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PRODUCTION AND CHARACTERIZATION OF PURE RHENIUM AND W-

Re COATINGS FOR TRIBOLOGICAL APPLICATIONS 

SUMMARY 

This thesis was conducted within the framework of the research project named 

“Development of High Performance Rhenium Based Hard Nano-Composite 

Coatings for Tribological Applications” (Project No. 105M146) and supported by 

TÜBİTAK. The aim of this study is to obtain surfaces which can equally perform 

well tribologically both at room and high temperatures. The basic theoretical concept 

used for achieving this aim is the ‘crystal chemistry approach’; in which the lubricity 

of the third bodies formed at the contact is interrelated with their electronegativity. 

According to this approach one of the most favorable metals for producing highly 

lubricious oxides is rhenium (Re). Hence, this study is mainly structured on the 

production and tribological characterization of Re and W-Re alloys. The main 

approach governed throughout the work was to find out coating procedures to 

produce hard surfaces giving low friction coefficients and also staying away from 

wearing off the counter-faces that they are working with. There are very limited 

studies in the literature about the production of pure Re and W-Re coatings physical 

vapor deposition (PVD) techniques. 

In the beginning of the coating studies, the adhesion problems encountered was 

solved by surface engineering approach in which a thin bonding layer of Ti (~0.60 

µm) was introduced to the system. With the success of this approach, the following 

coating procedures were conducted with deposition of this interlayer. 

Because there are no other studies that can be used as reference, on the production of 

Re coatings with magnetron sputtering, the parameters such as magnetron power and 

argon pressure, affecting the deposition process were determined. Structural effects 

produced by the variation of these parameters were investigated. The effect of 

magnetron power was observed as a linear increase in thickness with increasing 

power.  W-Re films were slightly thinner then pure Re films produced with the same 

parameters. The effect of argon pressure of the system was observed by applying 
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three different chamber pressures of 0.5, 1.0 and 1.5 Pa. The thickest of the films was 

obtained from the coating with 1.0 Pa chamber pressure. This result was attributed to 

the optimum ionization efficiencies and collisional scattering inside the chamber. 

The hardness of the films was between 17 – 23 GPa. The hardest of the films of the 

three different magnetron powers was the one coated at 300 W. The XRD patterns of 

the two coatings produced by applying a power of 200 and 400 W totally 

corresponded to the diffraction pattern of pure rhenium. While coatings produced by 

using 300 W power have slightly shifted peaks relative to the positions of pure Re. 

The coatings exhibiting shifted peaks in their XRD patterns possessed higher internal 

stress hence higher hardness. But the effect of chamber pressure was not reflected to 

the hardness values since the hardness of the films of different pressures were found 

to be nearly the same around 22 GPa. 

With the knowledge of crystal chemical approach, the highly lubricious oxides of 

rhenium were predicted to positively influence its tribological properties, as they 

could act as solid lubricants. Therefore ball-on-disc and fretting type wear tests were 

conducted over pure Re and W-Re coated samples both at room temperature and at 

high temperatures (50°C, 100°C, and 150°C). Alumina and 440C type steel balls 

were used as the counterface materials. The friction coefficients of pure Re coatings 

were 0.13 for room temperature ball-on-disc tests ran against alumina counterbody. 

The depth of wear tracks is at most % 4 of the total thickness of the films. But the 

tests against steel counterbody gave higher coefficients of friction. The average 

values were found to be 0.5. However this time the wear tracks on the samples were 

less apparent while the wear on the steel balls were catastrophic. The tribological 

behavior of W-Re alloy coatings showed the same trends as for pure Re coatings, 

however the friction coefficients achieved in this case were higher. In the case of 

tests ran against alumina ball, the average coefficient of friction was 0.35 and the 

wear depths were less than 0.8 µm. The friction coefficient was 0.65 in the case of 

tests ran against 440C steel balls. Again the steel balls were highly worn while there 

was no considerable wear on the coated disc samples. The fretting tests at room 

temperature also gave similar coefficients of friction showing that the tests have 

reproducibility. 

The fretting tests conducted at high temperatures in addition to room temperature 

tests, resulted showing opposite behaviors for pure Re and W-Re. For pure Re 
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coatings the coefficient of friction values increased with increasing temperature 

while contrarily they were decreasing for W-Re coatings. The highest coefficient of 

friction was reached at 50°C with 0.63 on W-Re and then with increasing 

temperature, the coefficient of friction values were decreased down to 0.2. The high 

temperature tests showed that the combination of volatile oxides of rhenium with 

hard tungsten gave the most successful results in characterization of rhenium’s 

tribological behavior. 

In conclusion, the project aiming to research and introduce the tribological behavior 

of pure Re and W-Re coatings produced by Magnetron Sputtering PVD technique, 

resulted in a successful outcome of obtaining W-Re and rhenium’s tribological 

behaviors both separately and also comparatively.  According to its volatile oxides 

rhenium showed very low wear and friction with a solid lubricant characteristic at 

room temperature. On the other hand, W-Re coatings showed a superior tribological 

behavior at high temperatures with a combination of highly lubricious rhenium and a 

hard tungsten matrix. 
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TRİBOLOJİK AMAÇLI SAF RENYUM VE W-Re KAPLAMALARIN 

ÜRETİMİ VE GELİŞTİRİLMESİ 

ÖZET 

Bu tez çalışması TÜBİTAK destekli, “Tribolojik Amaçlı, Üstün Özellikli Renyum 

Esaslı Sert ve Nano-Kompozit Yapılı Kaplamaların Geliştirilmesi” (Proje No. 

105M146) adlı araştırma projesi kapsamında gerçekleştirilmiştir. Bu çalışmanın 

amacı hem oda sıcaklığında hem de yüksek sıcaklıklarda üsün tribolojik özelliklere 

sahip yüzeyler elde etmektir. Bu çalışmada ele alınan esas teori “kristal kimyası 

yaklaşımı”dır. Bu yaklaşımda, temas bölgesinde oluşan üçüncü bileşenler 

elektronegativiteye bağlı olarak yağlayıcı özellik gösterirler. Bu yaklaşım göz 

önünde bulundurulduğunda en yüksek ölçüde yağlayıcı oksitlere sahip olan metal 

renyumdur (Re).  Bu sebeple bu çalışma Re ve W-Re alaşımlarının üretimi ve 

tribolojik olarak karakterizasyonu üzerinde yapılandırılmıştır. Bu çalışmada güdülen 

ana yaklaşım, düşük sürtünme katsayıları veren ve aynı zamanda birlikte çalıştığı 

karşı yüzeyi aşındırmayan sert yüzeyler üretimine yönelik kaplama yöntemleri 

geliştirilmesidir. Literatürde saf Re ve W-Re kaplamaların fiziksel buhar biriktirme 

(PVD) yöntemi ile üretimine yönelik sınırlı sayıda çalışma bulunmaktadır. 

İlk olarak kaplamaların üretimi esnasında karşılaşılan, saf Re kaplamaların yapışma 

probleminin üstesinden gelebilmek amacıyla, yeni bir yüzey mühendisliği yaklaşımı 

üzerinde çalışılmıştır. Dolayısıyla çok daha ince bir Ti bağlayıcı ara tabaka (~0.60 

μm) sisteme dahil edilmiştir. Bu yaklaşımın başarıya uğraması sonucunda, ileriki 

tüm kaplama işlemleri bu bağlayıcı ara tabakanın mevcudiyetinde gerçekleştirlmiştir. 

Re kaplamaların manyetik alanda sıçratma yöntemi ile üretimi konusunda referans 

alınabilecek bi çalışma bulunmadığından, sıçratma gücü ve argon basıncı gibi 

kaplama prosesini etkileyen parametrelerin ortaya çıkarılması amacıyla, farklı 

parametrelerin uygulandığı kaplama işlemleri gerçekleştirilmiş; bu parametrelerin 

kaplamaların yapısal özellikleri üzerindeki etkileri gözlemlenmiştir. Sıçratma 

gücünün artışıyla kaplama kalınlığında doğrusal bir artış olduğu görülmüştür. W-Re 
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kaplamaların kalınlığı aynı parametrelerde üretilen saf Re kaplamalardan hafifçe 

daha düşüktür. Sistemin argon basıncının etkisi üç farklı (0,5 – 1,0 – 1,5 Pa) kaplama 

basıncı uygulanarak gözlenmiştir. En kalın film tabakası 1 Pa basınç uygulandığı 

kaplama işlemi sunucunda elde edilmiştir. Bu sonuç kaplama ortamındaki optimum 

ölçüdeki iyonizasyon ve şıçratma verimi ile ilişkilendirilmiştir. Kaplamaların 

sertlikleri 17 – 23 GPa arasında değişmektedir. Üç farklı sıçratma gücü ile kaplanan 

filmlerin en serti 300 W uygulanarak gerçekleştirilen kaplamadır. 200 W ve 400 W 

ile yapılan kaplamaların XRD paternleri bütünüyle saf renyumunkilerle 

uyuşmaktadır. 300 W güçte yapılan kaplamanınki ise saf renyum piklerinden hafifçe 

kayma göstermiştir. XRD paterninde, piklerde kayma gösteren kaplamalar yüksek iç 

gerilmeye dolayısıyla yüksek sertliğe sahiptir. Bunun yanında farklı basınçlarda 

kaplamnan filmlerin sertlikleri yaklaşık olarak 22 GPa civarındadır; dolayısıyla 

kaplama basıncının sertlik üzerindeki etkisinin kayda değer olmadığı söylenebilir. 

Kristal kimyası yaklaşımına dayanarak renyumun yüksek uçuculuktaki oksitlerinin 

katı yağlayıcı özelliği göstererek renyumun tribolojik davranışını olumlu yönde 

etkileyeceği öngörüsünde bulunulmuştur. Dolayısıyla saf Re ve W-Re kaplamalar 

üzerine oda sıcaklığında ve yüksek sıcaklıklarda (50°C, 100°C ve 150°C) çeşitli 

aşınma testleri uygulanmıştır. Karşı-malzeme olarak alümina ve 400C çelik toplar 

kullanılmıştır. Saf Re kaplamaların oda sıcaklığında, alümina karşı malzemeyle 

yapılan testlerinde sürtünme katsayıları 0,13 bulunmuştur. Aşınmış bölelerin 

derinlikleri toplam film kalınlığının % 4’ü kadardır. Fakat çelik malzemeye karşı 

yapılan testlerde sürtünme katsayıları daha yüksek bulunmuştur. Ortalama değerler 

0,5 civarındadır. Bu sefer numuneler üzerindeki aşınma izleri daha az olmakla 

beraber çelik toplardaki aşınma çok daha şiddetlidir. W-Re alaşımı kaplamaların da 

tribolojik davranışı saf Re kaplamalara benzerlik göstermiştir; farklı olarak bu 

kaplamalarda elde edilen sürtünme katsayıları biraz daha yüksektir.  Alümina topa 

karşı yapılan testlerde ortalama sürtünme katsayısı 0,35 civarındadır; aşınma 

derinlikleri ise 0,8 µm’den düşüktür.  440C çelik topa karşı yapılan testte sürtünme 

katsayısı 0,65 bulunmuştur. Aynı şekilde kaplanmış numuneler üzerinde kayda değer 

bir aşınma gözlenemezken çelik toplardaki aşınma çok daha ileri seviyededir. Oda 

sıcaklığındaki fretting testleri de benzer sonuçları vermiş ve böylece deneylerin 

tekrarlanabilirliği kanıtlanmıştır. 
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Yüksek oda sıcaklığı testlerine ek olarak yapılan yüksek sıcaklık fretting testleri, saf 

Re ve W-Re kaplamalarda farklı sonuçlar doğurmuştur. Saf Re kaplamalarda 

sürtünme katsayısı sıcaklıkla artarken W-Re alaşımı kaplamalarda bunun tersi olarak 

sıcaklıkla düşüş göstermiştir. W-Re kaplamalar için en yüksek sürtünme katsayısı 

0,63 değerine 50°C’de ulaşmış, sıcaklık yükseldiğinde sürtünme katsayısı 0,2’ye 

kadar düşmüştür.  

Elde edilen sonuçlar gayet umut vericidir. Saf Re kaplamaların oda sıcaklığındaki 

sürtünme katsayıları 0.13 değerlerindedir. Yüksek sıcaklık testlerinde de W-Re 

kaplamaların sevindirici tribolojik davranış göstermiş olması, saf Re kaplamalar 

yerine daha ekonomik olan bir renyum alaşımı kaplamanın kullanımına fırsat 

yaratmıştır. Yüksek sıcaklık testleri sonucunda, renyumun tribolojik davranışının 

araştırılmasında renyumun uçucu oksitlerinin yüksek sertlikteki tungsten ile 

birleşiminin en başarılı  sonuçları ortaya koyduğu görülmüştür. 

Sonuç olarak, manyetik alanda sıçratma yöntemi ile üretilen saf Re ve W-Re 

kaplamaların tribolojik davranışının araştırılması ve ortaya konulması hedeflenen bu 

proje Re ve W-Re’nin tribolojik karakteri hakkında hem ayrı ayrı hem de 

karşılaştırmalı olarak başarılı sonuçlar ortaya koymuştur. Renyum uçucu oksitlerine 

bağlı olarak oda sıcaklığında yüksek katı yağlayıcı özelliği dolayısıyla düşük aşınma 

ve sürtünme göstermiştir. Diğer yandan, W-Re kaplamalar yüksek sıcaklıkta, 

renyumun yüksek ölçüde yağlayıcı oksitleri ile sert tungsten martisi birleşimi 

sayesinde üstün tibolojik özellikler sergilemiştir. 
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1. INTRODUCTION 

Production of hard and abrasion resistant coatings, for tribological and for the 

development of cutting performance, with Physical Vapor Deposition (PVD) 

techniques is a scientific and technological research area where new developments 

are often achieved. The scientific and technological importance of this subject is well 

appreciated and R&D efforts in this area are supported. Also taking into 

consideration the energy conservation and environmental aspects of the subject, the 

projects are strongly supported related to development of wear resistant materials 

that possess solid lubricant properties. Moreover the limiting of the use of oil and 

liquid lubricants is becoming a critical environmental issue. The future aim is not to 

use or very limitedly use of oil, and petroleum based liquid lubricants. One of the 

most promising approaches for achieving this aim is to modify the surfaces of the 

materials instead of bulk material modifications. One of the recent research areas 

related to the production of hard and wear resistant coatings is the production of thin 

film structures utilizing various PVD techniques. 

Within the scope of this study, it is aimed to produce and characterize a new, 

rhenium based, coatings with PVD techniques. The coatings are produced whose 

oxides are expected to give good solid lubricant properties according to the crystal 

chemistry approach. During friction and wear the heat generated at the contact area 

stimulates the oxidation at these areas; hence the properties of the oxides formed 

starts to control the tribological behavior of the materials. According to the crystal 

chemistry approach rhenium oxides are the most lubricious ones. Moreover Re is one 

of the rare metals that combines high stiffness (elasticity modulus 450 GPa), high 

temperature strength, thermal shock resistance with high wear resistance. It doesn’t 

have any known toxicity. However, Re is an expensive metal and it is possible to 

shape it with machining and casting. Today chemical vapor deposition and electron 

beam PVD techniques are used for near net shaping of Re parts. Instead of bulk 

material, the usage of the coatings of Re metal or commercially available W-Re 

alloys would sure be more economical. 
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The experimental studies concerning the subject covered the production of coatings 

with PVD techniques – optimization and characterization. Magnetron sputtering was 

used as the PVD technique. The relationships between the coating parameters 

(magnetron power, argon pressure) and properties were established. The coating 

parameters were optimized. The coatings were characterized with respect to their 

structural (composition, stochimetry), mechanical (hardness, adhesion, surface 

roughness) and tribological (room and high temperature wear behavior, character of 

the wear debris) properties. 
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2. SOLID LUBRICATION AND SELF-LUBRICATING MATERIALS 

Solid lubricants are materials which naturally have low shear strengths and thus able 

to lower friction in sliding applications (Donnet and Erdemir, 2006). The working 

range of solid lubrication has been greatly extended during last twenty years; 

remarkable progress has been made in the design, development, and uses of solid 

lubricant films. When the economics of manufacture are to be considered, 

application of solid lubricants as a thin film provide an economical and effective 

means of minimizing wear problems. Because of the environmental concerns, 

modern tribology inclined to limit or reduce the use of liquid lubricants as much as 

possible, but increase the use of solid materials and coatings with self-lubricating 

properties (Donnet and Erdemir, 2004). 

In general, no single coating can provide both low and consistent friction coefficients 

and high wear resistances. This is mainly because friction is very sensitive to test 

conditions, temperatures, and environments. The type of counterface materials and 

test configurations can also make a big difference in the frictional property of the 

solid lubricant (Donnet and Erdemir, 2004). 

2.1. General Characteristics of Solid Lubricants 

Solid lubricant coatings have many attractive features compared to oil lubricants and 

are primarily used to control friction and wear under severe application conditions 

(such as high vacuum, aerospace, high-speeds, high loads, and very low or high 

temperatures) or also in the presence of strong radioactivity, where conventional 

materials and lubricants cannot provide the desired levels of performance or 

durability (Donnet and Erdemir, 2004). One of their obvious advantages compared to 

oil lubricants are their superior cleanliness when environmental concerns are taken 

into account (Stachowiak and Batchelor, 2001). Some of the key advantages of solid 

lubricants in tribological applications over liquid and grease lubricants are their 

better lubrication performance in vacuum, their ability to endure extreme pressures, 

their insensitivity to temperature differences. Additionally some provide excellent 
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electrical conductivity and insensitive to nuclear radiation; most of them are able to be stored 

very long times and have better industrial hygiene due to little or no hazardous emissions; 

since they are in solid state, there is no danger of spillage that can contaminate environment 

while liquid and gas lubricants may evaporate, drain, creep, or migrate during storage and 

may release hazardous emissions; liquid lubricants may spill or drip and contaminate 

environment (Donnet and Erdemir, 2001). 

Solid lubricant coatings still have problems such as limited lifetime, difficulty in 

replenishment, and oxidation and aging-related degradation beside their attractive 

properties. Some of the shortcomings of solid lubricants are: 

1. Most solid lubricants except soft metals, are poor in thermal conduction, thus are 

not able to carry away heat from sliding interfaces. 

2.  Their friction coefficients may be high or fluctuate significantly depending on 

test environment and contact conditions. 

3. Their renewal is more difficult than that of liquid lubricants. 

4. Oxidation and aging-related degradation may occur over time and present some 

problems with transition-metal dichalcogenides. 

5., They may experience irreversible structural/chemical changes upon exposure to 

high temperatures or oxidative environments that may cause loss of lubricity and 

the generation of some abrasive, non-lubricious by-products (Donnet and Erdemir, 

2001).  

 
Figure 2.1: Schematic illustration of layered crystal structures of graphite and 

hexagonal boron nitride, respectively (Donnet and Erdemir, 2001). 
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Figure 2.2: Schematic illustration of layered crystal structures of molybdenum 

disulfide and boric acid, respectively (Donnet and Erdemir, 2001). 

2.2. Classification of Solid Lubricants 

These materials are classified into different systems, according to their chemical 

bond and crystallographic structure (Lugscheider et. al., 2001). Unique lubricating 

properties of some of the solid lubricants (i.e. molybdenum disulfide, graphite, 

hexagonal boron nitride, boric acid) are mainly associated with their layered or 

lamellar crystal structures as given in Figure 2.1 and Figure 2.2; while others (such 

as diamond and diamond-like carbon) provide lubrication mainly because of their 

extreme chemical inertness. Oxide-based materials are generally hard to shear at 

room temperature, but some of them become highly shearable and hence can provide 

fairly low friction coefficients at elevated temperatures. These oxides are often 

referred to as “lubricious oxides”. A classification made by Donnet and Erdemir 

(2001), based on the chemistry, crystal structure, and lubricity of the most widely 

used and recently developed solid lubricants is given in Table 2.1. 

Table 2.1: A classification of solid lubricants based on the chemistry, crystal 
structure, and lubricity (Donnet and Erdemir, 2001). 

Classification Examples 

Lamellar solids Mo2S 
W2S 
hBN 
Graphite 
Graphite fluoride 
H3BO3 
GaSe, GaS, SnSe 

Soft metals Ag 
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Pb 
Au 
In 
Sn 

Mixed oxides CuO-Re2O7 
CuO-MoO3 
PbO-B2O3 
CoO-MoO3 
Cs2O-MoO3 
NiO-MoO3 
Cs2O-SiO2 

Single oxides B2O3 
Re2O7 
MoO3 
TiO2 (sub-stoichiometric) 
ZnO 

Halides and sulfates of alkaline earth 
metals 

CaF2, BaF2, SrF2 
CaSO4, BaSO4, SrSO4 

Carbon-based solids Diamond 
Diamond-like carbon 
Glassy carbon 
Hollow carbon nanotubes 
Fullerenes 
Carbon-carbon and carbon-graphite-based 
composites 

Organic materials/polymers Zinc stearite 
Waxes 
Soaps 
PTFE 

Bulk or thick-film (>50 μm) composites Metal-, polymer-, and ceramic-matrix 
composites consisting of graphite, WS2, 
MoS2, Ag, CaF2, BaF2, etc. 

 
Thin-film (<50 μm) composites Electroplated Ni and Cr films consisting of 

PTFE, graphite, diamond, B4C, etc., 
particles as lubricants 

Nanocomposite or multilayer coatings 
consisting of MoS2, Ti, DLC, etc. 

Additionally the same authors made a classification for solid lubricants according to 

their hardness. In this classification they divided them in two broad categories: soft 

(hardness less than 10 GPa) and hard (hardness more than 10 GPa) solid lubricants. 

If they are to be compared according to their hardness, the hard solid lubricants 

exhibit higher wear resistance in addition to lower friction when compared with soft 

lubricants, which can provide low friction but not always high wear resistance. These 

hard solid lubricant coatings include some of the carbon-based coatings (such as 

diamond and DLC) and certain oxides. Soft solid lubricant coatings include 

polymers, soft metals, halides and sulfates of alkaline earth metals, and the well-
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known lamellar solids, including transition-metal dichalcogenides, graphite, and 

boric acid (Donnet and Erdemir, 2004). 

2.2.1. Lamellar Solid Lubricants 

This is the most studied type of solid lubricants by scientists and most widely used 

by industry. The best-known examples are transition-metal dichalcogenides, 

graphite, hBN, and H3BO3. MoS2, graphite, and boric acid are natural minerals, but 

other lamellar solids, such as WS2, fluorinated graphite, and transition-metal 

diselenides and ditellurides, are synthetic and are much less used than the naturally 

occuring ones (Donnet and Erdemir, 2001). 

Without lubrication by liquids or gases, most of the solid contacts end up 

considerable adhesion between the sliding surfaces. This phenomenon causes a large 

coefficient of friction. However, for materials exhibiting anisotropy of mechanical 

properties, low shear stresses cause failures to result in low coefficient of frictions. 

Anisotropy of mechanical properties, or in other words, planes of weakness, is 

characteristic of lamellar solids. The lamellar solid lubricants owe their self-

lubricicity to these weak lamellae being able to slide over one another at relatively 

low shear stresses (Stachowiak and Batchelor, 2001). This mechanism is 

schematically illustrated in Figure 2.3. 

 
Figure 2.3: Mechanism of lubrication by lamellar solids (Stachowiak and Batchelor, 

2001). 

The bonding between lamellas has to be weak in the case of good solid lubrication. 

Although adhesion between lamellae is highly undesirable, adhesion of lamellae to 

the worn surface is essential. In other words, materials which do not show adhesion 

to a worn surface are quickly removed by sliding. This is schematically illustrated in 

Figure 2.4. 
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Figure 2.4: Effect of adhesion strength of the solid lubricant lamellae to the worn 

surface on friction (Stachowiak and Batchelor, 2001). 

Unfortunately all lamellar solids are not able to exhibit interlamellar sliding at low 

shear stresses. Even materials having many chemical and crystallographical 

similarities, they can exhibit a large difference in the level of adhesion between 

lamellae. In some materials continuous sliding between layers is prevented by strong 

adhesion forces, while in some others very low values of both friction and adhesion 

can be obtained. For some materials the source of the strong force between lamella is 

the strong electrostatic attraction between corresponding negative and positive ions. 

Materials which are easily shearable usually have a much weaker van der Waals 

bonding between lamellae (Stachowiak and Batchelor, 2001). The difference 

between these mechanisms is illustrated schematically in Figure 2.4. 

 
Figure 2.5: Mechanism of electrostatic strong bonding and weak dispersion bonding 

between lamellae (Stachowiak and Batchelor, 2001). 

2.2.2. Lubricious Oxides 

In tribological applications, during friction high temperatures at contact areas cause 

oxidative conditions to develop and make coatings be exposed to these conditions. 

The coatings exposed to these environments oxidize and the properties of the 

oxidized surface start to govern the friction and wear properties. Hence, the 

properties and service life of the coated material depends both on mechanical and on 

oxidation properties of the coating (Solak et. al.,2003). 
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Especially some certain oxides (e.g., Re2O7, MoO3, PbO, B2O3, NiO, etc.) become 

soft and highly shearable at elevated temperatures and hence can be used as 

lubricants. When applied as thin or thick coatings (by means of PVD, plasma 

spraying, fusion bonding, etc.), these solids can provide acceptable levels of friction 

coefficients and long wear life. They can also be mixed with other solid lubricants to 

obtain lubrication over much wider temperature ranges. Major drawbacks of oxide 

based lubricants are that they are inherently brittle and thus may fracture easily and 

wear out quickly. Furthermore, most oxide-based lubricants do not provide 

lubrication down to room temperature. Potential applications for lubricious oxides 

include high-temperature seals, bearings, and gears, valves and valve seats, variable 

stator vanes, and foil bearings (Donnet and Erdemir, 2001). 

The oxides of Re, Ti, Ni, W, Mo, Zn, V, B, etc., become highly lubricious and can 

provide fairly low friction at elevated temperatures. Mixed oxides (e.g., CuO-Re2O7, 

CuO-MoO3, PbO-B2O3, PbO-MoO3, CoO-MoO3, Cs2O-MoO3, NiO-MoO3) can also 

provide wider operational ranges and can be prepared as alloys or composite 

structures to provide longer durability. The lubricious layers that form by oxidation 

of alloy surfaces are very desirable and exceptionally advantageous when compared 

with the solid lubricant coatings with finite lifetimes. At high temperatures, as the 

oxide layer is depleted from the surface by wear, the alloying ingredients diffuse 

toward the surface where the oxygen potential is higher; they oxidize again to 

replenish the consumed lubricious layers that have low shear strength and/or surface 

energy to decrease friction (Donnet and Erdemir, 2001). 

A number of researches are being conducted in recent years. For instance, Ezirmik 

et. al. (2007) investigated the effect of copper addition on the temperature dependent 

reciprocating wear behaviour of CrN coatings. The aim of their study was to observe 

the temperature dependent wear behavior of CrN and CrN–Cu coatings depending on 

the structural and compositional changes of third body formed at the tribocontact. 

They found that the debris character changed with the temperature and observed that 

at 50°C wear rates increase but with further increase in temperature to 100°C and 

150°C no wear was observed on the coatings (Ezirmik et. al., 2007) 

Solak et. al. (2003) worked on the oxidation behavior of molybdenum nitride 

coatings. They investigate the oxidation behavior of Mo–N coatings and to determine 

the mechanism of oxidation through gravimetric tests and compare to metallic 
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molybdenum. They found that the resistance of Mo–N coatings to oxidation was 

poor because of their non-protective nature and the volatility of the oxides at 

moderately high temperatures. When they compared these results, they showed the 

similarity of the oxidation behavior of Mo–N with the oxidation of metallic 

molybdenum system. Reaction temperatures, oxidation reaction products and oxide 

scale morphologies were found to be similar in both systems (Solak et. al., 2003). 

Stachowiak and Batchelor (2001) sustained their theory about lubricious oxides in 

this way: At high temperatures, metal oxides might become relatively ductile and 

begin to act as solid lubricants. Although, in general, metal oxides exhibit a 

lubricating effect at high temperatures, not all of them showed a reduction in the 

coefficient of friction in the range of temperatures which are useful for practical 

applications. Yellow lead oxide, PbO, was probably the most useful of the metal 

oxides and can provide good lubrication at high temperatures. The steel sliding tests 

conducted at temperatures of approximately 600°C revealed that among the many 

oxides tested, only lead oxide (PbO) and molybdenum trioxide (MoO3) offered a 

substantial reduction in the coefficient of friction compared to the unlubricated case 

(Stachowiak and Batchelor, 2001).  

In a series of fundamental studies, Gardos (2000a, 2000b) demonstrated that at a very 

narrow range of anion vacancies and at high temperatures, crystalline TiO2 (rutile) 

and rutile-forming surfaces can provide very low friction coefficients to sliding 

tribological interfaces. Further work demonstrated the formation of Magnéli phases 

on sliding surfaces containing titanium-based alloys and compounds. His findings 

suggested that Magnéli phases are principally the result of tribooxidation and that 

once formed, they can dominate the tribological behavior of sliding ceramic 

interfaces, mainly because of their unique shear properties. However, TiOx-based 

solid lubricants have not yet found wide use, mainly because of the difficulty in 

achieving and maintaining the very narrow range of oxide stoichiometry needed for 

good lubricity (Donnet and Erdemir, 2001). 

Intensive studies are being carried on the wear properties of lubricious oxides and 

their mechanisms, and also about the introduction of new lubricious oxides and 

improving their performances. Lugscheider et al. (2000), deposited tungsten and 

vanadium oxides by magnetron sputtering ion plating PVD process (MSIP) in a 

reactive d.c. mode and studied especially about the influence of the oxygen content 
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in the sputtering atmosphere as well as the deposition temperature on the phase 

generation, then investigated the high temperature stability of these oxides. Their 

investigations demonstrated that it was possible to deposit vanadium- and tungsten-

oxides by a d.c. reactive magnetron sputtering ion plating process on high speed steel 

and carbide with good tribological properties. Furthermore, the high temperature 

phase stability up to 600°C for the vanadium oxide and 800°C for the tungsten oxide 

was shown (Lugscheider et al. 2000). 

Gulbinski et. al. (2003), reported a research focused on molybdates of silver and 

silver and copper containing vanadium oxide bronzes MexV2O5. The aim of their 

reported research was to elaborate thin film deposition methods of selected oxides 

(MoO3, V2O5) and their derivative phases, to characterise the phase composition of 

deposits and to study their tribological behaviour at elevated temperatures during 

friction in air. They analysed transformation processes of coatings during high 

temperature tests and related friction behaviour to phase changes, which take place in 

them. For both materials, they proved that the friction coefficient decreases from 

high values (0.7–0.8) to about 0.4 with increasing temperature and than, to about 0.3 

while sublimation or melting begins. Additionally they obtained the most interesting 

results for phases belonging to the Ag2O-MoO3 and Ag–V2O5 systems as high 

temperature friction coefficients reached 0.2 at 450 and 600°C, and also these phases 

were stable and didn’t decompose during melting (Gulbinski et. al. 2003). 

Gassner et. al. (2004), worked on the characterization of VN coatings prepared by 

reactive unbalanced magnetron sputtering, and verifying the concept of solid/liquid 

oxide lubrication for VN coatings. They concluded with the hopeful result that the 

friction coefficient against alumina as well as austenitic stainless steel balls showed a 

remarkable drop to a relatively low value at 700°C compared to room temperature, 

related to the formation of numerous low-melting, easy-shearable Magnéli phases 

(Gassner et. al., 2004). Also a different research again on the lubricious characteristic 

of Magnéli phases of vanadium was done by Kutschej et. al. (2004), but this time V 

was incorporated into the Ti1-xAlxN coatings. Thus Ti-Al-V-N coatings were 

prepared with different contents of V to verify the concept of lubricious oxide 

formation while maintaining or even improving the excellent mechanical properties 

of Ti1-xAlxN depending on the possibility of forming lubricious phases based on 

easily shearable oxides of vanadium (VnO3n-1) often also referred to as Magnéli 
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phases. The friction coefficient they measured against alumina was about 0.8 at room 

temperature and decreased to 0.27 at 700°C for a V content of 25 at.% in the target. 

This decrease was attributed to the formation of V2O5 providing lubrication at 

elevated temperatures. But they obtained a prerequisite for formation of these 

lubricious phases that is the necessary flash temperature in the contact zone needed 

for oxidation of V and melting of the formed V oxides, thus determining the running-

in distance during ball-on-disk testing. On the other hand, the conversion of V2O5 to 

lower oxidized V oxides with higher melting points limited the availability of the 

low-friction effect (Kutschej et. al., 2004). 

Some recent works were also conducted about the formation of TiO and shear 

deformable Magnéli phase oxides of titanium (TinO2n-1). Sumitomo et. al. (2005), 

conducted the investigation of the formation of Ti-oxides in Cl-implanted titanium 

films oxidized in air at low temperature to simulate oxidation conditions similar to 

local heating during dry machining; and also they studied the Ti-oxide formation in 

the oxide tribo-film formed on the surface of cutting tools of Cl-implanted TiCN 

coated tools. It was suggested that in the presence of volatile Ti-Cl compounds, the 

oxidation of titanium occurred more readily, but reduction in the available oxygen 

vacancies caused by Ti-Cl bonding caused the reaction to terminate at an 

intermediate stage. This resulted in the formation of the Magnéli phases. Also 

significant intermediate Ti-oxides were observed in the oxide tribo-film formed on 

the cutting surface of Cl-implanted TiCN coated cutting tools. Finally they 

concluded that the Magnéli phase oxides acted as an in-situ formed lubricant which 

led to the improvement in tribological properties (Sumitomo et. al., 2005). At the 

same time Aizawa et. al. (2005), conducted a research on the self-lubrication 

mechanism via the in situ formed lubricious titanium oxide tribofilms. Similarly, 

they suggested that the formation of lubricous intermediate titanium oxides with TiO 

and TinO2n-1 was sustained to preserve low frictional and wearing state at the 

presence of chlorine atoms in the inside of TiN or TiC films (Aizawa et. al., 2005). 

2.2.3. Soft Metals 

Certain metals (e.g., In, Sn, Pb, Ag, Au, Pt, Sn, etc.) can provide low friction on 

sliding surfaces because of their low shear strengths and rapid recovery as well as 

recrystallization. The reasons of their usage as solid lubricants are the attractive 
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properties which are not available in other solid lubricants. For example, in addition 

to its soft nature, silver has excellent electrical and thermal conductivity, oxidation 

resistance, good transfer-film forming tendency, and a relatively high melting point; 

thus, it has been commercially used to lubricate the high-speed ball bearings of 

rotating anode X-ray tubes for many years. The Mohs hardness values of soft metals 

are generally between 1 and 3. Reported friction coefficients of soft metals range 

from 0.1 to 0.4, depending on the metal and test conditions. Pb, In, and Sn provide 

better lubricity at room temperature than Ag, Au, and Pt. At elevated temperatures, 

Pb, Sn, and In melt and undergo oxidation. Ag, Au, and Pt have fairly high melting 

points, do not oxidize appreciably, and hence are preferred for high-temperature 

lubrication purposes. Au remains in metallic form regardless of the temperature, 

while Ag2O decomposes as the temperature increases and Pt oxidizes only slightly. 

Bronze and babbitts prepared by alloying some of these soft metals with Al, Zn, Cu, 

have been used as bushings, bearings, and other tribological applications for a 

number of years. (Donnet and Erdemir, 2001). 

Soft metals are generally produced as thin films on surfaces to be lubricated. Simple 

electroplating and vacuum evaporation can be used to deposit most of these metals as 

self-lubricating films, but dense and highly adherent films are produced by ion 

plating, sputtering, or ion-beam-assisted deposition techniques. Film-to-substrate 

adhesion is extremely critical for achieving long wear life or durability, especially on 

the surfaces of ceramic tribomaterials. The thickness of the soft metallic films also 

plays a major role in both friction and wear. Too thin a film tends to wear out 

quickly. Also, the friction coefficients of most soft metals tend to decrease as the 

ambient temperature increases, mainly because of additional softening and rapid 

recovery from strain hardening. Thick films result in large contact areas and hence 

high friction (Donnet and Erdemir, 2001).  

The combination of very high thermal conductivity with low shear strength and 

chemical inertness makes silver and gold coatings ideal for applications involving 

high frictional or ambient heating, such as sliding ceramic interfaces. However, when 

a highly thermally conductive film like silver is present at the sliding interface, the 

wear rate decreases dramatically, mainly because frictional heat is dissipated rapidly 

from the sliding interface. The low friction coefficient of silver also helps in reduced 

frictional heating (Donnet and Erdemir, 2001). 
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Silver is used as a lubricant in X-ray tubes, certain satellite parts, ball bearings, bolts, 

and other sliding parts in nuclear reactors. When applied as a dense and adherent 

coating on the surfaces of these components, it can effectively dissipate frictional 

heat that can otherwise cause thermomechanical and tribochemical wear. Used on 

ceramic surfaces, it shears easily, thereby reducing the friction and microfracture- 

induced wear of the sliding ceramic surfaces. Silver and other soft metallic coatings 

can also protect the sliding surfaces against environmental and/or tribochemical 

degradation under dry and oil-lubricated sliding contact conditions. One of the major 

shortcomings of metallic solid lubricants is that most of them react with sulfur and 

chlorine (if present in the operating environment) and may undergo rapid corrosive 

wear (Donnet and Erdemir, 2001). 
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3. CRYSTAL CHEMICAL APPROACH 

Achieving and maintaining low friction at high temperatures (i.e., 300-1000°C) have 

been very difficult in the past and are still the toughest problems encountered in the 

field of tribology. Several researches were conducted exploring the feasibility of 

lubricating hot surfaces with vapor, liquid, and solid lubricants. But the application 

and environmental issues limited the use of most of the developed materials as they 

often faced unwanted oxidation and/or chemical breakdown and thus rendered these 

lubricants useless. Solid lubricants are certainly more appealing than the others for 

use at high temperatures. Certain oxides (e.g., Re2O7, MoO3, PbO, B2O3, NiO, etc.), 

become soft and highly shearable at elevated temperatures and hence can be used as 

lubricants. Oxide-based self-lubricating materials can be prepared as alloys or by 

designing appropriate coatings or composite structures. The lubricious layers that 

form by oxidation of metallic surfaces or alloys would be very desirable and 

exceptionally advantageous when compared with the solid lubricant coatings with 

finite lifetimes. At high temperatures, as the oxide layer is depleted from the surface 

by wear, the most useful alloying ingredients diffuse toward the surface where the 

oxygen potential is higher, and oxidize again to replenish the consumed lubricious 

layer which has low shear strength and/or surface energy to decrease friction 

(Erdemir, 2000). 

The crystal chemical approach proposed by Erdemir (2000), provides a way to 

formulate and use new alloys or oxide-based materials that exhibit low-shear and 

hence low friction at high temperatures. It classifies lubricious oxides on the basis of 

lubrication performance and operational limits. This approach was proposed to serve 

as a guide for determining the types of lubricious oxides needed on a sliding surface 

at high temperatures. The major benefit of this model is that it may provide a 

scientific means to better design and formulate future tribological coatings that 

provide not only superior wear resistance but also sufficient lubricity during dry 

machining or sliding applications. The crystal chemical approach also helps explain 

the lubrication mechanisms of these oxides or oxide systems that form on 
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tribological surfaces as the crystal chemistry of certain oxides relates strongly to their 

shear rheology and hence their lubricity at high temperatures. Additionally one can 

estimate the solubility limits, extent of chemical interactions, compound-forming 

tendencies, surface energy, and melting point of one oxide when a second oxide is 

present in the system with the help of this approach. 

The interaction between the sliding contact interface of two solid bodies have to be 

taken into account by means of continuous physical, chemical, and topographical 

changes. The extent of the tribological events that occur at such an interface is 

further exacerbated if the solid bodies are chemically different or if a third or more 

bodies are present, the operating environment is oxidizing, and the ambient 

temperature is high. In tackling the very complexity of numerous thermal, 

mechanical, and chemical events that occur at such an interface on various time and 

length scales, it is important to consider the kinetics of oxidation and the rates of 

cation diffusion, oxide stoichiometry, heat of formation, electrostatic 

electronegativity, surface energy, and other atomic-scale events that occur at the 

sliding interfaces of solid bodies. When sliding occurs in open air and at high 

temperatures or high velocities, most sliding interfaces (including metals and non 

oxide ceramics) become oxidized. Thin oxide films that formed on the sliding 

surfaces may, in turn, dominate the friction and wear behavior of these interfaces. If 

the sliding bodies differ chemically or there is a third or fourth body at the sliding 

interface, two or more oxides may form on the sliding surface and dominate friction 

and wear (Erdemir, 2000). 

3.1. Principles of Crystal Chemical Approach 

It is proposed by Erdemir (2000) for the first time that using the principles of crystal 

chemistry, one can also establish model relationships between the quantum chemical 

properties and the lubricity of oxides at high temperatures. Specifically, it is possible 

to establish a correlation between ionic potential or the cationic field strengths of an 

oxide and its shear rheology and hence with its lubricity. 

The crystal-chemical approach is based essentially on the ionic potential (φ) of an 

oxide and is defined as φ = Z/r (where Z is the cationic charge and r is the radius of 

the cation). In general, the higher the ionic potential, the greater the extent of 

screening of a cation in an oxide by surrounding anions as illustrated in Figure 3.1. 
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Likewise, the field strength of a cation (defined as ρ = Z/a2 where “a” is the distance 

between the cation and anion of an oxide) can also be used to determine the degree 

of screening of that cation. Oxides with highly screened cations (such as V2O5, WO3, 

and Re2O7) are generally soft and, hence, shear rather easily to provide low friction 

at elevated temperatures. Their cations are well separated and completely screened 

by the oxygen anions. As a result, their ability to enter into extensive chemical 

interactions with other cations is greatly hindered. Most of their bonding is with 

surrounding oxygen anions. On the other hand, oxides with lower ionic potentials 

(such as Al2O3, Fe2O3, and MgO) are very strong and, hence, very difficult to shear. 

Their cations are free to interact with each other and form strong covalent or ionic 

bonds that make them very difficult to shear even at elevated temperatures. Also in 

Table 3.1 the ionic potentials of certain lubricious and high-friction oxides are 

compared (Erdemir, 2005).  

 
Figure 3.1: A schematic illustration of the concept for ionic potentials of two oxides 

having the same cationic charge but different cation radius (Erdemir, 2005). 

Table 3.1: Relationship between friction coefficients and ionic potentials of certain 
oxides (Erdemir, A., 2000). 

Oxide 
form 

Electronic charge 
(Z) 

Radius of cation 
(Å) 

Ionic potential 
(Z / r) 

Melting 
point (K) 

ReO3 6 Re6+ (0.51) 11.7 433 
B2O7 7 Re7+ (0.56) 12.5 569 
B2O3 3 0.25 12 723 
V2O5 5 0.64 8.4 945 
MoO3 6 0.67 8.9 1068 
WO3 6 0.68 8.8 1743 
TiO2 4 0.64 5.8 2123 
Al2O3 3 0.50 6 2313 
SnO2 4 0.71 5.6 - 
ZrO2 4 0.79 5 3073 
MgO 2 0.63 3.2 3173 
NiO 2 0.69 2.8  

Oxide 
case 

Cationic 
charge 

Cationic 
radius 
(Å) 

Ionic 
potential

BxOy 3 0.5 6 

AxOy 3 0.2 15 
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CoO 2 0.72 2.7  
ZnO 2 0.74 2.7  
FeO 2 0.74 2.7  

In most tribological situations, two or more dissimilar solid bodies may be rubbing 

against each other, and often the sliding surfaces are covered by more than one kind 

of oxide. The crystal chemical approach introduced above can also be used to predict 

the lubricity of such complex oxide systems. In these cases, one has to consider the 

absolute difference in ionic potentials of the oxides in the system. The eutectic 

temperature and compound-forming tendencies of two oxides are closely related to 

the cationic field strengths or ionic potentials of the involved elemental species. The 

ability of an oxide to dissolve in or react with other oxides or to form complex oxides 

is estimated from the difference in relative ionic potentials of the oxides in the 

system. In general, the greater the difference in ionic potential, the lower the eutectic 

temperature and the greater the tendency to form complex oxides and the higher is 

the lubricity of these oxide systems. This correlation has two possible explanations. 

First, as the difference in ionic potential increases, the ability of these oxides to form 

a low-melting-point or readily shearable compound improves; hence, they tend to 

exhibit much lower hardness than their constituents and can shear readily at elevated 

temperatures. This property is attributed to the anions being able to better shield or 

screen the cations, thus making them less likely to interact with neighboring cations. 

The second reason is that the ability or affinity of ionic species to form highly stable 

compounds (that exert very little chemical or electrostatic attraction) improves as the 

difference in ionic potential increases. Lower attraction between sliding surfaces 

means lesser adhesive forces across the sliding contact interfaces, hence, lower 

friction. (Erdemir, 2000; Erdemir, 2005) 
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4. EXPERIMENTAL PROCEDURE 

4.1. Coating Process 

Re and W-Re films with Ti bonding interlayer were deposited with DC magnetron 

sputtering and cathodic arc evaporation PVD techniques. Ti as a bonding interlayer 

was evaporated by cathodic arc physical vapor deposition while Re and W-Re was 

sputtered with DC magnetron. The W-Re alloy target had a composition of W %75 

and Re %25. The distance between the sputtering source and the substrate was set to 

be 5.5 cm for all the coatings. For sputtering, pure argon gas was used. A coating 

system (Ti-Gold Model 8) having an arc PVD cathode and an unbalanced magnetron 

gun combined with a DC power supply were used for deposition. The schematic 

diagram of this system is shown in Figure 4.1. The effects of magnetron power and 

the chamber pressure on the structure of Re films were investigated at the end of the 

coating processes. 

 

Pumps 

Rotation

Holder

Shutter

Sample  Sputtering source 
    Re, Re-W Sample

 Arc source 
        Ti 

 
Figure 4.1: Schematics of the CAPVD and UBMS system, (Öztürk et. al., 2007) 

4.1.1. Sample Preparation 

Si wafer and hardened M-2 type high speed steel (0.95-C, 4.2-Cr, 5.0-Mo, 6.0-W, 

2.0-V) were used as substrates. The substrates were first polished with 9 micron and 

then with 1 micron diamond suspensions. After polishing, the substrates were 
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ultrasonically cleaned in acetone for 15 minutes, and finally soaked with isopropyl 

alcohol and dried. 

4.1.2. Pure Re Coating 

For the first set of three samples, the observed parameter in coating was the 

magnetron power. Three samples Re200-1.0; Re300-1.0; Re400-1.0 were first metal 

ion etched/bombarded for both heating and cleaning, with Ti cathode under - 600 V, 

- 800 V and - 1000 V bias voltages for 1 minute each. 

Ohring stated that if the interlayer is thin, a good adhesion is obtained but if the layer 

is thick poor adhesion occurs (Ohring, 2002).  Considering this fact, substrates are 

coated with Ti for 5 minutes in order to obtain an interlayer film with proper 

thickness. This coating was done with 70 A current and 150 V bias voltages. Then 

the Ti coated substrates were finally deposited with Re for 30 minutes at magnetron 

powers of 200 W, 300 W and 400 W. The chamber pressure was maintained constant 

at 1.0 Pa with an argon flow rate of 40 sccm and the temperature inside the chamber 

was adjusted to 60°C. 

The second set of coatings was deposited in order to observe the effects of variations 

in chamber pressure. Therefore, two samples Re300-0.5; Re300-1.5 were deposited 

at 300 W and at the same conditions as the first set except the chamber pressures 

which were specified as 0.5 Pa and 1.5 Pa and compared with previously deposited 

sample, Re300-1.0. 

4.1.3. W-Re Coating 

Economical constraints imposed on coating metallic Re, directed this research 

towards assessing the properties on Re alloy coatings. Therefore, the usage of 

commercially available W-Re alloys will surely be more economical. If W-Re film 

coating did exhibit the similar unique properties as metallic Re coating, then this 

study would be more exciting. 

In this set of experiments W-Re alloy thin films were produced. The W-Re target 

was of % 75 W, % 25 Re composition. After the substrate heating and cleaning by 

high voltage sputtering routine, first Ti bonding layer was deposited by cathodic arc 

evaporation in the same procedure as the previous metallic Re coatings (with 70 A 

current and 150 V bias voltages, for 5 minutes). Then W-Re film was deposited for 
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30 minutes, but this time in order to obtain a thicker coating, based on the previous 

experiments’ results, 400 W magnetron power was used. Argon flow was controlled 

to have a fixed value of 1.0 Pa chamber pressure. After the coating process, high 

speed steel and the Si wafer substrates were arranged for the structural 

characterization and wear tests. 

All of the coated samples with their coating parameters were summarized in Table 

4.1. 

Table 4.1: Coating parameters of the deposited samples 

 

Sample 

Magnetron 
Power (W) 

Chamber 
Pressure 

(Pa) 
Time (min) Temperature 

(°C) Ti Interlayer 

Re200-1.0 200 1.0 

Re300-1.0 300 1.0 

Re400-1.0 400 1.0 

Re300-0.5 300 0.5 

Re300-1.5 300 1.5 

W-Re300-1.0 300 1.0 

30 60 
Coated for 5 
minutes with 
-150 V bias 

4.2. Characterization 

Due to the investigated properties, the characterization procedures of the deposited 

films were examined under two main titles. First of them was the structural 

characterization in which the effects of coating related issues on the structure of the 

Re and W-Re films were examined. The second one is the wear behavior 

characterization which was done in order to introduce the tribological nature of Re 

based thin films. 

4.2.1. Structural Characterization 

In order to characterize the structure of the Re and W-Re films produced by 

magnetron sputtering PVD technique and investigate the effects of coating 

parameters on the structural properties of the films, a set of experiments including 
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thickness, micro-hardness, surface roughness measurements and XRD, phase and 

morphology analysis were conducted. 

4.2.1.1. Thickness Measurements 

The thickness of the coatings was determined by both investigating the cross-section 

images of the films taken by SEM (Jeol JSM-6400 SEM) and by using the Calotest 

spherical abrasion technique (Eifeler Nord Coating Caloprep) over the HSS 

substrates. A steel ball of 10 mm diameter and abrasive paste were used for cratering. 

In this method the thickness was measured by optical inspection of the spherical cap 

abraded into the coating. The graphic representation of the method is seen in Figure 

4.2. 

 
Figure 4.2: Calotest thickness measurement method with spherical abrasion 

4.2.1.2. Micro-Hardness Measurements 

Hardness measurements were carried out with an ultra micro-hardness tester (Fischer 

HP 100) with a load sensitivity of 0.2 mN and a depth sensitivity of 0.01 nm. A total 

load of 50 mN was applied in 120 steps with a time interval of 0.5 s at each step. The 

Vickers pyramid indenter penetrates to the one tenth of coating thickness, which is 

approximately 300 nm. Each measurement was repeated 30 times over the whole 

surface of the samples for obtaining an average hardness value. 

4.2.1.3. Microstructural Investigations 

The investigation of both the grain growth structure and the thickness of the films 

were done over the cross-section images of the coatings deposited on Si wafer 

substrates, with a Jeol JSM-5410 Scanning Electron Microscope (SEM). With this 

analysis, differences in growth morphologies of pure Re and W-Re films were 

observed and zone models of coatings were determined. 

 



 23

4.2.1.4. Energy Dispersive Spectrometry Analysis 

The composition of W-Re films was determined by using a NORAN 2100 Freedom 

EDS analyzer equipped on Jeol JSM-5410 model scanning electron microscope. 

4.2.1.5. X-Ray Diffraction Analysis 

The phase structure of the coatings was analyzed by a glancing angle X-ray 

diffractometer with a thin film attachment (Philips Model PW3710) using Cu Kα 

radiation over the 2θ range of 20–140° at a voltage of 40 kV and a current of 40 mA. 

The 2θ scan method with a fixed incidence angle of 2° was used.  In order to 

determine the formation of rhenium oxides, the samples were heated with an 

Edmund Bühler GmbH REP 1806 heater equipped on the XRD device. 

4.2.2. Tribological Behavior Characterization 

Investigation of the wear properties of Re and W-Re coatings were conducted with 

both ball-on-disc and fretting test methods, against different counterfaces and with 

different temperatures. Immediately after the wear tests, the wear debris around the 

wear tracks were characterized with micro Raman spectroscopy and the worn 

surfaces were examined with optical profilometry. According to the highly volatile 

and lubricious characteristics offered by the crystal chemical approach, the oxides of 

rhenium are predicted to play an important role on the tribological properties of Re 

thin films.  

4.2.2.1. Ball-on-Disc Tests 

Ball-on-disc tests were conducted with CSM Instruments Tribometer. The 

counterface materials were alumina and 440C series steel balls of 10 mm diameter. 

Tests were performed under 2 N normal loads, with sliding speeds of 10 cm/s and 20 

cm/s and a constant distance of 500 m. The temperature and humidity ranges during 

the tests were 18-23°C and 39-56 %RH respectively. Within the scope of these tests, 

the wear behavior of Re and W-Re films were both separately and comparatively 

investigated. The results of the tests were compared due to two different sliding 

speeds (10 cm/s and 20 cm/s) and against two different counterface materials 

(alumina and 440C steel balls). 
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4.2.2.2. Fretting Wear Tests 

Fretting tests were conducted with a Plint & Partners TE 70 Micro Friction device. 

The parameters were chosen for the test to demonstrate the most severe conditions. 

Parameters used in the tests are given in Table 4.2. 

Table 4.2: Parameters applied in fretting wear tests 
 Frequency (Hz) 10±0.02 

Stroke Length (μm) 100±10 

Load (N) 2 

Time (min) 34 

Temperature (°C) 
Room Temperature, 
50°C, 100°C, 150°C

Humidity 39-56 %RH 
 

4.2.2.3. Optical Profilometry 

The wear tracks and worn surfaces of the films and the counter materials were 

investigated over the 3D images and 2D representations obtained by a Veeco Wyco 

NT1100 optical profilometer. Also the wear volumes of the worn surfaces were 

calculated and the surface roughness values of the films were determined with the 

help of optical profilometry. 
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5. Results and Discussion 

5.1. Improving the Adhesion of Films 

In the first trials of rhenium coating on HSS and silicon wafer substrates, a good 

adhesion could not be acquired between the substrate and the film. This situation 

could had possibly been because of the stress induced by rapid cooling or thermal 

shock that the film experienced after opening the chamber door without giving the 

adequate time for substrate to cool down. Thus the coating process was repeated, this 

time with long enough time for cooling of the substrate, 12 hours after the coating. 

Again the detachment of the film from the substrate was observed, even a little 

adhesion of the film was absent for the coating flied away by just blowing on it. 

Adhesion is a matter of bonding and electrical and chemical interactions at the 

substrate-coating interface. Usually when metal films with a high affinity of 

oxidizing, were coated on oxide substrates or metals forming intermetallic 

compounds, a compound interface is produced increasing the adhesion of the film to 

the substrate metal (Ohring, M., 2002). Based on the Hume-Rothery rule, there are 

several requirements for materials to form a compound interface as a substitutional 

solid solution. These are as follows: 

1. Atomic size factor: Solvent and solute atoms must differ in atomic size by less 

than 15% in order to form this type of solution. 

2. Crystal structure: Both elements must exist in the same crystalline lattice. 

3. Electronegativity: Metals with similar electronegativity are prone to form 

substitutional solution. 

4. Valances: A metal is more susceptible to dissolve another metal with higher 

valency than with a lower valency, if other factors are equal. (Callister, W.D., 

2007) 

A metal which forms a compound interface with rhenium, namely shows good 

adhesion to rhenium film, could be used as a bonding interlayer so as to achieve the 
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adhesion of Re film on HSS substrate. Thus it was necessary to take some material’s 

properties into account in understanding the reasons of poor adhesion and for 

choosing a proper interlayer material. Therefore an investigation on comparing the 

crystal structure, atomic radius, thermal expansion coefficients and 

electronegativities of rhenium and some other potential interlayer materials was 

made. The mentioned properties are compared between Re and Ti, Cu, WC, Fe in 

Table 5.1. 

Table 5.1: Comparison of some material’s properties of Re with potential interlayer 
metals (webelements.com, 2007) 

 Re Ti Cu WC Fe Si 

Melting Point (°C) 3180 1668 1084 2870 1538 1414 

Crystal Structure hexagonal hexagonal 
face-

centered 
cubic 

hexagonal 
body-

centered 
cubic 

face-
centered 

cubic 
Atomic Radius 
(pm) 135 140 135 135 140 110 

Thermal Expansion 
(25°C) 
(µm·m−1·K−1) 

6,2 8,6 16,5 4,5 11,8 2,6 

Electronegativity 
(Pauling scale) 1,90 1,54 1,90 - 1,83 1,90 

 
Due to the properties compared above, especially the crystal structures, the atomic 

radii and the thermal expansions, it could clearly be seen that Re has tendency to 

form solid solution with Ti. With the prediction of formation of an interlayer 

compound, a new solution approach was figured out for the adhesion problem. 

Therefore a new coating was done using titanium, copper, tungsten carbide, stainless 

steel and silicon substrates. The result was consistent with the prediction. Rhenium 

film showed a perfect adhesion to the Ti substrate. Also the adhesion of the film to 

the Cu and WC substrates was noticeable, but it was unsatisfactory to apply these 

substrate materials as a bonding interlayer. The adhesion to the stainless steel and Si 

wafer substrates was poor in accordance with the discrepancy of the compared 

properties according to the Hume-Rothery rules. Since Ti has shown a compatibility 

with rhenium’s crystal structure, atomic radius and thermal expansion and shown an 

excellent adhesion, it was chosen as the interlayer material. Consequently the 

following coating processes were conducted with a previous coating of a Ti bonding 

interlayer. 
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5.2. Effect of Magnetron Power on the Thickness of the Films 

The thickness of the Re coatings are compared in Figure 5.1. The thicknesses of Ti 

interlayer varying between 0.5 – 0.58 µm, are not included to the total thicknesses as 

the bonding layer has been deposited by cathodic arc evaporation thus it would not 

reflect the true effect of magnetron power. In general, the deposition rate is 

proportional to the power consumed. It is verified by the cross-section images of the 

films on Si wafer substrates that the resultant deposit thickness is clearly dependent 

on magnetron power at constant chamber pressures. 
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Figure 5.1: Variation of coating thickness with magnetron power 

The total thickness (both Re an Ti layers) of the W-Re coating was 3.96 µm. In order 

to obtain a precise value, the second measurement was done with SEM upon the Si 

wafer sample. The cross-section image of the sample is shown in Figure 5.2. The 

thickness of Ti bond layer is 0.70 µm and the W-Re film is 2.62 µm, which is similar 

to the total value obtained by Calotest measurement. It was found to be lower than 

the Re metallic film coated at the same conditions. The sputtering yields of Re and 

W are 0.9 and 0.6 respectively with an argon kinetic energy of 600 eV 

(angstromsciences.com, 2007). The ratio of W to Re of the target and the lower 

sputtering yield of tungsten could result in a lower thickness value than Re metallic 

coating as our present condition. 
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Figure 5.2: Cross-section image of the W-Re film showing its thickness 

5.3. Effect of Argon Pressure on the Thickness of Re Films 

Argon gas was used for the sputtering of Re and W-Re films. To investigate the 

effects of pressure on the structure of rhenium films, the argon partial pressure was 

adjusted in order to have constant chamber pressures, which are 0.5, 1.0 and 1.5 Pa. 

The relative film deposition rate depends on the sputtering pressure. At low 

pressures, the cathode sheath is wide and ions are produced far from the target; their 

chances of being lost to the walls are high. The mean-free electron path between 

collisions is large and electrons collected by the anode are not replenished by ion-

impact-induced cathode secondary emission. Therefore, ionization efficiencies are 

low. As the pressure is increased, the electron mean-free path is decreased, more ions 

are generated, and larger currents flow. But if the pressure is too high, the sputtered 

atoms undergo increased collisional scattering and are not efficiently deposited 

(Ohring, 1992).  

Investigation of the argon pressure effect on thickness of the rhenium films is shown 

in Figure 5.3. It can clearly be seen that the results were in accordance with Ohring’s 

statement. Thus, the optimum total chamber pressure is found to be 1.0 Pa, which is 

necessary for obtaining the thickest rhenium film at 300 W magnetron power. 
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Figure 5.3: Variation of coating thickness with chamber pressure 

5.4. Effects of Coating Parameters on the Hardness of the Films 

The effects of magnetron power and chamber pressure on the hardness of the Re 

films are shown in Figure 5.4 and Figure 5.5. The resultant hardness comparison 

through the different magnetron powers was made; it was found that the coating 

produced at 300 W had the highest hardness of the three. When the x-ray diffraction 

analyses of the coatings were investigated, it was seen that the two coatings produced 

by applying a power of 200 and 400 W totally corresponded to the diffraction pattern 

of pure rhenium while coatings produced by using 300 W power have slightly shifted 

peaks relative to the positions of pure Re. The coatings exhibiting shifted peaks in 

their XRD patterns possessed higher internal stress hence higher hardness explaining 

the reason of the obtained result. No notable effect of chamber pressure on the 

hardness could be distinguished. The hardness of the films of different pressures was 

found to be nearly the same around 22 GPa. 
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Figure 5.4: Effect of magnetron power  Figure 5.5: Effect of chamber pressure 
         on the hardness of the films          on the hardness of the films 

The hardness value of W-Re films was found to be lower than pure rhenium 

coatings. It had a value of 12021 ± 152 MPa. 

5.5. Microstructural Investigation of the Coatings 

Cross-section images were used for both measuring the accurate thickness values and 

for determining the grain growth structure of the films. The relevant images of pure 

Re coatings coated under different magnetron powers and chamber pressures are 

shown in Figure 5.6. – 5.10. Consulting to the substrate and melting temperatures of 

rhenium and the argon pressure of the system, the growth of the film is found to 

correspond to the Zone 1 of Thornton’s model. The morphologies of the coatings 

obtained in Zone 1 at low substrate temperatures were porous, and consisted of 

tapered crystals with domed tops leading to a rough surface. This unique tapered 

morphology is a result of low surface diffusivity of incident atoms at low substrate 

temperatures. Very few nuclei form and grow to dome shaped crystallites with voids 

in between (PalDey and Deevi, 2002). 
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Figure 5.6: Cross-section of Re200-1.0  Figure 5.7: Cross-section of Re300-1.0 

 
Figure 5.8: Cross-section of Re400-1.0 

     
Figure 5.9: Cross-section of Re300-0.5 Figure 5.10: Cross-section of Re300-1.5 

Also the microstructure of W-Re film seen on the cross-section image shown in 

Figure 5.11 is nearly the same as pure rhenium coatings. The microstructure again 

belongs to the Zone 1 of Thornton’s model for this coating. 
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Figure 5.11: Cross-section image of W-Re300-1.0 coating 

5.6. Composition of W-Re Coatings 

The EDS analysis result for W-Re coating deposited on Si wafer substrate is shown 

in Table 5.2. The analysis showed that the film has a very similar composition to the 

W-Re target. Therefore, coating of W-Re alloy was proved to be successfully 

achieved. 

Table 5.2: EDS analysis of W-Re coatings on Si wafer substrates 

Element Line Intensity 
(c/s) 

Error 
2-sig 

Atomic 
% 

Conc. 

W Lα 28.33 1.093 75.600 75.363 wt.% 
Re Lα 8.61 0.602 24.400 24.637 wt.% 
    100.000 100.000 wt.% 
kV 20.0    

5.7. Surface Roughness Measurements 

The average surface roughness values measured by optical profilometer for all 

coatings with different coating parameters were given in Table 5.3. The result for W-

Re alloy coatings was very similar to the Re metallic coating, thus no effect of 

tungsten could be mentioned on the surface roughness of the film. The reason for the 

high roughness value of the surfaces is mainly the cathodic arc evaporated Ti layer. 

If a material of high melting point with a high vapor pressure was used during ion 

bombardment, macro droplet formation could be minimized in this way (PalDey and 

Deevi, 2002). Anyway Schwaller et al., suggest that the macroparticle contamination 

often encountered in cathodic arc PVD deposited coatings, is not an issue in wear 

protection since these minority inclusions are of lower hardness than the matrix 
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material, and their protruding parts are worn away in the first few contacts of their 

application (Schwaller et. al., 2005). Thus no the effect of surface roughness on 

tribological behavior of the coatings was taken into account and they were not 

investigated. 

Table 5.3: Average surface roughness values of the films deposited under various 
parameters 

Sample Re200-1.0 Re300-1.0 Re400-1.0 Re300-0.5 Re300-1.5 W-Re300-1.0

Ra (nm) 77.67 77.48 110.02 104.15 73.10 81.32 

5.8. X-Ray Diffraction Analysis 

The XRD patterns of all pure rhenium samples are given in Figure 5.12. All the 

peaks fully correspond to the reference peaks of pure rhenium. Also in Figure 5.13, 

the diffractograms of W-Re coatings are seen comparing to the peaks of 80% W – 

20% Re and Re3W. 
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Figure 5.12. XRD analysis results for pure rhenium samples coated with different coating parameters
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Figure 5.13. X-ray diffractograms of the W-Re coatings (on top), compared to those containing the most prevalent reflection peaks of the Re3W 

(middle) and 80% W – 20% Re (bottom). 
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5.9. Characterization of Tribological Behavior 

The results of the wear tests were classified according to the temperature they were 

conducted. Thus the results were evaluated separately for room temperature and for 

high temperatures. Also the results of both W-Re and Re coatings were investigated 

comparatively.  

5.9.1. Tests at Room Temperature 

Room temperature tests were done with using both fretting and ball-on-disc 

techniques. For fretting tests just alumina counter-body was used while for ball-on-

disc tests both 440C steel and alumina balls were used. All of the tests were 

conducted two times for proving reproducibility.  

5.9.1.1. Ball-on-Disc Tests 

Two counterface materials, 440C steel ball and alumina ball were used for ball-on-

disc tests. The effect of rotating speed was also investigated within the scope of these 

tests. In Table 5.4 the parameters used in the tests are given. 

Table 5.4: Parameters chosen for room temperature ball-on-disc tests 

 Re W-Re 

Rotating 
speed (cm/s) 10 20 10 20 

Counterface 
material Alumina 440C 

steel Alumina 440C 
steel Alumina 440C 

steel Alumina 440C 
steel 

Temperature 
(°C) 23 23 25 24 20 21 18 19 

Humidity 
(%RH) 56 50 45 46 45 37 47 48 

Radius (mm) 3.93 5 4.44 3.68 2.22 3.24 5 6.5 

Distance (m) 500 500 

Normal load 
(N) 2 2 

The variation of coefficient of friction values of pure rhenium ball-on-disc test 

against alumina ball with two different rotating speeds are given in Figure 5.14. The 
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ball-on-disc tests against alumina ball done on pure rhenium coating were enough to 

prove the unique tribological behavior of rhenium. Coefficient of friction starts with 

a relatively higher value of about 0.22. Then for both of the rotating speeds it goes on 

a lowering trend and become stable after 100 meters. Through the remaining of the 

test, it maintains an average value of 0.13. Also it was seen that the variance in 

rotating speeds did not reflect a noticeable difference in coefficient of friction. 
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Figure 5.14: The variation of coefficient of friction values for pure rhenium tested at 
room temperature against alumina ball with two different rotating speeds 

The examinations of contact surfaces of the samples showed that the wear tracks 

were composed of just shallow traces having a maximum depth of 0.135 µm. This 

value is less than 4 % of the total thickness of the coating. Similarly the alumina balls 

did not show a sign of wear. The 3D images of the sample surfaces and the related 

2D profiles are shown in Figure 5.15 and Figure 5.16. 
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Figure 5.15: Wear track of the Re coated sample after ball-on-disc test against 

alumina ball at 20 cm/s rotating speed 

 
Figure 5.16: Wear track of the Re coated sample after ball-on-disc test against 

alumina ball at 10 cm/s rotating speed 

The coefficient of friction variations of the tests against 440C steel ball are given in 

Figure 5.17. Again no difference between the two different rotating speeds could be 

distinguished. This time the coefficient of friction is higher than the tests done 
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against alumina ball. The average values are found to be about 0.5. But the wear 

tracks on the samples were much less apparent. This time the wear on the ball was 

catastrophic. The radius of the formed disc on the worn surface is around 850 µm. 

That much wear corresponds to a worn volume of 0.0833 mm3 from the steel ball. 

The relevant images of the coated sample and the counterface material with the bal-

on-disc tests against steel ball are given in Figure 5.18 and Figure 5.19. 
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Figure 5.17: Variation of coefficient of friction values of pure rhenium ball-on-disc 

tests against 440C steel ball 

 
Figure 5.18: Wear track of the Re coated sample after ball-on-disc test against 400C 

steel ball 
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Figure 5.19: Wear scar of the steel ball ran against Re coated sample in ball-on-disc 

test 

The results of the ball-on-disc tests over W-Re alloy coatings were much more 

interesting than the already brilliant findings about friction behavior of pure rhenium. 

W-Re alloy with a composition of 25 % Re and 75 % W, gave reasonable coefficient 

of friction values. The coefficient of friction values are shown in Figure 5.20 

comparing two different rotating speeds. Therefore addition of rhenium to tungsten 

as an alloying element can also give low coefficients and producing this alloy will be 

much more economical than a pure rhenium coating. 
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Figure 5.20: The variation of coefficient of friction values for W-Re alloy films 
tested at room temperature against alumina ball with two different rotating speeds 
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The starting friction coefficient values of the ball-on-disc tests on W-Re coatings 

were very similar with the beginning values for Re coatings. But this time contrary to 

the Re coatings, the progressing of coefficient of friction values showed an 

increasing trend. But in a short period, the values became stable at around 0.35. The 

relevant 3-dimensional images and 2-dimensional profiles of the wear tracks are 

shown in Figures 5.21 and 5.22. 

 
Figure 5.21: Wear track of the W-Re coated sample after ball-on-disc test against 

alumina ball at 10 cm/s rotating speed 
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Figure 5.22: Wear track of the W-Re coated sample after ball-on-disc test against 

alumina ball at 20 cm/s rotating speed 

The wear track of the test with 10 cm/s rotating speed had a width of 239 µm. 

Maximum depth within this track was 0.426 µm. Also there were other shallow 

traces within the track with different depths. For the case of the test with 20 cm/s 

rotating speed, the wear track on the sample was 316.2 µm wide. This time 

maximum depth was 0.750 µm and there were no other deep traces within the track. 

The slight difference in the width of wear tracks could also be seen again from the 

slight difference in the coefficient of friction values. 

The ball-on-disc tests against 440C steel ball were also conducted for W-Re coated 

samples. The variation of friction coefficient values with distance for two rotating 

speeds is seen in Figure 5.23. Again as it was for the tests with alumina ball, the 

coefficient of friction starts with a relatively lower value of 0.33. Then again like the 

test with alumina ball, it progresses increasingly until it becomes stable at a mean 

value of 0.65. If we compare this value to the tests done with 440C steel ball on pure 

rhenium coatings, we see that it is higher than the rhenium coated sample by 0.65 to 

0.50. This much difference is just like it was for the tests against alumina ball. Also 

again no noticeable difference between the two rotating speeds was distinguished.  
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Figure 5.23: The variation of coefficient of friction values for W-Re alloy films 
tested at room temperature against 440C steel ball with two different rotating speeds 

The relevant 3-dimensional images of the wear track for both the sample and the 

steel ball for two different rotating speeds are seen in Figure 5.24 and Figure 5.25. 

While the tracks on the samples were just like slight wear traces, the contacting 

surfaces of the balls were considerably worn off. The circular shape of the worn 

surface had a value of ~600 µm which is similar to the wear track on the sample.  

 

Figure 5.24: The wear tracks on W-Re coated sample and 440C steel ball of test with 
10 cm/s rotating speed 
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Figure 5.25: The wear tracks on W-Re coated sample and 440C steel ball of test with 
20 cm/s rotating speed 

5.9.1.2. Fretting Tests 

All the fretting tests done on pure rhenium and W-Re coatings are conducted with an 

alumina counter-body. The parameters applied during the tests are given in Table 

5.5.  

Table 5.5: Parameters chosen for room temperature fretting tests 

 Re W-Re 

Temperature (°C) 21 19 

Humidity (%RH) 45 44 

Frequency (Hz) 10 

Stroke length 
(µm) 100 

Number of cycles 20400 

Counterface 
material Alumina 

Normal load (N) 2 

The evaluation of friction coefficients for pure Re and W-Re coatings are given in 

Figure 5.26. Both of the coatings gave the same average coefficient of 0.33. Also the 
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repeated tests’ results were very similar, indicating that the tests have reproducibility. 

It is a very positive and useful result that W-Re alloy coating gave the same 

coefficient of friction values as pure rhenium as it meets the expectations.  Therefore 

its possibility has been proved that rhenium’s unique tribological properties can be 

carried to an alloy with an amount of 25% rhenium addition. 
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Figure 5.26: Evolving of the friction coefficients for pure Re and W-Re coatings in 

fretting tests at room temperature 

For comparison, the relevant 3-dimensional images and corresponding 2-dimensional 

profiles of pure rhenium and W-Re coatings are given alternatively in Figure A.1 and 

Figure A.5, respectively. For pure rhenium coated sample, the wear scar consists of a 

circle shaped region with a diameter of 90 µm. The same shaped wear scar exists on 

W-Re coated sample with a 111 µm diameter. Both of the surfaces do not have a 

worn depth, just the debris particles are seem to be built up around the wear scars.  

5.9.2. High Temperature Tests 

High temperature tests were only able be conducted with fretting wear testing 

system. Thus the fretting tests at 50°C, 100°C and 150°C against alumina ball were 

done over both pure rhenium and W-Re coatings. The testing parameters are given in 

Table 5.6.  

Table 5.6: Parameters chosen for high temperature fretting tests 

 Re W-Re 

Temperature (°C) 50 100 150 50 100 150 

Humidity (%RH) 39 39 42 45 36 54 
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Frequency (Hz) 10 

Stroke length 
(µm) 100 

Number of cycles 20400 

Counterface 
material Alumina 

Normal load (N) 2 

The friction coefficients of high temperature fretting tests for pure rhenium and W-

Re coatings are given in Figure 5.27 and Figure 5.28 respectively. For pure Re 

coatings the friction coefficient at 50°C has an average value of 0.5. Then it increases 

to 0.6 at 100°C. When the temperature was increased to 150°C, then the friction 

coefficient evolves in a different fashion. First it seems to stable at a constant value 

of 0.5. But as the tests progresses, friction shows tendency to decrease a couple of 

times for 20 – 30 cycle periods. But if it’s to be considered generally, it would be 

seen that the coefficient of friction values are much higher for high temperatures 

compared to room temperature tests. But for the case of W-Re coatings the variation 

of friction coefficient with temperature showed a different characteristic. First at 

50°C, it reaches a top average of 0.59. Then at 100°C it drops down to 0.46. But after 

the test at 150°C it shows a further decrease to a slightly higher value than room 

temperature to 0.34. Because of this interesting decrease in the friction coefficient, an 

extra test was conducted at a higher temperature than 150°C, at about 200°C. The 

result was very hopeful, because this time the friction coefficient decreased further to 

an average of 0.2. This result clearly introduced that for W-Re coatings, the friction 

was decreasing with increasing temperature.  
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Figure 5.27: Coefficient of friction values for pure Re coating at high temperature 
fretting tests 
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Figure 5.28: Coefficient of friction values for W-Re coating at high temperature 
fretting tests 

The 3-dimensional images and corresponding 2-dimensional profiles of high 

temperature fretting test results for pure rhenium and W-Re coatings are given 

alternatively in Figures A.2-A.4 and Figures A.6-A.8, respectively. For 50°C tests no 

indication of wear can be mentioned for both of the coatings. A slight trace with a 

100 µm diameter but without depth through the coating can be seen on Re coated 

samples surface. Only the debris particles were built up around this trace. The same 

situation seems to be valid for the W-Re coated sample. As a result of 100°C test, a 

spherical shaped worn surface was observed on the surface of Re coated sample. 

This spherical trace has a diameter of 180 µm parallel to the surface and a depth of 

0,15 µm. This much wear corresponds to a worn volume of 1.93x10-6 mm3. On the 

other hand no wear could be observed on the W-Re surface. Again there were only 
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debris particles built up around the contact surface. For the case of 150°C tests, the 

wear damage was more noteworthy for the Re coating. There was a rectangular 

shaped trace with dimensions of 200 µm x 151 µm on the surface. Within this huge 

trace there were two deep slits with depths of 0.768 µm and 1.011 µm. the total 

volume of this worn region is approximately 9.38x10-6 mm3. Contrarily there was no 

indication of wear or worn depth on the surface of W-Re coating. This result totally 

corresponds with the low friction coefficient obtained at 150°C fretting test for W-Re 

coatings. 

This behavior of friction coefficient helped to introduce the tribological character of 

rhenium alloyed with tungsten. The question to be answered was why friction was 

decreasing with temperature for W-Re coatings. The highly volatile oxides of 

rhenium caused low friction coefficients at high temperatures. At high temperatures 

the oxides in the system were probably boiled away because of the high flash 

temperatures at the contact area or were being removed from the wear track away 

because of their softness and little adhesion to the surface. That’s because why the 

friction was increasing with temperature for rhenium coatings. But for the case of W-

Re coated samples, it was something else than the volatile rhenium oxides that 

lowering the friction coefficient. The answer suggested in this work is about the 

contribution of tungsten to the unique tribological behavior of rhenium as it helped 

rhenium oxide particles to be held at the surface. Therefore rhenium oxide particles 

haven’t removed away from the contact area and tungsten helped highly lubricious 

oxides of rhenium achieve lubricity and made the coatings give lower friction 

coefficients at high temperatures. 
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6. CONCLUSION 

1. This study has showed the possibility of successfully producing pure Re and 

W-Re coatings with magnetron sputtering physical vapor deposition technique. 

The adhesion of the films to the HSS substrates was supported with Ti interlayer 

which was produced by cathodic arc evaporation PVD technique. 

2. The effects of magnetron power and chamber pressure were observed on the 

mechanical properties of rhenium coatings. It was seen that increase in 

magnetron power resulted in a direct increase in the thickness of the films and the 

thickest film was obtained at 400 W magnetron power. Also throughout the three 

different chamber pressures, the thickest of the films was achieved at 1.0 Pa 

depending on the optimum ionization efficiencies and collisional scattering inside 

the chamber. 

3. According to the micro-hardness tests, the coatings produced at three different 

chamber pressures had the similar hardness value of about 22 GPa; while the 

coatings of different magnetron powers exhibited varied results. The hardness of 

the films of 200 and 400 W were similar at around 17 GPa but the hardness of the 

film coated at 300 W was 22 GPa. Depending on the x-ray diffraction analysis, 

higher hardness of this coating was attributed to the internal stress observed over 

the x-ray diffraction patterns. 

4. Friction and wear properties of Re and W-Re coatings were investigated with 

both ball-on-disc and fretting test methods, ran against alumina and 440C steel 

counterfaces and at room and high temperatures. The lowest coefficient of 

friction value with 0.13 was reached by the ball-on-disc test of rhenium running 

against alumina counterbody at room temperature. In the ball-on-disc test of W-

Re coated sample with the same parameters the coefficient of friction value was 

about 0.35. In none of these tests the alumina counterbodies were worn out. The 

coefficient of friction results of the tests ran against 440C steel counterbody were 

higher than alumina as 0.5 and 0.65 for pure Re and W-Re coated samples 

respectively. The wear on the samples were composed of only slight traces while 
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the wear on the steel balls were very high causing spherical traces with diameters 

up to 850 μm. 

5. Room temperature fretting tests resulted in similar coefficients of friction as 

ball-on-disc tests. There was not any considerable wear on both coated samples 

and the counterbodies. Piled up debris was observed around the contact area on 

the samples. 

6. Fretting wear behavior of the coatings was also investigated at 50, 100 and 

150°C for both pure Re and W-Re coatings. At high temperatures, higher wear 

rates and coefficient of friction values were obtained for pure Re coatings than at 

room temperature. But for W-Re coatings the coefficient of friction reached a top 

at 50°C and then lowered at higher temperatures down to 0.2. There was no wear 

on the W-Re coated samples and similarly none of the alumina counterbodies 

was worn out at the end of the tests. 



 51

REFERENCES 

Aizawa, T., Mitsuo, A., Yamamoto, S., Sumitomo, T., Muraishi, S., 2005. Self-

lubrication mechanism via the in situ formed lubricious oxide 

tribofilm, Wear, 259, 708-718. 

Callister, W.D., 2007. Materials Science and Engineering an Introduction, John 

Wiley & Sons, Inc., USA. 

Cohen, S.R., Feldman, Y., Cohen, H., Tenne, R., 1999. Nanotribology of novel 

metal dichalcogenides, Applied Surface Science 144–145, 603-607. 

Donnet, C. and Erdemir, A., 2001. Solid Lubricants and Self-Lubricating Films, 

Modern Tribology Handbook, Eds. Bhushan, B., CRC Press, USA. 

Donnet, C. and Erdemir, A., 2004. Solid lubricant coatings: recent developments 

and future trends, Tribology Letters 17, 3, 389-397. 

Donnet, C. and Erdemir, A., 2006. Friction Mechanisms and Fundamental Aspects 

in Solid Lubricant Coatings, Materials Surface Processing by 

Directed Energy Techniques, Eds. Pauleau, Y., Elsevier,  UK. 

Erdemir, A., 1994. Crystal chemistry and self-lubricating properties of 

monochalcogenides gallium selenide and tin selenide, Tribol. Trans., 

37, 471-476. 

Erdemir, A., 2000. A crystal-chemical approach to lubrication by solid oxides, 

Tribology Letters, 8, 97–102. 

Erdemir, A., 2005. A crystal chemical approach to the formulation of self-

lubricating nanocomposite coatings, Surface & Coatings Technology, 

200, 1792-1796. 

Ezirmik, V., Şenel, E., Kazmanlı, K., Erdemir, A., Ürgen, M., 2007. Surf. Coat. 

Technol., doi:10.1016/j.surfcoat.2007.05.049 

Gardos, M.N., 2000. Magnéli phases of anion-deficient rutile as lubricious oxides. 

Part I. Tribological behavior of single-crystal and polycrystalline 

rutile (TinO2n-1), Tribology Letters 8, 65-78. 



 52

Gardos, M.N., 2000. Magnéli phases of anion-deficient rutile as lubricious oxides. 

Part II. Tribological behavior of Cu-doped polycrystalline rutile 

(TinO2n-1), Tribology Letters 8, 79-96. 

Gassner, G., Mayrhofer, P.H., Kutschej, K., Mitterer, C., Kathrein, M., 2004. A 

new low friction concept for high temperatures: lubricious oxide 

formation on sputtered VN coatings, Tribology Letters vol. 17, 4, 751-

756. 

Gulbinski, W., Suszko, T., Sienicki, W., Warcholinski, B., 2003. Tribological 

properties of silver- and copper-doped transition metal oxide coatings, 

Wear, 254, 129-135. 

Kubarta, T., Polcarc, T., Kopecky, L., Novak R., Novakova, D., 2005. 

Temperature dependence of tribological properties of MoS2 and 

MoSe2 coatings, Surface & Coatings Technology 193, 230-233. 

Kutschej, K., Mayrhofer, P.H., Kathrein, M., Polcik, P., Mitterer, C., A new 

low-friction concept for Ti1-xAlxN based coatings in high-temperature 

applications, Surface & Coatings Technology, 188-189, 358-363. 

Lansdown, A.R., 1999. Molybdenum disulphide lubrication, Elsevier, UK. 

Lugscheider, E., Knotek, O., Bobzin, K., Bärwulf, S., 2000. Tribological 

properties, phase generation and high temperature phase stability of 

tungsten- and vanadium- oxides deposited by reactive MSIP-PVD 

process for innovative lubrication applications, Surface and Coatings 

Technology, 133-134, 362-368. 

Lugscheider, E., Knotek, O., Bärwulf, S., Bobzin, K., 2001. Characteristic curves 

of voltage and current, phase generation and properties of tungsten- 

and vanadium-oxides deposited by reactive d.c.-MSIP-PVD-process 

for self-lubricating applications, Surface and Coatings Technology 

142-144, 137-142. 

Ohring, M., 1992. Materials Science of Thin Films, Academic Press, USA. 

Ohring, M., 2002. Materials Science of Thin Films; Deposition & Structure 2nd Ed., 

Academic Press, USA. 

Öztürk, A., Ezirmik, K.V., Kazmanlı, K., Ürgen, M., Eryilmaz, O.L., Erdemir, 

A., 2007. Comparative tribological behaviors of TiN–, CrN– and 

MoN– Cu based nanocomposite coatings, Trib. Intl. (in press), 

doi:10.1016/j.triboint.2007.04.008. 



 53

PalDey, S., Deevi, S.C., 2002. Single layer and multilayer wear resistant coatings of 

(Ti,Al)N: a review, Materials Science and Engineering A342, 58-79. 

“Rhenium”, 1993-2007. Retrieved May 4, 2007, from www.angstromsciences.com. 

Rowe, G.W., 1960. Some observation on the frictional behavior of boron nitride and 

graphite, Wear, 3, 274-285. 

Saito, T., Honda, F., 2000. Chemical contribution to friction behavior of sintered 

hexagonal boron nitride in water, Wear 237, 253-260. 

Savage, R.H., 1948, Graphite lubrication, Journal of  Applied Physics, 19, 1-10. 

Schwaller, P., Haug, F.J., Michler, J., Patscheider, J., 2005. Nanocomposite hard 

coatings: deposition issues and validation of their mechanical 

properties, Advanced Engineering Materials 7, 5, 318-322. 

Solak, N., Üstel, F., Ürgen, M., Aydın, S., Çakır A.F., 2003. Oxidation behavior of 

molybdenum nitride coatings, Surface and Coatings Technology, 174 

–175, 713–719. 

“Sputtering Yields”, 2007. Retrieved May 4, 2007, from www.webelements.com. 

Stachowiak, G.W. and Batchelor, A.W., 2001. Solid Lubrication and Surface 

Treatments, Engineering Tribology, Buterworth-Heinemann, USA. 

Su, Y.L. and Kao, W.H., 2003. Tribological behavior and wear mechanism of 

MoS2–Cr coatings sliding against various counterbody, Tribology 

International 36, 11. 

Sumitomo, T., Aizawa, T., Yamamoto, S., 2005. In-situ formation of self-

lubricating tribo-films for dry machinability, Surface & Coatings 

Technology, 200, 1797-1803. 

Waghray, H., Lee, T., Tatarchuk, B.J., 1995. A study of the tribological and 

electrical properties of sputtered and burnished transition metal 

dichalcogenide films, Surface and Coatings Technology 76-77, 415-

420. 



 54

APPENDIX A 

 
Figure A.1: Wear scar of pure Re coating at room temperature fretting test against 

alumina
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Figure A.2: Wear scar of pure Re coating at 50°C fretting test against alumina 

 
Figure A.3: Wear scar of pure Re coating at 100°C fretting test against alumina 
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Figure A.4: Wear scar of pure Re coating at 150°C fretting test against alumina 

 
Figure A.5: Wear scar of W-Re coating at room temperature fretting test against 

alumina 
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Figure A.6: Wear scar of pure Re coating at 50°C fretting test against alumina 

 
Figure A.7: Wear scar of pure Re coating at 100°C fretting test against alumina 
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Figure A.8: Wear scar of pure Re coating at 150°C fretting test against alumina 
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