saatlik elektrik tüketimi değerlerinden oluşmaktadır. Houston şehrinin 

söz konusu zaman aralığına ait meteorolojik verilerine (sıcaklık, bağıl nem ve rüzgar hızı)  

de yine Open-Meteo üzerinden ulaşılmıştır (Houston, Historical Weather Api, 2024). 

Houston veri setinin eğitim, validasyon ve test verilerinin dağılımı Tablo 3.2’de 

sunulmuştur. 
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Tablo 3.2. Houston veri seti: eğitim, validasyon ve test verilerinin dağılımı 

Açıklama Saat 

Eğitim 9.144 

Validasyon 2.352 

Test 8.928 

Toplam 20.424 

 

Houston şehrine ait günlük elektrik tüketimi, sıcaklık, bağıl nem ve rüzgar hızı 

verilerinin, söz konusu zaman aralığındaki değişimleri Şekil 3.3'te yer almaktadır.  

 

Şekil 3.3. Houston şehrine ait günlük elektrik tüketim, sıcaklık, bağıl nem ve rüzgar hızı verisi 

 

Dayton veri setinin aksine, Houston şehri için elektrik tüketimi ve sıcaklık 

arasındaki korelasyon değeri yüksek çıkmıştır. Houston şehrine ait günlük elektrik 

tüketim, sıcaklık, bağıl nem ve rüzgar hızı bilgilerinin verildiği şekle baktığımızda, 

elektrik tüketimi ve sıcaklık arasındaki bu ilişki daha net görülebilmektedir. Houston 

şehrine ait elektrik tüketimi, sıcaklık, bağıl nem ve rüzgar hızı verilerinin korelasyon 

matrisi Şekil 3.4'te sunulmuştur. 
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Şekil 3.4. Houston şehrine ait elektrik tüketim, sıcaklık, bağıl nem ve rüzgar hızı korelasyon matrisi 

 

3.2. Tahmin Modelleri 

Bu tez çalışmasında, kısa vadeli elektrik tüketimi tahmini için, LSTM, CNN ve 

Topluluk temelli derin öğrenme modelleri önerilmiştir. Bu modellerin yapısı, alt 

bölümlerde detaylı şekilde açıklanmaktadır. 

 

3.2.1. LSTM 

LSTM, sıralı verilerdeki uzun vadeli bağımlılıkları ve ilişkileri yakalamak için 

tasarlanmış bir RNN mimarisidir. LSTM ağlarının temel özelliği, uzun diziler boyunca 

bilgi depolayabilen ve alabilen bir bellek hücresini sürdürme yetenekleridir. Bu sayede, 

RNN’lerin eğitimini engelleyebilecek kaybolan gradyan sorununun üstesinden 

gelmelerine yardımcı olmaktadır (Torres, Martı́nez-Álvarez, & Troncoso, 2022). LSTM 

mimarisi, bellek hücresine giren ve çıkan bilgi akışını kontrol eden üç kapı içermektedir: 

1. Forget Gate: Önceki durumdan hangi bilginin atılması gerektiğini belirler. 

2. Input Gate: Hangi yeni bilginin ilgili olduğuna ve bellek hücresinde 

saklanması gerektiğine karar verir. 



 

19 

 

3. Output Gate: Bellek hücresinden hangi bilginin tahmin olarak çıkarılacağını 

seçer. 

Bu kapıların birleşimi, LSTM’lerin uzun diziler boyunca bilgileri seçici olarak 

depolamasına ve almasına olanak tanır; bu da onları zaman serisi verileri, doğal dil işleme 

ve diğer sıralı veri uygulamalarını içeren görevler için çok uygun hale getirmektedir. Bir 

LSTM hücresinin şeması Şekil 3.5’te, optimizasyonlar sonucunda elde edilen 

hiperparametre değerleri ise Tablo 3.3’te verilmiştir. 

 

 

Şekil 3.5. Bir LSTM hücresinin şeması (Torres, Martı́nez-Álvarez, & Troncoso, 2022) 

 

Tablo 3.3. LSTM hiperparametreleri 

Hiperparametre Değer 

Units 14 

Batch size 168 

Max epochs 300 

Early stopping patience 15 (monitor: val_loss, restore_best_weight: True) 

Model Sequential 

Activation Relu 

Optimizer Adam 

Dense 24 (saat) 

Learning rate 0.001 

Dropout rate 0 

Loss MSE 
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3.2.2. CNN 

CNN modelleri, görüntü ve doğal dil işleme konularındaki performansının yanı sıra 

zaman serisi verilerin tahmininde de yüksek performans gösterebilmektedir (Khan, et al., 

2022). Bir CNN'nin temel mimari bileşenleri şunları içerir: 

1. Convolutional Layers: Bu katmanlar, filtreleri (çekirdek olarak da bilinir) 

kullanarak giriş verilerine evrişimsel işlemler uygular. Filtreler, yerel özellikleri 

çıkarmak için giriş verilerinin üzerinde kayan küçük matrislerdir. Evrişimli 

katmanlar, verilerdeki hiyerarşik özellikleri yakalama yeteneğine sahiptir. 

2. Pooling Layers: Havuzlama katmanları, girişin uzamsal boyutlarını alt 

örnekleyerek ağdaki hesaplama miktarını azaltır. Maksimum havuzlama, bir 

bölge içindeki maksimum değerin korunduğu yaygın bir havuzlama işlemi 

türüdür. 

3. Fully Connected Layers: Bu katmanlar, bir katmandaki her nöronu bir sonraki 

katmandaki her nörona bağlar. Genellikle sınıflandırma görevleri için ağın son 

katmanlarında kullanılırlar. 

4. Activation Functions: ReLU (Düzeltilmiş Doğrusal Birim) gibi doğrusal 

olmayan aktivasyon fonksiyonları, ağa doğrusal olmamayı kazandırmak ve 

karmaşık kalıpları öğrenmesini sağlamak için uygulanır. 

Yapılan optimizasyon çalışmaları sonucunda elde edilen ve bu çalışma için önermiş 

olduğumuz CNN mimarisi Şekil 3.6’da önerilen model için kullanılan hiperparametre 

değerleri ise Tablo 3.4’te sunulmuştur. 

Bu tez çalışmasında önerilen CNN modelinde 4 adet Convolutional Layer ve Max 

Pooling katmanı bulunmaktadır. Tek değişkenli elektrik tüketimi tahminleri için genelde 

Conv1D ve MaxPooling1D kullanılmaktadır. Ancak Conv1D aldığı girdiyi verilen 

“Filters” değerine göre çıktı olarak vermektedir. Birden fazla öznitelik girdi olarak 

verilince tek bir çıktı değeri oluşmakta ve girdi olarak verilen birden fazla özniteliğin 

model boyunca eğitimi mümkün olmamaktadır. Örnek verecek olursak; (168,7) lik 

girdilerimiz olsun. Buradaki girdi verileri geçmiş 168 saati ve 7 farklı özniteliği ifade 

etmektedir. Conv1D için “Filters” değeri 32 seçildiği durumda çıktı (168,32) olacaktır. 

MaxPooling1D aşamasından sonra bir sonraki Conv1D için girdi (84,32) olacak ve farklı 

özniteliklerin bilgileri kaybedilecektir. Bu sorunun üstesinden gelmek için Conv2D ve 

MaxPooling2D katmanları kullanılmıştır. Conv2D katmanlarına girdileri (168,7,1) 
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şeklinde gönderdiğimizde katmanların çıktıları (168,7,32) şeklinde olmaktadır. Bu 

sayede, model eğitiminde kullandığımız her bir öznitelik değeri bütün katmanlar boyunca 

korunmuş olacaktır. Bu yaklaşım, önermiş olduğumuz ve birden fazla öznitelik ile 

eğitilen CNN modelimizin tahmin performansını önemli ölçüde geliştirmiştir. 

 

Şekil 3.6. Önerilen CNN mimarisi 

 

Tablo 3.4. CNN hiperparametreleri 

Hiperparametre Değer 

Conv2D - 1 Filters: 4, Kernel_size: 5, padding: ‘same’ 

MaxPooling2D - 1 Pool_size: 4, padding: ‘same’ 

Conv2D – 2 Filters: 8, Kernel_size: 5, padding: ‘same’ 

MaxPooling2D – 2 Pool_size: 4, padding: ‘same’ 

Conv2D – 3 Filters: 16, Kernel_size: 5, padding: ‘same’ 

MaxPooling2D – 3 Pool_size: 4, padding: ‘same’ 

Conv2D – 4 Filters: 32, Kernel_size: 5, padding: ‘same’ 

MaxPooling2D - 4 Pool_size: 4, padding: ‘same’ 

Batch size 128 

Max epochs 300 

Early stopping patience 30 (monitor: val_loss, restore_best_weight: True) 

Model Sequential 

Activation Relu 

Optimizer Adam 

Dense 24 (saat) 

Learning rate 0.001 

Dropout rate 0.4 

Loss MSE 
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3.2.3. Topluluk 

Topluluk öğrenimi, makine öğreniminde kullanılan güçlü bir tekniktir. Bu teknik 

aslında, daha doğru tahminler üreten bir model oluşturmak için birden fazla modelin 

ürettikleri tahminlerin birleştirildiği stratejidir.  

Topluluk yöntemlerinin geliştirilmiş doğruluk, genellenebilirlik, azaltılmış 

varyans/önyargı ve esneklik gibi avantajları bulunmaktadır. Bu yöntem ile birden fazla 

model birleştirildiğinden, genellikle tek bir modele kıyasla görünmeyen veriler üzerinde 

daha iyi doğruluk ve genelleştirilebilirlik elde edilebilir. Ayrıca, bireysel modellerden 

kaynaklanan hataların ortalamasını almaya yardımcı olarak daha sağlam tahminlere yol 

açabilir. Son olarak modellerin güçlü yönlerinden yararlanmak için farklı model türleri 

bir topluluk gurubu içinde birleştirilebilir. 

Topluluk yöntemlerinin, yukarıda bahsedilen avantajlarının yanında artan 

karmaşıklık, yorumlamada zorluk gibi dezavantajları da bulunmaktadır. Topluluk 

yöntemi kullanılarak birden fazla model oluşturmak ve eğitmek, tek bir model 

kullanmaya kıyasla hesaplama açısından daha masraflı olabilir. Ayrıca, bireysel 

modellere göre daha az yorumlanabilir olabileceği için bu da üretilen tahminin nedeninin 

anlaşılmasını zorlaştırmaktadır. 

Ortalama Alma (Averaging), Oylama (Voting), Torbalama-Önyükleme Toplama 

(Bagging-Bootstrap Aggregating), Yükseltme (Boosting) ve İstifleme (Stacking) gibi 

topluluk yöntemi türleri mevcuttur. Bu yöntemleri biraz daha detaylandıracak olursak, 

Averaging, regresyon sorunları için basit ama etkili bir yaklaşımdır. Nihai tahmini elde 

etmek için tüm temel modellerden gelen tahminlerin ortalaması alınır. Bu, bireysel 

modellerden kaynaklanan hataların sapmasını azaltarak daha düzgün ve daha doğru bir 

genel tahmine yol açmaktadır. Voting, genellikle sınıflandırma problemlerinde 

kullanılmaktadır. Her temel model, en olası sınıfa oy verir ve son tahmin, en çok oyu alan 

sınıftır. Bu yaklaşım, herhangi bir tek modelin tahminindeki aykırı değerlerin veya 

hataların etkisini azaltmaya yardımcı olmaktadır. Bagging-Bootstrap Aggregating 

yönteminde, orijinal verilerin farklı alt kümeleri (değiştirme ile) eğitilerek birden fazla 

model oluşturulmaktadır. Bu, topluluğa çeşitlilik katarak varyansı azaltarak ve potansiyel 

olarak doğruluğu artırmaktadır. Boosting, temel modellerin sırayla eğitildiği bir 

yaklaşımdır. Her model, bir önceki modelin tahmin hatalarından öğrenmeye odaklanır. 

Bu yaklaşım doğrulukta önemli gelişmelere yol açabilir, ancak aynı zamanda aşırı uyum 
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sağlamaya da daha yatkındır. Stacking, bir meta-model oluşturmayı içerir. Temel 

modeller tahminlerini eğitim verileri üzerinde yapar ve bu tahminler meta modelin 

özellikleri haline gelir. Meta-model daha sonra nihai tahminleri yapmak için bu özellikleri 

birleştirmeyi öğrenir. İstifleme, farklı modellerin güçlü yanlarından yararlanırken 

potansiyel olarak zayıf yönlerinin üstesinden gelmenize olanak tanır. 

Bu tez çalışmasında, topluluk modeli olarak ortalama yaklaşımı tercih edilmiş ve 

LSTM ile CNN modellerine ait tahminlerin ortalamaları hesaplanmıştır. 

 

3.3. Performans Metrikleri 

Önerilen modellerin performanslarını karşılaştırmak için normalleştirilmiş kök 

ortalama kare hata (N-RMSE), normalleştirilmiş ortalama mutlak hata (N-MAE) ve 

ortalama mutlak yüzde hata (MAPE) metrikleri kullanılmıştır.  

 

3.3.1. N-RMSE 

RMSE, tahmine dayalı bir modelin doğruluğunu değerlendirmek için yaygın olarak 

kullanılan bir hata metriğidir (Chai & Draxler, 2014). Özellikle regresyon analizi alanında 

popülerdir. RMSE, tahmin edilen değerler ile gerçek değerler arasındaki hataların 

ortalama büyüklüğünü hesaplar. N-RMSE ise RMSE’ yi veri aralığına göre 

ölçeklendirerek farklı veri kümeleri arasında daha yorumlanabilir ve karşılaştırılabilir 

hale getirmektedir. RMSE ve N-RMSE’nin formülleri sırası ile (1) ve (2)’de verilmiştir. 

                                                   RMSE =  √ 
1

𝑛
 ∑ (𝑦𝑖 −  ŷ𝑖)2𝑛

𝑖=1                                  (3.1) 

                                                      N-RMSE =
𝑅𝑀𝑆𝐸

max(𝑦)−min(𝑦)
                                      (3.2) 

Formül (3.1) ve (3.2)’ de, 𝑛 gözlemlerin veya veri noktalarının sayısı, 𝑦𝑖 𝑖 

indeksindeki veri noktasının gerçek (gözlenen) değeri, ŷ𝑖 ise 𝑖 indeksindeki veri noktası 

için tahmin edilen değeri, max(y) gerçek (gözlenen) değerlerin maksimum değerini, 

min(y) ise gerçek (gözlenen) değerlerin minimum değerini ifade etmektedir. 

RMSE, gerçek ve tahmin edilen değerler arasındaki kare farkların ortalamasının 

karekökü alınarak hesaplanır. Bu işlem, RMSE değerinin orijinal verilerle aynı birimlerde 
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yorumlanabilir olmasını sağlamak için uygulanmaktadır. Düşük bir RMSE değeri, 

modelin doğruluk oranının yüksek olduğu anlamına gelmektedir. 

 

3.3.2. N-MAE 

MAE, tahmine dayalı bir modelin performansını değerlendirmek için yaygın olarak 

kullanılan başka bir hata metriğidir. Tahmin edilen değerler ile gerçek değerler arasındaki 

hataların ortalama büyüklüğünü hesaplayarak tahminlerin doğruluğunu gösterir (Chai & 

Draxler, 2014). N-MAE, MAE’ yi veri aralığına göre ölçeklendirerek farklı veri kümeleri 

arasında daha yorumlanabilir ve karşılaştırılabilir hale getirmektedir. MAE ve N-

MAE’nin formülleri sırası ile (3) ve (4)’te verilmiştir. 

                                                  MAE =  
1

𝑛
 ∑ |𝑦𝑖 −  ŷ𝑖|𝑛

𝑖=1                                           (3.3) 

                                                     N-MAE =
𝑀𝐴𝐸

𝑚𝑎𝑥(𝑦)−𝑚𝑖𝑛(𝑦)
                                        (3.4) 

Formül (3.3) ve (3.4)’ te, 𝑛 gözlemlerin veya veri noktalarının sayısı, 𝑦𝑖 𝑖 

indeksindeki veri noktasının gerçek (gözlenen) değeri, ŷ𝑖 ise 𝑖 indeksindeki veri noktası 

için tahmin edilen değeri, max(y) gerçek (gözlenen) değerlerin maksimum değerini, 

min(y) ise gerçek (gözlenen) değerlerin minimum değerini ifade etmektedir. 

MAE, gerçek ve tahmin edilen değerler arasındaki mutlak farkların ortalaması 

alınarak hesaplanmaktadır. RMSE’den farklı olarak MAE, hataların karesini almaz; bu 

da MAE’nin büyük hatalara karşı daha az duyarlı olmasını sağlamaktadır. Büyük 

hataların kabul edilebilir olduğu veya tüm hatalara eşit ağırlık vermek istediğiniz 

durumlarda bir avantaj olabilmektedir. RMSE’ye benzer şekilde, daha düşük bir MAE, 

modelin tahminlerinin ortalama olarak gerçek değerlere daha yakın olduğunu 

gösterdiğinden daha iyi model performansını göstermektedir. Tersine, daha yüksek bir 

MAE, modelin tahminlerinde daha büyük hatalara sahip olduğunu göstermektedir. RMSE 

ve MAE arasındaki seçim genellikle var olan problemin belirli karakteristiğine ve 

değerlendirme ölçütünün istenen özelliklerine bağlıdır. 
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3.3.3. MAPE 

MAPE, zaman serisi verileri için tahmin modellerinin doğruluğunu değerlendirmek 

için kullanılan yaygın bir hata metriğidir. MAPE, tahminlerinizin gerçek değerlere ne 

kadar yakın olduğunu gösterir. MAPE’nin formülü (5)’ te verilmiştir. 

                                                    𝑀𝐴𝑃𝐸 =  
1

𝑛
 ∑ |

𝑦𝑖− ŷ𝑖

𝑦𝑖
| . 100   𝑛

𝑖=1                                (3.5) 

Formül (3.5)’ te, 𝑛 gözlemlerin veya veri noktalarının sayısı, 𝑦𝑖 𝑖 indeksindeki veri 

noktasının gerçek (gözlenen) değeri, ŷ𝑖 ise 𝑖 indeksindeki veri noktası için tahmin edilen 

değeri ifade etmektedir. Her gözlem için mutlak yüzdelik hata hesaplanır, hesaplanan 

değerler toplanır ve ardından ortalama hatayı elde etmek için toplam gözlem sayısına 

bölünür. Son olarak sonucu yüzde olarak ifade etmek için elde edilen değer 100 ile 

çarpılır. 

MAPE, gerçek değerlere göre gerçek ve tahmin edilen değerler arasındaki ortalama 

mutlak farkın bir ölçüsünü sağlar. Özellikle, talep tahmini (örn: elektrik talebi), satış 

tahmini ve finansal tahmin gibi alanlarda tahmin modellerinin doğruluğunu 

değerlendirmek için kullanılan yaygın bir performans metriği olarak kullanılmaktadır. 

Daha düşük bir MAPE, daha yüksek bir doğruluğa karşılık gelmektedir. 
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4. DENEYSEL ÇALIŞMA VE TARTIŞMALAR 

Bu tez çalışmasında, kısa vadeli (24 saat) elektrik tüketimini tahmin edebilmek için 

LSTM, CNN ve topluluk temelli derin öğrenme modelleri önerilmiştir. Modellerin 

eğitimi için coğrafi olarak farklı bölgelerdeki iki şehire ait elektrik tüketim, sıcaklık, bağıl 

nem, rüzgar hızı ve zaman damgası verileri kullanılmıştır. Önerilen modeller, her bir veri 

seti üzerinde 16 farklı öznitelik seti ile eğitilmiş ve her modelin tahmin performansı 

karşılaştırmalı şekilde analiz edilmiştir. Söz konusu öznitelik setleri, Tablo 4.1'de 

listelenmektedir. 

 

Tablo 4.1. Tahmin modellerinde kullanılan öznitelik setleri 

No Öznitelik Seti 

1 Elec 

2 Elec+Temp 

3 Elec+Humid 

4 Elec+Wind 

5 Elec+Time 

6 Elec+Temp+Humid 

7 Elec+Temp+Wind 

8 Elec+Temp+Time 

9 Elec+Time+Humid 

10 Elec+Time+Wind 

11 Elec+Humid+Wind 

12 Elec+Temp+Humid+Wind 

13 Elec+Temp+Humid+Time 

14 Elec+Time+Humid+Wind 

15 Elec+Temp+Time+Wind 

16 Elec+Temp+Humid+Wind+Time 

 

Ön işlemler kapsamında, ilk olarak sayısal verilerin formatları düzenlenmiştir. Veri 

setlerini, eksik ve aykırı değerlerden arındırmak için ilgili değerler, 24 saat öncesinin 

verileri kullanılarak güncellenmiştir. Yanlılığı önlemek için elektrik tüketimi, meteoroloji 

ve zaman damgası öznitelik verileri, eğitim seti temel alınarak 0 ile 1 arasına normalize 

edilmiştir. Veri setlerine ait zaman damgası öznitelik değerleri, elektrik tüketiminin 

gerçekleştiği “Ay” için [1-12], “Gün” için [1-7] ve “Saat” için [0-23] aralığındaki değerler 

kullanılarak döngüsel olarak kodlanmıştır. 

Tahminlerde, kayan pencere (sliding window) yaklaşımı kullanılmıştır. 168 

saatlik (7 gün) veriler kullanılarak, sonraki 24 saatin (1 gün) tüketim değerleri tahmin 
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edilmiştir. Modeller, çok adımlı tahmin yaklaşımı ile tasarlanarak bir defada 24 saatlik 

tahminler yapılmıştır. Toplam 20.424 saatten (851 gün) oluşan her bir veri setinin ilk 

9.144 saati (381 gün) eğitim için kullanılarak 374 girdi-çıktı çifti elde edilmiştir. Söz 

konusu veri setinin takip eden 2.352 saati (98 gün) validasyon için kullanılarak 91 girdi-

çıktı çifti elde edilmiştir. Veri setinin son 8.928 saatlik (372 gün) kısmı ise test için   

kullanılarak 365 girdi-çıktı çifti elde edilmiştir. 

Modellerin eğitimlerinde, maksimum epoch değeri 300 olarak belirlenmiştir. 

Ayrıca, modelin aşırı uyma (overfitting) durumuna düşmesini engellemek için erken 

durdurma (early stopping) yaklaşımından faydalanmıştır. Bu kapsamda, modeller eğitim 

sürecinin herhangi bir aşamasındayken belirlenen epoch değeri süresince validasyon 

verisinin tahmin performansında bir gelişim gözlenmez ise eğitim sonlandırılmıştır. 

Yapılan analizler sonucunda early stopping değeri, LSTM modeli için 15, CNN modeli 

için ise 30 olarak belirlenmiştir. Bundan dolayı, her modelin eğitim süreleri ve epoch 

sayıları farklılık gösterebilmektedir. 

Meteoroloji ve zaman özniteliklerinin, önerilen modellerin tahmin performansına 

etkilerini doğru bir şekilde hesaplamak amacıyla rastgele tohum (Random Seed) değeri 

belirlenmiştir. Rastgele tohumun belirlenmesi, zaman serisi modelleri içerisindeki 

birtakım işlemlerin rastgeleliğini kontrol altına almak için kullanılan bir yöntemdir. 

Önerilen modellerimiz için rastgele tohum değeri ayarlandığında, her seferinde rastgele 

sonuçlar üretilen süreçlerden tutarlı bir şekilde aynı sonuçlar alınabilmektedir. Örnek 

verecek olursak; Elec+Temp+Time öznitelik seti ile eğitilen LSTM modelimiz için 

rastgele tohumu belirlediğimiz zaman, modeli farklı zamanlarda kaç defa eğitip tahminler 

ürettiğimizden bağımsız olarak modelimiz her zaman aynı tahminleri üretecektir. Bu 

yaklaşım, farklı model konfigürasyonlarında hata ayıklamak ve karşılaştırmak için çok 

önemlidir. Ayrıca, farklı öznitelikler ile eğitilen modelleri veya eğitim tekniklerini 

karşılaştırırken eşit şartlar sağlanması oldukça önemlidir. Rastgele bir başlangıç noktası 

ayarlamak, tüm modellerin aynı rastgele sayı dizisini kullanmasını garanti ederek bunu 

başarmaya yardımcı olmaktadır. Yaptığımız analizler sonucunda iki farklı veri setimiz 

için rastgele tohum değerinin 47 olduğunu hesaplanmış ve hiperparametre 

optimizasyonları seçilen rastgele tohum değerine göre yapılmıştır. Bu sayede farklı 

öznitelikler seçilerek eğitilen modellerin tekrarlanabilir ve adil değerlendirilmiş 

olduğundan emin olabiliriz. 
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Deneysel çalışmalarda, Python 3.9 programlama dili kullanılmıştır. Derin öğrenme 

modelleri için Tensorflow ve Keras kütüphaneleri kullanılmıştır. Yazılım geliştirme aracı 

olarak, gelişmiş hata ayıklama ve zengin bir arayüze sahip olmasından dolayı PyCharm 

kullanılmıştır. Geliştirilen modellerin düzenlileştirilmesine (Regularization) yönelik 

hiperparametre optimizasyonları, Keras-Tuner kütüphanesi yardımıyla yapılmıştır. 

 

4.1. Dayton Veri Setiyle Eğitilen Modeller 

Bu bölümde, Dayton veri setiyle eğitilen tahmin modellerinin performansları 

kapsamlı şekilde incelenmiştir. 

 

4.1.1. LSTM modeli 

Dayton veri setinin sadece elektrik tüketimi özniteliği ile eğitilen LSTM 

modelinin kayıp grafiği Şekil 4.1’de sunulmuştur. Söz konusu kayıp grafiğinde görüldüğü 

üzere, elektrik tüketimi özniteliği ile eğitilen modelin early-stopping parametresiyle 

sonlandırılmadan 300 epochta eğitim sürecinin tamamlandığı görülmektedir. Bu modelin 

eğitim süresi “77,18” saniye olarak ölçülmüş olup, kayıp grafiğine bakıldığında önerilen 

modelde overfitting gerçekleşmediği görülebilmektedir. Bu veri seti kullanılarak eğitilen 

diğer LSTM modellerinin kayıp grafikleri de benzer karakteristiğe sahip olup, eğitim 

verisine aşırı uyma durumu söz konusu değildir. 

 

 

Şekil 4.1. Dayton veri seti: elektrik tüketimi özniteliğiyle eğitilen LSTM modelinin kayıp grafiği 
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Farklı öznitelik setleriyle eğitilen LSTM modelleriyle elde edilen ortalama N-

RMSE, N-MAE ve MAPE değerleri Şekil 4.2’de verilmiştir. 

 

 
(a) 

 
(b) 

 
(c) 

Şekil 4.2. Dayton veri seti: farklı öznitelik setleri için LSTM modeliyle elde edilen ortalama (a) N-RMSE, 

(b) N-MAE ve (c) MAPE değerleri 
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Söz konusu şekilde görüldüğü üzere, sıcaklık, bağıl nem, rüzgar hızı ve zaman 

damgası özniteliklerinin her biri elektrik tüketimi özniteliğiyle birlikte kullanıldığında, 

tahmin performansını genel olarak iyileştirdiği görülmektedir. N-RMSE, N-MAE ve 

MAPE değerleri sırasıyla “%19,79”, “%20,38” ve “%22,31” oranına kadar iyileşmiştir. 

Elektrik tüketimi özniteliğinin yanında sıcaklık, bağıl nem, rüzgar hızı ve zaman 

damgası özniteliklerinden sadece biri eklenip model eğitildiğinde, en iyi tahmin 

performansı Elec+Time öznitelik setinde elde edilmiştir. Sadece elektrik tüketimi 

özniteliği ile eğitilen modelin N-RMSE, N-MAE ve MAPE değerleri sırası ile “0,24”, 

“0,20” ve “%5,96” olurken Elec+Time özniteliği ile eğitilen modelde bu değerler “0,19”, 

“0,16” ve “%4,67” olarak hesaplanmıştır.  Bu veri seti için, zaman damgası özniteliği 

diğer özniteliklere göre tahmin performansını daha çok iyileştirmiştir. Birden fazla 

öznitelik kullanılarak yapılan eğitim ve testler sonucunda, Elec+Temp+Humid+Time 

öznitelik seti ile eğitilen LSTM modelinin, en iyi tahmin performansını gösterdiği 

anlaşılmıştır. Bu modelin N-RMSE, N-MAE ve MAPE değerleri sırası ile “0,19”, “0,16” 

ve “%4,63” olarak hesaplanmıştır. Şekil 4.3’te ise elektrik tüketimi özniteliği ile eğitilen 

LSTM modelinin, test setinin tamamındaki tahmin performansı verilmiştir. 

 

Şekil 4.3. Dayton veri seti: elektrik tüketimi özniteliğiyle eğitilen LSTM modelinin test setinin tamamındaki 

tahmin performansı 
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Söz konusu şekilde görüldüğü üzere, ilgili model kış aylarında en iyi tahmin 

performansını gösterirken, yaz aylarında en düşük tahmin performansını göstermiştir. 

Modelin kış, ilkbahar, yaz ve sonbahar mevsimlerindeki ortalama MAPE değerleri sırası 

ile “%4,94”, “%6,02”, “%7,08” ve “%5,28” şeklinde hesaplanmıştır. Ayrıca, modelin 

tahmin edilen yıl genelinde hafta içi ve hafta sonu günlerindeki ortalama MAPE değerleri 

sırası ile “%5,28” ve “%7,65” olarak hesaplanmıştır. Şekil 4.4’te ise 

Elec+Temp+Humid+Time öznitelikleri ile eğitilen LSTM modelinin, test setinin 

tamamındaki tahmin performansı verilmiştir.  

 

Şekil 4.4. Dayton veri seti: Elec+Temp+Humid+Time öznitelikleriyle eğitilen LSTM modelinin test setinin 

tamamındaki tahmin performansı 

 

Bu şekilden anlaşılacağı üzere, model, sadece elektrik tüketimi özniteliği ile 

eğitilen LSTM modelinde olduğu gibi, kış aylarında en iyi, yaz aylarında ise en kötü 

tahmin performansını göstermiştir. Modelin kış, ilkbahar, yaz ve sonbahar 

mevsimlerindeki ortalama MAPE değerleri sırası ile “%4,22”, “%4,35”, “%5,01” ve 

“%4,91” şeklinde hesaplanmıştır. LSTM modelinin eğitimine sıcaklık,  zaman damgası 

ve bağıl nem özniteliklerinin eklenmesi ile mevsim tahminleri genel olarak iyileşmiştir. 

Sadece elektrik tüketimi özniteliği ile eğitilen modelin aksine bu model hafta sonu günleri 
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için daha iyi tahminler üretmiştir. Hafta içi ve hafta sonu günlerinin ortalama MAPE 

değerleri “%4,66” ve “%4,54” olarak hesaplanmıştır. Burada zaman damgası 

özniteliğinin modelin tahmin performansına önemli ölçüde katkı sağladığı görülmüştür.   

 

4.1.2. CNN modeli 

Dayton veri setinin sadece elektrik tüketimi özniteliği ile eğitilen CNN modelinin 

kayıp grafiği Şekil 4.5’te verilmiştir. 

 

Şekil 4.5. Dayton veri seti: elektrik tüketimi özniteliğiyle eğitilen CNN modelinin kayıp grafiği 

 

Söz konusu kayıp grafiğinde görüldüğü üzere, elektrik tüketimi özniteliği ile 

eğitilen modelin 231 epochta eğitim sürecinin tamamlandığı görülmektedir. Bu modelin 

eğitim süresi “34,93” saniye olarak ölçülmüş olup, kayıp grafiğine bakıldığında önerilen 

modelde overfitting gerçekleşmediği görülebilmektedir. Bu veri seti kullanılarak eğitilen 

diğer CNN modellerinin kayıp grafikleri de benzer karakteristiğe sahip olup, eğitim 

verisine aşırı uyma durumu söz konusu değildir. Farklı öznitelik setleriyle eğitilen CNN 

modelleriyle elde edilen ortalama N-RMSE, N-MAE ve MAPE değerleri Şekil 4.6’da 

verilmiştir. 

Söz konusu şekilde görüldüğü üzere, sıcaklık, bağıl nem, rüzgar hızı ve zaman 

damgası özniteliklerinin her biri elektrik tüketimi özniteliğiyle birlikte kullanıldığında, 

tahmin performansını genel olarak iyileştirdiği görülmektedir. N-RMSE, N-MAE ve 

MAPE değerleri sırasıyla “%25,58”, “%27,24” ve “%26,85” oranına kadar iyileşmiştir. 
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(a) 

 
(b) 

 
(c) 

Şekil 4.6. Dayton veri seti: farklı öznitelik setleri için CNN modeliyle elde edilen ortalama (a) N-RMSE, 

(b) N-MAE ve (c) MAPE değerleri 

 

Elektrik tüketimi özniteliğinin yanında sıcaklık, bağıl nem, rüzgar hızı ve zaman 

damgası özniteliklerinden sadece biri eklenip model eğitildiğinde, en iyi tahmin 

performansı Elec+Time öznitelik setinde elde edilmiştir. Sadece elektrik tüketimi 

    

    

    

    

    

   

    

    

    

      

    

    

    

    

    

    

    

   

     

   

 

   

 

   

 

    



 

34 

 

özniteliği ile eğitilen modelin N-RMSE, N-MAE ve MAPE değerleri sırası ile “0,22”, 

“0,19” ve “%5,55” olurken Elec+Time özniteliği ile eğitilen modelde bu değerler “0,18”, 

“0,16” ve “%4,53” olarak hesaplanmıştır. Birden fazla öznitelik kullanılarak yapılan 

eğitim ve testler sonucunda, Elec+Temp+Humid+Wind+Time öznitelik seti ile eğitilen 

CNN modelinin, en iyi tahmin performansını gösterdiği anlaşılmıştır. Bu modelin N-

RMSE, N-MAE ve MAPE değerleri sırası ile “0,16”, “0,14” ve “%4,05” olarak 

hesaplanmıştır. Şekil 4.7’de ise elektrik tüketimi özniteliği ile eğitilen CNN modelinin, 

test setinin tamamındaki tahmin performansı verilmiştir. 

 

Şekil 4.7. Dayton veri seti: elektrik tüketimi özniteliğiyle eğitilen CNN modelinin test setinin tamamındaki 

tahmin performansı 

 

Söz konusu şekilde görüldüğü üzere, ilgili model kış aylarında en iyi tahmin 

performansını gösterirken, yaz aylarında en düşük tahmin performansını göstermiştir. 

Modelin kış, ilkbahar, yaz ve sonbahar mevsimlerindeki ortalama MAPE değerleri sırası 

ile “%5,11”, “%5,21”, “%6,16” ve “%5,68” şeklinde hesaplanmıştır. Ayrıca, modelin 

tahmin edilen yıl genelinde hafta içi ve hafta sonu günlerindeki ortalama MAPE değerleri 

sırasıyla “%5,15” ve “%6,53” olarak hesaplanmıştır. Modelin, hafta içi günlerini daha iyi 

tahmin ettiği anlaşılmaktadır. Şekil 4.8’de ise Elec+Temp+Humid+Wind+Time 
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öznitelikleri ile eğitilen CNN modelinin, test setinin tamamındaki tahmin performansı 

verilmiştir. 

 

Şekil 4.8. Dayton veri seti: Elec+Temp+Humid+Wind+Time öznitelikleriyle eğitilen CNN modelinin test 

setinin tamamındaki tahmin performansı 

 

 

Bu şekilden anlaşılacağı üzere, model, sadece elektrik tüketimi özniteliği ile 

eğitilen CNN modelinde olduğu gibi, kış aylarında en iyi, yaz aylarında ise en kötü tahmin 

performansını göstermiştir. Modelin kış, ilkbahar, yaz ve sonbahar mevsimlerindeki 

ortalama MAPE değerleri sırası ile “%3,41”, “%3,80”, “%4,87” ve “%4,13” şeklinde 

hesaplanmıştır. CNN modelinin eğitimine sıcaklık, bağıl nem, rüzgar hızı ve zaman 

damgası özniteliklerinin eklenmesi ile mevsim tahminleri genel olarak iyileşmiştir. 

Sadece elektrik tüketimi özniteliği ile eğitilen modelde olduğu gibi bu model de hafta içi 

günlerini daha iyi tahmin etmiştir. Hafta içi ve hafta sonu günlerinin ortalama MAPE 

değerleri “%3,99” ve “%4,22” olarak hesaplanmıştır. 

 

4.1.3. Topluluk modeli 

Farklı öznitelik setleriyle eğitilen Topluluk modelleriyle elde edilen ortalama N-

RMSE, N-MAE ve MAPE değerleri Şekil 4.11’de verilmiştir. 
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(a) 

 
(b) 

 
(c) 

Şekil 4.9. Dayton veri seti: farklı öznitelik setleri için Topluluk modeliyle elde edilen ortalama (a) N-RMSE, 

(b) N-MAE ve (c) MAPE değerleri 

 

Söz konusu şekilde görüldüğü üzere, sıcaklık, bağıl nem, rüzgar hızı ve zaman 

damgası özniteliklerinin her biri elektrik tüketimi özniteliğiyle birlikte kullanıldığında, 
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tahmin performansını genel olarak iyileştirdiği görülmektedir. N-RMSE, N-MAE ve 

MAPE değerleri sırasıyla “%21,10”, “%22,30” ve “%22,80” oranına kadar iyileşmiştir. 

Elektrik tüketimi özniteliğinin yanında sıcaklık, bağıl nem, rüzgar hızı ve zaman 

damgası özniteliklerinden sadece biri eklenip model eğitildiğinde, en iyi tahmin 

performansı Elec+Time öznitelik setinde elde edilmiştir. Sadece elektrik tüketimi 

özniteliği ile eğitilen modelin N-RMSE, N-MAE ve MAPE değerleri sırası ile “0,22”, 

“0,18” ve “%5,40” olurken Elec+Time özniteliği ile eğitilen modelde bu değerler “0,18”, 

“0,15” ve “%4,39” olarak hesaplanmıştır. Birden fazla öznitelik kullanılarak yapılan 

eğitim ve testler sonucunda, Elec+Temp+Humid+Time öznitelik seti ile eğitilen Topluluk 

modelinin, en iyi tahmin performansını gösterdiği anlaşılmıştır. Bu modelin N-RMSE, 

N-MAE ve MAPE değerleri sırası ile “0,17”, “0,14” ve “%4,17” olarak hesaplanmıştır. 

Şekil 4.12’de ise elektrik tüketimi özniteliği ile eğitilen Topluluk modelinin, test setinin 

tamamındaki tahmin performansı verilmiştir. 

 

Şekil 4.10. Dayton veri seti: elektrik tüketimi özniteliğiyle eğitilen Topluluk modelinin test setinin 

tamamındaki tahmin performansı 

 

Söz konusu şekilde görüldüğü üzere, ilgili model kış aylarında en iyi tahmin 

performansını gösterirken, yaz aylarında en düşük tahmin performansını göstermiştir. 
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Modelin kış, ilkbahar, yaz ve sonbahar mevsimlerindeki ortalama MAPE değerleri sırası 

ile “%4,77”, “%5,44”, “%6,00” ve “%5,38” şeklinde hesaplanmıştır. Ayrıca, modelin 

tahmin edilen yıl genelinde hafta içi ve hafta sonu günlerindeki ortalama MAPE değerleri 

sırası ile “%4,86” ve “%6,75” olarak hesaplanmıştır. Şekil 4.13’te ise 

Elec+Temp+Humid+Time öznitelikleri ile eğitilen Topluluk modelinin, test setinin 

tamamındaki tahmin performansı verilmiştir. 

 

Şekil 4.11. Dayton veri seti: Elec+Temp+Humid+Time öznitelikleriyle eğitilen Topluluk modelinin test 

setinin tamamındaki tahmin performansı 

 

Bu şekilden anlaşılacağı üzere, model, sadece elektrik tüketimi özniteliği ile 

eğitilen Topluluk modelinde olduğu gibi, kış aylarında en iyi, yaz aylarında ise en kötü 

tahmin performansını göstermiştir. Modelin kış, ilkbahar, yaz ve sonbahar 

mevsimlerindeki ortalama MAPE değerleri sırası ile “%3,69”, “%3,91”, “%4,71” ve 

“%4,37” şeklinde hesaplanmıştır. Topluluk modelinin eğitimine sıcaklık, bağıl nem, 

rüzgar hızı ve zaman damgası özniteliklerinin eklenmesi ile mevsim tahminleri genel 

olarak iyileşmiştir. Modelin, hafta içi ve hafta sonu günlerinin ortalama MAPE değerleri 

“%4,16” ve “%4,19” olarak hesaplanmıştır. Bu model, sadece elektrik tüketimi özniteliği 
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ile eğitilen modelde olduğu gibi hafta içi günlerini çok az bir fark ile daha iyi tahmin 

etmiştir. 

 

4.1.4. Günlük performans analizi 

Önerilen modellerin tahmin performanslarını daha yakından gözlemleyebilmek ve 

karşılaştırabilmek amacıyla, Dayton veri setine ait yaz ve kış mevsimlerinden ikişer gün 

seçilmiştir. Elektrik tüketim örüntüleri mevsimlere ve günlere göre farklılık gösterdiği 

için, seçilen günlerin birinin hafta içi, diğerinin ise hafta sonu olmasına özen 

gösterilmiştir. Bu şekilde, modellerin farklı koşullar altında nasıl performans gösterdiği 

daha net bir şekilde değerlendirilebilecektir. Önerilen modellerin ilgili günlere ait 

tahminlerini, tahmin performanslarını ve gerçek tüketim değerlerini gösteren grafikler 

Şekil 4.12, Şekil 4.13, Şekil 4.14 ve Şekil 4.15’te verilmiştir. Söz konusu grafikler, 

modellerin performanslarını görsel olarak karşılaştırmamıza ve her bir modelin 

doğruluğunu ve tutarlılığını değerlendirmemize olanak tanımaktadır. 

 

 

Şekil 4.12. Dayton veri seti: yaz mevsimi hafta içinde LSTM, CNN ve Topluluk modellerinin tahmin 

performanslarının karşılaştırması 
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Şekil 4.13. Dayton veri seti: yaz mevsimi hafta sonunda LSTM, CNN ve Topluluk modellerinin tahmin 

performanslarının karşılaştırması 

 

 

 

Şekil 4.14. Dayton veri seti: kış mevsimi hafta içinde LSTM, CNN ve Topluluk modellerinin tahmin 

performanslarının karşılaştırması 
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Şekil 4.15. Dayton veri seti: kış mevsimi hafta sonunda LSTM, CNN ve Topluluk modellerinin tahmin 

performanslarının karşılaştırması 

 

Söz konusu grafiklerden anlaşılacağı üzere, genel olarak seçilen günler için 

Topluluk modellerinin daha iyi tahmin performansı gösterdiği görülmektedir. Elbette bu 

durum, farklı günler arasında değişiklik gösterebilir. Bazı günler için LSTM veya CNN 

modelleri daha iyi tahminler üretebilmektedir. Ancak, yıl geneline bakıldığında, önerilen 

modellerin tahmin performansları sırasıyla Topluluk, CNN ve LSTM olarak 

hesaplanmıştır. 

 

4.2. Houston Veri Setiyle Eğitilen Modeller 

Bu bölümde, Houston veri setiyle eğitilen tahmin modellerinin performansları 

kapsamlı şekilde incelenmiştir. 

 

4.2.1. LSTM modeli 

Houston veri setinin sadece elektrik tüketimi özniteliği ile eğitilen LSTM 

modelinin kayıp grafiği Şekil 4.16’da sunulmuştur. 
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Şekil 4.16. Houston veri seti: elektrik tüketimi özniteliğiyle eğitilen LSTM modelinin kayıp grafiği 

 

Söz konusu kayıp grafiğinde görüldüğü üzere, elektrik tüketimi özniteliği ile 

eğitilen modelin 87 epochta eğitim sürecinin tamamlandığı görülmektedir. Bu modelin 

eğitim süresi “22.73” saniye olarak ölçülmüş olup, kayıp grafiğine bakıldığında önerilen 

modelde overfitting gerçekleşmediği görülebilmektedir. Bu veri seti kullanılarak eğitilen 

diğer LSTM modellerinin kayıp grafikleri de benzer karakteristiğe sahip olup, eğitim 

verisine aşırı uyma durumu söz konusu değildir. Farklı öznitelik setleriyle eğitilen LSTM 

modelleriyle elde edilen ortalama N-RMSE, N-MAE ve MAPE değerleri Şekil 4.17’de 

verilmiştir. 

Söz konusu şekilde görüldüğü üzere, sıcaklık, bağıl nem, rüzgar hızı ve zaman 

damgası özniteliklerinin her biri elektrik tüketimi özniteliğiyle birlikte kullanıldığında, 

tahmin performansını genel olarak iyileştirdiği görülmektedir. N-RMSE, N-MAE ve 

MAPE değerleri sırasıyla “%21,34”, “%21,53” ve “%20,19” oranına kadar iyileşmiştir. 

Elektrik tüketimi özniteliğinin yanında sıcaklık, bağıl nem, rüzgar hızı ve zaman 

damgası özniteliklerinden sadece biri eklenip model eğitildiğinde, en iyi tahmin 

performansı Elec+Temp öznitelik setinde elde edilmiştir. Sadece elektrik tüketimi 

özniteliği ile eğitilen modelin N-RMSE, N-MAE ve MAPE değerleri sırası ile “0,25”, 

“0,21” ve “%6,31” olurken Elec+Temp özniteliği ile eğitilen modelde bu değerler “0,21”, 

“0,18” ve “%5,53” olarak hesaplanmıştır.  Bu veri seti için, sıcaklık özniteliği diğer 

özniteliklere göre tahmin performansını daha çok iyileştirmiştir. Birden fazla öznitelik 

kullanılarak yapılan eğitim ve testler sonucunda, Elec+Temp+Time öznitelik seti ile 
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eğitilen LSTM modelinin, en iyi tahmin performansını gösterdiği anlaşılmıştır. Bu 

modelin N-RMSE, N-MAE ve MAPE değerleri sırası ile “0,19”, “0,16” ve “%5,04” 

olarak hesaplanmıştır. 

 

 
(a) 

 
(b) 

 
(c) 

Şekil 4.17. Houston veri seti: farklı öznitelik setleri için LSTM modeliyle elde edilen ortalama (a) N-RMSE, 

(b) N-MAE ve (c) MAPE değerleri 
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Şekil 4.18’de ise elektrik tüketimi özniteliği ile eğitilen LSTM modelinin, test 

setinin tamamındaki tahmin performansı verilmiştir. 

 

Şekil 4.18. Houston veri seti: elektrik tüketimi özniteliğiyle eğitilen LSTM modelinin test setinin 

tamamındaki tahmin performansı 

 

Söz konusu şekilde görüldüğü üzere, ilgili model kış aylarında en iyi tahmin 

performansını gösterirken, yaz aylarında en düşük tahmin performansını göstermiştir. 

Modelin kış, ilkbahar, yaz ve sonbahar mevsimlerindeki ortalama MAPE değerleri sırası 

ile “%5,41”, “%7,27”, “%5,69” ve “%6,88” şeklinde hesaplanmıştır. Ayrıca, modelin 

tahmin edilen yıl genelinde hafta içi ve hafta sonu günlerindeki ortalama MAPE değerleri 

sırası ile “%6,02” ve “%7,03” olarak hesaplanmıştır. Şekil 4.19’da ise Elec+Temp+Time 

öznitelikleri ile eğitilen LSTM modelinin, test setinin tamamındaki tahmin performansı 

verilmiştir. 

Söz konusu şekilden anlaşılacağı üzere, model, sadece elektrik tüketimi özniteliği 

ile eğitilen LSTM modelinde olduğu gibi, kış aylarında en iyi, yaz aylarında ise en kötü 

tahmin performansını göstermiştir. Modelin kış, ilkbahar, yaz ve sonbahar 

mevsimlerindeki ortalama MAPE değerleri sırası ile “%3,50”, “%6,37”, “%4,53” ve 

“%5,75” şeklinde hesaplanmıştır. LSTM modelinin eğitimine sıcaklık ve zaman damgası 
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özniteliklerinin eklenmesi ile mevsim tahminleri genel olarak iyileşmiştir. Sadece elektrik 

tüketimi özniteliği ile eğitilen modelde olduğu gibi bu model de hafta içi günlerini çok az 

bir fark ile daha iyi tahmin etmiştir. Hafta içi ve hafta sonu günlerinin ortalama MAPE 

değerleri “%5,03” ve “%5,07” olarak hesaplanmıştır. 

 

Şekil 4.19. Houston veri seti: Elec+Temp+Time öznitelikleriyle eğitilen LSTM modelinin test setinin 

tamamındaki tahmin performansı 

 

4.2.2. CNN modeli 

Houston veri setinin sadece elektrik tüketimi özniteliği ile eğitilen CNN modelinin 

kayıp grafiği Şekil 4.20’de verilmiştir.  

Söz konusu kayıp grafiğinde görüldüğü üzere, elektrik tüketimi özniteliği ile 

eğitilen modelin 145 epochta eğitim sürecinin tamamlandığı görülmektedir. Bu modelin 

eğitim süresi “11,01” saniye olarak ölçülmüş olup, kayıp grafiğine bakıldığında önerilen 

modelde overfitting gerçekleşmediği görülebilmektedir. Bu veri seti kullanılarak eğitilen 

diğer CNN modellerinin kayıp grafikleri de benzer karakteristiğe sahip olup, eğitim 

verisine aşırı uyma durumu söz konusu değildir. 
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Şekil 4.20. Houston veri seti: elektrik tüketimi özniteliğiyle eğitilen CNN modelinin kayıp grafiği 

 

Farklı öznitelik setleriyle eğitilen CNN modelleriyle elde edilen ortalama N-

RMSE, N-MAE ve MAPE değerleri Şekil 4.21’de verilmiştir. 

Söz konusu şekilde görüldüğü üzere, sıcaklık, bağıl nem, rüzgar hızı ve zaman 

damgası özniteliklerinin her biri elektrik tüketimi özniteliğiyle birlikte kullanıldığında, 

tahmin performansını genel olarak iyileştirdiği görülmektedir. N-RMSE, N-MAE ve 

MAPE değerleri sırasıyla “%26,24”, “%27,45” ve “%28,99” oranına kadar iyileşmiştir. 

Elektrik tüketimi özniteliğinin yanında sıcaklık, bağıl nem, rüzgar hızı ve zaman 

damgası özniteliklerinden sadece biri eklenip model eğitildiğinde, en iyi tahmin 

performansı Elec+Temp öznitelik setinde elde edilmiştir. Sadece elektrik tüketimi 

özniteliği ile eğitilen modelin N-RMSE, N-MAE ve MAPE değerleri sırası ile “0,26”, 

“0,23” ve “%7,16” olurken Elec+Temp özniteliği ile eğitilen modelde bu değerler “0,22”, 

“0,23” ve “%5,65” olarak hesaplanmıştır. Birden fazla öznitelik kullanılarak yapılan 

eğitim ve testler sonucunda, Elec+Temp+Time öznitelik seti ile eğitilen CNN modelinin, 

en iyi tahmin performansını gösterdiği anlaşılmıştır. Buradan, önerilen CNN modeli için 

sıcaklık ve zaman damgası özniteliklerinin, diğer özniteliklere kıyasla elektrik tüketimi 

tahminine katkısının daha çok olduğu anlaşılmaktadır. En iyi tahmin performansının elde 

edildiği bu modelin N-RMSE, N-MAE ve MAPE değerleri sırası ile “0,19”, “0,17” ve 

“%5,09” olarak hesaplanmıştır. 
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(a) 

 
(b) 

 
(c) 

Şekil 4.21. Houston veri seti: farklı öznitelik setleri için CNN modeliyle elde edilen ortalama (a) N-RMSE, 

(b) N-MAE ve (c) MAPE değerleri 

 

 

Şekil 4.22’de ise elektrik tüketimi özniteliği ile eğitilen CNN modelinin, test 

setinin tamamındaki tahmin performansı verilmiştir. 
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Şekil 4.22. Houston veri seti: elektrik tüketimi özniteliğiyle eğitilen CNN modelinin test setinin 

tamamındaki tahmin performansı 

 

Söz konusu şekilde görüldüğü üzere, ilgili model kış aylarında en iyi tahmin 

performansını gösterirken, yaz aylarında en düşük tahmin performansını göstermiştir. 

Modelin kış, ilkbahar, yaz ve sonbahar mevsimlerindeki ortalama MAPE değerleri sırası 

ile “%5,37”, “%7,39”, “%8,33” ve “%7,57” şeklinde hesaplanmıştır. Ayrıca, modelin 

tahmin edilen yıl genelinde hafta içi ve hafta sonu günlerindeki ortalama MAPE değerleri 

sırası ile “%7,18” ve “%7,13” olarak hesaplanmıştır. Bu modelin hem hafta içi hem de 

hafta sonu günleri için tahmin performansının birbirine yakın olduğu görülmektedir. Şekil 

4.23’te ise Elec+Temp+Time öznitelikleri ile eğitilen CNN modelinin, test setinin 

tamamındaki tahmin performansı verilmiştir. 

Söz konusu şekilde anlaşılacağı üzere, model, sadece elektrik tüketimi özniteliği 

ile eğitilen CNN modelinin aksine, kış aylarında en iyi, ilkbahar aylarındaysa en kötü 

tahmin performansını göstermiştir. Modelin kış, ilkbahar, yaz ve sonbahar 

mevsimlerindeki ortalama MAPE değerleri sırası ile “%3,82”, “%6,33”, “%4,68” ve 

“%5,52” şeklinde hesaplanmıştır. CNN modelinin eğitimine sıcaklık ve zaman damgası 

özniteliklerinin eklenmesi ile mevsim tahminleri genel olarak iyileşmiştir. Sadece elektrik 
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tüketimi özniteliği ile eğitilen modelin aksine bu model de hafta sonu günlerini daha iyi 

tahmin etmiştir. Hafta içi ve hafta sonu günlerinin ortalama MAPE değerleri “%5,15” ve 

“%4,93” olarak hesaplanmıştır. 

 

 

Şekil 4.23. Houston veri seti: Elec+Temp+Time öznitelikleriyle eğitilen CNN modelinin test setinin 

tamamındaki tahmin performansı 

 

4.2.3. Topluluk modeli 

Farklı öznitelik grupları ile eğitilen Topluluk modelleri ile elde edilen N-RMSE, 

N-MAE ve MAPE değerleri Şekil 4.24’te verilmiştir. 

Söz konusu şekilde görüldüğü üzere, sıcaklık, bağıl nem, rüzgar hızı ve zaman 

damgası özniteliklerinin her biri elektrik tüketimi özniteliğiyle birlikte kullanıldığında, 

modelin öğrenme kapasitesini artırdığı ve tahmin performansını genel olarak iyileştirdiği 

görülmektedir. Önerilen Topluluk modelinin, N-RMSE, N-MAE ve MAPE değerleri 

sırasıyla “%24,95”, “%25,71” ve “%24,84” oranına kadar iyileşmiştir. 
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(a) 

 
(b) 

 
(c) 

Şekil 4.24. Houston veri seti: farklı öznitelik setleri için Topluluk modeliyle elde edilen ortalama (a) N-

RMSE, (b) N-MAE ve (c) MAPE değerleri 

 

Elektrik tüketimi özniteliğinin yanında sıcaklık, bağıl nem, rüzgar hızı ve zaman 

damgası özniteliklerinden sadece biri eklenip model eğitildiğinde, en iyi tahmin 

performansı Elec+Temp öznitelik setinde elde edilmiştir. Sadece elektrik tüketimi 
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özniteliği ile eğitilen modelin N-RMSE, N-MAE ve MAPE değerleri sırası ile “0,25”, 

“0,21” ve “%6,42” olurken Elec+Temp özniteliği ile eğitilen modelde bu değerler “0,21”, 

“0,18” ve “%5,36” olarak hesaplanmıştır. Birden fazla öznitelik kullanılarak yapılan 

eğitim ve testler sonucunda, Elec+Temp+Time öznitelik seti ile eğitilen Topluluk 

modelinin, en iyi tahmin performansını gösterdiği anlaşılmıştır. Bu modelin N-RMSE, 

N-MAE ve MAPE değerleri sırası ile “0,18”, “0,16” ve “%4.83” olarak hesaplanmıştır. 

Şekil 4.25’te ise elektrik tüketimi özniteliği ile eğitilen Topluluk modelinin, test setinin 

tamamındaki tahmin performansı verilmiştir. 

 

Şekil 4.25. Houston veri seti: elektrik tüketimi özniteliğiyle eğitilen Topluluk modelinin test setinin 

tamamındaki tahmin performansı 

 

Söz konusu şekilde görüldüğü üzere, ilgili model kış aylarında en iyi tahmin 

performansını gösterirken, ilkbahar aylarında en düşük tahmin performansını 

göstermiştir. Modelin kış, ilkbahar, yaz ve sonbahar mevsimlerindeki ortalama MAPE 

değerleri sırası ile “%5,33”, “%7,25”, “%6,10” ve “%7,00” şeklinde hesaplanmıştır. 

Ayrıca, modelin tahmin edilen yıl genelinde hafta içi ve hafta sonu günlerindeki ortalama 

MAPE değerleri sırası ile “%6,31” ve “%6,71” olarak hesaplanmıştır. Şekil 4.26’da ise 
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Elec+Temp+Time öznitelikleri ile eğitilen Topluluk modelinin, test setinin tamamındaki 

tahmin performansı verilmiştir. 

 

Şekil 4.26. Houston veri seti: Elec+Temp+Time öznitelikleriyle eğitilen Topluluk modelinin test setinin 

tamamındaki tahmin performansı 

 

Bu şekilden anlaşılacağı üzere, model, sadece elektrik tüketimi özniteliği ile 

eğitilen Topluluk modelinde olduğu gibi, kış aylarında en iyi, ilkbahar aylarında ise en 

kötü tahmin performansını göstermiştir. Modelin kış, ilkbahar, yaz ve sonbahar 

mevsimlerindeki ortalama MAPE değerleri sırası ile “%3,38”, “%6,10”, “%4,44” ve 

“%5,39” şeklinde hesaplanmıştır. Topluluk modelinin eğitimine sıcaklık ve zaman 

damgası özniteliklerinin eklenmesi ile mevsim tahminleri genel olarak iyileşmiştir. 

Modelin, hafta içi ve hafta sonu günlerinin ortalama MAPE değerleri “%4,88” ve 

“%4,69” olarak hesaplanmıştır. Sadece elektrik tüketimi özniteliği ile eğitilen modelin 

aksine bu model, hafta sonu günlerini daha iyi tahmin etmiştir. Burada zaman damgası 

özniteliğinin modelin tahmin performansına önemli ölçüde katkı sağladığı görülmüştür. 
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4.2.4. Günlük performans analizi 

Önerilen modellerin tahmin performanslarını daha yakından gözlemleyebilmek ve 

karşılaştırabilmek adına, Houston veri setine ait yaz ve kış mevsimlerinden ikişer gün 

seçilmiştir. Elektrik tüketim örüntüleri mevsimlere ve günlere göre farklılık gösterdiği 

için, seçilen günlerin birinin hafta içi, diğerinin ise hafta sonu olmasına özen 

gösterilmiştir. Bu şekilde, modellerin farklı koşullar altında nasıl performans gösterdiği 

daha net bir şekilde değerlendirilebilecektir. Önerilen modellerin ilgili günlere ait 

tahminlerini, tahmin performanslarını ve gerçek tüketim değerlerini gösteren grafikler 

Şekil 4.27, Şekil 4.28, Şekil 4.29 ve Şekil 4.30’da verilmiştir. 

Söz konusu grafiklerden anlaşılacağı üzere, genel olarak seçilen günler için 

Topluluk modellerinin daha iyi tahmin performansı gösterdiği görülmektedir. Elbette bu 

durum, farklı günler arasında değişiklik gösterebilir. Bazı günler için LSTM veya CNN 

modelleri daha iyi tahminler üretebilmektedir. Ancak, yıl geneline bakıldığında, önerilen 

modellerin tahmin performansları sırasıyla Topluluk, LSTM ve CNN olarak 

hesaplanmıştır. 

 

 

Şekil 4.27. Houston veri seti: yaz mevsimi hafta içinde LSTM, CNN ve Topluluk modellerinin tahmin 

performanslarının karşılaştırması 
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Şekil 4.28. Houston veri seti: yaz mevsimi hafta sonunda LSTM, CNN ve Topluluk modellerinin tahmin 

performanslarının karşılaştırması 

 

 

 

Şekil 4.29. Houston veri seti: kış mevsimi hafta içinde LSTM, CNN ve Topluluk modellerinin tahmin 

performanslarının karşılaştırması 
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Şekil 4.30. Houston veri seti: kış mevsimi hafta sonunda LSTM, CNN ve Topluluk modellerinin tahmin 

performanslarının karşılaştırması 

 

4.3. Literatürle Karşılaştırma 

Tez çalışması kapsamında geliştirilen modeller ile literatürdeki modellerin 

karşılaştırması Tablo 4.2'de sunulmuştur. Söz konusu tabloda, ilgili modellerle ulaşılan 

en iyi sonuçlara yer verilmiştir. 

Söz konusu tabloda görüldüğü üzere, önerilen modellerin literatürdeki çalışmalara 

oranla daha iyi tahminler ürettiği açık bir şekilde görülmektedir. Dayton şehrine ait 

elektrik tüketim verilerinin kullanıldığı (Khan, et al., 2022) tarafından yapılan çalışmada, 

farklı modeller eğitilmiş ve bir saatlik elektrik tüketim tahmini yapılmıştır. Bu modeller 

içerisinde en iyi performansı gösteren LSTM modelinin, N-RMSE ve N-MAE değerleri 

sırasıyla “0,383” ve “0,251” olarak hesaplanmıştır. Söz konusu çalışmada elde edilen 

sonuçlara kıyasla, bu tez çalışmasında önerilen modellerin tahmin performansı oldukça 

iyidir. Ayrıca, bu tez çalışmasında önerilen modellerin 24 saat için elektrik tüketim 

tahmini yaptığı düşünüldüğünde, literatürde belirtilen modellere kıyasla daha üstün 

performans gösterdikleri açıkça görülmektedir. 

İlgili tabloda, (Butt, Hussain, Mahmood, & Lone, 2021) ve (Almaleck, et al., 

2024) tarafından yapılan çalışmalarda, solo ve hibrit modeller eğitilerek 24 saatlik 

elektrik tüketimi tahminleri yapılmıştır. Modellerin tahmin performansını 
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değerlendirmek için MAPE kullanılmış ve en iyi sonucun elde edildiği MLP için bu değer 

“%4,97” olarak hesaplanmıştır. Bu tez çalışmasında, önerilen LSTM, CNN ve Topluluk 

modelleri için MAPE değerlerinin sırasıyla “%4,63”, “%4,06” ve “%4,17” olduğu göz 

önüne alındığında, 24 saatlik elektrik tüketimi tahminlerinde de önerilen modellerin 

literatürde bulunan modellere kıyasla daha iyi tahminler ürettiği anlaşılmaktadır. 

 

Tablo 4.2. Önerilen modellerin performansının literatürle karşılaştırılması 

Yöntem N-RMSE N-MAE MAPE Tahmin Ufku (Saat) 

CNN (Khan, et al., 2022) 0,502 0,373 - 1 

SVR (Khan, et al., 2022) 0,620 0,493 - 1 

GRU (Khan, et al., 2022) 0,614 0,488 - 1 

MLP (Khan, et al., 2022) 0,519 0,382 - 1 

LSTM (Khan, et al., 2022) 0,383 0,251 - 1 

Linear Regression (Khan, et al., 2022) 0,570 0,404 - 1 

Decision Tree (Khan, et al., 2022) 0,571 0,359 - 1 

ELM (Khan, et al., 2022) 0,563 0,427 - 1 

MLP (Butt, Hussain, Mahmood, & Lone, 

2021) 

  %4,97 24 

LSTM (Butt, Hussain, Mahmood, & Lone, 

2021) 

  %5,17 24 

CNN (Butt, Hussain, Mahmood, & Lone, 

2021) 

  %5,62 24 

SDA (Almaleck, et al., 2024)   %12,39 24 

MLR (Almaleck, et al., 2024)   %11,24 24 

BEM (Almaleck, et al., 2024)   %9,09 24 

ARIMAX (Almaleck, et al., 2024)   %14,74 24 

ARIMAX+BEM (Almaleck, et al., 2024)   %10,41 24 

BEM+ARIMAX (Almaleck, et al., 2024)   %9,03 24 

     

Önerilen Modeller 

LSTM 0,191 0,159 4,63 24 

CNN 0,163 0,137 4,06 24 

Topluluk 0,171 0,143 4,17 24 
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5. SONUÇLAR 

Bu çalışmada, kısa vadeli (sonraki 24 saat) elektrik tüketimi tahmini için LSTM, 

CNN ve bu iki mimarinin birleşiminden oluşan Topluluk modelleri önerilmiştir. 

Modellerin eğitim ve test aşamaları için Amerika’nın Ohio ve Texas eyaletlerinde 

bulunan Dayton ve Houston şehirlerine ait elektrik tüketim, meteoroloji ve zaman 

damgası verileri kullanılmıştır. Modellerin eğitim süreçlerine geçilmeden önce, birtakım 

optimizasyon adımları gerçekleştirilmiştir. Bu adımlar sırası ile önerilen model 

mimarilerinin tasarlanması, rastgele tohum değerinin belirlenmesi ve hiperparametre 

optimizasyonları şeklinde gerçekleştirilmiştir. Modellerin tahmin performanslarını 

değerlendirmek için N-RMSE, N-MAE ve MAPE metrikleri kullanılmıştır. 

Ayrıca, meteoroloji ve zaman özniteliklerinin önerilen modellerin elektrik tüketim 

tahmin performanslarına etkilerini gözlemlemek amacıyla 16 farklı öznitelik seti ile 

modeller eğitilmiş ve 24 saatlik tahminler üretilmiştir. Yapılan analizler sonucunda, 

önerilen modeller, elektrik tüketimi verilerinin yanında meteoroloji ve zaman verileriyle 

eğitildiğinde, genel olarak tahmin performanslarının iyileştiği gözlemlenmiştir. Houston 

veri seti kullanılarak eğitilen modellerde, LSTM modellerinin tahmin performansı daha 

iyi olurken, Dayton veri seti kullanılarak eğitilen modellerde CNN modellerinin tahmin 

performansı daha iyi olmuştur. Deneysel çalışmalar sonucunda, modellerin tahmin 

performansı sıralaması, Topluluk, CNN ve LSTM şeklinde gerçekleşmiştir. LSTM 

modelinin tahmin performansı, Dayton ve Houston veri setleri için sırası ile “%22,31” ve 

“%21,53” oranına kadar iyileşme göstermiştir. Bu iyileşme oranları, CNN modeli için 

“%27,24” ve “%28,99”, Topluluk modeli için ise “%22,75” ve “%25,71” olarak 

hesaplanmıştır. Bu tez çalışmasında, meteoroloji ve zaman verilerinin, önerilen 

modellerin elektrik tüketimi tahmin performanslarını önemli ölçüde iyileştirdiği açık bir 

şekilde görülmüştür. Her iki veri seti için önerilen modellerin tahmin performansları, kış 

ayları için en iyi olurken, Dayton veri seti için yaz, Houston veri seti için ise ilkbahar 

ayları en kötü olmuştur.  

Google tarafından geliştirilen, çok değişkenli derin öğrenme tabanlı TFT modeli ile 

benzer çalışmalar yapmak, gelecek çalışma planlarımız arasında yer almaktadır. Ayrıca, 

N-BEATS ve DeepAR gibi tek değişkenli derin öğrenme tabanlı zaman serisi tahmin 

modellerinden, hibrit yaklaşımlar ile çok değişkenli modeller geliştirmek, uzun vadeli 

planlarımız arasında yer almaktadır.  
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