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ÖZET 

 

Yüksek Lisans Tezi 

 

DOKUNMATİK YÜZEYLERDE KULLANICI TİPİNİN ANALİZİ VE DOKUNMA 

HASSASİYETİNİN KULLANICI TİPİNE GÖRE BELİRLENMESİ 

 

Egemen ENGİZEK 

 

Bursa Uludağ Üniversitesi 

Fen Bilimleri Enstitüsü 

Elektronik Mühendisliği Anabilim Dalı 

 

Danışman: Doç. Dr. Neyir ÖZCAN SEMERCİ 
 

Biyometrik veriler kişiye özgü ve değişmeyen özellikler olarak tanımlanır. Kişiye ait bu 

özellikler fiziksel (parmak izi, avuç içi izi, yüz, iris, retina, kulak, el damarı, vücut 

kokusu veya DNA bilgisi şeklinde) veya davranışsal (ses, yürüyüş, imza vb.) olabilir. 

Bu özellikler kişiye özel olduğundan biri ya da birkaçı ile kimlik tanıma ve doğrulama 

işlemleri yapılabilmektedir. Soft biyometrik veriler ise kişiye ait boy, kilo, göz rengi, 

saç rengi, saç yoğunluğu, etnik köken ve ırk gibi daha genel özellikleri temsil 

etmektedir. Bu çalışmada, dokunmatik yüzey (cep telefonu) kullanan kişinin dokunma 

biçimi, dokunma karakteristik özellikleri gibi soft biyometrik verileri ile cep telefonuna 

entegre edilen bir devre yardımıyla ölçülen biyoempedansı kullanılmıştır. Yapılan 

çalışmada yaşları 10 ile 65 arasında değişen 164 (86 erkek, 78 kadın) gönüllüden 

dokunmatik ekrana 4 farklı çizimi (saat yönünde çember çizimi, saat yönü tersine 

çember çizimi, saat yönünde üçgen çizimi, saat yönü tersine üçgen çizimi) ve 4 farklı 

kaydırma (yukarı kaydırma, aşağı kaydırma, sola kaydırma ve sağa kaydırma) 

işlemlerini 15 defa tekrarlamaları istenmiş, eş zamanlı olarak gönüllülerin 

biyoempedans ölçümleri telefon kılıfına monte edilmiş devreye bağlı bakir bantlara 

dokunmaları suretiyle yapılmıştır. Elde edilen veriler makine öğrenmesi yöntemleri (K-

NN, DVM ve Mantıksal Regresyon) ile analiz edilerek kişilerin yaş aralığı ve cinsiyeti 

belirlenmiştir. Yapılan bu sınıflandırma sonucunda oluşturulan profil, kayıtlı 

kullanıcılar ile karşılaştırılarak kimlik doğrulama için kullanılabilmektedir. Ayrıca 

belirlenen yaş aralığına göre cihazın kullanımı engellenebilir ya da bazı uygulamalara 

erişimine kısıtlama getirilebilir. Yapılan bu çalışma ile kişilerin cihaz kullanımlarında 

düşük güvenlikli kimlik doğrulama için eşsiz biyometrik verilerini paylaşma 

gerekliliğinin ortadan kaldırılması amaçlanmaktadır.  
 

Anahtar Kelimeler: Soft Biyometri, Biyoempedans, Kimlik Doğrulama, Makine 

Öğrenmesi, Biyometrik veri, Destek Vektör Makineleri, K-En yakın komşular, 

Regresyon. 
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ABSTRACT 

 

MSc Thesis 

 

ANALYSIS OF USER TYPE ON TOUCHPADS AND DETERMINATION OF 

TOUCH SENSITIVITY BY USER TYPE 

 

Egemen ENGİZEK 

 

 Bursa Uludağ University  

Graduate School of Natural and Applied Sciences 

Department of Electronics Engineering  

 

Supervisor: Assoc. Prof. Dr. Neyir ÖZCAN SEMERCİ 

 

Biometric data is a type of data that defined as person-specific and unchanging 

characteristics. These characteristics of a person can be physical (in the form of 

fingerprints, palm prints, face, iris, retina, ears, hand veins, body odor or DNA 

information) or behavioral (voice, gait, signature, etc.). Physical features are personal; 

identification and verification can be done with one or more of them. Soft biometric 

data, on the other hand, representing more general characteristics of the person such as 

height, weight, eye color, hair color, hair density, ethnicity and race. In this study, soft 

biometric data such as the touch style and touch characteristics of the person using a 

touch surface (mobile phone) and the bioimpedance measured with the help of a circuit 

integrated into the mobile phone were used. In the study, 160 volunteers (80 men, 80 

women) aged between 10 and 65 have been asked to make 4 different drawings 

(clockwise circle drawing, counterclockwise circle drawing, clockwise triangle drawing, 

counterclockwise triangle drawing) and 4 different swipe movements (swiping left, 

swiping right, swiping down and swiping up) repeating processes 15 times, and 

simultaneously, the volunteers' bioimpedance measurements were made by touching the 

metal copper bands connected to the circuit mounted on the phone case. The obtained 

data were analyzed with machine learning methods (K-NN, SVM, Linear Regression) 

and the age range and gender of the people were determined. The profile created 

because of this classification can be used for authentication by comparing it with 

registered users. Additionally, depending on the specified age range, the use of the 

device may be prevented or access to some applications may be restricted. This study 

aims to eliminate the need for people to share their unique biometric data for low-

security authentication when using their devices. 
 

Key words: Soft Biometrics, Bioimpedance, Authentication, Machine Learning, 

Biometric data, Support Vector Machines, K-Nearest Neighbour, Regression. 
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1. GİRİŞ 

 

Günümüzde kimlik doğrulama birçok farklı yerde ve şekillerde kullanılmaktadır. 

Kimlik doğrulama, geleneksel olarak anahtar ve şifre onaylayıcılarla dijital olarak ise 

iris tanımlama, yüz tanımlama ve parmak izi tanımlama şeklinde yapılabilmektedir. 

Mobil uygulamalarda ise dokunma desenleri çizimleri ya da sesli komutlar kimlik 

doğrulama için kullanılabilmektedir. Kimlik doğrulama şekilleri çok farklı olmakla 

beraber, her doğrulama işlemi kullanıcıyı doğrulama ve sisteme erişim izni verip 

vermeme şeklinde aynı iki işlem adımını takip eder. 

 

Biyometrik verileri kullanarak kimlik doğrulama, teknolojinin de ilerlemesi ile birlikte 

oldukça popülerleşmiştir. Mobil cihaz kullanımı arttıkça, insan ve makine arasındaki 

veri alışverişi artmış, bu sayede kullanıcılardan çeşitli verilerin elde edilmesi mümkün 

olmuştur. Biyometrik veri, dokunmatik ekrana sahip akıllı cep telefonlarını 

etkinleştirmek, telefona yüklü uygulamaları açmak ve telefonda yapılan çeşitli işlemler 

için kullanılabilmektedir. Bütün bu işlemler, kimlik doğrulamada biyometrik veri 

kullanımı ile daha hızlı ve güvenilir olmaktadır. Biyometrik veriler kişiye özgü ve 

değişmeyen özellikler olarak tanımlanır. Eşsiz biyometrik veriler ise parmak izi, yüz, 

iris, retina gibi kişiye özel özelliklerdir. Bu eşsiz veriler sadece bu özellikleri sağlayan 

kişiyi tanımlar ve oldukça güvenilirdir. Bunun yanında soft-biyometrik olarak 

tanımlanan veriler ise literatürde “Bir kişinin kimliği hakkında bazı bilgiler sağlayan 

ancak kimliği kesin olarak belirlemek için yeterli kanıt sağlamayan anatomik veya 

davranışsal özellikler” olarak tanımlanmaktadır (K. Nandakumar ve A.K. Jain, 2009, s. 

1235–1239). Yaş, etnik köken, cinsiyet, boy, kilo, yara izleri ve dövmeler gibi 

özellikleri içerir (Miguel-Hurtado, Stevenage, Bevan ve Guest, 2016). Literatürde 

mevcut olan çalışmalar, soft biyometri kullanımının biyometrik sistem performansını 

artırabildiğini ve büyük veri tabanlarında arama süresini büyük ölçüde azaltabildiğini 

göstermiştir (K. Nandakumar ve A.K. Jain, 2009). Bu çalışmalarda ilk kimlik 

doğrulama için eşsiz-biyometri teknikleri kullanılırken, deneğin kimliğinin sürekli 

olarak doğrulanması için ise soft-biyometri özelliklerinin bir kombinasyonu 

kullanılmıştır (Miguel-Hurtado ve diğerleri, 2016).   
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Mobil cihazlarda kimlik doğrulama için ilk oturum açıldığında geleneksel olarak PIN 

kodu ve şifre istenir. Bu şifre ve PIN kodu girişinden sonra kullanıcının sisteme 

erişimine izin verilir. Bu tip bir doğrulamanın dezavantajı, bu işlemin sadece bir kere 

oturum açıldığında yapılmasıdır. Bu da oturum sonlanana kadar cihazın ve içerisindeki 

önemli bilgilerin savunmasız kalması anlamına gelir. (Sivaz ve Aykut, 2021).  

 

Bunun dışında kimlik doğrulama için yaygın olarak kullanılan yöntemlerden biri olan 

gizli dokunma desenleri de ekran üzerinde parmaktan geçen yağın iz bırakması ve 

desenin yapıldığı anda gizlice gözlenmesi gibi güvenlik tehditlerini içermektedir. (Aviv, 

Gibson, Mossop, Blaze, ve Smith, 2010; Wiedenbeck, Waters, Sobrado, ve Birget, 

2006). 

 

Biyoelektrik empedans analizi (BEA) vücuttan zayıf bir elektrik akımının aktığı ve 

vücudun empedansını (direnç ve reaktans) hesaplamak için voltajın ölçüldüğü, özellikle 

vücut yağ ve kas kütlesini tahmin etmeye yönelik bir yöntemdir. Vücutta bulunan kas 

kütlesinin artması nedeniyle depolanan su miktarının artması empedansın düşmesine 

neden olur. BEA vücut yağ oranını tahmin etmek, bazı hastalıkların ön tanısını 

oluşturmak ve çeşitli destek sağlık programları oluşturmak için tüketici pazarlarında 

sıklıkla kullanılır. 

 

Bu tez çalışmasında kişilerin cinsiyet ve yaş sınıflandırması soft biyometrik veriler 

kullanılarak makine öğrenmesi yöntemleri ile yapılmıştır. Kullanılacak olan soft 

biyometrik veriler, Bursa Uludağ Üniversitesi, Tıp Fakültesi Klinik Araştırmalar Etik 

Kurulunun 13.06.2023 tarih, 2023-13/4 nolu kararında vermiş olduğu izinle gönüllü 

bireylerden toplanmıştır. Toplanan bu veriler bir cep telefonu uygulaması ve cep 

telefonu kılıfına monte edilmiş bir elektronik devre kullanılarak elde edilmiştir. Yapılan 

çalışmada yaşları 10 ile 65 arasında değişen 164 (86 erkek, 78 kadın) gönüllüden 

dokunmatik ekrana 4 farklı çizimi (saat yönünde çember çizimi, saat yönü tersine 

çember çizimi, saat yönünde üçgen çizimi, saat yönü tersine üçgen çizimi) ve 4 farklı 

kaydırma (yukarı kaydırma, aşağı kaydırma, sola kaydırma ve sağa kaydırma) 

işlemlerini 15 defa tekrarlamaları istenmiş, eş zamanlı olarak gönüllülerin biyoelektrik 
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empedans ölçümleri telefon kılıfına monte edilmiş devreye bağlı bakır bantlara 

dokunmaları suretiyle yapılmıştır. Toplanan bu veriler makine öğrenmesi sınıflandırma 

ve regresyon modelleri ile işlenmiş, kullanılan modellerin sınıflandırma başarımları 

ölçülmüştür.  

 

Şu ana kadar eşsiz ve soft biyometrik verilerin birlikte kullanılması görülmüş olsa da 

biyoelektrik empedans ve soft biyometrik verilerin birlikte kullanıldığı çalışmaya bu 

tezin yazıldığı zaman itibariyle henüz rastlanılmamıştır. Çalışma, bu yönyüyle, problem 

olarak yenilikçidir.   
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2. KURAMSAL TEMELLER ve KAYNAK ARAŞTIRMASI 

  

2.1. Biyoelektrik Empedans 

  

Biyoelektrik empedans analizi (BEA), en basit ifadesi ile bir kişinin elektrik 

empedansını yani vücut dokuları boyunca bir elektrik akımının akışına olan karşıtlığını 

belirler; bu veri daha sonra dokuların yapısını, yağ su dengesini ve kütlelerini tahmin 

etmek için kullanılabilir ve vücut ağırlığına, vücut yağına göre farklılık gösterir. 

 

Vücut empedans ölçümü sırasında elde edilebilecek veriler Yağsız Vücut Kütlesi 

(FFM), Vücut Su Miktarı (TBW), Hücre Dışı Sıvı Miktarı (ECW), Hücre içi Sıvı 

Miktarı (ICW) şeklindedir. Vücudun toplam ağırlığı bilindiği takdirde bu veriler 

doğrultusunda Vücut Yağ Kütlesi (FM), Yağsız Vücut Yüzdesi (LBM%) de elde 

edilebilir. 

 

Vücudun mineral yapısı ve su oranına bağlı olarak, yüksek ve düşük frekansın 

geçirgenliği farklıdır. Düşük frekanslarda hücre zarları kapasitif etki gösterir ve elektrik 

akiminin geçişine engel oluştururlar. Düşük frekanslarda ECW hakkında bilgi sahibi 

olunabilir. Yüksek frekanslarda ise elektrik akımının hücre zarının kapasitif etkisi yok 

olur ve elektik akımı hem hücre içi hem de hücre dışı sıvıdan geçer. Bu şekilde TBW 

ölçülebilir. 

 

Biyoelektrik empedans analizi (BEA), güvenli ve hızlı olmasının yanı sıra vücut 

bütünlüğüne zarar vermemesi ve nispeten düşük maliyetli olması nedeniyle, kliniklerde 

hastaların vücut kompozisyonlarını değerlendirmek için yaygın bir şekilde 

kullanılmaktadır. Sadece empedans değerleri değil ayrıca faz açısı da hastalıkların 

analizi açısından önemli görülüp kullanılmaya başlanmıştır. BEA analizinden elde 

edilen empedans bileşenleri ile hesaplanan faz açısı, beslenme durumu ve morbidite 

riskinin değerlendirilmesinde objektif ve hızlı bir yöntem olarak büyük ilgi 

çekmektedir. Faz açısının, kötüleşen klinik durumlar ve çeşitli hastalıkların ölüm 
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oranları için önemli bir parametre olduğu vurgulanmaktadır. Literatürde, faz açısının 

hastalıklar, fiziksel aktivite düzeyi ve beslenme durumu gibi birçok faktörle olan 

ilişkisini inceleyen pek çok çalışma bulunmaktadır. Ancak, belirli hastalıklar, bireyler 

veya diğer faktörler için referans değerler henüz kesinleşmemiştir. (Canbolat E., 2018). 

 

BEA’nın frekans, empedans ve faz açısı olmak üzere üç bileşeni mevcuttur. 

 

Uygulamalarda değişen akımın frekansına bağlı olarak, hücre zarları iletken ya da 

kapasitif etki gösterirler. Düşük frekanslarda sadece hücre dışı sıvı hakkında bilgi sahibi 

olunabilirken, yüksek frekanslarda hücre zarının kaybolan kapasitif etki ile akım hem 

hücre içi hem hücre dışından geçerek toplam sıvı miktarı hakkında bilgi edinilmesini 

sağlar. Frekansa göre hücre zarı geçirgenliği Şekil 2.1.1’de gösterilmiştir. 

 

 
 

Şekil 2.1.1. Frekans büyüklüklerine göre hücreden elektrik akım geçişleri (Canbolat 

2018'den değiştirilerek alınmıştır) 

 

Kullanılan frekans değerlerine göre iki tip BEA sistemi vardır. Tek frekanslı BEA 

yöntemi ‘Klasik BEA’ yöntemi olarak bilinmektedir. Dört elektrot ile yapılan bu tip 

BEA’da sabit bir frekansta akım vücut içerisinde ilerlemektedir. Tek frekanslı BEA, 

TBW ve LBM analizinde en sık kullanılan yöntem olmakla beraber, TBW’nin hücre içi 

ve dışını kısımlarını ayırt etmede yetersizdir. Tek frekanslı BEA ölçümleri hidrasyon 

durumu belirgin bir şekilde değişmiş kişilerde anlamlı değildir ancak normal hidrat 

Yüksek Frekans 

Düşük Frekans 

Hücre Dışı 

Hücre İçi 
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kişilerde, yağsız kitle veya toplam vücut suyunu kolaylıkla hesaplayabilir (Canbolat E., 

2018). 

 

Çoklu frekans BEA uygulaması ise farklı frekanslar kullanarak sadece hücre dışı değil 

hücre içindeki sıvı miktarını da belirleyebilir. Yüksek frekansta akım hücre içi 

sıvısından geçmeye başlar. Çoklu frekans BEA, sıvı değişimlerini ve sıvı dengesini 

daha iyi açıklamakta olup hidrasyon seviyesindeki değişimleri incelemede de 

kullanışlıdır. Yağ kütlesi hakkında bilgi sağlamanın yanında çoklu frekans BEA’nın tek 

frekanslı BEA’ya göre, ekstremite iskelet kaslarını değerlendirme avantajı vardır 

(Nalçacıoğlu, 2014; Özçetin ve Khalilova, 2017; Aydın 2004). 

 

Empedans, bir malzeme içinden geçen alternatif akıma karşı frekansa bağlı olan 

elektriksel dirençtir. Empedans ‘𝑍’ ile ifade edilir ve birimi (Ω) Ohm’dur. Bu tezde 

empedans biyolojik maddelerin üzerinden değerlendirildiği için ‘Biyoempedans’ olarak 

tanımlanmıştır. Şekil 2.1.2’de empedans ve faz açısına bağlı tüm değerler gösterilmiştir. 

 

 
 

Şekil 2.1.2. Kompleks düzlemde empedans ve faz açısı gösterimi (Wikipedia, 2009) 

 

 |𝑍|̃2 =  𝑋2 + 𝑅2 (2.1) 

  

Denklem 2.1’de gösterilen empedans değerinin karesi rezistans ve reaktansın karelerinin 

toplamıdır. Frekans değişimi ile reaktans kısım artabilir ya da azalabilir. Eğer faz açısı 
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pozitif ise malzeme indüktif, eğer faz açısı negatif ise malzeme kapasitif etki gösteriyor 

demektir. 

 

Düşük faz açısı değeri veya düşük reaktans, hücre ölümü ya da hücre zarının seçici 

geçirgenliğinin bozulmasını ifade eder. Yüksek faz açısı değeri ise düşük faz açısındaki 

durumun tersine, daha büyük miktarlarda bozulmamış hücre zarlarını ifade eder. 

Yüksek faz açısı en iyi hücre fonksiyonu ile birlikle en güçlü hücre zarının durumunu 

gösterir. Bundan dolayı faz açısı hücresel sağlık durumunun en iyi tanımlayıcı olduğu 

ifade edilmektedir. Yapılan çalışmalar incelendiğinde kadınlardaki faz açısının 

erkeklere göre; yaşlı bireylerdekinin de genç bireylere kıyasla daha düşük olduğu 

görülmektedir. Bu durum erkek ve genç bireylerin, kadınlara ve yaşlı bireylere kıyasla 

daha yüksek kas kütlesine ve daha az yağ kütlesine sahip olması ile açıklanabilir. 

 

2.2. Soft Biyometri 

 

Soft Biyometri özellikleri, “Bir kişinin kimliği hakkında bazı bilgiler sağlayan ancak 

kimliği kesin olarak belirlemek için yeterli kanıt sağlamayan anatomik veya davranışsal 

özellikler” olarak tanımlanmaktadır. Bunlar, yaş, etnik köken, cinsiyet, boy, kilo, yara 

izleri ve dövmeler gibi özellikleri içerir. Bu özellikler, biyometri dağıtımında, parmak 

izi (Ailisto ve arkadaşları, 2006), iris (Zewail ve arkadaşları 2004) ve yüz (Park ve Jain, 

2010) gibi katı biyometri yöntemleriyle kombinasyon halinde kullanılmıştır. Çalışmalar, 

soft biyometri kullanımının biyometri sistem performansını artırabildiğini ve büyük veri 

tabanlarında arama süresini büyük ölçüde azaltabildiğini göstermiştir. Soft biyometri 

yüksek seviyeli ipuçları olmasına rağmen, sürekli kimlik doğrulama senaryolarında 

kullanıma sunulma konusunda büyük ölçüde yetersizdir (Niinuma ve arkadaşları, 2010). 

Bu durumlarda, ilk kimlik doğrulama için eşsiz biyometrik teknikleri kullanılırken, 

deneğin sürekli olarak kimliğini doğrulamak için soft biyometri özelliklerinin bir 

kombinasyonu kullanılır (Miguel-Hurtado ve diğerleri, 2016). 

 

Soft biyometri uygulamalarının, dokunmatik ekrana veya yüzeye sahip cihazların 

kullanımının artması ile alanları genişlemiş ve makine öğrenmesi ile popülerleşmiştir. 
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Bu noktada kişinin tanımlanması için gerekli olan fiziksel ayırt edici özelliklerinin 

dışına çıkılarak, çok fazla miktarda veri içeren yeni tanımlayıcı setler 

oluşturulabilmektedir. Cep telefonu ve tablet gibi günlük hayatta sıkça kullanılan 

cihazlar sayesinde kişilerin parmakları ile yaptıkları tarama, sürükleme, dokunma gibi 

davranışları rahatlıkla gözlemlenebilip, analiz edilebilmektedir.  

 

Angulo ve Wästlud’un (2011) 32 gönüllü ile yaptığı çalışmada bir Android işletim 

sistemine sahip cep telefonlar üzerinde gönüllülerin ekran kilidini açmak için kullanılan 

dokunma desenleri çizmeleri istenmiştir. Üç farklı desenin her biri 50 kez 

tekrarlanmıştır. Desenlerde bulunan 9 farklı noktadan belirlenmiş olanların üzerinde 

parmağın durma süresi ve noktaları tararken geçen süre hesaplanıp daha sonrasında bu 

verileri makine öğrenmesi yöntemleri ile değerlendirilmiştir. Sonradan bu veriler ile kişi 

tahmini yapılmıştır. Hata oranı %10,39 olarak hesaplanmıştır. Altı noktalı bir deseni 

doğru tahmin etme oranı herhangi biri için 1/16032 = 0,00006 olarak hesaplanmıştır. 

Hata oranına istinaden uyumlu kişi olmasa bile deseni doğru yapan ve sisteme erişme 

başarısı 0,05 olarak hesaplanmıştır. Dolayısıyla deseni bilmeyip ve veri setindeki 

kişilerden olmayan birisinin deseni doğru yapıp sisteme erişme şansı 0,000006 × 0,05 = 

0,000003 olarak bulunmuştur. Burada farklı kimlik doğrulama sistemleri ve biyometrik 

verilerin birlikte kullanıldığında daha güvenli olduğu görülmüştür. 

 

Acien, Morales, Fierrez, Vera-Rodriguez, Hernandez Ortega (2018) yaptıkları 

araştırmada 3 ile 6 yaş arasındaki 89 çocuk ile yaş tahminlerinde farklı sınıflandırma 

teknikleri kullanarak %90 ile %96 arasında bir başarı oranı yakalamışlardır. Yapılan 

çalışmada kullanıcılara akıllı cep telefonları ile dokunma ve kaydırma hareketleri 

yapmaları istenmiştir. Kaydırma hareketi sırasında ortalama hız, maksimum ivme ve 

kaydırma toplam süreleri dikkate alınmıştır. Dokunma esnasında ise dokunulması 

istenilen bölge ile gerçekten dokunulan bölge arasındaki mesafe ve dokunma süresi elde 

edilmiştir. Tek bir makine öğrenme algoritması kullanarak çocukların nöromotor 

becerilerinin giderek arttığı saptanabilmiştir. Bu da tehlikeli durumlarda küçük 

çocukların sisteme erişim izni sağlanamayacağı bir faktör olarak dikkate alınmıştır. 

 



 

 

 

 

 

 

9 

 

Soft Biyometri sadece hareketler ile tanımlanan bir olgu değildir. Bevan ve Fraser 

(2016) yaptıkları çalışmada farklı fiziksel özelliklere sahip kişilerin bu fiziksel 

özellikleri ile ayrıştırılabilir olup olmadıklarını araştırmışlardır. Bu kapsamda 178 

kişiden, tasarlanmış bir cep telefonu uygulaması aracılığıyla, 4 farklı sürükleme hareketi 

(yukarıdan aşağıya, aşağıdan yukarıya, soldan sağa ve sağdan sola) yapılması 

istenmiştir. Her hareket 30 defa tekrarlanmış ve hareketlerden 6 farklı karakteristik 

özellik çıkarılmıştır. Bunlar kaydırma uzunluğu, kaydırma zamanı, ortalama kaydırma 

temas genişliği, ortalama basınç, maksimum hız ve maksimum ivmedir. Buradaki özgün 

yaklaşım, hareketlerin sadece baş parmak ile yapılmasıdır. Kullanıcıların hareketleri 

yapmadan önce bilekten baş parmak ucuna kadar olan uzunluğu ölçülmüş ve sol elini 

kullanan kullanıcıların sağdan sola kaydırmada daha hızlı oldukları; sağ elini kullanan 

kullanıcıların soldan sağa kaydırmada daha hızlı oldukları sonucuna ulaşılmıştır. Burada 

bileğin ve elin doğal uzanma ve kapanma hareketi de göz önünde bulundurulmuştur. 

Daha uzun baş parmak uzunluğuna sahip olanlar, bütün kaydırma işlemlerinde daha 

kısa baş parmağa sahip olanlardan daha hızlı olmuşlardır. 

 

Miguel-Hurtado, Stevenage, Bevan ve Guest’in (2016) yaptığı çalışmada hareket 

biçimlerinin, farklı karakteristik özellikleri ile çeşitli makine öğrenmesi algoritmalarını 

ayrı ayrı ve birlikte karşılaştırarak cinsiyet tahmininde %78 doğruluk oranı 

yakalanmıştır. 116 kişiyle yapılan bu çalışmada hareketlerin sadece bir defa yapılması 

(yukarıdan aşağıya, aşağıdan yukarıya, soldan sağa ve sağdan sola) karakteristik özellik 

ve makine öğrenmesi yöntemlerinin ne kadar önemli olduğunu vurgulamaktadır. Burada 

dikkat edilen nokta her bir hareket karşısında cinsiyet tahminine en çok yarayan 

karakteristik özellik ve algoritma kullanımıdır. Böylece her özellik, her hareket ve 

algoritma için geçerli olmayıp modelde ağırlığı azaltılmıştır. 

 

Rzecki Pławiak, Niedźwiecki ve Sośnicki (2017) desenli örüntü tekniğini kullanarak, 50 

kişiyle, 9 farklı hareket ve her hareket için 10 tekrar ile yaptıkları çalışmada daha önceki 

çalışmalardan farklı olarak kişi tanımlamada %99 gibi büyük bir başarı yakalamışlardır. 

Buradaki en önemli faktör toplanan verilerin herhangi bir makine öğrenme metoduna 

girmeden önce ön işlem yapılmasıdır. Bu işlemler sırasıyla; yeniden örnekleme, 
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standartlaştırma, temel bileşen analizi, boyut indirgeme, birleştirme, normalizasyon ve 

veri uzatımıdır. Bu yöntemle yüksek başarı oranı sağlanmıştır; ancak bu işlemler 

oldukça maliyetli ve dikkatli yapılması gereken işlemlerdir.  

 

2.3. Makine Öğrenmesi 

 

Makine öğrenimi (MÖ), bilgisayarların verileri analiz ederek insanlar gibi öğrenmesini 

sağlayan bir bilgisayar bilimidir. MÖ, bir bilgisayarın açık ve doğrudan talimatlar 

olmadan matematiksel modellerin yardımı ile öğrenebilir. Bu durum yapay zekanın 

(YZ) bir alt kümesi olarak kabul edilir. Verilerdeki kalıpları tanımlamak için MÖ 

algoritmaları kullanır.  Bu kalıplar, tahmin yapabilen bir veri modeli oluşturmak için 

kullanılır. İnsanların pratik yaparak kendilerini geliştirdiği gibi veri havuzu ve deneyim 

arttıkça makine öğrenmesi de daha doğru sonuçlar verir (Microsoft Azure, 2024). 

 

İlk olarak 1952 yılında ifade edilen MÖ, resmi olarak Arthur Samuel tarafından 

tasarlanmıştır. Tasarlanan model IBM laboratuvarlarında dama oynaması için 

denenmiştir. Arthur Samuel’in tasarladığı bu programın dama oynadığı her 

seferde kendisini geliştirmesi, hatalarını belirleyip düzeltmesi ve elde ettiği verilerle 

oyunu kazanmanın yollarını keşfetmesini amaçlanmıştır. Bu kendiliğinden öğrenme 

programı, makine öğrenmesinin ilk örneklerinden biri olmuştur. Kendi kendine 

öğrenme ve makine öğrenmesi gibi terimler de bu dönemde kullanılmaya başlanmıştır. 

 

MÖ birçok farklı alanlar ile bütünleşik olarak çalışmaktadır. Örnek olarak MÖ, YZ’nin 

bir alt kümesidir ve YZ’nin çıktılarını kullanır. YZ insan zekasını taklit eden daha geniş 

kapsamlı bir kümedir. MÖ ve YZ sıklıkla birbirinin yerine kullanılır; ancak gerçekte 

aynı anlama gelmezler. MÖ’nün bir alt kümesi ve özel bir biçimi olan ‘Derin Öğrenme’ 

ise doğruluğu kendi başına sağlayabilen bir sinir ağı kullanır. Burada kullanılan derin 

sıfatı öğrenme aşamasında kullanılan farklı katmanlardan meydana gelmektedir. Her 

katmanın öğrenme şekli, katsayısı ve öğrenme çıktıları farklıdır. Dolayısıyla DÖ, 

MÖ’ne göre daha fazla veriye ihtiyaç duyar. Bu olguların birbirleriyle olan ilişkileri 

Şekil 2.3.1’de verilmiştir. 
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Şekil 2.3.1. Makine öğrenmesi ve ilişkili alanları (Sindhu, 2020) 

 

2.3.1. Denetimli Öğrenme 

 

Denetimli Öğrenme MÖ’de kullanılan bir yöntemdir. Bu yöntemde kullanıcı veri 

kümelerini etiketleyerek kullanır. Veri seti içerisindeki verilerin (öznitelikler) karşılığı 

hangi verinin geldiği bu etiketleme yoluyla belirtilir ve öğrenme metoduna bu şekilde 

girdi verilir. Algoritma bu etiketli veriler üzerinden en uygun fonksiyonu bulmaya 

çalışır. Girdi ve çıktı arasındaki örüntüyü en iyi tanımlayacak olan fonksiyon daha sonra 

etiketlenmemiş bir veri geldiğinde aynı fonksiyonu uygulayarak, çıkışı tahmin etmeye 

çalışır. Denetimli öğrenme algoritması eğitim verilerini inceler ve yeni girdileri eşlemek 

için kullanabilecek bir fonksiyon üretir. Denetimli Öğrenme sınıflandırma ve regresyon 

problemlerine uygulanır. Şekil 2.3.1.1’de bu iki temel yöntem gösterilmiştir. 
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Şekil 2.3.1.1. Sınıflandırma ve regresyon (Candan H., 2021) 

 

Regresyon 

 

Regresyon bağımlı değişken (sonuç veya etiket) ile bir veya daha fazla bağımsız 

değişken arasındaki ilişkiyi tahmin etmeye yarayan istatiksel bir durumdur. Bir 

regresyon probleminde, sürekli değerli bir çıktıyı tahmin etmek hedeflenmektedir. 

Regresyon analizinin en yaygın biçimi, verilerin dağılımını en yakın şekilde uyan 

çizginin bulunduğu doğrusal regresyondur (DR). 

 

Belirli matematiksel nedenlerden dolayı (bkz. doğrusal regresyon), bu, bağımsız 

değişkenler belirli bir değer kümesini aldığında araştırmacının bağımlı değişkenin 

koşullu beklentisini (veya popülasyon ortalama değerini) tahmin etmesine olanak tanır. 

 

Regresyon analizi tahmin yapabilmek için kullanılabilir. Bazı durumlarda bağımsız ve 

bağımlı değişkenler arasındaki nedensel ilişkileri ortaya çıkarmak için de kullanılabilir. 

Burada önemli olan nedensel ilişkilerin kullanılması ve modelin bu yönde matematiksel 

olarak ifade edilebilmesidir. Regresyon biçimleri şu şekildedir: 
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• Basit Doğrusal Regresyon 

• Çoklu Doğrusal Regresyon 

• Polinom Regresyon 

• Mantıksal (Lojistik) Regresyon 

• Karar Ağacı Regresyon 

• Rastgele Orman Regresyon 

 

Sınıflandırma 

 

Sınıflandırma, veri kümesini farklı parametrelere dayalı olarak farklı kümelere ayırmayı 

hedefleyen bir algoritmadır. Girdi verilerini ayrık değerdeki çıktı verisine eşleyen 

problemlere uygulanmaktadır; yani çıktı verileri kategorik tiptedir. Sınıflandırmada 

model, eğitim verileri kullanılarak tamamen eğitilir ve daha sonra yeni görünmeyen 

veriler üzerinde tahmin yapmak için kullanılmadan önce test verileri üzerinde 

değerlendirilir. 

 

Makine öğrenimi sınıflandırmasında iki tür öğrenci vardır: tembel ve istekli öğrenenler. 

İstekli öğrenenler, gelecekteki veri kümeleri hakkında herhangi bir tahminde 

bulunmadan önce ilk olarak eğitim veri kümesinden bir model oluşturan makine 

öğrenimi algoritmalarıdır. Eğitim sırasında ağırlıkları öğrenerek daha iyi bir genelleme 

yapma istekleri nedeniyle eğitim sürecinde daha fazla zaman harcarlar, ancak tahmin 

yapmak için daha az zamana ihtiyaç duyarlar. Çoğu makine öğrenimi algoritması 

hevesli öğrenicilerdir ve aşağıda bazı örnekler verilmiştir: 

 

• Mantıksal (Lojistik) Regresyon 

• Destek Vektör Makineleri 

• Karar Ağaçları 

• Yapay Sinir Ağları 
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Tembel öğrenenler veya örnek tabanlı öğrenenler ise eğitim verilerinden hemen 

herhangi bir model oluşturmazlar ve tembellik yönü de buradan gelir. Sadece eğitim 

verilerini ezberlerler ve her tahmin yapılması gerektiğinde tüm eğitim verisinden en 

yakın komşuyu ararlar, bu da tahmin sırasında çok yavaş olmalarına neden olur. Bu 

türden bazı örnekler şunlardır: 

 

• K-En Yakın Komşu 

• Vakaya veya olaya bağlı mantık-akıl yürütme 

 

2.3.2. KNN (K-en yakın komşular) 

 

K-en yakın komşu (KNN), sınıflandırma ve regresyon problemlerini çözmek için 

yaygın olarak kullanılan basit ama etkili bir parametrik olmayan denetimli öğrenme 

algoritmasıdır. Hem sınıflandırma hem de regresyon amaçlı kullanılabilir. Her iki 

durumda da giriş, veri setindeki en yakın ‘k’ eğitim örneğinden oluşur. Çıktı, KNN'nin 

sınıflandırma veya regresyon için kullanılıp kullanılmadığına göre farklılık gösterir. 

KNN sınıflandırmasında çıktı, bir sınıf üyeliğidir. Bir nesne, komşularının oylarıyla 

sınıflandırılır; en yakın k komşusu arasında en yaygın olan sınıfa atanır (k pozitif bir 

tam sayıdır ve genellikle küçük bir değerdedir). Eğer k = 1 ise, nesne en yakın 

komşusunun sınıfına atanır. 

 

KNN regresyonunda ise çıktı, nesnenin özellik değeridir ve bu değer, k en yakın 

komşunun değerlerinin ortalaması olarak hesaplanır. Eğer k = 1 ise, çıktı en yakın 

komşunun değeri olur. KNN, veri noktasını en yakın ‘k’ komşusuna göre sınıflandırma 

prensibiyle çalışır. Algoritma, mevcut tüm verileri depolar ve yeni bir veri noktası için 

bu veriler arasından mesafe açısından en yakın k veri noktasını bularak tahmin yapar. 

Bu tahmin, çözülmesi gereken probleme bağlı olarak, k en yakın komşunun çoğunluk 

sınıfına veya değerlerinin ortalamasına dayanır. 

 

KNN'nin uygulanması kolaydır ve nispeten düşük hesaplama maliyetlerine sahiptir; bu 

da onu görüntü ve konuşma tanıma, tıbbi teşhis, finans ve birçok diğer alandaki 
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uygulamalar için cazip bir seçenek yapar. Ancak, doğruluğu 'k' seçiminden ve kullanılan 

mesafe ölçütünden etkilendiği için dikkatli olunmalıdır. 

 

 
 

Şekil 2.3.2.1. KNN algoritmaları. A) İki boyutlu düzlemde KNN (Mattaparthi, 2023) 

B) Üç boyutlu düzlemde KNN (Gong, 2022) 

 

Yeni eklenen bir verinin çıktısının hangi etikete dahil olması gerekliliği veri noktasının 

diğer kümelere olan uzaklığı ve komşu sayısı belirler. Farklı düzlemlerdeki KNN 

sınıflandırması Şekil 2.3.2.1’de belirtilmiştir. 

  

KNN’de komşu sayısı belirlenirken farklı mesafe metrikleri kullanılır. 

 

Öklid Mesafesi: Düzlemde bulunan iki veri noktası arasındaki en kısa mesafeyi gösteren 

uzunluktur.  

 

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

(2.2) 

 

Burada ‘n’ boyut sayısını temsil ederken, 𝑥𝑖 ve 𝑦𝑖 veri noktalarını temsil ederler.  

 

Manhattan Mesafesi: Bütün düzlemlerdeki noktaların mutlak değerlerinin farklarının 

toplamı olarak ifade edilir. 

 

A B 
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𝑑(𝑥, 𝑦) = ∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

(2.3) 

 

Burada da 𝑥𝑖 ve 𝑦𝑖 veri noktalarını temsil ederler. 

Minkowkski Mesafesi: Öklid ve Manhattan mesafelerinin genelleştirilmiş bir formudur. 

 

𝑑(𝑥, 𝑦) = (∑|𝑥𝑘 − 𝑦𝑘|𝑟

𝑛

𝑘=1

)

1
𝑟

(2.4) 

 

Burada da 𝑥𝑘 ve 𝑦𝑘 veri noktalarını temsil ederler. 

 

Kosinüs benzerliği: Bir iç çarpım uzayının sıfır olmayan iki vektörü arasındaki 

benzerliği ölçer. Genellikle metin analizlerinde belge benzerliğini ölçmede kullanılır. 

Formülü: Kosinüs mesafesi = 1 − cos 𝜃 

 

𝐴. 𝐵

||𝐴||  ||𝐵||
=  

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1  . √∑ 𝐵𝑖
2𝑛

𝑖=1

(2.5)
 

 

Burada 𝐴𝑖 ve 𝐵𝑖, 𝐴 ve 𝐵 vektörlerinin i.ci bileşenleridir. 

 

KNN’deki komşuların sayısını tanımlamak için belirtilen ‘k’ değerini tahmin etmenin 

uygun bir yöntemi yoktur. Hiçbir yöntem genelleme olarak kullanılamaz ancak bazı 

yöntemler ‘k’ değeri seçiminde yardımcı olabilir. 

 

Sınıflandırmalarda bağlardan kurtulmak ve bir sınıfın baskınlığını engellemek için ‘k’ 

tek sayı seçilmelidir. ‘k’ değeri ne kadar büyük olursa doğruluk da o kadar yüksek olur. 

Farklı ‘k’ değerlerini test etmek ve modelin performansını en üst düzeye çıkaranı 

seçmek için çapraz doğrulama gibi tekniklerden yararlanılır. “N-kuralı karekökü” olarak 

adlandırılan eğitim veri setindeki toplam veri noktası sayısının karekökü alınarak 
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belirlenen k sayısı yaygın olarak kullanılan ve doğruya yakın bir sonuç veren bir 

hesaplama tekniğidir. Yine de sorunun bağlamı ve işlemi yapan kişinin deneyimine 

bağlı olarak farklı teknikler denenmeli ve yorumlanmalıdır. 

 

2.3.3. DVM-Destek Vektör Makineleri 

 

Denetimli öğrenmenin bir modeli olan Destek Vektör Makineleri (DVM) hem doğrusal 

hem de doğrusal olmayan problemlere, iki sınıf arasında bir boşluk yaratacak şekilde 

oluşturulan hiper düzlemleri bulmak üzere geliştirilen bir algoritma türüdür. DVM hem 

regresyon hem de sınıflandırma problemleri için kullanılabilir ancak genel olarak 

sınıflandırma problemlerinde en iyi şekilde çalışırlar. Regresyon modeli olarak 

kullanımına ‘Destek Vektör Regresyon’ (DVR) denir. DVR, verilerin doğrusal olmayan 

özelliklerini yakalamak için çekirdek işlev yöntemlerini kullanarak bağımlı ve bağımsız 

değişkenler arasındaki ilişkiyi modellemek için kullanılır. Bu tezde hem DVM hem de 

DVR kullanılmıştır. Destek Vektör Makineleri algoritmaları iki çeşit olarak tanımlanır: 

 

Doğrusal DVM: Veri noktaları doğrusal bir çizgiyle ayrılabiliyorsa ‘Doğrusal DVM’ 

kullanılır. 

 

Doğrusal olmayan DVM: Veriler doğrusal olarak ayrılamadığında ‘Doğrusal Olmayan 

DVM’ kullanılır; bu, veri noktalarının bir sınıfa ayrılamadığı anlamına gelir. Birçok 

uygulamada doğrusal olarak ayrılabilir veri noktaları elde edilemediğinden bu yönteme 

başvurulmaktadır. Bu yöntem ‘çekirdek’ teknikleri kullanarak veriyi istenilen şekilde 

sınıflandırmaya yarar. 

 

DVM’nin nasıl çalıştığına bakmadan önce bazı kavramları anlamak önemlidir. 

 

Marj: Marj, hiper düzlem ve destek vektörler arasındaki boşluk tanımıdır. 

 

Hiper düzlem: Hiper düzlemler, veri noktalarının sınıflandırılmasına yardımcı olan 

karar sınırlarıdır.   
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Destek Vektörler: Hiper düzlemin üzerinde veya ona en yakın olan ve hiper düzlemin 

konumunu etkileyen veri noktalarıdır. 

Çekirdek İşlevi (Kernel Fonksiyonu): Hiper düzlemin şeklini ve karar sınırını 

belirlemek için kullanılan işlevlerdir. 

 

 
 

Şekil 2.3.3.1. İki sınıftan örneklerle eğitilmiş bir DVM için maksimum marj hiper 

düzlemi (Jiaying ve arkadaşları 2018’den değiştirilerek alınmıştır) 

 

Marjın sınırlarını belirleyen örnekler destek vektörleridir. 

 

İki sınıf arasındaki maksimum mesafede (marj) olması istenen hiper düzlem, en uygun 

hiper düzlem olarak tanımlanır. Bu hiper düzlem, veri noktalarını sınıflandırmada en 

uygun performansı sağlar. Marj adı verilen bu boşluk, sınıflar arasındaki uzaklığı temsil 

eder ve en geniş marjın, modelin genelleme yeteneğini artırır. 
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Birden fazla hiper düzlem olabilir ancak marjın maksimum olduğu hiper düzlemin en 

uygun hiper düzlem olduğunu bulunabilir. DVM’nin temel amacı, veri noktalarını 

yüksek hassasiyetle sınıflandırabilen hiper düzlemleri bulmaktır. 

Destek vektörler, hiper düzlem üzerindeki sınıf sınırlarına en yakın veri noktalarını 

temsil eder. DVM’nin gücü, bu destek vektörlerin belirlenmesi ve sınıflandırma 

sürecindeki etkisiyle ortaya çıkar. Optimizasyon süreci, marjını en üst düzeye çıkaran 

hiper düzlemi bulurken destek vektörleri de belirler (Karabudak, 2024). 

 

Şekil 2.3.3.1’deki örneğe bakıldığında oluşturulan hiper düzlemin her iki taraftaki sınır 

destek vektörlerden uzaklığı en fazla olacak biçimde optimize edildiği görülmektedir. 

Matematiksel ifade ile: 

 

𝑦̂ = {
0   𝑒ğ𝑒𝑟  𝑤𝑇 . 𝑥 + 𝑏 < 0

1  𝑒ğ𝑒𝑟 𝑤𝑇 . 𝑥 + 𝑏 ≥ 0
(2.6) 

 

𝑤𝑇: Ağırlık vektörü transpozu 

𝑥: Girdi vektörü 

𝑏: Sapma 

𝑦̂: Hedef etiket(ler) 

 

Bir değer için sonuç 0’dan küçükse hiper düzlemin altında kalan beyaz noktalar 

kümesine dahil olacaktır. Tam tersi, sonuç 0’dan büyükse hiper düzlemin üstünde kalan 

siyah noktalar kümesine dahil olacaktır. 

 

DVM’de marj her zaman Şekil 2.3.3.1’deki gibi net olmayabilir. Bazen destek vektör 

noktaları marjın içerisine girebilir ve diğer sınıfa dahil olabilirler. Buna ‘yumuşak marj’ 

denilir. Eğer veriler doğrusal olarak ayrılabiliyorsa, aykırı değerlere karşı çok 

duyarlıdır. Bu durumda olan marjlara da ‘sert marj’ denilir. Gerçek hayat 

uygulamalarında çoğunlukla doğrusal olarak verileri ayırmak mümkün olmadığından 

yumuşak marj kullanılır. 



 

 

 

 

 

 

20 

 

 
 

Şekil 2.3.3.2. Sert ve yumuşak marj örnekleri (Kaushal ve arkadaşları 2021’den 

değiştirilerek alınmıştır) 

 

Yumuşak marj, bazı marj ihlallerinin; yanlış sınıflandırmaların verilerin çok iyi 

ayrılmadığı durumlarda devreye girerek, esneklik sağlar. Genelde gürültü veya aykırı 

değerler olduğunda kullanılır. Bu şekilde yanlış sınıflandırmanın önüne geçilmiş olur.  

Burada kullanılan bazı parametreler mevcuttur. Eğer DVM’de yumuşak marj 

kullanılırsa bir düzenleme parametresi olarak ‘𝐶’ adı verilen bir faktör bunu düzenler. 

Bu faktör boşluğu olabildiğince büyütmek ile veri noktalarının gruplandırmadaki 

hatalarını azaltmak arasında bir denge bulmaya yardımcı olur. Şekil 2.3.3.2’de bazı veri 

noktalarının marj boşluğunun içerisinde ve ayrıca hiper düzlemin yanlış tarafında 

olduğu gözükmektedir. Bu ihlaller yumuşak marjin ayarında izin verilmektedir. Buna 

rağmen marjın kenarındaki noktalar önemini korumakta ve destek vektörleri olmaya 

devam etmektedirler. 

 

Matematiksel olarak ifade edilmek istenirse: 

 

𝑤𝑇 . 𝑥𝑖 + 𝑏 ≥ 1 − ξi (2.7) 
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Denklem (2.7)’de görüldüğü üzere marjı ve hiper düzlemi tanımlayan denkleminin sağ 

tarafına marj ihlalini temsil eden değişken, ξ, tanımlanmıştır. (1- ξi) olarak tanımlanan 

terim her veri noktası için gerekli olan en az marjı temsil eder. 

 

Yumuşak marj, marj maksimizasyonu ile marj ihlallerini için bir ceza terimini birleştirir 

ve aşağıda belirtilen formül çıktı değerini en aza indirmeyi hedefler. 

 

1

2
 ||𝑤||

2
+ 𝐶 ∑ 𝑁𝑖=1 𝜁𝑖 (2.8) 

 

Burada “𝐶”, DVM’de kullanılan düzenleyici bir parametredir; marj genişliği ve 

sınıflandırma hatasının toleransı arasında denge kurar. 

 

Daha yüksek bir 𝐶 değeri, yanlış sınıflandırmalara izin vere bile daha geniş bir marja 

öncelik verir. Daha düşük bir 𝐶 değeri, daha fazla marj ihlaline karşılık oldukça 

yumuşak bir karar çizgisi belirler. 

 

Yumuşak Marj Artıları 

 

Yumuşak marj aykırı değerleri ve gürültülü verileri daha etkili bir şekilde işler. Bu 

görünmeyen verilere daha iyi genelleme yapan daha sağlam bir karar sınırıyla 

sonuçlanır. Sert marjdan farklı olarak, yumuşak marj doğrusal olmayan ayrılabilen 

verilerle, çekirdek işlevlerini (fonksiyonlarını) kullanarak daha yüksek boyutlu bir alana 

örtülü olarak eşleyerek işleyebilir. Bu karmaşık sınırların daha verimli bir biçimde 

yakalanmasını sağlar. 
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Yumuşak Marj Eksileri 

 

Yumuşak marjın performansı düzenleyici parametre olan ‘𝐶’ ye oldukça bağımlıdır. Bu 

parametreyi seçmek bazen oldukça zor olabilir; özellikle çok büyük veri setlerinde bu 

çok zaman alıcı ve maliyetli bir uğraştır. Bazı hesaplamalarda eğer ‘𝐶’ değeri çok 

yüksek olursa model aşırı öğrenme olabilir. Bu durumda gereğinden fazlaca marj ihlali 

izni olduğu görülür. Farklı ‘𝐶’ değerleri için genişlik örnekleri Şekil 2.3.3.3’te 

verilmiştir. 

 

 
 

Şekil 2.3.3.3. Farklı ' 𝐶 ' değerleri için marj büyüklüğü örneği (Shrimali, 2018) 

 

Seçilen marj yöntemleri için belirlenen kriterler Çizelge 2.3.3.1’de verilmiştir. 
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Çizelge 2.3.3.1. Sert marj ve yumuşak marj karşılaştırması 

 

Kriter Sert Marj Yumuşak Marj 

Amaç 

Fonksiyonu 

Maksimum marj Maksimum marj, marj 

ihlallerinin en aza 

indirgenmesi 

Gürültüyü 

Yönetme 

Gürültüye Duyarlı, kusursuz bir 

biçimde doğrusal olarak ayrılabilen 

veriye ihtiyaç duyar. 

Sağlamdır, gürültüden 

etkilenmez, gürültülü verileri 

işler. 

Düzenleme Düzenleme parametresi yok Düzenlileştirme parametresi 𝐶 

tarafından kontrol edilir. 

Karmaşıklık Basit, hesaplama için verimli Hesaplama için daha fazla 

kaynağa ihtiyaç duyar. 

 

Çekirdek işlemleri (Kernel Trick) 

 

Bazı veri setlerini, Şekil 2.3.3.3’teki gösterildiği şekilde tek bir çizgi içeren hiper 

düzlem ile sınıflandırma yapmak mümkün değildir. Buradaki her bir veri noktası iki 

boyutlu düzlemde ideal bir biçimde ayrılmamıştır. 

 

 
 

Şekil 2.3.3.4. Doğrusal şekilde olmayan veri dağılımı (Karabudak, 2024) 

 

Eğer veriler Şekil 2.3.3.4’teki gibi dağılmışsa bazı çekirdek fonksiyonları (işlemleri) 

kullanarak boyut arttırma yoluna gidilir. Burada bazı ikinci dereceden formüller 

kullanılarak, karar sınırı belirlenmeye çalışılır. Bu fonksiyonlara çekirdek fonksiyonu ya 

da çekirdek işlemleri denir. 
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Polinom Çekirdek 

 

Veri dağılımlarının iki boyutta çözümlenemediği zamanlarda, problemleri çözmek için 

üç veya daha fazla boyuta taşıyarak yapılan işlemlerdir. 

 

𝑓(𝑋1, 𝑋2) =  (𝑋1𝑇 . 𝑋2 + 𝑐)𝑑 (2.9) 

 

Burada ‘𝑑’ polinomdaki boyutu ifade eder. 𝑋1 ve 𝑋2 ise veri tabanındaki veri 

noktalarıdır. Eğer ‘𝑐’ sıfır ise çekirdek homojendir. 

 

Fonksiyonun çıktısını ‘𝑌’ olarak ele alırsak;  

 

𝑋1𝑇 . 𝑋2 =  |
𝑋1
𝑋2

| . [𝑋1  𝑋2] = | 𝑋12 𝑋1. 𝑋2
𝑋1. 𝑋2 𝑋22 | (2.10)  

 

Önceden iki boyutla değerlendirilen denklem, 𝑋12, 𝑋22 ve 𝑋1. 𝑋2 bilinmezleri ile beş 

boyuta yükseltilmiştir. İki boyutlu düzlemde belirlenemeyen hiper düzlemin üç boyutlu 

düzlemde belirlenebildiği Şekil 2.3.3.5’te gösterilmiştir. 

 

 
 

Şekil 2.3.3.5. İki boyutlu bir dağılımın üç boyutlu hale getirilip sınıflara ayrılması 

(Mansour ve arkadaşları, 2023) 
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İşlemi uygularken belirli bir ‘𝑑’ derecesi kullanılmaz. Veri dağılımlarına, çeşidine ve 

büyüklüğüne göre bu değişkenlik gösterebilir. Şekil 2.3.3.6’da B ile gösterilen veri 

sınıflandırma grafiğinde 𝑑 = 2 alınmıştır. Bu değerde üç adet mavi çember ve bir adet 

kırmızı kare destek vektörü olarak tanımlanmıştır. Burada verilen örnekteki şekilde 

yeterli gibi görünse de daha fazla veri noktası olan problemlerde bu yeterli olmayabilir. 

Şekil 2.3.3.6’da C ile gösterilen veri sınıflandırma grafiğinde ise 𝑑 = 5 alınmıştır ve 

destek vektör sayısı arttırılmıştır. Böylece daha az hata ile daha kesin bir ayrım yapılmış 

ve hiper düzlem daha net belirlenmiştir. 

 

 
 

Şekil 2.3.3.6. Doğrusal DVM (A), polinom çekirdek işlemli (d=2)(B), ve polinom 

çekirdek işlemli (d=5)(C) sınıflandırma (Ben-Hur ve arkadaşları, 2008) 

 

‘𝑑’ katsayısını belirlerken modelin yetersiz öğrenmede veya aşırı öğrenmede olup 

olmadığına dikkat edilmelidir. Model yetersiz öğrenmede ise, katsayı arttırılmalı, eğer 

model aşırı öğrenmede ise, katsayı azaltılmalıdır. 

 

Sigmoid Çekirdek 

 

Sigmoid çekirdeği DVM ve diğer makine öğrenimi algoritmalarında yaygın olarak 

kullanılan, sabit olmayan bir çekirdek işlevidir. Diğer çekirdek türlerinin aksine belirli 

veri türleri için uygun kılan benzersiz özelliklere sahiptir. 

 

𝑓(𝑥, 𝑦) =  tan(𝛼𝑥𝑇𝑦 + 𝑐) (2.11) 
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Denklem (2.11)’de verilen 𝑥 ve 𝑦 giriş veri noktalarıdır, 𝛼 ise bir ölçeklendirme 

parametresidir ve 𝑐 sabittir. Hiperbolik tanjant fonksiyonu, sinir ağlarında kullanılan 

etkinleştirme fonksiyonuna benzer şekilde çekirdek fonksiyonunun çıktısının [−1,1] 

aralığına düşmesini sağlar. Bu yöntem nöral ağlar için vekil bir kullanım olarak da 

nitelendirilir. Hiperbolik tanjant fonksiyonu, genel tabir ile ‘Sigmoid İşlevi’ olarak 

bilinen genel bir fonksiyon kümesinin alt dalıdır. Şekil 2.3.3.7’de hiperbolik tanjant 

fonksiyon grafiği gösterilmiş olsa da ‘mantıksal fonksiyon’ biçimi regresyon 

modellerinde kullanılır. 

 

 
 

Şekil 2.3.3.7. Hiperbolik tanjant fonksiyon grafiği (Manton, 2023’ten değiştirilerek 

alınmıştır). 

 

Sigmoid çekirdeğin diğer çekirdeklerden ayrıldığı başlıca noktalar şunlardır: 

 

Doğrusal Olmama: Diğer çekirdek işlevleri gibi sigmoid çekirdek de DVM’lerin 

veriler içindeki doğrusal olmayan ilişkileri yakalamasını sağlar. Hiperbolik tanjant 

fonksiyonunu uygulayarak karar sınırına doğrusal olmamayı getirerek daha esnek ve 

anlamlı modellere olanak tanır. 
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Sinir Ağlarına Benzerlik: Sigmoid çekirdeğin şekli, yapay sinir ağlarında kullanılan 

etkinleştirme fonksiyonuna benzer. Bu benzerlik, özellikle sinir ağlarının da iyi 

performans gösterebildiği senaryolarda, sigmoid çekirdeğin karmaşık veri modellerini 

etkili bir şekilde modelleyebildiğini göstermektedir. 

 

Metin Sınıflandırmaya Uygunluk: Sigmoid çekirdeği, metin sınıflandırma 

görevlerinde özel kullanım alanı olan bir işlevdir. Metin verileri genellikle karmaşık, 

doğrusal olmayan ilişkiler sergiler ve sigmoid çekirdeğin bu tür ilişkileri yakalama 

yeteneği, onu duygu analizi veya belge sınıflandırması gibi görevler için uygun bir 

seçim haline getirir. 

 

Sınırları İyi Tanımlanmış Veriler: Verinin iyi tanımlanmış sınıf sınırlarına sahip 

olduğu durumlarda sigmoid çekirdeği çok iyi bir performans gösterebilir. Veriler 

nispeten ayrılabilir olduğunda ve karar sınırı aşırı karmaşık olmadığında iyi çalışma 

eğilimindedir. 

 

 
 

Şekil 2.3.3.8. Sigmoid çekirdeğe sahip bir DVM tarafından oluşturulmuş karar sınırları  

 

Şekil 2.3.3.8’de üç farklı sınıfın iki ayrı öznitelik üzerinden sınıflandırma yapılmıştır. 

Görüldüğü üzere sınırlar doğrusal değildir. 
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Radyal Tabanlı Çekirdek (RTÇ, Gaussian RBF) 

 

DVM sınıflandırma problemlerinin çözmek için kullanılan en yaygın çekirdek işlevidir. 

Literatürde yer almış birçok radyal tabanlı işlev olmakla beraber, DVM için en yaygını 

Gauss metodudur. Gauss dağılımına oldukça benzediğinden bu şekilde 

kullanılmaktadır. Veri seti çok büyük değilse genelde bu çekirdek işlevi tercih edilir. 

 

𝐾(𝑋1𝑋2) = 𝑒
− 

||𝑋1−𝑋2||
2

2𝜎2 (2.12)
  

 

Formül (2.12)’de gösterilen RTÇ denkleminde ||𝑋1𝑋2|| iki farklı öznitelik uzayında 𝑋1 

ve 𝑋2 arasındaki Öklid Uzaklığıdır ve sigma (σ) çekirdek ağırlığını belirleyen RTÇ 

çekirdek parametresidir. DVM’de doğru sınıflandırma yapabilmek için sigmanın iyi 

ayarlanması gerekmektedir. Sigma parametresinin varsayılan değeri 1’dir. 

 

RTÇ çekirdek işlevi formül (2.13)’de bahsi geçen 𝑋1 ve 𝑋2 veri noktaları için 

benzerliklerini veya birbirlerine ne kadar yakın olduklarını hesaplar. ‘σ ’ varyansı temsil 

eder ve her ne kadar parametre genellemesi yapılsa da bir hiper parametre olarak 

tanımlanır.  

 

Boşluktaki  𝑋1 ve 𝑋2 noktalarının arasındaki uzunluğa 𝑑12 dersek; 

 

𝑑12 =  ||𝑋1−𝑋2||
2

(2.13) 

 

 
 

Şekil 2.3.3.9. Boşluktaki iki noktanın birbirlerine olan uzaklıkları (Sreenivasa, 2020). 
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RTÇ çekirdeğinin alabileceği en yüksek değer 1’dir ve bu ancak  ||𝑋1−𝑋2||2 = 0 

olduğunda gerçekleşir. Noktalar aynı olduğunda aralarındaki mesafe yoktur ve 

birbirlerine benzerler. Bu durum Şekil 2.3.3.9’daki 𝑑12 uzaklığının sıfıra eşit olduğu 

durumda gerçekleşir. 

 

Noktalar büyük bir mesafe ile birbirlerinden ayrıldığında çekirdek değeri 1’den küçük 

ve 0’a yakındır, bu da noktaların farklı olduğu anlamına gelir. Mesafe, farklılığa eşdeğer 

olarak düşünülebilir çünkü noktalar arasındaki mesafe arttıkça benzerliklerinin azaldığı 

gözlemlenebilir (Sreenivasa, 2020). 

 

Hangi noktaların benzer olarak değerlendirilmesi gerektiğine karar vermek için doğru 

sigma (σ) değerini bulmak önemlidir ve bu çözülmek istenilen probleme göre değişiklik 

gösterebilir. 

 

 
 

Şekil 2.3.3.10. σ = 1 için gerçekleşen RTÇ grafiği (Sreenivasa, 2020’den değiştirilerek 

alınmıştır) 

 

Şekil 2.3.3.10’da görüldüğü gibi mesafe ‘0’ olduğunda benzerlik ‘1’ olurken, dört birim 

uzaklaşıldığında benzerlik ‘0’a geliyor. 
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Şekil 2.3.3.11. σ = 0.1 için gerçekleşen RTÇ grafiği (Sreenivasa, 2020’den 

değiştirilerek alınmıştır) 

 

Şekil 2.3.3.11’de görüldüğü gibi mesafesi 0.2’den küçük olan noktalar birbirine 

benzerdir. Mesafe 0.2’den fazla olan noktalar birbirlerine benzemeyen noktalar olarak 

tanımlanırlar. 

 

 
 

Şekil 2.3.3.12. σ = 10 için gerçekleşen RTÇ grafiği (Sreenivasa, 2020’den değiştirilerek 

alınmıştır) 

 

 

Şekil 2.3.3.12’de görüldüğü gibi sigma değeri arttıkça benzerlik alanı da oldukça 

genişlemiştir. Merkezden 10 birim ve daha uzakta kalan yerler benzemeyen alan olarak 

tanımlanmıştır. 
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Benzerlik bölgesi Şekil 2.3.3.10, Şekil 2.3.3.11 ve Şekil 2.3.3.12’de olduğu gibi σ 

değiştikçe değiştiği açıktır. Belirli bir veri kümesi için doğru sigmayı (σ) bulmak 

önemlidir.  Izgara Arama Çapraz Doğrulama (Grid Search Cross Validation) ve 

Rastgele Arama Çapraz Doğrulama (Random Search Cross Validation) gibi hiper 

parametre ayarlama teknikleri kullanılarak sigma değeri bulunabilir. 

 

RTÇ, DVM’nin tüm veri kümesini değil, yalnızca eğitim sırasında destek vektörlerini 

saklaması gerektiğinden alan karmaşıklığı sorununun üstesinden gelir. Bu noktada K-En 

Yakın Komşular Algoritması ile de benzerlik göstermektedir. 

 

RTÇ’de tanımlanan bir başka hiper parametre ise gamma parametresidir. 

 

𝛾 =  
1

(2𝜎)2
(2.14) 

 

Gamma değeri ne kadar düşükse, dağılım o kadar geniş olur. 𝐶 hiper parametresinde 

olduğu gibi, eğer model aşırı öğrenme gösteriyorsa gamma değeri azaltılmalı, model 

yetersiz öğrenme gösteriyorsa gamma değeri artırılmalıdır. Gamma değerinin öğrenme 

modeli üzerindeki performansı Şekil 2.3.3.13’te gösterilmiştir. 
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Şekil 2.3.3.13. Üç sınıflı iki özellikli verilerin RTÇ işlevinde farklı gamma değerleri 

kullanılarak sınıflandırılması. (Akça, 2020) 

 

2.3.4. Aşırı Öğrenme (Overfitting) ve Yetersiz Öğrenme (Underfitting) 

 

MÖ’de her ne kadar uygun model ve algoritma seçilmiş olursa olsun, modelin başarısını 

değerlendirirken bazı sorunlar ortaya çıkmaktadır. Yaygın olarak bu sorun eğitim verisi 

üzerinde değil, test verisinin düşük performans vermesi ile fark edilir. Modeli 

oluştururken belirlenen parametreler bazen aşırı öğrenme ya da yetersiz öğrenmeye 

sebebiyet verebilirler. 

 

Aşırı Öğrenme 

 

Eğer model, eğitim için kullanılan veri setine aşırı odaklanıp ezberlemeye başlarsa ya da 

eğitim seti homojense, aşırı öğrenme riski artar. Bu tür bir model, eğitim setinde yüksek 

bir başarı elde etse de test verisiyle karşılaştığında çok düşük bir performans sergiler; 

çünkü model eğitim setindeki örnekleri ezberlemiş ve test verisinde de aynı örnekleri 

aramaktadır. En ufak bir farklılıkta, ezberlenen örnekler bulunamayacağı için test 

verisinde çok kötü tahmin sonuçları alınabilir. Aşırı öğrenme sorunu olan modellerde 

yüksek varyans ve düşük sapma görülür. 
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Bu genelde modelin çok karmaşık olması nedeniyle verilerdeki gürültüyü veya rastgele 

dalgalanmaları yakalamaya başlaması ve bu nedenle modelin daha önce karşılaşmadığı 

yeni verilere genelleme yaparken kötü performans göstermesi olarak da tanımlanabilir. 

(Taraflı, 2023) 

 

Aşırı Öğrenmeyi engellemek adına çeşitli tekniklere başvurulur. 

 

Düzenleme (Regularization): Modelin karmaşıklığını azaltarak aşırı öğrenmeyi 

önlemeye yardımcı olan bir tekniktir. L1 (Lasso) ve L2 (Ridge) düzenleme gibi çeşitli 

yöntemler vardır. L1 düzenlemesi, modeldeki bazı özelliklerin ağırlıklarını sıfıra 

yaklaştırarak önemsiz özelliklerin etkisini ortadan kaldırır ve böylece modelin 

genelleme yeteneğini artırır. L2 düzenlemesi ise tüm özelliklerin katsayılarını 

küçülterek hepsinin modele katkıda bulunmasını sağlar. 

 

Bagging (bootstrap aggregating): Modelin genelleme yeteneğini artırmak için, 

rastgele örneklemle oluşturulan yeni veri kümeleri üzerinde birden fazla temel öğrenici 

kullanarak eğitim yapar ve sonuçları birleştirir. Bu yöntem, özellikle karar ağaçları gibi 

yüksek varyansa sahip modellerde etkilidir. Rassal orman (random forest) bu tekniğin 

en bilinen örneklerinden biridir. 

 

Erken durdurma (early stopping): Eğitim sürecini, test hatası artmaya başladığında 

durdurarak aşırı öğrenmeyi önleyen bir tekniktir. Bazı uygulamalarda yinelemeli eğitim 

sırasında, ilk başlarda modelin performansı artar, ancak yinelemeler devam ettikçe 

performans düşmeye başlayabilir. Modelin aşırı yüklenmeden eğitim tekrarını 

durdurmak, veri kümesinin aşırı uyum yapmasını önler ve modelin daha önce 

karşılaşmadığı verilere karşı kötü performans göstermesini engeller. 

 

Çapraz doğrulama (cross-validation): Veri setini birden fazla parçaya bölerek her bir 

parçayı sırayla test seti olarak kullanır ve modelin başarımını bu şekilde değerlendirir. 

Bu yöntem, modelin farklı veri alt kümeleri üzerindeki performansını ölçer ve aşırı 

öğrenme riskini azaltır. K-katlı çapraz doğrulama en yaygın kullanılan yöntemlerdendir. 
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Daha fazla veri eklemek: Örnek sayısını artırmak verideki hedef ile öznitelik 

arasındaki ilişkiyi çok daha rahat anlayabilmeyi sağlamaktadır. Daha fazla veriye sahip 

olan yöntemin, daha fazla veri türünü dikkate alarak daha iyi genelleme olasılığı daha 

yüksektir. 

 

Birleştirmek (Ensembling): Farklı MÖ modellerini bir arada kullanılmasını sağlar. 

Daha karmaşık örnekler aşırı öğrenmeyi engellemeye yardımcı olur. 

 

Öznitelik sayısını azaltmak: Birbirleriyle yüksek korelasyon gösteren öznitelikler, 

bulundukları veri setinde aynı bilgiyi taşırlar ve yanlılık gösterirler. Dolayısıyla yüksek 

korelasyon gösteren özniteliklerin ayıklanması aşırı öğrenmeyi engelleyebilir. 

 

Yetersiz Öğrenme 

 

Yetersiz öğrenme, matematiksel modelin, verinin temel yapısını yakalayamadığı 

durumdur. Yetersiz öğrenmede model, karmaşık veri noktalarını yakalamak için 

oldukça basittir. Temel örüntü yakalanamaz ve bu nedenle kötü bir performans çıktısı 

oluşur. Yetersiz öğrenmede hem eğitim hem de test veri setinde hata oranı yüksektir. 

Yetersiz öğrenmeyi gidermek için çeşitli tekniklere başvurulur. 

 

Model karmaşıklığının arttırılması: Eğer oluşturulan model çok basit ise girdi ve 

çıktılar arasındaki ilişkiyi öğrenemez. Burada yüksek eğitim hatası oluşur. Model tekrar 

düzenlenerek daha karışık hale getirilerek bu problem giderilmeye çalışılır. 

 

Öznitelik mühendisliği uygulanması: Farklı özniteliklerin çeşitli tekniklerle 

oluşturulup daha fazla veri noktası ile yetersiz öğrenmenin önüne geçilmeye çalışılır. 

Veriden gürültünün çıkarılması: Eğer veriler çok gürültülü ise model öğrenme 

güçlüğü çeker; çünkü gürültü eğitim verilerini farklı değerler üzerine taşır ve verilerin 

rastgele olduğunu varsayar; bu da eğitim verisini istenilen derecede ya da yanlış 

öğreneceğini gösterir. 
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Eğitim süresi veya dönem sayısının arttırılması: Daha fazla dönem sayısı (iterasyon) 

parametre optimizasyonu, karmaşık veri kümelerini işleme, yakınsama izleme gibi 

avantajlar sağlar. Bu, modeli daha uzun sürede eğitilmesine olanak tanır ve performansı 

arttırır. 

 

Eksik veri: Sonuçlar birden fazla değişkene bağlı iken model sadece bir değişken 

üzerinden yapılandırılırsa eğitim performansı düşük olur. 

 

 
 

Şekil 2.3.4.1. Sınıflandırma algoritması üzerinden öğrenme metotları (Taş, 2020) 

 

Şekil 2.3.4.1’de görüldüğü üzere sol taraftaki grafikte kesik çizgi ile ifade edilen 

sınıflandırma çizgisi verileri sınıflandırmada yetersizdir.  Burada model oldukça basit 

kalmaktadır. Sağ taraftaki grafikte ise aşırı öğrenme örneği verilmiştir. Burada model 

verilen verileri düzgün ayırmışsa da gelecekteki verinin nasıl olacağını tahmin etmekte 

zorlanır; çünkü sınıflandırma için kullanılan sınır çizgisinin ideal bir matematiksel 

modeli yoktur. Ayrıca gürültü ve aykırı olan tüm noktaları da kapsama eğilimindedir. 

Ortada yer alan grafik ise uygun öğrenme ile verilerin iyi bir çizgi ile ayrıldığını 

gösteriyor. Başarı oranı yüksek ve tahmin edilebilir bir model olduğu için tercih 

edilmesi en mümkün modeldir.  
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Şekil 2.3.4.2. Regresyon modeli üzerinden öğrenme metotları (Amidi A. ve Amidi S., 

2018) 

 

Şekil 2.3.4.2’de aynı sınıflandırmada olduğu gibi regresyon modelinde de regresyon 

çizgisinin çeşitli öğrenme yöntemlerine göre çizildiği görülmektedir. Yetersiz 

öğrenmede yüksek yanlılık, yüksek eğitim öğrenme hatası bulunmaktadır. Aşırı 

öğrenmede ise düşük eğitim öğrenme hatası olmasına karşılık, yüksek test öğrenme 

hatası ve yüksek varyans mevcuttur. Model karmaşıklığı ve tahmin hatası üzerinden 

öğrenme eğrileri Şekil 2.3.4.3’te gösterilmiştir. 

 

 
 

Şekil 2.3.4.3. Öğrenme eğrileri (Durna 2020’den değiştirilerek alınmıştır) 
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Varyans ve Yanlılık 

 

Yanlılık, öğrenme algoritmasındaki basit varsayımlardan kaynaklanan hatalardır. 

Normalde varsayımlar modelin anlaşılmasını ve modelin öğrenmesini kolaylaştırır; 

ancak verilerin karmaşıklığını çözemeyebilir.  Modelin girdileriyle çıktısı arasındaki 

ilişkiyi doğru tahmin edememesiyle sonuçlanır. Bir modelin hem eğitim hem de test 

verilerinde düşük performansa sahip olması, basit modelden dolayı yüksek yanlılık 

anlamına gelir ve bu da yetersiz öğrenmeyi işaret eder. 

 

Varyans ise modelin eğitim verilerindeki dalgalanmaları takip ederek, bu 

dalgalanmalara karşı duyarlılığından oluşan bir hatadır. Eğer bir model yüksek varyansa 

sahipse verilerin rastgele dalgalanması, gürültüden oldukça etkilenmesi riski oluşur ve 

test verilerinde zayıf performans gösterir. 

 

Bu açıklamalarla birlikte yanlılığın yetersiz öğrenmeye, varyansın ise aşırı öğrenmeye 

sebep olduğu görülmektedir. Varyans ve yanlılık etkilerinin tümü Şekil 2.3.4.4’te 

verilmiştir. 

 

 
 

Şekil 2.3.4.4. Varyans ve yanlılık karşılaştırması (Hafeez, 2018) 
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Çapraz Doğrulama 

 

Bir makine öğrenimi modelinin performansını değerlendirmenin daha doğru ve 

güvenilir bir yöntemi çapraz doğrulamadır. Çapraz doğrulama, veri setini eğitim ve test 

setlerine bölerek modeli birçok yönden test eder ve genel performansını değerlendirir. 

 

Eğitim ve test veri setleri, ayrılmalarını kolaylaştırmak için model oluşturulurken 

ayrılmaktadır. Eğitim seti, modeli oluşturmak için kullanılır ve test seti modelin 

performansını değerlendirmek için kullanılır. Bu yaklaşımla, farklı eğitim-test bölümleri 

farklı doğruluk puanları verir ve bu da modelin performansının objektif olarak 

değerlendirilmesini imkânsız hale getirir. Eğitim-test ayırma metodolojisi bu aşamada 

henüz tamamlanamaz ve bir çapraz doğrulama tekniği gereksinimi duyar. 

 

En temel çapraz doğrulama teknikleri arasında yer alan K-Fold tekniğinin işleyişi 

incelendiğinde; 

• Veri seti rastgele karıştırılır. 

• Veri seti içerisinde k adet grup tanımlanır. 

Daha sonra oluşturulan her grup için belli prosedürler uygulanır: 

• Doğrulama seti seçilen gruptan oluşur. 

• Eğitim seti olarak diğer tüm gruplar (k-1 grupları) kullanılır. 

• Eğitim seti, modeli oluşturmak için kullanılır ve doğrulama seti onu 

değerlendirmek için kullanılır. 

• Bir liste modelin değerlendirme puanını içerir. 

• Değerlendirme sonuçlarının istatistiksel özeti incelenir. Bu incelemede ortalama, 

standart sapma, maksimum, minimum vb. değerler bu istatistiksel özete dahil 

edilmiştir. 

Modelin performansının yanlış değerlendirilmesi, K değerinin veri miktarına uygun 

olarak seçilmesinden kaynaklanabilir. Kesin bir kural olmamakla beraber 

uygulamalarda genellikle 5 ya da 10 olarak ayarlanabilir (Durna, 2020). Şekil 2.3.4.5’te 
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model her bir tekrarda test verisi belirlenen ‘K’ sayısı üzerinden kaydırılarak ‘K’ tekrara 

ulaşıncaya kadar değişik eğitim verileri ve test verileri üzerinden öğrenme yapar. 

 
 

Şekil 2.3.4.5. Çapraz doğrulama diyagramı (Peeyada ve arkadaşları 2022’den 

değiştirilerek alınmıştır) 

 

Çapraz doğrulamanın ikinci yöntemi ise hiper parametre optimizasyonudur. Makine 

öğrenimi modellerinde bağımlı ve bağımsız değişkenler arasındaki ilişkiler, hiper 

parametrelerle temsil edilir. Bu hiper parametreler belirlenen modelde sabit değildir. 

Başka bir ifadeyle, model eğitimi sırasında kazanılmaz. Araştırmacı bu belirlemeyi 

modelleme aşamasından önce yapar. Parametrik olmayan sınıflandırma yöntemlerinden 

biri olan KNN algoritması, örneğin tahmin edilmesi gereken değere en yakın k değerini 

inceleyerek sınıflandırma yapar. Burada modelin performansını etkileyen ve modelleme 

öncesinde veri bilimci tarafından ayarlanması gereken hiper parametreler k sayısı ve 

kullanılacak mesafe ölçüsüdür (Durna, 2020). 

 

Başarı metriğine dayalı olarak bir makine öğrenimi algoritması için en iyi hiper 

parametre setini belirleme süreci, hiper parametre optimizasyonu olarak bilinir. Aşırı 

öğrenme ve yetersiz öğrenme arasında bir uzlaşmaya, hiper parametre ayarlama yoluyla 

model karmaşıklığının ayarlanmasıyla ulaşılabilir. Yine hiper parametreler tarafından 

verilen kısıtlamalar, modelin esnekliğinden kaynaklanan aşırı öğrenme sorununun 

çözülmesine yardımcı olabilir. Hiper parametre optimizasyonu güçlü bir temel model 
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gerektirir. Bu noktada özellik mühendisliğine ve veri ön işlemesine daha fazla yatırım 

yapmak optimizasyonu iyileştirir (Durna, 2020). 

 

Herhangi bir algoritma için çok fazla sayıda hiper parametre ve bu hiper parametrelerin 

alabileceği çok sayıda değer olduğundan, her değeri tek tek denemek mümkün 

olmayacaktır. Bu nedenle hiper parametre optimizasyonu için farklı yöntemler 

geliştirilmiştir. Şekil 2.3.4.6’da modellerin yetersiz ve aşırı öğrenme sonucu 

belirledikleri eğriler karşılaştırılmış biçimde gösterilmektedir. 

 

 
 

Şekil 2.3.4.6. Yetersiz ve aşırı öğrenme örneği (Holbrook ve Cook, 2024) 

 

Izgara Arama Çapraz Doğrulama (Grid Search Cross Validation) 

 

Modelde test edilmesi amaçlanan hiper parametreler ve değerlerinin olası her 

kombinasyonu yeni bir model oluşturmak için kullanılır ve verilen metrik kullanılarak 

en etkili hiper parametre seti belirlenir. 

 

Bu teknik, modelin etkinliğini değerlendirmek amacıyla verilen parametrelerin 

değerlerinden oluşan "kafes" veya "ızgara" üzerindeki her noktayı ziyaret eder. (Bulut 

2024).  
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Izgara arama çapraz doğrulamanın birincil amacı, modelin performansını optimize 

etmek için kullanılan hiper parametre kombinasyonlarını metodik olarak 

değerlendirmektir. Bu teknik, belirli bir hiper parametre alanını doldurmak için akla 

gelebilecek her türlü değer kombinasyonunu dener ve en yüksek performansı sağlayan 

kümeyi bulur. Izgara arama, bu tarama faaliyetini organize bir şekilde gerçekleştirerek 

etkili bir optimizasyon yöntemi sağlar (Bulut 2024). 

 

Izgara Arama, belirli bir hiper parametre alanı içindeki değer kombinasyonlarını bir 

kafes veya ızgara üzerinde düzenler. Her ızgara noktası bir dizi hiper parametre 

kombinasyonudur. Hiper parametre uzayındaki her nokta, Şekil 2.3.4.7'de gösterildiği 

gibi diğer tüm noktalardan eşit aralıklıdır. Daha sonra modeller bu kombinasyonlarla 

eğitilir ve belirli bir performans kriterine göre değerlendirilir. Izgara araması, bu işlemi 

mümkün olan her kombinasyon için tekrarlayarak en yüksek performansı sağlayan hiper 

parametre konfigürasyonunu bulur (Bulut 2024). 

 

Tanımlanan performans ölçümleri her modeli değerlendirmek için kullanılır. Bu 

göstergeler modelin ne kadar iyi çalıştığını ölçmek için iyi bir yöntemdir. Örneğin F1 

puanı, doğruluk ve kesinlik gibi ölçümler sınıflandırma konularına uygulanabilir. (Bulut 

2024). 

 
 

Şekil 2.3.4.7. Izgara arama örneği (Çavdar ve arkadaşları, 2024) 
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Bunun yararı, hiper parametrelerin her potansiyel kombinasyonunun test edilmesinden 

dolayı, en iyi performansı gösteren kümenin tanımlanmasına olanak sağlamasıdır. 

Yalnızca birkaç hiper parametre test edilmek istenildiğinde ve küçük veri kümelerine 

sahip olunduğunda, çok iyi bir performans sergiler. Anlaşılması kolay bir optimizasyon 

seçeneğidir. Bunu, performansı en üst düzeye çıkarmak amacıyla parametre alanındaki 

her bir değerin üzerinden metodik olarak teker teker geçerek yapar. İşlevselliği 

nedeniyle deneyimsiz kullanıcılar için en iyi seçenektir. Belirlenen hiper parametre 

alanındaki her potansiyel kombinasyon rutin olarak değerlendirilir. Bu düzenlilik 

sayesinde hiper parametrelerin her kombinasyonu eşit olarak değerlendirilir. Sık tarama, 

modelin performansını etkileyen birçok hususu kapsayarak genel bir optimizasyon 

sağlar (Bulut 2024). En iyi hiper parametre değerlerinin bulunduğu örnek Şekil 

2.3.4.8’de verilmiştir. 

 

Dezavantajı, büyük veri kümeleriyle çalışırken veya keşfedilecek hiper parametrelerin 

sayısı ve değeri arttıkça kombinasyon sayısının katlanarak artmasıdır. Oluşturulan her 

modelin çapraz doğrulama testine tabi tutulduğu göz önüne alındığında masraf her 

zaman artacaktır; sonuç olarak, bunun yerine “Rastgele Arama Çapraz Doğrulama” 

yaklaşımı seçilebilir. Bu yaklaşım, belirli bir performans ölçütüne göre en uygun 

kombinasyonu seçer ancak bu kombinasyonun genel olarak en iyi seçenek olmasını 

garanti edemez. Özellikle verilen veri seti ve sorun için en iyi cevabı bulma garantisi 

verilememektedir. Farklı bir ifadeyle, ızgara araması tarafından seçilen kombinasyonlar 

belirli bir istatistik için en büyük kombinasyonlar olsa da modelin genel performansını 

etkileyen diğer yönleri gözden kaçırabilirler (Bulut 2024). 
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Şekil 2.3.4.8. Izgara arama ile iki hiper parametrenin bir performansı metriği olan 

kesinlik kriterini gösteren şema (Joos, 2020) 

 

Rastgele Arama Çapraz Doğrulama (Randomized Search Cross Validation) 

 

Bu doğrulama tekniği, çapraz doğrulama oluşturmayı ve modeli test etmek için bir dizi 

hiper parametrenin rastgele seçilmesini içerir. Bu prosedürler, kullanıcı önceden 

belirlenen yineleme sayısına veya hesaplama süresi sınırına ulaşana kadar devam eder. 

(Durna, 2020). 

 

Rastgele Arama Çapraz Doğrulama, Izgara Arama Çapraz Doğrulama ’ya alternatif 

olarak kullanılır. Genelde hiper parametre sayısı ve değerleri çok fazla olduğunda daha 

az işlem yapabilmek adına uzayda rastgele hiper parametre kombinasyonlarını dener. 

Dolayısıyla tüm noktalar yerine, bu noktaların yalnızca rastgele seçilen bir alt kümesini 

test eder. Bu alt küme ne kadar küçükse optimizasyon o kadar hızlı ancak doğruluğu az 

olur. Noktaların örnek dağılımları Şekil 2.3.4.9’da verilmiştir. 
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Şekil 2.3.4.9. Rastgele arama çapraz doğrulama (Çavdar ve arkadaşları, 2024) 

 

Avantajı, büyük veri kümelerinde, daha düşük bir maliyetle, ızgara arama yaklaşımıyla 

elde edilen optimum puanla neredeyse aynı sonuçları verecek hiper parametre 

kümelerini bulabilmesidir. Bunu kullanarak daha geniş bir hiper parametre aralığı 

taranabilir. 

 

Dezavantajı ise ideal hiper parametre setine yaklaşırken her potansiyel kombinasyonu 

denememesi, dolayısıyla en iyi performansa sahip hiper parametre setinin bulunacağının 

sözünü verememesidir.  

 

Şekil 2.3.4.10’da bir öğrenme modelinden elde edilen önemli ve önemsiz parametrelerin 

ızgara arama ve rastgele arama yöntemi ile hiper parametre kombinasyonu seçimi 

karşılaştırılmıştır. 
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Şekil 2.3.4.10. Izgara arama ile rastgele arama arasındaki hiper parametre 

kombinasyonu seçimi (Trouvain ve arkadaşları, 2020) 

 

2.4. Kimlik Doğrulama 

 

Makine Öğrenmesinde ve bilgisayar sistemlerinde kimlik doğrulama kullanıcının 

kimliğini kanıtlamasında kullanılacak bilgilerin tümüdür. Bu şekilde kullanıcının 

erişmeye çalıştığı sistem, hizmet, uygulama veya belgelere izin veya ret alması 

sağlanmaktadır.  

 

Kişinin kimlik doğrulaması çeşitli faktörlere bağlıdır. Her kimlik doğrulama faktörü, 

erişim izni verilmeden önce kişinin kimliğini doğrulamak, işlem talebini onaylamak, bir 

belgeyi imzalamak ya da başkalarına yetki vermek için kullanılan bir dizi öğeyi kapsar. 

Bu faktörleri üç farklı kategoride değerlendirebilir. Güvenilir bir kimlik doğrulama için 

en az iki, tercihen de bu üç faktörün kullanılması gerekmektedir (Federal Financial 

Institutions Examination Council, 2008). Faktörler şu şekilde sıralanır: 

 

Bilgi: Kullanıcının bildiği bir şey olarak adlandırılır. Parola, PIN numarası, güvenlik 

sorusu gibi sadece kullanıcının bildiği şeylerdir. 

 

Sahiplik: Kullanıcının sahip olduğu tüm şeyler. Bunlar akıllı saat, kimlik kartı, 

güvenlik belirteçleri, cep telefonu gibi şeylerdir. 
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Kalıtım: Kullanıcının kendisine has olan ve tanımlayan tüm şeylerdir. Parmak izi, 

retina modeli, imza, yüz, ses, biyo-elektrik sinyaller ve diğer biyometrik tanımlayıcılar 

bu alana girmektedir. 

 

Bahsedilen faktörleri kullanarak, tek faktörlü veya çok faktörlü kimlik doğrulama 

yapılabilmektedir. En az güvenilir kimlik doğrulama türü, yalnızca bir faktör gerektiren 

tek faktörlü kimlik doğrulamadır. Genelde iyi bir koruma sağlamaz ve ele geçirilmeye 

ya da yanlış kullanılmaya karşı savunmasızdır.  Bu tip doğrulamalar, hassas bilgi içeren 

kişisel bilgiye veya finansal bilgiye erişim için tavsiye edilmezler. 

 

Çoklu faktör doğrulama ise iki ya da daha fazla faktör içeren kimlik doğrulama 

çeşididir. Örneğin banka kartına sahip olmak ve PIN kodunu bilmek iki farklı faktörün 

bir araya geldiği kimlik doğrulama sistemidir. Bu tip doğrulama sistemi hassas bilgi 

içeren sistemlere yetki verilmesi için kullanılır. Faktör tanımlamaları dışında ayrıca 

doğrulama tipi de kimlik doğrulamanın nasıl yapılacağını gösterir. Başlıca doğrulama 

tipleri şunlardır: 

 

Güçlü Doğrulama: İçinde en az iki faktörü barındıran çok katmanlı bir doğrulama 

sistemidir. Bu doğrulama tipi çok faktörlü kimlik doğrulamaya benzer ancak daha sıkı 

gereksinimler de bu doğrulamaya eklenir. 

 

Sürekli Kimlik Doğrulama: Yalnızca ilk oturum açma oturumu sırasında kullanıcıların 

kimliğini doğrulayan geleneksel bilgisayar sistemlerinde önemli bir güvenlik açığı 

ortaya çıkabilir. Kullanıcıları bazı biyometrik özelliklerine göre sürekli olarak izleyen 

ve doğrulayan kimlik doğrulama tekniklerini kullanan sistemlerin bu sorunu çözmesi 

gerekmektedir. Son araştırmalar, dokunma dinamikleri, tuş vuruş dinamikleri ve 

yürüyüş tanıma gibi bazı davranışsal özellikleri çıkarmak için akıllı telefon sensörlerini 

ve aksesuarlarını kullanma olasılığını göstermiştir (De Marsico ve arkadaşları, 2018). 

Davranışsal biyometri olarak adlandırılan bu özellikler, akıllı telefon kullanıcılarını 

sürekli ve dolaylı olarak tanımlamak veya doğrulamak için kullanılabilir. Aktif veya 
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sürekli kimlik doğrulama sistemleri, bu davranışsal biyometrik özellikleri temel alarak 

oluşturulan sistemlerdir (Mahfouz ve arkadaşları, 2017) (Patel ve arkadaşları, 2016). 

 

Dijital kimlik doğrulama: Bazen "elektronik kimlik doğrulama" veya "e-kimlik 

doğrulama" olarak da adlandırılan "dijital kimlik doğrulama" ifadesi, bir bilgi sistemine 

kullanıcı kimliği güvenini elektronik olarak oluşturmak ve sağlamak için kullanılan 

prosedürlerin bir toplamıdır. 

 

Bu tezde bahsedilen çalışmada kalıtım faktörlerinden ikisini (biyo-empedans ve soft 

biyometri) kullanılarak, sürekli kimlik doğrulamaya benzer bir doğrulama 

gerçekleştirilmiştir. Bunun nedeni ise daha güvenilir ve az hata yapan bir sistem 

tasarımı arayışıdır. 

 

2.5. Doğruluk, Kesinlik, Duyarlılık, F1-Skor ve Karmaşıklık Matrisi 

 

Karmaşıklık Matrisi, sınıflandırma algoritmalarının performansını ortaya koyan bir 

matris tablosudur. Bu tabloda gösterilen bilgiler, modelin performansı, hataları ve 

zayıflıkları hakkında bilgiler verir. 

 

 
 

Şekil 2.5.1. Basit yapılı karmaşıklık matrisi 
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Şekil 2.5.1’de bulunan kısaltmalar şu şekildedir. 

 

Gerçek Pozitif (TP): Modelin pozitif olarak nitelendirdiğini gerçekte de pozitif 

olduğunu belirten bölge. 

 

Gerçek Negatif (TN): Modelin negatif olarak nitelendirdiğini gerçekte de negatif 

olduğunu belirten bölge. 

 

Yanlış Pozitif (FP): Modelin pozitif olarak nitelendirdiğini gerçekte negatif olarak 

değerlendiren bölge 

 

Yanlış Negatif (FN): Modelin negatif olarak nitelendirdiğini gerçekte pozitif olarak 

değerlendiren bölge. 

 

Örnek vermek gerekirse, sınıflandırma yaparak kişiye gelen elektronik postaları 

istenmeyen e-posta olup olmadığına göre ayrılması istenilen bir problem ele alınsın. 

Model oluşturulduktan sonra hata matrisi üzerinden her bir bölgede yer alan sayılar 

üzerinden değerlendirme yapılır ve verileri ilgili kutuya taşır. Eğer model istenmeyen 

bir e-posta tahmin etmişse ve bu gerçekten istenmeyen bir e-posta ise TP kutusuna 

yerleştirir. Eğer model sıradan bir e-postayı, istenmeyen e-posta olarak 

değerlendirmiyorsa TN kutusuna yerleştirir. Eğer model sıradan bir e-postayı 

istenmeyen e-posta olarak değerlendiriyorsa FP kutusuna yerleştirir. Eğer model 

istenmeyen bir e-postayı sıradan bir e-posta olarak değerlendiriyorsa bu sefer FN 

kutusuna taşır. 

 

Bu sayılar bulunduktan sonra performans metrikleri bulunur ve kararla ilgili sonuçlar 

çıkar. Bu metrikler: 
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Kesinlik: Pozitif olması beklenen değerlerden ne kadarının pozitif çıktığının ölçüsüdür. 

 

𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.15) 

 

Duyarlılık: Gerçekte pozitif olan değerlerin bütün tahminlere olan oranını gösteren bir 

metriktir. 

 

𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.16) 

 

F1-Skor: Kesinlik ve Duyarlılık değerlerinin harmonik ortalamalısını gösteren 

metriktir. 

 

𝐹1 = 2 ∗
𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘 ∗ 𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘

𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘 + 𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘
(2.17) 

 

Doğruluk: Modeldeki doğru tahmin edilen verilerin toplam veri kümesine olan 

oranıdır. 

 

𝐷𝑜ğ𝑟𝑢𝑙𝑢𝑘 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(2.18) 

 

Eğer veriler eşit dağılmamışsa modelin doğruluğu tek başına yeterli olmayacaktır. F1-

Skor değerinin kullanılması eşit dağılmayan veri kümelerinde hatalı bir model seçimi 

yapılmamasını sağlamaktadır. Tüm hata maliyetlerini içeren bir metrik olan F1-Skor, 

harmonik ortalama alınması sebebiyle uç durumların göz ardı edilmesine de yarar. 
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3. MATERYAL ve YÖNTEM 

 

3.1. Kullanılan Ekipman 

 

Çalışmada soft biyometrik verilerin toplanabilmesi için dokunmatik ekrana sahip akıllı 

bir telefon kullanılmıştır. Uygulamada çizilecek olan şekiller ve sürükleme hareketi için 

oldukça bir geniş ekran alanı sunabilen ‘Samsung Galaxy A51’ model cep telefonu 

seçilmiştir (Şekil 3.1.1). A51 ekran genişliği 164.0mm (6.5") ve çözünürlüğü 1080 x 

2400 pikseldir.  

 

 
 

Şekil 3.1.1. Çalışmada kullanılan akıllı telefon 

 

A51 Android işletim sistemine sahip olduğundan, uygulamayı geliştirmek için Android 

Studio platformu kullanılmıştır. Kullanılan versiyon Android Studio Giraffe | 2022.3.1 

Patch 2’dir. 

 

Biyoelektrik empedans verisi toplamak için Analog Devices firmasına ait AD5933EBZ 

model geliştirme kartı kullanılmıştır (Şekil 3.1.2). Geliştirme kartı üzerinde bulunan 

AD5933 empedans çevirici ya da daha çok kullanılan ismiyle ağ analizatörü, 

biyoelektrik empedans uygulamalarında sıklıkla kullanılan bir bütünleşmiş devredir.  
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Şekil 3.1.2. AD5933EBZ geliştirme kartı 

 

AD5933, yerleşik frekans jeneratörünü 12 bit, 1 MSPS, analogdan dijitale dönüştürücü 

(ADC) ile birleştiren yüksek hassasiyetli bir empedans dönüştürücü sistem çözümüdür. 

Frekans üreteci, harici bir karmaşık empedansın bilinen bir frekansla uyarılmasına izin 

verir. Empedanstan gelen yanıt sinyali, yerleşik ADC tarafından örneklenir ve ayrık bir 

Fourier dönüşümü (DFT), yerleşik bir DSP motoru tarafından işlenir. DFT algoritması, 

her çıkış frekansında bir gerçek (𝑅𝑒) ve sanal (𝐼𝑚) veri sözcüğü döndürür. 

 

AD5933 piyasada çokça bulunan ucuz ve uygulama alanı çok geniş olan bir ağ 

analizördür. Elektriksel diyagram ve bağlantılar Şekil 3.1.3’te gösterilmiştir. 

 

Kalibre edildikten sonra tarama boyunca her frekans noktasında empedansın büyüklüğü 

ve empedansın bağıl fazı kolayca hesaplanır. Bu, seri I2C arayüzünden okunabilen 

gerçek ve sanal kayıt içerikleri kullanılarak çip dışında yapılır. 

  

Geliştirme kartında ayrıca gerektiğinde AD5933'e sistem saati görevi görecek yüksek 

performanslı kırpılmış 16 MHz yüzeye monte kristal bulunur. AD5933'e arayüz 

oluşturmak, AD5933 ile iletişim kurmak için gerekli I2C sinyallerini üreten bir USB 
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mikro denetleyici aracılığıyla gerçekleştirilir. USB mikro kontrolcüye arayüz oluşturma, 

PC'de bulunan ve PC'den çalıştırılan bir Visual Basic grafik kullanıcı arayüzü 

aracılığıyla yapılır. AD5933 ayrıca 13 bit çözünürlüklü dahili bir sıcaklık sensörü içerir. 

Parça 2,7 V'den 5,5 V'ye kadar bir beslemeyle çalışır. Diğer yerleşik bileşenler arasında, 

cihazın ayrı analog ve dijital bölümleri için sabit bir besleme voltajı görevi görecek bir 

ADR423, AD5933’e 3,0V referansı ve arayüz oluşturan yerleşik evrensel seri veri yolu 

denetleyicisine bir besleme görevi görecek bir ADP3303 ultra yüksek hassasiyetli 

regülatör bulunur. 

 

Geliştirme kartı bir USB kablosu yardımıyla bilgisayardan güç alır ve üzerinde gerçek 

zamanlı empedans ölçümleri yapılabilir. 

 

AD5933EBZ seçilmesinin nedenleri hacmi ve iki adet kablo kullanarak veri 

toplayabilmesidir. Ayrıca maliyeti ve kolay arayüzü kullanımı tercih etme sebepleri 

arasındadır. 

 

 
 

Şekil 3.1.3. AD5933 elektriksel diyagramı 

 

Ölçümlerin istenilen seviyede ve kalitede yapılabilmesi için geliştirme kartının 

donanımı değiştirilmiştir. 
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Devrenin düşük frekanslardaki empedans ölçüm performansını bulabilmek için 

geliştirme kartının geliştirme alanına 4Mhz ve 2Mhz olmak üzere iki ayrı kristal osilatör 

eklenmiştir. Ayrıca ölçüm yapılacak olan kabloların bağlantısını sağlamak için 2 adet 

SMA konnektör ve RF kablo geliştirme alanına eklenmiştir. Kristal osilatörler arasında 

hızlı bir geçiş sağlayabilmek için 2 adet kaydırmalı buton eklenmiştir. Bu sayede hem 

kalibrasyon hem de ölçüm sırasında kristal frekansı değişimi hızlıca yapılabilmiştir. 

 

Biyoelektrik empedans analizi için çıkış gerilimi, frekans, kalibrasyon empedansı, 

tarama frekansı, frekans aralıkları ve saat frekansı gibi parametreleri kontrol etmek için 

AD5933EBZ geliştirme kartı arayüz yazılımı kullanılmıştır (Şekil 3.1.4). Bu yöntem ile 

hızlıca parametrelerin belirlenip mikrokontrolör adreslerine yazılması sağlanmıştır. 

 

 
 

Şekil 3.1.4. AD5933EBZ arayüz yazılımı 
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3.2. Yöntem 

 

Çalışmaya 164 kişi gönüllü olarak katılmıştır. Gönüllülerden onam formu 

imzalanmaları istenmiş, çalışmanın detayları anlatılmış, olası yarar ve zararlardan 

bahsedilmiş, istedikleri zaman deneye son verebilecekleri belirtilmiş ve dilerlerse 

çalışmadan kendi istekleriyle bütünüyle ayrılarak verilerinin tamamen silineceği taahhüt 

edilmiştir. 

 

Bu kapsamda çalışmayı yürüten araştırmacı, bütün gönüllülerle tek tek görüşmüş ve 

rızalarını almıştır. Onam formları 18 yaşından büyükler için tek form olup gönüllünün 

kendisi tarafından imzalanmış, 18 yaşından küçükler için iki ayrı belge; biri çocuk ve 

diğeri çocuğun herhangi bir ebeveyni için, imzalanıp bir kopyası gönüllünün kendisine 

bir kopyası da Uludağ Üniversitesi Etik Kurulu’na teslim edilmiştir. Gönüllülerin yaş ve 

cinsiyet bilgileri alındıktan sonra sırasıyla biyoelektrik empedans verileri ve soft 

biyometrik verileri alınmıştır. 

 

Çizelge  3.2.1. Gönüllülerin yaş ve cinsiyet dağılımı 

 

Yaş dağılımı Kadın Erkek Toplam 

10-17 3 12 15 

17-24 5 14 19 

24-31 12 8 20 

31-38 21 19 40 

38-45 11 14 25 

45-52 11 7 18 

52-59 6 4 10 

59 ve üzeri 9 8 17 

 

Çizelge 3.2.2. Deneye katılan toplam kişi sayısı ve yaş ortalamaları 

 

Cinsiyet Kişi Sayısı Yaş Ort. 

Kadın 78 40,01 

Erkek 86 35,09 
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Çizelge 3.2.1’de 8 farklı yaş ve 2 farklı cinsiyet olmak üzere 16 etiket üzerinden 

değerlendirilecek olan yaş ve cinsiyet dağılımı verilmiştir. Çizelge 3.2.2’de ise 

gönüllülerin cinsiyetlerine göre kişi sayısı ve yaş ortalaması verilmiştir. 

 

Gönüllülerden uygulamadaki direktifleri sadece sağ elleri ve baş parmakları ile 

yapmaları istenmiştir. Bu sayede daha kontrollü bir çalışma olması amaçlanmıştır. 

Cinsiyet tahmininde baş parmak uzunluğu önemli bir parametre olup hem çizimlerin 

tamamlanma süresi hem de kaydırmadaki sürükleme mesafesini daha belirgin hale 

getirmiştir. 

 

Çalışmaya katılan gönüllülerden telefon uygulamasını kullanarak dört farklı kaydırma 

hareketi yapmaları istenmiş (soldan sağa, sağdan sola, yukarıdan aşağıya ve aşağıdan 

yukarı şeklinde) sonrasında da saat yönü ve saat yönü tersine göre sırasıyla üçgen ve 

çember çizmeleri istenmiştir (Şekil 3.2.1). Kaydırma işlemi, belirli bir şekle tabi 

olmadan, kullanıcının isteğine bırakılmıştır. Üçgen ve çember çizimleri ise uygulamada 

gösterilen şeklin kenarları üzerinden takip edilmesi istenmiştir (Şekil 3.2.2). 

 

 
 

Şekil 3.2.1. Kullanıcıdan istenilen kaydırma ve çizimler 

 

Her işlem 15 defa tekrarlanmış ve 164 kişiden toplamda 19680 adet soft biyometrik 

verisi toplanmıştır. 
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Şekil 3.2.2. Uygulamadan örnek ekran görüntüleri 

  

Toplanan bu veriler telefon hafızasının içerisinde .csv uzantılı bir Microsoft Excel 

tablosuna aktarılmıştır. (Şekil 3.2.3) 

 

 
 

Şekil 3.2.3. Soft biyometri verilerinin toplandığı örnek tablo 
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Uygulamadan 8 farklı veri elde edilmiştir. Bu veriler: 

 

Çizime başlanan koordinat: Kullanıcının ekrana dokunmaya başladığı anda, kayda 

başlanan ekran düzlemindeki koordinat verisidir. 

 

Çizimin bittiği koordinat: Kullanıcının ekrandan parmağını çektiği anda, kaydedilen 

son koordinat verisidir. 

 

Başlangıç zamanı: Kullanıcının belirlenen her hareket ve tekrarda ekrana 

dokunmasıyla başlayan süre verisidir. 

 

Bitiş zamanı: Kullanıcının belirlenen her hareket ve tekrarda ekrandan parmağını 

kaldırmasıyla kaydedilen süre verisidir. 

 

X eksenindeki hız: Çizim veya tarama sırasında hareketin tamamını kapsayan x 

eksenindeki ortalama hız verisidir. 

 

Y eksenindeki hız: Çizim veya tarama sırasında hareketin tamamını kapsayan x 

eksenindeki ortalama hız verisidir. 

 

Basınç: Dokunma süresinde her noktada uygulanan basınç verisidir. 

 

Dokunma Yüzeyi: Ekrandaki hareket esnasında kullanıcının her çizim noktasındaki 

dokunma alan verisidir. 

 

Uygulamada Android işletim sisteminin kendine ait olan temel fonksiyonlarından 

yararlanılmıştır.  Tek aktiviteli olarak tasarlanan uygulamada, uygulama kaydırma ve 

çizim hareketleri yapmıştır. Bütün fonksiyonlar Android SDK’da bulunan 

GestureDetector.OnGestureListener arayüzünün fonksiyonlarıdır. Dolayısıyla bu arayüz 

içindeki MotionEvent nesnesi ile bağlantı kurulmuş ve parametreler elde edilmiştir. 
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onFling fonksiyonu  

 

X ve Y düzlemi üzerindeki hızı, saniyede taranan piksel şeklinde alır. 

 

Çalışmada onFling fonksiyonunda, (Şekil 3.2.4) kullanıcı parmağını dokunmaya 

başladığından kaldırıncaya kadar hız verilerini almış ve harici dosyaya aktarmıştır. 

Fonksiyon ayrıca verilerin dosyaya yazılması ile ilgili CSVHelper java sınıfından diğer 

verileri dizi şeklinde almış ve her hareket sonunda harici dosyaya yazmıştır. Bunu 

kullanıcının her dokunma hareketinden sonra tekrarlamıştır. Her bir kullanıcı için 15 x 8 

= 90 defa fonksiyon çalışmıştır. 

 

 
 

Şekil 3.2.4. Uygulamadaki onFling fonksiyonu 
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Şekil 3.2.5. onFling fonksiyonıun çağırdığı liste 

 

CSVHelper dosyası her bir hareketi yeni bir satır olarak .csv uzantılı dosyaya ekler. 

 

onDown fonksiyonu 

 

Kullanıcının ekrana dokunulması ile başlangıç noktasını ve başlangıç zamanını yazar 

(Şekil 3.2.6) 

 

 
 

Şekil 3.2.6. Uygulamadaki onDown fonksiyonu 

 

onScroll fonksiyonu 

 

X ve Y ekseni üzerindeki katedilen mesafeyi yazar. Uygulamada kullanıcının 

parmağıyla dokunduğu bütün noktaları, basınç değerleri ve basılan yüzey alanı da bu 

fonksiyon elde eder (Şekil 3.2.7). 
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Şekil 3.2.7. Uygulamadaki onScroll fonskiyonu 

 

Bu fonksiyonların dışında yazılan ve ana aktivite ekranında bulunan üç ayrı fonksiyon 

mevcuttur. 

 

handleButtonClick() 

 

Uygulamanın açılış ekranındaki butonu aktifleştirmek için kullanılan fonksiyondur 

(Şekil 3.2.8). 

 

startRecording() 

 

Uygulamada isim yazıldıktan sonra tarif edilen kayıt başlama butonudur. Basıldıktan 

sonra buton üzerindeki yazı değişerek ‘kayıt sonlandır’ haline gelmektedir (Şekil 3.2.8). 

 

stopRecording() 

 

Kayıt başladıktan sonra kayıt butonunun yerine çıkan yazı butonudur. Kaydı 

durdurduktan sonra buton üzerindeki yazı değişerek ‘kaydı başlat’ haline gelmektedir 

(Şekil 3.2.8). 
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Şekil 3.2.8. handleButtonClick(), startRecording(), stopRecording() fonksiyonları 

 

8 farklı hareketin hepsi birer obje olarak oluşturulmuş ve sıralanmıştır. Enum sınıfı 

tanımlanmış hareketleri içine almış ve getNextDirection fonksiyonu da hareketleri 

sıralamıştır (Şekil 3.2.9). 

 

 
 

Şekil 3.2.9. Hareketlerin sınıf içine alınıp sıralanması 
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Şekil 3.2.10. Uygulama akış diyagramı 

 

Soft biyometrik veri toplama akış diyagramı Şekil 3.2.10’da gösterilmiştir. 

 

Biyoelektrik empedans verilerini toplama işlemi çalışmada kullanılan cep telefonu 

kılıfının üzerinde bulunan bakır bantların üzerine lehimlenmiş iki adet koaksiyel kablo 

ile yapılmıştır. Koaksiyel kablo sinyal gürültüsünden etkilenilmemesi için tercih 

edilmiştir. 

 

Bakır bantlar birbirlerinden yaklaşık 0,3 cm. ara ile telefon kılıfının enine doğru 

yapıştırılmıştır. Koaksiyel kabloların her biri bu bakır bantların üzerine lehimlenmiştir 

(Şekil 3.2.11). 

 

Bunun yapılmasındaki amaç, cep telefonunu tutan kişinin her iki bakır banda 

dokunması ve devrenin kapalı hale getirilmesidir. Ölçümler farklı frekans 

genişliklerinde, farklı uyarım gerilimlerinde ve farklı kristal osilatör frekanslarında 

yapılmıştır. 
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Şekil 3.2.11. Deney düzeneği 

 

AD5933EBZ’nin düzgün çalıştığını anlayabilmek için öncesinde kalibrasyon 

yapılmıştır. Kalibrasyon, devre üzerinde bulunan Rfb direnç yuvasına kalibre edilmesi 

istenilen direncin konulması ve ölçüm yapılmak istenen Z yuvasına aynı direnci 

konulmasıyla yapılmıştır. Kalibrasyon, Analog Devices’ın tavsiye ettiği kullanıcı 

rehberi (UG-364) kullanılarak belirlenmiştir. Rfb ve Z yuvasına 200 kΩ dirençler 

bağlanmıştır. Daha sonra kullanıcı rehberindeki adımlar izlenmiştir. Kalibrasyonun 

doğruluğunu kanıtlamak için daha sonra Z yuvasına değeri bilinen başka bir direnç (330 

kΩ) takılmış ve empedans değeri ölçülmüştür (Şekil 3.2.12). 
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Şekil 3.2.12. Kalibrasyon sonrası doğrulama 

 

Çalışmada empedans verileri elde edilirken bütün gönüllülerden avuç içi direnç değeri 

alınmamıştır. Bu yöntem çalışmanın süresini çok uzattığı için araştırma öncesi ortalama 

bir kalibrasyon değeri bulunmaya çalışılmıştır. 20 kişiden alınan değerlerin sonucu 

olarak 330 kΩ kalibrasyon direnci uygun görülmüştür (Şekil 3.2.13). 

 

 
 

Şekil 3.2.13. 20 kişiden alınan avuç içi direnç değerleri 
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Nordbotten (2008) çalışmasında düşük frekanslar için AD5933 için kullanılan 16Mhz 

kristal osilatörün yeterli olmadığını belirtmiştir. Düşük frekanslarda empedans ve faz 

açısını daha iyi gözlemleme şansı olduğundan geliştirme kartına 4Mhz ve 2Mhz olmak 

üzere iki adet osilatör eklenmiştir. Ancak 2Mhz osilatör ile yapılan ölçümler oldukça 

belirsiz ve arayüzün yazılımının tanım aralığında bulunmayan sonuçlar vermiştir. Bu 

nedenle düşük frekansların ölçümü 4Mhz kristal osilatör ile yapılmıştır. 

 

Arayüz yazılımında seçilebilecek en yüksek çıkış tepeden tepeye gerilimi 2V, en düşüğü 

ise 0.2V’dir. Karşılaştırılacak olursa 2V çıkış tepeden tepeye geriliminde devrenin 

empedans ve faz cevabı daha düzeltilmiş, 0.2V çıkış tepeden tepeye geriliminde ise ufak 

empedans ve faz değişiklikleri daha belirgin görülmektedir. 2V tepeden tepeye olan 

gerilim çıkışında ayrıntılar zor görülmektedir, ayrıca 4Mhz ile yapılan ölçümlerde devre 

doyuma gitmekte ve bir süre sonra aynı empedans değerlerini vermektedir. 

 

 
 

Şekil 3.2.14. 16Mhz ile yapılan farklı gerilim çıkışlarının örnek empedans ve faz 

sonuçları 
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Şekil 3.2.15. 4Mhz ile yapılan farklı gerilim çıkışlarının örnek empedans ve faz 

sonuçları 

 

Şekil 3.2.14 ve Şekil 3.2.15’te görüldüğü gibi 2V çıkış gerilimi hem veri azlığı hem de 

devrenin doyuma girmesine neden olduğu için çalışmadan çıkarılmıştır. 

 

Düşük frekans 300Hz-5300Hz aralığında belirlenmiştir. Yüksek frekans ise 5000Hz-

65000Hz aralığındadır. Her empedans ölçümü 200Hz aralığında yapılmıştır. Dolayısıyla 

300Hz ile 5300Hz arasında 251 adet empedans ve faz açısı ölçümü yapılmıştır. 5Khz ile 

65Khz arasında ise 301 adet empedans ve faz ölçümü yapılmıştır. Frekans tarama 

parametre ve diğer devre ayarları Çizelge 3.2.3’te gösterilmiştir. 
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Çizelge 3.2.3. Arayüz parametre tanımlamaları 

 
Tarama Parametreleri     

Başlangıç 

Frekansı (Hz) 

Frekans 

Aralığı 

(Hz) 

Aralık 

Sayısı 

Saat 

Frekans 

(MHz) 

Sistem 

Saati 

Uyarıcı 

Gerilim(V) 

Kazanç Kazanç Faktörü 

Kalibrasyonu 

300 200 250 4 Dışarıdan 0.2 1 Çoklu nokta 

Frekans 

Kalibrasyonu 

5000 200 300 16 Dışarıdan 0.2 1 Çoklu nokta 

Frekans 

Kalibrasyonu 

 

Ölçümler frekans tarama şeklinde olduğundan ‘Kazanç Faktörü Kalibrasyonu’ çoklu 

nokta şeklinde seçilmiştir. Ayrıca parametre ayarlarında belirtilen ‘Kazanç’ bölümü ‘5’ 

olarak seçildiğinde, devre her ölçümde doyuma ulaşmıştır. O nedenle ‘Kazanç’ ‘1’ 

seçilmiştir. 

 

3.3. Öznitelik Seçimi ve Veri Önişleme 

 

Soft biyometrik ve biyoelektrik empedans verileri toplandıktan sonra verilere uç 

değerler kontrolü yapılmıştır. Kaydedilen empedans ve faz değerlerinin uç değerleri çok 

fazla olmayıp veri setindeki bir önceki ve bir sonraki değerlerin aritmetik ortalaması ile 

anlamlı veri noktaları oluşturulmuştur. 

 

Soft biyometrik verilerinde ise çizimlerin hızlı olarak çizilmesinin bir sonucu olarak 

yanlış yapıldığından dolayı bazı gönüllülerin deneme sayısı 15’ten az olarak 

değerlendirilmiştir. Bu beklenen bir durumdur ve 15 tekrar sayısının belirlenmesindeki 

ana sebeplerdendir. 

 

Uç veriler temizlendikten sonra bazı istatistiksel özellikler öznitelik olarak 

belirlenmiştir. Literatür çalışması yapılırken birçok araştırmada yer alan bu 

özniteliklerin bir kısmı bu çalışmada da yer almıştır. Bunlar standart sapma, ortalama, 

medyan, maksimum, minimum değer ve çeyrekler açıklığıdır.  
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Standart Sapma: Bir rastgele değişkenin ortalama etrafında sahip olacağı tahmin 

edilen varyasyon miktarı, standart sapması ile ölçülür. Düşük bir standart sapma, 

değerlerin beklenen değer olarak da bilinen kümenin ortalamasına yakın olma eğilimini 

belirtirken, büyük bir standart sapma daha geniş bir değer aralığını belirtir. Neyin aykırı 

değer olarak sayılıp neyin sayılmadığına karar verirken standart sapma sıklıkla 

kullanılır. 

 

𝑠 = √
∑ (𝑋𝑖 − 𝑋̅)2𝑛

𝑖=1

𝑛 − 1
(3.1) 

 

𝑋𝑖: Veri setindeki her bir veri 

𝑋̅: Verilerin aritmetik ortalaması 

𝑠: Standart sapma 

𝑛: Örneklem sayısı 

 

Medyan: Bir popülasyonun, olasılık dağılımının veya bir veri örneğinin üst ve alt 

yarısını bölen değere medyan denir. Bir veri kümesi için "orta" değer olarak kabul 

edilebilir. 

 

(𝑛 + 1)

2
(3.2) 

 

𝑛: Toplam kişi/veri sayısı 

 

Ortalama: Veri setindeki tüm değerlerin toplanıp veri noktası sayısına verilen isimdir. 

Aritmetik ortalama şeklinde de ifade edilir. 

 

𝑥̅ =
1

𝑛
(∑ 𝑥𝑖

𝑛

𝑖=1

)  (3.3) 
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𝑥̅: Aritmetik ortalama 

𝑛: Popülasyondaki veri sayısı 

𝑥𝑖: Popülasyondaki her bir veri değeri 

 

Maksimum değer: Veri noktalarındaki en yüksek değerdir. 

 

Minimum değer: Veri noktalarındaki en düşük değerdir. 

 

IQR-Çeyrek açıklığı: Çeyrekler açıklığı veri setinin medyanın her iki tarafından eşit 

şekilde, veri setinin %50’sini kapsayan ve veri setinin ilk çeyrek ile son çeyrek farkını 

gösteren istatiksel bir yayılma ölçüsüdür. Çeyrek açıklık ölçüsü uç değerlerden 

etkilenmediği için iyi bir istatiksel yöntemdir. 

 

 
 

Şekil 3.3.1. Çeyrek açıklık kutu diyagramı 

 

Şekil 3.3.1.’de ifade edilen ‘Maksimum’ ve ‘Minimum’ değerleri, düşük ve yüksek 

çeyrek değerlerine 1.5 IQR değeri eklenmesi ve çıkarılmasıyla elde edilir. Bu değerlerin 

daha ötesinde tanımlanan veri değerleri varsa onlar uç değer olarak kabul edilir ve 

işleme alınmazlar. 

 

Q1 – 1.5 x IQR 

Q1 
Q3 

Medyan 

Q3 + 1.5 x IQR 

(IQR) 
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Verilerin bu istatiksel değerleri hesaplandıktan sonra birbirleriyle uyumlu olabilmesi 

için bir ön işlem yöntemi olan normalizasyon işlemine tabi tutulmuşlardır. 

 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
(3.4) 

 

Normalizasyon işlemi sonrası bütün değerler [-1,1] aralığına gelmiş ve değerlendirme 

modelin değerlendirme işini kolaylaştırmıştır. 

 

Çizelge 3.2.1’den görüleceği gibi yaş grupları ve cinsiyetlerle birlikte gönüllüler 16 

farklı gruba ayrılmış ve denetimli öğrenme yöntemine göre etiketlenmişlerdir.  

 

Bütün bu öznitelik seçimi, etiketleme ve normalizasyon işlemi sonrasında, veriler tek 

bir Excel belgesine eklenmiş ve analiz edilmeye hazır hale getirilmiştir. 
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Çizelge 3.3.1. Soft biyometri öznitelikleri 

 

Öznitelik 

İsmi 

Açıklaması 

L-R Time Soldan sağa kaydırma ortalama zamanı 

R-L Time Sağdan sola kaydırma ortalama zamanı 

DownTime Aşağıya doğru kaydırma ortalama zamanı 

UpTime Yukarı doğru kaydırma ortalama zamanı 

TricwTime Saat yönünde üçgen ortalama çizme süresi 

TriccwTime Saat yönünün tersinde üçgen ortalama çizme süresi 

CircwTime Saat yönünde çember ortalama çizme süresi 

CirccwTime Saat yönünün tersinde çember ortalama çizme süresi 

L-R Press Soldan sağa kaydırma ortalama basınç değeri 

R-L Press Sağdan sola kaydırma ortalama basınç değeri 

DownPress Aşağıya doğru kaydırma ortalama basınç değeri 

UpPress Yukarı doğru kaydırma ortalama basınç değeri 

TricwPress Saat yönünde üçgen çizerken ortalama basınç değeri 

TriccwPress Saat yönünün tersinde üçgen çizerken ortalama basınç değeri 

CircwPress Saat yönünde çember çizerken ortalama basınç değeri 

CirccwPress Saat yönünün tersinde çember çizerken ortalama basınç değeri 

L-R DistX Soldan sağa kaydırma x ekseninde ortalama katedilen mesafe 

R-L DistX Sağdan sola kaydırma x ekseninde ortalama katedilen mesafe 

DownDistX Aşağıya doğru kaydırma x ekseninde ortalama katedilen mesafe 

UpDistX Yukarı doğru kaydırma x ekseninde ortalama katedilen mesafe 

TricwDistX Saat yönünde üçgen çizerken x ekseninde ortalama katedilen 

mesafe 

TriccwDistX Saat yönü tersinde üçgen çizerken x ekseninde ortalama katedilen 

mesafe 

CircwDistX Saat yönünde çember çizerken x ekseninde ortalama katedilen 

mesafe 

CircccwDistX Saat yönü tersinde çember çizerken x ekseninde ortalama katedilen 

mesafe 

L-R DistY Soldan sağa kaydırma x ekseninde ortalama katedilen mesafe 

R-L DistY Sağdan sola kaydırma x ekseninde ortalama katedilen mesafe 

DownDistY Aşağıya doğru kaydırma x ekseninde ortalama katedilen mesafe 

UpDistY Yukarı doğru kaydırma x ekseninde ortalama katedilen mesafe 

TricwDistY Saat yönünde üçgen çizerken x ekseninde ortalama katedilen 

mesafe 

TriccwDistY Saat yönü tersinde üçgen çizerken x ekseninde ortalama katedilen 

mesafe 

CircwDistY Saat yönünde çember çizerken x ekseninde ortalama katedilen 

mesafe 

CircccwDistY Saat yönü tersinde çember çizerken x ekseninde ortalama katedilen 

mesafe 
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Çizelge 3.3.2. Empedans ve faz açılarından elde edilen öznitelikler 

 

Özniteliğin Elde Edildiği 

Veri 
Öznitelikler Açıklama 

Düşük Frekans Empedans 

STD IMP LOW Standart sapma değeri 

MEAN IMP LOW Ortalama değer 

MED IMP LOW Medyan değeri 

MAX IMP LOW En yüksek değer 

MIN IMP LOW En düşük değer 

IQR IMP LOW Çeyrek açıklık değeri 

Düşük Frekans Faz Açısı 

STD PH LOW Standart sapma değeri 

MEAN PH LOW Ortalama değer 

MED PH LOW Medyan değeri 

MAX PH LOW En yüksek değer 

MIN PH LOW En düşük değer 

IQR PH LOW Çeyrek açıklık değeri 

Yüksek Frekans Empedans 

STD IM HIGH Standart sapma değeri 

MEAN IMP HIGH Ortalama değer 

MED IMP HIGH Medyan değeri 

MAX IMP HIGH En yüksek değer 

MIN IMP HIGH En düşük değer 

IQR IMP HIGH Çeyrek açıklık değeri 

Yüksek Frekans Faz Açısı 

STD PH HIGH Standart sapma değeri 

MEAN PH HIGH Ortalama değer 

MED PH HIGH Medyan değeri 

MAX PH HIGH En yüksek değer 

MIN PH HIGH En düşük değer 

IQR PH HIGH Çeyrek açıklık değeri 

 

Çizelge 3.3.1 ve Çizelge 3.3.2’de gösterildiği gibi, 32 adet soft biyometrik 

ölçümlerinden, 24 adet biyoelektrik empedans ölçümlerden olmak üzere toplamda 56 

adet öznitelik elde edilmiştir. 
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4. BULGULAR  

 

Her gönüllü için hesaplanmış olan 56 öznitelik .csv uzantılı Excel dosyası ile MATLAB 

çalışma alanına yüklendikten sonra, ‘sınıflandırma öğrenici’ uygulamasında makine 

öğrenme performansı ölçülmüştür. 

 

Çapraz Doğrulama parametresi 5 olarak seçilmiştir. Öznitelik kısmından gönüllülerin 

ismi, yaş ve cinsiyet bilgileri çıkarılmıştır. Gönüllü ismi nümerik bir veri olmadığından, 

kullanılamamaktadır. Yaş ve cinsiyet de ölçümü olmayan ayrıca etiketleri belirlediğimiz 

temel veriler olduğundan kaldırılmıştır. Diğer öznitelikler ile etiket sınıflandırılması 

yapılmıştır. 

 

4.1. Sınıflandırma Sonuçları 

 

Sınıflandırma için üç farklı makine öğrenme algoritması (DVM, Mantıksal Regresyon 

ve K-En yakın komşular) belirlenmiştir. Bu çalışmada ilgili sınıflandırıcı algoritmaları 

farklı çekirdek fonksiyonları kullanılarak MATLAB ortamında test edilmiş ve 

sınıflandırma başarıları karşılaştırılmıştır. En etkili hiper parametre setlerini bulabilmek 

için ızgara arama çapraz doğrulama metodu kullanılmıştır.  Şekil 4.1.1’de tanımlanan 

sınıflandırma modellerinin başarı oranları gösterilmiştir. Gözlem sayılarına bağlı olan 

karmaşıklık matrisleri DVM için Şekil 4.1.2’de, KNN için Şekil 4.1.4’te ve mantıksal 

regresyon için Şekil 4.1.6’da gösterilmiştir. Yüzde başarım oranına göre karmaşıklık 

matrisleri ise DVM için Şekil 4.1.3’te, KNN için Şekil 4.1.5’te ve mantıksal regresyon 

için Şekil 4.1.7’de gösterilmiştir.  



 

 

 

 

 

 

74 

 

 
 

Şekil 4.1.1. Sınıflandırma sonuçları 

 

Şekil 4.1.1’de de görüldüğü gibi Kuadratik Çekirdek işlemli DVM %84,8 doğruluk 

başarısı yakalamıştır. Bu sonuç sayesinde sınıflandırma arasında en iyi model olmuştur. 

K-en yakın komşu modellerinden en başarılı olanı %63.4’lük bir başarı oranı ile ‘komşu 

sayısı’ 1 olan ‘İnce (Fine) KNN’ modeli olmuştur. ‘Etkili Mantıksal Regresyon’ 

modelinin başarısı %47.0’te kalmıştır. 

 

 
 

Şekil 4.1.2. Gözlem sayısına bağlı Kuadratik DVM sınıflandırıcısına ait karmaşıklık 

matrisi 
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Şekil 4.1.3. Yüzde başarım oranlı Kuadratik DVM sınıflandırıcısına ait karmaşıklık 

matrisi (Gerçek pozitifler ve yanlış negatifler) 

 

 
 

Şekil 4.1.4. Gözlem sayısına bağlı ince KNN sınıflandırıcısına ait karmaşıklık matrisi 
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Şekil 4.1.5. Yüzde başarım oranlı ince KNN sınıflandırıcısına ait karmaşıklık matrisi 

(Gerçek pozitifler ve yanlış negatifler) 

 

 
 

Şekil 4.1.6. Gözlem sayısına bağlı etkili mantıksal regresyon sınıflandırıcısına ait 

karmaşıklık matrisi 
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Şekil 4.1.7. Yüzde başarım oranlı etkili mantıksal regresyon sınıflandırıcısına ait 

karmaşıklık matrisi (Gerçek pozitifler ve yanlış negatifler) 

 

4.2. Regresyon Sonuçları 

 

Regresyon yönteminde DVR ve doğrusal regresyon olmak üzere iki farklı model 

kullanılmıştır. DVR modelinde farklı çekirdek yöntemleri denenmiştir. Doğrusal 

regresyon modellerinde ise farklı hiper parametreli regresyon modelleri denenmiştir. 

Burada da ızgara arama çapraz doğrulama tekniği kullanılmıştır. Şekil 4.2.1.’de 

regresyon modellerinin başarım oranları gösterilmiştir. Regresyon için cevap grafikleri 

orta ölçek Gauss çekirdek işlevli DVR yöntemi için Şekil 4.2.2’de, etkileşimli doğrusal 

regresyon yöntemi için 4.2.4’te gösterilmiştir. Bu iki grafik gerçek sınıfla tahmin edilen 

sınıf arasındaki mesafeyi ölçerek hata oranını gösterir. Beklenen ve gerçekleşen 

cevaplar grafikleri ise; orta ölçek Gauss çekirdek işlevli DVR yöntemi için Şekil 

4.2.3’te, etkileşimli doğrusal regresyon yöntemi için 4.2.5’te gösterilmiştir. Bu iki 

grafikte gösterilen 16 gerçek sınıf (x-ekseni) ve 16 tahmin edilen sınıf (y-ekseni) 

üzerinden tahmin dağılımı gösterilmiştir. Tahminin doğruluğu, model tarafından çizilen 

kusursuz regresyon çizgisi üzerinden değerlendirilir. 
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Şekil 4.2.1. Regresyon modelleri başarı oranları 

 

Regresyon modellerinde Şekil 4.2.1.’de görüldüğü üzere başarı oranı RMSE (Root 

Mean Square Error-Kök Ortalama Kare Hatası) üzerinden değerlendirilir. Bu değer 

tahmin edilen değer ile gerçek değer arasındaki beklenen ortalama fark olarak 

yorumlanabilir. Bu değer uç değerlere karşı hassas olduğu için bazı modellerde yüksek 

çıkmıştır. Ancak bazı modeller, eğitim verisi üzerinden uç verileri baskıladığında bu 

değer düşük çıkar. RMSE değeri ne kadar düşükse, seçilen model o kadar iyi çalışıyor 

demektir. Dolayısıyla regresyon modellerini belirlemede oldukça önemli bir 

parametredir. 

 

Alınan sonuçlara göre orta ölçekli Gauss çekirdek işlevli DVR regresyon modeli 1.2584 

RMSE hatası ile en iyi model olarak belirlenmiştir. Daha sonrasında doğrusal DVR 

1.5267 RMSE değeri ile ikinci, kaba ölçekli Gauss çekirdek işlevli DVR 1.6734 RMSE 

ile üçüncü, kuadratik çekirdek işlevli DVR 2.4649 RMSE ile dördüncü, ince ölçekli 

Gauss çekirdek işlevli DVR 3.2973 RMSE ile beşinci ve en sonunda kübik çekirdek 

işlevli DVR 11.076 RMSE ile altıncı en iyi performansa sahip DVR modeli olmuştur. 

Bu durumda genel olarak DVR modelleri regresyon modelleri içerisinde doğrusal 

regresyon ve diğer varyans modellerine göre daha başarılıdır. 
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Şekil 4.2.2. Orta ölçek Gauss çekirdek işlevli DVR cevap grafiği 

 

Şekil 4.2.2.’de düşey eksen etiketi temsil ederken yatay eksen kişi sırasını temsil eder. 

 
 

Şekil 4.2.3. Orta ölçek Gauss çekirdek işlevli DVR için beklenen ve gerçekleşen 

cevaplar 

 

Doğru 

Tahmin 

Hata 
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Şekil 4.2.4. Etkileşimli doğrusal regresyon grafiği 

 

Şekil 4.2.4.’te düşey eksen etiketi temsil ederken yatay eksen kişi sırasını temsil eder. 

 

 
 

Şekil 4.2.5. Etkileşimli doğrusal regresyon için beklenen ve tahmin edilen cevaplar 

 

Doğru 

Tahmin 

Hata 
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Hem sınıflandırma hem de regresyon modelleri için ızgara arama çapraz doğrulama 

yöntemi kullanılmadan aynı veri seti ile modellerin başarısı ve hata oranı 

hesaplanmıştır. Şekil 4.2.6.’da sınıflandırma başarıları ve regresyon kök ortalama kare 

hataları gösterilmiştir. 

 

  
 

Şekil 4.2.6. A) Izgara arama çapraz doğrulama olmadan sınıflandırma modelleri 

başarısı. B) Izgara arama çapraz doğrulama olmadan yapılan regresyon modelleri hata 

oranı 

 

 

 

 

 

 

 

 

 

A B 
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5. TARTIŞMA ve SONUÇ 

 

Yapılan testlerden sonra sınıflandırma modellerinden en iyi performansı kuadratik 

çekirdek işlevli DVM modeli göstermiştir (%84.8). Burada ikinci dereceden belirlenen 

bir fonksiyon hiper düzlemi belirlemiştir. Bu model uygulama zamanını kısaltılarak, 

çok fazla tahmin edici ve gözlemci içeren bir veri seti için uygun bir hale gelmiştir.  

 

Regresyon modellerinde ise orta ölçek Gauss çekirdek işlevli regresyon modeli en iyi 

performansı göstermiştir (1.2584 RMSE). Oluşturulan kusursuz regresyon model 

çizgisinin etrafında veriler kabaca simetrik olarak dağılmıştır. 

 

Optimizasyon yöntemi olarak kullanılan ızgara arama çapraz doğrulama yöntemi 

sınıflandırma modelleri için doğruluğu arttırmıştır. Şekil 5.1.’de sınıflandırma modelleri 

için doğrulama yöntemi uygulanmadan ve uygulandıktan sonraki performans verileri 

gösterilmiştir. 

 

 
 

Şekil 5.1. Sınıflandırma modellerinin çapraz doğrulama uygulanmadan ve 

uygulandıktan sonraki başarı performans grafiği 

 



 

 

 

 

 

 

83 

 

Şekil 5.1.’den anlaşılacağı gibi ızgara arama çapraz doğrulama modeli sadece ‘Doğrusal 

DVM’ ve ‘Ağırlık KNN’ modellerinde etki gösterememiş; diğer tüm modellerde, 

modelin başarısını arttırmıştır. 

Sınıflandırma modellerinde DVM’in başarısı, diğer modellerle karşılaştırıldığında 

modelin karmaşıklığı ve öznitelik sayısının fazla olmasıyla ilişkilidir. Çekirdek 

yöntemleri modele esneklik sağlamış ve aşırı uyum riskini azaltırken en yüksek 

doğruluk seviyesine ulaşmıştır. Normalize edilmiş ve farklı katmanlarda bulunan; fakat 

doğrusal bir şekilde ayrılamayan veri setini çekirdek yöntemleriyle başarılı bir şekilde 

ayırmıştır. 

 

Buna karşılık birbirlerine çok yakın değerlere sahip olan öznitelikler KNN tarafından, 

DVM kadar iyi sınıflandırılamamışlardır. Öznitelik sayısı arttıkça noktalar arası mesafe 

KNN daha az anlamlı ve daha az ayırt edici olmuştur. 

 

DVR modellerinin başarısı Şekil 5.2.’de karşılaştırılarak gösterilmiştir. Tüm modeller 

ızgara arama çapraz doğrulama yöntemi DVR için modelin hata oranını düşürmüştür. 

 

 
 

Şekil 5.2. DVR modelinin çapraz doğrulama uygulanmış ve uygulanmamış haldeki hata 

oranları 
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Doğrusal regresyon modellerinde ise ızgara arama çapraz doğrulama yöntemi sadece 

etkileşimli doğrusal regresyon modellerinde hata oranını düşürebilmiştir (Şekil 5.3). 

Diğer regresyon modellerinde ise çapraz doğrulama yöntemi uygulandıktan sonra hata 

oranları yükselmiştir.  

 

 
 

Şekil 5.3. Doğrusal regresyon modellerinde çapraz doğrulama yöntemi uygulanmış ve 

uygulanmamış haldeki hata oranları 

 

Sonuçlara göre sınıflandırma modellerinde DVM ve regresyon modellerinde DVR 

sırasıyla en yüksek doğruluk oranı ve en düşük hata oranı sağlayarak, tercih sebebi 

olmuşlardır. 

 

Bu tez çalışmasında kişilerin cinsiyet ve yaş sınıflandırması soft biyometrik veriler 

kullanılarak makine öğrenmesi yöntemleri ile yapılmıştır. Yapılan çalışma literatürde 

eşsiz ve soft biyometrik verilerin birlikte kullanıldığı çalışmalara alternatif biyoelektrik 

empedans ve soft biyometrik verilerin birlikte kullanıldığı özgün değere sahip bir 

çalışmadır.  
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Yapılan bu sınıflandırma ile oluşturulacak profil, kayıtlı kullanıcılar ile karşılaştırılarak 

kimlik doğrulama için kullanılabilir. Ayrıca belirlenen yaş aralığına göre cihazın 

kullanımı engellenebilir ya da kullanıcının bazı uygulamalara erişimine kısıtlama 

getirilebilir. Bu çalışma kişilerin cihaz kullanımlarında düşük güvenlikli kimlik 

doğrulama için eşsiz biyometrik verilerini paylaşma gerekliliğinin de soft biyometrik ve 

empedans veriler kullanarak ortadan kaldırılabileceğini göstermektedir. Aynı zamanda 

kişiye özgü eşsiz biyometrik verilerin ele geçirilmesi durumunda, ek güvenlik faktörü 

olarak bu verilerin kullanılabileceği görülmüştür. 
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