

EGE ÜNĐVERSĐTESĐ FEN BĐLĐMLER Đ ENSTĐTÜSÜ

(YÜKSEK L ĐSANS TEZĐ)

GSM’DE FREKANS PLANLAMA YÖNTEMLER Đ VE
HÜCRELERE FREKANS ATAMASI YAPACAK
PLANLAMA YAZILIMI GERÇEKLE ŞTĐRĐMĐ

Serkan KAYACAN
Bilgisayar Mühendisliği Anabilim Dalı

Bilim Dalı Kodu : 619.01.00
Sunuş Tarihi : 21.09.2007

Tez Danışmanı : Prof. Dr. Levent TOKER

Bornova - ĐZM ĐR

III

Serkan KAYACAN tarafından yüksek lisans tezi olarak sunulan

“GSM’de Frekans Planlama Yöntemleri ve Hücrelere Frekans

Ataması Yapacak Planlama Yazılımı Gerçekleştirimi ” başlıklı bu

çalışma E.Ü. Lisansüstü Eğitim ve Öğretim Yönetmeliği ile E.Ü. Fen

Bilimleri Enstitüsü Eğitim ve Öğretim Yönergesi’nin ilgili hükümleri

uyarınca tarafımızdan değerlendirilerek savunmaya değer bulunmuş ve

21/09/2007 tarihinde yapılan tez savunma sınavında aday

oybirliği/oyçokluğu ile başarılı bulunmuştur.

Jüri Üyeleri: Đmza

Jüri Başkanı : Prof. Dr. Levent TOKER

Raportör Üye : Prof. Dr. Serdar KORUKOĞLU

Üye :Yrd. Doç. Dr. Radosveta SOKULLU

V

ÖZET

GSM’DE FREKANS PLANLAMA YÖNTEMLER Đ VE
HÜCRELERE FREKANS ATAMASI YAPACAK
PLANLAMA YAZILIMI GERÇEKLE ŞTĐRĐMĐ

KAYACAN, Serkan

Yüksek Lisans Tezi, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Levent TOKER

Eylül 2007, 250 sayfa

Çok sayıda abonenin bulunduğu GSM şebekelerinde, mobil telefon
servislerinin kullanımının artması ve bunun yanında ses ve görüntü
içeren yeni servislerin de gelmesiyle birlikte operatörler bu trafiği
karşılayabilmek için ağ kapasitesini arttırmak zorunda kalırlar.
Kapasiteyi arttırmak için yeni hücreler eklenebilir ya da mevcut makro
hücreler bölünebilir. Bunun yanında operatörler gelişmiş ağ özelliklerini
kullanarak frekans tekrar kullanım faktörünü azaltırlar. Spektrumun
limitli olmasından ve donanımsal kısıtlardan dolayı mevcut makro
hücrelerde kapasite artırımının konuşma kalitesinde kötüleşmeye neden
olması kaçınılmazdır. Kaliteyi korumak için makro hücrelerin mikro
hücrelere bölünmesiyle aynı alana daha çok hücre ile servis verilecektir.
Bu durumda frekans planlama önem kazanacaktır.

 Bu tez çalışmasında, mobil ölçümlere dayalı frekans planlaması
yapan bir yazılım gerçeklenmiştir.

Anahtar Sözcükler: GSM şebekesi, hücresel ağ, hücre planlama, frekans
planlama, ICDM, frekans atama yazılımı.

VII

ABSTRACT

FREQUENCY PLANNING METHODS IN GSM AND
IMPLEMENTATION OF FREQUENCY ALLOCATION TO

CELLS

KAYACAN, Serkan

MSc in Computer Engineering

Supervisor: Prof. Dr. Levent TOKER

September 2007, 250 pages

The large number of subscribers in the network and the increasing
usage of existing mobile telephony services together with upcoming new
services, such as video and audio streaming, will force operators to
significantly increase capacity offered by the network. Sectorisation and
cell splitting are two standard methods to increase capacity from
macrocells. Often operators also utilise advanced network features to
reduce the frequency reuse factor and thus further increase network
capacity of macro cells. Owing to the limited spectrum and because of
HW constraints regarding channel separation required on a cell or a site
basis, providing additional capacity from existing macro cells is often
impossible without degrading call quality. Therefore, network operators
also have to use alternative cell types such as micro cells to meet capacity
requirements. The reduced cell sizes also create new challenges. The
main challenge is frequency planning.

In this thesis, a software is implemented for mobile measurement-
based frequency planning.

Keywords: GSM network, cellular network, cell planning, frequency
planning, ICDM, frequency allocation software.

IX

TEŞEKKÜR

 Bu çalışmam süresince her türlü desteği sağlayan çok değerli
danışmanım Sayın Prof. Dr. Levent Toker’e teşekkürü bir borç bilirim.

 Çalışmam sırasında desteklerini hiç bir zaman esirgemeyen
aileme, çalışma arkadaşlarım Mehmet Kurutepe, Kamil Solmaz ve Ülgen
Ünal’a, arkadaşlarım Đnanç Seylan ve Simge Aksu’ya teşekkür ederim.

XI

ĐÇĐNDEKĐLER

ÖZET...V

ABSTRACT ..VII

TEŞEKKÜR .. IX

ĐÇĐNDEKĐLER..XI

ŞEKĐLLER DĐZĐNĐ ...XV

ÇĐZELGELER DĐZĐNĐ..XVIII

KISALTMALAR...XIX

1 GSM'E GĐRĐŞ... 1

1.1 GSM'in Tarihçesi .. 1

1.2 GSM Sistem Standartları... 3

1.3 Erişim Metodu... 3

1.4 Modülasyon... 4

1.5 GSM'in Avantajları ... 4

2 SĐSTEME GENEL BĐR BAKIŞ... 5

2.1 Hücresel Ağ... 5

2.1.1 Hücresel Yapı... 5
2.1.2 Ağ Planlaması .. 7

2.1.2.1 Hücreleri Ayırma ve Mikro Hücre Uygulaması 7
2.1.2.2 Sektörel Hücreler ... 9
2.1.2.3 Şemsiye Hücreler... 9

2.2 GSM Şebekesi... 11

2.2.1 Hücreler.. 13
2.2.2 Mobil Đstasyon Terminal Cihazı (MS - Mobile Station) 13
2.2.3 Abone Kimlik Modülü (SIM - Subscriber Identity Module)
 .. 13
2.2.4 Baz Alıcı - Verici Đstasyonu (BTS - Base Transceiver Station)
 .. 14

XII

2.2.5 Baz Đstasyon Denetleyicisi (BSC - Base Station Controller)
 ..14
2.2.6 Mobil Servisler Anahtarlama Merkezi (MSC - Mobile Services
Switching Center) ...14
2.2.7 Geçit Mobil Servisler Anahtarlama Merkezi (GMSC - Gateway
Mobile Services Switching Center) ..15
2.2.8 Đşletme ve Bakım Merkezi (OMC - Operation and Maintenance
Center) ..15
2.2.9 Dahili Yer Kaydedicisi (HLR - Home Location Register) .16
2.2.10 Ziyaretçi Yer Kaydedicisi (VLR - Visitor Location Register)
 ...17
2.2.11 Cihaz Kimlik Kaydedicisi (EIR - Equipment Identity
Register) ...18
2.2.12 Doğrulama Merkezi (AUC - Authentication Center)......18

2.3 Coğrafi Ağ Yapısı..19

2.3.1 Ağ Bölgesi ve GMSC ...19
2.3.2 MSC/VLR Servis Bölgesi...20
2.3.3 Yerleşim Bölgesi (LA – Location Area).............................20
2.3.4 Hücre ..21

2.4 Kaydetme...23

2.5 Arama Kurulumu...25

2.6 Aktarma (Handover/Handoff) ...27

2.7 Güvenlik Parametreleri..31

2.7.1 Doğrulama (Authentication)...31
2.7.2 Şifreleme...32

3 SAYISAL RADYO TRANSMĐSYONU..34

3.1 Zaman Bölmeli Çoklu Erişim (TDMA - Time Division Multiple
Access) ...35

3.2 Transmisyon Problemleri ..36

3.2.1 Yol Kaybı..36
3.2.2 Zayıflama..36

3.2.2.1 Log-Normal Zayıflama ..36
3.2.2.2 Rayleigh Zayıflaması ...37
3.2.2.3 Toplam Zayıflayan Sinyal..39

3.2.3 Zaman Ayrılması ..40
3.2.4 Zaman Ayarlaması..42

XIII

3.3 Transmisyon Problemlerine Çözümler...................................... 43

3.3.1 Analog Sinyaller ve Sayısal Transmisyon Đlkeleri 44
3.3.2 Konuşma Kodlama... 48
3.3.3 Kanal Kodlama... 51
3.3.4 Araya Yerleştirme (Interleaving) 54
3.3.5 Đkinci Seviye Araya Yerleştirme .. 56
3.3.6 Modülasyon.. 57
3.3.7 Anten (Uzay) Farklılığı .. 58
3.3.8 Frekans Atlaması (Frequency Hopping) 58
3.3.9 Dengeleyici (Equalizer).. 59

3.4 Sayısal Transmisyon Probleminin Özet Çözümü...................... 61

4 SAYISAL RADYO (HAVA) ARAYÜZÜ 62

4.1 Kanal Kavramı .. 62

4.1.1 Kontrol Kanalları.. 64
4.1.1.1 Yayın Kanalları (BCH).. 64
4.1.1.2 Ortak Kontrol Kanalları (CCCH)............................... 65
4.1.1.3 Tahsis Edilmiş Kontrol Kanalları 66

4.1.2 Trafik Kanalları (TCH) .. 67

5 HÜCRE PLANLAMA ... 68

5.1 Hücreler... 68

5.2 Hücre Planlama Adımları.. 70

5.2.1 Trafik ve Kapsama Analizi... 71
5.2.2 Nominal Hücre Planı.. 72
5.2.3 Saha Đncelemeleri ... 72
5.2.4 Sistem Tasarımı.. 73
5.2.5 Sistem Gerçekleştirimi ... 73
5.2.6 Sistemin Düzenlenmesi .. 73

5.3 Trafik Kavramı.. 74

5.4 Kanal Kullanımı .. 79

5.5 Frekans Planlama Yöntemleri ... 80

5.5.1 Frekans Planlama Metodu Seçimi...................................... 83
5.5.2 Ayrık Frekans Dizilimi... 86
5.5.3 Sürekli Frekans Dizilimi .. 87
5.5.4 MRP (Multiple Reuse Pattern)... 87

XIV

6 HÜCRELERE FREKANS ATAMA UYGULAMASI91

6.1 Giriş ...91

6.2 Mobil Ölçümlere Dayalı Frekans Planlama92

6.2.1 BA List (BCCH Allocation List) ..93
6.2.2 ICDM (Inter Cell Dependency Matrix)93

6.3 Frekans Atama Yazılımı..94

6.3.1 Frekans Atama Yazılımının Çalışma Sonuçları..................103
6.3.2 Frekans Atama Sonuçlarının Değerlendirilmesi.................109
6.3.3 Frekans Atama Yazılımının Kullanımı...............................110

EK 1 FREKANS ATAMA YAZILIMININ KAYNAK KODU112

KAYNAKLAR D ĐZĐNĐ ...249

ÖZGEÇMĐŞ ...250

XV

ŞEKĐLLER D ĐZĐNĐ

Şekil 2.1 - Aynı frekanslara sahip olamayan komşu hücreler 6

Şekil 2.2 - Hücreleri ayırma (Ericsson, 1998c) ... 8

Şekil 2.3 - Sektörel Hücreler ... 9

Şekil 2.4 - Şemsiye Hücreler (Ericsson, 1998b).. 10

Şekil 2.5 - GSM Şebekesi Sistem Modeli (Ericsson, 1998a) 11

Şekil 2.6 - GSM/PLMN ağı ve diğer yerel ağlar arasındaki linkler 19

Şekil 2.7 - Ericsson MSC/VLR Servis Alanları .. 20

Şekil 2.8 - Bir MSC/VLR servis alanının yerleşim bölgelerine bölümü 21

Şekil 2.9 - Bir MSC/VLR servis alanının yerleşim bölgelerine ve hücrelere
bölümü... 22

Şekil 2.10 - GSM’deki alanlar arası ilişki ... 22

Şekil 2.11 - Şebekedeki kaydetme prosedürü.. 24

Şekil 2.12 - Mobil çıkışlı arama kurulumu prosedürü....................................... 27

Şekil 2.13 - BTS’ler arası aktarma (Harputluoğlu, 2000).................................. 29

Şekil 2.14 - MSC’ler arası aktarma (Harputluoğlu, 2000) 30

Şekil 2.15 - Doğrulama Đlkesi.. 31

Şekil 2.16 - Şifreleme anahtarı Kc’nin hesabı ... 32

Şekil 2.17 - Şifrelemenin başlatılması ve yapılması.. 33

Şekil 3.1 - Girişen sinyal ... 34

Şekil 3.2 - (A). FDMA (B). TDMA... 35

Şekil 3.3 - Log-normal zayıflama.. 37

Şekil 3.4 - Rayleigh zayıflaması.. 38

Şekil 3.5 - Mesafe ile Rx sinyal gücü ilişkisi .. 39

Şekil 3.6 - Rx sinyal gücü.. 40

Şekil 3.7 - Zaman ayrılması... 41

Şekil 3.8 - Sinyal işleme blokları (Harputluoğlu, 2000).................................... 43

Şekil 3.9 - Analog bir işaretin örneklenmesi ... 45

Şekil 3.10 - Düzgün kuantalama.. 46

XVI

Şekil 3.11 - Bir PCM hatta 32 kanalın çoklanması..47

Şekil 3.12 - 32 zaman aralıklı bir çerçeve..48

Şekil 3.13 - Đnsanda konuşma sistemi ..49

Şekil 3.14 - Konuşma transmisyon modeli ..50

Şekil 3.15 - Konuşma kalitesi bit oranı ilişkisi ..50

Şekil 3.16 - Blok kodlama..51

Şekil 3.17 - Katlamalı kodlama..52

Şekil 3.18 - GSM 'de kanal kodlama..53

Şekil 3.19 - Araya yerleştirme ...54

Şekil 3.20 - Alınmış, tekrar elde edilmiş mesaj blokları....................................55

Şekil 3.21 - Kodlanmış konuşmanın 20 ms araya yerleştirilmesi55

Şekil 3.22 - Konuşma çerçevesi ...56

Şekil 3.23 - Normal burst ...56

Şekil 3.24 - Đkinci seviye araya yerleştirme ...57

Şekil 3.25 - Anten farklılığı ...58

Şekil 3.26 - C1 ve C2 frekansları arasında frekans atlaması................................59

Şekil 3.27 - Viterbi dengeleyici ...60

Şekil 4.1 - Bir radyo kanalı üzerindeki yukarı ve aşağı link62

Şekil 4.2 - TDMA kanal kavramı...63

Şekil 4.3 - Mantıksal kanallar ..64

Şekil 5.1 - Hücre şekilleri (Mishra, 2004)..69

Şekil 5.2 - Dairesel ve sektörel hücreler (Ericsson, 1998c)70

Şekil 5.3 - Hücre planlama adımları (Ericsson, 1998d)71

Şekil 5.4 - Erlang B Tablosunun bir bölümü (Ericsson, 1998d)75

Şekil 5.5 - Bir çağrının iki farklı kanaldan geçmesi (Ericsson, 1998b).............78

Şekil 5.6 - Erlang B Tablosunun bir bölümü (GoS : %2, Trafik: 33 E) (Ericsson,
1998d) ..79

Şekil 5.7 - Bir hücrenin küçük hücrelere bölünmesi sonucu oluşan trafik
dağılımı (Ericsson, 1998b)...80

Şekil 5.8 - Frekans planlama metodu önerileri (Ericsson, 1998e)84

XVII

Şekil 5.9 - TCH frekans sayısı ve tekrar kullanıma göre spektrum kullanımı
(Ericsson, 1998e) ... 85

Şekil 5.10 - MRP yapıları .. 88

Şekil 6.1 - Geliştirilen yazılımın işleyiş biçimi ... 99

Şekil 6.2 - Hücrelerin kalite değerlerindeki iyileşme 109

Şekil 6.3 - Frekans atama yazılımı ekran görüntüsü.. 111

XVIII

ÇĐZELGELER D ĐZĐNĐ

Çizelge 6.1 - Hücre tablosu..95

Çizelge 6.2 - ICDM tablosu ...96

Çizelge 6.3 - Önceliklendirilmiş hücre tablosu..97

Çizelge 6.4 - Oluşturulan sonuç plan ...98

Çizelge 6.5 - Hücrelere göre taşıyıcı kanalların maliyet değerleri...................100

Çizelge 6.6 - Oluşturulan sonuç planının toplam maliyeti...............................102

XIX

KISALTMALAR

ARQ Automatic Repeat Request

AUC Authentication Center

BCCH Broadcast Control Channel

BER Bit Error Rate

BSC Base Station Controller

BSIC Base Station Identity Code

BSS Base Station System

BTS Base Transceiver Station

CDD Cell Design Data

CEPT Conferance of European Posts and Telgraphs

CGI Cell Global Identity

EIR Equipment Identity Register

FDMA Frequency Division Multiple Access

FLP Fractional Load Planning

GMSC Gateway Mobile Services Switching Center

GMSK Gaussian Minimum Shift Keying

GoS Grade of Service

GSM Global System For Mobile Communications

HLR Home Location Register

HSN Hopping Sequence Number

ICDM Inter Cell Dependency Matrix

IMEI International Mobile Equipment Identity

IMSI International Mobile Subscriber Number

ISI Inter Symbol Interference

LA Location Area

LAI Location Area Identity

XX

MAIO Mobile Allocation Index Offset

MCC Mobile Country Code

MNC Mobile Network Code

MOC Mobile Originated Call

MoU Memorandum of Understanding

MRP Multiple Reuse Pattern

MS Mobile Station

MSC Mobile Services Switching Center

MSIC Mobile Subscriber Identification Number

MTC Mobile Terminated Call

OMC Operation and Maintenance Center

PCM Pulse Code Modulation

PIN Personal Identification Number

PUK Personal Unblocking Key

SDCCH Stand Alone Dedicated Control Channel

SIM Subscriber Identity Module

SRES Signed Response

SS Switching System

TCH Traffic Channel

TDMA Time Division Multiple Access

TMSI Temporary Mobile Subscriber Identity

TRU Transceiver Unit

TS Time Slot

VLR Visitor Location Register

1

1 GSM'E GĐRĐŞ

 GSM (Global System For Mobile Communications - Küresel
Mobil Đletişim Sistemi), son yirmi yılda hızla gelişmiş olan ve çok talep
gören bir iletişim teknolojisidir. Küreselleşme sürecine giren dünyamızda
bu süreci en çok hızlandıran etken iletişim teknolojileri olmuştur ve
bunda GSM' in payı büyüktür.

1.1 GSM'in Tarihçesi

GSM'in tarihi 1982'de Nordic PTT'sinin Avrupa Posta ve Telgraf
Konferansına (CEPT - Conferance of European Posts and Telgraphs) 900
Mhz'de Avrupa'yı kapsayan genel bir telekomünikasyon servisi
kurulması teklifi ile başlamıştır. Daha sonra Mobil Uzmanlık Grubu
(Group Special Mobile) adı altında bir çalışma grubu oluşturulmuştur.
Konferans sırasında oluşturulan bu çalışma grubunun amacı, Avrupa
çapında, 900 Mhz aralığında işleyecek olan, kamuya açık bir hücresel
iletişim sistemi oluşturmak olmuştur (Ericsson, 1998c).

Hücresel telekomünikasyon, telekomünikasyon uygulamalarının en
hızlı gelişeni ve en çok talep görenidir. Tüm dünyada yeni telefon
aboneliklerindeki en büyük yüzde payı hücresel telekomünikasyon
uygulamalarındadır ve sürekli artmaktadır. Birçok hususta hücresel
çözümler, ticari kablo ağları ve kablosuz telefonlarla boy
ölçüşebilmektedir.

Sayısal radyo transmisyonu kullanımı ve GSM şebekelerdeki ileri
algoritmik iletişim, analog hücresel sistemlerden daha mükemmel bir
frekans kullanımı sağlar. Dolayısıyla sürekli artan abonelere daha iyi
hizmet sunulmuş olur. GSM genel bir standardı sağlamakla birlikte,
hücresel aboneler, telefonlarını ya da veri iletişim cihazlarını bütün GSM
servis alanı üzerinde kullanabileceklerdir. Bu haberleşme dolaşımı, GSM
sistemleri içeren ülkelerde ve bu ülkeler arasında otomatik olarak
gerçekleşir.

2

Uluslararası dolaşıma ek olarak, yüksek hızda veri haberleşmesi,
kopyalama ve kısa mesaj hizmetleri gibi kullanıcı servisleri sağlar.
GSM'in teknik standartları ISDN vb. diğer standartlarla uyum içinde
çalışabilecek şekilde hazırlanmıştır (Harputluoğlu, 2000).

1982–1985 yıllarında sayısal veya analog sistem kurulması
konusunda tartışmalar vardı. Görüşmeler sonrasında 1985'de sayısal
sistemde karar kılınmıştır. Bundan sonraki basamak ise dar bant çözümü
veya geniş bant çözümü seçme meselesi olmuştur. 1986'da Paris'te farklı
şirketlerin farklı çözümlerle boy ölçüşebilecekleri bir ortam oluşmuştur.
1987'nin Mayıs ayında dar bant TDMA (Time Division Multiple Access)
çözümünde ortak karara varılmıştır. Aynı zamanda 13 ülke, sistemin belli
kaidelerine ve özelliklerine uyacakları bir protokol imzalamışlardır (MoU
- Memorandum of Understanding). Dolayısı ile büyük bir potansiyel
piyasa ortaya çıkmıştır. Bu ülkeler anlaştıkları şekilde bir GSM sistemi
faaliyete geçirmek için 1 Temmuz 1991 tarihini belirlemişlerdir
(Ericsson, 1998c).

3

1.2 GSM Sistem Standartları

GSM Şebekeler için sistemin standartları;

Frekans Bandı Yukarı link: 890 Mhz - 915 Mhz
Aşağı link: 935 Mhz - 960 Mhz

Duplex Mesafe 45 Mhz

Taşıyıcı Ayrıştırması 200 Khz

Modülasyon GMSK

Transmisyon Oranı 270 kbit/sn

Erişim Metodu TDMA

Konuşma Kodlayıcısı RPE LPC 13 kbit/sn

Çeşitlilik Kanal kodlama
Araya yerleştirme
Adaptasyon dengeleme
Frekans atlaması

1.3 Eri şim Metodu

Sayısal GSM sistemi, her taşıyıcının sekiz zaman aralığına
bölündüğü Zaman Bölmeli Çoklu Erişim Metodu (TDMA) kullanır
(Ericsson, 1998a). Hareketli istasyon (Mobile Station) aynı zaman
aralığında gönderir ve alır. Bu demektir ki, aynı zamandaki sekiz
konuşma aynı radyo kanalında yer alabilir.

4

1.4 Modülasyon

Kullanılan modülasyon GMSK (Gaussian Minimum Shift Keying)
'dir.

1.5 GSM'in Avantajları

GSM ile oluşturulmak istenen özellikler şu maddeler ile verilebilir
(Ericsson, 1998a);

• Çok daha iyi konuşma kalitesi (eşit veya mevcut olan
analog hücresel teknolojiden daha iyi)

• Düşük terminal, işletim ve hizmet ücretleri

• Yüksek seviyede güvenlik

• Uluslararası dolaşım

• Düşük güçte çalışan portatif veya mobil terminal desteği

• Yeni hizmetlere ve şebekelere uyumluluk

5

2 SĐSTEME GENEL B ĐR BAKI Ş

2.1 Hücresel Ağ

 GSM, hücresel yapıya sahip bir iletişim sistemidir. GSM
sistemindeki tüm hücreler, hücresel ağı oluşturmaktadır. Genelde bir
hücre, anten sisteminden oluşan bir sektörün kapsama alanı olarak
tanımlanabilir. Bir baz istasyonu birkaç hücreye sahip olabilir.

2.1.1 Hücresel Yapı

 Radyo frekans haberleşmesinin ilk zamanlarında mühendisler
alıcı ve verici arasında bir hat oluşturduklarında oldukça sevinmişlerdi.
Đlk hatlar iki yönlü iletişim için değildi. Bunlar tek-yön gönderme hatları
olarak kaldılar ve mobilleri arayan insanlar hemen cevap alamazlardı.
Hatta aramalarının mobil adreslere ulaşıp ulaşmadığını dahi hemen
anlayamazlardı. Bundan sonraki basamak çift-yönlü, hemen cevap
alınabilen bir transmisyon hattı kurmak oldu. Bu da mobil vericilerle
sağlandı, fakat şebeke yapısı kolay kullanıma uygun değildi ve hizmet
belli bir alan ile sınırlı idi. Bu alana, bir verici ile veya tek bir bölgede
farklı kanallarda çalışan vericilerin küçük bir koleksiyonu ile ulaşmak
mümkündü. Şebekenin tanıdığı bu alanlara “Hücre” denildi. Hücrenin
veya şebekenin ebadı verici gücü ile ilgili idi. Hücredeki alıcı ve
vericinin frekansını seçmek çok önemliydi. Çünkü diğer sistemlerden
girişime çok müsaitti (Ericsson, 1998a).

Günümüz perspektifinden bakılırsa bu dezavantajlar açıkça kendini
gösteriyor. Büyük bir bölge için küçük bir frekans grubu kullanılıyordu.
Bütün bu problemlere çözüm arandı. Sonraları, frekans bandının ayrılıp
birçok hücreler arasında bir hücreye tahsis edilmesi önerildi. Hücreler de
birbirine bitişik ve bir arada olacaklardı. Böylece hücre yapısı oluştu
(Şekil 2.1).

6

Şekil 2.1 - Aynı frekanslara sahip olamayan komşu hücreler

Bu projenin düzgün çalışması için bazı kısıtlamalar getirildi;

• Aynı kanalı kullanan farklı iki istasyon arasındaki girişimi
azaltmak için frekanslar belli hücrelere tahsis edildi.

• Farklı istasyonlar arası girişimi azaltmak için, bir tek hücre
içinde güç seviyeleri uygun bir şekilde ayarlandı. Bitişik
hücrelerin birbirlerine yönelik girişime sebep olmaması
için, güç sınırlı olmalıdır.

• Alıcı filtreleri geliştirildi. Günümüzde, bir mobil abone,
mobil cihazı ile hücre kapsama alanı içinde her yerden
arama gönderebilir ve arama alabilir.

Hücre şekli teoride altıgen olarak gösterilir ve bu yapay bir
gösterimdir. Baz istasyonu anteni tarafından yayılan sinyalin ideal
kapsaması ise dairesel olarak gösterilir. Ancak gerçekte bazı alanlar
çeşitli nedenlerle gerekli sinyal seviyesine sahip olamazlar. Bu sebeple
hücreler pratikte geometrik olmayan şekillere sahiptirler (Mishra, 2004).

7

2.1.2 Ağ Planlaması

Eğer Amerika’daki gibi nüfusun farklı bölgelerde farklı
yoğunluklarda olduğunu düşünürsek, her bölgede aynı büyüklükte hücre
oluşturmanın mantıklı bir şey olmadığını görürüz. Operatör açısından
olayı ele alalım: New York gibi büyük ve nüfusun yoğun olduğu bir
bölge ile nüfusun seyrek olduğu Hawaii adasına, aynı işlevleri benzer bir
ağ ile tedarik etmek mümkün değildir (Ericsson, 1998b). Bunun için ağ
ve hücre planlamada farklı tasarımlar geliştirilmi ştir.

2.1.2.1 Hücreleri Ayırma ve Mikro Hücre Uygulaması

Abone sayısı arttıkça şebeke içindeki yoğunluk da artmıştır.
Operatörler ve radyo mühendisleri kapasiteyi arttırma yoluna
gitmişlerdir. Oldukça temel bir fikir ortaya atılmıştır. Var olan alanı daha
küçük parçalara ayırmak, böylelikle var olan kanal sayısını katlayarak,
büyük hücreli eski duruma kıyasla, kapasiteyi çok daha yukarılara
çekerek abone yoğunluğunu karşılamaktır (Şekil 2.2).

8

Şekil 2.2 - Hücreleri ayırma (Ericsson, 1998c)

Bu basit proje boyunca, hücrelerde kullanılan güç seviyeleri düşük
tutulmuştur. Bundaki amaç ise mobil istasyonlar için gerekli olan pil
büyüklüğünü azaltmak olmuştur. Mobiller için gerekli olan güç miktarı
azalınca, mobillerin ebatları ve ağırlıkları da düşmüştür. Bu da şebekeleri
kullanıcılar açısından daha çekici hale getirmiştir.

9

2.1.2.2 Sektörel Hücreler

Her zaman dairesel hücre oluşturmanın bir anlamı yoktur.
Haberleşme mühendisleri hücreleri çok değişik şekillerde
tasarlamışlardır. Bunda dikkate alınan kriterler yayımlanan gücün belirli
bir bölge içinde sınırlandırılabilmesi ve komşu bölgelerden gelen gücün
bu belirli bölgelere alınmaması olmuştur. Burada anten tasarımının
önemi söz konusu olmuştur. Bu seçimli kapsama planının en genel olanı
“bölgelere dilimlenmiş hücre” dir. Burada kapsama alanı tipik 360
dereceden ziyade 120 dereceyle sınırlandırılmıştır (Şekil 2.3). Böyle
antenler genellikle tünel girişlerine, vadi kenarlarına ve gökdelenlerin
aralarına yerleştirilirler (Harputluoğlu, 2000).

Şekil 2.3 - Sektörel Hücreler

2.1.2.3 Şemsiye Hücreler

Hücre ayırma tekniği ilk uygulandığında, operatörler çok küçük
hücreler içinde bir transit geçişin farkına varmışlardır. Bu da farklı küçük
hücreler arasında çok büyük sayıda hücreden hücreye işaret geçişine
sebep olmuştur. Tabii ki bu istenmeyen bir durumdur. Bu daha çok
ortalama hızın çok yüksek olduğu Avrupa'da görülmüştür. Bunu

10

engellemek için şemsiye hücreler oluşturulmuştur (Şekil 2.4). Bir
şemsiye hücrede, altında bulunan mikro hücrelerin içinde yayımlanandan
daha yüksek seviyede güç yayımlanır (Ericsson, 1998b). En önemlisi ise
şemsiye hücrede yayımlanan gücün farklı frekans da olmasıdır. Böylece
mobil, yüksek bir hızla seyahat ederken, sistem tarafından “hızlı hareket
eden” olarak algılanacak ve şebeke içinde birçok kere farklı hücre
tarafından ele alınmaktan kurtulacaktır. Bu duruma ise şemsiye hücre el
atacaktır. Çünkü şemsiye hücre daha büyüktür ve mobil yüksek hızda
olsa bile bu şemsiyenin dışına hemen çıkamaz. Böyle yüksek hızda
seyreden bir mobil, yayılım karakteristiklerinden, çok sayıda farklı
hücreler veya sistem tarafından ele alınma talebinden fark edilir. Bu
hücrede mobil çok uzun bir zaman dilimi için kalabilir, böylelikle
şebekenin iş yükü azaltılmış olur.

Şekil 2.4 - Şemsiye Hücreler (Ericsson, 1998b)

11

2.2 GSM Şebekesi

GSM şebekesi temel olarak, Anahtarlama Sistemi (SS – Switching
System) ve Baz Đstasyon Sistemi (BSS - Base Station System) olmak
üzere iki bölüme ayrılır (Ericsson, 1998a).

Bunlardan her biri, bütün sistemin fonksiyonlarının
gerçekleştirildi ği bir takım fonksiyonel üniteler içerir. Bu fonksiyonel
üniteler, değişik donanım gereçleri ile gerçeklenirler (Şekil 2.5).

Şekil 2.5 - GSM Şebekesi Sistem Modeli (Ericsson, 1998a)

12

Anahtarlama Sistemi (SS) şu fonksiyonel üniteleri içerir;

• Mobil Servisler Anahtarlama Merkezi (MSC - Mobile
Services Switching Center)

• Ziyaretçi Yer Kaydedicisi (VLR - Visitor Location
Register)

• Dahili Yer Kaydedicisi (HLR - Home Location Register)

• Doğrulama Merkezi (AUC - Authentication Center)

• Cihaz Kimlik Kaydedicisi (EIR - Equipment Identity
Register)

Baz Đstasyon Sistemi (BSS) ise şu üniteleri içerir;

• Baz Alıcı - Verici Đstasyonu (BTS - Base Transceiver
Station)

• Baz Đstasyon Denetleyicisi (BSC - Base Station Controller)

13

2.2.1 Hücreler

Önceki bölümlerde belirtildiği gibi, sistem bitişik radyo hücreleri
ağı şeklinde tasarlanır ve bu hücreler birlikte tüm servis alanını kapsarlar.

2.2.2 Mobil Đstasyon Terminal Cihazı (MS - Mobile Station)

Hücresel şebekenin en çok bilinen ünitesi mobil istasyonlardır. Güç
ve uygulama açısından dikkate alınırsa farklı tipte mobil istasyonlar
mevcuttur. SIM ve mobil cihaz birlikte mobil istasyonu oluştururlar
(Ericsson, 1998c).

Sabit mobil istasyonlar, arabanın içine kalıcı olarak yerleştirilir ve
maksimum izin verilen RF çıkış gücü 20W'dır. Portatif üniteler (çanta
telefonları) 8W ve elle taşınabilir üniteler 2W'a kadar güç çıkarırlar.
1993'den bu yana üretilen mobiller ile GSM sistem daha cazip hale
gelmiştir. Elle taşınabilen üniteler, hacimce oldukça küçüktürler.

2.2.3 Abone Kimlik Modülü (SIM - Subscriber Identity
Module)

SIM, mobil aboneye bir kimlik tedarik eder. SIM olmadan, acil
aramalar hariç, mobil işlevini göremez. SIM, kredi kartı büyüklüğünde,
içinde kurulmuş çipi olan plastik bir karttır. “Smart Card” olarak da
adlandırılır. SIM kart, eğer mobil kullanılmak isteniyorsa mobil içine
yerleştirilmelidir. Elle taşınabilir cep telefonları için, kredi kartı
büyüklüğündeki SIM kartın yerine daha küçük olan “plug-in SIM“
geliştirilmi ştir. Belirli abone parametreleri SIM kartta yüklüdür. Bunlarla
beraber abone tarafından kullanılan kişisel veriler de kişisel telefon
numaraları gibi bu kart içindeki çipte mevcuttur. SIM kart aboneyi tanıtır
ve bir telefonu kişiselleştirdiğine göre, sadece SIM kartı alarak yurt
dışına çıkmak mümkündür. Bu durumda gidilen yerde bir mobil telefon
kiralayarak ve kişi kendi SIM kartını takarak, o cihazı kendi
numarasından telefon ediyormuş gibi kullanabilir. Mali yükümlülük,
kişinin bağlı olduğu numaraya ait olur. Aynı zamanda bu kişiye, kişinin
abone numarası çevrilerek de ulaşılabilir (Harputluoğlu, 2000).

14

Şebekeden alınan kısa mesajlar da bu kartta saklanır. Kartın
güvenliği için dört basamaklı bir şifre konulmuştur. Bu şifre PIN
(Personal Identification Number) olarak adlandırılır. PIN kartta yüklüdür
ve üç kere yanlış girilirse, kart kendini bloke eder. Bu durumda kart
ancak sekiz basamaklı bir şifre ile çözülebilir. Buna da PUK (Personal
Unblocking Key) denir ve PUK da kartta yüklüdür.

2.2.4 Baz Alıcı - Verici Đstasyonu (BTS - Base Transceiver
Station)

Her bir hücre bir grup radyo kanalını işleten Baz Alıcı - Verici
istasyonuna (BTS) sahiptir. Bu kanallar girişimi önlemek amacıyla
komşu hücrelerde kullanılan kanallardan farklı tasarlanmışlardır. BTS,
mobilin şebekeye arayüzüdür. Bir BTS genellikle hücrenin ortasına
yerleştirilir. BTS'den çıkan güç hücrenin gerçek boyutunu belirler. Bir
baz istasyon, her biri ayrı RF kanalı temsil eden alıcı-vericilere sahiptir
(Ericsson, 1998c).

2.2.5 Baz Đstasyon Denetleyicisi (BSC - Base Station
Controller)

Bir grup BTS, bir BSC ile kontrol edilir. Bu baz istasyonların sayısı
üreticiye bağlıdır ve birkaç onlar veya birkaç yüzler mertebelerinde
olabilir. Baz istasyon denetleyicisinin (BSC) en önemli görevleri arasında
güç kontrolü, frekans idaresi ve BTS'lerin kontrolü sayılabilir. BSC
donanımı, BTS gibi aynı bölgeye veya kendi başına bir bölgeye
yerleştirilebileceği gibi Mobil Servisler Anahtarlama Merkezinin (MSC)
bölgesine de yerleştirilebilir, BSC ve BTS, fonksiyonel olarak bir
bütündür, buna da Baz Đstasyon Sistemi veya Baz Đstasyon Alt Sistemi
(BSS - Base Station System) adı verilir (Harputluoğlu, 2000).

2.2.6 Mobil Servisler Anahtarlama Merkezi (MSC - Mobile
Services Switching Center)

Belli bir sayıda temel istasyon denetleyicisine (BSC) bir Mobil
Servisler Anahtarlama Merkezi (MSC) hizmet eder. MSC'ler PSTN,
ISDN, PLMN ve birçok özel şebekelerle yapılan karşılıklı görüşmeleri
kontrol ederler.

15

2.2.7 Geçit Mobil Servisler Anahtarlama Merkezi (GMSC -
Gateway Mobile Services Switching Center)

GMSC, hücresel ağın PSTN'e arayüzüdür. Eğer sabit ağdaki bir
abone herhangi bir GSM abonesini aramak isterse, PSTN aramayı
“Gateway” diye adlandırılan giriş yerine bağlar. Gateway, genellikle bir
MSC'de gerçeklenir ve bu MSC, GMSC - Gateway MSC olarak
adlandırılır (Harputluoğlu, 2000).

GMSC, herhangi bir MSC olabilir. GMSC, araştırılan mobil
istasyonun yerini bulacaktır. Sahip olduğu kayıtlarla sabit ağdan gelen
aramayı BSC ve BTS yoluyla mobil istasyona gönderir. GMSC bu
göndermeyi Dahili Yer Kaydedicisine (HLR) sorarak yapar. HLR,
GMSC'ye adresi bildirir ve GMSC aramayı, aranılan mobil istasyonun
bulunduğu MSC'ye yönlendirir. Arama, yönlendirilen MSC'ye
ulaştığında, Ziyaretçi Yer Kaydedicisi (VLR) mobil istasyonun nerede
olduğunu detayları ile bilecektir, çünkü VLR, HLR'dan gerekli verileri
almıştır. Böylece aramanın gönderildiği MSC, aramayı o tarafa doğru
anahtarlayacaktır.

Şebekenin boyutuna bağlı olarak, bir operatör, sabit şebekeye bir
arayüz kullanabilir. Bu da birkaç GMSC veya sadece bir GMSC
kullanarak olur. Eğer sabit şebekedeki trafik, GMSC'lerin tedarik
edebileceğinden daha fazla mesaj değişimi (exchange) gerektiriyorsa,
sabit şebekeye erişimi olmayan ek MSC'ler bir araya
konuşlandırılmalıdır. Eğer daha fazla mesaj değişimi gerektirmezse,
GMSC ile MSC aynıdır. Aralarındaki en önemli fark, MSC'nin HLR ile
ilgisinin olmaması, yani GMSC'nin HLR ile ilgisinin bulunmasıdır
(Ericsson, 1998a).

2.2.8 Đşletme ve Bakım Merkezi (OMC - Operation and
Maintenance Center)

OMC'nin hem (G)MSC'ye, hem de BSC'ye erişimi vardır.
Şebekeden gelen hata mesajlarını ele alır. BTS ve BSC'nin trafik yükünü
kontrol eder. OMC, BSC yoluyla BTS'i düzenler ve operatörün sisteme
bağlı parçaları kontrol edebilmesini sağlar. Hücreler küçüldükçe ve baz
istasyonlarının sayısı arttıkça, gelecekte bireysel istasyonları kontrol

16

etmek mümkün olmayacaktır. Bu olay alıcı-verici kalitesi dengesini
bozabilecektir, çünkü bu kontroller belli bir düzende sürekli
yapılmaktadır. Dolayısıyla uzaktan kontrollü, yerinde bakım olayını
sağlayan sistemler kurmak maliyeti düşürmek açısından önemlidir, fakat
sistem kalitesini de muhafaza etmelidir. Bu, BTS'deki “self-test”
fonksiyonları ile desteklenir (Ericsson, 1998a). Bu özelliklerin sisteme
sağlanması üreticiyle alakalıdır.

2.2.9 Dahili Yer Kaydedicisi (HLR - Home Location Register)

Yukarıda bahsedilen üniteler, mobil ile sabit bir ağ abonesi
arasındaki konuşma bağlantılarının geçtiği ünitelerdir. Eğer bir mobil
istasyona arama yapılması olayı söz konusu olmasaydı, daha fazla
donanıma ve teçhizata ihtiyacımız olmayacaktı. Esas problem MS ile
sonlandırılan bir görüşme yapılmak istendiğinde ortaya çıkmaktadır. Bu
durumda mobil istasyonun yeri önemlidir ve mobil istasyonun izini takip
edecek bir takım veri tabanlarına ihtiyaç vardır. Bu veri tabanlarından en
önemli olanı Dahili Yer Kaydedicisi’dir (HLR). Herhangi bir kişi bir
GSM operatöründen abonelik aldığında o operatörün HLR’ında
kaydedilir. HLR, ilgili (G)MSC bölgesine ait bütün abonelerin kullanıcı
veri ve kimlik bilgilerini saklar. Bunlar, bir kullanıcının Uluslararası
Mobil Abone Numarası (IMSI - International Mobile Subscriber
Number), doğrulama parametreleri ve abonenin kabul edilen bütünleyici
servisleri gibi kalıcı veriler ve bazı geçici verilerdir. SIM’deki geçici
veriler şunları içerirler;

• Abonenin o anda bulunduğu VLR

• Eğer abone yönlendirme seçerse gelen aramaların hangi
numaraya aktarılacağı

• Güvenlik ve şifreleme için gerekli bazı parametreler

IMSI, SIM kartta kalıcıdır ve GSM sistemde aboneyi tanımlayan
önemli bilgilerden biridir. IMSI’nin ilk üç basamağı Mobil Ülke Kodunu
(MCC - Mobile Country Code), daha sonraki iki basamak Mobil Şebeke
Kodunu (MNC - Mobile Network Code) tanımlar. On basamağa kadar
olabilen Mobil Abone Kimlik Numarası (MSIC – Mobile Subscriber
Identification Number), IMSI’yi tanımlar.

17

Örneğin IMSI: 262024542751010

Bu numara Almanya’dan bir aboneyi tanımlar (MCC=262), bu
abonenin aylık fatura ödemesini 02 numaralı operatöre ödediği
(MNC=02) anlaşılır. Abonenin şebeke kimlik numarası da
4542751010'dır (MSIC). Ancak PSTN'den ulaşılacak numara IMSI'den
tümüyle farklıdır ve 0172 alan kodu ile başlar ve 7 basamaklı abone
numarası ile devam eder.

2.2.10 Ziyaretçi Yer Kaydedicisi (VLR - Visitor Location
Register)

Ziyaretçi Yer Kaydedicisi (VLR), MSC bölgesinde yerleştirilen
bütün mobil istasyonlar hakkında bilgi içeren bir veri tabanıdır (Ericsson,
1998c). Mobil istasyon, yeni bir MSC bölgesine girer girmez o MSC'ye
bağlı olan VLR, HLR'dan mobil istasyon hakkında bilgi ister. Aynı
zamanda HLR, mobil istasyonun bulunduğu bölgenin hangi MSC olduğu
hakkında bilgilendirilecektir. Eğer mobil istasyon bir arama yapmak
isterse, VLR, her seferinde HLR'a sormadan aramanın sağlanması için
gereken tüm bilgileri elde edecektir. VLR, dağıtılmış HLR gibi
görülebilir. VLR, aynı zamanda MSC bölgesindeki mobil istasyonun yeri
hakkında tam bilgiye sahiptir. VLR, bütün mobillerin ilişkide oldukları
(G)MSC'ye yüklenen, konu ile ilgili verileri içerir. Kalıcı veri, HLR'da
bulunan veri ile aynı olup, geçici veri biraz farklılık gösterir. Örneğin
VLR, TMSI (Temporary Mobile Subscriber Identity - Geçici Mobil
Abone Kimliği) bilgisini saklar. Bu bilgi sınırlı zaman aralıkları içindir
ve hava arayüzü yoluyla IMSI'nin transmisyonunu önler.

VLR, arama olayının kurulumu esnasında doğrulama prosedürü
süresince aboneye özel veriler tedarik ederek (G)MSC'yi destekler. VLR,
belli bir abone için o abonenin HLR'ından veri alır. Abone verilerini
VLR'a yerleştirme HLR'daki veri trafiğini azaltır. Çünkü her seferinde
lazım olduğunda bu verilerin tekrar tekrar istenmesine gerek yoktur.
Aşağı yukarı birbirinin aynı olan bu verilerin hem HLR, hem de VLR'a
yüklenmesinin diğer sebebi her birinin farklı amaçlara hizmet etmesidir.
HLR, PSTN'den bir arama geliyor iken gerekli abone bilgilerini
GMSC'ye tedarik etmelidir. VLR, tam zıt bir işlevi yerine getirir, yani bir
mobil istasyondan arama geliyor iken gerekli abone bilgilerini ev sahibi

18

GMSC'ye tedarik eder. Sonuçta hem HLR hem de VLR, GSM sisteminde
ki haberleşme akışı açısından çok önemli yerlere sahiptirler.

2.2.11 Cihaz Kimlik Kaydedicisi (EIR - Equipment Identity
Register)

Bilindiği gibi SIM ve mobil cihaz birlikte mobil istasyonu
oluştururlar. SIM’in bulunmadığı durumda mobil istasyon GSM
şebekesine acil haller dışında giriş alamaz. SIM kart, mobil cihazı
şebekeye tanıttığından ve başka mobil cihazlarda da
kullanılabileceğinden dolayı çalıntı mobil cihazların durumu ne olacak
diye akla soru gelebilir. Bunun için cihazın kendine özel donanım kimliği
içeren bir veri tabanına ihtiyaç duyulmuştur. Bu da cihaz kimlik
kaydedicisidir (EIR).

EIR'ın varlığı GSM sistemine güvenlik sağlar. EIR'da çalıntı
cihazlardan başka, donanımında bozukluk olan ve şebekede
kullanılmayan mobil cihazların seri numaraları vardır .

Uluslararası Mobil Cihaz Kimliği (IMEI - International Mobile
Equipment Identity), sadece belirli bir istasyonun seri numarası değildir.
Aynı zamanda üreticiyi ve üretilen ülkeyi de gösterir. Burada amaç her
kaydetme ve arama kurulumunda mobil istasyon kimliğinin kontrol
edilmesi, sonra IMEI'ye dayanarak mobil istasyonun sisteme erişimini
engellemek veya kabul etmektir. Örnek olarak şunu verebiliriz; herhangi
bir firmanın ürettiği cihaz, RF kalitesi gibi tavsiye edilen özelliklere
yeteri kadar uymuyorsa, bu mobil uyumsuz dalgalar üreteceğinden ve
girişime sebep olacağından yasaklanmış demektir ve bu cihaz şebekeden
reddedilir.

2.2.12 Doğrulama Merkezi (AUC - Authentication Center)

Doğrulama Merkezi (AUC), HLR ile ilişkilendirilmiştir. AUC,
mobil istasyonun doğrulama prosedürü esnasında HLR'a bazı
parametreler tedarik eder. AUC, belirli bir abone ile ilgili giri ş değerlerini
hesaplamak ve istenilen sonuçları HLR'a aktarmak için hangi algoritmayı
kullanacağını önceden bilir. Doğrulama prosedürleri ile ilgili algoritmalar

19

AUC’da yüklüdür ve herhangi bir andaki kötü kullanıma karşı
korunurlar.

2.3 Coğrafi A ğ Yapısı

Her telefon ağı, gelen aramaları uygun bir şekilde doğru santrallere
ve sonuçta aranılan aboneye ulaştıracak iyi bir yapıya sahip olmalıdır.
Eğer bu bir mobil ağ ise, tüm abonelerin hareketliliğinden dolayı bu yapı
çok daha fazla önem taşır. Bu açıdan ağ yapısının kurulumu ve işleyişi
doğru olmalıdır.

2.3.1 Ağ Bölgesi ve GMSC

Bir GSM/PLMN ağı ile diğer PSTN, ISDN ve PLMN ağları
arasındaki linkler, uluslararası veya ulusal transit santraller sayesinde
olacaktır (Şekil 2.6). Bir GSM/PLMN ağına gereken aramalar bir veya
daha fazla GMSC’ye gönderilir. Bu GMSC, GSM/PLMN için bir “giren
transit santral” gibi çalışır. Bir GSM/PLMN ağında tüm mobil
sonlandırmalı aramalar bir GMSC’ye iletilir (Ericsson, 1998a).

Şekil 2.6 - GSM/PLMN ağı ve diğer yerel ağlar arasındaki linkler

20

2.3.2 MSC/VLR Servis Bölgesi

Bir MSC bölgesi, tüm ağın tek bir MSC tarafından kaplanan
parçasını temsil eder. Bir mobil aboneye aramayı göndermek için,
abonenin bulunduğu alandaki MSC dikkate alınır (Harputluoğlu, 2000).

Servis bölgesi, MS'in bulunduğu ve MS'in kayıtlı olduğu VLR'ın
bulunduğu bölgedir. VLR, HLR'dan MS hakkında bilgi alır. Ericsson
firmasının ürettiği CME 20 sisteminde herhangi bir MSC bölgesi ile o
MSC'ye karşılık gelen servis bölgesi aynı bölgeyi temsil eder (Şekil 2.7).
Bir başka deyişle her bir MSC, bir VLR ile gerçeklenir (Ericsson, 1998c).
Bu gerçekleme üretici firmaya göre değişir, verilen örnek Ericsson
içindir.

Şekil 2.7 - Ericsson MSC/VLR Servis Alanları

2.3.3 Yerleşim Bölgesi (LA – Location Area)

Her MSC/VLR servis bölgesi birkaç yerleşim bölgesine ayrılmıştır
(Şekil 2.8). Yerleşim bölgesi (LA), MSC/VLR servis bölgesinin bir
parçasıdır ve mobil istasyonun bu alanda serbestçe gezmesi yerleşim
bölgesindeki MSC/VLR kontrolündeki yer bilgisini değiştirmez. Bir
yerleşim bölgesi, abonenin bulunması için arama mesajının yayımlandığı
bölgedir. Yerleşim bölgesi, birkaç hücreye sahip olabilir ve bir veya daha
fazla BSC'ye bağlıdır. Fakat sadece bir MSC/VLR'a sahiptir. Yerleşim

21

bölgesi, sistem tarafından Yerleşim Bölgesi Kimliği (LAI - Location
Area Identity) kullanarak tanınır. Sistem aktif durumdaki aboneyi aramak
için kullanır.

Şekil 2.8 - Bir MSC/VLR servis alanının yerleşim bölgelerine bölümü

2.3.4 Hücre

Bir LA, belli sayıda hücreden oluşur (Şekil 2.9). Hücreler,
şebekenin Hücre Küresel Kimliği (CGI - Cell Global Identity) ile tanıdığı
bölgelerdir. MS, Baz Đstasyon Kimlik Kodu (BSIC - Base Station Identity
Code) vasıtasıyla, aynı taşıyıcı frekansları kullanan hücreleri ayırt eder
(Ericsson, 1998b).

22

Şekil 2.9 - Bir MSC/VLR servis alanının yerleşim bölgelerine ve hücrelere bölümü

Özet olarak, coğrafi yapıyı Şekil 2.10’daki biçimde düşünebiliriz;

Şekil 2.10 - GSM’deki alanlar arası ilişki

23

2.4 Kaydetme

Mobil istasyon açıldıktan sonra, çok kısa bir zamanda, şebekenin
varlığını fark etmek için belirli bir tarama algoritması kullanarak bütün
GSM frekanslarını tarar. Şebeke fark edildiğinde, mobil istasyon ya
ilerideki sistem enformasyonunu okur ya da temel kanalı okur (Şekil
2.11).

24

Şekil 2.11 - Şebekedeki kaydetme prosedürü

25

 Bu enformasyonla, mobil istasyon şebekedeki o an ki pozisyonunu
belirtme olanağına sahip olur. Eğer mobil istasyonun yeri en son
kapatıldığı yer değilse, bir kaydetme prosedürü (registration procedure)
başlar. Şekil 2.11'de kaydetme prosedürü esnasında yapılması gerekenler
ve şebekedeki değişik cihazlar ile ilişkilerini tanımlar.

Đlk olarak mobil istasyon, şebekeden baz istasyon tarafından
belirtilecek bir kanal talep eder. Sonra BSC üzerinden BTS'deki bir kanal
aktif hale getirilmeye çalışılır, boş kanal olup olmadığı araştırılır ve varsa
bu BSC'ye bildirilir. Boş kanal varsa mobil istasyon alt yapıya
bağlanmıştır ve sistemden bölgenin kendisi için uygun hale getirilmesini
ister. Bu talep BSC'den (G)MSC'ye aktarılır ve bu arada herhangi bir
işlev almadan önce mobil istasyonun doğrulanması istenir. Doğru
parametrelerin alınması üzerine (G)MSC, mobili BSC ve BTS üzerinden
ve yeni bölgede kabul eder. Daha sonra (G)MSC yeni bölgeyi ve geçici
kimliği mobile belirtir (TMSI). Mobil istasyon da bunu tanımak
zorundadır. Prosedür bittiğinde kanal BSC'den BTS yoluyla açılır. Eğer
sistem hangi mobillerin sistemde mevcut olduğunu bilmek isterse, bu
kaydetme işlemi de o kadar başarıyla tamamlanır. Mobil istasyonlar,
kapatıldıklarında veya açıldıklarında şebekeyi haberdar ederler. Aslında
kaydetme prosedürü şebeke içindeki bilgi akışını limitler ve şebekede
sanal bir kontrol sağlar. HLR'ın bildiğini, GMSC zaten bilir ve mobil
istasyonun kapalı veya açık olma durumu şebekede genel bilgi halini alır.
Eğer bir kişi kapalı bir mobil istasyonu aramak isterse, GMSC hemen
aranılan mobilin mevcut olmadığını gösteren bir mesaj sinyali gönderir.
Böylelikle mobil istasyonu bölgede tarama olayı boşu boşuna yapılmamış
olur. Dolayısıyla sistem daha az meşgul edilmiş ve sistemin dinamik
enerjisinden tasarruf edilmiş olur (Harputluoğlu, 2000).

2.5 Arama Kurulumu

Aramanın kurulumundan (call establishment) önce, mobil istasyon
açık olmalı ve sisteme kaydedilmiş olmalıdır. Đki farklı prosedür vardır.
Bunlardan biri "mobil çıkışlı arama" (MOC - Mobile Originated Call),
diğeri ise "mobil sonlandırmalı arama" dır (MTC - Mobile Terminated
Call). Burada sadece mobil çıkışlı aramalardan bahsedilecektir. Mobil
sonlandırmalı arama işlemleri de bunun zıt yönünde benzer işlemler
olacaktır.

26

Mobil çıkışlı arama, GSM sistemde kullanılan işaretleşme hakkında
genel bir izlenim edindirecektir. Burada işaretleşmeden kastedilen mesaj
değişimidir. Gerçek bir arama başlamadan önce, şebeke ve mobil
istasyon arasında on dört farklı mesaj değişimi olur (Ericsson, 1998a).

Mevkiinin uygun hale getirilmesi prosedürüne (Location Update
Procedure) benzer bir prosedür ile mobil bir kanal talebi ile başlar.
Sistem tarafından kanal belirtilmesi yapılır. Mobil istasyon kanal isteme
sebebini sisteme haber verir. Prosedürün devam etmesine izin verilmeden
önce mobil kendi gerçekliğini tekrar kanıtlamak zorundadır. Şebeke bir
mesaj göndererek gizli dinleyicilere karşı koruma amacıyla mobil
istasyonun verilerini şifrelemesini ister. Şifreleme işi, mesajın sadece
mobil istasyonun ve BTS'in anlayacağı bir şekilde gönderilmesi
demektir. Sonra mobil aramak istediği numarayı gönderir. Arama devam
ederken, BSC, BTS yolu ile kullanıcı verilerinin aktarılacağı bir trafik
kanalı belirtir. Farklı tipteki mesajlar ve kullanıcı verileri farklı
kanallardan giderler. Şekil 2.12 de mobil çıkışlı arama prosedürü
görülmektedir.

Bazı kanallar sadece mesaj değişimi için, bazıları ise kullanıcı
verilerinin ele alınması içindirler. Aranılan nokta meşgul değilse mobil
işaretini (sinyalini) gönderir ve karşı taraf telefonu açtığında bağlantı
kurulmuş olur.

27

Şekil 2.12 - Mobil çıkışlı arama kurulumu prosedürü

2.6 Aktarma (Handover/Handoff)

Handover veya Handoff prosedürü, bir mobil istasyonun iki hücre
arasında geçiş yaparken konuşmanın devamı için bir araçtır. Bir arama,
hücre sınırı geçildiğinde veya mobil istasyon ile belirli bir baz istasyon
arasındaki mesafe çok arttığında düşer.

Hücresel bir şebekede, bir hücrenin komşu hücreleri vardır.
Böylelikle sistem, mobil istasyonun hangi hücreye geçebileceğini
saptayabilmektedir. Bir sonraki hücreyi saptayabilme metodu analog ve
sayısal sistemlerde farklılık gösterir. Bu farklılık “Handoff” ve
“Handover” sözcüklerinden tespit edilebilir. “Handoff” analog

28

sistemlerde kullanılmakta iken, “Handover„ ise GSM sisteminden
bahsedilirken kullanılır.

Analog sistemlerde, baz istasyon, mobil istasyon ile kendi
arasındaki bağlantı kalitesini gösterir. Baz istasyon, bağlantı kalitesinin
düştüğünü ve mobil istasyon ile kendi arasındaki mesafenin arttığını fark
ederse, komşu hücrelerden mobile olan güç seviyelerini rapor etmesini
ister. Mantıklı olanı, mobil için rapor edilen en yüksek güç seviyesi,
mobil istasyona en yakın hücrede tespit edilir. Daha sonra şebeke, baz
istasyonun yeni hücrede hangi frekans kanalını kullanacağına ve mobil
istasyonun hangi uygun frekansa senkron edileceğine karar verir. Son
olarak mobil istasyon kanal değişikli ği için şartlandırılır. Handoff
prosedüründe mobil istasyon oldukça pasif kalır. Bütün ölçümler ve
ölçümlerden sonra gelen işler baz istasyonlarda ve şebekede yapılır.
Hücre bölgeleri, kullanımda olan değişik kanallardaki farklı mobil
istasyonların güç seviyelerini ölçmek için ölçme alıcısı ile
donatılmışlardır (Harputluoğlu, 2000).

GSM sistemindeki durum farklıdır. Mobil istasyon sürekli komşu
hücrelerde algılanan güç seviyelerini göstermelidir. Baz istasyon mobil
istasyona güç ölçümlerini yapması için baz istasyonları kanallarının
listesini verir. Bu liste temel kanalda gönderilir. Bu temel kanal, mobil
açıldığında frekansın senkron olduğu kanaldır ve birinci kanaldır. Mobil
istasyon, kalite için, içinde bulunulan hücrenin güç seviyesi ölçümlerine
devam eder. Ayrıca bu ölçümler komşu hücrelerin güç seviyeleri için de
aynı şekilde yapılır. Ölçüm sonuçları periyodik olarak ölçüm raporuna
yerleştirilerek baz istasyona geri gönderilir. Baz istasyon, mobil istasyona
olan bağlantının gücü ve kalitesi üzerinde ölçüm yapıyor da olabilir. Eğer
ölçümler, bir aktarma yapılması gerektiğini gösteriyorsa, aktarma için en
uygun baz istasyonu daha önceden tespit edilmiş olduğundan hiç
gecikme olmadan bu aktarma gerçekleştirilerek sorun çözülür.

GSM sistemi farklı tipte aktarmalar seçer. Mobil istasyonun hangi
tipte bir hücre sınırını geçtiğine bağlı olarak, yeni hücrede, mevcut bir
kanal sağlamak için bu aktarma işinin kontrol edilmesi lazımdır. Eğer
aktarma bir BSC alanı içinde gerçekleştirilecekse, aktarma MSC'ye
başvurmadan BSC tarafından ele alınabilir. Bu şekilde bir aktarma
BTS'ler arası basit aktarma olarak adlandırılır (Şekil 2.13).

29

Şekil 2.13 - BTS’ler arası aktarma (Harputluoğlu, 2000)

Eğer mobil istasyon bir BSC sınırından geçiyorsa, bu durumda
konuşmada düzgün geçiş sağlanması için MSC bunu kontrol eder. Bu iki
farklı MSC arasındaki aktarma için de devam edebilir. MSC'ler arası
geçişteki tek fark, mobil ileride ikinci MSC tarafından ele alınsa da, ilk
MSC hala arama yönetiminin kontrolünü muhafaza eder (Şekil 2.14).

30

Şekil 2.14 - MSC’ler arası aktarma (Harputluoğlu, 2000)

Teorik olarak, iki ülkenin politik sınırları arasında aktarma yapmak
mümkündür. Bu özellik için herhangi bir teknik kısıtlama yoktur. Farklı
serbest dolaşım anlaşmalarından dolayı, hiç bir şekilde bir telefon
aramasını başlatmak mümkün değildir. Örneğin Almanya'dan Đsviçre'ye
geçince aboneler yeni yabancı şebekede kayıtlarını yaptırmak
zorundadırlar.

31

2.7 Güvenlik Parametreleri

2.7.1 Doğrulama (Authentication)

Doğrulama prosedürü abonelerin SIM kartlarının geçerliliğini
kontrol eder. Doğrulama, “A3” diye adlandırılan ve SIM kart ile
doğrulama merkezinde (AUC) yüklü olan bir doğrulama algoritmasına
dayanır (Şekil 2.15).

Şekil 2.15 - Doğrulama Đlkesi

A3 algoritması iki giriş parametresi kullanır; biri sadece şebekede
ve SIM kartta yüklü olan doğrulama anahtarıdır (Ki). Đkinci değer ise,
hava arayüzünde mobil istasyona gönderilen rastgele üretilmiş numaradır
(RAND - Random Generated Number). Mobil istasyon, A3 algoritması
için bir giriş değeri olan rastgele üretilmiş numarayı SIM'e geçer. Sonuç
olan SRES (Signed Response), mobil istasyondan hava arayüzü yoluyla
şebekeye gönderilir. Çünkü SRES değeri, doğrulama merkezinden
hesaplanan değerle şebekede karşılaştırılır. Doğrulama parametreleri
(RAND ve SRES), doğrulama merkezinin kullanımı için HLR ve VLR'da
saklıdır. Eğer HLR veya VLR'da bu parametreler tüketilirse doğrulama
merkezinden yenileri istenir. Tükenme durumu ise, her arama
kurulumunda veya kaydetmede bu parametrelerin ıskartaya çıkma
ihtimaline bağlıdır. Bu güvenlik özelliğinin bir önemli noktası, konu ile

32

ilgili bu parametrelerin (A3 ve Ki) güvenli yerlerde saklanması ve hava
arayüzü ile asla gönderilmemesidir (Ericsson, 1998a).

2.7.2 Şifreleme

Sayısal transmisyon verinin şifrelenmesi için uygundur. Çünkü bit
dizisi, hava arayüzünün iki tarafından da belirli bir metot ile
gönderilmektedir. GSM sistem, işareti ve kullanıcı verisini korumak için
böyle bir şifreleme metodu kullanır. Bir tarafta şifrelenen veri sadece
diğer tarafta deşifre edilebilir. “A5” diye adlandırılan şifreleme
algoritması veri dizisini şifreler ve orijinal veri dizisinin tekrar elde
edilmesi için aynı algoritma tekrar kullanılır.

Şifreleme fonksiyonlarını tasarlayan mühendisler, bu algoritmanın
gizli dinlemelere karşı çok iyi korunduğunu belirtmektedirler. Bu
algoritma “Kc” diye adlandırılan özel bir anahtar istiyor. Bu anahtar ise
şebeke tarafından verilen rastgele numaradan (RAND) hesaplanıyor.
Rastgele numara doğrulama prosedürü için kullanılan numaradır. Bu
hesaplama, RAND ile önceden bahsettiğimiz doğrulama anahtarı Ki'nin
A8 kodu ile adlandırılan bir algoritmaya tabi tutulmasıyla oluyor (Şekil
2.16).

Şekil 2.16 - Şifreleme anahtarı Kc’nin hesabı

33

A8 algoritması SIM kartta yüklü olarak bulunmaktadır. Mobil cihaz
A3 ve A8 hakkında hiçbir bilgiye sahip değildir. A8 algoritması ile
hesaplanan Kc, A5 algoritmasında yani veriyi şifreleme veya deşifre
etmede kullanılır (Şekil 2.17).

Şifreleme prosedürünün başlaması için, şebeke mobil istasyona
şifrelemenin başlatılması komutunu verir. Artık bundan sonra mobilden
şifrelenmiş olarak çıkan veri hava arayüzünden şebekeye iletilir ve
şebeke bu verileri deşifre ederek uygun ünitelere yönlendirir.

Şekil 2.17 - Şifrelemenin başlatılması ve yapılması

34

3 SAYISAL RADYO TRANSM ĐSYONU

Arabalarında seyahat eden herkes farkına varmıştır ki, seyahat
esnasında bir radyo yayını dinlerken alınan sinyal kalitesi zaman zaman
değişir. Örneğin bir tünele veya iki tepe arasına girerken olduğu gibi. Bu
etkiye gölgelenme (shadowing) adı verilir ve kablosuz dünyada
ilgilenilmesi gereken birçok can sıkıcı gerçeklerden biridir (Ericsson,
1998d).

Bu bölümde hücresel radyo ortamının temel problemleri ve
bunlarla ilgili bazı ölçümler ele alınacaktır. Ek olarak, en genel biçimde
sayısal haberleşme ilkeleri de anlatılacaktır.

Problemlerin çoğundaki en genel faktör, istenilen sinyalin çok zayıf
olmasıdır. Bu zayıflık, rastgele (ısıl) gürültü veya girişim (interference)
sinyalleri ile karşılaştırıldığında çok daha fazla önem kazanır. Böyle bir
sinyal, istenilen sinyalin alındığı kanal üzerinde gelen, istenmeyen sinyal
olarak tanımlanabilir. Örneğin bu sinyal, ilişkili olunan verici ile aynı
frekansta çalışan ve ona çok uzak olmayan bir başka vericiden karışan
sinyal olabilir (Şekil 3.1).

Şekil 3.1 - Girişen sinyal

Bu gerçeklere dayanarak denilebilir ki, bütün frekansların tekrar
tekrar kullanıldığı bir sistem olan hücresel sistem, gürültü değil
girişimden dolayı sınırlandırılır.

35

3.1 Zaman Bölmeli Çoklu Erişim (TDMA - Time Division
Multiple Access)

Sıradan radyo yayınlarında FDMA (Frequency Division Multiple
Access - Frekans Bölmeli Çoklu Erişim) metodu kullanılır. Böylelikle
her kanala belirli bir frekans bandı tahsis edilir. Eğer başka bir kanalı
dinlemek istiyorsanız alıcının frekansını başka kanala ayarlamalısınız. Bu
teknik, analog hücresel sistemlerde kullanılır. Şöyle ki; bir hücredeki her
arama bir frekans bandı kullanır. Eğer dubleks, yani iki yönlü arama ise
iki bant kullanılır. Belirli bir arama için belirli bir bant kullanıldığından,
bu frekans bandı başka bir arama için kullanılamayacaktır.

GSM'de TDMA tekniği kullanılmaktadır ve her frekans bandı için
sekiz zaman aralığı bulunur (Ericsson, 1998d). TDMA ve FDMA
arasındaki fark Şekil 3.2'de gösterilmiştir. (A)'da her konuşan mobile
tahsis edilmiş bir frekans bandı (taşıyıcı frekansı) ilkesi ile uygulanan
FDMA, (B)'de ise aynı frekans bandını kullanan sekiz zaman aralığında,
sekiz farklı mobilin konuşabileceği TDMA sistemi görülmektedir.

Şekil 3.2 - (A). FDMA (B). TDMA

Dikkat edilmelidir ki, şekillerde tek yön gösterilmiştir. Zıt yönde
ise buna uygun gelen frekanslar/zaman aralıkları olmalıdır.

36

3.2 Transmisyon Problemleri

3.2.1 Yol Kaybı

Yol kaybı, mobil istasyon ile baz istasyon arasındaki mesafe
artışıyla artar ve işaretin zayıflamasıdır. Alıcı (Rx) ve verici (Tx)
antenleri arasında engeller yoktur. Serbest uzay durumu için verilen bir
anten ile ilgili olarak, alınan güç yoğunluğunun Tx ve Rx antenleri
arasındaki “d” mesafesinin karesiyle ters orantılı olduğunu söylemek
mümkündür. Bir de alınan güç, transmisyon frekansı “f” in karesiyle de
ters orantılıdır. Uzay zayıflaması güç kaybı için sonuç olarak;

Ls ~ d2f2

Ls [dB] = 33,4 (dB) + 20 log (f Mhz) + 20 log (d km)

33,4 oranın bir sabiti olarak verilir.

Daha yüksek frekanslar daha fazla zayıflatmaya sebep olurlar. Đdeal
olmayan şartlarda bu zayıflama d 'nin dördüncü kuvveti ile gerçeklenir
(Ericsson, 1998b).

3.2.2 Zayıflama

3.2.2.1 Log-Normal Zayıflama

Aslında mobil cihazlar nadiren engellerin olmadığı ortamlarda
kullanılır. Çoğunlukla tepelerin ve binaların olduğu yerler iletim ortamı
durumunda olur. Bu da sinyalin gücünü zayıflatan gölgeleme etkisini
ortaya çıkarır. Yani sinyal yer yer zayıflayacaktır. Zayıflamadan dolayı
sinyal gücünde değişiklik meydana gelir. Minimum noktalara “zayıflama
dip noktaları„ denir. Gölgeleme etkilerinin meydana getirdiği bu
zayıflamaya “log-normal zayıflama„ denir ve sinyal gücünün
logaritmasını alırsak bu zayıflama ortalama değerin etrafında normal
dağılım gösterir (Şekil 3.3). Đki zayıflama dip noktaları arasındaki mesafe
tipik olarak 10–20 metredir.

37

Şekil 3.3 - Log-normal zayıflama

3.2.2.2 Rayleigh Zayıflaması

Mobil telefonların güncelliğinin her geçen gün artması dolayısıyla
nüfusun çok olduğu yerlerde abone sayısının yüksek olduğunu ve sürekli
artacağını kestirmek hiç de zor değildir. Mobillerin şehirlerde
kullanılması bozucu bir etki olan “çoklu yol” veya “Rayleigh
zayıflaması” olarak adlandırılır. Bu durum sinyalin Tx anteninden
çıktıktan sonra Rx antenine ulaşırken birden fazla yol almasıyla oluşur.
Đşaret sadece Tx anteninden çıktığı doğrultudan alınmaz, çıktığı noktadan
birçok farklı noktalara gider. Antenler arasında görüş hattı yoktur. Sinyal
birçok engellerden, örneğin binalardan, yansıyarak mobil istasyona ulaşır
(Şekil 3.4).

Bu da demektir ki, alınan sinyal, sadece fazı farklı ve biraz da
genliği farklı aynı sinyallerin toplamı olacaktır. Eğer sinyaller vektör
olarak toplanırsa sinyal gücü sıfıra düşecektir. Đki zayıflama dip noktası
arasında geçen zaman, hem transmisyon hızına hem de mobil hızına
bağlıdır.

38

Şekil 3.4 - Rayleigh zayıflaması

Rayleigh zayıflamasına göre iki dip nokta arasındaki mesafe dalga
boyunun yarısı kadardır. 900 MHz için bu mesafe 17 cm civarında
hesaplanır. Böylece, eğer 50 km/h hızla hareket eden bir mobil için iki
dip nokta arası zaman şöyle olacaktır;

V = 50 km/h = 13,89 m/s ≈ 14 m/s

λ = c / f = 3 x 10^8 / 900 x 10^6 = 0,3m

(λ / V) / 2 = 10,7 ms

V: hız λ : dalga boyu

1800 MHz için bu hesaplanan zaman yarıya düşer.

39

3.2.2.3 Toplam Zayıflayan Sinyal

BTS Tx anteninden uzaklaşıldığında mobil istasyonun Rx
anteninde muhtemel sinyal gücü gösterimi Şekil 3.5 ile verilmiştir.

Şekil 3.5 - Mesafe ile Rx sinyal gücü ilişkisi

Tx anteninden belirli bir d kadar mesafe uzaklıkta alınan sinyal
Şekil 3.6 'daki gibi olacaktır.

40

Şekil 3.6 - Rx sinyal gücü

Belirli bir çıkış için istenilen en küçük sinyal gücü değeri alıcının
duyarlılığı anlamındadır. Diyelim ki, Tx anteninden gönderilen bilginin
sezilebilmesi için X watt'lık bir güç almamız gereksin. Bu durumda
sinyal gücü X watt'ın altına düşerse bilgi kaybolacaktır. Dolayısıyla
sistemin sadece sinyal gücünün küresel ortalama değerine göre
planlanamayacağı çok açıktır. Zayıflamaya karşı önlemlerin alınması
gerekir ve “zayıflama aralığı” diye bir terim tanımlanır. Eğer kesintisiz
bir transmisyon yoluna sahip olmak istiyorsak, küresel ortalama değerin
alıcı duyarlılığının üzerinde olması gerekir. Şekil 3.6’dan da
görülebileceği gibi alıcı duyarlılığının seviyesi, en derin zayıflama dip
seviyesinin biraz altındadır. Bu durumda zayıflama aralığını küresel
ortalama değer ile alıcı duyarlılığı arasındaki fark olarak tanımlayabiliriz.

3.2.3 Zaman Ayrılması

Sayısal transmisyon zaman ayrılması olarak adlandırılan bir başka
problemi de beraberinde getirir. Bu problemin merkezinde, çoklu yol
zayıflamasına zıt olarak, Rx anteninden çok uzaktaki bir nesneden gelen
yansıyan işaretler vardır (Şekil 3.7).

41

Şekil 3.7 - Zaman ayrılması

Zaman ayrılması, simgeler arası girişim (ISI - Inter Symbol
Interference) olayına sebep olur. ISI, sonuç simgelerin birbirine
girişmesi ve alıcı tarafın hangi gerçek simgeyi sezeceğine karar
vermesinin zorlaşması anlamına gelir. Buna bir örnek Şekil 3.7'de
gösterilmiştir.

Eğer yansıyan sinyal direkt giden sinyalden tam olarak bir bit geç
giderse, bu durumda alıcı direk giden dalgadan “0” algıladığı gibi
yansıyan dalgadan da “1” algılar. “1” simgesi “0” simgesi ile girişir.

GSM'de hava arayüzünde net bit oranı 270 kbit/s 'dir (Ericsson,
1998a). Dolayısıyla bit zamanı 3,7µs'dir. Bir bit 1,1 km'ye karşılık
geldiğinden, eğer mobil istasyonun arkasında 1 km'den bir yansıma varsa
yansıyan sinyal direk giden sinyalden 2 km daha uzun yol alır. Bu da
istenilen sinyal ile istenilen sinyalden iki bit zamanı geç gelen bir
sinyalin karışması anlamına gelir.

42

3.2.4 Zaman Ayarlaması

TDMA kullanma, mobilin sadece tahsis edilen zaman aralığı
süresince sinyal göndermesi, diğer zamanlarda göndermemesi anlamına
gelir. Aksi takdirde diğer mobillerden yapılan aramalar, aynı taşıyıcı
üzerinde farklı zaman aralıklarında olduğundan karışacaktır. Örneğin
mobil, baz istasyonuna çok yakın olsun. Zaman dilimi 3 (TS3 - Time Slot
3) tahsis edilir ve arama için sadece bu zaman dilimi kullanılır. Arama
süresince mobil, baz istasyonundan uzaklaşır, böylelikle baz
istasyonundan gönderilenler mobile zaman geçtikçe daha geç ulaşmaya
başlar, dolayısıyla mobilden çıkan cevap da baz istasyona her zaman geç
ulaşır. Eğer bir şey yapılmazsa gecikme ileride daha da artacak ve
mobilin TS3 'de gönderdiği mesaj bilgisi ile baz istasyonun TS4' de aldığı
mesaj bilgisi üst üste çakışacaktır. Bu ise kesinlikle istenmeyen bir
durumdur.

43

3.3 Transmisyon Problemlerine Çözümler

Şekil 3.8 şematik olarak sinyal işleme bloklarını göstermektedir.

Şekil 3.8 - Sinyal işleme blokları (Harputluoğlu, 2000)

Sinyal işleme, mobil haberleşme sistemindeki en önemli
noktalardan biridir. Bu olay mobil cihazda ve şebeke kısmında
gerçekleşir.

44

Đlk olarak analog konuşma, A/D dönüştürücü (Analog/Sayısal
Dönüştürücü) ile sayısal hale getirilir. Daha sonra bit oranının azaltılması
için konuşma kodlayıcıya girmek üzere 20 ms'lik parçalara bölünür. Daha
sonraki basamak, kanal kodlama ve araya yerleştirme işlemleridir.
Konuşmanın şifrelenmesi ve burst formatlama (başlangıç ve bitiş
bitlerinin eklenmesi) işlemleri de gerçekleştirildikten sonra son basamak
olarak bit dizisinin bir taşıyıcı üzerine modüle edilmesi ve sinyalin
gönderilmesi işlemleri gerçekleştirilir. Alıcı tarafta da buna uygun
işlemler gerçekleşir. Mobil cihaz tarafı ile şebeke tarafındaki fark,
konuşmanın şebeke tarafında A/D veya D/A dönüşüme uğramamasıdır.
Eğer konuşma yerine veri gönderilmek isteniyorsa tabii ki mobil
tarafında A/D veya D/A dönüşüme gerek kalmayacaktır. Ayrıca verinin
konuşma kodlayıcısına da aktarılmasına gerek olmayacaktır. Veri
haberleşmesinde transmisyon hataları olma ihtimalleri çok olduğundan
kanal kodlama başka bir şekilde yapılacaktır.

3.3.1 Analog Sinyaller ve Sayısal Transmisyon Đlkeleri

Sayısal transmisyon temel olarak, birler ve sıfırlardan oluşan simge
serilerinin bir noktadan diğerine gönderilmesi anlamına gelir. Konuşma
analog, yani sürekli dalga olduğundan dolayı analog işaretin mümkün
olduğu kadar sayısal terimlerle ifade edilmesi gerekir. Bu PCM adı
verilen bir yöntem kullanılarak yapılır. PCM (Pulse Code Modulation),
darbe kod modülasyonudur ve telekomünikasyon sistemlerinde kullanılan
genel bir ilkedir. PCM üç aşamada gerçekleştirilir.

1. Örnekleme:

Analog işaretin örneklenmesi işaretin belirli zamanlarda ölçülmesi
anlamına gelir. Her değer örnek olarak adlandırılır ve ölçümler
tanımlanan belli zaman aralıklarında tekrarlanır (Şekil 3.9). Örnekleme
zamanı ise “Ts” dir.

45

Şekil 3.9 - Analog bir işaretin örneklenmesi

Đşaret ne kadar sık aralıklarla örneklenirse, sayısal olarak o kadar
iyi modellenir. Örnekleme teoremine göre kayıpsız olarak bir analog
işareti tekrar elde edebilmek için, örnekleme frekansının en az olması
gereken değer, analog sinyalin en yüksek frekanslı bileşeninin
frekansının iki katıdır.

Normal konuşma, 3 KHz'den düşük frekans bileşenlerini içerir.
Daha yüksek frekanslı bileşenlerin enerjileri düşük olduğundan konuşma
kalitesindeki etkileri ihmal edilebilir. Örnekleme teoremine göre, analog
konuşma işaretinin örnekleme frekansı “fs”, en az 2 x 3 KHz = 6 KHz
olmalıdır. Telekomünikasyon sistemlerinde örnekleme frekansı 8
KHz’dir.

2. Kuantalama:

Gönderilecek değerlerin sayısını kısıtlamak için genlik seviyesi
sonlu değerde seviye gruplarına bölünür. Belirli bir aralıktaki her örnek,
seviyelerden biri ile temsil edilir. Şekil 3.10'da analog işaretin GSM
sistemde kullanılan “düzgün kuantalama” ilkesi görülmektedir. Đki seviye
arasındaki mesafeler sabittir. PSTN, seviyeler arası mesafenin değiştiği
“A-yöntemi kuantalama” metodunu kullanır. Dolayısıyla farklı genlik
seviyelerinin doğruluğu optimize edilir.

46

Şekil 3.10 - Düzgün kuantalama

Doğruluğun derecesi kullanılan seviye sayısına bağlıdır. Normal
telefonda 256 seviye kullanılırken, GSM'de analog sinyal 8192 seviyede
kuantalanır. Gerçekte, sonlu sayıda seviyelerle sürekli analog işareti tam
olarak temsil edemeyiz. Şekil 3.10’da işaretlendiği gibi birçok durumda
örneklenmiş değerle kuantalanmış değer arasında fark olacaktır. Ayrık
seviyelerin sayısı arttırılarak kuantalama hatalarının boyutları azaltılabilir
ama hiçbir zaman tam olarak ortadan kaldırılamaz.

3. Kodlama:

Her kuantalanmış değer bir ikili (binary) kod ile temsil edilir. 256
seviye gerçekleştirmek için 8 bit kullanılır (2^8 = 256). GSM' de ise 13
bit 8192 seviyeye tekabül eder (2^13 = 8192).

PCM sistemde 8 KHz'de örnekleme yapılıp, kuantalama
gerçekleştirilip ve 8 bit ile kodlanırsa 8000 x 8 = 64 kbit/s 'lik bir bit
oranı oluşturulmuş olur.

47

Bu bitlerin gönderilmesi için kullanılan hatta “PCM hat” adı verilir.
Hattı daha verimli kullanabilmek için birçok kanal aynı hatta çoklanır.
Kullanılan tekniğe Zaman Bölmeli Çoklu Erişim (TDMA) adı verilir ve
birçok kanal aynı hattı paylaşır. Her kanal, hattı belirli bir zaman
aralığında kullanır (Time slot). Şekil 3.11'de 32 kanalın bir PCM hatta
nasıl çoklandığı görülmektedir. Bu hatta bit oranı 32x8x8000=2,048
Mbit/s olur.

Şekil 3.11 - Bir PCM hatta 32 kanalın çoklanması

32 kanal şekil 3.12' de görülen bir çerçeveyi (Frame) oluşturur. 0
no'lu kanal senkronizasyon için, 16 no'lu kanal işaretleşme için ve diğer
30 kanal konuşma veya veri trafiği için kullanılır.

48

Şekil 3.12 - 32 zaman aralıklı bir çerçeve

3.3.2 Konuşma Kodlama

Sayısal transmisyon kullanımının faydalarından biri de daha fazla
aboneye hizmet edebilmektir. Şekil 3.2 'den de görülmüş olduğu gibi bir
frekans bandı için bir yerine sekiz kanal mevcuttur. Burada dikkate
alınması gereken durum bir frekans bandında aynı zamanda sekiz
konuşmanın gerçekleşmesi değil, kullanılan gerçek bandın ne kadar geniş
olduğudur. Bazı FDMA hücresel mobil sistemlerde 25 KHz 'lik bir kanal
ayarlaması kullanılır (NMT, TACS). GSM'de belirtilen ayrılma ise 200
KHz 'dir. 200 KHz TDMA başına sekiz eş zamanlı kullanıcı, 25 KHz
FDMA 'in sekiz kullanıcısı ile aynıdır. Kazanç, analog sistemle
karşılaştırıldığında farklı bir frekans planlamasından kaynaklanmaktadır.

PCM olarak kodlanmış konuşma şekline bir göz atarsak görülür ki
her konuşma kanalı 64 kbit/s 'dır. Bunun gibi sekiz kanal hava arayüzüne
çıktığında 512 kbit/s 'lık bit oranı verir. Bu değer, transmisyon doğruluğu
eklenmemiş değerdir. Đzin verilen frekans bandı içinde kalmak şartı ile
her konuşma kanalı için bit oranını azaltmamız gerekir. Bu ise konuşma
kodlama ile sağlanır. Yapılan şey konuşma yerine bilgi gönderilmesidir.

Konuşmanın oluşumunu bildiğimizden konuşmanın tam bir
parametrik modelini oluşturabiliriz. Şekil 3.13’e bakıp gerçek yapıdan
modele bir geçiş yapabiliriz.

49

Şekil 3.13 - Đnsanda konuşma sistemi

Uyarma, tonu olmayan sessiz harflerin üretildiği konuşma
organlarına uygun olan darbeleri içerir.

Filtre, hayali şeyleri gerçekleştiren konuşma organlarının
parçalarına uyar. Konuşma organlarının adapte oluşu yavaştır ve hatta
denilebilir ki yaklaşık 20ms için sabittirler. Konuşma beyaz gürültünün
(white noise) bir dizisi halindedir. Verici tarafta yapmak istediğimiz,
konuşmanın ters modelini elde etmektir. Verici tarafta sayısal hale
getirilmiş konuşma giriş, uyarma dizileri ise çıkış durumundadır.

Konuşma işareti, konuşmanın oluşturulduğu filtre modeli ile
karşılaştırılırsa ters bir karakteristik veren “H” filtresinde filtrelenir.
Doğru akortlama ile orijinal uyarma, beyaz gürültü (white noise) olarak
tekrar üretilebilir.

Konuşma kodlayıcısı için bir analiz fonksiyonu, “H” için filtre
parametrelerini hesaplar, böylece çıkış işareti beyaz gürültüye mümkün
olduğunca yakın olacaktır. Konuşma kodlayıcısı aynı zamanda, ses
tellerinin frekansının ve tonlu-tonsuz gürültünün takdiri ile uyarımın
olasılığının analizini yapar.

Daha sonra filtre parametreleri hava arayüzü ile gönderilir. Böylece
bir “1/H” ters filtre kurulabilir. Aynı zamanda uyarım dizisi hakkındaki
bilgi de gönderilir. Bu uyarım dizisi (excitation sequence) “H” filtresinin
çıkışıdır (Şekil 3.14).

50

Şekil 3.14 - Konuşma transmisyon modeli

Üç tip kodlayıcı mevcuttur. Bunlardan biri dalga şekli
kodlayıcısıdır. Buna 64 kbit/s PCM kodlayıcı örnek verilebilir. Diğeri
vocoder (ses kodlayıcısı) kodlayıcıdır. Konuşma, üretim yönteminin çok
basitleştirilmi ş bir modelinin temeli üzerinde çalışır. En sonuncusu ise
hibrid kodlayıcısıdır. Bunlar çok yüksek ses kalitesi sağlamak için
tasarlanmışlardır (Şekil 3.15).

Şekil 3.15 - Konuşma kalitesi bit oranı ilişkisi

51

3.3.3 Kanal Kodlama

Sayısal transmisyon ile gönderilen işaretin kalitesi genellikle alınan
bitlerin ne kadarının doğru olduğunu ifade eden Bit Hata Oranı (BER -
Bit Error Rate) ile kısaca ifade edilir (Ericsson, 1998c). BER, toplam
bitlerin yüzde kaçının yanlış sezildiğini gösterir. Bu oranın mümkün
olduğunca düşük olması istenir.

Kanal kodlama ile alınan bit dizisi içindeki hatalar sezilebilir ve
düzeltilebilir. Çünkü bitlerin içinde bazı fazlalık bitler vardır, bilgi bir
kaç bitten daha fazla bitlere yayılır.

Hata kontrol kodları, blok kodlayıcıları ve katlamalı kodlayıcılar
olarak iki kısımda incelenebilir. Blok kodlayıcılarda bazı kontrol bitleri
ve eklediğimiz belli sayıda bilgi bitleri vardır. Kontrol bitleri bilgi bitleri
ile ili şkilidir. Blok kodlama Şekil 3.16'da gösterilmiştir.

Şekil 3.16 - Blok kodlama

Kod bloğundaki (Code block) kontrol bitleri sadece mesaj
bloğundaki (Message block) bilgi bitlerine bağlıdır.

Katlamalı kodlamada, kodlayıcı tarafından üretilen kodlanmış
sayısal bloklar sadece kodlayıcıya taşınmış mesaj bloklarına bağlı
değildir, ayrıca daha önceden gelen mesaj bloklarındaki bitlere bağlıdır
(Şekil 3.17).

52

Şekil 3.17 - Katlamalı kodlama

Katlamalı kodlayıcıya aktarılan her yeni bit için çıkış iki bit
olacaktır. Blok kodlar, bloklar olduğunda sıklıkla kullanılır. Genellikle
ARQ (Automatic Repeat Request) yerine getirildiğinde hatayı sezmek
için kullanılırlar. ARQ, hata sezilince tekrar iletim isteğidir. Katlamalı
kodlama hata düzeltmede, ARQ kolaylığı bulunmadığında, daha çok
yardımcı olur (Ericsson, 1998a).

GSM 'de iki metot daha kullanılır. Đlk olarak bilgi bitlerinin bir
kısmı kontrol bitlerini oluşturacak şekilde blok kodlanır. Sonra bütün
bitler katlamalı kodlanır. Kodlama düzeni biraz farklı olmasına karşın
hem konuşmaya hem de veriye bu iki basamak uygulanır. Burada çift
yönlü kodlama yapılmasının sebebi, eğer düzeltilebiliyorsa hataların
düzeltilmesi (katlamalı kodlama) ve eğer bilgi kullanılmayacak kadar çok
bozulduysa bunun sezilmesidir (blok kodlama).

Konuşma 20 ms 'lik parçalara ayrılır. Bu 20 ms 'lik konuşma
parçaları sayısal hale getirilir ve konuşma kodlaması yapılır. Her 20 ms
'lik konuşma için 260 kbit/s 'lık bir oran vardır ve konuşma kodlayıcı
tarafından sağlanır. Bunlar şöyle ayrılırlar;

50 bit → Çok önemli bitler

132 bit → Önemli bitler

78 bit → Çok önemli olmayan bitler

53

50 bite üç kontrol biti eklenir (Blok kodlama). Bu 53 bit, 132
önemli bit ve 4 kuyruk biti ile birlikte 378 bite kodlanır. Kalan bitler
korunmaz. Bu durum, şekil 3.18 'de gösterilmiştir.

Şekil 3.18 - GSM 'de kanal kodlama

54

3.3.4 Araya Yerleştirme (Interleaving)

Gerçek hayatta bit hataları burst'lerde ortaya çıkar ve bu da birçok
sonuç bitlerinin uzun zayıflama dip noktalarından (fading dips)
etkilenmesi ile ilgilidir. Kanal kodlama ancak çok uzun olmayan burst
hatalarının ve basit hataların sezilmesinde ve düzeltilmesinde etkilidir.
Bu durumda araya yerleştirme işlemi kullanılırsa ilgili mesajın sonuç
bitlerinin ayrıştırılması sağlanır. Böylece blok yapıda olmayan bitler
birlikte gönderilmiş olur.

Örnek olarak, mesaj bloğu dört bit içeriyor. Dört bloğunun ilk
bitlerini çerçeve (frame) diye adlandırılan dört bitlik yeni bloklara
koyalım. 2 'den 4 'e kadar olan bitlere de aynı işlemi uygulayalım. Daha
sonra çerçeveleri, 1 - numaralı bitler, 2 - numaralı bitler v.b. şekilde
gönderelim (Şekil 3.19).

Şekil 3.19 - Araya yerleştirme

Đletim sırasında, 2 no’lu çerçevede hata oluşursa araya yerleştirme
(interleaving) işlemi yapıldığından, bütün mesaj bloğu kaybolmaz.
Sadece her mesaj bloğunun ikinci bitinde hata oluşur (Şekil 3.20).

55

Şekil 3.20 - Alınmış, tekrar elde edilmiş mesaj blokları

Kanal kodlama ile bütün bloklardaki bilgi tekrar elde edilebilir.
GSM 'de kanal kodlayıcı her 20 ms konuşma için 456 bit tedarik eder.
Bunlar her biri 57 bitten oluşmuş sekiz blok halinde araya yerleştirme
işlemine tabi tutulur (Şekil 3.21).

Şekil 3.21 - Kodlanmış konuşmanın 20 ms araya yerleştirilmesi

56

3.3.5 Đkinci Seviye Araya Yerleştirme

57 bitlik sekiz grup halinde araya yerleştirilmi ş 20 ms 'lik konuşma,
456 bitlik konuşma çerçevesini oluşturur (Şekil 3.22).

Şekil 3.22 - Konuşma çerçevesi

Eğer aynı konuşma çerçevesinden 2x57 bit alırsak ve bunları aynı
burst'e sokarsak, bu durumda burst kaybı %25 bit kaybına sebep olur ki
bu da kanal kodlama için çok fazladır. Dolayısıyla araya yerleştirmenin
başka bir seviyesini iki konuşma çerçevesi arasına eklememiz gerekir
(Şekil 3.23).

Şekil 3.23 - Normal burst

Bu durum, sistemde küçük bir geciktirme oluşturur. Kayıp her
konuşma çerçevesinin bitlerinin sadece %12,5 kadarını etkilediğine göre,
bir bütün burst kaybı göze alınabilir ve kanal kodlama ile düzeltilebilir
(Şekil 3.24).

57

Şekil 3.24 - Đkinci seviye araya yerleştirme

3.3.6 Modülasyon

GSM’de kullanılan modülasyon metodu GMSK‘dir (Ericsson,
1998a). GMSK bir sayısal modülasyon şeklidir ve gönderilecek bilgi
sayısaldır. Bu bilgi bir veri veya sayısal hale getirilmi ş konuşma olabilir.
Modülatör, bir faz modülatörü olarak düşünülebilir. Taşıyıcı, modülatöre
gönderilen bilgi bitlerine bağlı olarak fazı değiştirir. GMSK, bir burst
içinde arzu edilen sabit zarf modülasyonunu içerir. Fazı değiştirirken
düzgün eğri şekilleri elde etmek için, temel bant işareti bir Gauss geçiş
bandı ile filtrelenir. GMSK, alışılmış MSK ile karşılaştırıldığında daha
dar bir bant genişliği elde edilir.

58

3.3.7 Anten (Uzay) Farklılığı

Farklılığı sona erdirmenin bir yolu zayıflamadan bağımsız
etkilenen iki kabul kanalı kullanmaktır. Đkisinin de aynı anda çok derin
bir zayıflama dip noktasından etkilenme riski çok küçüktür. Bu da iki Rx
anteninin aynı işareti bağımsız olarak almasının faydalı olacağı demektir,
böylece işaret zayıflama zarflarından az etkilenecektir. Đki işaretin en
iyisini seçmekle zayıflama derecesi azaltılmış olur. Antenler arasındaki
mesafe iki antendeki işaret ilişkisi (correlation) ile ilgilidir. Đlişki,
işaretlerin neye benzediğini gösteren istatistiksel bir terimdir. Pratik
olarak bir kaç metredir. 900 MHz'de, antenler arasında 5–6 metre mesafe
ile 3 dB kazanç sağlamak mümkündür. 1800 MHz'de ise dalga boyunun
düşmesiyle mesafe de kısalacak, böylece daha az mesafe ile aynı kazanç
elde edilebilecektir (Ericsson, 1998b). Şekil 3.25 ’te iki ayrı antene ait
farklılık görülmektedir.

Şekil 3.25 - Anten farklılığı

3.3.8 Frekans Atlaması (Frequency Hopping)

Daha önce Rayleigh zayıflamasında belirtildiği gibi, zayıflama
deseni frekansa bağımlıdır. Bu da farklı frekanslar için farklı yerlerde
zayıflama dip noktalarının oluşması anlamına gelir.

Kazanç sağlamak için, arama süresince belli sayıda frekansın
arasında taşıyıcı frekans değiştirilir ve bunlardan birinde zayıflama dip
noktası mevcut ise bilginin sadece küçük bir bölümü kaybedilir.

59

Kompleks işaret işleme ile işaret tekrar onarılabilir ve eski haline
getirilebilir. Aynı arama için, N no'lu TDMA çerçevesi süresince C1
frekansı, N+1 no'lu TDMA çerçevesi süresince C2 frekansı kullanılır ve
bu olay değişim halinde devam eder (Şekil 3.26).

Şekil 3.26 - C1 ve C2 frekansları arasında frekans atlaması

3.3.9 Dengeleyici (Equalizer)

Daha önce zaman ayarlamasında bahsedildiği gibi Rx anteninden
çok uzaktaki yansımalar ISI'yı (Ara Simge Girişimi) oluştururlar.
Đşaretler yayılırlar ve komşu simgeler birbirleri ile girişirler. Bu da
alıcıda, hangi bilginin gönderildiğine karar vermeye çalışmada
problemler oluşturur.

60

Kanal; kablo, optik kablo veya bir mikrodalga hat olabilir. Her çeşit
kanal; kendi bant genişliği, zayıflaması ve buna benzer özelliklere
sahiptir. Optimum bir alıcı, transmisyon için belirli bir kanala uydurulur.

Bu durumda hava arayüzünün matematiksel bir modeli
oluşturulmak ve alıcıyı da bu modele ayarlamak istenir. Eğer
yansımaların ne kadar uzun ve kuvvetli olduğunu biliyorsak, bunu alınan
burst sezildiğinde hesaba katabiliriz. Bu da transmisyon kanalının bir
modelini oluşturan dengeleyici ile yapılır ve buna ek olarak en muhtemel
gönderilen dizi hesaplanır (Şekil 3.27).

Veri zaman aralıkları içinde yer alan burst'lerde gönderilir. Bilinen
bir desenin burst dizisinin ortasında oto korelasyon ile özellikler
yerleştirilir. Bu model bütün zamanları değiştirir fakat bir bit süresince
sabit olarak dikkate alınır.

GSM şartnamesi, dört bite kadar (yaklaşık 15µs 'ye tekabül eder)
gecikmiş, yansıyan bir işareti ele alabilen veya direkt ve yansımış işaret
arasındaki yol farkının yaklaşık 4,5 km olduğu bir işareti ele alabilen bir
dengeleyicinin sistemde var olmasını önerir (Ericsson, 1998a).

Şekil 3.27 - Viterbi dengeleyici

61

3.4 Sayısal Transmisyon Probleminin Özet Çözümü

Đletimdeki sorunların çözümünde ilk olarak konuşma sayısal hale
dönüştürülür ve 20 ms 'lik parçalara bölünür. Ondan sonra bit oranını
azaltmak için konuşma kodlama işlemi ve hata kontrol için kodlama
işlemleri yapılır. Araya yerleştirme işlemi küçük bir gecikmeye sebep
olur. Şifreleme 1:1 ilişkisi (giriş-çıkış) ile yapılır ve bitler, her 20 ms’lik
konuşma için yarım burst'ler halinde şekillenir. Bunlar daha sonra
yaklaşık 270 kbit/s 'lık bir hızla uygun zaman aralıklarında gönderilir.

Alıcıda ise burst'ler alınır ve bit dizilerinin hesaplandığı
dengeleyicide bir kanal modeli oluşturulur. Hepsinden sonra sekiz yarım
burst alınır ve deşifre edilir. Bunlar 456 bit mesaj olarak kurulur. Bu dizi
üzerinde, iletim süresince hata düzeltme ve sezme işlemi için kod çözme
işlemi gerçeklenir. Kod çözücü, hata düzeltme işleminin daha iyi olması
için dengeleyiciden “soft information” kullanır. “Soft information”, bitin
doğru olduğuna dair bir olasılıktır. Son olarak, bit dizisi konuşma
kodlama işlemine tabi tutulur ve analog konuşmaya dönüştürülür.

62

4 SAYISAL RADYO (HAVA) ARAYÜZÜ

Radyo arayüzü MS ve BTS arasındaki bağlantının genel adıdır. Her
taşıyıcı frekans için bir TDMA çerçeve kullanılır. Her çerçeve sekiz TS
(zaman aralığı) içerir. BTS'den MS'e olan yön aşağı link (down link),
MS’den BTS’e olan yön de yukarı link (up link) olarak tanımlanır (Şekil
4.1). Bir hücrede, kullanılmak istenen taşıyıcı frekans sayısı kadar alıcı-
verici birim (TRU – Transceiver Unit) bulunmalıdır. Her TRU sadece bir
frekansta yayın yapabilir.

Şekil 4.1 - Bir radyo kanalı üzerindeki yukarı ve aşağı link

4.1 Kanal Kavramı

GSM sistemi, 900 MHz bandında 1’den 124’e kadar
numaralandırılmış taşıyıcılar içerir. GSM, her taşıyıcının sekiz zaman
aralığına bölündüğü Zaman Bölmeli Çoklu Erişim metodu (TDMA –
Time Division Multiple Access) kullanır (Ericsson, 1998d). Mobil cihaz
aynı zaman aralığında gönderir ve alır. Bu demektir ki, aynı zamandaki
sekiz konuşma, aynı radyo kanalında yer alabilir.

Taşıyıcı üzerindeki TDMA çerçevedeki bir zaman aralığı (TS), bir
fiziksel kanalı ifade eder (Ericsson, 1998a). Eğer, her kullanıcının belli
sayıda frekanstan biri yoluyla bir sisteme bağlandığı FDMA sistemi ile
karşılaştırma yaparsak, netice olarak görülür ki, GSM'de her taşıyıcı için

63

sekiz fiziksel kanal mevcuttur (Şekil 4.2). Bir TS süresince gönderilen
bilgiye “burst” adı verilir.

Şekil 4.2 - TDMA kanal kavramı

Birçok bilgi türü, BTS ve MS arasında gönderilir. Farklı bilgi
türleri, fiziksel kanallar üzerinde farklı bir düzen ve dizide gönderilirler.
Gönderilen bilginin türüne bağlı olarak, bu düzen ve diziler mantıksal
kanalları ifade eder. Mantıksal kanallar fiziksel kanallar üzerinde bilgi
türlerine göre planlanmıştır (Ericsson, 1998a). Örneğin konuşma, “trafik
kanalı” olarak adlandırılan mantıksal kanaldan gönderilir. Mantıksal
kanallar “kontrol” ve “trafik” kanalları olmak üzere ikiye ayrılır. Şekil
4.3 ’te mantıksal kanalların alt bölümleri görülmektedir.

64

Şekil 4.3 - Mantıksal kanallar

4.1.1 Kontrol Kanalları

Đlk olarak, MS açıldığında bir radyo baz istasyonunu sezmeye
çalışır. Bu, tüm frekans bandını tarayarak veya kullanılan operatör için
ayrılmış Yayın Kontrol Kanalı (BCCH - Broadcast Control Channel)
taşıyıcısını içeren bir prosedür kullanarak yapılır. MS, en kuvvetli
taşıyıcıyı bulduğunda bunun BCCH taşıyıcısı olup olmadığını tespit
etmelidir. Bir BCCH taşıyıcısı, kontrol kanallarının taşınmasında
kullanılan bir frekanstır (Ericsson, 1998a).

4.1.1.1 Yayın Kanalları (BCH)

• Frekans Düzeltme Kanalı (FCCH - Frequency Correction
Channel):

FCCH'de bir sinüs işareti gönderilir. Amaçlarından biri BCCH
taşıyıcısına emin olmak, diğeri de MS'in frekansa senkron olmasını
sağlamaktır. FCCH, aşağı linkten ve tek noktadan çok noktaya gönderilir.

65

• Senkronizasyon Kanalı (SCH - Synchronisation Channel):

MS için bundan sonra ki olay, belirli bir hücre içindeki yapıya
senkronize olmak ve seçilen baz istasyonunun bir GSM baz istasyonu
olduğuna emin olmaktır. Senkronizasyon kanalını dinleyerek; MS,
seçilen baz istasyonun bu hücresindeki TDMA çerçeve yapısındaki
bilgiyi alır. Bu bilgi TDMA çerçeve no’sudur. Ayrıca Temel Đstasyon
Kimlik Kodu da alınır (BSIC). BSIC, baz istasyonu bir GSM şebekeye
aitse kod çözme işlemine tabi tutulur. SCH aşağı linkten ve tek noktadan
çok noktaya gönderilir.

• Yayın Kontrol Kanalı (BCCH - Broadcast Control Channel):

MS'in, dolaşımı başlatmak yani gelen aramaları beklemek veya
istendiğinde arama yapmak için alması gereken son bilgi, hücre ile ilgili
bazı genel enformasyonlardır. Bu, üzerinde MS'in ölçümleri dikkate
alacağı BCCH içinde gönderilir. Bu ölçümler, hücrede izin verilen
maksimum çıkış gücü ve komşu hücreler için BCCH taşıyıcısı
ölçümleridir. BCCH, aşağı linkten ve tek noktadan çok noktaya
gönderilir. Artık MS bir baz istasyonuna kilitlenmiştir ve hücredeki
çerçeve yapısına senkronizedir. Baz istasyonları birbirine senkron
değildir, yani MS hücre değiştirdiğinde, her defasında FCCH, SCH ve
BCCH’in baştan okunması gereklidir.

4.1.1.2 Ortak Kontrol Kanalları (CCCH)

• Çağırma Kanalı (PCH - Paging Channel):

Belirli zaman aralıkları içinde MS, şebekenin kendisi ile bağlantı
kurmak isteyip istemediğini görmek için PCH'yi dinler. Sebep, gelen bir
arama veya gelen bir kısa mesaj olabilir. PCH'de gelen bilgi, MS'in
kimlik numarası (IMSI) veya geçici kimlik numarasıdır (TMSI). PCH,
aşağı linkten ve tek noktadan tek noktaya gönderilir.

66

• Rastgele Erişimli Kanal (RACH - Random Access Channel):

MS, numaraları aldıktan sonra, RACH'dan numaraları aldığını
bildirir. MS, ayrıca bu kanalı, şebekeye bağlanmak istendiğinde de
kullanır. RACH, yukarı linkten ve tek noktadan tek noktaya gönderilir.

• Erişim Verme Kanalı (AGCH - Access Grant Channel):

Şebeke bir işaretleşme kanalı belirler (SDCCH). Bu işaretleşme
kanalının belirlenmesi olayı AGCH'da gerçekleşir. AGCH, aşağı linkten
ve tek noktadan tek noktaya gönderilir.

4.1.1.3 Tahsis Edilmiş Kontrol Kanalları

• Tek Başına Tahsis Edilmiş Kontrol Kanalı (SDCCH - Stand
Alone Dedicated Control Channel):

MS, belirtilen işaretleşme kanalı olan SDCCH'e anahtarlama yapar.
Arama kurulumu prosedürü bu kanal üzerinden yapılır. SDCCH, hem
aşağı hem de yukarı linkten ve tek noktadan tek noktaya gönderilir.
Arama kurulumu gerçekleştirildi ğinde MS, kendine atanan taşıyıcı
üzerindeki zaman aralığında (TS) tanımlı trafik kanalına (TCH)
anahtarlanır.

• Yavaş Birleştirilmi ş Kontrol Kanalı (SACCH - Slow
Associated Control Channel):

Yukarı linkte MS, kendi baz istasyonu ve komşu baz
istasyonlarıyla ilgili ortalama ölçümleri SACCH üzerinden gönderir. Bu
ölçümlerden kendi baz istasyonu ile ilgili ölçüm sinyal gücü ve kalitesi,
komşu baz istasyonlarıyla ilgili ölçüm sinyal gücü üzerinedir. SACCH,
tek noktadan tek noktaya gönderilir.

67

• Hızlı Birleştirilmi ş Kontrol Kanalı (FACCH - Fast Associated
Control Channel):

Eğer konuşma anında, aniden hücreler arası aktarma (handover)
gerekirse FACCH kullanılır.

4.1.2 Trafik Kanalları (TCH)

Trafik kanalları tam-hızlı (full-rate) ve yarı-hızlı (half-rate) olmak
üzere ikiye ayrılırlar. Bir tam-hızlı TCH, bir TS yani bir fiziksel kanalı
işgal eder. Đki yarı-hızlı TCH ise bir fiziksel kanalı paylaşırlar böylece
hücrenin kapasitesi iki katına çıkmış olur, ancak konuşma kalitesi azalır.

68

5 HÜCRE PLANLAMA

Hücre Planlama kapsamında yapılan işler şunlardır:

• Radyo ekipmanları için istasyon belirlemek

• Radyo ekipmanlarını belirlemek

• Radyo ekipmanlarını ayarlamak

Her hücresel ağın yeterli kapsama alanı ve konuşma kalitesi
sağlayabilmesi için hücre planlamaya ihtiyacı vardır.

5.1 Hücreler

Bir hücre, bir baz istasyonu anten sisteminin kapsama alanı olarak
tanımlanabilir. Bazı özel durumlarda bir hücre birkaç anten sisteminin
kapsama alanları birleşiminden oluşabilir. Hücre, bir mobil ağın en küçük
yapı taşıdır. Mobil ağların, hücresel ağlar (cellular networks) olarak da
anılmasının sebebi budur.

Hücre şekli teoride altıgen olarak gösterilir ancak bu yapay bir
gösterimdir. Baz istasyonu anteni tarafından yayılan sinyalin ideal
kapsaması ise dairesel olarak gösterilir; ancak gerçekte bazı alanlar çeşitli
nedenlerle gerekli sinyal seviyesine sahip olamazlar (Mishra, 2004). Bu
sebeple hücreler pratikte geometrik olmayan şekillere sahiptirler (Şekil
5.1).

69

Şekil 5.1 - Hücre şekilleri (Mishra, 2004)

Hücre temel tipleri ikiye ayrılır (Şekil 5.2). Bunlar:

• Dairesel hücre (Omni directional cell):

Bir dairesel hücre, her yöne (360 derece) eşit miktarda iletim yapan
antene sahip bir baz istasyonu tarafından sağlanır. Genellikle bu hücreler
kapsama amaçlı kullanılır.

• Sektörel hücre (Sector cell):

Bir sektörel hücre, sadece belirtilen yönde iletim yapan bir anten
tarafından kapsanan alandan oluşur. Örnek olarak bir baz istasyonu 120
derecelik antenler kullanan üç hücre içerebilir. Genellikle bu tip hücreler
kapasite amaçlı kullanılır.

70

Şekil 5.2 - Dairesel ve sektörel hücreler (Ericsson, 1998c)

5.2 Hücre Planlama Adımları

Başlıca hücre planlama adımları sırasıyla şunlardır:

• Trafik ve kapsama analizi

• Nominal hücre planı

• Saha incelemeleri

• Sistem tasarımı

• Sistem gerçekleştirimi

• Sistemin düzenlenmesi

Gerçekleştirilen sistemin trafik artışı sebebiyle büyümesi ya da yeni
binalar yapılması sonucu değişmesi durumunda hücre planlama süreci,
yeni bir trafik ve kapsama analizi yapılarak en baştan ele alınmalıdır
(Şekil 5.3).

71

Şekil 5.3 - Hücre planlama adımları (Ericsson, 1998d)

5.2.1 Trafik ve Kapsama Analizi

Hücre planlama süreci, trafik ve kapsama analizi ile başlar. Bu
analiz sonucu bölgenin coğrafi yapısı ve beklenen kapasite ihtiyacı
hakkında bilgi sahibi olunur. Araştırılan veri tipleri şunlardır:

• Maliyet

• Kapasite

• Kapsama

• Servis derecesi (GoS - Grade of Service)

• Kullanılabilen frekanslar

• Bit hata oranı (BER)

• Sistemin büyümeye yatkınlığı

72

Trafik talebi, hücresel ağ mühendisliğinin temelini oluşturur. Trafik
talebi, sisteme giriş yapan abone sayısını ve yaratacakları trafik miktarını
içeren bir kavramdır. Trafik talebinin coğrafi dağılışı, aşağıdaki
demografik veriler kullanılarak hesaplanabilir:

• Nüfus dağılımı

• Araba kullanım dağılımı

• Gelir dağılımı

• Arazi kullanım verileri

• Telefon kullanım istatistiği

• Abonelik ücreti, konuşma ücretleri ve cep telefonu fiyatları
gibi diğer faktörler

5.2.2 Nominal Hücre Planı

Trafik ve kapsama analizinden gelen verilerin derlenmesinden
sonra bir nominal hücre planı oluşturulur. Nominal hücre planı şebekenin
grafiksel bir gösterimidir. Nominal hücre planları ilk hücre planlarıdır ve
ileriki planlama için temel oluşturur.

Bu adımda, kapsama ve girişim tahmin edilmesine başlanır. Bu
planlamada radyo yayılımının incelenmesi için bilgisayar destekli analiz
araçlarına ihtiyaç vardır (Ericsson, 1998b).

5.2.3 Saha Đncelemeleri

Nominal hücre planı oluşturulup kapsama ve girişim tahminleri
kabaca doğrulandıktan sonra istasyonlarda radyo ölçümleri
gerçekleştirilir. Bu kritik bir adımdır çünkü hücresel bir ağ planlaması
yapılırken istasyon yerlerinin uygun olup olmadığının belirlenmesinde
sahanın yani gerçek ortamın değerlendirilmesi gereklidir. Böylece cep
telefonlarının bulunacağı gerçek ortamdan alınan sinyal seviyesi
ölçümleri ile daha iyi tahminler yapılabilir.

73

5.2.4 Sistem Tasarımı

Planlama aracının ürettiği tahminlerin güvenilir olduğu
anlaşıldıktan sonra baz istasyonu ekipmanı, BSC ve MSC
boyutlandırması yapılır. Böylece son hücre planı oluşturulmuş olur. Bu
plan daha sonra sistem kurulumunda kullanılır. Bunlara ek olarak her
hücre için tüm hücresel parametreleri içeren ve Hücre Tasarım Verisi
(CDD - Cell Design Data) adı verilen bir doküman oluşturulur (Ericsson,
1998d).

5.2.5 Sistem Gerçekleştirimi

Son hücre planı oluşturulması ve sistem tasarımından sonra sistem
gerçekleştirimi, görev ve yetki dağılımı, test etme işlemleri
gerçekleştirilir.

5.2.6 Sistemin Düzenlenmesi

Sistem kurulumu tamamlandıktan sonra sistemin talepleri
karşılayıp karşılamadığı devamlı olarak değerlendirilir. Bu işleme
sistemin düzenlenmesi (system tuning) adı verilir ve şu adımları içerir:

• Son hücre planının başarılı bir şekilde gerçekleştirildi ği
kontrol edilir

• Müşteri şikayetleri değerlendirilir

• Şebeke performansının kabul edilebilir olduğu kontrol edilir

• Đhtiyaç durumunda gerekli parametreler değiştirilir ve ilgili
ölçümler yapılır

Sürekli artan abone sayısı ve trafik miktarından dolayı sistemin
devamlı olarak düzenlenmesi gerekir. Sonunda sistem artan yük ve trafiği
yönetemeyecek bir noktaya ulaşır. Bu noktada kapsama analizi
gerçekleştirilerek hücre planlama adımlarına en baştan başlanır ve bu
döngü bu şekilde devam eder (Ericsson, 1998b).

74

5.3 Trafik Kavramı

Hücresel sistem kapasitesi şu faktörlere bağlıdır:

• Ses ve veri için ayrılan kanal sayısı

• Aboneler için belirlenen servis derecesi (GoS)

Trafik kavramı ile bir hücrede olması gereken kanal sayısı tahmin
edilir. Bu tahmin, seçilen sisteme ve abonelerin gerçek ya da kabullenilen
davranışlarına dayanır (Ericsson, 1998b).

Trafik, kanalların kullanımı ve tutulma zamanı ile ilgilidir ve
Erlang (E) birimi ile ölçülür. Eğer tek bir abone bir saat boyunca
konuşmasını sürdürürse 1 E’lık trafik yaratmış olur (Mishra, 2004).

Trafik, şu formül ile hesaplanır:

3600

Tn
A

×=

Burada birimi Erlang olan A, sistemdeki bir ya da daha fazla
kullanıcının oluşturduğu trafiktir. n, saatte yapılan arama sayısıdır. T ise
saniye cinsinden ortalama konuşma süresidir (Ericsson, 1998a).

Bir hücrenin taşıyabileceği trafik, sahip olduğu trafik kanalları
(TCH) ile müşteri ve operatör tarafından kabul edilebilir tıkanıklık
(congestion) miktarına bağlıdır. Bu tıkanıklık miktarına servis derecesi
(GoS - Grade of Service) adı verilir (Ericsson, 1998b).

Kabullenilen abone davranışları için Erlang B tablosu kullanılır
(Şekil 5.4).

75

Şekil 5.4 - Erlang B Tablosunun bir bölümü (Ericsson, 1998d)

76

Kabullenmeler şunlardır:

• Kuyruk olmaması

• Trafik kanallarından daha fazla sayıda abone olması

• Tahsis edilmiş trafik kanallarının olmaması

• Rastgele trafik oluşması (poisson dağılışı)

• Arama bloke edilir edilmez tekrar arama oluşmaması

Erlang B tablosu, bir hücrenin trafik kanalı sayısına göre kabul
edilen GoS değeri ile kaç Erlang trafik alabileceğini gösterir. Örneğin 2
adet TRU (Alıcı verici birim)’ya sahip bir hücrede 16 Time Slot (2x8)
vardır. Bunlardan 1 Time Slot BCCH, en az 1 Time Slot ta SDCCH için
kullanılır. Geriye kalan 14 Time Slot ise trafik kanalı (TCH) olarak
kullanılır. Erlang B tablosuna bakıldığında 14 trafik kanalına sahip bu
hücrenin kabul edilebilir %2 GoS oranıyla alabileceği trafik 8.2003
Erlang’tır. %2 GoS değeri 100 aramadan 98’inin başarılı olacağını
gösterir.

Abone başına düşen ortalama trafik değeri tahmin edilebiliyorsa
hücrenin servis verebileceği abone sayısı bulunabilir. Bugüne kadar
yapılan çalışmalar sonucunda, günün en yoğun saatinde abone başına
düşen ortalama trafik değeri 15–20 mE olarak bulunmuştur. Bu değer, bir
saat içinde bir aramanın ortalama 54–72 saniye içinde sonlandığı
anlamını taşımaktadır. Her abonenin 20 mE (0.025 E) trafik yarattığını
düşünürsek, 8.2 Erlang trafik alabilen bir hücrenin 328 (8.2 / 0.025)
aboneye servis verebileceğini görürüz. Buradaki 328 sayısı 14 trafik
kanalına sahip bir hücrede 1 saat içerisinde rastgele trafik oluşması
sonucunda mümkündür. 14 full-rate trafik kanalına sahip bir hücreden
aynı anda sadece 14 kişi konuşabilir.

Şebeke boyutlandırılması yapılırken kullanılacak hücreler
belirlendikten sonra bu hücrelerde kaç adet trafik kanalının
kullanılacağının belirlenmesi gerekir. Gerekli olan trafik kanalı sayısı ile
her hücrede kullanılacak taşıyıcı frekans sayısı belirlenir.

77

Aboneler mobil olduğu için gün içerisinde bir alandan başka bir
alana yer değiştirebilirler. Belirli bir alandaki (örneğin bir havalimanı)
belli sayıda abonenin yaratacağı trafiği karşılayabilmek için bir hücrede
kaç tane taşıyıcı frekans kullanılması gerektiğine karar verilirken
oluşacak trafiğin günden güne farklılık gösterebileceğine dikkat
edilmelidir. Hatta aynı gün içerisinde farklı saatlerde farklı trafik
değerleri oluşabilir.

Trafik kanalları yanında sinyalleşme kanallarının (SDCCH)
sayısının belirlenmesinde önemlidir. Örneğin farklı LA (Location Area)
sınırlarındaki hücrelerde “Location Update” işleminin fazla
yapılmasından dolayı daha çok sinyalleşme kanalına ihtiyaç olabilir.
Ayrıca bir otoyola servis veren hücreler arasında çok sayıda “Handover”
işlemi yapılabileceğinden bu tip hücrelerde de sinyalleşme kanalı
sayısına dikkat etmek gerekir. Bir hücredeki sinyalleşme kanalı ihtiyacını
hesaplamak için hücrenin SDCCH kullanım prosedürlerine dikkat etmek
gerekir. Bu prosedürler şunlardır:

• Mevkiinin uygun hale getirilmesi (Location updating)

• Periyodik kayıtlanma (Periodic registration)

• IMSI bağlanması/koparılması (IMSI attach/detach)

• Arama kurulumu (Call setup)

• Kısa mesaj (SMS)

• Faks (Facsimile)

• Ek servisler (Supplementary services)

Bunlar dışında yanlış erişim sayısı da tahmin edilmelidir.

Trafik kapasitesi hesaplanmasında kullanılan servis derecesinin
(Grade of Service) belirlenmesinde çağrının iki farklı kanaldan geçtiği
unutulmamalıdır. Arama önce SDCCH üzerinde başlar ve TCH üzerinde
devam eder. Şekil 5.5 ’te bu durum görülmektedir.

78

Şekil 5.5 - Bir çağrının iki farklı kanaldan geçmesi (Ericsson, 1998b)

Burada A, normal bir çağrının SDCCH üzerinde oluşturduğu
trafiktir. A’ ise SDCCH üzerinde gerçekleştirilen prosedürler için oluşan
trafiktir. SDCCH ve TCH üzerinden geçen çağrılar için elde edilen genel
servis derecesi GoST, şu şekilde gösterilir:

GoST = GoS1 + (1-GoS1)GoS2

Burada GoS1, SDCCH üzerindeki servis derecesidir. GoS2 ise TCH
üzerindeki servis derecesidir. Sinyalleşme kanallarına verilen servis
derecesinin trafik kanallarına verilen servis derecesinden daha iyi olması
gerekir. Çünkü bu değer genel servis derecesini (GoST) etkilediğinden
tüm sistemin performansını belirler.

En doğru SDCCH boyutlandırması her hücreye özel olarak
bakılarak sağlanır. Her hücrenin SDCCH ve TCH yoğunluğuna göre
boyutlandırma (dimensioning) yapılmalıdır. Optimum çözüm olarak
mümkün olabildiğince trafik kanalı kullanımı ile GoS1 değerinin GoS2
değerinin dörtte birini geçmemesi sağlanmalıdır (Ericsson, 1998b).

Sinyalleşme kanalları (SDCCH), GSM deki tanımlamalardan ötürü
sadece dördün katları şeklinde tahsis edilebilir. Bir hücre en fazla 128
sinyalleşme kanalı içerebilir.

79

5.4 Kanal Kullanımı

Kanal kullanımı aşağıdaki örnekle açıklanabilir:

En yoğun saatte, 33 E trafik yaratabilen abonelerin bulunduğu bir
bölgede, bu abonelere servis vermesi gereken bir hücre için gerekli olan
trafik kanalı (TCH) sayısı hesaplanacaktır. Yoğun saatteki kayıp değeri
%2 yi geçmemelidir. Bu gereksinimlerle Erlang B tablosu incelenirse
gerekli olan TCH sayısının 43 olduğu görülür (Şekil 5.6).

Şekil 5.6 - Erlang B Tablosunun bir bölümü (GoS : %2, Trafik: 33 E) (Ericsson, 1998d)

Eğer bu bölgeye bir hücre yerine beş hücre ile servis verilseydi, bu
beş hücrenin toplam trafiği yine 33 E olacaktı. Burada kabul edilebilir
GoS değeri yine %2 ’dir. 33 E ’lık trafiği beş hücrenin paylaşması
sonucu oluşan trafik dağılımı Şekil 5.7 ’de görülmektedir. Şekilde 33 E
’lık trafik için tek bir hücrede 43 trafik kanalı yeterli iken, aynı trafiğin
beş hücreye dağılması sonucunda toplamda daha fazla trafik kanalına
(62) ihtiyaç duyulduğu görülmektedir.

Bu örnek daha çok trafik kanalı içeren büyük bir hücrenin daha
verimli olduğunu göstermektedir. Kanal kullanımını hesaplamak için
önce Erlang B tablosunda 43 kanalın, GoS %2 değeri ile alabileceği
33.758 E trafik değeri %98 (100 - 2) ile çarpılarak verimli trafik (33.083
E) bulunur. Bu değer tek hücreli durumdaki kanal sayısına bölünür.
Böylece ilk durumdaki kanal kullanımı 33.083 / 43 = %77 olarak
bulunur. Ancak bu hücrenin daha küçük hücrelere bölünmesi sonucu
kanal kullanımı azaldığı için daha fazla trafik kanalına ihtiyaç
duyulmaktadır.

80

Şekil 5.7 - Bir hücrenin küçük hücrelere bölünmesi sonucu oluşan trafik dağılımı
(Ericsson, 1998b)

Kapasite ve girişim problemlerinden dolayı her zaman en verimli
kanal kullanımı gerçekleştirilemez. Bu yüzden şebekede uygulanan
çözümlerin, verim ve kalite arasında denge sağlaması gereklidir
(Ericsson, 1998b).

5.5 Frekans Planlama Yöntemleri

Bölgede kullanılacak frekans planlama tekniği hücre planlamanın
kalitesine göre değişkenlik gösterir. Frekans planı, şebekedeki kaliteyi ve
kapasiteyi etkileyen bir faktördür.

Şebekelerde kullanılabilecek çok sayıda frekans planlama teknikleri
mevcuttur. Bunlardan bazıları; Open Planning, Strict MRP (Multiple
Reuse Pattern), Modified MRP, MRP Base-band Hopping, Synthesizer
Hopping (FLP - Fractional Load Planning) ’dir. Şebekenin ve bölgenin
yapısına göre frekans planlarında değişiklikler yapılarak özel frekans
planları ve uygulama teknikleri oluşabilir.

Open planning belli kriterler içerisinde spektrum verimliliği yüksek
olan bir planlama şeklidir. Ancak hücre planlamanın uygun yapılmadığı

81

durumlarda hata olasılığı yüksektir. Planlamada Modified veya Strict
MRP yapısının seçilmesi için bazı gereksinimler oluşmalıdır. Ortalamada
TRU/Hücre ’nin yüksek olduğu bir bölgede, Modified MRP metoduna
geçilebilir. Bu şekilde benzer bir spektrum verimliliğine ulaşılabilir. Aynı
zamanda daha planlı bir frekans planı elde edilmiş olur ve frekanslar daha
etkili kullanıldığından TRU eklemek kolaylaşır. Modified MRP
metodunu uygulamak, Strict MRP metoduna nazaran daha kolaydır.
Bunun sebebi Strict MRP gibi her katmanında belli sayıda frekansın
bulunmamasıdır.

Frekans planları tüm şebekedeki kapasitenin kullanıldığı
düşünülerek hazırlanır. Bunun anlamı, TRU’lara atanan frekansların
tümünün havada bulunduğu düşünülür. Yeniden kullanılma sıklığı
(reuse) şebekenin kapasitesini artırması yanında kaliteyi kötü yönde
etkilemektedir. Kaliteden ödün vererek kapasite arttırılabilir.

Base-band hopping metodunu kullanan şebekelerde TRU
eklendikçe hücrelerde kullanılan frekans sayısı da artmaktadır.
Dolayısıyla kapasiteyi arttırdıkça bölgede kullanılan frekans sayısı
artmakta ve sınırlı sayıda olan frekansları daha sık kullanma zorunluluğu
doğmaktadır. Sonuçta tekrar kullanımın sıklığından doğan kalite
düşüklüğüne karşın kapasite artmaktadır. Kapasite artırılması istenmediği
durumlarda, kalitede iyileşme sağlanması amacıyla yeni frekans planı
hazırlanabilir. Frekans planlama teknikleri kullanılarak şebekenin kalitesi
iyileştirilebilir, baz istasyonları arası uzaklık azaltılarak kapasite
artırılabilir veya hücrelere frekans problemi yaşatmadan TRU eklenebilir.

Frekans planlama metotları şebekede kullanılan özelliklerle
yakından ilgilidir. Hücrelere ne kadar frekans atanacağı veya planlama
yaparken parametrelerin nasıl olacağı bu özellikler tarafından belirlenir.
Burada en etkileyici özellik frekans hoplatma (Frequency Hopping)
özelliğidir ve kullanılan frekans sayısını belirler:

Base-band hopping metodunda;

• Hücredeki TRU sayısı = Hücrede kullanılan frekans sayısı

• Her TRU, sabit bir frekansta yayın yapar

• Konuşmalar, hücredeki TRU ’lar üzerinde yer değiştirir

82

Synthesizer hopping metodunda;

• Hücredeki TRU sayısı < Hücrede kullanılan frekans sayısı

• Her TRU, verilen frekans grubundaki tüm frekanslarda
sırayla yayın yapar

• Konuşmalar, hücredeki TRU lar üzerinde yer değiştirmez

Base-band hopping metodunda BCCH frekansları da
hoplamaktadır. Böylece BCCH katmanında kullanılan frekansların
kullanım sıklığı, hoplamanın kalite üzerindeki olumlu etkisi nedeniyle
artmaktadır. Synthesizer hopping metodunda BCCH frekansları
hoplamamaktadır. Bu sebepten dolayı Base-band ’deki BCCH katmanı
kalitesine ulaşmak için daha fazla BCCH frekansı kullanmak gerekir.
TCH frekanslarında kullanılan tekrar kullanım değerleri BCCH
frekanslarına nazaran daha düşük tutulabilir. Bunun sebebi, BCCH
frekanslarının içerisindeki kanalların, sinyalleşme ve şebekeye ulaşma
amaçlı kullanıldığı için servis kalitesi (QoS) değerlerinin daha yüksek
tutulmaya çalışılmasıdır.

Synthesizer hopping ’in uygulama yöntemlerinden olan FLP 1/1 ve
FLP 1/3 metotları, şebekede iyi kalite sağlamak için kolay ve güçlü bir
yöntemdir. Bu yöntemle frekans planı daha kolay hazırlanır. Kapasite
ihtiyacı sebebiyle hücrelere eklenen yeni TRU’lar için temiz frekans
aramaya gerek yoktur. Synthesizer hopping, hybrid combiner kullanılan
sistemlerde çalışır.

Synthesizer hopping FLP 1/1 metodunda her hücreye aynı frekans
grubu atanır. Hücrelerin birbirlerine girişimde bulunmasını önlemek
amacı ile HSN (Hopping Sequence Number – Hoplama Sıra Numarası)
planı yapılır. HSN hücrede tanımlı frekansların hangi sıra ile
hoplayacağını belirler. 63 adet birbiri ile ortogonal HSN mevcuttur.
Hücre içerisindeki TRU ’ların birbiri ile girişimde bulunmasını önlemek
amacı ile her TRU ’ya belli bir sapma (offset) verilir. Bu parametrenin
adı MAIO ’dur (Mobile Allocation Index Offset). Her hücre TRU sayısı
kadar MAIO değeri içermelidir. Örnek olarak 20 frekanslık bir frekans

83

grubu kullanılırken 3 TRU içeren bir hücreye 0, 2 ve 4 MAIO değerleri
verilirse aynı anda ilk TRU 1. frekans ile yayın yaparken, ikinci TRU 3.
frekans ve üçüncü TRU da 5. frekans ile yayın yapar. Đlk TRU 2. frekans
ile yayın yapmaya başladığında ise ikinci TRU 4. frekans ve üçüncü TRU
6. frekans ile yayın yapmaya başlar.

FLP 1/3 metodunda ise 3 farklı frekans grubu mevcuttur, aynı baz
istasyonundaki hücrelere farklı frekans grupları atanarak hücrelerin
birbirleri ile girişimde bulunması önlenmiş olur.

Frekans hoplama yöntemi, verimi yüksek spektrum kullanımı için
temel gereksinimdir. Frekans hoplama yöntemi her TDMA frame ’inin
iletiminden sonra iletişimin başka frekansta devam etmesi anlamına
gelmektedir. Bu yöntemin kazancı bir hücredeki tüm konuşmaların
ortalama bir girişime maruz kalmalarıdır. Hoplamasız yöntemlerde, her
konuşma sabit bir frekansta gerçekleştiği için temiz frekanstaki bir
konuşma iyi kalitede sağlanırken kirli frekanstaki diğer bir konuşma kötü
kaliteye maruz kalabilir. Frekans hoplama yöntemleri, şebekedeki girişim
(interference) değerini ortalama bir değerde tutarak konuşmaları belli bir
kalitede gerçekleştirir.

FLP yöntemi ile hoplamayan sistemlere göre çok daha iyi konuşma
kalitesi elde edilmesi beklenemez. Yoğunluğu yüksek şehirlerde –90 dB
sinyal seviyesinin altında gerçekleşen konuşmalarda kalite bozuklukları
yaşanabilmektedir. Hücre sınırlarındaki kalite bozuklukları synthesizer
hopping yöntemi ile hoplayan yüksek sayıdaki frekans sayesinde
ortalama bir değer kazanır. Bu sayede hücre sınırlarında oluşan ani kalite
bozulmaları gerçekleşmez, dolayısıyla hücrenin kaliteli konuşma alanı
genişler.

5.5.1 Frekans Planlama Metodu Seçimi

Frekans planlama metodu birçok değişkene bağlıdır. Hangi frekans
metodunun kullanılacağı ağırlıklı olarak frekans sayısı ve şebeke
yapısıyla ilgilidir. Genel anlamda frekans planlama metodu önerilerinin
bulunduğu grafik Şekil 5.8’de görülmektedir. Spektrumu dar (5 MHz ve
altı) operatörlerin yüksek kalite değerli ve kapasiteli şebeke kurmaları
çok zordur. Kalite ve kapasitelerini artırmak amacı ile özel frekans

84

planlama teknikleri kullanmalıdırlar. Şekil 5.8’de synthesizer hopping ’in
bu tür şebekeler için ideal olduğu görülmektedir.

Şekil 5.8 - Frekans planlama metodu önerileri (Ericsson, 1998e)

Spektrum genişliğinin yüksek olmasına rağmen önemli alanlarda
trafiğin yoğun olması nedeni ile sıkışmalar, kalite problemleri ve frekans
bulamama gibi durumlar oluşabilmektedir. MRP yapısı ile BCCH ve
TCH frekansları ayrılmakta, bu şekilde şebekede daha düzenli frekans
planı elde edilmektedir.

Frekans planlama yöntemi hücre planının kalitesine yüksek ölçüde
bağlıdır. Genelde FLP 1/1 ve 1/3 metotları düzensiz hücre planına sahip
şebekelerde frekans bandı dar olmadığı müddetçe kullanılmazlar. Çok dar
spektruma sahip şebekelerde de FLP 1/1 en iyi çözümdür. Şekil 5.9,
spektrum kullanımını, seçilen frekans tekrar kullanımı (reuse) ile TCH

85

frekans sayısının fonksiyonu cinsinden ifade etmektedir. Tekrar kullanım
(reuse), Toplam Frekans sayısı / Ortalama TRU işlemi ile hesaplanır.

Şekil 5.9 - TCH frekans sayısı ve tekrar kullanıma göre spektrum kullanımı (Ericsson,
1998e)

Y ekseninin değeri, şebekenin yapısına ve hücre planına bağlı
olduğundan değişkendir. X sayısı 2 ile 5 Erl/cell/MHz arasında
değişebilir.

TCH frekansı sayısının artışıyla frekans kullanımının, farklı tekrar
kullanım planlarına göre değişken bir şekilde arttığı Şekil 5.9’da
görülmektedir. Reuse 1, 3, 6, 12 arasında uygulama basitliği ve kapasite
açısından ters bir ilişki mevcuttur. 36 frekansın TCH için ayrıldığı bir
şebekede, reuse 6 olan yapı spektrumun en verimli kullanıldığı yapıdır.

86

5.5.2 Ayrık Frekans Dizilimi

BCCH frekans planlaması, TCH frekans planlamasına göre daha
önemlidir, çünkü Broadcast ve Common Control kanalları BCCH
üzerinden yayınlanmaktadır. Bu kanal üzerinden hücrelere bağlanılır.
Ayrıca paging ve komşu hücrelere geçiş (Locating) gibi önemli bilgiler,
bu kanalın bulunduğu frekans üzerinden taşınmaktadır. Özetle
konuşmanın başlaması ve düzgün sürmesi için BCCH frekansının temiz
olması gerekmektedir. Bu durumda BCCH frekanslarında aynı kanal (co-
channel) ve ardışık kanal (adjacent-channel) kavramları ön plana
çıkmaktadır.

Bir BCCH frekansına, bir TCH frekansından çok başka bir BCCH
frekansı tarafından girişim yapılması daha yüksek ihtimaldir. Çünkü bir
hücrede hiçbir konuşma yapılmadığı sırada bile, hücre BCCH
frekansından tam güçle yayın yapmaya devam eder. Bunun sebebi ise,
bölgedeki mobil cihazların hangi hücreden servis alacağının, hücre sinyal
seviyesine göre belirlenmesidir. Böylece mobil cihazlar, bölgedeki
hücrelerin BCCH frekanslarının sinyal seviyesini ölçerek servis alacağı
hücreye karar verirler.

TCH frekanslarında ise, hücrede konuşma yapılmıyorken aynı
bölgedeki hücrelerde girişim yaratmamak için bir yayın yapılmaz.
Konuşma yapılırken ise yine bölgedeki hücrelerde girişim yaratmamak
için, TCH frekansında konuşma kalitesini bozmayacak şekilde minimum
güç ile yayın yapılır. Bu yüzden bir TCH frekansına bir BCCH frekansı
tarafından girişim yapılması daha kolaydır.

Ayrık frekans diziliminde BCCH frekanslarının birbirleriyle ardışık
olma durumları yoktur. Ancak BCCH frekansı sayısına ve spektrumun
darlığına göre BCCH frekansları ile TCH frekansları birbirleriyle ardışık
olabilirler. BCCH için tahsis edilen frekanslar birbirleriyle ardışık
olmadıkları için ve TCH frekanslarının ardışık etkileri daha az olduğu
için ardışık kanal girişimi (Adjacent Channel Interference) görülme
olasılığı azdır. Bu yöntemle BCCH performansı artmakta ve bu
frekanslarda oluşan kalite problemlerinin tespit edilmesi
kolaylaşmaktadır. Ancak TCH frekans planına dikkat edilmelidir. TCH

87

frekanslarında ardışık kanal girişimi görülmemesi için aynı bölgede
ardışık bir BCCH frekansı kullanımından kaçınılmalıdır.

5.5.3 Sürekli Frekans Dizilimi

Sürekli frekans dizilimi yönteminde TCH ve BCCH frekansları
arasında ardışık kanal girişiminin oluşma olasılığı yoktur. BCCH
frekansları kendi aralarında ardışık olabilirler. Bu yüzden BCCH frekans
planına dikkat edilmelidir. BCCH frekanslarında ardışık kanal girişimi
görülmemesi için aynı bölgede ardışık BCCH frekansı kullanımından
kaçınılmalıdır.

TCH frekansları da kendi aralarında ardışık olabilirler. Ancak
konuşma yapılmadığı anlarda yayının kesilmesi ve konuşma anında
düşük güçte yayın yapılabilmesi özellikleri ile TCH frekanslarında
ardışık kanal girişimi oluşması, BCCH frekansından oluşan girişime göre
daha etkisizdir. Yinede en kaliteli iletişim için aynı bölgede ardışık TCH
frekansı kullanımına dikkat edilmelidir.

Sürekli frekans diziliminde BCCH ve TCH frekansları
birbirlerinden bağımsız oldukları için bu yöntemin uygulanması ve
tuning işlemi daha kolay gerçekleştirilir.

5.5.4 MRP (Multiple Reuse Pattern)

MRP, yüksek kapasiteli şebekelerde kullanılan frekans planlama
tekniklerinden biridir (Şekil 5.10). Đki şekilde şebekede uygulanması
mümkündür:

• Strict MRP

• Modified MRP

88

MRP’nin uygulanmasındaki ana sebepler şunlardır:

• Her TRU için ayrılmış frekans bandı sağlar

• Daha düzenli frekans atanması sonucunda, kapasiteyi
arttırmak için yeni hücreler oluşturmak yerine mevcut
hücrelerde 8 TRU ’ya kadar kullanım imkanı sağlar

TRU sayılarının 2 - 6 arasında değiştiği bir şebekede, Open
Planning yöntemi frekans spektrumunu etkin kullanmada daha verimlidir.
Ancak çoğunluğu 5 TRU ’ya yakın çalışan hücrelerin bulunduğu
bölgelerde Strict MRP kullanılması uygundur. Bu bölgedeki hücrelerin
çoğunluğunun TRU sayısı 5 ise Strict MRP ’den elde edilecek spektrum
verimliliği Open Planning ’e göre aynıdır. Birbirinden farklı frekanslar
içeren Bcch, Tch1, Tch2 ve Tch3 gruplarından oluşur. Az sayıda TRU
içeren yerlerde Bcch ve Tch3, orta sayıdaki yerlerde Bcch ve Tch2, çok
sayıdaki yerlerde Bcch ve Tch1 grupları kullanılır.

Modified MRP ise planlaması kolay ve kısıtlaması strict MRP ’ye
göre daha az olan planlama şeklidir. Ancak bu yöntemde hücre
planlamacının bölge bilgisini kullanması gerekir. Modified MRP
spektrum verimliliğini daha iyi sağlamaktadır. Burada Tch1 grubu, Tch2
ve Tch3 grubunu kapsar. Tch2 grubu da Tch3 grubunu kapsar.

Şekil 5.10 - MRP yapıları

89

Strict MRP ’nin Open Planning ’e göre avantajları ve dezavantajları
vardır.

Avantajlar:

• Bir katmanı planlarken kısıtlamalar eklenebilir

• Frekans planını geliştirmek daha kolaydır

• TRU eklemek daha kolaydır

• Kontrollü bir yapı vardır

Dezavantajlar:

• Katmanlara atanacak frekans sayısını tahmin etmek zordur

• Frekans spektrumu verimli olarak kullanılamaz

Strict MRP ’de BCCH ve TCH katmanları kendilerine özel
frekanslardan oluşmaktadır. TCH kanal gruplarındaki frekans sayıları,
katmanların içindeki frekansların yeniden kullanım (reuse) değerleri
birbirlerine eşit olacak şekilde dağıtılmalıdır.

TRU sayısı arttıkça hoplayan frekans sayısı arttığından girişimin
etkisi azalmaktadır. Bu sebepten üst katmanlara çıkıldıkça frekans sayısı
azalır.

Modified MRP ’yi planlamak ve uygulamak Strict MRP ’ye göre
daha kolaydır. Uygulanmasında hücre planlamacının saha bilgisine daha
çok ihtiyaç duyulan Modified MRP, spektrum verimliliğinin yüksek
olduğu bir yöntemdir. Yapısı Şekil 5.10’da belirtilen Modified MRP
metodunda, 1. katmanda tüm TCH frekansları bulunmaktadır. Üst
katmanlara çıkıldıkça frekans sayıları azalır.

Modified MRP ’de frekans planına en üst katmandan başlanmalıdır
(Şekil 5.10’da TCH3 katmanı). Öncelikle en yüksek sayıda TRU ’ya
sahip hücrelere plan yapılmalıdır. En üst katmanda kullanılmayan frekans

90

mevcut ise, bu frekanslar bir alt katmana eklenebilir. Aynı kural, diğer
katmanlar için de uygulanırsa spektrum daha verimli kullanılır.

Frekans planı şebekeye uygulandıktan sonra;

• Şebekenin performansı incelenmelidir. Kötü kaliteyle
çalışan hücreler belirlenmeli ve frekans değişikliklerine
gidilmelidir

• Hücrelerdeki parametre uyumsuzlukları kontrol edilip
raporlanmalıdır

• MRP’nin uygulandığı alanda bazı hücresel istatistiklere de
bakılmalıdır:

o Trafik ve sıkışma zamanları

o Drop/ERL (Konuşma kesilme sayısı / Trafik)

o Bad Quality Drop % (Kötü kalite kaynaklı konuşma
kesilme yüzdesi)

o Bad Quality Urgency Handover % (Kötü kalite kaynaklı
hücre değiştirme yüzdesi)

• Bölgede Drive Test yapılmalıdır. Drive Test, özel bir
telefon ve bilgisayardaki yazılım ile bölgedeki yollarda saha
ölçümleri yapılmasıdır.

Genel bir sonuç olarak, normal trafik yoğunluğu olan alanlarda
open planning, yüksek ve çok yüksek trafik yoğunluğu olan alanlarda
Modified MRP metodu planlama için uygun bir yöntemdir. Çok yüksek
trafik yoğunluğu olan alanlarda, frekans tahsisi çok zor ise Base-band
hopping ’den Synthesizer hopping ’e geçilebilir. Böylece frekans
problemi olmaksızın TRU eklenebilir ya da yeni baz istasyonları
açılabilir.

91

6 HÜCRELERE FREKANS ATAMA UYGULAMASI

Çok sayıda abonenin bulunduğu GSM şebekelerinde, mobil telefon
servislerinin kullanımının artması ve bunun yanında ses ve görüntü
içeren yeni servislerin de gelmesiyle birlikte operatörler bu trafiği
karşılayabilmek için ağ kapasitesini arttırmak zorunda kalırlar.
Kapasiteyi arttırmak için yeni hücreler eklenebilir ya da mevcut makro
hücreler bölünebilir. Bunun yanında operatörler gelişmiş ağ özelliklerini
(advanced network feature) kullanarak frekans tekrar kullanım faktörünü
azaltırlar. Spektrumun limitli olmasından ve donanımsal kısıtlardan
dolayı mevcut makro hücrelerde kapasite artırımının konuşma kalitesinde
kötüleşmeye neden olması kaçınılmazdır (Halonen et al., 2003). Kaliteyi
korumak için makro hücrelerin mikro hücrelere bölünmesiyle aynı alana
daha çok hücre ile servis verilecektir. Bu durumda frekans planlama
önem kazanacaktır.

Bu bölümde, şebekeden servis alan abonelerin mobil cihazları
tarafından yapılan ölçümleri kullanarak frekans planlaması yapan bir
uygulama anlatılacaktır.

6.1 Giri ş

Operatörler, ağ’daki artan talebi karşılayabilmek için, mevcut
hücrelerin kapasitelerini donanımsal eklemeler ile genişletebilir. Bunun
için, hücredeki TRU adı verilen alıcı-verici birimlerin sayısı arttırılır.
Böylece eklenen her TRU ile hücreye ek bir frekans tanımlanarak
kapasite arttırılır. Ancak GSM radyo şebekesinde spektrumun limitli
olmasından dolayı, frekans sayıları sınırlıdır. Ayrıca donanımsal kısıtlar
nedeniyle hücrelerde ardışık frekanslar kullanılamamaktadır. Eklenen
frekansın mevcut ve komşu hücrelerde girişim yaratıp konuşma kalitesini
düşürmemesi için çok iyi seçilmesi gerekir (Eisenblaetter et al., 1999).

TRU eklenmesinin yeterli olmadığı durumlarda mevcut makro
hücrelerin mikro hücrelere bölünmesi ve bunun için de, mevcut baz
istasyonunun servis sahası küçültülerek bu istasyonun altına yeni bir
istasyon açılması gerekir. Şehir merkezlerinde, bir GSM operatörünün

92

baz istasyonları arasındaki mesafe 300 metrenin altındadır. Ancak
çevresel tepkilerden dolayı baz istasyonları çoğu zaman uygun yerlere
konumlandırılamamaktadır. GSM operatörleri yeni baz istasyonları için
uygun yer bulmada birbirleriyle de çekişme halindedir.

Hücre kapsama alanları homojen dağılmadığı için hücrelerin
birbirleri ile kesiştiği çok sayıda alanlar mevcuttur. Eğer bu hücrelerde
aynı ya da ardışık frekanslar kullanılmakta ise, kesişim bölgelerinde
girişim oluşacaktır ve bu bölgede bulunan mobil cihazlar kötü kaliteyle
servis alacaklar yada yüksek hata oranı nedeniyle servis alamayacaklardır

Bir hücreye frekansları atanırken diğer hücrelerle olan komşuluğu
dikkate alınarak en uygun frekanslar verilmelidir. Ancak GSM
operatörünün kullanabileceği frekans sayısı, atanacak frekans sayısının
çok altında olduğu için aynı frekansı şebeke içinde birçok kez kullanmak
gerekir. Örneğin 50 taşıyıcı frekansa sahip ve 20000 TRU içeren bir
şebekede, her frekans ortalama 400 kez tekrar kullanılacaktır (Halonen et
al., 2003).

Hücrelere en uygun frekansların verilebilmesi için bir girişim
matrisine (Interference Matrix) ihtiyaç vardır. Aboneler tarafından
yapılan her arama, girişim matrisi oluşturulmasına katkıda bulunur.
Girişim matrisi, tamamen abonelerin ne zaman ve nerede konuştuklarını
gösterir (Lundqvist et al., 1999).

Bu tez çalışmasında, şebekeden servis alan mobil cihazlar ile alınan
ölçümler kullanılarak hazırlanmış bir girişim matrisini, girdi olarak
kullanan bir program yazılarak hücrelere atanacak frekansların
saptanması sağlanmıştır.

6.2 Mobil Ölçümlere Dayalı Frekans Planlama

Bir mobil cihaz, sadece ona en yakın olan baz istasyonundan sinyal
almaz. Daha uzaktaki, aynı frekansta yayın yapan başka baz
istasyonlarından da sinyaller alır. Buna aynı kanal girişimi (co-channel
interference) adı verilir. Ardışık kanal ise ardışık bir frekans kullanan
kanaldır. Aynı kanal girişimine göre ardışık kanal girişimi (adjacent

93

channel interference) daha az etkilidir. Frekans sayıları limitli
olduğundan dolayı frekanslar tekrar kullanılmak zorundadır. Bu sebeple
girişim problemi oluşmaktadır. Girişimi azaltmak için frekans
planlamaya ihtiyaç vardır.

Mobil ölçümlere dayalı frekans planlama için bir hücreler arası
bağımlılık matrisine (ICDM – Inter Cell Dependency Matrix) ihtiyaç
vardır. ICDM, BCCH Allocation List (BA List) adı verilen ölçüm
raporları kullanılarak oluşturulur.

6.2.1 BA List (BCCH Allocation List)

Bir BA List (BCCH Allocation List), baz istasyonundan mobil
cihazlara gönderilen bir listedir. Bu liste, mobil cihazın hangi BCCH
frekanslarında ölçüm yapması gerektiğini bilmesini sağlar. Mobil cihaz,
bu BCCH frekanslarının sinyal seviyesini ve ölçülen bu frekanslarla
ili şkili BSIC (Base Station Identity Code – Baz Đstasyonu Kimlik
Numarası) bilgisini baz istasyonuna gönderir. BSIC değeri, hangi BCCH
frekansının hangi baz istasyonundan geldiğinin belirlenmesinde kullanılır
(Lundqvist et al., 1999).

Eğer bir mobil cihaz, bir baz istasyonundan uzaklaşmaya başlarsa
sinyal seviyesi azalmaya başlar ve başka bir baz istasyonuna yeterince
yaklaşmışsa bu baz istasyonundaki hücreye aktarılır (handover). BA
raporları, handover yapılması gereken durumlarda aktarma yapılabilecek
hücrelerin belirlenmesinde de kullanılır.

6.2.2 ICDM (Inter Cell Dependency Matrix)

ICDM, bir hücrenin başka bir hücreye ne kadar girişimde
bulunabileceğini trafik yüzdesi olarak gösteren bir matristir. ICDM, çok
boyutlu bir array olarak da düşünülebilir. Bir hücrenin başka bir hücre ile
aynı veya ardışık frekans kullanması durumunda, trafiğinin girişime
uğrayacak yüzdesini, iki durum içinde ayrı ayrı gösterir.

BA listeleri değiştirilerek tüm BCCH frekanslarının ölçülmesi
sağlanır. Mobil cihazlar, bir hücreden servis alırken BA listesindeki tüm
BCCH frekansları için sinyal seviyesini ölçer ve BSIC değerlerini

94

çözmeye (decode) çalışırlar. Eğer çözme işlemi başarılı olursa mobil
cihaz, ölçtüğü sinyal seviyeleri ve BSIC değerleri ile servis aldığı
hücrenin sinyal seviyesini baz istasyonuna yollar. Ölçülen hücrelerin
sinyal seviyelerinden servis alınan hücrenin sinyal seviyesi çıkarıldığında
elde edilen fark, limitlerin üstündeyse bu hücreler potansiyel
girişimcilerdir. Eğer potansiyel hücreler, servis alınan hücre ile aynı
frekansı kullanırlarsa gerçek girişimciye dönüşeceklerdir.

Aynı kanal girişimi oluşmaması için servis alınan hücre ile aynı
frekansa sahip başka bir hücrenin sinyal seviyesi farkının en az 9 dB
olması gerekir. Ardışık kanal girişimi oluşmaması için ise servis alınan
hücre ile ardışık frekansa sahip başka bir hücrenin sinyal seviyesi
farkının en az -3 dB olması gerekir (Lundqvist et al., 1999).

6.3 Frekans Atama Yazılımı

Bu bölümde, mobil ölçümlere dayalı bir frekans planı oluşturmak
için hücrelere uygun frekansları atayan bir yazılım anlatılacaktır.
Geliştirmiş olduğumuz bu yazılım ile mobil ölçümler kullanılarak şebeke
için uygun bir frekans planı elde edilebilir.

Program girdi olarak iki tablo kullanmaktadır. Bu tablolar
şunlardır:

• Frekans planı yapılacak hücrelerin bilgilerini içeren hücre
tablosu (Çizelge 6.1)

• ICDM (Inter Cell Dependency Matrix) tablosu (Çizelge 6.2)

Hücre tablosu “Hücre Adı”, “Taşıyıcı Sayısı” ve “Yoğun Saatteki
Trafik (E)” kolonlarını içerir (Çizelge 6.1). “Hücre Adı” kolonu, 6
karakter içeren ve eşi olmayan hücre adı bilgisini belirtir. “Taşıyıcı
Sayısı” kolonu, hücreye kaç adet taşıyıcı kanal atanacağını belirtir.
“Yoğun Saatteki Trafik (E)” kolonu ise hücrenin gün içerisinde en yoğun
saatteki trafik değerini Erlang cinsinden belirtir.

95

Çizelge 6.1 - Hücre tablosu

Hücre Adı Taşıyıcı Sayısı Yoğun Saatteki
Trafik (E)

AHMTL1 2 3.8654

AHMTL2 5 26.8889

TURDA2 4 19.5540

TURDA1 5 23.3690

AKBAL1 3 9.8557

ICDM tablosu “Kaynak Hücre”, “Girişimci Hücre”, “Aynı Kanal
Girişiminden Etkilenen Trafik (%)” ve “Ardışık Kanal Girişiminden
Etkilenen Trafik (%)” kolonlarını içerir (Çizelge 6.2). “Kaynak Hücre”
kolonu, ölçümleri alan mobil cihazın servis aldığı hücre adını belirtir.
“Giri şimci Hücre”, potansiyel girişimci hücrelerin adını belirtir. “Aynı
Kanal Girişiminden Etkilenen Trafik (%)”, kaynak ve girişimci hücreye
aynı taşıyıcı kanal atanması durumunda kaynak hücrede girişime
uğrayacak trafik yüzdesini belirtir. “Ardışık Kanal Girişiminden
Etkilenen Trafik (%)” ise kaynak ve girişimci hücreye ardışık taşıyıcı
kanal atanması durumunda kaynak hücrede girişime uğrayacak trafik
yüzdesini belirtir.

Geliştirilen yazılımın algoritması, maliyet hesabına ve hücrelere
hangi sırayla frekans atama işlemi yapılacağının belirlenmesine dayanır.
Frekans atama sırasının belirlenmesi için önceliklendirilmiş hücre tablosu
oluşturulur. Çok sayıda potansiyel girişimci hücre içeren bir kaynak
hücreye, temiz bir frekans bulmak çok daha zordur. Bu yüzden ICDM
tablosunda en çok potansiyel girişimci hücre içeren kaynak hücrenin
önceliği en yüksek olarak belirlenir. Potansiyel girişimci hücre sayısı

96

aynı olan kaynak hücreler önceliklendirilirken yoğun saatteki trafik
değeri en yüksek olan kaynak hücrenin önceliği daha yüksek olarak
belirlenir (Çizelge 6.3). Geliştirilen yazılım, frekans atama işlemine
önceliklendirilmiş hücre tablosundaki en yüksek öncelikli hücreden
başlar.

Çizelge 6.2 - ICDM tablosu

Kaynak
Hücre

Giri şimci
Hücre

Aynı Kanal
Giri şiminden

Etkilenen
Trafik (%)

Ardı şık Kanal
Giri şiminden

Etkilenen
Trafik (%)

AHMTL2 AKBAL1 0.38 0

AHMTL2 TURDA1 11.46 3.09

AHMTL2 TURDA2 7.24 0.7

AHMTL2 AHMTL1 80.62 41.44

AHMTL1 TURDA1 2.58 0

AHMTL1 TURDA2 0.54 0

AHMTL1 AHMTL2 50.15 13.89

AKBAL1 AHMTL1 3.45 0.23

AKBAL1 TURDA1 30.24 9.48

AKBAL1 TURDA2 10.03 2.77

TURDA1 AHMTL2 5.37 1.29

TURDA1 TURDA2 45.21 15.61

TURDA2 AHMTL2 12.82 4.63

TURDA2 TURDA1 70.33 24.68

97

Çizelge 6.3 - Önceliklendirilmiş hücre tablosu

Öncelik Hücre Adı Yoğun Saatteki
Trafik (E)

Giri şimci
Sayısı

1 AHMTL2 26.8889 4

2 AKBAL1 9.8557 3

3 AHMTL1 3.8654 3

4 TURDA1 23.3690 2

5 TURDA2 19.5540 2

Geliştirilen yazılım, ICDM tablosundaki veriler ve yoğun saatteki
trafik değerlerini kullanarak önceliklendirilmiş hücre tablosundaki her
hücre için kullanım izni olan tüm frekansların maliyet değerlerini
hesaplar. Bir kaynak hücre için bir frekansın maliyet değeri, aynı
frekansı ve ardışık frekansları kullanan girişimci hücrelerin ICDM
tablosundaki girişimden etkilenen trafik yüzdesi değerleri ile kaynak
hücrenin trafik değeri çarpımlarının toplanması ile elde edilir. Ayrıca
donanımsal kısıtlardan ötürü aynı baz istasyonundaki hücrelerde aynı ve
ardışık frekanslar kullanılması kaliteyi kötü yönde etkilediğinden aynı
baz istasyonunda aynı frekans kullanımında 10000, ardışık frekans
kullanımında 1000 maliyet puanı maliyet değerine eklenir. Yazılım, her
hücreye tek tek en düşük maliyet değerine sahip olan frekansları atar. Bir
hücrenin maliyet değeri, ona atanan frekansların maliyet değerleri
toplamına eşittir. Oluşturulan frekans planının maliyet değeri ise
hücrelerin maliyet değerleri toplamına eşittir. Yazılım, en uygun frekans
planını elde edebilmek için frekans planının maliyet değerini
iyileştirmeyi amaçlar. Bunu için hücrelere birçok kez farklı frekans
ataması yapabilir.

98

Geliştirilen yazılımın işleyiş biçimi Şekil 6.1’de görülmektedir. Bu
yazılım sonsuz bir döngüde ya da kullanıcının belirleyeceği bir döngü
sayısında çalışabilir. Kullanıcılar istediklerinde o ana kadar düşürülebilen
en düşük maliyet değerine sahip kaydedilmiş frekans planına
ulaşabilirler. Ayrıca kullanıcılar, BCCH ve TCH frekans planında
kullanılacak taşıyıcı frekansları da planlama işlemine başlamadan önce
belirtmelidir.

Örnek bir TCH planı oluşturmak için taşıyıcı kanallar 1 ile 15
arasında seçilerek Çizelge 6.1’deki hücre bilgileri ve Çizelge 6.2’deki
ICDM bilgileri ile programı çalıştırdığımızda oluşan sonuç plan Çizelge
6.4’te görülmektedir.

Çizelge 6.4 - Oluşturulan sonuç plan

Hücre Adı Taşıyıcı
1

Taşıyıcı
2

Taşıyıcı
3

Taşıyıcı
4

Taşıyıcı
5

AHMTL1 1 3

AHMTL2 5 7 10 12 14

AKBAL1 5 7 15

TURDA1 1 3 9 11 13

TURDA2 4 6 8 15

99

Şekil 6.1 - Geliştirilen yazılımın işleyiş biçimi

100

Frekans planında kullanılmak için seçilen 1 ile 15 arasındaki
taşıyıcı kanalların oluşturulan sonuç planındaki hücrelere göre maliyet
değerleri Çizelge 6.5’te görülmektedir.

Çizelge 6.5 - Hücrelere göre taşıyıcı kanalların maliyet değerleri

Taşıyıcı
Kanal

AHMTL1 AHMTL2 AKBAL1 TURDA1 TURDA2

1 0,10 10024,76 3,32 0,00 10013,8

2 0,00 2023,95 1,91 0,00 2009,65

3 0,10 10024,95 3,59 1003,65 10013,8

4 1000,56 1013,92 1,95 10010,87 1005,73

5 10001,9 0,48 0,55 2008,55 2,51

6 2001,09 1,95 0,99 10011,17 1,81

7 10001,9 0,48 0,55 2008,55 2,51

8 1000,56 2,78 1,92 10010,87 1005,73

9 1000,64 3,27 3,25 1003,95 10014,7

10 10001,9 1,66 1,87 1,25 2012,16

11 2001,17 3,08 2,98 0,60 10015,6

12 10001,9 1,66 1,87 1,25 2012,16

13 2001,17 3,08 2,98 0,60 10015,6

14 10001,9 1,02 1,21 1004,90 1007,33

15 1000,56 2,05 0,99 10010,87 0,91

101

Örnek olarak “TURDA1” hücresinin ikinci taşıyıcı kanalı olan 3
için maliyet değeri 1003,65 olarak hesaplanmıştır. Bu hücrenin, ICDM
tablosunda iki tane potansiyel girişimci hücresi vardır. Bunlardan biri
“AHMTL2” hücresi diğeri ise “TURDA2” hücresidir. 1003,65 değeri şu
işlemler ile hesaplanmıştır:

• “AHMTL2” ve “TURDA2” potansiyel girişimcileri, 3
numaralı taşıyıcı kanalı içermedikleri için bu hücrelerden
kaynaklı aynı kanal girişimi bulunmamaktadır.

• “AHMTL2” potansiyel girişimcisi, 2 ve 4 numaralı taşıyıcı
kanalları içermediği için bu hücre kaynaklı ardışık kanal
girişimi bulunmamaktadır.

• “TURDA2” potansiyel girişimcisi, 4 numaralı taşıyıcı
kanalı içermektedir. “TURDA1” kaynak hücresi için,
“TURDA2” giri şimcisinin ICDM tablosundaki “Ardışık
Kanal Girişiminden Etkilenen Trafik (%)” değeri %15,61
’dir. Bu değer ile “TURDA1” kaynak hücresinin “Yoğun
Saatteki Trafik (E)” değeri çarpılarak (0,1561 x 23,3690)
3,65 maliyet değeri elde edilir.

• “TURDA1” ve “TURDA2” hücreleri aynı baz
istasyonundaki hücrelerdir. Bu sebeple 3,65 değerine, aynı
baz istasyonunda ardışık kanal kullanımından dolayı 1000
maliyet değeri eklenerek 1003,65 frekans maliyet değeri
elde edilir.

Çizelge 6.5 ’deki frekans maliyet değerleri, döngü içerisinde her
frekans ataması ya da frekans değişimi sonrası tekrar hesaplanırlar. Her
frekans ataması ya da değişimi öncesi bu tablo kullanılarak o hücre için
en düşük maliyete sahip frekans belirlenir ve tek bir atama yapılır. Eğer
hücrenin birden fazla taşıyıcı kanal ihtiyacı var ise atanan ilk frekansın ve
bu frekansa ardışık olan frekansların aynı hücre içinde tekrar kullanımını
engellemek için bu frekanslara geçici olarak 100000 maliyet değeri
eklenir. Bu değer eklendikten sonra frekans maliyetleri bir sonraki atama
için tekrar hesaplanır ve en düşük maliyete sahip ikinci frekans belirlenir.
Hücreye gerekli olan tüm taşıyıcı kanallar atandıktan sonra bu frekanslara
ve bu frekansların ardışık frekanslarına eklenen 100000 maliyet değeri

102

kaldırılır ve frekans maliyet değerleri toplanarak hücrenin maliyet değeri
elde edilir. Örnek olarak “AKBAL1” hücresine 5, 7 ve 15 taşıyıcı
kanalları atanmıştır. Bu hücrenin maliyet değeri 2,09 (0,55 + 0,55 + 0,99)
’dur. Bir hücrenin tüm frekansları atandıktan sonra önceliklendirilmiş
hücre tablosunda sıradaki hücreye geçilir ve sıradaki hücre için de
Çizelge 6.5 ’deki frekans maliyet değerleri hesaplanarak aynı işlemler
gerçekleştirilir.

Oluşturulan sonuç planının toplam maliyeti Çizelge 6.6 ’da
görülmektedir. Bu değer tüm hücre maliyetlerinin toplamına eşittir ve en
iyi planın elde edilip edilmediğinin değerlendirilmesinde kullanılır.
Yazılımın amacı, sonuç planının maliyetini en aza indirmektir.

Çizelge 6.6 - Oluşturulan sonuç planının toplam maliyeti

Hücre Adı Maliyet Değeri
AHMTL1 0,20
AHMTL2 5,30

AKBAL1 2,09

TURDA1 2008,80

TURDA2 2014,18

TOTAL 4030,57

103

6.3.1 Frekans Atama Yazılımının Çalışma Sonuçları

Spektrumun darlığından ötürü limitli frekans sayısına sahip
olunduğu için aynı frekanslar sıkça tekrar kullanılmak zorundadır.
Sinyaller arası girişim problemini azaltmak için frekans planı yapılması
gereklidir.

Girişim seviyesi, doğrudan konuşma kalitesini, kesintisiz konuşma
süresini ve kesinti yaşanan konuşma sayısını etkiler. Limitli frekans
spektrumunu verimli şekilde kullanmak için radyo şebekesindeki girişim
seviyesi en aza indirilmelidir.

Geliştirilen yazılım, girişim seviyesini en aza indirmek için mobil
ölçümleri kullanarak uygun bir frekans planı oluşturmaktadır.
Oluşturulan plandaki frekanslar, abonelerin mobil cihazlarına servis
veren ilgili hücrelere atanır. Dolayısıyla aboneler atanan frekanslardan,
yani radyo şebekesinin kalitesinden doğrudan etkilenmektedirler. Bu
yüzden şebekeden servis alan abonelerin mobil cihazları tarafından
yapılan ölçümlere dayalı bir plan oluşturmak önemlidir.

Bu yazılım, Türkiye’deki GSM operatörlerinden birinde test
edilmiştir. Test edilen iller ve frekans planları şunlardır:

• Ankara ili TCH planı
• Antalya ili BCCH planı
• Antalya ili TCH planı
• Gaziantep, Hatay, Kilis, Mardin, Şanlıurfa, Şırnak illeri

BCCH planı
• Gaziantep, Hatay, Kilis, Mardin, Şanlıurfa, Şırnak illeri

TCH planı
• Đzmir ve Manisa illeri TCH planı
• Ağrı, Ardahan, Artvin, Bayburt, Erzincan, Erzurum,

Giresun, Gümüşhane, Iğdır, Kars, Ordu, Rize, Trabzon illeri
BCCH planı

• Ağrı, Ardahan, Artvin, Bayburt, Erzincan, Erzurum,
Giresun, Gümüşhane, Iğdır, Kars, Ordu, Rize, Trabzon illeri
TCH planı

104

Geliştirilen yazılımın test edilebilmesi için sonuçlarının
kıyaslanabileceği bir ortama ihtiyaç vardır. Bu yüzden sonuçlar, tüm
dünyada kullanılan AIRCOM International firmasının ASSET programı
altındaki otomatik frekans planlama modülü olan ILSA ile
kıyaslanmıştır. ILSA programı da maliyet hesabına dayalı bir programdır
ve oluşturduğu frekans planının maliyet değerini en aza indirmeye çalışır.
ILSA programının diğer bir özelliği ise, kendisine mevcut bir frekans
planı girildiğinde bu planın maliyet değerini kullanıcıya bildirmektedir.
Bu özellik ile geliştirilen yazılımın oluşturduğu frekans planları, ILSA
programına girilip ILSA programındaki maliyet değerleri görülmüştür.

Aynı şartları sağlayabilmek için geliştirilen yazılım ile ILSA
programına aynı veriler girilmiştir ve her iki program aynı sürelerde
çalıştırılıp frekans planları elde edilmiştir. ILSA programının dezavantajı,
her çalıştırıldığında aynı sürede farklı maliyet değerine sahip bir plan
oluşturmasıdır. Bu sebeple ILSA programı, çalışma süresinin uzun
olmasından dolayı her plan için 5’er kez çalıştırılabilmiştir. Oluşturulan
planların maliyet değeri kıyaslaması sonuçları şunlardır;

• Ankara ili TCH Planı:

Kullanılan
Program

ILSA Programında
Hesaplanan Maliyet Değeri

Geliştirilen
Yazılım

237.312.734

ILSA 237.872.490

ILSA 237.803.615

ILSA 238.129.314

ILSA 237.798.221

ILSA 237.885.382

105

• Antalya ili BCCH Planı:

Kullanılan
Program

ILSA Programında
Hesaplanan Maliyet Değeri

Geliştirilen
Yazılım

905.329

ILSA 1.128.981

ILSA 1.342.256

ILSA 1.107.134

ILSA 1.148.332

ILSA 1.221.719

• Antalya ili TCH Planı:

Kullanılan
Program

ILSA Programında
Hesaplanan Maliyet Değeri

Geliştirilen
Yazılım

190.297.223

ILSA 192.887.902

ILSA 193.239.155

ILSA 192.388.687

ILSA 192.582.430

ILSA 192.129.201

106

• Gaziantep, Hatay, Kilis, Mardin, Şanlıurfa, Şırnak illeri
BCCH planı:

Kullanılan
Program

ILSA Programında
Hesaplanan Maliyet Değeri

Geliştirilen
Yazılım

445.812.333

ILSA 506.302.769

ILSA 506.121.664

ILSA 507.243.982

ILSA 506.476.894

ILSA 506.843.756

• Gaziantep, Hatay, Kilis, Mardin, Şanlıurfa, Şırnak illeri
TCH planı:

Kullanılan
Program

ILSA Programında
Hesaplanan Maliyet Değeri

Geliştirilen
Yazılım

47.832.778.721

ILSA 48.256.667.483

ILSA 48.554.561.487

ILSA 48.387.688.322

ILSA 48.336.975.815

ILSA 48.410.056.729

107

• Đzmir ve Manisa illeri TCH planı:

Kullanılan
Program

ILSA Programında
Hesaplanan Maliyet Değeri

Geliştirilen
Yazılım

12.190.253.131

ILSA 12.328.471.111

ILSA 12.305.832.592

ILSA 12.289.335.241

ILSA 12.173.257.211

ILSA 12.131.861.230

• Ağrı, Ardahan, Artvin, Bayburt, Erzincan, Erzurum,
Giresun, Gümüşhane, Iğdır, Kars, Ordu, Rize, Trabzon illeri
BCCH planı:

Kullanılan
Program

ILSA Programında
Hesaplanan Maliyet Değeri

Geliştirilen
Yazılım

2.350.421

ILSA 2.681.239

ILSA 2.720.334

ILSA 2.695.934

ILSA 2.879.238

ILSA 2.751.383

108

• Ağrı, Ardahan, Artvin, Bayburt, Erzincan, Erzurum,
Giresun, Gümüşhane, Iğdır, Kars, Ordu, Rize, Trabzon illeri
TCH planı:

Kullanılan
Program

ILSA Programında
Hesaplanan Maliyet Değeri

Geliştirilen
Yazılım

307.990.286

ILSA 314.421.454

ILSA 315.300.291

ILSA 314.567.912

ILSA 314.455.510

ILSA 314.741.353

Đzmir ve Manisa illeri TCH planı dışında diğer tüm planlarda
geliştirilen yazılım ILSA programına göre daha iyi sonuç vermiştir. Đzmir
ve Manisa illeri TCH planında ise beş çalıştırmanın üçüne göre daha iyi
sonuç vermiştir.

Geliştirilen yazılım, özellikle BCCH planlarında ILSA programına
göre çok daha iyi sonuçlar vermiştir. TCH planlarında ise sonuçlar
birbirine daha yakındır.

109

6.3.2 Frekans Atama Sonuçlarının Değerlendirilmesi

Geliştirilen yazılımın sonuçlarının ILSA ile kıyaslanmasından
sonra ILSA programına göre daha iyi bir frekans planı elde edildiği
görülmüştür. Elde edilen bu frekansların, plan yapılan bölgedeki
hücrelere atanmasından sonra hücrelerin tüm kalite değerlerinde iyileşme
sağlanmıştır. Bu kalite değerleri Şekil 6.2’de görülmektedir. Burada
Integrity hücrelerin TCH frekanslarının ses kalitesini göstermektedir. Bad
6&7 Samples değerlerini içerir. Kalite değeri 6 ve 7 olduğu durumlarda
konuşma gerçekleştirilemez. Call Setup Success Rate hücrelerin BCCH
frekansı kalitesini gösterir. BCCH frekans kalitesi iyiyse hücreye erişim
sağlanabilir. Retainability hücrelerin TCH frekanslarının kalitesini
gösterir. Bad Quality Disconnection ve Drop değerlerini içerir. Bu
değerler konuşma sırasında yaşanan kesintileri gösterirler. Route Rxqual
değeri ise belirli yollardan geçilerek alınan sinyal kalitesi değerleridir.

Şekil 6.2 - Hücrelerin kalite değerlerindeki iyileşme

110

6.3.3 Frekans Atama Yazılımının Kullanımı

Geliştirilen yazılım ile frekans atama işlemine başlamadan önce
yapılması gerekenler şunlardır:

• Hücre tablosu (Çizelge 6.1) programa yerleştirilmelidir.
Bunun için bu tablodaki kolon sırasına uygun olarak
hazırlanmış tab ayıraçlı bir text dosya kullanılmalıdır. “<
Hücre Dosyası” butonuna basılarak ekrana gelen
pencereden bu dosyanın seçilmesi yeterlidir. Dosya
seçildikten sonra içerdiği değerler ekrana gelecektir.

• ICDM tablosu (Çizelge 6.2) programa yerleştirilmelidir.
Bunun için bu tablodaki kolon sırasına uygun olarak
hazırlanmış tab ayıraçlı bir text dosya kullanılmalıdır.

• “ICDM Dosyası >” butonuna basılarak ekrana gelen
pencereden bu dosyanın seçilmesi yeterlidir. Dosya
seçildikten sonra içerdiği değerler ekrana gelecektir.

• Frekans atama işleminde kullanılacak BCCH frekansları
“Ekle =>” butonu kullanılarak seçilmelidir.

• Frekans atama işleminde kullanılacak TCH frekansları
“Ekle =>” butonu kullanılarak seçilmelidir.

• “Cosite Aynı Kanal” maliyet değeri 10000 olarak
belirlenmiştir. Đstenirse bu değer ekrandan değiştirilebilir.

• “Cosite Ardışık Kanal” maliyet değeri 1000 olarak
belirlenmiştir. Đstenirse bu değer ekrandan değiştirilebilir.

• TCH frekans planı yapılmak isteniyorsa TCH kutucuğu
işaretlenmelidir.

• BCCH frekans planı yapılmak isteniyorsa BCCH kutucuğu
işaretlenmelidir.

• Hem TCH hem BCCH frekans planı yapılmak isteniyorsa
TCH ve BCCH kutucuğu işaretlenmelidir.

111

Bu işlemler yapıldıktan sonra frekans atama işlemine başlamak için
“Frekans Planı Oluştur” butonuna basılır. Atama işlemi yapılırken o ana
kadarki elde edilen en iyi maliyet değeri ekrandaki “Toplam Maliyet”
alanında görülmektedir. Atama işlemi bittikten sonra “Planı Kaydet”
butonu ile oluşturulan son frekans planı istenen dosya adıyla kaydedilir.
Yazılımın ekran görüntüsü Şekil 6.3’te görülmektedir.

Şekil 6.3 - Frekans atama yazılımı ekran görüntüsü

112

Ek 1 Frekans Atama Yazılımının Kaynak Kodu

Frekans atama yazılımı, PowerBuilder (Powersoft PowerBuilder
Enterprise by Sybase 6.5.1) ortamında geliştirilmi ştir. Yazılımın
PowerBuilder ortamında geliştirilmesinin sebebi, yazılımın test edildiği
GSM operatöründe bu ortamın kullanılıyor olmasıdır.

Kaynak kodu:

$PBExportHeader$w_afp.srw

forward
global type w_afp from window_common
end type
type d_afp_cells from datawindow_common within w_afp
end type
type cb_import_cells from commandbutton within w_afp
end type
type d_afp_icdm from datawindow_common within w_afp
end type
type cb_import_icdm from commandbutton within w_afp
end type
type cb_plan from commandbutton within w_afp
end type
type lb_all_frequencies from listbox within w_afp
end type
type st_all_freq from statictext within w_afp
end type
type lb_bcch_frequencies from listbox within w_afp
end type
type cb_add_bcch from commandbutton within w_afp
end type
type st_bcch_freq from statictext within w_afp
end type
type cb_remove_bcch from commandbutton within w_afp
end type
type st_all_freq_3 from statictext within w_afp

113

end type
type lb_all_frequencies_3 from listbox within w_afp
end type
type st_tch_freq from statictext within w_afp
end type
type lb_tch_frequencies from listbox within w_afp
end type
type cb_add_tch from commandbutton within w_afp
end type
type cb_remove_tch from commandbutton within w_afp
end type
type d_afp_cell_frequencies from datawindow_common within w_afp
end type
type st_initial_cost from statictext within w_afp
end type
type st_initial_cost_label from statictext within w_afp
end type
type cb_optimize from commandbutton within w_afp
end type
type cb_save_initial from commandbutton within w_afp
end type
type st_best_cost_label from statictext within w_afp
end type
type st_best_cost from statictext within w_afp
end type
type d_afp_cell_frequencies_best from datawindow_common within
w_afp
end type
type sle_optimize_times from singlelineedit within w_afp
end type
type st_times from statictext within w_afp
end type
type st_status from statictext within w_afp
end type
type st_status_label from statictext within w_afp
end type
type d_afp_initial_plan from datawindow_common within w_afp
end type
type cb_import_initial_plan from commandbutton within w_afp

114

end type
type cb_clear_initial_plan from commandbutton within w_afp
end type
type d_afp_icdm_interferer from datawindow_common within w_afp
end type
type cb_check_plan from commandbutton within w_afp
end type
type dr_frequency from datawindow_main within w_afp
end type
type lb_cell_name from listbox within w_afp
end type
type lb_external_name from listbox within w_afp
end type
type cbx_bcch_plan from checkbox within w_afp
end type
type cbx_tch_plan from checkbox within w_afp
end type
type st_best_bcch_cost from statictext within w_afp
end type
type st_best_tch_cost from statictext within w_afp
end type
type st_best_bcch_cost_label from statictext within w_afp
end type
type st_best_tch_cost_label from statictext within w_afp
end type
type gb_3 from groupbox within w_afp
end type
type gb_1 from groupbox within w_afp
end type
type cb_save_best from commandbutton within w_afp
end type
type gb_2 from groupbox within w_afp
end type
type st_initial_bcch_cost_label from statictext within w_afp
end type
type st_initial_tch_cost_label from statictext within w_afp
end type
type st_initial_bcch_cost from statictext within w_afp
end type

115

type st_initial_tch_cost from statictext within w_afp
end type
type cb_import_icdm_msmt from commandbutton within w_afp
end type
type sle_same_ch_cost from singlelineedit within w_afp
end type
type sle_adj_ch_cost from singlelineedit within w_afp
end type
type sle_forbid_ch_cost from singlelineedit within w_afp
end type
type st_1 from statictext within w_afp
end type
type st_2 from statictext within w_afp
end type
type st_3 from statictext within w_afp
end type
type st_4 from statictext within w_afp
end type
end forward

type struct_temp_cell_freq_bcch from structure
 long temp_cell_freq_bcch[]
 long temp_best_cell_freq_bcch[]
 long temp_freq_no[124]
 decimal {0} temp_freq_cost[124]
end type

global type w_afp from window_common
int X=5
int Y=4
int Width=4681
int Height=3052
boolean TitleBar=true
string Title="AFP"
long BackColor=82042848
d_afp_cells d_afp_cells
cb_import_cells cb_import_cells
d_afp_icdm d_afp_icdm
cb_import_icdm cb_import_icdm

116

cb_plan cb_plan
lb_all_frequencies lb_all_frequencies
st_all_freq st_all_freq
lb_bcch_frequencies lb_bcch_frequencies
cb_add_bcch cb_add_bcch
st_bcch_freq st_bcch_freq
cb_remove_bcch cb_remove_bcch
st_all_freq_3 st_all_freq_3
lb_all_frequencies_3 lb_all_frequencies_3
st_tch_freq st_tch_freq
lb_tch_frequencies lb_tch_frequencies
cb_add_tch cb_add_tch
cb_remove_tch cb_remove_tch
d_afp_cell_frequencies d_afp_cell_frequencies
st_initial_cost st_initial_cost
st_initial_cost_label st_initial_cost_label
cb_optimize cb_optimize
cb_save_initial cb_save_initial
st_best_cost_label st_best_cost_label
st_best_cost st_best_cost
d_afp_cell_frequencies_best d_afp_cell_frequencies_best
sle_optimize_times sle_optimize_times
st_times st_times
st_status st_status
st_status_label st_status_label
d_afp_initial_plan d_afp_initial_plan
cb_import_initial_plan cb_import_initial_plan
cb_clear_initial_plan cb_clear_initial_plan
d_afp_icdm_interferer d_afp_icdm_interferer
cb_check_plan cb_check_plan
dr_frequency dr_frequency
lb_cell_name lb_cell_name
lb_external_name lb_external_name
cbx_bcch_plan cbx_bcch_plan
cbx_tch_plan cbx_tch_plan
st_best_bcch_cost st_best_bcch_cost
st_best_tch_cost st_best_tch_cost
st_best_bcch_cost_label st_best_bcch_cost_label
st_best_tch_cost_label st_best_tch_cost_label

117

gb_3 gb_3
gb_1 gb_1
cb_save_best cb_save_best
gb_2 gb_2
st_initial_bcch_cost_label st_initial_bcch_cost_label
st_initial_tch_cost_label st_initial_tch_cost_label
st_initial_bcch_cost st_initial_bcch_cost
st_initial_tch_cost st_initial_tch_cost
cb_import_icdm_msmt cb_import_icdm_msmt
sle_same_ch_cost sle_same_ch_cost
sle_adj_ch_cost sle_adj_ch_cost
sle_forbid_ch_cost sle_forbid_ch_cost
st_1 st_1
st_2 st_2
st_3 st_3
st_4 st_4
end type
global w_afp w_afp

type variables
Boolean bcch_frequency_list[124]
Boolean tch_frequency_list[124]
long cell_count
long cell_tch_number[]
decimal cell_traffic[]
decimal icdm_co[4000,500]
decimal icdm_co_int[4000,500]
decimal icdm_adj[4000,500]
decimal icdm_adj_int[4000,500]
long icdm_interferer_ind[4000,500]
long icdm_interfered_ind[4000,500]
long cell_interferer_count[]
long cell_interfered_count[]
long cell_freq_bcch[]
long cell_freq_tch[4000,16]
long best_cell_freq_bcch[]
long last_best_cell_freq_bcch[]
long best_cell_freq_tch[4000,16]
long last_best_cell_freq_tch[4000,16]

118

long freq_no[124]
decimal freq_cost[124]
long random_bcch_list[]
long random_tch_list[]
long random_bcch_count
long random_tch_count
decimal freq_cost_table[4000,124]
decimal temp_freq_cost_table[4000,124]
decimal last_freq_cost_table[4000,124]
long forbidden_bcch_list[4000,124]
long forbidden_tch_list[4000,124]
long forbidden_bcch_count[4000]
long forbidden_tch_count[4000]
long fixed_bcch_list[4000]
long fixed_tch_list[4000,124]
long fixed_tch_count[4000]
boolean flag_cosite_cost_added[4000,4]
boolean flag_check_frequency[4000]
long log_file
long same_ch_cost,adj_ch_cost,forbid_ch_cost
end variables

forward prototypes
public subroutine f_clear_frequency_cost ()
public function decimal f_calculate_cost ()
public subroutine f_copy_cell_freq_to_best ()
public subroutine f_copy_initial_to_cell_freq ()
public subroutine f_calculate_nbr_count ()
public subroutine f_copy_best_to_cell_freq ()
public subroutine f_set_random_bcch ()
public function long f_get_best_bcch (long cell_id)
public subroutine f_clear_freq_cost_table ()
public subroutine f_set_random_tch ()
public function long f_get_best_tch (long cell_id)
public subroutine f_set_forbidden_and_fixed_freq ()
public subroutine f_clear_forbidden_and_fixed_list ()
public subroutine f_clear_cell_freqs ()
public subroutine f_set_arrays_from_dw ()
public subroutine f_add_cost_to_forbidden_fixed ()

119

public subroutine f_clean_cosite_costs ()
public subroutine f_check_new_plan ()
public subroutine f_check_initial_plan ()
public subroutine f_add_cost_in_cosite ()
public subroutine f_make_best_plan_dw ()
public subroutine f_change_bcch_frequency (long cell_order, long
new_frequency)
public subroutine f_change_tch_frequency (long cell_order, long
tch_order, integer new_frequency)
public function decimal f_calculate_cost_new ()
end prototypes

public subroutine f_clear_frequency_cost ();long i
For i = 1 to 124
 freq_no[i] = i
 if bcch_frequency_list[i] = true then
 freq_cost[i] = 0
 elseif tch_frequency_list[i] = true then
 freq_cost[i] = 0
 else
 freq_cost[i] = 4000000000
 end if
Next
end subroutine

public function decimal f_calculate_cost ();long i,rc,o,k,j,m
decimal co_affect,adj_affect,total_cost,result_cost
long tch_count,bcch,tch,tru_number
long int_cll_ind

total_cost = 0

For i = 1 to cell_count
 f_clear_frequency_cost()

 //Frekans Cost Tablosu hazirlama
 For o = 1 to cell_interferer_count[i]

 int_cll_ind = icdm_interferer_ind[i,o]

120

 co_affect = icdm_co[i,o]
 adj_affect = icdm_adj[i,o]
 tch_count = cell_tch_number[int_cll_ind]

 bcch = cell_freq_bcch[int_cll_ind]
 if bcch > 0 then
 freq_cost[bcch] += (co_affect * 10)
 if bcch > 1 then freq_cost[bcch - 1] += (adj_affect
* 10)
 if bcch < 124 then freq_cost[bcch + 1] +=
(adj_affect * 10)
 end if

 For k = 1 to tch_count
 tch = cell_freq_tch[int_cll_ind,k]
 if tch > 0 then
 freq_cost[tch] += co_affect
 if tch > 1 then
 freq_cost[tch - 1] += adj_affect
 end if
 if tch < 124 then
 freq_cost[tch + 1] += adj_affect
 end if
 end if
 Next

 Next

 if cbx_bcch_plan.checked then
 bcch = cell_freq_bcch[i]
 For m = 1 to forbidden_bcch_count[i]
 if bcch = forbidden_bcch_list[i,m] then
 freq_cost[bcch] += forbid_ch_cost
 exit
 end if
 Next
 end if

121

 if cbx_tch_plan.checked then
 For j = 1 to cell_tch_number[i]
 tch = cell_freq_tch[i,j]
 if tch > 0 then

 if cbx_bcch_plan.checked then
 if Abs(bcch - tch) <= 1 then
 freq_cost[tch] += 100000
 freq_cost[bcch] += 100000
 end if
 end if

 For k = (j+1) to cell_tch_number[i]
 if Abs(cell_freq_tch[i,k] - tch) <= 1 then
 freq_cost[tch] += 100000
 freq_cost[cell_freq_tch[i,k]] +=
100000
 end if
 Next
 For m = 1 to forbidden_tch_count[i]
 if tch = forbidden_tch_list[i,m] then
 freq_cost[tch] += forbid_ch_cost
 exit
 end if
 Next

 end if
 Next
 end if

 if cbx_bcch_plan.checked then
 if cell_freq_bcch[i] > 0 then
 result_cost = freq_cost[cell_freq_bcch[i]]
 else
 result_cost = 0
 end if
 else
 result_cost = 0
 end if

122

 if cbx_tch_plan.checked then
 For j = 1 to cell_tch_number[i]
 if cell_freq_tch[i,j] > 0 then result_cost +=
freq_cost[cell_freq_tch[i,j]]
 Next
 end if

 total_cost += result_cost
Next

return total_cost
end function

public subroutine f_copy_cell_freq_to_best ();long i,j,rc

d_afp_cell_frequencies_best.reset()
rc = d_afp_cell_frequencies.rowcount()

For i = 1 to rc
 d_afp_cell_frequencies_best.insertrow(0)
 d_afp_cell_frequencies_best.setitem(i,"cell_name",d_afp_cell_freq
uencies.getitemstring(i,"cell_name"))
 d_afp_cell_frequencies_best.setitem(i,"bcch",d_afp_cell_frequenci
es.getitemnumber(i,"bcch"))
 d_afp_cell_frequencies_best.setitem(i,"tru_number",d_afp_cell_fre
quencies.getitemnumber(i,"tru_number"))
 For j = 1 to 16

 d_afp_cell_frequencies_best.setitem(i,("tch"+string(j)),d_afp_cell_
frequencies.getitemnumber(i,("tch"+string(j))))
 Next
 d_afp_cell_frequencies_best.setitem(i,"bcch_cost",d_afp_cell_freq
uencies.getitemdecimal(i,"bcch_cost"))
 d_afp_cell_frequencies_best.setitem(i,"tch_cost",d_afp_cell_freque
ncies.getitemdecimal(i,"tch_cost"))
 d_afp_cell_frequencies_best.setitem(i,"total_cost",d_afp_cell_freq
uencies.getitemdecimal(i,"total_cost"))
Next

123

end subroutine

public subroutine f_copy_initial_to_cell_freq ();long i,j,o,last_row,rc,m
decimal co_affect,adj_affect
long bcch,tch,tru_number,frequency_no
string src_cll, int_cll, tch_string
long src_cll_ind, int_cll_ind, ext_cll_ind, cell_no
decimal src_trf
string forbidden_bcch_string,forbidden_tch_string,fixed_tch_string

lb_cell_name.reset()
lb_external_name.reset()

cell_count = d_afp_cells.rowcount()
last_row = d_afp_icdm.rowcount()

d_afp_icdm.SetRedraw(false)
d_afp_cells.SetRedraw(false)

d_afp_cells.SetSort("#9 D, #4 D")
d_afp_cells.Sort()

For i = 1 to cell_count
 lb_cell_name.InsertItem(d_afp_cells.getitemstring(i,"cell_name"),i)
 cell_tch_number[i] =
d_afp_cells.getitemnumber(i,"total_tch_count")
 cell_traffic[i] = d_afp_cells.getitemdecimal(i,"tot_traf")
 cell_interferer_count[i] = 0
 cell_interfered_count[i] = 0
Next

f_clear_freq_cost_table()
f_clear_forbidden_and_fixed_list()

For i = 1 to 4000
 cell_freq_bcch[i] = 0
 For o = 1 to 16
 cell_freq_tch[i,o] = 0
 Next

124

Next

For i = 1 to 4000
 For cell_no = 1 to 4
 flag_cosite_cost_added[i,cell_no] = false
 Next
Next

f_set_forbidden_and_fixed_freq()

ext_cll_ind = 3000

For i = 1 to last_row

 src_cll = d_afp_icdm.getitemstring(i,"source_cell")
 src_cll_ind = lb_cell_name.FindItem(src_cll,0)
 if src_cll_ind < 0 then
 continue
 end if

 int_cll = d_afp_icdm.getitemstring(i,"interferer_cell")

 src_trf = cell_traffic[src_cll_ind]

 if left(int_cll,5) = left(src_cll,5) then // cosite ta costu yukselt
 co_affect = same_ch_cost
 adj_affect = adj_ch_cost
 cell_no = long(mid(int_cll,6,1))
 flag_cosite_cost_added[src_cll_ind,cell_no] = true
 else
 co_affect = 0
 adj_affect = 0
 end if

 int_cll_ind = lb_cell_name.FindItem(int_cll,0)
 if int_cll_ind < 0 then //external cell

 int_cll_ind = lb_external_name.FindItem(int_cll,0)

125

 if int_cll_ind < 0 then // new external

 bcch = f_get_bcch_from_cell(int_cll)

 if (bcch > 0) then

 ext_cll_ind++
 lb_external_name.InsertItem(int_cll,ext_cll_ind -
3000)
 int_cll_ind = ext_cll_ind

 cell_freq_bcch[int_cll_ind] = bcch
 freq_cost_table[src_cll_ind,bcch] +=
(((d_afp_icdm.getitemdecimal(i,"traf_affected_co_percent") * src_trf /
100) + co_affect) * 10)
 if bcch > 1 then freq_cost_table[src_cll_ind,bcch -
1] += (((d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") *
src_trf / 100) + adj_affect) * 10)
 if bcch < 124 then freq_cost_table[src_cll_ind,bcch
+ 1] += (((d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") *
src_trf / 100) + adj_affect) * 10)

 tru_number = 0
 tch_string = f_get_all_tch_from_cell(int_cll)
 if len(tch_string) > 0 then
 tru_number = f_get_from_count(tch_string)
 For o = 1 to tru_number
 tch = long(f_get_from(tch_string,o))
 cell_freq_tch[int_cll_ind,o] = tch

 freq_cost_table[src_cll_ind,tch] +=
(d_afp_icdm.getitemdecimal(i,"traf_affected_co_percent") * src_trf /
100) + co_affect
 if tch > 1 then
freq_cost_table[src_cll_ind,tch - 1] +=
(d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") * src_trf /
100) + adj_affect

126

 if tch < 124 then
freq_cost_table[src_cll_ind,tch + 1] +=
(d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") * src_trf /
100) + adj_affect

 Next
 end if

 cell_tch_number[int_cll_ind] = tru_number

 else

 continue
 end if
 else // current external

 int_cll_ind += 3000

 bcch = cell_freq_bcch[int_cll_ind]
 freq_cost_table[src_cll_ind,bcch] +=
(((d_afp_icdm.getitemdecimal(i,"traf_affected_co_percent") * src_trf /
100) + co_affect) * 10)
 if bcch > 1 then freq_cost_table[src_cll_ind,bcch - 1] +=
(((d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") * src_trf /
100) + adj_affect) * 10)
 if bcch < 124 then freq_cost_table[src_cll_ind,bcch + 1]
+= (((d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") * src_trf
/ 100) + adj_affect) * 10)

 tru_number = cell_tch_number[int_cll_ind]

 For o = 1 to tru_number
 tch = cell_freq_tch[int_cll_ind,o]

 freq_cost_table[src_cll_ind,tch] +=
(d_afp_icdm.getitemdecimal(i,"traf_affected_co_percent") * src_trf /
100) + co_affect

127

 if tch > 1 then freq_cost_table[src_cll_ind,tch - 1]
+= (d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") * src_trf /
100) + adj_affect
 if tch < 124 then freq_cost_table[src_cll_ind,tch +
1] += (d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") *
src_trf / 100) + adj_affect

 Next

 end if
 end if

 cell_interfered_count[int_cll_ind]++
 icdm_interfered_ind[int_cll_ind,cell_interfered_count[int_cll_ind]]
= src_cll_ind
 icdm_co_int[int_cll_ind,cell_interfered_count[int_cll_ind]] =
(d_afp_icdm.getitemdecimal(i,"traf_affected_co_percent") * src_trf /
100) + co_affect
 icdm_adj_int[int_cll_ind,cell_interfered_count[int_cll_ind]] =
(d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") * src_trf /
100) + adj_affect

 cell_interferer_count[src_cll_ind]++
 icdm_interferer_ind[src_cll_ind,cell_interferer_count[src_cll_ind]]
= int_cll_ind
 icdm_co[src_cll_ind,cell_interferer_count[src_cll_ind]] =
(d_afp_icdm.getitemdecimal(i,"traf_affected_co_percent") * src_trf /
100) + co_affect
 icdm_adj[src_cll_ind,cell_interferer_count[src_cll_ind]] =
(d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") * src_trf /
100) + adj_affect
Next

//Cosite icinde icdm olcum yapmadiysa eksik costlari yukseltme
f_add_cost_in_cosite()

//Forbidden frekanslara cost eklenmesi
For i = 1 to cell_count

128

 //Forbidden

 For o = 1 to forbidden_bcch_count[i]
 freq_cost_table[i,forbidden_bcch_list[i,o]] += forbid_ch_cost
 Next

 For o = 1 to forbidden_tch_count[i]
 freq_cost_table[i,forbidden_tch_list[i,o]] += forbid_ch_cost
 Next

Next

rc = d_afp_initial_plan.rowcount()

For i = 1 to rc

 src_cll = d_afp_initial_plan.getitemstring(i,"cell_name")
 src_cll_ind = lb_cell_name.FindItem(src_cll,0)
 if src_cll_ind < 0 then
 continue
 end if

 cell_freq_bcch[src_cll_ind] =
d_afp_initial_plan.getitemnumber(i,"bcch")
 if isnull(cell_freq_bcch[src_cll_ind]) then
cell_freq_bcch[src_cll_ind] = 0
 For j = 1 to cell_tch_number[src_cll_ind]
 cell_freq_tch[src_cll_ind,j] =
d_afp_initial_plan.getitemnumber(i,("tch"+string(j)))
 Next
Next

if cbx_bcch_plan.checked then
 For i = 1 to cell_count

 frequency_no = cell_freq_bcch[i]

129

 For o = 1 to cell_interfered_count[i]

 src_cll_ind = icdm_interfered_ind[i,o]

 co_affect = icdm_co_int[i,o]
 adj_affect = icdm_adj_int[i,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect *
10)
 if frequency_no > 1 then
freq_cost_table[src_cll_ind,frequency_no - 1] += (adj_affect * 10)
 if frequency_no < 124 then
freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect * 10)

 Next

 freq_cost_table[i,frequency_no] += 100000
 if frequency_no > 1 then freq_cost_table[i,frequency_no - 1] +=
100000
 if frequency_no < 124 then freq_cost_table[i,frequency_no + 1]
+= 100000

 Next // end i
end if

if cbx_tch_plan.checked then
 For i = 1 to cell_count

 For m = 1 to cell_tch_number[i]

 frequency_no = cell_freq_tch[i,m]

 For o = 1 to cell_interfered_count[i]

 src_cll_ind = icdm_interfered_ind[i,o]

 co_affect = icdm_co_int[i,o]

130

 adj_affect = icdm_adj_int[i,o]

 freq_cost_table[src_cll_ind,frequency_no] +=
(co_affect)
 if frequency_no > 1 then
freq_cost_table[src_cll_ind,frequency_no - 1] += (adj_affect)
 if frequency_no < 124 then
freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect)

 Next

 freq_cost_table[i,frequency_no] += 100000
 if frequency_no > 1 then freq_cost_table[i,frequency_no -
1] += 100000
 if frequency_no < 124 then freq_cost_table[i,frequency_no
+ 1] += 100000

 Next // end m
 Next // end i
end if

d_afp_icdm.SetRedraw(true)
d_afp_cells.SetRedraw(true)
end subroutine

public subroutine f_calculate_nbr_count ();long
i,j,rc,found_row,last_row,found_row_2,nbr_tru_count
string find_string,source_cell,interferer_cell

rc = d_afp_cells.rowcount()
last_row = d_afp_icdm.rowcount()

//Nbr Count hesaplama
For i = 1 to rc
 find_string = "source_cell =
'"+d_afp_cells.getitemstring(i,"cell_name")+"'"
 found_row = d_afp_icdm.Find(find_string,1,last_row)

131

 if found_row > 0 then
 source_cell = d_afp_icdm.getitemstring(found_row,"source_cell")

 //Total Nbr TRU count hesaplama
 interferer_cell =
d_afp_icdm.getitemstring(found_row,"interferer_cell")
 find_string = "cell_name = '"+interferer_cell+"'"
 found_row_2 = d_afp_cells.Find(find_string,1,rc)
 if found_row_2 > 0 then nbr_tru_count =
d_afp_cells.getitemnumber(found_row_2,"total_tch_count") + 1
 //--------

 j = found_row + 1
 if found_row <> last_row then
 Do while source_cell =
d_afp_icdm.getitemstring(j,"source_cell")

 //Total Nbr TRU count hesaplama
 interferer_cell =
d_afp_icdm.getitemstring(j,"interferer_cell")
 find_string = "cell_name = '"+interferer_cell+"'"
 found_row_2 = d_afp_cells.Find(find_string,1,rc)
 if found_row_2 > 0 then nbr_tru_count =
nbr_tru_count +
d_afp_cells.getitemnumber(found_row_2,"total_tch_count") + 1
 //----------

 j = j + 1
 if j > last_row then exit
 Loop
 end if
 d_afp_cells.setitem(i,"nbr_count",(j - found_row))
 d_afp_cells.setitem(i,"nbr_tch_tru_count",(nbr_tru_count - (j -
found_row)))
 else
 d_afp_cells.setitem(i,"nbr_count",0)
 d_afp_cells.setitem(i,"nbr_tch_tru_count",0)
 end if

132

Next
//-------
end subroutine

public subroutine f_copy_best_to_cell_freq ();long i,j,rc

d_afp_cell_frequencies.reset()
rc = d_afp_cell_frequencies_best.rowcount()

For i = 1 to rc
 d_afp_cell_frequencies.insertrow(0)
 d_afp_cell_frequencies.setitem(i,"cell_name",d_afp_cell_frequenci
es_best.getitemstring(i,"cell_name"))
 d_afp_cell_frequencies.setitem(i,"bcch",d_afp_cell_frequencies_be
st.getitemnumber(i,"bcch"))
 d_afp_cell_frequencies.setitem(i,"tru_number",d_afp_cell_frequen
cies_best.getitemnumber(i,"tru_number"))
 For j = 1 to 16

 d_afp_cell_frequencies.setitem(i,("tch"+string(j)),d_afp_cell_frequ
encies_best.getitemnumber(i,("tch"+string(j))))
 Next
 d_afp_cell_frequencies.setitem(i,"bcch_cost",d_afp_cell_frequenci
es_best.getitemdecimal(i,"bcch_cost"))
 d_afp_cell_frequencies.setitem(i,"tch_cost",d_afp_cell_frequencies
_best.getitemdecimal(i,"tch_cost"))
 d_afp_cell_frequencies.setitem(i,"total_cost",d_afp_cell_frequenci
es_best.getitemdecimal(i,"total_cost"))
Next
end subroutine

public subroutine f_set_random_bcch ();long i

random_bcch_count = 0

For i = 1 to 124
 if bcch_frequency_list[i] = true then
 random_bcch_count++

133

 random_bcch_list[random_bcch_count] = i
 end if
Next
end subroutine

public function long f_get_best_bcch (long cell_id);long frequency_no,i
decimal temp_cost

frequency_no = 0
temp_cost = 4000000000

For i = 1 to random_bcch_count
 if freq_cost_table[cell_id,random_bcch_list[i]] = 0 then
 frequency_no = random_bcch_list[i]
 exit
 end if
 if freq_cost_table[cell_id,random_bcch_list[i]] < temp_cost then
 temp_cost = freq_cost_table[cell_id,random_bcch_list[i]]
 frequency_no = random_bcch_list[i]
 end if
Next

return frequency_no
end function

public subroutine f_clear_freq_cost_table ();long i,j

For i = 1 to cell_count
 For j = 1 to 124
 freq_cost_table[i,j] = 0
 temp_freq_cost_table[i,j] = 0
 Next
Next
end subroutine

public subroutine f_set_random_tch ();long i

random_tch_count = 0
For i = 1 to 124

134

 if tch_frequency_list[i] = true then
 random_tch_count++
 random_tch_list[random_tch_count] = i
 end if
Next
end subroutine
public function long f_get_best_tch (long cell_id);long frequency_no,i
decimal temp_cost

frequency_no = 0
temp_cost = 4000000000

For i = 1 to random_tch_count
 if freq_cost_table[cell_id,random_tch_list[i]] = 0 then
 frequency_no = random_tch_list[i]
 exit
 end if
 if freq_cost_table[cell_id,random_tch_list[i]] < temp_cost then
 temp_cost = freq_cost_table[cell_id,random_tch_list[i]]
 frequency_no = random_tch_list[i]
 end if
Next

return frequency_no
end function

public subroutine f_set_forbidden_and_fixed_freq ();string
forbidden_bcch_string,forbidden_tch_string,fixed_tch_string
long fixed_bcch
long i,o

For i = 1 to cell_count

 // Forbidden BCCH lerin eklenmesi
 forbidden_bcch_string =
d_afp_cells.getitemstring(i,"forbidden_bcch_list")
 if len(forbidden_bcch_string) > 0 then
 forbidden_bcch_count[i] =
f_get_from_count(forbidden_bcch_string)

135

 For o = 1 to forbidden_bcch_count[i]
 forbidden_bcch_list[i,o] =
long(f_get_from(forbidden_bcch_string,o))
 Next
 end if

 // Forbidden TCH lerin eklenmesi
 forbidden_tch_string =
d_afp_cells.getitemstring(i,"forbidden_tch_list")
 if len(forbidden_tch_string) > 0 then
 forbidden_tch_count[i] = f_get_from_count(forbidden_tch_string)
 For o = 1 to forbidden_tch_count[i]
 forbidden_tch_list[i,o] =
long(f_get_from(forbidden_tch_string,o))
 Next
 end if

 // Fixed BCCH in eklenmesi
 fixed_bcch = d_afp_cells.getitemnumber(i,"fixed_bcch")
 if isnull(fixed_bcch) then fixed_bcch = 0
 if fixed_bcch > 0 then
 fixed_bcch_list[i] = fixed_bcch
 end if

 // Fixed TCH lerin eklenmesi
 fixed_tch_string = d_afp_cells.getitemstring(i,"fixed_tch_list")
 if len(fixed_tch_string) > 0 then
 fixed_tch_count[i] = f_get_from_count(fixed_tch_string)
 For o = 1 to fixed_tch_count[i]
 fixed_tch_list[i,o] = long(f_get_from(fixed_tch_string,o))
 Next
 end if

Next
end subroutine

public subroutine f_clear_forbidden_and_fixed_list ();long i,j

For i = 1 to 4000

136

 forbidden_bcch_count[i] = 0
 forbidden_tch_count[i] = 0
 fixed_bcch_list[i] = 0
 fixed_tch_count[i] = 0

 For j = 1 to 124
 forbidden_bcch_list[i,j] = 0
 forbidden_tch_list[i,j] = 0
 fixed_tch_list[i,j] = 0
 Next

Next
end subroutine

public subroutine f_clear_cell_freqs ();long i,o

For i = 1 to 4000
 cell_freq_bcch[i] = 0
 For o = 1 to 16
 cell_freq_tch[i,o] = 0
 Next
Next
end subroutine

public subroutine f_set_arrays_from_dw ();long i

For i = 1 to cell_count
 lb_cell_name.InsertItem(d_afp_cells.getitemstring(i,"cell_name"),i)
 cell_tch_number[i] =
d_afp_cells.getitemnumber(i,"total_tch_count")
 cell_traffic[i] = d_afp_cells.getitemdecimal(i,"tot_traf")
 cell_interferer_count[i] = 0
 cell_interfered_count[i] = 0
Next
end subroutine

public subroutine f_add_cost_to_forbidden_fixed ();long i,o,m
long frequency_no,src_cll_ind

137

decimal co_affect,adj_affect

For i = 1 to cell_count

 //Forbidden
 For o = 1 to forbidden_bcch_count[i]
 freq_cost_table[i,forbidden_bcch_list[i,o]] += forbid_ch_cost
 Next

 For o = 1 to forbidden_tch_count[i]
 freq_cost_table[i,forbidden_tch_list[i,o]] += forbid_ch_cost
 Next

 //Fixed BCCH
 if fixed_bcch_list[i] > 0 then

 frequency_no = fixed_bcch_list[i]

 For o = 1 to cell_interfered_count[i]

 src_cll_ind = icdm_interfered_ind[i,o]

 co_affect = icdm_co_int[i,o]
 adj_affect = icdm_adj_int[i,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect *
10)
 if frequency_no > 1 then
freq_cost_table[src_cll_ind,frequency_no - 1] += (adj_affect * 10)
 if frequency_no < 124 then
freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect * 10)

 Next

 cell_freq_bcch[i] = frequency_no

 freq_cost_table[i,frequency_no] += 100000

138

 if frequency_no > 1 then freq_cost_table[i,frequency_no - 1] +=
100000
 if frequency_no < 124 then freq_cost_table[i,frequency_no + 1]
+= 100000

 end if

 //Fixed TCH
 For m = 1 to fixed_tch_count[i]

 frequency_no = fixed_tch_list[i,m]

 For o = 1 to cell_interfered_count[i]

 src_cll_ind = icdm_interfered_ind[i,o]

 co_affect = icdm_co_int[i,o]
 adj_affect = icdm_adj_int[i,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect)
 if frequency_no > 1 then
freq_cost_table[src_cll_ind,frequency_no - 1] += (adj_affect)
 if frequency_no < 124 then
freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect)

 Next

 cell_freq_tch[i,m] = frequency_no

 freq_cost_table[i,frequency_no] += 100000
 if frequency_no > 1 then freq_cost_table[i,frequency_no - 1] +=
100000
 if frequency_no < 124 then freq_cost_table[i,frequency_no + 1]
+= 100000

 Next

Next
end subroutine

139

public subroutine f_clean_cosite_costs ();long i,k

For i = 1 to cell_count
 if cbx_bcch_plan.checked then
 freq_cost_table[i,cell_freq_bcch[i]] -= 100000
 if cell_freq_bcch[i] > 1 then freq_cost_table[i,cell_freq_bcch[i] -
1] -= 100000
 if cell_freq_bcch[i] < 124 then freq_cost_table[i,cell_freq_bcch[i]
+ 1] -= 100000
 else
 if fixed_bcch_list[i] > 0 then
 freq_cost_table[i,cell_freq_bcch[i]] -= 100000
 if cell_freq_bcch[i] > 1 then
freq_cost_table[i,cell_freq_bcch[i] - 1] -= 100000
 if cell_freq_bcch[i] < 124 then
freq_cost_table[i,cell_freq_bcch[i] + 1] -= 100000
 end if
 end if

 if cbx_tch_plan.checked then
 For k = 1 to cell_tch_number[i]
 freq_cost_table[i,cell_freq_tch[i,k]] -= 100000
 if cell_freq_tch[i,k] > 1 then
freq_cost_table[i,cell_freq_tch[i,k] - 1] -= 100000
 if cell_freq_tch[i,k] < 124 then
freq_cost_table[i,cell_freq_tch[i,k] + 1] -= 100000
 Next
 else
 For k = 1 to cell_tch_number[i]
 if fixed_tch_list[i,k] > 0 then
 freq_cost_table[i,cell_freq_tch[i,k]] -= 100000
 if cell_freq_tch[i,k] > 1 then
freq_cost_table[i,cell_freq_tch[i,k] - 1] -= 100000
 if cell_freq_tch[i,k] < 124 then
freq_cost_table[i,cell_freq_tch[i,k] + 1] -= 100000
 end if
 Next
 end if

140

Next
end subroutine

public subroutine f_check_new_plan ();long
i,o,k,cell_no,src_cll_ind,same_cell_no
string forbidden_use_list, fixed_not_use_list, co_list, adj_list
boolean flag_fixed_tch_use
string site_code,cell_name

For i = 1 to cell_count

 //Forbidden kullanilanlar
 forbidden_use_list = ""
 For o = 1 to forbidden_bcch_count[i]
 if cell_freq_bcch[i] = forbidden_bcch_list[i,o] then
 forbidden_use_list = string(cell_freq_bcch[i])

 d_afp_cell_frequencies_best.setitem(i,"forbidden_bcch_use",forbid
den_use_list)
 exit
 end if
 Next

 forbidden_use_list = ""
 For o = 1 to forbidden_tch_count[i]
 For k = 1 to cell_tch_number[i]
 if cell_freq_tch[i,k] = forbidden_tch_list[i,o] then
 forbidden_use_list = forbidden_use_list +
string(cell_freq_tch[i,k]) + ","
 exit
 end if
 Next
 Next
 if len(forbidden_use_list) > 0 then
 forbidden_use_list = left(
forbidden_use_list,(len(forbidden_use_list) - 1))

 d_afp_cell_frequencies_best.setitem(i,"forbidden_tch_use",forbidd
en_use_list)

141

 end if

 //Fixed kullanilmayanlar
 if cbx_bcch_plan.checked then
 fixed_not_use_list = ""
 if fixed_bcch_list[i] > 0 then
 if cell_freq_bcch[i] <> fixed_bcch_list[i] then
 fixed_not_use_list = string(fixed_bcch_list[i])

 d_afp_cell_frequencies_best.setitem(i,"fixed_bcch_not_use",fixed_
not_use_list)
 end if
 end if
 end if

 if cbx_tch_plan.checked then
 fixed_not_use_list = ""
 For o = 1 to fixed_tch_count[i]
 flag_fixed_tch_use = false
 For k = 1 to cell_tch_number[i]
 if cell_freq_tch[i,k] = fixed_tch_list[i,o] then
 flag_fixed_tch_use = true
 end if
 Next
 if flag_fixed_tch_use = false then
 fixed_not_use_list = fixed_not_use_list +
string(fixed_tch_list[i,o]) + ","
 end if
 Next
 if len(fixed_not_use_list) > 0 then
 fixed_not_use_list = left(
fixed_not_use_list,(len(fixed_not_use_list) - 1))

 d_afp_cell_frequencies_best.setitem(i,"fixed_tch_not_use",fixed_n
ot_use_list)
 end if
 end if

142

 //Same Cell de Co ve Adjacent Frekans kontrolu
 co_list = ""
 adj_list = ""

 if cbx_bcch_plan.checked then
 For k = 1 to cell_tch_number[i]
 if cell_freq_bcch[i] = cell_freq_tch[i,k] then
 co_list = co_list + string(cell_freq_bcch[i]) + ","
 elseif Abs(cell_freq_bcch[i] - cell_freq_tch[i,k]) = 1 then
 adj_list = adj_list + string(cell_freq_bcch[i]) + "-"
+ string(cell_freq_tch[i,k]) + ","
 end if
 Next
 end if

 if cbx_tch_plan.checked then
 For k = 1 to (cell_tch_number[i] - 1)
 For o = (k + 1) to cell_tch_number[i]
 if cell_freq_tch[i,k] = cell_freq_tch[i,o] then
 co_list = co_list + string(cell_freq_tch[i,k])
+ ","
 elseif Abs(cell_freq_tch[i,k] - cell_freq_tch[i,o]) =
1 then
 adj_list = adj_list +
string(cell_freq_tch[i,k]) + "-" + string(cell_freq_tch[i,o]) + ","
 end if
 Next
 Next
 end if

 if len(co_list) > 0 then
 co_list = left(co_list,(len(co_list) - 1))

 d_afp_cell_frequencies_best.setitem(i,"same_cell_co_use",co_list)
 end if
 if len(adj_list) > 0 then
 adj_list = left(adj_list,(len(adj_list) - 1))

143

 d_afp_cell_frequencies_best.setitem(i,"same_cell_adj_use",adj_list
)
 end if

 //Cosite da Co ve Adjacent Frekans kontrolu
 cell_name = lb_cell_name.text(i)
 same_cell_no = long(mid(cell_name,6,1))
 site_code = left(cell_name,5)

 co_list = ""
 adj_list = ""

 For cell_no = 1 to 4

 if cell_no <> same_cell_no then
 cell_name = site_code + string(cell_no)
 src_cll_ind = lb_cell_name.FindItem(cell_name,0)

 if src_cll_ind > 0 then

 if cbx_bcch_plan.checked then
 if cell_freq_bcch[i] =
cell_freq_bcch[src_cll_ind] then
 co_list = co_list +
string(cell_freq_bcch[i]) + ","
 elseif Abs(cell_freq_bcch[i] -
cell_freq_bcch[src_cll_ind]) = 1 then
 adj_list = adj_list +
string(cell_freq_bcch[i]) + "-" + string(cell_freq_bcch[src_cll_ind]) + ","

 end if
 end if

 if cbx_bcch_plan.checked and
cbx_tch_plan.checked then
 For k = 1 to cell_tch_number[src_cll_ind]

144

 if cell_freq_bcch[i] =
cell_freq_tch[src_cll_ind,k] then
 co_list = co_list +
string(cell_freq_bcch[i]) + ","
 elseif Abs(cell_freq_bcch[i] -
cell_freq_tch[src_cll_ind,k]) = 1 then
 adj_list = adj_list +
string(cell_freq_bcch[i]) + "-" + string(cell_freq_tch[src_cll_ind,k]) + ","
 end if
 Next
 end if

 if cbx_tch_plan.checked then
 For k = 1 to cell_tch_number[i]
 For o = 1 to
cell_tch_number[src_cll_ind]
 if cell_freq_tch[i,k] =
cell_freq_tch[src_cll_ind,o] then
 co_list = co_list +
string(cell_freq_tch[i,k]) + ","
 elseif Abs(cell_freq_tch[i,k]
- cell_freq_tch[src_cll_ind,o]) = 1 then
 adj_list = adj_list +
string(cell_freq_tch[i,k]) + "-" + string(cell_freq_tch[src_cll_ind,o]) + ","
 end if
 Next
 Next
 end if

 end if
 end if

 Next

 if len(co_list) > 0 then
 co_list = left(co_list,(len(co_list) - 1))
 d_afp_cell_frequencies_best.setitem(i,"cosite_co_use",co_list)
 end if
 if len(adj_list) > 0 then

145

 adj_list = left(adj_list,(len(adj_list) - 1))
 d_afp_cell_frequencies_best.setitem(i,"cosite_adj_use",adj_list)
 end if

Next
end subroutine

public subroutine f_check_initial_plan ();long
i,o,k,cell_no,src_cll_ind,same_cell_no
string forbidden_use_list, fixed_not_use_list, co_list, adj_list
boolean flag_fixed_tch_use
string site_code,cell_name

For i = 1 to cell_count

 //Forbidden kullanilanlar
 forbidden_use_list = ""
 For o = 1 to forbidden_bcch_count[i]
 if cell_freq_bcch[i] = forbidden_bcch_list[i,o] then
 forbidden_use_list = string(cell_freq_bcch[i])

 d_afp_cell_frequencies.setitem(i,"forbidden_bcch_use",forbidden_
use_list)
 exit
 end if
 Next

 forbidden_use_list = ""
 For o = 1 to forbidden_tch_count[i]
 For k = 1 to cell_tch_number[i]
 if cell_freq_tch[i,k] = forbidden_tch_list[i,o] then
 forbidden_use_list = forbidden_use_list +
string(cell_freq_tch[i,k]) + ","
 exit
 end if
 Next
 Next
 if len(forbidden_use_list) > 0 then

146

 forbidden_use_list = left(
forbidden_use_list,(len(forbidden_use_list) - 1))

 d_afp_cell_frequencies.setitem(i,"forbidden_tch_use",forbidden_us
e_list)
 end if

 //Fixed kullanilmayanlar
 if cbx_bcch_plan.checked then
 fixed_not_use_list = ""
 if fixed_bcch_list[i] > 0 then
 if cell_freq_bcch[i] <> fixed_bcch_list[i] then
 fixed_not_use_list = string(fixed_bcch_list[i])

 d_afp_cell_frequencies.setitem(i,"fixed_bcch_not_use",fixed_not_
use_list)
 end if
 end if
 end if

 if cbx_tch_plan.checked then
 fixed_not_use_list = ""
 For o = 1 to fixed_tch_count[i]
 flag_fixed_tch_use = false
 For k = 1 to cell_tch_number[i]
 if cell_freq_tch[i,k] = fixed_tch_list[i,o] then
 flag_fixed_tch_use = true
 end if
 Next
 if flag_fixed_tch_use = false then
 fixed_not_use_list = fixed_not_use_list +
string(fixed_tch_list[i,o]) + ","
 end if
 Next
 if len(fixed_not_use_list) > 0 then
 fixed_not_use_list = left(
fixed_not_use_list,(len(fixed_not_use_list) - 1))

147

 d_afp_cell_frequencies.setitem(i,"fixed_tch_not_use",fixed_not_us
e_list)
 end if
 end if

 //Same Cell de Co ve Adjacent Frekans kontrolu
 co_list = ""
 adj_list = ""

 if cbx_bcch_plan.checked then
 For k = 1 to cell_tch_number[i]
 if cell_freq_bcch[i] = cell_freq_tch[i,k] then
 co_list = co_list + string(cell_freq_bcch[i]) + ","
 elseif Abs(cell_freq_bcch[i] - cell_freq_tch[i,k]) = 1 then
 adj_list = adj_list + string(cell_freq_bcch[i]) + "-"
+ string(cell_freq_tch[i,k]) + ","
 end if
 Next
 end if

 if cbx_tch_plan.checked then
 For k = 1 to (cell_tch_number[i] - 1)
 For o = (k + 1) to cell_tch_number[i]
 if cell_freq_tch[i,k] = cell_freq_tch[i,o] then
 co_list = co_list + string(cell_freq_tch[i,k])
+ ","
 elseif Abs(cell_freq_tch[i,k] - cell_freq_tch[i,o]) =
1 then
 adj_list = adj_list +
string(cell_freq_tch[i,k]) + "-" + string(cell_freq_tch[i,o]) + ","
 end if
 Next
 Next
 end if

 if len(co_list) > 0 then
 co_list = left(co_list,(len(co_list) - 1))
 d_afp_cell_frequencies.setitem(i,"same_cell_co_use",co_list)

148

 end if
 if len(adj_list) > 0 then
 adj_list = left(adj_list,(len(adj_list) - 1))
 d_afp_cell_frequencies.setitem(i,"same_cell_adj_use",adj_list)
 end if

 //Cosite da Co ve Adjacent Frekans kontrolu
 cell_name = lb_cell_name.text(i)
 same_cell_no = long(mid(cell_name,6,1))
 site_code = left(cell_name,5)

 co_list = ""
 adj_list = ""

 For cell_no = 1 to 4

 if cell_no <> same_cell_no then
 cell_name = site_code + string(cell_no)
 src_cll_ind = lb_cell_name.FindItem(cell_name,0)

 if src_cll_ind > 0 then

 if cbx_bcch_plan.checked then

 if cell_freq_bcch[i] =
cell_freq_bcch[src_cll_ind] then
 co_list = co_list +
string(cell_freq_bcch[i]) + ","
 elseif Abs(cell_freq_bcch[i] -
cell_freq_bcch[src_cll_ind]) = 1 then
 adj_list = adj_list +
string(cell_freq_bcch[i]) + "-" + string(cell_freq_bcch[src_cll_ind]) + ","

 end if
 end if

 if cbx_bcch_plan.checked and
cbx_tch_plan.checked then

149

 For k = 1 to cell_tch_number[src_cll_ind]
 if cell_freq_bcch[i] =
cell_freq_tch[src_cll_ind,k] then
 co_list = co_list +
string(cell_freq_bcch[i]) + ","
 elseif Abs(cell_freq_bcch[i] -
cell_freq_tch[src_cll_ind,k]) = 1 then
 adj_list = adj_list +
string(cell_freq_bcch[i]) + "-" + string(cell_freq_tch[src_cll_ind,k]) + ","
 end if
 Next
 end if

 if cbx_tch_plan.checked then
 For k = 1 to cell_tch_number[i]
 For o = 1 to
cell_tch_number[src_cll_ind]
 if cell_freq_tch[i,k] =
cell_freq_tch[src_cll_ind,o] then
 co_list = co_list +
string(cell_freq_tch[i,k]) + ","
 elseif Abs(cell_freq_tch[i,k]
- cell_freq_tch[src_cll_ind,o]) = 1 then
 adj_list = adj_list +
string(cell_freq_tch[i,k]) + "-" + string(cell_freq_tch[src_cll_ind,o]) + ","
 end if
 Next
 Next
 end if

 end if
 end if

 Next

 if len(co_list) > 0 then
 co_list = left(co_list,(len(co_list) - 1))
 d_afp_cell_frequencies.setitem(i,"cosite_co_use",co_list)
 end if

150

 if len(adj_list) > 0 then
 adj_list = left(adj_list,(len(adj_list) - 1))
 d_afp_cell_frequencies.setitem(i,"cosite_adj_use",adj_list)
 end if

Next
end subroutine

public subroutine f_add_cost_in_cosite ();long i
decimal co_affect, adj_affect
long cell_no,same_cell_no,src_cll_ind,int_cll_ind
string cell_name,site_code

co_affect = same_ch_cost
adj_affect = adj_ch_cost

For i = 1 to cell_count

 src_cll_ind = i
 cell_name = lb_cell_name.text(i)
 site_code = left(cell_name,5)
 same_cell_no = long(mid(cell_name,6,1))

 For cell_no = 1 to 4
 if cell_no <> same_cell_no then
 if flag_cosite_cost_added[i,cell_no] = false then

 flag_cosite_cost_added[i,cell_no] = true
 cell_name = site_code + string(cell_no)
 int_cll_ind = lb_cell_name.FindItem(cell_name,0)

 if int_cll_ind > 0 then
 cell_interfered_count[int_cll_ind]++

 icdm_interfered_ind[int_cll_ind,cell_interfered_count[int_cll_ind]]
= src_cll_ind

 icdm_co_int[int_cll_ind,cell_interfered_count[int_cll_ind]] =
co_affect

151

 icdm_adj_int[int_cll_ind,cell_interfered_count[int_cll_ind]] =
adj_affect

 cell_interferer_count[src_cll_ind]++

 icdm_interferer_ind[src_cll_ind,cell_interferer_count[src_cll_ind]]
= int_cll_ind

 icdm_co[src_cll_ind,cell_interferer_count[src_cll_ind]] = co_affect

 icdm_adj[src_cll_ind,cell_interferer_count[src_cll_ind]] =
adj_affect
 end if

 end if
 end if
 Next

Next
end subroutine

public subroutine f_make_best_plan_dw ();decimal
result_cost,total_cost,bcch_cost,tch_cost
long i,j,tru_number

 // Best plani dw ye atma
 For i = 1 to cell_count
 d_afp_cell_frequencies_best.insertrow(i)

 d_afp_cell_frequencies_best.setitem(i,"cell_name",lb_cell_name.te
xt(i))
 tru_number = cell_tch_number[i] + 1
 d_afp_cell_frequencies_best.setitem(i,"tru_number",tru_number)

 bcch_cost = 0
 if cbx_bcch_plan.checked then

152

 d_afp_cell_frequencies_best.setitem(i,"bcch_cost",(freq_cost_table
[i,cell_freq_bcch[i]] - 100000))

 d_afp_cell_frequencies_best.setitem(i,"bcch",cell_freq_bcch[i])
 bcch_cost = (freq_cost_table[i,cell_freq_bcch[i]] -
100000)
 end if

 tch_cost = 0
 result_cost = 0
 if cbx_tch_plan.checked then
 For j = 1 to cell_tch_number[i]
 result_cost = result_cost +
(freq_cost_table[i,cell_freq_tch[i,j]] - 100000)

 d_afp_cell_frequencies_best.setitem(i,("tch"+string(j)),cell_freq_tc
h[i,j])
 Next

 d_afp_cell_frequencies_best.setitem(i,"tch_cost",result_cost)
 tch_cost = result_cost
 end if

 total_cost = bcch_cost + tch_cost
 d_afp_cell_frequencies_best.setitem(i,"total_cost",total_cost)

 Next
end subroutine

public subroutine f_change_bcch_frequency (long cell_order, long
new_frequency);long o,freq_level,src_cll_ind
decimal co_affect,adj_affect
long frequency_no

freq_level = cell_order
frequency_no = new_frequency

For o = 1 to cell_interfered_count[freq_level]

153

 src_cll_ind = icdm_interfered_ind[freq_level,o]

 co_affect = icdm_co_int[freq_level,o]
 adj_affect = icdm_adj_int[freq_level,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect * 10)
 if frequency_no > 1 then freq_cost_table[src_cll_ind,frequency_no
- 1] += (adj_affect * 10)
 if frequency_no < 124 then
freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect * 10)

 freq_cost_table[src_cll_ind,cell_freq_bcch[freq_level]] -=
(co_affect * 10)
 if cell_freq_bcch[freq_level] > 1 then
freq_cost_table[src_cll_ind,cell_freq_bcch[freq_level] - 1] -= (adj_affect
* 10)
 if cell_freq_bcch[freq_level] < 124 then
freq_cost_table[src_cll_ind,cell_freq_bcch[freq_level] + 1] -= (adj_affect
* 10)

Next

freq_cost_table[freq_level,cell_freq_bcch[freq_level]] -= 100000
if cell_freq_bcch[freq_level] > 1 then
freq_cost_table[freq_level,cell_freq_bcch[freq_level] - 1] -= 100000
if cell_freq_bcch[freq_level] < 124 then
freq_cost_table[freq_level,cell_freq_bcch[freq_level] + 1] -= 100000

cell_freq_bcch[freq_level] = frequency_no

freq_cost_table[freq_level,frequency_no] += 100000
if frequency_no > 1 then freq_cost_table[freq_level,frequency_no - 1] +=
100000
if frequency_no < 124 then freq_cost_table[freq_level,frequency_no + 1]
+= 100000
end subroutine

154

public subroutine f_change_tch_frequency (long cell_order, long
tch_order, integer new_frequency);long o,freq_level,src_cll_ind
decimal co_affect,adj_affect
long frequency_no,k

freq_level = cell_order
k = tch_order
frequency_no = new_frequency

For o = 1 to cell_interfered_count[freq_level]

 src_cll_ind = icdm_interfered_ind[freq_level,o]

 co_affect = icdm_co_int[freq_level,o]
 adj_affect = icdm_adj_int[freq_level,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect)
 if frequency_no > 1 then freq_cost_table[src_cll_ind,frequency_no
- 1] += (adj_affect)
 if frequency_no < 124 then
freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect)

 freq_cost_table[src_cll_ind,cell_freq_tch[freq_level,k]] -=
(co_affect)
 if cell_freq_tch[freq_level,k] > 1 then
freq_cost_table[src_cll_ind,cell_freq_tch[freq_level,k] - 1] -=
(adj_affect)
 if cell_freq_tch[freq_level,k] < 124 then
freq_cost_table[src_cll_ind,cell_freq_tch[freq_level,k] + 1] -=
(adj_affect)

Next

freq_cost_table[freq_level,cell_freq_tch[freq_level,k]] -= 100000
if cell_freq_tch[freq_level,k] > 1 then
freq_cost_table[freq_level,cell_freq_tch[freq_level,k] - 1] -= 100000
if cell_freq_tch[freq_level,k] < 124 then
freq_cost_table[freq_level,cell_freq_tch[freq_level,k] + 1] -= 100000

155

cell_freq_tch[freq_level,k] = frequency_no

freq_cost_table[freq_level,frequency_no] += 100000
if frequency_no > 1 then freq_cost_table[freq_level,frequency_no - 1] +=
100000
if frequency_no < 124 then freq_cost_table[freq_level,frequency_no + 1]
+= 100000
end subroutine

public function decimal f_calculate_cost_new ();decimal
result_cost,total_cost
long p,j

total_cost = 0

if cbx_bcch_plan.checked = true then
 result_cost = 0
 For p = 1 to cell_count
 result_cost = result_cost + freq_cost_table[p,cell_freq_bcch[p]] -
100000
 Next

 total_cost = result_cost
end if

if cbx_tch_plan.checked = true then
 result_cost = 0
 For p = 1 to cell_count
 For j = 1 to cell_tch_number[p]
 result_cost = result_cost +
freq_cost_table[p,cell_freq_tch[p,j]] - 100000
 Next
 Next

 total_cost += result_cost
end if

return total_cost
end function

156

on w_afp.create
int iCurrent
call super::create
this.d_afp_cells=create d_afp_cells
this.cb_import_cells=create cb_import_cells
this.d_afp_icdm=create d_afp_icdm
this.cb_import_icdm=create cb_import_icdm
this.cb_plan=create cb_plan
this.lb_all_frequencies=create lb_all_frequencies
this.st_all_freq=create st_all_freq
this.lb_bcch_frequencies=create lb_bcch_frequencies
this.cb_add_bcch=create cb_add_bcch
this.st_bcch_freq=create st_bcch_freq
this.cb_remove_bcch=create cb_remove_bcch
this.st_all_freq_3=create st_all_freq_3
this.lb_all_frequencies_3=create lb_all_frequencies_3
this.st_tch_freq=create st_tch_freq
this.lb_tch_frequencies=create lb_tch_frequencies
this.cb_add_tch=create cb_add_tch
this.cb_remove_tch=create cb_remove_tch
this.d_afp_cell_frequencies=create d_afp_cell_frequencies
this.st_initial_cost=create st_initial_cost
this.st_initial_cost_label=create st_initial_cost_label
this.cb_optimize=create cb_optimize
this.cb_save_initial=create cb_save_initial
this.st_best_cost_label=create st_best_cost_label
this.st_best_cost=create st_best_cost
this.d_afp_cell_frequencies_best=create d_afp_cell_frequencies_best
this.sle_optimize_times=create sle_optimize_times
this.st_times=create st_times
this.st_status=create st_status
this.st_status_label=create st_status_label
this.d_afp_initial_plan=create d_afp_initial_plan
this.cb_import_initial_plan=create cb_import_initial_plan
this.cb_clear_initial_plan=create cb_clear_initial_plan
this.d_afp_icdm_interferer=create d_afp_icdm_interferer
this.cb_check_plan=create cb_check_plan
this.dr_frequency=create dr_frequency

157

this.lb_cell_name=create lb_cell_name
this.lb_external_name=create lb_external_name
this.cbx_bcch_plan=create cbx_bcch_plan
this.cbx_tch_plan=create cbx_tch_plan
this.st_best_bcch_cost=create st_best_bcch_cost
this.st_best_tch_cost=create st_best_tch_cost
this.st_best_bcch_cost_label=create st_best_bcch_cost_label
this.st_best_tch_cost_label=create st_best_tch_cost_label
this.gb_3=create gb_3
this.gb_1=create gb_1
this.cb_save_best=create cb_save_best
this.gb_2=create gb_2
this.st_initial_bcch_cost_label=create st_initial_bcch_cost_label
this.st_initial_tch_cost_label=create st_initial_tch_cost_label
this.st_initial_bcch_cost=create st_initial_bcch_cost
this.st_initial_tch_cost=create st_initial_tch_cost
this.cb_import_icdm_msmt=create cb_import_icdm_msmt
this.sle_same_ch_cost=create sle_same_ch_cost
this.sle_adj_ch_cost=create sle_adj_ch_cost
this.sle_forbid_ch_cost=create sle_forbid_ch_cost
this.st_1=create st_1
this.st_2=create st_2
this.st_3=create st_3
this.st_4=create st_4
iCurrent=UpperBound(this.Control)
this.Control[iCurrent+1]=this.d_afp_cells
this.Control[iCurrent+2]=this.cb_import_cells
this.Control[iCurrent+3]=this.d_afp_icdm
this.Control[iCurrent+4]=this.cb_import_icdm
this.Control[iCurrent+5]=this.cb_plan
this.Control[iCurrent+6]=this.lb_all_frequencies
this.Control[iCurrent+7]=this.st_all_freq
this.Control[iCurrent+8]=this.lb_bcch_frequencies
this.Control[iCurrent+9]=this.cb_add_bcch
this.Control[iCurrent+10]=this.st_bcch_freq
this.Control[iCurrent+11]=this.cb_remove_bcch
this.Control[iCurrent+12]=this.st_all_freq_3
this.Control[iCurrent+13]=this.lb_all_frequencies_3
this.Control[iCurrent+14]=this.st_tch_freq

158

this.Control[iCurrent+15]=this.lb_tch_frequencies
this.Control[iCurrent+16]=this.cb_add_tch
this.Control[iCurrent+17]=this.cb_remove_tch
this.Control[iCurrent+18]=this.d_afp_cell_frequencies
this.Control[iCurrent+19]=this.st_initial_cost
this.Control[iCurrent+20]=this.st_initial_cost_label
this.Control[iCurrent+21]=this.cb_optimize
this.Control[iCurrent+22]=this.cb_save_initial
this.Control[iCurrent+23]=this.st_best_cost_label
this.Control[iCurrent+24]=this.st_best_cost
this.Control[iCurrent+25]=this.d_afp_cell_frequencies_best
this.Control[iCurrent+26]=this.sle_optimize_times
this.Control[iCurrent+27]=this.st_times
this.Control[iCurrent+28]=this.st_status
this.Control[iCurrent+29]=this.st_status_label
this.Control[iCurrent+30]=this.d_afp_initial_plan
this.Control[iCurrent+31]=this.cb_import_initial_plan
this.Control[iCurrent+32]=this.cb_clear_initial_plan
this.Control[iCurrent+33]=this.d_afp_icdm_interferer
this.Control[iCurrent+34]=this.cb_check_plan
this.Control[iCurrent+35]=this.dr_frequency
this.Control[iCurrent+36]=this.lb_cell_name
this.Control[iCurrent+37]=this.lb_external_name
this.Control[iCurrent+38]=this.cbx_bcch_plan
this.Control[iCurrent+39]=this.cbx_tch_plan
this.Control[iCurrent+40]=this.st_best_bcch_cost
this.Control[iCurrent+41]=this.st_best_tch_cost
this.Control[iCurrent+42]=this.st_best_bcch_cost_label
this.Control[iCurrent+43]=this.st_best_tch_cost_label
this.Control[iCurrent+44]=this.gb_3
this.Control[iCurrent+45]=this.gb_1
this.Control[iCurrent+46]=this.cb_save_best
this.Control[iCurrent+47]=this.gb_2
this.Control[iCurrent+48]=this.st_initial_bcch_cost_label
this.Control[iCurrent+49]=this.st_initial_tch_cost_label
this.Control[iCurrent+50]=this.st_initial_bcch_cost
this.Control[iCurrent+51]=this.st_initial_tch_cost
this.Control[iCurrent+52]=this.cb_import_icdm_msmt
this.Control[iCurrent+55]=this.sle_same_ch_cost

159

this.Control[iCurrent+56]=this.sle_adj_ch_cost
this.Control[iCurrent+57]=this.sle_forbid_ch_cost
this.Control[iCurrent+58]=this.st_1
this.Control[iCurrent+59]=this.st_2
this.Control[iCurrent+60]=this.st_3
this.Control[iCurrent+61]=this.st_4
end on

on w_afp.destroy
call super::destroy
destroy(this.d_afp_cells)
destroy(this.cb_import_cells)
destroy(this.d_afp_icdm)
destroy(this.cb_import_icdm)
destroy(this.cb_plan)
destroy(this.lb_all_frequencies)
destroy(this.st_all_freq)
destroy(this.lb_bcch_frequencies)
destroy(this.cb_add_bcch)
destroy(this.st_bcch_freq)
destroy(this.cb_remove_bcch)
destroy(this.st_all_freq_3)
destroy(this.lb_all_frequencies_3)
destroy(this.st_tch_freq)
destroy(this.lb_tch_frequencies)
destroy(this.cb_add_tch)
destroy(this.cb_remove_tch)
destroy(this.d_afp_cell_frequencies)
destroy(this.st_initial_cost)
destroy(this.st_initial_cost_label)
destroy(this.cb_optimize)
destroy(this.cb_save_initial)
destroy(this.st_best_cost_label)
destroy(this.st_best_cost)
destroy(this.d_afp_cell_frequencies_best)
destroy(this.sle_optimize_times)
destroy(this.st_times)
destroy(this.st_status)
destroy(this.st_status_label)

160

destroy(this.d_afp_initial_plan)
destroy(this.cb_import_initial_plan)
destroy(this.cb_clear_initial_plan)
destroy(this.d_afp_icdm_interferer)
destroy(this.cb_check_plan)
destroy(this.dr_frequency)
destroy(this.lb_cell_name)
destroy(this.lb_external_name)
destroy(this.cbx_bcch_plan)
destroy(this.cbx_tch_plan)
destroy(this.st_best_bcch_cost)
destroy(this.st_best_tch_cost)
destroy(this.st_best_bcch_cost_label)
destroy(this.st_best_tch_cost_label)
destroy(this.gb_3)
destroy(this.gb_1)
destroy(this.cb_save_best)
destroy(this.gb_2)
destroy(this.st_initial_bcch_cost_label)
destroy(this.st_initial_tch_cost_label)
destroy(this.st_initial_bcch_cost)
destroy(this.st_initial_tch_cost)
destroy(this.cb_import_icdm_msmt)
destroy(this.sle_same_ch_cost)
destroy(this.sle_adj_ch_cost)
destroy(this.sle_forbid_ch_cost)
destroy(this.st_1)
destroy(this.st_2)
destroy(this.st_3)
destroy(this.st_4)
end on

event open;call super::open;long i

For i = 1 to 124

 if (i >= 10 and i <= 19) or (i >=81 and i <= 89) then
 lb_bcch_frequencies.additem(string(i,"000"))
 bcch_frequency_list[i] = true

161

 else
 lb_all_frequencies.additem(string(i,"000"))
 bcch_frequency_list[i] = false
 end if

 if (i >=91 and i <= 120) then
 lb_tch_frequencies.additem(string(i,"000"))
 tch_frequency_list[i] = true
 else
 lb_all_frequencies_3.additem(string(i,"000"))
 tch_frequency_list[i] = false
 end if

Next
end event

type d_afp_cells from datawindow_common within w_afp
int X=27
int Y=44
int Width=2359
int Height=1032
int TabOrder=10
boolean BringToTop=true
string DataObject="dwe_afp_cells"
boolean TitleBar=false
BorderStyle BorderStyle=StyleLowered!
boolean ControlMenu=false
boolean MinBox=false
boolean MaxBox=false
boolean HScrollBar=false
boolean Resizable=false
end type

type cb_import_cells from commandbutton within w_afp
int X=50
int Y=1100
int Width=343
int Height=144
int TabOrder=120

162

boolean BringToTop=true
string Text="Import Cells"
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

event clicked;string file_name
long i,def_ch,tru_number, rc

setNull(file_name)

d_afp_cells.reset()
d_afp_cells.ImportFile (file_name)

rc = d_afp_cells.rowcount()
if rc > 0 then

 d_afp_cells.SetRedraw(false)
 d_afp_cells.SetSort("#1 A")
 d_afp_cells.Sort()
 d_afp_cells.SetRedraw(true)

 cb_import_cells.enabled = false

 st_status.text = "Cells imported!"

end if
end event

type d_afp_icdm from datawindow_common within w_afp
int X=2446
int Y=44
int Width=1385
int Height=1032
int TabOrder=110

163

boolean BringToTop=true
string DataObject="dwe_afp_icdm"
boolean TitleBar=false
BorderStyle BorderStyle=StyleLowered!
boolean ControlMenu=false
boolean MinBox=false
boolean MaxBox=false
boolean Resizable=false
end type

type cb_import_icdm from commandbutton within w_afp
int X=2464
int Y=1100
int Width=421
int Height=144
int TabOrder=130
boolean BringToTop=true
string Text="Import ICDM (.txt)"
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

event clicked;string docname, named
integer value

value = GetFileOpenName("Select ICDM File",docname, named,
"TXT","Text Files (*.TXT),*.TXT")

IF value = 1 THEN

 d_afp_icdm.reset()
 d_afp_icdm.ImportFile (docname)

 d_afp_icdm.SetRedraw(false)
 d_afp_icdm.SetSort("#1 A, #2 A")

164

 d_afp_icdm.Sort()
 d_afp_icdm.SetRedraw(true)

 d_afp_icdm_interferer.reset()
 d_afp_icdm_interferer.ImportFile (docname)
 d_afp_icdm_interferer.SetSort("#2 A, #1 A")
 d_afp_icdm_interferer.Sort()

 cb_import_icdm.enabled = false

 st_status.text = "ICDM imported!"

END IF
end event

type cb_plan from commandbutton within w_afp
int X=2917
int Y=1480
int Width=631
int Height=136
int TabOrder=160
boolean BringToTop=true
string Text="New Frequency Planing"
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

event clicked;long i,j,rc,last_row,o,p,k,m,n
string nul
decimal co_affect,adj_affect,result_cost, best_cost, total_cost,
last_best_cost
long tch_count,bcch,tch,tru_number,frequency_no,cell_no
string src_cll, int_cll, tch_string, forbidden_bcch_string,
forbidden_tch_string, fixed_tch_string
long src_cll_ind, int_cll_ind, ext_cll_ind

165

decimal src_trf
long freq_level,random_bcch,random_tch
long plan_file,optimize_times
string log_text,plan_text

//---------------------Initial Islemler---------------------------
log_file = FileOpen("c:\neptune\neptune_afp_log.txt", LineMode!,
Write!, LockWrite!, Replace!)
log_text = string(today()) + " - " + string(now()) + " : Planning started!"
FileWrite(log_file , log_text)

if len(sle_optimize_times.text) > 0 then
 optimize_times = long(sle_optimize_times.text)
else
 optimize_times = 1
end if

same_ch_cost = long(sle_same_ch_cost.text)
adj_ch_cost = long(sle_adj_ch_cost.text)
forbid_ch_cost = long(sle_forbid_ch_cost.text)

lb_cell_name.reset()
lb_external_name.reset()

setnull(nul)
st_status.text = nul
st_best_cost.text = nul
st_best_bcch_cost.text = nul
st_best_tch_cost.text = nul

rc = d_afp_cells.rowcount()
if rc < 1 then
 Messagebox("Warning","Cells table must be imported")
 return
end if
cell_count = rc

last_row = d_afp_icdm.rowcount()
if last_row < 1 then

166

 Messagebox("Warning","ICDM table must be imported")
 return
end if

if not(cbx_tch_plan.checked) and not(cbx_bcch_plan.checked) then
 messagebox("Warning","TCH, BCCH or both checkboxes must be
selected")
 return
end if

enabled = false
SetPointer(HourGlass!)

d_afp_icdm.SetRedraw(false)
d_afp_cells.SetRedraw(false)

st_status.text = "Wait for planing!"

d_afp_cell_frequencies_best.reset()

//Kullanilan Frekanslarin belirlenmesi
if cbx_bcch_plan.checked = true then f_set_random_bcch()
if cbx_tch_plan.checked = true then f_set_random_tch()

//Nbr Count hesaplama
f_calculate_nbr_count()
d_afp_cells.SetSort("#9 D, #4 D") //Nbr Count , Tot Traf
d_afp_cells.Sort()

//DW lerin Arraylara Aktarimi
f_set_arrays_from_dw()

//Temizleme islemleri
f_clear_freq_cost_table()
f_clear_forbidden_and_fixed_list()
f_clear_cell_freqs()

For i = 1 to 4000

167

 For cell_no = 1 to 4
 flag_cosite_cost_added[i,cell_no] = false
 Next
 flag_check_frequency[i] = true
Next

//Forbidden ve Fixed Frekanslarin DW den arraylere aktarimi
f_set_forbidden_and_fixed_freq()

ext_cll_ind = 3000

For i = 1 to last_row

 src_cll = d_afp_icdm.getitemstring(i,"source_cell")
 src_cll_ind = lb_cell_name.FindItem(src_cll,0)
 if src_cll_ind < 0 then
 continue
 end if

 int_cll = d_afp_icdm.getitemstring(i,"interferer_cell")

 src_trf = cell_traffic[src_cll_ind]

 if left(int_cll,5) = left(src_cll,5) then // cosite ta costu yukselt
 co_affect = same_ch_cost
 adj_affect = adj_ch_cost
 cell_no = long(mid(int_cll,6,1))
 flag_cosite_cost_added[src_cll_ind,cell_no] = true
 else
 co_affect = 0
 adj_affect = 0
 end if

 int_cll_ind = lb_cell_name.FindItem(int_cll,0)
 if int_cll_ind < 0 then //external cell

 int_cll_ind = lb_external_name.FindItem(int_cll,0)
 if int_cll_ind < 0 then // new external

168

 bcch = f_get_bcch_from_cell(int_cll)

 if (bcch > 0) then

 ext_cll_ind++
 lb_external_name.InsertItem(int_cll,ext_cll_ind -
3000)
 int_cll_ind = ext_cll_ind

 cell_freq_bcch[int_cll_ind] = bcch
 freq_cost_table[src_cll_ind,bcch] +=
(((d_afp_icdm.getitemdecimal(i,"traf_affected_co_percent") * src_trf /
100) + co_affect) * 10)
 if bcch > 1 then freq_cost_table[src_cll_ind,bcch -
1] += (((d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") *
src_trf / 100) + adj_affect) * 10)
 if bcch < 124 then freq_cost_table[src_cll_ind,bcch
+ 1] += (((d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") *
src_trf / 100) + adj_affect) * 10)

 tru_number = 0
 tch_string = f_get_all_tch_from_cell(int_cll)
 if len(tch_string) > 0 then
 tru_number = f_get_from_count(tch_string)
 For o = 1 to tru_number
 tch = long(f_get_from(tch_string,o))
 cell_freq_tch[int_cll_ind,o] = tch

 freq_cost_table[src_cll_ind,tch] +=
(d_afp_icdm.getitemdecimal(i,"traf_affected_co_percent") * src_trf /
100) + co_affect
 if tch > 1 then
freq_cost_table[src_cll_ind,tch - 1] +=
(d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") * src_trf /
100) + adj_affect
 if tch < 124 then
freq_cost_table[src_cll_ind,tch + 1] +=

169

(d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") * src_trf /
100) + adj_affect

 Next
 end if

 cell_tch_number[int_cll_ind] = tru_number

 else

 continue
 end if
 else // current external

 int_cll_ind += 3000

 bcch = cell_freq_bcch[int_cll_ind]
 freq_cost_table[src_cll_ind,bcch] +=
(((d_afp_icdm.getitemdecimal(i,"traf_affected_co_percent") * src_trf /
100) + co_affect) * 10)
 if bcch > 1 then freq_cost_table[src_cll_ind,bcch - 1] +=
(((d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") * src_trf /
100) + adj_affect) * 10)
 if bcch < 124 then freq_cost_table[src_cll_ind,bcch + 1]
+= (((d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") * src_trf
/ 100) + adj_affect) * 10)

 tru_number = cell_tch_number[int_cll_ind]

 For o = 1 to tru_number
 tch = cell_freq_tch[int_cll_ind,o]

 freq_cost_table[src_cll_ind,tch] +=
(d_afp_icdm.getitemdecimal(i,"traf_affected_co_percent") * src_trf /
100) + co_affect
 if tch > 1 then freq_cost_table[src_cll_ind,tch - 1]
+= (d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") * src_trf /
100) + adj_affect

170

 if tch < 124 then freq_cost_table[src_cll_ind,tch +
1] += (d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") *
src_trf / 100) + adj_affect

 Next

 end if
 end if

 cell_interfered_count[int_cll_ind]++
 icdm_interfered_ind[int_cll_ind,cell_interfered_count[int_cll_ind]]
= src_cll_ind
 icdm_co_int[int_cll_ind,cell_interfered_count[int_cll_ind]] =
(d_afp_icdm.getitemdecimal(i,"traf_affected_co_percent") * src_trf /
100) + co_affect
 icdm_adj_int[int_cll_ind,cell_interfered_count[int_cll_ind]] =
(d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") * src_trf /
100) + adj_affect

 cell_interferer_count[src_cll_ind]++
 icdm_interferer_ind[src_cll_ind,cell_interferer_count[src_cll_ind]]
= int_cll_ind
 icdm_co[src_cll_ind,cell_interferer_count[src_cll_ind]] =
(d_afp_icdm.getitemdecimal(i,"traf_affected_co_percent") * src_trf /
100) + co_affect
 icdm_adj[src_cll_ind,cell_interferer_count[src_cll_ind]] =
(d_afp_icdm.getitemdecimal(i,"traf_affected_adj_percent") * src_trf /
100) + adj_affect
Next

//Cosite icinde icdm olcum yapmadiysa eksik costlari yukseltme
f_add_cost_in_cosite()

//Forbidden frekanslara cost eklenmesi - Fixed frekanslarin atanmasi ve
cost eklenmesi
f_add_cost_to_forbidden_fixed()

171

//---------------------Frekans Planlama-------------------------------

//**************BCCH Bulma****************

if cbx_bcch_plan.checked then

 last_best_cost = 1000000000
 For n = 1 to optimize_times

 log_text = string(today()) + " - " + string(now()) + " : BCCH n =
"+ string(n)
 FileWrite(log_file , log_text)

 best_cost = 1000000000

 For freq_level = 1 to (cell_count - 1)

 log_text = string(today()) + " - " + string(now()) + " : BCCH Freq
Level Left = "+ string(cell_count - freq_level)
 FileWrite(log_file , log_text)

 For random_bcch = 1 to random_bcch_count

 if fixed_bcch_list[freq_level] <= 0 then

 frequency_no = random_bcch_list[random_bcch]

 if (cell_freq_bcch[freq_level] <> frequency_no)
then // Oncekinden Farkli Frekans ise

 if cell_freq_bcch[freq_level] > 0
then // Frekans degisimi

 For o = 1 to
cell_interfered_count[freq_level]

 src_cll_ind =
icdm_interfered_ind[freq_level,o]

172

 co_affect =
icdm_co_int[freq_level,o]
 adj_affect =
icdm_adj_int[freq_level,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect * 10)
 if frequency_no > 1
then freq_cost_table[src_cll_ind,frequency_no - 1] += (adj_affect * 10)
 if frequency_no < 124
then freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect * 10)

 freq_cost_table[src_cll_ind,cell_freq_bcch[freq_level]] -=
(co_affect * 10)
 if
cell_freq_bcch[freq_level] > 1 then
freq_cost_table[src_cll_ind,cell_freq_bcch[freq_level] - 1] -= (adj_affect
* 10)
 if
cell_freq_bcch[freq_level] < 124 then
freq_cost_table[src_cll_ind,cell_freq_bcch[freq_level] + 1] -= (adj_affect
* 10)

 flag_check_frequency[src_cll_ind] = true
 Next
 else // ilk frekans

 For o = 1 to
cell_interfered_count[freq_level]

 src_cll_ind =
icdm_interfered_ind[freq_level,o]

 co_affect =
icdm_co_int[freq_level,o]

173

 adj_affect =
icdm_adj_int[freq_level,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect * 10)
 if frequency_no > 1
then freq_cost_table[src_cll_ind,frequency_no - 1] += (adj_affect * 10)
 if frequency_no < 124
then freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect * 10)

 flag_check_frequency[src_cll_ind] = true

 Next

 end if

 cell_freq_bcch[freq_level] =
frequency_no
 end if

 end if

 For i = (freq_level + 1) to cell_count
 if flag_check_frequency[i] = true then
 flag_check_frequency[i] = false

 if fixed_bcch_list[i] <= 0 then

 frequency_no = f_get_best_bcch(i) //En iyi Frekans
Bul

 if (cell_freq_bcch[i] <> frequency_no) then //
Oncekinden Farkli Frekans ise

 if cell_freq_bcch[i] > 0 then //
Frekans degisimi

174

 For o = 1 to
cell_interfered_count[i]

 src_cll_ind =
icdm_interfered_ind[i,o]

 co_affect =
icdm_co_int[i,o]
 adj_affect =
icdm_adj_int[i,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect * 10)
 if frequency_no > 1
then freq_cost_table[src_cll_ind,frequency_no - 1] += (adj_affect * 10)
 if frequency_no < 124
then freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect * 10)

 freq_cost_table[src_cll_ind,cell_freq_bcch[i]] -= (co_affect * 10)
 if cell_freq_bcch[i] >
1 then freq_cost_table[src_cll_ind,cell_freq_bcch[i] - 1] -= (adj_affect *
10)
 if cell_freq_bcch[i] <
124 then freq_cost_table[src_cll_ind,cell_freq_bcch[i] + 1] -= (adj_affect
* 10)

 Next
 else // ilk Frekans

 For o = 1 to
cell_interfered_count[i]

 src_cll_ind =
icdm_interfered_ind[i,o]

 co_affect =
icdm_co_int[i,o]

175

 adj_affect =
icdm_adj_int[i,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect * 10)
 if frequency_no > 1
then freq_cost_table[src_cll_ind,frequency_no - 1] += (adj_affect * 10)
 if frequency_no < 124
then freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect * 10)

 Next

 end if

 cell_freq_bcch[i] = frequency_no
 end if

 end if

 end if
 Next // end i

 result_cost = 0
 For i = 1 to cell_count //cost hesabi
 result_cost += freq_cost_table[i,cell_freq_bcch[i]]
 Next

 if best_cost > result_cost then // Best Cost bulunmasi
 best_cost = result_cost
 best_cell_freq_bcch = cell_freq_bcch
 For p = 1 to cell_count
 For j = 1 to random_bcch_count

 temp_freq_cost_table[p,random_bcch_list[j]] =
freq_cost_table[p,random_bcch_list[j]]
 Next

176

 Next
 log_text = string(today()) + " - " + string(now()) +
" : BCCH Changing Best Cost = "+ string(Round(result_cost,3))
 FileWrite(log_file , log_text)

 result_cost = f_calculate_cost()
 log_text = string(today()) + " - " + string(now()) +
" : BCCH Real Best Cost = "+ string(Round(result_cost, 3))
 FileWrite(log_file , log_text)

 end if

 Next // end random_bcch

 For p = 1 to cell_count
 For j = 1 to random_bcch_count
 freq_cost_table[p,random_bcch_list[j]] =
temp_freq_cost_table[p,random_bcch_list[j]]
 Next
 Next

 cell_freq_bcch = best_cell_freq_bcch
 result_cost = best_cost

 Next // end freq_level

 if last_best_cost > best_cost then // Last Best Cost bulunmasi
 last_best_cost = best_cost
 last_best_cell_freq_bcch = best_cell_freq_bcch

 plan_file = FileOpen("c:\neptune\neptune_afp_last_plan.txt",
LineMode!, Write!, LockWrite!, Replace!)
 For p = 1 to cell_count
 For j = 1 to random_bcch_count
 last_freq_cost_table[p,random_bcch_list[j]] =
temp_freq_cost_table[p,random_bcch_list[j]]
 Next

177

 plan_text = lb_cell_name.text(p) + Char(9) +
string(best_cell_freq_bcch[p])
 FileWrite(plan_file , plan_text)
 Next
 FileClose(plan_file)

 log_text = string(today()) + " - " + string(now()) + " : BCCH
Changing Last Best Cost = "+ string(Round(best_cost,3))
 FileWrite(log_file , log_text)
 st_best_bcch_cost.text = string(Round(result_cost, 3))

 result_cost = f_calculate_cost()
 log_text = string(today()) + " - " + string(now()) + " : BCCH Real
Last Best Cost = "+ string(Round(best_cost, 3))
 FileWrite(log_file , log_text)

 end if

 For p = 1 to cell_count
 flag_check_frequency[p] = true
 Next

 Next // end n

 For p = 1 to cell_count
 For j = 1 to random_bcch_count
 freq_cost_table[p,random_bcch_list[j]] =
last_freq_cost_table[p,random_bcch_list[j]]
 Next
 Next

 cell_freq_bcch = last_best_cell_freq_bcch
 result_cost = last_best_cost

 For i = 1 to cell_count
 if fixed_bcch_list[i] <= 0 then
 freq_cost_table[i,cell_freq_bcch[i]] += 100000

178

 if cell_freq_bcch[i] > 1 then freq_cost_table[i,cell_freq_bcch[i] -
1] += 100000
 if cell_freq_bcch[i] < 124 then freq_cost_table[i,cell_freq_bcch[i]
+ 1] += 100000
 end if
 Next

 For i = 1 to 4000
 flag_check_frequency[i] = true
 Next

end if

//**************TCH Bulma********************

if cbx_tch_plan.checked then

 last_best_cost = 1000000000
 For n = 1 to optimize_times

 log_text = string(today()) + " - " + string(now()) + " : TCH n = "+
string(n)
 FileWrite(log_file , log_text)

 For p = 1 to 4000
 For j = 1 to 16
 best_cell_freq_tch[p,j] = cell_freq_tch[p,j]
 Next
 Next

 best_cost = 1000000000

 For freq_level = 1 to (cell_count - 1)

 log_text = string(today()) + " - " + string(now()) + " : TCH Freq
Level Left = "+ string(cell_count - freq_level)
 FileWrite(log_file , log_text)

179

 For k = 1 to cell_tch_number[freq_level]

 For random_tch = 1 to random_tch_count

 if fixed_tch_list[freq_level,k] <= 0 then

 frequency_no =
random_tch_list[random_tch]

 if (cell_freq_tch[freq_level,k] <>
frequency_no) then // Oncekinden Farkli Frekans ise

 if
cell_freq_tch[freq_level,k] > 0 then // Frekans degisimi

 For o = 1 to
cell_interfered_count[freq_level]

 src_cll_ind = icdm_interfered_ind[freq_level,o]

 co_affect = icdm_co_int[freq_level,o]

 adj_affect = icdm_adj_int[freq_level,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect)
 if
frequency_no > 1 then freq_cost_table[src_cll_ind,frequency_no - 1] +=
(adj_affect)
 if
frequency_no < 124 then freq_cost_table[src_cll_ind,frequency_no + 1]
+= (adj_affect)

 freq_cost_table[src_cll_ind,cell_freq_tch[freq_level,k]] -=
(co_affect)

180

 if
cell_freq_tch[freq_level,k] > 1 then
freq_cost_table[src_cll_ind,cell_freq_tch[freq_level,k] - 1] -=
(adj_affect)
 if
cell_freq_tch[freq_level,k] < 124 then
freq_cost_table[src_cll_ind,cell_freq_tch[freq_level,k] + 1] -=
(adj_affect)

 flag_check_frequency[src_cll_ind] = true
 Next

 freq_cost_table[freq_level,cell_freq_tch[freq_level,k]] -= 100000
 if
cell_freq_tch[freq_level,k] > 1 then
freq_cost_table[freq_level,cell_freq_tch[freq_level,k] - 1] -= 100000
 if
cell_freq_tch[freq_level,k] < 124 then
freq_cost_table[freq_level,cell_freq_tch[freq_level,k] + 1] -= 100000

 else // ilk frekans

 For o = 1 to
cell_interfered_count[freq_level]

 src_cll_ind = icdm_interfered_ind[freq_level,o]

 co_affect = icdm_co_int[freq_level,o]

 adj_affect = icdm_adj_int[freq_level,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect)

181

 if
frequency_no > 1 then freq_cost_table[src_cll_ind,frequency_no - 1] +=
(adj_affect)
 if
frequency_no < 124 then freq_cost_table[src_cll_ind,frequency_no + 1]
+= (adj_affect)

 flag_check_frequency[src_cll_ind] = true
 Next

 end if

 cell_freq_tch[freq_level,k] = frequency_no

 freq_cost_table[freq_level,frequency_no] += 100000
 if frequency_no > 1
then freq_cost_table[freq_level,frequency_no - 1] += 100000
 if frequency_no < 124
then freq_cost_table[freq_level,frequency_no + 1] += 100000

 end if

 end if

 For m = (k+1) to
cell_tch_number[freq_level]
 if fixed_tch_list[freq_level,m] <= 0
then

 frequency_no =
f_get_best_tch(freq_level) //En iyi Frekans Bul

 if
(cell_freq_tch[freq_level,m] <> frequency_no) then // Oncekinden Farkli
Frekans ise

182

 if
cell_freq_tch[freq_level,m] > 0 then // Frekans degisimi

 For o =
1 to cell_interfered_count[freq_level]

 src_cll_ind = icdm_interfered_ind[freq_level,o]

 co_affect = icdm_co_int[freq_level,o]

 adj_affect = icdm_adj_int[freq_level,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect)

 if frequency_no > 1 then freq_cost_table[src_cll_ind,frequency_no
- 1] += (adj_affect)

 if frequency_no < 124 then
freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect)

 freq_cost_table[src_cll_ind,cell_freq_tch[freq_level,m]] -=
(co_affect)

 if cell_freq_tch[freq_level,m] > 1 then
freq_cost_table[src_cll_ind,cell_freq_tch[freq_level,m] - 1] -=
(adj_affect)

 if cell_freq_tch[freq_level,m] < 124 then
freq_cost_table[src_cll_ind,cell_freq_tch[freq_level,m] + 1] -=
(adj_affect)

 Next

 freq_cost_table[freq_level,cell_freq_tch[freq_level,m]] -= 100000

183

 if
cell_freq_tch[freq_level,m] > 1 then
freq_cost_table[freq_level,cell_freq_tch[freq_level,m] - 1] -= 100000
 if
cell_freq_tch[freq_level,m] < 124 then
freq_cost_table[freq_level,cell_freq_tch[freq_level,m] + 1] -= 100000

 else // ilk
Frekans

 For o =
1 to cell_interfered_count[freq_level]

 src_cll_ind = icdm_interfered_ind[freq_level,o]

 co_affect = icdm_co_int[freq_level,o]

 adj_affect = icdm_adj_int[freq_level,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect)

 if frequency_no > 1 then freq_cost_table[src_cll_ind,frequency_no
- 1] += (adj_affect)

 if frequency_no < 124 then
freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect)

 Next

 end if

 cell_freq_tch[freq_level,m] = frequency_no

184

 freq_cost_table[freq_level,frequency_no] += 100000
 if
frequency_no > 1 then freq_cost_table[freq_level,frequency_no - 1] +=
100000
 if
frequency_no < 124 then freq_cost_table[freq_level,frequency_no + 1]
+= 100000

 end if

 end if

 Next // end m

 For i = (freq_level + 1) to cell_count
 if flag_check_frequency[i] = true then
 flag_check_frequency[i] = false

 For m = 1 to cell_tch_number[i]
 if fixed_tch_list[i,m] <= 0 then

 frequency_no =
f_get_best_tch(i) //En iyi Frekans Bul

 if (cell_freq_tch[i,m] <>
frequency_no) then // Oncekinden Farkli Frekans ise

 if
cell_freq_tch[i,m] > 0 then // Frekans degisimi

 For o =
1 to cell_interfered_count[i]

 src_cll_ind = icdm_interfered_ind[i,o]

185

 co_affect = icdm_co_int[i,o]

 adj_affect = icdm_adj_int[i,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect)

 if frequency_no > 1 then freq_cost_table[src_cll_ind,frequency_no
- 1] += (adj_affect)

 if frequency_no < 124 then
freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect)

 freq_cost_table[src_cll_ind,cell_freq_tch[i,m]] -= (co_affect)

 if cell_freq_tch[i,m] > 1 then
freq_cost_table[src_cll_ind,cell_freq_tch[i,m] - 1] -= (adj_affect)

 if cell_freq_tch[i,m] < 124 then
freq_cost_table[src_cll_ind,cell_freq_tch[i,m] + 1] -= (adj_affect)

 Next

 freq_cost_table[i,cell_freq_tch[i,m]] -= 100000
 if
cell_freq_tch[i,m] > 1 then freq_cost_table[i,cell_freq_tch[i,m] - 1] -=
100000
 if
cell_freq_tch[i,m] < 124 then freq_cost_table[i,cell_freq_tch[i,m] + 1] -=
100000

 else // ilk
Frekans

 For o =
1 to cell_interfered_count[i]

186

 src_cll_ind = icdm_interfered_ind[i,o]

 co_affect = icdm_co_int[i,o]

 adj_affect = icdm_adj_int[i,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect)

 if frequency_no > 1 then freq_cost_table[src_cll_ind,frequency_no
- 1] += (adj_affect)

 if frequency_no < 124 then
freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect)

 Next

 end if

 cell_freq_tch[i,m] = frequency_no

 freq_cost_table[i,frequency_no] += 100000
 if
frequency_no > 1 then freq_cost_table[i,frequency_no - 1] += 100000
 if
frequency_no < 124 then freq_cost_table[i,frequency_no + 1] += 100000

 end if

 end if
 Next // end m
 end if
 Next // end i

187

 result_cost = 0
 For i = 1 to cell_count //cost hesabi
 For j = 1 to cell_tch_number[i]
 result_cost = result_cost +
freq_cost_table[i,cell_freq_tch[i,j]] - 100000
 Next
 Next

 if best_cost > result_cost then // Best Cost
bulunmasi
 best_cost = result_cost
 For p = 1 to cell_count
 For j = 1 to
cell_tch_number[p]

 best_cell_freq_tch[p,j] = cell_freq_tch[p,j]
 Next
 Next
 For p = 1 to cell_count
 For j = 1 to
random_tch_count

 temp_freq_cost_table[p,random_tch_list[j]] =
freq_cost_table[p,random_tch_list[j]]
 Next
 Next

 log_text = string(today()) + " - " +
string(now()) + " : TCH Changing Best Cost = "+
string(Round(result_cost,3))
 FileWrite(log_file , log_text)

 end if

 Next // end random_tch

 For p = 1 to cell_count
 For j = 1 to random_tch_count

188

 freq_cost_table[p,random_tch_list[j]] =
temp_freq_cost_table[p,random_tch_list[j]]
 Next
 Next

 For p = 1 to cell_count
 For j = 1 to cell_tch_number[p]
 cell_freq_tch[p,j] =
best_cell_freq_tch[p,j]
 Next
 Next
 result_cost = best_cost

 Next // end k

 Next // end freq_level

 if last_best_cost > best_cost then // Last Best Cost bulunmasi
 last_best_cost = best_cost

 plan_file = FileOpen("c:\neptune\neptune_afp_last_plan.txt",
LineMode!, Write!, LockWrite!, Replace!)
 For p = 1 to cell_count
 plan_text = lb_cell_name.text(p)
 if cbx_bcch_plan.checked then plan_text = plan_text +
Char(9) + string(cell_freq_bcch[p])

 For j = 1 to cell_tch_number[p]
 last_best_cell_freq_tch[p,j] =
best_cell_freq_tch[p,j]
 plan_text = plan_text + Char(9) +
string(best_cell_freq_tch[p,j])
 Next

 FileWrite(plan_file , plan_text)
 Next
 FileClose(plan_file)

189

 For p = 1 to cell_count
 For j = 1 to random_tch_count
 last_freq_cost_table[p,random_tch_list[j]] =
temp_freq_cost_table[p,random_tch_list[j]]
 Next
 Next

 log_text = string(today()) + " - " + string(now()) + " : TCH
Changing Last Best Cost = "+ string(Round(best_cost,3))
 FileWrite(log_file , log_text)
 st_best_tch_cost.text = string(Round(best_cost, 3))

 end if

 For p = 1 to cell_count
 flag_check_frequency[p] = true
 Next

 Next // end n

 For p = 1 to cell_count
 For j = 1 to random_tch_count
 freq_cost_table[p,random_tch_list[j]] =
last_freq_cost_table[p,random_tch_list[j]]
 Next
 Next
 For p = 1 to cell_count
 For j = 1 to cell_tch_number[p]
 cell_freq_tch[p,j] = last_best_cell_freq_tch[p,j]
 Next
 Next
 result_cost = last_best_cost

end if

//Cosite Cost larini temizleme
f_clean_cosite_costs()

190

//-------------- Sonuc Cost larin hesaplanmasi------------------------------
total_cost = 0

if cbx_bcch_plan.checked = true then
 result_cost = 0
 For p = 1 to cell_count
 result_cost += freq_cost_table[p,cell_freq_bcch[p]]
 Next

 st_best_bcch_cost.text = string(Round(result_cost, 3))

 log_text = string(today()) + " - " + string(now()) + " : BCCH
Result Cost = "+ string(Round(result_cost, 3))
 FileWrite(log_file , log_text)

 total_cost += result_cost
end if

if cbx_tch_plan.checked = true then
 result_cost = 0
 For p = 1 to cell_count
 For j = 1 to cell_tch_number[p]
 result_cost += freq_cost_table[p,cell_freq_tch[p,j]]
 Next
 Next

 st_best_tch_cost.text = string(Round(result_cost, 3))

 log_text = string(today()) + " - " + string(now()) + " : TCH Result
Cost = "+ string(Round(result_cost, 3))
 FileWrite(log_file , log_text)

 total_cost += result_cost
end if

log_text = string(today()) + " - " + string(now()) + " : Total Result Cost
= "+ string(Round(total_cost, 3))
FileWrite(log_file , log_text)

191

st_best_cost.text = string(Round(total_cost, 3))

result_cost = f_calculate_cost()
st_status.text = "Real Cost : " + string(Round(result_cost, 3))
log_text = string(today()) + " - " + string(now()) + " : Real Total Cost =
"+ string(Round(result_cost, 3))
FileWrite(log_file , log_text)

log_text = string(today()) + " - " + string(now()) + " : Planning finished!"
FileWrite(log_file , log_text)

For i = 1 to cell_count
 d_afp_cell_frequencies_best.insertrow(i)
 d_afp_cell_frequencies_best.setitem(i,"cell_name",lb_cell_name.te
xt(i))
 tru_number = cell_tch_number[i] + 1
 d_afp_cell_frequencies_best.setitem(i,"tru_number",tru_number)

 log_text = lb_cell_name.text(i)

 if cbx_bcch_plan.checked = true then

 d_afp_cell_frequencies_best.setitem(i,"bcch_cost",freq_cost_table[
i,cell_freq_bcch[i]])
 d_afp_cell_frequencies_best.setitem(i,"bcch",cell_freq_bcch[i])
 log_text = log_text + Char(9) + string(cell_freq_bcch[i])
 end if

 result_cost = 0
 For j = 1 to cell_tch_number[i]
 if cbx_tch_plan.checked = true then
 result_cost += freq_cost_table[i,cell_freq_tch[i,j]]

 d_afp_cell_frequencies_best.setitem(i,("tch"+string(j)),cell_freq_tc
h[i,j])
 end if
 log_text = log_text + Char(9) + string(cell_freq_tch[i,j])
 Next

192

 if cbx_tch_plan.checked = true then
d_afp_cell_frequencies_best.setitem(i,"tch_cost",result_cost)
 total_cost = result_cost
 if cbx_bcch_plan.checked = true then total_cost +=
freq_cost_table[i,cell_freq_bcch[i]]
 d_afp_cell_frequencies_best.setitem(i,"total_cost",total_cost)

 FileWrite(log_file , log_text)
Next

//Best plan check etme
f_check_new_plan()

//---------------------------Bitirme Islemleri--------------------------
FileClose(log_file)
d_afp_icdm.SetRedraw(true)
d_afp_cells.SetRedraw(true)
cb_save_best.enabled = true
cb_check_plan.enabled = true
st_status.text += " - Planing finished!"
enabled = true
SetPointer(Arrow!)
end event

type lb_all_frequencies from listbox within w_afp
int X=73
int Y=1440
int Width=357
int Height=628
int TabOrder=170
boolean BringToTop=true
BorderStyle BorderStyle=StyleLowered!
boolean VScrollBar=true
boolean MultiSelect=true
long TextColor=33554432
long BackColor=15793151
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"

193

FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type st_all_freq from statictext within w_afp
int X=32
int Y=1344
int Width=503
int Height=80
boolean Enabled=false
boolean BringToTop=true
string Text="All Frequencies"
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=82042848
int TextSize=-10
int Weight=700
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type
type lb_bcch_frequencies from listbox within w_afp
int X=800
int Y=1440
int Width=357
int Height=628
int TabOrder=190
boolean BringToTop=true
BorderStyle BorderStyle=StyleLowered!
boolean VScrollBar=true
boolean MultiSelect=true
long TextColor=33554432
long BackColor=12639424
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!

194

FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type cb_add_bcch from commandbutton within w_afp
int X=471
int Y=1580
int Width=288
int Height=144
int TabOrder=220
string Text="Add =>"
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

event clicked;integer li_ItemTotal, li_ItemCount

li_ItemTotal = lb_all_frequencies.TotalItems()

FOR li_ItemCount = 1 to li_ItemTotal

 IF lb_all_frequencies.State(li_ItemCount) = 1 THEN

 lb_bcch_frequencies.additem(lb_all_frequencies.text(li_ItemCount)
)
 bcch_frequency_list[long(lb_all_frequencies.text(li_ItemCount))]
= true
 lb_all_frequencies.deleteitem(li_ItemCount)
 li_ItemCount = li_ItemCount - 1
 END IF
NEXT
end event
type st_bcch_freq from statictext within w_afp
int X=722

195

int Y=1344
int Width=553
int Height=80
boolean Enabled=false
boolean BringToTop=true
string Text="BCCH Frequencies"
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=82042848
int TextSize=-10
int Weight=700
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type cb_remove_bcch from commandbutton within w_afp
int X=471
int Y=1772
int Width=288
int Height=144
int TabOrder=230
string Text="<= Remove"
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

event clicked;integer li_ItemTotal, li_ItemCount
long i,j

// Listedekilerin sayisini bul
li_ItemTotal = lb_bcch_frequencies.TotalItems()

FOR li_ItemCount = 1 to li_ItemTotal

196

// Kaynak listedeki secildiyse Hedef listeye gonder
 IF lb_bcch_frequencies.State(li_ItemCount) = 1 THEN

 lb_all_frequencies.additem(lb_bcch_frequencies.text(li_ItemCount)
)

 bcch_frequency_list[long(lb_bcch_frequencies.text(li_ItemCount))
] = false
 lb_bcch_frequencies.deleteitem(li_ItemCount)
 li_ItemCount = li_ItemCount - 1
 END IF

NEXT
end event

type st_all_freq_3 from statictext within w_afp
int X=32
int Y=2152
int Width=503
int Height=80
boolean Enabled=false
boolean BringToTop=true
string Text="All Frequencies"
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=82042848
int TextSize=-10
int Weight=700
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type lb_all_frequencies_3 from listbox within w_afp
int X=73
int Y=2248
int Width=357

197

int Height=628
int TabOrder=200
boolean BringToTop=true
BorderStyle BorderStyle=StyleLowered!
boolean VScrollBar=true
boolean MultiSelect=true
long TextColor=33554432
long BackColor=15793151
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type st_tch_freq from statictext within w_afp
int X=722
int Y=2152
int Width=553
int Height=80
boolean Enabled=false
boolean BringToTop=true
string Text="TCH Frequencies"
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=82042848
int TextSize=-10
int Weight=700
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type lb_tch_frequencies from listbox within w_afp
int X=800
int Y=2248
int Width=357

198

int Height=628
int TabOrder=330
boolean BringToTop=true
BorderStyle BorderStyle=StyleLowered!
boolean VScrollBar=true
boolean MultiSelect=true
long TextColor=33554432
long BackColor=12639424
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type cb_add_tch from commandbutton within w_afp
int X=471
int Y=2388
int Width=288
int Height=144
int TabOrder=250
string Text="Add =>"
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

event clicked;integer li_ItemTotal, li_ItemCount

li_ItemTotal = lb_all_frequencies_3.TotalItems()

FOR li_ItemCount = 1 to li_ItemTotal

199

 IF lb_all_frequencies_3.State(li_ItemCount) = 1 THEN

 lb_tch_frequencies.additem(lb_all_frequencies_3.text(li_ItemCoun
t))

 tch_frequency_list[long(lb_all_frequencies_3.text(li_ItemCount))]
= true
 lb_all_frequencies_3.deleteitem(li_ItemCount)
 li_ItemCount = li_ItemCount - 1
 END IF
NEXT
end event

type cb_remove_tch from commandbutton within w_afp
int X=471
int Y=2580
int Width=288
int Height=144
int TabOrder=260
string Text="<= Remove"
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

event clicked;integer li_ItemTotal, li_ItemCount

// Listedekilerin sayisini bul
li_ItemTotal = lb_tch_frequencies.TotalItems()

FOR li_ItemCount = 1 to li_ItemTotal

// Kaynak listedeki secildiyse Hedef listeye gonder
 IF lb_tch_frequencies.State(li_ItemCount) = 1 THEN

200

 lb_all_frequencies_3.additem(lb_tch_frequencies.text(li_ItemCoun
t))
 tch_frequency_list[long(lb_tch_frequencies.text(li_ItemCount))]
= false
 lb_tch_frequencies.deleteitem(li_ItemCount)
 li_ItemCount = li_ItemCount - 1
 END IF

NEXT
end event

type d_afp_cell_frequencies from datawindow_common within w_afp
int X=2546
int Y=996
int Width=782
int Height=464
int TabOrder=60
boolean Visible=false
boolean BringToTop=true
string DataObject="dwe_afp_cell_frequencies_best"
boolean TitleBar=false
BorderStyle BorderStyle=StyleBox!
boolean ControlMenu=false
boolean MinBox=false
boolean MaxBox=false
boolean HScrollBar=false
boolean VScrollBar=false
boolean Resizable=false
boolean LiveScroll=false
end type

type st_initial_cost from statictext within w_afp
int X=2976
int Y=1896
int Width=571
int Height=80
boolean Enabled=false
boolean BringToTop=true

201

boolean Border=true
Alignment Alignment=Right!
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=15793151
int TextSize=-10
int Weight=700
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type st_initial_cost_label from statictext within w_afp
int X=2478
int Y=1904
int Width=480
int Height=80
boolean Enabled=false
boolean BringToTop=true
string Text="Initial Cost Total"
Alignment Alignment=Right!
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=82042848
int TextSize=-10
int Weight=700
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type cb_optimize from commandbutton within w_afp
int X=2917
int Y=1640
int Width=631
int Height=80
int TabOrder=70

202

boolean Enabled=false
boolean BringToTop=true
string Text="Optimize Imported Plan"
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

event clicked;decimal result_cost,best_cost,total_cost,bcch_cost
string nul
long optimize_times,i,o,m,p,j,k,n
long frequency_no,src_cll_ind
decimal co_affect,adj_affect

enabled = false
SetPointer(HourGlass!)

setnull(nul)
st_status.text = nul

// Best Cost varsa kaldigi yerden devam etsin----------------------------------

if isnull(st_best_cost.text) and isnull(st_best_bcch_cost.text) and
isnull(st_best_tch_cost.text) then

 // Initial Cost un best lere kopyalanmasi
 if cbx_tch_plan.checked and cbx_bcch_plan.checked then
 best_cost = Dec(st_initial_cost.text)
 elseif cbx_bcch_plan.checked then
 best_cost = Dec(st_initial_bcch_cost.text)
 elseif cbx_tch_plan.checked then
 best_cost = Dec(st_initial_tch_cost.text)
 else
 messagebox("Warning","TCH, BCCH or both checkboxes must
be selected")

203

 return
 end if

end if

if cbx_bcch_plan.checked then
 best_cell_freq_bcch = cell_freq_bcch
 For p = 1 to cell_count
 For j = 1 to random_bcch_count
 temp_freq_cost_table[p,random_bcch_list[j]] =
freq_cost_table[p,random_bcch_list[j]]
 Next
 Next
end if

if cbx_tch_plan.checked then
 For p = 1 to cell_count
 For j = 1 to cell_tch_number[p]
 best_cell_freq_tch[p,j] = cell_freq_tch[p,j]
 Next
 Next
 For p = 1 to cell_count
 For j = 1 to random_tch_count
 temp_freq_cost_table[p,random_tch_list[j]] =
freq_cost_table[p,random_tch_list[j]]
 Next
 Next
end if

// Optimizasyona baslanmasi--

if len(sle_optimize_times.text) > 0 then
 optimize_times = long(sle_optimize_times.text)
else
 optimize_times = 1
end if

204

For n = 1 to optimize_times

 st_status.text = "Wait for Optimizing! (Remaining times:" +
string(optimize_times - n + 1) + ")"

 //Cosite Cost larini temizleme
 For i = 1 to cell_count

 if cbx_bcch_plan.checked then
 if fixed_bcch_list[i] <= 0 then
 freq_cost_table[i,cell_freq_bcch[i]] -= 100000
 if cell_freq_bcch[i] > 1 then
freq_cost_table[i,cell_freq_bcch[i] - 1] -= 100000
 if cell_freq_bcch[i] < 124 then
freq_cost_table[i,cell_freq_bcch[i] + 1] -= 100000
 end if
 end if

 if cbx_tch_plan.checked then
 For k = 1 to cell_tch_number[i]
 if fixed_tch_list[i,k] <= 0 then
 freq_cost_table[i,cell_freq_tch[i,k]] -=
100000
 if cell_freq_tch[i,k] > 1 then
freq_cost_table[i,cell_freq_tch[i,k] - 1] -= 100000
 if cell_freq_tch[i,k] < 124 then
freq_cost_table[i,cell_freq_tch[i,k] + 1] -= 100000
 end if
 Next
 end if

 Next

 //BCCH
 if cbx_bcch_plan.checked then
 For i = 1 to cell_count

 if fixed_bcch_list[i] <= 0 then

205

 frequency_no = f_get_best_bcch(i) //En iyi Frekans
Bul

 if (cell_freq_bcch[i] <> frequency_no) then //
Oncekinden Farkli Frekans ise

 if cell_freq_bcch[i] > 0 then //
Frekans degisimi

 For o = 1 to
cell_interfered_count[i]

 src_cll_ind =
icdm_interfered_ind[i,o]

 co_affect =
icdm_co_int[i,o]
 adj_affect =
icdm_adj_int[i,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect * 10)
 if frequency_no > 1
then freq_cost_table[src_cll_ind,frequency_no - 1] += (adj_affect * 10)
 if frequency_no < 124
then freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect * 10)

 freq_cost_table[src_cll_ind,cell_freq_bcch[i]] -= (co_affect * 10)
 if cell_freq_bcch[i] >
1 then freq_cost_table[src_cll_ind,cell_freq_bcch[i] - 1] -= (adj_affect *
10)
 if cell_freq_bcch[i] <
124 then freq_cost_table[src_cll_ind,cell_freq_bcch[i] + 1] -= (adj_affect
* 10)

 Next
 else // ilk Frekans

206

 For o = 1 to
cell_interfered_count[i]

 src_cll_ind =
icdm_interfered_ind[i,o]

 co_affect =
icdm_co_int[i,o]
 adj_affect =
icdm_adj_int[i,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect * 10)
 if frequency_no > 1
then freq_cost_table[src_cll_ind,frequency_no - 1] += (adj_affect * 10)
 if frequency_no < 124
then freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect * 10)

 Next

 end if

 cell_freq_bcch[i] = frequency_no
 end if

 end if
 Next

 For i = 1 to cell_count
 if fixed_bcch_list[i] <= 0 then
 freq_cost_table[i,cell_freq_bcch[i]] += 100000
 if cell_freq_bcch[i] > 1 then
freq_cost_table[i,cell_freq_bcch[i] - 1] += 100000
 if cell_freq_bcch[i] < 124 then
freq_cost_table[i,cell_freq_bcch[i] + 1] += 100000
 end if
 Next

207

 end if

 //TCH
 if cbx_tch_plan.checked then
 For i = 1 to cell_count

 For m = 1 to cell_tch_number[i]

 if fixed_tch_list[i,m] <= 0 then

 frequency_no = f_get_best_tch(i) //En iyi
Frekans Bul

 if (cell_freq_tch[i,m] <> frequency_no)
then // Oncekinden Farkli Frekans ise

 if cell_freq_tch[i,m] > 0 then
// Frekans degisimi

 For o = 1 to
cell_interfered_count[i]

 src_cll_ind =
icdm_interfered_ind[i,o]

 co_affect =
icdm_co_int[i,o]
 adj_affect =
icdm_adj_int[i,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect)
 if
frequency_no > 1 then freq_cost_table[src_cll_ind,frequency_no - 1] +=
(adj_affect)
 if
frequency_no < 124 then freq_cost_table[src_cll_ind,frequency_no + 1]
+= (adj_affect)

208

 freq_cost_table[src_cll_ind,cell_freq_tch[i,m]] -= (co_affect)
 if
cell_freq_tch[i,m] > 1 then freq_cost_table[src_cll_ind,cell_freq_tch[i,m]
- 1] -= (adj_affect)
 if
cell_freq_tch[i,m] < 124 then
freq_cost_table[src_cll_ind,cell_freq_tch[i,m] + 1] -= (adj_affect)

 Next

 else // ilk Frekans

 For o = 1 to
cell_interfered_count[i]

 src_cll_ind =
icdm_interfered_ind[i,o]

 co_affect =
icdm_co_int[i,o]
 adj_affect =
icdm_adj_int[i,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect)
 if
frequency_no > 1 then freq_cost_table[src_cll_ind,frequency_no - 1] +=
(adj_affect)
 if
frequency_no < 124 then freq_cost_table[src_cll_ind,frequency_no + 1]
+= (adj_affect)

 Next

 end if

209

 cell_freq_tch[i,m] =
frequency_no

 end if

 freq_cost_table[i,frequency_no] += 100000
 if frequency_no > 1 then
freq_cost_table[i,frequency_no - 1] += 100000
 if frequency_no < 124 then
freq_cost_table[i,frequency_no + 1] += 100000

 end if
 Next

 Next
 end if

 //Cost hesabi
 if cbx_bcch_plan.checked then
 result_cost = 0
 For i = 1 to cell_count
 result_cost = result_cost +
(freq_cost_table[i,cell_freq_bcch[i]] - 100000)
 Next
 bcch_cost = result_cost
 else
 bcch_cost = 0
 end if

 if cbx_tch_plan.checked then
 result_cost = 0
 For i = 1 to cell_count
 For j = 1 to cell_tch_number[i]
 result_cost = result_cost +
(freq_cost_table[i,cell_freq_tch[i,j]] - 100000)
 Next

210

 Next
 else
 result_cost = 0
 end if

 total_cost = bcch_cost + result_cost

 if (best_cost > total_cost) then

 best_cost = total_cost

 if cbx_bcch_plan.checked and cbx_tch_plan.checked then

 st_best_bcch_cost.text = string(Round(bcch_cost, 3))
 st_best_tch_cost.text = string(Round(result_cost, 3))
 st_best_cost.text = string(Round(total_cost, 3))

 best_cell_freq_bcch = cell_freq_bcch
 For p = 1 to cell_count
 For j = 1 to random_bcch_count

 temp_freq_cost_table[p,random_bcch_list[j]] =
freq_cost_table[p,random_bcch_list[j]]
 Next
 Next

 For p = 1 to cell_count
 For j = 1 to cell_tch_number[p]
 best_cell_freq_tch[p,j] = cell_freq_tch[p,j]
 Next
 Next
 For p = 1 to cell_count
 For j = 1 to random_tch_count
 temp_freq_cost_table[p,random_tch_list[j]]
= freq_cost_table[p,random_tch_list[j]]
 Next
 Next

211

 elseif cbx_bcch_plan.checked then
 st_best_bcch_cost.text = string(Round(total_cost, 3))

 best_cell_freq_bcch = cell_freq_bcch
 For p = 1 to cell_count
 For j = 1 to random_bcch_count

 temp_freq_cost_table[p,random_bcch_list[j]] =
freq_cost_table[p,random_bcch_list[j]]
 Next
 Next

 elseif cbx_tch_plan.checked then
 st_best_tch_cost.text = string(Round(total_cost, 3))

 For p = 1 to cell_count
 For j = 1 to cell_tch_number[p]
 best_cell_freq_tch[p,j] = cell_freq_tch[p,j]
 Next
 Next
 For p = 1 to cell_count
 For j = 1 to random_tch_count
 temp_freq_cost_table[p,random_tch_list[j]]
= freq_cost_table[p,random_tch_list[j]]
 Next
 Next

 end if
 end if

Next // end n

// Best Cost un kopyalanmasi---

if cbx_bcch_plan.checked then
 cell_freq_bcch = best_cell_freq_bcch
 For p = 1 to cell_count
 For j = 1 to random_bcch_count

212

 freq_cost_table[p,random_bcch_list[j]] =
temp_freq_cost_table[p,random_bcch_list[j]]
 Next
 Next
end if

if cbx_tch_plan.checked then
 For p = 1 to cell_count
 For j = 1 to cell_tch_number[p]
 cell_freq_tch[p,j] = best_cell_freq_tch[p,j]
 Next
 Next
 For p = 1 to cell_count
 For j = 1 to random_tch_count
 freq_cost_table[p,random_tch_list[j]] =
temp_freq_cost_table[p,random_tch_list[j]]
 Next
 Next
end if

result_cost = f_calculate_cost()
st_status.text = "Real Cost : " + string(Round(result_cost, 3))

//Best Plani dw ye atma
f_make_best_plan_dw()

//Best plan check etme
f_check_new_plan()

// Bitirme Islemleri---

st_status.text += " - Optimizing is finished!"

cb_save_best.enabled = true

enabled = true
SetPointer(Arrow!)

213

end event

type cb_save_initial from commandbutton within w_afp
int X=3570
int Y=1896
int Width=343
int Height=80
int TabOrder=290
boolean Enabled=false
boolean BringToTop=true
string Text="Save Plan As"
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

event clicked;d_afp_cell_frequencies.SaveAs("",Text!,TRUE)
end event

type st_best_cost_label from statictext within w_afp
int X=2478
int Y=2248
int Width=480
int Height=80
boolean Enabled=false
boolean BringToTop=true
string Text="Best Cost Total"
Alignment Alignment=Right!
boolean FocusRectangle=false
long TextColor=255
long BackColor=82042848
int TextSize=-10
int Weight=700
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!

214

FontPitch FontPitch=Variable!
end type

type st_best_cost from statictext within w_afp
int X=2976
int Y=2240
int Width=571
int Height=80
boolean Enabled=false
boolean BringToTop=true
boolean Border=true
Alignment Alignment=Right!
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=15780518
int TextSize=-10
int Weight=700
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type d_afp_cell_frequencies_best from datawindow_common within
w_afp
int X=2784
int Y=1952
int Width=901
int Height=828
int TabOrder=50
boolean Visible=false
boolean BringToTop=true
string DataObject="dwe_afp_cell_frequencies_best"
boolean TitleBar=false
BorderStyle BorderStyle=StyleBox!
boolean ControlMenu=false
boolean MinBox=false
boolean MaxBox=false
boolean HScrollBar=false

215

boolean VScrollBar=false
boolean Resizable=false
boolean LiveScroll=false
end type

type sle_optimize_times from singlelineedit within w_afp
int X=3570
int Y=1640
int Width=197
int Height=80
int TabOrder=80
boolean BringToTop=true
BorderStyle BorderStyle=StyleLowered!
boolean AutoHScroll=false
boolean RightToLeft=true
string Text="1000"
long TextColor=33554432
long BackColor=15793151
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type st_times from statictext within w_afp
int X=3785
int Y=1652
int Width=128
int Height=80
boolean Enabled=false
boolean BringToTop=true
string Text="times"
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=82042848
int TextSize=-8
int Weight=400

216

string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type st_status from statictext within w_afp
int X=2976
int Y=2612
int Width=937
int Height=164
boolean Enabled=false
boolean BringToTop=true
boolean Border=true
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=67108864
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type st_status_label from statictext within w_afp
int X=2478
int Y=2616
int Width=480
int Height=80
boolean Enabled=false
boolean BringToTop=true
string Text="Status"
Alignment Alignment=Right!
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=82042848
int TextSize=-10
int Weight=700

217

string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type d_afp_initial_plan from datawindow_common within w_afp
int X=3886
int Y=44
int Width=727
int Height=1032
int TabOrder=40
boolean BringToTop=true
string DataObject="dwe_afp_cell_frequencies"
boolean TitleBar=false
BorderStyle BorderStyle=StyleLowered!
boolean ControlMenu=false
boolean MinBox=false
boolean MaxBox=false
boolean Resizable=false
end type

type cb_import_initial_plan from commandbutton within w_afp
int X=3909
int Y=1100
int Width=343
int Height=144
int TabOrder=140
boolean BringToTop=true
string Text="Import Plan"
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

event clicked;string file_name,nul

218

decimal result_cost,total_cost, bcch_cost, tch_cost
long rc,last_row,p,j,i,o,m
long frequency_no,src_cll_ind,tru_number
decimal co_affect,adj_affect

//----------------Baslangic Islemler--------------------------------------
setnull(nul)
st_status.text = nul
st_best_cost.text = nul
st_best_bcch_cost.text = nul
st_best_tch_cost.text = nul

setNull(file_name)

same_ch_cost = long(sle_same_ch_cost.text)
adj_ch_cost = long(sle_adj_ch_cost.text)
forbid_ch_cost = long(sle_forbid_ch_cost.text)

rc = d_afp_cells.rowcount()
if rc < 1 then
 Messagebox("Warning","Cell table must be imported")
 return
end if

last_row = d_afp_icdm.rowcount()
if last_row < 1 then
 Messagebox("Warning","ICDM table must be imported")
 return
end if

if not(cbx_tch_plan.checked) and not(cbx_bcch_plan.checked) then
 messagebox("Warning","TCH, BCCH or both checkboxes must be
selected")
 return
end if

d_afp_initial_plan.reset()
d_afp_initial_plan.ImportFile (file_name)

219

if d_afp_initial_plan.rowcount() > 0 then

 enabled = false
 SetPointer(HourGlass!)

 cb_plan.enabled = false
 cb_import_initial_plan.enabled = false
 cb_save_best.enabled = false
 cb_save_initial.enabled = false
 cb_add_bcch.enabled = false
 cb_remove_bcch.enabled = false
 cb_add_tch.enabled = false
 cb_remove_tch.enabled = false

 d_afp_cell_frequencies.reset()
 d_afp_cell_frequencies_best.reset()

 st_status.text = "Wait for importing!"

 d_afp_initial_plan.SetRedraw(false)
 d_afp_initial_plan.SetSort("#1 A")
 d_afp_initial_plan.Sort()

 f_set_random_bcch()
 f_set_random_tch()

 f_calculate_nbr_count()

 //-----------------Initial Olusturma---
 f_copy_initial_to_cell_freq()

 total_cost = 0
 bcch_cost = 0
 tch_cost = 0
 //BCCH
 if cbx_bcch_plan.checked then
 result_cost = 0

220

 For p = 1 to cell_count
 result_cost = result_cost +
(freq_cost_table[p,cell_freq_bcch[p]] - 100000)
 Next
 bcch_cost = result_cost
 st_initial_bcch_cost.text = string(Round(result_cost,3))
 end if

 //TCH
 if cbx_tch_plan.checked then
 result_cost = 0
 For p = 1 to cell_count
 For j = 1 to cell_tch_number[p]
 result_cost = result_cost +
(freq_cost_table[p,cell_freq_tch[p,j]] - 100000)
 Next
 Next
 tch_cost = result_cost
 st_initial_tch_cost.text = string(Round(result_cost,3))
 end if

 total_cost = bcch_cost + tch_cost
 st_initial_cost.text = string(Round(total_cost,3))

 result_cost = f_calculate_cost()
 st_status.text = "Real Cost : " + string(Round(result_cost,3))

 // Initial plani dw ye atma
 For i = 1 to cell_count
 d_afp_cell_frequencies.insertrow(i)

 d_afp_cell_frequencies.setitem(i,"cell_name",lb_cell_name.text(i))
 tru_number = cell_tch_number[i] + 1
 d_afp_cell_frequencies.setitem(i,"tru_number",tru_number)

 bcch_cost = 0
 if cbx_bcch_plan.checked then

221

 d_afp_cell_frequencies.setitem(i,"bcch_cost",(freq_cost_table[i,cell
_freq_bcch[i]] - 100000))
 d_afp_cell_frequencies.setitem(i,"bcch",cell_freq_bcch[i])
 bcch_cost = (freq_cost_table[i,cell_freq_bcch[i]] -
100000)
 end if

 tch_cost = 0
 result_cost = 0
 if cbx_tch_plan.checked then
 For j = 1 to cell_tch_number[i]
 result_cost = result_cost +
(freq_cost_table[i,cell_freq_tch[i,j]] - 100000)

 d_afp_cell_frequencies.setitem(i,("tch"+string(j)),cell_freq_tch[i,j])
 Next
 d_afp_cell_frequencies.setitem(i,"tch_cost",result_cost)
 tch_cost = result_cost
 end if

 total_cost = bcch_cost + tch_cost
 d_afp_cell_frequencies.setitem(i,"total_cost",total_cost)

 Next

 //Initial plan check etme
 f_check_initial_plan()

 //--------------------Fixed frekanslarin atanmasi---------------------------------

 For i = 1 to cell_count

 //Fixed BCCH
 if fixed_bcch_list[i] > 0 then

 frequency_no = fixed_bcch_list[i]

222

 if (cell_freq_bcch[i] <> frequency_no) then // Oncekinden
Farkli Frekans ise

 if cell_freq_bcch[i] > 0 then // Frekans
degisimi

 For o = 1 to cell_interfered_count[i]

 src_cll_ind =
icdm_interfered_ind[i,o]

 co_affect = icdm_co_int[i,o]
 adj_affect =
icdm_adj_int[i,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect * 10)
 if frequency_no > 1 then
freq_cost_table[src_cll_ind,frequency_no - 1] += (adj_affect * 10)
 if frequency_no < 124 then
freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect * 10)

 freq_cost_table[src_cll_ind,cell_freq_bcch[i]] -= (co_affect * 10)
 if cell_freq_bcch[i] > 1 then
freq_cost_table[src_cll_ind,cell_freq_bcch[i] - 1] -= (adj_affect * 10)
 if cell_freq_bcch[i] < 124
then freq_cost_table[src_cll_ind,cell_freq_bcch[i] + 1] -= (adj_affect *
10)

 Next

 freq_cost_table[i,cell_freq_bcch[i]]
-= 100000
 if cell_freq_bcch[i] > 1 then
freq_cost_table[i,cell_freq_bcch[i] - 1] -= 100000
 if cell_freq_bcch[i] < 124 then
freq_cost_table[i,cell_freq_bcch[i] + 1] -= 100000

223

 else // ilk Frekans

 For o = 1 to cell_interfered_count[i]

 src_cll_ind =
icdm_interfered_ind[i,o]

 co_affect = icdm_co_int[i,o]
 adj_affect =
icdm_adj_int[i,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect * 10)
 if frequency_no > 1 then
freq_cost_table[src_cll_ind,frequency_no - 1] += (adj_affect * 10)
 if frequency_no < 124 then
freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect * 10)

 Next

 end if

 cell_freq_bcch[i] = frequency_no

 freq_cost_table[i,frequency_no] += 100000
 if frequency_no > 1 then
freq_cost_table[i,frequency_no - 1] += 100000
 if frequency_no < 124 then
freq_cost_table[i,frequency_no + 1] += 100000

 end if

 end if

 //Fixed TCH
 For m = 1 to fixed_tch_count[i]

224

 frequency_no = fixed_tch_list[i,m]

 if (cell_freq_tch[i,m] <> frequency_no) then //
Oncekinden Farkli Frekans ise

 if cell_freq_tch[i,m] > 0 then // Frekans
degisimi

 For o = 1 to cell_interfered_count[i]

 src_cll_ind =
icdm_interfered_ind[i,o]

 co_affect = icdm_co_int[i,o]
 adj_affect =
icdm_adj_int[i,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect)
 if frequency_no > 1 then
freq_cost_table[src_cll_ind,frequency_no - 1] += (adj_affect)
 if frequency_no < 124 then
freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect)

 freq_cost_table[src_cll_ind,cell_freq_tch[i,m]] -= (co_affect)
 if cell_freq_tch[i,m] > 1 then
freq_cost_table[src_cll_ind,cell_freq_tch[i,m] - 1] -= (adj_affect)
 if cell_freq_tch[i,m] < 124
then freq_cost_table[src_cll_ind,cell_freq_tch[i,m] + 1] -= (adj_affect)

 Next

 freq_cost_table[i,cell_freq_tch[i,m]]
-= 100000
 if cell_freq_tch[i,m] > 1 then
freq_cost_table[i,cell_freq_tch[i,m] - 1] -= 100000

225

 if cell_freq_tch[i,m] < 124 then
freq_cost_table[i,cell_freq_tch[i,m] + 1] -= 100000

 else // ilk Frekans

 For o = 1 to cell_interfered_count[i]

 src_cll_ind =
icdm_interfered_ind[i,o]

 co_affect = icdm_co_int[i,o]
 adj_affect =
icdm_adj_int[i,o]

 freq_cost_table[src_cll_ind,frequency_no] += (co_affect)
 if frequency_no > 1 then
freq_cost_table[src_cll_ind,frequency_no - 1] += (adj_affect)
 if frequency_no < 124 then
freq_cost_table[src_cll_ind,frequency_no + 1] += (adj_affect)

 Next

 end if

 cell_freq_tch[i,m] = frequency_no
 freq_cost_table[i,frequency_no] += 100000
 if frequency_no > 1 then
freq_cost_table[i,frequency_no - 1] += 100000
 if frequency_no < 124 then
freq_cost_table[i,frequency_no + 1] += 100000

 end if

 Next

 Next

226

 //----------------Bitirme Islemleri--------------------------------------
 cb_optimize.enabled = true
 cb_save_initial.enabled = true
 cb_clear_initial_plan.enabled = true
 cb_check_plan.enabled = true

 d_afp_initial_plan.SetRedraw(true)

 st_status.text += " - Initial Plan imported!"

 SetPointer(Arrow!)

end if
end event

type cb_clear_initial_plan from commandbutton within w_afp
int X=4270
int Y=1100
int Width=343
int Height=144
int TabOrder=150
boolean Enabled=false
boolean BringToTop=true
string Text="Clear Plan"
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

event clicked;string nul

setnull(nul)

d_afp_initial_plan.reset()

227

lb_cell_name.reset()
lb_external_name.reset()

cb_plan.enabled = true
cb_optimize.enabled = false

cb_save_initial.enabled = false
cb_save_best.enabled = false
cb_check_plan.enabled = false

cb_import_initial_plan.enabled = true
cb_clear_initial_plan.enabled = false

cb_add_bcch.enabled = true
cb_remove_bcch.enabled = true
cb_add_tch.enabled = true
cb_remove_tch.enabled = true

d_afp_cell_frequencies.reset()
d_afp_cell_frequencies_best.reset()

st_initial_cost.text = nul
st_initial_bcch_cost.text = nul
st_initial_tch_cost.text = nul
st_best_cost.text = nul
st_best_bcch_cost.text = nul
st_best_tch_cost.text = nul

cb_import_initial_plan.enabled = true

st_status.text = "Initial Plan cleared!"
end event

type d_afp_icdm_interferer from datawindow_common within w_afp
int X=2971
int Y=2212
int Width=992
int Height=652
int TabOrder=30

228

boolean Visible=false
boolean BringToTop=true
string DataObject="dwe_afp_icdm"
boolean TitleBar=false
BorderStyle BorderStyle=StyleBox!
boolean ControlMenu=false
boolean MinBox=false
boolean MaxBox=false
boolean HScrollBar=false
boolean VScrollBar=false
boolean Resizable=false
boolean LiveScroll=false
end type

type cb_check_plan from commandbutton within w_afp
int X=430
int Y=1100
int Width=384
int Height=144
int TabOrder=280
boolean Enabled=false
boolean BringToTop=true
string Text="View Cell Plan"
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

event clicked;long
selected_row,found_row,last_row,found_row_2,tch_count,bcch,tch,i,j
string cell_name,find_string,interferer_cell,temp_cell_name
decimal co_affect,adj_affect

dr_frequency.reset()

For i = 1 to 124

229

 dr_frequency.insertrow(0)
 dr_frequency.setitem(i,"frequency",i)
Next

selected_row = d_afp_cells.getrow()
last_row = d_afp_icdm.rowcount()

cell_name = d_afp_cells.getitemstring(selected_row,"cell_name")

find_string = "source_cell = '" + cell_name + "'"
found_row = d_afp_icdm.Find(find_string,1,last_row)

if found_row > 0 then
 Do
 interferer_cell =
d_afp_icdm.getitemstring(found_row,"interferer_cell")
 co_affect =
d_afp_icdm.getitemdecimal(found_row,"traf_affected_co_percent")
 adj_affect =
d_afp_icdm.getitemdecimal(found_row,"traf_affected_adj_percent")

 find_string = "cell_name = '" + interferer_cell + "'"
 found_row_2 =
d_afp_cell_frequencies_best.Find(find_string,1,d_afp_cell_frequencies_b
est.rowcount())
 if found_row_2 > 0 then
 bcch =
d_afp_cell_frequencies_best.getitemnumber(found_row_2,"bcch")
 temp_cell_name =
dr_frequency.getitemstring(bcch,"cell_name")

 if len(temp_cell_name) > 0 then
 temp_cell_name = temp_cell_name + "| " +
interferer_cell + "(" + string(co_affect) + "/" + string(adj_affect) + ")"
 else
 temp_cell_name = interferer_cell + "(" +
string(co_affect) + "/" + string(adj_affect) + ")"
 end if
 dr_frequency.setitem(bcch,"cell_name",temp_cell_name)

230

 tch_count =
d_afp_cell_frequencies_best.getitemnumber(found_row_2,"total_tch_cou
nt")
 For j = 1 to tch_count
 tch =
d_afp_cell_frequencies_best.getitemnumber(found_row_2,("tch"+string(j
)))
 temp_cell_name =
dr_frequency.getitemstring(tch,"cell_tch_name")
 if len(temp_cell_name) > 0 then
 temp_cell_name = temp_cell_name + "| " +
interferer_cell + "(" + string(co_affect) + "/" + string(adj_affect) + ")"
 else
 temp_cell_name = interferer_cell + "(" +
string(co_affect) + "/" + string(adj_affect) + ")"
 end if

 dr_frequency.setitem(tch,"cell_tch_name",temp_cell_name)
 Next
 end if

 found_row = found_row + 1
 if found_row > last_row then exit
 Loop until (cell_name <>
d_afp_icdm.getitemstring(found_row,"source_cell"))
end if

dr_frequency.show()
end event

type dr_frequency from datawindow_main within w_afp
int X=69
int Y=132
int Width=3337
int Height=2664
int TabOrder=20
boolean Visible=false
boolean BringToTop=true

231

string DataObject="dwr_frequency"
boolean TitleBar=true
string Title="Frequency report"
end type

type lb_cell_name from listbox within w_afp
int X=2624
int Y=2220
int Width=686
int Height=500
int TabOrder=350
boolean Visible=false
boolean BringToTop=true
BorderStyle BorderStyle=StyleLowered!
boolean Sorted=false
long TextColor=33554432
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type lb_external_name from listbox within w_afp
int X=2693
int Y=2272
int Width=686
int Height=500
int TabOrder=340
boolean Visible=false
boolean BringToTop=true
BorderStyle BorderStyle=StyleLowered!
boolean Sorted=false
long TextColor=33554432
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!

232

FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type cbx_bcch_plan from checkbox within w_afp
int X=3557
int Y=1548
int Width=215
int Height=80
boolean BringToTop=true
string Text="BCCH"
BorderStyle BorderStyle=StyleLowered!
boolean LeftText=true
long TextColor=33554432
long BackColor=67108864
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type cbx_tch_plan from checkbox within w_afp
int X=3557
int Y=1476
int Width=215
int Height=80
boolean BringToTop=true
string Text="TCH"
BorderStyle BorderStyle=StyleLowered!
boolean LeftText=true
long TextColor=33554432
long BackColor=67108864
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!

233

FontPitch FontPitch=Variable!
end type

type st_best_bcch_cost from statictext within w_afp
int X=2976
int Y=2332
int Width=571
int Height=80
boolean Enabled=false
boolean BringToTop=true
boolean Border=true
Alignment Alignment=Right!
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=15780518
int TextSize=-10
int Weight=700
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type st_best_tch_cost from statictext within w_afp
int X=2976
int Y=2424
int Width=571
int Height=80
boolean Enabled=false
boolean BringToTop=true
boolean Border=true
Alignment Alignment=Right!
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=15780518
int TextSize=-10
int Weight=700
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!

234

FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type st_best_bcch_cost_label from statictext within w_afp
int X=2478
int Y=2340
int Width=480
int Height=80
boolean Enabled=false
boolean BringToTop=true
string Text="BCCH"
Alignment Alignment=Right!
boolean FocusRectangle=false
long TextColor=255
long BackColor=82042848
int TextSize=-10
int Weight=700
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type st_best_tch_cost_label from statictext within w_afp
int X=2478
int Y=2432
int Width=480
int Height=80
boolean Enabled=false
boolean BringToTop=true
string Text="TCH"
Alignment Alignment=Right!
boolean FocusRectangle=false
long TextColor=255
long BackColor=82042848
int TextSize=-10
int Weight=700
string FaceName="Arial TUR"

235

FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type
type gb_3 from groupbox within w_afp
int X=14
int Width=4622
int Height=1276
int TabOrder=300
BorderStyle BorderStyle=StyleLowered!
long TextColor=33554432
long BackColor=67108864
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type gb_1 from groupbox within w_afp
int X=18
int Y=1284
int Width=2423
int Height=1624
int TabOrder=320
BorderStyle BorderStyle=StyleLowered!
long TextColor=33554432
long BackColor=67108864
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type cb_save_best from commandbutton within w_afp
int X=3570

236

int Y=2240
int Width=343
int Height=80
int TabOrder=270
boolean Enabled=false
string Text="Save Plan As"
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

event clicked;d_afp_cell_frequencies_best.SaveAs("",Text!,TRUE)
end event

type gb_2 from groupbox within w_afp
int X=2469
int Y=1284
int Width=1495
int Height=1624
int TabOrder=310
BorderStyle BorderStyle=StyleLowered!
long TextColor=33554432
long BackColor=67108864
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type st_initial_bcch_cost_label from statictext within w_afp
int X=2478
int Y=1996
int Width=480

237

int Height=80
boolean Enabled=false
boolean BringToTop=true
string Text="BCCH"
Alignment Alignment=Right!
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=82042848
int TextSize=-10
int Weight=700
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type st_initial_tch_cost_label from statictext within w_afp
int X=2478
int Y=2088
int Width=480
int Height=80
boolean Enabled=false
boolean BringToTop=true
string Text="TCH"
Alignment Alignment=Right!
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=82042848
int TextSize=-10
int Weight=700
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type st_initial_bcch_cost from statictext within w_afp
int X=2976
int Y=1988

238

int Width=571
int Height=80
boolean Enabled=false
boolean BringToTop=true
boolean Border=true
Alignment Alignment=Right!
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=15793151
int TextSize=-10
int Weight=700
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type st_initial_tch_cost from statictext within w_afp
int X=2976
int Y=2080
int Width=571
int Height=80
boolean Enabled=false
boolean BringToTop=true
boolean Border=true
Alignment Alignment=Right!
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=15793151
int TextSize=-10
int Weight=700
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type cb_import_icdm_msmt from commandbutton within w_afp
int X=2907

239

int Y=1100
int Width=704
int Height=144
int TabOrder=180
boolean BringToTop=true
string Text="Convert ICDM (.msmt) to (.txt)"
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

event clicked;
enabled = false
SetPointer(HourGlass!)
w_afp.Pointer = 'HourGlass!'

string docname, named, target_file, target_file_2, icdm_file_name
integer value
long pos_found

value = GetFileOpenName("Select ICDM File",docname, named,
"MSMT","ICDM Files (*.MSMT),*.MSMT")

IF value = 1 THEN

 icdm_file_name = docname

 pos_found = Pos(icdm_file_name,".",1)
 target_file =
Replace(icdm_file_name,pos_found,(len(icdm_file_name) - pos_found +
1),"-neptune.txt")
 target_file_2 = "c:\neptune_temp_icdm.txt"

 f_change_delimeter_char_for_file(docname,target_file_2,".",",",0)

 if FileExists(target_file) then FileDelete(target_file)

240

 f_initialize_icdm_file(target_file_2,target_file)

 if FileExists(target_file_2) then FileDelete(target_file_2)

 icdm_file_name = target_file

 st_status.text = "ICDM converted!"

END IF

w_afp.Pointer = 'Arrow!'
enabled = true
SetPointer(Arrow!)
end event

type sle_same_ch_cost from singlelineedit within w_afp
int X=2025
int Y=1440
int Width=379
int Height=80
int TabOrder=90
boolean BringToTop=true
BorderStyle BorderStyle=StyleLowered!
boolean AutoHScroll=false
boolean RightToLeft=true
string Text="10000"
long TextColor=33554432
long BackColor=15793151
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type sle_adj_ch_cost from singlelineedit within w_afp
int X=2025
int Y=1528

241

int Width=379
int Height=80
int TabOrder=100
boolean BringToTop=true
BorderStyle BorderStyle=StyleLowered!
boolean AutoHScroll=false
boolean RightToLeft=true
string Text="3"
long TextColor=33554432
long BackColor=15793151
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type sle_forbid_ch_cost from singlelineedit within w_afp
int X=2025
int Y=1616
int Width=379
int Height=80
int TabOrder=100
boolean BringToTop=true
BorderStyle BorderStyle=StyleLowered!
boolean AutoHScroll=false
boolean RightToLeft=true
string Text="10000"
long TextColor=33554432
long BackColor=15793151
int TextSize=-8
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

242

type st_1 from statictext within w_afp
int X=1426
int Y=1444
int Width=585
int Height=80
boolean Enabled=false
boolean BringToTop=true
string Text="Cosite Same Channel"
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=80269524
int TextSize=-10
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type st_2 from statictext within w_afp
int X=1495
int Y=1532
int Width=512
int Height=80
boolean Enabled=false
boolean BringToTop=true
string Text="Cosite Adj Channel"
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=80269524
int TextSize=-10
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type st_3 from statictext within w_afp

243

int X=1509
int Y=1620
int Width=498
int Height=80
boolean Enabled=false
boolean BringToTop=true
string Text="Forbidden Channel"
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=80269524
int TextSize=-10
int Weight=400
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

type st_4 from statictext within w_afp
int X=2121
int Y=1344
int Width=201
int Height=80
boolean Enabled=false
boolean BringToTop=true
string Text="COSTs"
boolean FocusRectangle=false
long TextColor=33554432
long BackColor=82042848
int TextSize=-10
int Weight=700
string FaceName="Arial TUR"
FontCharSet FontCharSet=TurkishCharSet!
FontFamily FontFamily=Swiss!
FontPitch FontPitch=Variable!
end type

$PBExportHeader$f_initialize_icdm_file.srf

244

global type f_initialize_icdm_file from function_object
end type

forward prototypes
global subroutine f_initialize_icdm_file (string source_file_name, string
target_file_name)
end prototypes

global subroutine f_initialize_icdm_file (string source_file_name, string
target_file_name);
long file_pointer_for_reading , file_pointer_for_writing ,
tab_1_pos, tab_2_pos, position_found
int file_pointer_return_value, i
string a_line_from_source_file

file_pointer_for_reading = FileOpen(source_file_name,
LineMode!, Read!, LockWrite!)

IF file_pointer_for_reading = -1 THEN
 RETURN
ELSEIF isnull(file_pointer_for_reading) THEN
 RETURN
END IF

file_pointer_return_value = FileRead(file_pointer_for_reading,
a_line_from_source_file) //basliklari almamak icin bi daha okutup ilk
data satirina atlanmali

IF file_pointer_return_value > 0 THEN

 file_pointer_return_value =
 FileRead(file_pointer_for_reading, a_line_from_source_file)
 file_pointer_for_writing = FileOpen(target_file_name,
LineMode!, Write!, LockWrite!, Replace!)

 DO WHILE (file_pointer_return_value <> -100)

 position_found = Pos(a_line_from_source_file,"UNKNOWN")

245

 IF (position_found = 0) THEN // UNKNOWN yok ise
 if Mid(a_line_from_source_file,31,1) <> Char(9) then //
co affect null degilse
 tab_1_pos =
Pos(a_line_from_source_file,Char(9),31)
 tab_2_pos =
Pos(a_line_from_source_file,Char(9),(tab_1_pos + 1))
 if (tab_2_pos - tab_1_pos) > 1 then // adj affect
null degilse
 if Mid(a_line_from_source_file,31,1) <>
"0" or Mid(a_line_from_source_file,33,1) <> "0" then // co ve adj affect
0 degilse
 a_line_from_source_file =
 Replace(a_line_from_source_file, 1, 8 , "")
 a_line_from_source_file =
 Replace(a_line_from_source_file, 8, 8 , "")
 FileWrite(file_pointer_for_writing,
a_line_from_source_file)
 end if
 end if
 end if
 END IF

 file_pointer_return_value = FileRead(file_pointer_for_reading,
a_line_from_source_file)

 LOOP

ELSEIF file_pointer_return_value = -1 THEN
 RETURN
ELSEIF isnull(file_pointer_return_value) THEN
 RETURN
END IF

FileClose(file_pointer_for_reading)
FileClose(file_pointer_for_writing)

246

RETURN
end subroutine

$PBExportHeader$f_get_bcch_from_cell.srf
global type f_get_bcch_from_cell from function_object
end type

forward prototypes
global function long f_get_bcch_from_cell (string cell_name)
end prototypes

global function long f_get_bcch_from_cell (string cell_name);long
bcchno

setnull(bcchno)
SELECT oss_internal_cell.bcchno
INTO :bcchno
FROM oss_internal_cell
WHERE (oss_internal_cell.cell = :cell_name) and
 (oss_internal_cell.configuration = 0);

return bcchno
end function

$PBExportHeader$f_get_all_tch_from_cell.srf
global type f_get_all_tch_from_cell from function_object
end type

forward prototypes
global function string f_get_all_tch_from_cell (string cell_name)
end prototypes

global function string f_get_all_tch_from_cell (string cell_name);string
freq_ch_0, chgr , tch_list
long cell_freqs[],freq_count, bcchno, tch_freq, i, j, k
boolean tch_ok

247

freq_count = 0

setnull(bcchno)
SELECT oss_internal_cell.bcchno
INTO :bcchno
FROM oss_internal_cell
WHERE (oss_internal_cell.cell = :cell_name) and
 (oss_internal_cell.configuration = 0);

For k = 1 to 3
 chgr = string (k - 1)

 setnull(freq_ch_0)
 SELECT oss_channel_group.dchno
 INTO :freq_ch_0
 FROM oss_channel_group
 WHERE (oss_channel_group.cell = :cell_name) and
 (oss_channel_group.configuration = 0) and
 (oss_channel_group.chgr = :chgr);

 if len(freq_ch_0) > 0 then
 freq_ch_0 = mid(freq_ch_0,2,(len(freq_ch_0) - 2))
 For i = 1 to f_get_from_count(freq_ch_0)

 tch_freq = long(f_get_from(freq_ch_0,i))
 if bcchno <> tch_freq then

 tch_ok = true
 For j = 1 to freq_count
 if cell_freqs[j] = tch_freq then
 tch_ok = false
 exit
 end if
 Next

 if tch_ok = true then
 freq_count++
 cell_freqs[freq_count] = tch_freq
 end if

248

 end if

 Next
 end if

Next

if freq_count > 0 then
 tch_list = string(cell_freqs[1])
else
 tch_list = ""
end if

For k = 2 to freq_count
 tch_list = tch_list + "," + string(cell_freqs[k])
Next

return tch_list
end function

249

KAYNAKLAR D ĐZĐNĐ

Eisenblaetter, A., Kürner T. and Fauss R., 1999, Radio Planning
Algorithms for Interference Reduction in Cellular Networks,
Communications for the Millenium, Proceedings of COST252/259
Joint Workshop, University of Bradford

Ericsson Radio Systems AB, 1998a, GSM System Survey, EN/LZT 123
3321 R2A

Ericsson Radio Systems AB, 1998b, GSM Cell Planning Principle,
EN/LZT 123 3314 R3A

Ericsson Radio Systems AB, 1998c, GSM System Introduction,
EN/LZT 123 3641 R2A

Ericsson Radio Systems AB, 1998d, GSM Cell Planning Overview,
EN/LZT 123 3313 R3A

Ericsson Radio Systems AB, 1998e, GSM Cell Planning Workshop,
EN/LZT 123 3315 R3A

Halonen, T., Romero, J., and Melero, J., 2003, GSM, GPRS and
EDGE Performance Second Ed., John Wiley&Sons, 0-470-86694-2

Harputluo ğlu, C., 2000, GSM’in Altyapısı ve Gelişimi

Lundqvist F. and Raismaa S., 1999, Performance Evaluation of a
Closed Loop Frequency Optimisation Algorithm for GSM, Master
Thesis performed in Automatic Control, Linköping Institute of
Technology

Mishra, A. R., 2004, Fundamentals of Cellular Network Planning &
Optimisation, John Wiley&Sons, 0-470-86267-X

250

ÖZGEÇM ĐŞ

Adı Soyadı : Serkan Kayacan

Doğum Tarihi : 05.09.1982

Doğum Yeri : Konak/ĐZMĐR

Medeni Hali : Bekar

Uyruğu : T.C.

Kariyer

2006-... : Turkcell Đletişim Hiz. A.Ş. - Đzmir, Yazılım
 Mühendisi

2004-2006 : Turkcell Đletişim Hiz. A.Ş. - Đzmir, Hücre
 Planlama ve Optimizasyon Mühendisi

Eğitim

2004-... : Ege Üniversitesi, Fen Bilimleri Enstitüsü
 Bilgisayar Mühendisliği Anabilim Dalı, Y.Lisans

2000-2004 : Ege Üniversitesi, Mühendislik Fakültesi
 Bilgisayar Mühendisliği Bölümü, Lisans

1993-2000 : Đzmir Bornova Anadolu Lisesi

Yabancı Dil : Đngilizce, Almanca

