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ABSTRACT

INTEGRATIVE MACHINE LEARNING APPROACHES FOR
ENHANCED CARDIOVASCULAR DISEASE PREDICTION: A
COMPARATIVE ANALYSIS OF XGBOOST AND ANFIS
ALGORITHMS

MUHYI, Diyar Fadhil Muhyi

M.Sc., Information Technologies, Altinbas University,
Supervisor: Assoc. Prof. Dr. Oguz ATA
Date: June / 2024

Pages: 88

Cardiovascular diseases (CVDs) are the leading cause of death globally, underscoring the
need for advanced detection and diagnostic methods to enhance patient outcomes. This study
investigates the efficacy of two machine learning algorithms, XGBoost and the Adaptive
Neuro-Fuzzy Inference System (ANFIS), in predicting heart disease across diverse datasets.
Utilizing datasets from the UCI Machine Learning Repository, including Switzerland,
Cleveland, Hungarian, Long Beach VA, and Statlog Heart, standard preprocessing
techniques such as imputation, standardization, one-hot encoding, and SMOTEENN were
applied to ensure consistent modeling conditions. Both models underwent extensive training
and optimization. XGBoost excelled, particularly achieving 100% accuracy in the
Switzerland and Statlog datasets, while ANFIS demonstrated its strength in modeling
complex patterns, notably achieving perfect accuracy in the Cleveland dataset. Performance
evaluations using accuracy, precision, recall, F1 score, F2 score, and ROC-AUC score
highlighted XGBoost's consistent high precision and recall, vital for reliable CVD diagnosis.
In contrast, ANFIS showed potential in clinical settings with its high F2 scores, emphasizing

the reduction of false negatives. The study highlights the advantages of using advanced

Vi



machine learning models like XGBoost and ANFIS in cardiovascular diagnostics,
suggesting further research with larger and more varied datasets to refine these models and
advance medical diagnostics using machine learning.

Keywords: Cardiovascular Diseases, Machine Learning, XGBoost, ANFIS, Diagnostic
Predictive Modeling.
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OZET

KARDIYOVASKULER HASTALIK TAHMINININ GELISTIRILMESI
ICIN ENTEGRATIF MAKINE OGRENMESi YAKLASIMLARI:
XGBOOST VE ANFIS ALGORITMALARININ KARSILASTIRMALI
ANALIZI

MUHYI, Diyar Fadhil Muhyi

Yiiksek Lisans, Bilisim Teknolojileri Bilim Dali, Altinbas Universitesi,

Danisman: Dog¢. Dr. Oguz ATA
Tarih: Haziran / 2024

Sayfa: 88

Kardiyovaskiiler hastaliklar (KVH'ler) diinya genelinde 6nde gelen 6liim nedenidir ve bu
durum, hasta sonuglarin1 iyilestirmek i¢in gelismis tespit ve tan1 yontemlerine olan ihtiyaci
vurgulamaktadir. Bu ¢alisma, kalp hastaligini tahmin etmede iki makine &grenmesi
algoritmasinin, XGBoost ve Adaptif Noro-Bulanik Cikarim Sistemi'nin (ANFIS) etkinligini
cesitli veri setlerinde arastirmaktadir. Calismada, UCI Makine Ogrenmesi Veritabani'ndan
alinan Isvigre, Cleveland, Macaristan, Long Beach VA ve Statlog Kalp veri setleri
kullanilmis ve modelleme kosullarinin tutarliligini  saglamak amaciyla imputasyon,
standardizasyon, one-hot encoding ve SMOTEENN gibi standart 6n isleme teknikleri
uygulanmigtir. Her iki model de kapsamli bir sekilde egitilmis ve optimize edilmistir.
XGBoost, dzellikle Isvigre ve Statlog veri setlerinde %100 dogruluk orani elde ederek iistiin
basar1 gostermistir; ANFIS ise karmasik desenleri modellemedeki giiciinii, ozellikle
Cleveland veri setinde miikemmel dogruluk orani elde ederek kanitlamistir. Dogruluk,
kesinlik, geri ¢agirma, F1 skoru, F2 skoru ve ROC-AUC skoru gibi performans
degerlendirmeleri, giivenilir KVH tanisi icin XGBoost'un tutarli yiliksek kesinlik ve geri

cagirma oranlarini vurgulamistir. Buna karsin, ANFIS'in yiliksek F2 skorlart ile klinik
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ortamlarda, yanlis negatiflerin azaltilmasina vurgu yaparak, potansiyelini gostermistir.
Calisma, XGBoost ve ANFIS gibi gelismis makine 6grenmesi modellerinin kardiyovaskiiler
tanilarda kullaniminin avantajlarin1 vurgulamakta ve bu modelleri iyilestirmek ve makine
O0grenmesini kullanarak tibbi tanilarda ilerleme kaydetmek amaciyla daha biiyiik ve daha

cesitli veri setleriyle daha fazla arastirma yapilmasini 6nermektedir.

Anahtar Kelimeler: Kardiyovaskiiler Hastaliklar, Makine Ogrenmesi, XGBoost, ANFIS,

Tanisal Tahmin Modelleme.
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1. INTRODUCTION

1.1 BACKGROUND

Cardiovascular diseases (CVDs) continue to be a major global health issue, making a
considerable impact on illness and death rates. CVDs are identified by the World Health
Organization (WHO) as the primary cause of worldwide deaths, accounting for around 17.9
million fatalities per year. This accounts for 31% of all global deaths (World Health
Organization, 2021). The variety of cardiovascular illnesses encompasses a wide range of
diseases, such as coronary artery disease, heart failure, arrhythmias, and valvular heart
abnormalities. These conditions have a significant impact on healthcare systems and the
overall health of society [1].

The manifestation of heart illness is diverse and contingent upon the particular
cardiovascular ailment. Typical symptoms consist of angina, which is chest pain or
discomfort caused by insufficient oxygen supply to the heart muscle; dyspnea, which is
difficulty breathing that is noticeable during physical exertion or even at rest in severe cases;
palpitations, which are irregular heartbeats; asthenia or dizziness, especially during physical
activity; fatigue, an unusual feeling of tiredness that is not relieved by rest; and edema, which
indicates potential heart failure by the accumulation of fluid in the lower limbs [2] - [4].
Heart disease is caused by a combination of hereditary, environmental, and lifestyle factors.
Significant risk factors include hypertension, which raises the workload on the heart;
hyperlipidemia, which causes changes in the arteries leading to atherosclerosis; tobacco use,
which speeds up the development of plaque in the arteries; diabetes mellitus, which is
associated with faster progression of atherosclerosis; obesity, which is connected to
increased workload on the heart and hypertension; and sedentarism, which is linked to a
higher risk of cardiovascular problems [2] - [4].

To achieve an accurate diagnosis of heart failure, it is crucial to use established definitions
and gather relevant data, such as the number of hospital admissions linked to heart failure.
This highlights the need to detect the disease early on [5]. A range of diagnostic techniques,
including electrocardiograms, echocardiography, stress testing, coronary angiography, and

blood tests, are crucial for promptly and thoroughly diagnosing heart disease [6].



Moreover, there is variation in cardiovascular disease symptoms between genders, which
increases the complexity of diagnoses. For example, whereas chest pain is frequently
reported by men, women may also encounter other symptoms such as nausea and profound
weariness [7]. Due to the variety, a wide range of diagnostic techniques and competent
clinical judgment is required for an appropriate diagnosis [6]. The effectiveness of
diagnosing and treating cardiac disease is significantly reduced in settings that do not have
access to advanced medical equipment and knowledge [8]. Inadequate diagnostic resources
and limited medical competence might result in erroneous diagnoses, while the exorbitant
expenses associated with new diagnostic tools can constrain their accessibility [6]. The
combined annual expenses related to cardiovascular disease (CVD) and stroke in the United
States were estimated to be approximately $351.2 billion for the period of 2014 to 2015.
This includes both direct and indirect costs. Direct costs alone increased from $103.5 billion
in 1996 to 1997 to $213.8 billion in the same period. These statistics emphasize the
significant economic impact of these health conditions [9].

To tackle these difficulties, it is crucial to develop a sophisticated and precise system that
can analyze medical data, detect patterns related to heart disease, and forecast impending
heart attacks [5]. This method has the potential to revolutionize the management of cardiac
disease by allowing for earlier interventions and saving lives [10]. This emphasizes the
crucial combination of advanced data analysis technologies with clinical expertise to
enhance the prognosis and treatment of cardiovascular disease.

As previously mentioned, diagnosing heart illness may be both costly and time-consuming.
To address this issue, Machine Learning (ML) can be utilized. ML plays a vital role in the
detection of heart disease by employing sophisticated algorithms to analyze massive
quantities of medical data [11]. ML algorithms have the ability to detect intricate patterns
and connections in patient data that may not be immediately obvious to human clinicians
[12]. ML models can build predictive models for identifying patients at risk of developing
heart disease or experiencing cardiac events by leveraging data such as patient
demographics, medical history, symptoms, and diagnostic test results [13]. In addition,
decision support systems based on ML can aid healthcare practitioners in generating precise
and prompt diagnoses by offering insights and recommendations derived from the study of
patient data [14]. Integrating ML into the diagnosis of cardiovascular illness has enormous



potential to enhance the effectiveness and precision of diagnostic procedures, ultimately
resulting in improved patient outcomes and decreased healthcare expenses [11].

This research focuses on the crucial issue presented by cardiovascular diseases (CVDs),
which are a major cause of death and have a considerable impact on the global economy.
This thesis utilizes ML techniques to predict cardiac illness by implementing two advanced
algorithms, XGBoost and ANFIS. These algorithms facilitate the examination of intricate
medical data, assisting in the prompt identification and precise diagnosis of cardiovascular
diseases (CVDs). This work highlights the potential of machine learning to revolutionize the
healthcare field by combining XGBoost and ANFIS to create advanced diagnostic tools.
This not only improves the process of making clinical decisions but also provides a strategic
approach to reduce healthcare expenses related to cardiovascular diseases. This research
makes a substantial contribution to medical informatics by creating a prediction model that
reliably identifies patients who are at risk. This model opens up new possibilities for
improving patient outcomes in cardiovascular treatment. In conclusion, this thesis highlights
the significance of integrating machine learning with clinical expertise to enhance the
diagnosis, treatment, and management of heart disorders. This approach holds the potential
to revolutionize healthcare by saving more lives and optimizing the allocation of health

system resources.
1.2 STATEMENT OF PROBLEM

The increasing occurrence of cardiovascular diseases (CVDs) on a global scale poses a
serious challenge to health systems globally. CVDs are responsible for approximately 17.9
million fatalities each year and have a substantial economic impact. Although medical
diagnostics have improved, it is still challenging to detect and diagnose cardiovascular
diseases (CVDs) early because these diseases are complicated and have a wide range of
symptoms that are impacted by hereditary, environmental, and lifestyle factors. The diversity
in symptoms, combined with variations in how symptoms are experienced by different
genders, adds complexity to the diagnostic procedure, requiring a range of tests and the
expertise of clinical professionals.

In areas where there is limited availability of advanced medical facilities, the difficulty is
much more noticeable. Inadequate availability of advanced diagnostic equipment and

medical skills can result in incorrect diagnosis, delayed treatment, and higher mortality rates.
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Furthermore, the expensive nature of advanced diagnostic technology limits their
availability, particularly in areas with little resources, which worsens health inequalities.

This study highlights a significant deficiency in the existing diagnostic approach: the
requirement for a novel, economical solution that might improve the precision and
promptness of cardiovascular disease detection. Machine learning provides a promising
opportunity to fill this gap. By leveraging the capabilities of machine learning to scan large
datasets and detect complex patterns, it is possible to create predictive models that can
accurately foresee cardiovascular events. Nevertheless, the utilization of machine learning
based diagnostic tools for cardiovascular diseases (CVDs) is now at an early stage of
development. Therefore, it is crucial to conduct comprehensive research and validation to
guarantee their effectiveness and dependability in clinical environments. This study seeks to
close this disparity by utilizing the capabilities of XGBoost and ANFIS algorithms,
providing a new method to enhance the accuracy and efficiency of diagnosing cardiac

problems. This will enable prompt intervention and improve patient outcomes.
1.3 OBJECTIVES AND HYPOTHESIS
1.3.1 The Objective

The main objective of this project is to create and verify a prediction model using machine
learning algorithms, specifically XGBoost and ANFIS, to improve the diagnosis and early
identification of cardiovascular illnesses (CVDs). The objective of this model is to efficiently
evaluate medical data, detecting complex patterns that might forecast the probability of
cardiac illness. This, in turn, enables prompt clinical interventions. The research aims to
enhance the accuracy of cardiovascular disease (CVD) diagnosis by incorporating
sophisticated algorithms. Additionally, it aims to help alleviate the worldwide health and
economic burden caused by these diseases. The project seeks to highlight the capacity of
machine learning to revolutionize cardiovascular care by providing a scalable and cost-

efficient diagnostic tool that can be implemented in various healthcare environments.
1.3.2 The Hypothesis

The hypothesis of this study posits that the incorporation of XGBoost and ANFIS algorithms

in the analysis of medical data can enhance the precision and effectiveness of heart disease
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prediction, surpassing conventional diagnostic techniques. Our hypothesis posits that the
machine learning model would reveal intricate patterns and connections in the data that may
not be immediately evident to human clinicians. This, in turn, will enable the model to detect
probable heart abnormalities at an earlier stage. The study predicts that the use of a powerful
predictive tool will improve clinical decision-making processes. This will lead to better
patient outcomes, more efficient allocation of healthcare resources, and a decrease in the

cost burden caused by cardiovascular illnesses.



2. LITERATURE REVIEW

2.1 OVERVIEW OF CARDIOVASCULAR DISEASES

Cardiovascular diseases (CVDs) are a collection of conditions that affect the heart and blood
arteries, presenting major health challenges worldwide [15]. These diseases are a major
concern in the medical profession since they significantly contribute to global rates of illness
and death [16]. The range of cardiovascular diseases (CVDs) include several disorders such
as coronary artery disease, heart failure, arrhythmias, and valvular heart problems. Each of
these conditions has unique pathophysiological characteristics and clinical symptoms [2].
The heart, a vital organ, coordinates the circulation of blood throughout the body, supplying
oxygen and nourishment to different tissues and organs. When the health of the
cardiovascular system is damaged, it can have far-reaching effects beyond just the heart [17].
It can affect the entire vascular system and, as a result, impact various aspects of human
health. The development of cardiovascular diseases (CVDs) is caused by multiple variables,
which frequently include an intricate interaction between genetic predispositions,
environmental factors, and lifestyle choices [18]. Notable risk factors encompass
hypertension, increased cholesterol levels, smoking, diabetes, obesity, and physical
inactivity, all of which contribute to the decline of cardiovascular health [9].
On a global scale, the incidence of cardiovascular diseases (CVDSs) is very high, affecting
millions of individuals who experience the consequences of these illnesses. These problems
not only result in a lower quality of life but also place substantial economic burdens on
society, including healthcare expenses and reduced productivity [6]. The statistical data
demonstrating the influence of cardiovascular diseases (CVDs) highlights the need for
improved prevention measures, precise diagnosis techniques, and efficient treatment
strategies [18].

Gaining knowledge on the epidemiology and pathophysiology of cardiovascular diseases
(CVDs) is essential for creating specific interventions that attempt to decrease the occurrence
and seriousness of these illnesses [6]. Healthcare practitioners and researchers can reduce
the global burden of cardiovascular illnesses by understanding the underlying mechanisms
and risk factors linked with CVVDs and developing novel remedies [15].



2.2 DIAGNOSTIC TECHNIQUES FOR CARDIOVASCULAR DISEASE

The diagnostic methods used for cardiovascular disorders are varied and sophisticated,
reflecting the nuanced nature of the conditions they are designed to identify and describe
[19]. The process of establishing a conclusive diagnosis for cardiovascular disease (CVD)
usually begins with a thorough clinical evaluation. During this assessment, healthcare
professionals examine the patient's medical history, symptoms, and risk factors. The initial
evaluation is of utmost importance since it directs the choice of future diagnostic testing
[20].

Physical examinations are essential in healthcare, as practitioners evaluate vital signs, heart
sounds, and peripheral circulation to gain information on cardiovascular function [21].
Nevertheless, the intricate characteristics of cardiovascular diseases typically require
additional examination using sophisticated diagnostic methods [6].

Blood tests are essential diagnostic techniques that provide biochemical snapshots, enabling
the detection of cardiac muscle strain or failure [22]. Biomarkers such as troponins,
natriuretic peptides, and lipid profiles offer significant insights into cardiac health and the
risk of developing diseases [23].

Imaging tools provide a visual comprehension of the anatomy and physiology of the heart.
Echocardiography, employing ultrasound waves, allows for immediate viewing of heart
valves, chambers, and contraction patterns, offering a non-intrusive insight into cardiac
mechanics [24]. Coronary angiography, which is commonly done after non-invasive testing
that indicates a potential problem, offers a comprehensive examination of the status of the
coronary arteries. It helps identify any blockages that could lead to heart-related issues [24].
Electrocardiography (ECG) is a fundamental tool in diagnosing heart conditions. It records
the electrical activity of the heart to detect irregular heart rhythms, indicators of reduced
blood flow to the heart, or evidence of past damage to the heart muscle[25]. Stress testing,
in certain instances, can reveal underlying issues that are not apparent while the body is at
rest. This type of testing assesses cardiovascular performance when the body is subjected to
heightened demands [26].

Although current diagnostic procedures are sophisticated, there are still problems that
remain, such as limited accessibility, high costs, and the requirement for expert interpretation
of results [27]. Furthermore, the intrusiveness of specific procedures and the possibility of



incorrect results emphasize the necessity for ongoing improvements in diagnostic
approaches [28].

To summarize, although the existing diagnostic methods for cardiovascular diseases (CVDs)
are strong and varied, continuous innovation and improvement are necessary to increase
diagnostic precision, decrease invasiveness, and optimize patient outcomes in the field of

cardiovascular care.
2.3 MACHINE LEARNING IN HEALTHCARE

Machine learning, a branch of artificial intelligence, has become a powerful force in
healthcare, providing new ways to improve patient care, increase diagnostic precision, and
boost treatment effectiveness [29], [30]. Machine learning is centered around creating
algorithms that can analyze data, learn from it, and use that knowledge to create predictions
or judgments [31]. This allows the algorithms to find patterns and gain insights that may not
be easily observable by humans [31].

ML has a wide range of applications in healthcare, including predictive analytics, disease
detection [32], and operational efficiencies [29]. These algorithms have the ability to process
large amounts of data, such as patient records, imaging, genetic profiles, and clinical notes.
They then convert this data into useful information that can be acted upon [33].
An important benefit of machine learning in healthcare is its capacity to process intricate,
multidimensional datasets, providing a nuanced comprehension of patient well-being and
the advancement of diseases [34]. For example, predictive models have the ability to
anticipate the risks faced by individual patients, such as the probability of developing a
particular ailment. This allows for proactive interventions and customized care methods [35].
Moreover, machine learning algorithms have the ability to improve diagnostic procedures,
as evidenced in fields such as medical imaging [36], where they aid in the identification and
categorization of anomalies with more accuracy [30]. These features not only improve the
accuracy of diagnosis, but also greatly speed up the process of interpreting results, making
it easier to manage patients in a timely manner [29].

Although machine learning has the potential to be integrated into healthcare, there are
problems that need to be addressed [31]. Factors like as the protection of data privacy, the
transparency of algorithms, and the requirement for thorough validation to guarantee

accuracy and dependability are crucial matters to consider [34], [37]. Furthermore, the
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achievement of machine learning in healthcare relies on interdisciplinary collaboration,
which involves the integration of knowledge and skills from healthcare practitioners, data
scientists, and ethicists to effectively negotiate the intricacies of clinical implementation
[37], [38].

Machine learning is a very promising field in healthcare that has the potential to reinvent
various aspects of patient care, diagnosis, and management. As these technologies advance,
they hold the potential to reveal fresh understandings about disease, signaling the arrival of

a new age in intelligent healthcare provision.

2.4 MACHINE LEARNING APPLICATIONS FOR CARDIOVASCULAR DISEASE
PREDICTION

The application of machine learning in predicting cardiovascular disease is a burgeoning
field, evidenced by a multitude of studies aiming to enhance diagnostic accuracy through
innovative algorithms. A study [39] introduced a modified differential evolution algorithm,
DE/rand/2-wt/exp, with the aim of enhancing feature selection for predicting cardiovascular
disease. The improved technique was employed in a model that integrated the Fuzzy
Analytic Hierarchy Process with Artificial Neural Networks, resulting in an accuracy rate of
83% in predicting heart disease. The study emphasizes the promise of this integrated method
in enhancing predictive analytics in healthcare, however, it is advisable to further validate it
with larger datasets.

In a comprehensive analysis [40], the efficacy of six different machine learning algorithms
was examined in the context of cardiac disease prediction. Evaluation methods include
logistic regression, SVM, ANN, KNN, decision trees, and Naive Bayes. Logistic regression
was the most accurate, with 85% accuracy and high sensitivity and specificity. The study
highlights logistic regression and ANN's ability to predict cardiac disease. SVMs excel in
finding positive cases. The findings suggest that machine learning could considerably
enhance cardiac illness diagnosis. To corroborate these conclusions, larger datasets need be
studied.

Another innovative study [41] enhanced heart disease diagnosis using SVM classifiers,
employing Fisher scores and Matthews correlation coefficients are used to select the best

characteristics. The method was used on Cleveland, Hungarian, Switzerland, and SPECTF



UCI datasets. For each dataset, accuracy increased by 81.19%, 84.52%, 92.68%, and 82.7%.
This shows how well the method improves heart disease prediction.

Research [42] explored methods to refine heart disease predictions by identifying key
variables and employing various data mining approaches. The Cleveland dataset was used
to evaluate seven classification methods and uncover nine predictive characteristics,
including gender and chest pain kind. Vote, a hybrid data mining algorithm combining Naive
Bayes and Logistic Regression, accurately predicts heart disease with 87.4% accuracy. This
emphasizes the need of choosing characteristics and methodologies carefully when
constructing prediction models.

A study [43] aimed to elevate cardiovascular illness prediction accuracy by integrating
machine learning techniques, Relief and LASSO feature selection combined with RFBM
hybrid classifiers. A dataset from five sources is analyzed and evaluated using many criteria.
It concludes that RFBM with Relief feature selection has 99.05% accuracy, promising early
disease detection and healthcare advancements.

The HRFLM method [44], employing a diverse array of machine learning techniques on the
Cleveland UCI dataset, fully leveraged available features without restrictions, attaining an
impressive 88.7% accuracy in heart disease prediction. This highlights HRFLM's capability
as an effective diagnostic tool.

An advanced methodology [45] utilizing an optimized XGBoost classifier, enhanced
through Bayesian optimization and One-Hot encoding, outperformed standard classifiers
with a 91.8% accuracy on the Cleveland dataset. This underscores the benefit of meticulous
hyper-parameter tuning in enhancing model efficacy.

The MIFH framework [46] utilizes Factor Analysis of Mixed Data (FAMD) alongside
various machine learning techniques, significantly improving heart disease prediction
accuracy through the UCI Cleveland dataset, particularly when implementing the Random
Forest model, which achieved a 93.44% accuracy rate. This emphasizes the advantages of
combining advanced feature extraction techniques with machine learning to boost detection
accuracy.

The integration of 10T with deep learning [14] through a system utilizing a Deep Learning
Modified Neural Network (DLMNN) for patient monitoring and heart disease prediction
showed a remarkable 96.8% accuracy, surpassing traditional algorithms and illustrating the

potential synergy between IoT and deep learning in medical diagnostics.
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A novel framework [47] combining Support Vector Machine (SVM) with fuzzy logic for
decision-level fusion demonstrated a 96.23% accuracy in cardiac illness prediction,
illustrating a significant enhancement over existing methods. This two-step process,
beginning with supervised machine learning and followed by fuzzy logic-based decision
fusion, offers a comprehensive approach to predicting heart disease.

The High-Dimensional Partitioning Method (HDPM) [48], integrating DBSCAN for outlier
detection, SMOTE-ENN for data balancing, and XGBoost for prediction, showcased its
effectiveness on the Statlog and Cleveland datasets with accuracies of 95.90% and 98.40%,
respectively. This indicates its superiority in diagnosing heart disease compared to earlier
models.

A health monitoring system [49] combining loT with the Random Forest algorithm for
disease prediction underscored the algorithm's efficacy, achieving up to 97.26% accuracy in
disease diagnostics. This showcases the transformative potential of leveraging loT and
machine learning in healthcare.

An approach [50] combining ensemble deep learning with feature fusion for cardiac illness
prediction analyzed data from sensors and EMRs, achieving a 98.5% accuracy rate,
highlighting its potential in improving healthcare outcomes through advanced data analysis
and deep learning.

The Enhanced Deep Learning Assisted Convolutional Neural Network (EDCNN) [51],
applied on the IoMT platform, leverages deep learning and advanced mathematical
modelling to analyze patient data, achieving a diagnostic accuracy rate of up to 99.1% in
heart conditions. This indicates a promising future for cloud-based medical diagnostics.

In another innovative study [52], a diagnosis system employing Modified Salp Swarm
Optimization (MSSO) and Adaptive Neuro-Fuzzy Inference System (ANFIS) within the
IoMT framework showed substantial effectiveness in heart disease diagnosis, achieving an
accuracy of 99.45% and precision of 96.54%. This underscores the potential of integrating
advanced optimization and fuzzy logic techniques in enhancing medical diagnostics in the
digital age.

These studies collectively highlight the dynamic and potent role of ML in cardiovascular
disease prediction, offering insights into its application for more accurate, efficient, and
timely diagnostics, which could revolutionize patient care and healthcare systems

worldwide.
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2.5 THEORETICAL FRAMEWORK OF XGBOOST AND ANFIS ALGORITHMS

The growth of machine learning has brought about intricate algorithms that can offer
a substantial understanding of intricate datasets. Notably, the Extreme Gradient Boosting
(XGBoost) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are particularly
remarkable for their distinct capacities, particularly in the realm of cardiovascular disease
prediction.

2.5.1 XGBoost Algorithm

XGBoost is a sophisticated implementation of gradient boosting machines, created to be
extremely efficient, adaptable, and transferable [53]. The system functions based on the idea
of gradient boosting, which entails constructing a model in the shape of a collection of weak
prediction models, commonly referred to as decision trees [54]. The fundamental concept is
to progressively incorporate predictors into an ensemble, with each one rectifying the errors
of its predecessor, thus enhancing the accuracy of the model [53]. XGBoost stands out by
including many optimization strategies that improve performance and speed. These include
anovel tree-learning algorithm that effectively handles sparse data and a scalable, distributed
computing framework that speeds up computations [53].

The algorithm's efficacy in utilizing system resources and its capacity for parallel computing
make it a solid tool for addressing extensive and intricate datasets [53]. In addition, XGBoost
incorporates regularization settings to mitigate overfitting, a prevalent issue in machine
learning models. This ensures that the model maintains its ability to generalize to new,

unknown data [45].
2.5.2 ANFIS Algorithm

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a hybrid intelligent system that
combines the learning capabilities of neural networks with the knowledge representation of
fuzzy logic in order to accurately model complex nonlinear functions [55]. ANFIS combines
the principles of neural networks with fuzzy inference systems by utilizing a neural network
structure to execute a fuzzy inference system, thereby taking use of the advantages offered
by both methodologies [56].
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ANFIS consists of five layers: fuzzification layer, rules layer, normalization layer,
defuzzification layer, and output layer. The fuzzification layer converts input values into
fuzzy membership values. The rules layer applies fuzzy logic operations. The normalization
layer calculates the ratio of each rule's firing strength to the sum of all rules' firing strengths.
The defuzzification layer generates a crisp output for each rule. The summation layer
computes the overall output as the weighted average of all rule outputs [57].

ANFIS is capable of accurately approximating nonlinear functions, making it well-suited for
jobs involving complex and poorly understood relationships between input and output
variables [55]. The versatility and learning capabilities of ANFIS make it a highly useful
tool for predictive modelling in diverse sectors, such as healthcare.

2.5.3 Integration in Cardiovascular Disease Prediction

The theoretical foundations of XGBoost and ANFIS offer a strong platform for tackling the
difficulties associated with predicting cardiovascular illness. The combination of XGBoost's
efficacy in managing extensive datasets and its robust classification capabilities, along with
ANFIS's capacity to represent non-linear connections through adaptive learning, provides a
comprehensive methodology for comprehending and forecasting the risk of heart disease.
By utilizing these algorithms, researchers may create prediction models that are both precise
and capable of revealing complex patterns and connections within medical data. This

eventually enhances diagnostic procedures and patient results in cardiovascular care.
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3. METHODOLOGY

3.1 RESEARCH DESIGN

This study adopts quantitative research methodology, deploying advanced machine learning
algorithms to enhance predictions concerning cardiovascular diseases (CVDs). Central to
this investigation is the exploration of the predictive power harnessed by machine learning
models, specifically XGBoost and ANFIS, to refine the accuracy of CVD diagnosis. The
study methodically structures data pattern analysis and model performance evaluation
through quantifiable metrics, embracing a data-driven approach to medical diagnostics.

Commencing with Figure 3.1, the research delineates the XGBoost model's operational
pathway. This begins with an essential phase of data preprocessing, which includes missing
value imputation using KNN, data normalization, and categorical variable transformation
via One-Hot Encoding. To address the challenge of class imbalances prevalent in medical
datasets, SMOTEENN is employed to ensure a balanced representation of classes. In the
feature engineering step, PCA is applied to reduce dimensionality and highlight significant
predictive features, followed by a selection process to identify the most informative
predictors. The model is then fine-tuned through hyperparameter optimization, culminating

in a robust model training and evaluation stage.
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Figure 3.1: XGBoost Model Research Framework.
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Post XGBoost analysis, the study mirrors these initial steps in the ANFIS model's
framework, outlined in Figure 3.2. The data undergoes similar preprocessing and balancing
techniques, ensuring a consistent and equitable dataset for subsequent modeling. The ANFIS
model leverages a distinct set of hyperparameters, reflecting its unique computational

architecture that combines fuzzy logic with neural network adaptability.
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Figure 3.2: ANFIS Model Research Framework.

By embracing five comprehensive datasets—Switzerland, Cleveland, Hungarian, Long
Beach VA, and Statlog Heart—the study encompasses a wide spectrum of CVD profiles.
This diversity underpins the robustness of the research, ensuring its applicability across
varied patient demographics and clinical scenarios.

Sequential phases of the research design are meticulously crafted, underpinning the
collection and preprocessing of high-quality, homogenous data, thereby priming it for
effective analysis. The ensuing phase implements the XGBoost and ANFIS algorithms with
an emphasis on precision-tuning to the task at hand. The performance of these models is
scrutinized through established benchmarks that quantify their diagnostic accuracy,
sensitivity, and specificity for CVD.

This project is devoted to unearthing the latent capabilities of ML in the diagnostic realm of
cardiovascular conditions. Through a structured, systematic, and quantitative framework,
this research is poised to unearth valuable insights for the medical field. The expected
outcomes are envisaged to influence future clinical procedures and inform policy

development in cardiovascular healthcare management.
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3.2 DATA COLLECTION

This study utilizes data from five reputable datasets, obtained from the UCI Machine
Learning Repository, to create a comprehensive analysis framework for predicting
cardiovascular disease. The datasets were carefully selected to include a diverse range of
patient demographics, clinical symptoms, and diagnostic outcomes, thereby creating a
complete foundation for the development and validation of prediction models.

The selection includes:

Cleveland is well-known for its extensive collection of clinical data, which includes
diagnostic test results and signs of heart disease [58].

The Hungarian provides comprehensive data from the Hungarian Institute of Cardiology,
located in Budapest, which enriches the diversity of the study[58].

Switzerland is provided by the University Hospital in Zurich, Switzerland, focuses on
distinct cardiovascular problems that are distinctive to the region [58].

The Long Beach VA integrates data from veterans to get insights into the cardiovascular
health concerns experienced by this group [58].

The Statlog dataset is widely recognized for its role in enabling statistical analyses and
machine learning applications in the field of cardiovascular research [59].

The acquisition process from the UCI Machine Learning Repository involved verifying the
integrity and relevance of each dataset to confirm its suitability for developing advanced
machine-learning models for predicting cardiovascular disease. The following Table 3.1
illustrates the description for each dataset.

Table 3.1: Datasets Description.

Dataset Name No. Features No. Sample
Cleveland 14 304
Hungarian 14 295

Switzerland 14 124
Long Beach VA 14 201
Statlog 14 271
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3.3 DATA PREPROCESSING

Data preparation is a crucial step in assuring the efficacy of machine learning models,
especially when working with intricate datasets for the prediction of cardiovascular disease.
This phase encompassed a sequence of methodical techniques aimed at refining the raw data
obtained from the Switzerland, Cleveland, Hungarian, Long Beach VA, and Statlog Heart
datasets. The objective was to improve the quality and compatibility of the data before
utilizing the XGBoost and ANFIS algorithms for analysis.

3.3.1 Data Cleaning

Data cleaning frequently entails dealing with missing data in datasets, which is a crucial
stage for ensuring precise data analysis or machine learning [60]. The K-Nearest Neighbors
(KNN) imputation approach provides a solution by utilizing the similarity between data
points. This method addresses missing values by identifying the 'k’ nearest neighbors using
a distance measure and calculates the missing value as an aggregation of these neighbors'
values [61].

For a dataset X with a missing feature value x,,;;c KNN imputation computes the imputed

value, £,,,;ss, as follows by equation (3.1):

fmiss = %Z{'czl Wi X X(i,miss) (31)

In this context, N = {nq,n,, ..., n;} represents the set of 'k’ nearest neighbors. The value of
the missing feature for the i neighbor is denoted as x; ;,;ss. and w; indicates the weight

assigned to the contribution of the it"neighbor. When using uniform weights, each
neighbor's contribution is the same (w; = 1 for all i), resulting in the imputed value being
the average of the neighbors' values for the missing feature [61].

The selection of 'k’, or the number of neighbors, has a substantial impact on the quality of
the imputation. Inadequate number of neighbors may fail to collect the essential information,
whilst an excessive number could potentially create unwanted noise [61]. The optimal value
of 'k’ is usually established by doing empirical evaluation that is specific to the dataset.
KNN imputation relies on the assumption that data points that are proximate in feature space
exhibit comparable values [61]. This makes it a suitable method for our datasets, where this
proximity may reliably anticipate missing values. The effectiveness of the strategy depends
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on the careful selection of 'k’ and the distance metric, with the goal of effectively utilizing
the inherent data structure [61].

3.3.2 Data Standardization

Data standardization is an essential procedure in data preprocessing, particularly for machine
learning [62]. The process entails converting the characteristics of a dataset to have an
average of zero and a standard deviation of one [62]. This modification guarantees equitable
contribution from every feature, enhancing the efficiency and efficacy of numerous
algorithms.

The equation (3.2) represents the process of standardizing a feature value x in a dataset.

=t (3.2)

g

Xstda =

Assume that x represent the original value of a feature, u represent the mean of the feature,
and o represent the standard deviation of the feature. By applying this method to each
feature, the dataset is normalized, which means that the features will have an average(u) of
0 and a standard deviation (@) of 1 [63].

Normalization is crucial for algorithms that are affected by the magnitude of data or when
features cover a wide range of scales [63]. Data standardization is an essential step in many
data analysis and machine learning pipelines. We used data standardization to make sure all
the features were dimensionless and scaled equally. This process helps to improve the
effectiveness of model training and analysis [46].

3.3.3 Data Encoding

Efficiently handling categorical data is essential in machine learning as the majority of
algorithms require numerical input. One-Hot Encoding is a crucial preprocessing technique
that converts variables into a binary matrix, making the data suitable for machine learning
models [64].

One-Hot Encoding is a technique in machine learning that turns a categorical feature X,
which has m distinct categories, into a binary vector of size m. The mathematical

representation of this procedure is as follows:

v = {1, if X category;
t 7o, otherwise

18



fori =1,2,...,m where x; signifies the presence (1) or absence (0) of the i*"category in an
observation [65].

This method ensures appropriate representation of categorical variables without assuming
any undesired order, which is essential for accurately and efficiently training and predicting

our models [64].
3.3.4 Imbalanced Data

Imbalanced data in machine learning refers to situations where the distribution of classes is
uneven, resulting in a bias towards the majority class in the model. SMOTEENN is a
technique that combines Synthetic Minority Over-sampling Technique (SMOTE) and Edited
Nearest Neighbors (ENN). It solves the problem by creating artificial examples of the
minority class and eliminating incorrectly categorized instances of the majority class [66].
In the SMOTE algorithm, a new synthetic instance x,,,,iS generated by interpolating
between a minority class instance a and its nearest neighbor b as the following equation
(3.3).

Xpew = Xq + A+ (xp — Xq) (3.3)

where x, and x,;, are the feature vectors of a and b, respectively, and A is a random number
between 0 and 1 [67].

We employed this technique to augment the representation of the minority class, while ENN
aids in refining the dataset by removing noisy occurrences, resulting in a more balanced and

dependable dataset for training machine learning models [66].
3.3.5 Dimensionality Reduction

For our research, we utilized principal Component Analysis (PCA) to reduce the
dimensionality of our datasets [68]. This method is essential for simplifying the data by
translating the original variables into principal components [60]. PCA does this by
computing the eigenvectors and eigenvalues of the covariance matrix of the data. The
eigenvectors determine the new axes, known as principal components, while the eigenvalues
quantify the amount of variation explained by each component [68].

Mathematically, the procedure entails obtaining the covariance matrix from the dataset X,

followed by extracting its eigenvectors and eigenvalues [68]. The principal components are
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subsequently arranged in descending order based on their eigenvalues, which indicate the
amount of variation captured by each component [60]. By utilizing the 'mle’ method, we can
automatically optimize the selection of the most important characteristics of the data [69].
Specifically, we select the top m principal components, where m is determined by this
optimization process. This approach ensures that we keep the most relevant elements of the
data [60].

The deliberate decrease in dimensionality, as implemented in our study, helps to address the
problem of high dimensionality, improve computational performance, and preserve the

integrity of the dataset's informational content.
3.3.6 Data Splitting

In machine learning, the process is to split the dataset into separate training and testing sets.
This is done in order to train the model using the training set and then evaluate its
performance using the testing set [70]. The ‘train_test_split’ function partitions the data into
a test set and a training set, with a defined percentage (e.g., 30%) allocated to the test set and
the remaining portion assigned to the training set. The separation of data into distinct sets
enables impartial evaluation of the model by testing it on unseen data, hence verifying the
model's capacity to apply to new situations and avoiding it from overfitting the training data.
The study provides a strong groundwork for the application of machine learning algorithms
to predict cardiovascular illness, by carefully preprocessing the data. The preparatory steps
improved the quality of the input data and refined the settings for training and testing the
XGBoost and ANFIS models. This ensured that the analysis was robust, and the results were

reliable.
3.4 FEATURE SELECTION TECHNIQUES
3.4.1 Feature Selection with SelectFromModel in XGBoost

Within the framework of XGBoost, feature selection is simplified by utilizing the inherent
computation of feature importance during the model training procedure. SelectFromModel
Is a meta-transformer that selects features based on their determined importance. The
threshold for preserving features is set to the median value, meaning that only features with

importance over this value will be kept [71].
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The significance of a feature in XGBoost is typically measured mathematically using
measures like as gain. Gain is the average enhancement in accuracy that a feature brings
across all trees. The equation (3.4) shown below represents the method for estimating the
significance ; of a property j :

I = Ytree Gain; (34)
J ZtreeSplitsj

where Gain; is the gain of feature j summed over all trees, and Splits; is the number of

times feature j is used to split the data [72].
During feature selection, only the features with relevance scores that are equal to, or more
than the median are kept [71]. This approach focuses on the most important predictors, which

might potentially enhance the performance of the model [73].
3.4.2 Feature Selection with Recursive Feature Elimination in ANFIS

The Recursive Feature Elimination (RFE) plays an important part in improving the Adaptive
Neuro-Fuzzy Inference System (ANFIS) for cardiovascular disease prediction. RFE
employs a methodical approach to identify the most crucial features, hence improving the
predicted accuracy of the model. This approach progressively improves the feature set by
selecting only the most important features, resulting in a more efficient model with reduced
input dimensions [74].

The (RFE) approach begins with a whole set of features and gradually removes the least
significant ones, taking into account their impact on the performance of the model. The
iterative procedure continues until a predetermined number of important features are picked,
which are considered to be the most advantageous for improving the accuracy of the model
[75].

Utilizing (RFE) with a machine learning algorithm such as XGBoost, which is recognized
for its accurate feature importance ranking, enables the discovery of these crucial
characteristics. The selection process is of utmost importance as it has a direct impact on the
efficiency and usefulness of the ANFIS model in predicting heart disease. By prioritizing
the most useful characteristics, the model not only becomes more effective in terms of
computational resources but also improves its ability to make accurate predictions. This
reduces the chances of overfitting and enhances its performance on new and unexplored data
[75].
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3.5 IMPLEMENTATION OF MACHINE LEARNING ALGORITHMS
3.5.1 XGBoost Algorithm Implementation

XGBoost, also known as Extreme Gradient Boosting, is a prominent machine learning
algorithm that is highly regarded for its proficiency in analyzing structured data and its
ability to accurately predict outcomes. The system functions by utilizing a boosting process
that systematically rectifies errors from previous decision trees [45], which proves to be
highly efficient in the intricate domain of cardiovascular disease prediction. The
effectiveness of XGBoost can be due to its exceptional performance in classifying tasks, its
ability to handle tabular data effectively, and its skill in managing non-linear connections
between features. These qualities make it an ideal choice for medical predictive modelling
[72], [75].

The algorithm's effectiveness depends on the careful adjustment of hyperparameters such as
the number of trees (n_estimators), tree depth (max_depth), learning rate (1), and node split
regulation (y). The parameters are carefully tuned, usually through cross-validation methods
like GridSearchCV, to improve the model's capability to identify intricate patterns and
achieve accurate predictions [45]

The core of XGBoost's model training revolves around minimizing a loss function [72] as
the following equation (3.5).

L®) = X1, 5) + 20 (fi) (3.5)

This approach combines the prediction error with a regularization term in order to reduce
overfitting. The equation (3.6) is used to maximize the gain from each decision tree split
[72].

(3.6)

G = % [(ZieLgi)Z Cicrg)®  Cienodedd)®] y

YieLhi+ Yierhit1  Yienodehit A

The mathematical methodology employed by XGBoost guarantees the capture of both the
fundamental data patterns and the necessary precision for medical diagnostics. Using
XGBoost for cardiovascular disease prediction demonstrates its analytical capabilities in
addressing the intricacies of medical data and providing a dependable foundation for clinical
decision-making [45].
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3.5.2  ANFIS Algorithm Implementation

3.5.2.1 ANFIS architecture

The fuzzy logic integration with neural network principles makes up the ANFIS framework,
which provides a systematic approach for data analysis and modelling. The architecture and
mathematical operations of ANFIS are as follows [57]:

a. Fuzzification Layer

In this layer, numerical inputs are converted into fuzzy values through membership functions
which are commonly shaped as sigmoid. The membership value of input is formulated

according to the following equation (3.7):

. . 3.7
udyy (o) = 5 +exp(~ bij (xi~ay)) -

where a;; and b;; represent the center and width of the sigmoid function, respectively.

b. Rule Application Layer
This layer applies the fuzzy logic rules to the fuzzified inputs and generates preliminary rule

outputs. The firing strength w; of each rule is determined, which is a combination of the
membership values of the inputs associated with that rule. Normally, this is calculated using
an AND operation described in the following equation (3.8)

w; = [lizq ud;j(x) (38

where n is the number of inputs.

c. Normalization Layer

This layer ensures that the firing strengths of the rules are normalized to total one. Therefore,
the firing strength of every rule is normalized w; as the following equation (3.9)

o= W (3.9)

W =
J 21]:;1 Wi

This allows for the contribution of each rule to be proportional to each other in determining
the final output.
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d. Defuzzification Layer
Converts the fuzzy outputs of the rules into a crisp overall output. This is the combination
of the output of the rules, obtained as a function of the inputs, and is often polynomial. It is

expressed by the equation (3.10):

fl(x) = (Z?:l pijxiz + qijX; + T]) (310)
Where p;;, q;j, and 7; are the parameters of the rule’s output function.

e. Output Calculation Layer
It involves calculating the final output of the ANFIS model as an aggregate of the weighted

outputs of each rule described by equation (3.11):

F(x) = XL, w; fi(x) (3.11)

Here, f;(x) denotes the output of the j — th rule, and w; its normalized firing strength.

3.5.2.2 Hybrid learning for parameter optimization

A hybrid learning strategy is utilized by the ANFIS model to optimize its parameters and
improve the system’s prediction potential.

a. Forward Pass: The forward pass involves examining the membership value for each
input as the system goes through all the rules in a bid to check the strength of firing for
all the rules defined. The different strengths need to be normalized. After normalization,
the logical output level for every rule is obtained. This is the input value being used with
the rule’s specified consequent parameter.

b. Backward Pass (Gradient Descent Optimization): This phase of optimization includes
the backward pass, which introduces parameter refinement, quantified through gradient
descent. In turn, the backward pass intends to optimize premise parameters, which
structure the membership functions, as well as the optimization of consequent
parameters, which determine the contribution of rules’ outputs. The backward pass is
governed by the gradient of the loss function, which represents the difference between
the model’s predictions and the actual outcomes.

c. Parameter Update: Subsequently, the model goes through an update of its parameters so

as to minimize the loss function. This process is vital in the determination of the most
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effective way to update the parameters in order to accurately minimize the prediction
error. The adjustments in the parameters are determined by the calculated gradients and
the learning rate.
From the above comprehensive analysis, it is clear that the ANFIS framework efficiently
and systematically optimizes the premise and consequent parameters. It rapidly enhances
prediction accuracy by correcting consequent parameters during the forward pass and
precisely adjusts premise parameters during the backward pass. Most model characteristics
can, therefore, efficiently adapt to data trends, which ultimately improves predictive

performance.

3.6 MODELS EVALUATION

In this research, it is crucial to determine the efficacy of the XGBoost and ANFIS machine
learning models to clarify the extent of how they are reliable in predicting cardiovascular
diseases. This step also allows measuring models’ ability to predict new, unseen data, and

therefore their applicability to clinical practice.

3.6.1 Performance Metrics

To quantify the models' predictive accuracy and reliability, a set of performance metrics will

be employed, including [76]:

Confusion Matrix Analysis: An essential element of the evaluation is the use of a confusion
matrix for each model, which is a comprehensive summary of the classification outcomes.

Mathematically, the confusion matrix is structured as follows:

Predicted Positive Predicted Negative
Actual Positive  True Positives (TP) False Negatives (FN)
Actual Negative False Positives (FP) True Negatives (TN)

The matrix allows for an all-inclusive examination of the classification model’s performance
by measuring the correct and incorrect predictions in relation to the positive and negative
cases. This structured manner of analysis facilitates a more thorough insight into the model’s
predictive capabilities and shortcomings, that is, it measures the model’s accuracy in

recognizing and labelling the different instances within the dataset.
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Accuracy: This metric is a direct indicator of the model’s correctness in predicting outcomes,
and it is calculated as the ratio of correctly predicted instances to the total instances, as the
equation (3.12) below:

TP+TN
Accuracy = —— (312)
y TP+TN+FP+FN

Precision and Recall (Sensitivity): Precision is a statistical metric that calculates the ratio of
correctly predicted positive outcomes to all predicted positive outcomes. It is represented by
the equation (3.13):

Precision = —— (3.13)
TP+FP

The recall metric evaluates the model's capacity to correctly identify all positive cases, as
represented by equation (3.14):

Recall = —— (3.14)

TP+FN

These metrics play a crucial role in medical diagnostics by striking a balance between the
risk of missing genuine patients and the need to minimize false alarms.

F1 Score: The F1 Score is utilized as the harmonic measure of the precision and recall, and
it provides a unified metric that considers both aspects into a single view of the model’s
success, allowing for increasing performance when a class representation imbalance. The F1

score is expressed as this equation (3.15):

F1 Score = 2 % Precision*Recall (3_15)

Precision+Recall
F2 Score: which values recall higher than precision, is a modified metric used when false
negative minimization is critical. It is a relevant metric to medical diagnostics; here, the cost
of missing actual positive cases is higher than that of returning false positive results. It is

computed as following equation (3.15):

F2 Score — 5«Precision*Recall (3'16)

4xPrecision+Recall

This equation modifies the F1 score to give additional weight to recall, ensuring that the
model’s ability to correctly identify all positive cases is prioritized in the evaluation process.

ROC-AUC Score: The Receiver Operating Characteristic (ROC) curve and the Area Under

the Curve provide insights into the model’s discrimination capability, i.e., its ability to
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distinguish between classes. A higher AUC indicates better model performance. It is which

is calculated as the following equation (3.17):

FPR = —— (3.17)

FP+TN

Feature Importance Analysis: Before applying the XGBoost and ANFIS model, feature
importance analysis was carried out. It helps to determine the factors that have the most
influence in predicting cardiovascular diseases. The feature importance analysis provides
insights into the model’s decision-making process and helps to determine the relative
importance of features in the target variable.

Comparative Analysis: Both XGBoost and ANFIS models will be evaluated in the same
manner, thus affording the possibility of comparative analysis. This evaluation will assist in
identifying which of the models, would deliver the most precise and trustworthy predictions
related to cardiovascular disease.

To sum up, the evaluation of XGBoost and ANFIS models using a thorough performance
metrics set, such as the confusion matrix, accuracy, precision, recall, F1 score, and the ROC-
AUC score, plays a significant role in understanding models’ predictive worthiness in
addressing cardiovascular diseases. Therefore, it is possible to assume that the thorough
analysis not only provides an individual with the detailed results of predictive power of each
model but also elucidates the practical potential of these models in real clinical settings. In
the end, by investigating XGBoost and ANFIS models’ performance in the cardiovascular
diseases’ prediction, the current work strives to establish which machine learning technique
can best improve the accuracy and reliability of such predictions. In this way, the conclusions
drawn from this analysis can help with the further development of ML tools for medicine,

thereby improving patients’ care strategies.
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4. RESULTS AND ANALYSIS OF XGBOOST AND ANFIS MODEL
4.1 OVERVIEW

In this chapter, the results of applying the XGBoost and ANFIS models for cardiovascular
disease prediction based on five different datasets, as well as analytical insights, are
presented. The main objective of the chapter is to assess and compare the performance of
the models to understand how these models can be effectively applied to clinical practice.
Overall, the application of detailed analysis into the training process, parameter tuning, and
performance establishing allows presenting the comprehensive picture of how XGBoost and
ANFIS perform using multiple datasets for cardiovascular disease prediction. The results
contribute to the understanding of the possibility to implement these models in combination
with CVD prediction, presenting the critical overview of its strengths and limitations in the

context of medical analytics.
4.2 XGBOOST MODEL ANALYSIS
4.2.1 Training and Testing Process for XGBoost

The training and testing regimen of the XGBoost model is instrumental in demonstrating its
efficacy in predicting cardiovascular diseases across diverse datasets. These datasets,
sourced from Switzerland, Cleveland, Hungarian, Long Beach VA, and Statlog, underscore
the model's versatility and accuracy within varied healthcare data environments.

During the data preprocessing stage, categorical variables were encoded using
OneHotEncoder, and numerical features were standardized with StandardScaler, thereby
levelling the predictive landscape. To contend with missing values, KNNImputer was
employed, striking a balance to avoid over- or underfitting our imputation approach.

Initial analysis of class distribution revealed significant imbalances, as the following Figure

4.1 for each dataset below.
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Figure 4.1: Original Data Distribution for Datasets.

To rectify the imbalance, the SMOTEENN technique was deployed, adeptly synthesizing
data for the minority class and pruning the majority. This crucial step toward equality is

reflected in the class frequencies' balanced distributions, as depicted in the subsequent Figure
4.2.
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Figure 4.2: Data Distribution After SMOTEENN for Datasets.

Next, PCA was applied to the datasets to reduce dimensionality while maintaining data
variance, which is vital for computational efficiency and model performance. The clustering
revealed through the scatter plots in the figures (Figure 4.3,Figure 4.4, Figure 4.5, Figure
4.6, Figure 4.7) below provided insight into the data's underlying structure and class
differentiation:
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Figure 4.4: PCA Results for Hungarian Dataset.
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Figure 4.7: PCA Results for Switzerland Dataset.

These figures show how data points, now represented within a PCA-transformed space, and
plotted along the principal components, suggest the model's potential for generalizing to
unseen data.

For model training, a 70:30 split was chosen, with the larger portion for training the XGBoost
model—selected for its robustness with varied data—and the lesser for testing.
GridSearchCV's exhaustive search capabilities were leveraged to optimize the
hyperparameters, targeting an improved F1 score for a balanced precision-recall trade-off.
Following training, the model's threshold was fine-tuned using the F2 score to enhance
sensitivity, a vital feature in medical diagnostics where the cost of missing a true positive is

highly consequential.
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4.2.2 Feature Importance with SelectFromModel

In the XGBoost model's predictive analysis for cardiovascular diseases, assessing the
influence of individual features is essential. Our datasets included 14 distinct attributes as

illustrate in the following Table 4.1:

Table 4.1: Clinical Attributes of Cardiovascular Datasets.

Attribute number Attribute Description
1 Age Age of the patient
2 Sex Biological sex of the patient
3 Chest pain type (cp) Type of chest pain experienced
4 Resting blood pressure (trestbps) Blood pressure in mm Hg on admission
5 Cholesterol (chol) Serum cholesterol in mg/di
6 Fasting blood sugar (fbs) Blood sugar > 120 mg/dl (fasting)
7 Resting electrocardiogram (restecg) Results of ECG at rest
8 Maximum heart rate (thalach) Maximum heart rate achieved
9 Exercise-induced angina (exang) Angina induced by exercise
10 ST depression (oldpeak) ST depression induced by exercise
11 Slope of the peak exercise ST Slope of the peak exercise ST segment
segment (slope)
12 Number of major vessels (ca) Number of major blood vessels stained
13 Thalassemia (thal) Type of thalassemia

Utilizing SelectFromModel for feature selection, the model discerned which of these
features were most predictive. Feature importance charts, both in visual and analytical form,
shed light on the significance of these variables in the model’s assessment of cardiovascular

risk.
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Cleveland Dataset Feature Importance: For the Cleveland dataset, the attribute of age was a
standout factor, indicating its substantial role in cardiovascular health assessments for these
patients. The corresponding feature importance graph Figure 4.8 displays this attribute's
significant impact on the model's predictive accuracy.
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Figure 4.8: Feature Importance for Cleveland Dataset.
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Hungarian Dataset Feature Importance: The Hungarian dataset's feature importance spanned
across several clinical attributes, signaling a multifaceted set of factors like chest pain type

and blood sugar levels that collectively influence heart disease risks, as illustrated in Figure
4.9.
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Figure 4.9: Feature Importance for Hungarian Dataset.

Long Beach VA Dataset Feature Importance: In the Long Beach VA dataset, the peak heart

rate achieved during exercise was pivotal, suggesting particular cardiovascular concerns for
this dataset, which are highlighted in Figure 4.10.
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Figure 4.10: Feature Importance for Long Beach VA Dataset.

Statlog Dataset Feature Importance: The Statlog dataset placed emphasis on genetic factors
such as thalassemia and anatomical considerations like the number of vessels, as seen in

Figure 4.11, emphasizing their importance in heart disease prediction.
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Figure 4.11: Feature Importance for Statlog Dataset.
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Switzerland Dataset Feature Importance: Attributes related to the patients' response to
exercise, specifically angina and ST depression, were significant in the Switzerland dataset's

predictive modeling, as shown in Figure 4.12.
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Figure 4.12: Feature Importance for Switzerland Dataset.
The visualized data underscores not just the variables most predictive of cardiovascular
disease but also the intricate relationship between patient traits and the onset of heart
conditions. By correlating the XGBoost model's outputs with specific clinical meanings,
health professionals gain a targeted approach to addressing the most influential factors,

paving the way for more precise and impactful healthcare interventions.
4.2.3 Performance Metrics and Results

In this section, we explore the performance metrics of the XGBoost algorithm, reflecting its
accuracy and reliability in predicting cardiovascular diseases across five datasets. The
metrics chosen accuracy, precision, recall, F1 score, F2 score, and ROC-AUC score serve as
the benchmarks for evaluating the model's performance.

Cleveland Dataset Performance: Analyzing the Cleveland dataset, the XGBoost model's
accuracy was measured at 98.28%. A precision of 0.97 and a perfect recall indicate the
model’s reliable performance in identifying patients with and without the disease. The F1

score, which balances precision and recall, was calculated at 0.98. The F2 score, placing
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more emphasis on recall, also showed a high value of 0.99. These scores collectively suggest
that the model effectively prioritizes the correct identification of disease presence.

The ROC-AUC score of 0.98 confirms the model's discriminative capability. As depicted in
Figure 4.13, the test ROC curve approaches the ideal with an area of 0.99, reflecting the
model's precision in classifying test data.

Figure 4.14 presents the confusion matrix for the Cleveland dataset, where the model
correctly predicted 26 instances as negative (true negatives) and 31 as positive (true
positives), with a single case incorrectly predicted as positive (false positive). This matrix
validates the calculated precision and recall, providing a tangible representation of the

model's performance.
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Figure 4.13: ROC Curve for Cleveland Dataset.
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Figure 4.14: Confusion Matrix for Cleveland Dataset.

Hungarian Dataset Performance: The performance evaluation of the XGBoost model on the
Hungarian dataset indicated a high level of accuracy at 99%. The precision rate stood at 0.98,
and recall was calculated to be perfect, pointing to the model's strong predictive reliability.
This led to an F1 score of 0.99, effectively capturing the balance between precision and
recall, and the F2 score achieved a maximum value of 1.00, highlighting the model's
sensitivity in identifying true positive cases.

The ROC-AUC score was also notable at 0.98, a figure that reflects the model's ability to
accurately discriminate between the disease classes. This is visually represented in Figure
4.15, where both the train and test ROC curves display an area of 1.00, indicative of the
model's precision in classification.

The confusion matrix, shown in Figure 4.16, corroborates these metrics by displaying a total
of 30 true negatives and 47 true positives accurately identified by the model, with only one
instance of a false positive. The absence of false negatives in this matrix is consistent with

the perfect recall score, underscoring the model's capability in identifying all positive cases.
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Long Beach VA Dataset Performance: On the Long Beach VA dataset, the XGBoost model
demonstrated a reliable accuracy of 97%. The model was precise in its predictions with a
precision score of 0.96 and equally robust in recall, accurately identifying those with the
disease. The F1 score, at 0.96, indicates a balanced mean of precision and recall, while the
F2 score, also at 0.96, reflects the model's consistent emphasis on correctly identifying
positive cases.

The ROC-AUC score for this dataset was 0.96, suggesting the model's effectiveness at
distinguishing between positive and negative cases. The ROC curve, shown in Figure 4.17,
demonstrates this capability, with the area under the test ROC curve nearly matching that of
the training, reinforcing the model's consistency.

The confusion matrix, depicted in Figure 4.18, validates the model's accuracy and reliability,
showing 32 true negatives and 24 true positives. A single instance was incorrectly predicted
in each of the positive and negative categories, indicating the model's high precision and

recall in practical terms.
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Figure 4.17: ROC Curve for Long Beach VA Dataset.
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Figure 4.18: Confusion Matrix for Long Beach VA Dataset.

Switzerland Dataset Performance: Evaluating the Switzerland dataset, the XGBoost model
delivered optimal performance across all fronts. It achieved a flawless accuracy of 100.00%,
where precision and recall both reached the maximum possible score, indicating no
misclassifications were made. This precision is reflected in the F1 and F2 scores, which both
attained a perfect score of 1.00, denoting exceptional model accuracy in both the
identification of true positives and the correct rejection of negatives.

The model's ROC-AUC score, which measures its ability to discriminate between the
classes, was also perfect at 1.00. The corresponding ROC curve, displayed in Figure 4.19,
further validates this with both the training and test curves achieving the maximum area
under the curve, demonstrating that the model's predictions were consistently accurate.

In Figure 4.20, the confusion matrix for the Switzerland dataset paints a clear picture of the
model's performance. It correctly predicted all cases without any false positives or false
negatives, as indicated by the counts of 35 true negatives and 25 true positives. This level of
accuracy showcases the model's capability in this specific dataset and underscores its

potential utility in a clinical setting.
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Figure 4.19: ROC Curve for Switzerland Dataset.
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Figure 4.20: Confusion Matrix for Switzerland Dataset.

Statlog Heart Dataset Performance: On the Statlog Heart dataset, the XGBoost model
achieved a perfect record of prediction accuracy, with both accuracy and precision rates
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hitting the 100.00% mark. The model's ability to identify all positive cases was flawless, as
indicated by a recall score of 1.00. This level of precision is echoed in both the F1 score and
the F2 score, which take into account precision and recall, confirming the model's absolute
accuracy in predicting cardiovascular disease outcomes for this dataset.

The ROC-AUC score maintained this trend of excellence, reaching 1.00, which signifies the
model's exceptional ability to discriminate between positive and negative cases with
complete accuracy. Figure 4.21 presents the ROC curve for the Statlog dataset, where the
area under both the train and test curves hits the ideal mark, reinforcing the model's
consistency in performance.

Complementing the ROC analysis, Figure 4.22 displays the confusion matrix for the Statlog
Heart dataset. This matrix shows that the model precisely predicted 28 true negatives and 27
true positives, with no instances of false positives or false negatives. The clean division in

this confusion matrix underscores the model's pinpoint precision in classification tasks.
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Figure 4.21: ROC Curve for Statlog Dataset.
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Figure 4.22: Confusion Matrix for Statlog Dataset.

The outcomes from the XGBoost model assessments across diverse datasets demonstrate its
exemplary performance in identifying cardiovascular diseases with remarkable accuracy.
The model has consistently maintained high precision and recall, ensuring a dependable
balance in its predictive capabilities. Such uniformity is evidenced by the uniformly high
ROC-AUC scores, emphasizing the model's adeptness at differentiating between patients
with and without the condition. These steadfast metrics underscore the model's reliability
and its suitability as a predictive instrument in clinical environments for the prognosis and

diagnosis of cardiovascular ailments.
4.3 ANFIS MODEL ANALYSIS

The ANFIS model stands out for its integration of neural networks with fuzzy logic, offering
a powerful approach to deciphering complex interdependencies within medical data. The
analysis using ANFIS across five distinct cardiovascular datasets showcases its potential to
address challenging diagnostic problems.
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4.3.1 Training and Testing Overview

The ANFIS model's journey through the training and testing phases was rigorous, aiming to
refine its proficiency for cardiovascular disease diagnosis. Initially, each dataset underwent
a comprehensive preprocessing routine, paralleling the methodology applied to the XGBoost
analysis. This standardization was crucial to ensure comparability of results.

The datasets initially presented imbalances in class distribution, which could potentially
skew the model's learning. To address this, the SMOTEENN technique was employed,
enhancing the representation of minority classes, and removing any ambiguous instances.
This preprocessing step ensured that the datasets were well-defined and balanced, as
depicted by the distribution visualizations in Figure 4.23.

Once balanced, as illustrated in Figure 4.24, the datasets were ready for the model's learning
phase. The ANFIS model engaged in an extensive training process, tuning its internal
parameters, such as the membership function parameters and consequent coefficients over a
series of epochs. A carefully chosen learning rate facilitated a steady yet comprehensive
learning curve, avoiding the pitfalls of overfitting or premature convergence.

Derived directly from the data, the model's rules encapsulated the nuanced relationships
within the datasets. The ANFIS framework's ability to emulate human-like reasoning
through fuzzy logic was especially beneficial, given the complexity often found in medical
data.

Throughout this phase, ANFIS demonstrated its capacity to learn and adapt, underscoring
the potential of such models in capturing the subtleties of medical diagnosis and contributing

valuable insights into cardiovascular disease prediction.
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Figure 4.24: Data Distribution After SMOTEENN for Datasets in ANFIS.

With the data prepared, the ANFIS model was trained over numerous epochs. It learned and
adjusted its parameters the centers and widths of the sigmoidal membership functions and
the coefficients of the quadratic consequents to map the input features to the output classes
with increasing accuracy. The learning rate was carefully selected to balance the speed of
convergence with the model's ability to navigate the complex error landscape without
becoming trapped in local minima.
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The model's rules were derived from the data, allowing it to create a fuzzy logic-based
framework that could capture the intricate, nonlinear relationships inherent in the diagnostic
data. This setup provides a powerful method for medical diagnostic tasks, where the

interplay of symptoms and test results is often complex and not well-suited to linear models.
4.3.2 Feature Importance with Recursive Feature Elimination

In the process of refining the ANFIS model for predicting cardiovascular disease, the
technique of Recursive Feature Elimination (RFE) was employed to ascertain which specific
clinical and demographic features were most instrumental in influencing the model’s
predictions across various datasets.

The RFE analysis on the Cleveland dataset illuminated that feature 13, representing
thalassemia (thal), emerged as the most influential in the model’s decision-making process,
as evident in the corresponding graph Figure 4.25 Such an observation suggests

thalassemia’s significant role in cardiovascular risk within this patient cohort.
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Figure 4.25: Feature Importance Analysis for Cleveland Dataset with RFE.

In the case of the Hungarian dataset, feature 11, which corresponds to the slope of the peak
exercise ST segment (slope), was identified as the most impactful on the model’s predictive
power, showcased in the Feature Importance graph Figure 4.26. This underscores the clinical

relevance of exercise-related ECG findings in assessing heart disease risk.
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Figure 4.26: Feature Importance Analysis for Hungarian Dataset with RFE.

For the Long Beach VA dataset, it was feature 10, ST depression induced by exercise relative
to rest (oldpeak), that stood out in the RFE findings, indicating its pivotal role in the model's

accuracy for this demographic group, as depicted in Figure 4.27.
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Figure 4.27: Feature Importance Analysis for Long Beach VA Dataset with RFE.
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The analysis for the Statlog dataset revealed that feature 13, thalassemia (thal), was again a
predominant factor, suggesting a consistency in the importance of this feature across

different datasets, demonstrated in Figure 4.28.
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Figure 4.28: Feature Importance Analysis for Statlog Dataset with RFE.

Finally, the RFE results for the Switzerland dataset highlighted feature 4, resting blood
pressure (trestbps), as a critical determinant in the model’s predictions, signifying the impact

of blood pressure on heart disease risk in this population group, as illustrated in Figure 4.29.
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Figure 4.29: Feature Importance Analysis for Switzerland Dataset with RFE.

By employing RFE, the ANFIS model could focus on the most telling features, enhancing
its predictive performance while offering insights into the critical factors that warrant
attention for cardiovascular disease risk assessment. This form of feature importance
analysis is not just a technical step in model optimization; it also provides valuable

knowledge that can inform clinical decision-making and personalized patient care.
4.3.3 Performance Metrics and Results

The ANFIS model underwent a rigorous performance evaluation, demonstrating its
capability to predict cardiovascular diseases across several datasets. The results, outlined
below, highlight the model's diagnostic accuracy and reliability.

For the Cleveland dataset, the ANFIS model delivered an exemplary performance, flawlessly
categorizing all instances with accuracy, precision, and recall of 100.00%. This impeccable
classification is captured in the F1 score, which achieved a perfect 1.00, and the F2 score,
equally reaching 1.00, reflecting the model's exceptional balance in predictive accuracy.
The model's superior performance is further substantiated by the ROC-AUC score, which
stands at a perfect 1.00. This score, along with the ROC curve showcased in the provided
Figure 4.30, signifies the model's unparalleled ability to differentiate between classes with

no observable error.
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Figure 4.30: ROC Curve for Cleveland Dataset in ANFIS.

The accompanying confusion matrix Figure 4.31, displaying complete agreement bet
confirm true labels and the model's predictions, with 29 true negatives and 30 true positives,
confirms the absence of false classifications. This level of performance illustrates the model's
precision in clinical diagnostics, demonstrating its potential as a reliable tool for
cardiovascular disease detection.
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Figure 4.31: Confusion Matrix for Cleveland Dataset in ANFIS.
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In analyzing the Hungarian dataset, the ANFIS model showcased commendable diagnostic
accuracy with a performance of 96%. The precision and recall metrics both reflect a value
of 0.96, culminating in an F1 score that maintains the same level of precision and sensitivity.
Slightly more weight was given to recall, as evident from an F2 score of 0.97, reinforcing
the model's focus on minimizing false negatives—a critical consideration in medical
diagnosis.

The (ROC) curve and the corresponding ROC-AUC score of 0.96 provide a visual and
statistical confirmation of the model's effective classification abilities. The close proximity
of the test ROC curve to the upper left corner, as depicted in the ROC chart Figure 4.32, is
indicative of the high true positive rate and low false positive rate, hallmarking a reliable

predictive model.
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Figure 4.32: ROC Curve for Hungarian Dataset in ANFIS.

Supporting this, the confusion matrix Figure 4.33 displays a near-perfect classification with
31 true negatives and 44 true positives, suggesting that the model can distinguish between

the absence and presence of the disease with high accuracy.
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Figure 4.33: Confusion Matrix for Hungarian Dataset in ANFIS.

When scrutinizing the Long Beach VA dataset, the ANFIS model displayed a commendable
level of accuracy at 78%. The precision, at 0.84, indicates a high rate of true positive
predictions among all positive calls made by the model, while the recall rate of 0.78 assures
that a substantial proportion of actual positive cases were correctly identified. These figures
converge to produce an F1 score of 0.78, signifying a balanced harmonic mean between
precision and recall.

A more nuanced look at the F2 score, which leans towards recall, shows a slightly higher
value of 0.87, highlighting the model’s capacity to correctly identify true positive cases,
which is often more crucial in medical diagnostics. The ROC-AUC score further
demonstrates the model's performance, with a solid ROC-AUC of 0.81, as illustrated in the
ROC chart Figure 4.34.
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Figure 4.34: ROC Curve for Long Beach VA Dataset in ANFIS.

The confusion matrix Figure 4.35 for the Long Beach VA dataset reinforces these statistics,
with 23 true negatives and 20 true positives. The presence of 11 false positives and only 1
false negative sheds light on the model’s tendency to avoid false negatives at the expense of
a slightly increased false positive rate.
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Figure 4.35: Confusion Matrix for Long Beach VA Dataset in ANFIS.
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Upon evaluating the Switzerland dataset, the ANFIS model turned in a laudable performance
with a 97% accuracy rate. This high level of accuracy is matched by a precision and recall
of 0.97, denoting that the model correctly identified most of both positive and negative cases.
The F1 score, which is a measure of the model's accuracy considering both precision and
recall, stands strong at 0.97. The F2 score, which places more emphasis on recall, is slightly
higher at 0.98, suggesting that the model is particularly effective at capturing true positive
cases.

The ROC-AUC score is an exceptional 0.97, which indicates a high ability of the model to
differentiate between the classes effectively. This is visually confirmed by the ROC curve
presented in Figure 4.36, with the test ROC-AUC curve nearing the top-left corner,

signifying an excellent true positive rate with minimal false positives.
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Figure 4.36: ROC Curve for Switzerland Dataset in ANFIS.

The confusion matrix Figure 4.37 further illustrates the model's high level of correct
classifications, with 31 true negatives and 26 true positives, against a mere 2 false positives,

highlighting the model's precision in detecting cardiovascular disease.
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Figure 4.37: Confusion Matrix for Switzerland Dataset in ANFIS.

For the Statlog Heart dataset, the ANFIS model's performance was solid, achieving 95%
accuracy. The model showed a balanced precision and recall, each at 0.95, which led to an
F1 score of the same value. The F2 score was elevated to 0.98, reflecting the model’s strong
emphasis on recall, thus prioritizing the correct identification of all positive cases.

The ROC-AUC score, which quantifies the model's ability to differentiate between classes,
matched the accuracy at a robust 0.95. This suggests a highly effective model with a

commendable true positive rate and a low false positive rate, as evidenced by the ROC curve
in Figure 4.38.
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Figure 4.38: ROC Curve for Statlog Heart Dataset in ANFIS.

The confusion matrix Figure 4.39 reinforces this performance, indicating 26 true positives

and 26 true negatives, with just a minor number of 3 false positives, demonstrating the

model's capability to accurately classify the instances.
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Figure 4.39: Confusion Matrix for Statlog Heart Dataset in ANFIS.
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The ANFIS model's performance across the various datasets underscores its reliability and
effectiveness in the diagnosis of cardiovascular diseases. Despite the natural variability in
results that comes with different data sources, the model has demonstrated a consistently
high degree of precision and recall, which are critical for clinical diagnostic tools. The
favorable F2 scores indicate a thoughtful consideration of recall, suggesting that the model
is well-tuned to recognize true positive cases effectively which is a crucial aspect of medical
diagnostics. Moreover, the ROC-AUC scores across all datasets affirm the model's
discriminating power, adding to its credibility as an asset in healthcare settings for the

prediction and analysis of cardiovascular conditions.
4.4 COMPARATIVE ANALYSIS OF XGBOOST AND ANFIS MODEL

This section delves into the comparative performance of the XGBoost and ANFIS models,
employing a holistic view of their outcomes across multiple datasets as outlined in Table 4.2
and Table 4.3 below.

Table 4.2: XGBoost Model Results.

Datasets Accuracy | Precision | Recall | F1Score | F2 Score | ROC-AUC Score
Cleveland 98.28% 0.97 1.00 0.98 0.99 0.98
Hungarian 99% 0.98 1.00 0.99 1.00 0.98
Long-beach-va 97% 0.96 0.96 0.96 0.96 0.96
Switzerland 100.00% 1.00 1.00 1.00 1.00 1.00
Statlog_heart | 100.00% 1.00 1.00 1.00 1.00 1.00
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Table 4.3: ANFIS Model Results.

Datasets Accuracy | Precision | Recall | F1 Score |F2 Score | ROC-AUC Score
Cleveland 100.00% 1.00 1.00 1.00 1.00 1.00
Hungarian 96% 0.96 0.96 0.96 0.97 0.96

Long-beach-va 78% 0.84 0.78 0.78 0.87 0.81
Switzerland 97% 0.97 0.97 0.97 0.98 0.97
Statlog_heart 95% 0.95 0.95 0.95 0.98 0.95

XGBoost, with its robustness and efficiency, excelled in most datasets, achieving near-
perfect scores across all performance metrics. This suggests that XGBoost is highly capable
of handling diverse, high-dimensional data, making it a formidable tool for cardiovascular
disease prediction.
On the other hand, the ANFIS model, with its unique blend of fuzzy logic and neural network
architecture, showed a remarkable ability to capture complex patterns. Although it presented
with slight variability, it maintained commendable precision and recall levels, emphasizing
its potential as a nuanced diagnostic tool.
When directly compared, the XGBoost model often edged out with slightly superior
accuracy and consistency. However, the ANFIS model demonstrated a particular strength in
datasets where the underlying data patterns were less linear and more intricate, which could
be attributed to its fuzzy logic component.
The comparative analysis suggests that while XGBoost can be favored for its predictive
power and robustness, ANFIS provides an alternative perspective with its ability to handle
complexity and ambiguity in data, which are common in medical datasets. The choice
between the two may ultimately depend on the specific dataset characteristics and the clinical
context in which they are applied.
The insights from this comparative analysis highlight the importance of model selection in
healthcare analytics. By understanding the unique advantages of each model, researchers
and practitioners can make informed decisions to utilize the appropriate model that best
aligns with the diagnostic task at hand, thereby improving patient outcomes and enhancing
clinical decision-making.
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45 CONTRIBUTION TO CARDIOVASCULAR DISEASE PREDICTION IN
HEALTHCARE

This section delineates the contributions of our investigation within the expanding field of
cardiovascular disease prediction, with a particular emphasis on the innovative
advancements as presented in recent scholarly literature.

Our research augments the extant scholarly discourse by facilitating a detailed comparative
analysis of the XGBoost and ANFIS models, outlined in our proposed model in Table 4.4.
This comparison underscores their unique and combined strengths in forecasting
cardiovascular ailments. Moreover, our evaluation extends beyond mere accuracy metrics to
include precision, recall, and area under the Receiver Operating Characteristic (ROC) curve,
thereby providing a holistic view of model efficacy.

When our findings are positioned alongside contemporary studies, the alignment with the
forefront of research in this domain is apparent. For instance, in reference [52], the
integration of Modified Salp Swarm Optimization with the Adaptive Neuro-Fuzzy Inference
System (MSSO-ANFIS) within the Internet of Medical Things (IloMT) environment
achieved an accuracy of 99.45%, as shown in Table 4.4. Our study mirrors this precision but
also delves deeper into a nuanced analysis of performance metrics.

In parallel, reference [51] explores the deployment of an Enhanced Deep Learning Assisted
Convolutional Neural Network (EDCNN) for cardiac disease detection on loMT platforms,
which achieved an accuracy of 99.1%, as indicated in Table 4.4. Our research contributes to
the discourse by exploring alternative machine learning strategies that provide similar levels
of performance without the exclusive reliance on deep learning frameworks.

Further, references [50] and [49] detail the application of systems employing feature fusion
and ensemble deep learning, as well as diverse ML algorithms such as Random Forest and
SVM, respectively, as detailed in Table 4.4. These methodologies resonate with our
approach to assess and validate a spectrum of predictive techniques, thereby pushing the
boundaries of intelligent healthcare systems.

The utilization of the High-Dimensional Partitioning Method (HDPM) highlighted in paper
[48] and the combination of SVM with fuzzy logic in paper [47], both documented in Table
4.4, represent significant advancements in this sphere. Our study complements these
methodologies by contrasting the robust, tree-based XGBoost model with the adaptable,
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rule-based ANFIS model, thus enriching the toolkit available for clinical decision support
systems.

Through a systematic evaluation of the strengths and applications of both XGBoost and
ANFIS models, our study not only corroborates the high accuracy levels cited in the
literature but also enriches the decision-making processes with in-depth performance
metrics. These insights are pivotal for the development of more refined and adaptable
predictive systems, which address the intricacies of cardiovascular disease diagnosis and

pave the way for more individualized and precise patient care within the loMT framework.
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Table 4.4: Comparative Overview of Proposed and Existing Studies.

References Objective ML Technique Datasets Accuracy
Enhance heart disease Hungarian
[52] prediction accuracy in MSSO-ANFIS ] 99.45%
loMT Framingham
Develop EDCNN for EDCNN with feature )
) ] ] UCI repository
[51] heart disease extraction and Bayesian 99.1%
) o dataset
detection on loMT classification.
Feature fusion, information Cleveland
Create a smart system ) o
) gain, conditional
[50] for heart disease . 98.5%
o probability, ensemble deep Hungarian
prediction ’
learning
Random Forest, K-NN, Several public
Develop loT-based o
[49] o SVM, Decision Trees, datasets from the UCI | 97.26%
healthcare monitoring )
MLP. ML Repository
Develop HDPM for Cleveland 98.4%
r o DBSCAN, SMOTE-ENN,
[48] clinical decision xcpi
00st.
support system Statlog 95.90%
Develop SVM with
[47] fuzzy logic for heart | SVM, fuzzy decision fusion Cleveland 96.23%
prediction
Cleveland 98.28%
Hungarian 99%
- - 0,
XGBoost Long-beach-va 97%
Switzerland 100.00%
Develop a prediction Statlog_heart 100.00%
Proposed . .
model using machine
model . : Cleveland 100.00%
learning algorithms
Hungarian 96%
Long-beach-va 78%
ANFIS
Switzerland 97%
Statlog_heart 95%
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This tabular synthesis articulates the scope and findings from various investigations,
juxtaposing them with our research to underscore the significant contributions our work
makes to the burgeoning field of cardiovascular disease prediction using advanced

computational techniques within the IoMT landscape.
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5. CONCLUSION

5.1 OVERVIEW OF RESEARCH

This thesis conducted on a comprehensive journey to explore the capabilities of XGBoost
and ANFIS machine learning models in predicting cardiovascular diseases. The foray into
these sophisticated algorithms was driven by the pressing need to enhance diagnostic

accuracy and reliability in the face of the global burden of cardiovascular diseases.
5.2 SUMMARY OF FINDINGS

Our in-depth analysis revealed that both XGBoost and ANFIS models exhibit remarkable
proficiency in classifying heart disease. By meticulously processing five distinct datasets,
the study not only reinforced the models' versatility but also their adeptness at handling
diverse patient data. The XGBoost model demonstrated exceptional performance,
particularly in the Switzerland and Statlog datasets, achieving a perfect accuracy score of
100%. Similarly, the ANFIS model shone with a flawless accuracy rate in the Cleveland

dataset and strong results across others.
5.3 COMPARATIVE ANALYSIS

A comparative evaluation between the two models highlighted their individual strengths.
The XGBoost model's robustness is evident in its consistent ability to balance precision and
recall, substantiated by high F1 and F2 scores. On the other hand, the ANFIS model, with
its integration of fuzzy logic, showcased a compelling capacity to model the nonlinear and

complex patterns often present in medical diagnosis.
5.4 IMPLICATIONS AND CONTRIBUTIONS

Our work contributes significant new insights to the field of medical diagnostics. It serves
as a testament to the potential of integrating advanced machine learning techniques into the
healthcare domain. The findings of this thesis reinforce the narrative that machine learning
models like XGBoost and ANFIS can be transformative tools in disease prediction,

especially within the loMT framework.
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5.5 RECOMMENDATIONS AND FUTURE WORK

While this study has laid a robust foundation, future research could expand upon this work
by integrating larger and more varied datasets, potentially including real-time patient data,
to further validate and refine the models. Additionally, exploring the synergy of hybrid
models combining the strengths of XGBoost and ANFIS could yield even more powerful
predictive tools.

In conclusion, the results of this thesis underscore the viability of machine learning
applications in healthcare, particularly for heart disease prediction. It demonstrates a clear
path forward for the integration of algorithms like XGBoost and ANFIS in medical
diagnostics, which can offer enhanced precision and potentially personalized patient care
strategies. While there are still challenges to be met, such as data diversity and model
interpretability, the progress made suggests that with further validation and refinement,
machine learning could significantly improve the efficiency and effectiveness of disease
diagnosis. This research contributes to the ongoing transformation of health data analytics,
bringing us closer to a future where healthcare is increasingly informed by intelligent data-

driven decisions.
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