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Giinlimiiz diinyasinda, simiilasyon teknolojisi olduk¢a gelismis olup ayn1 zamanda yiik-
sek giivenilirlik saglayan, ancak fazla zaman alan bir teknolojidir. Vekil model tabanl
optimizasyon (ing. surrogate-based optimization), bir optimizasyon siireci i¢in vekil mo-
del (ing. meta-model) gelistirir. Etkin sonuglar veren bu meta modeller yardimiyla ¢esitli
optimizasyon yontemleri zamanla gelistirilmistir. Bir vekil model, benzetimlerin mate-
matiksel modelinin olugturulmasini saglamaktadir. Bu sayede sayisal bir analiz bigimi
olarak meta modeller, matematiksel bir denkleme ihtiya¢ olmaksizin miihendislik sis-
temlerini optimize etmenin pratik bir yolu olmuglardir. Bu tez ¢alismasinda temel mo-
tivasyon, parametrelendirilmis kanat geometrisinin analiz ¢iktilarini, vekil model yardi-
miyla gelistirilen algoritmaya entegre ederek cok disiplinli bir optimizasyon metodu ge-
listirmektir. Bu ¢alismada baslangic tasarimi asamasinda olan kanat modelinin, aerodi-
namik performansini yiikseltme kosuluyla, frekans kisitlamalarimi dikkate alirken kiitle
minimizasyonuna odaklanarak sonlu elemanlar modeli ile uyumlu sonuglar elde edil-
mistir. Veri toplama metodu olarak adaptif veri toplama yontemi olan i¢ dolgulu nu-
mune kriteri kullanilmigtir. Kesin olarak en iyi adaylar olmasa da, klasik optimizasyon
metodlarindan olan sirali karesel programlama metodu ile kiyaslandiginda umut verici
sonuglar elde edilmistir. Bu baglamda, optimizasyon yonteminin efektifligi, geleneksel
veri toplama yontemini kullanarak sirasiyla yapilan; sirali karesel programlama ile vekil
model tabanli optimizasyon sonuglarinin karsilastirilmasiyla gosterilmistir. Bu kargilas-
tirma, ¢ok sayida de8iskene sahip modeller i¢in adaptif veri toplama yonteminin daha
uygun oldugunu ortaya koymustur. Verimli bulunan bu yaklagimla optimum tasarim de-
giskenleri ile optimum optimum kanat geometrisi olusturulmustur. Eniyilenmis tasari-
min kiitlesinde %14,2 diisiis meydana geldigi goriilmiistiir. Optimum kanat tasarimi adi

altinda aerodinamik ve yapisal acidan analizlere tabi tutularak elde edilen sonuglarla,



baglangi¢ tasarimina ait aerodinamik ve yapisal analiz sonuglar1 kiyaslanmistir. Aero-
dinamik acidan performans kriterlerinin yiiksek, giivenilir hafif bir yapisal elde edildigi

gorilmiistiir.

Anahtar Kelimeler: Ucak kanadi, Cok disiplinli optimizasyon, Vekil model tabanli op-

timizasyon , Agirlik minimizasyonu, Adaptif veri toplama.
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ABSTRACT
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In the contemporary era, the reliability of simulation technology is high, but often time-
consuming. This poses a challenge in studies with limited schedule, where long simu-
lation durations become a serious issue. Surrogate-based optimization (SBO) enhances
a meta-model within an optimization framework, estimating objective and constraint
functions by strategically placing various design experiment points. Over the past two
decades, optimization techniques have evolved to reach optimal results. For achieving
the most effective solutions, the meta-model is refined with a sufficient number of de-
sign experiment samples. A surrogate model improves to derive a mathematical repre-
sentation of simulations. As an analytical tool, the meta-model serves as an effective
means for optimizing structural components. SBO offers a potential approach to optimi-
zing a range of simulation data, simulations in engineering. This study expands a CFD
setup into a 3D wing model, incorporating a realistic structural model. Aerodynamic de-
sign parameters are identified through literature review. Following the CFD analysis, the
pressure distribution of the defined a wing is integrated into the structural finite element
model, with initial results being assessed. The study then successfully validates the op-
timization algorithm using a speed reducer test case. It is applied surrogate-based model
in tandem with a parameterized geometry, focusing on mass optimization while adhe-
ring to frequency and lift to drag ratio, and lift force constraints. The effectiveness of
this optimization method is further corroborated by comparing it with one of established

optimization techniques.

Keywords: Aircraft wing, Multi-disciplinary optimization, Surrogate-based optimiza-

tion, Weight minimization, Adaptive sampling.
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Bu calismada kullanilmis olan simgeler aciklamalari ile birlikte agagida sunulmustur.

Simgeler

f ext

GMaxM

~ %2 T R A QMO

SEMBOL LISTESI
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1. GIRIS

Havacilik sistemleri, teknolojinin genislemesiyle karmasik ve biiyiik birer sistemler bii-
tiinii olmaya baglamistir. Bu sistemlerin tasarimi son derece karmasik miithendislik prob-
lemi olmasindan kaynakli, zamanla bu sistemler ayr1 ayri disiplinlere boliinmiistiir. Bii-
tiinii sadece tek bir parca olarak kabul edip tizerinde yogunlasip eniyileme ¢alismalarini
gerceklestirmenin, daha karmagik sistemleri tasarlamanin kolaylastirilmig bir adimi ol-

dugu zamanla goriilmiistiir.

Giintimiizde bilgisayar teknolojilerindeki ilerlemelere ragmen, bazi hesaplama problem-
lerinin hala oldukca zor ¢6ziildiigii ve maliyetli oldugu bir gercektir. Hesaplamasi pahali
analiz programlarinin uygun kullanilabilir metamodeller ile degistirilmesi optimizasyon
stirecini biiyiik 6l¢iide hizlandirmaktadir. Bu yaklagimlarin tek veya ¢ok disiplinli opti-
mizasyon problemlerine uygulanmastyla ilgili aragtirmalara ve uygulamalara literatiirde
siklikla yer verilmektedir. Ornegin, Giunta hem polinom modellerini hem de Kriging’i
kullanarak yiiksek hizli sivil tasima aracinin tasariminin optimizasyonuna uygulamistir
[1]. Kriging metamodelleri, genetik algoritmalarla birlestirilerek, Kanazaki ve arkadas-
lar1 ve Kumano ve arkadaglarinin [2, 3] ¢alismalarinda oldugu gibi, ¢ok amagli ve ¢ok

disiplinli optimizasyon problemlerinin ¢oziimiinde de kullanilmusgtir.

Son yillarda gerek tasarim miihendisleri gerekse analiz miihendisleri artik nihai tasa-
rimlari, yiiksek performans gereksinimlerini saglayan hafif en iyi tasarimlar olarak ha-
yata gecirmek istemektedirler. Bu baglamda tasarim eniyileme ¢alismalarinin en 6nemli
amaclarnin bagsinda gelen agirlik eniyileme ¢alismalar1 giin gectikce yayginlasmakta-
dir. Bunun yaninda giivenirlilik faktoriiniin yiiksek derecede 6nemli oldugu havacilik
alaninda dayanimi yiiksek, hafif yapisal tasarimlarin farkl disiplinlerle olan etkilesim-
leri incelenerek elde edilecek eniyilenmis tasarimin verimliliginin 6nemi giderek daha
iyi anlagilmaktadir. Ozellikle, ucak tasariminda aerodinamik agidan kritik bir konumda
olan kanat modellerinin optimizasyonu 6nemli bir hale gelmistir. Cok disiplinli eniyi-

leme tasarim siireclerine gecilmesi i¢cin bu yonde faaliyetler baglatilmis durumdadir.

Sonlu elemanlar yontemi ile bilgisayar destekli niimerik araglar, ugak yapisallarinin ma-
ruz kaldig: yiikiin olusturdugu deplasmani ve bunun yaninda karsilastigi mod frekans-
larini, etkin sekilde anlayabilmeye olanak saglamaktadir. Dolayisiyla, test ortaminin ge-
tirecegi uzun ve maliyetli tasarim siirecleri indirgenmektedir. Bu tez kapsaminda ge-
listirilen analiz modellerinin elde edilmesi, Altair grubuna ait Hyperworks-Optistruct
programu kullanilarak yapilmigtir. Optimizasyonun iterasyon dongiisiinde, akis ¢oziim-

leri icin ANSYS-Fluent ve yapisal analizler icin ANSYS Mechanical tercih edilmistir.



1.1 Tezin Amaci

Cok disiplinli optimizasyon mimarilerinin tercih edilmesiyle is giicii ve maliyet agisin-
dan 6nemli bir yol katedilmistir. Bu baglamda, ¢ok disiplinli bir eniyileme ¢aligmasinin
tercih edilmesindeki temel motivasyon, bir geometrinin baglangic tasarimini vekil mo-
del tabanli ¢ok disiplinli eniyileme metodunu kullanarak verimli bir sekilde tasarlayabil-
mektir. Boylelikle, disiplinler aras1 optimizasyonlardaki tekrar eden tasarim siirecleri ih-
tiyacini azaltarak verimli bir tasarim siireci yonetimi saglanmis olur. Bu tez kapsaminda
anlatilan eniyileme calismasinin temel amaci, bir sabit kanat hava aracinin seyir ha-
linde maruz kaldig1 aerodinamik yiikler altindayken kanadin, vekil modeller yardimiyla
cok disiplinli uygulanabilir (ing. multidisciplinary feasible (MDF)) mimariye sahip, tek
yonlii akis etkilesiminde, ¢ok disiplinli optimizasyonunu gerceklestirmektir. Ote yandan
bu calisma ile gelistirilen veri toplama algoritmasi sayesinde adaptif orneklem yontemi
ile optimizasyon sonucunun verimliligini ortaya koymak da hedeflerin arasindadir. Bu
kapsamda, gelistirilen algoritma ile elde edilen sonuglar incelenerek elde edilen opti-
mum tasarimin yapisal ve aerodinamik performans ciktilar: ile tasarimin performansi

ortaya konacaktir.

1.2 Tezin Icerigi

Tez caligmast kapsaminda, oncelikle giris boliimii ele alinmigstir. Bu boliimde tezin amact
ve tezin igerigi anlatilmgtir. Ikinci boliim olan literatiir taramasinda, ucak kanadi ta-
sarimlarinin incelenmesi, yapisal eniyileme, aerodinamik tasarim eniyilemesi, ¢ok di-
siplinli optimizasyon, vekil model tabanli optimizasyon calismalar1 ortaya konmustur.
Uciincii boliimle analiz calismalar1 kapsaminda, kanat tasariminin belirlenmesi, aerodi-
namik analiz yonteminin dogrulanmasi, hesaplamali akigkanlar dinamigi eleman hassa-
siyeti ¢calismasi, referans aerodinamik analiz, yapisal analiz yonteminin dogrulanmasi,
yapisal modelin eleman hassasiyeti ¢alismasi, kanadin baglangi¢ tasariminin belirlen-
mesi, referans dogrusal statik analizi, referans titresim analizi asamalarindan olugmak-
tadir. Dordiincii boliimle, vekil model tabanli eniyilemenin dogrulanmasi, vekil model
tabanl ¢ok disiplinli eniyileme, modelin tasarim degiskenlerinin tanimlanmasi, latin hi-
perkiip ile veri 6rnekleme, hiper parametre optimizasyonu, vekil model tabanli ¢ok di-
siplinli eniyileme sonuclari, optimum tasarimin aerodinamik ve yapisal analiz caligma-
lar1 ortaya konmustur. Son boliim olan sonug ve Oneriler kisminda yapilan bu calisma

degerlendirilmis olup gelecekte calisilabilecek konulara atifta bulunulmustur.



2. LITERATUR ARASTIRMASI

Ortaya ¢ikarilan bu ¢caligmada baglangi¢ tasariminin belirlenmesinden, eniyilenmis tasa-
rim verileri ile giincellenen optimum kanat tasarimina ait analiz sonuglarinin elde edil-
mesine kadar gecen tiim bu tasarim siirecinde bagvurulan her metod ve yaklasima ait

literatiir arastirmalar1 bu boliimde incelenmistir.

2.1 Ucak Kanad1 Yapisal Tasarim

Kanat konfigiirasyonlari, tekli kanat ve coklu kanat konfigiirasyonlar: olarak temelde iki

kategoriye ayrilir. Bunlar tekli kanat tasarimi ve ¢oklu kanat tasarimidir.

2.1.1 Tekli kanat tasarimi

Bu kategoriye ait kanat tasartmlar1 bu boliimde siralanmigtir. Bunlar, alttan kanatl ugak
tasarimi, ortadan kanatl ucak tasarimi, omuzdan kanatl ucak kanat tasarimi, tistten ka-
natlt ugcak kanat tasarimi, parasol (semsiye) kanatli ugak tasarimidir. Tekli kanat konfi-

giirasyonlarinin gorselleri Sekil 2.1°de gosterilmistir:

' ' -
U [ 1 I ]

Ustten Kanath Ucak Ortadan Kanath Ucak
(High Wing Plane) (Mid Wing Plane)
. . @
Alttan Kanath Ugak Parasol Kanath Ucgak
(Low Wing Plane) (Parasol Wing Plane)

Sekil 2.1: Tekli kanat tasarimlari [4].

2.1.2 Coklu kanat tasarimi

Bu kategoriye ait kanat tasarimlar1 bu boliimde siralanmigtir. Bunlar, ¢ift kanath ugak
tasarimi, asimetrik aciklikli ¢ift kanath ugak tasarimi, bir-buguk kanatl ugak tasarimu,
ters bir-bucuk kanatli ucak tasarim, Busemann ¢ift kanatli ucak tasarimidir. Temel olarak

siklikla kullanilan ¢coklu kanat konfigiirasyonlarinin gorselleri Sekil 2.2°de gosterilmistir.
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Tekli Kanat Cift Kanat {7¢ Kanat
(Monoplane) (Biplane) (Triplane)

Sekil 2.2: Coklu kanat tasarimlart [5].

Basamak kanat konfigiirasyonlarinin gorselleri Sekil 2.3’te gosterilmistir. Kanat tasa-
rimlarinin eniyileme islemi gerceklestirilmeden once belirlenmesi gereken kanat aded;,
dikey konumu i¢in ise tasarim parametreleri bulunmaktadir. Belirlenmesi gerekenler Se-
kil 2.4’te siralanmistir. Secimler tamamlandiktan sonra yeterli sartlar1 sagladig1 noktada

parca eniyilenebilir parca halini almaktadir.

Kademesiz Cift Kanath fleriye Kademeli Cift Kanath Gerive Kademeli Cift Kanath
(Unstaggered Biplane) (Forwards Staggered Biplane) (Backwards Staggered Biplane)

Sekil 2.3: Kademeli kanat tasarimlari [5].

L2 S S S

| Kanat sayisini seg |~—
]!

| Dusey kanat konumunu seg |

1l
Yiksek kaldirma kuvvetli
tasanm konfiglirasyonunu sec

Ok (sweep) ve iki duzlemli (dihedral) D
agisinin dederlerini belirle/seg

| |

| Kanat profil kesitini tasarla/seg |

| Diger kanat parametrelerini se¢c (AR 7. 1., @) |
Kaldirma, surikleme ve yunuslama
momentini hesapla

— Gereksinimler saglandi mi? P—

T Hayir
l Evet

| Hesapla : MAC.C,.C, ‘

Sekil 2.4: Kanat tasarim siireci [6].



2.1.3 Kanat kesiti cesitleri

Genellikle NACA tiplerinden olusan bir¢ok kanat kesiti (ing. airfoil) tiirleri bulunmak-
tadir. Her ucagin kendi isterlerini kargilayan farkli tasarimlar mevcuttur. Tasarim pa-
rametreleri cesitli hesaplamalardan gecerek hesaplanir. Tasarim miihendisi, belirli bir
katologa bagl kalmak zorunda degildir. Ugus kosullarin1 saglayan, aerodinamik hesap-
lamalar sonucunda tagima kriterlerine uygun bir kanat kesiti kullanilabilir. Kanat kesitii
secim kriterleri su sekilde siralanabilir: en diisiik siirtiinme katsayisina, en yiiksek kal-
dirma ve siiriikleme oranina, en yiiksek kaldirma egrisi egimine sahip, en diisiik yunus-
lama momentine sahip durma boélgesinde uygun durak kalitesine sahip, yapisal olarak
giiclendirilebilir, ince bir profile sahip , sistem yerlesim kriterlerine uygun iiretilebilir ve
diisiik maliyette olmas1 beklenmektedir [4]. Tiim tasarimlara bu beklenti dogrultusunda

olusturulmalidir.

2.2 Yapisal Eniyileme

Eniyileme, belirli kisitlamalar altinda bir probleme ait amag¢ fonksiyonunun en iyi ¢6-
ziimiinii arama siirecidir. Tasarim degiskenleri belirli sinir kogullar altinda ayarlanir ve
bir ama¢ fonksiyonu enkiiciiklenir veya enbiiyiiklenir. Eniyileme problemlerinde tasa-
rim degiskenleri, geometrik 6zellikler veya malzeme 6zellikleri seklinde olabilir. Amag
fonksiyonu, sistemin optimizasyonu i¢in se¢ilen yanitidir. Bu amag¢ fonksiyonunun en-

kiigciiklenmesi veya enbiiyiiklenmesi, belirlenmis tasarim sinirlamalarina baglidir [7].

Yapisal eniyileme, belirli kriterleri karsilayan giivenilir bir yapinin, en hafif tasarimin
belirleme siirecidir. Bu inceleme siirecinde belirli kisitlar kullanilarak tasarim i¢in kri-
tik noktalar belirlenir. Tasarimi etkileyen onemli tasarim degiskenleri istenen yapisal
performansi elde etmek icin eniyilenir. Dayaniklilig1 en iist seviyeye ¢ikarmak, agirligi
en aza indirmek veya maliyeti diisiirmek i¢in eniyileme siireci tamamlanir. Bu tasarim
sireci genellikle, ¢esitli tasarim senaryolarini ve nihai sonuglarini kesfetmek icin kar-
magik matematiksel modelleme ve hesaplama tekniklerini icerir. Yapisal eniyileme i¢in
farkli yontemler ve yaklasimlar, malzeme 6zellikleri, yapisal yiikler ve geometrik model
kaynakli kisitlamalar dikkate alinarak ele alinir. Yapisal eniyileme ¢aligmalarinin amaci,
agirligi veya maliyeti en aza indirmek, bunun yanisira dayaniklilik gereksinimlerini veya

iiretim kabiliyetlerini gozeterek yeni bir tasarim ortaya koymaktir.

2.2.1 Amac fonksiyonu

Tasarimlart siniflandirmak amaciyla kullanilan bir fonksiyondur. Genelde yapisal ca-

lismalarda fonksiyonu kiiciik bir degerden daha iyi olacak sekilde hedeflenir. "f(x)"

5



fonksiyonu siklikla agirligi, belirli bir yondeki yer degistirmeyi, gerilimi veya iiretim

maliyetini 6l¢cer. Buna bagli olan tasarim degiskenleri ile yonetilir.

2.2.2 Tasarim degiskeni

Tasarimi tanimlayan ve eniyileme sirasinda degistirilerek sonuclarin elde edilmesini
saglayan parametrelerdir. Bu ’x’ parametreleri geometrik modele ait parametreler veya

malzeme secimi ile ilgili tasarim degiskenleri olabilmektedir.

2.2.3 Sistem cevabi

Belirli bir tasarim i¢in yapisal modelin tepkisini temsil eden parametredir.’y’ ile adlan-
dirilan bu sistem ¢iktilari, mekanik disiplini i¢in sistem cevabi, yer degistirme, gerilme,
gerinim veya kuvvet anlamina gelmektedir. Yapisal eniyileme Denklem 2.1 ile ele alinir:

Eniyile: f(x,y), degisken x ve y ye gore

Yapisal Optimizasyon { (2.1)

Oyle ki: kisitlar x ve y degerlerine baghdir
Optimizasyon problemini temel bir matematiksel ifade yardimiyla Denklem 2.2’de ol-

dugu gibi yazilmaktadir:

Bul X
Enkiigiikle £ (%, u(%))
Oyleki g(¥,u(¥)) <0 (&2)

h(¥,u(X)) =0

Bu formiilasyon, sayisal yontemler i¢in baglangi¢ noktasini da i¢inde barindiran bir ifa-
dedir. Tasarim degiskeni "X " ile ifade edilmektedir. Burada tasarim probleminin egit-
sizlik kisitlamalar1 ”g(X, )", esitlik kisitlar1 A (X, )", amag fonksiyonunu ise " f(X, )"
seklinde ifade edilmektedir.

Yapisal optimizasyonda ilk analitik calismalar, Maxwell ve Michell’in 1869’daki ¢alis-
malarina kadar dayanmaktadir[8]. Kafes yapilarinin agirliklarina iligkin teorik alt limit-
ler bu donemde ortaya konmustur. Bu temel ¢alismalarin zamanla gelistirilmesi ile, ya-
p1sal optimizasyon ve tasarim siirecine katki saglayacak onemli yaklasimlar ortaya kon-
mustur. 1960’1arda optimizasyon alanindaki ilerlemeler, hafif yapilarin olusturulmasina

ragbet gosterilmesi ile beraber yapisal tasarimi 6nemli dlciide ilerletmistir. Ayrica dijital
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bilgisayarlarin ortaya ¢ikist ile ilerlemelerde artis saglanmigtir ve Schmit’in 1960’ta ya-
yinladig1 doniim noktasi niteligindeki makalesinde [9], bilgisayar tabanli tasarimin ola-
Saniistii bir doneminin bagladig: ifade edilmistir. Bu donemde dogrusal olmayan prog-
ramlama tekniklerinin kullanilmasi, gerilme dayanimina bagh tasarim yaklasimindan

daha gelismis bir yaklagima gecis yapilmasina olanak tanimugtir.

Giiniimiizde ise yapisal optimizasyon, dogrusal olmayan algoritmalarla, ¢esitli metod-
larin birlestirilmesi yoluyla biiyiik ilerlemeler kaydetmistir. Miihendislik tasarimlarinm
eniyilemek, gelisen teknoloji altyapisindaki ilerlemelere ragmen gelistirilen yontemleri
kullanarak bilgisayar ortaminda ¢6ziim getirmek maliyetli ve karmasik bir siireci bera-

berinde getirmektedir [10].

2.2.4 Yapisal eniyileme problemleri

Yapisal eniyileme problemleri ii¢ sinifa ayrilir. Bunlar boyut, sekil ve topoloji optimi-
zasyonudur. Boyut optimizasyonunda tasarim degiskeni, yapisal tasarimin kalinlig1 gibi
geometrik 6zelligi olarak ele alinir; ornegin, bu tasarim degiskenleri kafes yapilarinin
kesit alanlar1 veya bir levhanin kalinlik dagilimi olabilmektedir. Bir kafes yapisi icin

boyutlandirma optimizasyonu problemi Sekil 2.5 ile gosterilmisgtir.

2.2.5 Sekil optimizasyonu

Bu optimizasyon tiirlinde tasarim degiskeni, yapisal alanin sinirlarindan bir kisminin
formunu veya konturunu temsil etmektedir. Sekil optimizasyonu ile yap1 baglanti nok-
talar1 degismeden bir eniyileme siireci gerceklestirilebilmektedir. Ornegin, iki boyutlu
bir sekil optimizasyonu Sekil 2.5’de oldugu gibi hafifletme deliklerinin sekillerini belir-
lemede gerceklestirilebilmektedir.

— AN
Heooooo] m
S BYavava

Sekil 2.5: a) Boyut optimizasyonu b) Sekil optimizasyonu c) Topoloji
optimizasyonu [11].




2.2.6 Topoloji optimizasyonu

Yapisal optimizasyonunun en genel formudur. Sonlu elemanlar modelinde elemanlarin
yogunlugu gozetilerek gerceklestirilen bir eniyileme ¢esididir. Kafes yapis1 6rnegi dii-
stiniildiigiinde digiim baglantilar1 tasarim degiskeni olur ve kafesin topolojisi degisir.
Sekil 2.5°de bunun 6rnegi goriilmektedir. Bir eniyileme probleminin diferansiyel denk-
lem oldugu farz edildiginde, sekil optimizasyonunun denklemin alanim kontrol ettigi,
boyutlandirma ve topoloji optimizasyonunun ise problemin parametrelerini kontrol et-

tigi soylenebilmektedir [12].

Topoloji optimizasyonu, miithendislik ¢alismalarinda en iyi yapisal degerlere sahip ta-
sarimlar elde edebilmek i¢in, belirlenmig bir tasarim alani igerisine malzemeyi konum-
landirma ile ugragsmaktadir [13]. Bir amag¢ fonksiyonu olan F fonksiyonunu minimize
eden malzeme dagilimi bulunur. G hacim kisitlamalarini ifade eder. M kisitlandigi nokta
olarak belirlenir. Kisitlara tabi tutularak degerlendirilir. Tasarim iizerinde malzeme dagi-
lim1, tasarim alanindaki herhangi bir noktada 0 (bosluk) veya 1 (kati malzeme) degerini
alabilen yogunluk degiskeni p(x) ile tamimlanir. Bir topoloji optimizasyonu problemi

matematiksel formda Denklem 2.3’te belirtildigi gibi yazilir:

Bul p
Enkiigikle F(u(p).p) = X [ f(u(po).p))av
n=1 i
Oyle ki Go(p) =) vipi—Vo <0 (2.3)

pi=0yadal, B=1,....N

Burada, sistem cevabi olan u (yer degistirme), amag¢ fonksiyonu dogrusal veya dogru-
sal olmayan bir durum denklemini olusturmaktadir. Amag fonksiyonu, gerilme enerjisi
yogunlugu gibi, yerel(ing. local) bir fonksiyon f(u(p),p) iizerinden integral alinarak
hesaplanir. Denklem 2.3’ te oldugu gibi yogunluk degerleri goz Oniinde bulundurul-
dugunda, topoloji optimizasyonu problemi genellikle alan1 biiyiik bir sayida sonlu ele-
mana boler ve yogunluk dagilimini1 N adet elemanla tanimlamay: ifade eder [14]. To-
poloji optimizasyonu bu tez ¢alismasinda yapisal analiz ¢oziiciisii ve eniyileme araci
olarak kullanilan OptiStruct programi ile, izotropik malzeme katiligini indirgeme yak-
lasimi(ing.Solid Isotropic Material with Penalization (ing. SIMP) baz alimarak kulla-
nilmistir. Bu yontem, her elemanin malzeme direngenligini, yogunluguna bagl olarak

enterpole eder ve ayni zamanda ara yogunluklar1 yoketmek i¢in nihai tasarimda net ola-
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rak bir veya sifir (yani bosluk veya kat1 anlaminda) malzeme dagilimim tesvik etmek
icin kullanilan bir indirgeme faktdrii kullanarak hesaplamaktadir. Bir elemanin malzeme
ozellikleri, yogunlugun bir fonksiyonu olarak ve genelde birden biiyiik bir indirgeme

uissii ile modellenir [11].

Bu tez calismasinda topoloji optimizasyonu, sifirdan tasarlanan kanat tasarimini olustu-
rabilmek adina kanadin i¢ yapisallarinin yerlesimini belirlemek amaciyla kullanilmistir.
Malzeme yogunlugunun ¢ok oldugu bolgelere konumlandirilmis kaburga, kiris ve yii-
zey yapisal tasarimi ile baslangic tasarimi ortaya konmustur. Altair grubunun yapisal
¢Oziiciisii olan OptiStruct programinda kullanilan ve genel olarak yapisal eniyileme ala-
ninda topoloji optimizasyonunun matematiksel formiilasyonu asagidaki gibi genel bir
formda temsil edilir. Bu formiilasyon, bu temel formu cesitli amag¢ fonksiyonu, kisit ve
tasarim degiskenleri degistirebilir. Bir amag fonksiyonu ile malzeme yogunlugu F(p)
en aza indirilir veya en iist seviyeye ¢ikarilir, buna ornek olarak yapisal sekilde degis-
tirme enerjisi (ing. compliance) azaltilmasi veya malzeme direngenliginin arttirilmasi

verilebilir. Denklem 2.4 ile bu amag fonksiyonu gosterilmistir.

F(p)= f(u,p) (2.4)

Miihendislikte eniyileme yOntemi esitsizlik kisitlar1 sonlu elemanlar yontemi ile yiirii-
tiiliir. Denklem 2.5 ile bu ifade edilmistir. Denklem 2.5’te yer alan, K(p), tasarim de-
giskenine yani malzeme yogunluguna bagh kiiresel katilik matrisidir. u yer degistirme

vektorii ve fex¢ dis yiik vektoriidiir.

K(p)-u= fext (2.5)

Hacim kisitlamasi veya kiitle kisitlamasi asagida yer alan Denklem 2.6 ile ifade edilir:

N Ve
g<p>=2< Pe ) —V* <0 (2.6)
e=1

p max

Denklem 2.6 ile gosterilen N, toplam sonlu eleman sayisi, p, elemaninin yogunlugu,
Pmax Maksimum izin verilen yogunluk, v,, ¢ elemaninin hacmi ve V* malzemenin top-
lam hacmi veya kiitlesidir. Her tasarim degiskeni i¢in yogunluk sinirlar1 her nokta veya
elemanda malzeme yogunlug ifade edilir. Denklem 2.7 ile p;,i,, her elemanin malze-
menin kopma dayanimi altina diismemesi i¢in gereken minimum direngenligi saglamak

icin olugturulan pozitif bir degeri ifade etmektedir.



0< Pmin S Pe < 1 (27)

Izotropik malzeme katiligim indirgeme yaklasimi enterpolasyonu icin kullanilan Denk-

lem 2.8 ile malzeme 06zellikleri, 6zellikle katilik kullanilarak enterpole edilir.

E(p.) = p! - Eo 2.8)

Bu genel matematiksel formda E(p,), E elemaninin Young modiilii, p,, elemaninin
yogunlugu, p yukarida bahsi gecen indirgeme faktorii, ve Ey katt malzemenin Young
modiiliidiir. Topoloji optimizasyonu, F(p) amag fonksiyonunu minimize etmek (veya
maksimize etmek) i¢in tiim elemanlarin yogunluklarini (p,) birbirleri icinde dengele-
meyi amaglar, denge ve hacim kisitlamalarimi karsilarken ve yogunluklarin belirli sinir-
lar icinde kalmasini saglarken. SIMP metodu, ¢coziimlerin bogluk ya da kat1 malzemeyi
temsil eden 0-1 eleman yogunlugu dagilimina yakinsamasini tesvik eder, optimize edil-

mis tasarimlarin iiretilebilir yapilar olarak yorumlanmasini kolaylastirir [15].

Yapisal optimizasyon calismalari makalelerde [16—18], gecen eniyileme Ornekleri ve

onemli noktalar1 asagidaki Cizelge 2.1 ile gosterilmistir.

Cizelge 2.1: Yapisal eniyileme Ornekleri.

Yazar Amag Tasarim | Kisitlar Sinir Kosul- | Program
Fonksi- | Degis- lar
yonu keni

Sayisi

Freire | Kanat 7 Kanat ucu yer de- | D1s geometri | MATLAB,

[16] agirligy gistirmesi, donme | sabit ADiMat
minimi- acisi, eksenel ge-
zasyonu rilme

Saroji | Kanat 16 Kose noktalarin- | Dis geometri | XDSM,

[17] agirhigi daki eksenel geri- | sabit RADE,
minimi- lim, orta noktalar- VAB, MAT-
zasyonu daki von-Misses LAB,CasADi,

gerilimi Nastran-AVL

Cakar Kanat 53 Maksimum Di1s geometri | XDSM,

[18] agirhig gerilme, ve karar- | sabit RADE, IML,
minimi- sizlik (panel veya CasADi, VAB
zasyonu siitun burkulma) MATLAB,

ADiMat,
Nastran-AVL

Analiz sonuglarina dayali sertifikasyon kosullarin1 yerine getirebilmek icin tasarimci-

nin, hava aracinin yapisal olarak gorev profili boyunca giivenli oldugunu gostermesi
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gerekmektedir. Bunun i¢in, dig geometrinin gorev profiline gore belirlenen yiiklemeler
altinda i¢ yapinin nasil konfigiire edildigi, bu konfigiirasyonun mevcut gorev profilinde
hangi yiiklere maruz kaldig1 hata kriterlerini ve toleranslar1 saglayacak sekilde belir-
lenmesi gerekmektedir. Eniyileme c¢alismalar1 hava aracinin saglanan aerodinamik ve
yapisal performans degerlerini iyilestirerek en hafif ve dayanikli yapinin elde edilmesi

amaciyla yapilir.

Literatiirde bu baglamda yapilan pek ¢ok yapisal tasarim eniyileme ¢alismasi bulun-
maktadir. Bunlardan bazilar1 detaylari ile incelenmistir. Freire’nin ¢alismasinda agirhiin
minimize edilmesi i¢in maliyet fonksiyonu, yedi adet tasarim degiskeninin fonksiyonu
olacak sekilde kanat agirligindan olugsmaktadir. Kisitlar ise kanat ucu yer degistirmesi,
kanat ucu dénme agis1 ve kanatta goriilen azami eksenel gerilme degeridir. Yedi adet
tasarim degiskeni ise: kord uzunlugu, 6n kiris konumu, arka kiris konumu, 6n kiris ka-
linlig1, tist kabuk kalinligi, arka kiris kalinlig1, alt kabuk kalinlig1 seklindedir. Calismada
dis yiizey geometrisi sabit kabul edilerek aerodinamik etkiler ve dolayisi ile yiikiin sabit
kalmasi saglanmistir. Yapisal analiz i¢in sonlu elemanlar yontemi ve sabit kabul edilen
aerodinamik yiiklerin hesabi, yazarin calisma grubuna ait MATLAB yazilimi ile ya-
pilmustir. Automatic differentiation (AD) icin MATLAB ortamu iizerinde olusturulmusg
ara¢ olan ADiMat kullanilmistir. Eniyileme siireci i¢in gradyen hesabi adjoint yontemi

ile gerceklestirilmistir.

Sarojini’nin ¢alismasinda da maliyet fonksiyonu ve eniyileme problemi yapisi temel
olarak ayn1 sekildedir. Kisitlar ise kose noktalarindaki eksenel gerilim, orta noktalardaki
von-Misses gerilimi, flang kayma gerilimi degerlerinden ve ek olarak tasarim degisken-
lerinin alt ve iist limitlerinden olugsmaktadir. Orneklerinden bir tanesinde, kanatta dort
adet kirisin kesitinde alt, iist, sag ve sol tarafindaki kalinliklar olmak iizere toplamda
on alt1 adet tasarim degiskeni icermektedir. Calismada dis yiizey geometrisi sabit ka-
bul edilmistir. Yapisal analiz i¢in XDSM ve Nastran veya AVL, geometri liretimi icin
RADE, automatic differention (AD) i¢in CasADi araglar1 kullanilmistir. Eniyileme sii-
reci i¢in gradyen hesab1 adjoint yontemi ile gerceklestirilmistir. Cakir’in ¢aligmasinda
da maliyet fonksiyonu kanadin agirligindan olusurken, kisitlart maksimum gerilim ve
kararsizlik (panel veya siitun burkulmasi) olarak belirtilmistir. Amac fonksiyonunu elli
ic adet tasarim degiskeni olusturmaktadir. Sonlu elemanlar yontemi i¢in Nastran kul-
lanilirken, eniyileme siireci ise Fortran ilizerinde gelistirilen bir genetik algoritma ile

gerceklestirilmisgtir.

2.3 Aerodinamik Tasarim Optimizasyonu

Hava aracglarinda eniyileme gerceklestirilirken dort temel durumda hesaplamali akis-

kanlar dinamigi analizitHAD) gerceklestirilir. Bunlar: HAD kullanilarak aerodinamik
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acidan verimli bir tasarim konfigiirasyonu tasarimi, optimizasyon araci ile HAD sonug-
lar1 karsilastirimi, ¢ok disiplinli eniyilemeyi kullanarak minimum kalkis agirligr icin
bir tasarim eniyilemesi, ortaya ¢ikan konfigiirasyonun aerodinamiginin HAD sonucu ile

dogrulanip ve iyilestirilmesidir.

Hesaplamali akiskanlar dinamiginin, endiistride yayginlagmasi ile birlikte HAD tabanl
eniyilenmis sekil tasarimlar1 da gelisim gostermistir. Aerodinamik problemler icin ta-
sarim yontemlerinin gelisimi, Lighthill’in haritalama yontemi ile baglamistir. Transonik
akis problemleri i¢in ilk tasarim yontemleri, hodograf yontemine dayanirken, Garabe-
dian ve Korn’un karmasik karakteristikler yontemi ve kurgusal gaz kanat tasarimi (.ing
fictitious gas airfoil design) yontemi gibi ilerlemeler kaydedilmistir. Hicks ve Henne,
transonik kanat kesiti ve kanatlar i¢in dogrudan potansiyel akis ¢oziiciileri ile optimi-
zasyon yOntemlerini birlestirmigtir. Pironneau, eliptik denklemlerle yonetilen sekiller
icin optimal kontrol tekniklerini, Jameson, Reuther ile birlikte kontrol teorisini kullana-
rak transonik ve siipersonik akislarda aerodinamik sekillerin tasarimi i¢in adjoint prob-
lemlerin ¢oziimii tabaninda Euler denklemlerini kullanarak transonik ve supersonikteki
aerodinamik sekillerin gelistirilmesi iizerine caligmistir. Jameson ayrica Martinelli ve
Pierce ile birlikte Navier-Stokes denklemleriyle yonetilen problemleri i¢in de bu yon-
temleri gelistirmistir [19]. Transonik ucaklariin gelisimi bu son yetmis altmis senelik

zaman diliminde bu sekilde 6zetlenebilir.

Hava araclarinin aerodinamik sekil eniyileme tasarim siirecleri yiiksek sayida tasarim
degiskeni gerektirmektedir. Bu da sonlu elemanlar modelinin 6l¢eklenebilirlik konusunu
on plana getirmektedir. Gradyen tabanli olmayan yontemler, gradyen tabanli yontemlere
kiyasla daha az fonksiyon degerlendirmesi gerektirmektedir. Dolayisiyla daha diisiik he-
saplama maliyetine sebep olmaktadir. Gradyen tabanli uygulamalar, gradyen hesabinin
verimliliginin ve dogrulugunun 6nemini 6n plana ¢ikarmaktadir. Gradyen hesaplanmast
noktasinda ise hesaplama ihtiyacina istinaden adjoint yontemi gerektirdigi yiiksek bilgi-
sayar siirelerine ragmen sagladig1 hesap verimliligi sebebi ile tercih edilebilir. Bu nok-
tada ilk uygulamalardan biri Jameson’1n akis denklemlerini kapsayan kismi diferansiyel
denklemler iizerinde varyasyonlar cebiri kullandig1 yaklagimdir. Siirekli yaklagiminin
aksine, ayrik yaklasimlar ise ayriklastirilmis kapsayict denklemlerin dogrusal sistem-
ler elde edilmesi ve bu sistemlerin ¢oziilerek tiirevlerinin eldesi seklindedir. Literatiirde
ayrik yaklagimlarin siirekli yaklasimlara kiyasla daha maliyetli oldugu sonucuna varil-
mustir. Fakat hayata gecirme ve gelistirme kolaylig1 agisindan son zamanlarda goriilen
uygulamalarda ayrik yaklagimlar tercih edilmektedir. Gerekli ayrik adjoint ifadeleri tii-
retmek i¢in “ing. automatic differentiation (AD) “yontemini kullanan, uygulama kolay-
1181 ve hesaplama verimliligi saglayan, yontemler bulunmaktadir [20]. Bu yontemlerin
ADflow [20], OpenFOAM [21, 22], SU2 [23] ve STAMPS [24] gibi akis ¢oziiciilerin-
deki uygulamalar1 da literatiirde mevcuttur. Adjoint tabanli aerodinamik sekil tasarim
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eniyileme uygulamalar1 dogrudan HAD yiizey 6rgii noktalarinin konumlarimi degisti-
rir. Fakat, geometri diizeltme ( ing. geometry refinement) islemi ve orgii diizeltme (ing.
mesh refinement) islemlerinin ayristirtlabilmesi istenir. Geometrinin parametrize edil-
mesi i¢in bilgisayar destekli tasarim (ing. CAD) kullanim1 s6z konusudur. Ge¢miste
sonlu farklar yontemine dayanan, bilgisayar destekli tasarim (ing. Computer Aided De-
sign (CAD)) ile aerodinamik tasarim eniyileme tasarim siire¢lerini birlestirme cabala-
rinin, tiirev hesaplama maliyetini ve dogrulugunu olumsuz etkiledigi goriilmiistiir. Bu
sebeple pek cok arastirmact CAD kullanimindan bagimsiz olarak geometri parametrik-
ligini saglayan, serbest sekil degisimi (ing. free-form deformation (FFD)) [25] ve B eg-
rileri (ing. B-splines) [26] gibi, yaklagimlar1 benimsemistir. Giirbiiz 6rgii sekil degisimi
(ing. robust mesh deformation), sekil tasarimi eniyileme dongiisii, bir sonraki tekrarinda
yiizey tasarimi i¢in, sekil parametrelerinin yeni sekillere ve bu sekiller tizerinde kurulu
orgiilere dontismesini gerektirir. Eniyileme siirecinin bir degere yakinsamasi ve dahasi
uygulanabilir bir degere yakinsamasi i¢in orgii sekil degisiminin de giirbiiz bir sekilde

gerceklesmesi gerektigi bilinmektedir.

Acik kaynak yazilim konusuna gelinecek olursa, literatiirde bu konunun hala giinii-
miizde de yasanilan zorluklar kaynakli gelismeye muhta¢ olduguna vurgu yapildig: go-
riilmektedir. Endiistrinin uygulama konusundaki kisitlamalari, uygulamada yasanilan
zorluk, CFD Vision 2030 calismasinda [19] 6zellikle vurgulanmigtir. Bu kisitlamalara
¢Oziim olabilecek sekilde adjoint yontemini iceren yeni ticari bir yazilim ¢abasi veya
mevcut ticari yazilimlara entegrasyon ¢abasi giiniimiize kadar endiistri igerisinde karsi-
lik bulamamistir ve eniyileme mantig1 cercevesinde gelistirilmemiglerdir. Bu durumun
nadir istisnalarindan agik kaynak akis ¢oziiciisii SU2, ve icerdigi adjoint ¢oziiciisii aero-
dinamik sekil eniyileme yetenegine sahiptir. HAD modellerindeki keyfi olasilik dagi-
limlar ile belirsizliginin sayisallastirilmas: (ing. uncertainty quantification) maliyetli
bir oneri tegkil eder [26]. Eniyileme calismalarinda orgii ( ing. mesh) olusturulmasi-
nin otomatik bir sekilde gergeklestirilmesi tercih edilen metodlardan biri olmaktadir.
Bunun yani sira, dzellikle maliyet ve kisit fonksiyonlarini baz alan bir 6rgii uyumu,
aerodinamik sekil eniyilemesi i¢in oldukga yiiksek bir potansiyel icermektedir [27, 28].
Bu tez calismasinda, sirket icerisindeki uygulama metodlarinin ticari yazilimlar bazh
olmasindan kaynakli, olusturulan kanat kati modeli parametrik bir sekilde CATIA V5
programinda tasarlandiktan sonra Matlab programi yardimiyla HAD coziiciisii olarak
kullanilan ANSYS Fluent programinda alinan ¢éziimlerle aerodinamik optimizasyonu

gerceklestirilmistir.
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2.4 Cok Disiplinli Optimizasyon

Cok disiplinli eniyileme ¢aligmalart karmagik miihendislik sistemlerinin tasarimi ve si-
miilasyonu ile ilgili calismalar1 kapsamaktadir. Cok disiplinli eniyileme ¢aligmalar: kar-
magik miithendislik sistemlerinin birlestirilmis modellerinin niimerik ¢oziimleri ile ilgi-
lenmektedir. Miihendislik sisteminin tiim unsurlar1 goz oniinde bulundurularak disiplin-
ler arasi etkilesimler ile gergeklestirilen niimerik ¢iktilar, glintimiizde 6zellikle havacilik
sektoriinde tasarim ¢alismalarinda kritik konularda karar verirken isleri 6nemli 6lciide
kolaylastirip ayn1 zamanda iyilestirmektedir. Karmagik miihendislik modellerin ¢cogunda
gecerli olmakla birlikte, ayn1 zamanda son yillarda hava araglarini gelistirme siirecinde
de son derece 6nemli bir unsur haline geldigi goriilmektedir. Ustiin bir ugak tasarimia
sahip olmak havacilik ve uzay endiistirisi tarafindan her zamankinden daha fazla deger
gormektedir ve bu nedenle rekabette stratejik bir avantaj saglayabilecek ve ardindan ge-
lecekteki calismalar icin kilit unsurlardan biri olarak sayilmaktadir. Zamanla daha iyi
bir teknoloji entegrasyonu, daha hizli gelistirme siireleri, daha yiiksek kalite ve daha
diisiik maliyetler, giderek daha 6nemli kavramlar haline gelmektedir. Havacilik tasarim-
larinda ozellikle aerodinamik, yapisal, kontrol gibi temel baslica disiplinleri barindir-
maktadir. Sekil 2.6’da goriilecegi iizere bir hava araci tasariminda birbiriyle baglantilar
olan karmasik bir yol haritas1 ortaya konmaktadir. Bu disiplinlerin birbirleriyle dogru-
sal olmayan iligkiler kurmasindan kaynakli, geleneksel ¢oziimlerin yetersizligi gozler

onine serilmektedir.

FuseGM Placard .nmp{‘.ﬂ} [ CDrag I’ic-l‘wrrf.ﬂ;'l;ij
__.-""f

TailGM Loads CGest PDrag ClmaxT TOFL25

WingGM CompW CmdCL 1Drag ClmaxL Climh?2

ngineGM Weight stability Draig Engine Range
Gear Trim ICost Cost

Sekil 2.6: Bir hava araci tasariminda karsilagilan tasarim
problemlerinin birbirleriyle olan baglantilari[29].

Akademi ve endiistride niimerik simiilasyonlarin gelismesiyle beraber, ¢ok disiplinli
eniyileme ¢alismalar1 daha eskilere dayanmasina ragmen, 1990’11 yillarin baslarindan
itibaren bu konudaki ¢alismalarin yaninda kullanilan araclarin cesitliligi ve gelisimi go-
rliniir bir ivme kazanmistir. Bir¢gok yazilim bulunmasina karsin hicbiri tam manasiyla

birlestirilmis sistemlerin verimli bir sekilde ¢6ziimiinii saglayamamaktadir.
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Cok disiplinli eniyileme ¢aligsmalarinin en yaygin uygulamalarindan biri eg zamanl ola-
rak uygulanan aerodinamik ve yapisal disiplinlerin optimizasyonlaridir. Ozellikle ugak
tasarimi i¢in, kanat gibi aerodinamik yiizey iceren yapisal parcalarda oldukca 6nem arz
etmektedir. En verimli ugak tasarimi hedeflendiginde ince bir geometri akla gelmektedir.
Fakat, bu geometri yapisal kriterler de diisiiniildiigiinde beraberinde daha fazla agirlig
getirmektedir. Orta bir yol bulmak adina bir¢ok analizden gegerek sonug¢ eniyilenerek
ciktilar degerlendirilir. Bu alanda yapilan caligmalar belirli bir ¢erceve etrafinda kuru-
ludur. Bu cerceve calisilacak disiplinlerin gerek gereksinimlerini gerekse onceliklen-
dirilmesini de kapsamaktadir [30]. Hava araci tasarim konfigiirasyonlarinda, gercekei
tasarimlar ortaya koymak adina birden fazla disiplinin getirecegi gercek hayatta kar-
stlagilan kisitlar1 dahil etmek gerekmektedir. Kanat tasarimi bir¢ok kisitlarin yaninda
siiriikleme, agirlik, yiiksek kaldirma kuvveti ile 6zellikle etkilenmektedir. Kanat agirlik-
lar1, yap1 saglamligi, egilme ve burkulma dayanimi diisiiniilerek gelistirilmistir. Tagima
yiizeyi (ing. lifting surface) optimizasyon methodu en iyi kanat profillerini arastirarak
kisitlarindan nasil etkilendigini ortaya koyar. Bu method kanat ug sekli, eniyi kanat kon-
figiirasyonlar1 calismalarinda uygulanir [19-20]. Baglangi¢ tasarim ¢aligmalarinda kul-
lanilan eniyilenme methodlar1 tasarimlarin performansinin arttirilmasinda énemli bir rol

oynamaktadir.

Tasarimlarin iyilestirilmesi, sistemlerin gereksinimlerinin saglanmasi amaciyla, birkag
alternatif tasarim denenir ve sabit nokta iterasyonu kullanilir ve bunlar tasarima yansi-
tilir. Tasarimlart deneme amaclt sabit nokta iterasyonu (ing. fixed point iteration(FPI))
kullanilir. En 1yi tasarim seciminde global optimuma ulagildiginin garantisi yoktur. Bir
eniyileme tekni8inin digerine gore daha iistiin oldugunu belirlemek olduk¢a zordur [20].
Eniyileme problemleri kisith ve kisitsiz olarak iki temel boliimde incelenmektedir. Grad-
yan tabanli optimizasyon algoritmalar1 yaygin bir bicimde kullanilmaktadir. Adindan
da anlagilacag iizere gradyan bilgisi gerekmektedir. Dolayisiyla gradyan hesabi gerek-
mektedir ve bu belirli bir hesaplama zamani gerektirmektedir. Optimum degerinin lokal
mi global mi oldugu ilk etapta belirlenememektedir. Giiriiltii olusumu gozlemlenebi-
lir. Lokal algoritmalar elliden fazla tasarim degiskeninin oldugu durumlarda, niimerik
giiriiltiiniin problem olmayacagi durumlarda; global algoritmalar ise elliden az tasarim
degiskeni bulunan problemlerde, niimerik giiriiltiiniin problem olacagi durumlarda ter-
cih edilmektedir. Tecriibeye dayali bir yaklasimla, global algoritmalar verimli bir lokal
arama yonii olmadig1 durumlarda kullanilir [31]. Temel mantikla ¢ok disiplinli eniyi-
lemede tasarim degiskenleri saglayan parametre girdileri doniistiiriilerek analize girdi
saglayan parametrelere doniistiiriiliir. Ardindan analiz c¢iktilart birlesik tasarim degis-
kenlerine doniistiiriiliir. Bu akis semasi en temel gosterim Sekil 2.7 ile gosterilmistir.
Cok disiplinli eniyileme caligmalarinda problemin siniflandirilmasi, maliyet ve zaman

minimizasyonu agisindan onem arz etmektedir.
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Sekil 2.7: Cok disiplinli eniyileme akis semasi [32].

Tiim tekil yaklagimlar, hepsi bir arada ( ing. All-At-Once (AOO) ), es zamanl analiz
ve tasarim (ing. Simultaneous Analysis and Design (SAND)), disiplin bazinda uygula-
nabilirlik (ing. Individual Discipline Feasible (IDF)), calismalar asagida yer alan Sekil
2.8’de oldugu gibi siniflandirilmaktadir. Optimizasyonlar zamanla programlarin gelisti-
rilmesiyle gecmisten giiniimiize iic temel prinsipte ¢alisir hale gelmistir. Oncelikle tek
seviyede eniyileme ve analiz ile problem ¢oziimii gerceklesmistir, ardindan programla-
rin gelisimi ile optimum ¢oziicii ile analiz programi arasinda kurulan bag ile birden ¢ok
disiplinin ayr1 ayr1 her bir disiplinin ¢oziimii ger¢eklesmistir; son olarak giiniimiizdeki
giincel metod ise sistemin optimumunu bulan optimum c¢oziicii ile yapilmaktadir. Alt
disiplinlerin optimumlarini bulan optimum ¢6ziicii ve analizini gergeklestiren program
ile ortak calisma gerceklestirilmektedir. Cok disiplinli eniyileme ¢alismalari, monolitik
cercevede dort temel mimari ile ¢coziimlenir. Bunlar, hepsi bir arada (ing. All-At-Once
(AOOQ)), es zamanli analiz ve tasarim (ing. Simultaneous Analysis and Design (SAND)),
disiplin bazinda uygulanabilirlik ( ing. Individual Discipline Feasible (IDF)), ¢cok disip-
linli uygulanabilir (ing. Multidisciplinary Feasible (MDF)) calismalaridir. Diger mima-
riler bu temel mimarilerin degistirilmis bazi1 6zelliklerini kapsamaktadir. Sekil 2.8 ile bu
mimari siniflandirilmas: goriilmektedir. Cok disiplinli eniyileme ¢alismalarinda mima-

rilerin temel olarak iki kategori altinda farklar1 Cizelge 2.2 ile gosterilmistir.
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Sekil 2.8: Cok disiplinli eniyileme caligmalar1 ¢erceveleri [33].

Cizelge 2.2: Cok disiplinli eniyilemenin tekil ve ¢ok seviyeli

yaklagim farklari.
Tekil Yaklagimlar Cok Seviyeli Yaklagimlar
Entegrasyon | Tiim disiplin analizleri Sistem seviyesi ve disiplin
ve optimizasyonlari tek bir seviyesinde coziilebilecek
probleme birlestirir alt problemlere boler
Karmagiklik | Karmagik ve hesaplamalar yogun | Her alt problem daha az
karmasik, kolay yonetim ve
coziim teknikleri sayesinde
cOziime erigsmede potansiyel
yiiksektir
Koordinasyon | Farkli disiplinlerin Farkl1 seviyeler ve disiplinler
coziiciileri arasinda arasinda koordinasyon trafigi
koordinasyona ihtiyac yoktur, bulunur.Alt seviye disiplin
tiim problemlem optimizasyonlarindan gelen
izerinde calisan cOziimler, {ist seviye sistem
tek bir ¢oziicii bulunur optimizasyonuna ve tersi
yonde beslenmelidir.
Tletisim Birlikte ¢oziildiigii icin cok Seviyeler arasi iletisim
fazla ic iletisimi gerektirir yapilandirilmistir ve
belirlenen noktalarda gerceklesir,
tek blok yaklagimlarinda gereken
stirekli iletisimden farklidur.
Ornekler AAO, SAND, IDF, MDF CO, BLISS-2000, QSD

Cok disiplinli eniyileme mimarilerinin matematiksel ifadelerini anlamak i¢in 6zellikle

tasarim degiskenlerinin nasil ifade edildigini ve bu kavramlarin aciklamalarini anlamak

onemlidir.

Tasarim Degiskenleri: Bunlar tek bir disipline ait veya birden fazla disiplin tarafindan

paylasilan degiskenlerdir. Tasarim degiskenlerinin tam vektorii hem yerel hem de payla-

stlan degiskenleri

icermektedir ve X = [xo X1
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xN] seklinde gosterilir. Burada x;,




i disiplinine 6zgii tasarim degiskenlerini ve xy paylasilan degiskenleri temsil etmektedir.

Durum Degiskenleri (ing. State Variables): Bir disiplin analizinden ¢ikan ¢iktilar du-
rum degiskenleri, amag, kisit fonksiyonlarinin formulasyona bagl olarak optimizasyon
tarafindan kontrol edilmektedir. Bu durum degiskenleri, i disiplini i¢in gosterilir ve op-

timizasyonu dogrudan etkilemektedir.

Paylasilan Veri (ing. Shared Data): Birden fazla disiplin arasinda paylasilan, hem ta-

sarim hem de analiz siireclerini etkileyen degiskenlerdir.

Tasarim Kisitlamalar (ing. Design Constraints): Biiyiik veya kiiciik esitsizlikler ya
da esitlikler ile ifade edilir. Su sekilde temsil edilebilir:

T
CZ[C() ci -+ CN

Analiz Kisitlamalari (ing. Analysis Constraints): Disiplinin analizine 6zgii kisitlama-
lar1 temsil eden, artik (ing. residual) form ile ifade edilir. Disiplin analizi denklemleriyle

somutlastirilmistir ve R; ile gosterilir.

Baglanti1 Degiskenleri (ing. Coupling Constraints): Sistem genelindeki etkilesimleri
modellemek i¢in kurulan disiplinler arasinda baglant1 degiskenleridir. Genellikle, disip-
linler arasi etkilesimler icin 6zellikle ilgili olan durum degiskenlerinin bir alt kiimesidir.

Degisken Kopyalar (ing.Target Variables): Disiplinlerin analizlerini bagimsiz ve pa-
ralel olarak yiiriitebilmesini saglamak amaciyla baglanti degiskenlerinin kopyalari kulla-
nilmaktadir. Bunlar, optimizasyon problemi formiilasyonunda tasarim degiskenleri ola-
rak iglev goriir ve i disiplini tarafindan iiretilen degiskenlerin kopyast i¢in y; ile gosteril-

mektedir.

Tutarhlik Kisitlar (ing. Consistency Constraints): Girdi ve ¢ikti baglanti degisken-
lerinin optimal ¢6ziimde tutarli kalmasim saglar, ¢; = y* — y; olarak formiile edilir ve bu

tutarlilig1 korumak icin optimizasyon problemine eklenir.

Disiplin i Verisi (ing. Discipline i Data ) : Belirli bir disipline 6zgii verileri (degiskenler,
kisitlamalar, amaclar) belirtmede kullanilir, 1 disiplinine 6zgii yerel tasarim degiskenleri,

durum degiskenleri ve o disipline iligkin herhangi bir 6zel kisitlama veya hedefi icerir.

2.4.1 Hepsi bir arada (ing. All-At-Once (AOO))

En temel cok disiplinli eniyileme teknigidir. Genellikle kiiciik tasarim problemleriyle
stnirh kalmistir. Tiim tasarim degiskenleri ve disiplinler tek bir optimizasyon problemi

altinda es zamanl olarak degerlendirilir. Bu yaklasim, disiplinler arasinda ayrim yap-
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maz; tiim amac ve kisit denklemlerini tek bir sistem i¢ine entegre eder ve onlar1 birlikte
cozer. Tiim etkilesimleri ve baglantilar1 dogrudan g6z oniinde bulundurdugu i¢in po-
tansiyel olarak global optimumu bulabilme kabiliyeti yiiksektir. Ozellikle biiyiik 6lcekli
problemler i¢in, ayni anda biiyiik bir denklem setini ¢ozme gereksinimi nedeniyle he-
saplama karmasiklig1 olduk¢a yiiksektir. Asagida matematiksel gosterimi Denklem 2.9
ile verilmigtir:

Bul x,V,9,¥

N

Enkiiciikle  fo(x,y) + Z fi(xo0,xi,¥i)
i=1
Oyle ki co(x,y) >0,
. (2.9)
Ci(x()a-xiuyi) ZO lzl""’N7

ci=yi—yi=0 i=1,...,N,

Ri(x0,%i, ¥4, yi,yi) =0 i=1,...,N.
2.4.2 Es zamanh analiz ve tasarim

Es zamanl1 analiz ve tasarimda (ing. Simultaneous Analysis and Design (SAND))Sistemin
eniyilenmesi islemi, tekil bir eniyileyici ile gerceklestirilir. Kiiciik capli problemlerde
kullanilir. Sistemin esitlik kisitlarinin yaratmis olacagi dezavantajlar1 ¢oziimlemede ba-
sarilidir. Es zamanl analiz ve tasarim asamalarini birbirleriyle entegre eder ve tasarim
degiskenlerini, durum degiskenlerini bilinmeyenler olarak ele alarak optimizasyon prob-
leminin ¢oziimiinii gerceklestirir. Es zamanli analiz, tasarim islemlerini optimizasyon
dongiisii icinde tutar, bu da eszamanli bir ¢oziim siirecine yol agmaktadir. Disiplinler
aras1 baglantiy1 tam olarak yakalar ve karmagik etkilesimleri ele alir. Ote yandan hepsi
bir arada yontemi gibidir, optimizasyon siireci i¢inde yinelemeli analiz gereksinimi ve

biiyiik sayida degisken olmasi nedeniyle hesaplama yogunlugu yiiksek olabilmektedir.

Asagida matematiksel gosterimi Denklem 2.10 ile verilmistir:

Bul X,y
Enkiiciikle  fo(x,y)
Oyle ki co(x,y) >0, (2.10)

Cl'(x()axiayi) ZO = 1,...,N7
Ri(x()?xi?yayi) =0 = 1,...,N.

2.4.3 Disiplin bazinda uygulanabilirlik

Disiplin bazinda uygulanabilirlik (ing. Individual Discipline Feasible (IDF)), Ortakla-

nan degiskenleri ve kisitlar1 minimize etmede basarilidir. Ortaklanan degiskenler sa-
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yesinde degiskenleri baglamadan analiz yapilabilir. Kisit sayilarinin artig1 ile boyutlar
fazla olacagindan dolay1 hassaslik analizi biiyiik boyutlarda olmaktadir. Optimizasyon
problemini ortak paylasilan tasarim degiskenleri seti altinda ayr1 ayr1 optimize edilen,
birbirinden bagimsiz disipline 6zgii alt problemlere ayirir. Degiskenler arasi etkilesim,
paylasilan tasarim degiskenlerini ayarlayan iist diizey bir optimizasyon araciliiyla sag-
lanir. Bu da genel sistemin hedeflerini ve kisitlamalarim1 saglamay1 amag¢lamaktadir. Di-
sipline 6zgii optimizasyonlarin bagimsiz olarak gerceklestirilmesine izin vererek hesap-
lama yiikiinli azaltmaktadir. Disiplinler arasi uyumlulugu saglamak i¢in etkili koordi-
nasyon mekanizmalar gerektirmektedir ve paylasilan degiskenlerin se¢imine duyarli

olabilmektedir. Asagida matematiksel gosterimi Denklem 2.11 ile verilmistir:

Bl/tl X,}”\
Enkiiciikle  fy(x,y,5)
Oyleki co(x,y,9) >0, @10

ci(x0,xi,yi(x0,x;,9)) >0 i=1,...,N,
¢§ =9 —yi(x0,%,54) =0 i=1,...,N,

2.4.4 Cok disiplinli uygulanabilir

Cok disiplinli uygulanabilir (ing. Multidisciplinary Feasible (MDF)), en eski ¢ok di-
siplinli eniyileme metotlarindandir. Bu tez ¢alismasinda bu metod ¢ercevesinde eniyi-
leme islemi gerceklestirilmistir. Bu mimariyi secerken bazi noktalar dikkate alinmisgtir.
Bunlar, tiim disiplinlerin ayn1 anda siirece dahil edilmesi, kisitlarin ayn1 anda dikkate
alinmasi ile daha iyi sonu¢ vermesi, sisteme biitiinciil bakilmasi, ilgili olan kriterlerin
eniyi ¢oziimiiniin sunulmasi, ayr disiplinler aras1 optimizasyonlardaki tekrarl tasarim
stireci ihtiyacini azaltarak verimli bir tasarim siireci yonetimine sahip olunmasi, tasa-
rimin erken fazlarinda olas1 sorunlarin belirlenip azaltilmasi ve karmasik problemleri
cozme kabiliyetidir. Sekil 2.9°da goriilecegi iizere ortaklanmis bir degisken elde edilene
kadar iterasyonlar devam etmektedir. Disiplin analizlerini, sistem seviyesi optimizas-
yonun tiim disiplinlerden toplanan yanitlar iizerinde ¢alistig1 tek bir dongiide entegre
eder. Optimizasyon icin uygun bir tasarim alani olusturarak, oncelikle tiim disiplinlera-
rast kisitlamalarin tatmin edildiginden emin olarak probleme yaklasir. Eksi bir 6zelligi,

bilgisayarda gecirilen zamanin fazla olmasindan kaynakli maliyetli olusudur.

Tercih edilmesindeki en etkili sebeplerden bir tanesi, kisitlamalar agisindan uygunlugu
saglar ve disiplinler aras1 etkilesimleri etkili bir sekilde yakalar [34]. Asagida matema-

tiksel gosterimi Denklem 2.12 ile verilmistir:
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Eniyileyici
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Cok Disiplinli Analiz
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Disiplin 2

Disiplin 3

Sekil 2.9: Cok disiplinli eniyileme tasarim olurlulugu [32].

Bul X

Enkiiciikle x,y(x,

: ¢ Jo(x,y(x,y)) 2.12)
Oyle ki co(x,y(x,y)) >0,

Ci(x07xi7yi(x07xi7y)) 20 l:177N

Cok disiplinli optimizasyon mimarileri tek ve ¢ok seviyeli formiilasyonlar olarak sinif-
landirilir. MDF dogrudan uygulanabilirligi ve cok disiplinli uygulanabilir ¢oziimlerin
global optimumu bulmasi ile 6n plana ¢ikarken, IDF analizleri ayirarak disiplinlerin
otomasyonunu saglamistir. Dolayisiyla potansiyel olarak hesaplama verimliligi artmak-
tadir. Mimari se¢imi cogunlukla problemin 6zelliklerine ve hesaplama ortamina baglidir.
Tek bir mimarinin her zaman iistiin olmadig1 goriilmektedir. Mimari se¢imi, performans,
problem ozellikleri ve kullanilan optimizasyon stratejilerine bagli olarak énemli 6l¢iide
degismektedir. Her bir mimarinin bir dizi kosu sonrasindaki hata degerleri asagidaki
Cizelge 2.3 ile kaydedilmistir [32, 33, 35-38].

Cizelge 2.3: Analitik problemde optimum tasarim degiskenlerinin
hatalar1 [32].

Sonlu Farklar Karmasik Adim
MDF 1,1515x 107 1,1506 x 107©
IDF 2,0827 x 10~° 2,0803 x 10~°
SAND 7,1353 x 1077 7,1356 x 1077
CcO 6,1643 x 107° 7,3389 x 10°°
CSSO 7,1386 x 10~° 3,9559 x 10~°
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2.4.5 MDF ve IDF mimarilerinin karsilastirilmasi

MDF ve IDF mimarileri arasindaki bir takim farklar bulunmaktadir. Bir sabit kanatl
ucak modeli kullanilarak yapilan 6rnek bir calisma ile bu farklar gosterilmistir [39].
Bu ornekle tasarim gezgini (ing. Design Explorer) algoritmasi kullanilarak her mimari
icin on beg optimizasyon rutini ¢alistirilmistir. On bes rutin arasinda en iyi sonuglar her
mimari i¢in yesil renkle vurgulanmistir ve en kotiileri kirmiziyla vurgulanmigtir. Or-
talamalar i¢in en iyi sonuglar iki mimari i¢in yesil renkle vurgulanmistir. Hesaplama
verimliligi agisindan, MDF mimarisi, IDF’ye gore daha iyi optimumlar bulma egilimin-
dedir; ancak yakinsamak icin daha fazla iterasyon gerektirmektedir. Ote yandan, IDF
daha fazla iterasyon gerektirirken, MDF’ye gore daha kisa zamanda yakinsar; fakat daha
kotii bir optimum deger elde edilir. Bu fark, problem karmasiklig1 arttik¢a daha belirgin
hale gelmektedir. MDF, seffaflik, basitlik acisindan IDF’ye gore daha fazla tercih edil-
mektedir. MDF yaklasimi IDF yaklasimindan daha uzun siirmiistiir; ancak bu durumun
yaninda daha az yapisal ve aerodinamik degerlendirme gerektirmistir. MDF’den elde
edilen optimum sonuclar ortalama 9514.6 mil menzile sahip ve yakinsamak i¢in orta-
lama 13.32 saat siirmiistiir, IDF ise ortalama 9122.2 mil menzile sahip ve ortalama 8.80
saat stirmiigtiir. Bu, ortalama olarak, MDF optimal ¢éziimlerinin IDF ¢6ziimlerine gore
yaklasik %4.3 daha yiiksek menzile sahip oldugunu, ancak yakinsama icin toplam sii-
renin MDF i¢in IDF’ye kiyasla %51.4 daha yiiksek oldugunu gostermektedir. MDF mi-
marisinin daha optimum bir ¢dziim sundugunu, ancak daha fazla hesaplama kaynagi ve
zaman gerektirdigi goriilmektedir. Diger yandan, gecen zaman agisindan IDF’nin daha
verimli bir secenek olabilecegi gosterir [39]. Cozlimleri bulmak i¢in daha uzun siire ge-
rektirmesine ragmen, MDF mimarisi ile daha iyi sonuglar elde edilmistir. Her mimari
i¢cin on bes optimizasyon rutini ¢alistirilan bir karsilagtirma calismasi ve elde edilen de-
gerler Sekil 2.10 ile gosterilmistir. Havacilik alaninda, aerodinamik ve yapisal analiz
arasindaki etkilesim, yiik altinda dinamik etkiyi beraberinde getiren aeroelastik alaninin
etkilerini de incelemeyi beraberinde getirir. Yapisal optimizasyon genellikle aeroelastik
kisitlamalarla birlestirilir. Hem aerodinamik hem de yapisal tasarim ayni1 anda optimize
edilir. Yapisal deformasyon yapisalin sekil almasinda dogrudan etkiler [40]. Amag fonk-
siyonunda yer almasi beklenen tasima kuvvetinin arttirilmasi veya siirtiinme katsayisi-
nin diisiiriilmesinde yapisal ¢oziiciiden gelen deplasman miktari; aerodinamik olciitleri

yiizeydeki basin¢ degisimini etkilemesinden kaynakli etkilemektedir.

22



MDF IDF
Mol | e ) Dipensice | Mewd | s | pmeatae
(dk/simiilasyon) (dlk/similasvon)

1 9674.1 21.62 1.97 9653.0 747 1.57

2 9124.3 7.56 1.69 0394 852 1.69

3 9416.6 5.03 1.66 2814.7 T.06 1.43

-+ BO0E.4 4.63 1.81 9185.7 13.96 1.62

5 9412.3 21.56 1.92 BET1.5 7.50 1.59

6 9115.7 17.11 1.97 9421.9 10.74 1.34
7 9117.1 6.93 1.98 9527.0 719 1.22

b 9711.1 9.25 1.96 9158.1 11.56 1.45
9 9134.0 20909 1.98 2042 8 698 148
10 10724.5 29.44 1.98 #426.1 12.58 1.64
11 9437.5 6.62 20 89422 5.38 1.12
12 9695.3 16.26 1.86 8970.2 9.24 1.41
13 97275 11.36 1.67 BTU3S 592 1.54
14 9713.5 7.72 1.90 8902.1 13.36 1.61
15 9806.9 5.59 1.63 10184.3 4.56 1.37
Ortalama | 9514.6 13.32 1.87 9122.2 8.80 1.47

Pdegereri| 001 | 0.04 | 0.00

Sekil 2.10: Bir sabit kanat hava aracinin MDF ve IDF cok disiplinli
mimarileri ile elde edilen eniyileme sonuglar1 [39].

2.4.6 Ucak kanadinin ¢ok disiplinli eniyilenmesi

Hava araclarinda gerilme bazli tasarimlar oldukca siklikla kullanilmaktadir. Bunun ya-
ninda aerodinamik disiplini, hava araglarinda ucus performansini ve tasarimlar etkile-
yen onemli bir unsurdur. Cok disiplinli eniyileme yapilirken, yapisal tasarimlarin eniyi-
lenmesinde analiz programlar: ortaklanarak sonu¢ verilmesi gerekmektedir. Eniyileme
semast Sekil 2.11°deki gibi olmaktadir. Hava araci modellenirken yapisal esnemeler
aerodinamik yapinin seklini etkilemektedir. Bunun yaninda aerodinamik yiikler de ya-
pidaki deforme miktarlarini etkilemektedir. Sekil 2.12°deki gibi eniyileyici ile degisken-
lerin diferansiyelleri ¢ozdiiriiliir, baglanan bu iki disiplinin girdileri ¢oziicliye gonderilir.
Eniyileme ¢alismalar iki farkli seviyede gerceklestirilebilir. Prosediiriin tek bir optimi-
zasyon dongiisii oldugunda disiplinler arasi esleme yontemi olarak adlandirilir. Digeri
ise, coklu optimizasyon prosediirlerini i¢eren bir prosediirdiir. Sekil 2.13 *te ortaklanmig
ve iki seviyeli eniyileme arasindaki farki gosterilmektedir. Bu yontemleri kiyaslarsak
sayet bilgisayar tekil eniyileme maliyetin diisiik olmasina yardimci olur; zaman zaman

olas1 en iyi veya yakin sonuglar1 vermede giicliik olabilir [33, 35-38, 41].

23



Geometri Yapisal boyutlandirma
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Gerilmenin Yapisal
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Sekil 2.11: Bir hava araci kanadi i¢in ¢ok disiplinli eniyileme drnegi
[37].

Eniyileyici
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Sekil 2.12: MDF mimarisi ile akiskan & yapisal problemin semast
[37].

a) Disiplinler Arasi Esleme b) Iki Diizeyli Eniyileme Strateji
Aerodinamik
Benzetim Aerodinamik
N Benzetim
Agirhk + Yik
Yerdegistirme Dagilim:
Yapisal
Yapisal L
Benzetim Eniyileme

Sekil 2.13: Hava araci1 yapisallarindaki es zamanli optimizasyon
semasi [33].
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Bagh degiskenler kullanilarak daha kisa siirede ¢6ziime ulagsma imkan elde edilir. Se-
kil 2.14°de yesil olan bolge daha once de bahsedildigi lizere yapisal ve akis analizleri
sonucunda birbirini besleyen parametreler ve akis temsili olarak gosterilmistir. Bunun
yaninda analizlerin sonucunda eniyileme islemi ve tasarim degiskenlerinin kanat agisi,

kalinliklari, donme miktarlari, kiitle, yiik hassasiyet analizinden gecirilerek eniyilenir.

Eniyileyici
maks Menzil
(-e gore) ok, burulma, kalinhk
(kosulu ile) gerilme kisitlar

ok ve burulma ok acis1 ve
T La;:llan kalnhk
eslenik h iyetler ¥
Kaldoma Aerodinamik e———
sijriiklenme

ver|degistirmeler

A

agirhk Yaplsa]

gerilmeler

Sekil 2.14: Aerodinamik ve yapisal birlesimi optimizasyon 6rnegi
[33].

2.4.7 Cok disiplinli eniyileme calismalarinda kullanilan araclar

Sistemlerin hepsinde cok disiplinli eniyilenmede temel bazi araglar kullanilmaktadir.
Kullanilan aracin hangi sektdrde uygulanacagina gore programlarin tercihi belirlenmek-
tedir. Hava araci tasarimlarinda, ACSYNT(Vanderplaats, Jayram et al), FLOPS, Model-
Center, gradyan bazli araglar (ing. design optimization tools (DOT)), ACSYNT, FLOPS,
iSIGHT, Model Center, Epogy, Infospheres Infrastructure, DAKOTA, FAST, GABRIEL
[42] gibi programlar kullanilmistir. Buna ek olarak, Isight/SEE (Dassault Systemes),
ModelCenter/CenterLink (Phoenix Integration), modeFRONTIER (Esteco), AML Suite
(TechnoSoft, Optimus by Noesis Solutions), AML suite (TechnoSoft) Optimus( No-
esis Solutions), WingMOD [24], VisualDOC (Vander plaats) [37], OpenMDAO [35],
SNOPT (Sequential Programming) [41]. GEMS [43]. Nastran Sol 200 [44] programlar1
da tercih edilmistir. OpenMDAO, a¢ik kaynakli bir yazilim ¢erceve formiiliidiir. Litera-
tiirde bu alanda caligmalar yapan MDO Lab (ing. Multidisciplinary design optimization,
Prof. Martins founded the MDO Laboratory research group in 2002) tarafindan yapilan
bir¢ok calismalarda kullanilan OpenMDAO arac1 kullanilarak yapilan caligmalar Sekil

2.15 ile ozetlenmigtir.
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Sekil 2.15: OpenMDAO programi ile ¢oziillen mithendislik tasarimi
problemlerinin ozeti [35].

Tasarimin geometrik parametreleri isin icine girdigi noktada ozellikle cok sayida ta-
sarim degiskeni kullanilmaktadir. Amag siirtiinme katsayisini diisiirme, agirlik azaltma
olabilmektedir [35]. Kanadin geometrik 6zellikleri, ugus karakteristikleri, kalinlik gibi
tasarim degiskenleri kullanilir. OpenMDAO programi NASA’nin gelistirmis oldugu de-
giskenleri baglama ile ¢ozebilen genis kapsamli bir programdir. Cok disiplinli tasarim
optimizasyonu, birlestirilmis sayisal ¢ozlimler iceren tasarim problemlerini ¢6zmekle
ilgilenmektedir. Karmasik miithendislik sistemlerinin modelleri cesitli ¢cok disiplinli eni-
yileme yazilimi gerceveleri ile ¢6ziimii mevcut olsa da higbiri tam olarak avantaj sagla-
mamaktadir. Bagli modelleri verimli bir sekilde ¢ozmek i¢in gelismis algoritmalar ge-

rekmektedir. Ayrica, hesaplamay1 kolaylastirmak i¢in araca ihtiyag vardir.

Tasarimi miimkiin kilmak icin gradyan tabanli optimizasyon algoritmalariyla kullanim
icin birlestirilmis modellerin tiirevlerinin ¢ok sayida degiskene gore ¢oziilmesi gerek-
mektedir. OpenMDAO araci birlesik sistemleri ¢ozmek icin Newton tipi algoritmalar
kullanan ve problem yapisini yeni yontemlerle kullanan ¢ok disiplinli optimizasyon ger-
cevesinde yiiksek hesaplama verimliligi elde etmek icin hiyerarsik stratejiler kullanilir.
Problemde yer alan tasarim degiskenlerinin tiirevleri verimli bir sekilde birlestirir. Mar-
tins ve arkadaglart pyMDO’da, kullanicinin daha fazla kullanic1 ¢abasi olmadan ¢ok
disiplinli optimizasyon problemini bir kez tanimlayarak ve herhangi bir mimaride ye-

niden formiile ederek gradyen tabanli bir yaklagimla gelistirmislerdir. Oncelikle grad-
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yan tabanli optimizasyonun kullanigh 6zellikleri, model tiirevlerinin verimli ve dogru
hesaplanmasiyla ilgilidir. OpenMDAO’yu gelistirmek i¢in Python programlama dili se-
cilmistir; ¢iinkii derlenmis dillerle arayiiz olusturmak i¢in pek ¢ok secenek sunmaktadir.
XDMS ile kullanicilarin daha kolay sekilde anlayabilecegi bir arayiiz olan bu GUI araci
tercih edilir. Bu sekilde calisilacak disiplinler ve disiplinler aras1 hesaplamalar ve hiye-
rarsik diizen net bir sekilde ortaya konur [35]. Bir bagka bu alanda yapilan calismalardan
olan kanadin bir parcasi olan “kanat kutusu” topoloji eniyilemesi yapilirken dis yiizey de
dahil olmak iizere geometriye sekil verilir. Kanat kesiti tasarimi sabit; kanat uzunlugu,
donme acis1 tasarim degiskeni olarak kabul edilmektedir. Bu calismada toplamda sekiz
adet tasarim degiskeni bulunmaktadir. Kanat agiklig1 boyunca bu parametrelerden olu-
san tasarim degiskenleri ile esit konumlandirilmis jig donme agis1 ile donme dagiliminin
incelenmesi ile [41] aerodinamik ve yapisal disiplinlerin incelendigi bir ¢calisma ortaya
konmus olur. Bir bagka calismada optimizasyon calismalarinda metalik yapilarin kalin-
liklar1 ve temel kompozit katmanlarinin kalinliklar1 tasarim degiskenleri olarak dikkate
alinmistir. Metalik yapilar icin von Mises gerilimi, kompozit yapilarin mukavemet kont-
rolii i¢in hasar indeksi, genel burkulma, soniimleme ve dogal frekans olmak iizere bes
tasarim kisitlamasi vardir. Buradaki amag, tasarimda minimum agirlik elde ederken, ta-
sarlanmisg kisitlar icinde, farkli yerlesim planlarina sahip ancak ayni olan cesitli tasarim
aday1 geometrilerini aragtirmaktir. Son olarak bu tez ¢alismasi kapsaminda gelistirilen
algoritma ile tasarim bolgelerinin yerlesimlerine gore kullanilan tasarim degiskeni bag-
lama yontemi ile Nastran Sol 200 programi kullanicilarinin rahatlikla uygulayabilme-

sine olanak saglanmistir [44].

2.5 Vekil Model Tabanh Optimizasyon

Vekil model tabanli optimizasyon, eniyileme problemlerinde ama¢ fonksiyonu deger-
lendirilmesinin maliyetli, zaman alic1 simiilasyonlar ve fiziksel d eneyler icerdigi kar-

magik miihendislik problemlerini etkili bir sekilde ¢ozmek icin kullanilan niimerik bir
yontemdir. Bu yontem, karmagik sistemlerin eniyilenmesinde, makine dgrenimi ve ce-
sitli karmagik algoritmalarin yer almasiyla zamanla énemli bir konuma gelmistir. Ve-

kil modeller, gercek sistem veya siirecin davranigini olabildigince yakindan benzetmeyi
amaclar, boylece daha hizl1 degerlendirmeler yaparak benzetim sonuglart ile eniyileme
calismalar yiiriitiilebilmektedir. Belirlenen veri noktalar1 kullanilarak elde edilen simu-
lasyon ¢iktilar ile birlikte amag¢ veya kisit fonksiyonlarini temsil eden vekil modeller
olusturulur. Bu modeller, amag ya da kisit fonksiyonunun bir yaklagimidir. Vekil model
tizerinde optimizasyon gerceklestirme, gercek fonksiyonu drnekleme ve vekil modeli
giincelleme siireci, bir yakinsama kriteri karsilanana kadar tekrar edilmektedir. Optimi-
zasyonun potansiyel olarak bir optimumu buldugunu veya istenen kriterler icinde daha

fazla iyilesmenin olasi olmadigin1 gostermektedir. Vekil modeller, amag ve kisit fonksi-
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yonunun degerlendirilmesi icin gereken benzetim sayisini 6nemli olciide azaltir.

Vekil model tabanli eniyileme, giiriiltii problemi olan, kesiksiz veya degerlendirilmesi
maliyetli amag¢ fonksiyonlar1 iceren bir dizi problemde uygulanabilirligi yiiksek eniyi-
leme metodur. Havacilik alanindaki miihendislik sistemlerinin bagarili bir sekilde tam
Olcekli gelistirilmesindeki temel motivasyon ise; performansin iyilestirilmesi, maliyet-
lerin azaltilmasi ve giivenligin artirilmasi gibi isterlerin etkili bir sekilde devreye sokul-
masidir. Vekil model tabanli analiz ve optimizasyonu (ing. Surrogate based analysis and
optimization), aerodinamik ve yapisal tasarimlar arasinda bulunan, hesaplamasi pahali
modellerin tasarimi icin etkili bir yaklasim olarak kabul edilmektedir. Vekil model ile
yapilan eniyileme caligmalari; kanadin ¢ok disiplinli eniyilenmesi [45], kanard tipi hava
araci [46], uzay araci yOriinge optimizasyonu [47] veya aerodinamik sekil eniyilemesi
[48] gibi Orneklendirilebilmektedir. Yaygin olarak kullanilan vekil model tiirleri
arasinda polinom regresyon modelleri, radyal temel fonksiyonlar, gaussian regresyon

stirecleri, Kriging ve sinir aglar1 bulunmaktadir [49].
2.5.1 Veri noktasi belirleme

Bir vekil modeli olusturmak i¢in, deney tasarimi (ing. Design of Experiment (DOE))
yontemi, tasarim alam icinde belirli 6rnekleme noktalarinin, analiz yazilimlar: kullani-
larak degerlendirilmesi i¢in siklikla tercih edilmektedir. Deney tasarimi, herhangi bir sii-
reci etkileyen faktorler ile bu siirecin ciktis1 arasindaki baglantiy1 belirlemek i¢in kurulan
sistematik bir olusumdur. Deney tasariminin temel amaci, sinirh bir 6rnek kiimesinden
elde edilen bilgileri optimize etmektir. Imalat, miihendislik, ila¢ ve sosyal bilimler gibi
cesitli alanlarda, neden-sonug iligkilerini bulmak ve tasarim siirecleri optimize etmek
icin kullanilmaktadir. Bu veri tahmin siireci genellikle duyarlilik analizi, egilim analizi,

varyans analizi veya belirsizliklerin incelenmesi tasarim siire¢lerinde tercih edilir.

Ronald Fisher tarafindan deney tasarimi metodolojisi, kendisinin ¢ikardigi kitaplarda
an-latilmigtir. Bunlar "Tarla Deneylerinin Diizenlenmesi (1926)" ve "Deneylerin
Tasarim1 (1935)" kitaplaridir. Onun o6ncii ¢calismalarinin biiytik bir kismi, istatistiksel
yontemle-rin tarimsal uygulamalarina yonelikti. Tarimsal aragtirmalar i¢in istatistiksel
prensipleri  deneysel arastirmalarla uygulamak amaciyla deney tasariminin
gelistirilmesinde o6ncii-liikk etmistir. Iyi bir deneysel tasarimin bazi anahtar yonleri
arasinda rastgelelestirme, tekrarlama, standart malzemelerin kullanim1 ve hatalara karsi

korunma yer almaktadir [50].
2.5.2 Klasik deney tasarimi yontemleri

Klasik deney tasarimi teknikleri arasinda merkezi bilesik tasarim (ing. central compo-

site design, (CCD)), Box-Behnken tasarimi ve tam faktoriyel tasarim (ing. full factorail)
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bulunmaktadir. Klasik deney tasarimi, veri uzayinin u¢ noktalarina 6érnek noktalar yer-
lestirerek, ilgili olan disiplin {izerinde verim arttirma ¢alismalar1 ve deneysel calismalar
olan, tekrarlanabilir olmayan durumlarda, giivenilir bir tasarim aday1 ¢ikarmay1 hedef-
lemektedir. Klasik deney tasarimlarinin ana 6zelligi, ol¢iilen tepkide rastgele bir hata
teriminin varsayimidir. Denklem 2.13 ile belirtilen y,, Olciilen tepkiyi, y; gercek tepkiyi

ve € rastgele hata terimini temsil eder.

ym(x) =yi(x) + € (2.13)

Rastgele hatalarin varliginda giivenilir bir e8ilim ¢ikarma yoniinde ilerlemesi avantajl
bir yonii olarak goriiliir. Rastgele hata varsayimi yapar, bu da her bilgisayar benzetimle-
rinde bulunmayabilir. Ornek noktalar genellikle parametre uzayinin uc noktalarina yer-

lestirilir, bu da tiim deney tiirleri i¢in ideal olmayabilir [51].

2.5.3 Modern deney tasarimi yontemleri

Deterministik bilgisayar benzetimleri ile kullanilmak iizere tasarlanmis modern deney
tasarim yontemleri arasinda pseudo-Monte Carlo 6rnekleme, latin hiperkiip 6rnekleme
(LHS), ortogonal dizi 6rnekleme ve quasi-Monte Carlo 6rnekleme bulunmaktadir. Bu
yontemler rastgele hata varsayiminda bulunmaz ve genellikle tasarim alaninin tamamin-
dan trend bilgisini dogru bir sekilde ¢ikarmak i¢in "alan doldurma (ing. space—filling)"
tekniklerini kullanir. Rastgele hata olmadig1 durumlarda, deterministik bilgisayar ben-
zetimleri i¢in uygundur. Alan doldurma tasarimlari, tasarim alaninin tamamindan trend
bilgisini dogru bir sekilde c¢ikarir. Yontem se¢imi, tasarim probleminin 6zelliklerine ve
tasarim parametrelerinin dogasina bagl olarak basit olmayabilir. Aralarindan se¢im ya-
parken eldeki problemin ozelliklerine, rastgele hatanin varligina ve tasarim parametre-

lerinin dogasina bagh oldugu géz oniinde bulundurulmalidir.

Klasik veya modern yaklasimda da, her biri kendine 6zgii avantajlara ve dezavantajlara
sahiptir. Aralarindan birini tercih ederken, deney tasariminin 6zel gereksinimlerine ve
kisitlamalarina bakilmalidir. Buna ek olarak ise kullanilabilir bilgisayar kaynaklarinin

kapasitesi, tasarim uzayinin boyutu ve problemin amaci goéz 6niinde bulundurulmalidir.

2.5.4 Alan doldurma yontemleri (ing. Space—filling)

Alan doldurma yontemleri, deney tasarim alanin1 kapsamli bir sekilde kesfetmesini sag-
lamasi acisindan 6nemli bir metottur. Bu yontemler, tiim tasarim alan1 hakkinda esit
yogunluklu bir anlay1s saglamay1 amaclar ancak bunu etkili bir sekilde yapabilmek i¢in

yiiksek sayida 6rnege ihtiya¢ duyduklari i¢in maliyetli bir yontemdir. Tasarim uzay1 nok-
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talarin1 uzayda esit sekilde dagilimindan emin olur, ger¢ek zamanli sonuclara dayanarak

deneyi adaptif bir sekilde iyilestirme olanagi sunar.

2.5.4.1 Latin hiperkiip é6rnekleme (ing. Latin Hypercube (LHS))

Latin hiperkiip en yaygin kullanilan metodlardandir. Her satirda ve her siitunda bir kez
olacak sekilde n farkli nesne ile doldurulur. Dort nesneli bir 6rnek icin Sekil 2.16°da ol-
dugu gibi dorde dortliik latin karesi ornegi verilmistir. Sol taraftaki gorselde, dort farkli
latin karakteri, her satirda veya siitunda bir harften birden fazla olmayacak sekilde dii-
zenlenmistir. Sag tarafta ise her satirda ve her siitunda sadece bir nokta bulunan 6rnek
noktalardan biri tarafindan alinan satir ve siitun koyulastirilmistir. Bu sekilde dort 6rnek

noktali iki boyutlu LHS 6rnegi gosterilmistir.

Sekil 2.16: Latin hiperkiip ornegi a) Dorde dort latin kare b) Dort
orneklemli iki boyutlu LHS 6rnegi [52].

Matematikte yer alan latin kareleri gibi, latin hiperkiibiin temel manti81, iki boyutlu bir
uzay ve n ornek boyutu olmak iizere, n adet ayr1 aralia bolmek ve her seviyede sadece

bir nokta olmasi icin her araliktan rastgele bir kez 6rnek alinmasini saglamaktir.

Yiiksek boyutlu tasarim uzayinda her aralik i¢in kutu sayisinin artmasiyla olgeklen-
dirme islemi belirli sinirlamalara sahiptir. Latin hiperkiip 6rnekleme, her vektor bileseni
Si;i=1,2,...,N i¢in alt uzaymm M = n esit olasiikl Qi =1,2,....N;k=1,2,.... M ile

parcalarina boler. Her vektor bileseninin ornek noktalar1 asagidaki gibi cekilir:

Xk = D)}l_l(Uik); i=1,2,..,N; k=1,2,...,M burada (Uy) ’ler ([§],£"]) iizerinde esit
dagilim gosteren orneklerdir ve Denklem 2.14 seklinde ifade edilir.

(2.14)

Ornek x noktasi, iiretilen vektor bilesenlerinin terimlerini rastgele gruplayarak olustu-
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rulur. Yani, her vektor bileseninden rastgele secilen bir terim x;; ve bu terimler bir or-
nek olusturmak iizere gruplanir. Bu islem M = n kez tekrarlanir. Bilesen 6rneklerinin
rastgele eslestirilmesi nedeniyle bir latin hiperkiip (M!)V~! adet olas1 kombinasyona
sahiptir [53].

2.5.5 Izleme yontemleri

Izleme yontemleri (ing. monitoring methods), deney tasarimu iginde ayrica bir kategori
olarak acgikca tanimlanmasa da, tasarim alaninin etkili bir sekilde kesfedilmesini sag-
lamak amaciyla ara sonuglara dayanarak deneysel tasarimin siirekli degerlendirilmesi
ve buna gore ayarlanmasi seklinde tanimlanabilmektedir. Adaptif 6rnekleme yontem-
leri, tasarim uzay1 gercevesi i¢inde izleme prensiplerini somutlastiran adaptif ornekleme
yontemlerini kullanarak deney tasarimini dinamik bir sekilde giincelleyen, sonuglari 1yi-
lestiren bir yaklasimdir. Bu da tasarim alan1 kesfinin verimliligini potansiyel olarak ar-
tirmaktadir. Ara bulgulara dayanarak dinamik olarak ayarlamalar yapabilmek i¢in ekstra
bilgisayar kaynaklar1 ve karmagik algoritmalar gerektirmektedir. Bu yontemler, mode-
lin tahminlerinin en belirsiz oldugu veya az kesfedilmis alanlara odaklanarak tasarim

alaninin daha verimli kesfedilmesini saglar.

2.5.6 Polinom yanit yiizey yontemi (ing. Polynomial Regression)

Yanit yiizeyi (ing. classical response surface, (CRSM)) global bir yakinsamaya yonelik
bir yiizey olusturma yontemidir. Tasarim uzayindaki ¢esitli veri noktalarinda fonksiyo-
nel degerlendirmelere dayanarak amacg ve kisit fonksiyonlarinin kiiresel yaklasimlarini
olusturma yontemidir. Bu yontemin giicii, gradyan tabanli yontemlerin basarisiz oldugu
uygulamalardadir; tasarim hassasiyetlerinin degerlendirilmesi zor veya imkansiz oldugu
durumlar ortaya ¢ikar. Ancak, yanit dramatik sekilde degisirse, 6rnegin bir kararsizlik

nedeniyle, bu kesintisizligi polinom yanit yiizeyi yontemi ile yakalamak oldukca giictiir.

Gergek yanit yiizeylerini temsil edebilmek ic¢in yaklasim fonksiyonlarinin se¢imi birin-
cil derecede onemlidir. Bu fonksiyonlar, herhangi bir dereceden polinomlar veya farkl
temel fonksiyonlarin toplami olabilir. Genel bir ikinci dereceden karesel polinom yiizey
yaklagimi i¢cin matematiksel Denklem 2.15’deki gibi olacaktir:

yi:ﬁo+Zﬁijxij+ZZBijkxijk+8i7 i:1727"'7N
J J ok
(2.15)

Taylor serisinin genisletilerek agilmasiyla elde edilen Denklem 2.15’deki gibidir. 3;, be-
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lirlenecek olan katsayi sabitleridir; Xx;, tasarim noktalarini ifade eder ve €;, hem 6nyargi
(ing. bias) hatalarin1 hem de rastgele (ing. random) hatalar1 kapsamaktadir. Genel bir po-
linom yanit yiizey denklemi, matris formunda Denklem 2.16 ile ifade edilebilmektedir
[54].

Y =XpB+e. (2.16)

Bu yontem kullanilarak yiiksek dereceli polinomlarin kullanilmas: halinde olusturula-
cak vekil model icin ¢ok sayida benzetim gerceklestirilmesi gerekmektedir. Dolayisiyla
kullanilacak fonsiyonu belirlerken problemin boyutu, tasarim degiskeni sayis1 ve prob-

lemin o6zellikleri g6z 6niinde bulundurulmalidir.

2.5.7 Radial tabanh fonksiyonlar (ing. Radial Basis Function (RBF) Networks)

Radial tabanli fonksiyon aglari, aktivasyon fonksiyonu olarak radial temel fonksiyonlari
kullanan sinir aglarinin bir sinifidir. Radial bazli fonksiyon metodlari, ¢cok boyutlu uzay-
daki bir veri noktasi setinin interpolasyonunu gerceklestirme tekniklerinden tiiremistir.
Genellikle iki katmanlhdirlar: birinci katman temel fonksiyonlarin aktivasyonunu belir-
ler ve ikinci katman da bu aktivasyonlarin lineer kombinasyonlarini olusturarak ¢iktiy1

uretir.

Bir radial bazli fonksiyon aginin temel formu Denklem 2.17 ile temsil edilir:

M
y(x) = ZWjQ)j(X)-{-W() (2.17)
=1

Denklem ¢;(x) radial temel fonksiyonlardir. w; agirliklardir ve M temel fonksiyonlarin
sayisidir. Radial bazli fonksiyon kullanilarak gerceklestirilen tam interpolasyon, her bir
girig vektorii x,’yi ilgili hedef vektorii 7, ye tam olarak esleyen fonksiyon h(x,)= 1, ile

gosterilmektedir. Amag her bir giris vektoriinii ilgili amag vektore tam olarak eslemektir.

Radyal bazli fonksiyon aglar1 iki asamal1 bir egitim siirecinden gecer, ilk asama girdi
verilerinden temel fonksiyonlarin parametrelerini belirlemek icin yapilan gozetimsiz
ogrenmedir. Ikinci asama, ¢ikt1 katmaninin agirliklarini bulmak icin yapilan gozetimli
O0grenme siirecidir. Bu ayrim, tiim parametrelerin es zamanl ayarlanmasini gerektiren
diger ag tiirlerine kiyasla egitim siirecini basitlestirebilir ve potansiyel olarak hizlandi-
rabilmektedir. Radyal bazli fonksiyon aglarinin, yeterli ve uygun sekilde secilmis para-

metrelerle istenilen dogruluk derecesine kadar yaklastirma kabiliyetine sahiptir.
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Radyal bazda fonksiyon aglariyla ¢alisirken karsilasilan temel zorluklardan biri, temel
fonksiyonlarin parametreleri i¢in uygun parametrelerin secilmesidir. Temel fonksiyon-
larin sayisi, merkezleri ve genislikleri parametrelere drnek verilebilir. Uygun olmayan
secim, model performansi ve genellestirme kabiliyeti agcisindan kotii sonuglara yol aca-
bilmektedir. Girdi uzaymin boyutu arttik¢a, girdi uzaym yeterince kapsamak i¢in ge-
reken radial temel fonksiyonlarin sayisi iissel olarak biiyiimektedir. Bu ise boyut ile
ilgili dezavantaja sebep olmaktadir. Radyal bazda fonksiyon aglari, yiiksek boyutlu ve-
riler i¢in hesaplama agisindan pahali ve daha az pratik hale getirebilmektedir. Radyal
bazda fonksiyon aglari, yiiksek dogruluk dereceleri elde edebilme kapasitesine sahip
olsa da, temel fonksiyonlarin sayis1 verileri genelleme yapma kabiliyetinin diismesine
neden olabilmektedir. Radyal bazli fonksyon aglar basitlik ve yaklasim kabiliyetleri
acisindan 6nemli avantajlar sunarken, parametre secimi, yliksek uydurma potansiyeli ve
yiiksek boyutlu veri uzaylari tarafindan ortaya konulan zorluklar acisindan dikkatli bir

degerlendirme yapilmasi gerekmektedir [55].

2.5.8 Kriging

Kriging modelleri global bir metottur. Diisiik dereceli polinom regresyonunda kulla-
nilan alanlardan daha biiyiik tasarim uzayi icin elde edilen verilere uyarlanir. Kriging
baslangicta Giiney Afrikali maden miihendisi Krige tarafindan jeoistatistik caligmalar
izerinde gelistirilmistir [56]. Diger bircok alanda oldugu gibi havacilik alaninda kul-
lanim1 oldukca yaygin olup ¢ok disiplinli eniyileme ¢alismalarinda da siklikla tercih
edilmektedir. Bu sebeple bu tez calismasinda vekil modelleri olustururken bu yontem

tercih edilmistir.

Bilgisayar modellerine kriging yaklasimlari ile ¢caligmak i¢in bir Matlab araci olan DACE
(ing.Design and Analysis of Computer Experiments) yazilim paketi kullanilmaktadir. Bu
yazilim, bir bilgisayar deneyinden elde edilen verilere dayanarak bir kriging yaklagsik
modeli olusturmak ve bu yaklasik modeli, bilgisayar modelinin yerine kullanmak i¢in
gelistirilmigtir. Bir bilgisayar deneyi, bir bilgisayar modelinin calistirilmasindan elde
edilen girdi ve yanit ciftlerinin bir koleksiyonudur. Hem girdi hem de bilgisayar mo-
delinden elde edilen ¢ikt1 yanit1 genellikle yiiksek boyutludur. Calisilan bilgisayar mo-
delleri deterministiktir. Bu nedenle bir modelden alinan yanitta rastgele hata bulunmaz,
ayni girdi parametreleri i¢in tekrarlanan ¢alistirmalar modelde ayni yaniti verir. Bilgi-
sayar modelini ¢aligtirmak i¢in en iyi parametrelerin belirlendigi bir tasarim problemi
yaklagik modellere ihtiya¢ duymaktadir. Bu, 6rnegin bir bilgisayar modelinin fiziksel

verilere uyarlandig1 problemler olabilmektedir [57].

Kriging, 6zellikle havacilik alaninda siklikla kullanilan bir metamodelleme teknigidir.

Mekansal verileri analiz etmek i¢in gelistirilmis olup belirli ve rastgele benzetim model-
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lerinin davraniglarint modellemek i¢in uyarlanmistir. Kriging modelleri, 6zellikle genis
deney alanlarindan elde edilen verileri igleyebilme kabiliyetleri ile bilinir, bu da onlar1
yerel tahminlerden ziyade global tahminler i¢cin uygun hale getirir. Giris uzayinda birbi-
rine daha yakin noktalarin, daha uzak olanlardan daha benzer ciktilara sahip olmasi ge-

rektigi varsayimina dayanir, bu daduragan kovaryans siireci araciligiyla formalize edilir.

Kriging’in temel bir yonii, korelasyonlart modellemek ve sonuclari tahmin etmek icin
matematiksel denklemlere bagimliligidir. Temel formiillerden biri, gézlemlenen ciktila-
rin mekansal korelasyonlarina gére agirliklandirildig1 tahmin noktasinin bir lineer kom-

binasyonu olan bir denklemle ifade edilir. Denklem 2.18 ile ifade edilir.

y(d) = k(d,D)w(D) = kT'w (2.18)

Denklem 2.18 ile belirtilen k(d,D) tahmin noktas1 d ile gozlemlenen noktalar ile D ara-
sindaki mesafeye dayali olarak atanan agirliklar: temsil eder ve w(D) gozlemlenen ¢ikti-
larin vektoriidiir. Amac, tahmininin yanli olmamasi kosulu altinda, tahminlerin ortalama
karesel hatasin1 minimize etmektir. Kriging, daha genis deney alanlar1 boyunca tahmin-
ler i¢in etkilidir, bu da onu global optimizasyon ve hassasiyet analizi i¢in saglam bir
secenek yapmaktadir. Kriging, gézlemlenen noktalardaki tahminlerin tam olarak goz-
lemlenen ciktilarla eslesmesini saglar. Bu yontemler vekil model olusturulurken, egilim
modeli kullanilir. Bu yontemde egilim modeli, lineer, karesel veya logaritmik sekillerde
olabilmektedir. Sistem igerisinde tekrarlanan hata ise Z(x) ile ifade edilmektedir [7].

Kriging vekil modeli Denklem 2.19°daki gibi genel formda ifade edilir.

N,
y(x) =9(x) = Y Bi&i(x) +Z(x) (2.19)
i=1

Hem belirli hem de rastgele simiilasyon modelleri i¢in uyarlanabilir, genis bir uygu-
lama yelpazesi icin ¢cok yonlii bir ara¢ sunar. Korelasyon fonksiyonlarini ve optimal
degerlerini tahmin etmek, birden fazla yerel maksimum potansiyeli nedeniyle zor ola-
bilmektedir. Kriging modellerinin performansi, korelasyon parametrelerinin alt ve iist
stnirlarinin belirlenmesine duyarlidir, bu da model dogrulugunu dogrudan etkilemekte-
dir. Kriging modellemesi icin DACE gibi araclar mevcutken, giiriiltii iceren karmagik
modelleri isleyebilecek yazilimlarin kullanilmasi ile sinirlidir. Benzetim ¢alismalarinda
analiz ve optimizasyon tasarim siireglerini gelistirme potansiyeli olduk¢a yiiksekken,
ayn1 zamanda uygulamasiyla iligkili zorluklar da olabilmektedir. Bu zorluklarin iiste-
sinden gelmek ve Kriging metamodellemenin avantajlarimi arttirmak i¢in arastirma ve

gelistirme caligmalar1 devam etmektedir [56].

Kriging belirsizlik analizi ve giivenilirlilik temelli tasarim optimizasyonu i¢in kullani-
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lan metodolojilerin onemli bir par¢asidir. Giivenilirlilik analizi i¢in Kriging, belirsiz-
lik altindaki yapilarin anlasilmasi ve optimize edilmesi i¢in olduk¢a onemlidir. HAD
analizi temelli optimizasyon ¢alismalarinda siklikla yer verilir [58]. Giivenilirlilik ana-
lizi i¢in modelleme teknigi olarak kullanilmaktadir. Radyoaktif atik depolarinin per-
formans degerlendirmesi, otomotiv ve havacilik sektorlerindeki giivenirlilik tahminleri
ve diger giivenilirlik mithendisligi sistemlerindeki uygulamasinda siklikla tercih edil-
mektedir. Belirsizligi ele almak, tanimlamak, giivenilir bir tasarim optimizasyonu i¢in
onemlidir. Kriging modellerinin yanitlar1 tahmin etmek ve giivenilirligi tahmin etmek
icin kullanilirken tasarimlarin belirsizliklere karsi saglam oldugundan emin olunmasi
gerekmektedir [59]. Siklikla tercih edilen dogrusal egilimli Kriging modeli Sekil 2.17
ile gosterilmistir [59].

V Dogrusal egilim
- modeli

p’(x)B

fue”
2t
- .':__

..... /

Sistematik sapma

Z(x) fix)

Kriging model

e X

Sekil 2.17: Dogrusal egilimli kriging modeli [60].

2.5.9 Yapay sinir aglan (ing. Artificial Neural Networks (ANNs))

Yapay sinir ag1 (.ing Artificial Neural Networks (ANN5s)), basit igslem birimlerinden olu-
san, deneyimsel bilgiyi depolama ve analitik bir sekilde kullanima sunma egilimine sa-
hip biiyiik ol¢iide paralel dagitilmis bir islemcidir. Yapay sinir aglari, derin 6grenmenin
temelini olusturur ve bunu yaparken insan beyninden ilham alir. Veri alirlar, desenleri
tanimak icin egitilirler ve ¢iktilar1 tahmin ederler. Cok degiskenli ve dogrusal olmayan
modelleme problemlerini ¢cozmedeki saglamlig1 nedeniyle siklikla yedek model veya
yanit yiizeyi yaklasim modeli olarak kullanilmaktadir. Yapay sinir aglarinin bilesenleri,
cok katmanl ve birbiriyle karmasik iligkiler icerisindedir. Mimari temel anlamda Sekil

2.18 ile gosterilmektedir.

Giris Katmani: Bu katman, agdaki ilk katmandir ve ham giris verilerini alir. Bu kat-
mandaki her diiglim, girig verilerinin bir 6zelligini temsil eder. Giris katmani, giris

verilerini alir, ¢ikt1 katmani, son ¢iktiy1 tahmin eder.
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Sekil 2.18: Yapay sinir aglar1 mimarisi [61].

Gizli Katmanlar: Bu katmanlar girig ve ¢ikti katmanlar1 arasindadir. Hesaplamalari
ger-ceklestirir ve Ozellik doniisiimlerini yaparlar. Gizli katmanlarin sayist ve her
katmandaki diigiim sayis1 degisebilir, bu da agin karmagik desenleri modelleme
kapasitesini onemli Ol¢iide etkiler. Gizli katmanlar, daha alt seviyedeki 6zelliklerden

daha iist seviyedeki 6zellikleri tahminde bulunur.

Cikt1 Katmani: Agin ¢iktisini lireten son katmandir. Bu katmanin tasarimi belirli bir

sinirlandirmaya baghdir.

Noronlar/Diigiimler: Yapay sinir aginin temel islem birimleridir. Her noron giris
yapar, bir agirlik ve bias uygular ve bir ¢ikt1 iiretmek i¢in bir aktivasyon fonksiyonu
kullanir. Noronlar ve diigiimler, carpma ve toplama gibi basit islemleri gerceklestiren

temel islem birimleridir.

Agirliklar ve Biaslar: Modelin parametreleri, egitim sirasinda ayarlanir ve tahmin edi-
len ¢ikt1 ile hedeflenen degerler arasindaki farki en aza indirmek i¢in kullanilir. Agir-
liklar, ndronlar aras1 baglantilarin giiciinii belirleyen degerlerdir, egitim sirasinda giin-
cellenir. Bias, her néronun ciktisina eklenen ek agirliktir, aktivasyonu kolaylastirir veya

engeller.

Aktivasyon Fonksiyonlar:: Bir ndrona gelen giriglerin agirlikli toplamina uygulanan

dogrusal olmayan fonksiyonlar, noronun aktif olup olmayacagini belirler.

Kayip Fonksiyonu: Tahminlerin gercek degerlerden ne kadar uzak oldugunu olger. Bu
Olctimii yapan kayip fonksiyonuna yaygin olarak kullanilan , ortalama kare hatasi (ing.

mean squared error (MSE)) verilebilir.

Tleri Yayilim: Girisin katman katman agdan gecirilerek bir ¢ikt1 elde edilmesi siirecidir.
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Geri Yayihm: Kayip agirliklarin ve biaslarla ilgili gradyaninin hesaplanmasi ve egitim

sirasinda kaybi azaltma amach giincellenmesi siirecidir.

Optimizasyon problemleri icindeki karmagik iligkileri hesaplamak icin kullanilan mo-
delleme tekniklerinden biridir. Yapay sinir aglari, ¢cok disiplinli optimizasyon problem-
lerinde tasarim degiskenleri ile amag fonksiyonlar1 veya kisitlar arasindaki yiiksek de-
receli dogrusal olmayan karmasik iligkileri modelleme yetenegine sahiptir. Bu yetenek,
tasarim uzayinin genig bir alana yayildig1 ve deg8iskenler arasindaki etkilesimlerin yiik-
sek derecede dogrusal olmayan havacilik alaninda 6zellikle faydali olmaktadir. Yapay
sinir aglari, 6zellikle kanat tasariminin ¢ok disiplinli optimizasyonu i¢in 6nemli bir rol
oynamaktadir. Aerodinamik ve yapisal analizler gibi tasarimin egilimi olan davranig-lari
pahali birer degerlendirme fonksiyonlariyla yaklasik hesabi icin gerekli fonksiyon
degerlendirme(ing. function evaluation) sayilarin1 azaltmaktadir. Bu, bilhassa tasarimin
erken asamalarinda, hesaplama maliyetinde ve harcanan zamanda 6nemli bir azalmaya
sebep olmaktadir. Optimizasyon siirecinde, uyarlanabilir 6rnekleme stratejisi sayesinde,
modelin amag fonksiyonlar1 ve kisit fonksiyonlar1 daha iyi birer sonug icin yinelemeli
olarak giincellenip tasarim uzay1 zamanla iyilestirilmektedir. Ote yandan, yapay sinir
aglar1 modellerinin problem iizerindeki etkinligi, yapilandirmalarina ve model {izerinde
ayarlarina yakindan baglidir, bu da dikkatli model kurulumu ve dogrulama ihtiyacini
dogurmaktadir. Kisacas1 bu yontem karmasik optimizasyon problemlerini ele almak, he-
saplama maliyetlerini azaltmak ve daha yinelemeli ve kesifsel tasarim siireclerini miim-
kiin kilmak i¢in esnek ve verimli bir ara¢ olarak ¢ok disiplinli eniyileme ¢erceveleri

icerisinde hizmet etmektedir [61, 62].
2.5.10 Gaussian siire¢ regresyonu

MATLAB’da Gaussian siire¢ regresyonu (ing. Gaussian Process Regression (GPR)),
kullanilirken, kernel fonksiyonlar: kritik bir rol oynar. Bu kernellerle iligkili olarak mo-
del performansini iyilestirmek amaciyla hiper parametreler optimize edilmelidir. MAT-
LAB’1n "fitrgp" fonksiyonu gauss siire¢ regresyonu i¢in kullanilir. Belirlenen hiper pa-
rametrelerin ¢apraz dogrulama ¢aligmalarinda test edilmesi i¢in, "fitcsvm" ve "fitrgp"
gibi MATLAB fonksiyonlari, *CrossVal’ parametresi araciligiyla ¢capraz dogrulama ger-
ceklestirilmektedir. Bu da farkli hiper parametre ayarlarinin hatasini tahmin etmek i¢in

kullanilmaktadir.

2.5.11 Hiper parametreleri ve kernel fonksiyonlari

Hiper parametreleri ve kernel fonksiyonlar1 (ing. Hyper Parameters and Kernel Func-
tions), makine dgrenmesi alaninda temel kavramlar olup ¢esitli algoritmalarin yapilan-

dirilmasi, optimizasyonu ve performansinda 6nemli roller oynamaktadir. Bu kavramlari
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anlamak, makine 6grenme tekniklerinin mithendislik problemlerini etkili bir sekilde ¢o-
ziimil icin Onemlidir. Hiper parametreler, 6grenme siireci baslamadan 6nce degerleri
belirlenen ve veriden 6grenilemeyen parametrelerdir. Egitim yoluyla elde edilen model
parametrelerinin aksine, hiper parametreler 6grenme algoritmasinin davranisini kontrol
etmek icin kullanilmaktadir. Model performansini 6nemli ol¢iide etkiledikleri i¢in, bu
parametrelerin optimizasyonu hayati onem tasimaktadir. Eniyileme algoritmalarindaki
0grenme orant, kayip fonksiyonun tepe noktalarina dogru atilan adimlarin boyutunu be-
lirlemektedir. Hiper parametreler makine 68renme algoritmalarinin yapilandirilmasini
tanimlar ve en iyi performansin elde edilmesine katkida bulunur. MATLAB programu,
kriging, gaussian siirecleri ve sinir aglar1 gibi modellerle calisirken, hiper parametreleri
ayarlama ve kernel fonksiyon se¢imi i¢in bazi fonksiyonlara sahiptir. Bu tez calisma-
sinda da kullanilan "bayesopt" fonksiyonu parametre se¢imi icin tercih edilmektedir.
MATLAB, kullanicilarin modelleri i¢in otomatik olarak hiper parametreleri ayarlama-
laria ve uygun kernel fonksiyonlar1 se¢imlerine olanak taniyan bu gibi araglar ve fonk-

siyonlar saglamaktadir.

Destek Vektor Makineleri (ing. Support Vector Machines (SVM)): MATLAB ta des-
tek vektor makineleri ile calisirken, genellikle bu gibi birkag¢ hiper parametre ile ilgile-

nilir.

Kutu Kisiti (ing. Box Constraint (C)): Egitim verilerinde diisiik bir hata elde etme ile
agirliklarin normunu en aza indirme arasindaki dengeyi kontrol eder, bu da miimkiin

oldugunca genis bir marj elde edilmesine yardimci olmaktadir.

Kernel Fonksiyonlari: Kernel fonksiyonlari, destek vektor makineleri (ing. support
vector machines) ve gauss siirecleri(ing. gaussian processes) gibi benzerlik veya mesafe
hesaplamalari iceren makine 6grenme algoritmalarinda temel bir kavramdir. Kernel, al-
goritmalarin, "kernel hilesi" (ing. kernel trick) olarak bilinen bir teknikle, verilerin o
uzaydaki koordinatlarim1 agikca hesaplamadan, yiiksek boyutlu, ortiik 6zellik uzayinda
caligmasini saglamaktadir. Kernel fonksiyonlari, belirli algoritmalarin karmagik desen-
leri 6grenmesine, hesaplama acgisindan verimli bir sekilde ortiik haritalama 6zelligi ile

1zin vererek bu siireci kolaylagstirmaktadir.

2.5.11.1 Hiper parametre optimizasyonu

Hiper parametrelerin secimi, bir 6grenme algoritmasinin performansini biiyiik dlciide
etkileyebilecegi icin, hiper parametre optimizasyonu, genellikle 6nceden belirlenmis bir
puan veya kayip fonksiyonlari ile 6l¢iilen en iyi model performansini saglamasi bekle-
nen hiper parametre kombinasyonunu bulmay1 hedeflemektedir. Hiper p arametre opti-

mizasyonu teknikleri arasinda 1zgara(ing. grid) arama, rastgele arama ve bayesiyen opti-
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mizasyonu gibi daha ileri yontemler bulunur. MATLAB, hiper parametre optimizasyonu

icin birkag fonksiyon ve yontem saglamaktadir.

MATLAB programi hiperparametreleri ayarlama ve kernel fonksiyonlarini se¢cme gibi
makine 6grenimi i¢in kapsamli bir ortam sunmaktadir. Miithendisler giiniimiizde, mode-
lin dogrulugunu ve etkinligini artirmak i¢cin MATLAB 1n yerlesik fonksiyonlarini oto-
matik hiper parametre optimizasyonu i¢in kullanabilir veya capraz dogrulama perfor-

mansina dayanarak manuel olarak ayarlayabilmektedirler [63—68].

Bayesian optimizasyonu, optimum arayisini yonlendirme amaciyla doldurma drnekleme
kriterlerini kullanan bir eniyileme yaklasimidir. Amac fonksiyonunun olasiliksal bir mo-
delini olusturur ve bir sonraki drnekleme yerini belirlemek i¢in bir edinim fonksiyonunu
herhangi bir kritere baglayarak kullanir. MATLAB, "bayesopt" fonksiyonu aracilifiyla
bayesian optimizasyonunu desteklemektedir, bu da amag fonksiyonunun olasiliksal bir
modelini olusturarak optimum hiperparametre setini bulmak icin etkilidir [69].

2.5.11.2 Kernel fonksiyonlarimn tiirleri

Kernel fonksiyonlar1 yaygin secenekler olarak asagidaki temel kernel tiplerini icermek-
tedir. Ayrica MATLAB’ 1n "fitcsvm" fonksiyonu, bu hiperparametreleri dogrudan belirt-
meye olanak tanir ve kernel fonksiyonu da dahil olmak iizere destek vektor makineleri

ile ilgili secenekleri belirtmek i¢in templateSVM’yi kullanabilmektedir.

Dogrusal Kernel (ing. Linear Kernel): iki vektoriin i¢ carpimini temel alan, en basit
kernel formudur. Hicbir doniisiim uygulanmaz. Veriler dogrusal olarak ayrilabilir oldu-

gunda kullanilmaktadir.

Polinom Kernel(ing. Polynomial Kernel): Girdi 6zelliklerini polinom 6zelligine geti-
rerek dogrusal olmayan modellerin 68renilmesine olanak tanir. Polinomun derecesi ile

tanimlanir.

Radial Bazh Fonksiyon Kernel (ing. Radial Basis Kernel): Veri noktalarinin benzerli-
gini veya yakinliginm olcerek karmasik veri kiimelerini modelleyebilen son derece esnek
bir kerneldir. Genellikle gama () olarak belirtilen bir parametre ile karakterize edilir ve

gauss kernelinin genigligini kontrol etmektedir.

Sigmoid Kernel: Sigmoid fonksiyonunu yansitir ve sinir aglarint modellemek icin kul-

lanilir. Sinir aglarinda kullanilan aktivasyon fonksiyonuna benzerdir.
2.5.12 Vekil modelin dogrulamasi

Problem ve tasarim degiskeni sayisina uygun olarak belirlenen vekil model olugturma

tipini test edebilmek icin kullanilan yaygin hata metrikleri bulunmaktadir. Bu metrik-
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lerin sifira yakin olmasi beklenmektedir. Yaygin olan bazi1 hata metrikleri bir sonraki

boliimde incelenmisgtir.
2.5.12.1 Kok ortalama kare hatasi

Kok ortalama kare hatas1 (ing. Root Mean Square (RMSE)), bir vekil modelin hatasin
Olcmenin standart bir yoludur. Bir vekil model tarafindan ongoriilen degerler ile test
noktalart arasindaki farklar1 degerlendirmek icin yaygin olarak kullanilan model dog-
rulama parametresidir. Tahminlerin ortalama olarak gercek degerlerden ne kadar sapma
gosterdigini niceliksel olarak ifade eder. MSE, tahmin ile test noktas1 arasindaki kare
farklarinin ortalamasi ile hesaplanir. RMSE ise, tahmin ile test noktast N,y arasindaki
kare farklarin ortalamasinin karekokiinii alarak hesaplanir. Formiil, Denklem 2.20 ile

asagidaki gibi ifade edilir:

RMSE = (i —¥i)? (2.20)

S| =

i=1

yi test noktalarindaki deger, y; tahmin edilen deger ve n benzetim sayisidir. RMSE ne

kadar sifira yakinsa, modelin performansi o kadar iyidir [70].

2.5.12.2 Capraz dogrulama hatalari(ing. Leave-one-out Cross Validation (LOOCYV))

Capraz dogrulama hatalan (ing. Leave-one-out cross validation), vekil modelin tahmin
hatasini tahmin etmek i¢in kullanilan oldukca yaygin bir hata metrigidir. Vekil model-
lerin se¢imine ve modelin sececegi veriler iizerinde nasil bir performans gostereceginin
Ol¢iilmesine katkida bulunur. Bu method, veri setinden tek bir tahmini ¢ikarmayi, kalan
verileri, modeli egitmek i¢in kullanmay1 ve ardindan ¢ikarilan tahmini veriyi, tahmin
etmek i¢in modeli kullanmay1 icerir. Bu iglem, veri setindeki her tahmin i¢in tekrarla-
nir. Miithendislikte optimizasyon ve giivenilirlik analizi i¢in kullanilan vekil modellerin

olusumu i¢in kullanilan Kriging modelleri bu metod yardimuiyla iyilestirilmektedir.

Bu metrik; kriging modellerindeki hiperparametreleri dahil eder, bu da hiper parametre
optimizasyonlarinin sayisini azaltmada onemli 6l¢iide yardimcr olur. Dolayisiyla vekil
modelinin secimi ve sec¢ilen modelin dogrulugunu belirleme siirecinin verimliligini bii-
yiik ol¢iide artirir. Bu dogrulama metodu biiyiik veri setlerini iceren miihendislik opti-
mizasyonlari i¢in hesaplama maliyetini daha uygun hale getirir. Bu yontemin dogruluk
ve verimlilik acisindan dezavantajlar1 bulunmaktadir. Her yinelemede, modelin dogru-

luguna yakin bir yaklagim saglamayabilir.

40



Her cikarilan nokta icin bagimsiz Kriging modelinin kurulumunu gerektirir, bu da 6zel-
likle biiyiik veri setleri icin artan hesaplama karmasikli§ina yol agmaktadir. Miihendis-
ler, modelin belirli optimizasyon ve giivenilirlik analizlerine uygulanabilirligi hakkinda
bilingli kararlar verebilmek i¢in modelin performansin1 dogru sekilde tahmin edebilmek
adina sikliklikla bu metrigi kullanmaktadirlar. Ortalama kare hatas1 ve kok ortalama kare
hatas1 gibi diger hata metriklerine kiyasla, bu metrik, model egitiminde kullanilmayan

verileri kullanarak modelin tahmin hatasinin tahminini saglamaktadir [71].

Capraz dogrulama siireci, genel bir baglamda matematiksel olarak asagidaki gibi Denk-

lem 2.21 ile hesaplanabilmektedir:

n

1
LOOCV = — ¥ (yi —5i)? (2.21)
=
n, veri setindeki toplam gozlem sayisidir. y;, i. gozlem icin gercek degerdir. y;, i. gbzlem
icin tahmin edilen degerdir ve bu deger, i. gbzlem hari¢ tutularak egitilen bir modelden
elde edilmektedir.

2.5.12.3 K-kath capraz dogrulama hatasi (ing. K-fold Cross Validation RMSEcy)

Veri seti rastgele "k" esit alt kiimeye boliiniir. Vekil modelin "k" kez kurularak her se-
ferinde egitim setinden bir alt kiimenin ¢ikarilmasi ile ¢capraz dogrulama hatasini deger-
lendirmek i¢in kullanilir. Vekil modelin dogrulugu test edilirken kullanilmis olan k-katl
capraz dogrulama kok ortalama kare hatasi (ing. root mean square error of k-fold cross-
validation (RMSECYV)) icin matematiksel denklem Denklem 2.22 ile verilmistir.

RMSECV = (2.22)

Bu hata metrigi denkleminde gecen "k" cikarilan veri noktalar1 sayisidir. Ornek nok-
tanin y; tahmini degeri ve y; ise gercek degeridir. Capraz dogrulama, maliyetli sistem
degerlendirmelerine ihtiya¢ duymadan vekil modellerin dogrulugunu tahmin etmek i¢in
ya da giivenlik marjlarin1 tahmin etmek ic¢in kullanilir. Vekil modelin dogrulugu k seci-
mine bagli olmakla birlikte k’nin farkli degerleri, model dogrulugunun cesitli tahmini

hata degerlerinin elde edilmesine yol acabilmektedir [72].
2.5.13 Adaptif veri toplama metodlari

Mevcut veri seti i¢inde ek veri noktalarinin nerede ve nasil toplanacagimi belirlemek

amactyla kullanilan belirli yaklagimlar bulunmaktadir. Bu yaklagimlar, bir tasarim uza-

41



yinin Ozelliklerini daha iyi anlamak tasarim degiskenleri hakkinda daha dogru tahminler
yapabilmek i¢in kullanilmaktadir. Bu tez caligmasinda tercih edilen i¢ dolgu numuneli
kriterin temel hedefi, veri noktalarinin yogunlugunu stratejik olarak artirarak verileri
yorumlamadaki belirsizligi ortadan kaldirmaktir. Bir sonraki boliimlerde bu kriterlere
yer verilmistir. Bu tez ¢calismasinda MSE ve MSP metodlar1 kullanilarak eniyileme ca-
lismast yiiriitiilmiistiir. Problemin tasarim de8iskeni ve tasarim uzayi diisiiniildiigiinde
uygulamasi en uygun yontemlerden biri olan MSP ve MSE tercih edilmigtir. Gradyen ve
gradyen tabanli olmayan eniyilemeler arasinda kendilerini yapilan ¢aligsmalarda rahat-
likla gosterebilmektedir [73]. Sekil 2.19 ile goriilebilecegi iizere eniyilenmis fonksiyon
degeri acisindan oldukca iyi de8erlere ulasabildigi gozlenmektedir [74].
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Sekil 2.19: I¢ dolgulu numune kriteri kullanilarak elde edilen
sonuglarin yakinsama grafigi [74].

Maliyetli sayisal fonksiyon degerlendirmelerinden elde edilen verilerle yerine koyma
modellerinin olusturulmasinin ardindan, bu yerine koyma modelleri kendileri bir "alt-
optimizasyon" olarak adlandirilan dolgu numuneli kriteri tarafindan tanimlanan bir op-
timizasyon problemi ¢ozerek tasarim alanindan yeni bir veri noktasi tahmini ile rehberlik
etmektedir [75]. Bu ¢alismada, Minimizasyon Yerine Koyma Tahmini (MSP) ve Orta-
lama Kare Hatas1 (MSE) olmak iizere iki tiir i¢ dolgu numuneli kriteri kullanilmisgtir.
Ciinkii yiiksek boyutlu uygulamalar icin hesaplama kabiliyetleri nedeniyle bu kriterler

avantajli olmaktadir [74].

2.5.13.1 Minimizasyon ile yerine koyma tahmini (ing. Minimizing Surrogate Pre-
diction (MSP)

Bu kriterde, problemin verilen kisitlamalar1 altinda amac vekil modeli, mevcut modelleri

kullanmak i¢in minimize edilir. Bu alt-optimizasyon problemi ¢6zmek i¢in bir gradyan
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tabanli veya gradyan-otesi yaklasimlar dongiisii ile tasarlanabilir. Alt-optimizasyon su
sekilde ifade edilebilir:

Bul X (Tasarim Degiskeni)
Enkiiciikle f (X) (Amag Fonksiyonu) (2.23)
Oyleki Xyt <X < Xust, (Degisken Sinir Araliklar) (2.24)
gi(X) <0, i=1,...,n. (Kisitlar) (2.25)

burada f(-) ve g(-) sirastyla amag ve kisitlamalar icin vekil modelleridir. X € R™ ise ta-
sarim alanindan gelen tasarim degiskenleridir ve X, X, sirasiyla iist ve alt degerlerdir

ve n. ise kisitlamalarin sayisidir.

2.5.13.2 Ortalama kare hatasi (ing. Maximizing Mean Squared Error (MSE))

Bu kriterde, yerine koyma modelleri, modellerin dogrulugunu artirmak i¢in tasarim ala-
nin1 daha fazla kesfetmek i¢in kullanilir. Bu alt-optimizasyon, literatiirde asagidaki gibi
kisith bir maksimizasyon olarak ele alinir. Burada MSE(-), ortalama kare hata fonksi-

yonudur. Alt-optimizasyon su sekilde ifade edilebilir:

Bul X (2.26)
Nne
Enbiiyiikle MSE(f(X)) -HP[g,- (X) <0 (Amag Fonksiyonu) (2.27)
i=1
Oyleki Xy <X < Xusts (Degisken Sinir Araliklart) (2.28)
gi(X)<0, i=1,...,n (Kisitlar) (2.29)
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3. ANALIZ CALISMALARI

Aerodinamik yiikler altinda tasarlanmis olan kanat geometrisinin nasil davranacagi ve
modal frekans degerlerinin ne olacaginin belirlenebilmesi ac¢isindan analiz ¢alismalari
yiiriitiilmiistiir. Analiz modellerinin olugsturulabilmesi icin Oncelikle tasarimlarin kati
modellerinin hazirlanmas1 gerekmektedir. Kati modeller CATIA V5 programi kullani-
larak tasarim degiskenlerine uygun bir sekilde parametrik tasarlanmistir. Bu paramet-
rik tasarimda matematiksel denklemler ile iligki kurulup geometrinin morfolojik degi-
simi ortaya konmustur [76]. Optimizasyon esnasinda akiskan ¢oziiciisii olarak ANSY S-
Fluent; yapisal c¢oziicii olarak ANSYS-Mechanical kullanilmistir. Eniyilenmis ve eni-
yilenmemis tasarimlarin statik ve titresim analizi sonuglarin1 degerlendirmek acisindan
HyperWorks-Optistruct; optimum tasartmin aerodinamik analizinin degerlendirilmesi
icin ANSYS-Fluent ¢oziiciileri kullanilmistir. Hazirlanan katt modellerin ardindan orgii
model ag1 sayesinde akigskanlar modellemesi i¢in akiskan ¢oziiciisiine, yapisal modelin
¢Oziimil i¢in yapisal ¢oziiclisiine aktarilmistir. Ugus kosullari, malzeme 6zellikleri, kisit

kosullarina, yapilan analiz ¢esidine uygun tanimlamalar yapilmustir.

3.1 Kanat Tasariminin Belirlenmesi

Tez calismasi i¢in belirlenen kanat kesiti, turboprop egitim ucaklar1 profiline uygun
boyutta gelistirilmigtir. Kanat malzemesi i¢in Aluminyum 7075 serisi tercih edilmis-
tir. NACA kanat profilleri, genellikle egitim ucag1 kanatlarinda sikca kullanilir. Ozel-
likle, 6-serisi turboprop egitim ucaklarinda kullanilmaktadir [77]. Kanadin kok veter
icin NACA 63415 profili, u¢ veter i¢in ise NACA 63212 profili kullanilmistir. Kanat
profillerinin verileri, referans gosterilen web sitesinden elde edilmistir [78]. Kanat pro-

filleri Sekil 3.1°de gosterilmistir.

a) T b)

Sekil 3.1: Kanat profilleri a) NACA 63415. b) NACA 63212.
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Kanadin boyutu Sekil 3.2°de gosterildigi gibidir.

1286 mm

FY4HSmm

Thdmm

Sekil 3.2: Kanat boyutu.

3.2 Aerodinamik Analiz Yonteminin Dogrulanmasi

Aerodinamik analizler ANSYS-Fluent yazilimi kullanilarak bu tez ¢alismasi gercekles-
tirilmigtir. Benzetim sonuclari, bu calismaya benzer ucus kosullarina sahip olan NASA-
Langley Arastirma Merkezi, 2023 [79] verileri ile karsilastirilmistir. Dogrulama testinde,
ONERA M6 kanadi kullanilmigtir. Hiicum acis1 3,06°°dir; viskozite modeli ise suther-
land modeldir. Akiskan denklemler Navier-Stokes denklemlerine gore ¢coziilmiistiir. Bu-
nun yaninda Spalart-Allmaras ile tiirbiilans model tanimlanmistir. Reynolds sayisi ise

11,72 - 10%dur. Cizelge 3.1 ile serbest akis degiskenleri belirtilmistir.

Cizelge 3.1: ONERA M6 kanadinin serbest akis degiskenleri.

Referans Uzunluk 0,646 m

Referans Alan 0,7532 m?

Sicaklik —17,594°C

Giris Hiz1 0,8395 Mach (268,9347 m/s)
Eleman Tipi Poly-hexcore

Eleman Say1s1 34883682
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Referans verilerinden alinan deneysel ve benzetim sonuglart Sekil 3.3’te gosterilmek-
tedir. y/b ile ifade edilen, 6l¢iim alinan noktanin kanat kokiine olan mesafenin kanat
uzunluguna oranidir. Bu ¢alismada elde edilen benzetim sonuglari, basing katsayisi C,
ile NASA’nin verileriyle elde edilen basing katsayisinin [79] uyumlu oldugu goriilmek-
tedir.

y/b=0.2

——HAD Analizi (bu ¢ahsma)
o Deneysel Veriler [81]

0 0.2 0.4 0.6 0.8 1 12

X

Sekil 3.3: Deneysel ve benzetim verilerinin basing katsayisi
gosterimi.

3.3 Hesaplamah Akiskanlar Dinamigi Modelinin Eleman Hassasiyeti Calismasi

Orgii eleman yapisinda iki gesit eleman kullanilmistir. Bunlar, sinir tabaka kisminda
dortgensel (ing. quad) elemanlar, sinir tabaka ¢evresinde kalan elemanlar ise ¢oklu alti-
gen(ing. poly hexcore) elemanlar tercih edilmigtir. Sekil 3.4 ile olusturulmus olan sinir
sartlar1 geometrisi gosterilmis olup kanat veter uzunlugunun 30 kati olarak belirlenmig-
tir ve yarigapt 35 m olan bir kiire kullanilmistir. Cizelge 3.2 ile belirtilen ilk sinir tabaka
yiikseklikleri, referansta belirtilen [80] sinir tabaka hesaplayicisi ile hesaplanmigtir. He-
saplamali akigkan dinamigi benzetim calismasina gecilmeden Once uygun eleman bo-
yutunun belirlenmesi amaciyla eleman boyutu ve hassasiyet ¢alismasi ylriitiilmiistiir.
Sonug olarak elde edilen eleman sayilar1 grafigi Cizelge 3.2 ile gosterilmistir. Cikan so-
nuglara bakildiginda, ¢alisma 1°den 6’ya kadar gidildikce eleman sayisinda hizl artig-
lar gbzlemlenmektedir. Eniyileme ¢aligmasi i¢in gerekli olan ardi ardina yapilacak olan
benzetimler icin, eniyileme probleminde kullanilan degisken sayisinin yiiksek olmasiyla
beraber oldukca yiiksek siireler gerekmektedir. Cizelge 3.2 ile yiiriitiilen bu caligmalar
kullanilarak elde edilen bir kosu i¢in gerekli olan hesaplama siirelerinin tablosu goste-

rilmigtir. Bu baglamda, optimizasyon siireci i¢in Coziim Ag1 2 kullanilmastir.
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Sekil 3.4: Calisma alan1 ve sinir sartlari.

Cizelge 3.2: Coziim ag1 ve bir kosu icin harcanan siire.

Toplam Kanat Toplam Bir

Eleman Uzerindeki Nokta Kosu

Sayisi Nokta Sayist Icin

Sayisi Gerekli
Siire (dk)

Coziim Ag1 1 316515 31113 46470 9
Coziim Ag1 2 487477 50941 69113 12
Coziim Ag1 3 1282734 115456 140453 18
Coziim Ag1 4 3837738 304429 344215 32
Coziim Ag1 5 7908983 470433 504403 105
Coziim Ag1 6 14452613 591322 625483 253

Analizlerin saglikli bir sonu¢ vermesi ve harcanan zamanin optimize edilmesi amaciyla
toplam eleman sayis1 hassasiyeti caligmasi yiriitiilmiistiir. Sekil 3.5 ile eleman boyutu

calismasinin sonucundaki yiizde farklarinin sonuglari gosterilmistir.

i [N]

< —— Gozim agi 1 %6,27
Cozim agi 2 %1,47
Cozim ag! 3 %0,74 B
Cozim agi 4 %0,68 Coziim agi 5 %0,38 Cézum agi 6 %0

@
&
=]
=]
T

z
=

L | 1 1 1
Z 4 6 8 10 12 14 16

Eleman Sayisi [-] *10°

@
LS}
=1
=]

Tasima Kuvvet
o]
2

Sekil 3.5: HAD benzetimi i¢in eleman hassasiyeti caligmasi.
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En yiiksek sayida kurulan 6rgii modelinin tasima kuvveti sonucu diger calismalardaki
eleman sayilar1 ile kurulan modellerin kuvvet degerleri arasindaki fark ytizdelik dilimde
grafik tizerinde belirtilmistir. Yiiriitiilen bu ¢alisma sonunda toplam eleman sayis1 op-
timizasyon siiresince, kirmizi ile isaretlenmis olan 487477 olarak belirlenmistir. Opti-
mizasyon siiresince bu fark makul goriilmiis olup optimizasyon siirecinde kaba orgii
model olan Coziim Ag: 2 kullanilmistir. Bu tez ¢alismasinda referans olan baglangig
aerodinamik analizi, kanadin iizerindeki basing yiiklerini 300 m, 286 K sicakliginda se-
yir kosullar1 icin gergeklestirilmistir ve bu hesaplanan yiikler yapisal sonlu eleman mo-
deline aktarilmistir. Dogrulama testinde, ONERA M6 kanadi kullanilmigtir. Giris hizi
0,55 Mach; viskozite modeli Sutherland modelidir. Akiskan denklemler Navier-Stokes
denklemlerine gore ¢oziilmiistiir. Bunun yaninda Spalart-Allmaras ile tiirbiilans model
tanimlanmistir. Benzetim, asagida Cizelge 3.3’te belirtilen parametrelerle gerceklestiril-

mistir. HAD 6rgii modeli yapis1 Sekil 3.6’da gosterilmektedir.

Cizelge 3.3: Kanadin aerodinamik degiskenleri.

Yogunluk 1,189 kg/m’
Viskozite 1,789 -10° kg/m.s
Hiicum Agis1 0°

Eleman Tipi Poly-hexcore

Sekil 3.6: HAD benzetimi kanat modelinin sonlu elemanlar
modelinin izometrik goriintimii.
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Agn kalitesi, ortogonal kalite ve egrisellik gibi Olciit olan parametrelerle tanimlanir.
Cesitli HAD analizlerinde, kalite Olciitii olarak belirlenmis metriklerin araliklar: bulun-
maktadir [81, 82]. Bu alanda yapilmis ¢alismalarda 6zellikle bu kriterlerin baz alindig1
goriilmektedir. Bu baglamda bu tez ¢alismasinda, egrisellik ve ortogonal kalite ¢ok iyi

ve kabul edilir seviyededir.

Egrisellik Olciitii
Miikemmel Cok Iyi Tyi Kabuledilebilir ~ Katii Kabuledilemez
0-0.25 0.25-0,50 0,50-0.80 0.80-0.94 0.95-0.97 0.98-1.00

Ortogonal Kalite Olgiitii
Kabuledilemez Kotii Kabuledilebilir iyi Cok Iyi Miikemmel
0-0,001 0.001-0.14 0.15-0.20 0.20-0.69 0.70-0.95 0.95-1,00

Sekil 3.7: Eleman kalitesi spektrumu [81].

Optimizasyon siiresince kullanilan 6rgii modelin kalite metrikleri Cizelge 3.4 igerisinde

gosterilmektedir. Aerodinamik analizler, iiglincii derece mertebeden yakinsama kriteri

Cizelge 3.4: HAD modeli orgii elemanlarinin 6zellikleri.

Egrisellik 0,39
Minimum Ortogonal 0,17
Ik sinir yiiksekligi (m) 0,0004
Toplam Eleman Sayisi 487477
Toplam Nokta Sayisi 260065

benimsenip aerodinamik analizlerin sonlandirilmasi seklinde kurgulanmustir.

3.4 Referans Aerodinamik Analiz Sonuclar:

Aerodinamik analizi i¢in olusturulmus orgii modelin egriselligi 0,39°dur. Baslangi¢ ka-
nat tasarimi bu model ile akis analizine tabi tutulmustur. Simiilasyonunun sonucunda
kanat iizerinde olusan Pascal biriminde toplam basin¢ dagilimi Sekil 3.8’de gosterilmis-
tir. Giris hizina gore benzetimin toplam hiz sonucu Sekil 3.9’da sunulmustur. Aerodina-
mik benzetiminin sonunda, basing degerleri kanat kabuk yiizeyine entegre edilmek {izere
kanat i¢ yapisallari olan kaburga, ana kirig, arka kiris ve kabuk kalinli§in1 optimize et-
mek icin yapisal modele aktarilmistir. Aerodinamik benzetiminin sonunda, hesaplanan
tasima ve siiriikleme katsayilar1 Cizelge 3.5’te oldugu gibidir. Referans aerodinamik
analiz siiresince kullanilan 6rgii modelin kalite metrikleri Cizelge 3.6 icerisinde goste-

rilmektedir.
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Sekil 3.8: Kanadin referans basing sonuglari.
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Sekil 3.9: Kanadin referans hiz sonuglari.

Cizelge 3.5: Kanat referans aerodinamik analizi tasima ve siiriikleme
katsayis1 degerleri.

Tagima Katsayisi 0,08825
Siiriikleme Katsayisi 0,00731

Cizelge 3.6: Referans HAD modeli 6rgii elemanlarinin 6zellikleri.

Egrisellik 0,39
Minimum Ortogonal 0,15
Toplam Eleman Sayis1 487477
Toplam Nokta Sayisi 260065
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3.5 Yapisal Analiz Yonteminin Dogrulanmasi

Bu calismada, niimerik yapilan yapisal analiz sonuglar1 plak teorisi denklemleri ile dog-
rulanmistir. Deplasman hesaplarinda bulunan, "D" terimi plakanin egilme rijitligini ifade
eder ve bu plaka kalimliginin kiipiiyle orantilidir, w(x, y) plak boyunca deplasman dagi-

limini1 temsil eder.

Eh?
D=—_ A
(- v2) G.1)
- . (/mMAX\ . (NT
w(x,y) = Z] ;Wmn sm( , )sm( by> (3.2)
m=1n=
p(6,y) = Y Y Pyusin (m—m) sin (”—”y) mon=1,2.3.. (3.3)
m=1n=1 a b
16
_ PO Z Z —sin (m?tx> sin <n7ry> (3.4)
= mn a 2a

Dikdortgen plaka ornegi Sekil 3.10 ’da oldugu gibi yayili yiikler altinda yiiklemeye

maruz birakilmagtir.

Basit Mesnet

Sekil 3.10: Basit mesnetli dikdortgen plaka [83].

16170 _

Burada = Py, ve m,n pozitif tek tam sayilardir (m,n =1,3,5,...).

Z Z W, nsm( Zx> sin (n;ry) (3.5)

m=1n=

Cift siniis serisinin a¢ilimi1 Denklem 3.5°e gore acildiginda W, Denklem 3.6’ya gore

acilir:




Boylece,

Winn = 5 = (3.7)

at &
wix,y) = LOPT gy

- 20 4 mn=1,3,5... (3.8)
P e (1)

Maksimum deplasman x= a/2 ve y= a oldugunda:

16poa’

0.0101 poa*
Wy =~ 5~ (0.640 ~0.032 0004 +0.004 + ...) Sttt il

D (3.9)

Navier yaklagimina gore, a=80 mm; kalinlik (h)=2 mm; Aliiminyum 7075 malzeme-
nin yogunlugu 2660kg/m>, E=71000 MPa; Py=1 MPa; Poison oram=0,3 oldugu plaka
icin Denklem 3.1 kullanilarak D=52014,65 olarak hesaplanmistir. Maksimum deplas-
man degeri Denklem 3.9 kullanilarak hesaplanmistir. Deplasman degeri ise, wpax=7.95
mm olarak hesaplanmistir. Niimerik ¢oziimii sonlu elemanlar modeli 1 mm quad ele-
man ile elde edilmistir. Sekil 3.11 ile sonlu elemanlar modeli gosterilmistir. Dikdortgen

plakanin niimerik analizinin deplasman sonucu Sekil 3.12 ile gosterilmistir.

A

L.

Sekil 3.11: Dikdortgen bir plakanin sonlu elemanlar modeli.
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Contour Plat
Displacement(Mag)
Analysis system

0.225E+10
[ 7.31MEHI0
B.357E+I0
— S.434E+H10

[ 4.570E+I0
3.656E+I0

2742E+HI0
1.828E+10
9.139E-M

0.000E-+0

Max = 5.225E+00

L

Sekil 3.12: Dikdortgen bir plakanin sonlu elemanlar modeli
deplasman sonucu.

Optimizasyon siirecinde statik analiz ¢oziimii alinan ANSYS Workbench programinin
mekanik arayiizii kullanilarak aynit mekanik 6zellikler girilerek, ayni orgii eleman tipi ve
sayist ile bir niimerik sonug elde edilmistir. Bu ¢oziimiin Sekil 3.13 ile sonlu elemanlar

modeli gosterilmistir.

-

Sekil 3.13: ANSYS-Workbench programinda dikdortgen bir plakanin
sonlu elemanlar modeli.

100,00 (mm)
1
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Dikdortgen plakanin ANSYS-Workbench programinda niimerik analizi deplasman so-

nucu Sekil3.14 ile gosterilmistir.

I

Sekil 3.14: ANSYS-Workbench programinda dikdortgen bir plakanin
sonlu elemanlar modeli deplasman sonucu.

000 5000 100,00 (mrm)
[ s S|

25,00 75,00

Siniis fonksiyonuna bagli yayil yiik altinda sabit ve basit mesnetli kare bir plaka Sekil

3.15 ile gosterilmistir.

Basit Mesnet

Sekil 3.15: Basit ve sabit mesnetli kare plaka [83].

Kare bir plakanin Sekil 3.15’de oldugu gibi bir yiikleme altindaki deplasman degeri
Denklem 3.10 ile hesaplanir.

wp = W, sin (E) (3.10)
a
4
poa
w = G.11)

Denklem 3.10, Denklem 3.11°in yerine yazildiginda deplasman degeri Denklem 3.12
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elde edilir:

poa” . <7rx>
wp = _
P 7D a
Sinir kosullari:
adw
(W)y—tre =0 and (a_y)y*i% =0

Wi +A; COSh(OCl) + B0y SiIlh(OC1> =0,
Al Sin(Otl) + B (061 COSh(OCl) + SiIlh(OCl)) =0

Y

o = 5’dir, Denklem 3.15°de yerine konuldugunda:

_ —Wi(aqcoshay +sinhoy)

Al =
l o + cosh ¢ sinh
Wi sinh (04
B = -
o + cosh & sinh ¢¢;
poa4 sinh o Ty . Ty oy cosh o + sinh 4
wr = ( 7 - —smh(—)— i
D o +coshaysinhay /) a a o + cosh ¢ sinh

(3.12)

(3.13)

(3.14)
(3.15)

(3.16)

(3.17)

osh <E>,
a

(3.18)

Maksimum deplasman, x = a/2 ve y = 0 noktasinda meydana gelir ve Denklem 3.19 ile

hesaplanmustir.

4
a
Winax & 0.00154”’0T

(3.19)

Levy’nin yaklagimina gore, a=80 mm; kalinlik (h)=2 mm; Aliiminyum 7075 malzeme-
nin yogunlugu 2660kg/m?, E=71000 MPa; Py=1 MPa; Poison oram=0,33 oldugu plaka
icin Denklem 3.1 kullamilarak D=52014,65 olarak hesaplanmistir. Maksimum deplas-

man degeri Denklem 3.19 kullanilarak hesaplanmistir. Deplasman degeri ise, wyax=1.21

mm olarak hesaplanmigtir. Niimerik ¢oziimii sonlu elemanlar modeli 1 mm quad tipi ele-

man ile elde edilmistir. Sekil 3.16 ile sonlu elemanlar modeli gosterilmistir.
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L.

Sekil 3.16: Kare bir plakanin sonlu elemanlar modeli.

Kare plakanin niimerik analizi sonucu deplasman sonucu Sekil 3.17 ile gosterilmistir.

Contour Plat
Displacernent{iag)
Analysis system

1.262E+10
[ 1.122E+00
9.614E-01
— G.412E-01
7.010E-01
6.60BE-01
4. 206E-01
2.804E-01
1.402E-01
0.000E+10

Max = 1.262E+00

Y

b

Sekil 3.17: Kare bir plakanin sonlu elemanlar modeli deplasman
sonucu.

Yayil yiik altinda sabit ve basit mesnetli dairesel bir plaka Sekil 3.18 ile gosterilmistir.

4 / [

Sekil 3.18: Sabit mesnetli dairesel bir plaka [83].
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Moment toplami Denklem 3.20 ile hesaplanir:

d
u%:—/l/&mmn (3.20)
r
d*wp ldwp 1d [ dwp M
V2 = ——=——\r—]=—-—. 21
rwe(r) drr " r dr rdr (r dr D (3-21)
Yaricapa gore integral islemi gerceklestirilir ve Denklem 3.22 elde edilir.
d# 1
— = /pz(r)rdr. (3.22)
Ardindan Denklem 3.23 ortaya ¢ikmaktadir.
d
d%:—/l/ﬁumn (3.23)
r
Denklem 3.21 i¢ine yerine koyarak ve integral islemini gerceklestirerek, 6zel bir ¢oziim
belirlenmistir:
1 rd
wp=—= —%/:%Mn (3.24)

Ardindan 6zel deplasman (w),) kesin ¢6ziim denklemi, Denklem 3.25 ile nihai formunu

almaktadir.

_ bo ar [ 5 _Por4
Wy = 1D (/ . /r dr) = 61D (3.25)

Maksimum deplasman degerinin genel denklemi Denklem 3.26 ile hesaplanmaktadir.

4
.
w:w+wzq+qﬂ+%ﬁ (3.26)
2
pory
= 2% 27
32D 3:27)
4
Pory
_ %o 3.28
"7 64D (328)

Denklem 3.27 ve Denklem 3.28 Denklem 3.26°y1 yerine kondugunda Denklem 3.29 elde

edilmektedir. A
o
(Wmax)r:0 = % .

Navier ve Levy’nin genigletilmig yaklasimina gore, a=80 mm; kalinlik (h)=2 mm; Alii-
minyum 7075 malzemenin yogunlugu 2660kg/m>®, E=71000 MPa; Py=1 MPa; Poison

(3.29)
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orani=0,3 oldugu dairesel bir plaka i¢in Denklem 3.1 kullanilarak D=52014,65 olarak

hesaplanmigstir. Maksimum deplasman degeri Denklem 3.29 kullanilarak hesaplanmustir.

Deplasman degeri ise, wnax=0,117 mm olarak hesaplanmistir. Niimerik ¢oziimii sonlu
elemanlar modeli 0,6 mm quad eleman ile elde edilmistir. Sekil 3.19 ile sonlu elemanlar

modeli gosterilmistir.

z

L

Sekil 3.19: Daire seklinde bir plakanin sonlu elemanlar modeli.

Dairesel plakanin niimerik analizi sonunda elde edilen deplasman sonucu Sekil 3.20 ile
gosterilmisgtir.
Contour Plot

Displacement(Mag)
Analysis systern

1.214E-01
[ 1.079€E-01
9.440E-02
— B8.091E-02

[ B6.743E-02
5.394E-02

4.046E-02
2.697E-02
1.349E-02
0.000E+10

Max = 1.214E-01

z

L.

Sekil 3.20: Daire seklinde bir plakanin deplasman sonucu.

Yukarida bahsedilmis olan ii¢ farkli plaka geometrisi ve hesaplama metodlarinin niime-

rik ve teorik deplasman degerleri arasindaki farklar Cizelge 3.7 ile gosterilmistir.
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Cizelge 3.7: Laminer plaka modellerinin deplasman degerleri.

Deplasman(mm)
Navier Methodu ile Dikdortgen Plaka Teorik Degeri 7,95
Dikdortgen Plaka Sonlu Elemanlar Modeli Degeri (Optistruct Coziicii Sonucu) 8,06
Dikdortgen Plaka Sonlu Elemanlar Modeli Degeri (ANSY S-Workbench Coziicti Sonucu) 7,82
Levy Methodu ile Kare Plaka Teorik Degeri 1,21
Kare Plaka Sonlu Elemanlar Modeli Degeri (Optistruct Coziicii Sonucu) 1,26
Navier ve Levy’nin Genisletilmis Yaklagimina Gore Daire ile Daire Plaka Teorik Degeri 0,12
Daire Plaka Sonlu Elemanlar Modeli Degeri (Optistruct Coziicti Sonucu) 0,121

Cizelge 3.8’de goriilecegi lizere niimerik ve teorik degerler arasindaki farkin %5’ten az
olusu, bu tez ¢calismasinda kullanilmis olan yapisal ¢6ziicii olan Optistruct ve enyiyileme
stirecinde kullanilan ANSYS-Mechanical programlarinin dogrulandiginin kanit1 olarak

gosterilmigtir.

Cizelge 3.8: Laminer plaka modellerinin arasindaki yiizde fark.

Yiizde Fark(%)
Navier Methodu ile Dikdortgen Plaka (Optistruct Coziicti Sonucu) 1,41
Navier Methodu ile Dikdortgen Plaka (ANSYS-Workbench Coziicii Sonucu) 1,70
Levy Methodu ile Kare Plaka (Optistruct Coziicii Sonucu) 4,07
Navier ve Levy’nin Genisletilmis Yaklagimina Gore Daire ile Daire Plaka (Optistruct Coziicti Sonucu) 3,37

3.6 Yapisal Modelin Orgii Model Eleman Boyutu Calismasi

Yapisal analizler boyunca malzeme olarak AL7075 kullanilmig olup malzeme 6zellikleri

Cizelge 3.9 ile gosterilmisgtir.

Cizelge 3.9: AL-7075 malzeme 6zellikleri [84].

Young Modiilii 7,17E+4 MPa
Poisson Oram 0,33

Yogunluk 2,66E-9 ton/mm>
Maksimum Cekme Dayanimi 5,017E+2 MPa

Yapisal benzetim caligmalar icin uygun eleman boyutunun belirlenmesi amaciyla ele-
man boyutu hassasiyet calismasi yiiriitiilmiistiir. Eleman boyutu yapilan calisma sonra-
sinda en kiiciik alana iki adet eleman gelmesine karar verilerek 12.7 mm kabul edilmistir.
Sonug olarak elde edilen gerilme ve eleman boyutu grafigi Sekil 3.21 ile gosterilmis-
tir. Eleman boyutunun yani sira, elemanlarin kalitesini belirleyen ol¢iitler de sonuclarin
dogrulugunu etkileyen 6nemli kriterlerdendir. Yapisal alanda yapilan analizlerde kul-
lanilan elemanlarin kalitesi incelenirken siklikla su metrikler tercih edilir: jakobi orani
(ing. jacobian ratio), carpiklik (ing. warpage), egrisellik(ing. skewness) ve en-boy orant

(ing. aspect ratio).
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Eleman Boyutu (mm)

Sekil 3.21: Yapisal modelin orgii model eleman boyutu hassasiyet
sonuglari.

Bundan sonraki boliimlerde sunulacak olan yapisal analizlerde kullanilan elemanlar iki
boyutlu olup asagida Sekil 3.22°de yer alan bu kriterlerin spektrumu [82] dahilinde ka-

liteleri degerlendirilmistir.

Metrik En iyi e— ) [ Kiti

Eleman Kalitesi 0

En-Boy Orani-Uggen Eleman
(ing. Aspect Ratio) L

En-Boy Orani-Dértgensel
Eleman (ing. Aspect Ratio)

Jacobi Oram 1 0
Carpikhk (ing. Warpage) 0 10 f

Egrisellik Agisi-Uggensel , T
Eleman (ing. Skewness) 0 N
Egrisellik Agisi-Dértgensel .
Eleman (ing. Skewness) 0

a0’

90

Sekil 3.22: Yapisal orgii elemanlarin kalite spektrumu [82].

3.7 Kanadin Baslangi¢ Tasariminin Belirlenmesi

Turboprop bir egitim ugag1 profiline uygun kanat kesiti ve boyutlandirilmasi yapildiktan
sonra i¢ yapisallarin yerlesimine karar verilmesi gerekmektedir. Bu boliimde topoloji op-
timizasyonu ile i¢ yapisallarin yerlesim calismasi yiiriitiilmiistiir. Yapisal ¢oziicii olarak
kullanilan HyperWorks-OptiStruct ¢oziiciisii ile referans olarak kullanilan lineer statik

analizi sonuglar1 bu boliimde verilmisgtir.
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3.7.1 Kaburga ve Kiris yerlesimi icin topoloji optimizasyonu

Topoloji optimizasyonuna tabi tutulacak geometrik model, bir kara kutu modeldir. Kara

kutu modeli, kanat icin statik yiikler acisindan kritik olan yogun alanlar1 tamimlamak ve

aerodinamik kuvvetin yapi lizerindeki dagilimini tespit etmek iizere kullanilir. Topoloji

optimizasyonu c¢aligsmasi, yapisal optimizasyon ag¢isindan kiriglerin ve kaburgagalarin

uygun pozisyonlarin1 tammlamaya yardimci olur. Ici dolu geometriden kafes yapisina

gecis calismast Sekil 3.23 ile gosterilmistir. Olusturulan geometri CATIA V5 progra-

minda, tasarim degiskenlerine uygun parametreler atanarak tasarlanmistir.

Sekil 3.23: Kaburga ve kirig yerlesimi.

Topoloji optimizasyonu ¢alismasi Optistruct ¢oziiciisii ile yapilmig olup Cizelge 3.10’da

oldugu gibi dort farkli kosulla dort farklt duruma bagh sekilde sonuclar alinmustir.

Cizelge 3.10: Tasarim degiskenleri degerleri.

Durum 1 Durum 2 Durum 3 Durum 4

Amag Minimum sekil | Minimum sekil | Minimum sekil | Minimum sekil
Fonksiyonu | degistirme degistirme degistirme degistirme

enerjisi enerjisi enerjisi enerjisi

(ing. (ing. (ing. (ing.

compliance) compliance) compliance) compliance)
Kisit Hacim Hacim Hacim Hacim
Fonksiyonu | oran1i=0,40 orani=0,35 orani=0,30 orani=0,30
Ayrik 3 3 3 5
parametre

Bu dort durum, eleman dagiliminin farkli yogunluklarini ortaya sunar. Dort durumun

degerlendirilmesi ile, kanadin i¢ yapilarinin optimal pozisyonlar1 belirlenmis olup daha

hafif bir tasarim elde etmesinin Onii ac¢ilmistir. Topoloji optimizasyonu durumlarinin
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sonuglar1 Sekil 3.24’te gosterilmistir. Eleman yogunlugu fazla olan bolgeler, kaburga ve

kirig yapilarinin buralardan gecmesi gerekliligine isaret etmektedir.

Condoer Pl - Miodal | Caner Piot 1 Model
Element DensizsiDensiy) sian esslicn B Frasa 4 | ERment DemsbesDensly) ign " eration B0 - Feame d
1 000E+00 Dlesign - Raration Bl : Frama 1 D00E+00 Dasign : keration B0
8.900E-01 8.900E-01
7.800E-01 7.800E-01
—6.700E-01 —6.700E-01 AT
7 5.600E-01 A sf g | = 5.600E-01 e
= 4.500E-01 =4 500E-01 ]
3400E-01 3.400E-1 / 2
2.300E-01 2 300E-01 a
4.200E-01 = . 200E-01
2 1.000E-02 - 1.000€-02 (b)
e S
E:rm.r"a! 1- el -é:mu.r"n‘: 1 Model
Jement Ders BesDensty) i - Rmaticn £ - Frama 4 lemend DenatiesDenaty) ign - Beration B0 - Frame 4
1 000E+00 Diesign - Reration B : Frama 1 000E+00 Dasign : heration B0
8.900€-01 8.900E-01
7.800E-01 7.800E-01
—6.700E-01 —6.700E-01
7 5.600E-01 f phe s = woupaeil | — 5.600E-01
=4.500E-01 =4 500E-01
3400E-01 3.400E-01
2.300E-01 2300E-01 &
1. 200E-01 1. 200E-01 -
" 1.000E02 1.000E-02 )
i By

Sekil 3.24: Topoloji optimizasyonu a) Durum 1. b) Durum 2. ¢)
Durum 3. d) Durum 4.

Kanadin yapisal modeli, optimizasyon sonucu ¢ikarilan yogun yiizeyler gozetilerek bu
dort farkli durumun ortak olan yogun alanlarindan kaburga yapilarini bu bolgelerde yo-
gin olacak sekilde tasarlanmustir. Sekil 3.25, yogun alanlar1 gostermektedir. I¢ yapilar,

bu yogun alanlarin yaklasik degerlerine gore konumlandirilmistir.

Sekil 3.25: Dort farkli durum sonunda elde edilen yiiksek yogunluklu
bolgeler.

3.8 Referans Dogrusal Statik Analizi Sonuclar:

Kirig ve kaburgalarinin yerlesimi tamamlandiktan sonra, baglangi¢ tasarimi tamamlan-
mis olur. Referans tasariminin sonlu elemanlar modeli lineer statik analiz calismalari

i¢in olusturulmustur. Sonlu elemanlar modeli Sekil 3.26’daki gibidir.

63



L

Sekil 3.26: Kanadin referans yapisal analiz sonlu elemanlar modeli.

Von-Mises gerilme sonucu Sekil 3.27, mutlak maksimum asal gerilme sonucu ise Sekil

3.28 ile asagida gosterildigi gibidir.

Contour Plot
Element Stresses (2D & 3D)(vonMises, Max)
Analysis system

4.15E+02
[ 3.69E+02
3.23E+02
— 2.76E+02
2.30E+02
[ 1.84E+02

1.38E+02
9.22E+01
4.61E+01
0.00E+00

No Result

Max = 4.15E+02
2D 903610

z
Y‘%\LV X
Sekil 3.27: Kanadin referans yapisal analiz VonMises gerilme
sonucu.

Contour Plot
Element Stresses (2D & 3D)(Absolute Max Principal, Max)
Analysis system

4.69E+02
[ 3.95E+02
3.21E+02
— 2.47E+02

[ 1.74E+02
9.98E+01

2.60E+01

-4.79E+01
-1.22E+02
-1.96E+02

No Result

Max = 4.69E+02
2D 869960

Y\D X
Sekil 3.28: Kanadin referans mutlak maksimum asal gerilme
dagilimi.
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Baslangictaki yer degistirme sonucu Sekil 3.29°daki gibi gosterilmistir.

Contour Plot
Displacement(Mag)
Analysis system

4.09E+01
[ 3.63E+01

3.18E+01
— 2.73E+01

— 2.27E+01
— 1.82E+01

1.36E+01
9.08E+00
4.54E+00
0.00E+00

No Result

Max = 4.09E+01
Grids 52824

Z
i

Sekil 3.29: Kanadin referans deplasman sonuglari.

3.9 Referans Titresim Analizi Sonuclar:

Bu boliimde modal analize ait iki mod frekans: incelenmistir. Minimum frekans yak-
lagik 7,2 Hertz olup bu minimum frekans araciligiyla 8.9 mm yer degistirme meydana
gelmistir. Maksimum frekans yaklasik olarak 33,39 Hertz olup bu maksimum frekans
araciligryla 10.6 mm yer degistirme meydana gelmistir. Referans yapisal analizin orgii

kalitesi Cizelge 3.11 ile belirtildigi gibidir. Sonuglar Sekil 3.30’da gosterilmistir.

Cizelge 3.11: Kanat Referans Yapisal Analiz Orgii Kalitesi.

Eleman Boyutu 12,7 mm
Eleman Sayis1 67208
Diigiim Sayis1 64357
Jacobi Orani 0,66
Carpiklik 11,92
Egrisellik 43°
En-boy Orani 2,64
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Contour Plot Contour Plot
Eigen Mode(Mag) Eigen Mode(Mag)
Analysis system Analysis system
8.98E+00 1.06E+01
[ 7.98E+00 [ 9.38E+00
6.98E+00 8.21E+00
— 5.99E+00 — 7.03E+00
— 4.99E+00 — 5.86E+00
— 3.99E+00 — 4.69E+00
2.99E+00 3.52E+00
2.00E+00 2.34E+00
9.98E-01 1.17E+00
0.00E+00 0.00E+00
No Result No Result
Max = 8.98E+00 Max = 1.06E+01
Grids 52824 Grids 52824
Z 4
< o

Sekil 3.30: Kanadin ilk Mod Analizi Sonucu: a) Mod1=7,17 Hz b)
Mod2=33,39 Hz.

66



4. ENIYILEME CALISMALARI

Bu boliimde, eniyileme caligsmasi icin kurulan algoritmanin ispati ile baslanip sirasiyla,

eniyilemenin akis semasi, tasarim degiskenlerinin belirlenmesi, sonuglarin alinmasi ve

karsilastirilmasi ele alinmagtir.

4.1 Vekil Model Tabanh Eniyilemenin Dogrulanmasi

Bu calismada, dogrulama test vakasi [85] referansindan alinmistir. Hiz diisiiriicii, Se-

kil 4.1°de gosterildigi gibi vakada kullanilmistir. Burada x; disli yiizeyinin genisligi, x,

disli, x3 kiiciik disli dis sayis1, x4 ve x5 yatak aralig1, x¢ ve x7 ise saftin capidir. Optimizas-

yonda, alt ve iist sinirlar ile baglangic noktalar1 olan yedi tasarim degiskeni kullanilmistir

ve Cizelge 4.1 ile gosterilmistir.

Shaft 2 T
\. RN
Bearing 2 I
\\:“-__h_‘_ *4 Bearingl
I
AN 5 I 1P
"T— K7 Xg "I‘/d L
Sekil 4.1: Test caligmasi [85].
Cizelge 4.1: Test calismasi [85].
Alt Deger | Baglangi¢ Deger | Ust Deger
x1 109 2.6 3.6
xy | 0.7 0.7 0.8
x3 | 17 17 28
xq |73 7.3 8.3
x5 | 7.3 7.3 8.3
X6 | 2.9 29 3.9
x7 |5 5 5.5
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Asagida verilen amag fonksiyonu ve on bir kisitlama sunlardir:

f(x) = 0.7854x1x3(3.3333x3 + 14.9334x3 — 43.0934) — 1.508x (x7 +x7)

4.1)
+7.477(x3 4 x3) +0.7854 (x4x% + x5%3),
27
g1(X): ———1<0, 4.2)
X1X5X3
397.5
g(X): =5 —-1<0, (4.3)
X1X5X3
1.93x3
g3(X): 2-1<0, (4.4)
XQX3X6
1.93x3
ga(X): ———3 —1<0, (4.5)
X2X3X7
10 X4
gs(X): —/(745—=)2+1.69 x 107 — 1100 < 0, (4.6)
x6 X2X3
10 X35
g6(X): —4/(745—-)2+1.575 x 108 — 850 < 0, 4.7)
X5 X2X3
1
g7(X): —(1.5x6+1.9)—1 <0, (4.8)
X4
1
gs(X): x—(1.1X7+1.9)—1 <0, (4.9)
5
89(X): xox3 —40 <0, (4.10)
gi0(X): 5—= <0, (4.11)
X2
X1
gn(X): ——12<0 (4.12)
X2

Amag fonksiyonunun optimum degeri referans [85] calismasinda f* = 2994, 34 ola-
rak bulunmustur. Bu ¢alismada, vekil model tabanli eniyileme, MATLAB aracilifiyla i¢
dolgu 6rnekleme kriterleri ile uygulanmis ve amag fonksiyonunun optimum degeri f* =
2994342966 olarak hesaplanmigtir. Bulunan optimum sonug ile referans calisma ara-
sinda %0,000099054 fark bulunmaktadir. Fark ihmal edilebilir diizeydedir. Sekil 4.2°de,
dogrulama optimizasyonunun, yedinci iterasyonu sonunda belirli bir noktaya yakinsa-

dig1 goriilmektedir. Takibi yapilan ilk elli sekiz iterasyonun gorseli gosterilmistir.

68



—o— Olciim
6000 — % —Tahmin e %,

S 2990

)

<y

Jarspe(

2985

2980 * -
0 20 40 60
Ornek [-]

Ornek [-]

%107

1 (X)) ) max (CVRMSE (

&1

GRMSE({,

20 40 60
Ornek [-]

o

D
o
max (
N

0 20" 40
Ornek [-]

Sekil 4.2: Vekil model dogrulama ¢alismasinin sonuglari.

Sonuglara bakildig1 zaman amag¢ fonksiyonu tahminlerinin ilerleyen iterasyonlar bo-
yunca herhangi bir degisim gostermedigi yani tahminler arasi farkin sifira yakin oldugu
noktada, amac fonksiyonu vekil modelinin GRMSE degeri sifira cok yakin bir deger ol-
dugu gosterilmigtir. Tahmin degerlerinin bu noktadan sonra ayni1 yere yakinsadigr Sekil
4.2 ile goriilmektedir. Amac fonksiyonunun ¢apraz dogrulama hatasi ise, giderek daha
da azaldig1 ve sifira yakinsadig1 gozlemlenmektedir. Ote yandan kisit fonksiyonlarinin
vekil modelleri incelendiginde, Sekil 4.3 ile kisitlarin 6l¢ciim ve tahmin degerlerinin Or-
tistiigii gbzlenmektedir. Problemde ise bu degerlerin tanimlanan aralifin icerisinde ol-
dugu goriilmektedir. Entegre edilen algoritma bu optimizasyon problemi ¢ercevesinde
durma kriteri olarak iki temel noktay1 degerlendirmektedir. Bunlardan birincisi, amag
fonksiyonu tahmin degerlerinin yiizde olarak degisimidir. Bu tolerans ise %0,001 ’dir.
Tolerans degeri problemin karmasikligi, gecirilecek siireye bagli olmakla birlikte prob-
lemden probleme degiskenlik gosterebilmektedir. Diger husus ise, tiim vekil modellerde

goriilen en yiiksek GRMSE hata metriginin belirlenen toleransin altina inmesidir. Bu

tolerans ise %10 ’dur.
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Sekil 4.3: Vekil model dogrulama ¢aligmasinin sonuglart.

4.2 Vekil Model Tabanh Cok Disiplinli Eniyileme

Cok disiplinli eniyileme ¢alismasi Sekil 4.4°te yer alan planlamaya uygun sekilde ger-
ceklestirilmistir. On beg tasarim degiskeni ve bunlarin aerodinamik, yapisal ve titresim
benzetimlerince elde edilen degerlerini aragtirmak i¢in ticari yazilim olan ANSYS’in
komut dizisi ve komutlarin otomasyonu islemi kullanilmigtir. Yapilan her islemlerin kar-
siliklarinin kullanilarak ¢agrildigi; bu yapilan otomatizasyon iglemlerinin MATLAB’da
kurgulanan eniyileme algoritmasi ile iglenmerek tasarim degiskenleri eniyilenmistir. Ben-

zetim iglemleri otomatize edilmistir. Eniyileme problemi asagidaki gibi kurgulanmistir:

Bul X (4.13)
Enkiigiikle  Mianar(X) (4.14)
oyleki oym(X) < GF- oy (4.15)

Opririre < @01 (X) (4.16)

Thaglangic < Tson (4.17)

(T/S)bastangic < (T'/S) (4.18)
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Burada verilen ovy, Von-Misses gerilme degeri, oy ilgili malzemenin akma dayanimini
ifade eden gerilme degeri ve GF ise giivenlik faktoriidiir. Giivenlik faktorii 1.15 olarak
kabul edilmistir. Bu tez ¢alismasinda My, kanat kiitlesi, @;(X), X tasarim noktasin-
daki ilk mod frekansi, @y, i, minimum istenen mod frekansidir. Kurulmus olan vekil
model ile asagida yer alan cok disiplinli uygulanabilir mimarisi Sekil 4.4’deki plan-
lamaya uygun sekilde bu probleme entegre edilmis ve eniyileme calismasi bu sekilde
yurtitiilmiistiir. Kanadin parametrik tasarimi ile baglanan calisma, yapisal ve akiskan-
lar dinamigi icin gerekli sonlu elemanlar modelenin olugturulmasi ile devam etmistir.
Alman yiik dagilimlari yapisal modele entegre edilmistir. Latin hiperkiip 6rnekleme ile
tasarim degiskenlerine ait ¢ikti degerleri tutulmustur. Ardindan, ¢ok disiplinli uygula-
nabilir mimarisine uygun gelistirilmis vekil model bazli algoritmaya tabi tutulan eniyi-
lenmis sonuclar belirlenen durma kriterine uygun sekilde sonlandirilmig olup daha iyi

ozellikteki ag orgii yapilariyla kurulu analizlerle degerlendirilmistir.

_S | Geometri
[
Baslangic Tasanm
f T
|I||II ,'EI
oy f _ f
i | Maksimum |
,'F tasima/siiriiklen- J-'I
Aerodinamik == | Aerodinamik Yukler | _ / e OrIg f
- *:; = sahip minimum |

| kanat afithg |

| ﬂl | | ii ff
|

Sonlu Elemanlar / ]
Modeli / Yapisal ! r] d

Sekil 4.4: Cok disiplinli entyileme ¢aligmasinin akis semasi.

Optimizasyon iglemi icin yapilan her bir islem karmagik bir dizi komutu icermektedir.
Islemler detayl sekilde anlatilacak olursa, ilk adim kanat geometrisinin CATIA V5 ile
parametrik modellenmesi ile baslar. MATLAB iizerinden belirlenen tasarim degisken-
leri olan bu parametre degerleri kullanilarak CAD model giincellenir. Yapisal geomet-
rinin dis yiizeyinin, uzak alan basing¢ sinir sarti geometrisinden ¢ikararak aerodinamik
CAD model olusturulur. ANSYS Mechanical kisminda caligabilir, tiim ayarlar: girili bir
analiz modeli olusturulup ANSYS Journal komut dizisine kayit edilir. Yapisal analizin

yapildig1 bu kisim aerodinamik analizinde oldugu gibi analizi bastan kurarak calistiri-
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lamadig1 i¢in bu iglem gergeklestirilir. Bu tercihin sebebi, ANSYS Mechanical’da ba-
sing¢ yiikkleme seceneginin yalnizca arayiizden erisilebilir olmasidir. Dolayisiyla ANSYS
Workbench’in ¢alistiracagi komut dizisi (ing.script), kayith bir taslak mekanik analiz
modeli iizerinden gerekli unsurlart giincelleyerek mekanik analiz gerceklestirir. Aerodi-
namik ve yapisal analiz i¢in gerekli ylizeyler sirayla CATIA V5’in “Publication” 6zelligi
kullanilarak ANSYS’in bilesenlerindeki yiizey secim iglemleri arayiizden bagimsiz hale
getirili. MATLAB’dan Spaceclaim’in komut dizisi ¢cagirilir. SpaceClaim komut dizisi
ile aerodinamik ve yapisal CAD modelleri Space Claim ortamina yiiklenir. Aerodina-
mik ve yapisal analizler i¢in ilgili geometriler SpaceClaim ortaminda diizenlenerek ka-
yit edilir. Kanadin referans alan ve uzunlugunun hesabi her dongiide aerodinamik analiz
icin gerektiginden bu kisimin hesab1 SpaceClaim komut dizisi ile MATLAB iizerinden
calistirllarak hesaplanir. SpaceClaim programinda kanadin, kok ve ug kesitlerine cagi-
rilan komut dizisi sayesinde noktalar atilir. Bu noktalar, text dosyasina kaydedilir. Mat-
lab programinda bu kaydedilen noktalarin en uzak mesafesi hesaplanir. Hesaplanan bu
uzunluk ve alan degerleri ANSYS Workbench’in Fluent i¢in olusturulan journal komut
dizisi igerisinde ilgili boliimlere iglenir. Aerodinamik analiz i¢in 6nceden kayit edilen
journal komut dizisi, referans alan ve uzunluk degerleriyle giincellenmis olur. Hali ha-
zirda aerodinamik analiz icin gerekli olan tiim ayarlarin bulundugu bu journal komut
dizisi, analiz sonundaki siiritkleme kuvveti, tasima kuvveti ve elde edilen basin¢ dagi-
limin1 csv formatinda tutmaktadir. Takip eden asamada, elde edilen aerodinamik basing
mekanik analizde kullanilir. Mekanik analizin gerceklestirilmesi icin MATLAB {ize-
rinden ANSYS Workbench Journal komut dizisi ¢agirilir. ANSYS Workbench Journal
komut dizisinin gorevi sirastyla: basinci “ External Data” kisminda giincellemek, ge-
ometrinin kayit edildigi SpaceClaim dosyasini giincellemek ve ANSYS Mechanical’da
gerekli ayarlar i¢in harici bir Python komut dizisini ¢agirmaktir. Bu Python komut di-
zisi aracilig1 ile malzeme atamasini yapilir, kalinliklar ilgili tasarim degiskenlerine gore
giincellenir, orgii eleman ayarlar1 yapilir ve model kurulur. Akabinde komut dizisi, sta-
tik ve modal analizleri gergeklestirip, sonuglari txt formatinda kaydeder. MATLAB va-
sitast ile bu sonucglar okunur ve okunan bu yeni deger seti, tasarim uzayina yeni bir veri
noktasi olarak kayit edilir. Kayit edilen veriler 6lgeklenir. Bu tez ¢aligmast i¢in olus-
turulan algoritma igin bu noktalar kullanilmaya baslanir. Olgeklenmis veri noktalar1 ve
Olceklenmis yeni veri seti ile amag ve kisit fonksiyonlar: icin vekil modeller olusturu-
lur. Bu calismada kullanilan adaptif 6rneklem metodlarindan biri olan MSE ile baglanir
ornek almaya baslanir. Kisit vekil modelleri, burada olusturulan vekil model iizerinde
SQP metodu ile eniyileme calismasinda dogrusal olmayan (ing. nonlinear) kisitlar ola-
rak yerini alir. Ilk iterasyonda, amag fonksiyonunun hata metrigi incelenir, ve bu hata
metrigi olarak da vekil modelin MSE degeri kullanilir. DACE aracinin icerisinde bu ha-
tanin en yiiksek oldugu (belirsizligin en yiiksek oldugu) nokta bulunur. MSE veri noktast

cikartilir. Bu nokta vekil model iizerinde yerlestirilerek tahmin sonucu elde edilir. Aka-
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binde MSE kriterine gore secilen bu veri noktasi analizler modellerine iligkin komut
dizilerinde yerine konarak ve yukarida bahsi gectigi lizere analizler gerceklestirilerek
yeni 6lciim alinir. Tlk iterasyon boylelikle tamamlanmus olur. Ikinci iterasyonda da aym
adimlar takip edilir. Tahmin icin MSP adaptif 6érneklem metodu kullanilir. MSP, amac¢
fonksiyonunu minimize etmeyi amaclar. Ozetle, bu tez calismasinda kullanilan mimari

ve izlenecek yol haritas1 Sekil 4.5’te gosterildigi gibidir.
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Sekil 4.5: Kanadin ¢ok disiplinli uygulanabilir (MDF) mimarisi
temelinde vekil model tabanli ¢ok disiplinli eniyilemenin 6zet semasi.

4.3 Tasarim Degiskenlerinin Tamimlanmasi

Bu tez ¢aligmasinda, tasarim degiskenleri Sekil 4.6 ile gosterilmistir. Burada i¢ yapida
bulunan yedi adet kaburga, ana ve arka kiris, i¢ yapiy1 saran kabuk yiizeyi olmak iizere
on adet geometrisel tasarim degiskeni bulunmaktadir. Buna ek olarak bes adet aerodina-
migi etkileyen degisken bulunmaktadir. Tasarim degiskenleri i¢ yapiy1 ve dis geometriyi

degistirmesi sebebiyle yiik dagilimini ve i¢ yapiya diisen yiik miktarini de8istirmektedir.

73



Secilen kanat kabuk uzunlugu aerodinamik ve yapisal disiplinlerinin ikisini de etkileyen
ortak degiskendir. S ile ifade edilir. $ekil4.6 ile gosterilen yesil renkte olan yap: ana ki-
ris kalinhig1 M; ile, kirmizi ile gosterilen yapr arka kirisin kalinhig1 R; ile gosterilir ve
kaburga birden yediye kadar olan kaburgalarin kalinliklar1 R;’den R7’ye isimlendirilir.
Hiicum acis1 (ing. angle of attack) A;, donme acis1 (ing. twist angle) A, ok acis1 (ing.
swept angle) Az, sivrilme oram (ing. taper ratio) 7', kanat aciklif1 (ing. wing span) L ile

ifade edilmistir.

Sekil 4.6: Kanat geometrisi tasarim degiskenleri.

Bu tasarim degiskenlerinin alt ve iist sinirlart Cizelge 4.2°de belirtilmistir.

Cizelge 4.2: Tasarim degiskenleri degerleri.

Alt Deger Baslangig Deger Ust Deger
M, 1,2 mm 5 mm 6 mm
R; 1,2 mm 5 mm 6mm
S 1,2 mm 3 mm 6 mm
R 1,2 mm 3 mm 6mm
Ry 1,2 mm 3 mm 6mm
R3 1,2 mm 3 mm 6mm
R4 1,2 mm 3 mm 6mm
Rs 1,2 mm 3 mm 6mm
R¢ 1,2 mm 3 mm 6mm
R~ 1,2 mm 3 mm 6mm
Ay —5° 0° 5°
Aj —10° 0° 10°
Az 25° 35° 45°
T 0,35 0,55 0,75
L 3985 mm 3985 mm 4235 mm
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4.4 Latin Hiperkiip Ile Veri Ornekleme

Miihendislik deneyiminin agirlikta oldugu bir yaklagimin yaninda bir baska referansta
da [50, 57] belirtildigi gibi degisken sayisinin on kat1 yaygin olarak minimum gereken
veri sayisina karsilik gelmektedir. Bu calismada, de8isken sayisinin yiiksek olmasi ile
beraberinde getirdigi bilgisayar ve zaman maliyeti hesaba katildiginda minimum yeterli
veri noktasi olarak 150 kabul edilmistir ve latin hiperkiip ornekleme metodu ile 6rnek-

ler alinmistir. Bu noktalara karsilik gelen verilerin tasarim uzayinda olusturmus oldugu
dagilim Sekil 4.7 ile gosterilmistir.
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Sekil 4.7: Latin hiperkiip 6rnekleme ile alinan veri noktalari.

4.5 Hiper Parametre Optimizasyonu

Verimli bir vekil model olusturulabilmesi amaciyla farkli kernel modelleri ve parametre
secenekleri ile calisiimisti. MATLAB’1n fonksiyonu olan "bayesOpt" fonksiyonunu
kullanarak bu parametrelerin optimizasyonu gerceklestirilmistir. Matematiksel boyutta
hiper parametre optimizasyonu, bir makine 6grenme modelinin hatasini baz alarak be-
lirlenmig bir amag¢ fonksiyonunu en aza indirgeyen veya en iist diizeye cikaran bir¢ok
hiper parametre bulmayi igerir. Matematiksel olarak bu durum formiile edilebilmektedir.
Genel bir deyisle, f(0) denilen fonksiyonunun girdileri, hiper parametreler (6) ve kernel
fonksiyonu (7 (+)) olacak sekilde Denklem 4.19°daki gibi ifade edilir:
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f(@,%()) = Yol¢iim — Ytahmin 4.19)

(68, (+)) hata fonksiyonunu minimize eden 6 degeri, ¢esitli kernel fonksiyonlari i¢in
bulunur. Ardindan bunlarin i¢inden en diisiik hata degerini veren kernel fonksiyonu ve
o kernel fonksiyonu i¢in bulunan en diisiik hata degerini veren kernel parametresi (6)
degeri kullanilir. Boylelikle hiper parametre optimizasyonu bu sekilde gergeklestirilmis
olur. Dace MATLAB Kriging araci ¢esitli korelasyon modellerini desteklemektedir. Ko-

relasyon modellerinin agiklamalar1 asagidaki gibidir [57].

Ustel (ing. exponential (exp)): Bu korelasyon modeli, exp(—8|d;|) fonksiyonunu kul-

lanir. " j." boyuttaki noktalarin arasindaki fark "d;" ile ifade edilir.

Genellestirilmis Ustel (ing. generalized exponential (expg)): Ustel modele benzer an-
cak egrinin seklini kontrol etmek i¢in ek bir parametre icerir. Bu model, exp (— 0|d;| O )

fonksiyonunu kullanir. Burada degerler 0 < 6,41 < 2 araligindadir.

Gauss: Fonksiyon exp(—@djz) ’yi kullanir, bu da modeli piiriizsiiz ve sonsuz kez tiirev-

lenebilir kilmaktadir.

Dogrusal (ing.linear (lin)): Dogrusal bir model olarak max{0,1 — 6|d;|} seklinde ta-

nimlanir.

Kiiresel (ing.spherical): Bu korelasyon modeli, 1 —1.5§;+ 0.55_]3 ile tanimlanir. Burada
&j = min{1,6|d,

kullanilir.

}, genellikle simirli bir aralikta boyutsal degiskenligi modellemek i¢in

Kiibik (ing.cubic): Kiiresel modele benzer ancak korelasyon i¢in 1 — 3512 +2& J3 kiibik

fonksiyonunu kullanir.

Egri (ing.spline): Bu model, parcali bir fonksiyon tarafindan tamimlanir ve 0 < §; < 0.2
i¢in (1— 15§j2 +30§]3), 0.2 < &; < 1igin 1.25(1 — &;)? arasinda degisir, ve ; > 1 icin
0 degerini alir, burada &; = 6|d;|.

Birinci Dereceden Dogrusal Polinom (ing. Linear First Order Polynomial): Bu mo-
del, verilerdeki dogrusal egilimleri yakalamaktadir. Yanitin, girdi degiskenlerinin dog-
rusal bir kombinasyonu oldugunu varsayar. Bu modelin temel fonksiyonlari, her girdi
degiskeni i¢in sabit ve dogrusal terimleri igerir. Fonksiyon f(x) = [1,x,x2,...,X,] sek-

linde tanimlanir, n girdi uzayindaki boyut sayisini ifade etmektedir.

Gergeklestirilen hiper parametre optimizasyonu sonucunda elde edilen kernel paramat-

releri Cizelge 4.3 ile verilmistir. Kullanilan kriging vekil modelinin taban fonksiyonu
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sebebiyle dogrusal formda olsa da; dogrusal olmayan modelleri de korelasyon kernel-

leri sayesinde kapsayabilecek kapasiteye sahiptir.

Cizelge 4.3: Optimizasyon sonunda elde edilen hiper arametreler ve

degerleri.
Kernel Lineer Baz 0
Kiitle ’corrgauss’ regpolyl” | 1,1951
Gerilme “correxp’ ‘regpolyl” | 0,2172
Frekans “corrspline’ regpolyl” | 0,43015
T/S ’corrcubic’ regpolyl’ | 0,42524
Tasima Kuvveti "correxp’ regpolyl’ | 2,6799

4.6 Vekil Model Tabanh Cok Disiplinli Eniyileme Sonuclari

Optimizasyon algoritmasi "MSE" ve "MSP" i¢ dolgulu numune kriteri kullanilarak olus-
turulmugtur. Bunlardan MSE kriteri, vekil modelin belirsizliginin maksimum oldugu
noktalar1 bulmay1 amaclar. MSP kriteri ise, amag¢ fonksiyonunun, kisitlara uygun olacak
noktalarda, minimumunu bulmay1 amaglar. Bunu yaparken tasarim uzayinda rastgele
baslangi¢c noktalarinin hepsini sirayla tarayacak sekilde baslayarak sirali karesel prog-
ramlama (SQP) methodu ile yiiz elli kez tekrarlar ve minimuma ulagir. Latin hiperkiip
ornekleme ile elde edilen 150 adet veri noktalarim kullanarak kriging ile vekil modeller
olusturulur. Tiim bu tasarim siireci boyunca ¢apraz dogrulama hatalar1 (LOOCYV) ile test
ederek tahminler kontrol edilmektedir.

Vekil modeller olusturulduktan sonra hata metrikleri sirasiyla MSE ve MSP olacak se-
kilde devreye girmeye baglamaktadir. Tahmin iglemlerine, MSE tahmin kriteri ile bas-
lanir. Amac fonksiyonunun MSE hata metrigine gore en yiiksek oldugu yerler bulunur.
Analizlerle o noktadaki 6lctimler alinir. Ardindan bu tahmin ve 6rneklem havuzuna ek-

lenir.

Diger kriter olan MSP ile olan iterasyona gecilir. Ama¢ fonksiyonu olan kiitlenin mini-
mum oldugu noktadan, kisitlara uygun sekilde veri noktasi segilir. Bu 6rnegin analizdeki
kargiliklar ¢cozdiiriilerek olciim gergeklestirilir. 150 adet 6rneklemden olusan veri setine
MSE kriteri vasitasi ile 6rneklenen 1 adet bu yeni 6l¢iim eklenir. Ard arda MSE ve MSP
kriterleri uygulanarak vekil modeller giincellenerek optimizasyon calismasi gerceklesti-
rilmistir. Calisma boyunca egitilen vekil modellerin hata metrigi ile sonuglar1 izlenmis-
tir. Denklem 4.20 ile belirtilen y,,qksimum V€  Yminimum» latin hiperkiip orneklemesinin
sonucunda elde edilen veri setinde goriilen sirasi ile maksimum ve minimum O6l¢iim
degerleridir. Bu degerler kullanilarak hata metrigi normalize edilmistir. Eniyileme siire-

cinin tamamlanmasi i¢in asagida Denklem 4.20 ile tanimi1 verilen en yliksek GRMSE,,;
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(ing. normalized root mean squarred error) hata metrigi %10’in altinda olacak sekilde

tasarim siirecleri tasarlanmugtr.

\/% Yo (yi—9i)?
GRMSE,,; = . (4.20)

Ymax — Ymin

Vekil model tabanli eniyileme siireci boyunca ilgili MSP kriteri ile bir veri noktasi olus-
turulmaktadir. Durma kriteri olarak iki temel nokta degerlendirilmektedir. Bunlardan
birincisi, amag fonksiyonu tahmin degerlerinin yiizde olarak degisimidir. Degisim orani
belirli bir ylizdenin altinda kaldig1 takdirde eniyilemenin durdurulmasi i¢in bu kosul sag-
lanmis olacaktir. Bu esik degeri incelenen 6rnekte amac fonksiyonu tahminleri farki %1
olarak tasarlanmistir. Sekil 4.8 ile gosterilmigtir. Diger husus ise, tiim vekil modellerde
goriilen en yliksek GRMSE hata metriginin belirlenen toleransin altina inmesidir. Bu to-
lerans ise %10 olarak tasarlanmigtir. Bu iki kosul birlikte saglandig: takdirde eniyileme
stireci durdurulacaktir. Bu sekilde durma kriteri belirlenmistir. Kosulan algoritma sonu-

cunda, Sekil 4.9 ile kisitlarin dlgiilen ve tahmin edilen degerlerin grafikleri verilmisgtir.
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Sekil 4.8: Kisit fonksiyonlar1 vekil modellerinin 6lciilen ve tahmin
edilen sonuclari.
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Sekil 4.9: Kisit fonksiyonlari vekil modellerinin dl¢iilen ve tahmin
edilen sonugclari.

Cizelge 4.4’te gosterildigi gibi vekil modellerin hatalar1 % cinsinden belirtilmistir.

Cizelge 4.4: Vekil modellerin normalize edilmis GRMSE;orm

GRMSE; orm (%)
Kiitle 0,0019
Frekans 3,43
Gerilme 1,59
Tasima Kuvveti/Siiriikleme Kuvveti (T/S) | 9,97
Tagima Kuvveti 7,99

degerleri.

Optimum sonuglar, Cizelge 4.5’te gosterildigi gibi f* = 65,43 kg ve amag fonksiyonu-

nun tahmini ile dl¢iilmiis degerleri kirk dordiincii iterasyonun sonunda elde edilmistir.

Siral1 karesel programlama optimizasyon yontemi ise amag¢ fonksiyonunu yirminci ite-

rasyon sonucunda 66,09 kg olarak bulmustur.
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Cizelge 4.5: Optimizasyon yontemlerinin sonug¢larinin
karsilastirilmasi.

Fonksiyon Degerlendirmesi Sayis1 | Iterasyon Sayis1 | Kanat Agirhgi(kg)
SQP | 336 20 66.09
SBO | 44 44 65,43

Cizelge 4.6: Kanat tasarim degiskenlerinin optimum degerlerinin
karsilastirilmasi.

M, R, |S |R |R, |R; |Rs |Rs |Rs | Ry
SOP |6 |[12126 12126 |[12]51 (43|12
SBO 212112916 21392 |28 4418

Optimizasyon sonucunda eniyilenmis kanat tasarim degiskenleri Cizelge 4.6 ve Cizelge

4.7 ile gosterilmistir.

Cizelge 4.7: Kanat tasarim degiskenlerinin optimum degerlerinin
karsilastirilmasi.

Aq Ay Aj T L
SOP | —1,5° | 10° 25° 0,75 | 4235
SBO | 2,2° —4.,4° | 39,8° | 0,59 | 3989

4.7 Optimum Tasarim Modelinin Aerodinamik Analiz Sonuclar:

Aerodinamik simiilasyonunun sonucunda kanat iizerinde olusan Pascal biriminde op-
timum tasarimin statik basin¢ dagilimi Sekil 4.10°da gosterilmistir. Optimum tasarima

gore benzetimin toplam hiz sonucu "m/s" biriminde Sekil 4.11°de sunulmustur.

Pressure
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Sekil 4.10: Optimum kanat tasariminin basing sonuglari.
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Sekil 4.11: Optimum kanat tasariminin hiz sonuglari.

Optimum tasarimin aerodinamik benzetimi, daha iyi bir eleman kalitesine sahip sonlu
elemanlar modeli ile kurulmustur. Hesaplanan eleman kalite metrigi Cizelge 4.8 ile gos-
terilmistir. Aerodinamik benzetiminin sonunda, hesaplanan tasima ve siiritkleme katsa-

yilar1 Cizelge 4.9’da oldugu gibidir.

Cizelge 4.8: Optimum kanat tasariminin aerodinamik analizi orgii

kalitesi.
Eleman Boyutu 0,01375 m
Eleman Sayis1 3837738
Diigiim Sayisi 8362691
Egrisellik 0,48
Minimum Ortogonal 0,22

Cizelge 4.9: Optimum kanat tasariminin aerodinamik analizi tasima
ve siiriikleme katsay1 degerleri.

Tasima Katsayisi (Cr) 0,12478
Siiriikleme Katsayisi (Cp) 0,00696

4.8 Optimum Kanat Tasarim Modelinin Yapisal Analiz Sonuglar

Optimum kanat tasarimi i¢in optimize edilmis kalinliklar, SBO yo6ntemi ile elde edi-
len tasarim degiskenlerinin degerleridir. Bu optimum tasarimin yapisal sonuclari bu bo-
liimde degerlendirilmistir. Optimum tasarimin, Von-Mises gerilme sonucu Sekil 4.12°de
gosterilmigtir. Optimum kanat tasariminin mutlak maksimum asal gerilme sonucu ise
Sekil 4.13’te gosterilmigstir. Optimum kanat tasariminin deplasman sonucu ise Sekil

4.14’te gosterilmistir. Normal mod analizinin sonucu Sekil 4.15’te gosterilmistir. Son
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olarak modal analizin sonucunda, minimum frekans ile 9.59 mm yer degistirme ve mak-

simum frekans ile 11.3 mm yer degistirme meydana gelmistir.

Contour Plot
Element Stresses (2D & 3D)(vonMises, Max)
Analysis system

4.377E+02
[ 3.891E+02
3.405E+02
— 2.918E+02
2.432E+02
[ 1.945E+02
1.459E+02
9.727E+01
4.864E+01

0.000E+00
No Result

Max = 4.377E+02

Z
_pr

Sekil 4.12: Optimum kanat tasariminin VonMises gerilme sonuglari.

Contour Plot
Element Stresses (2D & 3D)(Absolute Max Principal, Max)
Analysis system

4.857E+02
[ 4.091E+02
3.326E+02
— 2.560E+02

[ 1.794E+02
1.029E+02

2.630E+01
I -5.027E+01

-1.268E+02

-2.034E+02
No Result

Max = 4.857E+02
2D 869960

Sekil 4.13: Optimum kanat tasariminin mutlak maksimum asal
gerilme dagilimu.
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Contour Plot
Displacement(Mag)
Analysis system

4.107E+01
[ 3.650E+01
3.194E+01
— 2.738E+01

— 2.282E+01
— 1.825E+01

1.369E+01
9.126E+00
4.563E+00

0.000E+00
No Result

Max = 4.107E+01

z
o

Sekil 4.14: Optimum kanat tasartminin deplasman sonuglari.

Contour Plot Contour Plot
Eigen Mode(Mag) Eigen Mode(Mag)
Analysis system Analysis system
9.599E+00 1.124E+01
I 8.532E+00 [ 9.995E+00
7.466E+00 8.745E+00

— 7.496E+00
— 6.247E+00

— 6.399E+00
— 5.333E+00

— 4.266E+00 — 4.997E+00
3.200E+00 3.748E+00
2.133E+00 2.499E+00
1.067E+00 1.249E+00
0.000E+00 0.000E+00
No Result No Result

Max = 9.599E+00 Max = 1.124E+01

z z

Sekil 4.15: Optimum kanat tasariminin modal analizi sonucu: a)
Mod1=7,33 Hz b) Mod2=34,43 Hz.

Eleman sayis1 kanadin firar kenarina sekiz adet eleman gelecek sekilde 3,2 mm belirle-
nip modellenmistir. Sekil 4.16 ile 6rgii yap1 gosterilmistir. Optimum kanat tasariminin
aerodinamik analizi sonunda, orgii kalitesi Cizelge 4.10 ile belirtilmistir. Agirlik azaltma
siirecinde, kisitlar yapisal sonuglart iyilestirmeyi goz oniinde bulundurarak verilmistir.
Nihai yer degistirme, yaklasik %2,5 artmistir. Ayrica, minimum frekans %?2,1 arttiril-
mistir. Varolan baslangi¢ durumu ile karsilagtirildiginda rezonansa girecegi mod degeri
arttirilarak iyilestirme katedilmistir. Aragtirmanin sonunda, baslangi¢ ve son agirliklari,
yer degistirme, minimum frekans, tasima kuvvetinin siiriikleme kuvvetine orani, tasima
kuvveti Cizelge 4.11°de belirtilmistir. Bu ¢alisma sonunda eniyilenmis tasarimin ¢ikti-

lar1 tasarim uzayinda Sekil 4.17 ile belirtilmistir.
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Sekil 4.16: Kanadin firar kenar1 sonlu elemanlar gorseli.

Cizelge 4.10: Optimum kanat tasariminin yapisal analiz orgii kalitesi.

Eleman Sayis1 1058342
Diigiim Sayisi 1044921
Jacobi Metrigi 0,74
Carpiklik 7,89
Egrisellik Acisi 40,85
En-boy Oranm 2,13

Cizelge 4.11: Kanat tasarimi1 referans ve optimum tasarimlarinin

karsilastirilmasi.

Baslangic Optimum

Kanat Tasarimi | Kanat Tasarimi
Kiitle (kg) 76,27 65,43 (—%14,2 distis)
Deplasman (mm) 40,09 41,07 (%4 +art1s)
Minimum Frekans (Hz) 7,17 7,32 (+%2,1 artis)
Tasima ve Siiriikleme Kuvvetlerinin Oran1 (T/S) | 12,06 17,94(4%48.8 artis)
Tagima Kuvveti(N) 8429 11919 (+%41.4 artig)
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Deney Tasarimi Veri Noktalari

140 -
e Ornekler
° Eniyilenis Sonuclar
130re @ - .
°
° e o °
® (]
120 e ° . e
° N e o o
o ° °
10 - o * o ° °*
) (] ° °
° °
: . . *
100- ® L@ e °* 9 . o
°
°
o ° o
WV o © * e ° » *
° ) °
° oo ° *
L J °
| o ®® °
8o-® o . e o s
° ° * %
° o o ° ° °
70 - ° ) Y ° [
°® ° Y °
> ® \J i
°
60 o e o © o o °
LI °
o o ®
)
50 Il Il I
0 50 100 150
Ornek [-]

1200 8
[ ] o o ) [ ]
1000 ° 78 °
e .. ®™ o
=z ° . = 7.6...: 'o" .:‘;'.\
800 =
% o . o.. : °‘ z., 0 4 '!y:'
E .o ;: ¢ .. E 72 Oﬁo ‘ ’0.
B & w0 "%’ ° A
T 400
200M“ 6.8 °
% 50 100 w0 % 50 100 150
Ornek [-] Ornek [-]
30 x10%
% & % % ° °q 0
o o2 % goo °o ©®
BER o NI A
& »,° n’é ° ."2‘-»‘
— 10 oo o000, 52.."°: * e
D ) ° .o.o; D o™, & ,°
2 e &% Z oo e 0‘5W°
S 0% o0 9 'gO%f,-'.'s %
o ° e 2 e oo -’
WM LA
°® ° [ ] ° (]
2% 50 100 w0 o 50 100 150
Ornek [-] Ornek [-]

Sekil 4.17: Tasarim uzayi ¢iktilarinda optimum kanat tasariminin

amag ve kisit fonksiyonlar ¢iktilar.
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5. SONUC VE ONERILER

Havacilik ve uzay miihendisligi alaninda tiretilebilir, giivenilir ve diisiitk maliyetli tasa-
rimlar1 nihailendirmek birincil onceliktir. Bu sebeple bir¢ok disiplinle etkilesim halinde
olan bu alanda ¢ok disiplinli tasarim eniyileme konular1 6nemli bir husustur. Aerodi-
namik ve yapisal disiplinlerinin dogrudan etkileyen, bu tezde oldugu gibi, kanat tasa-
rimini verimli bir sekilde olusturmak icin birbirine bagimli degiskenler tanimlanir ve
daha sonra tasarim degiskenleri eniyilenir. Bu ¢aligmada minimum kalkis agirlig1 he-
deflenerek, maksimum tagima kuvveti, maksimum tasima kuvvetinin siiriikleme kuvve-
tine orani, direngenligi yiiksek iyilestirilmis mod frekansina sahip ve giivenilir bir kanat

tasarimi i¢in bu kisitlamalar kullanilmisgtir.

Bu tez ¢alismasinda, adaptif 6rnekleme kriterleri kullanilarak olusturulan vekil model
tabanli optimizasyon problemine, ¢ok disiplinli uygulanabilirlik mimarisi uygulanmig-
tir. Vekil model tabanli bu yontemin verimliliginin yorumlanabilmesi icin, latin hiper-
kiip ile elde edilen verilerin sirali karesel programlama eniyilemesi ile karsilastirilarak
incelenmigtir. Daha iyi optimum sonucun, ayni zamanda daha az fonksiyon degerlen-
dirmesinin vekil model tabanli dolgu 6rnekleme kriterli optimizasyon metodolojisinden
geldigi gosterilmistir. Sirali karesel programlama, yerel optimum sonuglara takilmakta
olup ¢ok sayida fonksiyon degerlendirmesi gerektirmektedir. Bu tez ¢calismasinda adap-
tif ornekleme kriterleri ile kurulan vekil model tabanli optimizasyon algoritmasi, yiiksek
boyutlu ve karmasik bir yapiya sahip optimizasyon problemini, matematiksel bir prob-
leme kiyasla daha az verimle ¢ozdiigii ortaya konmustur. Buna karsin, bu algoritmanin
geleneksel optimizasyon algoritmalarinin pahali hesaplama maliyeti ve yerel optimum-

larda sikisip kalma gibi dezavantajlarini astig1 gosterilmistir.

Gelecek calismalarda, buradaki gibi vekil model bazli optimizasyon yontemi ¢alisma-
lar1 icin, diger ¢ok disiplinli optimizasyon mimarilerine de uygulamak faydali olacaktir.
Bunun yaninda, bu tez ¢alismasinda ticari programlar kullanilarak analiz ¢iktilar1 komp-
leks sekilde cagirilmis ve eniyileme algoritmasina entegre edilmistir. Analiz ¢iktilarini
birbirine esnek bir sekilde entegre edilebilen acik kaynak araglarin gelistirilmesi bu ¢ok

disiplinli optimizasyon alaninin gelistirilmesine biiyiik olciide katkida bulunacaktir.
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EK 4: Deney Tasarimi Verileri ile Sirali Karesel Programlama Kodu
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EK 1

AS_HPOpt.m dosyasi icinde yer alan hiperparametre eniyileme kodu asagida verilmis-

tir.

2 currentPath = cd;
3 dacefitPath = fullfile(currentPath, 'DaceFitTool') ;

5 %$dacefit tool calisilan klasore eklenir

6 addFolderToPath (dacefitPath);

8 clear

9 load('DOE_Data.mat')

1 nDOE = size(X,1);
2 X = X(1:nDOE, :);

[

14 % % alt deger ayarlari =«

15 1bl =1.2; % 1.2 < skin_thickness < 6

16 1lb2 =1.2; % 1.2 < main_spar_thickness < 6
17 1b3 =1.2; % 1.2 < rear_spar_thickness < 6
18 1b4 =1.2; % 1.2 < ribl_thickness < 6

19 1b5 = 1b4; % 1.2 < rib2_thickness < 6

20 1b6 = 1b4; % 1.2 < rib3_thickness < 6

21 1b7 = 1lb4; % 1.2 < rib4_thickness < 6

2 1b8 = 1b4; % 1.2 < rib5_thickness < 6

23 1b9 = 1lb4; % 1.2 < rib6_thickness < 6

2% 1b10 = 1lb4; % 1.2 < rib7_thickness < 6

5 1bll = -5; % -5 < angle_of_attack < 5

6 1bl2 = -10; % -10 < twist_angle < 10

27 1b13 = 25; % 25 < swept_angle < 45

28 1bl4 = 0.35; % 0.35 < taper_ratio < 0.75

29 1bl5 = 3985; % 3985 < wing_span < 4235

30

[)

31 % x ust deger ayarlari x

32 ubl = 6; % 1.2 < skin_thickness < 6

33 ub2 = 6; % 1.2 < main_spar_thickness < 5

34 ub3 = 6; % 1.2 < rear_spar_thickness < 3.5
35 ubd = 6; % 1.2 < ribl_thickness < 6

36 ubb = ub4; % 1.2 < rib2_ thickness < 6

37 ub6 = ub4; % 1.2 < rib3_thickness < 6

33 ub’ = ub4; % 1.2 < rib4_thickness < 6

39 ub8 = ub4; % 1.2 < rib5_thickness < 6
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76

ub9

ubl0
ubll
ubl2
ubl3
ubl4
ubl5

[

1b =

Q

ub =

= ub4;
= ubi4;
=5; %
= 10; %
= 40; %
= 0.70;
= 4235;

[...
1b1, ...
1b2, ...
1b3, ...
1b4, ...
1b5, ...
1b6, ...
1b7, ...
1bs, ...
1b9, ...
1b10, ...
1bl1, ...
1b12, ...
1b13, ...
1bl4, ...
1bl5. ..
17

[...
ubl, ...
ub2, ...
ub3, ...
ub4, ...
ubb5, ...
ub6, ...
ub7, ...
ub8, ...
ub9, ...
ubl0, ...
ubll, ...
ublz, ...
ubl3, ...
ubl4, ...
ubl5. ..

o\

o\

1.2 < rib6_thickness < 6
1.2 < rib7_thickness < 6

-5 < angle_of_attack < 5

-10 < twist_angle < 10

25 < swept_angle < 45

)
<

o
°

0.35 < taper_ratio < 0.75
3985 < wing_span < 4235

% * alt deger ayarlari =«

% x= ust deger ayarlari =
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84 15
85
86

g7 output_data = [...

88 Y(1:nDOE), ...% kutle

89 Gl (1:nDOE), ...% gerilme

90 G2 (1:nDOE), ...% mod frekansi
91 G3(1:nDOE), .% T/S

9 G4 (1:nDOE) ]; % tasima kuvveti
93

94 Y_all = output_data;

95 Y _min_all Y_minVals;

96 Y max_all Y_maxVals;

97
8 % en 1iyi sonuclarin tutulacagi baslangic tablo objesi olusturulur
9 bestResultsTable = table();

100

101 % incelenecek kernel fonksiyonlarinin listesi olusturulur

12 kernelFunctions = {'corrcubic', 'correxp', 'corrgauss',
103 'corrlin', 'corrspherical', 'corrspline'};
104

Q

15 % incelenecek baz fonksiyonlarinin listesi olusturulur
16 basisFunctions = {'regpoly0', 'regpolyl', 'regpoly2'};

107

108 x_scaling_method = {.

109 'minmax',... % 1.2 < skin_thickness < 6

110 'minmax',... % 1.2 < main_spar_thickness < 6
111 'minmax', ... % 1.2 < rear_spar_thickness < 6
112 'minmax',... % 1.2 < ribl_thickness < 6

113 'minmax',... % 1.2 < rib2_thickness < 6

114 'minmax',... % 1.2 < rib3_thickness < 6

115 'minmax',... % 1.2 < rib4_thickness < 6

116 'minmax',... % 1.2 < rib5_thickness < 6

117 'minmax',... % 1.2 < rib6_thickness < 6

118 'minmax',... % 1.2 < rib7_thickness < 6

119 'feature',...% -5 < angle_of_attack < 5

120 'feature',...% -10 < twist_angle < 10

121 'minmax',... % 25 < swept_angle < 40

122 'minmax',... % 0.35 < taper_ratio < 0.70

123 'minmax"'}; % 3985 < wing_span < 4235

124

I
—

125 y_scaling_method
126 'scale', ... Y (net)

127 'scale', ... Gl (net)
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'scale', ... G2 (net)
'scale', ... G3 (net)
'scale'}; %$G4 (net)
% her bir kisit ve amac fonksiyonu icin uygun (opt) kernel,
baz ve kernel parametreleri hesaplanir
for counter = 1:5

[

% Incelenen Model icin gerekli DOE sonuclari atanir

Y = output_data(:,counter);
Y min = Y min_all (counter);

Y _max = Y _max_all (counter);

n = size(X, 1); % deney sayisi

Q

% fonksiyonlarin degerleri ile kiyaslanir, infinitiy
verilerek kivyas

[

% yapilir

bestLOO_MSE = inf; $%loo_mse minimize edilir
bestKernelFunction = '';

bestBasisFunction = '';
bestKernelParameters = '';

% 5 sutunlu bir tablo olusturur

% Sutunlar su sekildedir: Model No ; Kernel Fonk. ; Baz
Fonk. ; LOOMSE ; Kernel Parametresi;

resultsTable = table('Size', [0 4], 'VariableTypes',
{'string', 'string', 'double', 'string'},
'VariableNames', {'KernelFunction', 'BasisFunction',

'LOO_MSE', 'KernelParameters'});

for kernelldx = l:length(kernelFunctions)
for basisIdx = l:length(basisFunctions)
% Current kernel and basis function
kernelFunction = kernelFunctions{kernelIdx};

basisFunction = basisFunctions{basisIdx};

disp(['counter : ' num2str (counter)])smodel sayaci
disp(['Kernel : ' kernelFunction])
disp(['Basis : ' basisFunction])

Q

% Butun veri setini olceklendirir

X_scaled = scaleData (X, x_scaling method, 1lb, ub);
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Y_scaled = scaleData(Y,

y_scaling_method (counter),Y_min, Y_max);

% incelenen kernel ve baz fonksiyonu icin kernel
parametresinin,

% bayesOpt fonksiyonu ile eniyilenmesi
gerceklestirilir.

[bestTheta, —, —] = HPOpt_singleModel (X_scaled,

Y scaled, basisFunction, kernelFunction);

% LOO Cross-Validation
looErrors = zeros(n, 1); % loocv hatalari icin
hafizada yer olusturur
for i = 1:n
trainlIdx = [1:i-1, i+1:n];
testIdx = ij;
% egitim ve test verilerini olceklendirir
Xtrain_scaled = scaleData (X(trainIdx,
:),x_scaling _method, 1lb, ub);
Ytrain_scaled = scaleDataf(...
Y(trainIdx), ...
y_scaling_method(counter), ...
Y min, ...

Y_max) ;

Xtest_scaled = scaleData(...
X(testIdx, :),...
X_scaling_method, ...

1b, ...

ub) ;

Ytest_scaled = scaleDataf(...
Y (testIdx), ...
y_scaling_method(counter), ...
Y _min, ...

Y_max) ;

% Leave-one-out Cross Validation MSE metrigini

saglayan ve Krigging vekil modelini
olusturan fonksiyon

[bestModel, perf, meanMSE] =
daceFitWMSE (Xtrain_scaled, Ytrain_scaled,
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basisFunction, kernelFunction, bestTheta);

[

% test verisi ile tahmin yapilir

Ypred_scaled = predictor (Xtest_scaled, bestModel);

[)

% tahmini yapilan test verisinin geri
olcekleme islemini gerceklestirir

Ypred = unscaleData (Ypred_scaled,
y_scaling_method(counter), Y_min, Y_max);

% leave one out test noktasi icin tahmin ve
olcum arasindaki farki hesaplar

looErrors (i) = Ypred - Y (testIdx);

end

% LOOMSE hesaplar

looMSE = mean (looErrors.”2);

% kernel parametresini string degerine cevirir

kernelParamsStr = join(string(bestTheta), ", ");

% sonuc tablosuna incelenen kernel ve baz
fonksiyonlari icin

% elde edilen looMSE, kernel parametresini kaydeder

resultsTable = [resultsTable; {kernelFunction,

basisFunction, looMSE, kernelParamsStr}];

Q

if 1ooMSE < bestLOO_MSE
bestLOO_MSE = 1looMSE;
bestKernelFunction = kernelFunction;
bestBasisFunction = basisFunction;
bestKernelParameters = bestTheta;
end
end
end
% incelenen vekil model icin cikan eniyilenmis kernel baz
ve parametreleri toplar
bestKernelParamsStr = Jjoin(string(bestKernelParameters),
"y ")
% incelenen vekil model icin elde edilen degerleri tabloya
ekler
bestResultsTable = [bestResultsTable; {counter,

103
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237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

bestKernelFunction, bestBasisFunction, bestLOO_MSE,

bestKernelParamsStr}];

)

writetable (resultsTable, ['KRG_Results_on_ '
num2str (counter) '.xlsx']);

% vekil modelin sonuclarini mat dosyasi olarak kaydeder
save HPO_AS_backup.mat

end

% Tum vekil modellerin sonuclarinin kaydedilecegi tablonun
basliklari tanimlanir

bestResultsTable.Properties.VariableNames = {'Model',
'KernelFunction', 'BasisFunction', 'Best_LOO_MSE',

'Best_KernelParameters'};

% Tum vekil modellerin sonuclari excel dosyasina kaydedilir

writetable (bestResultsTable, 'Best KRG_Results.xlsx');

[

% Tum vekil modellerin sonuclarini mat dosyasi olarak kaydeder
save AS_DOE_HPO

104
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EK 2

performLLOOCV.m dosyast igerisinde yer alan LOOCYV hata metrigi hesabin1 gercekles-

tiren kod asagida verilmistir.

1 function [dmodelOut, looMSE, predictions] =
performLOOCV (X_scaled, Y_scaled, basisFunction,

kernelFunction, kernelParams)

2 n = size(X_scaled, 1); % Toplam veri noktalari

3 predictions = zeros(n, 1); % Tahminler icin hafiza ayirma

4

s [dmodelOut, —] = flexDACE (X_scaled, Y_scaled, basisFunction,

kernelFunction, kernelParams) ;

7 for jj = 1l:n

8 % Egitim icin indisler (3jJ indisi cikarilarak)
9 trainldx = setdiff(l:n, Jj);

11 % Bir olcum cikarilarak egitim verisinin olusturulmasi

12 X_train = X_scaled(trainIdx, :);

13 Y _train = Y_scaled(trainlIdx);

14

15 % Ayrilan olcum verisinin test icin atanmasi

16 X_test = X_scaled(jj, :);

17

18 % Indirgenmis veri seti ile vekil model egitiminin

gerceklestirilmesi
19 [dmodel, —] = flexDACE(X_train, Y_train, basisFunction,
kernelFunction, kernelParams);

20

21 Y pred = predictor (X_test,dmodel);
22

23 % Tahminleri kaydet

24 predictions (jj) = Y_pred;

25 end

26

27 % LOOCV tahminleri uzerine MSE hesaplanmasi

28 errors = Y_scaled - predictions; % Olcum ve tahmin degerleri
arasindaki fark

29 1ooOMSE = mean(errors.”2); % Mean Squared Error

30 end
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EK 3

Sampling_with_ MSP_MSE.m dosyasi igerisinde yer alan MSE ve MSP dolgu kriterli

ornekleme kodu asagida verilmistir.

1 function [X_MSE_next, X_MSP_next, log] =
Sampling_with_MSP_MSE (X_sample, 1lb, ub, dmodel_Cell, dims,
valuesConstrainted, constr_sign, MSE_ModelChoice)

2 %% Fonksiyon bilgisi

3 % X_sample : Tum veri noktalari

4 % 1b : Tasarim uzayi alt limitleri

5 %5 ub : Tasarim uzayi ust limitleri

6 % dmodel : Objektif Fonksiyon Vekil Modeli
7 % dmodelG : Kisit Fonksiyon Vekil Modelleri

B3
o\

MSE_ModelChoice: MSE Hangi Model ile yapilacak

9 % MSE_ModelChoice = 0 : £ (MSE optimizasyonunun amac
functionu: £ )

100 % MSE_ModelChoice = 1 : gl-11(MSE optimizasyonunun amac

functionu: gl)

12 %topluca tutulan vekil modeller ayrilir
13 dmodel_F = dmodel_Cell{l:dims.no};
14 dmodelG = dmodel_Cell (dims.no+1l:dims.nco);

16 dmodel = dmodel_F;

19 %% Eniyileme yonu

20 % Tum infill kriter ornekleme metodlarinin egilimini ayarlar.
Eniyilemenin

21 % amacinin minimize etmek mi maksimize etmek mi oldugunu belirler.

2 optimization_purpose = 'min';

23

% 1f strcmp (optimization_purpose, 'min')

25 opt_sign = 1;

2% elseif strcmp(optimization_purpose, 'max')

27 opt_sign = -1;

28 else

29 error ('Eniyileme Amacini "min" veya "max" Seklinde Dogru

Giriniz'");
30 end
31
%2 %% Eniyileme Metodlarinin Parametre Ayarlari (MSE ve MSP icin)

33
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maxIterALL = leb5;

maxNumIter MSP = maxIterALL;
maxNumIter MSE = maxIterALL;
maxFunEval_ MSP = maxIterALL;
maxFunEval_ MSE = maxIterALL;
% alt optimizasyonun sayisi

numberOfSQPiterations = 150;

Q

ettiginde
% karsilasilan bayrak
invalid_output = 1;
while invalid_output %

%% MSP ile Ornekleme (MSP:

Prediction)

[

% optimizasyon isleminden sonra gelen sayilar kisitlari ihlal

Minimum/Maximum Surrogate

% amac fonksiyonu vekil modelinin katsayilari ile

olusturulan amac fonksiyonu

f = @(x)predictor (x,dmodel) *« (opt_sign) ;

[o)

numFunctions = dims.nc;

% Kisit fonksiyonlarinin bir hucre icerisinde derlenmesi

gCl = repmat ({@()[]}, 1, numFunctions);

o\

o

gl (x) < g_krit

o\

o\

gl (x) - g_krit < 0

o\

o

gl (x) > g_krit

o\

o\

gl(x) - g_krit > 0

o\

o\

-gl (x) (-1)*g_krit < 0
-gl(x) + g_krit < O

o\

for kk = l:numFunctions

[o)

olusturulan kisit fonksiyonu

gCl{kk} =

% Kisit fonksiyonu sayisinin belirlenmesi

Standart formda olmayan esitsizlik

Standart formda bir esitsizlik

Standart formda olmayan esitsizlik

Standart formda olmayan esitsizlik

Standart formda bir esitsizlik

% kisit fonksiyonu vekil modellerinin katsayilari ile
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@ (x) (predictor (x,dmodelG{kk}) » (constr_sign(kk)) -
valuesConstrainted (kk) x (constr_sign (kk)));

end

% Dogrusal olmayan kisitlarin tanimlanmasi (Burada
dogrusal olmayan bir

% kisit olmadigi icin bos olarak tanimlaniyor.)

nonlincon = @(x) deal (cell2mat (cellfun(@(f_) f_(x), gCl,

'UniformOutput', false)), [1);

% MSP icin alt eniyileme (sub-optimization) ayarlarinin
duzenlenmesi

options = optimoptions ('fmincon', ...

'"Algorithm', 'sgp', ...

'MaxIterations',maxNumIter_ MSP, ...

'MaxFunctionEvaluations', maxFunkEval_MSP, ...

'Display', 'none');

% Baslangic icin eniyilenmis degerin alabilecegi en yuksek
deger olarak

% atanmasi

fval_opt = Inf;

o\

MSP icin alt eniyileme (sub-optimization) isleminin

esilik ve esitsizlik kisit matrisleri

A = []; % dogrusal esitsizlik kisiti katsatilari
b = []; % dogrusal esitsizlik kisiti sinirlari
Aeqg = []; % dogrusal esitlik kisiti katsatilari
beg = []; % dogrusal esitlik kisiti sinirlari

for 1i=1:numberOfSQPiterations

o\

MSP kapsaminda vekil modelin eniyilenmis degerini

bulmak icin

o\

alt eniyileme (sub-optimization) gerceklestirilir.

o

numberOfSQPiterations degiskenine atanan sayi kadar

rastgele

o\°

baslangic noktasi turetilerek eniyileme tekrar tekrar

o\°

gerceklestirilir. Bu sayede MSP icin vekil model

uzerindeki

o\

evrensel eniyilenmis (global optimum)

o\

degere ulasilmaya calisilir.
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o

MSP icin alt eniyileme (sub-optimization) icin

baslangic noktasi
x0 = 1b + (ub-1b).xrand(l,size(1lb,2));
% MSP icin alt eniyileme islemi gerceklestirilir.
[xopt, fval,exitflag,output] =

fmincon (£f,x0,A,b,Aeq,beq, 1b,ub,nonlincon, options);

log.MSPIter = output.iterations;
log.MSPFuncCount = output.funcCount;

o\

MSP icin alt eniyileme (sub-optimization) islemi

asagidaki kisitlar altinda maliyet olan "f" degerinin

o

eniyilemesini "x0" noktasindan baslayarak
"numberOfSQPiterations" kere

% deneyerek gerceklestirir:

% A X < Db (dogrusal esitsizlik kisitlari)
% Aeg x = beg (dogrusal esitlik kisitlari)
% 1lb < x < ub (eniyileme degiskeni x icin alt ve

ust deger kisitlari)

o\°

nonlincon(x) < 0 (dogrusal olmayan esitsizlik
kisitlari) xx KONTROL

o

Bulunan eniyilenmis deger bir sonraki alt eniyileme

o

(sub-optimization), yani SQP iterasyonunun baslangic
degeri olarak kaydedilir.
% Bir sonraki iterasyon baslangic noktasi

x0 = xopt;

% MSP icin alt eniyileme (sub-optimization) cikti
mesajlari
switch exitflag
case -3
message = 'Note for: interior-point,

sgp—-legacy, and sgp algorithms.';

case -2

message = 'No feasible point was found.';
case -1

message = 'Stopped by an output function or

plot function.';

case 0

message = 'Number of iterations exceeded.';
case 1

message = 'First-order optimality.';
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case 2

A}

message = 'Change in x was less than options.
case 3
message = 'Change in the objective function

value was less than options.';

case 4
message = 'Magnitude of the search direction
was less than 2xoptions.';
case 5
message = 'Magnitude of directional derivative
in search direction was less than 2*options.
otherwise
message = 'other value';

end

% MSP icin alt eniyileme (sub-optimization) sonuc
degeri olusturulur.

if —exist ('x_opt', 'var')
xX_opt = xopt;

end

% MSP icin alt eniyileme (sub-optimization) sonuc
degeri ciktilari ile birlikte guncellenir.

if fval<fval_opt % && exitflag>0
% MSP icin alt eniyileme (sub-optimization) sonuc
degeri

X_opt=xopt;

% MSP icin alt eniyileme (sub-optimization)
sonucunda maliyet degeri

fval_opt=fval;

% MSP icin alt eniyileme (sub-optimization)
sonucunda cikti mesaji

message_MSP = message;

% MSP icin alt eniyileme (sub-optimization)
sonucunda cikti mesajini

% tasiyan bayrak

exitflag MSP = exitflag;

end

end

% Incelemek uzere ciktilarin kaydedilmesi
MSP_fval_opt
log.fval_opt_MSP = MSP_fval_opt;

fval_opt;
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lo

o

°

g.exitflag_MSP = exitflag_MSP;

Inceleme icin ciktilarin terminale basilmasi

fprintf (['ExitFlag: ' num2str(exitflag_MSP) ', '

o

°

message_MSP '\n'],ii),

Elde edilen MSP orneginin atanmasi

X_MSP_next = x_opt;

%

MSP ornekleme sureci sonuclarinin terminale basilmasi

display (['MSP - Min Distance to Samples : '

di

o
o

Cl

end

%% MSE
if MSE

num2str (distanceCalc (X_sample, X_MSP_next))1);

splay ([ 'MSP FVAL OPT

num2str (MSP_fval_opt)]);

display (['Eniyilenmis MSP tasarim noktasi: '

num2str (X_MSP_next)]);

Cikti tasarim degiskenlerinin sinirlari icinde ise

"invalid_output = 0" atamasi yapilir.

_CheckAndRefineSample

icin model secimi

_ModelChoice ==

dmodel = dmodel_F;
elseif MSE_ModelChoice > 0
dmodel = dmodelG{MSE_ModelChoice};

else

error ('MSE_ModelChoice is invalid!');
end
invalid_output = 1;

while

oo
i)

o\

o\

o\

o\

invalid_output

MSE ile Ornekleme (MSE: Mean-Squared Error)

## Amac: Mevcut orneklerle elde edilen vekil modelin en

yuksek belirsizlige

sahip oldugu noktadan ornek almak.

## Surec: Ortalama-kare hatasi (mean-squared error)

degerinin en yuksek

oldugu nokta tespit edilir.

dacefit ve tahmin
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213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

o

fonkiyonu predictor kullanilirken MSE degerleri modelin

standart sapmasi

o\°

sigma'nin karesi (sigma”2) olarak hesaplanir.

o\

MSE icin alt eniyileme (sub-optimization) surecinin yonu

sabit ve daima

o

maksimum degeri bulma amacina sahiptir.

fl = @(x) getSecondOutput (dmodel, x)x*(-1);

% Kisit fonksiyonlarinin bir hucre icerisinde derlenmesi
gC2 = repmat ({@()[]1}, 1, numFunctions);

% gCl'den farkli olarak bu sefer MSE ve MSP ornekleri

arasinda istenen

o\

minimum mesafe de kisitlara eklenecegi icin gC2

olusturulmustur.

o

Standart formda olmayan esitsizlik

o

gl (x) < g_krit

o\°

Standart formda bir esitsizlik

o\

gl (x) - g_krit < 0

o\

Standart formda olmayan esitsizlik

o

gl (x) > g_krit

o\

Standart formda olmayan esitsizlik

o\°

gl(x) - g_krit > 0

o\

Standart formda bir esitsizlik
-gl(x) - (-1)xg_krit < O
-gl(x) + g_krit < O

o\

o

for kk = l:numFunctions
% kisit fonksiyonu vekil modellerinin katsayilari ile
olusturulan kisit fonksiyonu
gC2{kk} =
@ (x) (predictor (x,dmodelG{kk}) x (constr_sign(kk)) -
valuesConstrainted (kk) » (constr_sign(kk))); % amac
fonksiyonu vekil modelinin katsayilari ile
olusturulan amac fonksiyonu
end
% Dogrusal olmayan kisitlarin tanimlanmasi (Burada
dogrusal olmayan bir
% kisit olmadigi icin bos olarak tanimlaniyor.)
nonlincon = @(x) deal(cell2mat (cellfun(@(fl1_) fl_(x), gC2,

'UniformOutput', false)), [1);
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246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

% MSE icin alt eniyileme (sub-optimization) ayarlarinin
duzenlenmesi

options = optimoptions ('fmincon', ...

'Algorithm', 'sgp', ...

'MaxIterations',maxNumIter_ MSE, ...

'MaxFunctionEvaluations', maxFunEval_MSE, ...

'Display', 'none');

% Baslangic icin eniyilenmis degerin alabilecegi en yuksek
deger olarak

% atanmasi

fval_opt = Inf;

% MSE icin alt eniyileme (sub-optimization) isleminin

esilik ve esitsizlik kisit matrisleri

A = []; % dogrusal esitsizlik kisiti katsatilari
b = []; % dogrusal esitsizlik kisiti sinirlari
Aeq = []; % dogrusal esitlik kisiti katsatilari
beq = []; % dogrusal esitlik kisiti sinirlari

for ii=1:numberOfSQPiterations

o\

MSE kapsaminda vekil modelin en yuksek belirsizlige

sahip oldugu

o\

noktayi bulmak icin alt eniyileme (sub-optimization)

gerceklestirilir.

o\

numberOfSQPiterations degiskenine atanan sayi kadar
rastgele

% baslangic noktasi turetilerek eniyileme tekrar tekrar

% gerceklestirilir. Bu sayede MSE icin vekil model

uzerindeki

o

belirsizligin evrensel eniyilenmis (global optimum)

o\

degerine ulasilmaya calisilir.

o\

MSE icin alt eniyileme (sub-optimization) icin
baslangic noktasi
x0 = 1b + (ub-1b).*xrand(l,size(1lb,2));

o\

MSE icin alt eniyileme islemi gerceklestirilir.
[xopt, fval,exitflag,output] =

fmincon (f1l,x0,A,b,Aeq,beq, 1b,ub,nonlincon, options);
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281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

log.MSEIter = output.iterations;
log.MSEFuncCount = output.funcCount;

o

MSE icin alt eniyileme (sub-optimization) islemi

asagidaki kisitlar altinda maliyet olan "f" degerinin

o\°

eniyilemesini "xO0" noktasindan baslayarak

"numberOfSQPiterations" kere

o\

deneyerek gerceklestirir:

% A x <D (dogrusal esitsizlik kisitlari)
% Aeg x = beq (dogrusal esitlik kisitlari)
% 1b < x < ub (eniyileme degiskeni x icin alt ve

ust deger kisitlari)

o\

nonlincon(x) < 0 (dogrusal olmayan esitsizlik

kisitlari) =+ KONTROL

oe

Bulunan eniyilenmis deger bir sonraki alt eniyileme

o\

(sub-optimization), yani SQP iterasyonunun baslangic

degeri olarak kaydedilir.

% Bir sonraki iterasyon baslangic noktasi

x0 = xopt;

o\

MSE icin alt eniyileme (sub-optimization) cikti
mesajlari
switch exitflag
case -3
message = 'Note for: interior-point,

sgp—legacy, and sqgp algorithms.';

case -2

message = 'No feasible point was found.';
case -1

message = 'Stopped by an output function or

plot function.';

case O

message = 'Number of iterations exceeded.';
case 1

message = 'First-order optimality.';
case 2

message = 'Change in x was less than options.';
case 3

message = 'Change in the objective function

value was less than options.';

case 4

message = 'Magnitude of the search direction
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316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

was less than 2xoptions.’';

case 5
message = 'Magnitude of directional derivative
in search direction was less than 2*options.
otherwise
message = 'other value';

end

% MSE icin alt eniyileme (sub-optimization) sonuc
degeri olusturulur.
if —exist ('x_opt', 'var')
X_Oopt = xopt;
end
% MSE icin alt eniyileme (sub-optimization) sonuc
degeri ciktilari ile birlikte guncellenir.
if fval<fval_opt
% MSE icin alt eniyileme (sub-optimization) sonuc
degeri
X_opt=xopt;
% MSE icin alt eniyileme (sub-optimization)
sonucunda maliyet degeri
fval opt=fval;
% MSE icin alt eniyileme (sub-optimization)
sonucunda cikti mesaji
message_MSE = message;
% MSE icin alt eniyileme (sub-optimization)
sonucunda cikti mesajini
% tasiyan bayrak
exitflag_MSE = exitflag;

end
end
% Incelemek uzere ciktilarin kaydedilmesi
fprintf (['ExitFlag: ' num2str(exitflag MSE) ', '

message_MSE '\n'],ii)

% Elde edilen MSE orneginin atanmasi

X_MSE_next = x_opt;
X_MSE_next = x_opt;

display (['MSE - Min Distance to Samples : '
num2str (distanceCalc (X_sample, X_MSE_next))]1);
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350

351

352

353

354

355

356

357

end

end

display(['Eniyilenmis MSE tasarim noktasi: '
num2str (X_MSE_next)]);

display(['MSE - MSP Distance !
num2str (distanceCalc (X_MSP_next, X_MSE_next))]);

% Cikti tasarim degiskenlerinin sinirlari icinde ise
"invalid_output = 0" atamasi yapilir.

Cl_CheckAndRefineSample
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EK 4

SQP kullanilarak yapilan eniyileme ¢alismasinin kodu agagida verilmistir.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Q

% SQP ile vekil model eniyileme kodu

global models

models = dmodel_i;

A = []; % dogrusal esitsizlik kisiti katsatilari

b = []; % dogrusal esitsizlik kisiti sinirlari

Aeq = []; % dogrusal esitlik kisiti katsatilari

beqg = []; % dogrusal esitlik kisiti sinirlari

b = (1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, -5,
-10, 25, 0.35, 3985]; % Tasarim degiskenlerinin

alt sinir degerleri
ub = [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 10, 45, 0.75, 4235];

Tasarim degiskenlerinin ust sinir degerleri

o\

options = optimoptions ('fmincon', 'Algorithm', 'sgp');

Inf;

fval_opt

for 1i=1:20
fprintf('i = %$4.0f \n',1ii)
x0 = 1b + (ub-1b).*rand(1l,15); %baslangic noktasi
[xopt, fval,exitflag, output] =

fmincon (@fun, x0,A, b, Aeq, beq, 1b, ub, @constraint, options)

if fval<fval_opt && exitflag>0
X_opt=xopt;
fval_opt=fval;
exitflag_opt= exitflag;

end
end
exitflag_opt
display (['Eniyilenmis tasarim noktasi !

num2str (x_opt)]1);

display(['Eniyilenmis noktada kutle !
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36

37

38

39

40

41

num2str (predictor (x_opt, models(1l)))1);
display(['Eniyilenmis noktada stress

num2str (predictor (x_opt, models(2)))1);
display(['Eniyilenmis noktada freq

num2str (predictor (x_opt, models(3)))1);
display(['Eniyilenmis noktada lod

num2str (predictor (x_opt, models(4)))1);
display(['Eniyilenmis noktada 1ift

num2str (predictor (x_opt, models(5)))1);

display (['Uygulanabilir Eniyilenmis tasarim noktasi

num2str (round (x_opt+10) /10) 1) ;
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