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ABSTRACT 

 

ON SOME BEST PROXIMITY POINT RESULTS VIA R-FUNCTIONS 

WITH APPLICATION  

 

Taif Hameed Saadoon SAADOON  

Master of Science in Mathematics  

Advisor: Assoc. Prof. Dr. Mustafa ASLANTAŞ 

January 2024 

 

This thesis explores the intricate domains of best proximity point and fixed point theories, 

structured into five comprehensive chapters. The first chapter introduces the thesis by 

outlining its motivation and providing essential background knowledge on the relevant 

mathematical theories. In the second chapter, we delve into the basic terminology, 

notations, and theorems that underpin our subsequent findings. Our primary contributions 

are presented in the third chapter, where we introduce a novel class of functions, including 

R-functions, and develop a new type of R-contraction. We also redefine the P-property 

and establish new results for best proximity points and fixed points, supported by an 

illustrative example to showcase the applicability of our results. The fourth chapter 

concludes the thesis by summarizing our findings and suggesting directions for future 

research. This work not only contributes to the existing mathematical literature but also 

opens new avenues for further theoretical and applied investigations. 

 

2024, 35 pages 

 

Keywords: Metric spaces, Fixed point, Best proximity point, R-contractions  
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ÖZET 

 

R-FONKSİYONLARI YARDIMIYLA BAZI EN İYİ YAKINLIK 

NOKTASI SONUÇLARI VE UYGULAMASI ÜZERİNE  

 

Taif Hameed Saadoon SAADOON  

Matematik, Yüksek Lisans  

Tez Danışmanı: Doç. Dr. Mustafa ASLANTAŞ 

Ocak 2024 

 

Bu tez, beş kapsamlı bölümde yapılandırılmış olan en iyi yakınlık noktası ve sabit nokta 

teorilerinin karmaşık alanlarını araştırmaktadır. İlk bölüm, tezin motivasyonunu 

özetlemekte ve ilgili matematik teorileri hakkında temel bilgiler sağlamaktadır. İkinci 

bölümde, sonraki bulgularımızı destekleyen temel terimler, notasyonlar ve teoremler ele 

alınmaktadır. Ana katkılarımız üçüncü bölümde sunulmaktadır; burada R-fonksiyonlarını 

da içeren yeni bir fonksiyon sınıfı tanıtılmakta ve yeni bir R-kontraksiyon tipi 

geliştirilmektedir. Ayrıca P-özelliği yeniden tanımlanmakta ve en iyi yakınlık noktaları 

ve sabit noktalar için yeni sonuçlar ortaya konmaktadır, sonuçlarımızın 

uygulanabilirliğini sergilemek için bir örnek de sunulmaktadır. Dördüncü bölüm, 

bulgularımızı özetlemekte ve gelecekteki araştırmalar için yönergeler önermektedir. Bu 

çalışma, mevcut matematik literatürüne katkıda bulunmakla kalmamakta, aynı zamanda 

daha fazla teorik ve uygulamalı araştırmalar için yeni yollar açmaktadır. 

 

2024, 35 sayfa 

 

Anahtar Kelimeler: Metrik uzaylar, Sabit nokta, En iyi yakınlık noktası, R-büzülmeler 
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1. INTRODUCTION 

One of the key ideas in the study of topology is the concept of metric space. French 

mathematician Maurice Fréchet (1906), who also contributed to the disciplines of 

Functional Analysis, Probability and Computation, first expressed this idea in his doctoral 

thesis. The term "distance" between any two elements in the space under consideration 

must be defined. In this way, the idea of metric space has formed the basis of much 

research in a wide variety of disciplines, including algebra, differential geometry, 

statistics, physics, and engineering. The equations 𝑆(𝜘)=0 and 𝑇(𝜘)=𝜘 are frequently 

encountered in analysis and functional analysis. We solve these equations in many ways. 

One such approach is fixed point theory. The fixed point theorem is extensively used in 

the theory of existence for partial differential equations, differential equations, integral 

equations, and a number of interconnected disciplines. Let 𝑇 be a transformation: 𝛬→ 𝛬, 

where 𝛬 is a non-empty set. If there is a point 𝜘0 at 𝛬 such that 𝑇(𝜘0) = 𝜘0, 𝑇 is said to 

have a fixed point, and the point 𝜘0 is called the fixed point of 𝑇. 

Banach (1922), considered one of the most important mathematicians of the 20th century, 

conducted one of the most notable studies on functions defined in metric spaces. In his 

doctoral thesis, he first proposed the "Fixed Point Theorem in Metric Spaces" as follows.  

In the context of metric spaces, if T satisfies the condition that for all  x,y∈Λ, 

𝑑(𝑇𝜘, 𝑇𝑦) ≤ 𝑘𝑑(𝜘, 𝑦) 

where k is a constant in [0,1), then T is called a contraction mapping.  

According to the Banach Fixed Point Theorem, if T is a contraction mapping in a 

complete metric space, then T will have precisely one fixed point in that space.  
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This theory not only provides a method for identifying the fixed points of such 

transformations but also establishes the uniqueness and existence of fixed points in self-

mappings. Utilizing this approach, numerous subjects within dynamic programming, 

game theory, ordinary and partial differential equations, and integral equations can be 

efficiently tackled  .The Banach contraction principle was later applied in many different 

ways (Abbas et al. 2019, Berinde and Pacurar 2021, Karapınar 2012, Karapınar et al. 

2022, Guran et al. 2021, Garodia and Uddin 2020,Muhammed and Kumam 2019, 

O’Regan 2019, Reich and Zalas 2017, Shukla et al. 2014, Vetro and Vetro).  One of these 

was obtained by (Khojasteh et al. 2016) who introduced a new concept so-called 

simulation function, and so Z-contractions by using these functions. Moreover, with the 

help of these functions a nice fixed-point result was obtained which generalized many 

famous results (Aydi et al. 2020, Aydi et al. 2021a, Aydi et al. 2021b, Berinde and 

Berinde 2007, Roldan and Shahzad 2015, Roldan et al. 2015). 

If 𝑇:Λ→Λ is a function on a complete metric space (Λ,d), and ζ:[0,∞)×[0,∞)→R is a 

simulation function, with T being a ζ-contraction according to ζ—meaning it fulfills 

𝜁 (𝑑(𝑇𝜘, 𝑇𝜂), 𝑑(𝜅, 𝜂))  ≥  0 

for each κ,η∈Λ—then T possesses a unique fixed point 𝑢u in Λ. Additionally, the Picard 

iteration sequence{Tnκ} starting from any point κ∈Λ will converge to u. 

Best proximity point theory serves as an innovative extension of fixed-point theory 

results. Consider 𝐴A and 𝐵B, which are non-empty subsets of a metric space (Λ, d), and 

a mapping T: A→B. Given that A∩B=∅, it's clear that 𝑇 cannot have a fixed point. Thus, 

it becomes relevant to explore the existence of a point κ∈A such that d (κ, Tκ) =d (A, B); 

this point is referred to as the best proximity point of 𝑇. 

It is evident that if A=B=Λ, then each best proximity point of T is inherently a fixed points 

of T. Additionally, finding a best point of T is equivalent to solving the optimization 

problem minκ∈A d (κ,Tκ), which seeks to minimize the distance between each point in A 
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and its image under T in B. This approach not only provides a theoretical framework for 

addressing such optimization problems but also expands the application of metric space 

theory beyond traditional fixed points. 

There are many papers on this topic in the literature due to these facts (Abkar and Gabeleh 

2013a, Abkar and Gabeleh 2013b, Altun et al. 2020, Aslantas et al. 2021a, Aslantas et al. 

2021b, Aslantas 2021, Basha and Veeramani 1997, Basha 2010, Gabeleh 2014, Gabeleh 

2015, Gabeleh and Otafudu 2017, Imdad et al. 2018, Raj 2013, Reich 1978, Reich et al. 

2021, Sahin et al. 2021, Sahin 2022, Sahin et al. 2023).  

This thesis consists of five chapters. The first chapter presents the rationale for the thesis 

and discusses fundamental principles in both best approach point theory and fixed point 

theory, acting as contextual information. We review the basic terminology, notations, and 

theorems in the second chapter, which are connected to our findings regarding fixed 

points and best proximity points. In chapter three, our findings are presented.  In this 

research, we introduce a novel class of functions, which encompass what we term R-

functions. Building on this foundation, we present a new type of R-contraction and 

propose modifications to existing R-contractions, which have garnered significant 

attention in recent studies. Furthermore, we introduce a new definition of the P-property. 

Through these innovations, we establish several results concerning best proximity points, 

including fixed point outcomes for our newly defined R-contractions. To demonstrate the 

practical implications and effectiveness of our theoretical results, we provide a specific 

example. The culmination of our findings and discussions is presented in the fourth 

chapter, which contains our conclusions. This framework not only advances the field of 

proximity point and fixed point theory but also broadens the potential for applying these 

concepts to more complex and varied mathematical and applied scenarios. 
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2. PRELIMNARIES 

In this section, some definitions and theorems that we use in other parts of our study are 

given. 

2.1 Metric Spaces  

This section deals with metric spaces so we will recall some relative definitions and their 

properties. 

Definition 2.1. Consider that 𝛬 is a nonempty set and the mapping 𝑑: 𝛬 × 𝛬 → [0,∞) 

filling the next axioms for all 𝜘, 𝑦, 𝑧 ∈ 𝛬: 

𝑀1 : 𝑑(𝜘, 𝑦) = 0 iff 𝜘 = 𝑦; 

𝑀2 : 𝑑(𝜘, 𝑦) = 𝑑(𝑦, 𝜘); 

𝑀3 : 𝑑(𝜘, 𝑧) ≤ 𝑑(𝜘, 𝑦) + 𝑑(𝑦, 𝑧). 

Then d is referred to as a metric on Λ. The ordered pair (Λ,d) is called a metric space. 

Next, we give some illustrative examples of metric-spaces. 

Example 2.2. Assume 𝑑: 𝛬 × 𝛬 → [0,∞) as 

𝑑(𝜘, 𝑦) = {
0  if 𝜘 = 𝑦
1  if 𝜘 ≠ 𝑦

 

for all𝜘, 𝑦 ∈ 𝛬. The pair of numbers (Λ, d) is a metric space that is often referred to as a 

discrete metric space. 

Example 2.3. Let us define 𝑑:ℝ × ℝ → [0,∞) as 
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𝑑(𝜘, 𝑦) = |𝜘 − 𝑦| 

for all𝜘, 𝑦 ∈ ℝ. Therefore, the pair (ℝ, 𝑑) represents a metric space often referred to as 

the normal metric-space. 

Example 2.4.  The function 𝑑: ℝ2 ×ℝ2 → ℝ is defined by: 

𝑑((𝜘1, 𝜘2), (𝑦1, 𝑦2)) = √(𝜘1–𝑦1)
2 + (𝜘2– 𝑦2)

2 

the Euclidean metric on ℝ2 is a metric defined on the two-dimensional Euclidean space 

ℝ2. 

Definition 2.5. Assuming (Λ,d) denotes a metric space with a point κ0∈Λ and a real 

number ι>0, the open and closed balls are defined as follows: 

i) 𝐵(𝜘0; 𝚤) = {𝜘 ∈ 𝛬: 𝑑(𝜘, 𝜘0) < 𝚤} is known as the open ball. 

ii) 𝐵̅(𝜘0; 𝚤) = {𝜘 ∈ 𝛬: 𝑑(𝜘, 𝜘0) ≤ 𝚤} is known as the closed ball. 

In both cases, κ0 is referred to as the center and 𝜄ι as the radius. The open ball B(κ0;ι) 

consists of all points in Λ whose distance from the center is less than 𝜄ι 

Theorem 2.6. Consider a metric space (𝛬, 𝑑 ) 

i) Every 𝐵(𝜘0; 𝚤)is an open set. 

ii)  Every 𝐵̅(𝜘0; 𝚤) is a closed set. 
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Example 2.5. Consider (ℝ, 𝑑) be a usual metric space and 𝜘0 ∈ ℝ. In this case, for 𝑟 ∈

ℝ+, 

𝐵(𝜘0, 𝑟) = (𝜘0 − 𝑟, 𝜘0 + 𝑟). 

Example 2.6. Consider (ℝ, 𝑑) be a usual metric space and 𝜘0 ∈ ℝ. In this case, for 𝑟 ∈

ℝ+, 

𝐵̅(𝜘0, 𝑟) = [𝜘0 − 𝑟, 𝜘0 + 𝑟]. 

Definition 2.7. In the metric space (Λ,d), a sequence {κn} in Λ is defined as converging 

to 𝜅κ if every ϵ>0, there exists a natural number N∈N such that d(κn,κ)<ϵ for all 𝑛≥𝑁. In 

this case, we write limn→∞κn=κ or κn→κ as 𝑛 approaches infinity. If limn→∞κn=κ for 

some κ∈Λ, then the sequence{κn} is considered convergent; otherwise, it is divergent. 

Definition 2.8. Assume (𝛬, 𝑑)  be a metric space and {𝜘𝑛} be a sequence in 𝛬 . The 

sequence {𝜘𝑛} is named a Cauchy sequence iff, for all 𝜀 > 0, there exists 𝑛,𝑚 ∈ ℕ such 

that 𝑑(𝜘𝑚, 𝜘𝑛) < 𝜀 for all 𝑚, 𝑛 ≥ ℕ. 

Remark 2.9. In the metric space (Λ,d), consider {κn} as a sequence within Λ. Then 

i) {𝜘𝑛} is a converge sequence iff 𝑑(𝜘𝑛, x) → 0 as 𝑛 → ∞. 

ii) {𝜘𝑛} is a Cauchy sequence iff 𝑑(𝜘𝑛, 𝜘𝑚) → 0 as 𝑛,𝑚 → ∞. 

Theorem 2.10. Consider (𝛬, 𝑑), a metric space: 

i. Uniqueness of Limit: The limit of a convergent sequence within any metric space 

(Λ,d) is unique. If a sequence{κn} converges to some limit x∈Λ, and it is supposed 

that it converges to another limit 𝑦∈Λ, then by the properties of the metric, d(x,y)=0 

would imply 𝑥=𝑦. Hence, a sequence cannot converge to two distinct points, affirming 

the uniqueness of the limit. 
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ii. Convergence Implies Cauchy: Every convergent sequence in a metric space (Λ,d) is 

a Cauchy sequence. If a sequence {𝜅𝑛} converges to some 𝑥∈Λ, for any given 𝜖>0 

there exists a natural number 𝑁 such that for all 𝑛≥𝑁n, 𝑑(𝜅𝑛,𝑥)<𝜖/2. For any 𝑚,𝑛≥𝑁, 

using the triangle inequality, 𝑑(𝜅𝑛,𝜅𝑚)≤𝑑(𝜅𝑛,𝑥)+𝑑(𝑥,𝜅𝑚)<𝜖/2+𝜖/2=𝜖, which shows 

that the sequence is Cauchy. 

Definition 2.15. Let (𝛬, 𝑑) be metric space and {𝜘𝑛} be a sequence in 𝛬. For 𝑛𝑘 < 𝑛𝑘+1, 

the sequence {𝜘𝑛𝑘} is called the subsequence of {𝜘𝑛}. 

Definition 2.11. Let (𝛬, 𝑑) be a metric space. We say that (𝛬, 𝑑 ) is called complete 

metric space if for every Cauchy sequence in 𝛬 is convergent sequence. 

Example 2.12. i) Consider the metric space (R, d), which is a standard metric space. It is 

also a complete metric space. 

ii) The metric space (Λ, d), which is defined with a discrete metric, is a complete metric 

space. 

iii) Define a function d: C([a, b]) × C([a, b]) → R by the rule d(f, g) = sup {|f(ϰ) - g(ϰ)| 

: ϰ ∈ [0, 1]}, where C([a, b]) denotes the set of all continuous functions on the interval 

[a, b]. The space (C ([a, b]), d) constitutes a complete metric space. 

iv) The metric space (Q, d), which is a conventional metric space, is not a complete 

metric space. 

Definition 2.13. Suppose f: Λ → Y is a function where both (Λ, d1) and (Y, d2) are defined 

as metric spaces. 𝑓  is continuous at 𝑐 ∈  𝛬  iff, for any 𝜀 >  0  , there exists 𝛿 >  0, 

and 𝜘 ∈  𝛬 with 𝑑1(𝜘, 𝑐)  <  𝛿 implies that 𝑑2(𝑓𝜘, 𝑓 𝑐)  <  𝜀. If 𝑓 is continuous at every 

point on 𝛬, then it is continuous on 𝛬. 

Definition 2.14. Let (𝛬, 𝑑1) and (𝑌, 𝑑2) be two metric spaces, 𝑓: 𝛬 → 𝑌 be a function and 

𝜘0 ∈ 𝛬. If the following statement hold: 
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lim
𝑛→∞

𝜘𝑛 = 𝜘 ⟹ lim
𝑛→∞

𝑓(𝜘𝑛) = 𝑓(𝜘), 

then f function is called as sequentially continuous. 

Theorem 2.15. Let (𝛬, 𝑑1) and (𝑌, 𝑑2) be two metric spaces, 𝑓: 𝛬 → 𝑌 be a function. The 

function f is continuous on 𝛬 if and only if the function f is sequentially continuous. 

2.2 Some Properties of Fixed Points And Best Proximity Points 

This section provides essential definitions and findings regarding the fixed point of a 

mapping T on the metric space Λ, including the necessary conditions for the existence 

and uniqueness of fixed points. 

Definition 2.14. A mapping T defined on a metric space (Λ, d) is said to have a fixed 

point at ϰ ∈ Λ if it satisfies Tϰ = ϰ. 

To illustrate this definition, consider the following example. 

Example 2.15. Consider the mapping 𝑇:ℝ → [0,1] is defined by 𝑇𝜘 = 𝑠𝑖𝑛𝜘 its clear that 

0 is fixed point of 𝑇 but (𝜋/2) is not fixed point of 𝑇. 

Remarks 2.16. i) Not necessary all mappings defined on metric spaces has fixed point, 

see the mapping 𝑇: (𝛬, 𝑑) → (𝛬, 𝑑)  defined by 𝑇𝜘 = 𝜘 + 𝑎,  where 𝑎 ≠ 0  is a real 

number not has fixed point. 

ii) Some types of mappings defined on metric space has only one fixed point such as 

𝑇:ℝ → [0,1]  defined by 𝑇𝜘 = 𝑠𝑖𝑛𝜘, and the fixed point of this mapping is only zero. 

iii) The identity mapping on a metric has infinite set of fixed points.  
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iv) If 𝜘 is a fixed point of  𝑇: (𝛬, 𝑑) → (𝛬, 𝑑) , then 𝜘 is not necessary by fixed point of 

𝑇|Ᵽ: Ᵽ → 𝛬,  where   Ᵽ ⊆ 𝛬.  To illustrate that see, 𝑇:ℝ → ℝ defined by 𝑇𝜘 =
𝜘

2
 has a 

fixed point at 𝜘 = 0, but 𝑇|(0,1): (0,1) → 𝛬, has no fixed point.  

Now we introduce some important theorem of existence and uniqueness fixed point for 

contraction mapping, but before that we are recalling the definition of contraction 

mapping. 

 

Definition 2.17. A mapping 𝑇 ∶  𝛬 →  𝛬    on a metric space (𝛬, 𝑑)  is said to be 

contraction mapping if there exists 0 ≤ 𝑘 < 1 such that 𝑑 (𝑇𝜘, 𝑇𝑦) ≤  𝑘𝑑 ( 𝜘, 𝑦) for all 

𝜘, 𝑦 ∈  𝛬 . 

Theorem 2.18. Given a complete space (Λ, d) and a contraction mapping T: Λ → Λ, it 

follows that T possesses a unique fixed point. 

The condition appeared in above theorem is necessary but not sufficient, that means 

sometimes the mapping is not contraction but has fixed point. Indeed, in a usual metric 

space the mapping  𝑇:ℝ → ℝ defined by 𝑇𝜘 = 2 − 𝜘 is not contraction mapping but has 

fixed point 𝜘 = 1. 

Assume (Λ, d) as metric space  

𝑃(𝛬) = {𝑈 ⊆ 𝛬:𝑈 𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦 𝑠𝑢𝑏𝑠𝑒𝑡} 

𝐶(𝛬) = {𝑈 ⊆ 𝛬:𝑈  𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑢𝑏𝑠𝑒𝑡} 

𝐶𝐵(𝛬) = {𝑈 ⊆ 𝛬:𝑈 𝑖𝑠 𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦 𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑛𝑑  𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑠𝑢𝑏𝑠𝑒𝑡} 

 

Definition 2.45. Consider (Λ, d) as a metric space and let U, V be elements of CB(Λ). 

Define the function 𝐻: 𝐶𝐵(𝛬) × 𝐶𝐵(𝛬) → ℝ defined by 
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𝐻(𝑈, 𝑉) = 𝑚𝑎𝜘{𝑠𝑢𝑝𝜘∈𝑈𝑑(𝜘, 𝑉), 𝑠𝑢𝑝𝑦∈𝑉𝑑(𝑈, 𝑦)} 

where 𝑑(𝜘, 𝑉) = 𝑖𝑛𝑓𝑦∈𝑉𝑑(𝜘, 𝑦) is called Pompeiu-Hausdorff metric on 𝐶𝐵(𝛬). 

Theorem 2.46. Let (𝛬, 𝑑) be a complete metric space and 𝑇: 𝛬 → 𝐶𝐵(𝛬) be a mapping. 

If 𝑇 is a multivalued contraction mapping, that is, there exists 𝑘 ∈ [0,1) such that 

𝐻(𝑇𝜘, 𝑇𝑦) ≤ 𝑘𝑑(𝜘, 𝑦) 

for all 𝜘, 𝑦 ∈ 𝛬, then 𝑇 has a unique fixed point. 

Recently, Khojasteh et al. (2015) introduced a new concept so-called simulation function, 

and so Z-contractions by using these functions. Now, we recall the definition of Z-

contractions and a related fixed-point result. 

If the function ζ: [0, ∞) × [0, ∞) → R meets the specified conditions, it is characterized 

as a simulation function.:  

(𝜁1) 𝜁 (0, 0)  =  0,  

(𝜁2) 𝜁(𝑝, 𝑞)  <  𝑞 −  𝑝 for all 𝑞, 𝑝 >  0, 

 (𝜁3)  If {𝑝𝑛}, {𝑞𝑛}  ⊆  (0,∞)  are sequences satisfying lim
𝑛→∞

𝑝𝑛  = lim
𝑛→∞

𝑞𝑛 >  0 , then 

lim
𝑛→∞

 𝑠𝑢𝑝 𝜁 (𝑝𝑛, 𝑞𝑛)  <  0. 

Theorem 2.21. Consider T: Λ → Λ as a mapping defined on a complete metric space (Λ, 

d), and let ζ: [0, ∞) × [0, ∞) → R be designated as a simulation function. If the mapping 

𝑇is Z-contraction w.r.t. 𝜁, that is, it is satisfied 

𝜁 (𝑑(𝑇𝜘, 𝑇𝜂), 𝑑(𝜅, 𝜂))  ≥  0 
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 for each 𝜘, 𝜂 ∈  𝛬, then 𝑇 has a unique fixed point 𝑢 in Λ. Also, the Picard sequence 

{𝑇𝑛𝜘} for any initial point 𝜘 ∈  𝛬 converges to 𝑢. 

Following, many authors have studied to extend the family of simulation functions. In 

this direct, Argoubi et al. (2015)  noticed that the condition (𝜁1) can be removed because 

of the fact that it is not used in the proof of Theorem 1. Another approach to these 

expansion efforts was achieved by Roldan et al. (2015)  by modifying the condition 

(𝜁3) as follows:  

(𝜁3)′ 𝐼𝑓 {𝑝𝑛}, {𝑞𝑛}  ⊆  (0,∞) are sequences satisfying lim
𝑛→∞

𝑝𝑛 = lim
𝑛→∞

𝑞𝑛 > 0 and  𝑝𝑛 <

𝑞𝑛 for 𝑛 ∈  𝑁, then lim
𝑛→∞

𝑠𝑢𝑝𝜁(𝑝𝑛, 𝑞𝑛) < 0 

Later, surprisingly it was proved that every Z-contraction in the sense of Rold´an-L´opez-

de-Hierro et al. is a Meir-Keeler contraction. To obtain a real larger family of contractions 

than the family of Meir-Keeler contractions, Rold 𝑎́ n-L 𝑜́ pez-de-Hierro et al. [23] 

introduced R-functions, and hence R-contractions with the help of these functions: 

Assume ∅ ≠ A ⊆ R and a function ρ: A × A → R meets the specified criteria, it is then 

referred to as an R-function on A: 

(𝜌1) for any sequence {𝑝𝑛} contained in A ∩ (0, ∞) where 𝜌(𝑝𝑛, 𝑝𝑛+1) > 0 for all 𝑛 ∈

ℕ⋃{0}, it follows that 𝑝𝑛 → 0 as 𝑛 → ∞. 

(𝜌2) for sequence {𝑝𝑛}, {𝑞𝑛} ⊆ 𝐴⋂(0,∞) where both converge to lim
𝑛→∞

𝑝𝑛  = lim
𝑛→∞

𝑞𝑛 =

𝐿 ≥ 0, 𝐿 < 𝑝𝑛 and 𝜌(𝑝𝑛, 𝑞𝑛) > 0 for each 𝑛 ∈ ℕ⋃{0}, it must be that 𝐿 = 0. 

The following property for an R-function 𝜌 on 𝐴 is useful in some cases: 
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(𝜌3)  If {𝑝𝑛}, {𝑞𝑛} ⊆ 𝐴⋂(0,∞)  are sequences satisfying 𝜌(𝑝𝑛, 𝑞𝑛) > 0  for each 𝑛 ∈

ℕ⋃{0} and 𝑞𝑛 → 0 as 𝑛 → ∞, then we have 𝑝𝑛 → 0 as 𝑛 → ∞. 

Definition 2.22. Suppose T: Λ → Λ is a mapping on a complete metric space (Λ, d). 

Assume there exists an R-function on A that satisfies the relevant conditions.  

𝑟𝑎𝑛𝑑(𝑑, 𝛬) = {𝑑(𝜘, 𝜂): 𝜘, 𝜂 ∈ 𝛬} ⊆ 𝐴 

and 

𝜌(𝑑(𝑇𝜘, 𝑇𝜂), 𝑑(𝜅, 𝜂))  ≥  0 

 for each 𝜘, 𝜂 ∈  𝛬 with 𝜘 ≠ 𝜂, then 𝑇 is called R-contraction with respect to 𝜌. 

Best proximity point theory is viewed as an innovative extension of fixed-point theory. 

Suppose A and B are non-empty subsets of a metric space (𝛬, 𝑑), and let T: A→B be a 

mapping. If A and B are disjoint sets (A ∩ B = ∅), it is evident that the mapping T cannot 

have a fixed point. Consequently, it is relevant to investigate whether there exists a point 

κ ∈ A such that d(κ, Tκ) equals d(A, B); this point is termed the best proximity point of T. 

In the special case where A=B=Λ, every best proximity point of T is actually a fixed point 

of T. Additionally, finding a best proximity point of T corresponds to solving the 

optimization problem: minκ∈A  d (κ, Tκ). This pursuit not only identifies the point in A 

closest to its image under 𝑇T in 𝐵B but also highlights the application of proximity point 

theory in optimization. We will now review some fundamental concepts and definitions 

relevant to this theory. 

Definition 2.27. In a metric space (Λ, d) with nonempty subsets A and B, a mapping T 

from A to B has a best proximity point x in A if the distance between x and T(x), denoted 

d(x, T(x)), equals the distance between the sets A and B, d(A, B). 
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Let (𝛬, 𝑑) be a metric space, 𝐴, 𝐵 be nonempty subsets of 𝛬 and 𝑇: 𝐴 → 𝐵 be a mapping. 

We regard the subsets of 𝐴 and 𝐵, respectively. 

𝐴0 = {𝜘 ∈ 𝐴 ∶ 𝑑(𝜘, 𝑦) = 𝑑(𝐴, 𝐵)𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜘 ∈ 𝐵} 

and 

𝐵0 = {𝜘 ∈ 𝐵 ∶ 𝑑(𝜘, 𝑦) = 𝑑(𝐴, 𝐵)𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜘 ∈ 𝐴} 

where 𝑑(𝐴, 𝐵) =𝑖𝑛𝑓{ 𝑑(𝜘, 𝑦): 𝜘 ∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐵}. 

Definition 2.37 ([15]). In a metric space (Λ, d) where P and Q are non-empty subsets, the 

pair (P, Q) is considered to have the P-property if this condition is met. 

𝑑(𝜘1, 𝑦1) = 𝑑(𝑃, 𝑄)

𝑑(𝜘2, 𝑦2) = 𝑑(𝑃, 𝑄)
} ⟹ 𝑑(𝜘1, 𝜘2) = 𝑑(𝑦1, 𝑦2) 

for all 𝜘1, 𝜘2 ∈ 𝑃 𝑎𝑛𝑑 𝑦1, 𝑦2 ∈ 𝑄.  

 Theorem 2.48. Let (𝛬, 𝑑) be a complete metric space, 𝐴, 𝐵 be nonempty closed subsets 

of 𝛬 and 𝑇: 𝐴 → 𝐵 be a mapping. Suppose that 𝐴0 ≠ ∅, 𝑇(𝐴0) ⊆ 𝐵0 and the pair (𝐴, 𝐵) 

has the 𝑃-Property. If there exists 𝑘 ∈ [0,1) such that  

𝑑(𝑇𝜘, 𝑇𝑦) ≤ 𝑘𝑑(𝜘, 𝑦) 

for all 𝜘, 𝑦 ∈ 𝐴, then 𝑇 has a best proximity point in 𝐴. 
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3. SOME RESULTS VIA R-FUNCTIONS 

In the proof of the main result (Theorem 27) in [20], we notice that the authors need 𝐿 ≤

 𝑝𝑛  for all 𝑛 ∈  𝑁 instead of 𝐿 <  𝑝𝑛 for all 𝑛 ∈  𝑁 in the condition (𝜚2) to show the 

Picard sequence {𝜘𝑛} is a Cauchy sequence. To address this issue, we make a slight 

alteration to condition (ρ2), revising it to (ρ2)'. Therefore, throughout the remainder of the 

paper and specifically in Definition 2.36, it is logical to consider an R-function on A as a 

function ρ: A × A → R that fulfills the conditions (ρ1) and the revised (ρ2)'.Also, taking 

into account the condition (𝜚1)′ which is weaker than (𝜚1) we introduce a new concept 

so-called the modified R-function as follows. 

Definition 3.1. Assume ∅ ≠ A ⊆ R and consider a function ρ: A × A → R. If it meets the 

specified criteria, it is termed a modified R-function on A. Specifically, condition (ρ_1)' 

states that if {pn} is a sequence in (0,∞) ∩ A with ρ(p(n+1), pn) > 0 for all n ∈ N ∪ {0}, then 

there must be a subsequence {p (nk)} of {pn} such that: 

𝑝𝑛𝑘 →  0 𝑎𝑠 𝑘 →  ∞. 

(𝜚2)′ If {𝑝𝑛}, {𝑞𝑛}  ⊆  (0,∞)  ∩  𝐴  are sequences satisfying lim
𝑛→∞

𝑝𝑛 = lim
𝑛→∞

𝑞𝑛 = 𝐿 ≥

0, 𝐿 ≤ 𝑝𝑛  and 𝜚 (𝑝𝑛, 𝑞𝑛)  >  0 for each 𝑛 ∈  𝑁 , then we have 𝐿 =  0. It is clear that 

every R-function on A is a modified R-function on 𝐴. 

Using modified R-functions and taking into account the best proximity point theory we 

introduce a new type contraction called generalized R-contraction. Hence, we enlarge the 

family of R-contractions. Before this new concept, we present the following proposition 

that is important for our main result without proof since the proof is similar to Proposition 

19 in [20]. 

Proposition 3.2. Assume 𝜚 ∶  𝐴 ×  𝐴 →  ℝ be a modified ℛ-function on A. Then, we 

have 𝜚(𝜘, 𝜘)  ≤  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜘 ∈  (0,∞)  ∩  𝐴.  
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Now, we state our new concept. 

Definition 3.3. Let 𝑇 ∶  𝑃 →  𝑄  be a mapping on a metric space (𝛬, 𝑑)  where ∅ ≠

 𝑃, 𝑄 ⊆  𝛬. If there is a modified R-function 𝜚 ∶  𝐴 ×  𝐴 →  ℝ on 𝐴 satisfying  

𝑟𝑎𝑛(𝑑, 𝑃 ∪  𝑄)  =  {𝑑(𝜘, 𝑦) ∶  𝜘, 𝑦 ∈  𝑃 ∪  𝑄}  ⊆  𝐴 

and 

𝜚 (𝑑(𝑇𝜘, 𝑇𝑦), 𝑑(𝜘, 𝑦))  >  0 

for each 𝜘, 𝑦 ∈  𝑃 𝑤𝑖𝑡ℎ 𝜘 ≠  𝑦, then T is called generalized ℝ-contraction with respect 

to 𝜚.  

In exploring best proximity points, it has been demonstrated that the existence of such 

points under the P-property can be derived from corresponding fixed point theorems by 

Abkar and Gabeleh. To further generalize these fixed point results, we propose the 

following modification to the definition of the P-property [2]: 

Definition 3.4. Let ∅ ≠  𝑃, 𝑄 be subsets of a metric space (𝛬, 𝑑). Then, the pair (𝑃, 𝑄) 

is said to have generalized P-property if it is satisfied 

𝑑(𝜘1, 𝑦1) = 𝑑(𝑃, 𝑄)

𝑑(𝜘2, 𝑦2) = 𝑑(𝑃, 𝑄)
} ⟹ 𝑑(𝜘1, 𝜘2) = 𝑑(𝑦1, 𝑦2) 

for all 𝜘1, 𝜘2 ∈ 𝑃 with 𝜘1 ≠ 𝜘2 𝑎𝑛𝑑 𝑦1, 𝑦2 ∈ 𝑄.  Now, we present our main result: 

Theorem 3.5. Consider a mapping T: P → Q on a complete metric space (Λ, d), where P 

and Q are closed subsets of Λ. Let P0 ≠ ∅ and T(P0) be included within Q0, and assume 

that the pair (P, Q) possesses a generalized P-property. Furthermore, suppose T is 
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characterized as a generalized R-contraction relative to the function ϱ. If any of the 

following conditions are met: 

• T is continuous, 

• The function ϱ meets condition (ϱ3), 

then it follows that T has a unique best proximity point within P. 

Proof. Let 𝜘0 ∈  𝑃0  be an arbitrary point. Since 𝑇𝜘0  ∈  𝑇(𝑃0) ⊆  𝑄0 there exists 𝜘1 ∈

 𝑃0 satisfying 

𝑑(𝜘1, 𝑇𝜘0)  =  𝑑(𝑃, 𝑄). 

Also, since 𝑇𝜘1  ∈  𝑇(𝑃0)  ⊆  𝑄0 , there exists 𝜘2 ∈  𝑃0 satisfying 

𝑑(𝜘2, 𝑇𝜘1)  =  𝑑(𝑃, 𝑄) 

By this way, we can construct a sequence {𝜘𝑛 } in 𝑃0 such that   

                                           𝑑(𝜘𝑛+1, 𝑇𝜘𝑛) =  𝑑(𝑃, 𝑄),                                                 (3.1) 

for all 𝑛 𝑖𝑛 𝑁 ∪  {0}. 𝐼𝑓 𝜘𝑛0  = 𝜘𝑛0+1 for a particular 𝑛0 ∈  𝑁 ∪  {0}, then from (3.1) we 

have 

𝑑(𝜘𝑛0 , 𝑇𝜘𝑛0)  =  𝑑(𝑃, 𝑄), 

and so the proof is completed. Hence, we assume that  𝜘𝑛 ≠ 𝜘𝑛+1 for all 𝑛 ∈  𝑁 ∪ {0}. 

Then, since the pair (𝑃, 𝑄) has generalized P-property, from (3.1) we get 

                                          𝑑(𝜘𝑛, 𝑇𝜘𝑛+1)  =  𝑑(𝜘𝑛−1, 𝑇𝜘𝑛)                                        (3.2) 
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for all 𝑛 ∈  𝑁. Also, since T is a generalized ℛ-contraction with respect to 𝜚, then we 

obtain 

𝜚(𝑑(𝜘𝑛−1, 𝑇𝜘𝑛), 𝑑(𝜘𝑛−1, 𝜘𝑛))  >  0 

for all 𝑛 ∈  𝑁, and so from (3.2), we get 

                                           𝜚(𝑑(𝜘𝑛, 𝑇𝜘𝑛+1), 𝑑(𝜘𝑛−1, 𝜘𝑛))  >  0                                 (3.3) 

for all 𝑛 ∈  𝑁. Therefore, if we denote a sequence {𝑝𝑛} by {𝑝𝑛}  =  𝑑(𝜘𝑛−1, 𝜘𝑛) for all 

𝑛 ∈  𝑁, then from (3.3) we have 𝑝𝑛  >  0 and 𝜚(𝑝𝑛+1, 𝑝𝑛)  >  0 for all 𝑛 ∈  𝑁. Also, 

since {𝑝𝑛}  ⊆  (0,∞) ∩  𝐴,  using the condition (𝜚1)′  we can say that there exists a 

subsequence {𝑝𝑛𝑘} of {𝑝𝑛}such that 

lim
𝑘→∞

𝑝𝑛𝑘 = lim
𝑘→∞

𝑑(𝜘𝑛𝑘−1 , 𝜘𝑛𝑘) = 0                               (3.4) 

Now, we want to show that {𝜘𝑛𝑘} is a Cauchy sequence. To ease, let’s denote a sequence 

{𝑦𝑘} 𝑎𝑠 𝑦𝑘  =  𝜘𝑛𝑘  for all 𝑘 ∈  𝑁. Assume the contrary, that is, {𝑦𝑘} is not a Cauchy 

sequence. Then, there exist 𝜀 >  0 and two subsequences of natural numbers {𝑘𝑟}, {ℓ𝑟} 

with ℓ𝑟 > 𝑘𝑟 ≥  𝑟 such that 

𝑑(𝑦𝑘𝑟 , 𝑦ℓ𝑟)  ≥  𝜀                                                (3.5) 

for all 𝑟 ∈  𝑁 where ℓ𝑟 is the least integer satisfying (3.5), that is, 𝑑(𝑦𝑘𝑟 , 𝑦ℓ𝑟−1) <  𝜀 for 

all 𝑟 ∈  𝑁. Hence, using the triangular inequality we have 

 𝜀 ≤ 𝑑(𝑦𝑘𝑟 , 𝑦ℓ𝑟)   

                                                             ≤ 𝑑(𝑦𝑘𝑟 , 𝑦ℓ𝑟−1) <  + 𝑑(𝑦ℓ𝑟−1 , 𝑦ℓ𝑟) 

                                                             < 𝜀 +  𝑑(𝑦ℓ𝑟−1 , 𝑦ℓ𝑟) 



  

18 
 

for all 𝑟 ∈  𝑁. Taking limit as 𝑟 →  ∞ we get 

lim
𝑟→∞

𝑑(𝑦𝑘𝑟 , 𝑦ℓ𝑟) = 𝜀                                        (3.6) 

Also, since 

|𝑑(𝑦𝑘𝑟−1 , 𝑦ℓ𝑟−1)  −  𝑑(𝑦𝑘𝑟 , 𝑦ℓ𝑟  )|  ≤  𝑑(𝑦𝑘𝑟−1, 𝑦𝑘𝑟  )  +  𝑑(𝑦ℓ𝑟−1 , 𝑦ℓ𝑟  ) 

for all 𝑟 ∈  𝑁, from (3.6) we have 

lim
𝑟→∞

𝑑(𝑦𝑘𝑟 , 𝑦ℓ𝑟−1) = 𝜀.                                          (3.7) 

Because of the fact that T is a generalized ℜ-contraction 𝑤. 𝑟. 𝑡. 𝜚, we obtain 

𝜚 (𝑑 (𝑇𝑦𝑘𝑟−1, 𝑇𝑦ℓ𝑟−1) , 𝑑(𝑦𝑘𝑟−1,  𝑦ℓ𝑟−1))  >  0 

for all 𝑟 ∈  𝑁. So, since the pair (𝑃, 𝑄) has generalized 𝑃-property, we have 

𝜚 (𝑑 (𝑦𝑘𝑟 , 𝑦ℓ𝑟) , 𝑑(𝑦𝑘𝑟−1,  𝑦ℓ𝑟−1))  >  0  

For every r in 𝑁. Considering that as r approaches infinity, the limits limr→∞d(ykr−1

,ylr−1) and limr→∞d(ykr,ylr) both approach ϵ, and given the condition ρ2 from Equations 

(3.5) and (3.8), we find that ϵ=0, which leads to a contradiction. Therefore, the sequence 

{yk}={κnk} forms a Cauchy sequence in P. Utilizing equation (3.2), it follows that the 

sequence{Tκnk−1} is also a Cauchy sequence in 𝑄. Owing to the closed nature of the 

subsets P and Q within the complete metric space (Λ,d), there must exist elements κ∈P 

and y∈Q such that: 

lim
𝑘→∞

𝜘𝑛𝑘 = 𝜘 𝑎𝑛𝑑 lim
𝑘→∞

𝑇𝜘𝑛𝑘−1 = 𝑦.                                     (3.9) 
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From (3.1), taking limit as 𝑘 →  ∞ we have 

𝑑(𝜘, 𝑦)  =  𝑑(𝑃, 𝑄).                                            (3.10) 

Also, we obtain 

𝑑(𝜘𝑛𝑘−1 , 𝜘)  ≤  𝑑(𝜘𝑛𝑘−1 , 𝜘𝑛𝑘  )  +  𝑑(𝜘𝑛𝑘  , 𝜘) 

for each 𝑘 ∈  𝑁. Hence, considering (3.4) and (3.9) we get 

lim
𝑘→∞

𝜘𝑛𝑘−1 = 𝜘                                                   (3.11) 

If there exists a subsequence of {𝜘𝑛𝑘−1} whose each terms equal to 𝜘 then from (3.9) it 

can be seen that 𝑦 =  𝑇𝜘. So, from (3.10) the proof is complete. Therefore, suppose that 

𝜘𝑛𝑘−1 ≠ 𝜘 for all 𝑘 ∈  𝑁 and for some 𝑟 ∈  𝑁 with 𝑘 ≥  𝑟. Now, we have the following 

cases: 

Case (i): Suppose that T is a continuous mapping. Then, we obtain 

lim
𝑘→∞

𝑇𝜘𝑛𝑘−1 = 𝑇𝜘, 

and so 𝑦 =  𝑇𝜘. From (3.10), we conclude that 𝜘 ∈  𝑃 is a best proximity point of 𝑇. 

Case (ii): Suppose that the condition (𝜚3 ) is satisfied. Since T is a generalized R-

contraction mapping, we have 

𝜚 (𝑑 (𝑇𝜘𝑛𝑘−1 , 𝑇𝜘) , 𝑑(𝜘𝑛𝑘−1 , 𝜘))  >  0 

Hence, considering the condition (𝜚3), from (3.11) we have 
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lim
𝑘→∞

𝑇𝜘𝑛𝑘−1 = 𝑇𝜘. 

Therefore, we get 𝑦 =  𝑇𝜘.   Hence, from (3.10), we conclude that 𝜘 ∈  𝑃  is a best 

proximity point of 𝑇. 

For the uniqueness, suppose that there exists 𝜘, 𝑦 ∈  𝑃 𝑤𝑖𝑡ℎ 𝜘 ≠  𝑦 such that 

𝑑(𝜘, 𝑇𝜘)  =  𝑑(𝑃, 𝑄) 

and 

𝑑(𝑦, 𝑇𝑦)  =  𝑑(𝑃, 𝑄). 

Hence, considering the generalized P-property we have 

𝑑(𝜘, 𝑦)  =  𝑑(𝑇𝜘, 𝑇𝑦). 

Also, because of the fact that T is a generalized 𝑅-contraction with respect to 𝜁, we obtain 

𝜚 (𝑑(𝑇𝜘, 𝑇𝑦), 𝑑(𝜘, 𝑦))  >  0 

Building on the contradiction to Proposition 1, we establish that the function T indeed has 

a unique best near point within P. This insight leads us to a broader implication, given 

that every R-function ρ defined on A can be considered as a modified R-function on A, 

enhancing its applicability. Thus, we can extend our understanding and formulate the 

following corollary, which encapsulates and expands upon the primary finding of [20]: 

Corollary 1. Assume T:P→Q be a a function in a complete metric space (Λ, d), where 

both P and Q are closed subsets of Λ. Assume 𝑃0≠∅, T(P0) ⊆Q0, and the pair (P, Q) 

holds a generalized P-property. This setting not only assures the existence of a unique 
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best proximity point due to the specific properties of P and Q but also aligns with the 

enhanced definitions of R-functions, providing a more robust framework for proving best 

proximity point results in metric spaces. This corollary significantly broadens the 

implications of fixed-point theories, illustrating a practical application of theoretical 

advancements in metric space mappings. Assume there exists an R-function ϱ: A × A → 

R on A such that the range of distances between elements of P and Q, defined as 

ran(𝑑,𝑃∪𝑄)={𝑑(𝜅,𝑦):𝜅,𝑦∈𝑃∪𝑄} is contained within A, and for each distinct pair 𝜅,𝑦 in 

P, 𝜌(𝑑(𝑇𝜅,𝑇𝑦),𝑑(𝜅,𝑦))>0. If any of the following conditions is met: 

T is a continuous mapping, The R-function ϱ fulfills condition (ϱ3), then T is guaranteed 

to have a unique best proximity point within P. 

The following example shows that Theorem 3.5 is real generalization of 

Corollary: Let 𝑇 ∶  𝑃 →  𝑄  be a mapping on a complete metric space (𝛬, 𝑑)  where 

𝑃 𝑎𝑛𝑑 𝑄 are closed subsets of 𝛬. Assume that 𝑃0 ≠  ∅, 𝑇(𝑃0) ⊆  𝑄0 and the pair (𝑃, 𝑄) 

has generalized P-property. Should there be an R-function in accordance with ϱ: A × A 

→ R such that the range of 𝑑d, when applied to P ∪ Q, which is 

𝑟𝑎𝑛(𝑑, 𝑃 ∪  𝑄)  =  {𝑑(𝜘, 𝑦) ∶  𝜘, 𝑦 ∈  𝑃 ∪  𝑄}  ⊆  𝐴 

falls within A, and 

𝜚 (𝑑(𝑇𝜘, 𝑇𝑦), 𝑑(𝜘, 𝑦))  >  0 

for each 𝜘, 𝑦 ∈  𝑃 𝑤𝑖𝑡ℎ 𝜘 ≠  𝑦.  If it is satisfied one of the following conditions 

i. 𝑇 operates continuously, 

ii. The function ϱ adheres to condition (𝜚3), 

then it is concluded that T secures a unique best proximity point in P. 
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Example 3.6. Let 𝛬 =  𝑅2  be a complete metric space with the taxi-cab metric 𝑑. 

Consider the closed subsets of 𝛬 

𝑃 = {0,
1

𝑛
: 𝑛 ∈ 𝑁} × {0} 

𝑄 = {0,
1

𝑛
: 𝑛 ∈ 𝑁} × {1} 

Then, let 𝑑(𝑃,𝑄)=1, with 𝑃0=P and 𝑄0=𝑄. Furthermore, the pair (P, Q) possesses a 

generalized P-property. Define the mapping T:P→Q and the function 𝜌:[0,∞)×[0,∞)→𝑅 

such that T(κ,0)=(0,1) and 

𝜚(𝑝, 𝑞) =

{
 
 
 
 
 

 
 
 
 
 1 ,          𝑝 =

1

𝑛 + 1
 𝑎𝑛𝑑 𝑞 = 1 +

1

𝑛
, 𝑛 ≥ 1

𝑜𝑟

𝑝 = 1 +
1

𝑛
 𝑎𝑛𝑑 𝑞 =

1

𝑛
, 𝑛 ≥ 1

0,       𝑝 ∉ {0,
1

𝑛 + 1
} 𝑎𝑛𝑑 𝑞 = 1 +

1

𝑛
, 𝑛 ≥ 1,

𝑜𝑟

𝑝 ∉ {0, 1 +
1

𝑛
} 𝑎𝑛𝑑 𝑞 =

1

𝑛
, 𝑛 ≥ 1

𝑞

2
− 𝑝,                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

respectivelyConsequently, it is apparent that (P0) ⊆Q0 and that T is a continuous 

mapping. Define A as the range of distances between elements of P and Q, specifically, 

𝐴=ran(𝑑,𝑃∪𝑄). 

𝐴 = {0,
1

𝑛
: 𝑛 ∈ ℕ} ∪ {|

1

𝑛
−
1

𝑚
| : 𝑛,𝑚 ∈ ℕ} 

∪ {1 + |
1

𝑛
−
1

𝑚
| : 𝑛,𝑚 ∈ ℕ} ∪ {1 + 

1

𝑛
: 𝑛 ∈ ℕ}. 

In this case, 𝑇  is a modified ℛ -function on 𝐴.  Indeed, to show that the condition 

(𝜚1)′ holds, let’s take a sequence {𝑝𝑛}  ⊆  (0,∞) ∩  𝐴 satisfying 𝜚(𝑝𝑛+1, 𝑝𝑛) >  0 for all 
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𝑛 ∈  𝑁.  If there is 𝑛𝑂  ∈  𝑁  such that , 𝑝𝑛0  =  
1

𝑛𝑂
 or  𝑝𝑛0  = 1 + 

1

𝑛𝑂
, then we have 

𝑝𝑛0+2𝑛 →  0 𝑜𝑟 𝑝𝑛0+(2𝑛−)  →  0  for all 𝑛 ∈ ℕ . Otherwise, since 𝜚(𝑝𝑛+1, 𝑝𝑛)  >  0  for 

each 𝑛 ∈ ℕ, we have 

𝑝𝑛

2
− 𝑝𝑛+1 > 0                                              (3.12) 

for 𝑛 ∈ ℕ , and so {𝑝𝑛}  is decreasing. Hence, there exists 𝐿 ≥  0  such that 𝑝𝑛 →

 𝐿 𝑎𝑠 𝑛 →  ∞. Assume that 𝐿 >  0. Taking limit as 𝑛 →  ∞ in inequality 3.12 we obtain 

𝐿 ≤
𝐿

2
 < 𝐿 which is contradiction. So, 𝐿 =  0. In similar to  (𝜚1)′ it can be shown that 

the condition  (𝜚2)′ holds. Now, we want to show that 𝑇 is a generalized ℛ-contraction 

𝑤. 𝑟. 𝑡. 𝜚. For this, we have the following conditions: 

Case 1: Let 𝜘 =  (0, 0), 𝑦 = (
1

𝑛
, 0) , 𝑛 ≥ 1.  Then, we have 𝑇𝜘 =  (0, 1) and 𝑇𝑦 =

 (0, 1). In this case, we obtain 

𝑑(𝑇𝜘 , 𝑇𝑦 ) = 0 

and  

𝑑(𝜘, 𝑦) =
1

𝑛
  

Hence, we obtain:  

𝜚(𝑑 (𝑇𝜘, 𝑇𝑦), 𝑑(𝜘, 𝑦)) =  𝜚 (0,
1

𝑛
) =

1

2𝑛
> 0 

Case 2: Let 𝜘 = (
1

𝑛
, 0) , 𝑦 = (

1

𝑚
, 0) , 𝑛, 𝑚 ≥ 1   (without loss of the generality, we 

assume that 𝑛 <  𝑚). Then, we have 𝑇𝜘 =  (0, 1) and 𝑇𝑦 =  (0, 1). In this case, we get 



  

24 
 

𝑑(𝑇𝜘, 𝑇𝑦)  =  0 

and 

𝑑(𝜘, 𝑦) = |
1

𝑛
−
1

𝑚
| =

1

𝑛
−
1

𝑚
. 

Hence, we obtain  

𝜚(𝑑 (𝑇𝜘, 𝑇𝑦), 𝑑(𝜘, 𝑦)) =  𝜚 (0,
1

𝑛
−
1

𝑚
) =

1

2𝑛
−

1

2𝑚
> 0 

However, we cannot apply Corollary 1 to this example since 𝜚 is not a ℛ-function on any 

subset 𝐸 of ℝ satisfying 𝑟𝑎𝑛(𝑑, 𝑃 ∪  𝑄)  ⊆  𝐸. Assume the contrary, that is, there exists 

a subset E of ℝ satisfying 𝑟𝑎𝑛(𝑑)  ⊆  𝐸 and ϱ is a ℛ-function on 𝐸. Now, consider the 

sequence 

(𝑝𝑛) = (
1

2
, 1 +

1

2
,
1

3
, 1 +

1

4
,
1

5
…) 

in (0,∞)  ∩  𝐸. Then, we have 𝜚(𝑝𝑛+1, 𝑝𝑛)  =  1 >  0 for all 𝑛 ∈  ℕ, but 𝑝𝑛 ↛  0 which 

contradicts the condition (𝜚1). If we take 𝑃 =  𝑄 =  𝛬 in Corollary 1, we have the main 

result of [20]: 

Corollary 3.7. Consider T: Λ → Λ as a mapping within a complete metric space (Λ, d). 

Assume there is an R-function ϱ: A × A → R defined on A such that 

𝑟𝑎𝑛(𝑑, 𝛬)  =  {𝑑(𝜘, 𝑦) ∶  𝜘, 𝑦 ∈  𝛬}  ⊆  𝐴 

and 

𝜚 (𝑑(𝑇𝜘, 𝑇𝑦), 𝑑(𝜘, 𝑦))  >  0 
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for all 𝜘, 𝑦 ∈  𝛬 𝑤𝑖𝑡ℎ 𝜘 ≠  𝑦. If it is satisfied one of the following conditions 

i. T functions continuously, 

ii. The ℛ -function 𝜚 meets condition (𝜚3), 

then T is guaranteed to have a unique fixed point in Λ. 
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4. APPLICATION 

Homotopy theory has significant connections to other branches of mathematics, and as a 

result, several authors have recently successfully applied their fixed point results to it [1, 

13, 14, 24, 25]. Therefore, in this part, we apply our most effective proximity point result, 

Theorem 2, to homotopy theory, taking inspiration from the technique utilized by Vetro 

et al. [25]. In this case, we prove that if the ideal proximity point is held by one homotopic 

mapping, then another mapping must also have it. The idea of homotopy will be reviewed 

now. 

Definition 4.1. Consider the topological spaces (Λ1, τ1) and (Λ2, τ2), with T and F as 

continuous mappings from Λ1 to Λ2. Suppose a continuous function h from Λ1 × [0,1] to 

Λ2 exists such that h(κ,0) equals Tκ and h(κ,1) equals Fκ for every κ in Λ1. Under these 

conditions, T and F are recognized as homotopic mappings. The function h is identified 

as a homotopy. This concept is vital for the insights discussed in this section. 

Definition 4.2. Let ∅ ≠  𝑃, 𝑄 be subsets of a metric space (𝛬, 𝑑) 𝑎𝑛𝑑 ℎ ∶  𝑃 × [0, 1]  →

 𝑄 be a mapping. If 𝐺𝑑(ℎ)  ⊆  (𝛬 ×  [0, 1]  × 𝛬, 𝑑
∗) is closed, then h is said to be 𝑑-

closed mapping, where  

𝐺𝑑(ℎ)  =  {(𝜘 , 𝛽, 𝑦) ∶  𝜘 ∈  𝑃, 𝑦 ∈  𝛬 and 𝛽 ∈  [0, 1] with 𝑑(𝑦, ℎ(𝜘 , 𝛽))  =  𝑑(𝑃, 𝑄)} 

and 

𝑑∗((𝜘1, 𝛽1, 𝑦1), (𝜘2, 𝛽2, 𝑦2))  =  𝑑(𝜘1, 𝜘2)  +  |𝛽1  −  𝛽2|  +  𝑑(𝑦1, 𝑦2) 

for all (𝜘1, 𝛽1, 𝑦1), (𝜘2, 𝛽2, 𝑦2)  ∈  𝛬 × [0, 1]  ×  𝛬.  

Note that, in case of 𝑑(𝑃, 𝑄)  =  0, Definition 8 turns to the definition of closed mappings 

defined from 𝑃 𝑡𝑜 𝑄.  
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Now, let's introduce the key finding of this section:  

Theorem 4.3. Assume that (Λ, d) is a complete metric space with P and Q as nonempty, 

closed subsets of Λ, and that there is a non-empty subset U within P. Suppose further that 

the pair (P, Q) possesses the generalized P-property. Consider a mapping h: P × [0,1] → 

Q which is continuous and d-closed. Under these conditions, 

i. 𝑑(𝜘, ℎ(𝜘, 𝜆))  >  𝑑(𝑃, 𝑄) for each 𝜘 ∈  𝑃\𝑈 𝑎𝑛𝑑 𝜆 ∈  [0, 1], 

ii. there exists a modified ℛ-function 𝜚 ∶  𝐴 ×  𝐴 →  ℝ on A satisfying 

𝑟𝑎𝑛(𝑑, 𝑃 ∪  𝑄)  =  {𝑑(𝜘, 𝑦) ∶  𝜘, 𝑦 ∈  𝑃 ∪  𝑄}  ⊆  𝐴 

and 

𝜚 (𝑑(ℎ(𝜘, 𝜆), ℎ(𝑦, 𝜇)), 𝑑(𝜘, 𝑦))  >  0 

for each 𝜘, 𝑦 ∈  𝑃 with 𝜘 ≠  𝑦 and 𝜆, 𝜇 ∈  [0, 1], 

iii. for all 𝜘  ∈  𝐴, 𝛽, 𝑟 ∈  [0, 1] and 𝜘 0  ∈  𝐵̅(𝜘 , 𝑟)  ∩  𝑃0 there exists 𝜘 1 ∈ 𝐵̅(𝜘, 𝑟) 

such that 𝑑(𝜘 1, ℎ(𝜘 0, 𝛽))  =  𝑑(𝑃, 𝑄) where 

𝐵̅(𝜘, 𝑟)  =  {𝜘̅  ∈  𝑃 ∶  𝑑(𝜘, 𝜘̅)  ≤  𝑟} . 

Then, ℎ(・, 1) has a best proximity point in P if ℎ(・, 0) has a best proximity point in P. 

Proof. Consider the following subset 

𝐾 =  {(𝛽, 𝜘) ∶  𝑑(𝜘, ℎ(𝜘, 𝛽))  =  𝑑(𝑃, 𝑄)} . 

From the hypothesis and the condition (𝑖),  there is a point κ in P such that 

𝑑(𝜘, ℎ(𝜘, 0))  =  𝑑(𝑃, 𝑄), that is, we have (0, 𝜘)  ∈  𝐾. Hence, we get 𝐾 ≠  ∅. Define a 

partial order on K by 

(𝛽, 𝜘)  ⪯  (𝜇, 𝑦)  ⇔  𝛽 ≤  𝜇 𝑎𝑛𝑑 𝑑(𝜘, 𝑦)  ≤  𝜇 −  𝛽. 
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Consider 𝐿L as an arbitrary totally ordered subset of K, with β∗ defined as 

β∗=sup{β:(β,κ)∈L}. Suppose we have a sequence{(βn,κn)} within L such that 

(𝛽𝑛,𝜅𝑛)⪯(𝛽𝑛+1,𝜅𝑛+1) for all n∈N∪{0}, and βn converges to β∗ as n→∞. In this 

scenario, the distance d(κn,κm) satisfies 𝑑(𝜅𝑛,𝜅𝑚)≤𝛽𝑚−𝛽𝑛  for each n,m∈N∪{0} with 

𝑚>𝑛m>n, thereby making{κn} a Cauchy sequence in P. Given that P is a closed subset 

of Λ and (Λ,d) is a complete metric space, there exists a κ∗ in P such that d(κn,κ∗) 

converges to zero as 𝑛→∞n→∞. Additionally, the sequence{(κn,βn,κn)} is included in 

Gd(h), and the limit of 𝑑∗((𝜅𝑛,𝛽𝑛,𝜅𝑛),(𝜅∗,𝛽∗,𝜅∗)) reaches zero as 𝑛n approaches infinity.  

lim
𝑛→∞

𝑑∗((𝜘𝑛, 𝛽𝑛, 𝜘𝑛), ( 𝜘
∗, 𝛽∗, 𝜘∗)) = 0). 

Since ℎ is a 𝑑-closed mapping, we get 

𝑑(𝜘∗ℎ(𝜘∗, 𝛽∗))  =  𝑑(𝑃, 𝑄). 

From (i), we determine that κ∗ is in U, and thus, (β∗,κ∗) is part of K. Given that L is a 

totally ordered set, every(β,κ)∈L is less than or equal to (β∗,κ∗). Therefore, (β∗,κ∗) acts 

as an upper bound for L. Utilizing Zorn's Lemma, it is deduced that K possesses a maximal 

element (β0,κ0). The objective now is to demonstrate that β0=1. Suppose otherwise, that 

β0<1. Then, a real number β exists such that β0<β<1. Define r=β−β0. According to (ii), 

the mapping H(・,β):B(κ0,r)→Q is a generalized R-contraction. Considering condition 

(iii) and referencing Theorem 2, it is established that there exists κβ∈B(κ0,r) such that 

(𝜅𝛽,ℎ(𝜅𝛽,𝛽))=𝑑(𝑃,𝑄). Since from (i) κβ is in U, and thus (β,κβ) is included in K, this 

contradicts the assumption that (β0,κ0) is a maximal element in K. Consequently, β0=1 

and h(・,1) yields a best proximity point κ0 in P. Applying Theorem 3 with Q=Λ, the 

following corollary is derived:: 

From point (i), it follows that 𝜅∗κ∗ belongs to U, implying (β∗,κ∗)∈K. Given that L is 

totally ordered, every pair (β,κ)∈L satisfies (β,κ)⪯(β∗,κ∗). Thus, (β∗,κ∗) serves as an 

upper bound for L. By applying Zorn's Lemma, it can be concluded that K contains a 

maximal element (β0,κ0). We next aim to demonstrate that β0=1. Suppose, to the contrary, 
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that β0<1. In this scenario, one can find a real number β such that β0<β<1. Define r=β−β0

. According to point (ii), the mapping H(⋅,β) from B(κ0,r) to Q is a generalized R-

contraction. Considering condition (iii) and invoking Theorem 2, we find that there exists 

κβ∈B(κ0,r) satisfying (κβ,β)=d(P,Q). From (i), κβ is within U, hence (𝛽,𝜅𝛽)∈𝐾(β,κβ)∈K, 

which contradicts the assumed maximality of (β0,κ0). Consequently, β0=1 and h(⋅,1) has 

a best proximity point 𝜅0 in P. If we set 𝑄=ΛQ=Λ in Theorem 3, the following corollary 

is obtained: 

Theorem 4.4. Consider (𝛬, 𝑑) is a complete metric space, 𝑃 be a nonempty closed subset 

of 𝛬  and ∅ ≠  𝑈 ⊆  𝑃.  Assume that ℎ ∶  𝑃 × [0, 1]  →  𝛬  is a continuous closed 

mapping such that: 

𝑑(𝜘, ℎ(𝜘, 𝜆))  >  0 for each 𝜘 ∈  𝑃\𝑈 𝑎𝑛𝑑 𝜆 ∈  [0, 1], 

there exists a modified ℛ-function 𝜚 ∶  𝐴 ×  𝐴 →  ℝ on A satisfying 

𝑟𝑎𝑛(𝑑, 𝛬)  =  {𝑑(𝜘, 𝑦) ∶  𝜘, 𝑦 ∈  𝛬}  ⊆  𝐴 and 

𝜚 (𝑑(ℎ(𝜘, 𝜆), ℎ(𝑦, 𝜇)), 𝑑(𝜘, 𝑦))  >  0 

for each 𝜘, 𝑦 ∈  𝑃 with 𝜘 ≠  𝑦 and 𝜆, 𝜇 ∈  [0, 1], 

for all 𝜘  ∈  𝐴, 𝛽, 𝑟 ∈  [0, 1]  and 𝜘 0  ∈  𝐵̅(𝜘 , 𝑟)  ∩  𝑃0  there exists 𝜘 1 ∈ 𝐵̅(𝜘, 𝑟)  such 

that 𝜘 1 =, ℎ(𝜘 0, 𝛽). 

If ℎ(・, 0) has a fixed point in P, then ℎ(・, 1) has a fixed point 𝑃.  

Proof: Let's start by assuming h(⋅,0) has a fixed point κ in P. Based on Theorem 3, we can 

assert the existence of κ∗ in P such that d(κ∗,h(κ∗,1))=d(P,Λ)=0. This implies that κ∗ is 

also a fixed point of h(⋅,1). 
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5. CONCLUSIONS 

In this thesis, we present our innovative findings. We introduce a novel class of functions, 

including R-functions, and propose a new type of R-contraction while also refining the 

commonly studied R-contractions. Additionally, we redefine the P-property to broaden 

its application. From these theoretical advancements, we derive several significant 

results, both for best proximity points and for fixed points related to our new R-

contractions. To demonstrate the practical relevance and effectiveness of our 

contributions, we include a specific example. 
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