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ÖZET 

 

 Hipotez testi, farklılıklara sahip olan iki temel istatistiksel düşünme tarzı 

tarafından önerilen çözümlere sahip bir model seçim problemidir. Bu istatistiksel 

yaklaşımlar; Klasik ve Bayesci yaklaşımlardır. Bu farklılıkların en önemlisi  Bayesci 

yaklaşımdaki önsel seçimi olduğu bilinir. Oysa, gerçekte iki yaklaşım arasında temel 

başka ayrılıkların olduğu da bilinen bir gerçektir. Bu tezde, Bayesci hipotez testlerinin 

temel basit yönleri özet olarak verilerek,  simüle edilen veri üzerine örnekler verilmiştir. 

Standart istatistiksel metotlar model belirsizliğini ihmal eder. Veri analizcileri 

olası model sınıfından bir model seçer ve sanki seçilen model veriyi üretmiş gibi işleme 

devam eder. Bu yaklaşım model seçiminde belirsizliği ihmal ederek istatistiksel 

çıkarımlar için güven aralıklarını daha geniş tutar ve daha riskli kararlara neden olur. 

Oysa Bayesci model ortalaması (BMA) bu model belirsizliğini göz önüne alan bir yapı 

sunar. Bu çalışmada BMA yaklaşımını sunarak gerçek hayattan bir probleme 

uygulaması verilmiştir. Uygulamada, BMA  örnek kestirim performansını geliştirmiştir. 

Anahtar kelimeler: Bayesci yaklaşım, Bayesci hipotez testi,Bayes 

Faktörü,Bayesci Model ortalaması, Model belirsizliği 
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ABSTRACT 

 

Hypothesis testing is a model selection problem for which the solution proposed 

by the two main statistical streams of thought, frequentists and Bayesians, substantially 

differ. One may think that this fact might be due to the prior chosen in the Bayesian 

analysis. However, the Bayesian robustness viewpoint has shown that, in general, this is 

not so and hence a profound disagreement between both approaches exists. In this 

thesis,  we briefly revise the basic aspects of hypothesis testing for Bayesian procedures 

and discuss  illustrations on simulated data. 

Standard statistical practice ignores model uncertainty. Data analysts typically 

select a model from some class of models and then proceed as if the selected model had 

generated the data. This approach ignores the uncertainty in model selection, leading to 

over-confident inferences and decisions that are more risky than one thinks they are 

Bayesian model averaging (BMA) provides a coherent mechanism for accounting for 

this model uncertainty.. In this study, we discuss BMA  approach and present a real life 

application. In this application, BMA provides improved out-of sample predictive 

performance.  

Key words:  Bayesian approach, Bayesian Hypotesis testing, Bayesian model 

averaging, model uncertainty,  
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BÖLÜM 1 

GİRİŞ 

 

Özel ve iş hayatımızın önemli bir bölümünü belirsizlik içinde geçiririz. Bu 

belirsizlik direkt olarak bilgi veya kanıt olmadığı veya unuttuğumuz (kaybettiğimiz) 

geçmişe veya henüz tam olmayan şu andaki veya gelecekteki durumlara bağlı olabilir. 

Belirsizliğin insan beyni tarafından nasıl değerlendirildiğini bilmediğimiz için genelde 

sadece bu tür değerlendirmelerin sonuçları ile ilgilenmek zorundayız.  

 Sürekli olarak kullandığımız ve yerine göre sezgi, sağduyu ve altıncı his 

dediğimiz yeteneklerimizden neden bilimsel amaçlar için yararlanmayalım?. Bu tür 

yeteneklerin bilimsel bir şekilde kullanılmasında Bayes Teorisi alternatif bir çıkarım 

olarak ortaya çıkmaktadır. Klasik çıkarım, örneklem verileri yardımı ile hakkında bilgi 

sahibi olmadığımız kitleye ilişkin sonuç çıkarılmasıdır. Güven aralıkları, hipotez testleri 

gibi istatistiksel işlemler, klasik çıkarımın esasıdır. Oysa “Hayat; yetersiz önsellerden 

yeterli sonuçlar çıkarma sanatıdır.” diyen Samuel Butler ile benzer düşünceye sahip 

olan Thomas Bayes, gözlenen örneklem verilerinden hareketle kitleye ilişkin çıkarım 

konusunda farklı bir bakış açısına sahiptir. Genelde nedenlerden sonuçlara doğru olan 

mantık zincirini, sonuçlardan nedenlere doğru oluşturmuştur. 

 Son 30 yıldır istatistiksel analizde diğer yaygın temel yaklaşımlardan farklı bir 

yaklaşımın kullanımı artmıştır. Bu yaklaşım Bayes çıkarımı olup 1763’de Thomas 

Bayes tarafından ortaya konulan çok bilindik teoreme dayanmaktadır. Thomas Bayes 

ortaya attığı olasılığa dayalı basit teoreminin istatistiksel bir çıkarım yöntemi olacağını 

herhalde tahmin bile etmemiştir. Ancak son 30 yılda bu teorem, çok sayıda istatistikçiyi 

ve matematikçiyi etkilemiş ve Bayes istatistiği temel istatistiksel çıkarım yöntemi 
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olarak kabul edilmiştir. Jeffreys, de Finetti, Savage ve Lindley gibi çoğu araştırmacı 

Bayes analizinin gelişiminde katkıda bulunmuşlardır. Son yıllarda, Bayes analizinin 

teknik uygulanabilirliği bilgisayar kullanımıyla da hızla gelişmiş ve yeni uygulama 

alanları açmıştır. Bu gelişmeler sonucunda Bayes analizi Berger (1985), Bernando ve 

Smith (1994) ve O’Hagan (1994) gibi araştırmacılarla da genişletilmiştir. 

Günümüzde Bayesci analiz her bilim dalında başarıyla uygulanmaktadır. Pek 

çok uygulamalı çalışma ortaya konmuştur. Bu çalışmaların geniş bir taraması aşağıda 

verilecektir. 

Buck, Cavanaugh ve Litton (1996) arkeoloji çalışmalarında Bayesci 

uygulamaları; Berliner, Royle, Wikle ve Milliff (1999) atmosfer bilimlerinde; Cyert ve 

DeGroot (1987), Poirier (1995), Perlman ve Blaug (1997), Kim, Shephard ve Chib 

(1998) ve Geweke (1999) ekonomi ve ekonometri alanlarında; Johnson (1997) eğitim 

alanında; Greenland (1998) epidemiyoloji alanında; Godsill ve Rayner (1998) 

mühendislik alanında; Iversen, Parmigiani ve Berry (1998), Dawid (1999), Liu, 

Neuwald ve Lawrence (1999) genetik alanında;  Parent, Hubert, Bobee ve Miquel 

(1998) hidroloji alanında; DeGroot, Fienberg ve Kadane (1986), Kadane ve Schuan 

(1996) hukuk alanında; Brown (1993) ölçme ve değerlendirme alanında; Berry and 

Stangl (1996), Stangl ve Berry (1998) tıp alanında; Bretthorst (1988) ve Jaynes (1999)  

fizik bilimleri alanında; Moreno ve Rios-Insua (1999) kalite yönetimi alanında; Pollard 

(1986), Johnson ve Albert (1999) sosyal bilimler alanında; Berry ve Stangl (1996), 

Carlin ve Louis (1996) ve Kadane (1996) biyoistatistik alanında; Spirtes, Glymour ve 

Scheines (1993), Glymour ve Cooper (1999) nedensellik ili şkilerinin ölçülmesinde; 

Neal (1996,1999), Müler ve Rios-Insua (1998) ve George (2000) sınıflandırma, 

ayrıştırma, sinir ağları vs. alanlarında; Fienberg (2000) kontenjans tabloları alanında; 
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Smith (1988), Robert (1994), Clemen (1996) ve Brown (2000) karar analizi ve karar 

teorisi alanlarında; Chaloner ve Verdinelli (1995) ve Müler (1999) tasarım alanında; 

Carlin ve Louis (1996) ve Carlin ve Louis (2000) deneysel Bayes alanında; Good 

(1983), Regazzini (1999), Kadane, Schervish ve Seidenfeld (1999) ve Robins ve 

Wasserman (2000) temel istatistik alanlarında; Bolfarine ve Zacks (1992) ve 

Mukhopadhyay (1998) sonlu kitle örneklemesi alanında; Dey, Ghosh ve Mallick (2000) 

genelleştirilmi ş lineer modeller alanında; Pearl (1988), Jensen (1986), Lauritze (1996), 

Jordan (1998) ve Cowell, Dawid, Lauritze ve Spiegelhalter (1999) grafiksel model ve 

Bayesci ağlar alanlarında; Hobert (2000) hiyerarşik modelleme alanında; Fitzgerald, 

Godsill, Kokaram ve Stark (1999) görüntüleme süreçleri alanında; Baron, Rissanen ve 

Yu (1998) ve Sofi (2000) bilgi teknolojisi alanında; Little ve Rubin (1987) ve Meng 

(2000) kayıp veri alanında; Dey, Müller ve Sinha (1998), Müller ve Vidakovic (1999) 

ve Robins ve Wasserman (2000) parametrik olmayan ve fonksiyon kestirimi 

alanlarında; Johnson ve Albert (1999) sıralı veri alanında; Barlow, Clarotti ve 

Spizzichino (1993) ve Dey ve Sinha (1999) güvenilirlik ve sağkalım analizi alanında; 

Carlin, Kadane ve Gelfand (1998) ve Qian ve Brown (1999) dizisel analiz alanında; 

Wolpert ve Ickstadt (1998) ve Besag ve Higdon (1999) uzaysal istatistik (Spatial 

Statistics) alanında; Kass ve Raftery (1995), O’Hagan (1995), Berger ve Pericchi 

(1996), Berger (1998), Racugno (1998), Sellke, Bayarri ve Berger (1999), Thiesson, 

Meek, Chickering ve Heckerman (1999) ve George (2000) deneme, model seçimi ve 

değişken seçimi alanında; Pole, West ve Harrison (1995), Gersch ve Kitagawa (1996) 

ve West ve Harrison (1997) zaman serileri alanında Bayesci çalışmalar yapmışlardır. 

 Pek çok istatistiksel alanda olduğu gibi, istatistiksel hipotezi test etme problemi 

Bayesci çalışanlar ile klasik istatistik çalışanları arasında önemli bir tartışma noktası 

olmuştur. Klasik istatistik yaklaşımı bir ret bölgesi oluşturur ve ilişkili olasılıkları 
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hesaplar. 0H boş hipotezinin yanlış olarak ret edilmesi α  olasılığına sahiptir bu da I. tip 

hatadır. 0H  boş hipotezinin yanlış olarak kabul edilmesiβ  olasılığına sahiptir bu da II. 

tip hatadır. Bu tür α  ve β  ’nın kullanımı birçok araştırmacı tarafından eleştirilmi ştir. 

Eleştirinin temel nedeni bu hata olasılıklarının bilinen veri tarafından sağlanan veriyi 

yansıtmamasıdır. Bu durumda 0H hipotezine karşı delilin gücünü gösteren veriye bağlı 

bir ölçüm olan p -değerinin kullanımı ortaya atılmıştır. Ancak p  değeri gerçek bir 

ölçüm değeri değildir ve delilin bir ölçüsü olarak bazı noksanlıklara sahiptir (Edwards, 

ve ark. 1963; Berger ve Delampady 1987; Delampady ve Berger 1990) p -nin 

kullanımındaki tartışmaları vep değeri ile delilin veriye bağlı diğer ölçümleri arasındaki 

farklılıkları ifade ettiler. Genel olarak yokluk hipotezine karşı veri tarafından sağlanan 

delilin bir ölçüsü olarak p -nin kullanımının yanıltıcı olabileceği vurgulanır (Berger ve 

ark. 1997). 

Günümüzde her türlü istatistik tahmin probleminde alternatif bir yaklaşım olarak 

kullanılan ve dünya literatüründe yer alan Bayesci yaklaşım hipotez testlerinde de çok 

yaygın olmasa bile kullanılmaktadır. Maalesef dünyada çok yaygın kullanıma karşın bu 

yaklaşımla ilgili çalışmalar Türkçe literatürde fazla yer almamaktadır. Bu çalışmanın 

amaçlarından biri Bayesian hipotez testlerini uygulamacılara sunmaktır. 

Bayesci metotlar hesaplamalarda çoğu zaman nümerik yöntemlerle çözülebilen 

integraller ve sonsal olasılıkları güncelleştiren önsel olasılıkların hesaplanmasını 

gerektirir. Her iki nokta için pek çok çalışma yapılmış ve uygun yöntemler sunulmuştur 

(O’Hagan 1994; Bernardo ve Smith 1994). Bayesci yaklaşımın hipotez testlerinde 

kullanım ilk olarak (Jeffreys, 1961) tarafından ortaya konulmuştur. Jeffreys sunduğu 

metodu istatistiksel testler olarak isimlendirse de kullanılan yaklaşım Bayesci idi. 

Bayesci hipotez testlerinde en önemli unsurlardan bir tanesi Bayes faktörüdür. Klasik 

p  değerinin yorumlanmasındaki eleştirilere karşın Bayes Faktörünün hesaplanması zor 

ancak hipotezin doğru ya da yanlış olduğuna ilişkin yorumlanması kolay ve kesindir. 
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Berger ve Sellke (1987) yokluk hipotezi için p  değeri ile Bayes Faktörünü (B.F.) 

karşılaştırmıştır. Casella ve Berger (1987) aynı karşılaştırmayı tek taraflı hipotez testi 

için yapmıştır. Berger ve Delampady (1987); Berger ve Berry (1988) BF ile alakalı 

karşılaştırmalı çalışmalar sunmuştur. Kass ve Raftery (1995) BF’nin ve alternatiflerinin 

kullanımını örneklerle sunmuştur. Ayrıca Sellke ve ark. (2001) hipotez için p  değerinin 

kalibrasyonuyla ilgili çalışmayı yapmıştır.  

Bayesci hipotez testlerinin ilk defa kullanımı Lindley (1957)’e dayanmaktadır. 

Lindley (1957) çalışmasında kullandığı hipotez testini Bayesci olarak isimlendirmese de 

Bayesci yaklaşımı kullanmıştır ve Lindley paradoksunu ifade etmiştir. Diğer çalışmalar 

bu çalışmayı takip ederek Bayesci hipotezi kullanılabilir bir alet haline getirmiştir. Bu 

çalışmaların özeti aşağıda sunulmuştur.  

Edwards ve ark. (1963) Bayesci istatistiğe kısa bir giriş verdikten sonra klasik ve 

Bayesci hipotez testlerini karşılaştırmıştır. DeGroot (1973) p değerinin alternatif 

hipotezin doğru olma olasılığına yaklaşık olarak eşit olduğu durumlarda önsel 

dağılımların ve alternatif hipotezlerin özel sınıflarını tanımlar. Dickey (1977) p 

değerinin Bayes Faktörün genel olarak iyi bir yaklaşık değer olup olmadığını 

tartışmıştır. Shafer (1982)  Lindley paradoksunun iyi tanımını tekrar vererek parmak izi 

verilerinde uygulamıştır. Berger ve Sellke (1987) boş hipotez için Bayes Faktörü ile p 

değerini karşılaştırmıştır. Casella ve Berger (1987); Berger ve Sellke (1987) aynı 

problemi tek taraflı hipotez için karşılaştırmıştır. Verdinelli ve Wasserman (1996) bazı 

koşullar altında Bayes Faktörünün farklı hipotezler altında karşılaştırmalarını vermiştir. 

Boş parametre durumlarında da Bayes Faktörünü incelemiştir. 

Weakliem (1998) klasik ve Bayesci hipotez testlerinde anlamlılık seviyelerini 

karşılaştırmıştır. Efron ve Gous (1998) Bayes Faktörü ve anlamlılık testleri için delil 
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skalalarını yeniden düzenlemiştir. Aitkin (1998) Lindley paradoksunu yeniden 

yorumlamıştır. Bayes Faktörüne yaklaşık değeri veren kriterler de geliştirilmi ştir. Cox 

ve Hinkley (1978) Bayesci Bilgi Kriteri (BIC) verilmiştir. BIC Bayes Faktörünün bir 

yaklaşımının özel bir durumudur ve iki model için önsellerin seçimini tartışmasında 

kullanılmıştır. Schwarz (1978) BIC’ın bir model seçim kriteri olarak doğrusal üstel 

dağılımlar ailesinde kullanımını ortaya koymuştur. Akaiki Bilgi Kriteri (AIC) gibi diğer 

kriterlerle karşılaştırmıştır. Smith ve Spiegelhalter (1980) iç içe doğrusal modeller 

arasında seçim yapmada Bayes faktörünün kullanımını vermiştir. Pericchi (1984) 

Lindley paradoksundan kaçınarak parametreler hakkında bilginin beklenen kazançlarına 

dayalı bir şekilde önsel olasılık modellerinin belirlenmesini önermiştir. Örnek olarak 

normal doğrusal modeli ele almıştır. Haughton (1988), Schwarz (1978)’in sonuçlarını 

daha da geliştirmiş ve eğrisel üstel dağılımlar ailesine uygulamıştır. Bazı koşullar 

altında BIC’ın tutarlılığını incelemiştir. Kass ve Vaidyanathan (1992) iç içe modeller içi 

Bayes Faktörünün Laplace yaklaşımını ve geçerliliğini incelemiştir. Önseldeki 

değişimlere göre sonuçların duyarlılığını incelemiştir. McCullogh ve Rossi (1992) 

doğrusal olmayan sınırlamalar içeren hipotezler için Bayes Faktörünü araştırmıştır. 

Hesaplamalarda Monte Carlo integrasyonunu kullanmıştır. Kass ve Wasserman (1995) 

iki iç içe modeli karşılaştırmada kullanılan Bayes Faktörü için referans önsellerin 

seçimini incelemiştir. Bayes Faktörü için Laplace yaklaşımını da kullanmıştır. Raftery 

(1996) Laplace yaklaşımına dayalı olarak Bayes Faktörü farklı yaklaşımları vermiştir. 

Model ortalamaları yaklaşımını ortaya atmıştır. Hsiao (1997) yine Laplace yaklaşımını 

incelemiştir. Pauler (1998) normal doğrusal modellerde değişken seçimini incelemiş ve 

Bayes Faktörü ile BIC kullanımını vermiştir. Ayrıca karışık doğrusal modeller içinde bu 

yaklaşımları kullanmıştır. Atkinson (1978) normal doğrusal modeller için sonsal 
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olasılıkları incelemiştir. Spiegelhalter ve Smith (1982) iki iç içe model ve log doğrusal 

modeller için BF yaklaşımını vermiştir. Raftery (1986) log doğrusal modeller için 

Spiegelhalter ve Smith (1982)’in önerdiği yaklaşımı kullanarak bir başka BF 

yaklaşımını geliştirmiştir. Fornell ve Rust (1989) eşit olmayan önsel olasılıklara sahip 

kovaryans yapı modellerinin karşılaştırmasını vermiştir. BF ile AIC karşılaştırmasını da 

vermiştir. McCullogh ve Rossi (1992) eşlenik önsel kullanımıyla model 

karşılaştırmalarında BF’yi kullanmıştır. Gelfand ve Dey (1994) BF’yi faklı durumlarda 

inceleyerek Monte Carlo metotlarını kullanarak tam hesaplamaları vermiştir. O’Hagan 

(1995) model parametreleri için önsel dağılımlar düzgün olmadığında BF’nin belli 

olmayan önsellere bağlı olduğundan kısmi BF yaklaşımını vermiştir. Newton ve Raftery 

(1994) BF’nin tahmin için ağırlıklı olabilirlik boostrap yöntemini geliştirmiştir. Chib 

(1995) Gibbs örneklemesini kullanarak BF’nin bir diğer yaklaşımını sunmuştur. Carlin 

ve Chib (1995) de MCMC yaklaşımını kullanarak BF’nin bir diğer yaklaşımını 

geliştirmiştir. Green (1995) reversible jump MCMC metodunu kullanarak yine BF için 

bir yaklaşım vermiştir. Lewis ve Raftery (1997) Laplace Metropolis yöntemini 

kullanarak BF için bir tahminci elde etmiş ve sayısal örneklerde iyi çalıştığını 

göstermiştir. Brown ve ark. (1998) de çok değişkenli regresyon modellerinde değişken 

seçimi için MCMC ye dayalı BF kullanımını vermiştir. Albert ve Chib (1997) hiyerarşik 

modeller için (özellikle bir sabit etkili ve tesadüfî etki modelleri karşılaştırmada) Bayes 

Faktörlerin tahmininde MCMC metotlarını kullanmıştır.  

Değişken seçimi istatistiksel uygulamalarda model seçimi problemlerinin en 

önemli noktası olarak bilinir (George, 2000). Değişken seçimine yönelik son 30 yılda 

pek çok yöntem ve kriter geliştirildi. Bu yöntemlerden bazıları: 
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PRESS (Allen, 1971), MALLOWS’un Cp’si (Mallows, 1973), Akaike Bilgi Kriteri         

(AIC) (Akaike, 1973), Schwarz’ın Bayesci bilgi kriteri (BIC) (Schwarez, 1978), RIC 

(Foster ve George, 1994) ve Bootstrap model seçimi (Shao, 1996). Bu çalışmaların 

birbirlerine göre avantaj ve dezavantajları olmasına rağmen pek çok alanda 

uygulanmaktadır. Bir diğer yöntem ise Kass ve Raftery (1995) tarafından geliştirilen 

Bayesci Model Ortalaması yöntemidir (BMA). BMA model seçiminde belirsizliği göz 

önüne alınan ve kullanımı gittikçe artan bir yöntemdir. Draper (1995) ve Raftery (1996) 

BMA’nın Genelleştirilmi ş Lineer Modeller de kullanımını verirken Smith ve Kohn 

(1996) aykırı gözlemlerde BMA’yı incelemiştir. Madigan ve Raftery (1994) grafiksel 

modeller için BMA’yı incelerken Noble (2000) çok değişkenli regresyonda, Clyde ve 

ark. (1998) Wavelet analizinde ve Volynsky ve ark. (1997) sağkalım analizinde 

BMA’yı kullanmıştır. 

Bu tez beş bölümden oluşmaktadır. Birinci bölümde Bayesci yöntemlerin 

tanıtımı yapıldıktan sonra, genelde Bayesci çalışmalar, özelde ise Bayesci hipotez 

testleri, Bayes Faktörü (BF) ve model seçim yöntemi olarak Bayesci Model Ortalaması 

(BMA)’na ili şkin geniş bir literatür taraması ve tezin haritası sunulmuştur. İkinci 

bölümünde Bayes teoremi ve Bayesci yönteme ilişkin temel bilgiler verilmiştir. 

Materyal ve metot bölümünde Bayesci hipotez testleri ve Bayes Faktörü verildikten 

sonra Byesci Model Ortalaması yöntemi verilmiştir. Uygulama bölümünde ilk olarak 

hipotez testlerine ilişkin simülasyon çalışmaları verilirken ikinci olarak BMA yöntemi 

kalp hastalıklarına ilişkin risk faktörleri verisine uygulanmıştır. Byesci hipotez testlerine 

ili şkin hesaplamamalar için Visual Basic 6.0 ortamında yazılmış MACNAMstat 

programı hazırlanmış. Bayesci model ortalamalarına ilişkin hesaplamalar SPlus 

programında yazılan macro kullanılmıştır.  
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BÖLÜM 2 

TEMEL B İLGİLER 

 

Bayesci düşünmenin esaslarını üç temel adımda toplayabiliriz: 

1. Bilinmeyen parametreler hakkında varsa bazı önsel bilgiler içeren olasılık modeli 

belirlemek. 

2. Bu olasılık modelinin gözlenen veri üzerine koşullandırılmasıyla bilinmeyen 

parametreler hakkındaki bilginin geliştirilmesi. 

3. Veriye modellerin uyumunun ve varsayımların sonuçlara duyarlılığının 

hesaplanması. 

Temel Bayesci yaklaşımda gereken anahtar kabuller vardır. Birincisi: bilinmeyen 

parametreler için belli bir parametrik formun oluşturulmasıdır. İkincisi: bilinmeyen 

parametreler sabit olma yerine dağılımsal özelliklere sahip olduğu için daha önceki 

bilgilere dayalı olan bu parametrelerin bir başlangıç koşulsuz dağılımın belirlenmesinin 

uygun olacağı kabul edilir. 

Veri değerlerinin değiştirilebilir (exchangeable) olduğu kabul edilir. Model 

sonuçları veri değerlerinin tekrar sıralanmasıyla değiştirilemez. Bu özellik, verinin 

bağımsız ve özdeş dağılımlı olduğunu ifade eden standart varsayımdan daha geneldir. 

Aynı dağılımdan çekilen bağımsız ve aynı değerler için ortak ortalama ve varyansa 

sahiptir . 

Değişebilir veri üretim sürecinin her veri için aynı şekilde bilinmeyen model 

parametrelerine koşullu olduğunu söylememize izin verir. (De Finetti, 1974) 

Olasılığı tanımlamak kolay olmalıdır. Gerçekte bir olasılık fonksiyonunun 

özelliklerini matematik olarak tanımlamak kolaydır: 

1. Sıfır ve bire sınırlıdır 

2. Toplamı ya da integrali 1’e eşittir 

3. Ayrık olayların olasılıklarının integrali veya toplamı bu olayların 

birleşimlerinin olasılıklarına eşittir. (Kolmogorov, 1933) 

Gerçek problem olasılık ifadelerinin gerçek anlamını tanımlamada yatar. Bu 

zorluk Bayesci ve Bayesci olmayan yaklaşımlar arasındaki geleneksel anlaşmazlığın 

temel noktasıdır. 
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Olasılığın klasik istatistiksel yorumu; bir kitledeki gözlenen bir oranın veya 

deterministik olmayan bir sonucun uzun dönem davranışıdır. Bu görüş Laplace (1814)’e 

dayanmaktadır. Laplace, olasılığı gözlenen denemelerdeki başarılı olayların sayısı 

olarak tanımlamaktadır. Deneyin yeteri kadar tekrarlanması esasına dayanır. 

Olasılığın bir başka yönü, subjektiflik olarak isimlendirilir ve inanç derecesi 

terimi ile özdeşleştirilir. Bu terim ilk olarak aynı duruma bakan iki kişinin gelecek 

durumlar hakkında farklı olasılık ifadeleri belirtebileceğini söyleyen Keynes (1921) ve 

Jeffreys (1961) söylemişlerdir. Subjektif olasılık olarak isimlendirilen bu kavramın 

gelişimi Berger (1985) ve Bernardo ve Smith (1994) ile geliştirilmi ştir. 

Bu subjektif olasılık, Bayesci yaklaşımda önsel bilgi ile formülize edilir. Önsel 

bilgi; elimizde bir veri olmadan ya da henüz veriyi gözlemlemeden parametre 

hakkındaki araştırmacının deneyimi, hissiyatı ve teorik fikirlerini içerir. Ayrıca daha 

önceki çalışmalardan, deneylerden ve ilgili kişilerin görüşlerinden elde edilir.  

Bu önsel bilgiler, gözlem değerleri ile ifade edilen olabilirlik fonksiyonu 

kullanımıyla sonsal bilgiye dönüştürülür. Sonsal bilgi ve ona karşılık gelen sonsal 

olasılık veriyi gözlemledikten sonra ona tahmin edilmesi istenen parametre hakkındaki 

olasılık değeridir.  

 

2.1. BAYES TEOREMİ  
 

Bayes teoremi stokastik A ve B olaylarının marjinal ve koşullu olasılıkları 

arasında ilişki kurar: 

                        
( )

B)P(A)\(AL

P(B)

P(B\A)P(A)
A\BP

α

=
                                          (2.1) 

 
Burada; 

• L(A\B) B bilindiğinde A’nın olabilirliği 

• P(A\B)  B bilindiğinde A’nın koşullu olasılığıdır. Aynı zamanda B üzerinden 

hesaplandığından sonsal olasılık diye de adlandırılır. 

• P(B\A) A bilindiğinde B’nin koşullu olasılığıdır. 

• P(B) B’nin önsel olasılığı veya marjinal olasılığıdır. 
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Bu terminolojiyle birlikte Bayes Teoremi; 
 
           [ ][ ]FaktörüBayesoranıoddsÖnseloranıoddsSonsal =                            (2.2) 
 
olarak ifade edilir. 
 

Bayes teoremini elde etmek için koşullu olasılığın tanımından başlarız. B olayı 

bilindiğinde A olayının olasılığı: 

 

                            ( ) ( )
( )BP

BAP
AP

∩=B\                                        (2.3) 

Aynı şekilde A olayı bilindiğinde B olayının olasılığı: 

 

                                          ( ) ( )
( )AP

BAP
BP

∩=A\                                      (2.4) 

 
Bu iki eşitli ği birleştirir ve yeniden düzenlersek: 
 
 

                        A)P(A)\P(BB)P(AB)P(B)\( =∩=AP                   (2.5) 
 
 
elde ederiz. Eşitli ğin her iki tarafını P(B)’ye bölersek Bayes Teoremini elde ederiz: 
 
 

                               
)(

A)P(A)\P(B
B)\(

BP
AP =                                           (2.6) 

 
burada P(B) sıfırdan farklı olacaktır. 
 
 
2.2. BAYES TEOREMİNİN GENİŞLET İLM İŞ HAL İ 
 
Bayes teoremi ikiden fazla değişkenli problemlerin çözümünde de kullanılır. Örneğin : 
 

                       
B)\()(

B)A,\A)P(C\P(A)P(B
C)B,\(

CPBP
AP =                    (2.7) 

 
Bu işlem koşullu olasılığın tanımı ve Bayes teoreminden birkaç adımla genişletilebilir: 
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B)\()(

B)A,\A)P(C\()(

B)\()(

B)B)P(A,A,\(

B)\()(

),,(

),(

C)B,P(A,
C)B,\(

CPBP

BPAP

CPBP

CP

CPBP

CBAP

CBP
AP

==

===

             (2.8) 

 
 
2.3. BAYES FAKTÖRÜ 
 

)/()/( 21 HDPveyaHDP olasılık yoğunluğuna göre H1 ve H2 hipotezlerinin biri 

altında D verisiyle başlayalım. )( 1HP ve )(1)( 12 HPHP −=  önsel olasılıkları veri 

bilindiğinde )/(1)/()/( 121 DHPDHPveDHP −= sonsal olasılıklarını ortaya 

koyar. Çünkü herhangi önsel bilgi veriden dolayı bir sonsal bilgiye dönüştürülmüştür. 

Önsel olasılık ne olursa olsun benzer dönüşüm sonsal olasılıkları elde etmede kullanılır. 

İlk olarak odds skalasına çeviririz ( Pr)1Pr/( −=Odds ). Bu dönüşüm bize sade bir form 

verir. Bayes teoremini kullanarak Bayes Faktörünü elde ederiz: 

 

)2,1(
)()H\()()H\(

)()H\P(D
D)\(

2211

k =
+

= k
HPDPHPDP

HP
HP k

k           (2.9) 

 

Buradan: 

                          )(

)(

)H\(

)H\(

D)\(

D)\(

2

1

2

1

2

1

HP

HP

DP

DP

HP

HP
=                                (2.10) 

 

Burada: 

                                 
D)\(

D)\(

2

1

HP

HP
oranıoddsSonsal =                                    (2.11) 

 

                                
)H\(

)H\(

2

1

DP

DP
FaktörüBayes =                                        (2.12) 

 

                               
)(

)(

2

1

HP

HP
oranıoddsÖnsel =                                             (2.13) 
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BÖLÜM III 

MATERYAL VE METOT 

 

3.1. BAYESİAN HİPOTEZ TESTLER İ 

Bayes hipotez testinde, temel olarak bilinen eldeki veriler kullanılarak iki 

hipotezin olasılıklarının hesaplanmasıyla 1H  ile 0H  arasında karar verilir yani, 

 

                     

( )
( )









⇒

⇒>

seçilirHaaksidurumd

seçilirH
DHP

DHP

1

0
1

0 1
/

/

                                           (3.1) 

 

Kararlar  ( )VeriHipotezP /   kullanılarak verilir oysa klasik istatistikte aynı işlem 

( )HipotezVeriP /  olasılığı kullanılarak verilir. Bayes kuralına göre D ile gösterilen veri 

bilindiğinde 0H ’ın sonsal olasılığı; 

          ( ) ( ) ( )
( ) ( ) ( ) ( )1100

00
0 HPH/DPHPH/DP

HPH/DP
D/HP

+
=                       (3.2) 

Benzer biçimde; D bilindiğinde 1H ’ in sonsal olasılığı; 

                     ( ) ( ) ( )
( ) ( ) ( ) ( )1100

11
1 //

/
/

HPHDPHPHDP

HPHDP
DHP

+
=                            (3.3) 

Burada ( )0HP ,  0H ’ın ve  ( )1HP ,  1H   önsel olasılılıklarıdır. Her iki sonsal 

olasılığı birbirine oranlarsak,  

                     
( )
( )

( )
( )

( )
( )














=









1

0

1

0

1

0

H/DP

H/DP

HP

HP

D/HP

D/HP
                                        (3.4) 

elde ederiz.  Burada: =BF
( )
( )







1

0

/

/

HDP

HDP
 Bayes faktörü olarak isimlendirilir.  
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Eşitlik (3.4)’deki ifadeyi sözel olarak; 

          [ ] [ ] [ ]rüBayesfaktöoranıoddsÖnseloranıoddsSonsal =                         (3.5) 

biçiminde ifade edebiliriz. 

Thumb kuralı kullanılarak elde edilen Çizelge 3.1’e göre Bayes Faktörü değeri 

kullanılabilir. 

 

Çizelge 3.1. Thumb kuralına göre Bayes Faktör değerinin yorumlanması 

Bayes Faktör değeri Yorum 

1BF ≥  0H  kabul edilir 

2/110BF1 −≥>  0H  ‘a karşı az delil var 

12/1 10BF10 −− ≥>  0H ’a karşı sağlam delil var 

21 10BF10 −− ≥>  0H ’a karşı güçlü delil var 

BF10 2 >−  0H ’a karşı kesin delil var 

 

3.2. BAYESCİ MODEL ORTALAMASI 

Bayesci model ortalaması bütün olasılık modellerinin bir alt kümesini seçer. 

K=2p kadar alt küme seçebilir ve açıklayıcı değişkenlerin etkileşimini ihmal eder. Bütün 

çıkarımları ve kestirimleri elde etmek için modellerin sonsal olasılıklarını kullanır. 

 

                        { }KMMMM ,...,, 21=                                                    (3.6) 

İlgilenilen bütün olası modellerin kümesini göstersin. ∆  her bir modelde aynı 

yoruma sahip ilgilenilen regresyon parametreleri veya tahmin edilecek gelecek değerler 

gibi bir nicelik olsun. Böylece D verisi bilindiğinde ∆ ’ nın sonsal dağılımı; 
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           ( ) ( ) ( )∑
=

∆=∆
K

k
kMPDPP

1
k D\,M\D\                               (3.7) 

Bu her bir Mk modeli altındaki sonsal dağılımların bir ortalamasıdır. Bir Mk 

modeli verildiğinde ∆ ’ nın predictive dağılımı; 

( ) k
k

k
k

k
k dβD),M\P(βD),M,β\ P(∆D,M\ ∫=∆P                (3.8) 

( ) ı

p10
k β,...,β,ββ =                                                                        (3.9) 

(3.9)’daki eşitlik M k modeli için regresyon parametrelerinin vektörüdür. Burada: 

• Mk modelinin sonsal olasılığı; 

            

∑
=

= K

1j
jj

kk

)P(M)P(D/M

)P(M)P(D/M
D)\( kMP                                                     (3.10) 

• Mk modelinin integrallanmiş olabilirliği; 

               k
k

k
k

k
k dβ)M\P(β)M,β\ P(D)P(D/M ∫=                                      (3.11) 

• kβ ’nın önsel yoğunluğu 

     ( )k
k MP /β                                                                                  (3.12) 

• )M,P(D/β k
k  olabilirlik  

• )( kMP  Mk’nın optimal olduğuna ilişkin önsel olasılıktır. 

 

3.3. BMA’nın GERÇEKLE ŞTİRİLMESİ 

Uygulamaya ilişkin bir takım zorluklar söz konusudur. Bunlar; 

• Modellerin P(Mk) önsel olasılıklarının tespiti 

• kβ parametrelerinin önsel dağılımının tespiti  

• İntegrallarin hesaplanması ( genelde analitik çözüm yoktur) 
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• Çok sayıda olası model söz konusu iken ∆ ’nın sonsal dağılımının hesaplanması 

 

Modellerin olabilirliğine ilişkin çok az bilgi varsa her birinin gerçekleşme olasılığını 

eşit almak makul bir seçenektir. 

kβ  parametreleri için önsel olarak çok değişkenli normal önsel dağılım alınabilir. 

Ortalama : ençok olabilirlik tahmincisine ve  

Varyans : gözlem için bilgi matrisinin beklenenine eşittir Raftery ( 1995,1996,1999). 

 

k
k

k
k

k
k dβ)M\P(β)M,β\ P(D)P(D/M ∫=                                   (3.13) 

integrali Laplace Metodu kullanılarak yaklaşık olarak hesaplanabilir.  

          O(1)lognP)M,β̂P(D/log)M\P(Dlog kk
k

k +−=                                (3.14) 

 Burada; 

kβ̂ : Mk modeli altında kβ  parametre vektörünün sonsal ortalaması 

Pk: Model  Mk‘daki parametre sayısı 

N: verideki gözlem sayısı 

 

Bu eşitlik Schwarz Bayesci bilgi kriteri olarak da bilinir. P ortak değişkenli bir 

analiz için model sayısı K oldukça büyük olabilir. Bu problemi aşmak için Madigan ve 

Raftery (1994) tarafından önerilen The Occam’s Window yaklaşımını kullanırız. Bu 

yaklaşım sadece en yüksek sonsal model olasılıklarına sahip olasılıkları göz önüne alır. 

Veri verildiğinde bir modelin sonsal olasılığı diğer olası modellerden küçükse, bu 

model göz ardı edilir. Sadece 

                         







≤= C

DMP

DMPmaks
MA

k
k )/(

)/(
: 11                                       (3.15) 

kümesine ait modeller hesaplamaya katılır. C’nin 20 alınması genel bir kabuldür             

(Raftery, 1995, 1996).  
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BÖLÜM 4 

BULGULAR 

Bu bölümde dört basit uygulama ile hesaplamaları ve yorumlamalarını 

sunacağız. Uygulama 1’de yapılan hesaplamalar için hazırlanan Visual Basic 

programının çıktısı aşağıdaki gibidir: 

 

Şekil 4.1. Uygulama 1 için Visual Basic program çıktısı 

Uygulama 2’de yapılan hesaplamalar için hazırlanan Visual Basic programının çıktısı 
aşağıdaki gibidir. 
 

 

Şekil 4.2. Uygulama 2 için Visual Basic program çıktısı 
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4.1. UYGULAMA 1 

Farklı ortalamalı ancak eşit varyanslı ( )12 =σ normal dağılıma sahip iki 

ortalamayı Bayesci yöntemle karşılaştırmak istiyoruz. Hipotezlerimiz; 

                                              
1:

0:

1

0

=
=

µ
µ

H

H
                                                          (4.1) 

şeklindedir. (3.4) eşitli ğini, 

( )
( )

( )
( )

( )
( )
















=

1gözlenen

0gözlenen

1

0

gözlenen1

gözlenen0

H/XP

H/XP

HP

HP

X/HP

X/HP
                                (4.2) 

şeklinde yazalım.  N  örneklem genişliği için (4.2) nolu ifade  

          
( )
( )

( )

( )






























=

−

−

−

−

1HgözlenenX
2

.2

N

0HgözlenenX
2

.2

N

e
N.2

e
N.2

HP

HP

1

0

µ
σ

µ
σ

π
σ

π
σ

                                            (4.3) 

olur. ( )0HP  = ( )1HP =0,5 alınırsa (4.3) nolu eşitlik 

           














=

+
−−

2

1H0H
gözlenenX

2
.2

N

e

µµ

σ
                                                                (4.4) 

 

olur. Örneğin N=5 ve =gözlenenX 1 için; ( )gözlenenXHP /0 =0.076 ve 

( )gözlenenXHP /1 =0.924 ve 
( )
( )gözlenen

gözlenen

XHP

XHP

/

/

1

0 = ( ) 082.05,015 =−−e  bulunur. Sonuç olarak  

1H  hipotezi kabul edilir. Benzer şekilde =BF 0,082 olduğundan Thumb kuralına göre 

21 10082.0BF10 −− ≥=>  olduğundan 0H  ‘a karşı güçlü delil vardır denir. Farklı N  

ve ortalama değerleri için olası sonuçlar Çizelge 4.1, 4.2 ve 4.3’de sunulmuştur. 
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Çizelge 4.1. Örneklem genişliği N=5 için sonuçlar 

Örnek ortalaması ( )gözlenenXHP /0  ( )gözlenenXHP /1  Karar 

0 0.924 0.076 0H  

0.25 0.777 0.223 0H  

0.50 0.500 0.500 kararsız 

0.75 0.223 0.777 
1H  

1.00 0.076 0.924 1H  

 
 

Çizelge 4.2. Örneklem genişliği N=10 için sonuçlar 

Örnek ortalaması ( )gözlenenXHP /0  ( )gözlenenXHP /1  Karar 

0 0.993 0.007 0H  

0.25 0.924 0.076 0H  

0.50 0.500 0.500 kararsız 

0.75 0.076 0.924 
1H  

1.00 0.007 0.993 
1H  

 
 

Çizelge 4.3. Örneklem genişliği N=20 için sonuçlar 

Örnek ortalaması ( )gözlenenXHP /0  ( )gözlenenXHP /1  Karar 

0 0.999 0.001 0H  

0.25 0.993 0.007 0H  

0.50 0.500 0.500 kararsız 

0.75 0.007 0.993 
1H  

1.00 0.001 0.999 1H  
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4.2. UYGULAMA 2 

Sabit varyanslı ( 2σ  =1) normal dağılımlı tek bir kitle için ortalamanın sıfırdan 

farklı olup olmadığını test etmek istiyoruz. Çift yönlü hipotezlerimiz   

                                    
0:H

0:H

1

0

≠
=

µ
µ

                                                              (4.5) 

 
dir. ( )0HP  = ( )1HP  alınırsa N örneklem genişliği için, 

 

              
( )
( )gözlenen

gözlenen

XHP

XHP

/

/

1

0
=

( )
( ) ( )∫

≠

=

0

/

0/

µ

µµµ
µ

dPXP

XP

gözlenen

gözlenen
                        (4.6) 

 

elde edilir. Örnek olarak N=5 ve gözlenenX  =1 için  ( )gözlenenXHP /0 =0,0147 ve 

( )gözlenenXHP /1  = 0,9853 bulunur. Sonuç olarak 1H  kabul edilir. Benzer şekilde =BF  

( )
( )gözlenen

gözlenen

XHP

XHP

/

/

1

0 =0,0149 hesaplaması ve Thumb kuralı gereği 

21 100149.0BF10 −− ≥=>  olduğunda 0H  ‘a karşı güçlü delil vardır denir. Farklı N 

ve ortalama değerleri için olası sonuçlar Çizelge 4.4, 4.5 ve 4.6’da sunulmuştur. 

 

Çizelge 4.4. Örneklem genişliği N=5 için sonuçlar 

Örnek ortalaması ( )gözlenenXHP /0  ( )gözlenenXHP /1  Karar 

0 0.1785 0.8215 
1H  

0.25 0.0956 0.9044 
1H  

0.50 0.0511 0.9489 1H  

0.75 0.0274 0.9726 
1H  

1.00 0.0147 0.9853 
1H  
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Çizelge 4.5. Örneklem genişliği N=10 için sonuçlar 

Örnek ortalaması ( )gözlenenXHP /0  ( )gözlenenXHP /1  Karar 

0 0.1262 0.8738 
1H  

0.25 0.0362 0.9638 1H  

0.50 0.0104 0.9896 
1H  

0.75 0.003 0.997 
1H  

1.00 0.0008 0.9992 1H  

 

Çizelge 4.6. Örneklem genişliği N=20 için sonuçlar 

Örnek ortalaması ( )gözlenenXHP /0  ( )gözlenenXHP /1  Karar 

0 0.0892 0.9108 
1H  

0.25 0.0073 0.9927 
1H  

0.50 0.0006 0.9994 1H  

0.75 0.0001 0.9999 
1H  

1.00 0.0000 1.0000 
1H  

 

4.3. UYGULAMA 3 
 

Kabul edelim ki hayat sigortası sahiplerinin yaşları X-tesadüfi  değişkeni ile 

gösterilsin ve  X / µ ~ N(µ , 51,84)  normal dağılımlı, n=36 ve  =X 39,22 olduğu 

bilinsin. Bu durumda; 

:0H 37≤µ  

37:1 >µH                                                            (4.7) 

 hipotezlerini test etmek istiyoruz. 
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( )
( )

( )
( )

( )
( )














=

1

0

1

0

1

0

H/XP

H/XP

HP

HP

X/HP

X/HP
  ve ( )0HP  = ( )1HP  =1 düzgün önsel alınırsa   

 

( ) ( ) ( ) 032,0852,1
/

37
/37/0 ≅−≅








 −=≤= Z
n

X
ZXPXHP

σ
µ   ve  

 

( ) ( ) 968,0032,01X/HP1X/HP 01 ≅−=−=   bulunur. Sonuç olarak 1H  kabul edilir. 

 

4.4. UYGULAMA 4 

Kabul edelim ki  1+= ii XY  olsun ve 

      µ/:0 iXH ~ )(µPo  

                                            π/:1 iYH  ~ Ge(π )                                         (4.8) 

 

hipotezlerini test etmek istiyoruz. Bunun için 0/ Hµ ve 1/ Hπ  için referans önselleri 

kabul ederek Bayes faktörünü hesaplayalım. =BF
( )
( )







1

0

H/DP

H/DP
 ifadesini ve µ  

parametreli Poisson dağılımının π  parametreli Geometrik dağılımın olasılık 

fonksiyonlarını kullanarak, 
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elde ederiz. Sayısal örnek olarak, n=2, X1=X2=0 alırsak  

BF= 94,0

1.2.1

)2/21(

2

1
≅Γ

  olur.  Thumb kuralına 2/11094.0BF1 −≥=>  olduğundan 0H  

‘a karşı az delil vardır denir. Bir başka sayısal örnek olarak; n=2, X1=X2=2 alırsak 

 

BF=

1.2.4

)2/61(

2

1
.4

Γ
 ≅ 3,181 bulunur.  1181.3BF ≥=  olduğundan 0H  kabul edilir. 

 

4.5. UYGULAMA 5 

 

Kalp damar hastalığı (CAD) ülkemizde ölümcül oranı en yüksek hastalıkların 

başında gelmektedir. Yüksek kolestrol, sigara içme, hiper tansiyon, insülin seviyesinin 

yüksekliği, yaş, cinsiyetin erkek olması, şişmanlık, alkol kullanımı, diyabetik bir 

rahatsızlığın olması ve yakınlarında bu hastalığın olması en temel risk faktörleridir.  

       Kullanılan veri Erzurum Atatürk Üniversitesi Tıp Fakültesinde toplanılmış olup 

Balcı ve ak. (2000) tarafından kullanılmıştır. Normal şeker seviyesine sahip erkek 

hastalar için plazma insülin seviyeleri ile CAD’ın angiographical yoğunluğu arasındaki 

ili şki araştırılmıştır. Bu çalışmada 32’si kontrol diğerleri hasta grubu olan 101 bireyden 

oluşan veriye BMA metodu uygulanarak CAD için risk faktörleri lojistik regresyonla 

ortaya konulmuştur. Elde edilen ölçümler Çizelge 4.7’de özetlenmiştir; 

 

Çizelge 4.7. Değişkenler ve tanımlamaları 

DEĞİŞKEN TANIM 

CAD Kalp Damar Hastalığı (1,0) 

YAŞ Bireylerin Yaşları 

İNSÜLİN Açlık İnsülin Seviyesi 

KOLESTROL Ortalama Kolestrol Seviyesi 

SOYGEÇMİŞ Yakınlarında CAD olup olmadığı 

SİGARA Sigara İçip İçmediği 

TANSİYON Alkol Kullanıp Kullanmadığı 

HİPERTANSİYON Hipertansiyon Olup Olmadığı 
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Etkileşim ihmal edilerek sadece ana etkiler kullanılmıştır. 8 olası açıklayıcı 

değişkenin bütün olası kombinasyonları gözden geçirildi. Başlangıçta 256 olası model 

söz konusu idi. Bic.logit programı kullanılarak Occam’s window metoduyla 256 olası 

model 4’e indirgenmiştir. Seçilen modeller ve sonsal model olasılıkları Çizelge 4.8’de 

verilmiştir. 

Çizelge 4.8. Farklı Model Seçme Kriterlerine Göre Oluşturulan Modeller 

BMA ADIMSAL 

ENTRY 

 

DEĞİŞKEN 

1 2 3 4 5 

Yaş √ √ √ √  

Açlık İnsülin √ √ √ √ √ 

Kolestrol √ √ √ √  

Soygeçmiş √    √ 

Sigara √ √ √  √ 

Alkol √    √ 

Hipertansiyon √    √ 

Sapma 56,327 59,001 59,012 59,315 58,998 

Sonsal Model 

Olasılığı 

0,812 0,473 0,451 0,376  

 

En yüksek sonsal olasılığa sahip model (% 81,2) 7 açıklayıcı değişken 

içermektedir. Oysa adımsal (entry) yöntem 6 değişken içermektedir. Kolestrol 

seviyesini modele katmamaktadır. Çizelge 4.9 BMA’nın seçtiği en iyi yöntemle klasik 

adımsal (entry) yöntemin sonuçlarını karşılaştırmaktadır. 
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Çizelge 4.9. BMA ve Adımsal (Entry) Metodu sonuçlarının karşılaştırılması 

 BMA ADIMSAL (ENTRY) 

DEĞİŞKEN Ortalama Yüzde Katsayı P değeri 

Yaş 0,081 76,4 0,085 0,068 

Açlık İnsülin (log) 0,563 100 0,579 0,06 

Kolestrol 0,028 87,4 0,023 0,659 

Soygeçmiş 1,631 75,5 1,584 0,023 

Sigara 2,135 100 2,243 0,006 

Alkol 1,953 68,5 2,053 0,09 

Hipertansiyon 1,771 92,6 1,871 0,015 
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BÖLÜM 5 

SONUÇ VE TARTI ŞMALAR 

 

 Bayes faktörünün Bayesci hipotez testlerindeki önemi vurgulanmıştır. Ancak 

Bayes faktörünün iki taraflı testlerdeki kullanımında bir takım sınırlamalar söz 

konusudur. Bunlar parametreler üzerine bir takım kısıtlamalar gerektirmektedir. 

Literatürde güncel çalışmalar bulunmamaktadır. Parametre üzerine sınırlamalar ve 

parameterelerin genelleştirilmesi gibi problemler gelecek çalışmalarda incelenebilir. 

Sonsal dağılımın yaklaşık olarak normal dağılımlı olmadığı durumlarda Bayes 

faktörünü elde etmek kolay değildir. Bu durum da gelecek çalışmalarda incelenebilir. 

Laplace yaklaşımı gibi yöntemler kullanılabilir. 

 Teoride BMA yöntemi model seçiminde iyi bir performans göstermektedir. 

Teorideki bu durum uygulamalı bir çalışmayla da gösterilmiştir. Bu çalışmada 

BMA’nın lojistik regresyonda model seçimindeki performansı üzerinde durulmuştur. 

Araştırılması gereken açık sorular vardır. Bunlar: farklı önsellerin seçimi, kestirim 

performansının geliştirilmesi ve farklı modellemelere uygulanmasıdır. Basit ya da çoklu 

regresyon modellerinde, çok değişkenli regresyon modellerinde, arklı genelleştirilmi ş 

lineer modellerde (Loglineer modeller gibi), sağkalım analizinde ve grafiksel 

modellerde de uygulanabilir. Markov Zinciri Monte Carlo (MCMC) yöntemleri de 

Bayesci hipotez teslerinde ve Bayes faktörü hesaplamaları için incelenebilir.  

 Ayrıca yokluk hipotezine ilişkin anlamlılık testleri üzerine yapılan çalışmalar 

bulunmamaktadır. Bu eksiklikler gelecekte yapılabilecek çalışmalar için bize ışık 

tutacaktır. 

 BMA da çok büyük sayıda modellerle çalışıldığı için her bir model için bir önsel 

bilgi seçimi zorunluluğu vardır. Bu zorlukları aşmada literatürde yapılan çalışmaları 

olmasına rağmen halen yeni çalışmalara ihtiyaç vardır. Benchmark önsel seçimi 

yapılabilir. 

 Bu tezde, BMA yöntemi sadece lojistik regresyondaki klasik model seçimi 

yöntemleriyle karşılaştırıldı. Bayesci bilgi kriteri (BIC), Akaike bilgi kriteri (AIC) ve 

Sapma bilgi kriteri (DIC) gibi yöntemlerde de karşılaştırmalar yapılabilir. 
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 Bayesci yaklaşım incelenen modelin parametre değerleri hakkındaki inanışların 

yani önsel olasılıkların verideki bilgiye nasıl ekleneceği sorusuna tam olarak cevap 

verir. Klasik çıkarım yaklaşımın da mümkün olmayan önsel bilginin kullanımına imkân 

tanır. Herhangi bir konu dışı fakat anlamlı bir bilgi (örneğin geçmişteki benzer sonuçlar 

veya başka bir benzer araştırma çalışmalarının sonuçları önsel formülasyon içinde 

Bayesci metodunda birleştirilebilir. Karşıt olarak Klasik istatistikte böyle bilginin ihmal 

edilmeye daha uygundur ve meta analizi gibi ileri tekniklerle bu birleştirmeler yapılır. 

Avantaj gibi gözüken bu durum önsellerin seçimi ve formülüze edilmesi konusunda bir 

takım zorluklar ve subjektiflik de getirir.  

  Hipotez testleri gibi analizlerde direkt yorumlama avantajları sağlamasına 

rağmen sonsal olasılıkların hesaplamasında gereken integrallerin bulunmasında analitik 

çözümler yeterli olmamaktadır. Dolayısıyla nümerik yöntemlere ihtiyaç duyulmaktadır. 

Özellikle bilinen istatistik paket programlarında bu işlemler kolaylıkla 

yapılamamaktadır. Ancak son yıllarda geliştirilen WinBugs gibi programlarda ve 

SPLUS makro yazılımıyla bu hesaplamalar yapılabilmektedir. 
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