ISTANBUL TEKNIK UNIVERSITESI * FEN BILIMLERI ENSTITUSU

_ BiGIMSEL DILLERDEN ENDUSTRIYEL
ISLEMCILERE OTOMATIK KOD URETME:
PETRI AG YAKLASIMI

YUKSEK LiSANS TEZi
Miih. Anil SAHIN

Anabilim Dali: Kontrol ve Bilgisayar Muhendisligi
Programi: Kontrol ve Bilgisayar Muhendisligi

OCAK 2007

ISTANBUL TEKNIiK UNIiVERSITESI * FEN BiLIMLERI ENSTITUSU

_ BICIMSEL DILLERDEN ENDUSTRIYEL
ISLEMCILERE OTOMATIK KOD URETME:
PETRi AG YAKLASIMI

YUKSEK LiSANS TEZi

Miih. Aml SAHIN

504991068

Tezin Enstitiiye Verildigi Tarih : 25 Aralik 2006
Tezin Savunuldugu Tarih : 29 Ocak 2007

Tez Danismani Prof.Dr. Leyla GOREN
Diger Jiiri Uyeleri Dog. Dr. Salman Kurtulan (L.T.U.)
Yrd. Do¢. Dr. Osman Kaan Erol (.T.U.)

OCAK 2007

ONSOZ

Yapmis oldugum bu calismada benden yardimlarini esirgemeyen Prof. Dr. Leyla
Goren’e, Dog. Dr. Salman Kurtulan’a, birlikte ¢alistigim arkadasim Ozde Tiryaki’ye

ve aileme tesekkiirii bir borg bilirim.

Ocak 2007 Anil Sahin

1

ICINDEKILER

KISALTMALAR
SEKIL LiSTESI
SEMBOL LiSTESI
OZET

SUMMARY

1. GIRIS
1.1. Sistem ve Model Kavrami
1.2. Sistemlerin Siniflandirilmasi ve Zaman Kavrami
1.3. Durum Kavrami ve Durum Uzay1 Modeli
1.4. Geribesleme Kavrami

1.5. Ayrik Olay Sistemleri

1.5.1. Zaman denetimli ve olay denetimli sistemler

1.5.2. Ayrik olay sistemlerinin karakteristik 6zellikleri

1.5.3. Ayrik olayli sistemlerde {i¢ seviyede soyutlama

1.6. Otomatlar ve Petri Aglar

1.7. Tez Calismasinin Amaci ve Elde Edilen Sonuglar
2. PETRI AGLARI

2.1. Giris

2.2. Petri Aglarinin Temelleri
2.2.1. Petri ag notasyonlar1 ve tanimlari
2.2.2. Petri aginin igaretlenmesi ve durum uzaylari
2.2.3. Petri ag dinamikleri
2.2.3.1 Durum denklemleri
2.2.4. Petri ag dilleri

2.2.5. Kuyruk sistemleri i¢in petri ag modelleri

2.3. Petri Aglar1 ve Otomatlarin Karsilagtirilmasi

2.3.1. Dilin ifade edilebilirligi ve otomattan petri agina gecis

2.3.2. Modiiler model insa etme
2.3.3. Karar verilebilirlik

2.4. Petri Aglarinin Analizi

111

vi
vii
viii
ix

10
12

13

14
15

15

15
15
19
21
24
26
28

30
30
32
33

33

2.4.1. Problemlerin siiflandirilmasi
2.4.1.1 Simirhilik
2.4.1.2 Giivenlik ve kilitlenme
2.4.1.3 Durumun kapsanabilirligi
2.4.1.4 Sakinim
2.4.1.5 Canlilik
2.4.1.6 Kesintisiz Olma

2.4.2. Lineer cebirsel teknikler

3. PROGRAM ACIKLAMALARI

3.1. Borland C++ Builder Programi1

3.2. PLC SCL Programi

3.2.1. Durum gegis diyagrami yontemi

3.2.2. Petri ag1 A matrisi yontemi
KAYNAKLAR
OZGECMIS

v

33
33
34
34
35
35
37
37
40

42

69
69
74
80
81

KISALTMALAR

DES : Discrete Event Systems

CVDS : Count Variable Dynamical System
PLC : Programmable Logic Controller
SCL : Structural Control Language

PNL : Petri Net Language

SEKIL LISTESI

Sekil 1.1
Sekil 1.2
Sekil 1.3
Sekil 1.4
Sekil 1.5
Sekil 2.1
Sekil 2.2
Sekil 2.3
Sekil 2.4
Sekil 2.5
Sekil 2.6
Sekil 2.7
Sekil 2.8
Sekil 2.9
Sekil 2.10
Sekil 3.1
Sekil 3.2
Sekil 3.3
Sekil 3.4

Sayfa No
: Durum Uzay1 Modelicocveeviieeiiieeiieeeeeeeeece e 5
: Rastgele YUITYUS ..ooooveerrieriieiieeie et 8
: Olay Denetimli Rastgele YUIGyUs ..ocoevveeeveeeiieeriieeeiieeeiee e 9
: CVDS ve DES GrafiKIericccoecveveeienienieiiiencciccieceene 12
: Isaret AK1S DIyagramiccooveveveveeeueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenns 14
1 Ornek 2.1 Petri AZ Grafloovevevveeeeeeeeeeceeeeeeeeeee e, 18
: Ornek 2.2 Petri A Graflocooooveiiiieeieeeeeeeeeeeeeeeeeeeee e 18
: Sekil 2.1 Grafinin Iki Isaretlemesiccoeveveveeeeeeeeeeeeeee. 20
: Petri Agimin Gegis Ateslemelericoeeeveeeciieeiiieeiiieecieeeiees 22
: Kuyruk Sisteminde Petri Ag Modellericcoceevvriiniincnicnenns 28
: Kuyruk Sisteminde Alternatif Petri Ag§ Modelleri 29
: Otomattan Petri AZINa GeGISeevveevieeiieiieiieeiie e 31
: Sekil 2.5 (a) Kuyruk Sisteminin Diizenlenmesiccccceu.ee... 32
: Ornek 2.6 Petri AZ Modelioovveevereceeiireeieeeeveseeeeee e 36
: Ornek 2.7 Petri A MOdelic.ovoveveveeeeeeeeeeeeeeeeeeeeees 38
: Programa Iliskin AKis Diyagramicccccocoevevecrreevevereeenenennns 41
: Program Araylizllcoooveeviiieiieecieecee e 42
: Durum Gegis Diyagram Yontemi Isaret Akis Diyagramu 73
: Petri Ag1 A Matrisi Yontemi Isaret Akis Diyagrami 79

vi

SEMBOL LiSTESI

TRpE I EXZO

= =

ROTE ™= »s

N el
=}

._.
S
:
:
3

=
s

: Otomat

: Petri ag1

: Durum kiimesi

: Olay kiimesi

: Durum geg¢is fonksiyonu
: Aktif olay kiimesi

: Baslangi¢c durumu

: Isaretli durumlar

: Yer kiimesi

: n adet yer

: Gegis kiimesi

: m adet gecis

: Petri ag matrisi

: Ark agirlik fonksiyonu
: Gegislerin etiketlenme fonksiyonu
: Atesleme vektorii

: Giris fonksiyonu

: Cikis fonksiyonu

: Regiiler dil

: Uretilen dil

: Isaretli dil

: Bos kelime

vil

BiCIMSEL DILLERDEN ENDUSTRIYEL ISLEMCILERE OTOMATIK
KOD URETME: PETRIi AG YAKLASIMI

OZET

Bu c¢alismada, bigimsel isaretli bir dilden endiistriyel bir islemciye otomatik kod
tireten bir program gelistirme amaglanmigtir. Bu amag i¢in, once isaretli dilden
iretilen dile gecilmis ve iliskin otomatin durum gecis diyagrami elde edilmistir.
Daha sonra durum gecis matrisinden sistemin Petri ag modeli elde edilmis ve bu
model temel alinarak kullanilan islemciye uygun kod iireten yazilim gergeklenmistir.
Bu islemler, tiim asamalar1 gorsel olarak sunmaya imkan veren Borland C++ Builder
ortaminda gergeklestirilmistir. Endiistriyel islemci olarak SIMATIC-300 se¢ilmis ve
standart bir dil olan SCL dilinde kod tiretilmistir. Benzer yazilimlarda ortaya ¢ikan
ve ilgili literatiirde “c1g etkisi” (avalanche effect) olarak adlandirilan problem analiz
edilmis ve ¢1g etkisinden arindirilmig SCL kodu iiretilmistir. Olusturulan yazilim

cesitli endiistriyel 6rnekler tizerinde denenmis ve basarili sonuglar alinmstir.

viil

GENERATING AUTOMATIC CODE FROM FORMAL LANGUAGES TO
INDUSTRIAL PROCESSORS: PETRI NET APPROACH

SUMMARY

In this study, target is generating automatic code from formal languages to industrial
processors. For this purpose, first marked language is converted to generated
language and state transition diagram of the related automata is identified. Then,
petri net model of system is identified from state transition matrix and a software
which generates automatic code from this model is developped in a language
appropriate for the processor. This software is developped in Borland C++ Builder
due to its visual properties. For industrial processor, SIMATIC-300 is choosen and
code is generated in SCL language which is the standard language of this processor.
Avalanche effect problem which can be seen in similar softwares is analyzed and
SCL code is improved to eliminate this problem. Generated software is tested in

various industrial examples and successful results are achieved.

X

1. GIRiS

Bilgisayar, haberlesme ve sensor teknolojilerindeki hizli gelismeler, “yeni” dinamik
sistemlerin sayilarinda biiyilik bir artisa sebep olmustur. Bu “yeni” dinamik
sistemlerin bazilar1 teknolojiktir ve c¢ogu da ¢ok karmagiktir. Bilgisayar ve
haberlesme aglari, otomatik {iretim sistemleri, hava trafik kontrol sistemleri, akilli
ulasim sistemleri, dagitilmis yazilim sistemleri bunlardan birkagidir. Bu
sistemlerdeki ‘“‘aktivite”lerin Onemli bir kismi, hatta bazilarinda tiimii, insanlar
tarafindan tasarlanmis islemsel kurallara bagl olarak olusurlar ve davranirlar. Bu
nedenle de, bunlarin dinamikleri “ayrik olaylarin” asenkron olarak olusmasiyla
karakterize edilir; bu olaylarin bazilar1 kontrollu (klavyenin bir tusuna basilmasi)
olabilirken bazilar1 ise kontrolsuz olabilir (bir cihazin aniden bozulmasi). Bu
gercekler nedeniyle, dinamik sistemlerin bu sinifi i¢in “ayrik olay sistemler” terimi

kullanilir.

Gliniimiizdeki diferansiyel ve fark denklemleri merkezli matematiksel birikim (ki
bunlar sistem ve kontrol miihendisliginde, ait olduklar1 doga yasalari nedeniyle
“zaman denetimli” sistemlerin modelleri ve g¢aligmalart i¢in ¢ok uzun zamandir
kullanilmaktadir) ayrik olay sistemleri icin uygun degildir. Bu nedenle yeni
modelleme yontemleri, analiz teknikleri, tasarim araglari, test metodlar1 ve sistematik
kontrol ve optimizasyon prosediirleri gelistirilmesi gerekir ki, bu “yeni” nesil

karmasgik sistemlerin analizi ve tasarimi miimkiin olabilsin.

Bu yeni nesil karmagsik sistemlerden biri olan bilgisayarin kendisi bu tiir sistemlerin
tasarimi, analizi ve kontrolu i¢in yeni tekniklerin ve prosediirlerin gelistirilmesinde
onemli bir rol oynamaya baglamistir. Ayrik olay sistemlerinin sahip oldugu veya
olmaya yliz tuttugu kapasite ne kadar heyecan verici ise sistemlerin karmasikligi da
bir o kadar disindiricidir. Giiglii metodlarin bulunmasi1 sadece tasarim
yontemlerinin gelistirilmesi i¢in degil ayni zamanda hatalar1 6nlemek igin de

gereklidir. Bu derece karmasik sistemlerde hatalar yikici olabilir.

Tarihsel olarak, bilim adamlar1 ve mithendisler; fizik, kimya, mekanik ve yer ¢ekimi
yasalar1 ile 1iyi bir sekilde modellenen doga olaylari iizerinde ¢alismaya

yogunlagmislardir. Bu nedenle parcgaciklarin ve kat1 maddelerin yer degistirmesi, hizi

ve ivmesi, sivi ve gazlarin basinci, sicakligi ve akis hizlart gibi biyiikliklerle
ugrasilmaktadir. Bunlar “siirekli degiskenlerdir”, yani degerleri zamana gore siirekli
olarak degisir. Bu gergege dayanarak, matematiksel araglar ve teknikler bu tiirden
sistemlerin modellenmesi, analizi ve kontrolii i¢in gelistirilmiglerdir. Adi ve kismi
diferansiyel denklemler sistem analizi ve kontroliiniin temelini olusturur. Fakat
giinimiizde giderek artan teknolojik ve bilgisayar bagimli diinyada iki onemli

noktaya dikkat etmek gerekir;

e Karsilastigimiz biiytikliiklerin cogu “ayriktir” ve tam sayilarla sayilirlar. (Kag
adet ucak kalkmakta, kag adet telefon goriismesi aktif halde, vs.)

e Kullandigimiz proseslerin devreye girmesi anlik olarak olan “olay”lara
baghdir. (Klavyenin tusuna basmak, trafikte yesil 118in yanmasi, vs.) Bu
sistemler “olay denetimli” olarak adlandirilirlar.

1.1 Sistem ve Model Kavram

Tanim 1.1 “Sistem”:
Sistemin literatiirdeki ti¢ tanimi soyledir:

e Karmasik bir tamlik veya biitiinliik olusturmak tizere doga ve insan tarafindan

biraraya getirilen seylerin toplanmasi veya birlesmesi (Enc Americana)

e Bir tam birlesme olusturan elemanlarin bagimsiz bir grubu veya diizgiin bir
etkilesimi (Webster Dict.)

e Teke tek parcalarla gerceklestirilmesi miimkiin olmayan bir fonksiyonu
(amac1) yerine getirmek i¢in birarada davranan elemanlarin bir birlesimi
(IEEE Standart Dict. Of Electric&Electronic Terms)

Bu tanimlarin iki temel gercegi vardir:
e Sistem birbiriyle etkilesimli olan elemanlardan olusur.

e Sistem amag fonksiyonu yerine getirmek amaciyla biraraya getirilir. Burada

biraraya getirilirken 6n varsayim bir amaci yerine getirmektir.

Vurgulanmasi gereken diger 6nemli bir nokta da bir sistemin her zaman fiziksel
objeler ve doga yasalar1 ile biraraya getirilmesinin zorunlu olmadigidir. Ornegin

sistem teori, ekonomik mekanizmalarin veya insan davraniginin ve toplumsal

dinamiklerin tanimlanmasinda ¢ok uygun bir ¢alisma zemini olusturur.

Sistemlerin analizi, kontrolu ve tasarimi i¢in matematiksel Olgiimler ve iglemler

yapmak gereklidir bu nedenle bazi tanimlara ihtiya¢ duyulur.

Tanmm 1.2 “Model”:

Bilimci veya miihendisler sistemlerin biiyiikliik analizi ile, kontrol ve tasarim i¢in bir
takim tekniklerin gelistirilmesi ile ve iyi tanimlanmis Olgiitler {izerinden sistem
davranisinin kapali l¢timleri ile ilgilenirler. Bu nedenle yukarida verilen tiimiiyle
niteliksel tanimlar uygun olmaz. Gegerli olan sistemin bir “model”i aranir. Sezgisel
olarak, sistemin kendi davranisi ile basit olarak uyusan bir cihaz (arag) olarak bir
model diisliniiliir. Daha ayrintili agiklamak gerekirse, bu davranist anlamak i¢in bazi
matematiksel kavramlar gelistirmeye ihtiya¢ duyulur. Kesin olarak sdylenebilir ki;
bir sistem gergek bir seydir (bir kuvvetlendirici, bir otomobil, bir insan viicudu gibi),
bir model ise bir “soyutlama”dir, matematiksel denklemlerin olusturdugu bir

kimedir.

Genellikle model, sistemin gercek davranigina sadece yaklasik bir davranig gosterir.
Verilen bir sistem i¢in, prensip olarak, her zaman bir model elde etmek miimkiindiir,
ancak tersi dogru degildir, ¢iinkii matematiksel denklemler her zaman gergek

sonuglar vermez.

1.2 Sistemlerin Simiflandirilmasi ve Zaman Kavrami

Sistemleri siniflandirmanin yollarindan biri zamandir.

Tanim 1.3 “Statik ve Dinamik Sistemler”:

Statik sistemlerde sistemin ¢ikisi, y(t), gegmisteki giris ya da ¢ikis degerlerine bagh
degildir. Dinamik sistem de ise sistemin ¢ikisi, y(t), gecmisteki giris ya da ¢ikis

degerlerine baglidir.

Tanim 1.4 “Zamanla Degisen Ve Degismeyen Sistemler”:

Sistemin ¢ikist zamana gore degisiyorsa, y=g(u,t), zamanla degisen sistemdir.
Sistemin ¢ikis1 zamana gore degismiyorsa, y = g(u), zamanla degismeyen (stasyoner)

sistemdir.

1.3 Durum Kavrami ve Durum Uzay1 Modeli

Sistemlerin modellenmesinin temelini durum kavrami olusturur.

Tamm 1.5 “Durum”:

Bir sistemin ty anindaki durumu, tek basina u(t) (t> ty) bilgisinden, y(t) (&= to)
anindaki degerlerini belirlemeye yeten ve gereken bilgidir. Durum degiskenleri,
x(t) =[x1, X2, .. , XH]T olarak tanimlanir.

Tanim 1.6 “Durum Denklemleri”:

Verilen x(tp) degerinden t> ty i¢in x(t)’nin degerlerini belirlemek icin gerekli olan

denklem kiimesine “durum denklemleri” denir.
Tamm 1.7 “Durum Uzay1r”:

Bir sistemin “durum uzay1” genellikle X ile gosterilir, durumlarin miimkiin olan

biitiin degerlerinin yer aldig1 kiimedir. Durum denklemleri,
X'() = f(x(),u(t),t) (1.1)
durum uzayi1 modeli ise durum ve ¢ikis denklemleri ile tanimlanir.

X'(t) = f(x(),u(t),t) x(t,) = x,(baslangi¢ kosulu) (1.2)

y(®) = g(x(®),u(t),t) 1.3)

Verilen bir sistemin bir tek durum uzayr gosterilimi dolayisiyla modeli yoktur.
Ancak genellikle dogal fiziksel biiytlikliiklerin durum degiskenleri olarak se¢ildigi
modeller tercih edilir. Statik sistemlerde x(t) = 0 olacaktir, yani x(t) = st demektir ve
sistem sadece ¢ikis denklemleri ile belirlenir. Zamanla degismeyen bir sistemde ise
ve g, t’ye bagimli degildir, x(t) = f (x(t), u(t)) ve y(t) =g (x(t), u(t)) olacaktir.

uit) v(t)
=1z ut)

_ Jyb=gxuyg |

Sekil 1.1 : Durum Uzay1 Modeli

Tamim 1.8 “Lineer ve Lineer Olmayan Sistemler”:

Bir sistemin lineer olmasmin gerek ve yeter kosulu hem f(.) hem de g(.)

fonksiyonlarinin lineer olmasidir. Lineer durumda (1.2) ve (1.3) denklemleri,

X'(t) = A(t)X(t) + B(t)u(t) (1.4)

y(®) =COx(®)+D®u() (1.5)

haline gelir. Lineer sistemler kiimesi tiim sistemler igerisinde ¢ok kiiclik bir kiimeyi

olusturur, digerleri lineer olmayan sistemler olarak siniflandirilirlar.

Durum degiskenleri, reel sayilar veya reel degiskenli fonksiyonlar olabilecegi gibi
ayrik kiime veya tamsay: kiimesi de olabilirler, {ACIK, KAPALI}, {YUKSEK,
ORTA, ALCAK} veya {YESIL, KIRMIZI, MAVI} gibi. Ger¢ekte unutulmamalidir
ki modelleme islemi durumlarin, ¢ikislarin veya girislerin tanimlanmasi konusunda
alabildigine bir esneklige izin verirler. Ilgilenilen program veya uygulamaya bagh

olarak uygun modelleme segilir.

Sistemleri smiflandirmanin diger bir yolu ise model olarak segilen problemin

dogasina dayanir.

Tanim 1.9 “Siirekli Durum Sistemleri”:

Siirekli durum uzay1 modelinde, durum uzay1 X, n-boyutlu reel veya bazen karmagsik
sayilarin siirekli bir uzayindan olusur. Genellikle X sonlu boyutludur ancak sonsuz
oldugu durumlar da vardir. Bu da differensiyel denklemlerin kullanilmasin
gerektirir.

Tanimm 1.10 “Ayrik Durum Sistemleri”:

Ayrik durum uzayr modelinde, durum uzayr ayrik bir kiimedir. Durum gegis

mekanizmas1 basit lojik ifadelere dayanmaktadir. Buna ragmen durum
denklemlerinin formal olarak ifade edilebilmesi i¢in izlenen matematiksel yontem

olduke¢a karmasiktir.

Diger taraftan, siirekli durum uzay1 modelleri kolaylikla differansiyel denklemlerle
ifade edilebilirler.

1.4 Geribesleme Kavrami

Geribesleme kavrami, sistem davranisindan miimkiin bilgileri kullanarak, siirekli
olarak kontrol girisini sistemi istenen davramisa gotiirmek tizere ayarlar.
Geribeslemenin temel Ozelligi beklenmedik bozucular altinda sistemin istenen
bicimde c¢alismasin1 sagliyor olmasidir. Geribesleme kullanmanin avantajlari;
sistemin istenen davranisi beklenmedik bozuculara, modelde varsayilan
parametrelerde olusan hatalara karsi1 daha az duyarhidir, y(t) ¢ikisi istenen referans
isareti r(t)’yi “otomatik” olarak takip eder. Diger taraftan geribesleme kullanmanin
getirdigi baz1 dezavantajlar da vardir; ¢ikis1 gézlemek, 6lgmek ve kontroldr iginde
degerlendirmek i¢in sensorler ve diger karmasik cihazlar gerekir, tiim sistemin
davranmisin1 etkileyen geribesleme isareti enerji gerektirir, geribesleme gercekte
istenmeyen sistem davraniglari gibi bazi problemler yaratir, yani bazi problemleri

diizeltirken baz1 yeni problemler yaratir.

u(t) = y(r(t), x(,u (1.6)

1.5 Ayrik Olay Sistemleri

Simdiye kadar anlatilan sistemlerde zaman siirekli bir degisken olarak ele alindi. Bu
sekilde modellenen sistemler de diferansiyel denklemler gibi matematiksel bir temele
oturmaktadir. Sistemlerin giris ve ¢ikis degiskenlerinin zamanin ayrik anlarinda
tanimlanmis oldugu varsayilsin. Bunun sonucu olarak, ayrik zaman sistemleri elde
edilir. Ayrik zaman sistemlerini incelemenin nedenleri olarak; dijital bilgisayarlarin
calisma prensibi, diferansiyel denklemlerin niimerik c¢oziimleri, dijital kontrol
teknikleri ve dijital kontrolorler, bazi sistemlerin dogalar1 geregi ayrik zamanlh

olmalari; “ekonomik sistemler” gosterilebilir.

Ayrik olay sistemlerinin durum uzayi, {0,1,2, .. } gibi ayrik bir kiimeden olusur ve
durum gegisleri sadece zamanin ayrik noktalarinda gozlemlenir. Bu durum

gecislerine ise “olaylar” atanir.

Tanim 1.11 “Olay Kavram1”:

“Olay” sezgisel temeli kuvvetli basit ve ilkel bir kavramdir. Sadece anlik olarak
olustugu, bir durum degerinden diger bir durum degerine gecise neden oldugu
vurgulanabilir. Bir olay, belirli bir etki iizerinden tanimlanabilir, “birisi bir butona
basar” ya da dogal olarak bir olay beklenmedik bir sekilde ortaya ¢ikar, 6rnegin “cok
karmasik nedenlerden 6&tiirii bir bilgisayar ¢oker” ya da cesitli kosullarin bir sonucu
olarak bir olayla aniden karsilagilir, 6rnegin “bir tanktaki sivi seviyesi verilen degeri

aniden asar”.

[IPNA)

e’ sembolii bir olayr gostermek i¢in kullanilir. Bir sistem bir ¢ok olaydan

etkileniyorsa, “E” olaylar kiimesi tanimlanir. “E” ayrik bir kiimedir.
Ornek 1.1 “Rastgele Yiiriiyiis”:

iki boyutlu bir alanda yapilan rastgele yiiriiyiis i¢in, herhangi bir anda dort yone
(kuzey, giiney, dogu, bat1) dogru birim mesafe kadar hareket edilebildigi ve yoniin
rastgele secildigi varsayimi yapilir. Sistemin durumu (X, X;) konumlaridir. x; ve x;

sadece tam say1 degerleri alabilir. Yani durum uzay1 ayrik bir kiimedir.
X ={(i,]):0,j =m0, 41, (1.7)

Bu durumda, dogal bir olay kiimesi;

E={N,S,W,E} (1.8)

olacaktir. Her bir olay herhangi bir yone dogru yapilmis bir adim olarak
tanimlanmistir. (0,0) baslangi¢c durumunda sirasiyla {E, S, W, W, N, N, W} olaylarin

olustugu varsayilirsa Sekil 1.2°deki durum ydriingesi (sample path) elde edilir.

Sekil 1.2 Rastgele Yiirliyls

1.5.1 Zaman Denetimli ve Olay Denetimli Sistemler

Stirekli durumlu sistemlerde durum genellikle zaman degistiginde, degisir. Bu aym
zamanda ayrik zaman modelleri i¢in de dogrudur. Her saat tiklamasi, durumda bir
degisiklige sebep olur. Ciinkii “stirekli” durum degiskenleri zamana gore siirekli bir
sekilde degisirler. Bu nedenle bu sistemlere “zaman denetimli” sistemler denir. Bu
durumda, zaman degiskeni (t € R veya k e | dir.) bagimsiz degisken olarak ortaya

cikar ve giris, durum ve ¢ikis fonksiyonlarinin argiimanini olusturur.

Ayrik durum sistemlerinde durumlar sadece belirli zaman noktalarinda ani gegisler
seklinde degisir. Bu ani her gecise bir “olay” atanir. Bu gecislerin “zamanlama

mekanizmas1” iki durumda ele alinabilir;

e Her saat darbesinde, E’nin icinden bir olayin olustugu ve eger hicbir olay
olmayacaksa, bir “bos olay” olustugu varsayilir. Bos olay E’nin bir iiyesidir,

0zelligi ise hi¢ bir durum degisikligine sebep olmamasidir.

e Bir saat darbesiyle bagdagmayan ve onceden bilinmesinin gerekli olmadigi

(P2

bircok zamanda, bir olay “e”’nin oldugu duyurulur.
Bu iki durum arasindaki temel farklar vardir.

[lk durumda, durum gegisleri bir saat ile senkronize edilmistir. Her saat darbesinde
se¢ilmis bir olay olusur ve sistem durum degistirir ve bu islem tekrarlanir. Saat,
miimkiin olan herhangi bir durum gegisinden tek basina sorumludur. Ikinci durumda
ise olaylar asenkron olarak ve birlesik olay siireglerinin sonucu olarak meydana

gelirler. Bu siireglerin birbirinden bagimsiz olmasina gerek yoktur.

Bu iki durum arasindaki farklar zaman denetimli ve olay denetimli terimlere karsi

diisen farkliliklardan kaynaklanir. Siirekli durumlu sistemler dogalar1 geregi “zaman

8

denetimli” sistemlerdir. Oysa ayrik durum sistemlerinin hangi gruba dahil oldugu
durum gegiglerinin bir saat darbesiyle mi yoksa asenkron olarak olustuguna bagh
olarak degisir. Bir saat darbesiyle olusuyorsa zaman denetimli, asenkron olarak
olusuyorsa olay denetimlidir. Olay denetimli sistemlerin analizi ve modellenmesi ¢ok
daha karmasiktir ¢iinkli sistemin anlasilabilmesi i¢in belirlenmis olan ¢ok sayida

asenkron olay zamanlama mekanizmasi vardir.

Olay denetimli sistemlerdeki durum gegislerinin en iyi ve bilindik bir o6rnegi
bilgisayardaki “kesme” kavramidir. Bir bilgisayarda bir ¢ok islem bir saat isareti ile
senkronize edildigi, yani zaman denetimli oldugu halde, igletim sistemi zamanin
herhangi bir aninda olusan cagrilara cevap verebilecek sekilde tasarlanmistir. Bu
cagrilar kullanici istegi ya da Ozel bir takim olaylarin sonucunda olusabilir ancak

bunlar bilgisayarin saat isaretinden tamamen bagimsizdir.

Ornek 1.2 “Olay Denetimli Rastgele Yiiriiyiis”:

Sekill.2’deki rastgele yiiriiyilis bir “zaman denetimli” sistemdir. Bir saat verilmistir
ve her saat darbesinde bir oyuncu bir parcay1 hareket ettirir yani oyuncu E olay

kiimesi i¢inden bir olay secer.

Ancak rastgele yiriiylisiin alternatif bir bi¢cimi daha vardir, burada parcacigin
hareketinin kontrolu digerinden farklidir. Dort ayri oyuncunun oldugu ve bunlarin
herbirinin sadece bir yone hareketten sorumlu oldugu, her oyuncunun tesadiifen
davrandig1 ve parcacigr kendi yoniine dogru hareket ettirdigi varsayilir. Bunun
sonucu olarak, asenkron davranan oyuncular tarafindan tanimlanan “olay denetimli”

sistem ortaya ¢ikar.
N {7,9} ayrik zamanlarinda, S {2,10}, W {4,6} ve E {1,11} de isaret verirse;
E 5 W W N N 5 E

(Uﬁ)l l(lﬁ) l(l;l). (1=-1)l(0=-1} (U=-1)l(-1=1)l(-1=0)I(-lﬁ)l(-l:l)l(-lﬁ) l(ﬂ'ﬁ“}

0 1

|
I
3 4 5 6 7 g 9 10 11

| S

Sekil 1.3 Olay Denetimli Rastgele Yiiriiytis

Ornek 1.2°de iki olaymn tam olarak ayni anda olusamayacagi varsayilmistir. Eger
boyle bir durum olursa durum gegisi her iki olayin da oldugunu aksettirecek sekilde
olusmalidir. Ornegin, 1 aninda hem E hemde S’nin aymi anda olustugu varsayilirsa

sonu¢ durum (1,-1) olacaktir. Ancak her zaman bdyle olmaz, genel olarak iki farkli

olaym durum tizerindeki etkisini bu olaylarin olug sirasi belirler. Mesela, durum bir
banka hesabinin dengesi olsun ve baslangi¢ olarak sifir oldugu varsayilsin. A olay1
hesaba 100YTL para yatirilmasi, B olay1 ise kredi karti borcu olarak 100YTL
cekilmesi olarak tamimlansin. Bu iki olayin ayn1 anda oldugu varsayilirsa, bu
olaylarin olus siralar1 hesap dengesini etkiler. Eger A olay1 dnce olursa net etki sifir

olur. Eger B olay1 dnce olursa hesap Once eksiye diisecegi icin faiz 6denecektir.

Bu gibi durumlarda iki olaymm ayni anda olmasi ile farkli siralarda olmasinin

etkilerinin ayr1 ayr1 modellenmesi gerekir.

1.5.2 Ayrik Olay Sistemlerinin Karakteristik Ozellikleri

Sistem ve kontrol miihendisliginin bugiinkii basarisinin altinda yatan gercek
diferansiyel veya fark denklem temelli modellerdir. Bu matematiksel uygunluga

sahip modelleri kullanmak i¢in,

e Sistem “surekli durumlu” olmalidir.

x(.)’lerin siirekli degiskenler olmasi demektir, X(.)e R veya X(.) € C olabilir. Bu

nedenle bu tiirden sistemlere CVDS “Count Variable Dynamical System” denir.
Fiziksel biiyiikliiklerin ¢ogu bu kategoriye girerler. Siirekli degiskenlerde tiirevlerinin

alinabilir olmasi nedeniyle diferansiyel denklem kullanilabilir.
e Durum gegislerinin mekanizmasi “zaman denetimli” olmalidir.

Durumlarin degismesi zamanla olur, t veya k zaman degiskeni bu sistemlerin

modellenmesinde bagimsiz degiskendir.

CVDS’nin aksine DEDS (Discrete Event Dynamical System) yada DES’de ise;
e Durum uzay ayriktir.
e Durum gegisleri “olay denetimli”dir.

Bu 6zelliklere dayanarak DES’in informal tanimi verilebilir.
Tamm 1.12 “DES”:

Bir DES; ayrik durumlu, olay denetimli sistemdir yani durum degisimi zaman

boyunca asenkron olarak olusan ayrik olaylara baghdir.

Bir cok sistem oOzellikle teknolojik olanlar, gergekte ayrik durum sistemleridir.

10

Dogalar1 geregi Oyle olmasalar bile karmasik bir sistemin bir ayrik durum

goriinlimiiyle ilgilenen bir cok ugulama vardir.

Bir makinanin durumu {On, Off} ya da {Mesgul, Bosta, Arizali} olabilirken, bir
programi calistiran bir bilgisayar su ti¢ durum igerisinde degerlendirilebilir {Girig
bekliyor, Calisiyor, Bozuk}. Oyunlarin ¢ogu bir ayrik durum uzayina sahip olarak
modellenebilir. Satrangta, ornegin her miimkiin konfiglirasyon bir durum olarak

tanimlanir, olusan durum uzay1 ¢ok genistir ancak sonludur.

Olay denetimli sistemlerde durumlar zamanin sadece ayrik anlarinda degisirler ve bu
anlar “ayrik olaylarin” asenkron olarak olugsmalarina kars1 diisen zaman noktalaridir.
Eger bir durum gegisine neden olan her bir olay ile bir “olaylar” kiimesi
tanimlanabilirse, zaman bu sistemin denetiminde kullanilacak uygun bir bagimsiz

degisken olamaz.

CVDS ile DES’i aymran iki temel 6zellik Sekil 1.4 de gosterildigi gibi her sistem

siifina iligkin tipik yoriingelerinin karsilastirilmasi ile agiga ¢ikar.

e CVDS de durum uzay1 x € R reel sayilar kiimesidir ve x(t) € X degerini alir.
x(t) fonksiyonu genel olarak x(t) = f (x(t), u(t), t) seklindeki bir diferansiyel

denklemin ¢éztiimidiir. u(t) giris fonksiyonudur.

e DES’de durum uzayr ayriktir, X = {s;, Sy, S3, S4, S5, Se¢f. YOriinge bir
durumdan digerine atlamalar seklindedir ve bu atlama iglemi bir olay
oldugunda gergeklesir. Bir olay oldugu halde bir durum gegisi olmamis
olabilir, e; de oldugu gibi. Bu noktada x(t) = f (x(t), u(t), t) gibi bir denkleme
sahip olunamaz. Bu tir durumlarda olaylarin zaman boyunca nasil

davranacagini belirleyen bir mekanizma elde edilemez.

11

x(t)
56
g5

N/

A

53
52

5]

tl 213 t4t5 16 7

L

el e?.. e.?r 5;13.5 elﬁ e7
Sekil 1.4 CVDS ve DES Grafikleri

Bazi durumlarda sistem tiimiiyle CVDS oldugu halde sadece tesadiifen olusan bazi
ayrik olaylar nedeniyle baska bir yoriingeye sicrama yapabilir. Bu olaylar bir ¢alisma
modundan (durum denklemleri) baska bir calisma moduna gecisi saglarlar. Bu

sistemlere “Hibrit Sistemler” denir.

Ayrica ayrik zaman sistemler ile ayrik olay sistemlerinin karistirilmamasi gerekir.
Ayrik zaman sistemleri hem CVDS ve hem de DES’i igerirler. DES ve CVDS hem
siirekli hem de ayrik zamanli olarak modellenebilirler. Bir DES’i olusturan ayrik
olaylar eger reel zaman anlarinda olusurlarsa, DES’in siirekli zaman modeli elde

edilmis olur.

1.5.3 Ayrik Olayh Sistemlerde Ug¢ Seviyede Soyutlama

Verilen bir sistemde yiiriitiilebilecek tiim “zamanlanmis olaylar dizilerinin” yer aldig1
kiimeye sistemin “zamanlanmis dil” modeli denir. Olay kiimesi ‘E’ ve bu olaylarin

olusturdugu sonlu olay dizisine ise “kelime” denir.

Sistemin yoriingeler kiimesi hakkinda eger istatistiksel bilgiler varsa yani bir olayin
olusmas1 olasiliklara bagli ise bu sistemin modeline “stokastik zamanlanmis dil”

denir. Bu model en ayrintili modeldir ve olay bilgilerini (olaylarin sirasi ve olusma

12

bicimi), olaylarin zaman bilgilerini ve olaylarin basarili olusmas: hakkinda

istatistiksel bilgileri igerir.

Stokastik zamanlanmig dil modelinden istatistiksel bilgiler ¢ikartilirsa “zamanlanmis
dil” modeline gegilir. “Zamanlanmis dil” modelinden de zaman bilgileri ¢ikartilirsa

“zamanlanmamis dil” kisaca “dil” elde edilir.

“Diller”, ‘“zamanlanmis diller” ve “stokastik zamanlanmis diller” DES’lerin
modellenmesi ve lizerinde calisabilinmesi i¢in kullanilan {i¢ seviyeli soyutlamadir.
Bu soyutlamalardan hangisinin segilecegi, analizin amacina baghdir. Her ii¢ seviye

de birbirini tamamlayici niteliklere sahiptir.

1.6 Otomatlar ve Petri Aglarn

Bu ¢alismada, iki farkl “ayrik olay modellemesi” {lizerinde durulacaktir: Otomatlar
ve Petri Aglar1i. Bu bigimsel yapilar ortak bir ger¢ege sahiptir. Bu gercek de dilleri
bir durum gecis yapist kullanarak gostermesidir. Big¢imsel yapilar gosterdikleri
durum bilgileri ile birbirinden ayrilirlar. Bu yapilar ayrica, sistem bilesenlerinin ayrik
olay modellerinden hareketle bir sistemin ayrik olay modelinin insaa edilmesine izin
veren c¢esitli operasyonlarin kompozisyonuna da uygundur. Bu 6zellik otomat ve
petri aglarin1t model kurma ig¢in uygun kilar. Analiz ve sentez konularina, modeldeki

gecis yapilarinin yapisal 6zellikleri kullanilarak gegilebilir.
Bir DES’in taniminda iki 6zellik biiyiik 6nem tasir:

e Ayrik bir durum uzayi, X ile gosterilir.

e Ayrik bir olay kiimesi, E ile gosterilir.

Ayrik Olay Sistemleri’nde (Discrete Event Systems (DES)) ilk hedef bu sistemlerin
davranislarini tanimlayan ayni zamanda tasarim, kontrol ve performans hedeflerini

karsilayan modeller gelistirmektir.

Bir DES’in davranis1 ‘e,,e,,...,e > olay dizisi, “dil”, ile belirlenir. Bu dil gesitli

olaylarin zaman icerisinde hangi sirayla olustugunu belirler ancak bu olaylarin
olustugu zamana iligkin bir bilgi icermez. Bir sistemin ne zaman bir duruma girdigi
ya da ne kadar siire bu durumda kaldigi 6nemli degildir. Onemli olan durum

degisikliklerine sebep olan olaylar dizisi ve bu olaylara kars1 diisen yeni durumlardir.

Otomatlar ve Petri aglari DES’leri diller iizerinden modelleyen iki ana formalizmdir.

Otomatlar analiz ve kontrol i¢in uygun bir yapiya sahiptir, kullanimi kolaydir. Ancak

13

yapisal eksikliklerinden dolay1 durum uzaylar1 oldukga biiyiiyebilir. Petri aglari ise
daha fazla yapisal 6zellik tasimalarina ragmen otomatlar kadar analitik giice sahip
degildir.

1.7 Tez Cahismasinin Amaci ve Elde Edilen Sonuclar

Bu calismada, bicimsel isaretli bir dilden endiistriyel bir islemciye otomatik kod
iireten bir program gelistirme amaglanmistir. Bu amacg i¢in, once isaretli dilden
iretilen dile gecilmis ve bu dili lireten otomatin durum gecis diyagrami elde
edilmistir. Daha sonra durum gec¢is matrisinden sistemin Petri ag modeli elde edilmis
ve bu model temel alinarak kullanilan islemciye uygun kod iireten yazilim
gerceklenmistir. Bu islemler, tiim asamalar1 gorsel olarak sunmaya imkan veren
Borland C++ Builder ortaminda gerceklestirilmistir. Endiistriyel islemci olarak
SIMATIC-300 se¢ilmis ve standart bir dil olan SCL dilinde kod iiretilmistir. Benzer
yazilimlarda ortaya ¢ikan ve ilgili literatiirde “c1§ etkisi” (avalanche effect) olarak
adlandirilan problem analiz edilmis ve ¢i1§ etkisinden arindirilmis SCL kodu

tiretilmistir.

Bu ¢alismada {iretilen programin isaret akis diyagrami Sekil 1.5°de gosterildigi

gibidir. Oncelikle, girilen bir isaretli dilin otomati, “G”, belirlenir.

G={X,E, f,[,%,X,) (1.9)

Daha sonra G otomatinin durum geg¢is diyagramindan “N” Petri agina gecilir. Durum
denklemleri (X,,, = X, +U,A) kullanllarak olusan olaylara karsi diisen yeni

durumlar hesaplanir.

N

(P.T,AW,E,Lx,X,) (1.10)

Hem durum ge¢is diyagrami hem de Petri ag durum denklemleri kullanilarak

otomatin PLC’de ¢aligmasini saglayacak program SCL dilinde tiretilir.

Lm [zareth Dil Durum Gerig Divagrarm Petnt Met Durum Denbder PLC SCL Kodu

Sekil 1.5 : Isaret Akis Diyagrami

Olusturulan yazilim c¢esitli endiistriyel Ornekler {izerinde denenmis ve basarili

sonuclar alinmistir.

14

2. PETRi AGLARI

2.1 Giris

Petri aglari, zamanlanmamis DES modellenmesi i¢in otomatlara alternatif bir yontem
olusturur. Petri ag modelleri 1960 yilinda C.A.Petri tarafindan gelistirilmistir. Petri
aglari, otomatlarla DES’in gecis fonksiyonlarim1 temsil etme anlaminda
iligkilendirilirler. Otomattaki gibi, bir Petri ag1 belirli kurallara bagl olarak olaylarla
yonetilen bir cihazdir. Petri aglarinin 6zelliklerinden biri hangi olayin miimkiin
olabileceginin kosullara bagli olmasidir. Bu 6zellik, islemleri karmasik kontrol
semalarina bagli olan ¢ok genel DES’lerin gosteriliminin elde edilmesine imkan
saglar. Bu model grafik olarak gostermeye de uygun bir yapidir. Ancak kiigiik
sistemler icin bu yapilabilir. Elde edilen grafige “Petri Ag Grafi (Petri Net Graph)”
denir. Petri ag grafi, sistemle ilgili bir ¢cok yapisal 6zelligi kapsar ve sezgiseldir. Her
otomat bir Petri ag1 ile gosterilebilir ancak her petri ag1 bir otomat ile gosterilemez.
Bu nedenle Petri aglar1 “R” regiiler dillerden daha genis bir dil smifin1 ifade
edebilirler. Petri aginin baska bir avantaji da analiz teknikleri agisindan daha giiclii
olmasidir. Bu teknikler sadece zamanlanmamis Petri aglarini degil zamanli Petri
aglarrm da kapsar. Ozellikle “max-plus algebra” olarak bilinen, zamanli Petri
aglarinin bir smifi i¢in gelistirilmis bir kuram vardir. Belirtilmesi gereken bir diger
konu ise PLC i¢in yaygin olarak kullanilan “Grafcet” programlama dilinin Petri

aglarindan esinlenilerek gelistirilmis olmasidir.

2.2 Petri Aglarimin Temelleri

Bir Petri agmin tanimi iki adimda yapilir. Birinci adim, otomatin durum gecis
diyagramina benzer olan, Petri ag yapisi olarak da adlandirilan Petri ag grafidir.
(Béliim 2.2.1). ikinci adim ise tam Petri ag modelinin olusturulmasi igin baslangic
durumu, igaretli durumlar, gegis fonksiyonlari, ilgili dinamikler ve iireten/belirleyen
dillerin eklenmesidir. (B6liim 2.2.2 - Boliim 2.2.4).

2.2.1 Petri Ag Notasyonlari ve Tanimlan

99 ¢

Petri aglarinda “olaylar” “gecis”lere baglanmistir. Bir gegisin gergeklesmesi bir ¢ok
kosulun saglanmasini gerektirir. Bu kosullar ile ilgili bilgi “yer”lerde igerilir. Bazi
bdyle yerlere “gecislerin girisleri” olarak bakilir. Diger yerler ise ‘“gecislerin

cikislar1” olacaktir. Gegisler, yerler ve aralarindaki iligkiler Petri ag grafinin temel

15

elemanlarin1 olusturur. Bir Petri agi iki tip diiglime sahiptir; bunlar gegisler ve
yerlerdir ve “ark (arc)’lar bunlari birbirine baglar. Arklar aynmi tip iki digiimii
birbirine baglayamazlar. Ge¢is diigiimiinii yer diigiimiine veya yer diiglimiinii gegis

diigiimiine baglayabilirler. Bu 6zellige “iki tarafl, iki kisimli olma (bipartite)” denir.

Tanim 2.1 “Petri Ag Grafi (Petri Ag Yapis1)”:
Bir Petri ag grafi (P, T, A, w) agirlikli (weighted) iki tarafli graftir.
“P”, sonlu sayida bir kiime ve “yer”ler denir. (Grafin bir tip diiglimiidiir).

“T”, sonlu sayida bir kiime ve “ge¢is’ler denir. (Grafin diger tip diigiimiidiir).

Ac (PxT)u(T xP), Graftaki yerlerden gecislere, gecislerden yerlere baglantiyi

saglayan arklarin kiimesidir.

w:A—{1,2,3,...}, arklarin agirhk fonksiyonudur.

(P, T, A, w) bir izole yer ve gec¢isin olmadig1 varsayilir. Yani biitiinliik olacaktir.
Yer kiimesi P={p,p,,...p,} ve gecis kiimesi T ={t,t,,..,t }seklinde
gosterilebilir. Bunlar sayilabilir ve sonlu kiimelerdir. Bir ark (p;,t;) veya (t;, p;)

formundadir ve arkin agirligi pozitif bir sayidir.

(piatj)a (tj, p,) e A dir.

Bir Petri ag grafinin otomatin durum ge¢is diyagramindan daha karmasik oldugu
goriiliir. Oncelikle durum gecis diyagramindaki diigiimler X kiimesindeki
durumlardir. Petri ag grafinda ise diigimler P kiimesindeki yerler veya T
kiimesindeki gegislerdir. Durum gegis diyagraminda durum gegisine sebep olan her
olaya iliskin bir ark bulunurken Petri ag grafinda iki diigiimii baglayan ¢oklu arklara
izin verilir ya da benzer olarak arklarin sayisini temsil eden her arka bir agirlik atanir.

Bu nedenle bu yapi1 “goklu graf (multigraph)” yapis1 olarak adlandirilir.
Petri ag grafinda, I(tj) bir t; gecisinin giris yerlerinin kiimesi, O(tj) bir

gecisinin ¢ikis yerlerinin kiimesi olarak tanimlamak uygun olur.

I(tj):{pieP:(pi,tj)eA} 2.1)
O(tj):{pieP:(tj,pi)eA} 2.2)

16

(2.1) denklemi t;’ye giris olan p;’leri, (2.2) denklemi t;’ye ¢ikis olan p;’leri

gosterir.

Benzer notasyon giris ve ¢ikis gegisleri olarak da tanimlanabilir.

I(pi)={tjeT:(tj,pi)eA} (2.3)

O(pi)z{tjeT:(pi,tj)eA} (2.4)
(2.3) denklemi p,’ye gelen t; gecisler kiimesini, (2.4) denklemi p,’den giden t;
gecisler kiimesini gosterir.

Petri ag grafi ¢izilirken iki tip dii§iim olan yerleri ve gegisleri birbirinden ayirmak

gerekir. Bu nedenle yerleri gostermek i¢in daire, gegisleri gostermek icin bar
kullanilir. Yerleri ve gecisleri baglayan arklar A ark kiimesinin elemanlaridir. p;

yerinden t; gecisine yonlendirilen ark p; € | (t j) “dir.

w(p.t)=k (2.5)

denklemi * p;’den t; ’ye k adet ark var” ya da “ p;’den t;’ye agirhigi k olan bir ark

var” anlamindadir.

Benzer olarak “t; geciginden p; yerine k adet ark var” ifadesi p; € O (t j) ve
w(t;. p)=k (2.6)

seklinde gosterilir. Genellikle bir grafta ¢oklu arklara agirliklar sunulur. Bununla
beraber biiylik agirliklar igeren bir Petri aginda arka agirlik yazmak daha uygun bir
gosterimdir. Eger bir Petri aginda arka agirlik yazilmamigsa agirlik 1 kabul edilir.
Son olarak da agirlik fonksiyonunun tanim ve deger bolgesi genisletilerek asagidaki

denklemler yazilabilir.

p el (tj) 1se W(pi,tj):O 2.7)

P, &O(tj) ise W(tj, pi):O (2.8)

17

Ornek 2.1:

Basit bir Petri ag grafi soyle tanimlansin.

P={p.p}, T={t}, A={(pt).(t,p.)]
w(p.t)=2, w(t,, p,)=1

Bu durumda,

H(t)={p}, O(t)={p.}

1(p)={4}, O(p)={t}

H(p,)={t,}, O(p,)={4}

olacaktir. W(pl,tl):2 olmas1 p, yerinden t, gegisine 2 ark oldugunu gosterir.

Ornege iliskin Petri ag grafi Sekil 2.1°de verilmistir.

O—= O

2 £

F.
Sekil 2.1 : Ornek 2.1 Petri Ag Grafi

Ornek 2.2:

Ornek 2.1°de tamimdan Petri ag grafina gegilmistir. Bu drnekte de Petri ag grafindan
formal tanim olusturulacaktir.

Ot 0

i fl P P fq
ﬂ
| Y
| A
£ P

Sekil 2.2 : Ornek 2.2 Petri Ag Grafi

18

P={pl,p2,p3,p4}, T:{tlatz’twtwts}
A={(p.t).(Pisty)s(Pooty) (P2 1y). (P15) . (Pauts). (1 By).

(t,P,)5(ty Py) (tss 2y)5 (s Pa) (1 P) (85 1)}

w(p.t)=1 w(p,t,)=1 w(p,.t,)=1 w(p,.t)=2
w(p,.t;)=1 w(p,.t)=1 w(t,p,)=1 w(t,p,)=1
w(t,, p,)=1 w(t,, p,)=1 w(t,, p,)=1 w(t, p,)=1
w(ts, p,)=1

t, gecisi bir giris yerine sahip degildir. Eger gegisler olaylar ve yerler durumlar
olarak diisiiniiliirse bu t, ’e iliskin olayin olusunun bir kosula baglanmadig1 anlamina

gelir. Tersine t, gec¢isi hem p, hem de p, kosullarina baghidir.

2.2.2 Petri Aginin Isaretlenmesi ve Durum Uzaylar

Gegisler bilindigi gibi otomatin durum geg¢islerine karsi diismelidirler. Yani bir olay
oldugunda (olay izinli ise) DES durum degisikligi yapmalidir. Simdiye kadar
durumlar ele alinmadi. Bir DES olayla siiriilen yani durum degistiren bir sistem
olmak zorundadir. Durumlar1 ve durum gegislerini Petri ag grafi {izeinde gostermek

icin “jeton”lar kullanilir. Jetonlarin yerlerdeki dagilimina “isaretleme (marking)”
denir. Formal olarak bir (P,T, A W) Petri aginin bir “x” isaretlemesi P(yer)’den N

dogal sayilara bir fonksiyondur. x:P — N ={0,1,2,...}. Bdylece x bir satir vektorii

ile gosterilir. n Petri agindaki yer sayisl olmak lizere
X = [X(P,).X(P,)s- X(P,)] dir. Bu vektoriin i. elemamt x(p;), p; yerinde bulunan

jeton sayisidir. Petri ag graflarinda jetonlar siyah noktalar ile gosterilir.

Tamm 2.2 “Isaretli Petri Ag1”:

Bir isaretli Petri agi (P,T,A,w,x) ile gosterilir. Burada (P, T, A,w) Petri ag grafi ve

x ise yerler kiimesi P’nin bir isaretlemesidir. X = [X(P)sX(P,),.. X(P,)] eN.

Ornek 2.3:

Sekil 2.1°deki Petri aginin olasi iki isaretlemesi Sekil 2.3’te verilmistir.

19

Oo—— O G ®

F f P

% =[1,0] %, = [2.1]

Sekil 2.3 : Sekil 2.1 Grafinin iki Isaretlemesi

Isaretli Petri ag1 yerine Petri ag1 ifadesi kullanilir. Ciinkii sistemin modeli durumlari
icermelidir. Boylece isaretlerin degisimi aslinda durumlar olarak ortaya c¢ikacaktir.
Jetonlarin yerlerdeki dagilimi keyfidir, herhangi bir sinirlama yoktur. Bu nedenle de
genel olarak durum uzay1 «’a gidebilir. Bdylece n yere sahip bir Petri agimin X
durum uzay1 n boyutlu bir vektdr uzayinda tanimlanir ve elemanlar1 negatif olmayan
tamsayilardir, yani X = N". Petri ag literatiiriinde “isaretleme”, “durum” teriminden
daha yaygindir. Durum kelimesi sistem dinamiklerini ifade ettigi icin daha
anlamlidir. Durum kelimesinin kullanilmasi, otomatlardaki “isaretli durum (marked

state)” (daha sonra Petri aginda da kullanilacak) ile karigmay1 engeller.

Yukarida yapilan tanimlar Petri aglarindaki durum geg¢is mekanizmalarini agik olarak
ifade etmez. Petri aglarinin dinamik DES’lerin modellenmesinde kullanilmasi
istendi8i i¢in bu nokta onemlidir. Durum gecis mekanizmasia Petri ag grafinin
yapisindan giderek ulasilir. Temel olarak, teT gegisi i¢in “olustu” veya “miimkiin
oldu” islemini tanimlamak icin, gegise giris olan her yerde bir jeton olmasi

gereklidir.

Tanim 2.3 “izinli Gecis”:

Bir Petri aginda t; € T olmak iizere eger
X(pi)ZW(pi,tj) tim p, € I(tj)’ler i¢cin 2.9)

kosulu saglaniyorsa t; gecisi “izinlidir” denir. Kelimelerle agiklamak gerekirse, t;
gecisine giris olan tim p; yerleri i¢in, p;’de bulunan jeton sayist p;’yi t;’ye

baglayan arklarin agirligina esit veya biiyiik oldugunda, t; gecisi “izinlidir” denir.

Sekil 2.3’teki X durumunda, Xx(p,)=1<w(p,t) oldugundan t gegisi izinli
degildir. Fakat X, durumunda x(p,)=2=w(p,.,t,) oldugundan t, gegisi izinlidir.

Daha 6nce bahsedildigi gibi, yerler bir gegisin izinli olabilmesi i¢in gerekli kosullarla
iligkili oldugundan bir gecis biitiin kosullar saglandiginda olabilecektir. Jetonlar

saglanmasi gereken kosullar1 belirlemek i¢in kullanilan bir mekanizmadir. Bir Petri

20

aginin verilen bir durumunda izinli gegislerinin kiimesi, otomatlardaki bir durumun

aktif olay kiimesine esdegerdir.

2.2.3 Petri Ag Dinamikleri

Otomatlarda durum ge¢is mekanizmasi, durumlari(diigiimler) birbirine baglayan
arklar ile ve esdeger olarak f gecis fonksiyonlar1 ile dogrudan durum gecis
diyagraminda ortaya ¢ikar. Petri aglarinda ise durum gegisleri graf {izerinde
goriilmezler. Ancak jeton hareketi ile bir durumdan digerine gecis gosterilebilir. Bir
gecis izinli oldugu zaman “olay olustu” ya da “ateslenebilir” (Petri ag literatiiriinde)
deyimi kullanilir. Bir Petri aginin durum gec¢is fonksiyonu, izinli gegislerin
ateslenmesine bagli olarak Petri aginin durumunda olusan degisme iizerinden

tanimlanir.

Tanim 2.4 “Petri Ag Dinamikleri”:

(P,T, A, W,x) Petri aginin durum gegis fonksiyonu f:N"xT — N", t; eT gecisi

i¢in ancak ve ancak
x(p)= W(Pt) tim p; e (tj) ’ler igin (2.10)

saglaniyorsa tanimlanir.

Eger f (X,tj) tanimli ise, X' = f (X,tj) yeni durumu,
X (p)=x(p)-w(pt;)+w(t;, p), i=1..,N (2.11)

ile tanimlanir. (2.11) denklemi yerlerdeki yeni jeton sayilarini belirler, zaten durum

degistirme jeton dagiliminin yerlerde degismesi anlamina gelir.

(2.10) kosulu sadece izinli gegisler i¢in durum gegis fonksiyonunun tanimli olmasini
saglar, bir izinli gecis otomattaki “miimkiin olay (feasible event)’a esdegerdir. Izinli
gecisler hangi yerlerden izin aliyorsa o yerlerdeki jetonlarin sayist degisir,
dolayistyla durum degisikligi olur. Burada durumlar yerlerde jetonlar yardimiyla bir
nevi kodlanmistir ve yerlerdeki jeton sayisi degistikce durum degisikligi olur.
Otomatlarda durum ge¢is fonksiyonu keyfi olmasma ragmen Petri aginda Petri
agimin yapisina dayanir. Boylece (2.11) iliskisi ile verilen bir sonraki durum, bir
gegcisin giris ve ¢ikis yerlerine ve de gegisi bu yerlere baglayan arklarin agirliklarina

baghdir.

21

(2.11)’e gbre p;, t; 'nin girig yeri ise p;’yi t; ’ye baglayan arkin agirligi kadar jeton
kaybedecek, ¢ikis yeri ise t;’yi p;’ye baglayan arkin agirhgr kadar jeton
kazanacaktir. Bazi yerler (p,) hem giris hem de ¢ikis yeri 6zelliginde olabilir, bu

durumda W(pi,tj) jeton p,’den alimacak ve hemen W(tj,pi) jeton p,’ye geri
verilecektir.

Suna dikkat edilmelidir ki, Petri aginda ateslenen bir gegisin, dncesi ve sonrasindaki

jeton sayisinin sabit kalmasi gerekli degildir. Daha agik ifade etmek gerekirse,

Sw(t,p)> 2 w(p.t) veya D w(t,p)< Y w(p.t;) (2.12)
pieP pieP pieP pieP
ifadeleri gegerlidir. Dolayisiyla x'=f (X,t j) x’den fazla veya az jeton

bulundurabilir. Boylece bir takim gecis ateslemelerinden sonra jeton sayilarinin
yerlerdeki dagilimi olarak tanimlanan X = [0, 0,...,0] veya bir yerdeki jeton sayisinin

cok arttig1 degerlere ulagilabilir. Bu ise bu sekilde tanimlanan x’lerin sayilarinin

sonsuz olabilecegini gosterir.

Ornek 2.4: (Gecislerin Ateslenmesi)

P

o/ <
2 /'] 1
7

f
/
{c) {d)

-
&
-1
s
(%
o

-

.,
@‘H/
&
s

Sekil 2.4 : Petri Aginin Gegis Ateslemeleri

22

Sekil 2.4°te bir petri agindaki gecis ateslemeleri sonucu degisen durumlar
goriilmektedir. Sekil 2.4 (a)’dan goriildiigii gibi baslangi¢ durumu x, =[2,0,0,1]"dir.
Bu sekilde izinli tek gecis t’dir. X,(p,)=2>1=w(p.t) kosulunu sagladig
goriiliir. t, ateslendiginde p,’den bir jeton alimir, p, ve p, yerlerine bir jeton konur.
(2.11) denklemi uygulandiginda da gelinen yeni durumun X, :[1,1, 1,1] oldugu
goriiliir. Sekil 2.4 (b) yeni durumu gostermektedir. Bu durumda 3 gegis te (t,,t,,t;)
izinlidir. t,’nin ateslendigi diisiiniiliirse giris yerleri p, ve p,’ten birer jeton
alinmalidir. Cikis yerleri p, ve p, ’tiir, bu nedenle p,’den alinan jeton geri konulur,
p,el(t,)nO(t,). p,’e bir jeton eklenir. Yeni durum Sekil 2.4 (c) ile gosterilen
X, =[1,1,0,2] dir. Bu durumda t, ve t, gegisleri artik izinli degildir, t, gecisi hala
izinlidir.

Eger Sekil 2.4 (b)’deki X, durumuna doniiliip t, yerine t, ateslenirse; p,, p, ve
p, giris yerlerinden birer jeton almir. Cikis yerinin olmadigma dikkat edilmelidir.
Yeni gelinen durum Sekil 2.4 (d) gosterilen x; =[0,1,0,0] durumudur. Bu durumda

higbir gegisin izinli olmadig1 goriiliir. Herhangi bir durum degisimi miimkiin degildir
ve [0, 1,0, 0] durumuna Petri aginin “a¢maz (deadlock)” durumu denir.

Sekillerden goriildiigli gibi jeton sayilart korunmamustir. X, durumunda 3 jeton

varken X, ve X,’de 4, X;’te | jeton vardir.

Bu oOrnek, gegislerin sirasinin Onceden belirlenmedigi bir Petri aginda durum
gecislerini gostermistir. X, durumunda tiim gegisler (3 gecisten herhangi biri)
ateslenebilir. Bu durum, DES’in otomat modelinde X, durumunun aktif olay
kiimesinde 3 olayin da olmasi gibi diisiiniilebilir. Aslinda bir Petri ag1 i¢in bu her
durum i¢in sdylenebilir, yani Petri aginda tiim olaylar her durumda aktif olay
kiimesine konabilir ama izinli olmayanlar kendi iizerinde 6z ¢evrimlerle baglanmis
gibi disiintilebilir, ya da ileride tanimlanacak ‘“atesleme vektori” giris olarak

alinabilir.

Diger bir 6nemli gozlem ise Petri aglarinin dinamik davranisi ile ilgilidir. Verilen bir

ilk kosul i¢in bir Petri grafinin N" durumlarindan hepsine erismenin gerekli
olmadigidir. Sekil 2.3’teki X, =[2,1] durumu ele alimrsa, X, =[0,3] olur ve bu

baslangi¢ durumu igin erisilebilen tek durum budur. Bu durum sonucunda
“erisilebilir durumlar” taniminin yapilmast uygun olur. (P,T,A, W,x) Petri agmin

erisilebilir durumlar kiimesi R [(P, T,Aw, X)] olarak tanimlanir. Buna bagl olarak,
once f durum gecis fonksiyonunun tanim kiimesinin N"xT — N"xT" seklinde

genisletilmesi gerekir. Bu otomatlarda da yapilmstir.

23

f(x&)=x (2.13)

f(xst)=f (f(x,s),t) seT veteT icin (2.14)

Burada ¢ semboliinii gecis ateslemesinin var olmadigi olarak yorumlamak gerekir.

Tamm 2.5 “Erisilebilir Durumlar”:

(P,T,A,w,x) Petri agi i¢in “Erisilebilir Durumlar”
R[(P,T,Aw,x)]= {y eN":3seT"(f(xs)= y)} (2.15)

olarak tanimlanir.

Yukarida yapilan erisilebilir durumlar kiimesi R ve genisletilmis bicimdeki durum
gecis fonksiyonu f tanimlarinda, es zamanli ateslemeye izin verilmedigi sadece

birinin ateslendigi varsayilmistir. Onceki 6rnekte, Sekil 2.4 (b) durumuna bakilirsa
t, t, ve t’in hepsi izinli gegistir. Eger t, ve t,’nin aym anda ateslendigi

diisiiniilseydi farkli durumlar elde edilebilirdi. Daha sonra etiketli gecislerden,
miimkiin tiim erisilebilir durumlardan ve bunlardan yola ¢ikarak da bir Petri ag1
tarafindan tiretilen ve isaretlenen dillerden s6z edilebilmesi i¢in es zamanli atesleme

disarida birakilacak, gegislerin birer birer ateslendigi varsayilacaktir.

2.2.3.1 Durum Denklemleri

(2.11) denklemine doniilirse, bu kural geregi Xx(p;)eN’den x'(p;)eN’ye

gecildigi goriiliir. Bunlar N"’de tanimli vektorler olarak asagidaki gibi gosterilebilir.

X =[X'(p).X(Py)senn X (Py)] (2.16)

x=[X(p,),X(P,)>-X(Py)] (2.17)

Ozel bir gecis t; ’nin ateslenmesinin kurali da m boyutlu satir vektdrii olan u

“atesleme vektorii” ile asagidaki gibi tanimlanabilir.

u=o0,...,0,1,0,...,0] (2.18)

24

J. gecisin ateslendigini belirtmek igin sadece j. eleman “1” olur. je {1,...,m} dir.

Daha once belirtilen birer birer atesleme varsayimi sonucunda ayni anda sadece bir
vektor elemani “1” olacaktir. Ek olarak, bir Petri aginin ag matrisi A, mxn
boyutunda olup (j,i). elemani

a; =w(t;, p)-w(pst;) (2.19)

t;’ye gelen ve ¢ikan ark sayisinin farki ya da arklarin agirliklarmin fark ile

hesaplanir. Bu durumda yeni durumu veren ifade
X'=X+UA (2.20)
seklinde yazilabilir ve burada u giris gibi diisiiniilebilir. Bu denklem

f(x,tj):x+uA (2.21)

seklinde de yazilabilir. Burada t; argiimani U nun “1” olan j. elemanim belirtir,

Boylece gecis atesleme prosesi ve Petri aginin durum degisimleri i¢in grafik

gosterilim disinda cebirsel gosterilim elde edilmis olur.

Ornek 2.5: (Durum Denklemi)

Baslangi¢ durumu X, = [2, 0, 0,1] olan Sekil 2.4 (a) grafi tekrar ele alinsin. Oncelikle

graf incelenerek A matrisi asagidaki sekilde yazilabilir.

-1 1 1 0
A=10 0 -1 1
-1 0 -1 -1

Ornegin (1,2). eleman w(t, p,)—w(p,,t;)=1-0=1 seklinde hesaplanmustir. Bu

hesaplamalar tiim gecis ve yerler icin yapilarak A matrisi olusturulmustur. (2.20)
denklemi kullanilarak baslangi¢ durumunda t; gecisi ateslendiginde,

11 1 0
x=[2 0 0 1]+[1 0 0[]0 0 -1 1
10 -1 -1

=[2 0 0 1]+[-1 1 1 0]=[1 1 1 1]

25

Omek 2.4°teki X, durumu elde edilmis olur. Benzer sekilde t, gegisinin

ateslenmesiyle X, durumu,

11 1 0
x,=[1 1 1 1]+[0 1 0]J0 0 -1 1
10 -1 -1

=[1 1 0 2]

seklinde elde edilir. Bu sekilde jetonlarin yerlerdeki dagilimi ve erisilebilir durumlar

ortaya ¢ikmis olur.

Dinamik bir sistemin modeli olarak, Petri ag1 otomatlardakine benzer olarak bir
yorlinge ortaya cikarir. Yoriinge bir durumlar dizisidir. {XO,XI,Xz,...} yoriingesi
{tl,tz,...} gibi bir giris yoriingesine karsi diiser. Burada t* k. gecisin ateslenmesidir.

Bu nedenle
X = F (Xt) =X +UA (2.22)

yazilabilir. u, K.gecisin ateslendigi bilgisini igerir. Eger artik higbir ateslemenin

miimkiin olmadig1 duruma gelinmisse X, ,, = X, olur ve bu agmaz durumdur.

2.2.4 Petri Ag Dilleri

Gegisler = olaylar kars1 diisiirmesi yapilarak bir dilden s6z etmek miimkiindiir.
Ancak bu kars1 diisiirme kesin bir yargi degildir yani eger bir dili gostermek i¢in
Petri ag1 bir modelleme formalizmi olarak se¢ilmisse ya da Petri agina bu agidan
bakiliyorsa her gecise bir olay kars1 diisiirmeye gerek vardir. Bu yolla bir Petri ag1

tarafindan tiretilmis ve isaretlenmis diller tanimlanabilir.

E olaylar kiimesi ile verilmis ve dili bir Petri ag1 ile modellenmis bir DES g6zdniine
alinsin. T =E olacaktir ve her gecise bir olay karsi disiiriilecektir. Ancak bu

gereksiz yere yapilmis bir kisit olabilir, bu nedenle iki arkin aymi olayla

~ %

iliskilendirilmis oldugu duruma izin verilir. Buna “etiketlenmis Petri ag1” denir.

Tamm 2.6 “Etiketlenmis Petri Ag1”:

Etiketlenmis Petri ag1 N 8 elemanli olup

N =(P,T,AW,E,|x,X,) (2:23)

26

ile gosterilir. Burada,

(P,T,A w) Petri ag grafini,

E, gecislere etiketlenmis olaylar kiimesini,

I:T — E, gegislerin etiketlenme fonksiyonunu,
X, € N", agin baslangi¢c durumunu,

X, < N", agn isaretli durumlarim gosterir.

Petri ag grafinda bir gecisin etiketi gecisin {istiinde gosterilir. Isaretli durumlar
kavrami tamamen otomattaki ile aynidir. Isaretli durumlar, etiketli Petri aginmn

isaretledigi dili belirlemekte kullanilacaktir.

Tanim 2.7 “Uretilen ve isaretlenen Dil”:

N =(P,T,AWE,X,X,) etiketlenmis Petri ag1 tarafindan tiretilen dil,
L(N)={|(S)€E*ZSET* Vef(XO,S) tammh} (2.24)

ile ve isaretli dil,

L,(N)={I(s)eL(N):seT" vef(x,s)eX,} (2.25)

ile gosterilir. Burada |:T" — E~ tanimli olarak genisletilmistir. Goriildiigii gibi bu
tanim, otomatta yapilan tanim ile tamamen tutarlidir. L(N), N’deki gecis

ateslemelerinin miimkiin biitiin sonlu dizilerinden elde edilen gegis etiketlerinin tiim
kelimelerini gosterir. Gegislere etiketlenmis tiim kelimeler de denilebilir. L(N) ilk

kosul x,’a baghdir. L, (N) ise L(N)’deki kelimelerin bir alt kiimesidir ve ozel

olarak x,'dan X isaretli durumlar kiimesine gotiiren gegisler dizisinin kars: diistigi

kelimeler kiimesidir.

Bir etiketlenmis Petri aginin ifade edebildigi dilin 6zelligi,

PNL={K < E":3aN =(P,T,AW,E,|,x,X,)[L,(N)=K]} (2.26)

ile gosterilir. Bu genel bir tanimdir. PNL 'nin 6zellikleri agirlikli olarak yapilan
varsayimlara baglidir (I ’nin tek yonlii olup olmadigi, X ’in sonlu olup olmadig1

27

gibi.). Ancak | ’nin tek yonlii olma ve X, ’in sonlu olma kosulu yoktur. Her zaman

boyle bir dil tanimlanabilir.

2.2.5 Kuyruk Sistemleri icin Petri Ag Modelleri

Bir kuyruk sisteminin dinamik davranis1 Petri ag yapis1 kullanilarak gosterilecektir. 3

olayl (gegisler) bir sistem ele alinsin.
a: miisteri gelir
s: servis baglar

c: servis biter ve miisteri gider.

Burada gecis kiimesi T :{a,s,c} ’dir. Bu Ornekte etiketlenmis Petri aglarim

diisiinmeye gerek yoktur, baska bir deyisle E=T oldugu varsayilabilir. a gecisi
spontane olup kosul gerektirmez (giris yeri yoktur). Diger taraftan s gecisi iki kosula
baghdir; kuyruktaki miisterilerin varlig1 ve servis¢inin bos olmasi. Bu kosullar Q
(kuyruk) ve I (bos servisci) giris yerleri ile gosterilir. Son olarak da c geg¢isi
servis¢inin mesgul olmasini gerektirir ve bunun i¢cin B (mesgul servisci) giris yeri
tammlanir. Boylece P ={Q,1,B} yer kiimesi elde edilir.

rilgtert gelir #7 milgten gider
(a)
a a
Q) e)1 0 I
g g
B B
C C
(b) (c)

Sekil 2.5 : Kuyruk Sisteminde Petri Ag Modelleri

Basit kuyruk sistemini modelleyen Petri ag grafi Sekil 2.5 (a) ve Sekil 2.5 (b) ile
gosterilmektedir. Q’da hig jeton yoktur, kuyrugun bos oldugunu gosterir ve I’da bir

28

jeton vardir, servis¢inin bos oldugunu gosterir. Baslangi¢ durumu X, = [0,1,0] “dir. a
gecisi her zaman izinlidir. Sekil 2.5 (c) {a, s,a,a, C,S,a} gecisleri ateslendikten sonra
gelinen [2, 0,1] durumunu gosterir. Bu durum, kuyrukta 2 miisterinin bekledigini ve

3.’niin serviste oldugunu gosterir. Ik gelen miisteri ¢ gegisinden sonra gitmistir.

Bir ¢ gecisi her zaman s geg¢isini izinli yapar ¢linkii Q yerinde bir jeton bulunur. Ayni

kuyruk sisteminin biraz daha ayrintili modeli
d: miisteri gider.

gecisi eklenerek saglanabilir. Bu durum F (bitiren miisteri) kosulunu gerektirir. C
gecisi sadece “servis biter” anlamina gelir. Ek olarak a gegisine giris yeri olarak A
tanimlanir, a gecisini izinli kilmak i¢in burada her zaman bir jeton bulundurulur.
Boylece bu alternatif modelde T ={a,s,c,d} ve P={AQ,I,B,F} olur. Sonug

model [l, 0,1, 0,0] durumu ile Sekil 2.6 (a)’da gosterilmektedir.

A

a

Q e 1
g
E
£

13

d

(a) (b)
Sekil 2.6 : Kuyruk Sisteminde Alternatif Petri Ag Modelleri

Sekil 2.6 (a)’daki Petri ag modeli, servis¢inin bozulmasi durumu gézoniine alinarak

daha da degistirilebilir. Bu durumda iki yeni ge¢is tanimlanr.

b: servis¢i bozulur

29

r: servis¢i tamir edilir.

r gecisine girig yeri olarak servis¢inin bozuk oldugu durumu gosteren D (servisci
bozuk) tanimlamir. Boylece T ={a,s,c,d,b,r} ve P={AQ,I,B,F,D} olur. Bu

Petri ag modeli Sekil 2.6 (b)’de [1, 0,1,0, 0,0] durumu i¢in gdsterilmistir.
2.3 Petri Aglar1 ve Otomatlarin Karsilastirilmasi

Otomat ve Petri ag1 her ikisi de bir DES’in davranisini modellemek i¢in kullanilirlar.
Her iki formalizm de DES’in durum gegis yapisini agik olarak gosterir. Otomatta bu
is i¢in, miimkiin biitlin durumlar numaralandirilir ve bu durumlar miimkiin olan tiim
gegcislerle birbirine baglanir, boylece bu gdsterilim otomatin gecis fonksiyonlariyla
sonuglanir. Bu sadece 6zel olarak sik bir gdsterilim degil ayn1 zamanda “carpma” ve
“paralel birlestirme” gibi birlestirme islemleriyle donatilabildigi icin karmasik
sistemleri olusturan bilesenlerin modellenmesi ve sistematik bir birlestirme iglemi ile
karmagik sistemi modellemeyi kolaylastirir. Petri aglar ise gecis fonksiyonlarinin
yapilarint daha fazla One ¢ikaran bir yapiya sahiptirler. Durumlar
numaralandirilmazlar. Aslinda durum bilgisi graf i¢ine dagilmistir ve gecisler

sonunda ortaya cikar.

Su beklenen bir sorudur: “Verilen bir DES’in modellenmesinde hangi model daha
iyidir? Otomat mu Petri agi m1?” Bdyle bir sorunun asikar bir cevabi yoktur.
Modelleme genellikle kisisel tercihlere ve siklikla da 6zel uygulamalara baglidir.
Buna ragmen, eger yukaridaki soru, karsilastirma i¢in belirli kriterler baglaminda

daha kesin formiile edilirse, bazi sonuglar vermek miimkiin olabilir.

2.3.1 Dilin ifade Edilebilirligi ve Otomattan Petri Agina Gegis

Otomatlar ve Petri aglarinin karsilastirilmasinda ilk kriter olarak her iki formalizmin
gosterebildigi dillerin karsilastirmasi yapilacaktir. Bu énemlidir ¢linkii sonlu hafiza
pratik bir sinirlamadir. Kesin olarak PNL’nin R ’den daha genis bir sinif oldugu
iddia edilir, bunun anlami sonlu yerler ve gegislerle ifade edilen E"’in icindeki
dillerin sayist sonlu durumlu otomatlardan daha fazladir. Bunu ispat edebilmek i¢in
once, bir sonlu durumlu otomatin her zaman bir Petri ag1 karsiliginin nasil elde
edildigi goriilecektir. Bu yapildiginda, R ile gosterilen biitiin regiiler dillerin bir Petri
ag1 tarafindan isaretlendigi gosterilmis olur. Daha sonra ispati tamamlamak igin bir

regiiler olmayan dili isaretleyen Petri ag bulunmas: yeterli olur.

G =(X,E, fs,I,%;, X,,) sonlu durumlu otomati verilmis olsun. Bu durumda X ve

30

E sonlu bir kiime olacaktir. L(N)=L(G) ve L,(N)=L,(G) olan
N = (P, T,AWwE,IX, Xm) Petri ag1 asagidaki adimlar izlenerek olusturulacaktir.

1. Her durum (€ X) bir yer (€ P) ile tanimlansin yani P = X olsun.

a. N’in X, durumu bir nétr vektordiir, [0,...,0,1,0,...,0]. “0”dan
farkli olan eleman X, € X durumuna kars1 diisen yer (e P)
icindir.

b. X, ’ler de benzer sekilde olusturulurlar. Once X —P’ye ,
X, — P,’e ve bunlara kars1 diisenler N’in X ’leri olarak

[X(p;)] olarak olusturulur.

2. G’deki her igli (x,e,x') x'=fg(x,e) (eel(x) aktif olay

kiimesi) bir gecis ile gosterilir. Bu t(= N olacaktir. Diger bir

x,e,x'
deyisle T ’nin kardinalitesi, G 'nin durum gec¢is diyagramindaki

arklarin kiimesinin kardinalitesi ile ayn1 olacaktir.

a. T’dekit gecisi € € E olay ile etiketlensin;

(x.e,x)

b. G’deki her ugli (x,e,x') i¢in A’da iki ark tanimlansin:
aI’C(X,t(X,e’X,)) ve arc(t(xﬁe,x,),x'). Biitiin bu arklar esit ve “1”

agirliginda olsun. Bu islem asagidaki sekilde olusturulur.

=

El:x B

Sekil 2.7 : Otomattan Petri Agina Gegis

Burada verilen yontem gercekte gereksiz uzun bir yontemdir, sadece bu ispatin
yapilmasi i¢in gereklidir. Gergekte ¢ok daha kolay yoldan bir otomattan bir Petri

agina gegilebilir.

PNL’in R ’den genis oldugunu gostermek icin tekrar Sekil 2.5teki kuyruk sistemi
yapisina geg¢ilir, B yeri ve ¢ gecisi ¢ikarilirsa Sekil 2.8’deki Petri ag1 elde edilir.

31

Sekil 2.8 : Sekil 2.5 (a) Kuyruk Sisteminin Diizenlenmesi

Burada “a: kuyruga bir kisi geldi” ve “d: servis basladi” anlamindadir.

Bu durumda bu Petri aginin isaretledigi dil regiiler olmaz ¢iinkii x’in sayis1 «©’a
ulagir. Ciinkii x(p,)e N olacaktir ve keyfi olarak biiyiiyebilecektir. Buna ragmen

Petri ag grafi sonlu yer ve gegise sahip olur ve sorun yaratmaz.

Biitiin Petri aglarina kars1 diisen bir otomat bulunmasi miimkiin olmazken erisilebilir
durumlarinin sayist sonlu R(N) olan bir Petri agna karst diisen bir otomat

bulunabilir. x e R(N) icin her durumda miimkiin gecislere karst diisen arklar

yardimziyla bir otomat kolaylikla elde edilebilir.

Bir Petri aginin erisilebilir durumlarinin sayis1 sonsuz olabildigi i¢in, bir otomatin

isaretledigi ya da tiretebildigi dilden daha genis bir dil ailesini isaretler.

Bu caligmanin uygulama kisminda, girilen bir isaretli dilin G :{X JE, 1,1, %,, Xm}
otomatinin durum gecis diyagramindan N :(P,T, A w,E,l,X,, Xm) Petri agina

gecilmis, durum denklemleri kullanilarak olusan olaylara karsi diisen yeni durumlar

hesaplanmastir.

2.3.2 Modiiler Model insaa Etme

Otomatlarda etkilesimli olarak ¢alisgan X, durumlu bir alt otomat, X, durumlu bir
bagka otomat ile baglandigi zaman durum uzayr X, x X,’ye artar. Bu yeni elde

edilen otomatin d, sayisiin asir1 artmasi anlamma gelir yani karmagiklagmasi

demektir. Diger taraftan Petri ag modelinde ise bu baglantiy1 yapmak daha kolaydir.
Bu islem birkag yer veya gecis ekleyerek veya birkag¢ yeri degistirerek yapilabilir.
Ayrica bir Petri ag grafina bakarak 6zel bilesenleri uygun olarak ayirmak, bunlarin
arasindaki etkilesimlerin seviyesini fark etmek ve sistemi farkli modiillere ayirmak
mimkiindiir. Kuyruk sistemi 6rnegi ile bu iddialar gdsterilmistir. Ayrica sistem
bilesenleri modelinin bir lineer kombinasyonu olarak tiim sistem olusacaktir yani

biliylime eksponansiyel olmayacaktir. Oysa “carpma” ve “paralel birlestirme” ile

32

baglamada carpimsal bir biiylime s6z konusudur. Gergekte “carpma” ve “paralel
birlestirme” ile baglamay1 Petri ag1 i¢in de tanimlamak miimkiindiir. Ancak bu
sekilde yapilacak olan bir birlestirme isleminin sonucunda olusan sistemin genel
olarak karmagikliginin lineer olarak arttigindan s6z etmek miimkiin olmaz.

2.3.3 Karar Verilebilirlik

Otomatlar ve Petri aglar1 i¢in bir baska karsilagtirma kriteri “karar verilebilirliktir.
Karar verilebilirlik, “Bu olay dizisi bu sonlu durumlu otomat tarafindan taninabilir
mi?” sorusuna “Evet” veya “Hayir” diyebilmenin sistematik bir yolunun olup
olmamasi olarak ele alinir. Sonlu durumlu bir otomatin ¢ekici taraflarindan biri de,
bu sorunun otomat i¢in kesin olmasi ve “karar verilebilir” bir yap1 olmasidir.
Maalesef bu soru her zaman Petri ag1 i¢in dogru degildir, karar verilebilirlik ve

model zenginligi arasindaki dogal aligverisin yansimasidir.

Tim bu karsilastirmalardan ¢ikan sonug, belki de Petri ag ve otomatlarin birbirleriyle
rekabet eden degil birbirlerini tamamlayan modelleme yaklasimi olmasidir. Ozellikle

baz1 uygulamalar i¢in uygunluguna gore biri tavsiye edilebilir.

2.4 Petri Aglarinin Analizi

Petri ag modellerinin problemleri Boliim 2.4.1°de siniflandirilacaktir. Bu problemler
ozellikte otomatta “glivenlik” ve “kilitlenme (blocking)” olarak ele alinan konularla
ilgilidir. Bununla birlikte, Petri ag modellerindeki yapisal bilgiler, bu problemlerin
daha spesifik versiyonlarini sorgulamak i¢in kullanilir. Bunlar; sinirlilik, sakinim,

kapsanabilirlik, engellenemez olmadir.

2.4.1 Problemlerin Simiflandirilmasi

Bu boéliimde ele alinan konular, Petri aglarin lojik davranisi ile ilgilidir. Bu konular
oncelikle istenen 6zellikler ile baglantilidir. Bu 6zelliklerin pek ¢ogunun tanimlanma
nedeni, Petri aglarinin ¢evredeki kaynaklarin paylasiminda kullanilmasi, kaynaklarin

verimli ve adil kullanilmasinin istenmesidir.

2.4.1.1 Smirhhk

Bir ¢ok durumda, jetonlar, kaynak paylasimli sistemde miisterilere karsi diiser.
Ornegin Sekil 2.5’te Q yerindeki jetonlar kuyruga giren miisterileri gdstermektedir.

Elbette burada kuyruktaki miisteri sayisinin co’a artmasi istenmeyen bir durumdur.

33

Klasik sistemlerde bir durum degiskeninin oo’a artmasi “kararsizlik”a karsi diiger.
Benzer sekilde burada da bir durum degiskenindeki sinirsiz artis “kararsizlik

formu’na gitmeye neden olur.

Sinirhilik, bir yerde bulunan jeton sayisinin verilen pozitif bir sayiy1 gegmemesi

anlamina gelir.

Tanim 2.8 “Simirhlik”:

X, ilk kosulu ile verilmis bir Petri aginda, bir p, € P yerinin “k-sinirli” veya “k-
giivenli” olma tanim1 X € R(N) tiim erisilebilir durumlar i¢in bir p, yerindeki jeton

sayisinin K ile sinirlandirilmis olmasidir yani X(p;) <k.

Eger yer 1-smirh ise “giivenli’dir denir. Onceden belirlenmis olmasina gerek
olmayan bir say1 k olmak tiizere, bir yer k-sinirli ise “sinirli”dir denir. Eger Petri
agindaki tiim yerler sinirh ise ag “sinirlidir” denir. Sekil 2.5°te verilen modelde

Q’daki miisteri sayis1 keyfi artabilecegi icin bu ag “sinirli” degildir.

Bir Petri ag1 ile modellenmis bir DES verildiginde, sinirliliga bakilir ve eger “sinirli”
ise sinir bulunur. Eger sinirhilik saglanmiyorsa, modelin sinirlilig1 saglayacak sekilde
degistirilmesi diisiiniiliir. Eger Petri ag1 sinirli ise, istenirse daha once bahsedildigi

gibi bir otomat modeline gegilebilir ve oradaki analiz tekniklerinden yararlanilabilir.

2.4.1.2 Giivenlik ve Kilitlenme

Bu konu ya durumlar ya da diller iizerinden ele alabilir. Yani ya duruma
erisilebilirlik ya da alt kelimeler ile ilgilenilir. Eger bir Petri ag1 “sinirli” ise giivenlik
ve kilitlenme 6zellikleri algoritmik olarak belirlenebilir. Eger bir Petri ag1 0 ve 1 yer

isaretlemelerinden olusan durumlar igeriyorsa bu ag “giivenli”dir denir.

2.4.1.3 Durumun Kapsanabilirligi

“Durum kapsanabilirligi”, durumlarin erisilebilirlik ~ kavraminin ~ bir
genellestirilmesidir. Ayn1 zamanda, 6zel bir gecisin ateslenebilme kavrami ile de
iligkilidir. Bir geg¢isin izinli olmasi i¢in bazi yerlerde belirli bir sayida jeton olmasi
gerekir. Ornegin, yz[y(pl),y(pz),...,y(pn)] durumu verilsin ve t; gegisinin
izinli olmas i¢in gereken 6zelligi yani jeton sayist acisindan saglasin. X, durumunda

bulunulsun ve buradan bakildiginda t;’nin izinli oldugu goriilmek istensin. Bu

34

durumda x,’dan kalkiip x(p,)>y(p,) i=12,...,n kosulunu saglayan bir x’e
gidilip gidilemeyeceginin bilinmesi gerekir. Eger bu oluyorsa (yani x(p;)>Yy(p;)

X, baslangi¢c durumlu bir Petri ag1 i¢cin miimkiin ise) “ X, Yy durumunu kapsar” denir.

Tamm 2.9 “Durumun Kapsanabilirligi”:

X, ile verilmis bir Petri ag igin, eger x(p;)>y(p;) Ozelliginde bir xeR(N)

durumu varsa “ Yy bu ag tarafindan kapsanabilirdir” denir.

2.4.1.4 Sakinim

Sakinim, Petri aginin bir 6zelligidir. Bir yoriinge boyunca ulagilan tiim durumlar i¢in
“sabit sayida jeton” saglama olarak tanimlanir. Ancak bu ¢ok smirlayict bir 6zellik
olacaktir.

Formal bir tanim yapmak i¢in » =[7,,%,,....7,] 7 =0 tanimlansm. p’ler p,

yerlerinin agirligr olarak disiiniilebilir. y;’ler tamsayr olarak alinacaktir, bu

gereklilik degildir, basitlik i¢in yapilmaktadir.

Tamm 2.10 “Sakinim”:
X, 1k kosullu Petri agi, bir 7/=[7/1,;/2,...,;/n] ve tim XER(N) i¢in,

z Vi X(P,) =sabit ise “y ’ya gore sakinim 6zelligindedir” denir.
i-1

Verilen bir Petri ag modeli igin, siklikla kaynaklarin yok olmasi veya kazanilmasinin
miimkiin olmadigini ifade eden sakinim 6zelliginin saglanmasi beklenir. Daha genel
olarak, jetonlarin kaybedilmesi veya kazanilmas1 modellenen DES’in fiziksel olarak
sahip oldugu sakinim 6zelliginin bir yansimasi olmalidir. Yani ger¢ek DES’te bu

0zellik varsa bu modelde de ortaya ¢ikmalidir.

2.4.1.5 Canhhk

Ag¢maz olma ve kilitlenme 6zelliklerinin bir tamamlayicisi “canli” gegis kavramudir.
Burada, herhangi bir gecisin miimkiin olmamas1 ya da isaretli bir duruma gegisin
miimkiin olmas1 kavrami yerine, verilen bir gecisin ateslenme kabiliyeti ile

ilgilenilecektir.

35

Tanim 2.11 “Canhlik”:

X, 1lk kosuluna sahip bir Petri ag1, X,’dan herhangi bir duruma gecerken herhangi

bir gecisin ateslenme 6zelligine sahip olan bir yoriinge daima mevcut ise “canli”dir

denir.

Ancak bu tanim ¢ok katidir ve test edilmesi de ¢ok karisik olacaktir. O nedenle
pratikte kullanilmas1t pek miimkiin degildir. Sadece 4 seviyeli bir canlilik

siiflandirmasina motivasyon olur.

X, 1k kosulu ile verilen Petri agindaki bir gegis,

« Olii veya LO-canlidir, eger gegis asla ateslenmiyorsa
o Ll-canhdir, eger X, dan basladiktan sonra en az bir kez atesleniyorsa
o L2-canlidir, eger en az k >1 kez atesleniyorsa

o L3-canlidir, eger o« kez ateslenecegi bir dizi varsa

o Canli veya L4-canhdir, X,’dan erisilen her duruma giden miimkiin biitiin

yollar i¢in L1-canl ise.

Kapsanabilirlik kavrammin Ll-canhlik ile yakin iliskisi vardir. Oli gegisleri

belirlemek i¢in kapsanabilirlik testi yapmak miimkiindiir.

Ornek 2.6: (Canhlik)

Sekil 2.9 : Ornek 2.6 Petri Ag Modeli

Sekil 2.9°da t, gecisi oliidiir ¢linkii asla ateslenemez. t, gecisi L1-canhidir ¢linkii bir
kere ateslenebilir. t, gegcisi ateslendiginde yeni durumda tiim gegisler 6lii olacaktir.
t, gecisi L3-canhdir ¢iinkii oo kere ateslenebilir, bu gecis L4-canlidir denemez ¢iinkii

t, gecisi ateslendikten sonra artik ateslenemez.

36

2.4.1.6 Kesintisiz Olma

Bazi durumda iki farkli ge¢is ayni kosul kiimesi ile izinli olabilir. Eger biri
ateslenirse acaba digerinin izinli olma 6zelligi ayn1 kalir mi1? Genel olarak bunun
garantisi yoktur. Gergekte iki gecis tam olarak ayni kosullara sahip olmazlar, ancak
sadece bir kosul ortak olur. Kesintisiz olma 6zelligi, izinli bir ge¢isin bagka bir izinli

gecisin ateslenmesi ile izinsiz hale gegmeme 6zelligidir.

Tanim 2.12 “Kesintisiz Olma”:

Eger herhangi iki izinli gegis i¢in, birinin ateslenmesi digerinin iznini yok etmiyorsa,

boyle bir Petri agina “kesintisiz”’dir denir.

Sekil 2.9’daki Petri ag1 kesintisiz degildir c¢iinkii t, ve t; izinlidir, ancak t,
ateslendiginde t, *lin izni kalkar. Diger taraftan Sekil 2.5’teki kuyruk sistemi Petri ag1

kesintisizdir.

2.4.2 Lineer Cebirsel Teknikler

Erisilebilir durumlar ve sakinim gibi bazi problemleri ¢ozmek icin daha 6nce
tanimlanan durum denklemleri kullanilabilir. Bu alternatif bir cebirsel teknik saglar
ve Petri aglarinin yapisal 6zelliklerini belirleme konusunda (ki bu yapisal 6zellikler
Petri aginin topolojisinin bir sonucu A matrisinde ortaya ¢ikar) gii¢lii bir imkan

saglar. Bu durum denklemleri X,,, =X, +U,A olarak tanimlanmisti. Erisilebilirlik

acisindan bu denkleme bakilirsa, bir X durumunun erisilebilir olmasinin gerek
kosulu segilebilir. X, ilk kosulu i¢in X durumuna erisilebilirligine bakilmak istenirse,

VA=X-X, (2.27)

v’nin non-negatif olarak belirlenmesi gerekir. Eger varsa, bu v’ye “ateslemeleri
sayan vektor” adi verilir. Bu v vektorii her gegisin kag kere yapilmasi gerektigini
sOyler. Bu sadece bir gerek kosuldur. v’nin non-negatif tamsayilar olarak varligi
bunlarin atesleme izinlerinin olacagmni gostermedigi i¢in, miimkiin oldugunun

garantisini vermez. Bu bir 6rnek tizerinde goriilebilir.

37

Ornek 2.7:

15

Sekil 2.10 : Ornek 2.7 Petri Ag Modeli

Sekil 2.10°deki Petri aginin A matrisi,

-1 1 -1 O

A= 0 -1 1 1| veilk kosulu x,=[1,0,0,0]’dir. x=[0,0,0,1] durumu ele
1 0 0 -1

alinirsa,

VA=X-X, = [0, 0, 0,1]—[1, 0, 0,0] = [—1,0, 0,1] denkleminden v =[1,1,0] olarak elde
edilir yani pozitif atesleme dizisi var gibi goriiliir. Bunun anlamu t,t, veya t,,t,

dizisi uygulaninca elde edilir olmasidir. Ancak bu iki atesleme de X,’da miimkiin

degildir. Bu, Onerilen cebirsel teknigin negatif yoniidiir. Pozitif tarafi ise,
X' = [0, 1,0, 0] ’a X, ’dan erisilebilir mi diye arastirilmak istenirse, sistem denklemi,
VA=X'-x,=[0,1,0,0]-[1,0,0,0] =[-1,1,0,0] olur ve bu denklemin bir ¢oziimii
yoktur, X" erisilemezdir sonucuna varilir.

Yine X,,, = X, +U, A denklemi sakinim 6zelligi ile ilgili baz1 bilgileri elde etmek i¢in

de kullanilabilir. A matrisine sahip bir Petri ag1 ele almsm. Eger Ay' =0 yapan

y = [}/1,7/2,...,7/”] 7,20 i=1,2,..,n bir y var ise bu durumda sunlar yazilabilir.

X=X, +VA (2.28)
xy' =X,y +VAyT (2.29)
Xyt =xp" (2.30)

38

Son esitlik, X,’dan erisilebilir tim X durumlart igin Xy' =st olan bir ¥ oldugunu
soyledigi i¢in, bunun anlami bu Petri aginin X, 1n herhangi bir se¢imi i¢in “y ’ya

gore sakinim” 6zelligine sahip oldugudur.

39

3. PROGRAM ACIKLAMALARI

Bu calismada, bicimsel isaretli bir dilden endiistriyel bir islemciye otomatik kod
iireten bir program gelistirme amaglanmistir. Bu amag i¢in, once isaretli dilden
iretilen dile gecilmis ve bu dili lireten otomatin durum gecis diyagrami elde
edilmistir. Daha sonra durum gecis matrisinden sistemin Petri ag modeli elde edilmis
ve bu model temel alinarak kullanilan islemciye uygun kod iireten yazilim
gerceklenmistir. Bu islemler, tiim asamalar1 gorsel olarak sunmaya imkan veren
Borland C++ Builder ortaminda gerceklestirilmistir. izlenen yonteme iliskin isaret

akis diyagrami Sekil 3.1°de gosterildigi gibidir.

Endiistriyel islemci olarak SIMATIC-300 secilmis ve standart bir dil olan SCL
dilinde kod iiretilmistir. Benzer yazilimlarda ortaya ¢ikan ve ilgili literatiirde * ¢1g
etkisi” (avalanche effect) olarak adlandirilan problem analiz edilmis ve ¢i1g
etkisinden armdirilmis SCL kodu iiretilmistir. izlenen ydnteme iliskin isaret akis

diyagrami Sekil 3.3 ve Sekil 3.4 ’de gosterildigi gibidir.

40

i alanma
L) girilir

Oilaylar, Lmn(3),
L{3) hesaplatur

DurnumGegigTablosu
butonuna basthr

Hm, durumlar ve t-gegiglent

heszaplant ve DurumiGecis

Tablosu olugturulur
L

DurumGegigTablosun
Degistir butonuna basihr

DurumnGegigTablosundald

bog alanlara istenen durim

geriglen girilir
PetriMNeteGe gz butomina DurumGegis ile PLC Eodu Olagtur
bagilr butonuna bast
e A Matrisi = PLC Eodu Olustur

butenuna basthr

L

1

Cilay-Ging alanlarna olaylar
olug swrasiyla gurihr

T-Girig alamma olaya
ilightit u-wekténi girilir

[PLC kodu tiretilir

L

3e+1 Hesapla butonuna

basiir ve gelinen verd
durumlar hezaplamr

Sekil 3.1 : Programa Iliskin Akis Diyagrami

41

3.1 Borland C++ Builder Programi

. Form1 E@@
Girig Alant Lmi(&) L(B) Xm Olaylar Durumlar A Matrisi T Gegigleri
Durum Gegis Tablosu PeliiNete Gegis
Olay Girig Alani - 1
Xk Hesapla U Vektor Dizisi Xk+1 Durumlan Tiim Alanlan Temizle
Dlay Girig Alan - 2 U ve Xk+1 Alanlanni Temizle
Durum Gegis ile PLC Kodu Dlugtur
U Girig Alant akgliHesnly
S A Matrisi ile PLC Kodu Olugtur

Durum Gegis Tablosunu Dedigtir

—— [

L itfen Lm(Gidsgerlerini aralanna , koyarak girni. .

Sekil 3.2 : Program Arayiizii

Program, “Giris Alani’na isaretli dilin (Lm(QG)) girilmesiyle baslar. Lm(G)’ye ait
kelimeler aralaria virgiil konularak yazilmalidir. Giris alanina (GirisMemo) iliskin
“GirisMemoKeyPress” ve “GirisMemoKeyDown” fonksiyonlart vardir.
GirisMemoKeyPress fonksiyonunda giris alanina say1 girilmesi, space ve back
tuslarina basilmasi engellenir. GirisMemoKeyDown fonksiyonunda girilen her
kelimenin 6nek kapaniglari ile tiim alt kelimeleri, kelimeyi olusturan harfler ile de
olaylar belirlenir. Girilen kelimeler “LmListBox”a, alt kelimeler “LListBox”a ve

olaylar “EventListBox”a eklenir.

void _fastcall TForm1::GirisMemoKeyDown(TObject *Sender, WORD &Key,
TShiftState Shift)
{

// Girig alanina girilen Lm(G)'den L(G) ve olaylar elde ediyoruz.
int text_len,tuple len,i,j,len;
AnsiString LmTuple,LTuple,Event;

LmTuple="";

LTuple="";

/* Lm(G) de girilen her kelime ', (Key == 188) ile birbirinden ayrilir.
Enter tusuna ya da',' e her basildiginda yeni bir kelime girilmis
demektir. Enter tusundan sonra Giris alanina yeni bir kelime girilemez.

*/

if((Key == 188)||(Key == VK_RETURN))

/* Girilen kelimenin uzunlugunu hesapliyoruz. Kelimeler arka
arkaya girildigi icin text len bu ana kadar girilen Lm(G)'nin
toplam uzunlugudur.

*/

text_len = GirisMemo->Text.Length();

42

/* Global bir degisken olan string_len'de bir dnceki
kelimenin bittigi indeks tutulur. Boylece (string_len+1)
den text_len'e kadar olan kisim yeni girilen kelimedir.
Eger yeni girilen kelimenin uzunlugu sifir degilse ilgili
tablolara gerekli eklemeler yapilir.

*/

if((text_len != 0)&&((text_len-string_len)!=0))

// Yeni girilen kelime LmTuple da saklanir.
LmTuple = GirisMemo->Text.SubString(string_len+1,text_len-string_len);
// 'Yeni kelime Lm(G) ye eklenir.
LmListBox->Items->Add(LmTuple);
tuple_len = LmTuple.Length();
/* Yeni kelimedeki her olay (harf) tek tek EventListBox'da
aranir. Eger daha 6nce eklenmediyse eklenir.

*/
for(i = 1; i<tuple_len+1;i++)
{
Event = LmTuple.SubString(i,1);
for(j = 0; j<EventListBox->Items->Count; j++)
if(Event == EventListBox->Items->Strings[j])
break;
}
if(j == EventListBox->Items->Count)
EventListBox->Items->Add(Event);
}

/* Yeni kelimenin tiim alt kelimeleri hesaplanir (L Tuple)
ve L(G)'ye (LListBox) a daha dnceden eklenmediyse eklenir.

*/
for(i = 1; i<tuple_len+1;i++)
{
LTuple = LmTuple.SubString(1,i);
for(j = 0; j<LListBox->Items->Count; j++)
f
i
if(LTuple == LListBox->Items->Strings[j])
break;
}
if(j == LListBox->Items->Count)
LListBox->Items->Add(LTuple);
}

}

// string_len giincellenir. +1 aralara girilen virgiil i¢in konulmustur.
string_len = text_len + 1;

// Enter'a basildiginda Giris alanini deaktif ediyoruz.
// Yeni bir Lm(G) girmek i¢in 'Tiim Alanlar1 Temizle' tusuna basilmali.
if(Key == VK_RETURN)

{

}

GirisMemo->Enabled = false;

H
I

void _ fastcall TForm1::GirisMemoKeyPress(TObject *Sender, char &Key)

// Girig alaninda say1 girilmesine, space ve back tuslarinin basilmasina izin vermiyoruz.
if(Key == VK_SPACE)||((Key >="0")&&(Key <='9")||(Key == VK_BACK))
Key = 0x0;

Daha sonra “Durum Gegis Tablosu” tusuna basilmalidir. Bu tusa basildiginda

“DurumGecisBitBtnClick” fonksiyonu c¢alisir ve durum gegis tablosu

43

“DGStringGrid”, durumlar ve isaretli durumlar hesaplanir. Durum gegis tablosunun
O.satir ve O.siitunu etiketler i¢in ayrilmistir. 0. satira olaylar 0. siituna durumlar
sirastyla yazilir. Olaylarin yer alacagi siitun sayist olay sayisinin bir fazlasi,
durumlarin yer alacagi satir sayisi durum sayisinin bir fazlasi kadardir. Otomatin
durumlar1 “1”den baslayarak sirayla numaralandirilir, “1” baslangic durumu olarak
kabul edilir ve “StateListBox”a ve “XmListBox”a eklenir. Lm(G)’deki her kelime
bir ¢evrim igerisinde alt kelimelerine boliiniir ve bu alt kelimeler daha oOnce
StateListBox’a eklenmediyse yeni bir durum olusmus demektir. Olusan yeni duruma
kars1 diisen alt kelime durum numarasiyla birlikte StateListBox’a eklenir. Durum
gecis tablosu, DGStringGrid[initial state, olusan olay]=last state olacak sekilde
giincellenir. Eger alt kelime StateListBox’a daha dnce eklendiyse bu alt kelimeye
kars1 diisen durum initial state’e atanir ve bdylece bir sonraki ¢evrim bu durumdan
devam eder. Lm(G)’ye ait her kelimenin son harfi yani olay1r otomat1 isaretli bir
duruma gotiiriir. Bu durumlar “XmListBoxa eklenir. Durum degisikligine sebep
olan her olay bir t-ge¢isidir. x. t-ge¢isi, (x+1). duruma gecilmesini saglayacak sekilde
t-gecisleri ve bunlara iligkin olaylar “TransListBox”a eklenir. Petri agina gecisi
saglamak amaciyla “PNStringGrid” tablosu olusturulur. Bu tablonun satir sayisi
durum sayisinin bir fazlasi, slitun sayisi ise t-gecisleri sayisinin bir fazlasi kadardir.
Durum gegis tablosundan tek farki siitunlarinda olaylar yerine t-gegislerinin
bulunmasidir. Tablonun i¢i PNStringGrid[initial state, t-gecisi]=last state olacak

sekilde giincellenir.

// 'Durum Gegis Tablosu' tusuna basildi.

void _fastcall TForm1::DurumGecisBitBtnClick(TObject *Sender)
{

int i,j,col_no, len;

initial_state = 1;

last_state = 0;

int lm_len = 0;

int tseparator = 0;

int idle_state;

AnsiString LmTuple,Lm,State,T Event,T State,T String, TIndex;
// Durum Gegis matrisinin 0.satir ve 0.siitunu etiketler igin ayrilmistir.
// Bu durumda olaylarin yer alacag: siitun sayisi olay sayisi + 1 'dir.

DGStringGrid->ColCount = EventListBox->Items->Count+1;

// Durum Gegis matrisinin 0.satirina olaylar yazdirilir.
for(i=0;i<EventListBox->Items->Count; i++)

DGStringGrid->Cells[i+1][0] = EventListBox->Items->Strings[i];

// Baglangi¢ durumu, durumlar alanina yazdirilir.
StateListBox->Items->Add("1-initial state");

// Durum Gegis matrisinin 1.satirinin 0.siitununa ilk durum '1' yazdirtlir.
DGStringGrid->Cells[0][1] ="1";

44

//Baslangi¢c durumu XMListBox'a eklenir.
XmListBox->Items->Add("1");

/* Lm(G) deki kelimeler 'LmTuple' teker teker bulunur ve Kleen
Kapanis'lar1 hesaplanarak Durum Gegig Matrisi olusturulur.

*/

for(i=0;i<LmListBox->Items->Count; i++)

len = LmListBox->Items->Strings[i].Length();
LmTuple = LmListBox->Items->Strings[i];

for(j=1;j<len+1;j++)
{
// LmTuple'nin her alt kelimesi yani Kleen kapanist
// déngii i¢inde hesaplanir ve Lm'ye atanr.
Lm = LmTuple.SubString(1,j);

// Lm'i olusturan olaya (Lm'in son harfi) karsilik diisen siitun numarasi bulunur.
col no = find_column_no(Lm,j);

if(col_no == 0) return;

// Durum Gegis Tablosu olusturulurken agag yapisi kullanilir.

/I Eger eklenmek istenen Lm daha dnceden eklenmisse, yani agacta

// bu Lm'e kars1 diigen bir durum var ise initial_state bu durumla

// giincellenir. Eger yoksa bu bizi yeni bir duruma gotiirecektir.

//

if(!Form1->check state listbox(Lm))

{

/I Yeni bir durum olustu, last_state ve Durum Gegis Matrisinin satir sayisi bir arttirilir.
last_state++;
DGStringGrid->RowCount++;

// Yeni durum, Durum Gegis Tablosu'na eklenir.
DGStringGrid->Cells[col no][initial_state] = last state+1;

// initial_state giincellenir.

initial_state = last_state+1;

// Durum listesi giincellenir. Yeni duruma karsilik diisen kelime araya '
State = IntToStr(last_state+1)+"-"+Lm;
StateListBox->Items->Add(State);

-' koyarak yazilir.

//lsaretli durumlar icin XmListBox giincellenir.
if(j == len)
{

}

XmListBox->Items->Add(IntToStr(last_state+1));

/I Petri Nete Gegiste kullanilmak iizere olaylara kars: diisen 't' gecisleri hesaplanir.
Im_len = Lm.Length();

T Event = Lm.SubString(Im_len,1);

T State = "t"+IntToStr(last_state);

T String=T State +"-"+ T_Event;

TransListBox->Items->Add(T_String);

/* Eklenen yeni durum 0.siituna etiket olarak yazilir.

Durumlar 1.satirdan itibaren yazilmaya basladigi i¢in +1 konulmustur.*/
DGStringGrid->Cells[0][last_state+1] = last_state+1;

}

for(i=1;i<DGStringGrid->RowCount; i++)

{
for(j=1;j<DGStringGrid->ColCount; j++)

45

if(DGStringGrid->Cells[j][i] !="")
break;

}

/* Y1gilma problemini 6nlemek i¢in, Durum Gegis Tablosu Petri Net gegigine
uygun hale getirilir. Siitunlara karsilik diisen olaylar yerine
yukarida hesaplanan 't' gecisleri kullanilir.

*/

/* Yeni tablonun siitun sayist 't' lerin sayis1 +1 dir, satirlariin

sayist ise Durum Gegis Matrisi ile aynidir, yani durum sayis1 +1 dir.
*/
PNStringGrid->ColCount = TransListBox->Items->Count+1;
PNStringGrid->RowCount = DGStringGrid->RowCount;

// 'Yeni matrisin 0.stitunlarina 1. satirdan baslayarak durumlar yazilir.
for(i=1;i<PNStringGrid->RowCount; i++)

S

1

}

// 'Yeni matrisin 0.satirina 1. siitundan baslayarak 't' ler yazilir.
for(i=0;i<TransListBox->Items->Count; i++)

PNStringGrid->Cells[0][i] = IntToStr(i);

{
tseparator = TransListBox->Items->Strings[i].Pos("-");
if(tseparator > 1)
TIndex = TransListBox->Items->Strings[i].SubString(1,tseparator-1);
PNStringGrid->Cells[i+1][0] = TIndex;
}

/* Durum Gegis Matrisinin hesaplanma sekline gore bizi i.durumdan
X durumuna (DGStringGrid->Cells[j][i]) gotiiren t, t(X-1) yani
t(DGStringGrid->Cells[j][i])-1) dir. Bu durumda yeni matrisin
i.satirnin t(X-1).stitununa X yazilir.

*/

for(i=1;i<DGStringGrid->RowCount; i++)

for(j=1;j<DGStringGrid->ColCount; j++)

{
if(DGStringGrid->Cells[j][i] =="")
continue;
PNStringGrid->Cells[(DGStringGrid->Cells[j][i]-1)][i] = DGStringGrid->Cells[j][i];
}

}

// Durum Gegis Matrisinden son durumlar belirlenir.
find_final states();

}
I

// Durum Gegis matrisinin siitunlarini, EventListBox'a eklendikleri sira ile
// olaylar olusturur. Satirlar1 ise numara sirastyla durumlar olusturur.
// 0.satir ve 0. siitunlar da olay ve durum etiketleri i¢in ayrilmistir.
int find_column_no(AnsiString Lm,int len)
{
AnsiString LmLast;
inti;
// Lm deki kelimelerin tiim alt kelimeleri i¢in bu islem tekrarlandigindan
// son harfe yani olaya bakmak yeterlidir.
LmLast = Lm.SubString(len, 1);

46

/* Olayin EventListBox daki indeksi 'i' bulunur. Durum Gegis Martisinde
olaylar 1.slitundan bagladig1 i¢in 'i+1' dondiiriiliir.

*/

for(i=0;i<Form1->EventListBox->Items->Count; i++)

if(Form1->EventListBox->Items->Strings[i] == LmLast)
return(i+1);

}

if(i == Form1->EventListBox->Items->Count) return(0);

}
I

bool fastcall TForml::check state listbox(AnsiString Lm)
{
int i,separator,length;
AnsiString StateTuple,MainTuple;
/* Alt kelime Lm, StateListBox da aranir. Ancak statelere karsilik diisen

kelimeler '-' den sonra yazildig1 icin MainTuple hesaplanir.
*/
for(i=1;i<Form1->StateListBox->Items->Count;i++)
{

StateTuple = Form1->StateListBox->Items->Strings][i];

length = StateTuple.Length();
separator = StateTuple.Pos("-");

MainTuple = StateTuple.SubString(separator+1,length-separator);
/* Eger alt kelime Lm'e karsilik diisen bir durum varsa
initial_state bu degerle giincellenir.
*/
if(Lm == MainTuple)
{

initial_state = StrTolnt(StateTuple.SubString(1,separator-1));
return(true);

}

/* Eger alt kelime Lm'e karsilik diisen bir durum yoksa ve bu ilk alt
kelimeyse yani uzunlugu 1 ise initial_state'e 1 atanir. Agag yapisina
yeni bir dal eklenir.

*/

if(Lm.Length() = 1)

initial_state = 1;

return(false);

}
/I

// Durum Gegis Matrisinden son durumlar belirlenir.
void _ fastcall TForm1::find final states()

int i,j, counter;

// Son durumlar sifirlanir.
for(i=0;1<100; i++)

{

final states[i]=0;
}
counter = 0;

/I Eger bir durum hangi olay olursa olsun durum degistirmiyorsa (Durum Gegis

47

"

// Matrisinde bu duruma karsilik gelen siitunlarin hepsi sifirsa) "son durum
// yani kilitlenmenin olustugu durum olarak kabul edilir.
for(i=1;i<DGStringGrid->RowCount; i++)
{

for(j=1;j<DGStringGrid->ColCount; j++)

if(DGStringGrid->Cells[j][i] !="")
break;

}

// Son durumlar 0. indeksten baglayarak final states'e kaydedilir.
if (j = DGStringGrid->ColCount)

final states[counter] = i;
counter = counter +1;
}
5

Simdiye kadar yapilan ¢alismalar sadece sonlu bir dili desteklemektedir. Sonsuz dile
gecis icin Durum Gegis Tablosunun (DGStringGrid) bos alanlarina yeni durum
gecislerinin eklenmesine izin verilir. “Durum Gegis Tablosunu Degistir” butonuna
basilarak DGStringGrid yazilabilir hale getirilir. Dolu alanlarin degistirilmesine izin
verilmezken, bos alanlara istenen durumlar eklenebilir. Eklenen durum, var olan
durumlar arasindan se¢ilmeli ve ENTER’a basilarak giris yapilmalidir. Her yeni giris
icin PNStringGrid tablosu bu yeni girise iliskin t-gecisini igerecek sekilde
giincellenir. Ayn1 zamanda t-gegislerini listeyen TransListBox kutusuna yeni gegisler

eklenir.

void _ fastcall TForm1::bbEditClick(TObject *Sender)
//"DG Degistir" tusuna basildiginda Durum Gegis Tablosu yazilabilir hale getirilir.
DGStringGrid->Options.operator <<(goEditing);

}
I

void __ fastcall TForm1::DGStringGridKeyPress(TObject *Sender, char &Key)
{

int place_count,event_count,trans_count;
AnsiString T String, T State,T Event;

place_count = DGStringGrid->RowCount-1;

event_count = DGStringGrid->ColCount-1;

//Durum Gegis Tablosu'na Bosluk, Harf ve Durum Sayisindan biiyiik tek rakam girisleri engellenir.
if(Key I= VK_RETURN)

{if((Key == VK _SPACE)||((Key <="0")||(Key >'9"))||(AnsiString(Key) > IntToStr(place count)))

Key = 0x0;
return;

48

H
H

//ENTER tusuna basildiginda yeni t ge¢isi PNStringGrid tablosuna ve TransListBox'a eklenir.

if(Key == VK_RETURN)

{
if(DGStringGrid->Cells[selected _col][selected row] !="")

{

trans_count = TransListBox->Items->Count;

T State = "t"+IntToStr(trans_count+1);
T Event = DGStringGrid->Cells[selected_col][0];

T String=T State +"-"+ T_Event;
TransListBox->Items->Add(T_String);

trans_count++;
PNStringGrid->ColCount++;
PNStringGrid->Cells[trans_count][0] = "t"+IntToStr(trans_count);

PNStringGrid->Cells[trans_count][selected row] = DGStringGrid-
>Cells[selected _col][selected row];

return;

}

b
I

void __fastcall TForm1::DGStringGridSelectCell(TObject *Sender, int ACol,
int ARow, bool &CanSelect)
{

int trans_count;
AnsiString T_String, T State,T Event;

//Durum Gegis Tablosu'nda dolu olan alanlarin se¢imi engellenir.

if(DGStringGrid->Cells[ACol][ARow] !="")
{
CanSelect = false;
return;

}

selected_col = ACol;
selected_row = ARow;

b
/I

void _ fastcall TForm1::DGStringGridSetEditText(TObject *Sender, int ACol,
int ARow, const AnsiString Value)

{
int place_count;
place_count = DGStringGrid->RowCount-1;
//Durum Gegis Tablosu'nda giris yapilan degerin durum sayisindan biiyiik olmasi engellenir.
if(Value !="")
S
if(StrTolnt(Value) > place_count)
DGStringGrid->Cells[ACol][ARow] ="";
}
}
/

49

Daha sonra “PetriNete Gegis” tusuna basilmalidir. Bu tusa basildiginda
“PetriNetBitBtnClick” fonksiyonu c¢alisir ve A matrisi, a[j][i] = t p[jl[i]-p_t[1[i]
olacak sekilde hesaplanir. Burada j her zaman t-gecis indeksi, i ise p yeri indeksidir.
Eger PNStringGrid’de j. siitunu ve i. satirina ait bir gecis tanimli ise yani
PNStringGrid[j][i]=yeni_p# “ " ise, p_t[j][i] ve t p[jl[yeni p] “1” degerini alir. Tiim
p_t ve t p degerleri hesaplandiktan sonra A matrisi yukaridaki denkleme gore
hesaplanir. Her olaya iliskin t-gecis sayisi olay ismi ile birlikte “EListBox”a eklenir.
Bu liste X,,, =X, +U A hesaplanirken kullanilmak {izere tutulmaktadir, ekranda

goriilmez.

I

/] 'PetriNete Gegis' tusuna basildi.

void __fastcall TForm1::PetriNetBitBtnClick(TObject *Sender)
{

int trans_count= 0; //lrow_count

int place_count=0; //col count

intt_p[100][100],p_t[100][100];
AnsiString A_Row ="";
// Once Durum Gegis Tablosu hesaplanmali.
if(PNStringGrid->Cells[0][1] == "")
{
Application->MessageBox("Once Durum Gegis Tablosunu olusturunuz!","Uyan",MB_OK);
return;

}

// Durumlarin sayist Durum Gegis Matrisinin satir sayisinin 1 eksigine,
/I gegis say1st TransListbox'in eleman sayisina esittir.

place_count = DGStringGrid->RowCount - 1;

trans_count = TransListBox->Items->Count;

// Matris ¢arpiminda kullanilan t p, p_t ve a matrisleri sifirlanir.
for(int i=0;i<100;i++)

for(int j=0;j<100;j++)
f
{
a[i](j1 = 0;
t p[i][j]=0;
(1=0

//A matrisi, a[j][i] = t_p[j][i]-p_t[jI[i] kuralina gore hesaplanir.
for(int i=1;i<place_count+1;i++)
S
1
for(int j=1;j<trans_count+1;j++)

if(PNStringGrid->Cells[j][i] !="")
{
p_tljlli]=1;
t_p[j][StTolnt(PNStringGrid->Cells[j][i])] = 1;

50

for(int i=1;i<place_count+1;i++)

{

for(int j=1;j<trans_count+1;j++)
f
1

afjIfi] = t_p[jllil-p_t[1lil;
}
/I A matrisi ekrana yazdirilir.
for(int j=1;j<trans_count+1;j++)
S
1

A Row="";

for(int i=1;i<place_count+1;i++)

{
ifi==1)
A Row = IntToStr(a[j][i]);
else
A Row=A Row+" "+IntToStr(a[j][i]);
}

AListBox->Items->Add(A_Row);
}

// Olaylar sayilari ile birlikte EListBox'a eklenir.
/I (xk+1 1 A matrisinden hesaplamak icin)

calc_event_count();

}
/
// Olay Giris Alani 1'e girilen her olay1 t gegisi sayistyla birlikte EListBox'a ekler.
void __ fastcall TForml::calc_event count()

{

int tseparator,event_count;

AnsiString Event,EventString;

EListBox->Items->Clear();

—nn,
s

Event
EventString ="";

for(int j=1;j<DGStringGrid->ColCount; j++)
Event = DGStringGrid->Cells[j][0];
event_count = 0;

for(int i=0;i<TransListBox->Items->Count;i++)

{
tseparator = TransListBox->Items->Strings[i].Pos("-");
if(Event == TransListBox->Items->Strings[i].SubString(tseparator+1,1))
event_count++;
}

EventString = Event + "-" + IntToStr(event_count);

EListBox->Items->Add(EventString);

Durum gegis tablosu ve A matrisi hesaplandiktan sonra X,,, =X, +U,A denklemi

kullanilarak girilen olaylar ya da u giris vektorlerine gore yeni durumlar belirlenir.

51

Bunun ig¢in ti¢ farkli yontem kullanilmigtir. Baglangi¢ durumu olarak Xo=[1, 0, .., 0]

alimmustir.

“Olay Girig Alan1 — 17 kullanilarak: “UlAnilMemo” alanina iliskin
“UlAnilMemoKeyDown” ve “UlAnilMemoKeyPress” fonksiyonlari
tanimlidir. Ul AnilMemoKeyPress fonksiyonunda giris alanina say1 girilmesi
ve space tusuna basilmasi engellenir. Olaylarin tek tek ve aralarma virgiil
konularak girilmesi saglanir. Islem bittiginde ya ENTER tusuna basilmali
veya virgiil konulmalidir. Ul AnilMemoKeyDown fonksiyonunda, girilen her
olaya ait t gecisleri kullanilarak, tiim olas1 u vektorleri belirlenir ve “U Vektor
Alani”na, “UListBox”, eklenir. Her eklenen vektore karst diisen olay ise
“EListBox1” listesine yazilir. Bu liste X, =X, +U/A hesaplanirken

kullanilmak tizere tutulmaktadir, ekranda goriilmez.

UlAnilMemo alanina girilen her olay i¢in UlistBox da olaymn t-gegisleri
sayis1 kadar u vektorii bulunur. Ul AnilMemo alanina giris tamamlandiginda
bu alanin yanindaki “X,,, Hesapla” tusuna basilmalidir. Bu tusa basildiginda
“AnilXkBitBtnClick™ fonksiyonu calisir. Bu fonksiyonda UListBox’taki her
u vektorii icin Xk[j] = Xol[j] + UA[j] degeri hesaplanir, eger elde edilen
durum vektoriiniin herhangi bir elemani sifirdan kiigiikse sistem bu u girisi
icin durum degistirmez ve sistem durumunu korur (Xk=Xo). Aksi halde
belirlenen yeni durum “Xk”, bir 6nceki durumdan “Xo”, farkli ise sistem
durum degistirmis demektir. Yeni durum Xo’a atanir (Xo=Xk). Sistem durum

degistirsin ya da degistirmesin yapilan her hesaplama i¢in Xk durum vektorii
“Xy,; Durumlart” alanina eklenir. Durum degisikligine sebep olan u

AT 33

vektoriiniin ve Xk yeni durum vektoriiniin yanina isareti konulur. Her
olay i¢in bir t-gecisi durum degisikligine sebep olacagindan sistem durum
degistirdiginde o olaya iligkin diger u vektdrleri atlanir, bir sonraki olaya ait u
vektorlerine ElistBox ve EListBox1 listeleri kullanilarak gidilir.
Hesaplamalar burdan devam eder. Eger sistem agmaz bir duruma ulastiysa

baslangi¢ durumuna dondiiriiliir.

// Ul AnilMemo alanina olaylar aralarina virgul konularak sirayla girilir.

/I t gecisleri kullanilarak girilen olaylara kars1 diisen tiim u vektorleri belirlenir.

void __ fastcall TForm1::U1AnilMemoKeyDown(TObject *Sender, WORD &Key,
TShiftState Shift)

{

int tseparator,text _len,t num,tlen;

AnsiString UTuple,MainU, TEvent;

UTuple ="";

52

MainU ="";
TEvent="",

t num = 0;
text_len = 0;
tseparator = 0;
tlen=0;

// Virgiil ya da entera basilirsa

if((Key == 188)||(Key == VK_RETURN))
{

if(DGStringGrid->Cells[1][0] == "")
{

Application->MessageBox("Liitfen

olusturunuz!","Uyar1",MB_OK);

UlAnilMemo->Text="";
return;

}

int place_count = DGStringGrid->RowCount - 1;
int trans_count = TransListBox->Items->Count;

if(AListBox->Items->Count == 0)

{

Durum Gegis

Tablosunu

Application->MessageBox("Liitfen Once PetriNet'e Geginiz!","Uyar1",MB_OK);

UlAnilMemo->Text="";
return;

}

// Ul AnilMemo alanina olaylar tek tek ve aralarina virgiil
// konularak girilir, bu yiizden virgiil ya da entera her basildiginda
// Ul AnilMemo'daki verinin son harfi girilen olaya,MainU'ya, esittir.

text_len = Ul AnilMemo->Text.Length();

MainU = UlAnilMemo->Text.SubString(text len,1);

// Girilen olay (MainU) i¢in t gecisleri kullanilarak, tiim olas1 u vektorleri

// belirlenir ve U vektor dizisine eklenir.

for(int i=0;i<TransListBox->Items->Count; i++)

{

tlen = TransListBox->Items->Strings[i].Length();

UTuple="";

tseparator = TransListBox->Items->Strings[i].Pos("-");

if(tseparator <=1) continue;

TEvent = TransListBox->Items->Strings[i]. SubString(tlen,1);

if(MainU == TEvent)

if(TransListBox->Items->Strings[i]. SubString(2,tseparator-2) == ""

continue;

t num = StrTolnt(TransListBox->Items->Strings[i].SubString(2,tseparator-2));

if(t num <= trans_count)

{

u_index++;

for(int j=1;j<trans_count+1; j++)

if(j==1)
{

if(j ==t_num)

{

UTuple = UTuple + "1";

U[j][u_index] = 1;

}

else

53

UTuple = UTuple + "0";
U[j][u_index] = 0;

H
}
else
{
if(j ==t _num)
{
UTuple = UTuple + " 1";
U[j][u_index] = 1;
else
UTuple = UTuple + " 0";
U[j][u_index] = 0;
H
}

}
UListBox->Items->Add(UTuple);
EListBox1->Items->Add(TEvent);

}

}

// Entera basildiginda Olay giris alant 1 deaktif edilir.
if(Key == VK_RETURN)

UlAnilMemo->Enabled = false;

;
I

// Ul AnilMemo alanina girig yapildiginda asagidaki kontroller kosar.
void __ fastcall TForm1::U1AnilMemoKeyPress(TObject *Sender, char &Key)
{
// Say1 ve bosluk tuslarindan giris kabul edilmez.
if((Key == VK_SPACE)||((Key >="'0"&&(Key <='9")))
Key = 0x0;

int len = Ul AnilMemo->Text.Length();

// Eger son girilen deger ',' degil ise bir olay girildi demek ve hemen
// arkasindan ',' ya da enter ya da backspace tusuna basilmali.
if((Ul AnilMemo->Text.SubString(len,1) !=",")&&(len != 0))

if(Key !=")&&(Key != VK_RETURN)&&(Key != VK_BACK))
Key = 0x0;
}

// Eger alan bos ise yada son olarak ',' girilmisse yeni bir virgiil girigine izin verilmez.
if(Key ==")

if((UlAnilMemo->Text == "")||(U1 AnilMemo->Text.SubString(len,1) ==","))
Key = 0x0;
}

;
I

54

“Olay Giris Alanm1 — 2” kullanilarak: “UlOzdeMemo” alanina iliskin
“Ul0zdeMemoKeyDown” ve “UlOzdeMemoKeyPress” fonksiyonlari
tanimlidir. U1O0zdeMemoKeyPress fonksiyonunda giris alanina say1 girilmesi
ve space tusuna basilmasi engellenir. Olaylarin tek tek ve aralarma virgiil
konularak girilmesi saglanir. Islem bittiginde ya ENTER tusuna basilmali
veya virgil konulmahdir. UlOzdeMemoKeyDown fonksiyonunda, girilen
her “e” olaymin DGStringGrid’deki siitun indeksi “e_indeks” bulunur.
Sistemin durum degistirip degistirmedigi belirlenir,
DGStringGrid[e_indeks][Xo] = Xk # “ 7 ise sistem durum degistirmis
demektir. Sistemi Xk. duruma gegiren t-gecisi PNStringGrid tablosundan
bulunur. Bu durumda u vektorii t gecisine karsilik diisen elemani “17,
digerleri “0” olacak sekilde diizenlenerek “U Vektor Alani’na, “UListBox”,
eklenir. Eger sistem durum degistirmiyorsa u vektorii tiim elemanlar1 “0”
olacak sekilde eklenir. Bir sonraki u ¢evrimi i¢in ulasilan yeni durum Xk,
sistemin bulundugu Xo durumuna atanir. Eger sistem a¢gmaz bir duruma

ulastiysa baglangic durumuna doniiliir.

UlOzdeMemo alanina giris tamamlandiginda bu alanin yanindaki “X, .,

Hesapla” tusuna basilmalidir. Bu tusa basildiginda “OzdeXkButtonClick”
fonksiyonu c¢alisir. Bu fonksiyonda UListBox’taki her u vektorii igin
Xk[j] = Xo[j] + UA[j] degeri hesaplanir, eger elde edilen durum vektoriiniin
herhangi bir elemani sifirdan kiiciikse sistem bu u girisi i¢in durum
degistirmez ve sistem durumunu korur (Xk=Xo). Aksi halde belirlenen yeni
durum “Xk”, bir 6nceki durumdan “Xo”, farkli ise sistem durum degistirmis
demektir. Yeni durum Xo’a atanir (Xo=Xk). Sistem durum degistirsin ya da
degistirmesin yapilan her hesaplama icin Xk durum vektori “X, .,
Durumlar1” alanina eklenir. Eger sistem agmaz bir duruma ulastiysa baslangic¢

durumuna dondurilir.

// U10zdeMemo alanina giris yapilirsa asagidaki kontroller kosar.
// Olaylar tek tek ve aralarina virgiil konularak girilir.
void __ fastcall TForm1::U10zdeMemoKeyPress(TObject *Sender, char &Key)
{
/I Ul0zdeMemo alanina say1 ya da bosluk girilemez.
if((Key == VK_SPACE)||((Key >='0"&&(Key <='9")))
Key = 0x0;

int len = U1OzdeMemo->Text.Length();
/I Eger son girilen deger ',' degil ise bir olay girildi demek ve hemen
// arkasindan ',' ya da enter ya da backspace tusuna basilmali.
if((U10zdeMemo->Text.SubString(len,1) !=",")&&(len != 0))
if((Key !=",")&&(Key != VK_RETURN)&&(Key != VK_BACK))
Key = 0x0;

55

}
// Eger ekran bos ise ya da son olarak ',' girilmigse yeni bir virgiil girisine izin verilmez.
if(Key ==",)

if((U10zdeMemo->Text == "")||(U1OzdeMemo->Text.SubString(len,1) ==","))
Key = 0x0;
}

b
I

// U10zdeMemo alanina olaylar aralarmna virgiil konularak sirayla girilir.

// 10 .. 0] durumundan baglayarak olugan olaylara gore gidilecek yeni

// durumlar belirlenir.

void __ fastcall TForm1::U10zdeMemoKeyDown(TObject *Sender, WORD &Key,
TShiftState Shift)

{

int tseparator,text_len,t num,tlen;
AnsiString UTuple,MainU,TEvent;

UTuple="";
MainU ="";
TEvent ="";

t num =0;

text len =0;

tseparator = 0;

tlen =0;

// Virgiil ya da entera basilirsa

if((Key == 188)||(Key == VK_RETURN))
{

if(DGStringGrid->Cells[1][0] == "")

{
Application->MessageBox("Liitfen Durum Gegis Tablosunu
olusturunuz!","Uyar1",MB_OK);
Ul0zdeMemo->Text="",
return;
}

// Durumlarin sayist Durum Gegis Matrisinin satir sayisinin 1 eksigine,
/I gegis sayist TransListbox'in eleman sayisina esittir.

int place_count = DGStringGrid->RowCount - 1;

int trans_count = TransListBox->Items->Count;

if(AListBox->Items->Count == 0)

{
Application->MessageBox("Liitfen Once PetriNet'e Geginiz!","Uyari",MB_OK);
Ul10zdeMemo->Text ="";
return;

}

// Girilen verinin uzunlugu hesaplanir.
text_len = UlOzdeMemo->Text.Length();

// U10zdeMemo alanina olaylar tek tek ve aralarmna virgiil

// konularak girilir, bu yiizden virgiil ya da entera her basildiginda

// U10zdeMemo'daki verinin son harfi girilen olaya, MainU'ya, esittir.
MainU = U10zdeMemo->Text.SubString(text_len,1);

// Girilen olaymm Durum Gegis Matrisindeki siitun indeksi bulunur.
int col no = find_column_no(MainU,1);

//u_index'i bir arttirilir.
u_index = u_index +1;

// Durum Gegis Matrisi'nden MainU olay1 oldugunda hangi duruma
// gidilecegi bulunur. Eger matristeki karsilig1 bos ise sistem

56

// durum degistirmiyor demektir.U matrisine [0 O .. 0] atanir ve
// UListBox'a eklenir.
if (DGStringGrid->Cells[col_no][previous_state] ==""")

{

for(int i=1;i<TransListBox->Items->Count+1; i++)

UTuple = UTuple + " 0";
Uli][u_index] = 0;
§

UListBox->Items->Add(UTuple);
b

else

{
/I Eger matristeki karsilig1 bos degil ise hangi duruma (next_state) gidilecegi bulunur.
int next_state = StrTolnt(DGStringGrid->Cells[col _no][previous_state]);

/I Aktif olan t gegisi (previous_state'ten next_state'e gegiren)
// PNStringGrid tablosundan bulunur ve U vektoriine gevrilir.

for(int k=1;k<TransListBox->Items->Count+1;k++)

if(PNStringGrid->Cells[k][previous_state] == next_state)

{ for(int i=1;i<TransListBox->Items->Count+1; i++)
if i==k)
{
UTuple = UTuple + " 1" ;
Uli][u_index] = 1;
else
{
UTuple = UTuple + " 0" ;
Uli][u_index] = 0;
}
}
break;
}

}

// Olusan olaya iligkin hesaplanan UTuple, UListBox'a eklenir.
/I ' Ve bir sonraki ¢evrim i¢in previous_state glincellenir.
UListBox->Items->Add(UTuple);

previous_state = next_state;

// Eger ulasilan durum agmaz (deadlock) bir durum ise baslangi¢
// durumuna geri doniiliir.
for (int i=0; i< 100; i++)
{
// final_states tablosu bos ise dongiiden ¢ikilir.
if (final_states[i] == 0)
break;
// Baglangi¢ durumuna geri doniiliir.
if (next_state == final_states[i])
{
previous_state = 1;
break;
}
}
}
}

// Enter tuguna basilinca U1OzdeMemo alanina giris yapilmasina izin verilmez.
if(Key == VK_RETURN)

{
U10zdeMemo->Enabled = false;

57

}

/]

/1 Alttaki "Xk+1 Hesapla" tusuna basild.

// UListBox'daki tiim U'lar i¢gin Xk+1 = Xk + uA hesaplanur,

// baglangi¢ durumu [1,0,0,..] olarak alinir. UListbox'a "Olay Giris Alan1 2" ya da

//"U Girig Alam1" kullanilarak giris yapildi ise bu tusa basilmalidir. "Olay Giris Alan1 1"
// alanindan giris yapildiysa tstteki "Xk+1 Hesapla" tusuna basiimalidir.

void __ fastcall TForm1::0zdeXkButtonClick(TObject *Sender)

{

AnsiString Xk Row, Xo Row;
int UA[100],u[1001,j, state;

state = 0;
XkListBox->Items->Clear();

if(UListBox->Items->Count == ()

{
Application->MessageBox("Liitfen U'yu giriniz!","Uyar",MB_OK);
return;

}

/' UA ve Xo sifirlanir.

for(int i=0;i<100;i++)

UA[i] =0;
for(int i=0;i<100;i++)
{
Xo[i] = 0;
}

// Baslangi¢ durumu [1,0,0,..]
Xo[1]=1;

// UListBox'daki tiim vektorler teker teker Xk+1 = Xk + uA islemine tabii
// tutulur. u_index UListBox alamindaki U'larin toplam sayisidir.
for(int k=1;k<u_index+1;k++)
{
/I UListBox alanindaki U'lar, lokal bir degisken olan u'ya atanir.
for(int i=1;i<100;i++)

{
}

ufi] = U[i](k];

// Durumlarin sayis1 Durum Gegig Matrisinin satir sayisinin bir eksigine,
// gegis sayist TransListbox'in eleman sayisina esittir.

int place_count = DGStringGrid->RowCount - 1;

int trans_count = TransListBox->Items->Count;

// Matris ¢arpmasinda kullanilan UA, her u degisimimde sifirlanir.
for(int i=0;1<100;i++)

{
}

UA[i] = 0;

// uA garpimi hesaplanir.
for(int i=1;i<trans_count+1;i++)

{

for(int j=1;j<place_count+1;j++)

UA[j] = UA[j] + ufi] * a[i][j];

58

// Xk+1 = Xk + uA islemi sonucu hesaplanir. Eger vektoriin elemanlarindan
// herhangi biri negatif ise sistem durum degistirmez.
for(j=1;j<place_count+1;j++)

Xk[j] = Xo[j]+ UA[];

if(Xk[j] < 0)
break;
h

/I Eger Xk negatif ise sistem durum degistirmeyecegi igin, bir dnceki
// durum yani Xo, Xk'ya atanir.
if(j < place_count+1)

for(int j=1;j<place_count+1;j++)
XKk[j] = Xoljl;
}
§
// Sistemin su anki durumu, bir sonraki u ¢evrimi i¢in Xo'a atanir.
for(int j=1;j<place_count+1;j++)
Xo[j] = Xk[j];
}

// Bulunan yeni durum, Xk vektori, text olarak(Xk Row) kaydedilir.
Xk Row="";

Xo Row="";

for(int i=1;i<place_count+1;i++)

if (XK[i]==1)

state = i;
// Vektor elemanlari aralarinda bosluk olacak sekilde text olarak kaydedilir.
ifi==1)
Xk Row = IntToStr(Xk[i]);
else

Xk Row =Xk Row+" "+IntToStr(Xk[i]);
}

// Yeni durum XkListBox'a eklenir.
XkListBox->Items->Add(Xk Row);

// Eger gelinen durum agmaz(deadlock) durum ise baglangi¢c durumuna geri doniiliir.
for(int index=0;index<100;index++)

if (state == final_states[index])
for(j=1;j<place_count+1;j++)

//'[1 0 .. 0] baglangi¢c durumu text olarak "Xo Row"a kaydedilir.

Xo[j] =05
if;=1)
Xo[j]=1;
/I Vektor elemanlar aralarinda bosluk olacak sekilde text olarak kaydedilir.
if=1)
Xo_Row ="1";
else

Xo_Row=Xo Row-+" "+"0";
§
// Baslangi¢ durumu XkListBox'a eklenir.

XkListBox->Items->Add(Xo_Row);
break;

59

“U Giris Alam1” kullanilarak: “U2VektérMemo” alanma iliskin
“U2VektorMemoKeyDown”, “U2VektorMemoKeyPress” ve
“U2VektorMemoEnter” fonksiyonlari tanimlidir. Bir olaya iligskin u vektorii
girilip ENTER tusuna basilmali ve vektor elemanlar1 aralarma bosluk
konularak girilmelidir. U2VektorMemoKeyPress fonksiyonunda sayi, space,
back ve ENTER'dan baska bir tusa basilmasina izin verilmez.
U2VektorMemoEnter fonksiyonu her ENTER tusuna basildiginda ¢alisir ve
U2VektorMemo alanmin bir sonraki yeni giris icin bosaltilmasini saglar.
U2VektorMemoKeyDown fonksiyonunda girilen u vektorlerinin boyutlar
kontrol edilir, t-gecis sayisina esit olmalidir. Eksik girisler kabul edilmez,
kullanict uyarilir. Fazla girislerde ise kullanici uyarilir ancak vektoriin t-gegis
sayisina kadar olan kismi u girisi olarak kabul edilir. Kabul edilen girisler

UlistBox’a eklenir.

U2VektérMemo alanina giris tamamlandiginda bu alanin yanindaki “X,

Hesapla” tusuna basilmalidir. Bu tusa basildiginda “OzdeXkButtonClick”
fonksiyonu calisir. Bu tus ayn1 zamanda “Olay Girig Alan1 — 2” igin

kullanilan tustur. Calisma sekli 2. yontemde anlatilmugtur.

//'U Giris Alania her giris yapildiginda enter tusuna basilir ve U2VektorMemo
// alan sifirlanir.
void _ fastcall TForm1::U2VektorMemoEnter(TObject *Sender)

{

;
I

// "U" alanina giris yapildiginda asagidaki kontroller kosar.
void _ fastcall TForm1::U2VektorMemoKeyPress(TObject *Sender, char &Key)

{

U2VektorMemo->Text ="";

// Say1, bosluk, backspace ve enter'dan baska bir tusa basilamaz.
if((Key < '0)||(Key > '9))&&(Key != VK SPACE)&&(Key != VK BACK)&&(Key =
VK RETURN))
Key = 0x0;

int len = U2VektorMemo->Text.Length();

// 11k giris bosluk olamaz ve iist iiste bosluk girilemez.
if(Key == VK_SPACE)

if((U2VektorMemo->Text == "")||(U2VektorMemo->Text.SubString(len,1) ==" "))
Key = 0x0;

b
I

//'U Giris Alanmna vektor girilmesi durumu.

60

void _fastcall TForm1::U2VektorMemoKeyDown(TObject *Sender, WORD &Key,
TShiftState Shift)
{

int trans_count = 0;
int length,separator,main_len,j;

AnsiString U_Initial, MainU;

//Enter'a her basildiginda bir vektor girildi demektir.
if(Key == VK_RETURN)

U2VektorMemo->Enabled = false;
U2VektorMemo->Enabled = true;

MainU = "";

if(DGStringGrid->Cells[1][0] == "")

{
Application->MessageBox("Liitfen Durum Gegis Tablosunu
olusturunuz!","Uyar1",MB_OK);
return;

}

// Durumlarin sayist Durum Gegis Matrisinin satir sayisinin 1 eksigine,
/I gecis sayist TransListbox'in eleman sayisina esittir.

int place_count = DGStringGrid->RowCount - 1;

trans_count = TransListBox->Items->Count;

main_len = 0;
//'U Giris Alana girilen vektorler U Vektor dizisi alanina eklenir ve bu
// alandaki vektorlerin sayisini tutan u_index 1 arttirtlir.
UListBox->Items->Add(U2VektorMemo->Text);
u_index++;
U_Initial = U2VektorMemo->Text;
length = U_Initial. Length();
// Son girilen bosluk U _Initial'a dahil edilmez.
if(U_Initial.SubString(length,1) =="")

U _Initial = U_Initial.SubString(1,length-1);
// Girilen U_Initial m boyutu t gegisleri sayisina esit olmalidir.
// Eksik veya fazla olmast durumlar kontrol edilir.

for(int i=1;i<100;i++)

if(U_Initial == "")

{
if(i < trans_count+1)
{
Application->MessageBox("Eksik veri girdiniz!","Uyan",MB_OK);
U2VektorMemo->Enabled = true;
U2VektorMemo->Text ="";
UListBox->Items->Clear();
return;
}
if(i > trans_count+1)
{
Application->MessageBox("Fazla girilen verilen
degerlendirilmemektedir!","Uyar1",MB_OK);
return;
}
return;
}

61

length = U_Initial.Length();
separator = U_Initial.Pos(" ");

// U_Initial texti U Vektor dizisine ait U matrisine yazilir.
if(separator < 1)

MainU = U_Initial.SubString(1,length);

U_Initial ="";
}
else
{
MainU = U_Initial. SubString(1,separator-1);
main_len = MainU.Length();
U_Initial = U_Initial. SubString(separator+1,length-separator);
}
if(MainU !="")
{
if(i <= trans_count)
Uli][u_index] = StrTolnt(MainU);
}
}

“Tim Alanlar1 Temizle” tusuna basildiginda “ClearBitBtnClick” fonksiyonu c¢aligir

ve tlim alanlarin temizlenmesi saglanir.

“U ve Xk+1 Alanlarmi Temizle” tusuna basildiginda “ClearUXkBitBtnClick™
fonksiyonu c¢alisir ve X,,, =X, +U/A hesaplanmasinda kullanilan tiim alanlar

temizlenir.

void __ fastcall TForm1::ClearBitBtnClick(TObject *Sender)

// 'Ttim Alanlar1 Temizle' tusuna basildiginda tiim alanlar silinir.
Form1->clear_all();

b
/I

void _ fastcall TForml::clear_all()

f
1

int i,j;
previous_state = 1;
string_len = 0;
LmListBox->Items->Clear();
EventListBox->Items->Clear();
LListBox->Items->Clear();
StateListBox->Items->Clear();
AListBox->Items->Clear();
XmListBox->Items->Clear();
UListBox->Items->Clear();
XkListBox->Items->Clear();

62

TransListBox->Items->Clear();
EListBox->Items->Clear();
EListBox1->Items->Clear();
GirisMemo->Enabled = true;
UlAnilMemo->Enabled = true;
U2VektorMemo->Enabled = true;
U10zdeMemo->Enabled = true;
GirisMemo->Text ="";
UlAnilMemo->Text ="";
U2VektorMemo->Text="";
UlOzdeMemo->Text="",

// Durum Gegis Matrisi sifirlanir.
for(i=0;i<Form1->DGStringGrid->ColCount; i++)

for(j=0;j<Form1->DGStringGrid->RowCount; j++)

DGStringGrid->Cells[i][j] = "";
b

j
Form1->DGStringGrid->RowCount = 2;
// Petri Net Gegis Matrisi sifirlanir.
for(i=0;i<Form1->PNStringGrid->ColCount; i++)
{
for(j=0;j<Form1->PNStringGrid->RowCount; j++)
{

b

}
Form1->PNStringGrid->RowCount = 2;
// UListBox a girilen U matrisinin indeksi
u_index = 0;
// Xk+1 i hesaplamakta kullanilan U ve a matrisleri sifirlanir.
for(int i=0;i<100;i++)

{

PNStringGrid->Cells[i][j] = "";

for(int k=0;k<100;k++)
S

Uli][k] = 0;
ali](k] = 0;
}

// Xo ve Xk dizileri sifirlanir.
for(int k=0;k<100;k++)
{
Xo[k] =0;
Xk[k] = 0;
}

selected_col = 0;
selected_row = 0;

}
/I

/1 "U ve Xk+1 Alanlarimi Temizle" tusuna basildi.
void __ fastcall TForm1::ClearUXkBitBtnClick(TObject *Sender)
{

// Global degiskenlere ilk degerleri atanir.

previous_state = 1;

string_len = 0;

// Listboxlar sifirlanir.
UListBox->Items->Clear();
XkListBox->Items->Clear();
EListBox1->Items->Clear();

// Olay ve U vektdrii giris alanlarina giris yapilabilmesi saglanir.

UlAnilMemo->Enabled = true;
U2VektorMemo->Enabled = true;

63

U10zdeMemo->Enabled = true;

// Olay ve U vektorii girig alanlart sifirlanir.
UlAnilMemo->Text="";
U2VektorMemo->Text ="";
U10zdeMemo->Text ="";

// UListBox a girilen U matrisinin indeksi sifirlanir.
u_index = 0;

// U matrisi sifirlanir.
for(int i=0;1<100;i++)
f

for(int k=0;k<100;k++)
{

}

Uli][k] = 0;
H

// Xo ve Xk dizileri sifirlanir.
for(int k=0;k<100;k++)
{
Xo[k] = 0;
Xk[k] = 0;

“DG ile PLC Kodu Olustur” tusuna basildiginda “DGPLCBitBtnClick” fonksiyonu
calisir ve durum gecis diyagrami yontemini kullanan PLC SCL kodu {iretilir. Bu kod
programin c¢aligtirildigi dizinin bir st dizininde yaratilan PLC klasorii iginde
“PLC_Code DG.doc” olarak kaydedilir. Girilen her isaretli dil i¢in ayr1 bir kod
iiretilmektedir. Istenirse bu kod kopyalanarak “PLC Simatic Manager” ortaminda

derlenip calistirilabilir.

“A Matrisi ile PLC Kodu Olustur” tusuna basildiginda “APLCBIitBtnClick”
fonksiyonu calisir ve A matrisi yontemini kullanan PLC SCL kodu iiretilir. Bu kod
programin c¢alistirildigi dizinin bir Ust dizininde yaratilan PLC klasori iginde
“PLC _Code_A.doc” olarak kaydedilir. Girilen her isaretli dil i¢in ayr1 bir kod
iiretilmektedir. Istenirse bu kod kopyalanarak “PLC Simatic Manager” ortaminda

derlenip calistirilabilir.

// " A Matrisi ile PLC Kodu Olustur" ve "DG ile PLC Kodu Olustur" tusuna
// basilinca olusan dosyalarin kayit edilecegi PLC dizinini dondiiriir.
AnsiString PLCDirectory()
{

AnsiString temp = ExtractFilePath(ParamStr(0));

return ExpandFileName(temp + "..\\PLC\\");

;
I

// PLC kodunu Durum Gegis Matrisinden hesaplama.

64

/1 "DG ile PLC Kodu Olustur" tusuna basildu.
void _fastcall TForm1::DGPLCBItBtnClick(TObject *Sender)
{

AnsiString Dir;

AnsiString FileName,OldFileName;

AnsiString
Messagel,Message2,Message3,Message4,Message5,Message6,Message7,Message8,Message9,Message10,Messa
gell;

FILE *fp;

int event _count=0;

int final state count=0;
int state_count=0;

int i,j;

// PLC dizinindeki PLC_Code DG.doc dosyasi olusturulup agilir.
Dir = PLCDirectory();
if (!DirectoryExists(Dir))

ForceDirectories(Dir);

FileName = Dir + "PLC_Code DG.doc";
if((fp = fopen(FileName.c_str(), "w")) == NULL)
{

return;

}

// PLC kodunun, girilen Lm(G)'ye bagli olan kisimlar1 hesaplanir.
event_count = EventListBox->Items->Count;

final state count = XmListBox->Items->Count-1;

state_count = StateListBox->Items->Count;

if(event_count == 0)

return;
Messagel0="";
for(i=1;i<XmListBox->Items->Count-1;i++)
{ Messagel0 = Messagel0 + XmListBox->Items->Strings[i]+",";
}

Message10 = Message10 + XmListBox->Items->Strings[i];

Messagell ="";
for(i=1;i<DGStringGrid->ColCount; i++)
{
for(j=1;j<DGStringGrid->RowCount; j++)
if(DGStringGrid->Cells[i][j]=="")
if((i == DGStringGrid->ColCount-1)&&(j == DGStringGrid->RowCount-1))
Messagell = Messagell + "0";
else
Messagell = Messagell + "0"+",";
}
else
{
if((i == DGStringGrid->ColCount-1)&&(j == DGStringGrid->RowCount-1))
Messagell = Messagel 1 + DGStringGrid->Cells[i][j];
else
Messagell = Messagel1l + DGStringGrid->Cells[i][j]+",";
}
}
}

Messagel ="// PLC giris degerleri ve ON/OFF durumlari \n";

65

Message2 ="I STATECOUNTER:ARRAYT(1.."+IntToStr(event count)+",1..2] OF BOOL :=
"+IntToStr(event_count)+"(0),"+IntToStr(event_count)+"(0); \n";

Message3 = "I INITIALSTATE:ARRAY/[1.."+IntToStr(event_count)+"] OF BOOL :=
"+IntToStr(event_count)+"(0); \n\n";

Message4 = "EVENTCOUNT:INT:="+IntToStr(event_count)+"; // Girilen olay sayis1 \n";
Message5 = "FINALSTATECOUNT:INT:="+IntToStr(final_state count)+"; // Isaretli durum sayis1 \n\n";

Message6 = "// Borland kodundan aktarilan isaretli durumlar \n";

Message7 = "FINAL STATES:ARRAY(1.."+IntToStr(final_state count)+"] OF INT:= "+Messagel0+";
\Il”;

Message8 = "//Borland kodundan aktarilan Durum Gecig Matrisi \n";

Message9 = "DURUMGECISM:ARRAY(1.."+IntToStr(event_count)+",1.."+IntToStr(state_count)+"] OF
INT:="+Messagel1+"; \n\n";

// PLC kodunun girilen Lm(G)'ye bagli olmayan sabit kisimlart PLC_Code DG.doc'a eklenir.
fwrite(DGMemo1->Text.c_str(),DGMemo1->Text.Length(),1,fp);

// PLC kodunun, girilen Lm(G)'ye bagli olan kisimlar1 PLC_Code DG.doc'a eklenir.
fwrite(Messagel.c_str(),Messagel.Length(),1,fp);
fwrite(Message2.c_str(),Message2.Length(),1,fp);
fwrite(Message3.c_str(),Message3.Length(),1,p);
fwrite(Message4.c_str(),Message4.Length(),1,fp);
fwrite(Message5.c_str(),Message5.Length(),1,fp);
fwrite(Message6.c_str(),Message6.Length(),1,fp);
fwrite(Message7.c_str(),Message7.Length(),1,fp);
fwrite(Message8.c_str(),Message8.Length(),1,fp);
fwrite(Message9.c_str(),Message9.Length(),1,fp);

fwrite(DGMemo3->Text.c_str(),DGMemo3->Text.Length(),1,fp);
fclose(fp);

b
I

// PLC kodunu A Matrisininden hesaplama.
// " A Matrisi ile PLC Kodu Olustur" tusuna basildi.
void __fastcall TForm1::APLCBitBtnClick(TObject *Sender)
{
AnsiString Dir;
AnsiString FileName,OldFileName, TIndex;
AnsiString
Messagel,Message2,Message3,Message4,MessageS,Message6,Message7,Message8,Message9,Messagel0,

Messagel1,Messagel12,Messagel3,Message14,Message15,Messagel6,Messagel7,Messagel8,Messagel9,
Message20,

Message21,Message22,Message23,Message24,Message25,Message26,Message27,Message28,Message29,
Message30,
Message31,Message32,Message33;

FILE *fp;

int event count=0;

int final state count=0;
int state_count=0;

int trans_count=0;

int 1,j,tseparator;

// PLC dizinindeki PLC_Code A.doc dosyasi olusturulur ve agilir.
Dir = PLCDirectory();
if (!DirectoryExists(Dir))
ForceDirectories(Dir);
FileName = Dir + "PLC_Code_A.doc";
if((fp = fopen(FileName.c_str(), "w")) == NULL)
{

return;

66

// PLC kodunun, girilen Lm(G)'ye bagli olan kisimlar1 hesaplanir.
event_count = EventListBox->Items->Count;

final state count = XmListBox->Items->Count-1;

state_count = StateListBox->Items->Count;

trans_count = TransListBox->Items->Count;

if(event_count == 0)
return;

if(AListBox->Items->Count == 0)

return;
Message30="";
for(i=1;i<XmListBox->Items->Count-1;i++)
{ Message30 = Message30 + XmListBox->Items->Strings[i]+",";
b

Message30 = Message30 + XmListBox->Items->Strings[i];

Message31 ="";
for(i=1;i<DGStringGrid->ColCount; i++)
{
for(j=1;j<DGStringGrid->RowCount; j++)
S
if(DGStringGrid->Cells[i][j] =="")
if((i == DGStringGrid->ColCount-1)&&(j == DGStringGrid->RowCount-1))
Message31 = Message31 + "0";
else
Message31 = Message31 + "0"+",";
h
else
{
if((i == DGStringGrid->ColCount-1)&&(j == DGStringGrid->RowCount-1))
Message31 = Message31 + DGStringGrid->Cells[i][j];
else
Message31 = Message31 + DGStringGrid->Cells[i][j]+",";
b
b
}
Message32 ="";
for(i=0;i<TransListBox->Items->Count;i++)
{
tseparator = TransListBox->Items->Strings[i].Pos("-");
if(tseparator > 1)
TIndex = TransListBox->Items->Strings[i].SubString(tseparator+1,1);
int col_no = find_column_no(TIndex,1);
if(i == TransListBox->Items->Count-1)
Message32 = Message32 + IntToStr(col_no);
else
Message32 = Message32 + IntToStr(col no)+",";
}
Message33 ="";

for(i=1;i<trans_count+1; i++)

{

67

for(j=1;j<state_count+1; j++)

{
if((i == trans_count)&&(j == state_count))
Message33 = Message33 + IntToStr(a[i][j]);
else
Message33 = Message33 + IntToStr(a[i][j])+",";
}

Messagel = "FUNCTION BLOCK FBI1 \n\n";

Message2 ="VAR_TEMP \n";

Message3 = "LI,M,K,L:INT; \n";

Message4 = "INDEX:INT; \n";

Message5 = "STATE_CHANGED:BOOL; \n";

Message6 = "FF_STATE:BOOL; // Deadlock olma durumu \n";

Message7 = "UL:ARRAY[1.."+IntToStr(trans_count)+"] OF INT; \n";

Message8 = "UA:ARRAY/[1.."+IntToStr(state_count)+"] OF INT; \n";

Message9 ="END VAR \n\n";

Messagel0="VAR \n";

Messagell = "XK:ARRAYT1.."+IntToStr(state_count)+"] OF INT:= "+IntToStr(state_count)+"(0); \n";
Messagel2 = "X0:ARRAY[1.."+IntToStr(state_count)+"] OF INT; \n\n";

Messagel13 ="// Borland kodundan aktarilan igaretli durumlar \n";

Messagel4 = "FINAL STATES:ARRAY(1.."+IntToStr(final _state count)+"] OF INT:= "+Message30+";
\n";

Messagel5 = "//Borland kodundan aktarilan gegisler \n";

Messagel6 = "TRANSITIONS:ARRAY/[1.."+IntToStr(trans_count)+"] OF INT:= "+Message32+"; \n";
Messagel7 = "//Borland kodundan aktarilan gegis sayis1 \n";

Messagel8 = "TRANS COUNT:INT :="+IntToStr(trans_count)+"; \n";

Messagel9 = "//Borland kodundan aktarilan Durum Gecis Matrisi \n";

Message20 = "DURUMGECISM:ARRAYT1.."+IntToStr(event_count)+",1.."+IntToStr(state_count)+"] OF
INT:="+Message31+"; \n\n";

Message21 = "//Borland kodundan aktarilan Petri Net A Matrisi \n";

Message22 = "A:ARRAY[1.."+IntToStr(trans_count)+",1.."+IntToStr(state_count)+"] OF
INT:="+Message33+"; \n";

Message23 ="// PLC giris degerleri ve ON/OFF durumlar1 \n";

Message24 ="1_STATECOUNTER:ARRAY(1.."+IntToStr(event _count)+",1..2] OF BOOL :=
"+IntToStr(event_count)+"(0),"+IntToStr(event_count)+"(0); \n";

Message25 ="I_INITIALSTATE:ARRAYT1.."+IntToStr(event count)+"] OF BOOL :=
"+IntToStr(event_count)+"(0); \n\n";

Message26 = "EVENTCOUNT:INT:="+IntToStr(event _count)+"; // Girilen olay sayis1 \n";
Message27 = "FINALSTATECOUNT:INT:="+IntToStr(final_state count)+"; //isaretli durum sayisi \n";
Message28 = "STATECOUNT:INT:="+IntToStr(state_count)+"; // durum say1s1\n\n";

// PLC kodunun, girilen Lm(G)'ye bagli olan kisimlar1 PLC_Code A.doc'a eklenir.
fwrite(Messagel.c_str(),Messagel.Length(),1,fp);
fwrite(Message2.c_str(),Message2.Length(),1,fp);
fwrite(Message3.c_str(),Message3.Length(),1,fp);
fwrite(Message4.c_str(),Message4.Length(),1,fp);
fwrite(Message5.c_str(),MessageS.Length(),1,fp);
fwrite(Message6.c_str(),Message6.Length(),1,fp);
fwrite(Message7.c_str(),Message7.Length(),1,fp);
fwrite(Message8.c_str(),Message8.Length(),1,1p);
fwrite(Message9.c_str(),Message9.Length(),1,1p);
fwrite(Message10.c_str(),Message10.Length(),1,fp);
fwrite(Messagel1.c_str(),Messagel1.Length(),1,fp);
fwrite(Messagel2.c_str(),Message12.Length(),1,fp);
fwrite(Messagel3.c_str(),Messagel3.Length(),1,fp);
fwrite(Messagel4.c_str(),Message14.Length(),1,fp);
fwrite(Messagel5.c_str(),Messagel5.Length(),1,fp);
fwrite(Messagel6.c_str(),Messagel6.Length(),1,fp);
fwrite(Messagel7.c_str(),Messagel7.Length(),1,p);
fwrite(Message18.c_str(),Messagel8.Length(),1,fp);
fwrite(Message19.c_str(),Message19.Length(),1,fp);
fwrite(Message20.c_str(),Message20.Length(),1,fp);
fwrite(Message21.c_str(),Message21.Length(),1,fp);
fwrite(Message22.c_str(),Message22.Length(),1,fp);

68

fwrite(Message23.c_str(),Message23.Length(),1,fp);
fwrite(Message24.c_str(),Message24.Length(),1,fp);
fwrite(Message25.c_str(),Message25.Length(),1,fp);
fwrite(Message26.c_str(),Message26.Length(),1,p);
fwrite(Message27.c_str(),Message27.Length(),1,fp);
fwrite(Message28.c_str(),Message28.Length(),1,fp);

// PLC kodunun, girilen Lm(G)'ye bagli olmayan sabit kisimlart PLC_Code_A.doc'a eklenir.
fwrite(APLCMemo->Text.c_str(),APLCMemo->Text.Length(),1,fp);

fclose(fp);

3.2 PLC SCL Programi

SCL programinda PLC girisleri olaylar, c¢ikislari ise isaretli durumlar olarak kabul
edilmistir. Bir olayin olusmasi i¢in ona karsilik diisen giris anahtarinin iki kez durum
degistirmesi gerekmektedir. Gelinen yeni durum iki ayr1 yontemle belirlenir. Bunlar
“durum gecis diyagrami1” ve “Petri ag1 A matrisi” yOntemleridir. Cikislar 1°den
baslayarak isaretli durumlara kars1 diisecek sekilde indekslenmistir.

3.2.1 Durum Gegis Diyagram Yontemi

Olaylara karsilik diigsen giris anahtarlarinin ilk degerleri I INITIALSTATE dizisinde,
deger degistirme sayilar1 ise I STATECOUNTER dizisinde tutulur; bu deger “2”
oldugunda, giris anahtar1 iki kez deger degistirmis yani olay olusmus kabul edilir. Bu
dizilerin boyutlar1 olay sayis1 kadardir.

Olay sayisi, isaretli durum sayisi, isaretli durumlar ve durum gegis matrisi Borland
C++ kodu tarafindan girilen isaretli dile gore hesaplanir.

PLC kodunun ilk ¢evriminde giris anahtarlarinin ilk degerleri saklanir ve otomatin
ilk durumu PREVIOUSSTATE degiskeninde “1” olarak tutulur. Her PLC
cevriminde olay sayis1 kadar giris anahtarinin deger degistirip degistirmedigi kontrol
edilir. Eger herhangi bir anahtar iki kez deger degistirmigse o anahtara karsilik diisen
olay olugmus kabul edilir ve olay EVENTID degiskeninde tutulur.

Durum ge¢is matrisinin “DURUMGECISM” olay sayist kadar siitunu, durum sayisi
kadar satir1 vardir. DURUMGECISM[x,y]=z gosterilimi; PLC y durumundayken x
olayr olustugunda z durumuna gecildigini ifade eder. Bu yontemle yeni bir olay
olustugunda (EVENTID>0 kosulu saglandiginda) gelinen yeni durum belirlenir ve

69

PREVIOUSSTATE’e atanir. PLC ¢ikislari sifirlanir ve DEBUGMODE degiskeninin
degerine gore cikislar belirlenir. Programda gelinen her yeni durum goézlemlenmek
istenirse DEBUGMODE degiskeni TRUE yapilarak tiim durumlar kendi degerlerini
gosterecek sekilde ¢ikisa verili. DEBUGMODE degiskeninin varsayilan degeri
FALSE’tur yani sadece isaretli durumlar, indekslenerek c¢ikista gézlemlenir. Eger
gelinen durum agmaz bir durum ise yani durum gecis matrisinde o duruma iliskin
satirlar “0” ise PLC ilk durumu “1”e dondiiriiliir. Her ¢evrim sonunda olusan olaya

ait islemler bittigi icin EVENTID degiskeni sifirlanir.

FUNCTION_BLOCK FB1

VAR _TEMP

LLINT;

J:INT;

FF_STATE : BOOL ; / Deadlock olma durumu
M,K,L:INT;

END_VAR

VAR
PREVIOUSSTATE:INT; // PLC nin bir 6nceki durumu
FIRSTCYCLE:BOOL,;
DEBUGMODE:BOOL; // TRUE iken durumu ¢ikisa verir
// FALSE iken isaretli durumu ¢ikiga verir
EVENTID:INT:=0; // Gergeklesen olay (PLC girisi ON/OFF veya OFF/ON oldugunda olay ger¢eklesmis kabul
// edilir.

/I PLC giris degerleri ve ON/OFF durumlari

I STATECOUNTER:ARRAYT(1..2,1..2] OF BOOL := 2(0),2(0);
I_INITIALSTATE:ARRAY(1..2] OF BOOL :=2(0);
EVENTCOUNT:INT:=2; // Girilen olay say1st
FINALSTATECOUNT:INT:=3; //Isaretli durum sayis1

// Borland kodundan aktarilan isaretli durumlar

FINAL STATES:ARRAY[1..3] OF INT:=2,4,6;

//Borland kodundan aktarilan Durum Gecis Matrisi
DURUMGECISM:ARRAYT1..2,1..6] OF INT:= 2,3,4,0,6,0,4,5,0,0,1,0;

END_VAR

BEGIN
// Tk gevrimde PLC girislerinin ilk degerleri saklanir.
// Baslangi¢ durumu Borland tarafinda oldugu gibi 1 kabul edilir.
IF FIRSTCYCLE = FALSE THEN
M:=1;
FOR K:=0 TO 12 DO
FOR L:=0 TO 7 DO
I INITIALSTATE[M]:=I[K,L];
M:=M+1;
IF M = EVENTCOUNT+1 THEN // Eger olay sayis1 kadar girisi giincellediysek
EXIT; // bizim igin yeterli, exit ile ¢ikabiliriz.
END _IF;
END_FOR;
IF M = EVENTCOUNT+1 THEN
EXIT;
END _IF;
END_FOR;
PREVIOUSSTATE:=1; //PLC nin ilk durumu
FIRSTCYCLE := TRUE;
END _IF;

70

DEBUGMODE := FALSE; // Debugmode TRUE oldugu zaman ¢ikis olarak otomatin durumunu verir.
/I FALSE iken sadece igaretli durumlar ¢ikisa verilir.

// PLC girig degerlerinin ON/OFF veya OFF/ON olup olmadig: kontrol edilir.
// Kontrol sonucunda gergeklesen olay tesbit edilir.
M:=1;

FOR K:=0 TO 12 DO
FOR L:=0 TO 7 DO
IF I[K,L] <> I_INITIALSTATE[M] THEN

IF I STATECOUNTER[M, 1] = TRUE THEN
I STATECOUNTER[M,?2] := TRUE; // Giris ON/OFF veya OFF/ON oldu

ELSE
I STATECOUNTER[M, 1] := TRUE; // Giris ON veya OFF oldu

END IF;

I_INITIALSTATE[M]:=I[K,L]; // Girig degeri giincellenir.
IF (I_STATECOUNTER[M,2] = TRUE)THEN
EVENTID:=M,;
I STATECOUNTER[M,1] := FALSE;
I STATECOUNTER[M,2] := FALSE;
EXIT;
END IF;
END IF;

M=M+1;
IF M = EVENTCOUNT+1 THEN // Eger olay sayis1 kadar counter1 giincellediysek
EXIT; // bizim igin yeterli, exit ile ¢ikabiliriz.
END _IF;
END_FOR;

IF M = EVENTCOUNT+1 THEN // Eger olay sayis1 kadar counter: giincellediysek
EXIT; // bizim igin yeterli, exit ile ¢ikabiliriz.
END _IF;
END FOR;

/I Gergeklesen olay durum degisimine sebep oluyorsa PLC nin durumu giincellenir.
// Gelinen yeni durum isaretli durum ise PLC nin ¢ikigina verilir.
IF EVENTID <> 0 THEN
IF DURUMGECISM[EVENTID,PREVIOUSSTATE]<> 0 THEN
PREVIOUSSTATE:=DURUMGECISM[EVENTID,PREVIOUSSTATE];
/I PLC ¢ikiglart sifirlanir.
FOR K:=0 TO 12 DO
FOR L:=0 TO 7 DO
Q[K,L]:=FALSE;
END FOR;
END FOR;

// DEBUGMODE TRUE ise ¢ikis olarak PLC nin durumu verilir.
// FALSE ise isaretli duruma ait indeks ¢ikis olarak verilir.
IF DEBUGMODE = TRUE THEN
K :=PREVIOUSSTATE DIV 8;
L :=PREVIOUSSTATE MOD 8&;
Q[K,L]:= TRUE;
ELSE
FOR I:'=1 TO FINALSTATECOUNT DO
IF PREVIOUSSTATE = FINAL _STATES[I] THEN
FF_STATE := TRUE;
FOR J:=1 TO EVENTCOUNT DO
IF DURUMGECISM[J,PREVIOUSSTATE]<>0 THEN
FF_STATE := FALSE,
END IF;
END _FOR;

K :=1DIV &;
L:=1MOD 8§;

71

Q[K,L]:= TRUE;

// PLC nin durumu bir deadlock durumu ise ilk state'e doner.
IF FF_STATE = TRUE THEN
PREVIOUSSTATE :=1;
END IF;
END IF;
END_FOR;
END IF;

END IF;
/I Gergeklesen olaya ait iglemler yapildi. Bir sonraki ¢evrim igin sifirlanir.
EVENTID:=0;

END IF;

END_FUNCTION_BLOCK

72

Evet

Girtg anahtarlarun

ik degerlermi sakla
Herhangt bir olay
olustu mu?
Hamir
Yent durumun indelesini Teni durumu PLC
PLC cikisina ver. ciluigina ver.

Easlangic durumuna
déit.

Sekil 3.3 : Durum Gegis Diyagrami Yontemi Isaret Akis Diyagrami

73

3.2.2 Petri Ag1 A Matrisi Yontemi

Olaylara karsilik diisen giris anahtarlarinin ilk degerleri I INITIALSTATE dizisinde,
deger degistirme sayilar1 ise I STATECOUNTER dizisinde tutulur; bu deger “2”
oldugunda, giris anahtar1 iki kez deger degistirmis yani olay olusmus kabul edilir. Bu

dizilerin boyutlar1 olay sayis1 kadardir.

Olay sayisi, durum sayisi, isaretli durum sayisi, t-gecis sayisi, isaretli durumlar,
durum geg¢is matrisi, Petri ag1 A matrisi ve t-gecisleri Borland C++ kodu tarafindan

girilen isaretli dile gére hesaplanur.

PLC kodunun ilk ¢evriminde giris anahtarlarinin ilk degerleri saklanir ve otomatin
ilk durumu PREVIOUSSTATE degiskeninde “1” olarak tutulur, Xo durum dizisinde
[1 00 .. 0] olacak sekilde tutulur. Xo dizisinin boyutu durum sayis1 kadardir. Her
PLC ¢evriminde olay sayis1 kadar giris anahtarinin deger degistirip degistirmedigi
kontrol edilir. Eger herhangi bir anahtar iki kez deger degistirmigse o anahtara

karsilik diisen olay olugsmus kabul edilir ve olay EVENTID degiskeninde tutulur.

Durum ge¢is matrisinin “DURUMGECISM” olay sayis1 kadar siitunu, durum sayisi
kadar satir1 vardir. Petri ag1 A matrisinin satirlar1 t-gegisleri sayisi, siitunlari ise

durum say1s1 kadardir.

X, =X, +U,A denkleminde; X, PLC’nin bulundugu durum, u, olusan olaym
t-gecisine ait dizi, A Petri ag matrisi ve X, da gelinen yeni durumdur. Olusan olaya

ait her t-gecisi i¢in u girigleri belirlenir. Her durumda bir t-gegisi aktiftir yani durum
degisimine sebep olur. Gelinen yeni durum X dizisine atanir.

PLC cikislar1 sifirlanir ve DEBUGMODE degiskeninin degerine gore ¢ikislar
belirlenir. Programda gelinen her yeni durum gozlemlenmek istenirse
DEBUGMODE degiskeni TRUE yapilarak tiim durumlar kendi degerlerini
gosterecek sekilde cikisa verili. DEBUGMODE degiskeninin varsayilan degeri
FALSE’tur yani sadece isaretli durumlar, indekslenerek cikista gozlemlenir. Eger
gelinen durum agmaz bir durum ise yani durum ge¢is matrisinde o duruma iliskin
satirlar “0” ise PLC ilk durumu “1”e dondiiriiliir. Her ¢evrim sonunda olusan olaya

ait iglemler bittigi icin EVENTID degiskeni sifirlanir.

FUNCTION_BLOCK FB1

VAR _TEMP

LIM,K,L:INT;

INDEX:INT;

STATE CHANGED:BOOL;

74

FF_STATE:BOOL; // Deadlock olma durumu
UL:ARRAY[1..7] OF INT;

UA:ARRAYJ1..6] OF INT;

END VAR

VAR
XK:ARRAYT[1..6] OF INT:= 6(0);
X0:ARRAY(1..6] OF INT;

// Borland kodundan aktarilan igaretli durumlar
FINAL_STATES:ARRAYT1..3] OF INT:=2,4,6;

//Borland kodundan aktarilan gegisler

TRANSITIONS:ARRAYT1..7] OF INT:= 1,1,1,2,1,2,2;

//Borland kodundan aktarilan gegis sayisi

TRANS_COUNT:INT :=7,

//Borland kodundan aktarilan Durum Gecis Matrisi
DURUMGECISM:ARRAYT(1..2,1..6] OF INT:= 2,3,4,0,6,0,4,5,0,0,1,0;

//Borland kodundan aktarilan Petri Net A Matrisi

A:ARRAY[1..7,1..6] OF INT:=-1,1,0,0,0,0,0,-1,1,0,0,0,0,0,-1,1,0,0,0,-1,0,0,1,0,0,0,0,0,-1,1,1,0,0,0,-1,0,-
1,0,0,1,0,0;

// PLC girig degerleri ve ON/OFF durumlari

I STATECOUNTER:ARRAY]1..2,1..2] OF BOOL := 2(0),2(0);

I _INITIALSTATE:ARRAYT1..2] OF BOOL :=2(0);

EVENTCOUNT:INT:=2; // Girilen olay sayist

FINALSTATECOUNT:INT:=3; //isaretli durum sayi1st

STATECOUNT:INT:=6; // durum say1st

PREVIOUSSTATE:INT; // PLC nin bir 6nceki durumu

FIRSTCYCLE:BOOL;

DEBUGMODE:BOOL; // TRUE iken durumu ¢ikisa verir
/I FALSE iken isaretli durumu ¢ikisa verir

EVENTID:INT:=0; // Gergeklesen olay (PLC girisi ON/OFF veya OFF/ON oldugunda olay ger¢eklesmis kabul
edilir.)

END VAR
BEGIN

// 11k gevrimde PLC girislerinin ilk degerleri saklanir.
// Baslangi¢ durumu Borland tarafinda oldugu gibi 1 kabul edilir.
IF FIRSTCYCLE = FALSE THEN

M:=1,

FOR K:=0 TO 12 DO
FOR L:=0 TO 7 DO
I_INITIALSTATE[M]:=I[K,L];
M=M+1;

IF M =EVENTCOUNT+1 THEN // Event sayis1 kadar giris yapildiysa dongiiden ¢ikilir.
EXIT;
END _IF;
END_FOR;

IF M =EVENTCOUNT+1 THEN // Event sayis1 kadar giris yapildiysa dongiiden ¢ikilir.
EXIT;
END _IF;
END_FOR;

75

PREVIOUSSTATE:=1; //PLC nin ilk durumu
FIRSTCYCLE := TRUE;

// Baglangi¢ durum vektorii [1 0 ... 0]
FOR I:=1 TO STATECOUNT DO
XO0[1] :=0;
END_FOR;
X0[1]:=1;
END IF;

DEBUGMODE := FALSE;

/I PLC girig degerlerinin ON/OFF veya OFF/ON olup olmadig1 kontrol edilir.
// Kontrol sonucunda gergeklesen olay tesbit edilir.

M:=I;
FOR K:=0 TO 12 DO
FOR L:=0 TO 7 DO
IF I[K,L] <>1 INITIALSTATE[M] THEN
IF I STATECOUNTER[M,1] = TRUE THEN
I STATECOUNTER[M,2] := TRUE; // Giris ON/OFF veya OFF/ON oldu
ELSE
I STATECOUNTER[M,1] := TRUE; // Girig ON veya OFF oldu
END IF;

I_INITIALSTATE[M]:=I[K,L]; // Girig degeri giincellenir.
IF (I_STATECOUNTER[M,2] = TRUE)THEN
EVENTID:=M,;
I STATECOUNTER[M,1] := FALSE;
I STATECOUNTER[M,2] := FALSE;
EXIT;
END IF;
END IF;

M=M+1;
IF M =EVENTCOUNT+1 THEN // Event sayis1 kadar giris yapildiysa dongitiden ¢ikilir.
EXIT;
END _IF;
END_FOR;

IF M = EVENTCOUNT+1 THEN // Event sayis1 kadar giris yapildiysa dongiiden ¢ikilir.
EXIT;
END _IF;
END FOR;

// Xk+1 = Xk + uA durum denklemi kullamlarak yeni durum belirlenir.
FOR I:=1 TO TRANS_COUNT DO

UI[I] =0;
END _FOR;

IF EVENTID <> 0 THEN
FOR INDEX:=1 TO TRANS_COUNT DO

STATE_CHANGED :=TRUE ;
IF TRANSITIONS[INDEX] = EVENTID THEN

UI1[INDEX] :=1;

FOR I:=1 TO STATECOUNT DO
UAT[I] :=0;

END FOR;

FOR I:=] TO TRANS_COUNT DO
FOR J:=1 TO STATECOUNT DO
UAL[J] := UA[J] + UL[I] * A[LJ];
END FOR;
END FOR;

76

FOR J:=1 TO STATECOUNT DO
XK[J] := XO[J] + UA[J];
IF XK[J] <0 THEN
EXIT;
END IF;
END FOR;

IF J<STATECOUNT THEN
STATE CHANGED :=FALSE ; // Gerg¢eklesen olay durum degisimine sebep olmuyor.
FOR J :=1 TO STATECOUNT DO
XK[J] := X0[J]; // Durum degistirmedigi i¢in bir 6nceki durum simdiki duruma atanir
END _FOR;
END _IF;

FOR J :=1 TO STATECOUNT DO
XO0[J] := XK[J]; // Bir sonraki déngiide kullanmak i¢in Xo yeni durumla giincellenir.
END FOR;

IF STATE_CHANGED THEN
EXIT;
END IF;

FOR I:=1 TO TRANS_COUNT DO
Ul[I] :=0;
END FOR;

END IF;
END FOR;

IF STATE_CHANGED THEN
// PLC ¢ikiglar sifirlanir.
FOR K:=0 TO 12 DO

FOR L:=0 TO 7 DO
Q[K,L]:=FALSE;
END _FOR;
END_FOR;

// Durum vektériinden yeni durum belirlenir.
FOR J :=1 TO STATECOUNT DO
IF XK[J] =1 THEN
PREVIOUSSTATE :=J;
EXIT;
END IF;
END FOR;

// DEBUGMODE TRUE ise ¢ikis olarak PLC nin durumu verilir.
// FALSE ise isaretli duruma ait indeks ¢ikis olarak verilir.
IF DEBUGMODE = TRUE THEN
K :=PREVIOUSSTATE DIV 8;
L :=PREVIOUSSTATE MOD 8;
Q[K,L]:= TRUE;
ELSE
FOR I:'=1 TO FINALSTATECOUNT DO
IF FINAL STATES[I]=0 THEN
EXIT;
END IF;

IF PREVIOUSSTATE = FINAL_STATES[I] THEN
FF_STATE := TRUE;
FOR J:=1 TO EVENTCOUNT DO
IF DURUMGECISM[J,PREVIOUSSTATE]<>0 THEN
FF_STATE := FALSE;
END IF;
END FOR;

71

K :=1DIV§;
L :=1MOD 8;
Q[K,L]:=TRUE;

// PLC nin durumu bir deadlock durumu ise ilk duruma doner.
IF FF_STATE = TRUE THEN

PREVIOUSSTATE :=1;

FOR I:=1 TO STATECOUNT DO

XO0[1] :=0;

END FOR;

X0[1]:=1;
END IF;

END IF;
END FOR;
END IF;
END IF;

/I Gergeklesen olaya ait islemler yapildi. Bir sonraki ¢evrim i¢in sifirlanir.

EVENTID:=0;
END IF;

END_FUNCTION_BLOCK

78

ity anahtarlarmm
il dederlerini sakla

Herhangt bar olay
olugty mu?

Evet

Clugan olaya thigkun t
gerizlert e u dizsing bl

u girigt 3k = Kot ukd
denklemi sonucunda durum
degisimine sebep oluyor mu?

Tin wlar
denendi m?

Yeni durumun mdeksini
PLC pilugina ver,

Yem durumu PLC
pikisina ver.

Baglangc dururmuna
dé.

e]
Sekil 3.4 : Petri Ag1 A Matrisi Yontemi Isaret Akis Diyagranu

79

KAYNAKLAR

Cassandras, Christos G. ve Lafortune, Stephane, 1999. Introduction To Discrete
Event Systems, Kluwer Academic Publishers,
Boston/Dordrecht/London.

Cassandras, Christos G., 1993. Discrete Event Systems: Modeling and

Performance Analysis, [rwin Publ.

Yanik Memik, 2003. Borland C++ Builder, Seckin Yayincilik, Ankara.

80

OZGECMIS

Anmil Sahin 1978 yilinda Canakkale’de dogdu. Orta 6grenimini 1995 yilinda
Canakkale Anadolu Lisesi'nde tamamladi. 1999 yilinda Istanbul Teknik
Universitesi'nde Kontrol ve Bilgisayar Miihendisi diplomasini aldi. 1999 yilinda
telekomiinikasyon alaninda faaliyet gosteren Nortel Netas firmasinda ise basladi.
Halen bu firmada yazilim gelistirme miihendisi olarak ¢aligsmaktadir.

81

