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ABSTRACT

ON SOME BEST PROXIMITY POINT RESULTS VIA R-FUNCTIONS
WITH APPLICATION

Taif Hameed Saadoon SAADOON
Master of Science in Mathematics
Advisor: Assoc. Prof. Dr. Mustafa ASLANTAS
January 2024

This thesis explores the intricate domains of best proximity point and fixed point theories,
structured into five comprehensive chapters. The first chapter introduces the thesis by
outlining its motivation and providing essential background knowledge on the relevant
mathematical theories. In the second chapter, we delve into the basic terminology,
notations, and theorems that underpin our subsequent findings. Our primary contributions
are presented in the third chapter, where we introduce a novel class of functions, including
R-functions, and develop a new type of R-contraction. We also redefine the P-property
and establish new results for best proximity points and fixed points, supported by an
illustrative example to showcase the applicability of our results. The fourth chapter
concludes the thesis by summarizing our findings and suggesting directions for future
research. This work not only contributes to the existing mathematical literature but also

opens new avenues for further theoretical and applied investigations.

2024, 35 pages

Keywords: Metric spaces, Fixed point, Best proximity point, R-contractions



OZET

R-FONKSIYONLARI YARDIMIYLA BAZI EN 1YI YAKINLIK
NOKTASI SONUCLARI VE UYGULAMASI UZERINE

Taif Hameed Saadoon SAADOON
Matematik, Yiiksek Lisans
Tez Danismani: Dog. Dr. Mustafa ASLANTAS
Ocak 2024

Bu tez, bes kapsamli boliimde yapilandirilmis olan en iyi yakinlik noktasi ve sabit nokta
teorilerinin karmasik alanlarmi arastirmaktadir. Ilk boliim, tezin motivasyonunu
ozetlemekte ve ilgili matematik teorileri hakkinda temel bilgiler saglamaktadir. Ikinci
boliimde, sonraki bulgularimizi destekleyen temel terimler, notasyonlar ve teoremler ele
alinmaktadir. Ana katkilarimiz ii¢iincii bolimde sunulmaktadir; burada R-fonksiyonlarini
da iceren yeni bir fonksiyon smifi tanitilmakta ve yeni bir R-kontraksiyon tipi
gelistirilmektedir. Ayrica P-6zelligi yeniden tanimlanmakta ve en iyi yakinlik noktalari
ve sabit noktalar i¢in yeni sonuglar ortaya konmaktadir, sonug¢larimizin
uygulanabilirligini sergilemek i¢in bir 6rnek de sunulmaktadir. Dordiincii boliim,
bulgularimiz1 6zetlemekte ve gelecekteki arastirmalar i¢in yonergeler 6nermektedir. Bu
calisma, mevcut matematik literatiiriine katkida bulunmakla kalmamakta, ayn1 zamanda

daha fazla teorik ve uygulamali aragtirmalar i¢in yeni yollar agmaktadir.
2024, 35 sayfa

Anahtar Kelimeler: Metrik uzaylar, Sabit nokta, En iyi yakinlik noktasi, R-biiziilmeler
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1. INTRODUCTION

One of the key ideas in the study of topology is the concept of metric space. French
mathematician Maurice Fréchet (1906), who also contributed to the disciplines of
Functional Analysis, Probability and Computation, first expressed this idea in his doctoral
thesis. The term "distance” between any two elements in the space under consideration
must be defined. In this way, the idea of metric space has formed the basis of much
research in a wide variety of disciplines, including algebra, differential geometry,
statistics, physics, and engineering. The equations S(»)=0 and T(x)=x are frequently
encountered in analysis and functional analysis. We solve these equations in many ways.
One such approach is fixed point theory. The fixed point theorem is extensively used in
the theory of existence for partial differential equations, differential equations, integral
equations, and a number of interconnected disciplines. Let T be a transformation: A— A,
where A is a non-empty set. If there is a point », at A such that T (3¢) = #,, T is said to

have a fixed point, and the point s, is called the fixed point of T

Banach (1922), considered one of the most important mathematicians of the 20th century,
conducted one of the most notable studies on functions defined in metric spaces. In his

doctoral thesis, he first proposed the "Fixed Point Theorem in Metric Spaces" as follows.

In the context of metric spaces, if T satisfies the condition that for all x,yeA,

d(Txn, Ty) < kd(x,y)

where k is a constant in [0,1), then T is called a contraction mapping.
According to the Banach Fixed Point Theorem, if T is a contraction mapping in a
complete metric space, then T will have precisely one fixed point in that space.



This theory not only provides a method for identifying the fixed points of such
transformations but also establishes the uniqueness and existence of fixed points in self-
mappings. Utilizing this approach, numerous subjects within dynamic programming,
game theory, ordinary and partial differential equations, and integral equations can be
efficiently tackled .The Banach contraction principle was later applied in many different
ways (Abbas et al. 2019, Berinde and Pacurar 2021, Karapimar 2012, Karapinar et al.
2022, Guran et al. 2021, Garodia and Uddin 2020,Muhammed and Kumam 2019,
O’Regan 2019, Reich and Zalas 2017, Shukla et al. 2014, Vetro and Vetro). One of these
was obtained by (Khojasteh et al. 2016) who introduced a new concept so-called
simulation function, and so Z-contractions by using these functions. Moreover, with the
help of these functions a nice fixed-point result was obtained which generalized many
famous results (Aydi et al. 2020, Aydi et al. 2021a, Aydi et al. 2021b, Berinde and
Berinde 2007, Roldan and Shahzad 2015, Roldan et al. 2015).

If T:A—A is a function on a complete metric space (A,d), and {:[0,0)%[0,00)—R is a

simulation function, with T being a {-contraction according to (—meaning it fulfills

¢ (d(Tx,Tn),d(x,m) = 0

for each x,neA—then T possesses a unique fixed point uu in A. Additionally, the Picard

iteration sequence{7nx} starting from any point k€A will converge to U.

Best proximity point theory serves as an innovative extension of fixed-point theory
results. Consider AA and BB, which are non-empty subsets of a metric space (A, d), and
a mapping T: A—B. Given that ANB=@, it's clear that T cannot have a fixed point. Thus,
it becomes relevant to explore the existence of a point k€A such that d (x, 7«) =d (A, B);

this point is referred to as the best proximity point of T.

It is evident that if A=B=A, then each best proximity point of T is inherently a fixed points
of T. Additionally, finding a best point of T is equivalent to solving the optimization

problem min.ea d (x,7x), which seeks to minimize the distance between each point in A



and its image under T in B. This approach not only provides a theoretical framework for
addressing such optimization problems but also expands the application of metric space
theory beyond traditional fixed points.

There are many papers on this topic in the literature due to these facts (Abkar and Gabeleh
2013a, Abkar and Gabeleh 2013b, Altun et al. 2020, Aslantas et al. 2021a, Aslantas et al.
2021b, Aslantas 2021, Basha and Veeramani 1997, Basha 2010, Gabeleh 2014, Gabeleh
2015, Gabeleh and Otafudu 2017, Imdad et al. 2018, Raj 2013, Reich 1978, Reich et al.
2021, Sahin et al. 2021, Sahin 2022, Sahin et al. 2023).

This thesis consists of five chapters. The first chapter presents the rationale for the thesis
and discusses fundamental principles in both best approach point theory and fixed point
theory, acting as contextual information. We review the basic terminology, notations, and
theorems in the second chapter, which are connected to our findings regarding fixed
points and best proximity points. In chapter three, our findings are presented. In this
research, we introduce a novel class of functions, which encompass what we term R-
functions. Building on this foundation, we present a new type of R-contraction and
propose modifications to existing R-contractions, which have garnered significant
attention in recent studies. Furthermore, we introduce a new definition of the P-property.
Through these innovations, we establish several results concerning best proximity points,
including fixed point outcomes for our newly defined R-contractions. To demonstrate the
practical implications and effectiveness of our theoretical results, we provide a specific
example. The culmination of our findings and discussions is presented in the fourth
chapter, which contains our conclusions. This framework not only advances the field of
proximity point and fixed point theory but also broadens the potential for applying these

concepts to more complex and varied mathematical and applied scenarios.



2. PRELIMNARIES

In this section, some definitions and theorems that we use in other parts of our study are

given.
2.1 Metric Spaces

This section deals with metric spaces so we will recall some relative definitions and their

properties.

Definition 2.1. Consider that A is a nonempty set and the mapping d: A X A — [0, )

filling the next axioms for all »,y,z € A:

M;:d(x,y) =0iffx = y;

My:d(n,y) = d(y,x);

Mz:d(,z) <d(e,y) +d(y, z).

Then d is referred to as a metric on A. The ordered pair (4,d) is called a metric space.
Next, we give some illustrative examples of metric-spaces.

Example 2.2. Assume d: A X A — [0, o) as

ifx=y

0
dGey) = {1 if#y

for allx, y € A. The pair of numbers (A, d) is a metric space that is often referred to as a

discrete metric space.

Example 2.3. Let us define d: R X R = [0, ) as



d(x,y) = | =yl

for alls, y € R. Therefore, the pair (R, d) represents a metric space often referred to as

the normal metric-space.

Example 2.4. The function d: R? x R? — R is defined by:

d((#1,2), 1, ¥2)) =V Gea-¥1)? + (ta-y2)?

the Euclidean metric on R? is a metric defined on the two-dimensional Euclidean space
R2,

Definition 2.5. Assuming (A,d) denotes a metric space with a point kK0EA and a real

number >0, the open and closed balls are defined as follows:

1) B(sg; 1) = {» € A:d(x,,) < 1} is known as the open ball.

i) B(xg;1) = {3 € A:d (3, 1,) < 1} is known as the closed ball.

In both cases, «0 is referred to as the center and u as the radius. The open ball B(x0;z)

consists of all points in A whose distance from the center is less than u

Theorem 2.6. Consider a metric space (4,d )

i) Every B(x,; 1)is an open set.

ii) Every B(3,;1) is a closed set.



Example 2.5. Consider (R, d) be a usual metric space and », € R. In this case, for r €
R*,

B(xg, 1) = (39 — 1,39 + 7).

Example 2.6. Consider (R, d) be a usual metric space and », € R. In this case, for r €
R*,

E(”oﬂ') = [1g — 1,29+ 1].

Definition 2.7. In the metric space (A,d), a sequence {kn} in A is defined as converging
to xk if every €>0, there exists a natural number NeN such that d(kn,x)<e for all n>N. In
this case, we write limn—ookn=k Or kn—« as n approaches infinity. If limn—ooxn=x for

some kEA, then the sequence {kn} is considered convergent; otherwise, it is divergent.

Definition 2.8. Assume (4,d) be a metric space and {»,} be a sequence in A. The
sequence {x,} is named a Cauchy sequence iff, for all € > 0, there exists n,m € N such

that d (s,,,, #,,) < € forall m,n > N.

Remark 2.9. In the metric space (A,d), consider {«xn} as a sequence within A. Then

i) {»,} is a converge sequence iff d(sx,,x) > 0asn — co.

i) {»,} is a Cauchy sequence iff d(s,, #,,) = 0asn,m — oo,

Theorem 2.10. Consider (4, d), a metric space:

I. Uniqueness of Limit: The limit of a convergent sequence within any metric space
(A,d) is unique. If a sequence{kn} converges to some limit Xx€EA, and it is supposed
that it converges to another limit y€A, then by the properties of the metric, d(x,y)=0
would imply x=y. Hence, a sequence cannot converge to two distinct points, affirming

the uniqueness of the limit.



ii. Convergence Implies Cauchy: Every convergent sequence in a metric space (A,d) is
a Cauchy sequence. If a sequence {kn} converges to some x€A, for any given >0
there exists a natural number N such that for all n>Nn, d(xn,x)<e/2. For any m,n>N,
using the triangle inequality, d(xn,kxm)<d(kn,x)+d(x,km)<e/2+e/2=€, which shows

that the sequence is Cauchy.

Definition 2.15. Let (4, d) be metric space and {,,} be a sequence in A. For n;, < ny,,

the sequence {x,, } is called the subsequence of {s,}.

Definition 2.11. Let (A, d) be a metric space. We say that (A,d ) is called complete

metric space if for every Cauchy sequence in A is convergent sequence.

Example 2.12. i) Consider the metric space (R, d), which is a standard metric space. It is

also a complete metric space.

i1) The metric space (A, d), which is defined with a discrete metric, is a complete metric
space.

iii) Define a function d: C(/a, b]) x C([a, b]) — R by the rule d(f, g) = sup {|f(sx) - 9(»)|
: 2 €0, 1]}, where C([a, b]) denotes the set of all continuous functions on the interval
[a, b]. The space (C ([a, b]), d) constitutes a complete metric space.

Iv) The metric space (Q, d), which is a conventional metric space, is not a complete

metric space.

Definition 2.13. Suppose f: A — Y is a function where both (A, d1) and (Y, d2) are defined
as metric spaces. f is continuous at ¢ € A iff, for any € > 0, there exists § > 0,
andx € Awithd;(»,c) < &§impliesthatd,(fx, f c) < e.If f iscontinuous at every

point on A, then it is continuous on A.

Definition 2.14. Let (A, d;) and (Y, d,) be two metric spaces, f: A — Y be a function and

u, € A. If the following statement hold:



lim », = x = lim f(x,) = f(x),
n—->oo n—->oo
then f function is called as sequentially continuous.

Theorem 2.15. Let (4, d;) and (Y, d,) be two metric spaces, f: A — Y be a function. The

function f is continuous on A if and only if the function f is sequentially continuous.
2.2 Some Properties of Fixed Points And Best Proximity Points

This section provides essential definitions and findings regarding the fixed point of a
mapping T on the metric space A, including the necessary conditions for the existence

and uniqueness of fixed points.

Definition 2.14. A mapping T defined on a metric space (4, d) is said to have a fixed

point at € A if it satisfies Tz = 2.
To illustrate this definition, consider the following example.

Example 2.15. Consider the mapping T: R — [0,1] is defined by T» = sins its clear that
0 is fixed point of T but (r/2) is not fixed point of T.

Remarks 2.16. i) Not necessary all mappings defined on metric spaces has fixed point,
see the mapping T:(A,d) = (A,d) defined by T» = x + a, where a # 0 is a real
number not has fixed point.

i) Some types of mappings defined on metric space has only one fixed point such as

T:R — [0,1] defined by T = sins, and the fixed point of this mapping is only zero.

iii) The identity mapping on a metric has infinite set of fixed points.



Iv) If i is a fixed point of T:(A4,d) = (A,d), then x is not necessary by fixed point of
T|p:P > A, where P < A. To illustrate that see, T: R — R defined by Tx = g has a

fixed point at » = 0, but T'| o 1y: (0,1) = 4, has no fixed point.

Now we introduce some important theorem of existence and uniqueness fixed point for

contraction mapping, but before that we are recalling the definition of contraction

mapping.
Definition 2.17. A mapping T: A - A on a metric space (A,d) is said to be

contraction mapping if there exists 0 < k < 1 such thatd (T, Ty) < kd (,y) for all
n,y€E A.

Theorem 2.18. Given a complete space (4, d) and a contraction mapping 7: 4 — A, it

follows that T possesses a unique fixed point.

The condition appeared in above theorem is necessary but not sufficient, that means
sometimes the mapping is not contraction but has fixed point. Indeed, in a usual metric
space the mapping T: R — R defined by T» = 2 — 3 is not contraction mapping but has
fixed point » = 1.
Assume (4, d) as metric space
P(A) = {U < A: U nonempty subset}
C(A) = {U <€ A:U nonempty closed subset}

CB(A) = {U < A:U is nonempty closed and bounded subset}

Definition 2.45. Consider (A, d) as a metric space and let U, V be elements of CB(A).
Define the function H: CB(A) x CB(A) — R defined by



H(U,V) = max{sup,cyd(, V), supyeyd(U, y)}
where d(x,V) = inf,eyd(3,y) is called Pompeiu-Hausdorff metric on CB(A).

Theorem 2.46. Let (A, d) be a complete metric space and T: A — CB(A) be a mapping.

If T is a multivalued contraction mapping, that is, there exists k € [0,1) such that
H(Tx,Ty) < kd(x,y)
for all s,y € A, then T has a unique fixed point.

Recently, Khojasteh et al. (2015) introduced a new concept so-called simulation function,
and so Z-contractions by using these functions. Now, we recall the definition of Z-

contractions and a related fixed-point result.

If the function £ /0, ) x [0, o) — R meets the specified conditions, it is characterized

as a simulation function.:

(¢1)¢(0,0) = 0,
(2)¢(.q) < q — pforallg,p > 0,
(¢3) If {pn},{qn} S (0,0) are sequences satisfying lim p,, = lim q, > 0, then

lim sup ¢ (pn, 4n) < 0.

Theorem 2.21. Consider T: 4 — A as a mapping defined on a complete metric space (4,
d), and let - /0, ©) x [0, ) — R be designated as a simulation function. If the mapping
Tis Z-contraction w.r.t. ¢, that is, it is satisfied

¢ (d(Tx,Tn),d(x,m) = 0

10



for eachs,n € A, then T has a unique fixed point u in A. Also, the Picard sequence

{T™} for any initial point » € A converges to u.

Following, many authors have studied to extend the family of simulation functions. In
this direct, Argoubi et al. (2015) noticed that the condition (¢1) can be removed because
of the fact that it is not used in the proof of Theorem 1. Another approach to these
expansion efforts was achieved by Roldan et al. (2015) by modifying the condition
(¢3) as follows:

(23) If {pn}.{q.} S (0,0) are sequences satisfying lim p, = lim g, > 0 and p,, <
n—oo n—-oo

qn forn € N, then lim sup{(p,, q,) <0
n—-oo

Later, surprisingly it was proved that every Z-contraction in the sense of Rold "an-L opez-
de-Hierro et al. is a Meir-Keeler contraction. To obtain a real larger family of contractions
than the family of Meir-Keeler contractions, Rold a n-L 6 pez-de-Hierro et al. [23]

introduced R-functions, and hence R-contractions with the help of these functions:

Assume J# A SR and a function p: A x A — R meets the specified criteria, it is then

referred to as an R-function on A:

(py) for any sequence {p,} contained in 4 N (0, ) where p(p,, Pns1) > 0 for alln €
NU{0}, it follows that p,, = 0 asn — oo.

(p,) for sequence {p,}, {q.} S AN(0, ) where both converge to lim p,, = lim q, =
n—-oo n—-oo

L>0,L < p,and p(py,, qn) > 0 for each n € NU{0}, it must be that L = 0.

The following property for an R-function p on A is useful in some cases:

11



(p3) If {pn},{qn} S AN(0, ) are sequences satisfying p(p,, q,) > 0 for each n €

NU{0} and q,, = 0 as n — oo, then we have p,, - 0 asn — oo.

Definition 2.22. Suppose T: 4 — A is a mapping on a complete metric space (A, d).
Assume there exists an R-function on A that satisfies the relevant conditions.

rand(d,A) = {d(,n):x,n € A} S A

and

p(d(T3,Tn),d(x,m) = 0

for each »,n € A with »x # n, then T is called R-contraction with respect to p.

Best proximity point theory is viewed as an innovative extension of fixed-point theory.
Suppose A and B are non-empty subsets of a metric space (4,d), and let T: A—B be a
mapping. If A and B are disjoint sets (4 N B = @), it is evident that the mapping T cannot
have a fixed point. Consequently, it is relevant to investigate whether there exists a point

k € A such that d(x, Tx) equals d(A, B); this point is termed the best proximity point of T.

In the special case where A=B=A, every best proximity point of T is actually a fixed point
of T. Additionally, finding a best proximity point of T corresponds to solving the
optimization problem: minea d (x, Tx). This pursuit not only identifies the point in A
closest to its image under TT in BB but also highlights the application of proximity point
theory in optimization. We will now review some fundamental concepts and definitions

relevant to this theory.

Definition 2.27. In a metric space (4, d) with nonempty subsets A and B, a mapping T
from A to B has a best proximity point x in A if the distance between x and T(x), denoted
d(x, T(x)), equals the distance between the sets A and B, d(A, B).

12



Let (A4, d) be a metric space, A, B be nonempty subsets of A and T: A — B be a mapping.
We regard the subsets of A and B, respectively.

Ag={x€A:d(,y)=d(A B)for some x € B}
and

By={x€B:d(x,y) =d(A B)for some x € A}
where d(A, B) =inf{d(»,y):x € Aand y € B}.

Definition 2.37 ([15]). In a metric space (A, d) where P and Q are non-empty subsets, the

pair (P, Q) is considered to have the P-property if this condition is met.

d(1y,y1) =d(P,Q)
d(1y,y,) = d(P,Q)

} = d(y,23) = d(y1,¥2)

forall %,,%, € P and y,,y, € Q.

Theorem 2.48. Let (A, d) be a complete metric space, A, B be nonempty closed subsets
of Aand T: A — B be a mapping. Suppose that A, # @, T(4,) S B, and the pair (4, B)
has the P-Property. If there exists k € [0,1) such that

d(T»,Ty) < kd(x,y)

for all ¢,y € A, then T has a best proximity point in A.

13



3. SOME RESULTS VIA R-FUNCTIONS

In the proof of the main result (Theorem 27) in [20], we notice that the authors need L <
p, for alln € N instead of L < p, for all n € N in the condition (g,) to show the
Picard sequence {»,} is a Cauchy sequence. To address this issue, we make a slight
alteration to condition (p2), revising it to (p2)'. Therefore, throughout the remainder of the
paper and specifically in Definition 2.36, it is logical to consider an R-function on A as a
function p: A x A — R that fulfills the conditions (p1) and the revised (p2)'.Also, taking
into account the condition (g,)" which is weaker than (g,) we introduce a new concept

so-called the modified R-function as follows.

Definition 3.1. Assume g+ A R and consider a function p: 4 x A — R. If it meets the
specified criteria, it is termed a modified R-function on A. Specifically, condition (p_1)'
states that if {pn} is a sequence in (0,o0) N 4 with p(pn+1), Pn) > 0 for all n € N U {0}, then
there must be a subsequence {p nx} of {pn} such that:

Pn, = Oask — oo

(02)" If {pr},{qn} S (0,0) N A are sequences satisfying lim p, = lim q,, = L >
n—oo n—-oo

0,L <p,and o (p,,q,) > 0for eachn € N, then we have L = 0. It is clear that

every R-function on A is a modified R-function on A.

Using modified R-functions and taking into account the best proximity point theory we
introduce a new type contraction called generalized R-contraction. Hence, we enlarge the
family of R-contractions. Before this new concept, we present the following proposition
that is important for our main result without proof since the proof is similar to Proposition
19 in [20].

Proposition 3.2. Assumeg: A X A — R be a modified R-function on A. Then, we
have o(»,%) < 0 forallx € (0,0) N A.

14



Now, we state our new concept.

Definition 3.3. Let T: P — Q be a mapping on a metric space (4,d) where @ #
P,Q < A. Ifthereis a modified R-functionp : A X A — R on A satisfying

ran(d,P U Q) = {d(x,y): »x,y € P U Q} € A
and

@ (d(T»,Ty),d(»,y)) > 0

for each s,y € P withx # y,then T is called generalized R-contraction with respect

o o.

In exploring best proximity points, it has been demonstrated that the existence of such
points under the P-property can be derived from corresponding fixed point theorems by
Abkar and Gabeleh. To further generalize these fixed point results, we propose the

following modification to the definition of the P-property [2]:

Definition 3.4. Let @ # P, Q be subsets of a metric space (4, d). Then, the pair (P, Q)

is said to have generalized P-property if it is satisfied

d(t1,y1) = d(P,Q)
d(%Z'yZ) = d(P' Q)

} - d(k’l,%z) = d(YliyZ)

for all »4, 3, € P with »; # », and y;,y, € Q. Now, we present our main result:

Theorem 3.5. Consider a mapping 7: P — Q on a complete metric space (4, d), where P
and Q are closed subsets of A. Let Po # @ and T(Po) be included within Qo, and assume

that the pair (P, Q) possesses a generalized P-property. Furthermore, suppose T is
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characterized as a generalized R-contraction relative to the function o. If any of the

following conditions are met:

e T is continuous,

e The function ¢ meets condition (ps),

then it follows that T has a unique best proximity point within P.

Proof. Let »x, € P, be an arbitrary point. Since Tx, € T(Py) S Q, there exists », €

P, satisfying

d(1,Tro) = d(P, Q).

Also, since Tx; € T(Py) S Q,,there exists x», € P, satisfying

d(#,Tny) = d(P,Q)

By this way, we can construct a sequence {s,, } in P, such that

d(”n+1'T7{n) = d(P' Q)' (31)

forallnin N v {0}.1f »,, =, foraparticularn, € N U {0}, then from (3.1) we

have

d(%no 'T%no) = d(P,Q),

and so the proof is completed. Hence, we assume that s, # »,,, foralln € N U {0}.

Then, since the pair (P, Q) has generalized P-property, from (3.1) we get

d(ip, Tiper) = d(p_q, Txy) (3.2)
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for alln € N. Also, since T is a generalized R-contraction with respect to g, then we
obtain

Q(d(tn—1, Try), d(ty—1,3n)) > 0

foralln € N, and so from (3.2), we get

Q(d(%n'T%n+1)' d(%n—lf%n)) >0 (3-3)

for all n € N. Therefore, if we denote a sequence {p,} by {p,} = d(t,_1,x,) for all
n € N, then from (3.3) we have p, > 0 and o(pr+1,Pn) > 0 for all n € N. Also,
since {p,} S (0,0) N A, using the condition (¢,)" we can say that there exists a

subsequence {p,, } of {p,}such that

lim py, = lim d(sn,_ #n,) = 0 (3.4)

k—o0

Now, we want to show that {s,, } is a Cauchy sequence. To ease, let’s denote a sequence
{rk}asyx = ny, for all k € N. Assume the contrary, that is, {y,} is not a Cauchy

sequence. Then, there exist e > 0 and two subsequences of natural numbers {k,.}, {£,}

with £, > k, > r such that
AYk, Ve,) 2 € (3.5)

forall € N where £, is the least integer satisfying (3.5), that is, d(y,.,ye,_,) < & for

all r € N.Hence, using the triangular inequality we have

e < dWYk, Ye,)
<d(yk,.ye,_,) < +de._.Ve,)

<e+ de,_,,Ve,)
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forall r € N.Taking limitasr — oo we get

Iim d(y,. y,,) = € (3:6)

Also, since

ldWk,_YVe,.) — AWk Ve, )l < AWk, -1,Yk, ) + Ao, Ve, )

forall r € N, from (3.6) we have
lim d(y,. ye,_,) = & (3.7)
Because of the fact that T is a generalized R-contraction w.r. t. o, we obtain
e (d (Tyk,-1,Tye, ), dWk,—1, Ye,_,)) > 0
forall r € N. So, since the pair (P, Q) has generalized P-property, we have

0 (dk.Ye,) AWk, -1, Ye,_,)) > 0

For every r in N. Considering that as r approaches infinity, the limits limr—ood(ykr—1
,ylr—1) and limr—ocod(ykr,ylr) both approach ¢, and given the condition p2 from Equations
(3.5) and (3.8), we find that ¢=0, which leads to a contradiction. Therefore, the sequence
{yk}={xnk} forms a Cauchy sequence in P. Utilizing equation (3.2), it follows that the
sequence{Txnk—1} is also a Cauchy sequence in Q. Owing to the closed nature of the
subsets P and Q within the complete metric space (A,d), there must exist elements x€P

and yeQ such that:

lim s, =xand Ilim Trp, , =Y. (3.9)

k—oo
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From (3.1), taking limitas k — oo we have
d(x,y) = d(P,0Q). (3.10)
Also, we obtain
AQty,_ 1) < d(ty,_,1n, ) + A0ty , %)
for each k € N. Hence, considering (3.4) and (3.9) we get

]11_{{)10 M, , = U (3.11)

If there exists a subsequence of {»,,  } whose each terms equal to » then from (3.9) it

can be seen that y = Tx. So, from (3.10) the proof is complete. Therefore, suppose that
#n, , #nforallk € Nandforsomer € N withk = r. Now, we have the following
cases:

Case (i): Suppose that T is a continuous mapping. Then, we obtain

Ill_I;EIOT Huy, = T,

and so y = Tx. From (3.10), we conclude that » € P is a best proximity point of T.

Case (ii): Suppose that the condition (p3) is satisfied. Since T is a generalized R-

contraction mapping, we have
o(d (T%nk—l’T%) ’d(%nk—l’%)) >0

Hence, considering the condition (p3), from (3.11) we have
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lim T » = Txn.
k—o0 MNpe—1

Therefore, we get y = Tx». Hence, from (3.10), we conclude that » € P is a best

proximity point of T.
For the uniqueness, suppose that there exists »,y € P with x # y such that
d(x,T») = d(P,Q)
and
d,Ty) = d(P,Q).
Hence, considering the generalized P-property we have
d(x,y) = d(Tx, Ty).
Also, because of the fact that T is a generalized R-contraction with respect to ¢, we obtain

0 (d(Tx Ty),d(»y)) > 0

Building on the contradiction to Proposition 1, we establish that the function T indeed has
a unique best near point within P. This insight leads us to a broader implication, given
that every R-function p defined on A can be considered as a modified R-function on A,
enhancing its applicability. Thus, we can extend our understanding and formulate the
following corollary, which encapsulates and expands upon the primary finding of [20]:

Corollary 1. Assume T:P—Q be a a function in a complete metric space (A, d), where
both P and Q are closed subsets of A. Assume P0£@, T(P0) €QO, and the pair (P, Q)

holds a generalized P-property. This setting not only assures the existence of a unique
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best proximity point due to the specific properties of P and Q but also aligns with the
enhanced definitions of R-functions, providing a more robust framework for proving best
proximity point results in metric spaces. This corollary significantly broadens the
implications of fixed-point theories, illustrating a practical application of theoretical
advancements in metric space mappings. Assume there exists an R-function g: A x A —
R on A such that the range of distances between elements of P and Q, defined as
ran(d,PUQ)={d(k,y):x,yePUQ} is contained within A, and for each distinct pair k,y in
P, p(d(Tx,Ty),d(k,y))>0. If any of the following conditions is met:

T is a continuous mapping, The R-function g fulfills condition (@3), then T is guaranteed

to have a unique best proximity point within P.

The following example shows that Theorem 3.5 is real generalization of

Corollary: Let T : P — Q be a mapping on a complete metric space (4,d) where
P and Q are closed subsets of A. Assume that P, # @, T(P,) S Q, and the pair (P, Q)
has generalized P-property. Should there be an R-function in accordance with o: A x A

— R such that the range of dd, when applied to P U Q, which is

ran(d,P U Q) = {d(x,y): »x,y € P U Q} € A

falls within A, and

@ (d(Tx»,Ty),d(»,y)) > 0

foreach »,y € P with»x + y. Ifitis satisfied one of the following conditions

i. T operates continuously,

ii.  The function @ adheres to condition (g5),

then it is concluded that T secures a unique best proximity point in P.
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Example 3.6. Let A = R, be a complete metric space with the taxi-cab metric d.
Consider the closed subsets of A

P {O,%:n € N} x {0}

Q

{0,%:nEN}x{1}

Then, let d(P,Q)=1, with Po=P and Qo=Q. Furthermore, the pair (P, Q) possesses a

generalized P-property. Define the mapping T:P—Q and the function p:[0,00)x[0,00)—R
such that T(x,0)=(0,1) and

1
(1, p= andq=1+£,n21

or

n+1

—1+1 d —1 >1
p= nan q—n,n_

e(p,q) =40, pe{o, ! }andq=1+1,n21,
n+1 n

or

1 1
0,1+—} dg=—,n=>1
p%{ nan q nn

L % -p, otherwise

respectivelyConsequently, it is apparent that (PO) <QO and that T is a continuous

mapping. Define A as the range of distances between elements of P and Q, specifically,
A=ran(d,PUQ).

1 1 1
A={0,—:nEN}U{|——— :n,mEN}
n n m

1 1 1
U{1+|——— :n,mEN}U{1+—:nEN}.
n m n

In this case, T is a modified R -function on A. Indeed, to show that the condition

(01)" holds, let’s take a sequence {p,} S (0,) N A satisfying o(p,+1,pn) > 0 forall

22



n € N. If there is n, € N such that ,p, = ni or pp,, =1+ ni then we have
o ]

Png+2n = 007 pp1on—y — 0 for all n € N. Otherwise, since ¢(pp41,0,) > 0 for

each n € N, we have

= Prea >0 (312)

for ne N, and so {p,} is decreasing. Hence, there exists L > 0 such that p, —

Lasn — oo. Assumethat L > 0. Taking limitasn — oo ininequality 3.12 we obtain
L s% < L which is contradiction. So, L = 0. In similar to (g,)" it can be shown that

the condition (g,)" holds. Now, we want to show that T is a generalized R-contraction

w.r.t.p. For this, we have the following conditions:

Case 1: Let # = (0,0),y =(3,0),n > 1. Then, we have Tx = (0,1)and Ty =

nl

(0, 1). In this case, we obtain

d(T»,Ty) =0
and
d(x,y) = =
"y —n
Hence, we obtain:
(d (T, Ty), d(x, y)) = (o 1)— Lo
Q J{) y ) %,y - Q In _Zn

1 1 . .
Case 2: Let » = (;,0),3/ = (Z'O)'n'm > 1 (without loss of the generality, we

assume that n < m). Then, we have Tx = (0,1) and Ty = (0, 1). In this case, we get
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d(T,Ty) = 0

and

Hence, we obtain

(d (Tx, Ty),d(x,y)) = (01 1)—1 Lo
e Y, ey _Q'n m) 2n 2m

However, we cannot apply Corollary 1 to this example since g is not a R-function on any
subset E of R satisfying ran(d,P U Q) < E.Assume the contrary, that is, there exists
a subset E of R satisfying ran(d) S E and @ is a R-function on E. Now, consider the

sequence

( )—(1 1422142
pn_ 2; 2'3! 4!

ul| =
N———

in (0,00) N E. Then, we have o(pn+1,Pn) = 1 > Oforalln € N, butp,, » 0 which
contradicts the condition (g,). Ifwetake P = Q@ = A in Corollary 1, we have the main
result of [20]:

Corollary 3.7. Consider T: A — A as a mapping within a complete metric space (A, d).
Assume there is an R-function o: A x A — R defined on A such that

ran(d,A) = {d(x,y): »n,y € A} C A

and

0 (d(Tx Ty),d(»,y)) > 0
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forall 2,y € Awithx # y.Ifitis satisfied one of the following conditions

I. T functions continuously,

Ii.  The R -function o meets condition (g3),

then T is guaranteed to have a unique fixed point in A.
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4. APPLICATION

Homotopy theory has significant connections to other branches of mathematics, and as a
result, several authors have recently successfully applied their fixed point results to it [1,
13, 14, 24, 25]. Therefore, in this part, we apply our most effective proximity point result,
Theorem 2, to homotopy theory, taking inspiration from the technique utilized by Vetro
etal. [25]. In this case, we prove that if the ideal proximity point is held by one homotopic
mapping, then another mapping must also have it. The idea of homotopy will be reviewed

now.

Definition 4.1. Consider the topological spaces (A1, t1) and (A2, 12), with T and F as
continuous mappings from Az to Az. Suppose a continuous function h from A1 x [0,1] to
A2 exists such that h(k,0) equals Tk and h(k,1) equals Fx for every k in A1. Under these
conditions, T and F are recognized as homotopic mappings. The function h is identified

as a homotopy. This concept is vital for the insights discussed in this section.
Definition 4.2. Let @ # P, Q be subsets of a metric space (A,d) and h: P x [0,1] —

Q be a mapping. If G;(h) S (A x [0,1] x A,d") is closed, then h is said to be d-

closed mapping, where

Ga(h) = {(x,B,y): » € P,y € Aand B € [0,1] with d(y,h(x,8)) = d(P,Q)}

and

d*((t1, b1, Y1), (t2, B2,Y2)) = d(1,32) + |1 — B2l + d(y1,¥2)

for all (1, By, ¥1), (2, B2,y2) € A X [0,1] X A.

Note that, in case of d(P, Q) = 0, Definition 8 turns to the definition of closed mappings
defined from P to Q.
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Now, let's introduce the key finding of this section:

Theorem 4.3. Assume that (A, d) is a complete metric space with P and Q as nonempty,
closed subsets of A, and that there is a non-empty subset U within P. Suppose further that
the pair (P, Q) possesses the generalized P-property. Consider a mapping h: P x [0,1] —

Q which is continuous and d-closed. Under these conditions,

I.  d(t,h(e, 1)) > d(P,Q) foreach»x € P\Uand 1 € [0,1],
Ii.  there exists a modified R-functionp : A X A — Ron A satisfying
ran(d,P U Q) = {d(x,y): v,y €E PUQ} € A
and

@ (d(h(x,4), h(y, 1)), d(x,y)) > 0
foreach»,y € Pwith»x # yand A, u € [0,1],

ii. forallx € A,B,r € [0,1]and», € B(»,r) N P, there exists » ; € B(»,1)
such that d(s 1, h(3 o, 8)) = d(P,Q) where
B(x,v) = {5t € P: d(», %) < 7}.
Then, h( -, 1) has a best proximity point in P if h( -,0) has a best proximity point in P.
Proof. Consider the following subset

K = {(B,7): d(xh(x,p)) = d(P,Q)}.

From the hypothesis and the condition (i), there is a point k in P such that
d(»,h(x%,0)) = d(P,Q),thatis, we have (0,») € K. Hence, we get K # @. Define a
partial order on K by

B.2) 2 (wy) © f = pandd(y) < u — .
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Consider LL as an arbitrary totally ordered subset of K, with g+ defined as
pr=sup{p:(f,x)EL}. Suppose we have a sequence{(fn,xn)} within L such that
(Bn,kn)=X(Bn+1,kn+l) for all neNU{0}, and pn converges to f* as n—oo. In this
scenario, the distance d(xn,xm) satisfies d(kn,km)<fm—Bn for each n,meNuU{0} with
m>nm>n, thereby making{xn} a Cauchy sequence in P. Given that P is a closed subset
of A and (A.d) is a complete metric space, there exists a x* in P such that d(xn,x*)
converges to zero as n—oon—oo. Additionally, the sequence{(xn,fn,xn)} is included in

Gd(h), and the limit of dx((kn,Bn,kn),(k*,B*,Kk*)) reaches zero as nn approaches infinity.
rlll_r)lgo d*((]{n' B 1), (%%, B%,%")) = 0).
Since h is a d-closed mapping, we get

d(x"h(x",B7)) = d(P,Q).

From (i), we determine that x= is in U, and thus, (8x,x*) is part of K. Given that L is a
totally ordered set, every(f,x)€L is less than or equal to (8x,xx). Therefore, (f*,x*) acts
as an upper bound for L. Utilizing Zorn's Lemma, it is deduced that K possesses a maximal
element (50,x0). The objective now is to demonstrate that fo=1. Suppose otherwise, that
S0<1. Then, a real number g exists such that fo<p<1. Define r=f—fo. According to (ii),
the mapping H( - ,5):B(xo,r)—Q is a generalized R-contraction. Considering condition
(iii) and referencing Theorem 2, it is established that there exists xf€B(xo,r) such that
(kB,h(kpB,B))=d(P,Q). Since from (i) xf is in U, and thus (f,xpf) is included in K, this
contradicts the assumption that (fo,xo0) is a maximal element in K. Consequently, fo=1
and h( -+ ,1) yields a best proximity point xo in P. Applying Theorem 3 with Q=A, the

following corollary is derived::

From point (i), it follows that xxx* belongs to U, implying (f*,x*)€EK. Given that L is
totally ordered, every pair (f,x)€L satisfies (8,x)<(f*,x*). Thus, (B*,x*) serves as an
upper bound for L. By applying Zorn's Lemma, it can be concluded that K contains a
maximal element (o,x0). We next aim to demonstrate that So=1. Suppose, to the contrary,
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that fo<1. In this scenario, one can find a real number £ such that fo<f<1. Define r=£—/o
. According to point (ii), the mapping H(-,5) from B(xo,r) to Q is a generalized R-
contraction. Considering condition (iii) and invoking Theorem 2, we find that there exists
kfEB(ko,r) satisfying (xf,5)=d(P,Q). From (i), x£ is within U, hence (8,kB)EK(8,xS)€EK,
which contradicts the assumed maximality of (fo,x0). Consequently, fo=1 and h(-,1) has
a best proximity point ko in P. If we set Q=AQ=A in Theorem 3, the following corollary

is obtained:

Theorem 4.4. Consider (4, d) is a complete metric space, P be a nonempty closed subset
of A and @ # U < P. Assume that h: P X [0,1] — A is a continuous closed

mapping such that:

d(»x,h(x,A)) > 0foreach» € P\Uand A € [0,1],

there exists a modified R-functionp : A X A — R on A satisfying

ran(d,A) = {d(»x,y): n,y € A} € Aand

0 (d(h(x, 1), h(y, 1)), d(»,y)) > 0

foreach »,y € Pwith»x # yand A, u € [0,1],

forall » € A,5,v € [0,1] and %, € B(x,r) N P, there exists » ; € B(»,7) such
that s ; =, h(3 o, B).

If h( -,0) has a fixed point in P, then h( -, 1) has a fixed point P.

Proof: Let's start by assuming h(-,0) has a fixed point x in P. Based on Theorem 3, we can
assert the existence of x* in P such that d(x*,h(x*,1))=d(P,A)=0. This implies that x* is
also a fixed point of h(-,1).
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5. CONCLUSIONS

In this thesis, we present our innovative findings. We introduce a novel class of functions,
including R-functions, and propose a new type of R-contraction while also refining the
commonly studied R-contractions. Additionally, we redefine the P-property to broaden
its application. From these theoretical advancements, we derive several significant
results, both for best proximity points and for fixed points related to our new R-
contractions. To demonstrate the practical relevance and effectiveness of our

contributions, we include a specific example.
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