

ĐSTANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY

Master Thesis by

Göker Burak ÇETĐN, Eng.

Department : Geodesy & Photogrammetry Engineering

Programme: Geomatics Engineering

SEPTEMBER 2007

ITU-CSCRS GROUND RECEIVING STATION AUTOMATION &
RENOVATION

ISTANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY

Master Thesis by

Göker Burak ÇETĐN, Eng.

 501031614

Date of submission : 4 September 2007

Date of defence examination: 3 September 2007

Supervisor (Chairman) : Prof. Dr. Filiz SUNAR

Members of the Examining Committee : Prof. Dr. Derya MAKTAV (ITU)

 Assist. Prof. Dr. Berk ÜSTÜNDAĞ (ITU)

SEPTEMBER 2007

ITU-CSCRS GROUND RECEIVING STATION AUTOMATION

& RENOVATION

ĐSTANBUL TEKN ĐK ÜNĐVERSĐTESĐ ���� FEN BĐLĐMLER Đ ENSTĐTÜSÜ

ĐTÜ-UHUZAM UYDU YER ĐSTASYONU OTOMASYON
VE RENOVASYONU

EYLÜL 2007

Tez Danışmanı : Prof. Dr. Filiz SUNAR

Diğer Jüri Üyeleri : Prof. Dr. Derya MAKTAV (Đ.T.Ü.)

 Yard. Doç. Dr. Berk ÜSTÜNDAĞ (Đ.T.Ü.)

Master Tezi

Müh. Göker Burak ÇET ĐN

 501031614

Tezin Enstitüye Verildiği Tarih : 4 Eylül 2007

Tezi Savunulduğu Tarih : 3 Eylül 2007

FOREWORD

I have tried to solidate and provide this documentation related to satellite ground
receiving station in a more methodical way after four years of labor and experience gained
as a system administrator at ITU-CSCRS Ground Station. From the day I begin working at
the ground station I observed some of the obstacles in the system. Now after 4 years with
the aging hardware and software systems, it is now more obvious that the ground station
needs a renovation project to carry on its operation. Therefore without constant renovation
a ground station, could have never achieve enough service quality, because of the constant
increase of demands of the remote sensing data market at the end user side.

I believe, with that document, I'm providing a start point to renovate the ground
receiving station that should be undertaken in the future. I'm very grateful to Prof. Filiz
SUNAR for her support and encouragements for this thesis since this was a part of my job
being responsible.

I hope in the future the role of such Ground Station gains ground in Turkey and
notified so it deserves its rightful place among the first 10 ground stations around the
world, attracting many valuable scientists either from Turkey and abroad.

I'm thankful to all my colleagues working and in a qualified sense bearing with me
from the beginning.

06, 2007 Göker Burak ÇETİN

iii

CONTENTS

ABBREVIATIONS ... vi
FIGURE LIST ... viii
ÖZET ... ix
SUMMARY.. x
1. INTRODUCTION .. 1
2. WHAT IS GROUND STATION? ... 1
3. ITU - CSCRS & GROUND RECEIVING STATION (SAGRES) 2
4. NECESSITY FOR THE RENOVATION OF CSCRS GROUND

STATION... 3
5. STATION HARDWARE ... 4
 5.1. Control Systems ... 4
 5.1.1. Current Status ... 4
 5.1.2. Proposed Implementation ... 5
 5.1.2.1. Control Servers ... 6
 5.1.2.2. Other Control Systems .. 7
 5.2. Recording Systems .. 7
 5.2.1. Current Status ... 7
 5.2.2. Proposed Implementation ... 8
 5.3. Processing Systems .. 12
 5.3.1. Current Status ... 12
 5.3.2. Proposed Implementation ... 14
 5.4. Data Storage & Archiving Systems ... 17
 5.4.1. Current Status ... 18
 5.4.2. Proposed Implementation ... 18
 5.5. Demodulator Systems .. 20
 5.5.1. Current Status ... 20
 5.5.2. Proposed Implementation ... 21

iv

6. STATION SOFTWARE .. 22
 6.1. Database Systems .. 22
 6.1.1. Current Status .. 22
 6.1.2. Proposed Implementation .. 22
 6.2. System Softwares .. 24
 6.3. Application Softwares ... 25
 6.3.1. Programming Languages ... 25
 6.3.2. CSCRS Management Middleware .. 26
 6.3.3. Interface Definition Languages ... 29
7. RESULTS & RECOMMENDATIONS ... 32
REFERENCES.. 33
CURRICULUM VITAE .. 35

v

ABBREVIATIONS

4GL : Fourth-Generation Programming Language
ACU : Antenna Control Unit
AMD : American Microelectronic Devices
API : Application Programming Interface
CGI : Common Gateway Interface
CPU : Central Processing Unit
CSS : Cascading Stylesheets
DART : Datron Archive Reversible Tape Format
DDB : Distribution Data Buffer
DHTML : Dynamic Hypertext Markup Language
DIS : Direct Ingestion System
DLT : Digital Linear Tape
DOM : Document Object Model
ECL : Emitter Coupled Logic
FIFO : First In First Out
GIS : Geographic Information System
GML : Geography Markup Language
GPS : Global Positioning System
GSC : Ground Station Controller
GUI : Graphical User Interface
HDD : Hard Drive Disk
HPC : High Performance Computing
ISCSI : Internet SCSI
LTO : Linear Tape-Open
MWD : Moving Window Display
NCI : Network Command Interface
OGC : Open Geospatial Consortium
OLAP : On Line Analytical Processing
PDB : Processed Data Buffer
RAID : Redundant Array of Inexpensive Disks
RISC : Reduced Instruction Set Computer
SAN : Storage Area Network
SATA : Serial Advanced Technology Attachment
SCSI : Small Computer System Interface
SFS : Simple Features Specification
SGI : Silicon Graphics International
SQL : Structured Query Language
TLE : Two Line Element
UDB : Unprocessed Data Buffer
UDP : User Datagram Protocol
URL : Uniform Resource Locator
WMS : Web Map Server

vi

WFS : Web Feature Server
XML : Extensible Markup Language
XSL : XML Styling Language
XUL : XML User Interface Markup Language

vii

FIGURE LIST

Figure 1 : Principle Segments of Remote Sensing .. 1
Figure 2 : ITU-CSCRS ground station coverage ... 2
Figure 3 : Ground Station Resource Distribution .. 4
Figure 4 : Ground Station Controller Software Interface 5
Figure 5 : Node Status Diagram .. 6
Figure 6 : Single Capture Topology .. 10
Figure 7 : Failsafe Capture Topology .. 11
Figure 8 : Dual Capture Topology .. 11
Figure 9 : Current Processing System ... 13
Figure 10 : SGI CCNuma Architecture ... 14
Figure 11 : AMD x86_64 Architecture ... 15
Figure 12 : New Four Node Processing Server Setup 16
Figure 13 : Product Levels Planned in ITU-CSCRS Ground Station 17
Figure 14 : ITU-CSCRS Unique Volume Management And Partitions 18
Figure 15 : ISCSI Disk Arrays Employed in ITU-CSCRS Ground Station 19
Figure 16 : New Tape Unit Employed on ITU-CSCRS Ground Station 20
Figure 17 : One of the demodulator systems of ITU-CSCRS Ground Station 21
Figure 18 : In-Snec Software Based Demodulator System 21
Figure 19 : Proposed Ground Station Topology ... 27
Figure 20 : CSCRS Object Based Management Console 28
Figure 21 : Web Based Pass Schedule Interface ... 28
Figure 22 : Some Application Interfaces ... 30

viii

ITU-UHUZAM UYDU YER İSTASYONU RENOVASYON VE

OTOMASYONU

ÖZET

Bu çalışmada, İTÜ bünyesinde bulunan uzaktan algılama merkezine ait uydu yer
istasyonunun, sistem altyapısında ve gündelik operasyonlarında karşılaşılan yada
karşılaşılması muhtemel olan sorunlarına değinilmiş, bu sorunların
çözümlenebilmesi için uygulanan yada uygulanacak olan çözüm yöntemlerinden
bahsedilmiştir. Sistem, donanım ve yazılım açısından derinlemesine incelenerek,
problem görülen noktalarda olası çözümlerin geliştirilmesine çalışılmıştır. Çalışma,
istasyon bünyesinde acil olarak ihtiyaç duyulan noktalarda sistem otomasyonunun
optimal derecede uygulanabilmesi için gerekli yazılım altyapısı tasarımını
içermektedir. Çalışma, uydu yer istasyonuna ilişkin geliştirilmeye çalışılan donanım
ve yazılım politikalarının bir sonucu olup, istasyona ilişkin teknik problemlerin
kurumsal anlamda ele alınması konusunda atılan bir adımdır. Çalışma aynı zamanda,
yazılımsal ve donanımsal olarak istasyon bileşenlerinin güncel teknolojik
standartlara getirilmesi amacı ile başlatılan renovasyon projesinin bir belgelemesi
niteliğini de taşımaktadır. Çalışma kapsamında geliştirilen yazılımların, gelecekte
uydu yer istasyonunda oluşturulmak istenen tam otomasyon sistemine bir altlık
olması hedeflenmiştir. Çalışma içerisinde bahsi geçen tüm yazılım bileşenleri bu
bağlamda ele alınmış ve tasarlanmıştır. Tasarlanan sistemde, tam otomasyon
işlevselliği yanında artı bir değer olarak istasyonun veri, donanım, yazılım ve insan
kaynakları hakkında otomatik olarak istatistik veri toplanması da hedeflenmiştir.
Renovasyon projesinin nihai hedeflerinden biri olarak, toplanan yüksek doğruluklu
bu istatistik verinin ilgili karar merciilerine ulaştırılması hedeflenmektedir. Bu
hedefe ulaşmak için tasarlanan yazılım altyapısı da çalışma içerisinde anlatılmıştır.

ix

ITU-CSCRS GROUND RECEIVING STATION AUTOMATION &

RENOVATION

SUMMARY

In this study, applied or possible solutions for daily encountered operational or
infrastructural problems in ITU-CSCRS Ground Station was investigated. The
system hardware and software was thoroughly investigated, and possible solutions
were proposed in the problematic areas. A software infrastructure design for an
optimal operation of ground station automation in emergent points was discussed.
This study is a part of the result of a going on process of designating institutional
policy for station hardware and software system and therefore this should be seen as
a step through an institutional approach for handling the technical problems of the
station. At the same time, this study can be seen as a documentation effort for the
renovation project which had been started to catch up-to-date technological standards
for the station hardware and software systems. From the very beginning, the
softwares developed were engineered to provide a robust foundation for the full
automated ground station operations. With the system designed, it was aimed to
collect statistical information about the data, software, hardware, and human
resources automatically as a surplus value. As a definitive goal of the renovation
project, providing this accurate information to the decision makers was aimed. The
software system designed for that purpose was also mentioned in this study.

x

1. Introduction

Turkey's one of the biggest satellite ground stations has been established in

ITU Maslak campus in 1997. As the system administrator of that facility since 2003

I've been involved exclusively in the ground station automation process needed for

future operations, and all the possible solutions for daily encountered problems in a

typical ground station. Therefore in this study, four years of gained experience in the

fields of station hardware, software, and human resources were explained in detail.

2. What is Ground Station?

An earth station or ground station is the surface-based (terrestrial) end of a

communications link to an object in outer space [1]. Where the communications link

is used mainly to carry telemetry or must follow a satellite not in geostationary orbit,

the earth station is often referred to as a tracking station. In Remote sensing it is one

of the three essential segment of the system to receive, archive, and process the

telemetry data from the remote sensing satellites [fig.1].

Figure 1. Principle segments of remote sensing.

1

3. ITU - CSCRS & Ground Receiving Station (SAGRES)

Istanbul Technical University - Center for Satellite Communications and

Remote Sensing (ITU-CSCRS) is one of the forecoming institutions around the

world with a highly capable ground receiving station unit. It is the first center

established in Turkey to conduct application oriented projects in remote sensing and

satellite communications technologies and serve national/international civil/military

companies in their research, development, and educational activities. After

successful design, assemble and test stages of the receiving station through the years

1996-2000, ITU-CSCRS was established for operational working under the name

ITU-SAGRES (SAtellite Ground REceiving Station) in 2000 as a wide range

communications and remote sensing integrated system. In the second half of the year

2003, it was restructured into ITU-CSCRS. ITU-CSCRS has the capabilities of

acquiring images from remote sensing satellites, processing data, and sending the

products via satellite links to national and international users. The station can receive

images of the Earth's surface within a radius of 3000 km., which covers from Sweden

to Sudan, and England to Kazakhstan [fig.2].

Figure 2. ITU-CSCRS ground station coverage

2

In the ground station, the data acquired from SPOT-2, SPOT-4, RADARSAT-1,

ERS-2, NOAA, and METEOSAT satellites are archived, formatted and processed

with the high technology. These successful studies were certificated with Operational

and Product Certificate by the Radarsat Inc., Canada in November 2002.

4. Necessity for the Renovation of CSCRS Ground Station

Although ITU-CSCRS is one of the 30 ground stations around the world

successfully established and operated for many years, it is evitable that some

developments need to be done to respond increasing end user demands in the satellite

market either in the academical community or in the private sector. Within the years,

because of that increase in demands from the market and the aging hardware and

software systems used in the ground station, it was taken into account that the

renovation work has to be done in a 18 months of period in the software and

hardware fields. Within this project, it was determined some basic principles without

tempering current operation and modular design of the ground station which will be

able to support current and future satellite missions flawlessly and create an

automation system can provide a complete API for the whole ground station

operations. This was also a necessity, for being able to flexibly adapt the station

operations to the changes in satellite operations in years or project based setups.

Those principles can be numbered such as supporting up to 1 Gbps transfer

and recording speeds either in hardware and software. Supporting full automation

from the downlinking of telemetry data to data distribution to end users, contains

fully automated routines for scheduling reception, archiving telemetry data, product

processing, data quality assurance, and semi-automated routines. Such automation

can reduce the operator load as much as possible for daily ground station operations

such as reporting, cloud coverage assessment, etc. For those reasons it was

investigated current station hardware and software systems thoroughly and with the

help of know-how gained, some sub systems mainly on the software side were

developed and/or being developed.

3

It can be said, this was the key issue in ground station automation, balancing the

work load between software and hardware and minimizing the human efforts [fig.3].

Figure 3. Ground station hardware, software, and human resource distribution

5. Station Hardware

One of the main bottlenecks for reaching such a goal is the some units of the

current hardware setup which strictly tied to the integrator company determined basic

operational structure of the hardware that are not allowing to much intervention to its

inner workings. The current hardware system can be subgrouped as processing units,

telemetry recording units, control systems, Demodulators/Decryptors/Receivers, and

data storage systems.

5.1 Control Systems

5.1.1 Current Status

One part of current control system is implemented as a standalone software

running on a IRIX processing system and supported by a central oracle database

backend. That software is responsible for the automation scheduling and data

processing tasks that can be managed by simple interface written by integrator

company. The other part is is the part of the ground station controller software which

is mainly responsible for tracking system automation and scheduling via its own

database backend and is also responsible for status of the nodes of the ground station

network [fig.4]. That status determination is carried via two different protocols. One

of them is conducted via IEEE488 interface which contains demodulators, receivers,

signal generators, and serial switch devices. The other one conducted via standard

Ethernet interface for GSC (ground station controller), and recording units which all

contain a piece of software running as a daemon on Solaris operating system, is

responsible for answering specific query codes implemented as plain text protocol

works over UDP on port 3069 called NCI interface.

Tracking system control is also on that software, commanding another unit

named ACU (Antenna Control Unit) and positioned in the shelter unit of the ground

4

station. This is a specialized computer system responsible for calculating angle data

from the TLE information sent by GSC, and GPS location and time information,

needed for antenna operation during satellite tracking.

Figure 4. Ground station controller software interface

5.1.2 Proposed Implementation

It is proposed that, specifically fragmented health control mechanism should

be centralized and made be specialized for easy maintainability, easy deployment of

new network nodes, and redundancy requirements needed for its critical role of being

responsible for ground station hardware health and ground station operations in

general. In the current status it is not very convenient to deploy and replicate all

control mechanism on an another computer system. For that reason a control

mechanism proposed consists of a standard PC hardware running Linux operating

system and a special software developed by ITU-CSCRS R&D department which is

capable of understanding both IEEE 488 commands, NCI commands, and a simple

control mechanism being developed for the new nodes to be deployed. That program

is designed to be able to handle all those protocols. The integration with general

station middleware is also planned for the scripting needs.

5

5.1.2.1 Control Servers

The computer systems, which will be responsible for the status of the station

network nodes called control servers, will handle node status in 5 different phases as

shown in figure 5 [2].

Figure 5. Node status diagram

The “Online” phase which is also called “ONL” means the node is OK and is

ready for operation. The status code for the said node in that case is “200”. The

“Offline Failed” phase is also called “OFF”. In that case the hardware of the node is

not working or control mechanism allocated to the node is not responding. In any

case the node is not operational. Status code is determined as “400” for that phase. In

the “Offline Test” phase some checks are done by control server and if tests give

positive results then status code of the said node is elevated to “200”. In other case it

is necessary that the node is rebooted. In that phase the status code for the node is

elevated to “401”. After the node is rebooted and, if the post boot checks give

positive results, it is checked whether it is critical to elevate the node online for

station operation in the current scenerio. Then “ONT” phase is bypassed and its

status code is elevated to “200”. In the other case its status code is elevated to “202”

and post boot checks are conducted. If the node is not critical in the current

6

operational scenario for the ground station, its status code elevated to “201” which is

called “Online Suspend” or “ONS”. When the node needed in the operation, its status

code is elevated to “200” again.

5.1.2.2 Other Control Systems

Even it is in its early development stages, in the future, it is also planned

replacing ACU protocol interface, which is normally part of the GSC application, as

a separate tool that can be integrated into new automation system for antenna control.

5.2 Recording Systems

5.2.1 Current Status

In the current status, recording mechanism consists of three independent and

differently configured recording units that employ software system which running

atop Solaris operating system and specifically designed for that job. The recording

units are called DIS (Direct Ingestion System) and consists of 5 pieces of software

which runs as daemons on the computer. First and the most important one is called

ingest daemon which is responsible for recording captured telemetry data to the

HDD arrays found on the units. Those HDD units are working together in the RAID0

mode providing necessary speed for recording. That RAID volume is formatted with

a very specialized file system which provides near RAW HDD access performance.

That file system is not recognized by OS but the special software written for it. That

file system is called SFX file system and has some specially designed utilities for the

maintainance of it. The second daemon employed on those machines is responsible

for task scheduling and called scheduler. Every task on the DIS machines consists of

6 phases. The status of the task phases and the status of the task together are

managed and maintained by this daemon. Task phases can be stopped, paused, or

restarted except the recording phase. The third daemon is called “NCI” or Network

Command Interface and provides a mechanism for remote control of the other

daemons of the DIS systems. Status checks of the DIS systems, and automation tasks

are handled through that daemon. The fourth one is called “PLAY” or “REPLAY”

daemon. It is used for testing or demonstration purposes. That daemon is responsible

for sending recorded data back to the ingest card employed on the DIS systems, and

allowing to re-playing it. Fifth daemon is called “MWD” or Moving Window

7

Display. It is responsible for capturing data passed through the ingest card and

sending its spatially reduced form through the Ethernet network. Some clients are

written for that daemon that are capable of interpreting the data and used for

visualization purposes of the captured data in realtime in a spatially reduced way. In

the current situation that system can just handle SPOT data in the system. All that 5

daemons are working through the standard Ethernet network on the top of UDP

protocol. DIS systems also employ internal database system which is responsible for

storing many details of the acquired and/or archived data. Archive is the 5th phase of

every acquisition. In the system, every DIS unit employs its own tape recorder.

Those tape recorders are working with DLT4[12] (Digital Linear Tape Generation

4) tapes and every DLT tape can store up to 40 Gbytes data or 10-20 acquisitions

depending on its duration. DLT tapes are written in a specialized tape format called

DART which is also developed by integrator firm. The internal database system

holds the data structure on the DLT tapes. One of the main obstacles in that setup is 3

different forms of data recorded on 3 different recording units. That leads 3 different

versions of database information about one acquisition and its data structure. It is

seen that the current setup might have leaded some inconsistencies between the

database system and DLTs. If some severe exception occurs due to the instability of

the software architecture then this kind of inconsistencies can be observed. Since

there is no real link between data inside DLTs and the data in the database system, or

no method provided for the consistency checking, that kind of exceptions may lead

data corruption and even data losses which are unacceptable in a ground station. As

of now none of the DIS units is capable of archiving 1Gbps recording speed to

support future satellite missions. The fastest one achieves 320 Mbps which is

designed for Quickbird data acquisitions. On the other hand, data aging capabilities

of the current DIS setup is not flexible enough to allow to manage data aging

procedure in an automatic and transparent manner. Shortly, current DIS setup doesn't

have that concept at all but just archiving data.

5.2.2 Proposed Implementation

After determining current system drawbacks of recording units, and the

problems with the tape sub-system, it is thought to be logical to migrate archiving

subsystem to a standalone and independent architecture. It was planned to achieve

8

1Gbps recording speed to support future satellite missions. Recording units are one

of the most important key components with the demodulator systems, determining

recording speed of the ground stations. Since upgrading that speed to 3 fold of the

current setup is not an easy task, it is needed to modify the DIS units. First current

disk array subsystem must be modified to be able to countervail the speed of the data

stream needed to record data without any significant loss. To sustain such recording

speed it is needed to support 1.6Gbps recording speed on the HDD side [2]. With a

simple arithmetic, this is achievable with 3 SATA2 (Serial ATA generation 2) HDD

units bundling them in a RAID0 setup. Since that RAID setup is known as insecure,

it is proposed to mirror that setup on to other RAID0 array resulting RAID01 setup

that consists of 6 disk units. Considering current SATA disk prices, the overall cost

of operating DIS systems are even decreasing regarding to current SCSI setup. That

disk arrays should also have an appropriate filesystem which should allow

performant write access. Considering the current disk sizes, nowadays the size of the

file system would be nearly 1.5 TB, which is not a big problem for modern

filesystems but the read/write speed is more important. It is also important to achieve

data aging in an automatic manner which is not possible with current setup. For that

reason filesystem should be recognized by OS natively, in a transparent manner

without any need of extra utilities. It was decided to use Reiser4 FS for DIS setup

because of its capabilities [3]. One of the main problems with this filesystem was

having no formal support on the Solaris OS directly. So it was decided to use

external disk arrays with ISCSI interface which enables to be reached from many

systems at the same time if a shared filesystem stack add-on for reiser4 is in setup.

Since the Solaris OS has also very fine ISCSI initiator, reaching the ISCSI disk units

wouldn't be a problem for that setup. However, stacking all those filesystems onto

each other may lead performance bottlenecks, and besides, due to ISCSI being a slow

protocol with its nature, the read/write performance may be decreased. But it is easy

to balance that bottleneck with the current disk speeds and multiplying disk count in

the RAID array.

Another important problem with the DIS units is the ingestion card used

inside them. This card is designed and made manufactured by integrator firm and

currently it is not in production. Since the software parts of the DIS units are strictly

9

bonded to that card and written specifically for it, it is not easy task to use any other

software or ingest card. So it was decided to keep that setup on DIS units which is

not causing too much problem in achieving 1Gbps recording speed. But it is needed

to multiply card number on each unit by three since every ingest card can handle up

to 200 Mbps transfer speed.

By considering the recording system topology, three different types can be

mentioned. Namely single-capture, failsafe-capture, and dual capture systems[2].

The single-capture approach illustrated in figure 6 is the simplest, least

expensive, but the least reliable one to implement. With this approach, there is a

single system to receive the data and write it to storage. If this system fails, the input

data is lost and continues to be lost until the system is repaired.

Figure 6. Single capture topology

The failsafe capture approach is a more reliable (but more expensive)

approach. With this approach, there are two data-capture systems; one system is

online and the other system is in standby mode. There are three degrees of standby:

cold, warm, and hot. Cold standby means that the system is not involved in the data-

capture function at all, but simply has the necessary capabilities and interfaces to

perform the data capture function in case of the online system fail. This approach is

illustrated in figure 7. If the online system fails, the processes running in the standby

system are terminated and the data-capture process is started (either manually or

automatically by the control server). However, during the time required to load the

10

data-capture function and make it operational on the standby system, all input data is

lost. The advantage of this approach is that the system is back online prior to repair

of the first system. Another disadvantage, however, is the cost of the second system.

This cost is not totally allocated to data capture, since the system can be used for

other processing functions when both systems are operational.

Figure 7. Failsafe capture topology

The dual-capture approach eliminates all single points of failure. Satellite

sensor data is received over dual analog to digital hardware, sent to separate capture

systems, and then written to separate RAIDs via separate SAN switches using

different RAID controllers. Both data-capture systems receive, process, and store the

data using completely independent hardware. One of the redundant data files created

in the UDB is deleted by the control server upon completion of status processing

from each of the data-capture systems. Undoubtedly this is the most reliable data-

capture approach, but it is also the most costly one [fig.8].

Figure 8. Dual capture topology

11

With all the consideration respect to given information above, it was decided

to use failsafe topology in ITU-CSCRS ground station. With the proposed setup, now

data recording speed may reach up to 600Mbps which is far from desired results,

however gaining automatic data aging capabilities, transparent filesystem access,

data snapshotting and mirroring, and volume management flexibility are positive

features to have with that setup making other things a bit easier to achieve.

5.3 Processing Systems

In general, processing systems are taking their role after data has been

recorded and archived or exposed to data aging routines. ITU-CSCRS ground station

has two different processing sub systems, namely one for SPOT-2 and SPOT-4

satellites, and the other one for RADARSAT-1 satellite. Both systems have some

automation issues inherently.

5.3.1 Current Status

Current processing system consists of 2 node 3 CPU SGI Origin 200 system

which can process a RADARSAT-1 wide beam mode product in a 45 minutes

period. Considering near realtime demands of the end users, it can be thought that it

is not feasible nowadays. The system consists of 3 MIPS R12000 CPU which has

RISC architecture and very suitable for scientific processing in spite of their

relatively lower execution speed at 240MHz, they are still achieving relatively good

results because of their 64 bit native architecture. The nodes are connected to each

other with a high speed interconnect called “craylink” or “numalink” generation 2

operates at 800Mbps [fig.9].

12

Figure 9. Current processing system

System runs IRIX operating system version 6.5 which has the roots in UNIX

System 5 family of operating systems. Although, it was a solid foundation before,

that OS is not in active development anymore.

Radarsat processor, used in ITU-CSCRS ground station, runs over IRIX

operating system. Although, the vendor called Kongsberg[9] is still providing

software update support for the software for very high prices, the software is one of

the products on the market that can produce certified RADARSAT-1 end user

products up to level 2.

The main part of that software runs as a daemon on the computer and a GUI

based client which is very restrictive in the name of automation, is used to control

that daemon. On the other hand, SPOT processor which can handle both SPOT-2

and SPOT-4 data has very specific problems. Although it has an commandline

interface that allows to handle in automation tasks easily, however some stability

problems have occurred within the years, depending mainly on the changes detected

within the SPOT-4 data itself. Especially due to the dramatic increase of the bad

detectors in the 4th band of the SPOT-4, it became difficult to maintain product

quality with the current software. Another main problem with that software is,

neither developer nor integrator firms does not support the software anymore. Like

other stations do, the detector problems were solved by convenient enhancement

algorithms developed by CSCRS R&D unit.

13

5.3.2 Proposed Implementation

The SGI systems have very unique capabilities such as scalability, parallel

execution, and shared memory management, which are key foundations of super

computing [fig.10], however, that specific hardware is not very easy to reach and

maintain in Turkey due to its limited market which leads to technical support

problems.

Figure 10. SGI CCNuma architecture

Considering SGI's current financial status on the market, and technical

decisions that they taken through the Intel based systems and Linux based OS, it was

decided to use X86_64 AMD architecture [fig.11]. Those processors were chosen

because of their similarities with the processor architectures which are used in

enterprise HPC Cluster setups like ones provided by companies such IBM and SUN.

Those processors contain 2 cores in one packet which makes true multitasking is

possible. The cores have native 64 bit architecture which is based on x86 architecture

from Intel. Being 64 bit, processor enables reaching 40-bit physical address, and 48-

bit virtual address spaces which basically means supporting more than 4 Gigabytes

of RAM. Cores communicate with each other at CPU's native speed and have a 12.8

Gbps memory bandwidth. The processors have an internal memory controller and

special interconnection similar to SGI architecture with each other called

HypertransportTM that can handle data streams up to 8Gbps. The power efficiency of

the product should also be taken into consideration.

14

Figure 11. AMD x86_64 architecture

Although, there is no significant problems with the hardware side of the

processing system, main problems occur at the software side, not allowing a flexible

way for automation. With a detailed analysis and consideration of the market

inclination to the Linux based custom OSes, it was decided to change IRIX platform

altogether to the Linux based one.

For that purpose it was investigated three main opensource projects namely

OpenSSI[4], openMosix[5], and Kerrighed[6] which all claim of providing “Single

System Image” cluster software lives atop Linux kernel as a patch.

OpenSSI is the most robust system and covers nearly all SSI features that a

user could expect. However the performance exhibited by this system is rather below

the one offered by the other systems. The deputation mechanism used by

openMosix[20] and the remote resource access mechanism used by OpenSSI lead to

dramatic extra overheads for IPC after a process migration. openMosix, which is

probably the most popular system, offers a good compromise between performance

and covered SSI features. However, the openMosix stability is not as good as the one

15

offered by OpenSSI. Up to now, Kerrighed is still a research prototype, less robust

than other 2 systems. Kerrighed does not support hot node addition and removal.

Moreover a node crash often leads to a complete cluster crash. However, Kerrighed

offers the best performance, specially regarding IPC and file system. Kerrighed is

also the only system offering highly customizable features, efficient cluster wide

memory sharing, process checkpointing and able to migrate and schedule threads[7].

Because all of the features provided, it was decided to examine the

capabilities of the Kerrighed and OpenSSI in more detail. Since the Kerrighed started

to give good results for the stations's needs, it was initiated to built 4 node cluster

system with the computers which every one of them employs 2 dualcore AMD

X86_64 processors with the help of Kerrighed clusterware [fig.12].

Figure 12. New four node processing server setup

It should be also noted that virtualization software must be also another

concern for providing more efficient way to handle processing system consolidation

and resource management. This is still in development, however, providing a

virtualization software which can be run atop clusterware, seems a necessity for the

processing needs of ITU-CSCRS ground station.

Because the current satellite data processor softwares did not work on top of

Linux OS, it became a necessity to change the current processor softwares.

Therefore, it was decided to purchase a custom RADARSAT processor software that

16

can run on top of Linux OS, developed by a Russian company named as Scanex [8].

However the integration issue of the Spot processor still remains to be solved, i.e.

this is still an ongoing process to achieve the best solution with the current setup.

It is also important from the end user point of view to provide product levels

higher than the product levels produced by data processor natively. For that reason

some custom made processor softwares are in production for the automated product

generation and quality validation. For this purpose, it is planned to provide products

in seven main levels at ITU-CSCRS ground station as shown in figure 13.

Figure 13. Output product levels (available/planned) in ITU-CSCRS ground station

5.4 Data Storage & Archiving Systems

As mentioned previously, the current setup hasn't flexibility to age data in any

manner, i.e. transparent access to data either by automation system and operator

staff. However, with the proposed system changes, it will become possible to

maintain, reach, and query data, for either data quality issues or at higher levels for

end user needs.

17

5.4.1 Current Status

In the current setup all the storage mechanism focused on DIS systems. Since,

they have many drawbacks, there is no easy way to handle data in a transparent way.

To record and archive data, current DIS setups employ their internal recording

storage volume and their own tape recording sub system. Storage volume consists of

a 3 SCSI disk DAS array. After any data record has been done, it is directly recorded

to the tapes and after a month of period it has to be fetched from tape units since

there will be not enough place on those disk units to hold one month satellite

telemetry data.

Tape recording units employ maximum of 7 tape units at a time. However,

this is not so feasible for large scale projects and batch processing needs. Tape units

are storing data in a format called DART provided by integrator firm. Although it is

a comprehensive, reversible, extensible, and media independent[10], this tape format

is hardly possible to read without custom made software. DART, employs an

approach storing data in a multi-partitioned manner, together with their metadata

between data segments. Such approach has been proven to be hard to maintain and

not easy to integrate with “on the shelf” tape automation softwares.

5.4.2 Proposed Implementation

The data aging concept is a key foundation to provide easy and transparent

access to both stored raw telemetry and processed data. To provide this foundation,

to increase the storage volume provided by the system is necessary. After increasing

“scratch area” volume on DIS units, it is also necessary to provide a space for

telemetry data which they can reside for a proper period of time called “UDB” or

Unprocessed Data Buffer as the 2nd phase of the process [fig.14]. After a proper

period of time passed or as a requirement of the FIFO algorithm (whichever comes

first), the data is transferred to tape subsystem as the 3rd phase.

Figure 14. ITU-CSCRS unique volume management and partitions

18

With the current implementation it is easy to add more storage when it is

needed [fig.15]. All storage area seems as one big unique space and its partitions can

be dynamically resized when needed. It is also possible to store processed, and

distribution data in their respective partitions namely “PDB” or Processed Data

Buffer, and “DDB” or Distribution Data Buffer[fig.13]. In those volumes all data is

indexed, by providing quick access to the data stored for a couple of months of

period.

Figure 15. ISCSI disk arrays employed in the ITU-CSCRS ground station

 In the ITU-CSCRS ground station, it is also important handling many small

files, especially needed for RADARSAT-1 data processing. For this reason, PDB is

formatted with a filesystem called Reiser4, for its unique capabilities for such

operation.

Reaching the goal proposed, separating the tape subsystem from the recording

units were thought logical. For this purpose was purchased a new tape archiving

system employs LTO3[11] generation 3 tapes. That unit employs 50 tape cartridges

at the same time and engineered to scale up to 480 cartridges. It provides an infrared

barcode reading mechanism for tape determination which was a deficiency in the

current tape systems. With this new system, it is much easier to batch ingestion of

telemetry data in both direction through the tapes [fig.16].

19

Figure 16. New tape unit employed on ITU-CSCRS ground station

5.5 Demodulator Systems

Demodulator systems are another key elements to achieve proposed recording

speed along with the recording systems. In the ITU-CSCRS ground station,

demodulators are responsible for bitsyncing, decrypting, and demodulating data

altogether.

5.5.1 Current Status

ITU-CSCRS ground station has 2 different demodulator systems which are

differently configured for different satellite missions. One of them is capable of

sustaining 120 Mbps transfer rates and is used for RADARSAT1, SPOT2, and

SPOT4 acquisitions. The other one is configured for the Quickbird acquisitions and

can operate at a speed 320 Mbps. Since the Quickbird data downlinking was

prohibited by the US government, this demodulator system was started to be used as

a backup for the other demodulator system. That modulator systems can support

almost any modulation types namely BPSK, QPSK, AQPSK, UQPSK.. etc with a

simple card addon upgrade on the hardware [fig.17].

20

Figure 17. One of the demodulator systems used at the ITU-CSCRS ground station

5.5.2 Proposed Implementation

As there was no easy alternative to achieve 1 Gbps transfer speed with the

current setup of demodulator systems, it was proposed to purchase new demodulator

systems [fig.18] such as ones produced by the a French company called In-snec [13]

to support upcoming satellite missions. Those systems are very flexible to be

configured for different satellite missions because of their software based nature and

capable of sustaining such data stream speeds.

Figure 18. In-Snec software based demodulator system

21

This type of high data rate receiver systems provide support for BPSK,

QPSK, O/S QPSK. A/U QPSK, 8PSK, GMSK modulation types. It is also tunable

for recording speeds from 500 Kbps up to 2 Gbps. Providing flexible interconnection

options such as ECL, makes it a good candidate for integration into ITU-CSCRS

ground station [14].

6. Station Software

ITU-CSCRS ground station employs, 3 different types of software. First

group is named as the system software which provides services for basic execution of

system hardware tasks found in the station. The second group is application software

used to provide automation in all ground stations and to command the hardware or

other software systems. Third group is the database systems used in the different

parts of the system.

6.1 Database Systems

6.1.1 Current Status

In the current situation, ITU-CSCRS ground station employs 3 different

database systems used in the different parts of the system. A Oracle database system

which resides in the processing servers is used for automation tasks and SPOT

catalog, and processing information. That database is also responsible for SPOT data

query for SPOT data inventory. There is a utility called “world” is used for that

purpose. The second database system, slightly reduced form of the database

mentioned above, is found on the web server for web based access to SPOT catalog

queries. The third database system is found on DIS units as mentioned in the DIS

section above. In general, all those three database systems have some drawbacks for

the current demands.

6.1.2 Proposed Implementation

Since, none of the current database systems are allowing spatial database

queries or supporting image data mining features in any manner, it was a necessity to

setup a database system supporting that features for map generation, spatial and

image query purposes severely needed in the ground station. For this purpose, 2 open

source alternatives, PostgreSQL and MySQL, were evaluated and PostgreSQL

22

database management and its spatial extension (PostGIS) were chosen due to its

large database handling capabilities which was also a big necessity for the ground

station. The PostgreSQL & PostGIS are both opensource softwares that enable to

modify source code and extend for the specific needs of the ground station. The

current version of the PostGIS extension, has basic topology support, data validation,

coordinate transformation, and related programming APIs for those purposes. For

future versions it is planned to have full topology support, raster support, networks

and routing, three dimensional surfaces, curves and splines. With the help of GEOS

and Proj4 library, it can be easily used for map generation and map based queries.

The PostGIS implementation is based on "light-weight" geometries and indexes

optimized to reduce disk and memory footprint. The use of light-weight geometries

helps servers to increase the amount of data migrated up from the physical disk

storage into RAM, improving query performance substantially. PostGIS conforms

OGC (Open Geospatial Consortium)[15] standards such as GML, WMS, WFS, SFS

and many others.

Some of the features supported by PostGIS are;

• Geometry types for points, linestrings, polygons, multipoints,

multilinestrings, multipolygons and geometry collections,

• Spatial predicates for determining the interactions of geometries using the

3x3 Egenhofer matrix,

• Spatial operators for determining geospatial measurements like area, distance,

length and perimeter.

• Spatial operators for determining geospatial set operations, like union,

difference, symmetric difference and buffers,

• R-tree spatial indexes for high speed spatial querying,

• Index selectivity support, providing high performance query plans for mixed

spatial/non-spatial queries.

Another opensource database system planned to use for mainly XML data

queries in preparation, is called MonetDB. The MonetDB is an extensible database

system with its own algebraic language. The MonetDB can support different types of

23

backends in the same server architecture and can provide different query

mechanisms. It was developed in the CWI (Centrum voor Wiskunde en Informatica)

Holland and designed to provide high performance on complex queries against large

databases, e.g. combining tables with hundreds of columns and multi-million rows.

Therefore, the MonetDB can be used in application areas since performance issues

are no-go areas using traditional database technology in a real-time manner. The

MonetDB has been successfully applied in high-performance applications for data

mining, OLAP, GIS, XML Query, text and multimedia retrieval. MonetDB internal

data representation is memory-based, relying on the huge memory addressing ranges

of contemporary CPUs, and thus differs from the traditional DBMS designs

involving complex management of large data stores in limited memory. MonetDB

introduced innovations at all layers of a DBMS. A storage model based on the

vertical fragmentation, and a modern CPU-tuned vectorized query execution

architecture often gives MonetDB a more than 10 fold raw speed advantage on the

same algorithm over a typical interpreter-based RDBMS. MonetDB is thought one of

the first database systems focused its query optimization effort on exploiting CPU

caches. MonetDB also features automatic and self-tuning indexes, run-time query

optimizations, and a modular software architecture. MonetDB conforms SQL-99

standards.

As of now, MonetDB supports 2 different types of frontend for data query.

• MonetDB/SQL: the relational database solution.

• MonetDB/XQuery: the XML database solution.

There are some language bindings and standard interfaces are also provided

along that database system as such JDBC, ODBC, PHP, Python, Perl and C.

MonetDB can be compiled and run over many different OSes ranging from UNIX,

Linux and Mac OS X to Windows.

6.2 System Softwares

Satellite data processors, recording unit software, and clustering softwares are

fall into that category and they are all explained in detail in their respective sections.

24

6.3 Application Softwares

Programming languages, definition & modeling languages, data management

& mining softwares, CSCRS object based management middleware and its interfaces

fall into this category.

6.3.1 Programming Languages

Although, system development in ground station is mainly made by utilizing

C, C++ languages, however it was seen that there was a need for a higher level

language which can be used for connecting different software parts together for

automation purposes and also for configuration purposes of the software subsystems

developed mainly by C and C++. For this purpose many candidates were evaluated

with a careful examination. Unfortunately, none of them were found conforming the

high level needs of the ground station operations. So it was decided to develop a

language called CSlang for this purpose. CSlang has been chosen to support object

oriented approach from the very beginning and specifically designed for the station's

needs. As of now, it can be compiled for different CPU architectures and has a

virtual machine for x86, x86_64, and ARM processors. It is designed to be as

scalable as possible therefore it is possible to develop software that can run on a scale

enabling to change from multi processor servers to PDA systems having limited

memories. CSlang supports C like syntax that eases system development and

decreases the learning curve for beginners. It also supports byte-compilation for

rapid execution and Boehm-Demers-Weiser garbage collector for automatic memory

management. As of now, it has consistent and flexible libraries for socket

programming, regular expressions based on PCRE (Perl Compatible Regular

Expressions), DB access routines for MySQL, PostgreSQL, and MonetDB, an XML

processing library based on libxml2, a primitive CGI library, and a console

programming library which based on ncurses. It is planned to open source the code

of the language for further development under GPL v2.

25

Sample code for CSlang that uses a system DLL on WindowsTM platform is given

below:

import "gui"

import "system"

user32 = system.dll("user32.dll")

user32.__loadpfunc__("GetWndRect", "GetWindowRect", 'bool, ['int, 'structp])

w = gui.window("Test", [20, 30, 200, 170])

e = gui.note(w, "", [0, 25, w.clientrect[3], w.clientrect[4]])

b = gui.button(w, "Get Main Window Rect", [0, 0, w.clientrect[3], 25])

b.onClick = func(){

theRect = [:{itype:"i4", dim:4}, nil:]

if (user32.GetWndRect(w.hwnd, theRect)){

cr$ = chr(13) + chr(10)

e.text = "Left = " + str(theRect[1]) + cr$

e.text = e.text + "Top = " + str(theRect[2]) + cr$

e.text = e.text + "Right = " + str(theRect[3]) + cr$

e.text = e.text + "Bottom = " + str(theRect[4]) + cr$

}else{

e.text = "Call to GetWindowRect in User32.dll failed!"

}

}

gui.enter()

6.3.2 CSCRS Management Middleware

Considering ground station topology given in figure 19, it is an obligation to

consolidate all network nodes in a consistent way for automation purposes. For this

purpose, a middleware system that can support different types of protocols to manage

different aspects of the ground station is in preparation. Such middleware

application will also be used for development of GUI based interfaces and web based

interfaces in a more consistent way.

26

Figure 19. Proposed ground station topology

The proposed middleware will provide many automation routines for

controlling IEEE488 interfaces, DIS and GSC automation routines, database query

interfaces on a higher level, and data mining routines which are all specific to ground

station needs. Internally that middleware will employ an object oriented approach,

and objects will be passed through serialization around the station software

components which would allow very flexible and inheritable configurations. For

example, with a console based client, it is possible to give a Radarsat data ingestion

command to system for further processing of raw telemetry data [fig.20].

27

Figure 20. CSCRS object based management console

Same middleware software can be used for feeding web based interfaces with

its XML production capabilities. The example query, above, which has been showing

the list of PRR files for specific orbit, could also feed a web based interface with a

slight change.

listprr | filterby orbit=”53526” | sortby prr | xmlize

This command produces an XML output which can be fetched and used in a web

based client easily. Such a web based interface is under development for Weekly

Scheduling of the ground station shown in the figure 21.

Figure 21. Web based pass schedule interface

28

Middleware provides a foundation for a commandlet based architecture which

its commands are also inheritable objects. So that feature makes the software,

conceptually similar to the projects such as “Monad Project” from Microsoft [17]

and an opensource project “Osh” Object Oriented Shell [18]. All commandlets

conforming base commandlet class have object oriented interfaces for standard input,

standard output, and standard error streams that are very similar to traditional shell

systems. This feature makes it easy to use in scripting complex tasks required for

ground station automation.

6.3.3 Interface Definition Languages

With the development of middleware software, it became a necessity to use a

interface language which can be used on different media with no modification or in a

easily transformable way. That language should also provide a language agnostic

way of handling user interfaces that will be developed in ground station. For this

purpose XML syntax was chosen. With an investigation of a couple possibilities, one

project is being conformed the needs. XML User Interface Language or XUL, is an

XML user interface markup language developed by the Mozilla project for use in its

cross-platform applications, such as Firefox. XUL relies on multiple existing web

standards and technologies, including CSS, JavaScript, and DOM, which make it

relatively easy to learn for people with a background in web programming and

design. The main benefit of XUL is to provide a simple and portable definition of

common widgets. This reduces the software development efforts in a way analogous

to the savings offered by 4GL tools. Although XUL is usable in a web based

development and directly inside Mozilla Project based browsers and Netscape

generation 6 and 7, unfortunately it is not known by any other browser on the market.

Therefore, it is necessary to develop another Ajax toolkit which is also in preparation

by R&D team for other browsers. Holding interface structure with XUL, while

developing interfaces for internal usage in station and then utilizing an XSL based

transformation to convert it to an DHTML and/or XHTML based widgets for other

browsers, seems a logical way in developing web based applications such as online

catalog search. Data Distribution Server Interface, Spot Programming Request

Interface, and Cloud Coverage Assessment Interface are all examples of such

development approach [fig.22].

29

Figure 22. Some application interface examples

A fragment of a XUL file as used in a real world application can also be seen below;

<x:tabpanels flex="1">

<x:vbox>

<x:hbox>

<x:vbox flex="1">

<h:div class="infobox1"><h:span class="title1">system
time:</h:span><h:br/><h:div id="systemtime" class="title2"></h:div><h:span
class="title1">remaining time:</h:span><h:br/><h:div id="remainingtime"
class="title2"></h:div><h:span class="title1">internet time:</h:span><h:br/><h:div id="internettime"
class="title2"></h:div></h:div>

</x:vbox>

<x:vbox flex="1">

<h:div class="infobox1">?<h:div id="satellite"
class="title2"></h:div><h:span class="title1">orbit:</h:span><h:br/><h:div id="orbitno"
class="title2"></h:div><h:span class="title1">pass times:</h:span><h:br/><h:div id="passstarttime"
class="text"></h:div><h:br/><h:div id="passstoptime" class="text"></h:div></h:div>

</x:vbox>

<x:vbox flex="1">

<h:div class="infobox1"></h:div>

</x:vbox>

30

<x:vbox flex="3">

<h:div class="infobox2"></h:div>

</x:vbox>

</x:hbox>

<x:hbox style="background:#FFFFFF;border-top:1px #CCCCCC solid;padding:3px">

<h:table border="0" width="95%" align="center">

<h:tr>

<h:td align="center">

<h:button class="button2">«</h:button>

<h:button class="button1" style="width:75px;font-
family:Tahoma;font-weight:bold;font-size:13px;"
onclick="csConsole.commandlet.getpasslist(1);">current</h:button>

<h:button class="button2" style="width:25px;font-
family:Tahoma;font-weight:bold;font-size:13px;">»</h:button>

</h:td>

</h:tr>

</h:table>

</x:hbox>

<x:hbox id="treeloader" flex="1">

<x:tree id ="passtree" hidecolumnpicker="false" seltype="multiple"
enableColumnDrag="true" flex="1" minheight="100px">

<x:treecols>

<x:treecol id="doy" flex="1" label="D.O.Y"/>

<x:splitter class="tree-splitter" />

<x:treecol id="orbno" flex="2" label="Orbit No"/>

<x:splitter class="tree-splitter" />

<x:treecol id="passid" flex="3" label="Pass ID" />

<x:splitter class="tree-splitter" />

<x:treecol id="status" flex="2" label="Status" />

<x:splitter class="tree-splitter" />

<x:treecol id="exp" flex="3" label="Explaination" />

</x:treecols>

<!--<x:treechildren id="passlist"
xmlns:x="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul" />-->

</x:tree>

</x:hbox>

</x:vbox>

</x:tabpanels>

31

7. Results & Recommendations
In this study, the necessary steps that should be taken for renovating the ITU-

CSCRS ground station and also a guide for hardware and software policy were

explained. With four years of experience, a base for software development standards

conforming ground station needs, has been provided. It can be thought that, it was

easier now to achieve planned goals with the supplied libraries and the development

frameworks produced along many years for the related software technologies.

There is still a significant amount of work at the system software side.

Provided frameworks and development environments should supply a start point to

development team for their further efforts. There is also some polishment needed for

the operation and automation routines of GSC, and DIS units. Some commandlet

packages should also be developed using supplied middleware foundation libraries

for that purpose. There is also a need for development at the internal workings of the

middleware for transparent access to its settings which is currently hold in an XML

file. A uniform file access mechanism similar to URL scheme, should also be

implemented for transparent access to streams of different protocols. Therefore,

development team can create more consistent, sharable, conformant, and readable

code for frequently used development tasks such as network programming, stream

based access to resources etc.

Overall software system in preparation, also makes it possible to develop

mobile interfaces for system applications with just applying appropriate styling.

Preparation of that styles are also seen as a future job to achieve.

With the proposed software architecture, it is going to be possible to

automate, orchestrate station nodes. Collecting, and querying operational data about

the nodes, flexible configuration and adaption of the system for a specific project are

also going to be surplus values. It is also going to be possible to automatically

collect, query and create reports related to operator labor in the station. As the result,

designed system, mentioned in this study, will provide extensive information about

data, hardware, software, and human resources for the decision makers.

32

REFERENCES

[1] http://en.wikipedia.org/wiki/Ground_station, 2007

[2] Rick Reid, 2002. http://www.silicongraphics.net/pdfs/3285.pdf, Whitepaper, SGI

[3] http://www.namesys.com/benchmarks.html, 2007

[4] http://openssi.org, 2007

[5] http://openmosix.sourceforge.net, 2007

[6] http://www.kerrighed.org, 2007

[7] Renaud Lottiaux and Benoit Boissinot. Openmosix, openssi and kerrighed: A
comparative study. Technical Report PI-1656, IRISA, Rennes, France, November
2004.

[8] http://www.scanex.ru/en/index.html, 2007

[9] http://www.kongsberg.com, 2007

[10] DART Specification, Oct 98. Whitepaper, DATRON

[11] http://www.quantum.com/Products/TapeDrives/LTOUltrium/LTO-3/Index.aspx,
2007

[12] http://www.dlttape.com, 2007

[13] http://www.in-snec.com/home/index.htm, 2007

[14] http://www.in-snec.com/products/pdf/ftp99=HDR.pdf, 2007

[15] http://www.opengeospatial.org, 2007

[16] http://monetdb.cwi.nl, 2007

[17] http://www.microsoft.com/windowsserver2003/technologies/management/
powershell, 2007

[18] http://geophile.com/osh, 2007

[19] http://www.mozilla.org/projects/xul/, 2007

33

[20] Amnon Barak, Shai Guday, and Richard G. Wheeler. The MOSIX
Distributed Operating System, Load Balancing for UNIX, volume 672 of
Lecture Notes in Computer Science. Springer-Verlag, 1993.

34

CURRICULUM VITAE

He was born in Istanbul in 1977. He has started and finished his elemantary
school in Istanbul. He started his education in Anatolian Zincirlikuyu Technical High
School in 1990 and graduated in 1995. In 1998, he started his under graduate
program at ITU Civil Engineering Faculty, Geodesy and Photogrammetry
Engineering Department and finished that program in 2003. In that year he has been
accepted to master program in the Geomatics Enginnering and became an assistant
and started as a system administrator in Istanbul Technical University Center for
Satellite Communications & Remote Sensing. He still continues his job as a system
administrator at the CSCRS.

35

