

 Anabilim Dalı: Kontrol ve Bilgisayar Mühendisliği
 Programı: Kontrol ve Bilgisayar Mühendisliği

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

BİÇİMSEL DİLLERDEN ENDÜSTRİYEL
İŞLEMCİLERE OTOMATİK KOD ÜRETME:

PETRİ AĞ YAKLAŞIMI

YÜKSEK LİSANS TEZİ

Müh. Anıl ŞAHİN

OCAK 2007

Tezin Enstitüye Verildiği Tarih : 25 Aralık 2006

 Tezin Savunulduğu Tarih : 29 Ocak 2007

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

BİÇİMSEL DİLLERDEN ENDÜSTRİYEL
İŞLEMCİLERE OTOMATİK KOD ÜRETME:

PETRİ AĞ YAKLAŞIMI

YÜKSEK LİSANS TEZİ

Müh. Anıl ŞAHİN

504991068

 Tez Danışmanı Prof.Dr. Leyla GÖREN

 Diğer Jüri Üyeleri Doç. Dr. Salman Kurtulan (İ.T.Ü.)

 Yrd. Doç. Dr. Osman Kaan Erol (İ.T.Ü.)

OCAK 2007

 ii

ÖNSÖZ

Yapmış olduğum bu çalışmada benden yardımlarını esirgemeyen Prof. Dr. Leyla
Gören’e, Doç. Dr. Salman Kurtulan’a, birlikte çalıştığım arkadaşım Özde Tiryaki’ye
ve aileme teşekkürü bir borç bilirim.

Ocak 2007 Anıl Şahin

 iii

İÇİNDEKİLER

KISALTMALAR v
ŞEKİL LİSTESİ vi
SEMBOL LİSTESİ vii
ÖZET viii
SUMMARY ix
1. GİRİŞ 1

1.1. Sistem ve Model Kavramı 2

1.2. Sistemlerin Sınıflandırılması ve Zaman Kavramı 3

1.3. Durum Kavramı ve Durum Uzayı Modeli 4

1.4. Geribesleme Kavramı 6

1.5. Ayrık Olay Sistemleri 6
1.5.1. Zaman denetimli ve olay denetimli sistemler 8
1.5.2. Ayrık olay sistemlerinin karakteristik özellikleri 10
1.5.3. Ayrık olaylı sistemlerde üç seviyede soyutlama 12

1.6. Otomatlar ve Petri Ağları 13

1.7. Tez Çalışmasının Amacı ve Elde Edilen Sonuçlar 14
2. PETRİ AĞLARI 15

2.1. Giriş 15

2.2. Petri Ağlarının Temelleri 15
2.2.1. Petri ağ notasyonları ve tanımları 15
2.2.2. Petri ağının işaretlenmesi ve durum uzayları 19
2.2.3. Petri ağ dinamikleri 21
 2.2.3.1 Durum denklemleri 24
2.2.4. Petri ağ dilleri 26
2.2.5. Kuyruk sistemleri için petri ağ modelleri 28

2.3. Petri Ağları ve Otomatların Karşılaştırılması 30
2.3.1. Dilin ifade edilebilirliği ve otomattan petri ağına geçiş 30
2.3.2. Modüler model inşa etme 32
2.3.3. Karar verilebilirlik 33

2.4. Petri Ağlarının Analizi 33

 iv

2.4.1. Problemlerin sınıflandırılması 33
 2.4.1.1 Sınırlılık 33
 2.4.1.2 Güvenlik ve kilitlenme 34
 2.4.1.3 Durumun kapsanabilirliği 34
 2.4.1.4 Sakınım 35
 2.4.1.5 Canlılık 35
 2.4.1.6 Kesintisiz Olma 37
2.4.2. Lineer cebirsel teknikler 37

3. PROGRAM AÇIKLAMALARI 40

3.1. Borland C++ Builder Programı 42

3.2. PLC SCL Programı 69
3.2.1. Durum geçiş diyagramı yöntemi 69
3.2.2. Petri ağı A matrisi yöntemi 74

KAYNAKLAR 80
ÖZGEÇMİŞ 81

 v

KISALTMALAR

DES : Discrete Event Systems
CVDS : Count Variable Dynamical System
PLC : Programmable Logic Controller
SCL : Structural Control Language
PNL : Petri Net Language

 vi

ŞEKİL LİSTESİ

 Sayfa No

Şekil 1.1
Şekil 1.2
Şekil 1.3
Şekil 1.4
Şekil 1.5
Şekil 2.1
Şekil 2.2
Şekil 2.3
Şekil 2.4
Şekil 2.5
Şekil 2.6
Şekil 2.7
Şekil 2.8
Şekil 2.9
Şekil 2.10
Şekil 3.1
Şekil 3.2
Şekil 3.3
Şekil 3.4

: Durum Uzayı Modeli ..
: Rastgele Yürüyüş ..
: Olay Denetimli Rastgele Yürüyüş ...
: CVDS ve DES Grafikleri ..
: İşaret Akış Diyagramı ..
: Örnek 2.1 Petri Ağ Grafı ..
: Örnek 2.2 Petri Ağ Grafı ..
: Şekil 2.1 Grafının İki İşaretlemesi ...
: Petri Ağının Geçiş Ateşlemeleri ...
: Kuyruk Sisteminde Petri Ağ Modelleri ..
: Kuyruk Sisteminde Alternatif Petri Ağ Modelleri
: Otomattan Petri Ağına Geçiş ..
: Şekil 2.5 (a) Kuyruk Sisteminin Düzenlenmesi
: Örnek 2.6 Petri Ağ Modeli ...
: Örnek 2.7 Petri Ağ Modeli ...
: Programa İlişkin Akış Diyagramı ...
: Program Arayüzü ...
: Durum Geçiş Diyagramı Yöntemi İşaret Akış Diyagramı
: Petri Ağı A Matrisi Yöntemi İşaret Akış Diyagramı

 5
 8
 9
12
14
18
18
20
22
28
29
31
32
36
38
41
42
73
79

 vii

SEMBOL LİSTESİ

G : Otomat
N : Petri ağı
X : Durum kümesi
E : Olay kümesi
f : Durum geçiş fonksiyonu
Γ : Aktif olay kümesi
x0 : Başlangıç durumu
Xm : İşaretli durumlar
P : Yer kümesi
p1,..,pn : n adet yer
T : Geçiş kümesi
t1,..,tm : m adet geçiş
A : Petri ağ matrisi
w : Ark ağırlık fonksiyonu
l : Geçişlerin etiketlenme fonksiyonu
u : Ateşleme vektörü
I : Giriş fonksiyonu
O : Çıkış fonksiyonu
R : Regüler dil
L : Üretilen dil
Lm : İşaretli dil
ε : Boş kelime

 viii

BİÇİMSEL DİLLERDEN ENDÜSTRİYEL İŞLEMCİLERE OTOMATİK
KOD ÜRETME: PETRİ AĞ YAKLAŞIMI

ÖZET

Bu çalışmada, biçimsel işaretli bir dilden endüstriyel bir işlemciye otomatik kod

üreten bir program geliştirme amaçlanmıştır. Bu amaç için, önce işaretli dilden

üretilen dile geçilmiş ve ilişkin otomatın durum geçiş diyagramı elde edilmiştir.

Daha sonra durum geçiş matrisinden sistemin Petri ağ modeli elde edilmiş ve bu

model temel alınarak kullanılan işlemciye uygun kod üreten yazılım gerçeklenmiştir.

Bu işlemler, tüm aşamaları görsel olarak sunmaya imkan veren Borland C++ Builder

ortamında gerçekleştirilmiştir. Endüstriyel işlemci olarak SIMATIC-300 seçilmiş ve

standart bir dil olan SCL dilinde kod üretilmiştir. Benzer yazılımlarda ortaya çıkan

ve ilgili literatürde “çığ etkisi” (avalanche effect) olarak adlandırılan problem analiz

edilmiş ve çığ etkisinden arındırılmış SCL kodu üretilmiştir. Oluşturulan yazılım

çeşitli endüstriyel örnekler üzerinde denenmiş ve başarılı sonuçlar alınmıştır.

 ix

GENERATING AUTOMATIC CODE FROM FORMAL LANGUAGES TO
INDUSTRIAL PROCESSORS: PETRI NET APPROACH

SUMMARY

In this study, target is generating automatic code from formal languages to industrial

processors. For this purpose, first marked language is converted to generated

language and state transition diagram of the related automata is identified. Then,

petri net model of system is identified from state transition matrix and a software

which generates automatic code from this model is developped in a language

appropriate for the processor. This software is developped in Borland C++ Builder

due to its visual properties. For industrial processor, SIMATIC-300 is choosen and

code is generated in SCL language which is the standard language of this processor.

Avalanche effect problem which can be seen in similar softwares is analyzed and

SCL code is improved to eliminate this problem. Generated software is tested in

various industrial examples and successful results are achieved.

 1

1. GİRİŞ

Bilgisayar, haberleşme ve sensör teknolojilerindeki hızlı gelişmeler, “yeni” dinamik
sistemlerin sayılarında büyük bir artışa sebep olmuştur. Bu “yeni” dinamik
sistemlerin bazıları teknolojiktir ve çoğu da çok karmaşıktır. Bilgisayar ve
haberleşme ağları, otomatik üretim sistemleri, hava trafik kontrol sistemleri, akıllı
ulaşım sistemleri, dağıtılmış yazılım sistemleri bunlardan birkaçıdır. Bu
sistemlerdeki “aktivite”lerin önemli bir kısmı, hatta bazılarında tümü, insanlar
tarafından tasarlanmış işlemsel kurallara bağlı olarak oluşurlar ve davranırlar. Bu
nedenle de, bunların dinamikleri “ayrık olayların” asenkron olarak oluşmasıyla
karakterize edilir; bu olayların bazıları kontrollu (klavyenin bir tuşuna basılması)
olabilirken bazıları ise kontrolsuz olabilir (bir cihazın aniden bozulması). Bu
gerçekler nedeniyle, dinamik sistemlerin bu sınıfı için “ayrık olay sistemler” terimi
kullanılır.

Günümüzdeki diferansiyel ve fark denklemleri merkezli matematiksel birikim (ki
bunlar sistem ve kontrol mühendisliğinde, ait oldukları doğa yasaları nedeniyle
“zaman denetimli” sistemlerin modelleri ve çalışmaları için çok uzun zamandır
kullanılmaktadır) ayrık olay sistemleri için uygun değildir. Bu nedenle yeni
modelleme yöntemleri, analiz teknikleri, tasarım araçları, test metodları ve sistematik
kontrol ve optimizasyon prosedürleri geliştirilmesi gerekir ki, bu “yeni” nesil
karmaşık sistemlerin analizi ve tasarımı mümkün olabilsin.

Bu yeni nesil karmaşık sistemlerden biri olan bilgisayarın kendisi bu tür sistemlerin
tasarımı, analizi ve kontrolu için yeni tekniklerin ve prosedürlerin geliştirilmesinde
önemli bir rol oynamaya başlamıştır. Ayrık olay sistemlerinin sahip olduğu veya
olmaya yüz tuttuğu kapasite ne kadar heyecan verici ise sistemlerin karmaşıklığı da
bir o kadar düşündürücüdür. Güçlü metodların bulunması sadece tasarım
yöntemlerinin geliştirilmesi için değil aynı zamanda hataları önlemek için de
gereklidir. Bu derece karmaşık sistemlerde hatalar yıkıcı olabilir.

Tarihsel olarak, bilim adamları ve mühendisler; fizik, kimya, mekanik ve yer çekimi
yasaları ile iyi bir şekilde modellenen doğa olayları üzerinde çalışmaya
yoğunlaşmışlardır. Bu nedenle parçacıkların ve katı maddelerin yer değiştirmesi, hızı

 2

ve ivmesi, sıvı ve gazların basıncı, sıcaklığı ve akış hızları gibi büyüklüklerle
uğraşılmaktadır. Bunlar “sürekli değişkenlerdir”, yani değerleri zamana göre sürekli
olarak değişir. Bu gerçeğe dayanarak, matematiksel araçlar ve teknikler bu türden
sistemlerin modellenmesi, analizi ve kontrolü için geliştirilmişlerdir. Adi ve kismi
diferansiyel denklemler sistem analizi ve kontrolünün temelini oluşturur. Fakat
günümüzde giderek artan teknolojik ve bilgisayar bağımlı dünyada iki önemli
noktaya dikkat etmek gerekir;

• Karşılaştığımız büyüklüklerin çoğu “ayrıktır” ve tam sayılarla sayılırlar. (Kaç
adet uçak kalkmakta, kaç adet telefon görüşmesi aktif halde, vs.)

• Kullandığımız proseslerin devreye girmesi anlık olarak olan “olay”lara
bağlıdır. (Klavyenin tuşuna basmak, trafikte yeşil ışığın yanması, vs.) Bu
sistemler “olay denetimli” olarak adlandırılırlar.

1.1 Sistem ve Model Kavramı

Tanım 1.1 “Sistem”:

Sistemin literatürdeki üç tanımı şöyledir:

• Karmaşık bir tamlık veya bütünlük oluşturmak üzere doğa ve insan tarafından
biraraya getirilen şeylerin toplanması veya birleşmesi (Enc Americana)

• Bir tam birleşme oluşturan elemanların bağımsız bir grubu veya düzgün bir
etkileşimi (Webster Dict.)

• Teke tek parçalarla gerçekleştirilmesi mümkün olmayan bir fonksiyonu
(amacı) yerine getirmek için birarada davranan elemanların bir birleşimi
(IEEE Standart Dict. Of Electric&Electronic Terms)

Bu tanımların iki temel gerçeği vardır:

• Sistem birbiriyle etkileşimli olan elemanlardan oluşur.

• Sistem amaç fonksiyonu yerine getirmek amacıyla biraraya getirilir. Burada
biraraya getirilirken ön varsayım bir amacı yerine getirmektir.

Vurgulanması gereken diğer önemli bir nokta da bir sistemin her zaman fiziksel
objeler ve doğa yasaları ile biraraya getirilmesinin zorunlu olmadığıdır. Örneğin
sistem teori, ekonomik mekanizmaların veya insan davranışının ve toplumsal

 3

dinamiklerin tanımlanmasında çok uygun bir çalışma zemini oluşturur.

Sistemlerin analizi, kontrolu ve tasarımı için matematiksel ölçümler ve işlemler
yapmak gereklidir bu nedenle bazı tanımlara ihtiyaç duyulur.

Tanım 1.2 “Model”:

Bilimci veya mühendisler sistemlerin büyüklük analizi ile, kontrol ve tasarım için bir
takım tekniklerin geliştirilmesi ile ve iyi tanımlanmış ölçütler üzerinden sistem
davranışının kapalı ölçümleri ile ilgilenirler. Bu nedenle yukarıda verilen tümüyle
niteliksel tanımlar uygun olmaz. Geçerli olan sistemin bir “model”i aranır. Sezgisel
olarak, sistemin kendi davranışı ile basit olarak uyuşan bir cihaz (araç) olarak bir
model düşünülür. Daha ayrıntılı açıklamak gerekirse, bu davranışı anlamak için bazı
matematiksel kavramlar geliştirmeye ihtiyaç duyulur. Kesin olarak söylenebilir ki;
bir sistem gerçek bir şeydir (bir kuvvetlendirici, bir otomobil, bir insan vücudu gibi),
bir model ise bir “soyutlama”dır, matematiksel denklemlerin oluşturduğu bir
kümedir.

Genellikle model, sistemin gerçek davranışına sadece yaklaşık bir davranış gösterir.
Verilen bir sistem için, prensip olarak, her zaman bir model elde etmek mümkündür,
ancak tersi doğru değildir, çünkü matematiksel denklemler her zaman gerçek
sonuçlar vermez.

1.2 Sistemlerin Sınıflandırılması ve Zaman Kavramı

Sistemleri sınıflandırmanın yollarından biri zamandır.

Tanım 1.3 “Statik ve Dinamik Sistemler”:

Statik sistemlerde sistemin çıkışı, y(t), geçmişteki giriş ya da çıkış değerlerine bağlı
değildir. Dinamik sistem de ise sistemin çıkışı, y(t), geçmişteki giriş ya da çıkış
değerlerine bağlıdır.

Tanım 1.4 “Zamanla Değişen Ve Değişmeyen Sistemler”:

Sistemin çıkışı zamana göre değişiyorsa, y=g(u,t), zamanla değişen sistemdir.
Sistemin çıkışı zamana göre değişmiyorsa, y = g(u), zamanla değişmeyen (stasyoner)
sistemdir.

 4

1.3 Durum Kavramı ve Durum Uzayı Modeli

Sistemlerin modellenmesinin temelini durum kavramı oluşturur.

Tanım 1.5 “Durum”:

Bir sistemin t0 anındaki durumu, tek başına u(t) (t≥ t0) bilgisinden, y(t) (t≥ t0)
anındaki değerlerini belirlemeye yeten ve gereken bilgidir. Durum değişkenleri,
x(t) = [x1, x2, .. , xn]T olarak tanımlanır.

Tanım 1.6 “Durum Denklemleri”:

Verilen x(t0) değerinden t≥ t0 için x(t)’nin değerlerini belirlemek için gerekli olan
denklem kümesine “durum denklemleri” denir.

Tanım 1.7 “Durum Uzayı”:

Bir sistemin “durum uzayı” genellikle X ile gösterilir, durumların mümkün olan
bütün değerlerinin yer aldığı kümedir. Durum denklemleri,

 () ((), (),)x t f x t u t t′ = (1.1)

 durum uzayı modeli ise durum ve çıkış denklemleri ile tanımlanır.

 () ((), (),)x t f x t u t t′ = 0 0() (başlangıç koşulu)x t x= (1.2)

() ((), (),)y t g x t u t t= (1.3)

Verilen bir sistemin bir tek durum uzayı gösterilimi dolayısıyla modeli yoktur.
Ancak genellikle doğal fiziksel büyüklüklerin durum değişkenleri olarak seçildiği
modeller tercih edilir. Statik sistemlerde x́(t) = 0 olacaktır, yani x(t) = st demektir ve
sistem sadece çıkış denklemleri ile belirlenir. Zamanla değişmeyen bir sistemde ise f
ve g, t’ye bağımlı değildir, x́(t) = f (x(t), u(t)) ve y(t) = g (x(t), u(t)) olacaktır.

 5

Şekil 1.1 : Durum Uzayı Modeli

Tanım 1.8 “Lineer ve Lineer Olmayan Sistemler”:

Bir sistemin lineer olmasının gerek ve yeter koşulu hem f(.) hem de g(.)
fonksiyonlarının lineer olmasıdır. Lineer durumda (1.2) ve (1.3) denklemleri,

() () () () ()x t A t x t B t u t′ = + (1.4)

() () () () ()y t C t x t D t u t= + (1.5)

haline gelir. Lineer sistemler kümesi tüm sistemler içerisinde çok küçük bir kümeyi
oluşturur, diğerleri lineer olmayan sistemler olarak sınıflandırılırlar.

Durum değişkenleri, reel sayılar veya reel değişkenli fonksiyonlar olabileceği gibi
ayrık küme veya tamsayı kümesi de olabilirler, {AÇIK, KAPALI}, {YÜKSEK,
ORTA, ALÇAK} veya {YEŞİL, KIRMIZI, MAVİ} gibi. Gerçekte unutulmamalıdır
ki modelleme işlemi durumların, çıkışların veya girişlerin tanımlanması konusunda
alabildiğine bir esnekliğe izin verirler. İlgilenilen program veya uygulamaya bağlı
olarak uygun modelleme seçilir.

Sistemleri sınıflandırmanın diğer bir yolu ise model olarak seçilen problemin
doğasına dayanır.

Tanım 1.9 “Sürekli Durum Sistemleri”:

Sürekli durum uzayı modelinde, durum uzayı X, n-boyutlu reel veya bazen karmaşık
sayıların sürekli bir uzayından oluşur. Genellikle X sonlu boyutludur ancak sonsuz
olduğu durumlar da vardır. Bu da differensiyel denklemlerin kullanılmasını
gerektirir.

Tanım 1.10 “Ayrık Durum Sistemleri”:

Ayrık durum uzayı modelinde, durum uzayı ayrık bir kümedir. Durum geçiş

 6

mekanizması basit lojik ifadelere dayanmaktadır. Buna rağmen durum
denklemlerinin formal olarak ifade edilebilmesi için izlenen matematiksel yöntem
oldukça karmaşıktır.

Diğer taraftan, sürekli durum uzayı modelleri kolaylıkla differansiyel denklemlerle
ifade edilebilirler.

1.4 Geribesleme Kavramı

Geribesleme kavramı, sistem davranışından mümkün bilgileri kullanarak, sürekli
olarak kontrol girişini sistemi istenen davranışa götürmek üzere ayarlar.
Geribeslemenin temel özelliği beklenmedik bozucular altında sistemin istenen
biçimde çalışmasını sağlıyor olmasıdır. Geribesleme kullanmanın avantajları;
sistemin istenen davranışı beklenmedik bozuculara, modelde varsayılan
parametrelerde oluşan hatalara karşı daha az duyarlıdır, y(t) çıkışı istenen referans
işareti r(t)’yi “otomatik” olarak takip eder. Diğer taraftan geribesleme kullanmanın
getirdiği bazı dezavantajlar da vardır; çıkışı gözlemek, ölçmek ve kontrolör içinde
değerlendirmek için sensörler ve diğer karmaşık cihazlar gerekir, tüm sistemin
davranışını etkileyen geribesleme işareti enerji gerektirir, geribesleme gerçekte
istenmeyen sistem davranışları gibi bazı problemler yaratır, yani bazı problemleri
düzeltirken bazı yeni problemler yaratır.

() ((), (),)u t r t x t tγ= (1.6)

1.5 Ayrık Olay Sistemleri

Şimdiye kadar anlatılan sistemlerde zaman sürekli bir değişken olarak ele alındı. Bu
şekilde modellenen sistemler de diferansiyel denklemler gibi matematiksel bir temele
oturmaktadır. Sistemlerin giriş ve çıkış değişkenlerinin zamanın ayrık anlarında
tanımlanmış olduğu varsayılsın. Bunun sonucu olarak, ayrık zaman sistemleri elde
edilir. Ayrık zaman sistemlerini incelemenin nedenleri olarak; dijital bilgisayarların
çalışma prensibi, diferansiyel denklemlerin nümerik çözümleri, dijital kontrol
teknikleri ve dijital kontrolörler, bazı sistemlerin doğaları gereği ayrık zamanlı
olmaları; “ekonomik sistemler” gösterilebilir.

Ayrık olay sistemlerinin durum uzayı, {0,1,2, .. } gibi ayrık bir kümeden oluşur ve
durum geçişleri sadece zamanın ayrık noktalarında gözlemlenir. Bu durum
geçişlerine ise “olaylar” atanır.

 7

Tanım 1.11 “Olay Kavramı”:

“Olay” sezgisel temeli kuvvetli basit ve ilkel bir kavramdır. Sadece anlık olarak
oluştuğu, bir durum değerinden diğer bir durum değerine geçişe neden olduğu
vurgulanabilir. Bir olay, belirli bir etki üzerinden tanımlanabilir, “birisi bir butona
basar” ya da doğal olarak bir olay beklenmedik bir şekilde ortaya çıkar, örneğin “çok
karmaşık nedenlerden ötürü bir bilgisayar çöker” ya da çeşitli koşulların bir sonucu
olarak bir olayla aniden karşılaşılır, örneğin “bir tanktaki sıvı seviyesi verilen değeri
aniden aşar”.

“e” sembolü bir olayı göstermek için kullanılır. Bir sistem bir çok olaydan
etkileniyorsa, “E” olaylar kümesi tanımlanır. “E” ayrık bir kümedir.

Örnek 1.1 “Rastgele Yürüyüş”:

İki boyutlu bir alanda yapılan rastgele yürüyüş için, herhangi bir anda dört yöne
(kuzey, güney, doğu, batı) doğru birim mesafe kadar hareket edilebildiği ve yönün
rastgele seçildiği varsayımı yapılır. Sistemin durumu (x1, x2) konumlarıdır. x1 ve x2

sadece tam sayı değerleri alabilir. Yani durum uzayı ayrık bir kümedir.

(){ }, : , ..., 1,0, 1,...X i j i j= = − + (1.7)

Bu durumda, doğal bir olay kümesi;

{ }, , ,E N S W E= (1.8)

olacaktır. Her bir olay herhangi bir yöne doğru yapılmış bir adım olarak
tanımlanmıştır. (0,0) başlangıç durumunda sırasıyla {E, S, W, W, N, N, W} olayların
oluştuğu varsayılırsa Şekil 1.2’deki durum yörüngesi (sample path) elde edilir.

 8

Şekil 1.2 Rastgele Yürüyüş

1.5.1 Zaman Denetimli ve Olay Denetimli Sistemler

Sürekli durumlu sistemlerde durum genellikle zaman değiştiğinde, değişir. Bu aynı
zamanda ayrık zaman modelleri için de doğrudur. Her saat tıklaması, durumda bir
değişikliğe sebep olur. Çünkü “sürekli” durum değişkenleri zamana göre sürekli bir
şekilde değişirler. Bu nedenle bu sistemlere “zaman denetimli” sistemler denir. Bu
durumda, zaman değişkeni (t R∈ veya k I∈ dır.) bağımsız değişken olarak ortaya
çıkar ve giriş, durum ve çıkış fonksiyonlarının argümanını oluşturur.

Ayrık durum sistemlerinde durumlar sadece belirli zaman noktalarında ani geçişler
şeklinde değişir. Bu ani her geçişe bir “olay” atanır. Bu geçişlerin “zamanlama
mekanizması” iki durumda ele alınabilir;

• Her saat darbesinde, E’nin içinden bir olayın oluştuğu ve eğer hiçbir olay
olmayacaksa, bir “boş olay” oluştuğu varsayılır. Boş olay E’nin bir üyesidir,
özelliği ise hiç bir durum değişikliğine sebep olmamasıdır.

• Bir saat darbesiyle bağdaşmayan ve önceden bilinmesinin gerekli olmadığı
birçok zamanda, bir olay “e”nin olduğu duyurulur.

Bu iki durum arasındaki temel farklar vardır.

İlk durumda, durum geçişleri bir saat ile senkronize edilmiştir. Her saat darbesinde
seçilmiş bir olay oluşur ve sistem durum değiştirir ve bu işlem tekrarlanır. Saat,
mümkün olan herhangi bir durum geçişinden tek başına sorumludur. İkinci durumda
ise olaylar asenkron olarak ve birleşik olay süreçlerinin sonucu olarak meydana
gelirler. Bu süreçlerin birbirinden bağımsız olmasına gerek yoktur.

Bu iki durum arasındaki farklar zaman denetimli ve olay denetimli terimlere karşı
düşen farklılıklardan kaynaklanır. Sürekli durumlu sistemler doğaları gereği “zaman

 9

denetimli” sistemlerdir. Oysa ayrık durum sistemlerinin hangi gruba dahil olduğu
durum geçişlerinin bir saat darbesiyle mi yoksa asenkron olarak oluştuğuna bağlı
olarak değişir. Bir saat darbesiyle oluşuyorsa zaman denetimli, asenkron olarak
oluşuyorsa olay denetimlidir. Olay denetimli sistemlerin analizi ve modellenmesi çok
daha karmaşıktır çünkü sistemin anlaşılabilmesi için belirlenmiş olan çok sayıda
asenkron olay zamanlama mekanizması vardır.

Olay denetimli sistemlerdeki durum geçişlerinin en iyi ve bilindik bir örneği
bilgisayardaki “kesme” kavramıdır. Bir bilgisayarda bir çok işlem bir saat işareti ile
senkronize edildiği, yani zaman denetimli olduğu halde, işletim sistemi zamanın
herhangi bir anında oluşan çağrılara cevap verebilecek şekilde tasarlanmıştır. Bu
çağrılar kullanıcı isteği ya da özel bir takım olayların sonucunda oluşabilir ancak
bunlar bilgisayarın saat işaretinden tamamen bağımsızdır.

Örnek 1.2 “Olay Denetimli Rastgele Yürüyüş”:

Şekil1.2’deki rastgele yürüyüş bir “zaman denetimli” sistemdir. Bir saat verilmiştir
ve her saat darbesinde bir oyuncu bir parçayı hareket ettirir yani oyuncu E olay
kümesi içinden bir olay seçer.

Ancak rastgele yürüyüşün alternatif bir biçimi daha vardır, burada parçacığın
hareketinin kontrolu diğerinden farklıdır. Dört ayrı oyuncunun olduğu ve bunların
herbirinin sadece bir yöne hareketten sorumlu olduğu, her oyuncunun tesadüfen
davrandığı ve parçacığı kendi yönüne doğru hareket ettirdiği varsayılır. Bunun
sonucu olarak, asenkron davranan oyuncular tarafından tanımlanan “olay denetimli”
sistem ortaya çıkar.

 N {7,9} ayrık zamanlarında, S {2,10}, W {4,6} ve E {1,11} de işaret verirse;

Şekil 1.3 Olay Denetimli Rastgele Yürüyüş

Örnek 1.2’de iki olayın tam olarak aynı anda oluşamayacağı varsayılmıştır. Eğer
böyle bir durum olursa durum geçişi her iki olayın da olduğunu aksettirecek şekilde
oluşmalıdır. Örneğin, 1 anında hem E hemde S’nin aynı anda oluştuğu varsayılırsa
sonuç durum (1,-1) olacaktır. Ancak her zaman böyle olmaz, genel olarak iki farklı

 10

olayın durum üzerindeki etkisini bu olayların oluş sırası belirler. Mesela, durum bir
banka hesabının dengesi olsun ve başlangıç olarak sıfır olduğu varsayılsın. A olayı
hesaba 100YTL para yatırılması, B olayı ise kredi kartı borcu olarak 100YTL
çekilmesi olarak tanımlansın. Bu iki olayın aynı anda olduğu varsayılırsa, bu
olayların oluş sıraları hesap dengesini etkiler. Eğer A olayı önce olursa net etki sıfır
olur. Eğer B olayı önce olursa hesap önce eksiye düşeceği için faiz ödenecektir.

Bu gibi durumlarda iki olayın aynı anda olması ile farklı sıralarda olmasının
etkilerinin ayrı ayrı modellenmesi gerekir.

1.5.2 Ayrık Olay Sistemlerinin Karakteristik Özellikleri

Sistem ve kontrol mühendisliğinin bugünkü başarısının altında yatan gerçek
diferansiyel veya fark denklem temelli modellerdir. Bu matematiksel uygunluğa
sahip modelleri kullanmak için,

• Sistem “sürekli durumlu” olmalıdır.

x(.)’lerin sürekli değişkenler olması demektir, (.)x R∈ veya (.)x C∈ olabilir. Bu

nedenle bu türden sistemlere CVDS “Count Variable Dynamical System” denir.
Fiziksel büyüklüklerin çoğu bu kategoriye girerler. Sürekli değişkenlerde türevlerinin
alınabilir olması nedeniyle diferansiyel denklem kullanılabilir.

• Durum geçişlerinin mekanizması “zaman denetimli” olmalıdır.

Durumların değişmesi zamanla olur, t veya k zaman değişkeni bu sistemlerin
modellenmesinde bağımsız değişkendir.

CVDS’nin aksine DEDS (Discrete Event Dynamical System) yada DES’de ise;

• Durum uzayı ayrıktır.

• Durum geçişleri “olay denetimli”dir.

Bu özelliklere dayanarak DES’in informal tanımı verilebilir.

Tanım 1.12 “DES”:

Bir DES; ayrık durumlu, olay denetimli sistemdir yani durum değişimi zaman
boyunca asenkron olarak oluşan ayrık olaylara bağlıdır.

Bir çok sistem özellikle teknolojik olanlar, gerçekte ayrık durum sistemleridir.

 11

Doğaları gereği öyle olmasalar bile karmaşık bir sistemin bir ayrık durum
görünümüyle ilgilenen bir çok ugulama vardır.

Bir makinanın durumu {On, Off} ya da {Meşgul, Boşta, Arızalı} olabilirken, bir
programı çalıştıran bir bilgisayar şu üç durum içerisinde değerlendirilebilir {Giriş
bekliyor, Çalışıyor, Bozuk}. Oyunların çoğu bir ayrık durum uzayına sahip olarak
modellenebilir. Satrançta, örneğin her mümkün konfigürasyon bir durum olarak
tanımlanır, oluşan durum uzayı çok geniştir ancak sonludur.

Olay denetimli sistemlerde durumlar zamanın sadece ayrık anlarında değişirler ve bu
anlar “ayrık olayların” asenkron olarak oluşmalarına karşı düşen zaman noktalarıdır.
Eğer bir durum geçişine neden olan her bir olay ile bir “olaylar” kümesi
tanımlanabilirse, zaman bu sistemin denetiminde kullanılacak uygun bir bağımsız
değişken olamaz.

CVDS ile DES’i ayıran iki temel özellik Şekil 1.4 de gösterildiği gibi her sistem
sınıfına ilişkin tipik yörüngelerinin karşılaştırılması ile açığa çıkar.

• CVDS de durum uzayı x Є R reel sayılar kümesidir ve x(t) Є X değerini alır.
x(t) fonksiyonu genel olarak x́(t) = f (x(t), u(t), t) şeklindeki bir diferansiyel
denklemin çözümüdür. u(t) giriş fonksiyonudur.

• DES’de durum uzayı ayrıktır, X = {s1, s2, s3, s4, s5, s6}. Yörünge bir
durumdan diğerine atlamalar şeklindedir ve bu atlama işlemi bir olay
olduğunda gerçekleşir. Bir olay olduğu halde bir durum geçişi olmamış
olabilir, e3 de olduğu gibi. Bu noktada x́(t) = f (x(t), u(t), t) gibi bir denkleme
sahip olunamaz. Bu tür durumlarda olayların zaman boyunca nasıl
davranacağını belirleyen bir mekanizma elde edilemez.

 12

Şekil 1.4 CVDS ve DES Grafikleri

Bazı durumlarda sistem tümüyle CVDS olduğu halde sadece tesadüfen oluşan bazı
ayrık olaylar nedeniyle başka bir yörüngeye sıçrama yapabilir. Bu olaylar bir çalışma
modundan (durum denklemleri) başka bir çalışma moduna geçişi sağlarlar. Bu
sistemlere “Hibrit Sistemler” denir.

Ayrıca ayrık zaman sistemler ile ayrık olay sistemlerinin karıştırılmaması gerekir.
Ayrık zaman sistemleri hem CVDS ve hem de DES’i içerirler. DES ve CVDS hem
sürekli hem de ayrık zamanlı olarak modellenebilirler. Bir DES’i oluşturan ayrık
olaylar eğer reel zaman anlarında oluşurlarsa, DES’in sürekli zaman modeli elde
edilmiş olur.

1.5.3 Ayrık Olaylı Sistemlerde Üç Seviyede Soyutlama

Verilen bir sistemde yürütülebilecek tüm “zamanlanmış olaylar dizilerinin” yer aldığı
kümeye sistemin “zamanlanmış dil” modeli denir. Olay kümesi ‘E’ ve bu olayların
oluşturduğu sonlu olay dizisine ise “kelime” denir.

Sistemin yörüngeler kümesi hakkında eğer istatistiksel bilgiler varsa yani bir olayın
oluşması olasılıklara bağlı ise bu sistemin modeline “stokastik zamanlanmış dil”
denir. Bu model en ayrıntılı modeldir ve olay bilgilerini (olayların sırası ve oluşma

 13

biçimi), olayların zaman bilgilerini ve olayların başarılı oluşması hakkında
istatistiksel bilgileri içerir.

Stokastik zamanlanmış dil modelinden istatistiksel bilgiler çıkartılırsa “zamanlanmış
dil” modeline geçilir. “Zamanlanmış dil” modelinden de zaman bilgileri çıkartılırsa
“zamanlanmamış dil” kısaca “dil” elde edilir.

“Diller”, “zamanlanmış diller” ve “stokastik zamanlanmış diller” DES’lerin
modellenmesi ve üzerinde çalışabilinmesi için kullanılan üç seviyeli soyutlamadır.
Bu soyutlamalardan hangisinin seçileceği, analizin amacına bağlıdır. Her üç seviye
de birbirini tamamlayıcı niteliklere sahiptir.

1.6 Otomatlar ve Petri Ağları

Bu çalışmada, iki farklı “ayrık olay modellemesi” üzerinde durulacaktır: Otomatlar
ve Petri Ağları. Bu biçimsel yapılar ortak bir gerçeğe sahiptir. Bu gerçek de dilleri
bir durum geçiş yapısı kullanarak göstermesidir. Biçimsel yapılar gösterdikleri
durum bilgileri ile birbirinden ayrılırlar. Bu yapılar ayrıca, sistem bileşenlerinin ayrık
olay modellerinden hareketle bir sistemin ayrık olay modelinin inşaa edilmesine izin
veren çeşitli operasyonların kompozisyonuna da uygundur. Bu özellik otomat ve
petri ağlarını model kurma için uygun kılar. Analiz ve sentez konularına, modeldeki
geçiş yapılarının yapısal özellikleri kullanılarak geçilebilir.

Bir DES’in tanımında iki özellik büyük önem taşır:

• Ayrık bir durum uzayı, X ile gösterilir.

• Ayrık bir olay kümesi, E ile gösterilir.

Ayrık Olay Sistemleri’nde (Discrete Event Systems (DES)) ilk hedef bu sistemlerin
davranışlarını tanımlayan aynı zamanda tasarım, kontrol ve performans hedeflerini
karşılayan modeller geliştirmektir.

Bir DES’in davranışı ‘ neee ,...,, 21 ’ olay dizisi, “dil”, ile belirlenir. Bu dil çeşitli

olayların zaman içerisinde hangi sırayla oluştuğunu belirler ancak bu olayların
oluştuğu zamana ilişkin bir bilgi içermez. Bir sistemin ne zaman bir duruma girdiği
ya da ne kadar süre bu durumda kaldığı önemli değildir. Önemli olan durum
değişikliklerine sebep olan olaylar dizisi ve bu olaylara karşı düşen yeni durumlardır.

Otomatlar ve Petri ağları DES’leri diller üzerinden modelleyen iki ana formalizmdir.
Otomatlar analiz ve kontrol için uygun bir yapıya sahiptir, kullanımı kolaydır. Ancak

 14

yapısal eksikliklerinden dolayı durum uzayları oldukça büyüyebilir. Petri ağları ise
daha fazla yapısal özellik taşımalarına rağmen otomatlar kadar analitik güce sahip
değildir.

1.7 Tez Çalışmasının Amacı ve Elde Edilen Sonuçlar

Bu çalışmada, biçimsel işaretli bir dilden endüstriyel bir işlemciye otomatik kod
üreten bir program geliştirme amaçlanmıştır. Bu amaç için, önce işaretli dilden
üretilen dile geçilmiş ve bu dili üreten otomatın durum geçiş diyagramı elde
edilmiştir. Daha sonra durum geçiş matrisinden sistemin Petri ağ modeli elde edilmiş
ve bu model temel alınarak kullanılan işlemciye uygun kod üreten yazılım
gerçeklenmiştir. Bu işlemler, tüm aşamaları görsel olarak sunmaya imkan veren
Borland C++ Builder ortamında gerçekleştirilmiştir. Endüstriyel işlemci olarak
SIMATIC-300 seçilmiş ve standart bir dil olan SCL dilinde kod üretilmiştir. Benzer
yazılımlarda ortaya çıkan ve ilgili literatürde “çığ etkisi” (avalanche effect) olarak
adlandırılan problem analiz edilmiş ve çığ etkisinden arındırılmış SCL kodu
üretilmiştir.

Bu çalışmada üretilen programın işaret akış diyagramı Şekil 1.5’de gösterildiği
gibidir. Öncelikle, girilen bir işaretli dilin otomatı, “G”, belirlenir.

{ }0, , , , , mG X E f x X= Γ (1.9)

Daha sonra G otomatının durum geçiş diyagramından “N” Petri ağına geçilir. Durum
denklemleri (1k k kX X u A+ = +) kullanılarak oluşan olaylara karşı düşen yeni

durumlar hesaplanır.

()0, , , , , , , mN P T A w E l x X= (1.10)

Hem durum geçiş diyagramı hem de Petri ağ durum denklemleri kullanılarak
otomatın PLC’de çalışmasını sağlayacak program SCL dilinde üretilir.

Şekil 1.5 : İşaret Akış Diyagramı

Oluşturulan yazılım çeşitli endüstriyel örnekler üzerinde denenmiş ve başarılı
sonuçlar alınmıştır.

 15

2. PETRİ AĞLARI

2.1 Giriş

Petri ağları, zamanlanmamış DES modellenmesi için otomatlara alternatif bir yöntem
oluşturur. Petri ağ modelleri 1960 yılında C.A.Petri tarafından geliştirilmiştir. Petri
ağları, otomatlarla DES’in geçiş fonksiyonlarını temsil etme anlamında
ilişkilendirilirler. Otomattaki gibi, bir Petri ağı belirli kurallara bağlı olarak olaylarla
yönetilen bir cihazdır. Petri ağlarının özelliklerinden biri hangi olayın mümkün
olabileceğinin koşullara bağlı olmasıdır. Bu özellik, işlemleri karmaşık kontrol
şemalarına bağlı olan çok genel DES’lerin gösteriliminin elde edilmesine imkan
sağlar. Bu model grafik olarak göstermeye de uygun bir yapıdır. Ancak küçük
sistemler için bu yapılabilir. Elde edilen grafiğe “Petri Ağ Grafı (Petri Net Graph)”
denir. Petri ağ grafı, sistemle ilgili bir çok yapısal özelliği kapsar ve sezgiseldir. Her
otomat bir Petri ağı ile gösterilebilir ancak her petri ağı bir otomat ile gösterilemez.
Bu nedenle Petri ağları “R” regüler dillerden daha geniş bir dil sınıfını ifade
edebilirler. Petri ağının başka bir avantajı da analiz teknikleri açısından daha güçlü
olmasıdır. Bu teknikler sadece zamanlanmamış Petri ağlarını değil zamanlı Petri
ağlarını da kapsar. Özellikle “max-plus algebra” olarak bilinen, zamanlı Petri
ağlarının bir sınıfı için geliştirilmiş bir kuram vardır. Belirtilmesi gereken bir diğer
konu ise PLC için yaygın olarak kullanılan “Grafcet” programlama dilinin Petri
ağlarından esinlenilerek geliştirilmiş olmasıdır.

2.2 Petri Ağlarının Temelleri

Bir Petri ağının tanımı iki adımda yapılır. Birinci adım, otomatın durum geçiş
diyagramına benzer olan, Petri ağ yapısı olarak da adlandırılan Petri ağ grafıdır.
(Bölüm 2.2.1). İkinci adım ise tam Petri ağ modelinin oluşturulması için başlangıç
durumu, işaretli durumlar, geçiş fonksiyonları, ilgili dinamikler ve üreten/belirleyen
dillerin eklenmesidir. (Bölüm 2.2.2 - Bölüm 2.2.4).

2.2.1 Petri Ağ Notasyonları ve Tanımları

Petri ağlarında “olaylar” “geçiş”lere bağlanmıştır. Bir geçişin gerçekleşmesi bir çok
koşulun sağlanmasını gerektirir. Bu koşullar ile ilgili bilgi “yer”lerde içerilir. Bazı
böyle yerlere “geçişlerin girişleri” olarak bakılır. Diğer yerler ise “geçişlerin
çıkışları” olacaktır. Geçişler, yerler ve aralarındaki ilişkiler Petri ağ grafının temel

 16

elemanlarını oluşturur. Bir Petri ağı iki tip düğüme sahiptir; bunlar geçişler ve
yerlerdir ve “ark (arc)”lar bunları birbirine bağlar. Arklar aynı tip iki düğümü
birbirine bağlayamazlar. Geçiş düğümünü yer düğümüne veya yer düğümünü geçiş
düğümüne bağlayabilirler. Bu özelliğe “iki taraflı, iki kısımlı olma (bipartite)” denir.

Tanım 2.1 “Petri Ağ Grafı (Petri Ağ Yapısı)”:

Bir Petri ağ grafı (P, T, A, w) ağırlıklı (weighted) iki taraflı graftır.

“P”, sonlu sayıda bir küme ve “yer”ler denir. (Grafın bir tip düğümüdür).

“T”, sonlu sayıda bir küme ve “geçiş’ler denir. (Grafın diğer tip düğümüdür).

() ()A P T T P⊆ × ∪ × , Graftaki yerlerden geçişlere, geçişlerden yerlere bağlantıyı

sağlayan arkların kümesidir.

{ }: 1, 2,3,...w A→ , arkların ağırlık fonksiyonudur.

(P, T, A, w) bir izole yer ve geçişin olmadığı varsayılır. Yani bütünlük olacaktır.

Yer kümesi { }1 2, ,..., nP p p p= ve geçiş kümesi { }1 2, ,..., mT t t t= şeklinde
gösterilebilir. Bunlar sayılabilir ve sonlu kümelerdir. Bir ark (,)i jp t veya (,)j it p

formundadır ve arkın ağırlığı pozitif bir sayıdır.

(,)i jp t , (,)j it p A∈ dır.

Bir Petri ağ grafının otomatın durum geçiş diyagramından daha karmaşık olduğu
görülür. Öncelikle durum geçiş diyagramındaki düğümler X kümesindeki
durumlardır. Petri ağ grafında ise düğümler P kümesindeki yerler veya T
kümesindeki geçişlerdir. Durum geçiş diyagramında durum geçişine sebep olan her
olaya ilişkin bir ark bulunurken Petri ağ grafında iki düğümü bağlayan çoklu arklara
izin verilir ya da benzer olarak arkların sayısını temsil eden her arka bir ağırlık atanır.
Bu nedenle bu yapı “çoklu graf (multigraph)” yapısı olarak adlandırılır.

Petri ağ grafında, ()jI t bir jt geçişinin giriş yerlerinin kümesi, ()jO t bir jt

geçişinin çıkış yerlerinin kümesi olarak tanımlamak uygun olur.

() (){ }: ,j i i jI t p P p t A= ∈ ∈ (2.1)

() (){ }: ,j i j iO t p P t p A= ∈ ∈ (2.2)

 17

(2.1) denklemi jt ’ye giriş olan ip ’leri, (2.2) denklemi jt ’ye çıkış olan ip ’leri

gösterir.

Benzer notasyon giriş ve çıkış geçişleri olarak da tanımlanabilir.

 () (){ }: ,i j j iI p t T t p A= ∈ ∈ (2.3)

() (){ }: ,i j i jO p t T p t A= ∈ ∈ (2.4)

(2.3) denklemi ip ’ye gelen jt geçişler kümesini, (2.4) denklemi ip ’den giden jt

geçişler kümesini gösterir.

Petri ağ grafı çizilirken iki tip düğüm olan yerleri ve geçişleri birbirinden ayırmak
gerekir. Bu nedenle yerleri göstermek için daire, geçişleri göstermek için bar
kullanılır. Yerleri ve geçişleri bağlayan arklar A ark kümesinin elemanlarıdır. ip

yerinden jt geçişine yönlendirilen ark ()i jp I t∈ ’dir.

(),i jw p t k= (2.5)

denklemi “ ip ’den jt ’ye k adet ark var” ya da “ ip ’den jt ’ye ağırlığı k olan bir ark

var” anlamındadır.

Benzer olarak “ jt geçişinden ip yerine k adet ark var” ifadesi ()i jp O t∈ ve

(),j iw t p k= (2.6)

şeklinde gösterilir. Genellikle bir grafta çoklu arklara ağırlıklar sunulur. Bununla
beraber büyük ağırlıklar içeren bir Petri ağında arka ağırlık yazmak daha uygun bir
gösterimdir. Eğer bir Petri ağında arka ağırlık yazılmamışsa ağırlık 1 kabul edilir.
Son olarak da ağırlık fonksiyonunun tanım ve değer bölgesi genişletilerek aşağıdaki
denklemler yazılabilir.

()i jp I t∉ ise (), 0i jw p t = (2.7)

()i jp O t∉ ise (), 0j iw t p = (2.8)

 18

Örnek 2.1:

Basit bir Petri ağ grafı şöyle tanımlansın.

{ }1 2,P p p= , { }1T t= , () (){ }1 1 1 2, , ,A p t t p=

()1 1, 2w p t = , ()1 2, 1w t p =

Bu durumda,

() { }1 1I t p= , () { }1 2O t p=

() { }1I p φ= , () { }1 1O p t=

() { }2 1I p t= , () { }2O p φ=

olacaktır. ()1 1, 2w p t = olması 1p yerinden 1t geçişine 2 ark olduğunu gösterir.

Örneğe ilişkin Petri ağ grafı Şekil 2.1’de verilmiştir.

Şekil 2.1 : Örnek 2.1 Petri Ağ Grafı

Örnek 2.2:

Örnek 2.1’de tanımdan Petri ağ grafına geçilmiştir. Bu örnekte de Petri ağ grafından
formal tanım oluşturulacaktır.

Şekil 2.2 : Örnek 2.2 Petri Ağ Grafı

 19

{ }1 2 3 4, , ,P p p p p= , { }1 2 3 4 5, , , ,T t t t t t=

() () () () () () (){ 1 1 1 2 2 2 2 3 2 5 4 5 1 1, , , , , , , , , , , , , ,A p t p t p t p t p t p t t p=

 () () () () () ()}1 2 2 3 3 3 3 4 4 3 5 1, , , , , , , , , , ,t p t p t p t p t p t p

()1 1, 1w p t = ()1 2, 1w p t = ()2 2, 1w p t = ()2 3, 2w p t =

()2 5, 1w p t = ()4 5, 1w p t = ()1 1, 1w t p = ()1 2, 1w t p =

()2 3, 1w t p = ()3 3, 1w t p = ()3 4, 1w t p = ()4 3, 1w t p =

()5 1, 1w t p =

4t geçişi bir giriş yerine sahip değildir. Eğer geçişler olaylar ve yerler durumlar
olarak düşünülürse bu 4t ’e ilişkin olayın oluşunun bir koşula bağlanmadığı anlamına
gelir. Tersine 2t geçişi hem 1p hem de 2p koşullarına bağlıdır.

2.2.2 Petri Ağının İşaretlenmesi ve Durum Uzayları

Geçişler bilindiği gibi otomatın durum geçişlerine karşı düşmelidirler. Yani bir olay
olduğunda (olay izinli ise) DES durum değişikliği yapmalıdır. Şimdiye kadar
durumlar ele alınmadı. Bir DES olayla sürülen yani durum değiştiren bir sistem
olmak zorundadır. Durumları ve durum geçişlerini Petri ağ grafı üzeinde göstermek
için “jeton”lar kullanılır. Jetonların yerlerdeki dağılımına “işaretleme (marking)”
denir. Formal olarak bir (), , ,P T A w Petri ağının bir “x” işaretlemesi P(yer)’den N

doğal sayılara bir fonksiyondur. { }: 0,1, 2,...x P N→ = . Böylece x bir satır vektörü

ile gösterilir. n Petri ağındaki yer sayısı olmak üzere
() () ()1 2, ,..., nx x p x p x p= ⎡ ⎤⎣ ⎦ ’dir. Bu vektörün i. elemanı ()ix p , ip yerinde bulunan

jeton sayısıdır. Petri ağ graflarında jetonlar siyah noktalar ile gösterilir.

Tanım 2.2 “İşaretli Petri Ağı”:

Bir işaretli Petri ağı (), , , ,P T A w x ile gösterilir. Burada (), , ,P T A w Petri ağ grafı ve

x ise yerler kümesi P’nin bir işaretlemesidir. () () ()1 2, ,..., nx x p x p x p N= ∈⎡ ⎤⎣ ⎦ .

Örnek 2.3:

Şekil 2.1’deki Petri ağının olası iki işaretlemesi Şekil 2.3’te verilmiştir.

 20

 Şekil 2.3 : Şekil 2.1 Grafının İki İşaretlemesi

İşaretli Petri ağı yerine Petri ağı ifadesi kullanılır. Çünkü sistemin modeli durumları
içermelidir. Böylece işaretlerin değişimi aslında durumlar olarak ortaya çıkacaktır.
Jetonların yerlerdeki dağılımı keyfidir, herhangi bir sınırlama yoktur. Bu nedenle de
genel olarak durum uzayı ∞’a gidebilir. Böylece n yere sahip bir Petri ağının X
durum uzayı n boyutlu bir vektör uzayında tanımlanır ve elemanları negatif olmayan
tamsayılardır, yani nX N= . Petri ağ literatüründe “işaretleme”, “durum” teriminden
daha yaygındır. Durum kelimesi sistem dinamiklerini ifade ettiği için daha
anlamlıdır. Durum kelimesinin kullanılması, otomatlardaki “işaretli durum (marked
state)” (daha sonra Petri ağında da kullanılacak) ile karışmayı engeller.

Yukarıda yapılan tanımlar Petri ağlarındaki durum geçiş mekanizmalarını açık olarak
ifade etmez. Petri ağlarının dinamik DES’lerin modellenmesinde kullanılması
istendiği için bu nokta önemlidir. Durum geçiş mekanizmasına Petri ağ grafının
yapısından giderek ulaşılır. Temel olarak, t T∈ geçişi için “oluştu” veya “mümkün
oldu” işlemini tanımlamak için, geçişe giriş olan her yerde bir jeton olması
gereklidir.

Tanım 2.3 “İzinli Geçiş”:

Bir Petri ağında jt T∈ olmak üzere eğer

() (),i i jx p w p t≥ tüm ()i jp I t∈ ’ler için (2.9)

koşulu sağlanıyorsa jt geçişi “izinlidir” denir. Kelimelerle açıklamak gerekirse, jt
geçişine giriş olan tüm ip yerleri için, ip ’de bulunan jeton sayısı ip ’yi jt ’ye
bağlayan arkların ağırlığına eşit veya büyük olduğunda, jt geçişi “izinlidir” denir.

Şekil 2.3’teki 1x durumunda, () ()1 1 11 ,x p w p t= < olduğundan 1t geçişi izinli

değildir. Fakat 2x durumunda () ()1 1 12 ,x p w p t= = olduğundan 1t geçişi izinlidir.

Daha önce bahsedildiği gibi, yerler bir geçişin izinli olabilmesi için gerekli koşullarla
ilişkili olduğundan bir geçiş bütün koşullar sağlandığında olabilecektir. Jetonlar
sağlanması gereken koşulları belirlemek için kullanılan bir mekanizmadır. Bir Petri

 21

ağının verilen bir durumunda izinli geçişlerinin kümesi, otomatlardaki bir durumun
aktif olay kümesine eşdeğerdir.

2.2.3 Petri Ağ Dinamikleri

Otomatlarda durum geçiş mekanizması, durumları(düğümler) birbirine bağlayan
arklar ile ve eşdeğer olarak f geçiş fonksiyonları ile doğrudan durum geçiş
diyagramında ortaya çıkar. Petri ağlarında ise durum geçişleri graf üzerinde
görülmezler. Ancak jeton hareketi ile bir durumdan diğerine geçiş gösterilebilir. Bir
geçiş izinli olduğu zaman “olay oluştu” ya da “ateşlenebilir” (Petri ağ literatüründe)
deyimi kullanılır. Bir Petri ağının durum geçiş fonksiyonu, izinli geçişlerin
ateşlenmesine bağlı olarak Petri ağının durumunda oluşan değişme üzerinden
tanımlanır.

Tanım 2.4 “Petri Ağ Dinamikleri”:

(), , , ,P T A w x Petri ağının durum geçiş fonksiyonu : n nf N T N× → , jt T∈ geçişi

için ancak ve ancak

() (),i i jx p w p t≥ tüm ()i jp I t∈ ’ler için (2.10)

sağlanıyorsa tanımlanır.

Eğer (), jf x t tanımlı ise, (), jx f x t′ = yeni durumu,

() () () (), ,i i i j j ix p x p w p t w t p′ = − + , 1,..., .i n= (2.11)

ile tanımlanır. (2.11) denklemi yerlerdeki yeni jeton sayılarını belirler, zaten durum
değiştirme jeton dağılımının yerlerde değişmesi anlamına gelir.

(2.10) koşulu sadece izinli geçişler için durum geçiş fonksiyonunun tanımlı olmasını
sağlar, bir izinli geçiş otomattaki “mümkün olay (feasible event)”a eşdeğerdir. İzinli
geçişler hangi yerlerden izin alıyorsa o yerlerdeki jetonların sayısı değişir,
dolayısıyla durum değişikliği olur. Burada durumlar yerlerde jetonlar yardımıyla bir
nevi kodlanmıştır ve yerlerdeki jeton sayısı değiştikçe durum değişikliği olur.
Otomatlarda durum geçiş fonksiyonu keyfi olmasına rağmen Petri ağında Petri
ağının yapısına dayanır. Böylece (2.11) ilişkisi ile verilen bir sonraki durum, bir
geçişin giriş ve çıkış yerlerine ve de geçişi bu yerlere bağlayan arkların ağırlıklarına
bağlıdır.

 22

(2.11)’e göre ip , jt ’nin giriş yeri ise ip ’yi jt ’ye bağlayan arkın ağırlığı kadar jeton
kaybedecek, çıkış yeri ise jt ’yi ip ’ye bağlayan arkın ağırlığı kadar jeton
kazanacaktır. Bazı yerler (ip) hem giriş hem de çıkış yeri özelliğinde olabilir, bu

durumda (),i jw p t jeton ip ’den alınacak ve hemen (),j iw t p jeton ip ’ye geri

verilecektir.

Şuna dikkat edilmelidir ki, Petri ağında ateşlenen bir geçişin, öncesi ve sonrasındaki
jeton sayısının sabit kalması gerekli değildir. Daha açık ifade etmek gerekirse,

() (), ,
i i

j i i j
p P p P

w t p w p t
∈ ∈

>∑ ∑ veya () (), ,
i i

j i i j
p P p P

w t p w p t
∈ ∈

<∑ ∑ (2.12)

ifadeleri geçerlidir. Dolayısıyla (), jx f x t′ = x’den fazla veya az jeton

bulundurabilir. Böylece bir takım geçiş ateşlemelerinden sonra jeton sayılarının
yerlerdeki dağılımı olarak tanımlanan []0,0,...,0x = veya bir yerdeki jeton sayısının

çok arttığı değerlere ulaşılabilir. Bu ise bu şekilde tanımlanan x’lerin sayılarının
sonsuz olabileceğini gösterir.

Örnek 2.4: (Geçişlerin Ateşlenmesi)

Şekil 2.4 : Petri Ağının Geçiş Ateşlemeleri

 23

Şekil 2.4’te bir petri ağındaki geçiş ateşlemeleri sonucu değişen durumlar
görülmektedir. Şekil 2.4 (a)’dan görüldüğü gibi başlangıç durumu []0 2,0,0,1x = ’dir.

Bu şekilde izinli tek geçiş 1t ’dir. () ()0 1 1 12 1 ,x p w p t= ≥ = koşulunu sağladığı
görülür. 1t ateşlendiğinde 1p ’den bir jeton alınır, 2p ve 3p yerlerine bir jeton konur.
(2.11) denklemi uygulandığında da gelinen yeni durumun []1 1,1,1,1x = olduğu

görülür. Şekil 2.4 (b) yeni durumu göstermektedir. Bu durumda 3 geçiş te ()1 2 3, ,t t t
izinlidir. 2t ’nin ateşlendiği düşünülürse giriş yerleri 2p ve 3p ’ten birer jeton
alınmalıdır. Çıkış yerleri 2p ve 4p ’tür, bu nedenle 2p ’den alınan jeton geri konulur,

() ()2 2 2p I t O t∈ ∩ . 4p ’e bir jeton eklenir. Yeni durum Şekil 2.4 (c) ile gösterilen

[]2 1,1,0, 2x = ’dir. Bu durumda 2t ve 3t geçişleri artık izinli değildir, 1t geçişi hala

izinlidir.

Eğer Şekil 2.4 (b)’deki 1x durumuna dönülüp 2t yerine 3t ateşlenirse; 1p , 3p ve

4p giriş yerlerinden birer jeton alınır. Çıkış yerinin olmadığına dikkat edilmelidir.
Yeni gelinen durum Şekil 2.4 (d) gösterilen []2 0,1,0,0x′ = durumudur. Bu durumda

hiçbir geçişin izinli olmadığı görülür. Herhangi bir durum değişimi mümkün değildir
ve []0,1,0,0 durumuna Petri ağının “açmaz (deadlock)” durumu denir.

Şekillerden görüldüğü gibi jeton sayıları korunmamıştır. 0x durumunda 3 jeton
varken 1x ve 2x ’de 4, 2x′ ’te 1 jeton vardır.

Bu örnek, geçişlerin sırasının önceden belirlenmediği bir Petri ağında durum
geçişlerini göstermiştir. 1x durumunda tüm geçişler (3 geçişten herhangi biri)
ateşlenebilir. Bu durum, DES’in otomat modelinde 1x durumunun aktif olay

kümesinde 3 olayın da olması gibi düşünülebilir. Aslında bir Petri ağı için bu her
durum için söylenebilir, yani Petri ağında tüm olaylar her durumda aktif olay
kümesine konabilir ama izinli olmayanlar kendi üzerinde öz çevrimlerle bağlanmış
gibi düşünülebilir, ya da ileride tanımlanacak “ateşleme vektörü” giriş olarak
alınabilir.

Diğer bir önemli gözlem ise Petri ağlarının dinamik davranışı ile ilgilidir. Verilen bir
ilk koşul için bir Petri grafının nN durumlarından hepsine erişmenin gerekli
olmadığıdır. Şekil 2.3’teki []0 2,1x = durumu ele alınırsa, []1 0,3x = olur ve bu

başlangıç durumu için erişilebilen tek durum budur. Bu durum sonucunda
“erişilebilir durumlar” tanımının yapılması uygun olur. (), , , ,P T A w x Petri ağının

erişilebilir durumlar kümesi (), , , ,R P T A w x⎡ ⎤⎣ ⎦ olarak tanımlanır. Buna bağlı olarak,

önce f durum geçiş fonksiyonunun tanım kümesinin *n nN T N T× → × şeklinde

genişletilmesi gerekir. Bu otomatlarda da yapılmıştır.

 24

(),f x xε = (2.13)

() ()(), , ,f x st f f x s t= *s T∈ ve t T∈ için (2.14)

Burada ε sembolünü geçiş ateşlemesinin var olmadığı olarak yorumlamak gerekir.

Tanım 2.5 “Erişilebilir Durumlar”:

(), , , ,P T A w x Petri ağı için “Erişilebilir Durumlar”

() ()(){ }*, , , , : ,nR P T A w x y N s T f x s y= ∈ ∃ ∈ =⎡ ⎤⎣ ⎦ (2.15)

olarak tanımlanır.

Yukarıda yapılan erişilebilir durumlar kümesi R ve genişletilmiş biçimdeki durum
geçiş fonksiyonu f tanımlarında, eş zamanlı ateşlemeye izin verilmediği sadece

birinin ateşlendiği varsayılmıştır. Önceki örnekte, Şekil 2.4 (b) durumuna bakılırsa
1t , 2t ve 3t ’ün hepsi izinli geçiştir. Eğer 1t ve 2t ’nin aynı anda ateşlendiği

düşünülseydi farklı durumlar elde edilebilirdi. Daha sonra etiketli geçişlerden,
mümkün tüm erişilebilir durumlardan ve bunlardan yola çıkarak da bir Petri ağı
tarafından üretilen ve işaretlenen dillerden söz edilebilmesi için eş zamanlı ateşleme
dışarıda bırakılacak, geçişlerin birer birer ateşlendiği varsayılacaktır.

2.2.3.1 Durum Denklemleri

(2.11) denklemine dönülürse, bu kural gereği ()ix p N∈ ’den ()ix p N′ ∈ ’ye

geçildiği görülür. Bunlar nN ’de tanımlı vektörler olarak aşağıdaki gibi gösterilebilir.

() () ()1 2, ,..., nx x p x p x p′ ′ ′ ′= ⎡ ⎤⎣ ⎦ (2.16)

() () ()1 2, ,..., nx x p x p x p= ⎡ ⎤⎣ ⎦ (2.17)

Özel bir geçiş jt ’nin ateşlenmesinin kuralı da m boyutlu satır vektörü olan u

“ateşleme vektörü” ile aşağıdaki gibi tanımlanabilir.

[]0,...,0,1,0,...,0u = (2.18)

 25

.j geçişin ateşlendiğini belirtmek için sadece .j eleman “1” olur. { }1,...,j m∈ ’dir.

Daha önce belirtilen birer birer ateşleme varsayımı sonucunda aynı anda sadece bir
vektör elemanı “1” olacaktır. Ek olarak, bir Petri ağının ağ matrisi A, m n×
boyutunda olup (), .j i elemanı

() (), ,ji j i i ja w t p w p t= − (2.19)

jt ’ye gelen ve çıkan ark sayısının farkı ya da arkların ağırlıklarının farkı ile

hesaplanır. Bu durumda yeni durumu veren ifade

x x uA′ = + (2.20)

şeklinde yazılabilir ve burada u giriş gibi düşünülebilir. Bu denklem

(), jf x t x uA= + (2.21)

şeklinde de yazılabilir. Burada jt argümanı u ’nun “1” olan .j elemanını belirtir.

Böylece geçiş ateşleme prosesi ve Petri ağının durum değişimleri için grafik
gösterilim dışında cebirsel gösterilim elde edilmiş olur.

Örnek 2.5: (Durum Denklemi)

Başlangıç durumu []0 2,0,0,1x = olan Şekil 2.4 (a) grafı tekrar ele alınsın. Öncelikle

graf incelenerek A matrisi aşağıdaki şekilde yazılabilir.

1 1 1 0
0 0 1 1
1 0 1 1

A
−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

Örneğin (1,2). eleman () ()1 2 2 1, , 1 0 1w t p w p t− = − = şeklinde hesaplanmıştır. Bu

hesaplamalar tüm geçiş ve yerler için yapılarak A matrisi oluşturulmuştur. (2.20)
denklemi kullanılarak başlangıç durumunda 1t geçişi ateşlendiğinde,

[] []

[] [] []

1

1 1 1 0
2 0 0 1 1 0 0 0 0 1 1

1 0 1 1

 2 0 0 1 1 1 1 0 1 1 1 1

x
−⎡ ⎤
⎢ ⎥= + −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

= + − =

 26

Örnek 2.4’teki 1x durumu elde edilmiş olur. Benzer şekilde 2t geçişinin
ateşlenmesiyle 2x durumu,

[] []

[]

2

1 1 1 0
1 1 1 1 0 1 0 0 0 1 1

1 0 1 1

 1 1 0 2

x
−⎡ ⎤
⎢ ⎥= + −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

=

şeklinde elde edilir. Bu şekilde jetonların yerlerdeki dağılımı ve erişilebilir durumlar
ortaya çıkmış olur.

Dinamik bir sistemin modeli olarak, Petri ağı otomatlardakine benzer olarak bir
yörünge ortaya çıkarır. Yörünge bir durumlar dizisidir. { }0 1 2, , ,...x x x yörüngesi

{ }1 2, ,...t t gibi bir giriş yörüngesine karşı düşer. Burada kt .k geçişin ateşlenmesidir.

Bu nedenle

()1 ,k k k k kx f x t x u A+ = = + (2.22)

yazılabilir. ku .k geçişin ateşlendiği bilgisini içerir. Eğer artık hiçbir ateşlemenin
mümkün olmadığı duruma gelinmişse 1k kx x+ = olur ve bu açmaz durumdur.

2.2.4 Petri Ağ Dilleri

Geçişler = olaylar karşı düşürmesi yapılarak bir dilden söz etmek mümkündür.
Ancak bu karşı düşürme kesin bir yargı değildir yani eğer bir dili göstermek için
Petri ağı bir modelleme formalizmi olarak seçilmişse ya da Petri ağına bu açıdan
bakılıyorsa her geçişe bir olay karşı düşürmeye gerek vardır. Bu yolla bir Petri ağı
tarafından üretilmiş ve işaretlenmiş diller tanımlanabilir.

E olaylar kümesi ile verilmiş ve dili bir Petri ağı ile modellenmiş bir DES gözönüne
alınsın. T E= olacaktır ve her geçişe bir olay karşı düşürülecektir. Ancak bu
gereksiz yere yapılmış bir kısıt olabilir, bu nedenle iki arkın aynı olayla
ilişkilendirilmiş olduğu duruma izin verilir. Buna “etiketlenmiş Petri ağı” denir.

Tanım 2.6 “Etiketlenmiş Petri Ağı”:

Etiketlenmiş Petri ağı N 8 elemanlı olup

()0, , , , , , , mN P T A w E l x X= (2.23)

 27

ile gösterilir. Burada,

(), , ,P T A w Petri ağ grafını,

E , geçişlere etiketlenmiş olaylar kümesini,

:l T E→ , geçişlerin etiketlenme fonksiyonunu,

0
nx N∈ , ağın başlangıç durumunu,

n
mX N⊆ , ağın işaretli durumlarını gösterir.

Petri ağ grafında bir geçişin etiketi geçişin üstünde gösterilir. İşaretli durumlar
kavramı tamamen otomattaki ile aynıdır. İşaretli durumlar, etiketli Petri ağının
işaretlediği dili belirlemekte kullanılacaktır.

Tanım 2.7 “Üretilen ve İşaretlenen Dil”:

()0, , , , , , , mN P T A w E l x X= etiketlenmiş Petri ağı tarafından üretilen dil,

() () (){ }* *
0: ve , tanımlıL N l s E s T f x s= ∈ ∈ (2.24)

ile ve işaretli dil,

() () () (){ }*
0: ve ,m mL N l s L N s T f x s X= ∈ ∈ ∈ (2.25)

ile gösterilir. Burada * *:l T E→ tanımlı olarak genişletilmiştir. Görüldüğü gibi bu
tanım, otomatta yapılan tanım ile tamamen tutarlıdır. ()L N , N’deki geçiş

ateşlemelerinin mümkün bütün sonlu dizilerinden elde edilen geçiş etiketlerinin tüm
kelimelerini gösterir. Geçişlere etiketlenmiş tüm kelimeler de denilebilir. ()L N ilk

koşul 0x ’a bağlıdır. ()mL N ise ()L N ’deki kelimelerin bir alt kümesidir ve özel
olarak 0x 'dan mX işaretli durumlar kümesine götüren geçişler dizisinin karşı düştüğü

kelimeler kümesidir.

Bir etiketlenmiş Petri ağının ifade edebildiği dilin özelliği,

() (){ }*
0: , , , , , , , m mPNL K E N P T A w E l x X L N K= ⊆ ∃ = =⎡ ⎤⎣ ⎦ (2.26)

ile gösterilir. Bu genel bir tanımdır. PNL ’nin özellikleri ağırlıklı olarak yapılan
varsayımlara bağlıdır (l ’nin tek yönlü olup olmadığı, mX ’in sonlu olup olmadığı

 28

gibi.). Ancak l ’nin tek yönlü olma ve mX ’in sonlu olma koşulu yoktur. Her zaman

böyle bir dil tanımlanabilir.

2.2.5 Kuyruk Sistemleri İçin Petri Ağ Modelleri

Bir kuyruk sisteminin dinamik davranışı Petri ağ yapısı kullanılarak gösterilecektir. 3
olaylı (geçişler) bir sistem ele alınsın.

a: müşteri gelir

s: servis başlar

c: servis biter ve müşteri gider.

Burada geçiş kümesi { }, ,T a s c= ’dir. Bu örnekte etiketlenmiş Petri ağlarını

düşünmeye gerek yoktur, başka bir deyişle E T= olduğu varsayılabilir. a geçişi
spontane olup koşul gerektirmez (giriş yeri yoktur). Diğer taraftan s geçişi iki koşula
bağlıdır; kuyruktaki müşterilerin varlığı ve servisçinin boş olması. Bu koşullar Q
(kuyruk) ve I (boş servisçi) giriş yerleri ile gösterilir. Son olarak da c geçişi
servisçinin meşgul olmasını gerektirir ve bunun için B (meşgul servisçi) giriş yeri
tanımlanır. Böylece { }, ,P Q I B= yer kümesi elde edilir.

Şekil 2.5 : Kuyruk Sisteminde Petri Ağ Modelleri

Basit kuyruk sistemini modelleyen Petri ağ grafı Şekil 2.5 (a) ve Şekil 2.5 (b) ile
gösterilmektedir. Q’da hiç jeton yoktur, kuyruğun boş olduğunu gösterir ve I’da bir

 29

jeton vardır, servisçinin boş olduğunu gösterir. Başlangıç durumu []0 0,1,0x = ’dır. a

geçişi her zaman izinlidir. Şekil 2.5 (c) { }, , , , , ,a s a a c s a geçişleri ateşlendikten sonra

gelinen []2,0,1 durumunu gösterir. Bu durum, kuyrukta 2 müşterinin beklediğini ve

3.’nün serviste olduğunu gösterir. İlk gelen müşteri c geçişinden sonra gitmiştir.

Bir c geçişi her zaman s geçişini izinli yapar çünkü Q yerinde bir jeton bulunur. Aynı
kuyruk sisteminin biraz daha ayrıntılı modeli

d: müşteri gider.

geçişi eklenerek sağlanabilir. Bu durum F (bitiren müşteri) koşulunu gerektirir. C
geçişi sadece “servis biter” anlamına gelir. Ek olarak a geçişine giriş yeri olarak A
tanımlanır, a geçişini izinli kılmak için burada her zaman bir jeton bulundurulur.
Böylece bu alternatif modelde { }, , ,T a s c d= ve { }, , , ,P A Q I B F= olur. Sonuç

model []1,0,1,0,0 durumu ile Şekil 2.6 (a)’da gösterilmektedir.

Şekil 2.6 : Kuyruk Sisteminde Alternatif Petri Ağ Modelleri

Şekil 2.6 (a)’daki Petri ağ modeli, servisçinin bozulması durumu gözönüne alınarak
daha da değiştirilebilir. Bu durumda iki yeni geçiş tanımlanır.

b: servisçi bozulur

 30

r: servisçi tamir edilir.

r geçişine giriş yeri olarak servisçinin bozuk olduğu durumu gösteren D (servisçi
bozuk) tanımlanır. Böylece { }, , , , ,T a s c d b r= ve { }, , , , ,P A Q I B F D= olur. Bu

Petri ağ modeli Şekil 2.6 (b)’de []1,0,1,0,0,0 durumu için gösterilmiştir.

2.3 Petri Ağları ve Otomatların Karşılaştırılması

Otomat ve Petri ağı her ikisi de bir DES’in davranışını modellemek için kullanılırlar.
Her iki formalizm de DES’in durum geçiş yapısını açık olarak gösterir. Otomatta bu
iş için, mümkün bütün durumlar numaralandırılır ve bu durumlar mümkün olan tüm
geçişlerle birbirine bağlanır, böylece bu gösterilim otomatın geçiş fonksiyonlarıyla
sonuçlanır. Bu sadece özel olarak şık bir gösterilim değil aynı zamanda “çarpma” ve
“paralel birleştirme” gibi birleştirme işlemleriyle donatılabildiği için karmaşık
sistemleri oluşturan bileşenlerin modellenmesi ve sistematik bir birleştirme işlemi ile
karmaşık sistemi modellemeyi kolaylaştırır. Petri ağları ise geçiş fonksiyonlarının
yapılarını daha fazla öne çıkaran bir yapıya sahiptirler. Durumlar
numaralandırılmazlar. Aslında durum bilgisi graf içine dağılmıştır ve geçişler
sonunda ortaya çıkar.

Şu beklenen bir sorudur: “Verilen bir DES’in modellenmesinde hangi model daha
iyidir? Otomat mı Petri ağı mı?” Böyle bir sorunun aşikar bir cevabı yoktur.
Modelleme genellikle kişisel tercihlere ve sıklıkla da özel uygulamalara bağlıdır.
Buna rağmen, eğer yukarıdaki soru, karşılaştırma için belirli kriterler bağlamında
daha kesin formüle edilirse, bazı sonuçlar vermek mümkün olabilir.

2.3.1 Dilin İfade Edilebilirliği ve Otomattan Petri Ağına Geçiş

Otomatlar ve Petri ağlarının karşılaştırılmasında ilk kriter olarak her iki formalizmin
gösterebildiği dillerin karşılaştırması yapılacaktır. Bu önemlidir çünkü sonlu hafıza
pratik bir sınırlamadır. Kesin olarak PNL ’nin R ’den daha geniş bir sınıf olduğu
iddia edilir, bunun anlamı sonlu yerler ve geçişlerle ifade edilen *E ’ın içindeki
dillerin sayısı sonlu durumlu otomatlardan daha fazladır. Bunu ispat edebilmek için
önce, bir sonlu durumlu otomatın her zaman bir Petri ağı karşılığının nasıl elde
edildiği görülecektir. Bu yapıldığında, R ile gösterilen bütün regüler dillerin bir Petri
ağı tarafından işaretlendiği gösterilmiş olur. Daha sonra ispatı tamamlamak için bir
regüler olmayan dili işaretleyen Petri ağ bulunması yeterli olur.

()0, , , , ,G mG X E f x X= Γ sonlu durumlu otomatı verilmiş olsun. Bu durumda X ve

 31

E sonlu bir küme olacaktır. () ()L N L G= ve () ()m mL N L G= olan

()0, , , , , , , mN P T A w E l x X= Petri ağı aşağıdaki adımlar izlenerek oluşturulacaktır.

1. Her durum (X∈) bir yer (P∈) ile tanımlansın yani P X= olsun.

a. N ’in 0x durumu bir nötr vektördür, []0,...,0,1,0,...,0 . “0”dan
farklı olan eleman 0x X∈ durumuna karşı düşen yer (P∈)

içindir.

b. mX ’ler de benzer şekilde oluşturulurlar. Önce X P→ ’ye ,

m mX P→ ’e ve bunlara karşı düşenler N ’in mX ’leri olarak

()ix p⎡ ⎤⎣ ⎦ olarak oluşturulur.

2. G ’deki her üçlü (), ,x e x′ (),Gx f x e′ = (()e x∈Γ aktif olay
kümesi) bir geçiş ile gösterilir. Bu (), ,x e xt N′ ∈ olacaktır. Diğer bir

deyişle T ’nin kardinalitesi, G ’nin durum geçiş diyagramındaki
arkların kümesinin kardinalitesi ile aynı olacaktır.

a. T ’deki (), ,x e xt ′ geçişi e E∈ olayı ile etiketlensin;

b. G ’deki her üçlü (), ,x e x′ için A ’da iki ark tanımlansın:

()(), ,, x e xarc x t ′ ve ()(), , ,x e xarc t x′ ′ . Bütün bu arklar eşit ve “1”

ağırlığında olsun. Bu işlem aşağıdaki şekilde oluşturulur.

Şekil 2.7 : Otomattan Petri Ağına Geçiş

Burada verilen yöntem gerçekte gereksiz uzun bir yöntemdir, sadece bu ispatın
yapılması için gereklidir. Gerçekte çok daha kolay yoldan bir otomattan bir Petri
ağına geçilebilir.

PNL ’in R ’den geniş olduğunu göstermek için tekrar Şekil 2.5’teki kuyruk sistemi
yapısına geçilir, B yeri ve c geçişi çıkarılırsa Şekil 2.8’deki Petri ağı elde edilir.

 32

Şekil 2.8 : Şekil 2.5 (a) Kuyruk Sisteminin Düzenlenmesi

Burada “a: kuyruğa bir kişi geldi” ve “d: servis başladı” anlamındadır.

Bu durumda bu Petri ağının işaretlediği dil regüler olmaz çünkü x’in sayısı ∞’a
ulaşır. Çünkü ()1x p N∈ olacaktır ve keyfi olarak büyüyebilecektir. Buna rağmen

Petri ağ grafı sonlu yer ve geçişe sahip olur ve sorun yaratmaz.

Bütün Petri ağlarına karşı düşen bir otomat bulunması mümkün olmazken erişilebilir
durumlarının sayısı sonlu ()R N olan bir Petri ağına karşı düşen bir otomat

bulunabilir. ()x R N∈ için her durumda mümkün geçişlere karşı düşen arklar

yardımıyla bir otomat kolaylıkla elde edilebilir.

Bir Petri ağının erişilebilir durumlarının sayısı sonsuz olabildiği için, bir otomatın
işaretlediği ya da üretebildiği dilden daha geniş bir dil ailesini işaretler.

Bu çalışmanın uygulama kısmında, girilen bir işaretli dilin { }0, , , , , mG X E f x X= Γ

otomatının durum geçiş diyagramından ()0, , , , , , , mN P T A w E l x X= Petri ağına

geçilmiş, durum denklemleri kullanılarak oluşan olaylara karşı düşen yeni durumlar
hesaplanmıştır.

2.3.2 Modüler Model İnşaa Etme

Otomatlarda etkileşimli olarak çalışan 1X durumlu bir alt otomat, 2X durumlu bir
başka otomat ile bağlandığı zaman durum uzayı 1 2X X× ’ye artar. Bu yeni elde
edilen otomatın 1d sayısının aşırı artması anlamına gelir yani karmaşıklaşması

demektir. Diğer taraftan Petri ağ modelinde ise bu bağlantıyı yapmak daha kolaydır.
Bu işlem birkaç yer veya geçiş ekleyerek veya birkaç yeri değiştirerek yapılabilir.
Ayrıca bir Petri ağ grafına bakarak özel bileşenleri uygun olarak ayırmak, bunların
arasındaki etkileşimlerin seviyesini fark etmek ve sistemi farklı modüllere ayırmak
mümkündür. Kuyruk sistemi örneği ile bu iddialar gösterilmiştir. Ayrıca sistem
bileşenleri modelinin bir lineer kombinasyonu olarak tüm sistem oluşacaktır yani
büyüme eksponansiyel olmayacaktır. Oysa “çarpma” ve “paralel birleştirme” ile

 33

bağlamada çarpımsal bir büyüme söz konusudur. Gerçekte “çarpma” ve “paralel
birleştirme” ile bağlamayı Petri ağı için de tanımlamak mümkündür. Ancak bu
şekilde yapılacak olan bir birleştirme işleminin sonucunda oluşan sistemin genel
olarak karmaşıklığının lineer olarak arttığından söz etmek mümkün olmaz.

2.3.3 Karar Verilebilirlik

Otomatlar ve Petri ağları için bir başka karşılaştırma kriteri “karar verilebilirlik”tir.
Karar verilebilirlik, “Bu olay dizisi bu sonlu durumlu otomat tarafından tanınabilir
mi?” sorusuna “Evet” veya “Hayır” diyebilmenin sistematik bir yolunun olup
olmaması olarak ele alınır. Sonlu durumlu bir otomatın çekici taraflarından biri de,
bu sorunun otomat için kesin olması ve “karar verilebilir” bir yapı olmasıdır.
Maalesef bu soru her zaman Petri ağı için doğru değildir, karar verilebilirlik ve
model zenginliği arasındaki doğal alışverişin yansımasıdır.

Tüm bu karşılaştırmalardan çıkan sonuç, belki de Petri ağ ve otomatların birbirleriyle
rekabet eden değil birbirlerini tamamlayan modelleme yaklaşımı olmasıdır. Özellikle
bazı uygulamalar için uygunluğuna göre biri tavsiye edilebilir.

2.4 Petri Ağlarının Analizi

Petri ağ modellerinin problemleri Bölüm 2.4.1’de sınıflandırılacaktır. Bu problemler
özellikte otomatta “güvenlik” ve “kilitlenme (blocking)” olarak ele alınan konularla
ilgilidir. Bununla birlikte, Petri ağ modellerindeki yapısal bilgiler, bu problemlerin
daha spesifik versiyonlarını sorgulamak için kullanılır. Bunlar; sınırlılık, sakınım,
kapsanabilirlik, engellenemez olmadır.

2.4.1 Problemlerin Sınıflandırılması

Bu bölümde ele alınan konular, Petri ağların lojik davranışı ile ilgilidir. Bu konular
öncelikle istenen özellikler ile bağlantılıdır. Bu özelliklerin pek çoğunun tanımlanma
nedeni, Petri ağlarının çevredeki kaynakların paylaşımında kullanılması, kaynakların
verimli ve adil kullanılmasının istenmesidir.

2.4.1.1 Sınırlılık

Bir çok durumda, jetonlar, kaynak paylaşımlı sistemde müşterilere karşı düşer.
Örneğin Şekil 2.5’te Q yerindeki jetonlar kuyruğa giren müşterileri göstermektedir.
Elbette burada kuyruktaki müşteri sayısının ∞’a artması istenmeyen bir durumdur.

 34

Klasik sistemlerde bir durum değişkeninin ∞’a artması “kararsızlık”a karşı düşer.
Benzer şekilde burada da bir durum değişkenindeki sınırsız artış “kararsızlık
formu”na gitmeye neden olur.

Sınırlılık, bir yerde bulunan jeton sayısının verilen pozitif bir sayıyı geçmemesi
anlamına gelir.

Tanım 2.8 “Sınırlılık”:

0x ilk koşulu ile verilmiş bir Petri ağında, bir ip P∈ yerinin “k-sınırlı” veya “k-
güvenli” olma tanımı ()x R N∈ tüm erişilebilir durumlar için bir ip yerindeki jeton

sayısının k ile sınırlandırılmış olmasıdır yani ()ix p k≤ .

Eğer yer 1-sınırlı ise “güvenli”dir denir. Önceden belirlenmiş olmasına gerek
olmayan bir sayı k olmak üzere, bir yer k-sınırlı ise “sınırlı”dır denir. Eğer Petri
ağındaki tüm yerler sınırlı ise ağ “sınırlıdır” denir. Şekil 2.5’te verilen modelde
Q’daki müşteri sayısı keyfi artabileceği için bu ağ “sınırlı” değildir.

Bir Petri ağı ile modellenmiş bir DES verildiğinde, sınırlılığa bakılır ve eğer “sınırlı”
ise sınır bulunur. Eğer sınırlılık sağlanmıyorsa, modelin sınırlılığı sağlayacak şekilde
değiştirilmesi düşünülür. Eğer Petri ağı sınırlı ise, istenirse daha önce bahsedildiği
gibi bir otomat modeline geçilebilir ve oradaki analiz tekniklerinden yararlanılabilir.

2.4.1.2 Güvenlik ve Kilitlenme

Bu konu ya durumlar ya da diller üzerinden ele alınabilir. Yani ya duruma
erişilebilirlik ya da alt kelimeler ile ilgilenilir. Eğer bir Petri ağı “sınırlı” ise güvenlik
ve kilitlenme özellikleri algoritmik olarak belirlenebilir. Eğer bir Petri ağı 0 ve 1 yer
işaretlemelerinden oluşan durumlar içeriyorsa bu ağ “güvenli”dir denir.

2.4.1.3 Durumun Kapsanabilirliği

“Durum kapsanabilirliği”, durumların erişilebilirlik kavramının bir
genelleştirilmesidir. Aynı zamanda, özel bir geçişin ateşlenebilme kavramı ile de
ilişkilidir. Bir geçişin izinli olması için bazı yerlerde belirli bir sayıda jeton olması
gerekir. Örneğin, () () ()1 2, ,..., ny y p y p y p= ⎡ ⎤⎣ ⎦ durumu verilsin ve jt geçişinin

izinli olması için gereken özelliği yani jeton sayısı açısından sağlasın. 0x durumunda
bulunulsun ve buradan bakıldığında jt ’nin izinli olduğu görülmek istensin. Bu

 35

durumda 0x ’dan kalkılıp () () 1, 2,...,i ix p y p i n≥ = koşulunu sağlayan bir x ’e

gidilip gidilemeyeceğinin bilinmesi gerekir. Eğer bu oluyorsa (yani () ()i ix p y p≥

0x başlangıç durumlu bir Petri ağı için mümkün ise) “ x , y durumunu kapsar” denir.

Tanım 2.9 “Durumun Kapsanabilirliği”:

0x ile verilmiş bir Petri ağ için, eğer () ()i ix p y p≥ özelliğinde bir ()x R N∈

durumu varsa “ y bu ağ tarafından kapsanabilirdir” denir.

2.4.1.4 Sakınım

Sakınım, Petri ağının bir özelliğidir. Bir yörünge boyunca ulaşılan tüm durumlar için
“sabit sayıda jeton” sağlama olarak tanımlanır. Ancak bu çok sınırlayıcı bir özellik
olacaktır.

Formal bir tanım yapmak için []1 2, ,..., nγ γ γ γ= 0iγ ≥ tanımlansın. iγ ’ler ip
yerlerinin ağırlığı olarak düşünülebilir. iγ ’ler tamsayı olarak alınacaktır, bu

gereklilik değildir, basitlik için yapılmaktadır.

Tanım 2.10 “Sakınım”:

0x ilk koşullu Petri ağı, bir []1 2, ,..., nγ γ γ γ= ve tüm ()x R N∈ için,

()
1

sabit ise
n

i i
i

x pγ
=

=∑ “γ ’ya göre sakınım özelliğindedir” denir.

Verilen bir Petri ağ modeli için, sıklıkla kaynakların yok olması veya kazanılmasının
mümkün olmadığını ifade eden sakınım özelliğinin sağlanması beklenir. Daha genel
olarak, jetonların kaybedilmesi veya kazanılması modellenen DES’in fiziksel olarak
sahip olduğu sakınım özelliğinin bir yansıması olmalıdır. Yani gerçek DES’te bu
özellik varsa bu modelde de ortaya çıkmalıdır.

2.4.1.5 Canlılık

Açmaz olma ve kilitlenme özelliklerinin bir tamamlayıcısı “canlı” geçiş kavramıdır.
Burada, herhangi bir geçişin mümkün olmaması ya da işaretli bir duruma geçişin
mümkün olması kavramı yerine, verilen bir geçişin ateşlenme kabiliyeti ile
ilgilenilecektir.

 36

Tanım 2.11 “Canlılık”:

0x ilk koşuluna sahip bir Petri ağı, 0x ’dan herhangi bir duruma geçerken herhangi

bir geçişin ateşlenme özelliğine sahip olan bir yörünge daima mevcut ise “canlı”dır
denir.

Ancak bu tanım çok katıdır ve test edilmesi de çok karışık olacaktır. O nedenle
pratikte kullanılması pek mümkün değildir. Sadece 4 seviyeli bir canlılık
sınıflandırmasına motivasyon olur.

0x ilk koşulu ile verilen Petri ağındaki bir geçiş,

• Ölü veya L0-canlıdır, eğer geçiş asla ateşlenmiyorsa

• L1-canlıdır, eğer 0x ’dan başladıktan sonra en az bir kez ateşleniyorsa

• L2-canlıdır, eğer en az 1k > kez ateşleniyorsa

• L3-canlıdır, eğer ∞ kez ateşleneceği bir dizi varsa

• Canlı veya L4-canlıdır, 0x ’dan erişilen her duruma giden mümkün bütün

yollar için L1-canlı ise.

Kapsanabilirlik kavramının L1-canlılık ile yakın ilişkisi vardır. Ölü geçişleri
belirlemek için kapsanabilirlik testi yapmak mümkündür.

Örnek 2.6: (Canlılık)

Şekil 2.9 : Örnek 2.6 Petri Ağ Modeli

Şekil 2.9’da 2t geçişi ölüdür çünkü asla ateşlenemez. 1t geçişi L1-canlıdır çünkü bir
kere ateşlenebilir. 1t geçişi ateşlendiğinde yeni durumda tüm geçişler ölü olacaktır.

3t geçişi L3-canlıdır çünkü ∞ kere ateşlenebilir, bu geçiş L4-canlıdır denemez çünkü

1t geçişi ateşlendikten sonra artık ateşlenemez.

 37

2.4.1.6 Kesintisiz Olma

Bazı durumda iki farklı geçiş aynı koşul kümesi ile izinli olabilir. Eğer biri
ateşlenirse acaba diğerinin izinli olma özelliği aynı kalır mı? Genel olarak bunun
garantisi yoktur. Gerçekte iki geçiş tam olarak aynı koşullara sahip olmazlar, ancak
sadece bir koşul ortak olur. Kesintisiz olma özelliği, izinli bir geçişin başka bir izinli
geçişin ateşlenmesi ile izinsiz hale geçmeme özelliğidir.

Tanım 2.12 “Kesintisiz Olma”:

Eğer herhangi iki izinli geçiş için, birinin ateşlenmesi diğerinin iznini yok etmiyorsa,
böyle bir Petri ağına “kesintisiz”dir denir.

Şekil 2.9’daki Petri ağı kesintisiz değildir çünkü 1t ve 3t izinlidir, ancak 1t
ateşlendiğinde 3t ’ün izni kalkar. Diğer taraftan Şekil 2.5’teki kuyruk sistemi Petri ağı

kesintisizdir.

2.4.2 Lineer Cebirsel Teknikler

Erişilebilir durumlar ve sakınım gibi bazı problemleri çözmek için daha önce
tanımlanan durum denklemleri kullanılabilir. Bu alternatif bir cebirsel teknik sağlar
ve Petri ağlarının yapısal özelliklerini belirleme konusunda (ki bu yapısal özellikler
Petri ağının topolojisinin bir sonucu A matrisinde ortaya çıkar) güçlü bir imkan
sağlar. Bu durum denklemleri 1k k kx x u A+ = + olarak tanımlanmıştı. Erişilebilirlik

açısından bu denkleme bakılırsa, bir x durumunun erişilebilir olmasının gerek
koşulu seçilebilir. 0x ilk koşulu için x durumuna erişilebilirliğine bakılmak istenirse,

0vA x x= − (2.27)

v’nin non-negatif olarak belirlenmesi gerekir. Eğer varsa, bu v’ye “ateşlemeleri
sayan vektör” adı verilir. Bu v vektörü her geçişin kaç kere yapılması gerektiğini
söyler. Bu sadece bir gerek koşuldur. v’nin non-negatif tamsayılar olarak varlığı
bunların ateşleme izinlerinin olacağını göstermediği için, mümkün olduğunun
garantisini vermez. Bu bir örnek üzerinde görülebilir.

 38

Örnek 2.7:

Şekil 2.10 : Örnek 2.7 Petri Ağ Modeli

Şekil 2.10’deki Petri ağının A matrisi,

1 1 1 0
0 1 1 1
1 0 0 1

A
− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 ve ilk koşulu []0 1,0,0,0x = ’dır. []0,0,0,1x = durumu ele

alınırsa,

[] [] []0 0,0,0,1 1,0,0,0 1,0,0,1vA x x= − = − = − denkleminden []1,1,0v = olarak elde
edilir yani pozitif ateşleme dizisi var gibi görülür. Bunun anlamı 1 2,t t veya 2 1,t t
dizisi uygulanınca elde edilir olmasıdır. Ancak bu iki ateşleme de 0x ’da mümkün

değildir. Bu, önerilen cebirsel tekniğin negatif yönüdür. Pozitif tarafı ise,
[]0,1,0,0x′ = ’a 0x ’dan erişilebilir mi diye araştırılmak istenirse, sistem denklemi,

[] [] []0 0,1,0,0 1,0,0,0 1,1,0,0vA x x′= − = − = − olur ve bu denklemin bir çözümü

yoktur, x′ erişilemezdir sonucuna varılır.

Yine 1k k kx x u A+ = + denklemi sakınım özelliği ile ilgili bazı bilgileri elde etmek için
de kullanılabilir. A matrisine sahip bir Petri ağı ele alınsın. Eğer 0TAγ = yapan

[]1 2, ,..., nγ γ γ γ= 0 1, 2,...,i i nγ ≥ = bir γ var ise bu durumda şunlar yazılabilir.

0x x vA= + (2.28)

0
T T Tx x vAγ γ γ= + (2.29)

0
T Tx xγ γ= (2.30)

 39

Son eşitlik, 0x ’dan erişilebilir tüm x durumları için Tx stγ = olan bir γ olduğunu
söylediği için, bunun anlamı bu Petri ağının 0x ’ın herhangi bir seçimi için “γ ’ya

göre sakınım” özelliğine sahip olduğudur.

 40

3. PROGRAM AÇIKLAMALARI

Bu çalışmada, biçimsel işaretli bir dilden endüstriyel bir işlemciye otomatik kod
üreten bir program geliştirme amaçlanmıştır. Bu amaç için, önce işaretli dilden
üretilen dile geçilmiş ve bu dili üreten otomatın durum geçiş diyagramı elde
edilmiştir. Daha sonra durum geçiş matrisinden sistemin Petri ağ modeli elde edilmiş
ve bu model temel alınarak kullanılan işlemciye uygun kod üreten yazılım
gerçeklenmiştir. Bu işlemler, tüm aşamaları görsel olarak sunmaya imkan veren
Borland C++ Builder ortamında gerçekleştirilmiştir. İzlenen yönteme ilişkin işaret
akış diyagramı Şekil 3.1’de gösterildiği gibidir.

Endüstriyel işlemci olarak SIMATIC-300 seçilmiş ve standart bir dil olan SCL
dilinde kod üretilmiştir. Benzer yazılımlarda ortaya çıkan ve ilgili literatürde “ çığ
etkisi” (avalanche effect) olarak adlandırılan problem analiz edilmiş ve çığ
etkisinden arındırılmış SCL kodu üretilmiştir. İzlenen yönteme ilişkin işaret akış
diyagramı Şekil 3.3 ve Şekil 3.4 ’de gösterildiği gibidir.

 41

 Şekil 3.1 : Programa İlişkin Akış Diyagramı

 42

3.1 Borland C++ Builder Programı

 Şekil 3.2 : Program Arayüzü

Program, “Giriş Alanı”na işaretli dilin (Lm(G)) girilmesiyle başlar. Lm(G)’ye ait
kelimeler aralarına virgül konularak yazılmalıdır. Giriş alanına (GirisMemo) ilişkin
“GirisMemoKeyPress” ve “GirisMemoKeyDown” fonksiyonları vardır.
GirisMemoKeyPress fonksiyonunda giriş alanına sayı girilmesi, space ve back
tuşlarına basılması engellenir. GirisMemoKeyDown fonksiyonunda girilen her
kelimenin önek kapanışları ile tüm alt kelimeleri, kelimeyi oluşturan harfler ile de
olaylar belirlenir. Girilen kelimeler “LmListBox”a, alt kelimeler “LListBox”a ve
olaylar “EventListBox”a eklenir.

__
void __fastcall TForm1::GirisMemoKeyDown(TObject *Sender, WORD &Key,
 TShiftState Shift)
{
// Giriş alanina girilen Lm(G)'den L(G) ve olayları elde ediyoruz.
int text_len,tuple_len,i,j,len;
AnsiString LmTuple,LTuple,Event;
 LmTuple = "";
 LTuple = "";
 /* Lm(G) de girilen her kelime ',' (Key == 188) ile birbirinden ayrılır.
 Enter tuşuna ya da ',' e her basıldığında yeni bir kelime girilmiş
 demektir. Enter tuşundan sonra Giriş alanına yeni bir kelime girilemez.
 */
 if((Key == 188)||(Key == VK_RETURN))
 {
 /* Girilen kelimenin uzunluğunu hesaplıyoruz. Kelimeler arka
 arkaya girildiği için text_len bu ana kadar girilen Lm(G)'nin
 toplam uzunluğudur.
 */
 text_len = GirisMemo->Text.Length();

 43

 /* Global bir değişken olan string_len'de bir önceki
 kelimenin bittiği indeks tutulur. Böylece (string_len+1)
 den text_len'e kadar olan kısım yeni girilen kelimedir.
 Eğer yeni girilen kelimenin uzunluğu sıfır değilse ilgili
 tablolara gerekli eklemeler yapılır.
 */
 if((text_len != 0)&&((text_len-string_len)!=0))
 {
 // Yeni girilen kelime LmTuple da saklanır.
 LmTuple = GirisMemo->Text.SubString(string_len+1,text_len-string_len);
 // Yeni kelime Lm(G) ye eklenir.
 LmListBox->Items->Add(LmTuple);
 tuple_len = LmTuple.Length();
 /* Yeni kelimedeki her olay (harf) tek tek EventListBox'da
 aranır. Eğer daha önce eklenmediyse eklenir.
 */
 for(i = 1; i<tuple_len+1;i++)
 {
 Event = LmTuple.SubString(i,1);
 for(j = 0; j<EventListBox->Items->Count; j++)
 {
 if(Event == EventListBox->Items->Strings[j])
 break;
 }
 if(j == EventListBox->Items->Count)
 EventListBox->Items->Add(Event);
 }
 /* Yeni kelimenin tüm alt kelimeleri hesaplanır (LTuple)
 ve L(G)'ye (LListBox) a daha önceden eklenmediyse eklenir.
 */
 for(i = 1; i<tuple_len+1;i++)
 {
 LTuple = LmTuple.SubString(1,i);
 for(j = 0; j<LListBox->Items->Count; j++)
 {
 if(LTuple == LListBox->Items->Strings[j])
 break;
 }
 if(j == LListBox->Items->Count)
 LListBox->Items->Add(LTuple);
 }
 }
 // string_len güncellenir. +1 aralara girilen virgül için konulmuştur.
 string_len = text_len + 1;
 }
 // Enter'a basıldığında Giriş alanını deaktif ediyoruz.
 // Yeni bir Lm(G) girmek için 'Tüm Alanları Temizle' tuşuna basılmalı.
 if(Key == VK_RETURN)
 {
 GirisMemo->Enabled = false;
 }
}
//---
void __fastcall TForm1::GirisMemoKeyPress(TObject *Sender, char &Key)
{
 // Giriş alanında sayı girilmesine, space ve back tuşlarının basılmasına izin vermiyoruz.
 if((Key == VK_SPACE)||((Key >= '0')&&(Key <= '9'))||(Key == VK_BACK))
 Key = 0x0;
}

__

Daha sonra “Durum Geçiş Tablosu” tuşuna basılmalıdır. Bu tuşa basıldığında
“DurumGecisBitBtnClick” fonksiyonu çalışır ve durum geçiş tablosu

 44

“DGStringGrid”, durumlar ve işaretli durumlar hesaplanır. Durum geçiş tablosunun
0.satır ve 0.sütunu etiketler için ayrılmıştır. 0. satıra olaylar 0. sütuna durumlar
sırasıyla yazılır. Olayların yer alacağı sütun sayısı olay sayısının bir fazlası,
durumların yer alacağı satır sayısı durum sayısının bir fazlası kadardır. Otomatın
durumları “1”den başlayarak sırayla numaralandırılır, “1” başlangıç durumu olarak
kabul edilir ve “StateListBox”a ve “XmListBox”a eklenir. Lm(G)’deki her kelime
bir çevrim içerisinde alt kelimelerine bölünür ve bu alt kelimeler daha önce
StateListBox’a eklenmediyse yeni bir durum oluşmuş demektir. Oluşan yeni duruma
karşı düşen alt kelime durum numarasıyla birlikte StateListBox’a eklenir. Durum
geçiş tablosu, DGStringGrid[initial_state, oluşan_olay]=last_state olacak şekilde
güncellenir. Eğer alt kelime StateListBox’a daha önce eklendiyse bu alt kelimeye
karşı düşen durum initial_state’e atanır ve böylece bir sonraki çevrim bu durumdan
devam eder. Lm(G)’ye ait her kelimenin son harfi yani olayı otomatı işaretli bir
duruma götürür. Bu durumlar “XmListBox”a eklenir. Durum değişikliğine sebep
olan her olay bir t-geçişidir. x. t-geçişi, (x+1). duruma geçilmesini sağlayacak şekilde
t-geçişleri ve bunlara ilişkin olaylar “TransListBox”a eklenir. Petri ağına geçişi
sağlamak amacıyla “PNStringGrid” tablosu oluşturulur. Bu tablonun satır sayısı
durum sayısının bir fazlası, sütun sayısı ise t-geçişleri sayısının bir fazlası kadardır.
Durum geçiş tablosundan tek farkı sütunlarında olaylar yerine t-geçişlerinin
bulunmasıdır. Tablonun içi PNStringGrid[initial_state, t-geçişi]=last_state olacak
şekilde güncellenir.

__
// 'Durum Geçiş Tablosu' tuşuna basıldı.
void __fastcall TForm1::DurumGecisBitBtnClick(TObject *Sender)
{
int i,j,col_no, len;
initial_state = 1;
last_state = 0;
int lm_len = 0;
int tseparator = 0;
int idle_state;

AnsiString LmTuple,Lm,State,T_Event,T_State,T_String,TIndex;

 // Durum Geçiş matrisinin 0.satır ve 0.sütunu etiketler için ayrılmıştır.
 // Bu durumda olayların yer alacağı sütun sayısı olay sayısı + 1 'dir.
 DGStringGrid->ColCount = EventListBox->Items->Count+1;

 // Durum Geçiş matrisinin 0.satırına olaylar yazdırılır.
 for(i=0;i<EventListBox->Items->Count; i++)
 {
 DGStringGrid->Cells[i+1][0] = EventListBox->Items->Strings[i];
 }
 // Başlangıç durumu, durumlar alanına yazdırılır.
 StateListBox->Items->Add("1-initial state");

 // Durum Geçiş matrisinin 1.satırının 0.sütununa ilk durum '1' yazdırılır.
 DGStringGrid->Cells[0][1] = "1";

 45

 //Başlangıç durumu XMListBox'a eklenir.
 XmListBox->Items->Add("1");

 /* Lm(G) deki kelimeler 'LmTuple' teker teker bulunur ve Kleen
 Kapaniş'ları hesaplanarak Durum Geçiş Matrisi oluşturulur.
 */
 for(i=0;i<LmListBox->Items->Count; i++)
 {
 len = LmListBox->Items->Strings[i].Length();

 LmTuple = LmListBox->Items->Strings[i];

 for(j=1;j<len+1;j++)
 {
 // LmTuple'nin her alt kelimesi yani Kleen kapanışı
 // döngü içinde hesaplanır ve Lm'ye atanır.
 Lm = LmTuple.SubString(1,j);

 // Lm'i oluşturan olaya (Lm'in son harfi) karşılık düşen sütun numarası bulunur.
 col_no = find_column_no(Lm,j);

 if(col_no == 0) return;

 // Durum Geçiş Tablosu oluşturulurken ağaç yapısı kullanılır.
 // Eğer eklenmek istenen Lm daha önceden eklenmişse, yani ağaçta
 // bu Lm'e karşı düşen bir durum var ise initial_state bu durumla
 // güncellenir. Eğer yoksa bu bizi yeni bir duruma götürecektir.
 //
 if(!Form1->check_state_listbox(Lm))
 {
 // Yeni bir durum oluştu, last_state ve Durum Geçiş Matrisinin satır sayısı bir arttırılır.
 last_state++;
 DGStringGrid->RowCount++;

 // Yeni durum, Durum Geçiş Tablosu'na eklenir.
 DGStringGrid->Cells[col_no][initial_state] = last_state+1;

 // initial_state güncellenir.
 initial_state = last_state+1;

 // Durum listesi güncellenir. Yeni duruma karşılık düşen kelime araya '-' koyarak yazılır.
 State = IntToStr(last_state+1)+"-"+Lm;
 StateListBox->Items->Add(State);

 //İşaretli durumlar için XmListBox güncellenir.
 if(j == len)
 {
 XmListBox->Items->Add(IntToStr(last_state+1));
 }

 // Petri Nete Geçişte kullanılmak üzere olaylara karşı düşen 't' geçişleri hesaplanır.
 lm_len = Lm.Length();
 T_Event = Lm.SubString(lm_len,1);
 T_State = "t"+IntToStr(last_state);
 T_String = T_State + "-" + T_Event;
 TransListBox->Items->Add(T_String);

 /* Eklenen yeni durum 0.sütuna etiket olarak yazılır.
 Durumlar 1.satırdan itibaren yazılmaya başladığı için +1 konulmuştur.*/
 DGStringGrid->Cells[0][last_state+1] = last_state+1;
 }
 }
 }

 for(i=1;i<DGStringGrid->RowCount; i++)
 {
 for(j=1;j<DGStringGrid->ColCount; j++)

 46

 {
 if(DGStringGrid->Cells[j][i] != "")
 break;
 }
 }

 /* Yığılma problemini önlemek için, Durum Geçiş Tablosu Petri Net geçişine
 uygun hale getirilir. Sütunlara karşılık düşen olaylar yerine
 yukarıda hesaplanan 't' geçişleri kullanılır.
 */

 /* Yeni tablonun sütun sayısı 't' lerin sayısı +1 dir, satırlarının
 sayısı ise Durum Geçiş Matrisi ile aynıdır, yani durum sayısı +1 dir.
 */
 PNStringGrid->ColCount = TransListBox->Items->Count+1;
 PNStringGrid->RowCount = DGStringGrid->RowCount;

 // Yeni matrisin 0.sütunlarına 1. satırdan başlayarak durumlar yazılır.
 for(i=1;i<PNStringGrid->RowCount; i++)
 {
 PNStringGrid->Cells[0][i] = IntToStr(i);
 }
 // Yeni matrisin 0.satırına 1. sütundan başlayarak 't' ler yazılır.
 for(i=0;i<TransListBox->Items->Count; i++)
 {
 tseparator = TransListBox->Items->Strings[i].Pos("-");

 if(tseparator > 1)
 TIndex = TransListBox->Items->Strings[i].SubString(1,tseparator-1);

 PNStringGrid->Cells[i+1][0] = TIndex;
 }

 /* Durum Geçiş Matrisinin hesaplanma şekline göre bizi i.durumdan
 X durumuna (DGStringGrid->Cells[j][i]) götüren t, t(X-1) yani
 t(DGStringGrid->Cells[j][i])-1) dir. Bu durumda yeni matrisin
 i.satırının t(X-1).sütununa X yazılır.
 */
 for(i=1;i<DGStringGrid->RowCount; i++)
 {
 for(j=1;j<DGStringGrid->ColCount; j++)
 {
 if(DGStringGrid->Cells[j][i] == "")
 continue;

 PNStringGrid->Cells[(DGStringGrid->Cells[j][i]-1)][i] = DGStringGrid->Cells[j][i];
 }

 }

 // Durum Geçiş Matrisinden son durumlar belirlenir.
 find_final_states();

}

//---

// Durum Geçiş matrisinin sütunlarını, EventListBox'a eklendikleri sira ile
// olaylar oluşturur. Satırları ise numara sırasıyla durumlar oluşturur.
// 0.satır ve 0. sütunlar da olay ve durum etiketleri için ayrılmıştır.
int find_column_no(AnsiString Lm,int len)
 {
 AnsiString LmLast;
 int i;
 // Lm deki kelimelerin tüm alt kelimeleri için bu işlem tekrarlandığından
 // son harfe yani olaya bakmak yeterlidir.
 LmLast = Lm.SubString(len,1);

 47

 /* Olayın EventListBox daki indeksi 'i' bulunur. Durum Geçiş Martisinde
 olaylar 1.sütundan başladığı için 'i+1' döndürülür.
 */
 for(i=0;i<Form1->EventListBox->Items->Count; i++)
 {
 if(Form1->EventListBox->Items->Strings[i] == LmLast)
 return(i+1);
 }

 if(i == Form1->EventListBox->Items->Count) return(0);
 }

//---

bool __fastcall TForm1::check_state_listbox(AnsiString Lm)
 {
 int i,separator,length;
 AnsiString StateTuple,MainTuple;
 /* Alt kelime Lm, StateListBox da aranır. Ancak statelere karşılık düşen
 kelimeler '-' den sonra yazıldığı için MainTuple hesaplanır.
 */
 for(i=1;i<Form1->StateListBox->Items->Count;i++)
 {
 StateTuple = Form1->StateListBox->Items->Strings[i];

 length = StateTuple.Length();
 separator = StateTuple.Pos("-");

 MainTuple = StateTuple.SubString(separator+1,length-separator);
 /* Eğer alt kelime Lm'e karşılık düşen bir durum varsa
 initial_state bu değerle güncellenir.
 */
 if(Lm == MainTuple)
 {
 initial_state = StrToInt(StateTuple.SubString(1,separator-1));
 return(true);
 }

 }
 /* Eğer alt kelime Lm'e karşılık düşen bir durum yoksa ve bu ilk alt
 kelimeyse yani uzunluğu 1 ise initial_state'e 1 atanır. Ağaç yapısına
 yeni bir dal eklenir.
 */
 if(Lm.Length() == 1)
 initial_state = 1;

 return(false);
 }

//---

 // Durum Geçiş Matrisinden son durumlar belirlenir.
 void __fastcall TForm1::find_final_states()
 {

 int i,j, counter;

 // Son durumlar sıfırlanır.
 for(i=0;i<100; i++)
 {
 final_states[i] = 0 ;
 }

 counter = 0;

 // Eğer bir durum hangi olay olursa olsun durum değiştirmiyorsa (Durum Geçiş

 48

 // Matrisinde bu duruma karşılık gelen sütunların hepsi sıfırsa) "son durum"
 // yani kilitlenmenin oluştuğu durum olarak kabul edilir.
 for(i=1;i<DGStringGrid->RowCount; i++)
 {
 for(j=1;j<DGStringGrid->ColCount; j++)
 {
 if(DGStringGrid->Cells[j][i] != "")
 break;

 }

 // Son durumlar 0. indeksten başlayarak final_states'e kaydedilir.
 if (j == DGStringGrid->ColCount)
 {
 final_states[counter] = i;
 counter = counter +1;
 }
 }

 }

__

Şimdiye kadar yapılan çalışmalar sadece sonlu bir dili desteklemektedir. Sonsuz dile
geçiş için Durum Geçiş Tablosunun (DGStringGrid) boş alanlarına yeni durum
geçişlerinin eklenmesine izin verilir. “Durum Geçiş Tablosunu Değiştir” butonuna
basılarak DGStringGrid yazılabilir hale getirilir. Dolu alanların değiştirilmesine izin
verilmezken, boş alanlara istenen durumlar eklenebilir. Eklenen durum, var olan
durumlar arasından seçilmeli ve ENTER’a basılarak giriş yapılmalıdır. Her yeni giriş
için PNStringGrid tablosu bu yeni girişe ilişkin t-geçişini içerecek şekilde
güncellenir. Aynı zamanda t-geçişlerini listeyen TransListBox kutusuna yeni geçişler
eklenir.

__
void __fastcall TForm1::bbEditClick(TObject *Sender)
{
//"DG Değiştir" tuşuna basıldığında Durum Geçiş Tablosu yazılabilir hale getirilir.

 DGStringGrid->Options.operator <<(goEditing);
}
//---

void __fastcall TForm1::DGStringGridKeyPress(TObject *Sender, char &Key)
{
 int place_count,event_count,trans_count;
 AnsiString T_String,T_State,T_Event;

 place_count = DGStringGrid->RowCount-1;

 event_count = DGStringGrid->ColCount-1;

 //Durum Geçiş Tablosu'na Boşluk, Harf ve Durum Sayısından büyük tek rakam girişleri engellenir.

 if(Key != VK_RETURN)
 {
 if((Key == VK_SPACE)||((Key <= '0')||(Key > '9'))||(AnsiString(Key) > IntToStr(place_count)))
 {
 Key = 0x0;
 return;

 49

 }
 }

 //ENTER tuşuna basıldığında yeni t geçişi PNStringGrid tablosuna ve TransListBox'a eklenir.

 if(Key == VK_RETURN)
 {
 if(DGStringGrid->Cells[selected_col][selected_row] != "")
 {
 trans_count = TransListBox->Items->Count;

 T_State = "t"+IntToStr(trans_count+1);
 T_Event = DGStringGrid->Cells[selected_col][0];

 T_String = T_State + "-" + T_Event;
 TransListBox->Items->Add(T_String);

 trans_count++;

 PNStringGrid->ColCount++;

 PNStringGrid->Cells[trans_count][0] = "t"+IntToStr(trans_count);

 PNStringGrid->Cells[trans_count][selected_row] = DGStringGrid-
 >Cells[selected_col][selected_row];

 return;
 }
 }
}
//---

void __fastcall TForm1::DGStringGridSelectCell(TObject *Sender, int ACol,
 int ARow, bool &CanSelect)
{
 int trans_count;
 AnsiString T_String,T_State,T_Event;

 //Durum Geçiş Tablosu'nda dolu olan alanların seçimi engellenir.

 if(DGStringGrid->Cells[ACol][ARow] != "")
 {
 CanSelect = false;
 return;
 }

 selected_col = ACol;
 selected_row = ARow;
}
//---

void __fastcall TForm1::DGStringGridSetEditText(TObject *Sender, int ACol,
 int ARow, const AnsiString Value)
{
 int place_count;

 place_count = DGStringGrid->RowCount-1;

 //Durum Geçiş Tablosu'nda giriş yapılan değerin durum sayısından büyük olması engellenir.

 if(Value != "")
 {
 if(StrToInt(Value) > place_count)
 DGStringGrid->Cells[ACol][ARow] = "";
 }
}
//---

 50

Daha sonra “PetriNete Geçiş” tuşuna basılmalıdır. Bu tuşa basıldığında
“PetriNetBitBtnClick” fonksiyonu çalışır ve A matrisi, a[j][i] = t_p[j][i]-p_t[j][i]
olacak şekilde hesaplanır. Burada j her zaman t-geçiş indeksi, i ise p yeri indeksidir.
Eğer PNStringGrid’de j. sütunu ve i. satırına ait bir geçiş tanımlı ise yani
PNStringGrid[j][i]=yeni_p≠ “ ” ise, p_t[j][i] ve t_p[j][yeni_p] “1” değerini alır. Tüm
p_t ve t_p değerleri hesaplandıktan sonra A matrisi yukarıdaki denkleme göre
hesaplanır. Her olaya ilişkin t-geçiş sayısı olay ismi ile birlikte “EListBox”a eklenir.
Bu liste 1k k kx x u A+ = + hesaplanırken kullanılmak üzere tutulmaktadır, ekranda

görülmez.

__
//---

 // 'PetriNete Geçiş' tuşuna basıldı.
void __fastcall TForm1::PetriNetBitBtnClick(TObject *Sender)
{
int trans_count= 0; //row_count
int place_count = 0; //col_count

int t_p[100][100],p_t[100][100];
AnsiString A_Row = "";
 // Önce Durum Geçiş Tablosu hesaplanmalı.
 if(PNStringGrid->Cells[0][1] == "")
 {
 Application->MessageBox("Önce Durum Geçiş Tablosunu oluşturunuz!","Uyarı",MB_OK);
 return;
 }

 // Durumların sayısı Durum Geçiş Matrisinin satır sayısının 1 eksiğine,
 // geçiş sayısı TransListbox'ın eleman sayısına eşittir.
 place_count = DGStringGrid->RowCount - 1;
 trans_count = TransListBox->Items->Count;

 // Matris çarpımında kullanılan t_p, p_t ve a matrisleri sıfırlanır.
 for(int i=0;i<100;i++)
 {
 for(int j=0;j<100;j++)
 {
 a[i][j] = 0;
 t_p[i][j] = 0;
 p_t[i][j] = 0;
 }
 }

 //A matrisi, a[j][i] = t_p[j][i]-p_t[j][i] kuralına göre hesaplanır.
 for(int i=1;i<place_count+1;i++)
 {
 for(int j=1;j<trans_count+1;j++)
 {
 if(PNStringGrid->Cells[j][i] != "")
 {
 p_t[j][i] = 1;
 t_p[j][StrToInt(PNStringGrid->Cells[j][i])] = 1;
 }
 }
 }

 51

 for(int i=1;i<place_count+1;i++)
 {
 for(int j=1;j<trans_count+1;j++)
 {
 a[j][i] = t_p[j][i]-p_t[j][i];
 }
 }

 // A matrisi ekrana yazdırılır.
 for(int j=1;j<trans_count+1;j++)
 {
 A_Row = "";

 for(int i=1;i<place_count+1;i++)
 {
 if(i == 1)
 A_Row = IntToStr(a[j][i]);
 else
 A_Row = A_Row + " "+IntToStr(a[j][i]);
 }

 AListBox->Items->Add(A_Row);
 }

 // Olaylar sayıları ile birlikte EListBox'a eklenir.
 // (xk+1 i A matrisinden hesaplamak için)

 calc_event_count();
}
//---
// Olay Giriş Alanı 1'e girilen her olayı t geçişi sayısıyla birlikte EListBox'a ekler.
void __fastcall TForm1::calc_event_count()
 {
 int tseparator,event_count;
 AnsiString Event,EventString;

 EListBox->Items->Clear();

 Event = "";
 EventString = "";

 for(int j=1;j<DGStringGrid->ColCount; j++)
 {
 Event = DGStringGrid->Cells[j][0];

 event_count = 0;

 for(int i=0;i<TransListBox->Items->Count;i++)
 {
 tseparator = TransListBox->Items->Strings[i].Pos("-");

 if(Event == TransListBox->Items->Strings[i].SubString(tseparator+1,1))
 event_count++;
 }

 EventString = Event + "-" + IntToStr(event_count);

 EListBox->Items->Add(EventString);
 }
 }

__

Durum geçiş tablosu ve A matrisi hesaplandıktan sonra 1k k kx x u A+ = + denklemi

kullanılarak girilen olaylar ya da u giriş vektörlerine göre yeni durumlar belirlenir.

 52

Bunun için üç farklı yöntem kullanılmıştır. Başlangıç durumu olarak Xo=[1, 0 , .., 0]
alınmıştır.

• “Olay Giriş Alanı – 1” kullanılarak: “U1AnilMemo” alanına ilişkin
“U1AnilMemoKeyDown” ve “U1AnilMemoKeyPress” fonksiyonları
tanımlıdır. U1AnilMemoKeyPress fonksiyonunda giriş alanına sayı girilmesi
ve space tuşuna basılması engellenir. Olayların tek tek ve aralarına virgül
konularak girilmesi sağlanır. İşlem bittiğinde ya ENTER tuşuna basılmalı
veya virgül konulmalıdır. U1AnilMemoKeyDown fonksiyonunda, girilen her
olaya ait t geçişleri kullanılarak, tüm olası u vektörleri belirlenir ve “U Vektör
Alanı”na, “UListBox”, eklenir. Her eklenen vektöre karşı düşen olay ise
“EListBox1” listesine yazılır. Bu liste 1k k kx x u A+ = + hesaplanırken

kullanılmak üzere tutulmaktadır, ekranda görülmez.

U1AnilMemo alanına girilen her olay için UlistBox da olayın t-geçişleri
sayısı kadar u vektörü bulunur. U1AnilMemo alanına giriş tamamlandığında
bu alanın yanındaki “X 1k+ Hesapla” tuşuna basılmalıdır. Bu tuşa basıldığında

“AnilXkBitBtnClick” fonksiyonu çalışır. Bu fonksiyonda UListBox’taki her
u vektörü için Xk[j] = Xo[j] + UA[j] değeri hesaplanır, eğer elde edilen
durum vektörünün herhangi bir elemanı sıfırdan küçükse sistem bu u girişi
için durum değiştirmez ve sistem durumunu korur (Xk=Xo). Aksi halde
belirlenen yeni durum “Xk”, bir önceki durumdan “Xo”, farklı ise sistem
durum değiştirmiş demektir. Yeni durum Xo’a atanır (Xo=Xk). Sistem durum
değiştirsin ya da değiştirmesin yapılan her hesaplama için Xk durum vektörü
“X 1k+ Durumları” alanına eklenir. Durum değişikliğine sebep olan u

vektörünün ve Xk yeni durum vektörünün yanına “*” işareti konulur. Her
olay için bir t-geçişi durum değişikliğine sebep olacağından sistem durum
değiştirdiğinde o olaya ilişkin diğer u vektörleri atlanır, bir sonraki olaya ait u
vektörlerine ElistBox ve EListBox1 listeleri kullanılarak gidilir.
Hesaplamalar burdan devam eder. Eğer sistem açmaz bir duruma ulaştıysa
başlangıç durumuna döndürülür.

__
// U1AnilMemo alanina olaylar aralarina virgul konularak sirayla girilir.
// t geçişleri kullanılarak girilen olaylara karşı düşen tüm u vektörleri belirlenir.
void __fastcall TForm1::U1AnilMemoKeyDown(TObject *Sender, WORD &Key,
 TShiftState Shift)
{
int tseparator,text_len,t_num,tlen;

AnsiString UTuple,MainU,TEvent;

 UTuple = "";

 53

 MainU = "";
 TEvent = "";

 t_num = 0;
 text_len = 0;
 tseparator = 0;
 tlen = 0;

 // Virgül ya da entera basılırsa
 if((Key == 188)||(Key == VK_RETURN))
 {
 if(DGStringGrid->Cells[1][0] == "")
 {
 Application->MessageBox("Lütfen Durum Geçiş Tablosunu
oluşturunuz!","Uyarı",MB_OK);
 U1AnilMemo->Text = "";
 return;
 }

 int place_count = DGStringGrid->RowCount - 1;
 int trans_count = TransListBox->Items->Count;

 if(AListBox->Items->Count == 0)
 {
 Application->MessageBox("Lütfen Önce PetriNet'e Geçiniz!","Uyarı",MB_OK);
 U1AnilMemo->Text = "";
 return;
 }

 // U1AnilMemo alanına olaylar tek tek ve aralarına virgül
 // konularak girilir, bu yüzden virgül ya da entera her basıldığında
 // U1AnilMemo'daki verinin son harfi girilen olaya,MainU'ya, eşittir.
 text_len = U1AnilMemo->Text.Length();
 MainU = U1AnilMemo->Text.SubString(text_len,1);

 // Girilen olay (MainU) için t geçişleri kullanılarak, tüm olası u vektörleri
 // belirlenir ve U vektör dizisine eklenir.
 for(int i=0;i<TransListBox->Items->Count; i++)
 {
 tlen = TransListBox->Items->Strings[i].Length();
 UTuple = "";
 tseparator = TransListBox->Items->Strings[i].Pos("-");

 if(tseparator <= 1) continue;

 TEvent = TransListBox->Items->Strings[i].SubString(tlen,1);

 if(MainU == TEvent)
 {
 if(TransListBox->Items->Strings[i].SubString(2,tseparator-2) == "") continue;

 t_num = StrToInt(TransListBox->Items->Strings[i].SubString(2,tseparator-2));

 if(t_num <= trans_count)
 {
 u_index++;

 for(int j=1;j<trans_count+1; j++)
 {
 if(j == 1)
 {
 if(j == t_num)
 {
 UTuple = UTuple + "1";
 U[j][u_index] = 1;
 }
 else

 54

 {
 UTuple = UTuple + "0";
 U[j][u_index] = 0;
 }
 }
 else
 {
 if(j == t_num)
 {
 UTuple = UTuple + " 1";
 U[j][u_index] = 1;
 }
 else
 {
 UTuple = UTuple + " 0";
 U[j][u_index] = 0;
 }
 }
 }
 UListBox->Items->Add(UTuple);
 EListBox1->Items->Add(TEvent);
 }
 }
 }
 }

 // Entera basıldığında Olay giriş alanı 1 deaktif edilir.
 if(Key == VK_RETURN)
 {
 U1AnilMemo->Enabled = false;
 }

}
//---

// U1AnilMemo alanına giriş yapıldığında aşağıdaki kontroller koşar.
void __fastcall TForm1::U1AnilMemoKeyPress(TObject *Sender, char &Key)
{
 // Sayı ve boşluk tuşlarından giriş kabul edilmez.
 if((Key == VK_SPACE)||((Key >= '0')&&(Key <= '9')))
 Key = 0x0;

 int len = U1AnilMemo->Text.Length();

 // Eğer son girilen değer ',' değil ise bir olay girildi demek ve hemen
 // arkasından ',' ya da enter ya da backspace tuşuna basılmalı.
 if((U1AnilMemo->Text.SubString(len,1) != ",")&&(len != 0))
 {
 if((Key != ',')&&(Key != VK_RETURN)&&(Key != VK_BACK))
 Key = 0x0;
 }

 // Eğer alan boş ise yada son olarak ',' girilmişse yeni bir virgül girişine izin verilmez.
 if(Key == ',')
 {
 if((U1AnilMemo->Text == "")||(U1AnilMemo->Text.SubString(len,1) == ","))
 Key = 0x0;
 }
}
//---

__

 55

• “Olay Giriş Alanı – 2” kullanılarak: “U1OzdeMemo” alanına ilişkin
“U1OzdeMemoKeyDown” ve “U1OzdeMemoKeyPress” fonksiyonları
tanımlıdır. U1OzdeMemoKeyPress fonksiyonunda giriş alanına sayı girilmesi
ve space tuşuna basılması engellenir. Olayların tek tek ve aralarına virgül
konularak girilmesi sağlanır. İşlem bittiğinde ya ENTER tuşuna basılmalı
veya virgül konulmalıdır. U1OzdeMemoKeyDown fonksiyonunda, girilen
her “e” olayının DGStringGrid’deki sütun indeksi “e_indeks” bulunur.
Sistemin durum değiştirip değiştirmediği belirlenir,
DGStringGrid[e_indeks][Xo] = Xk ≠ “ ” ise sistem durum değiştirmiş
demektir. Sistemi Xk. duruma geçiren t-geçişi PNStringGrid tablosundan
bulunur. Bu durumda u vektörü t geçişine karşılık düşen elemanı “1”,
diğerleri “0” olacak şekilde düzenlenerek “U Vektör Alanı”na, “UListBox”,
eklenir. Eğer sistem durum değiştirmiyorsa u vektörü tüm elemanları “0”
olacak şekilde eklenir. Bir sonraki u çevrimi için ulaşılan yeni durum Xk,
sistemin bulunduğu Xo durumuna atanır. Eğer sistem açmaz bir duruma
ulaştıysa başlangıç durumuna dönülür.

U1OzdeMemo alanına giriş tamamlandığında bu alanın yanındaki “X 1k+

Hesapla” tuşuna basılmalıdır. Bu tuşa basıldığında “OzdeXkButtonClick”
fonksiyonu çalışır. Bu fonksiyonda UListBox’taki her u vektörü için
Xk[j] = Xo[j] + UA[j] değeri hesaplanır, eğer elde edilen durum vektörünün
herhangi bir elemanı sıfırdan küçükse sistem bu u girişi için durum
değiştirmez ve sistem durumunu korur (Xk=Xo). Aksi halde belirlenen yeni
durum “Xk”, bir önceki durumdan “Xo”, farklı ise sistem durum değiştirmiş
demektir. Yeni durum Xo’a atanır (Xo=Xk). Sistem durum değiştirsin ya da
değiştirmesin yapılan her hesaplama için Xk durum vektörü “X 1k+

Durumları” alanına eklenir. Eğer sistem açmaz bir duruma ulaştıysa başlangıç
durumuna döndürülür.

__
// U1OzdeMemo alanına giriş yapılırsa aşağıdaki kontroller koşar.
// Olaylar tek tek ve aralarına virgül konularak girilir.
void __fastcall TForm1::U1OzdeMemoKeyPress(TObject *Sender, char &Key)
{
 // U1OzdeMemo alanına sayı ya da boşluk girilemez.
 if((Key == VK_SPACE)||((Key >= '0')&&(Key <= '9')))
 Key = 0x0;

 int len = U1OzdeMemo->Text.Length();

 // Eğer son girilen değer ',' değil ise bir olay girildi demek ve hemen
 // arkasından ',' ya da enter ya da backspace tuşuna basılmalı.
 if((U1OzdeMemo->Text.SubString(len,1) != ",")&&(len != 0))
 {
 if((Key != ',')&&(Key != VK_RETURN)&&(Key != VK_BACK))
 Key = 0x0;

 56

 }
 // Eğer ekran boş ise ya da son olarak ',' girilmişse yeni bir virgül girişine izin verilmez.
 if(Key == ',')
 {
 if((U1OzdeMemo->Text == "")||(U1OzdeMemo->Text.SubString(len,1) == ","))
 Key = 0x0;
 }
}
//---

// U1OzdeMemo alanına olaylar aralarına virgül konularak sırayla girilir.
// [1 0 .. 0] durumundan başlayarak oluşan olaylara göre gidilecek yeni
// durumlar belirlenir.
void __fastcall TForm1::U1OzdeMemoKeyDown(TObject *Sender, WORD &Key,
 TShiftState Shift)
{
 int tseparator,text_len,t_num,tlen;

 AnsiString UTuple,MainU,TEvent;

 UTuple = "";
 MainU = "";
 TEvent = "";

 t_num = 0;
 text_len = 0;
 tseparator = 0;
 tlen = 0;
 // Virgül ya da entera basılırsa
 if((Key == 188)||(Key == VK_RETURN))
 {
 if(DGStringGrid->Cells[1][0] == "")
 {

 Application->MessageBox("Lütfen Durum Geçiş Tablosunu
 oluşturunuz!","Uyarı",MB_OK);

 U1OzdeMemo->Text = "";
 return;
 }

 // Durumların sayısı Durum Geçiş Matrisinin satır sayısının 1 eksiğine,
 // geçiş sayısı TransListbox'ın eleman sayısına eşittir.
 int place_count = DGStringGrid->RowCount - 1;
 int trans_count = TransListBox->Items->Count;

 if(AListBox->Items->Count == 0)
 {
 Application->MessageBox("Lütfen Önce PetriNet'e Geçiniz!","Uyari",MB_OK);
 U1OzdeMemo->Text = "";
 return;
 }

 // Girilen verinin uzunluğu hesaplanır.
 text_len = U1OzdeMemo->Text.Length();

 // U1OzdeMemo alanına olaylar tek tek ve aralarına virgül
 // konularak girilir, bu yüzden virgül ya da entera her basıldığında
 // U1OzdeMemo'daki verinin son harfi girilen olaya, MainU'ya, eşittir.
 MainU = U1OzdeMemo->Text.SubString(text_len,1);

 // Girilen olayın Durum Geçiş Matrisindeki sütun indeksi bulunur.
 int col_no = find_column_no(MainU,1);

 // u_index'i bir arttırılır.
 u_index = u_index +1;

 // Durum Geçiş Matrisi'nden MainU olayı olduğunda hangi duruma
 // gidileceği bulunur. Eğer matristeki karsılığı boş ise sistem

 57

 // durum değiştirmiyor demektir.U matrisine [0 0 .. 0] atanır ve
 // UListBox'a eklenir.
 if (DGStringGrid->Cells[col_no][previous_state] == "")
 {
 for(int i=1;i<TransListBox->Items->Count+1; i++)
 {
 UTuple = UTuple + " 0" ;
 U[i][u_index] = 0;
 }

 UListBox->Items->Add(UTuple);
 }
 else
 {
 // Eğer matristeki karşılığı boş değil ise hangi duruma (next_state) gidileceği bulunur.
 int next_state = StrToInt(DGStringGrid->Cells[col_no][previous_state]);

 // Aktif olan t geçişi (previous_state'ten next_state'e geçiren)
 // PNStringGrid tablosundan bulunur ve U vektörüne çevrilir.

 for(int k=1;k<TransListBox->Items->Count+1;k++)
 {
 if(PNStringGrid->Cells[k][previous_state] == next_state)
 {
 for(int i=1;i<TransListBox->Items->Count+1; i++)
 {
 if (i == k)
 {
 UTuple = UTuple + " 1" ;
 U[i][u_index] = 1;
 }
 else
 {
 UTuple = UTuple + " 0" ;
 U[i][u_index] = 0;
 }
 }
 break;
 }
 }

 // Oluşan olaya ilişkin hesaplanan UTuple, UListBox'a eklenir.
 // Ve bir sonraki çevrim için previous_state güncellenir.
 UListBox->Items->Add(UTuple);
 previous_state = next_state;

 // Eğer ulaşılan durum açmaz (deadlock) bir durum ise başlangıç
 // durumuna geri dönülür.
 for (int i=0; i< 100; i++)
 {
 // final_states tablosu boş ise döngüden çıkılır.
 if (final_states[i] == 0)
 break;
 // Başlangıç durumuna geri dönülür.
 if (next_state == final_states[i])
 {
 previous_state = 1;
 break;
 }
 }
 }
 }

 // Enter tuşuna basılınca U1OzdeMemo alanına giriş yapılmasına izin verilmez.
 if(Key == VK_RETURN)
 {
 U1OzdeMemo->Enabled = false;

 58

 }

}
//---

// Alttaki "Xk+1 Hesapla" tuşuna basıldı.
// UListBox'daki tüm U'lar için Xk+1 = Xk + uA hesaplanır,
// başlangıç durumu [1,0,0,..] olarak alınır. UListbox'a "Olay Giriş Alanı 2" ya da
// "U Giriş Alanı" kullanılarak giriş yapıldı ise bu tuşa basılmalıdır. "Olay Giriş Alanı 1"
// alanından giriş yapıldıysa üstteki "Xk+1 Hesapla" tuşuna basılmalıdır.
void __fastcall TForm1::OzdeXkButtonClick(TObject *Sender)
{
 AnsiString Xk_Row, Xo_Row;
 int UA[100],u[100],j, state;

 state = 0;
 XkListBox->Items->Clear();

 if(UListBox->Items->Count == 0)
 {
 Application->MessageBox("Lütfen U'yu giriniz!","Uyarı",MB_OK);
 return;
 }

 // UA ve Xo sıfırlanır.
 for(int i=0;i<100;i++)
 {
 UA[i] = 0;
 }
 for(int i=0;i<100;i++)
 {
 Xo[i] = 0;
 }

 // Başlangıç durumu [1,0,0,..]
 Xo[1] = 1;

 // UListBox'daki tüm vektörler teker teker Xk+1 = Xk + uA işlemine tabii
 // tutulur. u_index UListBox alanındaki U'larin toplam sayısıdır.
 for(int k=1;k<u_index+1;k++)
 {
 // UListBox alanındaki U'lar, lokal bir değişken olan u'ya atanır.
 for(int i=1;i<100;i++)
 {
 u[i] = U[i][k];
 }

 // Durumların sayısı Durum Geçiş Matrisinin satır sayısının bir eksiğine,
 // geçiş sayısı TransListbox'ın eleman sayısına eşittir.
 int place_count = DGStringGrid->RowCount - 1;
 int trans_count = TransListBox->Items->Count;

 // Matris çarpmasında kullanılan UA, her u değişimimde sıfırlanır.
 for(int i=0;i<100;i++)
 {
 UA[i] = 0;
 }

 // uA çarpımı hesaplanır.
 for(int i=1;i<trans_count+1;i++)
 {
 for(int j=1;j<place_count+1;j++)
 {
 UA[j] = UA[j] + u[i] * a[i][j];
 }
 }

 59

 // Xk+1 = Xk + uA işlemi sonucu hesaplanır. Eğer vektörün elemanlarından
 // herhangi biri negatif ise sistem durum değiştirmez.
 for(j=1;j<place_count+1;j++)
 {
 Xk[j] = Xo[j] + UA[j];

 if(Xk[j] < 0)
 break;
 }

 // Eğer Xk negatif ise sistem durum değiştirmeyeceği için, bir önceki
 // durum yani Xo, Xk'ya atanır.
 if(j < place_count+1)
 {
 for(int j=1;j<place_count+1;j++)
 {
 Xk[j] = Xo[j];
 }
 }
 // Sistemin şu anki durumu, bir sonraki u çevrimi için Xo'a atanır.
 for(int j=1;j<place_count+1;j++)
 {
 Xo[j] = Xk[j];
 }

 // Bulunan yeni durum, Xk vektörü, text olarak(Xk_Row) kaydedilir.
 Xk_Row = "";
 Xo_Row = "";
 for(int i=1;i<place_count+1;i++)
 {
 if (Xk[i] == 1)
 state = i;
 // Vektör elemanları aralarında boşluk olacak şekilde text olarak kaydedilir.
 if(i == 1)
 Xk_Row = IntToStr(Xk[i]);
 else
 Xk_Row = Xk_Row + " "+IntToStr(Xk[i]);
 }

 // Yeni durum XkListBox'a eklenir.
 XkListBox->Items->Add(Xk_Row);

 // Eğer gelinen durum açmaz(deadlock) durum ise başlangıç durumuna geri dönülür.
 for(int index=0;index<100;index++)
 {
 if (state == final_states[index])
 {
 for(j=1;j<place_count+1;j++)
 {
 // [1 0 .. 0] başlangıç durumu text olarak "Xo_Row"a kaydedilir.
 Xo[j] = 0;
 if(j == 1)
 Xo[j] = 1;
 // Vektör elemanları aralarında boşluk olacak şekilde text olarak kaydedilir.
 if(j == 1)
 Xo_Row ="1";
 else
 Xo_Row = Xo_Row + " "+"0";
 }
 // Başlangıç durumu XkListBox'a eklenir.
 XkListBox->Items->Add(Xo_Row);
 break;
 }
 }

 }
}

 60

__

• “U Giriş Alanı” kullanılarak: “U2VektörMemo” alanına ilişkin
“U2VektörMemoKeyDown”, “U2VektörMemoKeyPress” ve
“U2VektorMemoEnter” fonksiyonları tanımlıdır. Bir olaya ilişkin u vektörü
girilip ENTER tuşuna basılmalı ve vektör elemanları aralarına boşluk
konularak girilmelidir. U2VektörMemoKeyPress fonksiyonunda sayı, space,
back ve ENTER'dan başka bir tuşa basılmasına izin verilmez.
U2VektorMemoEnter fonksiyonu her ENTER tuşuna basıldığında çalışır ve
U2VektörMemo alanının bir sonraki yeni giriş için boşaltılmasını sağlar.
U2VektörMemoKeyDown fonksiyonunda girilen u vektörlerinin boyutları
kontrol edilir, t-geçiş sayısına eşit olmalıdır. Eksik girişler kabul edilmez,
kullanıcı uyarılır. Fazla girişlerde ise kullanıcı uyarılır ancak vektörün t-geçiş
sayısına kadar olan kısmı u girişi olarak kabul edilir. Kabul edilen girişler
UlistBox’a eklenir.

 U2VektörMemo alanına giriş tamamlandığında bu alanın yanındaki “X 1k+

Hesapla” tuşuna basılmalıdır. Bu tuşa basıldığında “OzdeXkButtonClick”
fonksiyonu çalışır. Bu tuş aynı zamanda “Olay Giriş Alanı – 2” için
kullanılan tuştur. Çalışma şekli 2. yöntemde anlatılmıştır.

__
// U Giriş Alanına her giriş yapıldığında enter tuşuna basılır ve U2VektorMemo
// alanı sıfırlanır.
void __fastcall TForm1::U2VektorMemoEnter(TObject *Sender)
{
 U2VektorMemo->Text = "";
}
//---
// "U" alanina giriş yapıldığında aşağıdaki kontroller koşar.
void __fastcall TForm1::U2VektorMemoKeyPress(TObject *Sender, char &Key)
{
 // Sayı, boşluk, backspace ve enter'dan başka bir tuşa basılamaz.
 if(((Key < '0')||(Key > '9'))&&(Key != VK_SPACE)&&(Key != VK_BACK)&&(Key !=
VK_RETURN))
 Key = 0x0;

 int len = U2VektorMemo->Text.Length();

 // İlk giriş boşluk olamaz ve üst üste boşluk girilemez.
 if(Key == VK_SPACE)
 {
 if((U2VektorMemo->Text == "")||(U2VektorMemo->Text.SubString(len,1) == " "))
 Key = 0x0;
 }
}
//---

// U Giriş Alanına vektör girilmesi durumu.

 61

void __fastcall TForm1::U2VektorMemoKeyDown(TObject *Sender, WORD &Key,
 TShiftState Shift)
{
int trans_count = 0;
int length,separator,main_len,j;
AnsiString U_Initial,MainU;

 //Enter'a her basıldığında bir vektör girildi demektir.
 if(Key == VK_RETURN)
 {
 U2VektorMemo->Enabled = false;

 U2VektorMemo->Enabled = true;

 MainU = "";

 if(DGStringGrid->Cells[1][0] == "")
 {
 Application->MessageBox("Lütfen Durum Geçiş Tablosunu
 oluşturunuz!","Uyarı",MB_OK);
 return;
 }

 // Durumların sayısı Durum Geçiş Matrisinin satır sayısının 1 eksiğine,
 // geçiş sayısı TransListbox'ın eleman sayısına eşittir.
 int place_count = DGStringGrid->RowCount - 1;
 trans_count = TransListBox->Items->Count;

 main_len = 0;

 // U Giriş Alanına girilen vektörler U Vektör dizisi alanına eklenir ve bu
 // alandaki vektörlerin sayısını tutan u_index 1 arttırılır.
 UListBox->Items->Add(U2VektorMemo->Text);
 u_index++;

 U_Initial = U2VektorMemo->Text;

 length = U_Initial.Length();

 // Son girilen boşluk U_Initial'a dahil edilmez.
 if(U_Initial.SubString(length,1) == " ")
 U_Initial = U_Initial.SubString(1,length-1);

 // Girilen U_Initial ın boyutu t geçişleri sayısına eşit olmalıdır.
 // Eksik veya fazla olması durumları kontrol edilir.
 for(int i=1;i<100;i++)
 {
 if(U_Initial == "")
 {
 if(i < trans_count+1)
 {
 Application->MessageBox("Eksik veri girdiniz!","Uyarı",MB_OK);
 U2VektorMemo->Enabled = true;
 U2VektorMemo->Text = "";
 UListBox->Items->Clear();
 return;
 }
 if(i > trans_count+1)
 {
 Application->MessageBox("Fazla girilen verilen
 değerlendirilmemektedir!","Uyarı",MB_OK);
 return;
 }
 return;
 }

 62

 length = U_Initial.Length();
 separator = U_Initial.Pos(" ");

 // U_Initial texti U Vektör dizisine ait U matrisine yazılır.
 if(separator < 1)
 {
 MainU = U_Initial.SubString(1,length);
 U_Initial = "";
 }
 else
 {
 MainU = U_Initial.SubString(1,separator-1);

 main_len = MainU.Length();
 U_Initial = U_Initial.SubString(separator+1,length-separator);
 }

 if(MainU != "")
 {
 if(i <= trans_count)
 {
 U[i][u_index] = StrToInt(MainU);
 }
 }
 }
 }
}

__

“Tüm Alanları Temizle” tuşuna basıldığında “ClearBitBtnClick” fonksiyonu çalışır
ve tüm alanların temizlenmesi sağlanır.

“U ve Xk+1 Alanlarını Temizle” tuşuna basıldığında “ClearUXkBitBtnClick”
fonksiyonu çalışır ve 1k k kx x u A+ = + hesaplanmasında kullanılan tüm alanlar

temizlenir.

__
void __fastcall TForm1::ClearBitBtnClick(TObject *Sender)
{
 // 'Tüm Alanları Temizle' tuşuna basıldığında tüm alanlar silinir.
 Form1->clear_all();

}
//---
void __fastcall TForm1::clear_all()
 {
 int i,j;
 previous_state = 1;
 string_len = 0;
 LmListBox->Items->Clear();
 EventListBox->Items->Clear();
 LListBox->Items->Clear();
 StateListBox->Items->Clear();
 AListBox->Items->Clear();
 XmListBox->Items->Clear();
 UListBox->Items->Clear();
 XkListBox->Items->Clear();

 63

 TransListBox->Items->Clear();
 EListBox->Items->Clear();
 EListBox1->Items->Clear();
 GirisMemo->Enabled = true;
 U1AnilMemo->Enabled = true;
 U2VektorMemo->Enabled = true;
 U1OzdeMemo->Enabled = true;
 GirisMemo->Text = "";
 U1AnilMemo->Text = "";
 U2VektorMemo->Text = "";
 U1OzdeMemo->Text = "";
 // Durum Geçiş Matrisi sıfırlanır.
 for(i=0;i<Form1->DGStringGrid->ColCount; i++)
 {
 for(j=0;j<Form1->DGStringGrid->RowCount; j++)
 {
 DGStringGrid->Cells[i][j] = "";
 }
 }
 Form1->DGStringGrid->RowCount = 2;
 // Petri Net Geçiş Matrisi sıfırlanır.
 for(i=0;i<Form1->PNStringGrid->ColCount; i++)
 {
 for(j=0;j<Form1->PNStringGrid->RowCount; j++)
 {
 PNStringGrid->Cells[i][j] = "";
 }
 }
 Form1->PNStringGrid->RowCount = 2;
 // UListBox a girilen U matrisinin indeksi
 u_index = 0;
 // Xk+1 i hesaplamakta kullanilan U ve a matrisleri sıfırlanır.
 for(int i=0;i<100;i++)
 {
 for(int k=0;k<100;k++)
 {
 U[i][k] = 0;
 a[i][k] = 0;
 }
 }
 // Xo ve Xk dizileri sıfırlanır.
 for(int k=0;k<100;k++)
 {
 Xo[k] = 0;
 Xk[k] = 0;
 }

 selected_col = 0;
 selected_row = 0;
 }
//---

// "U ve Xk+1 Alanlarını Temizle" tusuna basıldı.
void __fastcall TForm1::ClearUXkBitBtnClick(TObject *Sender)
{
 // Global değişkenlere ilk değerleri atanır.
 previous_state = 1;
 string_len = 0;

 // Listboxlar sıfırlanır.
 UListBox->Items->Clear();
 XkListBox->Items->Clear();
 EListBox1->Items->Clear();

 // Olay ve U vektörü giriş alanlarına giriş yapılabilmesi sağlanır.
 U1AnilMemo->Enabled = true;
 U2VektorMemo->Enabled = true;

 64

 U1OzdeMemo->Enabled = true;

 // Olay ve U vektörü giriş alanları sıfırlanır.
 U1AnilMemo->Text = "";
 U2VektorMemo->Text = "";
 U1OzdeMemo->Text = "";

 // UListBox a girilen U matrisinin indeksi sıfırlanır.
 u_index = 0;

 // U matrisi sıfırlanır.
 for(int i=0;i<100;i++)
 {
 for(int k=0;k<100;k++)
 {
 U[i][k] = 0;
 }
 }

 // Xo ve Xk dizileri sıfırlanır.
 for(int k=0;k<100;k++)
 {
 Xo[k] = 0;
 Xk[k] = 0;
 }
}

__

 “DG ile PLC Kodu Oluştur” tuşuna basıldığında “DGPLCBitBtnClick” fonksiyonu
çalışır ve durum geçiş diyagramı yöntemini kullanan PLC SCL kodu üretilir. Bu kod
programın çalıştırıldığı dizinin bir üst dizininde yaratılan PLC klasörü içinde
“PLC_Code_DG.doc” olarak kaydedilir. Girilen her işaretli dil için ayrı bir kod
üretilmektedir. İstenirse bu kod kopyalanarak “PLC Simatic Manager” ortamında
derlenip çalıştırılabilir.

“A Matrisi ile PLC Kodu Oluştur” tuşuna basıldığında “APLCBitBtnClick”
fonksiyonu çalışır ve A matrisi yöntemini kullanan PLC SCL kodu üretilir. Bu kod
programın çalıştırıldığı dizinin bir üst dizininde yaratılan PLC klasörü içinde
“PLC_Code_A.doc” olarak kaydedilir. Girilen her işaretli dil için ayrı bir kod
üretilmektedir. İstenirse bu kod kopyalanarak “PLC Simatic Manager” ortamında
derlenip çalıştırılabilir.

__
//------------- PLC KODUNU HESAPLAMA KISMI -------------

// "A Matrisi ile PLC Kodu Oluştur" ve "DG ile PLC Kodu Oluştur" tuşuna
// basılınca oluşan dosyaların kayıt edilecegi PLC dizinini döndürür.
AnsiString PLCDirectory()
{
 AnsiString temp = ExtractFilePath(ParamStr(0));
 return ExpandFileName(temp + "..\\PLC\\");
}
//---

// PLC kodunu Durum Geçiş Matrisinden hesaplama.

 65

// "DG ile PLC Kodu Oluştur" tuşuna basıldı.
void __fastcall TForm1::DGPLCBitBtnClick(TObject *Sender)
{
 AnsiString Dir;
 AnsiString FileName,OldFileName;
 AnsiString
Message1,Message2,Message3,Message4,Message5,Message6,Message7,Message8,Message9,Message10,Messa
ge11;
 FILE *fp;
 int event_count=0;
 int final_state_count=0;
 int state_count=0;
 int i,j;

 // PLC dizinindeki PLC_Code_DG.doc dosyası oluşturulup açılır.
 Dir = PLCDirectory();
 if (!DirectoryExists(Dir))
 ForceDirectories(Dir);

 FileName = Dir + "PLC_Code_DG.doc";

 if((fp = fopen(FileName.c_str(), "w")) == NULL)
 {
 return;
 }

 // PLC kodunun, girilen Lm(G)'ye bağlı olan kısımları hesaplanır.
 event_count = EventListBox->Items->Count;
 final_state_count = XmListBox->Items->Count-1;
 state_count = StateListBox->Items->Count;

 if(event_count == 0)
 return;

 Message10 = "";

 for(i=1;i<XmListBox->Items->Count-1;i++)
 {
 Message10 = Message10 + XmListBox->Items->Strings[i]+",";
 }
 Message10 = Message10 + XmListBox->Items->Strings[i];

 Message11 = "";

 for(i=1;i<DGStringGrid->ColCount; i++)
 {
 for(j=1;j<DGStringGrid->RowCount; j++)
 {
 if(DGStringGrid->Cells[i][j] == "")
 {
 if((i == DGStringGrid->ColCount-1)&&(j == DGStringGrid->RowCount-1))
 Message11 = Message11 + "0";
 else
 Message11 = Message11 + "0"+",";
 }
 else
 {
 if((i == DGStringGrid->ColCount-1)&&(j == DGStringGrid->RowCount-1))
 Message11 = Message11 + DGStringGrid->Cells[i][j];
 else
 Message11 = Message11 + DGStringGrid->Cells[i][j]+",";
 }
 }
 }

 Message1 = "// PLC giriş değerleri ve ON/OFF durumları \n";

 66

 Message2 = "I_STATECOUNTER:ARRAY[1.."+IntToStr(event_count)+",1..2] OF BOOL :=
 "+IntToStr(event_count)+"(0),"+IntToStr(event_count)+"(0); \n";
 Message3 = "I_INITIALSTATE:ARRAY[1.."+IntToStr(event_count)+"] OF BOOL :=
 "+IntToStr(event_count)+"(0); \n\n";
 Message4 = "EVENTCOUNT:INT:="+IntToStr(event_count)+"; // Girilen olay sayısı \n";
 Message5 = "FINALSTATECOUNT:INT:="+IntToStr(final_state_count)+"; // İşaretli durum sayısı \n\n";

 Message6 = "// Borland kodundan aktarılan işaretli durumlar \n";
 Message7 = "FINAL_STATES:ARRAY[1.."+IntToStr(final_state_count)+"] OF INT:= "+Message10+";
 \n";
 Message8 = "//Borland kodundan aktarılan Durum Geciş Matrisi \n";
 Message9 = "DURUMGECISM:ARRAY[1.."+IntToStr(event_count)+",1.."+IntToStr(state_count)+"] OF
 INT:= "+Message11+"; \n\n";

 // PLC kodunun girilen Lm(G)'ye bağlı olmayan sabit kısımları PLC_Code_DG.doc'a eklenir.
 fwrite(DGMemo1->Text.c_str(),DGMemo1->Text.Length(),1,fp);

 // PLC kodunun, girilen Lm(G)'ye bağlı olan kısımları PLC_Code_DG.doc'a eklenir.
 fwrite(Message1.c_str(),Message1.Length(),1,fp);
 fwrite(Message2.c_str(),Message2.Length(),1,fp);
 fwrite(Message3.c_str(),Message3.Length(),1,fp);
 fwrite(Message4.c_str(),Message4.Length(),1,fp);
 fwrite(Message5.c_str(),Message5.Length(),1,fp);
 fwrite(Message6.c_str(),Message6.Length(),1,fp);
 fwrite(Message7.c_str(),Message7.Length(),1,fp);
 fwrite(Message8.c_str(),Message8.Length(),1,fp);
 fwrite(Message9.c_str(),Message9.Length(),1,fp);

 fwrite(DGMemo3->Text.c_str(),DGMemo3->Text.Length(),1,fp);

 fclose(fp);
}
//---

// PLC kodunu A Matrisininden hesaplama.
// "A Matrisi ile PLC Kodu Oluştur" tuşuna basıldı.
void __fastcall TForm1::APLCBitBtnClick(TObject *Sender)
{
 AnsiString Dir;
 AnsiString FileName,OldFileName,TIndex;
 AnsiString
Message1,Message2,Message3,Message4,Message5,Message6,Message7,Message8,Message9,Message10,

Message11,Message12,Message13,Message14,Message15,Message16,Message17,Message18,Message19,
Message20,

Message21,Message22,Message23,Message24,Message25,Message26,Message27,Message28,Message29,
Message30,
 Message31,Message32,Message33;
 FILE *fp;
 int event_count=0;
 int final_state_count=0;
 int state_count=0;
 int trans_count=0;
 int i,j,tseparator;

 // PLC dizinindeki PLC_Code_A.doc dosyası oluşturulur ve açılır.
 Dir = PLCDirectory();
 if (!DirectoryExists(Dir))
 ForceDirectories(Dir);

 FileName = Dir + "PLC_Code_A.doc";

 if((fp = fopen(FileName.c_str(), "w")) == NULL)
 {
 return;
 }

 67

 // PLC kodunun, girilen Lm(G)'ye bağlı olan kısımları hesaplanır.
 event_count = EventListBox->Items->Count;
 final_state_count = XmListBox->Items->Count-1;
 state_count = StateListBox->Items->Count;
 trans_count = TransListBox->Items->Count;

 if(event_count == 0)
 return;

 if(AListBox->Items->Count == 0)
 return;

 Message30 = "";

 for(i=1;i<XmListBox->Items->Count-1;i++)
 {
 Message30 = Message30 + XmListBox->Items->Strings[i]+",";
 }
 Message30 = Message30 + XmListBox->Items->Strings[i];

 Message31 = "";

 for(i=1;i<DGStringGrid->ColCount; i++)
 {
 for(j=1;j<DGStringGrid->RowCount; j++)
 {
 if(DGStringGrid->Cells[i][j] == "")
 {
 if((i == DGStringGrid->ColCount-1)&&(j == DGStringGrid->RowCount-1))
 Message31 = Message31 + "0";
 else
 Message31 = Message31 + "0"+",";
 }
 else
 {
 if((i == DGStringGrid->ColCount-1)&&(j == DGStringGrid->RowCount-1))
 Message31 = Message31 + DGStringGrid->Cells[i][j];
 else
 Message31 = Message31 + DGStringGrid->Cells[i][j]+",";
 }
 }
 }

 Message32 = "";

 for(i=0;i<TransListBox->Items->Count;i++)
 {
 tseparator = TransListBox->Items->Strings[i].Pos("-");

 if(tseparator > 1)
 TIndex = TransListBox->Items->Strings[i].SubString(tseparator+1,1);

 int col_no = find_column_no(TIndex,1);

 if(i == TransListBox->Items->Count-1)
 Message32 = Message32 + IntToStr(col_no);
 else
 Message32 = Message32 + IntToStr(col_no)+",";
 }

 Message33 = "";

 for(i=1;i<trans_count+1; i++)
 {

 68

 for(j=1;j<state_count+1; j++)
 {
 if((i == trans_count)&&(j == state_count))
 Message33 = Message33 + IntToStr(a[i][j]);
 else
 Message33 = Message33 + IntToStr(a[i][j])+",";
 }
 }

 Message1 = "FUNCTION_BLOCK FB1 \n\n";
 Message2 = "VAR_TEMP \n";
 Message3 = "I,J,M,K,L:INT; \n";
 Message4 = "INDEX:INT; \n";
 Message5 = "STATE_CHANGED:BOOL; \n";
 Message6 = "FF_STATE:BOOL; // Deadlock olma durumu \n";
 Message7 = "U1:ARRAY[1.."+IntToStr(trans_count)+"] OF INT; \n";
 Message8 = "UA:ARRAY[1.."+IntToStr(state_count)+"] OF INT; \n";
 Message9 = "END_VAR \n\n";
 Message10 = "VAR \n";
 Message11 = "XK:ARRAY[1.."+IntToStr(state_count)+"] OF INT:= "+IntToStr(state_count)+"(0); \n";
 Message12 = "X0:ARRAY[1.."+IntToStr(state_count)+"] OF INT; \n\n";
 Message13 = "// Borland kodundan aktarılan işaretli durumlar \n";
 Message14 = "FINAL_STATES:ARRAY[1.."+IntToStr(final_state_count)+"] OF INT:= "+Message30+";
 \n";
 Message15 = "//Borland kodundan aktarılan geçişler \n";
 Message16 = "TRANSITIONS:ARRAY[1.."+IntToStr(trans_count)+"] OF INT:= "+Message32+"; \n";
 Message17 = "//Borland kodundan aktarılan geçiş sayısı \n";
 Message18 = "TRANS_COUNT:INT := "+IntToStr(trans_count)+"; \n";
 Message19 = "//Borland kodundan aktarılan Durum Geciş Matrisi \n";
 Message20 = "DURUMGECISM:ARRAY[1.."+IntToStr(event_count)+",1.."+IntToStr(state_count)+"] OF
 INT:= "+Message31+"; \n\n";
 Message21 = "//Borland kodundan aktarılan Petri Net A Matrisi \n";
 Message22 = "A:ARRAY[1.."+IntToStr(trans_count)+",1.."+IntToStr(state_count)+"] OF
 INT:="+Message33+"; \n";
 Message23 = "// PLC giriş değerleri ve ON/OFF durumları \n";
 Message24 = "I_STATECOUNTER:ARRAY[1.."+IntToStr(event_count)+",1..2] OF BOOL :=
 "+IntToStr(event_count)+"(0),"+IntToStr(event_count)+"(0); \n";
 Message25 = "I_INITIALSTATE:ARRAY[1.."+IntToStr(event_count)+"] OF BOOL :=
 "+IntToStr(event_count)+"(0); \n\n";
 Message26 = "EVENTCOUNT:INT:="+IntToStr(event_count)+"; // Girilen olay sayısı \n";
 Message27 = "FINALSTATECOUNT:INT:="+IntToStr(final_state_count)+"; // işaretli durum sayısı \n";
 Message28 = "STATECOUNT:INT:="+IntToStr(state_count)+"; // durum sayısı\n\n";

 // PLC kodunun, girilen Lm(G)'ye bağlı olan kısımları PLC_Code_A.doc'a eklenir.
 fwrite(Message1.c_str(),Message1.Length(),1,fp);
 fwrite(Message2.c_str(),Message2.Length(),1,fp);
 fwrite(Message3.c_str(),Message3.Length(),1,fp);
 fwrite(Message4.c_str(),Message4.Length(),1,fp);
 fwrite(Message5.c_str(),Message5.Length(),1,fp);
 fwrite(Message6.c_str(),Message6.Length(),1,fp);
 fwrite(Message7.c_str(),Message7.Length(),1,fp);
 fwrite(Message8.c_str(),Message8.Length(),1,fp);
 fwrite(Message9.c_str(),Message9.Length(),1,fp);
 fwrite(Message10.c_str(),Message10.Length(),1,fp);
 fwrite(Message11.c_str(),Message11.Length(),1,fp);
 fwrite(Message12.c_str(),Message12.Length(),1,fp);
 fwrite(Message13.c_str(),Message13.Length(),1,fp);
 fwrite(Message14.c_str(),Message14.Length(),1,fp);
 fwrite(Message15.c_str(),Message15.Length(),1,fp);
 fwrite(Message16.c_str(),Message16.Length(),1,fp);
 fwrite(Message17.c_str(),Message17.Length(),1,fp);
 fwrite(Message18.c_str(),Message18.Length(),1,fp);
 fwrite(Message19.c_str(),Message19.Length(),1,fp);
 fwrite(Message20.c_str(),Message20.Length(),1,fp);
 fwrite(Message21.c_str(),Message21.Length(),1,fp);
 fwrite(Message22.c_str(),Message22.Length(),1,fp);

 69

 fwrite(Message23.c_str(),Message23.Length(),1,fp);
 fwrite(Message24.c_str(),Message24.Length(),1,fp);
 fwrite(Message25.c_str(),Message25.Length(),1,fp);
 fwrite(Message26.c_str(),Message26.Length(),1,fp);
 fwrite(Message27.c_str(),Message27.Length(),1,fp);
 fwrite(Message28.c_str(),Message28.Length(),1,fp);

 // PLC kodunun, girilen Lm(G)'ye bağlı olmayan sabit kısımları PLC_Code_A.doc'a eklenir.
 fwrite(APLCMemo->Text.c_str(),APLCMemo->Text.Length(),1,fp);

 fclose(fp);

}

__

3.2 PLC SCL Programı

SCL programında PLC girişleri olaylar, çıkışları ise işaretli durumlar olarak kabul
edilmiştir. Bir olayın oluşması için ona karşılık düşen giriş anahtarının iki kez durum
değiştirmesi gerekmektedir. Gelinen yeni durum iki ayrı yöntemle belirlenir. Bunlar
“durum geçiş diyagramı” ve “Petri ağı A matrisi” yöntemleridir. Çıkışlar 1’den
başlayarak işaretli durumlara karşı düşecek şekilde indekslenmiştir.

3.2.1 Durum Geçiş Diyagramı Yöntemi

Olaylara karşılık düşen giriş anahtarlarının ilk değerleri I_INITIALSTATE dizisinde,
değer değiştirme sayıları ise I_STATECOUNTER dizisinde tutulur; bu değer “2”
olduğunda, giriş anahtarı iki kez değer değiştirmiş yani olay oluşmuş kabul edilir. Bu
dizilerin boyutları olay sayısı kadardır.

Olay sayısı, işaretli durum sayısı, işaretli durumlar ve durum geçiş matrisi Borland
C++ kodu tarafından girilen işaretli dile göre hesaplanır.

PLC kodunun ilk çevriminde giriş anahtarlarının ilk değerleri saklanır ve otomatın
ilk durumu PREVIOUSSTATE değişkeninde “1” olarak tutulur. Her PLC
çevriminde olay sayısı kadar giriş anahtarının değer değiştirip değiştirmediği kontrol
edilir. Eğer herhangi bir anahtar iki kez değer değiştirmişse o anahtara karşılık düşen
olay oluşmuş kabul edilir ve olay EVENTID değişkeninde tutulur.

Durum geçiş matrisinin “DURUMGECISM” olay sayısı kadar sütunu, durum sayısı
kadar satırı vardır. DURUMGECISM[x,y]=z gösterilimi; PLC y durumundayken x
olayı oluştuğunda z durumuna geçildiğini ifade eder. Bu yöntemle yeni bir olay
oluştuğunda (EVENTID>0 koşulu sağlandığında) gelinen yeni durum belirlenir ve

 70

PREVIOUSSTATE’e atanır. PLC çıkışları sıfırlanır ve DEBUGMODE değişkeninin
değerine göre çıkışlar belirlenir. Programda gelinen her yeni durum gözlemlenmek
istenirse DEBUGMODE değişkeni TRUE yapılarak tüm durumlar kendi değerlerini
gösterecek şekilde çıkışa verilir. DEBUGMODE değişkeninin varsayılan değeri
FALSE’tur yani sadece işaretli durumlar, indekslenerek çıkışta gözlemlenir. Eğer
gelinen durum açmaz bir durum ise yani durum geçiş matrisinde o duruma ilişkin
satırlar “0” ise PLC ilk durumu “1”e döndürülür. Her çevrim sonunda oluşan olaya
ait işlemler bittiği için EVENTID değişkeni sıfırlanır.

__
FUNCTION_BLOCK FB1

VAR_TEMP
I:INT;
J:INT;
FF_STATE : BOOL ; // Deadlock olma durumu
M,K,L:INT;
END_VAR

VAR
PREVIOUSSTATE:INT; // PLC nin bir önceki durumu
FIRSTCYCLE:BOOL;
DEBUGMODE:BOOL; // TRUE iken durumu çıkışa verir
 // FALSE iken işaretli durumu çıkışa verir
EVENTID:INT:=0; // Gerçekleşen olay (PLC girişi ON/OFF veya OFF/ON olduğunda olay gerçekleşmiş kabul
 // edilir.

// PLC giriş değerleri ve ON/OFF durumları
I_STATECOUNTER:ARRAY[1..2,1..2] OF BOOL := 2(0),2(0);
I_INITIALSTATE:ARRAY[1..2] OF BOOL := 2(0);
EVENTCOUNT:INT:=2; // Girilen olay sayısı
FINALSTATECOUNT:INT:=3; // İşaretli durum sayısı

// Borland kodundan aktarılan işaretli durumlar
FINAL_STATES:ARRAY[1..3] OF INT:= 2,4,6;
//Borland kodundan aktarılan Durum Geciş Matrisi
DURUMGECISM:ARRAY[1..2,1..6] OF INT:= 2,3,4,0,6,0,4,5,0,0,1,0;

END_VAR

BEGIN
// İlk çevrimde PLC girişlerinin ilk değerleri saklanır.
// Başlangıç durumu Borland tarafında olduğu gibi 1 kabul edilir.
IF FIRSTCYCLE = FALSE THEN
 M:=1;
 FOR K:=0 TO 12 DO
 FOR L:=0 TO 7 DO
 I_INITIALSTATE[M]:=I[K,L];
 M := M + 1;
 IF M = EVENTCOUNT+1 THEN // Eğer olay sayısı kadar girişi güncellediysek
 EXIT; // bizim için yeterli, exit ile çıkabiliriz.
 END_IF;
 END_FOR;
 IF M = EVENTCOUNT+1 THEN
 EXIT;
 END_IF;
 END_FOR;
 PREVIOUSSTATE:=1; // PLC nin ilk durumu
 FIRSTCYCLE := TRUE;
END_IF;

 71

DEBUGMODE := FALSE; // Debugmode TRUE olduğu zaman çıkış olarak otomatın durumunu verir.
 // FALSE iken sadece işaretli durumlar çıkışa verilir.

// PLC giriş değerlerinin ON/OFF veya OFF/ON olup olmadığı kontrol edilir.
// Kontrol sonucunda gerçekleşen olay tesbit edilir.
M:=1;

FOR K:=0 TO 12 DO
 FOR L:=0 TO 7 DO
 IF I[K,L] <> I_INITIALSTATE[M] THEN
 IF I_STATECOUNTER[M,1] = TRUE THEN
 I_STATECOUNTER[M,2] := TRUE; // Giriş ON/OFF veya OFF/ON oldu
 ELSE
 I_STATECOUNTER[M,1] := TRUE; // Giriş ON veya OFF oldu
 END_IF;

 I_INITIALSTATE[M]:=I[K,L]; // Giriş değeri güncellenir.
 IF (I_STATECOUNTER[M,2] = TRUE)THEN
 EVENTID:=M;
 I_STATECOUNTER[M,1] := FALSE;
 I_STATECOUNTER[M,2] := FALSE;
 EXIT;
 END_IF;
 END_IF;

 M := M + 1;
 IF M = EVENTCOUNT+1 THEN // Eğer olay sayısı kadar counterı güncellediysek
 EXIT; // bizim için yeterli, exit ile çıkabiliriz.
 END_IF;
 END_FOR;

 IF M = EVENTCOUNT+1 THEN // Eğer olay sayısı kadar counterı güncellediysek
 EXIT; // bizim için yeterli, exit ile çıkabiliriz.
 END_IF;
END_FOR;

// Gerçekleşen olay durum değişimine sebep oluyorsa PLC nin durumu güncellenir.
// Gelinen yeni durum işaretli durum ise PLC nin çıkışına verilir.
IF EVENTID <> 0 THEN
 IF DURUMGECISM[EVENTID,PREVIOUSSTATE]<> 0 THEN
 PREVIOUSSTATE:=DURUMGECISM[EVENTID,PREVIOUSSTATE];
 // PLC çıkışları sıfırlanır.
 FOR K:=0 TO 12 DO
 FOR L:=0 TO 7 DO
 Q[K,L]:=FALSE;
 END_FOR;
 END_FOR;

 // DEBUGMODE TRUE ise çıkış olarak PLC nin durumu verilir.
 // FALSE ise işaretli duruma ait indeks çıkış olarak verilir.
 IF DEBUGMODE = TRUE THEN
 K := PREVIOUSSTATE DIV 8;
 L := PREVIOUSSTATE MOD 8;
 Q[K,L]:= TRUE;
 ELSE
 FOR I:=1 TO FINALSTATECOUNT DO
 IF PREVIOUSSTATE = FINAL_STATES[I] THEN
 FF_STATE := TRUE;
 FOR J:=1 TO EVENTCOUNT DO
 IF DURUMGECISM[J,PREVIOUSSTATE]<>0 THEN
 FF_STATE := FALSE;
 END_IF;
 END_FOR;

 K := I DIV 8;
 L := I MOD 8;

 72

 Q[K,L]:= TRUE;

 // PLC nin durumu bir deadlock durumu ise ilk state'e döner.
 IF FF_STATE = TRUE THEN
 PREVIOUSSTATE := 1;
 END_IF;
 END_IF;
 END_FOR;
 END_IF;

 END_IF;

 // Gerçekleşen olaya ait işlemler yapıldı. Bir sonraki çevrim için sıfırlanır.
 EVENTID:=0;
END_IF;

END_FUNCTION_BLOCK

__

 73

 Şekil 3.3 : Durum Geçiş Diyagramı Yöntemi İşaret Akış Diyagramı

 74

3.2.2 Petri Ağı A Matrisi Yöntemi

Olaylara karşılık düşen giriş anahtarlarının ilk değerleri I_INITIALSTATE dizisinde,
değer değiştirme sayıları ise I_STATECOUNTER dizisinde tutulur; bu değer “2”
olduğunda, giriş anahtarı iki kez değer değiştirmiş yani olay oluşmuş kabul edilir. Bu
dizilerin boyutları olay sayısı kadardır.

Olay sayısı, durum sayısı, işaretli durum sayısı, t-geçiş sayısı, işaretli durumlar,
durum geçiş matrisi, Petri ağı A matrisi ve t-geçişleri Borland C++ kodu tarafından
girilen işaretli dile göre hesaplanır.

PLC kodunun ilk çevriminde giriş anahtarlarının ilk değerleri saklanır ve otomatın
ilk durumu PREVIOUSSTATE değişkeninde “1” olarak tutulur, Xo durum dizisinde
[1 0 0 .. 0] olacak şekilde tutulur. Xo dizisinin boyutu durum sayısı kadardır. Her
PLC çevriminde olay sayısı kadar giriş anahtarının değer değiştirip değiştirmediği
kontrol edilir. Eğer herhangi bir anahtar iki kez değer değiştirmişse o anahtara
karşılık düşen olay oluşmuş kabul edilir ve olay EVENTID değişkeninde tutulur.

Durum geçiş matrisinin “DURUMGECISM” olay sayısı kadar sütunu, durum sayısı
kadar satırı vardır. Petri ağı A matrisinin satırları t-geçişleri sayısı, sütunları ise
durum sayısı kadardır.

0k kX X u A= + denkleminde; 0X PLC’nin bulunduğu durum, ku oluşan olayın
t-geçişine ait dizi, A Petri ağ matrisi ve kX da gelinen yeni durumdur. Oluşan olaya

ait her t-geçişi için u girişleri belirlenir. Her durumda bir t-geçişi aktiftir yani durum
değişimine sebep olur. Gelinen yeni durum 0X dizisine atanır.

PLC çıkışları sıfırlanır ve DEBUGMODE değişkeninin değerine göre çıkışlar
belirlenir. Programda gelinen her yeni durum gözlemlenmek istenirse
DEBUGMODE değişkeni TRUE yapılarak tüm durumlar kendi değerlerini
gösterecek şekilde çıkışa verilir. DEBUGMODE değişkeninin varsayılan değeri
FALSE’tur yani sadece işaretli durumlar, indekslenerek çıkışta gözlemlenir. Eğer
gelinen durum açmaz bir durum ise yani durum geçiş matrisinde o duruma ilişkin
satırlar “0” ise PLC ilk durumu “1”e döndürülür. Her çevrim sonunda oluşan olaya
ait işlemler bittiği için EVENTID değişkeni sıfırlanır.

__
FUNCTION_BLOCK FB1

VAR_TEMP
I,J,M,K,L:INT;
INDEX:INT;
STATE_CHANGED:BOOL;

 75

FF_STATE:BOOL; // Deadlock olma durumu
U1:ARRAY[1..7] OF INT;
UA:ARRAY[1..6] OF INT;
END_VAR

VAR
XK:ARRAY[1..6] OF INT:= 6(0);
X0:ARRAY[1..6] OF INT;

// Borland kodundan aktarılan işaretli durumlar
FINAL_STATES:ARRAY[1..3] OF INT:= 2,4,6;
//Borland kodundan aktarılan geçişler
TRANSITIONS:ARRAY[1..7] OF INT:= 1,1,1,2,1,2,2;
//Borland kodundan aktarılan geçiş sayısı
TRANS_COUNT:INT := 7;
//Borland kodundan aktarılan Durum Geciş Matrisi
DURUMGECISM:ARRAY[1..2,1..6] OF INT:= 2,3,4,0,6,0,4,5,0,0,1,0;

//Borland kodundan aktarılan Petri Net A Matrisi
A:ARRAY[1..7,1..6] OF INT:=-1,1,0,0,0,0,0,-1,1,0,0,0,0,0,-1,1,0,0,0,-1,0,0,1,0,0,0,0,0,-1,1,1,0,0,0,-1,0,-
1,0,0,1,0,0;
// PLC giriş değerleri ve ON/OFF durumları
I_STATECOUNTER:ARRAY[1..2,1..2] OF BOOL := 2(0),2(0);
I_INITIALSTATE:ARRAY[1..2] OF BOOL := 2(0);

EVENTCOUNT:INT:=2; // Girilen olay sayısı
FINALSTATECOUNT:INT:=3; // işaretli durum sayısı
STATECOUNT:INT:=6; // durum sayısı

PREVIOUSSTATE:INT; // PLC nin bir önceki durumu

FIRSTCYCLE:BOOL;

DEBUGMODE:BOOL; // TRUE iken durumu çıkışa verir

 // FALSE iken işaretli durumu çıkışa verir

EVENTID:INT:=0; // Gerçekleşen olay (PLC girişi ON/OFF veya OFF/ON olduğunda olay gerçekleşmiş kabul
edilir.)

END_VAR

BEGIN

// İlk çevrimde PLC girişlerinin ilk değerleri saklanır.
// Başlangıç durumu Borland tarafında oldugu gibi 1 kabul edilir.
IF FIRSTCYCLE = FALSE THEN

 M:=1;

 FOR K:=0 TO 12 DO
 FOR L:=0 TO 7 DO
 I_INITIALSTATE[M]:=I[K,L];
 M := M + 1;

 IF M = EVENTCOUNT+1 THEN // Event sayısı kadar giriş yapıldıysa döngüden çıkılır.
 EXIT;
 END_IF;
 END_FOR;

 IF M = EVENTCOUNT+1 THEN // Event sayısı kadar giriş yapıldıysa döngüden çıkılır.
 EXIT;
 END_IF;
 END_FOR;

 76

 PREVIOUSSTATE:=1; // PLC nin ilk durumu
 FIRSTCYCLE := TRUE;

 // Başlangıç durum vektörü [1 0 ... 0]
 FOR I:=1 TO STATECOUNT DO
 X0[I] := 0;
 END_FOR;
 X0[1] := 1;
END_IF;

DEBUGMODE := FALSE;

// PLC giriş değerlerinin ON/OFF veya OFF/ON olup olmadığı kontrol edilir.
// Kontrol sonucunda gerçekleşen olay tesbit edilir.

M:=1;
FOR K:=0 TO 12 DO
 FOR L:=0 TO 7 DO
 IF I[K,L] <> I_INITIALSTATE[M] THEN
 IF I_STATECOUNTER[M,1] = TRUE THEN
 I_STATECOUNTER[M,2] := TRUE; // Giriş ON/OFF veya OFF/ON oldu
 ELSE
 I_STATECOUNTER[M,1] := TRUE; // Giriş ON veya OFF oldu
 END_IF;

 I_INITIALSTATE[M]:=I[K,L]; // Giriş değeri güncellenir.
 IF (I_STATECOUNTER[M,2] = TRUE)THEN
 EVENTID:=M;
 I_STATECOUNTER[M,1] := FALSE;
 I_STATECOUNTER[M,2] := FALSE;
 EXIT;
 END_IF;
 END_IF;

 M := M + 1;
 IF M = EVENTCOUNT+1 THEN // Event sayısı kadar giriş yapıldıysa döngüden çıkılır.
 EXIT;
 END_IF;
 END_FOR;

 IF M = EVENTCOUNT+1 THEN // Event sayısı kadar giriş yapıldıysa döngüden çıkılır.
 EXIT;
 END_IF;
END_FOR;

// Xk+1 = Xk + uA durum denklemi kullanılarak yeni durum belirlenir.
FOR I:=1 TO TRANS_COUNT DO
 U1[I] := 0;
END_FOR;

IF EVENTID <> 0 THEN

 FOR INDEX:=1 TO TRANS_COUNT DO
 STATE_CHANGED := TRUE ;
 IF TRANSITIONS[INDEX] = EVENTID THEN
 U1[INDEX] := 1;

 FOR I:=1 TO STATECOUNT DO
 UA[I] := 0;
 END_FOR;

 FOR I:=1 TO TRANS_COUNT DO
 FOR J:=1 TO STATECOUNT DO
 UA[J] := UA[J] + U1[I] * A[I,J];
 END_FOR;
 END_FOR;

 77

 FOR J:=1 TO STATECOUNT DO
 XK[J] := X0[J] + UA[J];
 IF XK[J] < 0 THEN
 EXIT;
 END_IF;
 END_FOR;

 IF J < STATECOUNT THEN
 STATE_CHANGED := FALSE ; // Gerçekleşen olay durum değişimine sebep olmuyor.
 FOR J :=1 TO STATECOUNT DO
 XK[J] := X0[J]; // Durum değiştirmediği için bir önceki durum şimdiki duruma atanır
 END_FOR;
 END_IF;

 FOR J :=1 TO STATECOUNT DO
 X0[J] := XK[J]; // Bir sonraki döngüde kullanmak için Xo yeni durumla güncellenir.
 END_FOR;

 IF STATE_CHANGED THEN
 EXIT;
 END_IF;

 FOR I:=1 TO TRANS_COUNT DO
 U1[I] := 0;
 END_FOR;

 END_IF;
 END_FOR;

 IF STATE_CHANGED THEN
 // PLC çıkışları sıfırlanır.
 FOR K:=0 TO 12 DO
 FOR L:=0 TO 7 DO
 Q[K,L]:=FALSE;
 END_FOR;
 END_FOR;

 // Durum vektöründen yeni durum belirlenir.
 FOR J :=1 TO STATECOUNT DO
 IF XK[J] = 1 THEN
 PREVIOUSSTATE := J;
 EXIT;
 END_IF;
 END_FOR;

 // DEBUGMODE TRUE ise çıkış olarak PLC nin durumu verilir.
 // FALSE ise işaretli duruma ait indeks çıkış olarak verilir.
 IF DEBUGMODE = TRUE THEN
 K := PREVIOUSSTATE DIV 8;
 L := PREVIOUSSTATE MOD 8;
 Q[K,L]:= TRUE;
 ELSE
 FOR I:=1 TO FINALSTATECOUNT DO
 IF FINAL_STATES[I]=0 THEN
 EXIT;
 END_IF;

 IF PREVIOUSSTATE = FINAL_STATES[I] THEN
 FF_STATE := TRUE;
 FOR J:=1 TO EVENTCOUNT DO
 IF DURUMGECISM[J,PREVIOUSSTATE]<>0 THEN
 FF_STATE := FALSE;
 END_IF;
 END_FOR;

 78

 K := I DIV 8;
 L := I MOD 8;
 Q[K,L]:= TRUE;

 // PLC nin durumu bir deadlock durumu ise ilk duruma döner.
 IF FF_STATE = TRUE THEN
 PREVIOUSSTATE := 1;
 FOR I:=1 TO STATECOUNT DO
 X0[I] := 0;
 END_FOR;
 X0[1] := 1;
 END_IF;

 END_IF;
 END_FOR;
 END_IF;
 END_IF;

 // Gerçekleşen olaya ait işlemler yapıldı. Bir sonraki çevrim için sıfırlanır.
 EVENTID:=0;
END_IF;

END_FUNCTION_BLOCK

__

 79

Şekil 3.4 : Petri Ağı A Matrisi Yöntemi İşaret Akış Diyagramı

 80

KAYNAKLAR

Cassandras, Christos G. ve Lafortune, Stephane, 1999. Introduction To Discrete
Event Systems, Kluwer Academic Publishers,
Boston/Dordrecht/London.

Cassandras, Christos G., 1993. Discrete Event Systems: Modeling and
Performance Analysis, Irwin Publ.

Yanik Memik, 2003. Borland C++ Builder, Seckin Yayincilik, Ankara.

 81

ÖZGEÇMİŞ

Anıl Şahin 1978 yılında Çanakkale’de doğdu. Orta öğrenimini 1995 yılında
Çanakkale Anadolu Lisesi’nde tamamladı. 1999 yılında İstanbul Teknik
Üniversitesi’nde Kontrol ve Bilgisayar Mühendisi diplomasını aldı. 1999 yılında
telekomünikasyon alanında faaliyet gösteren Nortel Netaş firmasında işe başladı.
Halen bu firmada yazılım geliştirme mühendisi olarak çalışmaktadır.

