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 SINIR ÖZNİTELİKLERİNİN BELİRLENMESİ VE ADAPTASYONU: 

UZAKTAN ALGILAMA GÖRÜNTÜLERİNİN SINIFLANDIRILMASI İÇİN 

YENİ BİR ALGORİTMA  

ÖZET 

Çeşitli sensörler dünya yüzeyinden çok miktarda data toplarlar. Toplanan bu 

dataların karakteristlikleri, kullanılan sensörün sahip olduğu görüntüleme 

geometrisine bağlıdır. Normalde, görüntü işleme tekniklerinin direk olarak uzaktan 

algılamaya uygulanması, sadece multispektral datalar için geçerli olabilir ki; bu 

datalar da göreceli olarak daha düşük sayıda öznitelik vektörüne sahiplerdir. Bu 

nedenle, 100-200 civarinda öznitelik vektörlerine (spektral band) sahip hiperspektral 

dataların analizi için gelişmiş algoritmalara ihtiyaç vardır.  

Denetimli öğrenmede, eğitim işlemi çok önemlidir ve sınıflayıcının genelleme 

kabiliyetini belirler. Bu yüzden, yeterli sayıda eğitim örneği, düzgün bir sınıflama 

yapmak için istenir. Uzaktan algılamada, eğitim örneklerinin toplanması zor ve 

masraflı bir işlemdir. Bu yüzden, uygulamada sıklıkla karşılaşılan sınırlı sayıda 

eğitim örneğinin olmasıdır. 

Geleneksel istatistiksel sınıflayıcılar, datanın belirli bir dağılıma sahip olduğunu 

kabul ederler. Gerçek veriler için bu tür bir yaklaşım geçerli olmayabilir. Ek olarak, 

hiperspektral datalarda doğru parametre tahmini oldukça zordur. Normalde 

sınıflandırma işleminde kullanılan band sayısı arttığı zaman, sınıfların ayrıntılı ve 

doğru olarak belirlenmesi beklenir. Yüksek boyutlu öznitelik uzayı için, yeni bir 

öznitelik dataya eklendiği zaman, sınıflandırma hatası azalır, fakat bunun yanı sıra 

sınıflandırma hatasının yanlılığı artar. Eğer sınıflandırma hatasının yanlılığındaki 

artış, sınıflandırma hatasındaki azalmadan daha büyük olur ise eklenen yeni 

özniteliğin kullanımı karar kuralının performansını düşürür. Bu etki Hughes etkisi 

olarak adlandırılır ve hiperspektral datada multispektral datadan daha zararlı olabilir. 
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Bu tezde bizim amacımız, istatistiksel dağılıma bağlı olmayan, sadece eldeki eğitim 

elemanlarını dayanan bir algoritma geliştirerek yukarıda özetlenen genel 

sınıflandırma problemlerinin üstesinden gelmektir. Bizim önerdiğimiz sınır 

özniteliklerinin belirlenmesi ve adaptasyonu (SÖBA) algoritması, karar yüzeylerine 

yakın sınır öznitelik vektörlerini kullanır ve bu sınır öznitelik vektörleri, maksimum 

marjin prensibini sağlayacak şekilde adapte edilerek, öznitelik uzayında doğru 

bölütlemenin yapılmasını sağlar. 

Uzaktan algılama görüntülerinin sınıflandırılması için çok uygun olan SÖBA 

algoritması sınır özniteliği vektörlerinin eğitim kümesi elemanlarından seçilmesi ve 

eğitim kümesi elemanları yardımıyla adapte edilmesine dayanan yeni bir yaklaşımla 

geliştirilmiştir. Bu yaklaşım, özellikle enformasyon kaynağının sınırlı sayıda örnekle 

temsil edilmesi durumuyla karşılaşıldığında ve dağılımın gauss olmaması durumunda 

belirli öncül kabuller kullanmadığı için geleneksel istatistiksel sınıflayıcılara göre 

daha iyi sonuçlar üretir. Sınıflayıcılar, sınıf karar sınırlarına yakın olan eğitim 

örnekleri için hatalı karar vermeye eğilimlidirler. Bu yüzden, önemli öznitelik 

vektörleri sınıflandırma hatasını azaltmak için kullanılır. Önerilen sınıflandırma 

algoritması, hataya sebep olan eğitim örneklerini özel bir şekilde araştırarak, sınır 

öznitelik vektörlerini üretmek için adapte eder ve etiketli öznitelik vektörleri olarak 

sınıflandırmada kullanır. 

SÖBA algoritması iki bölüme ayrılabilir. İlk kısım, sınıf merkezleri ve hatalı karar 

verilen eğitim örnekleri kullanılarak sınır öznitelik vektörlerinin başlangıç 

değerlerinin belirlenmesinden ibarettir. Bu yaklaşımla yönetilebilir sayıda sınır 

öznitelik vektörleri elde edilir. Algoritmanın ikinci bölümünde sınır öznitelik 

vektörlerinin adaptasyonu, learning vector quantization (LVQ) algoritmasıyla 

benzerlikler gösteren bir teknik kullanılarak gerçekleştirilir.Bu adaptasyon işleminde 

sınır öznitelik vektörleri, sınıf merkezleriyle olan mesafelerini uygun olarak 

sağlamak, farklı sınıflara ait komşu sınır öznitelik vektörleri arasındaki mesafeyi 

arttırmak için adaptif olarak güncellenir. Adaptasyon işlemi esnasında, sınıf 

merkezleri de aynı zamanda güncellenir. Sonraki sınıflandırma işlemi etiketli sınır 

öznitelik vektörlerine ve sınıf merkezlerine dayanır. Bu yaklaşımla herbir sınıf için 

uygun sayıda öznitelik vektörü algoritma tarafından atanır. 
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Denetimli öğrenmede eğitim süreci daha iyi sonuçlara ulaşabilmek için yansız 

olmalıdır. SÖBA algoritmasında başarım sınır öznitelik vektörlerinin başlangıç 

değerlerinin atanmasına ve eğitim örneklerinin eğitimde kullanılma sırasına bağlıdır. 

Bu bağımlılık sınıflayıcıyı nisbeten yanlı karar verici haline getirir. Konsensüs 

stratejisi ve çapraz sağlama birlikte kullanılarak, bu bağımlılıklar azaltılabilir. 

Bu tezde, başlıca performans analizi ve karşılaştırmalar, AVIRIS datası kullanılarak 

yapılmışır. AVIRIS datası hiperspektral datadır ve sıklıkla litaratürde sınıflayıcıların 

performansını göstermek amacıyla kullanılır. Elde edilen ortalama eğitim, test 

başarımı ve kappa istatistiği Tablo.1 ’de gösterilmiştir. AVIRIS data kümesi 17 sınıf 

içerir. Data kümeleri 1 ve 2 için elde edilen sonuçlar 9 ve 190 bandlı durumlar için, 

SÖBA’ nın multispektral ve hipersipektral datadaki başarımını karşılaştırmak 

amacıyla verilmiştir. SÖBA’ nın başarımı, maximum likelihood, Fisher linear 

likelihood, correlation, matched filtering gibi çeşitli istatistiksel sınıflayıcı teknikleri 

ve destek vektör makinalarını (SVMs) içerecek şekilde verilmiştir. SÖBA’ nın diğer 

sınıflandırma teknikleriyle olan karşılaştırmasında sadece spektral öznitelikler 

dikkate alınmıştır. 

Tablo 1: Ortalama Eğitim, Test Başarımları ve Kappa İstatistiği  
EĞITIM TEST 

DATA  METOD BAŞARIM 
% Κ BAŞARIM 

% Κ 

MAXIMUM LIKELIHOOD 84.83 0.82 67.56 0.63 
FISHER  LINEAR LIKELIHOOD 63.7 0.59 47.3 0.42 

CORRELATION 48.4 0.43 37.2 0.31 
MATCHED FILTER 32.8 0.24 36.1 0.29 

KNN [K=5] 89.01 0.87 68.06 0.63 
LINEAR SVM [C=40] 82.40 0.81 69.01 0.64 

RBF SVM [γ=1, C=20] 86.10 0.83 71.73 0.67 
SÖBA 94.05 0.89 70.82 0.66 

1 

KONSENSÜS SÖBA 96.41 0.95 73.36 0.69 
KNN [K=5] 90.71 0.89 70.01 0.65 

LINEAR SVM [C=10] 83.84 0.81 74.00 0.73 
RBF SVM [γ=0.1, C=10] 87.74 0.86 77.64 0.74 

SÖBA 99.46 0.99 76.40 0.73 
2 

KONSENSÜS SÖBA 100 1 78.71 0.75 

SÖBA algoritmasıyla hem multispektral hemde hiperspektral datalar için tatminkar 

sonuçlar elde ettik. SÖBA, Hughes etkisi karşısında gürbüz bir algoritmadır. Bundan 

dolayı hem multispektral hem de hiperspektral datalar için uygundur. Ek olarak 

azınlık sınıf üyeleri, SÖBA algoritması tarafından geleneksel sınıflayıcıları gözönüne 

aldığımızda daha iyi bir şekilde korunur. 
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BORDER FEATURE DETECTION AND ADAPTATION: A NEW 

ALGORITHM FOR CLASSIFICATION OF REMOTE SENSING IMAGES 

SUMMARY 

Various types of sensors gather very large amounts of data from the earth surface. 

The characteristics of the data are related to sensor type which has its own imaging 

geometry. Therefore, sensor types affect processing techniques used in remote 

sensing. Normally, image processing techniques used directly in remote sensing are 

usually valid for multispectral data which is relatively in a low dimensional feature 

space. Therefore, advanced algorithms are needed for hyperspectral data which has at 

least 100-200 features (attributes/bands).  

In supervised learning, the training process is very important and affects the 

generalization capability of a classifier. Therefore, enough number of training 

samples is required to make proper classification. In remote sensing, collecting 

training samples is difficult and costly. Consequently, a limited number of training 

samples is often available in practice.  

Conventional statistical classifiers assume that the data has a specific distribution. 

For real world data, these kinds of assumption may not be valid. Additionally, proper 

parameter estimation is difficult, especially for hyperspectral data. Normally, when 

the number of bands used in the classification process increases, precise detailed 

class determination is expected. For high dimensional feature space, when a new 

feature is added to the data, classification error decreases, but at the same time, the 

bias of the classification error increases. If the increment of the bias of the 

classification error is more than the reduction in classification error, then the use of 

the additional feature decreases the performance of the decision rule. This 

phenomenon is called the Hughes effect, and it may be much more harmful with 

hyperspectral data than with multispectral data.  
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Our motivation in this thesis is to overcome some of these general classification 

problems by developing a classification algorithm which is directly based on the 

available training data rather than on the underlying statistical data distribution. Our 

proposed algorithm, border feature detection and adaptation (BFDA), uses border 

feature vectors near the decision boundaries which are adapted to make a precise 

partitioning in the feature space by using maximum margin principle.  

The BFDA algorithm well suited for classification of remote sensing images is 

developed with a new approach to choosing and adapting border feature vectors with 

the training data. This approach is especially effective when the information source 

has a limited amount of data samples, and the distribution of the data is not 

necessarily Gaussian. Training samples closer to class borders are more prone to 

generate misclassification, and therefore are significant feature vectors to be used to 

reduce classification errors. The proposed classification algorithm searches for such 

error-causing training samples in a special way, and adapts them to generate border 

feature vectors to be used as labeled feature vectors for classification.  

The BFDA algorithm can be considered in two parts. The first part of the algorithm 

consists of defining initial border feature vectors using class centers and 

misclassified training vectors. With this approach, a manageable number of border 

feature vectors are achieved. The second part of the algorithm is adaptation of border 

feature vectors by using a technique which has some similarity with the learning 

vector quantization (LVQ) algorithm. In this adaptation process, the border feature 

vectors are adaptively modified to support proper distances between them and the 

class centers, and to increase the margins between neighboring border features with 

different class labels. The class centers are also adapted during this process. 

Subsequent classification is based on labeled border feature vectors and class centers. 

With this approach, a proper number of feature vectors for each class is generated by 

the algorithm.  

In supervised learning, the training process should be unbiased to reach more accurate 

results in testing. In the BFDA, accuracy is related to the initialization of the border 

feature vectors and the input ordering of the training samples. These dependencies 

make the classifier a biased decision maker. Consensus strategy can be applied with 

cross validation to reduce these dependencies.  
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In this thesis, major performance analysis and comparisons were made by using the 

AVIRIS data. The AVIRIS data is a hyperspectral data set and is often used in the 

literature to demonstrate performancec of classifiers. Average training, testing 

accuracies and kappa statistics are given in Table.1. The AVIRIS data set contains 17 

classes. The results were obtained for data sets 1 and 2 for 9 and 190 features 

respectively to make proper comparison of the BFDA with multispectral and 

hyperspectral data. The performance of the BFDA was compared with other 

classification algorithms including support vector machines and several statistical 

classification techniques such as maximum likelihood, Fisher linear likelihood, 

correlation and matched filtering algorithms. Only spectral features were taken into 

account in the comparison of BFDA with other classification techniques.  

Table 1: Average Training ,Testing Accuracies and Kappa Statistics 
TRAINING TESTING DATA 

SET METHOD ACCURACY 
% Κ ACCURACY 

% Κ 

MAXIMUM LIKELIHOOD 84.83 0.82 67.56 0.63 
FISHER  LINEAR LIKELIHOOD 63.7 0.59 47.3 0.42 

CORRELATION 48.4 0.43 37.2 0.31 
MATCHED FILTER 32.8 0.24 36.1 0.29 

KNN [K=5] 89.01 0.87 68.06 0.63 
LINEAR SVM [C=40] 82.40 0.81 69.01 0.64 

RBF SVM [γ=1, C=20] 86.10 0.83 71.73 0.67 
BFDA 94.05 0.89 70.82 0.66 

1 

CONSENSUAL BFDA 96.41 0.95 73.36 0.69 
KNN [K=5] 90.71 0.89 70.01 0.65 

LINEAR SVM [C=10] 83.84 0.81 74.00 0.73 
RBF SVM [γ=0.1, C=10] 87.74 0.86 77.64 0.74 

BFDA 99.46 0.99 76.40 0.73 
2 

CONSENSUAL BFDA 100 1 78.71 0.75 

Using the BFDA, we obtained satisfactory results with both multispectral and 

hyperspectal data sets. The BFDA is a robust algorithm with the Hughes effect. 

Therefore it is well-suited for both multispectral and hyperspectral data. 

Additionally, rare class members are more accurately classified by the BFDA as 

compared to conventional statistical methods.  



 1

1. INTRODUCTION 

Electromagnetic radiation from visible to microwave regions reflected from the 

earth’s surface can be measured by passive and active sensors. These measurements 

can be taken in to account as spectral feature vectors (attributes) for classification 

problems. Both the sensor types employed for gathering information, and the size of 

feature vectors (total number of bands) designate the design considerations of 

classification algorithms for multispectral and hyperspectral remote sensing. 

1.1 Multispectral and Hyperspectral Data Structure 

The multispectral sensors collect data in a small number of bands (features) from the 

different regions of the electromagnetic spectrum. Remote sensing images acquired 

by multispectral sensors, such as the widely used Landsat Thematic Mapper (TM) 

sensor, have shown their usefulness in numerous earth observation (EO) operations. 

In general, relatively small number of acquisition channels that characterizes 

multispectral sensors may be sufficient to discriminate among different land-cover 

classes (e.g., forestry, water, crops, urban areas, etc). However, their discrimination 

capability is very limited when different types (or conditions) of the same species 

(e.g., different types of forest) are to be recognized. For a specific band in 

multispectral data, measured value is averaged through the band with typically 100-

200 nm in width. Therefore, narrow spectral features masked by stronger proximal 

features may not be readily discriminated across the spectral sampling range [1]. As 

an example, 17 spectral signatures for 17 classes have been depicted in Figure 1.1. 

As we can see from the Figure 1.1, discriminating these 17 classes from each other is 

a very complex classification problem and only using multispectral sensors can not 

be sufficient to support precise discrimination, for especially detailed class 

identification for the same species. Therefore, making individual measurements in a 

narrow band to detect instantaneous variations of specific target response is required. 
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Figure 1.1: Spectral Signature of 17 Classes 

Hyperspectral sensors can be used to deal with this problem. Hyperspectral sensors 

collect data using hundreds of narrow (2-20 nm in width) contiguous wavelength 

intervals over visible, near infrared (VNIR), short wave infrared (SWIR) and the 

thermal infrared (TIR) wavelength regions. Hyperspectral imaging spectrometers 

were subsequently able to retrieve reflectance spectra such that the data associated 

with each pixel approximated the true spectral signature of a target material, with 

sufficiently high signal-to-noise ratio (SNR) across the full contiguous wavelength 

range (normally 400-2500 nm). This collected data is represented as a hyperspectral 

image cube as depicted in Figure 1.2 [2]. In this cube, x and y axes specify the size of 

the images (spatial coordinates), whereas the z axis denotes the number of bands 

(features) in the hyperspectral data. The detailed spectral response of a pixel assists 

in providing accurate and precise extraction of information than is obtained from 

multispectral imaging. It is also possible to address various additional applications 

requiring very high discrimination capabilities in the spectral domain. From a 

methodological viewpoint, the automatic analysis of hyperspectral data is not a 

trivial task. In particular, it is made complex by many factors, such as the large 
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spatial variability of the hyperspectral signature of each land cover class, 

atmospheric effects and the curse of dimensionality. 

Figure 1.2: The Hyperspectral Cube  

The processing of hyperspectral data remains a challenge since it is quite different 

from multispectral processing. Cost effective and computationally efficient 

procedures are required to process hundreds of bands (spectral resolution) consisting 

of 10-bit to 16-bit data (radiometric resolution).  

The data gathered by The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 

was used in the experiments in this thesis. This sensor was the first to acquire image 

data in continuous narrow bands simultaneously in the visible to shortwave infrared 

(SWIR) wavelength regions. The original AVIRIS data has 224 bands and spectral 

range of the data is 400-2450 (nm). For a 12-bit reflectance data, the number of 

discrete points in the 220-dimentional space is (212)220.  One enormous advantage of 

hyperspectral imaging is the concept of “Spectral Signature”. A spectral signature 

refers to the one-dimensional plot of brightness values of a pixel in the spectral 

domain, which is related to the characteristics of the observed material on the Earth 

surface, at a specific location. Each individual material has its own spectral signature.  

Data analysis is aimed at extracting meaningful information from remotely sensed 

data. A limited number of image analysis algorithms have been developed to exploit 

the extensive information contained in hyperspectral imagery in many applications 

such as military target detection, mineral mapping, pixel and sub-pixel level land 

cover classification, etc. Most of these algorithms have originated from the ones used 

x
y 

z
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for analysis of multispectral data, and thus have limitations. A novel classification 

algorithm called border feature detection and adaptation (BFDA) is proposed in this 

thesis for both multispectral and hyperspectral data classification to help reduce some 

of these problems.  

1.2 General Classification Problem 

Two main classification types can be considered. They are supervised and 

unsupervised methods. In this thesis, a supervised classification algorithm was 

introduced for both multispectral and hyperspectral images. For supervised learning, 

we have two different sets, one for training and the other one for testing. Sets of 

training and testing samples have features with their belongings labels. Ground truth 

refers to the reference set used for selecting samples to generate training and testing 

sets.  

The classification problem occurs in its simplest form as the two class problem 

(binary case classification problem). It involves two partially disjoint finite sets X 

and Y, and an object z∉ XUY is to be classified as a member of X or Y. The multi-

class problem occurs when there are additional sets corresponding to other classes. 

The main goal of the classification problem is to find a classifier that can predict the 

label of new unseen data samples correctly. This can be achieved by learning from 

the given labeled data (training set). The test set correctness of classification is the 

main criterion used to evaluate a given classifier.  

1.3 Problem Description and Aims of This Thesis 

In supervised learning, a selected set of labeled training data is used during learning. 

The performance of a classification algorithm is closely related to how the labeled 

training data set is correlated with the unlabeled testing data set. Errors are more 

difficult to control in the case of detection of rare class members. Especially in 

hyperspectral data classification, there is a large number of spectral bands, and a 

relatively low number of labeled training samples [3]. Therefore, one of the main 

difficulties is related to the small ratio between the number of available training 

samples and the number of features. This may cause unsatisfactory estimates of the 
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class-conditional probability density functions used in standard statistical classifiers. 

As a consequence, when the number of features given as input to the classifier over a 

given number of training samples is increased, the classification accuracy decreases. 

This behavior is known as the Hughes phenomenon [3]. Our motivation in this study 

is to overcome some of these general classification problems, by developing a 

classification algorithm which is directly based on the available training data rather 

than on the underlying statistical data distribution. 

In the literature, four main approaches can be identified to make statistical 

classification methods applicable for hyperspectral data classification problem. These 

approaches are:  

1) Regularization of sample covariance matrix by using sample and common 

covariance matrices together [4,5]. 

2) Adaptive statistical estimation by the exploitation of the classified (semi- 

labeled) samples (e.g., Expectation maximization algorithm, EM) [6,7]. 

3) Preprocessing techniques based on feature selection/extraction, aimed at 

reducing/transforming the original feature space into another space of a lower 

dimensionality (e.g., Fisher Linear Discriminate (FLD), Discriminate 

Analysis Feature Extraction (DAFE), Decision Boundary Feature Extraction 

(DBFE), Projection Pursued (PP), etc.) [8-10]. 

4)  Analysis of the spectral signature to model the classes [11,12]. 

Many supervised classification techniques have been used for multispectral and 

hyperspectral data classification, such as the maximum-likelihood classification, 

neural networks and support vector machines. Practical implementational issues and 

computational load are additional factors to evaluate classification algorithms. 

Statistical classification algorithms are fast and reliable, but they assume that the data 

has a specific distribution. For real world data, these kinds of assumptions may not 

be sufficiently accurate, especially for low probability classes. The k-nearest 

neighborhood algorithm is another simple and effective classification method. 

In recent years, kernel methods such as support vector machines (SVMs) have 

demonstrated good performance in hyperspectral data classification [13]. Some of 
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the drawbacks of SVMs are the necessity of choosing an appropriate kernel function 

and time-intensive optimization. In addition, the assumptions made in the presence of 

samples which are not linearly separable are not necessarily optimal. Parallel, self-

organizing hierarchical neural networks (PSHNNs) also achieve high classification 

accuracy [14]. By using parallel stages of neural network modules, hard vectors are 

rejected to be processed in the succeeding stage modules, and this rejection scheme 

is effective in enhancing classification accuracy. Consensual classifiers are related to 

PSHNNs, and also reach high classification accuracies [15,16]. 

Combining different classification algorithms to get high classification accuracy is a 

reliable approach [17]. It is also possible to combine the outputs of classifiers which 

use the same classification algorithm but are differently structured to make the 

decisions of the individual classifiers sufficiently independent from each other [18]. 

For example, this can be done by changing the input order of training samples.  

In this thesis, a new classification algorithm well suited for classification of remote 

sensing images is developed with a new approach to choosing and adapting border 

feature vectors with the training data. This approach is especially effective when the 

information source has a limited amount of data samples, and the distribution of the 

data is not necessarily Gaussian. Training samples closer to class borders are more 

prone to generate misclassification, and therefore are significant feature vectors to 

reduce classification errors. The proposed classification algorithm searches for such 

error-causing training samples in a special way, and adapts them to generate border 

feature vectors to be used as labeled feature vectors for classification.  

The BFDA algorithm can be considered in two parts. The first part of the algorithm 

consists of defining initial border feature vectors using class centers and 

misclassified training vectors. With this approach, a manageable number of border 

feature vectors are achieved. The second part of the algorithm is adaptation of border 

feature vectors by using a technique similar to the learning vector quantization 

(LVQ) algorithm [19]. In this adaptation process, the border feature vectors are 

adaptively modified to support proper distances between them and the class centers, 

and to increase the margins between neighboring border features with different class 

labels. The class centers are also adapted during this process. Subsequent 

classification is based on labeled border feature vectors and class centers. With this 
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approach, a proper number of feature vectors for each class is generated by the 

algorithm.  

1.4 Organization of the Thesis 

This thesis is organized in six chapters. Feature extraction or dimensionality 

reduction is needed for classification of hyperspectral data when classification 

algorithms based on statistics such as maximum likelihood is used. In chapter 2, a 

brief discussion is given about feature extraction, and the method called projection 

pursued (PP) [9] is mentioned. Using spatial features in addition to spectral features 

improves classification accuracy. A spatial feature extraction method [20] is also 

discussed in chapter 2. We categorized classification techniques in three parts and 

explained some important ones in chapter 3 to make precise comparison with our 

proposed algorithm, the BFDA [21]. These categories are parametric, non-parametric 

and kernel methods. Methods based on statistics such as maximum likelihood (ML) 

and expectation maximization (EM) [7] are parametric methods, whereas k-nearest 

neighbor (KNN), grow and learn (GAL) [22], and self-organizing map (SOM) [19] 

are non-parametric methods. In addition, kernel methods such as support vector 

machines (SVMs) [13,23] are also explained in chapter 3 as a relatively new 

generation of techniques for classification and regression problem. Our proposed 

algorithm border feature detection and adaptation (BFDA) [21] is introduced in 

chapter 4. Additionally, to reach better classification accuracies, usage of the BFDA 

as an individual classifier in a consensual scheme and a safe rejection scheme for the 

BFDA are also provided. Descriptions of the data set and experiments designed are 

introduced, and detailed comparison of methods is discussed in chapter 5. 

Conclusions and future work are given in chapter 6. 



 8

2. FEATURE EXTRACTION 

In this section, feature dimension reduction for increasing class discrimination, and 

spatial feature extraction from conventional spectral features are discussed. In 

general, basic remote sensing classification systems include a module of feature 

extraction. This module is necessary in hyperspectral data classification for 

dimension reduction especially when parametric classifier based on density 

estimation is used. The basic classification flow graph for remote sensing including 

feature extraction is depicted in Figure 2.1.  

 

Figure 2.1: The Basic Classification Flow Graph 

The aim of feature extraction is to reduce dimensionality to support proper density 

estimation and to increase class separability at the same time. To make a proper 

comparison between parametric classifiers and our proposed algorithm, the BFDA, 

concept of feature extraction for dimensionality reduction for increasing class 

discrimination is discussed, and some important methods used in the experiments are 

introduced in this chapter. We first explain feature extraction for dimensionality 

reduction. Then, we discuss how spatial features are extracted from spectral ones. 

The effects on classification accuracy are shown with experiments. In addition, it is 

also possible to apply dimensionality reduction after extraction of spatial features. 

Remotely 
Sensed Data 

m n ClassifierFeature 
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2.1 Methods for Feature Dimension Reduction 

High-Dimensional space characteristics are a major issue in design considerations of 

classifiers for hyperspectral data classification. Therefore, it is useful to understand 

high dimensional feature space characteristics. It has been proven that as the number 

of dimensions increases, volume of a hypercube (whole feature space) concentrates 

in the corners, and the volume of a hyperellipsoid concentrates in an outside shell in 

the feature space [24]. These characteristics have two important consequences for 

high dimensional data: 1) High-dimensional data is mostly empty, which implies that 

multivariate data is in a low dimensional structure. 2) Normally distributed data will 

have a tendency to concentrate in the tails, while uniformly distributed data will be 

more likely to be collected in the corners. Together, these consequences make 

density estimation more difficult in the high-dimensional feature space. Under these 

circumstances, it would be difficult to obtain accurate results with most density 

estimation procedures.  

The required number of labeled samples for supervised classification increases as a 

function of dimensionality. The required number of training samples is linearly 

related to the dimensionality for a linear classifier and to the square of the 

dimensionality for a quadratic classifier. It has been estimated that as the number of 

dimensions increases, the sample size needs to increase exponentially in order to 

obtain an effective estimate of multivariate densities [25,26].  

The second-order statistics is often important in the process of discriminating among 

classes. In hyperspectral data, neighbor bands are usually highly correlated. 

Therefore, most of the data is distributed a long a few major components producing a 

hyperelipsoid-shaped data distribution characterized by second order statistics [27]. 

It is to be expected that high-dimensional data contains more information. At the 

same time, the above characteristics tell us that it is difficult to extract such 

information with techniques which are based on density estimation since these are 

usually based on computations at full dimensionality requiring a substantial number 

of labeled data. Hughes proved that with a limited number of training samples, there 

is a penalty in classification accuracy as the number of features increases beyond 

some point [3]. 
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From classification viewpoint, especially for classification algorithms based on 

statistics, lower dimensional feature vectors are needed in order to make proper 

density estimation. Some widely used feature extraction methods for dimensionality 

reduction are principle component analysis (PCA), discriminate analysis feature 

extraction (DAFE), decision boundary feature extraction (DBFA), and projection 

pursuit (PP). It is also very useful to mention the difference between dimensionality 

reduction for data compression and classification. For data compression, most 

important aim is to keep most informative components but for data classification 

most important aim is to keep most discriminative components.  

Principle component analysis assumes that the distribution takes the form of a single 

hyperellipsoid, such that its shape and dimensionality can be determined by mean-

vector and covariance matrix of the distribution. A problem with this method is that 

it treats the data as if it is a single distribution. Principle components analysis is more 

appropriate for data compression than for class discrimination [25].  

DAFE is a method that reduces the dimensionality, optimizing the Fisher ratio [28]. 

If the total number of classes is c than the final dimension will be c-1 after DAFE. It 

performs the computations at full dimensionality, requiring a large number of labeled 

samples in order to accurately estimate parameters.  

DBFE is an algorithm based directly on decision boundaries [8]. This method also 

predicts the number of features necessary to achieve the same classification accuracy 

as in the original space. DBFE has the advantage of finding the necessary feature 

vectors. One disadvantage of this method is that it demands a high number of 

training samples in a high-dimensional space. This occurs because it computes the 

class statistical parameters at full dimensionality.  

When there are only a limited number of training samples, method of projection 

pursuit (PP) can be used [9,29,30]. This method performs the computation in a lower 

dimensional subspace that is a result of a linear projection from the original high 

dimensional space. This dimension reduction increases the ratio of labeled samples 

per feature, resulting in better parameter estimation and better classification 

accuracy. 
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2.1.1 Dimension Reduction via Projection Pursuit (PP) 

Feature extraction for dimensionality reduction is needed for parametric classifiers, 

especially in high-dimensional feature space. Parametric classifiers use first and 

second order statistics whose parameters are estimated by using only labeled training 

samples. From the nature of the classification problem for hyperspectral data, these 

labeled training samples are not sufficient to make proper estimation of these 

parameters. Therefore dimensionality reduction is needed in hyperspectral data 

classification especially for parametric classifiers. 

The basic dimensionality reduction scheme is depicted in Figure 2.2.  

 

Figure 2.2: Dimensionality Reduction by Projection Pursuit  

X is a multivariate data set and it is dxN dimensional matrix, Y is the resulting 

dimensionality reduced projected data which is mxN dimensional matrix and A is the 

transform matrix which is a dxm dimensional matrix. Dimension reduction also 

desired to include improvement of discrimination of classes. Therefore the algorithm 

should optimize the projection index I(ATX) to increase class discrimination. In 

general, the projection index is related to first and second order statistics such as 

mean and covariance matrix of the training samples as in Bhattacharyya distance 

index which is widely used for discrimination measurement. The PP uses 

Bhattacharyya distance between two classes as the projection index because of its 

relationship with Bayes-classification accuracy, and its use of both first order and 

second order statistics [31].  
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where M jY and jY∑ are the mean vector and covariance matrix, respectively, of the jth 

class in the projected subspace Y. In the case of more than two classes, the minimum 

Bhattacharyya distance among the classes can be used after the Bhattacharyya 

distances are calculated for all combinations of two classes. Then, the minimum of 

 the Bhattacharyya distance is chosen as 
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C is the number of combinations of pair of two classes. Assuming that total number 

of classes is L, C is given by 

!
2!( 2)!
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L

=
−

  (2.3) 

The main advantage of PP is that of calculating the projection index in a low 

dimensional space. In addition, nearest spectral responses are correlated with each 

other for hyperspectral data. Therefore band grouping is applied for dimensionality 

reduction as a preprocessing in the PP. First and second order statistics are calculated 

in this low dimensional space much more accurately.  

Thus, the global projection index to be maximized is the minimum Bhattacharyya 

distance among the classes. A sequential aspect of this algorithm is that it projects 

groups of neighboring bands while maximizing the minimum Bhattacharyya distance 

in the projected subspace. Maximization can be done with a known numerical 

optimization algorithm. 

As explained above, projection indices for optimizing discrimination are parametric, 

and estimation of these parameters is carried out in a lower dimensional space. The 

computations at a lower-dimensional space enable PP to better handle the problem of 

small numbers of samples. In Figure 2.3, band grouping in projection pursuit is 

depicted. An iterative procedure to estimate ai’s is described in the following steps 

[30]: 
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Figure 2.3: Band Grouping in Projection Pursuit 

1) Make an initial guess for every ai for each group of adjacent bands. 

2) Maintaining the rest of ai’s constant, compute the a1 (the vector that projects the 

first group of adjacent bands) that maximizes the minimum Bhattacharyya distance. 

3) Repeat the procedure for each of the groups while ai’s, for i j≠ , remain constant. 

4) Once the last group of adjacent bands is projected, repeat the process starting from 

step 2 (compute all aj’s sequentially) until convergence.  

In Figure 2.4 projection pursuit is used as a preprocessing technique for 

dimensionality reduction by optimizing a projection index. After the processing 

described above has been applied, a scheme of feature extraction such as 

discriminate analysis feature extraction (DAFE) or decision boundary feature 

extraction (DBFA) can be used in the lower dimensional feature space. As a 
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consequence, the most discriminative features and lower dimensional space (m<n<o) 

can be achieved.  

 

Figure 2.4: PP Based Preprocessing Technique Used for Dimensionality Reduction  

It is obvious that there are a variety of projection indices which can be used in the PP 

algorithm. Such a projection index related to correlation between features is as 

follows. Highly correlated features are combined with each other to form a group. 

The adjacent features of the data exhibit high correlation. Therefore, the 

hyperspectral subspace is partitioned into subspaces based on correlation existing 

between adjacent features. The correlation ρ for bands i and j is given by 
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where ij∑ is the element of the covariance matrix for band i versus band j and ii∑  

and jj∑ are the variances of the ith and jth features of the data [31]. The parameter 

ijρ indicates the covariance between bands i and j. The variables i and j vary from 1 

to d, where d is the dimensionality of the subspace. The correlation measure C of the 

hyperspectral subspace quantifies the correlation between two bands, i.e. C gives the 

minimum of all the correlations between every pair of bands in the subspace. 

Therefore, 
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where nC  represents correlation of the nth subspace . 

Supervised and automatic selection procedures can be applied for feature subset 

selection procedure. It is also possible to select feature size fixed or adaptively 

chosen.  

2.2 Spatial Feature Extraction 

Spatial variations of the spectral features in a predefined sub-image with appropriate 

sub-image size can be used as effective features in remote sensing applications 

[32,33]. Features based on spatial variations are called texture features as well. 

Texture features are robust features on noisy remote sensing data such as the data 

acquired by synthetic aperture radar (SAR). Especially for SAR data classification, 

noise is an important concern to deal with in order to achieve sufficient classification 

accuracy. The noise called speckle has its origin in collecting data by using active 

sensors in microwave frequencies. Therefore, using spatial variations instead of 

spectral response from individual pixels is necessary to make proper SAR 

classification. Gray level co-occurrence matrix statistical parameters can be used as 

texture features [33].  

There are three different texture categories. They are course texture (neighboring 

points similar), fine texture (neighboring points different) and directional texture 

(courser in one direction). Because of speckle noise in SAR data, fine texture 

properties are typical. For hyperspectral data, texture category is typically course 

texture. Therefore, we expect to find more homogeneous areas in hyperspectral data 

classification. 

Spatial filtering can be used to generate more homogenous regions and thereby 

improve classification performance in hyperspectral data classification [20]. The 

spatial filter can be a simple mean filter, which uses standard deviation as a 

homogeneity criterion. Using a homogeneity criterion, sub-image size (window size) 

changes adaptively to achieve more homogeneous regions in the spatial domain. If 

homogeneity test passes, then the mean value of the pixels in the window is assigned 

to the center pixel of the sub-image.  
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Formally, given an image I(m,n), the median filter can be shown by 

{ }( , ) ( , )medianI m n median I m k n l ,     (k,l) A= − − ∈   (2.6) 

Where A is the neighborhood over which the median is applied. Median filters are 

most useful in mitigating the effects of salt and pepper noise that arises typically due 

to isolated pixels incorrectly switching to opposite intensity. 

In this thesis, we extracted spatial features such as mean and variance for sub-image 

size (window size) from 3x3 to 9x9, and obtained combined classification results 

which are based on individual spatial and spectral features by using a consensual rule 

to reach better classification accuracy. In this way, we showed the use of spatial 

features together with spectral features on hyperspectral data classification. 

 



 17

3. TYPES OF CLASSIFIERS 

The aim of classifiers is to partition the feature space into an exhaustive set of 

nonoverlapping regions to reach high classification accuracy by using some rules 

related to discrimination of the classes. These discrimination rules can be based on 

statistical theory or computational methods such as neural networks. Decision 

boundaries can be determined by a threshold function obtained by equalization of the 

neighbor class discrimination rules. In this chapter, a brief summary is given on 

classifiers used in the experiments to make a detailed comparison between the 

proposed classification algorithm, the BFDA, and other conventional classification 

methods used. 

We can categorize classifiers into three types. They are parametric, non-parametric 

and kernel methods. For parametric methods, maximum likelihood (ML) and 

expectation maximization (EM) are described [35,36]; k-nearest neighbor (KNN) 

[37], grow and learn (GAL) [22] and self organizing map (SOM) [19] are discussed 

as examples of non-parametric methods. In recent years, use of support vector 

machines for classification and regression problems has been increasing rapidly. 

Support vector machines (SVMs) are discussed as an example of kernel methods 

[13]. SVM is initially a binary classifier. Therefore, proper hierarchical methods are 

needed to combine binary classifiers outputs to generate multi-class classification 

results. 

An important performance criterion is overall classification accuracy for classifiers. 

Additionally, detection of rare class members is a desirable specification. Kappa 

statistics was used to measure reliability of decisions made [34]. In addition, 

practical implementation issues and computational load are important design 

concerns to make a proper comparison of the classifiers. 
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3.1 Statistical Classifiers 

Classifiers based on statistics are widely used, especially in low dimensional feature 

spaces. In general, they are parametric classification methods, and their drawbacks 

are proper parameter estimation needs and pre-assumptions on their distributions 

made before classification. Especially in high dimensional feature space, difficulties 

of proper parameters estimation can be reduced by using dimension reduction 

methods for increasing class discrimination such as DAFE, DBFA and PP [35]. It is 

also difficult to detect rare class members with statistical methods. In this section, a 

brief summary is given on statistical methods such as maximum likelihood (ML) and 

expectation maximization (EM) [36].  

3.1.1 Maximum Likelihood Classifier 

Conditional probability density function (pdf) is used as discrimination rule in the 

maximum likelihood (ML) classifier. If the number of classes is m, then there are m 

discrimination functions that can be defined by using conditional probability density 

function as follows:  

( )( ) ,  1...
iC ig x p x C i m= = . (3.1) 

The label of the class which makes the discrimination rule maximum is assigned as 

the class of x :  

{ }arg  max ( ) , 1..   
iC ww g x i m x C= = ⇒ ∈  (3.2) 

In this approach, the classification problem is reduced to estimate some parameters 

which are related to probability density function (pdf). The Gaussian density function 

is widely used for classification problems because it has convenient properties and 

fits many processes in nature. The Central Limit Theorem states that if a random 

observation is made on a collection a large of number of independent random 

quantities, the observation will have a Gaussian distribution. If the random variable 

is one-dimensional, then the Gaussian density function is given by 
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In remote sensing data classification problems random variable is a vector. 

Especially for hyperspectral data classification, the dimension of the random variable 

may be larger than 100. The AVIRIS data set which is used in the experiments can 

be cited as an example of hyperspectral data. The original dimension (total number 

of bands/attributes) of the AVIRIS data set is 224. For multispectral data such as 

Landsat and Spot, the numbers of dimensions are 7 and 4, respectively. In this case, 

assuming N dimensions, the pdf can be written in the vector form as 
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where ix  is random variable, iµ  the mean vector of the ith class, and i∑  is the 

covariance matrix of the ith class, respectively. The Gaussian pdf is also called 

normal distribution and is depicted by ( , )i iN µ ∑ . The unbiased estimaties of the 

multidimensional Gaussian pdf parameters are calculated as follows: assuming a 

labeled training data set 1 2{( , ), ( , ),     , ( , )}ny y y⋅ ⋅ ⋅1 2 nx x x  where the training 

vectors are , 1,...,N i n∈ =ix , the class labels are {1, 2,     , }iy m∈ ⋅ ⋅ ⋅ , n  is the total 

number of training samples, and m  is the number of classes, class means are 

estimated as  

1ˆ ,{ | ,    1,     , }
1

i

ni
x x y i i mj j jn ji

µ = = = ⋅ ⋅ ⋅∑
=

 (3.6) 
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where in  is the total number of training samples for class i. The covariance matrix 

estimate of the ith class is given by 

1ˆ ˆ ˆ)( ) ,{ | ,    1,     , }
1 1

T
i i i

ni
( y i i mjn ji

µ µ∑ = − − = = ⋅ ⋅ ⋅∑
− =

x x xj j j  (3.7) 

Logarithmic version of the pdf is widely used as a discrimination function as follows: 

( )( ) 1( ) ln (1/ 2) ln (1/ 2)( ) ( ),  1..
i

T
C i i i i ig x p x C x x i mµ µ−= = Σ + − Σ − =  (3.8) 

which is a quadratic function and is commonly used in the Gaussian maximum 

likelihood (GML) classifier [38].  

The minimum expected error that can be achieved in performing classification is 

referred to as the Bayes’ error. A decision rule that assigns a sample to the class with 

highest a posteriori probability (the MAP classifier) achieves the Bayes’ error [31]. A 

posteriori probability can be written as follows by using Bayes’ rule: 

( ) ( ) ( )( ) ,
( ) ( )
i i i

i

p x C p C p x C
p C x

p x p x
= =   (3.9) 

If the prior probabilities of classes are known, and they are used to multiply with the 

class density functions the resulting algorithms are called minimum error classifiers, 

because they result in the theoretically minimum overall error:  

( ) ( )( ) , ( ),  1..
iC i i ig x p x C p x C p C i m= = =  (3.10) 

In practice, the prior class probabilities are often not known need to be estimated. 

Class conditional density functions (pdf’s) also need to be estimated from a set of 

training samples. For a high dimensional feature space, when a new feature is added 

to the data, the Bayes error decreases, but at the same time the bias of the 

classification error increases. The reason of this increase is that more parameters 

need to be estimated from the same number of training samples. If the increase in the 
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bias of the classification error is more than the decrease in the Bayes error, then the 

use of the additional feature decreases the performance of the decision rule. This 

phenomenon is called the Hughes effect [3]. The larger the number of the parameters 

that need to be estimated, the more severe the Hughes phenomenon can be. 

Therefore, when the dimensionality of data and the complexity of the decision rule 

increase, the Hughes effect can become more severe. It is obvious that, linear 

classifiers such as minimum distance to mean (minimum Euclidean distance) are less 

affected by the Hughes effect than the quadratic classifiers such as the Gaussian 

maximum likelihood (GML) classifier [36,38]. The discriminatant function for the 

minimum distance to mean classifier is given by 

( ) )( ) ,  1...
i

T
C i ig x ( i mµ µ= − − =x x .  (3.11) 

In addition, Fisher’s linear discriminant classifier assumes that each class has the 

same covariance matrix called the common covariance matrix which can be 

calculated by using all available labeled samples (training samples) [36]. The 

Fisher’s linear discriminant classifier is given by 

1( ) ) ( ) ,  1...
i

T
C i ig x ( i mµ µ−= − ∑ − =x x .  (3.12) 

3.1.2 Expectation Maximization (EM) 

Performance of a classifier is usually related to the degree of discrimination function 

complexity. More complex classifiers need much more labeled training samples to 

make a proper estimation of parameters used in the discrimination function. 

Especially in remote sensing, labeled samples are limited. This drawback affects 

classification accuracy in a negative way especially when the feature vector size 

increases. Parametric classifiers such as quadratic ones are much more affected by 

limited training samples. In order to enhance estimation of parameters, unlabeled 

samples can be incorporated together with limited labeled ones. In the following 

discussion, enhancement of Gaussian density function parameters (prior 

probabilities, mean vectors and covariance matrices) is achieved via expectation 

maximization (EM) algorithm [38].  
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When individual classes are multivariate Gaussian, the ML estimates of the 

parameters of the mixture density consisting of the m normal classes are considered. 

We assume ith class ni labeled training samples are available. We will denote these 

training samples by zik where i indicates the class (i=1,…,m), and k is the index of 

each particular sample. In addition, we assume that N unlabeled samples denoted by 

xk are available to enhance the mixture density given by 

1
( ) ( ),  1...

m

i i
i

p p i mθ α
=

= =∑x x   (3.13) 

The EM equations for approximating the ML estimates of the parameters of the 

mixture density are the following [39]: 
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where t
iµ  and t

i∑  are the mean vector and the covariance matrix of class i at iteration 

t. The parameter set tθ  contains all the prior probabilities, mean vectors and 

covariance matrices. The ML estimates are obtained by starting from an initial point 

in the parameter space and iterating through the above equations. Reasonable initial 

values are obtained by using the training samples alone. An important practical point 

is that, although in theory additional unlabeled samples should always improve the 
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classification accuracy, this might not always be the case in practice. The reason for 

this is the deviation of the real world situations from the models that are assumed. 

Therefore, additional care must be taken when supervised-unsupervised learning is 

used in practice. Designing a classifier by using the training sample alone and then 

trying to improve classification accuracy by enhancing statistics via incorporating 

unlabeled samples with labeled ones is an efficient indicator to show the contribution 

of enhancement of statistics. If the performance of the classifier is not satisfactory, 

then a new set of unlabeled samples is selected and used to enhance the statistics to 

reach more accurate classification results. 

3.2 Nonparametric Methods 

Classification algorithms based on statistics assume that data has a specific 

distribution, typically a Gaussian distribution. For real world data, such assumptions 

may not be valid. Additionally, statistical classifiers are parametric classifiers, and 

proper estimation of parameters is needed. Especially with limited number of labeled 

training samples, which is very common situation in remote sensing, there are 

additional difficulties involved in proper parameter estimation of class distributions. 

These difficulties get harder in high dimensional feature space as compared to low 

dimensional feature space. Therefore, some complementary methods such as 

dimensionality reduction and enhancing estimation of parameters are needed for 

parametric methods to get satisfactory results. In addition, increasing classification 

accuracy is not guaranteed by using methods for enhancing estimation of parameters. 

Therefore, nonparametric methods are widely used to overcome these classification 

problems summarized above. Main aim of nonparametric methods is to extract 

maximum information from limited number of labeled samples to make an 

appropriate decision. Directly using training samples is an important specification of 

the nonparametric methods to describe feature space. Another advantage of 

nonparametric methods is stability of obtained classification accuracies with 

dimensionality changes. Therefore, the Hughes effect is less harmful for 

nonparametric methods than parametric ones. Training process often takes more time 

for nonparametric methods, and that could be a disadvantage. Our proposed 

algorithm the BFDA is also a nonparametric classifier. Therefore, in this section we 

explain some nonparametric methods such as the k-Nearest Neighbor (KNN), grow 
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and learn (GAL) and self organizing map (SOM), which have some similarity with 

our proposed algorithm, the BFDA. 

3.2.1 K-Nearest Neighbor (KNN) 

The k-nearest neighbor rule is a technique of nonparametric pattern recognition that 

does not need knowledge about distribution of the patterns [40]. It is one of the 

simple and precise classification methods. The obtained error by the KNN algorithm 

often converges to the Bayes error. However, heavy computational load that is 

proportional to the number of samples, and the number of dimensions of the feature 

space is an important disadvantage of the algorithm. The original k-nearest neighbor 

algorithm does not need any training phase to make a decision, all available training 

samples are used for making decision. It is also called lazy classification method. 

Methods based on branch and bound methods have been proposed to define k-

neighbors in a fast way [41]. There are also some methods which have been 

developed to decrease the number of training samples that are needed for distance 

calculation by dividing the space [42]. There are some methods for fast recognition 

using the KNN rule. These methods can be classified in space to two types. In some 

methods, the number of samples for distance calculation is limited, and in the other 

methods, the search space is limited. The first type of methods reduces computation 

time and space complexity, but the latter reduces only time complexity. To limit the 

number of samples for distance calculation, an effective subset is calculated from the 

training data set [43], or a new set is reconstructed for classification [44]. In recent 

years, some fast algorithms derived from KNN are widely used for giving proper 

responses to queries made to extract required information from databases [46]. In the 

following, we give a brief description of the KNN algorithm as follows. Given a 

point ′x in the N-dimensional feature space, an ordering function : N
′ ℜ → ℜxf , is 

defined. A typical ordering function is based on the Euclidean metric: 

( )2

1
( , ) ( ) - ( ) ,  1...

N

j
d

x d x d j n
=

′ ′ ′ ′= − = =∑j j j jxf (x ) = D x x x x  . (3.17) 

By means of an ordering function, it is possible to order the entire set of training 

samples ,  ( 1,..., )j n=jx , with respect to ′x . This corresponds to define a function 
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{ } { }: 1,..., 1,...,n n′ →xr that reorders the indexes of n training points of the feature 

space. This function can be defining recursively as follows: 

{ }( 1) arg min 1,...,k
j

with j n= =′ ′ ∈jx xr f (x )   (3.18) 

{ }( ) arg min

(1), ..., ( 1)  2, ...,

 1,...,

                             j

k k
j

j k for k n

with j n and′= =′ ′

′ ′− =′ ′

∈

≠ ≠

jx x

x x

r f (x ) 

r r
. (3.19) 

In this way, ( )k′rx
x is the point of the training set in the kth position in terms of 

distance from ′x , namely the kth nearest neighbor, and its distance from ′x is written 

as  

( ) ( ) ( )( , )k k k′ ′ ′ ′
′ ′= −jr r rx x x x

f (x ) = D x x x x  (3.20) 

where ( )k′rx
y is its class label. 

Given the above definition, the decision rule of the KNN classifier for binary 

classification problem is defined by 

( )
1

k

j
j ′=

 
′   

 
∑ rx

kNN(x ) = sign y .  (3.21) 

Additionally, there are some basic issues with Euclidian distance which are 

important to make proper decisions:  

1) Scaling of values: Distances should be relative, not absolute. Since each 

numeric attribute (features/bands) may be measured in different units, they 

should be standardized to have a mean value of 0 and variance 1. 

2) Weighting of attributes:  

• Manual weighting: Weights may be suggested by experts. 
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• Automatic weighting: Weights may be computed based on discriminatory 

power or other statistics. 

Therefore, not all attributes are equally important, so some weighting of attributes 

may be appropriate. Taking wd as the weight for feature (attribute/band) d, our 

distance metric becomes: 

( )2

1
( , ) ( ) - ( ) ,  1..

N

d j
d

w x d x d j n
=

′ ′ ′ ′= − = =∑j j j jxf (x ) = D x x x x . (3.22) 

3.2.2 Grow and Learn (GAL) 

The Grow and Learn algorithm (GAL) can be thought as a variation of the KNN 

algorithm [22]. Instead of using all the training samples as nodes (prototypes), a 

subset of the training sample set is used as nodes in the GAL algorithm. In the 

learning phase, the members of the subset which are used as nodes are chosen from 

the whole training set. After the learning phase, some redundant nodes may occur, 

and a pruning procedure is applied to discard redundant nodes. Incremental style 

learning is used in the GAL algorithm [47]. As seen in Figure 3.1, the first layer of 

the network is the input layer. The total number of input units in the input layer is N, 

which is equal to the size of the feature (attribute) vector. In the second layer, the 

prototypes are stored by the algorithm. During the training phase, new nodes can be 

added as new prototypes in the second layer to reach required training accuracy. For 

initialization of the network, randomly selected training samples for each class can 

be chosen and assigned as prototypes in the second layer. When the accuracy of the 

training reaches to a required value, some nodes in the second layer can be discarded 

by a pruning algorithm called forgetting in GAL. The weight vector corresponding to 

the unit e in the second layer is depicted as ew , and the connection between the input 

layer to the unit e in the second layer is depicted as Tec. When x  is the input vector, 

the activation of a unit e in the second layer, Ae  involves the computation of the 

distance between x  and the weight vector of the unit e, ew . 
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Figure 3.1: The GAL Network Structure 

The Euclidian distance used as similarity measure to calculate the activation function 

for unit e and is given by  

( )2

1
( ) ( ) - ( )

N

e
d

x d w d
=

= − = ∑e e eA = D x,w x w . (3.23) 

A winner-take-all type network chooses the closest node called the winner node to 

the input vector, and the label of the winner node is assigned. Mathematical 

description of the decision process can be shown as follows: 

 ( )∀ e ee, A = D x,w   (3.24) 

1,   min ( )
0,  .         

e i i
e

if A A
E

otherwise
=

= 


  (3.25) 
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c e ec
e

C E T= ⋅∑ .  (3.27) 

This structure is a neural network version of the KNN algorithm for k=1 (nearest 

neighbor). Only a part of the training set is used in the GAL algorithm. Selection of 

the subset procedure used in GAL is called learning in GAL, and discarding 

procedure for redundant members from a selected subset is called forgetting in GAL. 

A randomly selected training sample is assigned as a node (prototype, unit) in the 

second layer for each class as an initialization process. Then, samples from the 

training set are randomly selected, if the current network causes wrong decision 

according to rules described above by equations (3.24) thru (3.27), a randomly 

selected training vector assigned as an additional node (unit vector, prototype) in to 

layer 2 [48]. The procedure described above is applied iteratively until reaching a 

desired training accuracy or pre-defined iteration number. Therefore, during the 

learning process, the number of prototypes or nodes (units) in the second layer 

increases. The learning process is an online process. After the learning process, a 

pruning procedure is applied to discard redundant nodes from the second layer. This 

pruning procedure is called forgetting in GAL, and this process is an off-line process. 

For forgetting in GAL, one node is randomly selected from the second layer, and 

applied to the network as an input. Then, the decision of the network is obtained with 

temporarily forgetting this randomly selected node. If the network gives right 

decision, then this forgetting node is discarded permanently from the second layer. 

Otherwise, this node is kept as a necessary node and used in the final decision 

process.  

3.2.3 Self Organizing Map (SOM) 

Research on the cerebral cortex leads to decision makers called self organizing maps 

(SOMs). There are different sensory inputs that are mapped on to corresponding 

areas of the cerebral cortex with huge number of neurons. Therefore, a part of 

cerebral cortex which has a pre-defined task can be simulated as a self organizing 

map. 

Self organizing maps are based on competitive learning; therefore only one output 

neuron is activated by the algorithm at a time and the activated neuron is called the 
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winning neuron. In a self organizing map, the neurons are placed at the nodes of a 

grid which may be one or two dimensional. In this way, a self organizing map 

(SOM) is characterized by the formation of a topographic map. Kohonen’s self 

organizing map is the first such artificial neural network [19]. In Figure 3.2, 

Kohonen’s feature-mapping model is depicted for a rectangular grid which shows the 

topographic characterization of the network as a second layer in the network. A 

group of neurons is located on to a two-dimensional grid in Figure 3.2. This grid 

could be formed with different geometric structure and could be of different 

dimensionality. Mostly, two dimensional grids are used. A group of neurons was 

placed on to a hexagonal grid by Kohonen, motivated by shape similarity with real 

biological structures [49]. In this section, we assume that the grid is a two-

dimensional rectangular grid as seen in Figure 3.2. 

 

Figure 3.2: Kohonen’s Feature-Mapping Model 

Randomly selected training vectors are used as input to the SOM. Let N be the 

dimension of the input vector x  . The synaptic weight vector of each neuron in the 

network depicted as a circle in Figure 3.2 has the same dimension as the input 

training sample. Therefore, all neurons have N dimensional weights as well. The 

synaptic weight vector of neuron i can be written as follows: 

[ ](1) (2)   ( ) ,  ( 1... )i i iw w w N i n= ⋅ ⋅ ⋅ =iw  (3.28) 

x : Input feature vector 
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where n is the total number of neurons placed on the grid. To find a most similar 

neuron in the network with input training sample x , the Euclidian distance can be 

used: 

 ( )2

1
( ) ( ) - ( ) ,    ( 1,..., )

N

j
d

x d w d j n
=

= − = =∑j j jD = D x,w x w . (3.29) 

Let w be the index of the weight vector which corresponds to the best matching 

neuron on the grid called winning neuron: 

{ }arg min jw D=   (3.30) 

Not only winning neuron but also neurons which are topologically neighbor to the 

winning neuron are adapted during the process. Therefore, a neighborhood function 

is needed to describe the area in which the adaptation is applied. In Figure 3.2, 

adaptation is applied on one-neighborhood of the winning neuron in addition to the 

winning neuron itself. One desired specification of the neighborhood function is to 

be a decreasing function when the distance between the winning neuron and the 

neuron which is in the neighborhood of the winning neuron, is increasing. Another 

desired specification for the neighborhood function is being decreasing function 

when the iteration number is increased. A neighborhood function that covers the 

requirements listed above is depicted by 

2 ,  ( 0,1,...)
( )

t
tσ

 
  =
 
 

2
j,w

j,w
d

h (t) = exp -
2

  (3.31) 

where t denotes the iteration number,  j,wd  is the distance between winning neuron 

and neuron j in the grid, and for a two-dimensional grid, 2
j,wd  can be calculated by 

22
,j wd = −j wr r   (3.32) 
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where the discrete vector jr  defines the position of the neuron j, and  wr  defines the 

position of the winning neuron. ( )tσ  is the width of the topological neighborhood 

function j,wh  which makes the neighborhood function a decreasing function by time 

(iteration), and can be chosen as an exponential function given by 

1

,  ( 0,1,...)tσ σ
τ

 
= 

 
0

t(t) = exp -   (3.33) 

where σ0  is the initial value of the σ  and 1τ  is the time constant. Adaptation 

expression during learning can be written as follows: 

( 1) ( ) ( ) ( ) ( ( ))jwt t t h t tη+ = + ⋅ ⋅ −j j jw w x w   (3.34) 

which is applied the neurons in the topological neighborhood of the winning neuron. 

( )tη  is a descending function of time and is called the learning rate. A good choice 

for it is given by 

2
0

/
( ) ,   ( 0,1, 2,...)

t
t e t

τ
η η

−
= =   (3.35) 

where 2τ  is another time constant of the SOM algorithm.  

It is useful to mention some values chosen for the parameters in practical 

implementations. Some important hints are given in Kohonen’s paper for numerical 

examples [19]. It is also useful to separate adaptation process in to two phases. They 

are ordering and convergence phases. At the beginning, randomly chosen training 

samples can be assigned to the neurons which lie on the grid. One important issue in 

initialization is to choose training samples different from each other. Therefore, 

every neuron should take a unique value at the beginning. Another suggestion is to 

assign small values to the neurons as initial values. The ordering phase is the first 

phase of the adaptation process. It can be chosen as many as 1000 iterations or 

possibly more. In conclusion, learning rate and neighborhood function are important 

considerations for satisfactory convergence. The learning rate ( )tη should begin with 

a value close to 0.1, and should decrease during the learning, but should remain 
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above 0.01. To support these considerations related to parameters, the initial values 

of the learning rate and the time constant can be chosen as 0 0.1η =  and 2 1000τ = , 

respectively. The neighborhood function j,wh (t) should cover all neurons which lie 

on the grid, then shrink as the iterations increase. At the end of the ordering phase, 

the neighborhood function should cover only a couple of neurons near the winning 

neuron. The time constant 2τ  can be chosen as  

2 0

1000
logτ σ= .  (3.36) 

 The final statistical accuracy of the mapping depends on the number of iterations 

used in the convergence phase, which should be reasonably large. Therefore, the 

number of iterations should be at least 500 times the number of neurons used in the 

network. Typically 100,000 iterations can be used but for fast learning 10,000 

iterations may be enough. Additionally, learning rate should be maintained on the 

order of 0.01 during the convergence phase, and should not be decreased to 0.  

Cross validation can also be used to specify appropriate parameters. In addition, a 

pattern search algorithm is helpful to find out proper values of parameters.  

3.3 Kernel Methods 

In recent years, kernel methods are widely used in remote sensing applications, 

because of their advantages in high dimensional feature spaces [13,51-54]. Linear 

discriminant functions are well known. Their simple mathematical description makes 

the linear functions attractive but using linear functions in the original feature space 

is often not satisfactory when classification is not linearly separable in the original 

feature space. Kernel methods map the original feature space into a higher 

dimensional feature space, and classification problem in this new high dimensional 

feature space can be linearly separable. This is visualized in Figure 3.3. 
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Figure 3.3: a) Linearly Inseparable Original Feature Space b) Mapped Feature Space 
Via φ (.) is Linearly Separable, c) Using Kernel Functions Makes Discriminant 

Function Nonlinear in the Original Space 

Replacing inner products by Mercer kernels is a major idea of the kernel methods. In 

this way, the linear discriminant functions produce nonlinear decision boundaries in 

the original feature space [50]. In this section, a brief summary of kernel methods 

whose best known type is the support vector machine (SVM) is given. SVMs have 

become very popular classification tools in remote sensing applications, especially 

due to their satisfactory results in high dimensional feature spaces. Classification 

accuracies obtained by SVMs often give the highest results. Therefore, comparing 

classification results between our proposed algorithm, the BFDA, and SVMs is a 

valuable approach [21].  

Assume that X is a set of input feature vectors in a N dimensional feature space, and 

Y is a label set of the corresponding input feature vectors. Classification can be 

considered as a functional transformation described by : Nf X ⊆ ℜ → ℜ .  Assume a 

training input is ∈x X and its possible class labels are { 1, 1}y ∈ − + . This is a binary 

classification problem. x  can be assigned to the positive class if ( ) 0f ≥x , and to the 

negative class otherwise. If the discriminant function ( )f x  is considered as a linear 

function, it can be written by 

(a) (b) 

(c) 

φ



 34

( ) =
1

N
f b w x bi i

i
= ⋅ + = +∑

=
x w x   (3.37) 

where the inner products of vectors w  and x  is depicted as  ⋅w x . Functional 

margin with respect to a hyperplane ( w ,b) for an input ix can be defined as follows: 

( )i iy bγ = ⋅ +iw x   (3.38) 

0iγ >  implies correct classification.  Additionally, when we use normalized linear 

discriminant function b 
  
 

w , 
w w

, then geometric margin can be defined instead of 

functional margin [23]. The physical meaning of the geometric margin of the 

hyperplane is related to the Euclidean distances of the feature vectors from the 

decision boundary in the input space. During learning, if 0iγ ≤ , then the weight 

vector is adapted as in the primal form of the perceptron learning algorithm: 

,  1,...,iy i mη= + =k+1 k iw w x   (3.39) 

where k denotes the iteration, i is the index of the training sample and m is the total 

number of training samples. The dual form of the decision function in (3.40) can be 

derived by substituting (3.39) in (3.37): 

1...
( ) i i

i m
f y bα

=
= ⋅ +∑ ix x x   (3.40) 

The dual form of the discriminant function is important, and is used in kernel 

methods. The main aim of the kernel methods is to partition the nonlinearly 

separable feature space by using linear discriminant functions in a higher 

dimensional feature space. Assume that φ  is a function which maps the original 

input feature space to a higher dimensional feature space where the classification 

problem is probably linearly separable. The discriminant function for the mapped 

space can be written as 
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1...
( ) ) (i i

i m
f y bα φ φ

=

= ⋅ +∑ ix (x x) .  (3.41) 

 The kernel trick is defined by 

( , ) ) (K φ φ= ⋅iix x (x x)   (3.42) 

Therefore ( , )K ix x  is used instead of ) (φ φ⋅i(x x) .  Kernels must verify the Mercer 

condition to be valid kernels. 

3.3.1 Support Vector Machines (SVMs)        

The SVM approach consists of finding the optimal hyperplane that maximizes the 

distance between the closest training sample and the separating hyperplane. This 

distance is given by 2 / w  by using geometric margin. The generalization capability 

of the SVM approach is strictly related to the concept of margin. The larger the 

margin is the higher is the expected generalization [50].  

The optimal hyperplane can be determined as the solution of the following quadratic 

programming problem for a linearly separable case: 

( )

2:  

 :  1,       1, 2,...,i

1minimize  
2

subject to y b i m⋅ + ≥ =i

w

w x
 (3.43) 

 This optimization problem can be converted into the dual problem by using a 

Lagrangian formulation: 

1 1 1

1
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m m m

i i j i j
i i j
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i i i
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2
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α α α

α α
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∑

i jx x
 (3.44) 
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Figure 3.4: Optimal Separating Hyperplane in SVM for a Linearly Nonseparable Case 

The Lagrange multipliers iα ’s can be estimated using quadratic programming (QP) 

techniques [50]. The discriminant function which specifies the optimal hyperplane 

can be written as follows: 

( ) i i
i S

f y bα
∈

= ⋅ +∑ ix x x   (3.45) 

where S is the subset of training samples corresponding to nonzero iα ’s. Nonzero 

Lagrange multipliers are thus indicators of the significant training samples which 

determine the discriminant function. The training samples with nonzero are called 

support vectors. 

The linear SVM can be used in the nonseparable case as well. The classification 

problem in remote sensing is generally nonseparable. Therefore, the concept of 

optimal separating hyperplane has been generalized as the solution that minimizes a 

cost function that support both margin maximization and error minimization. The 

new cost function is defined by 

1

1( , ) ( )
2

m

i
i

f Cξ ξ
=

Ψ = + ∑w x w   (3.46) 

2 / w
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where iξ ’s are called slack variables and C controls the penalty assigned to errors. 

Larger the C value is, the higher is the penalty associated to misclassified samples. 

The minimization of the cost function is subject to the following constraints: 

( ) 1 ,   1,2,...,i iy b i mξ⋅ + ≥ − =iw x   (3.47) 

0,   1, 2,...,i i mξ ≥ =   (3.48) 

In the nonseparable case, there are two types of support vectors: margin support 

vectors that lie on the hyperplane margin and nonmargin support vectors that fall on 

the wrong side of the margin. 

 Using kernel functions makes SVM a nonlinear classifier in the original input 

feature space. This can be achieved by replacing the inner product in the original 

space ⋅i jx x  with the inner product in the transformed space ) ( )φ φ⋅i j(x x  as 

explained at the beginning of the Kernel Methods section. A kernel function that 

satisfies the Mercel’s theorem allows calculation of inner products without 

calculation of mapping function. Using kernel function allows simplifying the 

solution of the dual problem; The optimization formulation can be written as follows: 

( )
1 1 1

1

:  

 :  0 1, 2,...,

m m m

i i j i j
i i j

m

i i i
i

1maximize  y y K
2

subject to y and 0 C,   i m

α α α

α α

= = =

=

− ⋅

= ≤ ≤ =

∑ ∑∑

∑

i jx x
. (3.49) 

Using kernel function instead of inner product in mapping space allows the 

discriminant function in the original input feature space be written as 

( )( ) i i
i S

f y K bα
∈

= ⋅ +∑ ix x x   (3.50) 

Type of kernel function affects the discriminant function. A common example of 

kernel type is the Gaussian radial basis function given by 
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( ) ( )2expK γ⋅ = − −i ix x x x   (3.51) 

where γ  is a parameter inversely proportional the width of the Gaussian kernel. 

Additionally, polynomial function of order p can be used as a kernel function as 

follows: 

( ) [ ]pK 1⋅ = ⋅i ix x x x + .  (3.52) 

In this thesis, Linear SVM and Gaussian Radial Basis Function SVM (RBF-SVM) 

are used as challenging classifiers to compare with our proposed algorithm, the 

BFDA. SVM formulation has been taken from the literature directly without any 

contribution. Proper parameters discovered for linear SVM (C) and RBF-SVM (C,γ ) 

in the experiments would be useful for both multispectral and hyperspectral data 

classification [51]. We applied both ten-fold cross validation technique and pattern 

search technique to find out proper parameters for SVM classifiers.  

The SVM classifier is initially a binary classifier. Therefore some methods are 

needed to extend SVM in a multi-class problem. To achieve this, one simple but 

valuable method is based on combining binary classification results with a proper 

consensual rule such as majority voting. In the literature, there are two techniques 

widely used. They are One-Against-All (OAA) Strategy and One- Against-One 

(OAO) Strategy [13,51]. It is possible to construct hierarchical tree based structures 

as well. In the literature, OAO strategy takes more computational time than OAA 

Strategy that has been reported [13]. Additionally, more classification accuracies are 

usually obtained by using OAA strategy. Therefore OAO strategy is chosen in our 

experiments to get highest results obtained by SVM classifiers.  
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4. BORDER FEATURE DETECTION AND ADAPTATION (BFDA) 

Performance of a classifier is strictly related to training samples in supervised 

learning [52,53]. A desirable classifier is expected to achieve sufficient classification 

accuracy while keeping rare class members correctly classified in the same process. 

Achieving this aim is not a trivial task, especially when the training samples are 

limited in number. Lack of sufficient number of training samples decreases 

generalization performance of a classifier. Especially in remote sensing, collecting 

training samples is a costly and difficult process. Therefore, a limited number of 

training samples is obtained in practice. A heuristic metric is that the number of 

training samples for each class should be at least 10-30 times the number of 

attributes (features/bands) [54,55]. It is true that this may be achieved for 

multispectral data classification. However, for hyperspectral data which has at least 

100-200 bands, sufficient number of training samples can not be collected. Normally, 

when the number of bands used in the classification process increase, precise detailed 

class determination is expected. For high dimensional feature space, when a new 

feature is added to the data, classification error decreases, but at the same time the 

bias of the classification error increases [31]. If the increment of the bias of the 

classification error is more than the reduction in classification error, then the use of 

the additional feature degreases the performance of the decision rule. This 

phenomenon is called the Hughes effect [3], and it may be much more harmful with 

hyperspectral data than multispectral data.  

Additional effort can be focused upon determining efficient samples which are much 

more effective to use for forming the decision boundary [56]. Structure of 

discriminant functions used by classifiers can give some important clues about the 

positions of the effective samples in the feature space. The training samples near the 

decision boundaries can be considered effective samples. The problem would be to 

specify the positions of these samples in the image. In crop mapping applications, 

some samples near to parcel borders (spatial boundary in the image) are assumed to 
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be samples with mixed spectral responses. Samples compromising mixed spectral 

responses can be taken into consideration to determine effective samples. Therefore, 

same classification accuracy can be achieved by using lower number of effective 

samples than samples collected from pure pixels [57]. One of the design 

considerations of the classifier should be benefiting from training samples which are 

near the decision boundaries [50].  

It is obvious that the training stage is very important in supervised learning and 

affects generalization capability of the classification algorithms. In some cases, not 

all training samples are useful; some of them can even be detrimental to 

classification [58]. Therefore some samples are discarded from training set (noisy 

samples) or their intensity values can be fine tuned (noise reduction) by using 

appropriate spatial filtering operations (such as mean filter) to enhance generalization 

capability of the classification algorithm [20]. This kind of special filtering with 

small window size (1x2) is also applied to parcel borders in agricultural areas to find 

appropriate intensity values of the spectral mixture type pixels [57].  

The training process should not be biased. Equal number of training samples should 

be selected for each class if possible. In practice, this may not be possible. In 

addition, for neural network classifiers, the training process can be related to the 

order of the input training samples. To reduce these dependencies for making final 

decision unbiased, a consensual rule [17,18] can be applied to combine results 

obtained from a pool of classifiers. This process can also be combined with cross 

validation to improve generalization capability of the classifier.  

Our motivation in this thesis is to overcome some of these general classification 

problems, by developing a classification algorithm which is directly based on the 

available training data rather than on the underlying statistical data distribution. Our 

proposed algorithm, the BFDA, uses border feature vectors near the decision 

boundaries which are adapted to make a precise partitioning in the feature space by 

using maximum margin principle.  

Many supervised classification techniques have been used for multispectral and 

hyperspectral data classification, such as the maximum-likelihood classification 

(MLC), neural networks (NNs) and support vector machines (SVMs). Practical 
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implementational issues and computational load are additional factors used to 

evaluate classification algorithms.  

Statistical classification algorithms are fast and reliable, but they assume that the data 

has a specific distribution. For real world data, these kinds of assumptions may not 

be sufficiently accurate, especially for low probability classes. For high dimensional 

feature space, first and second order statistics (mean and covariance matrix) could 

not be accurately estimated. The total number of parameters in the covariance matrix 

is equal to the square of the feature size. Therefore, proper estimation of covariance 

matrix is a difficult challenge. To overcome proper parameter estimation problem, 

some valuable methods are introduced in the literature. Covariance matrix 

regularization is one of the methods that can be applied to estimate more accurate 

covariance matrix. In this method, sample and common covariance matrices are 

combined in some way to make proper covariance matrix estimation [4,5]. 

Enhancing statistics by using unlabeled samples iteratively is another method to 

reduce the effects of poor statistics. The expectation maximization (EM) algorithm 

can be used to enhance statistics [7]. In hyperspectral data, neighbor bands are 

usually highly correlated. Methods such as defusing effects of Hughes phenomena in 

hyperspectral data, dimensionality reduction methods for increasing class 

discrimination such as discriminate analysis feature extraction (DAFE) [31], and 

decision boundary feature extraction (DBFE) [8] can be applied. Working in high 

dimensional feature space directly is also problematic for these two methods. 

Therefore, subset feature selection via band grouping such as projection pursuit (PP) 

[9] can be used before DAFE and DBFE. 

Non-parametric classification methods are robust with both multispectral and 

hyperspectral data. Therefore, Hughes effect is less harmful for nonparametric 

methods than parametric ones. The K-nearest neighbor rule is one of the simple and 

efective classification techniques in nonparametric pattern recognition that does not 

need knowledge of distribution of the patterns [40], but it is also sensitive to the 

presence of noise in the data. Neural networks are widely used in the analysis of 

remotely sensed data. There is a variety of network types used in remote sensing 

such as multilayer perceptron or feed forward networks trained with the 

backpropagation algorithm [52]. There are also some additional classification 

schemes to improve classification performance of neural networks to simplify the 
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complex classification problem by accepting or rejecting samples such as parallel, 

self-organizing hierarchical neural networks (PSHNNs) [14]. By using parallel stages 

of neural network modules, hard vectors are rejected to be processed in the 

succeeding stage modules, and this rejection scheme is effective in enhancing 

classification accuracy. Consensual classifiers are related to PSHNNs, and also reach 

high classification accuracies [15-18]. 

In recent years, kernel methods such as support vector machines (SVMs) have 

demonstrated good performance in multispectral and hyperspectral data classification 

[13,51,59]. Some of the drawbacks of SVMs are the necessity of choosing an 

appropriate kernel function and time-intensive optimization. In addition, the 

assumptions made in the presence of samples which are not linearly separable are not 

necessarily optimal. It is also possible to use composite kernels for remote sensing 

image classification [59] to reach higher classification accuracies. 

In this thesis, a new classification algorithm well suited for classification of remote 

sensing images is developed with a new approach to choosing and adapting border 

feature vectors with the training data. This approach is especially effective when the 

information source has a limited amount of data samples, and the distribution of the 

data is not necessarily Gaussian. Training samples closer to class borders are more 

prone to generate misclassification, and therefore are significant feature vectors to be 

used to reduce classification errors. The proposed classification algorithm searches 

for such error-causing training samples in a special way, and adapts them to generate 

border feature vectors to be used as labeled feature vectors for classification [21].  

The BFDA algorithm can be considered in two parts. The first part of the algorithm 

consists of defining initial border feature vectors using class centers and 

misclassified training vectors. With this approach, a manageable number of border 

feature vectors are achieved. The second part of the algorithm is adaptation of border 

feature vectors by using a technique similar to the learning vector quantization 

(LVQ) algorithm [19]. In this adaptation process, the border feature vectors are 

adaptively modified to support proper distances between them and the class centers, 

and to increase the margins between neighboring border features with different class 

labels. The class centers are also adapted during this process. Subsequent 

classification is based on labeled border feature vectors and class centers. With this 
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approach, a proper number of feature vectors for each class is generated by the 

algorithm. The flow graph of the BFDA is depicted in Figure 4.1.  

 

Figure 4.1: Flow Graph of the BFDA Algorithm 

Partitioning feature space by using some selected reference vectors from a training 

set is a well-known approach in pattern recognition [22]. In general, there is an 

optimal number of reference vectors which can be used. More number of reference 

vectors above the optimal number may cause reduction of generalization 

performance. To avoid performance reduction, additional efforts should be taken to 

discard redundant reference vectors. An example of such a procedure is given in the 

grow and learn algorithm (GAL) [48]. 

We propose a new approach to reference vector selection called border feature 

detection. In developing such an approach, the selected reference vectors are required 

to satisfy certain geometric considerations. For example, a major property of SVMs 

is to optimize the margin between the hyperplanes characterizing different classes 

[50]. The training vectors on the hyperplanes are called support vectors. In the 

proposed algorithm, the same type of consideration leads to the positions of the 

reference vectors selected from the training set to be adapted so that they become 

closer to the decision boundaries while the reference vectors from different classes 

are as far away from each other as possible. These adapted reference vectors are 

called border feature vectors.  
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4.1 Border Feature Detection 

The border feature detection algorithm is developed by considering the following 

requirements: 

1. Border feature vectors should be adapted so that they are as close as possible 

to the decision boundaries. 

2. The initial selection procedure is desired to be automatic, with a reasonable 

number of initial border feature vectors. 

3. Every class is represented with an appropriate number of border feature 

vectors to properly represent the class.  

In order to choose the initial border feature vectors, the class centers are used. A 

particular class center is defined as the nearest vector to its class mean. Using class 

center instead of class mean is a precaution for some classes which are spread in a 

concave form in the feature space.  

Assuming a labeled training data set 1 2{( , ), ( , ),     , ( , )}ny y y⋅ ⋅ ⋅1 2 nx x x  where the 

training vectors are , 1,...,N i n∈ =ix , the class labels are {1, 2,     , }iy m∈ ⋅ ⋅ ⋅ , n  is 

the total number of training samples, and m  is the number of classes, the class 

means are calculated as follows: 

1 ,{ | ,    1,     , }
1

ni
y i i mjn ji

= = = ⋅ ⋅ ⋅∑
=

m x xi j j  (4.1) 

where in  is the total number of training samples for class i. The class center ic for 

class i is defined as follows: 
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Let tΒ  be a set of border feature vectors in the feature space. For t=0, 0Β  is the set of 

initial border feature vectors chosen as a combination of some initial border feature 

vector sets iB :  

0
i

0

=
i m≤ ≤

B∪Β   (4.3) 

0B  is chosen as the set of initial class centers. They can be written together with their 

class labels as 

{ }0 1 2 1 2( , ), ( , ),       , ( , ) {( ), ( ),       , ( )}m my y y y y y= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅B 1 2 m 1 2 mc c c b , b , b , .  (4.4) 

The number of members for the set 0B is 0m m= . Additionally,  , 1     i m= ⋅ ⋅ ⋅Bi  is 

chosen as a set of initial border feature vectors detected for class i as discussed next. 

Assume that the total number of detected border feature vectors is im for class i. In 

this assignment procedure, 0 i= ∪R B Bi is called the reference set for class i, and the 

number of members for the reference set is 0 im +m  . At the beginning of the 

detection procedure for every class, (t=0)=   ∅Bi s i s( )=m =0, ( )=mB Ri i and therefore, 

0 0=∪R ( ) = B B Bi it = 0 . During the detection process for class i=q, every member of 

the training samples belonging to class q  is randomly selected only once as an input. 

Assume that ( , )k ky q=x is selected. Then, the Euclidean distances calculated 

between this sample and the current reference set members are given by  

0( , ) ,  1..( )qj m m= − = +j k j k jD x b x b    (4.5) 

The winning border feature vector is chosen by 

{ }arg min jw D=    (4.6) 

If the label of the winning border feature vector wb  is w ky y q≠ = , then ( , )k ky q=x  

is chosen as a new reference vector for class q and added to the reference vector set. 
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This can be written as (t) = (t -1) {( , )}ky q=∪ kxR Ri=q i=q . This procedure is 

somewhat similar to the ART1 algorithm [61]. The procedure for selecting border 

feature vectors is applied with all the classes. 

We define b as the total number of border features, and , 1,...,im i m=  as the number 

of detected border feature vectors for class i, with 0 =  m m being the number of 

classes. Then, the following is true: 

0 1

m m

i i
i i

b m m m
= =

= = +∑ ∑   (4.7) 

As an example, a binary classification problem in a two-dimensional feature space is 

depicted in Figure 4.2. In this figure, the training samples shown with symbols + and 

x are for classes 1 and 2, respectively. The samples detected as initial border feature 

vectors are shown as circles. The initial decision boundary based on only the class 

centers, 0B , is shown as a line. The border feature vectors other than the class centers 

are selected from the misclassified samples, as seen in Figure 4.2.  

 

Figure 4.2: Binary Classification Problem: Class Centers and Selected Initial Border 
Features Depicted as Circles, and the Initial Border Line between Classes when the 

Decision is Made Based on Only Class Centers 
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In Figure 4.3, all the feature vectors, 0Β , are used to partition the feature space. The 

next step is to adapt the border feature vectors so that they more accurately represent 

the class boundaries. Additionally in the adaptation procedure, if any new border 

feature requirement occurs, additional border feature vectors are added to the border 

feature vector set.  

 

Figure 4.3: Partitioning of the Two-Dimensional Feature Space by Using Initial Border 
Feature Vectors Obtained at the end of the Border Feature Selection Procedure 

4.2 Adaptation Procedure 

In the adaptation process, competitive learning principles are applied as follows: The 

initial border feature vectors, 0Β are adaptively modified to support maximum 

distance between the border feature vectors and their means, and to increase the 

margins between neighboring border features with different class labels. The means 

of border feature vectors to be used during adaptation are given by  

1

1 ,{ | ,    1,     , }
1

b

j
ji

y i i m
m =

= = = ⋅ ⋅ ⋅
+ ∑i j jm b b   (4.8) 

{ }0
1 2( , ), ( , ),   ,( , )   my y y= ⋅ ⋅ ⋅M 1 2 mm m m   (4.9) 
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The means of border feature vectors are not taken in to account in the final decision 

process. At the end of the adaptation process, the means of border feature vectors are 

redundant. During the adaptation process, they are used to decide whether new border 

feature vectors should be generated. They are also adapted during learning due to the 

changes of border feature vectors.  

The strategy of adaptation can be explained as follows: a nearest border feature vector 

( )twb  which causes wrong decision should be farther away from the current training 

vector. On the other hand, the nearest border feature vector ( )tlb  with the correct 

class label should be closer to the current training vector. The corresponding 

adaptation process used has some similarity with the LVQ algorithm [19]. The 

adaptation procedure is depicted as a flow graph in Figure 4.4.  

Let jx be one of the training samples with label jy . Assume that ( )w tb  is the nearest 

border feature to jx  with label 
wby .If 

wj by y≠ , then the adaptation is applied as 

follows: 

( 1) ( ) ( ) ( ( ))         jt t t tη+ = − ⋅ −w w wb b x b   (4.10) 

( )( )( 1) ( ) ( ) ( )          
b bw wy j yt m t t t mη+ = ⋅ − ⋅ −

b bw wy y wm m x b  (4.11) 

/
0( ) tt e τη η −=   (4.12) 

During training, after a predefined number of iterations, t′ , the combination of Mt and 
tΒ are used as reference nodes to classify input training vectors. If the nearest node 

to a selected training vector jx with label jy  is one of the means of the border 

feature vectors ( )t t′>wm  with label
wmy and if 

wj my y≠ , then the wrongly classified 

training sample jx  is added as an additional border feature vector: 

 {( , )},   ( )jy t t′= >∪t+1 tΒ Β jx   (4.13) 
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The corresponding mean vector is also adapted as follows: 

( )( 1) ( ) ( ) ( ( ) 1)         
j jy j yt m t t m t+ = ⋅ + +

j jy ym m x  (4.14) 

where ( )
jym t  is the number of border feature vectors belonging to class jy at 

iteration t. Therefore ( 1)
jym t +  is the number of border feature vectors in class 

jy after the addition of the new border feature vector.  

Figure 4.4: Flow Graph of the Adaptation Stage of the BFDA 
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The synthetic data result for the binary classification in the two-dimensional space is 

depicted in Figure 4.5. After the adaptation process, the final border feature vectors 

shown as circles and the final decision boundary as combination of partial lines are 

observed in Figure 4.5.  

 

Figure 4.5: Partitioning of the Two-Dimensional Feature Space by Using the Final 
Border Feature Vectors Obtained at the end of the Adaptation Procedure  

During testing with the testing data set, classification is based on the 1-nearest 

neighbor algorithm with the border feature vectors determined at the end of the 

adaptation procedure. This can be generalized. For example, the K-nearest neighbor 

algorithm can be used. 

4.3 Additional Methods for Accuracy Enhancement in the BFDA 

Additional methods can be used in the BFDA to obtain higher classification 

accuracies.  

4.3.1 Consensus Strategy with Cross Validation 

In supervised learning the training process should be unbiased to reach more accurate 

results in testing. In the BFDA, accuracy is related to the initialization of the border 
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feature vectors and the input ordering of the training samples. These dependencies 

make the classifier a biased decision maker. Consensus strategy can be applied with 

cross validation to reduce these dependencies. The cross validation fold number, f 

should be chosen big enough with a limited number of training samples. The block 

scheme of consensus strategy with k fold cross validation is depicted in Figure 4.6. 

 

Figure 4.6: Block Scheme of Consensus Strategy with K Fold Cross Validation  

There are a variety of consensual rules that can be applied to combine k individual 

results to obtain improved classification. The reliability factor of the classification 

results is depicted as a weight kλ  for the kth BFDA classifier in Figure 4.6. This 

reliability factor can be specified by the consensual rule applied. For majority voting 

(MV) rule, weights can be equally chosen, and the majority label is taken as the final 

label. It is also possible to use non-equal voting structure (Qualified Majority Voting, 

QMV) based on training accuracies. By using cross validation as a part of the 

consensual strategy, part of the training samples are used for cross validation, and 

reliability factors can be assigned more precisely based on validation. Once the 

reliability factors are determined, consensual classification results can be obtained by 

applying a maximum rule with reliability factors. Additionally, obtaining optimal 
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reliability factors (weights, kλ ) can be done by least squares analysis [17]. Suppose 

the training results of single BFDA classifiers are represented by 

11 21 k1

12 22 k2

13 23 k3
1 2 k

1n 2n kn

y y .  .  . y
y y .  .  . y
y y y.  .  .
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iY  is column vector containing the output of a single classifier. Y is a nxk matrix 

where n is the number of validation vectors which are chosen from the original 

training set for cross validation. k is the number of the BFDA classifiers to be 

combined. Then, the optimal weights can be found by solving the following 

equation: 
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The optimal weights are obtained by minimizing the square error:  

minopt λ
λ Yλ - L 2=     (4.17) 

optλ  is calculated as follows by using the pseudo inverse of Y:  

= T -1 T
optλ (Y Y) Y L   (4.18) 
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4.3.2  Refinement of Training Samples  

Noisy training samples cause performance reduction of classification algorithms. 

Refinement of training samples can be used to improve classification. For the BFDA, 

selection of noisy training samples as initial values of border feature vectors should 

be avoided. To achieve this, the BFDA is run once, and wrongly decided training 

samples are specified. At the second run of the BFDA, the border feature detection 

procedure is applied on all the training samples except the wrongly decided training 

samples at the previous run. In the adaptation stage, the whole training set can be 

used. 

4.3.3 Spatial Feature Extraction 

It is also desirable to combine decisions of both spectral and spatial features together 

even if they are extracted from the same data source. Both spectral and spatial 

features can be used in order to reach high classification accuracies. As spatial 

features, mean and standard deviation of the neighborhood pixels are extracted for a 

pixel which is in the middle of a predefined window. The window size could be 

varied between 3x3 and 9x9 pixels. All extracted spectral and spatial features are 

classified individually via BFDA and is based on qualified majority voting (QMV).  
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5. EXPERIMENTS 

Reliable data sets well-known in the literature are more convenient for performance 

analysis of the proposed algorithm BFDA than data sets which are not tested before. 

Two well known data sets which are widely encountered in the literature were used 

in the experiments to support validity of the results obtained [62,65]. Additionally, 

one synthetic data set was used to demonstrate the classification mechanism of the 

proposed BFDA and to expose differences with some other popular classification 

methods. The synthetic data is in a two-dimensional feature space, which makes it 

possible to visually display the decision boundaries and to help to understand the 

classification behaviour of the classifiers. One additional data set from Turkey [67] 

was also used to make proper comparison, and to show the robustness of the 

proposed algorithm. As a consequence, four different data sets, one of them having 

six different combinations of input vectors and corresponding classes, were used in 

the experiments to demonstrate case-independent results obtained by the BFDA. We 

were able to show that the overall classification accuracies obtained with the BFDA 

are satisfactory. Additionally, we were able to present rare class members more 

precisely than other conventional classification methods, especially in high 

dimensional feature spaces. Kappa statistics [34] was used to show the reliability of 

the results in the experiments. Another goal of the experiments was to show the 

Hughes effect [3] is less harmful with the BFDA than other conventional statistical 

methods. This meant that the performance of the BFDA with a limited number of 

training samples is generally higher than conventional classifiers. 

5.1 Data Sets Used in the Experiments   

Four different data sets were used in the experiments. Their names assigned and brief 

introduction about data sets are listed below. 
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1. Synthetic Data Set: It involves a binary classification problem in two-

dimensional feature space. There are 200 randomly selected training samples 

that are used to partition the feature space. This data set is helpful to 

demonstrate decision boundaries obtained in the feature space.  

2. AVIRIS Data set: The AVIRIS image taken from the northwest Indiana’s 

Pine site in June 1992 [62] was used in the experiments. This is a well known 

test image and has been often used for validating hyperspectral image 

classification techniques [63,64]. We derived 6 different data sets from the 

AVIRIS data set by using combinations of different numbers of classes and 

feature sizes. Number of classes and feature vector sizes also influence the 

complexity of the classification. Therefore, this data set also demonstrates the 

classification performance as related to the complexity of classification. 

Detailed comparisons were made by using the AVIRIS data set in this thesis.  

3. Satimage Data set: This data set is a part of the Landsat MSS data and 

contains six different classes. 4435 training samples and 2000 testing samples 

were obtained from statlog web site with their labels [65]. 4 spectral bands 

were used with one neighboring feature extraction method to extract features. 

Therefore 4x9=36 features were assigned to a pixel.  

4. Karacabey Data set: This Landsat 7 ETM+ image was taken from northwest 

Turkey, Karacabey region in Bursa in July 2000 [66]. Six visible infrared 

bands (Band 1-5 & 7) having 30 m resolution were used with spectral 

features. Previous works were used as auxiliary information for extraction of 

the ground reference data [67].  

5.2 Experiments 

Four different experiments were designed. The names of the experiments are the 

same as the names of the data sets described above.  
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5.2.1 Experiment 1: Synthetic Data 

The reference feature space with randomly selected training samples is depicted in 

Figure 5.1. This is a linearly non-separable binary classification problem. The feature 

space contains 250x250 points. 200 samples were randomly selected from each class. 

The experiments were performed with the Linear-SVM, the RBF-SVM, the BFDA 

and the Consensual-BFDA. In the literature, results obtained by Linear-SVM and 

RBF-SVM were very satisfactory [13,57]. Therefore, in the experiment, these 

classifiers were selected for reliable comparison. This experiment was designed 

understand mainly to the partitioning mechanisms of the classifiers used.  

 

Figure 5.1: Reference Feature Space with Randomly Selected Training Samples 

The BFDA result is depicted in Figure 5.2 with the final border feature vectors. In 

this figure the border feature vectors depicted as circles and final decision boundary 

consists of a combination of partial linear boundaries. The locations of the border 

feature vectors were obtained with the adaptation procedure. The number of border 

feature vectors is specified by the algorithm automatically and is also related to the 

problem complexity. In this example, the numbers of border feature vectors assigned 

to each class were 2 and 3, respectively. During the adaptation procedure, if the 

requirement of the border feature vector occurs, then a new border feature vector 

from the training set can be added to the network. Excessive number of border 

feature vectors reduces the adaptation procedure performance. Then, the 

generalization capability diminishes. The accuracy obtained from the BFDA is 
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related to the initially chosen border feature vectors, and the input orders of the 

training samples. Therefore, these dependencies make the algorithm biased. To 

reduce these dependencies, consensual strategy with cross validation can be applied. 

  

Figure 5.2: The BFDA Result 

In Figure 5.3 the consensual-BFDA result is depicted. Using consensual strategy 

with cross validation makes the partial decision boundaries more nonlinear.  

 

Figure 5.3: The Consensual-BFDA Result 

In recent years, kernel methods such as support vector machines are widely used to 

improve classification accuracy. Maximum margin principle is applied by the SVM 

classifiers [50]. In this experiment, two different types of SVM classifier were used 
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to compare with the BFDA and the consensual-BFDA results. The linear SVM and 

RBF-SVM results are depicted in Figures 5.4 and 5.5, respectively. One linear 

decision boundary occurs for Linear-SVM as shown in . 

  

Figure 5.4: Linear SVM Result [C=2] 

In this experiment, kernel parameters C for linear SVM, C and γ for RBF-SVM were 

obtained by using a pattern search algorithm to reach higher classification accuracy. 

  

Figure 5.5: RBF-SVM Result [C=2, γ=32] 

Results are shown in Table 5.1. As we can see from the table, the results for the 

BFDA, the consensual-BFDA and the RBF-SVM are almost the same. Lower 

classification accuracy is obtained by the linear SVM. We got the highest 
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classification accuracy with the consensual-BFDA. Thus, the best matching decision 

boundary was achieved with the consensual-BFDA. The BFDA produces a 

satisfactory simulation of decision boundary by using three linear partial boundaries. 

In the table, the classification accuracy as well as the kappa statistics (κ) are shown. 

Kappa statistics is a good indicator, showing not only classification accuracy but also 

reliability of the decisions made for all the classes [34].  

Table 5.1: Classification Accuracies for the Synthetic Data Set  

FIGURES METHOD ACCURACY % Κ 
 FIGURE 5.2 BFDA 98.40 0.965 

FIGURE 5.3 CONSENSUAL-BFDA 98.98 0.979 
 FIGURE 5.4  LINEER SVM [C=2] 89.54 0.787 

 FIGURE 5.5 RBF-SVM [C=2, γ=32] 98.13 0.962 

5.2.2 Experiment 2: AVIRIS Data  

In this thesis, major performance analysis and comparisons were made by using the 

AVIRIS data. The AVIRIS data is a hyperspectral data and often used in the literature 

to demonstrate performance of the classifiers [62,64]. The AVIRIS data used in the 

experiment is shown for a color composite of the bands 50, 27 and 17 in Figure 5.6.  

 

Figure 5.6: AVIRIS Data for the Bands 50, 27 and 17 
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We used the whole scene consisting of the full 145 x 145 pixels with three different 

class combinations, and two different spectral band combinations. The training 

sample sets with 17 classes (pixels with class labels of mixture type were considered 

for classification), 16 classes (whole class types apart from background) and 9 

classes (more significant classes from the statistical viewpoint) were generated with 

different combinations of 9 (to illustrate multispectral data classification 

performance) and 190 spectral bands (30 channels discarded from the original 220 

spectral channels because of atmospheric problems). Table 5.2 shows the number of 

training and testing samples for 17 and 16 class sets which were used in the 

experiments. Data sets 1 and 2 contain background class which is of mixture type. 

Therefore, these two classification experiments involved more complex classification 

problems than the other data sets. The large number of classes to be discriminated 

also increases the complexity of classification. There is also a trade-off between 

complexity and feature size, especially for classes which has a limited number of 

training samples (alfalfa, oats, etc). In such situations, lower classification 

performance with rare class members is expected, especially in a high dimensional 

feature space (data set 2) even if the all classification accuracy is increased. 

Table 5.2: Numbers of Training and Testing Samples Used in Experiments  

 17-CLASS DATA SET-1/2              
(9 / 190 FEATURES) 

16-CLASS DATA SET 3/4                
(9/190 FEATURES) 

LABEL CLASS TRAINIG TESTING CLASS TRAINING TESTING 
BACKGROUND ω1 719 2627 - - - 

ALFALFA ω2 16 39 ω1 16 39 
CORN-NOTILL ω3 201 720 ω2 201 720 

CORN-MIN ω4 157 498 ω3 157 498 
CORN ω5 63 117 ω4 63 117 

GRASS/PASTURE ω6 112 265 ω5 112 265 
GRASS/TREES ω7 207 409 ω6 207 409 

GRASS/PASTURE MOVED ω8 12 24 ω7 12 24 
HAY-WINDOWED ω9 196 374 ω8 196 374 

OATS ω10 14 16 ω9 14 16 
SOYBEANS-NOTILL ω11 255 519 ω10 255 519 

SOYBEANS-MIN ω12 545 1302 ω11 545 1302 
SOYBEANS-CLEAN ω13 128 310 ω12 128 310 

WHEAT ω14 102 132 ω13 102 132 
WOODS ω15 546 870 ω14 546 870 

BLDG-GRASS-TREE ω16 109 229 ω15 109 229 
STONE STEEL TOWERS ω17 21 44 ω16 21 44 

TOTAL NUMBER OF SAMPLES 3403 8495  2684 5868 
WHOLE SCENE 21065  10366 
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The background class which is of mixture type was discarded for data sets 3 and 4. 

Comparison made between data sets 1-2 and data sets 3-4 demonstrates the 

robustness of classification algorithms on data which contains mixture type. 

Numbers of training and testing samples in data sets 5 and 6 is depicted in Table 5.3.  

Table 5.3: Numbers of Training and Testing Samples Used in the Experiments  

   9-CLASS DATA SET-5/6                         
(9 / 190 FEATURES) 

LABEL CLASS TRAINIG TESTING 
CORN-NOTILL ω1 288 288 

CORN-MIN ω2 200 200 
GRASS/PASTURE ω3 197 197 

GRASS/TREES ω4 200 200 
HAY-WINDOWED ω5 209 209 

SOYBEANS-NOTILL ω6 193 193 
SOYBEANS-MIN ω7 493 493 

SOYBEANS-CLEAN ω8 199 199 
WOODS ω9 258 258 

 
TOTAL 

NUMBER OF 
SAMPLES 

2237 5809 

 WHOLE SCENE 9345 

Statistical meaningful classes were chosen account for the data sets 5 and 6. 

Therefore, these data sets are more convenient for the conventional statistical 

classifiers. The data set 5 has sufficient number of training samples. Therefore, 

conventional statistical classifiers are expected to yield maximum accuracy for the 

data set 5. Additionally, data sets 5 and 6 are convenient to demonstrate the Hughes 

effects with the conventional statistical classifiers. 

Average training, testing accuracies and kappa statistics are given in Table 5.4 for 

Data sets 1-6. The performance of the BFDA was compared with other classification 

algorithms including support vector machines (SVMs) [13,57] and several statistical 

classification techniques such as maximum likelihood, Fisher linear likelihood, 

correlation and matched filtering algorithms [63]. The data analysis software called 

Multispec [62] was used to perform the four statistical classification methods. Linear 

SVM and SVM with a radial basis kernel function were implemented in MATLAB 

using SVMlight [68], and its MATLAB interface by Schwaighofer [69]. A one-

against-one multiclassification scheme was adopted in the experiments to compare 

SVMs performance to BFDA’s. The parameters of the RBF-SVM (gamma and C) 

and Linear-SVM (C) methods could be selected by a pattern search algorithm with 
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cross validation. Only spectral features were taken into account in the comparison of 

BFDA with other classification techniques.  

Table 5.4: Average Training ,Testing Accuracies and Kappa Statistics 
TRAINING TESTING DATA 

SET METHOD ACCURACY 
% Κ ACCURACY 

% Κ 

MAXIMUM LIKELIHOOD 84.83 0.82 67.56 0.63 
FISHER  LINEAR LIKELIHOOD 63.7 0.59 47.3 0.42 

CORRELATION 48.4 0.43 37.2 0.31 
MATCHED FILTER 32.8 0.24 36.1 0.29 

KNN [K=5] 89.01 0.87 68.06 0.63 
LINEAR SVM [C=40] 82.40 0.81 69.01 0.64 

RBF SVM [γ=1, C=20] 86.10 0.83 71.73 0.67 
BFDA 94.05 0.89 70.82 0.66 

1 

CONSENSUAL BFDA 96.41 0.95 73.36 0.69 
KNN [K=5] 90.71 0.89 70.01 0.65 

LINEAR SVM [C=10] 83.84 0.81 74.00 0.73 
RBF SVM [γ=0.1, C=10] 87.74 0.86 77.64 0.74 

BFDA 99.46 0.99 76.40 0.73 
2 

CONSENSUAL BFDA 100 1 78.71 0.75 
LINEAR SVM [C=40] 90.50 0.89 75.07 0.72 

RBF SVM [γ=1, C=40] 95.64 0.95 80.16 0.77 
BFDA 99.32 0.99 80.31 0.77 

3 

CONSENSUAL BFDA 100 1 82.42 0.79 
LINEAR SVM [C=1] 94.85 0.94 79.43 0.77 

RBF SVM [γ=1, C=20] 98.21 0.97 83.34 0.81 
BFDA 99.21 0.99 83.01 0.80 

4 

CONSENSUAL BFDA 100 1 85.30 0.82 
MAXIMUM LIKELIHOOD 86.99 0.85 77.07 0.74 

KNN [K=5] 93.69 0.92 83.04 0.80 
LINEAR SVM [C=20] 83.24 0.81 78.65 0.74 

RBF SVM [γ=1, C=20] 90.93 0.89 84.75 0.81 
BFDA 99.15 0.99 84.98 0.82 

5 

CONSENSUAL BFDA 99.68 0.99 87.98 0.86 
MAXIMUM LIKELIHOOD 100 1 67.00 0.57 

FISHER  LINEAR LIKELIHOOD 91.3 0.90 81.8 0.78 
CORRELATION 45.4 0.39 47.7 0.40 

MATCHED FILTER 78.1 0.75 72.6 0.67 
KNN [K=5] 95.08 0.94 84.31 0.81 

LINEAR SVM [C=10] 96.24 0.95 88.36 0.86 
RBF SVM [γ=1, C=10] 100 1 91.39 0.89 

BFDA  100 1 88.58 0.86 

6 

CONSENSUAL BFDA 100 1 90.18 0.88 

Parameters choosen for the BFDA is also important concern. Two parameters needs 

to be assigned. These parameters are the learning rate η and the time constantτ. For 

fast convergence, η=0.1 and τ=1000 were found satisfactory. Faster training process 

is also suitable for less complex classification problems. For complex classification 

problem, fine tuning can be necessary, and η=0.2 and τ=6750 can be chosen. 

Parameter selection for the BFDA has also some similarity with the SOM [19]. Cross 
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validation can also be used for specifying an appropriate learning rate and time 

constant. Additionally, during the training process, validation set can be used to 

avoid overfitting. Then, early stopping can be applied.  

Determination of the proper parameters are also an important concern for SVM 

classifiers. The accuracy obtained by SVM is dependent on the magnitude of the 

parameters C and γ.The large value of C and γ cause poor generalization of the 

classifier due to the overfitting of training data. SVM is a binary classifier and One-

Against-One (OAO) strategy was used to enhance SVM classifier for multi-class 

classification in this thesis. For One-against-one strategy, C and γ should be obtained 

for every binary class combination. We assigned common parameters for each binary 

SVM classifier by using pattern search with cross validation [71] in this thesis. It is 

possible to use a multi class SVM classifier by reducing the classification to a single 

optimization problem. This approach may also require fewer support vectors than a 

multi-class classification based on combined use of many binary SVMs [72,73]. 

For the KNN classifier, the choice of K is related to the generalization performance 

of the classifier. Choosing a small number of K causes reduction of generalization of 

the KNN classifier. It is also obvious that, K=1 is most sensitive for noisy samples. 

Therefore K=5 was chosen in the experiments.  

With all the data sets we obtained satisfactory results with the proposed algorithm the 

BFDA, and commonly the highest accuracy with the Consensual-BFDA. The RBF-

SVM results were also very good.  

The Hughes effect is less harmful for the BFDA than the maximum likelihood 

classifier (MLC) as expected. As we can see from Table 5.4, the accuracy obtained 

by the MLC is almost 10 % less for data set 6 than data set 5. Additionally, for data 

set 6, Kappa statistics is almost 10 % less than the testing accuracy. As a 

consequence, the results obtained with the MLC are not highly reliable in high 

dimensional feature space. With the BFDA, it is obvious that accuracy obtained in a 

high dimensional feature space is also very satisfactory. We also observe in Table 

5.5, when the number of features increases, the overall classification accuracy 

increases. However, the accuracy of rare class members decreases. This reduction 

was observed with rare class members as related to the Hughes effect with the BFDA 
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algorithm. As a result a lower dimensional feature space is more convenient for 

detection of rare class members. Another important result is observed in Table 5.4 

with the Fisher Linear Likelihood classifier. The Fisher Linear likelihood classifier 

uses class centers and the common covariance matrix for parameters. The accuracy 

obtained with the Fisher Linear Likelihood Classifier for data set 6 was the best in 

the statistical classifier category. The reason of this relatively high classification 

accuracy obtained by the Fisher Linear Likelihood classifier as compared to other 

statistical classifiers such as MLC is related to proper parameter estimation. Use of 

common covariance matrix instead of sample covariance matrix supports this result. 

In a high dimensional feature space, much more number of training samples is 

needed to make proper parameter estimation especially for covariance matrix 

estimation.  

Table 5.5: Class by Class Accuracies Obtained by the Proposed Algorithm BFDA 

ACCURICIES % 

DATA SETS 
LABEL 

1 2 3 4 5 6 
BACKGROUND 58.39 68.51 - - - - 

ALFALFA 87.17 80.48 89.74 84.61 -  
CORN-NOTILL 62.08 69.08 68.05 73.19 72.10 78.95 

CORN-MIN 53.01 52.40 50.20 52.61 88.39 86.16 
CORN 69.23 70.23 70.94 67.52 -  

GRASS/PASTURE 63.39 66.28 65.66 66.41 96.08 97.15 
GRASS/TREES 94.13 92.73 97.79 94.62 94.57 95.70 

GRASS/PASTURE MOVED 91.66 84.33 91.66 91.66 -  
HAY-WINDOWED 97.05 99.66 96.25 99.46 98.87 99.15 

OATS 100 96.75 87.5 100 -  
SOYBEANS-NOTILL 77.26 79.91 74.18 78.42 81.07 80.90 

SOYBEANS-MIN 84.33 86.63 84.17 88.40 77.57 85.82 
SOYBEANS-CLEAN 76.77 73.90 73.87 81.29 89.86 91.95 

WHEAT 97.72 99.48 99.24 100 -  
WOODS 75.17 89.39 95.28 97.35 98.86 99.11 

BLDG-GRASS-TREE 61.57 64.88 75.10 72.05 -  
STONE STEEL TOWERS 93.18 91.90 97.72 97.72 -  

OVERALL 70.82 76.40 80.31 83.01 84.98 88.58 

The ground reference data image for 17 classes [63] used in the experiment is 

depicted in Figure 5.7.  
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Figure 5.7: The Ground Truth of the AVIRIS Data Set for 17 Classes  

The thematic map of the BFDA result for data set 1 is depicted in Figure 5.8. This 

data set has mixture type class (background), and this makes classification complex. 

Results obtained with spectral features are presented here, but it is obvious that using 

spatial features can improve classification accuracy [18,20]. 

 

Figure 5.8: The Thematic Map of the BFDA Result for Data Set 1  
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The thematic map of the consensual BFDA result for data set 2 is depicted in Figure 

5.9. Data set 2 has a mixture type class in a high dimensional feature space. There are 

also rare classes in data set 2. As we observe in Figure 5.9, the result obtained in the 

high dimensional feature space representing complex classification problem is 

satisfactory. 

 

Figure 5.9: The Thematic Map Obtained with the Consensual BFDA and Data Set 2  

 

Figure 5.10: The Thematic Map Obtained with the BFDA and Data Set 3  
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Data sets 3 and 4 consist of pure classes. Therefore, this experiment is less complex 

than the experiments data sets 1 and 2. However, data sets 3 and 4 contain rare class 

members. A detailed class discrimination investigation (number of classes is 16) 

were made in these experiments. The thematic maps obtained with the BFDA the 

consensual BFDA are depicted in Figures 5.10 and 5.11, respectively. The BFDA 

satisfies high classification accuracy while performing well with the rare class 

members, as observed in Table 5.5.  

 

Figure 5.11: The Thematic Map Obtained with the Consensual BFDA and Data Set 4 

Data sets 5 and 6 contain statistically meaningful classes. Especially for data set 5, 

the number of training samples is convenient for statistical classifies to make proper 

classification. The same number of training samples in a high dimensional feature 

space also characterizes data set 6. When the feature vector size increases, 

requirement of more number of training samples occurs with the MLC. The thematic 

map observed with the BFDA and consensual BFDA result depicted in Figures 5.12 

and 5.13 for data sets 5 and 6 respectively. The BFDA satisfies high classification 

accuracy but we expected to reach a higher classification accuracy than we obtained 

for statistically meaningful data sets 5 and 6. The reason may be overfitting or 

detecting excessive number of border feature vectors. In this case, during the 

adaptation process, a redundant border feature reduction procedure can be applied to 
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have higher classification accuracy than what is obtained with the original BFDA 

algorithm.  

 

Figure 5.12: The Thematic Map Obtained with the BFDA for Data Set 5 

 

Figure 5.13: The Thematic Map Obtained with the Consensual BFDA for Data Set 6 

Thus, the number of border features detected by the algorithm affects the 

generalization performance of the BFDA algorithm. The average numbers of border 

feature vectors detected by the algorithm are depicted in Table 5.6. As we observe in 

the table, the number of detected border feature vectors is related to the complexity 
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of the problem. Therefore, less complex problems need less number of border feature 

vectors to avoid overfitting.  

Table 5.6: Average Number of Border Feature Vectors Obtained with the BFDA 

DATA SETS 1 2 3 4 5 6 
AVERAGE NUMBER OF 

BORDER FEATURES  VECTORS 
189 184 143 136 93 95 

5.2.3 Experiment 3: Satimage Data 

Satimage data was obtained from the statlog website [65]. This website serves 

variety of data sets which are for various types of applications. Satimage data set is a 

Landsat MSS imagery. One frame of the Landsat MSS imagery consists of four 

digital images of the same scene in different spectral bands. Two of these are in the 

visible region (corresponding approximately to green and red regions of the visible 

spectrum), and two are in the (near) infra-red. Each pixel is a 8-bit binary word, with 

0 corresponding to black and 255 to white. The spatial resolution of a pixel is about 

80m x 80m. The data set is a sub-area of a scene, consisting of 82 x 100 pixels. Each 

line of data corresponds to a 3x3 square neighborhood of pixels completely 

contained within the 82x100 sub-area. The total numbers of training and testing 

samples used in the experiment are depicted in Table 5.7. 

Table 5.7: Numbers of Training and Testing Samples Used in the Satimage Data Set 

   6-CLASS SATIMAGE DATA SET                   
(36 FEATURES PER PIXEL) 

LABEL CLASS TRAINIG TESTING 
RED SOIL ω1 1072 461 

COTTON CROP  ω2 479 224 
GREY SOIL  ω3 961 397 

DAMP GREY SOIL  ω4 415 200 
SOIL WITH VEGETATION STUBBLE  ω5 470 211 

VERY DAMP GREY SOIL ω6 1038 470 

 TOTAL NUMBER OF 
SAMPLES 4435 2000 

Highest accuracy in previous works with this data set was obtained with the SVM 

[72]. In this experiment, the RBF-SVM classifier and the MLC were used to make 

comparisons with the BFDA. Additionally, the results obtained with the binary 

version of the BFDA algorithm using one-against-one (OAO) binary classification 

strategy with the SVM and a neural network with backpropagation learning also 

using OAO strategy are provided. The aim of this experiment is to demonstrate the 
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robustness of the results obtained by the BFDA, and illustrate the performance of the 

BFDA on additional types of remotely sensed data. 

Table 5.8: Classification Results for the Satimage Data Set 

METHOD TRAINING 
ACCURACY % 

TESTING  
ACCURACY % 

MAXIMUM LIKELIHOOD 89.69 85.69 
NN - BACKPROPAGATION 90.48 87.80 
RBF SVM [C=6,γ=1.5] 98.92 91.75 

BFDA 98.42 89.90 
BINARY BFDA 97.65 89.45 

CONSENSUAL BFDA 99.47 91.95 

The classification accuracy of the RBF-SVM (C=16, γ=1) classifier with one-against 

-one strategy was reported 91.3 % for satimage testing data set in reference [72]. In 

comparison, the results obtained with the BFDA are satisfactory for the satimage 

data set. Matlab’ s Neural Network toolbox was used to obtain the result of the 

neural network with backpropagation learning [74]. 20 neurons in one hidden layer 

was chosen with learning rate 0.01 as network parameters. Activation function was 

also chosen as a sigmoid function in this experiment.  

5.2.4 Experiment 4: Karacabey Data 

Karacabey Data set is a part of the Landsat 7 ETM+ image acquired in July 2000 

[66]. Six visible infrared bands (Band 1-5 & 7) having 30 m resolution were used for 

analysis. The area is located in Karacabey, Bursa which is in the North-West of 

Turkey. A sub-image which consists of 150x200 pixels was used in the experiment. 

A color composite of the sub-image is depicted in Figure 5.14. 

The ground truth data extracted from previous work which is related to parcel-based 

crop mapping was used in this experiment [67] The previous work covers a wider 

agricultural area than the part of the scene used in the experiment. Registration of the 

ground truth map to sub-spatial scenes was made by using Envi [75]. The ground 

truth map used in our experiment is depicted in Figure 5.15.  
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Figure 5.14: Color Composite Image of Karacabey Data Set for Bands 4, 3 and 2 

9 classes were utilized while background and parcel boundaries were discarded from 

evaluation. The description of the classes and the numbers of class samples used for 

training, testing and whole scene are depicted in Table 5.9.  

 

Figure 5.15: The Ground Truth of the Karacabey Data Set with 9 Classes 

Our goal was to demonstrate whether the BFDA is robust and performs well, in 

general. In this experiment, we compare the BFDA with the SVMs classifiers and the 



 72

MLC. In Table 5.10 training and testing accuracy as well as accuracy obtained with 

the whole scene is depicted.  

Table 5.9: Number of Samples for Training Testing and Whole Scene   

   9-CLASS SATIMAGE DATA SET                       
(6 FEATURES PER PIXEL) 

LABEL CLASS TRAINIG TESTING WHOLE 
SCENE 

BARE SOIL ω1 10 10 66 
WATERMELON  ω2 10 10 27 

PEPPER ω3 60 60 2110 
PASTURE  ω4 60 60 508 
CLOVER  ω5 60 60 442 

SUGAR BEET ω6 60 60 300 
TOMATO ω7 60 60 2694 
RESIDU ω8 60 60 6846 

CORN ω9 60 60 4752 

 
TOTAL 

NUMBER OF 
SAMPLES 

440 440 17737 

As we observe in Table 5.10, the result obtained with the BFDA is satisfactory in 

comparison to other results. Overall classification accuracies are less than 70 %. 

Using only one multispectral data is not sufficient for discriminating detailed class 

types. In the previous work, three different scenes acquired in approximately one 

month period were used for classification. Therefore, multitemporal data 

classification can be used to improve classification. In this experiment, we obtained 

highest accuracy with the SVM classifier and the Consensual BFDA in the 

experiment they give almost equal accuracy. The thematic map of the BFDA result 

for the Karacabey data set is depicted in Figure 5.16. 

Table 5.10: Classification Results for the Karacabey Data Set 

METHOD 
ACCURACY 

OF TRAINING 
% 

ACCURACY 
OF TESTING  

% 

ACCURACY 
OF WHOLE 
SCENE % 

MAXIMUM LIKELIHOOD 73.86 65.90 63.80 
LINEER SVM [C=10] 82.30 67.90 65.80 

RBF SVM [C=1,γ=0.1] 85.20 70.24 69.20 
BFDA 95.40 68.80 67.41 

CONSENSUAL BFDA 99.20 70.02 68.80 
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Figure 5.16: The Thematic Map Obtained with the BFDA and the Karacabey Data Set  
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6. SUMMARY, CONCLUSIONS AND FUTURE WORK 

In recent years, the sensor technology has progressed rapidly, and the remote sensing 

community has gathered huge amount of data collected from the earth surface. Using 

data obtained with different kinds of sensors (such as multispectral, hyperspectral, 

radar and lidar) is a big challenge to produce value added products. Different kinds 

of sensors have different imaging mechanisms and the collected data has specific 

characteristics depending on the sensor types. From the view point of the end user, it 

is also challenging to develop appropriate algorithm to be used with different types 

of remote sensing data. Thus the development of robust pattern recognition methods 

especially suited to each type of data is necessary, especially for the automatic target 

recognition (ATR) task.  

6.1 Summary and Conclusions 

In this thesis, we developed a new algorithm for classification of remote sensing 

images. The method first makes use of border feature vectors as part of an adaptation 

process aimed at better describing the classes, and then uses nearest neighbor 

algorithm with the final border feature vectors for classification. In chapter 3, 

principle classifiers are discussed. We especially focused on SVM, SOM, KNN and 

GAL algorithms, which are important for comparison with the proposed algorithm 

BFDA. In chapter 4, the BFDA is discussed in detail. The concept of border feature 

vectors proposed in this thesis has some similarity with support vectors in SVM 

classifiers. However, the procedure of the initialization of border feature vectors, and 

subsequent adaptation process to find final border feature vectors is completely 

different. The competitive learning principle is applied during the adaptation 

procedure. In this sense, the adaptation algorithm used has some similarity with the 

LVQ algorithm. Two rules, 1) a border feature vector which causes wrong decision 

should be far away from the input training sample, and 2) the nearest border feature 

vector which has the same label with the input training sample should be closer to the 
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input training sample are applied during adaptation. The reason for this adaptation 

first strategy is to satisfy the maximum margin principle adaptively. The BFDA 

algorithm first chooses a subset of the training samples as initial border feature 

vectors by using the proposed border feature detection procedure. The proposed 

border feature detection technique is novel.  

It can be useful to mention some classification algorithms which have some 

similarity with the BFDA to make a proper comparison. The GAL algorithm 

randomly chooses a subset of training samples to satisfy predefined training accuracy 

until reaching predefined iteration number without any geometric consideration. The 

KNN algorithm uses the whole training set. This makes the obtained results very 

sensitive to noise. Another drawback of the KNN is processing time which is very 

high for classification of large data sets. In the BFDA algorithm, a small number of 

border feature vectors are chosen especially in comparison to the number of 

reference vectors used in KNN algorithm and the number of support vectors used in 

the SVM classifiers. As a result, the processing time for testing is approximately 

95% less with the BFDA than with the KNN algorithm. Using the BFDA, we 

obtained satisfactory results with both multispectral and hyperspectal data sets as 

discussed in chapter 5. The BFDA is a nonparametric classifier, robust against the 

Hughes effect, and well-suited for remote sensing applications. 

6.2 Future Work 

The BFDA has been applied so far full feature space. Initially band grouping can be 

applied to produce lower dimensional feature spaces. Then, the BFDA applied in the 

lower dimensional feature spaces can be combined by using consensual rule. This 

procedure may be called band grouping and fusion. Additionally, appropriate safe 

rejection schemes [14] can be applied to the BFDA to reach higher classification 

accuracies. In spatial space, there are also variety of applications suitable for 

processing with the BFDA, such as target detection (bridge detection in SAR 

images), and contour specification (detection of sea-land contours). In conclusion, 

the BFDA can be applied in various appropriate applications in remote sensing, 

image processing, and other classification applications. 
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