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ÖZET 

NETWORK TOPOLOJİLERİ  

VE  

GRAF PARAMATRELERİ 

 

DİZMAN, Yıldız 

Yüksek Lisans Tezi, Matematik Bölümü 

Tez Yöneticisi: Yard. Doç. Dr. Aysun AYTAÇ 

Ağustos 2007, 46 sayfa 

 

 Bir iletişim network’ ün tasarımında network’ ün 
dayanıklılığı oldukça önemli bir kavramdır. Bir network’ ün 
dayanıklılığı, zedelenebilirlik için onun dayanma gücünü 
gösterdiğinden, bir network mümkün olduğunca kararlı oluşturulmak 
zorundadır. Bir çok bilim ve mühendislik problemleri bir network 
olarak temsil edilebilir.Bir network’ ün genelleştirilmişi bir graftır. 
Bir network ile temsil edilebilen bir çok problem örneği vardır. 
Bunlardan bazıları  periyodik ve ardışık devirler, organik molekül 
yapıları, mekaniksel yapılar ve benzerlerini içerir. Böylece bir graf 
bir iletişim network’ ü olarak düşünebilir. Bu durumda graf 
teorisindeki notasyonlar, bir network’ ün dayanıklılığı için 
kullanılabilir. Graf teoride, bağlantılılık, örtü sayısı, bağımsızlık 
sayısı, baskınlık sayısı gibi kararlılığın belirli ölçümleri graflarda 
kullanılabilir.Böylece bir network’ün kararlılığı belirgin  
hesaplamalar ile tanımlanır. Bu tezde bir grafın ortalama bütünlük 
değeri çalışılmıştır. Total grafların ortalama bütünlük sayısını 
hesaplanıp, graf işlemlerini de kullanarak ortalama bütünlük ile ilgili 
bazı teoremler verilmiştir. 
 
Anahtar Sözcükler: Zedelenebilirlik, Total Graf, Bütünlük, 
Ortalama Bütünlük 
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ABSTRACT 

NETWORK TOPOLOJİLERİ 

 VE  

GRAF PARAMATRELERİ 

 

DİZMAN, Yıldız 

Msc in Mathematics 

Supervisor: Yard. Doç. Dr. Aysun AYTAÇ 

August 2007, 46 pages 

 
In communications network design, network's stability is a 

very important concept. A network has to be constructed as possible 
as stable since the stability of a network shows its resistance to 
vulnerability. Many science and engineering problems can be 
represented by a network, generalization of which is a graph. 
Examples of problems that can be represented by a graph include: 
cyclic sequential circuit, organic molecule structures, mechanical 
structures, etc. So, a graph can be considered as a model of a 
communication network. Then, the notions of the graph theory can 
be used for the stability of a network. In the graph theory, 
deterministic measures of the stability are used for some parameters 
of graphs as connectivity, covering number, independence number 
and dominating number. Then, the stability of a network is defined 
with deterministic calculation. We considered the mean-integrity 
number of a graph. In this thesis; we search the mean-integrity 
number of total graphs. We also give some theorems about the mean-
integrity using the graph operations and design. 
 
 

Keywords: Vulnerability, Total Graph, Integrity, Mean Integrity 
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1. GİRİŞ 
 

1.1 Graflarda zedelenebilirlik kavramı 

         Network birbirine kablolarla bağlanmış server, printer, pc, modem 

gibi birçok haberleşme ekipmanının en ekonomik ve verimli yoldan 

kullanılmasıdır. Network insanların bireysel değil, ortak çalışmalarını, 

zaman ve para kazancı sağlar. Bilgisayar iletişim sistemleri gerek orduda, 

gerek idari teşkilatta ve gerekse sivil çevrelerde gittikçe önemi artan bir 

konudur. 

         İletişim deyince ilk akla gelen şey de internettir. İnternet ile beraber 

toplumların iletişim yapısı büyük bir değişikliğe uğramıştır. İletişim ve 

haberleşme yüzyıllar önce başlayan posta sisteminden günümüz 

İnternet’ine kadar büyük bir yolculuk geçirmiştir ve bu yolculuk hala 

devam etmektedir. Bu büyük yolculuk ve değişimin ana kaynağı 

internet’tir. İnternet, iki güçlü müttefik olan, bilişim ve iletişimi, öne 

sürmektedir. Telefon şebekeleri ya da radyo ağı gibi tek bir hizmet için 

işletilen iletişim ağları yerine, İnternet bilişimin gücünü kullanarak tek bir 

iletişim ağını birçok uygulama için kullanmaktadır.  

          “ Topluluk (Community) ve iletişim (Communication) sözcükleri 

aynı köke sahiptir. Bir iletişim ağı kurduğunuz her yerde bir toplulukta 

kurarsınız ve ne zaman bu ağı yıkarsanız –yasadışı ilan ederseniz, 

çökertirseniz ya da erişilemeyecek kadar pahalı kılarsanız–, topluluğu da 

incitmiş olursunuz.” 

B. Strerling, The Hacker Crackdown 

           Günümüzde insanlar arasındaki iletişimin sürekli ve hızlı olması 

büyük önem kazanmıştır. Bu da iletişim ağlarının hızlı, güvenilir ve 
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sorunsuz olmasının önemini daha çok arttırmıştır. İletişim ağlarında 

çıkabilecek bir sorun veri kaybına, verinin zamanında yerine ulaşmamasına 

neden olabilir. Bu ise hem para hem de zaman kaybı demektir. Grafın 

tepelerini iletişim ağını oluşturan merkezler, bu merkezler arasındaki 

bağlantılar ise ayrıtlarla birebir eşleştirilerek sağlanmıştır. “Acaba iletişim 

ağlarında herhangi bir sorunla karşılaşılırsa iletişimi devam ettirmek için 

nasıl bir yol izlenmeli ?” sorusu ilk akla gelen sorulardan birisidir. İşte 

birçok yöntem bunun üzerine geliştirilmiştir. Yani birçok yöntemde 

iletişimi sürekli hale getirmenin en karlı yolları aranmıştır. 

Zedelenebilirliğin tanımı da bu noktada ortaya çıkar. Bir iletişim ağında 

bazı merkezlerin ya da bağlantıların herhangi bir sebep den ötürü 

bozulmasıyla iletişim kesilene kadar ağın gösterdiği dayanma gücüne 

zedelenebilirlik denir. 

            Bu günlerde bu tür olayların önemi daha da artmaktadır. Burada 

önemli olan iki nokta vardır. Biri güvenirlik öbürü ise zedelenebilirliktir. 

             Örneğin hava alanlarındaki uçuş rotasını bir network ağı gibi 

düşünelim. Bu düzeneği graflara birebir taşıyarak neler yapabileceğimizi 

bulmaya çalışalım. Örneğin İstanbul, Ankara, Adana, Erzurum ve Hakkari 

şehirleri arasındaki uçuş rotası her bir şehir için aşağıdaki gibidir.  

İstanbul  Ankara, Adana, Antalya, Erzurum ve Hakkari 

Ankara  İstanbul, Adana, Antalya, Erzurum ve Hakkari 

Antalya  İstanbul, Ankara 

Adana  İstanbul, Ankara, Erzurum 

Erzurum  İstanbul, Ankara, Adana 

Hakkari  İstanbul, Ankara 
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Bu uçuş güzergahlarını bir graf ile modellerken şehirlere tepe, herhangi iki 

şehir arasındaki güzergaha da ayrıt olarak aldığımızda aşağıdaki Şekil 1.1’i 

elde ederiz. 

 
Şekil 1.1 

Bu graf yapısını kullanarak birçok işlem yapabiliriz. Bunlardan bir kaçı 

şöyledir:  

 1. Bir şehirden bir şehre en kısa mesafeyi, 

 2. En ucuz uçuş maliyeti,  

 3. İki şehir arasında uçuş yoksa hangi güzergahlardan gidebiliriz? 

 4. Bu gibi işlemlerden en önemlisi bizimde konu aldığımız, 

herhangi bir şehirdeki hava alanında bir aksaklık olduğunda 

kalan hava alanları iletişimi sağlayabilecek mi ya da ne kadar 

dayanabilecek? 

 5. Ya da bazı hap şehirlerin (Örneğin Ankara, İstanbul) hangisini 

kaldırırsak iletişim tamamen kopar ya da kısmen de olsa 

sürdürülebilir mi?  

Sonuç olarak havaalanının dayanabilirliği ne kadardır. Buradan da 

zedelenebilirlik kavramları olan parametrelere ihtiyaç duyuluyor. 
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2. GRAFA GİRİŞ 
Bu bölümde bazı bilinen graf yapıları tanımlanmış ve bunların 

sembolik gösterimleri verilmiştir. Ayrıca graflarda işlemler ve sıkça 

kullanılan bazı graf parametreleri tanımlanmıştır.  

 

  2.1 GRAF ÇEŞİTLERİ 
  2.1.1 Yol Graf: Tepelerin iki tanesinin derecesi 1, diğer tüm 

tepelerinin dereceleri ise 2 olan graflara “yol graf ” denir. n tepeli bir yol 

graf Pn ile gösterilir. N tepeli bir yol grafının ayrıt sayısı ise n-1 dir.  

 

                                        

 

 

 

                                                           Şekil 2.1 

 

2.1.2 Çevre Graf: Her tepesinin derecesi 2 olan grafa “çevre graf” 

denir. n tepeli bir çevre graf Cn ile gösterilir. n tepeli bir çevre grafın ayrıt 

sayısı n tanedir. 

 
                                     

Şekil 2.2 
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2.1.3. Tam Graf: Bir G grafındaki herhangi iki tepe arasında 

mutlaka bir ayrıt var ise bu grafa “tam graf” denir. n tepeli bir tam graf Kn 

ile gösterilir. n tepeli bir grafın ayrıt sayısı  
2

)1( −nn   dir. Tam graftaki her 

bir tepenin derecesi ise (n-1) dir. 

 
Şekil 2.3 

 

2.1.4. Tekerlek Graf: n tepeli bir çevre grafın her bir tepesine, bir 

tek tepeden ( bu tepe çevre grafa ait değildir ) birer ayrıt eklenmesiyle elde 

edilen grafa “tekerlek graf” denir. n tepeli bir tekerlek graf W1,n ile 

gösterilir. Tekerlek grafı K1+Cn şeklinde de ifade etmek mümkündür. 

 
 

Şekil 2.4 
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  2.1.5. Yıldız Graf: (n+1) tepeli bir G grafında bir tepe n dereceli 

diğer tepeler 1 dereceli ise bu grafa “yıldız graf” denir ve K1,n ile gösterilir. 

 
Şekil 2.5 

 

2.1.6. İki kümeli (Bipartite) Graflar: Bir G grafının tepeler 

kümesi V1 ve V2 gibi iki alt kümeye ayrılsın. V1 kümesindeki tepe çiftleri 

birbirleriyle, V2 kümesindeki tepe çiftleri de birbirleriyle bitişik değilse, 

ancak V1 ve V2 kümeleri arasında bazı ayrıtlar varsa böyle graflara iki 

kümeli (bipartite) graflar denir. Km, n ile gösterilir. (m ile V1 kümesinin 

eleman sayısı, n ile V2 kümesinin eleman sayısı temsil edilir.) 

 

           

 

                                                    

 

Şekil 2.6 

 

2.1.7. İki Kümeli Tam Graflar: Bir iki kümeli (bipartite) grafta V1 

kümesinin her bir tepesi, V2 kümesinin her bir tepesiyle bitişikse böyle 

graflara iki kümeli graflar denir. 
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Şekil 2.7 

 

2.1.8. Ağaç Graflar: Çevre içermeyen graflara ağaç graf denir. 

Örneğin her yol graf, yıldız graf ve iki kümeli graf birer ağaç graftır. 

 

 
Şekil 2.8 

 

  2.1.9. Regüler (düzenli) Graflar : Bir grafın tüm tepeleri aynı 

dereceden ise grafa o dereceden regüler (düzenli) graf denir. Kn tam grafı 

(n-1). dereceden, Cn çevre grafları ise ikinci dereceden düzenli graflardır. 

Bu ifade n-regüler şeklinde de gösterilir. 

 

2.2. GRAFLARDA İŞLEMLER 

 

2.2.1 TEKLİ İŞLEMLER  
 Bu kısımda bir G grafı için tümleyen ve güç tekli işlemlerinin 

tanımı verilmiştir. 
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Tanım 2.2.1.1: Bir Grafın Tümleyeni, G grafının tümleyeni, G 

ile aynı tepe kümesine sahip ancak ayrıt kümesi G’ de olmayan ayrıntıları 

içeren graftır.G  ile gösterilir. n tepeli bir G grafında G + G toplamı tam 

bir graftır. 

 
Şekil 2.9 

 

Tanım 2.2.1.2: Bir Grafın Gücü, G grafının k. kuvveti 

alındığında oluşan graf G ile aynı tepe kümesine sahiptir ve iki tepe 

arasındaki yol k uzunluğunda ise bu tepelerin bir ayrıtla birleştirilmesiyle 

oluşur. Ve bu Gk ile gösterilir. 

 
Şekil 2.10 

 

2.3. İKİLİ İŞLEMLER 
 Bu kısımda bir grafın birleşim, toplama, bileşke ve kartezyen 

çarpım ikili işlemlerinin tanımı verilmiştir. 
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Tanım 2.3.1: Graflarda Birleşim İşlemi, G1 ve G2 graflarının 

birleşimi, V1 ve V2 ayrık tepe kümeleri, E1 ve E2 ayrıt kümeleri olmak 

üzere V=V1U V2 ve E=E1U E2 birleşimlerinden oluşan G=G1U G2 

grafıdır. G1 ve G2’nin ayrıt sayıları q1 ve q2 ise oluşan grafın ayrıt sayısı 

q1+q2 tanedir. 

 
Şekil 2.11 

 

Tanım 2.3.2: Graflarda Toplama İşlemi, G1 ve G2, m ve n 

tepeli iki graf olsun. G1’in her bir tepesinin G2’nin her bir tepesine bir 

ayrıtla birleştirilmesiyle elde edilen grafa G1 ve G2 graflarının toplamı 

denir. G1+G2 ile gösterilir. Elde edilen graf m+n tepelidir. G1’in 

ayrıntılarının sayısı q1, G2’nin ayrıtlarının sayısı q2 ise G1+G2’nin 

ayrıtlarının sayısı q1+q2+m*n olur. 

 

 
Şekil 2.12 
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Tanım 2.3.3: Graflarda Bileşke İşlemi, G1 ve G2 graflarında 

bileşke işlemi ile elde edilen graf G1[G2] ile gösterilir. G1’in tepeler kümesi 

V1, G2’nin tepeler kümesi V2 ise G1[G2]’nin tepeler kümesi V1 ve V2’nin 

kartezyen çarpımı olur. Bu işlemde ayrıtlar şu şekilde belirlenir. 

G1[G2]’nin herhangi iki tepesi u=(u1, u2) ve v=(v1, v2) olsun. Eğer u1 ve v1 

komşu ise veya u1 =  v1 ve u2, v2 ile komşu ise u ve v tepeleri bir ayrıtla 

bitiştirilir. 

 G1 grafının tepe sayısı m, G2 grafının tepe sayısı n ise G1[G2] 

grafının tepe sayısı m*n dir. G1 grafının ayrıtlarının sayısı q1 ve G2 grafının 

ayrıtlarının sayısı q2 ise G1[G2] grafının ayrıtlarının sayısı m*q2+n2*q1 dir.        

 
Şekil 2.13 

Tanım 2.3.4: Grafların Kartezyen Çarpımı, G1 ve G2 gibi iki 

grafın kartezyen çarpımı G1 x G2 ile gösterilir. G1’in tepeler kümesi V1, 

G2’nin tepeler kümesi V2 olmak üzere G1 x G2’nin tepeler kümesi bu 

kümelerin kartezyen çarpımıdır. Bu işlemde ayrıtlar şu şekilde belirlenir. 

G1 ve G2’nin herhangi iki tepesi u=(u1, u2) ve v=(v1, v2) olsun. G1 x G2’nin 
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tepeleri belirlendikten sonra u1= v1 ve u2, v2 ile komşusu ise ya da u2= v2 

ve u1,v1 ile komşu ise bu iki tepe ayrıtlarla birleştirilir. 

 G1’in tepe sayısı m ve G2’nin tepe sayısı n ise G1xG2 grafının tepe 

sayısı mxn dir. G1 grafının ayrıtlarının sayısı q1 ve G2 grafının ayrıtlarının 

sayısı q2 ise G1xG2 grafının ayrıtlarının sayısı m*q2+n*q1 dir. 

 
Şekil 2.14 

 

Tanım 2.3.5: Graflarda Corona İşlemi, G1 ve G2 herhangi iki 

graf olsun. G1 ve G2 graflarının corona işlemi G1 o G2 ile gösterilir. G1 o G2 

grafında G1 grafının her bir tepesine karşılık G2’nin bir tane kopyası 

getirilir. Ardından G1’deki her bir tepe ile o tepeye karşılık gelen G2’nin 

kopyasındaki tüm tepeler bir ayrıtla birleştirilir. Corona işleminde değişme 

özelliği yoktur. 

G1=P3    G2 =P5 

 

 

 

 

 

Şekil 2.15 
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2.4 GRAF PARAMETRELERİ 
 Bir G grafının zedelenebilirlik değerinin alt veya üst sınırlarını 

bulmak için bazı graf parametreleri kullanılır. Burada bazı graf 

parametrelerinin tanımları verilmiştir. 

Tanım 2.4.1: Minimum Tepe Derecesi, : Bir G grafının 

herhangi bir v tepesine bitişik olan ayrıtlarının sayısına v tepesinin derecesi 

denir. Bir G grafının en küçük tepe derecesi δ (G) ile gösterilir. 

Tanım 2.4.2: Maksimum Tepe Derecesi, Bir grafın tepelerinin 

dereceleri içinde en büyük olana maksimum tepe derecesi denir. ∆(G) ile 

gösterilir. 

Tanım 2.4.3: Bağımsızlık Sayısı, V(G), G grafının tepeler 

kümesi olmak üzere A ⊂V(G) olsun. A kümesindeki herhangi iki tepe G 

grafında bir ayrıtla birleştirilmiş ise bu kümeye bağımsız küme, bu 

kümeler içinde en çok elemana sahip olan kümenin eleman sayısına grafın 

bağımsızlık sayısı (independence number) denir. β (G) ile gösterilir. 

Tanım 2.4.4: G grafının tepeler kümesi V(G) olmak üzere 

)(GVS ⊆ , olsun. G grafının her bir ayrıtının en az bir uç noktası S 

kümesinde ise bu kümeye G grafının örtü kümesi ( covering set) denir. 

Bir G grafının birden fazla örtü kümesi olabilir. Bu kümeler içerisindeki en 

az elemanlı kümenin eleman sayısına G grafının örtü sayısı (covering 

number) denir ve α (G) ile gösterilir.  
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3. BAZI ZEDELENEBİLİRLİK PARAMETRELERİ VE 

SONUÇLAR 
 Bu bölümde bir grafın zedelenebilirlilik değerini belirlemek için 

kullanılan bütünlük kavramlarının, tanımları verilmiştir. Bu kavramlar ile 

ilgili yapılan bazı sonuç ve teoremler ele alınmıştır.  

 

3.1 Bağlantılılık 

Tanım 3.1.1: Bir G grafını bağlantısız veya sadece izole 

tepelerden oluşan bir graf haline getirmek için graftan çıkarılması gereken 

en az tepe sayısına grafın tepe bağlantılılık sayısı (connectivity) denir ve 

κ(G) ile gösterilir. Bir G grafının bileşenlerinin sayısı c(G) olmak üzere,  

κ(G)= }2)(:{min
)(

≥−
⊆

SGcS
GVs

 

 şeklinde de yazılabilir. 

           

Tanım 3.1.2: Bir G grafını bağlantısız ya da sadece izole 

tepelerden oluşan bir graf haline getirebilmek için graftan çıkarılması 

gereken en az ayrıt sayısına grafın ayrıt bağlantılık sayısı denir ve )(Gλ  ile 

gösterilir, 

)(Gλ = }2)(:{min
)(

≥−
⊆

SGcS
GES

 

şeklinde de yazılabilir 

         

3. 2 Bütünlük 
          İletişim ağını temsil eden G grafının zedelenebilirlik değerini 

bulmak için geriye kalan ağın yapısı hakkında daha çok bilgi edinilmesi 
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gerektiği anlaşılmıştır. Zedelenebilirliğin en az olabilmesi için hasar gören 

ağda çalışmayan merkezlerin sayısı ve geriye kalan ağda iletişim sürdüğü 

en büyük alt ağın merkezlerinin sayısının en az olması gerekmektedir. Bu 

durumlardan hareketle 1987’ de Barefoot, Entringer ve Swart tarafından 

graf zedelenebilirliğinin yeni ölçümü olarak bütünlük kavramı ortaya 

çıkmıştır.  

 

Tanım 3.2.1: (Entringer, 1987) G bir graf ve S, G’nin tepelerinin 

herhangi bir alt kümesi olmak üzere S’nin elemanları graftan çıkarıldığında 

elde edilen graf birleştirilmiş bir graf olsun. G-S grafın en büyük 

bileşeninin eleman sayısı m(G-S) olmak üzere, G grafının bütünlük değeri 

I(G) ile gösterilir ve aşağıdaki gibi tanımlanır: 

I(G)=  
)(

min
GVS⊂

   { │S│+ m(G-S)} 

Bütünlük tanımından hemen sonra şunlar söylenebilir: 

Eğer G n’inci dereceden bir graf ise 1≤I(G) ≤n dir. 

H, G’nin herhangi bir alt grafı ise I(H) ≤I(G) dir. 

 

Bazı temel grafların bütünlük değerleri aşağıdaki teoremde verilmiştir. 

 

Teorem 3.2.1: (Goddard and Swart, 1988~: Bagga et al.,1992) 

Kn tam grafı için I(Kn)=n, 

Kn grafının tumleyeni için I( nK )=1, 

K1, n yıldız grafı için I(K1, n)=2, 

Pn yol grafı için I(Pn)= ⎣ ⎦ 212 −+n ,                           
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Cn çevre grafı için I(Cn)= ⎣ ⎦ ,12 −n                                  

Km, n tam iki kümeli grafı için I(Km, n)=1+min{m, n} 

 

Tanım 3.2.2: (Bagga et al., 1992) Herhangi birleştirilmiş bir G 

grafının bütünlük değeri ile G’nin herhangi bir e ayrıtı çıkarıldığında elde 

edilen grafın bütünlük değeri arasında I(G)>I(G-e) eşitsizliği sağlanıyorsa 

I-minimaldir denir. G, I-minimal bir graf ise I(G-e)=I(G)-1 dir. 

Benzer işlem G grafında herhangi bir v tepesi çıkarıldığında da 

sağlanıyorsa yani  

I(G) >I(G-v) ise I-kritik grafın izole tepesi yoktur. 

 

Teorem 3.2.2: (Goddard and Swart, 1990)G grafında v tepesi 

için deg(v)≥I(G-v) eşitsizliği sağlanıyorsa 

I(G)=1+I(G-v) 

 dir. 

G birleştirilmiş bir graf ise ; 

I(G-v) ≥I(G)-1 

I(G-e) ≥I(G)-1  

dir. 

Bir G grafının bütünlük değerinin diğer parametrelerle arasındaki ilişki için 

aşağıdaki teoremler ispatlanmıştır 

          

Teorem 3.2.3:(Goddard and swart, 1990) Herhangi bir G grafı 

için ; 

I(G)≤α(G)+1 
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I(G)≥δ(G)+1 

   I(G)≥n-κ  (G)/β  (G)+κ (G) 

Teorem 3.2.4: (Goddard and swart, 1990) 

1) δ(G)=α(G) ise I(G)= δ(G)+1= α(G)+1 ; 

2) I(G)=  κ(G)+1 dir ancak ve ancak κ (G)= α(G) ise ; 

3) I(G)= α(G)+1 dir ancak ve ancak G grafı etkilenmiş alt grafı 

olarak 2K2 içermiyorsa. 

 

Tanım 3.2.3 :( Bagga, Beineke, Lipman, and Pippert,1994) G bir 

graf ve G’nin ayrıtlarının bir alt kümesi S olsun. G – S grafının en büyük 

boyutlu bileşeninin  tepe sayısı m( G – S ) olmak üzere, G grafının ayrıt 

bütünlüğü (edge integrity) aşağıdaki şekilde tanımlanmıştır. 

I'(G)= )}({min
)(

SGmS
GEs

−+
⊆

 

 

 Tanım 3.2.4 : ( Cozzens, Wu, 1994, 1996, 1998 ) G herhangi bir 

graf ve u, G grafının herhangi bir tepesi olsun. u tepesinin açık komşuluğu 

N (u)={v ≠∈ vGV )) u, v ve u bitişiktir} 

ve u tepesinin kapalı komşuluğu N[u]={u}∪  N ( u )  olur. 

Herhangi bir u tepesinin graftan çıkarılmasıyla graftan silinen tepeler 

kümesi de N[u] olsun. Bu durumda V(G)’nin bir alt kümesi olan grafın en 

büyük boyutlu bileşeninin tepe sayısı m(G – S) olmak üzere G grafının 

tepe-komşu bütünlük (vertex-neighbor integrity) değeri aşağıdaki 

şekilde tanımlanmıştır. 

NI(G)= 
)(

min
GVs⊆

{|S|+m(G – S)} 
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3.3 Ortalama Bütünlük Tanımı ve Sonuçları 

Tanım 3.3.1 : ( Chartrand, Kapoor, McKee and Oellermann, 

1989 ) 

G herhangi bir graf ve G’nin ayrıtlarının bir kümesi S olsun. v tepesi V(G) 

kümesinin bir elemanı olmak üzere, Pv(G-S), v tepesi içeren G – S grafının 

bileşenlerini göstermek üzere bir G grafının ortalama bütünlük  (mean 

integrity) değeri aşağıda şekilde tanımlanmıştır. 

)}}()({{min)(
)(

SGVvSGPaverageSGJ vGVs
−∈−+=

⊆
 

 

}
)(

)}()({
{min
)( SGp

SGVvSGP
S v

GVs −
−∈−

+= ∑
⊆

 

 

}
)}()({

)}())({(
{min

2

)( ∑
∑

−∈
−∈

+=
⊆ SGCHHp

SGCHHp
S

GVs
 

 

Ortalama bütünlük’ün tanımının bir sonucu olarak, tepe sayısı n olan G 

grafı için    1≤ J(G)≤ n  dir. ( Chartrand, Kapoor, McKee and Oellermann, 

1989 ). 

 

Teorem 3.3.1: ( Chartrand, Kapoor, McKee and Oellermann, 

1989 ) G grafı n tepeli bir graf olmak üzere 

               1 ) J(G) = n olması için gerek ve yeter koşul G = Kn olmasıdır  

              2 ) J(G) = 1 olması için gerek ve yeter koşul G = nK  olmasıdır 
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Teorem  3.3.2 : ( Chartrand, Kapoor, McKee and Oellermann, 

1989 )   p1, p2,...,pn  pozitif tamsayıları için  

       ini

n

i
in pppppKJ

≤≤
=

−+= ∑ 11
21 max1)),...,,((  

yukarıdaki teoremden eğer )1,1,...,1,1( +−≅ npKG  11 +−− +≅ npn KK  p 

tepeli bir graf ise pn ≤≤1  olmak üzere J(G)=n dir. n = 1 ise  pKG ≅ dir. 

Bu teoremden aşağıdaki sonuçlar verilebilir.  

            

Sonuç 3.3.1 : ( Chartrand, Kapoor, McKee and Oellermann, 

1989 ) p pozitif bir tamsayı olsun. Her x ( px ≤≤1 )tamsayısı için J(G) = x 

olan p tepeli bir G grafı bulunabilir. 

            

Sonuç 3.3.2  : ( Chartrand, Kapoor, McKee and Oellermann, 

1989 )Her x rasyonel sayısı için  ( 1≥x ) J(G) = x olan bir G vardır. 

 

Aşağıda esas bütünlük ile ilgili bazı tanım ve teoremler verilmiştir. 

 

Tanım 3.3.2: Eğer G bir tam graf ise V(G)’nin bütün uygun alt 

grafları G’ nin bir J-set’i dir. Eğer G tam bir graf değilse, aşağıdaki teorem 

verilebilir. 

 

Teorem 3.3.3: ( Chartrand, Kapoor, McKee and Oellermann, 

1989 ) Eğer tam olmayan bir G grafının  S tepeler kümesi bir J-set’ i olmak 

üzere, G – S grafı bağlantısız bir graftır. 
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Teorem 3.3.4: ( Chartrand, Kapoor, McKee and Oellermann, 

1989 )  Eğer n tepeli bir G grafı için nG ≥)(κ   ise bu G graf 

birleştirilmiştir. 

 

Teorem 3.3.5: ( Chartrand, Kapoor, McKee and Oellermann, 

1989)  Eğer G, n-birleştirilmiş bir graf ise J(G)≥  n+1 olur. 

 

Teorem 3.3.6: ( Chartrand, Kapoor, McKee and Oellermann, 

1989) G p tepeli bir graf ise ve n, pn ≤≤1  aralığında bir tamsayı olsun. 

Eğer J(G) > p-2+ 
1

2
+− np

  ise G grafı n-birleştirilmiştir. 

 

 Teorem 3.3.7: ( Chartrand, Kapoor, McKee and Oellermann, 

1989 )Her G grafı için δ (G)+1≤ J(G) α≤ (G)+1 olur. 

 

 Bütünlük ve bağlantılılık tanımlarında grafın zedelenebilirliği 

hesaplanırken farklı işlemler yapılsa da temelde her ikisi de graftan tepe 

çıkarıldıktan sonra geriye kalan grafın yapısı ile ilgilenir. Bazı durumlarda, 

grafların bağlantılık ve bütünlük sayısının aynı olması “hangi graf 

yapısının daha güvenilir” olduğuna karar verme de yetersiz kalmaktadır. 

Bu da başka zedelenebilirlik tanımlarını doğurmuştur. Bunlardan biriside 

ortalama bütünlük değeridir. Örneğin, Şekil 3.1’ deki grafların ikisinin de 

tepe sayıları aynı, bağlantılılık sayısı 1 ve bütünlük sayısı ise 4 dür.  
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G1                                                       G2 

Şekil 3.1 

 

Her iki grafın bağlantılık ve bütünlük sayısı eşit olmasına rağmen kalan 

graflardaki iletişimler farklıdır. G1 ve G2  graflarının bağlantılık, bütünlük 

ve ortalama bütünlük değerleri aşağıdaki tabloda verilmiştir. 

 G1 G2 
κ(G) 1 1 
I(G) 4 4 
J(G) 3 3,3  

 

Tablodan görüldüğü gibi, ortalama bütünlük değeri sağlamlığı ölçmede 

daha hassas bir paremetredir. Dolayısıyla zedelenebilirlik araştırmalarında 

daha sağlam daha güvenilir sonuçlar verebilir. 
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4. TOTAL GRAFLAR VE ORTALAMA BÜTÜNLÜK 

DEĞERLERİ 
Bu bölümde öncelikle bir G grafının total grafı tanımlanmıştır. 

Yol(Pn), Çevre(Cn), Tam(Kn) ve Yıldız(K1,n) grafları ele alınmış ve bu 

grafların total graflarının ortalama bütünlük değerleri hesaplanmıştır. 

 

Tanım 4.1: G herhangi bir graf olmak üzere,  grafın tepeleri ve 

ayrıtları graf elemanları olarak adlandırılsın. Grafta herhangi iki eleman 

bitişik ya da birbirlerini kapsıyorlarsa bu elemanlara grafın komşu 

elemanları denir. G=(V(G), E(G) ) grafının total grafı T(G) ile gösterilir. 

T(G)’nin tepe kümesi V(G)UE(G)’dir. Öyle ki T(G) nin herhangi iki 

elemanı G de komşu iseler T(G) de bitişiktirler. Aşağıda P4 ’ün total grafı 

verilmiştir. 

 
Şekil 4.1 

Teorem 4.1: Pn grafının total grafı T(Pn) olsun. 2n – 1 tepeli 

T(Pn) grafının ortalama bütünlük değeri  

J(T(Pn)) > 2   ⎣ 24 +n   ⎦  - 4 

dir. 

İspat: S, V(T(Pn))’nin bir alt kümesi olmak üzere eğer T(Pn) 

grafından ⎜S ⎜= r tane tepe graftan çıkarırsak o zaman kalan graf 2n-1-r 
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tane tepe ve 1
2

+⎥⎦
⎥

⎢⎣
⎢ r  tane parça içerir. 1

2
+⎥⎦

⎥
⎢⎣
⎢ r  tane parçanın hepsi en az     

1
2

12

+⎥⎦
⎥

⎢⎣
⎢

−−
r

rn   tane tepe içermektedir. Bu durumda 

average (T(Pn-S))> 

2

)12(

)
1

2

12)(1
2

(

rn

r
rnr

−−

+

−−
+

 

average (T(Pn-S))> 
)12)(1

2
(

)12( 2

rnr
rn

−−+

−−  

olur. Bu eşitsizliği ortalama bütünlük tanımında yerine koyduğumuzda 

aşağıdaki eşitsizliği elde ederiz. 

J(T(Pn))> min  { r +
)12)(1

2
(

)12( 2

rnr
rn

−−+

−−   } 

Eşitsizliği r’ye bağlı bir fonksiyon gibi düzenlediğimizde  

f(r)> r+ 
)12)(1

2
(

)12( 2

rnr
rn

−−+

−−                                         (1) 

elde edilir. Amacımız fonksiyonun en küçük olduğu değeri bulmak, bunun 

için öncelikle  (1) eşitsizliğini eşitlik olarak gerekli işlemleri yapalım. 

Böylece  

                                             f(r)=  
)1

2
(

)12(

+

−−
+

r
rnr  
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                                             f(r)=
2

242

+
−+

r
nr  

                                         2

2

)2(
)24()2(2)(

+
−+−+

=
r

nrrrrf ı  

                                         0)( =rf ı  

                                            
2

4224
2,1

nr +±−
=  

elde edilir. 

Fonksiyon minumum değerini r> 0 olduğundan nr 422 ++−=     

değerinde alır. Bu değeri fonksiyonda yerine yazdığımızda; 

n
nnnnf

42
42224422)422(

+

+−+
+++−=++−  

                            4422 −+= n  

bulunur. Böylece Pn nin total grafının ortalama bütünlük (mean integrity) 

değeri;  

J(T(Pn)) > 2   ⎣ 24 +n  ⎦  - 4 

olur.  

 

Teorem 4.2: Cn grafının total grafı T(Cn) olsun. T(Cn) grafının 

ortalama bütünlük değeri 

J(T(Cn)) ≥ 4 ⎣ n ⎦  - 2 

 dir 

İspat: S, V(T(Cn)) ’ nin bir alt kümesi olmak üzere eğer T(Cn) 

grafından |S| = r tane tepe çıkarırsak o zaman kalan graf 2n –r tane tepe ve 
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⎥⎦
⎥

⎢⎣
⎢
2
r   tane parça içerir. ⎥⎦

⎥
⎢⎣
⎢
2
r  parçanın hepsi en az   

⎥⎦
⎥

⎢⎣
⎢
−

2

2
r

rn   tane tepe 

içermektedir. Bu durumda 

           average (  T(Cn –S))≥   
rn

r
rnr

−

−

2

)

2

2(
2

2

 

 

average (  T(Cn –S))≥  

2

2
r

rn −  

Bu eşitsizliği ortalama bütünlük tanımında yerine koyduğumuzda 

aşağıdaki eşitsizliği elde ederiz.  

J(T(Cn))≥  
r

min  { r + 
)2(

2

)2( 2

rnr
rn

−

−    } 

Eşitsizliği r’ye bağlı bir fonksiyon gibi düzenlediğimizde  

   
)2(

2

)2()(
2

rnr
rnrrf
−

−
+≥        (2) 

elde edilir. Amacımız fonksiyonun en küçük olduğu değeri bulmak, bunun 

için öncelikle  (2) eşitsizliğini eşitlik olarak gerekli işlemleri yapalım. 

Böylece  

                                

2

2)(
r

rnrrf −
+=  

                               
r

rnrrf 24)(
2 −+

=  
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                               2

2 )24()22()('
r

rnrrrrf −+−−
=  

                                 0)( =rf ı  ⇒  nr 22,1 ±=  

Fonksiyon minumum değerini r> 0 olduğundan r = 2 n  değerinde alır. Bu 

değeri fonksiyonda yerine yazdığımızda; 

n
nn

n
nnnnf 24

2
)2(24)2()2(

2 −
=

−+
=  

                                24)2( −= nnf  

buluruz. Böylece  Cn grafının total grafının ortalama  bütünlük değeri 

(mean integrity)  

J(T(Cn)) ≥   4 ⎣ n   ⎦  - 2 

olur. 

Teorem 4.3: Kn grafının total grafı T(Kn) olsun. T(Kn) grafının 

ortalama bütünlük değeri n≥ 6 olmak üzere  ; 

J(T(Kn))   ≤   4n – 8  + 
2)167(
)3()4(8

2

22

+−
−−+

nn
nn  

dir. 

İspat:  Kn grafının total grafı T(Kn) ’ nin tepe sayısı V(T(Kn))= (n2 

+ n) /2  dir. T(Kn) grafı 2n – 2 regüler bir graftır. Dolayısıyla κ(T(Kn)) = 2n 

–2 dir. Eğer T(Kn) grafında connectivity (bağlantılılık) sayısı kadar tepe 

atıldığında graf iki parçaya ayrılır. Elde edilen graf  Şekil 4.2 deki gibidir. 

 

 

 

Şekil 4.2 
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G2 grafı (n –2)(n –1) / 2 tepeli ve 2n – 6 regüler bir graftır. G2  grafından  

yine  G2 nin connectivity (bağlantılılık) sayısı kadar tepe atıldığında G2 iki 

parçaya ayrılır. Toplam T(Kn)  grafında böyle 2n –2 +2n –6 = 4n – 8 tane 

tepe atıldığında graf da iki tane izole tepeli ve 1 tanede (n –4)(n-3) / 2 

tepeli 2n –10 regüler graf olmak üzere 3 parçaya ayrılır. 

Bu işleme, eğer Kn grafının tepe sayısı tek ise graf da 1 tane  4- regülerli 

parça kalıncaya kadar, tepe sayısı çift ise graf da 1 tane 2- regülerli parça 

kalıncaya kadar rekürsif olarak tekrarlanır. Her iki durumda da diğer tüm 

parçaların hepsi izole tepelerden oluşur. Dolayısıyla J(T(Kn)) için ; 

J(T(Kn)) ≤  

2
167
4

)3()4(11
84 2

22
22

+−

−−
++

+−
nn

nn

n  

 

2)167(
)3()4(884))(( 2

22

+−
−−+

+−≤
nn

nnnKTJ n     

elde edilir. 

K3, K4 ve K5  grafları için bulunan sonuçlar Tablo 1 de verilmiştir. 

 

 

 

J(T(K3)) 5 

J(T(K4)) 8,5 

J(T(K5)) 13 

                                                             
Tablo 1 
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Teorem 4. 4: K1,n grafının total grafı T(K1,n) olsun. T(K1,n) 

grafının ortalama bütünlük değeri 

1
32)((

2

,1 +
++

=
n

nnKTJ n  

 

dir. 

İspat: K1,n  grafının total grafının yapısı Şekil 4.2 de olduğu 

gibidir. 

 

 

 

 

 

 

 

 

Şekil 4.3 

 

K1,n   grafının Şekil 4.3 de görüldüğü gibi  ayrıtlarından oluşan yeni tepeler 

e1, e2, e3, …, en tepeleri  kendi aralarında n tepeli bir tam graf yapısı 

oluşturur. Oluşan T(K1,n) grafında en küçük tepe derecesi 2 dir ve bu grafın 

v1, v2, v3,...vn+1 tepeleridir. 

Graftan öncelikle v2 tepesinin izole olarak kalması istenildiğin de v1 ile e1 

tepesinin atılması gerekir. Benzer şekilde grafın diğer 2 dereceli tepeleri 

(vn+1 hariç) yalnız kalması istenildiğin de e2, e3, ..., en-1  tepeleri  graftan 
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atılmalıdır. Dolayısıyla graftan böylece n tane tepe atıldığında kalan grafın 

yapısı Şekil 4.4 deki gibidir.  

 
Şekil 4.4 

 

Şekil 4.4’ de  (n-1) tane parça 1 tepeli, 1 tane parça 2 tepeli olacak şekilde 

n tane parça oluşur. Ortalama bütünlük tanımında bu değer yerine 

konduğunda; 

 

 

 

 

 

 

 

 

elde edilir.     

 

 

 

1
32))((

1
3))((

12
2.11)1())((

2

,1

,1

22

,1

+
++

=

+
+

+=

−+
+−

+=

n
nnKTJ

n
nnKTJ

nn
nnKTJ

n

n

n
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5. BAZI GRAFLARIN CORONA (TAÇLAMA) İŞLEMİ 

VE ORTALAMA BÜTÜNLÜK DEĞERLERİ 
           Bu bölümde P2oCn, T(P2)oCn, P2oPn, T(P2)oPn  graflarının ortalama 

bütünlük değeri hesaplanmıştır ve bunlarla ilgili bazı sonuçlar verilmiştir. 

 

Teorem 5.1: 3n tepeli  P2oCn  grafının ortalama  bütünlük değeri 

J(P2oCn) = 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−
−+

+

isetekn
n

nn

iseçiftnn

,
210

11305

,
10

265

2
 

 

dir. 

 İspat:  P2oCn grafının yapısı Şekil 5.1 deki gibidir. İspat n’nin çift 

ya da tek olması durumuna göre 2 durumda yapılır. 

 
Şekil 5.1 

 

 1. DURUM: (n çift ise) 
S⊂V(P2oCn) dir. Eğer |S| = r ise bu durumda S kümesine göre 3 durum söz 

konusudur. 
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 Durum 1: Eğer r =α (Cn) ise yani graftan Cn grafının örtü 

kümesinin elemanları çıkarılırsa P2oCn grafında n tane bileşen oluşur. 

Bunlardan α (Cn) =
2
n  tanesi 2 tepeli  

2
n  tanesi de 3 tepelidir. Bu değerleri 

ortalama bütünlük kavramında yerine yazıldığında, 

                                           J((P2oCn))=min{ 

2
3

3
2

2
2

2

22

nn

nn
n

−

+
+ } 

                                                           }
10

265min{ +
=

n  

                                           J((P2oCn))=
10

265 +n  

elde edilir. 

 

 Durum 2: P2oCn grafından çıkarılan tepelerin Cn grafının örtü 

kümesinin elemanlarından büyük olmaları durumunda r =α (Cn) +1 ise 

grafta yine Durum 1 de olduğu gibi n tane bileşen oluşur. Bunlardan r =α 

(Cn) +1 tanesi 2 tepeli n-r tanesi de 3 tepelidir. Bu değerleri ortalama 

bütünlük tanımında yerine yazdığımızda, 

                              J((P2oCn))= min{ r+ }
3

3)(2 22

rn
rnr

−
−+  

                                              }
1

2
3

3)1
2

(2)1
2

(
)1

2
min{(

22

−−

−−++
++=

nn

nnn
n  

                                              = min{
)25(2
24345 2

−
−+

n
nn } 
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                                               =
)25(2
24345 2

−
−+

n
nn  

elde edilir. Şimdi amacımız Durum 1 de bulduğumuz  
10

265 +n  değerinin 

410
24345 2

−
−+

n
nn  den küçük olduğunu göstermektir. Bu durumda,  

410
24345

10
265 2?

−
−+

<
+

n
nnn  

olduğunu iddia ediyoruz. İddiamızın ispatı için öncelikle olmayan ergi 

yöntemiyle 

410
24345

10
265 2

−
−+

>
+

n
nnn  olduğunu kabul edelim. 

  
410

24345
10

265 2

−
−+

>
+

n
nnn                                   (1) 

eşitsizliğinin her iki kısmındaki rasyonel ifadelerin paydalarını 

eşitlediğimizde; 

 

40100
10424050

)410(10
)410)(265(

10
265 2

−
−+

=
−

−+
=

+
n

nn
n

nnn  

 

elde ederiz. Bu değerleri (1) de yerine yazdığımızda aşağıdaki eşitsizlik 

oluşur. 

    

40100
24034050

410
24345 22

−
−+

=
−
−+

n
nn

n
nn

40100
136100

40100
10424050 2

−
−

+
−

−+
=

n
n

n
nn
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  >
−

−+
40100

10424050 2

n
nn

40100
136100

40100
1042405 2

−
−

+
−

−+
n
n

n
nn                            (2) 

 

n≥ 2 olduğundan (2) eşitsizliğindeki 
40100

136100
−
−

n
n  ifadesi pozitif bir sayıdır. 

Bu durumda (2) eşitsizliği bir çelişkidir. Böylece ,  

410
24345

10
265 2

−
−+

<
+

n
nnn  

olur. 

 Durum 3: Şimdi de graftan atılan tepeler Cn grafının örtü 

kümesinin elemanlarından küçük olsun. Yani r =α (Cn)-1 tane tepe graftan 

atıldığın da Durum 1 de elde ettiğimiz n den daha az sayıda bileşen oluşur. 

Oluşan bileşen sayısı 2r tanedir. Bunlarda r tanesi 2 tepeli r-1 tanesi 3 

tepeli ve en az bir tanesi de 6 tepelidir. Bu durumda grafın ortalama 

bütünlük değeri, 

                               J((P2oCn))> min{
rn

rrr
−

+−+
+

3
63)1(2 222

} 

                                               >min{
410

52185 2

+
++

n
nn }                 

                                               >
410

52185 2

+
++

n
nn  

elde edilir. 

Bu durumda J((P2oCn))= 1
410

52185 2

+
+
++

n
nn = 

410
56285 2

+
++

n
nn  aldığımızda 

bu değerin yine Durum 1 de elde ettiğimiz 
10

265 +n  değerinden büyük 

olduğu iddia edilirse, yani  
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10
265 +n <

410
56285 2

+
++

n
nn                           (3) 

bir önceki iddiadaki ispat gibi benzer işlemler yapıldığında; 

 

40100
10428050

)410(10
)410)(265(

10
265 2

+
++

=
+

++
=

+
n

nn
n

nnn  

 

ve bu değerler  (3) de yerine yazılırsa  

<
+

++
40100

10428050 2

n
nn

100
10428050 2 ++ nn +

40100
456
+n

           (4) 

elde edilir. 

(4) de n≥ 2 olduğundan 0
40100

456
>

−n
 dır. Bu da iddianın doğru olduğunu 

gösterir, yani  

410
56285

10
265 2

+
++

<
+

n
nnn  

dır. 

Sonuçta n çift olması durumunda P2oCn  grafının ortalama bütünlük 

değeri; 

J((P2oCn))=
10

265 +n  

elde edilir. 

 

 

40100
456

40100
10428050

40100
56028050

410
56285 222

+
+

+
++

=
+

++
=

+
++

n
nn

n
nn

n
nn
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 2. DURUM : (n tek ise) 

S⊂V(P2oCn) dir. Eğer ⎢S ⎢= r ise bu durumda S kümesine göre 3 durum 

söz konusudur. 

 

 Durum 1: Eğer r =α (Cn)  ise yani graftan Cn  grafının örtü 

kümesinin elemanları çıkarılırsa P2oCn grafında n tane bileşen oluşur. 

Bunlardan α (Cn) =
2

1+n  tanesi 2 tepeli 
2

1−n  tanesi de 3 tepelidir. Bu 

değerleri ortalama bütünlük kavramında yerine yazıldığında, 

                          J((P2oCn))=min{ 

2
13

3
2

12
2

1

2
1

22

+
−

−
+

+

+
+

nn

nn
n } 

                                          }
210

11305min{
2

−
−+

=
n

nn  

                         J((P2oCn)) 
210

11305 2

−
−+

=
n

nn   

elde edilir. 

 

 Durum 2: P2oCn grafından çıkarılan tepeler Cn grafının örtü 

kümesinin elemanlarından büyük olması durumunda r =α (Cn) +1 ise grafta 

yine Durum 1 de olduğu gibi n tane bileşen oluşur. Bunlardan r =α (Cn) +1 

tanesi 2 tepeli n-r tanesi de 3 tepelidir. Bu değerleri ortalama bütünlük 

tanımında yerine yazdığımızda, 

                        J((P2oCn))= min{ r+ }
3

3)(2 22

rn
rnr

−
−+  
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}
1

2
13

3)1
2

1(2)1
2

1(
)1

2
1min{(

22

−
+

−

−
−

−++
+

++
+

=
nn

nnn
n  

                                         = min{
610

39385 2

−
−+

n
nn } 

                                         =
610

39385 2

−
−+

n
nn  

elde edilir. Bu durumda amac Durum 1 de bulunan 
210

11305 2

−
−+

n
nn  

değerinin 
610

39385 2

−
−+

n
nn  den küçük olduğunu göstermektir. Bu durumda,  

610
39385

210
11305 22

−
−+

<
−

−+
n

nn
n

nn  

 

olduğu iddia edilirse, 

 

610
288

610
11305

610
39385 22

−
−

+
−

−+
=

−
−+

n
n

n
nn

n
nn                       (5) 

 

    
610

11305
210

11305 22

−
−+

<
−

−+
n

nn
n

nn                                   (6) 

 

    0
610

288
>

−
−

n
n                                          (7) 

(5), (6) ve (7) eşitsizliklerinden iddianın doğru olduğu gösterilmiş oldu bu 

durumda; 
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610
39385

210
11305 22

−
−+

<
−

−+
n

nn
n

nn  

dir. 

 Durum 3: Şimdi de graftan atılan tepeler Cn grafının örtü 

kümesinin elemanlarından küçük olsun. Yani  r =α (Cn)-1 tane tepe graftan 

atıldığın da Durum 1 de elde edilen n den daha az sayıda bileşen oluşur. 

Oluşan bileşen sayısı 2r tanedir. Bunlarda r tanesi 2 tepeli, r-1 tanesi 3 

tepeli ve en az bir tanesi de 6 tepelidir. Bu durumda grafın ortalama 

bütünlük değeri, 

                            J((P2oCn))> min{
rn

rrr
−

+−+
+

3
63)1(2 222

} 

                                            >min{
210

81225 2

+
++

n
nn }                 

                                           >
210

81225 2

+
++

n
nn  

şeklinde elde edilir. 

Bu durumda J((P2oCn))= 1
210

81225)(
2

+
+

++
=

n
nnGJ  = 

210
83325 2

+
++

n
nn  

elde edilir. Durum 1 de bulunan  
210

11305 2

−
−+

n
nn  değerinin 

210
83325 2

+
++

n
nn  den küçük olduğunu gösterelim. Bunun için olmayan ergi 

yöntemiyle 

210
83325

210
11305 22

+
++

>
−

−+
n

nn
n

nn                     (8) 

 

olduğunu kabul edelim. 



 

 

37 

(8) eşitsizliğinin her iki kısmındaki rasyonel ifadelerin paydaları 

eşitlendiğinde; 

 

4100
225031050

210
11305

2

232

−
−−+

=
−

−+
n

nnn
n

nn  

 

4100
18894220

4100
225031050

4100
16689233050

210
83325

2

2

2

23

2

232

−
++

+
−

−−+
=

−
+++

=
+
++

n
nn

n
nnn

n
nnn

n
nn

 

elde edilir. Bu değerler (8) de yerine yazıldığında aşağıdaki eşitsizlik 

oluşur. 

 

4100
225031050

2

23

−
−−+

n
nnn >

4100
18894220

4100
225031050

2

2

2

23

−
++

+
−

−−+
n

nn
n

nnn    (9) 

n≥ 2 olduğundan (9) eşitsizliğindeki 
4100

18894220
2

2

−
++

n
nn  ifadesi pozitif bir 

sayıdır. Bu durumda (9) eşitsizliği bir çelişkidir. Böylece,  

210
83325

210
11305 22

+
++

<
−

−+
n

nn
n

nn  

dir. 

Teorem 5.2:  4n tepeli  G= T(P2)oCn grafının n≥3 için ortalama  

bütünlük değeri; 

J(G) = 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−
−+

+

isetekn
n

nn

iseçiftnn

,
214

15567

,
14

507

2  

dir. 
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İspat: T(P2)oCn  grafının yapısı Şekil 5.2 deki gibidir. Teoremin 

ispatı Teorem5.1’ dekine benzer şekilde yapılır.  

 
Şekil 5.2 

 

Teorem 5.3:  n≥3 olmak üzere  P2oPn  grafının ortalama bütünlük 

değeri, 

 

J(P2oPn)=

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
++

+

isetekn
n

nn

seçiftnn

,
210

9225

,
10

265

2  

dir 

İspat: P2oPn grafının yapısı Şekil 5.3’deki gibidir. 

 
Şekil 5.3 
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Teoremin ispatı Teorem 5.1’dekine benzer şekilde yapılır. Ancak 

S⊂V(P2oPn) kümesinin incelenmesi α(Pn)’ne göre yapılır. Bir Pn grafının 

örtü kümesi sayısı ise; 

                            α(Pn)= 
⎪
⎪
⎩

⎪⎪
⎨

⎧

+ iseteknn

iseçiftnn

,
2

1

,
2   

Teorem 5.4: n≥3 olmak üzere  T(P2)oPn o grafının ortalama  

bütünlük değeri, 

J(T(P2)oPn)= 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
++

+

isetekn
n

nn

iseçiftnn

,
214

13447

,
14

507

2         dir. 

İspat: T(P2)oPn grafının yapısı Şekil 5.4’ deki gibidir 

 

 

 

 

 

T(P2)oPn 

Şekil 5.4 

Teoremin ispatı Teorem 5.3’deki gibi yapılır. 

 

Sonuç 5.1: P2oPn ve P2oCn graflarının ortalama bütünlük 

değerleri için aşağıdaki eşitsizlik elde edilir. 

J(P2oCn)≥ J(P2oPn) 
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İspat: Teorem 5.3’den  J(P2oPn) değeri, 

 

J(P2oPn)= 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
++

+

isetekn
n

nn

seçiftnn

,
210

9225

,
10

265

2
 

ve Teorem 5.1’den J(P2oCn) değeri 

 

J(P2oCn) = 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−
−+

+

isetekn
n

nn

iseçiftnn

,
210

11305

,
10

265

2
 

elde edildi. 

Bu iki ifade arasındaki ilişki için n’nin tek ve çift olması durumları 

incelenir. 

  

1. Durum (n çift için) 
Bu durumun eşit olduğu kolayca görülür. 

 

2.Durum (n tek için) 

J(P2oCn)’ deki 
210

11305 2

−
−+

n
nn  değerini J(P2oPn) ’ deki 

210
9225 2

+
++

n
nn  

şeklinde ifade ettiğimizde; 

                            
210

11305 2

−
−+

n
nn =

210
9225 2

−
++

n
nn +

210
208
−
−

n
n                  (10) 

elde edilir,                                     
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n≥ 3 olduğundan (10)’ daki  
210

208
−
−

n
n  değeri her zaman için pozitiftir. Aynı 

zamanda 
210

9225 2

−
++

n
nn >

210
9225 2

+
++

n
nn  dür. Bu durumda; 

 

210
11305 2

−
−+

n
nn >

210
9225 2

+
++

n
nn  

olduğu kolayca görülür. 

 

          Sonuç 5.2: T(P2)oPn ve T(P2)oCn graflarının ortalama bütünlük 

değerleri için aşağıdaki eşitsizlik elde edilir. 

 

J(T(P2)oCn) ≥ J(T(P2)oPn)   

 

İspat: Teorem 5.4’den  J(T(P2)oPn)  değeri, 

J(T(P2)oPn)= 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
++

+

isetekn
n

nn

iseçiftnn

,
214

13447

,
14

507

2  

ve Teorem 5.2’den J(T(P2)oCn) değeri                                 

J(T(P2)oCn) =

⎪
⎪
⎩

⎪⎪
⎨

⎧

−
−+

+

isetekn
n

nn

iseçiftnn

,
214

15567

,
14

507

2  

elde edildi. 

İspat iki durumda yapılır:  
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1. Durum (n çift için) 
Bu durumun eşit olduğu kolayca görülür. 

2.Durum (n tek için) 

J(T(P2)oPn)=’deki 
214

13447 2

+
++

n
nn  değerini J(T(P2)oCn)’deki 

214
15567 2

−
−+

n
nn  değeriyle karşılaştıralım. 

 

                            
214

15567 2

−
−+

n
nn =

214
13447 2

−
++

n
nn +

214
2812
−
−

n
n                 (11)          

n≥ 3 olduğundan (11)’daki  
214
2812
−
−

n
n  değeri her zaman için pozitiftir. 

Aynı zamanda 
214

13447 2

−
++

n
nn > 

214
13447 2

+
++

n
nn olduğu aşikardır. Bu 

durumda; 

214
15567 2

−
−+

n
nn >

214
13447 2

+
++

n
nn  

olduğu kolayca görülür. 
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6. SONUÇ 
          Bu tez çalışmasında bir iletişim ağı bir graf ile modellenerek 

öncelikle bu yapının daha sağlam ve kararlı hale getirilmesi 

düşünülmüştür. Bunu yapmak içinde grafa yeni merkezlerin (tepelerin) 

eklenmesi gerçekleştirilmiştir. Bu işlem bir grafın total grafı tanımıyla 

yapılmıştır. Bu şekilde elde edilen yeni graftan herhangi tepelerin 

çıkartılması durumundaki ortalama bütünlük değeri hesaplanmıştır. 

Aşağıdaki tabloda herhangi bir graf ile aynı türden bir grafın total 

grafının ortalama bütünlük değeri hesaplanmıştır. 

 

G graf J(G) Total Graf J(T(G)) 

P40 10,85714286 T(P40) 21,52173913 

C40 11,70588235 T(C40) 23,35294118 

K1,40 2 T(K1,40) 41,04804901 

K40 40 T(K40) 799,2727273 

 

Tablodan görüldüğü gibi total grafların ortalama bütünlük değerleri 

daha büyüktür. Bu sonuçlar networkçülere uygun topolojiyi seçmede 

yardımcı olabilir. Buradan total graf yapılarının diğerlerine göre daha 

kararlı yapılar olduğu görülmüştür. 

Bir sonraki çalışmada benzer işlemler bu sefer tepe yerine ayrıt 

çıkartılarak hesaplanabilir. 
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