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ABSTRACT 

 

INTEGRATIVE MACHINE LEARNING APPROACHES FOR 

ENHANCED CARDIOVASCULAR DISEASE PREDICTION: A 

COMPARATIVE ANALYSIS OF XGBOOST AND ANFIS 

ALGORITHMS 

 
MUHYI, Diyar Fadhil Muhyi 

              M.Sc., Information Technologies, Altınbaş University, 

Supervisor: Assoc. Prof. Dr. Oğuz ATA 

Date: June / 2024 

Pages: 88 

Cardiovascular diseases (CVDs) are the leading cause of death globally, underscoring the 

need for advanced detection and diagnostic methods to enhance patient outcomes. This study 

investigates the efficacy of two machine learning algorithms, XGBoost and the Adaptive 

Neuro-Fuzzy Inference System (ANFIS), in predicting heart disease across diverse datasets. 

Utilizing datasets from the UCI Machine Learning Repository, including Switzerland, 

Cleveland, Hungarian, Long Beach VA, and Statlog Heart, standard preprocessing 

techniques such as imputation, standardization, one-hot encoding, and SMOTEENN were 

applied to ensure consistent modeling conditions. Both models underwent extensive training 

and optimization. XGBoost excelled, particularly achieving 100% accuracy in the 

Switzerland and Statlog datasets, while ANFIS demonstrated its strength in modeling 

complex patterns, notably achieving perfect accuracy in the Cleveland dataset. Performance 

evaluations using accuracy, precision, recall, F1 score, F2 score, and ROC-AUC score 

highlighted XGBoost's consistent high precision and recall, vital for reliable CVD diagnosis. 

In contrast, ANFIS showed potential in clinical settings with its high F2 scores, emphasizing 

the reduction of false negatives. The study highlights the advantages of using advanced 
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machine learning models like XGBoost and ANFIS in cardiovascular diagnostics, 

suggesting further research with larger and more varied datasets to refine these models and 

advance medical diagnostics using machine learning. 

Keywords: Cardiovascular Diseases, Machine Learning, XGBoost, ANFIS, Diagnostic 

Predictive Modeling. 
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ÖZET 

 

KARDİYOVASKÜLER HASTALIK TAHMİNİNİN GELİŞTİRİLMESİ 

İÇİN ENTEGRATİF MAKİNE ÖĞRENMESİ YAKLAŞIMLARI: 

XGBOOST VE ANFIS ALGORİTMALARININ KARŞILAŞTIRMALI 

ANALİZİ 

 
MUHYI, Diyar Fadhil Muhyi 

            Yüksek Lisans, Bilişim Teknolojileri Bilim Dalı, Altınbaş Üniversitesi, 

Danışman: Doç. Dr. Oğuz ATA 

Tarih: Haziran / 2024 

Sayfa: 88 

Kardiyovasküler hastalıklar (KVH'ler) dünya genelinde önde gelen ölüm nedenidir ve bu 

durum, hasta sonuçlarını iyileştirmek için gelişmiş tespit ve tanı yöntemlerine olan ihtiyacı 

vurgulamaktadır. Bu çalışma, kalp hastalığını tahmin etmede iki makine öğrenmesi 

algoritmasının, XGBoost ve Adaptif Nöro-Bulanık Çıkarım Sistemi'nin (ANFIS) etkinliğini 

çeşitli veri setlerinde araştırmaktadır. Çalışmada, UCI Makine Öğrenmesi Veritabanı'ndan 

alınan İsviçre, Cleveland, Macaristan, Long Beach VA ve Statlog Kalp veri setleri 

kullanılmış ve modelleme koşullarının tutarlılığını sağlamak amacıyla imputasyon, 

standardizasyon, one-hot encoding ve SMOTEENN gibi standart ön işleme teknikleri 

uygulanmıştır. Her iki model de kapsamlı bir şekilde eğitilmiş ve optimize edilmiştir. 

XGBoost, özellikle İsviçre ve Statlog veri setlerinde %100 doğruluk oranı elde ederek üstün 

başarı göstermiştir; ANFIS ise karmaşık desenleri modellemedeki gücünü, özellikle 

Cleveland veri setinde mükemmel doğruluk oranı elde ederek kanıtlamıştır. Doğruluk, 

kesinlik, geri çağırma, F1 skoru, F2 skoru ve ROC-AUC skoru gibi performans 

değerlendirmeleri, güvenilir KVH tanısı için XGBoost'un tutarlı yüksek kesinlik ve geri 

çağırma oranlarını vurgulamıştır. Buna karşın, ANFIS'in yüksek F2 skorları ile klinik 
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ortamlarda, yanlış negatiflerin azaltılmasına vurgu yaparak, potansiyelini göstermiştir. 

Çalışma, XGBoost ve ANFIS gibi gelişmiş makine öğrenmesi modellerinin kardiyovasküler 

tanılarda kullanımının avantajlarını vurgulamakta ve bu modelleri iyileştirmek ve makine 

öğrenmesini kullanarak tıbbi tanılarda ilerleme kaydetmek amacıyla daha büyük ve daha 

çeşitli veri setleriyle daha fazla araştırma yapılmasını önermektedir. 

Anahtar Kelimeler: Kardiyovasküler Hastalıklar, Makine Öğrenmesi, XGBoost, ANFIS, 

Tanısal Tahmin Modelleme. 
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1. INTRODUCTION 

1.1 BACKGROUND 

Cardiovascular diseases (CVDs) continue to be a major global health issue, making a 

considerable impact on illness and death rates. CVDs are identified by the World Health 

Organization (WHO) as the primary cause of worldwide deaths, accounting for around 17.9 

million fatalities per year. This accounts for 31% of all global deaths (World Health 

Organization, 2021). The variety of cardiovascular illnesses encompasses a wide range of 

diseases, such as coronary artery disease, heart failure, arrhythmias, and valvular heart 

abnormalities. These conditions have a significant impact on healthcare systems and the 

overall health of society [1]. 

The manifestation of heart illness is diverse and contingent upon the particular 

cardiovascular ailment. Typical symptoms consist of angina, which is chest pain or 

discomfort caused by insufficient oxygen supply to the heart muscle; dyspnea, which is 

difficulty breathing that is noticeable during physical exertion or even at rest in severe cases; 

palpitations, which are irregular heartbeats; asthenia or dizziness, especially during physical 

activity; fatigue, an unusual feeling of tiredness that is not relieved by rest; and edema, which 

indicates potential heart failure by the accumulation of fluid in the lower limbs [2] – [4]. 

Heart disease is caused by a combination of hereditary, environmental, and lifestyle factors. 

Significant risk factors include hypertension, which raises the workload on the heart; 

hyperlipidemia, which causes changes in the arteries leading to atherosclerosis; tobacco use, 

which speeds up the development of plaque in the arteries; diabetes mellitus, which is 

associated with faster progression of atherosclerosis; obesity, which is connected to 

increased workload on the heart and hypertension; and sedentarism, which is linked to a 

higher risk of cardiovascular problems [2] – [4]. 

To achieve an accurate diagnosis of heart failure, it is crucial to use established definitions 

and gather relevant data, such as the number of hospital admissions linked to heart failure. 

This highlights the need to detect the disease early on [5]. A range of diagnostic techniques, 

including electrocardiograms, echocardiography, stress testing, coronary angiography, and 

blood tests, are crucial for promptly and thoroughly diagnosing heart disease [6]. 
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Moreover, there is variation in cardiovascular disease symptoms between genders, which 

increases the complexity of diagnoses. For example, whereas chest pain is frequently 

reported by men, women may also encounter other symptoms such as nausea and profound 

weariness [7]. Due to the variety, a wide range of diagnostic techniques and competent 

clinical judgment is required for an appropriate diagnosis [6]. The effectiveness of 

diagnosing and treating cardiac disease is significantly reduced in settings that do not have 

access to advanced medical equipment and knowledge [8]. Inadequate diagnostic resources 

and limited medical competence might result in erroneous diagnoses, while the exorbitant 

expenses associated with new diagnostic tools can constrain their accessibility [6]. The 

combined annual expenses related to cardiovascular disease (CVD) and stroke in the United 

States were estimated to be approximately $351.2 billion for the period of 2014 to 2015. 

This includes both direct and indirect costs. Direct costs alone increased from $103.5 billion 

in 1996 to 1997 to $213.8 billion in the same period. These statistics emphasize the 

significant economic impact of these health conditions [9]. 

To tackle these difficulties, it is crucial to develop a sophisticated and precise system that 

can analyze medical data, detect patterns related to heart disease, and forecast impending 

heart attacks [5]. This method has the potential to revolutionize the management of cardiac 

disease by allowing for earlier interventions and saving lives [10]. This emphasizes the 

crucial combination of advanced data analysis technologies with clinical expertise to 

enhance the prognosis and treatment of cardiovascular disease. 

As previously mentioned, diagnosing heart illness may be both costly and time-consuming. 

To address this issue, Machine Learning (ML) can be utilized. ML plays a vital role in the 

detection of heart disease by employing sophisticated algorithms to analyze massive 

quantities of medical data [11]. ML algorithms have the ability to detect intricate patterns 

and connections in patient data that may not be immediately obvious to human clinicians 

[12]. ML models can build predictive models for identifying patients at risk of developing 

heart disease or experiencing cardiac events by leveraging data such as patient 

demographics, medical history, symptoms, and diagnostic test results [13]. In addition, 

decision support systems based on ML can aid healthcare practitioners in generating precise 

and prompt diagnoses by offering insights and recommendations derived from the study of 

patient data [14]. Integrating ML into the diagnosis of cardiovascular illness has enormous 
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potential to enhance the effectiveness and precision of diagnostic procedures, ultimately 

resulting in improved patient outcomes and decreased healthcare expenses [11]. 

This research focuses on the crucial issue presented by cardiovascular diseases (CVDs), 

which are a major cause of death and have a considerable impact on the global economy. 

This thesis utilizes ML techniques to predict cardiac illness by implementing two advanced 

algorithms, XGBoost and ANFIS. These algorithms facilitate the examination of intricate 

medical data, assisting in the prompt identification and precise diagnosis of cardiovascular 

diseases (CVDs). This work highlights the potential of machine learning to revolutionize the 

healthcare field by combining XGBoost and ANFIS to create advanced diagnostic tools. 

This not only improves the process of making clinical decisions but also provides a strategic 

approach to reduce healthcare expenses related to cardiovascular diseases. This research 

makes a substantial contribution to medical informatics by creating a prediction model that 

reliably identifies patients who are at risk. This model opens up new possibilities for 

improving patient outcomes in cardiovascular treatment. In conclusion, this thesis highlights 

the significance of integrating machine learning with clinical expertise to enhance the 

diagnosis, treatment, and management of heart disorders. This approach holds the potential 

to revolutionize healthcare by saving more lives and optimizing the allocation of health 

system resources. 

1.2 STATEMENT OF PROBLEM 

The increasing occurrence of cardiovascular diseases (CVDs) on a global scale poses a 

serious challenge to health systems globally. CVDs are responsible for approximately 17.9 

million fatalities each year and have a substantial economic impact. Although medical 

diagnostics have improved, it is still challenging to detect and diagnose cardiovascular 

diseases (CVDs) early because these diseases are complicated and have a wide range of 

symptoms that are impacted by hereditary, environmental, and lifestyle factors. The diversity 

in symptoms, combined with variations in how symptoms are experienced by different 

genders, adds complexity to the diagnostic procedure, requiring a range of tests and the 

expertise of clinical professionals. 

In areas where there is limited availability of advanced medical facilities, the difficulty is 

much more noticeable. Inadequate availability of advanced diagnostic equipment and 

medical skills can result in incorrect diagnosis, delayed treatment, and higher mortality rates. 
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Furthermore, the expensive nature of advanced diagnostic technology limits their 

availability, particularly in areas with little resources, which worsens health inequalities. 

This study highlights a significant deficiency in the existing diagnostic approach: the 

requirement for a novel, economical solution that might improve the precision and 

promptness of cardiovascular disease detection. Machine learning provides a promising 

opportunity to fill this gap. By leveraging the capabilities of machine learning to scan large 

datasets and detect complex patterns, it is possible to create predictive models that can 

accurately foresee cardiovascular events. Nevertheless, the utilization of machine learning 

based diagnostic tools for cardiovascular diseases (CVDs) is now at an early stage of 

development. Therefore, it is crucial to conduct comprehensive research and validation to 

guarantee their effectiveness and dependability in clinical environments. This study seeks to 

close this disparity by utilizing the capabilities of XGBoost and ANFIS algorithms, 

providing a new method to enhance the accuracy and efficiency of diagnosing cardiac 

problems. This will enable prompt intervention and improve patient outcomes. 

1.3 OBJECTIVES AND HYPOTHESIS 

1.3.1 The Objective 

The main objective of this project is to create and verify a prediction model using machine 

learning algorithms, specifically XGBoost and ANFIS, to improve the diagnosis and early 

identification of cardiovascular illnesses (CVDs). The objective of this model is to efficiently 

evaluate medical data, detecting complex patterns that might forecast the probability of 

cardiac illness. This, in turn, enables prompt clinical interventions. The research aims to 

enhance the accuracy of cardiovascular disease (CVD) diagnosis by incorporating 

sophisticated algorithms. Additionally, it aims to help alleviate the worldwide health and 

economic burden caused by these diseases. The project seeks to highlight the capacity of 

machine learning to revolutionize cardiovascular care by providing a scalable and cost-

efficient diagnostic tool that can be implemented in various healthcare environments. 

1.3.2 The Hypothesis 

The hypothesis of this study posits that the incorporation of XGBoost and ANFIS algorithms 

in the analysis of medical data can enhance the precision and effectiveness of heart disease 
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prediction, surpassing conventional diagnostic techniques. Our hypothesis posits that the 

machine learning model would reveal intricate patterns and connections in the data that may 

not be immediately evident to human clinicians. This, in turn, will enable the model to detect 

probable heart abnormalities at an earlier stage. The study predicts that the use of a powerful 

predictive tool will improve clinical decision-making processes. This will lead to better 

patient outcomes, more efficient allocation of healthcare resources, and a decrease in the 

cost burden caused by cardiovascular illnesses. 
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2. LITERATURE REVIEW 

2.1 OVERVIEW OF CARDIOVASCULAR DISEASES 

Cardiovascular diseases (CVDs) are a collection of conditions that affect the heart and blood 

arteries, presenting major health challenges worldwide [15]. These diseases are a major 

concern in the medical profession since they significantly contribute to global rates of illness 

and death [16]. The range of cardiovascular diseases (CVDs) include several disorders such 

as coronary artery disease, heart failure, arrhythmias, and valvular heart problems. Each of 

these conditions has unique pathophysiological characteristics and clinical symptoms [2]. 

The heart, a vital organ, coordinates the circulation of blood throughout the body, supplying 

oxygen and nourishment to different tissues and organs. When the health of the 

cardiovascular system is damaged, it can have far-reaching effects beyond just the heart [17]. 

It can affect the entire vascular system and, as a result, impact various aspects of human 

health. The development of cardiovascular diseases (CVDs) is caused by multiple variables, 

which frequently include an intricate interaction between genetic predispositions, 

environmental factors, and lifestyle choices [18]. Notable risk factors encompass 

hypertension, increased cholesterol levels, smoking, diabetes, obesity, and physical 

inactivity, all of which contribute to the decline of cardiovascular health [9]. 

On a global scale, the incidence of cardiovascular diseases (CVDs) is very high, affecting 

millions of individuals who experience the consequences of these illnesses. These problems 

not only result in a lower quality of life but also place substantial economic burdens on 

society, including healthcare expenses and reduced productivity [6]. The statistical data 

demonstrating the influence of cardiovascular diseases (CVDs) highlights the need for 

improved prevention measures, precise diagnosis techniques, and efficient treatment 

strategies [18]. 

Gaining knowledge on the epidemiology and pathophysiology of cardiovascular diseases 

(CVDs) is essential for creating specific interventions that attempt to decrease the occurrence 

and seriousness of these illnesses [6]. Healthcare practitioners and researchers can reduce 

the global burden of cardiovascular illnesses by understanding the underlying mechanisms 

and risk factors linked with CVDs and developing novel remedies [15]. 
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2.2 DIAGNOSTIC TECHNIQUES FOR CARDIOVASCULAR DISEASE 

The diagnostic methods used for cardiovascular disorders are varied and sophisticated, 

reflecting the nuanced nature of the conditions they are designed to identify and describe 

[19]. The process of establishing a conclusive diagnosis for cardiovascular disease (CVD) 

usually begins with a thorough clinical evaluation. During this assessment, healthcare 

professionals examine the patient's medical history, symptoms, and risk factors. The initial 

evaluation is of utmost importance since it directs the choice of future diagnostic testing 

[20]. 

Physical examinations are essential in healthcare, as practitioners evaluate vital signs, heart 

sounds, and peripheral circulation to gain information on cardiovascular function [21]. 

Nevertheless, the intricate characteristics of cardiovascular diseases typically require 

additional examination using sophisticated diagnostic methods [6]. 

Blood tests are essential diagnostic techniques that provide biochemical snapshots, enabling 

the detection of cardiac muscle strain or failure [22]. Biomarkers such as troponins, 

natriuretic peptides, and lipid profiles offer significant insights into cardiac health and the 

risk of developing diseases [23]. 

Imaging tools provide a visual comprehension of the anatomy and physiology of the heart. 

Echocardiography, employing ultrasound waves, allows for immediate viewing of heart 

valves, chambers, and contraction patterns, offering a non-intrusive insight into cardiac 

mechanics [24]. Coronary angiography, which is commonly done after non-invasive testing 

that indicates a potential problem, offers a comprehensive examination of the status of the 

coronary arteries. It helps identify any blockages that could lead to heart-related issues [24]. 

Electrocardiography (ECG) is a fundamental tool in diagnosing heart conditions. It records 

the electrical activity of the heart to detect irregular heart rhythms, indicators of reduced 

blood flow to the heart, or evidence of past damage to the heart muscle[25]. Stress testing, 

in certain instances, can reveal underlying issues that are not apparent while the body is at 

rest. This type of testing assesses cardiovascular performance when the body is subjected to 

heightened demands [26]. 

Although current diagnostic procedures are sophisticated, there are still problems that 

remain, such as limited accessibility, high costs, and the requirement for expert interpretation 

of results [27]. Furthermore, the intrusiveness of specific procedures and the possibility of 
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incorrect results emphasize the necessity for ongoing improvements in diagnostic 

approaches [28]. 

To summarize, although the existing diagnostic methods for cardiovascular diseases (CVDs) 

are strong and varied, continuous innovation and improvement are necessary to increase 

diagnostic precision, decrease invasiveness, and optimize patient outcomes in the field of 

cardiovascular care. 

2.3 MACHINE LEARNING IN HEALTHCARE 

Machine learning, a branch of artificial intelligence, has become a powerful force in 

healthcare, providing new ways to improve patient care, increase diagnostic precision, and 

boost treatment effectiveness [29], [30]. Machine learning is centered around creating 

algorithms that can analyze data, learn from it, and use that knowledge to create predictions 

or judgments [31]. This allows the algorithms to find patterns and gain insights that may not 

be easily observable by humans [31]. 

ML has a wide range of applications in healthcare, including predictive analytics, disease 

detection [32], and operational efficiencies [29]. These algorithms have the ability to process 

large amounts of data, such as patient records, imaging, genetic profiles, and clinical notes. 

They then convert this data into useful information that can be acted upon [33].  

An important benefit of machine learning in healthcare is its capacity to process intricate, 

multidimensional datasets, providing a nuanced comprehension of patient well-being and 

the advancement of diseases [34]. For example, predictive models have the ability to 

anticipate the risks faced by individual patients, such as the probability of developing a 

particular ailment. This allows for proactive interventions and customized care methods [35]. 

Moreover, machine learning algorithms have the ability to improve diagnostic procedures, 

as evidenced in fields such as medical imaging [36], where they aid in the identification and 

categorization of anomalies with more accuracy [30]. These features not only improve the 

accuracy of diagnosis, but also greatly speed up the process of interpreting results, making 

it easier to manage patients in a timely manner [29]. 

Although machine learning has the potential to be integrated into healthcare, there are 

problems that need to be addressed [31]. Factors like as the protection of data privacy, the 

transparency of algorithms, and the requirement for thorough validation to guarantee 

accuracy and dependability are crucial matters to consider [34], [37]. Furthermore, the 
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achievement of machine learning in healthcare relies on interdisciplinary collaboration, 

which involves the integration of knowledge and skills from healthcare practitioners, data 

scientists, and ethicists to effectively negotiate the intricacies of clinical implementation 

[37], [38]. 

Machine learning is a very promising field in healthcare that has the potential to reinvent 

various aspects of patient care, diagnosis, and management. As these technologies advance, 

they hold the potential to reveal fresh understandings about disease, signaling the arrival of 

a new age in intelligent healthcare provision. 

2.4 MACHINE LEARNING APPLICATIONS FOR CARDIOVASCULAR DISEASE 

PREDICTION 

The application of machine learning in predicting cardiovascular disease is a burgeoning 

field, evidenced by a multitude of studies aiming to enhance diagnostic accuracy through 

innovative algorithms. A study [39] introduced a modified differential evolution algorithm, 

DE/rand/2-wt/exp, with the aim of enhancing feature selection for predicting cardiovascular 

disease. The improved technique was employed in a model that integrated the Fuzzy 

Analytic Hierarchy Process with Artificial Neural Networks, resulting in an accuracy rate of 

83% in predicting heart disease. The study emphasizes the promise of this integrated method 

in enhancing predictive analytics in healthcare, however, it is advisable to further validate it 

with larger datasets. 

In a comprehensive analysis [40], the efficacy of six different machine learning algorithms 

was examined in the context of cardiac disease prediction. Evaluation methods include 

logistic regression, SVM, ANN, KNN, decision trees, and Naïve Bayes. Logistic regression 

was the most accurate, with 85% accuracy and high sensitivity and specificity. The study 

highlights logistic regression and ANN's ability to predict cardiac disease. SVMs excel in 

finding positive cases. The findings suggest that machine learning could considerably 

enhance cardiac illness diagnosis. To corroborate these conclusions, larger datasets need be 

studied. 

Another innovative study [41] enhanced heart disease diagnosis using SVM classifiers, 

employing Fisher scores and Matthews correlation coefficients are used to select the best 

characteristics. The method was used on Cleveland, Hungarian, Switzerland, and SPECTF 
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UCI datasets. For each dataset, accuracy increased by 81.19%, 84.52%, 92.68%, and 82.7%. 

This shows how well the method improves heart disease prediction. 

Research [42] explored methods to refine heart disease predictions by identifying key 

variables and employing various data mining approaches. The Cleveland dataset was used 

to evaluate seven classification methods and uncover nine predictive characteristics, 

including gender and chest pain kind. Vote, a hybrid data mining algorithm combining Naïve 

Bayes and Logistic Regression, accurately predicts heart disease with 87.4% accuracy. This 

emphasizes the need of choosing characteristics and methodologies carefully when 

constructing prediction models. 

A study [43] aimed to elevate cardiovascular illness prediction accuracy by integrating 

machine learning techniques, Relief and LASSO feature selection combined with RFBM 

hybrid classifiers. A dataset from five sources is analyzed and evaluated using many criteria. 

It concludes that RFBM with Relief feature selection has 99.05% accuracy, promising early 

disease detection and healthcare advancements. 

The HRFLM method [44], employing a diverse array of machine learning techniques on the 

Cleveland UCI dataset, fully leveraged available features without restrictions, attaining an 

impressive 88.7% accuracy in heart disease prediction. This highlights HRFLM's capability 

as an effective diagnostic tool. 

An advanced methodology [45] utilizing an optimized XGBoost classifier, enhanced 

through Bayesian optimization and One-Hot encoding, outperformed standard classifiers 

with a 91.8% accuracy on the Cleveland dataset. This underscores the benefit of meticulous 

hyper-parameter tuning in enhancing model efficacy. 

The MIFH framework [46] utilizes Factor Analysis of Mixed Data (FAMD) alongside 

various machine learning techniques, significantly improving heart disease prediction 

accuracy through the UCI Cleveland dataset, particularly when implementing the Random 

Forest model, which achieved a 93.44% accuracy rate. This emphasizes the advantages of 

combining advanced feature extraction techniques with machine learning to boost detection 

accuracy. 

The integration of IoT with deep learning [14] through a system utilizing a Deep Learning 

Modified Neural Network (DLMNN) for patient monitoring and heart disease prediction 

showed a remarkable 96.8% accuracy, surpassing traditional algorithms and illustrating the 

potential synergy between IoT and deep learning in medical diagnostics. 
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A novel framework [47] combining Support Vector Machine (SVM) with fuzzy logic for 

decision-level fusion demonstrated a 96.23% accuracy in cardiac illness prediction, 

illustrating a significant enhancement over existing methods. This two-step process, 

beginning with supervised machine learning and followed by fuzzy logic-based decision 

fusion, offers a comprehensive approach to predicting heart disease. 

The High-Dimensional Partitioning Method (HDPM) [48], integrating DBSCAN for outlier 

detection, SMOTE-ENN for data balancing, and XGBoost for prediction, showcased its 

effectiveness on the Statlog and Cleveland datasets with accuracies of 95.90% and 98.40%, 

respectively. This indicates its superiority in diagnosing heart disease compared to earlier 

models. 

A health monitoring system [49] combining IoT with the Random Forest algorithm for 

disease prediction underscored the algorithm's efficacy, achieving up to 97.26% accuracy in 

disease diagnostics. This showcases the transformative potential of leveraging IoT and 

machine learning in healthcare. 

An approach [50] combining ensemble deep learning with feature fusion for cardiac illness 

prediction analyzed data from sensors and EMRs, achieving a 98.5% accuracy rate, 

highlighting its potential in improving healthcare outcomes through advanced data analysis 

and deep learning. 

The Enhanced Deep Learning Assisted Convolutional Neural Network (EDCNN) [51], 

applied on the IoMT platform, leverages deep learning and advanced mathematical 

modelling to analyze patient data, achieving a diagnostic accuracy rate of up to 99.1% in 

heart conditions. This indicates a promising future for cloud-based medical diagnostics. 

In another innovative study [52], a diagnosis system employing Modified Salp Swarm 

Optimization (MSSO) and Adaptive Neuro-Fuzzy Inference System (ANFIS) within the 

IoMT framework showed substantial effectiveness in heart disease diagnosis, achieving an 

accuracy of 99.45% and precision of 96.54%. This underscores the potential of integrating 

advanced optimization and fuzzy logic techniques in enhancing medical diagnostics in the 

digital age. 

These studies collectively highlight the dynamic and potent role of ML in cardiovascular 

disease prediction, offering insights into its application for more accurate, efficient, and 

timely diagnostics, which could revolutionize patient care and healthcare systems 

worldwide. 
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2.5 THEORETICAL FRAMEWORK OF XGBOOST AND ANFIS ALGORITHMS 

The growth of machine learning has brought about intricate algorithms that can offer 

a substantial understanding of intricate datasets. Notably, the Extreme Gradient Boosting 

(XGBoost) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are particularly 

remarkable for their distinct capacities, particularly in the realm of cardiovascular disease 

prediction. 

2.5.1 XGBoost Algorithm 

XGBoost is a sophisticated implementation of gradient boosting machines, created to be 

extremely efficient, adaptable, and transferable [53]. The system functions based on the idea 

of gradient boosting, which entails constructing a model in the shape of a collection of weak 

prediction models, commonly referred to as decision trees [54]. The fundamental concept is 

to progressively incorporate predictors into an ensemble, with each one rectifying the errors 

of its predecessor, thus enhancing the accuracy of the model [53]. XGBoost stands out by 

including many optimization strategies that improve performance and speed. These include 

a novel tree-learning algorithm that effectively handles sparse data and a scalable, distributed 

computing framework that speeds up computations [53]. 

The algorithm's efficacy in utilizing system resources and its capacity for parallel computing 

make it a solid tool for addressing extensive and intricate datasets [53]. In addition, XGBoost 

incorporates regularization settings to mitigate overfitting, a prevalent issue in machine 

learning models. This ensures that the model maintains its ability to generalize to new, 

unknown data [45]. 

2.5.2 ANFIS Algorithm 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a hybrid intelligent system that 

combines the learning capabilities of neural networks with the knowledge representation of 

fuzzy logic in order to accurately model complex nonlinear functions [55]. ANFIS combines 

the principles of neural networks with fuzzy inference systems by utilizing a neural network 

structure to execute a fuzzy inference system, thereby taking use of the advantages offered 

by both methodologies [56]. 
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ANFIS consists of five layers: fuzzification layer, rules layer, normalization layer, 

defuzzification layer, and output layer. The fuzzification layer converts input values into 

fuzzy membership values. The rules layer applies fuzzy logic operations. The normalization 

layer calculates the ratio of each rule's firing strength to the sum of all rules' firing strengths. 

The defuzzification layer generates a crisp output for each rule. The summation layer 

computes the overall output as the weighted average of all rule outputs [57]. 

ANFIS is capable of accurately approximating nonlinear functions, making it well-suited for 

jobs involving complex and poorly understood relationships between input and output 

variables [55]. The versatility and learning capabilities of ANFIS make it a highly useful 

tool for predictive modelling in diverse sectors, such as healthcare. 

2.5.3 Integration in Cardiovascular Disease Prediction 

The theoretical foundations of XGBoost and ANFIS offer a strong platform for tackling the 

difficulties associated with predicting cardiovascular illness. The combination of XGBoost's 

efficacy in managing extensive datasets and its robust classification capabilities, along with 

ANFIS's capacity to represent non-linear connections through adaptive learning, provides a 

comprehensive methodology for comprehending and forecasting the risk of heart disease. 

By utilizing these algorithms, researchers may create prediction models that are both precise 

and capable of revealing complex patterns and connections within medical data. This 

eventually enhances diagnostic procedures and patient results in cardiovascular care. 
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3. METHODOLOGY 

3.1 RESEARCH DESIGN 

This study adopts quantitative research methodology, deploying advanced machine learning 

algorithms to enhance predictions concerning cardiovascular diseases (CVDs). Central to 

this investigation is the exploration of the predictive power harnessed by machine learning 

models, specifically XGBoost and ANFIS, to refine the accuracy of CVD diagnosis. The 

study methodically structures data pattern analysis and model performance evaluation 

through quantifiable metrics, embracing a data-driven approach to medical diagnostics. 

Commencing with Figure 3.1, the research delineates the XGBoost model's operational 

pathway. This begins with an essential phase of data preprocessing, which includes missing 

value imputation using KNN, data normalization, and categorical variable transformation 

via One-Hot Encoding. To address the challenge of class imbalances prevalent in medical 

datasets, SMOTEENN is employed to ensure a balanced representation of classes. In the 

feature engineering step, PCA is applied to reduce dimensionality and highlight significant 

predictive features, followed by a selection process to identify the most informative 

predictors. The model is then fine-tuned through hyperparameter optimization, culminating 

in a robust model training and evaluation stage. 

 
Figure 3.1: XGBoost Model Research Framework. 
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Post XGBoost analysis, the study mirrors these initial steps in the ANFIS model's 

framework, outlined in Figure 3.2. The data undergoes similar preprocessing and balancing 

techniques, ensuring a consistent and equitable dataset for subsequent modeling. The ANFIS 

model leverages a distinct set of hyperparameters, reflecting its unique computational 

architecture that combines fuzzy logic with neural network adaptability. 

 
Figure 3.2: ANFIS Model Research Framework. 

By embracing five comprehensive datasets—Switzerland, Cleveland, Hungarian, Long 

Beach VA, and Statlog Heart—the study encompasses a wide spectrum of CVD profiles. 

This diversity underpins the robustness of the research, ensuring its applicability across 

varied patient demographics and clinical scenarios. 

Sequential phases of the research design are meticulously crafted, underpinning the 

collection and preprocessing of high-quality, homogenous data, thereby priming it for 

effective analysis. The ensuing phase implements the XGBoost and ANFIS algorithms with 

an emphasis on precision-tuning to the task at hand. The performance of these models is 

scrutinized through established benchmarks that quantify their diagnostic accuracy, 

sensitivity, and specificity for CVD. 

This project is devoted to unearthing the latent capabilities of ML in the diagnostic realm of 

cardiovascular conditions. Through a structured, systematic, and quantitative framework, 

this research is poised to unearth valuable insights for the medical field. The expected 

outcomes are envisaged to influence future clinical procedures and inform policy 

development in cardiovascular healthcare management. 
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3.2 DATA COLLECTION 

This study utilizes data from five reputable datasets, obtained from the UCI Machine 

Learning Repository, to create a comprehensive analysis framework for predicting 

cardiovascular disease. The datasets were carefully selected to include a diverse range of 

patient demographics, clinical symptoms, and diagnostic outcomes, thereby creating a 

complete foundation for the development and validation of prediction models. 

The selection includes: 

Cleveland is well-known for its extensive collection of clinical data, which includes 

diagnostic test results and signs of heart disease [58]. 

The Hungarian provides comprehensive data from the Hungarian Institute of Cardiology, 

located in Budapest, which enriches the diversity of the study[58]. 

Switzerland is provided by the University Hospital in Zurich, Switzerland, focuses on 

distinct cardiovascular problems that are distinctive to the region [58]. 

The Long Beach VA integrates data from veterans to get insights into the cardiovascular 

health concerns experienced by this group [58]. 

The Statlog dataset is widely recognized for its role in enabling statistical analyses and 

machine learning applications in the field of cardiovascular research [59]. 

The acquisition process from the UCI Machine Learning Repository involved verifying the 

integrity and relevance of each dataset to confirm its suitability for developing advanced 

machine-learning models for predicting cardiovascular disease. The following Table 3.1 

illustrates the description for each dataset. 

Table 3.1: Datasets Description. 

Dataset Name No. Features No. Sample 

Cleveland 14 304 

Hungarian 14 295 

Switzerland 14 124 

Long Beach VA 14 201 

Statlog 14 271 
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3.3 DATA PREPROCESSING 

Data preparation is a crucial step in assuring the efficacy of machine learning models, 

especially when working with intricate datasets for the prediction of cardiovascular disease. 

This phase encompassed a sequence of methodical techniques aimed at refining the raw data 

obtained from the Switzerland, Cleveland, Hungarian, Long Beach VA, and Statlog Heart 

datasets. The objective was to improve the quality and compatibility of the data before 

utilizing the XGBoost and ANFIS algorithms for analysis. 

3.3.1 Data Cleaning 

Data cleaning frequently entails dealing with missing data in datasets, which is a crucial 

stage for ensuring precise data analysis or machine learning [60]. The K-Nearest Neighbors 

(KNN) imputation approach provides a solution by utilizing the similarity between data 

points. This method addresses missing values by identifying the 'k' nearest neighbors using 

a distance measure and calculates the missing value as an aggregation of these neighbors' 

values [61]. 

For a dataset 𝑋𝑋  with a missing feature value 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 KNN imputation computes the imputed 

value, 𝑥𝑥�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, as follows by equation (3.1): 

           𝑥𝑥�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  1
𝑘𝑘
 ∑ 𝑤𝑤𝑖𝑖

𝑘𝑘
𝑖𝑖=1 ×  𝑥𝑥(𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)    (3.1) 

In this context, 𝑁𝑁 = {𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑘𝑘} represents the set of 'k' nearest neighbors. The value of 

the missing feature for the 𝑖𝑖𝑡𝑡ℎ neighbor is denoted as 𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, and 𝑤𝑤𝑖𝑖 indicates the weight 

assigned to the contribution of the 𝑖𝑖𝑡𝑡ℎneighbor. When using uniform weights, each 

neighbor's contribution is the same (𝑤𝑤𝑖𝑖  = 1 for all 𝑖𝑖), resulting in the imputed value being 

the average of the neighbors' values for the missing feature [61]. 

The selection of 'k', or the number of neighbors, has a substantial impact on the quality of 

the imputation. Inadequate number of neighbors may fail to collect the essential information, 

whilst an excessive number could potentially create unwanted noise [61]. The optimal value 

of 'k' is usually established by doing empirical evaluation that is specific to the dataset. 

KNN imputation relies on the assumption that data points that are proximate in feature space 

exhibit comparable values [61]. This makes it a suitable method for our datasets, where this 

proximity may reliably anticipate missing values. The effectiveness of the strategy depends 



18 

on the careful selection of 'k' and the distance metric, with the goal of effectively utilizing 

the inherent data structure [61]. 

3.3.2 Data Standardization 

Data standardization is an essential procedure in data preprocessing, particularly for machine 

learning [62]. The process entails converting the characteristics of a dataset to have an 

average of zero and a standard deviation of one [62]. This modification guarantees equitable 

contribution from every feature, enhancing the efficiency and efficacy of numerous 

algorithms. 

The equation (3.2) represents the process of standardizing a feature value 𝒙𝒙 in a dataset. 

                                                   𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥 − 𝜇𝜇
𝜎𝜎

           (3.2) 

Assume that 𝒙𝒙 represent the original value of a feature, 𝝁𝝁 represent the mean of the feature, 

and 𝝈𝝈 represent the standard deviation of the feature. By applying this method to each 

feature, the dataset is normalized, which means that the features will have an average(𝝁𝝁) of 

0 and a standard deviation (𝝈𝝈) of 1 [63]. 

Normalization is crucial for algorithms that are affected by the magnitude of data or when 

features cover a wide range of scales [63]. Data standardization is an essential step in many 

data analysis and machine learning pipelines. We used data standardization to make sure all 

the features were dimensionless and scaled equally. This process helps to improve the 

effectiveness of model training and analysis [46]. 

3.3.3 Data Encoding 

Efficiently handling categorical data is essential in machine learning as the majority of 

algorithms require numerical input. One-Hot Encoding is a crucial preprocessing technique 

that converts variables into a binary matrix, making the data suitable for machine learning 

models [64]. 

One-Hot Encoding is a technique in machine learning that turns a categorical feature 𝑋𝑋, 

which has 𝑚𝑚 distinct categories, into a binary vector of size 𝑚𝑚. The mathematical 

representation of this procedure is as follows: 

𝑥𝑥𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑋𝑋  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖
0,  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
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for 𝑖𝑖 = 1, 2, … ,𝑚𝑚 where 𝑥𝑥𝑖𝑖 signifies the presence (1) or absence (0) of the 𝑖𝑖𝑡𝑡ℎcategory in an 

observation [65]. 

This method ensures appropriate representation of categorical variables without assuming 

any undesired order, which is essential for accurately and efficiently training and predicting 

our models [64]. 

3.3.4 Imbalanced Data 

Imbalanced data in machine learning refers to situations where the distribution of classes is 

uneven, resulting in a bias towards the majority class in the model. SMOTEENN is a 

technique that combines Synthetic Minority Over-sampling Technique (SMOTE) and Edited 

Nearest Neighbors (ENN). It solves the problem by creating artificial examples of the 

minority class and eliminating incorrectly categorized instances of the majority class [66]. 

In the SMOTE algorithm, a new synthetic instance 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛is generated by interpolating 

between a minority class instance 𝑎𝑎 and its nearest neighbor 𝑏𝑏 as the following equation 

(3.3). 

                                   𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛  =  𝑥𝑥𝑎𝑎  +  𝜆𝜆 ∙  (𝑥𝑥𝑏𝑏  −  𝑥𝑥𝑎𝑎) (3.3) 

where 𝑥𝑥𝑎𝑎 and 𝑥𝑥𝑏𝑏 are the feature vectors of 𝑎𝑎 and 𝑏𝑏, respectively, and 𝜆𝜆 is a random number 

between 0 and 1 [67]. 

We employed this technique to augment the representation of the minority class, while ENN 

aids in refining the dataset by removing noisy occurrences, resulting in a more balanced and 

dependable dataset for training machine learning models [66]. 

3.3.5 Dimensionality Reduction 

For our research, we utilized principal Component Analysis (PCA) to reduce the 

dimensionality of our datasets [68]. This method is essential for simplifying the data by 

translating the original variables into principal components [60]. PCA does this by 

computing the eigenvectors and eigenvalues of the covariance matrix of the data. The 

eigenvectors determine the new axes, known as principal components, while the eigenvalues 

quantify the amount of variation explained by each component [68]. 

Mathematically, the procedure entails obtaining the covariance matrix from the dataset 𝑋𝑋, 

followed by extracting its eigenvectors and eigenvalues [68]. The principal components are 
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subsequently arranged in descending order based on their eigenvalues, which indicate the 

amount of variation captured by each component [60]. By utilizing the 'mle' method, we can 

automatically optimize the selection of the most important characteristics of the data [69]. 

Specifically, we select the top 𝑚𝑚 principal components, where 𝑚𝑚 is determined by this 

optimization process. This approach ensures that we keep the most relevant elements of the 

data [60]. 

The deliberate decrease in dimensionality, as implemented in our study, helps to address the 

problem of high dimensionality, improve computational performance, and preserve the 

integrity of the dataset's informational content. 

3.3.6 Data Splitting 

In machine learning, the process is to split the dataset into separate training and testing sets. 

This is done in order to train the model using the training set and then evaluate its 

performance using the testing set [70]. The ‘train_test_split’ function partitions the data into 

a test set and a training set, with a defined percentage (e.g., 30%) allocated to the test set and 

the remaining portion assigned to the training set. The separation of data into distinct sets 

enables impartial evaluation of the model by testing it on unseen data, hence verifying the 

model's capacity to apply to new situations and avoiding it from overfitting the training data. 

The study provides a strong groundwork for the application of machine learning algorithms 

to predict cardiovascular illness, by carefully preprocessing the data. The preparatory steps 

improved the quality of the input data and refined the settings for training and testing the 

XGBoost and ANFIS models. This ensured that the analysis was robust, and the results were 

reliable. 

3.4 FEATURE SELECTION TECHNIQUES 

3.4.1 Feature Selection with SelectFromModel in XGBoost 

Within the framework of XGBoost, feature selection is simplified by utilizing the inherent 

computation of feature importance during the model training procedure. SelectFromModel 

is a meta-transformer that selects features based on their determined importance. The 

threshold for preserving features is set to the median value, meaning that only features with 

importance over this value will be kept [71]. 
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The significance of a feature in XGBoost is typically measured mathematically using 

measures like as gain. Gain is the average enhancement in accuracy that a feature brings 

across all trees. The equation (3.4) shown below represents the method for estimating the 

significance 𝐼𝐼𝑗𝑗 of a property 𝑗𝑗 : 

                                              𝐼𝐼𝑗𝑗  =  
∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
   (3.4) 

where 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗 is the gain of feature 𝑗𝑗  summed over all trees, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 is the number of 

times feature  𝑗𝑗  is used to split the data [72]. 

During feature selection, only the features with relevance scores that are equal to, or more 

than the median are kept [71]. This approach focuses on the most important predictors, which 

might potentially enhance the performance of the model [73]. 

3.4.2 Feature Selection with Recursive Feature Elimination in ANFIS 

The Recursive Feature Elimination (RFE) plays an important part in improving the Adaptive 

Neuro-Fuzzy Inference System (ANFIS) for cardiovascular disease prediction. RFE 

employs a methodical approach to identify the most crucial features, hence improving the 

predicted accuracy of the model. This approach progressively improves the feature set by 

selecting only the most important features, resulting in a more efficient model with reduced 

input dimensions [74]. 

The (RFE) approach begins with a whole set of features and gradually removes the least 

significant ones, taking into account their impact on the performance of the model. The 

iterative procedure continues until a predetermined number of important features are picked, 

which are considered to be the most advantageous for improving the accuracy of the model 

[75]. 

Utilizing (RFE) with a machine learning algorithm such as XGBoost, which is recognized 

for its accurate feature importance ranking, enables the discovery of these crucial 

characteristics. The selection process is of utmost importance as it has a direct impact on the 

efficiency and usefulness of the ANFIS model in predicting heart disease. By prioritizing 

the most useful characteristics, the model not only becomes more effective in terms of 

computational resources but also improves its ability to make accurate predictions. This 

reduces the chances of overfitting and enhances its performance on new and unexplored data 

[75]. 
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3.5 IMPLEMENTATION OF MACHINE LEARNING ALGORITHMS 

3.5.1 XGBoost Algorithm Implementation 

XGBoost, also known as Extreme Gradient Boosting, is a prominent machine learning 

algorithm that is highly regarded for its proficiency in analyzing structured data and its 

ability to accurately predict outcomes. The system functions by utilizing a boosting process 

that systematically rectifies errors from previous decision trees [45], which proves to be 

highly efficient in the intricate domain of cardiovascular disease prediction. The 

effectiveness of XGBoost can be due to its exceptional performance in classifying tasks, its 

ability to handle tabular data effectively, and its skill in managing non-linear connections 

between features. These qualities make it an ideal choice for medical predictive modelling 

[72], [75]. 

The algorithm's effectiveness depends on the careful adjustment of hyperparameters such as 

the number of trees (n_estimators), tree depth (max_depth), learning rate (η), and node split 

regulation (γ). The parameters are carefully tuned, usually through cross-validation methods 

like GridSearchCV, to improve the model's capability to identify intricate patterns and 

achieve accurate predictions [45] 

The core of XGBoost's model training revolves around minimizing a loss function [72] as 

the following equation (3.5). 

                         𝐿𝐿(𝜃𝜃)  =  ∑ 𝑙𝑙 (𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�)  + ∑Ω (𝑓𝑓𝑘𝑘)    (3.5) 

This approach combines the prediction error with a regularization term in order to reduce 

overfitting. The equation (3.6) is used to maximize the gain from each decision tree split 

[72]. 

               𝐺𝐺 =  1
2

 �(∑ 𝑔𝑔𝑖𝑖𝑖𝑖 ∈ 𝐿𝐿 )2

∑ ℎ𝑖𝑖+ 𝜆𝜆𝑖𝑖 ∈ 𝐿𝐿
 +  (∑ 𝑔𝑔𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅 )2

∑ ℎ𝑖𝑖+ 𝜆𝜆𝑖𝑖 ∈ 𝑅𝑅
 − (∑ 𝑔𝑔𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 )2

∑ ℎ𝑖𝑖+ 𝜆𝜆𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
� −  𝛾𝛾    (3.6) 

The mathematical methodology employed by XGBoost guarantees the capture of both the 

fundamental data patterns and the necessary precision for medical diagnostics. Using 

XGBoost for cardiovascular disease prediction demonstrates its analytical capabilities in 

addressing the intricacies of medical data and providing a dependable foundation for clinical 

decision-making [45]. 
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3.5.2 ANFIS Algorithm Implementation 

3.5.2.1 ANFIS architecture 

The fuzzy logic integration with neural network principles makes up the ANFIS framework, 

which provides a systematic approach for data analysis and modelling. The architecture and 

mathematical operations of ANFIS are as follows [57]: 

a. Fuzzification Layer 

In this layer, numerical inputs are converted into fuzzy values through membership functions 

which are commonly shaped as sigmoid. The membership value of input is formulated 

according to the following equation (3.7): 

                                 𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖 (𝑥𝑥𝑖𝑖) =  1

1 +𝑒𝑒𝑒𝑒𝑒𝑒�− 𝑏𝑏𝑖𝑖𝑖𝑖∙ �𝑥𝑥𝑖𝑖−𝑎𝑎𝑖𝑖𝑖𝑖��
  (3.7) 

where 𝑎𝑎𝑖𝑖𝑖𝑖 and 𝑏𝑏𝑖𝑖𝑖𝑖 represent the center and width of the sigmoid function, respectively. 

b. Rule Application Layer 

This layer applies the fuzzy logic rules to the fuzzified inputs and generates preliminary rule 

outputs. The firing strength 𝑤𝑤𝑗𝑗  of each rule is determined, which is a combination of the 

membership values of the inputs associated with that rule. Normally, this is calculated using 

an AND operation described in the following equation (3.8) 

                                             𝑤𝑤𝑗𝑗 =  ∏ 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1  

   (3.8) 

where 𝑛𝑛 is the number of inputs. 

c. Normalization Layer 

This layer ensures that the firing strengths of the rules are normalized to total one. Therefore, 
the firing strength of every rule is normalized 𝑤𝑤𝑗𝑗  as the following equation (3.9) 
 

                                             𝑤𝑤𝑗𝑗  =  𝑤𝑤𝑗𝑗

∑ 𝑤𝑤𝑘𝑘
𝑚𝑚
𝑘𝑘=1

    (3.9) 

This allows for the contribution of each rule to be proportional to each other in determining 
the final output. 
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d. Defuzzification Layer 

Converts the fuzzy outputs of the rules into a crisp overall output. This is the combination 

of the output of the rules, obtained as a function of the inputs, and is often polynomial. It is 

expressed by the equation (3.10): 

                              𝑓𝑓𝑖𝑖(𝑥𝑥) =  �∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 + 𝑞𝑞𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 +  𝑟𝑟𝑗𝑗�    (3.10) 

Where 𝑝𝑝𝑖𝑖𝑖𝑖, 𝑞𝑞𝑖𝑖𝑖𝑖, and 𝑟𝑟𝑗𝑗 are the parameters of the rule’s output function. 

e. Output Calculation Layer 

It involves calculating the final output of the ANFIS model as an aggregate of the weighted 

outputs of each rule described by equation (3.11): 

                                      𝐹𝐹(𝑥𝑥) =  ∑ 𝑤𝑤𝑗𝑗  𝑓𝑓𝑖𝑖(𝑥𝑥)𝑚𝑚
𝑗𝑗=1         (3.11) 

Here, 𝑓𝑓𝑖𝑖(𝑥𝑥) denotes the output of the 𝑗𝑗 − 𝑡𝑡ℎ rule, and 𝑤𝑤𝑗𝑗 its normalized firing strength. 

3.5.2.2 Hybrid learning for parameter optimization 

A hybrid learning strategy is utilized by the ANFIS model to optimize its parameters and 

improve the system’s prediction potential. 

a. Forward Pass: The forward pass involves examining the membership value for each 

input as the system goes through all the rules in a bid to check the strength of firing for 

all the rules defined. The different strengths need to be normalized. After normalization, 

the logical output level for every rule is obtained. This is the input value being used with 

the rule’s specified consequent parameter. 

b. Backward Pass (Gradient Descent Optimization): This phase of optimization includes 

the backward pass, which introduces parameter refinement, quantified through gradient 

descent. In turn, the backward pass intends to optimize premise parameters, which 

structure the membership functions, as well as the optimization of consequent 

parameters, which determine the contribution of rules’ outputs. The backward pass is 

governed by the gradient of the loss function, which represents the difference between 

the model’s predictions and the actual outcomes. 

c. Parameter Update: Subsequently, the model goes through an update of its parameters so 

as to minimize the loss function. This process is vital in the determination of the most 
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effective way to update the parameters in order to accurately minimize the prediction 

error. The adjustments in the parameters are determined by the calculated gradients and 

the learning rate. 

From the above comprehensive analysis, it is clear that the ANFIS framework efficiently 

and systematically optimizes the premise and consequent parameters. It rapidly enhances 

prediction accuracy by correcting consequent parameters during the forward pass and 

precisely adjusts premise parameters during the backward pass. Most model characteristics 

can, therefore, efficiently adapt to data trends, which ultimately improves predictive 

performance. 

3.6 MODELS EVALUATION 

In this research, it is crucial to determine the efficacy of the XGBoost and ANFIS machine 

learning models to clarify the extent of how they are reliable in predicting cardiovascular 

diseases. This step also allows measuring models’ ability to predict new, unseen data, and 

therefore their applicability to clinical practice. 

3.6.1 Performance Metrics 

To quantify the models' predictive accuracy and reliability, a set of performance metrics will 

be employed, including [76]: 

Confusion Matrix Analysis: An essential element of the evaluation is the use of a confusion 

matrix for each model, which is a comprehensive summary of the classification outcomes. 

Mathematically, the confusion matrix is structured as follows: 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇) 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝐹𝐹𝐹𝐹)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝐹𝐹𝐹𝐹) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (𝑇𝑇𝑇𝑇)

 

The matrix allows for an all-inclusive examination of the classification model’s performance 

by measuring the correct and incorrect predictions in relation to the positive and negative 

cases. This structured manner of analysis facilitates a more thorough insight into the model’s 

predictive capabilities and shortcomings, that is, it measures the model’s accuracy in 

recognizing and labelling the different instances within the dataset. 
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Accuracy: This metric is a direct indicator of the model’s correctness in predicting outcomes, 

and it is calculated as the ratio of correctly predicted instances to the total instances, as the 

equation (3.12) below: 

                                      Accuracy =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

    (3.12) 

Precision and Recall (Sensitivity): Precision is a statistical metric that calculates the ratio of 

correctly predicted positive outcomes to all predicted positive outcomes. It is represented by 

the equation (3.13): 

                                            Precision =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

    (3.13) 

The recall metric evaluates the model's capacity to correctly identify all positive cases, as 

represented by equation (3.14): 

                                             Recall =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

    (3.14) 

These metrics play a crucial role in medical diagnostics by striking a balance between the 

risk of missing genuine patients and the need to minimize false alarms. 

F1 Score: The F1 Score is utilized as the harmonic measure of the precision and recall, and 

it provides a unified metric that considers both aspects into a single view of the model’s 

success, allowing for increasing performance when a class representation imbalance. The F1 

score is expressed as this equation (3.15): 

                              𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ∗  Precision∗Recall 
Precision+Recall

     (3.15) 

F2 Score: which values recall higher than precision, is a modified metric used when false 

negative minimization is critical. It is a relevant metric to medical diagnostics; here, the cost 

of missing actual positive cases is higher than that of returning false positive results. It is 

computed as following equation (3.15): 

                                    𝐹𝐹2 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  5∗Precision∗Recall 
4∗Precision+Recall

    (3.16) 

This equation modifies the F1 score to give additional weight to recall, ensuring that the 

model’s ability to correctly identify all positive cases is prioritized in the evaluation process. 

ROC-AUC Score: The Receiver Operating Characteristic (ROC) curve and the Area Under 

the Curve provide insights into the model’s discrimination capability, i.e., its ability to 
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distinguish between classes. A higher AUC indicates better model performance. It is which 

is calculated as the following equation (3.17): 

                                                 FPR =  𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

    (3.17) 

Feature Importance Analysis: Before applying the XGBoost and ANFIS model, feature 

importance analysis was carried out. It helps to determine the factors that have the most 

influence in predicting cardiovascular diseases. The feature importance analysis provides 

insights into the model’s decision-making process and helps to determine the relative 

importance of features in the target variable. 

Comparative Analysis: Both XGBoost and ANFIS models will be evaluated in the same 

manner, thus affording the possibility of comparative analysis. This evaluation will assist in 

identifying which of the models, would deliver the most precise and trustworthy predictions 

related to cardiovascular disease. 

To sum up, the evaluation of XGBoost and ANFIS models using a thorough performance 

metrics set, such as the confusion matrix, accuracy, precision, recall, F1 score, and the ROC-

AUC score, plays a significant role in understanding models’ predictive worthiness in 

addressing cardiovascular diseases. Therefore, it is possible to assume that the thorough 

analysis not only provides an individual with the detailed results of predictive power of each 

model but also elucidates the practical potential of these models in real clinical settings. In 

the end, by investigating XGBoost and ANFIS models’ performance in the cardiovascular 

diseases’ prediction, the current work strives to establish which machine learning technique 

can best improve the accuracy and reliability of such predictions. In this way, the conclusions 

drawn from this analysis can help with the further development of ML tools for medicine, 

thereby improving patients’ care strategies. 
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4. RESULTS AND ANALYSIS OF XGBOOST AND ANFIS MODEL 

4.1 OVERVIEW 

In this chapter, the results of applying the XGBoost and ANFIS models for cardiovascular 

disease prediction based on five different datasets, as well as analytical insights, are 

presented. The main objective of the chapter is to assess and compare the performance of 

the models to understand how these models can be effectively applied to clinical practice. 

Overall, the application of detailed analysis into the training process, parameter tuning, and 

performance establishing allows presenting the comprehensive picture of how XGBoost and 

ANFIS perform using multiple datasets for cardiovascular disease prediction. The results 

contribute to the understanding of the possibility to implement these models in combination 

with CVD prediction, presenting the critical overview of its strengths and limitations in the 

context of medical analytics. 

4.2 XGBOOST MODEL ANALYSIS 

4.2.1 Training and Testing Process for XGBoost 

The training and testing regimen of the XGBoost model is instrumental in demonstrating its 

efficacy in predicting cardiovascular diseases across diverse datasets. These datasets, 

sourced from Switzerland, Cleveland, Hungarian, Long Beach VA, and Statlog, underscore 

the model's versatility and accuracy within varied healthcare data environments. 

During the data preprocessing stage, categorical variables were encoded using 

OneHotEncoder, and numerical features were standardized with StandardScaler, thereby 

levelling the predictive landscape. To contend with missing values, KNNImputer was 

employed, striking a balance to avoid over- or underfitting our imputation approach. 

Initial analysis of class distribution revealed significant imbalances, as the following  Figure 

4.1 for each dataset below. 
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Figure 4.1: Original Data Distribution for Datasets. 

To rectify the imbalance, the SMOTEENN technique was deployed, adeptly synthesizing 

data for the minority class and pruning the majority. This crucial step toward equality is 

reflected in the class frequencies' balanced distributions, as depicted in the subsequent Figure 

4.2. 
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Figure 4.2: Data Distribution After SMOTEENN for Datasets. 

Next, PCA was applied to the datasets to reduce dimensionality while maintaining data 

variance, which is vital for computational efficiency and model performance. The clustering 

revealed through the scatter plots in the figures (Figure 4.3,Figure 4.4, Figure 4.5, Figure 

4.6, Figure 4.7) below provided insight into the data's underlying structure and class 

differentiation: 
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Figure 4.3: PCA Results for Cleveland Dataset. 

 
Figure 4.4: PCA Results for Hungarian Dataset. 

 
Figure 4.5: PCA Results for Long Beach VA Dataset. 
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Figure 4.6: PCA Results for Statlog Dataset. 

 
Figure 4.7: PCA Results for Switzerland Dataset. 

These figures show how data points, now represented within a PCA-transformed space, and 

plotted along the principal components, suggest the model's potential for generalizing to 

unseen data. 

For model training, a 70:30 split was chosen, with the larger portion for training the XGBoost 

model—selected for its robustness with varied data—and the lesser for testing. 

GridSearchCV's exhaustive search capabilities were leveraged to optimize the 

hyperparameters, targeting an improved F1 score for a balanced precision-recall trade-off. 

Following training, the model's threshold was fine-tuned using the F2 score to enhance 

sensitivity, a vital feature in medical diagnostics where the cost of missing a true positive is 

highly consequential. 
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4.2.2 Feature Importance with SelectFromModel 

In the XGBoost model's predictive analysis for cardiovascular diseases, assessing the 

influence of individual features is essential. Our datasets included 14 distinct attributes as 

illustrate in the following Table 4.1: 

Table 4.1: Clinical Attributes of Cardiovascular Datasets. 

Attribute number Attribute Description 

1 Age Age of the patient 

2 Sex Biological sex of the patient 

3 Chest pain type (cp) Type of chest pain experienced 

4 Resting blood pressure (trestbps) Blood pressure in mm Hg on admission 

5 Cholesterol (chol) Serum cholesterol in mg/dl 

6 Fasting blood sugar (fbs) Blood sugar > 120 mg/dl (fasting) 

7 Resting electrocardiogram (restecg) Results of ECG at rest 

8 Maximum heart rate (thalach) Maximum heart rate achieved 

9 Exercise-induced angina (exang) Angina induced by exercise 

10 ST depression (oldpeak) ST depression induced by exercise 

11 Slope of the peak exercise ST 

segment (slope) 

Slope of the peak exercise ST segment 

12 Number of major vessels (ca) Number of major blood vessels stained 

13 Thalassemia (thal) Type of thalassemia 

Utilizing SelectFromModel for feature selection, the model discerned which of these 

features were most predictive. Feature importance charts, both in visual and analytical form, 

shed light on the significance of these variables in the model’s assessment of cardiovascular 

risk. 
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Cleveland Dataset Feature Importance: For the Cleveland dataset, the attribute of age was a 

standout factor, indicating its substantial role in cardiovascular health assessments for these 

patients. The corresponding feature importance graph Figure 4.8 displays this attribute's 

significant impact on the model's predictive accuracy. 

 
Figure 4.8: Feature Importance for Cleveland Dataset. 
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Hungarian Dataset Feature Importance: The Hungarian dataset's feature importance spanned 

across several clinical attributes, signaling a multifaceted set of factors like chest pain type 

and blood sugar levels that collectively influence heart disease risks, as illustrated in Figure 

4.9. 

 
Figure 4.9: Feature Importance for Hungarian Dataset. 

Long Beach VA Dataset Feature Importance: In the Long Beach VA dataset, the peak heart 

rate achieved during exercise was pivotal, suggesting particular cardiovascular concerns for 

this dataset, which are highlighted in Figure 4.10. 
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Figure 4.10: Feature Importance for Long Beach VA Dataset. 

Statlog Dataset Feature Importance: The Statlog dataset placed emphasis on genetic factors 

such as thalassemia and anatomical considerations like the number of vessels, as seen in 

Figure 4.11, emphasizing their importance in heart disease prediction. 

 

Figure 4.11: Feature Importance for Statlog Dataset. 
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Switzerland Dataset Feature Importance: Attributes related to the patients' response to 

exercise, specifically angina and ST depression, were significant in the Switzerland dataset's 

predictive modeling, as shown in Figure 4.12. 

 
Figure 4.12: Feature Importance for Switzerland Dataset. 

The visualized data underscores not just the variables most predictive of cardiovascular 

disease but also the intricate relationship between patient traits and the onset of heart 

conditions. By correlating the XGBoost model's outputs with specific clinical meanings, 

health professionals gain a targeted approach to addressing the most influential factors, 

paving the way for more precise and impactful healthcare interventions. 

4.2.3 Performance Metrics and Results 

In this section, we explore the performance metrics of the XGBoost algorithm, reflecting its 

accuracy and reliability in predicting cardiovascular diseases across five datasets. The 

metrics chosen accuracy, precision, recall, F1 score, F2 score, and ROC-AUC score serve as 

the benchmarks for evaluating the model's performance. 

Cleveland Dataset Performance: Analyzing the Cleveland dataset, the XGBoost model's 

accuracy was measured at 98.28%. A precision of 0.97 and a perfect recall indicate the 

model’s reliable performance in identifying patients with and without the disease. The F1 

score, which balances precision and recall, was calculated at 0.98. The F2 score, placing 
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more emphasis on recall, also showed a high value of 0.99. These scores collectively suggest 

that the model effectively prioritizes the correct identification of disease presence. 

The ROC-AUC score of 0.98 confirms the model's discriminative capability. As depicted in 

Figure 4.13, the test ROC curve approaches the ideal with an area of 0.99, reflecting the 

model's precision in classifying test data. 

Figure 4.14 presents the confusion matrix for the Cleveland dataset, where the model 

correctly predicted 26 instances as negative (true negatives) and 31 as positive (true 

positives), with a single case incorrectly predicted as positive (false positive). This matrix 

validates the calculated precision and recall, providing a tangible representation of the 

model's performance. 

 

Figure 4.13: ROC Curve for Cleveland Dataset. 
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Figure 4.14: Confusion Matrix for Cleveland Dataset. 

Hungarian Dataset Performance: The performance evaluation of the XGBoost model on the 

Hungarian dataset indicated a high level of accuracy at 99%. The precision rate stood at 0.98, 

and recall was calculated to be perfect, pointing to the model's strong predictive reliability. 

This led to an F1 score of 0.99, effectively capturing the balance between precision and 

recall, and the F2 score achieved a maximum value of 1.00, highlighting the model's 

sensitivity in identifying true positive cases. 

The ROC-AUC score was also notable at 0.98, a figure that reflects the model's ability to 

accurately discriminate between the disease classes. This is visually represented in Figure 

4.15, where both the train and test ROC curves display an area of 1.00, indicative of the 

model's precision in classification. 

The confusion matrix, shown in Figure 4.16, corroborates these metrics by displaying a total 

of 30 true negatives and 47 true positives accurately identified by the model, with only one 

instance of a false positive. The absence of false negatives in this matrix is consistent with 

the perfect recall score, underscoring the model's capability in identifying all positive cases. 
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Figure 4.15: ROC Curve for Hungarian Dataset. 

 

Figure 4.16: Confusion Matrix for Hungarian Dataset. 
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Long Beach VA Dataset Performance: On the Long Beach VA dataset, the XGBoost model 

demonstrated a reliable accuracy of 97%. The model was precise in its predictions with a 

precision score of 0.96 and equally robust in recall, accurately identifying those with the 

disease. The F1 score, at 0.96, indicates a balanced mean of precision and recall, while the 

F2 score, also at 0.96, reflects the model's consistent emphasis on correctly identifying 

positive cases. 

The ROC-AUC score for this dataset was 0.96, suggesting the model's effectiveness at 

distinguishing between positive and negative cases. The ROC curve, shown in Figure 4.17, 

demonstrates this capability, with the area under the test ROC curve nearly matching that of 

the training, reinforcing the model's consistency. 

The confusion matrix, depicted in Figure 4.18, validates the model's accuracy and reliability, 

showing 32 true negatives and 24 true positives. A single instance was incorrectly predicted 

in each of the positive and negative categories, indicating the model's high precision and 

recall in practical terms. 

 
Figure 4.17: ROC Curve for Long Beach VA Dataset. 



42 

 
Figure 4.18: Confusion Matrix for Long Beach VA Dataset. 

Switzerland Dataset Performance: Evaluating the Switzerland dataset, the XGBoost model 

delivered optimal performance across all fronts. It achieved a flawless accuracy of 100.00%, 

where precision and recall both reached the maximum possible score, indicating no 

misclassifications were made. This precision is reflected in the F1 and F2 scores, which both 

attained a perfect score of 1.00, denoting exceptional model accuracy in both the 

identification of true positives and the correct rejection of negatives. 

The model's ROC-AUC score, which measures its ability to discriminate between the 

classes, was also perfect at 1.00. The corresponding ROC curve, displayed in Figure 4.19, 

further validates this with both the training and test curves achieving the maximum area 

under the curve, demonstrating that the model's predictions were consistently accurate. 

In Figure 4.20, the confusion matrix for the Switzerland dataset paints a clear picture of the 

model's performance. It correctly predicted all cases without any false positives or false 

negatives, as indicated by the counts of 35 true negatives and 25 true positives. This level of 

accuracy showcases the model's capability in this specific dataset and underscores its 

potential utility in a clinical setting. 
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Figure 4.19: ROC Curve for Switzerland Dataset. 

 
Figure 4.20: Confusion Matrix for Switzerland Dataset. 

Statlog Heart Dataset Performance: On the Statlog Heart dataset, the XGBoost model 

achieved a perfect record of prediction accuracy, with both accuracy and precision rates 



44 

hitting the 100.00% mark. The model's ability to identify all positive cases was flawless, as 

indicated by a recall score of 1.00. This level of precision is echoed in both the F1 score and 

the F2 score, which take into account precision and recall, confirming the model's absolute 

accuracy in predicting cardiovascular disease outcomes for this dataset. 

The ROC-AUC score maintained this trend of excellence, reaching 1.00, which signifies the 

model's exceptional ability to discriminate between positive and negative cases with 

complete accuracy. Figure 4.21 presents the ROC curve for the Statlog dataset, where the 

area under both the train and test curves hits the ideal mark, reinforcing the model's 

consistency in performance. 

Complementing the ROC analysis, Figure 4.22 displays the confusion matrix for the Statlog 

Heart dataset. This matrix shows that the model precisely predicted 28 true negatives and 27 

true positives, with no instances of false positives or false negatives. The clean division in 

this confusion matrix underscores the model's pinpoint precision in classification tasks. 

 
Figure 4.21: ROC Curve for Statlog Dataset. 
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Figure 4.22: Confusion Matrix for Statlog Dataset. 

The outcomes from the XGBoost model assessments across diverse datasets demonstrate its 

exemplary performance in identifying cardiovascular diseases with remarkable accuracy. 

The model has consistently maintained high precision and recall, ensuring a dependable 

balance in its predictive capabilities. Such uniformity is evidenced by the uniformly high 

ROC-AUC scores, emphasizing the model's adeptness at differentiating between patients 

with and without the condition. These steadfast metrics underscore the model's reliability 

and its suitability as a predictive instrument in clinical environments for the prognosis and 

diagnosis of cardiovascular ailments. 

4.3 ANFIS MODEL ANALYSIS 

The ANFIS model stands out for its integration of neural networks with fuzzy logic, offering 

a powerful approach to deciphering complex interdependencies within medical data. The 

analysis using ANFIS across five distinct cardiovascular datasets showcases its potential to 

address challenging diagnostic problems. 
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4.3.1 Training and Testing Overview 

The ANFIS model's journey through the training and testing phases was rigorous, aiming to 

refine its proficiency for cardiovascular disease diagnosis. Initially, each dataset underwent 

a comprehensive preprocessing routine, paralleling the methodology applied to the XGBoost 

analysis. This standardization was crucial to ensure comparability of results. 

The datasets initially presented imbalances in class distribution, which could potentially 

skew the model's learning. To address this, the SMOTEENN technique was employed, 

enhancing the representation of minority classes, and removing any ambiguous instances. 

This preprocessing step ensured that the datasets were well-defined and balanced, as 

depicted by the distribution visualizations in Figure 4.23. 

Once balanced, as illustrated in Figure 4.24,  the datasets were ready for the model's learning 

phase. The ANFIS model engaged in an extensive training process, tuning its internal 

parameters, such as the membership function parameters and consequent coefficients over a 

series of epochs. A carefully chosen learning rate facilitated a steady yet comprehensive 

learning curve, avoiding the pitfalls of overfitting or premature convergence. 

Derived directly from the data, the model's rules encapsulated the nuanced relationships 

within the datasets. The ANFIS framework's ability to emulate human-like reasoning 

through fuzzy logic was especially beneficial, given the complexity often found in medical 

data. 

Throughout this phase, ANFIS demonstrated its capacity to learn and adapt, underscoring 

the potential of such models in capturing the subtleties of medical diagnosis and contributing 

valuable insights into cardiovascular disease prediction. 
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Figure 4.23: Original Data Distribution for Datasets in ANFIS. 
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Figure 4.24: Data Distribution After SMOTEENN for Datasets in ANFIS. 

With the data prepared, the ANFIS model was trained over numerous epochs. It learned and 

adjusted its parameters the centers and widths of the sigmoidal membership functions and 

the coefficients of the quadratic consequents to map the input features to the output classes 

with increasing accuracy. The learning rate was carefully selected to balance the speed of 

convergence with the model's ability to navigate the complex error landscape without 

becoming trapped in local minima. 



49 

The model's rules were derived from the data, allowing it to create a fuzzy logic-based 

framework that could capture the intricate, nonlinear relationships inherent in the diagnostic 

data. This setup provides a powerful method for medical diagnostic tasks, where the 

interplay of symptoms and test results is often complex and not well-suited to linear models. 

4.3.2 Feature Importance with Recursive Feature Elimination 

In the process of refining the ANFIS model for predicting cardiovascular disease, the 

technique of Recursive Feature Elimination (RFE) was employed to ascertain which specific 

clinical and demographic features were most instrumental in influencing the model’s 

predictions across various datasets. 

The RFE analysis on the Cleveland dataset illuminated that feature 13, representing 

thalassemia (thal), emerged as the most influential in the model’s decision-making process, 

as evident in the corresponding graph Figure 4.25 Such an observation suggests 

thalassemia’s significant role in cardiovascular risk within this patient cohort. 

 
Figure 4.25: Feature Importance Analysis for Cleveland Dataset with RFE. 

In the case of the Hungarian dataset, feature 11, which corresponds to the slope of the peak 

exercise ST segment (slope), was identified as the most impactful on the model’s predictive 

power, showcased in the Feature Importance graph Figure 4.26. This underscores the clinical 

relevance of exercise-related ECG findings in assessing heart disease risk. 
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Figure 4.26: Feature Importance Analysis for Hungarian Dataset with RFE. 

For the Long Beach VA dataset, it was feature 10, ST depression induced by exercise relative 

to rest (oldpeak), that stood out in the RFE findings, indicating its pivotal role in the model's 

accuracy for this demographic group, as depicted in Figure 4.27. 

 
Figure 4.27: Feature Importance Analysis for Long Beach VA Dataset with RFE. 
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The analysis for the Statlog dataset revealed that feature 13, thalassemia (thal), was again a 

predominant factor, suggesting a consistency in the importance of this feature across 

different datasets, demonstrated in Figure 4.28. 

 
Figure 4.28: Feature Importance Analysis for Statlog Dataset with RFE. 

Finally, the RFE results for the Switzerland dataset highlighted feature 4, resting blood 

pressure (trestbps), as a critical determinant in the model’s predictions, signifying the impact 

of blood pressure on heart disease risk in this population group, as illustrated in Figure 4.29. 
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Figure 4.29: Feature Importance Analysis for Switzerland Dataset with RFE. 

By employing RFE, the ANFIS model could focus on the most telling features, enhancing 

its predictive performance while offering insights into the critical factors that warrant 

attention for cardiovascular disease risk assessment. This form of feature importance 

analysis is not just a technical step in model optimization; it also provides valuable 

knowledge that can inform clinical decision-making and personalized patient care. 

4.3.3 Performance Metrics and Results 

The ANFIS model underwent a rigorous performance evaluation, demonstrating its 

capability to predict cardiovascular diseases across several datasets. The results, outlined 

below, highlight the model's diagnostic accuracy and reliability. 

For the Cleveland dataset, the ANFIS model delivered an exemplary performance, flawlessly 

categorizing all instances with accuracy, precision, and recall of 100.00%. This impeccable 

classification is captured in the F1 score, which achieved a perfect 1.00, and the F2 score, 

equally reaching 1.00, reflecting the model's exceptional balance in predictive accuracy. 

The model's superior performance is further substantiated by the ROC-AUC score, which 

stands at a perfect 1.00. This score, along with the ROC curve showcased in the provided 

Figure 4.30, signifies the model's unparalleled ability to differentiate between classes with 

no observable error. 
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Figure 4.30: ROC Curve for Cleveland Dataset in ANFIS. 

The accompanying confusion matrix Figure 4.31, displaying complete agreement bet 

confirm true labels and the model's predictions, with 29 true negatives and 30 true positives, 

confirms the absence of false classifications. This level of performance illustrates the model's 

precision in clinical diagnostics, demonstrating its potential as a reliable tool for 

cardiovascular disease detection. 

 

Figure 4.31: Confusion Matrix for Cleveland Dataset in ANFIS. 
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In analyzing the Hungarian dataset, the ANFIS model showcased commendable diagnostic 

accuracy with a performance of 96%. The precision and recall metrics both reflect a value 

of 0.96, culminating in an F1 score that maintains the same level of precision and sensitivity. 

Slightly more weight was given to recall, as evident from an F2 score of 0.97, reinforcing 

the model's focus on minimizing false negatives—a critical consideration in medical 

diagnosis. 

The (ROC) curve and the corresponding ROC-AUC score of 0.96 provide a visual and 

statistical confirmation of the model's effective classification abilities. The close proximity 

of the test ROC curve to the upper left corner, as depicted in the ROC chart Figure 4.32, is 

indicative of the high true positive rate and low false positive rate, hallmarking a reliable 

predictive model. 

.  
Figure 4.32: ROC Curve for Hungarian Dataset in ANFIS. 

Supporting this, the confusion matrix Figure 4.33 displays a near-perfect classification with 

31 true negatives and 44 true positives, suggesting that the model can distinguish between 

the absence and presence of the disease with high accuracy. 
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Figure 4.33: Confusion Matrix for Hungarian Dataset in ANFIS. 

When scrutinizing the Long Beach VA dataset, the ANFIS model displayed a commendable 

level of accuracy at 78%. The precision, at 0.84, indicates a high rate of true positive 

predictions among all positive calls made by the model, while the recall rate of 0.78 assures 

that a substantial proportion of actual positive cases were correctly identified. These figures 

converge to produce an F1 score of 0.78, signifying a balanced harmonic mean between 

precision and recall. 

A more nuanced look at the F2 score, which leans towards recall, shows a slightly higher 

value of 0.87, highlighting the model’s capacity to correctly identify true positive cases, 

which is often more crucial in medical diagnostics. The ROC-AUC score further 

demonstrates the model's performance, with a solid ROC-AUC of 0.81, as illustrated in the 

ROC chart Figure 4.34. 
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Figure 4.34: ROC Curve for Long Beach VA Dataset in ANFIS. 

The confusion matrix Figure 4.35 for the Long Beach VA dataset reinforces these statistics, 

with 23 true negatives and 20 true positives. The presence of 11 false positives and only 1 

false negative sheds light on the model’s tendency to avoid false negatives at the expense of 

a slightly increased false positive rate. 

 
Figure 4.35: Confusion Matrix for Long Beach VA Dataset in ANFIS. 
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Upon evaluating the Switzerland dataset, the ANFIS model turned in a laudable performance 

with a 97% accuracy rate. This high level of accuracy is matched by a precision and recall 

of 0.97, denoting that the model correctly identified most of both positive and negative cases. 

The F1 score, which is a measure of the model's accuracy considering both precision and 

recall, stands strong at 0.97. The F2 score, which places more emphasis on recall, is slightly 

higher at 0.98, suggesting that the model is particularly effective at capturing true positive 

cases. 

The ROC-AUC score is an exceptional 0.97, which indicates a high ability of the model to 

differentiate between the classes effectively. This is visually confirmed by the ROC curve 

presented in Figure 4.36, with the test ROC-AUC curve nearing the top-left corner, 

signifying an excellent true positive rate with minimal false positives. 

 
Figure 4.36: ROC Curve for Switzerland Dataset in ANFIS. 

The confusion matrix Figure 4.37 further illustrates the model's high level of correct 

classifications, with 31 true negatives and 26 true positives, against a mere 2 false positives, 

highlighting the model's precision in detecting cardiovascular disease. 
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Figure 4.37: Confusion Matrix for Switzerland Dataset in ANFIS. 

For the Statlog Heart dataset, the ANFIS model's performance was solid, achieving 95% 

accuracy. The model showed a balanced precision and recall, each at 0.95, which led to an 

F1 score of the same value. The F2 score was elevated to 0.98, reflecting the model’s strong 

emphasis on recall, thus prioritizing the correct identification of all positive cases. 

The ROC-AUC score, which quantifies the model's ability to differentiate between classes, 

matched the accuracy at a robust 0.95. This suggests a highly effective model with a 

commendable true positive rate and a low false positive rate, as evidenced by the ROC curve 

in Figure 4.38. 
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Figure 4.38: ROC Curve for Statlog Heart Dataset in ANFIS. 

The confusion matrix Figure 4.39 reinforces this performance, indicating 26 true positives 

and 26 true negatives, with just a minor number of 3 false positives, demonstrating the 

model's capability to accurately classify the instances. 

 
Figure 4.39: Confusion Matrix for Statlog Heart Dataset in ANFIS. 
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The ANFIS model's performance across the various datasets underscores its reliability and 

effectiveness in the diagnosis of cardiovascular diseases. Despite the natural variability in 

results that comes with different data sources, the model has demonstrated a consistently 

high degree of precision and recall, which are critical for clinical diagnostic tools. The 

favorable F2 scores indicate a thoughtful consideration of recall, suggesting that the model 

is well-tuned to recognize true positive cases effectively which is a crucial aspect of medical 

diagnostics. Moreover, the ROC-AUC scores across all datasets affirm the model's 

discriminating power, adding to its credibility as an asset in healthcare settings for the 

prediction and analysis of cardiovascular conditions. 

4.4 COMPARATIVE ANALYSIS OF XGBOOST AND ANFIS MODEL 

This section delves into the comparative performance of the XGBoost and ANFIS models, 

employing a holistic view of their outcomes across multiple datasets as outlined in Table 4.2 

and Table 4.3 below. 

Table 4.2: XGBoost Model Results. 

Datasets Accuracy Precision Recall F1 Score F2 Score ROC-AUC Score 

Cleveland 98.28% 0.97 1.00 0.98 0.99 0.98 

Hungarian 99% 0.98 1.00 0.99 1.00 0.98 

Long-beach-va 97% 0.96 0.96 0.96 0.96 0.96 

Switzerland 100.00% 1.00 1.00 1.00 1.00 1.00 

Statlog_heart 100.00% 1.00 1.00 1.00 1.00 1.00 
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Table 4.3: ANFIS Model Results. 

Datasets Accuracy Precision Recall F1 Score F2 Score ROC-AUC Score 

Cleveland 100.00% 1.00 1.00 1.00 1.00 1.00 

Hungarian 96% 0.96 0.96 0.96 0.97 0.96 

Long-beach-va 78% 0.84 0.78 0.78 0.87 0.81 

Switzerland 97% 0.97 0.97 0.97 0.98 0.97 

Statlog_heart 95% 0.95 0.95 0.95 0.98 0.95 

XGBoost, with its robustness and efficiency, excelled in most datasets, achieving near-

perfect scores across all performance metrics. This suggests that XGBoost is highly capable 

of handling diverse, high-dimensional data, making it a formidable tool for cardiovascular 

disease prediction. 

On the other hand, the ANFIS model, with its unique blend of fuzzy logic and neural network 

architecture, showed a remarkable ability to capture complex patterns. Although it presented 

with slight variability, it maintained commendable precision and recall levels, emphasizing 

its potential as a nuanced diagnostic tool. 

When directly compared, the XGBoost model often edged out with slightly superior 

accuracy and consistency. However, the ANFIS model demonstrated a particular strength in 

datasets where the underlying data patterns were less linear and more intricate, which could 

be attributed to its fuzzy logic component. 

The comparative analysis suggests that while XGBoost can be favored for its predictive 

power and robustness, ANFIS provides an alternative perspective with its ability to handle 

complexity and ambiguity in data, which are common in medical datasets. The choice 

between the two may ultimately depend on the specific dataset characteristics and the clinical 

context in which they are applied. 

The insights from this comparative analysis highlight the importance of model selection in 

healthcare analytics. By understanding the unique advantages of each model, researchers 

and practitioners can make informed decisions to utilize the appropriate model that best 

aligns with the diagnostic task at hand, thereby improving patient outcomes and enhancing 

clinical decision-making. 
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4.5  CONTRIBUTION TO CARDIOVASCULAR DISEASE PREDICTION IN 

HEALTHCARE 

This section delineates the contributions of our investigation within the expanding field of 

cardiovascular disease prediction, with a particular emphasis on the innovative 

advancements as presented in recent scholarly literature. 

Our research augments the extant scholarly discourse by facilitating a detailed comparative 

analysis of the XGBoost and ANFIS models, outlined in our proposed model in Table 4.4. 

This comparison underscores their unique and combined strengths in forecasting 

cardiovascular ailments. Moreover, our evaluation extends beyond mere accuracy metrics to 

include precision, recall, and area under the Receiver Operating Characteristic (ROC) curve, 

thereby providing a holistic view of model efficacy. 

When our findings are positioned alongside contemporary studies, the alignment with the 

forefront of research in this domain is apparent. For instance, in reference [52], the 

integration of Modified Salp Swarm Optimization with the Adaptive Neuro-Fuzzy Inference 

System (MSSO-ANFIS) within the Internet of Medical Things (IoMT) environment 

achieved an accuracy of 99.45%, as shown in Table 4.4. Our study mirrors this precision but 

also delves deeper into a nuanced analysis of performance metrics. 

In parallel, reference [51] explores the deployment of an Enhanced Deep Learning Assisted 

Convolutional Neural Network (EDCNN) for cardiac disease detection on IoMT platforms, 

which achieved an accuracy of 99.1%, as indicated in Table 4.4. Our research contributes to 

the discourse by exploring alternative machine learning strategies that provide similar levels 

of performance without the exclusive reliance on deep learning frameworks. 

Further, references [50] and [49]  detail the application of systems employing feature fusion 

and ensemble deep learning, as well as diverse ML algorithms such as Random Forest and 

SVM, respectively, as detailed in Table 4.4. These methodologies resonate with our 

approach to assess and validate a spectrum of predictive techniques, thereby pushing the 

boundaries of intelligent healthcare systems. 

The utilization of the High-Dimensional Partitioning Method (HDPM) highlighted in paper 

[48] and the combination of SVM with fuzzy logic in paper [47], both documented in Table 

4.4, represent significant advancements in this sphere. Our study complements these 

methodologies by contrasting the robust, tree-based XGBoost model with the adaptable, 
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rule-based ANFIS model, thus enriching the toolkit available for clinical decision support 

systems. 

Through a systematic evaluation of the strengths and applications of both XGBoost and 

ANFIS models, our study not only corroborates the high accuracy levels cited in the 

literature but also enriches the decision-making processes with in-depth performance 

metrics. These insights are pivotal for the development of more refined and adaptable 

predictive systems, which address the intricacies of cardiovascular disease diagnosis and 

pave the way for more individualized and precise patient care within the IoMT framework. 
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Table 4.4: Comparative Overview of Proposed and Existing Studies. 

References Objective ML Technique Datasets Accuracy 

[52] 

Enhance heart disease 

prediction accuracy in 

IoMT 

MSSO-ANFIS 
Hungarian 

99.45% 
Framingham 

[51] 

Develop EDCNN for 

heart disease 

detection on IoMT 

EDCNN with feature 

extraction and Bayesian 

classification. 

UCI repository 

dataset 
99.1% 

[50] 

Create a smart system 

for heart disease 

prediction 

Feature fusion, information 

gain, conditional 

probability, ensemble deep 

learning 

Cleveland 

98.5% 
Hungarian 

[49] 
Develop IoT-based 

healthcare monitoring 

Random Forest, K-NN, 

SVM, Decision Trees, 

MLP. 

Several public 

datasets from the UCI 

ML Repository 

97.26% 

[48] 

Develop HDPM for 

clinical decision 

support system 

DBSCAN, SMOTE-ENN, 

XGBoost. 

Cleveland 98.4% 

Statlog 95.90% 

[47] 

Develop SVM with 

fuzzy logic for heart 

prediction 

SVM, fuzzy decision fusion Cleveland 96.23% 

Proposed 

model 

Develop a prediction 

model using machine 

learning algorithms 

XGBoost 

Cleveland 98.28% 

Hungarian 99% 

Long-beach-va 97% 

Switzerland 100.00% 

Statlog_heart 100.00% 

ANFIS 

Cleveland 100.00% 

Hungarian 96% 

Long-beach-va 78% 

Switzerland 97% 

Statlog_heart 95% 
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This tabular synthesis articulates the scope and findings from various investigations, 

juxtaposing them with our research to underscore the significant contributions our work 

makes to the burgeoning field of cardiovascular disease prediction using advanced 

computational techniques within the IoMT landscape. 
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5. CONCLUSION 

5.1 OVERVIEW OF RESEARCH 

This thesis conducted on a comprehensive journey to explore the capabilities of XGBoost 

and ANFIS machine learning models in predicting cardiovascular diseases. The foray into 

these sophisticated algorithms was driven by the pressing need to enhance diagnostic 

accuracy and reliability in the face of the global burden of cardiovascular diseases. 

5.2 SUMMARY OF FINDINGS 

Our in-depth analysis revealed that both XGBoost and ANFIS models exhibit remarkable 

proficiency in classifying heart disease. By meticulously processing five distinct datasets, 

the study not only reinforced the models' versatility but also their adeptness at handling 

diverse patient data. The XGBoost model demonstrated exceptional performance, 

particularly in the Switzerland and Statlog datasets, achieving a perfect accuracy score of 

100%. Similarly, the ANFIS model shone with a flawless accuracy rate in the Cleveland 

dataset and strong results across others. 

5.3 COMPARATIVE ANALYSIS 

A comparative evaluation between the two models highlighted their individual strengths. 

The XGBoost model's robustness is evident in its consistent ability to balance precision and 

recall, substantiated by high F1 and F2 scores. On the other hand, the ANFIS model, with 

its integration of fuzzy logic, showcased a compelling capacity to model the nonlinear and 

complex patterns often present in medical diagnosis. 

5.4 IMPLICATIONS AND CONTRIBUTIONS 

Our work contributes significant new insights to the field of medical diagnostics. It serves 

as a testament to the potential of integrating advanced machine learning techniques into the 

healthcare domain. The findings of this thesis reinforce the narrative that machine learning 

models like XGBoost and ANFIS can be transformative tools in disease prediction, 

especially within the IoMT framework. 
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5.5 RECOMMENDATIONS AND FUTURE WORK 

While this study has laid a robust foundation, future research could expand upon this work 

by integrating larger and more varied datasets, potentially including real-time patient data, 

to further validate and refine the models. Additionally, exploring the synergy of hybrid 

models combining the strengths of XGBoost and ANFIS could yield even more powerful 

predictive tools. 

In conclusion, the results of this thesis underscore the viability of machine learning 

applications in healthcare, particularly for heart disease prediction. It demonstrates a clear 

path forward for the integration of algorithms like XGBoost and ANFIS in medical 

diagnostics, which can offer enhanced precision and potentially personalized patient care 

strategies. While there are still challenges to be met, such as data diversity and model 

interpretability, the progress made suggests that with further validation and refinement, 

machine learning could significantly improve the efficiency and effectiveness of disease 

diagnosis. This research contributes to the ongoing transformation of health data analytics, 

bringing us closer to a future where healthcare is increasingly informed by intelligent data-

driven decisions. 
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